

I n t e r n a t i o n a l T e l e c o m m u n i c a t i o n U n i o n

ITU-T X.1525
TELECOMMUNICATION
STANDARDIZATION SECTOR
OF ITU

(04/2015)

SERIES X: DATA NETWORKS, OPEN SYSTEM
COMMUNICATIONS AND SECURITY

Cybersecurity information exchange – Vulnerability/state
exchange

 Common weakness scoring system

Recommendation ITU-T X.1525

ITU-T X-SERIES RECOMMENDATIONS

DATA NETWORKS, OPEN SYSTEM COMMUNICATIONS AND SECURITY

PUBLIC DATA NETWORKS X.1–X.199

OPEN SYSTEMS INTERCONNECTION X.200–X.299

INTERWORKING BETWEEN NETWORKS X.300–X.399

MESSAGE HANDLING SYSTEMS X.400–X.499

DIRECTORY X.500–X.599

OSI NETWORKING AND SYSTEM ASPECTS X.600–X.699

OSI MANAGEMENT X.700–X.799

SECURITY X.800–X.849

OSI APPLICATIONS X.850–X.899

OPEN DISTRIBUTED PROCESSING X.900–X.999

INFORMATION AND NETWORK SECURITY

General security aspects X.1000–X.1029

Network security X.1030–X.1049

Security management X.1050–X.1069

Telebiometrics X.1080–X.1099

SECURE APPLICATIONS AND SERVICES

Multicast security X.1100–X.1109

Home network security X.1110–X.1119

Mobile security X.1120–X.1139

Web security X.1140–X.1149

Security protocols X.1150–X.1159

Peer-to-peer security X.1160–X.1169

Networked ID security X.1170–X.1179

IPTV security X.1180–X.1199

CYBERSPACE SECURITY

Cybersecurity X.1200–X.1229

Countering spam X.1230–X.1249

Identity management X.1250–X.1279

SECURE APPLICATIONS AND SERVICES

Emergency communications X.1300–X.1309

Ubiquitous sensor network security X.1310–X.1339

PKI related Recommendations X.1340–X.1349

CYBERSECURITY INFORMATION EXCHANGE

Overview of cybersecurity X.1500–X.1519

Vulnerability/state exchange X.1520–X.1539

Event/incident/heuristics exchange X.1540–X.1549

Exchange of policies X.1550–X.1559

Heuristics and information request X.1560–X.1569

Identification and discovery X.1570–X.1579

Assured exchange X.1580–X.1589

CLOUD COMPUTING SECURITY

Overview of cloud computing security X.1600–X.1601

Cloud computing security design X.1602–X.1639

Cloud computing security best practices and guidelines X.1640–X.1659

Cloud computing security implementation X.1660–X.1679

Other cloud computing security X.1680–X.1699

For further details, please refer to the list of ITU-T Recommendations.

 Rec. ITU-T X.1525 (04/2015) i

Recommendation ITU-T X.1525

Common weakness scoring system

Summary

Recommendation ITU-T X.1525 on the common weakness scoring system (CWSS) provides an open

framework for communicating the characteristics and impact of information and communication

technologies (ICT) weaknesses during development of software capabilities. The goal of this

Recommendation is to enable ICT software developers, managers, testers, security vendors and service

suppliers, buyers, application vendors and researchers to speak from a common language of scoring

ICT weaknesses that could manifest as vulnerabilities when the software is used.

History

Edition Recommendation Approval Study Group Unique ID*

1.0 ITU-T X.1525 2015-04-17 17 11.1002/1000/12357

* To access the Recommendation, type the URL http://handle.itu.int/ in the address field of your

web browser, followed by the Recommendation's unique ID. For example,

http://handle.itu.int/11.1002/1000/11830-en.

http://handle.itu.int/11.1002/1000/12357
http://handle.itu.int/11.1002/1000/11830-en

ii Rec. ITU-T X.1525 (04/2015)

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of

telecommunications, information and communication technologies (ICTs). The ITU Telecommunication

Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical,

operating and tariff questions and issuing Recommendations on them with a view to standardizing

telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years, establishes

the topics for study by the ITU-T study groups which, in turn, produce Recommendations on these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are

prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a

telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain

mandatory provisions (to ensure, e.g., interoperability or applicability) and compliance with the

Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some other

obligatory language such as "must" and the negative equivalents are used to express requirements. The use of

such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may involve

the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence, validity or

applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others outside of

the Recommendation development process.

As of the date of approval of this Recommendation, ITU had not received notice of intellectual property,

protected by patents, which may be required to implement this Recommendation. However, implementers are

cautioned that this may not represent the latest information and are therefore strongly urged to consult the TSB

patent database at http://www.itu.int/ITU-T/ipr/.

 ITU 2015

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the prior

written permission of ITU.

http://www.itu.int/ITU-T/ipr/

 Rec. ITU-T X.1525 (04/2015) iii

Table of Contents

 Page

1 Scope ... 1

2 References ... 1

3 Definitions .. 1

3.1 Terms defined elsewhere .. 1

3.2 Terms defined in this Recommendation ... 2

4 Abbreviations and acronyms .. 2

5 Conventions .. 3

6 Use of CWSS .. 3

6.1 CWSS description .. 3

6.2 Workings of CWSS .. 4

6.3 CWSS scoring .. 5

6.4 CWSS users .. 6

7 Metric groups .. 7

7.1 Metric group factors ... 7

7.2 Values for uncertainty and flexibility ... 8

7.3 Base finding metric group .. 9

7.4 Attack Surface metric group ... 15

7.5 Environmental Metric group .. 19

7.6 CWSS score formula .. 24

7.7 CWSS vectors, scoring examples and score portability 26

Bibliography... 30

iv Rec. ITU-T X.1525 (04/2015)

Introduction

Software developers often face hundreds or thousands of individual bug reports for weaknesses that

are discovered in their code. In certain circumstances, a software weakness can even lead to an

exploitable vulnerability. Due to this high volume of reported weaknesses, stakeholders are often

forced to prioritize which issues they should investigate and fix first. In short, people need to be able

to reason and communicate about the relative importance of different weaknesses. While various

scoring methods are used today, they are either ad hoc or inappropriate for application to the

still-imprecise evaluation of software security. The common weakness scoring system (CWSS)

provides a mechanism for prioritizing software weaknesses in a consistent, flexible, open manner

while accommodating context for the various business domains and intended uses of the software. It

is a collaborative, community-based effort that is addressing the needs of its stakeholders across

government, academia and industry.

ICT software developers, managers, testers, security vendors and service suppliers, buyers,

application vendors and researchers must identify and assess weaknesses in software that could

manifest as vulnerabilities when the software is used. They then need to be able to prioritize these

weaknesses and determine which to remediate based on which of them pose the greatest risk. When

there are so many to fix, with each being scored using different scales, the various ICT community

members, managers, testers, buyers and developers are left to their own methodologies to find some

way of comparing disparate weaknesses and translating them into actionable information.

Because CWSS standardizes the approach for characterizing weaknesses, users of CWSS can invoke

attack surface and environmental metrics to apply contextual information that more accurately

reflects the risk to the software capability given the unique business context it will function within

and the unique business capability it is meant to provide. This allows them to make more informed

decisions when trying to mitigate risks posed by weaknesses.

CWSS leverages existing work from within the cyber security community such as the large number

of diverse real-world publicly known vulnerabilities specified through [b-ITU-T X.1520] – common

vulnerabilities and exposures (CVE) and the scoring system used for discussing the severity of those

publicly known vulnerabilities through [b-ITU-T X.1521] – common vulnerability scoring system

(CVSS) as well as the common weakness enumeration (CWE) list of weaknesses in the software's

architecture, design, code or deployment. In constructing CWSS, the ability to allow reasonable

default values for areas that may not be known, while providing for the tailoring based on business

and technical context.

CWSS is one of a class of ITU-T Recommendations that comes from a large, existing, global

development and user community that has written and evolved an open specification that is made

available to the ITU-T for adoption with agreement that any changes or updates to the specification

will be done in a manner that ensures full technical equivalency and compatibility will be maintained,

that discussions about changes and enhancements will be done through the original user community

processes, and includes explicit reference to the corresponding specific version maintained by the

user community. Thus, at the time of initial adoption of Recommendation ITU-T X.1525, a due

diligence verification and statement of equivalency will occur; and as changes are effected among the

user community, timely reflection of those changes will be reflected in subsequent versions of the

Recommendation through continued collaboration.

Recommendation ITU-T X.1525 - Common weakness scoring system (CWSS) has been developed

on a collaborative basis with The MITRE Corporation bearing in mind the importance of maintaining,

to the extent possible, technical compatibility between Recommendation ITU-T X.1525 – Common

weakness scoring system (CWSS) and the "Common Weakness Scoring System (CWSS)", version

1.0.1, dated 5 September 2014 [https://cwe.mitre.org/cwss/cwss_v1.0.1.html].

https://cwe.mitre.org/cwss/cwss_v1.0.1.html

 Rec. ITU-T X.1525 (04/2015) 1

Recommendation ITU-T X.1525

Common weakness scoring system

1 Scope

This Recommendation provides a standardized approach for communicating the characteristics and

impacts of weaknesses during development of ICT software capabilities using attack surface and

environmental metrics to apply contextual information. CWSS more accurately reflects the risk to the

user of the software capability, given the unique business context it will function within for the user,

and the unique business capability the software is providing to the user.

