
Superseded by a more recent version

INTERNATIONAL TELECOMMUNICATION UNION

CCITT X.292
THE INTERNATIONAL (09/92)
TELEGRAPH AND TELEPHONE
CONSULTATIVE COMMITTEE

DATA COMMUNICATION NETWORKS

OSI CONFORMANCE TESTING
METHODOLOGY AND FRAMEWORK
FOR PROTOCOL RECOMMENDATIONS
FOR CCITT APPLICATIONS –
The Tree and Tabular Combined Notation
(TTCN)

Superseded by a more recent version

Recommendation X.292

Superseded by a more recent version

FOREWORD

The CCITT (the International Telegraph and Telephone Consultative Committee) is a permanent organ of the
International Telecommunication Union (ITU). CCITT is responsible for studying technical, operating and tariff
questions and issuing Recommendations on them with a view to standardizing telecommunications on a worldwide
basis.

The Plenary Assembly of CCITT which meets every four years, establishes the topics for study and approves
Recommendations prepared by its Study Groups. The approval of Recommendations by the members of CCITT between
Plenary Assemblies is covered by the procedure laid down in CCITT Resolution No. 2 (Melbourne, 1988).

Recommendation X.292 was prepared by Study Group VII and was approved under the Resolution No. 2
procedure on the 10th of September 1992.

CCITT NOTE

In this Recommendation, the expression “Administration” is used for conciseness to indicate both a
telecommunication administration and a recognized private operating agency.

 ITU 1993

All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means, electronic or
mechanical, including photocopying and microfilm, without permission in writing from the ITU.

Superseded by a more recent version

Recommendation X.292 (09/92) Superseded by a more recent version 3

TABLE OF CONTENTS

Recommendation X.292 (09/92) Page

0 Introduction ..1

1 Scope ..2

2 References ..3

3 Definitions ..3

4 Abbreviations ..11

5 The syntax forms of TTCN ...12

6 Compliance ..13

7 Conventions ..13

8 TTCN test suite structure...16

9 Test Suite Overview ..18

10 Declarations Part ..23

11 Constraints Part ..57

12 Specification of constraints using tables ...66

13 Specification of constraints using ASN.1 ...71

14 Dynamic Part 76

15 Page continuation ..111

Annex A – Syntax and static semantics of TTCN

A.1 Introduction..115

A.2 Conventions for the syntax description...115

A.3 The TTCN.MP syntax productions In BNF..116

A.4 General static semantics requirements..139

A.5 Differences between TTCN.GR and TTCN.MP...142

Annex B – Operational Semantics of TTCN

B.1 Introduction..144

B.2 Precedence ...144

B.3 Processing of test case errors...144

B.4 Transformation algorithms..145

B.5 TTCN operational semantics...147

Annex C – Compact proformas

C.1 Introduction..163

C.2 Compact proformas for constraints ...163

C.3 Compact proforma for Test Cases...169

Annex D – Examples

D.1 Examples of tabular constraints ..170

D.2 Examples of ASN1 constraints ...175

D.3 Base and modified constraints...182

D.4 Type definition using macros..184

D.5 Use of REPEAT...185

D.6 Test suite operations ..185

D.7 Example of a Test Suite Overview..186

D.8 Example of a Test Case in TTCN.MP Form...188

Superseded by a more recent version

4 Recommendation X.292 (09/92) Superseded by a more recent version

Page

Annex E – Style guide

E.1 Introduction ...191

E.2 Test case structure ...191

E.3 Use of TTCN with different abstract test methods..192

E.4 Use of Defaults..193

E.5 Limiting the execution time of a Test Case...193

E.6 Structured Types ...194

E.7 Abbreviations ..194

E.8 Test descriptions..194

E.9 Assignments on SEND events...195

E.10 Multi-service PCOs...195

Annex F – List of BNF production numbers

F.1 Introduction ...195

F.2 The production Index ..196

Annex G – Index

G.1 Introduction ...202

G.2 The Index ..202

PAGE BLANCHE

Superseded by a more recent version

Recommendation X.292 (09/92) Superseded by a more recent version 1

Recommendation X.292
Recommendation X.292 (09/92) Superseded by a more recent version

OSI CONFORMANCE TESTING METHODOLOGY AND FRAMEWORK
FOR PROTOCOL RECOMMENDATIONS FOR CCITT APPLICATIONS

The Tree and Tabular Combined Notation (TTCN)1)

(1992)

The CCITT,

considering

(a) the Recommendation X.200 defines the Reference Model of Open Systems Interconnection for CCITT
Applications;

(b) that the objective of OSI will not be completely achieved until systems can be tested to determine whether
they conform to the relevant OSI protocol Recommendations;

(c) that standardized test suites should be developed for each OSI protocol Recommendation as a means to:

– obtain wide acceptance and confidence in conformance test results produced by different testers,

– provide confidence in the interoperability of equipments which passed the standardized conformance
tests;

(d) the need for standardising the conformance testing process to achieve an acceptable and useful degree of
comparability of results of conformance assessments of similar products,

unanimously declares the view

that the notation in which generic and abstract test cases are written should be in accordance with this
Recommendation.

0 Introduction

This Recommendation defines an informal test notation, called the Tree and Tabular Combined Notation
(TTCN), for use in the specification of OSI abstract conformance test suites.

In constructing a standardized abstract test suite, a notation is used to describe abstract test cases. The test
notation can be an informal notation (without formally defined semantics) or a formal description technique (FDT).
TTCN is an informal notation with clearly defined semantics.

TTCN is designed to meet the following objectives:

a) to provide a notation in which abstract test cases can be expressed in standardized abstract test suites;

b) to provide a notation which is independent of test methods, layers and protocols;

c) to provide a notation which reflects the abstract testing methodology defined in the X.290-Series
Recommendations.

In the abstract testing methodology a test suite is looked upon as a hierarchy ranging from the complete test
suite, through test groups, test cases and test steps, down to test events. TTCN provides a naming structure to reflect the
position of the test cases in this hierarchy. It also provides the means of structuring test cases as a hierarchy of test

1) Recommendation X.292 and ISO/IEC 9646 Part 3, Information technology – Open Systems Interconnection – Conformance

testing methodology and framework – Part 3: The Tree and Tabular Combined Notation (TTCN), are technically aligned.

Superseded by a more recent version

2 Recommendation X.292 (09/92) Superseded by a more recent version

steps culminating in test events. In TTCN the basic test events are sending and receiving Abstract Service Primitives
(ASPs), protocol Data Units (PDUs) and timer events.

Two forms of the notation are provided: a human-readable tabular form, called TTCN.GR for use in OSI
conformance test suite standards; and a machine-processable form, called TTCN.MP, for use in representing TTCN in a
canonical form within computer systems and as a syntax to be used when transferring TTCN test cases between different
computer systems. The two forms are semantically equivalent.

This Recommendation is also published as ISO/IEC 9646 Part 3. Annex F in ISO/IEC 9646 Part 3 provides a
summary of differences between DIS and IS versions of TTCN.

1 Scope

This Recommendation defines an informal test notation, called the Tree and Tabular Combined Notion
(TTCN), for OSI conformance test suites, which is independent of test methods, layers and protocols, and which reflects
the abstract testing methodology defined in Recommendations X.290 and X.291.

It also specifies requirements and provides guidance for using TTCN in the specification of system-
independent conformance test suites for one or more OSI Recommendations. It specifies two forms of the notation: one,
a human-readable form, applicable to the production of conformance test suite Recommendations for OSI protocols; and
the other, a machine-processable form, applicable to processing within and between computer systems.

This Recommendation applies to the specification of conformance test cases which can be expressed abstractly
in terms of control and observation of protocol data units and abstract service primitives. Nevertheless, for some
protocols, test cases may be needed which cannot be expressed in these terms. The specification of such test cases is
outside the scope of this Recommendation, although those test cases may need to be included in a conformance test suite
Recommendation.

Note – For example, some static conformance requirements related to an application service may require
testing techniques which are specific to that particular application.

This Recommendation specifies requirements on what a test suite Recommendation may specify about a
conforming realization of the test suite, including the operational semantics of TTCN test suites.

Note – Recommendation X.293 specifies requirements concerning test realization including ETS derivation.

This Recommendation applies to the specification of conformance test suites for OSI protocols in OSI layers 2
to 7, specifically including Abstract Syntax Notation One (ASN.1) based protocols. The following are outside the scope
of this Recommendation:

a) the specification of conformance test suites for multi-peer or Physical layer protocols;

b) the relationship between TTCN and formal description techniques;

c) the specification of test cases in which more than one behaviour description is to be run concurrently;

Note – Use of parallel trees and synchronization between them is to be covered by a future amendment to
this Recommendation.

d) the means of realization of executable test suites (ETS) from abstract test suites.

Superseded by a more recent version

Recommendation X.292 (09/92) Superseded by a more recent version 3

2 References

– Rec. X.200 (1988), Reference Model of Open Systems Interconnection for CCITT Applications. (See also
ISO 7498.)

– Rec. X.210 (1988), Open Systems Interconnection Layer Service Definition Conventions. (See also
ISO/TR 8509.)

– Rec. X.208 (1988), Specification of Abstract Syntax Notation One (ASN.1). (See also ISO/IEC 8824)

– Rec. X.209 (1988), Specification of Basic Encoding Rules for Abstract Syntax Notation One (ASN.1).
(See also ISO/IEC 8825)

– Rec. X.290 (1992), OSI Conformance Testing Methodology and Framework for Protocol
Recommendations for CCITT Applications – General Concepts. (See also ISO/IEC 9646, Part 1.)

– Rec. X.291 (1992), OSI Conformance Testing Methodology and Framework for Protocol
Recommendations for CCITT Applications – Abstract Test Suite Specification. (See also ISO/IEC 9646,
Part 2)

– Rec. X.293 (1992), OSI Conformance Testing Methodology and Framework for Protocol
Recommendations for CCITT Applications – Test Realization. (See also ISO/IEC 9646, Part 4.)

– Rec. X.294 (1992), OSI Conformance Testing Methodology and Framework for Protocol
Recommendations for CCITT Applications – Requirements on Test Laboratories and Clients for the
Conformance Assessment Process. (See also ISO/IEC 9646, Part 5.)

ISO 646: 1991, Information technology – ISO 7-bit coded character set for information interchange.

ISO/IEC 10646-1 . . . 1), Information technology – Multiple-Octet Coded Character Set – Part 1:
Architecture and Basic Multilingual Plane.

3 Definitions

3.1 Basic terms from Recommendation X.290

The following terms defined in Recommendation X.290 apply:

a) abstract service primitive;

b) abstract testing methodology;

c) abstract test case;

d) abstract test method;

e) abstract test suite;

f) conformance log;

g) conformance test suite;

h) coordinated test method;

i) distributed test method;

j) executable test case;

k) executable test case error;

1) executable test suite;

m) fail verdict;

1) Presently at the stage of draft.

Superseded by a more recent version

4 Recommendation X.292 (09/92) Superseded by a more recent version

n) idle testing state;

o) implementation under test;

p) inconclusive verdict;

q) invalid test event;

r) local test method;

s) lower tester;

t) means of testing;

u) pass verdict;

v) PICS proforma;

w) PIXIT proforma;

x) protocol implementation conformance statement;

y) protocol implementation extra information for testing;

z) point of control and observation;

aa) remote test method;

ab) stable testing state;

ac) standardized abstract test suite;

ad) static conformance requirements;

ae) syntactically invalid test event;

af) system under test;

ag) test body;

ah) test case;

ai) test case error;

aj) test coordination procedures;

ak) test event;

al) test group;

am) test group objective;

an) test laboratory;

ao) test management protocol;

ap) test outcome;

aq) (test) postamble;

ar) (test) preamble;

as) test purpose;

at) test realization;

au) test realizer;

av) test step;

aw) test suite;

ax) test system;

ay) upper tester;

az) (test) verdict;

ba) testing state.

Superseded by a more recent version

Recommendation X.292 (09/92) Superseded by a more recent version 5

3.2 Terms from Recommendation X.200

The following terms defined in Recommendation X.200 apply:

a) application layer;

b) protocol data unit;

c) service access point;

d) session layer;

e) subnetwork;

f) transfer syntax;

g) transport layer.

3.3 Terms from Recommendation X.210

The following terms defined in Recommendation X.210 apply:

service-provider

3.4 Terms from Recommendation X.208

The following terms defined in Recommendation X.208 apply:

a) bitstring type;

b) characterstring type;

c) enumerated type;

d) external type;

e) object identifier;

f) octetstring type;

g) real type;

h) selection type;

i) sequence type;

j) sequence-of type;

k) set type;

l) set-of type;

m) subtype.

Note – Where there may be ambiguity with TTCN terms these terms are prefixed with the term ASN.1.

3.5 Terms from Recommendation X.209

The following term defined in Recommendation X.209 applies:

encoding

3.6 TTCN specific terms

For the purposes of this Recommendation the following definitions apply:

3.6.l ATTACH construct

A TTCN statement which attaches a Test Step to a calling tree.

Superseded by a more recent version

6 Recommendation X.292 (09/92) Superseded by a more recent version

3.6.2 base constraint

Specifies a set of default values for each and every field in an ASP or PDU type definition.

3.6.3 base type

The type from which a type defined in a test suite is derived.

3.6.4 behaviour line

An entry in a dynamic behaviour table representing a test event or other TTCN statement together with
associated label, verdict, constraints reference and comment information as applicable.

3.6.5 behaviour tree

A specification of a set of sequences of test events, and other TTCN statements.

3.6.6 blank entry

In a modified compact constraint table a blank entry in a constraint parameter or field denotes that a constraint
value is to be inherited.

3.6.7 calling tree

The behaviour tree to which a Test Step is attached.

3.6.8 compact constraint table

Declaration of a set of constraints for an ASP, PDU or Structured Type arranged in a single table.

3.6.9 compact test case table

Declaration of a set of Test Cases for a given Test Group arranged in a single table.

3.6.10 constraints part

That part of a TTCN test suite concerned with the specification of the values of ASP parameters and PDU
fields being sent to the IUT, and conditions on ASP parameters and PDU fields received from the IUT.

3.6.l1 constraints reference

A reference to a constraint, given in a behaviour line.

3.6.12 declarations part

That part of a TTCN test suite concerned with the definition and/or declaration of all non-predefined
components that are used in the test suite.

Superseded by a more recent version

Recommendation X.292 (09/92) Superseded by a more recent version 7

3.6.13 default behaviour

The events, and other TTCN statements, which may occur at any level of the associated tree, and which are
indicated in the Default behaviour proforma.

3.6.14 default group

A named set of default behaviours.

3.6.15 default group inference

A path specifying the logical location of a Default in the Default Library.

3.6.16 default identifier

A unique name for a Default.

3.6.17 default library

The set of the Default behaviours in a test suite.

3.6.18 default reference

A reference to a Default in the Default Library from a Test Case or Test Step table.

3.6.19 derivation path

An identifier, consisting of a base constraint identifier concatenated with one or more modified constraint
identifiers, separated by dots and finishing with a dot.

3.6.20 dynamic chaining

The linking from constraint declarations of an ASP parameter or PDU field to the constraint declaration of
another PDU by means of parameterization. Which PDUs are chained is specified in the constraints reference of a
behaviour line.

3.6.21 dynamic part

That part of a TTCN test suite concerned with the specification of Test Case, Test Step and Default dynamic
behaviour descriptions.

3.6.22 implicit send event

A mechanism used in Remote Test Methods for specifying that the IUT should be made to initiate a particular
PDU or ASP.

3.6.23 level of indentation

Indicates the tree structure of a behaviour description. It is reflected in the behaviour description by indentation
of text.

3.6.24 local tree

A behaviour tree defined in the same proforma as its calling tree.

3.6.25 modified constraint

A constraint defined for an ASP or a PDU that already has a base constraint, and which makes modifications
on that base constraint.

Superseded by a more recent version

8 Recommendation X.292 (09/92) Superseded by a more recent version

3.6.26 operational semantics

Semantics explaining the execution of a TTCN behaviour tree.

3.6.27 otherwise event

The TTCN mechanism for dealing with unforeseen test events in a controlled way.

3.6.28 overview part

That part of a TTCN test suite concerned with presenting an overview of the structure of the test suite, the
structure (if any) of the Test Step Library, the structure (if any) of the Default Library and the association of selection
expressions (if any) with Test Cases and/or Test Groups. This part also provides indexes to Test Cases, Test Steps and
Defaults.

3.6.29 preliminary result

A result recorded before the end of a test case indicating whether the associated part of the test case passed,
failed or was inconclusive.

3.6.30 pseudo-event

A pseudo-event is a TTCN expression or Timer operation appearing on a statement line in the behaviour
description without any associated event.

3.6.31 qualified event

An event that has an associated Boolean expression.

3.6.32 receive event

The receipt of an ASP or PDU at a named or implied PCO.

3.6.33 root tree

The main behaviour tree of a Test Case, occurring at the level of entry into the Test Case.

3.6.34 send event

The sending of an ASP or PDU to a named or implied PCO.

3.6.35 set of alternatives

TTCN statements coded at the same level of indentation and belonging to the same predecessor node. They
represent the possible events, pseudo-events and constructs which are to be considered at the relevant point in the
execution of the Test Case.

3.6.36 single constraint table

Declaration of a constraint for a single ASP or PDU of a given type arranged in a single table.

Superseded by a more recent version

Recommendation X.292 (09/92) Superseded by a more recent version 9

3.6.37 snapshot semantics

A semantic model to eliminate the effect of timing on the execution of a Test Case, defined in terms of
snapshots of the test environment, during which the environment is effectively frozen for a prescribed period.

3.6.38 specific value

A value in TTCN which does not contain any matching mechanism or unbound variable.

3.6.39 static chaining

The linking from constraint declarations of an ASP parameter or PDU field to the constraint declaration of
another PDU by explicitly referencing a constraint as its value.

3.6.40 static semantics

Semantic rules that restrict the usage of the TTCN syntax.

3.6.41 structured type

A collection of one or more ASP parameters or PDU fields which may exist in one or more ASP or PDU type
definition which is defined in a separate declaration and which may be used to specify a portion of a flat structure or a
substructure within the ASP or PDU.

3.6.42 test case identifier

A unique name for a Test Case.

3.6.43 test case variable

One of a set of variables declared globally to the test suite, but whose value is retained only for the execution
of a single Test Case.

3.6.44 test group reference

A path specifying the logical location of a Test Case in the ATS structure.

3.6.45 test step group

A named set of test steps.

3.6.46 test stop group reference

A path specifying the logical location of a Test Step in the Test Step Library.

3.6.47 test step identifier

A unique name for a Test Step.

Superseded by a more recent version

10 Recommendation X.292 (09/92) Superseded by a more recent version

3.6.48 test step library

The set of the Test Step dynamic behaviour descriptions in the test suite, that are not local Test Steps.

3.6.49 test stop objective

An informal statement of what the Test Step is meant to accomplish.

3.6.50 test suite constant

One of a set of constants, not derived from the PICS or PIXIT, which will remain constant throughout the test
suite.

3.6.51 test suite parameter

One of a set of constants derived from the PICS or PIXIT which globally parameterize a test suite.

3.6.52 test suite variable

One of a set of variables declared globally to the test suite, and which retain their values between Test Cases.

3.6.53 timeout event

An event which is used within a behaviour tree to check for expiration of a specified timer.

3.6.54 tree attachment

The method of indicating that a behaviour tree specified elsewhere (either at a different point in the current
proforma, or as a Test Step in the Test Step Library) is to be included in the current behaviour tree.

3.6.55 tree header

An identifier for a local tree followed by an optional list of formal parameters for the tree.

3.6.56 tree identifier

A name identifying a local tree.

3.6.57 tree leaf

A TTCN statement in a behaviour tree or Test Step which has no specified subsequent behaviour.

3.6.58 tree node

A single TTCN statement.

3.6.59 tree notation

The notation used in TTCN to represent Test Cases as trees.

3.6.60 TTCN statement

An event, a pseudo-event or construct which is specified in a behaviour description.

Superseded by a more recent version

Recommendation X.292 (09/92) Superseded by a more recent version 11

3.6.61 unforeseen test event

A test event which has not been identified as a test event within a foreseen test outcome in the test suite. It is
normally handled using the OTHERWISE event.

3.6.62 unqualified event

An event that does not have an associated Boolean expression.

4 Abbreviations

4.1 Abbreviations defined in Recommendation X.290

For the purposes of this Recommendation, the following abbreviations defined in Recommendation X.290, § 4
apply:

ATS Abstract test suite

ASP Abstract service primitive

ETS Executable test suite

IUT Implementation under test

LT Lower tester

MOT Means of testing

PCO Point of control and observation

PICS Protocol implementation conformance statement

PIXIT Protocol implementation extra information for testing

SUT System under test

TMP Test management protocol

TTCN Tree and tabular combined notation

UT Upper tester

4.2 Abbreviations defined in Recommendation X.291

For the purposes of this Recommendation, the following abbreviations defined in Recommendation X.291, § 4
apply:

CS Coordinated single-layer (test method)

DS Distributed single-layer (test method)

LS Local single-layer (test method)

RS Remote single-layer (test method)

4.3 Other abbreviations

For the purposes of this Recommendation, the following abbreviations also apply:

ASN.1 Abstract syntax notation one

BNF Backus-Naur form (extended BNF used in TTCN)

DIS Draft international standard

Superseded by a more recent version

12 Recommendation X.292 (09/92) Superseded by a more recent version

FDT Formal description technique

FIFO First in first out

IS International standard

FTAM File transfer access and management

OSI Open systems interconnection

PDU Protocol data unit

SAP Service access point

TCP Test coordination procedure

TTCN.GR Tree and tabular combined notation, graphical form

TTCN.MP Tree and tabular combined notation, machine processable form

5 The syntax forms of TTCN

TTCN is provided in two forms:

a) a graphical form (TTCN.GR) suitable for human readability;

b) a machine processable form (TTCN.MP) suitable for transmission of TTCN descriptions between
machines and possibly suitable for other automated processing.

TTCN.GR is defined using tabular proformas. TTCN.MP is defined using syntax productions which have
special

TTCN.MP keywords as terminal symbols instead of the fixed parts of the tabular proformas (e.g. the box lines
and headers). The entries within the TTCN.GR tables are defined by syntax productions which do not include any
TTCN.MP keywords; these productions are common to both TTCN.GR and TTCN.MP.

The syntax productions of TTCN.MP are specified in Annex A. As an aid to clarifying the TTCN.GR
description, many of the syntax productions that are common to both TTCN.MP and TTCN.GR are embedded in the text
of the body of this Recommendation; these are marked: SYNTAX DEFINITION. To aid readability some productions
will appear in several places in the text.

The syntax productions embedded within the text are intended to be identical copies of the corresponding
productions from Annex A, but if there is any conflict Annex A shall take precedence.

The text description of TTCN.GR is intended to be consistent with the underlying syntax as defined in the
TTCN.MP syntax productions, except for the differences identified in § A.5 and the static semantic restrictions specified
in Annex A (which are common to both TTCN.MP and TTCN.GR).

If there is any conflict between the TTCN.GR syntax and static semantics as described by the text and as
described by Annex A, then:

a) except for the differences specified in § A.5, the TTCN.MP syntax productions shall have precedence
over the text and syntax productions in the body of this Recommendation;

b) the static semantics restrictions specified in § A.4 and in the static semantics comments (marked STATIC
SEMANTICS) on the syntax productions in § A.3 specify restrictions on what is valid TTCN, restricting
what is allowed according to the syntax productions;

c) the static semantics restrictions specified in Annex A shall have precedence over the text in the body of
this Recommendation.

Superseded by a more recent version

Recommendation X.292 (09/92) Superseded by a more recent version 13

If an ATS is specified in TTCN.GR in compliance with this Recommendation, then there is a unique
corresponding TTCN.MP representation of that ATS sharing the same underlying syntax. These two representations
have identical operational semantics. Two different representations of an ATS are equivalent if and only if they have
identified operational semantics.

Note – If there is a standardized ATS specified in TTCN.GR and an apparently equivalent TTCN.MP
representation, but there is a conflict in interpretation of the operational semantics of the two, then the operational
semantics of the TTCN.GR takes precedence, because it is the TTCN.GR version that is the standardized ATS.

6 Compliance

6.1 ATSs that comply with this Recommendation shall satisfy the requirements for either TTCN.GR or
TRCN.MP.

Note – See Recommendation X.290, § 10, for an explanation of the use of the term “compliance” in the X.290-
Series Recommendations.

6.2 ATSs that comply with the requirements of TTCN.GR shall satisfy the TTCN.GR syntax requirements stated
in §§ 8 through 15 and § A.4.

6.3 ATSs that comply with the requirements of TTCN.MP shall satisfy the TTCN.MP syntax requirements stated
in § A.3.

6.4 ATSs that comply with this Recommendation shall satisfy the static semantic requirements specified in §§ 7
through 15 and have operational semantics in accordance with the definition of the operational semantics in Annex B,
such that they are semantically valid.

6.5 A standardized ATS that complies with this Recommendation shall require that any realization of that test suite
that claims to conform to that standardized ATS shall:

a) have operational semantics equivalent to the operational semantics of the test suite as defined by
Annex B;

b) comply with Recommendation X.293.

Note – If, during execution of the executable test case that conforms to the TTCN specification of the
corresponding abstract test case, a static semantic or operational semantic error is detected, then a test laboratory
complying with Recommendation X.294 will record an abstract or executable test case error, depending on where the
error is located.

6.6 Any standardized ATS that reached Draft International Standard status during or before 1991 or that is
approved as a CCITT Recommendation during the 1989-1992 Study Period may be stated to comply with this
Recommendation but use some or all of the Draft International Standard (DIS) TTCN features which have changed
between DIS and International Standard (IS). Such a test suite shall reference this Recommendation and contain a
description of the differences between the features of TTCN that it uses and those specified in this Recommendation.

7 Conventions

7.1 lntroduction

The following conventions have been used when defining the TTCN.GR table proformas and the TTCN.MP
grammar.

Superseded by a more recent version

14 Recommendation X.292 (09/92) Superseded by a more recent version

7.2 Syntactic metanotation

Table 1/X.292 defines the metanotation used to specify the extended form of BNF grammar for TTCN
(henceforth called BNF):

Example 1 – Use of the BNF metanotation:

FormalParList ::= "("FormalPar&Type {SemiColon FormalPar&Type}")"

The following conventions will be used for text used in table proformas:

a) Bold text (like this) shall appear verbatim in each actual table in a TTCN test suite;

b) Text in italics (like this) shall not appear verbatim in a TTCN test suite. This font is used to indicate that
actual text shall be substitute for the italicized symbol. Syntax requirements for the actual text can be
found in the corresponding TTCN.MP BNF production.

Example 2 – SuiteIdentfier corresponds to production 3 in Annex A

7.3 TTCN.GR table proformas

7.3.1 Introduction

The TTCN.GR is defined using two types of tables:

a) single TTCN object tables (see § 7.3.2), which are used to define, declare or describe a single TTCN
object such as a PDU declaration or a Test Case dynamic behaviour;

b) multiple TTCN object tables (see § 7.3.3); are used to define a number of TTCN object of the same type
in a single table, such as simple type definitions or Test Case Variables.

7.3.2 Single TTCN object tables

The general lay-out of a table for a single TTCN object is shown in Figure 1/X.292:

The header of the table contains general information on the object defined in the table. The first item in the
header, named Object Name, contains an identifier for the object. The last item, named Comments contains an informal
description of the object. This item may be omitted.

The body of the table consists of one or more columns. Each column has a title. The rightmost column, titled
Comments, contains informal descriptions of the components of the object specified in the body. It does not exist in all
proformas. In proformas containing a comments column this column can be omitted.

The footer of the table contains one item, named Detailed Comments. This footer can be used for the same
purposes as the comments column in the body of the table. The test suite specifier can use the detailed comments footer
in combination with the comments column, instead of a comments column, or not at all, in which case the footer can be
omitted.

TABLE 1/X.292

The TTCN.MP Syntactic Metanotation

::= Is defined to be

| Alternative

[abc] 0 or 1 instance of abc

{abc} 0 or more instances of abc

{abc}+ 1 or more instances of abc

(...) Textual grouping

abc The non-terminal symbol abc

abc A terminal symbol abc

"abc" A terminal symbol abc

Superseded by a more recent version

Recommendation X.292 (09/92) Superseded by a more recent version 15

7.3.3 Multiple TTCN object tables

The general lay-out of a table for multiple TTCN objects is shown in Figure 2/X.292.

Title of table Title

Object name :
: Header
:

Comments : This entire last header entry is OPTIONAL

Object name ... Other columns ... Comments ↑

This last column is
OPTIONAL

↓

Body

Detailed comments: This footer is OPTIONAL Footer

FIGURE 1/X.292

Generalized layout of a single declaration table

Title of table Title

Object name ... Other columns ... Comments ↑

This last column is
 OPTIONAL

↓

Body

Detailed comments: This footer is OPTIONAL Footer

FIGURE 2/X.292

Generalized layout of a multiple declaration table

Superseded by a more recent version

16 Recommendation X.292 (09/92) Superseded by a more recent version

This type of table has no header section. The body of the table consists of one or more columns. Each column
has a title. The leftmost column, titled Object Name, contains identifiers of the objects defined or declared in the table.
The rightmost column, titled Comments, contains informal descriptions of the objects defined or declared in the table. It
does not exist in all proformas. When it exists its use is optional for the test suite specifier. The footer of the table is
identical to the footer of the single table type.

7.3.4 Alternative compact tables

In some cases it is allowed to display a number of single TTCN object tables in an alternative space-saving
compact format. That is, a number of single TTCN object tables may be displayed in a single compact table. The only
tables that may be presented in this format are:

– ASP constraints (tabular and ASN.1);

– PDU constraints (tabular and ASN.1);

– Structured Type constraints;

– ASN.1 Type constraints

– Test Case dynamic behaviours.

The formats of these alternative compact proformas are defined in Annex C.

7.3.5 Specification of proformas

This Recommendation specifies 32 types of TTCN.GR tables and provides a graphic view of the
corresponding proformas. These proformas conform to the generalised layout of §§ 7.3.2 and 7.3.3. When a column is
shaded in a pro-forma, this is a reminder that the column is optional.

7.4 Free Text and Bounded Free Text

Some table entries allow the use of free text, i.e. characters from any of the character sets defined in
ISO 10646. The following restrictions apply:

a) Free Text shall not contain the combination of characters “*/”, unless preceded by backslash (\), as this
is used in the TTCN.MP to indicate the end of a Free Text string. This means that double backslash (\\)
means backslash.

b) The combinations of characters “/*” and “*/” which open and close BoundedFreeText strings in the
TTCN.MP shall not appear in the TTCN.GR, i.e. wherever a Bounded FreeText string appears in a table
section, as in a Full Identifier, these combinations of characters shall not be printed.

8 TTCN test suite structure

8.1 Introduction

TTCN allows a test suite to be hierarchically structured in accordance with Recommendation X.290, § 8.1.
The components of this structure are:

a) Test Groups;

b) Test Cases;

c) Test Steps;

A TTCN test suite may be completely flat (i.e. have no structure) in which case there are no Test Groups.

TTCN allows the use of Test Step Groups and Default Groups, similar to the concept of Test Groups, in order
to structure Test Steps and Defaults hierarchically. This hierarchical structure is optional.

Superseded by a more recent version

Recommendation X.292 (09/92) Superseded by a more recent version 17

8.2 Test Group References

TTCN supports a naming structure that shows a conceptual grouping of Test Cases. Test Groups can be
nested. Test Cases can also be stand alone (see Recommendation X.290, § 8, Figure 9). The Test Group References
define the structure of the test suite. Test Group References shall have the following syntax:

Syntax definition

235 TestGroupeReference ::= [SuiteIdentifier "/"] {TestGroupIdentifier "/"}

Example 3 – A Transport group reference: TRANSPORT/CLASS0/CONN_ESTAB/

8.3 Test Stop Group References

8.3.1 Test steps may be explicitly identified in TTCN and used to structure Test Cases and other Test Steps. Alter-
natively Test Steps may be implicit within the behaviour description of a Test Case. Explicit Test Steps may be specified
either:

– locally within a Test Case or Test Step behaviour description; or

– globally within a Test Step Library, which may be hierarchically structured into Test Step Groups.

Note – For example, a preamble may consist of just a few statement lines within a behaviour description of the
Test Case, in which case it is implicit. Alternatively, a preamble may be explicitly specified with its own behaviour
description. If such. an explicit preamble is only of use within one Test Case, then it may be specified locally within that
Test Case, but if it is of use in several Test Cases then it should be specified in the Test Step Library.

8.3.2 Local Test Steps are identified simply by a tree identifier. Global Test Steps are identified by a Test Step
identifier. Global Test Steps also have a Test Step Group Reference, which shows the position of a Test Step in the Test
Step Library. The structure of the Test Step Library is independent of the structure of the test suite. Test Step Group
References shall have the following syntax:

Syntax definition

248 TestStepGroupReference ::= [Suiteldentifier "/"] {TestStepGroupIdentifier "/"}

Example 4 – Transport Test Step Group Reference:
TRANSPORT/STEP_LIBRARY /CLASS0/CONN_ESTAB/

8.4 Default Group References

Default behaviours (if any) are located in a Default Library.

A Default Group Reference specifies the location of the Default in the Default Library, which may be
hierarchically structured. The Default Library has no influence on the test suite structure itself. Default Group
References shall have the following syntax:

Syntax definition

258 DefaultGroupReference ::= [SuiteIdentifier "/"] {DefaultGroupIdentifier "/"}

Example 5 – Transport Default Group Reference: TRANSPORT/DEFAULT_LIBRARY/CLASS0/

Superseded by a more recent version

18 Recommendation X.292 (09/92) Superseded by a more recent version

8.5 Components of a TTCN test suite

An ATS written in TTCN shall have the following four sections in the order indicated:

a) Suite Overview (see § 9), which contains the information needed for the general presentation and
understanding of the test suite, such as test references and a description of its overall purpose;

b) Declarations Part (see § 10), which contains the definitions or declarations of all the components that
comprise the test suite (e.g. PCOS, Timers, ASPs, PDUs and their parameters or fields);

c) Constraints Part (see §§ 11, 12, 13), which contains the declarations of values for the ASPs, PDUs and
their parameters used in the Dynamic Part. The constraints shall be specified using:

1) TTCN tables; or

2) the ASN.1 value notation; or

3) both TTCN tables and the ASN.1 value notation.

d) Dynamic Part (see § 14), which comprises three sections that contain tables specifying test behaviour
expressed mainly in terms of the occurrence of ASPs or PDUs at PCOs. These sections are:

1) the Test Case dynamic behaviour descriptions;

2) a library containing Test Step dynamic behaviour descriptions (if any);

3) a library containing Default dynamic behaviour descriptions (if any).

9 Test Suite Overview

9.1 Introduction

The purpose of the Test Suite Overview part of the ATS is to provide information needed for general
presentation and understanding of the test suite. This includes:

a) Test Suite Structure (see § 9.2);

b) Test Case Index (see § 9.3);

c) Test Step Index (see § 9.4);

d) Default Index (see § 9.5).

9.2 Test Suite Structure

The Test Suite Structure contains identification of the pertinent reference documents, specification of the
structure of the test suite, a brief description of its overall purpose and references to the Test Group selection criteria.

The Test Suite Structure shall include at least the following information:

a) the name of the test suite;

b) references to the relevant base Recommendations;

c) a reference to the PICS proforma;

d) a reference to the partial PIXIT proforma (see Recommendation X.291, § 15);

e) an indication of the test method or methods to which the test suite applies, plus for the coordinated Test
Methods a reference to where the TMP is specified;

f) other information which may aid understanding of the test suite, such as how it has been derived; this
should be included as a comment;

Superseded by a more recent version

Recommendation X.292 (09/92) Superseded by a more recent version 19

g) a list of Test Groups in the test suite (if any), where the following information shall be supplied for each
group:

1) the Test Group Reference, where the first identifier may be the suite name, and each successive
identifier represents further conceptual ordering of the test suite. Test Groups shall be listed in the
order that their corresponding Test Cases appear in the ATS. Furthermore, they shall be ordered such
that every group within a single group immediately follows that group. All Test Groups in the test
suite shall be listed;

2) an optional selection expression identifier, which references an entry in the Test Case Selection
Expression Definitions table used to determine if the Test Cases in the group apply to specific IUTs.
This column may contain the identifier of a selection expression applicable to the Test Group. If a
selection expression identifier is provided for a group, and the referenced selection expression
evaluates to FALSE, then no Test Case in that group shall be selected for execution. If the selection
expression evaluates to TRUE then Test Cases in that group shall be selected for execution
depending on the evaluation of the selection expressions relevant to subgroups of that group and/or
individual Test Cases. Omission of a selection expression identifier is equivalent to the Boolean
value TRUE;

3) the Test Group Objective, which is an informal statement of the objective of the Test Group;

4) a page number, providing the location of the first Test Case of the group in the ATS. The page
number listed with each Test Group Reference in the Test Suite Structure table shall be the page
number of the first Test Case behaviour description in the group.

This information shall be provided in the format shown in the following proforma:

Test Suite Structure

Suite Name : SuiteIdentifier
Standard Ref : FreeText
PICS Ref : FreeText
PIXIT Ref : FreeText
Test Method(s) : FreeText
Comments : [FreeText]

Test Group Reference
Selection

Ref Test Group Objective Page No.

.

.

.

.
TestGroupReference

.

.

.

.

.

.

.

.
[SelectExpr-

Identifier]
.
.
.

.

.

.

.
FreeText

.

.

.

.

.

.

.

.
Number

.

.

.

.

Detailed comments: [FreeText]

Proforma 1 – Test Suite Structure

Syntax definition

Syntax 300 SuiteIdentifier ::= Identifier
Syntax 235 TestGroupReference ::= [SuiteIdentifier "/"] {TestGroupIdentifier "/"}
Syntax 830 SelectExprIdentifier ::= Identifier

Superseded by a more recent version

20 Recommendation X.292 (09/92) Superseded by a more recent version

9.3 Test Case Index

The Test Case Index contains a complete list of all Test Cases in the ATS. The following information shall be
provided for each Test Case:

a) an optional Test Group Reference (if the ATS is structured into Test Groups), which defines where in the
test suite group structure the Test Case resides. If the group reference for a Test Case is missing, then the
Test Case is assumed to reside in the same Test Group as the previous Test Case in the index. Test
Groups shall be listed in the order in which they exist in the ATS. An explicit Test Group Reference shall
be provided for the first Test Case of each group. An explicit Test Group Reference shall also be provided
for each Test Case that immediately follows the last Test Case of the Test Group; this is necessary if a
Test Group contains both Test Groups and Test Cases;

b) the Test Case name, which shall be the identifier provided in the Test Case dynamic behaviour table. Test
Cases shall be listed in the order in which they exist in the ATS;

c) an optional selection expression identifier, which references an entry in the Test Case Selection
Expression Definitions table used to determine if the Test Case should be selected for execution. This
column may contain the identifier of a selection expression applicable to the Test Case. If a selection
expression identifier is provided, and the referenced selection expression evaluates to FALSE, then the
Test Case shall not be selected for execution. If the selection expression evaluates to TRUE then the Test
Case shall be selected for execution depending on the evaluation of the selection expressions for the Test
Groups containing the Test Case. A Test Case is selected if the selection expression for the Test Case, and
all groups containing the Test Case, evaluate to TRUE. Omission of a selection expression identifier is
equivalent to the Boolean value TRUE;

d) a description of the Test Case, which is possibly a shortened form of the test purpose;

e) a page number, providing the location of the Test Case in the ATS. The page number listed with each
Test Case Identifier in the Test Case Index table shall be the page number of the corresponding Test Case
behaviour description.

This information shall be provided in the format shown in the following proforma:

Test Case Index

Test Group Reference
Test

Case Id Selection Ref Description Page No.

.

.

.

.
[TestGroupReference]

.

.

.

.

.

.

.

.
TestCase
Identifier

.

.

.

.

.

.

.
[SelectExpr-

Identifier]
.
.
.

.

.

.

.
FreeText

.

.

.

.

.

.

.

.
Number

.

.

.

.

Detailed comments: [FreeText]

Proforma 2 – Test Case Index

Syntax definition

Syntax 235 TestGroupReference ::= [SuiteIdentifier "/"] {TestGroupIdentifier "/"}
Syntax 233 TestCaseIdentifier ::= Identifier
Syntax 830 SelectExprIdentifier ::= Identifier

Superseded by a more recent version

Recommendation X.292 (09/92) Superseded by a more recent version 21

9.4 Test Stop Index

The Test Step Index contains a complete list of all Test Steps in the ATS. The following information shall be
provided for each Test Step:

a) an optional Test Step Group Reference, (if the ATS is structured into Test Step Groups), which defines
where in the Test Step Library structure the Test Step resides. If the group reference for a Test Step is
missing, then the Test Step is assumed to reside in the same group as the previous Test Step in the index.
Test Step Groups shall be listed in the order in which they exist in the ATS. An explicit Test Step Group
Reference shall be provided for the first Test Step of each group. An explicit Test Step Group Reference
shall also be provided for each Test Step that immediately follows the last Test Step of the group; this is
necessary if a Test Step Group contains both Test Step Groups and Test Steps;

b) the Test Step name, which shall be the identifier provided in the Test Step dynamic behaviour table. Test
Steps shall be listed in the order in which they exist in the ATS;

c) a description of the Test Step, which is possibly a shortened form of the Test Step Objective;

d) a page number, providing the location of the Test Step in the ATS. The page number listed with each Test
Step Identifier in the Test Step Index table shall be the page number of the corresponding Test Step
behaviour description;

This information shall be provided in the format shown in the following proforma:

9.5 Default Index

The Default Index contains a complete list of all Defaults in the ATS. The following information shall be
provided for each Default:

a) an optional Default Group Reference, (if the ATS is structured into Default Groups), which defines where
in the Default Library structure the Default resides. If the group reference for a Default is missing, then
the Default is assumed to reside in the same group as the previous Default in the index. Defaults shall be
listed in the order in which they exist in the ATS. An explicit Default Group Reference shall be provided
for the first Default of each group. An explicit Default Group Reference shall also be provided for each
Default that immediately follows the last Default of the group;

Test Step Index

Test Step Group Reference
Test

StepId Description Page No.

.

.

.

.
[TestStepGroupReference]

.

.

.

.

.

.

.

.
TestStep
Identifier

.

.

.

.

.

.

.
FreeText

.

.

.

.

.

.

.

.
Number

.

.

.

.

Detailed comments: [FreeText]

Proforma 3 – Test Step Index

Syntax definition

Syntax 248 TestStepGroupReference ::= [SuiteIdentifier "/"] {TestStepGroupIdentifier "/"}
Syntax 246 TestStepIdentifier ::= Identifier

Superseded by a more recent version

22 Recommendation X.292 (09/92) Superseded by a more recent version

b) the Default name, which shall be the identifier provided in the Default dynamic behaviour table. Defaults
shall be listed in the order in which they exist in the ATS;

c) a description of the Default, which is possibly a shortened form of the Default Objective;

d) a page number, providing the location of the Default in the ATS. The page number listed with each
Default Identifier in the Default Index table shall be the page number of the corresponding Default
behaviour description.

This information shall be provided in the format shown in the following proforma:

Defaut Index

Default Group Reference DefaultId Description Page No.

.

.

.

.
[DefaultGroupReference]

.

.

.

.

.

.

.

.
Default

Identifier
.
.
.

.

.

.

.
FreeText

.

.

.

.

.

.

.

.
Number

.

.

.

.

Detailed comments: [FreeText]

Proforma 4 – Default Index

Syntax definition

Syntax 258 DefaultGroupReference ::= [SuiteIdentifier "/"] {DefaultGroupIdentifier "/"}
Syntax 257 DefaultIdentifier ::= Identifier

Superseded by a more recent version

Recommendation X.292 (09/92) Superseded by a more recent version 23

10 Declarations Part

10.1 Introduction

The purpose of the declarations part of the ATS is to define and declare all the components used in the test
suite. The following components of an ATS referenced from the overview part, the constraints part and the dynamic part
shall have been declared in the declarations part. These components are

a) definitions:

1) Test Suite Types (see § 10.2.3);

2) Test suite operations (see § 10.3.4);

b) parameterization and selection of Test Cases:

1) Test Suite Parameters (see § 10.4);

2) Test Case Selection Expressions (see § 10.5);

c) declarations/definitions:

1) Test Suite Constants (see § 10.6);

2) Test Suite Variables (see § 10.7.1);

3) Test Case Variables (see § 10.7.3);

4) PCOs (see § 10.8);

5) Timers (see § 10.9);

6) ASP types (see § 10.10);

7) PDU types (see § 10.11);

8) Aliases (see § 10.15).

10.2 TTCN types

10.2.1 Introduction

TTCN supports a number of predefined types and mechanisms that allow the definition of specific Test Suite
Types. These types may be used throughout the test suite and may be referenced when Test Suite Parameters, Test Suite
Constants, Test Suite Variables, ASP parameters, PDU fields etc. are declared.

10.2.2 Predefined TTCN types

A number of commonly used types are predefined for use in TTCN. All types defined in ASN.1 and in this
clause may be referenced even though they do not appear in a type definition in a test suite. All other types used in a test
suite shall be declared in the Test Suite Type definitions, ASP definitions or PDU definitions and referenced by name.

The following TTCN predefined types are considered to be the same as their counterparts in ASN.1:

a) INTEGER predefined type: A type with distinguished values which are the positive and negative whole
numbers, including zero.

Values of type INTEGER shall be denoted by one or more digits; the first digit shall not be zero unless
the value is 0; the value zero shall be represented by a single zero;

b) BOOLEAN predefined type: A type consisting of two distinguished values. Values of the BOOLEAN
type are TRUE and FALSE;

c) BITSTRING predefined type: A type whose distinguished values are the ordered sequences of zero,
one, or more bits.

Values of type BITSTRING shall be denoted by an arbitrary number (possibly zero) of zeros and ones,
preceded by a single ' and followed by the pair of characters 'B;

Superseded by a more recent version

24 Recommendation X.292 (09/92) Superseded by a more recent version

Example 6 – '01101'B

d) HEXSTRING predefined type: A type whose distinguished values are the ordered sequences of zero,
one, or more HEX digits, each corresponding to an ordered sequence of four bits.

Values of type HEXSTRING shall be denoted by an arbitrary number (possibly zero) of the HEX digits:

 0 1 2 3 4 5 6 7 8 9 A B C D E F

preceded by a single ' and followed by the pair of characters 'H; each HEX digit is used to denote the
value of a semi-octet using a hexadecimal representation;

Example 7 – AB01D'H

e) OCTETSTRING predefined type: A type whose distinguished values are the ordered sequences of zero
or a positive even number of HEX digits (every pair of digits corresponding to an ordered sequence of
eight bits).

Values of type OCTETSTRING shall be denoted by an arbitrary, but even, number (possibly zero) of the
HEX digits:

0 1 2 3 4 5 6 7 8 9 A B C D E F

preceded by a single ' and followed by the pair of characters 'O; each HEX digit is used to denote the
value of a semi-octet using a hexadecimal representation;

Example 8 – 'FF96'O

f) CharacterString predefined types: Types whose distinguished values are zero, one, or more characters
from some character set; the CharacterString types listed in Table 2/X.292 may be used; they are defined
in § 31 of Recommendation X.208.

Values of CharacterString types shall be denoted by an arbitrary number (possibly zero) of characters from the
character set referenced by the CharacterString type, preceded and followed by double quote ("); if the CharacterString
type includes the character double quote, this character shall be represented by a pair of double quote in the denotation
of any value.

TABLE 2/X.292

Predefined CharacterString Types

NumericString

PrintableString

TeletexString (i.e. T.61 String)

VideotexString

VisibleString (i.e. ISO646 String)

IA5String

GraphicString

GeneralString

Superseded by a more recent version

Recommendation X.292 (09/92) Superseded by a more recent version 25

10.2.3 Test Suite Type Definitions

10.2.3.1 Introduction

Type definitions to be used as types for data objects and as subtypes for structured ASPs, PDUs, etc., can be
introduce using a tabular format and/or ASN.1. Wherever types are referenced Within Test Suite Type definitions those
references shall not be recursive (neither directly or indirectly).

10.2.3.2 Simple Type Definitions using tables

To define a new Simple Type, the following information shall be provided:

a) a name for the type;

b) the base type, where the base type shall be a predefined type or a Simple Type. The base type is followed
by the type restriction that shall take one of the following forms:

1) a list of distinguished values of the base type; these values comprise the new type;

2) a specification of a range of values of type INTEGER; the new type comprises the values including
the lower boundary and the upper boundary specified in the range. In order to specify an infinite
range, the keyword INFINITY may be used instead of a value indicating that there is no upper
boundary or lower boundary;

3) a specification of a particular length or length range of a predefined or test suite string type; the
length value(s) shall be interpreted according to Table 4/X.292; only non-negative INTEGER literals
or the keyword INFINITY for the upper bound shall be used.

This information shall be provided in the format shown in the following proforma:

Simple Type Definitions

Type Name Type Definition Comments

.

.
SimpleTypeIdentifier

.

.

.

.
Type&Restriction

.

.

.

.
[FreeText]

.

.

Detailed Comments: [FreeText]

Proforma 5 – Simple Type Definitions

Syntax definition

Syntax 270 SimpleTypeIdentifier ::= Identifier
Syntax 290 Type&Restriction ::= Type [Restriction]
Syntax 331 Type ::= PredefinedType | Reference Type
Syntax 332 PredefinedType ::= INTEGER | BOOLEAN | BITSTRING | HEXSTRING | OCTETSTRING |
Syntax 000 CharacterString
Syntax 333 CharacterString ::= NumericString | PrintableString | TelexString | VideotexString |
Syntax 000 VisibleString | IA5String | GraphicString | GeneralString
Syntax 334 ReferenceType ::= TS_TypeIdentifier | ASP_Identifier | PDU_Identifier
Syntax 335 TS_TypeIdentifier ::= SimpleTypeIdentifier | StructIdentifier | ASN1_TypeIdentifier
Syntax 300 Restriction ::= LengthRestriction | IntegerRange | SimpleValueList
Syntax 310 LengthRestriction ::= SingleTypeLength | RangeTypeLength
Syntax 320 SingleTypeLength ::= "["Number "]"
Syntax 330 RangeTypeLength ::= "[" LowerTypeBound To UpperTypebound "]"
Syntax 340 IntegerRange ::= "(" LowerTypeBound To UpperTypeBound ")"
Syntax 350 LowerTypeBound ::= [Minus] Number | Minus INFINITY
Syntax 360 UpperTypeBound ::= [Minus] Number | INFINITY
Syntax 370 To ::= TO | ".."
Syntax 380 SimpleValueList ::= "(" [Minus] LiteralValue {Comma [Minus] LiteralValue} ")"

Superseded by a more recent version

26 Recommendation X.292 (09/92) Superseded by a more recent version

Where a range is used in a type definition either as a value range or as a length range (for strings) it shall be
stated with the lower of the two values on the left. An integer range shall be used only with a base type of INTEGER or
a type derived from INTEGER. In the latter case, integer range shall be a subrange of the set of values defined by the
base type.

Where a value list is used, the values shall be of the base type and shall be a true subset of the values defined
by the base Type. Where a length restriction is used, the set of values for a type defined by this restriction shall be a true
subset of the values defined by the base type.

Example 9 – Simple Test Suite Type definitions

10.2.3.3 Structured Type Definitions using tables

Structured Types can be defined in the tabular form to be used for declaring structured objects as subtypes
within ASP and PDU definitions and other Structured Types, etc.

The following information shall be supplied for each Structured Type:

a) its name, where appropriate the full name, as given in the relevant protocol Recommendation, shall be
used; if an abbreviation is used, then the full name shall follow in parentheses;

b) a list of the elements associated with the Structured Type, where the following information shall be
supplied for each element:

1) its name, where the full name, as given in the appropriate protocol Recommendation, shall be used;
if an abbreviation is used, then the full name shall follow in parentheses;

2) its type and an optional attribute, where elements may be of a type of arbitrarily complex structure;
there shall be no recursive references (neither directly nor indirectly); the optional element length
restriction can be used in order to give the minimum and maximum length of an element of a string
type (see § 10.12).

The elements of Structured Type definitions are considered to be optional, i.e., in instances of these types
whole elements may riot be present.

Simple Type Definitions

Type Name Type Definition Comments

Transport_classes INTEGER(0, 1, 2, 3, 4) Classes that may be used for
transport layer connection

String5 IA5String[5] String of length 5

SeqNumbers INTEGER(0..127) All numbers from 0 to 127

PositiveNumbers INTEGER(1..INFINITY) All positive INTEGER numbers

String10to20 IA5String [10 .. 20] String, min. length 10 characters and
max. length 20 characters

Superseded by a more recent version

Recommendation X.292 (09/92) Superseded by a more recent version 27

This information shall be provided in the format shown in the following proforma:

10.2.3.4 Test suite type definitions using ASN.1

Test Suite Types can be specified using ASN.1 This shall be achieved by an ASN.1 definition using the ASN.1
syntax as defined in Recommendation X.208. The following information shall be supplied for each ASN.1 type:

a) its name, where appropriate the full name, as given in the relevant protocol Recommendation, shall be
used; if an abbreviation is used, then the full name shall follow in parentheses;

b) the ASN.1 type definition, which shall follow the syntax defined in Recommendation X.208. For
identifiers within that definition the dash symbol (–) shall not be used. The underscore symbol (_) may
be used instead. The type identifier in the table header is the name of the first type defined in the table
body.

Types referred to from the type definition shall be defined in other ASN.1 type definition tables, be defined by
reference in the ASN.1 type reference table or be defined locally in the same table, following the first type definition.
Locally defined types shall not be used in other parts of the test suite.

Structured Type Definition

Type Name : Structld&Fullld
Comments : [FreeText]

Element Name Type Definition Comments

.

.
ElemId&FullId

.

.

.

.
Type&Attributes

.

.

.

.
[FreeText]

.

.

Detailed Comments: [Free Text]

Proforma 6 – Structured Type Definition

Syntax definition

Syntax 420 Structld&Fullld ::= StructIdentifier [FullIdentifier]
Syntax 440 Structldentifier ::= Identifier
Syntax 480 Elemld&FullId ::= ElemIdentifier [FullIdentifier]
Syntax 490 ElemIdentifier ::= Identifier
Syntax 430 FullIdentifier ::= "(" BoundedFreeText ")"
Syntax 154 Type&Attributes ::= (Type [LengthAttribute]) | PDU
Syntax 331 Type ::= PredefinedType | ReferenceType
Syntax 332 PredefinedType ::= INTEGER | BOOLEAN | BITSTRING | HEXSTRING | OCTETSTRING |
Syntax 000 CharacterString
Syntax 333 CharacterString ::= NumericString | PrintableString | TeletexString | VideotexString |
Syntax 000 VisibleString | IA5String | GraphicString | GeneralString
Syntax 334 Reference Type ::= TS_TypeIdentifier | ASP_Identifier | PDU_Identifier
Syntax 335 TS_TypeIdentifer ::= Simple TypeIdentifier | StructIdentifier | ASN1_TypeIdentifier
Syntax 155 LengthAttribute ::= SingleLength | RangeLength
Syntax 156 SingleLength ::= "[" Bound "]"
Syntax 157 Bound ::= Number | TS_ParIdentifier | TS_ConstIdentifier
Syntax 158 RangeLength ::= "[" LowerBound To UpperBound "]"
Syntax 159 LowerBound ::= Bound
Syntax 370 To ::= TO | ".."
Syntax 160 UpperBound ::= Bound | INFINITY

Superseded by a more recent version

28 Recommendation X.292 (09/92) Superseded by a more recent version

ASN.1 type definitions used within TTCN shall not use external type references as defined in X.208 ASN.1
comments can be used within the table body. The comments column shall not be present in this table.

This information shall be provided in the following proforma:

Example 10 – An ASN.1 Test Suite Type definition

ASN.1 Type Definition

Type Name : ASN1_TypeId&FullId
Comments : [FreeText]

Type Definition

ASN1_Type&LocalTypes

Detailed Comments: [FreeText]

Proforma 7 – ASN.1 Type Definition

Syntax definition

Syntax 540 ASN1_TypeId&FullId ::= ASN1_TypeIdentifier [FullIdentifier]
Syntax 550 ASN1_TypeIdentifier ::= Identifier
Syntax 430 FullIdentifier ::= "(" BoundedFree Text ")"
Syntax 570 ASN1_Type&LocalTypes ::= ASN1_Type {ASN1_LocalType}
Syntax 580 ASN1_Type ::= Type

Syntax 000 /* REFERENCE – Where Type is a non-terminal define in Recommendation X.208 */

Syntax 590 ASN1_LocalType ::= Typeassignment

Syntax 000 /* REFERENCE – Where Typeassignment is a non-terminal defined in Recommendation X.208 */

ASN.1 Type Definition

Type Name : DATE_type
Comments : to illustrate the structure of ASN.1 type definitions

Type Definition

SEQUENCE {
day DAY_type,
month MONTH_type,
year YEAR_type

}

--local DAY_type
DAY_type ::= INTEGER {first(1), last(31)}

--MONTH_type and YEAR_type are defined in other ASN.1 Type Definition tables

Superseded by a more recent version

Recommendation X.292 (09/92) Superseded by a more recent version 29

10.2.3.5 ASN.1 Type Definitions by Reference

Types can be specified by a precise reference to an ASN.1 type defined in an OSI Recommendation or by
referencing an ASN.1 type defined in an ASN.1 module attached to the test suite. The following information shall be
supplied for each type:

a) its name, where this name may be used throughout the entire test suite. This name shall be specified
without a FullIdentifier;

b) the type reference, which shall follow the identifier rules stated in Recommendation X.208;

c) the module identifier, which consists of a module reference that shall follow the identifier rules stated in
Recommendation X.208, and an optional ObjectIdentifier; the module shall be unique within the domain
of interest.

