# ITU-T

TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU



# SERIES X: DATA NETWORKS, OPEN SYSTEM COMMUNICATIONS AND SECURITY

Cybersecurity information exchange – Event/incident/heuristics exchange

# Session information message exchange format

Recommendation ITU-T X.1542

1-0-1



# ITU-T X-SERIES RECOMMENDATIONS DATA NETWORKS, OPEN SYSTEM COMMUNICATIONS AND SECURITY

| PUBLIC DATA NETWORKSX.1-X.199OPEN SYSTEMS INTERCONNECTIONX.200-X.299INTERWORKING BETWEEN NETWORKSX.300-X.399MESSAGE HANDLING SYSTEMSX.400-X.499DIRECTORYX.500-X.599OSI NETWORKING AND SYSTEM ASPECTSX.600-X.699OSI MANAGEMENTX.700-X.799BECURITYX.800-X.849OSI APPLICATIONSX.800-X.899INFORMATION AND NETWORK SECURITYX.800-X.899INFORMATION AND NETWORK SECURITYX.1000-X.1029General security aspectsX.1000-X.1029Network securityX.1000-X.1029SECURITYX.1000-X.1029Security managementX.1005-X.1049Security managementX.1100-X.1109Home network securityX.110-X.1119Home network securityX.110-X.1119How eventsX.1100-X.1129How eventsX.110-X.1139We be securityX.110-X.1139We be securityX.110-X.1139VerscenityX.110-X.1139VerscenityX.110-X.1139VerscenityX.110-X.1139VerscenityX.110-X.1139VerscenityX.110-X.1139VerscenityX.120-X.1229Countering spamX.120-X.1239Countering spamX.120-X.1239Countering spamX.130-X.1399Using sensor network securityX.130-X.139VerscenityX.130-X.139Vulerability/state exchangeX.150-X.159Heuristics and information requestX.150-X.159Heuristics and information requestX.150                                                                                                                                                                          |                                    |               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|---------------|
| INTERWORKING BETWEEN NETWORKSX.300-X.399MESSAGE HANDLING SYSTEMSX.400-X.499DIRECTORYX.500-X.699OSI MANAGEMENTX.700-X.799SECURITYX.800-X.849OSI APPLICATIONSX.900-X.899OPEN DISTRIBUTED PROCESSINGX.900-X.999INFORMATION AND NETWORK SECURITYX.100-X.1029General security aspectsX.100-X.1029Networks securityX.1030-X.1049Security managementX.1030-X.1049Security managementX.1030-X.1099SECURE APPLICATIONS AND SERVICESX.1000-X.1099Muticast securityX.1100-X.1109Mome network securityX.1100-X.1109Mobile securityX.1100-X.1109Mobile securityX.1100-X.1109Mobile securityX.1100-X.1109Mobile securityX.1100-X.1119Mobile securityX.1100-X.119VescurityX.1160-X.1169VescurityX.1160-X.1169Networked ID securityX.1160-X.1169Networked ID securityX.1200-X.129Countering spamX.1200-X.129Countering spamX.1200-X.129SECURE APPLICATIONS AND SERVICESTelestopeeEmergency communicationsX.1300-X.139Ubiquitous sensor network securityX.1300-X.139Ubiquitous sensor network securityX.1300-X.139Valerabellity/state exchangeX.1500-X.159Heuristics and information requestX.1500-X.159Heuristics and information requestX.1500-X.159Heuristics and information requestX.1                                                                                                                    | PUBLIC DATA NETWORKS               | X.1–X.199     |
| MESSAGE HANDLING SYSTEMSX.400-X.499DIRECTORYX.500-X.599OSI NETWORKING AND SYSTEM ASPECTSX.600-X.599OSI MANAGEMENTX.700-X.799SECURITYX.800-X.849OSI APPLICATIONSX.850-X.899OPEN DISTRIBUTED PROCESSINGX.900-X.999INFORMATION AND NETWORK SECURITYGeneral security appectsGeneral security managementX.1030-X.1049Security managementX.1030-X.1069TelebiometricsX.1080-X.1099SECURE APPLICATIONS AND SERVICESX.1100-X.1109Home network securityX.110-X.1109Home network securityX.110-X.1109Multicast securityX.110-X.1109Home network securityX.110-X.1109Mobile securityX.110-X.1109Mobile securityX.110-X.1109Mobile securityX.110-X.1179Per-to-peer securityX.1160-X.1169Networked ID securityX.110-X.1179PTV securityX.120-X.129CybersecurityX.120-X.129CybersecurityX.120-X.129Countering spanX.1230-X.129SECURE APPLICATIONS AND SERVICESEmergency communicationsX.130-X.139PKI related RecommendationsX.130-X.139PKI related RecommendationsX.130-X.139PKI related RecommendationsX.1500-X.1519Vubnerability/state exchangeX.1500-X.1519Vubnerability/state exchangeX.1500-X.1519Vubnerability/state exchangeX.1500-X.1519Vubnerability/state exchangeX.1500-X.1519<                                                                                                                    | OPEN SYSTEMS INTERCONNECTION       | X.200-X.299   |
| DIRECTORYX.500-X.599OSI NATWORKING AND SYSTEM ASPECTSX.600-X.699OSI MANAGEMENTX.700-X.799SECURITYX.800-X.849OSI AANAGEMENTX.800-X.849OSI MANAGEMENTX.800-X.849OSI MANAGEMENTX.800-X.849OSI MANAGEMENTX.800-X.849OSI MANAGEMENTX.800-X.849OSI ANANGEMENTX.800-X.849OSI APPLICATIONSX.800-X.1029INFORMATION AND NETWORK SECURITYX.1000-X.1029General security aspectsX.1000-X.1029Network securityX.1030-X.1049Security managementX.1050-X.1069TelebiometricsX.1080-X.1049SECURE APPLICATIONS AND SERVICESX.1100-X.1109Multicast securityX.1100-X.1139Web securityX.110-X.1139Web securityX.1140-X.1149Security protocolsX.1150-X.1159Peer-to-peer securityX.1160-X.1169Networked ID securityX.1170-X.1179PEV securityX.1200-X.1229Countering spamX.1230-X.1249Identity managementX.1200-X.1249Cuber securityX.1300-X.1309VibresecurityX.1300-X.1309VibresecurityX.1300-X.1339PK1 related RecommendationsX.1300-X.1339PK1 related RecommendationsX.150-X.1519Vubnerability/state exchangeX.1500-X.1519Vubnerability/state exchangeX.1500-X.1519Vubnerability/state exchangeX.1500-X.1519Vubnerability/state exchangeX.1500-X.1519 <t< td=""><td>INTERWORKING BETWEEN NETWORKS</td><td>X.300-X.399</td></t<>                                                                                     | INTERWORKING BETWEEN NETWORKS      | X.300-X.399   |
| OSI NETWORKING AND SYSTEM ASPECTSX.600–X.699OSI MANAGEMENTX.700–X.799SECURITYX.800–X.849OSI APPLICATIONSX.850–X.899OPEN DISTRIBUTED PROCESSINGX.900–X.999INFORMATION AND NETWORK SECURITYGeneral security aspectsGeneral security aspectsX.1000–X.1029Network securityX.1030–X.1049Security managementX.1050–X.1069TelebiometricsX.1000–X.1099SECURE APPLICATIONS AND SERVICESX.1100–X.1109Multicast securityX.1100–X.1109Home network securityX.1100–X.1119Mobile securityX.1100–X.1140Security protocolsX.1160–X.1149Security protocolsX.1160–X.1159Peer-to-peer securityX.1160–X.1179IFTV securityX.1160–X.1179IFTV securityX.1120–X.1179VebrescurityX.1120–X.1179IFTV securityX.1200–X.1229Countering spanX.1230–X.1249Identity managementX.1300–X.1309Ubiquitous sensor network securityX.1300–X.1309Ubiquitous sensor network securityX.1300–X.1309Ubiquitous sensor network securityX.1300–X.1349CYBERSECURITY INFORMATION EXCHANGEX.1500–X.1549Overview of cybersecurityX.1500–X.1549Vulnerabilitystate exchangeX.1500–X.1549Exchange of policiesX.1500–X.1559Heuristics and information requestX.1500–X.1559Heuristics and information requestX.1500–X.1559Heuritification and discoveryX.15                                                                                         | MESSAGE HANDLING SYSTEMS           | X.400–X.499   |
| OSI MANAGEMENTX.700-X.799SECURITYX.800-X.849OSI APPLICATIONSX.850-X.899OPEN DISTRIBUTED PROCESSINGX.900-X.999INFORMATION AND NETWORK SECURITYGeneral security aspectsGeneral security aspectsX.1000-X.1029Network securityX.1030-X.1049Security managementX.1030-X.1049Security managementX.1030-X.1099SECURE APPLICATIONS AND SERVICESX.1100-X.1109Muticast securityX.110-X.1119Mobile securityX.1120-X.1139Web securityX.1120-X.1139Web securityX.1140-X.1149Security protocolsX.1140-X.1149Network dI D securityX.1140-X.1159Peer-to-peer securityX.1160-X.1159Networked ID securityX.1120-X.1159Perto-speer securityX.1130-X.1169Networked ID securityX.120-X.1249Countering spanX.1230-X.1249Identity managementX.120-X.129SECURE APPLICATIONS AND SERVICESEmergency communicationsEmergency communicationsX.1300-X.1309Ubiquitous sensor network securityX.130-X.1309Vibuierabilitystate exchangeX.1500-X.1519Vulnerabilitystate exchangeX.150-X.1519Exchange of policiesX.150-X.1519Exchange of policiesX.150-X.1519Heuristics and information requestX.150-X.1519Heuristics and information requestX.150-X.1519Vulnerabilitystate exchangeX.150-X.1519CLOUD COMPUTING SECURITYV.1500-X.1519 </td <td>DIRECTORY</td> <td>X.500-X.599</td>                                              | DIRECTORY                          | X.500-X.599   |
| SECURITYX.800–X.849OSI APPLICATIONSX.850–X.899OPEN DISTRIBUTED PROCESSINGX.900–X.999INFORMATION AND NETWORK SECURITYGeneral security aspectsX.1000–X.1029Network securityX.1030–X.1049Security managementX.1050–X.1069TelebiometricsX.1000–X.1099SECURE APPLICATIONS AND SERVICESMulticast securityX.1110–X.1119Mobile securityX.1110–X.1119Mobile securityX.1110–X.1119Mobile securityX.1110–X.1119Mobile securityX.1110–X.1119Mobile securityX.1110–X.1119Mobile securityX.1110–X.1119Security protocolsX.1150–X.1159Peer-to-peer securityX.1160–X.1169Networked ID securityX.110–X.1179PTV securityX.1200–X.1229Countering spamX.1230–X.1249Identity managementX.1200–X.1249SECURE APPLICATIONS AND SERVICESEmergency communicationsX.1300–X.1309Ubiquitous sensor network securityX.130–X.1309Ubiquitous sensor network securityX.130–X.1309Overview of cybersecurityX.150–X.1519Overview of cybersecurityX.150–X.159PKI related RecommendationsX.150–X.159Heuristics and information requestX.150–X.159Heuristica and information requestX.150–X.159Heuristication and discoveryX.150–X.159Assured exchangeX.150–X.159CLOUD COMPUTING SECURITYVOver                                                                                                                                      | OSI NETWORKING AND SYSTEM ASPECTS  | X.600–X.699   |
| OSI APPLICATIONSX.850–X.899OPEN DISTRIBUTED PROCESSINGX.900–X.999INFORMATION AND NETWORK SECURITYGeneral security aspectsGeneral security aspectsX.1000–X.1029Network securityX.1030–X.1049Security managementX.1050–X.1069TelebiometricsX.1080–X.1099SECURE APPLICATIONS AND SERVICESX.1100–X.1109Multicast securityX.1100–X.1109Home network securityX.1110–X.1119Mobile securityX.1120–X.1139Web securityX.1140–X.1149Security protocolsX.1160–X.1169Networked ID securityX.1160–X.1169Networked ID securityX.1160–X.1169Networked ID securityX.1120–X.1139UP vescurityX.1120–X.1159CybersecurityX.1200–X.1229Countering spamX.1200–X.1229Countering spamX.120–X.1239VECURE APPLICATIONS AND SERVICESX.1300–X.1309Emergency communicationsX.1300–X.1309PKI related RecommendationsX.1300–X.1399PKI related RecommendationsX.1500–X.1519Vulnerability/state exchangeX.1500–X.1519Event/incident/heuristics exchangeX.1500–X.1519Eventincident/heuristics exchangeX.1500–X.1519Event/incident/heuristics exchangeX.1500–X.1519Event/incident/heuristics exchangeX.1500–X.1519Event/incident/heuristics exchangeX.1500–X.1519Eventincident/heuristics exchangeX.1500–X.1519Event/incident/heuristics exchangeX.1500–X.1519<                                                                   | OSI MANAGEMENT                     | X.700-X.799   |
| OPEN DISTRIBUTED PROCESSINGX.900–X.999INFORMATION AND NETWORK SECURITYGeneral security aspectsX.1000–X.1029Network securityX.1030–X.1049Security managementX.1050–X.1069TelebiometricsX.1080–X.1099SECURE APPLICATIONS AND SERVICESX.1100–X.1109Home network securityX.1100–X.1109Home network securityX.1100–X.1109Home network securityX.1100–X.1109Home network securityX.1100–X.1109Howe securityX.1100–X.1109Hobie securityX.1100–X.1119Web securityX.1100–X.1159Peer-to-peer securityX.1160–X.1169Networked ID securityX.1100–X.1109VipersecurityX.1100–X.1109VebersecurityX.1100–X.1109VebersecurityX.1100–X.1109VebersecurityX.1100–X.1109VebersecurityX.1100–X.1109VebersecurityX.1100–X.1109VebersecurityX.1100–X.1109VebersecurityX.120–X.1219Countering spanX.1230–X.1249Identity managementX.1300–X.1309Ubiquitous sensor network securityX.1300–X.1309Ubiquitous sensor network securityX.1300–X.1309Vultarability/state exchangeX.1500–X.1519Vultarability/state exchangeX.1500–X.1559Event/incident/heuristics exchangeX.1500–X.1559Identification and discoveryX.150–X.1559Identification and discoveryX.1500–X.1559Identification and discoveryX.1500–X.1559                                                                                                                | SECURITY                           | X.800-X.849   |
| INFORMATION AND NETWORK SECURITYGeneral security aspectsX.1000-X.1029Network securityX.1030-X.1049Security managementX.1050-X.1069TelebiometricsX.1080-X.1099SECURE APPLICATIONS AND SERVICESX.1100-X.1109Home network securityX.1110-X.1119Mobile securityX.1120-X.1139Web securityX.1140-X.1149Scurity protocolsX.1150-X.1159Peer-to-peer securityX.1160-X.1169Networked ID securityX.1100-X.1109VB securityX.1100-X.1179IPTV securityX.1180-X.1199CYBERSPACE SECURITYX.1200-X.1229Countering spamX.1230-X.1249Identity managementX.1230-X.1249Identity managementX.1300-X.1309Ubiquicus sensor network securityX.1300-X.1399VECURE APPLICATIONS AND SERVICESX.1300-X.1349Emergency communicationsX.1300-X.1349CYBERSECURITY INFORMATION EXCHANGEX.1500-X.1519Overview of cybersecurityX.1500-X.1519Vulnerability/state exchangeX.1500-X.1519Exchange of policiesX.1500-X.1559Heuristics and information requestX.1500-X.1559Identification and discoveryX.1500-X.159Identification and discoveryX.1500-X.1599Identification and discoveryX.1500-X.1599Identification and discoveryX.1500-X.1599Identification and discoveryX.1500-X.1599Identification and discoveryX.1500-X.1599Identification and discovery <t< td=""><td>OSI APPLICATIONS</td><td>X.850-X.899</td></t<>                 | OSI APPLICATIONS                   | X.850-X.899   |
