
ITUPublications International Telecommunication Union

Recommendations Standardization Sector

Recommendation

ITU-T X.1412 (04/2023)

SERIES X: Data networks, open system communications
and security

Secure applications and services (2) – Distributed ledger
technology (DLT) security

Security requirements for smart contract
management based on the distributed ledger
technology

ITU-T X-SERIES RECOMMENDATIONS

Data networks, open system communications and security

PUBLIC DATA NETWORKS X.1-X.199
OPEN SYSTEMS INTERCONNECTION X.200-X.299
INTERWORKING BETWEEN NETWORKS X.300-X.399
MESSAGE HANDLING SYSTEMS X.400-X.499
DIRECTORY X.500-X.599
OSI NETWORKING AND SYSTEM ASPECTS X.600-X.699
OSI MANAGEMENT X.700-X.799
SECURITY X.800-X.849
OSI APPLICATIONS X.850-X.899
OPEN DISTRIBUTED PROCESSING X.900-X.999
INFORMATION AND NETWORK SECURITY X.1000-X.1099
SECURE APPLICATIONS AND SERVICES (1) X.1100-X.1199
CYBERSPACE SECURITY X.1200-X.1299
SECURE APPLICATIONS AND SERVICES (2) X.1300-X.1499
 Emergency communications X.1300-X.1309
 Ubiquitous sensor network security X.1310-X.1319
 Smart grid security X.1330-X.1339
 Certified mail X.1340-X.1349
 Internet of things (IoT) security X.1350-X.1369
 Intelligent transportation system (ITS) security X.1370-X.1399
 Distributed ledger technology (DLT) security X.1400-X.1429
 Application Security (2) X.1450-X.1459
 Web security (2) X.1470-X.1489
CYBERSECURITY INFORMATION EXCHANGE X.1500-X.1599
CLOUD COMPUTING SECURITY X.1600-X.1699
QUANTUM COMMUNICATION X.1700-X.1729
DATA SECURITY X.1750-X.1799
IMT-2020 SECURITY X.1800-X.1819

For further details, please refer to the list of ITU-T Recommendations.

 Rec. ITU-T X.1412 (04/2023) i

Recommendation ITU-T X.1412

Security requirements for smart contract management based

on the distributed ledger technology

Summary

Recommendation ITU-T X.1412 analyses security threats and challenges and provides security

requirements for smart contract management in distributed ledger technology (DLT) systems. As

smart contracts are widely used in DLT systems, they are faced with a lot of security threats and

challenges.

As such this Recommendation can be used by smart contract designers, developers, and managers to

manage smart contracts, including design and development, compilation and deployment, invocation

and execution, maintenance and management in DLT systems. This Recommendation does not deal

with the security issues of wallets or distributed applications related to smart contracts.

History *

Edition Recommendation Approval Study Group Unique ID

1.0 ITU-T X.1412 2023-04-29 17 11.1002/1000/15545

Keywords

Blockchain, distributed ledger technology, security requirements, smart contract.

* To access the Recommendation, type the URL https://handle.itu.int/ in the address field of your web

browser, followed by the Recommendation's unique ID.

https://handle.itu.int/

ii Rec. ITU-T X.1412 (04/2023)

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of
telecommunications, information and communication technologies (ICTs). The ITU Telecommunication
Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical,
operating and tariff questions and issuing Recommendations on them with a view to standardizing

telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years, establishes
the topics for study by the ITU-T study groups which, in turn, produce Recommendations on these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are
prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a
telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain
mandatory provisions (to ensure, e.g., interoperability or applicability) and compliance with the
Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some other
obligatory language such as "must" and the negative equivalents are used to express requirements. The use of
such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may involve
the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence, validity or
applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others outside of

the Recommendation development process.

As of the date of approval of this Recommendation, ITU had not received notice of intellectual property,
protected by patents/software copyrights, which may be required to implement this Recommendation.
However, implementers are cautioned that this may not represent the latest information and are therefore
strongly urged to consult the appropriate ITU-T databases available via the ITU-T website at
http://www.itu.int/ITU-T/ipr/.

© ITU 2023

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the prior
written permission of ITU.

http://www.itu.int/ITU-T/ipr/

 Rec. ITU-T X.1412 (04/2023) iii

Table of Contents

 Page

1 Scope .. 1

2 References .. 1

3 Definitions ... 1

3.1 Terms defined elsewhere ... 1

3.2 Terms defined in this Recommendation ... 2

4 Abbreviations and acronyms .. 2

5 Conventions ... 2

6 Security threats of smart contract management... 2

7 Security framework of smart contract management ... 4

8 Security requirements for smart contract management... 4

8.1 Security requirements in the design and development phase 4

8.2 Security requirements in the compilation and deployment phase 6

8.3 Security requirements in the invocation and execution phase 7

8.4 Security requirements in the maintenance and management phase 8

Appendix I – Smart contract weakness classification .. 9

Bibliography .. 15

 Rec. ITU-T X.1412 (04/2023) 1

Recommendation ITU-T X.1412

Security requirements for smart contract management based

on the distributed ledger technology

1 Scope

This Recommendation analyses the security threats and challenges of the smart contract in distributed

ledger technology (DLT) systems and specifies the security requirements for smart contract

management.