This information shall be provided in the following proforma:

Since the ASN.1 types imported from ASN.1 modules can contain identifiers, type references and value
references that follow the identifier rules in Recommendation X.208, they can contain hyphens. To be able to use the
imported definitions in TTCN it is necessary to change the hyphens in imported identifiers to underscore. This is done in
the import process.

Example 11 – The following type definition in an ASN. 1 module

module-1 DEFINITIONS BEGIN

Type 1 ::= SEQUENCE {

field1 Sub-Type-1

field2 BIT STRING {first-bit(0), second-bit(1) }

}

END

ASN.1 Type Definitions By Reference

Type Name Type Reference Module Identifier Comments

.

.
ASN1_TypeId&FullId

.

.

.

.
TypeReference

.

.

.

.
ModuleIdentifier

.

.

.

.
[FreeText]

.

.

Detailed Comments: [FreeText]

Proforma 8 – ASN.1 Type Definitions By Reference

Syntax definition

Syntax 540 ASN1_TypeId&FullId ::= ASN1_TypeIdentifier [FullIdentifier]
Syntax 550 ASN1_TypeIdentifier ::= Identifier
Syntax 430 FullIdentifier ::= "(" BoundedFree Text ")"
Syntax 630 TypeReference ::= typereference

Syntax 000 /* REFERENCE – Where typereference is defined in Recommendation X.208, § 8.2 */

Syntax 650 ModuleIdentifier ::= ModuleIdentifier

Syntax 000 /* REFERENCE – Where ModuleIdentifer is a non-terminal defined in Recommendation X.208 */

Superseded by a more recent version

30 Recommendation X.292 (09/92) Superseded by a more recent version

can be imported to TTCN with:

The above reference definition of Type-1 is equivalent to the following definition:

10.3 TTCN operators and TTCN operations

10.3.1 Introduction

TTCN supports a number of predefined operators, operations and mechanisms that allow the definition of Test
Suite Operations. These operators and operations may be used throughout any dynamic behaviour descriptions and
constraints.

10.3.2 TTCN operators

10.3.2.1 Introduction

The predefined operators fall into three categories:

a) arithmetic;

b) relational;

c) Boolean.

The precedence of these operators is shown in Table 3/X.292. Parentheses may be used to group operands in
expressions, a parenthesized expression has the highest precedence for evaluation.

Within any row in Table 3/X.292, the listed operators have equal precedence. If more than one operator of
equal precedence appear in an expression, the operations are evaluated left to right.

ASN.1 Type Definitions By Reference

Type Name Type Reference Module Identifier Comments

Type_1
Sub_Type_1

Type-1
Sub-Type-1

module-1
module-1

ASN.1 Type Definition

Type Name : Type_1
Comments :

Type Definition

SEQUENCE { field1 Sub_Type_1,
field2 BIT STRING {first_bit(0), second_bit(1)} }

Superseded by a more recent version

Recommendation X.292 (09/92) Superseded by a more recent version 31

10.3.2.2 Predefined arithmetic operators

The predefined arithmetic operators are:

"+", "–", "*", "/", MOD

They represent the operations of addition, subtraction, multiplication, division and modulo. Operands of these
operators shall be of type INTEGER (i.e., TTCN or ASN.1 predefined) or derivations of INTEGER (i.e., subrange).
ASN.1 Named Values shall not be used within arithmetic expressions as operands of operations.

The result type of arithmetic operations is INTEGER.

In the case where plus (+) or minus (–) is used as the unary operator the rules for operands apply as well.
The result of using the minus operator is the negative value of the operand if it was positive and vice versa.

The result of performing the division operation (/) on two INTEGER values gives the whole INTEGER value
resulting from dividing the first INTEGER by the second (i.e., fractions are discarded).

The result of performing the MOD operation on two INTEGER values gives the remainder of dividing the first
INTEGER by the second.

10.3.2.3 Predefined relational operators

The predefined relational operators are:

"=" ,"<" ,">" ,"<>",">=","<="

They represent the relations of equality, less than, greater than, not equal to, greater than or equal to and less
than or equal to. Operands of equality (=) and not equal to (<>) may be of an arbitrary type. The two operands shall be
compatible. All other relational operators shall have operands only of type INTEGER or derivatives of INTEGER. The
result type of these operations is BOOLEAN.

In string comparisons BITSTRING, HEXSTRING, OCTETSTRING and all kinds of CharacterStrings may
contain the wildcard characters AnyOrNone (*) and AnyOne (?). In this case the comparison is performed according
to the pattern matching rules defined in § 11.6.5.

10.3.2.4 Predefined Boolean operators

The predefined Boolean operators are

NOT AND OR

TABLE 3/X.292

Precedence of operators

Highest

↓

Unary

Binary

()

+ – NOT

* / MOD AND
+ – OR

= < > <> >= <=
Lowest

Syntax definition

Syntax 321 AddOp ::= "+" | "–" | OR
Syntax 322 MultiplyOp ::= "*" | "/" | MOD | AND
Syntax 323 UnaryOp ::= "+" | "–" | NOT
Syntax 324 RelOp ::= "=" | "<" | ">" | "<>" | ">=" | "<="

Superseded by a more recent version

32 Recommendation X.292 (09/92) Superseded by a more recent version

They represent the operations of negation, logical AND and logical OR. Their operands shall be of type
BOOLEAN (TTCN or ASN.1 or predefined). The result type of the Boolean operators is BOOLEAN.

The logical AND returns the value TRUE if both its operands are TRUE; otherwise it returns the value FALSE.
The logical OR returns the value TRUE if at least one of its operands is TRUE; it returns the value FALSE only if both
operands are FALSE. The logical NOT is the unary operator that returns the value TRUE if its operand was of value
FALSE and returns the value FALSE if the operand was of value TRUE.

10.3.3 Predefined operations

10.3.3.1 Introduction

The predefined operations fall into two categories:

a) conversion;

b) others.

Predefined operations may be used in every test suite. They do not require an explicit definition using a Test
Suite Operation Definition table. When a predefined operation is invoked

a) the number of the actual parameters shall be the same as the number of the formal parameters; and

b) each actual parameter shall evaluate to an element of its corresponding formal parameter’s type; and

c) all variables appearing in the parameter list shall be bound.

Each of the predefined operations is presented in the following format:

OPERATION_NAME (FORMAL_PARAMETER_LIST) ⇒ RESULT_TYPE

10.3.3.2 Predefined conversion operations

10.3.3.2.1 TTCN supports the following predefined operations for type conversions:

a) HEX_TO_INT converts HEXSTRING to INTEGER;

b) BIT_TO_INT converts BITSTRING to INTEGER;

c) INT_TO_HEX converts INTEGER to HEXSTRING;

d) INT_TO_BIT converts INTEGER to BITSTRING.

These operations provide encoding rules within the context of the operations only. It is invalid to assume these
encoding rules apply outside the domain of the operations in TTCN.

10.3.3.2.2 HEX_TO_INT(hexvalue:HEXSTRING) ⇒ INTEGER

This operation converts a single HEXSTRING value to a single INTEGER value.

For the purposes of this conversion, a HEXSTRING shall be interpreted as a positive base 16 INTEGER value.
The rightmost HEX digit is least significant, the leftmost HEX digit is the most significant. The HEX digits 0 ... F
represent the decimal values 0 ... 15 respectively.

10.3.3.2.3 BIT_TO_INT(bitvalue:BITSTRING) ⇒ INTEGER

This operation converts a single BITSTRING value to a single INTEGER value.

For the purposes of this conversion, a BITSTRING shall be interpreted as a positive base 2 INTEGER value.
The rightmost BIT is least significant, the leftmost BIT is the most significant. The bits 0 and 1 represent the decimal
values 0 and 1 respectively.

10.3.3.2.4 lNT_TO_HEX(intvalue, slength:INTEGER) ⇒ HEXSTRING

This operation converts a single INTEGER value to a single HEXSTRING value. The resulting string is slength
HEX digits long.

For the purposes of this conversion, a HEXSTRING shall be interpreted as a positive base 16 INTEGER value.
The rightmost HEX digit is least significant, the leftmost HEX digit is the most significant. The HEX digits 0 ... F
represent the decimal values 0 ... 15 respectively.

Superseded by a more recent version

Recommendation X.292 (09/92) Superseded by a more recent version 33

If the conversion yields a value with fewer HEX digits than specified in the second parameter, then the
HEXSTRING shall be padded on the left with zeros.

A test case error shall occur if the intvalue is negative or if the resulting HEXSTRING contains more HEX
digits than specified in the second parameter.

10.3.3.2.5 INT_TO_BIT(intvalue, slength:INTEGER) ⇒ BITSTRING

This operation converts a single INTEGER value to a single BITSTRING value. The resulting string is slength
bits long.

For the purposes of this conversion, a BITSTRING shall be interpreted as a positive base 2 INTEGER value.
The rightmost BIT is least significant, the leftmost BIT is the most significant. The bits 0 and 1 represent the decimal
values 0 and 1 respectively.

If the conversion yields a value with fewer bits than specified in the second parameter, then the BITSTRING
shall be padded on the left with zeros.

A test case error shall occur if the intvalue is negative or if the resulting BITSTRING contains more bits than
specified in the second parameter.

10.3.3.3 Other predefined operations

TTCN also defines the following predefined operations:

a) IS_PRESENT;

b) NUMBER_OF_ELEMENTS;

c) IS_CHOSEN;

d) LENGTH_OF.

10.3.3.3.1 IS_PRESENT(DataObjectReference) ⇒ BOOLEAN

As an argument the operation shall take a reference to a field within a data object only if it is defined as being
OPTIONAL or if it has a DEFAULT value. The field may be of any type. The result of applying the operation is the
BOOLEAN value TRUE if and only if the value of the field is present in the actual instance of the data object.
Otherwise the result is FALSE.

The argument of the operation shall have the format as defined in § 10.3.4.

Example 12 – Use of IS_PRESENT

If received_PDU is of ASN.1 type

SEQUENCE { field_1 INTEGER OPTIONAL,
field_2 SEQUENCE OF INTEGER

}

then, the operation call
IS_PRESENT(received_PDU.field_1)

evaluates to TRUE R field_l in the actual instance of received_PDU is present.

10.3.3.3.2 NUMBER_OF_ELEMENTS(DataObjectReference) ⇒ INTEGER

The operation returns the actual number of elements of a data object that is of type ASN.1 SEQUENCE OF or
SET OF. The operation shall not be applied to data objects or fields of data objects other than of ASN.1 type
SEQUENCE OF or SET OF. The argument of the operation shall have the format as defined in § 10.3.4.

Superseded by a more recent version

34 Recommendation X.292 (09/92) Superseded by a more recent version

Example 13 – Use of NUMBER_OF_ELEMENTS

If received_PDU is of ASN.1 type

SEQUENCE { field_1 INTEGER OPTIONAL,
field_2 SEQUENCE OF INTEGER

}

then, the operation call
NUMBER_OF_ELEMENTS(received_PDU.fieId_2)

returns the number of elements of the SEQUENCE OF INTEGER within the actual data object received_PDU.

10.3.3.3.3 IS_CHOSEN(DataObjectReference) ⇒ BOOLEAN

The operation returns the BOOLEAN value TRUE if and only if the data object reference specifies the variant
of the CHOICE type that is actually selected for a given data object. Otherwise the result is FALSE. The operation shall
not be applied to data objects or fields of data objects other than the of ASN.1 type CHOICE. The argument of the
operation shall have the format as defined in § 10.3.4.

Example 14 – Use of IS_CHOSEN

if received_PDU is of ASN.1 type

CHOICE { p1 PDU_type1,
p2 PDU_type2,
p3 PDU_type3

}

then, the operation call
IS_CHOSEN(received_PDU.p2)

returns TRUE if the actual instance of received_PDU carries a PDU of the type PDU_type2.

10.3.3.3.4 LENGTH_OF(DataObjectReference) ⇒ INTEGER

The operation returns the actual length of a data object that is of type BITSTRING, HEXSTRING,
OCTETSTRING or CharacterString. The units of length for each string type are defined in Table 4/X.292. The argument
of the operation shall have the format as defined in § 10.3.4.

The operation shall not be applied to data objects or fields of data objects other than of BITSTRING,
HEXSTRING, OCTETSTRING or CharacterString.

Example 15 – Use of LENGTH_OF

If S = '010'B then LENGTH_OF(S) returns 3

If S = 'F3'H then LENGTH_OF(S) returns 2

If S = 'F2'O then LENGTH_OF(S) returns 1

If S = "EXAMPLE" then LENGTH_OF(S) returns 7

10.3.4 Test Suite Operation Definitions

Operations specific to a test suite may be introduced by the ATS specifier. To define a new operation, the
following information shall be provided:

a) a name for the operation;

b) a list of the input parameters and their types;

this is a list of the formal parameter names and types. Each parameter name shall be followed by a colon
and then the name of the parameter’s type.

Superseded by a more recent version

Recommendation X.292 (09/92) Superseded by a more recent version 35

When more than one parameter of the same type is used, the parameters may be specified as a parameter
sub-list. When a parameter sub-list is used, the parameter names shall be separated from each other by a
comma. The final parameter in the list shall be followed by a colon and then the name of the type of the
parameter.

When more than one parameter and type pair (or parameter list and type pair) is used, the pairs shall be
separated from each other by semicolons.

Only predefined types and data types as defined in the Test Suite Type definitions, ASP type definitions
or PDU type definitions may be used as types for formal parameters. PCO types shall not be used as
formal parameter types.

Example 16 – Parameter lists

The following are equivalent methods of specifying a parameter list using two INTEGER parameters and one
BOOLEAN parameter:

(A:INTEGER; B:INTEGER; C:BOOLEAN)
(A, B:INTEGER; C:BOOLEAN)

c) the type of the result, which shall follow the rules for the parameter types in b);

d) a description of the operation, which shall consist of an explanation of the operation, plus at least one
example showing an invocation and corresponding result; the explanation shall begin by stating the
operation name, followed by a parenthesized list containing the parameter names of the operation; this
provides a "pattern" invocation for the operation.

This information shall be provided in the format shown in the following proforma:

An operation may be compared to a function in an ordinary programming language. However, the parameters
to the operation shall not be altered as a result of any call of the operation and there shall be no side effects (e.g., no
changes to any Test Suite or Test Case Variable).

Test Suite Operation Definition

Operation Name : TS_Opld&ParList
Result Type : Type
Comments : [FreeText]

Description

.

.
FreeText

.

.

Detailed Comments: [FreeText]

Proforma 9 – Test Suite Operation Definition

Syntax definition

Syntax 690 TS_Opld&ParList ::= TS_OpIdentifier [FormalParList]
Syntax 331 Type ::= PredefinedType | ReferenceType
Syntax 332 PredefinedType ::= INTEGER | BOOLEAN | BITSTRING | HEXSTRING | OCTETSTRING |
Syntax 000 CharacterString
Syntax 333 CharacterString ::= NumericString | PrintableString | TeletexString | VideotexString |
Syntax 000 VisibleString | IA5String | GraphicString | GeneralString
Syntax 334 ReferenceType ::= TS_TypeIdentifier | ASP_Identifier | PDU_Identifier
Syntax 335 TS_TypeIdentifier ::= SimpleTypeIdentifier | StructIdentifier | ASN1_TypeIdentifier

Superseded by a more recent version

36 Recommendation X.292 (09/92) Superseded by a more recent version

When a Test Suite Operation is invoked

a) the number of the actual parameters shall be the same as the number of the formal parameters; and

b) each actual parameter shall evaluate to an element of its corresponding formal parameter’s type; and

c) all variables appearing in the parameter list shall be bound.

Example 17 – Definition of the operation SUBSTR

10.4 Test Suite Parameter Declarations

The purpose of this part of the ATS is to declare constants derived from the PICS and/or PIXIT which are used
to globally parameterize the test suite. These constants are referred to as Test Suite Parameters, and are used as a basis
for Test Case selection and parameterization of Test Cases.

The following information relating to each Test Suite Parameter shall be provided:

a) its name;

b) its type, where the type shall be a predefined type, an ASN.1 type, a Test Suite Type or a PDU type;

c) PICS/PIXIT entry reference, which is a reference to an individual PICS/PIXIT proforma entry that will
clearly identify where the value to be used for this Test Suite Parameter will be found.

This information shall be provided in the format shown in the following proforma:

Test Suite Operation Definition

Operation Name : SUBSTR (source:IA5String; start_index, length:INTEGER)
Result Type : IA5String
Comments :

Description

SUBSTR(source, start_index, length) is the string of length length starting from index start_index of the
source string source
For example: SUBSTR("abcde",3,2) = "cd"

SUBSTR("abcde",1,3) = "abc"

Test Suite Parameter Declarations

Parameter Name Type PICS/PIXIT Ref Comments

.

.
TS_ParIdentifier

.

.

.

.
Type

.

.

.

.
FreeText

.

.

.

.
[FreeText]

.

.

Detailed Comments: [FreeText]

Proforma 10 – Test Suite Parameter Declarations

Syntax definition

Syntax 770 TS_ParIdentifier ::= Identifier
Syntax 331 Type ::= PredefinedType | ReferenceType
Syntax 332 PredefinedType ::= INTEGER | BOOLEAN | BITSTRING | HEXSTRING | OCTETSTRING |
Syntax 000 CharacterString
Syntax 333 CharacterString ::= NumericString | PrintableString | TeletexString | VideotexString |
Syntax 000 VisibleString | IA5String | GraphicString | GeneralString
Syntax 334 ReferenceType ::= TS_TypeIdentifier | ASP_Identifier | PDU_Identifier
Syntax 335 TS_TypeIdentifier ::= SimpleTypeIdentifier | StructIdentifier | ASN1_TypeIdentifier

Superseded by a more recent version

Recommendation X.292 (09/92) Superseded by a more recent version 37

Example 18 – Declaration of Text Suite Parameters

10.5 Test Case Selection Expression Definitions

The purpose of this part of the ATS is to define selection expressions to be used in the Test Case selection
process. This part of the ATS shall meet the requirements of Recommendation X.291.

A selection expression is associated with one or more Test Groups and/or Test Cases by placing its identifier in
the Test Case Selection Reference column of the Test Suite Structure and/or Test Case Index. An expression may be
referenced by more than one Test Group and/or Test Case.

Use of a selection expression shall be taken to mean that the Test Case is to be run if the selection expression
evaluates to TRUE.

The following information relating to each Test Case Selection Expression shall be provided:

a) its name;

b) a selection expression, which shall evaluate to a BOOLEAN value, and which shall use only literal
values, Test Suite Parameters, Test Suite Constants and other selection expression identifiers in its terms.

This information shall be provided in the format shown in the following proforma:

10.6 Test Suite Constant Declarations

The purpose of this part of the ATS is to declare a set of names for values not derived from the PICS or PIXIT
that will be constant throughout the test suite.

Test Suite Parameter Declarations

Parameter Name Type PICS/PIXIT Ref Comments

PAR1
PAR2
PAR3

INTEGER
INTEGER
INTEGER

PICS question xx
PICS question yy
PIXIT question zz

Test Case Selection Expression Definitions

Expression Name Selection Expression Comments

.

.
SelectExprldentifier

.

.

.

.
SelectionExpression

.

.

.

.
[FreeText]

.

.

Detailed Comments: [FreeText]

Proforma 11 – Test Case Selection Expression Definitions

Syntax definition

Syntax 83 SelectExprIdentifier ::= Identifier
Syntax 85 SelectionExpression ::= Expression

Superseded by a more recent version

38 Recommendation X.292 (09/92) Superseded by a more recent version

The following information relating to each Test Suite Constant shall be provided:

a) its name;

b) its type, where the type shall be a predefined type, an ASN.1 type, a Test Suite Type or a PDU type;

c) its value, where the terms in the value expression shall not contain: Test Suite Variables or Test Case
Variables; the value shall evaluate to an element of the type indicated in the type column.

This information shall be provided in the format shown in the following proforma:

Example 19 – Declaration of Test Suite Constants

10.7 TTCN variables

10.7.1 Test Suite Variable Declarations

A test suite may make use of a set of variables which are defined globally for the test suite, and retain their
values throughout the test suite. These variables are referred to a Test Suite Variables.

A Test suite Variable is used whenever it is necessary to pass information from one Test Case to another.

Test Suite Constant Declarations

Constant Name Type Value Comments

.

.
TS_ConstIdentifier

.

.

.

.
Type

.

.

.

.
Declaration Value

.

.

.

.
[FreeText]

.

.

Detailed Comments: [FreeText]

Proforma 12 – Test Suite Constant Declarations

Syntax definition

Syntax 900 TS_ConstIdentifier ::= Identifier
Syntax 331 Type ::= PredefinedType | ReferenceType
Syntax 332 PredefinedType ::= INTEGER | BOOLEAN | BITSTRING | HEXSTRING | OCTETSTRING |
Syntax 000 CharacterString
Syntax 333 CharacterString ::= NumericString | PrintableString | TeletexString | VideotexString |
Syntax 000 VisibleString | IA5String | GraphicString | GeneralString
Syntax 334 ReferenceType ::= TS_TypeIdentifier | ASP_Identifier | PDU_Identifier
Syntax 335 TS_TypeIdentifier ::= SimpleTypeIdentifier | StructIdentifier | ASN1_TypeIdentifier
Syntax 930 DeclarationValue ::= Expression

Test Suite Constant Declarations

Constant Name Type Value Comments

TS_CONST1 BOOLEAN TRUE

TS_CONST2 IA5String "A string"

Superseded by a more recent version

Recommendation X.292 (09/92) Superseded by a more recent version 39

The following information shall be provided for each variable declaration:

a) its name;

b) its type, where the type shall be a predefined type, an ASN.1 type, a Test Suite Type or a PDU type;

c) its initial value (if any), where the initial value column is used when it is desired to assign an initial value
to a Test Suite Variable at its point of declaration; the terms in the value expression shall not contain: Test
Suite Variables or Test Case Variables; the value shall evaluate to an element of the type indicated in the
type column. Specifying an initial value is optional.

This information shall be provided in the format shown in the following proforma:

Since it is possible that any particular Test Case may be run independently of the others in the test suite, it is
necessary that the use made of Test Suite Variables does not make assumptions about the ordering of the Test Case
execution.

Example 20 – Declaration of Test Suite Variables

Test Suite Variable Declarations

Variable Name Type Value Comments

.

.
TS_VarIdentifier

.

.

.

.
Type

.

.

.

.
[DeclarationValue]

.

.

.

.
[FreeText]

.

.

Detailed Comments: [FreeText]

Proforma 13 – Test Suite Variable Declarations

Syntax definition

Syntax 970 TS_VarIdentifier ::= Identifier
Syntax 331 Type ::= PredefinedType | ReferenceType
Syntax 332 PredefinedType ::= INTEGER | BOOLEAN | BITSTRING | HEXSTRING | OCTETSTRING |
Syntax 000 CharacterString
Syntax 333 CharacterString ::= NumericString | PrintableString | TeletexString | VideotexString |
Syntax 000 VisibleString | IA5String | GraphicString | GeneralString
Syntax 334 ReferenceType ::= TS_TypeIdentifier | ASP_Identifier | PDU_Identifier
Syntax 335 TS_TypeIdentifier ::= SimpleTypeIdentifier | StructIdentifier | ASN1_TypeIdentifier
Syntax 930 DeclarationValue ::= Expression

Test Suite Variable Declarations

Variable Name Type Value Comments

State IA5String "idle" Used to indicate the final stable
state of the previous Test Case,
if any, in order to help determine
which preamble to use

Superseded by a more recent version

40 Recommendation X.292 (09/92) Superseded by a more recent version

10.7.2 Binding of Test Suite Variables

Initially Test Suite Variables are unbound. They may become bound (or be re-bound) in the following contexts:

a) at the point of declaration if an initial value is specified;

b) when the Test Suite Variable appears on the left-hand side of an assignment statement (see § 14.10.4).

Once a Test Suite Variable has been bound to a value, the Test Suite Variable will retain that value until either
it is bound to a different value, or execution of the test suite terminates – whichever occurs first.

If an unbound Test Suite Variable is used in the right-hand side of an assignment, then it is a test case error.

10.7.3 Test Case Variable Declarations

A test suite may make use of a set of variables which are declared globally to the test suite but whose scope is
defined to be local to the Test Case. These variables are referred to as Test Case Variables.

The following information shall be provided for each variable declaration:

a) its name;

b) its type, where the type shall be a predefined type an ASN.1 type, a Test Suite Type or a PDU type;

c) its initial value (if any), where the initial value column is used when it is desired to assign an initial value
to a Test Case Variable at its point of declaration; the terms in the value expression shall not contain: Test
Suite Variables or Test Case Variables; the value shall evaluate to an element of the type indicated in the
type column. Specifying an initial value is optional.

This information shall be provided in the format shown in the following proforma:

Test Case Variable Declarations

Variable Name Type Value Comments

.

.
TS_VarIdentifier

.

.

.

.
Type

.

.

.

.
[DeclarationValue]

.

.

.

.
[FreeText]

.

.

Detailed Comments: [FreeText]

Proforma 14 – Test Case Variable Declarations

Note – Caution must be exercised when using Test Case Variables as local variables within a Test Step, in order
to avoid usage conflicts with other Test Steps or Test Case Variables. A test suite specifier may avoid such
problems by adopting a naming convention which will result in all such variables being uniquely named within a
test suite.

Syntax definition

Syntax 103 TC_VarIdentifier ::= Identifier
Syntax 331 Type ::= PredefinedType | ReferenceType
Syntax 332 PredefinedType ::= INTEGER | BOOLEAN | BITSTRING | HEXSTRING | OCTETSTRING |
Syntax000 CharacterString
Syntax 333 CharacterString ::= NumericString | PrintableString | TeletexString | VideotexString |
Syntax 000 VisibleString | IA5String | GraphicString | GeneralString
Syntax 334 ReferenceType ::= TS_TypeIdentifier | ASP_Identifier | PDU_Identifier
Syntax 335 TS_TypeIdentifier ::= SimpleTypeIdentifier | StructIdentifier | ASN1_TypeIdentifier
Syntax 930 DeclarationValue ::= Expression

Superseded by a more recent version

Recommendation X.292 (09/92) Superseded by a more recent version 41

10.7.4 Binding of Test Case Variables

Initially Test Case Variables are unbound. They may become bound (or be re-bound) in the following
contexts:

a) at the point of declaration if an initial value is specified;

b) when the Test Case Variable appears on the left-hand side of an assignment statement (see § 14.10.4).

Once a Test Case Variable has been bound to a value, the Test Case Variable will retain that value until either
it is bound to a different value, or execution of the Test Case terminates – whichever occurs first. At termination of the
Test Case, the Test Case Variable becomes re-bound to its initial value, if one is specified, otherwise it becomes
unbound.

If an unbound Test Case Variable is used in the right-hand side of an assignment then it is a test case error.

10.8 PCO Declarations

This part of the ATS lists the set of points of control and observation (PCOs) to be used in the test suite and
explains where in the testing environment these PCOs exist.

The number of PCOs shall be as defined in Recommendation X.290, § 7.5, and Recommendation X.291,
§ 12.6, for the test method(s) identified in the Test Suite Structure table.

TTCN behaviour statements specified for execution at the UT PCO shall not place requirements beyond those
specified by Recommendation X.291.

In TTCN the PCO model is based on two First In First Out (FIFO) queues:

– one output queue for sending ASPs and/or PDUs;

– one input queue for receiving ASPs and/or PDUs.

The output queue is assumed to be located within the underlying service-provider or in the case of the UT,
within the IUT.

A SEND event is successful by being passed from the IT to the service-provider, or by being passed from the
UT to the IUT.

For the purpose of receiving events the tester has an input queue. All incoming events are queued and
processed by the tester in the same order they were received, and without loss of any events.

Note – The queue model is only an abstract model and is not intended to imply a specific implementation.

The following information shall be provided for each PCO used in the test suite:

a) its name, which is used in the behaviour descriptions to specify where particular events occur;

b) its type, which is used to identify the service boundary where the PCO is located;

c) its role, which is an explanation of which type of tester is placed at the PCO. The predefined identifier UT
indicates that the PCO is an upper tester PCO and LT specifies a lower tester PCO.

Superseded by a more recent version

42 Recommendation X.292 (09/92) Superseded by a more recent version

This information shall be provided in the format shown in the following proforma:

Example 21 – Declaration of PCOs

PCO Declarations

PCO Name PCO Type Role Comments

L TSAP LT Transport service access point
at the lower tester.

U SSAP UT Session service access point at
the upper tester.

Points of control and observation are usually just SAPs, but in general can be any appropriate points at which
the test events can be controlled and observed. However, it is possible to define a PCO to correspond to a set of SAPs,
provided all the SAPs (Service Access Point) comprising that PCO are

– at the same location (i.e., in the LT or in the UT);

– SAPs of the same service.

When a PCO corresponds to several SAPs the appropriate address is used to identify the individual SAP.
PCOs are normally associated with one service access point of the (N-1) service-provider or the IUT.

Note – A PCO may not be related to a SAP at all. This could be the case when a layer is composed of
sublayers (e.g., in the Application layer, or in the lower layers, where a subnetwork point of attachment is not a SAP).

PCO Declarations

PCO Name PCO Type Role Comments

.

.
PCO_Identifier

.

.

.

.
PCO_TypeIdentifier

.

.

.

.
PCO_Role

.

.

.

.
[FreeText]

.

.

Detailed Comments: [FreeText]

Proforma 15 – PCO Declarations

Syntax definition

Syntax 109 PCO_Identifier ::= Identifier
Syntax 111 PCO_TypeIdentifier ::= Identifier
Syntax 113 PCO_Role ::= UT | LT

Superseded by a more recent version

Recommendation X.292 (09/92) Superseded by a more recent version 43

10.9 Timer Declarations

A test suite may make use of timers. The following information shall be provided for each timer:

a) the timer name;

b) the optional timer duration, where the default duration of the timer shall be an expression which may be
omitted if the value cannot be established prior to execution of the test suite; the terms in the value
expression shall not contain: Test Suite Variables or Test Case Variables; the timer duration shall evaluate
to an unsigned positive INTEGER value;

c) the time unit, where the timer unit shall be one of the following:

1) ps (i.e., picosecond);

2) ns (i.e., nanosecond);

3) µs (i.e., microsecond);

4) ms (i.e., millisecond);

5) s (i.e., second);

6) min (i.e., minute).

Time units are determined by the test suite designer and are fixed at the time of specification. Different timers
may use different units within the same test suite. If a PICS or PIXIT entry exists, the timer declaration shall specify the
same units included in the PICS/PIXIT entry.

This information shall be provided in the format shown in the following proforma:

Timer Declarations

Timer Name Duration Unit Comments

.

.
TimerIdentifier

.

.

.

.
[DeclarationValue]

.

.

.

.
TimeUnit

.

.

.

.
[FreeText]

.

.

Detailed Comments: [FreeText]

Formulaire 16 – Timer Declarations

Syntax definition

Syntax 117 TimerIdentifier ::= Identifier
Syntax 930 DeclarationValue ::= Expression
Syntax 120 TimeUnit ::= ps | ns | µs | ms | s | min

Superseded by a more recent version

44 Recommendation X.292 (09/92) Superseded by a more recent version

Example 22 – Declaration of timers

10.10 ASP Type Definitions

10.10.1 Introduction

The purpose of this part of the abstract TTCN test suite is to declare the types of ASPs that may be sent or
received at the declared PCOs. ASP type definitions may include ASN.1 type definitions, if appropriate.

10.10.2 ASP Type Definitions using tables

The following information shall be supplied for each ASP:

a) its name, where the full name, as given in the appropriate protocol Recommendation, shall be used; if an
abbreviation is used, then the full name shall follow in parentheses;

b) the PCO type associated with the ASP, where the PCO type shall be one of the PCO types used in the
PCO declaration proforma. If only a single PCO is defined within a test suite, specifying the PCO type in
an ASP type definition is optional;

c) a list of the parameters associated with the ASP, where the following information shall be supplied for
each parameter:

1) its name, where either:

– the full name, as given in the appropriate protocol Recommendation, shall be used; if an
abbreviation is used, then the full name shall follow in parentheses; or

– the macro symbol (<–) indicating that the entry in the type column identifies a set of
parameters that is to be inserted directly in the list of ASP parameters; the macro symbol shall
be used only with Structured Types defined in the Structured Types definitions;

2) its type and an optional attribute, where parameters may be of a type of arbitrarily complex structure,
including being specified as a Test Suite Type (either predefined, Simple Type, Structured Type or
ASN.1 type); if a parameter is to be structured as a PDU, then its type may be stated either:

– as a PDU identifier to indicate that in the constraint for the ASP this parameter may be chained
to a PDU constraint of a specific PDU type; or

– as PDU to indicate that in the constraint for the ASP this parameter may be chained to a PDU
constraint of any PDU type;

Timer Declarations

Timer Name Duration Unit Comments

wait 15 s General purpose wait.

no_response A min Used to wait for IUT to connect
or react to connection
establishment, longer duration
than general purpose wait. Gets
value from PIXIT.

delay_time ms Duration to be established
during execution of the test
suite.

Superseded by a more recent version

Recommendation X.292 (09/92) Superseded by a more recent version 45

and where the optional attribute is Length; in which case the specification may restrict the
parameter to a particular length or a range according to § 10.12. The length values shall be
interpreted according to Table 4/X.292. The boundaries shall be specified in terms of non-
negative INTEGER literals, Test Suite Parameters, Test Suite Constants or the keyword
INFINITY.

The length specifications defined for the ASP parameter type in the Test Suite Type definitions shall not
conflict with the length specifications in the ASP type definition, i.e., the set of strings defined by a length restriction in
an ASP definition shall be a true subset of the set of strings defined by the Test Suite Type definition.

The keyword INFINITY can be used as a value for the upper boundary in order to indicate that there is no
upper limit of length.

Note – It is usually unnecessary to restrict the length of ASP parameters, but in some cases this may be
necessary in order to effectively restrict the length of a corresponding PDU field in an underlying protocol.

The parameters of ASP type definitions are considered to be optional, i.e., in instances of these types whole
parameters may not be present.

This information shall be provided in the format shown in the following proforma:

ASP Type Definition

ASP Name : ASP_ Id&Fullld
PCO Type : [PCO_TypeIdentifier]
Comments : [FreeText]

Parameter Name Parameter Type Comments

.

.
ASP_ParldOrMacro

.

.

.

.
Type&Attributes

.

.

.

.
[FreeText]

.

.

Detailed Comments: [FreeText]

Proforma 17 – ASP Type Definition

Syntax definition

Syntax 127 ASP_Id&FullId ::= ASP_Identifier [FullIdentifier]
Syntax 128 ASP_Identifier ::= Identifier
Syntax 430 FullIdentifier ::= "(" BoundedFreeText ")"
Syntax 111 PCO_TypeIdentifier ::= Identifier
Syntax 132 ASP_ParldOrMacro ::= ASP_Parld&FullId | MacroSymbol
Syntax 133 ASP_Parld&FullId ::= ASP_Parldentifier [FullIdentifier]
Syntax 134 ASP_Parldentifier ::= Identifier
Syntax 150 MacroSymbol ::= "<–"
Syntax 154 Type&Attributes ::= (Type [LengthAttribute]) | PDU
Syntax 331 Type ::= PredefinedType | ReferenceType
Syntax 332 PredefinedType ::= INTEGER | BOOLEAN | BITSTRING | HEXSTRING | OCTETSTRING | Syntax 000
Syntax 000 CharacterString
Syntax 333 CharacterString ::= NumericString | PrintableString | TeletexString | VideotexString |
Syntax 000 VisibleString | IA5String | GraphicString | GeneralString
Syntax 334 ReferenceType ::= TS_Typeldentifier | ASP_Identifier | PDU_Identifier
Syntax 335 TS_TypeIdentifier ::= SimpleTypeldentifier | StructIdentifier | ASN1_Typeldentifier
Syntax 155 LengthAttribute ::= SingleLength | RangeLength
Syntax 156 SingleLength ::= "[" Bound "]"
Syntax 157 Bound ::= Number | TS_ParIdentifier | TS_ConstIdentifier
Syntax 158 RangeLength ::= "[" LowerBound To UpperBound "]"
Syntax 159 LowerBound ::= Bound
Syntax 370 To ::= TO | ".."
Syntax 160 UpperBound ::= Bound | INFINITY

Superseded by a more recent version

46 Recommendation X.292 (09/92) Superseded by a more recent version

Example 23 – T_CONNECTrequest Abstract Service Primitive

The figure below shows an example from the Transport Service (see Recommendation X.214). This could be
part of the set of ASPs used to describe the behaviour of an abstract UT in a DS test suite for the Class 0 Transport.

10.10.3 Use of Structured Types within ASP Type Definitions

There are two possible relationships between a Structured Type and ASP definitions which refer to it, as
follows:

a) if a parameter name is given in the definition, then the Structured Type referenced is a substructure. This
allows definition of ASPs containing a multi-level substructure of parameters;

b) if the macro symbol (<–) is used instead of a parameter name then this is equivalent to a macro
expansion; the entry in the ASP type definition expands directly to a list of parameters without
introducing an additional level of substructure.

The macro symbol shall not be used on the same line as references to types defined in ASN.1 or Simple Types,
i.e., only Structured Types defined in tabular form can be expanded into other Structured Types as macro expansions.

10.10.4 ASP Type Definitions using ASN.1

Where more appropriate, ASPs can be specified in ASN.1. This shall be achieved by an ASN.1 definition
using the ASN.1 syntax as defined in Recommendation X.208. The following information shall be supplied for each
ASN.1 ASP:

a) its name, where the full name, as given in the appropriate protocol Recommendation, shall be used; if an
abbreviation is used, then the full name shall follow in parentheses;

b) the PCO type associated with the ASP, where the PCO type shall be one of the PCO types used in the
PCO declaration proforma. If only a single PCO is defined within a test suite, specifying the PCO type in
an ASP type definition is optional;

ASP Type Definition

ASP Name : CONreq (T_CONNECTrequest)
PCO Type : TSAP
Comments :

Parameter Name Parameter Type Comments

Cda (Called Address) CDA ... of upper tester

Cga (Calling Address) CGA ... of lower tester

QoS (Quality of Service) QOS should ensure class 0 is used

Detailed Comments: ASP to be sent at Transport service access point

Superseded by a more recent version

Recommendation X.292 (09/92) Superseded by a more recent version 47

c) the ASN.1 ASP type definition, which shall follow the syntax defined in Recommendation X.208. For
identifiers within that definition the hyphen symbol (-) shall not be used. The underscore symbol (_)
may be used instead. The ASP identifier in the table header is the name of the first type defined in the
table body.

Types referred to from the ASP definition shall be defined in other ASN.1 type definition tables, be defined by
reference in the ASN.1 type reference table or be defined locally in the same table, following the first type definition.
Locally defined types shall not be used in other parts of the test suite.

ASN.1 comments can be used within the table body. The comments column shall not be present in this table.

This information shall be provided in the following proforma:

10.10.5 ASN.1 ASP Type Definitions by Reference

ASPs can be specified by a precise reference to an ASN.1 ASP defined in an OSI Recommendation or by
referencing an ASN.1 type defined in an ASN-1 module attached to the test suite. The following information shall be
supplied for each ASP:

a) its name, where this name may be used throughout the entire test suite;

b) the PCO type associated with the ASP, where the PCO type shall be one of the PCO types used in the
PCO declaration proforma. If only a single PCO is defined within a test suite, specifying the PCO type in
an ASP type definition is optional;

ASN.1 ASP Type Definition

ASP Name : ASP_Id&Fullld
PCO Type : [PCO_TypeIdentifier]
Comments : [FreeText]

Type Definition

.

.
ASN1_Type&LocalTypes

.

.

Detailed Comments: [FreeText]

Proforma 18 – ASN.1 ASP Type Definition

Syntax definition

Syntax 127 ASP_ld&FullId ::= ASP_Identifier [FullIdentifier]
Syntax 128 ASP_Identifier ::= Identifier
Syntax 430 FullIdentifier ::= "(" BoundedFreeText ")"
Syntax 111 PCO_TypeIdentifier ::= ldentifier
Syntax 570 ASN1_Type&LocalTypes ::= ASN1_Type {ASN1_LocalType}
Syntax 580 ASN1_Type ::= Type

Syntax 000 /* REFERENCE – Where Type is a non-terminal defined in Recommendation X.208 */

Syntax 590 ASN1_LocalType ::= Typeassignment

Syntax 000 /* REFERENCE – Where Typeassignment is a non-terminal defined in Recommendation X.208 */

Superseded by a more recent version

48 Recommendation X.292 (09/92) Superseded by a more recent version

c) the type reference, which shall follow the identifier rules stated in Recommendation X.208;

d) the module identifier, which consists of a module reference that shall follow the identifier rules stated in
Recommendation X.208 and an optional Objectidentifier.

This information shall be provided in the following proforma:

ASN.1 identifiers type references and value references may contain hyphens. In order to be able to use
imported definitions in TTCN it is necessary to change the hyphens to underscore (see § A.4.2.1).

10.11 PDU Type Definitions

10.11.1 Introduction

The purpose of this part of the abstract TTCN test suite is to declare the types of the PDUs that may be sent or
received either directly or embedded in ASPs at the declared PCOs. PDU type definitions may include ASN.1 type
definitions, if appropriate. PDU definitions define the set of PDUs exchanged with the IUT which are syntactically valid
with respect to the ATS but not necessarily valid with respect to the protocol specification.

ASN.1 ASP Type Definitions By Reference

ASP Name PCO Type Type Reference Module Identifier Comments

.

.
ASP_Id&FullId

.

.

.

.
[PCO_TypeIdentifier]

.

.

.

.
TypeReference

.

.

.

.
ModuleIdentifier

.

.

.

.
[FreeText]

.

.

Detailed Comments: [FreeText]

Proforma 19 – ASN.1 ASP Type Definitions By Reference

Syntax definition

Syntax 127 ASP_Id&FullId ::= ASP_Identifier [FullIdentifier]
Syntax 128 ASP_Identifier ::= ldentifier
Syntax 430 FullIdentifier ::= "(" BoundedFreeText ")"
Syntax 111 PCO_TypeIdentifier ::= Identifier
Syntax 630 TypeReference ::= typereference

Syntax 000 /* REFERENCE – Where typereference is defined in Recommendation X.208, § 8.2 */

Syntax 650 Moduleldentifier ::= ModuleIdentifier

Syntax 000 /* REFERENCE – Where ModuleIdentifier is a non-terminal defined in Recommendation X.208 */

Superseded by a more recent version

Recommendation X.292 (09/92) Superseded by a more recent version 49

It is required to declare all fields of the PDUs that are defined in the relevant protocol Recommendation, either
explicitly or implicitly by referring to encoding rules (ASN.1 encoding rules, if applicable).

The encoding of PDU fields shall follow that as defined in the relevant protocol specification.

10.11.2 PDU Type Definitions using tables

The definition of PDUs is similar to that of ASPs. The following information shall be supplied for each PDU:

a) its name, where the full name, as given in the appropriate protocol Recommendation, shall be used; if an
abbreviation is used, then the full name shall follow in parentheses;

b) the PCO type associated with the PDU, where the PCO type shall be one of the PCO types used in the
PCO declarations; if a PDU is sent or received only embedded in ASPs within the whole test suite,
specifying the PCO type is optional; if only a single PCO is defined within a test suite, specifying the
PCO type in a PDU type definition is optional;

c) a list of the fields associated with the PDU, where the following information shall be supplied for each
field:

1) its name, where either:

– the full name, as given in the appropriate protocol Recommendation, shall be used; if an
abbreviation is used, then the full name shall follow in parentheses; or

– the macro symbol (<-) indicating that the entry in the type column identifies a set of fields that
is to be inserted directly in the list of PDU fields; the macro symbol shall be used only with
Structured Types defined in the Structured Type definitions;

2) its type and an optional attribute; where fields may be of a type of arbitrarily complex structure,
including being specified as a Test Suite Type (either predefined, Simple Type, Structured Type or
ASN.1 type); if a field is to be structured as a PDU, then its type may be stated either:

– as a PDU identifier to indicate that in the constraint for the PDU this field may be chained to a
PDU constraint of a specific PDU type; or

– as PDU to indicate that in the constraint for the PDU this field may be chained to a PDU
constraint of any PDU type;

and where the optional attribute is Length; in which case the specification may restrict the field to a
particular length or a range according to § 10.12. The length values shall be interpreted according to
Table 4/X.292. The boundaries shall be specified in terms of non-negative INTEGER literals, Test
Suite Parameters, Test Suite Constants or the keyword INFINITY.

The length specifications defined for the PDU field type in the Test Suite Type definitions shall not conflict
with the length specifications in the PDU type definition, i.e., the set of strings defined by a length restriction in a PDU
definition shall be a true subset of the set of strings defined by the Test Suite Type definition.

The keyword INFINITY can be used as a value for the upper boundary in order to indicate that there is no
upper limit of length.

The fields of PDU type definitions are considered to be optional, i.e., in instances of these types whole fields
may not be present.

Superseded by a more recent version

50 Recommendation X.292 (09/92) Superseded by a more recent version

This information shall be provided in the format shown in the following proforma:

PDU Type Definition

PDU Name : PDU_ Id&Fullld
PCO Type : [PCO_TypeIdentifier]
Comments : [FreeText]

Field Name Field Type Comments

.

.
PDU_FieldldOrMacro

.

.

.

.
Type&Attributes

.

.

.

.
[FreeText]

.

.

Detailed Comments: [FreeText]

Proforma 20 – PDU Type Definition

Syntax definition

Syntax 144 PDU_ld&FullId ::= PDU_ldentifier [FullIdentifier]
Syntax 145 PDU_Identifier ::= Identifier
Syntax 430 FullIdentifier ::= "(" BoundedFreeText ")"
Syntax 111 PCO_Typeldentifier ::= Identifier
Syntax 149 PDU_FieldIdOrMacro ::= PDU_Fieldld&FulIld | MacroSymbol
Syntax 151 PDU_Fieldld&FullId ::= PDU_FieldIdentifier [FullIdentifier]
Syntax 152 PDU_FieldIdentifier ::= ldentifier
Syntax 150 MacroSymbol ::= "<"
Syntax 154 Type&Attributes ::= (Type [LengthAttribute] | PDU
Syntax 331 Type ::= PredefinedType | ReferenceType
Syntax 332 PredefinedType ::= INTEGER | BOOLEAN | BITSTRING | HEXSTRING | OCTETSTRING |
Syntax 000 CharacterString
Syntax 333 CharacterString ::= NumericString | PrintableString | TeletexString | VideotexString |
Syntax 000 VisibleString | IA5String | GraphicString | GeneralString
Syntax 334 ReferenceType ::= TS_Typeldentifier | ASP_Identifier | PDU_Identifier
Syntax 335 TS_Typeldentifier ::= SimpleTypeldentifier | StructIdentifier | ASN1_Typeldentifier
Syntax 155 LengthAttribute ::= SingleLength | RangeLength
Syntax 156 SingleLength ::= "[" Bound "]"
Syntax 157 Bound ::= Number | TS_Parldentifier | TS_ConstIdentifier
Syntax 158 RangeLength ::= "[" LowerBound To UpperBound "]"
Syntax 159 LowerBound ::= Bound
Syntax 370 To ::= TO | ".."’
Syntax 160 UpperBound ::= Bound | INFINITY

Superseded by a more recent version

Recommendation X.292 (09/92) Superseded by a more recent version 51

Example 24 – A typical PDU Type Definition

10.11.3 Use of Structured Types within PDU definitions

There are two possible relationships between a Structured Type and PDU definitions which refer to it, as
follows:

a) if a field name is given in the definition, then the Structured Type referenced is a substructure. This
allows definition of PDUs containing a multi-level substructure of fields;

b) if the macro symbol is used instead of a field name then this is equivalent to a macro expansion; the entry
in the PDU type definition expands directly to a list of fields without introducing an additional level of
substructure.

The macro symbol shall not be used on the same line as references to types defined in ASN. 1 or Simple
Types, i.e. only Structured Types defined in tabular form can be expanded into other Structured Types as macro
expansions.

10.11.4 PDU Type Definitions using ASN.1

Where more appropriate, PDUs can be specified in ASN.1. This shall be achieved by an ASN.1 definition
using the ASN.1 syntax as defined in Recommendation X.208. The following information shall be supplied for each
ASN.1 PDU:

a) its name, where the full name, as given in the appropriate protocol Recommendation, shall be used; if an
abbreviation is used, then the full name shall follow in parentheses;

b) the PCO type associated with the PDU, where the PCO type shall be one of the PCO types used in the
PCO declarations; if a PDU is always sent or received embedded in ASPs, then specification of the PCO
type in the PDU type definition is optional; if only a single PCO is defined within a test suite, then
specification of the PCO type in the PDU type definition is optional;

c) the ASN.1 PDU type definition, which shall follow the syntax defined in Recommendation X.208. For
identifiers within that definition the hyphen symbol (–) shall not be used. The underscore symbol (_)
may be used instead. The PDU identifier in the table header is the name of the first type defined in the
table body.

Types referred to from the PDU definition shall be defined in other ASN.1 type definition tables, be defined by
reference in the ASN.1 type reference table or be defined locally in the same table, following the first type definition.
Locally defined types shall not be used in other parts of the test suite.

ASN.1 comments can be used within the table body. The comments column shall not be present in this table.

PDU Type Definition

PDU Name : INTC (Interrupt Confirm)
PCO Type : NSAP
Comments :

Field Name Field Type Comments

GFI BITSTRING General Format Identifier

LCGN BITSTRING Logical Channel Group Number

LCN BITSTRING Logical Channel Identifier

PTI OCTETSTRING Packet Type Identifier

EXTRA OCTETSTRING To create long INTC packets

Superseded by a more recent version

52 Recommendation X.292 (09/92) Superseded by a more recent version

This information shall be provided in the following proforma:

Example 25 – An FTAM ASN.1 Definition

ASN.1 PDU Type Definition

PDU Name : PDU_Id&Fullld
PCO Type : [PCO_TypeIdentifier]
Comments : [FreeText]

Type Definition

.

.
ASN1_Type&LocalTypes

.

.

Detailed Comments: [FreeText]

Proforma 21 – ASN.1 PDU Type Definition

Syntax definition

Syntax 144 PDU_ld&FullId ::= PDU_Identifier [FullIdentifier]
Syntax 145 PDU_Identifier ::= Identifier
Syntax 430 FullIdentifier ::= "(" BoundedFreeText ")"
Syntax 111 PCO_TypeIdentifier ::= Identifier
Syntax 570 ASN1_Type&LocalTypes ::= ASN1_Type {ASN1_LocalType}
Syntax 580 ASN1_Type ::= Type

Syntax 000 /* REFERENCE – Where Type is a non-terminal defined in Recommendation X.208 */

Syntax 590 ASN1_LocalType ::= Typeassignment

Syntax000 /* REFERENCE – Where Typeassignment is a non-terminal defined in Recommendation X.208 */

ASN.1 PDU Type Definition

PDU Name : F_INIT (F_INITIALIZE_response)
PCO Type :
Comments :

Type Definition

SEQUENCE {
state_result State_result DEFAULT success,
action_result Action_Result multiple success,
protocol_id Protocol_Version,

-- etc.
}

Superseded by a more recent version

Recommendation X.292 (09/92) Superseded by a more recent version 53

10.11 5 ASN.1 PDU Type Definitions by Reference

PDUs can be specified by a precise reference to an ASN.1 PDU defined in an OSI Recommendation or by
referencing an ASN.1 type defined in an ASN.1 module attached to the test suite. The following information shall be
supplied for each PDU:

a) its name, where this name may be used throughout the entire test suite;

b) the PCO type associated with the PDU; where the PCO type shall be one of the PCO types used in the
PCO declarations; if a PDU is sent or received only embedded in ASPs within the whole test suite,
specifying the PCO type is optional; if only a single PCO is defined within a test suite, specifying the
PCO type in a PDU type definition is optional;

c) the type reference, which shall follow the identifier rules stated in Recommendation X.208;

d) the module identifier, which consists of a module reference that shall follow the identifier rules stated in
Recommendation X.208 and an optional ObjectIdentifier.

This information shall be provided in the following proforma:

ASN.1 identifiers type references and value references may contain hyphens. In order to be able to use
imported definitions in TTCN it is necessary to change the hyphens to underscore (see § A.4.2.1).

ASN.1 PDU Type Definitions By Reference

PDU Name PCO Type Type Reference Module Identifier Comments

.

.
PDU_Id&FullId

.

.

.

.
[PCO_TypeIdentifier]

.

.

.

.
TypeReference

.

.

.

.
ModuleIdentifier

.

.

.

.
[FreeText]

.

.

Detailed Comments: [FreeText]

Proforma 22 – ASN.1 PDU Type Definitions By Reference

Syntax definition

Syntax 144 PDU_Id&FullId ::= PDU_Identifier [FullIdentifier]
Syntax 145 PDU_Identifier ::= ldentifier
Syntax 430 FullIdentifier ::= "(" BoundedFreeText ")"
Syntax 111 PCO_TypeIdentifier ::= Identifier
Syntax 630 TypeReference ::= typereference

Syntax 000 /* REFERENCE – Where typereference is defined in Recommendation X.208, § 8.2 */

Syntax 650 Moduleldentifier ::= ModuleIdentifier

Syntax 000 /* REFERENCE – Where ModuleIdentifier is a non-terminal defined in Recommendation X.208 */

Superseded by a more recent version

54 Recommendation X.292 (09/92) Superseded by a more recent version

10.12 String length specifications

10.12.1 TTCN permits the specification of length restrictions on string types (i.e., BITSTRING, HEXSTRING,
OCTET-STRING and all CharacterString types) in the following instances:

a) when declaring Test Suite Types as a type restriction;

b) when declaring simple ASP parameters, PDU fields and elements of Structured Types as an attribute of
the parameter, field or element type;

c) when defining ASP/PDU or Structured Type constraints as an attribute of the constraint value.

10.12.2 Length specifications can have the following formats:

a) [Length] restricting the length of the possible string values of a type to exactly Length;

b) [MinLength TO MaxLength] or [MinLength .. MaxLength] specifying a minimum and a maximum
length for the values of a particular string type.

The length boundaries: Length, MinLength and MaxLength are of different complexity depending on where
they are used. In all cases, these boundaries shall evaluate to non-negative INTEGER values. For the upper bound the
keyword INFINITY may also be used to indicate that there is no upper limit for the length. Where a range length is
specified, the lower of the two values shall be specified on the left.

In the context of constraints, length restrictions can also be specified on values of type SEQUENCE OF or
SET OF, thus limiting the number of their elements.

Table 4/X.292 specifies the units of length for different string types:

Length specifications shall not conflict, i.e., a restriction on a type (set of values) that is already restricted shall
specify a subrange of values of its base type.

Example 26 – Length specification

Assume the following ASN.1 type definitions:

type 1 ::= OCTETSTRING [0 .. 25]
type 2 ::= type 1 [15 .. 24]

the length restriction on type2 is correct since type2 comprises all OCTETSTRING values having a minimum
length of 15 and a maximum length of 24, which is a true subset of all OCTETSTRINGs of a maximum length
of 25. On the other hand:

type2 ::= type1 [15 .. 30]

is invalid since R contains values not included in type1.

TABLE 4/X.292

Units of length used in field length specifications

Type Units of Length

BITSTRING Bits

HEXSTRING Hex digits

OCTETSTRING Octets

CharacterString Characters

SEQUENCE OF Elements of its base type

SET OF Elements of its base type

Superseded by a more recent version

Recommendation X.292 (09/92) Superseded by a more recent version 55

10.13 ASP and PDU Definitions for SEND events

In ASPs and/or PDUs that are sent from the tester, values for ASP parameters and/or PDU fields that are
defined in the Constraints Part (see §§ 11, 12 and 13) shall correspond to the parameter or field definition. This means:

a) the value shall be of the type specified for that ASP parameter or PDU field; and

b) each value shall satisfy any relevant length restrictions associated with the type.

10.14 ASP and PDU Definitions for RECEIVE events

For ASPs and/or PDUs received by the tester the ASP and/or PDU type defines the class of incoming ASPs
and/or PDUs that can match an event specification of that type. An incoming ASP or PDU is considered to be of that
class if and only if:

a) the ASP parameter and/or PDU field values are of the type specified in the ASP and/or PDU definition;
and

b) the value satisfies any relevant length restrictions associated with the type.

In all other cases an incoming ASP and/or PDU does riot match an event specification of that type.

In the case of substructured ASPs and/or PDUs, either using Structured Types or ASN.1, the above rules apply
to the fields of the substructure(s) recursively.

10.15 Alias Definitions

10.15.1 Introduction

In order to enhance the readability of TTCN behaviour descriptions, an Alias may be used to facilitate the
renaming of ASP and/or PDU identifier in behaviour descriptions. This renaming may be done to highlight the exchange
of PDUs embedded in ASPs.