| General security aspectsX.1000-X.1029Network securityX.1030-X.1049Security managementX.1050-X.1069TelebiometricsX.1080-X.1099SECURE APPLICATIONS AND SERVICESWalticast securityMulticast securityX.1100-X.1119Home network securityX.1110-X.1119Mobile securityX.1120-X.1139Web securityX.1120-X.1139Web securityX.1140-X.1149Security rotocolsX.1150-X.1159Peer-to-peer securityX.1160-X.1169Networked ID securityX.1170-X.1179IPTV securityX.1120-X.1139CybersecurityX.1200-X.1229Countering spanX.1230-X.1249Identity managementX.1230-X.1249Identity managementX.1300-X.1309Ubiquitous sensor network securityX.130-X.139VBERSECURITY INFORMATION EXCHANGEValtoo-X.1519Overview of cybersecurityX.1500-X.1519Vulnerability/state exchangeX.1500-X.1519Exchange of policiesX.1500-X.1519Exchange of policiesX.150-X.1579Assured exchangeX.1500-X.1559Identification and discoveryX.1500-X.1559Identification and discoveryX.1500-X.1579Assured exchangeX.1500-X.1579Overview of cloud computing securityX.1600-X.1601Cloud computing security best practices and guidelinesX.1600-X.1601Cloud computing security best practices and guidelinesX.1600-X.1659Cloud computing security implementationX.1600-X.1659 <td>OPEN DISTRIBUTED PROCESSING</td> <td>X.900-X.999</td>                  | OPEN DISTRIBUTED PROCESSING        | X.900-X.999   |
| Network securityX.1030–X.1049Security managementX.1050–X.1069TelebiometricsX.1080–X.1099SECURE APPLICATIONS AND SERVICESX.1100–X.1109Multicast securityX.1100–X.1109Home network securityX.1110–X.1119Mobile securityX.1110–X.1139Web securityX.1140–X.1149Security protocolsX.1140–X.1159Peer-to-peer securityX.1160–X.1159Peer-to-peer securityX.1160–X.1179IPTV securityX.1180–X.1179IPTV securityX.1180–X.1179CybersecurityX.1200–X.1229Countering spamX.1230–X.1249Identity managementX.1300–X.1309Ubiquitous sensor network securityX.1300–X.1309Ubiquitous sensor network securityX.1300–X.1309VBRRSECURITY INFORMATION EXCHANGEVerview of cybersecurityCybersecurityX.1500–X.1519Vulnerability/state exchangeX.1500–X.1519Vulnerability/state exchangeX.1500–X.1519Vulnerability/state exchangeX.1500–X.1519Vulnerability/state exchangeX.1500–X.1519Vulnerability/state exchangeX.1500–X.1519Vulnerability/state exchangeX.1500–X.1579Assured exchangeX.1500–X.1579Assured exchangeX.1500–X.1579CLOUD COMPUTING SECURITYVerview of cloud computing security designX.1600–X.1601Cloud computing security best practices and guidelinesX.1600–X.1679Cloud computing security implementationX.1660–X.1679                                                                               | INFORMATION AND NETWORK SECURITY   |               |
| Security managementX.1050–X.1069TelebiometricsX.1080–X.1099SECURE APPLICATIONS AND SERVICESMulticast securityMulticast securityX.1100–X.1109Home network securityX.1110–X.1119Mobile securityX.1110–X.1119Mobile securityX.1140–X.1139Web security protocolsX.1150–X.1159Peer-to-peer securityX.1160–X.1169Networked ID securityX.1160–X.1179PTV securityX.1170–X.1179IPTV securityX.1120–X.1199CYBERSPACE SECURITYX.1200–X.1229Countering spamX.1230–X.1249Identity managementX.1230–X.1279SECURE APPLICATIONS AND SERVICESX.1300–X.1309Emergency communicationsX.1300–X.1309Ubiquitous sensor network securityX.1310–X.1349CYBERSECURITY INFORMATION EXCHANGEX.1500–X.1519Vulnerability/state exchangeX.1520–X.1539Event/incident/heuristics exchangeX.1500–X.1519Vulnerability/state exchangeX.1500–X.1519Vulnerability/state exchangeX.1500–X.1519Vulnerability/state exchangeX.1500–X.159Heuristics and information requestX.1500–X.159Identification and discoveryX.1500–X.159Assured exchangeX.1500–X.159CLOUD COMPUTING SECURITYX.1600–X.1601Overview of cloud computing security designX.1600–X.1601Cloud computing security best practices and guidelinesX.1600–X.1601Cloud computing security implementationX.1600–X.1679 <td>General security aspects</td> <td>X.1000-X.1029</td> | General security aspects           | X.1000-X.1029 |
| TelebiometricsX.1080-X.1099SECURE APPLICATIONS AND SERVICESMulticast securityX.1100-X.1109Home network securityX.1110-X.1119Mobile securityX.1120-X.1139Web securityX.1140-X.1149Security protocolsX.1140-X.1169Peer-to-peer securityX.1160-X.1169Networked ID securityX.1170-X.1179IPTV securityX.1170-X.1179CYBERSPACE SECURITYCybersecurityX.1200-X.1229Countering spamX.1230-X.1249Identity managementX.1300-X.1309Vbiquitous sensor network securityX.1310-X.139PKI related RecommendationsX.1310-X.139VUbiquitous sensor network securityX.1310-X.139Vulnerability/state exchangeX.1500-X.1519Vulnerability/state exchangeX.1500-X.1519Vulnerability/state exchangeX.1500-X.1519Vulnerability/state exchangeX.1500-X.159Heuristics and information requestX.1500-X.159Identification and discoveryX.1500-X.159Assured exchangeX.1500-X.159Identification and discoveryX.1500-X.159Identification and discoveryX.1500-X.159Identification genuity designX.1600-X.1601Cloud computing security designX.1600-X.1601Cloud computing security best practices and guidelinesX.1600-X.1601Cloud computing security best practices and guidelinesX.160-X.1639Cloud computing security best practices and guidelinesX.1600-X.1639Cloud compu                                                     | Network security                   | X.1030-X.1049 |
| TelebiometricsX.1080-X.1099SECURE APPLICATIONS AND SERVICESMulticast securityX.1100-X.1109Home network securityX.1110-X.1119Mobile securityX.1120-X.1139Web securityX.1140-X.1149Security protocolsX.1140-X.1169Peer-to-peer securityX.1160-X.1169Networked ID securityX.1170-X.1179IPTV securityX.1170-X.1179CYBERSPACE SECURITYCybersecurityX.1200-X.1229Countering spamX.1230-X.1249Identity managementX.1300-X.1309Vbiquitous sensor network securityX.1310-X.139PKI related RecommendationsX.1310-X.139VUbiquitous sensor network securityX.1310-X.139Vulnerability/state exchangeX.1500-X.1519Vulnerability/state exchangeX.1500-X.1519Vulnerability/state exchangeX.1500-X.1519Vulnerability/state exchangeX.1500-X.159Heuristics and information requestX.1500-X.159Identification and discoveryX.1500-X.159Assured exchangeX.1500-X.159Identification and discoveryX.1500-X.159Identification and discoveryX.1500-X.159Identification genuity designX.1600-X.1601Cloud computing security designX.1600-X.1601Cloud computing security best practices and guidelinesX.1600-X.1601Cloud computing security best practices and guidelinesX.160-X.1639Cloud computing security best practices and guidelinesX.1600-X.1639Cloud compu                                                     | *                                  | X.1050-X.1069 |
| Multicast securityX.1100–X.1109Home network securityX.1110–X.1119Mobile securityX.1110–X.1139Web security protocolsX.1140–X.1149Security protocolsX.1150–X.1159Peer-to-peer securityX.1160–X.1169Networked ID securityX.1170–X.1179IPTV securityX.1170–X.1179IPTV securityX.1170–X.1179CYBERSPACE SECURITYX.1200–X.1229Countering spamX.1230–X.1249Identity managementX.1230–X.1249Identity managementX.1300–X.1309Ubiquitous sensor network securityX.1310–X.139PKI related RecommendationsX.1300–X.1309Ubiquitous sensor network securityX.1500–X.1519Vulnerability/state exchangeX.1520–X.1539Vulnerability/state exchangeX.1520–X.1559Heuristics and information requestX.1500–X.1569Identification and discoveryX.1570–X.1579Assured exchangeX.1500–X.1569Identification and discoveryX.1570–X.1579Assured exchangeX.1500–X.1569Identification and discoveryX.1570–X.1579Assured exchangeX.1570–X.1579Overview of cloud computing security best practices and guidelinesX.1600–X.1601Cloud computing security best practices and guidelinesX.1640–X.1659CLOUD computing security best practices and guidelinesX.1640–X.1679                                                                                                                                                              |                                    | X.1080-X.1099 |
| Home network securityX.1110–X.1119Mobile securityX.1120–X.1139Web securityX.1120–X.1139Web security protocolsX.1150–X.1159Peer-to-peer securityX.1160–X.1169Networked ID securityX.1170–X.1179IPTV securityX.1170–X.1179IPTV securityX.1100–X.1199CYBERSPACE SECURITYX.1200–X.1229Countering spamX.1200–X.1229Countering spamX.120–X.1249Identity managementX.1200–X.1279SECURE APPLICATIONS AND SERVICESX.1300–X.1309Ubiquitous sensor network securityX.1310–X.1339PKI related RecommendationsX.1300–X.1309Ubiquitous sensor network securityX.1500–X.1519Vulnerability/state exchangeX.1500–X.1519Vulnerability/state exchangeX.150–X.1559Heuristics and information requestX.1500–X.1559Identification and discoveryX.150–X.1559Identification and discoveryX.150–X.1569Identification and discoveryX.160–X.1601Cloud computing security designX.160                                                              | SECURE APPLICATIONS AND SERVICES   |               |
| Home network securityX.1110–X.1119Mobile securityX.1120–X.1139Web securityX.1120–X.1139Web security protocolsX.1150–X.1159Peer-to-peer securityX.1160–X.1169Networked ID securityX.1170–X.1179IPTV securityX.1170–X.1179IPTV securityX.1100–X.1199CYBERSPACE SECURITYX.1200–X.1229Countering spamX.1200–X.1229Countering spamX.120–X.1249Identity managementX.1200–X.1279SECURE APPLICATIONS AND SERVICESX.1300–X.1309Ubiquitous sensor network securityX.1310–X.1339PKI related RecommendationsX.1300–X.1309Ubiquitous sensor network securityX.1500–X.1519Vulnerability/state exchangeX.1500–X.1519Vulnerability/state exchangeX.150–X.1559Heuristics and information requestX.1500–X.1559Identification and discoveryX.150–X.1559Identification and discoveryX.150–X.1569Identification and discoveryX.160–X.1601Cloud computing security designX.160                                                              | Multicast security                 | X.1100-X.1109 |
| Mobile securityX.1120–X.1139Web securityX.1140–X.1149Security protocolsX.1150–X.1159Peer-to-peer securityX.1160–X.1169Networked ID securityX.1170–X.1179IPTV securityX.1180–X.1199CYBERSPACE SECURITYX.1200–X.129Countering spamX.120–X.129Countering spamX.120–X.129Identity managementX.120–X.1279SECURE APPLICATIONS AND SERVICESX.1300–X.1309Ubiquitous sensor network securityX.1310–X.1339PKI related RecommendationsX.1300–X.1309Ubiquitous sensor network securityX.1310–X.1339PKI related RecommendationsX.1300–X.1309Ubiquitous sensor network securityX.1500–X.1519Vulnerability/state exchangeX.1500–X.1519Vulnerability/state exchangeX.1500–X.1539Event/incident/heuristics exchangeX.1500–X.1549Exchange of policiesX.1500–X.1559Heuristics and information requestX.1500–X.1569Identification and discoveryX.1500–X.1579Assured exchangeX.1500–X.1589CLOUD COMPUTING SECURITYVorview of cloud computing security designX.1600–X.1601Cloud computing security best practices and guidelinesX.1600–X.1679Cloud computing security implementationX.1660–X.1679                                                                                                                                                                                                                   |                                    | X.1110–X.1119 |
| Web securityX.1140–X.1149Security protocolsX.1150–X.1159Peer-to-peer securityX.1160–X.1169Networked ID securityX.1170–X.1179IPTV securityX.1170–X.1179IPTV securityX.1180–X.1199CYBERSPACE SECURITYX.1200–X.1229Countering spamX.1230–X.1249Identity managementX.1250–X.1279SECURE APPLICATIONS AND SERVICESX.1300–X.1309Emergency communicationsX.1300–X.1309Ubiquitous sensor network securityX.1310–X.1339PKI related RecommendationsX.1340–X.1349CYBERSECURITY INFORMATION EXCHANGEX.1500–X.1519Overview of cybersecurityX.1500–X.1519Vulnerability/state exchangeX.1520–X.1539Event/incident/heuristics exchangeX.1540–X.1549Exchange of policiesX.1500–X.1559Heuristics and information requestX.1500–X.1569Identification and discoveryX.1570–X.1579Assured exchangeX.1500–X.1589CLOUD COMPUTING SECURITYVulnerability/state practices and guidelinesOverview of cloud computing security best practices and guidelinesX.1600–X.1601Cloud computing security best practices and guidelinesX.1600–X.1679                                                                                                                                                                                                                                                                                |                                    | X.1120–X.1139 |
| Security protocolsX.1150–X.1159Peer-to-peer securityX.1160–X.1169Networked ID securityX.1170–X.1179IPTV securityX.1170–X.1179IPTV securityX.1180–X.1199CYBERSPACE SECURITYX.1200–X.1229Countering spamX.1230–X.1249Identity managementX.1230–X.1279SECURE APPLICATIONS AND SERVICESEmergency communicationsEmergency communicationsX.1300–X.1309Ubiquitous sensor network securityX.1310–X.1339PKI related RecommendationsX.1340–X.1349CYBERSECURITY INFORMATION EXCHANGEX.1500–X.1519Vulnerability/state exchangeX.1520–X.1539Event/incident/heuristics exchangeX.1520–X.1559Heuristics and information requestX.1560–X.1569Identification and discoveryX.1570–X.1579Assured exchangeX.1570–X.1579Assured exchangeX.1500–X.1601CLOUD COMPUTING SECURITYV.1600–X.1601Overview of cloud computing security best practices and guidelinesX.1600–X.1601Cloud computing security best practices and guidelinesX.1640–X.1659CLoud computing security best practices and guidelinesX.1640–X.1659                                                                                                                                                                                                                                                                                                    |                                    | X.1140–X.1149 |
| Peer-to-peer securityX.1160–X.1169Networked ID securityX.1170–X.1179IPTV securityX.1180–X.1199CYBERSPACE SECURITYX.1200–X.1229Countering spamX.1200–X.1249Identity managementX.120–X.1249SECURE APPLICATIONS AND SERVICESX.1300–X.1309Ubiquitous sensor network securityX.1310–X.1339PKI related RecommendationsX.1340–X.1349CYBERSECURITY INFORMATION EXCHANGEX.1500–X.1519Vulnerability/state exchangeX.1500–X.1519Vulnerability/state exchangeX.1500–X.1559Heuristics and information requestX.1500–X.1559Identification and discoveryX.1500–X.1579Assured exchangeX.1500–X.1579Assured exchangeX.1500–X.1579Overview of cloud computing securityX.1600–X.1601Cloud computing security best practices and guidelinesX.1600–X.1639Cloud computing security best practices and guidelinesX.1600–X.1679                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                    | X.1150–X.1159 |