This Recommendation can be referred to in smart contract lifecycle management as a starting point

for security. This Recommendation does not deal with the security issues of wallets or distributed

applications related to smart contracts.

2 References

The following ITU-T Recommendations and other references contain provisions which, through

reference in this text, constitute provisions of this Recommendation. At the time of publication, the

editions indicated were valid. All Recommendations and other references are subject to revision;

users of this Recommendation are therefore encouraged to investigate the possibility of applying the

most recent edition of the Recommendations and other references listed below. A list of the currently

valid ITU-T Recommendations is regularly published. The reference to a document within this

Recommendation does not give it, as a stand-alone document, the status of a Recommendation.

[ITU-T X.1401] Recommendation ITU-T X.1401 (2019), Security threats of distributed ledger

technology.

3 Definitions

3.1 Terms defined elsewhere

This Recommendation uses the following terms defined elsewhere:

3.1.1 block [b-ITU-T X.1400]: Individual data unit of a blockchain (see clause 3.1.2), composed

of a collection of transactions and a block header.

3.1.2 blockchain [b-ITU-T X.1400]: A type of distributed ledger which is composed of digitally

recorded data arranged as a successively growing chain of blocks with each block cryptographically

linked and hardened against tampering and revision.

3.1.3 blockchain system [b-ITU-T X.1400]: A system that implements a blockchain.

3.1.4 consensus [b-ITU-T X.1400]: Agreement that a set of transactions is valid.

3.1.5 consensus mechanism [b-ITU-T X.1400]: Rules and procedures by which consensus is

reached.

3.1.6 distributed ledger [b-ITU-T X.1400]: A type of ledger that is shared, replicated, and

synchronized in a distributed and decentralized manner.

3.1.7 distributed ledger technology (DLT) [b-ITU-T X.1400]: Technology that enables the

operation and use of distributed ledgers.

3.1.8 DLT system [b-ITU-T X.1400]: A system that implements a distributed ledger.

3.1.9 on-chain [b-ITU-T X.1400]: Located, performed, or run inside a blockchain system.

2 Rec. ITU-T X.1412 (04/2023)

3.1.10 off-chain [b-ITU-T X.1400]: Related to a blockchain system, but located, performed, or run

outside that blockchain system.

3.1.11 personally identifiable information (PII) [b-ITU-T X.1252]: Any information:

a) that identifies or can be used to identify, contact, or locate the person to whom such

information pertains;

b) from which identification or contact information of an individual person can be derived; or

c) that is or can be linked to a natural person directly or indirectly.

3.1.12 public DLT system [b-ITU-T X.1400]: A distributed ledger technology (DLT) system which

is accessible to the public for use.

3.1.13 private DLT system [b-ITU-T X.1400]: A distributed ledger technology (DLT) system

which is accessible for use only to a limited group of DLT users.

3.1.14 sensitive data [b-ITU-T X.1040]: Data with potentially harmful effects in the event of

disclosure or misuse.

3.1.15 smart contract [b-ITU-T X.1400]: A program written on a distributed ledger system which

encodes the rules for specific types of distributed ledger system transactions in a way that can be

validated and triggered by specific conditions.

3.1.16 transaction [b-ITU-T X.1400]: Whole of the exchange of information between nodes. A

transaction is uniquely identified by a transaction identifier.

3.2 Terms defined in this Recommendation

None.

4 Abbreviations and acronyms

This Recommendation uses the following abbreviations and acronyms:

CPU Central Processing Unit

DLT Distributed Ledger Technology

DoS Denial of Service

EVM Ethereum Virtual Machine

PII Personally Identifiable Information

SCSC Smart Contract Security Challenge

5 Conventions

This Recommendation applies the following verbal forms for the expression of provisions:

a) "Shall" indicates a requirement,

b) "Should" indicates a recommendation,

c) "May" indicates a permission,

d) "Can" indicates a possibility and a capability.

6 Security threats of smart contract management

[ITU-T X.1401] categorizes the security threats to smart contracts into the following four types:

timestamp dependence attack, mishandled exceptions attack, integer overflow attack, and predictable

random number attack. Given below is a view of the attack method.

 Rec. ITU-T X.1412 (04/2023) 3

Smart contract codes can include errors and vulnerabilities such as intentionally or accidentally, lack

of education and training, lack of awareness, simple human error (with/without tiredness), or by

technology evolution.

Malicious users can exploit smart contract vulnerabilities to attack the DLT system and cause

unexpected economic losses.

As smart contracts are hard to patch once they are deployed on a DLT system, the attack impact and

the consequences caused by the vulnerabilities could be long lasting. If smart contracts are used to

manage digital assets, any vulnerabilities and errors can cause problems such as asset loss and

misappropriation.

Figure 1 shows the components related to smart contracts in the DLT system and the challenges

considered to securely manage smart contracts.

Figure 1 – Security challenges of smart contract based on DLT

The security challenges of smart contracts based on the DLT are listed below:

• SCSC-1: Smart contract codes can include vulnerabilities, which cannot be changed directly.