The following information shall be provided for each Alias:

a) an Alias identifier;

b) its expansion, which is itself an identifier.

This information shall be provided in the format shown in the following proforma:

Alias Definitions

Alias name Expansion Comments

.

.
AliasIdentifier

.

.

.

.
Expansion

.

.

.

.
[FreeText]

.

.

Detailed Comments: [FreeText]

Proforma 23 – Alias Definitions

Syntax definition

Syntax 168 AliasIdentifier ::= Identifier
Syntax 170 Expansion ::= ASP_Identifier | PDU_Identifier

Superseded by a more recent version

56 Recommendation X.292 (09/92) Superseded by a more recent version

10.15.2 Expansion of Aliases

The following rules shall apply:

a) an Alias is an identifier that shall follow the syntax rules for identifier defined in the TTCN.MP. This
means that an Alias is delimited by any character (symbol) not allowed in a TTCN identifier;

b) Aliases are not transitive; if one Alias appears as the expansion of another Alias it shall not be expanded
(i.e., it is a one pass expansion);

c) an Alias shall be used only to replace an ASP identifier or a PDU identifier within a single TTCN
statement in a behaviour tree. It shall be used only in a behaviour description column;

d) the expansion of an Alias shall follow the syntax rules for identifier as defined in the TTCN.MP.

Note – Because Aliases are treated as macro expansions, the term AliasIdentifier does not appear in the BNF
for TTCN event lines.

Example 27 – Alias definition from a TransportTestSuite

Alias Definitions

Alias Name Expansion Comments

CR N_DATArequest Alias for the N_DATArequest
ASP used to carry a CR_TPDU

DR N_DATArequest Alias for the N_DATArequest
ASP used to carry a DR_TPDU

CC N_DATAindication Alias for the N_DATAindication
ASP used to carry a CC_TPDU

Note – Because Aliases are treated as macro expansions, the term AliasIdentifier does not appear in the BNF for
TTCN event lines.

Superseded by a more recent version

Recommendation X.292 (09/92) Superseded by a more recent version 57

11 Constraints Part

11.1 Introduction

An ATS shall specify the values of the ASP parameters and PDU fields that are to be sent or received by the
test system. The constraints part fulfils that purpose in TTCN.

The dynamic behaviour descriptions (see § 14) shall reference constraints to construct outgoing ASPs and/or
PDUs in SEND events; and to specify the expected contents of incoming ASPs and/or PDUs in RECEIVE events.

Constraints can be specified in either of the two forms:

a) tabular constraints (see § 12);

b) ASN.1 constraints (see (§ 13).

11.2 General principles

This subclause describes the general principles and defines the mechanisms of how to build constraints for
SEND events and how to match RECEIVE events. These principles are common to both the tabular and ASN.1 forms of
constraints.

Constraints are detailed specifications of ASPs and/or PDUS. Normally, each constraint is defined specifically
for use with either SEND events or RECEIVE events. Any given constraint may be used in either context, provided the
operational semantic restrictions defined in Annex B are met.

The constraint specification of an ASP and/or PDU shall have the same structure as that of the type definition
of that ASP or PDU.

If an ASP and/or PDU is substructured, then the constraints for ASPs and/or PDUs of that type shall have the
same tabular structure or a compatible ASN.1 structure (i.e. possibly with some groupings).

Structured Types expanded into an ASP or PDU definition by use of the macro symbol (<–) are not considered
to be substructures. Constraints for such ASPs or PDUs shall either have a completely flat structure (i.e. the elements of
an expanded structure are explicitly listed in the ASP or PDU constraint) or shall reference a corresponding structure
constraint for macro expansion.

Constraints specify ASP parameter and PDU field values using various combinations of literal values, data
object references, expressions, ASN.1 constructed values, special matching mechanisms and references to other
constraints.

Values of all TTCN or ASN.1 types can be used in constraints. Expressions used in constraints shall evaluate
to a specific value when the constraint is used for sending or receiving events.

Whichever way the values are obtained, they shall correspond to the parameter or field entries in the ASP or
PDU type definitions. This means:

a) the value shall be of the type specified for that parameter or field; and

b) the length shall satisfy any restriction associated with the type.

An expression in a constraint shall contain only literal values, Test Suite Parameters, Test Suite Constants,
formal parameters and Test Suite Operations.

To facilitate static chaining a (possibly parameterized) constraints reference is also allowed as a parameter or
field value.

Superseded by a more recent version

58 Recommendation X.292 (09/92) Superseded by a more recent version

Neither Test Suite Variables nor Test Case Variables shall be used in constraints, unless passed as actual
parameters. In the latter case they shall be bound to a value and are not changed by the occurrence of a SEND or a
RECEIVE event.

Matching mechanisms are defined in § 11.6.2.

11.3 Parameterization of constraints

Constraints may be parameterized. In such cases the constraint name shall be followed by a formal parameter
list enclosed in parentheses. The formal parameters shall be used to specify ASP parameter or PDU field values in the
constraint.

Each formal parameter name shall be followed by a colon and the name of the parameter’s type. If more than
one parameter of the same type is used, the parameter may be specified as a parameter sub-list. When a parameter sub-
list is used, the parameter names shall be separated by a comma. The final parameter in the sub-list shall be followed by
a colon and the name of the parameter sub-list’s type. When more than one parameter and type pair (or parameter sub-
list and type pair) is used, the pairs shall be separated from each other by semicolons.

Literal values, Test Suite Parameters, Test Suite Constants, Test Suite Variables, Test Case Variables and PDU
or Test Suite Type constraints may be passed as actual parameters to a constraint in a constraints reference made from a
behaviour description. The parameters shall not be of PCO type or ASP type.

11.4 Chaining of constraints

Constraints may be chained by referencing a constraint as the value of a parameter or field in another
constraint. For example, the value of the Data parameter of an N-DATAreq (Network Data Request) ASP could be
a reference to a T-CRPDU (Transport Connect Request PDU) PDU constraint, i.e. the T-CRPDU is chained to the
N-DATAreq ASP.

Constraints can be chained in one of two ways, either by:

a) static chaining, where an ASP parameter value or PDU field value in a constraint is an explicit reference
to another constraint; or

b) dynamic chaining, where an ASP parameter value or PDU field value in a constraint is a formal
parameter of the constraint. When such a constraint is referenced from a dynamic behaviour, the
corresponding actual parameter to the constraint is a reference to another constraint (see Annex D for
examples of static and dynamic chaining).

Wherever constraints are referenced within constraints declarations, those references shall not be recursive
(neither directly or indirectly).

11.5 Constraints for SEND events

Constraints that are referenced for SEND events shall not include wildcards [i.e. AnyValue (?) Or AnyOrOmit
(*)] unless these are explicitly assigned specific values on the SEND event line in the behaviour description.

In tabular constraints, all ASP parameters and PDU fields are optional and therefore may be omitted using the
Omit symbol, to indicate that the ASP parameter or PDU field is to be absent from the event sent.

In ASN.1 constraints, only ASP parameters and PDU fields declared as OPTIONAL may be omitted. These
may be omitted either by using the Omit symbol or by simply leaving out the relevant ASP parameter or PDU field.

Superseded by a more recent version

Recommendation X.292 (09/92) Superseded by a more recent version 59

None of the matching mechanisms defined in § 11.6.2 except SpecificValue provides a value for an ASP
parameter or PDU field on a SEND event.

In cases where ASN.1 values of type SET or SET OF are used in a constraint, the values of the elements of the
set shall be sent in the order specified by the relevant constraint.

11.6 Constraints for RECEIVE events

11.6.1 Matching values

If a constraint is to be used to construct the values of ASP parameters or PDU fields that a received ASP or
PDU shall match, it shall contain only specific values evaluated as explained in § 11.6.3, or special matching
mechanisms where it is not desirable, or possible, to specify specific values. The matching mechanisms specify other
ways of matching than “equal to a specific value”.

An incoming ASP and/or PDU matches a constraint used in a RECEIVE event if, and only if, all the ASP
parameters and/or PDU fields are of the type specified in the ASP and/or PDU definitions; if the value, alphabet and
length satisfies any restriction associated with the type; and if the ASP parameter and/or PDU field values correctly
match those of the constraint.

In the case of substructured ASPs and/or PDUS, either using Structured Types or ASN.1, the above rules shall
apply to the fields of the substructure(s) recursively.

Note – If a RECEIVE event is qualified by a Boolean expression, then a successful match means that both the
incoming ASP and/or PDU must match the constraint and that the qualifier must evaluate to TRUE.

11.6.2 Matching mechanisms

An overview of the supported matching mechanisms is shown in Table 5/X.292, including the special symbols
and the scope of their application. The left hand column of this table lists all the ASN.1 types and TTCN equivalent
types to which these matching mechanisms apply. The matching mechanisms in the horizontal headings are arranged in
four groups:

a) specific values;

b) special symbols that can be used instead of values;

c) special symbols that can be used inside values;

d) special symbols which describe attributes of values.

Some of the symbols may be used in combination, as detailed in the following sections.

The shaded area in Table 5/X.292 indicates the mechanisms that apply to both predefined TTCN and ASN.1
types.

In a constraint specification, the matching mechanisms may replace values of single ASP parameters or PDU
fields or even the entire contents of an ASP or PDU.

Note – When these matching mechanisms are used singly or in combination, many protocol restrictions can be
specified in the constraints, thereby avoiding undesirable computation details in the behaviour part.

Superseded by a more recent version

60 Recommendation X.292 (09/92) Superseded by a more recent version

BOOLEAN
INTEGER
ENUMERATED
BITSTRING
OCTETSTRING
HEXSTRING
CHARSTRINGS
SEQUENCE
SEQUENCE OF
SET
SET OF
ANY
CHOICE
OBJECT ID

S
p

ec
if

ic
 V

al
u

e

C
o

m
pl

em
en

t

O
m

it
(–

)

A
ny

V
al

ue
 (?

)

A
ny

O
rO

m
it

(*
)

V
al

ue
Li

st

R
an

ge

S
up

er
S

et

S
ub

S
et

A
n

yO
n

e
(?

)

A
n

yO
rN

o
ne

 (
*)

P
er

m
u

ta
ti

o
n

L
en

g
th

If
P

re
se

n
t

TYPE

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l l l

l l

l l

l l

l l

l l l

l

l

l

l

l

l

INSIDE
VALUE

ATTRIBUTESINSTEAD OF VALUEVALUE

TABLE 5/X.292

TTCN Matching Mechanisms

11.6.3 Specific Value

This is the basic matching mechanism. Specific values in constraints are expressions. Unless otherwise
specified, a constraint ASP parameter or PDU field matches the corresponding incoming ASP parameter or PDU field if,
and only if, the incoming ASP parameter or PDU field has exactly the same value as the value to which the expression in
the constraint evaluates.

Two values of a tabular ASP, PDU or Structured Type, or of ASN.1 SEQUENCE or SEQUENCE OF are
considered the same if each of their parameters fields or elements match and are in the same order. For ASN.1 SET and
SET OF types two values are the same if they have the same number of elements, and each element in one value
matches exactly one element in the other value. The elements in a SET or SET OF type value need not be in the same
order to match.

11.6.4 Instead of Value

11.6.4.1 Complement

Complement is an operation for matching that can be used on all values of all types. Complement is denoted
by the keyword COMPLEMENT followed by a list of constraint values. Each constraint value in the list shall be of the
type declared for the ASP parameter or PDU field in which the Complement mechanism is used.

Syntax definition

201 Complement ::= COMPLEMENT ValueList

A constraint ASP parameter or PDU field that uses Complement matches the corresponding ASP parameter or
PDU field if and only if the incoming ASP parameter or PDU field does not match any of the values listed in the
ValueList.

Superseded by a more recent version

Recommendation X.292 (09/92) Superseded by a more recent version 61

Example 28 – Constraints using Complement instead of a value, and with a value list

Type Constraint

INTEGER COMPLEMENT (5)
INTEGER COMPLEMENT (1, 3, 5)

11.6.4.2 Omit

Omit is a special symbol for matching that can be used on values of all types, provided that the ASP parameter
or PDU field is optional.

In ASN.1 constraints it is also possible to simply leave out an OPTIONAL ASP parameter or PDU field
instead of using OMIT explicitly.

In tabular constraints Omit shall be denoted by dash (–). In ASN.1 constraints Omit is denoted by OMIT.

Syntax definition

202 Omit ::= Dash | OMIT

An Omit symbol in a constraint is used to indicate that an optional ASP parameter or PDU field shall be
absent.

Example 29 – Constraints using Omit instead of a value, at top level

Type Constraint

INTEGER OPTIONAL OMIT

11.6.4.3 AnyValue

AnyValue is a special symbol for matching that can be used on values of all types. In both tabular and ASN.1
constraints AnyValue is denoted by “?”.

Syntax definition

203 AnyValue ::= "?"

A constraint ASP parameter or PDU field that uses AnyValue matches the corresponding incoming ASP
parameter or PDU field if, and only if, the incoming ASP parameter or PDU field evaluates to a single element of the
specified type.

Example 30 – Constraints using Value in combination with AnyValue

Type Constraint

SEQUENCE OF SET OF INTEGER { {1, 2},
{ { { ?,

{ {1, 2, ?} }

11.6.4.4 AnyOrOmit

AnyOrOmit is a special symbol for matching that can be used on values of all types, provided that the ASP
parameter or PDU field is declared as optional. In both tabular and ASN.1 constraints AnyOrOmit is denoted by “*”.

Note – The symbol “*” is used for both AnyOrOmit and AnyOrNone. Ambiguity in interpretation is resolved
by the requirements indicated in §§ 11.6.4.4 and 11.6.5.2.

Syntax definition

204 AnyOrOmit ::= "*"

A constraint ASP parameter or PDU field that uses AnyOrOmit matches the corresponding incoming ASP
parameter or PDU field if, and only if, either the incoming ASP parameter or PDU field evaluates to any element of the
specified type, or if the incoming ASP parameter or PDU field is absent.

Superseded by a more recent version

62 Recommendation X.292 (09/92) Superseded by a more recent version

Example 31 – Constraints using Value in combination with AnyOrOmit

Type Constraint

SEQUENCE OF { id1 SET OF INTEGER { id1 {2, 5},
SEQUENCE OF { id2 SET OF INTEGER } { id2 * }

11.6.4.5 ValueList

ValueList can be used on values of all types. In both tabular and ASN.1 constraints. ValueLists are denoted by
a parenthesized list of values separated by commas.

Syntax definition

205 ValueList ::= "("ConstraintValue&Attributes {Comma ConstraintValue&Attributes}"}"

A constraint ASP parameter or PDU field that uses a ValueList matches the corresponding incoming ASP
parameter or PDU field if, and only if, the incoming ASP parameter or PDU field value matches any one of the values in
the ValueList. Each value in the ValueList shall be of the type declared for the ASP parameter or PDU field in which the
ValueList mechanism is used.

Example 32 – Constraints using ValueList instead of a specific value, for INTEGER type

Type Constraint

INTEGER (2, 4, 6)

Example 33 – Constraints using ValueList instead of a specific value, for CHOICE type

Type Constraint

CHOICE {a INTEGER, (a 2, b TRUE)
CHOICE b BOOLEAN}

11.6.4.6 Range

Ranges shall be used only on values of INTEGER type. A range is denoted by two boundary values, separated
by “..” or TO, enclosed by parentheses. A boundary value shall be either:

a) INFINITY or –INFINITY;

b) a constraint expression that evaluates to a specific INTEGER value.

The lower boundary shall be put on the left side of the “..” or TO, the upper boundary at the right side. The
lower boundary shall be less than the upper boundary.

Syntax definition

206 ValueRange ::= "(" ValRange ")"
207 ValRange ::= (LowerRangeBound To UpperRangeBound)
208 LowerRangeBound ::= ConstraintExpression | Minus INFINITY
209 UpperRangeBound ::= ConstraintExpression | INFINITY

A constraint ASP parameter or PDU field that uses a Range matches the corresponding incoming ASP
parameter or PDU field if, and only if, the incoming ASP parameter or PDU field value is equal to one of the values in
the Range.

Example 34 – Constraints using Range instead of a value

Type Constraint

INTEGER (1 .. 6)
(–INFINITY .. 8)
(12 .. INFINITY)

Superseded by a more recent version

Recommendation X.292 (09/92) Superseded by a more recent version 63

11.6.4.7 SuperSet

SuperSet is an operation for matching that shall be used only on values of SET OF type. SuperSet shall be
used only in ASN.1 constraints. SuperSet is denoted by SUPERSET.

Syntax definition

210 SuperSet ::= SUPERSET "(" ConstraintValue&Attributes ")"

A constraint ASP parameter or PDU field that uses SuperSet matches the corresponding incoming ASP
parameter or PDU field if, and only if, the incoming ASP parameter or PDU field contains at least all of the elements
defined within the SuperSet, and may contain more. The argument of SuperSet shall be of the type declared for the ASP
parameter or PDU field in which the SuperSet mechanism is used.

Example 35 – Constraints using SuperSet instead of a specific value

Type Constraint

SET OF INTEGER SUPERSET ({1, 2, 3})

11.6.4.8 SubSet

SubSet is an operation for matching that can be used only on values of SET OF type. SubSet shall be used
only in ASN.1 constraints. SubSet is denoted by SUBSET.

Syntax definition

211 SubSet ::= SUBSET "(" ConstraintValue&Attributes ")"

A constraint ASP parameter or PDU field that uses SubSet matches the corresponding incoming ASP
parameter or PDU field if, and only if, the incoming ASP parameter or PDU field contains only elements defined within
the SubSet, and may contain less. The argument of SubSet shall be of the type declared for the ASP parameter or PDU
field in which the SuperSet mechanism is used.

Example 36 – Constraints using SuperSet instead of a specific value

Type Constraint

SET OF INTEGER SUBSET ({2, 4, 6, 8, 10})

11.6.5 Inside Values

11.6.5.1 AnyOne

AnyOne is a special symbol for matching that can be used within values of string types, SEQUENCE OF and
SET OF. In both tabular and ASN.1 constraints AnyOne is denoted by “?”

Syntax definition

351 AnyOne ::= "?"

Inside a string, SEQUENCE OF or SET OF a “?” in place of a single element means that any single element
will be accepted. If the symbol “?” is needed within a CharacterString as a character, it shall be indicated by “\?”. If the
symbol “\” is needed within a CharacterString as a character, it shall be indicated by “\\”.

Example 37 – Constraints using AnyOne

Type Constraint

IA5String "a?cd"
SEQUENCE OF INTEGER {1, 2, ?}

Superseded by a more recent version

64 Recommendation X.292 (09/92) Superseded by a more recent version

Note – The “?” in the second example can be interpreted as an AnyValue replacing an INTEGER value, or
AnyOne inside a SEQUENCE OF INTEGER value. Since both interpretations lead to the same set of events that match
the constraint, no problem arises.

11.6.5.2 AnyOrNone

AnyOrNone is a special symbol for matching that can be used within values of string types, SEQUENCE OF
and SET OF. In both tabular and ASN.1 constraints AnyOrNone is denoted by “*”.

If a “*” appears at the highest level inside a value of string type, SEQUENCE OF or SET OF, it shall be
interpreted as AnyOrNone.

Note – This rule prevents the otherwise possible interpretation of “*” as AnyOrOmit that replaces an element
inside the string, SEQUENCE OF or SET OF.

Syntax definition

352 AnyOrNone ::= "*"

Inside a string, SEQUENCE OF or SET OF a “*” in place of a single element means that either none, or any
number of consecutive elements will be accepted. The “*” symbol matches the longest sequence of elements possible,
according to the pattern as specified by the symbols surrounding the “*”. If the symbol “*” is needed within a
CharacterString as a character, it shall be indicated by “*”. If the symbol “\” is needed within a CharacterString as a
character, it shall be indicated by “\\”.

Example 38 – Constraints using AnyOne

Type Constraint

IA5String "ab*z"
SEQUENCE OF INTEGER {1, 2, *, 10}
SEQUENCE OF IA5String { "ab*z",

{ *,
{ "abc"}

11.6.5.3 Permutation

Permutation an operation for matching that can be used only on values inside a value of SEQUENCE OF type.
Permutation shall be used only in ASN.1 constraints. Permutation is denoted by PERMUTATION.

Syntax definition

212 Permutation ::= PERMUTATION ValueList

Permutation in place of a single element means that any series of elements is acceptable provided it contains
the same elements as the value list in the Permutation, though possibly in a different order. If both Permutation and
AnyOrNone are used inside a value, the AnyOrNone shall be evaluated first. Each element listed in Permutation shall be
of the type declared inside the SEQUENCE OF type of the ASP parameter or PDU field.

Example 39 – Constraints using Permutation

Type Constraint

SEQUENCE OF INTEGER {PERMUTATION (1, 2, 3), 5}

Example 40 – Constraint using Permutation in combination with AnyOrNone

Type Constraint

SEQUENCE OF INTEGER {PERMUTATION (1, 2, 3), *}
{PERMUTATION (1, 2, 3, *)}

Superseded by a more recent version

Recommendation X.292 (09/92) Superseded by a more recent version 65

Note that the first constraint matches with incoming ASPs and/or PDUs that consist of a sequence of
INTEGER values, starting with 1,2,3; 1,3,2; 2,1,3; 2,3,1; 3,1,2; or 3,2,1 and followed by any number of values of type
INTEGER. The second constraint matches any incoming ASP and/or PDU of type SEQUENCE OF INTEGER,
that contains the elements 1,2,3 in any order and in any position. It matches, for example; {5,2,7,1,3} and
{9,3,7,2,12,1,17}.

11.6.6 Attributes of values

11.6.6.1 Length

Length is an operation for matching that can be used only as an attribute of the following mechanisms:
Specific value, Complement, Omit, AnyValue, AnyOrOmit, AnyOne, AnyOrNone and Permutation.

In both tabular and ASN.1 constraints, length may be specified as an exact value or range in string values and
SEQUENCE OF or SET OF values, according to § 10.12. The units of length are to interpreted according to
Table 4/X.292. The boundaries shall be denoted by specific non-negative INTEGER values. Alternatively, the keyword
INFINITY can be used as a value for the upper boundary in order to indicate that there is no upper limit of length.

The length specifications defined for the ASP parameter or PDU field type in the Test Suite Type definitions
shall not conflict with the length specifications in the ASP or PDU constraint, i.e. the set of strings defined by a length
restriction in an ASP or PDU constraint shall be a true subset of the set of strings defined by the ASP or PDU definition.

Syntax definition

214 ValueLength ::= SingleValueLength | RangeValueLength
215 SingleValueLength ::= "[" ValueBound "]"
216 ValueBound ::= Number | TS_ParIdentifier | TS_ConstIdentifier | FormalParIdentifier
217 RangeValueLength ::= "[" LowerValueBound To UpperValueBound "]"
218 LowerValueBound ::= ValueBound
378 To ::= TO | ".."
219 UpperValueBound ::= ValueBound | INFINITY

A constraint ASP parameter or PDU field that uses Length as an attribute of a symbol matches the
corresponding incoming ASP parameter or PDU field if, and only if, the incoming ASP parameter or PDU field matches
both the symbol and its associated attribute. The length attribute matches if the length of the incoming ASP parameter or
PDU field is greater than or equal to the specified lower bound and less than or equal to the upper bound. In the case of a
single length value the length attributes matches only if the length of the received ASP parameter or PDU field is exactly
the specified value.

Example 41 – Constraints using Value in combination with Length

Type Constraint

IA5String "ab*ab" [13]

11.6.6.2 IfPresent

IfPresent is a special symbol for matching that can be used as an attribute of all the matching mechanisms,
provided the type is declared as optional. In both tabular and ASN.1 constraints Ifpresent is denoted by IF_PRESENT.

A constraint ASP parameter or PDU field that uses an Ifpresent symbol as an attribute of another symbol
matches the corresponding incoming ASP parameter or PDU field if, and only if, the incoming ASP parameter or PDU
field matches the symbol, or if the incoming ASP parameter or PDU field is absent.

Note – The AnyOrOmit symbol (*) has exactly the same meaning as ? IF_PRESENT.

Example 42 – Constraints using Value in combination with IFPresent

Type Constraint

IA5String OPTIONAL "abcdef" IF_PRESENT

Superseded by a more recent version

66 Recommendation X.292 (09/92) Superseded by a more recent version

12 Specification of constraints using tables

12.1 Introduction

This section describes the specification of tabular constraints on Structured Types, ASPs and PDUS. It
describes how single constraint tables can be used to specify constraints on flat (unstructured) ASPs or PDUs and how
structured constraints can be specified by declaring constraints on Structured Types, defined in the Test Suite Types.

In Annex C additional tables are defined which allow many single constraint declarations in a single table.

12.2 Structured Type Constraint Declarations

If an ASP or PDU is defined using Structured Types, either as macro expansions or substructures, constraints
for these ASPs or PDUs shall be similarly substructured. Structure constraint tables are very similar to PDU constraint
tables. The element values for structure constraints shall be provided in the format shown in the following proforma:

Structured Type Constraint Declaration

Constraint Name : ConsId&ParList
Structured Type : StructIdentifier
Derivation Path : [DerivationPath]
Comments : [FreeText]

Element Name Element Value Comments

.

.
ElemIdentifier

.

.

.

.
ConstraintValue&Attributes

.

.

.

.
[FreeText]

.

.

Detailed Comments: [FreeText]

Proforma 24 – Structured Type Constraint Declaration

Syntax definition

Syntax 190 Consld&ParList ::= Constraintldentifier [FormalParList]
Syntax 191 ConstraintIdentifier ::= Identifier
Syntax 440 Structldentifier ::= Identifier
Syntax 193 DerivationPath ::= {Constraintldentifier Dot}+
Syntax 490 Elemldentifier ::= Identifier
Syntax 197 ConstraintValue&Attributes ::= ConstraintValue ValueAttributes
Syntax 198 ConstraintValue ::= ConstraintExpression | MatchingSymbol | ConsRef
Syntax 199 ConstraintExpression ::= Expression
Syntax 200 MatchingSymbol ::= Complement | Omit | AnyValue | AnyOrOmit | ValueList | ValueRange |
Syntax 000 SuperSet | SubSet | Permutation
Syntax 277 ConsRef ::= Constraintldentifier [ActualCrefParList]
Syntax 278 ActualCrefParList ::= "(" ActualCrefPar {Comma ActualCrefPar} ")"
Syntax 279 ActualCrefPar ::= Value | DataObjectldentifier | ConsRef
Syntax 213 ValueAttributes ::= [ValueLength] [IF_PRESENT]
Syntax 214 ValueLength ::= SingleValueLength | RangeValueLength
Syntax 215 SingleValueLength ::= "[" ValueBound "]"
Syntax 216 ValueBound ::= Number | TS_ParIdentifier | TS_Constldentifier | FormalParldentifier
Syntax 217 RangeValueLength ::= "[" LowerValueBound To UpperValueBound "]"
Syntax 218 LowerValueBound ::= ValueBound
Syntax 370 To ::= TO | ".."
Syntax 219 UpperValueBound ::= ValueBound | INFINITY

Superseded by a more recent version

Recommendation X.292 (09/92) Superseded by a more recent version 67

This proforma is used in the same way that the PDU Constraint Declaration proforma is used for PDUs
(see § 12.4).

If an ASP or PDU definition refers to a Structured Type as a substructure of a parameter or field (i.e. with a
parameter name or a field name specified for it) then the corresponding constraint shall have the same parameter or field
name in the corresponding position in the parameter name or field name column of the constraint and the value shall be a
reference to a constraint for that parameter or field (i.e. for that substructure in accordance with the definition of the
Structured Type). If the ASP or PDU definition refers to a parameter or field specified as being of metatype PDU then in
a corresponding constraint the value for that parameter or field shall be specified as the name of a PDU constraint, or
formal parameter.

12.3 ASP Constraint Declarations

The parameter values for ASP constraints shall be provided in the format shown in the following proforma:

ASP Constraint Declaration

Constraint Name : ConsId&ParList
ASP Type : ASP_Identifier
Derivation Path : [DerivationPath]
Comments : [FreeText]

Parameter Name Parameter Value Comments

.

.
ASP_ParldOrMacro

.

.

.

.
ConstraintValue&Attributes

.

.

.

.
[FreeText]

.

.

Detailed Comments: [FreeText]

Proforma 25 – ASP Constraint Declaration

Syntax definition

Syntax 190 Consld&ParList ::= Constraintldentifier [FormalParList]
Syntax 191 Constraintldentifier ::= Identifier
Syntax 128 ASP_Identifier ::= Identifier
Syntax 193 DerivationPath ::= {ConstraintIdentifier Dot}+
Syntax 132 ASP_ParldOrMacro ::= ASP_Parld&FullId | MacroSymbol
Syntax 133 ASP_Parld&FullId ::= ASP_Parldentifier [FullIdentifier]
Syntax 134 ASP_Parldentifier ::= Identifier
Syntax 150 MacroSymbol ::= "<–"
Syntax 197 ConstraintValue&Attributes ::= ConstraintValue ValueAttributes
Syntax 198 ConstraintValue ::= ConstraintExpression | MatchingSymbol | ConsRef
Syntax 199 ConstraintExpression ::= Expression
Syntax 200 MatchingSymbol ::= Complement | Omit | AnyValue | AnyOrOmit | ValueList | ValueRange |
Syntax 000 SuperSet | SubSet | Permutation
Syntax 277 ConsRef ::= Constraintldentifier [ActualCrefParList]
Syntax 278 ActualCrefParList ::= "(" ActualCrefPar {Comma ActualCrefPar} ")"
Syntax 279 ActualCrefPar ::= Value | DataObjectIdentifier | ConsRef
Syntax 213 ValueAttributes ::= [ValueLength] [IF_PRESENT]
Syntax 214 ValueLength ::= SingleValueLength | RangeValueLength
Syntax 215 SingleValueLength ::= "[" ValueBound "]"
Syntax 216 ValueBound ::= Number | TS_ParIdentifier | TS_Constldentifier | FormalParIdentifier
Syntax 217 RangeValueLength ::= "[" LowerValueBound To UpperValueBound "]"
Syntax 218 LowerValueBound ::= ValueBound
Syntax 370 To ::= TO | ".."
Syntax 219 UpperValueBound ::= ValueBound | INFlNITY

Superseded by a more recent version

68 Recommendation X.292 (09/92) Superseded by a more recent version

This proforma is used for ASPs in the same way that the PDU Constraint Declaration proforma is used
(see § 12.4).

12.4 PDU Constraint Declarations

In the tabular format a constraint is defined by specifying a value and optional attributes for each PDU field.
The following information shall be supplied for each PDU constraint:

a) the name of the constraint which may be followed by an optional formal parameter list;

b) the PDU type name;

c) the derivation path (see § 12.6);

d) a constraint value for each field, where the following information shall be supplied for each field:

1) its name;

Each field entry in the field name column shall have been declared in the relevant PDU type definition. If
any of the original PDU fields is defined as having both a short name and full identifier, the constraint
shall not repeat the full identifier;

If the PDU definition refers to a Structured Type by macro expansion (i.e., with “<–” in place of the PDU
field name) then in a corresponding constraint either:

– the individual elements from the Structured Type shall be included directly within the
constraints; or

– the macro symbol (<–) shall be placed in the corresponding position in the PDU field name
column of the constraint and the value shall be a reference to a constraint for the Structured
Type referenced from the PDU definition.

Use of structured constraints by macro expansion in a constraint shall not be used unless the
corresponding PDU definition also references the same Structured Type by macro expansion.

2) its value and an optional attribute;

Superseded by a more recent version

Recommendation X.292 (09/92) Superseded by a more recent version 69

This information shall be provided in the format shown in the following proforma:

PDU Constraint Declaration

Constraint Name : ConsId&ParList
PDU Type : PDU_Identifier
Derivation Path : [DerivationPath]
Comments : [FreeText]

Field Name Field Value Comments

.

.
PDU_FieldIdOrMacro

.

.

.

.
ConstraintValue&Attributes

.

.

.

.
[FreeText]

.

.

Detailed Comments: [FreeText]

Proforma 26 – PDU Constraint Declaration

Syntax definition

Syntax 190 Consld&ParList ::= ConstraintIdentifier [FormalParList]
Syntax 191 Constraintldentifier ::= Identifier
Syntax 145 PDU_Identifier ::= Identifier
Syntax 193 DerivationPath ::= {Constraintldentifier Dot}+
Syntax 149 PDU_FieldIdOrMacro ::= PDU_Fieldld&Fullld | MacroSymbol
Syntax 151 PDU_FieldId&FullId ::= PDU_FieldIdentifier [FullIdentifier]
Syntax 152 PDU_Fieldldentifier ::= Identifier
Syntax 150 MacroSymbol ::= "<–"
Syntax 197 ConstraintValue&Attributes ::= ConstraintValue ValueAttributes
Syntax 198 ConstraintValue ::= ConstraintExpression | MatchingSymbol | ConsRef
Syntax 199 ConstraintExpression ::= Expression
Syntax 200 MatchingSymbol ::= Complement | Omit | AnyValue | AnyOrOmit | ValueList | ValueRange |
Syntax 000 SuperSet | SubSet | Permutation
Syntax 277 ConsRef ::= Constraintldentifier [ActualCrefParList]
Syntax 278 ActualCrefParList ::= "(" ActualCrefPar {Comma ActualCrefPar} ")"
Syntax 279 ActualCrefPar ::= Value | DataObjectldentifier | ConsRef
Syntax 213 ValueAttributes ::= [ValueLength] [IF_PRESENT]
Syntax 214 ValueLength ::= SingleValueLength | RangeValueLength
Syntax 215 SingleValueLength ::= "[" ValueBound "]"
Syntax 216 ValueBound ::= Number | TS_Parldentifier | TS_Constldentifier | FormalParIdentifier
Syntax 217 RangeValueLength ::= "[" LowerValueBound To UpperValueBound "]"
Syntax 218 LowerValueBound ::= ValueBound
Syntax 370 To ::= TO | ".."
Syntax 219 UpperValueBound ::= ValueBound | INFINITY

Superseded by a more recent version

70 Recommendation X.292 (09/92) Superseded by a more recent version

Example 43 – A constraint, called C1, on the PDU called PDU_A

12.5 Parameterization of constraints

Constraints may be parameterized using a formal parameter list. The actual parameters are passed to a
constraint from a constraints reference in a behaviour description.

Example 44 – A parameterized constraint

12.6 Base constraints and modified constraints

For every PDU type definition at least one base constraint shall be specified. A base constraint specifies a set
of base, or default, values for each and every field defined in the appropriate definition. There may be any number of
base constraints for any particular PDU (see Annex D for examples).

PDU Constraint Declaration

Constraint Name : C1
PDU Type : PDU_A
Derivation Path :
Comments :

Field Name Field Value Comments

FIELD1 (4 .. INFINITY)

FIELD2 TRUE

FIELD3 "A STRING"

PDU Constraint Declaration

Constraint Name : C2(P1:INTEGER; P2:BOOLEAN)
PDU Type : PDU_B
Derivation Path :
Comments :

Field Name Field Value Comments

FIELD1 P1

FIELD2 P2

FIELD3 "A STRING"

Detailed Comments: A possible reference to C2 from a Test Case or Test Step may be: C2 (0, TRUE)

Superseded by a more recent version

Recommendation X.292 (09/92) Superseded by a more recent version 71

When a constraint is specified as a modification of a base constraint, any fields not re-specified in the modified
constraint will default to the values specified in the base constraint. The name of the modified constraint shall be a
unique identifier. The name of the base constraint which is to be modified shall be indicated in the derivation path entry
in the constraint header. This entry shall be left blank for a base constraint. A modified constraint can itself be modified.
In such a case the Derivation Path indicates the concatenation of the names of the base and previously modified
constraints, separated by dots (.) A dot shall follow the last modified constraint name. The rules for building a modified
constraint from a base constraint are:

a) if a parameter or field and its corresponding value is not specified in the constraint, then the value in the
parent constraint shall be used (i.e. the value is inherited);

b) if a parameter or field and its corresponding value is specified in the constraint, then the specified value
replaces the value specified in the parent constraint.

12.7 Formal parameter lists in modified constraints

If a base constraint is defined to have a formal parameter list, the following rules apply to all modified
constraints derived from that base constraint, whether or not they are derived in one or several modification steps:

a) the modified constraint shall have the same parameter list as the base constraint. In particular, there shall
be no parameters omitted from or added to this list;

b) the formal parameter list shall follow the constraint name for every modified constraint;

c) parameterized ASP parameters or PDU in a base constraint fields shall not be modified or explicitly
emitted in a modified constraint.

13 Specification of constraints using ASN.1

13.1 Introduction

This section describes a method of specifying Type, ASP and PDU constraints in ASN.1, in a way similar to
the definition of tabular constraints. The normal ASN.1 value declaration is extended to allow use of wild cards and
permutations. Mechanisms to replace or omit parts of ASN.1 constraints, to be used in modified constraints, are defined.

13.2 ASN.1 Type Constraint Declarations

Both ASN.1 ASP constraints and ASN.1 PDU constraints can be structured by using references to ASN.1 Test
Suite Type constraints for values of complex fields. ASN.1 Test Suite Types are defined in the declarations part of the
ATS.

Superseded by a more recent version

72 Recommendation X.292 (09/92) Superseded by a more recent version

ASN.1 type constraint tables are very similar to ASP constraint tables. ASN.1 Type Constraint Declarations
shall be specified in the format shown in the following proforma:

This proforma is used for ASN.1 Types in the same way that the ASN.1 PDU Constraint Declaration proforma
is used (see § 13.4).

13.3 ASN.1 ASP Constraint Declarations

The following information shall be supplied for each ASN.1 ASP Constraint Declaration:

a) the name of the constraint, which may be followed by an optional formal parameter list;

b) the ASP type name;

ASN.1 Type Constraint Declaration

Constraint Name : ConsId&ParList
Structured Type : ASN1_TypeIdentifier
Derivation Path : [DerivationPath]
Comments : [FreeText]

Constraint Value

.

.
ConstraintValue&AttributesOrReplace

.

.

Detailed Comments: [FreeText]

Proforma 27 – ASN.1 Type Constraint Declaration

Syntax definition

Syntax 190 Consld&ParList ::= Constraintldentifier [FormalParList]
Syntax 191 ConstraintIdentifier ::= Identifier
Syntax 550 ASN1_Typeldentifier ::= Identifier
Syntax 193 DerivationPath ::= {Constraintldentifier Dot}+
SBBSS223 ConstraintValue&AttributesOrReplace ::= ConstraintValue&Attributes | Replacement
Syntax 000 {Comma Replacement}
Syntax 197 ConstraintValue&Attributes ::= ConstraintValue ValueAttributes
Syntax 198 ConstraintValue ::= ConstraintExpression | MatchingSymbol | ConsRef
Syntax 199 ConstraintExpression ::= Expression
Syntax 200 MatchingSymbol ::= Complement | Omit | AnyValue | AnyOrOmit | ValueList | ValueRange |
Syntax 000 SuperSet | SubSet | Permutation
Syntax 277 ConsRef ::= Constraintldentifier [ActualCrefParList]
Syntax 278 ActualCrefParList ::= "(" ActualCrefPar {Comma ActualCrefPar} ")"
Syntax 279 ActualCrefPar ::= Value | DataObjectldentifier | ConsRef
Syntax 213 ValueAttributes ::= [ValueLength] [IF_PRESENT]
Syntax 214 ValueLength ::= SingleValueLength | RangeValueLength
Syntax 215 SingleValueLength ::= "[" ValueBound "]"
Syntax 216 ValueBound ::= Number | TS_Parldentifier | TS_Constldentifier | FormalParldentifier
Syntax 217 RangeValueLength ::= "[" LowerValueBound To UpperValueBound "]"
Syntax 218 LowerValueBound ::= ValueBound
Syntax 370 To ::= TO | ".."
Syntax 219 UpperValueBound ::= ValueBound | INFINITY
Syntax 224 Replacement ::= (REPLACE ReferenceList BY ConstraintValue&Attributes) | (OMIT ReferenceList)
Syntax 225 ReferenceList ::= (ArrayRef | Componentldentifier | ComponentPosition) {ComponentReference}

Superseded by a more recent version

Recommendation X.292 (09/92) Superseded by a more recent version 73

c) the derivation path (see §§ 12.6 and 13.6), if an ASN.1 Constraint Declaration is a modification of an
existing ASN.1 constraint, the name of the ASN.1 constraint that is taken as the basis of this modification
shall be referenced in the table in the derivation path entry.

d) the constraint value, where the body of the ASP constraint table contains the ASN.1 Constraint
Declaration with optional attributes. All constraint values and attributes defined in § 11.6 can be used in
ASN. 1 constraints.

ASN.1 ASP Constraint Declarations shall be specified in the format shown in the following proforma:

This proforma is used for ASN.1 ASPs in the same way that the ASN.1 PDU Constraint Declaration proforma
is used (see § 13.4).

ASN.1 ASP Constraint Declaration

Constraint Name : ConsId&ParList
ASP Type : ASP_Identifier
Derivation Path : [DerivationPath]
Comments : [FreeText]

Constraint Value

.

.
ConstraintValue&AttributesOrReplace

.

.

Detailed Comments: [FreeText]

Proforma 28 – ASN.1 ASP Constraint Declaration

Syntax definition

Syntax 190 Consld&ParList ::= Constraintldentifier [FormalParList]
Syntax 191 Constraintldentifier ::= Identifier
Syntax 128 ASP_ldentifier ::= Identifier
Syntax 193 DerivationPath ::= {Constraintldentifier Dot}+
Syntax 223 ConstraintValue&AttributesOrReplace ::= ConstraintValue&Attributes | Replacement
Syntax 000 {Comma Replacement}
Syntax 197 ConstraintValue&Attributes ::= ConstraintValue ValueAttributes
Syntax 198 ConstraintValue ::= ConstraintExpression | MatchingSymbol | ConsRef
Syntax 199 ConstraintExpression ::= Expression
Syntax 200 MatchingSymbol ::= Complement | Omit | AnyValue | AnyOrOmit | ValueList | ValueRange |
Syntax 000 SuperSet | SubSet | Permutation
Syntax 277 ConsRef ::= Constraintldentifier [ActualCrefParList]
Syntax 278 ActualCrefParList ::= "(" ActualCrefPar {Comma ActualCrefPar} ")"
Syntax 279 ActualCrefPar ::= Value | DataObjectldentifier | ConsRef
Syntax 213 ValueAttributes ::= [ValueLength] [IF_PRESENT]
Syntax 214 ValueLength ::= SingleValueLength | RangeValueLength
Syntax 215 SingleValueLength ::= "[" ValueBound "]"
Syntax 216 ValueBound ::= Number | TSParldentifier | TS_Constldentifier | FormalParldentifier
Syntax 217 RangeValueLength ::= "[" LowerValueBound To UpperValueBound "]"
Syntax 218 LowerValueBound ::= ValueBound
Syntax 370 To ::= TO | ".."
Syntax 219 UpperValueBound ::= ValueBound | INFINITY
Syntax 224 Replacement ::= (REPLACE ReferenceList BY ConstraintValue&Attributes) | (OMIT ReferenceList)
Syntax 225 ReferenceList ::= (ArrayRef | Componentldentifier | ComponentPosition) {ComponentReference}

Superseded by a more recent version

74 Recommendation X.292 (09/92) Superseded by a more recent version

13.4 ASN.1 PDU Constraint Declarations

PDU constraint tables are very similar to ASP constraint tables. ASN.1 PDU Constraint Declarations shall be
specified in the format shown in the following proforma:

13.5 Parameterized ASN.1 constraints

ASN.1 constraints may be parameterized (see § 12.5).

13.6 Modified ASN.1 constraints

ASN.1 constraints can be specified by modifying an existing ASN.1 constraint. Portions of a constraint can be
respecified to create a new constraint by using the REPLACE/OMIT mechanism.

ASN.1 PDU Constraint Declaration

Constraint Name : ConsId&ParList
PDU Type : PDU_Identifier
Derivation Path : [DerivationPath]
Comments : [FreeText]

Constraint Value

.

.
ConstraintValue&AttributesOrReplace

.

.

Detailed Comments: [FreeText]

Proforma 29 – ASN.1 PDU Constraint Declaration

Syntax definition

Syntax 190 Consld&ParList ::= Constraintldentifier [FormalParList]
Syntax 191 Constraintldentifier ::= Identifier
Syntax 145 PDU_Identifier ::= Identifier
Syntax 193 DerivationPath ::= {ConstraintIdentifier Dot}+
Syntax 223 ConstraintValue&AttributesOrReplace ::= ConstraintValue&Attributes | Replacement
Syntax 000 {Comma Replacement}
Syntax 197 ConstraintValue&Attributes ::= ConstraintValue ValueAttributes
Syntax 198 ConstraintValue ::= ConstraintExpression | MatchingSymbol | ConsRef
Syntax 199 ConstraintExpression ::= Expression
Syntax 200 MatchingSymbol ::= Complement | Omit | AnyValue | AnyOrOmit | ValueList | ValueRange |
Syntax 000 SuperSet | SubSet | Permutation
Syntax 277 ConsRef ::= Constraintldentifier [ActualCrefParList]
Syntax 278 ActualCrefParList ::= "(" ActualCrefPar {Comma ActualCrefPar} ")"
Syntax 279 ActualCrefPar ::= Value | DataObjectldentifier | ConsRef
Syntax 213 ValueAttributes ::= [ValueLength] [IF_PRESENT]
Syntax 214 ValueLength ::= SingleValueLength | RangeValueLength
Syntax 215 SingleValueLength ::= "[" ValueBound "]"
Syntax 216 ValueBound ::= Number | TS_ParIdentifier | TS_Constldentifier | FormalParldentifier
Syntax 217 RangeValueLength ::= "[" LowerValueBound To UpperValueBound "]"
Syntax 218 LowerValueBound ::= ValueBound
Syntax 370 To ::= TO | ".."
Syntax 219 UpperValueBound ::= ValueBound | INFINITY
Syntax 224 Replacement ::= (REPLACE ReferenceList BY ConstraintValue&Attributes) | (OMIT ReferenceList)
Syntax 225 ReferenceList ::= (ArrayRef | ComponentIdentifier | ComponentPosition) {ComponentReference}

Superseded by a more recent version

Recommendation X.292 (09/92) Superseded by a more recent version 75

Particular parameters or fields of a base or a modified constraint may be identified through a list of field
selectors in order to replace their defined value by a new value, or to omit the defined value. A ReferenceList consists of
the field selector identifiers (defined in the corresponding type definition) separated by dots which uniquely identify a
particular (possibly structured) field within a PDU (or ASP). First level fields can be identified by a single selector,
whereas nested fields require the full path.

Replace values shall be used only when a derivation path is specified. Full ASN.1 values shall be used only
when a derivation path is not specified. Values that are REPLACED or OMITted may be structured.

Syntax definition

224 Replacement ::= (REPLACE ReferenceList BY ConstraintValue&Attributes) | (OMIT ReferenceList)
225 ReferenceList ::= (ArrayRef | ComponentIdentifier | ComponentPosition) {ComponentReference}

If a field belongs to a SEQUENCE, SET or CHOICE structure, the position of the field in parentheses may be
used as a replacement for the field selector identifier. This technique shall be used where the identifier is not provided in
the declaration of the field.

13.7 Formal parameter lists in modified ASN.1 constraints

The requirements indicated in § 12.7 also apply to modified ASN.1 constraints.

13.8 ASP Parameter and PDU field names within ASN.1 constraints

When specifying a constraint for an ASP or PDU in ASN.1, the parameter or field identifiers defined in the
ASN.1 type definition for SEQUENCE, SET and CHOICE types may be used in order to identify the particular ASP or
PDU parameters or fields a value stands for. In the case of CHOICE types the identifiers identifying the variant shall be
used. For SEQUENCE types, parameter or field identifiers shall be used whenever the value definition becomes
ambiguous because of omitted values for OPTIONAL parameters or fields. For SET types, parameter or field identifiers
shall be used in all cases.

Example 45 – Field values in an ASN.1 PDU constraint. Assume the type definition

ASN.1 PDU Type Definition

PDU Name : XY_PDU
PCO Type :
Comments :

Type Definition

SET { field_1 INTEGER OPTIONAL,
field_2 BOOLEAN,
field_3 INTEGER OPTIONAL,
field_4 INTEGER OPTIONAL }

Superseded by a more recent version

76 Recommendation X.292 (09/92) Superseded by a more recent version

Then a possible constraint is:

14 Dynamic Part

14.1 Introduction

The Dynamic Part contains the main body of the test suite: the Test Case, the Test Step and the Default
behaviour descriptions.

14.2 Test Case dynamic behaviour

14.2.1 Specification of the Test Case Dynamic Behaviour table

14.2.1.1 The title of the table shall be “Test Case Dynamic Behaviour”.

14.2.1.2 The header shall contain the following information:

a) Test Case name, giving a unique identifier for the Test Case described in the table;

b) Test Group Reference, giving the full name of the lowest level to the group that contains the Test Case;
that full name shall conform to the requirements indicated in § 8.2, and end with a slash (/);

c) Test Purpose, an informal statement of the purpose of the Test Case, as given in the relevant test suite
structure and test purposes Recommendation (if any) or equivalent part of the test suite Recommen-dation
(if any);

d) Default Reference, an identifier (including an actual parameter list if necessary) of a Default behaviour
description, if any, which applies to the Test Case behaviour description (see § 14.4).

14.2.1.3 The body of the table shall display the following columns and corresponding information:

a) an (optional) line number column (see § 14.2.4), which, if present, shall be placed at the extreme left of
the table;

b) a label column, where labels can be placed to identify the TTCN statements to allow jumps using the
GOTO construct (see § 14.14);

c) a behaviour description, which describes the behaviour of the LT and/or UT in terms of TTCN statements
and their parameters, using the tree notation (see § 14.6);

d) a constraints reference column, where constraint references are placed to associate TTCN statements in a
behaviour tree with a reference to specific ASP and/or PDU values defined in the constraints part (see
§ 11);

ASN.1 PDU Constraint Declaration

Constraint Name : CONS1
PDU Type : XY_PDU
Derivation Path :
Comments :

Constraint Value

{ field_1 5,
field_2 TRUE,
field_3 3

}
-- field_4 is not specified => omitted when sending
-- If identifier field_3 was not used it would be ambiguous whether 3 was the value of field_3 or
-- field_4, since both are OPTIONAL.

Superseded by a more recent version

Recommendation X.292 (09/92) Superseded by a more recent version 77

e) a verdict column, where verdict or result information is placed in association with TTCN statements in
the behaviour tree (see § 14.1.7);

f) an (optional) comments column, this column is used to place comments that ease understanding of TTCN
statements by providing short remarks or references to additional text in the optional detailed comments
section.

The columns c), d), e) and f) shall be displayed in that order, from left to right. It is recommended that the
Mandatory label column be placed at the left of the behaviour description. Alternately, the label column may be placed
to the right of the behaviour description.

14.2.1.4 An (optional) footer can contain detailed comments.

14.2.2 The Test Case Dynamic Behaviour proforma

The Test Case dynamic behaviour shall be provided in the format shown in the following proforma:

Test Case Dynamic Behaviour

Test Case Name : TestCaseIdentifier
Group : TestGroupReference
Purpose : FreeText
Default : [DefaultReference]
Comments : [FreeText]

No. Label Behaviour Description Label
Constraints
Reference Verdict Comments

1
2
. [Label] StatementLine Alternative [ConstraintReference] [Verdict] [FreeText]
. . . position . . .
. . for the . . .
. . TreeHeader Label . . .
. . StatementLine column . . .
.
n

Detailed Comments: [FreeText]

Proforma 30 – Test Case Dynamic Behaviour

Syntax definition

Syntax 233 TestCaseldentifier ::= Identifier
Syntax 235 TestGroupReference ::= [Suiteldentifier "/"] {TestGroupIdentifier "/"}
Syntax 238 DefaultReference ::= DefaultIdentifier [ActualParList]
Syntax 299 ActualParList ::= "(" ActualPar {Comma ActualPar} ")"
Syntax 300 ActualPar ::= Value | PCO_Identifier
Syntax 274 Label ::= Identifier
Syntax 286 StatementLine ::= (Event [Qualifier] [AssignmentList] [TimerOps]) | (Qualifier [AssignmentList]
Syntax 000 [TimerOps]) | (AssignmentList [TimerOps]) | TimerOps | Construct | lmplicitSend
Syntax 264 TreeHeader ::= Treeldentifier [FormalParList]
Syntax 265 Treeldentifier ::= Identifier
Syntax 266 FormalParList ::= "(" FormalPar&Type {SemiColon FormalPar&Type} ")"
Syntax 267 FormalPar&Type ::= FormalParIdentifier {Comma FormalParIdentifier} Colon FormalParType
Syntax 268 FormalParldentifier ::= Identifier
Syntax 269 FormalParType ::= Type | PCO_Typeldentifier | PDU
Syntax 331 Type ::= PredefinedType | ReferenceType
Syntax 277 ConsRef ::= ConstraintIdentifier [ActualCrefParList]
Syntax 278 ActualCrefParList ::= "(" ActualCrefPar {Comma ActualCrefPar} ")"
Syntax 279 ActualCrefPar ::= Value | DataObjectIdentifier | ConsRef
Syntax 281 Verdict ::= Pass | Fail | Inconclusive | Result
Syntax 282 Pass ::= PASS | P | "(" PASS ")" | "(" P ")"
Syntax 283 Fail ::= FAIL | F | "(" FAIL ")" | "(" F ")"
Syntax 284 Inconclusive ::= INCONC | I | "(" INCONC ")" | "(" I ")"
Syntax 285 Result ::= ldentifier

Superseded by a more recent version

78 Recommendation X.292 (09/92) Superseded by a more recent version

The alternative position of the label column is shown in dotted lines.

Column headers of this proforma can be abbreviated to: L, Cref, V and C. This enables the behaviour tree
column to be as wide as possible in cases of physical paper size limitations.

14.2.3 Structure of the Test Case behaviour

Each Test Case contains a precise description of sequences of (anticipated) events and related verdicts This
description is structured as a tree, with TTCN statements as nodes in that tree and verdict assignments at its leaves. In
many cases it is more efficient to use Test Steps as a means of substructuring this tree:

T0715830-93

Test case

Statement

Statement and verdict

Test step

1: Unstructured test case behaviour 2: Structured test case behaviour

FIGURE 3/X.292

Test case behaviour structure

Test case

Statement

Statement

Statement and verdict

Statement and verdict

Statement and verdict

Statement

Statement

Statement

Statement and verdict

Statement and verdict

In TTCN this explicit modularization is expressed using Test Steps and the ATTACH construct.

14.2.4 Line numbering and continuation

Since lines in the behaviour description, when printed, may be too long to fit on one line it is necessary to use
additional symbols to indicate the extent of a single behaviour line. There are two available techniques:

a) Indicate the beginning of a new behaviour line; an extra line column is added as the leftmost column in
the body of the table; there shall only be an entry in this column on those lines where a new behaviour
line starts; the line numbers used shall be 1, 2, 3, … and the numbering shall not be restarted when local
trees are defined, i.e., there is a unique line number for each behaviour line of the behaviour table.

Note 1 – The line numbers can be used for logging purposes, to record unambiguously which behaviour
line was executed.

Note 2 – The line numbers can be used as references In the detailed comments section.

Superseded by a more recent version

Recommendation X.292 (09/92) Superseded by a more recent version 79

b) Indicate the continuation of lines; if a line is to be continued within the behaviour description column a
hash (#) symbol shall be placed in the leftmost position of the behaviour column, on the line of the
continued text; it is recommended that the text of the continued part adopts the same level of indentation
as the line it is continuing.

If a line is continued in any column other than the behaviour description column the hash symbol is not
required.

Example 46 – Printing long behaviour lines

46.1 Recommended style:

46.2 Alternative style:

14.3 Test Step dynamic behaviour

14.3.1 Specification of the Test Step Dynamic Behaviour table

The dynamic behaviour of Test Steps is defined using the same mechanisms as for Test Cases, except that Test
Steps can be parameterized (see § 14.7). Test Step dynamic behaviour tables are identical to Test Case dynamic
behaviour tables, except for the following differences:

a) the table has the title “Test Step Dynamic Behaviour”;

b) the first item in the header is the Test Step name, which is a unique identifier for the Test Step followed
by an optional list of formal parameters, and their associated types. These parameters may be used to pass
PCOs, constraints or other data objects into the root tree of the Test Step;

c) the second item in the header is the Test Step Group Reference, which gives the full name to the lowest
level of the Test Step Library group that contains the Test Step; that full name shall conform to the
requirements indicated in § 8.3, and end with a slash (/);

d) the third item in the header is the Test Step Objective, which is an informal statement of the objective of
the Test Step.

