
ITUPublications International Telecommunication Union

Recommendations Standardization Sector

Recommendation

ITU-T X.1278.2 (04/2023)

SERIES X: Data networks, open system communications
and security

Cyberspace security – Identity management

Client to authenticator protocol

ITU-T X-SERIES RECOMMENDATIONS

Data networks, open system communications and security

PUBLIC DATA NETWORKS X.1-X.199
OPEN SYSTEMS INTERCONNECTION X.200-X.299
INTERWORKING BETWEEN NETWORKS X.300-X.399
MESSAGE HANDLING SYSTEMS X.400-X.499
DIRECTORY X.500-X.599
OSI NETWORKING AND SYSTEM ASPECTS X.600-X.699
OSI MANAGEMENT X.700-X.799
SECURITY X.800-X.849
OSI APPLICATIONS X.850-X.899
OPEN DISTRIBUTED PROCESSING X.900-X.999
INFORMATION AND NETWORK SECURITY X.1000-X.1099
SECURE APPLICATIONS AND SERVICES (1) X.1100-X.1199
CYBERSPACE SECURITY X.1200-X.1299
 Cybersecurity X.1200-X.1229
 Countering spam X.1230-X.1249
 Identity management X.1250-X.1279
SECURE APPLICATIONS AND SERVICES (2) X.1300-X.1499
CYBERSECURITY INFORMATION EXCHANGE X.1500-X.1599
CLOUD COMPUTING SECURITY X.1600-X.1699
QUANTUM COMMUNICATION X.1700-X.1729
DATA SECURITY X.1750-X.1799
IMT-2020 SECURITY X.1800-X.1819

For further details, please refer to the list of ITU-T Recommendations.

 Rec. ITU-T X.1278.2 (04/2023) i

Recommendation ITU-T X.1278.2

Client to authenticator protocol

Summary

Recommendation ITU-T X.1278.2 describes an application layer protocol for communication between

a roaming authenticator and another client/platform, as well as bindings of this application protocol to

a variety of transport protocols using different physical media. The application layer protocol defines

requirements for such transport protocols. Each transport binding defines the details of how such

transport layer connections should be set up, in a manner that meets the requirements of the application

layer protocol.

NOTE – This Recommendation is technically equivalent to FIDO Alliance's Client to Authenticator Protocol

(CTAP) v2.1.

History *
Edition Recommendation Approval Study Group Unique ID

1.0 ITU-T X.1278.2 2023-04-29 17 11.1002/1000/15544

Keywords

Authentication, CTAP, identity, two-factor authentication.

* To access the Recommendation, type the URL https://handle.itu.int/ in the address field of your web browser,

followed by the Recommendation's unique ID.

https://handle.itu.int/

ii Rec. ITU-T X.1278.2 (04/2023)

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of

telecommunications, information and communication technologies (ICTs). The ITU Telecommunication

Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical,

operating and tariff questions and issuing Recommendations on them with a view to standardizing

telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years, establishes

the topics for study by the ITU-T study groups which, in turn, produce Recommendations on these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are

prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a

telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain

mandatory provisions (to ensure, e.g., interoperability or applicability) and compliance with the

Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some other

obligatory language such as "must" and the negative equivalents are used to express requirements. The use of

such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may involve

the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence, validity or

applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others outside of

the Recommendation development process.

As of the date of approval of this Recommendation, ITU had not received notice of intellectual property,

protected by patents/software copyrights, which may be required to implement this Recommendation.

However, implementers are cautioned that this may not represent the latest information and are therefore

strongly urged to consult the appropriate ITU-T databases available via the ITU-T website at

http://www.itu.int/ITU-T/ipr/.

© ITU 2023

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the prior

written permission of ITU.

http://www.itu.int/ITU-T/ipr/

 Rec. ITU-T X.1278.2 (04/2023) iii

Table of Contents

 Page

1 Scope ... 1

2 References ... 1

3 Definitions .. 1

3.1 Terms defined elsewhere .. 1

3.2 Terms defined in this Recommendation ... 2

4 Abbreviations and acronyms .. 2

5 Conventions .. 2

6 Relationship to other specifications .. 3

7 Protocol structure and overview ... 3

8 Authenticator API ... 3

8.1 authenticatorMakeCredential (0x01) .. 5

8.2 authenticatorGetAssertion (0x02) .. 18

8.3 authenticatorGetNextAssertion (0x08) ... 27

8.4 authenticatorGetInfo (0x04) ... 28

8.5 authenticatorClientPIN (0x06) ... 36

8.6 authenticatorReset (0x07) ... 60

8.7 authenticatorBioEnrollment (0x09) .. 61

8.8 authenticatorCredentialManagement (0x0A) ... 70

8.9 authenticatorSelection (0x0B) .. 78

8.10 authenticatorLargeBlobs (0x0C) .. 78

8.11 authenticatorConfig (0x0D) .. 85

8.12 Prototype authenticatorBioEnrollment (0x40) (For backwards

compatibility with "FIDO_2_1_PRE") .. 90

8.13 Prototype authenticatorCredentialManagement (0x41) (For backwards

compatibility with "FIDO_2_1_PRE") .. 90

9 Feature-specific descriptions and actions ... 91

9.1 Enterprise attestation .. 91

9.2 Always require user verification .. 92

9.3 Authenticator certifications .. 93

9.4 Set minimum PIN length .. 94

10 Message encoding ... 95

10.1 Command codes ... 96

10.2 Status codes .. 96

10.3 Utility functions .. 98

11 Mandatory features ... 99

12 Interoperating with CTAP1/U2F authenticators ... 99

12.1 Framing of U2F commands .. 99

iv Rec. ITU-T X.1278.2 (04/2023)

 Page

12.2 Using the CTAP2 authenticatorMakeCredential Command

with CTAP1/U2F authenticators .. 100

12.3 Using the CTAP2 authenticatorGetAssertion Command with

CTAP1/U2F authenticators .. 106

12.4 Cross-version credential compatibility ... 110

13 Transport-specific bindings .. 110

13.1 Secure protocol implementation ... 110

13.2 USB human interface device (USB HID) .. 111

13.3 ISO7816 and Near Field Communication (NFC) ... 120

13.4 Bluetooth Smart / Bluetooth Low Energy Technology 124

14 Defined extensions .. 134

14.1 Credential Protection (credProtect) .. 134

14.2 Credential Blob (credBlob) .. 136

14.3 Large blob Key (largeBlobKey) ... 138

14.4 Minimum PIN Length Extension (minPinLength) ... 139

14.5 HMAC Secret Extension (hmac-secret) ... 140

Annex A – Terms defined by reference ... 146

Appendix I – IDL Index ... 148

Bibliography... 150

 Rec. ITU-T X.1278.2 (04/2023) v

Introduction

This protocol is intended to be used in scenarios where a user interacts with a relying party (a website

or native app) on some platform (e.g., a personal computer) which prompts the user to interact with

a roaming authenticator (e.g., a smartphone).

To provide evidence of user interaction, a roaming authenticator implementing this protocol may

have a built-in mechanism to obtain a "user gesture", allowing the platform to collect a PIN on behalf

of the authenticator.

NOTE – This Recommendation is technically equivalent to [b-CTAP], Client to Authenticator Protocol

(CTAP).

 Rec. ITU-T X.1278.2 (04/2023) 1

Recommendation ITU-T X.1278.2

Client to authenticator protocol

1 Scope

This Recommendation describes an application layer protocol for communication between a roaming

authenticator and another client/platform, as well as bindings of this application protocol to a variety

of transport protocols using different physical media. The application layer protocol defines

requirements for such transport protocols. Each transport binding defines the details of how such

transport layer connections should be set up, in a manner that meets the requirements of the

application layer protocol.

2 References

The following ITU-T Recommendations and other references contain provisions which, through

reference in this text, constitute provisions of this Recommendation. At the time of publication, the

editions indicated were valid. All Recommendations and other references are subject to revision;

users of this Recommendation are therefore encouraged to investigate the possibility of applying the

most recent edition of the Recommendations and other references listed below. A list of the currently

valid ITU-T Recommendations is regularly published. The reference to a document within this

Recommendation does not give it, as a stand-alone document, the status of a Recommendation.

[ITU-T X.1278] Recommendation ITU-T X.1278 (2018), Client to Authenticator

Protocol/Universal 2-Factor Framework.

[IETF RFC 1951] IETF RFC 1951 (1996), DEFLATE Compressed data format specification

version 1.3.

[IETF RFC 2119] IETF RFC 2119 (1997), Key words for use in RFCs to Indicate Requirement

Levels.

[IETF RFC 5116] IETF RFC 5116 (2008), An Interface and Algorithms for Authenticated

Encryption.

[IETF RFC 5869] IETF RFC 5869 (2010), HMAC-based Extract-and-Expand Key Derivation

Function (HKDF).

[IETF RFC 6090] IETF RFC 6090 (2011), Fundamental Elliptic Curve Cryptography

Algorithms.

[IETF RFC 8152] IETF RFC 8152 (2017), CBOR Object Signing and Encryption (COSE).

[IETF RFC 8949] IETF RFC 8949 (2020), Concise Binary Object Representation (CBOR).

[ISO/IEC 7816-4] ISO/IEC 7816-4 (2020), Identification cards – Integrated circuit cards; Part

4: Organization, security and commands for interchange.

[WebAuthN] W3C Recommendation (2021), Web Authentication: An API for accessing

Public Key Credentials Level 2.

3 Definitions

3.1 Terms defined elsewhere

None.

2 Rec. ITU-T X.1278.2 (04/2023)

3.2 Terms defined in this Recommendation

This Recommendation defines the following term:

3.2.1 application programming interface: A set of defined rules that enable different applications

to communicate with each other.

4 Abbreviations and acronyms

This Recommendation uses the following abbreviations and acronyms:

AAGUID Authenticator Attestation Globally Unique Identifier

AES Advanced Encryption Standard

APDU Application Protocol Data Unit

API Application Programming Interface

BLE Bluetooth Low Energy

CBOR Concise Binary Object Representation

CID Channel Identifier

COSE CBOR Object Signing and Encryption

CTAP Client to Authenticator Protocol

ECDH Elliptic Curve Diffie-Hellman

GATT Generic Attribute profile

HID Human Interface Device

HMAC Hash-based Message Authentication Code

JSON JavaScript Object Notation

LED Light Emitting Diode

LTK Long-Term link Key

MTU Maximum Transmission Unit

NFC Near-Field Communication

RP Relying Party

RPA Resolvable Private Address

U2F Universal Two Factor

RPID Relying Party Identity

USB Universal Serial Bus

UUID Universally Unique Identifier

UX User Experience

5 Conventions

This Recommendation uses the key words "must", "must not", "required", "shall", "shall not",

"should", "should not", "recommended", "not recommended", "may", and "optional" as defined

in [IETF RFC 2119].

• The use of "must", "required" or "shall" means that the definition is an absolute requirement

of the specification.

 Rec. ITU-T X.1278.2 (04/2023) 3

• The use of "must not" or "shall not" means that the definition is an absolute prohibition of

the specification.

• The use of "should" or "recommended" means that there may exist valid reasons in

particular circumstances to ignore a particular item, but the full implications must be

understood and carefully weighed before choosing a different course.

• The use of "should not" or "not recommended" means that there may exist valid reasons in

particular circumstances when the particular behaviour is acceptable or even useful, but the

full implications should be understood, and the case carefully weighed before implementing

any behaviour described with this label.

6 Relationship to other specifications

This Recommendation is technically equivalent to [b-CTAP].

7 Protocol structure and overview

This protocol is specified in three parts:

• Authenticator application programming interface (API): At this level of abstraction, each

authenticator operation is defined similarly to an API call – it accepts input parameters and

returns either an output or error code. Note that this API level is conceptual and does not

represent actual APIs. The actual APIs will be provided by each implementing platform.

• Message encoding: To invoke a method in the authenticator API, the host must construct

and encode a request and send it to the authenticator over the chosen transport protocol. The

authenticator will then process the request and return an encoded response.

• Transport-specific binding: Requests and responses are conveyed to roaming authenticators

over specific transports (e.g., universal serial bus (USB), near-field communication (NFC),

Bluetooth). For each transport technology, message bindings are specified for this protocol.

This Recommendation specifies all three of the above pieces for roaming authenticators. The general

protocol between a relying party application, a client platform, and an authenticator is as follows:

1. In relying party [b-CTAP] use cases involving credential registration or user authentication,

a relying party application calls navigator.credentials.create() or navigator.credentials.get()

if it is a website, or the client platform's equivalent API methods if it is a native application.

Other use cases, such as credential management, PIN establishment/maintenance, or

biometric enrolment, are typically initiated by the client platform itself.

2. The platform establishes a connection with a nominally appropriate available authenticator,

having used criteria passed in by the relying party application and possibly other information

it has to select the authenticator.

3. The platform gets information about the authenticator using the authenticatorGetInfo

command, which helps it determine the authenticator's capabilities.

4. Depending upon the operation the relying party application, or the platform itself, initiated

(in step 1), the options it supplied, and the authenticator's capabilities, the platform will

invoke one or more further Authenticator API commands.

NOTE – In this work SHA-256 and advanced encryption standard (AES) are used as examples of hash function

and encryptors.

8 Authenticator API

Each operation in the authenticator API can be performed independently of the others, and all

operations are asynchronous. The authenticator may enforce a limit on outstanding operations to limit

resource usage – in this case, the authenticator is expected to return a busy status and the host is

4 Rec. ITU-T X.1278.2 (04/2023)

expected to retry the operation later. Additionally, this protocol does not enforce in-order or reliable

delivery of requests and responses; if these properties are desired, they must be provided by the

underlying transport protocol or implemented at a higher layer by applications.

Note that this API level is conceptual and does not represent actual APIs. The actual APIs will be

provided by each implementing platform.

Some commands or subcommands require the authenticator to maintain state. For example, the

authenticatorCredentialManagement subcommand enumerateRPsGetNextRP implicitly assumes that

the authenticator remembers which relying party (RP) is next to return. The following

(sub)commands require such state and are called stateful commands. Each such command uses and

updates state that is initialized by a corresponding state initializing command:

1. authenticatorGetNextAssertion, with state initialized by authenticatorGetAssertion.

2. authenticatorCredentialManagement/enumerateRPsGetNextRP, with state initialized by

enumerateRPsBegin.

3. authenticatorCredentialManagement/enumerateCredentialsGetNextCredential, with

state initialized by enumerateCredentialsBegin.

4. authenticatorLargeBlobs where the parameter set is given and the parameter offset is non-

zero, with state initialized by a prior authenticatorLargeBlobs command with set given and a

zero offset.

In order to accommodate authenticators with limited capacity, the following accommodations are

made:

1. The state should not be maintained across power cycles.

2. The authenticator may maintain state based on the assumption that each stateful command is

exclusively preceded by either another instance of the same command, or by the

corresponding state initializing command, and no more than 30 seconds will elapse between

such commands. If this pattern is violated then the authenticator may fail any stateful

command with the error CTAP2_ERR_NOT_ALLOWED. Here, "exclusively preceded"

means that no other authenticator operation occurs in between. An authenticator may assume

this globally, even when the transport- specific binding provides for independent streams of

platform commands.

3. An authenticator must discard the state for a stateful command command if the

pinUvAuthToken that authenticated the state initializing command expires since the stateful

commands do not themselves always verify a pinUvAuthToken.

The authenticator API has the following methods and data structures.

5 Rec. ITU-T X.1278.2 (04/2023)

8.1 authenticatorMakeCredential (0x01)

This method is invoked by the host to request generation of a new credential in the authenticator. It takes the following input parameters, several of

which correspond to those defined in the authenticatorMakeCredential operation section of the Web Authentication specification:

Parameter name Data type Required? Definition

clientDataHash

(0x01)

Byte String Required Hash of the ClientData contextual binding specified by host. See [WebAuthN]

rp (0x02) PublicKeyCredentialRpEntity Required This PublicKeyCredentialRpEntity data structure describes a Relying Party with which the new

public key credential will be associated. It contains the relying party identifier (rp.id of type text

string, (optionally) a human-friendly RP name of type text string. The RP name is to be used by

the authenticator when displaying the credential to the user for selection and usage authorization.

The RP name and URL are OPTIONAL so that the RP can be more privacy friendly if it chooses

to. For

example, for authenticators with a display, RP may not want to display name for single-factor

scenarios.

NOTE – [WebAuthN] has removed the optional icon member. Authenticators MUST NOT error if

the icon member is present, they MAY not store this value.

user (0x03) PublicKeyCredentialUserEntity Required This PublicKeyCredentialUserEntity data structure describes the user account to which the new

public key credential will be associated at the RP.

It contains an RP-specific user account identifier of type byte string, (optionally) a user name of

type text string, (optionally) a user display name of type text string, and (optionally) a URL of type

text string, referencing a user icon image (of a user avatar, for example). Note that while an empty

account identifier is valid, it has known interoperability hurdles in practice and platforms are

RECOMMENDED to avoid sending them.

The authenticator associates the created public key credential with the account identifier, and

MAY also associate any or all of the username, and user display name. The user name and display

name are OPTIONAL for privacy reasons for single-factor scenarios where only user presence is

required. For example, in certain closed physical environments like factory floors, user presence

only authenticators can satisfy RP's productivity and security needs. In these environments,

omitting user name and display name makes the credential more privacy friendly. Although this

information is not available without user verification, devices which support user verification but

do not have it configured, can be tricked into releasing this information by configuring the user

verification.

6 Rec. ITU-T X.1278.2 (04/2023)

Parameter name Data type Required? Definition

NOTE – [WebAuthN] has removed the optional icon member. Authenticators MUST NOT error if

the icon member is present, they MAY not store this value.

pubKeyCredParams

(0x04)

Array of

PublicKeyCredentialParameters

Required List of supported algorithms for credential generation, as specified in [WebAuthN]. The array is

ordered from most preferred to least preferred and MUST NOT include duplicate entries.

PublicKeyCredentialParameters' algorithm identifiers are values that SHOULD be registered in the

IANA CBOR object signing and encryption (COSE) Algorithms registry [b-IANA-COSE]

excludeList (0x05) Array of

PublicKeyCredentialDescriptor

Optional An array of PublicKeyCredentialDescriptor structures, as specified in [WebAuthN]. The

authenticator returns an error if the authenticator already contains one of the credentials

enumerated in this array. This allows RPs to limit the creation of multiple credentials for the same

account on a single authenticator.

extensions (0x06) CBOR map of extension

identifier

authenticator extension input

values

Optional Parameters to influence authenticator operation, as specified in [WebAuthN]. These parameters

might be authenticator specific.

options (0x07) Map of authenticator options Optional Parameters to influence authenticator operation, as specified in the table below.

pinUvAuthParam

(0x08)

Byte String Optional Result of calling authenticate (pinUvAuthToken , clientDataHash)

pinUvAuthProtocol

(0x09)

Unsigned Integer Optional PIN/UV protocol version chosen by the platform

enterpriseAttestation

(0x0A)

Unsigned Integer Optional An authenticator supporting this enterprise attestation feature is enterprise attestation capable and

signals its support via the ep Option ID in the authenticatorGetInfo command response.

If the enterpriseAttestation parameter is absent, attestation's privacy characteristics are unaffected,

regardless of whether the enterprise attestation feature is presently enabled.

If present with a valid value, the usual privacy concerns around attestation batching may not apply

to the results of this operation and the platform is requesting an enterprise attestation that includes

uniquely identifying information.

 Rec. ITU-T X.1278.2 (04/2023) 7

The following option keys are defined for use in authenticatorMakeCredential 's options parameter.

All option keys have boolean values.

NOTE 1 – For brevity, individual option keys are often referred to as simply an "option ", below.

Option

Key

Default

value
Definition

Rk false Specifies whether this credential is to be discoverable or not.

Up true user presence: Instructs the authenticator to require user consent to complete the

operating Platforms MAY send the "up" option key to CTAP2.1 authenticators,

and its value MUST be true if present. The value false will cause a

CTAP2_ERR_INVALID_OPTION response regardless of authenticator version.

Uv false user verification: If true, instructs the authenticator to require a user-verifying

gesture in order to complete the request. Examples of such gestures are fingerprint

scan or a PIN.

NOTE – Use of this "uv" option key is deprecated in CTAP2.1. Instead, platforms

SHOULD create a pinUvAuthParam by obtaining pinUvAuthToken via

getPinUvAuthTokenUsingUvWithPermissions or

getPinUvAuthTokenUsingPinWithPermissions, as appropriate.

Platforms MUST NOT include the "uv" option key if the authenticator does not

support built-in user verification.

Platforms MUST NOT include both the "uv" option key and the pinUvAuthParam

parameter in the same request.

NOTE 2 – For backwards compatibility, platforms must be aware that FIDO_2_0 (aka CTAP2.0)

authenticators always require some form of user verification for authenticatorMakeCredential operations. If a

platform attempts to create a non-discoverable credential on a CTAP2.0 authenticator without including the

"uv" option key or the pinUvAuthToke parameter that authenticator will return an error. In contrast, a

FIDO_2_1 (aka CTAP2.1) authenticator with the makeCredUvNotRqd option ID (set to true) in the

authenticatorGetInfo response structure, will allow creation of non-discoverable credentials without requiring

some form of user verification.

NOTE 3 – For backwards compatibility, platforms must be aware that FIDO_2_0 (aka CTAP2.0)

authenticators will return a CTAP2_ERR_INVALID_OPTION response if "up" is present. Platforms

SHOULD NOT send "up" to a CTAP2.0 authenticator.

NOTE 4 – The [WebAuthN] specification defines an abstract authenticatorMakeCredential operation,

which corresponds to the operation described in this clause. The parameters in the abstract [WebAuthN]

authenticatorMakeCredential operation map to the above parameters as follows:

[WebAuthN] authenticatorMakeCredential

operation

CTAP authenticatorMakeCredential operation

Hash clientDataHash

rpEntity rp

userEntity user

requireResidentKey options.rk

requireUserPresence options.up

NOTE – [WebAuthN] defines

requireUserPresence as a constant Boolean

value true. options.up is required to be absent for

backwards comparability with CTAP2.0.

8 Rec. ITU-T X.1278.2 (04/2023)

[WebAuthN] authenticatorMakeCredential

operation

CTAP authenticatorMakeCredential operation

requireUserVerification options.uv or pinUvAuthParam

credTypesAndPubKeyAlgs pubKeyCredParams

excludeCredentialDescriptorList excludeList

Extensions extensions

NOTE 5 – Icon values used with authenticators can employ [ITU-T X.1278] "data" URLs so that the image

data is passed by value, rather than by reference. This can enable authenticators with a display but no Internet

connection to display icons.

NOTE 6 – Text strings are UTF-8 encoded (CBOR major type 3).

8.1.1 Platform actions for authenticatorMakeCredential (non-normative)

To invoke authenticatorMakeCredential, the platform performs the following steps, in general.

Here, we are assuming that the platform has already queried the authenticator for its particulars using

the authenticatorGetInfo command, and has determined that the authenticator's present characteristics

are likely sufficient to be able to satisfy the request(s) the platform will send it. In other words, this

is only a brief sketch of plausible platform behaviour.

For example, if the authenticator is not protected by some form of user verification and user

verification is required for the present usage scenario, e.g., the relying party set

options.authenticatorSelection.userVerification to "required" in the WebAuthN API, then the

platform recovers in some fashion out of scope of these actions.

1. The platform marshals the necessary and appropriate input parameters given the present usage

scenario, and additionally:

1. If the authenticator is protected by some form of user verification, or the relying party

prefers enforcing user verification (e.g., by setting

options.authenticatorSelection.userVerification to "required", or "preferred" in the

WebAuthN API):

1. If the platform has already created a pinUvAuthParam parameter during this

overall scenario, it uses that along with the other marshalled input parameters to

invoke the authenticator operation: either authenticatorMakeCredential or

possibly authenticatorGetAssertion. For example, in some situations (e.g., with

CTAP2 authenticators) when an "exclude list" was provided by the relying party,

the platform may first invoke the authenticatorGetAssertion operation

multiple times to "pre-flight" the "exclude list" (i.e., to determine if any of the

exclude list's credential IDs are already present on the authenticator), prior to

invoking authenticatorMakeCredential to create a new credential on this

authenticator.

2. Otherwise, the platform examines various option IDs in the authenticatorGetInfo

response to determine its course of action:

1. If the uv option ID is present and set to true:

1. If the pinUvAuthToken option ID is present and true then plan to

use getPinUvAuthTokenUsingUvWithPermissions to obtain a

pinUvAuthToken, and let it be the selected operation. Go to Step

1.1.2.3.

2. Else (implying the pinUvAuthToken option ID is set to false or

absent) use the "uv" option key when invoking the

 Rec. ITU-T X.1278.2 (04/2023) 9

authenticatorMakeCredential operation and terminate these

steps. (Note that if the authenticator returns a 0x36 error code

(CTAP2_ERR_PUAT_REQUIRED (aka

CTAP2_ERR_PIN_REQUIRED in CTAP2.0)) then "fall back"

and go to Step 1.1.2.2.2.1).

2. Else (implying the uv option ID is present and set to false or absent):

1. If the pinUvAuthToken option ID is present and true:

1. To continue, ensure the clientPin option ID is present and

true. Plan to use

getPinUvAuthTokenUsingPinWithPermissions to obtain a

pinUvAuthToken, and let it be the selected operation. Go

to Step 1.1.2.3.

2. Else (implying the pinUvAuthToken option ID is absent):

1. To continue, ensure the clientPin option ID is present and

true. Plan to use getPinToken to obtain a

pinUvAuthToken, and let it be the selected operation.

3. In preparation for obtaining pinUvAuthToken, the platform:

1. Obtains a shared secret.

2. Sets the pinUvAuthProtocol parameter to the value as selected

when it obtained the shared secret.

4. Then the platform obtains a pinUvAuthToken from the authenticator, with

the mc (and likely also with the ga) permission (see "pre-flight", mentioned

above), using the selected operation. If successful, the platform creates the

pinUvAuthParam parameter by calling authenticate(pinUvAuthToken,

clientDataHash), and goes to Step 1.1.1.

2. Otherwise, implying the authenticator is not presently protected by some form of user

verification, or the relying party wants to create a non-discoverable credential and not

require user verification (e.g., by setting options.authenticatorSelection.userVerification

to "discouraged" in the WebAuthn API), the platform invokes the

authenticatorMakeCredential operation using the marshalled input parameters along with

the "uv" option key set to false and terminate these steps.

8.1.2 authenticatorMakeCredential Algorithm

Upon receipt of an authenticatorMakeCredential request, the authenticator performs the

following procedure:

1. If authenticator supports either pinUvAuthToken or clientPin features and the platform sends

a zero length pinUvAuthParam:

1. Request evidence of user interaction in an authenticator-specific way (e.g., flash the

light emitting diode (LED) light).

2. If the user declines permission, or the operation times out, then end the operation by

returning CTAP2_ERR_OPERATION_DENIED.

3. If evidence of user interaction is provided in this step then return either

CTAP2_ERR_PIN_NOT_SET if PIN is not set or CTAP2_ERR_PIN_INVALID if

PIN has been set.

NOTE 1 – This is done for backwards compatibility with CTAP2.0 platforms in the case where multiple

authenticators are attached to the platform and the platform wants to enforce pinUvAuthToken feature

10 Rec. ITU-T X.1278.2 (04/2023)

semantics, but the user has to select which authenticator to get the pinUvAuthToken from. CTAP2.1 platforms

SHOULD use clause  8.9, authenticatorSelection (0x0B).

2. If the pinUvAuthParam parameter is present:

1. If the pinUvAuthProtocol parameter's value is not supported, return

CTAP1_ERR_INVALID_PARAMETER error.

2. If the pinUvAuthProtocol parameter is absent, return

CTAP2_ERR_MISSING_PARAMETER error.

3. Validate pubKeyCredParams with the following steps:

1. For each element of pubKeyCredParams:

1. If the element is missing required members, including members that are

mandatory only for the specific type, then return an error, for example

CTAP2_ERR_INVALID_CBOR.

2. If the values of any known members have the wrong type then return an error,

for example CTAP2_ERR_CBOR_UNEXPECTED_TYPE.

3. If the element specifies an algorithm that is supported by the authenticator, and

no algorithm has yet been chosen by this loop, then let the algorithm specified

by the current element be the chosen algorithm.

2. If the loop completes and no algorithm was chosen, then return

CTAP2_ERR_UNSUPPORTED_ALGORITHM.

NOTE 2 – This loop chooses the first occurrence of an algorithm identifier supported by this authenticator but

always iterates over every element of pubKeyCredParams to validate them.

4. Create a new authenticatorMakeCredential response structure and initialize both its "uv" bit

and "up" bit as false.

5. If the options parameter is present, process all option keys and values present in the parameter.

Treat any option keys that are not understood as absent.

NOTE 3 – As this specification defines normative behaviours for the "rk", "up", and "uv" option keys, they

MUST be understood by all authenticators.

1. If the "uv" option is absent, let the "uv" option be treated as being present with the

value false. (This is the default)

2. If the pinUvAuthParam is present, let the "uv" option be treated as being present with

the value false.

NOTE 4 – pinUvAuthParam and the "uv" option are processed as mutually exclusive with pinUvAuthParam

taking precedence.

3. If the "uv" option is true then:

1. If the authenticator does not support a built-in user verification method end the

operation by returning CTAP2_ERR_INVALID_OPTION.

2. If the built-in user verification method has not yet been enabled, end the

operation by returning CTAP2_ERR_INVALID_OPTION.

4. If the "rk" option is present then:

1. If the rk option ID is not present in authenticatorGetInfo response, end the

operation by returning CTAP2_ERR_UNSUPPORTED_OPTION.

5. Else: (the "rk" option is absent)

 Rec. ITU-T X.1278.2 (04/2023) 11

1. Let the "rk" option be treated as being present with the value false. (This is

the default.)

6. If the "up" option is present then:

1. If the "up" option is false, end the operation by returning

CTAP2_ERR_INVALID_OPTION.

7. If the "up" option is absent, let the "up" option be treated as being present with the

value true (i.e., this is the default for both CTAP2.0 and CTAP2.1 authenticators).

6. If the alwaysUv option ID is present and true then:

1. Let the makeCredUvNotRqd option ID be treated as false.

2. If the authenticator is not protected by some form of user verification:

1. If the clientPin option ID is present and noMcGaPermissionsWithClientPin

option ID is absent or false (clientPin is supported for the mc permission):

1. End the operation by returning CTAP2_ERR_PUAT_REQUIRED.

2. Else (clientPin is not supported):

1. End the operation by returning

CTAP2_ERR_OPERATION_DENIED.

3. If the pinUvAuthParam is not present, and the uv option ID is true, let the "uv" option

be treated as being present with the value true.

NOTE 5 – The above step 6.3 is for backwards compatibility with CTAP2.0 platforms who are not aware of

the Always UV feature.

4. If the pinUvAuthParam is not present, and the "uv" option is false or absent:

1. If the clientPin option ID is present and noMcGaPermissionsWithClientPin

option ID is absent or false (clientPin is supported for the mc permission):

1. End the operation by returning CTAP2_ERR_PUAT_REQUIRED.

2. Else (clientPin is not supported):

1. End the operation by returning

CTAP2_ERR_OPERATION_DENIED.

7. If the makeCredUvNotRqd option ID is present and set to true in the authenticatorGetInfo

response:

1. If the following statements are all true:

NOTE 6 – This step returns an error if the platform tries to create a discoverable credential without performing

some form of user verification.

1. The authenticator is protected by some form of user verification.

2. The "uv" option is set to false.

3. The pinUvAuthParam parameter is not present.

4. The "rk" option is present and set to true.

Then:

5. If ClientPin option ID is true and the noMcGaPermissionsWithClientPin

option ID is absent or false, end the operation by returning

CTAP2_ERR_PUAT_REQUIRED.

6. Otherwise, end the operation by returning CTAP2_ERR_OPERATION_DENIED.

12 Rec. ITU-T X.1278.2 (04/2023)

8. Else: (the makeCredUvNotRqd option ID in authenticatorGetInfo's response is present with

the value false or is absent):

1. If the following statements are all true:

NOTE 7 – This step returns an error if the platform tries to create a credential without performing some form

of user verification when the makeCredUvNotRqd option ID in authenticatorGetInfo's response is present with

the value false or is absent.

1. The authenticator is protected by some form of user verification.

2. The "uv" option is set to false.

3. The pinUvAuthParam parameter is not present.

Then:

4. If the ClientPin option ID is true and the noMcGaPermissionsWithClientPin

option ID is absent or false, end the operation by returning

CTAP2_ERR_PUAT_REQUIRED.

5. Otherwise, end the operation by returning

CTAP2_ERR_OPERATION_DENIED.

9. If the enterpriseAttestation parameter is present:

1. If the authenticator is not enterprise attestation capable, or the authenticator is

enterprise attestation capable but enterprise attestation is disabled, then end the

operation by returning CTAP1_ERR_INVALID_PARAMETER.

2. Else: (the authenticator is enterprise attestation capable and enterprise attestation is

enabled; see also clause  9.1.2, Platform actions):

1. If the enterpriseAttestation parameter's value is not 1 or 2, then end the

operation by returning CTAP2_ERR_INVALID_OPTION.

2. Consider the following cases in order, until one matches, to learn whether the

authenticator may return an enterprise attestation. (These substeps define when

an authenticator is permitted to return an enterprise attestation. Authenticators

MUST NOT do so in any other cases.)

1. If the authenticator supports only vendor-facilitated enterprise

attestation and the request's rp.id matches an entry on the

authenticator's pre-configured RP ID list, then the authenticator MAY

return an enterprise attestation.

NOTE 8 – An authenticator that only supports vendor-facilitated enterprise attestation is obliged to treat

enterpriseAttestation parameter values 1 and 2 equivalently, otherwise it will yield unexpected results if used

with an enterprise-managed platform (which will be setting enterpriseAttestation to 2).

2. If the authenticator supports vendor-facilitated enterprise attestation at

all, the enterpriseAttestation parameter's value is 1, and the request's

rp.id matches an entry on the authenticator's pre-configured RP ID list,

then the authenticator MAY return an enterprise attestation.

