INTERNATIONAL TELECOMMUNICATION UNION

ITU-T X.292

TELECOMMUNICATION (09/98)
STANDARDIZATION SECTOR
OF ITU

SERIES X: DATA NETWORKS AND OPEN SYSTEM
COMMUNICATIONS

Open Systems Interconnection — Conformance testing

OSI conformance testing methodology and
framework for protocol Recommendations for
ITU-T applications — The Tree and Tabular
Combined Notation (TTCN)

ITU-T Recommendation X.292

(Previously CCITT Recommendation)

ITU-T X-SERIES RECOMMENDATIONS
DATA NETWORKS AND OPEN SYSTEM COMMUNICATIONS

PUBLIC DATA NETWORKS
Services and facilities
Interfaces
Transmission, signalling and switching
Network aspects
Maintenance
Administrative arrangements
OPEN SYSTEMS INTERCONNECTION
Model and notation
Service definitions
Connection-mode protocol specifications
Connectionless-mode protocol specifications
PICS proformas
Protocol Identification
Security Protocols
Layer Managed Objects
Conformance testing
INTERWORKING BETWEEN NETWORKS
General
Satellite data transmission systems
MESSAGE HANDLING SYSTEMS
DIRECTORY
OSI NETWORKING AND SYSTEM ASPECTS
Networking
Efficiency
Quality of service
Naming, Addressing and Registration
Abstract Syntax Notation One (ASN.1)
OSI MANAGEMENT
Systems Management framework and architecture
Management Communication Service and Protocol
Structure of Management Information
Management functions and ODMA functions
SECURITY
OSI APPLICATIONS
Commitment, Concurrency and Recovery
Transaction processing
Remote operations
OPEN DISTRIBUTED PROCESSING

X.1-X.19
X.20-X.49
X.50-X.89
X.90-X.149
X.150-X.179
X.180-X.199

X.200-X.209
X.210-X.219
X.220-X.229
X.230-X.239
X.240-X.259
X.260-X.269
X.270-X.279
X.280-X.289
X.290-X.299

X.300-X.349
X.350-X.399
X.400-X.499
X.500-X.599

X.600-X.629
X.630-X.639
X.640-X.649
X.650-X.679
X.680-X.699

X.700-X.709
X.710-X.719
X.720-X.729
X.730-X.799
X.800-X.849

X.850-X.859
X.860-X.879
X.880-X.899
X.900-X.999

For further details, please refer to ITU-T List of Recommendations.

ITU-T RECOMMENDATION X.292

OSI CONFORMANCE TESTING METHODOLOGY AND FRAMEWORK
FOR PROTOCOL RECOMMENDATIONS FOR ITU-T APPLICATIONS —
THE TREE AND TABULAR COMBINED NOTATION (TTCN)

Summary

This Recommendation defines an informal test notation, called the Tree and Tabular Combined Notation (TTCN), for
OSl conformance test suites, which is independent of test methods, layers and protocols, and which reflects the abstract
testing methodology defined in Recommendations X.290 and X.291.

Source

ITU-T Recommendation X.292 was revised by ITU-T Study Group 7 (1997-2000) and was approved under the WTSC
Resolution No. 1 procedure on the 25th of September 1998.

Recommendation X.292 (09/98) [

FOREWORD

ITU (International Telecommunication Union) is the United Nations Specialized Agency in the field of telecommuni-
cations. The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of the ITU. The ITU-T is
responsible for studying technical, operating and tariff questions and issuing Recommendations on them with a view to
standardizing telecommuni cations on a worldwide basis.

The World Telecommunication Standardization Conference (WTSC), which meets every four years, establishes the
topicsfor study by the ITU-T Study Groups which, in their turn, produce Recommendations on these topics.

The approval of Recommendations by the Members of the ITU-T is covered by the procedure laid down in WTSC
Resolution No. 1.

In some areas of information technology which fall within ITU-T’s purview, the necessary standards are prepared on a
collaborative basis with ISO and IEC.

NOTE

In this Recommendation the temecognized operating agency (ROA) includes any individual, company, corporation or
governmental organization that operates a public correspondence service. ThaAdmimigration, ROA and public
correspondence are defined in th€onstitution of the ITU (Geneva, 1992).

INTELLECTUAL PROPERTY RIGHTS

The ITU draws attention to the possibility that the practice or implementation of this Recommendation may involve the
use of a claimed Intellectual Property Right. The ITU takes no position concerning the evidence, validity or applicability
of claimed Intellectual Property Rights, whether asserted by ITU members or others outside of the Recommendation
development process.

As of the date of approval of this Recommendation, the ITU had not received notice of intellectual property, protected by
patents, which may be required to implement this Recommendation. However, implementors are cautioned that this may
not represent the latest information and are therefore strongly urged to consult the TSB patent database.

0 ITU 1999

All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means, electronic or
mechanical, including photocopying and microfilm, without permission in writing from the ITU.

ii Recommendation X.292 (09/98)

10

11

CONTENTS

Page
oo o= USSR 1
N[g RN = = = o= PR Z
DEfINITIONS. ... ettt ettt e st e ebe e e be e be e s beeabeebeesheesheesbeesbeeasesaeate e beentesneesaeesaeesbeenreenrens 3
31 Basic terms from Recommendation X.290..........ccoieiieieerie e see e ee e s s nnee 3
3.2 Terms from Recommendation X.200...........coeeiiiiiieiieiie et reereeaeesre s e 5
33 Terms from Recommendatiion X.210.........c.coveiiieiieeie et esne e e 5
34 Terms from Recommendation X.680...........ccooiiiiiiiii et r e e ere s e 5
35 Terms from Recommendatiion X.690..........cccueiiiiieeii et a e nne s e 5
3.6 TTCN SPECHTIC TEITIIS ...ttt b et b et b et b et b e bt b et st e et e 5
F N o] o 1=V = o) 10
41 Abbreviations defined in Recommendation X.290..........cccooieiiiieieeiee e 10
4.2 Abbreviations defined in Recommendation X.291.........c.oocieieieeieeieseesere e 10
4.3 Other @DBIrEVIBLIONS.ceiiieiece ettt et et te et e s e e s beetesaeesreentes esbeentesaeesreens 10
Y 1= 1] 0 ST I X N SRS 11
COMPIIBICE ...ttt ettt b et b bt b e s e h e e et b s e e bt e b e Rt e b e e eb e s e e Rt e R e e eb e e e ebe st ebe et enesbeneebennenenbens 12
(0017701 1o USSP 12
7.1 [0 [N o 1) o SRS 12
7.2 S3Y7 01z ox (1o 11 = 0 To = 4 o] TR 12
7.3 TTCN.GR tahl€ ProfOrMES.......c.eivieeiirieiitiet et e nnne 13
7.4 Free Text and BoUNAEA FrEE TEXL ...uvivii ittt sttt st e s e ene e 15
CONCUITENCY TN TTON ..ttt sttt b et b et b e e st b e e b s e he s b et b e s e e bt e b et eb e s seentsbe e ebe st e st nbe e ne 15
8.1 L= O] 100 1< | PO 15
8.2 Test Component CONfiGUIALIONS.c.ciuireririeiriieei ittt st sb e e b 16
TTCN TESE SUITE SEIUCLUIEcueeeeee e ettt ettt st e s sesre st seese e s e e seeseese e e essenaeneenten snsenseseensessenaenseses 17
9.1 g1 [N o 1) o SRS 17
9.2 TESt GrOUD REFEIENCESecieeiecieetee ettt st e b e e e s e sse e teeneesreeee seesneenneeneas 17
9.3 TeSt SLEP GroUP REFEIENCEScuieeeiriieeiiee ettt e nne 17
9.4 Default GroUP REFEIENCESececeeeeeeeeeee e et e e st s sttt st ae b s resaeereeaesseere seneerenneens 18
9.5 Parts Of @ TTCN TESE SUITE.......eiiuieiicie et re et e s e e sreesre s s enteeanenreenns 18
LIS S T ST @ = Y= PR 18
0 I R 1 1 (o [N 1) o SRR 18
O 1= S 0T (= U Tox (U] SRS 19
10.3 TESECASEINUEX ..cviteiicticiesie ettt ettt ettt et et et e be st e besbe st e besbesbesbesbesbestesae et sbenteseesbessessens 20
O 1= S (= oI o GRS 21
LT = = 0 L 1 o GRS 22
O 1= S 0T (= {4 (S SSS 23
FO.7 IMPOIT PAIT......eeieeeee ettt ettt ettt bt st ae et ae e s bt e et e e e sbe e bt easeabeems e eesaeeseennesseaseenns 24
DECIArAiONS ParT.......coiiiciciiiiici s s 26
I O 1 1 (1 o) RS 26
L11.2 TTON EYPES ettt b bbbt b e Rt bbb st a e h et e s e s s e e e e et e e e s ene s £enenesnearennenneas 27
11.3 TTCN operators and TTCN OPErEHIONSccerueriereriestisierie st erese e e e e se e s e e eseeeeseeneeseas 34
11.4 Test Suite Parameter DECIAratioNS.........cccueiieeiieiiieiteeitecte st e steete e e testesteesbesatesreesbesnsesreesbes eareereenns 43
115 Test Case Selection EXpression DEfiNItiONSccooireierinie i 43
11.6 Test Suite Constant DECIArAtiONS..........cciiiiitieiecee ettt ettt st be s s beebesaeesbeenbesenreereenns 44
11.7 Test Suite Constant Declarations by REFErENCe.cooo i 45
T B WO N T o = SRR 46
1119 PCO TYPE DECIAIELION.ceiteieiiteite ittt ettt ettt se b aese e be s e e ss e beseesee e sbesbesaesaens 48

Recommendation X.292 (09/98) iii

12

13

14

15

11.10 PCO DECIAraliONS.......cceeiteeieeiesieieesee st esteeteseesseesteeste e teestessaesseesseesseesseanssansesseesseensseaseessenssenssens
I O I T = 4o USSP
I T T D= o = 1 o USSP
11.13 Test Components and Configuration DeClaralionS............ccvceeeeeniereeie s
11,14 ASP TYPE DEfINITIONS.......eii ettt et et e e te et e saeenteen sereenbeeneenseens
11.15 PDU TYPE DEfINITIONS......ccciiiiieesie ettt ettt et et te et e st et e ae e teentesneesseens sreenseensesseens
11.16 Test Suite ENCOding INfOrMELION..........coiieiieieee et sttt s sre s e tenneens
11,17 CM TYPE DEfINITIONS. ...t bbbttt e e e se e beseeseeeas
11.18 String 1ength SPECITICALIONS........coeieiiieeeeee ettt e et e e e
11.19 ASP, PDU and CM Definitionsfor SEND @VENES.........ccveieiieiiese e
11.20 ASP, PDU and CM Definitions for RECEIVE @VENES.........ccccoveieiieiiciecesieee et
11.21 AlIBS DEfINITIONS.......eeiiecee e ettt te e e e te s e e sae e aesaeesaeesne s eeteentesnsesreesenns
CONSITAINIS PAIT ... et et e s s te e rte st e s reetesaeeseeesesaeesaeensesaeesaeenses eentesseesteentesseessenntenneens
2250 R 1 1o [N o 1) S
122 GENELEl PIINCIPIES.eieeeeeeeeee ettt e bbbt b e be bt b e s ae e bt eb e s st eaeea e et e nees 2abenteseenbanbeseens
12.3 Parameterization Of CONSITAINES.........ccviiiiiiciice ettt e see b e e beeareeneeereenes
12,4 Chaining Of CONSIITAINTS.......ccueiuiiteieieetireet ettt e e e e ee e e e seeseesbeseesbesbesae s abeseesbesbeseen
125 ConStraintS for SEND EVENES.....c.ccovcierierieesiestes e ses e e se st e st ste e sressesseesesseesesseeneeseeseens essessnssens
12.6 Constraints for RECEIVE BVENES.........cciiiiciceece ettt ettt st sae et e ne s
Specification of conStraintS USING tahIESccuecviiieieececce e e
G50 R 1 1o [N o 1) o OSSR
13.2 Structured Type Constraint DECIarations...........ccceveeeririeeerieeeseeseeseesaeseeseese s e seseesees e saesressesaeesens
13.3 ASP CoNnStraint DECIArationS..........c.cccueiuieiiiiiecie ettt ettt ettt et st e st sae e beeabesaeaste e eneeereenns
13.4 PDU ConStraint DECIAIatiONSccuecueiieriesesesesiesesesesestesessestesseesessesseeseeseseessessesssssessesessesessessens
135 Parameterization Of CONSITAINES.........ccuiiiiiieiecece ettt ettt e b e et e ea b e eaeeereenes
13.6 Baseconstraints and modified CONSITAINES.ccvicviiieeii e
13.7 Formal parameter listsin modified CONSIIAINES..........cooeiririiire e
13.8 CM CoNStraint DECIAIratioNS..........cceiieiieieeieesie et este ettt ettt e e e e e se e re e seeneesseenee e eneenneenes
Specification of CONSLrANtS USING ASN.L......oiiiiiirieire ettt st sbe e
72 R 1 11 L1 o o) S
142 ASN.1Type Constraint DECIAratioNSccirueeriiririirieesieriee ettt
14.3 ASN.1 ASP Constraint DECIAralioNScccceerieriieseeseeiesee e ste s e eseesree e steseesteeeesaeesreeeesennenes
144 ASN.1PDU Constraint DECIArationS.........c.cceeiiiiiieieeiteeie e ste et stee e ete e stesaesaeesreeeesreesresnesereenns
145 Parameterized ASN.L CONSLIAINTScc.cccveiieriieieeiesteetesee e e testee s e e tesreesteetesaaesteestesseesreensessnsenseenes
14.6 MOified ASN.L CONSIIAINES.....ccueiciiiiecie e ceeete ettt ettt e e re e e te e e eae e be e e e sae e beeareere et e eneeereenns
14.7 Formal parameter listsin modified ASN.L CONSIrAiNS.........cciviiiereerienie e e
14.8 ASP Parameter and PDU field names within ASN.1 CONSIIraints.........ccccoveeeeiieeciecieececreecrecreeere e
14.9 ASN.1CM Constraint DECIAralioNScccueieerieiiiesiesesieseeseseesee e saesreesrestesreesreseesaeesreseesennenes
DYNAIMIC PAIT......eiuiitiieeiitiiete ettt b et b b b et b e e a e b e bt se e st e b e b e bt e et eneebesb e st s b enseb e b eneneenes
00 R 1 11 [N 1) TS
152 Test Case dynamiC DENAVIOUNccoirieiriiiiiie ettt e
153 Test Step dynamiC BENAVIOUcoui i e
15.4 Default dynamiC BENAVIOUN...........couciiiecesecc e e sresnenre s
155 Behaviour AESCIPHION.ccuiiteieieteiie ettt ettt st s e et et esbe e e beseenbesee e
ST T I (== 110 - o SRS
157 Treenames and ParamMEter [ISES..... ..o i ittt et st se e e s e e e besee s e sbesneeneas
15.8 TTCN SLBEIMENES.eetieeeeeteeieeeeste et eeeeste e e sseeste e e eseesse e teeseesteestesseesseesseessesseensenseessenns saseensesseessnenes
15,9 TTON TESE BVENES. ..ot ieei ettt e e st e rte e st e e s te e s be e e beeeaseesseeeneeanbeesnteen seesneeenseessensns
15.10 EXPIESSIONS.....ceteieeteseessestestestesteseessessesseasessesaessessesseasesseaseesssssessesssnsessessessessessessesses ensensansessessnnsessnns
L1511 PSEUAO-EVENES......eeii ittt ettt ettt ettt et et e et e et e e te e st e e be e beeaseebe e beeaeeebeenbeeasesseent seseenseennesreensennns
15.12 TiMEr MBNAGEMENTecieeeeeeeieeieteree e stestes e seestesteseestestesaeatesaesseatessesseesesseeseesesseeseesenn sasessensessesenns

Recommendation X.292 (09/98)

SRR

86
88
88
89
89

90
90
90
91
92
93
93

94
95

95
95
95
98
99
101
101
102
103
103
110
116
116

T G T AN I N 5 o0 1 o SR 118
15.14 Labelsand the GOTO CONSITUCTcoueiuiiiirierieeiieeeie ettt bbb e e bt ense e nas 122
ST LT o N I 00 1 Lo SR 123
1516 CONStraiNtS REFEIENCE.ot ettt e b er e sb e ene e eas 123
L5.17 VEIAICES oottt ettt e e et e s e s e e s aeesbeebeeabeeaeeebeeabeesbeenbeentesaseteenteenbeeaeesteesbeentens 124
15.18 Meaning Of DEFAUILS.......ccueiie et e s et e be et eeaeeenaresnaesneenreenrean 127
16 PAJE CONLINUBLTON ...ttt ettt bbbt b s bt b s e e bt b s e e bt e b e e e b et e b e sb et eb e e et st e e s eee 136
16.1 Page continuation Of TTCN talEScceeiuiiii et srr e 136
16.2 Page continuation of dynamic behaviour talEs............cocoiiiiiiiiic e 137
Annex A — Syntax and static semantics Of TNIC..........ooiiiiiiiiiiii e e e me——————— 138
A.l [[a1i (o To [V o 1o [SO PPRRRR 138
A.2 Conventions for the syntax deSCHLO...........coiiiiiiieeee e e e e e e —— 138
A3 TTCN.MP syntax productions iN BNoocuiiiiiiiiiiie et 139
A4 General static SemantiCS reqUINENMBRIL..........c.uveiiiiiiieiiee e e e et e e e e e e e e e e w1167
A5 Differences between TTCN.GR and TTCNRPM........cooiiiiiiiiiiiiiiiiiee e er e e e e e e e e s e e 171
A.6 List of BNF production NUMDEBK...........ooiiiiiiiiei ettt rae e e e e e e 171
Annex B — Operational SEMantics Of TIIC.........iiuiiiii ittt e e e 182
B.1 INEFOTUCTION ..ottt et e e e e e e e s e s bbb b bt e et e e e e e e e e e e aaaeeeaaaaaeeeeesaaannns 182
B.2 PIECEUEBIE. ...ttt ettt e et e e e e e e e e e e et e et eeeseeeeeeesaneeeeeaerea b e ns 182
B.3 Processing Of tESE CASE BBcoiiiiiiiiti ettt e e e e e e e e e e s e s s bbb e s e e e e eeeeseseees 182
B.4 Converting a modularized test suite to an equivalent expanded teSt.SuUit........ccccceeeevvevinennnee. 182
B.5 TTCN 0perational SEMEANHECooiiiiitiiie ettt e e e e e e e e e e s e s bbb e e e e e e ——— 184
ANNEX C — TTCN MOUUIB......cci ittt ettt e e e e e e e e e eeeeeeeeee s st meneannnnmsesesesessabarannnnnes 205
C.1 (o o [7o o 2 205
Cc.2 TTCN MOAUIE OVEIVIEW PAL......coiiiiiiie ittt ettt e st e e e st oo 205
C.3 g 0T 0] A = 208
ANNEX D — TESE SUIE INGE......eeiiiiiiieeiei ettt ettt e e e e et e e s menemmn e e sn e e e srne e e nnree s 20¢
D.1 11 oo 0 ox T 3 PSRRI 209
D.2 THE TESE SUILE INOE.......cciiieeeeeeet ettt ettt et e e e e e e eeeeeeeeeeeess s s teeeasnssnnsssasanns 210
PN o o (o) SR @foTpq] o - Tox A o] o {01 1T VPSR 210
E.l L]0 o [8Ted 1o 2 PSPPSR 210
E.2 Compact proformas for CONSIIANT...........ueiiiiiieeeie e e e e e e e e e e 211
E.3 Compact proforma fOr TESt CaBSE......ccccuureiiiiiiiiieee e e e s e s ecei e e e e e e e e e s s s sssne e ereeeeeeeeeeeanan 216
APPENAIX | — EXAMPIB. ... eeiiiiiieiiiii e e ettt e e e e e e e e e e s s e s st e e e e eeaeaeeseesas s s s mnemeenmmseeeeeeeaeeeeessanannnnne 217
1.1 Examples of tabular CONSIrafl...........cccuvviiiiiiiiiei e e e e e eeeeeeeeenanes 217
1.2 Examples of ASNL CONSIIaBIL.........ccciiiiiiiiiiiiieiie e e e e e e e e s e e s s e e e e e e e e e e e s e s s nnee e e e s e 221
1.3 Base and modified CONSIIEHIL..........oiuuiiiie it e e e sbe e emmmeeeeene s 228
1.4 Type definition USING MACBN........uuuiiiiiiiiiieee e e i e ciicetee e e e e e e e et e s s saa e ereeeeeeee s s smmmmm———e e 230
1.5 USE OF REPEA ..ottt et e ettt e e e ettt e e e e e ettt e e e e e entbe e e e s mmneeammm seeeas 231
1.6 RIS U1 (ST e] 0= - LT U 231
1.7 Example of @ TSt SUILE OVEIWE........ccciiiieeei ittt et e e e e e s e r e e e e e e e e e e s e eennnenes 232
1.8 Example of a Test Case in TTCN.MP For.
1.9 Use of Component Reference for Field Value Assignment in Constraint
1.10 U1 = Vg A =) 1] o SRR
.11 Multiplexing/Demultiplexirg
1.12 Splitting and RECOMDINDN.........uuuuiiiiiii e e e e e e e e e e e e e e e et e e s m——
1.13 MUILI-ProtOCOl TESE CASR......uuiiiiiiiiiiiieee et e e e e e e e
.14 [Tz L] o] L= e 1Y, oo 11 = i I S
1.15 Example of CREATE @nd DOB.........oouuuiuiiiiiiiiie e e e e eeee e ee ettt s s s s s e e e e e e e e e eeeeeeaesess e s s s 240

Recommendation X.292 (09/98) v

APPENTIX 11 — SEYIE QUILE... ..ot e s e e e e e e e e e e e e e s e e e e mnmnmms s e s e eeeeaeaaaaeeaenees 245
1.1 LY 10T {8 ox 1o 1 [PPSR 245
1.2 IS Aotz TSI 1 T - | S 245
1.3 Use of TTCN with different abstract test metBQd.............ccoov i, 246
1.4 USE OF DEIAUB. ...ttt e e e e e e ettt s e e e e e e e e e e e eee st meraaaaeeesesrssannnns 247
1.5 Limiting the execution time Of @ TeSt AS........ccceeeeeiiiiiii e e e e e e e e e e e s e 247
1.6 S 10T {01~ I o 247
1.7 P o] o] (oA VA= L o] & U URRUPPPPRRPORt 248
1.8 LIS Q0 L=ET ol 1T SO 248
1.9 ASSIGNMENtS 0N SEND EVENIL......uuiiiiiiiiiiiieeiieeee e e e e e see s e rr e e e e e e e e e e e e 248
110 MUHRISSEIVICE PCGB... ettt ettt et e s e e e e e e e e e e e eesb e b e erenennns 1248
Y o o1 o D L R T o -G SPPEEEPRURR 249
1.1 Ta] (oo [8 o3 1o 1 ISP 249
1.2 LI L Lo - S UUUUPPPPPRN 249

Vi Recommendation X.292 (09/98)

Recommendation X.292 (09/98) vii

I ntroduction

This Recommendation defines an informal test notation, called the Tree and Tabular Combined Notation (TTCN), for use
in the specification of OS| abstract conformance test suites.

In constructing a standardized abstract test suite, a test notation is used to describe abstract test cases. The test notation
can be an informal notation (without formally defined semantics) or a Formal Description Technique (FDT). TTCN is an
informal notation with clearly defined, but not formally defined semantics.

TTCN is designed to meet the following objectives:

a) to provide anotation in which abstract test cases can be expressed in standardized test suites;

b) to provide a notation which isindependent of test methods, layers and protocols;

¢) to provide a notation which reflects the abstract testing methodology defined in X.290-series Recommendations;

d) to provide a capability to use concurrency in the specification of abstract test cases, when appropriate, in both
multi-party testing and single-party testing.

In the abstract testing methodology a test suite is looked upon as a hierarchy ranging from complete test suite, through
test group, test cases and test steps, down to test events. TTCN provides a naming structure to reflect the positions of test
cases in this hierarchy. It also provides the means of structuring test cases as a hierarchy of test steps culminating in test
events. In TTCN, the basic test events are sending and receiving Abstract Service Primitives (ASPs), Protocol Data Units
(PDUs) and timer events.

Two forms of the notation are provided: a human-readable tabular form, called TTCN.GR for use in OSI conformance test
suite standards, and a machine processable form, called TTCN.MP, for use in representing TTCN in a canonical form
within computer systems and as the syntax to be used when transferring TTCN test cases between different computer
systems. The two forms are semantically equivalent.

viii Recommendation X.292 (09/98)

Recommendation X.292

OSI CONFORMANCE TESTING METHODOLOGY AND FRAMEWORK
FOR PROTOCOL RECOMMENDATIONS FOR ITU-T APPLICATIONS -
THE TREE AND TABULAR COMBINED NOTATION (TTCN) 1

(revised in 1998)

ThelTU-T,
considering
a) that Recommendation X.200 defines the Reference Model of Open Systems Interconnection for ITU-T
Applications,
b) that the objective of OSI will not be completely achieved until systems can be tested to determine whether they

conform to the relevant OSI protocol Recommendations;

C) that standardized test suites should be developed for each OSI protocol Recommendation as a means to:
— obtain wide acceptance and confidence in conformance test results produced by different testers;
— provide confidence in the interoperability of equipments which passed the standardized conformance tests;

d) the need for standardizing the conformance testing process to achieve an acceptable and useful degree of
comparability of results of conformance assessments of similar products,

unanimously declares the view

that thenotation in which generic and abstract test cases are written should be in accordance with this Recommendation.

1 Scope

11 This Recommendation defines an informal test notation, called the Tree and Tabular Combined Notation
(TTCN), for OSI conformance test suites, which is independent of test methods, layers and protocols, and which reflects
the abstract testing methodology defined in Recommendations X.290 and X.291.

1.2 It also specifies requirements and provides guidance for using TTCN in the specification of system-independent

conformance test suites for one or more OSI Recommendations. It specifies two forms of the notation: one, a human-
readable form, applicable to the production of conformance test suite Recommendations for OSI protocols, and the other,
a machine-processable form, applicable to processing within and between computer systems.

1.3 This Recommendation applies to the specification of conformance test cases which can be expressed abstractly
in terms of control and observation of protocol data units and abstract service primitives. Nevertheless, for some
protocols, test cases may be needed which cannot be expressed in these terms. The specification of such test cases |
outside the scope of this Recommendation, although those test cases may need to be included in a conformance test suit
Recommendation.

For example, some static conformance requirements related to an application service may require testing techniques
which are specific to that particular application.

The specification of test cases in which more than one behaviour description is to be run in parallel is dealt with by the
concurrency features (particularly involving the definition of Test Components and Test Component Configurations).

1 Recommendation X.292 and ISO/IEC 9646-3, Information technology — Open Systems Interconnection — Conformance testing
methodology and framework — Part 3: The Tree and Tabular Combined Notation (TTCN), are technically aligned.

Recommendation X.292 (09/98) 1

14

This Recommendation specifies requirements on what a test suite Recommendation may specify about a

conforming realization of the test suite, including the operational semantics of TTCN test suites.

15

This Recommendation applies to the specification of conformance test suites for OSl protocolsin OSl layers 2

to 7, specifically including Abstract Syntax Notation One (ASN.1) based protocols. The following are outside the scope
of this Recommendation:

a) the specification of conformance test suites for Physical layer protocols;

b) therelationship between TTCN and formal description techniques,

¢) themeans of realization of Executable Test Suites (ETS) from abstract test suites.

16 This Recommendation defines mechanisms for using concurrency in the specification of abstract test cases.

Concurrency in TTCN is applicable to the specification of test cases:

a) inamulti-party testing context;

b) which handle multiplexing and demultiplexing in either asingle-party or multi-party testing context;
¢) which handle splitting and recombining in either a single-party or multi-party testing context;

d) inasingle-party testing context when the complexity of the protocol or set of protocols handled by the IUT is such
that concurrency can simplify the specification of the test case.

1.7 TTCN modules are defined to allow sharing of common TTCN specifications between test suites.

2 Nor mative r efer ences

The following ITU-T Recommendations and other references contain provisions which, through reference in this text,
constitute provisions of this Recommendation. At the time of publication, the editions indicated were valid. All
Recommendations and other references are subject to revision; all users of this Recommendation are therefore
encouraged to investigate the possibility of applying the most recent edition of the Recommendations and other
references listed below. A list of the currently valid ITU-T Recommendationsis regularly published.

— ITU-T Recommendation X.200 (1994) | ISO/IEC 7498-1:1984hrmation technology — Open Systems Inter-
connection — Basic Reference Model: The Basic Model.

— ITU-T Recommendation X.210 (1993) | ISO/IEC 10731:1994rmation technology — Open Systems Inter-
connection — Basic Reference Model: Conventions for the definition of OSI Services.

— ITU-T Recommendation X.290 (1995D3 conformance testing methodology and framework for protocol
Recommendations for ITU-T applications — General concepts.

ISO/IEC 9646-1:1994, Information technology — Open Systems Interconnection — Conformance testing
methodology and framework — Part 1: General concepts.

— ITU-T Recommendation X.291 (199513 conformance testing methodology and framework for protocol
Recommendations for ITU-T applications — Abstract test suite specification.

ISO/IEC 9646-2:1994, Information technology — Open Systems Interconnection — Conformance testing
methodology and framework — Part 2: Abstract test suite specification.

— ITU-T Recommendation X.293 (199513 conformance testing methodology and framework for protocol
Recommendations for ITU-T applications — Test realization.

ISO/IEC 9646-4:1994, Information technology — Open Systems Interconnection — Conformance testing
methodology and framework — Part 4: Test realization.

— ITU-T Recommendation X.294 (199513 conformance testing methodology and framework for protocol
Recommendations for ITU-T applications — Requirements on test laboratories and clients for the conformance
assessment process.

2 Recommendation X.292 (09/98)

ISO/IEC 9646-5:1994, Information technology — Open Systems Interconnection — Conformance testing
methodology and framework — Part 5: Requirements on test laboratories and clients for the conformance
assessment process.

— ITU-T Recommendation X.295 (199503 conformance testing methodology and framework for protocol
Recommendations for ITU-T applications — Protocol profile test specification.

ISO/IEC 9646-6:1994, Information technology — Open Systems Interconnection — Conformance testing
methodology and framework — Part 6: Protocol profile test specification.

— ITU-T Recommendation X.296 (199503 conformance testing methodology and framework for protocol
Recommendations for ITU-T applications — Implementation conformance statements.

ISO/IEC 9646-7:1995, Information technology — Open Systems Interconnection — Conformance testing
methodology and framework — Part 7: Implementation conformance statements.

— ITU-T Recommendation X.680 (1997) | ISO/IEC 8824-1:1%8frmation technology — Abstract Syntax Notation
One (ASN.1): Specification of basic notation.

— ITU-T Recommendation X.681 (1997) | ISO/IEC 8824-2:198®rmation technology — Abstract Syntax Notation
One (ASN.1): Information object specification.

— ITU-T Recommendation X.682 (1997) | ISO/IEC 8824-3:198frmation technology — Abstract Syntax Notation
One (ASN.1): Constraint specification.

— ITU-T Recommendation X.683 (1997) | ISO/IEC 8824-4:198®rmation technology — Abstract Syntax Notation
One (ASN.1): Parameterization of ASN.1 specifications.

— ITU-T Recommendation X.690 (1997) | ISO/IEC 8825-1:198&rmation technology — ASN.1 encoding rules:
Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished Encoding
Rules (DER).

— ITU-T Recommendation X.691 (1997) | ISO/IEC 8825-2:198®rmation technology — ASN.1 encoding rules —
Specification of Packed Encoding Rules (PER).

— ISO/IEC 646:1991Information technology — ISO 7-bit coded character set for information interchange.

— ISO/IEC 10646-1:1993)nformation technology — Universal Multiple-Octet Coded Character Set (UCS) —
Part 1: Architecture and Basic Multilingual Plane.

3 Definitions

This Recommendation defines the following terms.

3.1 Basic ter ms from Recommendation X.290

The following terms defined in Recommendation X.290 apply:
a) abstract service primitive;

b) abstract testing methodol ogy;
Cc) abstract test case;

d) abstract test method,;

€) abstract test suite;

f) conformancelog;

g) conformance test suite;

h) coordinated test method;

i) distributed test method;

j) executabletest case;

k) executabletest case error;

[) executabletest suite;

Recommendation X.292 (09/98) 3

m) fail verdict;

n) idletesting state;

0) implementation under test;

p) inconclusive verdict;

q) invalidtest event;

r) local test method;

s) lower tester;

t) means of testing;

u) passverdict;

v) PICS proforma;

w) PIXIT proforma;

X) protocol implementation conformance statement;
y) protocol implementation extrainformation for testing;
Z) point of control and observation;
ad) remote test method;

ab) stabletesting state;

ac) standardized abstract test suite;
ad) static conformance requirements;
ae) syntactically invalid test event;
af) system under test;

ag) test body;

ah) test case;

ai) test caseerror;

g) test coordination procedures;
ak) test event;

al) test group;

am) test group objective;

an) test laboratory;

aon) test management protocol;

ap) test outcome;

aqg) (test) postamble;

ar) (test) preamble;

as) test purpose;

at) testredlization;

au) estredlizer;

av) test step;

aw) test suite;

ax) test system;

ay) upper tester;

az) (test) verdict;

ba) testing state.

4 Recommendation X.292 (09/98)

3.2 Terms from Recommendation X.200

The following terms defined in Recommendation X.200 (1995) apply:

a) (N)-layer (particularly for application, session and transport layers);
b) (N)-protocol-data-unit;

¢) (N)-service-access-point;

d) subnetwork;

€) transfer syntax.

3.3 Termsfrom Recommendation X.210

The following terms defined in Recommendation X.210 apply:

— OSl-service-provider.

34 Termsfrom Recommendation X.680

The following terms defined in Recommendation X.680 apply:
a) bitstring type;

b) characterstring type;

Cc) enumerated type;

d) external type;

e) object identifier;

f) octetstring type;

g) realtype;

h) selection type;

i) sequence type;

j) sequence-of type;

k) settype;

I) set-of type;

m) subtype.

NOTE — Where there may be ambiguity with TTCN terms these terms are prefixed with the term ASN.1.

35 Terms from Recommendation X.690

The following term defined in Recommendation X.690 applies:

— encoding.

3.6 TTCN specific terms
For the purposes of this Recommendation, the following definitions apply:

3.6.1 applicable encoding rules: The actual encoding rules that are to be used when sending or receiving a PDU,
after all relevant encoding defaults and overrides, if any, have been combined.

3.6.2 attach construct: A TTCN statement which attaches a Test Step to a calling tree.
3.6.3 base constraint: Specifies a set of default values for each and every field in an ASP or PDU type definition.
3.64 base type: The type from which a type defined in a test suite is derived.

3.6.5 behaviour line: An entry in a dynamic behaviour table representing a test event or other TTCN statement
together with associated label, verdict, constraints reference and comment information as applicable.

Recommendation X.292 (09/98) 5

3.6.6 behaviour tree: A specification of a set of sequences of test events, and other TTCN statements.

3.6.7 blank entry: In a modified compact constraint table, a blank entry in a constraint parameter or field denotes
that a constraint value is to be inherited.

368 calling tree: The behaviour tree to which a Test Step is attached.

3.6.9 compact constraint table: Declaration of a set of constraints for an ASP, PDU or Structured Type arranged in
asingle table.

3.6.10 compact test casetable: Declaration of a set of Test Cases for agiven Test Group arranged in asingle table.
3.6.11 concurrent test case: A test case which is specified using concurrent TTCN.

3.6.12 concurrent TTCN: TTCN which uses test components and test component configurations in order to express
concurrency in the dynamic behaviour of test cases.

3.6.13 constraints part: That part of a TTCN test suite concerned with the specification of the values of ASP
parameters and PDU fields being sent to the IUT, and conditions on ASP parameters and PDU fields received from
the IUT.

3.6.14 constraintsreference: A reference to a constraint, given in abehaviour line.

3.6.15 Coordination Message (CM): An item of structured information which may be transferred from one Test
Component to another at a Coordination Point.

3.6.16 Coordination Point (CP): A point within a testing environment, assigned to two Test Components in a Test
Component Configuration, where CMs may be exchanged asynchronously between these Test Components.

3.6.17 declarations part: That part of a TTCN test suite concerned with the definition and/or declaration of all non-
predefined objects that are used in the test suite.

3.6.18 default behaviour: The events, and other TTCN statements, which may occur at any level of the associated
tree, and which are indicated in the Default behaviour proforma.

3.6.19 default group: A named set of default behaviours.

3.6.20 default group reference: A path specifying the logical location of a Default in the Default Library.
3.6.21 default identifier: A unique name for a Default.

3.6.22 default library: The set of the Default behavioursin atest suite.

3.6.23 default reference: A reference to a Default in the Default Library from a Test Case or Test Step table.

3.6.24 derivation path: An identifier, consisting of a base constraint identifier concatenated with one or more
modified constraint identifiers, separated by dots and finishing with a dot.

3.6.25 dynamic chaining: The linking from constraint declarations of an ASP parameter or PDU field to the
congtraint declaration of another PDU by means of parameterization. Which PDUs are chained is specified in the
constraints reference of abehaviour line.

3.6.26 dynamic part: That part of a TTCN test suite concerned with the specification of Test Case, Test Step and
Default dynamic behaviour descriptions.

3.6.27 expanded test suite: A test suite with all imported objects expanded. This will be a result of converting of a
modularized test suite according to the algorithm in Annex B.

3.6.28 explicit external: A named object in the External table. An object which is explicitly declared as external in a
module is to be explicitly defined or exported as an external object.

6 Recommendation X.292 (09/98)

3.6.29 explicitly defined object: An object for which a definition or declaration exists in the module or test suite.

3.6.30 explicitly exported object: A named object in the Exports tables being available for use. If the object is an
imported object, the name of the source object isto be given.

3.6.31 explicitly imported object: A named object in the Import tables being available for explicit references.

3.6.32 exported object: An explicitly defined object or explicitly imported object in a source object, made available
for use in any other module or test suite. An exported object is either an explicitly exported object or an implicitly
exported object.

3.6.33 external object: An object being referred to by its name in a module, but neither imported nor explicitly
defined. An external object isto be declared in the External table. An external object may be either explicitly external or
implicitly external.

3.6.34 global result variable: A predefined test case variable maintained by a Main Test Component in the MPyT
context or by the test case in the SPyT context to record the accumulated effect of al the preliminary results of the test
casein order to determine the test verdict.

3.6.35 implicit external: An externally declared object in an export table which is omitted from a corresponding
Import table.

3.6.36 implicitly exported object: An explicitly defined object or explicitly imported object, which is not itself
explicitly exported but which is referred to by an explicitly exported object.

3.6.37 implicitly imported object: An object referred to by some explicitly imported object. The use of an implicitly
imported object is restricted to the explicitly imported objects (from the same source object) referring to it.

3.6.38 implicit send event: A mechanism used in Remote Test Methods for specifying that the IUT should be made to
initiate a particular PDU or ASP.

3.6.39 imported object: An object copied from some other source object, being available for use. An imported object
is either an explicitly imported object or an implicitly imported object.

3.6.40 level of indentation: Indicates the tree structure of a behaviour description. It is reflected in the behaviour
description by indentation of text.

3.6.41 local result variable: A predefined variable maintained by a Test Component to record the accumulated effect
of its preliminary results.

3.6.42 local tree: A behaviour tree defined in the same proformaasits calling tree.

3.6.43 Main Test Component (MTC): The single Test Component in a Test Component Configuration responsible
for creating and controlling Parallel Test Components and computing and assigning the test verdict.

3.6.44 madified constraint: A constraint defined for an ASP or a PDU that already has a base constraint, and which
makes madifications on that base constraint.

3.6.45 modularized test suite: A test suite containing Import tables.

3.6.46 module: A self-contained collection of TTCN objects. All referenced objects are either explicitly defined in the
Module, are imported from other sources or are defined as external objects in the module.

3.6.47 non-concurrent test case: A test case which is specified in TTCN but without using concurrent TTCN.

3.6.48 object: An element of one of the object categories listed in A.4.2.2 (for TTCN objects with a globally unique
identifier) and A.4.2.6 (for ASN.1 identifiers which are globally unique throughout the test suite).

3.6.49 operational semantics: Semantics explaining the execution of a TTCN behaviour tree.

Recommendation X.292 (09/98) 7

3.6.50 original source object: The module or test suite where an object is explicitly defined.

3.6.51 otherwiseevent: The TTCN mechanism for dealing with unforeseen test eventsin a controlled way.

3.6.52 overview part: That part of a TTCN test suite concerned with presenting an overview of the structure of the
test suite, the structure (if any) of the Test Step Library, the structure (if any) of the Default Library and the association of
selection expressions (if any) with Test Cases and/or Test Groups. This part also provides indexes to Test Cases, Test
Steps and Defaullts.

3.6.53 paralld test component [PTC]: A test component created by the main test component.

3.6.54 preliminary result: A result recorded before the end of atest case indicating whether the associated part of the
test case passed, failed or wasinconclusive.

3.6.55 pseudo-event: A pseudo-event isa TTCN expression or Timer operation appearing on a statement line in the
behaviour description without any associated event.

3.6.56 qualified event: An event that has an associated Boolean expression.

3.6.57 receiveevent: Thereceipt of an ASP or PDU at a named or implied PCO.

3.6.58 result variable: A predefined test case variable for storing preliminary results. In non-concurrent TTCN there
is one result variable called R. In concurrent TTCN, there is one global result variable called R, each PTC has a local
result variable called R, and the MTC has alocal result variable called MTC_R.

3.6.59 root tree: The main behaviour tree of a Test Case, occurring at the level of entry into the Test Case.

3.6.60 send event: The sending of an ASP or PDU to a named or implied PCO.

3.6.61 set of alternatives: TTCN statements coded at the same level of indentation and belonging to the same
predecessor node. They represent the possible events, pseudo-events and constructs which are to be considered at the
relevant point in the execution of the Test Case.

3.6.62 single constraint table: A declaration of a constraint for a single ASP or PDU of a given type arranged in a
single table.

3.6.63 snapshot semantics. A semantic model to eliminate the effect of timing on the execution of a Test Case,
defined in terms of snapshots of the test environment, during which the environment is effectively frozen for a prescribed
period.

3.6.64 sourceobject: A module or test suite which isimported and has a corresponding Import table.

3.6.65 specificvalue: A valuein TTCN which does not contain any matching mechanism or unbound variable.

3.6.66 atic chaining: The linking from constraint declarations of an ASP parameter or PDU field to the constraint
declaration of another PDU by explicitly referencing a constraint asits value.

3.6.67 static semantics. Semantic rules that restrict the usage of the TTCN syntax.

3.6.68 structured type: A collection of one or more ASP parameters or PDU fields which may exist in one or more
ASP or PDU type definition which is defined in a separate declaration and which may be used to specify a portion of a
flat structure or a substructure within the ASP or PDU.

3.6.69 submodule: A module which isincluded in another module.

8 Recommendation X.292 (09/98)

3.6.70 test caseidentifier: A unique namefor a Test Case.

3.6.71 test casevariable: One of aset of variables declared globally to the test suite, but whose value is retained only
for the execution of asingle Test Case.

3.6.72 test component: A named subdivision of a concurrent test case capable of being executed in parallel with other
test components, and declared as having afixed number of PCOs and a fixed or maximal number of CPs.

3.6.73 test component configuration: A fixed arrangement of Test Components, PCOs and CPs that is declared for
use in concurrent test cases.

3.6.74 test group reference: A path specifying the logical location of a Test Casein the ATS structure.

3.6.75 test step group: A named set of test steps.

3.6.76 test step group reference: A path specifying the logical location of a Test Step in the Test Step Library.
3.6.77 test step identifier: A unique name for a Test Step.

3.6.78 test step library: The set of the Test Step dynamic behaviour descriptions in the test suite, that are not local
Test Steps.

3.6.79 test step objective: Aninformal statement of what the Test Step is meant to accomplish.

3.6.80 test suite constant: One of a set of constants, not derived from the PICS or PIXIT, which will remain constant
throughout the test suite.

3.6.81 test suite parameter: One of a set of constants derived from the PICS or PIXIT which globally parameterize a
test suite.

3.6.82 test suite variable: One of a set of variables declared globally to the test suite, and which retain their values
between Test Cases.

3.6.83 timeout event: An event which is used within abehaviour tree to check for expiration of a specified timer.

3.6.84 treeattachment: The method of indicating that a behaviour tree specified elsewhere (either at a different point
in the current proforma, or asa Test Step in the Test Step Library) isto be included in the current behaviour tree.

3.6.85 treeheader: Anidentifier for alocal tree followed by an optional list of formal parameters for the tree.
3.6.86 treeidentifier: A nameidentifying alocal tree.

3.6.87 treeleaf: A TTCN statement in abehaviour tree or Test Step which has no specified subsequent behaviour.
3.6.88 treenode: A single TTCN statement.

3.6.89 treenotation: The notation used in TTCN to represent Test Cases as trees.

3.6.90 TTCN statement: An event, a pseudo-event or construct which is specified in a behaviour description.

3.6.91 unforeseen test event: A test event which has not been identified as a test event within a foreseen test outcome
in the test suite. It isnormally handled using the OTHERWISE event.

3.6.92 unqualified event: An event that does not have an associated Boolean expression.

Recommendation X.292 (09/98) 9

4 Abbreviations

This Recommendation uses the following abbreviations.

4.1 Abbreviations defined in Recommendation X.290

For the purposes of this Recommendation, the following abbreviations defined in clause 4/X.290, apply:

ASP Abstract Service Primitive

ATS Abstract Test Suite

ETS Executable Test Suite

IuT Implementation under Test

LT Lower Tester

LTCF Lower Tester Control Function

MOT Means of Testing

PCO Point of Control and Observation

PICS Protocol Implementation Conformance Statement
PIXIT Protocol Implementation Extra Information for Testing
SUT System under Test

TMP Test Management Protocol

uT Upper Tester

UTCF Upper Tester Control Function

4.2 Abbreviations defined in Recommendation X.291

For the purposes of this Recommendation, the following abbreviations defined in clause 4/X.291, apply:

DS Distributed Single-layer (test method)
LS Local Single-layer (test method)

RS Remote Single-layer (test method)
TTCN Tree and Tabular Combined Notation

4.3 Other abbreviations

For the purposes of this Recommendation, the following abbreviations also apply:

ASN.1 Abstract Syntax Notation One

BNF the extended Backus-Naur Form used in TTCN
CM Coordination Message

CP Coordination Point

FDT Formal Description Technique

FIFO First in First out

MTC Main Test Component

oSl Open Systems I nterconnection

10 Recommendation X.292 (09/98)

PDU Protocol Data Unit

PTC Parallel Test Component
SAP Service Access Point
TCP Test Coordination Procedures

TTCN.GR Treeand Tabular Combined Notation, Graphical form

TTCN.MP Treeand Tabular Combined Notation, Machine Processabl e form

5 Syntax formsof TTCN

TTCN isprovided in two forms:
— agraphical form (TTCN.GR) suitable for human readability;

— a machine processable form (TTCN.MP) suitable for transmission of TTCN descriptions between machines and
possibly suitable for other automated processing.

TTCN.GR is defined using tabular proformas. TTCN.MP is defined using syntax productions which have special

TTCN.MP keywords as terminal symbols instead of the fixed parts of the tabular proformas (e.g. the box lines and
headers). The entries within the TTCN.GR tables are defined by syntax productions which do not include any TTCN.MP
keywords; these productions are common to both TTCN.GR and TTCN.MP.

The syntax productions of TTCN.MP are specified in Annex A. As an aid to clarifying the TTCN.GR description, many
of the syntax productions that are common to both TTCN.MP and TTCN.GR are embedded in the text of the body of this
Recommendation; these are marked: SYNTAX DEFINITION. To aid readability, some productions will appear in
several places in the text.

The syntax productions embedded within the text are intended to be identical copies of the corresponding productions
from Annex A, but if there is any conflict Annex A shall take precedence.

The text description of TTCN.GR is intended to be consistent with the underlying syntax as defined in the TTCN.MP
syntax productions, except for the differences identified in A.5 and the static semantic restrictions specified in Annex A
(which are common to both TTCN.MP and TTCN.GR).

If there is any conflict between the TTCN.GR syntax, on the one hand, and the static and operational semantics, on the
other, as described by the text and as described by Annex A, then:

a) except for the differences specified in A.5, the TTCN.MP syntax productions shall have precedence over the text
and syntax productions in the body of this Recommendation;

b) the static semantics restrictions specified in A.4 and in the static semantics comments (marked STATIC
SEMANTICS) on the syntax productions in A.3 specify restrictions on what is valid TTCN, restricting what is
allowed according to the syntax productions;

c) similarly, the operational semantics restrictions specified in the operational semantics comments (marked
OPERATIONAL SEMANTICS) on the syntax productions in A.3 specify restrictions on what is valid TTCN at run-
time, restricting what is allowed according to the syntax productions;

d) the static and operational semantics restrictions specified in Annex A shall have precedence over the text in the body
of this Recommendation.

If an ATS is specified in TTCN.GR in compliance with this Recommendation, then there is a unique corresponding
TTCN.MP representation of that ATS sharing the same underlying syntax. These two representations have identical
operational semantics. Two different representations of an ATS are equivalent if and only if they have identical
operational semantics.

NOTE - If there is a standardized ATS specified in TTCN.GR and an apparently equivalent TTCN.MP representation, but there is a
conflict in interpretation of the operational semantics of the two, then the operational semantics of the TTCN.GR takeseprecede
because it is the TTCN.GR version that is the standardized ATS.

Recommendation X.292 (09/98) 11

6 Compliance

6.1 ATSsthat comply with this Recommendation shall satisfy the requirements for either TTCN.GR or TTCN.MP.

NOTE — See clause 10/X.290, for an explanation of the use of the term "compliance" in X.290-series Recommendations.

6.2 ATSs that comply with the requirements of TTCN.GR shall satisfy the TTCN.GR syntax requirements stated in
clauses 9 through 16 and A .4.

6.3 AT Ss that comply with the requirements of TTCN.MP shall satisfy the TTCN.MP syntax requirements stated in
A3

6.4 ATSs that comply with this Recommendation shall satisfy the static semantic requirements specified in
clauses 7 through 16 and Annex A and have operational semantics in accordance with the definition of the operational
semanticsin Annex B together with the operationa semantics restrictions specified in A.3, such that they are semantically
valid.

6.5 A standardized ATS that complies with this Recommendation shall require that any realization of that test suite
that claims to conform to that standardized ATS shall:

a) have operational semantics equivalent to the operational semantics of the test suite as defined by Annex B;
b) meet the additional operational semantics regquirements specified in A.3;

¢) comply with Recommendation X.293.

NOTE - If, during execution of the executable test case that conforms to the TTCN specification of the correspondingstbstract t
case, a static semantic or operational semantic error is detected, then a test laboratory complying with Recommendatilbn X.294 w
record an abstract or executable test case error, depending on where the error is located.

7 Conventions

7.1 I ntroduction

The following conventions have been used when defining the TTCN.GR table proformas and the TTCN.MP grammar.

7.2 Syntactic metanotation

Table 1 defines the metanotation used to specify the extended BNF grammar for TTCN (henceforth called BNF).

Table 1/X.292 — The TTCN.MP Syntactic Metanotation

= Is defined to be

abc xyz abc followed by xyz

| Alternative

[abc] 0 or 1instances of abc

{abc} 0 or more instances of abc
{abc}+ 1 or more instances of abc
(...) Textual grouping

abc The non-terminal symbol abc
abc A terminal symbol abc

"abc" A terminal symbol abc

EXAMPLE 1 — Use of the BNF metanotation:

FormalParList ::= " (" Formal Par& Type { SemiColon Formal Par& Type})"

12 Recommendation X.292 (09/98)

The following conventions will be used for text used in table proformas:
a) Boldtext (likethis) shall appear verbatim in each actual tablein a TTCN test suite.

b) Textinitalics (like this) shall not appear verbatim in a TTCN test suite. This font is used to indicate that actual text
shall be substituted for the italicized symbol. Syntax requirements for the actua text can be found in the
corresponding TTCN.MP BNF production.

EXAMPLE 2 — Suiteldentifier corresponds to production 3in Annex A.

7.3 TTCN.GR table proformas

731 I ntroduction
The TTCN.GR is defined using two types of table:
a) single TTCN object tables (see 7.3.2),

which are used to define, declare or describe a single TTCN object such as a PDU declaration or a Test Case
dynamic behaviour;

b) multiple TTCN object tables (see 7.3.3),

are used to define a number of TTCN object of the same type in a single table, such as simple type definitions or
Test Case Variables.

7.32 Single TTCN object tables

The general lay-out of atable for asingle TTCN object is shown in Figure 1.

r S
Titleof Table ITitIe
Object Name :
Group . (Optional way of grouping together related objects) Header
Comments : Thisentire comment lineis optional .
Object Name ... Other Columns ... Comments l
' N
This column
is optional Body
v
V' S
Detailed Comments: Thisfooter is optional . Footer
v

Figure 1/X.292 — Generalized layout of a single declaration table

The header of the table contains general information on the object defined in the table. The first item in the header,
named Object Name, contains an identifier for the object. A second item, named Group, may be used to provide an
identifier to group together related objects in the same category. This item is optional. The last item, named Comments
contains an informal description of the object. Thisitem is optional.

The body of the table consists of one or more columns. Each column has a title. The rightmost column, titled Comments,
contains informal descriptions of the components of the object specified in the body. It does not exist in all proformas. In
proformas containing a comments column this column can be omitted.

The footer of the table contains one item, named Detailed Comments. This footer can be used for the same purposes as
the comments column in the body of the table. The test suite specifier can use the detailed comments footer in
combination with the comments column, instead of a comments column, or not at al, in which case the footer can be
omitted.

Recommendation X.292 (09/98) 13

7.33 Multiple TTCN object tables
The general lay-out of atable for multiple TTCN objectsis shown in Figure 2.

The optional Collective Comments may be used preceding a group of related objects declared in a multiple object table,
both to indicate the grouping and to give a comment that applies to each member of the group or the group as awhole.

This type of table has only a minimal optional header section, which may contain a Group identifier and a Collective
Comment. The body of the table consists of one or more columns. Each column has a title. The leftmost column, titled
Object Name, contains identifiers of the objects defined or declared in the table. The rightmost column, titled Comments,
contains informal descriptions of the objects defined or declared in the table. It does not exist in all proformas. When it
existsits useisoptiona for the test suite specifier. The footer of the table isidentical to the footer of the single table type.

Titleof Table

Grou . (Optional way of grouping together related sets of objects
p P! ay Of grouping tog)

Collective Comment:

A comment valid for the below defined/declared objects. This comment has a scope reaching to next Collective Comment or until
the end of thistable.

Object Name ... Other Columns... Comments

Collective Comment:

A comment valid for the bel ow defined/declared objects. This comment has a scope reaching to next Collective Comment or until
the end of thistable.

Object Name ... Other Columns... Comments

Detailed Comments:

Figure 2/X.292 — Generalized layout of a multiple declaration table

7.3.4 Alternative compact tables

In some cases it is allowed to display a number of single TTCN object tables in an alternative space-saving compact
format. That is, a number of single TTCN object tables may be displayed in a single compact table. The only tables that
may be presented in thisformat are:

— ASP constraints (tabular and ASN.1);

— PDU constraints (tabular and ASN.1);

— Structured Type constraints;

— ASN.1 Type constraints;

— Test Case dynamic behaviours.

The formats of these alternative compact proformas are defined in Annex E.

14 Recommendation X.292 (09/98)

735 Specification of proformas

This Recommendation specifies numerous types of TTCN.GR tables and provides a graphic view of the corresponding
proformas. These proformas conform to the generalized lay-out of 7.3.2 and 7.3.3. When a column is shaded in a
proforma, thisis areminder that the column is optional.

74 Free Text and Bounded Free Text

Some table entries allow the use of free text, i.e. characters from any of the character sets defined in ISO/IEC 10646-1.
The following restrictions apply:

a) Free Text shall not contain the combination of characters "*/*, unless preceded by backslash (\), asthisis used in
the TTCN.MP to indicate the end of a Free Text string. This means that double backslash (\\) means backslash.

b) The combinations of characters"/*" and "*/" which open and close BoundedFreeText stringsin the TTCN.MP shall

not appear in the TTCN.GR, i.e. wherever a Bounded FreeText string appears in a table section, as in a Full
Identifier, these combinations of characters shall not be printed.

8 Concurrency in TTCN

8.1 Test Components

TTCN allows the specification of test components which may be executed concurrently. This clause gives an overview of
the additional proformas and mechanisms available in concurrent TTCN. These proformas and mechanisms shall not be
used in ATSs that do not use concurrency (i.e. the use of concurrency is optional).

A tester consists of a Main Test Component (MTC) and zero or more Paralel Test Components (PTCs). In
non-concurrent TTCN it is not necessary to declare the Main Test Component since there is only one test component and
the default isthat it isthe Main Test Component.

Test components are declared in the Test Component Declarations table. A test component may communicate with the IUT
via one or more Points of Control and Observation (PCOs). Test components may communicate with each other by
exchanging Coordination Messages (CMs) through Coordination Points (CPs). PTCs may aso communicate with the MTC
implicitly, by means of assignments to the global result variable and by the MTC being able to check whether or not one or
more PTCs have terminated execution. The Test Component Configuration Declarations tables are used to specify (abstract)
configurations of test components. These declarations (one for each configuration) show which PCOs and CPs are used, if
any, by the test components. CMs are specified in a manner very similar to the method used to specify ASPs. ASN.1 may be
used for CM specification. CM constraints are also very similar to ASP constraints. Specia proformas are provided for the
definition of CM Types and the declaration of CM congtraints. CMs are sent and received using the normal TTCN SEND
and RECEIVE gtatements.

In summary, if concurrent TTCN is used, the following proformas shall be used:
a) Test Component Declarations;

b) Test Component Configuration Declarations.

In addition, if concurrent TTCN is used, the following proformas may be used:

c) CPDeclarations;

d) CM Type Definitions and/or ASN.1 CM Type Definitions, provided that CP declarations are used;
€) CM Constraints Declarations, provided that CM Type Definitions are used;

f) ASN.1CM Constraint Declarations, provided that ASN.1 CM Type Definitions are used.

Recommendation X.292 (09/98) 15

8.2 Test Component Configurations

Some possible configurations of test components are shown in Figures 3 and 4. In arealization of these abstract configu-
rations, test components may reside in a single machine or be distributed over several machines.

It is possible to use different PTC configurations in different test cases of an Abstract Test Suite. Each Abstract Test Case
which uses concurrency shall use one of the declared Test Component Configurations.

Note the following valid but unusual cases:

a) A PTC need not have any PCOs.

b) A PTC need not have a CP to an MTC. In such cases the only interaction between the PTC and the MTC will be the
creation of the PTC and the implicit result reports from the PTC, i.e. the MTC has no explicit control over the PTC
after creation.

¢) Two PTCsmay be connected by more than one CP.

d) A test case whose test component configuration refers to a PTC need not contain any CREATE statement to start
this PTC.

€) A test case whose test component configuration refers to a CP need not contain any SEND or RECEIVE statements
using this CP.

Items &), b) and c) areillustrated in Figures 3 and 4.

MTC1
3 3
MCP1 MCP2 MCP3
\ 2 y
CP1 CpP2
TC1 » TC2 < » TC3
v

>L\PCO_A ;PCO_B F>co_c;<

T0731790-99/d02

Figure 3/X.292 — Example Test Component Configuration CONFIG1

MTC2
7 A
MCP2 jMCPL%
\ 4
N CP1 E
TC2 TC4 TCS5
CP2
>EPCO_B PCO_D QPCO_E

0731800-99/d03

Figure 4/X.292 — Example Test Component Configuration CONFIG2

16 Recommendation X.292 (09/98)

9 TTCN Test Suite structure

9.1 I ntroduction

TTCN alows atest suite to be hierarchically structured in accordance with 8.1/X.290. The components of this structure
are:

a) Test Groups,

b) Test Cases,

c) Test Steps.

A TTCN test suite may be completely flat (i.e. have no structure) in which case there are no Test Groups.

TTCN allows the use of Test Step Groups and Default Groups, similar to the concept of Test Groups, in order to
structure Test Steps and Defaults hierarchically. This hierarchical structureis optional.

9.2 Test Group References

TTCN supports a naming structure that shows a conceptual grouping of Test Cases. Test Groups can be nested. Test
Cases can also be stand alone (see Figure 9/X.290). The Test Group References define the structure of the test suite. Test
Group References shall have the following syntax:

SYNTAX DEFINITION:
626 TestGroupReference ::=[Suiteldentifier "/"] { TestGroupldentifier "/"}

EXAMPLE 3 — A Transport group reference: TRANSPORT/CLASSO/CONN_ESTAB/

9.3 Test Step Group References

931 Test steps may be explicitly identified in TTCN and used to structure Test Cases and other Test Steps.
Alternatively Test Steps may be implicit within the behaviour description of a Test Case. Explicit Test Steps may be
specified either:

— locally within a Test Case or Test Step behaviour description; or

— globally within a Test Step Library, which may be hierarchically structured into Test Step Groups.

NOTE - For example, a preamble may consist of just a few statement lines within a behaviour description of the Test @hse, in wh
case it is implicit. Alternatively, a preamble may be explicitly specified with its own behaviour description. If such ait expli
preamble is only of use within one Test Case, then it may be specified locally within that Test Case, but if it is olesa ifese
Cases, then it should be specified in the Test Step Library.

9.3.2 Loca Test Steps are identified ssimply by a tree identifier. Global Test Steps are identified by a Test Step
identifier. Global Test Steps also have a Test Step Group Reference, which shows the position of a Test Step in the Test
Step Library. The structure of the Test Step Library is independent of the structure of the test suite. Test Step Group
References shall have the following syntax:

SYNTAX DEFINITION:
641 TestStepGroupReference ::= [Suiteldentifier "/"] {TestStepGroupldentifier "/"}

EXAMPLE 4 — Transport Test Step Group Reference: TRANSPORT/STEP_LIBRARY/CLASSO/CONN_ESTAB/

Recommendation X.292 (09/98) 17

94

Default Group References

Default behaviours (if any) are located in a Default Library.

A Default Group Reference specifies the location of the Default in the Default Library, which may be hierarchically
structured. The Default Library has no influence on the test suite structure itself. Default Group References shall have the
following syntax:

SYNTAX DEFINITION:

9.5

651 DefaultGroupReference ::= [Suiteldentifier "/"] { DefaultGroupldentifier "/"}

EXAMPLE 5 — Transport Default Group Reference: TRANSPORT/DEFAULT_LIBRAR/CLASS0/

Partsof a TTCN test suite

An ATSwrittenin TTCN shall have the following four sectionsin the order indicated:

a)

b)

0)

d)

e

10

10.1
The

Suite Overview (see clause 10),

which contains the information needed for the general presentation and understanding of the test suite, such as test
references and a description of its overall purpose;

Import Part (see 10.7),
which contains the declarations of the objects used in the test suite or module that are imported from a source object;
Declarations Part (see clause 11),

which contains the definitions or declarations of all the components that comprise the test suite (e.g. PCOs, Timers,
ASPs, PDUs, and their parameters or fields);

Congtraints Part (see clauses 12, 13 and 14),

which contains the declarations of values for the ASPs, PDUs, and their parameters used in the Dynamic Part. The
constraints shall be specified using:

1) TTCN tables; or

2) the ASN.1 value notation; or

3) both TTCN tables and the ASN.1 value notation;
Dynamic Part (see clause 15),

which comprises three sections that contain tables specifying test behaviour expressed mainly in terms of the
occurrence of ASPs or PDUs at PCOs. These sections are:

1) the Test Case dynamic behaviour descriptions;
2) alibrary containing Test Step dynamic behaviour descriptions (if any);

3) alibrary containing Default dynamic behaviour descriptions (if any).

Test Suite Overview

I ntroduction

purpose of the Test Suite Overview part of the ATS is to provide information needed for general presentation and

understanding of the test suite. Thisincludes:

a)
b)
0)
d)

e

18

Test Suite Structure (see 10.2);
Test Case Index (see 10.3);
Test Step Index (see 10.4);
Default Index (see 10.5);

Test Suite Exports (see 10.6).

Recommendation X.292 (09/98)

10.2

Test Suite Structure

The Test Suite Structure contains identification of the pertinent reference documents, specification of the structure of the
test suite, a brief description of its overall purpose, and references to the Test Group selection criteria.

The Test Suite Structure shall include at least the following information:

a)
b)

0)
d)

e

f)

9)

the name of the test suite;

references to the relevant base standards;

areference to the PICS proforma;

areference to the partial PIXIT proforma (see 14.1/X.291, and Appendix V/X.296);

an indication of the test method or methods to which the test suite applies, plus for the Coordinated Test Methods a
reference to where the TMP is specified;

other information which may aid understanding of the test suite, such as its version number or how it has been
derived; thisinformation should be included as a comment;

alist of Test Groupsin the test suite (if any),

where the following information shall be supplied for each group:

1)

2)

3)

4)

The Test Group Reference,

where the first identifier may be the suite name, and each successive identifier represents further conceptual
ordering of the test suite. Test Groups shall be listed in the order that their corresponding Test Cases appear in
the ATS. Furthermore, they shall be ordered such that every group within a single group immediately follows
that group. All Test Groupsin the test suite shall be listed.

Imported test cases may be included under any group, independently under which group they are defined in the
origina source object. A new group may be listed that does not occur in the Dynamic Part. This group shall
only contain imported test cases.

The groups of the Dynamic Part shall occur in the same order as they appear there, but the list may be
preceded, interrupted or followed by new groups of imported test cases. For these new groups the page number
shall not be supplied.

The Selection Ref column may contain the identifier of a selection expression applicable to the new test groups.
The new selection expression shall override the specified selection expression in the original test group (if there
is any). The absence of the selection expression identifier in this column indicates that the specified selection
expression in the original test group is omitted (if there is any).

The Test Group Objective column may contain a new informal statement of the objective of the new test group.
This new objective shall override the objective in the imported test group (if any). The absence of the test group
objectivein this column indicates that the specified test group objective is omitted.

An optional selection expression identifier,

which references an entry in the Test Case Selection Expression Definitions table used to determine if the Test
Cases in the group apply to specific IUTs. This column may contain the identifier of a selection expression
applicable to the Test Group. If a selection expression identifier is provided for a group, and the referenced
selection expression evaluates to FALSE, then no Test Case in that group shall be selected for execution. If the
selection expression evaluates to TRUE, then Test Cases in that group shall be selected for execution
depending on the evaluation of the selection expressions relevant to subgroups of that group and/or individual
Test Cases. Omission of a selection expression identifier is equivalent to the Boolean value TRUE.

The Test Group Objective,
which isan informal statement of the objective of the Test Group.
A page number,

providing the location of the first Test Case of the group in the ATS. The page number listed with each Test
Group Reference in the Test Suite Structure table shall be the page number of the first Test Case behaviour
description in the group.

Recommendation X.292 (09/98) 19

Thisinformation shall be provided in the format shown in Proforma 1, below.

Test Suite Structure
Suite Name . Suiteldentifier
Standar ds Ref . Free Text
PICS Ref . FreeText
PIXIT Ref . FreeText
Test Method(s) . FreeText
Comments . [FreeText]
Test Group Reference Selection Ref Test Group Objective Page No.
TestGroupReference [SelectExpridentifier] FreeText Number
Detailed Comments. [FreeText]

Proforma 1 — Test Suite Structure

SYNTAX DEFINITION:

41 Suiteldentifier ::= Identifier

626 TestGroupReference ::=[Suiteldentifier "/"] { TestGroupldentifier "/"}
202 SelectExpridentifier ::= Identifier

741 Number ::= (NonZeroNum {Num}) | O

10.3 Test Case Index

The Test Case Index contains a complete list of all Test Casesin the ATS. The following information shall be provided
for each Test Case:

a)

b)

0)

d)

20

An optiona Test Group Reference (if the ATS s structured into Test Groups),

which defines where in the test suite group structure the Test Case resides. If the group reference for a Test Case is
missing, then the Test Case is assumed to reside in the same Test Group as the previous Test Case in the index. Test
Groups shall be listed in the order in which they exist in the ATS. An explicit Test Group Reference shal be
provided for the first Test Case of each group. An explicit Test Group Reference shall also be provided for each
Test Case that immediately follows the last Test Case of the Test Group; this is necessary if a Test Group contains
both Test Groups and Test Cases.

The Test Case name,

which shall be the identifier provided in the Test Case dynamic behaviour table. Test Cases shall be listed in the
order in which they exist inthe ATS.

An optional selection expression identifier,

which references an entry in the Test Case Selection Expression Definitions table used to determine if the Test Case
should be selected for execution. This column may contain the identifier of a selection expression applicable to the
Test Case. If a selection expression identifier is provided, and the referenced selection expression evaluates to
FALSE, then the Test Case shall not be selected for execution. If the selection expression evaluates to TRUE, then
the Test Case shall be selected for execution depending on the evaluation of the selection expressions for the Test
Groups containing the Test Case. A Test Caseis selected if the selection expression for the Test Case, and all groups
containing the Test Case, evaluate to TRUE. Omission of a selection expression identifier is equivalent to the
Boolean value TRUE.

A description of the Test Case,

which is possibly a shortened form of the test purpose.

Recommendation X.292 (09/98)

e

A page number,

providing the location of the Test Case in the ATS. The page number listed with each Test Case Identifier in the
Test Case Index table shall be the page number of the corresponding Test Case behaviour description.

Thisinformation shall be provided in the format shown in Proforma 2, below.

Test Case Index

Test Group Reference Test Caseld Selection Ref Description Page No.

TestGroupReference TestCaseldentifier [SelectExpridentifier] FreeText Number

Detailed Comments: [FreeText]

Proforma 2 — Test Case Index

Collective comments may be used in this table according to Figure 2.

SYNTAX DEFINITION:

626 TestGroupReference ::= [Suiteldentifier "/"] { TestGroupldentifier "/"}
624 TestCaseldentifier ::= Identifier
202 SelectExprldentifier ::= Identifier

The complete list of test cases shall include the imported test cases. Explicitly defined Test Cases shall be listed in the
order in which they exist in the ATS. Page numbers shall not be supplied for imported test cases.

The Selection Ref column has similar semantic as the one given in the previous subclause (see 10.2).

The Description column may contain a new shortened form of the Test Purpose. This new description shall override the
description in the imported test case (if any). The absence of the description in this column indicates that the specified
description is omitted.

104 Test Step Index

The Test Step Index contains a complete list of all Test Steps in the ATS. The following information shall be provided
for each Test Step:

a)

b)

An optional Test Step Group Reference (if the ATS is structured into Test Step Groups),

which defines where in the Test Step Library structure the Test Step resides. If the group reference for a Test Step is
missing, then the Test Step is assumed to reside in the same group as the previous Test Step in the index. Test Step
Groups shall be listed in the order in which they exist in the ATS. An explicit Test Step Group Reference shall be
provided for the first Test Step of each group. An explicit Test Step Group Reference shall also be provided for each
Test Step that immediately follows the last Test Step of the group; this is necessary if a Test Step Group contains
both Test Step Groups and Test Steps.

The Test Step name,

which shall be the identifier provided in the Test Step dynamic behaviour table. Test Steps shall be listed in the
order in which they existinthe ATS.

A description of the Test Step,

which is possibly a shortened form of the Test Step Objective.

Recommendation X.292 (09/98) 21

d) A page number,

providing the location of the Test Step in the ATS. The page number listed with each Test Step Identifier in the Test
Step Index table shall be the page number of the corresponding Test Step behaviour description.

Thisinformation shall be provided in the format shown in Proforma 3, below.

Test Step Index

Test Step Group Reference Test Step Id Description Page No.

TestStepGroupReference TestStepldentifier FreeText Number

Detailed Comments. [FreeText]

Proforma 3 — Test Step Index

Collective comments may be used in this table according to Figure 2.
SYNTAX DEFINITION:

641 TestStepGroupReference ::= [Suiteldentifier "/"] { TestStepGroupldentifier "/}
639 TestStepldentifier ::= Identifier

The complete list of test steps shall include the imported test steps. Explicitly defined Test Steps shall be listed in the
order in which they exist in the ATS. Page numbers shall not be supplied for imported test steps.

The Description column may contain a new shortened form of the Test Step Objective. This new description shall
override the description in the imported test step (if any). The absence of the description in this column indicates that the
specified description is omitted.

10.5 Default Index

The Default Index contains a complete list of all Defaults in the ATS. The following information shall be provided for
each Default:

a) Anoptiona Default Group Reference, (if the ATS is structured into Default Groups),

which defines where in the Default Library structure the Default resides. If the group reference for a Default is
missing, then the Default is assumed to reside in the same group as the previous Default in the index. Defaults shall
be listed in the order in which they exist in the ATS. An explicit Default Group Reference shall be provided for the
first Default of each group. An explicit Default Group Reference shall also be provided for each Default that
immediately follows the last Default of the group.

b) The Default name,

which shall be the identifier provided in the Default dynamic behaviour table. Defaults shall be listed in the order in
which they exist inthe ATS.

¢) A description of the Defaullt,
which is possibly a shortened form of the Default Objective.
d) A page number,

providing the location of the Default in the ATS. The page number listed with each Default Identifier in the Default
Index table shall be the page number of the corresponding Default behaviour description.

22 Recommendation X.292 (09/98)

Thisinformation shall be provided in the format shown in Proforma 4, below.

Default Index
Default Group Reference Default 1d Description Page No.
DefaultGroupReference Defaultldentifier FreeText Number

Detailed Comments. [FreeText]

Proforma 4 — Default Index

Collective comments may be used in this table according to Figure 2.
SYNTAX DEFINITION:

651 DefaultGroupReference ::= [Suiteldentifier /"] { DefaultGroupl dentifier "/"}
650 Defaultldentifier ::= Identifier

The complete list of defaults shall include the imported defaults. Explicitly defined Defaults shall be listed in the order in
which they exist in the ATS. Page numbers shall not be supplied for imported defaults.

The Description column may contain a new shortened form of the Default Objective. This new description shall override
the description in the imported default (if any). The absence of the description in this column indicates that the specified
description is omitted.

10.6 Test Suite Exports

The Test Suite Exports table may be used to specify explicitly which objects in the test suite are designed to be re-usable
and hence may be imported into other test suites or TTCN modules.

The Test Suite Exports proformais used to identify the objects which may be exported.
If aPCO typeisgiven as an exported object in the Export table, it shall be defined in the optional PCO Type table.
The name of the original source object shall be given if the object isitself imported.

If the object is declared as an external object (explicit external) or is an object which is omitted in the imported source
object (implicit external), the keyword EXTERNAL is given instead of the source object name.

Exporting an object of type Enumeration or Named Number requires that the corresponding type is given. The other
objects which are defined in the corresponding type are not exported as well. They are however implicitly exported and
can be referred in other exported objects. The type name is given as a suffix to the object name embedded in brackets.

The following information shall be supplied in the Test Suite Exports table for each of the exported objects:

a The name of the object — If the object is of type NamedNumber or Enumeration, the corresponding type shall be
given as a suffix to the object name embedded in brackets.

b) The object type.
¢c) The name of the original source object if the object is imported, or the object directive EXTERNAL.
d) A page number,
providing the location of the object in the test suite (no page number shall be given for imported objects).

e) An optional comment.

Recommendation X.292 (09/98) 23

Thisinformation shall be provided in the format shown in Proforma 5, below.

Test Suite Exports

Object Name

Object Type

Source Name

Page No.

Comments

Objectldentifier

TTCN_ObjectType

[Sourceldentifier | ObjectDirective]

Number

[FreeText]

Detailed Comments:

[FreeText]

SYNTAX DEFINITION:

Proforma 5 — Test Suite Exports

12 Objectldentifier ::= Identifier | ObjectTypeReference

15 TTCN_ObjectType::= SimpleType_Object | StructType_Object | ASN1_Type Object | TS Op_Object |
TS Proc_Object | TS_Par_Object | SelectExpr_Object | TS _Const_Object | TS Var_Object | TC_Var_Object |
PCO_Type Object | PCO_Object | CP_Object | Timer_Object | TComp_Object | TCompConfig_Object |
TTCN_ASP_Type Object |ASN1 ASP_Type Object | TTCN_PDU_Type Object | ASN1 PDU_Type Object |
TTCN_CM_Type Object |ASN1 CM_Type Object | EncodingRule_Object | EncodingVariation_Object |
InvalidFieldEncoding_Object | Alias_Object | StructTypeConstraint_Object | ASN1_TypeConstraint_Object |
TTCN_ASP_Constraint_Object | ASN1_ASP_Constraint_Object | TTCN_PDU_constraint_Object |

ASN1_PDU_Constraint_Object | TTCN_CM_Constraint_Object | ASN1_CM_Constraint_Object |

TestCase Object | TestStep_Object | Default_Object | NamedNumber_Object | Enumer ation_Object
17 Sourceldentifier ::= Suitel dentifier | TTCN_M odulel dentifier
18 ObjectDirective::= Omit | EXTERNAL

EXAMPLE 6 — Test Suite Exports:

Test Suite Exports
Object Name Object Type Source Name Page No. Comments
String5 SimpleTypeDef 3
wait TimerDcl Module_B
INTC TTCN_PDU_Type 13
DEF1 Default TestSuite 1
TC 2 TestCase TestSuite 2
TC 3 TestCase 33
Preamble TestStep EXTERNAL
Detailed Comments:
10.7 Import Part
10.7.1 Introduction

The purpose of the Import Part is to declare the objects used in the test suite that are imported from a source object. The

effect of the importsis equivalent to having a copy of the imported objects within the test suite.

An object may be imported only if it is exported by a source object. A test suite without an export table exports all objects
which have a global name. A module and atest suite with at least one export table export the objects contained in the export

tables. An object which is not itself explicitly imported isimplicitly imported if it is referenced by an imported object.

24 Recommendation X.292

(09/98)

10.7.2 Imports

The Imports table identifies the source object and provides information on the overall objective of the source object. The
following information shall be supplied in the Imports table:

a)
b)

0)

d)

e

the name of the source object;
adescription of the objective of the source object;

afull reference to the source object; which should contain a document identifier and other information, such as version
and date;

other information which may aid understanding of the source object, this should be included as a comment;

alist of the objects from the imported source object; for each object the following information shall be provided:
1) thename of the object as used in the source object;

2) thetype of the object; which shall be the same as the type given in the source object;

3) the name of the original source object if the object is imported from another source object, the object directive
OMIT or "-" if the object is to be omitted from the set of objects imported from the source object, or the object
directive EXTERNAL if the object is declared as external in the source object.

Thisinformation shall be provided in the format shown in Proforma 6, below.

Imports
Suite Name . Suiteldentifier
Group . [ImportsGroupReference]
Standar ds Ref . [FreeText]
Comments . [FreeText]
Object Name Object Type Sour ce Name Comments

Objectldentifier TTCN_ObjectType [Sourceldentifier | ObjectDirective] [FreeText]

Detailed Comments. [FreeText]

SYNTAX DEFINITION:

Proforma 6 — Imports

17 Sourceldentifier ::= Suiteldentifier | TTCN_Modulel dentifier
34 ImportsGroupReference ::=[(Suiteldentifier | TTCN_Moduleldentifier) "/"] { ImportsGroupl dentifier "/"}

12 Objectldentifier ::= Identifier | ObjectTypeReference

15 TTCN_ObjectType::= SimpleType_Object | StructType_Object | ASN1_Type Object | TS Op_Object |
TS Proc_Object | TS _Par_Object | SelectExpr_Object | TS_Const_Object | TS Var_Object | TC_Var_Object |
PCO_Type Object | PCO_Object | CP_Object | Timer_Object | TComp_Object | TCompConfig_Object |
TTCN_ASP_Type Object | ASN1_ASP_Type Object | TTCN_PDU_Type Object | ASN1 PDU_Type Object |
TTCN_CM_Type Object | ASN1_CM_Type Object | EncodingRule_Object | EncodingVariation_Object |
InvalidFieldEncoding_Object | Alias_Object | StructTypeConstraint_Object | ASN1_TypeConstraint_Object |
TTCN_ASP_Constraint_Object | ASN1_ASP_Constraint_Object | TTCN_PDU_constraint_Object |
ASN1_PDU_Constraint_Object | TTCN_CM_Constraint_Object | ASN1_CM_Constraint_Object |
TestCase Object | TestStep_Object | Default_Object | NamedNumber _Object | Enumeration_Object

18 ObjectDirective::= Omit | EXTERNAL

Recommendation X.292

(09/98)

25

EXAMPLE 7 — An Imports table:

Imports

Test Case Name

:Module A

Source Ref : {1SO standard 1234}
Standards Ref : 1SO 300 313
Comments . Layer 2 Test Suite
Object Name Object Type Source Name Comments
String5 SimpleTypeDef
Wait TimeDcl Module B 1)
R1 POSTAMBLE TestStep EXTERNAL 2)
TSAP PCO_TypeDcl 3)
blue[ColorEnum)] Enumeration oMIT
a[NN_typel] NamedNumber 4)

Detailed Comments:

1) Theorigina source of thisis Module B.

2) Thistest step isdeclared as externa in Module A and must be explicitly defined or imported where this module is used.
3) TSAP must be defined in the PCO Type Dcl table.

4) This Named Number is omitted from the imports and hence should be redefined explicitly in the test suite.

11 Declarations Part

111 I ntroduction

The purpose of the declarations part of the ATS is to define and declare all the objects used in the test suite. The
following objects of an ATS referenced from the overview part, the constraints part and the dynamic part shall have been
declared in the declarations part. These objects are:

a) Déefinitions:
1) Test Suite Types (see 11.2.3);
2) Test Suite Operations (see 11.3.4).
b) Parameterization and selection of Test Cases:
1) Test Suite Parameters (see 11.4);
2) Test Case Selection Expressions (see 11.5).
¢) Declarations/definitions:
1) Test Suite Constants (see 11.6 and 11.7);
2) Test Suite Variables (see 11.8.1);
3) Test CaseVariables (see 11.8.3);
4) PCOtypes(see 11.9);
5) PCOs(see11.10);
6) CPs(see1l1.11);
7) Timers(see11.12);
8) Test Components (see 11.13.1);
9) Test Component Configurations (see 11.13.2);
10) ASPtypes (see 11.14);
11) PDU types (see 11.15);

26 Recommendation X.292 (09/98)

12) Encoding Rules (see 11.16.1);

13) Encoding Variations (see 11.16.2);
14) Invalid Field Encodings (see 11.16.3);
15) CM types (see 11.17);

16) Aliases (see11.21).

11.2 TTCN types

11.2.1 Introduction

TTCN supports a number of predefined types and mechanisms that allow the definition of specific Test Suite Types.
These types may be used throughout the test suite and may be referenced when Test Suite Parameters, Test Suite
Constants, Test Suite Variables, ASP parameters, PDU fields, etc. are declared.

TTCN is aweakly typed language, in that values of any two types which have the same base type are considered to be
type compatible (e.g. for the purposes of performing assignments or parameter passing).

11.2.2 Predefined TTCN types

A number of commonly used types are predefined for use in TTCN. All types defined in ASN.1 and in this clause may be
referenced even though they do not appear in a type definition in a test suite. All other types used in atest suite shall be
declared in the Test Suite Type Definitions, ASP definitions or PDU definitions and referenced by name.

Thefollowing TTCN predefined types are considered to be the same as their counterpartsin ASN.1:

a) INTEGER predefined type: A type with distinguished values which are the positive and negative whole numbers,
including zero.

Values of type INTEGER shall be denoted by one or more digits; the first digit shall not be zero unless the value
is 0; the value zero shall be represented by a single zero.

b) BOOLEAN predefined type: A type consisting of two distinguished values.
Values of the BOOLEAN type are TRUE and FALSE.

c) BITSTRING predefined type: A type whose distinguished values are the ordered sequences of zero, one, or more
bits.

Values of type BITSTRING shall be denoted by an arbitrary number (possibly zero) of zeros and ones, preceded by
asingle’ and followed by the pair of characters’B:

EXAMPLE 8 - '01101'B

d) HEXSTRING predefined type: A type whose distinguished values are the ordered sequences of zero, one, or more
HEX digits, each corresponding to an ordered sequence of four bits.

Values of type HEXSTRING shall be denoted by an arbitrary number (possibly zero) of the HEX digits:
0123456789ABCDEF

preceded by a single ’ and followed by the pair of characters 'H; each HEX digit is used to denote the value of a
semi-octet using a hexadecimal representation:

EXAMPLE 9 — 'ABO1D’'H

e) OCTETSTRING predefined type: A type whose distinguished values are the ordered sequences of zero or a
positive even number of HEX digits (every pair of digits corresponding to an ordered sequence of eight bits).

Recommendation X.292 (09/98) 27

Values of type OCTETSTRING shall be denoted by an arbitrary, but even, number (possibly zero) of the HEX
digits:
0123456789ABCDEF

preceded by a single ’ and followed by the pair of characters 'O; each HEX digit is used to denote the value of a
semi-octet using a hexadecimal representation:

EXAMPLE 10 —'FF96'O

f) OBJECTIDENTIFIER predefined type: A type whose distinguished values are the set of al object identifiers
alocated in accordance with the rules of Recommendation X.680.

g) R_TYPE predefined type: A type consisting of the following distinguished values:

pass, fail, inconc and none

These values are predefined identifiers and as such, are case sensitive. This predefined type is for use with verdicts,
see 15.17.

h) Character String predefined types: Types whose distinguished values are zero, one, or more characters from some
character set; the CharacterString types listed in Table 2 may be used; they are defined in clause 31/X.680.

Table 2/X.292 — Predefined CharacterString Type

NumericString
PrintableString
TeletexString
T61String
VideotexString
VisibleString
1S06463tring
|A5String
GraphicString
GeneralString
BMPString
UniversalString

Values of CharacterString types shall be denoted by an arbitrary number (possibly zero) of characters from the character
set referenced by the CharacterString type, preceded and followed by double quote ("); if the CharacterString type
includes the character double quote, this character shall be represented by a pair of double quote in the denotation of any
value.