No. Label Behaviour Description
Constraints
Reference Verdict Comments

1 This is a TTCN statement that
is too long to print on a single
line because the column is too
narrow

Ref1

2 This is the next statement line This is a constraint
reference that is too long to
print on one line

3 An alternative statement line Ref2

Label Behaviour Description
Constraints
Reference Verdict Comments

This is a TTCN statement that is too
long to print on a single line because
the column is too narrow

Ref1

This is the next statement line This is a constraint
reference that is too long to
print on one line

An alternative statement line Ref2

Superseded by a more recent version

80 Recommendation X.292 (09/92) Superseded by a more recent version

14.3.2 The Test Step Dynamic Behaviour proforma

The Test Step dynamic behaviour shall be provided in the format shown in the following proforma:

Test Step Dynamic Behaviour

Test Step Name : TestStepId&ParList
Group : TestStepGroupReference
Objective : FreeText
Default : [DefaultReference]
Comments : [FreeText]

No. Label Behaviour Description Label
Constraints
Reference Verdict Comments

1
2
. [Label] StatementLine Alternative [ConstraintReference] [Verdict] [FreeText]
. . . position . . .
. . for the . . .
. . TreeHeader Label . . .
. . StatementLine column . . .
.
n

Detailed Comments: [FreeText]

Proforma 31 – Test Step Dynamic Behaviour

Syntax definition

Syntax 245 TestStepld&ParList ::= TestStepIdentifier [FormalParList]
Syntax 246 TestStepldentifier ::= Identifier
Syntax 266 FormalParList ::= "(" FormalPar&Type {SemiColon FormalPar&Type} ")"
Syntax 267 FormalPar&Type ::= FormalParIdentifier {Comma FormalParIdentifier} Colon FormalParType
Syntax 268 FormalParIdentifier ::= Identifier
Syntax 269 FormalParType ::= Type | PCO_Typeldentifier | PDU
Syntax 331 Type ::= PredefinedType | ReferenceType
Syntax 248 TestStepGroupReference ::= [Suiteldentifier "/"] {TestStepGroupIdentifier "/"}
Syntax 238 DefaultReference ::= Defaultldentifier [ActualParList]
Syntax 299 ActualParList ::= "(" ActualPar {Comma ActualPar} ")"
Syntax 300 ActualPar ::= Value | PCO_Identifier
Syntax 274 Label ::= Identifier
Syntax 286 StatementLine ::= (Event [Qualifier] [AssignmentList] [TimerOps]) | (Qualifier [AssignmentList] [TimerOps]) I
Syntax 000 (AssignmentList [TimerOps]) | TimerOps | Construct | lmplicitSend
Syntax 264 TreeHeader ::= Treeldentifier [FormalParList]
Syntax 265 TreeIdentifier ::= Identifier
Syntax 266 FormalParList ::= "(" FormalPar&Type {SemiColon FormalPar&Type} ")"
Syntax 267 FormalPar&Type ::= FormalParIdentifier {Comma FormalParIdentifier} Colon FormalParType
Syntax 268 FormalParIdentifier ::= ldentifier
Syntax 269 FormalParType ::= Type | PCO_Typeldentifier | PDU
Syntax 331 Type ::= PredefinedType | ReferenceType
Syntax 277 ConsRef ::= ConstraintIdentifier [ActualCrefParList]
Syntax 278 ActualCrefParList ::= "(" ActualCrefPar {Comma ActualCrefPar} ")"
Syntax 279 ActualCrefPar ::= Value | DataObjectIdentifier | ConsRef
Syntax 281 Verdict ::= Pass | Fail | Inconclusive | Result
Syntax 282 Pass ::= PASS | P | "(" PASS ")" | "(" P ")"
Syntax 283 Fail ::= FAIL | F | "(" FAIL ")" | "(" F ")"
Syntax 284 Inconclusive ::= INCONC | I | "(" INCONC ")" | "(" I ")"
Syntax 285 Result ::= Identifier

Superseded by a more recent version

Recommendation X.292 (09/92) Superseded by a more recent version 81

The alternative position of the label column is shown in dotted lines.

Column headers of this proforma can be abbreviated to: L, Cref, V and C.

14.4 Default dynamic behaviour

14.4.1 Default behaviour

A TTCN Test Case shall specify alternative behaviour for every possible event (including invalid ones). It
often happens that in a behaviour tree every sequence of alternatives ends in the same behaviour. This behaviour may be
factored out as default behaviour to this tree. Such Default behaviour descriptions are located in the global Default
Library.

The dynamic behaviour of Defaults is defined using the same mechanisms as for Test Steps, except for the
following restrictions:

a) it is not permitted to specify Default behaviour for the Default behaviour;

b) the behaviour description shall consist of only one tree (i.e., no local trees);

c) the tree in the behaviour description shall not use tree attachment (i.e., Default behaviour trees shall not
attach Test Steps).

Both PCOs and other actual parameters may be passed to Default behaviour descriptions in the same way that
they may be passed to Test Steps. The same rules on scope and substitution of these parameters apply as described for
tree attachment (see § 14.13).

14.4.2 Specification of the Default Dynamic Behaviour table

Default dynamic behaviour tables are identical to Test Step dynamic behaviour tables, except for the following
differences:

a) the table has the title “Default Dynamic Behaviour”;

b) the first item in the header is the Default name, which is a unique identifier for the Default followed by an
optional list of formal parameters, and their associated types. These parameters may be used to pass
PCOs, constraints or other data objects into the root tree of the Default;

c) the second item in the header is the Default Group Reference, which gives the full name of the lowest
level to the Default Group that contains the Default; that full name shall conform to the requirements of
(see § 8.4), and end with a slash (/);

d) the third item in the header is the Default Objective, which is an informal statement of the objective of the
Default.

Superseded by a more recent version

82 Recommendation X.292 (09/92) Superseded by a more recent version

14.4.3 The Default Dynamic Behaviour proforma

The Default dynamic behaviour shall be provided in the format shown in the following proforma:

The alternative position of the label column is shown in dotted lines.

Column headers of this proforma can be abbreviated to: L, Cref, V and C.

Default Dynamic Behaviour

Default Name : DefaultId&ParList
Group : DefaultGroupReference
Objective : FreeText
Comments : [FreeText]

No. Label Behaviour Description Label
Constraints
Reference Verdict Comments

1
2
. [Label] StatementLine Alternative [ConstraintReference] [Verdict] [FreeText]
. . . position . . .
. . for the . . .
. . . Label . . .
. . . column . . .
.
n

Detailed Comments: [FreeText]

Proforma 32 – Default Dynamic Behaviour

Syntax definition

Syntax 256 Defaultld&ParList ::= DefaultIdentifier [FormalParList]
Syntax 257 DefaultIdentifier ::= Identifier
Syntax 266 FormalParList ::= "(" FormalPar&Type {SemiColon FormalPar&Type} ")"
Syntax 267 FormalPar&Type ::= FormalParIdentifier {Comma FormalParldentifier} Colon FormalParType
Syntax 268 FormalParIdentifier ::= Identifier
Syntax 269 FormalParType ::= Type | PCO_TypeIdentifier | PDU
Syntax 331 Type ::= PredefinedType | ReferenceType
Syntax 238 DefaultReference ::= DefaultIdentifier [ActualParList]
Syntax 299 ActualParList ::= "(" ActualPar {Comma ActualPar} ")"
Syntax 300 ActualPar ::= Value | PCO_Identifier
Syntax 274 Label ::= ldentifier
Syntax 286 StatementLine ::= (Event [Qualifier] [AssignmentList] [TimerOps]) | (Qualifier [AssignmentList] [TimerOps]) |
Syntax 000 (AssignmentList [TimerOps]) | TimerOps | Construct | lmplicitSend
Syntax 277 ConsRef ::= ConstraintIdentifier [ActualCrefParList]
Syntax 278 ActualCrefParList ::= "(" ActualCrefPar {Comma ActualCrefPar} ")"
Syntax 279 ActualCrefPar ::= Value | DataObjectIdentifier | ConsRef
Syntax 281 Verdict ::= Pass | Fail | Inconclusive I Result
Syntax 282 Pass ::= PASS | P | "(" PASS ")" | "(" P ")"
Syntax 283 Fail ::= FAIL | F | "(" FAIL ")" | "(" F ")"
Syntax 284 Inconclusive ::= INCONC | I | "(" INCONC ")" | "(" I ")"
Syntax 285 Result ::= Identifier

Superseded by a more recent version

Recommendation X.292 (09/92) Superseded by a more recent version 83

14.5 The behaviour description

The behaviour description column of a dynamic behaviour table contains the specification of the combinations
of TTCN statements that are deemed possible by the test suite specifier. The set of these combinations is called the
behaviour tree. Each TTCN statement is a node in the behaviour tree.

14.6 The tree notation

Each TTCN statement shall be shown on a separate statement line. The statements can be related to one
another in two ways:

– as sequences of TTCN statements;

– as alternative TTCN statements.

Sequences of TTCN statements are represented one statement line after the other, each new TTCN statement
being indented once from left to right, with respect to its predecessor.

Example 47 – TTCN statement in sequence:

Statements at the same level of indentation and belonging to the same predecessor node represent the possible
alternative statements which may occur at that time. Henceforth, this set of TTCN statements will be referred to as the
set of alternatives, or simply alternatives.

Example 48 – Alternative TTCN statements

Example 49 – Combining sequences and alternatives to build a tree

Whether a TTCN statement can be evaluated successfully or not depends on various conditions associated with
the statement line. These conditions are not necessarily mutually exclusive, i.e., it is possible that for any given moment
more than one statement line could be evaluated successfully. Since statement lines are evaluated in the order of their
appearance in the set of alternatives the first statement with a fulfilled condition will be successfully. This might lead to
unreachable behaviour; in particular if statements are encoded as alternatives following statements that are always
successful.

EVENT_A
CONSTRUCT_B

EVENT_C

CONSTRUCT_A1
STATEMENT_A2
EVENT_A3

EVENT_A
CONSTRUCT_B

EVENT_C
STATEMENT_D1
EVENT_D2

Superseded by a more recent version

84 Recommendation X.292 (09/92) Superseded by a more recent version

REPEAT and GOTO are always successful. In addition, SEND, IMPLICIT SEND, assignments and timer
operations are successful provided that the accompanying qualifier, if any, evaluates to TRUE.

Graphical indentation of statement lines in the TTCN.GR form is mapped to indentation values in TTCN.MP.
Statements in the first level of alternatives having no predecessor in the root or local tree they belong to, shall have the
indentation value of zero. Statements having a predecessor shall have the indentation value of the predecessor plus one
as their indentation value.

Syntax definition

271 Line ::= $Line Indentation StatementLine

Example 50 – $Line [6] +R1_POSTAMBLE

14.7 Tree names and parameter lists

14.7.1 Introduction

Each behaviour description shall contain at least one behaviour tree. In order that trees may be unambiguously
referred to (such as in an ATTACH construct) each tree has a tree name.

The first tree appearing within a behaviour description is called the root tree. The name of a root tree is the
identifier appearing in the header of its dynamic behaviour table. That is, the tree name of the root tree of a Test Step is
the Test Stop Identifier for that Test Step, and likewise for root trees in Test Case dynamic behaviours and Default dy-
namic behaviours.

Trees other than the root tree which appear within dynamic behaviour tables are termed local trees. Local trees
are prefixed by a tree header which contains the tree name.

Syntax definition

261 RootTree ::= {BehaviourLine}+

262 LocalTree ::= Header {BehaviourLine}+

14.7.2 Trees with parameters

All trees, except Test Case root trees, may be parameterized. The parameters may provide PCOs, constraints,
variables, or other such items for use within the tree. Test Case root trees shall not be parameterized.

If a tree is parameterized, then a list of formal parameters and their types shall appear within parentheses
directly following the tree name. For example, the formal parameter list for a Test Step root tree shall appear within
parentheses immediately following the Test Step Identifier in the header of the Test Step dynamic behaviour table.
Similarly, the formal parameter list for a local tree shall appear immediately after the tree name in the tree header.

In constructing the formal parameter list, each formal parameter shall be followed by a colon and the name of
the type of the formal parameter. If more than one formal parameter of the same type is present, these may be combined
into a sub-list. When such a sub-list is used, the formal parameters within the sub-list shall be separated from each other
by a comma. The final formal parameter in the sub-list shall be followed by a colon and the formal parameter’s type.

When there is more than one formal parameter and type pair (or more than one sub-list and type pair), the pairs
shall be separated from each other by semi-colons.

Formal parameters may be of PCO type, ASP type, PDU type, structure type or one of the other predefined or
Test Suite Types.

If a formal parameter of a tree is type PDU then specific fields in the PDU shall not be referenced in the tree.
If the formal parameter is a specific PDU identifier, then specific fields in the PDU may be referenced in the tree.

Superseded by a more recent version

Recommendation X.292 (09/92) Superseded by a more recent version 85

Example 51 – A Test Step using formal parameters

EXAMPLE_TREE (L:TSAP; X:INTEGER; Y:INTEGER)

Example 52 – A Test Step using a formal parameter with a sub-list

EXAMPLE_TREE (L:TSAP; X, Y:INTEGER)

14.8 TTCN statements

The tree notation allows the specification of test events initiated by the LT or UT (SEND and IMPLICIT
SEND events), test events received by the LT or UT (RECEIVE, OTHERWISE and TIMEOUT), constructs (GOTO,
ATTACH and REPEAT) and pseudo-events comprising combinations of qualifiers, assignments and timer operations.
These are collectively known as TTCN statements.

Test events can be accompanied by qualifiers (Boolean expressions), assignments and timer operations.
Qualifiers, assignments and timer operations can also stand alone, in which case they are called pseudo-events.

14.9 TTCN test events

14.9.1 Sending and receiving events

TTCN supports the initiation (sending) of ASPs and PDUs to named PCOs and acceptance (receipt) of ASPs
and PDUs at named PCOS. The PCO model is defined in 10.8 and 14.9.5.2.

Syntax definition

289 Send ::= [PCO_Identifier | FormalParIdentifier] "!" (ASP_Identifier | PDU_Identifier)

291 Receive ::= [PCO_Identifier | FormalParIdentifier] "?" (ASP_Identifier | PDU_Identifier)

In the simplest form, an ASP identifier or PDU identifier follows the SEND symbol (!) for events to be
initiated by the LT or UT, or a RECEIVE symbol (?) for events which it is possible for the LT or UT to accept. The
optional PCO name is not provided. This form is valid when there is only one PCO in the test suite.

Example 53 – !CONreq or ?CONind

If more than one PCO exists in a test suite, then a PCO name appearing in the declarations part, or in the
formal parameter list of the tree, shall prefix the SEND symbol or the RECEIVE symbol. The PCO name is used to
indicate the PCO at which the test event may occur.

Example 54 – L!CONreq or L?CONind

14.9.2 Receiving events

A RECEIVE event line evaluates successfully if an incoming ASP or PDU on the specified PCO matches the
event line. A match occurs if the following conditions are fulfilled:

a) the incoming ASP or PDU is valid according to the ASP or PDU type definition referred to by the event
name on the event line. In particular, all parameters and/or field values shall be of the type defined, and
satisfy any length restrictions specified;

b) the ASP or PDU matches the constraint reference on the event line;

c) in cases where a qualifier is specified on the event line, the qualifier shall evaluate to TRUE; the qualifier
may contain references to ASP parameters and/or PDU fields.

The incoming event is removed from the PCO queue only when it successfully matches a RECEIVE event
line.

Superseded by a more recent version

86 Recommendation X.292 (09/92) Superseded by a more recent version

14.9.3 Sending events

A SEND event line with a qualifier is successful if the expression in the qualifier evaluates to TRUE.
Unqualified SEND events are always successful. The outgoing ASP or PDU that results from a SEND event shall be
constructed as follows:

a) All ASP parameter and PDU field values shall be of the type specified in the corresponding definitions,
and will satisfy any length restrictions in the definitions;

b) the value of the ASP parameter and PDU fields shall be set as specified in the constraint referenced on the
event line (see §§ 11, 12 and 13 for an explanation of constructing ASPs or PDUs with constraints);

c) any direct assignments to ASP parameters or PDU fields on the event line will supersede the
corresponding value specified in the constraint, if any;

d) all parameters and/or fields in the outgoing ASP or PDU shall contain specific values or be explicitly
omitted prior to completion of the SEND event.

Generation of an ASP parameter or PDU field value by either the constraints or assignments that violates the
declared type and length restrictions shall cause a test case error.

14.9.4 Lifetime of events

Identifiers of ASP parameters and PDU fields associated with SEND and RECEIVE shall be used only to
reference ASP parameter and PDU field values on the statement line itself.

In the case of SEND events, relevant ASP parameters and PDU fields can be set, if required, in appropriate
assignments on the SEND line.

Example 55 – !A_PDU (A_PDU.FIELD:=3)

The effects of such an assignment shall riot persist after the event line in which they occurred.

In the case of RECEIVE events, if relevant ASP parameter and PDU field values need to be subsequently
referenced, either the whole ASP or PDU or a relevant part of it shall be assigned to variables on the RECEIVE line
itself. These variables may then be referenced in subsequent lines.

Example 56 – ?A_PDU (VAR:=A_PDU.FIELD)

where VAR may be used on event lines subsequent to receipt of A_PDU.

14.9.5 Execution of the behaviour tree

14.9.5.1 Introduction

The test suite specifier shall organize the behaviour tree representing a Test Case or a Test Step according to
the following rules regarding test execution:

a) starting from the root of the tree, the LT or UT remains on the first level of indentation until an event
matches. If an event is to be initiated the LT or UT initiates it; if an event is to be received, it is said to
match only if a received real event occurs and matches the event line;

b) once an event has matched, the LT or UT moves to the next level of indentation. No return to a previous
level of indentation can be made, except by using the GOTO construct;

c) event lines at the same level of indentation and following the same predecessor event line represent the
possible alternatives which may match at that time. Alternatives shall be given in the order that the test
suite specifier requires the LT or UT to attempt either to initiate or receive them, if necessary, repeatedly,
until one matches.

Superseded by a more recent version

Recommendation X.292 (09/92) Superseded by a more recent version 87

Example 57 – Illustration of a TTCN behaviour tree

Suppose that the following sequence of events can occur during a test whose purpose is to establish a
connection, exchange some data, and close the connection. The events occur at the lower tester PCO L:

a) CONNECTrequest, CONNECTconfirm, DATArequest, DATAindication, DISCONNECTrequest;

Progress can be thwarted at any time by the IUT or the service-provider. This generates two more
sequences:

b) CONNECTrequest, CONNECTconfirm, DATArequest, DISCONNECTindication;

c) CONNECTrequest, DISCONNECTindication.

The three sequences of events can be expressed as a TTCN behaviour tree. There are five levels of
alternatives, and only three leaves (a to c), because the SEND events L! are always successful. Execution is to progress
from left to right (sequence), and from top to bottom (alternatives). The following figure illustrates this progression, and
the principle of the TTCN behaviour tree:

Progression of time

A
lte

rn
at

iv
es

EXAMPLE-TREE (L:NSAP)

 L! CONNECTrequest

 L? CONNECTconfirm

 L! DATArequest

 L? DATAindication

 L! DISCONNECTrequest

 L? DISCONNECTindication

 L? DISCONNECTindication

a)

b)

c)

There are no lines, arrows or leaf names in TTCN. The behaviour tree of the previous example would be
represented as follows:

Example 58 – A TTCN behaviour tree

Test Step Dynamic Behaviour

Test Step Name : TREE_EX_1(L:NSAP)
Group : TTCN_EXAMPLES/TREE_EXAMPLE_1/
Objective : To illustrate the use of trees
Default :
Comments : Note – This example can be simplified by using Defaults

No. Label Behaviour Description
Constraints
Reference Verdict Comments

1 L! CONNECTrequest CR1 Request ...
2 L? CONNECTconfirm CC1 ... Confirm
3 L! DATArequest DTR1 Send Data
4 L? DATAindication DTI1 Receive Data
5 L! DISCONNECTrequest DSCR1 PASS Accept
6 L? DISCONNECTindication DSCI1 INCONC Premature
7 L? DISCONNECTindication DSCR1 INCONC Premature

Superseded by a more recent version

88 Recommendation X.292 (09/92) Superseded by a more recent version

14.9.5.2 The concept of snapshot semantics

The alternative statements at the current level of indentation are processed in their order of appearance. TTCN
operational semantics (see Annex B) assume that the status of any of the events cannot change during the process of
trying to match one of a set of alternatives. This implies that snapshot semantics are used for received events and
TIMEOUTs, i.e., each time around a set of alternatives a snapshot is taken of which events have been received and
which TIMEOUTs have fired. Only those identified in the snapshot can match on the next cycle through the alternatives.

14.9.5.3 Restrictions on using events

In order to avoid test case errors the following restrictions apply:

a) A Test Case or Test Step should not contain behaviour where the relative processing speed of the MOT
(Means of Testing) could impact the results. To prevent such problems, a RECEIVE, OTHERWISE or
TIMEOUT event line shall only be followed by other RECEIVE, OTHERWISE and TIMEOUT event
lines in a set of alternatives. As a consequence, Default trees shall contain only RECEIVE, OTHERWISE
and TIMEOUT event lines on the first set of alternatives.

b) Once there is an event on a PCO queue or a timeout in the timeout list, it can be removed from the queue
or list only by a successful match of the related TTCN statement. In the case of a set of alternatives that
includes RECEIVE statements, the set of expected incoming events shall be fully specified. This means
that it shall be a test case error if, during execution, no match of any of the RECEIVE statements occurs
and yet execution progresses to the next level of alternatives because of a TIMEOUT which occurred
after an ASP or PDU, that was not specified in the set of RECEIVE statements, was received on any one
of the relevant PCO queues

Example 59 – An incomplete set of RECEIVE events

In a) if D is received in response to !A the test case will assign an erroneous PASS verdict by virtue of the
TIME-OUT. This can be avoided by using the OTHERWISE statement.

PARTIAL_TREE
!A START T

?B
?TIMEOUT T

!C
?D PASS

PARTIAL_TREE
!A START T

?B
?OTHERWISE FAIL
?TIMEOUT T

!C
?D PASS
?OTHERWISE FAIL

a) b)

Superseded by a more recent version

Recommendation X.292 (09/92) Superseded by a more recent version 89

14.9.6 The IMPLICIT SEND event

In the Remote Test Methods, although there is no explicit PCO above the IUT, it is necessary to have a means
of specifying, at a given point in the description of the behaviour of the LT, that the IUT should be made to initiate a
particular PDU or ASP. For this purpose, the implicit send event is defined, with the following syntax:

Syntax definition

290 ImplicitSend ::= "<" IUT "!" (ASP_Identifier | PDU_Identifier) ">"

The IUT in the syntax takes the place of the PCOidentifier used with a normal SEND or RECEIVE, indicating
that the specified, ASP or PDU is to be sent by the IUT. The angle brackets signify that this is an implicit event, i.e.,
there is no specification of what is done to the IUT to trigger this reaction, only a specification of the required reaction
itself.

An IMPLICIT SEND event is always considered to be successful, in the sense that any alternatives coded
after, and at the same level of indentation as the IMPLICIT SEND are unreachable.

An IMPLICIT SEND shall be used only where the relevant OSI Recommendation(s) permit the IUT to send
the specified ASP or PDU at that point in its communication with the LT.

For every IMPLICIT SEND in a test suite, the test suite specifier shall create and reference a question in the
partial PIXIT proforma that permits indication of whether the IMPLICIT SEND can be invoked on demand.

An IMPLICIT SEND event shall not be used unless the test method being used is one of the Remote Test
Methods. An IMPLICIT SEND event shall not be used unless the same effect could have been achieved using the DS
test method.

Note – For example, when testing a connection-oriented Transport Protocol implementation, if this restriction
did not exist it would be permissible to use IMPLICIT SEND to get the IUT to initiate a CR TPDU because in the DS
test method that effect could be achieved by getting the UT to send a T-CONreq ASP. On the other hand, it would not be
permissible to use IMPLICIT SEND to get the IUT to initiate an N-RstReq ASP because that effect could not be
controlled through the Transport Service boundary. The reason for this restriction is to prevent Test Cases from
requiring greater external control over an IUT than is provided for in the relevant protocol Recommendation.

When an IMPLICIT SEND event is specified, the associated internal events within the IUT necessary to meet
the requirements of the Recommendation for the protocol being tested are also performed, e.g., set timer, initialize state
variables.

The semantics of IMPLICIT SEND is that the SUT shall be controlled as necessary in order to cause the
initiation of the specified ASP or PDU. The way in which the SUT is to be controlled should be specified in the PIXIT
(or documentation referenced by the PIXM.

Neither a final verdict nor a preliminary result shall be coded on an IMPLICIT SEND event.

At an appropriate point following an IMPLICIT SEND, there should be a RECEIVE event to match the ASP
or PDU that should, as a result, have been sent by the IUT.

Superseded by a more recent version

90 Recommendation X.292 (09/92) Superseded by a more recent version

Example 60 – Use of IMPLICIT SEND

14.9.7 The OTHERWISE event

The predefined event OTHERWISE is the TTCN mechanism for dealing with unforeseen test events in a
controlled way. OTHERWISE has the syntax:

Syntax definition

292 Otherwise ::= [PCO_Identifier | FormalParIdentifier] "?" OTHERWISE

OTHERWISE is used to denote that the LT or UT shall accept any incoming event which has not previously
matched one of the alternatives to the OTHERWISE.

If more than one PCO exists in a test suite, then a PCO name appearing in the declarations part, or in the
formal parameter list of the tree, shall prefix the OTHERWISE. The PCO name is used to indicate the PCO at which the
test event may occur. Incoming events, including OTHERWISE, are considered only in terms of the given PCO.

Example 61 – Use of OTHERWISE with PCO Identifiers

Assume no event is received at PCO1, then receipt of event B at PCO2 results in a PASS verdict. Receipt of
any other event at PCO2 results in a FAIL verdict.

Due to the significance of ordering of alternatives, incoming events which are alternatives following an
unconditional OTHERWISE on the same PCO will never match.

Test Case Dynamic Behaviour

Test Case Name : IMP1
Group : TTCN_EXAMPLES/IMPLICIT_SEND1/
Purpose : A partial tree to illustrate the use of IMPLICIT SEND
Default :
Comments :

No. Label Behaviour Description
Constraints
Reference Verdict Comments

. .

. .
5 <IUT ! CR> CR1
6 L?CR CR1
7 L!CC CC1
. .
. .

12 L?OTHERWISE

. .

. .

PARTIAL_TREE
PCO1?A
PCO2?B PASS
PCO1?C INCONC
PCO2?OTHERWISE FAIL

Superseded by a more recent version

Recommendation X.292 (09/92) Superseded by a more recent version 91

Example 62 – Incoming events following an OTHERWISE

The OTHERWISE will match any incoming event other than A. The last alternative, ?C, can never be
matched.

14.9.8 The TIMEOUT event

The TIMEOUT event allows expiration of a timer, or of all timers, to be checked in a Test Case. When a timer
expires (conceptually immediately before a snapshot processing of a set of alternative events), a TIMEOUT event is
placed into a timeout list. The timer becomes immediately inactive. Only one entry for any particular timer may appear
in the list at any one time. Since TIMEOUT is not associated with a PCO, a single timeout list is used.

When a TIMEOUT event is processed, if a timer name is indicated, the timeout list is searched, and if there is
a timeout event matching the timer name, that event is removed from the list, and the TIMEOUT event succeeds.

If no timer name is indicated, any TIMEOUT event in the timeout list matches. The TIMEOUT event succeeds
if the list is not empty. When this occurs, the entire timeout list is immediately emptied.

TIMEOUT has the following syntax:

Syntax definition

293 Timeout ::= "?" TIMEOUT [TimerIdentifier]

Example 63 – Use of TIMEOUT

Since TIMEOUT events are not RECEIVE events they are not rendered unreachable by previously listed
OTHERWISE alternatives.

14.10 TTCN expressions

14.10.1 Introduction

There are two kinds of expressions in TTCN: assignments and Boolean expressions. Both assignments and
Boolean expressions may contain explicit values and the following forms of reference to data objects:

a) Test Suite Parameters;

b) Test Suite Constants;

c) Test suite and Test Case Variables;

d) Formal parameters of a Test Step, Default or local tree;

e) ASPs and PDUs (on event lines).

PARTIAL_TREE
PCO1?A PASS
PCO1?OTHERWISE FAIL
PCO1?C INCONC

?TIMEOUT T

Superseded by a more recent version

92 Recommendation X.292 (09/92) Superseded by a more recent version

Any variables occurring in Boolean expressions and/or on the right hand side of an assignment shall be bound.
If an unbound variable is used this is a test case error.

Syntax definition

303 Expression ::= SimpleExpression [RelOp SimpleExpression]
304 SimpleExpression ::= Term {AddOp Term}
305 Term ::= Factor {MultiplyOp Factor}
306 Factor ::= [UnaryOp] Primary
307 Primary ::= Value I DataObjectReference I OpCall I SelectExprIdentifier I "(" Expression ")"
336 Value ::= LiteralValue I ASN1_Value
337 LiteralValue ::= Number I BooleanValue I Bstring I Hstring I Ostring I Cstring
338 Number ::= (NonZeroNum {Num}) I 0
339 NonZeroNum ::= 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9
340 Num ::= 0 I NonZeroNum
341 BooleanValue ::= TRUE I FALSE
342 Bstring ::= " ’ " {Bin I Wildcard} " ’ " B
343 Bin ::= 0 I 1
344 Hstring ::= " ’ " {Hex I Wildcard} " ’ " H
345 Hex ::= Num I A I B I C I D I E I F
346 Ostring ::= " ’ " {Oct I Wildcard} " ’ " O
347 Oct ::= Hex Hex
348 Cstring ::= " ” " {Char I Wildcard I "\"} " ” "
349 Char ::= /* REFERENCE – A character defined by the relevant character string type */
350 Wildcard ::= AnyOne I AnyOrNone
351 AnyOne ::= "?"
352 AnyOrNone ::= "*"
308 DataObjectReference ::= DataObjectIdentifier {ComponentReference}
309 DataObjectIdentifier ::= TS_ParIdentifier I TS_ConstIdentifier I TS_VarIdentifier I TC_VarIdentifier I

FormalParIdentifier I ASP_Identifier I PDU_Identifier
310 ComponentReference ::= RecordRef I ArrayRef I BitRef
311 RecordRef ::= Dot (ComponentIdentifier I PDU_Identifier I StructIdentifier I ComponentPosition)
312 ComponentIdentifier ::= ASP_ParIdentifier I PDU_Fieldldentifier I Elemldentifier I ASN1_ldentifier
314 ComponentPosition ::= "("Number")"
315 ArrayRef ::= Dot "[" ComponentNumber "]"
316 ComponentNumber ::= Expression
317 BitRef ::= Dot (Bitldentifier I "[" BitNumber "]")
318 BitIdentifier ::= ldentifier
319 BitNumber ::= Expression
320 OpCall ::= TS_Opldentifier (ActualParList I "(" ")")
321 AddOp ::= "+" | "–" | OR
322 MultiplyOp ::= "*" I "/" | MOD I AND
323 UnaryOp ::= "+" I "–" I NOT
324 RelOp ::= "=" | "<" | ">" | "< >" | ">=" | "<="

14.10.2 References for ASN.1 defined date objects

In order to refer to components of structured data objects the following access mechanisms are provided:

a) a reference to a component of one of the following types: SEQUENCE, SET and CHOICE is constructed
using a dot notation; i.e., appending a dot and the name (component identifier) of the desired component
to the data object identifier; the component identifier shall be used if specified;

b) references to unnamed components are constructed by giving the position of the component within the
type definition in parentheses; numbering of such components of such a type starts with zero.

Syntax definition

310 ComponentReference ::= RecordRef I ArrayRef | BitRef
311 RecordRef ::= Dot (ComponentIdentifier | PDU_Identifier | StructIdentifier | ComponentPosition)
312 ComponentIdentifier ::= ASP_ParIdentifier | PDU_FieldIdentifier | ElemIdentifier | ASN1_Identifier
314 ComponentPosition ::= "("Number")"
315 ArrayRef ::= Dot "[" ComponentNumber "]"
316 ComponentNumber ::= Expression

Superseded by a more recent version

Recommendation X.292 (09/92) Superseded by a more recent version 93

An index enclosed in square brackets is used to refer to a component of an ASN.1 SEQUENCE OF or SET OF
type. The first component has the number zero.

The expression shall evaluate to a non-negative INTEGER.

Example 64 – Component Reference

If var1 is of ASN.1 type Example_type, then we could write:

var1.field_l which refers to the first INTEGER field

var1.(3) which refers to the third (unnamed) field

Example 65 – PDU Field references

On a statement line that contains XY_PDUtype, we could write: L? XY_PDU (buffer :=
XY_PDUtype.use_data).

The index notation is used to refer to elements (bits) of the ASN.1 BITSTRING type. BITSTRING is assumed
to be defined as SEQUENCE OF {BOOLEAN}. If certain bits of a BITSTRING are associated with an identifier
(named bit) then either the dot notation or this identifier shall be used to refer to the bit.

Syntax definition

317 BitRef ::= Dot (BitIdentifier | "[" BitNumber "]")

318 BitIdentifier ::= Identifier

319 BitNumber ::= Expression

The leftmost bit has the number zero.

The expression shall evaluate to a non-negative INTEGER.

Example 66 – Component References on BITSTRING types

where bit zero is called “ack” and bit three is called “poll”.

If b_str is of ASN.1 type B_type, then we could write:

b_str.ack := TRUE

b_str.[2] := FALSE

Note that b_str.poll := TRUE and b_str.[3] := TRUE both assign the value TRUE to the “poll” bit.

Example_type ::= SEQUENCE {
field_1 INTEGER,
field_2 BOOLEAN,

OCTET STRING }

XY_PDUtype ::= SEQUENCE {
:

user_data OCTET STRING,
: }

B_type ::= BIT STRING { ack(0), poll(3) }

Superseded by a more recent version

94 Recommendation X.292 (09/92) Superseded by a more recent version

Recommendation X.208 defines SET and SET OF types having unordered components. This is relevant only if
values of that type are encoded and sent over the underlying service-provider. TTCN therefore treats data objects of SET
and SET OF types in the same way as objects of SEQUENCE and SEQUENCE OF type, i.e., referring to the
components with number i always means a reference to the ith field as declared in the type. ASN. 1 component
identifiers comprise the name of the ASN.1 ASP parameters, ASN.1 PDU fields or sub-components of ASN.1 ASP
parameters or ASN.1 PDU fields.

After an ASP or PDU has been received, referring to the component with the index i will always return the
same value. There is no change of order of the elements in a SET or SET OF by any operation in TTCN.

14.10.3 References for date objects defined using tables

The same syntax as defined in § 14.10.2 shall be used to construct references to ASP parameters, PDU fields
or elements of Structured Types defined in tabular form. To specify a reference to a parameter, field or element the data
object identifier shall be followed by a dot (.) and a parameter, field or element identifier.

Where a parameter, field or element is defined to be a true substructure of a type defined in a Structured Type
table, a reference to the elements in the substructure shall consist of the reference to the parameter, field or element
identifier followed by a dot and the identifier of the item within that substructure.

Where a structure is used as a macro expansion, the elements in the structure shall be referred to as if it was
expanded into the structure referring to it.

If a parameter, field or element is defined to be of metatype PDU no reference shall be made to fields of that
substructure.

14.10.4 Assignments

14.10.4.1 Introduction

Test events may be associated with a list of assignments and/or a qualifier. Assignments are separated by
commas and the list is enclosed in parentheses.

Syntax definition

301 AssignmentList ::= "(" Assignment {Comma Assignment} ")"

302 Assignment ::= DataObjectReference ":=" Expression

During execution of an assignment the right-hand side shall evaluate to an element of the type of the left-hand
side.

The effect of an assignment is to bind the Test Case or Test Suite Variable (or ASP parameter or PDU field) to
the Value of the expression. The expression shall contain no unbound variables.

All assignments occur in the order in which they appear, that is left for right processing.

Example 67 – Use of assignments with event lines

When PDU A is successfully transmitted the contents of the Test Case Variables X and Y will be zero, and
field of PDU A will also contain zero. Upon receipt of PDU 6 the Test Case Variable Y would be assigned the contents
of field2 from PDU B and the Test Case Variable X would be incremented.

(X:=1)
(Y:=2)

L!A (Y:=0, X:=Y, A.field1:=Y)
L?B (Y:=B.field2, X:=X+1)

Superseded by a more recent version

Recommendation X.292 (09/92) Superseded by a more recent version 95

14.10.4.2 Assignment miss for string types

If length-restricted string types are used within an assignment the following rules apply:

a) if the destination string type is defined to be shorter than the source string, the source string is truncated
on the right to the maximum length of the destination string type;

b) if the source string is shorter than that allowed by the destination string type, then the source string is left-
aligned and padded with fill characters up to the maximum size of the destination string type.

Fill characters are:

" " (blank) for all CharacterStrings;

"0" (zero) for BITSTRINGS, HEXSTRINGs and OCTETSTRINGS.

When an unbounded (i.e., possibly infinite length) string type variable is used on the left-hand side of an
assignment it shall become bound to the value of the right-hand side without padding. Padding is only necessary when
the variable is of a fixed length string type.

14.10.5 Qualifiers

An event may be qualified by placing a Boolean expression enclosed in square brackets after the event. This
qualification shall be taken to mean that the statement is executed only if both the event matches and the qualifier
evaluates to TRUE.

If both a qualifier and an assignment are associated with the same event, then the qualifier shall appear first,
any term in it being evaluated with the values holding before execution of the assignment.

Syntax definition

288 Qualifier ::= "[" Expression "]"

14.10.6 Event lines with assignments and qualifiers

An event may be associated with an assignment, a qualifier or both. If an event is associated with an
assignment, the assignment is executed only if the event matches. If an event is associated with a qualifier, the event
may match only if the qualifier evaluates to TRUE. If an event is associated with both, the event may match only if the
qualifier evaluates to TRUE, and the assignment is executed only if the event matches.

If a RECEIVE event is qualified and the event that has occurred potentially matches the specified event, then
the qualifier shall be evaluated in the context of the event that has occurred. If the qualifier contains a reference to ASP
parameters and/or PDU fields then the values of those parameters and/or fields are taken from the event that has
occurred.

The rules for use of assignments within events are as follows:

a) on a SEND event all assignments are performed after the qualifier is evaluated and before the ASP or
PDU is transmitted;

b) on SEND events assignments are allowed for the fields of the ASP or PDU being transmitted;

c) on a RECEIVE event assignments are performed after the event occurs and cannot be made to fields of
the ASP or PDU just received.

An assignment to a constraint ASP parameter, PDU field or structure element in the behaviour part will
overwrite constraint values on a SEND event line.

Superseded by a more recent version

96 Recommendation X.292 (09/92) Superseded by a more recent version

Example 68 – Use of a qualified SEND event

Processing these alternative SEND events the tester will send A only if the value of the variable X is 3.
Otherwise it will send B.

Example 69 – Using OTHERWISE, qualifiers and assignments

The OTHERWISE event may be used together with qualifiers and/or assignments. If a qualifier is used, this
Boolean becomes an additional condition for accepting any incoming event. If an assignment statement is used, the
assignment will take place only if all conditions for matching the OTHERWISE are satisfied. For example:

Assume that no event is received at PCO1. Receipt of event B at PCO2 when X=2 gives an inconclusive
verdict. Receipt of any other event at PCO2 when X<>2 results in a FAIL verdict and assigns a value of “X not equal 2”
to the CharacterString variable: Reason. If an event is received at PCO2 that satisfies neither of these scenarios then the
final OTHERWISE will match.

14.11 Pseudo-events

It is permitted to use assignments, qualifiers and timer operations by themselves on a statement line in a
behaviour tree, without any associated event. These stand-alone expressions are called pseudo-events.

The meaning of such a pseudo-event is as follows:

a) if only a qualifier is specified: the qualifier is evaluated and execution continues with subsequent
behaviour, if the qualifier evaluates to TRUE; if it evaluates to FALSE the next alternative is attempted. If
no alternative exists, then this is a test case error;

b) if only assignments and/or timer operations are specified: the assignments shall be executed from left to
right and/or the timer operations shall be executed from left to right;

c) if assignment and/or timer operations are specified preceded by a qualifier: the qualifier shall be evaluated
first and the assignments and/or timer operations shall be evaluated only if the qualifier evaluates to
TRUE.

14.12 Timer management

14.12.1 Introduction

A set of operations is used to model timer management. These operations can appear in combination with
events or as stand-alone pseudo-events.

Timer operations can be applied to:

– an individual timer, which is specified by following the timer operation by the timer name;

– all timers, which is specified by omitting the timer name.

PARTIAL_TREE
!A[X=3]
!B

PARTIAL_TREE (PCO1:XSAP; PCO2:YSAP)
PCO1?A PASS
PCO2?B[X=2] INCONC
PCO1?C PASS
PCO2?OTHERWISE[X<>2](Reason:="X not equal 2") FAIL
PCO2?OTHERWISE(Reason:="X equals 2 but event not B") FAIL

Superseded by a more recent version

Recommendation X.292 (09/92) Superseded by a more recent version 97

It is assumed that the timers used in a test suite are either inactive or running. All running timers are
automatically cancelled at the end of each Test Case. There are three predefined timer operations: START, CANCEL
and READTIMER. More than one timer operation may be specified on a event line if necessary. This is indicated by
separating the operations by commas.

When a timer operation appears on the same statement line as an event and/or a qualifier, the timer operation
shall be executed if, and only if, the event matches and/or the qualifier evaluates to TRUE.

Syntax definition

325 TimerOps ::= TimerOp {Comma TimerOp}

326 TimerOp ::= StartTimer | CancelTimer | ReadTimer

14.12.2 The START operation

The START operation is used to indicate that a timer should start running.

Syntax definition

327 StartTimer ::= START TimerIdentifier ["(" TimerValue ")"]

117 TimerIdentifier ::= Identifier

329 TimerValue ::= Expression

The operational timer value parameter shall be used if no default duration is given, or if it is desired to assign
an expiry time (i.e., duration) for a timer that overrides the default value specified in the timer declarations.

Timer values shall be of type INTEGER. The test case writer shall ensure that the optional timer value
parameter shall evaluate to a positive non-zero INTEGER. A test case error shall result if a timer is started with a zero or
negative value.

Any variables occurring in the expression specifying the optional timer value shall be bound. If an unbound
variable is used this is a test case error.

When a timer duration is overridden, the new value applies only to the current instance of the timer: any later
START operations for this timer which do not specify a duration will use the duration stated in the timer declarations
part.

Example 70 – Uses of START timer

the Ti are timer identifiers and the Vi are timer values:

START T0

START T0 (V0)

START T1, START T2 (V2)

The START operation may be applied to a running timer, in which case the timer is cancelled, reset and
started. Any entry in the timeout list for this timer shall be removed from the timeout list.

14.12.3 The CANCEL operation

The CANCEL operation is used to stop a running timer.

Syntax definition

328 CancelTimer ::= CANCEL [TimerIdentifier]

117 TimerIdentifier ::= Identifier

329 TimerValue ::= Expression

A cancelled timer becomes inactive. If a TIMEOUT event for that timer is in the timeout list, that event is
removed from the timeout list. If the timer name on the CANCEL operation is omitted, all running timers become
inactive and the timeout list is emptied.

Cancelling an inactive timer is a valid operation, although it does not have any effect.

Superseded by a more recent version

98 Recommendation X.292 (09/92) Superseded by a more recent version

Example 71 – Some uses of CANCEL timer

CANCEL

CALCEL T0

CANCEL T1, CANCEL T2

CANCEL T1, START T3

where the Ti are timer identifiers.

14.12.4 The READ TIMER operation

The READTIMER operation is used to retrieve the timer that has passed since the specified timer was started
and to store it into the specified Test Suite or Test Case Variable. This variable shall be of type INTEGER. This time
value assigned to the variable is interpreted as having the time unit specified for the timer in its declaration. By
convention, applying the READTIMER operation on an inactive timer will return the value zero.

Syntax definition

330 ReadTimer ::= READTIMER TimerIdentifier "(" DataObjectReference ")"

117 TimerIdentifier ::= Identifier

Example 72 – Using READTIMER

If EVENT_C is received prior to expiration of the timer named by TimerName, the amount of time which has
passed since starting the timer will be stored in the Test Case or Test Suite Variable CurrTime. The behaviour contained
in Tree_C may use the value of this Test Suite or Test Case Variable.

Example 73 – READTIMER used in combination with other timer operations

READTIMER T1 (PASSED_TIME), CANCEL T1

READTIMER T1 (V1), START NEW_TIMER (V1)

14.13 The ATTACH construct

14.13.1 Introduction

Trees may be attached to other trees by using the ATTACH construct, which has the syntax:

Syntax definition

296 Attach ::= "+" TreeReference [ActualParList]

298 TreeReference ::= TestStepIdentifier | TreeIdentifier

299 ActualParList ::= "(" ActualPar {Comma ActualPar} ")"

300 ActualPar ::= Value | PCO_Identifier

:
START TimerName (TimerVal)

?EVENT_A
+Tree_A

?EVENT_B
+Tree_B

?EVENT_C
READTIMER TimerName (CurrTime)

+Tree_C
?TIMEOUT TimerName

:

Superseded by a more recent version

Recommendation X.292 (09/92) Superseded by a more recent version 99

Test suite and Test Case Variables are global to both the tree that does the attachment (the main tree) and the
attached tree, i.e., any changes made to variables in an attached tree also apply to the main tree. Tree attachment
constructs shall appear on a statement line by themselves.

14.13.2 Scope of tree attachment

Behaviour descriptions may contain more than one tree. However, only the first tree in the behaviour
description is accessible from outside the behaviour description. Any subsequent trees are considered to be Test Steps
local to the behaviour description, and thus not externally accessible.

It should be noted that only Test Cases are directly executable, While Test Steps are executed only if attached
to a Test Case, or to a Test Step whose point of attachment can be traced back to a Test Case (either directly or via other
attached Test Steps). Test Cases are not attachable.

Tree reference may be Test Step identifiers or tree identifiers, where:

a) a Test Step Identifier denotes the attachment of a Test Step that resides in the Test Step Library; the Test
Step is referenced by its unique identifier;

b) a tree identifier shall be the name of one of the trees in the current behaviour description; this is
attachment of a local tree.

14.13.3 Tree attachment basics

Given a behaviour tree, it is possible to detach parts of this tree in the form of separate behaviour trees, i.e.,
Test Steps. The points where a Test Step has been cut out of the original tree are indicated by the attach symbol (+)
followed by the name assigned to the Test Step.

Example 74 – Partitioning a large tree into two smaller trees

This operation can be performed not only on the main behaviour tree of the Test Case (the root tree) but also
on the Test Steps detached from it. The attached tree will either be a local tree or a member of the Test Step Library.

Tree attachment can be defined in a more general way than the mere re-insertion of complete Test Steps:

– An attached tree need not contain full paths down to the leaves of the tree it is attached to (its calling
tree). Rather, some subsequent behaviour common to all paths of the attached tree may be specified in the
calling tree, namely as behaviour subsequent to the attachment line.

– Some (even top level) lines of the attached Test Step may again have the form +SOME_SUBTREE,
calling for the attachment of further Test Steps.

– Attached Test Steps may be parameterized.

TOP_TREE

A
A1
D1

D11
D12

C
C1

D1
D11
D12

is equivalent to:

TOP_TREE

A
A1
+STEP

C
C1

+STEP
and

STEP

D1
D11
D12

Superseded by a more recent version

100 Recommendation X.292 (09/92) Superseded by a more recent version

14.13.4 The meaning of tree attachment

14.13.4.1 The following list defines the tree attachment execution semantics:

a) The attachment line (e.g., +STEP) in the behaviour tree (e.g., TOP_TREE) is formally one (e.g., Ai) in an
ordered set of alternatives:

(A1, …, Ai, …, An)

Attaching STEP in this position means expanding the TOP_TREE by inserting the Test Step STEP’s top
alternatives, e.g., (Bi, … Bm) into this sequence, yielding a new sequence:

(A1, …, A(i−1), B1, …, Bm, A(i+1), …, An)

of alternatives. Any subsequent behaviour to the Bs will be attached together with them.

Example 75 – Expansion of a Test Step

b) Any behaviour subsequent to the +STEP line in the tree will become behaviour subsequent to all the
leaves of the attached STEP expanded into the tree;

Example 76 – Subsequent behaviour to an ATTACH

c) When an actual parameter list is used on an ATTACH construct, then the actual parameter shall be
substituted for each corresponding formal parameter using simple textual substitution. This substitution
shall take place according to the following scoping rules:

1) Actual parameters on the ATTACH of a local tree shall be substituted for corresponding formals
only directly within that local tree;

2) Actual parameters on the ATTACH of a root tree of a Test Step are substituted for all occurrences of
the corresponding formats within the root tree and any local trees directly within the Test Step;

3) When a parameterized tree is attached:

A) the number of the actual parameters shall be the same as the number of formal parameters; and

B) each actual parameter shall evaluate to an element of its corresponding formal parameter type.

TOP_TREE
A

A1
+STEP
A3

and

STEP
B1

B11
B2 is equivalent to:

TOP_TREE
A

A1
B1

B11
B2
A3

TOP_TREE
A

+STEP
B

and

STEP
D1

D11
D2

is equivalent to:

TOP_TREE
A

D1
D11

D2
B

Superseded by a more recent version

Recommendation X.292 (09/92) Superseded by a more recent version 101

Example 77 – Substitution of parameters

Example 78 – Scoping rules for parameter substitution

14.13.5 Passing parameterized constraints

Constraints may be passed as parameters to Test Steps. If the constraint has a formal parameter list then the
constraint shall be passed together with an actual parameter list. The actual parameters of the constraint shall already be
bound at the point of attachment.

TOP_TREE(L:NSAP; U:TSAP)
L!CONreq (M:=1)

+STEP (U, M, 2)
and

STEP(PCO:TSAP; X,Y:INTEGER)
PCO?CONind (X:=Y)

is equivalent to:
TOP_TREE(L:NSAP; U:TSAP)
L!CONreq (M:=1)

U?CONind (M:=2)

Test Step Dynamic Behaviour

Test Step Name : TEST_STEP_1(X, Y:INTEGER)
Group : TTCN_EXAMPLES/PARAMS/STEPS/
Objective : To illustrate scoping rules for parameter substitution
Default :
Comments :

No. Label Behaviour Description
Constraints
Reference Verdict Comments

1 ?A A1
2 +TEST_STEP_2(X)
3 +LOCAL(5)

LOCAL(F:INTEGER)
4 !B B1
5 (TC_VAR:=F+Y) PASS

Detailed Comments: When TEST_STEP1 is attached by a calling tree, all occurrences of the formal parameters X and
Y within the entire Test Step (including within the local tree LOCAL) will be replaced with the actuals provided. Note that
formals X and Y are not automatically substituted with actuals within TEST_STEP2. However, the actual parameter
value for formal X is substituted in the ATTACH construct "+TEST_STEP2(X)". This results in the substitution of the
actual parameter value X (in TEST_STEP1) for whatever formal parameter appears in the declaration of TEST_STEP2.
Finally, note that actual parameter (constant) 5 is substituted for formal "F" when the tree LOCAL is attached. This
substitution takes place only within the local tree.

Superseded by a more recent version

102 Recommendation X.292 (09/92) Superseded by a more recent version

Example 79 – Passing a parameterized constraint

Suppose that the constraint C1 has a single formal parameter of type INTEGER. TOP - TREE attaches STEP
and passes C1 as a parameter. Note that the constraints reference in STEP is not parameterized:

14.13.6 Recursive tree attachment

As tree attachment works recursively (STEP may contain a+SOME_OTHER_TREE line) the tree expansion
semantics may never lead to a tree free of attachment lines.

Example 80 – A legal recursive tree attachment

A tree shall not attach itself, either directly or indirectly, at its top level of indentation.

Note – It is unnecessary to expand either any Test Step that will not be executed, or any alternatives beyond
the current level until an alternative from the current level has been selected.

Example 81 – An illegal recursive tree attachment

14.13.7 Tree attachment and Defaults

The expansion of Defaults in a tree shall be completed before this tree is attached anywhere (see 14.18.2).

Note – Special care has to be taken where both tree attachment and Defaults are used in a behaviour
description.

TOP_TREE
:
+STEP(C1(3))
:

STEP(PAR:A_PDU)
:
!A_PDU PAR
:

TOP_TREE
A

+STEP
B and

STEP
C

+TOP_TREE
D

one expansion
is equivalent to:

TOP_TREE
A

C
+TOP_TREE

B
D

B

TOP_TREE
A

+STEP
B and

STEP
C

D
+TOP_TREE

one expansion
is equivalent to:

TOP_TREE
A
C

D
 B

+TOP_TREE
B

Superseded by a more recent version

Recommendation X.292 (09/92) Superseded by a more recent version 103

14.14 Labels and the GOTO construct

A label may be placed in the labels column on any statement line in the behaviour tree.

Note – Whenever an entry is executed in the behaviour tree for which a label is specified, that label should be
recorded in the conformance log in such a way that it can be associated with the record of the execution of that entry.

A GOTO to a label may be specified within a behaviour tree provided that the label is associated with the first
of a set of alternatives, one of which is an ancestor node of the point from which the GOTO is to be made. A GOTO
shall be used only for jumps within one tree, i.e., within a Test Case root tree, a Test Step tree a Default tree or a local
tree. As a consequence, each label used in a GOTO construct shall be found within the same tree in which the GOTO is
used. No GOTO shall be made to the first level of alternatives of local trees, Test Steps or Defaults.

A GOTO shall be specified by placing an arrow (->) or the keyword GOTO, followed by the name of the
label, on a statement line of its own in the behaviour tree.

Syntax definition

295 GoTo ::= ("–>" | GOTO) Label

A label shall be unique within a tree. If a GOTO is executed, the Test Case shall proceed with the set of
alternatives referred to by the label.

GOTOs shall always be unconditional and therefore always execute.

Note – A Boolean expression may be placed as the immediate ancestor of a GOTO to gain the effect of a
conditional jump.

Example 82 – Use of GOTO

Test Case Dynamic Behaviour

Test Case Name : GOTO_EX1
Group : TTCN_EXAMPLES/GOTO_EXAMPLE1/
Purpose : To illustrate use of labels and GOTO
Default :
Comments :

No. Label Behaviour Description
Constraints
Reference Verdict Comments

1 LA !A A1
2 LB ?B B1
3 LB2 +B-tree
4 LC ?C C1
5 LD [D=1]
6 –>LA
7 LE [E=1]
8 LF !F F1

Detailed Comments: This example shows a jump to LA. From the same position in that tree it would also be allowed to
jump to LB or LD, but it would not be allowed to jump to LB2 or LF (because the set of alternatives does not contain an
ancestor node of the point from which the jump is made) nor to LC or LE (because these are not the first of a set of
alternatives).

Superseded by a more recent version

104 Recommendation X.292 (09/92) Superseded by a more recent version

14.15 The REPEAT construct

This subclause describes a mechanism to be used in behaviour descriptions for iterating a Test Step a number
of times. The syntax of this REPEAT construct is:

Syntax definition

297 Repeat ::= REPEAT TreeReference [ActualParList] UNTIL Qualifier

The tree reference shall be a reference to either a local tree or a Test Step defined in the Test Step Library. For
the rules of attachment see § 14.13. The REPEAT construct has the following meaning: first the tree, referred to by the
tree reference, is executed. Then, the qualifier is evaluated. If the qualifier evaluates to TRUE, execution of the REPEAT
construct is completed. If not, the tree is executed again, followed by evaluation of the qualifier. This process is repeated
until the qualifier evaluates to TRUE.

The REPEAT construct can always be executed and will normally be the last alternative of a series of TTCN
statements at the same level of indentation, as allowed by § 14.9.5.3 a).

Note – The REPEAT construct is recommended, if applicable, instead of use of GOTO.

Example 83 – Use of REPEAT (see also Annex D)

14.16 The Constraints Reference

14.16.1 Purpose of the Constraints Reference column

This column allows references to be made to a specific constraint placed on an ASP or PDU. Such constraints
are defined in the constraints part (see §§ 11, 12 and 13). The constraints reference shall be present in conjunction with
SEND, IMPLICIT SEND and RECEIVE. A constraints reference is optional if an ASP has no parameters. It shall not be
present with any other kind of TTCN statement.

Test Case Dynamic Behaviour

Test Case Name : RPT_EX1
Group : TTCN_EXAMPLES/REPEAT_EXAMPLE1/
Purpose : To illustrate use of REPEAT
Default :
Comments :

No. Label Behaviour Description
Constraints
Reference Verdict Comments

1 (FLAG:=FALSE)
2 !A A1
3 REPEAT STEP1 (FLAG) UNTIL [FLAG]
4 !D D1 PASS

STEP1 (F:BOOLEAN)
5 ?B (F:=TRUE) B1
6 ?C (F:=FALSE) C1

Detailed Comments: This example describes a test that is capable of receiving an arbitrary number of C events at the
lower tester PCO, until the awaited message B is received.

Superseded by a more recent version

Recommendation X.292 (09/92) Superseded by a more recent version 105

A constraint reference has the syntax:

Syntax definition

277 ConsRef ::= ConstraintIdentifier [ActualCrefParList]

278 ActualCrefParList ::= "(" ActualCrefPar {Comma ActualCrefPar} ")"

279 ActualCrefPar ::= Value | DataObjectIdentifier | ConsRef

Example 84 – A constraint reference without a parameter list

14.16.2 Passing parameters in Constraint References

A constraint reference may have an optional parameter list to allow the manipulation of specific constraint
values from the behaviour tree.

The actual parameter list shall fulfil the following:

a) the number of actual parameters shall be the same as the number of formal parameters; and

b) each actual parameter shall evaluate to an element of its corresponding formal type.