3. If the authenticator supports platform-managed enterprise attestation

(whether or not vendor-facilitated enterprise attestation is also

supported), and the enterpriseAttestation parameter's value is 2, then

the platform MUST have performed the necessary vetting of the

request's rp.id (e.g., via local policy lookup), and the authenticator

MAY return an enterprise attestation without checking whether the

request's rp.id matches an entry on the authenticator's pre-configured

RP ID list (if any).

 Rec. ITU-T X.1278.2 (04/2023) 13

3. If, by considering the substeps of the previous step, the authenticator did not

conclude that it may return an enterprise attestation then let the

enterpriseAttestation parameter be treated as absent, terminate these steps, and

go to Step 10. A non-enterprise attestation will be returned with the credential.

4. Apply any additional constraints that may prohibit returning an enterprise

attestation. An authenticator has unlimited discretion to apply additional

constraints which can further limit the contexts in which enterprise attestation

is returned. They may be based on other parameters from the request or,

indeed, on any other factor the authenticator wishes. It is the job of enterprise

relying party to know the authenticators that it has deployed and thus to arrange

the request so as to get its desired result.

5. If, by considering any additional constraints in the previous step, the

authenticator concluded that it did not wish to return an enterprise attestation

then let the enterpriseAttestation parameter be treated as absent, terminate

these steps, and go to Step 10. A non-enterprise attestation will be returned

with the credential.

6. If the authenticator has a display, then the authenticator SHOULD display an

explicit warning to the user, including the rp.id, notifying the user that they are

being uniquely identified to this relying party.

7. Let epAtt in the authenticatorMakeCredential response structure be set to true

and return an enterprise attestation.

10. If the following statements are all true:

NOTE 9 – This step allows the authenticator to create a non-discoverable credential without requiring some

form of user verification under the below specific criteria.

1. "rk" and "uv" options are both set to false or omitted.

2. the makeCredUvNotRqd option ID in authenticatorGetInfo's response is present with

the value true.

3. the pinUvAuthParam parameter is not present.

Then go to Step 12.

NOTE 10 – Step 4 has already ensured that the "uv" bit is false in the response.

11. If the authenticator is protected by some form of user verification, then:

1. If pinUvAuthParam parameter is present (implying the "uv" option is false (see Step 5)):

1. Call verify(pinUvAuthToken, clientDataHash, pinUvAuthParam).

1. If the verification returns error, then end the operation by returning

CTAP2_ERR_PIN_AUTH_INVALID error.

2. Verify that the pinUvAuthToken has the mc permission, if not, then end the

operation by returning CTAP2_ERR_PIN_AUTH_INVALID.

3. If the pinUvAuthToken has a permissions RP ID associated:

1. If the permissions RP ID does not match the rp.id in this request, then

end the operation by returning CTAP2_ERR_PIN_AUTH_INVALID.

4. Let userVerifiedFlagValue be the result of calling

getUserVerifiedFlagValue().

5. If userVerifiedFlagValue is false then end the operation by returning

CTAP2_ERR_PIN_AUTH_INVALID.

14 Rec. ITU-T X.1278.2 (04/2023)

6. If userVerifiedFlagValue is true then set the "uv" bit to true in the response.

7. If the pinUvAuthToken does not have a permissions RP ID associated:

1. Associate the request's rp.id parameter value with the pinUvAuthToken

as its permissions RP ID.

8. Go to Step 12.

2. If the "uv" option is present and set to true (implying the pinUvAuthParam parameter

is not present, and that the authenticator supports an enabled built-in user verification

method, see Step 5):

NOTE 11 – This step provides backwards compatibility for CTAP2.0 platforms.

1. Let internalRetry be true.

2. Let uvState be the result of calling performBuiltInUv(internalRetry)

3. If uvState is error:

1. If the error reason is a user action timeout, then return

CTAP2_ERR_USER_ACTION_TIMEOUT.

2. If the ClientPin option ID is true and the

noMcGaPermissionsWithClientPin option ID is absent or false, end the

operation by returning CTAP2_ERR_PUAT_REQUIRED.

3. If the uvRetries counter is <= 0, return

CTAP2_ERR_PIN_BLOCKED.

4. Otherwise, end the operation by returning

CTAP2_ERR_OPERATION_DENIED.

4. If uvState is success:

1. Set the "uv" bit to true in the response.

NOTE 12 – If Step 11 was skipped, then the authenticator is NOT protected by some form of user verification,

and Step 4 has already ensured that the "uv" bit is false in the response.

12. If the excludeList parameter is present and contains a credential ID created by this

authenticator, that is bound to the specified rp.id:

1. If the credential's credProtect value is not userVerificationRequired, then:

1. Let userPresentFlagValue be false.

2. If the pinUvAuthParam parameter is present then let userPresentFlagValue be

the result of calling getUserPresentFlagValue().

3. Else, if evidence of user interaction was provided as part of Step 11 let

userPresentFlagValue be true.

4. If userPresentFlagValue is false, then:

1. Wait for user presence.

2. Regardless of whether user presence is obtained or the authenticator

times out, terminate this procedure and return

CTAP2_ERR_CREDENTIAL_EXCLUDED.

5. Else, (implying userPresentFlagValue is true) terminate this procedure and

return CTAP2_ERR_CREDENTIAL_EXCLUDED.

NOTE 13 – A user presence test is required for CTAP2 authenticators, before the RP is told that the

authenticator is already registered, to behave similarly to CTAP1/U2F authenticators.

 Rec. ITU-T X.1278.2 (04/2023) 15

2. Else (implying the credential's credProtect value is userVerificationRequired):

1. If the "uv" bit is true in the response:

1. Let userPresentFlagValue be false.

2. If the pinUvAuthParam parameter is present then let

userPresentFlagValue be the result of calling

getUserPresentFlagValue().

3. Else, if evidence of user interaction was provided as part of Step 11 let

userPresentFlagValue be true.

4. If userPresentFlagValue is false, then:

1. Wait for user presence.

2. Regardless of whether user presence is obtained or the

authenticator times out, terminate this procedure and return

CTAP2_ERR_CREDENTIAL_EXCLUDED.

5. Else, (implying userPresentFlagValue is true) terminate this

procedure and return CTAP2_ERR_CREDENTIAL_EXCLUDED.

2. Else (implying user verification was not collected in Step 11), remove the

credential from the excludeList and continue parsing the rest of the list.

13. If evidence of user interaction was provided as part of Step 11 (i.e., by invoking

performBuiltInUv()):

NOTE 14 – This step's criteria implies that the "uv" option is present and set to true and the pinUvAuthParam

parameter is not present. I.e., the pinUvAuthToken feature is not in use.

1. Set the "up" bit to true in the response.

2. Go to Step 15

14. If the "up" option is set to true:

1. If the pinUvAuthParam parameter is present then:

1. Let userPresentFlagValue be the result of calling getUserPresentFlagValue().

2. If userPresentFlagValue is false:

NOTE 15 – An authenticator may be configured to collect user presence whenever the "up" option is true by

setting the default user present time limit to zero.

1. Request evidence of user interaction in an authenticator-specific way

(e.g., flash the LED light). If the authenticator has a display, show the

items contained within the user and rp parameter structures to the user,

and request permission to create a credential.

2. If the user declines permission, or the operation times out, then end the

operation by returning CTAP2_ERR_OPERATION_DENIED.

2. Else (implying the pinUvAuthParam parameter is not present):

1. If the "up" bit is false in the response:

1. Request evidence of user interaction in an authenticator-specific way

(e.g., flash the LED light). If the authenticator has a display, show the

items contained within the user and rp parameter structures to the user,

and request permission to create a credential.

16 Rec. ITU-T X.1278.2 (04/2023)

2. If the user declines permission, or the operation times out, then end the

operation by returning CTAP2_ERR_OPERATION_DENIED.

3. Set the "up" bit to true in the response.

4. Call clearUserPresentFlag(), clearUserVerifiedFlag(), and

clearPinUvAuthTokenPermissionsExceptLbw().

NOTE 16 – This consumes both the "user present state", sometimes referred to as the "cached UP", and the

"user verified state", sometimes referred to as "cached UV". These functions are no-ops if there is not an in-

use pinUvAuthToken.

15. If the extensions parameter is present:

1. Process any extensions that this authenticator supports, ignoring any that it does not

support.

2. Authenticator extension outputs generated by the authenticator extension processing

are returned in the authenticator data. The set of keys in the authenticator extension

outputs map MUST be equal to, or a subset of, the keys of the authenticator extension

inputs map.

NOTE 17 – Some extensions may produce different output depending on the state of the "uv" bit and/or "up"

bit in the response.

16. Generate a new credential key pair for the algorithm chosen in step 3.

17. If the "rk" option is set to true:

1. The authenticator MUST create a discoverable credential.

2. If a credential for the same rp.id and account ID already exists on the authenticator:

1. If the existing credential contains a largeBlobKey, an authenticator MAY erase

any associated large-blob data. Platforms MUST NOT assume that

authenticators will do this. Platforms can later garbage collect any orphaned

large-blobs.

2. Overwrite that credential.

3. Store the user parameter along with the newly-created key pair.

4. If authenticator does not have enough internal storage to persist the new credential,

return CTAP2_ERR_KEY_STORE_FULL.

18. Otherwise, if the "rk" option is false: the authenticator MUST create a non-discoverable

credential.

NOTE 18 – This step is a change from CTAP2.0 where if the "rk" option is false the authenticator could

optionally create a discoverable credential.

19. Generate an attestation statement for the newly-created credential using clientDataHash,

taking into account the value of the enterpriseAttestation parameter, if present, as described

above in Step 9.

On success, the authenticator returns the following authenticatorMakeCredential response structure

which contains an attestation object plus additional information.

 Rec. ITU-T X.1278.2 (04/2023) 17

Member

name

Data type Required? Definition

fmt (0x01) String Required The attestation statement format identifier.

authData

(0x02)

Byte String Required The authenticator data object.

attStmt (0x03) CBOR Map, the

structure of which

depends on the

attestation statement

format identifier

Required The attestation statement, as specified in

[WebAuthN].

epAtt (0x04) Boolean Optional Indicates whether an enterprise attestation was

returned for this credential. If epAtt is absent or

present and set to false, then an enterprise

attestation was not returned. If epAtt is present

and set to true, then an enterprise attestation was

returned.

largeBlobKey

(0x05)

Byte string Optional Contains the largeBlobKey for the credential, if

requested with the largeBlobKey extension.

8.1.3 Discoverable credentials

A credential may, or may not, be discoverable. A discoverable credential [WebAuthN] has the

property that, in response to an authenticatorGetAssertion request where the allowList parameter is

omitted, the authenticator is able to discover the appropriate public key credential source given only

an RP ID, possibly with user assistance.

Each credential has a credential protection policy. For backwards compatibility with CTAP2.0

platforms, the default credential creation policy is userVerificationOptional (0x01). If a credential

was created with credential protection values of userVerificationOptionalWithCredentialIDList

(0x02) or userVerificationRequired (0x03) it will not be discoverable unless the platform invokes

authenticatorGetAssertion with a valid pinUvAuthParam or the "uv" option key with a value of true.

NOTE – Regarding user assistance, for example, the authenticator may provide the user a pick-list of

credentials scoped to the RP ID.

In contrast, server-side credentials (also known as non-discoverable credentials) have the property

that their credential IDs MUST be supplied by the relying party in authenticatorGetAssertion's

allowList parameter in order for the authenticator to discover and employ them.

Note that this definition does not speak to whether a credential is statefully maintained or not.

An authenticator may choose to keep state, such as the private key, whether a credential is

discoverable or not (see also public key credential source). A discoverable credential, however,

always involves maintaining some state because it must be discoverable using only the RP ID and the

user id (also known as the user handle) must always be returned.

All state that is kept for a discoverable credential MUST be stored client side – i.e., such that the

authenticator working together with the client platform, if necessary, can satisfy requested

authenticator operations.

An authenticator specifies whether it is capable of creating discoverable credentials via the rk option

ID in the authenticatorGetInfo response. A discoverable credential will be created if, and only if, the

rk option key of the options parameter of an authenticatorMakeCredential request is true.

18 Rec. ITU-T X.1278.2 (04/2023)

If the authenticatorCredentialManagement command is supported by an authenticator then it can be

used to manage discoverable credentials.

If a discoverable credential's state is deleted, e.g., by the authenticatorCredentialManagement

command or overwritten by authenticatorMakeCredential, the associated credentialID MUST no

longer yield a public key credential source, e.g., when processed by the authenticator's equivalent of

the Lookup Credential Source by Credential ID Algorithm including cases where the credential

source is encoded within the credentialID. This means, for example, that any such deleted credentials

whose credentialIDs may have been stored server-side and subsequently are provided in an allowList

to authenticatorGetAssertion, will no longer be "located" in the latter's Step 7 when the allowList is

processed.

NOTE – Historically discoverable credentials have been called "resident keys", and this terminology can still

be found in aspects of the protocol. (For example, the name of the rk option key comes from the term "resident

key".) However, the word "resident" conflated the concepts of being discoverable and being statefully

maintained by the authenticator, when it is only the former that is externally observable and thus important.

8.2 authenticatorGetAssertion (0x02)

This method is used by a host to request cryptographic proof of user authentication as well as user

consent to a given transaction, using a previously generated credential that is bound to the

authenticator and relying party identifier. It takes the following input parameters, several of which

correspond to those defined in the authenticatorGetAssertion operation section of the Web

Authentication specification:

Parameter name Data type Required
?

Definition

rpId (0x01) String Required relying party identifier. See [WebAuthN].

clientDataHash (0x02) Byte String Required Hash of the serialized client data collected by
the host. See [WebAuthN].

allowList (0x03) Array of

PublicKeyCrede
ntialDescriptor

Optional An array of PublicKeyCredentialDescriptor
structures, each denoting a credential, as
specified in [WebAuthN]. A platform MUST
NOT send an empty allowList – if it would
be empty, it MUST be omitted. If this
parameter is present the authenticator MUST
only generate an assertion using one of the
denoted credentials.

extensions (0x04) CBOR map of
extension
identifier →
authenticator
extension input
values

Optional Parameters to influence authenticator
operation. These parameters might be
authenticator specific.

options (0x05) Map of
authenticator
options

Optional Parameters to influence authenticator
operation, as specified in the table below.

pinUvAuthParam (0x06) Byte String Optional Result of calling
authenticate(pinUvAuthToken,
clientDataHash)

pinUvAuthProtocol
(0x07)

Unsigned
Integer

Optional PIN/UV protocol version selected by
platform.

The following option keys are defined for use in authenticatorGetAssertion's options parameter. All

option keys have boolean values.

NOTE 1 – For brevity, individual option keys are often referred to as simply an "option", below.

 Rec. ITU-T X.1278.2 (04/2023) 19

Option

Key

Default

value
Definition

Up true user presence: Instructs the authenticator to require user consent to complete the

operation.

Uv false user verification: If true, instructs the authenticator to require a user-verifying

gesture in order to complete the request. Examples of such gestures are fingerprint

scan or a PIN.

NOTE – Use of this "uv" option key is deprecated in CTAP2.1. Instead, platforms

SHOULD create a pinUvAuthParam by obtaining pinUvAuthToken via

getPinUvAuthTokenUsingUvWithPermissions or

getPinUvAuthTokenUsingPinWithPermissions, as appropriate.

Platforms MUST NOT include the "uv" option parameter if the authenticator does

not support built-in user verification.

Platforms MUST NOT include both "uv" and pinUvAuthParam parameters in

same request.

NOTE 2 – Platforms MUST NOT send the "rk" option key.

NOTE 3 – For backwards compatibility with CTAP2.0 platforms, the authenticator MAY perform a built-in

user verification method even if not requested to enhance its security offering. Thus, platforms SHOULD be

prepared to receive a CTAP2_ERR_PUAT_REQUIRED error even if the platform did not include the "uv"

option key, or did include it and set it to false. CTAP2.1 authenticators SHOULD use the authenticator

always requires some form of user verification feature to signal this behaviour.

NOTE 4 – The [WebAuthN] specification defines an abstract authenticatorGetAssertion operation,

which corresponds to the operation described in this clause. The parameters in the abstract [WebAuthN]

authenticatorGetAssertion operation map to the above parameters as follows:

[WebAuthN]

authenticatorGetAssertion

operation

CTAP authenticatorGetAssertion operation

Hash clientDataHash

rpId rpId

allowCredentialDescriptorList allowList

requireUserPresence options.up

NOTE – [WebAuthN] defines requireUserPresence as a constant

Boolean value true. options.up may be set to false in CTAP "pre-

flight" commands but is always set to true for any

authenticatorGetAssertion request that is intended to

generate an assertion that will be returned to an relying party via

the WebAuthn API. This is because such an assertion must have

the "user present" bit of the "flags bits" of the authenticator data

set to true to be considered valid by clients of the WebAuthn

API.

requireUserVerification options.uv or pinUvAuthParam

Extensions extensions

8.2.1 Platform actions for authenticatorGetAssertion (non-normative)

To invoke authenticatorGetAssertion, the platform performs the following steps, in general. Here, we

are assuming that the platform has already queried the authenticator for its particulars using the

authenticatorGetInfo command, and has determined that the authenticator's present characteristics are

20 Rec. ITU-T X.1278.2 (04/2023)

likely sufficient to be able to satisfy the request(s) the platform will send it. In other words, this is

only a brief sketch of plausible platform behaviour.

For example, if the authenticator is not protected by some form of user verification and user

verification is required for the present usage scenario, e.g., the relying party set

options.userVerification to "required" in the WebAuthn API, then the platform recovers in some

fashion out of scope of these actions.

1. The platform marshals the necessary and appropriate input parameters given the present usage

scenario, and additionally:

1. If the authenticator is protected by some form of user verification or the relying party

prefers enforcing user verification (e.g., by setting options.userVerification to

"required", or "preferred" in the WebAuthn API):

1. If the platform has already created a pinUvAuthParam parameter during this

overall scenario, it uses that along with the other marshalled input parameters

to invoke the authenticatorGetAssertion. Or, in some situations (e.g., with

CTAP2 authenticators) the platform may invoke the

authenticatorGetAssertion operation multiple times using the

pinUvAuthParam parameter to "pre-flight" an "allow list" (i.e., to determine if

any of the allow list's credential IDs are already present on the authenticator),

prior to invoking authenticatorGetAssertion to have this authenticator

issue an assertion using the selected credential.

2. Otherwise, the platform examines various option IDs in the

authenticatorGetInfo response to determine its course of action:

1. If the uv option ID is present and set to true:

1. If the pinUvAuthToken option ID is present and true then plan

to use getPinUvAuthTokenUsingUvWithPermissions to obtain

a pinUvAuthToken, and let it be the selected operation. Go to

Step 1.1.2.3.

2. Else (implying the pinUvAuthToken option ID is set to false or

absent) use the "uv" option key when invoking the

authenticatorGetAssertion operation and terminate these

steps. (Note that if the authenticator returns a 0x36 error code

(CTAP2_ERR_PUAT_REQUIRED (aka

CTAP2_ERR_PIN_REQUIRED in CTAP2.0)) then "fall back"

and go to Step 1.1.2.2.2.1).

2. Else (implying the uv option ID is present and set to false or absent):

1. If the pinUvAuthToken option ID is present and true:

1. To continue, ensure the clientPin option ID is present

and true. Plan to use

getPinUvAuthTokenUsingPinWithPermissions to

obtain a pinUvAuthToken, and let it be the selected

operation. Go to Step 1.1.2.3.

2. Else (implying the pinUvAuthToken option ID is absent):

1. To continue, ensure the clientPin option ID is present

and true. Plan to use getPinToken to obtain a

pinUvAuthToken, and let it be the selected operation.

3. In preparation for obtaining pinUvAuthToken, the platform:

 Rec. ITU-T X.1278.2 (04/2023) 21

1. Obtains a shared secret.

2. Sets the pinUvAuthProtocol parameter to the value as selected

when it obtained the shared secret.

4. Then the platform obtains a pinUvAuthToken from the authenticator,

with the ga permission using the selected operation. If successful, the

platform creates the pinUvAuthParam parameter by calling

authenticate(pinUvAuthToken, clientDataHash), and goes to

Step 1.1.1 to use it.

2. Otherwise, implying the authenticator is not presently protected by some form of user

verification, or the relying party does not wish to require user verification (e.g., by

setting options.userVerification to "discouraged" in the WebAuthn API), the platform

invokes the authenticatorGetAssertion operation using the marshalled input

parameters along with an absent "uv" option key.

8.2.2 authenticatorGetAssertion Algorithm

Upon receipt of an authenticatorGetAssertion request, the authenticator performs the following

procedure:

1. If authenticator supports either pinUvAuthToken or clientPin features and the platform sends

a zero length pinUvAuthParam:

1. Request evidence of user interaction in an authenticator-specific way (e.g., flash the

LED light).

2. If the user declines permission, or the operation times out, then end the operation by

returning CTAP2_ERR_OPERATION_DENIED.

3. If evidence of user interaction is provided in this step then return either

CTAP2_ERR_PIN_NOT_SET if PIN is not set or CTAP2_ERR_PIN_INVALID if

PIN has been set.

NOTE 1 – This is done for backwards compatibility with CTAP2.0 platforms in the case where multiple

authenticators are attached to the platform and the platform wants to enforce pinUvAuthToken semantics, but

the user has to select which authenticator to get the pinUvAuthToken from. CTAP2.1 platforms SHOULD use

clause  8.9, authenticatorSelection (0x0B).

2. If the pinUvAuthParam parameter is present:

1. If the pinUvAuthProtocol parameter's value is not supported, return

CTAP1_ERR_INVALID_PARAMETER error.

2. If the pinUvAuthProtocol parameter is absent, return

CTAP2_ERR_MISSING_PARAMETER error.

3. Create a new authenticatorGetAssertion response structure and initialize both its "uv" bit and

"up" bit as false.

4. If the options parameter is present, process all option keys and values present in the parameter.

Treat any option keys that are not understood as absent.

NOTE 2 – As this specification defines normative behaviours for the "rk", "up", and "uv" option keys, they

MUST be understood by all authenticators.

1. If the "uv" option is absent, let the "uv" option be treated as being present with the

value false. (This is the default)

2. If the pinUvAuthParam is present, let the "uv" option be treated as being present with

the value false.

22 Rec. ITU-T X.1278.2 (04/2023)

NOTE 3 – pinUvAuthParam and the "uv" option are processed as mutually exclusive with pinUvAuthParam

taking precedence.

3. If the "uv" option is present and true then:

1. If the authenticator does not support a built-in user verification method end the

operation by returning CTAP2_ERR_INVALID_OPTION.

2. If the built-in user verification method has not yet been enabled, end the

operation by returning CTAP2_ERR_INVALID_OPTION.

4. If the "rk" option is present then:

1. Return CTAP2_ERR_UNSUPPORTED_OPTION.

5. If the "up" option is not present then:

1. Let the "up" option be treated as being present with the value true. (This is

the default)

5. If the alwaysUv option ID is present and true and the "up" option is present and true then:

1. If the authenticator is not protected by some form of user verification:

1. If the clientPin option ID is present and noMcGaPermissionsWithClientPin

option ID is absent or false (clientPin is supported for the ga permission):

1. End the operation by returning CTAP2_ERR_PUAT_REQUIRED.

2. Else (clientPin is not supported):

1. End the operation by returning

CTAP2_ERR_OPERATION_DENIED.

2. If the pinUvAuthParam is present then go to Step 6.

3. If the "uv" option is true then go to Step 6.

4. If the "uv" option is false and the authenticator supports a built-in user verification

method, and the user verification method is enabled then:

1. Let the "uv" option be treated as being present with the value true.

2. Go To Step 6.

5. If the clientPin option ID is present and noMcGaPermissionsWithClientPin option ID

is absent or false, then:

NOTE 4 – This is to address the case of CTAP2.0 platforms not being aware of and ignoring the alwaysUv

option ID.

1. End the operation by returning CTAP2_ERR_PUAT_REQUIRED.

6. Else (clientPin is not supported):

1. End the operation by returning CTAP2_ERR_OPERATION_DENIED.

6. If authenticator is protected by some form of user verification, then:

1. If pinUvAuthParam parameter is present (implying the "uv" option is treated as false,

see Step 4):

1. Call verify(pinUvAuthToken, clientDataHash pinUvAuthParam).

1. If the verification returns error, return

CTAP2_ERR_PIN_AUTH_INVALID error.

 Rec. ITU-T X.1278.2 (04/2023) 23

2. If the verification returns success, set the "uv" bit to true in the

response.

2. Let userVerifiedFlagValue be the result of calling

getUserVerifiedFlagValue().

3. If userVerifiedFlagValue is false then end the operation by returning

CTAP2_ERR_PIN_AUTH_INVALID.

4. Verify that the pinUvAuthToken has the ga permission, if not, return

CTAP2_ERR_PIN_AUTH_INVALID.

5. If the pinUvAuthToken has a permissions RP ID associated:

1. If the permissions RP ID does not match the rpId in this request, return

CTAP2_ERR_PIN_AUTH_INVALID.

6. If the pinUvAuthToken does not have a permissions RP ID associated:

1. Associate the request's rpId parameter value with the pinUvAuthToken

as its permissions RP ID.

7. Go to Step 7.

2. If the "uv" option is present and set to true (implying the pinUvAuthParam parameter

is not present, and that the authenticator supports an enabled built-in user verification

method, see Step 4):

NOTE 5 – This step provides backwards compatibility for CTAP2.0 platforms.

1. Let internalRetry be true.

2. Let uvState be the result of calling performBuiltInUv(internalRetry)

3. If uvState is error:

1. If the error reason is a user action timeout, then return

CTAP2_ERR_USER_ACTION_TIMEOUT.

2. If the ClientPin option ID is true and the

noMcGaPermissionsWithClientPin option ID is absent or false, end

the operation by returning CTAP2_ERR_PUAT_REQUIRED.

3. If the uvRetries counter is <= 0, return

CTAP2_ERR_PIN_BLOCKED.

4. Otherwise, end the operation by returning

CTAP2_ERR_OPERATION_DENIED.

4. If uvState is success:

1. Set the "uv" bit to true in the response.

NOTE 6 – If Step 6 was skipped, then the authenticator is NOT protected by some form of user verification,

and Step 3 has already ensured that the "uv" bit is false in the response.

7. Locate all credentials that are eligible for retrieval under the specified criteria:

1. If the allowList parameter is present and is non-empty, locate all denoted credentials

created by this authenticator and bound to the specified rpId.

2. If an allowList is not present, locate all discoverable credentials that are created by

this authenticator and bound to the specified rpId.

3. Create an applicable credentials list populated with the located credentials.

24 Rec. ITU-T X.1278.2 (04/2023)

4. Iterate through the applicable credentials list, and if credential protection for a

credential is marked as userVerificationRequired, and the "uv" bit is false in the

response, remove that credential from the applicable credentials list.

5. Iterate through the applicable credentials list, and if credential protection for a

credential is marked as userVerificationOptionalWithCredentialIDList and

there is no allowList passed by the client and the "uv" bit is false in the response,

remove that credential from the applicable credentials list.

6. If the applicable credentials list is empty, return CTAP2_ERR_NO_CREDENTIALS.

7. Let numberOfCredentials be the number of applicable credentials found.

8. If evidence of user interaction was provided as part of Step 6.2 (i.e., by invoking

performBuiltInUv()):

NOTE 7 – This step's criteria implies that the "uv" option is present and set to true and the pinUvAuthParam

parameter is not present. i.e., the pinUvAuthToken feature is not in use.

1. Set the "up" bit to true in the response.

2. Go to Step 10

9. If the "up" option is set to true or not present:

1. If the pinUvAuthParam parameter is present then:

1. Let userPresentFlagValue be the result of calling getUserPresentFlagValue().

2. If userPresentFlagValue is false:

NOTE 8 – An authenticator may be configured to collect user presence whenever the "up" option is true by

setting the default user present time limit to zero.

1. Request evidence of user interaction in an authenticator-specific way

(e.g., flash the LED light). If the authenticator has a display, show the

rpId parameter value to the user, and request permission to create an

assertion.

2. If the user declines permission, or the operation times out, then end the

operation by returning CTAP2_ERR_OPERATION_DENIED.

2. Else (implying the pinUvAuthParam parameter is not present):

1. If the "up" bit is false in the response:

1. Request evidence of user interaction in an authenticator-specific way

(e.g., flash the LED light). If the authenticator has a display, show the

rpId parameter value to the user, and request permission to create an

assertion.

2. If the user declines permission, or the operation times out, then end the

operation by returning CTAP2_ERR_OPERATION_DENIED.

3. Set the "up" bit to true in the response.

4. Call clearUserPresentFlag(), clearUserVerifiedFlag(), and

clearPinUvAuthTokenPermissionsExceptLbw().

NOTE 9 – This consumes both the "user present state", sometimes referred to as the "cached UP", and the

"user verified state", sometimes referred to as "cached UV". These functions are no-ops if there is not an in-

use pinUvAuthToken.

10. If the extensions parameter is present:

 Rec. ITU-T X.1278.2 (04/2023) 25

1. Process any extensions that this authenticator supports, ignoring any that it does not

support.

2. Authenticator extension outputs generated by the authenticator extension processing

are returned in the authenticator data. The set of keys in the authenticator extension

outputs map MUST be equal to, or a subset of, the keys of the authenticator extension

inputs map.

NOTE 10 – Some extensions may produce different output depending on the state of the "uv" and/or "up" bits

set in the response.

11. If the allowList parameter is present:

1. Select any credential from the applicable credentials list.

2. Delete the numberOfCredentials member.

3. Go to Step 13.

12. If allowList is not present:

1. If numberOfCredentials is one:

1. Select that credential.

2. If numberOfCredentials is more than one:

1. Order the credentials in the applicable credentials list by the time when they

were created in reverse order. (i.e., the first credential is the most recently

created.)

2. If the authenticator does not have a display, or the authenticator does have a

display and the "uv" and "up" options are false:

1. Remember the authenticatorGetAssertion parameters.

2. Create a credential counter (credentialCounter) and set it to 1. This

counter signifies the next credential to be returned by the authenticator,

assuming zero-based indexing.

3. Start a timer. This is used during authenticatorGetNextAssertion

command. This step is OPTIONAL if transport is done over NFC.

4. Select the first credential.

3. If authenticator has a display and at least one of the "uv" and "up" options is

true:

1. Display all the credentials in the applicable credentials list to the user,

using their friendly name along with other stored account information.

2. Also, display the rpId of the requester (specified in the request) and ask

the user to select a credential.

3. If the user declines to select a credential or takes too long (as

determined by the authenticator), terminate this procedure and return

the CTAP2_ERR_OPERATION_DENIED error.

4. Update the response to set the userSelected member to true and to

delete the numberOfCredentials member.

5. Select the credential indicated by the user.

3. Update the response to include the selected credential's

publicKeyCredentialUserEntity information. User identifiable information

26 Rec. ITU-T X.1278.2 (04/2023)

(name, DisplayName, icon) inside the publicKeyCredentialUserEntity MUST

NOT be returned if user verification is not done by the authenticator.

13. Sign the clientDataHash along with authData with the selected credential, using the

structure specified in [WebAuthN].

On success, the authenticator returns the following authenticatorGetAssertion response structure:

Member name Data type Required? Definition

credential (0x01) PublicKeyCredentialD

escriptor

Required PublicKeyCredentialDescriptor structure

containing the credential identifier whose

private key was used to generate the

assertion.

authData (0x02) Byte String Required The signed-over contextual bindings made by

the authenticator, as specified in

[WebAuthN].

signature (0x03) Byte String Required The assertion signature produced by the

authenticator, as specified in [WebAuthN].

user (0x04) PublicKeyCredentialU

serEntity

Optional PublicKeyCredentialUserEntity structure

containing the user account information. User

identifiable information (name,

DisplayName, icon) MUST NOT be returned

if user verification is not done by the

authenticator.

Universal two factor (U2F) devices: For U2F

devices, this parameter is not returned as this

user information is not present for U2F

credentials.

Devices – server-side credentials: For server-

side credentials on devices, this parameter is

OPTIONAL as server-side credentials behave

the same as U2F credentials where they are

discovered given the user information on the

RP. Authenticators MAY store user

information inside the credential ID.

Devices – discoverable credentials: For

discoverable credentials on devices, at least

user "id" is mandatory.

For single account per RP case, authenticator

returns "id" field to the platform which will

be returned to the [WebAuthN] layer.

For multiple accounts per RP case, where the

authenticator does not have a display,

authenticator returns "id" as well as other

fields to the platform. Platform will use this

information to show the account selection

user experience (UX) to the user and for the

user selected account, it will ONLY return

"id" back to the [WebAuthN] layer and

discard other user details.

 Rec. ITU-T X.1278.2 (04/2023) 27

Member name Data type Required? Definition

numberOfCreden

tials (0x05)

Integer Optional Total number of account credentials for the

RP. Optional; defaults to one. This member is

required when more than one credential is

found for an RP, and the authenticator does

not have a display or the UV & UP flags are

false. Omitted when returned for the

authenticatorGetNextAssertion method.

userSelected

(0x06)

Boolean Optional Indicates that a credential was selected by the

user via interaction directly with the

authenticator, and thus the platform does not

need to confirm the credential. Optional;

defaults to false. MUST NOT be present in

response to a request where an allowList was

given, where numberOfCredentials is

greater than one, nor in response to an
authenticatorGetNextAssertion

request.

largeBlobKey

(0x07)

Byte string Optional The contents of the associated largeBlobKey

if present for the asserted credential, and if

largeBlobKey was true in the extensions

input.

Within the "flags bits" of the authenticator data structure returned, the authenticator will report what

was actually done within the authenticator boundary. The meanings of the combinations of the User

Present (UP) and User Verified (UV) bit flags are as follows:

Flags Meaning

"up"=0

"uv"=0

Silent authentication

"up"=1

"uv"=0

Physical user presence verified, but no user verification

"up"=0

"uv"=1

User verification performed, but physical user presence not verified.