| Networked ID securityX.1170–X.1179IPTV securityX.1180–X.1199CYBERSPACE SECURITYXCybersecurityX.1200–X.1229Countering spamX.1230–X.1249Identity managementX.1250–X.1279SECURE APPLICATIONS AND SERVICESX.1300–X.1309Ubiquitous sensor network securityX.1310–X.1339PKI related RecommendationsX.1340–X.1349CYBERSECURITY INFORMATION EXCHANGEVUnerability/state exchangeOverview of cybersecurityX.1500–X.1519Vulnerability/state exchangeX.150–X.1539Exchange of policiesX.150–X.1559Heuristics and information requestX.150–X.1579Assured exchangeX.150–X.1579Assured exchangeX.150–X.1579Assured exchangeX.150–X.1579CLOUD COMPUTING SECURITYVInfo/X.1601Overview of cloud computing security designX.1600–X.1601Cloud computing security best practices and guidelinesX.1640–X.1659Cloud computing security implementationX.1660–X.1679                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                    |               |
| IPTV securityX.1180–X.1199CYBERSPACE SECURITYCybersecurityX.1200–X.1229Countering spamX.1230–X.1249Identity managementX.1250–X.1279SECURE APPLICATIONS AND SERVICESEmergency communicationsX.1300–X.1309Ubiquitous sensor network securityX.1310–X.1339PKI related RecommendationsX.1340–X.1349CYBERSECURITY INFORMATION EXCHANGEOverview of cybersecurityX.1500–X.1519Vulnerability/state exchangeX.1520–X.1539Event/incident/heuristics exchangeX.1550–X.1559Heuristics and information requestX.1500–X.1569Identification and discoveryX.150–X.1559Assured exchangeX.150–X.1579Assured exchangeX.1580–X.1589CLOUD COMPUTING SECURITYOverview of cloud computing security designX.1600–X.1601Cloud computing security best practices and guidelinesX.1600–X.1659Cloud computing security implementationX.1600–X.1679                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                    |               |
| CYBERSPACE SECURITYCybersecurityX.1200-X.1229Countering spamX.1230-X.1249Identity managementX.1250-X.1279SECURE APPLICATIONS AND SERVICESX.1300-X.1309Ubiquitous sensor network securityX.1310-X.1339PKI related RecommendationsX.1300-X.1340CYBERSECURITY INFORMATION EXCHANGEX.1500-X.1519Overview of cybersecurityX.1500-X.1519Vulnerability/state exchangeX.1500-X.1519Exchange of policiesX.1500-X.1559Heuristics and information requestX.1500-X.1559Identification and discoveryX.1500-X.1579Assured exchangeX.1500-X.1579CLOUD COMPUTING SECURITYVOverview of cloud computing security designX.1600-X.1601Cloud computing security best practices and guidelinesX.1600-X.1659Cloud computing security implementationX.1600-X.1659                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                    |               |
| Countering spamX.1230–X.1249Identity managementX.1250–X.1279SECURE APPLICATIONS AND SERVICESEmergency communicationsX.1300–X.1309Ubiquitous sensor network securityX.1310–X.1339PKI related RecommendationsX.1340–X.1349CYBERSECURITY INFORMATION EXCHANGEOverview of cybersecurityX.1500–X.1519Vulnerability/state exchangeX.1520–X.1539Event/incident/heuristics exchangeX.1540–X.1549Exchange of policiesX.1500–X.1559Heuristics and information requestX.1560–X.1569Identification and discoveryX.1570–X.1579Assured exchangeX.1580–X.1589CLOUD COMPUTING SECURITYVOverview of cloud computing securityX.1600–X.1601Cloud computing security best practices and guidelinesX.1640–X.1659Cloud computing security implementationX.1660–X.1679                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                    |               |
| Countering spamX.1230–X.1249Identity managementX.1250–X.1279SECURE APPLICATIONS AND SERVICESEmergency communicationsX.1300–X.1309Ubiquitous sensor network securityX.1310–X.1339PKI related RecommendationsX.1340–X.1349CYBERSECURITY INFORMATION EXCHANGEOverview of cybersecurityX.1500–X.1519Vulnerability/state exchangeX.1520–X.1539Event/incident/heuristics exchangeX.1540–X.1549Exchange of policiesX.1500–X.1559Heuristics and information requestX.1560–X.1569Identification and discoveryX.1570–X.1579Assured exchangeX.1580–X.1589CLOUD COMPUTING SECURITYVOverview of cloud computing securityX.1600–X.1601Cloud computing security best practices and guidelinesX.1640–X.1659Cloud computing security implementationX.1660–X.1679                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                    | X.1200–X.1229 |
| Identity managementX.1250–X.1279SECURE APPLICATIONS AND SERVICESEmergency communicationsX.1300–X.1309Ubiquitous sensor network securityX.1310–X.1339PKI related RecommendationsX.1340–X.1349CYBERSECURITY INFORMATION EXCHANGEOverview of cybersecurityX.1500–X.1519Vulnerability/state exchangeX.1520–X.1539Event/incident/heuristics exchangeX.1520–X.1539Exchange of policiesX.1550–X.1559Heuristics and information requestX.1560–X.1569Identification and discoveryX.1570–X.1579Assured exchangeX.1580–X.1589CLOUD COMPUTING SECURITYOverview of cloud computing securityX.1600–X.1601Cloud computing security best practices and guidelinesX.1640–X.1659Cloud computing security implementationX.1600–X.1679                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                    | X.1230–X.1249 |
| SECURE APPLICATIONS AND SERVICESEmergency communicationsX.1300–X.1309Ubiquitous sensor network securityX.1310–X.1339PKI related RecommendationsX.1340–X.1349CYBERSECURITY INFORMATION EXCHANGEVulnerability/state exchangeOverview of cybersecurityX.1500–X.1519Vulnerability/state exchangeX.1520–X.1539Event/incident/heuristics exchangeX.1520–X.1539Exchange of policiesX.150–X.1559Heuristics and information requestX.150–X.1569Identification and discoveryX.1570–X.1579Assured exchangeX.1580–X.1589CLOUD COMPUTING SECURITYVerview of cloud computing security designX.1600–X.1601Cloud computing security best practices and guidelinesX.1640–X.1659Cloud computing security implementationX.1660–X.1679                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                    |               |
| Ubiquitous sensor network securityX.1310–X.1339PKI related RecommendationsX.1340–X.1349CYBERSECURITY INFORMATION EXCHANGEX.1500–X.1519Overview of cybersecurityX.1500–X.1519Vulnerability/state exchangeX.1520–X.1539Event/incident/heuristics exchangeX.1540–X.1549Exchange of policiesX.1550–X.1559Heuristics and information requestX.1560–X.1569Identification and discoveryX.1570–X.1579Assured exchangeX.1580–X.1589CLOUD COMPUTING SECURITYVerview of cloud computing security designOverview of cloud computing security designX.1600–X.1601Cloud computing security best practices and guidelinesX.1640–X.1659Cloud computing security implementationX.1660–X.1679                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                    |               |
| Ubiquitous sensor network securityX.1310–X.1339PKI related RecommendationsX.1340–X.1349CYBERSECURITY INFORMATION EXCHANGEX.1500–X.1519Overview of cybersecurityX.1500–X.1519Vulnerability/state exchangeX.1520–X.1539Event/incident/heuristics exchangeX.1540–X.1549Exchange of policiesX.1550–X.1559Heuristics and information requestX.1560–X.1569Identification and discoveryX.1570–X.1579Assured exchangeX.1580–X.1589CLOUD COMPUTING SECURITYVerview of cloud computing security designOverview of cloud computing security designX.1600–X.1601Cloud computing security best practices and guidelinesX.1640–X.1659Cloud computing security implementationX.1660–X.1679                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Emergency communications           | X.1300-X.1309 |
| PKI related RecommendationsX.1340–X.1349CYBERSECURITY INFORMATION EXCHANGEX.1500–X.1519Overview of cybersecurityX.1500–X.1519Vulnerability/state exchangeX.1520–X.1539Event/incident/heuristics exchangeX.1540–X.1549Exchange of policiesX.1550–X.1559Heuristics and information requestX.1560–X.1569Identification and discoveryX.1570–X.1579Assured exchangeX.1580–X.1589CLOUD COMPUTING SECURITYVerview of cloud computing security designOverview of cloud computing security designX.1600–X.1601Cloud computing security best practices and guidelinesX.1640–X.1659Cloud computing security implementationX.1640–X.1679                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                    |               |
| CYBERSECURITY INFORMATION EXCHANGEOverview of cybersecurityX.1500–X.1519Vulnerability/state exchangeX.1520–X.1539Event/incident/heuristics exchangeX.1520–X.1539Exchange of policiesX.1550–X.1559Heuristics and information requestX.1560–X.1569Identification and discoveryX.1570–X.1579Assured exchangeX.1580–X.1589CLOUD COMPUTING SECURITYVerview of cloud computing security designX.1600–X.1601Cloud computing security best practices and guidelinesX.1640–X.1659Cloud computing security implementationX.1660–X.1679                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                    |               |
| Overview of cybersecurityX.1500–X.1519Vulnerability/state exchangeX.1520–X.1539Event/incident/heuristics exchangeX.1540–X.1549Exchange of policiesX.1550–X.1559Heuristics and information requestX.1560–X.1569Identification and discoveryX.1570–X.1579Assured exchangeX.1570–X.1579CLOUD COMPUTING SECURITYVerview of cloud computing security designX.1600–X.1601Cloud computing security best practices and guidelinesX.1640–X.1659Cloud computing security implementationX.1660–X.1679                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CYBERSECURITY INFORMATION EXCHANGE |               |
| Vulnerability/state exchangeX.1520-X.1539Event/incident/heuristics exchangeX.1540-X.1549Exchange of policiesX.1550-X.1559Heuristics and information requestX.1560-X.1569Identification and discoveryX.1570-X.1579Assured exchangeX.1580-X.1589CLOUD COMPUTING SECURITYVOverview of cloud computing securityX.1600-X.1601Cloud computing security designX.1602-X.1639Cloud computing security best practices and guidelinesX.1640-X.1659Cloud computing security implementationX.1660-X.1679                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Overview of cybersecurity          | X.1500–X.1519 |
| Event/incident/heuristics exchangeX.1540–X.1549Exchange of policiesX.1550–X.1559Heuristics and information requestX.1560–X.1569Identification and discoveryX.1570–X.1579Assured exchangeX.1570–X.1579CLOUD COMPUTING SECURITYVOverview of cloud computing securityX.1600–X.1601Cloud computing security designX.1602–X.1639Cloud computing security best practices and guidelinesX.1640–X.1659Cloud computing security implementationX.1660–X.1679                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                    |               |
| Exchange of policiesX.1550–X.1559Heuristics and information requestX.1560–X.1569Identification and discoveryX.1570–X.1579Assured exchangeX.1580–X.1589CLOUD COMPUTING SECURITYX.1580–X.1589Overview of cloud computing securityX.1600–X.1601Cloud computing security designX.1602–X.1639Cloud computing security best practices and guidelinesX.1640–X.1659Cloud computing security implementationX.1660–X.1679                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                    |               |
| Heuristics and information requestX.1560–X.1569Identification and discoveryX.1570–X.1579Assured exchangeX.1580–X.1589CLOUD COMPUTING SECURITYVOverview of cloud computing securityX.1600–X.1601Cloud computing security designX.1602–X.1639Cloud computing security best practices and guidelinesX.1640–X.1659Cloud computing security implementationX.1660–X.1679                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •                                  |               |
| Identification and discoveryX.1570–X.1579Assured exchangeX.1580–X.1589CLOUD COMPUTING SECURITYVOverview of cloud computing securityX.1600–X.1601Cloud computing security designX.1602–X.1639Cloud computing security best practices and guidelinesX.1640–X.1659Cloud computing security implementationX.1660–X.1679                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                    |               |
| Assured exchangeX.1580–X.1589CLOUD COMPUTING SECURITYXOverview of cloud computing securityX.1600–X.1601Cloud computing security designX.1602–X.1639Cloud computing security best practices and guidelinesX.1640–X.1659Cloud computing security implementationX.1660–X.1679                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                  |               |
| CLOUD COMPUTING SECURITY<br>Overview of cloud computing securityX.1600–X.1601<br>X.1602–X.1639<br>X.1640–X.1659<br>Cloud computing security best practices and guidelinesCloud computing security implementationX.1640–X.1659<br>X.1660–X.1679                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |               |
| Overview of cloud computing securityX.1600-X.1601Cloud computing security designX.1602-X.1639Cloud computing security best practices and guidelinesX.1640-X.1659Cloud computing security implementationX.1660-X.1679                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | e                                  |               |
| Cloud computing security designX.1602–X.1639Cloud computing security best practices and guidelinesX.1640–X.1659Cloud computing security implementationX.1660–X.1679                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                    | X.1600-X.1601 |
| Cloud computing security best practices and guidelinesX.1640–X.1659Cloud computing security implementationX.1660–X.1679                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                    |               |
| Cloud computing security implementation X.1660–X.1679                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                    |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                    |               |
| A.1000-A.1099                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                    |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                    | 111000 1110// |