If a constraint is passed as an actual parameter, and that constraint is declared with a formal parameter list,
then the constraint shall also have a (possibly nested) actual parameter list. All variables appearing in the parameter list
shall be bound when the constraint is used. If an unbound variable is used then this is a test case error.

Example 85 – A constraints reference with a parameter list

Where D1 is a constraint on N_DATAreq with two parameters (actual parameters P1 and CR1), and CR1 is a
constraint with one parameter (actual parameter P2).

14.16.3 Constraints and qualifiers and assignments

If an event is qualified and also has a constraints reference, this shall be interpreted as: the event matches if,
and only if, both the qualifier and the constraint hold.

If an event is followed by an assignment and has a constraints reference and/or a qualifier, then this shall be
interpreted as: the assignment is performed if, and only if, the event occurs according to the definition given above.

14.17 Verdicts

14.17.1 Introduction

Entries in the verdict column in Dynamic Behaviour tables shall be either:

– a preliminary result, which shall be given in parentheses;

– or an explicit final verdict.

An entry, of either type, shall not occur on an empty line, or on the following TTCN statements:

a) an ATTACH construct;

b) a REPEAT construct;

c) a GOTO;

d) an IMPLICIT SEND.

N_SAP? CR_PDU CR1

N_SAP? N_DATAreq D1(P1, CR1(P2))

Superseded by a more recent version

106 Recommendation X.292 (09/92) Superseded by a more recent version

Syntax definition

281 Verdict ::= Pass | Fail | Inconclusive | Result

282 Pass ::= PASS | P | "(" PASS ")" | "(" P ")"

283 Fail ::= FAIL | F | "(" FAIL ")" | "(" F ")"

284 Inconclusive ::= INCONC | I | "(" INCONC ")" | "(" I ")"

285 Result ::= Identifier

Note – During Test Case execution, whenever an entry in a behaviour tree occurs for which there is a
corresponding entry in the verdict column of the abstract Test Case, that verdict column information is intended to be
recorded in the conformance log in such a way that it is associated with the record of that entry in the behaviour tree.

14.17.2 Preliminary results

A predefined variable called R is available in each Test Case to store any Intermediate results. R can take the
values pass, fail, inconc and none. These values are predefined identifiers and as such are case sensitive.

R may be used wherever other Test Case Variables may be used, except that it shall not be used on the left-
hand side of an assignment statement. Thus, it is a read-only variable, except for the changes to its value caused by
entries in the verdict column (as specified below).

If a preliminary result is to be specified in the verdict column it shall be one of the following:

a) (P) or (PASS), meaning that some aspect of the test purpose has been achieved;

b) (I) or (INCONC), meaning that something has occurred which makes the Test Case inconclusive for
some aspect of the test purpose;

c) (F) or (FAIL), meaning that a protocol error has occurred or that some aspect of the test purpose has
resulted in failure.

Note – PASS or P, FAIL or F and INCONC or I are keywords that are used in the verdicts column only. The
predefined identifiers pass, fail, inconc and none are values that represent the possible contents of the predefined
variable R. These predefined identifiers are to be used for testing the variable R in behaviour lines only.

Whenever a preliminary result is recorded, because the corresponding entry in the behaviour tree is executed,
then the value of the predefined Test Case Variable R shall be changed according to Table 6/X.292.

Note – Thus, the order of precedence (lower → higher) is: N, P, I, F. Even if R has value fail it can be useful to
record a preliminary result of P or I in order to record in the conformance log that a P or I is appropriate for some aspect
of the test purpose, despite the fact that this will not change the value of R.

TABLE 6/X.292

Calculation of the variable R

Current
Entry in verdict column

value of R
(PASS) (INCONC) (FAIL)

none pass inconc fail
pass pass inconc fail
inconc inconc inconc fail
fail fail fail fail

Superseded by a more recent version

Recommendation X.292 (09/92) Superseded by a more recent version 107

14.17.3 Final verdict

If an explicit final verdict is to be specified in the verdict column, it shall be one of the following:

a) P or PASS, meaning that a pass verdict is to be recorded;

b) I or INCONC, meaning that an inconclusive verdict is to be recorded;

c) F or FAIL, meaning that a fail verdict is to be recorded;

d) the predefined variable R, meaning that the value of R is to be taken as the final verdict, unless the value
of R is none in which case a test case error is recorded instead of a final verdict.

Whenever, during execution of a Test Case, an explicit final verdict is specified, then this terminates the Test
Case. For compliance with Recommendation X.291, an explicit final verdict should be specified only if the Test Case
has returned to a suitable stable testing state (e.g., the idle testing state).

Note – The termination of the Test Case caused by the specification of an explicit final verdict is necessary, for
example, if the stable state is reached in an attached Test Step when subsequent behaviour is specified in the calling tree.

If the leaf of the behaviour tree is reached without an explicit final verdict being specified, then the final
verdict is determined as for case d) above (i.e., as if R had been put in the verdict column).

If an explicit final verdict other than R is to be recorded, then that verdict shall be compared with the value in
R to determine whether or not they are consistent. If R is fail then a final verdict of PASS or INCONC shall be regarded
as inconsistent; if R is inconc then a final verdict of PASS shall be regarded as inconsistent. If there is one of these
inconsistencies, then it is a test case error.

Note – In such a case, “Test Case Error” should be recorded in the conformance log.

14.17.4 Verdicts and OTHERWISE

An OTHERWISE statement shall not lead to a PASS verdict. It should lead to a FAIL verdict, because the
OTHERWISE could match an invalid test event.

14.18 The meaning of Defaults

14.18.1 Introduction

In many cases Default behaviour will be used to emphasize a set of interesting paths through a test by
declaring the less interesting common alternatives (+ their subsequent behaviour) as Default behaviour.

The same effect, though less concisely, would be achieved by Test Step attachment (e.g., +DEFAULT) as an
additional general last alternative. As opposed to tree attachment, Default behaviour expands into many points of the tree
it is associated with. This property calls for a careful use of Defaults.

TABLE 7/X.292

Calculation of the final verdict R

Current
Entry in verdict column

value of R
PASS INCONC FAIL R

none pass inconc fail *error*
pass pass inconc fail pass
inconc *error* inconc fail inconc
fail *error* *error* fail fail

Superseded by a more recent version

108 Recommendation X.292 (09/92) Superseded by a more recent version

Example 86 – Identifying a Default tree:

No Default behaviour shall be specified to a Default behaviour, i.e., a Default may not have Default behaviour
itself. Tree attachments shall not be used in Default behaviour trees, i.e., Default behaviour trees shall not attach Test
Steps. Test Cases or Test Steps shall not be referred to as Defaults.

For the execution of a Test Case it is not necessary to expand Defaults everywhere in all the trees referring to
them. This can be seen from an operational description of the meaning of Defaults: in attempting to match a sequence of
alternatives (which may need repeated attempts), each time they all failed to match, the first level of alternatives of the
Default behaviour are attempted as well. If none of these matches either, the sequence is retried with the new states of
timers and queues at all PCOs concerned. If there is a match in the Default, the Default behaviour is pursued at that
point.

To ensure that no subsequent behaviour will occur following the execution of a Default behaviour, a final
verdict shall be assigned to every leaf of the Default tree. If the final verdict results from an OTHERWISE statement in
the Default tree, the final verdict shall be FAIL.

14.18.2 Defaults and tree attachment

Whenever tree attachment is used it is important to have a clear understanding of how Defaults apply both to
the calling tree and to the attached Test Step. In order to avoid hidden side-effects the Defaults that apply within an
attached Test Step are defined to be those specified in the table that defines that Test Step. Thus, if the Test Step is
defined in the Test Step Library, then the Defaults that apply are specified in header of the Test Step behaviour table.
Alternatively, if the Test Step is defined locally in the same behaviour table as the calling tree, then the same Defaults
apply to both the calling tree and the attached Test Step.

In order to avoid multiple insertions of Defaults within a set of alternatives, the Default specified for a
particular tree do not apply to the top level of alternatives of that tree unless the tree is the root tree of a Test Case.

In order to generate a correct expansion of a tree it is necessary to expand the Defaults both:

a) before the tree is expanded as an attached tree; and

b) before any of the tree’s attached Test Steps are expanded.

TOP_TREE
A

A1
A11
C
 D

A2
C

D
B

B1
C

D
C

D

TOP_TREE
A

A1
A11
+COMMON

A2
+COMMON

B
B1
+COMMON

+COMMON

COMMON
C

D

TOP_TREE
Default: COMMON
A

A1
A11

A2
B

B1

COMMON
C

D

1: The complete set of alternatives 2: Explicit tree attachment 3: Default achieves the same as 2

Superseded by a more recent version

Recommendation X.292 (09/92) Superseded by a more recent version 109

The expansion of Defaults is thus local to a single tree and comprises the attachment of the Default tree to the
bottom of every set of alternatives within the tree (except the top set of alternatives for any tree other than the root tree
of a Test Case).

Default expansion rules hold equally in the case where a set of alternatives contains an OTHERWISE event.

Example 87 – Locality of a Default against a Test Step

Example 88 – Locality of a Default against a calling tree

TOP_TREE
A

+STEP
D

STEP
Default: STEP_DEF
B

C

STEP_DEF
E

STEP
B

C
E

TOP_TREE
A

B
C

D
E

D

1: TOP_TREE attaches STEP,
which has the Default STEP_DEF

2: STEP_DEF expanded into
STEP

3: STEP expanded into
TOP_TREE

TOP_TREE
Default: TOP_TREE
A

+STEP

TOP_DEF
E

STEP
B

C

TOP_TREE
A

+STEP
E

E

TOP_TREE
A

B
C

E
E

1: TOP_TREE attaches STEP.
TOP_TREE has the Default
TOP_DEF

2: TOP_DEF expanded into
TOP_TREE

3: STEP expanded into
TOP_TREE

Superseded by a more recent version

110 Recommendation X.292 (09/92) Superseded by a more recent version

Example 89 – A case of cyclic tree attachment

14.19 Default References

Test Case and Test Step behaviours reference Default behaviour in the Default Library through the Default
entry in the table header. This reference locates the Default by its unique identifier. Defaults can be parameterized. The
actual parameter list shall fulfil the following:

a) the number of actual parameters shall be the same as the number of formal parameters; and

b) each actual parameter shall evaluate to an element of its corresponding formal type; and

c) all variables appearing in the parameter list shall be bound when the constraint is invoked.

Syntax definition

238 DefaultReference ::= Defaultldentifier [ActualParList]

The Default Identifier shall be a reference to a Default defined in the Default Library.

STEP_1
Default: DEF_1
A

+STEP_2
B

--

DEF_1
E1

STEP_2
Default: DEF_2
C

+STEP_1
D

DEF_2
E2

STEP_1
A

+STEP_2
B
E1

STEP_2
C

+STEP_1
D
E2

STEP_1
A

C
A

+STEP_2
B
E1

D
E2

B
E1

1: STEP_1 and STEP_2 attach
each other. STEP_1 has Default
DEF_1. STEP_2 has Default
DEF_2

2: DEF_1 expanded into STEP_1
and DEF_2 expanded into STEP_2

3: After one expansion of the
Default-free STEP_2 and one
expansion of the Default-free
STEP_1

Note – Such cyclic attachments are discouraged.

Superseded by a more recent version

Recommendation X.292 (09/92) Superseded by a more recent version 111

Example 90 – Default reference

15 Page continuation

15.1 Page continuation of TTCN tables

When any TTCN table is too long to fit on a single page the following mechanism shall be used:

a) the words “Continued on next page” shall be printed after the table line where the split occurs;

b) the words “Continued from previous page” shall be printed before the continued table on the next page.

Tables may be split at any location, i.e., in their header, body, or footer section. In all cases, the sections title
(e.g., column headers), shall be repeated on the next page. The complete header may or may not be repeated.

90.1

Test Case Dynamic Behaviour

Test Case Name : DEF_EX1
Group : TTCN_EXAMPLES/DEFAULT_EXAMPLE1/
Purpose : To illustrate the use of Defaults
Default : DEF1 (L)
Comments : The tree of example** can be split into this Test Case with the Default behaviour DEF1

No. Label Behaviour Description
Constraints
Reference Verdict Comments

1 L!CONNECTrequest CR1 Request ...
2 L?CONNECTconfirm CC1 ... Confirm
3 L!DATArequest DTR1 Send Data
4 L?DATAindication DTI1 Receive Data
5 L!DISCONNECTrequest DSC1 PASS Accept

90.2

Default Dynamic Behaviour

Default Name : DEF1(X:XSAP)
Group : TTCN_EXAMPLES/DEFAULTS_LIB/DEFAULT_1/
Objective : Illustration of a simple Default
Comments :

No. Label Behaviour Description
Constraints
Reference Verdict Comments

1 X?DISCONNECTindication DSC2 INCONC Premature

Note – Syntactically, the Default behaviour of the second of the two tables in the above example attaches
X?DISCONNECTindication as an alternative to each of the L! and L? statements in the first table. However, attachment of
the Default tree as an alternative to an L! statement that always succeeds is meaningless.

Superseded by a more recent version

112 Recommendation X.292 (09/92) Superseded by a more recent version

Example 91 – A continued Test Suite Parameters table

15.2 Page continuation of dynamic behaviour tables

When it is necessary to continue a dynamic behaviour table, then either of the following two mechanisms can
be used:

a) modularization, where some part of the behaviour of the tree is specified as a library (non-local) Test
Step, thereby modularizing the tree and reducing the amount of behaviour for the current proforma to that
which will fit on a single page, or

b) page continuation mechanism, where, in the case of a dynamic behaviour table, in order to aid alignment
of indentation levels, the following additional information shall be presented:

1) the level of indentation (enclosed in square brackets) of the last TTCN statement before the page
split occurs, shall be printed before the words “Continued on next page”.

2) on the continued page, the level of indentation (enclosed in square brackets) of the first TTCN
statement in the continued table, shall be printed after the words “Continued from previous page”.

It may be necessary in the case of lengthy Test Cases to indent to a different level than the stated one. In such
cases the stated level of indentation enclosed in square brackets will be aligned with the chosen indentation of the first
statement line in the continued table. To further aid alignment of indentation levels, additional indications of indentation
levels may also be given.

Test Suite Parameter Declarations

Parameter Name Type PICS/PIXIT Reference Comments

PAR1
PAR2
PAR3

INTEGER
BOOLEAN
IA5String

PICS question aa
PICS question bb
PIXIT question cc

Continued on next page page n

Continued from previous page page n + 1

Test Suite Parameter Declarations

Parameter Name Type PICS/PIXIT Reference Comments

PAR4
PAR5

BOOLEAN
HEXSTRING

PICS question dd
PICS question ee

Superseded by a more recent version

Recommendation X.292 (09/92) Superseded by a more recent version 113

Example 92 – Page splitting with re-alignment of indentation using bracketed indicators

As an option, test suite writers may utilize a grid at the top and bottom of the behaviour table. When a page
continues onto a subsequent page the grid may be shifted to the left thus allowing the indentation to be shifted too.

Test Case Dynamic Behaviour

Test Case Name : SPLIT2
Group : TTCN_EXAMPLES/PAGE_SPLITTING2/
Purpose : To demonstrate page splitting of a dynamic behaviour table
Default :
Comments :

No. Label Behaviour Description
Constraints
Reference Verdict Comments

1 ?A CA
2 ?H1 CH1
3 ?J CJ
4 ?K CK

[1] [3]

Continued on next page page n

Continued from previous page page n + 1
[1] [3]

No. Label Behaviour Description
Constraints
Reference Verdict Comments

5 ?L CL
6 ?M CM PASS
7 ?H2 CH2 FAIL

Superseded by a more recent version

114 Recommendation X.292 (09/92) Superseded by a more recent version

Example 93 – Re-alignment of indetation using grid indicator

Test Case Dynamic Behaviour

Test Case Name : SPLIT2
Group : TTCN_EXAMPLES/PAGE_SPLITTING3/
Objective : To demonstrate page splitting of a dynamic behaviour table, using a grid
Default :
Comments :

No. Label Behaviour Description
Constraints
Reference Verdict Comments

0 1 2 3

1 ?A CA
2 ?H1 CH1
3 ?J CJ
4 ?K CK

0 1 2 3

Continued on next page page n
--

Continued from previous page page n + 1

No. Label Behaviour Description
Constraints
Reference Verdict Comments

1 2 3 4 ...

5 ?L CL
6 ?M CM PASS
7 ?H2 CH2 FAIL

1 2 3 4 ...

Superseded by a more recent version

Recommendation X.292 (09/92) Superseded by a more recent version 115

ANNEX A

(to Recommendation X.292)

(This annex forms an integral part of this Recommendation)

Syntax and static semantics of TTCN

A.1 Introduction

This annex defines the syntax and the static semantics of TTCN. There are two forms of TTCN, a graphical
form (TTCN.GR) and a machine processable form (TTCN.MP). For the human user the graphical form of TTCN, the
TTCN.GR, takes advantage of an easily understood visual interpretation. However, TTCN.GR does not readily lend
itself to machine processing. The TTCN.MP addresses this problem and serves the following purposes:

a) to provide a formal syntax for TTCN in BNF;

b) to act as a transfer syntax;

c) to ease automated derivation of ETSs from ATSs;

d) other machine processing.

Note – Automated derivation of ETSs is outside the scope of this Recommendation.

This annex also defines the static semantics for both TTCN.GR and TTCN.MP.

A.2 Conventions for the syntax description

A.2.1 Syntactic metanotation

Table A-1/X.292 defines the metanotation used to specify the extended form of BNF grammar for TTCN
(henceforth called BNF).

A.2.2 TTCN.MP syntax definitions

A.2.2.1 Complete tables defined in TTCN.GR are represented in TTCN.MP by productions of the kind:

$Begin_KEYWORD $End_KEYWORD

Example A.1 – TS_PARdcIs ::= $Begin_TS_PARdcIs {TS_PARdcI}+ $End_TS_PARdcIs

Normally, these productions contain at least one mandatory component.

TABLE A-1/X.292

The TTCN.MP Syntactic Metanotation

::= Is defined to be

| Alternative

[abc] 0 or 1 instance of abc

{abc} 0 or more instances of abc

{abc}+ 1 or more instances of abc

(...) Textual grouping

abc The non-terminal symbol abc

abc A terminal symbol abc

"abc" A terminal symbol abc

Superseded by a more recent version

116 Recommendation X.292 (09/92) Superseded by a more recent version

A.2.2.2 Both sets of lines of a table and individual lines (i.e. sets of fields in a table) are represented by productions of
the kind:

$KEYWORD $End_KEYWORD

Begin does not appear in the opening keyword.

Example A.1 – TS_PARdcl ::= $TS_PARdcl TS_PARid TS_PARtype PICS_PIXIT [Comment]
$END_TS_PARdcl

A.2.2.3 Individual fields in a line are represented by:

$KEYWORD

There is no closing keyword.

Example A.3 – TS_Parlid ::= $TS_Parld TS_Parlidentifier

Example A.4 – TS_Parlidentifier ::= Identifier

A.2.2.4 Sets of tables, up to and including the test suite, are represented by productions of the kind:

$KEYWORD $End_KEYWORD

Example A.5 – ASP_TypeDefs ::= $ASP_TypeDefs [TTCN_ASP_TypeDefs] [ASN1_ASP_TypeDefs]
$End_ASP_TypeDefs

A.2.2.5 All other productions defining non-terminal symbols have no keywords at the beginning or the end of the
right-hand expression.

Exemple A.6 – TimerIdentifier ::= Identifier

A.3 The TTCN.MP syntax productions In BNF

A.3.1 Test suite

1 Suite ::= $Suite SuiteId SuiteOverviewPart DeclarationsPart ConstraintsPart DynamicPart $End_Suite

2 SuiteId ::= $Suiteld SuiteIdentifier

3 SuiteIdentifier ::= Identifier

A.3.2 The Test Suite Overview

A.3.2.1 General

4 SuiteOverviewPart ::= $SuiteOverviewPart SuiteStructure TestCaseIndex [TestStepIndex] [DefaultIndex]
$End_SuiteOverviewPart

A.3.2.2 Test Suite Structure

5 SuiteStructure ::= $Begin_SuiteStructure SuiteId StandardsRef PICSref PIXITref TestMethods
[Comment] Structure&Objectives [Comment] $End_SuiteStructure

6 StandardsRef ::= $StandardsRef BoundedFreeText

7 PICSref ::= $PICSref BoundedFreeText

8 PIXITref ::= $PIXITref BoundedFreeText

9 TestMethods ::= $TestMethods BoundedFreeText

10 Comment ::= $Comment [BoundedFreeText]

11 Structure&Objectives ::= $Structure&Objectives {Structure&Objective} $End_Structure&Objectives

12 Structure&Objective ::= $Structure&Objective TestGroupRef SeIExprId Objective
$End_Structure&Objective

13 SelExprId ::= $SelectExprId [SelectExprIdentifier]

Superseded by a more recent version

Recommendation X.292 (09/92) Superseded by a more recent version 117

A.3.2.3 Test Case Index

14 TestCaseIndex ::= $Begin_TestCaseIndex {CaseIndex}+ [Comment] $End_TestCaseIndex

15 CaseIndex ::= $CaseIndex TestGroupRef TestCaseId SelExprId Description $End_CaseIndex

/*STATIC SEMANTICS – Test Cases shall be listed in the order that they exist in the dynamic part*/

/*STATIC SEMANTICS – An explicit TestGroupReference shall be provided for the first TestCase of
each TestGroup*/

/*STATIC SEMANTICS – An explicit TestGroupReference shall be provided for each TestCase that
immediately follows a TestGroup*/

16 Description ::= $Description BoundedFreeText

A.3.2.4 Test Stop Index

17 TestSteplndex ::= $Begin_TestSteplndex {StepIndex} [Comment] $End_TestStepIndex

18 StepIndex ::= $StepIndex TestStepRef TestStepld Description $End_StepIndex

/*STATIC SEMANTICS – TestStepld shall not include a formal parameter list*/

/*STATIC SEMANTICS – Test Steps shall be listed in the order that they exist in the dynamic part*/

/*STATIC SEMANTICS – An explicit TestStepGroupReference shall be provided for the first TestStep
of each TestStepGroup*/

/*STATIC SEMANTICS – An explicit TestStepGroupReference shall be provided for each TestStep that
immediately follows a TestStep Group*/

A.3.2.5 Default Index

19 Defaultlndex ::= $Begin_DefaultIndex {DefIndex} [Comment] $End_DefaultIndex

20 DefIndex ::= $Deflndex DefaultRef Defaultld Description $DefIndex

/*STATIC SEMANTICS – Defaultld shall not include a formal parameter list*/

/*STATIC SEMANTICS – Defaults shall be listed in the order that they exist in the dynamic part*/

/*STATIC SEMANTICS – An explicit DefaultGroupReference shall be provided for the first Default of
each DefaultGroup*/

/*STATIC SEMANTICS – An explicit DefaultGroupReference shall be provided for eachdefault that
immediately follows a DefaultGroup*/

A.3.3 The Declarations Part

A.3.3.1 General

21 DeclarationsPart ::= $DeclarationsPart Definitions Parameterization&Selection Declarations
ComplexDefinitions $End_DeclarationsPart

A.3.3.2 Definitions

A.3.3.2.1 General

22 Definitions ::= [TS_TypeDefs] [TS_OpDefs]

A.3.3.2.2 Test Suite Type Definitions

23 TS_TypeDefs ::= $TS_TypeDefs [SimpleTypeDefs] [StructTypeDefs] [ASN1_TypeDefs] [ASN1_TypeRefs]
$End_TS_TypeDefs

Superseded by a more recent version

118 Recommendation X.292 (09/92) Superseded by a more recent version

A.3.3.2.3 Simple Type Definitions

24 SimpleTypeDefs ::= $Begin_SimpleTypeDefs {SimpleTypeDef}+ [Comment] $End_SimpleTypeDefs

25 SimpleTypeDef ::= $SimpleTypeDef SimpleTypeld SimpleTypeDefinition [Comment]
$End_SimpleTypeDef

26 SimpleTypeId ::= $SimpleTypeld SimpleTypeIdentifier

27 SimpleTypeIdentifier ::= Identifier

28 SimpleTypeDefinition ::= $SimpleTypeDefinition Type&Restriction

29 Type&Restriction ::= Type [Restriction]

30 Restriction ::= LengthRestriction | lntegerRange | SimpleValueList

/*STATIC SEMANTICS – The set of values defined by Restriction shall be a true subset of the values of
the base type*/

31 LengthRestriction ::= SingleTypeLength | RangeTypeLength

/*STATIC SEMANTICS – LengthRestriction shall be provided only when the base type is a string type
(i.e. BITSTRING, HEXSTRING, OCTETSTRING or CharacterString) or derived from a string type*/

32 SingleTypeLength ::= "[" Number "]"

33 RangeTypeLength ::= "[" LowerTypeBound To UpperTypeBound "]"

34 lntegerRange ::= "(" LowerTypeBound To UpperTypeBound ")"

/*STATIC SEMANTICS – LowerTypeBound shall be less than UpperTypeBound*/

35 LowerTypeBound ::= [Minus] Number | Minus INFINITY

36 UpperTypeBound ::= [Minus] Number | INFINITY

37 To ::= TO | ".."

38 SimpleValueList ::= "(" [Minus] LiteralValue {Comma [Minus] LiteralValue} ")"

/*STATIC SEMANTICS – If Minus is used in SimpleValueList then LiteralValue shall be a number*/

/*STATIC SEMANTICS – The LiteralValues shall be of the base type and shall be a true subset of the
values defined by the base type*/

A.3.3.2.4 Structured Type Definitions

39 StructTypeDefs ::= $StructTypeDefs {StructTypeDef}+ $End_StructTypeDefs

40 StructTypeDef ::= $Begin_StructTypeDef Structld [Comment] ElemDcls [Comment]
$End_StructTypeDef

41 Structld ::= $Structld Structld&FullId

42 Structld&Fullld ::= StructIdentifier [FullIdentifier]

43 FullIdentifier ::= "(" BoundedFreeText ")"

/*STATIC SEMANTICS – Some TTCN objects allow names, as given in the appropriate protocol
Recommendation to be abbreviated. If an abbreviabon is used then Fullidentifier shall be given in the
declaration of the object*/

44 StructIdentifier ::= Identifier

45 ElemDcls ::= $ElemDcls {ElemDcl}+ $End_ElemDcls

46 ElemDcl ::= $ElemDcl Elemld ElemType [Comment] $End_ElemDcl

Superseded by a more recent version

Recommendation X.292 (09/92) Superseded by a more recent version 119

47 Elemld ::= $Elemld Elemld&FullId

48 Elemld&FullId ::= ElemIdentifier [FullIdentifier]

49 ElemIdentifier ::= Identifier

50 ElemType ::= $ElemType Type&Attributes

/*STATIC SEMANTICS – There shall be no recursive references (neither directly nor indirectly) in
Type&Attributes*/

/*STATIC SEMANTICS – A structure element Type shall be a PredefinedType, TS_TypeIdentifier,
PDU_Identifier, or PDU*/

A.3.3.2.5 ASN.1 Type Definitions

51 ASN1_TypeDefs ::= $ASN1_TypeDefs {ASN1_TypeDef}+ $End_ASN1_TypeDefs

52 ASN1_TypeDef ::= $Begin_ASN1_TypeDef ASN1_Typeld [Comment] ASN1_TypeDefinition [Comment]
$End_ASN1_TypeDef

53 ASN1_Typeld ::= $ASN1_Typeld ASN1_Typeld&FullId

54 ASN1_Typeld&Fullld ::= ASN1_TypeIdentifier [FullIdentifier]

55 ASN1_TypeIdentifier ::= Identifier

56 ASN1_TypeDefinition ::= $ASN1_TypeDefinition ASN1_Type&LocalTypes $End_ASN1_TypeDefinition

57 ASN1_Type&LocalTypes ::= ASN1_Type {ASN1_LocalType}

/*STATIC SEMANTICS – Types referred to from the ASN1_Type definition shall be defined in other
ASN_1 type definition tables, be defined by reference in the ASN.1 type reference table or be defined
locally (i.e. ASN1_LocalTypes) in the same table, following the first type definition*/

/*STATIC SEMANTICS – ASN1_LocalTypes shall not be used in other parts of the test suite*/

58 ASN1_Type ::= Type

/*REFERENCE – Where Type is a non-terminal defined in Recommendation X.208*/

/*STATIC SEMANTICS – Each terminal type reference used within the Type production shall be one of
the following: ASN1_LocalType typereference, TS_TypeIdentifier or PDU_Identifier*/

/*STATIC SEMANTICS – ASN.1 type definitions used within TTCN shall not use external type
references as defined in Recommendation X.208*/

59 ASN1_LocalType ::= Typeassignment

/*REFERENCE – Where Typeassignment is a non-terminal defined in Recommendation X.208*/

/*STATIC SEMANTICS – ASN.1 type definitions used within TTCN shall not use external type
references as defined in Recommendation X.208*/

A.3.3.2.6 ASN.1 Type Definitions by Reference

60 ASN1_TypeRefs ::= $Begin_ASN1_TypeRefs {ASN1_TypeRef}+ [Comment] $End_ASN1_TypeRefs

61 ASN1_TypeRef ::= $ASN1_TypeRef ASN1_TypeId ASN1_TypeReference ASN1_Moduleld [Comment]
$End_ASN1_TypeRef

/*STATIC SEMANTICS – ASN1_TypeId shall not be specified with a FullIdentifier*/

Superseded by a more recent version

120 Recommendation X.292 (09/92) Superseded by a more recent version

62 ASN1_TypeReference ::= $ASN1_TypeReference TypeReference

63 TypeReference ::= typereference

/*REFERENCE – Where typereference is defined in Recommendation X.208, § 8.2*/

64 ASN1_Moduleld ::= $ASN1_Moduleld ModuleIdentifier

65 ModuleIdentifier ::= ModuleIdentifier

/*REFERENCE – Where ModuleIdentifier is a non-terminal defined in Recommendation X.208*/

/*STATIC SEMANTICS – ModuleIdentifier shall be unique within the domain of interest*/

A.3.3.2.7 Test Suite Operation Definitions

66 TS_OpDefs ::= $TS_OpDefs {TS_OpDef}+ $End_TS_OpDefs

67 TS_OpDef ::= $Begin_TS_OpDef TS_Opld TS_OpResult [Comment] TS_OpDescription [Comment]
$End_TS_OpDef

68 TS_Opld ::= $TS_Opld TS_Opld&ParList

69 TS_Opld&ParList ::= TS_OpIdentifier [FormalParList]

/*STATIC SEMANTICS – A Test Suite Operation formal parameter Type shall be a PredefinedType,
TS_TypeIdentifier or PDU_Identifier*/

70 TS_OpIdentifier ::= Identifier

71 TS_OpResult ::= $TS_OpResult Type

/*STATIC SEMANTICS – Type shall be a PredefinedType, TS_TypeIdentifier or PDU-Identifier*/

72 TS_OpDescription ::= $TS_OpDescription BoundedFreeText

A.3.3.3 Parameterization and Selection

A.3.3.3.1 General

73 Parameterization&Selection ::= [TS_ParDcls] [SelectExprDefs]

A.3.3.3.2 Test Suite Parameter Declarations

74 TS_ParDcls ::= $Begin_TS_ParDcls {TS_ParDcl}+ [Comment] $End_TS_ParDcls

75 TS_ParDcl ::= $TS_ParDcl TS_Parld TS_ParType PICS_PIXITref [Comment] $End_TS_ParDcl

76 TS_Parld ::= $TS_Parld TS_ParIdentifier

77 TS_ParIdentifier ::= Identifier

78 TS_ParType ::= $TS_ParType Type

/*STATIC SEMANTICS – Type shall be a PredefinedType, TS_TypeIdentifier or a PDU_Identifier*/

79 PICS_PIXITref ::= $PICS_PIXITref BoundedFreeText

A.3.3.3.3 Test Case Selection Expression Definitions

80 SelectExprDefs ::= $Begin_SelectExprDefs {SelectExprDef}+ [Comment] $End_SelectExprDefs

81 SelectExprDef ::= $SelectExprDef SelectExprld SelectExpr [Comment] $End_SelectExprDef

82 SelectExprld ::= $SelectExprld SelectExprIdentifier

Superseded by a more recent version

Recommendation X.292 (09/92) Superseded by a more recent version 121

83 SelectExprIdentifier ::= Identifier

84 SelectExpr ::= $SelectExpr SelectionExpression

85 SelectionExpression ::= Expression

/*STATIC SEMANTICS – SelectionExpression shall only contain LiteralValues, TS_ParIdentifiers,
TS_ConstIdentifiers and SelectExprIdentifiers*/

/*STATIC SEMANTICS – SelectionExpression shall evaluate to a specific BOOLEAN value*/

/*STATIC SEMANTICS – Expression shall not recursively refer (neither directly nor indirectly) to the
SelectExprIdentifier being defined by that Expression*/

A.3.3.4 Declarations

A.3.3.4.1 General

86 Declarations ::= [TS_ConstDcls] [TS_VarDcls] [TC_VarDcls] PCO_Dcls [TimerDcls]

A.3.3.4.2 Test Suite Constant Declarations

87 TS_ConstDcls ::= $Begin_TS_ConstDcls {TS_ConstDcl}+ [Comment] $End_TS_ConstDcls

88 TS_ConstDcl ::= $TS_ConstDcl TS_Constld TS_ConstType TS_ConstValue [Comment]
$End_TS_ConstDcl

89 TS_Constld ::= $TS_Constld TS_ConstIdentifier

90 TS_ConstIdentifier ::= Identifier

91 TS_ConstType ::= $TS_ConstType Type

/*STATIC SEMANTICS – Type shall be a PredefinedType, TS_TypeIdentifier or a PDU_Identifier*/

92 TS_ConstValue ::= $TS_ConstValue DeclarationValue

93 DeclarationValue ::= Expression

/*STATIC SEMANTICS – DeclarationValue shall only contain LiteralValues, TS_ParIdentifier and
TS_ConstIdentifiers*/

/*STATIC SEMANTICS – DeclarationValue shall evaluate to an element of its declared type*/

A.3.3.4.3 Test Suite Variable Declarations

94 TS_VarDcls ::= $Begin_TS_VarDcls {TS_VarDcl}+ [Comment] $End_TS_VarDcls

95 TS_VarDcl ::= $TS_VarDcl TS_Varld TS_VarType TS_VarValue [Comment] $End_TS_VarDcl

96 TS_Varld ::= $TS_Varld TS_VarIdentifier

97 TS_VarIdentifier ::= Identifier

98 TS_VarType ::= $TS_VarType Type

/*STATIC SEMANTICS – Type shall be a PredefinedType, TS_TypeIdentifier or a PDU_Identifier*/

99 TS_VarValue ::= $TS_VarValue [DeclarationValue]

Superseded by a more recent version

122 Recommendation X.292 (09/92) Superseded by a more recent version

A.3.3.4.4 Test Case Variable Declarations

100 TC_VarDcls ::= $Begin_TC_VarDcls {TC_VarDcl}+ [Comment] $End_TC_VarDcls

101 TC_VarDcl ::= $TC_VarDcl TC_Varld TC_VarType TC_VarValue [Comment] $End_TC_VarDcl

102 TC_Varld ::= $TC_Varld TC_VarIdentifier

103 TC_VarIdentifier ::= Identifier

104 TC_VarType ::= $TC_VarType Type

/*STATIC SEMANTICS – Type shall be a PredefinedType, TS_TypeIdentifier or a PDU_Identifier*/

105 TC_VarValue ::= $TC_VarValue [DeclarationValue]

A.3.3.4.5 PCO Declarations

106 PCO_Dcls ::= $Begin_PCO_Dcls {PCO_Dcl}+ [Comment] $End_PCO_Dcls

/*STATIC SEMANTICS – In accordance with Recommendation X.290 the number of PCOs shall relate
to the test method used*/

107 PCO_Dcl ::= $PCO_Dcl PCO_Id PCO_Typeld P_Role [Comment] $End_PCO_Dcl

108 PCO_ld ::= $PCO_Id PCO_Identifier

109 PCO_Identifier ::= Identifier

110 PCO_Typeld ::= $PCO_Typeld PCO_TypeIdentifier

111 PCO_TypeIdentifier ::= Identifier

112 P_Role ::= $PCO_Role PCO_Role

113 PCO_Role ::= UT I LT

A.3.3.4.6 Timer Declarations

114 TimerDcls ::= $Begin_TimerDcls {TimerDcl}+ [Comment] $End_TimerDcls

115 TimerDcl ::= $TimerDcl Timerld Duration Unit [Comment] $End_TimerDcl

116 Timerld ::= $Timerld TimerIdentifier

117 TimerIdentifier ::= Identifier

118 Duration ::= $Duration [DeclarationValue]

/*STATIC SEMANTICS – DeclarationValue shall evaluate to a non-zero positive INTEGER*/

119 Unit ::= $Unit TimeUnit

120 TimeUnit ::= ps | ns | µs | ms | s | min

/*STATIC SEMANTICS – If a timer is derived from the PICS/PIXIT then the timer declaration shall
specify the same units as the PICS/PIXIT entry*/

A.3.3.5 ASP and PDU Type Definitions

A.3.3.5.1 General

121 ComplexDefinitions ::= [ASP_TypeDefs] PDU_TypeDefs [AliasDefs]

Superseded by a more recent version

Recommendation X.292 (09/92) Superseded by a more recent version 123

A.3.3.5.2 ASP Type Definitions

122 ASP_TypeDefs ::= $ASP_TypeDefs [TTCN_ASP_TypeDefs] [ASN1_ASP_TypeDefs]
[ASN1_ASP_TypeDefsByRef] $End_ASP_TypeDefs

A.3.3.5.3 Tabular ASP Type Definitions

123 TTCN_ASP_TypeDefs ::= $TTCN_ASP_TypeDefs {TTCN_ASP_TypeDef}+
$End_TTCN_ASP_TypeDefs

124 TTCN_ASP_TypeDef ::= $Begin_TTCN_ASP_TypeDef ASP_Id PCO_Type [Comment] ASP_ParDcls
[Comment] $End_TTCN_ASP_TypeDef

125 PCO_Type ::= $PCO_Type [PCO_TypeIdentifier]

/*STATIC SEMANTICS – PCO_TypeIdentifier shall be one of the PCO types used in the PCO
declaration proforma*/

/*STATIC SEMANTICS – if only a single PCO is defined within a test suite then PCO_TypeIdentifier is
optional*/

126 ASP_Id ::= $ASP_Id ASP_ld&FullId

127 ASP_ld&FullId ::= ASP_Identifier [FullIdentifier]

128 ASP_Identifier ::= Identifier

129 ASP_ParDcls ::= $ASP_ParDcls {ASP_ParDcl} $End_ASP_ParDcls

130 ASP_ParDcl ::= $ASP_ParDcl ASP_Parld ASP_ParType [Comment] $End_ASP_ParDcl

131 ASP_Parld ::= $ASP_Parld ASP_ParldOrMacro

132 ASP_ParldOrMacro ::= ASP_Parld&Fullld | MacroSymbol

/*STATIC SEMANTICS – The MacroSymbol shall be used only in combination with a reference to a
Structured Type*/

133 ASP_Parld&FullId ::= ASP_ParIdentifier [FullIdentifier]

134 ASP_ParIdentifier ::= Identifier

135 ASP_ParType ::= $ASP_ParType Type&Attributes

/*STATIC SEMANTICS – Type shall be a PredefinedType or TS_TypeIdentifier, PDU_Identifier, or
PDU*/

A.3.3.5.4 ASN.1 ASP Type Definitions

136 ASN1_ASP_TypeDefs ::= $ASN1_ASP_TypeDefs {ASN1_ASP_TypeDef} $End_ASN1_ASP_TypeDefs

137 ASN1_ASP_TypeDef ::= $Begin_ASN1_ASP_TypeDef ASP_Id PCO_Type [Comment]
ASN1_TypeDefinition [Comment] $End_ASN1_ASP_TypeDef

A.3.3.5.5 ASN.1 ASP Type Definitions by Reference

138 ASN1_ASP_TypeDefsByRef ::= $Begin_ASN1_ASP_TypeDefsByRef {ASN1_ASP_TypeDefByRef}+
[Comment] $End_ASN1_ASP_TypeDefsByRef

139 ASN1_ASP_TypeDefByRef ::= $ASN1_ASP_TypeDefByRef ASP_Id PCO_Type ASN1_TypeReference
ASN1_Moduleld [Comment] $End_ASN1_ASP_TypeDefByRef

/*STATIC SEMANTICS – ASP_Id shall not be specified with a FullIdentifier*/

A.3.3.5.6 PDU Type Definitions

140 PDU_TypeDefs ::= $PDU_TypeDefs [TTCN_PDU_TypeDefs] [ASN1_PDU_TypeDefs]
[ASN1_PDU_TypeDefsByRef] $End_PDU_TypeDefs

Superseded by a more recent version

124 Recommendation X.292 (09/92) Superseded by a more recent version

A.3.3-5.7 Tabular PDU Type Definitions

141 TTCN_PDU_TypeDefs ::= $TTCN_PDU_TypeDefs {TTCN_PDU_TypeDef}+
$End_TTCN_PDU_TypeDefs

142 TTCN_PDU_TypeDef ::= $Begin_TTCN_PDU_TypeDef PDU_ld PCO_Type [Comment] PDU_FieldDcls
[Comment] $End_TTCN_PDU_TypeDef

/*STATIC SEMANTICS – if a PDU is sent or received only embedded in ASPs within the whole test
suite, then PCO_TypeIdentifier (in PCO_Type) is optional*/

143 PDU_ld ::= $PDU_ld PDU_ld&FullId

144 PDU_ld&Fullld ::= PDU_Identifier [FullIdentifier]

145 PDU_Identifier ::= Identifier

146 PDU_FieldDcls ::= $PDU_FieldDcls {PDU_FieldDcl}+ $End_PDU_FieldDcls

147 PDU_FieldDcl ::= $PDU_FieldDcl PDU_FieldId PDU_FieldType [Comment] $End_PDU_FieldDcl

148 PDU_Fieldld ::= $PDU_FieldId PDU_FieldIdOrMacro

149 PDU_FieldIdOrMacro ::= PDU_Fieldld&Fullld | MacroSymbol

/*STATIC SEMANTICS – The MacroSymbol shall be used only in combination with a reference to a
Structured Type*/

150 MacroSymbol ::= "<–"

151 PDU_Fieldld&Fullld ::= PDU_FieldIdentifier [FullIdentifier]

152 PDU_FieldIdentifier ::= Identifier

153 PDU_FieldType ::= $PDU_FieldType Type&Attributes

/*STATIC SEMANTICS – Type shall be a PredefinedType or TS_TypeIdentifier, PDU_Identifier, or
PDU*/

154 Type&Attributes ::= (Type [LengthAttribute]) I PDU

/*STATIC SEMANTICS – The set of values defined by LengthAttribute shall be a true subset of the
values of the base type*/

/*STATIC SEMANTICS – LengthAttribute shall be provided only when the base type is a string type
(i.e. BITSTRING, HEXSTRING, OCTETSTRING or CharacterString) or derived from a string type*/

155 LengthAttribute ::= SingleLength | RangeLength

156 SingleLength ::= "[" Bound "]"

157 Bound ::= Number | TS_ParIdentifier | TS_ConstIdentifier

/*STATIC SEMANTICS – Bound shall evaluate to a non-negative INTEGER value or INFINITY*/

158 RangeLength ::= "[" LowerBound To UpperBound "]"

/*STATIC SEMANTICS – LowerBound shall be less than UpperBound*/

159 LowerBound ::= Bound

160 UpperBound ::= Bound | INFINITY

A.3.3.5.8 ASN.1 PDU Type Definitions

161 ASN1_PDU_TypeDefs ::= $ASN1_PDU_TypeDefs {ASN1_PDU_TypeDef} $End_ASN1_PDU_TypeDefs

162 ASN1_PDU_TypeDef ::= $Begin_ASN1_PDU_TypeDef PDU_Id PCO_Type [Comment]
ASN1_TypeDefinition [Comment] $End_ASN1_PDU_TypeDef

/*STATIC SEMANTICS – if a PDU is sent or received only embedded in ASPs within the whole test
suite, then PCO_TypeIdentifier (in PCO_Type) is optional*/

Superseded by a more recent version

Recommendation X.292 (09/92) Superseded by a more recent version 125

A.3.3.5.9 ASN.1 PDU Type Definitions by Reference

163 ASN1_PDU_TypeDefsByRef ::= $Begin_ASN1_PDU_TypeDefsByRef {ASN1_PDU_TypeDefByRef}+
[Comment] $End_ASN1_PDU_TypeDefsByRef

164 ASN1_PDU_TypeDefByRef ::= $ASN1_PDU_TypeDefByRef PDU_ld PCO_Type ASN1_TypeReference
ASN1_Moduleld [Comment] $End_ASN1_PDU_TypeDefByRef

/*STATIC SEMANTICS – If a PDU is sent or received only embedded in ASPs within the whole test
suite, then PCO_TypeIdentifier (in PCO_Type) is optional*/

/*STATIC SEMANTICS – PDU_Id shall not be specified with a FullIdentifier*/

A.3.3.5.10 Alias Definitions

165 AliasDefs ::= $Begin_AliasDefs {AliasDef}+ [Comment] $End_AliasDefs

166 AliasDef ::= $AliasDef AliasId ExpandedId [Comment] $End_AliasDef

167 AliasId ::= $Aliasld AliasIdentifier

168 AliasIdentifier ::= Identifier

/*STATIC SEMANTICS – An AliasIdentifier shall be used only in a statement line of a behaviour
description*/

/*STATIC SEMANTICS – An AliasIdentifier shall be used only where an ASP_identifier or
PDU_Identifier is valid*/

169 Expandedld ::= $Expandedld Expansion

170 Expansion ::= ASP_Identifier | PDU_Identifier

A.3.4 The Constraints Part

A.3.4.1 General

171 ConstraintsPart ::= $ConstraintsPart [TS_TypeConstraints] [ASP_Constraints] [PDU_Constraints]
$End_ConstraintsPart

A.3.4.2 Test Suite Type Constraint Declarations

172 TS_TypeConstraints ::= $TS_TypeConstraints [StructTypeConstraints] [ASN1_TypeConstraints]
$End_TS_TypeConstraints

A.3.4.3 Structured Type Constraint Declarations

173 StructTypeConstraints ::= $StructTypeConstraints {StructTypeConstraint}+
$End_StructTypeConstraints

174 StructTypeConstraint ::= $Begin_StructTypeConstraint Consld Structld DerivPath [Comment]
ElemValues [Comment] $End_StructTypeconstraint

/*STATIC SEMANTICS – The FullIdentifier that is part of Struct_Id shall not be used*/

/*STATIC SEMANTICS – A modified constraint shall have the same parameter list as its base constraint.
In particular, there shall be no parameters omitted from or added to this list*/

175 Elem Values ::= $ElemValues {ElemValue}+ $End_ElemValues

176 ElemValue ::= $ElemValue Elemld ConsValue [Comment] $End_ElemValue

/*STATIC SEMANTICS – Parameterized Element values in a base constraint shall not be modified or
explicitly omitted in a modified constraint*/

Superseded by a more recent version

126 Recommendation X.292 (09/92) Superseded by a more recent version

A.3.4.4 ASN.1 Type Constraint Declarations

177 ASN1_TypeConstraints ::= $ASN1_TypeConstraints {ASN1_TypeConstraint}+
$End_ASN1_TypeConstraints

178 ASN1_TypeConstraint ::= $Begin_ASN1_TypeConstraint Consld ASN1_Typeld DerivPath [Comment]
ASN1_ConsValue [Comment] $End_ASN1_TypeConstraint

/*STATIC SEMANTICS – The FullIdentifier that is part of ASN1_Typeld shall not be used*/

/*STATIC SEMANTICS – A modified constraint shall have the same parameter list as its base constraint.
In particular, there shall be no parameters omitted from or added to this list*/

A.3.4.5 ASP Constraint Declarations

179 ASP_Constraints ::= $ASP_Constraints [TTCN_ASP Constraints] [ASN1_ASP_Constraints]
$End_ASP_Constraints

A.3.4.6 Tabular ASP Constraint Declarations

180 TTCN_ASP_Constraints ::= $TTCN_ASP_Constraints {TTCN_ASP_Constraint}+
$End_TTCN_ASP_Constraints

181 TTCN_ASP_Constraint ::= $Begin_TTCN_ASP_Constraint ConsId ASP_Id DerivPath [Comment]
ASP_ParValues [Comment] $End_TTCN_ASP_Constraint

/*STATIC SEMANTICS – The FullIdentifier that is part of ASP_Id shall not be used*/

/*STATIC SEMANTICS – If an ASP is substructured, then the constraints for ASPs of that type shall
have the same structure*/

/*STATIC SEMANTICS – For every ASP type definition at least one base constraint shall be specified*/

/*STATIC SEMANTICS – A modified constraint shall have the same parameter list as its base constraint.
In particular, there shall be no parameters omitted from or added to this list*/

182 ASP_ParValues ::= $ASP_ParValues {ASP_ParValue}+ $End_ASP_ParValues

183 ASP_ParValue ::= $ASP_ParValue ASP_Parld ConsValue [Comment] $End_ASP_ParValue

/*STATIC SEMANTICS – The FullIdentifier that is part of ASP_ParId shall not be used*/

/*STATIC SEMANTICS – If an ASP definition refers to a Structured Type as a substructure of a
parameter (i.e. with a parameter name) then the corresponding constraint shall have the same parameter
name in the corresponding position in the parameter name name column of the constraint and the value
shall be a reference to a constraint for that parameter (i.e. for that substructure in accordance with the
definition of the Structured Type)*/

/*STATIC SEMANTICS – If an ASP definition refers to a parameter specified as being of metatype PDU
then in a corresponding constraint, the value for that parameter shall be specified as the name of a PDU
constraint, or formal parameter*/

/*STATIC SEMANTICS – Use of structured constraints by macro expansion in a constraint shall not be
used unless the corresponding ASP definition also references the same Structured Type by macro
expansion*/

/*STATIC SEMANTICS – Parameterized ASP parameter values in a base constraint shall not be
modified or explicitly omitted in a modified constraint*/

Superseded by a more recent version

Recommendation X.292 (09/92) Superseded by a more recent version 127

A.3.4.7 ASN.1 ASP Constraint Declarations

184 ASN1_ASP_Constraints ::= $ASN1_ASP_Constraints {ASN1_ASP_Constraint}+
$End_ASN1_ASP_Constraints

185 ASN1_ASP_Constraint ::= $Begin_ASN1_ASP_Constraint ConsId ASP_Id DerivPath [Comment]
ASN1_ConsValue [Comment] $End_ASN1_ASP_Constraint

/*STATIC SEMANTICS – The FullIdentifier that is part of ASP_Id shall not be used*/

/*STATIC SEMANTICS – If an ASP is substructured, then the constraints for ASPs of that type shall
have a compatible ASN.1 structure (i.e. possibly with some groupings)*/

/*STATIC SEMANTICS – A modified constraint shall have the same parameter list as its base constraint.
In particular, there shall be no parameters omitted from or added to this list*/

A.3.4.8 PDU Constraint Declarations

186 PDU_Constraints ::= $PDU_Constraints [TTCN_PDU_Constraints] [ASN1_PDU_Constraints]
$End_PDU_Constraints

A.3.4.9 Tabular PDU Constraint Declarations

187 TTCN_PDU_Constraints ::= $TTCN_PDU_Constraints {TTCN_PDU_Constraint}+
$End_TTCN_PDU_Constraints

188 TTCN_PDU_Constraint ::= $Begin_TTCN_PDU_Constraint ConsId PDU_ld DerivPath [Comment]
PDU_FieldValues [Comment] $End_TTCN_PDU_Constraint

/*STATIC SEMANTICS – The FullIdentifier that is part of PDU_Id shall not be used*/

/*STATIC SEMANTICS – If a PDU is substructured, then the constraints for PDUs of that type shall
have the same structure*/

/*STATIC SEMANTICS – For every PDU type definition at least one base constraint shall be specified*/

/*STATIC SEMANTICS – A modified constraint shall have the same parameter list as its base constraint.
In particular, there shall be no parameters omitted from or added to this list*/

189 Consld ::= $Consld Consld&ParList

190 Consld&ParList ::= ConstraintIdentifier [FormalParList]

191 ConstraintIdentifier ::= Identifier

192 DerivPath ::= $DerivPath [DerivationPath]

193 DerivationPath ::= {ConstraintIdentifier Dot}+

/*STATIC SEMANTICS – If a constraint definition is a modification of an existing constraint, the name
of the constraint that is taken as the basis of this modification shall be referenced in the table in the
derivation path entry*/

/*STATIC SEMANTICS – The first ConstraintIdentifier in DerivationPath shall be a base constraint
identifier*/

/*STATIC SEMANTICS – Constraints shall be listed in the order in which their modifications to the base
constraint are to be applied*/

/*STATIC SEMANTICS – There shall be no white space between ConstraintIdentifier and Dot*/

194 PDU_FieldValues ::= $PDU_FieldValues {PDU_FieldValue}+ $End_PDU_FieldValues

Superseded by a more recent version

128 Recommendation X.292 (09/92) Superseded by a more recent version

195 PDU_FieldValue ::= $PDU_FieldValue PDU_Fieldld ConsValue [Comment] $End_PDU_FieldValue

/*STATIC SEMANTICS – The FullIdentifier that is part of PDU_FieldId shall not be used*/

/*STATIC SEMANTICS – If a PDU definition refers to a Structured Type as a substructure of a field (i.e.
with a field name) then the corresponding constraint shall have the same field name in the corresponding
position in the field name name column of the constraint and the value shall be a reference to a constraint
for that field (i.e. for that substructure in accordance with the definition of the Structured Type)*/

/*STATIC SEMANTICS – If a PDU definition refers to a field specified as being of metatype PDU then
in a corresponding constraint, the value for that field shall be specified as the name of a PDU constraint,
or formal parameter*

/*STATIC SEMANTICS – Use of structured constraints by macro expansion in a constraint shall not be
used unless the corresponding PDU definition also references the same Structured Type by macro
expansion*/

/*STATIC SEMANTICS – Parameterized PDU field values in a base constraint shall not be modified or
explicitly omitted in a modified constraint*/

196 ConsValue ::= $ConsValue ConstraintValue&Attributes

/*STATIC SEMANTICS – ConsValue shall evaluate to an element of the type specified for the ASP
parameter, PDU field or structure element*/

197 ConstraintValue&Attributes ::= ConstraintValue ValueAttributes

/*STATIC SEMANTICS – ConstraintValue shall fulfil all restrictions defined for the ASP parameter,
PDU field or structure element type, including value ranges, value lists, alphabet restrictions and/or length
restrictions*/

/*STATIC SEMANTICS – Any length specifications defined for the ASP parameter or PDU field type in
the Test Suite Type declarations shall not conflict with the length specifications in the ASP or PDU type
definition*/

/*STATIC SEMANTICS – Neither Test Suite Variables nor Test Case Variables shall be used in
constraints, unless passed as actual parameters. In the latter case they shall be bound to a value and shall
not be changed*/

198 ConstraintValue ::= ConstraintExpression | MatchingSymbol | ConsRef

/*STATIC SEMANTICS – LiteralValue, TS_ParIdentifier, TS_ConstIdentifier, TS_VarIdentifier,
TC_VarIdentifier, (a different) ConsRef and FormalParIdentifier may be passed as actual parameters in
ConsRef*/

199 ConstraintExpression ::= Expression

/*STATIC SEMANTICS – The terms in ConstraintExpression shall only contain IValue,
TS_ParIdentifier, TS_ConstIdentifier, FormalParIdentifier and OpCall*/

/*STATIC SEMANTICS – ConstraintExpression shall evaluate to an element of the specified type*/

200 MatchingSymbol ::= Complement | Omit | AnyValue | AnyOrOmit | ValueList | ValueRange | SuperSet |
SubSet | Permutation

/*Note – No matching symbol is considered to be a specific value*/

201 Complement ::= COMPLEMENT ValueList

202 Omit ::= Dash | OMIT

/*STATIC SEMANTICS – In ASN.1 constraints Omit shall be used only for ASP parameters or PDU
fields that are declared OPTIONAL or DEFAULT*/

Superseded by a more recent version

Recommendation X.292 (09/92) Superseded by a more recent version 129

203 AnyValue ::= "?"

204 AnyOrOmit ::= "*"

205 ValueList ::= "(" ConstraintValue&Attributes {Comma ConstraintValue&Attributes} ")"

/*STATIC SEMANTICS – Each ConstraintValue&Attributes shall be of the type declared for the ASP
parameter, PDU field, or structure element in which the ValueList is used*/

206 ValueRange ::= "(" ValRange ")"

/*STATIC SEMANTICS – ValueRange shall be used only on ASP parameter, PDU field, or structure
element of type INTEGER*/

/*STATIC SEMANTICS – The set of values defined by ValueRange shall be a true subset of the values
allowed by the ASP parameter's, PDU field's or structure element's declared type*/

207 ValRange ::= (LowerRangeBound To UpperRangeBound)

/*STATIC SEMANTICS – LowerRangeBound shall be less than UpperRangeBound*/

208 LowerRangeBound ::= ConstraintExpression | Minus INFINITY

/*STATIC SEMANTICS – ConstraintExpression shall evaluate to a specific INTEGER value*/