2 References

The following ITU-T Recommendations and other references contain provisions which, through

reference in this text, constitute provisions of this Recommendation. At the time of publication, the

editions indicated were valid. All Recommendations and other references are subject to revision;

users of this Recommendation are therefore encouraged to investigate the possibility of applying the

most recent edition of the Recommendations and other references listed below. A list of the currently

valid ITU-T Recommendations is regularly published. The reference to a document within this

Recommendation does not give it, as a stand-alone document, the status of a Recommendation.

None.

3 Definitions

3.1 Terms defined elsewhere

This Recommendation uses the following terms defined elsewhere:

3.1.1 access [b-ITU-T X.1521]: A subject's ability to view, modify, or communicate with an object.

Access enables the flow of information between the subject and the object.

3.1.2 availability [b-ITU-T X.1521]: The reliability and timely access to data and resources by

authorized individuals.

3.1.3 attack instance [b-ITU-T X.1544]: A specific detailed attack against an application or

system targeting vulnerabilities or weaknesses in that system.

3.1.4 confidentiality [b-ITU-T X.1521]: A security principle that works to ensure that information

is not disclosed to unauthorized subjects.

3.1.5 integrity [b-ITU-T X.1521]: A security principle that makes sure that information and

systems are not modified maliciously or accidentally.

3.1.6 risk [b-ITU-T X.1521]: The relative impact that an exploited vulnerability would have to a

user's environment.

3.1.7 threat [b-ITU-T X.1521]: The likelihood or frequency of a harmful event occurring.

3.1.8 vulnerability [b-ITU-T X.1500]: Any weakness that could be exploited to violate a system

or the information it contains.

3.1.9 weakness [b-ITU-T X.1524]: A shortcoming or imperfection in the software code, design,

architecture, or deployment that, could, at some point become a vulnerability, or could contribute to

the introduction of other vulnerabilities.

2 Rec. ITU-T X.1525 (04/2015)

3.2 Terms defined in this Recommendation

This Recommendation defines the following term:

3.2.1 vignette: A vignette provides a shareable, formalized way to define a particular environment,

the role that software plays within that environment and an organization's priorities with respect to

software security.

4 Abbreviations and acronyms

This Recommendation uses the following abbreviations and acronyms:

AI Authentication Instances

AL Acquired privilege Layer

AP Acquired Privilege

AS Authentication Strength

ASLR Address Space Layout Randomization

AV Access Vector

BI Business Impact

BVC Business Value Context

CD Compact Disc

CIO Chief Information Officer

CSO Chief Security Officer

CSRF Cross-Site-Request-Forgery

CVSS Common Vulnerability Scoring System

CWE Common Weakness Enumeration

CWRAF Common Weakness Risk Analysis Framework

CWSS Common Weakness Scoring System

DI Likelihood of Discovery

DNS Domain Name System

DS Deployment Scope

EC External Control effectiveness

EX Likelihood of Exploit

FC Finding Confidence

FTP File Transfer Protocol

HTML Hyper Text Markup Language

IC Internal Control Effectiveness

ICT Information Communication Technology

IN level of Interaction

IP Internet Protocol

NIST National Institute of Standards and Technology

OS Operating System

 Rec. ITU-T X.1525 (04/2015) 3

OWASP Open Web Application Security Project

P Prevalence

PCI DSS Payment Card Industry Data Security Standard

RL Required Privilege Layer

RP Required Privilege

SAMATE Software Assurance Metrics And Tool Evaluation

SANS SysAdmin, Audit, Networking and Security

SQL Structured Query Language

SSL Secure Sockets Layer

TI Technical Impact

TLS Transport Layer Security

USB Universal Serial Bus

XSS Cross-Site Scripting

5 Conventions

None.

6 Use of CWSS

Currently, ICT software developers, managers, testers, security vendors and service suppliers, buyers,

application vendors and researchers must identify and assess weaknesses in software that could

manifest as vulnerabilities when the software is used. They then need to be able to prioritize these

weaknesses and determine which to remediate based on which of them pose the greatest risk. When

there are so many to fix, with each being scored using different scales, the various ICT community

members, managers, testers, buyers and developers are left to their own methodologies to find some

way of comparing disparate weaknesses and translating them into actionable information. The

common weakness scoring system (CWSS) is an open framework that addresses this issue. It offers

the following benefits:

• Quantitative measurements: CWSS provides a quantitative measurement of the unfixed

weaknesses that might be present within a software application.

• Common framework: CWSS provides a common framework for prioritizing security errors

("weaknesses") that are discovered in software applications.

• Customized prioritization: in conjunction with the Common Weakness Risk Analysis

Framework (CWRAF) [b-CWRAF], CWSS can be used by consumers to identify the most

important types of weaknesses for their business domains, in order to inform their acquisition

and protection activities as one part of the larger process of achieving software assurance.

6.1 CWSS description

CWSS is organized into three metric groups: Base Finding, Attack Surface and Environmental, as

shown in Figure 1. Each group contains multiple metrics – also known as factors – that are used to

compute a CWSS score for a weakness.

http://rcf.mitre.org/cwraf/
http://rcf.mitre.org/cwraf/

4 Rec. ITU-T X.1525 (04/2015)

X.1525(15)_F01

Base finding

Technical impact

Acquired privilege

Acquired privilege layer

Internal control effectiveness

Finding confidence

Attack surface

Required privilege

Required privilege layer

Access vector

Authentication strength

Level of interaction

Deployment scope

Environmental

Business impact

Likelihood of discovery

Likelihood of exploit

External control effectiveness

Prevalence

Figure 1 – CWSS metric groups

These metric groups are described as follows:

• Base Finding metric group: captures the inherent risk of the weakness, confidence in the

accuracy of the finding and strength of controls. Base Finding metric group is discussed in

clause 7.3.

• Attack Surface metric group: the barriers that an attacker must overcome in order to exploit

the weakness. Attack Surface metric group is discussed in clause 7.4.

• Environmental metric group: characteristics of the weakness that are specific to a particular

environment or operational context. Environmental metric group is discussed in clause 7.5.

6.2 Workings of CWSS

Each factor in the Base Finding metric group is assigned a value. These values are converted to

associated weights, and a Base Finding subscore is calculated. The Base Finding subscore can range

between 0 and 100. The same method is applied to the Attack Surface and Environmental metric

group; their subscores can range between 0 and 1. Finally, the three subscores are multiplied together,

which produces a CWSS score between 0 and 100, as illustrated below in Figure 2.

 Rec. ITU-T X.1525 (04/2015) 5

Deployment scope

Level of interaction

Finding confidence

Internal control effectiveness

Acquired privilege layer

X.1525(15)_F02

Acquired privilege

Prevalence

External control effectiveness

Likelihood of exploit

Likelihood of discovery

Authentication strength

Access vector

Required privilege layer

Required privilege

Base finding

Technical impact

Attack surface

Attack surface subscore

Environmental

Environmental subscore

Business impact

Base finding subscore

CWSS
score

Figure 2 – CWSS scoring

6.3 CWSS scoring

The stakeholder community is collaborating with MITRE to investigate several different scoring

methods that might need to be supported within the CWSS framework. The current four scoring

methods are:

Targeted Score individual weaknesses that are discovered in the design or implementation of a

specific ("targeted") software package, e.g., a buffer overflow in the username of an

authentication routine in line 1234 of server.c in an FTP server package. Automated

tools and software security consultants use targeted methods when evaluating the

security of a software package in terms of the weaknesses that are contained within

the package.

Generalized Score classes of weaknesses independent of any particular software package, in order

to prioritize them relative to each other (e.g., "buffer overflows are higher priority

than memory leaks"). This approach is used by the CWE/SANS Top 25, OWASP

Top Ten and similar efforts, but also by some automated code scanners. The

generalized scores could vary significantly from the targeted scores that would result

from a full analysis of the individual occurrences of the weakness class within a

specific software package. For example, while the class of buffer overflows remains

very important to many developers, individual buffer overflow bugs might be

considered less important if they cannot be directly triggered by an attacker and their

impact is reduced due to operating system (OS)-level protection mechanisms such as

address space layout randomization (ASLR).

Context-

adjusted

Modify scores in accordance with the needs of a specific analytical context that may

integrate business/mission priorities, threat environments, risk tolerance, etc. These

needs are captured using vignettes that link inherent characteristics of weaknesses

6 Rec. ITU-T X.1525 (04/2015)

with higher-level business considerations. This method could be applied to both

targeted and generalized scoring.

Aggregated Combine the results of multiple, lower-level weakness scores to produce a single,

overall score (or "grade"). While aggregation might be most applicable to the targeted

method, it could also be used in generalized scoring, as occurred in the 2010

CWE/SANS Top 25.

Note that the current focus for most discussions about CWSS is on the Targeted scoring method and

a framework for context-adjusted scoring. Methods for aggregated scoring will follow. Generalized

scoring is being developed separately, primarily as part of the 2011 Top 25 and CWRAF.