NOTE – Returning an assertion with the "up" bit set to false is not considered valid at the

WebAuthn API layer [WebAuthN], and typically is only used for "pre-flighting".

"up"=1

"uv"=1

User verification performed and physical user presence verified

8.3 authenticatorGetNextAssertion (0x08)

The client calls this method when the authenticatorGetAssertion response contains the

numberOfCredentials member and the number of credentials exceeds 1. This method is used to obtain

the next per-credential signature for a given authenticatorGetAssertion request. It takes no

arguments.

NOTE 1 – This is a stateful command and the specified implementation accommodations apply to it.

When this command is received, the authenticator performs the following procedure:

28 Rec. ITU-T X.1278.2 (04/2023)

1. If authenticator does not remember any authenticatorGetAssertion parameters, return

CTAP2_ERR_NOT_ALLOWED.

2. If the credentialCounter is equal to or greater than numberOfCredentials, return

CTAP2_ERR_NOT_ALLOWED.

3. If timer since the last call to authenticatorGetAssertion/authenticatorGetNextAssertion is

greater than 30 seconds, discard the current authenticatorGetAssertion state and return

CTAP2_ERR_NOT_ALLOWED. This step is OPTIONAL if transport is done over NFC.

NOTE 2 – The section on stateful commands makes this timeout OPTIONAL for any stateful command. This

section supersedes that and makes it mandatory in this instance, except over NFC, where maintaining timers

for that length of time can be problematic.

1. Select the credential indexed by credentialCounter. (i.e., credentials[n] assuming a zero-

based array.)

2. Update the response to include the selected credential's publicKeyCredentialUserEntity

information. User identifiable information (name, DisplayName, icon) inside the

publicKeyCredentialUserEntity MUST NOT be returned if user verification was not done

by the authenticator in the original authenticatorGetAssertion call.

3. Sign the clientDataHash along with authData with the selected credential, using the structure

specified in [WebAuthN].

4. Reset the timer. This step is OPTIONAL if transport is done over NFC.

5. Increment credentialCounter.

On success, the authenticator returns the same structure as returned by the

authenticatorGetAssertion method. The numberOfCredentials member is omitted.

8.3.1 Client logic

If client receives numberOfCredentials member value exceeding 1 in response to the

authenticatorGetAssertion call:

1. Call authenticatorGetNextAssertion numberOfCredentials minus 1 times.

○ Make sure 'rp' member matches the current request.

○ Remember the ‘response' member.

○ Add credential user information to the 'credentialInfo' list.

2. Draw a UX that displays credentialInfo list.

3. Let user select which credential to use.

4. Return the value of the 'response' member associated with the user choice.

5. Discard all other responses.

8.4 authenticatorGetInfo (0x04)

Using this method, platforms can request that the authenticator report a list of its supported protocol

versions and extensions, its authenticator attestation globally unique identifier (AAGUID), and other

aspects of its overall capabilities. Platforms should use this information to tailor their command

parameters choices.

NOTE – The values of various authenticatorGetInfo response structure members and option IDs may

change over time depending upon the commands the platform sends to the authenticator.

This method takes no inputs.

On success, the authenticator returns the following authenticatorGetInfo response structure:

 Rec. ITU-T X.1278.2 (04/2023) 29

Member name Data type Required? Definition

versions (0x01) Array of

strings

Required List of supported versions. Supported versions

are: "FIDO_2_1" for CTAP2.1 / FIDO2 / Web

Authentication authenticators, "FIDO_2_0" for

CTAP2.0 / FIDO2 / Web Authentication

authenticators, "FIDO_2_1_PRE" for CTAP2.1

Preview features and "U2F_V2" for

CTAP1/U2F authenticators.

extensions (0x02) Array of

strings

Optional List of supported extensions.

aaguid (0x03) Byte String Required The claimed AAGUID. 16 bytes in length and

encoded the same as MakeCredential

AuthenticatorData, as specified in [WebAuthN].

options (0x04) Map Optional List of supported options.

maxMsgSize (0x05) Unsigned

Integer

Optional Maximum message size supported by the

authenticator.

pinUvAuthProtocols

(0x06)

Array of

Unsigned

Integers

Optional List of supported PIN/UV auth protocols in

order of decreasing authenticator preference.

MUST NOT contain duplicate values nor be

empty if present.

maxCredentialCountInL

ist (0x07)

Unsigned

Integer

Optional Maximum number of credentials supported in

credentialID list at a time by the authenticator.

MUST be greater than zero if present.

maxCredentialIdLength

(0x08)

Unsigned

Integer

Optional Maximum Credential ID Length supported by

the authenticator. MUST be greater than zero if

present.

transports (0x09) Array of

strings

Optional List of supported transports. Values are taken

from the AuthenticatorTransport enum in

[WebAuthN]. The list MUST NOT include

duplicate values nor be empty if present.

Platforms MUST tolerate unknown values.

algorithms (0x0A) Array of

PublicKeyCr

edentialPara

meters

Optional List of supported algorithms for credential

generation, as specified in [WebAuthN]. The

array is ordered from most preferred to least

preferred and MUST NOT include duplicate

entries nor be empty if present.

PublicKeyCredentialParameters' algorithm

identifiers are values that SHOULD be

registered in the IANA COSE Algorithms

registry [b-IANA-COSE]

30 Rec. ITU-T X.1278.2 (04/2023)

Member name Data type Required? Definition

maxSerializedLargeBlob

Array (0x0B)

Unsigned

Integer

Optional The maximum size, in bytes, of the serialized

large-blob array that this authenticator can store.

If the authenticatorLargeBlobs command is

supported, this MUST be specified. Otherwise,

it MUST NOT be. If specified, the value MUST

be ≥ 1024. Thus, 1024 bytes is the least amount

of storage an authenticator must make available

for per-credential serialized large-blob arrays if

it supports the large, per-credential blobs

feature.

forcePINChange (0x0C) Boolean Optional If this member is:

present and set to true

getPinToken and

getPinUvAuthTokenUsingPinWithPermis

sions will return errors until after a

successful PIN Change.

present and set to false, or absent

no PIN Change is required.

minPINLength (0x0D) Unsigned

Integer

Optional This specifies the current minimum PIN

length, in Unicode code points, the

authenticator enforces for ClientPIN. This is

applicable for ClientPIN only: the

minPINLength member MUST be absent if the

clientPin option ID is absent; it MUST be

present if the authenticator supports

authenticatorClientPIN.

The default pre-configured minimum PIN

length is at least 4 Unicode code points.

Authenticators MAY have a pre-configured

default minPINLength of more than 4 code

points in certain offerings. On reset,

minPINLength reverts to its original pre-

configured value. Authenticators MAY also

have a pre-configured list of RP IDs

authorized to receive the current minimum PIN

length value via the minPinLength extension.

firmwareVersion (0x0E) Unsigned

Integer

Optional Indicates the firmware version of the

authenticator model identified by AAGUID.

Whenever releasing any code change to the

authenticator firmware, authenticator MUST

increase the version.

maxCredBlobLength

(0x0F)

Unsigned

Integer

Optional Maximum credBlob length in bytes supported

by the authenticator. Must be present if, and

only if, credBlob is included in the supported

extensions list. If present, this value MUST

be at least 32 bytes.

 Rec. ITU-T X.1278.2 (04/2023) 31

Member name Data type Required? Definition

maxRPIDsForSetMinPI

NLength (0x10)

Unsigned

Integer

Optional This specifies the max number of RP IDs that

authenticator can set via setMinPINLength

subcommand. This is in addition to pre-

configured list authenticator may have. If the

authenticator does not support adding additional

RP IDs, its value is 0. This MUST ONLY be

present if, and only if, the authenticator supports

the setMinPINLength subcommand.

preferredPlatformUvAtte

mpts

(0x11)

Unsigned

Integer.

(CBOR

major type 0)

Optional This specifies the preferred number of

invocations of the
getPinUvAuthTokenUsingUvWithPerm

issions subCommand the platform may

attempt before falling back to the
getPinUvAuthTokenUsingPinWithPer

missions subCommand or displaying an

error. MUST be greater than zero. If the value is

1 then all uvRetries are internal and the

platform MUST only invoke the
getPinUvAuthTokenUsingUvWithPerm

issions subCommand a single time. If the

value is > 1 the authenticator MUST only

decrement uvRetries by 1 for each iteration.

uvModality (0x12) Unsigned

Integer.

(CBOR

major type 0)

Optional This specifies the user verification modality

supported by the authenticator via

authenticatorClientPIN's
getPinUvAuthTokenUsingUvWithPerm

issions subcommand. This is a hint to help

the platform construct user dialogs. The values

are defined in [b-Registry] clause 3.1 User

Verification Methods. Combining multiple bit-

flags from the [b-Registry] is allowed. If

clientPin is supported it MUST NOT be

included in the bit-flags, as clientPIN is not

a built-in user verification method.

Certifications (0x13) Map Optional This specifies a list of authenticator

certifications.

remainingDiscoverableC

redentials (0x14)

Unsigned

Integer

Optional If this member is present, it indicates the

estimated number of additional discoverable

credentials that can be stored.

If this value is zero, then platforms SHOULD

create non-discoverable credentials if possible.

This estimate SHOULD be based on the

assumption that all future discoverable

credentials will have maximally-sized fields and

SHOULD be zero whenever an attempt to

create a discoverable credential may fail due to

lack of space, even if it's possible that some

specific request might succeed. For example, a

specific request might include fields that are

smaller than the maximum possible size and

thus succeed, but this value should be zero if a

32 Rec. ITU-T X.1278.2 (04/2023)

Member name Data type Required? Definition

request with maximum-sized fields would fail.

Also, a specific request might have an rp.id and

user.id that match an existing discoverable

credential and thus overwrite it, but this value

should be set assuming that will not happen.

vendorPrototypeConfigC

ommands (0x15)

Array of

Unsigned

Integers

Optional If present, the authenticator supports the

authenticatorConfig vendorPrototype

subcommand, and its value is a list of

authenticatorConfig vendorCommandId values

supported, which MAY be empty.

All options are in the form key-value pairs with string IDs and boolean values. When an option ID is

not present, the default is applied per table below. The following table lists all defined option IDs as

of CTAP version "FIDO_2_1":

Option ID Definition Default

Plat platform device: Indicates that the device is attached to the client

and therefore cannot be removed and used on another client.

false

Rk Specifies whether this authenticator can create discoverable

credentials, and therefore can satisfy authenticatorGetAssertion

requests with the allowList parameter omitted.

false

clientPin ClientPIN feature support:

If present and set to true, it indicates that the device is capable of

accepting a PIN from the client and PIN has been set.

If present and set to false, it indicates that the device is capable of

accepting a PIN from the client and PIN has not been set yet.

If absent, it indicates that the device is not capable of accepting a

PIN from the client.

ClientPIN is one of the overall ways to do user verification,

although ClientPIN is not considered a built-in user verification

method.

Not

supported

Up user presence: Indicates that the device is capable of testing user

presence.

true

uv user verification: Indicates that the authenticator supports a built-

in user verification method. For example, devices with UI,

biometrics fall into this category.

If present and set to true, it indicates that the device is capable of

built-in user verification and its user verification feature is

presently configured.

If present and set to false, it indicates that the authenticator is

capable of built-in user verification and its user verification

feature is not presently configured. For example, an authenticator

featuring a built-in biometric user verification feature that is not

presently configured will return this "uv" option id set to false.

If absent, it indicates that the authenticator does not have a built-in

user verification capability.

A device that can only do Client PIN will not return the "uv"

option id.

Not

Supported

 Rec. ITU-T X.1278.2 (04/2023) 33

Option ID Definition Default

If a device is capable of both built-in user verification and Client

PIN, the authenticator will return both the "uv" and the "clientPin"

option ids.

pinUvAuthToken If pinUvAuthToken is:

present and set to true

if the clientPin option id is present and set to true, then the

authenticator supports authenticatorClientPIN's

getPinUvAuthTokenUsingPinWithPermissions

subcommand. If the uv option id is present and set to true,

then the authenticator supports authenticatorClientPIN's

getPinUvAuthTokenUsingUvWithPermissions

subcommand.

present and set to false, or absent.

the authenticator does not support authenticatorClientPIN's

getPinUvAuthTokenUsingPinWithPermissions and

getPinUvAuthTokenUsingUvWithPermissions

subcommands.

Not

Supported

noMcGaPermissionsWi

thClientPin

If this noMcGaPermissionsWithClientPin is:

present and set to true

A pinUvAuthToken obtained via

getPinUvAuthTokenUsingPinWithPermissions (or

getPinToken) cannot be used for

authenticatorMakeCredential or authenticatorGetAssertion

commands, because it will lack the necessary mc and ga

permissions. In this situation, platforms SHOULD NOT

attempt to use

getPinUvAuthTokenUsingPinWithPermissions if using

getPinUvAuthTokenUsingUvWithPermissions fails.

present and set to false, or absent

A pinUvAuthToken obtained via

getPinUvAuthTokenUsingPinWithPermissions (or

getPinToken) can be used for authenticatorMakeCredential

or authenticatorGetAssertion commands.

NOTE – noMcGaPermissionsWithClientPin MUST only be

present if the clientPin option ID is present.

false

largeBlobs If largeBlobs is:

present and set to true

the authenticator supports the authenticatorLargeBlobs

command.

present and set to false, or absent

The authenticatorLargeBlobs command is NOT supported.

Not

supported

34 Rec. ITU-T X.1278.2 (04/2023)

Option ID Definition Default

Ep Enterprise Attestation feature support:

If ep is:

Present and set to true

The authenticator is enterprise attestation capable, and

enterprise attestation is enabled.

Present and set to false

The authenticator is enterprise attestation capable, and

enterprise attestation is disabled.

Absent

The Enterprise Attestation feature is NOT supported.

Not

supported

bioEnroll If bioEnroll is:

present and set to true

the authenticator supports the authenticatorBioEnrollment

commands, and has at least one bio enrollment presently

provisioned.

present and set to false

the authenticator supports the authenticatorBioEnrollment

commands, and does not yet have any bio enrollments

provisioned.

absent

the authenticatorBioEnrollment commands are NOT

supported.

Not

Supported

userVerificationMgmtP

review

"FIDO_2_1_PRE" Prototype Credential management support:

If userVerificationMgmtPreview is:

present and set to true

the authenticator supports the Prototype

authenticatorBioEnrollment (0x41) commands, and has at

least one bio enrollment presently provisioned.

present and set to false

the authenticator supports the Prototype

authenticatorBioEnrollment (0x41) commands, and does

not yet have any bio enrollments provisioned.

absent

the Prototype authenticatorBioEnrollment (0x41)

commands are not supported.

Not

Supported

uvBioEnroll getPinUvAuthTokenUsingUvWithPermissions support for

requesting the be permission:

This option ID MUST only be present if bioEnroll is also present.

If uvBioEnroll is:

present and set to true

requesting the be permission when invoking

getPinUvAuthTokenUsingUvWithPermissions is supported.

present and set to false, or absent

requesting the be permission when invoking

getPinUvAuthTokenUsingUvWithPermissions is NOT

supported.

Not

Supported

 Rec. ITU-T X.1278.2 (04/2023) 35

Option ID Definition Default

authnrCfg authenticatorConfig command support:

If authnrCfg is:

present and set to true

the authenticatorConfig command is supported.

present and set to false, or absent

the authenticatorConfig command is NOT supported.

Not

Supported

uvAcfg getPinUvAuthTokenUsingUvWithPermissions support for

requesting the acfg permission:

This option ID MUST only be present if authnrCfg is also present.

If uvAcfg is:

present and set to true

requesting the acfg permission when invoking

getPinUvAuthTokenUsingUvWithPermissions is supported.

present and set to false, or absent

requesting the acfg permission when invoking

getPinUvAuthTokenUsingUvWithPermissions is NOT

supported.

Not

Supported

credMgmt Credential management support:

If credMgmt is:

present and set to true

the authenticatorCredentialManagement command is

supported.

present and set to false, or absent

the authenticatorCredentialManagement command is NOT

supported.

Not

Supported

credentialMgmtPreview "FIDO_2_1_PRE" Prototype Credential management support:

If credentialMgmtPreview is:

present and set to true

the Prototype authenticatorCredentialManagement (0x41)

command is supported.

present and set to false, or absent

the Prototype authenticatorCredentialManagement (0x41)

command is NOT supported.

Not

Supported

setMinPINLength Support for the Set Minimum PIN Length feature.

If setMinPINLength is:

present and set to true

the setMinPINLength subcommand is supported.

present and set to false, or absent

the setMinPINLength subcommand is NOT supported.

NOTE – setMinPINLength MUST only be present if the

clientPin option ID is present.

Not

Supported

36 Rec. ITU-T X.1278.2 (04/2023)

Option ID Definition Default

makeCredUvNotRqd Support for making non-discoverable credentials without

requiring User Verification.

If makeCredUvNotRqd is:

present and set to true

the authenticator allows creation of non-discoverable

credentials without requiring any form of user verification,

if the platform requests this behaviour.

present and set to false, or absent

the authenticator requires some form of user verification for

creating non-discoverable credentials, regardless of the

parameters the platform supplies for the

authenticatorMakeCredential command.

Authenticators SHOULD include this option with the value

true.

false

alwaysUv Support for the Always Require User Verification feature:

If alwaysUv is

present and set to true

the authenticator supports the Always Require User

Verification feature and it is enabled.

present and set to false

the authenticator supports the Always Require User

Verification feature but it is disabled.

absent

the authenticator does not support the Always Require User

Verification feature.

NOTE – If the alwaysUv option ID is present and true the

authenticator MUST set the value of makeCredUvNotRqd to false.

Not

Supported

8.5 authenticatorClientPIN (0x06)

This command exists so that plaintext PINs are not sent to the authenticator. Instead, a PIN/UV auth

protocol (aka pinUvAuthProtocol) ensures that PINs are encrypted when sent to an authenticator

and are exchanged for a pinUvAuthToken that serves to authenticate subsequent commands.

Additionally, authenticators supporting built-in user verification methods can provide a

pinUvAuthToken upon user verification.

The pinUvAuthToken is a randomly-generated, opaque bytestring that is large enough to be

effectively unguessable. See clause  8.5.2.1, pinUvAuthToken State for details.

Two PIN/UV auth protocols are defined herein:

• Clause  8.5.6 PIN/UV Auth Protocol One

• Clause  8.5.7 PIN/UV Auth Protocol Two

Each PIN/UV auth protocol:

• maintains its own pinUvAuthToken so that no unexpected, cross-protocol interactions occur,

and

• is a concrete instantiation of clause  8.5.4, PIN/UV Auth Protocol abstract definition.

NOTE 1 – The platform MAY flexibly manage the lifetime of its copy of the pinUvAuthToken based on the

usage scenario. However, it SHOULD erase its copy of the pinUvAuthToken as soon as possible when it is

 Rec. ITU-T X.1278.2 (04/2023) 37

no longer needed. The authenticator can also expire the pinUvAuthToken based on certain conditions such

as changing a PIN, authenticator timeouts, when returning CTAP2_ERR_OPERATION_DENIED or

CTAP2_ERR_CREDENTIAL_EXCLUDED errors, the platform system waking up from a suspend state, the

platform sending commands with no optional pinUvAuthParam, etc. If the pinUvAuthToken has expired, the

authenticator will return CTAP2_ERR_PIN_AUTH_INVALID and the platform can act on the error

accordingly, e.g., by getting a new pinUvAuthToken from the authenticator.

NOTE 2 – The authenticator is only required to manage one pinUvAuthToken, though it MAY manage one

per transport interface in the case that it supports multiple simultaneous transport protocols.

8.5.1 PIN composition requirements

Platforms MUST enforce the following, baseline, requirements on PINs used with this specification:

• Minimum PIN Length: 4 Unicode characters

• Maximum PIN Length: UTF-8 representation MUST NOT exceed 63 bytes

• PIN are in Unicode normalization form C

• PIN MUST NOT end in a 0x00 byte

Authenticators MUST enforce the following, baseline, requirements on PINs:

• Minimum PIN Length: 4 code points.

NOTE 1 – Authenticators can enforce a greater minimum length.

• Maximum PIN Length: 63 bytes

• PIN storage on the device has to provide the same, or better, security assurances as provided

for private keys.

NOTE 2 – [b-FIPS140-3] references "memorized secret" requirements from SP 800-63B clause 5.1.1.2. The

latter states that at AAL2 and above:

"Any memorized secret used by the authenticator for activation SHALL be a randomly-chosen

numeric value at least 6 decimal digits in length or other memorized secret [at least 8 ASCII or

Unicode characters in length]."

This specification attempts to count code points as an approximation of Unicode characters. It is

understood that some scripts have multiple code points per character and may need to have additional

procedural controls to conform with [b-FIPS140-3] or other security standards.

8.5.2 PIN/UV Auth protocol global state

Authenticators keep the following global state, independent of any specific PIN/UV auth protocol:

8.5.2.1 pinUvAuthToken state

A pinUvAuthToken has the following associated state variables. When initially generated via

resetPinUvAuthToken(), the pinUvAuthToken's state variables are set to the initial values given

below. The state variables values are managed via the interface given in clause  8.5.3.2,

pinUvAuthToken state maintenance functions.

NOTE 1 – The pinUvAuthToken-issuing operations call beginUsingPinUvAuthToken() to update the

pinUvAuthToken's state variables' values prior to issuing the pinUvAuthToken to the platform. For example,

they will use the latter function to set both or either the userVerified flag and/or the userPresent flag to true,

and start the usage timer.

A pinUvAuthToken is associated with these state variables:

• A permissions RP ID, initially null.

• A permissions set whose possible values are those of pinUvAuthToken permissions. It is

initially empty.

• A usage timer, initially not running.

38 Rec. ITU-T X.1278.2 (04/2023)

NOTE 2 – Once running, the timer is observed by pinUvAuthTokenUsageTimerObserver().

• An in use flag, initially set to false, meaning that the pinUvAuthToken is not in use. When

the in use flag is set to true, the pinUvAuthToken is said to be in use.

• An initial usage time limit, initially not set. beginUsingPinUvAuthToken() sets this value

according to the transport the platform is using to communicate with it. The platform MUST

invoke an authenticator operation using the pinUvAuthToken within this time limit for the

pinUvAuthToken to remain valid for the full max usage time period. The default maximum

per-transport initial usage time limit values are:

○ usb: 30 seconds

○ nfc: 19.8 seconds (16-bit counter with 3311 Hz clock: max time before overflow)

○ ble: 30 seconds

○ internal: 30 seconds

Authenticators MAY use other values that are less than the default maximum values.

Authenticators MAY implement a rolling timer, initialized to the per-transport initial usage time limit,

where the pinUvAuthToken and its state variables remain valid as long as the platform again uses the

pinUvAuthToken in an operation before the rolling timer expires. If so, the rolling timer is again

initialized to the initial usage time limit. This continues until the max usage time period expires. See

pinUvAuthTokenUsageTimerObserver().

NOTE 3 – Authenticators should utilize the rolling timer approach judiciously, e.g., because some features,

such as authenticatorBioEnrollment and authenticatorCredentialManagement, may need to accommodate

infrequent user interactions. Thus the rolling timer approach may be most applicable to

authenticatorMakeCredential and authenticatorGetAssertion operations.

• A user present time limit defining the length of time the user is considered "present", as

represented by the userPresent flag, after user presence is collected. The user present time

limit defaults to the same default maximum per-transport values as the initial usage time

limit, although authenticators MAY use other values that are less than the default maximum

values, including zero.

NOTE 4 – The user present time limit value of zero accommodates the case where an authenticator does not

wish to support maintaining "user present" state (i.e., "cached user presence").

• A max usage time period value, which SHOULD default to a maximum of 10 minutes

(600 seconds), though authenticators MAY use other values less than the latter default,

possibly depending upon the use case, e.g., which transport is in use.

• A userVerified flag, initially false.

• A userPresent flag, initially false.

8.5.2.2 PIN-entry and user verification retries counters

1. pinRetries counter:

o pinRetries counter represents the number of attempts left before PIN is disabled.

o Authenticators MUST allow no more than 8 retries but MAY set a lower maximum.

o Each correct PIN entry resets the pinRetries and the uvRetries counters back to their

maximum values unless the PIN is already disabled.

o Each incorrect PIN entry decrements the pinRetries by 1.

o Once the pinRetries counter reaches 0, both ClientPin as well as built-in user

verification are disabled and can only be enabled if authenticator is reset.

2. uvRetries counter:

 Rec. ITU-T X.1278.2 (04/2023) 39

o The uvRetries counter represents the number of user verification attempts left before

built-in user verification is disabled.

o maxUvRetries is a global value statically configured into an authenticator; it is the

maximum number of retries that a user can experience. uvRetries is initialized to this

value. Its value MUST be in the range of 1 to 25, inclusive.

 NOTE – This value is determined by the authenticator vendor based on the desired security

certification level. This limit protects against brute force attacks. It is the total number of attempts

allowed for all built-in user verification methods.

o maxUvAttemptsForInternalRetries is a global value configured into an authenticator.

It is the maximum number of times the authenticator will retry internally when

internalRetry is true as part of the performBuiltInUv() algorithm. This is used for older

platforms when the "uv" parameter is set as true OR when an authenticator vendor

wants the platform to try calling it only once as indicated by the

preferredPlatformUvAttempts value. If preferredPlatformUvAttempts is 1,

maxUvAttemptsForInternalRetries value MUST be in range of 1 to maxUvRetries

inclusive. If preferredPlatformUvAttempts is NOT 1,

maxUvAttemptsForInternalRetries value MUST be in range of 1 to 5 inclusive.

o Once the uvRetries counter reaches 0, built-in user verification MUST be disabled and

can only be re-enabled if the authenticator is reset or the correct clientPIN is provided

via the authenticatorClientPIN's getPinUvAuthTokenUsingPinWithPermissions or

getPinToken subCommands.

o internalRetry is an authenticator-internal boolean parameter. It defaults to false. It is

explicitly set to true if the authenticator intends to perform multiple internal uv retries

before returning an error to the platform.

8.5.3 Utility functions

These utility functions are independent of the particular PIN/UV auth protocol in use.

8.5.3.1 Perform built-in user verification algorithm

performBuiltInUv(internalRetry) → success | error:

1. If internalRetry is true then let attemptsBeforeReturning be set to

maxUvAttemptsForInternalRetries.

2. Else let attemptsBeforeReturning be set to 1.

3. If clientPIN is true and pinRetries <= 0 then let the uvRetries counter be set to 0, return error.

4. If uvRetries <= 0 then return error.

5. Decrement the uvRetries counter by 1.

 NOTE – It is best practice to decrement the counter before performing built-in user verification.

This prevents some hardware attacks that could provide an attacker with an unlimited number of

presentation attempts. If the sample input times out the authenticator may re-increment the

uvRetries counter to its previous value, if no matching is performed by the authenticator. Some

platforms will send authenticatorGetAssertion requests in parallel to multiple authenticators

causing the ones not touched by the user to decrement uvRetries to 0 over time unless the

uvRetries is re-incremented to the previous value after an input time out.

6. Decrement attemptsBeforeReturning by 1.

7. Perform built-in user verification.

8. If a user action timeout occurs, return error.

40 Rec. ITU-T X.1278.2 (04/2023)

9. If built-in user verification succeeds then set the uvRetries counter to maxUvRetries and return

success.

10. Else (built-in user verification failed), if attemptsBeforeReturning > 0, go to Step 4.

11. Otherwise, return error.

8.5.3.2 pinUvAuthToken state maintenance functions

beginUsingPinUvAuthToken(userIsPresent)

This function prepares the pinUvAuthToken for use by the platform, which has invoked one of the

pinUvAuthToken-issuing operations, by setting particular pinUvAuthToken state variables to given

use-case-specific values. See also clause  8.5.5.7, Operations to obtain a pinUvAuthToken.

1. Set the userPresent flag to the value of userIsPresent.

2. Set the userVerified flag to true.

3. Set the initial usage time limit to a transport-specific value, as described in clause  8.5.2.1,

pinUvAuthToken state.

4. Start the pinUvAuthToken usage timer, set the in use flag to true, and assign

pinUvAuthTokenUsageTimerObserver() to observe the usage timer. The pinUvAuthToken is

now in use.

pinUvAuthTokenUsageTimerObserver()

This function observes the pinUvAuthToken usage timer and takes appropriate action upon the

specified conditions:

1. If the usage timer is not running, return.

2. While the overall usage timer has not reached the max usage time period, perform the

following substeps:

1. If the current user present time limit is reached, call clearUserPresentFlag().

2. If the initial usage time limit is reached without the platform using the

pinUvAuthToken in an authenticator operation then call

stopUsingPinUvAuthToken(), and terminate these steps.

3. If the authenticator does not utilize a rolling timer then continue.

4. If the authenticator utilizes a rolling timer then:

1. If the platform uses the pinUvAuthToken in an authenticator operation before

the rolling timer expires then:

1. Set the rolling timer to the applicable initial usage time limit and

continue.

2. Otherwise (implying the rolling timer expires) call

stopUsingPinUvAuthToken(), and terminate these steps.

3. Call stopUsingPinUvAuthToken(), and terminate these steps.

getUserPresentFlagValue() → userPresentFlagValue

1. If the pinUvAuthToken is in use then set the userPresentFlagValue to the current value of

the pinUvAuthToken's userPresent flag.

2. Otherwise (implying a pinUvAuthToken exists and is not in use, or does not exist), set

userPresentFlagValue to false.

 Rec. ITU-T X.1278.2 (04/2023) 41

NOTE 1 – The pinUvAuthToken may not exist because the pinUvAuthToken feature is not in use or is not

supported.

3. Return userPresentFlagValue.

getUserVerifiedFlagValue() → userVerifiedFlagValue

1. If the pinUvAuthToken is in use then set the userVerifiedFlagValue to the current value

of the pinUvAuthToken's userVerified flag.

2. Otherwise (implying a pinUvAuthToken exists and is not in use, or does not exist), set

userVerifiedFlagValue to false.

NOTE 2 – The pinUvAuthToken may not exist because the pinUvAuthToken feature is not in use or is not

supported.

3. Return userVerifiedFlagValue.

clearUserPresentFlag()

1. If the pinUvAuthToken is in use then set the pinUvAuthToken's userPresent flag to false,

otherwise do nothing.

clearUserVerifiedFlag()

1. If the pinUvAuthToken is in use then set the pinUvAuthToken's userVerified flag to false,

otherwise do nothing.

clearPinUvAuthTokenPermissionsExceptLbw()

1. If the pinUvAuthToken is in use then clear all of the pinUvAuthToken's permissions, except

for lbw, otherwise do nothing.

stopUsingPinUvAuthToken()

1. Set all of the pinUvAuthToken's state variables to their initial values as given in

clause  8.5.2.1, Pinuvauthtoken state.

NOTE 3 – This causes the pinUvAuthToken's in use flag to be set to false, denoting the pinUvAuthToken

as not in use.

pinUvAuthToken that are not in use MUST NOT validate when verified in the context of the

Prototype authenticatorBioEnrollment or Prototype authenticatorCredentialManagement

commands.

8.5.4 PIN/UV Auth protocol abstract definition

A specific PIN/UV auth protocol defines an implementation of two interfaces to cryptographic

services: one for the authenticator, and one for the platform.

The authenticator interface is:

initialize()

This process is run by the authenticator at power-on.

regenerate()

Generates a fresh public key.

resetPinUvAuthToken()

Generates a fresh pinUvAuthToken.

getPublicKey() → coseKey

Returns the authenticator's public key as a COSE_Key structure.

decapsulate(peerCoseKey) → sharedSecret | error

42 Rec. ITU-T X.1278.2 (04/2023)

Processes the output of encapsulate from the peer and produces a shared secret, known to both

platform and authenticator.

decrypt(sharedSecret, ciphertext) → plaintext | error

Decrypts a ciphertext, using sharedSecret as a key, and returns the plaintext.

verify(key, message, signature) → success | error

Verifies that the signature is a valid MAC for the given message. If the key parameter value is the

current pinUvAuthToken, it also checks whether the pinUvAuthToken is in use or not.

The platform interface is:

initialize()

This is run by the platform when starting a series of transactions with a specific authenticator.

encapsulate(peerCoseKey) → (coseKey, sharedSecret) | error

Generates an encapsulation for the authenticator's public key and returns the message to transmit and

the shared secret.

encrypt(key, demPlaintext) → ciphertext

Encrypts a plaintext to produce a ciphertext, which may be longer than the plaintext. The plaintext is

restricted to being a multiple of the AES block size (16 bytes) in length.

decrypt(key, ciphertext) → plaintext | error

Decrypts a ciphertext and returns the plaintext.

authenticate(key, message) → signature

Computes a MAC of the given message.

(In the pseudocode function definitions, above, a function takes a number of arguments that are given

in parentheses and yields a result that is one of the types separated by a bar ('|'). If a function does not

yield any meaningful result, then it implicitly yields a value of the unit type, written "success", which

carries no information.)

The following PIN/UV auth protocols, specified herein, define concrete instantiations of the above

interfaces:

• Clause  8.5.6 PIN/UV Auth Protocol One

• Clause  8.5.7 PIN/UV Auth Protocol Two

8.5.5 authenticatorClientPIN (0x06) command definition

This authenticatorClientPIN command allows a platform to use a PIN/UV auth protocol to perform a

number of actions:

• Performing key agreement to obtain the shared secret

• Setting a PIN

• Changing a PIN

• Obtaining the pinUvAuthToken

The command takes the following input parameters:

 Rec. ITU-T X.1278.2 (04/2023) 43

Parameter name Data type Required? Definition

pinUvAuthProtocol

(0x01)

Unsigned

Integer

Optional PIN/UV protocol version chosen by the

platform. This MUST be a value supported by

the authenticator, as determined by the

pinUvAuthProtocols field of the

authenticatorGetInfo response.

subCommand (0x02) Unsigned

Integer

Required The specific action being requested.

keyAgreement (0x03) COSE_Key Optional The platform key-agreement key. This

COSE_Key-encoded public key MUST contain

the optional "alg" parameter and MUST NOT

contain any other optional parameters. The "alg"

parameter MUST contain a

COSEAlgorithmIdentifier value.

pinUvAuthParam (0x04) Byte String Optional The output of calling authenticate on some

context specific to the subcommand.

newPinEnc (0x05) Byte String Optional An encrypted PIN.

pinHashEnc (0x06) Byte String Optional An encrypted proof-of-knowledge of a PIN.

permissions (0x09) Unsigned

Integer

Optional Bitfield of permissions. If present, MUST NOT

be 0. See clause  8.5.5.7, Operations to obtain a

pinUvAuthToken.

rpId (0x0A) String Optional The RP ID to assign as the permissions RP ID.