SYNTAX DEFINITION:

735 PredefinedType ::= INTEGER | BOOLEAN |BITSTRING | HEXSTRING | OCTETSTRING |
OBJECTIDENTIFIER |R_Type | CharacterString

736 CharacterString ::= NumericString | PrintableString | TeletexString | VideotexString | VisibleString | IA5String |
GraphicString | GeneralString | T61String | 1 SO646String

741 Number ::= (NonZeroNum {Num}) | 0
742 NonZeroNum ::=1]|2|3|4|5|6|7|8]9
743 Num ::= 0| NonZeroNum

744 BooleanValue::= TRUE |FALSE

745 Bstring::="_" {Bin|Wildcard}"_" B
746 Bin::=0|1

747 Hstring::="_" {Hex|Wildcard}"_" H
748 Hex::=Num|A|B|C|D|E|F

749 Ostring::="_" {Oct | Wildcard}"_" O
750 Oct ::= Hex Hex

751 Cstring::=""" {Char | Wildcard |"\"} """

752 Char ::= I* REFERENCE - A character defined by the relevant CharacterString type. */
753 Wildcard ::= AnyOne | AnyOrNone

754 AnyOne::="?"

755 AnyOrNone::= "*"

28 Recommendation X.292 (09/98)

11.2.3 Test Suite Type Definitions

11.2.3.1 Introduction

Type definitions to be used as types for data objects and as subtypes for structured ASPs, PDUSs, etc., can be introduced
using atabular format and/or ASN.1. Wherever types are referenced within Test Suite Type definitions those references
shall not be recursive (neither directly or indirectly).

11.2.3.2 Simple Type Definitions using tables

To define anew Simple Type, the following information shall be provided:

a)

b)

aname for the type;
the base type,

where the base type shall be a Predefined Type or a Simple Type. The base type is followed by the type restriction
that shall take one of the following forms:

1) A listof distinguished values of the base type; these values comprise the new type.

2) A specification of arange of values of type INTEGER; the new type comprises the values including the lower
boundary and the upper boundary specified in the range. In order to specify an infinite range, the keyword
INFINITY may be used instead of avalue indicating that there is no upper boundary or lower boundary.

3) A specification of a particular length or length range of a predefined or test suite string type; the length value(s)
shall be interpreted according to Table 5 in 11.18.2; only non-negative INTEGER literals or the keyword
INFINITY for the upper bound shall be used.

Optionally, a specific encoding identifier followed by any necessary actual parameter list, in order to specify an
explicit encoding for the simple type, which overrides the encoding rules and encoding variations applicable to any
PDU in which that simple type is used; the encoding identifier, if any, shall identify either one of the Encoding
Variations or an Invalid Field Encoding Definition defined in the test suite [e.g. LD(10)]; see 11.16.4.

Thisinformation shall be provided in the format shown in Proforma 7, below.

Simple Type Definitions

Group : [SmpleTypeGroupReference]
Type Name Type Definition Type Encoding Comments
SimpleTypeldentifier Type&Restriction [PDU_FieldEncodingCall] [FreeText]

Detailed Comments. [FreeText]

Proforma 7 — Simple Type Definitions

Collective comments may be used in this table according to Figure 2.

SYNTAX DEFINITION:

75 SimpleTypeGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) "/"] { SimpleTypeGroupldentifier "/"}
79 SimpleTypeldentifier ::= Identifier

80 Type&Restriction ::= Type[Restriction]

515 PDU_FieldEncodingCall ::= EncVariationCall | InvaidFieldEncodingCall

Where arange is used in a type definition either as a value range or as a length range (for strings), it shall be stated with
the lower of the two values on the left. An integer range shall be used only with a base type of INTEGER or a type
derived from INTEGER. In the latter case, integer range shall be a subrange of the set of values defined by the base type.

Recommendation X.292 (09/98) 29

Where avalue list is used, the values shall be of the base type and shall be a true subset of the values defined by the base
type. Where alength restriction is used, the set of values for atype defined by this restriction shall be a true subset of the
values defined by the base type.

Values of any two simple types which have the same base type are considered to be type compatible (e.g. for the purposes
of performing assignments or parameter passing).

EXAMPLE 11 — Simple Test Suite Type definitions:

Simple Type Definitions

Type Name

TypeDefinition

Comments

Transport_classes
Strings
SegNumbers
PositiveNumbers
String 10 to 20

INTEGER(O, 1, 2, 3, 4)

| A5string[5]
INTEGER(0,127)
INTEGER(1...INFINITY)
IA5String[10..20]

Classes that may be used for transport layer connection
String of length 5

All numbers from 0 to 127

All positive INTEGER numbers

String, min. length 10 characters and max, length 20

characters

11.2.3.3 Structured Type Definitions using tables

Structured Types can be defined in the tabular form to be used for declaring structured objects as subtypes within ASP
and PDU definitions and other Structured Types, etc.

The following information shall be supplied for each Structured Type:
a) Itsname,

where appropriate the full name, as given in the relevant protocol Recommendation, shall be used; if an abbreviation
is used, then the full name shall follow in parentheses.

b) The Encoding Variationsto be used for structures of this type within a PDU.

In order to specify explicit Encoding Variations for entire structured types, which override the Encoding Variations
applicable to any PDU in which this structured type is used, this optiona entry shall reference an entry in the
relevant Encoding Variations table [e.g. to change from SD to LD(3)]. If this entry is not used, then the applicable
Encoding Variations are those applicable to each PDU within which this structured typeis used. See 11.16.4.

c) A list of the elements associated with the Structured Type,
where the following information shall be supplied for each element:
1) itsname,

where the full name, as given in the appropriate protocol Recommendation, shall be used; if an abbreviation is
used, then the full name shall follow in parentheses;

2) itstypeand an optional attribute,

where elements may be of atype of arbitrarily complex structure; there shall be no recursive references (neither
directly nor indirectly);

the optional element length restriction can be used in order to give the minimum and maximum length of an
element of astring type (see 11.18);

3) optionally, a specific encoding identifier followed by any necessary actual parameter list, in order to specify an
explicit encoding for the structured type, which overrides the encoding rules and encoding variations applicable
to any PDU in which that structured type is used; the encoding identifier, if any, shall identify either one of the
Encoding Variations or an Invalid Field Encoding Definition defined in the test suite [e.g. LD(10)]; see 11.16.4.

The elements of Structured Type definitions are considered to be optional, i.e., in instances of these types whole elements
may not be present.

30 Recommendation X.292 (09/98)

Thisinformation shall be provided in the format shown in Proforma 8, below.

Structured Type Definition
Type Name : Sructld&Fullld
Group : [StructTypeGroupReference]
Encoding Variation . [EncVariationCall]
Comments . [FreeText]
Element Name Type Definition Field Encoding Comments
Elemld&Fullld Type&Attributes [PDU_FieldEncodingCall] [FreeText]
Detailed Comments. [FreeText]

Proforma 8 — Structured Type Definition

SYNTAX DEFINITION:

97 Structld& Fullld ::= Structldentifier [fullldentifier]

101 StructTypeGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) "/"] { StructTypeGroupldentifier "/"}
511 EncVariationCall ::= EncVariationldentifier [ActualParList]

106 Elemld&Fullld ::= Elemldentifier [Fullldentifier]

396 Type&Attributes ::= (Type [LengthAttribute]) | PDU

515 PDU_FieldEncodingCall ::= EncVariationCall | InvalidFieldEncodingCall

11.2.3.4 Test Suite Type Definitions using ASN.1

Test Suite Types can be specified using ASN.1 This shall be achieved by an ASN.1 definition using the ASN.1 syntax as
defined in Recommendation X.680. The following information shall be supplied for each ASN.1type:

a)

b)

0)

Its name,

where appropriate the full name, as given in the relevant protocol Recommendation, shall be used; if an abbreviation
is used, then the full name shall follow in parentheses.

The Encoding Variations to be used for structures of this type within a PDU.

In order to specify explicit Encoding Variations for entire ASN1 Types, which override the Encoding Variations
applicable to any PDU in which this ASN1 Type is used, this optional entry shall reference an entry in the relevant
Encoding Variations table [e.g. to change from SD to LD(3)]. If this entry is not used, then the applicable Encoding
Variations are those applicable to each PDU within which this ASN1_Typeisused. See 11.16.4.

The ASN.1 type definition,

which shall follow the syntax defined in Recommendations X.680, except that there is the additional option of
specifying an Encoding Variation or Invalid Field Encoding associated with either the whole ASN1_Type or any
ASN.1 Type withinthe ASN1 Type. Thisis done by giving a specific encoding identifier followed by any necessary
actual parameter list, in order to specify explicit encodings for individual fields or other subtypes of a PDU, which
override the encoding rules and encoding variations applicable to the PDU as a whole; the encoding identifier, if
any, shall identify either one of the Encoding Variations or an Invalid Field Encoding Definition defined in the test
suite [e.g. LD(10)]; see 11.16.4.

For identifiers within that definition the hyphen symbol (-) shall not be used. The underscore symbol () may be used
instead. The type identifier in the table header is the name of the first type defined in the table body.

Types referred to from the type definition shall be defined in other ASN.1 Type definition tables, be defined by reference
in the ASN.1 type reference table or be defined locally in the same table, following the first type definition. Locally
defined types shall not be used in other parts of the test suite.

Recommendation X.292 (09/98) 31

ASN.1 type definitions used within TTCN shall not use external type references as defined in Recommendations X.680.
ASN.1 comments can be used within the table body. The comments column shall not be present in this table.

Commentsin ASN.1 start with "--" and end with either the next occurrence of "--" or with "end of line", whichever comes
first. This prevents a single ASN.1 comment from spanning several lines. "End of line" is not, however, a defined symbol

in TTCN.MP. ATS specifiers are recommended to facilitate the exchange of ATSs in TTCN.MP by always closing
ASN.1 comments with "--".

Thisinformation shall be provided in Proforma9, below.

ASN.1 Type Definition

Type Name : ASN1_Typeld&Fullld
Group . [ASN1_TypeGroupReference]
Encoding Variation . [EncVariationCall]
Comments : [FreeText]

Type Definition

ASN1_Typeé&lLocalTypes

Detailed Comments: [FreeText]

Proforma 9 — ASN.1 Type Definition

SYNTAX DEFINITION:

115 ASN1 Typeld&Fullld ::= ASN1_Typeldentifier [Fullldentifier]

118 ASN1 TypeGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) "/"] { ASN1_TypeGroupldentifier "/"}
511 Enc VariationCall ::= EncVariationldentifier [Actual ParList]
121 ASN1 Type&LocalTypes::= ASN1 Type{ASNL1 LocaType}

EXAMPLE 12 — An ASN.1 Test Suite Type Definition:

ASN.1 Type Definition

Type Name : DATE type

Comments . Toillustrate the structure of ASN.1 type definitions
Type Definition

SEQUENCE {

day DAY _type,
month MONTH_type,
year YEAR_type
}
-- local DAY_type
DAY _type ::= INTEGER {first(), last(31)}

-- MONTH_type and YEAR _type are defined ASN.1 Type Definitions tables

32 Recommendation X.292 (09/98)

11.2.35 ASN.1 Type D€finitions by Reference

Types can be specified by a precise reference to an ASN.1 type defined in an OSI Recommendation or by referencing an
ASN.1 type defined in an ASN.1 module attached to the test suite. The following information shall be supplied for each
type:

a)

b)

0)

d)

Its name,

where this name may be used throughout the entire test suite. This name shall be specified without a Fullldentifier.
The type reference,

which shall follow the identifier rules stated in Recommendations X.680.

The module identifier,

which consists of a module reference that shall follow the identifier rules stated in Recommendations X.680, and an
optional Objectldentifier; the module shall be unique within the domain of interest.

The Encoding Variations to be used for such ASN1_Typeswithin a PDU.

In order to specify explicit Encoding Variations for entire ASN1 Types, which override the Encoding Variations
applicable to any PDU in which this ASN1 Type is used, this optiona entry shall reference an entry in the relevant
Encoding Variations table [e.g. to change from SD to LD(3)]. If this entry is not used, then the applicable Encoding
Variations are those applicable to each PDU within which this ASN1_Typeisused. See 11.16.4.

Thisinformation shall be provided in Proforma 10, below.

ASN.1 Type Definitions by Reference

Group . [ASNL_TypeGroupReference]
Type Name Type Reference Module Identifier Encoding Variation Comments
ASN1_Typeld&Fullld TypeReference ASN1_Moduleldentifier [EncVariationCall] [FreeText]

Detailed Comments: [FreeText]

Proforma 10 — ASN.1 Type Definitions by Reference

Collective comments may be used in this table according to Figure 2.

SYNTAX DEFINITION:

118 ASN1_TypeGroupReference ::= [(Suiteldentifier | TTCN_Modulel dentifier) "/"] { ASN1_TypeGroupldentifier "/"}
115 ASN1 Typeld&Fullld ::= ASN1 Typeldentifier [Fullldentifier]

131 TypeReference ::= typereference

133 ASN1 Moduleldentifier ::= Moduleldentifier

511 EncVariationCdl ::= EncVariationl dentifier [Actua ParList]

Since the ASN.1 types imported from ASN.1 modules can contain identifiers, type references and value references that
follow the identifier rules in Recommendations X.680, they can contain hyphens. To be able to use the imported
definitions in TTCN it is necessary to change the hyphens in imported identifiers to underscore. This is done in the
import process.

EXAMPLE 13 — The following type definition in an ASN.1 module:

module-1 DEFINITIONS BEGIN
Type-1::= SEQUENCE { fiddl Sub-Type-1,
field2 BIT STRING {first-bit(0), second-bit(1) } }
END

Recommendation X.292 (09/98) 33

can be imported to TTCN with:

ASN.1 Type Definitions by Reference

Type Name Type Reference Module Identifier Comments
Type_1 Type-1 module-1
Sub_Type_1 Sub-Type-1 module-1

The above reference definition of Type-1 is equivalent to the following definition:

ASN.1 Type Definition

Type Name : Type_1
Comments :

Type Definition

SEQUENCE { field Sub_Type_1,
Field BIT STRING {first_bit(0), second_bit(1) } }

11.3 TTCN operatorsand TTCN operations

11.3.1 Introduction

TTCN supports a number of predefined operators, operations and mechanisms that allow the definition of Test Suite
Operations. These operators and operations may be used throughout any dynamic behaviour descriptions and constraints.

11.32 TTCN operators

11.3.2.1 Introduction

The predefined operators fall into three categories:
a) arithmetic;

b) relationd;

c) Boolean.

The precedence of these operators is shown in Table 3. Parentheses may be used to group operands in expressions, a
parenthesized expression has the highest precedence for evaluation.

Within any row in Table 3, the listed operators have equal precedence. If more than one operator of equal precedence
appear in an expression, the operations are evaluated |eft to right.

Table 3/X.292 — Precedence of Operators

Highest ()
Unary + — NOT
* /| MOD AND
Binary + - OR
Lowest =< > <> > <=

SYNTAX DEFINITION:

723 AddOp ::="+"|"-"|OR

724 MultiplyOp == "*"["/"| MOD | AND
725 UnaryOp :="+"|"-"NOT

726 RelOp = "="|"<"">"]"<>"">="]"<="

34 Recommendation X.292 (09/98)

11.3.2.2 Predefined arithmetic operators
The predefined arithmetic operators are:

et MOD

They represent the operations of addition, subtraction, multiplication, division and modulo. Operands of these operators
shall be of type INTEGER (i.e., TTCN or ASN.1 predefined) or derivations of INTEGER (i.e., subrange). ASN.1 Named
Values shall not be used within arithmetic expressions as operands of operations.

The result type of arithmetic operations is INTEGER.

In the case where plus-§ or minus ¢) is used as the unary operator, the rules for operands apply as well. The result of
using the minus operator is the negative value of the operand if it was positive and vice versa.

The result of performing the division operatiat) n two INTEGER values gives the whole INTEGER value resulting
from dividing the first INTEGER by the second (i.e., fractions are discarded).

The result of performing the MOD operation on two INTEGER values gives the remainder of dividing the first
INTEGER by the second.

11.3.2.3 Predefined relational operators
The predefined relational operators are:
S S | > | ="

They represent the relations of equality, less than, greater than, not equal to, greater than or equal to and less than ol
equal to. Operands of equality) and not equal to<>) may be of an arbitrary type. The two operands shall be
compatible. All other relational operators shall have operands only of type INTEGER or derivatives of INTEGER. The
result type of these operations is BOOLEAN.

In string comparisons BITSTRING, HEXSTRING, OCTETSTRING and all kinds of CharacterStrings may contain the
wildcard characters AnyOrNoné { and AnyOne ?). In this case the comparison is performed according to the pattern
matching rules defined in 12.6.2.

11.3.2.4 Predefined Boolean operators
The predefined Boolean operators are:
NOT AND OR

They represent the operations of negation, logical AND and logical OR. Their operands shall be of type BOOLEAN
(TTCN or ASN.1 or predefined). The result type of the Boolean operators is BOOLEAN. The logical AND returns the
value TRUE if both its operands are TRUE; otherwise it returns the value FALSE. The logical OR returns the value
TRUE if at least one of its operands is TRUE; it returns the value FALSE only if both operands are FALSE. The logical
NOT is the unary operator that returns the value TRUE if its operand was of value FALSE and returns the value FALSE
if the operand was of value TRUE.

11.3.3 Predefined operations

11.3.3.1 Introduction

11.33.1.1 The predefined operations fall into two categories:
a) conversion;

b) others.

11.3.3.1.2 Predefined operations may be used in every test suite. They do not require an explicit definition using a
Test Suite Operation Definition table. When a predefined operation is invoked:

a) the number of the actual parameters shall be the same as the number of the formal parameters; and
b) each actual parameter shall evaluate to an element of its corresponding formal parameter’s type; and

c) all variables appearing in the parameter list shall be bound.

Recommendation X.292 (09/98) 35

Each of the predefined operationsis presented in the following format:
OPERATION_NAME (FORMAL_PARAMETER_LIST) =& RESULT_TYPE

11.3.3.2 Predefined conversion operations

11.33.21 TTCN supports the following predefined operations for type conversions:
a) HEX_TO_INT converts HEXSTRING to INTEGER;

b) BIT_TO_INT converts BITSTRING to INTEGER,;

¢) INT_TO_HEX converts INTEGER to HEXSTRING;

d) INT_TO BIT converts INTEGER to BITSTRING.

These operations provide encoding rules within the context of the operations only. It isinvalid to assume these encoding
rules apply outside the domain of the operationsin TTCN.

11.3.3.2.2 HEX_TO_INT(hexvalueeHEXSTRING) = INTEGER
This operation convertsasingle HEXSTRING value to asingle INTEGER value.

For the purposes of this conversion, a HEXSTRING shall be interpreted as a positive base 16 INTEGER value. The
rightmost HEX digit is least significant, the leftmost HEX digit is the most significant. The HEX digits O .. F represent
the decimal values 0 .. 15 respectively.

11.3.3.2.3 BIT_TO_INT(bitvalue:BITSTRING) = INTEGER
This operation converts asingle BITSTRING valueto asingle INTEGER value.

For the purposes of this conversion, a BITSTRING shall be interpreted as a positive base 2 INTEGER value.
Therightmost BIT is least significant, the leftmost BIT is the most significant. The bits 0 and 1 represent the decimal
values 0 and 1 respectively.

11.3.324 INT_TO_HEX(intvalue, slength:INTEGER) =» HEXSTRING

This operation converts asingle INTEGER value to asingle HEXSTRING value. The resulting string is dength HEX digits
long.

For the purposes of this conversion, a HEXSTRING shall be interpreted as a positive base 16 INTEGER vaue. The
rightmost HEX digit is least significant, the leftmost HEX digit is the most significant. The HEX digits O .. F represent the
decimal values0 .. 15 respectively.

If the conversion yields a value with fewer HEX digits than specified in the second parameter, then the HEXSTRING
shall be padded on the |eft with zeros.

A test case error shall occur if the intvalue is negative or if the resulting HEXSTRING contains more HEX digits than
specified in the second parameter.

11.3.3.25 INT_TO_BIT(intvalue, ength:INTEGER) = BITSTRING
This operation converts asingle INTEGER value to asingle BITSTRING value. The resulting string is slength bits long.

For the purposes of this conversion, a BITSTRING shall be interpreted as a positive base 2 INTEGER value.
Therightmost BIT is least significant, the leftmost BIT is the most significant. The bits 0 and 1 represent the decimal
values 0 and 1 respectively.

If the conversion yields a value with fewer bits than specified in the second parameter, then the BITSTRING shall be
padded on the left with zeros.

A test case error shall occur if the intvalue is negative or if the resulting BITSTRING contains more bits than specified in
the second parameter.

11.3.3.3 Other predefined operations

TTCN also defines the following predefined operations:
a) IS PRESENT;
b) IS _CHOSEN;

36 Recommendation X.292 (09/98)

¢) NUMBER OF ELEMENTS;
d) LENGTH_OF;
e SIZE_OF.

113331 IS PRESENT(DataObjectReference) & BOOLEAN

As an argument the operation shall take a reference to afield within a data object only if it is defined as being OPTIONAL
or if it hasa DEFAULT value. The field may be of any type. The result of applying the operation is the BOOLEAN value
TRUE if and only if the value of the field is present in the actual instance of the data object. Otherwise the result is
FALSE.

The argument of the operation shall have the format as defined in 15.10.2.
EXAMPLE 14 — Use of IS_PRESENT:

if received PDU isof ASN.1 type
SEQUENCE { field 1 INTEGER OPTIONAL,
field 2 SEQUENCE OF INTEGER }
then, the operation call
IS_PRESENT(received_PDU field 1)
evaluatesto TRUE if field_1 in the actua instance of received PDU is present.

113332 IS _CHOSEN(DataObjectReference) & BOOLEAN

The operation returns the BOOLEAN value TRUE if and only if the data object reference specifies the variant of the
CHOICE type that is actually selected for a given data object. Otherwise the result is FALSE. The operation shall not be
applied to data objects or fields of data objects other than those of ASN.1 type CHOICE. The argument of the operation
shall have the format as defined in 15.10.2.

EXAMPLE 15 — Use of IS_CHOSEN:

if received PDU isof ASN.1 type
CHOICE { pl PDU_typel,
p2 PDU_type2,
p3 PDU_type}
then, the operation call
IS_CHOSEN(received_PDU.p2)
returns TRUE if the actual instance of received_PDU carries a PDU of the type PDU_type2.

11.3.3.3.3 NUMBER_OF _ELEMENTS(Vaue) = INTEGER

The operation returns the actual number of elements of a value that is of type ASN.1 SEQUENCE OF or SET OF. Its
result is fully compatible with that of the equivalent ASN.1 SIZE constraint applied to objects of these types. The
operation shall not be applied to values other than of ASN.1 type SEQUENCE OF or SET OF. The argument of the
operation shall have the format as defined in 15.10.2.

EXAMPLE 16 — Use of NUMBER_OF_ELEMENTS:

if received PDU isof ASN.1type
SEQUENCE { field 1 INTEGER OPTIONAL,
field_2 SEQUENCE OF INTEGER }
then, the operation call
NUMBER_OF_ELEMENTS(received_PDU.field_2)
returns the number of elements of the SEQUENCE OF INTEGER within the actual data object received PDU.
Also, NUMBER_OF ELEMENTS ({3, 0, 5}) returns 3.

11.3.334 LENGTH_OF(Value) = INTEGER

The operation returns the actual length of a value that is of type BITSTRING, HEXSTRING, OCTETSTRING, or
CharacterString or of ASN.1 type BIT STRING or OCTET STRING. The units of length for each string type are defined in
Table5in 11.18.2.

NOTE — These units of length are compatible with those used in ASN.1 SIZE constraints for objects of ASN.1 types, bitenabt for |

values which in this context in TTCN are considered to be of the corresponding TTCN type. Thus, an hstring such as 'F3'H which
could in ASN.1 be of type BIT STRING or OCTET STRING, will be interpreted as the TTCN type HEXSTRING.

Recommendation X.292 (09/98) 37

The argument of the operation shall have the format as defined in 15.10.2.

The operation shall not be applied to values other than of type BITSTRING, HEXSTRING, OCTETSTRING, or
CharacterString, or of ASN.1 type BIT STRING or OCTET STRING.

EXAMPLE 17 — Use of LENGTH_OF:

If Sisof type BITSTRING or ASN.1 type BIT STRING and =" 010’ B, then LENGTH_OFR(S) returns 3.
If Sisof type HEXSTRING and ='F3'H, then LENGTH_OF(S) returns 2.

If Sisof type OCTETSTRING and ='F2'O, then LENGTH_OR(S) returns 1.

If Sisof aCharacterString type and ="EXAMPLE", then LENGTH_OF(S) returns 7.

If Sisof ASN.1type BIT STRING and ='F3'H, thenLENGTH_OF(S) returns 8.

If Sisof ASN.1type OCTET STRING and ='F3'H, then LENGTH_OR(S) returns 1.

If Sisof ASN.1type OCTET STRING and ='01010011' B, then LENGTH_OF(S) returns 1.

Also, LENGTH_OF (INT_TO_HEX (26, 4)) returns 4.

LENGTH_OF (' F3'H) returns 2

and, LENGTH_OF ("Length_of Example") returns 17.

11.3.4 Test Suite Operation definitions and descriptions
11.3.4.1 Introduction

Operations specific to a Test Suite may be defined by the ATS specifier. To define a new operation, the following shall
be provided:

a) A namefor the operation.
b) A listof theinput parameters and their types.

Thisisalist of the forma parameter names and types. Each parameter name shall be followed by a colon and then
the name of the parameter type.

When more than one parameter of the same type is used, the parameters may be specified as a parameter sublist.
When a parameter sublist is used, the parameter names shall be separated from each other by a comma. The final
parameter in the list shall be followed by a colon and then the name of the type of the parameter.

When more than one parameter and type pair (or parameter list and type pair) is used, the pairs shall be separated
from each other by semicolons.

Only predefined types and data types as defined in the Test Suite Type definitions, ASP type definitions or PDU
type definitions may be used as types for forma parameters. PCO types shall not be used as formal parameter types. All
parameters shall be passed by value, meaning that in evaluating a call of atest suite operation, the actual parameters
are assigned to the corresponding formal parameters, asif in an assignment statement.

EXAMPLE 18 — Parameter lists

The following are equivalent methods of specifying a parameter list using two INTEGER parameters and one
BOOLEAN parameter:

(A:INTEGER; B:INTEGER; C:BOOLEAN)
(A, BINTEGER; C:BOOLEAN)
¢) Thetype of the result,
which shall follow the rules for the parameter typesin b).
d) A definition of the operation,
which shall consist of one of the following:

1) aprocedura definition, which when evaluated results in the evaluation of a RETURNVALUE statement to
provide the result of the operation, including explanatory comments embedded within the procedural definition
at appropriate places as text delimited by "/*" and "*/"; or

2) adescription of the operation in text, possibly including a reference to a publicly available specification of the
algorithm to be applied when the operation is invoked, plus at least one example showing an invocation and
corresponding result; the explanation should begin by stating the operation name, followed by a parenthesized
list containing the parameter names of the operation; this provides a " pattern” invocation for the operation.

€) Optionadly, further comment describing the operation, provided either in the Comments part of the table header or in
the Detailed Comments area of the table.

38 Recommendation X.292 (09/98)

The use of procedura definitions is recommended in order to provide precision in the definition of the operations, but a
textual explanation is allowed as an alternative for backwards compatibility.

In the case of aprocedural definition, this information shall be provided in the format shown in Proforma 11, below.

Test Suite Operation Procedural Definition

Operation Name . TS Procld&ParList
Group . [TS_ProcGroupReference]
Result Type : Type

Comments . [FreeText]

Definition

TS_OpProcDef

Detailed Comments. [FreeText]

Proforma 11 — Test Suite Operation Procedural Definition

SYNTAX DEFINITION:

155 TS Protocol& ParList ::= TS _Procldentifier [Formal ParList]

158 TS ProcGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) "/"] { TS_ProcGroupldentifier "/"}
734 Type ::= PredefinedType | Reference Type

162 TS OpProcDef ::= [VarBlock] ProcStatement

In the case of atextual description, thisinformation shall be provided in Proforma 12, below.

Test Suite Operation Description

Operation Name : TS Opld&ParList

Group . [TS_OpGroupReference]

Result Type : Type

Comments . [FreeText]
Description
FreeText

Detailed Comments. [FreeText]

Proforma 12 — Test Suite Operation Description

SYNTAX DEFINITION:

141 TS Opld&ParList ::= TS Opldentifier [Formal ParList]
144 TS OpGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) "/"] {TS_OpGroupldentifier "/"}
734 Type ::= PredefinedType | ReferenceType

11.3.4.2 Parameters

A Test Suite Operation may be compared to a function in an ordinary programming language. Vaues shall only be passed
into the operation by formal parameters. Each formal parameter shall be declared to be a Predefined Type, a Test Suite Type

Recommendation X.292 (09/98) 39

Identifier, ASP Type Identifier, PDU Type Identifier, CM Type Identifier or the meta-type PDU. Test Suite variables, Test
Case variables, Test Suite Constants, Test Suite Parameters and constraints shall not directly be used within the procedural
definition of a Test Suite Operation, but if required in the Test Suite operation shall be passed as actual parameters.

There shall be no side-effects, that is, the parameters to the operation shall not be altered as a result of any call of the
operation. Predefined operations and other Test Suite Operations may be used within the procedural definition of a Test
Suite Operation, without having to be passed as actual parameters.

When a Test Suite Operation isinvoked:

a) thenumber of the actual parameters shall be the same as the number of the formal parameters;
b) each actua parameter shall evaluate to an element of its corresponding formal parameter type;
¢) dl variables appearing in the actual parameter list shall be bound; and

d) theactual parameters shall be passed by value.

11.3.4.3 Variablesand Identifiers

If a procedural definition is used, it may include the declaration of local variables, placed at the head of the procedural
definition, between the keywords VAR and ENDVAR. These variables may be of any type allowed in TTCN. The scope of
these local varigbles is the procedural definition itself. These declarations declare lists of variable identifiers, each of a
given type and each list may either be declared to be STATIC or not. Variables, both STATIC and those not declared as
STATIC, may be given an optional initial value.

NOTE — It is recommended always to proviBIeATI C variables with an initial value.

The variables which are not declared to be STATIC are initidized every time the operation is invoked, with the specified
initial value, if any, and thus they shall not convey a value from one evaluation of the Test Suite Operation to another. Those
which are declared to be STATIC areinitialized with the specified initial value, if any, the first time the operation is invoked
within a given test component, or within a given test case if Test Components are not used, and thereafter they retain their
values from one invocation to the next within that Test Component or Test Case.

Variables which are not assigned an initial value are considered to be unbound and shall be explicitly bound to a value by
an assignment in the operation body before being used in an expression. If an unbound variable is used in an expression, then
itisaTest Caseerror.

Each identifier used in the procedural definition of a Test Suite Operation shall be one of the following:
a) locally declared variable name;

b) atypename, used in avariable declaration;

c¢) aformal parameter name declared in aformal parameter list of the operation;

d) aTest Suite Operation name.

The scope of formal parameter names and locally declared variable names is the procedura definition of the Test Suite
Operation. Thus, the values of dl other types of identifier are not directly accessible within the procedural definition of aTest
Suite Operation. To access such values, they shall be passed as actual parameters to the Test Suite Operation.

11.3.4.4 Procedure Statements

In a procedural definition, following the declaration of local variables, if any, there shall be a procedure statement of one of
the following kinds:

a) aReturn statement;

b) an Assignment statement;
¢) anlf statement;

d) aWhileloop;

€) aCase statement;

f) ablock containing a sequence of procedure statements separated by semicolons and all enclosed by the keywords
BEGIN and END.

40 Recommendation X.292 (09/98)

Comments may be embedded as text within procedura statements, delimited by “/*" and "*/*. Comments shall not be
embedded within other comments.

11.3.4.5 ReturnValue statements

Each evaluation of a Test Suite Operation shall end with the evaluation of a ReturnVaue statement, consisting of the
keyword RETURNVAL UE followed by an expression. This statement shall return the value of the given expression as
the result of the Test Suite Operation. The type of this result shall match the Result Type specified in the header of the
Test Suite Operation definition table.

11.3.4.6 Assignment statements

The form of Assignment isthe same asinthe TTCN behaviour descriptions (see 15.10.4), except that it is not enclosed in
parentheses. The DataObjectReference on the left hand side shall begin with a local variable. If the type of the local
variable is a structured type, then the DataObjectReference may access a component of that structure (using a record
reference, array reference or bit reference, as appropriate, see 15.10.2 and 15.10.3).

11.3.4.7 If statements

There are two forms of If statement:
— IF expressiomMHEN procedure-statemeBi SE procedure-statemeB&NDI F;
— IF expression THEN procedure-statement ENDIF.

The expression following the keyword IF shall be evaluated first and shall evaluate to a Boolean value. If this evaluates to
TRUE, then the procedure statement following the keyword THEN shall be evaluated. If the expression evaluates to
FALSE, then the procedure statement following the keyword ELSE, if any, is evaluated. The use of the keyword ENDIF to
end the If statement allows the procedure statements following THEN and ELSE to be If statements without having to be
enclosed in ablock.

11.3.4.8 While loop

A While loop takes the form:
— WHILE expressiomO procedure-statemeBNDWHILE.

The expression following the keywoMVHILE shall be evaluated first and shall evaluate to a Boolean value. If it
evaluates toTRUE, then the procedure statement following the keywb@ shall be evaluated and then, if no
ReturnValue statement has been evaluated, the process shall be repeated starting with the evaluation of the expressior
again. As soon as the expression evaluatE&toSE the evaluation of the While loop is complete.

11.3.49 Casestatement

A Case statement takes one of the two following forms:
— CASE expressiorOF

integer-label_1: procedure-statement_1;
integer-label_2: procedure-statement_2;

integer-label_n: procedure-statement_n;
ELSE
procedure-statement
ENDCASE
— CASE expressiorOF

integer-label_1: procedure-statement_1;
integer-label_2: procedure-statement_2;

integer-label_n: procedure-statement_n;
ENDCASE

The expression following the keywo@ASE shall be evaluated first and shall evaluate to a positive integer which shall
match at most one of the integer labels in the body of the Case statement. The procedure statement following the matched
integer label, if any, shall be evaluated and this completes the evaluation of the Case statement. If, however, the result of

Recommendation X.292 (09/98) 41

evaluating the expression does not match any of the integer labels, then the procedure statement following the keyword
EL SE, if any, shall be evaluated and this completes the Case statement. If, however, there is no match against an integer label
nor an EL SE clause, then the result of the Case statement is a Test Case error. Thus, the Case statement is equivalent to a
nested sequence of If statements, each testing the expression " (expression) = integer-label_i", possibly followed by an EL SE
clause at the innermost level of nesting.

11.3.4.10 Useof Test Suite Operations
A Test Suite Operation together with its actual parameter list may be used wherever an expression is allowed.
Each Test Suite Operation should include appropriate error checking. If an error (e.g. divison by zero, an invaid parameter,

atype mismatch, or evauation of an unbound variable) is detected during evaluation of a Test Suite Operation, it shall result
inaTest Caseerror.

EXAMPLE 19 — Definition of the operation SUBSTR:

Test Suite Operation Description

Operation Name : SUBSTR (source:lA5String; start_index, length:INTEGER)
Result Type : 1A5String

Description

SUBSTR(source, start_index, length) is the string of length len starting from index start_index of the source string source.

For example: SUBSTR("abcde",3,2) = "cd"
SUBSTR("abcde",1,3) = "abc"

SUBSTR(source, start_index, len) shall only be defined if:

start_index = 1,
len=>0, and
start_index + len < (length of source) + 1.

Any attempt to evaluate SUBSTR applied to arguments on which it is not defined will result in atest case error.

EXAMPLE 20 — Definition of the operation NUMBER_OF_INVOCATIONS:

Test Suite Operation Procedural Definition

Operation Name : NUMBER_OF _INVOCATIONS
Result Type . INTEGER

Definition

VAR STATIC COUNT : INTEGER: 0
ENDVAR

BEGIN

COUNT := COUNT + 1,
RETURNVALUE COUNT

END

Detailed Comments: NUMBER_OF_INVOCATIONS() gives an integer value which is equal to the number of times this
operation has been invoked in the current test component, or test case if test components are not used.

42 Recommendation X.292 (09/98)

114 Test Suite Parameter Declarations

The purpose of this part of the ATS is to declare constants derived from the PICS and/or PIXIT which are used to
globally parameterize the test suite. These constants are referred to as Test Suite Parameters, and are used as a basis for
Test Case selection and parameterization of Test Cases.

The following information relating to each Test Suite Parameter shall be provided:
a) itsname;
b) itstype,
where the type shall be a predefined type, an ASN.1 type, a Test Suite Type or aPDU type;
c) itsdefault value, if any,
which may be used to suggest suitable values for some test suite parameters such as timeout durations;
d) PICS/PIXIT entry reference,

which isareferenceto an individual PICS/PIXIT proforma entry that will clearly identify where the value to be used
for this Test Suite Parameter will be found.

Thisinformation shall be provided in the format shown in Proforma 13, below.

Test Suite Parameter Declarations

Group : [TS_ParGroupReference]
Parameter Name Type Default Value PICS/PIXIT Ref Comments
TS_Parldentifier Type [DefaultValue] FreeText [FreeText]

Detailed Comments: [FreeText]

Proforma 13 — Test Suite Parameter Declarations

Collective comments may be used in this table according to Figure 2.
SYNTAX DEFINITION:

183 TS ParGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) /"] {TS_ParGroupldentifier "/"}
187 TS Parldentifier ::= Identifier
734 Type ::= PredefinedType | ReferenceType

EXAMPLE 21 — Declaration of Test Suite Parameters:

Test Suite Parameter Declarations
Parameter Name Type PIC/PIXIT Ref Comments
PAR1 INTEGER PICS question xx
PAR2 INTEGER PICS question yy
PAR3 INTEGER PICS question zz

115 Test Case Selection Expression Definitions

The purpose of this part of the ATS is to define selection expressions to be used in the Test Case selection process. This part
of the ATS shall meet the requirements of Recommendation X.291.

Recommendation X.292 (09/98) 43

A selection expression is associated with one or more Test Groups and/or Test Cases by placing its identifier in the Test
Case Selection Reference column of the Test Suite Structure and/or Test Case Index. An expression may be referenced by
more than one Test Group and/or Test Case.

Use of a selection expression shall be taken to mean that the Test Case is to be run if the selection expression evaluates
to TRUE.

The following information relating to each Test Case Selection Expression shall be provided:
a) itsname
b) asdection expression,

which shall evauate to a BOOLEAN vaue, and which shall use only literal values, Test Suite Parameters, Test Suite
Congtants and other selection expression identifiersin itsterms.

Thisinformation shall be provided in the format shown in Proforma 14, below.

Test Case Selection Expression Definitions

Group : [SelectionGroupReference]
Expression Name Selection Expression Comments
SelectExpridentifier SelectionExpression [FreeText]

Detailed Comments. [FreeText]

Proforma 14 — Test Case Selection Expression Definitions

Collective comments may be used in this table according to Figure 2.
SYNTAX DEFINITION:

198 SelectExprGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) "/"] { SelectExprGroupl dentifier "/"}
202 SelectExprldentifier ::= Identifier
204 SelectionExpression ::= Expression

11.6 Test Suite Constant Declar ations

The purpose of this part of the ATS is to declare a set of names for values not derived from the PICS or PIXIT that will
be constant throughout the Test Suite.

The following information relating to each Test Suite Constant shall be provided:
a) itsname;
b) itstype,

where the type shall be a predefined type, a simple type or an ASN.1 Type (including PDUs, ASPs and CMs
expressed in ASN.1);

Cc) itsvalue,

where the terms in the value expression shall not contain: Test Suite Variables or Test Case Variables; the value shall
evaluate to an element of the type indicated in the type column.

44 Recommendation X.292 (09/98)

Thisinformation shall be provided in the format shown in Proforma 15, below.

Test Suite Constant Declar ations

Group . [TS_ConstGroupReference]
Constant Name Type Value Comments
TS_Constldentifier Type DeclarationValue [FreeText]

Detailed Comments: [FreeText]

Proforma 15 — Test Suite Constant Declarations

Collective comments may be used in this proforma according to Figure 2.
SYNTAX DEFINITION:

212 TS _ConstGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) "/"] { TS_ConstGroupldentifier "/}
228 VaueReference ::= valuereference

734 Type ::= PredefinedType | ReferenceType

219 DeclarationValue ::= Expression

EXAMPLE 22 — Declaration of Test Suite Constants:

Test Suite Constant Declar ations

Constant Name Type Value Comments
TS CONST1 BOOLEAN TRUE
TS _CONST2 |A5String "A string"

11.7 Test Suite Constant Declarations by Reference

The purpose of this part of the ATS isto declare a set of names for values not derived from the PICS or PIXIT that will be
constant throughout the Test Suite.

The following information relating to each Test Suite Constant shall be provided:

a) itsname

b) itstype,
where the type shall be a predefined type or an ASN.1 type (including PDU, ASP or CM types expressed in ASN.1)
imported by an ASN.1 Type Definition By Reference from the ASN.1 module identified by the specified module
identifier;

c) itsvaluereference,
where the value shall correspond to an element of the type indicated in the type column;

d) themoduleidentifier,

which consists of a module reference that shall follow the identifier rules stated in Recommendations X.680, and an
optional Objectldentifier; the module shall be unique within the domain of interest.

Recommendation X.292 (09/98) 45

Thisinformation shall be provided in the format shown in Proforma 16, below.

Test Suite Constant Declarations by Reference

Group : [TS_ConstGroupReference]
Constant Name Type Value Reference Module I dentifier Comments
TS_Constldentifier Type ValueReference ASN1_Moduleldentifier [FreeText]

Detailed Comments: [FreeText]

Proforma 16 — Test Suite Constant Declarations by Reference

Collective comments may be used in this table according to Figure 2.
SYNTAX DEFINITION:

212 TS ConstGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) "/"] { TS_ConstGroupldentifier "/"}
228 VaueReference ::= valuereference

734 Type ::= PredefinedType | ReferenceType

228 VaueReference ::= vauereference

133 ASN1_Moduleldentifier ::= Moduleldentifier

11.8 TTCN variables

11.8.1 Test Suite Variable Declarations

A Test Suite may make use of a set of variables which are defined globally for the Test Suite, and retain their values
throughout the Test Suite. These variables are referred to as Test Suite Variables.

A Test Suite Variable is used whenever it is necessary to pass information from one Test Case to another. In concurrent
TTCN, Test Suite Variables shall only be used by the MTC.

The following information shall be provided for each variable declaration:
a) itsname;
b) itstype,
where the type shall be a predefined type, an ASN.1 type, a Test Suite Type or aPDU type;
c) itsinitia value (if any),

where theinitial value column is used when it is desired to assign an initial value to a Test Suite Variable at its point
of declaration; the terms in the value expression shall not contain: Test Suite Variables or Test Case Variables; the
value shall evaluate to an element of the type indicated in the Type column. Specifying an initial value is optional.

Thisinformation shall be provided in the format shown in Proforma 17, below.

Test Suite Variable Declarations

Group : [TS_VarGroupReference]
Variable Name Type Value Comments
TS_Varldentifier Type [DeclarationValue] [FreeText]

Detailed Comments. [FreeText]

Proforma 17 — Test Suite Variable Declarations

46 Recommendation X.292 (09/98)

Collective comments may be used in this table according to Figure 2.
SYNTAX DEFINITION:

235 TS VarGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) "/"] {TS_VarGroupldentifier "/"}
239 TS Varldentifier ::= Identifier

734 Type ::= PredefinedType | ReferenceType

219 DeclarationVaue ::= Expression

Since it is possible that any particular Test Case may be run independently of the others in the Test Suite, it is necessary
that the use made of Test Suite Variables does not make assumptions about the ordering of the Test Case execution.

EXAMPLE 23 — Declaration of Test Suite Variables:

Test Suite Variable Declarations

Variable Name Type Value Comments

state IA5String "idle" Used to indicate the final
stable state of the previous
Test Case, if any, in order to
help determine which
preamble to use.

11.8.2 Binding of Test Suite Variables

Initially Test Suite Variables are unbound. They may become bound (or be re-bound) in the following contexts:
a) atthe point of declaration if aninitial valueis specified;

b) when the Test Suite Variable appears on the left-hand side of an assignment statement (see 15.10.4).

Once a Test Suite Variable has been bound to avalue, the Test Suite Variable will retain that value until either it is bound
to a different value, or execution of the test suite terminates — whichever occurs first.

If an unbound Test Suite Variable is used in the right-hand side of an assignment, then it is a test case error.

11.8.3 Test Case Variable Declarations

A test suite may make use of a set of variables which are declared globally to the Test Suite but whose scope is defined to be
local to the Test Case.

In concurrent TTCN, each test component, including the MTC, receives a fresh copy of all Test Case Variables when it is
created. These variables are referred to as Test Case Variables.

The following information shall be provided for each variable declaration:
a) its name;
b) itstype,
where the type shall be a predefined type, an ASN.1 type, a Test Suite Type or a PDU type;
c) itsinitial value (if any),

where the initial value column is used when it is desired to assign an initial value to a Test Case Variable at its point
of declaration; the terms in the value expression shall not contain: Test Suite Variables or Test Case Variables; the
value shall evaluate to an element of the type indicated in the type column. Specifying an initial value is optional.

Recommendation X.292 (09/98) 47

Thisinformation shall be provided in the format shown in Proforma 18, below.

Test Case Variable Declar ations

Group : [TC_VarGroupReference]
Variable Name Type Value Comments
TC_Varldentifier Type [DeclarationValue] [FreeText]

Detailed Comments. [FreeText]

Proforma 18 — Test Case Variable Declarations

Collective comments may be used in this table according to Figure 2.
SYNTAX DEFINITION:

248 TC_VarGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) /"] { TC_VarGroupldentifier "/"}
252 TC_Varldentifier ::= Identifier

734 Type ::= PredefinedType | ReferenceType

219 DeclarationVaue ::= Expression

NOTE - Caution must be exercised when using Test Case Variables as local variables within a Test Step, in order to emaflictssage
with other Test Steps or Test Case Variables. A Test Suite specifier may avoid such problems by adopting a naming comrention wh
will result in all such variables being uniquely named within a Test Suite.

11.8.4 Binding of Test Case Variables
Initially Test Case Variables are unbound. They may become bound (or be re-bound) in the following contexts:
a) atthepoint of declarationif aninitial value is specified;

b) when the Test Case appears on the left-hand side of an assignment statement (see 15.10.4).

Once a Test Case Variable has been bound to a value, the Test Case Variable will retain that value until either it is bound
to a different value, or execution of the Test Case terminates — whichever occurs first. At termination of the Test Case, the
Test Case Variable becomes re-bound to its initial value, if one is specified, otherwise it becomes unbound.

If an unbound Test Case Variable is used in the right-hand side of an assignment, then it is a test case error.

11.9 PCO Type Declaration
This part of the ATS lists the set of service boundaries where the PCOs (Points of Control and Observation) are located.

The following information shall be provided for each PCO types used in the test suite:
a) its name,

which is the same name given in the PCO table;
b) itsrole,

which shall be declared either as UT or LT in the Role column or by descriptive text in the Comment column; the
predefined identifielUT indicates that the PCO is an upper tester PCQ argpecifies a lower tester PCO; if the Role
column is used, then its contents shall be consistent with the role, if any, given in the PCO declaration table.

NOTE - In a test suite using concurrency, the role of a PCO type may need to be described in terms of the nature of the test
component and underlying service provider to be coupled by PCOs of this type.

48 Recommendation X.292 (09/98)

Thisinformation shall be provided in the format shown in Proforma 19, below.

PCO Type Declarations

Group . [PCO_GroupReference]

PCO Type Role Comments

PCO_Typeldentifier [PCO_Role] [FreeText]

Detailed Comments. [FreeText]

Proforma 19 — PCO Type Declarations

Collective comments may be used in this table according to Figure 2.
SYNTAX DEFINITION:

271 PCO_GroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) "/"] { PCO_Groupldentifier "/}
263 PCO_Typeldentifier ::= Identifier
279 PCO _Role::=UT|LT

PCO types are defined in the PCO table and therefore the PCO Typetable is optional. If a PCO Typeis given as an exported
object in the Export table, it shall be defined in the PCO Type table.

11.10 PCO Declarations

This part of the ATS lists the set of Points of Control and Observation (PCOs) to be used in the Test Suite and explains

where in the testing environment these PCOs exist.

NOTE 1 — The number of PCOs is, where applicable, as defined in Recommendations X.290 and X.291 for the test method(s)
identified in the Test Suite Structure table. In TTCN, PCOs may also be used in ways not described in Recommendation X.291, for
example to communicate with parts of the Test System or Test Environment not defined in the Test Suite (e.g. to manipntiés foeq

simulate handovers for radio protocol testing).

NOTE 2 — TTCN behaviour statements specified for execution at the UT PCO shouldasotgguirements beyd those specified
by Recommendation X.291.

In TTCN the PCO model is based on two First In First Out (FIFO) queues:
— one output queue for sending ASPs and/or PDUs;

— one input queue for receiving ASPs and/or PDUs.

The output queue is assumed to be located within the underlying service-provider or in the case of the UT, within
the IUT.

A SEND event at a PCO is successful when the event is passed from the LT to the service-provider, or when the event is
passed from the UT to the IUT.

For the purpose of receiving events the tester has an input queue. All incoming events are queued and processed by the teste
in the same order they were received, and without loss of any events.

NOTE 3 — The queue model is only an abstract model and is not intended to imply a specific implementation.

Recommendation X.292 (09/98) 49

The following information shall be provided for each PCO used in the Test Suite:
a) itsname,

which is used in the behaviour descriptions to specify where particular events occur;
b) itstype,

which is used to identify the service boundary where the PCO is located, and which may if necessary be followed by
information concerned with multiplexing requirements to be met immediately below this PCO but above the service
boundary; if the activity at two or more PCOs is to be multiplexed together by the service provider (e.g. onto a single
connection end-point) then, in the PCO declarations for these PCOs, the PCO type shal be followed by the same
MuxValue (i.e. a Test Suite Parameter) given in parentheses; the precise meaning of this Test Suite Parameter shall be
specified in the relevant PIXIT;

NOTE 4 — See also 1.11 for further explanation of MuxValue.

EXAMPLE 24 — Use of MuxValue:

LT1 LT2
PCO_1 PCO_2
N-SAP (MuxA) N-SAP (MuxA)
N-ASP
N-Service plus Multiplexing Service Provider T

[T0731060-98/d04

c) itsrole,

which may be omitted if it is specified in the PCO type declaration table for each of the PCO types used; if the role
is not specified in a PCO type declaration table, then it shall be declared either as UT or LT in the Role column or
by descriptive text in the Comment column; the predefined identifier UT indicates that the PCO is an upper tester PCO
and LT specifies a lower tester PCO; if the Role column is used, then its contents shall be consistent with the role, if
any, given in the PCO type declaration table.

NOTE 5 — In a Test Suite using concurrency, the role of a PCO may need to be described in terms of the nature of the test
component and underlying service provider to be coupled by this PCO.

Thisinformation shall be provided in the format shown in Proforma 20, below.

PCO Declarations

Group : [PCO_GroupReference]
PCO Name Type Role Comments
i PCO_Typeldentifier
PCO_Identifier [(MixValue)] [PCO_Role] [FreeText]

Detailed Comments. [FreeText]

Proforma 20 — PCO Declarations

Collective comments may be used in this table according to Figure 2.

50 Recommendation X.292 (09/98)

SYNTAX DEFINITION:

271 PCO_GroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) "/"] { PCO_Groupldentifier "/"}
275 PCO_ldentifier ::= Identifier

263 PCO_Typeldentifier ::= Identifier

277 MuxVaue:=TS Parldentifier

279 PCO_Role:=UT |LT

EXAMPLE 25 — Declaration of PCOs:

PCO Declarations
PCO Name PCO Type Role Comments
L TSAP LT Transport service access point
at the lower tester. Session
U SSAP uT service access point at the
upper tester.

Points of control and observation are usualy just SAPSs, but in genera can be any appropriate points at which the test events
can be controlled and observed. However, it is possible to define a PCO to correspond to a set of SAPs, provided al the
Service Access Points (SAPs) comprising that PCO are:

— atthe same location (i.e., in the LT or in the UT);

— SAPs of the same service.

When a PCO corresponds to several SAPs, the appropriate address is used to identify the individual SAP. PCOs are
normally associated with one service access point of the (N — 1) service-provider or the IUT.

NOTE 6 — A PCO may not be related to a SAP at all. This could be the case when a layer is composed of sublayers (glicatiohe Ap
layer, or in the lower layers, where a subnetwork point of attachment is not a SAP).

11.11 CP Declarations

CPs are used to facilitate the exchange of CMs between test components. CPs are modelled as two queues, one for each
direction of communication. In this respect they are smilar to PCOs (see Figure 3). A difference between CPs and PCOs is
that CPs connect two test components, while PCOs connect a test component with the external environment, usually either
the IUT or a service provider (see Figure 5).

«— ——_—

T0731070-98/d05

Figure 5/X.292 — Model of a CP

CPs can be realized either by local communication or by communication that spans physical boundaries.

Recommendation X.292 (09/98) 51

Communication via CPs is asynchronous, that is, communication is achieved by one test component sending a CM to its
partner, and its partner receiving the CM when ready. The test component that initiated the CM, however, proceeds with
execution immediately after sending the CM. If it is required that the sending test component suspends its activity until the
CM has been received, atest suite specifier should use a handshake mechanism. An example of how such a handshake can
be specified is shown in Figure 6.

A_CP!READY A_CP!READY
A_CP? OK A_CP? OK

A4

T0731080-98/d06

Figure 6/X.292 — Example of a simple handshake

All CPs shall be declared. The name of each CP shall be unique within the Test Suite.

Thisinformation shall be provided in the format shown in Proforma 21, below.

CP Declarations

Group . [CP_GroupReference]
CP Name Comments
CP_ldentifier [FreeText]

Detailed Comments. [FreeText]

Proforma 21 — CP Declarations

Collective comments may be used in this table according to Figure 2.
SYNTAX DEFINITION:

286 CP_GroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) "/"] { CP_Groupldentifier"/"}
290 CP_ldentifier ::= Identifier

11.12 Timer Declarations

A Test Suite may make use of timers. The following information shall be provided for each timer:
a) thetimer name;
b) theoptiona timer duration,

where the default duration of the timer shall be an expression which may be omitted if the value cannot be
established prior to execution of the Test Suite; the terms in the value expression shall not contain: Test Suite Variables
or Test Case Variables, the timer duration shall evaluate to an unsigned positive INTEGER value;

¢) thetimeunit,
where the time unit shall be one of the following:
1) ps(i.e., picosecond);
2) ns(i.e., nanosecond);

3) us(i.e., microsecond);

52 Recommendation X.292 (09/98)

4) ms(i.e.,, millisecond);
5) s(i.e., second);
6) min (i.e, minute).
Time units are determined by the test suite designer and are fixed at the time of specification. Different timers may use

different units within the same Test Suite. If a PICS or PIXIT entry exists, the timer declaration shall specify the same
unitsincluded in the PICS/PIXIT entry.

Thisinformation shall be provided in the format shown in Proforma 22, below.

Timer Declarations

Group . [Timer GroupReference]
Timer Name Duration Unit Comments
Timerldentifier [DeclarationValue] TimeUnit [FreeText]

Detailed Comments: [FreeText]

Proforma 22 — Timer Declarations

Collective comments may be used in this table according to Figure 2.
SYNTAX DEFINITION:

297 TimerGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) "/"] { TimerGroupldentifier "/}
301 Timerldentifier ::= Identifier
219 DeclarationVaue ::= Expression

304 TimerUnit::=ps|ns|ms|s|min
Each Test Component gets afresh copy of all timers when it starts executing its behaviour.

EXAMPLE 26 — Declaration of timers:

Timer Declarations

Timer Name Duration Unit Comments
wait 15 S Genera purpose wait
no_response A min Used to for IUT to connect or

react to connection establish-
ment, longer duration than
genera purpose wait. Gets
value from PIXIT.

Delay_time ms Duration to be established during
execution of thetest suite

Recommendation X.292 (09/98) 53

11.13 Test Components and Configuration Declarations
11.13.1 Test Components

11.13.1.1 Main Test Component

The Main Test Component is intended to fulfil the role of the Lower Tester Control Function (LTCF), as defined
in 12.5.2/X.291, Its behaviour is described in the first tree of the Test Case behaviour description table and all trees
attached to it. It isresponsible for:

a) creating all PTCsrequired within the current configuration and monitoring their termination;

b) managing CPsthat exist between itself and PTCs;

¢c) computation and assignment of the test verdict using its knowledge of the combined effect of the preliminary results
fromthe PTCs.

In addition aMain Test Component may manage PCO(S).

Only the Main Test Component shall use Test Suite Variables. Test Suite Variables shall not be passed to PTCs in the
CREATE congtruct.

11.13.1.2 Parallel Test Components

Parallel Test Components are intended to fulfil the role of the Lower Testers or Upper Testers. Their behaviour is
described in the tree which is referenced in a CREATE statement in the MTC, and dl trees attached to it. A PTC assigns
preliminary results but does not assign test verdicts.

A PTC shal not:
a) useTest Suite Variables;

b) create other test components.

11.13.1.3 Test Component Declarations

If concurrent TTCN is used, this section of the ATS shall declare al individual test components that are used. These test
components are later referenced from the Test Component Configurations declarations which define specific
configurations.

The following information shall be provided for each test component:

a) itsname,
which shall be unique throughout the test suite;

b) itsrole,
which shall indicate whether the test component is the Main Test Component or a Parallel Test Component, and where
at least one test component shall be a Main Test Component, and at least one test component shall be a Paralel Test
Component

¢) number of PCOs used,
where zero or more PCOs may be associated with the test component;

d) number of CPs used,

where zero or more CPs may be associated with the test component.

54 Recommendation X.292 (09/98)

Thisinformation shall be provided in the format shown in Proforma 23, below.

Test Component Declarations

Group : [TcompGroupReference]
Component Name Component Role No. of PCOs No. of CPs Comments
Tcompldentifier TCompRole Num_PCOs Num_CPs [FreeText]

Detailed Comments: [FreeText]

Proforma 23 — Test Component Declarations

Collective comments may be used in this table according to Figure 2.
SYNTAX DEFINITION:

311 TcompGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) "/"] { TcompGroupldentifier "/"}
315 Tcompldentifier ::= Identifier

317 TcompRole::=MTC|PTC

318 Num_PCOs ::= Number

321 Num_Cos::= Number

EXAMPLE 27 — Declaration of test components

This Test Component Declarations table can be used in conjunction with the Test Component Configurations CONFIG1
and CONFIG2, illustrated in Figures 3 and 4, and declared in Examples 28 and 29.

Test Component Declarations

Component Name Component Role No. of PCOs No. of CPs Comments

MTC1 MTC 0 3 Used in Config 1

MTC2 MTC 1 2 Used in Config 2 with a PCO
TC1 PTC 1 2 Used in Config 1
TC2 PTC 1 3 Used in Config 1 and Config 2
TC3 PTC 1 2 Used in Config 1
TC4 PTC 0 3 Used in Config 2
TC5 PTC 1 0 Used in Config 2 without a CP

11.13.2 Test Component Configuration Declarations

Test components are used to build a logica architecture, or configuration, that facilitates concurrent execution of TTCN
dynamic behaviour trees. Each Test Component configuration that is used in an Abstract Test Case using concurrency shall
be declared.

The following information shall be provided for each Test Component Configuration:
a) itsname,

which shall be unique within the Test Suite, and shall be referenced from a Test Case dynamic behaviour table
header;

Recommendation X.292 (09/98) 55

b)

alist of the test components belonging to the test configuration,

where the following information shall be provided for each test component:

1

2)

3)

its name,

which shall have been declared as a test component name. Exactly one of the test components in the configuration
shall be declared asan MTC;

PCOs used,

where alist of zero or more declared PCOs is associated with each test component. The number of PCOs in the list
shall be the same as the number of PCOs declared in the relevant Test Components Declaration. No PCO shdll be
used more than once in a single configuration (i.e. test components in one configuration shall not share PCOs);

CPs used,

where alist of zero or more declared CPs is associated with each test component. The number of CPsin the list
for a PTC shall be the same as the number of CPs declared in the relevant Test Components Declaration. The
number of CPsin thelist of an MTC shall not exceed the number of CPs declared. No CP name shall appear more
than once in each CP list. Each CP name in the list for one test component shall appear in the list for exactly one
other test component in the configuration. In other words, each CP name used in the configuration will appear
exactly twice in the configuration table. These CP pairs are used to specify the connectivity of test components in
the configuration.

Thisinformation shall be provided in the format shown in Proforma 24, below.

Test Component Configuration Declaration

Configuration Name : TCompConfigl dentifier
Group . [TCompConfigGroupReference]
Comments . [FreeText]
Components Used PCOs Used CPs Used Comments
Tcompldentifier [PCO_List] [CP_List] [FreeText]

Detailed Comments: [FreeText]

Proforma 24 — Test Component Configuration Declaration

Collective comments may be used in this table according to Figure 2.

SYNTAX DEFINITION:

329 TcompConfigldentifier ::= Identifier

330 TcompConfigGroupreference ::= [(Suiteldentifier | TTCN_Moduleldentifier) "/"] { TcompConfigGroupldentifier "/"}
315 Tcompldentifier ::= Identifier

337 PCO_List ::=PCO_ldentifier { CommaPCO_ldentifier}

339 CP_List::= CP_ldentifier { Comma CP_ldentifier}

EXAMPLE 28 — Test Component Configuration declaration corresponding to Figure 3:

Test Component Declarations

Configuration Name : CONFIG_1

Components Used PCOs Used CPs Used
MTC1 MCP1, MCP2, MCP3
TC1 PCO_A MCP1, CP1
TC2 PCO_B MCP2, CP1, CP2
TC3 PCO_C MCP3, CP2

56

Recommendation X.292 (09/98)

EXAMPLE 29 — Test Component Configuration declaration corresponding to Figure 4:

Test Component Configuration Declaration

Configuration Name : CONFIG_2

Components Used PCOs Used CPsUsad
MTC2 PCO D MCP2, MCP3
TC2 PCO_B MCP2, CP1, CP2
TC4 MCP3, CP1, CP2
TC5 PCO_E

11.14 ASP Type Definitions

11.14.1 Introduction

The purpose of this part of the abstract TTCN test suite is to declare the types of ASPs that may be sent or received at the
declared PCOs. ASP type definitions may include ASN.1 type definitions, if appropriate.

11.14.2 ASP Type Definitionsusing tables

The following information shall be supplied for each ASP:
a) itsname,

where the full name, as given in the appropriate protocol Recommendation, shall be used; if an abbreviation is used,
then the full name shall follow in parentheses;

b) the PCO type associated with the ASP,

where the PCO type shall be one of the PCO types used in the PCO declaration proforma. If only a single PCO is
defined within atest suite, specifying the PCO type in an ASP type definition is optional;

¢) alist of the parameters associated with the ASP,
where the following information shall be supplied for each parameter:;
1) itsname,
where either:

— the full name, as given in the appropriate protocol Recommendation, shall be used; if an abbreviation is
used, then the full name shall follow in parentheses; or

— the macro symbol<-) indicating that the entry in the type column identifies a set of parameters that is to
be inserted directly in the list of ASP parameters; the macro symbol shall be used only with Structured
Types defined in the Structured Types definitions;

2) its type and an optional attribute,

where parameters may be of a type of arbitrarily complex structure, including being specified as a Test Suite
Type (either predefined, Simple Type, Structured Type or ASN.1 type); if a parameter is to be structured as a
PDU, then its type may be stated either:

— as a PDU identifier to indicate that in the constraint for the ASP this parameter may be chained to a PDU
constraint of a specific PDU type; or

— asPDU to indicate that in the constraint for the ASP, this parameter may be chained to a PDU constraint
of any PDU type; and where the optional attribute is Length;

in which case the specification may restrict the parameter to a particular length or a range according
to 11.18. The length values shall be interpreted according to Table 5 in 11.18. The boundaries shall be
specified in terms of non-negative INTEGER literals, Test Suite Parameters, Test Suite Constants or the
keyword INFINITY.

Recommendation X.292 (09/98) 57

The length specifications defined for the ASP parameter type in the Test Suite Type definitions shall not
conflict with the length specifications in the ASP type definition, i.e., the set of strings defined by a length
restriction in an ASP definition shall be a true subset of the set of strings defined by the Test Suite Type
definition.

The keyword INFINITY can be used as a value for the upper boundary in order to indicate that there is no
upper limit of length.

NOTE - It is usually unnecessary to restrict the length of ASP parameters, but in some cases this may be necessary in
order to effectively restrict the length of a corresponding PDU field in an underlying protocol.

The parameters of ASP type definitions are considered to be optional, i.e., in instances of these types
whole parameters may not be present.

Thisinformation shall be provided in the format shown in Proforma 25, below.

ASP Type Definition
ASP Name : ASP_Id&Fullld
Group . [ASP_GroupReference]
PCO Type . [PCO_Typeldentifier]
Comments : [FreeText]
Parameter Name Parameter Type Comments

ASP_ParldOrMacro Type&Attributes [FreeText]

Detailed Comments: [FreeText]

Proforma 25 — ASP Type Definition

The Parameter Name and Parameter Type columns shall either be both present or both omitted.
SYNTAX DEFINITION:

348 ASP_ld&Fullld ::= ASP_Identifier [Fullldentifier]

351 ASP_Groupreference ::= [(Suiteldentifier | TTCN_Moduleldentifier) "/"] { ASP_Groupldentifier "/"}
263 PCO_Typeldentifier ::= Identifier

357 ASP_ParldOrMacro ::= ASP_Parld& Fullld | MacroSymbol

396 Type&Attributes::= (Type[LengthAttribute]) [PDU

EXAMPLE 30 — T_CONNECTrequest Abstract Service Primitive

The figure below shows an example from the Transport Service (see Recommendation X.214). This could be part of
the sat of ASPs used to describe the behaviour of an abstract UT in a DS test suite for the Class 0
Transport. CDA,CGA and QOS are Test Suite Types (see Recommendation X.224).

58 Recommendation X.292 (09/98)

ASP Type Definition

ASP Name : CONreq (T_CONNECTrequest)
PCO Type : TSAP
Comments :
Parameter Used Parameter Type Comments
Cda (Called Address) CDA ... of upper tester
Cga (Calling Address) CGA ... of lower tester
QoS (Quality of Service) QOs should ensure class 0 is used

Detailed Comments. ASP to be sent at Transport Service access point

11.14.3 Useof Structured Typeswithin ASP Type Definitions

There are two possible relationships between a Structured Type and ASP definitions which refer to it, as follows:

a) if a parameter name is given in the definition, then the Structured Type referenced is a substructure. This alows
definition of ASPs containing a multi-level substructure of parameters,

b) if the macro symbol (<-) is used instead of a parameter name, then this is equivalent to a macro expansion; the entry
in the ASP type definition expands directly to a list of parameters without introducing an additiona level of
substructure.

The macro symbol shall not be used on the same line as references to types defined in ASN.1 or Simple Types, i.e., only
Structured Types defined in tabular form can be expanded into other Structured Types as macro expansions.

11.14.4 ASP Type Definitionsusing ASN.1

Where more appropriate, ASPs can be specified in ASN.1. This shall be achieved by an ASN.1 definition using the
ASN.1 syntax as defined in Recommendations X.680. The following information shall be supplied for each ASN.1 ASP:

a) itsname,

where the full name, as given in the appropriate protocol Recommendation, shall be used; if an abbreviation is used,
then the full name shall follow in parentheses;

b) the PCO type associated with the ASP,

where the PCO type shall be one of the PCO types used in the PCO declaration proforma. If only a single PCO is
defined within atest suite, specifying the PCO type in an ASP type definition is optional;

c) the ASN.1 ASPtype definition,

which shall follow the syntax defined in Recommendations X.680. For identifiers within that definition the hyphen
symbol (-) shall not be used. The underscore symbol (_) may be used instead. The ASP identifier in the table
header is the name of thefirst type defined in the table body.

Types referred to from the ASP definition shall be defined in other ASN.1 type definition tables, be defined by
reference in the ASN.1 type reference table or be defined localy in the same table, following the first type
definition. Locally defined types shall not be used in other parts of the test suite.

ASN.1 comments can be used within the table body. The comments column shall not be present in this table.

Commentsin ASN.1 start with "--" and end with either the next occurrence of "--" or with "end of line", whichever comes
first. This prevents a single ASN.1 comment from spanning several lines. "End of line" is not, however, a defined symbol
in TTCN.MP. ATS specifiers are recommended to facilitate the exchange of ATSs in TTCN.MP by always closing
ASN.1 comments with "--".

Recommendation X.292 (09/98) 59

Thisinformation shall be provided in Proforma 26, below.

ASN.1 ASP Type Definition

ASP Name : ASP_Id&Fullld
Group . [ASN1ASP_GroupReference]
PCO Type : [PCO_Typeldentifier]
Comments . [FreeText]
Type Definition
ASN1 Type&localTypes
Detailed Comments. [FreeText]

SYNTAX DEFINITION:

Proforma 26 — ASN.1 ASP Type Definition

348 ASP_ld&Fullld ::= ASP_Identifier [Fullldentifier]
367 ASN1_ASP_GroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) "/"] { ASN1_ASP_Groupldentifier "/"}
263 PCO_Typeldentifier ::= Identifier
121 ASN1 Type&Locatypes::= ASN1 Type{ASN1 Loca Type}

11.14.5 ASN.1 ASP Type Definitions by Reference

ASPs can be specified by a precise reference to an ASN.1 ASP defined in an OSI Recommendation or by referencing an
ASN.1 type defined in an ASN.1 module attached to the test suite. The following information shall be supplied for each

ASP:
a) itsname,

where this name may be used throughout the entire test suite;
b) the PCO type associated with the ASP;

where the PCO type shall be one of the PCO types used in the PCO declaration proforma. If only a single PCO is

defined within atest suite, specifying the PCO typein an ASP type definition is optional;

c) thetypereference,

which shall follow the identifier rules stated in Recommendations X.680;

d) themoduleidentifier,

which consists of a module reference that shall follow the identifier rules stated in Recommendations X.680 and an

optional Objectldentifier.

Thisinformation shall be provided in Proforma 27, below.

ASN.1 ASP Type Definitions by Reference

Group . [ASN1ASP_GroupReference]
ASP Name PCO Type Type Reference Module Identifier Comments
ASP_Ild&Fullld [PCO_Typeldentifier] TypeReference Moduleldentifier [FreeText]

Detailed Comments:

[FreeText]

Proforma 27 — ASN.1 ASP Type Definitions by Reference

60 Recommendation X.292 (09/98)

Collective comments may be used in this table according to Figure 2.
SYNTAX DEFINITION:

367 ASN1_ASP_GroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) "/"] { ASN1_ASP_Groupldentifier "/"}
348 ASP_|d&Fullld ::= ASP_ldentifier [Fullldentifier]

263 PCO_Typeldentifier ::= Identifier

131 TypeReference ::= typereference

133 ASN1 Moduleldentifier ::= Moduleldentifier

ASN.1 identifiers type references and value references may contain hyphens. In order to be able to use imported
definitionsin TTCN it is necessary to change the hyphens to underscore (see A.4.2.1).

11.15 PDU Type Definitions

11.15.1 Introduction

The purpose of this part of the abstract TTCN test suite is to declare the types of the PDUs that may be sent or received
either directly or embedded in ASPs at the declared PCOs. PDU type definitions may include ASN.1 type definitions, if
appropriate. PDU definitions define the set of PDUs exchanged with the IUT which are syntactically valid with respect to
the ATS but not necessarily valid with respect to the protocol specification.

It isrequired to declare all fields of the PDUs that are defined in the relevant protocol Recommendation, either explicitly
or implicitly by referring to encoding rules (ASN.1 encoding rules, if applicable).

The encoding of PDU fields shall follow that as defined in the relevant protocol specification unless encoding
information isincluded in the test suite.

11.15.2 PDU Type De€finitions using tables

The definition of PDUsis similar to that of ASPs. The following information shall be supplied for each PDU:
a) Itsname,

where the full name, as given in the appropriate protocol Recommendation, shall be used; if an abbreviation is used,
then the full name shall follow in parentheses.

b) The PCO type associated with the PDU,

where the PCO type shall be one of the PCO types used in the PCO declarations; if a PDU is sent or received only
embedded in ASPs within the whole test suite, specifying the PCO type is optiona; if only a single PCO is defined
within atest suite, specifying the PCO typein a PDU type definition is optional.

¢) Theencoding rulesto be used for PDUs of thistype.

In order to specify explicit encodings for entire PDUs, which override the default global encoding rules for the test
suite as awhole, this optional entry shall reference an entry in the relevant Encoding Definitions table (e.g. to change
from BER to DER). If this entry is not used, then the default global encoding rules apply. See 11.16.4.

d) TheEncoding Variationsto be used for PDUs of thistype.

In order to specify explicit Encoding Variations for entire PDUs, which override the default global Encoding
Variations for the test suite as a whole, this optiona entry shall reference an entry in the relevant Encoding
Variations table [e.g. to change from SD to LD(3)]. If this entry is not used, then the default globa Encoding
Variations apply. See 11.16.4.

e) A list of the fields associated with the PDU,
where the following information shall be supplied for each field:

1) itsname,

Recommendation X.292 (09/98) 61

where either:

— the full name, as given in the appropriate protocol Recommendation, shall be used; if an abbreviation is
used, then the full name shall follow in parentheses; or

— the macro symbol €-) indicating that the entry in the type column identifies a set of fields that is to be
inserted directly in the list of PDU fields; the macro symbol shall be used only with Structured Types
defined in the Structured Type definitions;

2) its type and an optional attribute;

where fields may be of a type of arbitrarily complex structure, including being specified as a Test Suite Type
(either predefined, Simple Type, Structured Type or ASN.1 type); if a field is to be structured as a PDU, then
its type may be stated either:

— as a PDU identifier to indicate that in the constraint for the PDU this field may be chained to a PDU
constraint of a specific PDU type; or

— asPDU to indicate that in the constraint for the PDU this field may be chained to a PDU constraint of any
PDU type;

and where the optional attribute is Length,

in which case the specification may restrict the field to a particular length or a range according to 11.18.
The length values shall be interpreted according to Table 5 in 11.18. The boundaries shall be specified in
terms of non-negative INTEGER literals, Test Suite Parameters, Test Suite Constants or the keyword
INFINITY.

The length specifications defined for the PDU field type in the Test Suite Type definitions shall not
conflict with the length specifications in the PDU type definition, i.e., the set of strings defined by a length
restriction in a PDU definition shall be a true subset of the set of strings defined by the Test Suite Type
definition.

The keyword INFINITY can be used as a value for the upper boundary in order to indicate that there is no
upper limit of length.

3) Optionally, a specific encoding identifier followed by any necessary actual parameter list, in order to specify
explicit encodings for individual fields of a PDU, which override the encoding rules and encoding variations
applicable to the PDU as a whole; the encoding identifier, if any, shall identify either one of the Encoding
Variations or an Invalid Field Encoding Definition defined in the test suite [e.g. LD(10)]; see 11.16.4.

The fields of PDU type definitions are considered to be optional, i.e., in instances of these types whole fields may
not be present.

This information shall be provided in the format shown in Proforma 28, below.

PDU Type Definition
PDU Name : PDU_Id&Fullld
Group . [PDU_GroupReference]
PCO Type . [PCO_Typeldentifier]
Encoding RuleName : [EncodingRuleldentifier]
Encoding Variation . [EncVariationCall]
Comments . [FreeText]
Field Name Field Type Field Encoding Comments

PDU_FieldldOrMacro Type&Attributes [PDU_FieldEncodingCall] [FreeText]

Detailed Comments. [FreeText]

Proforma 28 — PDU Type Definition

62 Recommendation X.292 (09/98)

The Field Name and Field Type columns shall either be both present or both omitted.

SYNTAX DEFINITION:

382 PDU_Id&Fullld ::= PDU_ldentifier [Fullldentifier]

385 PDU_GroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) "/*] { PDU_Groupldentifier "/"}
263 PCO_Typeldentifier ::= Identifier

452 EncodingRuleldentifier ::= Identifier

511 EncVariationCall ::= EncVariationldentifier [Actual ParList]

391 PDU_FieldldORMacro ::= PDU_Fieldld& Fullld | MacroSymbol

396 Type& Attributes::= (Type [LengthAttribute]) | PDU

515 PDU_FieldEncodingCall ::= EncVariationCall | InvaidFieldEncodingCall

EXAMPLE 31 — A typical PDU Type Definition:

PDU Type Definition

PDU Name : INTC (interrupt Confirm)
PCO Type : NSAP

Field Name field Type Comments
GFlI BITSTRING General Format Identifier
LCGN BITSTRING Logical Channel Group Number
LCN BITSTRING Local Channel Identifier
PTI OCTETSTRING Packet Type Identifier
EXTRA OCTETSTRING To create long INTC packets

11.15.3 Useof Structured Typeswithin PDU definitions

There are two possible relationships between a Structured Type and PDU definitions which refer to it, as follows:

a)

b)

if afield nameisgiven in the definition, then the Structured Type referenced is a substructure. This allows definition
of PDUs containing a multi-level substructure of fields;

if the macro symbol (<-) is used instead of afield name, then this is equivalent to a macro expansion; the entry in
the PDU type definition expands directly to alist of fields without introducing an additional level of substructure.

The macro symbol shall not be used on the same line as references to types defined in ASN.1 or Simple Typesi.e., only
Structured Types defined in tabular form can be expanded into other Structured Types as macro expansions.

11.15.4 PDU Type Definitionsusing ASN.1

Where more appropriate, PDUs can be specified in ASN.1. This shall be achieved by an ASN.1 definition using the
ASN.1 syntax as defined in Recommendations X.680. The following information shall be supplied for each ASN.1 PDU:

a)

b)

Its name,

where the full name, as given in the appropriate protocol Recommendation, shall be used; if an abbreviation is used,
then the full name shall follow in parentheses.

The PCO type associated with the PDU,

where the PCO type shall be one of the PCO types used in the PCO declarations; if aPDU is always sent or received
embedded in ASPs, then specification of the PCO type in the PDU type definition is optional; if only asingle PCO is
defined within atest suite, then specification of the PCO type in the PDU type definition is optional.

The encoding rules to be used for PDUs of this type.

In order to specify explicit encodings for entire PDUs, which override the default global encoding rules for the test
suite as awhole, this optional entry shall reference an entry in the relevant Encoding Definitions table (e.g. to change
from BER to DER). If thisentry is not used, then the default global encoding rules apply. See 11.16.4.

Recommendation X.292 (09/98) 63

d) The Encoding Variations to be used for PDUs of thistype.

In order to specify explicit Encoding Variations for entire PDUs, which override the default global Encoding
Variations for the test suite as a whole, this optional entry shall reference an entry in the relevant Encoding
Variations table [e.g. to change from SD to LD(3)]. If this entry is not used, then the default global Encoding
Variations apply. See 11.16.4.

€) The ASN.1PDU type definition,

which shall follow the syntax defined in Recommendations X.680, except that there is the additional option of
specifying an Encoding Variation or Invalid Field Encoding associated with either the whole ASN1_Type or any
ASN.1 Type within the ASN1_Type. Thisis done by giving a specific encoding identifier followed by any necessary
actual parameter list, in order to specify explicit encodings for individual fields or other subtypes of a PDU, which
override the encoding rules and encoding variations applicable to the PDU as a whole; the encoding identifier, if
any, shall identify either one of the Encoding Variations or an Invalid Field Encoding Definition defined in the test
suite [e.g. LD(10)]; see 11.16.4.

For identifiers within that definition the hyphen symbol (-) shall not be used. The underscore symbol () may be used
instead. The PDU identifier in the table header is the name of the first type defined in the table body.

Types referred to from the PDU definition shall be defined in other ASN.1 type definition tables, be defined by reference
in the ASN.1 type reference table or be defined localy in the same table, following the first type definition. Locally
defined types shall not be used in other parts of the test suite.

ASN.1 comments may be used within the table body. The comments column shall not be present in this table.

Commentsin ASN.1 start with "--" and end with either the next occurrence of "--" or with "end of line", whichever comes
first. This prevents asingle ASN.1 comment from spanning several lines. "End of line" is not, however, a defined symbol
in TTCN.MP. ATS specifiers are recommended to facilitate the exchange of ATSs in TTCN.MP by always closing
ASN.1 comments with "--".

Thisinformation shall be provided in Proforma 29, below.

ASN.1 PDU Type Definition

PDU Name : PDU_Id&Fullld

Group . [ASN1_PDU_GroupReference]
PCO Type . [PCO_Typeldentifier]
Encoding RuleName : [EncodingRuleldentifier]
Encoding Variation . [EncVariationCall]
Comments . [FreeText]

Type Definition

ASN1_Typeé&LocalTypes

Detailed Comments. [FreeText]

Proforma 29 — ASN.1 PDU Type Definition

SYNTAX DEFINITION:

382 PDU_ld&Fullld ::= PDU_ldentifier [Fullldentifier]

409 ASN1_PDU_Groupreference ::= [(Suiteldentifier | TTCN_Moduleldentifier) "/"] { ASN1_PDU_Groupldentifier"/"}
263 PCO_Typeldentifier ::= Identifier

452 EncodingRuleldentifier ::= Identifier

511 EncVariationCall ::= EncVariationldentifier [Actual ParList]

121 ASN1 Type&LocaTypes::= ASN1 Type{ANS1_LocaType}

64 Recommendation X.292 (09/98)

EXAMPLE 32 — An FTAM ASN.1 Definition:

ASN.1 PDU Type Definition

PDU Name : F_INIT (F_INITIALIZE_response)
PCO Type :
Comments

Type Definition

SEQUENCE {
state result State result DEFAULT success,
action_result Action_Result multiple success,
protocol_id Protocol_Version,

}

11.155 ASN.1 PDU Type Definitions by Reference

PDUs can be specified by a precise reference to an ASN.1 PDU defined in an OSlI Recommendation or by referencing an
ASN.1 type defined in an ASN.1 module attached to the test suite. ASN.1 identifiers, type references and value
references may contain hyphens. In order to be able to use imported definitions in TTCN it is necessary to change the
hyphens to underscore (see A.4.2.1).

The following information shall be supplied for each PDU:

a) Itsname,
where this name may be used throughout the entire test suite.

b) The PCO type associated with the PDU,
where the PCO type shall be one of the PCO types used in the PCO declarations; if a PDU is sent or received only
embedded in ASPs within the whole test suite, specifying the PCO type is optional; if only a single PCO is defined
within atest suite, specifying the PCO type in a PDU type definition is optional.

¢) Thetypereference,
which shall follow the identifier rules stated in Recommendations X.680.

d) The moduleidentifier,
which consists of a module reference that shall follow the identifier rules stated in Recommendations X.680 and an
optional Objectldentifier.

€) Theencoding rulesto be used for PDUs of thistype.

f)

In order to specify explicit encodings for entire PDUs, which override the default global encoding rules for the test
suite as awhole, this optional entry shall reference an entry in the relevant Encoding Definitions table (e.g. to change
from BER to DER). If thisentry is not used, then the default global encoding rules apply. See 11.16.4.

The Encoding Variations to be used for PDUs of this type.
In order to specify explicit Encoding Variations for entire PDUs, which override the default global Encoding
Variations for the test suite as a whole, this optiona entry shall reference an entry in the relevant Encoding

Variations table [e.g. to change from SD to LD(3)]. If this entry is not used, then the default global Encoding
Variations apply. See 11.16.4.

Recommendation X.292 (09/98) 65

Thisinformation shall be provided in Proforma 30, below.

ASN.1 PDU Type Definitions by Reference

Group : [ASN1PDU_GroupReference]

PDU Name PCO Type Type Module Enc Rule EncVariation | Comments
Reference Identifier

PDU_Id&Fullld [PCO_Typeldentifier] TypeReference Moduleldentifier [EncodingRuleldentifier] | [EncVariationCall] [FreeText]

Detailed Comments: [FreeText]

Proforma 30 — ASN.1 PDU Type Definitions by Reference

Collective comments may be used in this table according to Figure 2.
SYNTAX DEFINITION:

409 ASN1_PDU_GroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) "/"] { ASN1_Groupldentifier "/"}
382 PDU_Id&Fullld ::= PDU_ldentifier { Fullldentifier}

263 PCO_Typeldentifier ::= Identifier

131 TypeReference ::= typereference

133 ASN1_Moduleldentifier ::= Moduleldentifier

452 Encodingruleldentifier ::= Moduleldentifier

511 EncVariationCall ::= EncVariationldentifier { ActualParList}

11.16 Test Suite Encoding I nformation

11.16.1 Encoding Definitions

To facilitate specification and testing of the encoding rules of an OSl protocol, if there is any allowed flexibility in the
encoding rules applicable to the protocol, then an encoding definition should be provided. If an encoding definition is
provided, a reference shall be given in the ATS to the specification in which the encoding rules are specified. The
reference may be to the protocol specification itself, or to a separate encoding rules specification. If such a reference
cannot be provided, i.e. the encoding rules of the protocol are not standardized, then the encoding rules shall not be
tested.

The following information shall be provided for each set of encoding rules relevant to the protocol:

a) the Encoding Rule Name, which is a unique identifier to be used throughout the test suite to refer to an encoding
definition;
b) thereferenceto the relevant Recommendation which defines the encoding rules;

c¢) aDefault Expression, identifying the encoding rules to be used as the default; this Default Expression shall evaluate
to aBoolean value and shall use only Literal Vaues, Test Suite Parameters, and Test Suite Constantsin itsterms;

d) optionaly, further comment, provided in the Comments column, or in the Detailed Comments area of the table.

If more than one set of encoding rules may be used for a protocol, the names of the encoding rules shall be listed in the
Encoding Rule Name column of the Encoding Definitions table. The Encoding Rule Name associated with the Default
Expression which evaluates to TRUE shall be chosen as the default set for the test suite. If more than one Default
Expression or no Default Expression in the Encoding Definitions table evaluates to TRUE, it shall be a test case error. If
no Default Expression is specified, it is equivalent to the value FAL SE being specified.

66 Recommendation X.292 (09/98)

The information shall be provided in Proforma 31, below.

Encoding Definitions

Group : [EncodingGroupReference]
Encoding Rule Name Reference Default Comments
EncodingRuleldentifier EncodingReference [DefaultExpression] [FreeText]

Detailed Comments: [FreeText]

Collective comments may be used in this table according to Figure 2.

SYNTAX DEFINITION:

Proforma 31 — Encoding Definitions

448 EncodingGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) "/"] { EncodingGroupl dentifier "/"}
452 EncodingRuleldentifier ::= Identifier
454 EncodingReference ::= BoundedFreeText

456 DefaultExpression ::= Expression

The encoding rules specified in this proforma apply to PDUs only.