209 UpperRangeBound ::= ConstraintExpression | INFINITY

/*STATIC SEMANTICS – ConstraintExpression shall evaluate to a specific INTEGER value*/

210 SuperSet ::= SUPERSET "(" ConstraintValue&Attributes ")"

/*STATIC SEMANTICS – The argument to SuperSet, i.e. ConstraintValue&Attributes, shall be of type
SET OF*/

211 SubSet ::= SUBSET "(" ConstraintValue&Attributes ")"

/*STATIC SEMANTICS – The argument to SubSet, i.e. ConstraintValue&Attributes, shall be of type
SET OF*/

212 Permutation ::= PERMUTATION ValueList

/*STATIC SEMANTICS – The Permutation shall be used only inside a value of type SEQUENCE OF*/

/*STATIC SEMANTICS – The ValueList shall be of the type specified in the SEQUENCE OF*/

213 ValueAttributes ::= [ValueLength] [IF_PRESENT]

/*STATIC SEMANTICS – In ASN.1 constraints IF_PRESENT shall be used only for ASP parameters or
PDU fields that are declared OPTIONAL or DEFAULT*/

214 ValueLength ::= SingleValueLength | RangeValueLength

/*STATIC SEMANTICS – ValueLength shall be used only for ASP parameters, PDU fields or structure
element that are declared as BITSTRING, HEXSTRING, OCTETSTRING, CharacterString,
SEQUENCE OF or SET OF*/

/*STATIC SEMANTICS – ValueLength shall be used only in combination with the following
mechanisms: Specificvalue, Complement, Omit, AnyValue, AnyOrOmit, AnyOrNone and Permutation*/

/*STATIC SEMANTICS – The set of values defined by ValueLength shall be a true subset of the values
allowed by the ASP parameter's, PDU field's or structure element's declared type*/

Superseded by a more recent version

130 Recommendation X.292 (09/92) Superseded by a more recent version

215 SingleValueLength ::= "[" ValueBound "]"

216 ValueBound ::= Number | TS_ParIdentifier | TS_ConstIdentifier | FormalParIdentifier

/*STATIC SEMANTICS – ValueBound shall evaluate to a specific non-negative INTEGER value*/

217 RangeValueLength ::= "[" LowerValueBound To UpperValueBound "]"

/*STATIC SEMANTICS – LowerValueBound shall be less than UpperValueBound*/

218 LowerValueBound ::= ValueBound

219 UpperValueBound ::= ValueBound | INFINITY

A.3.4.10 ASN.1 PDU Constraint Declarations

220 ASN1_PDU_Constraints ::= $ASN1_PDU_Constraints {ASN1_PDU_Constraint}+
$End_ASN1_PDU_Constraints

221 ASN1_PDU_Constraint ::= $Begin_ASN1_PDU_Constraint Consld PDU_Id DerivPath [Comment]
ASN1_ConsValue [Comment] $End_ASN1_PDU_Constraint

/*STATIC SEMANTICS – The FullIdentifier that is part of PDU_Id shall not be used*/

/*STATIC SEMANTICS – If a PDU is substructured, then the constraints for PDUs of that type shall
have a compatible ASN.1 structure (i.e. possibly with some groupings)*/

/*STATIC SEMANTICS – A modified constraint shall have the same parameter list as its base constraint.
In particular, there shall be no parameters omitted from or added to this list*/

222 ASN1_ConsValue ::= $ASN1_ConsValue ConstraintValue&AttributesOrReplace
$End_ASN1_ConsValue

223 ConstraintValue&AttributesOrReplace ::= ConstraintValue&Attributes | Replacement {Comma
Replacement}

224 Replacement ::= (REPLACE ReferenceList BY ConstraintValue&Attributes) | (OMIT ReferenceList)

/*STATIC SEMANTICS – Replacement shall be used only when DerivPath is specified*/

/*STATIC SEMANTICS – Parameterized replaced values in a base constraint shall not be modified or
explicitly omitted in a modified constraint*/

225 ReferenceList ::= (ArrayRef | ComponentIdentifier | ComponentPosition) {ComponentReference}

A.3.5 The Dynamic Part

A.3.5.1 General

226 DynamicPart ::= $DynamicPart TestCases [TestStepLibrary] [DefaultsLibrary] $End_DynamicPart

A.3.5.2 Test Cases

227 TestCases ::= $TestCases ({TestGroup | TestCase}+) $End_TestCases

228 TestGroup ::= $TestGroup TestGroupId {TestGroup | TestCase}+ $End_TestGroup

229 TestGroupld ::= $TestGroupId TestGroupIdentifier

230 TestGroupIdentifier ::= Identifier

231 TestCase ::= $Begin_TestCase TestCaseld TestGroupRef TestPurpose DefaultRef [Comment]
BehaviourDescription [Comment] $End_TestCase

232 TestCaseld ::= $TestCaseld TestCaseIdentifier

233 TestCaseIdentifier ::= Identifier

Superseded by a more recent version

Recommendation X.292 (09/92) Superseded by a more recent version 131

234 TestGroupRef ::= $TestGroupRef TestGroupReference

235 TestGroupReference ::= [SuiteIdentifier "/"] {TestGroupIdentifier "/"}

/*STATIC SEMANTICS – There shall be no white space on either side of the "/"s*/

236 TestPurpose ::= $TestPurpose BoundedFreeText

237 DefaultRef ::= $DefaultRef [DefaultReference]

238 DefaultReference ::= DefaultIdentifier [ActualParList]

A.3.5.3 Test Step Library

239 TestStepLibrary ::= $TestStepLibrary ({TestStepGroup | TestStep}+) $End_TestStepLibrary

240 TestStepGroup ::= $TestStepGroup TestStepGroupld {TestStepGroup | TestStep}+
$End_TestStepGroup

241 TestStepGroupld ::= $TestStepGroupId TestStepGroupIdentifier

242 TestStepGroupIdentifier ::= Identifier

243 TestStep ::= $Begin_TestStep TestStepId TestStepRef Objective DefaultsRef [Comment]
BehaviourDescription [Comment] $End_TestStep

244 TestStepId ::= $TestStepId TestStepld&ParList

245 TestStepId&ParList ::= TestStepIdentifier [FormalParList]

246 TestStepIdentifier ::= Identifier

247 TestStepRef ::= $TestStepRef TestStepGroupReference

248 TestStepGroupReference ::= [SuiteIdentifier "/"] {TestStepGroupIdentifier "/"}

/*STATIC SEMANTICS – There shall be no white space on either side of the "/"s*/

249 Objective ::= $Objective BoundedFreeText

A.3.5.4 Default Library

250 DefaultsLibrary ::= $DefaultsLibrary ({DefaultGroup | Default}+) $End_DefaultsLibrary

251 DefaultGroup ::= $DefaultGroup DefaultGroupId {DefaultGroup | Default}+ $End_DefaultGroup

252 DefaultGroupId ::= $DefaultGroupId DefauItGroupIdentifier

253 Default ::= $Begin_Default Defaultld DefaultRef Objective [Comment] BehaviourDescription [Comment]
$End_Default

/*STATIC SEMANTICS – BehaviourDescription shall consist of only one tree (i.e. no local trees)*/

/*STATIC SEMANTICS – BehaviourDescription shall not use tree attachment (i.e. Default behaviour
trees shall not attach Test Steps)*/

/*STATIC SEMANTICS – A final verdict shall be assigned to every leaf of a Default tree. If the final
verdict results from an OTHERWISE statement in the Default tree the verdict shall be FAIL*/

254 DefaultRef ::= $DefaultRef DefaultGroupReference

255 DefaultId ::= $DefaultId Defaultld&ParList

256 Defaultld&ParList ::= DefaultIdentifier [FormalParList]

257 DefaultIdentifier ::= Identifier

258 DefaultGroupReference ::= [SuiteIdentifier "/"] {DefaultGroupIdentifier "/"}

/*STATIC SEMANTICS – There shall be no white space on either side of the "/"s*/

259 DefaultGroupIdentifier ::= Identifier

Superseded by a more recent version

132 Recommendation X.292 (09/92) Superseded by a more recent version

A.3.5.5 Behaviour descriptions

260 BehaviourDescription ::= $BehaviourDescription RootTree {LocalTree} $End_BehaviourDescription

261 RootTree ::= {BehaviourLine}+

262 LocalTree ::= Header {BehaviourLine}+

263 Header ::= $Header TreeHeader

264 TreeHeader ::= TreeIdentifier [FormalParList]

265 Treeldentifier ::= Identifier

266 FormalParList ::= "(" FormalPar&Type {SemiColon FormalPar&Type} ")"

267 FormalPar&Type ::= FormalParIdentifier {Comma FormalParIdentifier} Colon FormalParType

268 FormalParIdentifier ::= Identifier

269 FormalParType ::= Type | PCO_TypeIdentifier | PDU

/*STATIC SEMANTICS – If a formal parameter of a Test Step is type PDU then specific fields in the
PDU shall not be referenced in the Test Step behaviour tree*/

A.3.5.6 Behaviour lines

270 BehaviourLine ::= $BehaviourLine LabelId Line Cref VerdictId [Comment] $End_BehaviourLine

271 Line ::= $Line Indentation StatementLine

272 Indentation ::= "[" Number "]"

/*STATIC SEMANTICS – Statements in the first level of alternatives in a behaviour description shall
have the indentation value zero*/

/*STATIC SEMANTICS – Statements having a predecessor shall have the indentation value of the
predecessor plus one as their indentation value*/

273 LabelId ::= $LabelId [Label]

274 Label ::= Identifier

275 Cref ::= $Cref [ConstraintReference]

276 ConstraintReference ::= ConsRef | FormalParIdentifier

/*STATIC SEMANTICS – ConsRef shall be present in conjunction with SEND, IMPLICIT SEND and
RECEIVE. A ConstraintReference is not needed for ASPs that have no parameters. It shall not be present
with any other kind of TTCN statement*/

/*STATIC SEMANTICS – FormalParIdentifier shall resolve to a ConsRef*/

/*STATIC SEMANTICS – LiteralValue, TS_ParIdentifier, TS_ConstIdentifier, TS_VarIdentifier,
TC_VarIdentifier, ConsRef and FormalParIdentifier may be passed as actual parameters to a constraint in
a ConstraintReference made from a behaviour description*/

/*STATIC SEMANTICS – ConstraintReferences on SEND events shall not include wildcards unless
these are explicitly assigned specific values on the SEND event line*/

277 ConsRef ::= ConstraintIdentifier [ActualCrefParList]

278 ActualCrefParList ::= "(" ActualCrefPar {Comma ActualCrefPar} ")"

/*STATIC SEMANTICS – See static semantics on production 299*/

279 ActualCrefPar ::= Value | DataObjectIdentifier | ConsRef

280 VerdictId ::= $VerdictId [Verdict]

Superseded by a more recent version

Recommendation X.292 (09/92) Superseded by a more recent version 133

281 Verdict ::= Pass | Fail | Inconclusive | Result

/*STATIC SEMANTICS – Verdict shall not occur corresponding to entries in the behaviour tree which
are any of the following: empty, an ATTACH construct, a REPEAT construct, a GOTO construct, an
IMPLICIT SEND*/

282 Pass ::= PASS | P | "(" PASS ")" | "(" P ")"

283 Fail ::= FAIL | F | "(" FAIL ")" | "(" F ")"

284 Inconclusive ::= INCONC | I | "(" INCONC ")" | "(" I ")"

285 Result ::= Identifier

/*STATIC SEMANTICS – Result shall only be the predefined identifier R*/

/*STATIC SEMANTICS – R shall not be used on the LHS of an assignment*/

A.3.5.7 TTCN statements

286 StatementLine ::= (Event [Qualifier] [AssignmentList] [TimerOps]) | (Qualifier [AssignmentList] [TimerOps])
| (AssignmentList [TimerOps]) | TimerOps | Construct | ImplicitSend

287 Event ::= Send | Receive | Otherwise | Timeout

/*STATIC SEMANTICS – A Receive, Otherwise or Timeout event shall only be followed by other
Receive, Otherwise and Timeout events through the remainder of the set of alternatives in a fully
expanded tree. As a consequence, Default trees will contain only Receive, Otherwise and Timeout events
on the first level of alternatives*/

288 Qualifier ::= "[" Expression "]"

/*STATIC SEMANTICS – Qualifier shall evaluate to a specific BOOLEAN value*/

289 Send ::= [PCO_Identifier | FormalParIdentifier] "|" (ASP_Identifier | PDU_ Identifier)

/*STATIC SEMANTICS – PCO_identifier or FormalParIdentifier shall be present if the test suite uses
more than one PCO*/

/*STATIC SEMANTICS – FormalParIdentifier shall resolve to a PCO_Identifier. This must be present if
the test suite uses more than one PCO*/

290 ImplicitSend ::= "<" IUT "|" (ASP_Identifier | PDU_Identifier) ">"

/*STATIC SEMANTICS – lmplicitSend shall not be used unless the test method being used is one of the
Remote Test Methods*/

291 Receive ::= [PCO_Identifier | FormalParIdentifier] "?" (ASP_Identifier | PDU_Identifier)

/* STATIC SEMANTICS – PCO_Identifier or FormalParIdentifier shall be present if the test suite uses
more than one PCO*/

292 Otherwise ::= [PCO_Identifier | FormalParIdentifier] "?" OTHERWISE

/*STATIC SEMANTICS – PCO_Identifier or FormalParIdentifier shall be present if the test suite uses
more than one PCO*/

293 Timeout ::= "?" TIMEOUT [TimerIdentifier]

294 Construct ::= GoTo | Attach | Repeat

Superseded by a more recent version

134 Recommendation X.292 (09/92) Superseded by a more recent version

295 GoTo ::= ("–>" | GOTO) Label

/*STATIC SEMANTICS – The label column shall contain labels referenced from the GoTo*/

/*STATIC SEMANTICS – Label shall be associated with the first of a set of alternatives, one of which is
an ancestor node of the point from which the GoTo is to be made*/

/*STATIC SEMANTICS – GoTo shall be used only for jumps within one tree, i.e. within a Test Case
root tree, a Test Step tree a Default tree and a local tree*/

/*STATIC SEMANTICS – Each label used in a GoTo construct shall be found within the Test Step in
which the GoTo is used*/

/*STATIC SEMANTICS – No GoTo shall be made to the first level of alternatives of local trees, Test
Steps or Defaults*/

296 Attach ::= "+" TreeReference [ActualParList]

/*STATIC SEMANTICS – TreeReference shall not attach itself, either directly or indirectly, at its top
level of indentation*/

/*STATIC SEMANTICS – The number of the actual parameters shall be the same as the number of the
formal parameters*/

/*STATIC SEMANTICS – LiteralValue, TS_ParIdentifier, TS_ConstIdentifier, TS_VarIdentifier,
TC_VarIdentifier, ConstraintIdentifier and PCOs may be passed as actual parameters to an attached tree*/

297 Repeat ::= REPEAT TreeReference [ActualParList] UNTIL Qualifier

/*STATIC SEMANTICS – TreeReference shall not attach itself, either directly or indirectly, at its top
level of indentation*/

/*STATIC SEMANTICS – The number of the actual parameters shall be the same as the number of the
formal parameters*/

/*STATIC SEMANTICS – LiteralValue, TS_ParIdentifier, TS_ConstIdentifier, TS_VarIdentifier,
TC_VarIdentifier, ConstraintIdentifier and PCOs may be passed as actual parameters to the tree in a
REPEAT statement*/

298 TreeReference ::= TestStepIdentifier | TreeIdentifier

/*STATIC SEMANTICS – TreeIdentifier shall be the name of one of the trees in the current behaviour
description, i.e. local trees are not accessible outside the behaviour description in which they are
specified*/

299 ActualParList ::= "(" ActualPar {Comma ActualPar} ")"

/*STATIC SEMANTICS – The number of the actual parameters shall be the same as the number of the
formal parameters*/

/*STATIC SEMANTICS – Each actual parameter shall resolve to a specific value compatible with the
type of its corresponding formal parameter*/

/*STATIC SEMANTICS – If a parameter is a parameterized constraint then the constraint shall be passed
together with its actual parameter list*/

/*STATIC SEMANTICS – The actual parameters shall be bound*/

/*STATIC SEMANTICS – If the type of the formal parameter is PDU, then the actual parameter's type
shall be declared as PDU or as a specific PDU type*/

300 ActualPar ::= Value | PCO_Identifier

Superseded by a more recent version

Recommendation X.292 (09/92) Superseded by a more recent version 135

A.3.5.8 Expressions

301 AssignmentList ::= "(" Assignment {Comma Assignment} ")"

302 Assignment ::= DataObjectReference ":=" Expression

/*STATIC SEMANTICS – The LHS of Assignment shall only resolve to: TS_VarIdentifier,
TC_VarIdentifier, reference to the field of a variable or reference to an ASP parameter or PDU field that
is to be sent*/

/*STATIC SEMANTICS – An expression shall contain no unbound variables*/

/*STATIC SEMANTICS – The Expression on the RHS of Assignment shall evaluate to an explicit value
of the type of the LHS*/

303 Expression ::= SimpleExpression [RelOp SimpleExpression]

/*STATIC SEMANTICS – If both SimpleExpressions and the RelOp exist then the SimpleExpressions
shall evaluate to specific values of compatible types*/

/*STATIC SEMANTICS – If RelOp is "<" | ">" | ">=" |"<="then each SimpleExpression shall evaluate to
a specific INTEGER value*/

/*STATIC SEMANTICS – ASN.1 Named Values shall not be used within arithmetic expressions as
operands of operations*/

304 SimpleExpression ::= Term {AddOp Term}

/*STATIC SEMANTICS – Each Term shall resolve to a specific value. If more than one Term exists and
it AddOp is 'OR' then the Terms shall resolve to type BOOLEAN; if AddOp is'+' or '-' then the Terms
shall resolve to type INTEGER*/

305 Term ::= Factor {MultiplyOp Factor}

/*STATIC SEMANTICS – Each Factor shall resolve to a specific value. If more than one Factor exists
and if MultiplyOp is 'AND' then the Factors shall resolve to type BOOLEAN; if MultiplyOp is '*' or '/'
then the Factors shall resolve to type INTEGER*/

306 Factor ::= [UnaryOp] Primary

/*STATIC SEMANTICS – The Primary shall resolve to a specific value. If UnaryOp exists and is 'NOT'
then Primary shall resolve to type BOOLEAN; if the UnaryOp is '+' or '-' then Primary shall resolve to
type INTEGER*/

307 Primary ::= Value | DataObjectReference | OpCall | SelectExprIdentifier | "(" Expression ")"

/*STATIC SEMANTICS – SelectExprIdentifier shall only be used within selection expressions*/

308 DataObjectReference ::= DataObjectIdentifier {ComponentReference}

/*STATIC SEMANTICS – Identifiers of ASP parameters and PDU fields associated with SEND and
RECEIVE shall be used only to reference ASP parameter and PDU field values on the statement line
itself*/

/*STATIC SEMANTICS – Each ComponentReference shall only reference an ASP parameter, PDU
field, structure element or ASN.1 value explicitly declared in the object that immediately precedes in the
DataObjectReference*/

309 DataObjectIdentifier ::= TS_ParIdentifier | TS_ConstIdentifier | TS_VarIdentifier | TC_VarIdentifier |
FormalParIdentifier | ASP_Identifier | PDU_Identifier

310 ComponentReference ::= RecordRef | ArrayRef | BitRef

/*STATIC SEMANTICS – RecordRef shall be used to reference ASN.1 SEQUENCE, SET and CHOICE
components. It shall not be used to reference components of any other ASN.1 type*/

/*STATIC SEMANTICS – RecordRef shall be used to reference ASP parameters, PDU fields and
structure elements in the tabular form*/

/* STATIC SEMANTICS – ArrayRef shall be used to reference ASN.1 SEQUENCE OF and SET OF
components. It shall not be used to reference components of any other ASN.1 type*/

Superseded by a more recent version

136 Recommendation X.292 (09/92) Superseded by a more recent version

311 RecordRef ::= Dot (ComponentIdentifier | PDU_Identifier | StructIdentifier | ComponentPosition)

/*STATIC SEMANTICS – The ComponentIdentifier form of RecordRef shall always be used to
reference ASN.1 SEQUENCE, SET and CHOICE components when an identifier is declared for the
component*/

/*STATIC SEMANTICS – The ComponentIdentifier form of RecordRef shall always be used to
reference ASP parameters, PDU fields and structure elements declared in the tabular form*/

/*STATIC SEMANTICS – The ComponentPosition form of RecordRef shall always be used to reference
ASN.1 SEQUENCE, SET and CHOICE components when an identifier is not declared for the
component*/

/*STATIC SEMANTICS – StructIdentifier shall not be used if the relevant structure is used as a macro.
StructIdentifiers and PDU_Identifiers shall be explicitly included in a RecordRef whenever a parameter,
field or element is chained to a PDU or structure and the RecordRef is to identify a component of that
PDU or structure*/

/*STATIC SEMANTICS – Where a structure is used as a macro expansion, the elements in the structure
shall be referred to as if it was expanded into the ASP or PDU referring to it*/

/*STATIC SEMANTICS – If a parameter, field or element is defined to be of metatype PDU no reference
shall be made to fields of that substructure*/

312 ComponentIdentifier ::= ASP_ParIdentifier | PDU_FieldIdentifier | ElemIdentifier | ASN1_Identifier

313 ASN1_Identifier ::= Identifier

/*Note – ASN1_Identifier identifies a field within ASN.1 SEQUENCE, SET or CHOICE type*/

/*STATIC SEMANTICS – An ASN1_Identifier associated with a NamedValue shall not be used unless
the value is within a SEQUENCE, SET or CHOICE type*/

/*STATIC SEMANTICS – An ASN1_Identifier shall be provided to identify the variant in a CHOICE
type*/

/*STATIC SEMANTICS – An ASN1_Identifier shall be provided whenever the value definition becomes
ambiguous because of omitted OPTIONAL values in a SEQUENCE type*/

314 ComponentPosition ::= "(" Number ")"

315 ArrayRef ::= Dot "[" ComponentNumber "]"

316 ComponentNumber ::= Expression

/*STATIC SEMANTICS – ComponentNumber shall evaluate to a non-negative specific INTEGER
value*/

317 BitRef ::= Dot (BitIdentifier | "[" BitNumber "]")

318 BitIdentifier ::= Identifier

/*Note – BitIdentifier identifies a particular bit within an ASN.1 BIT STRING*/

319 BitNumber ::= Expression

/*STATIC SEMANTICS – BitNumber shall evaluate to a non-negative specific INTEGER value*/

320 OpCall ::= TS_OpIdentifier (ActualParList | "(" ")")

/*STATIC SEMANTICS – See static semantics on production 299*/

Superseded by a more recent version

Recommendation X.292 (09/92) Superseded by a more recent version 137

321 AddOp ::= "+" | "–" | OR

/*STATIC SEMANTICS– Operands of the "+", "-" operators shall be of type INTEGER (i.e.TTCN or
ASN.1 predefined) or derivations of INTEGER (i.e. subrange). Operands of the OR operator shall be of
type BOOLEAN (TTCN or ASN.1 predefined) or derivatives of BOOLEAN*/

322 MultiplyOp ::= "*" | "/" | MOD | AND

/*STATIC SEMANTICS – Operands of the "*" /and MOD operators shall be of type INTEGER
(i.e. TTCN or ASN.1 predefined) or derivations of INTEGER (i.e. subrange). Operands of the AND
operator shall be of type BOOLEAN (TTCN or ASN.1 predefined) or derivatives of BOOLEAN*/

323 UnaryOp ::= "+" | "–" | NOT

/*STATIC SEMANTICS – Operands of the "+", "–"operation shall be of type INTEGER (i.e. TTCN or
ASN.1 predefined) or derivations of INTEGER (i.e. subrange). Operands of the NOT operator shall be of
type BOOLEAN (TTCN or ASN.1 predefined) or derivatives of BOOLEAN*/

324 RelOp ::= "=" | "<" | ">" | "<>" | ">=" | "<="

A.3.5.9 Timer operations

325 TimerOps ::= TimerOp {Comma TimerOp}

326 TimerOp ::= StartTimer | CancelTimer | ReadTimer

327 StartTimer ::= START TimerIdentifier ["("TimerValue")"]

328 CancelTimer ::= CANCEL [TimerIdentifier]

329 TimerValue ::= Expression

/*STATIC SEMANTICS – Timervalue shall evaluate to a non-zero positive INTEGER*/

330 ReadTimer ::= READTIMER TimerIdentifier "(" DataObjectReference ")"

/*STATIC SEMANTICS – The DataObjectReference shall only resolve to TS_VarIdentifier,
TC_VarIdentifier, reference to the field of a variable or reference to an ASP parameter or PDU field that
is to be sent*/

/*STATIC SEMANTICS – The DataObjectReference shall resolve to type INTEGER*/

A.3.6 Types

A.3.6.1 General

331 Type ::= PredefinedType | ReferenceType

A.3.6.2 Predefined types

332 PredefinedType ::= INTEGER I BOOLEAN I BITSTRING I HEXSTRING I OCTETSTRING I
CharacterString

333 CharacterString ::= NumericString I PrintableString I TeletexString I VideotexString I VisibleString I
IA5String I GraphicString I GeneralString

A.3.6.3 Referenced types

334 ReferenceType ::= TS_TypeIdentifier | ASP_Identifier | PDU_Identifier

/*STATIC SEMANTICS – All types, other than the predefined types, used in a test suite shall be declared
in the Test Suite Type definitions or ASP type definitions or PDU type definitions and referenced by
name*/

335 TS_TypeIdentifier ::= SimpleTypeIdentifier | StructIdentifier | ASN1_TypeIdentifier

Superseded by a more recent version

138 Recommendation X.292 (09/92) Superseded by a more recent version

A.3.7 Values

336 Value ::= LiteralValue | ASN1_Value

/*REFERENCE – Where ASN1_Value is Value as defined in Recommendation X.208*/

/* In Recommendation X208 the production DefinedValue is defined as: DefinedValue ::=
Externalvaluereference | valuereference. For the purposes of TTCN this production is redefined to be:
DefinedValue ::= ConstraintValue&Attributes. Note that this means that external references are not
allowed in TTCN*/

/*STATIC SEMANTICS – ASN.1 Named Values shall not be used within arithmetic expressions as
operands of operations*/

337 LiteralValue ::= Number | BooleanValue | Bstring | Hstring | Ostring | Cstring

338 Number ::= (NonZeroNum {Num}) | 0

339 NonZeroNum ::= 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

340 Num ::= 0 | NonZeroNum

341 BooleanValue ::= TRUE | FALSE

342 Bstring ::= "’" {Bin | Wildcard} "’" B

343 Bin ::= 0 | 1

344 Hstring ::= "’" {Hex | Wildcard} "’" H

345 Hex ::= Num | A | B | C | D | E | F

346 Ostring ::= "’" {Oct | Wildcard} "’" O

347 Oct ::= Hex Hex

348 Cstring ::= "”" {Char | Wildcard | "\"} "”"

349 Char ::= /* REFERENCE – A character defined by the relevant character string type*/

/*STATIC SEMANTICS – If the CharacterString type includes the character " (double quote), this
character shall be represented by a pair of " (double quote) in the denotation of any value*/

350 Wildcard ::= AnyOne | AnyOrNone

351 AnyOne ::= "?"

/*STATIC SEMANTICS – AnyOne shall be used only within values of string types, SEQUENCE OF
and SET OF*/

352 AnyOrNone ::= "*"

/*STATIC SEMANTICS – AnyOrNone shall be used only within values of sting types, SEQUENCE OF
and SET OF*/

353 Identifier ::= Alpha{AlphaNum | Underscore}

/*STATIC SEMANTICS – All Identifiers referenced in a TTCN test suite shall be explicitly declared in
the test suite, explicitly declared in an ASN. 1 type definition referenced by the test suite or be a TTCN
predefined identifier*/

354 Alpha ::= UpperAlpha | LowerAlpha

355 AlphaNum ::= Alpha | Num

356 UpperAlpha ::= A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

357 LowerAlpha ::= a | b | c | d | e | f | g | h | i | j | k | l | m | n | o | p | q | r | s | t | u | v | w | x | y | z

358 ExtendedAlphaNum ::= /* REFERENCE – A character from any character set defined in ISO/ CEI 10646*/

359 BoundedFreeText ::= "/*" FreeText "*/"

360 FreeText ::= {ExtendedAlphaNum}

/*STATIC SEMANTICS – Free Text shall not contain the string "*/" unless preceded by backwash
("\")*/

Superseded by a more recent version

Recommendation X.292 (09/92) Superseded by a more recent version 139

A.3.8 Miscellaneous productions

361 Comma ::= ","

362 Dot ::= "."

363 Dash ::= "–"

364 Minus ::= "–"

365 SemiColon ::= ";"

366 Colon ::= ":"

367 Underscore ::= "_"

A.4 General static semantics requirements

A.4.1 Introduction

Static semantics requirements that are related to specific BNF productions are specified as comments on the
relevant productions, in the following format:

/*STATIC SEMANTICS – ...*/

All other static semantic requirements that are common to both TTCN.GR and TTCN.MP are specified in the
remainder of § A.4. Additional static semantics in the TTCN.MP are specified in § A.5.2.

A.4.2 Uniqueness of identifiers

A.4.2.1 In some cases test suites may make references to items defined in other OSI Recommendations. In particular,
references to ASN.1 type definition modules according to Recommendation X.208 may be made in the type definitions.
Names from those modules (such as identifiers of subfields within structured ASN.1 type definitions) may be used
throughout the test suite.

Since the rules for identifiers in ASN.1 and TTCN conflict, the following conventions apply:

a) type references and module identifiers made within the various ASN.1 type definitions tables shall
comply to the requirements for identifiers defined in Recommendation X.208;

b) for identifiers used within the other parts of a test suite dash (–) characters shall be replaced with
underscores (_).

Within some TTCN tables part of the ASN.1 syntax can be used to define types. In that case, ASN.1 rules shall
be followed for identifiers, with the exception that dash (–) characters shall not be used. Underscores (_) may be used
instead. All other requirements defined by Recommendation X.208 (e.g. Type identifiers shall start with an upper case
letter, and field identifiers within structured ASN.1 definitions shall start with a lower case letter) apply to TTCN test
suites wherever ASN.1 is used.

A.4.2.2 All identifiers of the following TTCN objects shall be unique throughout the test suite:

a) Test Suite Types;

b) Test Suite Operations;

c) Test Suite Parameters;

d) Test Case Selection Expressions;

e) Test Suite Constants;

f) Test Suite Variables;

g) Test Case Variables;

h) PCO types;

Superseded by a more recent version

140 Recommendation X.292 (09/92) Superseded by a more recent version

i) PCOs;

j) Timers;

k) ASP types;

l) PDU types;

m) Structured Types;

n) Aliases;

o) ASP constraints;

p) PDU constraints;

q) Structure constraints;

r) Test Cases;

s) Test Steps;

t) Defaults.

A.4.2.3 All the following TTCN object references shall be unique throughout the test suite:

a) Test Group References;

b) Test Step Group References;

c) Default Group References;

A.4.2.4 TTCN keywords are listed in Table A-2/X.292 and TTCN predefined identifiers are listed in Table A-3/X.292.
These keywords and predefined identifiers are reserved words and shall not be used as identifiers in a TTCN test suite.
All TTCN keywords, predefined identifiers (predefined types, operations, variables, values) and TTCN identifiers are
case sensitive.

TABLE A-2/X.292

TTCN Keywords

AND ms REPLACE

BY NOT s

CANCEL ns START

F OMIT SUPERSET

FAIL OR SUBSET

GOTO OTHERWISE TIMEOUT

I P TO

IF_PRESENT PASS UNTIL

INCONC PDU µs

IUT PERMUTATION UT

LT ps

min READTIMER

MOD REPEAT

Superseded by a more recent version

Recommendation X.292 (09/92) Superseded by a more recent version 141

A.4.2.5 The ASN-1 reserved words are listed in Table A-4/X.292. These reserved words shall not be used as
identifiers in a TTCN test suite.

A.4.2.6 When ASN.1 is used in a TTCN test suite, ASN.1 identifiers from the following list shall be unique
throughout the test suite, regardless of whether the ASN.1 definition is explicit or implicit by reference to:

a) TypeIdentifiers of an ASN.1 Type Definition;

b) identifiers occurring in an ASN.1 ENUMERATED type as distinguished values;

c) identifiers occurring in a NamedNumberList of an ASN.1 INTEGER type.

TABLE A-3/X.292

TTCN Predefined Identifiers

BITSTRING inconc NumericString

BOOLEAN INFINITY OCTETSTRING

BIT_TO_INT INTEGER pass

fail INT_TO_HEX PrintableString

FALSE INT_TO_BIT R

GeneralString IS_CHOSEN TRUE

GraphicString IS_PRESENT TeletexString

HEXSTRING LENGTH_OF VideotexString

HEX_TO_INT none VisibleString

IA5String NUMBER_OF_ELEMENTS

TABLE A-4/X.292

ASN.1 Reserved Words

ABSENT FROM PRESENT

ANY GeneralStringGeneralizedTime PRIVATE

APPLICATION GraphicString PrintableString

BEGIN IA5String REAL

BIT IDENTIFIER SEQUENCE

BOOLEAN IMPLICIT SET

CHOICE IMPORT SIZE

COMPONENT INCLUDES STRING

COMPONENTS INTEGER T61String

DEFAULT ISO646String TRUE

DEFINED MAX TeletexString

DEFINITIONS MIN UNIVERSAL

END NULL UTCTime

ENUMERATED NumericString VideotexString

EXPLICIT OBJECT VisibleString

EXPORT OCTET WITH

EXTERNAL OF

FALSE OPTIONAL

Superseded by a more recent version

142 Recommendation X.292 (09/92) Superseded by a more recent version

A.4.2.7 The names of ASP parameters shall be unique within the ASP in which they are declared. The names of PDU
fields shall be unique within the PDU in which they are declared.

A.4.2.8 If a Structured Type is used as a macro expansion, then the names of the elements within the Structured Type
shall be unique within each ASP or PDU where it will be expanded.

A.4.2.9 Labels used within a tree shall be unique within a tree (i.e. Test Case root tree, Test Step tree, Default tree,
local tree).

A.4.2.10 The tree header identifier used for local trees shall be unique within the dynamic behaviour description in
which they appear, and shall not be the same as any identifier having a unique meaning throughout the test suite.

Note – This means that a local tree identifier may have the same name as a local tree identifier in another
behaviour description, but not the same as another Test Step in the Test Step Library.

A.4.2.11 The formal parameter names which may optionally appear as part of the following shall be unique within that
formal parameter list, and shall not be the same as any identifier having a unique meaning throughout the test suite:

a) Test suite operations definition;

b) Tree header of a local tree;

c) Test Step identifier;

d) Default identifier;

e) Parameterized constraint declaration.

A.4.2.12 A formal parameter name contained in the formal parameter list of a local tree header shall take precedence
over a formal parameter name contained in the formal parameter list of the Test Step in which it is defined, within the
scope of that local formal parameter list.

A.5 Differences between TTCN.GR and TTCN.MP

A.5.1 Differences in syntax

The following is a list of syntax differences between TTCN.MP and TTCN.GR:

a) TTCN.MP uses keywords as delimiters between entries, while TTCN.GR uses boxes;

b) TTCN.MP uses an explicit denotation of indentation levels for test events, while indentation is indicated
visually in TTCN.GR;

c) TTCN.MP contains an extra occurrence of the suite identifier, which is used to facilitate identification of
the ATS in an automated method;

d) in TTCN.MP the Test Case behaviour descriptions are explicitly grouped by the inclusion of appropriate
Test Group Identifiers in sequence before the Test Case behaviour descriptions belonging to each group;
this information duplicates information contained in the Test Case Index and in the Test Group
References of the Test Case behaviour descriptions;

e) the Test Suite Structure, Test Case Index, Test Step Index and Default Index tables require a page number
for each entry; since page numbers are not relevant in the machine processable form they are not reflected
in the TTCN.MP;

f) TTCN.GR supports both single and compact proformas for ASP and PDU constraints and Test Cases; the
TTCN only supports BNF for the single table format and the presentation of a number of single tables in
TTCN.GR compact format is a display issue; when mapping a compact constraints table to TTCN.MP
(i.e. single format), blank fields due to modification shall be omitted;

Superseded by a more recent version

Recommendation X.292 (09/92) Superseded by a more recent version 143

g) the symbols "/*" and "*/" which open and close BoundedFreeText strings in the TTCN.MP shall not
appear in the TTCN.GR;

h) there are two alternative positions for the labels column in behaviour description tables in TTCN.GR,
whereas there is a fixed position for the labels in TTCN.MP;

i) page and line continuation are TTCN.GR features which are not represented in the TTCN.MP;

j) page and line numbering are TTCN.GR features which are not represented in the TTCN.MP.

A.5.2 Additional static semantics in the TTCN.MP

The following is a list of the additional static semantics in the TTCN.MP:

a) in the TTCN.MP, statements in the first level of alternatives having no predecessor in the root or local
tree they belong to have the indentation value of zero; statements having a predecessor shall have the
indentation value of the predecessor plus one as their indentation value;

b) in the TTCN.MP, the Test Suite Structure information is in the form of Test Group Identifiers preceding
Test Case behaviour descriptions shall be the same structure as defined by the part of the Test Suite
Structure relevant to Test Groups and that defined by the Test Case Index.

Superseded by a more recent version

144 Recommendation X.292 (09/92) Superseded by a more recent version

ANNEX B

(to Recommendation X.292)

(This Annex forms an integral part of this Recommendation)

Operational Semantics of TTCN

B.1 Introduction

This annex describes how the semantics of TTCN are defined. The definition of the TTCN semantics follows a
two-phase approach. In the first phase concrete TTCN texts are mapped to a simplified structure, that can be
manipulated during the second phase. This second phase can be regarded as the description of a TTCN machine, that
interprets these simplified TTCN texts.

The first phase can be decomposed into three steps:

a) Syntax definition

No semantics can be assigned to a language that has no fixed (context free) grammar. Annex A describes
the syntax of the TTCN by means of BNF production rules;

b) Static semantics definition

The static semantics describe which texts generated by the context free grammar make sense (e.g. used
PCOs should be declared, constraints referenced from the behaviour part shall be present in the
constraints part of the test suite, etc.); the static semantic requirements for TTCN are specified in
Annex A.

c) Definition of Tree Transformation

This third step defines how to construct an abstract evaluation tree from a concrete TTCN text that is
syntactically and static semantically correct. The transformation algorithms are described in § B.4.

In the second phase the abstract TTCN machine is defined. It is unlikely that the machine will (can) ever be
built with the described architecture. Implementation problems are not considered in the definition of the dynamic, or
operational, semantics. The abstract TTCN machine is described in § B.5. The main part of the TTCN machine is a
process called EVALUATE_TEST_CASE that interprets the abstract evaluation tree. The abstract evaluation tree is a
parameter of this process.

B.2 Precedence

Operational semantics for the TTCN are supplied in the following subclauses in two alternative notations to
provide the reader with a choice of method based on personal preference: pseudo-code and natural language. Where
these two notations overlap they are meant to be identical. If the pseudo-code and natural language conflict, this is an
error, and should be reported back to the standards organization via a defect report. In such a case, however, the pseudo-
code will take precedence over the natural language text pending correction by the standards organization.

B.3 Processing of test case errors

Within the main body of this Recommendation, and within this annex, there are conditions described which
result in the detection of test case errors. Whenever a test case error is detected, the occurrence shall be recorded in the
conformance log.

Superseded by a more recent version

Recommendation X.292 (09/92) Superseded by a more recent version 145

B.4 Transformation algorithms

B.4.1 Introduction

This subsection defines how to construct an abstract evaluation tree from a TTCN Test Case, that is correct with
respect to the syntax and static semantics. This is done in three subsequent steps

a) appending of Default behaviours;

b) removal of REPEAT constructs;

c) expansion of attached trees.

The transformations are described by means of algorithms in a pseudo programming language. In addition to
this a natural language description is provided, to explain the working of the algorithms.

B.4.2 Appending default behaviour

The actual appending of Defaults is done by adding the construct “+ DefaultReference” to the end of each set of
alternatives in the Test Case. For the following pseudo code, Level represents the alternatives in the current behaviour
tree. If Ai is an alternative in a set of M alternatives in the current behaviour tree then Level is the ordered set (A1, A2,
…, Am) where each Ai is either an event, a pseudo-event or a construct. Associated with each Ai is a lower Level of zero
or more alternatives. Thus each Ai represents a subtree of the original tree.

• function APPEND_DEFAULT (TestCaseOrStep,Tree,Level): BOOLEAN

begin

if (TestCaseOrStep.DefaultReference <> empty) then
begin

(*Append Default to first level of first test case tree*)

if ((TestCaseOrStep is a TestCase)) and

if ((Tree=ROOT_TREE(TestCaseOrStep) and

if ((Level=FIRST_LEVEL(Tree))) then

APPEND(’+’ TestCaseOrStep.DefaultReference, Level)

(*Append Default to all levels below first level*)

if (Level <> FIRST_LEVEL(Tree)) then

APPEND(’+’ TestCaseOrStep.DefaultReference, Level)

 end;

RETURN(TRUE);

end

Appending all Defaults in a Test Case or Test Step can be done by traversing the whole behaviour tree and
using APPEND_DEFAULT at every level of alternatives. This can be done with the following recursive procedure,
called with: TestCaseOrStep:=TestCase, Tree:=ROOT_TREE(TestCase) and Level:=FIRST_LEVEL(Tree)

Superseded by a more recent version

146 Recommendation X.292 (09/92) Superseded by a more recent version

• procedure APPEND_TRAV (TestCaseOrStep, Tree, Level)

begin

if (Am in Level is not ’+’ TestCaseOrStep.DefaultReference) then

begin (*Do only if Defaults not appended yet*)

for (every alternative Ai in Level) do

begin

if (Ai is not a leaf) then

begin

NextLevel:=NEXT_LEVEL(Ai);

APPEND_TRAV(TestCaseOrStep, Tree, NextLevel)

end

if (Ai is an ATTACH construct) then

if (Ai.AttachedTree is TestStepIdentifier) then

begin

NextTestStep:=Ai.AttachedTree;

NextTree:=ROOT_TREE(NextTestStep);

NextLevel:=FIRST_LEVEL(NextTree);

APPEND_TRAV(NextStep, NextTree, NextLevel);

end

else (*Attached tree is a TreelIdentifier*)

begin

NextTestTree:=Ai.AttachedTree;

NextLevel:=FIRST_LEVEL(NextTree);

APPEND_TRAV(TestCaseOrStep, NextTree, NextLevel)

end

end

APPEND_DEFAULT(TestCaseOrStep, NextTree, NextLevel)

end

end

B.4.3 Removal of REPEAT constructs

If TreeAndParameters denotes a particular TreeIdentifier followed by an ActualPARlist, and condition denotes
a particular Boolean expression, then: REPEAT TreeAndParameters UNTIL [Condition] can be replaced by

Lines describing subsequent behaviour of the REPEAT construct follow after this expansion, with an additional
indentation of two levels.

[TRUE]
label_A [TRUE]

+ TreeAndParameters
+ [NOT (condition)]

–> label_A
+ [condition]

:

Superseded by a more recent version

Recommendation X.292 (09/92) Superseded by a more recent version 147

B.4.4 Expanding ATTACHED trees

Attached trees are expanded by replacing the attach construct + TestStep with the tree TestStep, and
subsequently if there was behaviour specified following, and indented from, the ATTACH construct to insert this
behaviour after, and indented from, each leaf in the attached tree.

When evaluating the semantics of a behaviour tree that has had Defaults appended and the REPEAT construct
removed, it is recommended to expand attached trees on each level (set of alternatives) as that level is reached in
executing the Test Case. The attached trees on Level are expanded using the following procedure:

• procedure EXPAND_LEVEL (Level)

begin

for (every alternative Ai in Level) do

begin

if (Ai is an ATTACH construct) then

begin

Subsequent:=SUBSEQUENT_BEHAVIOUR_TO(Ai);

EXPAND(Ai.AttachedTree, Subsequent, Ai, Level)

end

end

end

• pro cedure EXPAND (SubTree, Subsequent, Alternative, Level)

begin

REPLACE_PARAMETERS(Alternative, SubTree);

(*This replaces the formal parameters in Subtree by the formal parameters specified in the actual parameter list
of Alternative, doing so by textual substitution*)

for (every leaf Li in SubTree) do APPEND_SUBSEQUENT_BEHAVIOUR_TO(Li, Subsequent);

New_Level:=FIRST_LEVEL(SubTree);

Level:=REPLACE(Level, New_Level, Alternative)

(*This replaces Alternative in Level with the array New_Level, e.g. REPLACE((A,B,C), (X,Y,Z), B) gives:
(A,X,Y,Z,C)*)

end

The expansion of attached trees is also explained in § 14.13.

B.5 TTCN operational semantics

B.5.1 Introduction

It is assumed that all sub-trees (both direct and indirect attachments) and REPEAT trees, have been previously
expanded, according to the rules defined in the main body of this Recommendation. It is also assumed that all Defaults
have been appended according to the rules defined in § B.4.2.

An event, pseudo-event, or construct in TTCN is considered to match when it can be successfully evaluated.
The requirements for what constitutes a match for a TTCN statement depend on what is coded on that behaviour line,
and are described in this semantics text.

B.5.2 Introduction to the pseudo-code notation

TTCN semantics are defined using a simple functional approach that explains the execution of a TTCN
behaviour tree and the components that form the nodes in that tree. These functions are intended as an aid to
understanding TTCN semantics and are not intended to be associated with any particular execution model or high level
programming language. They are not meant to be direct methods for executing TTCN.

Superseded by a more recent version

148 Recommendation X.292 (09/92) Superseded by a more recent version

The functions assume the existence of two variables (these have nothing to do with TTCN variables) they are:

SendObject is a temporary global data structure whose value is an ASP or PDU that is to be sent.
This value is constructed according to the relevant constraint specifications.

ReceivedObject is a temporary global data structure whose value is a copy of an ASP or PDU that has
been received.

Execution of a TTCN Test Case begins with invoking EVALUATE_TEST_CASE.

B.5.3 Execution of a test case

B.5.3.1 Execution of a Test Case – Pseudo-code

• function EVALUATE_TEST_CASE (BehaviourTree): BOOLEAN

(*Level is a variable local to EVALUATE_TEST_CASE. If Ai is an alternative in a set of m alternatives in
the current behaviour tree then Level is the ordered set (Al, A2 . . . Am) where each Ai is either an event, a
pseudo-event or a construct. Note that because the tree is fully expanded the only TTCN statement that can
appear is the GOTO*)

begin

Level:=FIRST_LEVEL;

EVALUATE_LEVEL (Level)

end

• function EVALUATE_LEVEL (Level): BOOLEAN

(*The alternatives A1 . . . Am contained in level are processed in their order of appearance. TTCN operational
semantics assume that the processing of a set of alternative is instantaneous, i.e. the status of any of the events
cannot change during the matching process. Note that level is updated to next level by the appropriate
statement function*)

begin
repeat

TAKE_SNAPSHOT;

if EVALUATE_EVENT_LINE(A1, Level) then EVALUATE_LEVEL(Level);

if EVALUATE_EVENT_LINE(A2, Level) then EVALUATE_LEVEL(Level);

if ...

...

...

if EVALUATE_EVENT_LINE(Am , Level) then EVALUATE_LEVEL(Level)

until SNAPSHOT_FIXED(Level)

RETURN(TestCaseError)

(*where SNAPSHOT_FIXED(LEVEL) returns TRUE if all relevant PCO queue(s) have some event(s) on
them and all relevant timers have expired, and otherwise FALSE.*)

end

• function EVALUATE_EVENT_LINE (Ai, Level): BOOLEAN

(*This function calls EVALUATE_EVENT, EVALUATE_PSEUDO_EVENT or EVALUATE_CONS-
TRUCT depending on what type of ‘event’ the current alternative (Ai) is*)

case Ai of
EVENT: if EVALUATE_EVENT (Ai, Level) then RETURN(TRUE) else

RETURN(FALSE);

PSEUDO_EVENT: if EVALUATE_PSEUDO_EVENT (Ai, Level) then
RETURN(TRUE) else RETURN(FALSE);

TTCN_CONSTRUCT: if EVALUATE_CONSTRUCT (Ai, Level) then
RETURN(TRUE) else RETURN(FALSE)

end

Superseded by a more recent version

Recommendation X.292 (09/92) Superseded by a more recent version 149

B.5.3.2 Execution of a Test Case – Natural language description

Step 1 Test Case evaluation begins at the leftmost level of indentation (that is, the lines which are not yet
indented in the TTCN.GR tree) of the tree.

Step 2 A snapshot of the incoming PCO queue(s) and timeout list is taken.

Note – The act of taking a snapshot does not remove an event from the PCO.

Within the behaviour line at the current level of alternatives, consider the first one specified.

Step 3 Evaluate the TTCN statement on the current behaviour line, based on what is specified in the
leftmost element, except that those TTCN statements that begin with a PCO identifier, are evaluated
based on what follows the PCO identifier.

The evaluation of each type of TTCN statement is specified in the operational semantics for that
TTCN statement type. Assignments, timer operations and SEND events are considered to evaluate to
a successful match unless qualified by a Boolean expression that evaluates to False. IMPLICIT
SEND and GOTO statements are always considered as successful matches. The RECEIVE event
may or may not match, depending on both the Boolean expression, if any, and the first event on the
relevant PCO queue.

Step 4 If the TTCN statement evaluates to a successful match, then go to Step 5.

Otherwise, if there are more alternatives in the current set of alternatives consider the next behaviour
line in the set of alternatives and go to Step 3.

If there are no more alternatives and yet all PCO queues relevant to this set of alternatives contain at
least one event, and all timers relevant to Timeout statements in the set of alternatives are in the
timeout list, then there is a test case error and the Test Case shall be stopped indicating test case
error.

Note – This is a test case error because under these conditions none of the set of alternatives can ever
match.

In all other cases, take a new snapshot of the PCO queue(s) and timeout list and consider again the
first TTCN statement in the set of alternatives; then go to Step 3.

Step 5 If a leaf node in the tree has been reached, then go to Step 6.

Otherwise, consider a new set of alternatives for evaluation. (This set consists of the TTCN
statements immediately following, and indented a single level from, the TTCN statement that has
just matched.). Go to Step 2.

Step 6 A leaf node of the tree is reached, use the current value of the preliminary result variable R as the
final verdict of the Test Case as in § B.5.16.2.

B.5.4 Functions for TTCN events

B.5.4.1 Functions for TTCN events – Pseudo-code

• function EVALUATE_EVENT (Ai, Level): BOOLEAN

(*This function calls SEND, IMPLICIT SEND, RECEIVE, OTHERWISE or TIMEOUT depending on what
type of event the current Alternative(Ai) is*)

case Ai of

 SEND: if SEND (Ai, Level) then RETURN(TRUE) else RETURN(FALSE);

 RECEIVE: if RECEIVE (Ai, Level) then RETURN(TRUE) else RETURN(FALSE);

 OTHERWISE: if OTHERWISE (Ai, Level) then RETURN(TRUE) else RETURN(FALSE);

 TIMEOUT: if TIMEOUT (Ai, Level) then RETURN(TRUE) else RETURN(FALSE);

 IMPLICIT_SEND: if IMPLICIT_SEND (Level) then RETURN(TRUE)

end

Superseded by a more recent version

150 Recommendation X.292 (09/92) Superseded by a more recent version

B.5.4.2 Functions for TTCN events – Natural language description

If the TTCN statement is an event, then it will be evaluated as specified in § B.5.5.2 for a SEND event; in
§ B.5.6.2 for a RECEIVE event; in § B.5.7.2 for an OTHERWISE event; in § B.5.8.2 for a TIMEOUT event or in
§ B.5.9.2 for an IMPLICIT SEND event.

B.5.5 Execution of the SEND event

B.5.5.1 Execution of the SEND event – Pseudo-code

• function SEND (PCOidentifier,

ASPidentifier or PDUidentifier,
Qualifier,
Assignment,
TimerOperation,
ConstraintsReference,
Verdict,
Level): BOOLEAN

(*All parameters except Level are picked up from Ai*)

begin
if EVALUATE_BOOLEAN (Qualifier) then

begin
BUILD_SEND_OBJECT (ASPidentifierOrPDUidentifier, ConstraintsReference);
EXECUTE_ASSIGNMENT (Assignment);
SEND_EVENT (PCOidentifier);
TIMER_OP (TimerOperation);
VERDICT (Verdict);
Level:=NEXT_LEVEL;
LOG (PCOidentifier, SendObject);
RETURN(TRUE)

end
else RETURN(FALSE)

end

• function BUILD_SEND_OBJECT (ASPidentifierOrPDUidentifier,
 ConstraintsReference): BOOLEAN

begin
SendObject := (an instance of ASPidentifierOrPDUidentifier, whose parameters/fields have the values

SendObject := specified by ConstraintsReference);
RETURN(TRUE)

end

B.5.5.2 Execution of the SEND event – Natural language description

The contents of the ASP or PDU, as specified in the named Constraints Reference entry, are to be sent. Note
that if there is a qualifier, the SEND can be executed only if that qualifier evaluates to TRUE.

Step 1 If there is a qualifier, then that qualifier will be evaluated before any other processing takes place.

– If the qualifier evaluates to FALSE, the SEND cannot be executed.

– If the qualifier evaluates to TRUE, then continue with Step 2.

Step 2 The ASP or PDU declaration will be assigned the values specified in the named Constraints
Reference.

Step 3 If the dynamic chaining feature has been used, then the value specified in the Constraints Reference
entry will be assigned to the appropriate parameter or field of the ASP or PDU to be sent.

Using the dynamic chaining feature has the effect of storing a copy of the named constraint into the
named parameter or field of the ASP or PDU being built for comparison. The structure defined for
the associated Constraints Reference is used for this named parameter or field.

Superseded by a more recent version

Recommendation X.292 (09/92) Superseded by a more recent version 151

Step 4 If there is an Assignment statement, then that assignment will be performed as in § B.5.12.2.

Step 5 The ASP or PDU is now fully filled in according to the specifications given. The LT or UT will send
the ASP or PDU. (If a PCO was stated, the ASP or PDU is to be sent at that PCO. If the PCO was
not stated, i.e. the test uses a single PCO – then the ASP or PDU is sent from the lower PCO.)

Step 6 If one or more timer operations were coded on the behaviour line, the appropriate timer operation(s)
will be performed as in § B.5.13.

Step 7 If a verdict is coded, process the verdict as in § B.5.16.2.

Step 8 Record in the conformance log the following information, as well as the information specified in
§ B.5.17.2:

– the PCO at which the SEND occurred;

– the fully defined ASP, PDU or TCP that was sent.

B.5.6 Execution of the RECEIVE event

B.5.6.1 Execution of the RECEIVE event – Pseudo-code

• function RECEIVE (PCOidentifier,
ASPidentifier or PDUidentifier,
Qualifier,
Assignment,
TimerOperation,
ConstraintsReference,
Verdict,
Level): BOOLEAN

(*All parameters except Level are picked up from Ai*)

begin
if RECEIVE_EVENT (PCOidentifier) then
 begin

if (RECEIVED_OBJECT(ASPidentifierOrPDUidentifier, ConstraintsReference)
AND EVALUATE_BOOLEAN (Qualifier))
then
 begin
 EXECUTE_ASSIGNMENT (Assignment);
 TIMER_OP (TimerOperation);
 REMOVE_OBJECT (PCOidentifier);
 VERDICT (Verdict);
 Level:=NEXT_LEVEL;
 LOG (PCOidentifier, ReceivedObject);
 RETURN(TRUE)
 end

else RETURN(FALSE)
end

else RETURN(FALSE)
end

• function RECEIVE_EVENT (PCOidentifier): BOOLEAN

(*The actual object is NOT removed from the PCOidentifier queue*)
begin

if INPUT_Q (PCOidentifier) NOT empty then
begin

ReceivedObject := copy of object at head of INPUT_Q (PCOidentifier);
RETURN(TRUE)

end
else RETURN(FALSE)

end

Superseded by a more recent version

152 Recommendation X.292 (09/92) Superseded by a more recent version

• function RECEIVED_OBJECT (ASPidentifierOrPDUidentifier,

ConstraintsReference): BOOLEAN

begin

if ((ReceivedObject is ASPidentifierOrPDUidentifier)

AND

(parameters/fields of ReceivedObject have the values specified by the
ConstraintsReference))

then RETURN(TRUE)

 else RETURN(FALSE)

end

B.5.6.2 Execution of the RECEIVE event – Natural language description

The LT or UT will check to see if the contents of the ASP or PDU, as specified in the named Constraints
reference entry, havebeen received. Note that if there is a qualifier, the RECEIVE can only match if that qualifier
evaluates to TRUE.

Step 1 If the snapshot that was taken when beginning the current iteration of checking this level of
alternatives for matching shows that there no incoming ASP or PDU, then this RECEIVE cannot
match.

Otherwise, continue to Step 2.

Step 2 A copy of the ASP or PDU is assembled, using the structure defined in the ASP or PDU declaration
plus the values specified in the named Constraints Reference. This copy will be used for comparison
against the incoming ASP or PDU (if any), to determine if the RECEIVE can match as specified.