CWSS scores can be automatically calculated, e.g., by a code analysis tool, or they can be manually

calculated by a software security consultant or developer. Since automated analysis is not likely to

have certain information available – such as the application's operating environment – CWSS scoring

could possibly be conducted in multiple rounds: a tool first automatically calculates CWSS scores,

then a human analyst manually adds additional details and recalculates the scores.

6.4 CWSS users

To be most effective, CWSS supports multiple usage scenarios by different stakeholders who all have

an interest in a consistent scoring system for prioritizing software weaknesses that could introduce

risks to products, systems, networks and services. Below are some examples of the primary

stakeholders:

• Software developers: Developers often operate within limited time frames, due to release

cycles and limited resources. As a result, they are unable to investigate and fix every reported

weakness. They may choose to concentrate on the worst problems, the easiest-to-fix. In the

case of automatic weakness findings, they might choose to focus on the findings that are least

likely to be false positives.

• Software development managers: Development managers create strategies for prioritizing

and removing entire classes of weaknesses from the entire code base, or at least the portion

that is deemed to be most at risk, possibly by defining custom "Top-N" lists. They must

understand the security implications of integrating third-party software, which may contain

its own weaknesses. They may need to support distinct security requirements and

prioritization for each product line.

• Software acquirers: Customers, including acquisition personnel, want to obtain third-party

software with a reasonable level of assurance that the software provider has performed due

diligence in removing or avoiding weaknesses that are most critical to the acquirer's business

and mission. Related stakeholders include chief information officers (CIOs), chief security

officers (CSOs), system administrators and end users of the software.

• Enterprise security managers: Enterprise security managers seek to minimize risk within their

enterprise, both for well-known vulnerabilities in third-party products, as well as

vulnerabilities (or weaknesses) in their own in-house software. They may wish to use a

scoring mechanism that can be integrated with other security management processes, such as

combining third-party vulnerability scanning results (for known third-party vulnerabilities)

with custom application analysis (for in-house software) to help assess the overall risk to an

asset.

• Code analysis vendors and consultants: Vendors and consultants often have their own custom

scoring techniques, but they want to provide a consistent, community-vetted scoring

mechanism for different customers.

• Evaluators of code analysis capabilities: Evaluators analyse and measure the capabilities of

code analysis techniques (e.g., NIST SAMATE). They could use a consistent weakness

 Rec. ITU-T X.1525 (04/2015) 7

scoring mechanism to support sampling of reported findings, as well as understanding the

severity of these findings without depending on ad hoc scoring methods that may vary widely

by tool/technique.

• Other stakeholders: Other stakeholders may include vulnerability researchers, advocates of

secure development and compliance-based analysts (e.g., PCI DSS).

As of June 2014 (when CWSS 0.8 was active), there are several real-world implementations of

CWSS. The primary users have been code analysis vendors and software security consultants.

7 Metric groups

7.1 Metric group factors

CWSS contains the following factors, organized based on their metric group as shown in Table 1

below. Each factor is described in more detail in subsequent clauses.

Table 1 – Metric group factors

Group Name Summary

Base Finding Technical impact (TI) The potential result that can be produced by the

weakness, assuming that the weakness can be

successfully reached and exploited.

Acquired privilege (AP) The type of privileges that are obtained by an

attacker who can successfully exploit the

weakness.

Acquired privilege layer (AL) The operational layer to which the attacker gains

privileges by successfully exploiting the

weakness.

Internal control effectiveness (IC) The ability of the control to render the weakness

unable to be exploited by an attacker.

Finding confidence (FC) The confidence that the reported issue is a

weakness that can be utilized by an attacker

Attack Surface Required privilege (RP) The type of privileges that an attacker must

already have in order to reach the

code/functionality that contains the weakness.

Required privilege layer (RL) The operational layer to which the attacker must

have privileges in order to attempt to attack the

weakness.

Access vector (AV) The channel through which an attacker must

communicate to reach the code or functionality

that contains the weakness.

 Authentication strength (AS) The strength of the authentication routine that

protects the code/functionality that contains the

weakness.

Level of interaction (IN) The actions that are required by the human

victim(s) to enable a successful attack to take

place.

8 Rec. ITU-T X.1525 (04/2015)

Table 1 – Metric group factors

Group Name Summary

Deployment scope (SC) Whether the weakness is present in all

deployable instances of the software, or if it is

limited to a subset of platforms and/or

configurations.

Environmental Business impact (BI) The potential impact to the business or mission

if the weakness can be successfully exploited.

Likelihood of discovery (DI) The likelihood that an attacker can discover the

weakness

Likelihood of exploit (EX) The likelihood that, if the weakness is

discovered, an attacker with the required

privileges/authentication/access would be able to

successfully exploit it.

External control effectiveness (EC) The capability of controls or mitigations outside

of the software that may render the weakness

more difficult for an attacker to reach and/or

trigger.

Prevalence (P) How frequently this type of weakness appears in

software.

7.2 Values for uncertainty and flexibility

CWSS can be used in cases where there is little information at first, but the quality of information

can improve over time. It is anticipated that in many use-cases, the CWSS score for an individual

weakness finding may change frequently, as more information is discovered. Different entities may

evaluate separate factors at different points in time.

As such, every CWSS factor effectively has "environmental" or "temporal" characteristics, so it is

not particularly useful to adopt the same types of metric groups as are used in CVSS.

Most factors have in common the four values shown in Table 2.

Table 2 – Factor values for uncertainty and flexibility

Value Usage

Unknown The entity calculating the score does not have enough information to provide a value

for the factor. This can be a signal for further investigation. For example, an

automated code scanner might be able to find certain weaknesses, but be unable to

detect whether any authentication mechanisms are in place.

The use of "Unknown" emphasizes that the score is incomplete or estimated, and

further analysis may be necessary. This makes it easier to model incomplete

information, and for the Business Value Context to influence final scores that were

generated using incomplete information.

The weight for this value is 0.5 for all factors, which generally produces a lower

score; the addition of new information (i.e., changing some factors from "Unknown"

to another value) will then adjust the score upward or downward based on the new

information.

Not applicable The factor is being explicitly ignored in the score calculation. This effectively allows

the Business Value Context to dictate whether a factor is relevant to the final score.

 Rec. ITU-T X.1525 (04/2015) 9

Table 2 – Factor values for uncertainty and flexibility

Value Usage

For example, a customer-focused CWSS scoring method might ignore the

remediation effort, and a high-assurance environment might require investigation of

all reported findings, even if there is low confidence in their accuracy.

For a set of weakness findings for an individual software package, it is expected that

all findings would have the same "Not applicable" value for the factor that is being

ignored.

Quantified The factor can be weighted using a quantified, continuous range of 0.0 through 1.0,

instead of the factor's defined set of discrete values. Not all factors are quantifiable in

this way, but it allows for additional customization of the metric.

Default The factor's weight can be set to a default value. Labelling the factor as a default

allows for investigation and possible modification at a later time.

7.3 Base finding metric group

The Base Finding metric group consists of the following factors:

• Technical impact (TI)

• Acquired privilege (AP)

• Acquired privilege layer (AL)

• Internal control effectiveness (IC)

• Finding confidence (FC)

The combination of values from technical impact, acquired privilege and acquired privilege layer

gives the user some expressive power. For example, the user can characterize "High" technical impact

with "Administrator" privilege at the "Application" layer.

7.3.1 Technical impact (TI)

Technical impact is the potential result that can be produced by the weakness, assuming that the

weakness can be successfully reached and exploited. This is expressed in terms that are more fine-

grained than confidentiality, integrity and availability.

The technical impact should be evaluated relative to the acquired privilege (AP) and acquired

privilege layer (AL).

Table 3 – Technical impact weights

Value Code Weight Description

Critical C 1.0 Complete control over the software being

analysed, to the point where operations cannot

take place.

High H 0.9 Significant control over the software being

analysed, or access to critical information can be

obtained.

Medium M 0.6 Moderate control over the software being

analysed, or access to moderately important

information can be obtained.

10 Rec. ITU-T X.1525 (04/2015)

Table 3 – Technical impact weights

Value Code Weight Description

Low L 0.3 Minimal control over the software being

analysed, or only access to relatively

unimportant information can be obtained.

None N 0.0 There is no technical impact to the software

being analysed at all. In other words, this does

not lead to a vulnerability.

Default D 0.6 The Default weight is the median of the weights

for Critical, High, Medium, Low and None.

Unknown UK 0.5 There is not enough information to provide a

value for this factor. Further analysis may be

necessary. In the future, a different value might

be chosen, which could affect the score.

Not applicable NA 1.0 This factor is being intentionally ignored in the

score calculation because it is not relevant to

how the scorer prioritizes weaknesses. This

factor might not be applicable in an environment

with high assurance requirements; the user

might want to investigate every weakness

finding of interest, regardless of confidence.

Quantified Q This factor could be quantified with custom

weights.

If this set of values is not precise enough, CWSS users can use their own Quantified methods to derive

a subscore. One such method involves using the Common Weakness Risk Analysis Framework

(CWRAF) [b-CWRAF] to define a vignette and a technical impact scorecard. The Impact weight is

calculated using vignette-specific importance ratings for different technical impacts that could arise

from exploitation of the weakness, such as modification of sensitive data, gaining privileges, resource

consumption, etc.