It makes insecure codes difficult to modify and increases the likelihood of exploitation.

• SCSC-2: Smart contract codes are typically public. It makes them easy to analyse and

increases the likelihood of finding vulnerabilities. If the code involves sensitive data, it is

also exposed.

• SCSC-3: Evolution of the underlying DLT platform can make new vulnerabilities, reveal

unknown vulnerabilities, or make existing smart contract codes obsolete.

• SCSC-4: A DLT system's operating environment can have security flaws that possibly lead

to denial of service (DoS), virtual machine escaping, any code execution, privilege escalation,

etc.

• SCSC-5: A smart contract can consume excessive environmental resources, such as central

processing unit (CPU), memory, and disk storage, which will adversely affect the

performance of the DLT system.

4 Rec. ITU-T X.1412 (04/2023)

• SCSC-6: When smart contracts access external data, they can encounter errors forged, or

inconsistent data, which might cause incorrect results, misuse, or exploitation.

More detailed information on the security analysis of smart contracts can be found at [b-ACM],

[b-ARXIV], [b-Kaiser], and [b-SWCR].

7 Security framework of smart contract management

Throughout the smart contract development lifecycle, all security requirements will be introduced to

avoid relevant security threats and challenges, which include but are not limited to security activities

across the design and development, compilation and deployment, invocation and execution, and lastly

maintenance and management phases [b-IEEE-scs].

The security framework of smart contract lifecycle management is shown in the Figure 2.

Figure 2 – Security framework of smart contract management

In the design and development phase, it includes design security, programming security, and testing

security.

In the compilation and deployment phase, it includes compilation security and deployment security.

In the invocation and execution phase, it includes invocation security and execution security.

In the maintenance and management phase, it includes upgrading security, freezing/unfreezing

security and security audit.

8 Security requirements for smart contract management

Developers should have appropriate DLT related knowledge and skills, through ongoing security

updates and education. The knowledge and skills include DLT platforms and the smart contract they

support, particularly when it evolves continuously and rapidly, to reflect the technology changes and

to respond to newly reported vulnerabilities and threats.

Different vulnerabilities might exist in different DLT systems. The smart contracts in different DLT

systems will probably be programmed with different programming languages, and will be executed

in different environments.

8.1 Security requirements in the design and development phase

8.1.1 Design security

It is critically important to consider smart contract security issues carefully during the design and

development phase. Mitigation of security issues is much less expensive when performed in the

design phase compared with later phases during the smart contract lifecycle.

 Rec. ITU-T X.1412 (04/2023) 5

Before writing the smart contract code, the functions of the entire contract and external interactions

should be designed, and the security problems caused by design flaws should be avoided.

In the design phase, the security requirements are as follows:

a) Smart contracts shall be designed to have defect mitigation capability. The defect mitigation

capability includes early termination capability, online update capability, and other

capabilities to handle or mitigate defects after a smart contract's deployment.

b) Smart contracts, in principle, shall not be designed to store, use, or transfer sensitive

information on-ledger. The sensitive information includes personally identifiable information

(PII) and other sensitive data which should be protected from unauthorized access.

c) When a smart contract receives sensitive information, the information shall be encrypted.

d) Smart contracts shall be based upon proven safe encryption algorithms to reduce algorithm

attacks.

e) Smart contracts should be designed to avoid deriving operation results including random data

or action.

f) Smart contracts should be designed to avoid predictable random numbers of attacks.

g) Smart contracts shall be designed with reasonable sequence logic to avoid different execution

results between nodes.

h) Smart contracts shall be designed to avoid timestamp dependency attacks.

i) When designing a smart contract, there should be no dependence on the order, such as the

order of payment, application, etc., to avoid security problems caused by the competition of

conditions.

j) For the private DLT system, each role and its authorization should be designed reasonably.

k) A smart contract should be developed in a targeted manner according to the differences

between different versions of the platforms.

l) When the platform is upgraded, the operating differences of the smart contract on the new

version of the platform should be evaluated, and appropriate adjustments should be made to

avoid security issues.

8.1.2 Programming security

8.1.2.1 Development environment security

The development and compilation tools and dependencies for smart contracts should be updated to

respond to newly reported vulnerabilities and threats. Keeping tools and dependencies up to date is

very important to ensure the security of the smart contract development environment.

It should be noted that there may be new security flaws in the latest tools, and supply chain security

shall be considered when using third-party tools and codes.

8.1.2.2 Coding security

For the coding security of smart contracts, the security requirements are as follows:

a) When developing smart contracts, developers shall clearly define the types of variables to

determine the range of values for variables and prevent them from overflow, underflow, or

uninitialized variables.

b) Developers should not use programming languages which can cause security failure that

advanced languages can avoid.

c) When performing mathematical operations, developers shall be aware of the possible

boundary conditions, for example, array index bound or bound for integer size, or any value

should not be divided by zero.

6 Rec. ITU-T X.1412 (04/2023)

d) When implementing the functionality or logic of the smart contract, developers shall avoid

introducing unreliable input.

e) When the smart contract calls other functions outside of a smart contract, developers shall

deal with possible errors. This includes but is not limited to, catching exceptions, handling

error return values, and so on.