EXAMPLE 33 — Encoding Definitions:

Encoding Definitions

Encoding Rule Name Reference Default Comments
BER Recommendations X.690 TRUE Basic Encoding Rules
PER Recommendations X.690 Packed Encoding Rules
DER Recommendations X.690 Distinguished Encoding

Rules

Detailed Comments: [FreeText]

11.16.2 Encoding Variations

Admissible variations of each encoding definition that may be used in the test suite may be provided.

To define such Encoding Variations, the following information shall be provided:

a) an Encoding Rule Name, which is the name of the encoding rules identified in the Encoding Definition table to
which this variation applies;

b) an optional Type Ligt, listing the types to which this Encoding Variation may be applied; an empty list means that
the Encoding Variations may be applied to any PDU field. The types may be any PDU type or any type may occur

within aPDU;

¢) alist of Encoding Variations,

where the following information shall be supplied for each Encoding Variation:

1) the Encoding Variation name, which is a unique identifier referring to an alowed encoding definition for a

specific type, as contained in the relevant encoding rules specification,;

Recommendation X.292 (09/98)

2) aReference, which is used to identify the section in the encoding rules specification which describes this set of
Encoding Variations;

3) aDefault Expression, identifying the Encoding Variation to be used as the default; this Default Expression shall
evaluate to a Boolean value and shall use only Literal Values, Test Suite Parameters, and Test Suite Constants
initsterms;

d) optionaly, further comment, provided in the Comments part of the table header, the Comments column, or in the
Detailed Comments area of the table.

The Encoding Variation associated with the expression which evaluates to TRUE shall be chosen as the default Encoding
Variation for the given list of types, if any, or otherwise for all types within the test suite. If more than one Default
Expression in the Encoding Variations table evaluates to TRUE, it shall be a test case error. If no Default Expression is
specified for an Encoding Variation, it is equivalent to the value FALSE being specified. If no Default Expressions are
specified or if all evaluate to FALSE, the first Encoding Variation shall be taken as the default.

Encoding variations shall be provided in the format shown in Proforma 32, below.

Encoding Variations
Group : [EncVariationGroupReference]
Encoding Rule Name : EncodingRuleldentifier
Type List . [Typelist]
Comments . [FreeText]
Encoding Variation Reference Default Comments

EncVariationld&ParL ist VariationReference [DefaultExpression] [FreeText]

Detailed Comments: [FreeText]

Proforma 32 — Encoding Variations

SYNTAX DEFINITION:

463 EncVariationGroupreference ::= [(Suiteldentifier | TTCN_Modulel dentifier) “/"] { EncVariationGroupl dentifier "/"}
452 EncodingRuleldentifier ::= Identifier

467 TypelList ::= Type{Comma Type}

470 EncVariationld& ParList ::= EncVariationldentifier [Formal ParList]

473 Variationreference ::= BoundedFreeText

456 DefaultExpression ::= Expression

EXAMPLE 34 — Encoding Variations:

Encoding Variations

Encoding Rule Name : BER

Type List . Length
Comments : Length is defined to be an INTEGER type.
Encoding Variation Reference Default Comments
SD 6.33.1 TRUE
LD(len: INTEGER) 6.3.3.2

Detailed Comments:

68 Recommendation X.292 (09/98)

11.16.3 Invalid Field Encoding Definitions

In order to test encoding rules thoroughly, it may be necessary to define illegal variations of the encoding definitions used
by the protocoal. Invalid field encoding definitions may be provided for any of the Types used in PDU fields in the test
suite. Once defined, an invalid field encoding definition may be used to override the normal encoding of a specific PDU
Congtraint field value of the same Type (see 13.4).

The following information relative to an invalid field encoding definition shall be provided:

a) an Invaid Field Encoding Name, which is a unique identifier to be used throughout the test suite to refer to this
invalid field encoding definition, followed by an optional formal parameter lit;

b) anoptiona Type List, to list the types to which this encoding may be applied; an empty list means that the encoding
definition may be applied to any field of aPDU;

¢) an Encoding Operation Definition which contains the definition of how the values are to be encoded,

which shall consist of a procedural definition, in the same form as a procedural definition of a Test Suite Operation
(see 11.3.4), which when evaluated results in the evaluation of a ReturnVaue statement to provide the result of the
operation, including explanatory comments embedded within the procedural definition at appropriate places as text
delimited by "/*" and "*/"; explanatory comments shall include an example showing an invocation; the result of the
Encoding Operation shall be a Bitstring with a defined order of transmission, being the encoding of the relevant
value;

d) optionaly, further comment describing the operation, provided either in the Comments part of the table header or in
the Detailed Comments area of the table.

The use of procedural definitionsis recommended in order to provide precision in the definition of the operations.

If aformal parameter list is specified, the values passed to the encoding operation are used to affect the encoding of the
PDU field. Each formal parameter shall be declared to be a Predefined Type, a Test Suite Type Identifier or a PDU Type
Identifier. For example, an integer value may be passed to an encoding operation that calculates the length of a PDU
field. The way in which parameters passed to the operation are used shall be explained in the encoding operation
definition.

One proforma shall be used for each Invalid Field Encoding Definition.

Invalid Field Encoding Operation Definitions shall be provided in Proforma 33, below.

Invalid Field Encoding Oper ation Definition

Group . [InvalidFieldEncodingGroupReference]
Operation Name . InvalidFieldEncodingl d& ParList
Result Type : [TypelList]
Comments . [FreeText]
Definition

TS_OpProcDef

Detailed Comments. [FreeText]

Proforma 33 — Invalid Field Encoding Operation Definition

SYNTAX DEFINITION:

484 InvalidFieldEncodingGroupReference:: =
[(Suiteldentifier OTTCN_Moduleldentifier)"/"](InvalidFiel dEncodingGroupl dentifier"/")

481 InvalidFieldEncodingld& ParList ::= InvalidFieldEncodingl dentifier [Formal ParList]
467 TypeList ::= Type { Comma Type}
162 TS OpProcDef ::=[VarBlock] ProcStatement

Recommendation X.292 (09/98) 69

11.16.4 Application of encoding rules
Encoding rules specified in the test suite are applied to all PDUs sent or received in the Behaviour Part. Encoding rules

may be specified for the whole test suite or for type declarations or constraint declarations, as noted in Table 4. The
placesin Table 4 marked O identify the allowed scope of application of each of the kinds of encoding information.

Table 4/X.292 — Applicability of Encoding Definitions

Encoding Definitions
Encoding Rules Encoding Variations N
Invalid Field
Encodings
Scope of
Precedence Application Default Other Default Other
Lowest Test Suite ad ad
Type
Declarations
PDUs 0 ad O
Structured
Types d O
or
ASN.1 Types
Simple types
or PDU O O O
fields/elements
Constraint
Declarations
PDUs 0 ad O
Structured
Types or d O
ASN.1 Types
Highest PDU fields/
elements . . .
Precedence within arow Lowest Highest

The encoding rules shall be applied according to the precedence values of the rows shown in the first column in Table 4,
with "(4)" having the highest priority, and "(1)" having the lowest. Within each row, the precedence is from left to right,
with the rightmost entry having the highest precedence. Thus, Constraint field encoding rules have precedence over all
others, while default encoding rules applied at the test suite level may be overridden by any of the other specification
methods. The actual encoding rules to be used for a PDU &fter al overrides have been applied are referred to as the
applicable encoding rules.

If no encoding information is specified on a structured or ASN.1 Type Constraint, it inherits the encoding rules applied at
the PDU level. Thus, the encoding rules applied to a structured or ASN.1 Type Constraint will vary, based on the PDU in
which it is used. Conversely, if encoding information is specified on a Structured or ASN.1 Type Constraint, it will
override the encoding information of every PDU in which it is used. If such a Structured or ASN.1 Type Constraint is
used in an ASP, the encoding information isignored.

On RECEIVE events, if no specific encoding rules apply to the incoming PDU, it can be encoded in any variation
allowed by the applicable Encoding Definition (e.g. any form of length encoding allowed by BER).

70 Recommendation X.292 (09/98)

11.17 CM Type Definitions

11.17.1 Introduction

CM parameters may be of any type that may be specified in TTCN. Simple CMs may contain no associated parameters or
may contain just one parameter, e.g. a natural number, a preliminary result, or a character string like "suspend" or
"continue". More complex CMs may carry additional information, e.g. awhole PDU, a PDU field, or the value read from
atimer. There are no predefined CMs.

11.17.2 CM Type Definitions using tables
CM Types may be declared using TTCN tables. The following information shall be provided for each CM type:
a) itsname,
where each name shall be unique within the test suite;
b) alist of parameters associated with the CM,
where the following information shall be provided for each parameter:
1) itsname,
which shall be unique within the CM;
2) itstypeand an optional attribute,
in the same way as for PDU fields,

in which case the specification may restrict the field to a particular length or a range according to 11.18. The
length values shall be interpreted according to Table 5 in 11.18. The boundaries shall be specified in terms of
non-negative INTEGER literals, Test Suite Parameters, Test Suite Constants or the keyword INFINITY .

The length specifications defined for the PDU field type in the Test Suite Type definitions shall not conflict
with the length specifications in the PDU type definition, i.e., the set of strings defined by a length restriction in
aPDU definition shall be atrue subset of the set of strings defined by the Test Suite Type definition.

The keyword INFINITY can be used as a value for the upper boundary in order to indicate that there is no
upper limit of length.

All parameters of CMs are optional, that is they may be omitted when the CM is used.

Thisinformation shall be provided in the format shown in Proforma 34, below.

CM Type Definition

CM Name : CM_Identifier
Group . [CM_GroupReference]
Comments . [FreeText]
Parameter Name Parameter Type Comments
CM_ParldOrMacro Type&Attributes [FreeText]

Detailed Comments. [FreeText]

Proforma 34 — CM Type Definition

The Parameter Name and Parameter Type columns shall either be both present or both omitted.

Recommendation X.292 (09/98) 71

SYNTAX DEFINITION:

424 CM_ldentifier ::= Identifier

426 CM_GroupReference ::= [(Suiteldentifier OTTCN_Moduleldentifier) "/"] { CM_Groupldentifier "/"}
431 CM_ParldOrMacro ::= CM_Parldentifier (MacroSymbol

396 Type& Attributes ::= (Type[LengthAttribute]) CPDU

11.17.3 CM Type Definitionsusing ASN.1

CM Types may be declared using ASN.1. The following information shall be provided for each ASN.1 CM type:
a) itsname,
where each name shall be unique within the test suite;
b) the ASN.1 CM type definition,
which shall follow the syntax defined in Recommendations X.680. For identifiers within that definition the hyphen

symbol (-) shall not be used. The underscore symbol (_) may be used instead. The PDU identifier in the table
header is the name of the first type defined in the table body.

Types referred to from the PDU definition shall be defined in other ASN.1 type definition tables, be defined by reference
in the ASN.1 type reference table or be defined localy in the same table, following the first type definition. Locally
defined types shall not be used in other parts of the test suite.

ASN.1 comments can be used within the table body. The comments column shall not be present in thistable.

Commentsin ASN.1 start with "--" and end with either the next occurrence of "--" or with "end of line", whichever comes
first. This prevents asingle ASN.1 comment from spanning several lines. "End of line" is not, however, a defined symbol
in TTCN.MP. ATS specifiers are recommended to facilitate the exchange of ATSs in TTCN.MP by always closing

ASN.1 comments with "--".

Thisinformation shall be provided in the format shown in Proforma 35, below.

ASN.1 CM Type Definition

CM Name : CM_Identifier
Group : [ASN1CM_GroupReference]
Comments . [FreeText]

Type Definition

ASN1 Type&lLocalTypes

Detailed Comments. [FreeText]

Proforma 35 — ASN.1 CM Type Definition

SYNTAX DEFINITION:

424 CM_ldentifier ::= Identifier
440 ASN1_CM_GroupReference ::= [(Suiteldentifier OTTCN_Moduleldentifier) "/"]{ ASN1_CM_Groupldentifier "/"}
121 ASN1 Type&LocaTypes::= ASN1 Type{ASN1 L ocaType}

72 Recommendation X.292 (09/98)

11.18 String length specifications

11.18.1 TTCN permits the specification of length restrictions on string types (i.e.,, BITSTRING, HEXSTRING,
OCTETSTRING and all CharacterString types, plus the ASN.1 types BIT STRING and OCTET STRING) in the
following instances:

@) when declaring Test Suite Types as atype restriction;

b) when declaring simple ASP parameters, PDU fields and elements of Structured Types as an attribute of the
parameter, field or element type;

¢) when defining ASP/PDU or Structured Type constraints as an attribute of the constraint value.

11.18.2 Length specifications can have the following formats:
a) [Length]
restricting the length of the possible string values of atype to exactly Length;
b) [MinLength TO MaxLength] or [MinLength .. MaxLength]
specifying a minimum and a maximum length for the values of a particular string type.

The length boundaries: Length, MinLength and MaxLength are of different complexity depending on where they are
used. In all cases, these boundaries shall evaluate to non-negative INTEGER values. For the upper bound the
keyword INFINITY may aso be used to indicate that there is no upper limit for the length. Where a range length is
specified, the lower of the two values shall be specified on the left.

In the context of constraints, length restrictions can aso be specified on values of type SEQUENCE OF or SET OF,
thus limiting the number of their elements.

Table 5 specifies the units of length for different string types.

Table 5/X.292 — Units of length used in field length specifications

Type Unitsof Length
BITSTRING or BIT STRING Bits
HEXSTRING Hex digits
OCTETSTRING or OCTET STRING Octets
CharacterString Characters
SEQUENCE OF Elements of its base type
SET OF Elements of its base type

Length specifications shall not conflict, i.e., arestriction on a type (set of values) that is already restricted shall specify a
subrange of values of its base type.

EXAMPLE 35 — Length specification

Assume the following ASN.1 type definitions:
typel ::= OCTETSTRING [0 .. 25]
type2 ::=typel [15 .. 24]

The length restriction on type2 is correct since type2 comprises all OCTETSTRING values having a minimum length
of 15 and a maximum length of 24, which is a true subset of all OCTETSTRINGs of a maximum length of 25. On the
other hand:

type2 ::=typel[15 .. 30]
isinvalid since it contains values not included in typel.

Recommendation X.292 (09/98) 73

11.19 ASP, PDU and CM Definitionsfor SEND events

In ASPs and/or PDUs that are sent from the tester, values for ASP parameters and/or PDU fields that are defined in the
Constraints Part (see clauses 12, 13 and 14) shall correspond to the parameter or field definition. This means:

a) thevalue shall be of the type specified for that ASP parameter or PDU field; and
b) each value shall satisfy any relevant length restrictions associated with the type;
¢) PDU field values shall be encoded in accordance with applicable encoding rules.

The encoding operations defined in the test suite are performed implicitly as part of the SEND event. Defaults and
overrides are applied, as necessary. Thus, the output of the SEND event is the encoded data to be passed to the relevant
service provider.

11.20 ASP, PDU and CM Definitionsfor RECEIVE events

For ASPs and/or PDUSs received by the tester the ASPs and/or PDU type defines the class of incoming ASPs and/or
PDUs that can match an event specification of that type. An incoming ASP or PDU is considered to be of that classif and
only if:

a) the ASP parameter and/or PDU field values are of the type specified in the ASP and/or PDU definition; and

b) thevalue satisfies any relevant length restrictions associated with the type;

¢) PDU field values can be decoded in accordance with applicable encoding rules.

In all other cases an incoming ASP and/or PDU does not match an event specification of that type.

In the case of substructured ASPs and/or PDUs, either using Structured Types or ASN.1, the above rules apply to the
fields of the substructure(s) recursively.

11.21 Alias Definitions

11.21.1 Introduction

In order to enhance the readability of TTCN behaviour descriptions, an Alias may be used to facilitate the renaming of
ASP and/or PDU identifiers in behaviour descriptions. This renaming may be done to highlight the exchange of PDUs
embedded in ASPs.

The following information shall be provided for each Alias:
a) anAliasidentifier;
b) itsexpansion,

whichisitself an identifier.

Thisinformation shall be provided in format shown in Proforma36, below.

Alias Definitions

Group . [AliasGroupReference]

Alias Name Expansion Comments

Aliasldentifier Expansion [FreeText]

Detailed Comments. [FreeText]

Proforma 36 — Alias Definitions

74 Recommendation X.292 (09/98)

Collective comments may be used in this table according to Figure 2.

SYNTAX DEFINITION:

493 AliasGroupReference ::= [(Suiteldentifier OTTCN_Modulel dentifier) "/"] { AliasGroupldentifier "/"}
497 Alias |dentifier ::= Identifier
499 Expansion ::=ASP_ldentifier(PDU_ldentifier

11.21.2 Expansion of Aliases

The following rules shall apply:

a) AnAliasisanidentifier that shall follow the syntax rules for identifier defined in the TTCN.MP. This means that an
Aliasis delimited by any character (symbol) not allowed ina TTCN identifier.

b) Aliases are not transitive — If one Alias appears as the expansion of another Alias it shall not be expanded (i.e., itis a
one pass expansion).

c) An Alias shall be used only to replace an ASP identifier or a PDU identifier within a single TTCN statement in a
behaviour tree. It shall be used only in a behaviour description column.

d) The expansion of an Alias shall follow the syntax rules for identifier as defined in the TTCN.MP.

EXAMPLE 36 — Alias definition from a Transport Test Suite:

Alias Definitions
Alias Name Expansion Comments

CR N_DATArequest Alias for the N_DATArequest ASP
Used to carry a CR_TPDU

DR N_DATArequest Alias for the N_DATArequest ASP
Used to carry a DR_TPDU

CcC N_DATAindication Alias for the N_DATAindication
ASP Used to carry a CC_TPDU

NOTE — Because Aliases are treated as macro expansions, the term Aliasldentifier does not appear in the BNF for TTC& event line

12 Constraints Part

12.1 I ntroduction

An ATS shall specify the values of the ASP parameters and PDU fields that are to be sent or received by the test system.
The constraints part fulfils that purposein TTCN.

The dynamic behaviour descriptions (see clause 15) shall reference constraints to construct outgoing ASPs and/or PDUs
in SEND events; and to specify the expected contents of incoming ASPs and/or PDUs in RECEIVE events.

Constraints can be specified in either of the two forms:
a) tabular constraints (see clause 13);

b) ASN.1 constraints (see clause 14).

Recommendation X.292 (09/98) 75

Actual values or constraints on the values of a CM shall be declared in the same way as PDU constraints are to be
declared.

12.2 General principles

This subclause describes the general principles and defines the mechanisms of how to build constraints for SEND events
and how to match RECEIVE events. These principles are common to both the tabular and ASN.1 forms of constraints.

Constraints are detailed specifications of ASPs and/or PDUs. Normally, each constraint is defined specifically for use
with either SEND events or RECEIVE events. A constraint need not be specified if an ASP or CM has not parameters or
if PDU has no fields. Any given constraint may be used in either context, provided the operational semantic restrictions
defined in Annex B are met.

The constraint specification of an ASP and/or PDU shall have the same structure as that of the type definition of that ASP
or PDU.

If an ASP and/or PDU is substructured, then the constraints for ASPs and/or PDUs of that type shall have the same
tabular structure or acompatible ASN.1 structure (i.e., possibly with some groupings).

Structured Types expanded into an ASP or PDU definition by use of the macro symbol (<-) are not considered to be
substructures. Constraints for such ASPs or PDUs shall either have a completely flat structure (i.e., the elements of an
expanded structure are explicitly listed in the ASP or PDU constraint) or shall reference a corresponding structure
constraint for macro expansion.

Congraints specify ASP parameter and PDU fidd vaues using various combinations of literal values, data object references,
expressions, ASN.1 congtructed vaues, specid matching mechanisms and references to other congtraints. Constraints applying to
the whole of or part of a PDU may also specify encoding rules to override the general encoding rules being applied in the
test suite. Such encoding rules may be specified for the whole Constraint or for asingle field of the Constraint.

Vauesof all TTCN or ASN.1 types can be used in constraints. Expressions used in constraints shall evaluate to a specific
value when the constraint is used for sending or receiving events.

Whichever way the values are obtained, they shall correspond to the parameter or field entries in the ASP or PDU type
definitions. This means:

a) thevalue shall be of the type specified for that parameter or field; and

b) thelength shall satisfy any restriction associated with the type.

An expression in a constraint shall contain only Values (including, for example, ConstraintValue& Attributes), Test Suite
Parameters, Test Suite Constants, formal parameters, Component References and Test Suite Operations.

A constraint reference (possibly parameterized) is also allowed as a parameter or field value (static chaining).

Neither Test Suite Variables nor Test Case Variables shall be used in constraints, unless passed as actual parameters. In
the latter case they shall be bound to a value and are not changed by the occurrence of a SEND or a RECEIVE event.

Matching mechanisms are defined in 12.6.2.

12.3 Par ameterization of constraints

Constraints may be parameterized. In such cases the constraint name shall be followed by a forma parameter list
enclosed in parentheses. The formal parameters shall be used to specify ASP parameter or PDU field values in the
constraint.

76 Recommendation X.292 (09/98)

Each formal parameter name shall be followed by a colon and the name of the parameter type. If more than one parameter
of the same type is used, the parameter may be specified as a parameter sublist. When a parameter sublist is used, the
parameter names shall be separated by a comma. The final parameter in the sublist shall be followed by a colon and the
name of the parameter sublist type. When more than one parameter and type pair (or parameter sublist and type pair) is
used, the pairs shall be separated from each other by semicolons.

Literal values, Test Suite Parameters, Test Suite Constants, Test Suite Variables, Test Case Variables and PDU or Test
Suite Type constraints may be passed as actual parameters to a constraint in a constraints reference made from a
behaviour description. The parameters shall not be of PCO type or ASP type.

124 Chaining of constraints

Constraints may be chained by referencing a constraint as the value of a parameter or field in another constraint. For
example, the value of the Data parameter of an N-DATAreq (Network Data Request) ASP could be a reference to a
T-CRPDU (Transport Connect Request PDU) PDU constraint, i.e., the T-CRPDU is chained to the N-DATAreq ASP.

Constraints can be chained in one of two ways, either by:

a) dtatic chaining, where an ASP parameter value or PDU field value in a constraint is an explicit reference to
another constraint; or

b) dynamic chaining, where an ASP parameter value or PDU field value in a constraint is aformal parameter of the
constraint. When such a constraint is referenced from a dynamic behaviour, the corresponding actual parameter
to the constraint is a reference to another constraint (see Appendix | for examples of static and dynamic
chaining).

Wherever constraints are referenced within constraints declarations, those references shall not be recursive (neither
directly or indirectly).

Chaining of constraints may only be used if the appropriate declarations have been set up to allow chaining. For example,
if an ASP parameter is to be chained to a PDU constraint, then the ASP parameter shall be declared to be of an
appropriate PDU type or the meta-type PDU. In ASN.1 PDU declarations, the PDU type might well be one defined as a
CHOICE of al valid individual PDU types, whereas in tabular PDU declarations the meta-type PDU would need to be
used to achieve a similar effect. Similarly, if a PDU field is to be chained to a Structure constraint, then the PDU field
shall be declared to be of an appropriate Structure type.

125 Constraintsfor SEND events

Constraints that are referenced for SEND events shall not include wildcards [i.e., AnyValue (?) or AnyOrOmit (*)]
unless these are explicitly assigned specific values on the SEND event line in the behaviour description.

In tabular constraints, al ASP parameters and PDU fields are optiona and therefore may be omitted using the Omit
symbol, to indicate that the ASP parameter or PDU field isto be absent from the event sent.

In ASN.1 constraints, only ASP parameters and PDU fields declared as OPTIONAL may be omitted. These may be
omitted either by using the Omit symbol or by simply leaving out the relevant ASP parameter or PDU field.

None of the matching mechanisms defined in 12.6.2, except SpecificValue, provides a value for an ASP parameter or
PDU field on a SEND event.

In cases where ASN.1 values of type SET or SET OF are used in a constraint, the values of the elements of the set shall
be sent in the order specified by the relevant constraint.

Recommendation X.292 (09/98) 77

12.6 Constraintsfor RECEIVE events

12.6.1 Matching values

If a congtraint is to be used to construct the values of ASP parameters or PDU fields that a received ASP or PDU shall
match, it shall contain only specific values evaluated as explained in 12.6.3, or special matching mechanisms where it is
not desirable, or possible, to specify specific values. The matching mechanisms specify other ways of matching than
"egual to a specific value".

An incoming ASP and/or PDU matches a constraint used in a RECEIVE event if and only if al the following conditions
are met:

a) al the ASP parameters and/or PDU fields are of the type specified in the ASP and/or PDU definitions;
b) thevalue, aphabet and length satisfies any restriction associated with the type;
¢c) the ASP parameter and/or PDU field values correctly match those of the constraint;

d) for PDUs, the correct decoding of the PDU has taken place, taking into account applicable encoding rule defaults
and overrides; if encoding rules other than those specified for the constraint have been used to encode the received
PDU, then that received PDU will not match.

In the case of substructured ASPs and/or PDUS, either using Structured Types or ASN.1, the above rules shall apply to
the fields of the substructure(s) recursively.

NOTE - If a RECEIVE event is qualified by a Boolean expression, then a successful match means that both the incoming ASP and/or
PDU must match the constraint and that the qualifier must evaluate to TRUE.

12.6.2 Matching mechanisms

An overview of the supported matching mechanisms is shown in Table 6, including the special symbols and the scope of
their application. The left hand column of this table lists all the ASN.1 types and TTCN equivaent types to which these
matching mechanisms apply. The matching mechanismsin the horizontal headings are arranged in four groups:

a) specific values,
b) specia symbolsthat can be used instead of values;
c) special symbolsthat can be used inside values,

d) specia symbolswhich describe attributes of values.
Some of the symbols may be used in combination, as detailed in the following subclauses.
The shaded areain Table 6 indicates the mechanisms that apply to both predefined TTCN and ASN.1 types.

In a constraint specification, the matching mechanisms may replace values of single ASP parameters or PDU fields or
even the entire contents of an ASP or PDU.

NOTE — When these matching mechanisms are used singly or in combination, many protocol restrictions can be specified in the
constraints, thereby avoiding undesirable computation details in the behaviour part.

12.6.3 Specific Value

This is the basic matching mechanism. Specific values in constraints are expressions. Unless otherwise specified, a
constraint ASP parameter or PDU field matches the corresponding incoming ASP parameter or PDU field if and only if
the incoming ASP parameter or PDU field has exactly the same value as the value to which the expression in the
constraint evaluates.

Two values of atabular ASP, PDU or Structured Type, or of ASN.1 SEQUENCE or SEQUENCE OF are considered the
same if each of their parameters fields or elements match and are in the same order. For ASN.1 SET and SET OF types
two values are the same if they have the same number of elements, and each element in one value matches exactly one
element in the other value. The elementsin a SET or SET OF type value need not be in the same order to match.

78 Recommendation X.292 (09/98)

Table 6/X.292 — TTCN Matching Mechanisms

VALUE INSTEAD OF VAL UE INSIDE VALUE | ATTRIBUTES

TYPE § % % £] . g 5]

2 S =3 2 3 & e £ < 8

B 2 2202 855 8lc ¢ & 5 ¢

s E &2 2 8 &8 & 2| 2 = o 5 a

@ S 0 < <> ad adl & < & 5 =

BOOLEAN 5 5 olo o o :
INTEGER . > o]o o oo .
ENUMERATED . B .
BITSTRING . e P N
OCTETSTRING . 5 oo o o T . T
HEXSTRING . e .. N
CHARSTRNGS . - o]o o T . B
SEQUENCE -
SEQUENCE OF R
SET -
SET OF . e e o e e
ANY -
CHOICE . T -
OBJECT ID :

12.6.4 Instead of Value

12.6.4.1 Complement
Complement is an operation for matching that can be used on al vaues of al types. Complement is denoted by the
keyword COMPLEMENT followed by a list of constraint values. Each constraint value in the list shall be of the type
declared for the ASP parameter or PDU field in which the Complement mechanism is used.
SYNTAX DEFINITION:

566 Complement ::= COMPLEMENT Valuelist

A constraint ASP parameter or PDU field that uses Complement matches the corresponding ASP parameter or PDU field
if and only if the incoming ASP parameter or PDU field does not match any of the values listed in the Valuel.ist.

EXAMPLE 37 — Constraints using Complement instead of a value, and with a value list:

Type Constraint

INTEGER COMPLEMENT(5)

INTEGER COMPLEMENT(Z, 3, 5)
12.6.4.2 Omit

Omit is a special symbol for matching that can be used on values of all types, provided that the ASP parameter or PDU
field is optional.

In ASN.1 congtraints it is also possible to simply leave out an OPTIONAL ASP parameter or PDU field instead of using
OMIT explicitly.

Recommendation X.292 (09/98) 79

NOTE - In tabular constraints, all parameters, fields and elements are considered to be implicitly optional, and henaeitiealy be o
using Omit. In ASN.1 constraints, parameters, fields and elements which are not explicitly marked as OPTIONAL in the type
definition are mandatory and cannot be omitted without violating the type definition. If such a parameter, field or elein¢ntoece
omitted from a particular constraint, either another type needs to be defined in which that parameter, field or elemieittyis expl
marked as OPTIONAL (perhaps by marking everything as OPTIONAL), or an Invalid Field Encoding needs to be applied to that
parameter, field or element, with the effect of omitting it from the encoding.
In tabular constraints Omit shall be denoted by hyphen (-). In ASN.1 constraints Omit is denotdd Ty
SYNTAX DEFINITION:

567 Omit ::= DasnOMIT
An Omit symbol in aconstraint is used to indicate that an optional ASP parameter or PDU field shall be absent.

EXAMPLE 38 — Constraint using Omit instead of a value, at top level:

Type Constraint
INTEGER OPTIONAL OMIT

12.6.4.3 AnyValue

AnyValueis aspecial symbol for matching that can be used on values of al types. In both tabular and ASN.1 constraints
AnyValueisdenoted by "?".

SYNTAX DEFINITION:
568 AnyVaue:="?"

A constraint ASP parameter or PDU field that uses AnyVaue matches the corresponding incoming ASP parameter or
PDU field if and only if the incoming ASP parameter or PDU field evaluates to a single element of the specified type.

EXAMPLE 39 — Constraint using Value in combination with AnyValue:

Type Constraint
SEQUENCE OF SET OF INTEGER { {12,
?,
{1L2,%}

12.6.4.4 AnyOrOmit

AnyOrOmit is a special symbol for matching that can be used on values of al types, provided that the ASP parameter or
PDU field is declared as optional. In both tabular and ASN.1 constraints AnyOrOmit is denoted by "*".

NOTE — The symbol "*" is used for both AnyOrOmit and AnyOrNone. Ambiguity in interpretation is resolved by the requirements in
this subclause and 12.6.5.2.

SYNTAX DEFINITION:
569 AnyOrOmit ::="*"

A constraint ASP parameter or PDU field that uses AnyOrOmit matches the corresponding incoming ASP parameter or
PDU field if and only if either the incoming ASP parameter or PDU field evaluates to any element of the specified type,
or if theincoming ASP parameter or PDU field is absent.

EXAMPLE 40 — Constraint using Value in combination with AnyOrOmit:

Type Constraint
SEQUENCE OF { id1 SET OF INTEGER { id1{2 5},
id2 SET OF INTEGER id2* }

12.6.45 ValuelList

Vauelist can be used on vaues of al types. In both tabular and ASN.1 constraints. Valuelists are denoted by a
parenthesized list of values separated by commas.

80 Recommendation X.292 (09/98)

SYNTAX DEFINITION:
570 Vauelist ::="("ConstraintValue& Attributes { Comma ConstraintValue& Attributes} ")"

A constraint ASP parameter or PDU field that uses a Vauelist matches the corresponding incoming ASP parameter or
PDU field if and only if the incoming ASP parameter or PDU field value matches any one of the values in the VauelList.
Each value in the Valuelist shall be of the type declared for the ASP parameter or PDU field in which the VauelList
mechanism is used.

EXAMPLE 41 — Constraint using ValueList instead of a specific value, for INTEGER type:

Type Constraint
INTEGER (2,4,6)

EXAMPLE 42 - Constraints using ValueList instead of a specific value, for CHOICE type:

Type Constraint
CHOICE { alINTEGER, (a2, b TRUE)
b BOOLEAN }
12.6.4.6 Range

Ranges shall be used only on values of INTEGER type. A range is denoted by two boundary values, separated by ".." or
TO, enclosed by parentheses. A boundary value shall be either:

a) INFINITY or -INFINITY;

b) aconstraint expression that evaluates to a specific INTEGER vaue.

The lower boundary shall be put on the left side of the ".." or TO, the upper boundary at the right side. The lower
boundary shall be less than the upper boundary.

SYNTAX DEFINITION:

571 VaueRange::="(" VaRange")"

572 VaRange ::= (LowerRangeBound To UpperRangeBound)

573 LowerRangeBound ::= ConstraintExpression | Minus INFINITY
574 UpperRangeBound ::= ConstraintExpression | INFINITY

A constraint ASP parameter or PDU field that uses a Range matches the corresponding incoming ASP parameter or PDU
field if and only if the incoming ASP parameter or PDU field valueis equal to one of the valuesin the Range.

EXAMPLE 43 — Constraint using Range instead of a value:

Type Constraint

INTEGER (1..6)
(-INFINITY .. 8)
(12.. INFINITY)

12.6.4.7 Super Set

SuperSet is an operation for matching that shall be used only on values of SET OF type. SuperSet shall be used only in ASN.1
constraints. SuperSet is denoted by SUPERSET.

SYNTAX DEFINITION:
575 SuperSet ::= SUPERSET "(" ConstraintValue& Attributes")"

A constraint ASP parameter or PDU field that uses SuperSet matches the corresponding incoming ASP parameter or
PDU field if and only if the incoming ASP parameter or PDU field contains at least al of the elements defined within the
SuperSet, and may contain more. The argument of SuperSet shall be of the type declared for the ASP parameter or PDU
field in which the SuperSet mechanism is used.

EXAMPLE 44 — Constraint using SuperSet instead of a specific value:

Type Constraint
SET OF INTEGER SUPERSET({1, 2, 3})

Recommendation X.292 (09/98) 8l

12.6.4.8 SubSet

SubSet is an operation for matching that can be used only on values of SET OF type. SubSet shall be used only in ASN.1
constraints. SubSet is denoted by SUBSET.

SYNTAX DEFINITION:
576 SubSet ::= SUBSET "(" ConstraintVaue& Attributes")"

A constraint ASP parameter or PDU field that uses SubSet matches the corresponding incoming ASP parameter or PDU
field if and only if the incoming ASP parameter or PDU field contains only elements defined within the SubSet, and may
contain less. The argument of SubSet shall be of the type declared for the ASP parameter or PDU field in which the
SubSet mechanism is used.

EXAMPLE 45 — Constraint using SubSet instead of a specific value:

Type Constraint
SET OF INTEGER SUBSET({2, 4, 6, 8, 10})

12.6.5 InsideValues

12.6.5.1 AnyOne

AnyOneisaspecia symbol for matching that can be used within values of string types, SEQUENCE OF and SET OF. In both tabular
and ASN.1 constraints AnyOne is denoted by "7

SYNTAX DEFINITION:
754 AnyOne:="7"

Inside a string, SEQUENCE OF or SET OF a"?" in place of a single element means that any single element will be accepted. If the
symbol "?" is needed within a CharacterString as a character, it shall be indicated by "\?". If the symbol "\" is needed within a
CharacterString as a character, it shall beindicated by "\\".

EXAMPLE 46 — Constraints using AnyOne:

Type Constraint
IA5String "azed"
SEQUENCE OF INTEGER {1,2,7}

NOTE - The "?" in the second example can be interpreted as an AnyValue replacing an INTEGER value, or AnyOne inside a
SEQUENCE OF INTEGER value. Since both interpretations lead to the same set of events that match the constraint, no problem
arises.

12.6.5.2 AnyOrNone

AnyOrNone is a special symbol for matching that can be used within values of string types, SEQUENCE OF and SET
OF. In both tabular and ASN.1 constraints AnyOrNone is denoted by "*".

If a"*" appears at the highest level inside a value of string type, SEQUENCE OF or SET OF, it shall be interpreted as
AnyOrNone.

NOTE - This rule prevents the otherwise possible interpretation of ™" as AnyOrOmit that replaces an element inside the string,
SEQUENCE OF or SET OF.

SYNTAX DEFINITION:
755 AnyOrNone ::="*"

Inside a string, SEQUENCE OF or SET OF a"*" in place of a single element means that either none, or any number of
consecutive elements will be accepted. The "*" symbol matches the longest sequence of elements possible, according to

the pattern as specified by the symbols surrounding the "*". If the symbol "*" is needed within a CharacterString as a character, it
shall be indicated by "*". If the symbol "\" is needed within a CharacterString as a character, it shall be indicated by "\\".

EXAMPLE 47 — Constraints using AnyOne:

Type Constraint
IA5String "ab* z"
SEQUENCE OF INTEGER {1,2,*,10}
SEQUENCE OF 1A5String { "ab*z",
*
“abc" }

82 Recommendation X.292 (09/98)

12.6.5.3 Permutation

Permutation is an operation for matching that can be used only on vaues inside a value of SEQUENCE OF type.
Permutation shall be used only in ASN.1 constraints. Permutation is denoted by PERMUTATION.

SYNTAX DEFINITION:
577 Permutation ::= PERMUTATION Valuelist

Permutation in place of a single element means that any series of elements is acceptable provided it contains the same
elements as the value list in the Permutation, though possibly in a different order. If both Permutation and AnyOrNone
are used inside a value, the AnyOrNone shall be evaluated first. Each element listed in Permutation shall be of the type
declared inside the SEQUENCE OF type of the ASP parameter or PDU field.

EXAMPLE 48 — Constraint using Permutation:

Type Constraint
SEQUENCE OF INTEGER {PERMUTATION (1, 2, 3), 5}

EXAMPLE 49 - Constraints using Permutation in combination with AnyOrNone:

Type Constraint
SEQUENCE OF INTEGER {PERMUTATION (1,2,3), *}
{PERMUTATION (1,2,3,*)}
Note that the first constraint matches with incoming ASPs and/or PDUs that consist of a sequence of INTEGER values,
starting with 1,2,3; 1,3,2; 2,1,3; 2,3,1; 3,1,2; or 3,2,1 and followed by any number of values of type INTEGER. The second

constraint matches any incoming ASP and/or PDU of type SEQUENCE OF INTEGER, that contains the elements 1, 2,3 in
any order and in any position. It matches, for example; {5,2,7,1,3} and {9,3,7,2,12,1,17}.

12.6.6 Attributesof values

12.6.6.1 Length

Length is an operation for matching that can be used only as an attribute of the following mechanisms: Complement,
AnyVaue, AnyOrOmit, AnyOne, AnyOrNone, Permutation, SuperSet and SubSet. It can be used in conjunction with the
IfPresent attribute.

In both tabular and ASN.1 congtraints, length may be specified as an exact value or range in string values and
SEQUENCE OF or SET OF values, according to 11.18. The units of length are to be interpreted according to Table 5.
The boundaries shall be denoted by specific non-negative INTEGER values. Alternatively, the keyword INFINITY can
be used as a value for the upper boundary in order to indicate that there is no upper limit of length.

The length specifications defined for the ASP parameter or PDU field type in the Test Suite Type definitions shall not
conflict with the length specifications in the ASP or PDU constraint, i.e., the set of strings defined by a length restriction
inan ASP or PDU constraint shall be atrue subset of the set of strings defined by the ASP or PDU definition.

SYNTAX DEFINITION:

580 Valuel ength ::= SingleVauel ength | RangeV a uel ength

581 SingleVauelength ::="[" VaueBound "]"

582 VaueBound ::= Number | TS_Parldentifier | TS_Constldentifier | Formal Parldentifier
583 RangeValuelength ::="[" LowerVaueBound To UpperVaueBound "]"

584 LowerVaueBound ::= ValueBound

89 To:=TO["."

585 UpperVaueBound ::= ValueBound | INFINITY

A constraint ASP parameter or PDU field that uses Length as an attribute of a symbol matches the corresponding
incoming ASP parameter or PDU field if and only if the incoming ASP parameter or PDU field matches both the symbol
and its associated attribute. The length attribute matches if the length of the incoming ASP parameter or PDU field is
greater than or equal to the specified lower bound and less than or equal to the upper bound. In the case of asingle length
value the length attribute matches only if the length of the received ASP parameter or PDU field is exactly the specified
value.

Recommendation X.292 (09/98) 83

In the case of an omitted parameter, field or element, Length is always considered as matching. Hence, with Omit it is
redundant and with AnyOrOmit and IfPresent it places arestriction on the incoming value, if any.
EXAMPLE 50 — Constraints using Value in combination with Length:

Type Constraint
IA5String "ab*ab" [13]
12.6.6.2 IfPresent

IfPresent is a specia symbol for matching that can be used as an attribute of all the matching mechanisms, provided the
type is declared as optional. In both tabular and ASN.1 constraints IfPresent is denoted by |F_PRESENT.

A constraint ASP parameter or PDU field that uses an IfPresent symbol as an attribute of another symbol matches the
corresponding incoming ASP parameter or PDU field if and only if the incoming ASP parameter or PDU field matches
the symboal, or if the incoming ASP parameter or PDU field is absent.

NOTE — The AnyOrOmit symbol (*) has exactly the same meaning as ? IF_PRESENT

EXAMPLE 51 — Constraints using Value in combination with IfPresent:

Type Constraint
|A5String OPTIONAL "abcdef" IF_PRESENT
13 Specification of constraintsusing tables

13.1 I ntroduction

This clause describes the specification of tabular constraints on Structured Types, ASPs and PDUs. It describes how
single constraint tables can be used to specify constraints on flat (unstructured) ASPs or PDUs and how structured
constraints can be specified by declaring constraints on Structured Types, defined in the Test Suite Types.

In Annex C additional tables are defined which allow many single constraint declarationsin asingle table.

13.2 Structured Type Constraint Declarations

If an ASP or PDU is defined using Structured Types, either as macro expansions or substructures, constraints for these
ASPs or PDUs shall be similarly substructured. The following information shall be supplied for each Structured Type
Constraint:

@) The name of the constraint,
which may be followed by an optional formal parameter list.
b) The structured type name.
C) Thederivation path (see 13.6).
d) TheEncoding Variations to be used for the Constraint.

In order to specify explicit Encoding Variations for entire Structured Type Constraints, which override the encoding
rules and Encoding Variations applicable to the PDU Constraint in which this Structured Type Constraint is used,
this optional entry shall reference an entry in the relevant Encoding Variations table [e.g. to change from SD to
LD(3)]. If this entry is not used, then the encoding rules and Encoding Variations applicable to the PDU Constraint
apply to this Structured Type Constraint aswell. See 11.16.4.

€) A constraint value for each element,
where the following information shall be supplied for each element:
1) Itsname.

Each entry in the element name column shall have been declared in the relevant Structured Type definition. If
any of the original elements is defined as having both a short name and full identifier, the constraint shall not
repeat the full identifier.

84 Recommendation X.292 (09/98)

2)
3)

If the Structured Type definition refers to another Structured Type by macro expansion (i.e., with "<-" in place
of the element name), then in a corresponding constraint either:

— the individual elements from the Structured Type shall be included directly within the constraints; or

— the macro symbokf) shall be placed in the corresponding position in the Element Name column of the
constraint and the value shall be a reference to a constraint for the Structured Type referenced from this
Structured Type’s definition.

Use of Structured Constraints by macro expansion in a constraint shall not be used unless the corresponding
Structured Type definition also references the inner Structured Type by macro expansion.

Its value and an optional attribute.

Optionally, a specific encoding identifier followed by any necessary actual parameter list, in order to a specify
explicit encoding for the individual element of a Structured Type Constraint, which override the encoding rules
and Encoding Variations applicable to the whole Structured Type Constraint, and which also override any
encoding specified for this element in the Structured Type declaration; the encoding identifier, if any, shall
identify either one of the Encoding Variations or an Invalid Field Encoding Definition defined in the test suite
[e.g. LD(10)]; see 11.16.4.

The element values for structure constraints shall be provided in the format shown in Proforma 37, below.

Structured Type Constraint Declaration

Constraint Name . Consld& ParList

Group . [StructTypeConstraintGroupReference]

Structured Type . Structldentifier

Derivation Path . [DerivationPath]

Encoding Variation . [EncVariationCall]

Comments . [FreeText]
Element Name Element Value Element Encoding Comments
Elemldentifier ConstraintValue&Attributes [PDU_FieldEncodingCall] [FreeText]

Detailed Comments. [FreeText]

Proforma 37 — Structured Type Constraint Declaration

This proformais used in the same way that the PDU Constraint Declaration proformais used for PDUs (see 13.4).

SYNTAX DEFINITION:

555
508

99

558
511
107
562
515

Consld& PerList ::= Constraintldentifier [Formal ParList]

StructTypeConstraintGroupReference
:=[(Suiteldentifier] TTCN_Modulel dentifier)"/"]{ StructTypeConstraintGroupl dentifier"/"}

Structldentifier ::=Identifier

DerivationPath ::= { Constraintldentifier Dot } +

EncVariationCall ::=EncVariationldentifier [ActualParList]
Elemlidentifier ::=Identifier

ConstraintValue& Attributes ::=ConstraintVa ue Va ueAttributes
PDU_FieldEncodingCall ::= EncVariationCall| InvalidFiel dEncodingCall

If an ASP or PDU definition refers to a Structured Type as a substructure of a parameter or field (i.e., with a parameter
name or a field name specified for it), then the corresponding constraint shall have the same parameter or field name in
the corresponding position in the parameter name or field name column of the constraint and the value shall be a
reference to a constraint for that parameter or field (i.e., for that substructure in accordance with the definition of the

Recommendation X.292 (09/98) 85

Structured Type). If the ASP or PDU definition refers to a parameter or field specified as being of metatype PDU, thenin

a

corresponding constraint the value for that parameter or field shall be specified as the name of a PDU constraint, or

formal parameter.

13.3 ASP Constraint Declarations

The parameter values for ASP constraints shall be provided in the format shown in Proforma 38, below.

ASP Constraint Declaration
Constraint Name : Consld& ParList
Group . [ASP_ConstraintGroupReference]
ASP Type : ASP_ldentifier
Derivation Path . [DerivationPath]
Comments . [FreeText]
Parameter Name Parameter Value Comments

ASP_ParldOrMacro ConstraintValue&Attributes [FreeText]

Detailed Comments. [FreeText]

Proforma 38 — ASP Constraint Declaration

The Parameter Name and Parameter Value columns shall either be both present or both omitted.

This proformais used for ASPs in the same way that the PDU Constraint Declaration proforma s used (see 13.4) except

th

at encoding information is not relevant and shall not be specified.

SYNTAX DEFINITION:

555 Consld&ParList ::= Constraintldentifier [Formal ParList]

532 ASP_ConstraintGroupReference ::=[(Suiteldentifier] TTCN_Modul el dentifier)"/"]{ ASP_ConstraintGroupl dentifier"/"}
349 ASP_|dentifier ::=Identifier

558 DerivationPath ::= { Constraintldentifier Dot} +

357 ASP_ParldOrMacro ::=ASP_Parldé& Fullld| MacroSymbol

562 ConstraintVaue& Attributes ::=ConstraintValue ValueAttributes

13.4 PDU Constraint Declar ations

In the tabular format a constraint is defined by specifying a value and optional attributes for each PDU field. The
following information shall be supplied for each PDU constraint:

a)

b)

d)

The name of the constraint,

which may be followed by an optional formal parameter list.
The PDU type name.

The derivation path (see 13.6).

The encoding rules to be used for the Constraint.

In order to specify explicit encodings for entire PDU Constraints, which override the encoding rules applicable
tothe given PDU type, this optional entry shall reference an entry in the relevant Encoding Definitions table
(e.g. to change from BER to DER). If this entry is not used, then the encoding rules applicable to the PDU type
apply. See 11.16.4.

86 Recommendation X.292 (09/98)

€) TheEncoding Variations to be used for the Constraint.

In order to specify explicit Encoding Variations for entire PDU Constraints, which override the Encoding Variations
applicable to the given PDU type, this optional entry shall reference an entry in the relevant Encoding Variations
table [e.g. to change from SD to LD(3)]. If this entry is not used, then the Encoding Variations applicable to the
PDU type apply. See 11.16.4.

f) A constraint value for each field,
where the following information shall be supplied for each field:
1) Itsname.

Each field entry in the field name column shall have been declared in the relevant PDU type definition. If any
of the original PDU fields is defined as having both a short name and full identifier, the constraint shall not
repeat the full identifier.

If the PDU definition refers to a Structured Type by macro expansion (i.e., with "<-" in place of the PDU field
name) then in a corresponding constraint either:

— the individual elements from the Structured Type shall be included directly within the constraints; or

— the macro symbokf) shall be placed in the corresponding position in the PDU field hame column of the
constraint and the value shall be a reference to a constraint for the Structured Type referenced from the
PDU definition.

Use of structured constraints by macro expansion in a constraint shall not be used unless the corresponding
PDU definition also references the same Structured Type by macro expansion.

2) Its value and an optional attribute.

3) Optionally, a specific encoding identifier followed by any necessary actual parameter list, in order to specify
explicit encodings for individual fields of a PDU Constraint, which override the encoding rules and encoding
variations applicable to the PDU Constraint as a whole, and which override any specific field encoding
applicable to this field for PDUs of this PDU type; the encoding identifier, if any, shall identify either one of
the Encoding Variations or an Invalid Field Encoding Definition defined in the test suite [e.g. LD(10)];
see 11.16.4.

The encoding mechanism shall not be used with ASP constraints.

This information shall be provided in the format shown in Proforma 39, below.

PDU Constraint Declaration
Constraint Name : Consld& ParList
Group . [PDU_ConstraintGroupReference]
PDU Type : PDU_ldentifier
Derivation Path . [DerivationPath]
Encoding RuleName : [EncodingRuleldentifier]
Encoding Variation . [EncVariationCall]
Comments . [FreeText]
Field Name Field Value Field Encoding Comments

PDU_FieldldOrMacro ConstraintValue&Attributes [PDU_FieldEncodingCall] [FreeText]

Detailed Comments. [FreeText]

Proforma 39 — PDU Constraint Declaration

Recommendation X.292 (09/98) 87

The Field Name and Field Vaue columns shall either be both present or both omitted. The Field Encoding column shall
not be present as a single column on its own.

SYNTAX DEFINITION:

555 Consld& ParList ::= Constraintldentifier[Formal ParList]

551 PDU_ConstraintGroupReference ::=[(Suiteldentifier] TTCN_Moduleldentifier)"/"]{ PDU_ConstraintGroupl dentifier "/"}
383 PDU_ldentifier ::= Identifier

558 DerivationPath ::={ Constraintldentifier Dot} +

452 EncodingRuleldentifier ::= Identifier

511 EncVariationCall ::= EncVariationldentifier[Actual ParList]

391 PDU_FieldOrMacro ::= PDU_Field& Id| MacroSymbol

562 ConstraintValue& Attributes ::= ConstraintValue ValueAttributes

515 PDU_FieldEncodingCall ::= EncVariationCal| InvalidFieldEncodingCall

EXAMPLE 52 — A constraint, called C1, on the PDU called PDU_A:

PDU Constraint Declaration

Constraint Name : Cl
PDU Type . PDU_A
Derivation Path
Comments

Field Name Field Value Comments
FIELD1 (4 .. INFINITY)
FIELD2 TRUE
FIELD3 "A STRING"

135 Parameterization of constraints

Constraints may be parameterized using a formal parameter list. The actual parameters are passed to a constraint from a
constraints reference in a behaviour description.

EXAMPLE 53 — A parameterized constraint:

PDU Constraint Declaration

Constraint Name : C2(PL:INTEGER;P2:BOOLEAN)

PDU Type . PDU_B
Derivation Path
Comments
Field Name Field Value Comments
FIELD1 P1
FIELD2 P2
FIELD3 "A STRING"

Detailed Comments: A possible referenceto C2 from aTest Case or Test Step may be: C2(0, TRUE)

13.6 Base constraints and modified constraints

For every ASP, PDU or CM type definition at least one base constraint may be specified. In the case in which an ASP or
CM has no parameters or a PDU has no fields, constraints are irrelevant and hence base constraints are unnecessary.
A base constraint specifies a set of base, or default, values or matching symbols for each and every field defined in the
appropriate definition. There may be any number of base constraints for any particular PDU (see Appendix | for
examples).

When a constraint is specified as a modification of a base constraint, any fields not re-specified in the modified constraint
will default to the values or matching symbols specified in the base constraint. The name of the modified constraint shall
be a unique identifier. The name of the base constraint which is to be modified shall be indicated in the derivation path
entry in the constraint header. This entry shall be left blank for a base constraint. A modified constraint

88 Recommendation X.292 (09/98)

can itself be modified. In such a case the Derivation Path indicates the concatenation of the names of the base and
previously modified constraints, separated by dots (.) A dot shall follow the last modified constraint name. The rules for
building a modified constraint from a base constraint are:

a) if aparameter or field and its corresponding value or matching symbol is not specified in the modified constraint,
then the value or matching symbol in the parent constraint shall be used (i.e., the value isinherited);

b) if aparameter or field and its corresponding value or matching symbol is specified in the modified constraint, then
the specified value or matching symbol replaces the one specified in the parent constraint.

13.7 Formal parameter listsin modified constraints

If a base congtraint is defined to have aformal parameter list, the following rules apply to all modified constraints derived
from that base constraint, whether or not they are derived in one or several modification steps:

a) the modified constraint shall have the same parameter list as the base constraint; in particular, there shall be no
parameters omitted from or added to thislist;

b) theformal parameter list shall follow the constraint name for every modified constraint;

c) parameterized ASP parameters or PDU in a base constraint fields shall not be modified or explicitly omitted in a
modified constraint.

13.8 CM Constraint Declarations

Thefield values for CM constraints shall be provided in the format shown in Proforma 40, below.

CM Constraint Declaration
Constraint Name : Consld& ParList
Group . [CM_ConstraintGroupReference]
CM Type : CM_Identifier
Derivation Path . [DerivationPath]
Comments . [FreeText]
Parameter Name Parameter Value Comments

CM_ParldOrMacro ConstraintValue&Attributes [FreeText]

Detailed Comments. [FreeText]

Proforma 40 — CM Constraint Declaration

The Parameter Name and Parameter Value columns shall either be both present or both omitted.

This proformais used for CMs in the same way as the PDU Constraint Declaration proformais used (see 13.4).
SYNTAX DEFINITION:

555 Consld& ParList ::= Constraintldentifier[Formal ParList]

605 CM_ConstraintGroupReference ::= [(Suiteldentifier] TTCN_Modulel dentifier) "/"]{ CM_ConstraintGroupl dentifier "/"}
424 CM_ldentifier ::= Identifier

558 DerivationPath ::={ Constraintldentifier Dot} +

431 CM_ParldOrMacro ::= CM_Parldentifier] MacroSymbol

562 ConstraintValue& Attributes ::= ConstraintValue ValueAttributes

Recommendation X.292 (09/98) 89

This proformais used for CMsin the same way that the PDU Constraint Declaration proformais used for PDUs.

14 Specification of constraintsusing ASN.1

141 I ntroduction

This clause describes a method of specifying Type, ASP and PDU constraintsin ASN.1, in away similar to the definition
of tabular constraints. The normal ASN.1 value declaration is extended to allow the use of the matching mechanisms.
M echanisms to replace or omit parts of ASN.1 constraints, to be used in modified constraints, are also defined.

In other respects, ASN.1 is used in constraints in the same way that it is used in types. In particular:

a) For identifiers within an ASN.1 constraint the hyphen symbol ("-") shall not be used; the underscore symbol ("_")
may be used instead.

b) ASN.1 constraints shall not use external value references as defined in Recommendations X.680.

¢) ASN.1 comments can be used within the table body. The comments column shall not be present in this table.
Commentsin ASN.1 start with "--" and end with either the next occurrence of "--" or with "end of line", whichever
comes first. This prevents a single ASN.1 comment from spanning several lines. "End of lin€" is not, however, a

defined symbol in TTCN.MP. ATS specifiers are recommended to facilitate the exchange of ATSsin TTCN.MP by
always closing ASN.1 comments with "--".

142 ASN.1Type Constraint Declarations

Both ASN.1 ASP constraints and ASN.1 PDU constraints can be structured by using references to ASN.1 Test Suite
Type constraints for values of complex fields. ASN.1 Test Suite Types are defined in the declarations part of the ATS.

The following information shall be supplied for each ASN.1 Type Constraint Declaration:

@) The name of the Constraint,
which may be followed by an optional formal parameter list.

b) The ASN.1 Type name.

¢) Thederivation path (see 13.6 and 14.6).
In order to specify explicit Encoding Variations for entire ASN.1 Type Constraints, which override both the
Encoding Variations of the PDU Constraint that references this ASN.1 Type Constraint and the default global
Encoding Variations for the test suite, this optional entry shall reference an entry in the relevant Encoding Variations
table [e.g. to change from SD to LD(3)]; if this entry is not used, then the default Encoding Variations apply to all
ASN.1 Type Constraints of this type, unless specifically overridden within a particular Constraint.

d) TheEncoding Variationsto be used for the Constraint.

If an ASN.1 Constraint Declaration is a modification of an existing ASN.1 constraint, the name of the ASN.1
congtraint that is taken asthe basis of this modification shall be referenced in the table in the derivation path entry.

€) Theconstraint value,

where the body of the ASN.1 Type Constraint table contains the ASN.1 Constraint Declaration with optional
attributes; all constraint values and attributes defined in 12.6 can be used in ASN.1 constraints.

In order to specify explicit encodings for individual values within an ASN.1 Type Constraint, which override all

other Encoding Variations for the specific ASN.1 Type Constraint encodings [see c) above], the keyword ENC is
used after the relevant value, followed by a specific encoding identifier and any necessary actual parameter list. The

90 Recommendation X.292 (09/98)

encoding identifier shall identify either one of the Encoding Variations or an Invalid Field Encoding Definition
defined in the test suite.

ASN.1 Type Constraint Declarations shall be specified in the format shown in Proforma 41, below.

ASN.1 Type Constraint Declaration

Constraint Name : Consld& ParList

Group . [ASN1_TypeConstraintGroupReference]
Structured Type : ASN1_Typeldentifier

Derivation Path . [DerivationPath]

Encoding Variation . [EncVariationCall]

Comments . [FreeText]

Constraint Value

ConstraintValue&AttributesOrReplace

Detailed Comments. [FreeText]

Proforma 41 — ASN.1 Type Constraint Declaration

SYNTAX DEFINITION:

555 Consld& ParList ::= Constraintldentifier[Formal ParList]

523 ASN1_TypeConstraintGroupReference
:=[(Suiteldentifier] TTCN_Moduleldentifier)"/"]1{ ASN1_TypeConstraintGroupldentifier"/"}

116 ASNL1 Identifier ::=Identifier

558 DerivationPath ::={ Constraintldentifier Dot} +

511 EncVariationCall ::=EncVariationldentifier[A ctual ParList]

595 ConstraintValue& AttributesOrReplace ::=ConstraintV a ue& Attribute| Replacement{ Comma Replacement}

This proforma is used for ASN.1 Types in the same way that the ASN.1 PDU Constraint Declaration proforma is used
(see 14.4).

14.3 ASN.1 ASP Constraint Declar ations

The following information shall be supplied for each ASN.1 ASP Constraint Declaration:
@) The name of the constraint,
which may be followed by an optional formal parameter list.
b) The ASP type name.
¢) Thederivation path (see 13.6 and 14.6).

If an ASN.1 Constraint Declaration is a modification of an existing ASN.1 constraint, the name of the ASN.1
constraint that is taken as the basis of this modification shall be referenced in the table in the derivation path entry.

d) The constraint value,

where the body of the ASP constraint table contains the ASN.1 Constraint Declaration with optional attributes. All
constraint values and attributes defined in 12.6 can be used in ASN.1 constraints.

Recommendation X.292 (09/98) 91

ASN.1 ASP Constraint Declarations shall be specified in the format shown in Proforma 42, below.

ASN.1 ASP Constraint Declaration

Constraint Name : Consld& ParList

Group . [ASN1ASP_ConstraintGroupReference]
ASP Type : ASP_ldentifier

Derivation Path . [DerivationPath]

Comments . [FreeText]

Constraint Value

ConstraintValue&AttributesOrReplace

Detailed Comments. [FreeText]

Proforma 42 — ASN.1 ASP Constraint Declaration

SYNTAX DEFINITION:

555 Consld& ParList ::= Constraintldentifier[Formal ParList]

542 ASN1_ASP_ConstraintGroupReference ::=[(Suiteldentifier|
TTCN_Moduleldentifier)"/"]{ ASN1_ASP_ConstraintGroupldentifier"/"}

349 ASP_|dentifier ::=Identifier
558 DerivationPath ::={ Constraintldentifier Dot} +
595 ConstraintVaue& AttributesOrReplace ::=ConstraintV alue& Attribute|] Replacement{ Comma Replacement}

This proforma is used for ASN.1 Types in the same way that the ASN.1 PDU Constraint Declaration proforma is used
(see 14.4).

14.4 ASN.1 PDU Constraint Declar ations

The following information shall be supplied for each ASN.1 PDU Constraint Declaration:

a)

b)

d)

92

The name of the Constraint,

which may be followed by an optional formal parameter list.
The PDU type name.

The derivation path (see 13.6 and 14.6).

The encoding rules to be used for the Constraint.

In order to specify explicit encodings for entire ASN.1 PDU Constraints, which override the default global encoding
rules for the test suite, this optional entry shall reference an entry in the relevant Encoding Definitions table (e.g. to
change from BER to DER); if this entry is not used, then the default encoding rules apply to al ASN.1 PDU Type
Constraints of this type, unless specifically overridden in a particular Constraint.

The Encoding Variations to be used for the Constraint.

In order to specify explicit Encoding Variations for entire ASN.1 PDU Constraints, which override the default
global Encoding Variations for the test suite. This optional entry shall reference an entry in the relevant Encoding
Variations table [e.g. to change from SD to LD(3)]; if this entry is not used, then the default Encoding Variations
apply to all ASN.1 PDU Type Constraints of this type, unless specifically overridden in a particular Constraint.

If an ASN.1 Constraint Declaration is a modification of an existing ASN.1 constraint, the name of the ASN.1
constraint that is taken as the basis of this modification shall be referenced in the table in the derivation path entry.

Recommendation X.292 (09/98)

f) Theconstraint value,

where the body of the PDU constraint table contains the ASN.1 Constraint Declaration with optional attributes; all
constraint values and attributes defined in 12.6 can be used in ASN.1 constraints.

In order to specify explicit encodings for individual values within an ASN.1 PDU Constraint, which override
the default global encoding rules or the specific ASN.1 PDU Constraint encodings [see ¢) and d) above], the
keyword ENC is used after the relevant value, followed by a specific encoding identifier and any necessary actual
parameter list. The encoding identifier shall identify either one of the Encoding Variations or an Invalid Field
Encoding Definition defined in the test suite.

PDU Constraint Declarations shall be specified in the format shown in Proforma 43, below.

ASN.1 PDU Constraint Declaration

Constraint Name . Consld& ParList

Group . [ASN1PDU_ConstraintGroupReference]
PDU Type . PDU_ldentifier

Derivation Path . [DerivationPath]

Encoding RuleName : [EncodingRuleldentifier]

Encoding Variation . [EncVariationCall]

Comments . [FreeText]

Constraint Value

ConstraintValue&AttributesOrReplace

Detailed Comments. [FreeText]

Proforma 43 — ASN.1 PDU Constraint Declaration

SYNTAX DEFINITION:

555 Consld& ParList ::= Constraintldentifier[Formal ParList]

592 ASN1 PDU_ConstraintGroupReference ::=[(Suiteldentifier|
TTCN_Moduleldentifier)"/"]1{ ASN1_PDU_ConstraintGroupldentifier"/"}

383 PDU_ldentifier ::=Identifier

558 DerivationPath ::={ Constraintldentifier Dot} +

452 EncodingRuleldentifier ::= Identifier

511 EncVariationCall ::= EncVariationldentifier[Actual ParList]

595 ConstraintVaue& AttributesOrReplace ::=ConstraintV a ue& Attribute| Replacement{ Comma Replacement}

145 Parameterized ASN.1 constraints

ASN.1 constraints may be parameterized (see 13.5).

14.6 M odified ASN.1 constraints

ASN.1 constraints can be specified by modifying an existing ASN.1 constraint. Portions of a constraint can be respecified
to create a new constraint by using the REPLACE/OMIT mechanism.

Particular parameters or fields of a base or a modified constraint may be identified through a list of field selectors in
order to replace their defined value by a new value, or to omit the defined value. A Referencelist consists of the field
selector identifiers (defined in the corresponding type definition) separated by dots which uniquely identify a particular
(possibly structured) field within a PDU (or ASP). First level fields can be identified by a single selector, whereas nested
fields require the full path.

Recommendation X.292 (09/98) 93

Replace values shall be used only when a derivation path is specified. Full ASN.1 values shall be used only when a
derivation path is not specified. Values that are REPLACEd or OMITted may be structured.

SYNTAX DEFINITION:

596 Replacement ::= REPL ACE ReferencelList BY ConstraintValue& Attributes| OMIT ReferenceList
597 Referencelist ::= (ArrayRef| Componentl dentifier] ComponentPosition) { ComponentReference}

If afield belongs to a SEQUENCE, SET or CHOICE structure, the position of the field in parentheses may be used as a
replacement for the field selector identifier. This technique shall be used where the identifier is not provided in the
declaration of the field.

14.7 Formal parameter listsin modified ASN.1 constraints

The requirements of 13.7 also apply to modified ASN.1 constraints.

14.8 ASP Parameter and PDU field nameswithin ASN.1 constraints

When specifying a constraint for an ASP or PDU in ASN.1, the parameter or field identifiers defined in the ASN.1 type
definition for SEQUENCE, SET and CHOICE types may be used in order to identify the particular ASP or PDU
parameters or fields a value stands for. In the case of CHOICE types, the identifiers identifying the variant shall be used.
For SEQUENCE types, parameter or field identifiers shall be used whenever the value definition becomes ambiguous
because of omitted values for OPTIONAL parameters or fields. For SET types, parameter or field identifiers shall be
used in all cases.

EXAMPLE 54 — Field values in an ASN.1 PDU constraint:

Assume the type definition:

ASN.1 PDU Type Definition

PDU Name : XY_PDU
PCO Type :
Comments

Type Definition

SET { field_1INTEGER OPTIONAL,
field_2 BOOLEAN,
field_3 INTEGER OPTIONAL,
field_4 INTEGER OPTIONAL }

Then a possible constraint is:

ASN.1 PDU Constraint Declaration
Constraint Name : CONS1
PDU Type : XY_PDU
Derivation Path
Comments

Constraint Value

{field_1 5,
field 2 TRUE,
field 3 3
}
-- field_4 is not specified=>omitted when sending
-- ifidentifier fidd_3 wasnot used it would be ambiguous whether 3 wasthevalue of field_3 of
-- field_4, since both are OPTIONAL.

94 Recommendation X.292 (09/98)

14.9 ASN.1 CM Constraint Declarations

The parameter values for CM constraints shall be provided in the format shown in Proforma 44, below.

ASN.1 CM Constraint Declaration

Constraint Name . Consld& ParList

Group . [ASN1CM_ConstraintGroupReference]
CM Type : CM_Identifier

Derivation Path . [DerivationPath]

Comments . [FreeText]

Constraint Value

ConstraintValue&AttributesOrReplace

Detailed Comments. [FreeText]

Proforma 44 — ASN.1 CM Constraint Declaration

SYNTAX DEFINITION:

555 Consld& ParList ::= Constraintldentifier[Formal ParList]

615 ASN1 CM_ConstraintGroupReference ::=[(Suiteldentifier|
TTCN_Moduleldentifier)"/"]1{ ASN1_CM_ConstraintGroupldentifier"/"}

424 CM_ldentifier ::=ldentifier
558 DerivationPath ::={ Constraintldentifier Dot} +
595 ConstraintVaue& AttributesOrReplace ::=ConstraintV alue& Attribute|] Replacement{ Comma Replacement}

This proformais used for CMs in the same way that the PDU Constraint Declaration proformais used for PDUs.

15 Dynamic Part

15.1 I ntroduction

The Dynamic Part contains the main body of the test suite: the Test Case, the Test Step and the Default behaviour
descriptions.

15.2 Test Case dynamic behaviour

15.2.1 Specification of the Test Case Dynamic Behaviour table
15.2.1.1 Thetitle of the table shall be "Test Case Dynamic Behaviour".
15.2.1.2 The header shall contain the following information:
a) Test Casename,

giving a unique identifier for the Test Case described in the table;
b) Test Group Reference,

giving the full name of the lowest level to the group that contains the Test Case; that full name shall conform to the
requirements of 9.2, and end with adash (/);

c) Test Purpose,

an informal statement of the purpose of the Test Case, as given in the relevant test suite structure and test purposes
Recommendation (if any) or equivalent part of the test suite Recommendation (if any);

Recommendation X.292 (09/98) 95

d)

Default Reference,

an identifier (including an actual parameter list if necessary) of a Default behaviour description, if any, which applies
to the Test Case behaviour description (see 15.4).

15.2.1.3 The body of the table shall display the following columns and corresponding information:

a)

b)

d)

e

f)

an (optiona) line number column (see 15.2.5),

which, if present, shall be placed at the extreme left of the table.

alabel column,

where labels can be placed to identify the TTCN statements to allow jumps using the GOTO construct (see 15.14);
abehaviour description,

which describes the behaviour of the LT and/or UT in terms of TTCN statements and their parameters, using the tree
notation (see 15.6);

a constraints reference column,

where constraint references are placed to associate TTCN statements in a behaviour tree with a reference to specific
ASP and/or PDU values defined in the constraints part (see clause 12);

averdict column,
where verdict or result information is placed in association with TTCN statements in the behaviour tree (see 15.17);
an (optional) comments column,

this column is used to place comments that ease understanding of TTCN statements by providing short remarks or
references to additional text in the optional detailed comments section.

The columns c), d), €) and f) shall be displayed in that order, from left to right. It is recommended that the mandatory
label column be placed at the left of the behaviour description. Alternately, the label column may be placed to the right of
the behaviour description.

15.2.1.4 An (optional) footer can contain detailed comments.

15.2.2 Test Case Dynamic Behaviour proforma

The Test Case dynamic behaviour shall be provided in the format shown in Proforma 45, below.

Test Case Dynamic Behaviour
Test Case Name . TestCaseldentifier
Group . TestGroupReference
Purpose . FreeText
Configuration : TCompConfigldentifier
Defaults . [DefaultRefList]
Comments . [FreeText]
No. L abel Behaviour Description Constraint Ref Verdict Comments
1
2
. [Label] StatementLine [ConstraintReference] [Verdict] [FreeText]
TreeHeader
StatementLine
: .
Detailed Comments. [FreeText]

96

Proforma 45 — Test Case Dynamic Behaviour

Recommendation X.292 (09/98)

The alternative position of the label column is shown in dotted lines.

Column headers of this proforma can be abbreviated to: L, Cref, V and C. This enables the behaviour tree column to be
aswide as possible in cases of physical paper size limitations.

SYNTAX DEFINITION:

624 TestCaseldentifier ::= Identifier

626 TestGroupReference ::= [Suiteldentifier "/"]{ TestGroupldentifier "/"}
329 TcompConfigldentifier ::= Identifier

630 DefaultRefList ::=DefaultReference{ Comma DefaultReference}

667 Label ::=Identifier

679 StatementLine ::= (Event[Qualifier][AssignmentList][TimerOps])| (Qualifier[AssignmentList][TimerOps])|
(AssignmentList[TimerOps])| TimerOps| Construct| ImplicitSend

657 TreeHeader ::= Treeldentifier [Formal ParList]
669 ConstraintReference ::=ConsRef| Formal Parldentifier| AnyVaue
674 Verdict ::=Pass| Fail| Inconclusive| Result

15.2.3 Structureof the Test Case behaviour

Each Test Case contains a precise description of sequences of (anticipated) events and related verdicts. This description
is structured as a tree, with TTCN statements as nodes in that tree and verdict assignments at its leaves. In many cases it
ismore efficient to use Test Steps as a means of substructuring this tree (see Figure 7).

In TTCN this explicit modularization is expressed using Test Steps and the ATTACH construct.

Statement and verdict

Statement Statement

Statement and verdict
Test case Test case

Statement and verdict Statement and verdict

Statement Statement

Statement Statement

Statement and verdict Statement and verdict

a) Unstructured test case behaviour b) Structured test case behaviour

T0715830-93\d07

Figure 7/X.292 — Test Case Behaviour Structure

15.2.4 Concurrent Test Case Behaviour Description

If PTCs are used in a test case, then the header shall contain the additional entry, Configuration, which shall identify a
Test Component Configuration declared in the Declaration Part.

The behaviour of the MTC is described by the first tree in the Test Case Behaviour table plus al attached trees. The
MTC behaviour tree creates PTCs when required and associates each PTC with its own behaviour tree.

Recommendation X.292 (09/98) 97

If aPTC behaviour is specified as alocal tree in the test case behaviour, then the Defaults Reference shall be empty. This
restriction prevents a PTC from inheriting the Default Behaviour of the MTC.

A test case shall only use the Test Components that are present in the referenced Test Component Configuration. The
chosen configuration shall determine the set of PCOs and CPs that may be used in the test case. When used, the
Configuration entry in the Test Case Dynamic Behaviour Header shall be provided in the format shown in Proforma 45.

15.25 Linenumbering and continuation

Since lines in the behaviour description, when printed, may be too long to fit on oneling, it is necessary to use additional
symbols to indicate the extent of asingle behaviour line. There are two availabl e techniques:

a) Indicate the beginning of a new behaviour line; an extra line column is added as the leftmost column in the body of
the table; there shall only be an entry in this column on those lines where a new behaviour line starts; the line
numbers used shall be 1, 2, 3, and the numbering shall not be restarted when local trees are defined, i.e., thereisa
unigue line number for each behaviour line of the behaviour table.

NOTE 1 — The line numbers can be used for logging purposes, to record unambiguously which behaviour line was executed.

NOTE 2 — The line numbers can be used as references in the detailed comments section.

b) Indicate the continuation of lines; if a line is to be continued within the behaviour description column a hash
symbol (#) shall be placed in the leftmost position of the behaviour column, on the line of the continued text; it is
recommended that the text of the continued part adopts the same level of indentation as the line it is continuing.

If alineis continued in any column other than the behaviour description column the hash symbol is not required.

EXAMPLE 55 — Printing long behaviour line:

55.1 Recommended style:

No. Label Behaviour Description Constraints Ref Verdict Comments

1 ThisisaTTCN statement that istoo long Refl
to print on asingle line because the
column istoo narrow.

2 Thisisthe next statement line Thisisaconstraint reference that
istoo long to print on oneline

3 An dternative statement line Ref2

55.2 Alternative style:

Label Behaviour Description Constraints Ref Verdict Comments

Thisisa TTCN statement that istoo long Refl
to print on asingle line because the
column istoo narrow.

Thisisthe next statement line Thisisaconstraint reference that
istoo long to print on one line

An alternative statement line Ref2

153 Test Step dynamic behaviour

1531 Specification of the Test Step Dynamic Behaviour table

The dynamic behaviour of Test Stepsis defined using the same mechanisms as for Test Cases, except that Test Steps can
be parameterized (see 15.7). Test Step dynamic behaviour tables are identical to Test Case dynamic behaviour tables,
except for the following differences:

a) thetable hasthetitle"Test Step Dynamic Behaviour”;

98 Recommendation X.292 (09/98)

b) thefirstitemin the header isthe Test Step name,

which is a unique identifier for the Test Step followed by an optional list of formal parameters, and their associated
types. These parameters may be used to pass PCOs, constraints or other data objects into the root tree of the
Test Step;

¢) theseconditeminthe header isthe Test Step Group Reference,

which gives the full name to the lowest level of the Test Step Library group that contains the Test Step; that full
name shall conform to the requirements of (see 9.3), and end with adlash (/);

d) thethird item in the header isthe Test Step Objective,
which isan informal statement of the objective of the Test Step.
15.3.2 Test Step Dynamic Behaviour proforma
The Test Step dynamic behaviour shall be provided in the format shown in Proforma 46, below.

Test Step Dynamic Behaviour
Test Step Name . TestStepld& ParList
Group . TestStepGroupReference
Objective : FreeText
Defaults . [DefaultRefList]
Comments . [FreeText]
No. L abel Behaviour Description Constraint Ref Verdict Comments
1
2
. [Label] StatementLine [ConstraintReference] [Verdict] [FreeText]
TreeHeader
StatementLine
: .
Detailed Comments: [FreeText]

Proforma 46 — Test Step Dynamic Behaviour

The aternative position of the label column is shown in dotted lines.
Column headers of this proforma can be abbreviated to: L, Cref, V and C.
SYNTAX DEFINITION:

638 TestStepld ::= TestStepldentifier[Formal ParList]

641 TestStepReference ::= [Suiteldentifier "/"]{ TestStepldentifier "/}

630 DefaultRefList ::=DefaultReference{ Comma DefaultReference}

667 Label ::=Identifier

679 StatementLine ::= (Event[Qualifier][AssignmentList][TimerOps])| (Qualifier[AssignmentList][TimerOps])|
(AssignmentList[TimerOps])| TimerOps| Construct| ImplicitSend

657 TreeHeader ::=Treeldentifier [FormalParList]

669 ConstraintReference ::=ConsRef| Formal Parldentifier| AnyVaue

674 Verdict ::=Pass| Fail| Inconclusive] Result

154 Default dynamic behaviour

15.4.1 Default behaviour

A TTCN Test Case shall specify alternative behaviour for every possible event (including invalid ones). It often happens
that in a behaviour tree every sequence of alternatives ends in the same behaviour. This behaviour may be factored out as
default behaviour to thistree. Such Default behaviour descriptions are located in the global Default Library.

Recommendation X.292 (09/98) 99

The dynamic behaviour of Defaults is defined using the same mechanisms as for Test Steps, except for the following
restrictions:

a) itisnot permitted to specify Default behaviour for the Default behaviour;

b) adefault behaviour description may attach local trees (see 15.7.1) but shall not attach Test Steps;
c) if local treesare used in a Default behaviour description, they shall not attach Test Steps;

d) thetreg(s) in the behaviour description shall not use the ACTIVATE operation (see 15.18.4).

Both PCOs and other actual parameters may be passed to Default behaviour descriptions in the same way that they may
be passed to Test Steps. The same rules on scope and textual substitution of these parameters apply as described for tree
attachment (see 15.13).

1542 Specification of the Default Dynamic Behaviour table

Default dynamic behaviour tables are identical to Test Step dynamic behaviour tables, except for the following
differences:

a) thetable hasthetitle "Default Dynamic Behaviour";
b) thefirst item in the header isthe Default name,

which is a unique identifier for the Default followed by an optional list of forma parameters, and their associated
types. These parameters may be used to pass PCOs, constraints or other data objects into the root tree of the Default;

¢) thesecond item inthe header isthe Default Group Reference,

which gives the full name of the lowest level to the Default Group that contains the Default; that full name shall
conform to the requirements of 9.4, and end with aslash (/);

d) thethirditem inthe header isthe Default Objective,
which isaninformal statement of the objective of the Default.
15.4.3 Default Dynamic Behaviour proforma

The Default dynamic behaviour shall be provided in the format shown in Proforma 47, below.

Default Dynamic Behaviour
Default Name . Defaultld& ParList
Group . DefaultGroupReference
Objective . FreeText
Comments . [FreeText]
No. L abel Behaviour Description Constraint Ref Verdict Comments
1
2
[Label] StatementLine [ConstraintReference] [Verdict] [FreeText]
TreeHeader
StatementLine
: .
Detailed Comments. [FreeText]

Proforma 47 — Default Dynamic Behaviour

The alternative position of the label column is shown in dotted lines.

Column headers of this proforma can be abbreviated to: L, Cref, V and C.

100 Recommendation X.292 (09/98)

SYNTAX DEFINITION:

649 Defaultld& ParList ::=Defaultldentifier{ Formal ParList}

651 DefaultGroupReference ::= [Suitel dentifier "/"]{ DefaultGroupldentifier "/"}

667 Label ::=Identifier

679 StatementLine ::= (Event[Qualifier][AssignmentList][TimerOps])| (Qualifier[AssignmentList][TimerOps])|
(AssignmentList[TimerOps])| TimerOps| Construct| ImplicitSend

657 TreeHeader ::= Treeldentifier [Formal ParList]

669 ConstraintReference ::=ConsRef| Formal Parldentifier| AnyValue

674 Verdict ::=Pass| Fail| Inconclusive] Result

155 Behaviour description

The behaviour description column of a dynamic behaviour table contains the specification of the combinations of TTCN
statements that are deemed possible by the test suite specifier. The set of these combinations is called the behaviour tree.
Each TTCN statement is a node in the behaviour tree.

15.6 Treenotation

Each TTCN statement shall be shown on a separate statement line. The statements can be related to one another in two
ways:

— as sequences of TTCN statements;

— as alternative TTCN statements.

Sequences of TTCN statements are represented one statement line after the other, each new TTCN statement being
indented once from left to right, with respect to its predecessor.

EXAMPLE 56 — TTCN statements in sequence:

EVENT_A
CONSTRUCT B
EVENT_C

Statements at the same level of indentation and belonging to the same predecessor node represent the possible aternative
statements which may occur at that time. Henceforth, this set of TTCN statements will be referred to as the set of
alternatives, or simply alternatives.

EXAMPLE 57 — Alternative TTCN statements:

CONSTRUCT A1l
STATEMENT A2
EVENT_A3

EXAMPLE 58 — Combining sequences and alternatives to build a tree:

EVENT_A
CONSTRUCT_B

EVENT_C
STATEMENT D1

EVENT D2

Whether a TTCN statement can be evaluated successfully or not depends on various conditions associated with the
statement line. These conditions are not necessarily mutually exclusive, i.e. it is possible that for any given moment more
than one statement line could be evaluated successfully. Since statement lines are evaluated in the order of their
appearance in the set of alternatives, the first statement with a fulfilled condition will be successful. This might lead to
unreachable behaviour; in particular if statements are encoded as aternatives, following statements that are always
successful.

Recommendation X.292 (09/98) 101

REPEAT and GOTO are always successful. In addition, SEND, IMPLICIT SEND, assignments and timer operations are
successful provided that the accompanying qudifier, if any, evaluatesto TRUE.

Graphical indentation of statement linesin the TTCN.GR form is mapped to indentation values in TTCN.MP. Statements
in the first level of alternatives having no predecessor in the root or local tree they belong to, shall have the indentation
value of zero. Statements having a predecessor shall have the indentation value of the predecessor plus one as their
indentation value.

SYNTAX DEFINITION:
664 Line::=$LineIndentation StatementLine

EXAMPLE 59 — $Line [6] +R1_POSTAMBLE

15.7 Treenamesand parameter lists

15.7.1 Introduction

Each behaviour description shall contain at least one behaviour tree. In order that trees may be unambiguously referred to
(such asin an ATTACH construct) each tree has a tree name.

The first tree appearing within a behaviour description is called the root tree. The name of a root tree is the identifier
appearing in the header of its dynamic behaviour table. That is, the tree name of the root tree of a Test Step is the Test
Step Identifier for that Test Step, and likewise for root trees in Test Case dynamic behaviours and Default dynamic
behaviours.

Trees other than the root tree which appear within dynamic behaviour tables are termed local trees. Local trees are
prefixed by atree header which contains the tree name.

SYNTAX DEFINITION:

654 RootTree ::={BehaviourLine}+
655 LocaTree ::=Header { BehaviourLine} +

15.7.2 Treeswith parameters

All trees, except Test Case root trees, may be parameterized. The parameters may provide PCOs, constraints, variables,
or other such items for use within the tree. Test Case root trees shall not be parameterized.

If a tree is parameterized, then a list of formal parameters and their types shall appear within parentheses directly
following the tree name. For example, the formal parameter list for a Test Step root tree shall appear within parentheses
immediately following the Test Step Identifier in the header of the Test Step dynamic behaviour table. Similarly, the
formal parameter list for alocal tree shall appear immediately after the tree name in the tree header.

In constructing the formal parameter list, each formal parameter shall be followed by a colon and the name of the type of
the formal parameter. If more than one formal parameter of the same type is present, these may be combined into a
sublist. When such a sublist is used, the formal parameters within the sublist shall be separated from each other by a
comma. The final formal parameter in the sublist shall be followed by a colon and the formal parameter type.

When there is more than one formal parameter and type pair (or more than one sublist and type pair), the pairs shall be
separated from each other by semi-colons.

Formal parameters may be of PCO type, ASP type, PDU type, structure type or one of the other predefined or Test Suite
Types.

If a formal parameter of a tree is type PDU, then specific fields in the PDU shall not be referenced in the tree. If the
formal parameter is a specific PDU identifier, then specific fieldsin the PDU may be referenced inthetree.

EXAMPLE 60 — A Test Step using formal parameters: EXAMPLE_TREE (L:TSAP; X:INTEGER; Y:INTEGER)
EXAMPLE 61 — A Test Step using a formal parameters with a sublist.. EXAMPLE_TREE (L:TSAP; X,
Y:INTEGER)

102 Recommendation X.292 (09/98)

15.8 TTCN statements

The tree notation allows the specification of test events initiated by the Lower Tester(s) or Upper Tester(s) (SEND and
IMPLICIT SEND events), test events received by the Lower Tester(s) or Upper Tester(s) (RECEIVE, OTHERWISE,
TIMEOUT and DONE), constructs (GOTO, ATTACH, REPEAT, CREATE, RETURN and ACTIVATE) and pseudo-events
comprisng combinations of qudifiers, assgnments and timer operations. These are collectively known as TTCN statements.

Test events can be accompanied by qualifiers (Boolean expressions), assignments and timer operations. Qualifiers,
assignments and timer operations can aso stand alone, in which case they are called pseudo-events.

15.9 TTCN test events

15.9.1 Sending and receiving events

TTCN supports the initiation (sending) of ASPs and PDUs to named PCOs and acceptance (receipt) of ASPs and PDUs
at named PCOs. The PCO moddl is defined in 11.10 and 15.9.5.3.Concurrent TTCN supports the sending and receiving
of CMsto named CPs. The CP model isdefined in 11.11.

SYNTAX DEFINITION:

682 Send ::=[PCO_Identifier| CP_ldentifier| FormalParldentifier] "!" (ASP_ldentifier| PDU_ldentifier] CM_ldentifier)
684 Receive::=[PCO_ldentifier| CP_Identifier| Forma Parldentifier] "?' (ASP_ldentifier]| PDU_ldentifier] CM_ldentifier)
In the simplest form, an ASP identifier or PDU identifier follows the SEND symbol (!) for events to be initiated by the

LT or UT, or aRECEIVE symbol (?) for eventswhich it is possible for the LT or UT to accept. The optional PCO name
isnot provided. Thisform isvalid when there is only one PCO in the test suite.