The authenticatorClientPIN subCommands are:

subCommand name subCommand number

getPINRetries 0x01

getKeyAgreement 0x02

setPIN 0x03

changePIN 0x04

getPinToken (superseded by

getPinUvAuthTokenUsingUvWithPermissions

or

getPinUvAuthTokenUsingPinWithPermissions,

thus for backwards compatibility only)

0x05

getPinUvAuthTokenUsingUvWithPermissions 0x06

getUVRetries 0x07

getPinUvAuthTokenUsingPinWithPermissions 0x09

On success, authenticator returns the following structure in its response:

44 Rec. ITU-T X.1278.2 (04/2023)

Parameter name Data type Required? Definition

KeyAgreement (0x01) COSE_Key Optional The result of the authenticator calling

getPublicKey. Used to convey the authenticator's

public key to the platform so that the platform can

call encapsulate. This COSE_Key-encoded public

key MUST contain the optional "alg" parameter

and MUST NOT contain any other optional

parameters. The "alg" parameter MUST contain a

COSEAlgorithmIdentifier value.

pinUvAuthToken

(0x02)

Byte String Optional The pinUvAuthToken, encrypted by calling encrypt

with the shared secret as the key.

pinRetries(0x03) Unsigned

Integer

Optional Number of PIN attempts remaining before lockout.

This is optionally used to show in UI when

collecting the PIN in setting a new PIN, changing

existing PIN and obtaining a pinUvAuthToken

flows.

powerCycleState(0x04) Boolean Optional Present and true if the authenticator requires a

power cycle before any future PIN operation,

false if no power cycle needed. If the field is

omitted, no information is given about whether a

power cycle is needed or not.

This field is only valid in response to a getRetries

request and authenticators MUST NOT use this

field as an alternative to returning

CTAP2_ERR_PIN_AUTH_BLOCKED when that

is required by this specification: the power cycle

behaviour is a security property and cannot be

delegated to the platform to enforce.

uvRetries(0x05) Unsigned

Integer

Optional Number of uv attempts remaining before lockout.

8.5.5.1 Authenticator configuration operations upon power up

At power-up, the authenticator calls initialize for each pinUvAuthProtocol that it supports.

8.5.5.2 Platform getting PIN retries from authenticator

PIN retries count is the number of PIN attempts remaining before PIN is disabled on the device. When

the PIN retries count nears zero, the platform can optionally warn the user to be careful while entering

the PIN.

Platform performs the following operations to get pinRetries:

1. Platform sends authenticatorClientPIN command with following parameters to the

authenticator:

1. subCommand: getPINRetries(0x01)

2. Authenticator responds back with pinRetries and, optionally, powerCycleState.

8.5.5.3 Platform getting UV retries from authenticator

UV retries count is the number of built-in UV attempts remaining before built-in UV is disabled on

the device. When the UV retries count nears zero, the platform can optionally warn the user to be

careful while performing user verification.

Platform performs the following operations to get uvRetries:

 Rec. ITU-T X.1278.2 (04/2023) 45

1. Platform sends authenticatorClientPIN command with following parameters to the

authenticator:

1. subCommand: getUVRetries(0x07)

2. Authenticator responds back with uvRetries.

8.5.5.4 Obtaining the shared secret

Platforms obtain a shared secret for each transaction. The authenticator does not have to keep a list

of sharedSecrets for all active sessions. If there are subsequent authenticatorClientPIN transactions,

a new sharedSecret is generated every time.

Platform performs the following operations to arrive at the sharedSecret:

1. The platform selects a mutually supported PIN/UV auth protocol by considering the list of

protocols supported by the authenticator, as reported in the pinUvAuthProtocols member of

the authenticatorGetInfo response. If there are multiple mutually supported protocols, and

the platform has no preference, it SHOULD select the one listed first in pinUvAuthProtocols.

2. The platform sends authenticatorClientPIN command with following parameters to the

authenticator:

1. pinUvAuthProtocol: as chosen above

2. subCommand: getKeyAgreement(0x02)

3. If the authenticator does not receive mandatory parameters for this subcommand, end the

operation by returning CTAP2_ERR_MISSING_PARAMETER.

4. If the authenticator does not support the selected pinUvAuthProtocol, it returns

CTAP1_ERR_INVALID_PARAMETER.

6. Otherwise, the authenticator sends a response with the following parameters:

1. keyAgreement: the result of calling getPublicKey for the selected pinUvAuthProtocol.

6. The platform calls encapsulate with the public key that the authenticator returned in order to

generate the platform key-agreement key and the shared secret.

8.5.5.5 Setting a new PIN

The following operations are performed to set up a new PIN:

NOTE 1 – The below applies to both clause  8.5.5.5 Setting a new PIN and clause  8.5.5.6, Changing existing

PIN:

NOTE 2 – An arbitrary Unicode character corresponds to one or more Unicode code points. While the platform

enforces a user-visible limit of at least four Unicode characters for the PIN length (e.g., by counting grapheme

clusters), this results in actually collecting at the very minimum four Unicode code points, and perhaps (many)

more, depending on the script employed.

1. The platform collects the new PIN (newPinUnicode) from the user as Unicode characters in

Normalization Form C.

2. Let platformCollectedPinLengthInCodePoints be the length in code points of newPinUnicode

after normalization is applied.

1. If the minPINLength member of the authenticatorGetInfo response is absent, then let

platformMinPINLengthInCodePoints be 4. (The default minimum value)

2. Else let platformMinPINLengthInCodePoints be the value of the minPINLength

member of the authenticatorGetInfo response.

3. If platformCollectedPinLengthInCodePoints is less than

platformMinPINLengthInCodePoints then the platform SHOULD display a "PIN too

short" error message to the user.

46 Rec. ITU-T X.1278.2 (04/2023)

3. NOTE 3 – This Recommendation is technically equivalent to [b-CTAP] Client to Authenticator

Protocol (CTAP)].

4. NOTE 4 – This Recommendation is technically equivalent to [b-CTAP] Client to Authenticator

Protocol (CTAP)].

1. Let "newPin" be the UTF-8 representation of newPinUnicode.

2. If the byte length of "newPin" is greater than the max UTF-8 representation limit of

63 bytes, then the platform SHOULD display a "PIN too long" error message to the

user.

NOTE 5 – The platform collects the PIN before obtaining the shared secret. This prevents the shared secret

from being reset if an NFC transport is used and the user removes the authenticator from the NFC reader's field

while typing the PIN.

5. The Platform obtains the shared secret from the authenticator.

6. Platform sends authenticatorClientPIN command with following parameters to the

authenticator:

1. pinUvAuthProtocol: as selected when getting the shared secret.

2. subCommand: setPIN(0x03).

3. keyAgreement: the platform key-agreement key.

4. newPinEnc: the result of calling encrypt(shared secret, paddedPin) where paddedPin

is newPin padded on the right with 0x00 bytes to make it 64 bytes long. (Since the

maximum length of newPin is 63 bytes, there is always at least one byte of padding.)

5. pinUvAuthParam: the result of calling authenticate(shared secret, newPinEnc).

7. Authenticator performs following operations upon receiving the request:

1. If the authenticator does not receive mandatory parameters for this command, it returns

CTAP2_ERR_MISSING_PARAMETER error.

2. If pinUvAuthProtocol is not supported, return

CTAP1_ERR_INVALID_PARAMETER.

3. If a PIN has already been set, authenticator returns

CTAP2_ERR_PIN_AUTH_INVALID error.

4. The authenticator calls decapsulate on the provided platform key-agreement key to

obtain the shared secret. If an error results, it returns

CTAP1_ERR_INVALID_PARAMETER.

5. The authenticator calls verify(shared secret, newPinEnc, pinUvAuthParam)

1. If an error results, it returns CTAP2_ERR_PIN_AUTH_INVALID.

6. The authenticator calls decrypt(shared secret, newPinEnc) to produce paddedNewPin.

If an error results, it returns CTAP2_ERR_PIN_AUTH_INVALID.

7. If paddedNewPin is NOT 64 bytes long, it returns

CTAP1_ERR_INVALID_PARAMETER.

8. The authenticator drops all trailing 0x00 bytes from paddedNewPin to produce

newPin.

9. The authenticator checks the length of newPin against the current minimum PIN

length, returning CTAP2_ERR_PIN_POLICY_VIOLATION if it is too short.

 Rec. ITU-T X.1278.2 (04/2023) 47

10. An authenticator MAY impose arbitrary, additional constraints on PINs. If newPin

fails to satisfy such additional constraints, the authenticator returns

CTAP2_ERR_PIN_POLICY_VIOLATION.

11. Authenticator remembers newPin length internally as PINCodePointLength.

12. Authenticator stores LEFT(SHA-256(newPin), 16) internally as CurrentStoredPIN,

sets the pinRetries counter to maximum count, and returns CTAP2_OK.

8.5.5.6 Changing existing PIN

The following operations are performed to change an existing PIN:

1. The platform collects the current PIN (curPinUnicode) and new PIN (newPinUnicode)

from the user as Unicode characters in Normalization Form C.

2. Let platformCollectedNewPinLengthInCodePoints be the length in code points of

newPinUnicode after applying normalization.

1. If the minPINLength member of the authenticatorGetInfo response is absent, then let

platformMinPINLengthInCodePoints be 4. (The default minimum value)

2. Else let platformMinPINLengthInCodePoints be the value of the minPINLength

member of the authenticatorGetInfo response.

3. If platformCollectedNewPinLengthInCodePoints is less than

platformMinPINLengthInCodePoints then the platform SHOULD display a "PIN too

short" error message to the user.

4. Let "newPin" be the UTF-8 representation of newPinUnicode.

1. If the byte length of "newPin" is greater than the max UTF-8 representation

limit of 63 bytes, then the platform SHOULD display a "New PIN too long"

error message to the user.

5. Let "curPin" be the UTF-8 representation of curPinUnicode.

1. If the byte length of "curPin" is greater than the max UTF-8 representation

limit of 63 bytes, then the platform SHOULD display a "Current PIN too long"

error message to the user.

NOTE – The platform collects the PIN before obtaining the shared secret. This prevents the shared secret from

being reset if an NFC transport is used and the user removes the authenticator from the NFC reader's field

while typing the PIN.

3. Platform obtains the shared secret from the authenticator.

4. Platform sends authenticatorClientPIN command. with following parameters to the

authenticator:

1. pinUvAuthProtocol: as selected when getting the shared secret.

2. subCommand: changePIN(0x04).

3. keyAgreement: the platform key-agreement key.

4. pinHashEnc: The result of calling encrypt(shared secret, LEFT(SHA-256(curPin),

16)).

5. newPinEnc: the result of calling encrypt(shared secret, paddedPin) where paddedPin

is newPin padded on the right with 0x00 bytes to make it 64 bytes long. (Since the

maximum length of newPin is 63 bytes, there is always at least one byte of padding.)

6. pinUvAuthParam: the result of calling authenticate(shared secret, newPinEnc ||

pinHashEnc).

48 Rec. ITU-T X.1278.2 (04/2023)

5. Authenticator performs following operations upon receiving the request:

1. If the authenticator does not receive mandatory parameters for this command, it returns

CTAP2_ERR_MISSING_PARAMETER error.

2. If pinUvAuthProtocol is not supported, return

CTAP1_ERR_INVALID_PARAMETER.

3. If the pinRetries counter is 0, return CTAP2_ERR_PIN_BLOCKED error.

4. The authenticator calls decapsulate on the provided platform key-agreement key to

obtain the shared secret. If an error results, it returns

CTAP1_ERR_INVALID_PARAMETER.

5. The authenticator calls verify(shared secret, newPinEnc || pinHashEnc,

pinUvAuthParam)

1. If an error results, it returns CTAP2_ERR_PIN_AUTH_INVALID.

6. Authenticator decrements the pinRetries counter by 1.

7. Authenticator decrypts pinHashEnc using decrypt(shared secret, pinHashEnc) and

verifies against its internal stored LEFT(SHA-256(curPin), 16).

1. If an error results, or a mismatch is detected, the authenticator performs the

following operations:

1. Calls regenerate for the selected pinUvAuthProtocol.

2. Authenticator returns errors according to following conditions:

1. If the pinRetries counter is 0, return

CTAP2_ERR_PIN_BLOCKED error.

2. If the authenticator sees 3 consecutive mismatches, it returns

CTAP2_ERR_PIN_AUTH_BLOCKED, indicating that power

cycling is needed for further operations. This is done so that

malware running on the platform should not be able to block

the device without user interaction.

3. Else return CTAP2_ERR_PIN_INVALID error.

8. Authenticator sets the pinRetries counter to maximum value.

9. The authenticator calls decrypt(shared secret, newPinEnc) to produce paddedNewPin.

If an error results, it returns CTAP2_ERR_PIN_AUTH_INVALID.

10. If paddedNewPin is NOT 64 bytes long, it returns

CTAP1_ERR_INVALID_PARAMETER.

11. The authenticator drops all trailing 0x00 bytes from paddedNewPin to produce

newPin.

12. The authenticator checks the length of newPin against the current minimum PIN

length, returning CTAP2_ERR_PIN_POLICY_VIOLATION if it is too short.

13. If the forcePINChange member of the authenticatorGetInfo response is true and

LEFT(SHA-256(newPin), 16) is equal to its internal stored LEFT(SHA-

256(curPin), 16) then authenticator returns

CTAP2_ERR_PIN_POLICY_VIOLATION.

14. An authenticator MAY impose arbitrary, additional constraints on PINs. If newPin

fails to satisfy such additional constraints, the authenticator returns

CTAP2_ERR_PIN_POLICY_VIOLATION.

 Rec. ITU-T X.1278.2 (04/2023) 49

15. Authenticator remembers newPin length internally as PINCodePointLength.

16. Authenticator sets the value of the forcePINChange member of the

authenticatorGetInfo response to false,

17. Authenticator stores LEFT(SHA-256(newPin), 16) internally as the new value of

CurrentStoredPIN.

18. Authenticator sets the pinRetries counter to maximum count.

19. Authenticator calls resetPinUvAuthToken() for all pinUvAuthProtocols supported by

this authenticator. (i.e., all existing pinUvAuthTokens are invalidated.)

20. Authenticator returns CTAP2_OK.

8.5.5.7 Operations to obtain a pinUvAuthToken

Invoking one of the below operations only has to be performed once for the lifetime of the

pinUvAuthToken. Obtaining a pinUvAuthToken once allows high security without any additional

roundtrips each time a subsequent authenticator operation is invoked (except for the first key-

agreement phase) and its overhead is minimal.

To obtain a pinUvAuthToken, the platform SHOULD first try using

getPinUvAuthTokenUsingUvWithPermissions. If that fails, try using

getPinUvAuthTokenUsingPinWithPermissions. Once the platform obtains a pinUvAuthToken, it can

be used in subsequent authenticator operations for the length of its max usage time period (see

clause  8.5.2.1, pinUvAuthToken state), thereby avoiding asking the user for verification for each

authenticator operation.

When obtaining a pinUvAuthToken, the platform requests permissions appropriate for the operations

it intends to perform. Consequently, the pinUvAuthToken can only be used for those operations.

Some permissions require the presence of the rpId parameter, known as a permissions RP ID. See

also clause  8.5.2.1, pinUvAuthToken state.

The following pinUvAuthToken permissions are defined:

Permission

name

Role Value RP ID Definition

mc MakeCredential 0x01 Required This allows the pinUvAuthToken to be used for

authenticatorMakeCredential operations with the

provided rpId parameter.

ga GetAssertion 0x02 Required This allows the pinUvAuthToken to be used for

authenticatorGetAssertion operations with the

provided rpId parameter.

cm Credential

Management

0x04 Optional This allows the pinUvAuthToken to be used with

the authenticatorCredentialManagement

command. The rpId parameter is optional, if it is

present, the pinUvAuthToken can only be used

for Credential Management operations on

Credentials associated with that RP ID.

be Bio Enrollment 0x08 Ignored This allows the pinUvAuthToken to be used with

the authenticatorBioEnrollment command. The

rpId parameter is ignored for this permission.

50 Rec. ITU-T X.1278.2 (04/2023)

Permission

name

Role Value RP ID Definition

lbw Large Blob

Write

0x10 Ignored This allows the pinUvAuthToken to be used with

the authenticatorLargeBlobs command. The rpId

parameter is ignored for this permission.

acfg Authenticator

Configuration

0x20 Ignored This allows the pinUvAuthToken to be used with

the authenticatorConfig command. The rpId

parameter is ignored for this permission.

When a pinUvAuthToken is used with an operation that tests user presence, it is updated to remove

all permissions except lbw. If lbw was not originally requested then the pinUvAuthToken becomes

permission-less and cannot be used for future operations. However, the platform can fetch a fresh

pinUvAuthToken in order to perform any future operations.

If authenticatorClientPIN's getPinToken subcommand is invoked, default permissions of mc and ga

(value 0x03) are granted for the returned pinUvAuthToken. Other pinUvAuthToken permissions can

only be acquired by providing the permissions parameter to the

getPinUvAuthTokenUsingPinWithPermissions (0x09) or

getPinUvAuthTokenUsingUvWithPermissions (0x06) subcommands.

NOTE – If default permissions are used, it is possible that the permissions RP ID is not set even though it is

required for some of the permissions. It will be set on first use of the pinUvAuthToken with an RP ID (for mc

and ga only). default permissions are only used with the getPinToken (0x05) subcommand.

The following operations are performed to get pinUvAuthToken:

8.5.5.7.1 Getting PINUVAUTHTOKEN using GETPINTOKEN (SUPERSEDED)

• Platform collects PIN from the user.

NOTE 1 – The platform collects the PIN before obtaining the shared secret. This prevents the

shared secret from being reset if an NFC transport is used and the user removes the

authenticator from the NFC reader's field while typing the PIN.

• Platform obtains the shared secret from the authenticator.

• Platform sends authenticatorClientPIN command. with following parameters to the

authenticator:

o pinUvAuthProtocol: as selected when getting the shared secret.

o subCommand: getPinToken (0x05).

o keyAgreement: the platform key-agreement key.

o pinHashEnc: the result of calling encrypt(shared secret, LEFT(SHA-256(PIN), 16)).

• Authenticator performs following operations upon receiving the request:

o If the authenticator does not receive mandatory parameters for this command, it returns

CTAP2_ERR_MISSING_PARAMETER error.

o If pinUvAuthProtocol is not supported, return

CTAP1_ERR_INVALID_PARAMETER.

o If authenticatorClientPIN's permissions parameter is present in the getPinToken

(0x05) subcommand, return CTAP1_ERR_INVALID_PARAMETER.

o If authenticatorClientPIN's rpId parameter is present in the getPinToken (0x05)

subcommand, return CTAP1_ERR_INVALID_PARAMETER.

 Rec. ITU-T X.1278.2 (04/2023) 51

o If the pinRetries counter is 0, return CTAP2_ERR_PIN_BLOCKED error.

o The authenticator calls decapsulate on the provided platform key-agreement key to

obtain the shared secret. If an error results, it returns

CTAP1_ERR_INVALID_PARAMETER.

o If the authenticator has a display, request user consent for the default permissions. If

this is not approved, return CTAP2_ERR_OPERATION_DENIED.

o Authenticator decrements the pinRetries counter by 1.

o Authenticator decrypts pinHashEnc using decrypt and verifies against its internally

stored CurrentStoredPIN.

▪ If an error results, or a mismatch is detected, the authenticator performs the

following operations:

▪ Calls regenerate for the selected pinUvAuthProtocol.

▪ Authenticator returns errors according to following conditions:

▪ If the pinRetries counter is 0, return

CTAP2_ERR_PIN_BLOCKED error.

▪ If the authenticator sees 3 consecutive mismatches, it returns

CTAP2_ERR_PIN_AUTH_BLOCKED, indicating that power

cycling is needed for further operations. This is done so that

malware running on the platform should not be able to block

the device without user interaction.

▪ Else return CTAP2_ERR_PIN_INVALID error.

o Authenticator sets the pinRetries counter to maximum value.

o If the value of the forcePINChange member of the authenticatorGetInfo response is

true, authenticator returns CTAP2_ERR_PIN_INVALID error.

NOTE 2 – The above error value is for backwards compatibility with CTAP2.0 platforms where the

authenticator implements the forcePINChange feature as part of the setMinPINLength command. A

pinUvAuthToken MUST NOT be returned if PINCodePointLength is less than current minimum PIN length.

This is intended to force a user to change their PIN to one that conforms to the current authenticator policy. A

CTAP2.1 platform will check the forcePINChange member of the authenticatorGetInfo response, and not

invoke this command without forcing the user to change PIN first.

o Create a new pinUvAuthToken by calling resetPinUvAuthToken() for all

pinUvAuthProtocols supported by this authenticator. (i.e., all existing

pinUvAuthTokens are invalidated.)

o Call beginUsingPinUvAuthToken(userIsPresent: false).

o If the noMcGaPermissionsWithClientPin option ID is present and set to false, or

absent, then assign the pinUvAuthToken the default permissions.

NOTE 3 – If noMcGaPermissionsWithClientPin option ID is true, default permissions of mc and ga are not

given, but the token is still used by older CTAP 2.0 platforms for userVerificationMgmtPreview and

credentialMgmtPreview commands.

o The authenticator returns the encrypted pinUvAuthToken for the specified

pinUvAuthProtocol, i.e., encrypt(shared secret, pinUvAuthToken).

52 Rec. ITU-T X.1278.2 (04/2023)

8.5.5.7.2 Getting pinUvAuthToken using getPinUvAuthTokenUsingPinWithPermissions

(ClientPIN)

This subCommand MUST be implemented if the authenticator includes both clientPin and

pinUvAuthToken Option IDs set to true in the authenticatorGetInfo response.

1. Platform collects PIN from the user.

NOTE 1 – The platform collects the PIN before obtaining the shared secret. This prevents the shared secret

from being reset if a NFC transport is used and the user removes the authenticator from the NFC reader's field

while typing the PIN.

2. Platform obtains the shared secret from the authenticator.

3. Platform sends authenticatorClientPIN command. with following parameters to the

authenticator:

1. pinUvAuthProtocol: as selected when getting the shared secret.

2. subCommand: getPinUvAuthTokenUsingPinWithPermissions (0x09).

3. keyAgreement: the platform key-agreement key.

4. pinHashEnc: the result of calling encrypt(shared secret, LEFT(SHA-256(PIN), 16)).

5. permissions: mandatory, the permissions associated with this pinUvAuthToken.

NOTE 2 – The platform SHOULD request only the permissions absolutely necessary.

6. rpId: Required for some permissions, optional for others.

4. Authenticator performs following operations upon receiving the request:

1. If the authenticator does not receive mandatory parameters for this command, it returns

CTAP2_ERR_MISSING_PARAMETER error.

2. If pinUvAuthProtocol is not supported, return

CTAP1_ERR_INVALID_PARAMETER.

3. If the authenticator receives a permissions parameter with value 0, return

CTAP1_ERR_INVALID_PARAMETER.

4. The below statements each relate a pinUvAuthToken permission to a given state for a

authenticatorGetInfo option ID. For each pinUvAuthToken permission present in the

permissions parameter, if the statement corresponding to the permission is currently

true, terminate these steps and return

CTAP2_ERR_UNAUTHORIZED_PERMISSION. Undefined permissions present in

the permissions parameter are ignored.

▪ cm: credMgmt is false or absent.

▪ be: bioEnroll is absent.

▪ lbw: largeBlobs is false or absent.

▪ acfg: authnrCfg is false or absent.

▪ mc: noMcGaPermissionsWithClientPin is present and set to true.

▪ ga: noMcGaPermissionsWithClientPin is present and set to true.

5. If the pinRetries counter is 0, return CTAP2_ERR_PIN_BLOCKED error.

6. The authenticator calls decapsulate on the provided platform key-agreement key to

obtain the shared secret. If an error results, it returns

CTAP1_ERR_INVALID_PARAMETER.

 Rec. ITU-T X.1278.2 (04/2023) 53

7. If the authenticator has a display, request user consent for the requested permissions.

If this is not approved, return CTAP2_ERR_OPERATION_DENIED.

8. Authenticator decrements the pinRetries counter by 1.

9. Authenticator decrypts pinHashEnc using decrypt and verifies against its internally

stored CurrentStoredPIN.

▪ If an error results, or a mismatch is detected, the authenticator performs the

following operations:

1. Calls regenerate for the selected pinUvAuthProtocol.

2. Authenticator returns errors according to following conditions:

1. If the pinRetries counter is 0, return

CTAP2_ERR_PIN_BLOCKED error.

2. If the authenticator sees 3 consecutive mismatches, it returns

CTAP2_ERR_PIN_AUTH_BLOCKED, indicating that power

cycling is needed for further operations. This is done so that

malware running on the platform should not be able to block

the device without user interaction.

3. Else return CTAP2_ERR_PIN_INVALID error.

10. Authenticator sets the pinRetries counter to maximum value.

11. If the value of the forcePINChange member of the authenticatorGetInfo response is

true, authenticator returns CTAP2_ERR_PIN_POLICY_VIOLATION. Platform on

receiving such error response SHOULD direct the user to change the PIN.

12. Create a new pinUvAuthToken by calling resetPinUvAuthToken() for all

pinUvAuthProtocols supported by this authenticator. (i.e., all existing

pinUvAuthTokens are invalidated.)

13. Call beginUsingPinUvAuthToken(userIsPresent: false).

14. Assign the requested permissions to the pinUvAuthToken, ignoring any undefined

permissions.

15. If the rpId parameter is present, associate the permissions RP ID with the

pinUvAuthToken.

16. The authenticator returns the encrypted pinUvAuthToken for the specified

pinUvAuthProtocol, i.e., encrypt(shared secret, pinUvAuthToken).

8.5.5.7.3 Getting PinUvAuthToken using GetP inUvAuthTokenUsingUvWithPermissions

(built-in user verification methods)

This subCommand is only applicable when the authenticator supports built-in user verification

methods. This subCommand MUST be implemented if the authenticator returns both uv and

pinUvAuthToken option IDs set to true in the authenticatorGetInfo response.

1. Platform obtains the shared secret from the authenticator.

2. Platform sends authenticatorClientPIN command. with following parameters to the

authenticator:

1. pinUvAuthProtocol: as selected when getting the shared secret.

2. subCommand: getPinUvAuthTokenUsingUvWithPermissions (0x06).

3. keyAgreement: the platform key-agreement key.

54 Rec. ITU-T X.1278.2 (04/2023)

4. permissions: mandatory, the permissions associated with this pinUvAuthToken.

NOTE 1 – The platform SHOULD request only the permissions absolutely necessary.

5. rpId: Required for some permissions, optional for others.

3. Authenticator performs following operations upon receiving the request:

1. If the authenticator does not receive mandatory parameters for this command, it returns

CTAP2_ERR_MISSING_PARAMETER error.

2. If pinUvAuthProtocol is not supported, return

CTAP1_ERR_INVALID_PARAMETER.

3. If the authenticator receives a permissions parameter with value 0, return

CTAP1_ERR_INVALID_PARAMETER.

4. The below statements each relate a pinUvAuthToken permission to a given state for a

authenticatorGetInfo option ID. For each pinUvAuthToken permission present in the

permissions parameter, if the statement corresponding to the permission is currently

true, terminate these steps and return

CTAP2_ERR_UNAUTHORIZED_PERMISSION. The mc and ga permissions are

always considered authorized, thus they are not listed below. Undefined permissions

present in the permissions are ignored.

▪ cm: credMgmt is false or absent.

▪ be: uvBioEnroll is false or absent.

▪ lbw: largeBlobs is false or absent.

▪ acfg: uvAcfg is false or absent.

NOTE 2 – Some authenticators with multiple built-in user verification methods may wish to support the

uvBioEnroll and authnrCfg features that enable the getPinUvAuthTokenUsingUvWithPermissions

subcommand to return the be and acfg permissions, allowing the platform to enroll fingerprints or perform

authenticatorConfig subCommands based, e.g., on a built-in PIN or other modality.

5. If a built-in user verification method is supported but not configured, the authenticator

returns CTAP2_ERR_NOT_ALLOWED.

6. If preferredPlatformUvAttempts > 1 then let internalRetry be false. This indicates

that the platform will try invoking this sub command preferably about

preferredPlatformUvAttempts times. Else let internalRetry be true.

7. If the uvRetries counter is <= 0, return CTAP2_ERR_UV_BLOCKED error.

8. If the authenticator has a display, request user consent for the requested permissions.

If this is not approved, return CTAP2_ERR_OPERATION_DENIED.

9. Let uvState be the result of calling performBuiltInUv(internalRetry)

10. If uvState is error:

▪ If the error reason is a user action timeout, then return

CTAP2_ERR_USER_ACTION_TIMEOUT.

▪ If the uvRetries counter is <= 0, return CTAP2_ERR_UV_BLOCKED.

▪ Otherwise, return CTAP2_ERR_UV_INVALID.

NOTE 3 – The platform, upon receipt of CTAP2_ERR_UV_INVALID, SHOULD check the uvRetries value

using authenticatorClientPIN's getUVRetries subCommand. If uvRetries > 0 and

preferredPlatformUvAttempts > 1, then, platforms can materialize a UI to inform the user (if appropriate) of

the number of remaining retries remaining before user verification is blocked, in conjunction with retrying

getPinUvAuthTokenUsingUvWithPermissions. If the platform receives CTAP2_ERR_UV_BLOCKED or

 Rec. ITU-T X.1278.2 (04/2023) 55

uvRetries <= 0 and clientPin option ID is set to true then the platform MAY fall back to invoking

getPinUvAuthTokenUsingPinWithPermissions.

11. Create a new pinUvAuthToken by calling resetPinUvAuthToken() for all

pinUvAuthProtocols supported by this authenticator. (i.e., all existing

pinUvAuthTokens are invalidated.)

12. If the employed built-in user verification method supplied evidence of user interaction,

then call beginUsingPinUvAuthToken(userIsPresent: true).

NOTE 4 – Whether or not a particular built-in user verification method supplies user presence can vary

between authenticators.

13. Otherwise (implying that user presence was not collected), call

beginUsingPinUvAuthToken(userIsPresent: false).

14. Assign the requested permissions to the pinUvAuthToken, ignoring any undefined

permissions.

15. If the rpId parameter is present, use its value as the permissions RP ID and associate

it with the pinUvAuthToken.

16. The authenticator returns the encrypted pinUvAuthToken for the specified

pinUvAuthProtocol, i.e., encrypt(shared secret, pinUvAuthToken).

56 Rec. ITU-T X.1278.2 (04/2023)

Figure 1 – Client PIN

 Rec. ITU-T X.1278.2 (04/2023) 57

8.5.6 PIN/UV Auth Protocol One

This clause specifies a concrete instance of the abstract PIN/UV auth protocol interfaces. It is given

the numeric identifier 1, and that is the value to pass in the pinUvAuthProtocol parameter in various

commands, to select it.

NOTE – This PIN protocol was essentially defined in CTAP2.0, the difference between the original definition

and this updated definition is that originally the pinToken (herein termed a pinUvAuthToken) length was

unlimited. The definition given here states specific lengths for pinUvAuthTokens in both this PIN/UV Auth

Protocol 1, and in PIN/UV Auth Protocol 2.

This PIN/UV auth protocol maintains the following state:

• Key agreement key: a P-256 private key, x, and the associated public point xB, which is the

result of a scalar-multiplication of the P-256 base point, B, by the private key.

• pinUvAuthToken, a random, opaque byte string that MUST be either 16 or 32 bytes long.

This is generated afresh at power-on and reset when specified below.

This PIN/UV auth protocol defines the following internal functions:

ecdh(peerCoseKey) → sharedSecret | error

1. Parse peerCoseKey as specified for getPublicKey, below, and produce a P-256 point, Y. If

unsuccessful, or if the resulting point is not on the curve, return error.

2. Calculate xY, the shared point. (i.e., the scalar-multiplication of the peer's point, Y, with the

local private key agreement key.)

3. Let Z be the 32-byte, big-endian encoding of the x-coordinate of the shared point.

4. Return kdf(Z).

kdf(Z) → sharedSecret

Return SHA-256(Z)

(See [IETF RFC 6090] clause 4.1 and appendix (C.2) of [b-SP800-56A] for more elliptic curve Diffie-

Hellman (ECDH) key agreement protocol details and key representation.)

The operations of PIN/UV auth protocol 1 are defined as follows:

initialize()

Calls regenerate followed by resetPinUvAuthToken.

regenerate()

Generate a fresh, random P-256 private key, x, and compute the associated public point.

resetPinUvAuthToken()

1. Generate a fresh, random, pinUvAuthToken of either 16 or 32 bytes in length.

2. Associate pinUvAuthToken state variables with the new pinUvAuthToken, initialized per

clause  8.5.2.1, pinUvAuthToken State.

getPublicKey()

Return a COSE_Key with the following header parameters:

• 1 (kty) = 2 (EC2)

• 3 (alg) = -25 (although this is not the algorithm actually used)

• −1 (crv) = 1 (P-256)

• −2 (x) = 32-byte, big-endian encoding of the x-coordinate of xB (the key agreement key's

public point)

• −3 (y) = 32-byte, big-endian encoding of the y-coordinate of xB

58 Rec. ITU-T X.1278.2 (04/2023)

encapsulate(peerCoseKey) → (coseKey, sharedSecret) | error

1. Let sharedSecret be the result of calling ecdh(peerCoseKey). Return any resulting error.

2. Return (getPublicKey(), sharedSecret)

decapsulate(peerCoseKey) → sharedSecret | error

Return ecdh(peerCoseKey)

encrypt(key, demPlaintext) → ciphertext

Return the AES-256-CBC encryption of demPlaintext using an all-zero IV. (No padding is performed

as the size of demPlaintext is required to be a multiple of the AES block length.)

decrypt(key, demCiphertext) → plaintext | error

If the size of demCiphertext is not a multiple of the AES block length, return error. Otherwise return

the AES-256-CBC decryption of demCiphertext using an all-zero IV.

authenticate(key, message) → signature

Return the first 16 bytes of the result of computing HMAC-SHA-256 with the given key and message.

verify(key, message, signature) → success | error

1. If the key parameter value is the current pinUvAuthToken and it is not in use, then return

error.