8.1.2.3 Logical security

Even if the code itself does not have security issues, there may be security flaws in the code logic.

Regarding the logical security of smart contracts, the security requirements are as follows:

a) When multiple users are included in the smart contract or multiple users are allowed to

interact with it, the permissions of each user should be restricted. Only specific users should

be allowed to use destruction operations and other sensitive operations.

b) Developers shall ensure that the overall logical design of smart contracts has no obvious

defects.

c) Developers shall make smart contract implementation to be consistent with the logic design

to avoid ambiguity or deviation.

d) Developers shall ensure that there are no obvious loopholes, especially in the game design.

e) Developers should take measures to avoid the risk of "DoS".

f) Developers should take measures to avoid the pre-emptive attack on transaction risk and

transaction sequence dependence issues.

g) Smart contracts shall be developed in a targeted manner by complying with a specific type

and/or version of the platform.

h) When designing applications based on smart contracts, developers should guarantee security

for the logic of the smart contract itself and the logic of the off-chain.

8.1.3 Testing security

Smart contracts are hard to patch once they are deployed on the DLT system, so it is important to test

the smart contracts before deployment. Developers shall perform security testing to ensure the

security of the codes before they are deployed.

The security requirements for smart contract testing include:

a) The release of smart contracts shall be subject to security analysis and testing.

b) Security testing should cover general vulnerability detection and security verification of

contract code or bytecode.

c) Static security analysis of smart contract code shall be performed to discover security issues

in the code itself.

d) Dynamic security analysis should be performed to check whether there are security issues

according to the running status.

e) Formal verification should be performed to use mathematical methods to determine whether

the program's operating results meet expectations. Details of formal verification can be found

at [b-Abdellatif].

8.2 Security requirements in the compilation and deployment phase

8.2.1 Compilation security

Smart contract compilation is the process of converting the smart contract code into an executable

format of the operating environment.

 Rec. ITU-T X.1412 (04/2023) 7

For the compilation security of smart contracts, the requirements are as follows:

a) Mature and secure compilation tools shall be selected and used.

b) When a defect in the compiler is found, it shall be updated in time to eliminate the defect.

c) The logic of the smart contract source code shall be consistent after being compiled into

bytecode.

d) It shall support the compilation and detection of smart contracts on the blockchain platform.

8.2.2 Deployment security

During this phase, a smart contract is made available to the blockchain system with a transaction

containing the raw or (pre-)compiled code.

The security requirements for smart contract deployment include:

a) Consensus shall be achieved by the DLT system before smart contract deployment, to avoid

evil nodes to deploy the smart contract.

b) The integrity of the smart contract shall be verified before deployment.

c) The authentication and authorization of the smart contract deployment shall be verified

before deployment.

8.3 Security requirements in the invocation and execution phase

8.3.1 Invocation security

In the invocation step, the code of the smart contract is activated by sending a transaction to the

ledger, calling its primarily assigned address, and optionally transferring invocation parameters.

Invocation methods include direct interface invocation, invocation between smart contracts, oracle

machine invocation, etc.

The security requirements for smart contract invocation include:

a) In case of interface invocation, the smart contract shall have clear declarations for the

interfaces to facilitate the interface invocation.

b) In case of invocation between smart contracts, risks and errors caused by untrusted external

smart contracts should be prevented.

c) When interacting with external smart contracts, it should be clearly marked that the

interaction is external by means of variable names, method names, or interface names.

d) In case of oracle machine invocation, the interface protocol shall be based on the secure

transmission protocol, and the oracle machine itself should pass a third-party security and

reliability assessment.

e) The smart contract shall specify and verify the invocation scope.

f) The invocation parameters shall be checked and verified by the nodes in the DLT system .

8.3.2 Execution security

8.3.2.1 Execution environment security

The execution environment security includes the following requirements:

a) The operating environment of the smart contract shall correctly handle exceptions, support

real-time monitoring, and ensure that the smart contract can be terminated normally.

b) When the platform is upgraded, smart contracts targeted to the previous version of the

platform shall be evaluated and provided appropriate adjustments and/or backward

compatibility to avoid security issues.

8 Rec. ITU-T X.1412 (04/2023)

8.3.2.2 Data security

The data security includes the following requirements:

a) The status data of other users or other contracts shall not be tampered with without any

security control.

b) Users' data shall be protected by security controls, e.g., using cryptography algorithms, and

isolation of contract status data.

8.3.2.3 Resource security

The execution environment should guarantee resource security for smart contract execution, e.g., a

trusted execution environment (TEE).

8.4 Security requirements in the maintenance and management phase

8.4.1 Upgrading security

The security requirements for smart contract upgrading include:

a) It should support online upgrades of smart contracts.

b) After the smart contract is upgraded, the historical version should be retained.

c) When the smart contract upgrade fails, it should be able to roll back to the original smart

contract.

d) The upgrade operation of the smart contract should be recorded in the block.

8.4.2 Freezing / unfreezing security

Smart contract freezing and unfreezing is the process of stopping and reopening the calling function

of smart contracts.