EXAMPLE 62 — |CONreq or 2CONind

If more than one PCO exists in a test suite, then a PCO name appearing in the declarations part, or in the formal
parameter list of the tree, shall prefix the SEND symbol or the RECEIVE symbol. The PCO name is used to indicate the
PCO at which the test event may occur.

EXAMPLE 63 — L! CONreqor L? CONind

In the case of CPs, the CP identifier shall be used and shall prefix the SEND symbol in the case of sending a CM and
shall prefix the RECEIVE symbol in the case of receiving a CM.

EXAMPLE 64 — A_CPIA_CM or A_CP?A_CM

15.9.2 Receiving events

A RECEIVE event line evaluates successfully if an incoming ASP or PDU on the specified PCO matches the event line.
A match occurs if the following conditions are fulfilled:

a) theincoming PDU can be decoded in accordance with the applicable encoding rules;

b) theincoming ASP or PDU isvalid according to the ASP or PDU type definition referred to by the event name on the
event line. In particular, all parameters and/or field values shall be of the type defined, and satisfy any length
restrictions specified;

¢) the ASP or PDU matchesthe constraint reference on the event line;

d) in cases where a qualifier is specified on the event line, the qualifier shall evaluate to TRUE; the qualifier may
contain references to ASP parameters and/or PDU fields.

Theincoming event is removed from the PCO queue only when it successfully matches a RECEIVE event line.

In concurrent TTCN the receipt and matching of a CM at a CP is treated in the same manner as described above.

Recommendation X.292 (09/98) 103

15.9.3 Sending events

A SEND event line with a qualifier is successful if the expression in the qualifier evaluates to TRUE. Unqualified SEND
events are always successful. The outgoing ASP or PDU that results from a SEND event shall be constructed as follows:

a) All ASP parameter and PDU field values shall be of the type specified in the corresponding definitions, and will
satisfy any length restrictions in the definitions.

b) The value of the ASP parameter and PDU fields shall be set as specified in the constraint referenced on the event
line (see clauses 12, 13 and 14 for an explanation of constructing ASPs or PDUs with constraints).

¢) Any direct assignments to ASP parameters or PDU fields on the event line will supersede the corresponding value
specified in the constraint, if any.

d) All parameters and/or fields in the outgoing ASP or PDU shall contain specific values or be explicitly omitted prior
to completion of the SEND event.

€) Thefully constructed PDU shall be encoded in accordance with the applicable encoding rules.

Generation of an ASP parameter or PDU field value by either the constraints or assignments that violates the declared
type and length restrictions shall cause atest case error.

In concurrent TTCN the sending of CMs at CPs istreated in the same manner as described above.

15.9.4 Lifetimeof events

Identifiers of ASP parameters and PDU fields associated with SEND and RECEIVE shall be used only to reference ASP
parameter and PDU field values on the statement line itself.

In the case of SEND events, relevant ASP parameters and PDU fields can be set, if required, in appropriate assignments
on the SEND line.

EXAMPLE 65 — 'A_PDU (A_PDU.FIELD:=3)
The effects of such an assignment shall not persist after the event line in which they occurred.

In the case of RECEIVE events, if relevant ASP parameter and PDU field values need to be subsequently referenced,
either the whole ASP or PDU or a relevant part of it shall be assigned to variables on the RECEIVE line itself. These
variables may then be referenced in subsequent lines.

EXAMPLE 66 — ?A_PDU (VAR:=A_PDU.FIELD)
where VAR may be used on event lines subsequent to receipt of A_PDU.

The lifetime of CMs s aso restricted to the relevant RECEIVE statement. Identifiers of CM fields may be accessed in a
similar manner as identifiers of PDU fields.

EXAMPLE 67 — A_CPIA_CM or A_CP?A_CM
15.9.5 Execution of the behaviour tree

15.9.5.1 Introduction

The test suite specifier shall organize the behaviour tree representing a Test Case or a Test Step according to the
following rules regarding test execution:

a) Starting from the root of the tree, the LT or UT remains on the first level of indentation until an event matches. If an
event isto beinitiated the LT or UT initiatesit; if an event isto be received, it is said to match only if areceived real
event occurs and matches the event line.

b) Once an event has matched, the LT or UT moves to the next level of indentation. No return to a previous level of
indentation can be made, except by using the GOTO construct.

¢) Event lines at the same level of indentation and following the same predecessor event line represent the possible
aternatives which may match at that time. Alternatives shall be given in the order that the test suite specifier requires
the LT or UT to attempt either to initiate or receive them, if necessary, repeatedly, until one matches.

104 Recommendation X.292 (09/98)

EXAMPLE 68 — lllustration of a TTCN behaviour tree:

Suppose that the following sequence of events can occur during a test whose purpose is to establish a connection,
exchange some data, and close the connection. The events occur at the lower tester PCO L:

a)

b)

0)

CONNECTrequest, CONNECTconfirm, DATArequest, DATAindication, DISCONNECTreguest.

Progress can be thwarted at any time by the IUT or the service-provider. This generates two more sequences:

CONNECTrequest, CONNECTconfirm, DATArequest, DISCONNECT ndication.

CONNECTrequest, DISCONNECT ndication.

The three sequences of events can be expressed as a TTCN behaviour tree. There are five levels of aternatives, and
only three leaves [8) to c)], because the SEND events L! are always successful. Execution is to progress from |eft to

right (sequence), and from top to bottom (aternatives). The following figure illustrates this progression, and the
principle of the TTCN behaviour tree:

Progression of time

a

: EXAMPLE-TREE (L:NSAP)

€ \—bL!CONNECTrequest

r

2 L—b L?CONNECTconfirm

E \—b LIDATArequest

Z L?DATAindication

S \—p L!DISCONNECTrequest a)
L?DISCONNECTindication b)

—P»| ?DISCONNECTindication c)

T0731090-98\d08

There are no lines, arrows or leaf names in TTCN. The behaviour tree of the previous example would be represented as

follows:

EXAMPLE 69 — A TTCN behaviour tree:

Test Sep Dynamic Behaviour
Test Step Name :TREE_EX_1(L:NSAP)
Group : TTCN_EXAMPLES/TREE_EXAMPLE_1/
Objective . Toillustrate the use of trees.
Default : NOTE - This example can be simplified by using Defaults.
No. L abel Behaviour Description Constraints Ref Verdict Comments
1 LICONNECTrequest CR1 Request
2 L?CONNECTconfirm CC1 ...Confirm
3 LIDATArequest DTR1 Send Data
4 L?DATAindication DTI1 Receive Data
5 LIDISCONNECTrequest DSCR1 PASS Accept
6 L?DISCONNECTIndication DSCI1 INCONC Premature
7 L?DISCONNECTindication DSCR1 INCONC Premature

Recommendation X.292 (09/98) 105

15.9.5.2 Concept of snapshot semantics

The dternative statements at the current level of indentation are processed in their order of appearance. TTCN
operational semantics (see Annex B) assume that the status of any of the events cannot change during the process of
trying to match one of a set of aternatives. This implies that snapshot semantics are used for received events and
TIMEOUTSsi.e., each time around a set of alternatives a snapshot is taken of which events have been received and which
TIMEOUTSs have fired. Only those identified in the snapshot can match on the next cycle through the alternatives.

15.9.5.3 Restrictionson using events

In order to avoid test case errors, the following restrictions apply:

a) A Test Caseor Test Step should not contain behaviour where the relative processing speed of the Means of Testing
(MQOT) could impact the results. To prevent such problems, a RECEIVE, OTHERWISE or TIMEOUT event line
shall only be followed by other RECEIVE, OTHERWISE and TIMEOUT event lines in a set of aternatives. As a
consequence, Default trees shall contain only RECEIVE, OTHERWISE and TIMEOUT event lines on the first set
of alternatives.

b) Oncethereisan event on a PCO or CP queue or atimeout in the timeout ligt, it can be removed from the queue or list only
by a successful match of the related TTCN statement. In the case of a set of dternatives that includes RECEIVE statements.
The set of expected incoming events shall be fully specified. This means that it shall be a test case error if, during
execution, no match of any of the RECEIVE statements occurs and yet execution progresses to the next level of
alternatives because of a TIMEOUT which occurred after an ASP or PDU, that was not specified in the set of
RECEIVE statements, was received on any one of the relevant PCO or CP queues. IMPLICIT SEND shall not be
used with CMs.

¢) Precautions should be taken when using concurrent TTCN to avoid unreliable results caused by situations in which
the order of receipt of events at different PCOs or CPs is used to determine verdict assignment. The actual time at
which PDU or CM is received, relative to the receipt of other PDUs or CMs, may not be accurately reflected when
executing parallel test components.

EXAMPLE 70 — An incomplete set of RECEIVE events:

PARTIAL_TREE PARTIAL_TREE
IASTART T IASTART T
B PASS B PASS
TIMEOUT T P0THERWISE FAIL
1IC PASS PTIMEOUT T
D IC
7D PASS
a) b)

In @) if D is received in response to !A, the test case will assign an erroneous PASS verdict by virtue of the
TIMEOUT. This can be avoided by using the OTHERWISE statement.

d) Inconcurrent TTCN, the relative ordering of events at different PCOs or different CPs should not affect the verdict
assigned, since this would lead to unrepeatability of results caused by differences in processing and transmission
speeds.

15.9.5.4 Precautionswhen using concurrent TTCN

Precautions should be taken when using concurrent TTCN to avoid unrepeatable results caused by situations in which the
order of receipt of events at different PCOs or at different CPs is used to determine verdict assignment. The actual time at
which a PDU or CM is received, relative to the receipt of other PDUs or CMs, may not be accurately reflected when
executing parallel test components.

106 Recommendation X.292 (09/98)

159.6 IMPLICIT SEND event

In the Remote Test Methods, athough there is no explicit PCO above the IUT, it is necessary to have a means of
specifying, a a given point in the description of the behaviour of the LT, that the IUT should be made to initiate a
particular PDU or ASP (but not CM). For this purpose, the implicit send event is defined, with the following syntax:

SYNTAX DEFINITION:
683 ImplicitSend ::="<" [UT "1" (ASP_|dentifier | PDU_Identifier)">"

The IUT in the syntax takes the place of the PCO identifier used with a normal SEND or RECEIVE, indicating that the
specified ASP or PDU is to be sent by the IUT. The angle brackets signify that this is an implicit event, i.e., there is no
specification of what is done to the IUT to trigger this reaction, only a specification of the required reaction itself.

AnIMPLICIT SEND event is always considered to be successful, in the sense that any alternatives coded after, and at the
same level of indentation asthe IMPLICIT SEND are unreachable.

AnIMPLICIT SEND shall be used only where the relevant OSI Recommendation(s) permit the IUT to send the specified
ASP or PDU at that point in its communication with the LT.

For every IMPLICIT SEND in a test suite, the test suite specifier shall create and reference a question in the partia
PIXIT proformathat permits indication of whether the IMPLICIT SEND can be invoked on demand.

An IMPLICIT SEND event shall not be used unless the test method being used is one of the Remote Test Methods. An
IMPLICIT SEND event shall not be used unless the same effect could have been achieved using the DS test method.

NOTE — For example, when testing a connection-oriented Transport Protocol implementation, if this restriction did natoesist it

be permissible to use IMPLICIT SEND to get the IUT to initiate a CR TPDU because in the DS text that effect could be
achieved by getting the UT to send a T-CONreq ASP. On the other hand, it would not be permissible to use IMPLICIT SEND to get
the IUT to initiate an N-RstReq ASP because that effect could not be controlled through the Transporbh@&erdasy. The reason

for this restriction is to prevent Test Cases from requiring greater external control over an IUT than is provided faiawathte r
protocol Recommendation.

When an IMPLICIT SEND event is specified, the associated internal events within the IUT necessary to meet the
requirements of the Recommendation for the protocol being tested are also performed, e.g. set timer, initidize state
variables.

The semantics of IMPLICIT SEND isthat the SUT shall be controlled as necessary in order to cause the initiation of the
specified ASP or PDU. The way in which the SUT isto be controlled should be specified in the PIXIT (or documentation
referenced by the PIXIT).

Neither afinal verdict nor a preliminary result shall be associated with an IMPLICIT SEND event.

At an appropriate point following an IMPLICIT SEND, there should be a RECEIVE event to match the ASP or PDU that
should, as aresult, have been sent by the IUT.

EXAMPLE 71 — EXAMPLE use of IMPLICIT SEND:

Test Case Dynamic Behaviour
Test Case Name (IMPI
Group : TTCN_EXAMPLESY
Purpose . A partid treetoillustrate the use of IMPLICIT SEND
Default
Comments
No. Label Behaviour Description Constraint Ref Verdict Comments
5 <|UT!CR> CR1
L?CR CR1
L!CC Cc1
12 L?0THERWISE

Recommendation X.292 (09/98) 107

159.7 OTHERWISE event

The predefined event OTHERWISE is the TTCN mechanism for dealing with unforeseen test events in a controlled way.
OTHERWISE has the syntax:

SYNTAX DEFINITION:
685 Otherwise::=[PCO_ldentifier| CP_ldentifier| Formal Parldentifier] "?' OTHERWISE

OTHERWISE is used to denote that the LT or UT shall accept any incoming event which has not previously matched one
of the aternatives to the OTHERWISE. The tester shall accept any incoming data that it has not been possible to decode
or that has not matched a previous aternative to this OTHERWISE event.

In non-concurrent TTCN, if more than one PCO exists in a test suite, then either a PCO name appearing in the
declarations part, or aformal parameter from the formal parameter list of the tree where that formal parameter is used to
convey a PCO name, shall prefix the OTHERWISE. The PCO name is used to indicate the PCO at which the test event
may occur. Incoming events, including OTHERWISE, are considered only in terms of the given PCO.

EXAMPLE 72 — Use of OTHERWISE with PCO identifiers:

PARTIAL_TREE

PCO17A

PCO27B PASS
PCO12C INCONC
PCO2?0THERWISE FAIL

Assume no event is received at PCOL, then receipt of event B at PCO2 results in a PASS verdict. Receipt of any other
event at PCO2 resultsin aFAIL verdict.

Due to the significance of ordering of aternatives, incoming events which are aternatives following an unconditional
OTHERWISE on the same PCO will never match.

EXAMPLE 73 — Incoming events following an OTHERWISE:

PARTIAL_TREE

PCO17A PASS
PCO1?0THERWISE FAIL
PCO1”C INCONC

The OTHERWISE will match any incoming event other than A. The last alternative, ?C, can never be matched.

1598 OTHERWISE and concurrent TTCN

In concurrent TTCN, OTHERWISE may be used with CPs as well as PCOs. OTHERWISE on CPsiis alowed to provide
an efficient way of handling "all other CMs on this CP".

1599 TIMEOUT event

The TIMEOUT event alows expiration of atimer, or of al timers, to be checked in a Test Case. When a timer expires
(conceptually immediately before a snapshot processing of a set of aternative events), a TIMEOUT event is placed into a
timeout list. The timer becomes immediately inactive. Only one entry for any particular timer may appear in the list at any
onetime. Since TIMEOUT is not associated with a PCO, a single timeout list is used.

When a TIMEOUT event is processed, if atimer name is indicated, the timeout list is searched, and if there is a timeout
event matching the timer name, that event is removed from the list, and the TIMEOUT event succeeds.

If no timer name is indicated, any TIMEOUT event in the timeout list matches. The TIMEOUT event succeeds if the list
is not empty. When this occurs, the entire timeout list isimmediately emptied.

108 Recommendation X.292 (09/98)

TIMEOUT has the following syntax:
SYNTAX DEFINITION:

686 Timeout ::="?'"TIMEOUT [Timerldentifier| Formal Parldentifier]

EXAMPLE 74 — Use of TIMEOUT:

PTIMEOUT T

Since TIMEOUT events are not RECEIVE events they are not rendered unreachable by previously listed OTHERWISE
alternatives.

15.9.10 Concurrent TTCN eventsand constructs

The CREATE construct and the DONE event are used in concurrent TTCN.

15.9.10.1 CREATE construct

The Main Test Component is started at the beginning of Test Case execution. The Main Test Component starts Parallel
Test Components, as needed, by means of the CREATE construct, which has the following syntax:

SYNTAX DEFINITION:
692 Create::= CREATE "(" CreateList")"

This construct invokes a set of Paralel Test Components. For each PTC, there are two arguments. The first is the
identifier of the PTC that is created, which shall match the identifier of a PTC in the Test Component Configuration
referenced in the test case header. The second is areference to a behaviour tree (i.e. Test Step or local tree), possibly with
a parameter list containing actual values (e.g. PCOs and CPs). The effect of the CREATE construct is that each PTC
listed starts executing its behaviour description in parallel with the execution of the Main Test Component.

NOTE - Passing PCO and CP identifiers to a behaviour tree as actual parameters allows the same behaviour tree to be used in mor
than one test component.

The PCOs and CPs used in the execution of the behaviour description associated with a PTC by the CREATE construct
shall only be those determined by the Test Component Configuration for that Test Case.

The execution of a CREATE construct on a PTC which has already been created shall result in a Test Case error. The
execution of a CREATE by any Test Component other than the MTC shall result in atest case error.

In the CREATE construct, PCO identifiers and CP identifiers are passed to a PTC by textual substitution, as is usual in

the ATTACHment of Test Steps. All others parameters are passed by value. This is done to prevent side effects on
variables which could affect the processing of other PTCs, causing unrepeatable results.

15.9.10.2 DONE event
When the MTC terminates, the final verdict is assigned by the MTC, as calculated up to this moment (see 15.17.5). The
DONE event can be used in the MTC and the PTCs to find out whether PTCs have already terminated. Test Components
can use this information to determine their own preliminary results and further actions; in particular, the MTC can avoid
terminating before al PTCs have terminated (see 15.17.5).
SYNTAX DEFINITION:

687 Done ::="?" DONE "("[TcompldList] ")"

A missing argument list is interpreted as being a list of all PTCs stated in a CREATE constructs executed prior to the
execution of the DONE event. A DONE event without an argument list shall only be used by the MTC.

Recommendation X.292 (09/98) 109

EXAMPLE 75 — Use of the DONE event:

PARTIAL_MTC_TREE

CREATE(PTCLTREEA)
CREATE(PTC2:TREEB)
START T1
2DONE(PTC1,PTC2)
2TIMEOUT T1 FAIL

NOTE 1 - It is recommended to use ?TIMEOUT as an alternative to ?DONE.
NOTE 2 — If DONE is the only alternative, it amounts to an order to wait for the specified PTCs to terminate.

NOTE 3 — DONE is not a means for the MTC to coordinate termination of PTCs. Termination can only be achieved by providing an
appropriate exchange of CMs. TTCN does not offer any predefined CMs for this purpose.

15.10 Expressions

15.10.1 Introduction

There are two kinds of expressions in TTCN: assignments and Boolean expressions. Both assignments and Boolean
expressions may contain explicit values and the following forms of reference to data objects:

a) Test Suite Parameters;

b) Test Suite Constants;

¢) Testsuiteand Test Case Variables,

d) Forma parameters of a Test Step, Default or local tree;
€) ASPsand PDUs (on event lines).

Any variables occurring in Boolean expressions and/or on the right hand side of an assignment shall be bound. If an
unbound variable is used thisis atest case error.

SYNTAX DEFINITION:

703 Expression ::= SimpleExpression {RelOpSimpleExpression}

704 SimpleExpression ::= Term {AddOp Term}

705 Term ::= Factor {MultiplyOp Factor}

706 Factor ::=[UnaryOp]Primary

707 Primary ::=Value| DataObjectReference| OpCall| SelectExprldentifier| "("Expression ")"

739 Value ::=LiteralValue| ASN1_Value[ASN1_Encoding]

740 LiteralValue ::=Number| BooleanValue| Bstring| Hstring| Ostring| Cstring| R_Value

741 Number ::=(NonZeroNum {Num})| O

742 NonZeroNum ::=1| 2| 3| 4| 5| 6] 7| 8|9

743 Num::=0] NonZeroNum

744 BooleanValue ::= TRUE| FALSE

745 Bstring ::= ""{Bin| Wildcard} "B

746 Bin:=0|1

747 Hstring ::= ""{Hex| Wildcard} ""H

748 Hex :=Num| A| B|C|D|E| F

749 Ostring ::= ""{Oct| Wildcard} ""O

750 Oct ::=Hex Hex

751 Cstring ::="" {Char| Wildcard| "\"} "

752 Char ::= "REFERENCE-A character defined by the relevant CharacterString type. */

753 Wildcard ::=AnyOne| AnyOrNone

754 AnyOne ::="?"

755 AnyOrNone ::= "*"

708 DataObjectReference {ComponentReference}

709 DataObjectldentifier ::=TS_Parldentifier]| TS_Constldentifier| TS_Varldentifier]| TC_Varldentifier|
FormalParldentifier] ASP_ldentifier] PDU_ldentifier] CM_Identifier| Varldentifier

710 ComponentReference ::= RecordRef| ArrayRef| BitRef

711 RecordRef ::= Dot(Componentldentifier] ComponentPosition)

712 Componentldentifier ::= ASP_Parldentifier] PDU_Fieldldentifier] CM_Parldentifier| Elemldentifier] ASN1_ldentifier

714 ComponentPosition ::= "("Number ")"

715 ArrayRef ::=Dot "[* ComponentNumber "]"

716 ComponentNumber ::= Expression

110 Recommendation X.292 (09/98)

717 BitRef ::= Dot (Bitldentifier| "["BitNumber "]")

718 Bitldentifier ::= Identifier

719 BitNumber ::= Expression

720 OpCall ::= Opldentifier (ActuaParList | "("")")

721 Opldentifier ::=TS_ Opldentifier| TS_Procldentifier| PredefinedOpl dentifier

722 PredefinedOpldentifier::=BIT_TO_INT| HEX_TO_INT| INT_TO_HEX]| IS_ CHOSEN]|IS_
PRESENT| LENGTH_OF| NUMBER_OF_ELEMENTS

723 AddOp ::="+"|"/"|OR

724 MultiplyOp ::="*"|"/"| MOD| AND

725 UnaryOp ::="+"|"-"| NOT

726 RelOp ::="="|"<"|">"|"<>"| ">="["<="

15.10.2 Referencesfor ASN.1 defined data objects

15.10.2.1 I ntroduction

In order to permit references to components of data objects defined using ASN.1, TTCN provides three access
mechanisms: record references, array references and bit references.

SYNTAX DEFINITION:

708 DataObjectReference ::= DataObjectldentifier { ComponentReference}
710 ComponentReference ::= RecordRef | ArrayRef | BitRef

711 RecordRef ::= Dot(Componentldentifier| ComponentPosition)

715 ArrayRef ::=Dot "[" ComponentNumber "]"

717 BitRef ::= Dot (Bitldentifier| "["BitNumber "]")

15.10.2.2 Record references

A record reference may be used to reference a component of a data object of the type SEQUENCE, SET or CHOICE. A
record reference is constructed using a dot notation, appending a dot and the name (component identifier) or number
(component position) of the desired component to the data object identifier. The component identifier, if defined, should
be used in preference to the component position. References to unnamed components are constructed by giving within
parentheses the number which is the position of the component within the type definition. By definition, the implicit
numbering of components starts with zero; hence the third component has position number 2.

Recommendations X.680 defines SET types having unordered components. Thisis relevant only if values of that type are
encoded and sent over the underlying service-provider. TTCN therefore treats data objects of SET type in the same way
as objects of SEQUENCE type, i.e. referring to the components with number i always means a reference to the ith field as
declared in the type.

After an ASP or PDU or CM has been received, referring to the component with the index i will always return the same
value. There is no change of order of the elementsin a SET by any operation in TTCN.

SYNTAX DEFINITION:

711 RecordRef ::= Dot (Componentldentifier | ComponentPosition)
712 Componentldentifier ::= ASP_Parldentifier | PDU_Fieldidentifier | CM_Parldentifier | Elemldentifier | ASNL_Identifier
714 ComponentPosition ::="(" Number ")"

EXAMPLE 76 — Component record references:

Example_type ::= SEQUENCE {
field_1 INTEGER
field 2 BOOLEAN,
OCTET STRING }

If varlisof ASN.1 type Example_type, then the following could be written:
varlfield 1 which refersto the first (INTEGER) field

varl.(3) which refers to the third (unnamed) field

Recommendation X.292 (09/98) 111

EXAMPLE 77 — PDU field references:

Example_type ::= SEQUENCE {

user-data OCTET STRING,
D}

On astatement line that contains XY _PDUtype, the following could be written:

L? XY _PDU (buffer := XY_PDUtype.user_data)

in order to load the variable buffer with the contents of the user_data field of the incoming PDU.

When aPDU or an ASN.1 type parameter, field or element is chained to an ASP, another PDU, or a CM, arecord reference
may be used to identify a component of that PDU or ASN.1 type. The record reference shal identify the relevant complete
sequence of parameter, field or element names separated by dots, starting with a data object identifier which resolves to
the relevant ASP identifier, CM identifier, or (if ASPs are not used in the test suite) PDU identifier. Beyond this initial
data object identifier the sequence shall not contain any PDU identifiers or ASN.1 type identifiers, but rather just the
identifiers of the relevant parameters, fields and elements. This mechanism shall not be used if there is any ambiguity
about the identity of a PDU constraint or ASN.1 type constraint in the sequence. The following example illustrates the

use of record references when chaining of constraintsis used (see 12.4).

EXAMPLE 78 — Record references with chaining:

ASN.1 ASP Type Definition

ASP1_type::= SEQUENCE {
parl OCTET STRING,
par2 OCTET STRING,
Pdul PDU1 type
}
PDUL1 type::= SEQUENCE ({
Fieldl OCTET STRING
Field2 OCTET STRING
F F_type
}
ASN.1 Structure Type Definition
F_type::= SEQUENCE {
Datal |1A5String
Data2 | A5String
}

When using constraints of type ASP1 type, PDUL type and F_type, the values of datal and data2 may be referenced as

follows:
ASP1_Type.pdul.F.datal
ASP1 Type.pdul.F.data?

Similarly the whole PDU field F may be referenced as:
ASP1_Typepdul.F

or the whole PDU may be referenced as:

ASP1_Type.pdul

It should be noted that the declarations used in this example could apply to both static chaining and dynamic chaining, as
the differences between the two types of chaining are only visible in the constraints. Thus, the record reference is

independent of the variety of chaining used.

112 Recommendation X.292 (09/98)

15.10.2.3 Array references

An array reference may be used to reference a component of a data object of the type SEQUENCE OF or SET OF. An
array reference shall be constructed using a dot notation, appending a dot and the index of the desired component to the
data object identifier. The index, giving the position of the component within the data object (when the object is viewed
as alinear array), is enclosed within square brackets. By definition within ASN.1, the indexing of components starts with
zero. Theindex may be an expression, in which case it shall evaluate to a non-negative INTEGER.

Recommendations X.680 defines SET OF types having unordered components. Thisisrelevant only if values of that type
are encoded and sent over the underlying service-provider. TTCN therefore treats data objects of SET OF type in the
same way as objects of SEQUENCE OF type, i.e., referring to the components with number i always means a reference to
theith field as declared in the type.

After an ASP or PDU or CM has been received, referring to the component with the index i will always return the same
value. Thereis no change of order of the elementsin a SET OF by any operation in TTCN.

SYNTAX DEFINITION:
715 ArrayRef ::= Dot "[" ComponentNumber "1"

716 ComponentNumber ::= Expression

EXAMPLE 79 — Component array references:

Array_type ::= SEQUENCE OF { BOOLEAN}

If var2 is of ASN.1 type Array_type, then the following could be written in order to refer to the first BOOLEAN in the
sequence:;

var2.[0]
varl.[1-1]
15.10.2.4 Bit references

A bit reference may be used to reference particular bits within a BITSTRING type. For this purpose, data objects of
BITSTRING type are assumed to be defined as SEQUENCE OF { BOOLEAN}. Thus, a bit reference may be constructed
using the index notation as for array references. The leftmost bit has the index zero. An expression used as an index in a
bit reference shall evaluate to a non-negative INTEGER. Alternatively, if certain bits of a BITSTRING are associated
with an identifier (named bits), then thisidentifier may be used to refer to the bit.

SYNTAX DEFINITION:

717 BitRef ::= Dot (Bitldentifier | "[" BitNumber "]")
718 Bitldentifier ::= Identifier
719 BitNumber ::= Expression

EXAMPLE 80 — Bit references:

B_type ::= BITSTRING {ack(0),poll(3)}

This definesa BITSTRING type B_type where bit zero is called "ack" and bit threeis called "poll”.
If b_strisof ASN.1 type B_type, then the following could be written:

b _str.ack := TRUE

b_str.[2] := FALSE

Notethat b_str.poll := TRUE and b_str.[3] := TRUE both assign the value TRUE to the "poll" bit.

Recommendation X.292 (09/98) 113

15.10.3 Referencesfor data objects defined using tables

The same syntax as defined in 15.10.2.2 shall be used to construct record references to components of ASPs, PDUs, CMs
and Structured Types defined in tabular form. Chaining of ASPs, PDUs, CMs and Structured Types in tabular form
affects record references in exactly the same way asit does for those defined in ASN. 1.

Where a parameter, field or element is defined to include an item which is a true substructure of a type defined in a
Structured Type table, a reference to the item in the substructure shall consist of the record reference to the parameter,
field or element followed by adot and the identifier of the item within that Structure.

Where a Structure is used as a macro expansion, the elements in the Structure shall be referenced to as if it was expanded
into the Structure referring to it.

If a parameter, field or element is defined to be of meta-type PDU no reference shall be made to fields of that
substructure.

15.10.4 Assignments

15.10.4.1 I ntroduction

Test events may be associated with alist of assignments and/or a qualifier. Assignments are separated by commas and the
list is enclosed in parentheses.

SYNTAX DEFINITION:

701 AssignmentList ::="(" Assignment { Comma Assignment })"
702 Assignment ::=DataObjectReference ":=" Expression

During execution of an assignment the right-hand side shall evaluate to an element of the type of the left-hand side.

The effect of an assignment is to bind the Test Case or Test Suite Variable (or ASP parameter or PDU field) to the value
of the expression. The expression shall contain ho unbound variables.

All assignments occur in the order in which they appear, that isleft to right processing.

EXAMPLE 81 — Use of assignments with event lines:

(X:=1)
(Y:=2)
LIA (Y:=0, X:=Y, A.fieldl:=y)
L?B (Y:=B.field2, X:=X+1)

When PDU A is successfully transmitted the contents of the Test Case Variables X and Y will be zero, and field1 of PDU
A will also contain zero. Upon receipt of PDU B the Test Case Variable Y would be assigned the contents of field2 from
PDU B and the Test Case Variable X would be incremented.

15.10.4.2 Assignment rulesfor string types

If length-restricted string types are used within an assignment, the following rules apply:

a) if the destination string type is defined to be shorter than the source string, the source string is truncated on the right
to the maximum length of the destination string type;

b) if the source string is shorter than that allowed by the destination string type, then the source string is left-aligned
and padded with fill characters up to the maximum size of the destination string type.

Fill characters are:

- (blank) for all CharacterStrings;

— "0" (zero) for BITSTRINGs, HEXSTRINGs and OCTETSTRINGS.

When an unbounded (i.e., arbitrary length) string type variable is used on the left-hand side of an assignment, it shall
become bound to the value of the right-hand side without padding. Padding is only necessary when the variable is of a
fixed length string type.

114 Recommendation X.292 (09/98)

15.10.5 Qualifiers

An event may be qualified by placing a Boolean expression enclosed in square brackets after the event. This qualification
shall be taken to mean that the statement is executed only if both the event matches and the qualifier evaluates to TRUE.

If both a qualifier and an assignment are associated with the same event, then the qualifier shall appear first, any termin it
being evaluated with the values holding before execution of the assignment.

SYNTAX DEFINITION:

681 Qualifier :: ="[" Expression "]"
15.10.6 Event lineswith assignments and qualifiers

An event may be associated with an assignment, a qualifier or both. If an event is associated with an assignment, the
assignment is executed only if the event matches. If an event is associated with a qualifier, the event may match only if
the qualifier evaluatesto TRUE. If an event is associated with both, the event may match only if the qualifier evaluates to
TRUE, and the assignment is executed only if the event matches.

If aRECEIVE event is qualified and the event that has occurred potentially matches the specified event, then the qualifier
shall be evaluated in the context of the event that has occurred. If the qualifier contains a reference to ASP parameters
and/or PDU fields, then the values of those parameters and/or fields are taken from the event that has occurred.

The rules for use of assignments within events are as follows:

a) on a SEND event all assignments are performed after the qualifier is evaluated and before the ASP or PDU is
transmitted;

b) on SEND events assignments are allowed for the fields of the ASP or PDU being transmitted;

¢) onaRECEIVE event assignments are performed after the event occurs and cannot be made to fields of the ASP or
PDU just received.

An assignment to a constraint ASP parameter, PDU field or structure element in the behaviour part will overwrite
constraint values on a SEND event line.

EXAMPLE 82 — Use of a qualified SEND event:

PARTIAL_TREE
IA[X=3]
'B

Processing these alternative SEND events, the tester will send A only if the value of the variable X is 3. Otherwiseit will send B.

The OTHERWISE event may be used together with qualifiers and/or assignments. If a qualifier is used, this Boolean
becomes an additional condition for accepting any incoming event. If an assignment statement is used, the assignment
will take place only if all conditions for matching the OTHERWISE are satisfied.

EXAMPLE 83 — Using OTHERWISE, qualifiers and assignments:

PARTIAL_TREE(PCO:XSAP; PCO2; YSAP)

PCO17A PASS
PCO27B INCONC
PCO1?C PASS
PCO2?0THERWISE [X <>2] (Reason:= "X not equal 2") FAIL
PCO2?0THERWISE (Reason:="X equals 2 but event not B") FAIL

Assume that no event is received at PCOL. Receipt of event B at PCO2 when X =2 gives an inconclusive verdict. Receipt
of any other event at PCO2 when X <>2 results in a FAIL verdict and assigns a value of "X not equal 2" to the
CharacterString variable Reason. If an event is received at PCO2 that satisfies neither of these scenarios, then the final
OTHERWISE will match.

Events involving CMs occurring at CPs may also be associated with an assignment, a qualifier or both, in the same
manner as for PDUSs, as described above.

EXAMPLE 84 — CMs associated with a qualifier:

A_CPIA_CM [X=2]

Recommendation X.292 (09/98) 115

15.11 Pseudo-events

It is permitted to use assignments, qualifiers and timer operations by themselves on a statement line in a behaviour tree,
without any associated event. These stand-al one expressions are called pseudo-events.

The meaning of such apseudo-event is asfollows:

a) If only aqudifier is specified: The qualifier is evaluated and execution continues with subsequent behaviour, if the
gualifier evaluates to TRUE; if it evaluates to FALSE the next aternative is attempted. If no alternative exists, then
thisisatest case error.

b) If only assignments and/or timer operations are specified: The assignments shall be executed from left to right and/or
the timer operations shall be executed from left to right.

¢) If assignments and/or timer operations are specified preceded by a qualifier: The qualifier shall be evaluated first
and the assignments and/or timer operations shall be evaluated only if the qualifier evaluates to TRUE.

15.12 Timer management

15.12.1 Introduction

A set of operations is used to model timer management. These operations can appear in combination with events or as
stand-alone pseudo-events.

Timer operations can be applied to:
— an individual timer, which is specified by following the timer operation by the timer name;

— alltimers, which is specified by omitting the timer name.

It is assumed that the timers used in a test suite are either inactive or ruklhingining timers are automatically
cancelled at the end of each Test Case. There are three predefined timer operations: START, CANCEL and
READTIMER. More than one timer operation may be specified on a event line if necessary. This is indicated by
separating the operations by commas.

When a timer operation appears on the same statement line as an event and/or a qualifier, the timer operation shall be
executed if and only if the event matches and/or the qualifier evaluates to TRUE.

SYNTAX DEFINITION:

727 TimerOps ::=TimerOp { CommaTimerOp}
728 TimerOps ::=StartTimer [Cancel TimerfReadTimer

15.12.2 START operation
The START operation is used to indicate that a timer should start running.
SYNTAX DEFINITION:

729 StartTimer ::= START (Timerldentifier)["("TimerVaue")"]
301 Timerldentifier ::= Identifier
731 TimerValue::= Expression

The optional timer value parameter shall be used if no default duration is given, or if it is desired to assign an expiry time
(i.e., duration) for a timer that overrides the default value specified in the timer declarations.

Timer values shall be of type INTEGER. The test case writer shall ensure that the optional timer value parameter shall
evaluate to a positive non-zero INTEGER. A test case error shall result if a timer is started with a zero or negative value.

Any variables occurring in the expression specifying the optional timer value shall be bound. If an unbound variable is
used this is a test case error.

When a timer duration is overridden, the new value applies only to the current instance of the timer: any later START
operations for this timer which do not specify a duration will use the duration stated in the timer declarations part.

116 Recommendation X.292 (09/98)

EXAMPLE 85 — Uses of START timer:

The Ti aretimer identifiers and the Vi are timer values:
START TO

START TO (VO0)

START T1, START T2(V2)

The START operation may be applied to a running timer, in which case the timer is cancelled, reset and started. Any
entry in the timeout list for this timer shall be removed from the timeout list.

15.12.3 CANCEL operation
The CANCEL operation is used to stop arunning timer.
SYNTAX DEFINITION:

730 CancelTimer ::= CANCEL [TimerldentifierdFormal Parldentifier]
301 Timerldentifier::=Identifier
731 TimerValue ::=Expression

A cancelled timer becomes inactive. If aTIMEOUT event for that timer isin the timeout list, that event is removed from
the timeout list. If the timer name on the CANCEL operation is omitted, all running timers become inactive and the
timeout list is emptied.

Canceling an inactive timer is avalid operation, although it does not have any effect.
EXAMPLE 86 — Some uses of CANCEL timer:

where the Ti are timer identifiers:
CANCEL

CANCEL TO

CANCEL T1, CANCEL T2
CANCEL T1, START T3

15.12.4 READTIMER operation

The READTIMER operation is used to retrieve the time that has passed since the specified timer was started and to store
it into the specified Test Suite or Test Case Variable. This variable shall be of type INTEGER. The time value assigned
to the variable is interpreted as having the time unit specified for the timer in its declaration. By convention, applying the
READTIMER operation on an inactive timer will return the value zero.

SYNTAX DEFINITION:

732 ReadTimer ::= READTIMER (Timerldentifier@Formal Parldentifier) " (" DataObjectReference")"
301 Timerldentifier ::= Identifier

EXAMPLE 87 — Using READTIMER:

START TimerName(TimeVal)
PEVENT_A
+Tree A
7EVENT_B
+Tree B
7EVENT_C
READTIMER TimerNAME(CurrTime)
PTIMEROUT TimerName

If EVENT_C is received prior to expiration of the timer named by TimerName, the amount of time which has passed
since starting the timer will be stored in the Test Case or Test Suite Variable CurrTime. The behaviour contained in
Tree C may use the value of this Test Suite or Test Case Variable.

Recommendation X.292 (09/98) 117

EXAMPLE 88 — READTIMER used in combination with other timer operations:

READTIMER T1 (PASSED_TIME), CANCEL T1
READTIMER T1 (V1), START NEW_TIMER (V1)

15.13 ATTACH construct

15.13.1 Introduction
Trees may be attached to other trees by using the ATTACH construct, which has the syntax:
SYNTAX DEFINITION:

696 Attach ::="+" TreeReference [ActualParList]

698 TreeReference ::= TestStepldentifier (Treel dentifier

699 ActuaParList ::="(" ActualPar{ Comma ActuaPar} ")"

700 ActualPar ::= ValuePCO_ldentifier (CP_Identifier(Timerldentifier

Test suite and Test Case Variables are global to both the tree that does the attachment (the main tree) and the attached
tree, i.e., any changes made to variables in an attached tree also apply to the main tree. Tree attachment constructs shall
appear on a statement line by themselves.

15.13.2 Scope of tree attachment

Behaviour descriptions may contain more than one tree. However, only the first tree in the behaviour description is
accessible from outside the behaviour description. Any subsequent trees are considered to be Test Steps loca to the
behaviour description, and thus not externally accessible.

It should be noted that only Test Cases are directly executable, while Test Steps are executed only if attached to a Test
Case, or to a Test Step whose point of attachment can be traced back to a Test Case (either directly or via other attached
Test Steps). Test Cases are not attachable.

Tree reference may be Test Step Identifiers or tree identifiers, where:

a) aTest Step Identifier denotes the attachment of a Test Step that resides in the Test Step Library; the Test Step is
referenced by its unique identifier;

b) atreeidentifier shall be the name of one of the treesin the current behaviour description; thisis attachment of alocal
tree.

15.13.3 Treeattachment basics

Given a behaviour tree, it is possible to detach parts of this tree in the form of separate behaviour trees, i.e., Test Steps.
The points where a Test Step has been cut out of the original tree are indicated by the attach symbol (+) followed by the
name assigned to the Test Step.

EXAMPLE 89 — Partitioning a large tree into two smaller trees:

TOP_TREE TOP_TREE STEP
A A D
Al Al D11
D1 +STEP D12
D11 isequivalent to: C and
D12 C1
C C
C1
D1 +STEP

This operation can be performed not only on the main behaviour tree of the Test Case (the root tree) but also on the Test
Steps detached from it. The attached tree will either be alocal tree or amember of the Test Step Library.

118 Recommendation X.292 (09/98)

Tree attachment can be defined in a more general way than the mere re-insertion of complete Test Steps:

— An attached tree need not contain full paths down to the leaves of the tree it is attachedltngitsee). Rather,
some subsequent behaviour common to all paths of the attached tree may be specified in the calling tree, namely as
behaviour subsequent to the attachment line.

— Some (even top level) lines of the attached Test Step may again have the form +SOME_SUBTREE, calling for the
attachment of further Test Steps.

— Attached Test Steps may be parameterized.
15.13.4 Meaning of tree attachment

15.13.4.1 The following list defines the tree attachment execution semantics:

a) The attachment line (e.g., +STEP) in the behaviour tree (e.g., TOP_TREE) is formally ong)(@¢canfordered
set of alternatives:

Ag oo Ay s A)

Attaching STEP in this position means expanding the TOP_TREE by inserting the Test Step STEP's top
alternatives, e.g., B ... , By) into this sequence, yielding a hew sequence:

(A1 s Ai-1) Bty oo, Bn A+ 1) 0 Ad)

of alternatives. Any subsequent behaviour to the Bs will be attached together with them.

EXAMPLE 90 — Expansion of a Test Step:

TOP_TREE STEP TOP_TREE
A Bl A
Al B11 Al
+STEP B2 Bl
A3 and isequivalent to: B11
B2
A3

b) Any behaviour subsequent to the +STEP line in the tree will become behaviour subsequent to all the leaves of the
attached STEP expanded into the tree.

EXAMPLE 91 — Subsequent behaviour to an ATTACH:

TOP_TREE STEP TOP_TREE
A D1 A
+STEP D11 D1
B D2 D11
and isequivalent to: B
D2
B

Recommendation X.292

(09/98)

0

When an actual parameter list is used on an ATTACH construct, then the actual parameter shall be substituted for
each corresponding formal parameter using simple textual substitution. This substitution shall take place according
to the following scoping rules:

1) actua parameters on the ATTACH of alocal tree shall be substituted for corresponding formals only directly
within that local tree;

2) actua parameters on the ATTACH of a root tree of a Test Step are substituted for al occurrences of the

corresponding formals within the root tree and any local trees directly within the Test Step;

3) when aparameterized tree is attached:

i) the number of the actual parameters shall be the same as the number of formal parameters;

ii) each actual parameter shall evaluate to an element of its corresponding formal parameter type; and

iii) formal and actual parameters of test steps shall be used in such away that only valid TTCN is created by
textual substitution.

EXAMPLE 92 — Substitution of parameters:

TOP_TREE(L:NSAP,U:TSAP)
L!CONreq(M:=1) and
+STEP(U,M,2)

isequivalent to:

STEP (PCO:TSAPX,Y:INTEGER)
PCO?CONind(X:Y)

L!CONreg(M:=1)

U?CONind(M:=2)

TOP_TREE(L:NSAP,U:TSAP)

EXAMPLE 93 — Scoping rules for parameter substitution:

Test Sep Dynamic Behaviour

Test Case Name

:TEST_STEP_1(X,Y:INTEGER)

Group . TTCN_EXAMPLES/PARAMS/STEPS/
Object . Toillustrate scoping rules for substitution
Default
Comments
No. Label Behaviour Description Constraint Ref Verdict Comments
7A Al
+TEST_STEP_2(X)
+LOCAL(5)
LOCAL(F:INTEGER)
4 B Bl
5 (TC_VAR:=F+Y) PASS

Detailed Comments:

When TEST_STEPL is attached by a calling tree, al occurrences of the formal parameters X and Y within the entire Test Step
(including within the local tree LOCAL) will be replaced with the actuas provided. Note that formals X and Y are not
automatically substituted with actuals within TEST_STEP2. However, the actual parameter value for formal X is substituted in
the ATTACH construct “+TEST_STEP2(X)". This results in the substitution of the actual parameter value X (in TEST_
for whatever formal parameter appears in the declaration of TEST_STEP2. Finally, note that actual parameter (con
substituted for formal “F” when the tree LOCAL is attached. This substitution takes place only within the local tree.

STEP1)
stant) 5 is

120

Recommendation X.292 (09/98)

15.13.5 Passing parameterized constraints

Constraints may be passed as parameters to Test Steps. If the constraint has a formal parameter list, then the constraint
shall be passed together with an actual parameter list. The actual parameters of the constraint shall aready be bound at
the point of attachment.

EXAMPLE 94 — Passing a parameterized constraint:

Suppose that the constraint C1 has a single formal parameter of type INTEGER. TOP_TREE attaches STEP and
passes C1 as a parameter. Note that the constraints reference in STEP is not parameterized:

TOP_TREE STEP(PARA:A_PDU)

+STEP(C1(3)) IA_PDU PAR

15.13.6 Recursivetreeattachment

As tree attachment works recursively (STEP may contain a +SOME_OTHER_TREE line) the tree expansion semantics
may never lead to atree free of attachment lines.

EXAMPLE 95 — A legal recursive tree attachment:

TOP_TREE STEP TOP_TREE
A C A
+STEP D C
B +TOP_TREE one expansion D
and is equivalent to: B
+TOP_TREE
B

A tree shall not attach itself, either directly or indirectly, at itstop level of indentation.

NOTE - It is unnecessary to expand either any Test Step that will not be executed, or any alternatives beyond the cuntérarievel
alternative from the current level has been selected.

EXAMPLE 96 — An illegal recursive tree attachment:

TOP_TREE STEP TOP_TREE
A C A
+STEP +TOP_TREE C
B D one expansion +TOP_TREE
and is equivalent to: B
C
B

15.13.7 Treeattachment and Defaults

The expansion of Defaultsin atree shall be completed before this tree is attached anywhere (see 15.18.5).
NOTE - Special care has to be taken where both tree attachment and Defaults are used in a behaviour description.

Recommendation X.292 (09/98) 121

15.14 Labelsand the GOTO construct

A label may be placed in the labels column on any statement line in the behaviour tree.

NOTE 1 — Whenever an entry is executed in the behaviour tree for which a label is specified, that label should be reverded in t
conformance log in such a way that it can be associated with the record of the execution of that entry.

A GOTO to a label may be specified within a behaviour tree provided that the label is associated with the first of arsetigéga]t
one of which is an ancestor node of the point from which the GOTO is to be made. A GOTO shall be used only for jumps within one
tree, i.e., within a Test Case root tree, a Test Step tree, a Default tree or a local tree. As a consequence, eachnlab@lQiEed i

construct shall be found within the same tree in which the GOTO is used. No GOTO shall be made to the first level oésltérnativ
local trees, Test Steps or Defaults.

A GOTO shall not refer to a label prior to an ACTIVATE construct which is an ancestor node of the GOTO.

A GOTO shall be specified by placing an arrow)(or the keyword GOTO, followed by the name of the label, on a statement line of
its own in the behaviour tree.

SYNTAX DEFINITION:
695 GoTo ::= (L "[GOTO) Label

A label shall be unique within a tree. If a GOTO is executed, the Test Case shall proceed with the set of alternatives
referred to by the label.

GOTOs shall always be unconditional and therefore always execute.

NOTE 2 — A Boolean expression may be placed as the immediate ancestor of a GOTO to gain the effect of a conditional jump.

EXAMPLE 97 — Use of GOTO:

Test Case Dynamic Behaviour

Test Case Name :GOTO_EX1
Group : TTCN_EXAMPLES/GOTO_EXAMPLEY/
Object . Toillustrate use of labels and GOTO
Default
Comments
No. Label Behaviour Description Constraint Ref Verdict Comments

1 LA ?A Al

2 LB B B1

3 LB2 +B-tree

4 LC 2C C1

5 LD [D=1]

6 - LA

7 LE [E=1]

8 LF s F1 FAIL
Detailed Comments:
This example shows a jump to LA. From the same position in that tree it would also be alowed to jump to LB or LD, but it
would not be alowed to jump to LB2 or LF (because the set of alternatives does not contain an ancestor node of the point from
which the jump is made) nor to LC or LE (because these are not the first of a set of alternatives).

122 Recommendation X.292 (09/98)

15.15 REPEAT construct

This subclause describes a mechanism to be used in behaviour descriptions for iterating a Test Step a number of times.
The syntax of this REPEAT construct is:

SYNTAX DEFINITION:
697 Repeat ::= REPEAT TreeReference [ActuaParList)UNTIL Qualifier

The tree reference shall be a reference to either alocal tree or a Test Step defined in the Test Step Library. For the rules
of attachment see 15.13. The REPEAT construct has the following meaning: first the tree, referred to by the tree
reference, is executed. Then, the qualifier is evaluated. If the qualifier evaluates to TRUE, execution of the REPEAT
construct is completed. If not, the tree is executed again, followed by evaluation of the qualifier. This process is repeated
until the qualifier evaluatesto TRUE.

The REPEAT construct can always be executed and should be the last alternative of a series of TTCN statements at the
same level of indentation, as allowed by 15.9.5.3 a).

NOTE — The REPEAT construct is recommended, if applicable, instead of use of GOTO.

EXAMPLE 98 — Use of REPEAT (see also Appendix I):

Test Case Dynamic Behaviour
Test Case Name ‘RPT_EX1
Group : TTCN_EXAMPLES/REPEAT_EXAMPLELY
Object : Toillustrate use of REPEAT
Default
Comments
No. Label Behaviour Description Constraint Ref Verdict Comments
1 (FLAG:=FALSE)
2 IA Al
3 REPEAT STEPL (FLAG)UNTIL(FLAG)
4 ID D1 PASS
STEP1 (F:BOOLEAN)
?B(F:=TRUE)
2C(F:=FALSE) B1
6 C1
Detailed Comments:
This example describes a test that is capable of receiving an arbitrary number of C events at the lower tester PCO, until the
awaited message B isreceived.

15.16 Constraints Reference

15.16.1 Purpose of the Constraints Reference column

This column allows references to be made to a specific constraint placed on an ASP, PDU or CM. Such constraints are
defined in the constraints part (see clauses 12, 13 and 14). The constraints reference shall be present in conjunction with
SEND, IMPLICIT SEND and RECEIVE. A constraints reference is optional if an ASP or CM has no parameters or if a
PDU has no fields. It shall not be present with any other kind of TTCN statement.

The entry Constraints Reference column may be an actual constraint reference, the AnyValue symbol ("?'), or a formal
parameter whose actual parameter shall be a constraint reference or the AnyVaue symbol. If AnyValue is used in place
of a constraint reference it means a "don't care” constraint, equivalent to a constraint with AnyOrNone ("*") in every
parameter, field or element.

Recommendation X.292 (09/98) 123

An actual constraint reference has the syntax:
SYNTAX DEFINITION:

670 ConsRef ::= Constraintldentifier [Actual CrefParList]
671 ActuaCrefParList ::="("Actua CrefPar { CommaActual CrefPar} ")"
672 ActuaCrefPar ::= Value

EXAMPLE 99 — A constraint reference without a parameter list:

N_SAP?CR_PDU CRI

15.16.2 Passing parametersin Constraint References

A constraint reference may have an optional parameter list to allow the manipulation of specific constraint values from
the behaviour tree.

The actua parameter list shall fulfil the following:
a) thenumber of actual parameters shall be the same as the number of formal parameters; and

b) each actual parameter shall evaluate to either a value of its corresponding formal type or a matching symbol that can
match avalue of that formal type.

If a congtraint is passed as an actual parameter, and that constraint is declared with a formal parameter list, then the
constraint shall also have a (possibly nested) actual parameter list. All variables appearing in the parameter list shall be
bound when the constraint is used. If an unbound variable is used, then thisis atest case error.

EXAMPLE 100 — A constraints reference with a parameter list:

N_SAP?N_DATAreq D1(PL,CR1(P2))

Where D1 isaconstraint on N_DATAreq with two parameters (actual parameters P1 and CR1), and CR1 is a constraint
with one parameter (actual parameter P2).

15.16.3 Constraintsand qualifiersand assignments

If an event is qualified and also has a constraints reference, this shall be interpreted as: the event matches if and only if
both the qualifier and the constraint hold.

If an event is followed by an assignment and has a constraints reference and/or a qualifier, then this shall be interpreted
as. the assignment is performed if and only if the event occurs according to the definition given above.

15.17 Verdicts

15.17.1 Introduction

Entriesin the verdict column in Dynamic Behaviour tables shall be either:
— apreliminary result, which shall be given in parentheses;

— or an explicit final verdict.

An entry, of either type, shall not occur on an empty line, or on the following TTCN statements:
a) an ATTACH construct;

b) a REPEAT construct;

c) aGOTO;

d) an IMPLICIT SEND.

124 Recommendation X.292 (09/98)

SYNTAX DEFINITION:

674 Verdict ::= Pass[FFail (InconclusiveResult

675 Pass::= PASSIPII("PASS")""("P")"

676 Fail ::= FAILF'("FAIL")" O"("F™)"

677 Inconclusive::= INCONCO '("INCONC™)" "("I")"
678 Result::=R

NOTE - During Test Case execution, whenever an entry in a behaviour tree occurs for which there is a corresponding entry in the
verdict column of the abstract Test Case, that verdict column information is intended to be recorded in the conformauhlag in
way that it is associated with the record of that entry in the behaviour tree.

15.17.2 Preliminary results

A predefined variable called R, of the predefined type R_TYPE, is available to each Test Case to store any intermediate
results. These values are predefined identifiers and as such are case sensitive.

R may be used wherever other Test Case Variables may be used, except that it shall not be used on the left-hand side of
an assignment statement. Thus, it is a read-only variable, except for the changes to its value caused by entries in the
verdict column (as specified below).

If apreliminary result isto be specified in the verdict column it shall be one of the following:
a) (P) or (PASS), meaning that some aspect of the test purpose has been achieved;

b) (1) or (INCONC), meaning that something has occurred which makes the Test Case inconclusive for some aspect of
the test purpose;

¢) (F) or (FAIL), meaning that a protocol error has occurred or that some aspect of the test purpose has resulted in
failure.

NOTE 1 — PASS or P, FAIL or F and INCONC or | are keywords that are used in the verdicts column only. The predefined identifier
pass, fail, inconc andnone are values that represent the possible contents of the predefined variable R. These predefined identifiers are
to be used for testing the variable R in behaviour lines only.

Whenever a preliminary result is recorded, because the ponding entry in the behaviour tree is executed, then the value of the
predefined Test Case Variable R shall be changed according to Table 7.

NOTE 2 — Thus, the order of precedence (lower to higher) is: N, P, I, F. Even if R hadailaitean be useful to record a
preliminary result of P or | in order to record in the conformance log that a P or | is appropriate for some aspect pitipedest
despite the fact that this will not change the value of R.

Table 7/X.292 —Calculation of the variable R

Current Entry in verdict column
valueof R (PASS) (INCONC) (FAIL)
None pass inconc fail
Pass pass inconc fail
Inconc inconc inconc fail
Falil fail fail fail

15.17.3 Final verdict

If an explicit final verdict isto be specified in the verdict column, it shall be one of the following:
a) PorPASS meaning that a pass verdict is to be recorded;

b) I or INCONC, meaning that an inconclusive verdict is to be recorded;

¢) ForFAIL, meaning that afail verdict isto be recorded;

d) the predefined variable R, meaning that the value of R is to be taken as the final verdict, unless the value of R is
none in which case atest case error is recorded instead of afinal verdict.

Recommendation X.292 (09/98) 125

Table 8/X.292 — Calculation of the final verdict R

Current Entry in verdict column
valueof R (PASS) (INCONC) (FAIL) R
None pass inconc fall *error*
Pass pass inconc fail pass
Inconc *error* inconc fall inconc
Fail *error* *error* fail fail

Whenever, during execution of a Test Case, an explicit final verdict is specified, then this terminates the Test Case. For
compliance with Recommendation X.291, an explicit final verdict should be specified only if the Test Case has returned
to asuitable stable testing state (e.g., theidle testing state).

NOTE 1 — The termination of the Test Case caused by the specification of an explicit final verdict is necessary, for fetteample, i
stable state is reached in an attached Test Step when subsequent behaviour is specified in the calling tree.

If the leaf of the behaviour tree is reached without an explicit final verdict being specified, then the final verdict is
determined as for case d) above (i.e., asif R had been put in the verdict column).

If an explicit final verdict other than R is to be recorded, then that verdict shall be compared with the value in R to
determine whether or not they are consistent. If R isfail, then a final verdict of PASS or INCONC shall be regarded as
inconsistent; if R is inconc, then a final verdict of PASS shall be regarded as inconsistent. If there is one of these
inconsistencies, then it is atest case error.

NOTE 2 — In such a case, "Test Case Error" should be recorded in the conformance log.

15.17.4 Verdictsand OTHERWISE

An OTHERWISE statement shall not lead to a PASS verdict. It should lead to a FAIL verdict, because the OTHERWISE
could match aninvalid test event.

15.17.5 Verdict assignment in concurrent TTCN

In concurrent TTCN, the final verdict is assigned by the MTC, either explicitly in the verdict column or implicitly as a
consequence of MTC termination. Preliminary test results are maintained in the global result variable, which is accessible
to the MTC as the test case variable R. The global result variable is updated whenever a preliminary result or verdict is
recorded in the verdict column by a matched MTC behaviour line. If the MTC terminates without assigning an explicit
verdict, then the verdict shall be determined as if R had been placed in the verdict column (see 15.17.3 d).

In addition, each PTC shall record at least one preliminary result. This preliminary result is maintained in its local result
variable, which is accessible to the PTC as its test case variable R. When a preliminary result is assigned by a PTC, by
any entry in the verdict column of a matched PTC behaviour line (whether or not the entry is in parentheses), both its
local result variable and the global result variable are updated using the algorithm specified in 15.17.2. In aPTC, an entry
in the verdict column without parentheses around it is not a final verdict, but shall cause termination of the PTC if that
behaviour line matches.

Termination of the MTC before termination of all PTCs shall result in atest case error.

When the MTC uses the R variable in a Boolean expression or an assignment, it accesses the global result variable. When
a PTC uses the R variable in a Boolean expression or an assignment, it accesses its local result variable. The MTC may
also access a local result variable of its own by using the predefined test case variable MTC_R rather than R. MTC R is
of predefined type R_TYPE. MTC_R is updated whenever a preliminary result is recorded in the verdict column by a
matched MTC behaviour line, but is unaffected by the preliminary results of PTCs. The MTC_R variable shall not be
used in the verdict column.

The value of a PTC's local result variable can be communicated to another Test Component only via CMs. The value of
the MTC'slocal or global result variables can be communicated to a PTC only via CMs.

126 Recommendation X.292 (09/98)

15.18 Meaning of Defaults

15.18.1 Introduction

In many cases Default behaviour will be used to emphasize a set of interesting paths through a test by declaring the less
interesting common alternatives (plus their subsequent behaviour) as Default behaviour.

The same effect, though less concisely, would be achieved by Test Step attachment (e.g., +DEFAULT) as an additional
general last aternative. As opposed to tree attachment, Default behaviour expands into many points of the tree it is
associated with. This property calls for a careful use of Defaults.

EXAMPLE 101 - Identifying a Default tree:

TOP_TREE TOP_TREE TOP_TREE
A A Default: COMMON
Al Al A
A1l All Al
c +COMMON A1l
D A2 A2
A2 +COMMON B
c B B1
D B1
B +COMMON
B1 +COMMON COMMON
C C
D COMMON D
C C
D D

1. the complete set of 2: explicit tree attachment 3: Default achievesthe
alternatives sameas 2

No Default behaviour shall be specified to a Default behaviour, i.e., a Default may not have Default behaviour itself. Tree
attachments shall not be used in Default behaviour trees, i.e., Default behaviour trees shall not attach Test Steps. Test
Cases or Test Steps shall not be referred to as Defaullts.

For the execution of a Test Case it is not necessary to expand Defaults everywhere in al the trees referring to them. This
can be seen from an operational description of the meaning of Defaults: in attempting to match a sequence of aternatives
(which may need repeated attempts), each time they al failed to match, the first level of alternatives of the Default
behaviour are attempted as well. If none of these matches either, the sequence is retried with the new states of timers and
queues at all PCOs concerned. If there is a match in the Default, the Default behaviour is pursued at that point.

To ensure that no subsequent behaviour will occur following the execution of a Default behaviour, the execution of a leaf
of a Default tree, other than a RETURN statement, shall cause the termination of the test case. In order to accomplish this
termination, in a Default tree, every leaf which has no verdict or preliminary result in the verdict column is implicitly
provided with a verdict column entry of "R", and every leaf which has a preliminary result in the verdict column has that
preliminary result implicitly transformed into afinal verdict.

15.18.2 Default References

Test Case and Test Step behaviours reference alist of Default behaviours in the Default Library through the Default entry
in the table header.

Recommendation X.292 (09/98) 127

SYNTAX DEFINITION:

631 DefaultReference ::= Defaultldentifier [Actual ParList]

Each reference in thislist locates a Default by its unique identifier. The Defaultidentifier shall be a reference to a Default
defined in the Default Library.

Defaults can be parameterized. The actual parameter list shall fulfil the following:

a) thenumber of actua parameters shall be the same as the number of formal parameters;

b) each actual parameter shall evaluate to an element of its corresponding formal type; and

¢) 4l variables appearing in the parameter list shall be bound when the constraint is invoked.

EXAMPLE 102 — Default reference

102.1

Test Case Dynamic Behaviour
Test Case Name . DEF_EX1
Group : TTCN_EXAMPLES/DEFAULT_EXAMPLE1/
Purpose . Toillustrate the use of Defaults
Default : DEF1(L)
Comments . The tree of example ** can be split into this Test Case with the Default behaviour DEF1.
No. Label Behaviour Description Constraint Ref Verdict Comments
1 LICONNECTrequest CR1 Request
2 L?CONNECTconfirm CC1 ... Confirm
3 LIDATArequest DTR1 Send Data
4 L?DATAindication DTI1 Receive Data
5 LIDISCONNECTrequest DSC1 PASS Accept
102.2
Default Dynamic Behaviour
Default Name : DEF_EX1
Group : TTCN_EXAMPLES/DEFAULTS_LIB/DEFAULT_1/
Object . Illustration of a simple Default
Comments . The tree of example ** can be split into this Test Case with the Default behaviour DEF1.
No. Label Behaviour Description Constraint Ref Verdict Comments
1 X?DISCONNECTIndication DSC2 INCONC Premature
NOTE - Syntactically, the Default behaviour of the second of the two tables in the above example attaches

X?DISCONNECTIndication as an alternative to each of the L! and L? statements in the first table. However, attachmentaoitthe Def
tree as an alternative to an L! statement that always succeeds is meaningless.

128 Recommendation X.292 (09/98)

15.18.3 RETURN statement

The RETURN statement is an extension of the Default behaviour description capabilities. A RETURN statement shall
only be used in a Default tree. It shall have the syntax:

When the Default expansion of atreeis performed, execution of a RETURN statement will cause processing to continue
at thefirst alternative in the set of alternatives that caused the Default behaviour to be attempted.

15184 ACTIVATE statement

The ACTIVATE statement allows the activation of one set of Default behaviours. Instead of being implicitly active for
the duration of the test case, defaults may be activated selectively by the ACTIVATE statement. Default behaviour thus
activated is attempted in the order in which it is specified by the ACTIVATE, e.g. ACTIVATE (Def_1, Def_2) will cause
Def 1 to be executed before Def 2 when default behaviour is needed.

The default behaviour specified in an ACTIVATE statement overrides any active default behaviour, including default
behaviour specified in atest case or test step header.

An ACTIVATE with an empty default referencelist, i.e. ACTIVATE(), deactivates all default behaviour.

15.18.5 Defaultsand tree attachment

Whenever tree attachment is used it is important to have a clear understanding of how Defaults apply both to the calling tree
and to the attached Test Step. In order to avoid hidden side-effects, the Defaults that apply within an attached Test Step are
defined to be those specified in the table that defines that Test Step. Thus, if the Test Step is defined in the Test Step Library,
then the Defaults that apply are specified in header of the Test Step behaviour table. Alternatively, if the Test Step is
defined locally in the same behaviour table as the calling tree, then the same Defaults apply to both the calling tree and
the attached Test Step.

In order to avoid multiple insertions of Defaults within a set of alternatives, the Default specified for a particular tree do
not apply to thetop level of aternatives of that tree unless the tree is the root tree of a Test Case.

In order to generate a correct expansion of atreeit is necessary to expand the Defaults both:
a) beforethetreeisexpanded as an attached tree; and
b) before any of the tree’ s attached Test Steps are expanded.

The expansion of Defaults is thus local to a single tree and comprises the attachment of the Default tree to the bottom of
every set of alternatives within the tree (except the top set of alternatives for any tree other than the root tree of a Test
Case).

Default expansion rules hold equally in the case where a set of aternatives contains an OTHERWI SE event.

EXAMPLE 103 — Locality of a Default against a Test Step:

TOP_TREE STEP TOP_TREE
A B A

+STEP C B

D E Cc
STEP E D
Default:STEP_DEF
- D

B

C
STEP_DEF
E

1: TOP_TREE attaches 2: STEP_DEF expanded 3: STEP expanded into

STEP, which hasthe into STEP TOP_TREE

Default STEP_DEF

Recommendation X.292 (09/98) 129

EXAMPLE 104 — Locality of a Default against a calling tree:

TOP_TREE TOP_TREE TOP_TREE
Default: TOP_DEF A A
A +STEP B
+STEP E C
TOP_DEF E E E
E
STEP
B
C
1: TOP_TREE attaches 2: TOP_DEF expanded 3: STEP expanded into
STEP. TOP_TREE has TOP_TREE TOP_TREE

the Default TOP_DEF

EXAMPLE 105 — A case of cyclic tree attachment:

STEP_1 STEP_1 STEP_1
Default: DEF_1 A A
A +STEP_2 C
+STEP_2 B A
B El +STEP_2
B
ElEF—l STEP_2 El
C D
STEP_2 +STEP_1 E2
Default: DEF_2 D B
C E2 El
+STEP_1
DEF_2
E2
1: STEP_1 and STEP_2 2: DEF_1 expanded into 3: After one expansion
attach each other. STEP_1 and DEF_2 of the Default-free
STEP_1 has Default expanded into STEP_2 STEP_2 and one
DEF_1. STEP_2 has expansion of the
Default DEF_2 Default-free STEP_1

NOTE - Such cyclic attachments are discouraged.

15.18.6 Tree Attachment, Defaults, Activate and Return

If the ACTIVATE operation is used within a test case, the semantics of defaults and tree attachment can only be
described dynamically rather than statically. Indeed, the operational semantics of defaults in Annex B are specified in
terms of dynamic tree expansion, one level at atime.

In this dynamic semantic model, the specification of a list of defaults in the header is equivalent to prefixing the
behaviour tree with an ACTIVATE of that list of default trees. In a test step, placing a default list in the header is
equivalent to placing an ACTIVATE of that list of default trees between each alternative in the first level of alternatives
and its subsequent behaviour. If atest step is attached which has no defaults specified in the header, then the implied
ACTIVATE operations have no parameters and hence deactivate all defaults.

130 Recommendation X.292 (09/98)

Since behaviour subsequent to a tree attachment takes its defaults from the context of the calling tree rather than attached
test step, tree attachment implies the insertion of an ACTIVATE after every non-terminating leaf node (i.e. one which
does not assign a verdict) to restore the defaults to those of the context in which the attachment was made. In the case of
the leaf node being a RETURN, thisimplies ACTIVATE has to come before the RETURN to ensure that it takes effect
before jJumping back into the outer context.

The effect of acombination of defaults and tree attachment isillustrated by the example test case shown in Example 106.

EXAMPLE 106 — Example test case X-Defl to illustrate the meaning of defaults:

Test Case Dynamic Test Case Dynamic Test Case Dynamic
Behaviour Behaviour Behaviour
Test Step Name :X-Defl Test Step Name :T1 Test Step Name :T2
Group : Group : Group :
Purpose : Objective Objective
Default : D1, D2 Default : D3,D4 Default
L Behaviour Cref \Y L Behaviour Cref \Y L Behaviour Cref \Y
Description Description Description
X A D
+T1 B E
Y C F
z
+T2

This example test case is equivalent to the one shown in Example 107, in which the list of defaultsin the test case header
has been replaced by an ACTIVATE of the same list of defaults asthe first TTCN statement of the behaviour tree.

EXAMPLE 107 — Alternative specification of example test case X-Defl using ACTIVATE:

Test Case Dynamic Behaviour

Test Step Name :X-Defl
Group :
Purpose

Default

L Behaviour Cref \%
Description

ACTIVATE(D1,D2)
X
+T1
Y

+T2

The processing of an ACTIVATE sets the current default context. Progression to the next level of alternatives attaches
thelist of default treesin the current default context to the next level of alternatives.

Recommendation X.292 (09/98) 131

Thus, the evaluation of the example test case shown in Example 107 could progress as illustrated in Figure 8. Firstly, the
ACTIVATE(D1,D2) statement is evaluated to set the default context to D1 and D2. Then, assuming that X matches, D1
and D2 are attached at the same level of aternatives as T1. When T1 is then expanded, ACTIVATE(D3,D4) is inserted
after thefirst level of alternatives of that test step, and ACTIVATE(D1,D2) isinserted after the two leaf nodes in order to
restore the default context before the subsequent behaviour, Y, is reached. Assuming that A then matches, the defaults D1
and D2 are attached redundantly at the same level of alternatives as the ACTIVATE; this is because the current default
context is always appended to the next level of alternatives, indiscriminately, even if the next level of aternatives consists
of a construct or pseudo-event which aways matches. When the new ACTIVATE statement is evaluated, the default
context is changed to that applicable to test step T1. Then if B matches, the evaluation progresses to the ACTIVATE
which restores the default context back to that applicable to the root tree.

Example 108 gives another example test case, this one mixing defaults specified in headers with an explicit ACTIVATE
statement and tree attachment.

EXAMPLE 108 — Example test case X-Def2 to illustrate the meaning of defaults and ACTIVATE:

Test Case Dynamic Behaviour Test Case Dynamic Behaviour
Test Step Name :X-Def2 Test Step Name:T
Group : Group :
Purpose : Objective
Default : D1 Default : D3
L Behaviour Cref \% L Behaviour Cref \%
Description Description
X Y
ACTIVATE(D2) z
+T
S
+T
S

The progression of the evaluation of thistest case isillustrated in Figure 9. This shows the progression of the evaluation
through the two main paths of the test case, showing that the default context applicable to the first Sis determined by the
ACTIVATE, whereas the default context applicable to the second S is determined by the defaults specified in the test
case header; neither of these default contexts for the S statements is affected by the preceding tree attachments.

Figure 9 begins by showing the effect of expanding the attachment of T at the first level of aternatives plus the appending
of the initial defaults. If X matches, the evaluation progresses via the ACTIVATE(D2) to the second occurrence of the
attachment of T, with the default context changed to D2 and the attachment of D2 appended at the same level of
aternatives as T. T is then expanded, remembering to insert the two ACTIVATE statement to set the test step default
context and then restore the root tree default context. These changes in the default context are then shown in the next two
stages of the evaluation, assuming that first Y matches and then Z. The result is S with an alternative of the attachment of
D2 being evaluated in default context D2.

The alternative path shown in Figure 9 starts with Y matching instead of X. This causes the progression into default
context D3, whereupon if Z matches the default context is restored to be D1. Thus, what is reached down this path of the
progression is S with an alternative of the attachment of D1 being evaluated in default context D1.

132 Recommendation X.292 (09/98)

X +T1
v Y
Z +D1
+T2 > +D2
+D1 X matches
+D2
Default Context =D1, D2 Default Context = D1, D2
A ACTIVATE(D3,D4)
ACTIVATE(D3,D4) B
B ACTIVATE(D1,D2)
ACTIVATE(D1,D2) v
> \% C
Expand +T1 c A maiches ACTIVATE(D1,D2)
ACTIVATE(D1,D2) Y
o1 +D1
+D2 +D2
Default Context = D1, D2 Default Context = D1, D2
B ACTIVATE(D1,D2)
ACTIVATE(D1,D2) Brroches 1 ¥
Y +D3
C +D4
ACTIVATE(D1,D2)
R Y
Evauat o3
vaude
ACTIVATE |*D4
Default Context = D3, D4 Default Context = D1, D2
Evduate
ACTIVATE
A
Y
+D1
+D2
Default Context = D1, D2

T0731100-98/d09

Figure 8/X.292 — Possible progression of evaluation of example test caLe X-Defl

The progression of evaluation of example test casesin Figures 8 and 9 has not shown the expansion of the default trees. If
when the default tree is expanded, it is found that the default tree or any associated local tree contains a RETURN
congtruct, this is equivalent to a label being placed at the head of the current set of alternatives with every RETURN
construct being replaced by an ACTIVATE, to restore the default context of the calling tree, followed by a GOTO
construct to go to that new label.

Recommendation X.292 (09/98) 133

All leaf nodes, other than RETURN, of a default behaviour tree in which all local subtrees have been attached have no

X
ACTIVATE(D2)

+T
S
Y
ACTIVATE(D3)
Z
ACTIVATE(D1)
S
+D1
Default Context = D1
Y matches
and evaluate
ACTIVATE
A4
Z
ACTIVATE(D1)
S
+D3
Default Context = D3
Z matches
and evaluate
ACTIVATE
S
+D1

Default Context = D1

X matches
and evaluate
ACTIVATE

+T
S
+D2
Default Context = D2
Expand T
\ 4
Y
ACTIVATE(D3)
Z
ACTIVATE(D2)
S
+D2
Default Context = D2
Y matches
and evaluate
ACTIVATE
\ 4
Z

ACTIVATE(T2)
S
+D3

Default Context = D3

Z matches
and evaluate
ACTIVATE
\4
S
+D2

Default Context = D2

T0731110-98/d10

Figure 9/X.292 — Possible progression of evaluation of example test case X-Def2

subsequent behaviour and so they shall either set averdict or result in atest case error.

To illustrate this, the example test case given in Example 109 will be used.

134

Recommendation X.292

(09/98)

EXAMPLE 109 — Example test case X-Def3 to illustrate the meaning of defaults and RETURN:

Test Case Dynamic Behaviour Test Case Dynamic Behaviour
Test Step Name :X-Def3 Default Name : D1
Group : Test Step Name :
Purpose : Objective
Default : D1
L Behaviour Cref \% L Behaviour Cref \%
Description Description
X C
Y P D
RETURN
E F

The progression of the evaluation of this example test case is illustrated in Figure 10. Firstly, the default tree D1 is
attached at the first level of aternatives of the root tree. D1 is then expanded. Since D1 contains a RETURN statement,
this is a fairly complex expansion. The top event in the level of alternatives at which the attachment occurs is labelled
with a unique label, L. Since the attached tree is a default, its own internal default context is empty because defaults do
not have their own defaults, and therefore an ACTIVATE with no arguments is inserted after the first level of alternatives
of the attached tree. In addition the RETURN statement is replaced by an ACTIVATE to restore the default context to
D1, followed at the next level by GOTO L. Now, when this expanded tree is evaluated, if C matches, it progresses to the
ACTIVATE() statement together with the redundant attachment of the default context, D1. The effect of evauating the
ACTIVATE() isto empty the default context. Then, if D matches, the ACTIVATE(D1) is evaluated to restore the default
context to D1. This leads to the GOTO statement together with another redundant attachment of the default context D1.
The evauation of the GOTO then returns the processing to the state in which the label L was added. Evaluation will
continue to cycle round this loop until either X, followed by Y, matches for a pass, or C, followed by E, matches for a
fail.

15.18.7 Defaultsand CREATE

Default behaviour is not inherited by test steps which are used in a CREATE operation, i.e. test steps which execute their
behaviour description in parallel with the MTC. Thus, the scope of Default behaviour in concurrent TTCN is always local
tothe MTC or aPTC.

In instances when atest step is used in a CREATE operation, the Default behaviour specified in the test step header shall
be applied at thefirst level of indentation. This use of Defaults is consistent with the application of Defaultsin test cases.

15.18.8 Defaultsand CMs

Default behaviour is applied to a set of aternatives which receive only CMs. This may cause PDUs which arrive prior to
receipt of the executed CM, or PDUs which are already in the PCO queue but not yet received, to be removed from the
PCO queue. To prevent the removal of PDUs from the PCO queue, the NO_DEFAULTS construct shall be specified as
the event immediately preceding the set of alternatives which receive only the CM(s).

Recommendation X.292 (09/98) 135

+D1

Default Context = D1

Expand D1, inserting ACTIVATE()
and replacing RETURN with a
label, ACTIVATE(D1) and a GOTO

L: X
Y
C
ACTIVATE()
D B GOTOL
Execute GOTO
ACTIVATE(DI) (.e Reumtol) | *D1
GOTOL
E Default Context = D1
: Evduate
Default Context = D1 ACTIVATE
ACTIVATE(DY)
Cmatches GOTOL
v Default Context = empty
ACTIVATE() D meatches
D
D
ACGE¥QIE(D1) ACTIVATE(DY)
> GOTOL
E Evauate E
+D1 ACTIVATE
Default Context = empty
Default Context = D1

T0731120-98/d11

Figure 10/X.292 — Possible progression of evaluation of example test case X-Def3

16 Page continuation

16.1 Page continuation of TTCN tables

When any TTCN tableistoo long to fit on a single page the following mechanism shall be used:
a) thewords"Continued on next page” shall be printed after the table line where the split occurs,

b) thewords"Continued from previous page" shall be printed before the continued table on the next page.

Tables may be split at any location, i.e., in their header, body, or footer section. In all cases, the sections title (e.g.,
column headers), shall be repeated on the next page. The complete header may or may not be repeated.

136 Recommendation X.292 (09/98)

EXAMPLE 110 — A continued Test Suite Parameters table:

Test Suite Parameter Declar ations

Parameter Name Type PIC/PIXIT Ref Comments
PAR1 INTEGER PICS question aa
PAR2 BOOLEAN PICS question bb
PAR3 IA5String PICS question cc
Continued on next page pagen
Continued from previous page pagen+1
Test Suite Parameter Declarations
Parameter Name Type PIC/PIXIT Ref Comments
PAR4 BOOLEAN PICS question dd
PARS HEXSTRING PICS question ee

16.2 Page continuation of dynamic behaviour tables

When it is necessary to continue a dynamic behaviour table, then either of the following two mechanisms can be used:

a) modularization,

where some part of the behaviour of the tree is specified as alibrary (non-local) Test Step, thereby modularizing the
tree and reducing the amount of behaviour for the current proformato that which will fit on asingle page; or

b) page continuation mechanism,

where, in the case of a dynamic behaviour table, in order to aid alignment of indentation levels, the following
additional information shall be presented:

1) theleve of indentation (enclosed in square brackets) of the last TTCN statement before the page split occurs,
shall be printed before the words " Continued on next page'”;

2) on the continued page, the level of indentation (enclosed in square brackets) of the first TTCN statement in the

continued table, shall be printed after the words " Continued from previous page”.

It may be necessary in the case of lengthy Test Cases to indent to a different level than the stated one. In such cases
the stated level of indentation enclosed in square brackets will be aligned with the chosen indentation of the first
statement line in the continued table. To further aid alignment of indentation levels, additional indications of
indentation levels may aso be given.

Recommendation X.292

(09/98) 137

Annex A

Syntax and static semanticsof TTCN

Al I ntroduction

This annex defines the syntax and the static semantics of TTCN. There are two forms of TTCN, a graphical form
(TTCN.GR) and a machine processable form (TTCN.MP). For the human user the graphical form of TTCN, the
TTCN.GR, takes advantage of an easily understood visual interpretation. However, TTCN.GR does not readily lend itself
to machine processing. The TTCN.M P addresses this problem and serves the following purposes:

a) toprovideaforma syntax for TTCN in BNF;

b) toactasatransfer syntax;

Cc) toease automated derivation of ETSsfrom ATSs;

d) other machine processing.

NOTE — Automated derivation of ETSs is outside the scope of this Recommendation.

This annex aso defines the static semantics for both TTCN.GR and TTCN.MP.

A2 Conventionsfor the syntax description

A.21 Syntactic metanotation

Table A.1 defines the metanotation used to specify the extended form of BNF grammar for TTCN (henceforth called
BNF):

In the metanotation, concatenation binds more tightly than the alternative operator. Hence "abc def | ghi jkI" is equivalent
to "(abc def) | (ghi jkI)".

Table A.1/X.292 — TTCN.MP Syntactic Metanotation

u= is defined to be

abc xyz abc followed by xyz

[alternative

[abc] 0 or 1 instances of abc
{abc} 0 or more instances of abc
{abc}+ 1 or more instances of abc
(...) textual grouping

abc the non-terminal symbol abc
abc a terminal symbol abc

"abc" a terminal symbol abc

A.2.2 TTCN.MP syntax definitions
A.2.2.1 Complete tables defined in TTCN.GR are represented in TTCN.MP by productions of the kind:
$Begin_ KEYWORD $End_KEYWORD
EXAMPLE A.1 — TS_PARdcls ::%$Begin_TS PARdcls{TS_PARdcl}+$End_TS PARdcls
Normally, these productions contain at |east one mandatory component.

A.2.2.2 Both sets of lines of atable and individual lines (i.e., sets of fieldsin atable) are represented by productions of
the kind:

SKEYWORD ... e voet e e $End_KEYWORD
Begin does not appear in the opening keyword.

EXAMPLE A.2 — TS_PARdcl =TS PARdc TS_PARid TS_PARtype PICS_PIXIT [Comment]
$ENd_TS PARdcl

138 Recommendation X.292 (09/98)

A.2.2.3 Individua fieldsin aline are represented by:
SKEYWORD ... oo coe e e e e
Thereisno closing keyword.
EXAMPLE A.3 — TS_Parld:= $TS_Parld TS_Parldentifier
EXAMPLE A.4 — TS_Parldentifier ::= Identifier
A.2.2.4 Setsof tables, up to and including the test suite, are represented by productions of the kind:
$KEYWORDo v ves e $End_KEYWORD

EXAMPLE A.5 — ASP_TypeDefs ::$ASP_TypeDefs[TTCN_ASP_TypeDefs] [ASN1_ASP_TypeDefs]
$ENnd_ASP_TypeDefs

A.225 All other productions defining non-terminal symbols have no keywords at the beginning or the end of the
right-hand expression.

EXAMPLE A.6 — Timerldentifier ::= Identifier

A.2.2.6 When parsing TTCN.MP, any symbol not allowed within an identifier may denote the end of an identifier. In
those cases in which it is necessary to insert a meaningless character at the end of an identifier in order to separate it from
another identifier or keyword (e.g. when an identifier is followed by a keyword such as BY or OR), then the
recommended separators are space and tab characters.