For further details, please refer to the list of ITU-T Recommendations.

# **Recommendation ITU-T X.1542**

### Session information message exchange format

#### Summary

In today's environment, computer networks are vulnerable to threats from both inside and outside an organization. Firewall systems log session information about selected incoming and outgoing transmission control protocol/Internet protocol (TCP/IP) connections.

However, those systems that are currently available are not generally interoperable because each system has its own special functionality, control mechanisms and session log formats.

The need most security administrators face today is the maintenance of a consistent session information exchange format across diverse firewall systems and even varied infrastructures.

Recommendation ITU-T X.1542 describes an information model for the session information message exchange format (SIMEF) and provides an associated data model specified with an extensible markup language (XML) schema. The SIMEF defines a data model representation for sharing transport layer session log information about centralized network security management and the security information exchange system. The specification of any transport protocol is beyond the scope of this Recommendation.

#### History

| Edition | Recommendation | Approval   | Study Group | Unique ID*         |
|---------|----------------|------------|-------------|--------------------|
| 1.0     | ITU-T X.1542   | 2016-09-07 | 17          | 11.1002/1000/12852 |

#### Keywords

Data model, message exchange, network security, session information.

i

<sup>\*</sup> To access the Recommendation, type the URL http://handle.itu.int/ in the address field of your web browser, followed by the Recommendation's unique ID. For example, <u>http://handle.itu.int/11.1002/1000/11</u> <u>830-en</u>.

#### FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of telecommunications, information and communication technologies (ICTs). The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical, operating and tariff questions and issuing Recommendations on them with a view to standardizing telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years, establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are prepared on a collaborative basis with ISO and IEC.

#### NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain mandatory provisions (to ensure, e.g., interoperability or applicability) and compliance with the Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some other obligatory language such as "must" and the negative equivalents are used to express requirements. The use of such words does not suggest that compliance with the Recommendation is required of any party.

#### INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence, validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others outside of the Recommendation development process.

As of the date of approval of this Recommendation, ITU had received notice of intellectual property, protected by patents, which may be required to implement this Recommendation. However, implementers are cautioned that this may not represent the latest information and are therefore strongly urged to consult the TSB patent database at <u>http://www.itu.int/ITU-T/ipr/</u>.

#### © ITU 2016

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the prior written permission of ITU.

# **Table of Contents**

# Page

| 1      | Scope      |                                      | 1  |
|--------|------------|--------------------------------------|----|
| 2      | Referen    | ces                                  | 1  |
| 3      | Definiti   | ons                                  | 1  |
|        | 3.1        | Terms defined elsewhere              | 1  |
|        | 3.2        | Terms defined in this Recommendation | 1  |
| 4      | Abbrevi    | ations and acronyms                  | 1  |
| 5      | Conven     | tions                                | 2  |
| 6      | Overvie    | W                                    | 2  |
| 7      | Represe    | ntation and definition               | 3  |
|        | 7.1        | SIMEF XML document                   | 3  |
|        | 7.2        | SIMEF data types                     | 3  |
| 8      | The SIN    | IEF data model                       | 5  |
|        | 8.1        | Data model overview                  | 5  |
|        | 8.2        | The message classes                  | 7  |
| 9      | Security   | consideration                        | 26 |
| Apper  | ndix I – S | IMEF example and schema              | 27 |
|        | I.1        | SIMEF Schema                         | 27 |
|        | I.2        | SIMEF examples                       | 28 |
| Biblio | graphy     |                                      | 31 |

# **Recommendation ITU-T X.1542**

### Session information message exchange format

#### 1 Scope

This Recommendation describes the session information message exchange format (SIMEF), a data model to represent session information exported by security systems such as firewalls, and explains the rationale for using this model. An implementation of the data model in the extensible markup language (XML) is presented, an XML document type definition (DTD) is developed, and examples are provided.

#### 2 References

None.

#### **3** Definitions

#### 3.1 Terms defined elsewhere

None.

#### **3.2** Terms defined in this Recommendation

This Recommendation defines the following term:

**3.2.1** analyser: A network security system that detects attacks by analysing incoming and outgoing session information. It also generates session log and sends to the security management systems.

**3.2.2 session information**: Information containing the transmission control protocol/user datagram protocol (TCP/UDP) session, application service and session entities as viewed by session information providers. A session is defined as the set of traffic that is managed as a unit for translation. TCP/UDP sessions are uniquely identified by the tuple of (source IP address, source TCP/UDP port, target IP address, target TCP/UDP port).

NOTE – This definition is based on [b-IETF RFC 2663].

#### 4 Abbreviations and acronyms

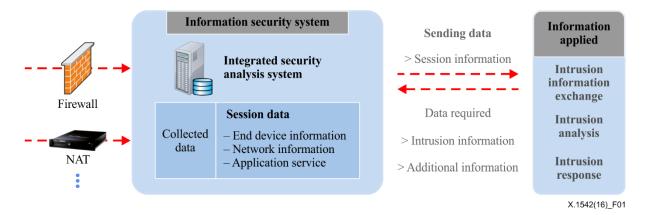
This Recommendation uses the following abbreviations and acronyms:

| BSD   | Berkeley Software Distribution      |
|-------|-------------------------------------|
| CGI   | Common Gateway Interface            |
| DTD   | Document Type Definition            |
| FTP   | File Transfer Protocol              |
| HTTP  | Hypertext Transfer Protocol         |
| IP    | Internet Protocol                   |
| LAN   | Local Area Network                  |
| MAC   | Media Access Control                |
| NAT   | Network Address Translation         |
| NTP   | Network Time Protocol               |
| POSIX | Portable Operating System Interface |
|       |                                     |

1

| SIMEF | Session Information Message Exchange Format   |
|-------|-----------------------------------------------|
| SNA   | Shared Network Architecture                   |
| SNMP  | Simple Network Management Protocol            |
| TCP   | Transmission Control Protocol                 |
| UDP   | User Datagram Protocol                        |
| UML   | Unified Modelling Language                    |
| URL   | Uniform Resource Locator                      |
| UTF   | Universal character set Transformation Format |
| VPN   | Virtual Private Network                       |
| XML   | extensible Markup Language                    |
|       |                                               |

#### 5 Conventions


UNIX ® is a registered trademark of The Open Group.

POSIX ® is a registered trademark of the IEEE.

#### 6 Overview

In today's network environment, computer networks are vulnerable to threats from both inside and outside an organization. Therefore, most network security research has been devoted to the development of integrated network security management systems and network monitoring utilities that allow an organization to capture TCP/IP packets that pass through its network devices, and view the captured data as sequences of conversations between clients and servers. For example, firewall systems log session information about selected incoming and outgoing TCP/IP connections.

The concept of SIMEF is shown in Figure 1. The session information can be collected from firewall systems, network address translation (NAT) devices, and so on. SIMEF specifies the data model that covers client/server network connection, end user device and application service. The SIMEF defines a data model and related message classes for sharing the transport layer session information of interest to security management systems and information sharing systems. It can be applied to the intrusion information exchange system.



**Figure 1 – The concept of SIMEF** 

#### 7 Representation and definition

This Recommendation uses three notations: unified modelling language (UML) to describe the data model, XML to describe the markup used in SIMEF documents and SIMEF markup to represent the documents themselves.

## 7.1 SIMEF XML document

This clause describes SIMEF XML document formatting rules. Most of these rules are "inherited" from those for formatting XML documents. The format of an SIMEF XML document prolog is described in clauses 7.1.1 to 7.1.2.

#### 7.1.1 XML declaration

SIMEF documents being exchanged between SIMEF-compliant applications shall begin with an XML declaration and shall specify the XML version in use. Specification of the encoding in use is recommended.

An SIMEF message should therefore start with:

```
<?xml version="1.0" encoding="UTF-8"?>
<simef: SIMEF-Message version="1.2" xmlns:simef="http://iana.org/simef"/>
```

SIMEF-compliant applications may choose to omit the XML declaration internally to conserve space, adding it only when the message is sent to another destination (e.g., a web browser). This practice is not recommended unless it can be accomplished without loss of each message's version and encoding information.

Implementers may decide, therefore, to have analysers and managers agree out-of-band on the particular document type definition (DTD) they will be using to exchange messages (the standard one as defined here or one with extensions), and then omit the DTD from SIMEF messages. The method for negotiating this agreement is outside the scope of this Recommendation.

# 7.1.2 Character data processing in SIMEF

For portability reasons, SIMEF-compliant applications should not use, and SIMEF messages should not be encoded in, character encodings other than UTF-8 and UTF-16. Consistent with the XML standard, if no encoding is specified for an SIMEF message, UTF-8 is assumed.