The security requirements for smart contract freezing / unfreezing include:

a) The DLT system shall be able to freeze the smart contract, in case the smart contract has bugs

or security issues.

b) The DLT system shall be able to unfreeze the smart contract after the bugs in the smart

contract are fixed.

c) When freezing or unfreezing the smart contract, user authentication and authorization shall

be performed.

8.4.3 Security audit

The security requirements for smart contract audit include:

a) Smart contract auditors should be able to audit the source code. They can audit and analyse

the code security of the smart contract by manually reviewing the source code and static code

audit tools.

b) Smart contract auditors should be able to audit the compilation environment security of smart

contracts.

c) Smart contract auditors should be able to audit the execution environment security of smart

contracts.

d) The audit records shall be kept within a specified timeframe.

9 Rec. ITU-T X.1412 (04/2023)

Appendix I

Smart contract weakness classification

(This appendix does not form an integral part of this Recommendation.)

This appendix is intended to facilitate understanding of this Recommendation by providing examples of various smart security vulnerabilities. The SWE

registry publicizes this smart contract weakness classification data so anyone can register new smart contract vulnerabilities according to the weakness

classification scheme proposed in [b-EIP-1470].

ID Title Related CWE Description

SWC-136 Unencrypted private data on-

chain

CWE-767: Access to critical private

variable via public method

It is a common misconception that private type variables cannot be read. Even if your

contract is not published, attackers can look at contract transactions to determine values

stored in the state of the contract. For this reason, it is important that unencrypted private

data is not stored in the contract code or state.

SWC-135 Code with no effects CWE-1164: Irrelevant code In solidity, it is possible to write code that does not produce the intended effects. Currently,

the solidity compiler will not return a warning for effect-free code. This can lead to the

introduction of "dead" code that does not properly perform an intended action.

SWC-134 Message call with the

hardcoded gas amount
CWE-655: Improper initialization The transfer() and send() functions forward a fixed amount of 2 300 gas. Historically, it

has often been recommended to use these functions for value transfers to guard against re-

entrancy attacks. However, the gas cost of ethereum virtual machine (EVM) instructions

may change significantly during hard forks which may break already deployed contract

systems that make fixed assumptions about gas costs. For example, EIP 1884 broke several

existing smart contracts due to a cost increase in the SLOAD instruction.

SWC-133 Hash collisions with multiple

variable length arguments

CWE-294: Authentication bypass by

capture-replay

Using abi.encodePacked() with multiple variable length arguments can, in certain

situations, lead to a hash collision. Since abi.encodePacked() packs all elements in order

regardless of whether they are part of an array, you can move elements between arrays and,

so long as all elements are in the same order, it will return the same encoding. In a signature
verification situation, an attacker could exploit this by modifying the position of elements

in a previous function call to effectively bypass authorization.

SWC-132 Unexpected ether balance CWE-667: Improper locking Contracts can behave erroneously when they strictly assume a specific ether balance. It is

always possible to forcibly send ether to a contract (without triggering its fallback

function), using self-destruct, or by mining to the account. In the worst-case scenario, this

could lead to DOS conditions that might render the contract unusable.

SWC-131 Presence of unused variables CWE-1164: Irrelevant code Unused variables are allowed in solidity and they do not pose a direct security issue. It is

best practice though to avoid them as they can.

10 Rec. ITU-T X.1412 (04/2023)

ID Title Related CWE Description

SWC-130 Right-to-left-override control

character (U+202E)

CWE-451: User interface (UI)

misrepresentation of critical

information

Malicious actors can use the right-to-left-override unicode character to force RTL text

rendering and confuse users as to the real intent of a contract.

SWC-129 Typographical error CWE-480: Use of incorrect operator A typographical error can occur for example when the intent of a defined operation is to

sum a number to a variable (+=) but it has accidentally been defined in a wrong way (=+),

introducing a typo that happens to be a valid operator. Instead of calculating the sum it

initializes the variable again.

SWC-128 DoS with block gas limit CWE-400: Uncontrolled resource

consumption

When smart contracts are deployed or functions inside them are called, the execution of

these actions always requires a certain amount of gas, based on how much computation is

needed to complete them. The ethereum network specifies a block gas limit and the sum of

all transactions included in a block cannot exceed the threshold.

SWC-127 Arbitrary jump with function

type variable

CWE-695: Use of low-level

functionality

Solidity supports function types. That is, a variable of function type can be assigned with

a reference to a function with a matching signature. The function saved to such a variable

can be called just like a regular function.

SWC-126 Insufficient gas griefing CWE-691: Insufficient control flow

management

Insufficient gas griefing attacks can be performed on contracts that accept data and use it

in a sub-call on another contract. If the sub-call fails, either the whole transaction is

reverted, or execution is continued. In the case of a relayed contract, the user who executes

the transaction, the 'forwarder', can effectively censor transactions by using just enough gas

to execute the transaction, but not enough for the sub-call to succeed.

SWC-125 Incorrect inheritance order CWE-696: Incorrect behaviour order Solidity supports multiple inheritance, meaning that one contract can inherit several

contracts. Multiple inheritance introduces ambiguity called diamond problem: if two or

more base contracts define the same function, which one should be called in the child

contract? Solidity deals with this ambiguity by using reverse C3 linearization, which sets a

priority between base contracts.