2. Compute HMAC-SHA-256 with the given key and message. Return success if signature is

16 bytes and is equal to the first 16 bytes of the result, otherwise return error.

8.5.7 PIN/UV Auth Protocol Two

This clause provides a PIN/UV auth protocol that is intended to aid FIPS [CMVP] certification of

authenticators. It is given the numeric identifier 2, and that is the value to pass in the

pinUvAuthProtocol parameter in various commands, to select it.

NOTE 1 – Support for this is mandatory in some cases. See clause 11, Mandatory features.

The length of the pinUvAuthToken for PIN/UV auth protocol two MUST be 32 bytes. Otherwise, it

inherits all the behaviour of PIN protocol one and overrides only these functions:

kdf(Z) → sharedSecret

Return

HKDF-SHA-256(salt = 32 zero bytes, IKM = Z, L = 32, info = "CTAP2 HMAC key") ||

HKDF-SHA-256(salt = 32 zero bytes, IKM = Z, L = 32, info = "CTAP2 AES key")

(see [IETF RFC 5869] for the definition of HKDF).

NOTE 2 – This is two separate invocations of HKDF whose results are concatenated together. It can NOT be

equivalently performed using a single invocation with L=64.

resetPinUvAuthToken()

1. Generate a fresh, random, 32-byte, pinUvAuthToken.

2. Associate pinUvAuthToken state variables with the new pinUvAuthToken, initialized per

clause  8.5.2.1, pinUvAuthToken state.

encrypt(key, demPlaintext) → ciphertext

1. Discard the first 32 bytes of key. (This selects the AES-key portion of the shared secret.)

2. Let iv be a 16-byte, random bytestring.

3. Let ct be the AES-256-CBC encryption of demPlaintext using key and iv. (No padding is

performed as the size of demPlaintext is required to be a multiple of the AES block length.)

4. Return iv || ct.

 Rec. ITU-T X.1278.2 (04/2023) 59

decrypt(key, demCiphertext) → plaintext | error

1. Discard the first 32 bytes of key. (This selects the AES-key portion of the shared secret.)

2. If demPlaintext is less than 16 bytes in length, return an error

3. Split demPlaintext after the 16th byte to produce two subspans, iv and ct.

4. Return the AES-256-CBC decryption of ct using key and iv.

authenticate(key, message) → signature

1. If key is longer than 32 bytes, discard the excess. (This selects the HMAC-key portion of the

shared secret. When key is the pinUvAuthToken, it is exactly 32 bytes long and thus this step

has no effect.)

2. Return the result of computing HMAC-SHA-256 on key and message.

verify(key, message, signature) → success | error

1. If the key parameter value is the current pinUvAuthToken and it is not in use, then return

error.

2. If key is longer than 32 bytes, discard the excess. (This selects the HMAC-key portion of the

shared secret. When key is the pinUvAuthToken, it is exactly 32 bytes long and thus this step

has no effect.)

3. Compute HMAC-SHA-256 with the given key and message. Return success if the signature

is equal to the result, otherwise return an error.

8.5.8 PRF values used

Throughout this protocol, the pseudo-random function defined by HMAC-SHA-256 and the

pinUvAuthToken is evaluated for various values in order to authenticate requests from the platform.

It is important that these values uniquely identify the salient parameters of the requests that they

authenticate otherwise a PRF output from one context could be observed by an attacker and replayed

in a different context.

(It is a known weakness that, within the scope of a single pinUvAuthToken value, requests may be

reordered or replayed by an attacker.)

For clarity, all the patterns of values used by this protocol are enumerated in the following table:

Context Pattern of PRF argument

authenticatorMakeCredential 32 arbitrary bytes

authenticatorGetAssertion 32 arbitrary bytes

authenticatorClientPIN 32×0xff || 0608 || 32-bit value || CBOR array

authenticatorBioEnrollment 0101 || CBOR map

0102 || CBOR map
0104

0105 || CBOR map

authenticatorCredentialManagement 01
02

04 || CBOR map

06 || CBOR map

authenticatorLargeBlobs 32×0xff || 0c00 || 32-bit value || SHA-256(contents of set byte

string, i.e., not including an outer CBOR tag with major type two)

authenticatorConfig 32×0xff || 0d || 8-bit value || CBOR map

60 Rec. ITU-T X.1278.2 (04/2023)

In order to avoid collisions with values already used the following pattern will be used for future

commands: 32 0xff bytes, followed by the command code as a single byte, followed by an

unambiguous substructure defined by each command.

The leading 0xff bytes in the pattern separate the value from any possible value used in an

authenticatorMakeCredential or authenticatorGetAssertion command. As motivation,

consider the authenticatorBioEnrollment command which does not use this pattern. The

argument to authenticatorGetAssertion is a clientDataHash which, in a WebAuthn context, is

the hash of a potentially predictable JavaScript object notation (JSON) string containing an attacker-

controlled nonce. Offline, an attacker can iterate over many nonces until they find one which will

produce a clientDataHash that starts with 0101a1, is followed by a CBOR string or integer not

equal to three, and then by a CBOR value that exactly fills the remaining space. This requires around

232 offline hash evaluations but, if the attacker can observe the PRF output sent by the platform for

an authenticatorGetAssertion command using that nonce, then they can replay it to start a

fingerprint enrollment as the PRF argument also matches the pattern for enrolling a fingerprint.

(Although note that more work is required to complete the enrollment as that requires further

commands to be authenticated.)

8.6 authenticatorReset (0x07)

Resetting an authenticator is a potentially destructive operation. Authenticators MAY thus choose,

for each transport they support, whether this command will be supported when received on that

transport. For example, an authenticator may choose not to support this command over NFC, fearing

that coincidentally nearby readers may send malicious reset commands.

However this command MUST be supported on at least one transport. If the USB human interface

device (HID) transport is supported then this command MUST be supported on that transport.

This method is used by the client to reset an authenticator back to a factory default state. Specifically,

this action at least:

• Invalidates all generated credentials, including those created over CTAP1/U2F.

• Erases all discoverable credentials.

• Resets the serialized large-blob array storage, if any, to the initial serialized large-blob array

value.

• Disables those features that are denoted as being subject to disablement by

authenticatorReset:

○ Enterprise attestation

• Resets those features that are denoted as being subject to reset by authenticatorReset:

○ Always Require User Verification

○ Set Minimum PIN Length

Additionally:

• In order to prevent an accidental triggering of this mechanism, evidence of user interaction

is required.

• In case of authenticators with no display, request MUST have come to the authenticator

within 10 seconds of powering up of the authenticator.

If all conditions are met, authenticator returns CTAP2_OK. If this command is disabled for the

transport used, the authenticator returns CTAP2_ERR_OPERATION_DENIED. If user presence is

explicitly denied, the authenticator returns CTAP2_ERR_OPERATION_DENIED. If a user action

timeout occurs, the authenticator returns CTAP2_ERR_USER_ACTION_TIMEOUT. If the request

comes after 10 seconds of powering up, the authenticator returns CTAP2_ERR_NOT_ALLOWED.

 Rec. ITU-T X.1278.2 (04/2023) 61

8.7 authenticatorBioEnrollment (0x09)

This command is used by the platform to provision/enumerate/delete bio enrollments in the

authenticator.

It takes the following input parameters:

Parameter name Data type Required? Definition

modality (0x01) Unsigned

Integer

Optional The user verification modality being requested

subCommand (0x02) Unsigned

Integer

Optional The authenticator user verification sub command

currently being requested

subCommandParams

(0x03)

CBOR

Map

Optional Map of subCommands parameters. This parameter

MAY be omitted when the subCommand does not take

any arguments.

pinUvAuthProtocol

(0x04)

Unsigned

Integer

Optional PIN/UV protocol version chosen by the platform.

pinUvAuthParam

(0x05)

Byte

String

Optional First 16 bytes of HMAC-SHA-256 of contents using

pinUvAuthToken.

getModality (0x06) Boolean Optional Get the user verification type modality. This MUST be

set to true.

The type of modalities supported are as under:

modality Name modality Number

Fingerprint 0x01

The list of sub commands for fingerprint(0x01) modality is:

subCommand Name subCommand Number

enrollBegin 0x01

enrollCaptureNextSample 0x02

cancelCurrentEnrollment 0x03

enumerateEnrollments 0x04

setFriendlyName 0x05

removeEnrollment 0x06

getFingerprintSensorInfo 0x07

subCommandParams Fields:

Field name Data type Required? Definition

templateId (0x01) Byte String Optional Template Identifier.

templateFriendlyName (0x02) String Optional Template Friendly Name.

timeoutMilliseconds (0x03) Unsigned Integer Optional Timeout in milliseconds.

62 Rec. ITU-T X.1278.2 (04/2023)

On success, authenticator returns the following structure in its response:

Parameter name Data type Required? Definition

modality (0x01) Unsigned

Integer

Optional The user verification modality.

fingerprintKind (0x02) Unsigned

Integer

Optional Indicates the type of fingerprint

sensor. For touch type sensor,

its value is 1. For swipe type

sensor its value is 2.

maxCaptureSamplesRequiredForEnroll

(0x03)

Unsigned

Integer

Optional Indicates the maximum good

samples required for

enrollment.

templateId (0x04) Byte String Optional Template Identifier.

lastEnrollSampleStatus (0x05) Unsigned

Integer

Optional Last enrollment sample status.

remainingSamples (0x06) Unsigned

Integer

Optional Number of more sample

required for enrollment to

complete

templateInfos (0x07) CBOR

ARRAY

Optional Array of templateInfo's

maxTemplateFriendlyName (0x08) Unsigned

Integer

Optional Indicates the maximum

number of bytes the

authenticator will accept as a

templateFriendlyName.

TemplateInfo definition:

Field name Data type Required? Definition

templateId (0x01) Byte String Required Template identifier

templateFriendlyName (0x02) String Optional Template friendly name

lastEnrollSampleStatus types:

lastEnrollSampleStatus Name lastEnrollSampleStatus

Value

Definition

CTAP2_ENROLL_FEEDBACK_FP_GOOD 0x00 Good fingerprint capture.

CTAP2_ENROLL_FEEDBACK_FP_TOO_HIGH 0x01 Fingerprint was too high.

CTAP2_ENROLL_FEEDBACK_FP_TOO_LOW 0x02 Fingerprint was too low.

CTAP2_ENROLL_FEEDBACK_FP_TOO_LEFT 0x03 Fingerprint was too left.

CTAP2_ENROLL_FEEDBACK_FP_TOO_RIGHT 0x04 Fingerprint was too right.

 Rec. ITU-T X.1278.2 (04/2023) 63

lastEnrollSampleStatus Name lastEnrollSampleStatus

Value

Definition

CTAP2_ENROLL_FEEDBACK_FP_TOO_FAST 0x05 Fingerprint was too fast.

CTAP2_ENROLL_FEEDBACK_FP_TOO_SLOW 0x06 Fingerprint was too slow.

CTAP2_ENROLL_FEEDBACK_FP_POOR_QUALIT

Y

0x07 Fingerprint was of poor

quality.

CTAP2_ENROLL_FEEDBACK_FP_TOO_SKEWED 0x08 Fingerprint was too

skewed.

CTAP2_ENROLL_FEEDBACK_FP_TOO_SHORT 0x09 Fingerprint was too

short.

CTAP2_ENROLL_FEEDBACK_FP_MERGE_FAILU

RE

0x0A Merge failure of the

capture.

CTAP2_ENROLL_FEEDBACK_FP_EXISTS 0x0B Fingerprint already

exists.

(unused) 0x0C (this error number is

available)

CTAP2_ENROLL_FEEDBACK_NO_USER_ACTIVIT

Y

0x0D User did not touch/swipe

the authenticator.

CTAP2_ENROLL_FEEDBACK_NO_USER_PRESEN

CE_TRANSITION

0x0E User did not lift the

finger off the sensor.

NOTE – In order to support the authenticator performing authenticatorMakeCredential or

authenticatorGetAssertion immediately after bio enrollment, authenticators SHOULD NOT expire the

pinUvAuthToken at the completion of bio enrollment.

8.7.1 Feature detection

The bioEnroll option ID in the authenticatorGetInfo response defines feature support detection for

this feature.

8.7.2 Get bio modality

Following operations are performed to get bio modality supported by the authenticator:

• Platform sends authenticatorBioEnrollment command with following parameters:

o getModality (0x06): true.

• Authenticator returns authenticatorBioEnrollment response with following parameters:

o modality (0x01): It represents the type of modality authenticator supports. For fingerprint,

its value is 1.

8.7.3. Get fingerprint sensor info

Following operations are performed to get fingerprint sensor information:

• Platform sends authenticatorBioEnrollment command with following parameters:

o modality (0x01): fingerprint (0x01).

o subCommand (0x02): getFingerprintSensorInfo (0x07)

• Authenticator returns authenticatorBioEnrollment response with following parameters:

64 Rec. ITU-T X.1278.2 (04/2023)

o fingerprintKind (0x02):

▪ For touch type fingerprints, its value is 1.

▪ For swipe type fingerprints, its value is 2.

o maxCaptureSamplesRequiredForEnroll (0x03): Indicates the maximum good samples

required for enrollment.

o maxTemplateFriendlyName (0x08): Indicates the maximum number of bytes the

authenticator will accept as a templateFriendlyName.

8.7.4 Enrolling fingerprint

Following operations are performed to enroll a fingerprint:

1. Platform gets pinUvAuthToken from the authenticator with the be permission.

2. Platform sends authenticatorBioEnrollment command with following parameters to begin the

enrollment:

1. modality (0x01): fingerprint (0x01).

2. subCommand (0x02): enrollBegin (0x01).

3. subCommandParams (0x03): Map containing following parameters

1. timeoutMilliseconds (0x03) (optional): timeout in milliseconds

4. pinUvAuthProtocol (0x04): as selected when getting the shared secret.

5. pinUvAuthParam (0x05): authenticate(pinUvAuthToken, fingerprint (0x01) ||

enrollBegin (0x01) || subCommandParams).

3. Authenticator on receiving such request performs following procedures.

1. If pinUvAuthParam is missing from the input map, end the operation by returning

CTAP2_ERR_PUAT_REQUIRED.

2. If the authenticator does not receive mandatory parameters for this subcommand, end

the operation by returning CTAP2_ERR_MISSING_PARAMETER.

3. If pinUvAuthProtocol is not supported, return

CTAP1_ERR_INVALID_PARAMETER.

4. Authenticator calls verify(pinUvAuthToken, fingerprint (0x01) || enrollBegin (0x01)

|| subCommandParams, pinUvAuthParam)

1. If the verification fails, return CTAP2_ERR_PIN_AUTH_INVALID.

5. Authenticator verifies that the token has be permission, if not, it returns

CTAP2_ERR_PIN_AUTH_INVALID.

6. If there is no space available, authenticator returns

CTAP2_ERR_FP_DATABASE_FULL.

7. Authenticator cancels any unfinished ongoing enrollment.

8. Authenticator generates templateId for new enrollment.

9. Authenticator sends the command to the sensor to capture the sample.

10. Authenticator returns authenticatorBioEnrollment response with following

parameters:

1. templateId (0x04): template identifier of the new template being enrolled.

2. lastEnrollSampleStatus (0x05): Status of enrollment of last sample.

 Rec. ITU-T X.1278.2 (04/2023) 65

3. remainingSamples (0x06): Number of sample remaining to complete the

enrollment.

4. Platform sends authenticatorBioEnrollment command with following parameters to continue

enrollment in a loop till remainingSamples is zero or authenticator errors out with

unrecoverable error or platform wants to cancel current enrollment:

1. Platform sends authenticatorBioEnrollment command with following parameters

1. modality (0x01): fingerprint (0x01).

2. subCommand (0x02): enrollCaptureNextSample (0x02).

3. subCommandParams (0x03): Map containing following parameters

1. templateId (0x01): template identifier platform received from

enrollBegin subCommand.

2. timeoutMilliseconds (0x03) (optional): timeout in milliseconds

4. pinUvAuthProtocol (0x04): as selected when getting the shared secret.

5. pinUvAuthParam (0x05): authenticate(pinUvAuthToken, fingerprint (0x01) ||

enrollCaptureNextSample (0x02) || subCommandParams).

2. Authenticator on receiving such request performs following procedures.

1. If pinUvAuthParam is missing from the input map, end the operation by

returning CTAP2_ERR_PUAT_REQUIRED.

2. If the authenticator does not receive mandatory parameters for this

subcommand, end the operation by returning

CTAP2_ERR_MISSING_PARAMETER.

3. If pinUvAuthProtocol is not supported, return

CTAP1_ERR_INVALID_PARAMETER.

4. Authenticator calls verify(pinUvAuthToken, fingerprint (0x01) ||

enrollCaptureNextSample (0x02) || subCommandParams, pinUvAuthParam)

1. If the verification fails, return CTAP2_ERR_PIN_AUTH_INVALID.

5. Authenticator verifies that the pinUvAuthToken has be permission, if not, it

returns CTAP2_ERR_PIN_AUTH_INVALID.

6. If there is no space available, authenticator returns

CTAP2_ERR_FP_DATABASE_FULL.

7. If fingerprint is already present on the sensor, authenticator waits for user to

lift finger from the sensor.

8. Authenticator sends the command to the sensor to capture the sample.

9. Authenticator returns authenticatorBioEnrollment response with following

parameters:

1. lastEnrollSampleStatus (0x05): Status of enrollment of last sample.

2. remainingSamples (0x06): Number of sample remaining to complete

the enrollment.

8.7.5 Cancel current enrollment

Following operations are performed to cancel current enrollment:

1. Platform sends authenticatorBioEnrollment command with following parameters:

66 Rec. ITU-T X.1278.2 (04/2023)

1. modality (0x01): fingerprint (0x01).

2. subCommand (0x02): cancelCurrentEnrollment (0x03).

2. Authenticator on receiving such command, cancels current ongoing enrollment, if any, and

returns CTAP2_OK.

8.7.6 Enumerate enrollments

Following operations are performed to enumerate enrollments:

• Platform gets pinUvAuthToken from the authenticator with the be permission.

• Platform sends authenticatorBioEnrollment command with following parameters:

o modality (0x01): fingerprint (0x01).

o subCommand (0x02): enumerateEnrollments (0x04).

o pinUvAuthProtocol (0x04): as selected when getting the shared secret.

o pinUvAuthParam (0x05): authenticate (pinUvAuthToken, fingerprint (0x01) ||

enumerateEnrollments (0x04)).

Authenticator on receiving such request performs following procedures.

1. If pinUvAuthParam is missing from the input map, end the operation by returning

CTAP2_ERR_PUAT_REQUIRED.

2. If the authenticator does not receive mandatory parameters for this subcommand, end the

operation by returning CTAP2_ERR_MISSING_PARAMETER.

3. If pinUvAuthProtocol is not supported, return CTAP1_ERR_INVALID_PARAMETER.

4. Authenticator calls verify(pinUvAuthToken, fingerprint (0x01) || enumerateEnrollments

(0x04), pinUvAuthParam)

1. If the verification fails, return CTAP2_ERR_PIN_AUTH_INVALID.

5. Authenticator verifies that the token has be permission (see clause 8.5.5.7), if not, it

returns CTAP2_ERR_PIN_AUTH_INVALID. If there are no enrollments existing on

authenticator, it returns CTAP2_ERR_INVALID_OPTION.

6. Authenticator returns authenticatorBioEnrollment response following parameters:

1. templateInfos (0x07): Array of templateInfo's for all the enrollments available on the

authenticator.

8.7.7 Rename/Set FriendlyName

Following operations are performed to rename a fingerprint:

1. Platform gets pinUvAuthToken from the authenticator with the be permission.

2. Platform sends authenticatorBioEnrollment command with following parameters:

1. modality (0x01): fingerprint (0x01).

2. subCommand (0x02): setFriendlyName (0x05).

3. subCommandParams (0x03): Map containing following parameters

1. templateId (0x01): template identifier.

2. templateFriendlyName (0x02): Friendly name of the template. (The maximum

size SHOULD be the lessor of 64 bytes or the value of

maxTemplateFriendlyName)

4. pinUvAuthProtocol (0x04): as selected when getting the shared secret.

5. pinUvAuthParam (0x05): authenticate(pinUvAuthToken, fingerprint (0x01) ||

setFriendlyName (0x05) || subCommandParams).

3. Authenticator on receiving such request performs following procedures.

 Rec. ITU-T X.1278.2 (04/2023) 67

1. If pinUvAuthParam is missing from the input map, end the operation by returning

CTAP2_ERR_PUAT_REQUIRED.

2. If the authenticator does not receive mandatory parameters for this subcommand, end

the operation by returning CTAP2_ERR_MISSING_PARAMETER.

3. If pinUvAuthProtocol is not supported, return

CTAP1_ERR_INVALID_PARAMETER.

4. If templateFriendlyName is longer than specified by maxTemplateFriendlyName,

return an error e.g., CTAP1_ERR_INVALID_LENGTH.

5. Authenticator calls verify(pinUvAuthToken, fingerprint (0x01) || setFriendlyName

(0x05) || subCommandParams, pinUvAuthParam)

1. If the verification fails, return CTAP2_ERR_PIN_AUTH_INVALID.

6. Authenticator verifies that the token has be permission, if not, it returns

CTAP2_ERR_PIN_AUTH_INVALID.

7. If there are no enrollments existing on authenticator for the passed templateId, it

returns CTAP2_ERR_INVALID_OPTION.

8. If there is an existing enrollment with that identifier, rename its friendly name and

return CTAP2_OK.

8.7.8 Remove enrollment

Following operations are performed to remove a fingerprint:

1. Platform gets pinUvAuthToken from the authenticator with the be permission.

2. Platform sends authenticatorBioEnrollment command with following parameters:

1. modality (0x01): fingerprint (0x01).

2. subCommand (0x02): removeEnrollment (0x06).

3. subCommandParams (0x03): Map containing following parameters

1. templateId (0x01): template identifier.

4. pinUvAuthProtocol (0x04): as selected when getting the shared secret.

5. pinUvAuthParam (0x05): authenticate(pinUvAuthToken, fingerprint (0x01) ||

removeEnrollment (0x06) || subCommandParams).

3. Authenticator on receiving such request performs following procedures.

1. If pinUvAuthParam is missing from the input map, end the operation by returning

CTAP2_ERR_PUAT_REQUIRED.

2. If the authenticator does not receive mandatory parameters for this subcommand, end

the operation by returning CTAP2_ERR_MISSING_PARAMETER.

3. If pinUvAuthProtocol is not supported, return

CTAP1_ERR_INVALID_PARAMETER.

4. Authenticator calls verify(pinUvAuthToken, fingerprint (0x01) || removeEnrollment

(0x06) || subCommandParams, pinUvAuthParam)

1. If the verification fails, return CTAP2_ERR_PIN_AUTH_INVALID.

5. Authenticator verifies that the token has be permission, if not, it returns

CTAP2_ERR_PIN_AUTH_INVALID.

68 Rec. ITU-T X.1278.2 (04/2023)

6. If there are no enrollments existing on authenticator for passed templateId, it returns

CTAP2_ERR_INVALID_OPTION.

7. If there is an existing enrollment with passed in templateInfo, delete that enrollment

and return CTAP2_OK.

 Rec. ITU-T X.1278.2 (04/2023) 69

Figure 2 – User verification modality – Fingerprint

70 Rec. ITU-T X.1278.2 (04/2023)

8.8 authenticatorCredentialManagement (0x0A)

This command is used by the platform to manage discoverable credentials on the authenticator.

NOTE – Support for this command is mandatory in some cases. See clause  11, Mandatory features.

It takes the following input parameters:

Parameter name Data type Definition

subCommand (0x01) Unsigned

Integer

subCommand currently being requested

subCommandParams

(0x02)

CBOR Map Map of subCommands parameters.

pinUvAuthProtocol

(0x03)

Unsigned

Integer

PIN/UV protocol version chosen by the platform.

pinUvAuthParam (0x04) Byte String First 16 bytes of HMAC-SHA-256 of contents using

pinUvAuthToken.

The list of sub commands for credential management is:

subCommand name subCommand number

getCredsMetadata 0x01

enumerateRPsBegin 0x02

enumerateRPsGetNextRP 0x03

enumerateCredentialsBegin 0x04

enumerateCredentialsGetNextCredential 0x05

deleteCredential 0x06

updateUserInformation 0x07

subCommandParams Fields:

Field name Data type Definition

rpIDHash (0x01) Byte String RP ID SHA-256 hash

credentialID (0x02) PublicKeyCredentialDescriptor Credential Identifier

user (0x03) PublicKeyCredentialUserEntity User Entity

On success, authenticator returns the following structure in its response:

Parameter name Data type Definition

existingResidentCredentialsCount (0x01) Unsigned Integer Number of existing

discoverable credentials

present on the authenticator.

maxPossibleRemainingResidentCredentials

Count (0x02)

Unsigned Integer Number of maximum

possible remaining

discoverable credentials

which can be created on the

authenticator.

rp (0x03) PublicKeyCredentialRpEnti

ty

RP Information

 Rec. ITU-T X.1278.2 (04/2023) 71

Parameter name Data type Definition

rpIDHash (0x04) Byte String RP ID SHA-256 hash

totalRPs (0x05) Unsigned Integer total number of RPs present

on the authenticator

user (0x06) PublicKeyCredentialUserEn

tity

User Information

credentialID (0x07) PublicKeyCredentialDescri

ptor

PublicKeyCredentialDescri

ptor

publicKey (0x08) COSE_Key Public key of the credential.

totalCredentials (0x09) Unsigned Integer Total number of credentials

present on the authenticator

for the RP in question

credProtect (0x0A) Unsigned Integer Credential protection

policy.

largeBlobKey (0x0B) Byte string Large blob encryption key.

Here are some example scenarios where credential management might be used:

1. The platform may want to do actual credential management, e.g., list, update, or delete

credentials. In this case, a permissions RP ID is not associated with the pinUvAuthToken and

all credentials can be enumerated and retrieved.

2. The platform may need to fetch the public key of a credential for use in some protocols like

SSH. When making the authenticatorGetAssertion request, a permissions RP ID is present

(because it is required for the ga permission) but now the cm permission will only allow you

to retrieve credentials related to that authenticatorGetAssertion request. This works because

you do not need access to all credentials, just the ones relevant for the request's associated

RP ID.

3. The platform may want to garbage collect large-blobs because it finds that there is insufficient

space to store a desired blob. Since it's possible that a credential has been deleted without

also deleting its large blob, the platform may be able to free up enough space with garbage

collection. In this case, additional user interaction may be needed because a permissions RP

ID needs to be associated with the pinUvAuthToken for the ga or mc permission to be

obtained, but a full enumeration needs the cm permission without any RP ID limitation. Thus

the user may need to perform user verification a second time if garbage collection of just the

single RP ID is insufficient.

8.8.1 Feature detection

The credMgmt option ID in the authenticatorGetInfo response defines feature support detection for

this feature.

8.8.2 Getting credentials metadata

Following operations are performed to get credentials metadata information:

• Platform gets pinUvAuthToken from the authenticator with the cm permission, and MUST

NOT include a permissions RP ID parameter.

• Platform sends authenticatorCredentialManagement command with following parameters:

o subCommand (0x01): getCredsMetadata (0x01).

o pinUvAuthProtocol (0x03): as selected when getting the shared secret.

o pinUvAuthParam (0x04): authenticate(pinUvAuthToken, getCredsMetadata (0x01)).

72 Rec. ITU-T X.1278.2 (04/2023)

• Authenticator on receiving such request performs following procedures.

o If pinUvAuthParam is missing from the input map, end the operation by returning

CTAP2_ERR_PUAT_REQUIRED.

o If the authenticator does not receive mandatory parameters for this subcommand, end

the operation by returning CTAP2_ERR_MISSING_PARAMETER.

o If pinUvAuthProtocol is not supported, return

CTAP1_ERR_INVALID_PARAMETER.

o Authenticator calls verify(pinUvAuthToken, getCredsMetadata (0x01),

pinUvAuthParam)

o If pinUvAuthParam verification fails, authenticator returns

CTAP2_ERR_PIN_AUTH_INVALID error.

o The authenticator verifies that the pinUvAuthToken has the cm permission and no

associated permissions RP ID. If not, return CTAP2_ERR_PIN_AUTH_INVALID.

o Authenticator returns authenticatorCredentialManagement response with following

parameters:

▪ existingResidentCredentialsCount (0x01): total number of discoverable

credentials existing on the authenticator.

▪ maxPossibleRemainingResidentCredentialsCount (0x02): maximum number

of possible remaining discoverable credentials that can be created on the

authenticator. Note that this number is an estimate as actual space consumed

to create a credential depends on various conditions such as which algorithm

is picked, user entity information, etc.

8.8.3 Enumerating RPs

The following operations are performed to enumerate RPs present on the authenticator:

• Platform gets pinUvAuthToken from the authenticator with the cm permission, and MUST

NOT include a permissions RP ID parameter.

• Platform sends authenticatorCredentialManagement command with following parameters:

o subCommand (0x01): enumerateRPsBegin (0x02).

o pinUvAuthProtocol (0x03): as selected when getting the shared secret.

o pinUvAuthParam (0x04): authenticate(pinUvAuthToken, enumerateRPsBegin

(0x02)).

• Authenticator on receiving such request performs following procedures.

o If pinUvAuthParam is missing from the input map, end the operation by returning

CTAP2_ERR_PUAT_REQUIRED.

o If the authenticator does not receive mandatory parameters for this subcommand, end

the operation by returning CTAP2_ERR_MISSING_PARAMETER.

o If pinUvAuthProtocol is not supported, return

CTAP1_ERR_INVALID_PARAMETER.

o Authenticator calls verify(pinUvAuthToken, enumerateRPsBegin (0x02),

pinUvAuthParam).

o If pinUvAuthParam verification fails, authenticator returns

CTAP2_ERR_PIN_AUTH_INVALID error.

 Rec. ITU-T X.1278.2 (04/2023) 73

o The authenticator verifies that the pinUvAuthToken has the cm permission and no

associated permissions RP ID. If not, return CTAP2_ERR_PIN_AUTH_INVALID.

o If no discoverable credentials exist on this authenticator, return

CTAP2_ERR_NO_CREDENTIALS.

o Authenticator returns an authenticatorCredentialManagement response with following

parameters:

▪ rp (0x03): PublicKeyCredentialRpEntity, where the id field SHOULD be

included and other fields MAY be included. (See clause  8.8.7, Truncation of

relying party identifiers about possible truncation of the id field and

[WebAuthN] about other fields.)

▪ rpIDHash (0x04): RP ID SHA-256 hash.

▪ totalRPs (0x05): Total number of RPs present on the authenticator.

• Platform on receiving more than 1 totalRPs, performs following procedure for (totalRPs – 1)

number of times:

o Platform sends authenticatorCredentialManagement command with following

parameters:

▪ subCommand (0x01): enumerateRPsGetNextRP (0x03).

NOTE – This is a stateful command and the specified implementation accommodations apply to it.

o Authenticator on receiving such enumerateCredentialsGetNext subCommand returns

authenticatorCredentialManagement response with following parameters:

▪ rp (0x03): PublicKeyCredentialRpEntity

▪ rpIDHash (0x04): RP ID SHA-256 hash.

8.8.4 Enumerating credentials for an RP

Following operations are performed to enumerate credentials for an RP:

• Platform gets pinUvAuthToken from the authenticator with the cm permission.

• Platform sends authenticatorCredentialManagement command with following parameters:

o subCommand (0x01): enumerateCredentialsBegin (0x04).

o subCommandParams (0x02): Map containing following parameters

▪ rpIDHash (0x01): RP ID SHA-256 hash.

o pinUvAuthProtocol (0x03): as selected when getting the shared secret.

o pinUvAuthParam (0x04): authenticate(pinUvAuthToken, enumerateCredentialsBegin

(0x04) || subCommandParams).

• Authenticator on receiving such request performs following procedures.

o If pinUvAuthParam is missing from the input map, end the operation by returning

CTAP2_ERR_PUAT_REQUIRED.

o If the authenticator does not receive mandatory parameters for this subcommand, end

the operation by returning CTAP2_ERR_MISSING_PARAMETER.

o If pinUvAuthProtocol is not supported, return

CTAP1_ERR_INVALID_PARAMETER.

o Authenticator calls verify(pinUvAuthToken, enumerateCredentialsBegin (0x04) ||

subCommandParams, pinUvAuthParam)

74 Rec. ITU-T X.1278.2 (04/2023)

o If pinUvAuthParam verification fails, authenticator returns

CTAP2_ERR_PIN_AUTH_INVALID error.

o The authenticator verifies that the pinUvAuthToken has the cm permission and that

the pinUvAuthToken does not have an permissions RP ID associated or that the

pinUvAuthToken permissions RP ID matches the RP ID of this request. If not, return

CTAP2_ERR_PIN_AUTH_INVALID.

o If no discoverable credentials for this RP ID hash exist on this authenticator, return

CTAP2_ERR_NO_CREDENTIALS.

o Authenticator returns authenticatorCredentialManagement response with following

parameters:

▪ user (0x06): PublicKeyCredentialUserEntity

▪ credentialID (0x07): PublicKeyCredentialDescriptor

▪ publicKey (0x08): public key of the credential in COSE_Key format

▪ totalCredentials (0x09): total number of credentials for this RP

▪ credProtect (0x0A): credential protection policy

▪ largeBlobKey (0x0B): the contents, if any, of the stored largeBlobKey.