Step 3 If the dynamic chaining feature has been used, then the value specified in the Constraints Reference
entry will be assigned to the appropriate parameter or field of the ASP or PDU to be used in the
comparison.

Using the dynamic chaining feature has the effect of storing a copy of the named constraint into the
named parameter or field of the ASP or PDU being built for comparison. The structure defined for
the associated Constraints Reference is used for this named parameter or field.

Step 4 The ASP or PDU is now fully filled in according to the specifications given. The LT or UT will
compare the copy created from the specified data to the ASP or PDU that has been received in the
snapshot, if any.

If a PCO was stated, the ASP or PDU shall have been received at that PCO. If the PCO was not
stated, i.e. the test uses a single PCO – then the ASP or PDU shall have been received at the lower
PCO.

Step 5 If there is a qualifier, then that qualifier will be evaluated.

– If the qualifier evaluates to FALSE, the RECEIVE cannot match.

– If the qualifier evaluates to TRUE, then continue with Step 6.

Step 6 If the LT or UT is unable to match the ASP or PDU as specified (e.g. no ASP or PDU has arrived, an
ASP or PDU has arrived but it does not match the data as specified, or the ASP or PDU matches but
the qualifier does not hold), then this RECEIVE event is to be considered as not having matched, i.e.
the next alternative to this RECEIVE will be attempted.

If the RECEIVE did match successfully, continue to Step 7. (The incoming ASP or PDU which has
just matched will be removed from the incoming PCO queue, and will therefore not be available for
matching against any subsequent events in the Test Case.)

Superseded by a more recent version

Recommendation X.292 (09/92) Superseded by a more recent version 153

Step 7 If there is an Assignment statement, then that assignment will be performed as in § B.5.12.2.

Step 8 If one or more timer operations were coded on the behaviour line, the appropriate timer operation(s)
will be performed as in § B.5.13.

Step 9 If a verdict is coded, process the verdict as in § B.5.16.2.

Step 10 Record in the conformance log the following information, as well as the information specified in
§ B.5.17.2:

– the PCO at which the RECEIVE occurred;

– the fully defined ASP, PDU or TCP that was received.

B.5.7 Execution of the OTHERWISE event

B.5.7.1 Execution of the OTHERWISE event – Pseudo-code

• function OTHERWISE (PCOidentifier,

Qualifier,

Assignment,

TimerOperation,

Verdict,

Level): BOOLEAN

(*All parameters except Level are picked up from Ai *)

begin
if ((RECEIVE_EVENT (PCOidentifier))

AND EVALUATE_BOOLEAN (Qualifier))

 then
 begin

EXECUTE_ASSIGNMENT (Assignment);

TIMER_OP (TimerOperation);

REMOVE_OBJECT (PCOidentifier);

VERDICT (Verdict);

Level:=NEXT_LEVEL;

LOG (PCOidentifier, ReceivedObject);

RETURN(TRUE)

 end
else RETURN(FALSE)

end

B.5.7.2 Execution of the OTHERWISE event – Natural language description

The tester shall accept any incoming data that has not matched a previous alternative to this OTHERWISE
event. Note that if there is a qualifier, the OTHERWISE can only match if that qualifier evaluates to TRUE.

Step 1 If a PCO was stated, the ASP or PDU shall have been received at that PCO. If the PCO was not
stated, i.e. the test uses a single PCO – then the ASP or PDU shall have been received at the lower
PCO.

Step 2 If there is a qualifier, then that qualifier will be evaluated after other processing takes place.

– If the qualifier evaluates to FALSE, the OTHERWISE cannot match.

– If the qualifier evaluates to TRUE, then contnue with Step 3.

Step 3 If the tester is unable to receive an ASP or PDU (i.e. no ASP or PDU has arrived), then this
OTHERWISE event is to be considered as not having matched, and the next alternative to this
OTHERWISE will be attempted.

If the OTHERWISE did take place successfully, continue to Step 4. (The incoming ASP or PDU
which has just matched will not be available for matching against any subsequent events in the Test
Case.)

Superseded by a more recent version

154 Recommendation X.292 (09/92) Superseded by a more recent version

Step 4 If there is an Assignment statement, then that assignment will be performed as in § B.5.12.2.

Step 5 If one or more timer operations were coded on the behaviour line, the appropriate timer operation(s)
will be performed as in § B.5.13.

Step 6 If a verdict is coded, process the verdict as in § B.5.16.2.

Step 7 Record in the conformance log the following information, as well as the information specified in
§ B.5.17.2:

– the PCO at which the OTHERWISE occurred;

– the fully defined ASP, PDU that was received.

B.5.8 Execution of the TIMEOUT event

B.5.8.1 Execution of the TIMEOUT event – Pseudo-code

function TIMEOUT (TimerIdentifier,

Qualifier,

Assignment,

TimerOperation,

Verdict,

Level): BOOLEAN

(*All parameters except Level are picked up from Ai*)

begin

if EVALUATE_BOOLEAN (Qualifier) then

begin

if (TIMER_EXPIRED (TimerIdentifier)) then

begin

EXECUTE_ASSIGNMENT (Assignment);

TIMER_OP (TimerOperation);

VERDICT (Verdict);

Level:=NEXT_LEVEL;

LOG (TimerIdentifier);

RETURN(TRUE)

end

else RETURN(FALSE)

end

else RETURN(FALSE)

end

function TIMER_EXPIRED (TimerIdentifier): BOOLEAN

begin

if (timer has expired) then

begin

reset expired timer; (*see § B.5.8.2*)

RETURN(TRUE)

end

else

RETURN(FALSE)

 end

Superseded by a more recent version

Recommendation X.292 (09/92) Superseded by a more recent version 155

B.5.8.2 Execution of the TIMEOUT event – Natural language description

The tester will check to see if the named timer has expired. (If no timer name is given, the tester will check to
see if any timer has expired.) Note that if there is a qualifier, the TIMEOUT is only considered as matching if that
qualifier evaluates to TRUE.

Step 1 If there is a qualifier, then that qualifier will be evaluated before any other processing takes place.

– lf the qualifier evaluates to FALSE, the TIMEOUT cannot match.

– If the qualifier evaluates to TRUE, then continue with Step 2.

Step 2 See if any of the timers explicitly or implicitly named on the TIMEOUT event have been running,
but have expired.

– If no timer identifier is specified, then the tester shall check to see if any timer that had been
running has now expired. If so, all timers which have timed out are reset (and left stopped). The
timeout entry (entries) is (are) removed from the timeout list.

– If a timer identifier is specified, then the tester shall check to see if this timer had been running,
but has now expired. If so, the expired timer is reset (and left stopped). The timeout entry is
removed from the timeout list.

– If no timers have expired the TIMEOUT event can not match, i.e. the next alternative will be
attempted.

Step 3 If there is an Assignment statement, then that assignment will be performed as in § B.5.12.2.

Step 4 If one or more timer operations were coded on the behaviour line, the appropriate timer operation(s)
will be performed as in § B.5.13.

Step 5 If a verdict is coded, process the verdict as in § B.5.16.2.

Step 6 Record in the conformance log the following information, as well as the information specified in
§ B.5.17.2:

– the name of the timer that expired.

B.5.9 Execution of the IMPLICIT SEND event

B.5.9.1 Execution of the IMPLICIT SEND event – Pseudo-code

• function IMPLICIT_SEND (Level): BOOLEAN

begin

(*Evaluate IMPLICIT_SEND according to § 14.9.6**)

Level:=NEXT_LEVEL;

RETURN(TRUE)

end

B.5.9.2 Execution of IMPLICIT SEND – Natural language description

The IUT does whatever is necessary to send the contents of the ASP or PDU, as specified in the named
constraints reference entry.

If the dynamic chaining feature has been used, then the value specified in the Constraints Reference entry will
be assigned to the appropriate parameter or field of the ASP or PDU to be sent.

Superseded by a more recent version

156 Recommendation X.292 (09/92) Superseded by a more recent version

B.5.10 Execution of the PSEUDO-EVENT

B.5.10.1 Execution of PSEUDO-EVENTS – Pseudo-code

• function EVALUATE_PSEUDO_EVENT (Qualifier,

Assignment,

TimerOperation,

Verdict,

Level): BOOLEAN

(*All parameters except Level are picked up from Ai*)

begin

if EVALUATE_BOOLEAN (Qualifier)

then

begin

ASSIGNMENT (Assignment);

TIMER_OP (TimerOperation);

VERDICT (Verdict);

Level:=NEXT_LEVEL;

LOG ();

RETURN(TRUE)

end

else RETURN(FALSE)

end

B.5.10.2 Execution of PSEUDO-EVENTS – Natural language description

If the TTCN statement is a pseudo-event, then it will be evaluated as specified in § B.5.11.2 for a Boolean
Expression; in § B.5.12.2 for an Assignment Statement; in § B.5.13.2 for a START timer pseudo-event; in § B.5.13.3 for
a CANCEL timer pseudo-event or in § B.5.13.4 for a READ timer pseudo-event.

Step n After completion of the pseudo event record in the conformance log the information specified in
§ B.5.17.2:

B.5.11 Execution of BOOLEAN expressions

B.5.11.1 Execution of BOOLEAN expressions – Pseudo-code

• function EVALUATE_BOOLEAN (Qualifier): BOOLEAN

(*for further definition see § B.5.11.2*)

begin

if no argument then RETURN(TRUE)

else begin

if Qualifier then RETURN(TRUE)

else RETURN(FALSE)

 end

end

B.5.11.2 Execution of BOOLEAN expressions – Natural language description

A Boolean expression (i.e. qualifier) specifies a condition that is to be tested. This condition will either be
TRUE or FALSE. A Boolean expression may be stated as part of a statement line (i.e. on the same line with a SEND,
RECEIVE, TIMEOUT or OTHERWISE), or as a statement line on its own (i.e. as a pseudo-event).

Step 1 The Boolean expression shall be evaluated to determine if the condition specified is TRUE or
FALSE. The normal rules of Boolean Logic apply, with the precedence rules specified in § 11.4.2.1.

Superseded by a more recent version

Recommendation X.292 (09/92) Superseded by a more recent version 157

Step 2 If the condition expressed by the Boolean expression evaluates to FALSE, then this Boolean
expression is not a matching event. Skip the remaining steps of this clause.

If the Boolean expression has been evaluated and determined to match, the subsequent processing
depends upon whether the Boolean expression was coded as part of an event (i.e. SEND, RECEIVE,
TIMEOUT or OTHERWISE), or whether it was coded as a pseudo-event.

If the Boolean expression was coded as an event, then this segment of the statement line is
considered to match, and the remainder of the statement line will be evaluated according to the
semantics for that event type. Skip the following steps, as they apply only to Boolean expressions
coded as pseudo-events.

If this Boolean expression was coded as a pseudo-event, then this Boolean is considered as a
matching behaviour. Proceed to the next step to process the rest of the Boolean expression behaviour
line.

Step 3 If there is an Assignment statement, then that assignment will be performed as in § B.5.12.2.

Step 4 If one or more timer operations were coded on the behaviour line, the appropriate timer operation(s)
will be performed as in § B.5.13.

Step 5 If a verdict is coded, process the verdict as in § B.5.16.2.

B.5.12 Execution of ASSIGNMENTs

B.5.12.1 Execution of EXECUTE_ASSIGNMENT – Pseudo-code

• function EXECUTE_ASSIGNMENT (Assignment): BOOLEAN

(*note that assignments of the kind <PDUidentifier>. <FIELDidentifier> etc., assign (reassign) values to
fields/parameters in SendObject. This kind of assignment shall not be used with a RECEIVE event*).

begin

if no argument then RETURN(TRUE)

else begin

execute the clauses in Assignment in a left-to-right order;

RETURN(TRUE)

end

end

B.5.12.2 Execution of ASSIGNMENTs – Natural language description

An assignment statement specifies that the variable on the left-hand side of that statement is to take on the value
of the right-hand side of the statement. An assignment statement may be stated as part of a statement line (i.e. on the
same line with a SEND, RECEIVE, TIMEOUT or OTHERWISE), in combination with a Boolean expression, or as a
behaviour line on its own (i.e. as a pseudo-event).

Step 1 The manner in which the assignment is to be performed depends upon the format used in specifying
the right-hand side of the assignment. The clauses are evaluated in left to right order, observing the
precedence indicated in Table 3/X.292.

Step 2 Once the assignment has been performed, the subsequent processing depends upon whether the
assignment statement was coded as part of an event (i.e. SEND, RECEIVE, TIMEOUT or
OTHERWISE), or whether it was coded as a pseudo-event.

If this assignment statement was coded as a pseudo-event, then proceed to the next step to process
the rest of the assignment statement behaviour line.

Step 3 If one or more timer operations were coded on the behaviour line, the appropriate timer operation(s)
will be performed as in § B.5.13.

Step 4 If a verdict is coded, process the verdict as in § B.5.16.2.

Superseded by a more recent version

158 Recommendation X.292 (09/92) Superseded by a more recent version

B.5.13 Execution of TIMER operations

B.5.13.1 Execution of TIMER operations – Pseudo-code

• function TIMER_OP (TimerOperation): BOOLEAN

begin

if no argument then RETURN(TRUE)

else case TimerOperation of

START_TIMER: if START_TIMER(TimerOperation) then RETURN(TRUE)

else RETURN(FALSE); (*see § B.5.13.2 for START_TIMER*)

CANCEL_TIMER: if CANCEL_TIMER(TimerOperation) then RETURN(TRUE)

else RETURN(FALSE); (*see § B.5.13.3 CANCEL_TIMER*)

READ_TIMER: if READ_TIMER(TimerOperation) then RETURN(TRUE)

else RETURN(FALSE); (*see § B.5.13.4 READ_TIMER*)

end

end

B.5.13.2 Execution of START timer – Natural language description

The START timer operation specifies that a timer is to begin ticking. This operation may be coded as part of a
statement line (i.e. on the same line with a SEND, RECEIVE, OTHERWISE or TIMEOUT), or as a behaviour line on its
own, or in combination with a qualifier and/or assignment statement.

Step 1 Determine the duration to be used for this instance of this timer. If no duration is specified on this
operation (as an integer value or expression), the default duration from the timer declarations will be
used.

If a duration has been specified, however, this duration will be used instead of the default that was
given in the timer declaration. Overriding a default timer duration by coding a duration on the
START timer operation applies only to this instance of the timer – if this timer is started at any other
point in the test it is not affected by this override of the duration.

Step 2 If this timer is already running, it is to be cancelled and restarted, so that no time has elapsed. If the
timer is not yet running, it is to be started with an initial value indicating no time has passed. Any
entry for this timer in timer in the timeout list is removed from the list.

Step 3 If another timer operation is coded following this START, then process that timer operation
(exclusive of verdict processing).

Step 4 If a verdict is coded, process the verdict as in § B.5.16.2.

B.5.13.3 CANCEL timer – Natural language description

The CANCEL timer operation specifies that a timer (or timers) is to stop ticking. This operation may be coded
as part of a statement line (i.e. on the same line with a SEND, RECEIVE, OTHERWISE or TIMEOUT), or as a
behaviour line on its own, or in combination with a qualifier and/or assignment statement.

Step 1 Determine the name of the timer(s) to be cancelled

– if no timer identifier is specified, then the LT or UT shall cancel all timers that had been
running;

– if a timer identifier is specified, then the LT or UT shall cancel this timer (which had been
running).

Step 2 The status of the named or implied timer(s) is to be changed to “not running”. The amount of time
elapsed for the timer (or timers) is to be set to zero. If the timeout list contains an entry for the
timer(s), the entry (entries) is (are) removed from the list.

Step 3 If another timer operation is coded following this CANCEL, then process that timer operation
(exclusive of verdict processing).

Step 4 If a verdict is coded, process the verdict as in § B.5.16.2.

Superseded by a more recent version

Recommendation X.292 (09/92) Superseded by a more recent version 159

B.5.13.4 READTIMER – Natural language description

The READTIMER operation specifies that the amount of time that has passed for a currently running timer is to
be stored into a variable. The timer continues to run without interruption. This operation may be coded as part of a
statement line (i.e. on the same line with a SEND, RECEIVE, OTHERWISE or TIMEOUT), or as a behaviour line on its
own, or in combination with a qualifier and/or assignment statement.

Step 1 Interrogate the value of the timer having the specified name. Store the amount of time passed into the
named variable. The units returned are the same as the units declared for this timer type.

If the timer is not currently running, the named variable shall be set to zero.

Step 2 If another timer operation is coded following this READTIMER, then process that timer operation
(exclusive of verdict processing).

Step 3 If a verdict is coded, process the verdict as in § B.5.16.2.

B.5.14 Functions for TTCN constructs

B.5.14.1 Functions for TTCN constructs – Pseudo-code

• function EVALUATE_CONSTRUCT (Construct, Level): BOOLEAN

(*All parameters except Level are picked up from Ai*)

(*because the Test Case tree is fully expanded prior to processing the REPEAT and ATTACH
constructs are never encountered, see §§ B.4.3 and B.4.4*)

case Construct of

GOTO: GOTO(Label, Level);

RETURN(TRUE)

end

B.5.14.2 Functions for TTCN constructs – Natural language description

If the TTCN statement is a TTCN construct, then it will be evaluated as specified in § B.5.15.2 for a GOTO
construct; see § B.4 for a description of REPEAT and ATTACH constructs.

B.5.15 Execution of the GOTO construct

B.5.15.1 Execution of the GOTO construct – Pseudo-code

• function GOTO (Label, Level): BOOLEAN

begin

Level:=LABELED_LEVEL(Label);

RETURN(TRUE)

end

B.5.15.2 Execution of the GOTO construct – Natural language description

The LT or UT shall cause control to transfer from the current event (i.e. the GOTO construct) to the set of
alternatives having the specified target label in the labels column. Execution now continues at this new level.

Superseded by a more recent version

160 Recommendation X.292 (09/92) Superseded by a more recent version

B.5.16 The VERDICT

B.5.16.1 The VERDICT – Pseudo-code

• function VERDICT (VerdictColumnEntry): BOOLEAN

begin
if VerdictColumnEntry is blank then RETURN(TRUE)
else begin

if VerdictColumnEntry = R then LOG(Verdict implied by R);
else LOG(VerdictColumn);
if VerdictColumnEntry is preliminary result then (*Contains verdict*)

begin
if ((R = none) or (R = pass and VerdictColumnEntry <> (PASS))

or (R = inconc and VerdictColumnEntry = (FAIL)) then
 begin

if VerdictColumnEntry = (PASS) then R := pass;
if VerdictColumnEntry = (INCONC) then R := inconc;
if VerdictColumnEntry = (FAIL) then R := fail;

end
end

else (*Final verdict*)
begin

reset test case variables all timers;
if ((VerdictColumnEntry = R and R = none) or

 (VerdictColumnEntry = PASS and R = inconc) or
 (VerdictColumnEntry = PASS and R = fail) or
 (VerdictColumnEntry = INCONC and R = fail))

then raise test case error;
STOP (*Test Case terminates here*)

end
end

end

B.5.16.2 The VERDICT – Natural language description

If a verdict is coded, process the verdict.

– If the verdict is enclosed in parentheses, then the temporary result variable R will be updated according to
the verdict algorithm in § 15.17.2. The stated verdict is recorded in the conformance log.

– If the verdict is R, then the current value of the temporary result variable R will be used as the verdict of
the Test Case. If R is set to none, raise a test case error.

– If the verdict is PASS, INCONC or FAIL, then the stated verdict will be used as the final verdict for the
Test Case. If the final verdict is inconsistent with the preliminary verdict, raise a TestCaseError.

B.5.17 The Conformance Log

B.5.17.1 The LOG – Pseudo-code

• procedure LOG (Variable number of arguments)

begin
log the sequence number of the event line (if any);
log the label associated with the event line (if any);

log the arguments passed to LOG;

log the assignment(s) made (if any);
log the timer operation(s) performed (if any);
log the verdict or preliminary result associated with the event line (if any);
log current time; (*current time may be actual or relative*)
end

Superseded by a more recent version

Recommendation X.292 (09/92) Superseded by a more recent version 161

B.5.17.2 The conformance log – Natural language description

Record the following information in the conformance log:

– the sequence number of the event line (if any);

– the label associated with the event line (if any);

– the assignment(s) made (if any);

– the timer operation(s) performed (if any);

– the verdict or preliminary result associated with the event line (if any);

– time stamp;

B.5.18 Other miscellaneous functions used by the pseudo-code

• function FIRST_LEVEL: LEVEL

begin

RETURN (set of alternatives at first level of indentation)

end

• function NEXT_LEVEL: LEVEL

begin

if (set of alternatives at next level of indentation exist) then

RETURN (set of alternatives at next level of indentation)

else

VERDICT(R)

STOP (*Test Case terminates here*)

end

• function LABELED_LEVEL (Label): LEVEL

begin

RETURN (set of alternatives at the level of indentation indicated by Label)

end

• function RETURN (argument): BOOLEAN or LEVEL or QUEUE

exit the current function immediately and return the value of argument

end

• function OUTPUT_Q (PCOidentifier): QUEUE

(*In TTCN each PCO is modeled as two unbounded FIFO queues: one INPUT queue (to the LT or UT) and one
OUTPUT queue (from the LT or UT). In test suites that use only one PCO and when this PCO is not explicitly
associated with an event then the single (default) PCO is picked up from the PCO declarations*)

begin

if no argument then RETURN(default PCO output queue)

else RETURN(output queue identified by PCOidentifier)

end

Superseded by a more recent version

162 Recommendation X.292 (09/92) Superseded by a more recent version

• function INPUT_Q (PCOidentifier): QUEUE

(*In TTCN each PCO is modeled as two unbounded FIFO queues: one INPUT queue (to the LT or UT) and one
OUTPUT queue (from the LT or UT). In test suites that use only one PCO and when this PCO is not explicitly
associated with an event then the single (default) PCO is picked up from the PCO declarations*)

begin

if no argument then RETURN(default PCO input queue)

else RETURN(input queue identified by PCOidentifier)

end

• procedure TAKE_SNAPSHOT

(*Snapshot semantics are used for RECEIVE events and timeouts, i.e. each time around a set of alternatives a snapshot
is taken of which events have been received and which timeouts have fired. Only those identified in the snapshot can
match on the next cycle through the alternatives*)

begin

update PCO input queues;

update TIMER queue;

end

• procedure STOP

begin

reset test case variables;

reset PCO queue;

reset TIMER queue;

reset timers;

terminate execution immediately

end

Superseded by a more recent version

Recommendation X.292 (09/92) Superseded by a more recent version 163

ANNEX C

(to Recommendation X.292)

Compact proformas

(This annex forms an integral part of this Recommendation)

C.1 Introduction

As an option, many Constraints and/or many Test Cases can be printed in a single table. This may be useful to
high-light relations between the single Constraints and/or single Test Cases. This annex states the requirements for using
compact Constraints proformas and/or compact Test Cases proformas and gives some examples. These proformas are
specific and differ from the generalized layouts given in § 7.3. Since the new proformas are only another way to present
the same information, there is no TTCN.MP associated with it. The information contained in a compact Constraints
and/or compact Test Cases table can be translated in the TTCN.MP associated with the many single constraint tables
and/or many Test Case tables that have the same information contents.

C.2 Compact proformas for constraints

C.2.1 Requirements

It shall only be allowed to print many single constraint tables as a single compact constraint table if

a) the constraints have the same ASP type, PDU type, Structured Type or ASN.1 Type; and

b) there are no entries in the comments column of any single constraint table.

Note – If the single constraints tables only have comments in the detailed comments footer (i.e. the comments
column is empty), then it is possible to print these constraints in the compact format. In such cases the individual
detailed comments from the single proformas should be collected and printed as a single comment in the detailed
comments footer of the compact proforma.

C.2.2 Compact proformas for ASP constraints

In cases where a constraint contains only a few parameters, or when there are only a small number of
constraints, the constraints may be presented in the compact version of the ASP constraints proforma.

ASP Constraints Declarations

ASP Type: ASP_Identifier

Constraint Derivation Parameter Name

Name Path ASP_ParIdentifier1 ASP_ParIdentifiern
Comments

ConsId-
&ParList1

ConsId-
&ParList2

Derivation-
Path1

Derivation-
Path2

ConstraintValue-
&Attributes1,1

ConstraintValue-
&Attributes2,1

...

ConstraintValue-
&Attributes1,n

ConstraintValue-
&Attributes2,n

[FreeText]1

[FreeText]2

.........

.........

.........

.........

ConsId-
&ParListm

Derivation-
Pathm

ConstraintValue-
&Attributesm,1

... ConstraintValue-
&Attributesm,n

[FreeText]m

Proforma C-1 – (Compact) ASP Constraints Declarations

Superseded by a more recent version

164 Recommendation X.292 (09/92) Superseded by a more recent version

This proforma is used for ASPs and their parameters in the same way that PDU Constraints Declarations
proforma is used for PDUs and their fields (see § C.2.3).

C.2.3 Compact proformas for PDU constraints

C.2.3.1 Introduction

In cases where a constraint contains only a few fields, or when there are only a small number of constraints,
the constraints may be presented in the compact version of the PDU constraints proforma.

The compact constraints proforma has field names across the top of the proforma, and different instances of
the PDU constraints in rows within the proforma. If there are n fields in the PDU type definition then there shall be n
field columns in the compact constraint proforma.

The derivation path column is optional, however, it shall be used to specify the derivation path of modified
constraints. (see § 12.6). A compact table can collect several base constraints (as illustrated in example C.1) or can
collect a base constraint and its modified constraints as in example C.2. When modified constraints are declared in a
compact table, the fields not modified in the modified constraints appear as boxes left blank as the intersection of the
modified constraint row and of the field column. When mapping a compact table to TTCN.MP (i.e. single format), blank
fields due to inheritance shall be omitted. Fields not specified in modified constraints are left blank in modified
constraints.

Example C.1 – Constraints using the compact constraints proforma

C.1.1 Given the declaration of PDU_B to be

PDU Constraints Declarations

PDU Type: PDU_Identifier

Constraint Derivation Field Name

Name Path ASP_ParIdentifier1 ASP_ParIdentifiern
Comments

ConsId-
&ParList1

ConsId-
&ParList2

Derivation-
Path1

Derivation-
Path2

ConstraintValue-
&Attributes1,1

ConstraintValue-
&Attributes2,1

...

ConstraintValue-
&Attributes1,n

ConstraintValue-
&Attributes2,n

[FreeText]1

[FreeText]2

.........

.........

.........

.........

ConsId-
&ParListm

Derivation-
Pathm

ConstraintValue-
&Attributesm,1

... ConstraintValue-
&Attributesm,n

[FreeText]m

Proforma C-2 – (Compact) PDU Constraints Declarations

PDU Type Definition

PDU Name: PDU_B
PCO Type : XSAP
Comment :

Field Name Field Type Comments

FIELD1 INTEGER

FIELD2 BOOLEAN

FIELD3 IA5String

Superseded by a more recent version

Recommendation X.292 (09/92) Superseded by a more recent version 165

C.1.2 The constraints on PDU_B using the compact constraints proforma could be

The constraints reference in the dynamic part might then contain entries such as PDU_B[CN1] and
PDU_B[CN2]

Example C.2 – The Inheritance mechanism using the compact constraint proforma

C.2.3.2 Parameterized compact constraints

Compact constraints may also be parameterized. In such cases the parameter lists shall be appended to the
constraint name and occur in the constraint name column of compact constraint proformas.

Example C.3 – A parameterized compact constraint

The invocation of the constraints on PDU_X in a Test Step may be made as follows: S1, S2, S3, S4, S5(0),
S5(l) or S5(Var) where Var is a Test Case or Test Suite Variable.

PDU Constraints Declarations

PDU Type: PDU_B

Constraint Name Field Name Comments

FIELD1 FIELD2 FIELD3

CN1 3 TRUE «A string»

CN2 (4, 5, 6) FALSE «A string»

CN3 0 ? –

PDU Constraints Declarations

PDU Type: PDU_A

Constraint Derivation Field Name Comments
Name Path FIELD1 FIELD2 FIELD3 FIELD4

CN0 0 'FF'H '00'B TRUE

CN1 CN0. 1

CN2 CN0.CN – ?

PDU Constraints Declarations

PDU Type: PDU_X

Constraint Field Name Comments
Name P1 P2

S1 0 0

S2 0 1

S3 1 0

S4 1 1

S5(A:INTEGER) 1 A

Superseded by a more recent version

166 Recommendation X.292 (09/92) Superseded by a more recent version

C.2.4 Compact proformas for Structured Type constraints

Compact Structured Type constraints shall be provided in the following proforma

Example C.4 – Use of structured compact constraints

The PDU_Y consists of five fields named Y1 through Y5. The fields Y1, Y2 and Y3 have been combined into the
Structured Type called A. In the following, the first table shows the constraints defined on PDU_Y. The second and
third tables convey the same information as the last table.

The second and third tables show the Structured Type A’s constraint specification using the single constraint
proformas, while the last table shows A’s constraint using the compact constraint proforma. Both figures also use the
modification mechanism.

For the following tables, it can be seen that if the constraint YY1 was used, the values for field Y1 through Y5
would be 0,0,0,0,1 respectively, where the values for fields Y1 through Y3 are derived from the Structured Type A
using constraint A1. If the constraint YY2 was used, the values for Y1 through Y5 would be 0,3,0,1,0 respectively,
where the values for fields Y1 through Y3 are derived from the Structured Type A using constraint A2.

C.4.1 A PDU constraints table that uses a Structured Type (called A)

Structured Type Constraints Declarations

Structure Type: StructIdentifier

Constraint Derivation Field Name

Name Path ASP_ParIdentifier1 ASP_ParIdentifiern
Comments

ConsId-
&ParList1

ConsId-
&ParList2

Derivation-
Path1

Derivation-
Path2

ConstraintValue-
&Attributes1,1

ConstraintValue-
&Attributes2,1

...

ConstraintValue-
&Attributes1,n

ConstraintValue-
&Attributes2,n

[FreeText]1

[FreeText]2

.........

.........

.........

.........

ConsId-
&ParListm

Derivation-
Pathm

ConstraintValue-
&Attributesm,1

... ConstraintValue-
&Attributesm,n

[FreeText]m

Proforma C-3 – (Compact) Structured Type Constraints Declarations

PDU Constraints Declarations

PDU Type: PDU_Y

Constraint Name Field Name Comments

A Y4 Y5

YY1 A1 0 1

YY2 A2 1 0

YY3 A2 0 1

Superseded by a more recent version

Recommendation X.292 (09/92) Superseded by a more recent version 167

C.4.2 A1 is a base constraint of structured Type A

C.4.3 The structured Type constraint, A2, is a modified constraint derived from A1

C.4.4 Structured Type A’s constraints A1 and A2 in the compact form

When using Structured Types within PDU Constraint Declarations, each field name used within the Structured
Type definition shall exactly match the name (or short name, if both the short name and full name were defined) of the
PDU field which it represents from the original PDU type definition.

Structured Type Constraint Declaration

Constraint Name : A1
Structured Type : A
Derivation Path :
Comment :

Element Name Element Value Comments

Y1 0

Y2 0

Y3 0

Structured Type Constraint Declaration

Constraint Name : A2
Structured Type : A
Derivation Path : A1.
Comment :

Element Name Element Value Comments

Y2 3

Structured Type Constraints Declarations

Structured Type Name: A

Constraint Derivation Element Name Comments
Name Path Y1 Y2 Y3

A1 0 0 0

A2 A1. 3

Superseded by a more recent version

168 Recommendation X.292 (09/92) Superseded by a more recent version

C.2.5 Compact proformas for ASN.1 constraints

The following proformas shall be used for compact ASN.1 ASP, ASN.1 PDU and ASN.1 Type constraints
definitions respectively:

ASN.1 ASP Constraints Declarations

ASP Type: ASP_Identifier

Constraint Name ASN.1 Value

ConsId&ParList1 ConstraintValue&Attribute1

........

........

ConsId&ParListm ConstraintValue&Attributem

Proforma C-4 – (Compact) ASN.1 ASP Constraints Declarations

ASN.1 PDU Constraints Declarations

PDU Type: PDU_Identifier

Constraint Name ASN.1 Value

ConsId&ParList1 ConstraintValue&Attributes1

........

........

ConsId&ParListm ConstraintValue&Attributesm

Proforma C-5 – (Compact) ASN.1 PDU Constraints Declarations

ASN.1 Type Constraints Declarations

Type Name: ASN1_TypeIdentifier

Constraint Name ASN.1 Value

ConsId&ParList1 ConstraintValue&Attributes1

........

........

ConsId&ParListm ConstraintValue&Attributesm

Proforma C-6 – (Compact) ASN.1 Type Constraints Declarations

Superseded by a more recent version

Recommendation X.292 (09/92) Superseded by a more recent version 169

C.3 Compact proforma for Test Cases

C.3.1 Requirements

It is only permitted to print many single Test Case dynamic behaviour tables as a single compact Test Case
dynamic behaviour table when the following rules apply:

a) all single Test Case dynamic behaviour tables shall belong to the same Test Group;

b) all single Test Case dynamic behaviour tables shall have either the same Default tree or no Default tree; it
is recommended that there be no Default tree;

c) the behaviour description of each single Test Case dynamic behaviour table shall consist of a single
ATTACH construct.

C.3.2 Compact proforma for Test Case dynamic behaviours

Where a series of Test Cases have essentially the same dynamic behaviour and differences occur only in the
referenced constraints (e.g. tests for parameter variations of ASPs and/or PDUs), the Test Cases may be presented in the
compact version of the Test Case dynamic behaviour proforma.

Each row in the body of this proforma describes a single Test Case. If the compact Test Case proforma is used
the single table replaces a series of Test Case dynamic behaviour tables in the behaviour part of the test suite.

The comments column contains comments pertaining to individual Test Cases against each attachment.

Test Cases within compact Test Case proforma may form a subset of their group and shall appear in the order
indicated in the Test Case Index.

Test Case Dynamic Behaviours

Group : TestGroupReference
Default : DefaultReference

Test Case Name Purpose Test Step Attachment Comments

.

.
TestCaseIdentifier

.

.

.

.
FreeText

.

.

.

.
Attach

.

.

.

.
[FreeText]

.

.

Proforma C-7 – (Compact) Test Case Dynamic Behaviours

Superseded by a more recent version

170 Recommendation X.292 (09/92) Superseded by a more recent version

Example C.5 – A compact Test Case table that defines a series of tests for FTAM

ANNEX D

(to Recommendation X.292)

Examples

(This annex does not form an integral part of this Recommendation)

D.1 Examples of tabular constraints

D.1.1 ASP and PDU definitions

D.1.1.1 Flat type definition

Test Case Dynamic Behaviours

Group : R/BV/PV/LM/CR/OV
Default :

Test Case Name Purpose Test Step Attachment

OVERIDE1 Omit the overide parameter,
when file exists

+OVERRIDE (FCRERQ_001,FCRERP_001)

OVERIDE2 Omit the overide parameter,
when file does not exist

+OVERRIDE (FCRERQ_002,FCRERP_002)

PDU Type Definition

PDU Name: T_CONNECT1
PCO Type :
Comment : Illustration of TTCN mechanisms

Field Name Field Type Comments

Source BITSTRING [4] Length is 4 bits

Destination BITSTRING [4] Length is 4 bits

T_Class INTEGER0to4 Defined as a simple type

UserData IA5String

Superseded by a more recent version

Recommendation X.292 (09/92) Superseded by a more recent version 171

D.1.1.2 Structured Type definition

D.1.1.3 Special type PDU, in order to allow use of (static) chaining of constraints

PDU Type Definition

PDU Name: T_CONNECT2
PCO Type :
Comment : Illustration of TTCN mechanisms

Field Name Field Type Comments

T_Addresses T_AddressInfo

T_Class INTEGER0to4 Defined as a simple type

UserData IA5String

Structured Type Definition

Type Name : T_AddressInfo
Comments : Can be used in all Transport PDU examples

Element Name Type Definition Comments

Source BITSTRING [4] Length is 4 bits

Destination BITSTRING [4] Length is 4 bits

ASP Type Definition

ASP Name : N_DATArequest
PCO Type : N_SAP
Comment : For illustration only

Parameter Name Parameter Type Comments

CallingNetworkAddress HEXSTRING

CalledNetworkAddress HEXSTRING

ConnectionIdentifier HEXSTRING

Data PDU To enable chaining of constraints

Superseded by a more recent version

172 Recommendation X.292 (09/92) Superseded by a more recent version

D.1.2 ASP/PDU constraints

D.1.2.1 Flat

D.1.2.2 Structured, referring to field groups

PDU Constraint Declaration

Constraint Name : TCON_Class4_1
PDU Type : T_CONNECT1
Derivation Path :
Comment :

Field Name Field Value Comments

Source TS_Par1

Destination TS_Par2

T_Class 4

UserData "testing, testing"

PDU Constraint Declaration

Constraint Name : TCON_Class4_2
PDU Type : T_CONNECT2
Derivation Path :
Comment :

Field Name Field Value Comments

T_Addresses WrongAddress WrongAddress is a reference to a
structured type constraint

T_Class 4

UserData "one, two, three"

Structured Type Constraint Declaration

Constraint Name : WrongAddress
Structured Type : T_AddressInfo
Derivation Path :
Comment :

Element Name Element Value Comments

Source TS_Par1

Destination ’0000’B

Superseded by a more recent version

Recommendation X.292 (09/92) Superseded by a more recent version 173

D.1.2.3 Chaining, useful for (nested) PDUs in ASPs

D.1.2.4 Parameterized constraints

It is possible to parameterize flat, structured and chained constraints. The following example shows
parameterization to pass a value.

This can be referenced from the Test Case, Test Step or Default behaviour tables, as for example:

TCON_1(4) or TCON_1(TCvariable)

Field values may be whole (chained) PDUS.

This constraint can be called as, for example:

ASP Constraint Declaration

Constraint Name : N_DATAreq_With_T_CON_Class4_1
ASP Type : N_DATArequest
Derivation Path :
Comments : TCON_Class4_1 is a PDU constraint (i.e. chaining)

Parameter Name Parameter Value Comments

CallingNetworkAddress TS_Par3

CalledNetworkAddress TS_Par4

ConnectionIdentifier ’ABCDEF’H

Data TCON_Class4-1

PDU Constraint Declaration

Constraint Name : TCON_1(class:INTEGER)
PDU Type : T_CONNECT1
Derivation Path :
Comment :

Field Name Field Name Comments

Source ?1000’B

Destination ?

T_Class class class is a formal parameter

UserData ?

ASP Constraint Declaration

Constraint Name : N_DATAreq_With_T_CON(A_Constraint:T_CONNECT2)
ASP Type : N_DATArequest
Derivation Path :
Comments : TCON_Class4_1 is a PDU constraint (i.e. chaining)

Parameter Name Parameter Value Comments

CallingNetworkAddress TS_Par3

CalledNetworkAddress TS_Par4

ConnectionIdentifier ’1234567’H

Data A_Constraint A_Constraint is a formal parameter

Superseded by a more recent version

174 Recommendation X.292 (09/92) Superseded by a more recent version

N_DATAreq_With_TCON(TCON_Class4_2)

Since the actual parameter is a constraint name, which can itself be parameterized, it is possible to express an
arbitrary depth of nesting of PDUs.

D.1.2.5 Modified constraints

It is possible to use existing constraints and modify them to define new constraints. This can be done with flat,
structured and parameterized constraints.

Wildcards can be used for values.

This is considered to be bad style, however. It is better to use the more general constraint as a base.

It is also possible to delete whole fields.

PDU Constraint Declaration

Constraint Name : TCON_Class0_1
PDU Type : T_CONNECT1
Derivation Path : TCON_Class4_1
Comment : Class 0 is acceptable

Field Name Field Value Comments

T_Class 0

PDU Constraint Declaration

Constraint Name : TCON_AnyClass
PDU Type : T_CONNECT1
Derivation Path : TCON_Class4_1
Comment : Any class (0..4) is acceptable

Field Name Field Value Comments

T_Class ?

PDU Constraint Declaration

Constraint Name : TCON_Erroneous_NoClass
PDU Type : T_CONNECT1
Derivation Path : TCON_Class4_1
Comment : No class present

Field Name Field Name Comments

T_Class – T_Class omitted

Superseded by a more recent version

Recommendation X.292 (09/92) Superseded by a more recent version 175

D.2 Examples of ASN1 constraints

D.2.1 ASP and PDU definitions

D.2.1.1 Flat

D.2.1.2 Structured

Related ASN.1 productions that are normally in one ASN.1 module may be distributed over more tables in
TTCN.

ASN.1 PDU Type Definition

PDU Name: T_CONNECT1
PCO Type :
Comment :

Type Definition

-- only to illustrate use of ASN.1 in TTCN

SEQUENCE { source BITSTRING [SIZE(4..4)],
destination BITSTRING [SIZE(4..4)],
t_Class INTEGER(0..4),
userData IA5String OPTIONAL

}

ASN.1 PDU Type Definition

PDU Name: T_CONNECT2
PCO Type :
Comment :

Type Definition

-- only to illustrate use of ASN.1 in TTCN

SEQUENCE { t_Addresses T_AddressInfo,
t_Class INTEGER (0..4),
userData IA5String

}

-- expansion of T_AddressInfo can be found in a table of its own

ASN.1 Type Definition

Type Name : T_AddressInfo
Comments :

Type Definition

SEQUENCE { source BITSTRING [SIZE(4..4)],
destination BITSTRING [SIZE(4..4)],

}

Superseded by a more recent version

176 Recommendation X.292 (09/92) Superseded by a more recent version

D.2.1.3 ASP definition

D.2.2 ASN.1 ASP/PDU constraints

D.2.2.1 Flat

ASN.1 ASP Type Definition

ASP Name : N_DATArequest
PCO Type : N_SAP
Comment :

Type Definition

SEQUENCE { callingNetworkAddress OCTETSTRING, -- even number of octets
calledNetworkAddress OCTETSTRING, -- even number of octets
connectionIdentifier OCTETSTRING, -- even number of octets
data T_PDUS

}

ASN.1 Type Definition

Type Name : T_PDUS
Comments :

Type Definition

CHOICE { t1 T_CONNECT1,
t2 T_CONNECT2

}

ASN.1 PDU Constraint Declaration

Constraint Name : TCON_Class4_1
PDU Type : T_CONNECT1
Derivation Path :
Comments :

Constraint Value

{ source TS_PAR1,
ts_PAR2, -- field identifier can be omitted if desired

t_Class 4,
userData "testing, testing"

}

Superseded by a more recent version

Recommendation X.292 (09/92) Superseded by a more recent version 177

D.2.2.2 Structured

D.2.2.3 Chaining a PDU constraint

ASN.1 Type Constraint Declaration

Constraint Name : TCON_Class4_2
PDU Type : T_CONNECT2
Derivation Path :
Comments :

Constraint Value

{ t_Addresses WrongAddress, -- a reference to a PDU field constraint
t_Class 4,
userData "one, two, three"

}

ASN.1 Type Constraint Declaration

Constraint Name : WrongAddress
Structured Type : T_AddressInfo
Derivation Path :
Comments :

Constraint Value

{ source TS_PAR1,
destination ’0000’B

}

ASN.1 ASP Constraint Declaration

Constraint Name : N_DATAreq_With_TCON_Class4_1
ASP Type : N_DATArequest
Derivation Path :
Comments :

Constraint Value

{ callingNetworkAddress TS_PAR_3,
calledNetworkAddress TS_PAR_4,
connectionIdentifier ’ABCDEF’H,
data {t1 TCON_Class_4_1} -- chaining to a PDU constraint

}

Superseded by a more recent version

178 Recommendation X.292 (09/92) Superseded by a more recent version

D.2.2.4 Parameterized constraints

ASN.1 constraints may be parameterized like TTCN tabular constraints, for example:

This can be referenced from the Test Case, Test Step or Default behaviour tables, as for example:

TCON_1(4) or TCON_1(TCvariable)

A parameter may also represent a whole chained PDU.

This can be referenced from the Test Case, Test Step or Default behaviour tables, as for example:

N_DATAreq_With_TCON(TCON_Class4_2)

Since the actual parameter is a constraint name, which itself can be parameterized, it is possible to express an
arbitrary depth of nesting.

ASN.1 PDU Constraint Declaration

Constraint Name : TCON_1(Class:INTEGER)
PDU Type : T_CONNECT1
Derivation Path :
Comments :

Constraint Value

{ source ’0000’B,
destination ? -- wildcard
t_Class class, -- formal parameter
userData ?

}

ASN.1 ASP Constraint Declaration

Constraint Name : N_DATAreq_With_TCON(a_constraint:T_CONNECT2)
ASP Type : T_DATArequest
Derivation Path :
Comments :

Constraint Value

{ callingNetworkAddress TS_PAR_3,
calledNetworkAddress TS_PAR_4,
connectionIdentifier’1234567’H,
data {t2 a_constraint}

-- a_constraint is a formal parameter containing a whole PDU
}

Superseded by a more recent version

Recommendation X.292 (09/92) Superseded by a more recent version 179

D.2.2.5 Modified constraints

New constraints may be constructed by modifying already defined constraints using the REPLACE mechanism.

Wildcards can be used as replacements as well.

To specify fields that shall be omitted, the OMIT mechanism is used. This is only allowed if the field is
declared as OPTIONAL.

ASN.1 PDU Constraint Declaration

Constraint Name : TCON_Class0_1
PDU Type : T_CONNECT1
Derivation Path : T_CON_Class4_1.
Comments :

Constraint Value

REPLACE t_Class BY 0

ASN.1 PDU Constraint Declaration

Constraint Name : TCON_AnyClass
PDU Type : T_CONNECT1
Derivation Path : T_CON_Class4_1.
Comments :

Constraint Value

REPLACE t_Class BY ?

ASN.1 PDU Constraint Declaration

Constraint Name : TCON_NoUserData
PDU Type : T_CONNECT1
Derivation Path : TCON_CLASS4_1.TCON_AnyClass.
Comments :

Constraint Value

OMIT UserData

Superseded by a more recent version

180 Recommendation X.292 (09/92) Superseded by a more recent version

It is possible to modify ASN.1 parameterized constraints, but note that the parameterized fields themselves can
not be replaced.

D.2.3 Further examples of ASN.1 constraints

D.2.3.1 Definition of an FTAM F-INITIALIZEresponse PDU, made in an ASN.1 PDU type definition table

The fields of the PDU (State_Result, Action_Result etc.) are declared in ASN.1 Type Definitions.

ASN.1 PDU Constraint Declaration

Constraint Name : TCON_2(class:INTEGER)
PDU Type : T_CONNECT1
Derivation Path : TCON_1.
Comments :

Constraint Value

REPLACE userData BY "CPS"

ASN.1 PDU Type Definition

PDU Name: F_INITIALIZEresponse
PCO Type :
Comment :

Type Definition

SEQUENCE {
state_result State_Result DEFAULT success,
action_result Action_Result DEFAULT success,
protocol_version Protocol_Version DEFAULT { version_1},
implementation_information Implementation_Information OPTIONAL,
presentation_context_management [2] IMPLICIT BOOLEAN DEFAULT FALSE,
service_class Service_Class DEFAULT { transfer_class},
functional_units Functional_Units,
attribute_groups Attribute_Groups DEFAULT { },
shared_ASE_information Shared_ASE_Information OPTIONAL,
ftam_quality_of_service FTAM_Quality_Of_Service,
contents_type_list Contents_Type_List OPTIONAL,
diagnostic Diagnostic OPTIONAL,
checkpoint_window [8] IMPLICIT INTEGER DEFAULT 1

}

Superseded by a more recent version

Recommendation X.292 (09/92) Superseded by a more recent version 181

For example, Functional_Units

A base constraint, F_INITrsp_001, on the F-INITIALIZEresponse is declared in the constraints part.

ASN.1 Type Definition

Type Name : Functional_Units
Comments :

Type Definition

[4] IMPLICIT BITSTRING
{ read (2),

write (3),
file_access (4)
limited_file_management (5),
enhanced_file_management (6),
grouping (7),
fadu_locking (8)
recovery (9),
restart_data_transfer (10)

}

ASN.1 PDU Constraint Declaration

Constraint Name : F_INITrsp_001
PDU Type : F_INITIALIZEresponse
Derivation Path :
Comments :

Constraint Value

{
state_result State_Result_001,
action_result Action_Result_001,
protocol_version Protocol_Version_001,
implementation_information Implementation_Information_001,
presentation_context_management FALSE,
service_class Service_Class_001,
functional_units Functional_Units_001,
attribute_groups Attribute_Groups_0
shared_ASE_information Shared_ASE_Information_001
ftam_quality_of_service FTAM_Quality_Of_Service_001,
contents_type_list Contents_Type_List_001,
diagnostic Diagnostic_001,
checkpoint_window 1

}

Superseded by a more recent version

182 Recommendation X.292 (09/92) Superseded by a more recent version

A constraint on Functional_Units, Functional_Units_001, is declared in an ASN.1 PDU field constraint
declaration.

A second constraint, F_INITrsp_002 can be built by modifying the base constraint, F_INIT_rsp001.

where Functional_Units_002 is an ASN.1 PDU Constraint Declaration.

D.3 Base and modified constraints

Suppose that we have the following PDU type definition:

ASN.1 Type Constraint Declaration

Constraint Name : Functional_Units_001
Structured Type : Functional_Units
Derivation Path :
Comments :

Constraint Value

'001'B -- en écriture seulement

ASN.1 PDU Constraint Declaration

Constraint Name : F_INITrsp_002
PDU Type : F_INITIALIZEresponse
Derivation Path : F_INITrsp_001.
Comments :

Constraint Value

OMIT implementation_information,

REPLACE presentation_context_management BY TRUE,

REPLACE functional_units BY Functional_Units_002,

REPLACE checkpoint_window BY ?

PDU Type Definition

PDU Name : PDU_B
PCO Type :
Comments: This is the declaration of the protocol data unit PDU-B

Field Name Field Type Comments

FIELD1 INTEGER

FIELD2 HEXSTRING

FIELD3 BITSTRING

FIELD4 BOOLEAN

Superseded by a more recent version

Recommendation X.292 (09/92) Superseded by a more recent version 183

A base.constraint for PDU_B could be

A modified constraint C1 to the base constraint C0 could be

We can further build on C1:

Reference to a modified constraint in a behaviour tree is made using its name.

PDU Constraint Declaration

Constraint Name : C0
PDU Type : PDU_B
Derivation Path :
Comments :

Field Name Field Value Comments

FIELD1 0

FIELD2 ’FF’H

FIELD3 ’00’B

FIELD4 TRUE

PDU Constraint Declaration

Constraint Name : C1
PDU Type : PDU_B
Derivation Path : C0.
Comments :

Field Name Field Value Comments

FIELD1 1 In the base C0 this field value is 0

PDU Constraint Declaration

Constraint Name : C2
PDU Type : PDU_B
Derivation Path : C0.C1.
Comments :

Field Name Field Value Comments

FIELD2 – This field is omitted

FIELD3 ? Any legal value accepted

Superseded by a more recent version

184 Recommendation X.292 (09/92) Superseded by a more recent version

D.4 Type definition using macros

D.4.1 PDU type definition with macro symbol:

PDU Type Definition

PDU Name: T_CONNECT3
PCO Type :
Comment : Illustration of TTCN macro mechanism

Field Name Field Type Comments

<– T_AddressGroup

T_Class INTEGER0to4 Defined as a simple type

UserData IA5String

Structured Type Definition

Type Name : T_AddressGroup
Comments :

Element Name Type Definition Comments

Source BITSTRING[4] Length is 4 bits

Destination BITSTRING[4] Length is 4 bits

PDU Constraint Declaration

Constraint Name : TCON_Class4_3
PDU Type : T_CONNECT3
Derivation Path :
Comment :

Field Name Field Value Comments

<– GoodAddress Reference to the structured type
constraint declaration

T_Class 4

UserData "one, two, three"

Structured Type Constraint Declaration

Constraint Name : GoodAddress
Structured Type : T_AddressGroup
Derivation Path :
Comment :

Element Name Element Value Comments

Source '0101'B

Destination '1111'B

Superseded by a more recent version

Recommendation X.292 (09/92) Superseded by a more recent version 185

D.5 Use of REPEAT

D.6 Test suite operations

Using a Test Suite Operation to set a checksum:

Test Case Dynamic Behaviour

Test Case Name : RPT_EX2
Group : TTCN_EXAMPLES/REPEAT_EXAMPLE2/
Purpose : To illustrate use of REPEAT
Default :
Comments :

No. Label Behaviour Description
Constraints

Ref Verdict Comments

1 (FLAG:=FALSE, COUNTER:=0)
2 !A A1
3 REPEAT STEP2 (FLAG, COUNTER)

UNTIL [FLAG OR COUNTER=3]
4 [FLAG] PASS
5 !D D1
6 [COUNTER=3] FAIL
7 !E E1

STEP2 (F:BOOLEAN; NUMBER:INTEGER)
?B (F:=TRUE)

8 ?C (F:=FALSE, NUMBER:=NUMBER+1) B1
9 C1

Detailed Comments: This example shows how repeated execution of STEP2 can be ended either by reception of
message B, or reception of three other messages. In the lines following the REPEAT construct Boolean expressions
are used to describe that in the case where B is received, message E is to be sent, and in the case where three other
messages are received, F is to be sent.

Test Suite Operation Definition

Operation Name : CRC(P:A_PDU)
Result Type : INTEGER
Comment :

Description

Calculate and return the checksum of the PDU P according to the CRC algorithm

Note – In a real ATS this operation would be described in greater detail.

Superseded by a more recent version

186 Recommendation X.292 (09/92) Superseded by a more recent version

D.7 Example of a Test Suite Overview

In the Test Suite Structure table shown below, a hierarchy of the groups and Test Cases in the suite is defined.
Within this structure, test selection expressions are identified which govern the selection of Test Groups and the Test
Cases for execution. For example, SELEXP_100 is referenced as the controlling expression for Feature X of the
protocol. If Feature X is not supported, none of the Test Cases in the suite which are within the Feature X group will be
selected.

To determine whether or not Feature X is supported, SELEXP_100 must be evaluated. This is done by
determining whether or not the Test Suite Parameter in SELEXP_100, i.e., TST_FX, is TRUE. If it is, the processing
within the group continues. Note that tests for attribute A will be selected (no expression), but that tests for the optional
negotiation feature of Attribute A will only be selected if SELEXP_101 is TRUE.

PDU Constraint Declaration

Constraint Name : CONS1
PDU Type : A_PDU
Derivation Path :
Comment :

Field Name Field Value Comments

.

.
Checksum
.
.

.

.
?
.
.

A_PDU.Checksum := CRC(CONS1) in the appropriate SEND event in a behaviour description will set the
Checksum in the constraint CONS1.

Test Suite Structure

Suite Name : TEST_SUITE_A
Standards Ref : ISO/CEI xxxx
PICS Ref : ISO/CEI aaaa
PIXIT Ref : ISO/CEI bbbb
Test Notation(s) : DS test method
Comments : This is an example only

Test Group Reference
Selection

Ref Test Group Objective
Page
No.

FEATURE_X SELEXP_100 Test optional Feature X 50

FEATURE_X/ATTR_A Test mandatory Attribute A 50

FEATURE_X/ATTR_A/NEGOTIATION SELEXP_101 Test optional Attribute A negotiation 50

FEATURE_X/ATTR_A/USAGE Test Attribute A usage 60

FEATURE_X/ATTR_B Test mandatory Feature Y 80

Superseded by a more recent version

Recommendation X.292 (09/92) Superseded by a more recent version 187

If Attribute A negotiation is supported, Test Case FX_ANEG_01 through FX_ANEG_04 are candidates for
selection. However, Test Cases “01” and “02” will only be chosen if the additional selection expression SELEXP_102 is
TRUE. Test Case FX_ANEG_01 will only be selected it the PICS indicates that a value of zero for Attribute A is
supported.

The PICS and PIXIT questions used in the test selection expressions are declared as Test Suite Parameters.

The test selection expressions are declared as Boolean expressions, as defined in § 10.5.

Test Case Index

Test Group Reference Test Case Id
Selection

Ref Description
Page No.

FEATURE_X/ATTR_A/NEGOTIATION FX_ANEG_1 SELEXP_102 Req. Attr. A, valid neg. 50

FX_ANEG_2 SELEXP_102 Req. Attr. A, invalid neg. 52

FX_ANEG_3 Rcv. Attr. A, invalid neg. 54

FX_ANEG_4 Rcv. Attr. A, invalid neg. 56

FEATURE_X/ATTR_A/USAGE FX_AUSE_1 SELEXP_103 Use Attr. A (VAL=0) 60

FX_AUSE_2 Rcv. Attr. A 62

FX_AUSE_3 Rcv. Attr. A 64

Test Suite Parameter Declarations

Parameter Name Type PICS/PIXIT Ref Comments

TSP_FX BOOLEAN PICS question FX1 Q: Feature X supported?

TSP_FXA_N BOOLEAN PICS question FX2 Q: Feat. X neg. supported?

TSP_FXA_NINIT BOOLEAN PICS question FX3 Q: Does IUT req. neg.?

TSP_FXA_MINVAL INTEGER PIXIT question FXVAL Q: Will IUT use VAL = 0?