7.3.2 Acquired privilege (AP)

The acquired privilege identifies the type of privileges that are obtained by an attacker who can

successfully exploit the weakness.

Notice that the values are the same as those for required privilege, but the weights are different.

In some cases, the value for acquired privileges may be the same as for required privileges, which

implies either (1) "horizontal" privilege escalation (e.g., from one unprivileged user to another) or (2)

privilege escalation within a sandbox, such as an file transfer protocol (FTP)-only user who can

escape to the shell.

 Rec. ITU-T X.1525 (04/2015) 11

Table 4 – Acquired privilege weights

Value Code (Note) Weight Description

Administrator A 1.0 The attacker gains access to an entity with

administrator, root, SYSTEM, or equivalent

privileges that imply full control over the

software under analysis; or, the attacker can

raise their own (lower) privileges to an

administrator.

Partially-

Privileged User

P 0.9 The attacker gains access to an entity with some

special privileges, but not enough privileges that

are equivalent to an administrator; or, the

attacker can raise their own (lower) privileges to

a partially-privileged user. For example, a user

might have privileges to make backups, but not

to modify the software's configuration or install

updates.

Regular User RU 0.7 The attacker gains access to an entity that is a

regular user who has no special privileges; or,

the attacker can raise their own (lower)

privileges to that of a regular user.

Limited / Guest L 0.6 The attacker gains access to an entity with

limited or "guest" privileges that can

significantly restrict allowable activities; or, the

attacker can raise their own (lower) privileges to

a guest. Note: this value does not refer to the

"guest operating system" concept in virtualized

hosts.

None N 0.1 The attacker cannot gain access to any extra

privileges beyond those that are already

available to the attacker. (Note that this value

can be useful in limited circumstances in which

the attacker can escape a sandbox or other

restrictive environment but still cannot gain

extra privileges, or obtain access as other users.)

Default D 0.7 Median of the weights for None, Guest, Regular

User, Partially-privileged User and

Administrator.

Unknown UK 0.5 There is not enough information to provide a

value for this factor. Further analysis may be

necessary. In the future, a different value might

be chosen, which could affect the score.

Not applicable NA 1.0 This factor is being intentionally ignored in the

score calculation because it is not relevant to

how the scorer prioritizes weaknesses. This

factor might not be applicable in an environment

with high assurance requirements that wants

strict enforcement of privilege separation, even

between already-privileged users.

12 Rec. ITU-T X.1525 (04/2015)

Table 4 – Acquired privilege weights

Value Code (Note) Weight Description

Quantified Q This factor could be quantified with custom

weights. Note that Quantified values are

supported for completeness; however, since

privileges and users are discrete entities, there

might be limited circumstances in which a

quantified model would be useful.

NOTE – A mnemonic for the main values in this factor is "RUNLAP" (Regular User, None, Limited,

Admin, Partially-Privileged).

7.3.3 Acquired privilege layer (AL)

The acquired privilege layer identifies the operational layer to which the attacker gains privileges by

successfully exploiting the weakness.

Table 5 – Acquired privilege layer weights

Value Code

(Note)

Weight Description

Application A 1.0 The attacker acquires privileges that are supported within the

software under analysis itself. (If the software under analysis is an

essential part of the underlying system, such as an operating system

kernel, then the System value may be more appropriate.)

System S 0.9 The attacker acquires privileges to the underlying system or physical

host that is being used to run the software under analysis.

Network N 0.7 The attacker acquires privileges to access the network.

Enterprise

Infrastructure

E 1.0 The attacker acquires privileges to a critical piece of enterprise

infrastructure, such as a router, switch, domain name system (DNS),

domain controller, firewall, identity server, etc.

Default D 0.9 Median of the weights for Application, System, Network and

Enterprise Infrastructure.

Unknown UK 0.5 There is not enough information to provide a value for this factor.

Further analysis may be necessary. In the future, a different value

might be chosen, which could affect the score.

Not Applicable NA 1.0 This factor is being intentionally ignored in the score calculation

because it is not relevant to how the scorer prioritizes weaknesses.

This factor might not be applicable in an environment with high

assurance requirements that wants strict enforcement of privilege

separation, even between already-privileged users.

Quantified Q This factor could be quantified with custom weights. Note that

Quantified values are supported for completeness; however, since

privilege layers are discrete entities, there might be limited

circumstances in which a quantified model would be useful.

NOTE – A mnemonic for the main values in this factor is "SANE" (System, Application, Network,

Enterprise Infrastructure).

7.3.4 Internal control effectiveness (IC)

An Internal Control is a control, protection mechanism, or mitigation that has been explicitly built

into the software (whether through architecture, design, or implementation). Internal Control

Effectiveness measures the ability of the control to render the weakness unable to be exploited by an

attacker. For example, an input validation routine that restricts input length to 15 characters might be

 Rec. ITU-T X.1525 (04/2015) 13

moderately effective against cross site scripting (XSS) attacks by reducing the size of the XSS exploit

that can be attempted.

When there are multiple internal controls, or multiple code paths that can reach the same weakness,

then the following guidance applies:

• For each code path, analyse each internal control that exists along the code path, and choose

the value with the lowest weight (i.e., the strongest internal control along the code path). This

is called the code path value.

• Collect all code path values.

• Select the code path value that has the highest weight (i.e., is the weakest control).

This method evaluates each code path in terms of the code path's strongest control (since an attacker

would have to bypass that control), then selects the weakest code path (i.e., the easiest route for the

attacker to take).

Table 6 – Internal control effectiveness weights

Value Code Weight Description

None N 1.0 No controls exist

Limited L 0.9 There are simplistic methods or accidental restrictions that might prevent

a casual attacker from exploiting the issue

Moderate M 0.7 The protection mechanism is commonly used but has known limitations

that might be bypassed with some effort by a knowledgeable attacker. For

example, the use of hypertext markup language (HTML) entity encoding

to prevent XSS attacks may be bypassed when the output is placed into

another context such as a cascading style sheet or HTML tag attribute.

Indirect

(Defense-in-

depth)

I 0.5 The control does not specifically protect against exploitation of the

weakness, but it indirectly reduces the impact when a successful attack is

launched, or otherwise makes it more difficult to construct a functional

exploit. For example, a validation routine might indirectly limit the size

of an input, which might make it difficult for an attacker to construct a

payload for an XSS or structured query language (SQL) injection attack.

Best-

available

B 0.3 The control follows best current practices, although it may have some

limitations that can be overcome by a skilled, determined attacker,

possibly requiring the presence of other weaknesses. For example, the

double-submit method for cross-site-request-forgery (CSRF) protection is

considered one of the strongest available, but it can be defeated in

conjunction with behaviours of certain functionality that can read raw

HTTP headers.

Complete C 0.0 The control is completely effective against the weakness, i.e., there is no

bug or vulnerability, and no adverse consequence of exploiting the issue.

For example, a buffer copy operation that ensures that the destination

buffer is always larger than the source (plus any indirect expansion of the

original source size) will not cause an overflow.

Default D 0.6 Median of the weights for Complete, Best-available, Indirect, Moderate,

Limited and None.

Unknown UK 0.5 There is not enough information to provide a value for this factor. Further

analysis may be necessary. In the future, a different value might be

chosen, which could affect the score.

14 Rec. ITU-T X.1525 (04/2015)

Table 6 – Internal control effectiveness weights

Value Code Weight Description

Not

Applicable

NA 1.0 This factor is being intentionally ignored in the score calculation because

it is not relevant to how the scorer prioritizes weaknesses

Quantified Q This factor could be quantified with custom weights

7.3.5 Finding confidence (FC)

Finding confidence is the confidence that the reported issue:

1. is a weakness, and

2. can be triggered or utilized by an attacker.

Table 7 – Finding confidence weights

Value Code Weight Description

Proven true T 1.0 The weakness is reachable by the attacker

Proven locally

true

LT 0.8 The weakness occurs within an individual

function or component whose design relies on

safe invocation of that function, but attacker

reachability to that function is unknown or not

present. For example, a utility function might

construct a database query without encoding its

inputs, but if it is only called with constant

strings, the finding is locally true.

Proven false F 0.0 The finding is erroneous (i.e., the finding is a

false positive and there is no weakness) and/or

there is no possible attacker role

Default D 0.8 Median of the weights for Proven true, Proven

locally true and Proven false.

Unknown UK 0.5 There is not enough information to provide a

value for this factor. Further analysis may be

necessary. In the future, a different value might

be chosen, which could affect the score.

Not applicable NA 1.0 This factor is being intentionally ignored in the

score calculation because it is not relevant to

how the scorer prioritizes weaknesses.

This factor might not be applicable in an

environment with high assurance requirements;

the user might want to investigate every

weakness finding of interest, regardless of

confidence.

Quantified Q This factor could be quantified with custom

weights. Some code analysis tools have precise

measurements of the accuracy of specific

detection patterns.

 Rec. ITU-T X.1525 (04/2015) 15

7.4 Attack Surface metric group

The Attack Surface metric group consists of the following factors:

• Required privilege (RP)

• Required privilege layer (RL)

• Access vector (AV)

• Authentication strength (AS)

• Level of interaction (IN)

• Deployment scope (SC).