• Platform on receiving more than 1 totalCredentials, performs following procedure for

(totalCredentials – 1) number of times:

o Platform sends authenticatorCredentialManagement command with following

parameters:

▪ subCommand (0x01): enumerateCredentialsGetNextCredential (0x05).

NOTE 1 – This is a stateful command and the specified implementation accommodations apply to it.

o Authenticator on receiving such enumerateCredentialsGetNext subCommand returns

with following parameters:

▪ user (0x06): PublicKeyCredentialUserEntity

▪ credentialID (0x07): PublicKeyCredentialDescriptor

▪ publicKey (0x08): public key of the credential in COSE_Key format

▪ credProtect (0x0A): credential protection policy

▪ largeBlobKey (0x0B): the contents, if any, of the stored largeBlobKey.

NOTE 2 – when enumerating credentials, platforms SHOULD take the opportunity to perform large-blob

garbage collection, if applicable.

8.8.5 DeleteCredential

Following operations are performed to delete a credential:

• Platform gets pinUvAuthToken from the authenticator with the cm permission.

• Platform sends authenticatorCredentialManagement command with following parameters:

o subCommand (0x01): deleteCredential (0x06).

o subCommandParams (0x02): Map containing following parameters

▪ credentialId (0x02): PublicKeyCredentialDescriptor of the credential to be

deleted.

o pinUvAuthProtocol (0x03): as selected when getting the shared secret.

 Rec. ITU-T X.1278.2 (04/2023) 75

o pinUvAuthParam (0x04): authenticate(pinUvAuthToken, deleteCredential (0x06) ||

subCommandParams).

• Authenticator on receiving such request performs following procedures.

o If pinUvAuthParam is missing from the input map, end the operation by returning

CTAP2_ERR_PUAT_REQUIRED.

o If the authenticator does not receive mandatory parameters for this subcommand, end

the operation by returning CTAP2_ERR_MISSING_PARAMETER.

o If pinUvAuthProtocol is not supported, return

CTAP1_ERR_INVALID_PARAMETER.

o Authenticator calls verify(pinUvAuthToken, deleteCredential (0x06) ||

subCommandParams, pinUvAuthParam)

o If pinUvAuthParam verification fails, authenticator returns

CTAP2_ERR_PIN_AUTH_INVALID error.

o The authenticator verifies that the pinUvAuthToken has the cm permission and that

the pinUvAuthToken does not have a permissions RP ID associated or that the

pinUvAuthToken permissions RP ID matches the RP ID of the credential. If not, return

CTAP2_ERR_PIN_AUTH_INVALID.

o If there are not credential existing matching credentialDescriptor, return

CTAP2_ERR_NO_CREDENTIALS.

o Delete the credential and return CTAP2_OK.

NOTE – When deleting a credential, platforms SHOULD also delete any associated large blobs.

8.8.6 Updating user information

Following operations are performed to update user information associated to a credential:

• Platform gets pinUvAuthToken from the authenticator with the cm permission.

• Platform sends authenticatorCredentialManagement command with following parameters:

o subCommand (0x01): updateUserInformation (0x07).

o subCommandParams (0x02): Map containing the parameters that need to be updated.

▪ credentialId (0x02): PublicKeyCredentialDescriptor of the credential to be

updated.

▪ user (0x03): a PublicKeyCredentialUserEntity with the updated information.

o pinUvAuthProtocol (0x03): as selected when getting the shared secret.

o pinUvAuthParam (0x04): authenticate(pinUvAuthToken, updateUserInformation

(0x07) || subCommandParams).

• Authenticator on receiving such request performs following procedures.

o If pinUvAuthParam is missing from the input map, end the operation by returning

CTAP2_ERR_PUAT_REQUIRED.

o If the authenticator does not receive mandatory parameters for this subcommand, end

the operation by returning CTAP2_ERR_MISSING_PARAMETER.

o If pinUvAuthProtocol is not supported, return

CTAP1_ERR_INVALID_PARAMETER.

76 Rec. ITU-T X.1278.2 (04/2023)

o Authenticator calls verify(pinUvAuthToken, updateUserInformation (0x07) ||

subCommandParams, pinUvAuthParam)

o If pinUvAuthParam verification fails, authenticator returns

CTAP2_ERR_PIN_AUTH_INVALID error.

o The authenticator verifies that the pinUvAuthToken has the cm permission and that

the pinUvAuthToken does not have a permissions RP ID associated or that the

pinUvAuthToken permissions RP ID matches the RP ID of the credential. If not, return

CTAP2_ERR_PIN_AUTH_INVALID.

o The authenticator searches for an existing credential matching credentialId.

o If no matching credential is found, return CTAP2_ERR_NO_CREDENTIALS.

o If the authenticator does not have enough internal storage to update the matching

credential, return CTAP2_ERR_KEY_STORE_FULL.

o If the supplied user parameter's id field is not the same as the matching credential's id

field then return CTAP1_ERR_INVALID_PARAMETER.

o Replace the matching credential's PublicKeyCredentialUserEntity's name,

displayName with the passed-in user details. If a field is not present in the passed user

details, or it is present and empty, remove it from the matching credential's

PublicKeyCredentialUserEntity.

o Return CTAP2_OK.

8.8.7 Truncation of relying party identifiers

An authenticator MAY store relying party identifiers in order to implement

authenticatorCredentialManagement. As there is no bound on their length, authenticators MAY

truncate them using a procedure that produces the same results as the code included below. If

authenticators store relying party identifiers at all, they MUST store at least 32 bytes. Truncation of

relying party identifiers only applies to returning a PublicKeyCredentialRpEntity structure in the

context of this command. i.e., authenticators MUST NOT use truncated relying party identifiers for

comparisons at any time, including in the context of this command.

#define MAX_STORED_RPID_LENGTH 32 /* MUST be >= 32 */

void maybe_truncate_rpid(uint8_t stored_rpid[MAX_STORED_RPID_LENGTH],

 size_t *stored_len, const uint8_t *rpid,

 size_t rpid_len) {

 if (rpid_len <= MAX_STORED_RPID_LENGTH) {

 memcpy(stored_rpid, rpid, rpid_len);

 *stored_len = rpid_len;

 return;

 }

 size_t used = 0;

 const uint8_t *colon_position = memchr(rpid, ':', rpid_len);

 if (colon_position != NULL) {

 Rec. ITU-T X.1278.2 (04/2023) 77

 const size_t protocol_len = colon_position – rpid + 1;

 const size_t to_copy = protocol_len <= MAX_STORED_RPID_LENGTH

 ? protocol_len

 : MAX_STORED_RPID_LENGTH;

 memcpy(stored_rpid, rpid, to_copy);

 used += to_copy;

 }

 if (MAX_STORED_RPID_LENGTH – used < 3) {

 *stored_len = used;

 return;

 }

 // U+2026, horizontal ellipsis.

 stored_rpid[used++] = 0xe2;

 stored_rpid[used++] = 0x80;

 stored_rpid[used++] = 0xa6;

 const size_t to_copy = MAX_STORED_RPID_LENGTH – used;

 memcpy(&stored_rpid[used], rpid + rpid_len – to_copy, to_copy);

 assert(used + to_copy == MAX_STORED_RPID_LENGTH);

 *stored_len = MAX_STORED_RPID_LENGTH;

}

For illustrative purposes, here are some examples of the truncation in effect:

Input RP ID Stored RP ID Comment

example.com example.com No truncation applied

myfidousingwebsite.hostingprovider.net …ngwebsite.hostingprovider.net Truncation applied on

the left

mygreatsite.hostingprovider.info mygreatsite.hostingprovider.info No truncation applied to

strings of length 32; any

sentinel values (e.g.,

NUL bytes in C) are

internal to the

authenticator

implementation and do

not count towards the

protocol defined length

78 Rec. ITU-T X.1278.2 (04/2023)

Input RP ID Stored RP ID Comment

otherprotocol://myfidousingwebsite.hosting

provider.net

otherprotocol:…ingprovider.net Protocol strings are

preserved if possible

veryexcessivelylargeprotocolname://exampl

e.com

veryexcessivelylargeprotocolna

me

Protocol strings may

consume the entire

space

8.9 authenticatorSelection (0x0B)

This command allows the platform to let a user select a certain authenticator by asking for user

presence.

The command has no input parameters.

When the authenticatorSelection command is received, the authenticator will ask for user presence:

• If User Presence is received, the authenticator will return CTAP2_OK.

• If User Presence is explicitly denied by the user, the authenticator will return

CTAP2_ERR_OPERATION_DENIED. The platform SHOULD NOT repeat the command

for this authenticator.

• If a user action timeout occurs, the authenticator will return

CTAP2_ERR_USER_ACTION_TIMEOUT. The platform MAY repeat the command for

this authenticator.

If an authenticator is selected, the platform SHOULD send a cancel to all other authenticators.

8.10 authenticatorLargeBlobs (0x0C)

The credBlob extension allows for a small amount of additional, secret information to be stored with

a credential. In contrast, this command allows a platform to store a larger amount of information

associated with a credential, protected by a key that is then stored and accessed using the

largeBlobKey extension. The opaque large-blob data that is stored for a credential is a byte string

with RP-specific structure. This is only applicable to discoverable credentials so that garbage

collection is possible.

This command allows at least 1024 bytes of large blob data to be stored on CTAP2 authenticators.

For the purposes of this command, this data is serialized as a CBOR-encoded array (called the large-

blob array) of large-blob maps, concatenated with 16 following bytes. Those final 16 bytes are the

truncated SHA-256 hash of the preceding bytes. This concatenation is referred to as the serialized

large-blob array.

The initial serialized large-blob array is the value of the serialized large-blob array on a fresh

authenticator, as well as immediately after a reset. It is the byte string

h'8076be8b528d0075f7aae98d6fa57a6d3c', which is an empty CBOR array (80) followed by

LEFT(SHA-256(h'80'), 16).

NOTE – The minimum length of a serialized large-blob array is 17 bytes. Omitting 16 bytes for the trailing

SHA-256 hash, this leaves just one byte. This is the size of an empty CBOR array.

8.10.1 Feature detection

The largeBlobs option ID in the authenticatorGetInfo response defines feature support detection for

this feature.

8.10.2 Reading and writing serialized data

The command takes the following input parameters:

 Rec. ITU-T X.1278.2 (04/2023) 79

Parameter name Data

type

Required? Notes

get (0x01) Unsigned

integer

Optional The number of bytes requested to read. MUST NOT be

present if set is present.

set (0x02) Byte

String

Optional A fragment to write. MUST NOT be present if get is

present.

offset (0x03) Unsigned

integer

Required The byte offset at which to read/write.

length (0x04) Unsigned

integer

Optional The total length of a write operation. Present if, and only

if, set is present and offset is zero.

pinUvAuthParam

(0x05)

Byte

String

Optional authenticate(pinUvAuthToken, 32×0xff || h'0c00' ||

uint32LittleEndian(offset) || SHA-256(contents of set byte

string, i.e., not including an outer CBOR tag with major

type two))

pinUvAuthProtocol

(0x06)

Unsigned

integer

Optional PIN/UV protocol version chosen by the platform.

A per-authenticator constant, maxFragmentLength, is here defined as the value of maxMsgSize (from

the authenticatorGetInfo response) minus 64. The value 64 is a comfortable over-estimate of the

encoding overhead of the messages defined in this clause such that a byte string of length

maxFragmentLength can be transferred without exceeding the maximum message size of the

authenticator. If no maxMsgSize is given in the authenticatorGetInfo response) then it defaults to

1024, leaving maxFragmentLength to default to 960.

In addition to persistently storing the serialized large-blob array, authenticators implementing this

command are required to maintain two unsigned integers in volatile memory named

expectedNextOffset and expectedLength, both initially zero. This makes this command a stateful

command and the specified implementation accommodations apply to it.

An authenticator performs the following actions upon receipt of this command:

• If offset is not present in the input map, return CTAP1_ERR_INVALID_PARAMETER.

• If neither get nor set are present in the input map, return

CTAP1_ERR_INVALID_PARAMETER.

• If both get and set are present in the input map, return

CTAP1_ERR_INVALID_PARAMETER.

• If get is present in the input map:

o If length is present, return CTAP1_ERR_INVALID_PARAMETER.

o If either of pinUvAuthParam or pinUvAuthProtocol are present, return

CTAP1_ERR_INVALID_PARAMETER.

o If the value of get is greater than maxFragmentLength, return

CTAP1_ERR_INVALID_LENGTH.

o If the value of offset is greater than the length of the stored serialized large-blob

array, return CTAP1_ERR_INVALID_PARAMETER.

o Return a CBOR map, as defined below, where the value of config is a substring of the

stored serialized large-blob array. The substring SHOULD start at the offset given in

offset and contain the number of bytes specified as get's value. If too few bytes

exist at that offset, return the maximum number available. Note that if offset is equal

80 Rec. ITU-T X.1278.2 (04/2023)

to the length of the serialized large-blob array then this will result in a zero-length

substring.

• Else (implying that set is present in the input map):

o If the length of the value of set is greater than maxFragmentLength, return

CTAP1_ERR_INVALID_LENGTH. (The "value of set" means the contents of the

byte string corresponding to the key set (0x02), not including the outer CBOR tag

with major type two.)

o If the value of offset is zero:

▪ If length is not present, return CTAP1_ERR_INVALID_PARAMETER.

▪ If the value of length is greater than 1024 bytes and exceeds the capacity of

the device, return CTAP2_ERR_LARGE_BLOB_STORAGE_FULL.

(Authenticators MUST be capable of storing at least 1024 bytes.)

▪ If the value of length is less than 17, return

CTAP1_ERR_INVALID_PARAMETER. (See note above about minimum

lengths.)

▪ Set expectedLength to the value of length.

▪ Set expectedNextOffset to zero.

o Else (i.e., the value of offset is not zero):

▪ If length is present, return CTAP1_ERR_INVALID_PARAMETER.

o If the value of offset is not equal to expectedNextOffset, return

CTAP1_ERR_INVALID_SEQ.

o If the authenticator is protected by some form of user verification or the alwaysUv

option ID is present and true:

▪ If pinUvAuthParam is absent from the input map, then end the operation by

returning CTAP2_ERR_PUAT_REQUIRED.

▪ If pinUvAuthProtocol is absent from the input map, then end the operation

by returning CTAP2_ERR_MISSING_PARAMETER.

▪ If pinUvAuthProtocol is not supported, return

CTAP1_ERR_INVALID_PARAMETER.

▪ The authenticator calls verify(pinUvAuthToken, 32×0xff || h'0c00' ||

uint32LittleEndian(offset) || SHA-256(contents of set byte string,

i.e., not including an outer CBOR tag with major type two),

pinUvAuthParam).

▪ If the verification fails, return CTAP2_ERR_PIN_AUTH_INVALID.

▪ Check if the pinUvAuthToken has the lbw permission, if not, return

CTAP2_ERR_PIN_AUTH_INVALID.

o If the sum of offset and the length of the value of set is greater than the value of

expectedLength, return CTAP1_ERR_INVALID_PARAMETER.

o If the value of offset is zero, prepare a buffer to receive a new serialized large-blob

array.

o Append the value of set to the buffer containing the pending serialized large-blob

array.

 Rec. ITU-T X.1278.2 (04/2023) 81

o Update expectedNextOffset to be the new length of the pending serialized large-

blob array.

o If the length of the pending serialized large-blob array is equal to expectedLength:

▪ Verify that the final 16 bytes in the buffer are the truncated SHA-256 hash of

the preceding bytes. If the hash does not match, return

CTAP2_ERR_INTEGRITY_FAILURE.

▪ Commit the contents of the buffer as the new serialized large-blob array for

this authenticator.

▪ Return CTAP2_OK and an empty response.

o Else:

▪ More data is needed to complete the pending serialized large-blob array.

▪ Return CTAP2_OK and an empty response. Await further writes.

NOTE 1 – User verification is only checked above if user verification is configured on a device or the

authenticator always requires some form of user verification feature is enabled. This implies that a serialized

large-blob array can be written without user verification if user verification is not configured.

NOTE 2 – To read (i.e., "get") per-credential large-blob data given a credential ID, the platform must first use

an authenticatorGetAssertion operation to obtain the associated largeBlobKey in order to be able to decrypt

the large-blob data (if any). Thus the confidentiality of any large-blob data associated with the credential is

dependent upon the credential's protection policy. This means that even though a platform may obtain the

large-blob array at will, it will be unable to obtain large-blob plaintexts if it cannot successfully perform

authenticatorGetAssertion operations using the associated credential(s), e.g., without obtaining user

verification. Also, the "trial decryption" approach employed for obtaining plaintext means that large-blobs do

not disclose a priori the existence of credentials having a credProtect level 3 userVerificationRequired

policy.

The response to a get request, referenced above, takes the following form:

Parameter

name

Data

type

Required? Notes

config (0x01) Byte

String

Required Contains the requested substring of the serialized large-blob

array.

In order to read a serialized large-blob array, a platform is expected to first issue a request where

offset is zero and get equals the value of maxFragmentLength, which is maxMsgSize − 64 bytes, as

defined above. If the length of the response is equal to the value of get then more data may be

available and the platform SHOULD repeatedly issue requests, each time updating offset to equal

the amount of data received so far. It stops once a short (or empty) fragment is returned. Once

complete, the platform MUST confirm that the embedded SHA-256 hash is correct, based on the

definition above. If not, the configuration is corrupt and the platform MUST discard it and act as if

the initial serialized large-blob array was received.

In order to write a serialized large-blob array, a platform is expected to first issue a request where

offset is zero, length is the full length of the data to be written, and set contains a prefix of the data

to be written, truncated at maxFragmentLength bytes, if length is greater than maxFragmentLength.

If truncation is needed then one or more further requests are needed to complete the transfer, with

offset updated each time to contain the amount of data written so far and set containing consecutive

substrings of the data. The authenticator will implicitly know when the transfer is complete because

of the length given in the first request.

The algorithm to be performed by the authenticator given above assumes that the authenticator

double-buffers the serialized large-blob array. (i.e., it writes proposed updates into a separate buffer

82 Rec. ITU-T X.1278.2 (04/2023)

and only overwrites the effective config once validation has completed.) A compliant authenticator

MAY be implemented using only a single buffer as follows: when appending to the buffer, use

expectedLength to buffer the final 16 bytes of the serialized large-blob array in volatile storage.

Once the transfer is complete, perform validation and only write the final 16 bytes to persistent storage

if successful. This prevents the SHA-256 checksum of an invalid serialized large-blob array from

being persisted.

NOTE 3 – Even with double-buffering, the copy from the temporary buffer might be interrupted, resulting in

a "torn write". This will be detected by the platform when reading because the checksum would not match, but

results in an unusable config. Thus double-buffering minimises the chance of corruption, but does not always

eliminate it.

Despite best efforts, torn writes, platform errors, and storage corruption may result in a situation

where an authenticator finds itself having stored an invalid serialized large-blob array (i.e., the

SHA-256 hash does not match). In this case, the authenticator MAY reset the stored value with the

initial serialized large-blob array.

An authenticator MUST NOT act on the contents of the serialized large-blob array except for

checking the trailing hash: it is purely for platforms to adjust their behaviour in response to.

Authenticators MUST set the serialized large-blob array to the initial serialized large-blob array byte

string when reset.

Platforms MUST ensure that the large-blob array (i.e., without the trailing 16 bytes) is a CBOR array

where all entries conform to the large-blob map structure defined below. The maps and array MUST

be encoded using the canonical rules. Platforms MUST NOT attempt to write a serialized large-blob

array that exceeds the maxSerializedLargeBlobArray reported by the authenticator in the

authenticatorGetInfo response. Platforms SHOULD take care to preserve existing entries in a large-

blob array where space permits. For example, platforms should read, and then insert values into, an

existing large-blob array as opposed to blindly writing a fresh array.

8.10.3 Large, per-credential blobs

The elements of the large-blob array MUST conform to the following large-blob map structure.

Conformance, in this context, means that a map MUST include all required elements, MAY include

optional elements, and MAY include unknown elements. The values of all documented elements

present MUST match the specified type and MUST comply with any additional restrictions

documented for them.

Element

name

Data type Required? Notes

ciphertext

(0x01)

Byte String Required AEAD_AES_256_GCM ciphertext, implicitly including the

AEAD "authentication tag" at the end.

nonce

(0x02)

Byte String Required AEAD_AES_256_GCM nonce. MUST be exactly 12 bytes

long.

origSize

(0x03)

Unsigned

Integer

Required Contains the length, in bytes, of the uncompressed data.

The ciphertext member contains the output of encrypting the opaque large-blob data with the

AEAD_AES_256_GCM algorithm from [IETF RFC 5116]. The inputs to the AEAD are:

• Nonce: the 12-byte value from nonce.

• Plaintext: the compressed opaque large-blob data.

• Associated data: The value 0x626c6f62 ("blob") || uint64LittleEndian(origSize).

• Key: the 32-byte value stored using the largeBlobKey extension.

 Rec. ITU-T X.1278.2 (04/2023) 83

8.10.4 Reading per-credential large-blob data

The platform SHOULD perform the following steps in order to read the opaque large-blob data for a

given credential. The platform must know the credential ID of the intended credential a priori, which

it might have been given, or might have learnt from performing an authenticatorGetAssertion

operation without an allowList parameter.

• If the authenticator does not support the largeBlobKey extension, as defined in that section,

return an error.

• Perform an authenticatorGetAssertion operation with "largeBlobKey": true in the

extensions map in order to fetch the largeBlobKey for the credential. (This step may be

skipped if the pertinent output is already known.)

• If largeBlobKey is not included in the authenticatorGetAssertion response structure (i.e., not

in the extensions field of the authenticator data) then return that no large blob exists.

• Let key be the value of largeBlobKey in the assertion result. If it is not 32 bytes long, return

an error.

• Fetch the large-blob array. If this fails, return an error.

• For each element in that array:

○ If the element is not a map conforming to the large-blob map structure defined above,

skip this array element.

○ Perform an AEAD_AES_256_GCM authenticated decryption of ciphertext using key,

nonce, and the associated data specified above. If the decryption fails, skip this array

element.

○ Decompress the resulting plaintext with DEFLATE [IETF RFC 1951]. If decompression

fails, return an error.

○ If the length of the decompression result is not equal to origSize, return an error.

○ Return the decompression result as the opaque large-blob data for the credential.

• Return that no large blob exists.

NOTE – DEFLATE has a maximum compression ratio of over 1000:1, thus the result of decompressing a

small amount of data can be extremely large which might cause excessive memory use. Platforms SHOULD

limit the maximum permitted value of origSize and that maximum SHOULD be at least 1MiB.

8.10.5 Writing per-credential large-blob data for a new credential

The platform SHOULD perform the following steps in order to write the opaque large-blob data for

a new credential.

• If the authenticator does not support the largeBlobKey extension, as defined in that section,

return an error.

• If the authenticatorMakeCredential operation for the new credential does not map rk to true

in the options map, return an error. (Large blobs are only applicable for discoverable

credentials.)

• Perform the authenticatorMakeCredential operation for the new credential. In the extensions

input additionally map largeBlobKey to true.

• Let key be the largeBlobKey returned in the authenticatorMakeCredential response structure.

• Let origData equal the opaque large-blob data.

• Let origSize be the length, in bytes, of origData.

• Let plaintext equal origData after compression with DEFLATE [IETF RFC 1951].

• Let nonce be a fresh, random, 12-byte value.

84 Rec. ITU-T X.1278.2 (04/2023)

• Let ciphertext be the AEAD_AES_256_GCM authenticated encryption of plaintext using

key, nonce, and the associated data as specified above.

• Fetch the large-blob array. If this fails, return an error.

• Append an element to the array, following the structure above, containing nonce, origSize,

and ciphertext.

• Perform the actions for writing the new large-blob array.

8.10.6 Updating per-credential large-blob data

Unlike the underlying largeBlobKey data, the opaque large-blob data for a credential may be updated

or deleted. Given a credential, the platform SHOULD perform the following steps in order to update

or delete it:

• If the authenticator does not support the largeBlobKey extension, as defined in that section,

return an error.

• Perform an authenticatorGetAssertion operation with "largeBlobKey": true in the

extensions map in order to fetch the largeBlobKey for the credential. (This step may be

skipped if the pertinent output is already known.)

• If largeBlobKey is not included in the authenticatorGetAssertion response structure (i.e., not

in the extensions field of the authenticator data) then return that no large blob exists.

• Let key be the value of largeBlobKey in the authenticatorGetAssertion response structure.

If it is not 32 bytes long, return an error.

• Fetch the large-blob array. If this fails, return an error.

• For each element in that array:

○ If the element is not a map conforming to the large-blob map structure defined above,

skip this array element.

○ Perform an AEAD_AES_256_GCM authenticated decryption of ciphertext using key,

nonce, and the associated data specified above. If the decryption fails, skip this array

element.

○ If the platform wishes to delete the opaque large-blob data:

▪ Erase the current array element.

○ Else (i.e., the platform wishes to update the opaque large-blob data):

▪ Let origData equal the new opaque large-blob data.

▪ Let origSize be the length, in bytes, of origData.

▪ Let plaintext equal origData after compression with DEFLATE [IETF RFC 1951].

▪ Let nonce be a fresh, random, 12-byte value.

▪ Let ciphertext be the AEAD_AES_256_GCM authenticated encryption of

plaintext using key, nonce, and the associated data as specified above.

▪ Replace the current array element with a map, following the structure above,

containing nonce, origSize, and ciphertext.

○ Perform the actions for writing the new large-blob array.

○ Return success.

• Return an error.

8.10.7 Garbage collection of large-blob data

Large blobs may remain even when the linked credential has been erased. This can occur when a

platform that does not support large blobs deletes a credential, or when a credential is implicitly

 Rec. ITU-T X.1278.2 (04/2023) 85

deleted because a new credential with the same user ID and RP ID is created. Thus platform MAY

perform a garbage collection at will and SHOULD perform a garbage collection when a large-blob

cannot be stored because of lack of space, or when using credential management to enumerate

credentials for other reasons.

Performing a garbage collection involves the following steps:

• If credMgmt is not present in the options field of the authenticatorGetInfo response, garbage

collection is not possible.

• Use the authenticatorCredentialManagement command to enumerate all RPs with

discoverable credentials, and then to enumerate all credentials for each of them.

• Collect the set of largeBlobKey values returned, ignoring any that are not 32 bytes long.

• Fetch the large-blob array. If this fails, return an error.

• For each element in that array:

○ If the element is not a map conforming to the large-blob map structure defined above,

skip this array element. (The large-blob map is permitted to include extra elements.)

○ Perform an AEAD_AES_256_GCM authenticated decryption of ciphertext using

nonce, the associated data specified above, and each of the largeBlobKey values in turn

as the key. If the decryption fails in every case, erase this array element.

• If any array elements were erased then perform the actions for writing the updated large-blob

array.

8.11 authenticatorConfig (0x0D)

NOTE 1 – Platforms MUST NOT invoke this command unless the authnrCfg option ID is present and true in

the response to an authenticatorGetInfo command.

This command is used to configure various authenticator features through the use of its

subcommands.

It takes the following input map containing its input parameters:

Parameter name Data type Required? Notes

subCommand (0x01) Unsigned

Integer

Required subCommand currently being requested

subCommandParams

(0x02)

CBOR Map Optional Map of subCommands parameters.

pinUvAuthProtocol

(0x03)

Unsigned

Integer

Optional PIN/UV protocol version chosen by the platform.

pinUvAuthParam

(0x04)

Byte String Optional First 16 bytes of HMAC-SHA-256 of contents

using pinUvAuthToken.

86 Rec. ITU-T X.1278.2 (04/2023)

The currently defined authenticatorConfig subcommands are:

subCommand name subCommand number

enableEnterpriseAttestation 0x01

toggleAlwaysUv 0x02

setMinPINLength 0x03

vendorPrototype 0xFF

This authenticatorConfig command allows the platform to invoke various simple configuration

operations on an authenticator. Parameters may be passed into subcommands, and only status codes

are returned (i.e., no response map is defined). Typically, the platform may subsequently request and

examine an authenticatorGetInfo response, per directions given for each subcommand, in order to

ascertain results of having invoked the subcommand.

Authenticators MAY implement none, some, or all currently defined authenticatorConfig

subcommands.

NOTE 2 – The vendorPrototype subCommand is reserved for vendor-specific authenticator configuration and

experimentation. Platforms are not expected to generally utilize this subCommand.

To invoke authenticatorConfig the platform performs the following actions:

• The platform sends the authenticatorConfig command with the following parameters:

○ subCommand (0x01): The subcommand selected by the platform from the currently

defined authenticatorConfig subcommands.

○ subCommandParams (0x02): Map containing subcommand parameters, if the selected

subcommand takes parameters.

○ pinUvAuthProtocol (0x03): as selected when obtaining the shared secret.

○ pinUvAuthParam (0x04): the result of calling authenticate(pinUvAuthToken, 32×0xff

|| 0x0d || uint8(subCommand) || subCommandParams).

The authenticator performs the following actions upon receipt of this command:

• If subCommand is not present in the input map, return

CTAP2_ERR_MISSING_PARAMETER.

• If the authenticator does not support the subcommand being invoked, per subCommand's

value, return CTAP1_ERR_INVALID_PARAMETER.

• If the following statements are all true:

○ subCommand value is toggleAlwaysUv (0x02).

○ The authenticator is not protected by some form of user verification.

○ The alwaysUv option ID is present and true.

then go to Step 5.

NOTE 3 – This allows for initial configuration of authenticators that have the Always UV feature enabled by

default.

• If the authenticator is protected by some form of user verification or the alwaysUv option ID

is present and true:

○ If pinUvAuthParam is absent from the input map, then end the operation by returning

CTAP2_ERR_PUAT_REQUIRED.

○ If pinUvAuthProtocol is absent from the input map, then end the operation by returning

CTAP2_ERR_MISSING_PARAMETER.

 Rec. ITU-T X.1278.2 (04/2023) 87

○ If pinUvAuthProtocol is not supported, return

CTAP1_ERR_INVALID_PARAMETER.

○ Call verify(pinUvAuthToken, 32×0xff || 0x0d || uint8(subCommand) ||

subCommandParams, pinUvAuthParam).

▪ If the verification fails, return CTAP2_ERR_PIN_AUTH_INVALID.

○ Check whether the pinUvAuthToken has the acfg permission. If not, return

CTAP2_ERR_PIN_AUTH_INVALID.

• Invoke subCommand (see below subclauses for each defined subcommand), passing it the

subCommandParams map.

• Return the resulting status code as produced by subCommand, as defined in each

subcommand subclause below.

NOTE 4 – User verification is only checked above if user verification is configured on a device. This implies

that authenticatorConfig can be invoked without user verification if user verification is not configured, and the

Always UV feature is disabled. This allows organisations to configure authenticators suitably for their

environment before distributing them to users. See also authenticatorLargeBlobs.

8.11.1 Enable enterprise attestation

This enableEnterpriseAttestation subcommand is only implemented if the enterprise attestation

feature is supported. This subcommand does not take any parameters: subCommandParams is

ignored.

This subcommand performs the following steps:

• If the enterprise attestation feature is disabled, then re-enable the enterprise attestation feature

and return CTAP2_OK.

NOTE – Upon re-enabling the enterprise attestation feature, the authenticator will return an ep option id with

the value of true in the authenticatorGetInfo command response upon receipt of subsequent

authenticatorGetInfo commands.

• Else (implying the enterprise attestation feature is enabled) take no action and return

CTAP2_OK.

8.11.2 Toggle always require user verification

This toggleAlwaysUv subcommand is only implemented if the Always Require User Verification

feature is supported. This subcommand does not take any parameters: subCommandParams is

ignored.

This subcommand performs the following steps:

1. If the alwaysUv feature is disabled:

1. If the makeCredUvNotRqd option ID is present and true, then disable the

makeCredUvNotRqd feature and set the makeCredUvNotRqd option ID to false or

absent.

2. Enable the alwaysUv feature and return CTAP2_OK.

NOTE 1 – Upon enabling the Always Require User Verification feature, the authenticator will return an

alwaysUv option ID with the value of true in the authenticatorGetInfo command response upon receipt of

subsequent authenticatorGetInfo commands.

2. Else (implying the alwaysUv feature is enabled)

1. If disabling the feature is supported:

1. Set the makeCredUvNotRqd option ID to its default.

2. Disable the alwaysUv feature and return CTAP2_OK.

2. Else return CTAP2_ERR_OPERATION_DENIED.

88 Rec. ITU-T X.1278.2 (04/2023)

NOTE 2 – Authenticators SHOULD support users disabling the Always Require User Verification feature

unless required not to by specific external certifications such as [CMVP].

8.11.3 Vendor prototype command

This subCommand allows vendors to test authenticator configuration features.

This vendorPrototype subcommand is only implemented if the vendorPrototypeConfigCommands

member in the authenticatorGetInfo response is present.

Vendors SHOULD place implemented vendorCommandId values in the

vendorPrototypeConfigCommands array.

subCommandParams Fields:

Field name Data type Required? Definition

vendorCommandId

(0x01)

Unsigned

Integer

Required Vendor-assigned command ID

NOTE – If, and only if, this vendorCommandId (0x01)

appears in this subCommandParams map and has a non-

empty value, then other fields MAY also appear in the

map, the map keys and associated values of which are

vendor-defined.

This subCommand MUST include a subCommandParams map that MUST contain

vendorCommandId as a member. The vendor randomly selects a 64-bit Unsigned Integer value to use

for the value of vendorCommandId, e.g., by using a cryptographic random number generator. An

example of such a vendorCommandId value is (in hex): 0x4e5a15aa89d2b8b6. This approach avoids

collisions amongst different vendors' vendorCommandIds. Thus there is no need for a registry of

vendorCommandId values. One way to easily generate such values is by using the commonly

available openssl tool.

This subCommand performs the following steps:

• If the vendorCommandId value is unknown:

○ return CTAP2_ERR_INVALID_SUBCOMMAND

• Else: (implying the vendorCommandId value is known)

○ Extract any additional members form the subCommandParams map.