Test Case Selection Expression Definitions

Expression Name Selection Expression Comments

SELEXP_100 TSP_FX Feature X supported

SELEXP_101 TSP_FXA_N Feature X negotiation

SELEXP_102 TSP_FXA_NINIT Req. Feature X negotiation

SELEXP_103 TSP_FXA_VAL=0 Accept Feature X val = 0

Superseded by a more recent version

188 Recommendation X.292 (09/92) Superseded by a more recent version

D.8 Example of a Test Case in TTCN.MP Form

For the sample Test Case given below:

The TTCN.MP that corresponds to this table is:

$BeginTestCase

$TestCaseld T_7_02

$TestGroupRef PACKET/P4/PROPERT/T_02

$TestPurpose /* Verify the IUT acknowledges a Clear cause code 05 while in state p4 */

$DefaultsRef

$BehaviourDescription

$BehaviourLine

$Label

$Line [0] +R1_PREAMBLE(SVC)

$Cref

$Verdict

$End_BehaviourLine

Test Case Dynamic Behaviour

Test Case Name : PACKET/P4/PROPER/T_02
Reference : T_7_02
Purpose : Verify the IUT acknowledges a Clear cause code 05 while in state p4
Default :
Comments :

No. Label Behaviour Description
Constraints

Ref Verdict Comments

0 +R1_PREAMBLE(SVC)
1 +P4D1_PREAMBLE
2 !CLEAR START TD CLR_0(LC) Clear cause=5

3 L1 ?CLEAR CANCEL TD CLRC_0(LC) PASS
4 +R1_POSTAMBLE
5 ?CLEAR CANCEL TD CLR_L0(LC) PASS
6 +R1_POSTAMBLE
7 ?RESTART [RST_ON_ERR] CANCEL TD STRT_DTEA PASS
8 !RESTARTC STRTC
9 +R1_POSTAMBLE
10 +D1C_UNEXPECTED
11 –> L1
12 +RSRT_UNEXPECTED
13 ?TIMEOUT TD FAIL
14 ?OTHERWISE CANCEL TD FAIL

Superseded by a more recent version

Recommendation X.292 (09/92) Superseded by a more recent version 189

$BehaviourLine

$Label

$Line [1] +P4D1_PREAMBLE

$Cref

$Verdict

$End_BehaviourLine

$BehaviourLine

$Label

$Line [2] !CLEAR START TD

$Cref CLR_0(LC)

$Verdict

$Comment /* clear cause = 5 */

$End_BehaviourLine

$BehaviourLine

$Label L1

$Line [3] ?CLEARC CANCEL TD

$Cref CLRC_0(LC)

$Verdict (PASS)

$End_BehaviourLine

$BehaviourLine

$Label

$Line [4] +R1_POSTAMBLE

$Cref

$Verdict

$End_BehaviourLine

$BehaviourLine

$Label

$Line [3] ?CLEAR CANCEL TD

$Cref CLR_L0(LC)

$Verdict (PASS)

$End_BehaviourLine

$BehaviourLine

$Label

$Line [4] +R1_POSTAMBLE

$Cref

$Verdict

$End_BehaviourLine

Superseded by a more recent version

190 Recommendation X.292 (09/92) Superseded by a more recent version

$BehaviourLine

$Label

$Line [3] ?RESTART [RST_ON_ERR] CANCEL TD

$Cref STRT_DTEA

$Verdict (PASS)

$End_BehaviourLine

$BehaviourLine

$Label

$Line [4] !RESTARTC

$Cref STRTC

$Verdict

$End_BehaviourLine

$BehaviourLine

$Label

$Line [5] +R1_POSTAMBLE

$Cref

$Verdict

$End_BehaviourLine

$BehaviourLine

$Label

$Line [3] +D1C_UNEXPECTED

$Cref

$Verdict

$End_BehaviourLine

$BehaviourLine

$Label

$Line [4] –> L1

$Cref

$Verdict

$End_BehaviourLine

$BehaviourLine

$Label

$Line [3] +RSRT_UNEXPECTED

$Cref

$Verdict

$End_BehaviourLine

Superseded by a more recent version

Recommendation X.292 (09/92) Superseded by a more recent version 191

$BehaviourLine

$Label

$Line [3] ?TIMEOUT TD

$Cref

$Verdict FAIL

$End_BehaviourLine

$BehaviourLine

$Label

$Line [3] ?OTHERWISE CANCEL TD

$Cref

$Verdict FAIL

$End_BehaviourLine

$End_BehaviourDescription

$End_TestCase

The layout shown here is only intended to aid readability.

ANNEX E

(to Recommendation X.292)

Style guide

(This annex does not form an integral part of this Recommendation)

E.1 Introduction

This informative annex presents some recommended style rules that can be employed when using TTCN. The
aim is to provide a basic consistency between the TTCN styles used by different test suite specifiers.

E.2 Test case structure

In order to have a better analysis of test results and to identify easily whether or not the test purpose is
achieved, the consideration of the following points on structuring Test Cases is suggested:

a) the test suite specifier should clearly identify the preamble and postamble sub-trees;

b) the postamble and the preamble should be specified through a single test tree attachment (local to the Test
Case or from the Test Step Library) in the Test Case main behaviour tree. Such test trees may attach
subsequent sub-trees;

c) once the preamble and postamble(s) sub-trees are identified within a Test Case main behaviour tree, the
remaining events in the Test Case main behaviour tree may be considered to be related to the test body
(i.e. events related to the test purpose).

Superseded by a more recent version

192 Recommendation X.292 (09/92) Superseded by a more recent version

Using this mechanism the boundaries between preamble, test body and postamble within a Test Case can be
easily identified. Labels may be used to indicate the start and end of the test body in the conformance log.

Since final verdicts cause termination of Test Case execution, a test suite specifier can not assign a final
verdict in the body if it is necessary to enter the postamble. Still, it is desirable to give a verdict at the point in the Test
Case where the test purpose is achieved and not hide verdicts in postambles. It is therefore recommended to state
preliminary results in the verdict column if a test purpose is achieved but a postamble should still be executed. In the
definition of the postamble, a test suite specifier may use the result variable R as a verdict assigned at the leaves of the
behaviour tree, to indicate that if no errors were encountered in the postamble the verdict is determined in the test body.

E.3 Use of TTCN with different abstract test methods

E.3.1 Introduction

This subsection ties the TTCN with the abstract test methods defined in Recommendation X.291. It gives the
TTCN syntax used to express the occurrence of events at PCOs, and constraint references for the various abstract test
methods.

It is assumed that the ASP type definitions define the type of the UserData parameter as PDU. It is therefore
possible to use chaining of constraints (i.e. to refer to a constraint for an ASP that contains a PDU in the UserData
parameter), as a reference to an ASP constraint that has a PDU constraint as an actual parameter.

E.3.2 TTCN and the LS test method

Possible TTCN events:

Behaviour Description Constraints Reference

LT!N_ASP N_ASPconstraint(N_PDUconstraint)

LT?N_ASP N_ASPconstraint(N_PDUconstraint)

UT!T_ASP T_ASPconstraint

UT?T_ASP T_ASPconstraint

Test Case Dynamic Behaviour

Test Case Name : TTCN_EXAMPLES/STYLE1
Reference : ST_EX1
Purpose : To illustrate identification of pre- and post ambles
Default :
Comment :

No. Label Behaviour Description
Constraints

Ref Verdict Comments

1 +Preamble Related to purpose
2 !A A1 Related to purpose
3 Body ?B B1 Related to purpose
4 CinBody ?C C1 (PASS)
5 +postamble_1 Related to purpose
6 DinBody ?D D1 (PASS)
7 +postamble_2 Related to purpose
8 ?E E1 INCONC Related to purpose
9 ?OTHERWISE FAIL

Figure E-1/X.292 – Identification of pre- and post ambles

Superseded by a more recent version

Recommendation X.292 (09/92) Superseded by a more recent version 193

E.3.3 TRCN and the DS test method

Possible TTCN events:

Behaviour Description Constraints Reference

LT!N_ASP N_ASPconstraint(T_PDUconstraint)

LT?N_ASP N_ASPconstraint(T_PDUconstraint)

UT!T_ASP T_ASPconstraint

UT?T_ASP T_ASPconstraint

E.3.4 TTCN and the CS test method

Possible TTCN events:

Behaviour Description Constraints Reference

LT!N_ASP N_ASPconstraint(T_PDUconstraint)

LT?N_ASP N_ASPconstraint(T_PDUconstraint)

Exchanging TM_PDUs between the LT and TM protocol implementation in the IUT, via the connection that is
used for testing. Note that in this case the PDU definition shall have declared its UserData field as of type PDU.

LT!N_ASP N_ASPconstraint(T_PDUconstraint(TM_PDUconstraint))

LT?N_ASP N_ASPconstraint(T_PDUconstraint(TM_PDUconstraint))

E.3.5 TTCN and the RS test method

Possible TTCN events:

Behaviour Description Constraints Reference

LT!N_ASP N_ASPconstraint(T_PDUconstraint)

LT?N_ASP N_ASPconstraint(T_PDUconstraint)

Since there is no UT or TMP the IMPLICIT SEND is used to describe send events at the side of the IUT
connection.

<IUT!N_ASP> N_ASPconstraint(T_PDUconstraint)

<IUT!T_PDU> T_PDUconstraint

E.4 Use of Defaults

As a matter of style, a test suite specifier should avoid situations where the attempt of an alternative of a
Default behaviour is the normal specification of the expected behaviour of the IUT. It would be the case for instance if a
Test Step represents the behaviour of the LT or UT and the IUT, when valid test events are sent, and if the responses of
the IUT to invalid or inopportune test events sent by the LT or UT were specified in Defaults implicitly attached to that
Test Step when called by other Test Cases. Such Defaults would have to bear Pass verdicts.

This is not a recommended practice, when the attachment of a Default tree is left unspecified and carries a
degree of uncertainty. Explicitly attached trees or the main tree should be used instead.

E.5 Limiting the execution time of a Test Case

In previous versions of TTCN, an ELAPSE statement was defined, allowing the test case specifier to limit the
abnormal duration of a Test Case, if for instance a snapshot processing never ends, or if an uncontrolled recursion of tree
attachment occurs.

Superseded by a more recent version

194 Recommendation X.292 (09/92) Superseded by a more recent version

The ELAPSE statement is no longer part of TTCN, as the problem it was intended to solve is considered to be
outside the scope of test suite specification.

To limit the execution time of a Test Case, it is now recommended that the test realizers implement local
mechanisms in the means of testing. Explicit timers can be used together with the TIMEOUT event whenever a limit
needs to be placed on wailing for an event to occur.

E.6 Structured Types

a) In pre-DIS versions of TTCN, generic fields and generic values were defined as features allowing either
to group several fields or values in a constraint table, and/or to reuse such a group in several constraint
tables of similar contents;

b) In this version, the grouping of ASP parameters and PDU (ex-data types) fields is introduced first in the
declarations part, for the sake of completeness of that part, and consistency with the use of ASN.1 in
TTCN. Refer to § 10.2.3.3 for a definition of the Structured Type definition tables. Once a Structured
Type is declared, it can be used by one or more ASP type or PDU type definitions. The ASP and PDU
definition table can therefore be “flat” (no group, or a group introduced by a macro call), or structured (by
means of structure specifications for named ASP parameters or PDU fields);

c) In the constraint part, structure elements must be assigned values in Structured Type constraint tables.
The names of these constraints can be used in the base ASP or PDU constraint tables as values.

The ASP and PDU constraint tables can therefore also be

– flat, i.e. assigning values to all parameters or fields individually, and only referring to the structure
constraint tables by macro call; or

– structured, i.e. replacing values of declared groups of parameters or fields by names of group
constraints.

d) If the declared ASP or PDU is structured by use of some ASP parameters or PDU fields being specified
by referenced to structure elements, then the constraints have to have the same structure.

e) Whichever form is used, ASP/PDU constraints can also be

– modified; and

– parameterized, by means of a parameter to be bound to a field/parameter value or to a Structured
Type constraint.

f) The Structured Type constraint tables replace the generic field tables of previous versions of TTCN;

g) The concept of generic values is deleted;

h) Examples are given in Annex D.

E.7 Abbreviations

In previous versions of TTCN, it was allowed to declare, in a specific table, abbreviations to be used in the
behaviour columns of the Test Cases and Test Steps. This facility proved to be confusing and has been restricted so that
only the names of ASPs and PDUs, when used in event lines, can be abbreviated. This facility is now called Alias.

E.8 Test descriptions

Informal behaviour descriptions, giving more detail than the test purposes, but less detail than the TTCN
specification of the Test Cases may, if desired, be included in a standardized ATS.

Superseded by a more recent version

Recommendation X.292 (09/92) Superseded by a more recent version 195

Such test descriptions may use text, time sequence diagrams or any other notation and be located in the
comments field of tables, an informative annex or both.

The TTCN specifications of the Test Cases always take precedence over such informal test descriptions.

E.9 Assignments on SEND events

TTCN allows for overwriting constraint values prior to a SEND event in an assignment statement on the event
line. This means that first the data to be sent is constructed from the constraint definition and then the assignments are
executed.

This feature should be used with care since it may lead to confusion for the test suite reader what the actual
value is that is to be sent. In particular, it is considered to be bad style to use the same constraint for both sending and re-
ceiving.

E.10 Multi-service PCOs

Where a PCO covers more than one SAP the precise specification of such a PCO is given by the set of ASPs
and PDUs that can occur.

Example E.1 – An FTAM PCO

The PCO “L” is of type A_P_SAPs which is able to observe all ACSE and Presentation ASPS, excluding
P-CONNECT, P-RELEASE and P-ABORT. The type column shows which SAPs belong to the set to be observed by the
PCO, “A” and “P”, each SAP separated by underscore ("_"). The comments column describes exactly what can be seen
by the PCO.

This method is extensible to many SAPs, each of which would be separated by an underscore.

ANNEX F

(to Recommendation X.292)

List of BNF production numbers

F.1 Introduction

This annex presents an alphabetical index of the BNF productions that appear in Annex A. For each
production the index gives a reference in terms of the producton number (not page number).

PCO Declarations

PCO Name PCO Type Role Comments

L A_P_SAPs LT PCO through which we can observe all ACSE
ASPs and all Presentation ASPs except
P-CONNECT, P-RELEASE and P-ABORT

Superseded by a more recent version

196 Recommendation X.292 (09/92) Superseded by a more recent version

F.2 The production Index

A
ActualCrefPar 279

ActualCrefParList 278

ActualPar 300

ActualParList 299

AddOp 321

AliasDef 166

AliasDefs 165

AliasId 167

AliasIdentifier 168

Alpha 354

AlphaNum 355

AnyOne 351

AnyOrNone 352

AnyOrOmit 204

AnyValue 203

ArrayRef 315

ASN1_ASP_Constraint 184

ASN1_ASP_Constraints 184

ASN1_ASP_TypeDef 136

ASN1_ASP_TypeDefByRef 139

ASN1_ASP_TypeDefs 136

ASN1_ASP-TypeDefsByRef 138

ASN1_ConsValue 222

ASN1_Identifier 313

ASN1_LocalType 59

ASN1_ModuleId 64

ASN1_PDU_Constraint 221

ASN1_PDU_Constraints 220

ASN1_PDU_TypeDef 161

ASN1_PDU_TypeDefByRef 164

ASN1_PDU_TypeDefs 161

ASN1_PDU_TypeDefsByRef 163

ASN1_Type 58

ASN1_Type&LocalTypes 57

ASN1_TypeConstraint 178

ASN1_TypeConstraints 177

ASN1_TypeDef 52

ASN1_TypeDefinition 56

ASN1_TypeDefs 51

ASN1_TypeId 53

ASN1-TypeId&FullId 54

ASN1_TypeIdentifier 55

ASN1-TypeRef 61

ASN1_TypeReference 62

ASN1_TypeRefs 60

ASP_Constraints 179

ASP_Id 126

ASP_Id&FullId 127

ASP_Identifier 128

ASP_ParDcl 130

ASP_ParDcls 129

ASP_ParId 131

ASP_ParId&FullId 133

ASP_ParIdentifier 134

ASP_ParIdOrMacro 132

ASP_ParType 135

ASP_ParValue 183

ASP_ParValues 182

ASP_TypeDefs 122

Assignment 302

AssignmentList 301

Attach 296

Superseded by a more recent version

Recommendation X.292 (09/92) Superseded by a more recent version 197

B
BehaviourDescription 260

BehaviourLine 270

Bin 343

BitIdentifier 318

BitNumber 319

BitRef 317

BooleanValue 341

Bound 157

BoundedFreeText 359

Bstring 342

C
CancelTimer 328

CaseIndex 15

Char 349

CharacterString 333

Colon 366

Comma 361

Comment 10

Complement 201

ComplexDefinitions 121

ComponentIdentifier 312

ComponentNumber 316

ComponentPosition 314

ComponentReference 310

ConsId 189

ConsId&ParList 190

ConsRef 277

ConstraintExpression 199

ConstraintIdentifier 191

ConstraintReference 276

ConstraintsPart 171

ConstraintValue 198

ConstraintValue&Attributes 197

ConstraintValue&AttributesOrReplace 223

Construct 294

ConsValue 196

Cref 275

Cstring 348

D

Dash 363

DataObjectIdentifier 309

DataObjectReference 308

Declarations 86

DeclarationsPart 21

DeclarationValue 93

Default 253

DefaultGroup 251

DefaultGroupId 252

DefaultGroupIdentifier 259

DefaultGroupReference 258

DefaultId 255

DefaultId&ParList 256

DefaultIdentifier 257

DefaultIndex 19

DefaultRef 254

DefaultReference 238

DefaultsLibrary 250

DefaultsRef 237

DefIndex 20

Definitions 22

DerivationPath 193

DerivPath 192

Description 16

Dot 362

Duration 118

DynamicPart 226

Superseded by a more recent version

198 Recommendation X.292 (09/92) Superseded by a more recent version

E
ElemDcl 46

ElemDcls 45

ElemId 47

ElemId&FullId 48

ElemIdentifier 49

ElemType 50

ElemValue 176

ElemValues 175

Event 287

ExpandedId 169

Expansion 170

Expression 303

ExtendedAlphaNum 358

F

Factor 306

Fail 283

FormalPar&Type 267

FormalParIdentifier 268

FormalParList 266

FormalParType 269

FreeText 360

FullIdentifier 43

G

GoTo 295

H

Header 263

Hex 345

Hstring 344

I
Identifier 353

ImplicitSend 290

Inconclusive 284

Indentation 272

IntegerRange 34

L

Label 274

LabelId 273

LengthAttribute 155

LengthRestriction 31

Line 271

LiteralValue 337

LocalTree 262

LowerAlpha 357

LowerBound 159

LowerRangeBound 208

LowerTypeBound 35

LowerValueBound 218

M

MacroSymbol 150

MatchingSymbol 200

Minus 364

ModuleIdentifier 65

MultiplyOp 322

N

NonZeroNum 339

Num 340

Number 338

Superseded by a more recent version

Recommendation X.292 (09/92) Superseded by a more recent version 199

O
Objective 249

Oct 347

Omit 202

OpCall 320

Ostring 346

Otherwise 292

P
P_Role 112

Parameterization&Selection 73

Pass 282

PCO_Dcl 107

PCO_Dcls 106

PCO_Id 108

PCO_Identifier 109

PCO_Role 113

PCO_Type 125

PCO_TypeId 110

PCO_TypeIdentifier 111

PDU_Constraints 186

PDU_FieldDcl 147

PDU_FieldDcls 146

PDU_FieldId 148

PDU_FieldId&FullId 151

PDU_FieldIdentifier 152

PDU_FieldIdOrMacro 149

PDU_FieldType 153

PDU_FieldValue 195

PDU_FieldValues 194

PDU_Id 143

PDU_Id&FullId 144

PDU_Identifier 145

PDU_TypeDefs 140

Permutation 212

PICS_PIXITref 79

PICSref 7

PlXITref 8

PredefinedType 332

Primary 307

Q
Qualifier 288

R
RangeLength 158

RangeTypeLength 33

RangeValueLength 217

ReadTimer 330

Receive 291

RecordRef 311

ReferenceList 225

ReferenceType 334

RelOp 324

Repeat 297

Replacement 224

Restriction 30

Result 285

RootTree 261

S
SelectExpr 84

SelectExprDef 81

SelectExprDefs 80

SelectExprId 82

SelectExprIdentifier 83

Superseded by a more recent version

200 Recommendation X.292 (09/92) Superseded by a more recent version

SelectionExpression 85

SelExprId 13

SemiColon 365

Send 289

SimpleExpression 304

SimpleTypeDef 25

SimpleTypeDefinition 28

SimpleTypeDefs 24

SimpleTypeId 26

SimpleTypeIdentifier 27

SimpleValueList 38

SingleLength 156

SingleTypeLength 32

SingleValueLength 215

StandardsRef 6

StartTimer 327

StatementLine 286

StepIndex 18

StructId 41

StructId&FullId 42

StructIdentifier 44

StructTypeConstraints 173

StructTypeDefs 39

Structure&Objective 12

Structure&Objectives 11

SubSet 211

Suite 1

SuiteId 2

SuiteIdentifier 3

SuiteOverviewPart 4

SuiteStructure 5

SuperSet 210

T
TC_VarDcl 101

TC_VarDcls 100

TC_VarId 102

TC_VarIdentifier 103

TC_VarType 104

TC_VarValue 105

Term 305

TestCase 231

TestCaseId 232

TestCaseIdentifier 233

TestCaseIndex 14

TestCases 227

TestGroup 228

TestGroupId 229

TestGroupIdentifier 230

TestGroupRef 234

TestGroupReference 235

TestMethods 9

TestPurpose 236

TestStep 243

TestStepGroup 240

TestStepGroupId 241

TestStepGroupIdentifier 242

TestStepGroupReference 248

TestStepId 244

TestStepId&ParList 245

TestStepIdentifier 246

TestStepIndex 17

TestStepLibrary 239

 TestStepRef 247

Timeout 293

TimerDcl 115

TimerDcls 114

TimerId 116

TimerIdentifier 117

TimerOp 326

TimerOps 325

TimerValue 329

TimeUnit 120

To 37

TreeHeader 264

TreeIdentifier 265

Superseded by a more recent version

Recommendation X.292 (09/92) Superseded by a more recent version 201

TreeReference 298

TS_ConstDcl 88

TS_ConstDcls 87

TS_ConstId 89

TS_ConstIdentifier 90

TS_ConstType 91

TS_ConstValue 92

TS_OpDef 67

TS_OpDefs 66

TS_OpDescription 72

TS_OpId 68

TS_OpId&ParList 69

TS_OpIdentifier 70

TS_OpResult 71

TS_ParDcl 75

TS_ParDcls 74

TS_ParId 76

TS_ParIdentifier 77

TS_ParType 78

TS_TypeConstraints 172

TS_TypeDefs 23

TS_TypeIdentifier 335

TS_VarDcl 95

TS_VarDcls 94

TS_VarId 96

TS_VarIdentifier 97

TS_VarType 98

TS_VarValue 99

TTCN_ASP_Constraint 180

TTCN_ASP_Constraints 180

TTCN_ASP_TypeDef 123

TTCN_ASP_TypeDefs 123

TTCN_PDU_Constraint 187

TTCN PDU_Constraints 187

TTCN_PDU_TypeDef 142

TTCN_PDU_TypeDefs 141

Type 331

Type&Attributes 154

Type&Restriction 29

TypeReference 63

U

UnaryOp 323

Underscore 367

Unit 119

UpperAlpha 356

UpperBound 160

UpperRangeBound 209

UpperTypeBound 36

UpperValueBound 219

V

ValRange 207

Value 336

ValueAttributes 213

ValueBound 216

ValueLength 214

ValueList 205

ValueRange 206

Verdict 281

VerdictId 280

W

Wildcard 350

Superseded by a more recent version

202 Recommendation X.292 (09/92) Superseded by a more recent version

ANNEX G

(to Recommendation X.292)

Index

(This annex does not form an integral part of this Recommendation)

G.1 Introduction

This annex presents an alphabetical index of terms and acronyms used in ISO/IEC 9646 (1991) part 3. For
each term or acronym, the index gives a set of references in terms of clause, figure and table numbers, either in the main
body, or in the annexes of part 3. The significance of each reference is indicated as follows:

a) definitions of the terms and acronyms are in bold;

b) major uses of the term or acronym are in italics;

c) other uses are in normal font.

G.2 The Index

A

Abstract Service Primitive
1, 3.1, 4.1

Abstract Syntax Notation 1
4.3

Abstract test case
3.1, 6, 14.17.1

Abstract test method
3.1

Abstract Test Suite
1, 2, 3.1, 4.1

Abstract testing methodology
1, 3.1

Alias definition
10.1, A.3.3.5.10

AND
10.3.2.1, 10.3.2.4, A.4.2.4

ANY
11.6.2

AnyOne
11.6.2, 11.6.5.1, 11.6.5.2, 11.6.6.1

AnyOrNone
11.6.2, 11.6.4.4, 11.6.5.2, 11.6.5.3, 11.6.6.1

AnyOrOmit
11.6.2, 11.6.4.4, 11.6.5.2, 11.6.6.1, 11.6.6.2

AnyValue
11.5, 11.6.2, 11.6.4.3, 11.6.5.1, 11.6.6.1

Application
3.2, 10.8

Arithmetic operator
10.3.2.2

ASN.1 ASP type definition
10.10

ASN.1 constraint declaration
11.6.4, 11.6.5, 11.6.6.1,
11.6.6.2, 13, /* STATIC SEMANTICS -, C.2.5, D.2

ASN.1 PDU type definition
10. 11

ASN.1 type definition
10.2.3.4, 10.2.3.5, 10.10.4, 10.11.4,
10.12.2, 13.5, 13.8, A.4.2.1, A.4.2.6

ASN.1
1, 2, 4.3, 8.5, 10.2.2, 10.2.3.1, 10.2.3.4, 10.10.4,
11.2, 11.5, 11.6.2, A.4.2.1, A.4.2.5, E.6

ASP constraint declaration
3.6.36, 7.3.4, 12.3, 12.4, 13.2,
13.3, A.5.1, C.2.2, C.2.5, D.1.1

ASP identifier
10.15

ASP type definition
3.6.2, 3.6.3, 3.6.41, 10.1, 10.2.2,
10.2.3.3, 10.3.4, 10.10, 10.13, 10 14, /* STATIC
SEMANTICS -, D.2.1, E.3.1

Superseded by a more recent version

Recommendation X.292 (09/92) Superseded by a more recent version 203

ASP
3.6.8, 3.6.10, 3.6.20, 3.6.22, 3.6.25, 3.6.28, 3.6.32,
3.6.34, 3.6.39, 3.6.41, 4.1, 8.5, 10.2.1, 10.2.3.1, 10.8,
10.10, 10.11, 10.13, 10.14, 10.15, 11, 12.2, 12.3, 13.5,
13.8, 14.2.1.3, 14.7.2, 14.9, 14.16.1, A.4.2.7, A.4.2.8,
B.5.2, E.6, E.7, E.10

Assignment
10.3.2.3, 10.7.2, 10.7.4, 14.6, 14.8, 14.9.3,
14.9.4, 14.10.1, 14.10.4, 14.10.5, 14.10.6, 14.11,
14.16.3, 14.17.2, B.5.12, E.9

ATS
3.6.44, 3.6.45, 4.1, 5, 6, 8.5, 9, 10.1, 10.5, 10.11.1,
11.1, 13.2, A.1, A.5.1

Attach construct
3.6.1, 8.3.1, 14.2.3, 14.7.1, 14.8, 14.13,
14.17.1, B.4.2, B.4.4, C.3.1

Attribute
10.10.2, 10.11.2, 10.12.1, 11.6.2, 11.6.6, 12.4, 13.3

B

Backus-Naur Form
4.3

Base constraint
3.6.2, 3.6.19, 3.6.25, 12.6, 12.7, /* STATIC
SEMANTICS -, C.2.3, D.3

Base type
3.6.3, 10.2.3.2, 10.12.2

Behaviour description
3.6.23, 3.6.30, 3.6.48, 3.6.60, 10.3.1,
10.8, 10.15, 11.1, 11.3, 14.2.1.2, 14.2.1.3, 14.2.4, 14.5,
14.7.1, 14.13.2, 14.13.7, 14.15, A.4.2.10, A.5.1, A.5.2,
C.3.1, E.3, E.8

Behaviour line
3.6.4, 3.6.11, 3.6.20, 14.2.4, B.5.1

Behaviour sub-tree
8.3.1

Behaviour tree
3.6.5, 3.6.7, 3.6.24, 3.6.26, 3.6.29, 3.6.33,
3.6.53, 3.6.54, 3.6.55, 3.6.56, 3.6.57, 8.3.1, 10.15.2,
14.2.1.3, 14.2.2, 14.4.1, 14.5, 14.7.1, 14.9.5, 14.11,
14.13.3, 14.13.4.1, 14.13.7, 14.14, 14.16.2, 14.17,
14.18.1, B.4.2, B.4.4, B.5.2, E.2

Binding of variables
10.7.2, 10.7.4

BIT_TO_INT
10.3.3.2.1, 10.3.3.2.3, A.4.2.4

Bitstring type
3.4

BITSTRING
10.2.2, 10.3.2.2, 10.3.2.3, 10.3.3, 10.12,
11.6.2, 14.10.2, A.4.2.4

Blank entry
3.6.6

BNF
4.3, A.3

BOOLEAN
10.2.2, 10.3.2.3, 10.3.2.4, 10.3.3.3.1, 10.3.3.3.3,
10.3.4, 10.5, 11.6.2, 14.10.2, A.4.2.4, B.5.11

Bound variable
10.7.2, 10.7.4, 14.16.2, 14.19

Bounded free text
7.4

BY
A.4.2.4

C

Calling tree
3.6.1, 3.6.7, 3.6.24, 3.6.29, 14.13.3, 14.17.3,
14.18.2

CANCEL
14.12.1, 14.12.3, A.4.2.4, B.5.13

Chaining of constraints
3.6.20, 3.6.39, 11.2, 11.4, E.3.l

Characterstring type
3.4, 10.2.2, 10.3.3.3.4, 10.12.1, 11.6.2,
11.6.5.1, 11.6.5.2

CHOICE
10.3.3.3.3, 11.6.2, 13.5, 13.6, 13.8, 14.10.2

Compact constraint table
3.6.6, 3.6.8, 7.3.4, 12.1, C.1, C.2

Compact table
7.3.4

Superseded by a more recent version

204 Recommendation X.292 (09/92) Superseded by a more recent version

Compact test case table
3.6.9, 7.3.4, C.1, C.3

COMPLEMENT
11.6.4.1

Complement
11.6.2, 11.6.4.1, 11.6.6.1

Compliance
6, 14.17.3

Component identifier
14.10.2

Conformance log
3.1, 14.14, 14.17, B.3, B.5.17, E.2

Conformance test suite
1, 3.1

Constraints part
3.6.10, 8.5, 11, 14.2.1.3, 14.16.1, /* STATIC
SEMANTICS -

Constraints reference
3.6.11, 3.6.20, 11.2, 11.3, 14.2.1.3,
14.13.5, 14.16, B.1, E.3

Construct
3.6.35, 3.6.60, 11.5, 14.2.1.3, 14.8, 14.9.5, 14.13,
14.14, 14.15, 14.17.1, 14.18.1, B.4, B.5.1, B.5.14

Coordinated test method
3.1, 9.2, E.3.4

D

Data object identifier
14.10.2

Data object
10.2.3.1, 10.3.3.3, 11.2, 14.3.1, 14.4.2, 14.10.1,
14.10.2, 14.10.3

Declarations part
3.6.12, 8.5, 10.1, 10.2.3.1, 14.9.1, 14.9.7,
/* STATIC SEMANTICS -, E.6

Default behaviour table
9.5, 14.4.2

Default behaviour
3.6.13, 3.6.17, 8.4, 8.5, 9.5, 14.1,
14.2.1.2, 14.4, 14.7.1, 14.18.1, 14.19, B.4.1, B.4.2, E.4

Default duration
10.9, 14.12.2

Default group reference
3.6.15, 8.4, 9.5, 14.4.2

Default group
3.6.14

Default identifier
3.6.16, 9.5, 14.19, A.4.2.11

Default index
9.1, 9.5, A.5.1

Default library
3.6.15, 3.6.17, 3.6.18, 8.4, 9.5, 14.4.1, 14.19

Default reference
3.6.18, 8.4, 14.2.1.2, 14.19, B.4.2

Default tree
14.9.5.1, 14.10.1, 14.14, 14.18.1, /* STATIC
SEMANTICS -, A.4.2.9, C.3.1, E.4

Default value
12.6, 14.12.2

DEFAULT
10.3.3.3.1, 14.18.1

Default
8.1, 9.5, 14.4.1, 14.13.7, 14.14, 14.18, 14.19, B.4.2,
B.4.4, B.5.1, E.4

Defect report
B.2

DEFINITIONS
10.2.3.5

Derivation path
3.6.19, 12.4, 12.6, 13.3, 13.6, /* STATIC
SEMANTICS -, C.2.3

Derivation
A.1

DIS TTCN
6.6

Distinguished value
10.2.2, 10.2.3.2, A.4.2.6

Distributed test method
3.1, E.3.3

Dot notation
14.10.2

DS
4.2, 10.10.2, 14.9.6

Dynamic chaining
3.6.20, 11.4

Dynamic part
3.6.21, 8.5, 10.1, 14, /* STATIC SEMANTICS -

Superseded by a more recent version

Recommendation X.292 (09/92) Superseded by a more recent version 205

E

Encoding
3.5, 10.3.3.2.1, 10.11.1

Enumerated type
3.4, A.4.2.6

ENUMERATED
11.6.2, A.4.2.6

ETS
4.1

Event line
10.15.2, 11.5, 14.9, 14.10.1, 14.10.4.1, 14.10.6,
14.12.1, E.7, E.9

Executable test case error
3.1, 6.5

Executable test case
3.1, 6.5

Executable Test Suite
1, 3.1, 4.1

External type
3.4, 10.2.3.4

F

F
14.17.2, 14.17.3, A.4.2.4

Fail verdict
3.1

FAIL
14.9.7, 14.10.6, 14.17.2, 14.17.3, 14.17.4, 14.18.1,
A.4.2.4

FALSE
9.2, 9.3, 10.2.2, 10.3.2.4, 10.3.3.3.1, 10.3.3.3.3,
14.10.2, A.4.2.4

FDT
4.3

FIFO
4.3, 10.8

Final verdict
14.9.6, 14.17.1, 14.17.3, 14.18.1, E.2

First In First Out
4.3

Formal Description Technique
1, 4.3

Formal parameter list
11.3, 12.4, 12.7, 13.3, 13.7, 13.7, 14.7.2, 14.9.1,
14.9.7, 14.13.5, 14.16.2, A.4.2.11

Free text
7.4

FullIdentifier
7.4, 10.2.3.5

G

GeneralString
10.2.2, A.4.2.4

GOTO
14.2.1.3, 14.6, 14.8, 14.9.5.1, 14.14, 14.17.1,
A.4.2.4, B.5.15

GraphicString
10.2.2, A.4.2.4

H

HEX_TO_INT
10.3.3.2.1, 10.3.3.2.2, A.4.2.4

HEXSTRING
10.2.2, 10.3.2.3, 10.3.3, 10.12.1, 10.12.2, 11.6.2,
A.4.2.4

I

I
14.17.2, 14.17.3, A.4.2.4

IA5String
10.2.2, A.4.2.4

Idle testing state
3.1, 14.17.3

IF_PRESENT
A.4.2.4

IfPresent
11.6.2, 11.6.6.2

Superseded by a more recent version

206 Recommendation X.292 (09/92) Superseded by a more recent version

Implementation Under Test
3.1, 4.1

lmplicit send event
3.6.22, 14.9.6, B.5.9

IMPLICIT SEND
14.6, 14.8, 14.9.6, 14.16.1, 14.17.1, B.5.9, E.3.5

Imported definition
10.2.3.5, 10.10.5

Inactive timer
14.12.3, 14.12.4

INCONC
14.17.2, 14.17.3, A.4.2.4

Inconclusive verdict
3.1, 14.10.6, 14.17.3

Indentation
3.6.23, 3.6.35, 14.2.4, 14.6, 14.9.5, 14.9.6,
14.13.5, 14.14, 14.15, 15.2, A.5.1, A.5.2, B.4.3

INFINITY
10.2.3.2, 10.10.2, 10.11.2, 10.12.2, 11.6.4.6,
11.6.6.1, A.4.2.4

Inside values
11.6.2, 11.6.5

Instead of value
11.6.2, 11.6.4

INT_TO_BIT
10.3.3.2.1, 10.3.3.2.5, A.4.2.4

lNT_TO_HEX
10.3.3.2.1, 10.3.3.2.4, A.4.2.4

INTEGER
10.2.2, 10.2.3.2, 10.3.2.2, 10.3.2.3, 10.3.3,
10.3.3.3.2, 10.9, 10.10.2, 10.12.2, 11.6.2,
11.6.4.6, 11.6.5.1, 11.6.6.1, 14.10.2, 14.12.2,
A.4.2.4, A.4.2.6

Invalid test event
3.1, 14.17.4

IS_CHOSEN
10.3.3.3.3, A.4.2.4

IS_PRESENT
10.3.3.3.1, A.4.2.4

IUT
3.6.22, 4.1, 10.8, 10.11.1, 14.9.6,
A.4.2.4, E.3.4, E.4

L

Label
3.6.4, 14.2.1.3, 14.3.2, 14.14

Length
10.12.2, 11.6.2, 11.6.6.1

LENGTH_OF
10.3.3.3.4, A.4.2.4

Line continuation
14.2.4, A.5.1

Local test method
3.1, E.3.2

Local tree
3.6.24, 3.6.55, 3.6.56, 14.2.4, 14.4.1, 14.6,
14.7.1, 14.7.2, 14.10.1, 14.13.2, 14.13.3, 14.13.4.1,
14.14, 14.15, A.4.2.9, A.4.2.10, A.4.2.11, A.5.2

Lower Tester
3.1, 4.1, 10.8, 14.9.5.1

LS
4.2

LT
4.1, 10.8, 14.2.1.3, 14.8, 14.9.1, 14.9.5.1,
14.9.6, 14.9.7, A.4.2.4, E.4

M

Macro expansion
10.10.3, 10.11.3, 10.15.2, 11.2, 12.2, 12.4,
14.10.3, /* STATIC SEMANTICS -, A.4.2.8

Matching mechanism
3.6.38, 11.2, 11.5, 11.6.1, 11.6.2, 14.9.8

Matching values
11.6.1

Means of Testing
3.1, 4.1, E.5

min
10.9, A.4.2.4

MOD
10.3.2.1, 10.3.2.2, A.4.2.4

Modified ASN.1 constraints
13.1, 13.6, 13.7

Superseded by a more recent version

Recommendation X.292 (09/92) Superseded by a more recent version 207

Modified constraints
3.6.6, 3.6.19, 3.6.25, 12.6, 12.7, 13.6,
13.7, /* STATIC SEMANTICS -, C.2.4,
D.1.2.5, D.2.2.5, D.3, E.6

MOT
4.1, 14.9.5.1

ms
10.9, A.4.2.4

N

none
A.4.2.4

NOT
10.3.2.1, 10.3.2.4, A.4.2.4

ns
10.9, A.4.2.4

NUMBER_OF_ELEMENTS
10.3.3.3.2, A.4.2.4

NumericString
10.2.2, A.4.2.4

O

Object Identifier
3.4

ObjectIdentifier
10.2.3.5, 10.10.5, 10.11.5, 11.6.2

OCTETSTRING
10.2.2, 10.3.2.3, 10.3.3.3.4, 10.12.1, 10.12.2, 11.6.2

OMIT
A.4.2.4

Omit
11.5, 11.6.2, 11.6.4.2, 13.6

Open Systems Interconnection
4.3

Operational semantics
1, 3.6.26, 5, 6, 14.9.5.2, Annex B, B.5

OPTIONAL
10.3.3.3.1, 10.3.3.3.2, 11.6.4.2, 13.5, 13.8

OR
10.3.2.1, 10.3.2.4, A.4.2.4

OSI
1, 2, 4.3, 10.2.3.5, 10.11.5, 14.9.6, A.4.2.1

Otherwise event
3.6.27, 14.9.7, B.5.7

OTHERWISE
3.6.61, 14.8, 14.9.5.1, 14.9.7, 14.17.4, 14.18.1,
14.18.2, /* STATIC SEMANTICS -, A.4.2.4, B.5.7

Overview part
3.6.28

P

P
14.17.2, 14.17.3, A.4.2.4

Page continuation
15, A.5.1

Parameter list
10.3.4, 10.10.2, 11.3, 12.5, 12.7, 13.3, 13.7, 14.2.1.2,
14.7, 14.9.1, 14.9.7, 14.13.4.1, 14.13.5, 14.16.2,
14.19, /* STATIC SEMANTICS -, C.2.3.2

Parameter
3.6.10, 3.6.20, 3.6.28, 3.6.39, 3.6.41, 3.6.55,
10.3.3.1, 10.3.4, 10.4, 10.10.3, 10.11.2, 10.13,
11, 12.5, 13.5, 14.3.1, 14.4.2, 14.7.2, 14.9.4,
14.10.3, 14.16.2, /* STATIC SEMANTICS -, A.4.2.7,
E.6

Parameterization
3.6.20, 10.1, 10.4, 14.3.1, 14.13.3, 14.19,
/* STATIC SEMANTICS -

Parameterized constraint
3.6.6, 11.3, 12.5, 14.13.5, A.4.2.11, D.1.2.4,
D.1.2.5, D.2.2.4

Partial PIXIT proforma
9.2, 14.9.6

Pass verdict
3.1

PASS
14.17.2, 14.17.3, A.4.2.4

PCO declaration
10.3.4, 10.8, 10.10.2, 10.10.4, 10.10.5,
10.11.2, 10.11.4, 10.11.5

PCO model
14.9.1

Superseded by a more recent version

208 Recommendation X.292 (09/92) Superseded by a more recent version

PCO queue
14.9.2, 14.9.5.1

PCO type
10.3.4, 10.10.2, 10.10.4, 10.10.5, 10.11.2,
10.11.4, 10.11.5, 11.3, 14.7.2

PCO
3.6.32, 4.1, 10.3.4, 10.8, 10.10.2, 10.10.4, 10.10.5,
10.11.2, 10.11.4, 10.11.5, 14.9.1, 14.9.6, 14.9.7, E.10

PDU constraint declaration
3.6.36, 7.3.4, 12.2, 12.4, 13.2, 13.4, A.5.1, C.2.2, D.1.1

PDU field value
10.14, 11.2, 11.4, 11.6.1, 11.6.4.5, 11.6.4.6, 14.9.3,
14.9.4

PDU identifier
10.10.2, 10.11.2, 10.11.4, 10.15.1, 10.15.2, 14.7.2,
14.9.1

PDU type definition
3.6.2, 3.6.3, 3.6.41, 7.3.1, 10.2.3.3, 10.3.4, 10.10.2,
10.11,
10.13, 10.14, 12.4, /* STATIC SEMANTICS -, C.2.3,
D.2.1, E.6

PDU
3.6.8, 3.6.10, 3.6.20, 3.6.22, 3.6.25, 3.6.28, 3.6.32,
3.6.34, 3.6.39, 3.6.41, 4.3, 10.10.2, 10.11.1, 10.11.2,
12.2, 12.4, 13.5, 13.6, 13.8, 14.7.2, 14.9, 14.10.4.1,
14.10.6, 14.16.1, /* STATIC SEMANTICS -, A.4.2.4,
A.4.2.7, A.4.2.8, E.3.1

PERMUTATION
11.6.5.3, A.4.2.4

Permutation
11.6.2, 11.6.5.3, 13.1

PICS proforma
3.1, 9.2, 10.4

PICS
3.6.50, 3.6.51, 4.1, 10.4, 10.6, 10.9

PIXIT proforma
3.1, 10.4

PIXIT
3.6.50, 3.6.51, 4.1, 10.4, 10.6, 10.9, 14.9.6

Point of Control and Observation
3.1, 4.1

Postamble
3.1, E.2

Preamble
3.1, E.2

Precedence
5, 10.3.2.1, 14.17.2, A.4.2.11, B.2, E.8

Predefined operation
10.3.3, 14.12.1

Predefined operator
10.3.1, 10.3.2

Predefined type
10.2.2, 10.2.3.2, 10.4, 10.6, 10.7.1, 10.7.3,
10.10.2, 10.11.2, 11.6.2, 14.7.2

Preliminary result
3.6.29, 14.9.6, 14.17.1, 14.17.2

PrintableString
10.2.2

Protocol Data Unit
1, 3.2, 4.3

Protocol Data Unit
4.3

Protocol Implementation Conformance Statement
3.1, 4.1

Protocol lmplementation Extra Information for Testing
3.1, 4.1

ps
10.9, A.4.2.4

Pseudo-code
B.2, B.4.2, B.5.2

Pseudo-event
3.6.30, 3.6.35, 3.6.60, 14.8, 14.9.5.1, 14.11,
14.12.1, B.4.2, B.5.1. B.5.10

Q

Qualified event
3.6.31

Qualifier
14.6, 14.8, 14.9.2, 14.10.4.1, 14.10.5, 14.10.6,
14.11, 14.12.1, 14.15, 14.16.3

Queue
10.8, 14.9.2, 14.9.5.1, 14.18.1

Superseded by a more recent version

Recommendation X.292 (09/92) Superseded by a more recent version 209

R

R
14.17.2, 14.17.3, E.2

Range
10.2.3.2, 10.10.2, 10.12.2, 11.6.2, 11.6.4.6, 11.6.6.1

READTIMER
14.12.4, A.4.2.4, B.5.13

RECEIVE event
10.14, 11.1, 11.2, 11.6, 14.9.2, 14.10.4.1,
/* STATIC SEMANTICS -, B.5.6

Receive event
3.6.32, B.5.6

Relational operator
10.3.2.1, 10.3.2.3

Remote test method
3.1, 3.6.22, 14.9.6, E.3.5

REPEAT
14.6, 14.8, 14.15, 14.17.1, A.4.2.4, B.4.1, B.4.3,
B.4.4, B.5.1

REPLACE
13.6, A.4.2.4

Root tree
3.6.33, 14.3.1, 14.4.2, 14.6, 14.7.1, 14.7.2, 14.13.3,
14.13.4.1, 14.14, 14.18.2, A.4.2.9, A.5.2

RS
4.2

S

SAP
4.3, 10.8, E.10

Scoping rules
14.13.4.1

sec
10.9, A.4.2.4

Selection expression
9.2, 9.3, 10.5, D.7

Selection
9.2, 9.3, 10.1, 10.4, 10.5, D.7

SEND event
10.8, 10.13, 11.1, 11.2, 11.5, 14.7.2, 14.9.3,
14.10.4.1, E.9

Send event
3.6.34, B.5.5

SEQUENCE OF
10.3.3.3.2, 10.12.2, 13.6, 14.10.2

SEQUENCE
11.6.2, 11.6.3, 13.5, 13.8, 14.10.2

Service Access Point
3.2, 4.3, 10.8

Service provider
3.3, 10.8, 14.9.5.1

Session
3.2, 10.8

Set of alternatives
3.6.35, 14.6, 14.9.5.1, 14.9.5.2, 14.9.8, 14.13.4.1,
14.14, 14.18.2, /* STATIC SEMANTICS -, B.4.2, B.4.4

SET OF
10.3.3.3.2, 10.12.2, 11.5, 14.10.2

SET
11.5, 11.6.2, 11.6.3, 11.6.5.2, 13.5, 13.8, 14.10.2

Simple type
7.3.1, 10.2.3.2, 10.10.2, 10.10.3, 10.11.2, 10.11.3

Single constraint table
3.6.36, 12.1, C.1, C.2.1, C.2.4

Snapshot semantics
3.6.37, 14.9.5.2

Specific value
3.6.38, 11.2, 11.5, 11.6.1, 11.6.2, 11.6.3, 11.6.4.5,
11.6.4.7, 11.6.4.8, 11.6.6.1, 14.9.3

Stable testing state
3.1, 14.17.3

Standardized Abstract Test Suite
3.1

Standardized ATS
5, 6.5, 6.6, E.8

START
14.12.1, 14.12.2, A.4.2.4

State variable
14.9.6

Static chaining
3.6.39, 11.2, 11.4

Static conformance requirements
1, 3.1

Superseded by a more recent version

210 Recommendation X.292 (09/92) Superseded by a more recent version

Static semantics
3.6.40, 5, Annex A, B.1, B.4.1

Structured data object
14.10.2

Structured type constraint declaration
12.2, C.2.4

Structured type definition
10.2.3.3

Structured type
3.6.8, 3.6.41, 7.3.4, 10.10.2, 10.10.3, 10.11.2,
10.11.3, 10.12.1, 10.14, 11.2, 11.6.1, 11.6.3, 12.1,
12.2, 12.4, 14.10.3, /* STATIC SEMANTICS -,
A.4.2.8, C.2.1, C.2.4, E.6

Subnetwork
3.2

SUBSET
A.4.2.4

SubSet
11.6.2, 11.6.4.8

Substructure
3.6.41,10.10.3, 10.11.3, 10.14, 11.2, 11.6.1, 12.2, 12.4,
14.10.3, /* STATIC SEMANTICS -

Subtree
B.4.2, E.4

Subtype
3.4, 10.2.3.1, 10.2.3.3

SUPERSET
A.4.2.4

SuperSet
11.6.2, 11.6.4.7

SUT
4.1, 14.9.6

Syntactic metanotation
7.2, A.2.1

Syntactically invalid test event
3.1

Syntax production
5, A.3

System Under Test
3.1, 4.1

T
Table proforma
7.3

Tabular ASP type definition
10.10.2, 11.6.3, 12.1

Tabular constraint declaration
D.1

Tabular PDU type definition
11.6.3

Tabular PDU type definition
12.1

TCP
4.3

TeletexString
10.2.2

Test body
3.1, E.2

Test case dynamic behaviour
7.3.1, 7.3.4, 8.5, 9.3, 14.2, 14.3.1, 14.7.1, 14.19,
A.5.1, A.5.2, C.3, C.3.2

Test case error
3.1, 10.3.3.2.4, 10.3.3.2.5, 10.7.2, 10.7.4, 14.9.3,
14.9.5.1,
14.12.2, 14.17.3, B.3

Test case identifier
3.6.42, 9.3

Test case index
9.1, 9.3, 10.5, A.5.2

Test case selection
9.2, 9.3, 10.1, 10.4, 10.5

Test case variable
3.6.43, 10.7.3, 10.7.4, 10.9, 11.2, 11.3, 14.10.1, 14.12.4,
14.13, 14.17.2

Test case writer
14.12.2, E.5

Test case
1, 3.1, 3.6.9, 3.6.33, 3.6.35, 3.6.37, 3.6.42, 3.6.43,
3.6.44, 3.6.45, 3.6.47, 3.6.52, 3.6.59, 8.1, 8.3.1, 9.3,
10.4, 10.5, 10.7.1, 10.7.3, 10.7.4, 14.2.1.2, 14.3.1,
14.4.1, 14.9.5.1, 14.14, B.5.3, C.3.2, E.2, E.5, E.8

Test Coordination Procedures
3.1, 4.3

Test event
3.1, 3.6.4, 3.6.5, 3.6.61, 10.8, 14.8, 14.9, 14.10.4.1,
A.5.1

Test group identifier
A.5.1, A.5.2

Test group objective
3.1, 9.2

Test group reference
3.6.44, 8.2, 9.2, 9.3, 14.2.1.2, A.5.1

Superseded by a more recent version

Recommendation X.292 (09/92) Superseded by a more recent version 211

Test group selection
9.2

Test group
3.1, 8.1, 9.2, 9.3, A.5.2, C.3.1

Test laboratory
3.1, 6.5

Test Management Protocol
3.1, 4.1

Test method
1, 9.2, 10.8, 14.9.6, E.3

Test notation
1

Test outcome
3.1, 3.6.61

Test purpose
3.1, 9.3, 14.2.1.2, 14.17.2, E.2, E.8

Test realization
1, 3.1

Test realizer
3.1, E.5

Test step dynamic behaviour
3.6.48, 8.5, 9.4, 14.3, 14.4.2, 14.7.2, 14.19

Test step group reference
3.6.46, 8.3, 9.4, 14.3.1

Test step group
3.6.45

Test step identifier
3.6.47, 14.7.1, 14.7.2, 14.13.2, A.4.2.11

Test step index
9.1, 9.4, A.5.1

Test step library
3.6.46, 3.6.48, 3.6.54, 8.3.1, 9.4, 14.3.1, 14.13.3,
14.15, 14.18.2, A.4.2.10, E.2

Test step objective
3.6.49, 14.3.1

Test step
3.1, 3.6.1, 3.6.7, 3.6.15, 3.6.44, 3.6.45, 3.6.46,
3.6.49, 3.6.54, 3.6.57, 8.1, 8.3.1, 9.4, 14.2.3, 14.3.1,
14.4.1, 14.9.5.1, 14.13.2, 14.13.3, 14.13.4.1, 14.13.5,
14.15, 14.18.2

Test suite constant
3.6.50, 10.5, 10.6, 10.10.2, 10.11.2,
11.2, 11.3

Test suite parameter
3.6.51, 10.4, 10.5, 10.10.2, 10.11.2,
11.2, 11.3, D.7

Test suite specifier
7.3.l, 7.3.3, 10.7.3, 10.9, 14.5, 14.9.5.1,
14.9.6, 15.2, E.1, E.2, E.4

Test suite structure
8, 9.2, 9.3, 10.8, 14.2.1.2, A.5.1, A.5.2,
D.7

Test suite type definition
10.2, 10.2.3, 10.3.4, 10.10.2,
10.11.2, 11.6.6.1, 14.7.2

Test suite variable
3.6.52, 10.6, 10.7.1, 10.7.2, 10.9, 11.2,
11.3, 14.10.4.1, 14.12.4, 14.13.1

Test suite
3.1, 3.6.10, 3.6.17, 3.6.28, 3.6.43, 3.6.48, 3.6.50,
3.6.51, 3.6.52, 3.6.61, 6.6, 7.2, 8.1, 8.5, 9, 10.3.4, 10.4,
10.11.2, A.4.2.6, A.4.2.10

Test system
3.1, 11.1

Time unit
10.9

Timeout event
3.6.53, 14.9.8

TIMEOUT
14.8, 14.9.5.1, 14.9.8, 14.12.3, /* STATIC
SEMANTICS -, A.4.2.4, B.5.8, E.5

Timer declaration
10.9, 14.12.2

Timer management
14.12

Timer name
10.9, 14.9.8, 14.12

Timer operation
3.6.30, 14.6, 14.8, 14.11, 14.12.1, B.5.13

Timer
3.6.53, 8.5, 10.9, 14.9.8, 14.12, 14.18.1, E.5

TMP
4.1, 9.2

TO
10.12.2, 11.6.4.6, A.4.2.4

Transfer syntax
3.2, A.1

Superseded by a more recent version

212 Recommendation X.292 (09/92) Superseded by a more recent version

Transformation algorithm
B.1, B.4

Transport
3.2, 10.8, 10.10.2, 11.4, 14.9.6

Tree attachment
3.6.54, 14.4.1, 14.13, 14.18.1, 14.18.2,
B.4.4, E.2, E.5

Tree header
3.6.55, 14.7.1, 14.7.2, A.4.2.10, A.4.2.11

Tree identifier
3.6.55, 3.6.56, 14.13.2, A.4.2.10

Tree leaf
3.6.57

Tree name
14.7

Tree node
3.6.58

Tree notation
3.6.59, 14.2.1.3, 14.6, 14.8

Tree reference
14.13.2, 14.15

TRUE
9.2, 9.3, 10.2.2, 10.3.3.3.1, 10.3.3.3.3, 10.5, 11.6.1,
14.6, 14.10.5, 14.10.6, 14.11, 14.12.1, 14.15

TTCN expression
3.6.30, 14.10

TTCN graphical form
4.3

TTCN machine-processable form
4.3

TTCN operation
10.3

TTCN operator
10.3

TTCN statement
3.6.1, 3.6.5, 3.6.13, 3.6.35, 3.6.57, 3.6.58,
3.6.60, 10.15.2, 14.2.1.3, 14.2.3, 14.5, 14.6, 14.8,
14.9.5.1, 14.15, 14.16.1, 15.2, B.5.1

TTCN type
10.2

TTCN.GR
4.3, 5, 6, 7.1, 7.3, 7.4, 14.6, A.1, A.4.1, A.5

TTCN.MP
4.3, 5, 6, 7.1, 7.4, 10.15.2, 14.6, A.1, A.4.1, A.5,
C.1, D.8

TTCN
4.2

U

Unbound variable
3.6.38, 14.10.4.1

Unforeseen test event
3.6.27, 3.6.61, 14.9.7

Unqualified event
3.6.62

Unreachable behaviour
14.6

UNTIL
A.4.2.4

Upper Tester
3.1, 4.1, 10.8

us
10.9, A.4.2.4

UT
4.1, 10.8, 14.2.1.3, 14.8, 14.9.1, 14.9.5.1, 14.9.7,
A.4.2.4,
E.4

V

ValueList
11.6.2, 11.6.4.1, 11.6.4.5

Verdict:
3.1, 3.6.4, 14.2.1.3, 14.2.3, 14.9.6, 14.17, 14.17.4,
14.18.1, B.5.16, E.2

VideotexString
10.2.2

VisibleString
10.2.2

W

Wildcard
10.3.2.3