7.4.1 Required privilege (RP)

The Required Privilege identifies the type of privileges that an attacker must already have in order to

reach the code/functionality that contains the weakness.

Table 8 – Required privilege weights

Value Code

(Note)

Weight Description

None N 1.0 No privileges are required. For example, a web-based search engine

may not require any privileges for an entity to enter a search term

and view results.

Limited /

Guest

L 0.9 The entity has limited or "guest" privileges that can significantly

restrict allowed activities; the entity might be able to register or

create a new account without any special requirements or proof of

identity. For example, a web blog might allow participants to create

a user name and submit a valid email address before entering

comments. Note: this value does not refer to the "guest operating

system" concept in virtualized hosts.

Regular user RU 0.7 The entity is a regular user who has no special privileges.

Partially-

privileged user

P 0.6 The entity is a valid user with some special privileges, but not

enough privileges that are equivalent to an administrator. For

example, a user might have privileges to make backups, but not to

modify the software's configuration or install updates.

Administrator A 0.1 The entity has administrator, root, SYSTEM, or equivalent

privileges that imply full control over the software or the underlying

OS.

Default D 0.7 Median of the weights for None, Limited, Regular user, Partially-

privileged user and Administrator.

Unknown UK 0.5 There is not enough information to provide a value for this factor.

Further analysis may be necessary. In the future, a different value

might be chosen, which could affect the score.

Not applicable NA 1.0 This factor is being intentionally ignored in the score calculation

because it is not relevant to how the scorer prioritizes weaknesses.

This factor might not be applicable in an environment with high

assurance requirements that wants strict enforcement of privilege

separation, even between already-privileged users.

16 Rec. ITU-T X.1525 (04/2015)

Table 8 – Required privilege weights

Value Code

(Note)

Weight Description

Quantified Q This factor could be quantified with custom weights. Note that

Quantified values are supported for completeness; however, since

privileges and users are discrete entities, there might be limited

circumstances in which a quantified model would be useful.

NOTE – A mnemonic for the main values in this factor is "RUNLAP" (Regular User, None, Limited,

Admin, Partially-Privileged).

7.4.2 Required privilege layer (RL)

The required privilege Layer identifies the operational layer to which the attacker must have

privileges in order to attempt to attack the weakness.

Table 9 – Required privilege layer weights

Value Code

(Note)

Weight Description

Application A 1.0 The attacker must have privileges that are supported within the

software under analysis itself. (If the software under analysis is an

essential part of the underlying system, such as an operating system

kernel, then the System value may be more appropriate.)

System S 0.9 The attacker must have privileges to the underlying system or

physical host that is being used to run the software under analysis.

Network N 0.7 The attacker must have privileges to access the network.

Enterprise

infrastructure

E 1.0 The attacker must have privileges on a critical piece of enterprise

infrastructure, such as a router, switch, DNS, domain controller,

firewall, identity server, etc.

Default D 0.9 Median of the weights for Application, System, Network and

Enterprise Infrastructure.

Unknown UK 0.5 There is not enough information to provide a value for this factor.

Further analysis may be necessary. In the future, a different value

might be chosen, which could affect the score.

Not applicable NA 1.0 This factor is being intentionally ignored in the score calculation

because it is not relevant to how the scorer prioritizes weaknesses.

This factor might not be applicable in an environment with high

assurance requirements that wants strict enforcement of privilege

separation, even between already-privileged users.

Quantified Q This factor could be quantified with custom weights. Note that

Quantified values are supported for completeness; however, since

privilege layers are discrete entities, there might be limited

circumstances in which a quantified model would be useful.

NOTE – A mnemonic for the main values in this factor is "SANE" (System, Application, Network,

Enterprise Infrastructure).

 Rec. ITU-T X.1525 (04/2015) 17

7.4.3 Access vector (AV)

The access vector identifies the channel through which an attacker must communicate to reach the

code or functionality that contains the weakness. Note that these values are very similar to the ones

used in CVSS, except CWSS distinguishes between physical access and local (shell/account) access.

While there is a close relationship between access vector and required privilege layer, the two are

distinct. For example, an attacker with "physical" access to a router might be able to affect the network

or enterprise layer.

Table 10 – Access vector weights

Value Code Weight Description

Internet I 1.0 An attacker must have access to the Internet to reach the weakness.

Intranet R 0.8 An attacker must have access to an enterprise intranet that is shielded from

direct access from the Internet, e.g., by using a firewall, but otherwise the

intranet is accessible to most members of the enterprise.

Private

network

V 0.8 An attacker must have access to a private network that is only accessible

to a narrowly-defined set of trusted parties.

Adjacent

network

A 0.7 An attacker must have access to a physical interface to the network, such

as the broadcast or collision domain of the vulnerable software. Examples

of local networks include local Internet protocol (IP) subnet, Bluetooth,

IEEE 802.11 and local Ethernet segment.

Local L 0.5 The attacker must have an interactive, local (shell) account that interfaces

directly with the underlying operating system.

Physical P 0.2 The attacker must have physical access to the system that the software

runs on, or otherwise able to interact with the system via interfaces such as

universal serial bus (USB), compact disc (CD), keyboard, mouse, etc.

Default D 0.75 Median of weights for relevant values.

Unknown U 0.5

Not

applicable

NA 1.0 This factor is being intentionally ignored in the score calculation because

it is not relevant to how the scorer prioritizes weaknesses.

Quantified Q This factor could be quantified with custom weights. Note that Quantified

values are supported for completeness; however, since access vectors are

discrete entities, there might be limited circumstances in which a

quantified model would be useful.

7.4.4 Authentication strength (AS)

The Authentication strength covers the strength of the authentication routine that protects the

code/functionality that contains the weakness.

When more than one authentication routine is in use, or if two or more code paths exist, the scoring

should be performed as follows:

When there are multiple authentication routines, or multiple code paths that can reach the same

weakness, then the following guidance applies:

• For each code path, analyse each authentication routine that exists along the code path, and

choose the value with the lowest weight (i.e., the strongest authentication routine along the

code path). This is called the code path value.

• Collect all code path values.

• Select the code path value that has the highest weight (i.e., contains the weakest routine).

18 Rec. ITU-T X.1525 (04/2015)

This method evaluates each code path in terms of the code path's strongest authentication routine

(since an attacker would have to bypass that control), then selects the weakest code path (i.e., the

easiest route for the attacker to take).

Table 11 – Authentication strength weights

Value Code Weight Description

Strong S 0.7 The weakness requires strongest-available methods to tie the entity to a

real-world identity, such as hardware-based tokens and/or multi-factor

authentication.

Moderate M 0.8 The weakness requires authentication using moderately strong methods,

such as the use of certificates from untrusted authorities, knowledge-based

authentication, or one-time passwords.

Weak W 0.9 The weakness requires a simple, weak authentication method that is easily

compromised using spoofing, dictionary, or replay attacks, such as a static

password.

None N 1.0 The weakness does not require any authentication at all.

Default D 0.85 Median of values for Strong, Moderate, Weak and None.

Unknown UK 0.5 There is not enough information to provide a value for this factor. Further

analysis may be necessary. In the future, a different value might be chosen,

which could affect the score.

Not

applicable

NA 1.0 This factor is being intentionally ignored in the score calculation because it

is not relevant to how the scorer prioritizes weaknesses.

This might not be applicable in an environment with high assurance

requirements that seek to eliminate all weaknesses.

Quantified Q This factor could be quantified with custom weights.

7.4.5 Level of interaction (IN)

The Level of Interaction covers the actions that are required by the human victim(s) to enable a

successful attack to take place.

Table 12 – Level of interaction weights

Value Code Weight Description

Automated A 1.0 No human interaction is required.

Typical/Limited T 0.9 The attacker must convince the user to perform an action that is

common or regarded as "normal" within typical product operation.

For example, clicking on a link in a web page, or previewing the

body of an email, is common behaviour.

Moderate M 0.8 The attacker must convince the user to perform an action that might

appear suspicious to a cautious, knowledgeable user. For example:

the user has to accept a warning that suggests the attacker's payload

might contain dangerous content.

Opportunistic O 0.3 The attacker cannot directly control or influence the victim, and can

only passively capitalize on mistakes or actions of others.

High H 0.1 A large amount of social engineering is required, possibly including

ignorance or negligence on the part of the victim.

 Rec. ITU-T X.1525 (04/2015) 19

Table 12 – Level of interaction weights

Value Code Weight Description

No interaction NI 0.0 There is no interaction possible, not even opportunistically; this

typically would render the weakness as a "bug" instead of leading to

a vulnerability. Since CWSS is for security, the weight is 0.

Default D 0.55 Median of values for Automated, Limited, Moderate, Opportunistic,

High and No interaction.

Unknown UK 0.5 There is not enough information to provide a value for this factor.

Further analysis may be necessary. In the future, a different value

might be chosen, which could affect the score.

7.4.6 Deployment scope (SC)

Deployment scope identifies whether the weakness is present in all deployable instances of the

software, or if it is limited to a subset of platforms and/or configurations. For example, a numeric

calculation error might only be applicable for software that is running under a particular OS and a

64-bit architecture, or a path traversal issue might only affect operating systems for which "\" is

treated as a directory separator.