○ Perform Vendor Command specific processing and return any status code it generates.

Success MUST be indicated by returning CTAP2_OK.

NOTE – Vendors MUST NOT count on obscurity of the vendorCommandId value as any sort of security.

8.11.4 Setting a minimum PIN length

This setMinPINLength subcommand is only implemented if the setMinPINLength option ID is

present.

This command sets the minimum PIN length in Unicode code points to be enforced by the

authenticator while changing/setting up a ClientPIN.

NOTE 1 – This is not applicable for any other type of PIN functionality the authenticator may have.

subCommandParams members defined for this subcommand:

Parameter name Data type Required? Definition

newMinPINLength

(0x01)

Unsigned

Integer

Optional Minimum PIN length in code points

 Rec. ITU-T X.1278.2 (04/2023) 89

Parameter name Data type Required? Definition

minPinLengthRPIDs

(0x02)

Array of

strings

Optional RP IDs which are allowed to get this

information via the minPinLength extension.

This parameter MUST NOT be used unless the

minPinLength extension is supported.

forceChangePin (0x03) Boolean Optional The authenticator returns

CTAP2_ERR_PIN_POLICY_VIOLATION

until changePIN is successful.

1. Platform sends the following subCommandParams (0x03) map containing following

parameters:

1. newMinPINLength (0x01) (Optional): Minimum PIN length in code points

2. minPinLengthRPIDs (0x02) (Optional): List of RP IDs allowed to get the current

newMinPINLength via minPinLength extension.

3. forceChangePin (0x03) (Optional): If true a PIN change is required after this command.

2. Authenticator performs following operations upon receiving the request:

1. If newMinPINLength is absent, then let newMinPINLength be present with the value of

current minimum PIN length.

2. If minPinLengthRPIDs is present and the authenticator does not support the

minPinLength extension, return CTAP1_ERR_INVALID_PARAMETER.

3. If newMinPINLength is less than the current minimum PIN length, return

CTAP2_ERR_PIN_POLICY_VIOLATION.

NOTE 2 – Minimum PIN lengths may only be increased; they cannot be made shorter.

NOTE 3 – The authenticator must be reset to return the current minimum PIN length to the pre-configured

minimum PIN length.

4. If the value of forceChangePin is true, then:

1. If the value of clientPIN is false, then return CTAP2_ERR_PIN_NOT_SET.

2. Let the value of the forcePINChange authenticatorGetInfo response member be

true.

NOTE 4 – This will force the user to change their PIN upon the next use of the authenticator, if a PIN is set.

5. If the value of PINCodePointLength is less than newMinPINLength and the value of

clientPIN is true then let the value of the forcePINChange member of the

authenticatorGetInfo response be true.

6. Authenticator stores newMinPINLength as minPINLength.

7. If minPinLengthRPIDs is present and contains at least one string, then:

1. If the authenticator does not have a pre-configured list of RP IDs authorized to

receive the current minimum PIN length value, the authenticator stores the

minPinLengthRPIDs parameter's list as the entire list of RP IDs authorized to receive

the current minimum PIN length value.

2. Otherwise, if the authenticator has a pre-configured list of RP IDs authorized to

receive the current minimum PIN length value, it adds the minPinLengthRPIDs

parameter's list to the immutable pre-configured list. Any previously added RP IDs

are overwritten.

NOTE 5 – How the authenticator "adds" the minPinLengthRPIDs parameter's list to the pre-configured list is

an implementation detail.

90 Rec. ITU-T X.1278.2 (04/2023)

3. If the authenticator cannot store or add the minPinLengthRPIDs, it returns

CTAP2_ERR_KEY_STORE_FULL.

8. Authenticator returns CTAP2_OK.

8.12 Prototype authenticatorBioEnrollment (0x40) (For backwards compatibility with

"FIDO_2_1_PRE")

This superseded command is OPTIONAL and ONLY provided for backwards compatibility with

platforms that implemented "FIDO_2_1_PRE" functionality, and have not been updated to

"FIDO_2_1". CTAP2.1 platforms MUST NOT use this command if bioEnroll option ID is present in

the authenticatorGetInfo response.

If a CTAP2.1 authenticator implements this prototype (0x40) command:

1. The authenticator MUST also implement the authenticatorBioEnrollment (0x09) commands.

2. The authenticator MUST provide the bioEnroll option ID in the authenticatorGetInfo

response for feature detection of the CTAP2.1 feature.

3. The authenticator MUST utilize the appropriate PIN protocol's verify() function to validate

the pinUvAuthParam (referred to as pinAuth in the Bio Enrollment Prototype specification),

and MUST return CTAP2_ERR_PIN_AUTH_INVALID if verify() returns error.

The feature detection logic for the Bio Enrollment Prototype vendor specific feature is:

1. "FIDO_2_1_PRE" is present in the authenticatorGetInfo response versions member.

2. The userVerificationMgmtPreview option ID in the authenticatorGetInfo response is present

and true.

This preview command does not require permissions, thus it is compatible with a pinUvAuthToken

generated by the getPinToken command. CTAP 2.1 platforms MUST use the newer

authenticatorBioEnrollment (0x09) command if the authenticator supports it.

8.13 Prototype authenticatorCredentialManagement (0x41) (For backwards compatibility

with "FIDO_2_1_PRE")

This superseded command is OPTIONAL and ONLY provided for backwards compatibility with

platforms that implemented "FIDO_2_1_PRE" functionality, and have not been updated to

"FIDO_2_1". CTAP2.1 platforms MUST NOT use this command if credMgmt option ID is present

in the authenticatorGetInfo response.

If a CTAP2.1 authenticator implements this prototype (0x41) command:

1. The authenticator MUST also implement the authenticatorCredentialManagement (0x0A)

commands.

2. The authenticator MUST provide the credMgmt option ID in the authenticatorGetInfo

response for feature detection of the CTAP2.1 feature.

3. The authenticator MUST utilize the appropriate PIN protocol's verify() function to validate

the pinUvAuthParam (referred to as pinAuth in the Credential Management Prototype

specification), and MUST return CTAP2_ERR_PIN_AUTH_INVALID if verify() returns

error.

The feature detection logic for the Credential Management Prototype vendor specific feature is:

1. "FIDO_2_1_PRE" is present in the authenticatorGetInfo response versions member.

2. The credentialMgmtPreview option ID in the authenticatorGetInfo response is present and

true.

 Rec. ITU-T X.1278.2 (04/2023) 91

This preview command does not require permissions, thus it is compatible with a pinUvAuthToken

generated by the getPinToken command. CTAP 2.1 platforms MUST use the newer

authenticatorCredentialManagement (0x0A) command if the authenticator supports it.

9 Feature-specific descriptions and actions

This clause provides detailed descriptions of specific features along with normative feature-specific

platform (and possibly authenticator) actions whose specification is not appropriate to include in other

parts of this specification.

9.1 Enterprise attestation

An enterprise is some form of organization, often a business entity. An enterprise context is in effect

when a device, e.g., a computer, an authenticator, etc., is controlled by an enterprise.

An enterprise attestation is an attestation that may include uniquely identifying information. This is

intended for controlled deployments within an enterprise where the organization wishes to tie

registrations to specific authenticators.

The expectation is that enterprises will work directly with their authenticator vendor(s) in order to

source their enterprise attestation capable authenticators.

An enterprise attestation capable authenticator MAY be configured to support either or both:

• Vendor-facilitated enterprise attestation:

In this case, an enterprise attestation capable authenticator, on which enterprise attestation is enabled,

upon receiving the enterpriseAttestation parameter with a value of 1 (or 2, see Note below) on a

authenticatorMakeCredential command, will provide enterprise attestation to a non-updateable pre-

configured RP ID list, as identified by the enterprise and provided to the authenticator vendor, which

is "burned into" the authenticator by the vendor.

If enterprise attestation is requested for any RP ID other than the pre-configured RP ID(s), the

attestation returned along with the new credential is a regular privacy-preserving attestation, i.e., NOT

an enterprise attestation.

• Platform-managed enterprise attestation:

In this case, an enterprise attestation capable authenticator on which enterprise attestation is enabled,

upon receiving the enterpriseAttestation parameter with a value of 2 on a

authenticatorMakeCredential command, will return an enterprise attestation. The platform is

enterprise-managed and has already performed the necessary vetting of the RP ID.

NOTE – Authenticators wishing to support only vendor-facilitated enterprise attestation MAY treat

enterpriseAttestation = 2 the same as enterpriseAttestation = 1.

9.1.1 Feature detection

The ep option ID in the authenticatorGetInfo response defines feature support detection for this

feature.

9.1.2 Platform Actions

A platform wishing to obtain an enterprise attestation, e.g., when running in an enterprise context,

SHOULD invoke the authenticatorMakeCredential operation in the following manner:

1. Invoke the authenticatorGetInfo command and examine the returned response structure for

the ep Option ID. If ep is not present or present and set to false, the platform SHOULD either

terminate these steps or invoke the authenticatorMakeCredential command without the

enterpriseAttestation parameter, and skip the following steps.

92 Rec. ITU-T X.1278.2 (04/2023)

2. Invoke the authenticatorMakeCredential command and pass the enterpriseAttestation

parameter with a value of either 1 or 2.

3. If the platform is operating in a non-enterprise context, it SHOULD display an explicit

warning to the user, including the RP ID, notifying the user that they are being uniquely

identified to this relying party.

9.1.3 Authenticator Actions

If an enterprise attestation capable authenticator receives an authenticatorReset command, it MUST

disable the enterprise attestation feature. The enterprise attestation feature may be re-enabled by

invoking the authenticatorConfig command's enable-enterprise-attestation subcommand.

9.2 Always require user verification

This feature allows a user to protect the credentials on their authenticator with some form of user

verification independent of the relying party requesting some form of user verification in its higher-

level API request, e.g., via [WebAuthN]. Platform authenticators and other authenticators with the

alwaysUv feature enabled will always perform user verification and set the "uv" bit to true in the

response, e.g., even if the relying party sets user verification to Discouraged in a [WebAuthN] request.

Some external certification programs such as [CMVP] for [b-FIPS140-3] prohibit the authenticator

performing signing operations without authentication.

NOTE – Platform authenticators typically provide users and platforms this sort of behaviour via private API.

9.2.1 Feature detection

The alwaysUv option ID in the authenticatorGetInfo response defines feature support detection for

this feature.

9.2.2 Platform actions

1. If the feature is supported and enabled: (alwaysUv is present and true)

1. The platform SHOULD treat all relying party requests (e.g., those being made by a

relying party via [WebAuthN] or a platform API) as requiring user verification.

2. If the authenticator is not protected by some form of user verification, the platforms

SHOULD help users enroll a clientPin and or a built-in user verification method, if either

or both are supported.

2. Platforms may enable or disable this feature by invoking the authenticatorConfig command's

toggleAlwaysUv subcommand.

9.2.3 Authenticator actions

1. If the feature is supported and enabled: (alwaysUv is present and true)

1. The authenticator MUST require some form of user verification for the

authenticatorMakeCredential and authenticatorGetAssertion commands.

2. Authenticators supporting CTAP1/U2F MUST protect the credentials with built-in user

verification methods, or disable CTAP1/U2F when the alwaysUv option ID is present

and true.

3. If the "uv" bit set in the response is false some authenticators conforming to

[b-FIPS140-3] or other security requirements may return a syntactically-correct but

invalid signature (i.e., one that no credential public key minted by this authenticator, now

or ever, will match) rather than a signature from the private key from the selected

credential. An example for a ECDSA signature is to return a fixed value of (1, 1). Thus

the returned signature will not be verifiable, which is up to the relying party to handle.

This approach avoids returning an error to the platform because doing that would

interfere with some platforms' approach of "pre-flighting" the allowList or excludeList.

 Rec. ITU-T X.1278.2 (04/2023) 93

2. If the feature is supported and disabled: (alwaysUv is present and false)

1. The authenticator does not always require user verification for its operations. It is

dependent on the parameters passed to individual operations as specified herein.

3. After an authenticator reset:

1. Set the makeCredUvNotRqd option ID to its default pre-configured state.

2. Set the alwaysUv option ID to its default pre-configured state (may be either true or

false).

9.2.4 Disabling CTAP1/U2F

Authenticators MUST disable CTAP1/U2F when the alwaysUv option ID is present and true in the

authenticatorGetInfo response, unless the CTAP1/U2F authenticator is protected by a built-in user

verification method. When CTAP1/U2F is disabled:

1. The authenticator MUST NOT return "U2F_V2" in the versions array.

2. The U2F_REGISTER and U2F_AUTHENTICATE commands MUST immediately fail and

return SW_COMMAND_NOT_ALLOWED.

9.3 Authenticator certifications

The certifications member provides a hint to the platform with additional information about

certifications that the authenticator has received. Certification programs may revoke certification of

specific devices at any time. Relying partys are responsible for validating attestations and AAGUID

via appropriate methods. Platforms may alter their behaviour based on these hints such as selecting a

PIN protocol or credProtect level.

9.3.1 Authenticator actions

An authenticator's supported certifications MAY be returned in the certification member of an

authenticatorGetInfo response.

All certifications are in the form key-value pairs with string IDs and integer values. The following

table lists all defined certification types as of CTAP version "FIDO_2_1":

certification

ID

Definition

FIPS-CMVP-2 The [FIPS140-2] Cryptographic-Module-Validation-Program overall certification

level. This is an integer from 1 to 4.

FIPS-CMVP-2 The [b-FIPS140-3] [b-CMVP] or [b-ISO/IEC 19790] and [b-ISO/IEC 24759]

overall certification level. This is an integer from 1 to 4.

FIPS-CMVP-

2-PHY

The [FIPS140-2] Cryptographic-Module-Validation-Program physical

certification level. This is an integer from 1 to 4.

FIPS-CMVP-

3-PHY

The [b-FIPS140-3] [b-CMVP] or [b-ISO/IEC 19790] and [b-ISO/IEC 24759]

physical certification level. This is an integer from 1 to 4.

CC-EAL Common Criteria Evaluation Assurance Level. This is an integer from 1 to 7. The

intermediate-plus levels are not represented.

94 Rec. ITU-T X.1278.2 (04/2023)

certification

ID

Definition

FIDO FIDO Alliance certification level. This is an integer from 1 to 6. The numbered

levels are mapped to the odd numbers, with the plus levels mapped to the even

numbers e.g., level 3+ is mapped to 6.

9.4 Set minimum PIN length

This feature allows a relying party (e.g., an enterprise) to enforce a minimum pin length policy for

authenticators registering credentials by examining the return value of the Minimum PIN Length

Extension (minPinLength). The authenticatorConfig command's setMinPINLength subCommand

allows the platform to set the minimum pin length policy for authenticator, force a change of PIN

before allowing User Verification, and setting the list of minPinLengthRPIDs that allow the specified

RP ID to receive the extension response.

If this feature is supported, the authenticator MUST implement:

1. The ClientPIN feature.

2. The setMinPINLength subCommand of the authenticatorConfig command.

3. The Minimum PIN Length Extension (minPinLength).

9.4.1 Feature detection

The setMinPinLength option ID in the authenticatorGetInfo response defines feature support

detection for this feature.

9.4.2 Platform actions

NOTE – Because ClientPIN must be implemented for this set minimum PIN length feature to be implemented,

basic minimum PIN length enforcement already occurs. This feature is only about providing for the minimum

PIN length to be altered from its pre-configured value.

1. If the forcePINChange member of the authenticatorGetInfo response is present and true:

1. The platform should guide the user to change the PIN before invoking the getPinToken

or getPinUvAuthTokenUsingPinWithPermissions subcommands.

2. Platforms may perform the following actions by invoking the authenticatorConfig

command's setMinPINLength subcommand:

1. Increase the minimum pin length for clientPin.

2. Set the minPinLengthRPIDs parameter's list to allow Relying Parties receiving the

minPinLength extension.

3. Set the authenticator to require a PIN change before allowing clientPin based

authentication.

9.4.3 Authenticator actions

1. If this feature is enabled the extension identifier minpinlength in the extensions member of

the authenticatorGetInfo response MUST be present.

2. After an authenticator reset:

1. Set the minPINLength member of the authenticatorGetInfo response to its default pre-

configured minimum PIN length.

2. Set the minPinLengthRPIDs parameter's list to the immutable pre-configured list, if any.

Any previously added RP IDs are removed.

3. Set the forcePINChange member of the authenticatorGetInfo response to false.

 Rec. ITU-T X.1278.2 (04/2023) 95

10 Message encoding

Many transports (e.g., Bluetooth smart) are bandwidth-constrained, and serialization formats such as

JSON are too heavy-weight for such environments. For this reason, all encoding is done using the

concise binary encoding CBOR [IETF RFC 8949].

To reduce the complexity of the messages and the resources required to parse and validate them, all

messages MUST use the CTAP2 canonical CBOR encoding form as specified below, which differs

from the canonicalization suggested in clause 3.9 of [IETF RFC 8949]. All encoders MUST serialize

CBOR in the CTAP2 canonical CBOR encoding form without duplicate map keys. All decoders

SHOULD reject CBOR that is not validly encoded in the CTAP2 canonical CBOR encoding form

and SHOULD reject messages with duplicate map keys.

The CTAP2 canonical CBOR encoding form uses the following rules:

• Integers MUST be encoded as small as possible.

○ 0 to 23 and −1 to −24 MUST be expressed in the same byte as the major type;

○ 24 to 255 and -25 to −256 MUST be expressed only with an additional uint8_t;

○ 256 to 65535 and −257 to −65536 MUST be expressed only with an additional uint16_t;

○ 65536 to 4294967295 and −65537 to −4294967296 MUST be expressed only with an

additional uint32_t.

• The representations of any floating-point values are not changed.

NOTE 1 – The size of a floating point value – 16-, 32-, or 64-bits – is considered part of the value for the

purpose of CTAP2, e.g., a 16-bit value of 1.5, say, has different semantic meaning than a 32-bit value of 1.5,

and both can be canonical for their own meanings.

• The expression of lengths in major types 2 through 5 MUST be as short as possible. The rules

for these lengths follow the above rule for integers.

• Indefinite-length items MUST be made into definite-length items.

• The keys in every map MUST be sorted lowest value to highest. The sorting rules are:

○ If the major types are different, the one with the lower value in numerical order sorts

earlier.

○ If two keys have different lengths, the shorter one sorts earlier.

○ If two keys have the same length, the one with the lower value in (byte-wise) lexical

order sorts earlier.

NOTE 2 – These rules are equivalent to a lexicographical comparison of the canonical encoding of keys for

major types 0-3 and 7 (integers, strings, and simple values). They differ for major types 4-6 (arrays, maps, and

tags), which CTAP2 does not use as keys in maps. These rules should be revisited if CTAP2 does start using

the complex major types as keys.

• Tags as defined in clause 2.4 in [IETF RFC 8949] MUST NOT be present.

Because some authenticators are memory constrained, the depth of nested CBOR structures used by

all message encodings is limited to at most four (4) levels of any combination of CBOR maps and/or

CBOR arrays. Authenticators MUST support at least 4 levels of CBOR nesting. Clients, platforms,

and servers MUST NOT use more than 4 levels of CBOR nesting.

Likewise, because some authenticators are memory constrained, the maximum message size

supported by an authenticator MAY be limited. By default, authenticators MUST support messages

of at least 1024 bytes. Authenticators MAY declare a different maximum message size supported

using the maxMsgSize authenticatorGetInfo result parameter. Clients, platforms, and servers MUST

NOT send messages larger than 1024 bytes unless the authenticator's maxMsgSize indicates support

for the larger message size. Authenticators MAY return the

CTAP2_ERR_REQUEST_TOO_LARGE error if size or memory constraints are exceeded.

96 Rec. ITU-T X.1278.2 (04/2023)

If map keys are present that an implementation does not understand, they MUST be ignored. Note

that this enables additional fields to be used as new features are added without breaking existing

implementations.

Messages from the host to authenticator are called "commands" and messages from authenticator to

host are called "responses". All values are big endian encoded.

Authenticators SHOULD return the CTAP2_ERR_INVALID_CBOR error if received CBOR does

not conform to the requirements above.

Several commands reference externally-defined structures such as PublicKeyCredentialRpEntity

which, for the purposes of this protocol, are encoded as CBOR. The rules and behaviours for

processing such CBOR are defined above, but such structures can also be invalid because of missing

required fields, or because values have an incorrect type. If structures in messages from the host are

missing required members, or the values of those members have the wrong type, then the

authenticator SHOULD return CTAP2_ERR_CBOR_UNEXPECTED_TYPE.

10.1 Command codes

The assigned values for vendor specific commands and their descriptions are:

Command Name Command Code Has parameters?

authenticatorVendorFirst 0x40 NA

Vendor – Bio Enrollment Prototype 0x40 yes

Vendor – Credential Management Prototype 0x41 yes

authenticatorVendorLast 0xBF NA

If an authenticator receives a command code it does not implement, it MUST return

CTAP1_ERR_INVALID_COMMAND. If the authenticator implements a command code having

subcommands, but does not implement an invoked subcommand, it MUST return

CTAP2_ERR_INVALID_SUBCOMMAND.

NOTE – Some authenticators implementing earlier versions of this specification may not behave as specified

by the prior paragraph, because this behaviour was only implied at that time.

Command codes in the range between authenticatorVendorFirst and authenticatorVendorLast

may be used for vendor-specific implementations. For example, the vendor may choose to put in

some testing commands. Note that the client will never generate these commands. All other command

codes are reserved for future use and may not be used.

Command parameters are encoded using a CBOR map (CBOR major type 5). The CBOR map MUST

be encoded using the definite length variant.

Some commands have optional parameters. Therefore, the length of the parameter map for these

commands may vary. For example, authenticatorMakeCredential may have 4, 5, 6, or 7 parameters,

while authenticatorGetAssertion may have 2, 3, 4, or 5 parameters.

All command parameters are CBOR encoded following the JSON to CBOR conversion procedures

as per the CBOR specification [IETF RFC 8949]. Specifically, parameters that are represented as

DOM objects in the Authenticator API layers (formally defined in the Web API [WebAuthN]) are

converted first to JSON and subsequently to CBOR.

10.2 Status codes

The error response values range from 0x01 – 0xff. This range is split based on error type.

Error response values in the range between CTAP2_OK and CTAP2_ERR_SPEC_LAST are

reserved for spec purposes.

 Rec. ITU-T X.1278.2 (04/2023) 97

Error response values in the range between CTAP2_ERR_VENDOR_FIRST and

CTAP2_ERR_VENDOR_LAST may be used for vendor-specific implementations. All other

response values are reserved for future use and may not be used. These vendor specific error codes

are not interoperable and the platform SHOULD treat these errors as any other unknown error codes.

Error response values in the range between CTAP2_ERR_EXTENSION_FIRST and

CTAP2_ERR_EXTENSION_LAST may be used for extension-specific implementations. These

errors need to be interoperable for vendors who decide to implement such optional extension.

Code Name Description

0x00 CTAP1_ERR_SUCCESS, CTAP2_OK Indicates successful response.

0x01 CTAP1_ERR_INVALID_COMMAND The command is not a valid CTAP

command.

0x02 CTAP1_ERR_INVALID_PARAMETER The command included an invalid

parameter.

0x03 CTAP1_ERR_INVALID_LENGTH Invalid message or item length.

0x04 CTAP1_ERR_INVALID_SEQ Invalid message sequencing.

0x05 CTAP1_ERR_TIMEOUT Message timed out.

0x06 CTAP1_ERR_CHANNEL_BUSY Channel busy. Client SHOULD retry the

request after a short delay. Note that the

client MAY abort the transaction if the

command is no longer relevant.

0x0A CTAP1_ERR_LOCK_REQUIRED Command requires channel lock.

0x0B CTAP1_ERR_INVALID_CHANNEL Command not allowed on this cid.

0x11 CTAP2_ERR_CBOR_UNEXPECTED_TYPE Invalid/unexpected CBOR error.

0x12 CTAP2_ERR_INVALID_CBOR Error when parsing CBOR.

0x14 CTAP2_ERR_MISSING_PARAMETER Missing non-optional parameter.

0x15 CTAP2_ERR_LIMIT_EXCEEDED Limit for number of items exceeded.

0x17 CTAP2_ERR_FP_DATABASE_FULL Fingerprint data base is full, e.g., during

enrollment.

0x18 CTAP2_ERR_LARGE_BLOB_STORAGE_FULL Large blob storage is full. (See

clause 8.10.3, Large, per-credential blobs.)

0x19 CTAP2_ERR_CREDENTIAL_EXCLUDED Valid credential found in the exclude list.

0x21 CTAP2_ERR_PROCESSING Processing (Lengthy operation is in

progress).

0x22 CTAP2_ERR_INVALID_CREDENTIAL Credential not valid for the authenticator.

0x23 CTAP2_ERR_USER_ACTION_PENDING Authentication is waiting for user

interaction.

0x24 CTAP2_ERR_OPERATION_PENDING Processing, lengthy operation is in progress.

0x25 CTAP2_ERR_NO_OPERATIONS No request is pending.

0x26 CTAP2_ERR_UNSUPPORTED_ALGORITHM Authenticator does not support requested

algorithm.

0x27 CTAP2_ERR_OPERATION_DENIED Not authorized for requested operation.

0x28 CTAP2_ERR_KEY_STORE_FULL Internal key storage is full.

0x2B CTAP2_ERR_UNSUPPORTED_OPTION Unsupported option.

0x2C CTAP2_ERR_INVALID_OPTION Not a valid option for current operation.

98 Rec. ITU-T X.1278.2 (04/2023)

Code Name Description

0x2D CTAP2_ERR_KEEPALIVE_CANCEL Pending keep alive was cancelled.

0x2E CTAP2_ERR_NO_CREDENTIALS No valid credentials provided.

0x2F CTAP2_ERR_USER_ACTION_TIMEOUT A user action timeout occurred.

0x30 CTAP2_ERR_NOT_ALLOWED Continuation command, such as,

authenticatorGetNextAssertion not allowed.

0x31 CTAP2_ERR_PIN_INVALID PIN Invalid.

0x32 CTAP2_ERR_PIN_BLOCKED PIN Blocked.

0x33 CTAP2_ERR_PIN_AUTH_INVALID PIN authentication,pinUvAuthParam,

verification failed.

0x34 CTAP2_ERR_PIN_AUTH_BLOCKED PIN authentication using pinUvAuthToken

blocked. Requires power cycle to reset.

0x35 CTAP2_ERR_PIN_NOT_SET No PIN has been set.

0x36 CTAP2_ERR_PUAT_REQUIRED A pinUvAuthToken is required for the

selected operation. See also the

pinUvAuthToken option ID.

0x37 CTAP2_ERR_PIN_POLICY_VIOLATION PIN policy violation. Currently only

enforces minimum length.

0x38 Reserved for Future Use Reserved for Future Use

0x39 CTAP2_ERR_REQUEST_TOO_LARGE Authenticator cannot handle this request due

to memory constraints.

0x3A CTAP2_ERR_ACTION_TIMEOUT The current operation has timed out.

0x3B CTAP2_ERR_UP_REQUIRED User presence is required for the requested

operation.

0x3C CTAP2_ERR_UV_BLOCKED built-in user verification is disabled.

0x3D CTAP2_ERR_INTEGRITY_FAILURE A checksum did not match.

0x3E CTAP2_ERR_INVALID_SUBCOMMAND The requested subcommand is either invalid

or not implemented.

0x3F CTAP2_ERR_UV_INVALID built-in user verification unsuccessful. The

platform SHOULD retry.

0x40 CTAP2_ERR_UNAUTHORIZED_PERMISSION The permissions parameter contains an

unauthorized permission.

0x7F CTAP1_ERR_OTHER Other unspecified error.

0xDF CTAP2_ERR_SPEC_LAST CTAP 2 spec last error.

0xE0 CTAP2_ERR_EXTENSION_FIRST Extension specific error.

0xEF CTAP2_ERR_EXTENSION_LAST Extension specific error.

0xF0 CTAP2_ERR_VENDOR_FIRST Vendor specific error.

0xFF CTAP2_ERR_VENDOR_LAST Vendor specific error.

10.3 Utility functions

This protocol uses the following utility functions for encoding various values in various algorithms:

uint8(x)

Returns the least-significant eight bits of x as a single byte.

uint32LittleEndian(x)

 Rec. ITU-T X.1278.2 (04/2023) 99

Returns a sequence of four bytes whose values are the least-significant eight bits of x, x >> 8, x >>

16, and x >> 24, respectively.

uint64LittleEndian(x)

Returns a sequence of eight bytes whose values are the least-significant eight bits of x, x >> 8, x >>

16, x >> 24, x >> 32, x >> 40, x >> 48, x >> 56, respectively.

11 Mandatory features

Authenticators that include FIDO_2_1 in versions:

1. MUST support the hmac-secret extension.

2. MUST include the clientPin option ID or the uv option ID (or both), with the value true, in

the authenticatorGetInfo response's options member if the rk option ID has the value true.

3. MUST either include the credMgmt option ID with the value true in the

authenticatorGetInfo response's options member, or support all the same functionality via a

built-in UI, if the rk option ID has the value true.

4. MUST support the credProtect extension if some form of user verification is supported,

unless all credentials are implicitly created at credProtect level three.

5. MUST include the pinUvAuthToken option ID with the value true in the

authenticatorGetInfo response's options member if either the clientPin or uv option IDs have

the value true.

6. MUST include an array element with the value 2 in the authenticatorGetInfo response's

pinUvAuthProtocols member (i.e., support PIN/UV auth protocol two) if it includes any

values at all.

12 Interoperating with CTAP1/U2F authenticators

This clause defines:

1. How a platform maps a subset of CTAP2 requests to CTAP1/U2F requests and, conversely,

how it maps the CTAP1/U2F responses to CTAP2 responses. (Only requests that do not

require CTAP2-only features can be so mapped.)

2. How RPs verify CTAP1/U2F-based authenticatorMakeCredential and

authenticatorGetAssertion responses.

3. How authenticators allow credentials to be exposed via both CTAP2 and CTAP1/U2F.

Platforms MAY implement support for CTAP1/U2F, but authenticators SHOULD support it. Not

supporting U2F may result in an authenticator that does not function on all websites and thus may

appear to be broken to users. Thus, authenticators that do not support CTAP1/U2F are not suitable

for sale to the general public but may be manufactured for specific cases where it is known that

CTAP1/U2F support is unnecessary.

12.1 Framing of U2F commands

The U2F protocol is based on a request-response mechanism, where a requester sends a request

message to a U2F device, which always results in a response message being sent back from the U2F

device to the requester.

The request message has to be "framed" to send to the lower layer. Taking the signature request as an

example, the "framing" is a way for the client to tell the lower transport layer that it is sending a

signature request and then send the raw message contents. The framing also specifies how the

transport will carry back the response raw message and any meta- information such as an error code

if the command failed.

100 Rec. ITU-T X.1278.2 (04/2023)

In this current version of U2F, the framing is defined based on the ISO7816-4:2005 extended

application protocol data unit (APDU) format. This is very appropriate for the USB transport since

devices are typically built around secure elements which understand this format already. This same

argument may apply for futures such as Bluetooth based devices. For other futures based on other

transports, such as a built-in u2f token on a mobile device TEE, this framing may not be appropriate,

and a different framing may need to be defined.

12.1.1 U2F Request message framing

The raw request message is framed as a command APDU:

CLA INS P1 P2 LC1 LC2 LC3

Where:

CLA: Reserved to be used by the underlying transport protocol (if applicable). The host application

SHALL set this byte to zero.

INS: U2F command code, defined in the following clauses.

P1, P2: Parameter 1 and 2, defined by each command.

LC1-LC3: Length of the request data, big-endian coded, i.e., LC1 being MSB and LC3 LSB

12.1.2 U2F Response message framing

The raw response data is framed as a response APDU:

SW1 SW2

Where:

SW1, SW2: Status word bytes 1 and 2, forming a 16-bit status word, defined below. SW1 is MSB

and SW2 LSB.

Status Codes

The following ISO7816-4 defined status words have a special meaning in U2F:

SW_NO_ERROR: The command completed successfully without error.

SW_CONDITIONS_NOT_SATISFIED: The request was rejected due to test-of-user-presence

being required.

SW_WRONG_DATA: The request was rejected due to an invalid key handle.

SW_COMMAND_NOT_ALLOWED: The command is not allowed at this time, e.g., because U2F

is disabled.

Each implementation may define any other vendor-specific status codes, providing additional

information about an error condition. Only the error codes listed above will be handled by U2F clients,

whereas others will be seen as general errors and logging of these is OPTIONAL.

12.2 Using the CTAP2 authenticatorMakeCredential Command with CTAP1/U2F

authenticators

Platform follows the following procedure (Fig: Mapping: WebAuthn authenticatorMakeCredential to

and from CTAP1/U2F Registration Messages):

1. Platform tries to get information about the authenticator by sending authenticatorGetInfo

command as specified in CTAP2 protocol overview.

1. CTAP1/U2F authenticator returns a command error or improperly formatted CBOR

response. For any failure, platform MAY fall back to CTAP1/U2F protocol.

 Rec. ITU-T X.1278.2 (04/2023) 101

2. Map CTAP2 authenticatorMakeCredential request to U2F_REGISTER request.

1. Platform verifies that CTAP2 request does not have any parameters that CTAP1/U2F

authenticators cannot fulfill.

1. All of the below conditions MUST be true for the platform to proceed to next

step. If any of the below conditions is not true, platform errors out with

CTAP2_ERR_UNSUPPORTED_OPTION.

1. pubKeyCredParams MUST use the ES256 algorithm (-7).

2. Options MUST NOT include "rk" set to true.

3. Options MUST NOT include "uv" set to true.

2. If excludeList is not empty:

1. If the excludeList is not empty, the platform MUST send signing

request with check-only control byte to the CTAP1/U2F authenticator

using each of the credential ids (key handles) in the excludeList. If

any of them does not result in an error, that means that this is a known

device. Afterwards, the platform MUST still send a dummy registration

request (with a dummy appid and invalid challenge) to CTAP1/U2F

authenticators that it believes are excluded. This makes it so the user

still needs to touch the CTAP1/U2F authenticator before the RP gets

told that the token is already registered.