A3 TTCN.MP syntax productionsin BNF

A.31 TTCN Specification

1 TTCN_Specification ::= TTCN_Module | Suite

A32 TTCN Module

2 TTCN_Module ::=$TTCN_Module TTCN_Moduleld TTCN_ModuleOverviewPart [TTCN_ModulelmportPart]
[DeclarationsPart] [ConstraintsPart] [DynamicP&End_TTCN_Module

3 TTCN_Moduleld ::=$TTCN_Moduleld TTCN_Moduleldentifier
4 TTCN_Moduleldentifier ::= Identifier

A.3.21 TTCN Module Overview Part

5 TTCN_ModuleOverviewPart ::$TTCN_M oduleOverviewPart TTCN_ModuleExports [TTCN_ModuleStructure]
[TestCaselndex] [TestStepindex] [Defaultind&&gnd_TTCN_M oduleOver viewPart

A.3.21.1 TTCN Module Exports

6 TTCN_ModuleExports ::$Begin_TTCN_M oduleExports TTCN_Moduleld [TTCN_ModuleRef]
[TTCN_ModuleObjective] [StandardsRef] [PICSref] [PIXITref] [TestMethods] [Comment] ExportedObjects [Comment]
$End_TTCN_ModuleExports

TTCN_ModuleRef ::= $STTCN_ModuleRef BoundedFreeText
TTCN_ModuleObjective ::$TTCN_M oduleObj ective BoundedFreeText
ExportedObijects ::$ExportedObjects {ExportedObject}$End_ExportedObjects
10 ExportedObject ::= $ExportedObject Objectld ObjectType [Sourcelnfo] [Commesnd_ExportedObject
11 Objectld ::= $Objectld Objectldentifier
12 Objectldentifier ::= Identifier | ObjectTypeReference
13 ObjectTypeReference ::= Identifier "[" Identifier "]"

/* STATIC SEMANTICS — The first Identifier is a NamedNumber or an Enumeration and the Identifier contained in
brackets is the name of the corresponding type. */

14 ObjectType ::3$0bjectType TTCN_ObjectType

Recommendation X.292 (09/98) 139

15

16

17
18

TTCN_ObjectType::= SimpleType_Object | StructType Object | ASN1 Type Object | TS Op_Object |

TS Proc_Object | TS Par_Object | SelectExpr_Object | TS Const_Object | TS Var_Object | TC_Var_Object |
PCO_Type Object | PCO_Object | CP_Object | Timer_Object | TComp_Object | TCompConfig_Object |
TTCN_ASP_Type Object | ASN1_ASP_Type Object [TTCN_PDU_Type Object | ASN1_PDU_Type Object |
TTCN_CM_Type Object |ASN1_CM_Type Object | EncodingRule_Object | EncodingVariation_Object |
InvalidFieldEncoding_Object | Alias_Object | StructTypeConstraint_Object | ASN1_TypeConstraint_Object |
TTCN_ASP_Constraint_Object | ASN1_ASP_Constraint_Object | TTCN_PDU_constraint_Object |

ASN1 PDU_Constraint_Object | TTCN_CM_Constraint_Object | ASN1_CM_Constraint_Object | TestCase_Object
| TestStep_Object | Default_Object | NamedNumber _Object | Enumeration_Obj ect

Sourcel nfo ::= $Sour cel nfo (Sourceldentifier | ObjectDirective)

[* STATIC SEMANTICS - The Sourceldentifier is the name of the original source object . */
Sourceldentifier ::= Suiteldentifier | TTCN_Moduleldentifier

ObjectDirective ::= OmitEXTERNAL

A.3.2.1.2 TTCN Module Structure

19

A3.22
20

TTCN_ModuleStructure ::$Begin_TTCN_M oduleStructur e Structure&Objectives [Comment]
$ENd_TTCN_ModuleStructure

TTCN Module Import Part

TTCN_ModulelmportPart ::$TTCN_M odulel mportPart [ExternalObjects] [ImportDeclarations]
$ENd_TTCN_M odulel mportPart

A.3.2.2.1 External Objects

21
22
23
24
25
26

ExternalObjects ::$Begin_Exter nalObjects [ExternalGroupld] {ExternalObject}+ [Commen$End_Exter nalObjects
ExternalGroupld ::= $ExternalGroupl d ExternalGroupldentifier

ExternalGroupldentifier ::= Identifier

ExternalObject ::$Exter nalObject ExternalObjectld ObjectType [CommeSnd_Exter nalObject
ExternalObjectld ::= $Exter nalObjectl d ExternalObjectldentifier

ExternalObjectldentifier ::= Objectldentifier | TS_Opld&ParList | Consld&ParList | TestStepld&ParList

A.3.22.2 Import Declarations

27
28
29
30
31

32
33
34
35
36
37
38

A.33
39

40
41

A331
42

A.3.3.2
43

140

ImportDeclarations ::$lmportDeclar ations{ImportsOrGroup}+$End_I mportDeclar ations
ImportsOrGroup ::= Imports| ImportsGroup

ImportsGroup ::3I mportsGroup ImportsGroupld {ImportsOrGroup}$End_I mportsGroup
ImportsGroupld ::$ImportsGroupl d ImportsGroupldentifier

Imports ::=$Begin_I mports Sourceld [ImportsGroupRef] [SourceRef] [StandardsRef] [Comment] ImportedObjects
[Comment]$End_Imports

Sourceld ::= $Sour cel d Sourceldentifier

ImportsGroupRef ::$l mportsGroupRef ImportsGroupReference

ImportsGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) "/"] {ImportsGroupldentifier "/"}
ImportsGroupldentifier ::= Identifier

SourceRef ::$Sour ceRef BoundedFreeText

ImportedObjects ::$l mportedObj ects{ImportedObject}+$End_I mportedObjects

ImportedObject ::= $I mportedObject Objectld ObjectType [Sourcelnfo] [Comme®nd_I mportedObject

Test suite

Suite ::=$Suite Suiteld SuiteOverviewPart [ImportPart] DeclarationsPart ConstraintsPart Dynan$&RdrtSuite

/* STATIC SEMANTICS - Suiteld shall be the same as the Suiteld declared in TestSuiteStructure table (Suite Structure).
*/

Suiteld ::=$Suiteld Suiteldentifier

Suiteldentifier ::= Identifier

Test Suite Overview

SuiteOverviewPart::$SuiteOver viewPart [TestSuitelndex] SuiteStructure TestCaselndex [TestStepindex]
[Defaultindex] [TestSuiteExport§JEnd_SuiteOverviewPart

Test Suite Index

TestSuitelndex ::$Begin_TestSuitel ndex {Objectinfo} [Comment]$End_T estSuitel ndex

Recommendation X.292 (09/98)

A.33.21 Imported Object Info

44
45
46
47

A.333

49
50
51
52
53

55
56

A.3.34

57

58
59

60
A.3.35

61

62

A.336
63

64

A.3.3.7

65

A.3.38
66

Objectinfo ::= $Obj ectI nfo Objectld ObjectType Sourceld OrigObjectld [PageNum] [Comment] $End_ObjectlI nfo
PageNum ::= $PageNum PageNumber

PageNumber ::= Number

OrigObjectld ::= $OrigObj ectl d Objectldentifier

Test Suite Structure

SuiteStructure ::= $Begin_SuiteStructur e Suiteld StandardsRef PICSref PIXITref TestMethods [Comment]
Structure& Objectives [Comment] $End_SuiteStructure

StandardsRef ::= $Standar dsRef BoundedFreeText

PICSref ::= $PI CSref BoundedFreeText

PIXITref ::= $PI X1 Tref BoundedFreeText

TestMethods ::= $TestM ethods BoundedFreeT ext

Comment ::= $Comment [BoundedFreeText]

Structure& Objectives ::= $Structur e& Objectives{ Structure& Objective} $End_Structure& Objectives
Structure& Objective ::= $Structur e& Objective TestGroupRef SelExprid Objective $End_Structure& Objective
SelExprld ::=$SelectExpr 1 d [SelectExprldentifier]

Test Case lndex

TestCaselndex ::= $Begin_TestCasel ndex { [Coll Comment] Caselndex} + [Comment] $End_TestCasel ndex

/* NOTE - Collective comments may be used in this table according to Figure 2. */

CollComment ::=$CollComment [BoundedFreeText]

Caselndex ::$Casel ndex TestGroupRef TestCaseld SelExprld DescripEnd_Casel ndex

/* STATIC SEMANTICS — Test Cases shall be listed in the order that they exist in the dynamic part. */

/* STATIC SEMANTICS — An explicit TestGroupReference shall be provided for the first TestCase of each TestGroup. */

/* STATIC SEMANTICS — An explicit TestGroupReference shall be provided for each TestCase that immediately follows
a TestGroup. */

Description ::=$Description BoundedFreeText

Test Step Index

TestStepindex ::$Begin_TestStepl ndex {{CollComment] Stepindex} [Commen8End_TestStepl ndex

/* NOTE - Collective comments may be used in this table according to Figure 2. */

StepIndex ::-$Steplndex TestStepRef TestStepld DescriptEnd_Stepl ndex

[* STATIC SEMANTICS — TestStepld shall not include a formal parameter list. */

[* STATIC SEMANTICS - Test Steps shall be listed in the order that they exist in the dynamic part. */

/* STATIC SEMANTICS — An explicit TestStepGroupReference shall be provided for the first TestStep of each
TestStepGroup. */

/* STATIC SEMANTICS An explicit TestStepGroupReference shall be provided for each TestStep that immediately
follows a TestStepGroup. */

Default Index

Defaultindex ::=$Begin_Defaultl ndex {{CollComment] Defindex} [CommentpEnd_Defaultl ndex

/* NOTE - Collective comments may be used in this table according to Figure 2. */

Defindex ::=$Defl ndex DefaultRef Defaultld DescriptioBEnd_Defl ndex

/* STATIC SEMANTICS - Defaultld shall not include a formal parameter list. */

[* STATIC SEMANTICS - Defaults shall be listed in the order that they exist in the dynamic part. */

/* STATIC SEMANTICS — An explicit DefaultGroupReference shall be provided for the first Default of each
DefaultGroup. */

[* STATIC SEMANTICS — An explicit DefaultGroupReference shall be provided for eachDefault that immediately follows
a DefaultGroup. */

Test Suite Exports

TestSuiteExports::$Begin_TestSuiteExports ExportedObjects [CommenBEnd_TestSuiteExports

Import Part

ImportPart ::=$l mportPart ImportDeclaration$End_I mportPart

Recommendation X.292 (09/98) 141

A.3.3.9 DeclarationsPart

67

DeclarationsPart ::= $Declar ationsPart Definitions Parameterization& Sel ection Declarations ComplexDefinitions
$ENd_DeclarationsPart

A.3.3.10 Definitions

A.3.3.10.1 General

68

Definitions ::= [TS_TypeDefs] [EncodingDefs] [TS_OpDefs] [TS_ProcDefs]

A.3.3.10.2 Test Suite Type Definitions

69

TS TypeDefs ::=$TS TypeDefs[SimpleTypeDefsOrGroup] [StructTypeDefs] [ASN1_TypeDefs]
[ASN1_TypeRefsOrGroup] $ENd_TS TypeDefs

A.3.3.10.3 Simple Type Definitions

70
71
72
73

74
75
76
77

78

79

80

81

82

83

84

85

86

87

88

89
90

SimpleTypeDefsOrGroup ::= SimpleTypeDefs | SimpleTypeGroup

SimpleTypeGroup ::= $SimpleTypeGroup SimpleTypeGroupld { SimpleTypeDefsOrGroup} + $End_SimpleTypeGroup
SimpleTypeGroupld ::= $SimpleTypeGroupl d SimpleTypeGroupldentifier

SimpleTypeDefs ::= $Begin_SimpleTypeDefs [SimpleTypeGroupRef] {[CollComment] SimpleTypeDef} + [Comment]
$ENd_SimpleTypeDefs

/* NOTE - Collective comments may be used in this table according to Figure 2. */

SimpleTypeGroupRef ::$SimpleTypeGroupRef SimpleTypeGroupReference

SimpleTypeGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) "/"] {SimpleTypeGroupldentifier "/"}
SimpleTypeGroupldentifier ::= Identifier

SimpleTypeDef ::$SimpleTypeDef SimpleTypeld SimpleTypeDefinition [PDU_FieldEncoding] [Comment]
$ENd_SimpleTypeDef

SimpleTypeld ::=$SimpleTypel d SimpleTypeldentifier

SimpleTypeldentifier ::= Identifier

SimpleTypeDefinition ::$SimpleTypeDefinition Type&Restriction

[* STATIC SEMANTICS — There shall be no recursive references (neither directly nor indirectly) in Type&Restriction. */
Type&Restriction ::= Type [Restriction]

/* STATIC SEMANTICS — Type shall be either PredefinedType or SimpleType. */

Restriction ::= LengthRestriction | IntegerRange | SimpleValueList

/* STATIC SEMANTICS — The set of values defined by Restriction shall be a true subset of the values of the base type. */
LengthRestriction ::= SingleTypeLength | RangeTypelLength

[* STATIC SEMANTICS - LengthRestriction shall be provided only when the base type is a string type (i.e. BITSTRING,
HEXSTRING, OCTETSTRING or CharacterString) or derived from a string type. */

SingleTypeLength ::= "[* Number "]"

RangeTypelLength ::="[" LowerTypeBound To UpperTypeBound "]"

/* STATIC SEMANTICS — LowerTypeBound shall be a non-negative number. */

[* STATIC SEMANTICS — LowerTypeBound shall be less than UpperTypeBound. */
IntegerRange ::= "(" LowerTypeBound To UpperTypeBound ")"

[* STATIC SEMANTICS — LowerTypeBound shall be less than UpperTypeBound. */
LowerTypeBound ::= [Minus] Number | MinuSIFINITY

UpperTypeBound ::= [Minus] NumbefNIFINITY

To:=TO|"."

SimpleValueList ::="(" [Minus] LiteralValue {Comma [Minus] LiteralValue})"

/* STATIC SEMANTICS - If Minus is used in SimpleValueList, then LiteralValue shall be a number. */

/* STATIC SEMANTICS - The LiteralValues shall be of the base type and shall be a true subset of the values defined by
the base type. */

A.3.3.10.4 Structured Type Definitions

91
92
93
94
95

96
97

142

StructTypeDefs ::$Struct TypeDefs {StructTypeDefOrGroupH$End_StructTypeDefs

StructTypeDefOrGroup ::= StructTypeDef | StructTypeGroup

StructTypeGroup ::$StructTypeGroup StructTypeGroupld {StructTypeDefOrGroup$End_StructTypeGroup
StructTypeGroupld ::$StructTypeGroupld StructTypeGroupldentifier

StructTypeDef ::$Begin_StructTypeDef Structld [StructTypeGroupRef] [EncVariationld] [Comment] ElemDcls
[Comment]$ENnd_StructTypeDef

Structld ::=$Structld Structld&Fullld
Structld&Fullld ::= Structldentifier [Fullldentifier]

Recommendation X.292 (09/98)

98

99

100
101
102
103
104
105
106
107
108

Fullldentifier ::="(" BoundedFreeText ")"

/* STATIC SEMANTICS — Some TTCN objects allow names, as given in the appropriate protocol standard to be
abbreviated. If an abbreviation is used, then Fullldentifier shall be given in the declaration of the object. */

Structldentifier ::= Identifier

StructTypeGroupRef :$StructTypeGroupRef StructTypeGroupReference

StructTypeGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) "/"] {StructTypeGroupldentifier "/"}
StructTypeGroupldentifier ::= Identifier

ElemDcls ::=$ElemDcls{ElemDcl}+ $End_ElemDcls

ElemDcl ::=$ElemDcl ElemIdElemType [PDU_FieldEncoding] [Commer$#End_ElemDcl

Elemid ::=$Elemld ElemId&Fullld

Elemld&Fullld ::= Elemldentifier [Fullldentifier]

Elemldentifier ::= Identifier

ElemType ::=$ElemType Type&Attributes

[* STATIC SEMANTICS — There shall be no recursive references (neither directly nor indirectly) in Type&Attributes. */

[* STATIC SEMANTICS — A structure element Type shall be a PredefinedType, TS_Typeldentifier, PDU_Identifier, or
PDU. */

A.3.3.10.5 ASN.1 Type Definitions

109
110
111
112
113

114
115
116
117
118
119
120
121

122

ASN1_TypeDefs ::3ASN1 TypeDefs {ASN1_TypeDefOrGroup}+$End_ASN1 TypeDefs
ASN1_TypeDefOrGroup ::= ASN1_TypeDef | ASN1_TypeGroup

ASN1_TypeGroup ::3ASN1 TypeGroup ASN1_TypeGroupld {ASN1_TypeDefOrGroupBEnd_ASN1 TypeGroup
ASN1_TypeGroupld ::$ASN1 TypeGroupld ASN1_TypeGroupldentifier

ASN1_TypeDef ::$Begin_ASN1_TypeDef ASN1_Typeld [ASN1_TypeGroupRef] [EncVariationld] [Comment]
ASN1_TypeDefinitiofComment]$End_ASN1 TypeDef

ASN1_Typeld ::ASN1 Typeld ASN1_Typeld&Fullid

ASN1_Typeld&Fullld ::= ASN1_Typeldentifier [Fullldentifier]

ASNL1_Typeldentifier ::= Identifier

ASN1_TypeGroupRef ::3ASN1 TypeGroupRef ASN1_TypeGroupReference

ASN1_TypeGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) "/"] {ASN1_TypeGroupldehtifjer
ASN1_TypeGroupldentifier ::= Identifier

ASN1_TypeDefinition ::$ASN1_TypeDefinition ASN1_Type&LocalType$End_ASN1 TypeDefinition
ASN1_Type&LocalTypes ::= ASN1_Type {ASN1_LocalType}

/* STATIC SEMANTICS - Types referred to from the ASN1_Type definition shall be defined in other ASN.1 type
definition tables, be defined by reference in the ASN.1 type reference table or be defined locally (i.e., ASN1_LocalTypes)
in the same table, following the first type definition. */

/* STATIC SEMANTICS — ASN1_LocalTypes shall not be used in other parts of the test suite. */
ASN1_Type ::= Type
/* REFERENCE — Where Type is a non-terminal defined in Recommendations X.680:
Type ::= BuiltinType | ReferencedType | ConstrainedType
For the purposes of TTCN, the production in Recommendations X.680 which states:

SubtypeElements ::= SingleValue | ConstrainedSubtype | ValueRange | PermittedAlphabet | SizeConstraint |
TypeConstraint | InnerTypeConstraint

is redefined to be

SubtypeElements ::= SingleValue | ConstrainedSubtype | ValueRange | PermittedAlphabet | SizeConstraint |
TypeConstraint | InnerTypeConstraint | ASN1_Encoding

This means that ASN1_Encoding can be applied anywhere that a TypeConstraint can be applied: to the whole of an
ASN1_Type or any ASN.1 Type within the ASN1_Type or to a SET OF or SEQUENCE OF type (by placing the
ASN1_Encoding in parentheses immediately after the keyword SET or SEQUENCE — unlike for a SizeConstraint in such a
position, the parentheses are required since there is no backwards compatibility argument for allowing their omission).

For the purpose of TTCN, the following productions in Recommendation X.680:

BuiltinvValue ::=
BitStringType |
BooleanType |
CharacterStringType |
ChoiceType |
ChoiceType |
EmbeddedPDUType |
EnumeratedType |
ExternalType |
InstanceOfType |
IntegerType |

Recommendation X.292 (09/98) 143

144

123

NullType |
ObjectClassFieldType |
OctetStringType |

Rea Type |
SequenceOf Type |
SetType |

SetOfType |
TaggedType

ReferencedType ::=
DefinedType |
Useful Type |
SelectionType |
TypeFromObject |
ValueSetFromObjects

DefinedType ::=
Externaltypereference |
Typereference |
ParameterizedType]
ParameterizedValueSetType

Elements ::=
SubtypeElements |
ObjectSetElements |
"("ElementSetSpec")"

are redefined to be

BuiltinvValue ::=
BitStringType |
BooleanType |
CharacterStringType |
ChoiceType |
EmbeddedPDUType |
EnumeratedType |
External Type |
IntegerType |
Null Type |
ObjectldentifierType |
Real Type |
SequenceOfType |
SequenceOf Type |
SetType |
SetOfType |
TaggedType

ReferencedType ::=
DefinedType |
Useful Type |
SelectionType

DefinedType ::=
Externaltypereference |
Typereference

Elements ::=

SubtypeElements |

"("ElementSetSpec")"*/
[*STATIC SEMANTICS - Each terminal type reference used within the Type production shall be one of the following:
ASN1_LocalType typereference, TS_Typeldentifier or PDU_Identifier. */
/* STATIC SEMANTICS — ASN.1 type definitions used within TTCN shall not use external type references as defined in
Recommendation X.680. */
ASN1_LocalType ::= Typeassignment
/* REFERENCE — Where Typeassignment is a non-terminal defined in Recommendation X.680. */
/* STATIC SEMANTICS — ASN.1 type definitions used within TTCN shall not use external type references as defined in
Recommendation X.680. */

Recommendation X.292 (09/98)

A.3.3.10.6 ASN.1 Type Definitions by Reference

124
125

126
127

128
129

130
131

132
133

ASN1 TypeRefsOrGroup ::= ASN1_TypeRefs| ASN1 TypeRefsGroup

ASN1_TypeRefsGroup ::= $ASNL TypeRefsGroup ASN1 TypeRefsGroupld { ASN1_TypeRefsOrGroup} +
$ENd_ASN1 TypeRefsGroup

ASN1 TypeRefsGroupld ::= $ASN1_TypeRefsGroupld ASN1_TypeGroupldentifier

ASN1_TypeRefs::= $Begin_ASN1_TypeRefs [ASN1 TypeRefsGroupRef] {[CollComment] ASN1_TypeRef}+
[Comment] $End_ASN1_TypeRefs

/* NOTE - Collective comments may be used in this table according to Figure 2. */
ASN1_TypeRefsGroupRef :$3ASN1 TypeRefsGroupRef ASN1_TypeGroupReference

ASN1_TypeRef :$ASNL1 TypeRef ASN1_Typeld ASN1_TypeReferen&SN1_Moduleld [EncVariationid]
[Comment]$End_ASN1_TypeRef

/* STATIC SEMANTICS — ASN1_Typeld shall not be specified with a Fullldentifier. */
ASN1_TypeReference :$ASN1_TypeReference TypeReference

TypeReference=typereference

/* REFERENCE — Where typereference is a non-terminal defined in Recommendation X.680. */

/* STATIC SEMANTICS - If the ASN.1 type definition has a reference to another type in the same ASN.1 Module, the
referenced type is implicitly imported (in the same way as for a TTCN module). */

ASN1_Moduleld ::=$ASN1_Moduleld ASN1_Moduleldentifier

ASN1_Moduleldentifier = Moduleldentifier

/* REFERENCE — Where Moduleldentifier is a non-terminal defined in Recommendation X.680. */

[* STATIC SEMANTICS — Moduleldentifier shall be unique within the domain of interest. */

A.3.3.10.7 Test Suite Operation Definitions

134
135
136
137
138
139

140
141

142
143
144
145
146

147

TS OpDefs::=$TS OpDefs{TS_OpDefOrGroup}+ $End_TS_OpDefs

TS OpDefOrGroup ::=TS_OpDef | TS_OpDefGroup

TS OpDefGroup ::= $TS_OpDefGroup TS_OpDefGroupld { TS_OpDefOrGroup} + $End_TS_OpDefGroup

TS OpDefGroupld ::= $TS OpDefGroupld TS_OpDefGroupldentifier

TS_OpDefGroupldentifier ::= Identifier

TS OpDef ::=$Begin_ TS OpDef TS Opld [TS_OpGroupRef] TS_OpResult [Comment] TS _OpDescription [Comment]
$End_TS_OpDef

TS Opld ::=$TS Opld TS _Opld&ParList

TS Opld&ParList ::= TS Opldentifier [Formal ParList]

[* STATIC SEMANTICS — A Test Suite Operation formal parameter Type shall be a PredefinedType, TS_Typeldentifier,
PDU_ldentifier or ASP_ldentifier, or the meta-typBU. */

TS_Opldentifier ::= Identifier

TS_OpGroupRef ::$TS OpGroupRef TS_OpGroupReference

TS_OpGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) "/"] {TS_OpGroupldentifier "/"}
TS_OpGroupldentifier ::= Identifier

TS_OpResult ::$TS_OpResult TypeOrPDU

/* STATIC SEMANTICS - TypeOrPDU shall be a PredefinedType, TS_Typeldentifier, PDU_ldentifier or ASP_ldentifier,
or the meta-typ@DU. */

TS_OpDescription ::$TS_OpDescription BoundedFreeText

A.3.3.10.8 Test Suite Operation Procedural Definitions

148
149
150
151
152
153

154
155

156
157
158
159

TS_ProcDefs ::$TS ProcDefs{TS_ProcDefOrGroup}$End_TS ProcDefs

TS_ProcDefOrGroup ::= TS_ProcDef | TS_ProcDefGroup

TS_ProcDefGroup ::$TS_ProcDefGroup TS_ProcDefGroupld {TS_ProcDefOrGroup$End_TS_ProcDefGroup
TS_ProcDefGroupld ::$TS _ProcDefGroupld TS_ProcDefGroupldentifier

TS_ProcDefGroupldentifier ::= Identifier

TS_ProcDef ::$Begin_TS_ProcDef TS_Procld [TS_ProcGroupRef] TS_ProcResult [Comment] TS_ProcDescription
[Comment]$ENd_TS_ProcDef

/* LEXICAL REQUIREMENT — Comments may be embedded within TS_ProcDescription by enclosing them within "/*"
and "*/" but may not be nested. They may be carried within TTCN.MP but shall be removed before parsing the TTCN.MP.
*/

TS_Procld ::3$TS Procld TS_Procld&ParList

TS_Procld&ParList ::3S_Procldentifier [FormalParList]

/* STATIC SEMANTICS — A procedural Test Suite Operation formal parameter Type shall be a PredefinedType,
TS_Typeldentifier, PDU_ldentifier or ASP_ldentifier, or the meta-typ&). */

TS_Procldentifier ::= Identifier

TS_ProcGroupRef :$TS ProcGroupRef TS_ProcGroupReference

TS_ProcGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) "/*] {TS_ProcGroupldentifier "/"}
TS_ProcGroupldentifier ::= Identifier

Recommendation X.292 (09/98) 145

160

161
162

163
164
165
166
167
168
169
170
171
172
173
174
175

A3311

TS ProcResult ::= $TS_ProcResult TypeOrPDU

/* STATIC SEMANTICS — TypeOrPDU shall be a PredefinedType, TS_Typeldentifier, PDU_Identifier or ASP_Identifier,
or the meta-typ@DU. */

TS_ProcDescription ::$TS _ProcDescription TS_OpProcDe$End_TS ProcDescription

TS_OpProcDef ::= [VarBlock] ProcStatement

/* NOTE — Comments are allowed within TS_OpProcDef, starting with "/*" and ending with "*/, but it is assumed that
these comments are removed before the syntax is parsed. Hence the BNF does not include the syntax of such embedded
comments. */

VarBlock ::=VAR VarDclsENDVAR

VarDcls ::= {VarDcl SemiColon}

VarDcl ::= BTATIC] Varldentifiers Colon TypeOrPDU [Colon Value]

Varldentifiers ::= Varldentifier {Comma Varldentifier}

Varldentifier ::= Identifier

ProcStatement ::= ReturnValueStatement | Assignment | [fStatement | WhileLoop | CaseStatement | ProcBlock
ReturnValueStatement :RETURNVAL UE Expression

IfStatement ::+F ExpressionTHEN {ProcStatement SemiColon}-EL SE {ProcStatement SemiColon}-§NDIF

WhileLoop ::=WHILE ExpressiorDO {ProcStatement SemiColonfENDWHILE

CaseStatement :GASE ExpressiorOF {CaseClause SemiColon}-EL SE {ProcStatement SemiColonHENDCASE
CaseClause ::= IntegerLabel Colon ProcStatement

IntegerLabel ::= Number | TS_Parldentifier | TS_Constldentifier

ProcBlock ::=BEGIN {ProcStatement SemiColon}END

Parameterization and Selection

A.3.3.11.1 General

176

Parameterization&Selection ::= [TS_ParDclsOrGroup] [SelectExprDefsOrGroup]

A.3.3.11.2 Test Suite Parameter Declarations

177
178
179
180
181

182
183
184
185
186
187
188

189
190

191

TS_ParDclsOrGroup ::= TS_ParDcls | TS_ParDclsGroup

TS_ParDclsGroup ::$TS_ParDclsGroup TS_ParDclsGroupld {TS_ParDclsOrGroup$end_TS Par DclsGroup
TS_ParDclsGroupld ::$TS_ParDclsGroupld TS_ParDclsGroupldentifier

TS_ParDclsGroupldentifier ::= Identifier

TS_ParDcls ::$Begin_TS_ParDcls [TS_ParGroupRef] {[CollComment] TS_ParDcl}+ [Commefgnd_TS ParDcls
/* NOTE - Collective comments may be used in this table according to Figure 2. */

TS_ParGroupRef :$TS ParGroupRef TS_ParGroupReference

TS_ParGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) "/"] {TS_ParGroupldentifier "/"}
TS_ParGroupldentifier ::= Identifier

TS_ParDcl ::3$TS ParDcl TS_Parld TS_ParType [TS_ParDefault] PICS_PIXITref [Comm@&Btjd_TS ParDcl
TS_Parld ::$TS Parld TS_Parldentifier

TS_Parldentifier ::= Identifier

TS_ParType ::$TS_Par Type TypeOrPDU

/* STATIC SEMANTICS — TypeOrPDU shall be a PredefinedType, TS_Typeldentifier, PDU_ldentifier or ASP_ldentifier,
or the meta-typ®DU. */

TS_ParDefault ::$TS_ParDefault [DefaultValue]

DefaultValue ::= Expression

/* STATIC SEMANTICS — DefaultValue shall not contain TS_Variables or TC_Variables and shall resolve to a constant
value. */

/* OPERATIONAL SEMANTICS — DefaultValue shall evaluate to an element of its declared type. */
PICS_PIXITref ::=$PICS_PIXITref BoundedFreeText

A.3.3.11.3 Test Case Selection Expression Definitions

146

192
193

194
195
196

197
198
199
200
201

SelectExprDefsOrGroup ::= SelectExprDefs | SelectExprDefsGroup

SelectExprDefsGroup :$SelectExprDefsGroup SelectExprDefsGroupld {SelectExprDefsOrGroup}+
$ENd_SelectExpr DefsGroup

SelectExprDefsGroupld :$SelectExpr DefsGroupld SelectExprDefsGroupldentifier
SelectExprDefsGroupldentifier ::= Identifier

SelectExprDefs ::$Begin_SelectExpr Defs [SelectExprGroupRef] {{CollComment] SelectExprDefi+ [Comment]
$ENd_SelectExprDefs

/* NOTE - Collective comments may be used in this table according to Figure 2. */

SelectExprGroupRef : $SelectExpr GroupRef SelectExprGroupReference

SelectExprGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) "/"] {SelectExprGroupldentifier "/"}
SelectExprGroupldentifier ::= Identifier

SelectExprDef ::$SelectExpr Def SelectExprld SelectExpr [CommeSnd_SelectExpr Def

SelectExprld ::$SelectExprld SelectExpridentifier

Recommendation X.292 (09/98)

202 SelectExpridentifier ::= Identifier

203 SelectExpr ::= $SelectExpr SelectionExpression

204 SelectionExpression ::= Expression
[* STATIC SEMANTICS - SelectionExpression shall only contain LiteralValues, TS_Parldentifiers, TS_Constldentifiers
and SelectExprldentifiers*/
/* OPERATIONAL SEMANTICS - SelectionExpression shall evaluate to a specific BOOLEAN value. */

/* STATIC SEMANTICS - Expression shall not recursively refer (neither directly nor indirectly) to the SelExpridentifier
being defined by that Expression. */

A.3.3.12 Declarations

A.3.3.12.1 General

205 Declarations ::= [TS_ConstDclsOrGroup] [TS_ConstRefsOrGroup] [TS_VarDclsOrGroup] [TC_VarDclsOrGroup]
[PCO_TypeDclsOrGroup] [PCO_DclsOrGroup] [CP_DclsOrGroup] [TimerDclsOrGroup] [TCompDclsOrGroup
TCompConfigDcls]

/* STATIC SEMANTICS — PCOs shall be optional. */

A.3.3.12.2 Test Suite Constant Declar ations

206 TS_ConstDclsOrGroup ::= TS_ConstDcls | TS_ConstDclsGroup

207 TS_ConstDclsGroup :$TS ConstDclsGroup TS_ConstDclsGroupld {TS_ConstDclsOrGroup}+
$ENd_TS_ConstDclsGroup

208 TS_ConstDclsGroupld :$TS_ConstDclsGroupld TS_ConstDclsGroupldentifier

209 TS_ConstDclsGroupldentifier ::= Identifier

210 TS_ConstDcls ::$Begin_TS ConstDcls [TS_ConstGroupRef] {{CollComment] TS_ConstDcl}+ [Comment]
$ENd_TS_ConstDcls
/* NOTE - Collective comments may be used in this table according to Figure 2. */

211 TS_ConstGroupRef :$TS ConstGroupRef TS_ConstGroupReference

212 TS_ConstGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) "/"] {TS_ConstGroupldentifier "/"}

213 TS_ConstGroupldentifier ::= Identifier

214 TS_ConstDcl ::$TS ConstDcl TS_Constld TS_ConstType TS_ConstValue [Comm@ild_TS ConstDcl

215 TS_Constld ::$TS _Constld TS_Constldentifier

216 TS_Constldentifier ::= Identifier

217 TS_ConstType ::$TS ConstType Type
/* STATIC SEMANTICS - Type shall not be a structured type, PDU type, ASP type or CM type expressed in tabular form.
*/

218 TS_ConstValue ::8TS_ConstValue DeclarationValue

219 DeclarationValue ::= Expression
/* STATIC SEMANTICS - DeclarationValue shall not contain TS_Variables or TC_Variables and shall resolve to a
constant value. */
/* OPERATIONAL SEMANTICS — DeclarationValue shall evaluate to an element of its declared type. */

A.3.3.12.3 Test Suite Constant Declar ations by Reference

220 TS_ConstRefsOrGroup ::= TS_ConstRefs | TS_ConstRefsGroup

221 TS_ConstRefsGroup :$7S_ConstRefsGroup TS_ConstRefsGroupld {TS_ConstRefsOrGroup}+
$End_TS_ConstRefsGroup

222 TS_ConstRefsGroupld :$TS ConstRefsGroupld TS_ConstRefsGroupldentifier

223 TS_ConstRefsGroupldentifier ::= Identifier

224 TS_ConstRefs ::$Begin_TS ConstRefs [TS_ConstRefsGroupRef] {{CollComment] TS_ConstRef}+ [Comment]
$End_TS ConstRefs
/* NOTE - Collective comments may be used in this table according to Figure 2. */

225 TS_ConstRefsGroupRef $¥S ConstRefsGroupRef TS_ConstGroupReference

226 TS_ConstRef ::$TS _ConstRef TS_Constld TS_ConstType ASN1_ValueReference ASN1_Moduleld [Comment]
$End_TS ConstRef
/* STATIC SEMANTICS - Type in TS_ConstType shall be either a PredefinedType or an ASN1_Type imported by an
ASN.1 Type Definition By Reference from the module referenced by ASN1_Moduleld. */

227 ASN1_ValueReference :$ASN1 ValueReference ValueReference
228 ValueReference ::= valuereference
/* REFERENCE - valuereference is a non-terminal defined in Recommendation X.680. */
[* STATIC SEMANTICS — The value shall correspond to an element of the type in TS_ConstType. */

Recommendation X.292 (09/98) 147

A.3.3.12.4 Test Suite Variable Declarations

229 TS VarDclsOrGroup ::= TS VarDcls| TS_VarDclsGroup

230 TS VarDclsGroup ::=$TS VarDclsGroup TS VarDclsGroupld { TS_VarDclsOrGroup} + $End_TS VarDclsGroup

231 TS VarDclsGroupld ::= $TS_VarDclsGroupld TS VarDclsGroupldentifier

232 TS VarDclsGroupldentifier ::= Identifier

233 TS VarDcls::=$Begin_TS VarDcls[TS VarGroupRef] {[CollComment] TS_VarDcl}+ [Comment] $End_TS VarDcls
/* NOTE - Collective comments may be used in this table according to Figure 2. */

234 TS_VarGroupRef ::$TS VarGroupRef TS_VarGroupReference

235 TS_VarGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) "/"] {TS"VarGroupldentifier "/"}

236 TS_VarGroupldentifier ::= Identifier

237 TS_VarDcl ::=$TS VarDcl TS_Varld TS_VarType TS_VarValue [Comme$EBnd_TS VarDcl

238 TS_Varld :=$TS Varld TS_Varldentifier

239 TS Varldentifier ::= Identifier

240 TS_VarType ::%TS VarType TypeOrPDU

[* STATIC SEMANTICS — TypeOrPDU shall be a PredefinedType, TS_Typeldentifier, PDU_ldentifier or ASP_ldentifier,
or the meta-typ®DU. */

241 TS_VarValue ::3$TS VarValue [DeclarationValue]

A.3.3.12.5 Test Case Variable Declarations

242 TC_VarDclsOrGroup ::= TC_VarDcls | TC_VarDclsGroup

243 TC_VarDclsGroup ::$TC_VarDclsGroup TC_VarDclsGroupld {TC_VarDclsOrGroup}$End_TC_VarDclsGroup

244 TC_VarDclsGroupld ::$TC_VarDclsGroupld TC_VarDclsGroupldentifier

245 TC_VarDclsGroupldentifier ::= Identifier

246 TC_VarDcls ::=#$Begin_TC_VarDcls [TC_VarGroupRef] {{[CollComment] TC_VarDcl}+ [Comment]
$ENd_TC_VarDcls
/* NOTE - Collective comments may be used in this table according to Figure 2. */

247 TC_VarGroupRef ::$TC_VarGroupRef TC_VarGroupReference

248 TC_VarGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) "/"] {TC_VarGroupldentifier "/}

249 TC_VarGroupldentifier ::= Identifier

250 TC_VarDcl ::=$TC_VarDcl TC_Varld TC_VarType TC_VarValue [Commesnd_TC_VarDcl

251 TC_Varld ::=$TC_Varld TC_Varldentifier

252 TC_Varldentifier ::= Identifier

253 TC_VarType ::$TC_VarType TypeOrPDU
/* STATIC SEMANTICS — TypeOrPDU shall be a PredefinedType, TS_Typeldentifier, PDU_ldentifier or ASP_ldentifier,
or the meta-typ®DU. */

254 TC_VarValue ::%$TC_VarValue[DeclarationValue]

A.3.3.12.6 PCO Type Declarations

255 PCO_TypeDclsOrGroup ::= PCO_TypeDcls | PCO_TypeDclsGroup

256 PCO_TypeDclsGroup :3PCO_TypeDclsGroup PCO_TypeDclsGroupld {PCO_TypeDclsOrGroup}+
$ENd_PCO_TypeDclsGroup

257 PCO_TypeDclsGroupld :$PCO_TypeDclsGroupld PCO_TypeDclsGroupldentifier

258 PCO_TypeDclsGroupldentifier ::= Identifier

259 PCO_TypeDcls ::$Begin_PCO_TypeDcls [PCO_TypeGroupRef] {{CollComment] PCO_TypeDcl}+ [Comment]
$End_PCO_TypeDcls
/* NOTE — Collective comments may be used in this table according to Figure 2. */

260 PCO_TypeGroupRef :$PCO_TypeGroupRef PCO_GroupReference

261 PCO_TypeDcl ::$PCO_TypeDcl PCO_Typeld RoleOrComme$iEnd_PCO_TypeDcl

262 PCO_Typeld ::$PCO_Typeld PCO_Typeldentifier

263 PCO_Typeldentifier ::= Identifier

264 RoleOrComment ::= P_Role [Comment] | Comment

/* NOTE - Since each PCO_Type in a PCO Type Declaration Table has to have a role specified in either the Role or
Comment column, at least one of P_Role or Comment is required to be present. */

A.3.3.12.7 PCO Declarations

265 PCO_DclsOrGroup ::= PCO_Dcls | PCO_DclsGroup

266 PCO_DclsGroup ::$PCO_DclsGroup PCO_DclsGroupld {PCO_DclsOrGroupBEnd_PCO_DclsGroup
267 PCO_DclsGroupld ::$PCO_DclsGroupld PCO_DclsGroupldentifier

268 PCO_DclsGroupldentifier ::= Identifier

148 Recommendation X.292 (09/98)

269

270
271
272
273
274
275
276
277
278
279

PCO_Dcls::= $Begin_PCO_Dcls [PCO_GroupRef] {[CollComment] PCO_Dcl}+ [Comment] $End_PCO_Dcls
/* NOTE - Collective comments may be used in this table according to Figure 2. */

/* STATIC SEMANTICS — To be in accordance with Recommendation X.290, the number of PCOs shall relate to the test
method used. */

PCO_GroupRef ::$PCO_GroupRef PCO_GroupReference

PCO_GroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) "/"] {PCO_Groupldentifier "/"}
PCO_Groupldentifier ::= Identifier

PCO_Dcl ::=$PCO_Dcl PCO_Id PCO_Typeld&MuxValue [P_Role] [Commef&nd _PCO_Dcl

PCO_Id ::=PCO_Id PCO_Identifier

PCO_Identifier ::= Identifier

PCO_Typeld&MuxValue ::$PCO_Typeld PCO_Typeldentifier ['(" MuxValue ")"]

MuxValue ::= TS_Parldentifier

P_Role ::=$PCO_Role[PCO_Role]

PCO_Role:=UT |LT

A.3.3.12.8 CP Declarations

280
281
282
283
284

285
286
287
288
289
290

CP_DclsOrGroup ::= CP_Dcls | CP_DclsGroup

CP_DclsGroup ::$CP_DclsGroup CP_DclsGroupld {CP_DclsOrGroup}$End_CP_DclsGroup
CP_DclsGroupld ::$CP_DclsGroupld CP_DclsGroupldentifier

CP_DclsGroupldentifier ::= Identifier

CP_Dcls ::%$Begin_CP_Dcls [CP_GroupRef] {{CollComment] CP_Dcl}+ [Commenr$End_CP_Dcls
/* NOTE - Collective comments may be used in this table according to Figure 2. */
CP_GroupRef ::$CP_GroupRef CP_GroupReference

CP_GroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) "/"] {CP_Groupldentifier "/"}
CP_Groupldentifier ::= Identifier

CP_Dcl ::=$CP_Dcl CP_ld [Comment$End_CP_Dcl

CP_lId ::=$CP_ld CP_lIdentifier

CP_lIdentifier ::= Identifier

A.3.3.12.9 Timer Declarations

291
292
293
294
295

296
297
298
299
300
301
302

303
304

TimerDclsOrGroup ::= TimerDcls | TimerDclsGroup

TimerDclsGroup ::$Timer DclsGroup TimerDclsGroupld {TimerDclsOrGroup}$End_Timer DclsGroup
TimerDclsGroupld ::$Timer DclsGroupl d TimerDclsGroupldentifier

TimerDclsGroupldentifier ::= Identifier

TimerDcls ::=$Begin_Timer Dcls [TimerGroupRef] {{CollComment] TimerDcl}+ [Commen$End_Timer Dcls
/* NOTE — Collective comments may be used in this table according to Figure 2. */

TimerGroupRef ::$Timer GroupRef TimerGroupReference

TimerGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) “/"] {TimerGroupldentifier "/"}
TimerGroupldentifier ::= Identifier

TimerDcl ::=$Timer Dcl Timerld Duration Unit [CommentEnd_Timer Dcl

Timerld ::=$Timer|d Timerldentifier

Timerldentifier ::= Identifier

Duration ::=$Duration [DeclarationValue]

/* OPERATIONAL SEMANTICS — DeclarationValue shall evaluate to a non-zero positive INTEGER. */
Unit ::=$Unit TimeUnit

TimeUnit ::=ps|ns|us|ms|s|min

[* STATIC SEMANTICS - If a timer is derived from the PICS/PIXIT, then the timer declaration shall specify the same
units as the PICS/PIXIT entry. */

A.3.3.12.10 Test Component Declarations

305
306
307
308
309

310
311
312
313
314
315

TCompDclsOrGroup ::= TCompDcls | TCompDclsGroup

TCompDclsGroup ::$T CompDclsGroup TCompDclsGroupld {TCompDclsOrGroup}$End_TCompDclsGroup
TCompDclsGroupld ::$T CompDclsGroupld TCompDclsGroupldentifier

TCompDclsGroupldentifier ::= Identifier

TCompDcls ::3$Begin_TCompDcls [TCompGroupRef] {{CollComment] TCompDcl}+ [CommerEnd_TCompDcls
/* NOTE - Collective comments may be used in this table according to Figure 2. */

TCompGroupRef ::$TCompGroupRef TCompGroupReference

TCompGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) "/"] {TCompGroupldentifier "/"}
TCompGroupldentifier ::= Identifier

TCompDcl ::=$TCompDcl TCompld C_Role NumOf_PCOs NumOf_CPs [Comm&Etjd_TCompDcl
TCompld ::=$T Compld TCompldentifier

TCompldentifier::= Identifier

Recommendation X.292 (09/98) 149

316
317
318
319
320
321

C_Role ::= $TCompRole TCompRole
TCompRole::=MTC |PTC

NumOf_PCOs ::= $NumOf_PCOsNum_PCOs
Num_PCOs ::= Number

NumOf_CPs ::= $NumOf_CPsNum_CPs
Num_CPs ::= Number

A.3.3.12.11 Test Component Configuration Declarations

322
323
324

325
326
327

328
329
330
331
332
333

334
335
336
337

338
339

A.3.3.13

TCompConfigDcls ::= $T CompConfigDcls{ TCompConfigDclOrGroup} + $End_TCompConfigDcls
TCompConfigDclOrGroup ::= TCompConfigDcl | TCompConfigDclGroup

TCompConfigDclGroup ::= $T CompConfigDclGroup TCompConfigDcl Groupld { TCompConfigDcl OrGroup} +

$ENd_T CompConfigDclGroup

TCompConfigDclGroupld ::= $T CompConfigDclGroupl d TCompConfigDcl Groupl dentifier
TCompConfigDclGroupldentifier ::= Identifier

TCompConfigDcl ::= $Begin_T CompConfigDcl TCompConfigld [TCompConfigGroupRef] [Comment]
TCompConfiglnfos [Comment] $End_TCompConfigDcl

TCompConfigld ::= $TCompConfigld TCompConfigldentifier

TCompConfigldentifier ::= Identifier

TCompConfigGroupRef ::= $T CompConfigGroupRef TCompConfigGroupReference

TCompConfigGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) "/*] { TCompConfigGroupldentifier "/}
TCompConfigGroupldentifier ::= Identifier

TCompConfiginfos ::= $T CompConfigl nfos{ TCompConfiglnfo} + $End_T CompConfigl nfos

[* STATIC SEMANTICS — Exactly one of the TCompConfiginfos shall be for a Test Component which has a TCompRole
which isMTC. */

TCompConfigInfo ::$TCompConfiglnfo TCompUsed PCOs_Used CPs_Used [Comntatd_T CompConfiglnfo
TCompUsed ::$T CompUsed TCompldentifier

PCOs_Used ::$PCOs_Used [PCO_List]

PCO_List ::= PCO_ldentifier {Comma PCO_ldentifier}

[* STATIC SEMANTICS — The number of PCOs in the PCO_List shall be the same as in the Test Component
declaration. */

/* STATIC SEMANTICS — A given PCO_Identifier shall not be used more than once in the same Test Component
Configuration. */

CPs_Used ::$CPs_Used [CP_List]

CP_List ::= CP_ldentifier {Comma CP_ldentifier}

/* STATIC SEMANTICS - For a PTC, the number of CPs in the CP_List shall be the same as in the Test Component
declaration. */

[* STATIC SEMANTICS — For an MTC, the number of CPs in the CP_List shall be no more than the number in the Test
Component declaration. */

/* STATIC SEMANTICS — A given CP_ldentifier shall not appear more than once in a given CP_List. */

/* STATIC SEMANTICS — Each CP_ldentifier which is used in a Test Component Configuration shall appear in the
CP_List of precisely two Test Components in that Configuration. */

ASP, PDU and CM Type Definitions

A.3.3.13.1 General

340

ComplexDefinitions ::= [ASP_TypeDefs] [PDU_TypeDefs] [CM_TypeDefs] [AliasDefsOrGroup]
/* STATIC SEMANTICS - PDUs shall be optional. */

A.3.3.13.2 ASP Type Definitions

341

ASP_TypeDefs ::3ASP_TypeDefs [TTCN_ASP_TypeDefs] [ASN1_ASP_TypeDefs]
[ASN1_ASP_TypeDefsByRefOrGroupEnd_ASP_TypeDefs

A.3.3.13.3 Tabular ASP Type Definitions

342
343
344

345
346

347
348

150

TTCN_ASP_TypeDefs :$TTCN_ASP_TypeDefs {TTCN_ASP_TypeDefOrGroup}$End_TTCN_ASP_TypeDefs
TTCN_ASP_TypeDefOrGroup ::= TTCN_ASP_TypeDef | TTCN_ASP_TypeDefGroup
TTCN_ASP_TypeDefGroup : 3T TCN_ASP_TypeDefGroup TTCN_ASP_TypeDefGroupld
{TTCN_ASP_TypeDefOrGroup}$End_TTCN_ASP_TypeDefGroup

TTCN_ASP_TypeDefGroupld :$TTCN_ASP_TypeDefGroupld ASP_Groupldentifier

TTCN_ASP_TypeDef ::$Begin_TTCN_ASP_TypeDef ASP_Id [ASP_GroupRef] PCO_Type [Comment]
[ASP_ParDcls] [Commen$End_TTCN_ASP_TypeDef

ASP_Id ::=$ASP_Id ASP_Id&Fullld

ASP_ld&Fullld ::= ASP_Identifier [Fullldentifier]

Recommendation X.292 (09/98)

349 ASP_ldentifier ::= Identifier
/* STATIC SEMANTICS - Identifier may be Aliasldentifier provided that it is being used in the behaviour column of a
behaviour table (i.e. in a Behaviour Description). */
350 ASP_GroupRef ::$ASP_GroupRef ASP_GroupReference
351 ASP_GroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) "/"] {ASP_Groupldentifier "/"}
352 ASP_Groupldentifier ::= Identifier
353 PCO_Type :3$PCO_Type [PCO_Typeldentifier]
[* STATIC SEMANTICS - If there is no PCO_Type declaration table, then PCO_Typeldentifier shall be one of the PCO
types used in the PCO declaration table. */
/* STATIC SEMANTICS - If only a single PCO is defined within a test suite, then PCO_Typeldentifier is optional. */
354 ASP_ParDcls ::$ASP_ParDcls {ASP_ParDcl}$End_ASP_ParDcls
355 ASP_ParDcl ::$ASP_ParDcl ASP_Parld ASP_ParType [Comme#End_ASP_ParDcl
356 ASP_Parld ::$ASP_Parld ASP_ParldOrMacro
357 ASP_ParldOrMacro ::= ASP_Parld&Fullld | MacroSymbol
/* STATIC SEMANTICS — The MacroSymbol shall be used only in combination with a reference to a Structured Type. */
358 ASP_Parld&Fullld ::= ASP_Parldentifier [Fullldentifier]
359 ASP_Parldentifier ::= Identifier
360 ASP_ParType ::$ASP_Par Type Type&Attributes
/* STATIC SEMANTICS - Type shall be a PredefinedType or TS_Typeldentifier, PDU_IdentifieBdr */

A.3.3.13.4 ASN.1 ASP Type Definitions

361 ASN1_ASP_TypeDefs :$ASN1 ASP_TypeDefs {ASN1_ASP_TypeDefOrGroup$End_ASN1_ASP_TypeDefs

362 ASN1_ASP_TypeDefOrGroup ::= ASN1_ASP_TypeDef | ASN1_ASP_TypeDefGroup

363 ASN1_ASP_TypeDefGroup :$3ASN1 ASP_TypeDefGroup ASN1_ASP_TypeDefGroupld
{ASN1_ASP_TypeDefOrGroup}$End_ASN1 ASP_TypeDefGroup

364 ASN1_ASP_TypeDefGroupld :$3ASN1_ASP_TypeDefGroupld ASN1_ASP_Groupldentifier

365 ASN1_ASP_TypeDef ::$Begin_ASN1 ASP_TypeDef ASP_Id [ASN1_ASP_GroupDef] PCO_Type [Comment]
[ASN1_TypeDefinition] [CommentpEnd_ASN1 ASP_TypeDef

366 ASN1_ASP_GroupRef :$ASN1 _ASP_GroupRef ASN1_ASP_GroupReference

367 ASN1_ASP_GroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) "/"] {ASN1_ASP_Groupldentifier "/"}

368 ASN1_ASP_Groupldentifier ::= Identifier

A.3.3.13.5 ASN.1 ASP Type Definitions by Reference

369 ASN1_ASP_TypeDefsByRefOrGroup ::= ASN1_ASP_TypeDefsByRef | ASN1_ASP_TypeDefsByRefGroup
370 ASN1_ASP_TypeDefsByRefGroup $ASN1_ASP_TypeDefsByRefGroup ASN1_ASP_TypeDefsByRefGroupld
{ASN1_ASP_TypeDefsByRefOrGroup}$End_ASN1_ASP_TypeDefsByRefGroup
371 ASN1_ASP_TypeDefsByRefGroupld $ASN1 _ASP_TypeDefsByRefGroupld ASN1_ASP_Groupldentifier
372 ASN1_ASP_TypeDefsByRef :$Begin_ ASN1 ASP_TypeDefsByRef [ASN1_ASP_DefsByRefGroupRef]
{[CollIComment] ASN1_ASP_TypeDefByRef}+ [CommeriEnd_ASN1 ASP_TypeDefsByRef
/* NOTE - Collective comments may be used in this table according to Figure 2. */
373 ASN_ASP_DefsByRefGroupRef $ASN1 ASP_DefsByRefGroupRef ASN1_ASP_GroupReference
374 ASN1_ASP_TypeDefByRef :$3ASN1 ASP_TypeDefByRef ASP_Id PCO_Type ASN1_TypeReference
ASN1_Moduleld [CommentPEnd_ASN1 ASP_TypeDefByRef
[* STATIC SEMANTICS — ASP_1Id shall not be specified with a Fullldentifier. */

A.3.3.13.6 PDU Type Definitions

375 PDU_TypeDefs ::$PDU_TypeDefs [TTCN_PDU_TypeDefs] [ASN1_PDU_TypeDefs]
[ASN1_PDU_TypeDefsByRefOrGrougEnd_PDU_TypeDefs

A.3.3.13.7 Tabular PDU Type Definitions

376 TTCN_PDU_TypeDefs :$TTCN_PDU_TypeDefs {TTCN_PDU_TypeDefOrGroup}-6End_TTCN_PDU_TypeDefs

377 TTCN_PDU_TypeDefOrGroup ::= TTCN_PDU_TypeDef | TTCN_PDU_TypeDefGroup

378 TTCN_PDU_TypeDefGroup :$TTCN_PDU_TypeDefGroup TTCN_PDU_TypeDefGroupld
{TTCN_PDU_TypeDefOrGroup}$End_TTCN_PDU_TypeDefGroup

379 TTCN_PDU_TypeDefGroupld :$TTCN_PDU_TypeDefGroupld PDU_Groupldentifier

380 TTCN_PDU_TypeDef ::$Begin_TTCN_PDU_TypeDef PDU_Id [PDU_GroupRef] PCO_Type [PDU_Encodingld]
[EncVariationld] [Comment] [PDU_FieldDcls] [CommerfEnd_TTCN_PDU_TypeDef
/* STATIC SEMANTICS - Ifa PDU is sent or received only embedded in ASPs within the whole test suite, then
PCO_Typeldentifier (in PCO_Type) is optional. */

381 PDU_Id ::=$PDU_Id PDU_Id&Fullld

382 PDU_Id&Fullld ::= PDU_Identifier [Fullldentifier]

Recommendation X.292 (09/98) 151

383

384
385
386
387
388
389

390
391

392
393
394
395

396

397
398
399

400

401
402

PDU_ldentifier ::= Identifier

/* STATIC SEMANTICS - Identifier may be Aliasldentifier provided that it is being used in the behaviour column of a
behaviour table (i.e. in a Behaviour Description). */

PDU_GroupRef ::$PDU_GroupRef PDU_GroupReference

PDU_GroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) "/"] {PDU_Groupldentifier "/"}
PDU_Groupldentifier ::= Identifier

PDU_Encodingld ::$PDU_Encodingl d [EncodingRuleldentifier]

PDU_FieldDcls ::%PDU_FieldDcls {PDU_FieldDcl} $End_PDU_FieldDcls

PDU_FieldDcl ::=PDU_FieldDcl PDU_Fieldld PDU_FieldType [PDU_FieldEncoding] [Comment]

$End_PDU_FieldDcl

PDU_Fieldld ::=$PDU_Fieldld PDU_FieldldOrMacro

PDU_FieldldOrMacro ::= PDU_Fieldld&Fullld | MacroSymbol

/* STATIC SEMANTICS — The MacroSymbol shall be used only in combination with a reference to a Structured Type. */
MacroSymbol ::=<-"

PDU_Fieldld&Fullld ::= PDU_Fieldldentifier [Fullldentifier]

PDU_Fieldldentifier ::= Identifier

PDU_FieldType ::$PDU_FieldType Type&Attributes

[* STATIC SEMANTICS - Type shall be a PredefinedType or TS_Typeldentifier, PDU_ldentifieRr*/

Type&Attributes ::= (Type [LengthAttribute])RDU

/* OPERATIONAL SEMANTICS — The set of values defined by LengthAttribute shall be a true subset of the values of the
base type. */

/* STATIC SEMANTICS - LengthAttribute shall be provided only when the base type is a string type (i.e. BITSTRING,
HEXSTRING, OCTETSTRING or CharacterString) or derived from a string type. */

LengthAttribute ::= SingleLength | RangeLength

SingleLength ::= "[" Bound "]"

Bound ::= Number | TS_Parldentifier | TS_Constldentifier

/* OPERATIONAL SEMANTICS — Bound shall evaluate to a non-negative INTEGER value or INFINITY. */
RangelLength ::="[" LowerBound To UpperBound "]"

/* OPERATIONAL SEMANTICS — LowerBound shall be less than UpperBound. */

LowerBound ::= Bound

UpperBound ::= Bound NFINITY

A.3.3.13.8 ASN.1 PDU Type Definitions

403
404
405

406
407

408
409
410

ASN1_PDU_TypeDefs ::$ASN1_PDU_TypeDefs {ASN1_PDU_TypeDefOrGroup$End_ASN1_PDU_TypeDefs
ASN1_PDU_TypeDefOrGroup ::= ASN1_PDU_TypeDef | ASN1_PDU_TypeDefGroup

ASN1_PDU_TypeDefGroup :$ASN1_PDU_TypeDefGroup ASN1_PDU_TypeDefGroupld
{ASN1_PDU_TypeDefOrGroup}$End_ASN1 PDU_TypeDefGroup

ASN1_PDU_TypeDefGroupld :$ASN1 PDU_TypeDefGroupld ASN1_PDU_Groupldentifier
ASN1_PDU_TypeDef ::$Begin_ASN1_PDU_TypeDef PDU_Id [ASN1_PDU_GroupRef] PCO_Type
[PDU_Encodingld] [EncVariationld] [Comment] [ASN1_TypeDefinition] [Comme$i§nd_ASN1 PDU_TypeDef

/* STATIC SEMANTICS - If a PDU is sent or received only embedded in ASPs within the whole test suite, then
PCO_Typeldentifier (in PCO_Type) is optional. */

ASN1_PDU_GroupRef ::3ASN1 PDU_GroupRef ASN1_PDU_GroupReference

ASN1_PDU_GroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) "/"] {ASN1_PDU_Groupldentifier "/"}
ASN1_PDU_Groupldentifier ::= Identifier

A.3.3.13.9 ASN.1 PDU Type Definitions by Reference

152

411
412

413
414

415
416

ASN1_PDU_TypeDefsByRefOrGroup ::= ASN1_PDU_TypeDefsByRef | ASN1_PDU_TypeDefsByRefGroup

ASN1_PDU_TypeDefsByRefGroup $ASN1_PDU_TypeDefsByRefGroup ASN1_PDU_TypeDefsByRefGroupld
{ASN1_PDU_TypeDefsByRefOrGroup}$End_ASN1 PDU_TypeDefsByRefGroup

ASN1_PDU_TypeDefsByRefGroupld $ASN1 PDU_TypeDefsByRefGroupld ASN1_PDU_Groupldentifier
ASN1_PDU_TypeDefsByRef :$Begin_ ASN1_PDU_TypeDefsByRef [ASN1_PDU_DefsByRefGroupRef]
{[CollIComment] ASN1_PDU_TypeDefByRef}+ [CommerEnd_ASN1 _PDU_TypeDefsByRef

/* NOTE — Collective comments may be used in this table according to Figure 2. */
ASN1_PDU_DefsByRefGroupRef $ASN1_PDU_DefsByRefGroupRef ASN1_PDU_GroupReference
ASN1_PDU_TypeDefByRef :$ASN1 PDU_TypeDefByRef PDU_Id PCO_Type ASN1_TypeReference
ASN1_Moduleld [PDU_Encodingld] [EncVariationld] [Commer$iEnd_ASN1 PDU_TypeDefByRef

/* STATIC SEMANTICS - If a PDU is sent or received only embedded in ASPs within the whole test suite, then
PCO_Typeldentifier (in PCO_Type) is optional. */

/* STATIC SEMANTICS — PDU_ld shall not be specified with a Fullldentifier. */

Recommendation X.292 (09/98)

A.33.1310 CM TypeD¢€finitions
417 CM_TypeDefs::=$CM_TypeDefs [TTCN_CM_TypeDefs] [ASN1_CM_TypeDefs] $End_CM _TypeDefs
A.3.3.13.11 Tabular CM Type Definition

418 TTCN_CM_TypeDefs::=$TTCN_CM_TypeDefs { TTCN_CM_TypeDefOrGroup} + $End_TTCN_CM_TypeDefs

419 TTCN_CM_TypeDefOrGroup ::= TTCN_CM_TypeDef | TTCN_CM_TypeDefGroup

420 TTCN_CM_TypeDefGroup ::=$TTCN_CM_TypeDefGroup TTCN_CM_TypeDefGroupld
{TTCN_CM_TypeDefOrGroup} + $End_TTCN_CM_TypeDefGroup

421 TTCN_CM_TypeDefGroupld ::=$TTCN_CM _TypeDefGroupld CM_Groupldentifier

422 TTCN_CM_TypeDef ::=$Begin_TTCN_CM_TypeDef CM_Id [CM_GroupRef] [Comment] [CM_ParDcls] [Comment]
$End_TTCN_CM_TypeDef

423 CM_Id::=$CM_Id CM_ldentifier

424 CM_ldentifier ::= Identifier

425 CM_GroupRef ::= $CM_GroupRef CM_GroupReference

426 CM_GroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) "/"] { CM_Groupldentifier "/"}

427 CM_Groupldentifier ::= Identifier

428 CM_ParDcls ::= $CM_ParDcls{CM_ParDcl} $End_CM_ParDcls

429 CM_ParDcl ::= $CM_ParDcl CM_Parld CM_ParType [Comment] $End_CM _ParDcl

430 CM_Parld ::= $CM_Parld CM_ParldOrMacro

431 CM_ParldOrMacro ::= CM_Parldentifier | MacroSymbol
/* STATIC SEMANTICS — The MacroSymbol shall be used only in combination with a reference to a Structured Type. */

432 CM_Parldentifier ::= Identifier

433 CM_ParType ::$CM_Par Type Type&Attributes

A.3.3.13.12 ASN.1CM Type Definitions

434 ASN1_CM_TypeDefs ::3ASN1_CM_TypeDefs {ASN1_CM_TypeDefOrGroupH$End_ASN1_CM_TypeDefs

435 ASN1_CM_TypeDefOrGroup ::= ASN1_CM_TypeDef | ASN1_CM_TypeDefGroup

436 ASN1_CM_TypeDefGroup :$ASN1 CM_TypeDefGroup ASN1_CM_TypeDefGroupld
{ASN1_CM_TypeDefOrGroup}+End_ASN1 CM_TypeDefGroup

437 ASN1_CM_TypeDefGroupld :: 3ASN1_CM_TypeDefGroupld ASN1_CM_Groupldentifier

438 ASN1_CM_TypeDef ::$Begin_ASN1 CM_TypeDef CM_Id [ASN1_CM_GroupRef] [Comment]
[ASN1_TypeDefinition] [Comment$)End_ASN1 CM_TypeDef

439 ASN1_CM_GroupRef ::$ASN1 CM_GroupRef ASN1_CM_GroupReference

440 ASN1_CM_GroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) "/"] {ASN1_CM_Groupldentifier "/"}

441 ASN1_CM_Groupldentifier ::= Identifier

A.3.3.13.13 Varieties of Encoding Definition

442 EncodingDefs ::$EncodingDefs [EncodingDefinitionsOrGroup] [EncodingVariations] [InvalidFieldEncodingDefs]
$ENd_EncodingDefs

A.3.3.13.13.1 Encoding Definitions

443 EncodingDefinitionsOrGroup ::= EncodingDefinitions | EncodingDefinitionsGroup

444 EncodingDefinitionsGroup ::$EncodingDefinitionsGroup EncodingDefinitionsGroupld
{EncodingDefinitionsOrGroup}+$End_EncodingDefinitionsGroup

445 EncodingDefinitionsGroupld ::$EncodingDefinitionsGroupld EncodingGroupldentifier

446 EncodingDefinitions ::$Begin_EncodingDefinitions [EncodingGroupRef] {{CollComment] EncodingDefinition}+
[Comment]$End_EncodingDefinitions
/* NOTE - Collective comments may be used in this table according to Figure 2. */

447 EncodingGroupRef ::$3EncodingGroupRef EncodingGroupReference

448 EncodingGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) "/"] {EncodingGroupldentifier "/"}

449 EncodingGroupldentifier ::= Identifier

450 EncodingDefinition ::=EncodingDefinition EncodingRuleld EncodingRef EncodingDefault [Comment]
$ENd_EncodingDefinition
/* OPERATIONAL SEMANTICS — No more than one EncodingRuleldentifier shall have an EncodingDefault containing a
DefaultExpression which evaluates to TRUE. */

451 EncodingRuleld ::$EncodingRuleld EncodingRuleldentifier

452 EncodingRuleldentifier ::fdentifier

453 EncodingRef ::$EncodingRef EncodingReference

454 EncodingReference :BoundedFreeText

455 EncodingDefault ::$EncodingDefault [DefaultExpression]

456 DefaultExpression ::= Expression

/* STATIC SEMANTICS — DefaultExpression shall only contain LiteralValues, TS_Parldentifiers and TS_Constldentifiers. */

Recommendation X.292 (09/98) 153

A.3.3.13.13.2 Encoding Variations

457 EncodingVariations ::= $EncodingVariations{ EncodingV ariationSetOrGroup} + $End_EncodingVariations

458 EncodingV ariationSetOrGroup ::= EncodingV ariationSet | EncodingV ariationSetGroup

459 EncodingV ariationSetGroup ::= $EncodingVariationSetGroup EncodingV ariationSetGroupl d
{EncodingV ariationSetOrGroup} + $End_EncodingVariationSetGroup

460 EncodingVariationSetGroupld ::= $EncodingVariationSetGroupld EncVariationGroupl dentifier

461 EncodingVariationSet ::= $Begin_EncodingVariationSet EncodingRuleld [EncV ariationGroupRef] Encoding_TypeList
[Comment] EncodingV ariationList [Comment] $End_EncodingVariationSet

462 EncVariationGroupRef ::= $EncVariationGroupRef EncVariationGroupReference

463 EncVariationGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) "/"] { EncVariationGroupldentifier "/"}

464 EncVariationGroupldentifier ::= Identifier

465 EncodingVariationList ::= $EncodingVariationList { EncodingVariation} + $End_EncodingVariationList

466 Encoding_Typelist ::= $Encoding_Typelist [TypelList]

467 TypelList ::=Type {Comma Type}
/* STATIC SEMANTICS — Type shall not be an ASP_Identifier, PDU_Identifier or Structldentifier, since such types may
be encoded by encoding rules but not by field encodings. */

468 EncodingVariation ::$EncodingVariation EncodingVariationld VariationRef VariationDefault [Comment]
$ENnd_EncodingVariation

/* OPERATIONAL SEMANTICS — No more than one Encodingldentifier shall have a VariationDefault containing a
DefaultExpression which evaluates to TRUE. */

469 EncodingVariationld ::$EncodingVariationld EncVariationld&ParList
470 EncVariationld&ParList ::= EncVariationldentifier [FormalParList]
471 EncVariationldentifier ::= Identifier

472 VariationRef ::=$VariationRef VariationReference

473 VariationReference :BoundedFreeText

474 VariationDefault ::=$VariationDefault [DefaultExpression]

A.3.3.13.13.3 Invalid Encoding Definitions

475 InvalidFieldEncodingDefs ::$l nvalidFieldEncodingDefs{InvalidFieldEncodingDefOrGroup}+
$End_I nvalidFieldEncodingDefs

476 InvalidFieldEncodingDefOrGroup ::= InvalidFieldEncodingDef | InvalidFieldEncodingGroup

477 InvalidFieldEncodingGroup ::$l nvalidFieldEncodingGroup InvalidFieldEncodingGroupld
{InvalidFieldEncodingOrGroup}+$End_lI nvalidFieldEncodingGroup

478 InvalidFieldEncodingGroupld ::$i nvalidFieldEncodingGroupl d InvalidFieldEncodingGroupldentifier

479 InvalidFieldEncodingDef ::$Begin_InvalidFieldEncodingDef InvalidFieldEncodingld [InvalidFieldEncodingGroupRef]
Encoding_TypeList [Comment] InvalidFieldEncodingDefinition [Commeiithd_| nvalidFieldEncodingDef

480 InvalidFieldEncodingld ::$lnvalidFieldEncodingl d InvalidFieldEncodingld&ParList

481 InvalidFieldEncodingld&ParList ::#nvalidFieldEncodingldentifier [FormalParList]

482 InvalidFieldEncodingldentifier ::#dentifier

483 InvalidFieldEncodingGroupRef :$t nvalidFieldEncodingGroupRef InvalidFieldEncodingGroupReference

484 InvalidFieldEncodingGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) "/"]
{InvalidFieldEncodingGroupldentifier "/"}

485 InvalidFieldEncodingGroupldentifier ::= Identifier

486 InvalidFieldEncodingDefinition ::$l nvalidFieldEncodingDefinition TS_OpProcDef
$ENd_I nvalidFieldEncodingDefinition

/* OPERATIONAL SEMANTICS — TS_OpProcDef shall produce a BitString result, to be interpreted as the encoding to
be transmitted high order bit first. */

A.3.3.13.14 Alias Definitions

487 AliasDefsOrGroup ::= AliasDefs | AliasDefsGroup

488 AliasDefsGroup ::$AliasDefsGroup AliasDefsGroupld {AliasDefsOrGroup}$End_AliasDefsGroup

489 AliasDefsGroupld ::$AliasDefsGroupld AliasDefsGroupldentifier

490 AliasDefsGroupldentifier ::= Identifier

491 AliasDefs ::=$Begin_AliasDefs [AliasGroupRef] {{CollComment] AliasDef}+ [Commen8End_AliasDefs
/* NOTE - Collective comments may be used in this table according to Figure 2. */

492 AliasGroupRef ::$AliasGroupRef AliasGroupReference

493 AliasGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) "/"] {AliasGroupldentifier "/"}

494 AliasGroupldentifier ::= Identifier

495 AliasDef ::=$AliasDef Aliasld Expandedid [Commen$End_AliasDef

496 Aliasld ::=$Aliasld Aliasldentifier

154 Recommendation X.292 (09/98)

497

498
499

A.3.3.14
500

A.3.3.15

501

A.3.3.16

502
503
504

505
506

507
508

509
510
511
512
513

514
515
516

A.3.3.17

517
518
519

520
521

522
523

524

A.3.3.18

525

Aliasldentifier ::= Identifier

[* STATIC SEMANTICS — An Aliasldentifier shall be used only in a statement line of a behaviour description. */

/* STATIC SEMANTICS - An Aliasldentifier shall be used only where an ASP_Identifier or PDU_Identifier is valid. */
Expandedld ::$Expanded|d Expansion

Expansion ::= ASP_ldentifier | PDU_Identifier

Constraints Part

ConstraintsPart ::$ConstraintsPart [TS_TypeConstraints] [ASP_Constraints] [PDU_Constraints] [CM_Constraints]
$ENd_ConstraintsPart

Test Suite Type Constraint Declarations

TS_TypeConstraints :$7S_TypeConstraints [StructTypeConstraints] [ASN1_TypeConstraints]
$ENd_TS_TypeConstraints

Structured Type Constraint Declarations

StructTypeConstraints :$StructTypeConstraints {StructTypeConstraintOrGroup}$End_StructTypeConstraints
StructTypeConstraintOrGroup ::= StructTypeConstraint | StructTypeConstraintGroup

StructTypeConstraintGroup :$StructTypeConstraintGroup StructTypeConstraintGroupld
{StructTypeConstraintOrGroup}$End_StructTypeConstraintGroup

StructTypeConstraintGroupld $StructTypeConstraintGroupl d StructTypeConstraintGroupldentifier

StructTypeConstraint :$Begin_StructTypeConstraint Consld [StructTypeConstraintGroupRef] Structld DerivPath
[EncVariationld] [Comment] ElemValues [Comme®gnd_StructTypeConstraint

/* STATIC SEMANTICS — The Fullldentifier that is part of Struct_Id shall not be used. */

/* STATIC SEMANTICS — A modified constraint shall have the same parameter list as its base constraint. In particular,
there shall be no parameters omitted from or added to this list. */

StructTypeConstraintGroupRef $StructTypeConstraintGroupRef StructTypeConstraintGroupReference

StructTypeConstraintGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) "/"]
{StructTypeConstraintGroupldentifier "/"}

StructTypeConstraintGroupldentifier ::= Identifier

EncVariationld ::=EncVariationld [EncVariationCall]

EncVariationCall ::= EncVariationldentifier [ActualParList]

ElemValues ::$ElemValues{ElemValue}+ $End_ElemValues

ElemValue ::=$ElemValue Elemld ConsValue [PDU_FieldEncoding] [Comme#iEnd_ElemValue
/* STATIC SEMANTICS — The Fullldentifier that is part of Elemld shall not be used. */

/* STATIC SEMANTICS - Parameterized Element values in a base constraint shall not be modified or explicitly omitted in
a modified constraint. */

PDU_FieldEncoding ::$PDU_FieldEncoding [PDU_FieldEncodingCall]
PDU_FieldEncodingCall ::= EncVariationCall | InvalidFieldEncodingCall
InvalidFieldEncodingCall ::= InvalidFieldEncodingldentifier (ActualParList | "(" ")")

ASN.1 Type Constraint Declarations

ASN1_TypeConstraints :$ASN1_TypeConstraints{ASN1_TypeConstraintOrGroup}$End_ASN1_TypeConstraints
ASN1_TypeConstraintOrGroup ::= ASN1_TypeConstraint | ASN1_TypeConstraintGroup

ASN1_TypeConstraintGroup :$ASN1_TypeConstraintGroup ASN1_TypeConstraintGroupld
{ASN1_TypeConstraintOrGroup}$End_ASN1 TypeConstraintGroup

ASN1_TypeConstraintGroupld :3ASN1_TypeConstraintGroupld ASN1_TypeConstraintGroupldentifier

ASN1_TypeConstraint :$Begin_ASN1_TypeConstraint Consld [ASN1_TypeConstraintGroupRef] ASN1_Typeld
DerivPath [EncVariationld] [Comment] ASN1_ConsValue [Comméiithd_ASN1_TypeConstraint

[* STATIC SEMANTICS - The Fullldentifier that is part of ASN1_Typeld shall not be used. */

/* STATIC SEMANTICS — A modified constraint shall have the same parameter list as its base constraint. In particular,
there shall be no parameters omitted from or added to this list. */

ASN1_TypeConstraintGroupRef $ASN1 TypeConstraintGroupRef ASN1_TypeConstraintGroupReference

ASN1_TypeConstraintGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) "/"]
{ASN1_TypeConstraintGroupldentifier "/"}

ASN1_TypeConstraintGroupldentifier ::= Identifier

ASP Constraint Declarations

ASP_Constraints ::$ASP_Constraints[TTCN_ASP_Constraints] [ASN1_ASP_Constraint&nd_ASP_Constraints

Recommendation X.292 (09/98) 155

A.3.3.19 Tabular ASP Constraint Declar ations

526 TTCN_ASP_Constraints::= $TTCN_ASP_Constraints{ TTCN_ASP_ConstraintOrGroup} +
$ENd_TTCN_ASP_Constraints

527 TTCN_ASP_ConstraintOrGroup ::= TTCN_ASP_Constraint | TTCN_ASP_ConstraintGroup

528 TTCN_ASP_ConstraintGroup ::= $TTCN_ASP_ConstraintGroup TTCN_ASP_ConstraintGroupld
{TTCN_ASP_ConstraintOrGroup}+ $End_TTCN_ASP_ConstraintGroup

529 TTCN_ASP_ConstraintGroupld ::= $TTCN_ASP_ConstraintGroupld ASP_ConstraintGroupl dentifier

530 TTCN_ASP_Constraint ::= $Begin_TTCN_ASP_Constraint Consld [ASP_ConstraintGroupRef] ASP_Id DerivPath
[Comment] [ASP_ParValues] [Comment] $End_TTCN_ASP_Constraint

/* STATIC SEMANTICS - The Fullldentifier that is part of ASP_Id shall not be used. */

[* STATIC SEMANTICS — If an ASP is substructured, then the constraints for ASPs of that type shall have the same
structure. */

/* STATIC SEMANTICS — A modified constraint shall have the same parameter list as its base constraint. In particular,
there shall be no parameters omitted from or added to this list. */

531 ASP_ConstraintGroupRef :$ASP_ConstraintGroupRef ASP_ConstraintGroupReference
532 ASP_ConstraintGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) "/"] {ASP_ConstraintGroupldentifier "/"}
533 ASP_ConstraintGroupldentifier ::= Identifier
534 ASP_ParValues ::$ASP_ParValues{ASP_ParValue}$End_ASP_ParValues
535 ASP_ParValue ::$ASP_ParValue ASP_Parld ConsValue [CommeifiEnd_ASP_ParValue
/* STATIC SEMANTICS — The Fullldentifier that is part of ASP_Parld shall not be used. */

/* STATIC SEMANTICS - If an ASP definition refers to a Structured Type as a substructure of a parameter (i.e., with a
parameter name), then the corresponding constraint shall have the same parameter name in the corresponding position in
the parameter name column of the constraint and the value shall be a reference to a constraint for that parameter (i.e., for
that substructure in accordance with the definition of the Structured Type). */

/* STATIC SEMANTICS - If an ASP definition refers to a parameter specified as being of metatype PDU, then in a
corresponding constraint, the value for that parameter shall be specified as the name of a PDU constraint, or formal
parameter. */

/* STATIC SEMANTICS — Use of structured constraints by macro expansion in a constraint shall not be used unless the
corresponding ASP definition also references the same Structured Type by macro expansion. */

/* STATIC SEMANTICS — Parameterized ASP parameter values in a base constraint shall not be modified or explicitly
omitted in a modified constraint. */

A.3.3.20 ASN.1 ASP Constraint Declarations

536 ASN1_ASP_Constraints :3ASN1_ASP_Constraints {ASN1_ASP_ConstraintOrGroup}+
$ENd_ASN1 _ASP_Constraints

537 ASN1_ASP_ConstraintOrGroup ::= ASN1_ASP_Constraint | ASN1_ASP_ConstraintGroup

538 ASN1_ASP_ConstraintGroup :$ASN1_ASP_ConstraintGroup ASN1_ASP_ConstraintGroupld
{ASN1_ASP_ConstraintOrGroup}$End_ASN1 ASP_ConstraintGroup

539 ASN1_ASP_ConstraintGroupld :$ASN1_ASP_ConstraintGroupld ASN1_ASP_ConstraintGroupldentifier

540 ASN1_ASP_Constraint :$Begin_ASN1 ASP_Constraint Consld [ASN1_ASP_ConstraintGroupRef] ASP_Id
DerivPath [Comment] [ASN1_ConsValue] [Comme$End_ASN1_ASP_Constraint

/* STATIC SEMANTICS - The Fullldentifier that is part of ASP_Id shall not be used. */

/* STATIC SEMANTICS - If an ASP is substructured, then the constraints for ASPs of that type shall have a compatible
ASN.1 structure (i.e., possibly with some groupings). */

/* STATIC SEMANTICS — A modified constraint shall have the same parameter list as its base constraint. In particular,
there shall be no parameters omitted from or added to this list. */

541 ASN1_ASP_ConstraintGroupRef $ASN1_ASP_ConstraintGroupRef ASN1_ASP_ConstraintGroupReference

542 ASN1_ASP_ConstraintGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) "/*]
{ASN1_ASP_ConstraintGroupldentifier "/"}

543 ASN1_ASP_ConstraintGroupldentifier ::= Identifier

A.3.3.21 PDU Constraint Declarations

544 PDU_Constraints ::3$PDU_Constraints [TTCN_PDU_Constraints] [ASN1_PDU_Constraints]
$End_PDU_Constraints

156 Recommendation X.292 (09/98)

A.3.3.22 Tabular PDU Constraint Declar ations

545 TTCN_PDU_Constraints::= $TTCN_PDU_Constraints{ TTCN_PDU_ConstraintOrGroup} +
$End_TTCN_PDU_Constraints

546 TTCN_PDU_ConstraintOrGroup ::= TTCN_PDU_Constraint | TTCN_PDU_ConstraintGroup

547 TTCN_PDU_ConstraintGroup ::= $TTCN_PDU_ConstraintGroup TTCN_PDU_ConstraintGroupld
{TTCN_PDU_ConstraintOrGroup} + $End_TTCN_PDU_ConstraintGroup

548 TTCN_PDU_ConstraintGroupld ::= $TTCN_PDU_ConstraintGroupld PDU_ConstraintGroupl dentifier

549 TTCN_PDU_Constraint ::= $Begin_TTCN_PDU_Constraint Consld [PDU_ConstraintGroupRef] PDU_ld DerivPath
[EncRuleld] [EncVariationld] [Comment] [PDU_FieldValues] [Comment] $End_TTCN_PDU_Constraint

/* STATIC SEMANTICS - The Fullldentifier that is part of PDU_Id shall not be used. */

/* STATIC SEMANTICS - If a PDU is substructured, then the constraints for PDUs of that type shall have the same
structure*/

/* STATIC SEMANTICS — A modified constraint shall have the same parameter list as its base constraint. In particular,
there shall be no parameters omitted from or added to this list. */

550 PDU_ConstraintGroupRef :$PDU_ConstraintGroupRef PDU_ConstraintGroupReference
551 PDU_ConstraintGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) "/"] {PDU_ConstraintGroupldentifier "/"}
552 PDU_ConstraintGroupldentifier ::= Identifier
553 EncRuleld ::=$EncRuleld [EncodingRuleldentifier]
554 Consld ::=$Consld Consld&ParList
555 Consld&ParList ::= Constraintldentifier [FormalParList]
556 Constraintldentifier ::= Identifier
557 DerivPath ::=$DerivPath [DerivationPath]
558 DerivationPath ::= {Constraintldentifier Dot}+
/* STATIC SEMANTICS - If a constraint definition is a modification of an existing constraint, the name of the constraint
that is taken as the basis of this modification shall be referenced in the table in the derivation path entry. */
[* STATIC SEMANTICS — The first Constraintldentifier in DerivationPath shall be a base constraint identifier. */
/* STATIC SEMANTICS - The DerivationPath shall be the complete list of constraints in the order in which their
modifications to the base constraint are to be applied. */
/* STATIC SEMANTICS - There shall be no white space between Constraintldentifier and Dot. */
559 PDU_FieldValues ::$PDU_FieldValues{PDU_FieldValue}$End_PDU_FieldValues
560 PDU_FieldValue ::$PDU_FieldValue PDU_Fieldld ConsValue [PDU_FieldEncoding] [Comment]
$End_PDU_FieldValue
/* STATIC SEMANTICS - The Fullldentifier that is part of PDU_Fieldld shall not be used. */
[* STATIC SEMANTICS - If a PDU definition refers to a Structured Type as a substructure of a field (i.e., with a field
name), then the corresponding constraint shall have the same field name in the corresponding position in the field name

column of the constraint and the value shall be a reference to a constraint for that field (i.e., for that substructure in
accordance with the definition of the Structured Type). */

/* STATIC SEMANTICS - If a PDU definition refers to a field specified as being of metatype PDU, then in a
corresponding constraint, the value for that field shall be specified as the name of a PDU constraint, or formal parameter. */
/* STATIC SEMANTICS — Use of structured constraints by macro expansion in a constraint shall not be used unless the
corresponding PDU definition also references the same Structured Type by macro expansion. */
/* STATIC SEMANTICS - Parameterized PDU field values in a base constraint shall not be modified or explicitly omitted
in a modified constraint. */

561 ConsValue ::$ConsValue ConstraintValue&Attributes
/* OPERATIONAL SEMANTICS — ConsValue shall evaluate to an element of the type specified for the ASP parameter,
PDU field or structure element. This may include matching symbols compatible with the specified type. */

562 ConstraintValue&Attributes ::= ConstraintValue ValueAttributes
/* NOTE - ConstraintValue&Attributes can be reached via DefinedValue in the ASN.1 syntax. See the reference on the
production 739 for Value. */

/* STATIC SEMANTICS — ConstraintValue shall fulfil all restrictions defined for the ASP parameter, PDU field or
structure element type, including value ranges, value lists, alphabet restrictions and/or length restrictions and thieall fulfil
restrictions defined by ValueAttributes. */

/* OPERATIONAL SEMANTICS — Any length specifications defined for the ASP parameter or PDU field type in the Test
Suite Type declarations shall not conflict with the length specifications in the ASP or PDU type definition. */

/* STATIC SEMANTICS — Neither Test Suite Variables nor Test Case Variables shall be used in constraints, unless passed
as actual parameters. In the latter case they shall be bound to a value and shall not be changed. */

563 ConstraintValue ::= ConstraintExpression | MatchingSymbol | ConsRef

/* STATIC SEMANTICS — When a ConstraintExpression is used in a Constraint, its terms shall not contain
TS Varldentifier or TC_Varldentifier. */

Recommendation X.292 (09/98) 157

158

564

565

566
567

568
569
570

571

572

573

574

575

576

577

578

579
580

581
582

583

584
585

ConstraintExpression ::= Expression
/* OPERATIONAL SEMANTICS — ConstraintExpression shall evaluate to an element of the specified type. */

MatchingSymbol ::= Complement | Omit | AnyValue | AnyOrOmit | ValueList | ValueRange | SuperSet | SubSet |
Permutation

/* NOTE — No matching symbol is considered to be a specific value. */

Complement ::€OMPLEMENT ValueList

Omit ::= DashQMIT

/* STATIC SEMANTICS — In ASN.1 constraints Omit shall be used only for ASP parameters or PDU fields that are
declared OPTIONAL or DEFAULT. */

AnyValue ::="?"