# 7.1.2.1 Character entity references

It is recommended that SIMEF-compliant applications use the entity reference form of the characters '&','<', '>', '''', and ''' (single quote) whenever writing these characters in data, to avoid any possibility of misinterpretation.

#### 7.1.2.2 White space processing

All SIMEF elements shall support the "xml:space" attribute.

# 7.1.2.3 Languages in SIMEF

SIMEF-compliant applications shall specify the language in which their contents are encoded; in general, this can be done by specifying the "xml:lang" attribute for the top-level element and letting all other elements "inherit" that definition.

#### 7.2 SIMEF data types

Within an XML SIMEF message, all data shall be expressed as text, since XML is a text-formatting language. It provides typing information for the attributes of the classes in the data model. Each data type in the model has specific formatting requirements in an XML SIMEF message; these requirements are set forth in this clause.

#### 7.2.1 Integers

Integer attributes are represented by the INTEGER data type. Integer data shall be encoded in Base 10 or Base 16. Base 10 integer encoding uses the digits '0' to '9' and an optional sign ('+' or '-'). For example, "123", "-456". Base 16 integer encoding uses the digits '0' to '9' and 'a' to 'f' (or their uppercase equivalents), and is preceded by the characters "0x". For example, "0x1a2b".

#### 7.2.2 Real numbers

Real (floating-point) attributes are represented by the REAL data type. Real data shall be encoded in Base 10. Real encoding is that of the Portable Operating System Interface (POSIX) 1003.1 [b-IEEE 1003.1] "strtod" library function: an optional sign ('+' or '-') followed by a non-empty string of decimal digits, optionally containing a radix character, then an optional exponent part. An exponent part consists of an 'e' or 'E', followed by an optional sign, followed by one or more decimal digits. For example, "123.45e02", "-567, 89e-03". SIMEF-compliant applications shall support both the '.' and ',' radix characters.

#### 7.2.3 Characters and strings

Single character attributes are represented by the CHARACTER data type. Multi-character attributes of known length are represented by the STRING data type. Character and string data have no special formatting requirements, other than the need to occasionally use character references to represent special characters.

#### 7.2.3.1 Character entity references

Within XML documents, certain characters have special meanings in some contexts. To include the actual character itself in one of these contexts, a special escape sequence, called an entity reference, shall be used.

| The characters | that cometimes | need to be escaped | and their entit | v referencesare. |
|----------------|----------------|--------------------|-----------------|------------------|
| The characters | that sometimes | need to be escaped | and then entit  | y foreneosare.   |

| Character | Entity reference |
|-----------|------------------|
| &         | &                |
| <         | <                |
| >         | >                |
| "         | "                |
| 1         | '                |

#### 7.2.3.2 Character code references

Any character defined by the [b-ISO/IEC 10646] and Unicode standards may be included in an XML document by the use of a character reference. A character reference is started with the characters '&' and '#', and ended with the character ';'. Between these characters, the character code for the character is inserted.

If the character code is preceded by an 'x' it is interpreted in hexadecimal (base 16); otherwise, it is interpreted in decimal (base 10). For instance, the ampersand (&) is encoded as & or & and the less-than sign (<) is encoded as &#60; or &#x003C;. Any 1, 2, or 4 byte character specified in ISO/IEC 10646 and Unicode standards can be included in a document using this technique.

#### 7.2.4 Bytes

Binary data is represented by the BYTE (and BYTE[]) data type. Binary data shall be encoded in its entirety using base64.

#### 7.2.5 Enumerated types

Enumerated types are represented by the ENUM data type, and consist of an ordered list of acceptable values.

#### 7.2.6 Date-time strings

Date-time strings are represented by the DATETIME data type. Each date-time string identifies a particular instant in time; ranges are not supported. Date-time strings are formatted according to a subset of [b-ISO 8601:2004], as show below. Section references in parentheses refer to clauses of [b-ISO 8601:2004].

#### 7.2.7 NTP timestamps

Network time protocol (NTP) timestamps are represented by the NTPSTAMP data type and are described in detail in [b-IETF RFC 1305] and [b-IETF RFC 5905]. An NTP timestamp is a 64-bit unsigned fixed-point number. The integer part is in the first 32 bits, and the fraction part is in the second 32 bits. Within SIMEF messages, NTP timestamps shall be encoded as two 32 bit hexadecimal values, separated by a period ('.'). For example, "0x12345678.0x87654321".

#### 7.2.8 Port lists

Port lists are represented by the PORTLIST data type and consist of a comma-separated list of numbers (individual integers) and ranges (N–M means ports N to M, inclusive). Any combination of numbers and ranges may be used in a single list. For example,

"5-25,37,42,43,53,69-119,123-514".

#### 7.2.9 Unique identifiers

There are two types of unique identifier used in this Recommendation. Both are represented by STRING data types. These identifiers are implemented as attributes on the relevant XML elements, and they shall have unique values as follows.

- 1 The Device class' (clause 8.2.3.2) "deviceid" attribute, if specified, shall have a value that is unique across all analysers in the intrusion detection environment.
- 2 The default value is "0", which indicates that the analyser cannot generate unique identifiers.

The "ident" attribute, if specified, of several classes shall have a value that is unique across all messages sent by the individual analyser. The "ident" attribute value shall be unique for each particular combination of data identifying an object, not for each object. Objects may have more than one "ident" value associated with them. For example, an identification of a host by name would have one value, while an identification of that host by address would have a second, and an identification of that host by both name and address would have yet another.

The default value is "0", which indicates that the analyser cannot generate unique identifiers.

The specification of methods for creating the unique values contained in these attributes is outside the scope of this Recommendation.

#### 8 The SIMEF data model

In this clause, the individual components of the SIMEF data model are explained in detail. UML diagrams of the model are provided to show how the components are related to each other.

#### 8.1 Data model overview

The relationship between the principal components of the data model is shown in Figure 2. The top-level class is SIMEF-Message; each type of message is a subclass of this top-level class. There

are two types of messages defined: Connects and Heartbeats. Within each message, subclasses of the message class are used to provide the detailed information carried in the message. The Connect message class has several subclasses such as devices, policy, source, target, and additional data.

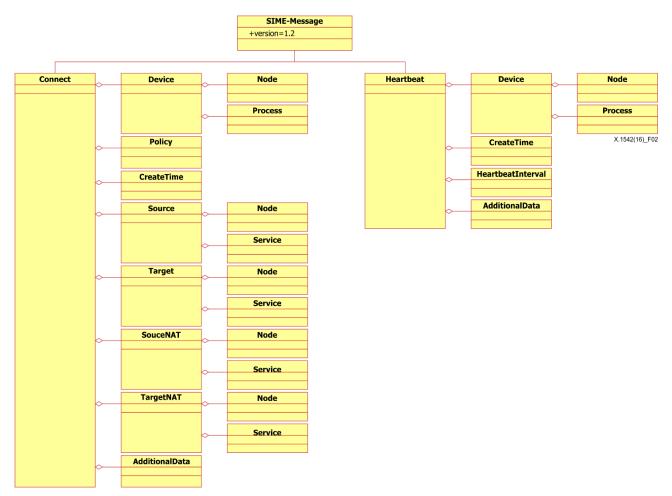



Figure 2 – The SIMEF data model

#### 8.1.1 SIMEF classes

All SIMEF messages are instances of the SIMEF-Message class; Connect and Heartbeat. The individual classes are described in this clause. See Figure 3, Table 1 and Table 2.

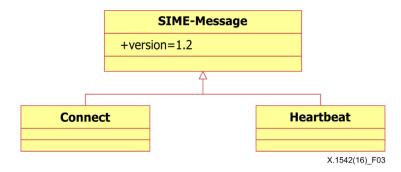
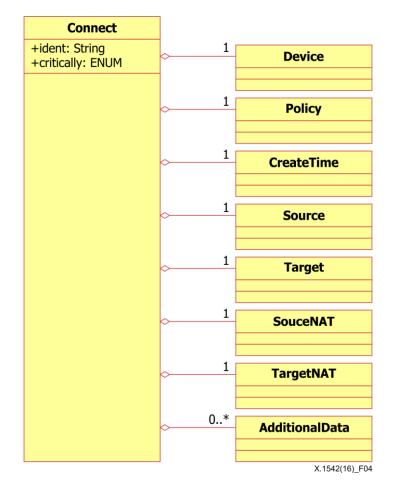



Figure 3 – The top-level class of the SIMEF data model

| Attribute | Usage    | Data type | Description                |
|-----------|----------|-----------|----------------------------|
| Version   | Required | STRING    | SIMEF Version Information, |
|           |          |           | Default Value: 1.2         |

Table 1 – Attributes of SIMEF classes

| Table 2 – Components of SIMEF classes |
|---------------------------------------|
|---------------------------------------|


| Classes   | Aggregation | Data type | Description                                            |
|-----------|-------------|-----------|--------------------------------------------------------|
| Connect   | Exactly one |           | Session Information Class                              |
| Heartbeat | Zero or one |           | System Status Information Class,<br>Optional Providing |

#### 8.2 The message classes

The individual classes are described in clauses 8.2.1 to 8.2.4.

#### 8.2.1 Connect class

The connect class is for containing the session information. It expresses the type of log generated by the connection in the firewall, it also shows all information about the connection attempts to the interior as well as the outside. See Table 3. The value allowed for the criticality attributes with the Connect class is shown in Table 4. A connect class is composed of several aggregate classes, as shown in Figure 4. The aggregate classes themselves are described in Table 5.

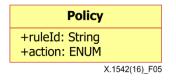


**Figure 4** – The aggregate classes of the Connect class

| Attribute   | Usage    | Data type | Description                                                                                                               |
|-------------|----------|-----------|---------------------------------------------------------------------------------------------------------------------------|
| ident       | Optional | STRING    | Unique ID for the access information                                                                                      |
| criticality | Optional | ENUM      | Classification according to the assessment of<br>the event that is generated by the connection,<br>Default Value: Unknown |

#### Table 3 – Attributes of the Connect class

#### Table 4 – Value of criticality attribute


| Value | Keyword    | Definition                                                       |
|-------|------------|------------------------------------------------------------------|
| 0     | unknown    | When the effect of the event is unknown, or cannot be determined |
| 1     | normal     | If the normal connection                                         |
| 2     | suspicious | If the suspicious connection                                     |
| 3     | warning    | If the connection can be an alarm                                |
| 4     | critical   | If the connection is sensitive to the action                     |

#### Table 5 – Components of the Connect class

| Class          | Aggregation  | Data type | Description                                                                     |
|----------------|--------------|-----------|---------------------------------------------------------------------------------|
| Device         | Exactly one  |           | Information of the analyser generating a log                                    |
| Policy         | Exactly one  |           | Information carried in the analyser for the connection                          |
| CreateTime     | Exactly one  | DATETIME  | Time for the log creation                                                       |
| Source         | Exactly one  |           | The source for the event causing the connection                                 |
| Target         | Exactly one  |           | Destination information of an event that causes a connection                    |
| SourceNAT      | Exactly one  |           | NAT source information in the event that causes the connection                  |
| TargetNAT      | Exactly one  |           | NAT destination information of an event that causes a connection                |
| AdditionalData | Zero or more |           | Additional information generated by the detector that is not in the other class |

#### 8.2.1.1 Policy class

The Policy class provides the action information to indicate is how to deal with a session in the analyser. See Figure 5.



**Figure 5** – The policy class

The values allowed for action attributes of the Policy class (see Table 6) are listed in Table 7.

| Attribute | Usage    | Data type | Description                                                                                                      |
|-----------|----------|-----------|------------------------------------------------------------------------------------------------------------------|
| ruleId    | Optional | STRING    | The unique identifier of the firewall policy to be generated by the connection                                   |
| action    | Optional | ENUM      | Classification according to the firewall of the operation caused<br>by the connection,<br>Default Value: Unknown |

Table 6 – Attributes of Policy class

#### Table 7 – Value of action attribute

| Value | Keyword | Definition                                                                                                    |  |
|-------|---------|---------------------------------------------------------------------------------------------------------------|--|
| 0     | unknown | If the unknown behaviour                                                                                      |  |
| 1     | pass    | If allowing the connection                                                                                    |  |
| 2     | block   | If denying the connection                                                                                     |  |
| 3     | protect | If encrypting the packet transmitted or inserting an integrity check code [virtual private network (VPN) log] |  |
| 4     | reject  | If rejecting the connection. However, providing the error messages when the access denied                     |  |

#### 8.2.2 Heartbeat class

Analysers use Heartbeat messages to indicate their current status to managers. Heartbeats are intended to be sent in a regular period, say, every 10 min or every hour. The receipt of a Heartbeat message from an analyser indicates to the manager that the analyser is up and running; lack of a Heartbeat message (or more likely, lack of some number of consecutive Heartbeat messages) indicates that the analyser or its network connection has failed.

All managers shall support the receipt of Heartbeat messages; however, the use of these messages by analysers is optional. Developers of manager software should permit the software to be configured on a per-analyser basis to use/not use Heartbeat messages. A Heartbeat message is composed of several aggregate classes, as shown in Figure 6.