SWC-124 Write to arbitrary storage

location

CWE-123: Write-what-where

condition

A smart contract's data (e.g., storing the owner of the contract) is persistently stored at some

storage location (i.e., a key or address) on the EVM level. The contract is responsible for

ensuring that only authorized users or contract accounts may write to sensitive storage

locations. If an attacker is able to write to arbitrary storage locations of a contract, the

authorization checks may easily be circumvented. This can allow an attacker to corrupt the

storage; for instance, by overwriting a field that stores the address of the contract owner.

SWC-123 Requirement violation CWE-573: Improper following of

specification by caller

The solidity require() construct is meant to validate external inputs of a function. In most

cases, such external inputs are provided by callers, but they may also be returned by callees.

In the former case, we refer to them as precondition violations. Violations of a requirement

can indicate one of two possible issues.

11 Rec. ITU-T X.1412 (04/2023)

ID Title Related CWE Description

SWC-122 Lack of proper signature

verification

CWE-345: Insufficient verification

of data authenticity

It is a common pattern for smart contract systems to allow users to sign messages off-chain

instead of directly requesting users to do an on-chain transaction because of the flexibility

and increased transferability that this provides. Smart contract systems that process signed

messages have to implement their own logic to recover the authenticity of the signed

messages before they process them further. A limitation of such systems is that smart

contracts cannot directly interact with them because they cannot sign messages. Some

signature verification implementations attempt to solve this problem by assuming the

validity of a signed message based on other methods that do not have this limitation. An
example of such a method is to rely on msg.sender and assume that if a signed message

originated from the sender address then it has also been created by the sender address. This

can lead to vulnerabilities, especially in scenarios where proxies can be used to relay

transactions.

SWC-121 Missing protection against

signature replay attacks

CWE-347: Improper verification of

cryptographic signature

It is sometimes necessary to perform signature verification in smart contracts to achieve

better usability or to save gas costs. A secure implementation needs to protect against

signature replay attacks by for example keeping track of all processed message hashes and

only allowing new message hashes to be processed. A malicious user could attack a

contract without such control and get a message hash that was sent by another user

processed multiple times.

SWC-120 Weak sources of randomness

from chain attributes

CWE-330: Use of insufficiently

random values

Ability to generate random numbers is very helpful in all kinds of applications. One

obvious example is gambling distributed applications, where a pseudo-random number

generator is used to pick the winner. However, creating a strong enough source of

randomness in ethereum is very challenging. For example, the use of block.timestamp is

insecure, as a miner can choose to provide any timestamp within a few seconds and still

get their block accepted by others. The use of blockhash, block.difficulty and other fields

is also insecure, as they are controlled by the miner. If the stakes are high, the miner can
mine lots of blocks in a short time by renting hardware, pick the block that has the required

block hash for the miner to win, and drop all the others.

SWC-119 Shadowing state variables CWE-710: Improper adherence to

coding standards

Solidity allows for ambiguous naming of state variables when inheritance is used. Contract

A with a variable x could inherit contract B which also has a state variable x defined. This

would result in two separate versions of x, one of them being accessed from contract A and

the other one from contract B. In more complex contract systems this condition could go

unnoticed and subsequently lead to security issues.

12 Rec. ITU-T X.1412 (04/2023)

ID Title Related CWE Description

SWC-118 Incorrect constructor name CWE-665: Improper initialization Constructors are special functions that are called only once during the contract creation.

They often perform critical, privileged actions such as setting the owner of the contract.

Before solidity version 0.4.22, the only way of defining a constructor was to create a

function with the same name as the contract class containing it. A function meant to become

a constructor becomes a normal, callable function if its name does not exactly match the

contract name. This behaviour sometimes leads to security issues, in particular when smart

contract code is re-used with a different name, but the name of the constructor function is

not changed accordingly.

SWC-117 Signature malleability CWE-347: Improper verification of

cryptographic signature

The implementation of a cryptographic signature system in Ethereum contracts often

assumes that the signature is unique, but signatures can be altered without the possession

of the private key and still be valid. The EVM specification defines several so-called

'precompiled' contracts one of them being ecrecover, which executes the elliptic curve

public key recovery. A malicious user can slightly modify the three values v, r and s to

create other valid signatures. A system that performs signature verification on the contract

level might be susceptible to attacks if the signature is part of the signed message hash.

Valid signatures could be created by a malicious user to replay previously signed messages.

SWC-116 Block values as a proxy for

time

CWE-829: Inclusion of functionality

from untrusted control sphere

Contracts often need access to time values to perform certain types of functionalities.

Values such as block.timestamp, and block.number can give you a sense of the current time

or a time delta, however, they are not safe to use for most purposes.

SWC-115 Authorization through

tx.origin
CWE-477: Use of obsolete function tx.origin is a global variable in solidity that returns the address of the account that sent the

transaction. Using the variable for authorization could make a contract vulnerable if an

authorized account calls into a malicious contract. A call could be made to the vulnerable

contract that passes the authorization check since tx.origin returns the original sender of

the transaction which in this case is the authorized account.