AnyOrOmit ::= ™"

ValueList ::= "(" ConstraintValue&Attributes {Comma ConstraintValue&Attributes} *)"

/* STATIC SEMANTICS — Each ConstraintValue&Attributes shall be of the type declared for the ASP parameter, PDU
field, or structure element in which the ValueList is used. */

ValueRange ::="(" ValRange ")"

/* STATIC SEMANTICS - ValueRange shall be used only on ASP parameter, PDU field, or structure element of type
INTEGER. */

/* STATIC SEMANTICS - The set of values defined by ValueRange shall be a true subset of the values allowed by the
ASP parameters, PDU fields or structure elements declared type. */

ValRange ::= (LowerRangeBoufid UpperRangeBound)

/* OPERATIONAL SEMANTICS - LowerRangeBound shall be less than UpperRangeBound. */
LowerRangeBound ::= ConstraintExpression | MItNBINITY

/* OPERATIONAL SEMANTICS — ConstraintExpression shall evaluate to a specific INTEGER value. */
UpperRangeBound ::= ConstraintExpressiddHINITY

/* OPERATIONAL SEMANTICS — ConstraintExpression shall evaluate to a specific INTEGER value. */
SuperSet ::SUPERSET "(" ConstraintValue&Attributes)"

/* STATIC SEMANTICS - The argument to SuperSet, @onstraintValue&Attributes, shall be of type SET OF. */
SubSet ::SUBSET "(" ConstraintValue&Attributes ")"

[* STATIC SEMANTICS - The argument to SubSet,,i©onstraintValue&Attributes, shall be of type SET
OF. */

Permutation ::= PERMUTATION ValueList

/* STATIC SEMANTICS - In ASN.1 constraints IF_PRESENT shall be used only for ASP parameters or PDU fields that
are declared OPTIONAL /* STATIC SEMANTICS — The Permutation shall be used only inside a value of type
SEQUENCE OF. */

/* STATIC SEMANTICS — The ValueList shall be of the type specified in the SEQUENCE OF. */
ValueAttributes ::= [ValueLength] F_PRESENT] [ASN1_Encoding]

/* STATIC SEMANTICS - In ASN.1 constraints IF_PRESENT shall be used only for ASP parameters or PDU fields that
are declared OPTIONAL

or DEFAULT. */

/* STATIC SEMANTICS — ASN1_Encoding shall only be used for ValueAttributes in ASN.1 Type Constraints and ASN.1
PDU Constraints. */

ASN1_Encoding ::£NC PDU_FieldEncodingCall
ValueLength ::= SingleValueLengtiRangeValueLength

/* STATIC SEMANTICS - ValueLength shall be used only for ASP parameters, PDU fields or structure element that are
declared as BITSTRING, HEXSTRING, OCTETSTRING, CharacterString, SEQUENCE OF or SET OF. */

/* STATIC SEMANTICS - ValueLength shall be used only in combination with the following mechanisms: Specificvalue,
Complement, Omit, AnyValue, AnyOrOmit, AnyOrNone and Permutation. */

/* STATIC SEMANTICS - The set of values defined by ValueLength shall be a true subset of the values allowed by the
ASP parameters, PDU fields or structure elements declared type. */

SingleValueLength ::= "[" ValueBound "]"

ValueBound ::= Number | TS_Parldentifier | TS_Constldentifier | FormalParldentifier

/* OPERATIONAL SEMANTICS - ValueBound shall evaluate to a specific non-negative INTEGER value. */
RangeValueLength ::="[" LowerValueBound To UpperValueBound "T"

/* OPERATIONAL SEMANTICS - LowerValueBound shall be less than UpperValueBound. */
LowerValueBound ::= ValueBound

UpperValueBound ::= ValueBoundNFINITY

Recommendation X.292 (09/98)

A.3.3.23 ASN.1 PDU Constraint Declarations

586 ASN1_PDU_Constraints::= $ASN1 _PDU_Constraints{ ASN1_PDU_ConstraintOrGroup} +
$End_ASN1 PDU_Constraints

587 ASN1_PDU_ConstraintOrGroup ::= ASN1 PDU_Constraint | ASN1_PDU_ConstraintGroup

588 ASN1_PDU_ConstraintGroup ::= $ASN1 _PDU_ConstraintGroup ASN1 _PDU_ConstraintGroupld
{ASN1_PDU_ConstraintOrGroup} + $End_ASN1_PDU_ConstraintGroup

589 ASN1_PDU_ConstraintGroupld ::= $ASN1 _PDU_ConstraintGroupld ASN1 _PDU_ConstraintGroupldentifier

590 ASN1_PDU_Constraint ::= $Begin_ASN1_PDU_Constraint Consld [ASN1_PDU_ConstraintGroupRef] PDU_Id
DerivPath [EncRuleld] [EncVariationld] [Comment] [ASN1_ConsValue] [Comment] $End_ASN1 PDU_Constraint
[* STATIC SEMANTICS - The Fullldentifier that is part of PDU_Id shall not be used. */

/* STATIC SEMANTICS - If a PDU is substructured, then the constraints for PDUs of that type shall have a compatible
ASN.1 structure (i.e., possibly with some groupings). */

[* STATIC SEMANTICS — A modified constraint shall have the same parameter list as its base constraint. In particular,
there shall be no parameters omitted from or added to this list. */

591 ASN1_PDU_ConstraintGroupRef $ASN1 PDU_ConstraintGroupRef ASN1_PDU_ConstraintGroupReference

592 ASN1_PDU_ConstraintGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) "/"]
{ASN1_PDU_ConstraintGroupldentifier "/"}

593 ASN1 PDU_ConstraintGroupldentifier ::= Identifier
594 ASN1_ConsValue ::$ASN1_ConsValue ConstraintValue&AttributesOrReplagEnd_ASN1 ConsValue
595 ConstraintValue&AttributesOrReplace ::= ConstraintValue&Attributes | Replacement {Comma Replacement}
596 Replacement ::REPLACE ReferenceLisBY ConstraintValue&AttributesQMIT ReferencelList
/* STATIC SEMANTICS — Replacement shall be used only when DerivPath is specified. */

/* STATIC SEMANTICS — Parameterized replaced values in a base constraint shall not be modified or explicitly omitted
in a modified constraint. */

597 Referencelist ::= (ArrayRef | Componentidentifier | ComponentPosition) {ComponentReference}

A.3.3.24 CM Constraint Declarations

598 CM_Constraints ::$CM_Constraints[TTCN_CM_Constraird] [ASN1_CM_Constrairg] $End_CM _Constraints

A.3.3.25 Tabular CM Constraint Declarations

599 TTCN_CM_Constraints ::$TTCN_CM_Constraints {TTCN_CM_ConstraintOrGroup}+
$End_TTCN_CM_Constraints

600 TTCN_CM_ConstraintOrGroup ::= TTCN_CM_Constraint | TTCN_CM_ConstraintGroup

601 TTCN_CM_ConstraintGroup :$TTCN_CM_ConstraintGroup TTCN_CM_ConstraintGroupld
{TTCN_CM_ConstraintOrGroup}$End_TTCN_CM_ConstraintGroup

602 TTCN_CM_ConstraintGroupld :$TTCN_CM_ConstraintGroupld CM_ConstraintGroupldentifier

603 TTCN_CM_Constraint ::$Begin_TTCN_CM_Constraint Consld [CM_ConstraintGroupRef] CM_Id DerivPath
[Comment] [CM_ParValues] [CommerEnd_TTCN_CM_Constraint

604 CM_ConstraintGroupRef :$CM_ConstraintGroupRef CM_ConstraintGroupReference

605 CM_ConstraintGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) "/"] {CM_ConstraintGroupldentifier "/"}
606 CM_ConstraintGroupldentifier ::= Identifier

607 CM_ParValues ::$CM_ParValues {CM_ParValue}$End_CM_ParValues

608 CM_ParValue ::$CM_ParValue CM_Parld ConsValue [CommerEnd_CM_ParValue

A.3.3.26 ASN.1 CM Constraint Declarations

609 ASN1_CM_Constraints :$ASN1_CM_Constraints {ASN1_CM_ConstraintOrGroup}+
$ENd_ASN1 _CM_Constraints

610 ASN1_CM_ConstraintOrGroup ::= ASN1_CM_Constraint | ASN1_CM_ConstraintGroup

611 ASN1_CM_ConstraintGroup :$ASN1 CM_ConstraintGroup ASN1_CM_ConstraintGroupld
{ASN1_CM_ConstraintOrGroup}$End_ASN1 _CM_ConstraintGroup

612 ASN1_CM_ConstraintGroupld :$3ASN1_CM_ConstraintGroupld ASN1_CM_ConstraintGroupldentifier

613 ASN1_CM_Constraint ::$Begin_ASN1_CM_Constraint Consld [ASN1_CM_ConstraintGroupRef] CM_Id DerivPath
[Comment] [ASN1_ConsValue] [CommerEnd_ASN1 CM_Constraint

614 ASN1_CM_ConstraintGroupRef :3ASN1 _CM_ConstraintGroupRef ASN1_CM_ConstraintGroupReference

615 ASN1_CM_ConstraintGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) "/"]
{ASN1_CM_ConstraintGroupldentifier "/"}

616 ASN1_CM_ConstraintGroupldentifier ::= Identifier

A.3.3.27 Dynamic Part

617 DynamicPart ::$DynamicPart [TestCases] [TestStepLibrary] [DefaultsLibrai$fEnd_DynamicPart

Recommendation X.292 (09/98) 159

A.3.3.28 Test Cases

618 TestCases::= $TestCases { TestGroup | TestCase} + $End_T estCases

619 TestGroup ::= $TestGroup TestGroupld { TestGroup | TestCase} + $End_TestGroup

620 TestGroupld ::= $TestGroupld TestGroupldentifier

621 TestGroupldentifier ::= Identifier

622 TestCase::= $Begin_TestCase TestCaseld TestGroupRef TestPurpose [Configuration] DefaultsRef [Comment]
BehaviourDescription [Comment] $End_TestCase

623 TestCaseld ::= $TestCaseld TestCasel dentifier

624 TestCaseldentifier ::= Identifier

625 TestGroupRef ::= $TestGroupRef TestGroupReference

626 TestGroupReference ::=[Suiteldentifier /"] {TestGroupldentifier "/"}
/* STATIC SEMANTICS - There shall be no white space on either side of the "/"s. */

627 TestPurpose ::$TestPurpose BoundedFreeText

628 Configuration ::=$Configuration TCompConfigldentifier

629 DefaultsRef::$DefaultsRef [DefaultRefList]

630 DefaultRefList ::= DefaultReference {Comma DefaultReference}

631 DefaultReference ::= Defaultldentifier [ActualParList]

A.3.3.29 Test Step Library

632 TestStepLibrary ::$TestStepLibrary {TestStepGroup | TestStepBEnd_TestStepLibrary

633 TestStepGroup ::$TestStepGroup TestStepGroupld {TestStepGroup | TestStefEAd_TestStepGroup

634 TestStepGroupld ::$TestStepGroupld TestStepGroupldentifier

635 TestStepGroupldentifier ::= Identifier

636 TestStep ::$Begin_TestStep TestStepld TestStepRef Objective DefaultsRef [Comment] BehaviourDescription
[Comment]$ENnd_TestStep

637 TestStepld ::$TestStepld TestStepld&ParList

638 TestStepld&ParList ::= TestStepldentifier [FormalParList]

639 TestStepldentifier ::= Identifier

640 TestStepRef ::$TestStepRef TestStepGroupReference

641 TestStepGroupReference ::= [Suiteldentifier "/"] {TestStepGroupldentifier "/"}
/* STATIC SEMANTICS — There shall be no white space on either side of the "/"s. */

642 Objective ::=30bjective BoundedFreeText

A.3.3.30 Default Library

643 DefaultsLibrary ::-$DefaultsLibrary {DefaultGroup | Default}+$End_DefaultsLibrary

644 DefaultGroup ::3$DefaultGroup DefaultGroupld {DefaultGroup | Default}$End_DefaultGroup

645 DefaultGroupld ::3$DefaultGroupld DefaultGroupldentifier

646 Default ::=$Begin_Default Defaultld DefaultRef Objective [Comment] BehaviourDescription [Comm#&Eiid_Default
/* STATIC SEMANTICS — BehaviourDescription shall not use tree attachment except for attaching local trees (i.e
Default behaviour trees shall not attach Test Steps). */

647 DefaultRef ::=$DefaultRef DefaultGroupReference

648 Defaultld ::=$Defaultld Defaultld&ParList

649 Defaultld&ParList ::= Defaultldentifier [FormalParList]

650 Defaultldentifier ::= Identifier

651 DefaultGroupReference ::= [Suiteldentifier "/"] {DefaultGroupldentifier "/"}
/* STATIC SEMANTICS — There shall be no white space on either side of the "/"s. */

652 DefaultGroupldentifier ::= Identifier

A.3.3.31 Behaviour descriptions

653 BehaviourDescription ::$Behaviour Description RootTree {LocalTreeBEnd_Behaviour Description

654 RootTree ::= {BehaviourLine}+

655 LocalTree ::= Header {BehaviourLine}+

656 Header ::-$Header TreeHeader

657 TreeHeader ::= Treeldentifier [FormalParList]

658 Treeldentifier ::= Identifier

659 FormalParList ::= "(" FormalPar&Type {SemiColon FormalPar&Type} ")"

660 FormalPar&Type ::= FormalParldentifier {Comma FormalParldentifier} Colon FormalParType

661 FormalParldentifier ::= Identifier

662 FormalParType ::= Type | PCO_TypeldentifeblU |CP | TIMER
/* STATIC SEMANTICS - In a Test Suite Operation or an encoding operation FormalParType shall not be a PCO type or
the keyword CP*/
/* STATIC SEMANTICS - If a formal parameter is of typBU, then that formal parameter shall not be used with a
component reference (i.e. specific fields of the PDU cannot be referenced). */

160 Recommendation X.292 (09/98)

A.3.3.32 Behaviour lines

663 BehaviourLine ::= $BehaviourLineLabelld Line Cref Verdictld [Comment] $End_BehaviourLine

664 Line::=$Line Indentation StatementLine

665 Indentation ::="[" Number "]"
/* STATIC SEMANTICS - Statements in the first level of alternatives in a behaviour description shall have the indentation
value zero. */
/* STATIC SEMANTICS - Statements having a predecessor shall have the indentation value of the predecessor plus one as
their indentation value. */

666 Labelld ::=$Labelld [Label]

667 Label ::= Identifier

668 Cref ::=$Cref [ConstraintReference]

669 ConstraintReference ::= ConsRef | FormalParldentifier | AnyValue
/* STATIC SEMANTICS — ConsRef shall be present in conjunction with SEND, IMPLICIT SEND and RECEIVE and
shall have a type which is consistent with (i.e. the same as or a subset of) the type of ASP, PDU or CM specified in the
SEND, IMPLICIT_SEND or RECEIVE statement. A ConstraintReference is not needed for ASPs and CMs that have no
parameters or PDUs that have no fields. It shall not be present with any other kind of TTCN statement. */
/* STATIC SEMANTICS — FormalParldentifier shall resolve to a ConsRef. */
/* STATIC SEMANTICS - ConstraintReferences on SEND events shall not include any MatchingSymbol except Omit
unless the MatchingSymbol is explicitly assigned specific values on the SEND event line. */

670 ConsRef ::= Constraintldentifier [ActualCrefParList]

671 ActualCrefParList ::="(" ActualCrefPar {Comma ActualCrefPar} ")"
/* STATIC SEMANTICS — See static semantics on production 699. */

672 ActualCrefPar ::= Value
/* NOTE - Through Value, it is possible to reach MatchingSymbol, TS_Parldentifier, TS_Constldentifier,
TS_Varldentifier, TC_Varldentifier, FormalParldentifier or ConsRef. */

673 Verdictld ::=$Verdictld [Verdict]

674 Verdict ::= Pass | Fail | Inconclusive | Result
/* STATIC SEMANTICS - Verdict shall not occur corresponding to entries in the behaviour tree which are any of the
following: empty, an ATTACH construct, a REPEAT construct, a GOTO construct, an IMPLICIT SEND or a RETURN. */

675 Pass:=PASS|P|"("PASS")"|"("P")"

676 Fail ::=FAIL [F|"("FAIL " |"("F")"

677 Inconclusive ::#NCONC |1 | "("INCONC ")" | "(" I ")"

678 Result ::=R
[* STATIC SEMANTICS — R shall not be used on the LHS of an assignment. */

A.3.3.33 TTCN statements

679 StatementLine ::= (Event [Qualifier] [AssignmentList] [TimerOps]) | (Qualifier [AssignmentList] [TimerOps]) |
(AssignmentList [TimerOps]) | TimerOps | Construct | ImplicitSend

680 Event ::= Send | Receive | Otherwise | Timeout | Done
/* STATIC SEMANTICS — A Receive, Otherwise or Timeout event shall only be followed by other Receive, Otherwise
and Timeout events through the remainder of the set of alternatives in a fully expanded tree. As a consequence, Default
trees will contain only Receive, Otherwise and Timeout events on the first level of alternatives. */

681 Qualifier ::= "[" Expression "]"
/* OPERATIONAL SEMANTICS — Qualifier shall evaluate to a specific BOOLEAN value. */

682 Send ::= [PCO_ldentifier | CP_ldentifier | FormalParldentifier] "I" (ASP_Identifier | PDU_ldentifier | CM_Identifier)
/* STATIC SEMANTICS - PCO_ldentifier, CP_ldentifier or FormalParldentifier shall be present unless the test suite uses
only one PCO and no CP. */
/* STATIC SEMANTICS - FormalParldentifier shall resolve to a PCO_Identifier or CP_Identifier. */
/* STATIC SEMANTICS - Only CMs may be exchanged on CPs and only ASPs and PDUs may be exchanged on PCOs.
*/

683 ImplicitSend ::="<1UT "I" (ASP_ldentifier | PDU_Identifier) ">"
[* STATIC SEMANTICS - ImplicitSend shall not be used unless the test method being used is one of the Remote Test
Methods. */

684 Receive ::= [PCO_ldentifier | CP_ldentifier | FormalParldentifier] "?" (ASP_ldentifier | PDU_Ildentifier | CM_ldentifier)
[* STATIC SEMANTICS — PCO_ldentifier, CP_ldentifier or FormalParldentifier shall be present unless the test suite uses
only one PCO and no CP. */
/* STATIC SEMANTICS - Only CMs may be exchanged on CPs and only ASPs and PDUs may be exchanged on
PCOs. */

685 Otherwise ::= [PCO_ldentifier | CP_ldentifier | FormalParldentifierDPHERWISE
/* STATIC SEMANTICS — PCO_Identifier, CP_ldentifier or FormalParldentifier shall be present unless the test suite uses
only one PCO and no CP. */
/* STATIC SEMANTICS - FormalParldentifier shall only be of PCO type or CP type. */

Recommendation X.292 (09/98) 161

162

686
687
688
689
690

691

692
693
694

695

696

697

698

699

700

Timeout ::="?' TIMEOUT [Timerldentifier | FormalParldentifier]

[* STATIC SEMANTICS - FormalParldentifier shall only be of TIMER type. */

Done ::= "?’DONE "(" [TCompldList])"

TCompldList ::= TCompldentifier {Comma TCompldentifier}

Construct ::= GoTo | Attach | Repeat | Return | Activate | Create

Activate ::=ACTIVATE "(" [DefaultRefList] ")"

[* STATIC SEMANTICS — The ACTIVATE construct shall not be used in Default behaviour tables. */
Return ::=RETURN

/* STATIC SEMANTICS — The RETURN construct shall not be used except in Default behaviour trees (including any
local trees within Default behaviour tables). */

Create ::CREATE "(" CreateList)"

Createlist ::= CreateTComp {Comma CreateTComp}

CreateTComp ::= TCompldentifier Colon TreeReference [ActualParList]

/* STATIC SEMANTICS — TCompldentifier shall not be of Role MTC. */

GoTo ::= ("->" [GOTO) Label

/* STATIC SEMANTICS — The label column shall contain labels referenced from the GoTo. */

/* STATIC SEMANTICS - Label shall be associated with the first of a set of alternatives, one of which is an ancestor node
of the point from which the GoTo is to be made. */

/* STATIC SEMANTICS — GoTo shall be used only for jumps within one treg within a Test Case root tree, a Test
Step tree a Default tree and a local tree; and thus, each label used in a GoTo construct shall be found within the tree in
which the GoTo is used. */

/* STATIC SEMANTICS — There shall be no ACTIVATE operation as an ancestor node of the GoTo construct on the
branch of the tree between the Label and the GoTo. */

/* STATIC SEMANTICS — No GoTo shall be made to the first level of alternatives of local trees, Test Steps or Defaults. */
Attach ::= "+" TreeReference [ActualParList]

/* STATIC SEMANTICS — TreeReference shall not attach itself, either directly or indirectly, at its top level of indentation.

*/

[* STATIC SEMANTICS — The number of the actual parameters shall be the same as the number of the formal parameters.
*/

/* STATIC SEMANTICS - Formal and actual parameters of test steps shall be used in such a way that only valid TTCN is
created by textual substitution. */

/* STATIC SEMANTICS - LiteralValue, TS_Parldentifier, TS_Constldentifier, TS_Varldentifier, TC_Varldentifier,
ConsRef, MatchingSymbol, FormalParldentifier, PCO_ldentifier and CP_ldentifier may be passed as actual parameters to
an attached tree. */

Repeat ::REPEAT TreeReference [ActualParLisNTIL Qualifier

/* STATIC SEMANTICS — TreeReference shall not attach itself, either directly or indirectly, at its top level of
indentation. */

/* STATIC SEMANTICS — The number of the actual parameters shall be the same as the number of the formal
parameters. */

/* STATIC SEMANTICS - LiteralValue, TS_Parldentifier, TS_Constldentifier, TS_Varldentifier, TC_Varldentifier,
ConsRef, MatchingSymbol, FormalParldentifier, PCO_ldentifier and CP_ldentifier may be passed as actual parameters to
the tree in a REPEAT statement. */

TreeReference ::= TestStepldentifier | Treeldentifier

/* STATIC SEMANTICS — Treeldentifier shall be the name of one of the trees in the current behaviour description, i.e.
local trees are not accessible outside the behaviour description in which they are specified. */

ActualParList ::= "(" ActualPar {Comma ActualPar} ")"

/* STATIC SEMANTICS — The number of the actual parameters shall be the same as the number of the formal
parameters. */

/* OPERATIONAL SEMANTICS — Each actual parameter shall resolve to a specific value compatible with the type of its
corresponding formal parameter, or in the case of predefined operations compatible with the types for which the operation
is defined. */

/* STATIC SEMANTICS - If a parameter is a parameterized constraint then the constraint, shall be passed together with its
actual parameter list. */

/* STATIC SEMANTICS — The actual parameters shall be bound. */

/* STATIC SEMANTICS - If the type of the formal parameter is PDU, then the actual parameter's type shall be declared
as PDU or as a specifRDU type. */

ActualPar ::= Value | PCO_lIdentifier | CP_ldentifier | Timerldentifier

/* NOTE - Through Value, it is possible to reach MatchingSymbol, TS_Parldentifier, TS_Constldentifier,
TS_Varldentifier, TC_Varldentifier, FormalParldentifier or ConsRef. */

Recommendation X.292 (09/98)

A.3.3.34 Expressions

701
702

703

704

705

706

707

708

709

710

711

AssignmentList ::="(" Assignment { Comma Assignment} ")"
Assignment ::= DataObjectReference ":=" Expression
[* STATIC SEMANTICS - Except within a Procedural Definition or an Encoding Definition, the LHS of Assignment shall

only resolve to: TS_Varldentifier, TC_Varldentifier, reference to the field of a variable or reference to an ASP parameter or
PDU field that is to be sent. */

[* STATIC SEMANTICS — Within a procedure definition of a TSOp or EncodingOp, the DataObject Identifier on the left-
hand side of an assignment shall be a Varldentifier. */

[* STATIC SEMANTICS - The expression shall contain no unbound variables. */

/* OPERATIONAL SEMANTICS — The Expression on the RHS of Assignment shall evaluate to an explicit value of the
type of the LHS. */

Expression ::= SimpleExpression [RelOp SimpleExpression]
/* OPERATIONAL SEMANTICS - If both SimpleExpressions and the RelOp exist, then the SimpleExpressions shall
evaluate to specific values of compatible types. */

/* OPERATIONAL SEMANTICS - If RelOp is "<" | ">"|">="| "<=", then each SimpleExpression shall evaluate to a
specific INTEGER value. */

/* STATIC SEMANTICS — ASN.1 Named Values shall not be used within arithmetic expressions as operands of
operations. */

SimpleExpression ::= Term {AddOp Term}

/* OPERATIONAL SEMANTICS — Each Term shall resolve to a specific value. If more than one Term exists and if
AddOp is "OR", then the Terms shall resolve to type BOOLEAN; if AddOp is "+" or "-", then the Terms shall resolve to
type INTEGER. */

Term ::= Factor {MultiplyOp Factor}

/* OPERATIONAL SEMANTICS — Each Factor shall resolve to a specific value. If more than one Factor exists and if
MultiplyOp is "AND", then the Factors shall resolve to type BOOLEAN; if MultiplyOp is "*" or "/", then the Factors shall
resolve to type INTEGER. */

Factor ::= [UnaryOp] Primary

/* OPERATIONAL SEMANTICS — The Primary shall resolve to a specific value. If UnaryOp exists and is "NOT", then
Primary shall resolve to type BOOLEAN; if the UnaryOp is "+" or "-", then Primary shall resolve to type INTEGER. */

Primary ::= Value | DataObjectReference | OpCall | SelectExprldentifier | “(* Expression ")"
/* STATIC SEMANTICS - SelectExprldentifier shall only be used within selection expressions. */

/* NOTE — Through Value, it is possible to reach MatchingSymbol, TS_Parldentifier, TS_Constldentifier,
TS Varldentifier, TC_Varldentifier, FormalParldentifier or ConsRef. */

DataObjectReference ::= DataObjectldentifier {ComponentReference}

/* STATIC SEMANTICS - Identifiers of ASP parameters and PDU fields associated with SEND and RECEIVE shall be
used only to reference ASP parameter and PDU field values on the statement line itself. */

/* STATIC SEMANTICS — Each ComponentReference shall only reference an ASP parameter, PDU field, structure
element or ASN.1 value explicitly declared in the object that immediately precedes in the DataObjectReference. */

/* STATIC SEMANTICS - DataObjectldentifier shall not be a Varldentifier except within a procedure definition of a
TestSuiteOperation or EncodingOperation. */

DataObjectldentifier ::= TS_Parldentifier | TS_Constldentifier | TS_Varldentifier | TC_Varldentifier | FormalParldentifier |
ASP_ldentifier | PDU_ldentifier | CM_Identifier | Varldentifier

ComponentReference ::= RecordRef | ArrayRef | BitRef

/* STATIC SEMANTICS — RecordRef shall be used to reference ASN.1 SEQUENCE, SET and CHOICE components. It
shall not be used to reference components of any other ASN.1 type. */

/* STATIC SEMANTICS — RecordRef shall be used to reference ASP parameters, PDU fields and structure elements in the
tabular form. */

/* STATIC SEMANTICS — ArrayRef shall be used to reference ASN.1 SEQUENCE OF and SET OF components. It shall
not be used to reference components of any other ASN.1 type. */

RecordRef ::= Dot (Componentldentifier | ComponentPosition)

[* STATIC SEMANTICS — The Componentidentifier form of RecordRef shall always be used to reference ASN.1
SEQUENCE, SET and CHOICE components when an identifier is declared for the component. */

[* STATIC SEMANTICS — The Componentldentifier form of RecordRef shall always be used to reference ASP
parameters, PDU fields and structure elements declared in the tabular form. */

[* STATIC SEMANTICS — The ComponentPosition form of RecordRef shall always be used to reference ASN.1
SEQUENCE, SET and CHOICE components when an identifier is not declared for the component. */

Recommendation X.292 (09/98) 163

712
713

714
715
716

717
718

719

720

721
722

723

724

725

726

A.3.3.35

164

727
728
729

/* STATIC SEMANTICS - Structldentifier shall not be used if the relevant structure is used as a macro. Structldentifiers
and PDU_Identifiers shall not be included in a RecordRef when a parameter, field or element is chained to a PDU or
structure and the RecordRef is to identify a component of that PDU or structure. */

/* STATIC SEMANTICS — Where a structure is used as a macro expansion, the elements in the structure shall be referred
to as if it was expanded into the ASP or PDU referring to it. */

/* STATIC SEMANTICS - If a parameter, field or element is defined to be of metatype PDU no reference shall be made to
fields of that substructure. */

Componentldentifier ::= ASP_Parldentifier | PDU_Fieldldentifier | CM_Parldentifier | Elemldentifier | ASN1_ldentifier
ASNL1_Identifier ::= Identifier
/* NOTE — ASNL1_lIdentifier identifies a field within ASN.1 SEQUENCE, SET or CHOICE type. */

/* STATIC SEMANTICS — An ASN1_lIdentifier associated with a NamedValue shall not be used unless the value is within
a SEQUENCE, SET or CHOICE type. */

[* STATIC SEMANTICS — An ASN1_ldentifier shall be provided to identify the variant in a CHOICE type. */

/* STATIC SEMANTICS — An ASN1_Identifier shall be provided whenever the value definition becomes ambiguous
because of omitted OPTIONAL values in a SEQUENCE type. */

ComponentPosition ::= "(" Number ")"

ArrayRef ::= Dot "[" ComponentNumber "]"

ComponentNumber ::= Expression

/* OPERATIONAL SEMANTICS — ComponentNumber shall evaluate to a non-negative specific INTEGER value. */
BitRef ::= Dot (Bitldentifier | "[" BitNumber "]")

Bitldentifier ::= Identifier

/* NOTE - Bitldentifier identifies a particular bit within an ASN.1 BIT STRING. */

BitNumber ::= Expression

/* OPERATIONAL SEMANTICS - BitNumber shall evaluate to a non-negative specific INTEGER value. */
OpCall ::= Opldentifier (ActualParList | "(" ")")

/* STATIC SEMANTICS — See static semantics on production 699. */

Opldentifier ::= TS_Opldentifier | TS_Procldentifier | PredefinedOpldentifier

PredefinedOpldentifier ::= BIT_TO_INT | HEX_TO_INT | INT_TO_BIT | INT_TO_HEX | IS_CHOSEN | IS_PRESENT |
LENGTH_OF | NUMBER_OF ELEMENTS

AddOp = "+"|"-"DR
/* OPERATIONAL SEMANTICS - Operands of the "+", "—" operators shall be of type INTEGER (i.e., TTCN or ASN.1

predefined) or derivations of INTEGER (i.e., subrange). Operands of the OR operator shall be of type BOOLEAN (TTCN
or ASN.1 predefined) or derivatives of BOOLEAN. */

MultiplyOp == "**| */*]MOD | AND

/* OPERATIONAL SEMANTICS - Operands of the "*", "/" and MOD operators shall be of type INTEGER (i.e., TTCN or
ASN.1 predefined) or derivations of INTEGER (i.e., subrange). Operands of the AND operator shall be of type BOOLEAN
(TTCN or ASN.1 predefined) or derivatives of BOOLEAN. */

UnaryOp ::= "+"|"-"NOT

/* OPERATIONAL SEMANTICS — Operands of the "+", "—" operators shall be of type INTEGER (i.e., TTCN or ASN.1
predefined) or derivations of INTEGER (i.e., subrange). Operands of the NOT operator shall be of type BOOLEAN (TTCN
or ASN.1 predefined) or derivatives of BOOLEAN. */

RelOp = "="|"<"|">"|"<>"B" | "<"

Timer operations

TimerOps ::= TimerOp {Comma TimerOp}
TimerOp ::= StartTimer | CancelTimer | ReadTimer
StartTimer ::=START (Timerldentifier | FormalParldentifier) ['(" TimerValue ")"]

/* STATIC SEMANTICS - FormalParldentifier shall only be of TIMER type. */

730

731

732

CancelTimer ::£ANCEL [Timerldentifier | FormalParldentifier]

[* STATIC SEMANTICS - FormalParldentifier shall only be of TIMER type. */

TimerValue ::= Expression

/* OPERATIONAL SEMANTICS - Timervalue shall evaluate to a non-zero positive INTEGER. */
ReadTimer ::READTIMER (Timerldentifier | FormalParldentifier) "(" DataObjectReference)"
/* STATIC SEMANTICS - FormalParldentifier shall only be of TIMER type. */

/* STATIC SEMANTICS - The DataObjectReference shall only resolve to TS_Varldentifier, TC_Varldentifier, or
reference to the field of a variable. */

/* OPERATIONAL SEMANTICS — The DataObjectReference shall resolve to type INTEGER. */

Recommendation X.292 (09/98)

A.3.3.36

733
734

Types

TypeOrPDU ::= Type | PDU
Type ::= PredefinedType | ReferenceType

A.3.3.36.1 Predefined types

735

736

PredefinedType::= INTEGER | BOOLEAN |BITSTRING |[HEXSTRING | OCTETSTRING |
OBJECTIDENTIFIER | R_Type| CharacterString

CharacterString ::= NumericString | PrintableString | TeletexString | VideotexString | VisibleString | |A5String |
GraphicString | GeneralString | T61String | 1 SO646String

A.3.3.36.2 Referenced types

737

738

A.3.3.37
739

ReferenceType ::= TS _Typeldentifier | ASP_ldentifier | PDU_Identifier | CM_ldentifier
/* STATIC SEMANTICS - All types, other than the predefined types, used in a test suite shall be declared in the Test Suite
Type definitions, ASP type definitions, PDU type definitions or CM type definitions, and referenced by name. */

TS_Typeldentifier ::= SimpleTypeldentifier | Structldentifier | ASN1_Typeldentifier
Values
Value ::= LiteralValue | ASN1_Value [ASN1_Encoding]

/* REFERENCE — Where ASN1_Value is the non-terminal Value as defined in Recommendation X.680. For the purposes
of TTCN, the following production defined in Recommendation X.680:

DefinedValue ::= Externalvaluereference | valuereference is redefined to be:

DefinedValue ::= ConstraintValue&Attributes | valuereference
This means that ASN.1 external references are not allowed in TTCN, but the full possibilities of
ConstraintValue&Attributes as defined in production 562 are allowed within ASN.1 values in TTCN. This means that
expressions, matching symbols, constraint references, value lengths, IF_PRESENT, and ASN.1 field encoding operations
are all included . */

For the purpose of TTCN, the following productions in Recommendation X.680:

BuiltinValue ::=
BitStringValue |
BooleanValue |
CharacterStringValue |
ChoiceValue |
EmbeddedPDUValue |
EnumeratedValue |
ExternalValue |
InstanceOfValue |
IntegerValue |
NullValue |
ObjectClassFieldValue |
ObjectldentifierValue |
OctetStringValue |
RealValue |
SequenceOfValue |
SequenceOfValue |
SetValue |
SetOfValue |
TaggedValue

ReferencedValue ::=
DefinedValue |
ValueFromObject

are redefined to be:

BuiltinvValue ::=
BitStringValue |
BooleanValue |
CharacterStringValue |
ChoiceValue |
EmbeddedPDUValue |
EnumeratedValue |
ExternalValue |
IntegerValue |
NullValueValue |
Objectldentifiervalue |

Recommendation X.292 (09/98) 165

740
741
742
743
744
745
746
747
748
749
750
751
752

753
754

755

756
757

758
759
760
761
762
763
764

A.3.3.38

166

765
766
767
768
769
770
771
772

OctetStringValue |
ReaValue |
SequenceValue |
SequenceOfValue |
SetValue |
SetOfValue |
TaggedVaue

ReferencedValue ::=
DefinedVaue */

/* STATIC SEMANTICS — ASN.1 Named Values shall not be used within arithmetic expressions as operands of
operations. */

LiteralValue ::= Number | BooleanValue | Bstring | Hstring | Ostring | Cstring | R_Value
Number ::= (NonZeroNum {Num})d

NonZeroNum ::1|2|3|4]|5|6]7|8]|9

Num ::=0 | NonZeroNum

BooleanValue ::=TRUE | FALSE

Bstring ::="_" {Bin | Wildcard} "_"B

Bin ::=0]|1

Hstring ::="_" {Hex | Wildcard} "_H

Hex ::=NumAp |[B|C|D|E|F

Ostring ::="_" {Oct | Wildcard}"_©O

Oct ::= Hex Hex

Cstring ::= """ {Char | Wildcard | "\"} """

Char ::= 'REFERENCE — A character defined by the relevant Character Sring type. */

/* LEXICAL REQUIREMENT - If the CharacterString type includes the character " (double quote), this character shall be
represented by a pair of " (double quote) in the denotation of any value. */

Wildcard ::= AnyOne | AnyOrNone

AnyOne ::="?"

/* STATIC SEMANTICS — AnyOne shall be used only within values of string types, SEQUENCE OF and SET OF. */
AnyOrNone ::="*"

/* STATIC SEMANTICS — AnyOrNone shall be used only within values of string types, SEQUENCE OF and SET OF. */
R_Value ::9pass|fail |inconc |none

Identifier ::= Alpha{AlphaNum | Underscore | DoubleColon}

[* STATIC SEMANTICS — All Identifiers referenced in a TTCN test suite shall be explicitly declared in the test suite,
explicitly declared in an ASN.1 type definition referenced by the test suite or be a TTCN predefined identifier. */

/* STATIC SEMANTICS — DoubleColon shall only be used in identifiers which are declared in an Import table. Identifiers
containing DoubleColon shall not appear in an Export table. The DoubleColon is used to separate the name of a TTCN
Module from an identifier originally specified in that TTCN Module. */

Alpha ::= UpperAlpha | LowerAlpha

AlphaNum ::= Alpha | Num

UpperAlpha ::;A |[B|CID|E|F|G|H|I |JIK|[L|M|N|O|P|Q|RI|S|T|U|VIW|X]|Y |Z

LowerAlpha ::=a|b|c|d|e|f|g|h]i|j|k]|lI|m|n]o|p|g]|r]|s|t|u|v|w]|x]|y]|z

ExtendedAlphaNum ::# REFERENCE — A character from any character set defined in ISO/IEC 10646. */
BoundedFreeText ::= "/*" FreeText "*/"

FreeText ::= { ExtendedAlphaNum}

/* LEXICAL REQUIREMENT - Free Text shall not contain the string "*/" unless preceded by backslash ("\"). */

Miscellaneous productions

Comma :=""

Dot ::=""

Dash ::="-"

Minus ::="-"

SemiColon ::=";"
DoubleColon ::= Colon Colon
Colon :=""

Underscore ::= " "

Recommendation X.292 (09/98)

A4 General static semantics requirements

A4l Introduction

Static semantics requirements that are related to specific BNF productions are specified as comments on the relevant
productions, in the following format:

[* STATIC SEMANTICS - ..*/

All other static semantic requirements that are common to both TTCN.GR and TTCN.MP are specified in the remainder
of A.4. Additional static semantics in the TTCN.MP are specified in A.5.2.

A.4.2 Uniqueness of identifiers

A.421 In some cases test suites may make references to items defined in other OSI Recommendations. In particular,
references to ASN.1 type definition modules according to Recommendation X.680 may be made in the type definitions.
Names from those modules (such as identifiers of subfields within structured ASN.1 type definitions) may be used

throughout the test suite.

Since the rules for identifiers in ASN.1 and TTCN conflict, the following conventions apply:

a) type references, module identifiers and value references made within the various ASN.1 type definitions tables shall
comply to the requirements for identifiers defined in Recommendation X.680;

b) for identifiers used within the other parts of a test suite dash (-) characters shall be replaced with underscores (_).

Within some TTCN tables part of the ASN.1syntax can be used to define types.In that case, ASN.1 rules shall be
followed for identifiers, with the exception that dash (-) characters shall not be used. Underscores (_) may be used
instead. All other requirements defined by Recommendation X.680 (e.g., Type identifiers shall start with an upper-case
letter, and field identifiers within structured ASN.1 definitions shall start with a lower-case letter) apply to TTCN test
suites wherever ASN.1 is used.

A.4.2.2 Allidentifiers of the following TTCN objects shall be unique throughout the test suite:
a) Test Suite Types.

b) Test Suite Operations.

c) Test Suite Parameters.

d) Test Case Selection Expressions.

e) Test Suite Constants.

f) Test Suite Variables.

g) Test Case Variables.

h) PCO types.

NOTE - If there is no PCO type declaration table, then PCO types are implicitly declared in the PCO declaration table, in which
case the uniqueness refers to the meaning of the PCO type — the same PCO type may occur several times in the PCO declaratior
table with the same meaning.

i) PCOs.
j) CPs
k) Timers.

[) Test Components.

m) Test Component Configurations.

n) ASPtypes.
0) PDU types.
p) CM types.

g) Structured Types.
r) Encoding Rules.

s) Encoding Variations.

Recommendation X.292 (09/98) 167

t) Invalid Field Encodings.

u) Aliases.

v) ASP constraints.

w) PDU constraints.

X) CM constraints.

y) Structure constraints.

Z) Test Cases.

ad) Test Steps.

ab) Defaults.

ac) Encoding Rule Names.

ad) Encoding Variation Names.
ae) Invaid Field Encoding Names.

A.42.3 All thefollowing TTCN object references shall be unique throughout the test suite:
a) Test Group References.

b) Test Step Group References.

¢) Default Group References.

A.4.2.4 TTCN reserved words are listed in Table A.2. These reserved words shall not be used as identifiersin a TTCN
test suite. All TTCN reserved words and TTCN identifiers are case sensitive.

A.4.25 The ASN.1 reserved words are listed in Table A.3. These reserved words shall not be used as identifiersin a
TTCN test suite.

A.426 When ASN.lisusedinaTTCN test suite, ASN.1 identifiers from the following list shall be unique throughout
the test suite, regardless of whether the ASN. 1 definition is explicit or implicit by reference:

a) Typeldentifiers of an ASN.1 Type Definition;
b) identifiersoccurring inan ASN.1 ENUMERATED type as distinguished values;
¢) identifiersoccurring in aNamedNumberList of an ASN.1 INTEGER type.

A.4.2.7 The names of ASP parameters shall be unique within the ASP in which they are declared. The names of PDU
fields shall be unique within the PDU in which they are declared. The names of CM parameters shall be unique within the
CM in which they are declared.

A.4.2.8 If a Structured Type is used as a macro expansion, then the names of the elements within the Structured Type
shall be unique within each ASP, PDU or CM where it will be expanded.

A.4.29 Labes used within a tree shall be unique within a tree (i.e., Test Case root tree, Test Step tree, Default tree,
local tree).

A.4.2.10 The tree header identifier used for local trees shall be unique within the dynamic behaviour description in
which they appear, and shall not be the same as any identifier having a unique meaning throughout the test suite.

NOTE — This means that a local tree identifier may have the same name as a local tree identifier in another behaviar, degcripti
not the same as another Test Step in the Test Step Library.

A.4.2.11 The forma parameter names which may optionally appear as part of the following shall be unique within that
formal parameter list, and shall not be the same as any identifier having a unique meaning throughout the test suite:

a) Test suite operations definition;
b) Treeheader of alocal tree;

c) Test Step Identifier;

d) Default Identifier;

€) Parameterized constraint declaration.

168 Recommendation X.292 (09/98)

Table A.2/X.292 — TTCN Reserved Words

ACTIVATE IA5String pass

AND IF PDU

BEGIN IF_PRESENT PERMUTATION
BITSTRING INCONC PrintableString
BIT_TO_INT inconc ps

BOOLEAN INFINITY PTC

BY INTEGER R

CANCEL INT_TO BIT READTIMER
CASE INT_TO_HEX REPEAT
COMPLEMENT IS CHOSEN REPLACE

CP IS PRESENT RETURN
CREATE IUT RETURNVALUE
DO LT R_Type
DONE min s

ELSE MOD START

ENC ms STATIC

END MTC SUPERSET
ENDCASE NOT SUBSET
ENDIF ns TeletexString
ENDVAR OF THEN
ENDWHILE OMIT TIMEOUT

F OR TIMER

FAIL OTHERWISE TO

fail P TRUE

FALSE LENGTH_OF UNTIL
General String none S

GOTO NUMBER_OF_ELEMENTS uT
GraphicString NumericString VAR
HEXSTRING OCTETSTRING VideotexString
HEX_TO_INT OBJECTIDENTIFIER VisibleString

| PASS WHILE

A.4.2.12 A forma parameter name contained in the forma parameter list of alocal tree header shall take precedence
over a formal parameter name contained in the formal parameter list of the Test Step in which it is defined, within the
scope of that local formal parameter list.

A.4.2.13 In concurrent TTCN, PCOs and CPs used in a Test Case shall only be those determined by the Test Component
configuration for that Test Case.

A.4.2.14 Each identifier used in the procedural definition of a Test Suite Operation shall be on of the following:

a)
b)
0

d)

locally declared variable name;
atype name, used in avariable declaration;
aformal parameter name declared in aformal parameter list of the operation;

a Test Suite Operation name.

Recommendation X.292 (09/98) 169

Table A.3/X.292 — ASN.1 Reserved Words

ABSENT EXTERNAL OPTIONAL
ABSTRACT SYNTAX FALSE PDV

ALL FROM PRESENT
APPLICATION GeneralString PRIVATE
AUTOMATIC GeneralizedTime PrintableString
BEGIN GraphicString REAL

BIT IA5String SEQUENCE
BMPString IDENTIFIER SET

BOOLEAN IMPLICIT SIZE
CHARACTER IMPORT STRING
CHOICE INCLUDES SYNTAX

CLASS INSTANCE T61String
COMPONENT INTEGER TRUE
COMPONENTS INTERSECTION TeletexString
CONSTRAINED 1ISO646String TYPEIDENTIFIER
DEFAULT MAX UNION
DEFINITIONS MIN UNIQUE
EMBEDDED NULL UNIVERSAL
END NumericString Universalstring
ENUMERATED OBJECT UTCTime
EXCEPT ObjectDescriptor VideotexString
EXPLICIT OCTET VisibleString
EXPORT OF WITH

NOTE - Table A.3 contains a number of keywords which at present have no support within this
Recommendation. Those keywords have been reserved to facilitate future integration of ASN|1 1997
features into TTCN.

The scope of formal parameter names and locally declared variable names is the procedural definition of the Test Suite
Operation. Thus, the values of al other types of identifier are not directly accessible within the procedural definition of a
test suite operation. To access such values they shall be passed as actual parameters to the Test Suite Operation.

A.4.2.15 The congtraints for TTCN Structured Types, TTCN ASPs, TTCN PDUs and TTCN CMs shall not be specified
using ASN.1 tables (i.e. ASN.1 Type Constraints, ASN.1 ASP Constraints, ASN.1 PDU Constraints or ASN.1 CM
Consgtraints). Conversely, the constraints for ASN.1 Types, ASN.1 ASPs, ASN.1 PDUs and ASN.1 CMs shall not be
specified using TTCN tables (i.e. Structured Type Constraints, TTCN ASP Constraints, TTCN PDU Constraints or
TTCN CM Constraints).

NOTE — However, when ASPs or PDUs are chained to other PDUs, the enclosing ASP or PDU may, for example, be specifiied in
tabular TTCN, whereas the enclosed PDU may be specified in ASN.1.

170 Recommendation X.292 (09/98)

A5 Differences between TTCN.GR and TTCN.MP

A.5.1 Differencesin syntax
Thefollowing isalist of syntax differences between TTCN.MP and TTCN.GR:
a) TTCN.MP useskeywords as delimiters between entries, while TTCN.GR uses boxes,

b) TTCN.MP uses an explicit denotation of indentation levels for test events, while indentation is indicated visualy in
TTCN.GR;

¢) TTCN.MP contains an extra occurrence of the suite identifier, which is used to facilitate identification of the ATS in
an automated method;

d) inTTCN.MP the Test Case behaviour descriptions are explicitly grouped by the inclusion of appropriate Test Group
Identifiers in sequence before the Test Case behaviour descriptions belonging to each group; this information
duplicates information contained in the Test Case Index and in the Test Group References of the Test Case
behaviour descriptions;

€) the Test Suite Structure, Test Case Index, Test Step Index and Default Index tables require a page number for each
entry; since page humbers are not relevant in the machine processable form, they are not reflected in the TTCN.MP;

f) TTCN.GR supports both single and compact proformas for ASP and PDU constraints and Test Cases; the TTCN
only supports BNF for the single table format and the presentation of a number of single tables in TTCN.GR
compact format is a display issue; when mapping a compact constraints table to TTCN.MP (i.e., single format),
blank fields due to modification shall be omitted;

g) thesymbols"/*" and "*/" which open and close BoundedFreeText strings in the TTCN.MP shall not appear in the
TTCN.GR;

h) there are two aternative positions for the labels column in behaviour description tables in TTCN.GR, whereas there
isafixed position for the labelsin TTCN.MP;

i) pageand line continuation are TTCN.GR features which are not represented in the TTCN.MP,

i) pageand line numbering are TTCN.GR features which are not represented in the TTCN.MP,

k) if in TTCN.GR group references are used with definitions, declarations or constraints to indicate an hierarchica
grouping of objects, then in TTCN.MP each relevant group identifier is inserted before the syntax for the group of

tables which share that group identifier and the syntax for the group identifier and following group of tables are
enclosed in the appropriate TTCN.MP keywords, relevant to the type of object.

A5.2 Additional static semanticsin the TTCN.MP

Thefollowing isalist of the additional static semanticsin the TTCN.MP:

a) inthe TTCN.MP, statements in the first level of aternatives having no predecessor in the root or local tree they
belong have the indentation value of zero; statements having a predecessor shall have the indentation value of the
predecessor plus one as their indentation value;

b) inthe TTCN.MP, the Test Suite Structure information in the form of Test Group Identifiers preceding Test Case

behaviour descriptions shall be the same structure as defined by the part of the Test Suite Structure relevant to Test
Groups and that defined by the Test Case Index.

A.6 List of BNF production numbers

A.6.1 Introduction

This subclause presents an aphabetical index of the BNF productions that appear in Annex A. For each production the
index gives areferencein terms of the production number (not page number).

Recommendation X.292 (09/98) 171

A.6.2 Theproduction index

A

Activate 690

ActualCrefPar 672
ActualCrefParList 671

ActualPar 700

ActualParList 699

AddOp 723

AliasDef 495

AliasDefs 491

AliasDefsGroup 488
AliasDefsGroupld 489
AliasDefsGroupldentifier 490
AliasDefsOrGroup 487
AliasGroupldentifier 494
AliasGroupRef 492
AliasGroupReference 493

Aliasld 496

Aliasldentifier 497

Alpha 758

AlphaNum 759

AnyOne 754

AnyOrNone 755

AnyOrOmit 569

AnyVaue 568

ArrayRef 715
ASN_ASP_DefsByRefGroupRef 373
ASN1 ASP_Constraint 540

ASN1 ASP_ConstraintGroup 538
ASN1 ASP_ConstraintGroupld 539
ASN1 ASP_ConstraintGroupldentifier 543
ASN1 ASP_ConstraintGroupRef 541
ASN1 ASP_ConstraintGroupReference 542
ASN1 ASP_ConstraintOrGroup 537
ASN1 ASP_Constraints 536

ASN1 ASP_Groupldentifier 368
ASN1 ASP_GroupRef 366

ASN1 ASP_GroupReference 367
ASN1 ASP TypeDef 365
ASN1_ASP TypeDefByRef 374
ASN1 ASP TypeDefGroup 363

172 Recommendation X.292 (09/98)

ASN1 ASP TypeDefGroupld 364

ASN1 _ASP_TypeOrGroup 362

ASN1 ASP TypeDefs 361

ASN1 ASP TypeDefsByRef 372

ASN1 ASP TypeDefsByRefGroup 370
ASN1 ASP TypeDefsByRefGroupld 371
ASN1_ASP_TypeDefsByRefOrGroup 369
ASN1 CM_Constraint 613
ASN1_CM_ConstraintGroup 611

ASN1 CM_ConstraintGroupld 612
ASN1_CM_ConstraintGroupldentifier 616
ASN1 CM_ConstraintGroupRef 614

ASN1 CM_ConstraintGroupReference 615
ASN1 CM_ConstraintOrGroup 610

ASN1 CM_Constraints 609

ASN1 CM_Groupldentifier 441

ASN1 CM_GroupRef 439

ASN1 CM_GroupReference 440

ASN1 CM_TypeDef 438

ASN1 CM_TypeDefGroup 436

ASN1 CM_TypeDefGroupld 437

ASN1 CM_TypeDefOrGroup 435

ASN1 CM_TypeDefs 434

ASN1 ConsVaue594

ASN1 Encoding 579

ASN1_Identifier 713

ASN1 | ocaType 123

ASN1 Modeleld 132

ASN1 Modeleldentifier 133

ASN1 PDU_Constraint 590

ASN1 PDU_ConstraintGroup 588

ASN1 PDU_ConstraintGroupld 589
ASN1 PDU_ConstraintGroupldentifier 593
ASN1 PDU_ConstraintGroupRef 591
ASN1 PDU_ConstraintGroupReference 592
ASN1 PDU_ConstraintOrGroup 587

ASN1 PDU_Constraints 586
ASN1_PDU_DefsByRefGroupRef 415
ASN1 PDU_Groupldentifier 410

ASN1 PDU_GroupRef 408

ASN1 PDU_GroupReference 409
ASN1_PDU_TypeDef 407

ASN1_PDU_TypeDefByRef 416

ASN1 _PDU_TypeDefs 403

ASN1 _PDU_TypeDefsByRef 414
ASN1_PDU_TypeDefsByRefGroup 412
ASN1_PDU_TypeDefsByRefGroupld 413
ASN1_PDU_TypeDefsByRefOrGroup 411
ASN1 Type 122

ASN1 Type&LocaTypes 121

ASN1 TypeConstraint 521

ASN1 TypeConstraintGroup 519

ASN1_ TypeConstraintGroupld 520
ASN1 TypeConstraintGroupldentifier 524
ASN1 TypeConstraintGroupRef 522
ASN1 TypeConstraintGroupReference 523
ASN1 TypeConstraintOrGroup 518
ASN1 TypeConstraints 517
ASN1_TypeDef 113

ASN1 TypeDefinition 120

ASN1 TypeDefOrGroup 110
ASN1_TypeDefs 109

ASN1 TypeGroup 111

ASN1 TypeGroupld 112

ASN1 TypeGroupldentifier 119

ASN1 TypeGroupRef 117

ASN1 TypeGroupReference 118

ASN1 Typeld 114

ASN1 Typeld&Fullld 115

ASN1 Typeldentifier 116
ASN1_TypeRef 129

ASN1 TypeReference 130

ASN1 TypeRefs 127

ASN1 TypeRefsGroup 125

ASN1 TypeRefsGroupld 126

ASN1 TypeRefsGroupRef 128

ASN1 TypeRefOrGroup 124

ASN1 ValueReference 227
ASP_ConstraintGroupldentifier 533
ASP_ConstraintGroupRef 531
ASP_ConstraintGroupReference 532
ASP_Constraints 525
ASP_Groupldentifier 352
ASP_GroupRef 350

ASP_GroupReference 351
ASP_|d 347
ASP_|d&Fullld 348
ASP_ldentifier 349
ASP_ParDcl 355
ASP_ParDcls 354

ASP _Parld 356
ASP_Parld&Fullld 358
ASP_Parldentifier 359
ASP_ParldOrMacro 357
ASP_ParType 360
ASP_ParValue 535
ASP_ParValues 534
ASP_TypeDefs 341
Assignment 702
AssignmentList 701
Attach 696

B
BehaviourDescription 653
BehaviourLine 663
Bin 746

Bitldentifier 718
BitNumber 719
BitRef 717
BooleanVaue 744
Bound 399
BoundedFreeText 763
Bstring 745

C

C_Role 316

Cancel Timer 730

CaseClause 173

Caselndex 59

CaseStatement 172

Char 752

CharacterString 736

CM_ConstraintGroupl dentifier 606

CM_ConstraintGroupRef 604
Recommendation X.292 (09/98)

173

CM_ConstraintGroupReference 605
CM_Constraints 598
CM_Groupldentifier 427
CM_GroupRef 425
CM_GroupReference 426
CM_1d 423
CM_Identifier 424
CM_ParDcl 429
CM_ParDcls 428
CM_Parld 430
CM_Parldentifier 432
CM_ParldOrMacro 431
CM_ParType 433
CM_ParVaue 608
CM_ParValues 607
CM_TypeDefs 417
CollComment 58

Colon 771

Comma 765

Comment 53
Complement 566
ComplexDefinitions 340
Componentldentifier 712
ComponentNumber 716
ComponentPosition 714
ComponentReference 710
Configuration 628
Consld 554

Consld& ParList 555
ConsRef 670
ConstraintExpression 564
Constraintldentifier 556
ConstraintReference 669
ConstraintsPart 500
ConstraintValue 563
ConstraintV alue& Attributes 562
ConstraintV alue& AttributesOrReplace 595
Construct 689

ConsValue 561

CP_Dcl 288

CP _Dcls 284

174 Recommendation X.292 (09/98)

CP_DclsGroup 281
CP_DclsGroupld 282
CP_DclsGroupl dentifier 283
CP_DclsOrGroup 280
CP_Groupldentifier 287
CP_GroupRef 285
CP_GroupReference 286
CP_1d 289

CP_|dentifier 290
CP_List 339

CPs Used 338

Create 692

Createl ist 693
CreateTComp 694

Cref 668

Cstring 751

D

Dash 767
DataObjectldentifier 709
DataObjectReference 708
Declarations 205
DeclarationsPart 67
DeclarationValue 219
Default 646
DefaultExpression 456
DefaultGroup 644
DefaultGroupld 645
DefaultGroupl dentifier 652
DefaultGroupReference 651
Defaultld 648

Defaultld& ParList 649
Defaultldentifier 650
Defaultindex 63
DefaultRef 647
DefaultReference 631
DefaultRefList 630
DefaultsLibrary 643
DefaultRef 629
DefaultValue 190
Deflndex 64

Definitions 68
DerivationPath 558
DerivPath 557
Description 60
Done 687

Dot 766
DoubleColon 770
Duration 302
DynamicPart 617

E

ElemDcl 104

ElemDcls 103

Elemld 105

Elemld& Fullld 106
Elemldentifier 107

ElemType 108

ElemValue 513

ElemVaues 512
Encoding_TypeList 466
EncodingDefault 455
EncodingDefinition 450
EncodingDefinitions 446
EncodingDefinitionGroup 444
EncodingDefinitionGroupld 445
EncodingDefinitionOrGroup 443
EncodingDefs 442
EncodingGroupldentifier 449
EncodingGroupRef 447
EncodingGroupReference 448
EncodingRef 453
EncodingReference 454
EncodingRuleld 451
EncodingRuleldentifier 452
EncodingVariation 468
EncodingVariationld 469
EncodingVariationList 465
EncodingV ariations 457

EncodingV ariationsSet 461
EncodingV ariationSetGroup 459
EncodingV ariationSetGroupl d 460

EncodingV ariationSetOrGroup 458
EncRuleld 553

EncVariationCall 511
EncVariationGroupldentifier 464
EncVariationGroupRef 462
EncVariationGroupReference 463
EncVariationld 510
EncVariationld& ParList 470
EncVariationldentifier 471

Event 680

Expandedid 498

Expansion 499

ExportedObject 10
ExportedObjects 9

Expression 703
ExtendedAlphaNum 762
External Groupld 22

Externa Groupl dentifier 23
External Object 24

External Objectld 25

External Objectldentifier 26
External Objects 21

F

Factor 706

Fail 676

Formal Par& Type 660
Formal Parldentifier 661
Formal ParList 659
Formal ParType 662
FreeText 764
Fullldentifier 98

G
GoTo 695

H
Header 656
Hex 748
Hstring 747
Recommendation X.292 (09/98)

175

I

Identifier 757

IfStatement 170

ImplicitSend 683
ImportDeclarations 27
ImportedObject 38

I mportedObjects 37

ImportPart 66

Imports 31

ImportsGroup 29

ImportsGroupld 30
ImportGroupldentifier 35
ImportGroupRef 33
ImportGroupReference 34
ImportOrGroup 28

Inconclusive 677

Indentation 665

IntegerLabel 174

IntegerRange 86
InvalidFieldEncodingCall 516
InvalidFieldEncodingDef 479
InvalidFieldEncodingDefinition 486
InvalidFieldEncodingDefOrGroup 476
InvalidFieldEncodingDefs 475
InvalidFieldEncodingGroup 477
InvalidFieldEncodingGroupld 478
InvalidFieldEncodingGroupl dentifier 485
InvalidFieldEncodingGroupRef 483
InvalidFieldEncodingGroupReference 484
InvalidFieldEncodingld 480
InvalidFieldEncodingl d& ParList 481
InvalidFieldEncodingl dentifier 482

L

Label 667

Labelld 666

LengthAttribute 397

LengthRestriction 83

Line 664

LengthRestriction 740

Local Tree 655

176 Recommendation X.292 (09/98)

LowerAlpha 761
LowerBound 401
LowerRangeBound 573
LowerTypeBound 87
LowerValueBound 584

M

MacroSymbol 392
MatchingSymbol 565
Minus 768
MultiplyOp 724
MuxValue 277

N

NonZeroNum 742
Num 743
Num_CPs 321
Num_PCOs 319
Number 741
NumOf_CPs 320
NumOf_PCOs 318

O
ObjectDirective 18
Objectld 11
Objectidentifier 12
Objective 642
ObjectType 14
ObjectTypeReference 13
Oct 750

Omit 567

OpCall 720
Opldentifier 721
Ostring 749
Otherwise 685

P

P_Role 278

Parameterization& Selection 176
Pass 675

PCO_Dcl 273

PCO_Dcls 269
PCO_DclsGroup 266
PCO_DclsGroupld 267
PCO_DclsGroupldentifier 268
PCO_DclsOrGroup 265
PCO_Groupldentifier 272
PCO_GroupRef 270
PCO_GroupReference 271
PCO_Id 274

PCO_ldentifier 275

PCO_List 337

PCO_Role 279

PCO_Type 353

PCO_TypeDcl 261
PCO_TypeDcls 259
PCO_TypeDclsGroup 256
PCO_TypeDclsGroupld 257
PCO_TypeDclsGroupldentifier 258
PCO_TypeDclsOrGroup 255
PCO_TypeGroupRef 260
PCO_Typeld 262
PCO_Typeld&MuxValue 276
PCO_Typeldentifier 263
PCOs _Used 336
PDU_ConstraintGroupl dentifier 552
PDU_ConstraintGroupRef 550
PDU_ConstraintGroupReference 551
PDU_Constraints 544
PDU_Encodingld 387
PDU_FieldDcl 389
PDU_FieldDcls 388
PDU_FieldEncoding 514
PDU_FieldEncodingCall 515
PDU_Fieldid 390
PDU_Fieldid& Fullld 393
PDU_FieldIdentifier 394
PDU_FieldldOrMacro 391
PDU_FieldType 395
PDU_Fieldvaue 560
PDU_FieldValues 559
PDU_Groupldentifier 386

PDU_GroupRef 384
PDU_GroupReference 385
PDU _Id 381
PDU_ld&Fullld 382
PDU_ldentifier 383
PDU_TypeDefs 375
Permutation 577

PICS PIXITref 191
PICSref 50

PIXITref 51
PredefinedOpl dentifier 722
PredefinedType 735
Primary 707

ProcBlock 175
ProcStatement 168

Q

Qualifier 681

R

R_Vaue 756

Rangel ength 400

RangeTypelL ength 85

RangeVauelength 583

ReadTimer 732

Receive 684

RecordRef 711

ReferenceList 597

ReferenceType 737

RelOp 726

Repeat 697

Replacement 596

Restriction 82

Result 678

Return 691

ReturnVaueStatement 169

RoleOrComment 264

RootTree 654
Recommendation X.292 (09/98)

177

S

SelectExpr 203
SelectExprDef 200
SelectExprDefs 196
SelectExprDefsGroup 193
SelectExprDefsGroupld 194

SelectExprDefsGroupldentifier 195

SelectExprDefsOrGroup 192
SelectExprGroupl dentifier 199
SelectExprGroupRef 197
SelectExprGroupReference 198
SelectExprid 201
SelectExprldentifier 202
SelectionExpression 204
SelExprld 56

SemiColon 769

Send 682

SimpleExpression 704
SimpleTypeDef 77
SimpleTypeDefinition 80
SimpleTypeDefs 73
SimpleTypeDefsOrGroup 70
SimpleTypeGroup 71
SimpleTypeGroupld 72
SimpleTypeGroupldentifier 76
SimpleTypeGroupRef 74
SimpleTypeGroupReference 75
SimpleTypeld 78

SimpleTypel dentifier 79
SimpleVauelList 90

Singlel ength 398

SingleTypel ength 84
SingleValuel ength 581
Sourceld 32

Sourcel dentifier 17
Sourcelnfo 16

SourceRef 36

StandardsRef 49

StartTimer 729

StatementLine 67

Steplndex 962

178 Recommendation X.292

Structld 96

Structld& Fullld 97

Structldentifier 99
StructTypeConstraint 506
StructTypeConstraintGroup 504
StructTypeConstraintGroupld 505
StructTypeConstraintGroupl dentifier 509
StructTypeConstraintGroupRef 507
StructTypeConstraintGroupReference 508
StructTypeConstraintOrGroup 503
StructTypeConstraints 50
StructTypeDef 295
StructTypeDefOrGroup 92
StructTypeDefs 91
StructTypeGroup 93
StructTypeGroupld 94
StructTypeGroupl dentifier 102
StructTypeGroupRef 100
StructTypeGroupReference 101
Structure& Objective 55

Structure& Objectives 54

SubSet 576

Suite 39

Suiteld 40

Suiteldentifier 41
SuiteOverviewPart 42
SuiteStructure 48

SuperSet 575

T
TC_VarDcl 250

TC_VarDcls 246
TC_VarDclsGroup 243
TC_VarDclsGroupld 244
TC_VarDclsGroupldentifier 245
TC_VarDclsOrGroup 242
TC_VarGroupldentifier 249
TC_VarGroupRef 247
TC_VarGroupReference 248
TC_Varld 251

TC Varldentifier 252

TC VarType 253
TC_VarValue 254
TCompConfigDcl 327
TCompConfigDclGroup 324
TCompConfigDclGroupld 325
TCompConfigDclGroupl dentifier 326
TCompConfigDclOrGroup 323
TCompConfigDcls 322
TCompConfigGroupldentifier 332
TCompConfigGroupRef 330
TCompConfigGroupReference 331
TCompConfigld 328
TCompConfigldentifier 329
TCompConfiginfo 334
TCompConfiglnfos 333
TCompDcl 313

TCompDcls 309
TCompDclsGroup 306
TCompDclsGroupld 307
TCompDclsGroupldentifier 308
TcompDclsOrGroup 305
TcompGroupldentifier 312
TcompGroupRef 310
TcompGroupReference 311
Tcompld 314

Tcompldentifier 315
TcompldList 688

TcompRole 317

TcompUsed 335

Term 705

TestCase 622

TestCaseld 623
TestCaseldentifier 624
TestCaselndex 57

TestCases 618

TestGroup 619

TestGroupld 620
TestGroupldentifier 621
TestGroupRef 625

TestGroupReference 626

TestMethodes 52

TestPurpose 627

TestStep 636

TestStepGroup 633

TestStepGroupld 634

TestStepGroupldentifier 635

TestStepGroupReference 641

TestStepld 637

TestStepld& ParList 638

TestStepldentifier 639

TestSteplndex 61

TestStepLibrary 632

TestStepRef 640

TestSuiteExports 65

Timeout 686

TimerDcl 299

TimerDcls 295

TimerDclsGroup 292

TimerDclsGroupld 293

TimerDclsGroupl dentifier 294

TimerDclsOrGroup 291

TimerGroupldentifier 298

TimerGroupRef 296

TimerGroupReference 297

Timerld 300

Timerldentifier 301

TimerOp 728

TimerOps 727

TimerValue 731

TimeUnit 304

To 89

TreeHeader 657

Treeldentifier 658

TreeReference 698

TS ConstDcl 214

TS ConstDcls 210

TS _ConstDclsGroup 207

TS ConstDclsGroupld 208

TS ConstDclsGroupldentifier 209
Recommendation X.292 (09/98)

179

TS _ConstDclsOrGroup 206
TS ConstGroupldentifier 213
TS ConstGroupRef 211

TS ConstGroupReference 212
TS Constld 215

TS Constldentifier 216

TS ConstRef 226

TS ConstRefs 224

TS _ConstRefsGroup 221
TS_ConstRefsGroupld 222
TS _ConstRefsGroupldentifier 223
TS_ConstRefsGroupRef 225
TS_ConstRefsOrGroup 220
TS ConstType 217

TS ConstVaue 218

TS OpDef 139

TS OpDefGroup 136

TS OpDefGroupld 137

TS OpDefGroupldentifier 138
TS OpDefOrGroup 135

TS OpDefs 134

TS OpDescription 147

TS OpGroupldentifier 145
TS OpGroupReference 144
TS Opld 140

TS Opld&ParList 141

TS Opldentifier 142

TS OpProcDef 162

TS OpResult 146

TS ParDcl 185

TS ParDcls 181

TS ParDclsGroup 178

TS ParDclsGroupld 179

TS ParDclsGroupldentifier 180
TS_ParDclsOrGroup 177

TS ParDefault 189

TS ParGroupldentifier 184
TS ParGroupRef 182

TS ParGroupReference 183
TS Parld 186

180 Recommendation X.292

TS Parldentifier 187

TS ParType 188

TS ProcDef 153

TS ProcDefGroup 150

TS ProcDefGroupld 151

TS ProcDefGroupldentifier 152
TS ProcDefOrGroup 149

TS ProcDefs 148

TS ProcDescription 161

TS ProcGroupldentifier 159

TS _ProcGroupReference 158

TS Procld 154

TS Procld&ParList 155

TS Procldentifier 156

TS ProcResult 160

TS TypeConstraints 501

TS TypeDefs 69

TS Typeldentifier 738

TS VarDcl 237

TS VarDcls 233

TS VarDclsGroup 230

TS VarDclsGroupld 231

TS VarDclsGroupldentifier 232
TS VarDclsOrGroup 229

TS VarGroupldentifier 236

TS VarGroupRef 234

TS _VarGroupReference 235

TS Varld 238

TS Varldentifier 239

TS VaType 240

TS VarVaue 241
TTCN_ASP_Constraint 530
TTCN_ASP_ConstraintGroup 528
TTCN_ASP_ConstraintGroupld 529
TTCN_ASP_ConstraintOrGroup 527
TTCN_ASP_Constraints 526
TTCN_ASP_TypeDef 346
TTCN_ASP_TypeDefGroup 344
TTCN_ASP_TypeDefGroupld 345
TTCN_ASP_TypeDefOrGroup 343

TTCN_ASP_TypeDefs 342
TTCN_CM_Constraint 603
TTCN_CM_ConstraintGroup 601
TTCN_CM_ConstraintGroupld 602
TTCN_CM_ConstraintOrGroup 600
TTCN_CM_Constraints 599
TTCN_CM_TypeDef 422
TTCN_CM_TypeDefGroup 420
TTCN_CM_TypeDefGroupld 421
TTCN_CM_TypeDefOrGroup 419
TTCN_CM_TypeDefs 418
TTCN_Module 2
TTCN_ModuleExports 6
TTCN_Moduleld 3
TTCN_ModulelmportPart 20
TTCN_ModuleObjective 8
TTCN_ModuleOverviewPart 5
TTCN_ModuleRef 7
TTCN_ModuleStructure 19
TTCN_ObjectType 15
TTCN_PDU_Constraint 549
TTCN_PDU_ConstraintGroup 547
TTCN_PDU_ConstraintGroupld 548
TTCN_PDU_ConstraintOrGroup 546
TTCN_PDU_Constraints 545
TTCN_PDU_TypeDef 380
TTCN_PDU_TypeDefGroup 378
TTCN_PDU_TypeDefGroupld 379
TTCN_PDU_TypeDefOrGroup 377
TTCN_PDU_TypeDefs 376
TTCN_Specification 1

Type 734

Type& Attributes 396

Type& Restriction 81

TypelList 467

TypeOrPDU 733

TypeReference 131

U

UnaryOp 725
Underscore 772

Unit 303

UpperAlpha 760
UpperBound 402
UpperRangeBound 574
UpperTypeBound 88
UpperVaueBound 585

V

VaRange 572

Value 739
ValueAttributes 578
VaueBound 582
Valuel ength 580
Valuelist 570
VaueRange 571
VaueReference 228
VarBlock 163
VarDcl 165

VarDcls 164
VariationDefault 474
VariationRef 472
VariationReference 473
Varldentifier 167
Varldentifiers 166
Verdict 674
Verdictld 673

W

WhileLoop 171
Wildcard 753

Recommendation X.292 (09/98)

181

Annex B

Operational Semanticsof TTCN

B.1 I ntroduction

Annex A describes the syntax of TTCN by means of BNF production rules and restrictions on these productions the
observance of which may be verified either statically or dynamically.

This annex defines the semantics of TTCN by describing an abstract procedure that executes syntactically valid TTCN
test suites. This procedure starts, for each Test Case, an abstract "TTCN machine" that evaluates this Test Cases by
means of the creation, expansion and interpretation of an "EvaluationTree", dealing with one level (ordered set of
aternatives in a certain position in the tree) at atime. In the execution of concurrent TTCN, additional TTCN machines
are started, one for each created PTC. These machines work in the same way as the principal TTCN machine, which is
then executing the main test component. The necessary PCOs and CPs, connecting TTCN machines with their
environment and with each other, are assumed to exist aready and to be initially empty.

The abstract procedure (EVALUATE TEST SUITE) and the TTCN machines (EVALUATE_TEST_CASE,
EVALUATE _TEST_COMPONENT) are described in B.5. EvaluationTree has the form of a TTCN behaviour tree, but
enriched by additional components. In a TTCN machine it isinitially set to be the indicated Test Case or Test Step root
tree, or local tree. In the course of test case execution, EvaluationTree is expanded, and "control" generally moves down
the EvaluationTree, except in the execution of GOTOs and RETURNS, where control moves up.

The additional tree components, introduced for technical reasons, are the following: each node (alternative) has, besides
the denoted StatementLine, a Boolean value IsDefault, telling whether the node stems from a Default Behaviour Table;
each level has, besides the denoted list of StatementLines, a Boolean value IsExpanded, telling whether the level has
already been expanded.

It is not required that areal TTCN machine be built in a way that it works internally exactly as the abstract one. TTCN
operational semantics define only how areal TTCN machine should behave externally, i.e. with respect to PCO and CP
queues, timers and the timer list, and test component termination information. Implementation details are irrelevant.

B.2 Precedence

Operational semantics for TTCN are supplied in the following subclauses in a mixture of pseudo-code and natural
language. Where these two notations overlap they are meant to have identical meanings. If the pseudo-code and natural
language conflict, thisis an error, and should be reported back to the standards organization via a defect report. In such a
case, pending correction of the defect by the standards organization, the pseudo-code will take precedence over the
natural language text.

B.3 Processing of test caseerrors

Within the main body of this Recommendation, as well as within Annex A and this annex, conditions are described that
result in the detection of test case errors. The observation of a test case error shall be recorded in the conformance log
and lead to the abortion of the Test Case.

Without being explicitly mentioned in the following, a test case error is always detected dynamically if any part of an
expression does not evaluate to a defined value. Expressions are evaluated, among other occasions, in the application of
assignments, qualifiers, and constraints.

B.4 Converting a modularized test suiteto an equivalent expanded test suite

This algorithm does not handle error cases. It requires that the objects are unique in the scope where they are defined and
used.

182 Recommendation X.292 (09/98)

In the conversion from modularized test suite to a expanded test suite, there is a need for the renaming of some imported
TTCN objects (in order to avoid name clashes). In this rename process two options are allowed:

a) theorigina nameisretained as defined in the declaration/definition of the object;

b) the new name is constructed by concatenation of the module identifier and the original name of the object. They
shall be separated by two underscores, e.g. ModuleA_ConnectionRequest.

procedure expand() Make atemporary copy of the whole source
begin
L%rg,(r?/ oy sreeSin| Part) do Expand the copy of the source (Recursion)
& S); o
rename:_explicitly_imported(Si); 45&*;6“000“%01‘ explicitly imported

rename_implicitly_imported(S);
for (every marked_imported OK in S) do

begin
e.r}@j\erge(OK); Rename dl occurrences of implicitly imported
end objects
end
end Merge dl objectsfrom S with unique name

Lookup in the"import teble" for S

procedure rename_explicitly_imported(S)

for (every object Oi in"import teble’ for S) do
begin

merk_imported(Oi);
end
if not dready_renamed(Oi) then
begin

rename_source and_referenceqOi, S);
end
if omitted (i) or iss_exterrd(O) then \
begin

remove imported_ mark(Oi); Rename d| occurrences
end

Only renameif not aready renamed at import

-

end

procedure rename_implicitly_imported (S

begin .
for (every object O referenced by Gi in S do Only renameif not dready renamed

begin
mark_imported (Oj);

if not dready_renamed (Oj) then
begin
rename_source and references (Q), S);

end T0731130-98/d11b
end

end

The principle of this algorithm is, for each source object, make a temporary copy of it, expand the copy, then mark each
object to be imported and finally merge each marked object into the importing suite.

Recommendation X.292 (09/98) 183

In expanding imported sources al explicitly and implicitly imported objects are renamed to Module::Identifier, if they
were not aready renamed at import. Every module shall have a unique identifier. In the expanded test suite all explicitly
and implicitly imported objects are clearly recognizable and because every module has to have a unique name, name
clashes are not possible.

B.5 TTCN operational semantics

B.5.1 Introduction

TTCN behaviour trees are evaluated one level of aternatives at atime. At each level, defaults are appended, attachment
constructs are expanded, and REPEAT constructs are replaced. This produces a set of aternatives that can be evaluated
to discover which one successfully matches and thereby determines which set of aternatives to proceed to next. The
requirements for what constitutes a match for a TTCN statement depend on what is coded on that behaviour line, and are
described in this semantics text.

B.5.2 Thepseudo-code notation

B.5.2.1 Introduction

TTCN semantics are defined using a simple functional approach that explains the execution of a TTCN Test Case
behaviour description, involving the step-wise expansion of an evaluation tree, and the execution of nodes of this tree.
These functions are intended as an aid to understanding TTCN semantics and are not intended to be associated with any
particular execution model or high level programming language. They are not meant to be direct methods for executing
TTCN.

Keywords of pseudo-code are printed in bold font, e.g. procedure, function, begin, end, if, then, else. In the header of
their definition, procedure, process, and function names are highlighted by bold font to facilitate lookup. For the same
reason, the data type of afunction is highlighted. Apart from this, data types are not dealt with explicitly.

B.5.2.2 Proceduresand functions

Many statements are procedure cals. Function expressions may be used wherever a value of the associated type is
needed. They obtain their value (and are immediately terminated) by return, followed by a value expression.

Procedure and function parameters are generally "throughput parameters’, i.e. formal parameters that may be both "read"
and "written to". In particular, functions may have "side effects’ and are essentially "procedures with avalue'. Variables
in a procedure or function body that are neither formal parameters nor any of the global ones mentioned above are local
variables of this body, without explicit declaration.

Careistaken that:
— parameters are read only when they have a defined value;

— terms are used as actual parameters only where the procedure or function does not assign a value to the respective
formal parameter, i.e. the parameter is purely an input parameter.

B.5.2.3 Processes

Processes behave like procedures, except that they are each run on a separate TTCN machine. They are not executed in a
nested fashion. In a process, global data objects may be declared, such that they are available in all procedures anc
functions called in the process without being explicitly passed along as parameters. Avoiding long parameter lists makes

the pseudocode easier to read. Of course, instances of global objects exist independently in each process (TTCN
machine). There is no relationship between global objects in different processes.

184 Recommendation X.292 (09/98)

In this annex, the following objects are treated as global objects in each process:

— EvaluationTree, of the Test Case (or Main Test Component) or Parallel Test Component;
— CurrentLevel, to be expanded or matched;

— Defaults, the current default context, used in default expansion;

— Snapshot, the temporarily fixed view of the environment;

— ReturnLevel, to be considered after the execution of a RETURN statement;

— ReturnDefaults, the default context of the ReturnLevel,

— SendObject, the ASP, PDU, or CM to be sent next;

— ReceiveObject, the ASP, PDU, or CM received last.

Thus, each TTCN machine will have its own EvaluationTree, etc.

Other objects, however, are accessible from all processes. The relevant state of the "environment of
EVALUATE_TEST_SUITE", i.e. the contents of the relevant PCOs and CPs, as well as the lists of expired timers, the
values of timers, and the list of terminated parallel test components, are assumed to be globally accessible from all test
components and need not be passed explicitly as parameters. Similarly, Test Suite Parameters, Test Suite Constants, an
Test Suite Variables are assumed to be accessible from all test case or test component processes.

B.5.24 Natural language within pseudo-code

Some parts of pseudo-code are written in natural language, in order to limit the complexity of this annex. These parts are
enclosed by /# and #/. Such parts represent statements, for-loop details, or expressions of pseudo-code and are assumed
be executed or evaluated, when they are encountered.

Pure comments, intended for the human reader, not to be executed or evaluated by a TTCN machine, are enclosed by
(*and *).

B.5.25 Levelsand alternatives
A level visited in a tree denotes both a position in the tree and the ordered set of alternatives at this level.

An alternative visited in a tree determines a level position in the tree, see LEVEL_OF in B.5.25. The alternative denotes
simultaneously a position in that level, a BehaviourLine, a StatementLine, etc.

Thus, levels and alternatives in a tree are pointers, but the unpacking of the data objects they point at is done implicitly.
B.5.3 Execution of a Test Suite

B.5.3.1 Introduction

The Test Suite is executed in the main procedure, EVALUATE_TEST_SUITE. Every Main Test Component (Test Case
in the non-concurrent case) is executed on an abstract TTCN machine executing EVALUATE_TEST_CASE. Each
Parallel Test Component is executed on an independent TTCN machine, performing EVALUATE_TEST
COMPONENT.

procedure EVALUATE_TEST_SUITE(TestSuiteld)

(* Thisprocedure introduces unique names for all TTCN trees, including local subtrees. It sets Test Suite specific data
objects and evaluates each Test Case whose selection expressions become TRUE. *)

begin
for /# every Test Case, Test Step or Default behaviour table Table in TestSuiteld #/ do
begin

1# Rename all local trees of Table such that they become unique throughout the test suite and different from any Test
Case,

Test Step or Default behaviour table name in the Test Suite. #/;

1# Rename accordingly in Table all referencesto local treesin attachments. #/;

1# Every node in every behaviour tree gets a new Boolean component "IsDefault".
This component is set to TRUE for al nodesin Default Dynamic Behaviour Tables
and FAL SE for all nodesin all other tables. #/;

end;

Recommendation X.292 (09/98) 185

end

B.54

for /# every Default behaviour table Table in TestSuiteld # do
begin
1# For each leaf of the behaviour tree which does not have an entry in the verdict column assign the verdict
R. #
1# or each leaf of the behaviour table which has a preliminary result assigned, change the preliminary result to a
verdict by removing the parentheses around it. #/
end;
Evaluated := /# empty list of Test Case Identifiers#/;
/# Set values of Test Suite Parameters, Test Suite Constants, and, where to be initialized, of Test Suite Variables #/;
for /# every Test Case Identifier TCld of TestSuiteld that is not yet in Evaluated # do (* in any order *)
begin
SelEx := /# conjunction of the selection expressions of all test groups containing Test Case TCld (directly or vialower
groups) #;
if EVALUATE_BOOLEAN(SelEx) then
start processEVALUATE_TEST_CASE (TCld);
[# add TCld to the list Evaluated #/;
end

Execution of a Test Case

B.5.4.1 Execution of a Test Case — Pseudo-code

process EVALUATE_TEST_CASE(TestCaseld)

(* Thisprocessinitializes the EvaluationTree by the Test Case root tree and the default context by the Defaults references
listed with the Test Case Behaviour Description. It moves control to the top level of alternatives and calls their
evaluation. *)

global EvaluationTree, CurrentLevel, Defaults, Snapshot, ReturnLevel, ReturnDefaults, SendObject, ReceiveObject;

begin

end

[# Initialize Test Case Variables, global R and MTC_R, PCOs, CPs, Timers, and the Timeout List of TestCaseld. #/;
EvauationTree := ROOT_TREE(TestCaseld);

(* EvaluationTreeisagrowing finite tree built up by pasting together and expanding copies of trees from the test case

behaviour description and from the test step and default libraries. A component |sExpanded is added to each level. *)

CurrentLevel := FIRST_LEVEL (EvaluationTree) ;

(* A level denotes both a position in atree and the ordered set of alternatives at this position. *)

ReturnLevel := CurrentLevel;

Defaults := DEF_REF_LIST(TestCaseld);

ReturnDefaults := Defaults;

EVALUATE_LEVELS();

(* Thisincludes, by nested calls, the evaluation of al relevant subsequent levels in the growing evaluation tree. *)

procedure EVALUATE_LEVELS()

begin

186

(* Thisprocedurefirst expands and evaluates CurrentLevel, which is the currently active level of alternatives of
EvaluationTree. Defaults gives the currently active default context. The alternatives contained in CurrentLevel are
processed in their order of appearance, if necessary in repeated rounds. CurrentAlternative is the loop variable of the for-
loop, denoting the currently considered alternative in CurrentLevel. By the snapshot mechanism, in each round of
matching attempts through CurrentLevel, the status of the environment considered does not change, giving each such
round an instantaneous character.

Save for dynamically detected test case errors, the evaluation of CurrentLevel includes the successful evaluation of an
dternative. Thisis followed by the assignment of averdict and the evaluation of the next level, and hence, by induction,
of all levelsthat control subsequently movesto. *)

if NOT IS_EXPANDED() then
(* By this condition we avoid expanding levels repeatedly which are targets of GOTOs. *)
EXPAND_CURRENT_LEVEL ();
(* Now thecurrent level isfree of REPEATS and attachments, and includes the necessary defaults. *)
repeat
(* ... performing rounds through current level, trying to match an alternative. *)
TAKE_SNAPSHOTY();
(* ... of theincoming PCO and CP queue(s), the relevant timeout list, and the termination status of any other test
components. *)
for /# every CurrentAlternative in CurrentLevel, in the given order #/ do
(* try to match the current alternative. Note that an alternative visited in atree determines alevel position in the tree
and denotes, depending on the context it is used in, aposition in that level, a BehaviourLine, a StatementLine, etc. *)

Recommendation X.292 (09/98)

begin
if EVALUATE_EVENT_LINE (CurrentAlternative) then

(* Inthe absence of Test Case errors the Test Component or Test Case will terminate inside the
EVAL_VERDICT_ENTRY or GOTO NEXT_LEVEL_OR _STOP WITH_VERDICT call of the innermost
recursive instance of EVALUATE_LEVELS, eg. if thereisafinal verdict or no next level. Then, the for-loop will
be aborted, too. *)

begin
if /# Alternative has averdict column entry VerdictEntry #/ then
EVAL_VERDICT_ENTRY (VerdictEntry);
GOTO_NEXT_LEVEL_OR_STOP_WITH_VERDICT(CurrentAlternative);
EVALUATE_LEVELS();
end
end
until SNAPSHOT_FIXED();
(* SNAPSHOT_FIXED returns TRUE if Snapshot cannot change any more. *)
LOG(TEST_CASE_ERROR);
STOP_TEST_CASE();
end
B.5.4.2 Execution of a Test Case or Test Component — Natural language description

Step 1 Evaluation begins at the numerically lowest (in TTCN.MP), i.e. the leftmost (in TTCN.GR), level of indentation
of the root tree.

Step 2 Expand current level to include all defaults explicitly, and to replace al tree attachments, as long as necessary,
aswell asall REPEATS, by their expansions.

Step 3 Take a snapshot of the incoming PCO and CP queue(s) and the timeout list.
NOTE 1 — The act of taking a snapshot does not remove an event from any PCO or CP.

Consider thefirst behaviour line at the current level of aternatives.
Step 4 Evauatethe TTCN statement on the current behaviour line.

The evaluation of each type of TTCN statement is specified in the operational semantics for that TTCN
statement type.

Step 5 If the TTCN statement evaluates to a successful match, then go to Step 6.

Otherwisg, if there are more alternatives in the current set of alternatives, consider the next behaviour line in the
set of aternatives and go to Step 4.