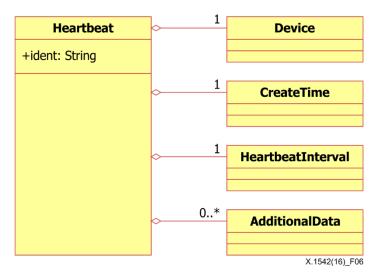
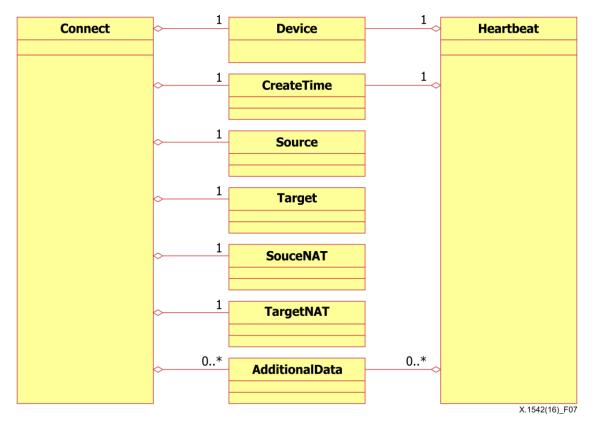



Figure 6 – The aggregate classes of the heartbeat class

Information about the attribute and components of the Heartbeat class is shown in Table 8 and Table 9, respectively.

| Attribute | Usage    | Data type | Description                          |
|-----------|----------|-----------|--------------------------------------|
| ident     | Optional | STRING    | Unique identifier for the Heartbeat. |

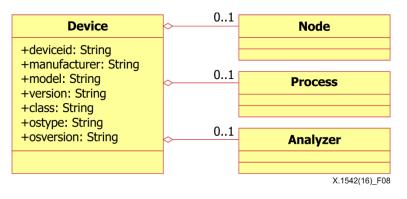

Table 8 – Attribute of the Heartbeat class

| Classes           | Aggregation  | Data type | Description                                                                   |
|-------------------|--------------|-----------|-------------------------------------------------------------------------------|
| Device            | exactly one  |           | Identification information for the analyser that originated the heartbeat     |
| CreateTime        | exactly one  | DATETIME  | The time the heartbeat was created                                            |
| HeartbeatInterval | exactly one  | INTEGER   | The interval in seconds at which heartbeats are generated.                    |
| AdditionalData    | zero or more |           | Information included by the analyser that does<br>not fit into the data model |

#### Table 9 – Components of the Heartbeat class

#### 8.2.3 Core classes

The core classes (Device, CreateTime, Source, Target, SourceNAT, TargetNAT, and AdditionalData) are the main parts of Connect and Heartbeat classes, as shown in Figure 7. The individual classes are described in this clause.






#### 8.2.3.1 Device class

The Device class identifies the analyser from which the Connect or Heartbeat message originates. Only one device may be encoded for each connect or heartbeat, and that shall be the device at which the connect or heartbeat originated.

The Device class is composed of three aggregate classes, as shown in Figure 8.



**Figure 8** – The aggregate classes of the Device class

The Device class has seven attributes, as shown in Table 10.

| Attribute    | Usage    | Data type | Description                                                                                                                                                                                                                  |
|--------------|----------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| deviceid     | Optional | STRING    | A unique identifier for the device. If the device<br>makes use of the "ident" attributes on other classes<br>to provide unique identifiers for those objects,<br>then it shall also provide a valid "deviceid"<br>attribute. |
| Manufacturer | Optional | STRING    | The manufacturer of the device software or hardware.                                                                                                                                                                         |
| Model        | Optional | STRING    | The model name/number of the device software or hardware.                                                                                                                                                                    |
| Version      | Optional | STRING    | The version number of the device software or hardware.                                                                                                                                                                       |
| Class        | Optional | STRING    | The class of device software or hardware.                                                                                                                                                                                    |
| Ostype       | Optional | STRING    | Operating system name.                                                                                                                                                                                                       |
| osversion    | Optional | STRING    | Operating system version.                                                                                                                                                                                                    |

#### Table 10 – Attributes of device class

For the ostype attribute on POSIX 1003.1 compliant systems, this is the value returned in utsname.sysname by the uname() system call, or the output of the "uname -s" command.

For the osversion attribute on POSIX 1003.1 compliant systems, this is the value returned in utsname.release by the uname() system call, or the output of the "uname -r" command.

The contents of "manufacturer", "model", "version", and "class" attributes are vendor-specific, but may be used together to identify different types of analysers.

The aggregate classes that make up a Device class are explained in Table 11.

| Classes  | Aggregation | Data type | Description                                                                                              |
|----------|-------------|-----------|----------------------------------------------------------------------------------------------------------|
| Node     | Zero or one |           | Information about the host or device on which the analyser resides (network address, network name, etc.) |
| Process  | Zero or one |           | Information about the process in which the analyser is executing                                         |
| Analyser | Zero or one |           | Information about the analyser through which the message may have gone.                                  |

| <b>Table 11 –</b> | - Components | of device class |
|-------------------|--------------|-----------------|
|-------------------|--------------|-----------------|

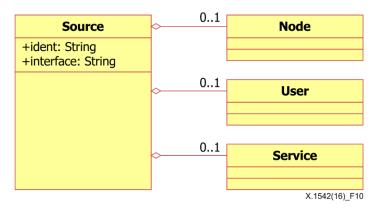
#### 8.2.3.2 CreateTime class

The CreateTime class is used to indicate the current date and time on the device. If this difference should then be used to adjust the times in the <CreateTime> and < NTP timestamps > elements, then NTP timestamps should also be adjusted.



**Figure 9 – The CreateTime class** 

The attribute of the CreateTime class is shown in Table 12.


Table 12 – Attribute of the CreateTime class

| Attribute | Usage    | Data type | Description                                       |
|-----------|----------|-----------|---------------------------------------------------|
| ntpstamp  | Required | ntpstamp  | Information about the current time on the device. |

#### 8.2.3.3 Source class

The Source class contains information about the possible source(s) of the event(s) that generated a session. An event may have more than one source (e.g., in a distributed denial-of-service attack).

The Source class is composed of three aggregate classes, as shown in Figure 10.

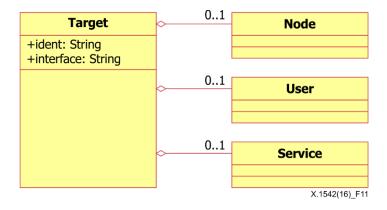


**Figure 10 – The aggregate classes of the Source class** 

The Source class has two attributes shown in Table 13.

| Attribute | Usage    | Data type | Description                                                                                                               |
|-----------|----------|-----------|---------------------------------------------------------------------------------------------------------------------------|
| ident     | Optional | STRING    | A unique identifier for this source.                                                                                      |
| Interface | Optional | STRING    | May be used by a network-based device with<br>multiple interfaces to indicate which interface<br>this source was seen on. |

The aggregate classes that make up Source class are explained in Table 14.


 Table 14 – Components of the Source class

| Classes | Aggregation | Data type | Description                                                                                                             |
|---------|-------------|-----------|-------------------------------------------------------------------------------------------------------------------------|
| Node    | Zero or one |           | Information about the host or device that appears<br>to be causing the events (network address,<br>network name, etc.). |
| User    | Zero or one |           | Information about the user that appears to be causing the event(s).                                                     |
| Service | Zero or one |           | Information about the network service involved in the event(s).                                                         |

#### 8.2.3.4 Target class

The Target class contains information about the possible target(s) of the event(s) that generated a session. An event may have more than one target (e.g., in the case of a port sweep).

The Target class is composed of three aggregate classes, as shown in Figure 11.



**Figure 11 – The aggregate classes of the Target class** 

The Target class has two attributes, as shown in Table 15.

| Attribute | Usage    | Data type                                                                                                              | Description                          |
|-----------|----------|------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| ident     | Optional | STRING                                                                                                                 | A unique identifier for this target. |
| Interface | Optional | STRING May be used by a network-based device with multiple interfaces to indicate which interface this target was seen |                                      |

The aggregate classes that make up the Target class are explained in Table 16.

| Classes | Aggregation | Data type | Description                                                                                                         |
|---------|-------------|-----------|---------------------------------------------------------------------------------------------------------------------|
| Node    | Zero or one |           | Information about the host or device at which the event(s) (network address, network name, etc.) is being directed. |
| User    | Zero or one |           | Information about the user at which the event(s) is being directed.                                                 |
| Service | Zero or one |           | Information about the network service involved in the event(s).                                                     |

**Table 16 – Components of Target class** 

#### 8.2.3.5 SourceNAT class

The SourceNAT class contains information about the possible source(s) of the NAT event(s) that generated a session. An event may have more than one source transformed by NAT.

The SourceNAT class is composed of three aggregate classes, as shown in Figure 12.

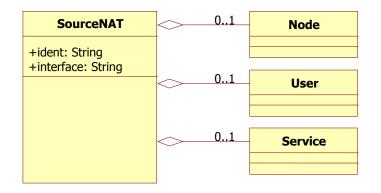



Figure 12 – The aggregate classes of the SourceNAT class

The Source class has two attributes, as shown in Table 17.

| Attribute | Usage    | Data type | Description                                                                                                                                  |
|-----------|----------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------|
| ident     | Optional | STRING    | A unique identifier for this source transformed by NAT.                                                                                      |
| interface | Optional | STRING    | May be used by a network-based device with multiple<br>interfaces to indicate which interface this source<br>transformed by NAT was seen on. |

Table 17 – Attributes of the SourceNAT class

The aggregate classes that make up the SourceNAT class are explained in Table 18.

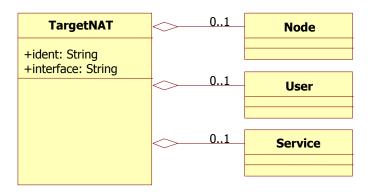

| Classes | Aggregation | Data type | Description                                                                                                       |
|---------|-------------|-----------|-------------------------------------------------------------------------------------------------------------------|
| Node    | Zero or one |           | Information about the host or device that appears to be causing the events (network address, network name, etc.). |
| User    | Zero or one |           | Information about the user that appears to be causing the event(s).                                               |
| Service | Zero or one |           | Information about the network service involved in the event(s).                                                   |

Table 18 – Components of the SourceNAT class

#### 8.2.3.6 TargetNAT class

The TargetNAT class contains information about the possible target(s) of the NAT event(s) that generated a session. An event may have more than one target transformed by NAT.

The TargetNAT class is composed of three aggregate classes, as shown in Figure 13.





The TargetNAT class has two attributes, as shown in Table 19.

| Attribute | Usage    | Data type | Description                                                                                                                                  |
|-----------|----------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------|
| ident     | Optional | STRING    | A unique identifier for this target transformed by NAT.                                                                                      |
| interface | Optional | STRING    | May be used by a network-based device with multiple<br>interfaces to indicate which interface this target transformed<br>by NAT was seen on. |

Table 19 – Attributes of the TargetNAT class

The aggregate classes that make up Target class are explained in Table 20.

| Classes | Aggregation | Data type | Description                                                                                                         |
|---------|-------------|-----------|---------------------------------------------------------------------------------------------------------------------|
| Node    | Zero or one |           | Information about the host or device at which the event(s) (network address, network name, etc.) is being directed. |
| User    | Zero or one |           | Information about the user at which the event(s) is being directed.                                                 |
| Service | Zero or one |           | Information about the network service involved in the event(s).                                                     |

#### 8.2.3.7 AdditionalData class

The AdditionalData class is used to provide information that cannot be represented by the SIMEF data model. AdditionalData can be used to provide atomic data (integers, strings, etc.) in cases where only small amounts of additional information need to be sent; it can also be used to extend the data model and the DTD to support the transmission of complex data (such as packet headers).

| AdditionalData                    |
|-----------------------------------|
| +type: String<br>+meaning: String |
| X.1542(16)_F14                    |

Figure 14 – The AdditionalData class

The AdditionalData class has two attributes, as shown in Table 21.

| Attribute | Usage    | Data type | Description                                                                          |
|-----------|----------|-----------|--------------------------------------------------------------------------------------|
| type      | Required | ENUM      | A data type describing the meaning of the element content.<br>Default Value : string |
| meaning   | Optional | STRING    | A string describing the meaning of the element content.                              |

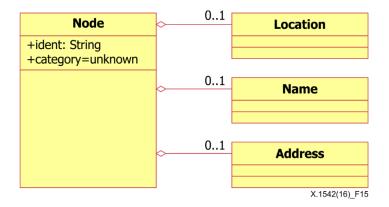
| <b>Table 21 –</b> | - Attributes | of the | AdditionalData | class |
|-------------------|--------------|--------|----------------|-------|
|-------------------|--------------|--------|----------------|-------|

The types of AdditionalData class are represented and the permitted values for this attribute are shown in Table 22.

| Value | Keyword     | Definition                                                                |  |
|-------|-------------|---------------------------------------------------------------------------|--|
| 0     | boolean     | The element contains a boolean value, i.e., the strings "true" or "false" |  |
| 1     | byte        | The element content is a single 8 bit byte                                |  |
| 2     | character   | The element content is a single character                                 |  |
| 3     | date-time   | The element content is a date-time string                                 |  |
| 4     | integer     | The element content is an integer                                         |  |
| 5     | ntpstamp    | The element content is an NTP timestamp                                   |  |
| 6     | portlist    | The element content is a list of ports                                    |  |
| 7     | real        | The element content is a real number                                      |  |
| 8     | string      | The element content is a string                                           |  |
| 9     | Byte-string | The element is a byte[]                                                   |  |
| 10    | xml         | The element content is XML-tagged data                                    |  |

Table 22 – Value of Type attribute

These values of the AdditionalData class are vendor/implementation dependent; the method for ensuring that managers understand the strings sent by analysers is outside the scope of this Recommendation.