Table 13 – Deployment scope weights

Value Code

(Note 1)

Weight Description

All A 1.0 Present in all platforms or configurations

Moderate M 0.9 Present in common platforms or configurations

Rare R 0.5 Only present in rare platforms or configurations

Potentially

reachable

P 0.1 Potentially reachable (Note 2), but all code paths are currently safe,

and/or the weakness is in dead code

Default D 0.7 The median of weights for RAMP values

Unknown UK 0.5 There is not enough information to provide a value for this factor.

Further analysis may be necessary. In the future, a different value

might be chosen, which could affect the score.

Not

applicable

NA 1.0 This factor is being intentionally ignored in the score calculation

because it is not relevant to how the scorer prioritizes weaknesses

Quantified Q This factor could be quantified with custom weights. The user may

know what percentage of shipped (or supported) software contains this

bug.

NOTE 1 – A mnemonic for the main values in this factor is "RAMP" (Rare, All, Moderate, Potentially

Reachable).

NOTE 2 – "Potentially Reachable" has some overlap with "Locally True" in the Finding Confidence (FC)

factor.

7.5 Environmental Metric group

The Environmental Metric group consists of the following factors:

• Business impact (BI)

• Likelihood of discovery (DI)

• Likelihood of exploit (EX)

20 Rec. ITU-T X.1525 (04/2015)

• External control effectiveness (EC)

• Prevalence (P).

7.5.1 Business impact (BI)

Business impact describes the potential impact to the business or mission if the weakness can be

successfully exploited.

NOTE – Since business concerns vary widely across organizations, CWSS 1.0 does not attempt to provide a

more precise breakdown, e.g., in terms of financial, reputational, physical, legal or other types of damage. This

factor can be quantified to support any externally-defined models.

Table 14 – Business impact weights

Value Code Weight Description

Critical C 1.0 The business/mission could fail

High H 0.9 The operations of the business/mission would be significantly affected

Medium M 0.6 The business/mission would be affected, but without extensive damage to

regular operations.

Low L 0.3 Minimal impact on the business/mission

None N 0.0 No impact

Default D 0.6 The median of weights for Critical, High, Medium, Low and None.

Unknown UK 0.5 There is not enough information to provide a value for this factor. Further

analysis may be necessary. In the future, a different value might be

chosen, which could affect the score.

Not

applicable

NA 1.0 This factor is being intentionally ignored in the score calculation because

it is not relevant to how the scorer prioritizes weaknesses.

This factor might not be applicable in contexts in which the business

impact is irrelevant, or if the impact is being assessed and considered in

analytical processes that are outside of the CWSS score itself.

Quantified Q This factor could be quantified with custom weights. Some organizations

might have specific measurements for the business value of the asset, for

example, which could be integrated into this measurement.

7.5.2 Likelihood of discovery (DI)

Likelihood of discovery is the likelihood that an attacker can discover the weakness.

NOTE – This factor was considered for removal in CWSS 1.0, since it can be difficult to measure and can be

influenced by other factors such as acquired privilege, technical impact and prevalence. However, it has been

preserved to reflect that some developers will use likelihood of discovery to help prioritize how quickly an

issue should be fixed.

 Rec. ITU-T X.1525 (04/2015) 21

Table 15 – Likelihood of discovery weights

Value Code Weight Description

High H 1.0 It is very likely that an attacker can discover the weakness quickly and

with little effort using simple techniques, without access to source code or

other artefacts that simplify weakness detection.

Medium M 0.6 An attacker might be able to discover the weakness, but would require

certain skills to do so, possibly requiring source code access or reverse

engineering knowledge. It may require some time investment to find the

issue.

Low L 0.2 An attacker is unlikely to discover the weakness without highly

specialized skills, access to source code (or its equivalent) and a large time

investment.

Default D 0.6 The median of the High, Medium and Low values.

Unknown UK 0.5 There is not enough information to provide a value for this factor. Further

analysis may be necessary. In the future, a different value might be

chosen, which could affect the score.

Not

applicable

NA 1.0 This factor is being intentionally ignored in the score calculation because

it is not relevant to how the scorer prioritizes weaknesses.

This might not be applicable when the scorer assumes that all weaknesses

will be discovered by an attacker.

Quantified Q This factor could be quantified with custom weights

7.5.3 Likelihood of exploit (EX)

Likelihood of exploit is the likelihood that, if the weakness is discovered, an attacker with the required

privileges/authentication/access would be able to successfully exploit it.

Table 16 – Likelihood of exploit weights

Value Code Weight Description

High H 1.0 It is highly likely that an attacker would target this weakness successfully,

with a reliable exploit that is easy to develop.

Medium M 0.6 An attacker would probably target this weakness successfully, but the

chances of success might vary, or require multiple attempts to succeed.

Low L 0.2 An attacker probably would not target this weakness, or could have very

limited chances of success.

None N 0.0 An attacker has no chance of success; i.e., the issue is a "bug" because

there is no attacker role, and no benefit to the attacker.

Default D 0.6 Median of the High, Medium and Low values. The "None" value is

ignored with the expectation that few weakness findings would be scored

using the value, and including it in the median calculation would reduce

the weight to a non-intuitive level.

Unknown UK 0.5 There is not enough information to provide a value for this factor. Further

analysis may be necessary. In the future, a different value might be

chosen, which could affect the score.

22 Rec. ITU-T X.1525 (04/2015)

Table 16 – Likelihood of exploit weights

Value Code Weight Description

Not

applicable

NA 1.0 This factor is being intentionally ignored in the score calculation because

it is not relevant to how the scorer prioritizes weaknesses.

For example, the scorer might want to assume that attackers could exploit

any weakness they can find, or be willing to invest significant resources to

work around any possible barriers to exploit success.

Quantified Q This factor could be quantified with custom weights

Note that this factor is influenced by the Impact of a weakness, since attackers often target weaknesses

that have the most severe impacts. Alternately, they may target weaknesses that are easy to trigger. It

is also influenced by other factors such as the effectiveness of internal and external controls.

It might seem that the prevalence is also an influence, but prevalence is more closely related to

likelihood of discovery.

7.5.4 External control effectiveness (EC)

External control effectiveness is the capability of controls or mitigations outside of the software that

may render the weakness more difficult for an attacker to reach and/or trigger. For example, address

space layout randomization (ASLR) and similar technologies reduce, but do not eliminate, the

chances of success for a buffer overflow attack. However, ASLR is not directly instantiated within

the software itself.

When there are multiple external controls, or multiple code paths that can reach the same weakness,

then the following guidance applies:

• For each code path, analyse each external control that exists along the code path and choose

the value with the lowest weight (i.e., the strongest external control along the code path).

This is called the code path value.

• Collect all code path values.

• Select the code path value that has the highest weight (i.e., is the weakest control).

This method evaluates each code path in terms of the code path's strongest control (since an attacker

would have to bypass that control), then selects the weakest code path (i.e., the easiest route for the

attacker to take).

 Rec. ITU-T X.1525 (04/2015) 23

Table 17 – External control effectiveness weights

Value Code Weight Description

None N 1.0 No controls exist

Limited L 0.9 There are simplistic methods or accidental restrictions that might prevent

a casual attacker from exploiting the issue

Moderate M 0.7 The protection mechanism is commonly used but has known limitations

that might be bypassed with some effort by a knowledgeable attacker

Indirect

(Defense-in-

depth)

I 0.5 The control does not specifically protect against exploitation of the

weakness, but it indirectly reduces the impact when a successful attack is

launched, or otherwise makes it more difficult to construct a functional

exploit.

For example, address space layout randomization (ASLR) and similar

technologies reduce, but do not eliminate, the chances of success in a

buffer overflow attack. Since the response is typically to exit the process,

the result is still a denial of service.

Best-

available

B 0.3 The control follows best current practices, although it may have some

limitations that can be overcome by a skilled, determined attacker,

possibly requiring the presence of other weaknesses. For example,

transport layer security (TLS) / secure sockets layer (SSL 3) are in

operation throughout much of the web, and stronger methods generally

are not available due to compatibility issues.

Complete C 0.1 The control is completely effective against the weakness, i.e., there is no

bug or vulnerability, and no adverse consequence of exploiting the issue.

For example, a sandbox environment might restrict file access operations

to a single working directory, which would protect against exploitation of

path traversal.

A non-zero weight is used to reflect the possibility that the external

control could be accidentally removed in the future, e.g., if the software's

environment changes.

Default D 0.6 The median of Complete, Best-Available, Indirect, Moderate, Limited

and None.

Unknown UK 0.5 There is not enough information to provide a value for this factor.

Further analysis may be necessary. In the future, a different value might

be chosen, which could affect the score.

Not

applicable

NA 1.0 This factor is being intentionally ignored in the score calculation because

it is not relevant to how the scorer prioritizes weaknesses

Quantified Q This factor could be quantified with custom weights

7.5.5 Prevalence (P)

The prevalence of a finding identifies how frequently this type of weakness appears in software.