If there are no more alternatives, and yet all PCO and CP queues relevant to this set of aternatives contain at
least one event, and al timersrelevant to Timeout statements in the set of aternatives are in the timeout list, then
stop the Test Case and indicate test case error.

NOTE 2 — Under these conditions none of the set of alternatives can ever match.

In all other cases — i.e. there are no more alternatives and the next snapshot might show a different picture — go
to Step 3.

Step 6 If a preliminary verdict is coded, process it as in B.5.23.2.
Step 7 If a leaf node in the tree or a node with a final verdict has been reached, then go to Step 8.
Otherwise, determine and consider the next level to be evaluated and go to Step 2.

Step 8 Use final verdict, or, if not specified, the current value of the preliminary result variable R, as the final verdict of
the Test Case as in B.5.23.2 and B.5.25.

B.5.5 Expanding a set of alternatives
B.5.5.1 Introduction

This subclause defines how to expand a set of alternatives in preparation for evaluating which alternative matches.

This is done in four steps:
a) saving the Default context, if labelled level;

b) attachment of the current set of Default behaviour trees;

Recommendation X.292 (09/98) 187

Cc) expansion of attached trees, if necessary, recursively, until there are no more attachment alternatives in the set;

d) expansion of REPEAT constructs, replacing them by a subtree in which tree attachments and GOTO constructs
occur in lower levelsonly.

procedure EXPAND_CURRENT_LEVEL ()
begin
if /# CurrentLevel hasalabel #/ then
SAVE _DEFAULTS();
APPEND_DEFAULTS();
EXPAND_ATTACHMENTS (EvauationTree, CurrentLevel, Defaults);
(* CurrentLevel isnow free of tree attachments. *)
EXPAND_REPEATS ();
[# Component | sExpanded of CurrentLevel #/ := TRUE;
end

B.5.5.2 Saving Defaults

procedure SAVE_DEFAULTS()
begin
/# Replace CurrentLevel and its subsequent behaviour in the EvaluationTree by ACTIVATE (Defaults), followed by
CurrentLevel
and its subsequent behaviour, with the label of the former CurrentLevel moved to the ACTIVATE line. #/;
/# Consider new ACTIVATE line asthe CurrentLevel #/;
end

B.5.5.3 Expansion of REPEAT constructs

If RepeatedTree denotes a particular TreeReference together with its Actual ParList, and Condition denotes a particular
Boolean expression, and label denotes a label not used anywhere else, then "REPEAT RepeatedTree UNTIL
[Condition]" can be replaced by:

[TRUE]
label +RepeatedTree
[NOT (Condition)]
-> |abel
[Condition]

Lines describing subsequent behaviour of the REPEAT construct follow after [Condition] in this expansion, with an
additional indentation of onelevel.

procedure EXPAND_REPEATS()
begin
for /# every dternative A in CurrentLevel, in the given order #/ do
begin
if /# A isof the form REPEAT RepeatedTree UNTIL [Condition] #/ then
begin
Subsequent := SUBSEQUENT_BEHAVIOUR_TO (EvauationTree,A);
Label := NEW_LABEL ();
(* Createalabel which has been used neither in the (relabelled) Test Suite nor in the EvaluationTree. *)
Expansion:= MAKE_TREE ("[TRUE]",
MAKE_TREE (Label: "+" RepeatedTree,
MAKE_TREE ("[NOT(" Condition ")]",
"->" | abel,
MAKE_TREE ("[* Condition "]",
Subsequent,
DB
),
)i
REPLACE_ALT_TREE (EvaluationTree, CurrentLevel, A, Expansion);
end
end
end

188 Recommendation X.292 (09/98)

B.5.5.4 Appending default behaviour

During evaluation of atest case, at each level of aternatives there is a current list of Default Tree References. This list
comes either from the list in the appropriate Dynamic Behaviour Table, or from the most recently evaluated ACTIVATE
construct. The appending of the Defaults is done by adding, for each entry in the current list of Defaults, the construct "+
DefaultReference” to the end of the set of aternatives.

procedure APPEND_DEFAULTS()

begin
for /# every D in Defaults, in the given order # do
begin
APPEND_TO_LEVEL (EvaluationTree, CurrentLevel, "+" D);
(* EvaluationTree and CurrentLevel are updated by appending the attachment of D to CurrentLevel. *)
end
end

B.5.55 Expanding attached trees

Attached trees are expanded by replacing the attach construct + TestStep with the tree or, where applicable, the root tree
of TestStep and subsequently, if there is behaviour specified following and indented from the Attach construct, to insert
this behaviour after and indented from each leaf in the attached tree. Since attached trees may have their own list of
default tree references in the header of the test step dynamic behaviour table, the expansion of tree attachment has to
ensure that if any event on the first level of alternatives of the attached tree matches, then the defaults context is changed,
and if aleaf node of that attached tree is reached without a verdict being assigned, then the defaults context of the calling
tree is restored before the subsequent behaviour is evaluated. These changes in defaults context are most easily described
in terms of the insertion of appropriate ACTIVATE constructs in the relevant places. If the attached tree is in fact a
default tree, then there will be no default references in its header, so the ACTIVATE constructs that are inserted on
entering that tree will have no parameters and thereby will deactivate all defaults within the scope of the default tree.

The attached trees on Level are expanded using the following procedure:

procedure EXPAND_ATTACHMENTS(Tree, Level, OuterDefaults)
begin
for /# every aternative Ain Level in Tree, in the given order # do
begin
if /# A isan ATTACH construct, i.e. of the form "+" AttachedTreeld ActualParList #/ then
begin
Subsequent := SUBSEQUENT_BEHAVIOUR_TO (TreeA);
AttachedTree := ROOT_TREE (AttachedTreeld);
REPLACE_PARAMETERS (AttachedTreeld, AttachedTree, Actua ParList);

(* Thisreplacesthe formal parametersin AttachedTree by the actual parameters specified in ActualParList, doing so by
textua substitution *)

RELABEL (AttachedTree);

NewDefaults := DEF_REF_LIST(AttachedTreeld);

NewLevel := FIRST_LEVEL (AttachedTree);

EXPAND_ATTACHMENTS (AttachedTree, NewLevel, NewDefaults);
EXPAND_SUBTREE (AttachedTree, Subsequent, NewDefaults, OuterDefaults);

(* l.e.: Insert ACTIVATE(NewDefaults) below first level of AttachedTree &
Attach ACTIVATE(OuterDefaults) and Subsequent to each leaf node of AttachedTree *)

REPLACE_ALT_TREE(Tree, Level, A, AttachedTree);
end
end

end

Recommendation X.292 (09/98) 189

procedure EXPAND_SUBTREE (SubTree, Subsequent, InnerDefaults, OuterDefaults)

(* Thisprocedurefirst inserts ACTIVATE(InnerDefaults) below the first level of SubTree and then attaches
ACTIVATE(OuterDefaults) and Subsequent to each leaf node of SubTree. *)

begin
Level := FIRST_LEVEL (SubTree);
for /# every dternative A of Level in SubTree#/ do
begin
SubOfA := SUBSEQUENT_BEHAVIOUR_TO (SubTree, A);
ActTree := MAKE_TREE(A,
MAKE_TREE("ACTIVATE(" InnerDefaults)",
SubOfA,),);
REPLACE_ALT_TREE(SubTree, Level, A, ActTree);
end
for /# every leaf Aiin SubTree# do
begin
LeafTree:= MAKE_TREE (A,
MAKE_TREE ("ACTIVATE(" OuterDefaults")",
Subsequent,),);
REPLACE_ALT_TREE(SubTree, LEVEL OF(SubTree, A), A, LeafTree);
end
end

The expansion of attached treesis also explained in 15.13.
B.5.6 Evaluation of an Event Line

B.5.6.1 Pseudo-code

function EVALUATE_EVENT_LINE(Alternative): BOOLEAN
(* Thisfunction callsEVALUATE_EVENT, EVALUATE_PSEUDO_EVENT or EVALUATE_CONSTRUCT, depending
on what type of StatementLine the current alternativeis. *)

begin
case STATEMENT_LINE_TYPE_OF(Alternative) of
begin
EVENT: if EVALUATE_EVENT (Alternative) then return TRUE; elsereturn FALSE;
PSEUDO_EVENT: if EVALUATE_PSEUDO_EVENT (Alternative) then return TRUE; elsereturn FALSE;
CONSTRUCT: (* Construct can now only be GoTo, Return, Activate, Create. *)
if EVALUATE_CONSTRUCT (Alternative) then return TRUE; elsereturn FALSE;
end
end

B.5.6.2 Natural language description

Evaluate the TTCN statement on the current behaviour line, based on the statement type, i.e. whether it is an event, a
pseudo-event, or a construct. The evaluation of each type of TTCN statement is specified in the operational semantics for
that TTCN statement type in the following subclauses.

B.5.7 Functionsfor TTCN events

B.5.7.1 Functions for TTCN events — pseudo-code

function EVALUATE_EVENT(Alternative): BOOLEAN
(* Thisfunction calls SEND, RECEIVE, OTHERWISE, TIMEOUT , DONE, or IMPLICIT SEND, depending on what
type of event the current alternativeis. *)

begin
case EVENT_TYPE_OF(Alternative) of
begin
SEND: if SEND (Alternative) then return TRUE; elsereturn FALSE;
RECEIVE: if RECEIVE (Alternative) then return TRUE; elsereturn FALSE;
OTHERWISE: if OTHERWISE (Alternative) then return TRUE; elsereturn FALSE;
TIMEOUT: if TIMEOUT (Alternative) then return TRUE; elsereturn FALSE;
DONE: if DONE (Alternative) then return TRUE; elsereturn FALSE;
IMPLICIT_SEND: if IMPLICIT_SEND (Alternative) then return TRUE; elsereturn FALSE;
end
end

190 Recommendation X.292 (09/98)

B.5.7.2 Functions for TTCN events — Natural language description

If the TTCN statement is an event, then it will be evaluated as specified in B.5.8 for a SEND event, B.5.9 for a RECEIVE
event, B.5.10 for an OTHERWISE event, B.5.11 for a TIMEOUT event, B.5.12 for a DONE event, or B.5.13 for an
IMPLICIT SEND event.

B.5.8 Execution of the SEND event

B.5.8.1 Execution of the SEND event — Pseudo-code

function SEND (SendLine): BOOLEAN
begin
/#Read PCOorCPidentifier,
ASPorPDUorCMidentifier,
Qualifier,
Assignments,
TimerOperations,
ConstraintsReference from SendLine #/;
if EVALUATE_BOOLEAN (Qualifier) then
begin
BUILD_SEND_OBJECT (ASPorPDUorCMidentifier, ConstraintsReference);
EXECUTE_ASSIGNMENTS (Assignment);
SEND_EVENT (PCOorCPidentifier, ConstraintReference);
TIMER_OPS (TimerOperations);
LOG(PCOorCPidentifier, SendObject);
return TRUE;
end
elsereturn FALSE;
end

procedure BUILD_SEND_OBJECT (ASPorPDUorCMidentifier, ConstraintsReference)
begin
SendObject :=/# an instance of ASPorPDUorCMidentifier whose parameters/fields have the values specified by
ConstraintsReference #/;

end

procedure SEND_EVENT (PCOorCPidentifier, ConstraintsReference)

begin
/# Encode SendObject according to applicable encoding rules and variations,
see ConstraintsReference and associated type definitions #/;
/# Put encoded SendObject at the end of OUTPUT_Q(PCOorCPidentifier) #/;
end

B.5.8.2 Execution of the SEND event - natural language description

The contents of the ASP or PDU or CM, as specified in the named Constraints Reference entry, are to be sent. Note that
if thereisaqualifier, the SEND can be executed only if that qualifier evaluatesto TRUE.

Step 1 If thereisaqualifier, then that qualifier will be evaluated before any other processing takes place:
e if the qualifier evaluates to FALSE, the SEND cannot succeed;
« if the qualifier evaluates to TRUE, then continue with Step 2.

Step 2 Create an ASP or PDU or CM as specified in the named Constraints Reference.

If the dynamic chaining feature has been used, then the value specified in the Constraints Reference entry will be

assigned to the appropriate parameter or field of the ASP or PDU or CM to be sent.

Using the dynamic chaining feature has the effect of storing a copy of the named constraint into the named
parameter or field of the ASP or PDU or CM being built for comparison. The structure defined for the

associated Constraints Reference is used for this named parameter or field.

Step 3 If there is an Assignment statement, then that assignment will be performed as in B.5.16, in particular possibly

changing the ASP or PDU or CM to be sent.

Recommendation X.292 (09/98) 191

Step4 The ASP or PDU or CM is now fully filled in according to the specifications given. The LT or UT will encode
the PDUs (but not ASPs or CMs, apart from PDUs embedded in such) according to the applicable encoding
rules. The LT or UT will send the ASP with its embedded encoded PDUSs, or the encoded PDU. If a PCO or CP
was stated, the ASP or PDU or CM isto be sent at that PCO or CP. If the PCO was not stated, i.e., the test uses a
single PCO — then the ASP or PDU is sent from the lower PCO, because a CP cannot be implied.

Step 5 If one or more timer operations were coded on the behaviour line, the appropriate timer operation(s) will be
performed as in B.5.17.

Step 6 Record in the conformance log the following information, as well as the information specified in B.5.24.2:
¢ the PCO or CP at which the SEND occurred,;
¢ the fully defined ASP, PDU or CM that was sent.

B.5.9 Execution of the RECEIVE event

B.5.9.1 Execution of the RECEIVE event — Pseudo-code

function RECEIVE(Receiveline): BOOLEAN
begin
/# Read PCOorCPidentifier,

ASPorPDUorCMidentifier,

Qualifier,

Assignments,

TimerOperations,

ConstraintsReference from ReceiveLine #/;
if /#INPUT_Q (PCOorCPidentifier) is not empty #/ then
begin

if (OBJECT_MATCHES(PCOorCPidentifier, ASPorPDUorCMidentifier, ConstraintsReference)
AND EVALUATE_BOOLEAN (Quadlifier)) then
begin
EXECUTE_ASSIGNMENTS (Assignments);
TIMER_OPS (TimerOperations);
REMOVE_OBJECT (PCOorCPidentifier);
LOG(PCOorCPidentifier, ReceiveObject);
return TRUE;
end
elsereturn FALSE;
end
elsereturn FALSE;
end

function OBJECT_MATCHES (PCOorCPidentifier, ASPorPDUorCMidentifier, ConstraintsReference): BOOLEAN
begin
ReceiveObject := /# copy of encoded object at head of INPUT_Q(PCOorCPidentifier) #/;
if /# ReceiveObject can be decoded according to applicable encoding rules and variations,
as given by ConstraintsReference and associated type definitions # then
begin
[# decodeit, to yield new version of ReceiveObject #/;

if (/# ReceiveObject is of type ASPorPDUorCMidentifier #/
AND

[# parameters/fields of ReceiveObject have values matching the ConstraintsReference #/) then
return TRUE;
elsereturn FALSE;
end
elsereturn FALSE;
end

procedure REMOVE_OBJECT (PCOorCPidentifier),
begin

[# remove object at head of INPUT_Q(PCOorCPidentifier) #/;
end

192 Recommendation X.292 (09/98)

B.5.9.2 Execution of the RECEIVE event — Natural language description

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7
Step 8

Step 9

B.5.10

If the snapshot that was taken when beginning the current iteration of checking this level of aternatives for
matching shows that there isno incoming ASP or PDU or CM, then this RECEIVE cannot match.

Otherwise, continue to Step 2.

If a PCO or CP was stated, the ASP or PDU or CM shall have been received at that PCO or CP. If the PCO was
not stated, i.e., the test suite uses a single PCO — then the ASP or PDU shall have been received at the lower
PCO. Note that a CP cannot be implied.

The incoming PDUs are decoded according to the applicable encoding rules. A copy is made of the decoded
incoming PDU or of the incoming ASP or CM with decoded nested PDUs.

If the qualifier, possibly using values from the incoming data object, evaluates to FALSE, the RECEIVE cannot
match. Otherwise, continue to step 5.

A copy of the expected ASP or PDU or CM pattern is assembled, using the structure defined in the ASP or PDU
or CM declaration plus the values, matching mechanisms and chained Constraints References specified in the
named Constraints Reference.

This copy is compared against the incoming ASP or PDU or CM, and its decoded PDUs or the decoded PDU to
determine if the RECEIVE can match as specified. Only if the RECEIVE did match successfully, continue to
Step 6.

The incoming ASP or PDU or CM which has just matched will be removed from the incoming PCO or CP
gueue and discarded.

If there are Assignment statements, then they will be performed as in B.5.16.2.

If one or more timer operations were coded on the behaviour line, the appropriate timer operation(s) will be
performed as in B.5.17.

Record in the conformance log the following information, as well as the information specified in B.5.24.2:
e the PCO or CP at which the RECEIVE occurred,;

e the fully defined ASP, PDU or CM that was received.

Execution of the OTHERWI SE event

B.5.10.1 Execution of the OTHERWISE event — Pseudo-code

function OTHERWI SE (OtherwiseLing): BOOLEAN

begin

end

/#Read PCOorCPidentifier,
Qudlifier,
Assignments,
TimerOperations from OtherwiseLine #/;
if (#INPUT_Q (PCOorCPidentifier) is not empty #/
AND EVALUATE_BOOLEAN (Qualifier)) then
begin
EXECUTE_ASSIGNMENTS (Assignments);
TIMER_OPS (TimerOperations);
REMOVE_OBJECT (PCOorCPidentifier);
LOG(PCOidentifier, ReceivedObject);
return TRUE;
end
elsereturn FALSE;

Recommendation X.292 (09/98) 193

B.5.10.2 Execution of the OTHERWISE event — Natural language description

The tester shall accept any incoming data that it has not been possible to decode or that has not matched a previous
dternative to this OTHERWISE event. Note that if there is a qualifier, the OTHERWISE can only match if that qualifier
evaluates to TRUE.

Step 1 If the qualifier evaluatesto FAL SE, the OTHERWISE cannot match. Otherwise, continue to step 2.

Step 2 If the snapshot that was taken when beginning the current iteration of checking this level of alternatives for
matching shows that there is no incoming ASP, PDU or CM, then this OTHERWI SE cannot match.

Otherwise, continue to Step 3.

Step 3 If a PCO was stated, the ASP or PDU shall have been received at that PCO. If a CP was stated, the CM shall
have been received at that CP. If the PCO was not stated, i.e., the test uses a single PCO, then the ASP or PDU
shall have been received at the lower PCO, because a CP cannot be implied.

Step 4 Theincoming ASP, PDU or CM will be removed from the incoming PCO or CP gqueue and discarded.
Step 5 If there are Assignment statements, then they will be performed asin B.5.16.2.

Step 6 If one or more timer operations were coded on the behaviour line, the appropriate timer operation(s) will be
performed asin B.5.17.

Step 7 Record in the conformance log the following information, as well as the information specified in B.5.24.2:
e the PCO or CP at which the OTHERWISE occurred,;

* the ASP, PDU or CM that was received.
B.5.11 Execution of the TIMEOUT event

B.5.11.1 Execution of the TIMEOUT event — Pseudo-code

function TIMEOUT (TimeoutLine): BOOLEAN
begin
/#Read Timerldentifier,

Qualifier,

Assignments,

TimerOperations from TimeoutLine #/;
if EVALUATE_BOOLEAN (Qualifier) then
begin

if TIMER_EXPIRED (Timerldentifier) then
begin
EXECUTE_ASSIGNMENTS (Assignments);
TIMER_OPS (TimerOperations);
LOG(Timerldentifier);
return TRUE;
end
elsereturn FALSE;
end
elsereturn FALSE;

end

194 Recommendation X.292 (09/98)

function TIMER_EXPIRED (Timerldentifier): BOOLEAN
begin
if /# Timerldentifier is not empty # then
begin
if /# timeout notification from Timerldentifier isin copy of timeout list in Snapshot # then
begin
/# delete timeout notification from Timerldentifier in actual timeout list #/;
[# stop and reset the timer Timerldentifier #/;
return TRUE;
end
elsereturn FALSE;
end
else (* Timerldentifier not specified *)
begin
if /# any timeout notification isin copy of timeout list in Snapshot # then
begin
[# stop and reset all timers mentioned in actual timeout list#/;
/# delete all timeout notifications in actual timeout list #/;
return TRUE;
end
elsereturn FALSE;
end

end

B.5.11.2 Execution of the TIMEOUT event — Natural language description

The tester will check to see if the named timer has expired. (If no timer name is given, the tester will check to see if any
timer has expired.) Note that if there is a qualifier, the TIMEOUT is only considered as matching if that qualifier

evaluatesto TRUE.

Step 1 If thereisaquadlifier, then that qualifier will be evaluated before any other processing takes place.

Step 2

Step 3

Step 4

Step 5

e If the qualifier evaluates to FALSE, the TIMEOUT cannot match.
¢ If the qualifier evaluates to TRUE, then continue with Step 2.

See if any of the timers explicitly or implicity named on the TIMEOUT event have been running, but have
expired.

< If no timer identifier is specified, then the tester shall check to sa#yifimer that had been running has
now expired. If so, all timers which have timed out are reset (and left stopped). The timeout entry (entries)
is (are) removed from the timeout list.

« If a timer identifier is specified, then the tester shall check to see if this timer had been running, but has
now expired. If so, the expired timer is reset (and left stopped). The timeout entry is removed from the
timeout list.

« If no timers have expired the TIMEOUT event can not match the next alternative will be attempted.

If there is an Assignment statement, then that assignment will be performed as in B.5.16.2.

If one or more timer operations were coded on the behaviour line, the appropriate timer operation(s) will be
performed as in B.5.17.

Record in the conformance log the information specified in B.5.24, as well as the name of the timer that expired.

Recommendation X.292 (09/98) 195

B.5.12 Execution of the DONE event

B.5.12.1 Execution of the DONE event — Pseudo-code

function DONE (DoneLine): BOOLEAN
begin
/#Read TCompList,

Qualifier,

Assignments,

TimerOperations from DoneLine #/;
if EVALUATE_BOOLEAN (Qualifier) AND ALL_TERMINATED(TCompList) then
begin

EXECUTE_ASSIGNMENTS (Assignments);
TIMER_OPS (TimerOperations);
LOG(TCompList);
return TRUE;
end
elsereturn FALSE;
end

function ALL_TERMINATED(TCompList): BOOLEAN

begin
if TCompList =/# EmptyList # then
TCompList := /#list of al created Parallel Test Components #/;
for /# every TComp in TCompList # do
begin
if /# TComp has not terminated in the Snapshot #/ then
return FALSE;
end
return TRUE;
end

B.5.12.2 Execution of the DONE event — Natural language description

The termination status of the given list of Test Componentsis to be checked. If al given components have terminated (at
the time of the last SNAPSHOT), then the event matches, provided that the qualifier also evaluatesto TRUE.

Step 1 If thereisaqudlifier, then that qualifier will be evaluated before any other processing takes place:
e if the qualifier evaluates to FALSE, the DONE cannot succeed,;
« if the qualifier evaluates to TRUE, the continue to Step 2.

Step 2 If all test components listed in TCompList had terminated at the time of the last SNAPSHOT, then continue to
Step 3, otherwise this DONE cannot match.

Step 3 If there is an Assignment statement, then that assignment will be performed as in B.5.16.

Step 4 If one or more timer operations were coded on the behaviour line, the appropriate timer operation(s) will be
performed as in B.5.17.

Step 5 Record in the conformance log the information specified in B.5.24, as well as the TComplList.
B.5.13 Execution of theIMPLICIT SEND event

B.5.13.1 Execution of the IMPLICIT SEND event — Pseudo-code
function IMPLICIT_SEND (Alternative): BOOLEAN
begin

/# Execute IMPLICIT_SEND according to natural language description #/;

return TRUE;
end

B.5.13.2 Execution of IMPLICIT SEND — Natural language description

The IUT is induced to do whatever is necessary to send the contents of the ASP or PDU, as specified in the constraints
reference entry of the alternative.

If the dynamic chaining feature has been used, then the value specified in the Constraints Reference entry will be assigned
to the appropriate parameter or field of the ASP or PDU to be sent.

IMPLICIT SENDing always succeeds.

196 Recommendation X.292 (09/98)

B.5.14 Execution of a pseudo-event

B.5.14.1 Execution of a pseudo-event — Pseudo-code

function EVALUATE_PSEUDO_EVENT (PseudoEventLine): BOOLEAN
begin
/#Read Quadlifier,
Assignments,
TimerOperations from PseudoEventLine #/;
if EVALUATE_BOOLEAN (Quadlifier) then
begin
EXECUTE_ASSIGNMENTS (Assignments);
TIMER_OPS (TimerOperations);
LOG();
return TRUE;
end
elsereturn FALSE;
end

B.5.14.2 Execution of PSEUDO-EVENTS — Natural language description

If the TTCN statement is a pseudo-event, then it will be evaluated as specified in B.5.15 for a Boolean Expression,
B.5.16 for an Assignment Statement, B.5.17 for atimer operation (START, CANCEL, or READTIMER).

After completion of the pseudo-event, record in the conformance log the information specified in B.5.24.
B.5.15 Execution of BOOLEAN expressions

B.5.15.1 Execution of BOOLEAN expressions — Pseudo-code

function EVALUATE_BOOL EAN(Qualifier): BOOLEAN
begin
if /# Qualifier is empty #/ then
return TRUE;
ese
begin
if /# Qualifier evaluatesto TRUE #/ then
return TRUE;
elsereturn FALSE;
end
end

B.5.15.2 Execution of BOOLEAN expressions — Natural language description

A Boolean expression (i.e., qualifier) specifies a condition that is to be tested. This condition will either be TRUE or
FALSE. A Boolean expression may be stated as part of a statement line (i.e., on the same line with a SEND, RECEIVE,
TIMEOUT, or OTHERWISE), or as a statement line on its own (i.e., as a pseudo-event).

Step 1 The Boolean expression shall be evauated to determine if the condition specified is TRUE or FALSE. The
normal rules of Boolean Logic apply, with the precedence rules specified in 11.4.2.1.

B.5.16 Execution of assignments

B.5.16.1 Execution ofassignments — Pseudo-code

procedure EXECUTE_ASSIGNMENTS (AssignmentL.ist)

begin
for /# every assignment CurrentAssignment in AssignmentL.ist, in the given order # do
begin
/# Execute CurrentAssignment #/;
end
end

Recommendation X.292 (09/98) 197

B.5.16.2 Execution of ASSIGNMENTSs — Natural language description

The assignment list is evaluated in left to right order. In each assignment, the variable on the left-hand side of that
statement is to take on the value of the expression on the right-hand side of the statement. This expression is evaluated

observing the precedence indicated in Table 3.

If the assignment is performed in a Send line, the |eft-hand side may denote an ASP-, PDU- or CM-component, referring
to the object to be sent. If the assignment is performed in a Receive line, the expression may refer to components of the

ASP-, PDU- or CM to be received.
B.5.17 Execution of TIMER operations

B.5.17.1 Execution of TIMER operations — Pseudo-code

procedure TIMER_OPS (TimerOperations)

begin
for /# every TimerOperation in TimerOperations # do
case TIMER_OP_TY PE_OF(TimerOperation) of
begin
START_TIMER: START_TIMER(TimerOperation);
CANCEL_TIMER: CANCEL_TIMER(TimerOperation);
READ_TIMER: READ_TIMER(TimerOperation);
end
end

procedure START_TIMER (TimerOperation)
begin

[# perform asin B.5.17.2 #/;
end

procedure CANCEL _TIMER (TimerOperation)
begin

/# perform asin B.5.17.3 #/;
end

procedure READ_TIMER (TimerOperation)
begin

[# perform asin B.5.17.4 #/;
end

B.5.17.2 Execution of START_TIMER — Natural language description

Step 1 If thetimer isaready running, cancel it and continue to Step 2. Otherwise continue directly to Step 2.

Step 2 The timer is to be started with an initial value indicating no time has passed. Any entry for this timer in the

timeout list isremoved from the list.

B.5.17.3 Execution of CANCEL_TIMER — Natural language description

The CANCEL_TIMER operation specifies that atimer (or timers) isto stop ticking.

Step 1 Determine the name of the timer(s) to be cancelled:

« if no timer identifier is specified, then canedl timers;

« if atimer identifier is specified, then cancel the timer with this timer identifier.

Step 2 The status of the named or implied timer(s) is to be set to "not running”. The amount of time elapsed for the
timer(s) is to be set to zero. If the timeout list contains an entry for the timer(s), the entry (entries) is (are)

removed from the list.

198 Recommendation X.292 (09/98)

B.5.17.4 Execution of READ_TIMER — Natural language description

The READ_TIMER operation specifies that the amount of time that has passed for a currently running timer is to be
stored into a variable. The timer continues to run without interruption.

Step 1 Interrogate the value of the timer having the specified name. If the amount of time passed is n of the units
declared for this timer type, store n into the named variable.

If the timer is not currently running, the named variable shall be set to zero.
B.5.18 Functions for TTCN constructs

B.5.18.1 Functions for TTCN constructs — Pseudo-code

function EVALUATE_CONSTRUCT (Construct): BOOLEAN

(* Asthe EvauationTreeis expanded at the CurrentLevel, the REPEAT and ATTACH constructs are not encountered here.
*)

begin
case CONSTRUCT_TY PE_OF(Construct) of
begin
ACTIVATE: ACTIVATE(Construct);
CREATE: CREATE (Construct);
GOTO: (* noaction here, see GOTO_NEXT_LEVEL_OR_STOP_WITH_VERDICT *);
RETURN: (* noaction here, see GOTO_NEXT_LEVEL_OR_STOP WITH_VERDICT *);
end
return TRUE;
end

B.5.18.2 Functions for TTCN constructs — Natural language description

If the TTCN statement isa TTCN construct, then it will be evaluated as specified in B.5.19 for an ACTIVATE construct,
as specified in B.5.20 for a CREATE construct, as specified in B.5.21 for a GOTO construct, or as specified in B.5.22 for
aRETURN construct. Thereis no need to deal with REPEATS, as they all have been replaced in the CurrentLevel.

TTCN constructs will always succeed.
B.5.19 Execution of the ACTIVATE construct

B.5.19.1 Execution of the ACTIVATE construct — Pseudo-code

procedure ACTIVATE (ActivateLine)

begin
I# Read DefRefList from Activateline#/;
Defaults:=DefRefList;
LOG(DefRefList);

end

B.5.19.2 Execution of the ACTIVATE construct — Natural language description

Change the current defaults context to the DefaultRefList that appears as parameter to the ACTIVATE construct.
Step 1 Change default context to DefaultRefList.
Step 2 Record in the conformance log the following information as well as the information specified in B.5.24:

¢ the DefaultRefList.

Recommendation X.292 (09/98) 199

B.5.20 Execution of the CREATE construct

B.5.20.1 Execution of the CREATE event — Pseudo-code

procedure CREATE (CreateLine): BOOLEAN
begin
/# Read Createlist from CreateLine#/;
for /# every (TCompldentifier, TreeReference, ActualParList) drawn from Createlist #/ do
begin
start processEVALUATE_TEST_COMPONENT(TCompldentifier, TreeReference, Actual ParList);
(* This starts the concurrent evaluation of TreeReference. *)
LOG(TCompldentifier, TreeReference, ActualParList);
end
end

process EVALUATE_TEST_COMPONENT(TCompld, TreeReference, Actual ParList)

(* Thisprocessinitializes the EvaluationTree by the appropriate Test Step root tree or local tree and the default context by
the Defaults references listed with the corresponding behaviour table. It moves control to the top level of alternatives and
calstheir evaluation. *)

global EvaluationTree, CurrentLevel, Defaults, Snapshot, ReturnLevel, ReturnDefaults, SendObject, ReceiveObject;
begin
/# Initialize the local instances of Test Case Variables, local R, Timers, and the Timeout List of TCompld. #/;
EvaluationTree := ROOT_TREE(TreeReference);

(* EvaluationTreeisagrowing finite tree built up by pasting together and expanding copies of trees from the test case
behaviour description and from the test step and default libraries. A component IsExpanded is added to each level. *)

REPLACE_PARAMETERS (TreeReference, EvaluationTree, Actual ParList);
CurrentLevel := FIRST_LEVEL (EvauationTree) ;
(* A level denotes both a position in atree and the ordered set of alternatives at this position. *)
ReturnLevel := CurrentLevel;
Defaults := DEF_REF_LIST(TreeReference);
ReturnDefaults := Defaults;
EVALUATE_LEVELS();
(* Thisincludes, by nested calls, the evaluation of all relevant subsequent levelsin the growing evaluation tree. *)
end

B.5.20.2 Execution of the CREATE event — Natural language description

The evauation of the given Test Component isto be started.

Step 1 Evauation of TCompldentifier, bound to TreeReference, is started, with the ActualParList parameters replacing
the Formal Parameters by textual substitution in TreeReference. All Test Case Variables, the loca result
variable R, timers and the local timeout list are provided afresh for the sole use by this test component.

Step 2 Record in the conformance log the following information as well as the information specified in B.5.24:
¢ the TCompldentifier;
* the TreeReference;

* the ActualParList.

B.5.21 Execution of the GOTO construct

Control is transferred to the set of alternatives having the specified target label in the labels column. Execution now
continues at this new level.

In pseudo-code, the GOTO construct is performed as a part of GOTO_NEXT_LEVEL_OR_STOP_WITH_VERDICT.

B.5.22 Execution of the RETURN construct

Control is transferred to the set of alternatives from which the defaults were entered the last time. Execution now
continues at this new level.

In pseudo-code, the RETURN construct is performed as a part of GOTO_NEXT_LEVEL_OR_STOP_WITH_
VERDICT.

200 Recommendation X.292 (09/98)

B.5.23 Theverdict

B.5.23.1 Theverdict — Pseudo-code

procedure EVAL_VERDICT_ENTRY (VerdictEntry)
begin
Expand VerdictEntry to full word, e.g. (P) becomes (PASS) #/;
if /# VerdictEntry isapreliminary verdict "("PrelimVerdict")" # then
begin
UPDATE_PRELIM (PrelimVerdict, /#loca R, or MTC_R in case of Main Test Component #/);
UPDATE_PRELIM (PrelimVerdict, /# globa R #/);
end
else (* VerdictEntry isafina verdict. *)
begin
if /# Current processis EVALUATE_TEST_CASE #/ then
begin
EXCLUDE_INCOMPATIBLE_ENTRY (VerdictEntry, /# globa R #/);
LOG(VerdictEntry);
[# assign final verdict in main test component or test case #/;
TERMINATE_TEST_CASE();
end
else (* Processis EVALUATE_TEST_COMPONENT *)
begin
EXCLUDE_INCOMPATIBLE_ENTRY (VerdictEntry, /#local R #/);
UPDATE_PRELIM (VerdictEntry, /# global R #/);
stop process,
end
end
end

process EXCLUDE_INCOMPATIBLE_ENTRY (Entry, RVal)

begin
if ((Entry ="R" AND /#RVa =none#/) OR
(Entry ="PASS' AND /# Rva =inconc #) OR
(Entry = "PASS' AND /# Rval = fail #) OR
(Entry = "INCONC" AND /# Rval =fail #/)) then
begin
LOG(TestCaseError);
STOP_TEST_CASE();
return FALSE;
end
elsereturn TRUE;
end

procedure UPDATE_PRELIM (PrelimVerdict, ResultVar)

begin
if (ResultVar = none OR
(ResultVar = pass AND PrelimVerdict <> PASS) OR
(ResultVar = inconc AND PrelimVerdict = FAIL)) then
begin
[# replace value of ResultVar by PrelimVerdict in lower case |etters #/;
LOG("("PrelimVerdict")");
end
end

B.5.23.2 The VERDICT — Natural language description

If averdict is coded, process the verdict:

« If the verdict is preliminary, i.e. enclosed in parentheses, then the local and global result variables will be updated
according to the verdict algorithm in 15.17.2. Note that in the Main Test Component the local R is denoted by
MTC_R. The stated verdict is recorded in the conformance log.

Recommendation X.292 (09/98) 201

e Ifthe verdict is R, then, in non-concurrent TTCN or in the Main Test Component, the current value of R (the only or
the global R) will be used as the verdict of the Test Case. If R is set to none, raise a test case error.

e If the verdict is PASS, INCONC or FAIL, then, in non-concurrent TTCN or in the Main Test Component, the stated
verdict will be used as the final verdict for the Test Case. If the final verdict is inconsistent with local or global R,
raise a TestCaseError.

* In Parallel Test Components, a final verdict R, PASS, INCONC or FAIL, is used to update the global R like a
preliminary verdict. The stated verdict is recorded in the conformance log. A final verdict terminates the evaluation
of the Test Component.

B.5.24 The ConformancelLog

B.5.24.1 The LOG - Pseudo-code

procedure L OG(/# any number of arguments#/)
begin
/# 10g the line number of the event line (if any) #/;
/#10g the label associated with the event line (if any) #/;
/# 10g the arguments passed to LOG #/;
[# 10g the assignment(s) made (if any) #/;
[# 10g the timer operation(s) performed (if any) #/;
/#1og current time #/; (* current time may be actual or relative *)

end

B.5.24.2 The conformance log — Natural language description

Record the following information in the conformance log:
* the line number of the event line (if any);
* the label associated with the event line (if any);

« other arguments defined elsewhere in this annex associated with the event line (if any), e.g. the final or preliminary
verdict, or the data object sent or received,

* the assignment(s) made (if any);
» the timer operation(s) performed (if any);

e time stamp.

B.5.25 Treehandling functionsand procedures
To facilitate lookup, the procedures and functions are defined in alphabetical order.

procedure APPEND_TO_LEVEL (TreeLevel , Alternative)
begin
/# Update Level and Tree by appending Alternative as new last aternativein Level in Tree #/;

end

function FIRST_LEVEL (Tree): LEVEL
begin
return /#the set of aternatives at the first level of indentation of Tree, i.e. the numerically lowest (in TTCN.MP),
i.e. theleftmost (in TTCN.GR), level of indentation of the root tree #/;

end

202 Recommendation X.292 (09/98)

procedure GOTO_NEXT_LEVEL_OR_STOP_WITH_VERDICT(Alternative)

begin

end

(* search the next level to evaluate, if any *)
if /# Alternativeis of thetype "GOTO Label" or "-> Label" #/ then
CurrentLevel := /# the unique level |abelled with Label #/;
elseif /# Alternativeis of the type "RETURN" #/ then
begin
CurrentLevel := ReturnLevel;
Defaults := ReturnDefaults;
end
dseif /# Alternative is aleaf of EvaluationTree #/; (* but not aRETURN or GOTO *) then
EVAL_VERDICT_ENTRY("R"); (* Thiswill stop the execution of the process. *)
ese
CurrentLevel := /# set of aternatives at next level of indentation below Alternative #/;
(* saveinformation for coming RETURN statements *)
if /# Component IsDefault of CurrentLevel # = FALSE then
begin
ReturnLevel := CurrentLevel;
ReturnDefault := Default;
end

function IS EXPANDED (): BOOLEAN

begin

end

return /# Component | sExpanded of CurrentLevel #/;

function LEVEL _OF (Tree, Alternative): LEVEL

begin

end

return /#thelevel in Tree of which this Alternative is amember #/;

function MAKE_TREE (Statement, Treel, Tree2): TREE

begin

end

return /#the following tree:
Statement
Treel
Tree2 # o

(* Treel and/or Tree2 may be empty, denoted by an empty parameter position in the call of MAKE_TREE. *)

function NEW_LABEL (): LABEL

begin

end

return /# alabel which has not yet been used in the execution of this Test Component, nor in the (relabelled) Test Suite # ;
(* This may be achieved by means of counters and test component names. *)

procedure RELABEL (Tree)

begin

end

for /# each label L originally occurring in Tree #/ do
begin
NewLabel := NEW_LABEL();
for /# each occurrence of L in Tree, in the label column or asthe target of a GOTO #/ do
begin
replace L by NewL abel #/;
end
end

procedure REPLACE_ALT_TREE (Tree, Level, A, ReplacementTree)

begin

end

(* Alisanalternativein Level, whichisalevel in Tree*)

l# InTree, replace the subtree of Tree consisting of
A and SUBSEQUENT_BEHAVIOUR_TO (Tree, A) by ReplacementTree,
with all values of IsDefault in ReplacementTree set to the IsDefault-value of A,
and all values of 1sExpanded of levelsin ReplacementTree set to FALSE. #/;

Recommendation X.292 (09/98) 203

procedure REPLACE_PARAMETERS (Treeld, Tree, ActualParList)

begin
/# Replace the formal parametersin Tree by the actual parameters specified in ActualParList,
doing so by textual substitution in Tree, using the formal parameter list accessible via Treeld. #/;
end

function ROOT_TREE (Treeld): TREE

begin
return /# its root tree if Treeld denotes a Test Case or Test Step or Default Behaviour Table —
otherwise the local tree with this name. Each level gets a new Boolean component
"IsExpanded"”, initialized with value FALSE, indicating that this level has not yet been expanded. #/;
end

function SUBSEQUENT_BEHAVIOUR_TO (Tree, Alternative)TREE
begin
return /# the subtree below Alternative in Tree #/,
(* This would be Tree3 if Tree has the form:
Treel
Tree2
Alternative
Tree3
Treed
Tree5 *)
end

B.5.26 Miscellaneous functions used by the pseudo-code

function CONSTRUCT _TYPE_OF(Construct)CONSTRUCT_TYPE
begin

return /# ACTIVATE, CREATE, GOTO, or RETURN, as appropriate #/;
end

function DEF_REF_LIST(TreeReferencePEFAULT_REF_LIST

begin
return /# the default reference list in the header of the corresponding table in the case of a test step in the test step library, or
the empty list in the case of default behaviour, or in the case of a local tree attachment the current value of Defeults (i.e.
currently active defaults in the calling tree) #/;
end

function EVENT_TYPE_OF(Alternative):EVENT_TYPE
begin

return /# SEND, RECEIVE, OTHERWISE, TIMEOUT, DONE, or IMPLICIT_SEND, as appropriate #/;
end

function INPUT_Q(PCOorCPidentifier) QUEUE

begin
if /# PCOorCPidentifier is empty #ien
return /# default PCO input queue #/;
elsereturn /# input queue identified by PCOorCPidentifier #/;
end

function OUTPUT_Q(PCOorCPidentifier) QUEUE

begin
if # PCOorCPidentifier is empty #ien
return /# default PCO output queue #/;
elsereturn /# output queue identified by PCOorCPidentifier #/;
end

function SNAPSHOT_FIXED (): BOOLEAN

begin
if /# all relevant PCO and CP queue(s) have some event(s) on them and all relevant timers have ghasired #/
return TRUE;
elsereturn FALSE;
end

function STATEMENT_LINE_TYPE_OF(Alternative):STATEMENT _LINE_TYPE
begin

return /# EVENT, PSEUDO_EVENT, or CONSTRUCT, as appropriate #/;
end

204 Recommendation X.292 (09/98)

procedure STOP_TEST_CASE()
begin

[# stop al running processes #/;
end

procedure TAKE_SNAPSHOT()
(* A snapshot of theincoming PCO and CP queue(s), the relevant timeout list, and the termination status of any other test
components is taken. The act of taking a snapshot does not remove an event from any PCO, CP or timeout list.*)

begin

[# save current PCO and CP input queues in Snapshot #/;

[# save current timeout list in Snapshot #/;

[# save current list of terminated Test Components in Snapshot #/;
end

procedure TERMINATE_TEST_CASE()

begin
if /# any Parallel Test Component processes are still running # then
LOG(TEST_CASE_ERROR);
STOP_TEST_CASE();
end

function TIMER_OP_TY PE_OF(Alternative): TIMER_OP_TYPE

begin
return /# START_TIMER, CANCEL_TIMER, or READ_TIMER, as appropriate #/;
end
Annex C
TTCN Modules
Cl Introduction

A TTCN Module shall contain the following sectionsin the order indicated:
a) TTCN Module Overview Part;

b) Import Part;

¢) Declarations Part;

d) Constraints Part;

€) Dynamic Part.

C.2 TTCN Module Overview Part

c.21 Introduction

The purpose of the TTCN Module Overview Part of amodule is to provide information needed for the use of the module
by other modules or test suites. Thisincludes:

a TTCN Module Exports;
b) TTCN Module Structure;
¢) Test Caselndex;

d) Test Step Index;

€e) Default Index.

C.22 TTCN Module Exports

The TTCN Module Exports proforma identifies the module and provides information on the overall objective of the
TTCN Module (e.g. constraints library for a particular protocol).

If aPCO typeisgiven as an exported object in the Export table, it must be defined in the optional PCO Type table.

Recommendation X.292 (09/98) 205

The name of the original source object shall be given if the object isimported.

If the object is declared as an external object (explicit external) or is an object which is omitted in the imported source
object (implicit external), the keyword EXTERNAL is given instead of the source object name.

Exporting an object of type Enumeration or Named Number requires that the corresponding type is given. The other
objects which are defined in the corresponding type are not exported as well. They are however implicitly exported and
can bereferred in other exported objects. The type nameis given as a suffix to the object name embedded in brackets.

The following information shall be supplied in the TTCN Module Exports:
a) thename of the TTCN Module;

b) adescription of the objective of the module;

¢) afull reference of the TTCN module;

d) referencesto therelevant base standardsif any;

e) areferenceto the PICS proformaif any;

f) areferencetothe PIXIT proformaif any;

g) anindication of the test method(s) if any;

h) other information which may aid understanding of the TTCN Module€; this should be included as a comment;

i) alist of exported objects,

where the following information shall be supplied for each exported object:

1) The name of the object.

If the object is of type NamedNumber or Enumeration, the corresponding type shall be given as a suffix to the

object name embedded in brackets.
2) Theobject type.

3) Thename of the original source object if the object isimported, or the object directive EXTERNAL.

4) A page number,

providing the location of the object in the module (no page number shall be given for imported objects).

Thisinformation shall be provided in the format shown in Proforma C.1, below.

TTCN Module Exports

TTCN Module Name

: TTCN_Moduleldentifier

ObjectDirective]

Objective . [FreeText]
TTCN Module Ref . [FreeText]
Standar ds Ref . [FreeText]
PICS Ref . [FreeText]
PIXIT Ref . [FreeText]
Test Method(s) . [FreeText]
Comments . [FreeText]
Object Name Object Type Source Name Page No. Comments
Objectldentifier TTCN_ObjectType [Sourceldentifier| Number [FreeText]

Detailed Comments:

[FreeText]

Proforma C.1 — TTCN Module Exports

206 Recommendation X.292 (09/98)

SYNTAX DEFINITION:
4 TTCN_Moduleldentifier ::= Identifier
12 Objectldentifier ::= Identifier | ObjectTypeReference

15 TTCN_ObjectType::= SimpleType Object | StructType Object | ASN1 Type Object | TS Op_Object |
TS Proc_Object | TS Par_Object | SelectExpr_Object | TS Const_Object | TS Var_Object | TC_Var_Object |
PCO_Type Object | PCO_Object | CP_Object | Timer_Object | TComp_Object | TCompConfig_Object |
TTCN_ASP_Type Object | ASN1 ASP_Type Object | TTCN_PDU_Type Object | ASN1 PDU_Type Object |
TTCN_CM_Type Object | ASN1_ CM_Type Object | EncodingRule_Object | EncodingVariation_Object |
InvalidFieldEncoding_Object | Alias Object | StructTypeConstraint_Object | ASN1 TypeConstraint_Object |
TTCN_ASP_Constraint_Object | ASN1_ASP_Constraint_Object | TTCN_PDU_constraint_Object |
ASN1 PDU_Constraint_Object | TTCN_CM_Constraint_Object | ASN1 CM_Constraint_Object |
TestCase Object | TestStep_Object | Default_Object | NamedNumber _Object | Enumeration_Object

17 Sourceldentifier ::= Suiteldentifier | TTCN_Moduleldentifier

18 ObjectDirective ::= Omit | EXTERNAL

EXAMPLE C.1 — TTCN Module Exports:

TTCN Module Exports

TTCN Module Name : TTCN_Module_A
Objective . Toillustrate the use of the TTCN Module Exports table
TTCN Module Ref :
Standards Ref
PICS Ref
PIXIT Ref
Test Method(s)
Comments

Object Name Object Type Source Name Page No. Comments
String5 SimpleType_Object 3
wait Timer_Object Module B
INTC TTCN_PDU_Type Object 13
DEF1 Default_Object TestSuite 1
TC 2 TestCase_Object TestSuite 2
TC 3 TestCase_Object 33
Preamble TestStep_Object EXTERNAL

C.23 TTCN Module Structure

The TTCN Module Structure contains a list of Test Groups in the module (if any). The following information shall be
supplied for each group:

a) theTest Group Reference,

where the first identifier may be the module name, and each successive identifier represents further conceptual
ordering of the module;

b) anoptiona selection expression identifier;
¢) theTest Group Objective;

d) apage number (page number shall not be supplied for imported groups).

Recommendation X.292 (09/98) 207

Thisinformation shall be provided in the format shown in Proforma C.2, below.

TTCN Module Structure

Test Group Reference TestGroupReference Test Group Objective Page No.

TestGroupReference TestGroupReference FreeText Number

Detailed Comments. [FreeText]

Proforma C.2 — TTCN Module Structure

SYNTAX DEFINITION:
626 TestGroupReference ::= [Suiteldentifier "/"] { TestGroupldentifier "/"}

The static semantics described in 10.2 "Test Suite Structure” are applicable for TTCN Module Structure.

c.24 Test Case Index

The definition of the Test Case Index for modules is the same as the definition of Test Case Index for Test Suites.

C.25 Test Step Index

The definition of the Test Step Index for modulesis the same as the definition of Test Step Index for Test Suites.

C.2.6 Default Index

The definition of the Default Index for modules is the same as the definition of Default Index for Test Suites.

C3 Import Part

C.3.1 Introduction

The purpose of the Import Part of a module is to declare the objects which are not explicitly defined but have been used.
These objects are either declared as external objects or are imported from other source objects. This part includes:

a) Externa;

b) Import.

C.3.2 External

The External Objects proforma lists the objects being referred to by their identifier in the TTCN module, but neither
imported nor explicitly defined. An external object lets the importer know what he has to define, when importing the
TTCN module.

The following information shall be supplied for each external object:
a) theObject identifier and parameters,

parameters are included when the object is a Test Suite Operation, a Constraint or a Test Step;
b) theobject type;

c) anoptional comment.

208 Recommendation X.292 (09/98)

Thisinformation shall be provided in the format shown in Proforma C.3, below.

External Objects

Object Name Object Type Comments

Identifier | TS_Opld&ParList |

Consld&ParList | TestStepld&ParList TTCN_ObjectType [FreeTexq

Detailed Comments: [FreeText]

Proforma C.3 — External Objects

SYNTAX DEFINITION:
141 TS Opld&ParList ::= TS Opldentifier [Formal ParList]
555 ConsEk& ParList ::= Constraintldentifier [Formal ParList]
638 TestStepld& ParList ::=TestStepldentifier [Formal ParList]

15 TTCN_ObjectType::= SimpleType _Object | StructType_Object | ASN1_Type Object | TS Op_Object |
TS Proc_Object | TS Par_Object | SelectExpr_Object | TS Const_Object | TS Var_Object | TC_Var_Object |
PCO_Type Object | PCO_Object | CP_Object | Timer_Object | TComp_Object | TCompConfig_Object |
TTCN_ASP_Type Object | ASN1_ASP_Type Object | TTCN_PDU_Type Object | ASN1 PDU_Type Object |
TTCN_CM_Type Object | ASN1 CM_Type Object | EncodingRule_Object | EncodingVariation_Object |
InvalidFieldEncoding_Object | Alias_Object| StructTypeConstraint_Object | ASN1 TypeConstraint_Object |
TTCN_ASP_Constraint_Object | ASN1 ASP_Constraint_Object | TTCN_PDU_constraint_Object |
ASN1 PDU_Constraint_Object | TTCN_CM_Constraint_Object | ASN1_CM_Constraint_Object |
TestCase Object | TestStep_Object | Default_Object | NamedNumber_Object | Enumeration_Object

EXAMPLE C.2 — Externa Objects:

External Objects
Object Name Object Type Comments
CRC(P:A_PDU) TS Op_Object
CONSTRAINT_A(acstrit_ CONNECT) | TTCN_PDU_Constraint_Object
TESTSTEP_A(I:INTEGER) TestStep_Object
DEF3 Default_Object
C.33 Import

The definition of the Import for modules is the same as the definition of Import for Test Suites (see 10.7).

Annex D

Test Suite I ndex

D.1 I ntroduction

The Test Suite Index is a complete list of all objects in a expanded test suite and is a result of converting a modularized
test suite to an expanded test suite. Thislist contains information about each object (e.g. the source object/test suite name,
the original name and the page number in the very original source object).

Recommendation X.292 (09/98) 209

D.2 The Test Suite I ndex

D.21 Introduction

The purpose of the Test Suite Index is to provide information needed for all imported objects in an expanded test suite.
Thisinformation is used to easily find the definition of an object.

D.2.2 The Test Suite Index

The Test Suite Index proforma identifies all objects used in a test suite. The following information shall be supplied for
each object:

a) thename of the object,

the name with which the object is referred to (e.g. a generated name);
b) the object type,

which shall be the same as the type given when the object is defined;
¢) thename of the source object or the test suite,

where the object is defined;
d) theoriginal name of the object,

the given name when the object is explicitly defined;
€) anoptional page number,

providing the location of the object in the original source object.

Thisinformation shall be provided in the format shown in ProformaD.1, below.

Test Suite Index

Object Name Object Type Sour ce Name Original Object Ref Page No. Comments

Objectldentifier ObjectType Sourceldentifier [ObjectReference] [Number] [FreeText]

Detailed Comments: [FreeText]

Proforma D.1 — Test Suite Index

The page number is given when the original source object is Recommendation and the location of the object is
unambiguous.

Annex E

Compact proformas

E.1 I ntroduction

As an option, many Constraints and/or many Test Cases can be printed in a single table. This may be useful to highlight
relations between the single constraints and/or single Test Cases. This annex states the requirements for using compact
Constraints proformas and/or compact Test Cases proformas and gives some examples. These proformas are specific and
differ from the generalized layouts given in 7.3. Since the new proformas are only another way to present the same
information, there is no TTCN.MP associated with it. The information contained in a compact Constraints and/or
compact Test Cases table can be translated in the TTCN.MP associated with the many single constraint tables and/or
many Test Case tables that have the same information contents.

210 Recommendation X.292 (09/98)

E.2 Compact proformasfor constraints

E21 Requirements

It shall only be allowed to print many single constraint tables as a single compact constraint table if:
a) theconstraints have the same ASP type, PDU type, Structured Type or ASN.1 Type;

b) thereis no encoding information specified in any of the single constraint table headers, nor in the encoding column
of any of those tables (ASN.1 encodings specified in ASN.1 Vaue may, however, be specified in compact
proformas); and

c) thereareno entriesin the comments column of any single constraint table.

NOTE - If the single constraints tables only have comments in the detailed comments footer (i.e. the comments column is empty),
then it is possible to print these constraints in the compact format. In such cases, the individual detailed commentsirigien the
proformas should be collected and printed as a single comment in the detailed comments footer of the compact proforma.

E.22 Compact proformasfor ASP constraints

In cases where a constraint contains only a few parameters, or when there are only a small number of constraints, the
constraints may be presented in the compact version of the ASP constraints Proforma E.1, below.

ASP Constraints Declarations
ASP Type . Structldentifier
Constraint Derivation Field Name Comments
Name path ASP_Parldentifier; ASP_Parldentifier,,
Consld- Derivation- CongtraintValue- CongtraintValue- [FreeTex]
&ParList; Path; &Attributes; ; &Attributes, , 1
Consld- Derivation- CongtraintValue- CongtraintValue- [FreeTex]
&ParLig, Path, &Attributes; &Attributes, , 2
Consld- Derivation- CongtraintValue- CongtraintValue- [FreeText] m
&ParListy, Pathy, & Attributes, ; &Attributesy, ,

Proforma E.1 — (Compact) ASP Constraints Declarations

This proformais used for ASPs and their parameters in the same way that the PDU Constraints Declarations proforma is
used for PDUs and their fields (see E.2.3).

E.2.3 Compact proformas for PDU constraints

E.2.3.1 Introduction

In cases where a constraint contains only a few fields, or when there are only a small number of constraints, the
constraints may be presented in the compact version of the PDU constraints Proforma E.2, below.

The compact constraints proforma has field names across the top of the proforma, and different instances of the PDU
congtraints in rows within the proforma. If there are n fields in the PDU type definition, then there shall be n field
columns in the compact constraint proforma.

The derivation path column is optional; however, it shall be used to specify the derivation path of modified constraints
(see 13.6). A compact table can collect several base constraints (as illustrated in Example C.1) or can collect a base
congtraint and its modified constraints as in Example C.2. When modified constraints are declared in a compact table, the
fields not modified in the modified constraints appear as boxes left blank at the intersection of the modified constraint
row and of the field column. When mapping a compact table to TTCN.MP (i.e. single format), blank fields due to
inheritance shall be omitted. Fields not specified in modified constraints are left blank in modified constraints.

Recommendation X.292 (09/98) 211

PDU Constraints Declarations
PDU Type : PDU_ldentifier
Constraint Derivation Field Name Comments
Name path ASP_Parldentifier; ASP_Parldentifier,,

Consld- Derivation- CongtraintValue- CongtraintValue- [FresTexi]
&ParList; Path; &Attributes; ; &Attributes; 1
Consld- Derivation- CongtraintValue- CongtraintValue- [FresTexi]
&ParlLigt, Path, &Attributes, &Attributes, 2

Consld- Derivation- ConstraintValue- ConstraintValue- [FreeText] m
&ParlList,, Path, & Attributesy, ; &Attributes,,
Proforma E.2 — (Compact) PDU Constraints Declarations
EXAMPLE E.1 - Constraints using the compact constraints proforma
E.1.1 Given the declaration of PDU_B to be:
External Objects

PDU Name : PDU_B
PCO Type : XSAP
Comments

Field Name Field Value Comments
FIELD1 INTEGER
FIELD2 BOOLEAN
FIELD3 IA5String

E.1.2 The constraints on PDU_B using the compact constraints proforma could be:

PDU Constraints Declar ations
PDU Type : PDU_B
Constraint Name Field Name Comments
FIELD1 FIELD2 FIELD3

CN1 3 TRUE "A string"
CN2 (4,5,6) FALSE “A string"
CN3 0 ? -

The constraints reference in the dynamic part might then contain entries such as PDU_B[CN1] and PDU_B[CNZ2].

212 Recommendation X.292 (09/98)

E.1.3 The inheritance mechanism using the compact constraint proforma:

PDU Constraints Declarations

PDU Type : PDU_A

Constraint Name | Derivation Path Field Name Comments
FIELD1 FIELD2 FIELD3 FIELD2

CNO 0 "FF'H '00'B TRUE

CN1 CNO 1

CN2 CNO.CN - ?

E.2.3.2 Parameterized compact constraints

Compact constraints may also be parameterized. In such cases, the parameter lists shall be appended to the constraint
name and occur in the constraint name column of compact constraint proformas.

EXAMPLE E.2 — A parameterized compact constraint

The invocation of the constraints on PDU_X in a Test Step may be made as follows: S1, S2, S3, $4, S5(0), S5(1) or
S5(Var) where Var isa Test Case or Test Suite Variable:

PDU Constraints Declarations
PDU Type : PDU_X
Constraint Name Field Name Comments
P1 P2
S1 0 0
S2 0 1
S3 1 0
S4 1 1
S5(A:INTEGER) 1 A
E.24 Compact proformasfor Structured Type constraints
Compact Structured Type constraints shall be provided in Proforma E.3, below.
Structured Type Constraints Declarations
Structured Type : Structldentifier
Constraint Derivation Field Name Comments
Name path ASP_Parldentifier; ASP_Parldentifier,,
Consld- Derivation- CongtraintValue- CongtraintValue- [FresTexi]
&ParList; Path; &Attributes; ; &Attributes; 1
Consld- Derivation- CongtraintValue- CongtraintValue-
; 7 . [FreeText] »
&ParlList, Path, & Attributes, &Attributes; ,
Consld- Derivation- ConstraintValue- ConstraintValue- [FreeText] m
&ParlList,, Path, & Attributesy, 1 &Attributes,

Proforma E.3 — (Compact) Structured Type Constraints Declarations

Recommendation X.292

(09/98) 213

EXAMPLE E.3 —Use of structured compact constraints

The PDU_Y consists of five fields named Y1 through Y5. The fields Y1, Y2 and Y3 have been combined into the
Structured Type called A. In the following, the first table shows the constraints defined on PDU_Y. The second and
third tables convey the same information as the last table.

The second and third tables show the Structured Type A’s constraint specification using the single constraint
proformas, while the last table shows A’s constraint using the compact constraint proforma. Both figures also use the
modification mechanism.

For the following tables, it can be seen that if the constraint YY1 was used, the values for field Y1 through Y5 would
be 0,0,0,0,1 respectively, where the values for fields Y1 through Y3 are derived from the Structured Type A using
constraint Al. If the constraint YY2 was used, the values for Y1 through Y5 would be 0,3,0,1,0 respectively, where
the values for fields Y1 through Y3 are derived from the Structured Type A using constraint A2.

E.3.1 A PDU constraints table that uses a Structured Type (called A):

PDU Constraints Declar ations
PDU Type : PDU_Y
Constraint Name Field Name Comments
A Y4 Y5
YY1 Al 0 1
YY2 A2 1 0
YY3 A2 0 1
E.3.2 Al is a base constraint of Structured Type A:
Structured Type Constraint Declaration
Constraint Name ;A1
Structured Type DA
Derivation Path
Comments
Element Name Element Value Comments

Y1l 0

Y2 0

Y3 0

E.3.3 The Structured Type constraint, A2, is a modified constraint derived from Al:
Structured Type Constraint Declar ation
Constraint Name : A2
Structured Type DA
Derivation Path Al
Comments
Element Name Element Value Comments
Y2 3

214 Recommendation X.292 (09/98)

E.3.4 Structured Type A’s constraints A1 and A2 in the compact form:

Structured Type Constraint Declaration

Structured TypeName : A

Constraint Name | Derivation Path Field Name Comments
A Y4 Y5

Al 0 0 0

A2 Al 3

When using Structured Types within PDU Constraint Declarations, each field name used within the Structured Type
definition shall exactly match the name (or short name, if both the short name and full name were defined) of the PDU
field which it represents from the original PDU type definition.

E.25 Compact proformasfor ASN.1 constraints

Proformas E.4, E.5 and E.6 shall be used for compact ASN.1 ASP, ASN.1 PDU and ASN.1 Type constraints definitions
respectively:

ASN.1 ASP Constraints Declarations
ASP Type : ASP_ldentifier
Constraint name ASN.1Value
Consld&ParlList; ConstraintValue&Attributes ;
Consld&ParList,, ConstraintValue&Attributes
Proforma E.4 — (Compact) ASN.1 ASP Constraints Declarations
ASN.1 PDU Constraints Declarations
PDU Type : ASP_ldentifier
Constraint name ASN.1Value
Consld&ParlList; ConstraintValue&Attributes ;
Consld&ParList,, ConstraintValue&Attributes

Proforma E.5 — (Compact) ASN.1 PDU Constraints Declarations

Recommendation X.292 (09/98)

215

ASN.1 Type Constraints Declarations
Type Name . ASP_ldentifier
Constraint name ASN.1Value
Consld&ParList; ConstraintValue&Attributes ;
Consld&ParList,, ConstraintValue&Attributes

Proforma E.6 — (Compact) ASN.1 Type Constraints Declarations

E.3 Compact proformafor Test Cases

E.3.1 Requirements

It is only permitted to print many single Test Case dynamic behaviour tables as a single compact Test Case dynamic
behaviour table when the following rules apply:

a) al single Test Case dynamic behaviour tables shall belong to the same Test Group;

b) all single Test Case dynamic behaviour tables shall have either the same Default tree or no Default tree; it is
recommended that there be no Defaullt tree;

¢) the behaviour description of each single Test Case dynamic behaviour table shall consist of a single ATTACH
construct.

E.3.2 Compact proforma for Test Case dynamic behaviours

Where a series of Test Cases have essentially the same dynamic behaviour and differences occur only in the referenced
congtraints (e.g. tests for parameter variations of ASPs and/or PDUs), the Test Cases may be presented in the compact
version of the Test Case dynamic behaviour ProformaE.7, below.

Test Case Dynamic Behaviours

Group . TestGroupReference
Default . DefaultReference
Test Case Name Purpose Test Step Attachment Comments
TestCaseldentifier FreeText Attach [FreeText]

Detailed Comments:

Proforma E.7 — (Compact) Test Case Dynamic Behaviours

Each row in the body of this proforma describes a single Test Case. If the compact Test Case proformais used, the single
table replaces a series of Test Case dynamic behaviour tables in the behaviour part of the test suite.

The comments column contains comments pertaining to individual Test Cases against each attachment.

216 Recommendation X.292 (09/98)

Test Cases within compact Test Case proforma may form a subset of their group and shall appear in the order indicated in
the Test Case Index.

EXAMPLE E.4 — A compact Test Case table that defines a series of testsfor FTAM:

Test Case Dynamic Behaviours
Group . R/BV/PV/ILM/CR/OV
Default
Test Case Name Purpose Test Step Attachment
OVERRIDE1 Omit the override parameter, when file +OVERRIDE (FCRERQ_001,FCRERP_001)
exists.
OVERRIDE2 Omit the override parameter, when file +OVERRIDE (FCRERQ_002,FCRERP_002)
does not exist.
Appendix |
Examples
1.1 Examples of tabular constraints

1.1.1 ASP and PDU definitions

1.1.1.1 Flat Typedefinition
PDU Type Definition
PDU Name . RIBV/PV/LM/CR/OV
PCO Type :
Comments . Hlustration of TTCN mechanisms
Field Name Field Value Comments
Source BITSTRING [4] Length is4 bits.
Destination BITSTRING [4] Length is 4 bits.
T_Class INTEGEROto4 Defined as asimple type
UserData I|A5String

1.1.1.2 Structured Type definition

PDU Type Definition

PDU Name : RIBV/PV/LM/CR/OV
PCO Type :
Comments . lustration of TTCN mechanisms

Field Name Field Type Comments
T_Addresses T_Addressinfo
T_Class INTEGEROto4 Defined as asimple type
UserData IA5String

Recommendation X.292

(09/98)

217

Structured Type Definition

Type Name : T_CONNECT2
Comments : Canbeusedinal Transport PDU examples.
Element Name Type Definition Comments
Source BITSTRING[4] Length is 4 bits
Destination BITSTRING[4] Length is 4 bits
1.1.1.3 Special TypePDU, in order to allow use of (static) chaining of constraints
ASP Type Definition

ASP Name : N_DATArequest
PCO Type : N_SAP
Comments . For illustration only

Parameter Name Parameter Type Comments

CallingNetworkAddress
CalledNetworkAddress
Connectionldentifier
Data

HEXSTRING
HEXSTRING
HEXSTRING
PDU

To enable chaining of constraints

1.1.2 ASP/PDU constraints

1.1.21 Flat
PDU Constraint Declaration
Constraint Name : TCON_CLAS#A 1
PDU Type : T_CONNECT1
Derivation Path
Comments
Field Name Field Value Comments
Source TS Parl
Destination TS Par2
T Class 4
UserData "testing, testing"
1.1.2.2 Structured, referring to field groups
PDU Constraint Declaration
Constraint Name : TCON_CLASHA 2
PDU Type : T_CONNECT2
Derivation Path
Comments
Field Name Field Value Comments
T_Addresses WrongAddress WrongAddressis areferenceto a
structured type constraint.
T_Class 4
UserData "one, two, three"
218 Recommendation X.292 (09/98)

Structured Type Constraint Declaration

Constraint Name : WrongAddress
Structured Type : T_Addressinfo
Derivation Path
Comments
Element Name Element Value Comments
Source TS Perl
Destination ’0000'B
1.1.2.3 Chaining, useful for (nested) PDUsin ASPs
ASP Constraint Declaration

Constraint Name : N_DATAreq With T_CON_Class4 1
ASP Type : N_DATArequest
Derivation Path
Comments : TCON_Class4_lisaPDU constraint (i.e. chaining).

Parameter Name Parameter Value Comments
CallingNetworkAddress TS Par3
CalledNetworkAddress TS Pard
Connectionldentifier "ABCDEFH
Data TCON_Class4 1

1.1.2.4 Parameterized constraints: it is possible to parameterize flat, structured and chained constraints. The following
exampl e shows parameterization to pass a value:

PDU Constraint Declaration

Constraint Name : TCON_1(classINTEGER)
PDU Type : T_CONNECT1
Derivation Path
Comments : TCON_ClassA_lisaPDU constraint (i.e. chaining).

Field Name Field Value Comments
Source '1000'B
Destination ?
T_Class class Classisaformal parameter.
UserData ?

This can be referenced from the Test Case, Test Step or Default behaviour tables, as for example:

TCON_1(4) or TCON_1(TCvariable)

Recommendation X.292 (09/98) 219

Field values may be whole (chained) PDUs:

ASP Constraint Declaration

Constraint Name : N_DATAreq With_T_CON(A_Constraint:T_CONNECT?2)
ASP Type : N_DATArequest
Derivation Path
Comments : TCON_ClassA_1lisaPDU constraint (i.e. chaining).

Parameter Name Parameter Value Comments
CallingNetworkAddress TS Par3
CalledNetworkAddress TS Pard
Connectionl dentifier '1234567'H
Data A_Constraint A_Constraint isaformal parameter.

This constraint can be called, as for example;
N_DATAregq With TCON(TCON_Clas4 _2)

Since the actual parameter is a constraint name, which can itself be parameterized, it is possible to express an arbitrary
depth of nesting of PDUs.

1.1.25 Modified constraints: it is possible to use existing constraints and modify them to define new constraints. This
can be done with flat, structured and parameterized constraints:

PDU Constraint Declaration
Constraint Name : TCON_CLASS0 1
PDU Type : T_CONNECT1
Derivation Path : TCON Clas# 1
Comments : Class0is acceptable.
Field Name Field Value Comments
T Class 0

Wildcards can be used for values:

PDU Constraint Declaration
Constraint Name : TCON_AnyClass
PDU Type : T_CONNECT1
Derivation Path : TCON_Class4 1
Comments : Any class (0..4) is acceptable.
Field Name Field Value Comments
T_Class ?

Thisis considered to be bad style, however. It is better to use the more general constraint as a base.

It isalso possible to delete whole fields:

PDU Constraint Declaration
Constraint Name : TCON_Erroneous NoClass
PDU Type : T_CONNECT1
Derivation Path : TCON_Class4 1
Comments : No class present
Field Name Field Value Comments
T_Class - T_Class omitted

220 Recommendation X.292 (09/98)

1.2 Examples of ASN1 constraints
1.2.1 ASP and PDU definitions

1.21.1 Flat

ASN.1 PDU Type Definition

PDU Name : T_CONNECT1
PCO Type :
Comments

Type Definition

-- only to illustrate use of ASN.1in TTCN

SEQUENCE { source BITSTRING (SIZE (4..4)),
Destination ~ BITSTRING (SIZE (4..4)),
t_Class INTEGER (0..4)
userData IA5String OPTIONAL
}

.2.1.2 Structured

ASN.1 PDU Type Definition

PDU Name : T_CONNECT2
PCO Type :
Comments

Type Definition

-- only to illustrate use of ASN.1in TTCN
SEQUENCE { t_Addresses T_Addressinfo
t_Class INTEGER (0..4)
userData IA5String
}

-- expansion of T_AddressInfo can be found in a table of its own.

Related ASN.1 productions that are normally in one ASN.1 module may be distributed over more tablesin TTCN:

ASN.1 Type Definition

Type Name : T_Addressinfo
Comments :

Type Definition
SEQUENCE { source BITSTRING (SIZE (4..4)),

destination ~ BITSTRING (SIZE (4..4)),

}

Recommendation X.292

(09/98)

221

1.2.1.3 An ASP definition

ASN.1 ASP Type Definition
ASP Name . N_DATArequest
PCO Type : N_SAP
Comments :
Type Definition
SEQUENCE { callingNetworkAddress OCTETSTRING, -- even number of octets
caledNetworkAddress OCTETSTRING, -- even number of octets
connectionldentifier OCTETSTRING, -- even number of octets
Data T_PDUS
}
ASN.1 Type Definition
Type Name . T_PDUS
Comments
Type Definition
CHOICE { t1 T_CONNECT1
t2 T_CONNECT2
}

1.2.2 ASN.1 ASP/PDU constraints

[.22.1 Flat

ASN.1 PDU Constraint Declaration
Constraint Name : TCON Clas#4 1
PDU Type : T_CONNECT1
Derivation Path : T_CONNECT1
Comments
Constraint Value
{ source TS PAR1,
TS PAR2, -- field identifier can be omitted if desired.

t Class 4

userData "testing, testing”
}

222 Recommendation X.292 (09/98)

1.2.2.2 Structured

ASN.1 PDU Constraint Declar ation

Constraint Name : TCON_ClasA 2
PDU Type : T_CONNECT2
Derivation Path
Comments
Constraint Value
{ t_Addresses WrongAddress, -- areferencetoaPDU field constraint
t Class 4,
userData "one, two, three"
}

ASN.1 PDU Constraint Declaration

Constraint Name : WrongAddress
PDU Type : T_Addressinfo
Derivation Path
Comments
Constraint Value

{ source TS PAR1,

destination '0000'B
}

1.2.2.3 Chaining a PDU constraint

ASN.1 ASP Constraint Declar ation

Constraint Name

: N_DATAreq With TCON_Class4 1

data

ASP Type : N_DATArequest
Derivation Path
Comments
Constraint Value
callingNetworkAddress TS PAR 3
calledNetworkAddress TS PAR 4
connectionldentifier "ABCDEFH

t1 TCON_Class4_1 -- chaining to a PDU constraint

Recommendation X.292 (09/98)

223

1.2.2.4 Parameterized constraints:. ASN.1 constraints may be parameterized like TTCN tabular constraints, for
example:

ASN.1 PDU Constraint Declaration

Constraint Name : TCON_1(classINTEGER)
PDU Type : T_CONNECT1
Derivation Path :

Comments

Constraint Value

{ source '0000'B,
destination ?, -- wildcard
t Class class, -- formal parameter
userData ?

}

This can be referenced from the Test Case, Test Step or Default behaviour tables, as for example:

TCON_1(4) or TCON_1(TCvariable)

A parameter may also represent awhole chained PDU:

ASN.1 ASP Constraint Declar ation

Constraint Name : N_DATAreq With_ TCON(a_constraint:T_CONNECT?2)
ASP Type : N_DATArequest

Derivation Path

Comments

Constraint Value

{ callingNetworkAddress TS PAR 3
calledNetworkAddress TS PAR 4
connectionldentifier '1234567'H
data t2 a_constraint

-- a_constraint is a formal parameter containing a whole PDU.

This can be referenced from the Test Case, Test Step or Default behaviour tables, as for example:

N_DATAreq With TCON(TCON_Class4_2)

Since the actual parameter is a constraint name, which itself can be parameterized, it is possible to express an arbitrary
depth of nesting.

224 Recommendation X.292 (09/98)

1.2.2.5 Modified constraints — New constraints may be constructed by modifying already defined constraints using the
REPLACE mechanism:

ASN.1 PDU Constraint Declaration

Constraint Name : TCON_Class0_1
PDU Type : T_CONNECT1
Derivation Path : T_CON_Clas#4 1
Comments :

Constraint Value

REPLACEt_ClassBY 0

Wildcards can be used as replacements as well:

ASN.1 PDU Constraint Declaration

Constraint Name : TCON_AnyClass
PDU Type : T_CONNECT1
Derivation Path : T_CON Clas#4 1
Comments :

Constraint Value

REPLACEt_ClassBY ?

To specify fields that shall be omitted, the OMIT mechanism is used. This is only allowed if the field is declared as
OPTIONAL.:

ASN.1 PDU Constraint Declaration
Constraint Name : TCON_NoUserData
PDU Type : T_CONNECT1
Derivation Path : TCON_ClassA 1.TCON_AnyClass
Comments :
Constraint Value
OMIT userData

It is possible to modify ASN.1 parameterized constraints, but note that the parameterized fields themselves cannot be
replaced:

ASN.1 PDU Constraint Declaration

Constraint Name : TCON_2(classINTEGER)
PDU Type : T_CONNECT1
Derivation Path : TCON_ 1

Comments :

Constraint Value

REPLACE userDataBY "CPS"

Recommendation X.292 (09/98) 225

1.2.3 Further examples of ASN.1 constraints

1.2.3.1 Definition of an FTAM F_INITIALIZEresponse PDU, made in an ASN.1 PDU type definition table:

ASN.1 PDU Type Definition

ASP Name : F_INITIALIZEresponse

PCO Type :

Comments

Type Definition

SEQUENCE {
state result State Result DEFAULT success,
action_result Action_Result DEFAULT success,
protocol_version Protocol_Version DEFAULT { version 1},
implementation_information Implementation_Information OPTIONAL,
presentation_context_management [2] IMPLICIT BOOLEAN DEFAULT FALSE,
service_class Service Class DEFAULT { transfer_class},
functiona_units Functional_Units,
attribute_groups Attribute_Groups DEFAULT{ },
shared_ASE_information Shared ASE_Information OPTIONAL,
ftam_quality_of _service FTAM_Quality_Of_Service,
contents type list Contents Type _List OPTIONAL,
diagnostic Diagnostic OPTIONAL,
checkpoint_window [8] IMPLICIT INTEGER DEFAULT 1

}

Thefields of the PDU (State_Result, Action_Result, etc.) are declared in ASN.1 Type Definitions.

For example, Functional_Units:

ASN.1 PDU Type Definition

Type Name : Functional_Units
Comments :

Type Definition

[4] IMPLICIT BITSTRING
{ read(2),

write(3),
file_access(4),
limited_file_management(5),
enhanced_file_management(6),
grouping(7),
fadu_locking(8),
recovery(9),
restart_data_transfer(10)

226 Recommendation X.292 (09/98)

A base constraint, F_INITrsp_001, on the F-INITIALIZEresponse is declared In the constraints part:

ASN.1 PDU Constraint Definition

Constraint Name : F_INITrsp_001

PDU Type : F_INITIALIZEresponse

Derivation Path

Comments

Constraint Value

{
state_result State_Result_001,
action_result Action_Result_001,
protocol_version Protocol_Version_001,
implementation_information Implementation_Information_001,
presentation_context_management FALSE,
service _class Service Class 001,
functional_units Functional_Units_001,
attribute_groups Attribute_Groups_001,
shared_ASE_information Shared_ASE_Information_001,
ftam_quality_of service FTAM_Quality_Of_Service 001,
contents type list Contents_Type List_001,
diagnostic Diagnostic_001,
checkpoint_window 1

}

A constraint on Functional_Units, Functional_Units 001, isdeclared in an ASN.1 PDU field constraint declaration:

ASN.1 Type Constraint Declaration

Constraint Name . Functional_Units_001
Structured Type : Functional_Units
Derivation Path

Comments

Constraint Value

'001'B — Write only

A second constraint, F_INITrsp_002 can be built by modifying the base constraint, F_INIT_rsp0O01:

ASN.1 PDU Constraint Declaration
Constraint Name : F_INITrsp_002
Structured Type . F_INITIALIZEresponse
Derivation Path : F_INITrsp_001
Comments :

Constraint Value

OMIT implementation_information,
REPLACE presentation_context_management BY TRUE,
REPLACE functional_units BY Functional_Units_002
REPLACE checkpoint_window BY ?

where Functional_Units 002 isan ASN.1 PDU Constraint Declaration.

Recommendation X.292

227

.3 Base and modified constraints

Suppose that we have the following PDU type definition:

PDU Type Definition

PDU Name : PDU_B
PCO Type :
Comments . Thisisthe declaration of the protocol data unit PDU_B

Field Name Field Type Comments
FIELD1 INTEGER
FIELD2 HEXSTRING
FIELD3 BITSTRING
FIELD4 BOOLEAN

A base constraint for PDU_B could be:
PDU Constraint Declaration

Constraint Name . CO
PDU Type : PDU_B
Derivation Path
Comments

Field Name Field Value Comments
FIELD1 0
FIELD2 "FFH
FIELD3 '00'B
FIELD4 TRUE

A modified constraint C1 to the base constraint CO could be:
PDU Constraint Declaration

Constraint Name . C1
PDU Type : PDU_B
Derivation Path . CO
Comments

Field Name Field Value Comments
FIELD1 1 In the base CO thisfield valueis 0.

We can further build on C1:

PDU Constraint Declaration

Constraint Name . C2
PDU Type : PDU_B
Derivation Path . Co.C1
Comments

Field Name Field Value Comments
FIELD2 - This field is omitted.
FIELD3 ? Any legal value accepted

Reference to amodified constraint in a behaviour tree is made using its name.

228 Recommendation X.292

(09/98)

.4 Type definition using macr os

PDU type definition with macro symbol:

PDU Type Definition

PDU Name . T_CONNECT3
PCO Type :
Comments . Hlustration of TTCN macro mechanism

Field Name Field Type Comments
<- T_AddressGroup
T_Class INTEGEROto4 Defined as asimple type
UserData IA5String

Structured Type Definition
Type Name : T_AddressGroup
Comments
Element Name Type Definition Comments
Source BITSTRING [4] Length is 4 bits
Destination BITSTRING [4] Length is 4 bits
PDU Constraint Declaration

Constraint Name : T_CON Clas#4 3
PDU Type : T_CONNECT3
Derivation Path
Comments

Field Name Field Value Comments
<- GoodAddress Reference to the structured type

constraint declaration

T Class 4
UserData "one, two, three"

Structured Type Constraint Declaration

Constraint Name
Structured Type
Derivation Path
Comments

: GoodAddress
. T_AddressGroup

Element Name

Element Definition

Comments

Source
Destination

'0101'B
'1111'B

Recommendation X.292

(09/98)

229

1.5 Use of REPEAT

Test Case Dynamic Behaviour

Test Case Name . RPT_EX2
Group : TTCN_EXAMPLES/REPEAT_EXAMPLE2/
Purpose . Toillustrate use of REPEAT and parameter passing by textual substitution
Default :
Comments
No. L abel Behaviour Description Constraints Ref Verdict Comments
1 (FLAG:=FALSE, COUNTER:=0)
2 1A Al
3 REPEAT STEP2 (FLAG, COUNTER)
UNTIL [FLAG OR COUNTER=3]
4 [FLAG]
5 D D1 PASS
6 [COUNTER=3]
7 IE El FAIL
STEP2 (F:BOOLEAN; NUMBER: INTEGER)
7B (F:=TRUE) B1
9 2C (F:=FALSE, NUMBER:=NUMBER+1) C1

Detailed Comments:

This example shows how repeated execution of STEP2 can be ended either by reception of message B, or reception of three other
messages. In the lines following the REPEAT construct, Boolean expressions are used to describe that in the case where B is
received, message D is to be sent, and in the case where three other messages are received, E is to be sent. This example aso
illustrates the effect of parameter passing by textual substitution. This means that F is replaced by FLAG, and NUMBER is
replaced by COUNTER, thus making it possible for FLAG and COUNTER to obtain the results of the assignmentsin STEP2.

1.6 Test suite operations

Using a Test Suite Operation to set a checksum:

Test Suite Operation Definition

Operation Name : CRC(P:A_PDU)
Result Type : INTEGER
Comments :

Description

Calculate and return the checksum of the PDU P according to the CRC algorithm.
NOTE - In a real ATS, this operation would be described in greater detail.

230 Recommendation X.292 (09/98)

PDU Constraint Declaration

Constraint Name . CONS1
PDU Type : A_PDU
Derivation Path
Comments
Field Name Field Value Comments
Checksum ?

A_PDU.Checksum := CRC(CONSL) in the appropriate SEND event in a behaviour description will set the Checksum in the
constraint CONSL.

1.7 Example of a Test Suite Overview

In the Test Suite Structure table shown below, a hierarchy of the groups and Test Cases in the suite is defined. Within this
structure, test selection expressions are identified which govern the selection of Test Groups and the Test Cases for
execution. For example, SELEXP_100 is referenced as the controlling expression for Feature X of the protocol. If
Feature X is not supported, none of the Test Cases in the suite which are within the Feature X group will be selected.

Test Suite Structure
Suite Name : TEST_SUITE A
Standar ds Ref : Recommendations XxXxx
PICS Ref : Recommendation aaaa
PIXIT Ref . Recommendation bbbb
test notation(s) . DStest method
Comments : Thisisan example only.

Test Group Reference Selection Ref Test Group Objective Page Nr
FEATURE_X SELEXP_100 Test optional Feature X 50
FEATURE_A/ATTR_A Test mandatory Attribute A 50
FEATURE_A/ATTR_A/NEGOTIATION | SELEXP 101 | Test optiona Attribute A negotiation 50
FEATURE_A/ATTR_A/USAGE Test Attribute A usage 60
FEATURE_A/ATTR Be Test mandatory Feature Y 80

To determine whether or not Feature X is supported, SELEXP_100 must be evaluated. This is done by determining
whether or not the Test Suite Parameter in SELEXP_100, i.e. TST_FX, isTRUE. If it is, the processing within the group
continues. Note that tests for attribute A will be selected (no expression), but that tests for the optional negotiation feature
of Attribute A will only be selected if SELEXP_101 is TRUE.

Recommendation X.292 (09/98) 231

Test Case I ndex

Test Group Reference Test Caseld | Selection Ref Test Group Objective Page No.
FEATURE_X/ATTR_A/NEGOTIATION FX_ANEG_ 1 | SELEXP_102 | Reg. Attr. A, valid neg. 50
FX_ANEG_ 2 | SELEXP_102 | Reqg. Attr. A, invalid neg. 52
FX_ANEG_3 Rev. Attr. A, invalid neg. 54
FX_ANEG 4 Rev. Attr. A, invalid neg. 56
FEATURE_X/ATTR_A/USAGE FX_AUSE_1 | SELEXP_103 | UseAttr. A (VAL =0) 60
FX_AUSE_2 Rev. Attr. A 62
FX_AUSE_3 Rev. Attr. A 64

If Attribute A negotiation is supported, Test Case FX_ANEG_01 through FX_ANEG_04 are candidates for selection.
However, Test Cases "01" and "02" will only be chosen if the additional selection expression SELEXP_102 is TRUE.

Test Case FX_ANEG_01 will only be selected if the PICS indicates that avalue of zero for Attribute A is supported.

The PICS and PIXIT questions used in the test selection expressions are declared as Test Suite Parameters.