#### 8.2.4 Support classes

The support classes make up the major parts of the core classes and are shared between them.

#### 8.2.4.1 Node class

The Node class is used to identify hosts and other network devices (routers, switches, etc.).

The Node class is composed of three aggregate classes, as shown in Figure 15. The attributes, value of type attribute and components of the Node class are shown in Table 23, Table 24 and Table 25, respectively.



#### Figure 15 – The aggregate classes of the Node class

| Attribute | Usage    | Data type | type Description                                          |  |
|-----------|----------|-----------|-----------------------------------------------------------|--|
| ident     | Optional | STRING    | A unique identifier for the node; see clause 7.2.9.       |  |
| category  | Optional | ENUM      | The "domain" from which the name information was obtained |  |
|           |          |           | Default value = unknown                                   |  |

# Table 23 – Attributes of the Node class

| Value | Keyword  | Definition                               |
|-------|----------|------------------------------------------|
| 0     | Unknown  | Domain unknown or not relevant           |
| 1     | ads      | Windows 2000 Advanced Directory Services |
| 2     | afs      | Andrew File System (Transarc)            |
| 3     | coda     | Coda Distributed File System             |
| 4     | dfs      | Distributed File System (IBM)            |
| 5     | dns      | Domain Name System                       |
| 6     | hosts    | Local hosts file                         |
| 7     | kerberos | Kerberos realm                           |
| 8     | nds      | Novell Directory Services                |
| 9     | nis      | Network Information Services (Sun)       |
| 10    | nisplus  | Network Information Services Plus (Sun)  |
| 11    | nt       | Windows NT domain                        |
| 12    | wfw      | Windows for Workgroups                   |

# Table 24 – Value of Type attribute

| Classes  | Aggregation  | Data type                            | Description                                                                                                                         |  |
|----------|--------------|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--|
| Location | Zero or one  | STRING The location of the equipment |                                                                                                                                     |  |
| Name     | Zero or one  | STRING                               | TRING The name of the equipment. This information shall be provided if no Address information is given.                             |  |
| Address  | Zero or more |                                      | The network or hardware address of the equipment.<br>Unless a name (above) is provided, at least one address<br>shall be specified. |  |

Table 25 – Components of the Node class

#### 8.2.4.2 The Address class

The Address class is used to represent network, hardware, and application addresses.

The Address class is composed of two aggregate classes, as shown in Figure 16.

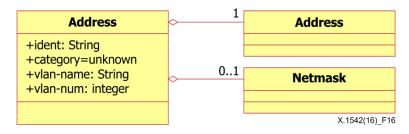



Figure 16 – The aggregate classes of the Address class

The attributes, value of type attribute and components of the Address class are listed in Table 26, Table 27 and Table 28, respectively.

| Attribute | Usage    | Data type | Description                                                                                                             |  |
|-----------|----------|-----------|-------------------------------------------------------------------------------------------------------------------------|--|
| ident     | Optional | STRING    | A unique identifier for the address; see clause 7.2.9.                                                                  |  |
| category  | Optional | ENUM      | The type of address represented. The permitted values for<br>this attribute are shown below.<br>Default value: unknown. |  |
| vlan-name | Optional | STRING    | The name of the local area network (LAN) (virtual LAN) to which the address belongs.                                    |  |
| Vlan-num  | Optional | INTEGER   | The number of the LAN (virtual LAN) to which the address belongs.                                                       |  |

Table 26 – Attributes of the Address class

| Value | Keyword       | Definition                                                                                                            |  |
|-------|---------------|-----------------------------------------------------------------------------------------------------------------------|--|
| 0     | unknown       | Address type unknown                                                                                                  |  |
| 1     | atm           | Asynchronous Transfer Mode network address                                                                            |  |
| 2     | e-mail        | Electronic mail address ([b-IETF RFC 2822])                                                                           |  |
| 3     | lotus-notes   | Lotus Notes e-mail address                                                                                            |  |
| 4     | Mac           | Media access control (MAC) address                                                                                    |  |
| 5     | Sna           | IBM Shared Network Architecture (SNA) address                                                                         |  |
| 6     | Vm            | IBM VM ("PROFS") e-mail address                                                                                       |  |
| 7     | ipv4-addr     | IPv4 host address in dotted-decimal notation (a.b.c.d)                                                                |  |
| 8     | ipv4-addr-hex | IPv4 host address in hexadecimal notation                                                                             |  |
| 9     | ipv4-net      | IPv4 network address in dotted-decimal notation, slash, significant bits (a.b.c.d/nn)                                 |  |
| 10    | ipv4-net-mask | IPv4 network address in dotted-decimal notation, slash,<br>network mask in dotted-decimal notation (a.b.c.d./w.x.y.z) |  |
| 11    | ipv6-addr     | IPv6 host address                                                                                                     |  |
| 12    | ipv6-addr-hex | IPv6 host address in hexadecimal notation                                                                             |  |
| 13    | ipv6-net      | IPv6 network address, slash, significant bits                                                                         |  |
| 14    | ipv6-net-mask | IPv6 network address, slash, network mask                                                                             |  |

 Table 27 – Value of Type attribute

Table 28 – Components of the Address class

| Classes | Aggregation | Data type | Description                                                                             |
|---------|-------------|-----------|-----------------------------------------------------------------------------------------|
| Address | Exactly one | STRING    | The address information. The format of this data is governed by the category attribute. |
| Netmask | Zero or one | STRING    | The network mask for the address, if appropriate.                                       |

#### 8.2.4.3 The User class

The User class is used to describe users. It is primarily used as a "container" class for the UserId aggregate class, as shown in Figure 17.

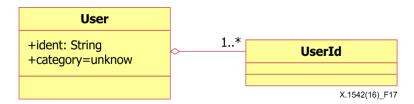



Figure 17 – The aggregate classes of the User class

The attributes, value of type attribute and components of the User class are listed in Table 29, Table 30 and Table 31, respectively.

| Attribute | Usage    | Data type | Description                                                                                                        |  |
|-----------|----------|-----------|--------------------------------------------------------------------------------------------------------------------|--|
| ident     | Optional | STRING    | A unique identifier for the user; see clause 7.2.9.                                                                |  |
| category  | Optional | ENUM      | The type of user represented. The permitted values for this attribute are shown below.<br>Default value = unknown. |  |

#### Table 29 – Attributes of the User class

#### Table 30 – Value of Type attribute

| Value | Keyword     | Definition                         |
|-------|-------------|------------------------------------|
| 0     | unknown     | User type unknown                  |
| 1     | application | An application user                |
| 2     | os-device   | An operating system or device user |

#### Table 31 – Components of the User class

| Classes | Aggregation | Data type | Description                                                  |
|---------|-------------|-----------|--------------------------------------------------------------|
| UserId  | One or more |           | Identification of a user, as indicated by its type attribute |

#### 8.2.4.3.1 The UserId class

The UserId class provides specific information about a user. More than one UserId can be used within the User class to indicate attempts to transition from one user to another, or to provide complete information about privileges of a user (or process).

The UserId class is composed of two aggregate classes, as shown in Figure 18.

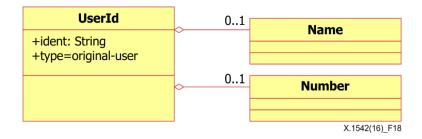



Figure 18 – The aggregate classes of the UserId class

The attributes and value of type attribute of the UserId class are listed in Table 32 and Table 33, respectively.

| Attribute | Usage    | Data type | Description                                                                                                                            |
|-----------|----------|-----------|----------------------------------------------------------------------------------------------------------------------------------------|
| ident     | Optional | STRING    | A unique identifier for the user id, see clause 7.2.9.                                                                                 |
| type      | Optional | ENUM      | The type of user information represented. The<br>permitted values for this attribute are shown below.<br>Default value = original-user |

Table 32 – Attributes of the UserId class

| Value | Keyword           | Definition                                                                                                                                                                                                  |  |
|-------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 0     | current-user      | The current user id being used by the user or process.                                                                                                                                                      |  |
| 1     | original-user     | The actual identity of the user or process being reported on. On those systems that (a) do some type of auditing and (b) support extracting a user id from the "audit id" token, that value should be used. |  |
|       |                   | On those systems that do not support this, and where the user has logged into<br>the system, the "login id" should be used.                                                                                 |  |
| 2     | target-user       | The user id the user or process is attempting to become. This would apply, on<br>Unix systems for example, when the user attempts to use "su", "rlogin",<br>"telnet", etc.                                  |  |
| 3     | user-privs        | Another user id the user or process has the ability to use, or a user id associated with a file permission.                                                                                                 |  |
|       |                   | Multiple UserId elements of this type may be used to specify a list of privileges.                                                                                                                          |  |
| 4     | current-<br>group | The current group id (if applicable) being used by the user or process.                                                                                                                                     |  |
| 5     | group-privs       | Another group id the group or process has the ability to use, or a group id associated with a file permission.                                                                                              |  |
|       |                   | For example, On Berkeley Software Distribution (BSD)-derived Unix systems, multiple UserId elements of this type would be used to include all the group ids on the "group list".                            |  |
| 6     | other-privs       | Not used in a user, group, or process context, only used in the file context.<br>The file permissions assigned to users who do not match either the user or<br>group permissions on the file.               |  |

### Table 33 – Value of Type attribute

The aggregate classes that make up the UserId are listed in Table 34.

#### Table 34 – Components of the UserId class

| Classes | Aggregation | Data type | Description             |
|---------|-------------|-----------|-------------------------|
| Name    | Zero or one | STRING    | A user or group name.   |
| Num     | Zero or one | INTERGER  | A user or group number. |

#### 8.2.4.4 The Process class

The Process class is used to describe processes being executed on sources, targets and analysers.

The Process class is composed of five aggregate classes, as shown in Figure 19.

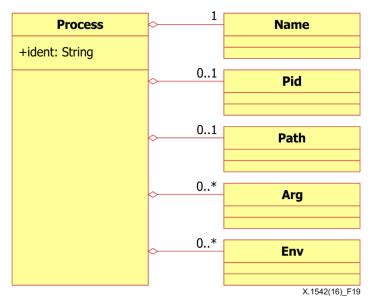



Figure 19 – The aggregate classes of the Process class

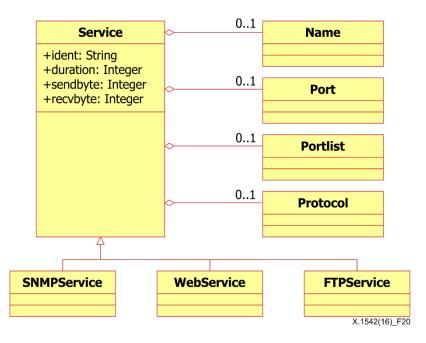
The Process class has one attribute (see Table 35).

| Attribute | Usage    | Data type | Description                                            |
|-----------|----------|-----------|--------------------------------------------------------|
| ident     | Optional | STRING    | A unique identifier for the process; see clause 7.2.9. |

The aggregate classes that make up Process are listed in Table 36.

| Classes | Aggregation  | Data type | Description                                                                                     |
|---------|--------------|-----------|-------------------------------------------------------------------------------------------------|
| Name    | Exactly one  | STRING    | The name of the program being executed.                                                         |
| Pid     | Zero or one  | INTEGER   | The process identifier of the process.                                                          |
| Path    | Zero or one  | STRING    | The full path of the program being executed.                                                    |
| Arg     | Zero or more | STRING    | A command-line argument to the program.                                                         |
| Env     | Zero or more | STRING    | An environment string associated with the process;<br>generally of the format "VARIABLE=value". |

Table 36 – Components of the Process class


In the Process class, the name class is a short name and Multiple arguments may be specified with multiple uses of arg. Multiple environment strings may be specified with multiple uses of env.

#### 8.2.4.5 The Service class

The Service class describes network services on sources and targets. It can identify services by name, port, portlist and protocol. When Service occurs as an aggregate class of Source, it is understood that the service is one from which activity of interest is originating; and that the service is "attached" to the Node, Process, and User information also contained in Source. Likewise, when Service occurs as an aggregate class of Target, it is understood that the service is one to which activity of interest is being directed; and that the service is "attached" to the Node, Process, and User information also contained in Target. If Service occurs in both Source and Target, then information in both locations

should be the same. If information is the same in both locations and implementers wish to carry it in only one location, they should specify it as an aggregate of the Target class.

The Service class is composed of four aggregate classes, as shown in Figure 20.