SWC-114 Transaction order dependence CWE-362: Concurrent execution

using shared resource with improper

synchronization ('Race condition')

The Ethereum network processes transactions in blocks with new blocks getting confirmed

around every 17 seconds. The miners look at transactions they have received and select

which transactions to include in a block, based on who has paid a high enough gas price to

be included. Additionally, when transactions are sent to the Ethereum network they are

forwarded to each node for processing. Thus, a person who is running an Ethereum node

can tell which transactions are going to occur before they are finalized. A race condition

vulnerability occurs when code depends on the order of the transactions submitted to it.

SWC-113 DoS with failed call CWE-703: Improper check or

handling of exceptional conditions

External calls can fail accidentally or deliberately, which can cause a DoS condition in the

contract. To minimize the damage caused by such failures, it is better to isolate each

external call into its own transaction that can be initiated by the recipient of the call. This
is especially relevant for payments, where it is better to let users withdraw funds rather than

push funds to them automatically (this also reduces the chance of problems with the gas

limit).

13 Rec. ITU-T X.1412 (04/2023)

ID Title Related CWE Description

SWC-112 Delegatecall to untrusted

callee

CWE-829: Inclusion of functionality

from untrusted control sphere

There exists a special variant of a message call, named delegatecall which is identical to a

message call apart from the fact that the code at the target address is executed in the context

of the calling contract, and msg.sender and msg.value do not change their values. This

allows a smart contract to dynamically load code from a different address at runtime.

Storage, current address, and balance still refer to the calling contract.

SWC-111 Use of deprecated solidity

functions
CWE-477: Use of obsolete function Several functions and operators in solidity are deprecated. Using them leads to reduced

code quality. With new major versions of the solidity compiler, deprecated functions, and

operators may result in side effects and compile errors.

SWC-110 Assert violation CWE-670: Always-incorrect control

flow implementation

The solidity assert() function is meant to assert invariants. Properly functioning code should

never reach a failing assert statement. A reachable assertion can mean one of two things:

1. A bug exists in the contract that allows it to enter an invalid state.

2. The assert statement is used incorrectly, e.g., to validate inputs.

SWC-109 Uninitialized storage pointer CWE-824: Access of uninitialized

pointer

Uninitialized local storage variables can point to unexpected storage locations in the

contract, which can lead to intentional or unintentional vulnerabilities.

SWC-108 State variable default

visibility

CWE-710: Improper adherence to

coding standards

Labelling the visibility explicitly makes it easier to catch incorrect assumptions about who

can access the variable.

SWC-107 Reentrancy CWE-841: Improper enforcement of

behavioural workflow

One of the major dangers of calling external contracts is that they can take over the control

flow. In the reentrancy attack (a.k.a. recursive call attack), a malicious contract calls back

into the calling contract before the first invocation of the function is finished. This may

cause the different invocations of the function to interact in undesirable ways.

SWC-106 Unprotected

SELFDESTRUCT instruction

CWE-284: Improper access control Due to missing or insufficient access controls, malicious parties can self-destruct the

contract.

SWC-105 Unprotected ether withdrawal CWE-284: Improper access control Due to missing or insufficient access controls, malicious parties can withdraw some or all

ether from the contract account.

SWC-104 Unchecked call return value CWE-252: Unchecked return value The return value of a message call is not checked. Execution will resume even if the called

contract throws an exception. If the call fails accidentally or an attacker forces the call to

fail, this may cause unexpected behaviour in the subsequent program logic.

SWC-103 Floating pragma CWE-664: Improper control of a

resource through its lifetime

Contracts should be deployed with the same compiler version and flags that they have been

tested thoroughly. Locking the pragma helps to ensure that contracts do not accidentally

get deployed using, for example, an outdated compiler version that might introduce bugs

that affect the contract system negatively.

SWC-102 Outdated compiler version CWE-937: Using components with

known vulnerabilities

Using an outdated compiler version can be problematic especially if there are publicly

disclosed bugs and issues that affect the current compiler version.

SWC-101 Integer overflow and

underflow

CWE-682: Incorrect calculation An overflow / underflow happens when an arithmetic operation reaches the maximum or

minimum size of a type. For instance, if a number is stored in the uint8 type, it means that

14 Rec. ITU-T X.1412 (04/2023)

ID Title Related CWE Description

the number is stored in an 8 bits unsigned number ranging from 0 to 2^8-1. In computer

programming, an integer overflow occurs when an arithmetic operation attempts to create

a numeric value that is outside of the range that can be represented with a given number of

bits – either larger than the maximum or lower than the minimum representable value.

SWC-100 Function default visibility CWE-710: Improper adherence to

coding standards

Functions that do not have a function visibility type specified are public by default. This

can lead to a vulnerability if a developer forgets to set the visibility and a malicious user is

able to make unauthorized or unintended state changes.

 Rec. ITU-T X.1412 (04/2023) 15

Bibliography

[b-ITU-T X.1040] Recommendation ITU-T X.1040 (2017), Security reference architecture for

lifecycle management of e-commerce business data.