Test Suite Parameter Declarations

Parameter Name

Type

PICS/PIXIT Ref

Comments

TSP_FX BOOLEAN
TSP_FXA_N BOOLEAN
TSP_FXA_NINT BOOLEAN
TSP_FXA_MINVAL INTEGER

PICS question FX1
PICS question FX2
PICS question FX3
PIXIT question FXVAL

Q: Feature X supported?

Q: Feature X neg supported?
Q: DoesIUT reg. neg?

Q: Will IUT use VAL =0?

The test selection expressions are declared as Boolean expressions, as defined in 11.5.

Test Case Selection Expression Definitions

Expression Name

Selection Expression

Comments

SELEXP_100 TSP_FX Feature X supported

SELEXP_101 TSP_FXA_N Feature X negotiation

SELEXP_102 TSP_FXA_NINIT Req. Feature X negotiation

SELEXP 103 TSP _FXA_VAL=0 Accept Feature X VAL =0
232 Recommendation X.292 (09/98)

1.8

Exampleof a Test Casein TTCN.MP Form

For the sample Test Case given below:

Test Case Dynamic Behaviour

Test Case Name . PACKET/P4/PROPER/T_02

Group T 702

Purpose : Verify the IUT acknowledges a Clear cause code 05 whilein state p4.

Default

Comments

No. L abel Behaviour Description Constraints Ref Verdict Comments
0 +R1_PREAMBLE(SVC)
1 +P4D1_PREAMBLE
2 ICLEAR START TD CLR_0O(LC) clear cause=5
3 L1 2CLEARC CANCEL TD CLRC 0(LC) (PASS)
4 +R1 POSTAMBLE
5 2CLEARC CANCEL TD CLR_LO(LC) (PASS)
6 +R1 POSTAMBLE
7 ?RESTART [RST_ON_ERR] CANCEL TD STRT_DTEA (PASS)
8 IRESTARTC STRTC
9 +R1_POSTAMBLE
10 +DIC_UNEXPECTED
11 >L1
12 +RSRT_UNEXPECTED
13 ?TIMEOUT TD FAIL
14 ?0THERWISE CANCEL TD FAIL

The TTCN.MP that corresponds to thistable is:

$Begi

nTestCase

$TestCaseld T_7_02
$TestGroupRef PACKET/P4/PROPER/T_02
$TestPurpose /* Verify the IUT acknowledges a Clear cause code 05 whilein state p4 */
$DefaultsRef
$Behaviour Description
$BehaviourLine

$L abel

$Line[0] +R1_PREAMBLE(SVC)

$Cref

$Verdict
$End_BehaviourLine
$BehaviourLine

$L abel

$Line[1] +PAD1_PREAMBLE

$Cref

$Verdict
$ENnd_BehaviourLine
$BehaviourLine

$L abel

$Line[2] !CLEAR START TD

$Cref CLR_O(LC)

$Verdict

$Comment /* clear cause =5 */

Recommendation X.292

(09/98) 233

$ENnd_BehaviourLine
$BehaviourLine

$Label L1

$Line[3] 2CLEARC CANCEL TD

$Cref CLRC_0(LC)

$Verdict (PASS)

$ENd_BehaviourLine
$BehaviourLine

$Label

$Line[4] +R1_POSTAMBLE

$Cref

$Verdict
$ENnd_BehaviourLine
$BehaviourLine

$Label

$Line[3] 2CLEAR CANCEL TD

$Cref CLR_LO(LC)

$Verdict (PASS)
$ENnd_BehaviourLine
$BehaviourLine

$Labe

$Line[4] +R1_POSTAMBLE

$Cref

$Verdict
$ENnd_BehaviourLine
$BehaviourLine

$Label

$Line[3] ?RESTART [RST_ON_ERR] CANCEL TD

$Cref STRT_DTEA

$Verdict (PASS)
$ENnd_BehaviourLine
$BehaviourLine

$Labe

$Line[4] 'RESTARTC

$Cref STRTC

$Verdict
$ENnd_BehaviourLine
$BehaviourLine

$Labe

$Line[5] +R1_POSTAMBLE

$Cref

$Verdict
$End_BehaviourLine
$BehaviourLine

$Labe

$Line[3] +D1C_UNEXPECTED

$Cref

$Verdict
$End_BehaviourLine
$BehaviourLine

$Labe

$Line[4] ->L1

$Cref

$Verdict
$End_BehaviourLine
$BehaviourLine

$Labe

$Line[3] +RSRT_UNEXPECTED

$Cref

$Verdict
$ENnd_BehaviourLine
$BehaviourLine

$Labe

$Line[3] 2TIMEOUT TD

$Cref

$Verdict FAIL

234 Recommendation X.292 (09/98)

$ENnd_BehaviourLine

$BehaviourLine
$L abel
$Line[3] 70THERWISE CANCEL TD
$Cref
$Verdict FAIL

$End_BehaviourLine

$ENd_Behaviour Description
$ENnd_TestCase

The layout shown hereis only intended to aid readability.

1.9 Use of Component Reference for Field Value Assignment in Constraints

When a number of field values in a received PDU must be assigned to the fields in several subsequent send PDUs, the
Dynamic Behaviour table can become cluttered with lengthy assignment statements using the dot notation.

TTCN alows PDU field value assignments in the constraint tables using component reference associated with a formal
parameter. Received ASPs or PDUs in the Behaviour table may be assigned to a variable and subsequently passed as an
actual parameter in the constraints reference to a formal parameter in the constraint table. The constraint table then
specifies the required field assignments using the formal parameter and its components. The following tables illustrate
these principles.

Figure .1 illustrates possible field assignments in the behaviour specification without the use of component reference.

Test Case Dynamic Behaviour
Test Case Name : TTCN_EXAMPLES/STYLE1L
Group : ST_EX1
Purpose : Toillustrate the use of component references in the behaviour description
Default
No. L abel Behaviour Description Constraints Ref Verdict Comments
2ANASP(v:=InASP.userdata) Cinl
10OutASP Coutl
(OutASP.userdata.OutPDU.FieldA:=v.Field2;
OutA SP.userdata. OutPDU.FieldC:=v.Field3)

Figure 1.1/X.292 — Lengthy assignment statements clutter the behaviour description

Figure 1.2 illustrates the simplification of the behaviour specification resulting from the use of component reference in
constraints.

For simplicity, the definitions of all required ASP and PDU types have been omitted.

The ASP types INASP and OUtASP consist of the single parameter field userdata, which is of the type InPDU and
OutPDU respectively. INPDU contains the three fields Fieldl, Field2 and Field3, which all are of the type |A5String.

OutPDU contains the three fields FieldA, FieldB and FieldC, which also are of the type |A5String.

v hasto be declared asa Test Case Variable of aPDU type.

Recommendation X.292 (09/98) 235

Test Case Dynamic Behaviour

Test Case Name

: TTCN_EXAMPLES/STYLEL

Reference . ST_EX1
Purpose : Toillustrate the use of component references in the behaviour description
Default
No. L abel Behaviour Description Constraints Ref Verdict Comments
2ANASP(v:=InASP.userdata) Cinl
IOUutASP Cout2(v)

Figure 1.2/X.292 — Lengthy assignment statements are removed from the behaviour description

The following tables give the required ASP and PDU constraint declarations:

ASP Constraint Declaration
Constraint Name : Coutl
ASP Type . OutASP
Derivation Path
Comments
Parameter Name Parameter Value Comments
Userdata CoutPDU1
ASP Constraint Declaration
Constraint Name : Cout2(p:PDU)
ASP Type . OUutASP
Derivation Path
Comments
Parameter Name Parameter Value Comments
Userdata CoutPDU2(p)
ASP Constraint Declaration
Constraint Name . Cinl
ASP Type . InASP
Derivation Path
Comments
Parameter Name Parameter Value Comments
Userdata CinPDU
236 Recommendation X.292 (09/98)

PDU Constraint Declar ation
Constraint Name . CoutPDU1
PDU Type : OutPDU
Derivation Path
Comments
Field Name Field Value Comments
FieldA A
FieldB B’
FieldC C
PDU Constraint Declaration
Constraint Name : CoutPDU2(p:PDU)
PDU Type : OutPDU
Derivation Path
Comments
Field Name Field Value Comments
FieldA p.Field2
FieldB B’
FieldC p.Field3
PDU Constraint Declaration
Constraint Name . CinPDU
PDU Type : InPDU
Derivation Path
Comments
Field Name Field Value Comments
Fieldl *
Field2 *
Field3 *

1.10 Multi-Party Testing

Figure 1.3 illustrates a test component configuration for a typical multi-party testing context. Only a single upper tester is
shown, since communication among multiple upper testers and/or Upper Tester Control Function (UTCF) is only
applicable to contexts that exclusively use the local test method.

In the example shown in Figure 1.3, for simplicity, each lower tester is specified by a single PTC and the LTCF is
specified by the MTC. Another PTC is used to specify the upper tester. Coordination points are used between the lower
tester PTCsand the MTC.

This is a straightforward use of concurrency to meet multi-party requirements, but it should not be taken to imply that
there has to be a one-to-one rel ationship between lower testers and PTCs, or between the LTCF and the MTC, or between
the upper tester and aPTC.

Recommendation X.292 (09/98) 237

MTC_LTCF
PTC_UT
‘ A 4
PTC LT1 T
PTC LT2 PCO_UT
PTC LT1
PCO_LT3 UT
PCO_LT2
PCO_LT1
X

— Service Provider(s)

T0731140-98/d12

Figure 1.3/X.292 — Example Test Component Configuration
for Multi-Party Testing with a Single Upper tester

.11 M ultiplexing/Demultiplexing

There are two ways of using concurrent TTCN in test cases using multiplexing/demultiplexing. These are illustrated in
Figurel.4. The first, shown in Figure 1.4 @), specifies the multiplexing and demultiplexing explicitly within test
component MTC1, with PTC1 and PTC2 each handling the behaviour on one of the two multiplexed connections. This
provides for maximum flexibility in the way that the multiplexing and demultiplexing behaviour is specified, including
possibilities of invalid behaviour. However, the disadvantage of this approach is that the relatively complex
multiplexer/demultiplexer has to be specified even if the test purpose concerns only the behaviour on each of the two
connections. The alternative approach is to use a separate PCO for each separate stream of events and a test suite
parameter (MuxValue) associated with each of these PCOs that are to be multiplexed and demultiplexed within the
underlying service provider, rather than within the Lower Tester. This alows the configuration shown in Figure 1.4 b) to
be used. Since the multiplexing/demultiplexing is performed within the service provider, there are two PCOs in this
configuration, corresponding to the two CPs in the other configuration, but they are given a common MuxValue, MuxA,
to indicate that within the service provider they are to be multiplexed. To keep things simple, one of the two test
components is made the MTC, although a separate MTC not connected to a PCO could be used instead if preferred.

1.12 Splitting and Recombining

In order to specify test cases involving splitting and recombining, there is no aternative to specifying explicitly the
splitting and recombining behaviour in the test case. Concurrency can be used to separate the splitting and recombining
behaviour into one test component, MTC1 in Figure 1.5, from the protocol behaviour that lies above this function by
using a second test component, PTC1 in Figure |.5.

.13 Multi-Protocol Test Cases

Multi-protocol test cases, including those using the embedded variants of the test methods, can use concurrent TTCN in
order to separate the behaviour associated with each protocol into a different test component, as illustrated in Figure 1.6,
which shows an example configuration for testing Session embedded under FTAM.

238 Recommendation X.292 (09/98)

PTC1

PTC2

CP2

v

MTC1

A

1 PCO1

a)

CP1

CPa
MTC1 > PTC1
PCO1(MuxA) PCO2(MuxA)
b)

T0731150-98/d13

Figure 1.4/X.292 — Possible Configurations for Multiplexing/Demultiplexing Tests Cases

PTC1

CP

MTC1

PCOaI PCObI PCOCI

T0731160-98/14

Figure 1.5/X.292 — Possible Configuration for
Splitting/Recombining Test Cases

FTAM
CP_ACSE
ACSE
CP_Presentation
Presentation
CP_Session
Session

IPCO_Transport

T0731170-98/d15

Figure 1.6/X.292 — Possible Configuratiorfor Multi-Protocol
Testing — Session embedded under FTAM

Recommendation X.292 (09/98)

239

.14 Example of Modular TTCN

TS M1 M2
Import Import Modul e Exports Module Exports
Name: M1 Name: M2 Name: M1 Name: M1
TC PRE Sourceld Sourceld
TC PRE
Test Step Test Case Test Step
Name: PRE Name: PRE l\]ame: PRE
+M2_PRE

TS (expanded)
Test Siep Test Case Tt Siep
Name: PRE Name: TC Name: M2 PRE
a ce
+M2_PRE

T0731180-98/d16

The test step PRE (which is defined in the module M2) isimplicitly imported fromM1in TS.

1.15 Example of CREATE and DONE

NOTE — An extra example will be added in the published second edition to clarify the use of CREATE and DONE, especially with
regard to the implicit passing of preliminary results and verdicts, giving an explanation of the semantics by showing the same test case
specified using explicit passing of variables using CMs and CPs.

Test Suite Overview:

Test Suite Structure

Suite Name : Done
Standards Ref

PICS Ref

PIXIT Ref

Test Method(s)

Comments : This test suite demonstrates a possible interpretation of CREATE and DONE statements as well as
verdict and variable passing. Theinterpretation isin terms of communication using CMs and existing CPs.

Test Group Reference Selection Ref Test Group Objective

Detailed Comments:

240 Recommendation X.292 (09/98)

Test Case Index
Test Group Reference Test Caseld Selection Ref Description Page No.
TC1 241
TC1_EXPANDED 242
Detailed Comments:
Declarations Part:
ASN.1 Type Definition
Type Name . TestStop
Comment :
Type Definition
IA5String
Detailed Comments:
ASN.1 Type Definition
Type Name : VariableList
Comments : Should really be some representation of variables and their values.
Type Definition
NULL
Detailed Comments:
Test Case Variable Declarations
Variable Name Type Value Comments
Verdict R _Type fail
Detailed Comments:
PCO Declarations
PCO Name PCO Type Role Comments
PCO1 XSAP LT
Detailed Comments:
CP Declarations
CP Name Comments
CP1
Detailed Comments:

Recommendation X.292

(09/98)

241

Test Component Declarations

Component Name Component Role No. of PCOs No. of CPs Comments
PTC1 PTC 1
Master MTC 0
Detailed Comments:
Test Component Configuration Declaration
Configuration Name : Confl
Comments
Components Used PCOs Used CPsUsed Comments
Master CP1
PTC1 PCO1 CP1
Detailed Comments:
ASP Type Definition
ASP Name : ASP1
PCO Type © XSAP
Comments
Parameter Name Parameter Type Comments
Detailed Comments:
ASP Type Definition
ASP Name : ASP2
PCO Type © XSAP
Comments
Parameter Name Parameter Type Comments
Detailed Comments:
CM Type Definition
CM Name : CM1
Comments
Parameter Name Parameter Type Comments

Detailed Comments:

242

Recommendation X.292

(09/98)

CM Type Definition

CM Name : CREATE_CM
Comments :
Parameter Name Parameter Type Comments
StepName TestStep
Variables VariablelList

Detailed Comments:

CM Type Definition

CM Name : DONE_CM
Comments :
Parameter Name Parameter Type Comments
Verdict R _Type
Variables VariableList

Detailed Comments:

Constraints Part:
CM Constraint Declaration
Constraint Name . Create(Step: TestStep)
CM Type : CREATE_CM
Derivation Path
Comments

Parameter Name

Parameter Value Comments

StepName
Variables

Step
NULL

Detailed Comments:

CM Constraint Declaration

Constraint Name : Done

CM Type : DONE_CM
Derivation Path

Comments

Parameter Name

Parameter Type Comments

Verdict
Variables

NULL

Detailed Comments:

Recommendation X.292 (09/98)

243

Dynamic Part:

Test Case Dynamic Behaviour

Test Case Name : TC1
Group
Purpose
Configuration
Default :
Comments - Normal style concurrent TTCN
No. L abel Behaviour Description Constraints Ref Verdict Comments

1 CREATE(PTC1: TS1)

2 CP1ICM1

?DONE(PTC1) R
TS1

4 CP12CM1

5 PCO1!ASP1

6 PCO1?ASP2 P
Detailed Comments:

Test Case Dynamic Behaviour

Group
Purpose
Configuration

Default
Comments

Test Case Name

: TC1_EXPANDED

. Thisisthe same Test Case as TC_1 except the CREATE and DONE statements are explicitly

implemented through special CMs being transmitted over a CP.

The only limitation in TTCN is that constraints may not accept the name of a Test Step as the parameter. Thisis emulated in this
example as by simple string_matching. An enum constructed from all the Test Step names would be more elegant.

Every PTC would need a PTC_DISPATCHER asthe onein this example.

No. L abel Behaviour Description Constraints Ref Verdict Comments
1 CREATE_CM Create("TS1_EXPANDED") Corresponds
to CREATE
(PTCL:TS1)
2 CP1ICM1
3 CP1?DONE_CM(Verdict := Done
DONE_CM.Verdict)
4 [Verdict=pass] P
5 [Verdict=fail] F
6 [Verdict=inconc] |
PTC1 DISPATCHER
CP1?CREATE_CM Create("TS1_EXPANDED")
+TS1
CP1LIDONE_CM(DONE_CM Verdict:=R) | Done
TS1
CP1?CM1
PCO1!ASP1
PCO1?ASP2 P
Detailed Comments:
244 Recommendation X.292 (09/98)

Appendix |1

Style guide

.1 I ntroduction

This appendix presents some recommended style rules that can be employed when using TTCN. The amisto provide a
basic consistency between the TTCN styles used by different test suite specifiers.

1.2 Test case structure

In order to have a better analysis of test results and to identify easily whether or not the test purpose is achieved, the
consideration of the following points on structuring Test Cases is suggested:

a) thetest suite specifier should clearly identify the preamble and postambl e subtrees;

b) the postamble and the preamble should be specified through a single test tree attachment (local to the Test Case or
from the Test Step Library) in the Test Case main behaviour tree. Such test trees may attach subsequent subtrees,

¢) once the preamble and postamble(s) subtrees are identified within a Test Case main behaviour tree, the remaining
events in the Test Case main behaviour tree may be considered to be related to the test body (i.e. events related to
the test purpose).

Using this mechanism, the boundaries between preamble, test body and postamble within a Test Case can be easily
identified. Labels may be used to indicate the start and end of the test body in the conformance log.

Test Case Dynamic Behaviour

Test Case Name : TTCN_EXAMPLES/STYLE1L

Group : ST_EX1

Purpose . Toillustrate identification of preambles and postambles.

Configuration

Default

Comments

No. Label Behaviour Description Constraints Ref Verdict Comments
1 +Preamble
2 1A Al Related to purpose
3 Body B Bl Related to purpose
4 CinBody C C1 (PASS) Related to purpose
5 +postamble_1
6 DinBody D D1 (PASS) Related to purpose
7 +postamble_2
8 7E E1 INCONC Related to purpose
9 20THERWISE FAIL

Figure 11.1/X.292 — Identification of preambles and postambles

Recommendation X.292 (09/98) 245

Since final verdicts cause termination of Test Case execution, a test suite specifier cannot assign a fina verdict in the
body if it is necessary to enter the postamble. Still, it is desirable to give a verdict at the point in the Test Case where the
test purpose is achieved and not hide verdicts in postambles. It is therefore recommended to state preliminary results in
the verdict column if a test purpose is achieved but a postamble should still be executed. In the definition of the
postamble, a test suite specifier may use the result variable R as a verdict assigned at the leaves of the behaviour tree, to
indicate that if no errors were encountered in the postamble, the verdict is determined in the test body.

1.3 Use of TTCN with different abstr act test methods

11.3.1 Introduction

This subclause ties the TTCN with the abstract test methods defined in Recommendation X.291. It gives the
TTCN syntax used to express the occurrence of events at PCOs, and constraint references for the various abstract test
methods.

It is assumed that the ASP type definitions define the type of the UserData parameter as PDU. It is therefore possible to
use chaining of constraints (i.e. to refer to a constraint for an ASP that contains a PDU in the UserData parameter) as a
reference to an ASP constraint that has a PDU constraint as an actual parameter.

[1.3.2 TTCN and the L Stest method

Possible TTCN events:

Behaviour Description Constraints Reference

LT! N_ASP N_ASPconstraint (N_PDUconstraint)
LT?N_ASP N_ASPconstraint (N_PDUconstraint)
UT! T_ASP T_ASPconstraint

UT?T_ASP T_ASPconstraint

11.3.3 TTCN and the DS test method
Possible TTCN events:

Behaviour Description Constraints Reference

LT! N_ASP N_ASPconstraint (T_PDUconstraint)
LT?N_ASP N_ASPconstraint (T_PDUconstraint)
UT! T_ASP T_ASPconstraint

UT?T_ASP T_ASPconstraint

11.34 TTCN and the CStest method
Possible TTCN events:

Behaviour Description Constraints Reference
LT! N_ASP N_ASPconstraint (T_PDUconstraint)
LT?N_ASP N_ASPconstraint (T_PDUconstraint)

Exchanging TM_PDUs between the LT and TM protocol implementation in the IUT, via the connection that is used for
testing. Note that in this case the PDU definition shall have declared its UserDatafield as of type PDU.

LT! N_ASP N_ASPconstraint (T_PDUconstraint (TM_PDUconstraint))

LT?N_ASP N_ASPconstraint (T_PDUconstraint (TM_PDUconstraint))

246 Recommendation X.292 (09/98)

11.35 TTCN and the RStest method

Possible TTCN events:

Behaviour Description Constraints Reference
LT! N_ASP N_ASPconstraint (T_PDUconstraint)
LT?N_ASP N_ASPconstraint (T_PDUconstraint)

Sincethereisno UT or TMP, the IMPLICIT SEND is used to describe send events at the side of the IUT connection.
<IUT! N_ASP> N_ASPconstraint (T_PDUconstraint)

<|UT! T_PDU> T_PDUconstraint

1.4 Use of Defaults

As a matter of style, a test suite specifier should avoid situations where the attempt of an alternative of a Default
behaviour is the normal specification of the expected behaviour of the IUT. It would be the case for instance if a Test
Step represents the behaviour of the LT or UT and the IUT, when valid test events are sent, and if the responses of the
IUT to invalid or inopportune test events sent by the LT or UT were specified in Defaults implicitly attached to that Test
Step when called by other Test Cases. Such Defaults would have to bear Pass verdicts.

This is not a recommended practice when the attachment of a Default tree is left unspecified and carries a degree of
uncertainty. Explicitly attached trees or the main tree should be used instead.

.5 Limiting the execution time of a Test Case

In previous versions of TTCN, an ELAPSE statement was defined, allowing the test case specifier to limit the abnormal
duration of a Test Case, if for instance a snapshot processing never ends, or if an uncontrolled recursion of tree
attachment occurs.

The ELAPSE statement is no longer part of TTCN, as the problem it was intended to solve is considered to be outside the
scope of the test suite specification.

To limit the execution time of a Test Case, it is now recommended that the test realizers implement local mechanismsin
the means of testing. Explicit timers can be used together with the TIMEOUT event whenever a limit needs to be placed
on waiting for an event to occur.

1.6 Structured Types

a) Inpre-DIS versions of TTCN, generic fields and generic values were defined as features alowing either to group
severa fields or values in a congtraint table, and/or to re-use such a group in several constraint tables of similar
contents.

b) Inthisversion, the grouping of ASP parameters and PDU (ex-data types) fieldsis introduced first in the declarations
part, for the sake of completeness of that part, and consistency with the use of ASN.1in TTCN. Refer to 11.2.3.3 for
a definition of the Structured Type definition tables. Once a Structured Type is declared, it can be used by one or
more ASP type or PDU type definitions. The ASP and PDU definition table can therefore be "flat" (no group, or a
group introduced by a macro call), or structured (by means of structure specifications for named ASP parameters or
PDU fields).

¢) Inthe constraint part, structure elements must be assigned values in Structured Type constraint tables. The names of
these constraints can be used in the base ASP or PDU constraint tables as val ues.

The ASP and PDU constraint tables can therefore also be:

— flat, i.e. assigning values to all parameters or fields individually, and only referring to the structure constraint

tables by macro call; or

— structured, i.e. replacing values of declared groups of parameters or fields by names of group constraints.

Recommendation X.292 (09/98) 247

d) If thedeclared ASP or PDU is structured by use of some ASP parameters or PDU fields being specified by reference
to structure elements, then the constraints have to have the same structure.

Whichever form is used, ASP/PDU constraints can aso be:
— modified; and

— parameterized, by means of a parameter to be bound to a field/parameter value or to a Structured Type
constraint.

e) The Structured Type constraint tables replace the generic field tables of previous versions of TTCN.
f) The concept of generic values is deleted.

g) Examples are given in Appendix .

1.7 Abbreviations

In previous versions of TTCN, it was allowed to declare, in a specific table, abbreviations to be used in the behaviour
columns of the Test Cases and Test Steps. This facility proved to be confusing and has been restricted so that only the
names of ASPs and PDUs, when used in event lines, can be abbreviated. This facility is now called Alias.

1.8 Test descriptions

Informal behaviour descriptions, giving more detail than the test purposes, but less detail than the TTCN specification of
the Test Cases may, if desired, be included in a standardized ATS.

Such test descriptions may use text, time sequence diagrams or any other notation and be located in the comments field of
tables, an informative annex or both.

The TTCN specifications of the Test Cases always take precedence over such informal test descriptions.

1.9 Assignments on SEND events

TTCN allows for overwriting constraint values prior to a SEND event in an assignment statement on the event line. This
means that first the data to be sent is constructed from the constraint definition and then the assignments are executed.

This feature may cause the test suite reader confusion concerning the value to be sent, and therefore it should be usec
with caution. In particular, it is considered bad style to use the same constraint for both sending and receiving.
[1.L10 Multi-service PCOs

Where a PCO covers more than one SAP, the precise specification of such a PCO is given by the set of ASPs and PDUs
that can occur.

EXAMPLE II.1 - An FTAM PCO:

PCO Declarations

PCO Name PCO Type Role Comments

L A_P_SAPs LT PCO through which we can observe all ACSE
ASPs and all Presentation ASPs except
P-CONNECT, P-RELEASE and P_ABORT.

The PCO "L" is of type A_P_SAPs which is able to observe all ACSE and Presentation ASPs, excluding
P-CONNECT, P-RELEASE and P-ABORT. The type column shows which SAPs belong to the set to be observed by
the PCO, "A" and "P", each SAP separatedibgierscore ("___"). The comments column describes exactly what can

be seen by the PCO.

This method is extensible to many SAPs, each of which would be separated by an underscore.

248 Recommendation X.292 (09/98)

Appendix 111

I ndex

.1 I ntroduction

This appendix presents an alphabetical index of terms and acronyms used in this Recommendation. For each term or
acronym, the index gives a set of references in terms of clause, figure and table numbers, either in the main body, or in
the annexes and appendixes of this Recommendation. The significance of each referenceisindicated as follows:

a) definitions of the terms and acronyms arein bold;
b) major uses of the term or acronyms arein italics;
c) other usesarein normal font.

[11.2 Thelndex
A

ABSENT: A4.25

Array references: 15.10.2.3

ASN.1 ASP constraints; 14.2, 14.3, A.4.2.15

Abstract Service Primitive: 1, 4.1 ASN.1 ASP type definition: 11.14

Abstract Syntax Notation One: 4.3 ASN.1 CM constraints: 14.9, A4.2.15

ABSTRACT SYNTAX: A4.2.5
ASN.1CM type: 11.17.3

Abstract test case: 6, 8.2,11.13.2, 15.17.1
ASN.1 comments: 11.2.3.4, 11.15.4, 14.1
Abstract test suite: 1, 2, 4.1, 8.2 _
ASN.1 compact constraints. E.2.5
Abstract testing methodology: 1
ASN.1 congtraint declaration: 12.6.6.1, 14, A.3.3.22,

Access to behaviour description: 15.13.2 E.25,1.2
ACTIVATE procedure: B.5.19.1 ASN.1 constraint: 12.6.6.2
ACTIVATE: 15.4.1, 15.14, 15.18.4, 15.18.4, 15.18.6, ASN.1 congtraints: 12.1, 12.6.5.2, 14.1

15.18.6, A4.2.4,B.55.4,B.555,B.5.18.2, B.5.19.2

ASN.1 dash symbol: 14.1
Actual parameters: 15.13.5, 15.16.2

Actudl ParList: B.5.5.3 ASN.1 defined data objects: 15.10.2

Alias definition: 11.1, A.3.3.13.14 ASN.1 encoding rules: 11.15.1

ASN.1identifier: 3.6.48

ALL: A4.25

Ancestor node: 15.14 ASN.1 module: 11.2.3.5, 11.14.5

AND: A4.2.4 ASN.1 PDU constraint declaration: 14.4

AnyOne: 12.6.5.1, 12.6.6.1 ASN.1 PDU constraints; 14.2, A.4.2.15

AnyOrNone: 12.6.5.2, 12.6.5.3, 12.6.6.1 ASN.1 PDU type definition: 11.15

AnyOrOmit: 12.6.4.4, 12.6.6.1 ASN.1 type congtraints: 7.3.4, 11.16.4, 14.2, A.4.2.15
AnyVaue: 12.6.4.3, 12.6.5.1, 12.6.6.1 ASN.1 type definition: 11.2.3.4, 11.2.3.5, 11.18.2,

145,148,A.421,A.426
APPEND_DEFAULTS: B.55.4

ASN.1 type: 11.2.34, 11235, 1181, 11.83,

APPEND_TO_LEVEL: B.5.25 11.14.2, 11,145 11.15.4, 12.6.2

Applicable encoding rules: 3.6.1 ASN.1: 1,2 43 81,95 11.2.2 11.2.34, 11.6, 11.7,

APPLICATION: A42E 11143, 11.14.4, 11145, 11.154, 11155, 11.17.3,
122 1261, 12642, 15102, A421 AA425,

Arithmetic operators: 11.3.2.2 E.2.1,11.6

Recommendation X.292 (09/98) 249

ASP constraint compact proforma: E.2.2

ASP constraint declaration: 3.6.62, 13.3,d), A.5.1,
E.25

ASP constraints: 7.3.4
ASP identifier: 11.21

ASP parameter: 3.6.66, 11.2.1, 11.14.2, 12.5, 12.6.2,
12.6.3,12.6.4.1, 12.6.4.2, 12.6.4.3, 12.6.4.4, 12.6.4.5,
12.6.4.7,12.6.4.8,12.6.5.1, 12.6.5.3, 12.6.6.2

ASP specified by reference: 11.14.5

ASP type definition: 3.6.3, 3.6.68, 11.1, 11.2.2,
11.14,11.19, 11.20, A.3.3.19, A.3.3.22, 11.3.1

ASPtype: 11.3.4.2,14.3,15.7.2

ASP: 3.6.9, 3.6.13, 3.6.25, 3.6.38, 3.6.44, 3.6.57,
3.6.60, 3.6.68, 4.1, 8.1, 95, 11.2.1, 11.2.2, 11.2.3.3,
11.34.1, 11.34.2, 11.6, 11.7, 11.10, 11.14, 11.14.2,
11.14.3, 11.14.4, 11.14.5, 11.15, 11.15.1, 11.155,
11.16.4, 11.19, 11.20, 11.21, 12.1, 12.4, 12.6.1,
12.6.3, 13.2, 13.6, 145, 14.6, 14.8, 15.2.1.3, 15.9,
15.95.3, 1596, 15101, 151022, 1510.23,
15.10.3, 15.10.6, 15.16.1, A.4.2.7, A.4.2.8, B.5.2.3
B.5.8.2, B.592, B.5102 B.511.2, B.5.122,
B.5.13.2,B.5.16.2, E2.1,11.6,11.7,11.10

ASPs specified in ASN.1: 11.14.4
Assignment rules: 15.10.4.2

Assignment: 11.3.4.3, 11.3.4.6, 11.8.2, 11.8.4, 15.6,
15.8, 1593, 1594, 15.10.1, 15.104, 15.10.5,
15.10.6, 15.11, 15.16.3, 15.17.2, B.5.16, 1.9

ATS: 3.6.74, 4.1, 6, 10.1, 10.2, 10.3, 10.4, 10.5, 11.1,
11.3.4.1, b), 11.9,11.14.4,11.16.1, 12.1,A.1,A51

Attach construct: 3.6.2, 15.2.3, 15.8, 15.17.1, B.5.5.4,
B.5.55 E3.1

ATTACH: 15.9.10.1, 15.13.1, 15.134.1, E3.1
Attached tree: 15.13.3

Attachment construct: B.5.1

Attribute: 11.15.2,11.18.1, 13.4

Attributes of values: 12.6.6

AUTOMATIC: A.4.25

B
Backus-Naur Form: 4.3

Base constraint: 3.6.3, 3.6.24, 3.6.44, 13.6, 13.7,
A.3.3.19,A.3.3.22,E.2.3,1.3

Basetype: 3.6.4,11.18.2
BEGIN: 11.3.4.4,A.4.25

250 Recommendation X.292 (09/98)

Behaviour description: 3.6.40, 3.6.55, 3.6.78, 3.6.90,
11.10, 11.21, 121, 12.3, 15.2.1, 15.2.1.3, 15.2.5,
155, 15.13.2, 15.15, A.4.2.10, A5.1, A5.2, E3.1,
1.3, 1.8

Behaviour line: 3.6.5, 3.6.14, 3.6.25, 15.2.5, B.5.1

Behaviour tree: 3.6.6, 3.6.8, 3.6.42, 3.6.49, 3.6.59,
3.6.83, 3.6.84, 3.6.85, 3.6.87, 15.2.1.3, 15.2.2, 15.4.1,
155, 1595, 1511, 15133, 151341, 1514,
15.16.2,15.17,15.18.1,B.5.1, B.5.5.4,B.555,11.2

BehaviourLine: B.5.2.5

BER: 11.15.2, 11.15.4, 11.15.5, 11.16.4, 13.4, 14.4
Binding of variables: 11.8.4

Bit reference: 15.10.2.4

BIT: A4.25

BIT_TO_INT: 11.3.3.2.1,11.3.3.2.3, A.4.24

BITSTRING: 11.2.2, 11.18, 15.10.2.4, 15.10.4.2,
A424

Blank entry: 3.6.7
BMPString: A.4.2.5

BNF grammar for TTCN: 7.2
BNF:4.3,7.2,A.3

Boolean expression: 15.10.1
Boolean operators: 11.3.2.4

BOOLEAN: 1122, 113331, 113332 b),
15.10.24,A.4.24,A425, B.5.15

Bound variable: 11.8.2, 15.16.2, 15.18.2
Bounded freetext: 7.4
BUILD_SEND_OBJECT: B.5.8.1
BY:A424

C

Cdlling tree: 3.6.2, 3.6.8, 3.6.42, 15.13.3, 15.17.3,
15.18.5

CANCEL operation: 15.12.3

CANCEL: 15.12.1,15.12.3,A.4.2.4,B.5.14.2, B.5.17
CANCEL_TIMER: B.5.17.1

CASE OF ELSE: 11.34.9

CASE: 11.34.9,A.424

Chaining of constraints: 12.4, 15.10.2.2, 15.10.3,
.L1.1.3,1.1.2.3,1.2.2.3,11.3.1

CHARACTER: A4.25

Characterstring type: 11.3.3.3.4, 11.18.1
CharacterString: 11.2.2, 12.6.5.1, 12.6.5.2, 15.10.4.2

CHOICE: 11.3.3.3.2, 124, 145, 14.8, 15.10.2.2,
15.10.2.3,A.4.25

CLASS: A4.25

CM constraint declarations: 13.8
CM parameters; 11.17.1

CM type: 11.17.2, 11.17.3

CM: 3.6.16, 4.3, 8.1, 11.34.2, 116, 11.7, 11.11,
11.17.1, 11.17.2, 121, 13.6, 13.8, 149, 1592,
15.9.3, 15.9.4, 1595.3, 15.9.5.4, 15.9.8, 15.10.2.2,
15.10.2.3, 15.10.3, 15.10.6, 15.16.1, 15.17.5, 15.18.8,
A4.27, A4.28, B5.23, B.58.2 B.59.2, B.5.10.2,
B.5.11.2,B.5.12.2,B.5.16.2

CMs and defaults: 15.18.8

Collective comment: 7.3.3,11.2.3.2

Compact constraint table: 3.6.7, 3.6.9, 13.1, E.1, E.2
Compact proformas: Annex E

Compact test case table: 3.6.10, E.1, E.3
Complement matching operation: 12.6.4.1
COMPLEMENT: A4.24

Complement: 12.6.4.1, 12.6.6.1

Complex CMs: 11.17.1

Compliance: 6, 15.17.3

Component of data object: 15.10.2.2, 15.10.2.3
COMPONENT: A4.2.5

Component: 3.6.72

Concurrent test case behaviour: 15.2.4
Concurrent test case: 3.6.11, 3.6.72
Concurrent TTCN: 3.6.11, 3.6.12, 3.6.47
Conflict between TTCN forms: 5

Conformance log: 15.17, B.3, B.5.20.2, B.5.23.2,
B.5.24,B.5.24.2,11.2

Conformance test suite: 1
CONSTRAINED: A4.25
Congtraint declarations; 3.6.25
Constraints for RECEIVE: 12.6

Congtraints part: 3.6.13, 9.5, 12, 15.2.1.3, 15.16.1,
A.3.3.36.2

Constraints reference: 3.6.5, 3.6.14, 3.6.25, 12.2,
12.3, 15.2.1.3, 15.16, 15.16.1, B.1, B.5.8.2, B.5.9.2,
B.5.10.2, B.5.11.2, B.5.12.2, B.5.13.2, 1.3

Construct: 3.6.61, 3.6.90, 15.2.1.3, 15.8, 15.9.5,
15.17.1, 15.18.1, B.5.18

CONSTRUCT_TYPE_OF: B.5.26
Coordinated test method: 11.3.4
Coordination message declarations: 8.1
Coordination message: 3.6.15, 4.3, 8.1
Coordination point declarations: 8.1
Coordination point model: 11.11
Coordination point: 3.6.15, 3.6.16, 4.3

CpP. 36.72, 3.6.73, 43, 82, 1111, 111311,
11.13.1.3,11.13.2, 15.2.4, 15.9.5.3, 15.9.8, 15.9.10.1,
15.10.6,A4.24,A4.213,B.1,B.54.2,1.11

CREATE and defaults; 15.18.7
Create construct: 15.9.10.1
CREATE procedure: B.5.20.1

CREATE: 8.2, 111311, 111312, 15.9.10,
15.9.10.1, 15.9.10.2, 15.18.7, A4.2.4,B.5.18.2, 1.15

CurrentLevel: B.5.2.3

D
Data object: 12.2, 15.10.1
Declaration by reference: 11.7

Declarations part: 3.6.17, 9.5, 111, 15.9.1,
A.3.3.36.2,11.6

DEF REF _LIST: B.5.26
Default behaviour proforma: 3.6.18, B.1

Default behaviour: 3.6.18, 3.6.19, 3.6.22, 15.1,
15.2.1, 15.4, 15.18.1, 15.18.2, 15.18.4, B.5.5, B.5.5.4,
.4

Default duration: 11.12

Default dynamic behaviour: 3.6.26, 9.5

Default expansion: 15.18.3

Default expression: 11.16.1, 11.16.2

Default group reference: 3.6.20, 9.4, 10.5
Default group: 3.6.19, 9.1

Default identifier: 3.6.21, 10.5, 15.18.2, A.4.2.11
Default index: 10.1, 10.5, A5.1

Default library: 3.6.20, 3.6.22, 3.6.23, 3.6.52, 9.4,
105, 15.4.1, 15.18.2

Default objective: 10.5
Default reference: 3.6.23, 15.2.1, 15.18.2, B.5.5.4

Recommendation X.292 (09/98) 251

Default tree: 15.10.1, 15.14, 15.18.1, 15.18.3,
A3333,A429,E31 114

Default value: 13.6
DEFAULT: 11.3.3.3.1, 15.18.1, A4.25

Default: 15.4.1, 15.18, 15.18.2, 15.18.6, B.5.1,
B.5.2.3,B.55.1,B.554,B555,11.4

Defect report: B.2

Definition by reference: 11.7
DEFINITIONS: A4.2.5

DER: 11.15.2,11.15.4, 11.15.5, 13.4, 14.4

Derivation path: 3.6.24, 13.4, 13.6, 14.3, d), 14.4,
A3.3.22,E23

Derivation: A.1

Detailed comments: 11.3.4.1
Distinguished value: A.4.2.6
Distributed test method: 4.2, 11.3.3
DO: 11.3.4.8,A4.24

Done event: 15.9.10.2

DONE: 15.9.10, 15.9.10.2, A4.2.4, B.5.7.2, B.5.12.2,
1.15

Dot notation: 15.10.2.2, 15.10.2.3

DS 4.2

Dynamic behaviour: 3.6.12, 11.13.2

Dynamic chaining: 3.6.25, 12.4

Dynamic part: 3.6.26, 9.5, 11.1, 15, A.3.3.36.2

E

EBDIF. A4.24
Element: 15.10.3
ELSE: A4.24
EMBEDDED: A4.2.5

Encoding definition: 11.3.3.2.1, 11.15.2, 11.154,
11.15.5,11.16.1, 11.16.2, 11.16.4

Encoding operation: 11.16.3
Encoding rules precedence: 11.16.4
Encoding rules: 11.16.1, 11.16.2, 11.16.4

Encoding variations: 11.2.3.2, 11.2.3.3, 11.2.34,
11.2.35, 11.15.2, 11.15.4, 11.15.5, 11.16.2, 13.2,
13.4,14.2,14.4

END: 11.34.4,A4.24,A4.25
ENDCASE: 11.34.9,A4.24

252 Recommendation X.292 (09/98)

ENDIF: 11.34.7

ENDVAR: 11.34.3,A4.2.4

ENDWHILE: 11.3.4.8, A4.2.4
Enumerated type: A.4.2.6

ENUMERATED: A4.2.5,A4.2.6
Equivalence of TTCN forms: 5

ETS 4.1

EVAL_VERDICT_ENTRY: B.5.23.1
EVALUATE_BOOLEAN: B.5.15.1
EVALUATE_CONSTRUCT: B.5.18.1
EVALUATE_EVENT: B.5.7.1
EVALUATE_EVENT_LINE: B.5.6.1
EVALUATE_LEVELS: B.54.1
EVALUATE_PSEUDO_EVENT: B.5.14.1
EVALUATE_TEST_CASE: B.1,B5.3.1,B.54.1

EVALUATE_TEST_COMPONENT: B.1, B.5.3.1,
B.5.20.1

EVALUATE TEST_SUITE: B.1,B.5.2.3,B.5.3.1
Evaluation tree: B.1, B.5.2.1, B.5.2.3

Event line: 15.9, 15.10.1, 15.10.4.1, 15.10.6, 11.7, 11.9
Event matching: 15.10.6

EVENT_TYPE_OF: B.5.26

Examples of tabular constraints: 1.1

Examples: Appendix |

EXCEPT: A4.25
EXCLUDE_INCOMPATIBLE_ENTRY: B.5.23.1
Executable test case error: 6.5

Executable test case: 6.5

Executable test suite: 1, 4.1
EXECUTE_ASSIGNMENT: B.5.16.1

Execution of atest suite: B.5.3
EXPAND_ATTACHMENTS: B.5.5.5
EXPAND_CURRENT_LEVEL: B.55.1
EXPAND_REPEATS: B.5.5.3
EXPAND_SUBTREE: B.5.5.5

Expanded test suite: 3.6.27

Expanding a set of alternatives: B.5.5.1

Expanding modularized test suite: B.4

Expansion of diases: 11.21

Expansion of default trees: 15.13.7
Explicit external: 3.6.28
EXPLICIT: A4.25

Explicitly defined object: 3.6.29, 3.6.32, 3.6.33,
3.6.36

Explicitly exported object: 3.6.30, 3.6.32, 3.6.36
Explicitly external object: 3.6.33

Explicitly imported object: 3.6.31, 3.6.32, 3.6.36,
3.6.37,3.6.39, 10.7.1

Explicitly imported: B.1

EXPORT: A4.2.5

Export: 11.9

Exported object: 3.6.32

Exporting object type: 10.6

External object: 3.6.28, 3.6.33

External objects: C.3.1, C.3.2
EXTERNAL: 10.6, 10.7.2, A4.25,C.2.2
Externally declared object: 3.6.35
Externally defined object: 3.6.46

=
F:15.17.2,15.17.3,A4.2.4

FAIL: 15.17.1, 15.17.2, 15.17.3, 15.17.4, 15.18.1,
A4.2.4,B5.23.2

Fail: 3.6.54

FALSE: 10.2, 10.3, 11.2.2, 11.3.3.3.1, 11.3.3.3.2,
11.3.4.7, 11.3.4.8, 11.16.1, 11.16.2, 15.11, A4.2.4,
A4.25,B.582,B59.2 B.510.2 B.5.11.2, B.5.12.2,
B.5.15.2

FDT: 4.3

Field encoding definition: 11.2.3.2, 11.2.3.4, 11.15.2,
11.15.4, 11.16.3, 13.4

Field: 15.10.3
FIFO: 4.3, 11.10

Final verdict: 15.9.10.2, 15.17.1, 15.17.3, 15.18.1,
.2

FIRST_LEVEL: B.5.25
Formal Description Technique: 4.3
Formal description technique: 1

Formal parameter list: 12.3, 13.4, 13.7, d), 14.7, 14.7,
15.9.1, 15.16.2, A.4.2.11, A4.2.12

Formal parameter name precedence: A.4.2.12
Formal parameter: A.4.2.14

Formal parameters: 3.6.85, 15.7.2, 15.13.5
Freetext: 7.4

FROM: A4.25

G

GeneralizedTime: A.4.2.5
GeneralString: A4.2.4, A4.25
Global result variable: 3.6.34
Global test steps. 9.3.2

GOTO construct: 15.14

GOTO: 15.2.1.3, 15.6, 15.8, 15.9.5.1, 15.14, 15.17.1,
A4.24,B.1,B551,B5182,B.5.21, B.5.21,B.5.22

GOTO_NEXT_LEVEL_OR_STOP WITH_
VERDICT: B5.21, B.5.22, B.5.25

GraphicString: A.4.2.4, A4.2.5

H
HEX_TO_INT: 11.3.3.2.1,11.3.3.22, A4.24

HEXSTRING: 11.2.2, 11.18.1, 11.18.2, 15.10.4.2,
Ad24

Hyphen symbol: 11.15.4

I

I:15.17.2,15.17.3,A4.2.4
IA5String: A4.2.4, A4.25
IDENTIFIER: A.4.2.5

Idle testing state: 15.17.3

IF THEN ELSE: 11.3.4.7

IF THEN: 11.3.4.7

IF: Ad.2.4

IF_PRESENT: A4.2.4

IfPresent: 12.6.6.1, 12.6.6.2
Illegal variations of encoding: 11.16.3
Implementation Under Test: 4.1
Implicit external: 3.6.35

Implicit send event: 3.6.38, 15.9.6

IMPLICIT SEND: 15.6, 158, 15.9.5.3, 1596,
15.16.1, 15.17.1, B.5.7.2, B.5.13.2, 11.3.5

Recommendation X.292 (09/98) 253

IMPLICIT: A4.25

IMPLICIT_SEND: B.5.13.1

Implicitly exported object: 3.6.32, 3.6.36
Implicitly external object: 3.6.33

Implicitly imported object: 3.6.37, 3.6.37, 3.6.39,
10.7.1,B.1

Import part: 9.5, 10.7.1, C.1
IMPORT: A4.25
Import: 10.7.2, C.3.1, C.3.3

Imported object: 3.6.27, 3.6.30, 3.6.33, 3.6.39, 10.7.1,
B.4

INCLUDES: A4.25
INCONC: 15.17.1, 15.17.2, 15.17.3, A.4.2.4,B.5.23.2
Inconclusive verdict: 15.17.3

Indentation: 3.6.61, 15.2.5, 15.6, 15.9.5, 15.15, A.5.1,
A5.2,B553

Index notation: 15.10.2.4

INFINITY: 11.23.2, 11142, 11152, 11.17.2,
11.18.2,12.6.4.6, 12.6.6.1, A4.24

INPUT_Q: B.5.26
Inside values: 12.6.5

INSTANCE: A4.25

INT_TO_BIT: 11.3.3.2.1,11.3.3.25, A4.24
INT_TO_HEX: 11.3.3.2.1,11.3.3.2.4, A4.2.4

INTEGER: 11.2.2, 11232, 113333, 1112,
11.14.2,11.17.2,11.18.2, 12.6.4.6, 12.6.5.1, 12.6.5.3,
12.6.6.1, 15.10.2.3, 15.10.24, 15.12.2, 15124,
Ad424,A425 A426

INTERSECTION: A.4.2.5

Invalid field encoding definition: 14.2, 14.4
Invalid field encoding: 11.2.3.3, 11.16.3, 12.6.4.2
Invalid test event: 15.17.4

IS CHOSEN: 11.3.3.3.2, A4.24

IS_ EXPANDED: B.5.25

IS PRESENT: 11.3.3.3.1, A4.24

IsDefault: B.1

|sExpanded: B.1

SO646String: A.4.2.5

IUT: 3.6.13, 3.6.38, 4.1, 10.2, 11.10, 11.11, 11.15.1,
159.6,A4.24,11.34,11.4

254 Recommendation X.292 (09/98)

L

Label: 3.6.5,15.2.1.3, 15.14
Length: 11.18.2, 12.6.6.1
LENGTH_OF: 11.3.3.34, A4.24
Level of indentation: 3.6.40
LEVEL_OF: B.5.2.5, B.5.25
Levelsof alternatives: B.5.2.5
Lifetime of events: 15.9.4

Line continuation: 15.2.5, A.5.1
Literal values: 11.16.1, 11.16.2
Local result variable: 3.6.41, B.5.20.2
Local test method: 4.2, 11.3.2
Local test steps: 9.3.2

Local tree: 3.6.42, 3.6.85, 3.6.86, 15.2.5, 15.4.1, 15.6,
15.10.1, 15.13.2, 15.13.3, 15.13.4.1, 15.15, A4.2.9,
A4.2.10,A4.2.11,A52

Loca variables: 11.3.4.3,11.3.4.4, 11.3.4.6
Location of object: 10.6

LOG procedure: B.5.24.1

Lower Tester Control Function: 4.1

Lower tester: 4.1, 11.13.1.2

LS 4.2

LT: 41, 11.9, 11.10, 15.2.1.3, 15.8, 15.9.1, 15.9.5.1,
15.9.6, 159.7, A4.24, B.5.8.2, B.5.9.2, B.5.10.2,
B.5.11.2,B5.12.2,11.4

LTCF: 41

M

Macro expansion: 12.2, 13.2, 13.4, 15.10.3, 15.10.3,
A3334,A4.28

Macro symbol: 11.14.3, 11.15.3

Main test component: 3.6.34, 3.6.43, 3.6.53, 4.3, 8.1,
11.13.1.1, 11.13.1.3, 15.9.10.1, B.5.23, B.5.3.1,
B.5.23.2

MAKE_TREE: B.5.25

Matching ASP: 12.6.1

Matching attributes of values: 12.6.2
Matching inside values. 12.6.2
Matching instead of values. 12.6.2

Matching mechanism: 3.6.65, 12.2, 12.5, 12.6.3, 14.1,
15.9.9

Matching mechanisms: 12.6.2

Matching PDU: 12.6.1

Matching valuesin constraints: 12.6.1

MAX: A4.25

Means of Testing: 4.1, 1.5

MIN: A4.2.5

min: A4.2.4

MOD: A4.2.4

Modified ASN.1 constraints: 14.6, 14.7, 14.7

Modified constraints: 3.6.7, 3.6.24, 3.6.44, 13.6, 13.7,
A.3.3.19, A3.3.22, E.2.3, E24, 1.1.25, 1.2.25, |.3,
1.6

Modular TTCN: 1.14

Modularized test suite: 3.6.45
Module constraints part: C.1
Module declarations part: C.1
Module default index: C.2.1, C.2.6
Module dynamic part: C.1

Module exports: C.2.2

Module import part: C.3

Module structure: C.2.3
Moduletest caseindex: C.2.1, C.2.4
Module test step index: C.2.1, C.2.5

Module: 3.6.28, 3.6.29, 3.6.32, 3.6.33, 3.6.46, 3.6.50,
3.6.69,10.7.1,B.1,B.4

MQOT: 4.1, 15.9.5.3
MPyT: 3.6.34
ms. A4.2.4

MTC: 3.6.58, 4.3, 8.1, 8.2, 11.8.1, 11.8.3, 11.13.1.2,
11.13.2,15.2.4, 15.9.10.2, 15.17.5, 15.18.7

MTC_R: 3.6.58, 15.17.5
Multi-party testing: 1.10
Multiplexing/demultiplexing: 1.11
Multi-protocol test cases. .13

MuxVaue: 11.10, .11

N

NEW_LABEL: B.5.25

Non-concurrent test case: 3.6.47

none: A.4.2.4

NOT: A4.24

ns: A4.24

NULL: A4.25

NUMBER_OF ELEMENTS: 11.3.3.3.3, A4.24

NumericString: A.4.2.4, A4.2.5

@]

Object group: 7.3.2

Object name: 7.3.2, 7.3.3

OBJECT: A4.25

Object: 3.6.48, 3.6.50, 10.7.2
OBJECT_MATCHES: B.5.9.1
ObjectDescriptor: A.4.2.5
OBJECTIDENTIFIER: 11.2.2, A4.2.4
OCTET: A4.25

OCTETSTRING: 11.2.2,11.3.3.3.4,11.18.1, 11.18.2,
15.10.4.2

OF. A4.24

Omit symbol: 12.5

OMIT: 10.7.2, 14.6, A4.24

Omit: 12.6.4.2

Open Systems Interconnection: 4.3

Operational semantics: 1, 3.6.49, 5, 6, 15.9.5.2,
Annex B, B.5

OPTIONAL: 11.3.3.3.1, 11.3.3.3.3, 125, 12.6.4.2,
12.6.6.2,14.5,14.8,A4.25

OR: A4.24

Order of receipt of events: 15.9.5.4
Original source object: 3.6.50
0Sl:1,2,43, A421

Otherwise event: 3.6.51, 15.9.7

OTHERWISE function: B.5.10.1

Recommendation X.292 (09/98) 255

OTHERWISE: 3.6.91, 15.8, 15.9.5.3, 15.9.7, 15.9.8,
15.10.6, 15.17.4, 15.18.5, A.3.3.33, A4.2.4, B5.7.2,
B.5.10.2, B.5.15.2

OUTPUT_Q: B.5.26

Overview part: 3.6.52

P
P: 15.17.2,15.17.3, A4.2.4
Page continuation: 16, 16.1, 16.2, A5.1

Parallel test component: 3.6.43, 3.6.53, 4.3, 8.1,
11.13.1.2, 11.13.1.3, 15.9.10.1, B.5.2.3, B.5.3.1,
B.5.23.2

Parameter list: 12.3, 13.5, 13.7, 14.7, 15.2.1, 15.7,
15.9.1, 151341, 1516.2, 15182, A3.3.19,
A3.3.22,E232

Parameter: 3.6.13, 3.6.66, 3.6.68, d), 11.15.2, 11.19,
135, 145, 1594, 15103, A3.3.19, A33.22,
A3.3.34,A4.27,11.6

Parameterization: 3.6.25, 11.1, 114, 15.18.2,
[* STATIC SEMANTICS -, A3319, A33.22
A.3.3.23

Parameterized compact constraints: E.2.3.2

Parameterized constraint: 3.6.7, 12.3, 13.5, A4.2.11,
1.1.2.4,1.1.2.5,1.2.2.4

PASS: 15.17.1, 15.17.2, 15.17.3, 15.17.4, A4.24,
B.5.23.2

Pass: 3.6.54
Passing of constraints: 15.13.5
Passing parameters: 15.16.2

PCO declaration: 11.10, SYNTAX DEFINITION:,
11.15.2

PCO model: 15.9.1
PCO queue: 15.9.2

PCO type: 11.9, SYNTAX DEFINITION:, 11.15.2,
12.3,15.7.2

PCO: 3.6.57, 3.6.60, 3.6.72, 3.6.73, 4.1, 8.1, 8.2, 9.5,
106, 11341, 119, 1110, 11.11, SYNTAX
DEFINITION:, 11.13.1.1, 11.13.1.3, 11.13.2, 11.14.2,
11144, 11145, 11.15.1, 11.15.2, 11.154, 11.15.5,
15.2.4,15.3.1,154.1, 15.9, 15.9.1, 15.9.5.3, 15.9.5.4,
15.9.6, 15.9.7, 15.9.8, 15.9.10.1, 15.18.1, 15.18.8,
A4.213, B.1, B54.2 B582 B592 B.510.2
B.5.11.2,B.5.12.2,1.11, 11.10

PDU constraint compact proforma: E.2.3
PDU constraint declaration: 3.6.62, 13.2, 13.4, A5.1
PDU constraints: 7.3.4, 11.16.3, 12.6.6.1, 13.4, 14.1

256 Recommendation X.292 (09/98)

PDU field value: 11.20, 12.2, 12.4, 12.6.4.5, 12.6.4.6,
15.9.3,15.94

PDU field: 3.6.66, 11.2.1, 11.16.3, 11.17.1, 12.1,
12,5, 12.6.2, 12.6.3, 12641, 12.6.4.2, 12.6.4.3
12.6.4.4, 12645, 12647, 12,648, 126.51,
12.6.5.3,12.6.6.2

PDU identifier: 11.15.2, 11.21, 15.9.1
PDU specificationin ASN.1: 11.15.5

PDU type definition: 3.6.3, 3.6.68, 11.15, 11.19,
11.20, 13.4,E.2.3,1.4,11.6

PDU type: 11.3.4.2, 11.8.1, 11.8.3, 134, 14.4,15.7.2

PDU: 3.6.1, 3.6.9, 3.6.13, 3.6.25, 3.6.38, 3.6.44,
3.6.57, 3.6.60, 3.6.66, 3.6.68, 4.3, 7.3.1, 9.5, 11.2.1,
11.2.2,11.2.3.2,11.2.3.3, 11.2.3.4,11.2.3.5, 11.3.4.1,
11.3.4.2,11.6, 11.7, 11.10, 11.14.2, 11.15.1, 11.15.2,
11.15.3, 11.15.4, 11.155, 11.16.2, 11.16.4, 11.17.1,
11.17.2, 11.17.3, 12.6.3, 13.2, 13.6, 14.5, 14.6, 14.8,
159, 15953, 15954, 15.9.6, 15.10.1, 15.10.2.2,
15.10.2.3, 15103, 15.104.1, 15.10.6, 15.16.1,
15.18.8, A.3.3.19, A3.3.22, A3.3.34, A424, A4.25,
A4.27, A4.28, B523, B58.2, B.59.2 B.5.10.2,
B.5.11.2,B.5.12.2,B.5.13.2,B.5.16.2, E21, 11.3.1

PERMUTATION: A4.2.4
Permutation: 12.6.5.3, 12.6.6.1
PICS proforma: 11.4

PICS: 3.6.80, 3.6.81, 4.1, 10.2, 11.4, 11.6, 11.7,
11.12,C.2.2

PIXIT proforma: 11.4

PIXIT: 3.6.80, 3.6.81, 4.1, 10.2, 11.4, 11.6, 11.7,
11.10,11.12, 15.9.6, C.2.2

Point of attachment: 15.13.5

Point of control and observation: 4.1, 8.1
Postamble: 11.2

Preamble: I1.2

Precautions for concurrent TTCN: 15.9.5.4
Precedence of assignments and qualifiers: 15.10.6
Precedence of operators. Table 3

Precedence of pseudo-events: 15.11

Precedence: 15.17.2, A4.2.11,B.2,11.8

Predefined type: 11.3.4.2, d), 11.6, 11.7, 11.8.1,
11.15.2,11.16.3

Predefined variable: 3.6.41
Preliminary result variable: B.5.4.2

Preliminary result: 3.6.34, 3.6.41, 3.6.54, 3.6.58,
11.13.1.1,11.13.1.2, 159.10.2, 15.17.1, 15.17.2

PRESENT: A4.25

PrintableString: A.4.2.5

PRIVATE: A4.25

Procedural definition of test suite operation: A.4.2.14
Procedural definition: 11.3.4.3

Procedure statement: 11.3.4.4

Protocol Data Unit: 1, 4.3

Protocol error: 15.17.2

Protocol |mplementation Conformance Statement: 4.1

Protocol Implementation eXtra Information for
Testing: 4.1

ps. Ad.24

Pseudo-code keywords: B.5.2.1

Pseudo-code notation: B.5.2

Pseudo-code precedence: B.2

Pseudo-code procedures and functions: B.5.2.2
Pseudo-code process: B.5.2.3

Pseudo-code with natural language: B.5.2.4
Pseudo-code: B.5.2.3, B.5.2.4, B.5.5.4

Pseudo-event: 3.6.55, 3.6.61, 3.6.90, 15.8, 15.11,
B.5.1,B.5.54,B.5.14,B.5.14.2

PTC: 3.6.58, 4.3, 81, 82, 11.13.1.1, 11.1312,
11.13.2,15.2.4,15.9.10.1, 15.9.10.2, 15.17.5, 15.18.7

Q

Qualified event: 3.6.56
Qualifier evaluation: 15.10.6

Qualifier: 15.6, 15.8, 15.9.2, 15.10.4.1, 15.10.5,
1511, 15.15, 15.16.3

Queue: 15.9.2

R

R: 3.658, 15.17.2, 15.17.3, 15175, 15181,
B.5.23.2,11.2

R TYPE: 11.2.2,15.17.2,15.17.5
R _Type: A4.2.4

Range: 11.18.2, 12.6.4.6, 12.6.6.1
READ_TIMER: B.5.17.1

READTIMER operation: 15.12.4

READTIMER: 15.12.1, 15.12.4, A4.24, B5.14.2,
B.5.17

REAL: A4.25

Receive event: 3.6.57, 11.20, 12.1, 12.2, 15.9.2,
15.10.4.1, A3.3.33

RECEIVE function: B.5.9.1

RECEIVE: 8.1, 8.2, 11.16.4, 15.9.4, 15.9.5.3, 15.9.6,
15.10.6, 15.16.1, B.5.7.2, B.5.9.2, B.5.15.2

ReceiveObject: B.5.2.3

Record references: 15.10.2.2

Recursive tree attachment: 15.13.6

References in chaining of constraints: 15.10.2.2
References using tables: 15.10.3

RELABEL: B.5.25

Relational operators: 11.3.2.3

Remote test method: 3.6.38, 4.2, 15.9.6, 11.3.5
REMOVE_OBJECT: B.5.9.1

REPEAT construct: 15.15

REPEAT: 15.6, 15.8, 15.15, 15.17.1, A4.2.4, B.5.1,
B.5.5,B55.1,B.553, B.555,B.5.18.2

RepeatTree: B.5.5.3

REPLACE: 14.6, A4.2.4
REPLACE_ALT_TREE: B.5.25
REPLACE_PARAMETERS: B.5.25
Restrictions on using events: 15.9.5.3
Result type: 11.3.4.5

Result variable: 3.6.58, 3.6.58
RETURN statement: 15.18.3

RETURN: 15.18.1, 15.18.3, 15.18.6, 15.18.6, B.1,
B.5.2.3,B.5.18.2, B.5.22

ReturnDefaults: B.5.2.3
ReturnLevel: B.5.2.3
RETURNVALUE: 11.3.4.1, 11.3.45,A4.2.4

Root tree: 3.6.59, 15.6, 15.13.3, 15.13.4.1, 15.14,
15.18.5,A4.29,A5.2

ROOT_TREE: B.5.25

RS: 4.2

Recommendation X.292 (09/98) 257

S

SAP: 4.3, 11.10, 11.10

SAVE DEFAULTS: B.5.5.2

Scope of tree attachment: 15.13.2
Scoping rules: 15.13.4.1

sec: A4.2.4

Selection expression: 3.6.52, 11.5, 1.7
Selection: 11.1, b), 1.7

Semantics of TTCN: B.1

Send event: 3.6.60, 11.19, 121, 12.2, 159.3,
15.10.4.1,B.5.8,11.9

SEND function: B.5.8.1

SEND: 8.1, 8.2, 11.10, 125, 15.9.4, 15.10.6, B.5.7.2,
B.5.15.2

SEND_EVENT: B.5.8.1
SendObject: B.5.2.3
SEQUENCE OF INTEGER: 12.6.5.1, 12.6.5.3

SEQUENCE OF: 11.3.3.3.3, 11182, 12.6.3,
12651, 12.65.2,12.6.5.3

SEQUENCE: 12.6.3, 14.5, 14.8, 15.10.2.2, 15.10.2.3,
15.10.2.4,A4.25

Service Access Point: 4.3

Set of aternatives; 3.6.61, 15.6, 15.9.5.2, 15.9.9,
15.13.4.1, 15.18.5, A.3.3.33, B.5.5.4, B.5.5.5

SET OF: 11.3.3.3.3, 11.18.2, 125, 12.6.3, 12.6.4.7,
12.6.4.8,12.6.5.1,12.6.5.2, 12.6.6.1

SET: 125, 12.6.3, 14.5, 14.8, 15.10.2.2, 15.10.2.3,
A4.25

SimpleCMs: 11.17.1

Simple type: 11.2.3.2, 11.6, 11.7, 11.14.2, 11.14.3,
11.15.2,11.15.3

Single constraint table: 3.6.62, 13.1, E.1, E2.1, E.2.4
SIZE: A4.25

Snapshot semantics: 3.6.63, 15.9.5.2

SNAPSHOT: B.5.12.2

SNAPSHOT_FIXED: B.5.26

Specific value: 3.6.65, 122, 12.6.3, 12.6.4.5,
12.6.6.1,15.9.3

Splitting and Recombining: 1.12
SPyT: 3.6.34
Stable testing state: 15.17.3

258 Recommendation X.292 (09/98)

Standardized ATS: 6.5, 11.8

START operation: 15.12.2

START: 15.12.1, 15.12.2, A4.2.4,B.5.14.2
START_TIMER: B.5.17.1

STATEMEMT _LINE_TYPE_OF: B.5.26
Statement line: B.1

StatementLine: B.5.2.5

Stetic chaining: 3.6.66, 12.4

Static conformance requirements: 1

STATIC SEMANTICS: A4.1

Static semantics: 3.6.67, 5, Annex A, 390, B.1
STATIC: 11.34.3,A4.24

Step-wise expansion: B.5.2.1
STOP_TEST_CASE: B.5.26

STRING: A4.25

Structure: 15.10.3

Structured type constraint declaration: 13.2
Structured type constraints: 7.3.4, A.4.2.15,E.2.4

Structured type: 3.6.9, 3.6.68, 11.2.3.3, 11.2.3.3,
11.14.2, 11.14.3, 11.15.2, 11.15.3, 11.18.1, 11.20,
12.6.1, 12.6.3, 13.1, 13.2, 13.4, 15.10.3, A.3.3.19,
A3322,A428,E21,E24,11.6

Structured types within ASP type: 11.14.3
Style guide: Appendix |1

Submodule: 3.6.69

Subsequent behaviour: 15.13.3
SUBSEQUENT_BEHAVIOUR_TO: B.5.25
SUBSET: A4.24

SubSet: 12.6.4.8, 12.6.6.1

Substructure: 3.6.68, 11.20, 13.3, 15.10.3, A.3.3.19,
A3.3.22,A33.34

Subtree: B.5.5.4, 1.4

Suite overview part: 9.5
Suite overview: 10.1
SUPERSET: A4.24
SuperSet: 12.6.4.7, 12.6.6.1
SUT: 4.1

Syntactic metanotation: A.2.1
Syntax definition: 5

Syntax formsof TTCN: 5
Syntax production: 5, A.3
SYNTAX: A4.25
System Under Test: 4.1

T
T61String: A.4.2.5

Tabular ASP type definition: 13.1
Tabular PDU type definition: 13.1
TAKE_SNAPSHOT: B.5.26

TCP: 4.3

TeletexString: A.4.2.5
TERMINATE_TEST_CASE: B.5.26
Test body: 11.2

Test case dynamic behaviour: 7.3.1, 7.3.4, 9.5, 15.2,
15.18.2,A5.1,A52,E3, E3.2

Test case error processing: B.3

Test case error: 11.3.3.24, 11.3.3.25, 11161,
11.16.2,15.9.3, 15.9.10.1, 15.12.2, 15.17.3, B.5.4.2

Test case execution pseudo-code: B.5.4.1
Test case execution, natural language: B.5.4.2
Test caseidentifier: 3.6.70

Test caseindex: 10.1, 10.3, b), A5.2

Test case root tree: 15.7.2

Test case selection expression: 10.2

Test case selection: 11.1, d), b)

Test case termination: 11.8.4

Test case variable: 3.6.34, 3.6.58, 3.6.71, 7.3.1, 11.6,
11.7, 11.8.1, 11.8.3, 11.84, 11.12, 12.3, 15.10.1,
15.10.4.1, 15.13.1, 15.17.2, B.5.20.2

Test case writer: 11.5

Test case: 1, 3.6.10, 3.6.11, 3.6.12, 3.6.23, 3.6.26,
3.6.34, 3.6.47, 3.6.52, 3.6.54, 3.6.59, 3.6.61, 3.6.63,
3.6.70, 3.6.71, 3.6.73, 3.6.74, 3.6.82, 3.6.89, 9.1, 9.2,
9.3.1, 95, 10.2, 10.3, d), b), 11.8.3, 11.84, 151,
15.21, 1531, 154.1, 15951, 15.9.10.1, 15.12.1,
15.12.4, 15132, 15.14, 15.17.2, 15.18.1, 15.18.4,
A4.213,B5.21, B5.23, B53.1, B54, E32, 11.2,
11.5,11.8

Test component configuration declaration: 8.1

Test component configuration: 3.6.12, 3.6.16, 3.6.43,
3.6.73,8.2,11.13.1.3,11.13.2, 15.2.4, A4.2.13

Test component declaration: 8.1, 11.13.1.3

Test component: 3.6.12, 3.6.15, 3.6.16, 3.6.41,
3.6.43, 3.6.53, 3.6.72, 3.6.73, 11.12, 15.9.10.2

Test coordination procedures. 4.3

Test event: 3.6.5, 3.6.6, 3.6.91, 15.8, 15.9, 15.10.4.1,
AS5.1

Test group identifier: A.5.1, A5.2
Test group objective: 10.2, C.2.3

Test group reference: 3.6.74, 9.2, 10.2, 10.3, 15.2.1,
A5.1,C23

Test group: 3.6.10, 3.6.52, 9.1, 9.2, 10.2, 10.3, A5.2,
C23,E31

Test laboratory: 6.5

Test management protocol: 4.1
Test method: 11.3

Test outcome: 3.6.91

Test purpose: 15.2.1, 11.2, 11.8
Test redizer: 11.5

Test result: 3.6.54

Test step dynamic behaviour: 3.6.78, 9.5, 15.3,
15.18.2

Test step group reference: 3.6.76, 9.3.2, 10.4
Test step group: 3.6.75, 9.1, 9.3.1, 104

Test step identifier: 3.6.77, 10.4, A4.2.11
Test step index: 10.1, 10.4, A5.1

Test step library: 3.6.52, 3.6.76, 3.6.78, 3.6.84, 9.3.1,
9.3.2, 104, 15.3.1, 15.13.2, 15.13.3, 15.15, 15.18.5,
A4.2.10,11.2

Test step abjective: 3.6.79, 10.4, 15.3.1
Test step root tree; 15.7.2

Test step: 3.6.2, 3.6.8, 3.6.23, 3.6.26, 3.6.75, 3.6.76,
3.6.77, 3.6.79, 3.6.84, 3.6.87, 9.1, 9.3.1, 9.3.2, 10.4,
151, 15.2.3, 15.3.1, 154.1, 15951, 15.9.101,
15.13.2, 15.13.3, 15.13.4.1, 15.13.5, 15.15, 15.18.1,
15.185,A4.2.12,B.5.5.5

Test suite constant: 3.6.80, 11.2.1, b), 11.6, 11.6,
11.7,11.14.2,11.15.2, 12.3, B.5.2.3

Test suite constants: 11.16.1, 11.16.2, 11.17.2,
15.10.1

Test suite exports: 10.1

Test suiteindex: D.1, D.2.2

Test suite operation description: 11.3.4

Test suite operation procedural definition: 11.3.4

Test suite operation, assignment: 11.3.4.6

Recommendation X.292 (09/98) 259

Test suite operation, CASE: 11.3.4.9

Test suite operation, |F: 11.3.4.7

Test suite operation, parameter passing: 11.3.4.2
Test suite operation, RETURNVALUE: 11.3.4.5
Test suite operation, variables: 11.3.4.3

Test suite operation, WHILE: 11.3.4.8

Test suite operation: 11.3.4.2, 11.3.4.3, 11.16.3,
A4.214

Test suite operations: 1.6

Test suite parameter: 3.6.81, 11.2.1, 11.4, b), 11.15.2,
11.16.1,11.16.2,11.17.2, 12.3, 15.10.1, B.5.2.3, I.7

Test suite parameters: 11.14.2
Test suite specifier: 15.9.5.1, 1.1, 11.2, 1.4

Test suite structure: 9, 10.1, 10.2, 15.2.1, A5.1, A5.2,
1.7

Test suite type definition: 11.2, 11.15.2, 12.6.6.1

Test suite type: 11.2.34, 11.3.4.1, 11.3.4.2, 11.8.1,
11.8.3,11.14.2,11.16.3, 11.17.2, 14.2

Test suite variable: 3.6.82, 11.2.1, 11.6, 11.7, 11.8.1,
11.8.1, 11.8.2, 11.8.3, 11.12, 11.13.1.1, 11.13.1.2,
12.3,15.10.4.1, 15.13.1,B.5.2.3

Test suite: 3.6.4, 3.6.13, 3.6.17, 3.6.22, 3.6.26, 3.6.27,
3.6.29, 3.6.32, 3.6.45, 3.6.48, 3.6.50, 3.6.52, 3.6.71,
3.6.78, 3.6.80, 3.6.81, 3.6.82, 3.6.91, 9.1, 9.2, 10.1,
10.7.1,11.2.1,11.2.3.2, 11.4, 11.12, 11.15.2, 15.12.4,
A4.2.6,A4.2.10

Test system: 12.1

Test verdict: 3.6.34, 3.6.43

Textual substitution: 15.13.4.1, B.5.20.2
THEN: A4.24

Timeout event: 3.6.83, 15.9.9
TIMEOUT function: B.5.11.1

TIMEOUT: 15.8, 15.9.5.2, 15.9.5.3, 15.9.9, 15.12.3,
A3.3.33,A4.24,B57.2,B511.2,B.5.15.2,11.5

Timer declaration: 11.12

Timer management: 15.12

Timer name: 15.9.9

Timer operation: 3.6.55, 15.8, 15.11, 15.12.1, B.5.17
Timer value: 15.12.2

Timer: 3.6.83, 15.9.9, 1.5

TIMER_EXPIRED: B.5.11.1
TIMER_OP_TYPE_OF: B.5.26

260 Recommendation X.292 (09/98)

TIMER_OPS: B.5.17.1

TMP: 4.1, 10.2

TO: 11.18.2,12.6.4.6,A4.2.4

Transfer syntax: A.1

Transformation algorithm: B.1

Tree and Tabular Combined Notation: 4.2
Tree attach symbol: 15.13.3

Tree attachment: 3.6.84, 15.4.1, c¢), 15.13, 15.13.1,
15.13.2, 15.13.3, NOTE - 15.18.5, 15.18.6, B.5.5.5,
11.2,11.5

Tree header: 3.6.85, A.4.2.10, A4.2.11
Treeidentifier: 3.6.85, 3.6.86, A.4.2.10
Treeleaf: 3.6.87

Tree name: 15.7

Treenode: 3.6.88

Tree notation: 3.6.89, 15.2.1.3, 15.6
TreeReference: B.5.5.3

Treeswith parameters: 15.7.2

TRUE: 10.2, 103, 11.2.2, 11.3.3.3.1, 11.3.3.3.2,
11.3.4.7,11.34.8, b), 11.16.1, 11.16.2, 15.6, 15.10.5,
15.10.6, 15.11, 15.12.1, 1515, A4.2.5 B.5.8.2
B.5.9.2,B.5.10.2,B.5.11.2,B.5.12.2, B.5.15.2

TTCN ASP constraints: A.4.2.15
TTCN CM constraints: A.4.2.15
TTCN expression: 3.6.55, 15.10
TTCN graphical form: 4.3

TTCN machine: B.1, B.5.2.3, B.5.3.1
TTCN machine-processable form: 4.3
TTCN module exports: C.2.1

TTCN module overview part: C.1, C.2
TTCN module structure: C.2.1

TTCN object: 7.3.1,7.3.2,7.33,7.34
TTCN operations: 11.3

TTCN operators. 11.3

TTCN PDU constraints: A.4.2.15
TTCN semantics: B.5.2.1

TTCN statement: 3.6.2, 3.6.6, 3.6.18, 3.6.61, 3.6.87,
3.6.88, 3.6.90, 15.21.3, 1523, 155, 15.6, 158,
15.16.1,B.5.1

TTCN type: 11.2

TTCN.GR: 43,5, 6, 7.1, 7.35, 7.4, 15.6, A1, A4d1l, UPDATE_PRELIM: B.5.23.1

A5
Upper tester: 4.1, 11.13.1.2

TTCN.MP: 43, 5, 6, 7.1, 7.4, 11.2.3.4, 11144,

11.15.4, 14.1, 156, A1, A4.1, A5 E.1 1.8 us:A4.2.4

TTCN: 4.2 Use of REPEAT: |.5

Type definition using macros: 1.4 UT: 41, 11.9, 1110, 15.2.1.3, 159.1, 15.9.5.1,
15.9.7, A4.2.4, B538.2, B5.9.2, B5.10.2, B5.11.2,

Type definitionsusing ASN.1: 11.2.3.4 B.5.12.2,11.4

Typelist: 11.16.3 UTCTime: A4.2.5

Type: 11.16.3

TYPEIDENTIFIER: A4.2.5 Vv
Value: 11.3.4.2

U Valuelist: 12.6.4.5

Unbound variable: 3.6.65, 15.10.4.1 VAR:11.34.3

Unbound variables: 11.3.4.3 Variable declaration: A.4.2.14

Underscore symbol: 11.14.4, 11.15.4 Variable name: A.4.2.14

Unforeseen test event: 3.6.51, 3.6.91 Variables: 11.3.4.3

Unforeseen test events: 15.9.7 Verdict assignment: 15.17.5

Verdict: 3.6.5, 11.13.1.1, 15.2.1.3, 1523, 15.17,

UNION: A4.2.5 B.5.22 B5.23.2, 1.2

UNIQUE: A4.25 VideotexString: VisibleString: A.4.2.5

Units of length: 11.18.2 VisibleString: A4.25

UNIVERSAL: A4.25

UniversalString: A.4.2.5

W
Unqualified event: 3.6.92
WHILE: A4.24
NTIL: A4.24
v Wildcards: 12.5
WITH: A.4.25

Recommendation X.292 (09/98) 261

SeriesA
SeriesB
SeriesC
SeriesD
SeriesE
SeriesF
SeriesG
SeriesH
Series|

SeriesJ

SeriesK
SeriesL
SeriesM

SeriesN
SeriesO
SeriesP
SeriesQ
SeriesR
Series S
Series T
SeriesU
SeriesV
Series X
Series Y
SeriesZ

I TU-T RECOMMENDATIONS SERIES

Organization of the work of the ITU-T

Means of expression: definitions, symbols, classification

General telecommunication statistics

Genera tariff principles

Overall network operation, telephone service, service operation and human factors
Non-telephone telecommunication services

Transmission systems and media, digital systems and networks

Audiovisual and multimedia systems

Integrated services digital network

Transmission of television, sound programme and other multimedia signals
Protection against interference

Construction, installation and protection of cables and other elements of outside plant

TMN and network maintenance: international transmission systems, telephone circuits,
telegraphy, facsimile and leased circuits

Maintenance: international sound programme and television transmission circuits
Specifications of measuring equipment

Telephone transmission quality, telephone installations, local line networks
Switching and signalling

Telegraph transmission

Telegraph services terminal equipment

Terminals for telematic services

Telegraph switching

Data communication over the telephone network

Data networks and open system communications

Global information infrastructure

Programming languages

	ITU-T Rec. X.292 (09/98) OSI CONFORMANCE TESTING METHODOLOGY AND FRAMEWORK FOR PROTOCOL RECOMMENDATIONS FOR ITU-T APPLICATIONS –
	Summary
	Source
	FOREWORD
	CONTENTS
	Introduction
	OSI CONFORMANCE TESTING METHODOLOGY AND FRAMEWORK FOR PROTOCOL RECOMMENDATIONS FOR ITU-T APPLICATIONS – THE TREE AND TABULAR COM
	1 Scope
	2 Normative references
	3 Definitions
	3.1 Basic terms from Recommendation X.290
	3.2 Terms from Recommendation X.200
	3.3 Terms from Recommendation X.210
	3.4 Terms from Recommendation X.680
	3.5 Terms from Recommendation X.690
	3.6 TTCN specific terms

	4 Abbreviations
	4.1 Abbreviations defined in Recommendation X.290
	4.2 Abbreviations defined in Recommendation X.291
	4.3 Other abbreviations

	5 Syntax forms of TTCN
	6 Compliance
	7 Conventions
	7.1 Introduction
	7.2 Syntactic metanotation
	7.3 TTCN.GR table proformas
	7.4 Free Text and Bounded Free Text

	8 Concurrency in TTCN
	8.1 Test Components
	8.2 Test Component Configurations

	9 TTCN Test Suite structure
	9.1 Introduction
	9.2 Test Group References
	9.3 Test Step Group References
	9.4 Default Group References
	9.5 Parts of a TTCN test suite

	10 Test Suite Overview
	10.1 Introduction
	10.2 Test Suite Structure
	10.3 Test Case Index
	10.4 Test Step Index
	10.5 Default Index
	10.6 Test Suite Exports
	10.7 Import Part

	11 Declarations Part
	11.1 Introduction
	11.2 TTCN types
	11.3 TTCN operators and TTCN operations
	11.4 Test Suite Parameter Declarations
	11.5 Test Case Selection Expression Definitions
	11.6 Test Suite Constant Declarations
	11.7 Test Suite Constant Declarations by Reference
	11.8 TTCN variables
	11.9 PCO Type Declaration
	11.10 PCO Declarations
	11.11 CP Declarations
	11.12 Timer Declarations
	11.13 Test Components and Configuration Declarations
	11.14 ASP Type Definitions
	11.15 PDU Type Definitions
	11.16 Test Suite Encoding Information
	11.17 CM Type Definitions
	11.18 String length specifications
	11.19 ASP, PDU and CM Definitions for SEND events
	11.20 ASP, PDU and CM Definitions for RECEIVE events
	11.21 Alias Definitions

	12 Constraints Part
	12.1 Introduction
	12.2 General principles
	12.3 Parameterization of constraints
	12.4 Chaining of constraints
	12.5 Constraints for SEND events
	12.6 Constraints for RECEIVE events

	13 Specification of constraints using tables
	13.1 Introduction
	13.2 Structured Type Constraint Declarations
	13.3 ASP Constraint Declarations
	13.4 PDU Constraint Declarations
	13.5 Parameterization of constraints
	13.6 Base constraints and modified constraints
	13.7 Formal parameter lists in modified constraints
	13.8 CM Constraint Declarations

	14 Specification of constraints using ASN.1
	14.1 Introduction
	14.2 ASN.1 Type Constraint Declarations
	14.3 ASN.1 ASP Constraint Declarations
	14.4 ASN.1 PDU Constraint Declarations
	14.5 Parameterized ASN.1 constraints
	14.6 Modified ASN.1 constraints
	14.7 Formal parameter lists in modified ASN.1 constraints
	14.8 ASP Parameter and PDU field names within ASN.1 constraints
	14.9 ASN.1 CM Constraint Declarations

	15 Dynamic Part
	15.1 Introduction
	15.2 Test Case dynamic behaviour
	15.3 Test Step dynamic behaviour
	15.4 Default dynamic behaviour
	15.5 Behaviour description
	15.6 Tree notation
	15.7 Tree names and parameter lists
	15.8 TTCN statements
	15.9 TTCN test events
	15.10 Expressions
	15.11 Pseudo-events
	15.12 Timer management
	15.13 ATTACH construct
	15.14 Labels and the GOTO construct
	15.15 REPEAT construct
	15.16 Constraints Reference
	15.17 Verdicts
	15.18 Meaning of Defaults

	16 Page continuation
	16.1 Page continuation of TTCN tables
	16.2 Page continuation of dynamic behaviour tables

	Annex A -Syntax and static semantics of TTCN
	A.1 Introduction
	A.2 Conventions for the syntax description
	A.3 TTCN.MP syntax productions in BNF
	A.4 General static semantics requirements
	A.5 Differences between TTCN.GR and TTCN.MP
	A.6 List of BNF production numbers
	Annex B - Operational Semantics of TTCN
	B.1 Introduction
	B.2 Precedence
	B.3 Processing of test case errors
	B.4 Converting a modularized test suite to an equivalent expanded test suite
	B.5 TTCN operational semantics
	Annex C - TTCN Modules
	C.1 Introduction
	C.2 TTCN Module Overview Part
	C.3 Import Part
	Annex D - Test Suite Index
	D.1 Introduction
	D.2 The Test Suite Index
	Annex E - Compact proformas
	E.1 Introduction
	E.2 Compact proformas for constraints
	E.3 Compact proforma for Test Cases
	Appendix I - Examples
	I.1 Examples of tabular constraints
	I.2 Examples of ASN1 constraints
	I.3 Base and modified constraints
	I.4 Type definition using macros
	I.5 Use of REPEAT
	I.6 Test suite operations
	I.7 Example of a Test Suite Overview
	I.8 Example of a Test Case in TTCN.MP Form
	I.9 Use of Component Reference for Field Value Assignment in Constraints
	I.10 Multi-Party Testing
	I.11 Multiplexing/Demultiplexing
	I.12 Splitting and Recombining
	I.13 Multi-Protocol Test Cases
	I.14 Example of Modular TTCN
	I.15 Example of CREATE and DONE
	Appendix II Style guide
	II.1 Introduction
	II.2 Test case structure
	II.3 Use of TTCN with different abstract test methods
	II.4 Use of Defaults
	II.5 Limiting the execution time of a Test Case
	II.6 Structured Types
	II.7 Abbreviations
	II.8 Test descriptions
	II.9 Assignments on SEND events
	II.10 Multi-service PCOs
	Appendix III - Index
	III.1 Introduction
	III.2 The Index