**Figure 20 – The aggregate classes of the Service class** 

The Service class has four attributes, listed in Table 37.

| Attribute | Usage    | Data type | Description                                            |
|-----------|----------|-----------|--------------------------------------------------------|
| ident     | Optional | STRING    | A unique identifier for the service; see clause 7.2.9. |
| duration  | Optional | INTEGER   | Time for connection                                    |
| sendbyte  | Optional | INTEGER   | byte size by sending after connection                  |
| recvByte  | Optional | INTEGER   | byte size by receiving after connection                |

Table 37 – Attributes of the Service class

The aggregate classes that make up the Service class are listed in Table 38.

| Classes  | Aggregation | Data type | Description                                                                                                                                             |
|----------|-------------|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| Name     | Zero or one | STRING    | The name of the service. Whenever possible, the name<br>from the Internet Assigned Numbers Authority (IANA)<br>list of well-known ports should be used. |
| Port     | Zero or one | INTEGER   | The port number being used.                                                                                                                             |
| Portlist | Zero or one | PORTLIST  | A list of port numbers being used; see clause 7.2.8 for formatting rules.                                                                               |
| Protocol | Zero or one | STRING    | Additional information about the protocol being used.                                                                                                   |

#### 8.2.4.5.1 The WebService class

The WebService class carries additional information related to web traffic.

The WebService class is composed of four aggregate classes, as shown in Figure 21.

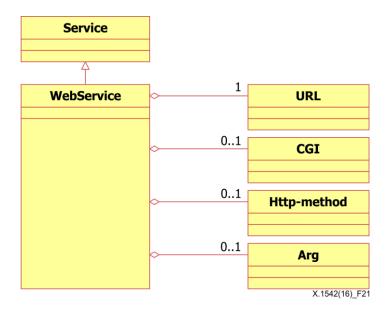



Figure 21 – The aggregate classes of the WebService class

The aggregate classes that make up the WebService class are listed in Table 39.

| Classes     | Aggregation | Data type | Description                                                                   |
|-------------|-------------|-----------|-------------------------------------------------------------------------------|
| URL         | Exactly one | STRING    | The uniform resource locator (URL) in the request.                            |
| CGI         | Zero or one | STRING    | The common gateway interface (CGI) script in the request, without arguments.  |
| Http-method | Zero or one | STRING    | The hypertext transfer protocol (HTTP) method (PUT, GET) used in the request. |
| Arg         | Zero or one | STRING    | The arguments to the CGI script.                                              |

Table 39 – Components of the WebService class

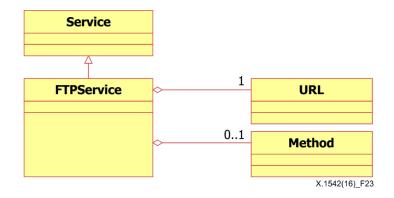
# 8.2.4.5.2 The SNMPService class

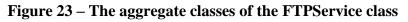
The SNMPService class carries additional information related to simple network management protocol (SNMP) traffic.

The SNMPService class is composed of eight aggregate classes, as shown in Figure 22.



Figure 22 – The aggregate classes of the SNMPService class


The aggregate classes that make up SNMPService are listed in Table 40.


| Classes   | Aggregation | Data type | Description                                           |
|-----------|-------------|-----------|-------------------------------------------------------|
| Oid       | Zero or one | STRING    | The object identifier in the request.                 |
| Community | Zero or one | STRING    | Object's community string                             |
| Command   | Zero or one | STRING    | The command sent to the SNMP server (GET, SET, etc.). |

#### 8.2.4.5.3 The FTPService class

The FTPService class carries additional information related to file transfer protocol (FTP) traffic.

The FTPService class is composed of two aggregate classes, as shown in Figure 23.





The aggregate classes that make up the FTPService class are listed in Table 41.

| Classes | Aggregation | Data type | Description                                    |
|---------|-------------|-----------|------------------------------------------------|
| URL     | Exactly one | STRING    | The URL in the request.                        |
| Method  | Zero or one | STRING    | The FTP method (PUT, GET) used in the request. |

Table 41 – Components of the FTPService class

#### 9 Security consideration

This clause discusses some of the security considerations that shall be taken into account by implementers of the SIMEF.

This Recommendation describes the information model for the session information message exchange format (SIMEF) and provides an associated data model specified with XML schema. The SIMEF defines a data model representation for sharing the transport layer session log information regarding the centralized network security management and security information exchange system.

Although there are no security concerns directly applicable to the format of this data, the data itself may contain security-sensitive information whose confidentiality, integrity or availability may need to be protected.

This Recommendation suggests that the systems used to collect, transmit, process and store this data should be protected against unauthorized use, and that the data itself should be protected against unauthorized access. The means for achieving this protection are outside the scope of this Recommendation.

# **Appendix I**

# SIMEF example and schema

(This appendix does not form an integral part of this Recommendation.)

This appendix gives an example of an XML schema for the SIMEF model. The following examples are XML schema, SYSLOG schema in order to encode the session information into the SIMEF model.

#### I.1 SIMEF Schema

#### I.1.1 XML Schema

```
<?xml version="1.0" encoding="UTF-8"?>
 <simef:SIMEF-Message version="1.2" xmlns:simef="http://iana.org/simef/">
      <Connect ident="1008380" criticality="normal">
          <Device Deviceid="TTA-FW" model="FW1000">
             <Node>
                 <Address category="ipv4-addr">
                   <address>1.1.1.1</address>
                 </Address>
             </Node>
          </Device>
          <CreateTime ntpstamp="0xaaaaaaaaaaaaaaaaaaaa">
                    2010-08-18T15:41:28+00:00
             </CreateTime>
          <Policy Ruleid="45" action="pass"></Policy>
             <Source>
             <Node>
                <Address category="ipv4-addr">
                   <address>2.2.2</address>
                </Address>
             </Node>
             <Service duration="9" size="144">
                 <port>38168</port>
                 <protocol>17</protocol>
             </Service>
          </Source>
          <Target>
             <Node>
                 <Address category="ipv4-addr">
                   <address>3.3.3.3</address>
                 </Address>
             </Node>
             <Service duration="9" size="0">
                 <name>dns</name>
                 <port>53</port>
                 <protocol>17</protocol>
             </Service>
          </Target>
          <Classification origin="vendor-specific">
             <name>45</name>
          </Classification>
      </Connect>
</simef:SIMEF-Message>
```

#### I.1.2 SYSLOG Schema

2014-03-18 15:41:28 LocalO.Notice 1.1.1.1 TTA: TTA-FW device\_id= TTA [Root]system-notification-00257(traffic): start\_time="2014-03-18 15:41:19" duration=9 policy\_id=45 service=dns proto=17 src zone=Untrust dst zone=Trust action=Permit sent=144 rcvd=0 src=2.2.2.2 dst=3.3.3.3 src\_port=38168 dst\_port=53 src-xlated ip=2.2.2.2 port=38168 dst-xlated ip=3.3.3.3 port=53 session\_id=1008380 reason=Close - AGE OUT<000>

#### I.2 SIMEF examples

#### I.2.1 Firewall permission

```
<?xml version="1.0" encoding="UTF-8"?>
<SIMEF-Message version=1.2>
      <Connect ident="1008380" criticality="1">
             <Device Deviceid="TTA-FW" manufacturer="TTA" model="FW1000">
                    <Node>
                           <Address category="ipv4-addr">
                                  <address>1.1.1.1</address>
                           </Address>
                    </Node>
             </Device>
             <Policy Ruleid="45" action="1"></Policy>
             <CreateTime ntpstamp="0xaaaaaaaaaaaaaaaaaaa">
                    2014-03-18T15:41:28+00:00
             </CreateTime>
             <Source>
                    <Node>
                           <Address category="ipv4-addr">
                                  <address>2.2.2</address>
                           </Address>
                    </Node>
                       <Service duration="9" size="144">
                           <port>38168</port>
                           <protocol>17</protocol>
                    </Service>
             </Source>
             <Target>
                    <Node>
                           <Address category="ipv4-addr">
                                 <address>3.3.3.3</address>
                           </Address>
                    </Node>
                    <Service duration="9" size="0">
                           <name>dns</name>
                           <port>53</port>
                           <protocol>17</protocol>
                    </Service>
             </Target>
             <Classification origin="2">
                    <name>45</name>
             </Classification>
      </Connect>
</SIMEF-Message>
```

#### I.2.2 VPN log

```
<?xml version="1.0" encoding="UTF-8"?>

<SIMEF-Message version=1.2>

<Connect ident="1008057" criticality="1">

<Device Deviceid="TTA-VPN" manufacturer="TTA" model="VPN1000">

<Node>

<Address category="ipv4-addr">

<address>1.1.1.1</address>

</Address>
```

```
</Node>
             </Device>
             <Policy ruleid="700" action="3"></Policy>
             <CreateTime ntpstamp="0xaaaaaaaaaaaaaaaaaaaaa">
                    2014-03-19T12:51:22+00:00
             </CreateTime>
             <Source>
                    <Node>
                           <Address category="ipv4-addr">
                                  <address>2.2.2</address>
                           </Address>
                    </Node>
                    <Service duration="41" size="16905">
                           <port>59078</port>
                           <protocol>TCP</protocol>
                    </Service>
             </Source>
             <Target>
                    <Node>
                           <Address category="ipv4-addr">
                                  <address>3.3.3.3</address>
                           </Address>
                    </Node>
                    <Service duration="41" size="1448">
                           <name>junos-http</name>
                           <port>80</port>
                           <protocol>TCP</protocol>
                    </Service>
             </Target>
             <Classification origin="2">
                    <name>700</name>
             </Classification>
      </Connect>
</SIMEF-Message>
      NAT log
<?xml version="1.0" encoding="UTF-8"?>
<SIMEF-Message version=1.2>
      <Connect ident="1009632" criticality="1">
             <Device Deviceid="TTA-FW" manufacturer="TTA" model="FW1000">
             <Node>
                           <Address category="ipv4-addr">
                                  <address>1.1.1.1</address>
                           </Address>
                    </Node>
             </Device>
             <Policy ruleid="57" action="1"></Policy>
             <CreateTime ntpstamp="0xaaaaaaaaaaaaaaaaaaaaa">
                    2014-03-19T16:21:12+00:02
             </CreateTime>
             <Source>
                    <Node>
                           <Address ident="" category="ipv4-addr">
                                  <address>2.2.2</address>
                           </Address>
                    </Node>
                    <Service duration="41" size="16905">
                           <port>59078</port>
                           <protocol>TCP</protocol>
                    </Service>
             </Source>
             <Target>
```

I.2.3

```
<Node>
      <Address ident="" category="ipv4-addr">
```

```
<address>3.3.3.3</address>
                           </Address>
                    </Node>
                    <Service duration="41" size="1448">
                           <name>junos-http</name>
                           <port>80</port>
                           <protocol>TCP</protocol>
                    </Service>
             </Target>
             <SourceNat>
                    <Node>
                           <name>trust</name>
                           <Address category="ipv4-addr">
                                  <address>4.4.4.4</address>
                           </Address>
                    </Node>
                    <Service>
                           <port>59078</port>
                    </Service>
             </SourceNat>
             <TargetNat>
                    <Node>
                           <Address category="ipv4-addr">
                                 <address>5.5.5.5</address>
                           </Address>
                    </Node>
                    <Service>
                           <port>80</port>
                    </Service>
             </TargetNat>
      </Connect>
</SIMEF-Message>
```

# Bibliography

| [b-ISO 8601:2004]   | ISO 8601:2004, Data elements and interchange formats – Information interchange – Representation of dates and times. |
|---------------------|---------------------------------------------------------------------------------------------------------------------|
| [b-ISO/IEC 10646]   | ISO/IEC 10646:2012, Information technology – Universal Coded Character Set (UCS).                                   |
| [b-IEEE Std 1003.1] | IEEE Std 1003.1-2008, IEEE Standard for Information Technology –<br>Portable Operating System Interface (POSIX(R)). |
| [b-IETF RFC 1305]   | IETF RFC 1305 (1992), Network time protocol (version 3):<br>Specification, implementation.                          |
| [b-IETF RFC 2663]   | IETF RFC 2663 (1999), <i>IP network address translator (NAT):</i><br><i>Terminology and considerations</i> .        |
| [b-IETF RFC 2822])  | IETF RFC 2822 (2001), Internet message format.                                                                      |
| [b-IETF RFC 5905]   | IETF RFC 5905 (2010), Network time protocol version 4: Protocol and algorithms specification.                       |

# SERIES OF ITU-T RECOMMENDATIONS

- Series A Organization of the work of ITU-T
- Series D General tariff principles
- Series E Overall network operation, telephone service, service operation and human factors
- Series F Non-telephone telecommunication services
- Series G Transmission systems and media, digital systems and networks
- Series H Audiovisual and multimedia systems
- Series I Integrated services digital network
- Series J Cable networks and transmission of television, sound programme and other multimedia signals
- Series K Protection against interference
- Series L Environment and ICTs, climate change, e-waste, energy efficiency; construction, installation and protection of cables and other elements of outside plant
- Series M Telecommunication management, including TMN and network maintenance
- Series N Maintenance: international sound programme and television transmission circuits
- Series O Specifications of measuring equipment
- Series P Terminals and subjective and objective assessment methods
- Series Q Switching and signalling
- Series R Telegraph transmission
- Series S Telegraph services terminal equipment
- Series T Terminals for telematic services
- Series U Telegraph switching
- Series V Data communication over the telephone network

#### Series X Data networks, open system communications and security

- Series Y Global information infrastructure, Internet protocol aspects and next-generation networks, Internet of Things and smart cities
- Series Z Languages and general software aspects for telecommunication systems