[b-ITU-T X.1252] Recommendation ITU-T X.1252 (2021), Baseline identity management terms

and definitions.

[b-ITU-T X.1400] Recommendation ITU-T X.1400 (2020), Terms and definitions for distributed

ledger technology.

[b-IEEE-scs] Huang, Y., Bian, Y., Li, R., Zhao, J.L., and Shi, P. (2019), Smart contract

security: a software lifecycle perspective. IEEE Access.

 <https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8864988>

[b-Abdellatif] Abdellatif, T. and Brousmiche, K.-L. (2018), Formal verification of smart

contracts based on users and blockchain behaviors models.

<https://www.researchgate.net/publication/324175498_Formal_Verification_of_Smart_Contracts_Based_on

_Users_and_Blockchain_Behaviors_Models>

[b-ACM] Tsankov, P., Dan, A., Drachsler-Cohen, D., Gervais, A., Bünzli, F. and

Vechev, M. (2018), SECURIFY: Practical security analysis of smart contracts.

In Proc. ACM SIGSAC Conf. Comput. Commun. Secur., Toronto, pp. 67-82.

 <https://dl.acm.org/doi/10.1145/3243734.3243780>

[b-ARXIV] Praitheeshan, P., Pan, L., Yu, J., Liu, J. and Doss R. (2019), Security analysis

methods on Ethereum smart contract vulnerabilities: A survey.

arXiv:1908.08605.

 <https://arxiv.org/abs/1908.08605>

[b-EIP-1470] G. Wagner (2018), EIP-1470: Smart Contract Weakness Classification (SWC).

Ethereum Improvement Proposals.

 <https://eips.ethereum.org/EIPS/eip-1470>

[b-Kaiser] Kaiser, T. (2019), Chaincode Scanner: Automated Security Analysis of

Chaincode. ChainSecurity.

 <https://www.youtube.com/watch?v=aFRfojcctDY>

[b-SWCR] SWC Registry (2020), Smart Contract Weakness Classification and Test Cases.

 <https://swcregistry.io>

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8864988
https://www.researchgate.net/publication/324175498_Formal_Verification_of_Smart_Contracts_Based_on_Users_and_Blockchain_Behaviors_Models
https://www.researchgate.net/publication/324175498_Formal_Verification_of_Smart_Contracts_Based_on_Users_and_Blockchain_Behaviors_Models
https://dl.acm.org/doi/10.1145/3243734.3243780
https://arxiv.org/abs/1908.08605
https://eips.ethereum.org/EIPS/eip-1470
https://www.youtube.com/watch?v=aFRfojcctDY
https://swcregistry.io/

Published in Switzerland
Geneva, 2023

SERIES OF ITU-T RECOMMENDATIONS

Series A Organization of the work of ITU-T

Series D Tariff and accounting principles and international telecommunication/ICT economic and policy issues

Series E Overall network operation, telephone service, service operation and human factors

Series F Non-telephone telecommunication services

Series G Transmission systems and media, digital systems and networks

Series H Audiovisual and multimedia systems

Series I Integrated services digital network

Series J Cable networks and transmission of television, sound programme and other multimedia signals

Series K Protection against interference

Series L
Environment and ICTs, climate change, e-waste, energy efficiency; construction, installation and

protection of cables and other elements of outside plant

Series M Telecommunication management, including TMN and network maintenance

Series N Maintenance: international sound programme and television transmission circuits

Series O Specifications of measuring equipment

Series P Telephone transmission quality, telephone installations, local line networks

Series Q Switching and signalling, and associated measurements and tests

Series R Telegraph transmission

Series S Telegraph services terminal equipment

Series T Terminals for telematic services

Series U Telegraph switching

Series V Data communication over the telephone network

Series X Data networks, open system communications and security

Series Y
Global information infrastructure, Internet protocol aspects, next-generation networks, Internet of

Things and smart cities

Series Z Languages and general software aspects for telecommunication systems

	Recommendation ITU-T X.1412 (04/2023) Security requirements for smart contract management based on the distributed ledger technology
	Summary
	History
	FOREWORD
	Table of Contents
	1 Scope
	2 References
	3 Definitions
	3.1 Terms defined elsewhere
	3.2 Terms defined in this Recommendation

	4 Abbreviations and acronyms
	5 Conventions
	6 Security threats of smart contract management
	7 Security framework of smart contract management
	8 Security requirements for smart contract management
	8.1 Security requirements in the design and development phase
	8.1.1 Design security
	8.1.2 Programming security
	8.1.2.1 Development environment security
	8.1.2.2 Coding security
	8.1.2.3 Logical security

	8.1.3 Testing security

	8.2 Security requirements in the compilation and deployment phase
	8.2.1 Compilation security
	8.2.2 Deployment security

	8.3 Security requirements in the invocation and execution phase
	8.3.1 Invocation security
	8.3.2 Execution security
	8.3.2.1 Execution environment security
	8.3.2.2 Data security
	8.3.2.3 Resource security

	8.4 Security requirements in the maintenance and management phase
	8.4.1 Upgrading security
	8.4.2 Freezing / unfreezing security
	8.4.3 Security audit