NOTE – This factor might be considered for removal in future versions. However, it is too closely tied to

generalized scoring methods and CWRAF to be removed within CWSS 1.0.

This factor is intended for use in generalized scoring of classes of weaknesses, such as the

development of custom Top-N weakness lists. When scoring an individual weakness finding in an

automated-scanning context, this factor is likely to use a "Not applicable" value.

24 Rec. ITU-T X.1525 (04/2015)

Table 18 – Prevalence weights

Value Code Weight

(Note)

Description

Widespread W 1.0 The weakness is found in most or all software in the associated

environment, and may occur multiple times within the same software

package.

High H 0.9 The weakness is encountered very often, but it is not widespread.

Common C 0.8 The weakness is encountered periodically

Limited L 0.7 The weakness is encountered rarely, or never.

Default D 0.85 The median of Limited, Common, High and Widespread.

Unknown UK 0.5 There is not enough information to provide a value for this factor. Further

analysis may be necessary. In the future, a different value might be

chosen, which could affect the score.

Not

applicable

NA 1.0 This factor is being intentionally ignored in the score calculation because

it is not relevant to how the scorer prioritizes weaknesses. When

performing targeted scoring against specific weakness findings in an

application, Prevalence is normally expected to be irrelevant, since the

individual application and the analytical techniques determine how

frequently the weakness occurs, and many aggregated scoring methods

will generate larger scores if there are more weaknesses.

Quantified Q This factor could be quantified with custom weights. Precise prevalence

data may be available within limited use cases, provided the user is

tracking weakness data at a low level of granularity. For example, a

developer may be tracking weaknesses across a suite of products, or a

code-auditing vendor could measure prevalence from the software

analysed across the entire customer base. In a previous version of CWSS,

prevalence was calculated based on raw voting data that was collected for

the 2010 Top 25, which used discrete values (range 1 to 4) which were

then adjusted to a 1-to-10 range.

NOTE – Since software can be successfully attacked even in the presence of a single weakness, the selected

weights do not provide significant distinction between each other.

7.6 CWSS score formula

A CWSS 1.0 score can range between 0 and 100. It is calculated as follows:

BaseFindingSubscore * AttackSurfaceSubscore * EnvironmentSubscore

The BaseFindingSubscore supports values between 0 and 100. Both the AttackSurfaceSubscore and

EnvironmentSubscore support values between 0 and 1.

7.6.1 Base finding subscore

The Base finding subscore (BaseFindingSubscore) is calculated as follows:

Base = [(10 * TechnicalImpact + 5*(AcquiredPrivilege + AcquiredPrivilegeLayer) +

5*FindingConfidence) * f(TechnicalImpact) * InternalControlEffectiveness] * 4.0

f(TechnicalImpact) = 0 if TechnicalImpact = 0; otherwise f(TechnicalImpact) = 1.

The maximum potential BaseFindingSubscore is 100.

The definition of f(TechImpact) has an equivalent in CVSS. It is used to ensure that if the Technical

Impact is 0, that the other added factors do inadvertently generate a non-zero score.

 Rec. ITU-T X.1525 (04/2015) 25

TechnicalImpact and the AcquiredPrivilege/AcquiredPrivilegeLayer combination are given equal

weight, each accounting for 40% of the BaseFindingSubscore. (Each generate a sub-value with a

maximum of 10). There is some adjustment for Finding Confidence, which accounts for 20% of the

Base (maximum of 5). The InternalControlEffectiveness can adjust the score downward, perhaps to

0, depending on the strength of any internal controls that have been applied to the issue. After

application of InternalControlEffectiveness, the possible range of results is between 0 and 25, so the

4.0 coefficient is used to adjust the BaseFindingSubscore to a range between 0 and 100.

7.6.2 Attack surface subscore

The AttackSurfaceSubscore is calculated as:

[20*(RequiredPrivilege + RequiredPrivilegeLayer + AccessVector) +

20*DeploymentScope + 15*LevelOfInteraction + 5*AuthenticationStrength] / 100.0

The combination of required privileges / access makes up 60% of the Attack Surface subscore;

deployment scope, another 20%; interaction, 15%; and authentication, 5%. The authentication

requirements are not given much focus, under the assumption that strong proof of identity will not

significantly deter an attacker from attempting to exploit the vulnerability.

This generates a range of values between 0 and 100, which are then divided by 100.

7.6.3 Environmental subscore

The EnvironmentalSubscore is calculated as:

[(10*BusinessImpact + 3*LikelihoodOfDiscovery + 4*LikelihoodOfExploit +

3*Prevalence) * f(BusinessImpact) * ExternalControlEffectiveness] / 20.0

f(BusinessImpact) = 0 if BusinessImpact == 0; otherwise f(BusinessImpact) = 1

BusinessImpact accounts for 50% of the environmental score, and it can move the final score to 0.

ExternalControlEffectiveness is always non-zero (to account for the risk that it can be inadvertently

removed if the environment changes), but otherwise it can have major impact on the final score. The

combination of LikelihoodOfDiscovery and LikelihoodOfExploit accounts for 35% of the score, and

Prevalence at 15%.

7.6.4 Additional features of the formula

There is significant diversity in the kinds of scores that can be represented, although the use of

multiplication of many different factors, combined with multiple weights with small values, means

that the range of potential scores is somewhat skewed towards lower values.

Since "Not Applicable" values have a weight of 1, the formula always has a potential maximum score

of 100.0. In extremely rare cases in which certain factors are treated as Not applicable (e.g., technical

impact, business impact and internal control effectiveness), then the minimum possible score could

be non-zero.

When default values are used for a large number of factors for a single score, using the median

weights as defined in CWSS 1.0, the scores will skew heavily to the low side. The median weight for

a factor does not necessarily reflect the most likely value that could be used, so the selection of default

weights may be changed in future versions. Ideally, the formula would have a property in which the

use of many default values produces a score that is relatively close to 50; the selection of non-default

values would adjust the final score upward or downward, thereby increasing precision.

The use of "Unknown" values also generally produces scores that skew to the low side. This might

be a useful feature, since scores will be higher if they have more specific information.

26 Rec. ITU-T X.1525 (04/2015)

7.7 CWSS vectors, scoring examples and score portability

Using the Codes as specified for each factor, a CWSS score can be stored in a compact, machine-

parsable, human-readable format that provides the details for how the score was generated. This is

very similar to how CVSS vectors are constructed.

Unlike CVSS, not all CWSS factors can be described symbolically with discrete values. Any factor

can be quantified with continuous weights that override the originally-defined default discrete values,

using the "Q" value. When calculated using CWRAF, the Impact factor is effectively an expression

of 32 separate Technical Impacts and layers, many of which would not be applicable to a particular

weakness. Treating each impact as a separate factor would roughly double the number of factors

required to calculate a CWSS score. In addition, CWRAF's use of business value context (BVC) to

adjust scores for business-specific concerns also means that a CWSS score and its vector may appear

to be inconsistent if they are "transported" to other domains or vignettes.

With this concern in mind, a CWSS 1.0 vector should explicitly list the weights for each factor, even

though it increases the size of the vector representation.

The format of a single factor in a CWSS vector is:

FactorName:Value,Weight

For example, "P:NA,1.0" specifies a "Not Applicable" value for Prevalence with a weight of 1.0. A

specifier of "AV:P,0.2" indicates the "Physical" value for Access Vector with a weight of 0.2.

Factors are separated by forward slash characters, such as:

AV:I,1.0/RP:G,0.9/AS:N,1.0

which lists values and weights for "AV" (Access Vector), "RP" (Required Privilege Level) and "AS"

(Authentication Strength).

If a CWSS vector is provided that does not list the actual weights for a value, then an

implementation should report a possible error or inconsistency, try to infer the CWSS version based

on the vector's factors and values, re-calculate the CWSS score based on the inferred version, and

compare this to the original score. If the scores are inconsistent, the implementation should report a

possible error or inconsistency.

7.7.1 Example: Business-critical application

Consider a reported weakness in which an application is the primary source of income for a company,

thus has critical business value. The application allows arbitrary Internet users to sign up for an

account using only an email address. A user can then exploit the weakness to obtain administrator

privileges for the application, but the attack cannot succeed until the administrator views a report of

recent user activities – a common occurrence. The attacker cannot take complete control over the

application, but can delete its users and data. Suppose further that there are no controls to prevent the

weakness, but the fix for the issue is simple, and limited to a few lines of code.

This situation could be captured in the following CWSS vector:

(TI:H,0.9/AP:A,1.0/AL:A,1.0/IC:N,1.0/FC:T,1.0/

RP:G,0.9/RL:A,1.0/AV:I,1.0/AS:N,1.0/IN:T,0.9/SC:A,1.0/

BI:C/0.9,DI:H,1.0/EX:H,1.0/EC:N,1.0/P:NA,1.0)

The vector has been split into multiple lines for readability. Each line represents a metric group.

The factors and values are as shown in Table 19, below.

 Rec. ITU-T X.1525 (04/2015) 27

Table 19 – Factors and values for business-critical application example

Factor Value

Technical Impact High

Acquired privilege Administrator

Acquired privilege Layer Application

Internal control effectiveness None

Finding confidence Proven true

Required privilege Guest

Required Privilege layer Application

Access vector Internet

Authentication strength None

Level of interaction Typical/Limited

Deployment scope All

Business impact Critical

Likelihood of discovery High

Likelihood of exploit High

External control effectiveness None

Prevalence NA

The CWSS score for this vector is 92.6, derived as follows:

• BaseSubscore:

o [(10 * TI + 5*(AP + AL) + 5*FC) * f(TI) * IC] * 4.0

o f(TI) = 1

o = [(10 * 0.9 + 5*(1.0 + 1.0) + 5*1.0) * 1 * 1.0] * 4.0

o = [(9.0 + 10.0 + 5.0) * 1.0] * 4.0

o = 24.0 * 4.0

o = 96.0

• AttackSurfaceSubscore:

o [20*(RP + RL + AV) + 20*SC + 15*IN + 5*AS] / 100.0

o = [20*(0.9 + 1.0 + 1.0) + 20*1.0 + 15*0.9 + 5*1.0] / 100.0

o = [58.0 + 20.0 + 13.5 + 5.0] / 100.0

o = 96.5 / 100.0

o = 0.965

• EnvironmentSubscore:

o [(10*BI + 3*DI + 4*EX + 3*P) * f(BI) * EC] / 20.0

o f(BI) = 1

o = [(10*1.0 + 3*1.0 + 4*1.0 + 3*1.0) * 1 * 1.0] / 20.0

o = [(10.0 + 3.0 + 4.0 + 3.0) * 1.0] / 20.0

o = 20.0 / 20.0

o = 1.0

The final score is:

96.0 * 0.965 * 1.0 = 92.64 == 92.6

28 Rec. ITU-T X.1525 (04/2015)

7.7.2 Example: Wiki with limited business criticality

Consider this CWSS vector. Suppose the software is a wiki that is used for tracking social events for

a mid-size business. Some of the most important characteristics are that there is medium technical

impact to an application administrator from a regular user of the application, but the application is

not business-critical, so the overall business impact is low. Also note that most of the environment

factors are set to "Not applicable."

(TI:M,0.6/AP:A,1.0/AL:A,1.0/IC:N,1.0/FC:T,1.0/

RP:RU,0.7/RL:A,1.0/AV:I,1.0/AS:W,0.9/IN:A,1.0/SC:NA,1.0/

BI:L/0.3,DI:NA,1.0/EX:NA,1.0/EC:N,1.0/RE:NA,1.0/P:NA,1.0)

The vector has been split into multiple lines for readability. Each line represents a metric group.

The factors and values are as shown in Table 20, below.

Table 20 – Factors and values for limited business-critical application example

Factor Value

Technical impact Medium

Acquired privilege Administrator

Acquired privilege layer Application

Internal control effectiveness None

Finding confidence Proven true

Required privilege Regular user

Required privilege layer Application

Access vector Internet

Authentication strength Weak

Level of interaction Automated

Deployment scope NA

Business impact Low

Likelihood of discovery NA

Likelihood of exploit NA

External control effectiveness None

Prevalence NA

The CWSS score for this vector is 51.1, derived as follows:

• BaseSubscore:

o [(10 * TI + 5*(AP + AL) + 5*FC) * f(TI) * IC] * 4.0

o f(TI) = 1

o = [(10 * 0.6 + 5*(1 + 1) + 5*1) * f(TI) * 1] * 4.0

o = 84.0

• AttackSurfaceSubscore:

o [20*(RP + RL + AV) + 20*SC + 15*IN + 5*AS] / 100.0

o = [20*(0.7 + 1 + 1) + 20*1.0 + 15*1.0 + 5*0.9] / 100.0

o = [54.0 + 20.0 + 15.0 + 4.5] / 100.0

o = 93.5 / 100.0

o = 0.94 (0.935)

 Rec. ITU-T X.1525 (04/2015) 29

• EnvironmentSubscore:

o [(10*BI + 3*DI + 4*EX + 3*P) * f(BI) * EC] / 20.0

o f(BI) = 1

o = [(10*0.3 + 3*1.0 + 4*1.0 + 3*1.0) * f(BI) * 1] / 20.0

o = [(3.0 + 3.0 + 4.0 + 3.0) * 1.0 * 1.0] / 20.0

o = [13.0 * 1.0] / 20.0

o = 0.65

The final score is:

84.0 * 0.935 * 0.65 = 51.051 == 51.1

7.7.3 Other approaches to CWSS score portability

Instead of recording each individual weight within a CWSS vector, several other methods could be

adopted.

One possibility is to extend the CWSS vectors to record additional metadata that does not affect the

score but reflects the version or other important information. The metadata portion would not

necessarily need to capture weights, per se. For example, the CWSS version could be recorded by

using a "factor" name such as "V" along with a value that represents the CWSS version, e.g., "V:1.1".

This would add approximately 4 bytes to each CWSS vector. However, if the version is encoded

within a vector, then the assigned weights would no longer need to be recorded (except for Quantified

values), so the resulting vectors could be much shorter.

A different approach would be to attach metadata to a set of generated CWSS scores (such as the

Technical Impact Scorecard if CWRAF is used), but it could be too easy for this metadata to become

detached from the scores/vectors. Quantified factors would still need to be represented within a

vector, since they could vary for each weakness finding.

Another approach is that when CWSS scores are transferred from one party to the other, then the

receiving party could re-calculate the scores from the given CWSS vectors, then compare the re-

calculated scores with the original scores. A difference in scores would suggest that different

mechanisms are in use between the provider and receiver, possibly a different CWSS version.

30 Rec. ITU-T X.1525 (04/2015)

Bibliography

[b-ITU-T X.1500] Recommendation ITU-T X.1500 (2011), Overview of Cybersecurity

information exchange.

[b-ITU-T X.1520] Recommendation ITU-T X.1520 (2014), Common vulnerabilities exposures.

[b-ITU-T X.1521] Recommendation ITU-T X.1521 (2011), Common vulnerability scoring

system.

[b-ITU-T X.1524] Recommendation ITU-T X.1524 (2012), Common weakness enumeration.

[b-ITU-T X.1544] Recommendation ITU-T X.1544 (2013), Common attack pattern enumeration

and classification.

[b-CWRAF] Common Weakness Risk Analysis Framework
<http://cwe.mitre.org/cwraf/>

http://cwe.mitre.org/cwraf/

Printed in Switzerland
Geneva, 2015

SERIES OF ITU-T RECOMMENDATIONS

Series A Organization of the work of ITU-T

Series D General tariff principles

Series E Overall network operation, telephone service, service operation and human factors

Series F Non-telephone telecommunication services

Series G Transmission systems and media, digital systems and networks

Series H Audiovisual and multimedia systems

Series I Integrated services digital network

Series J Cable networks and transmission of television, sound programme and other multimedia

signals

Series K Protection against interference

Series L Construction, installation and protection of cables and other elements of outside plant

Series M Telecommunication management, including TMN and network maintenance

Series N Maintenance: international sound programme and television transmission circuits

Series O Specifications of measuring equipment

Series P Terminals and subjective and objective assessment methods

Series Q Switching and signalling

Series R Telegraph transmission

Series S Telegraph services terminal equipment

Series T Terminals for telematic services

Series U Telegraph switching

Series V Data communication over the telephone network

Series X Data networks, open system communications and security

Series Y Global information infrastructure, Internet protocol aspects and next-generation networks

Series Z Languages and general software aspects for telecommunication systems

	Recommendation ITU-T X.1525 (04/2015) - Common weakness scoring system
	Summary
	FOREWORD
	Table of Contents
	Introduction
	1 Scope
	2 References
	3 Definitions
	3.1 Terms defined elsewhere
	3.2 Terms defined in this Recommendation

	4 Abbreviations and acronyms
	5 Conventions
	6 Use of CWSS
	6.1 CWSS description
	6.2 Workings of CWSS
	6.3 CWSS scoring
	6.4 CWSS users

	7 Metric groups
	7.1 Metric group factors
	7.2 Values for uncertainty and flexibility
	7.3 Base finding metric group
	7.3.1 Technical impact (TI)
	7.3.2 Acquired privilege (AP)
	7.3.3 Acquired privilege layer (AL)
	7.3.4 Internal control effectiveness (IC)
	7.3.5 Finding confidence (FC)

	7.4 Attack Surface metric group
	7.4.1 Required privilege (RP)
	7.4.2 Required privilege layer (RL)
	7.4.3 Access vector (AV)
	7.4.4 Authentication strength (AS)
	7.4.5 Level of interaction (IN)
	7.4.6 Deployment scope (SC)

	7.5 Environmental Metric group
	7.5.1 Business impact (BI)
	7.5.2 Likelihood of discovery (DI)
	7.5.3 Likelihood of exploit (EX)
	7.5.4 External control effectiveness (EC)
	7.5.5 Prevalence (P)

	7.6 CWSS score formula
	7.6.1 Base finding subscore
	7.6.2 Attack surface subscore
	7.6.3 Environmental subscore
	7.6.4 Additional features of the formula

	7.7 CWSS vectors, scoring examples and score portability
	7.7.1 Example: Business-critical application
	7.7.2 Example: Wiki with limited business criticality
	7.7.3 Other approaches to CWSS score portability

	Bibliography