2. Use clientDataHash parameter of CTAP2 request as CTAP1/U2F challenge

parameter (32 bytes).

3. Let rpIdHash be a byte string of size 32 initialized with SHA-256 hash of rp.id

parameter as CTAP1/U2F application parameter (32 bytes).

3. Send the U2F_REGISTER request to the authenticator as specified in [b-U2FRawMsgs] spec.

4. If the authenticator response message contains the status code

SW_COMMAND_NOT_ALLOWED, U2F is disabled at this time. Abandon this operation.

The platform SHOULD retry using CTAP2 if present in the versions array.

5. Map the U2F registration response message (see [b-U2FRawMsgs]) to a CTAP2

authenticatorMakeCredential response message:

1. Generate authenticatorData from the U2F registration response message (U2F Raw

Message Formats v1.2 §registration-response-message-success) received from the

authenticator:

1. Initialize attestedCredData:

1. Let credentialIdLength be a 2-byte unsigned big-endian integer

representing length of the Credential ID initialized with CTAP1/U2F

response key handle length.

2. Let credentialId be a credentialIdLength byte string initialized

with CTAP1/U2F response key handle bytes.

3. Let x9encodedUserPublicKeybe the user public key returned in the

U2F registration response message [b-U2FRawMsgs]. Let

coseEncodedCredentialPublicKey be the result of converting

x9encodedUserPublicKey's value from ANS X9.62 / Sec-1 v2

uncompressed curve point representation [b-SEC1V2] to COSE_Key

representation ([IETF RFC 8152] clause 7).

102 Rec. ITU-T X.1278.2 (04/2023)

4. Let attestedCredData be a byte string with following structure:

Length

(in bytes)

Description Value

16 The AAGUID of

the authenticator.

Initialized with all zeros.

2 Byte length L of

Credential ID

Initialized with credentialIdLength

bytes.

credentia

lIdLength
Credential ID. Initialized with credentialId bytes.

77 The credential

public key.

Initialized with
coseEncodedCredentialPublicK

ey bytes.

5. Initialize authenticatorData:

1. Let flags be a byte whose zeroth bit (bit 0, UP) is set, and

whose sixth bit (bit 6, AT) is set, and all other bits are zero (bit

zero is the least significant bit). See also Authenticator Data

section of [WebAuthN].

2. Let signCount be a 4-byte unsigned integer initialized to zero.

3. Let authenticatorData be a byte string with the following

structure:

Length

(in bytes)

Description Value

32 SHA-256 hash of the

rp.id.

Initialized with rpIdHash

bytes.

1 Flags Initialized with flags' value.

4 Signature counter

(signCount).

Initialized with signCount

bytes.

Variable

Length

Attested credential

data.

Initialized with

attestedCredData's

value.

2. Let attestationStatement be a CBOR map (see "attStmtTemplate" in Generating an

Attestation Object [WebAuthN]) with the following keys, whose values are as

follows:

1. Set "x5c" as an array of the one attestation cert extracted from CTAP1/U2F

response.

2. Set "sig" to be the "signature" bytes from the U2F registration response

message [b-U2FRawMsgs]. NOTE – An ASN.1-encoded ECDSA signature

value ranges over 8–72 bytes in length. [b-U2FRawMsgs] incorrectly states a

different length range.

3. Let attestationObject be a CBOR map (see "attObj" in Generating an Attestation

Object [WebAuthN]) with the following keys, whose values are as follows:

1. Set "authData" to authenticatorData.

2. Set "fmt" to "fido-u2f".

 Rec. ITU-T X.1278.2 (04/2023) 103

3. Set "attStmt" to attestationStatement.

6. Return attestationObject to the caller.

Sample CTAP2 authenticatorMakeCredential Request (CBOR):

{1: h'687134968222EC17202E42505F8ED2B16AE22F16BB05B88C25DB9E602645F141',

 2: {"id": "example.com",

 "name": "example.com"},

 3: {"id": "1098237235409872",

 "name": "johnpsmith@example.com",

 "icon": "https://pics.example.com/00/p/aBjjjpqPb.png",

 "displayName": "John P. Smith"},

 4: [{"type": "public-key", "alg": -7},

 {"type": "public-key", "alg": -257}]}

Sample CTAP1/U2F Request from above CTAP2 authenticatorMakeCredential request

687134968222EC17202E42505F8ED2B16AE22F16BB05B88C25DB9E602645F141 # clientDataHash

A379A6F6EEAFB9A55E378C118034E2751E682FAB9F2D30AB13D2125586CE1947 # rpIdHash

Sample CTAP1/U2F Response from the device

05 # Reserved Byte (1 Byte)

04E87625896EE4E46DC032766E8087962F36DF9DFE8B567F3763015B1990A60E # User Public Key (65

Bytes)

1427DE612D66418BDA1950581EBC5C8C1DAD710CB14C22F8C97045F4612FB20C # ...

91 # ...

40 # Key Handle Length (1 Byte)

3EBD89BF77EC509755EE9C2635EFAAAC7B2B9C5CEF1736C3717DA48534C8C6B6 # Key Handle (Key

Handle Length Bytes)

54D7FF945F50B5CC4E78055BDD396B64F78DA2C5F96200CCD415CD08FE420038 # ...

3082024A30820132A0030201020204046C8822300D06092A864886F70D01010B # X.509 Cert (Variable

length Cert)

0500302E312C302A0603550403132359756269636F2055324620526F6F742043 # ...

412053657269616C203435373230303633313020170D31343038303130303030 # ...

30305A180F32303530303930343030303030305A302C312A302806035504030C # ...

2159756269636F205532462045452053657269616C2032343931383233323437 # ...

37303059301306072A8648CE3D020106082A8648CE3D030107034200043CCAB9 # ...

2CCB97287EE8E639437E21FCD6B6F165B2D5A3F3DB131D31C16B742BB476D8D1 # ...

E99080EB546C9BBDF556E6210FD42785899E78CC589EBE310F6CDB9FF4A33B30 # ...

39302206092B0601040182C40A020415312E332E362E312E342E312E34313438 # ...

322E312E323013060B2B0601040182E51C020101040403020430300D06092A86 # ...

4886F70D01010B050003820101009F9B052248BC4CF42CC5991FCAABAC9B651B # ...

BE5BDCDC8EF0AD2C1C1FFB36D18715D42E78B249224F92C7E6E7A05C49F0E7E4 # ...

C881BF2E94F45E4A21833D7456851D0F6C145A29540C874F3092C934B43D222B # ...

8962C0F410CEF1DB75892AF116B44A96F5D35ADEA3822FC7146F6004385BCB69 # ...

B65C99E7EB6919786703C0D8CD41E8F75CCA44AA8AB725AD8E799FF3A8696A6F # ...

104 Rec. ITU-T X.1278.2 (04/2023)

1B2656E631B1E40183C08FDA53FA4A8F85A05693944AE179A1339D002D15CABD # ...

810090EC722EF5DEF9965A371D415D624B68A2707CAD97BCDD1785AF97E258F3 # ...

3DF56A031AA0356D8E8D5EBCADC74E071636C6B110ACE5CC9B90DFEACAE640FF # ...

1BB0F1FE5DB4EFF7A95F060733F5 # ...

30450220324779C68F3380288A1197B6095F7A6EB9B1B1C127F66AE12A99FE85 # Signature (variable

Length)

32EC23B9022100E39516AC4D61EE64044D50B415A6A4D4D84BA6D895CB5AB7A1 # ...

AA7D081DE341FA # ...

Sample authenticator data from CTAP1/U2F Response

A379A6F6EEAFB9A55E378C118034E2751E682FAB9F2D30AB13D2125586CE1947 # rpIdHash

41 # flags

00000000 # Sign Count

00000000000000000000000000000000 # AAGUID

0040 # Key Handle Length (1

Byte)

3EBD89BF77EC509755EE9C2635EFAAAC7B2B9C5CEF1736C3717DA48534C8C6B6 # Key Handle (Key Handle

Length Bytes)

54D7FF945F50B5CC4E78055BDD396B64F78DA2C5F96200CCD415CD08FE420038 # ...

A5010203262001215820E87625896EE4E46DC032766E8087962F36DF9DFE8B56 # Public Key

7F3763015B1990A60E1422582027DE612D66418BDA1950581EBC5C8C1DAD710C # ...

B14C22F8C97045F4612FB20C91

 # ...

Sample Mapped CTAP2 authenticatorMakeCredential response (CBOR)

{1: "fido-u2f",

 2: h'A379A6F6EEAFB9A55E378C118034E2751E682FAB9F2D30AB13D2125586CE1947

 4100403EBD89BF77EC509755

 EE9C2635EFAAAC7B2B9C5CEF1736C3717DA48534C8C6B654D7FF945F50B5CC4E

 78055BDD396B64F78DA2C5F96200CCD415CD08FE420038A50102032620012158

 20E87625896EE4E46DC032766E8087962F36DF9DFE8B567F3763015B1990A60E

 1422582027DE612D66418BDA1950581EBC5C8C1DAD710CB14C22F8C97045F461

 2FB20C91',

 3: {"sig": h'30450220324779C68F3380288A1197B6095F7A6EB9B1B1C127F66AE12A99FE85

 32EC23B9022100E39516AC4D61EE64044D50B415A6A4D4D84BA6D895CB5AB7A1

 AA7D081DE341FA',

 "x5c": [h'3082024A30820132A0030201020204046C8822300D06092A864886F70D01010B

 0500302E312C302A0603550403132359756269636F2055324620526F6F742043

 412053657269616C203435373230303633313020170D31343038303130303030

 30305A180F32303530303930343030303030305A302C312A302806035504030C

 2159756269636F205532462045452053657269616C2032343931383233323437

 37303059301306072A8648CE3D020106082A8648CE3D030107034200043CCAB9

 2CCB97287EE8E639437E21FCD6B6F165B2D5A3F3DB131D31C16B742BB476D8D1

 E99080EB546C9BBDF556E6210FD42785899E78CC589EBE310F6CDB9FF4A33B30

 39302206092B0601040182C40A020415312E332E362E312E342E312E34313438

 322E312E323013060B2B0601040182E51C020101040403020430300D06092A86

 4886F70D01010B050003820101009F9B052248BC4CF42CC5991FCAABAC9B651B

 Rec. ITU-T X.1278.2 (04/2023) 105

 BE5BDCDC8EF0AD2C1C1FFB36D18715D42E78B249224F92C7E6E7A05C49F0E7E4

 C881BF2E94F45E4A21833D7456851D0F6C145A29540C874F3092C934B43D222B

 8962C0F410CEF1DB75892AF116B44A96F5D35ADEA3822FC7146F6004385BCB69

 B65C99E7EB6919786703C0D8CD41E8F75CCA44AA8AB725AD8E799FF3A8696A6F

 1B2656E631B1E40183C08FDA53FA4A8F85A05693944AE179A1339D002D15CABD

 810090EC722EF5DEF9965A371D415D624B68A2707CAD97BCDD1785AF97E258F3

 3DF56A031AA0356D8E8D5EBCADC74E071636C6B110ACE5CC9B90DFEACAE640FF

 1BB0F1FE5DB4EFF7A95F060733F5']}}

106 Rec. ITU-T X.1278.2 (04/2023)

Figure 3 – Mapping: WebAuthn authenticatorMakeCredential to and from CTAP1/U2F

registration messages

12.3 Using the CTAP2 authenticatorGetAssertion Command with CTAP1/U2F

authenticators

Platform follows the following procedure (See Figure 3):

 Rec. ITU-T X.1278.2 (04/2023) 107

1. Platform tries to get information about the authenticator by sending

authenticatorGetInfo command as specified in CTAP2 protocol overview.

1. CTAP1/U2F authenticator returns a command error or improperly formatted CBOR

response. For any failure, platform MAY fall back to CTAP1/U2F protocol.

2. Map CTAP2 authenticatorGetAssertion request to U2F_AUTHENTICATE request:

1. Platform verifies that CTAP2 request does not have any parameters that CTAP1/U2F

authenticators cannot fulfill:

1. All of the below conditions MUST be true for the platform to proceed to next

step. If any of the below conditions is not true, platform errors out with

CTAP2_ERR_UNSUPPORTED_OPTION.

1. Options MUST NOT include "uv" set to true.

2. allowList MUST have at least one credential.

2. If allowList has more than one credential, platform has to loop over the list and send

individual different U2F_AUTHENTICATE commands to the authenticator. For

each credential in credential list, map CTAP2 authenticatorGetAssertion request

to U2F_AUTHENTICATE as below:

1. Let controlByte be a byte initialized as follows:

1. If "up" is set to false, set it to 0x08 (dont-enforce-user-presence-and-sign).

2. For USB, set it to 0x07 (check-only). This should prevent call getting

blocked on waiting for user input. If response returns success, then

call again setting the enforce-user-presence-and-sign.

3. For NFC, set it to 0x03 (enforce-user-presence-and-sign). The tap has

already provided the presence and won't block.

2. Use clientDataHash parameter of CTAP2 request as CTAP1/U2F challenge

parameter (32 bytes).

3. Let rpIdHash be a byte string of size 32 initialized with SHA-256 hash of

rp.id parameter as CTAP1/U2F application parameter (32 bytes).

4. Let credentialId is the byte string initialized with the id for this

PublicKeyCredentialDescriptor.

5. Let keyHandleLength be a byte initialized with length of credentialId byte string.

6. Let u2fAuthenticateRequest be a byte string with the following structure:

Length (in bytes) Description Value

32
Challenge
parameter

Initialized with clientDataHash
parameter bytes.

32
Application
parameter Initialized with rpIdHash bytes.

1
Key handle
length

Initialized with
keyHandleLength's value.

keyHandleLength Key handle
Initialized with credentialId
bytes.

108 Rec. ITU-T X.1278.2 (04/2023)

7. and let Control Byte be P1 of the framing.

3. Send u2fAuthenticateRequest to the authenticator.

4. If the authenticator response message contains the status code

SW_COMMAND_NOT_ALLOWED, U2F is disabled at this time. Abandon this operation.

The platform SHOULD retry using CTAP2.

5. Map the U2F authentication response message (see the "Authentication Response Message:

Success" section of [b-U2FRawMsgs]) to a CTAP2 authenticatorGetAssertion response

message:

1. Generate authenticatorData from the U2F authentication response message

received from the authenticator:

1. Copy bits 0 (the UP bit) and bit 1 from the CTAP2/U2F response user

presence byte to bits 0 and 1 of the CTAP2 flags, respectively. Set all other

bits of flags to zero. NOTE – bit zero is the least significant bit. See also

Authenticator Data section of [WebAuthN].

2. Let signCount be a 4-byte unsigned integer initialized with CTAP1/U2F

response counter field.

3. Let authenticatorData is a byte string of following structure:

Length

(in bytes)
Description Value

32 SHA-256 hash of the rp.id. Initialized with rpIdHash bytes.

1 Flags Initialized with flags' value.

4 Signature counter (signCount) Initialized with signCount bytes.

2. Let authenticatorGetAssertionResponse be a CBOR map with the following

keys whose values are as follows:

1. Set 0x01 with the credential from allowList that whose response succeeded.

2. Set 0x02 with authenticatorData bytes.

3. Set 0x03 with signature field from CTAP1/U2F authentication response

message. NOTE – An ASN.1-encoded ECDSA signature value ranges over

8–72 bytes in length. [b-U2FRawMsgs] incorrectly states a different length

range.

Sample CTAP2 authenticatorGetAssertion Request (CBOR):

{1: "example.com",

 2: h’687134968222EC17202E42505F8ED2B16AE22F16BB05B88C25DB9E602645F141',

 3: [{"type": "public-key",

 "id": h’3EBD89BF77EC509755EE9C2635EFAAAC7B2B9C5CEF1736C3717DA48534C8C6B6

 54D7FF945F50B5CC4E78055BDD396B64F78DA2C5F96200CCD415CD08FE420038'}],

 5: {"up": true}}

Sample CTAP1/U2F request from above CTAP2 authenticatorGetAssertion request

687134968222EC17202E42505F8ED2B16AE22F16BB05B88C25DB9E602645F141 # clientDataHash

A379A6F6EEAFB9A55E378C118034E2751E682FAB9F2D30AB13D2125586CE1947 # rpIdHash

40 # Key Handle Length (1

Byte)

 Rec. ITU-T X.1278.2 (04/2023) 109

3EBD89BF77EC509755EE9C2635EFAAAC7B2B9C5CEF1736C3717DA48534C8C6B6 # Key Handle (Key

Handle Length Bytes)

54D7FF945F50B5CC4E78055BDD396B64F78DA2C5F96200CCD415CD08FE420038 # ...

Sample CTAP1/U2F response from the device

01 # User Presence (1

Byte)

0000003B # Sign Count (4 Bytes)

304402207BDE0A52AC1F4C8B27E003A370CD66A4C7118DD22D5447835F45B99C # Signature (variable

Length)

68423FF702203C517B47877F85782DE10086A783D1E7DF4E3639E771F5F6AFA3 # ...

5AAD5373858E # ...

Sample authenticator data from CTAP1/U2F Response

A379A6F6EEAFB9A55E378C118034E2751E682FAB9F2D30AB13D2125586CE1947 # rpIdHash

01 # User Presence (1

Byte)

0000003B # Sign Count (4 Bytes)

Mapped CTAP2 authenticatorGetAssertion response(CBOR)

{1: {"type": "public-key",

 "id": h’3EBD89BF77EC509755EE9C2635EFAAAC7B2B9C5CEF1736C3717DA48534C8C6B6

 54D7FF945F50B5CC4E78055BDD396B64F78DA2C5F96200CCD415CD08FE420038'},

 2: h’A379A6F6EEAFB9A55E378C118034E2751E682FAB9F2D30AB13D2125586CE1947

 010000003B',

 3: h’304402207BDE0A52AC1F4C8B27E003A370CD66A4C7118DD22D5447835F45B99C

 68423FF702203C517B47877F85782DE10086A783D1E7DF4E3639E771F5F6AFA3

 5AAD5373858E'}

110 Rec. ITU-T X.1278.2 (04/2023)

Figure 4 – Mapping: WebAuthn authenticatorGetAssertion to and from CTAP1/U2F

authentication messages

12.4 Cross-version credential compatibility

If an authenticator supports both CTAP1/U2F and CTAP2 then a credential created using

CTAP1/U2F MUST be assertable over CTAP2. (Credentials created over CTAP1/U2F MUST NOT

be discoverable credentials though.) From clause  12.3, Using the CTAP2 authenticatorGetAssertion

Command with CTAP1/U2F authenticators, this means that an authenticator MUST accept, over

CTAP2, the credential ID of a credential that was created using U2F where the application parameter

at the time of creation was the SHA-256 digest of the RP ID that is given at assertion time.

13 Transport-specific bindings

13.1 Secure protocol implementation

In order to ensure that the interaction between the platform and any authenticators is secure,

authenticators SHALL:

 Rec. ITU-T X.1278.2 (04/2023) 111

• Ensure that all state (e.g., discoverable credentials, signature counters, PINs, etc.) that is

observable or alterable over CTAP interfaces is not observable or alterable over any other

interfaces on transports that work has defined.

• Ensure that all non-discoverable credentials that are created over CTAP interfaces are not

valid over any other interfaces on transports that work has has defined. (For example, if non-

discoverable credentials store state in the credential ID, protected by an authenticator-global

secret, then that secret MUST only be used for requests received over CTAP interfaces.)

NOTE – Above recommendations are also valid for future transports.

CTAP interfaces are defined as:

• USB, when using USB HID and the FIDO_USAGE_PAGE/FIDO_USAGE_CTAPHID

combination.

• NFC, when the applet is selected as specified.

○ Authenticator SHALL NOT allow CTAP applet to be implicitly selected or enabled.

▪ Recommended: Authenticator SHALL NOT have default applet selected on power

cycle. All CTAP commands SHALL be preceded by an explicit applet selection

command as described in Applet selection section.

▪ Alternative: If authenticator has a CTAP applet selected for some reason at power

cycle, it SHALL be in disabled mode and SHALL ONLY be enabled once it receives

explicit applet selection command as described in Applet selection section.

○ Authenticator SHALL disable CTAP interface when it receives applet deselect

command.

• Bluetooth low energy (BLE), when using the CTAP generic attribute profile (GATT) service.

13.2 USB human interface device (USB HID)

13.2.1 Design rationale

CTAP messages are framed for USB transport using the HID (Human Interface Device) protocol. We

henceforth refer to the protocol as CTAPHID. The CTAPHID protocol is designed with the following

design objectives in mind:

• Driver-less installation on all major host platforms

• Multi-application support with concurrent application access without the need for

serialization and centralized dispatching.

• Fixed latency response and low protocol overhead

• Scalable method for CTAPHID device discovery

Since HID data is sent as interrupt packets and multiple applications may access the HID stack at

once, a non-trivial level of complexity has to be added to handle this.

13.2.2 Protocol structure and data framing

The CTAP protocol is designed to be concurrent and state-less in such a way that each performed

function is not dependent on previous actions. However, there has to be some form of "atomicity"

that varies between the characteristics of the underlying transport protocol, which for the CTAPHID

protocol introduces the following terminology:

• Transaction

• Message

• Packet

A transaction is the highest level of aggregated functionality, which in turn consists of a request,

followed by a response message. Once a request has been initiated, the transaction has to be entirely

112 Rec. ITU-T X.1278.2 (04/2023)

completed or aborted before a second transaction can take place and a response is never sent without

a previous request. Transactions exist only at the highest CTAP protocol layer.

Request and response messages are in turn divided into individual fragments, known as packets. The

packet is the smallest form of protocol data unit, which in the case of CTAPHID are mapped into

HID reports.

13.2.3 Concurrency and channels

Additional logic and overhead is required to allow a CTAPHID device to deal with multiple "clients",

i.e., multiple applications accessing the single resource through the HID stack. Each client

communicates with a CTAPHID device through a logical channel, where each application uses a

unique 32-bit channel identifier for routing and arbitration purposes.

A channel identifier is allocated by the authenticator to ensure its system-wide uniqueness. The actual

algorithm for generation of channel identifiers is vendor specific and not defined by this specification.

Channel ID 0 is reserved and 0xffffffff is reserved for broadcast commands, i.e., at the time of

channel allocation.

13.2.4 Message and packet structure

Packets are one of two types, initialization packets and continuation packets. As the name suggests,

the first packet sent in a message is an initialization packet, which also becomes the start of a

transaction. If the entire message does not fit into one packet (including the CTAPHID protocol

overhead), one or more continuation packets have to be sent in strict ascending order to complete the

message transfer.

A message sent from a host to a device is known as a request and a message sent from a device back

to the host is known as a response. A request always triggers a response and response messages are

never sent ad-hoc, i.e., without a prior request message. However, a keep-alive message can be sent

between a request and a response message.

The request and response messages have an identical structure. A transaction is started with the

initialization packet of the request message and ends with the last packet of the response message.

The client starting a transaction may also abort it.

Packets are always fixed size (defined by the endpoint and HID report descriptors) and although all

bytes may not be needed in a particular packet, the full size always has to be sent. Unused bytes

SHOULD be set to zero.

An initialization packet is defined as

Offset Length Mnemonic Description

0 4 CID Channel identifier

4 1 CMD Command identifier (bit 7 always set)

5 1 BCNTH High part of payload length

6 1 BCNTL Low part of payload length

7 (s – 7) DATA Payload data (s is equal to the fixed packet size)

The command byte has always the highest bit set to distinguish it from a continuation packet, which

is described below.

 Rec. ITU-T X.1278.2 (04/2023) 113

A continuation packet is defined as

Offset Length Mnemonic Description

0 4 CID Channel identifier

4 1 SEQ Packet sequence 0x00..0x7f (bit 7 always cleared)

5 (s – 5) DATA Payload data (s is equal to the fixed packet size)

With this approach, a message with a payload less or equal to (s – 7) may be sent as one packet. A

larger message is then divided into one or more continuation packets, starting with sequence number

0, which then increments by one to a maximum of 127.

With a packet size of 64 bytes (max for full-speed devices), this means that the maximum message

payload length is 64 – 7 + 128 * (64 – 5) = 7609 bytes.

13.2.5 Arbitration

In order to handle multiple channels and client concurrency, the CTAPHID protocol has to maintain

certain internal states, block conflicting requests and maintain protocol integrity. The protocol relies

on each client application (channel) behaves politely, i.e., does not actively act to destroy for other

channels. With this said, a malign or malfunctioning application can cause issues for other channels.

Expected errors and potentially stalling applications should, however, be handled properly.

13.2.5.1 Transaction atomicity, idle and busy states

A transaction always consists of three stages:

1. A message is sent from the host to the device

2. The device processes the message

3. A response is sent back from the device to the host

The protocol is built on the assumption that a plurality of concurrent applications may try ad-hoc to

perform transactions at any time, with each transaction being atomic, i.e., it cannot be interrupted by

another application once started.

The application channel that manages to get through the first initialization packet when the device is

in idle state will keep the device locked for other channels until the last packet of the response message

has been received or the transaction is aborted. The device then returns to idle state, ready to perform

another transaction for the same or a different channel. Between two transactions, the device might

need to keep some state. A host application MUST assume that any other process may execute other

transactions at any time and former state will be dropped.

If an application tries to access the device from a different channel while the device is busy with a

transaction, that request will immediately fail with a busy-error message sent to the requesting

channel.

13.2.5.2 Transaction timeout

A transaction has to be completed within a specified period of time to prevent a stalling application

to cause the device to be completely locked out for access by other applications. If for example an

application sends an initialization packet that signals that continuation packets will follow and that

application crashes, the device will back out that pending channel request and return to an idle state.

13.2.5.3 Transaction abort and re-synchronization

If an application for any reason "gets lost", gets an unexpected response or error, it MAY at any time

issue an abort-and-resynchronize command. If the device detects an INIT command during a

transaction that has the same channel id as the active transaction, the transaction is aborted (if

114 Rec. ITU-T X.1278.2 (04/2023)

possible) and all buffered data flushed (if any). The device then returns to idle state to become ready

for a new transaction.

If an application wishes to abort a command after the request has been fully sent, e.g., while an

authenticator is waiting for user presence, the application MAY do this by sending a

CTAPHID_CANCEL command.

13.2.5.4 Packet sequencing

The device keeps track of packets arriving in correct and ascending order and that no expected packets

are missing. The device will continue to assemble a message until all parts of it has been received or

that the transaction times out. Spurious continuation packets appearing without a prior initialization

packet will be ignored.

13.2.6 Channel locking

In order to deal with aggregated transactions that may not be interrupted, such as tunnelling of vendor-

specific commands, a channel lock command MAY be implemented. By sending a channel lock

command, the device prevents other channels from communicating with the device until the channel

lock has timed out or been explicitly unlocked by the application.

This feature is optional and has not to be considered by general CTAP HID applications.

13.2.7 Protocol version and compatibility

The CTAPHID protocol is designed to be extensible yet maintain backwards compatibility, to the

extent it is applicable. This means that a CTAPHID host SHALL support any version of a device with

the command set available in that version.

13.2.8 HID device implementation

This description assumes knowledge of the USB and HID specifications and is intended to provide

the basics for implementing a CTAPHID device. There are several ways to implement USB devices

and reviewing these different methods is beyond the scope of this Recommendation. This

specification targets the interface part, where a device is regarded as either a single or multiple

interface (composite) device.

The description further assumes (but is not limited to) a full-speed USB device (12 Mbit/s). Although

not excluded per se, USB low-speed devices are not practical to use given the 8-byte report size

limitation together with the protocol overhead.

13.2.8.1 Interface and endpoint descriptors

The device implements two endpoints (except the control endpoint 0), one for IN and one for OUT

transfers. The packet size is vendor defined, but the reference implementation assumes a full-speed

device with two 64-byte endpoints.

Interface descriptor

Mnemonic Value Description

bNumEndpoints 2 One IN and one OUT endpoint

bInterfaceClass 0x03 HID

bInterfaceSubClass 0x00 No interface subclass

bInterfaceProtocol 0x00 No interface protocol

 Rec. ITU-T X.1278.2 (04/2023) 115

Endpoint 1 descriptor

Mnemonic Value Description

bmAttributes 0x03 Interrupt transfer

bEndpointAdress 0x01 1, OUT

bMaxPacketSize 64 64-byte packet max

bInterval 5 Poll every 5 millisecond

Endpoint 2 descriptor

Mnemonic Value Description

bmAttributes 0x03 Interrupt transfer

bEndpointAdress 0x81 1, IN

bMaxPacketSize 64 64-byte packet max

bInterval 5 Poll every 5 millisecond

The actual endpoint order, intervals, endpoint numbers and endpoint packet size may be defined

freely by the vendor and the host application is responsible for querying these values and handle these

accordingly. For the sake of clarity, the values listed above are used in the following examples.

13.2.8.2 HID report descriptor and device discovery

A HID report descriptor is required for all HID devices, even though the reports and their

interpretation (scope, range, etc.) makes very little sense from an operating system perspective. The

CTAPHID just provides two "raw" reports, which basically map directly to the IN and OUT

endpoints. However, the HID report descriptor has an important purpose in CTAPHID, as it is used

for device discovery.

For the sake of clarity, a bit of high-level C-style abstraction is provided

// HID report descriptor

const uint8_t HID_ReportDescriptor[] = {

 HID_UsagePage (FIDO_USAGE_PAGE),

 HID_Usage (FIDO_USAGE_CTAPHID),

 HID_Collection (HID_Application),

 HID_Usage (FIDO_USAGE_DATA_IN),

 HID_LogicalMin (0),

 HID_LogicalMaxS (0xff),

 HID_ReportSize (8),

 HID_ReportCount (HID_INPUT_REPORT_BYTES),

 HID_Input (HID_Data | HID_Absolute | HID_Variable),

 HID_Usage (FIDO_USAGE_DATA_OUT),

 HID_LogicalMin (0),

 HID_LogicalMaxS (0xff),

 HID_ReportSize (8),

 HID_ReportCount (HID_OUTPUT_REPORT_BYTES),

 HID_Output (HID_Data | HID_Absolute | HID_Variable),

HID_EndCollection

};

116 Rec. ITU-T X.1278.2 (04/2023)

A unique Usage Page is defined (0xF1D0) for CTAP and under this realm, a CTAPHID Usage is

defined as well (0x01). During CTAPHID device discovery, all HID devices present in the system

are examined and devices that match this usage pages and usage are then considered to be CTAPHID

devices.

The length values specified by the HID_INPUT_REPORT_BYTES and the HID_OUTPUT_REPORT_BYTES

should typically match the respective endpoint sizes defined in the endpoint descriptors.

13.2.9 CTAPHID commands

The CTAPHID protocol implements the following commands.

13.2.9.1 Mandatory commands

The following list describes the minimum set of commands required by a CTAPHID device. Optional

and vendor-specific commands may be implemented as described in the respective clauses of this

Recommendation.

13.2.9.1.1 CTAPHID_MSG (0X03)

This command sends an encapsulated CTAP1/U2F message to the device. The semantics of the data

message is defined in the U2F raw message format encoding specification.

Request

CMD CTAPHID_MSG

BCNT 1..(n + 1)

DATA U2F command byte

DATA + 1 n bytes of data

Response at success

CMD CTAPHID_MSG

BCNT 1..(n + 1)

DATA U2F status code

DATA + 1 n bytes of data

13.2.9.1.2 CTAPHID_CBOR (0X10)

This command sends an encapsulated CTAP CBOR encoded message. The semantics of the data

message is defined in the CTAP Message encoding specification. Please note that keep-alive

messages MAY be sent from the device to the client before the response message is returned.

Request

CMD CTAPHID_CBOR

BCNT 1..(n + 1)

DATA CTAP command byte

DATA + 1 n bytes of CBOR encoded data

 Rec. ITU-T X.1278.2 (04/2023) 117

Response at success

CMD CTAPHID_CBOR

BCNT 1..(n + 1)

DATA CTAP status code

DATA + 1 n bytes of CBOR encoded data

13.2.9.1.3 CTAPHID_INIT (0X06)

This command has two functions.

If sent on an allocated channel identifier (CID), it synchronizes a channel, discarding the current

transaction, buffers and state as quickly as possible. It will then be ready for a new transaction. The

device then responds with the CID of the channel it received the INIT on, using that channel.

If sent on the broadcast CID, it requests the device to allocate a unique 32-bit channel identifier (CID)

that can be used by the requesting application during its lifetime. The requesting application generates

a nonce that is used to match the response. When the response is received, the application compares

the sent nonce with the received one. After a positive match, the application stores the received

channel id and uses that for subsequent transactions.

To allocate a new channel, the requesting application SHALL use the broadcast channel

CTAPHID_BROADCAST_CID (0xFFFFFFFF). The device then responds with the newly allocated

channel in the response, using the broadcast channel.

Request

CMD CTAPHID_INIT

BCNT 8

DATA 8-byte nonce

Response at success

CMD CTAPHID_INIT

BCNT 17 (see note below)

DATA 8-byte nonce

DATA+8 4-byte channel ID

DATA+12 CTAPHID protocol version identifier

DATA+13 Major device version number

DATA+14 Minor device version number

DATA+15 Build device version number

DATA+16 Capabilities flags

The protocol version identifies the protocol version implemented by the device. This version of the

CTAPHID protocol is 2.

A CTAPHID host SHALL accept a response size that is longer than the anticipated size to allow for

future extensions of the protocol, yet maintaining backwards compatibility. Future versions will

maintain the response structure of the current version, but additional fields may be added.

The meaning and interpretation of the device version number is vendor defined.

118 Rec. ITU-T X.1278.2 (04/2023)

The capability flags value is a bitfield where the following bits values are defined. Unused values are

reserved for future use and MUST be set to zero by device vendors.

Name Value Description

CAPABILITY_WINK 0x01 If set to 1, authenticator implements CTAPHID_WINK function

CAPABILITY_CBOR 0x04 If set to 1, authenticator implements CTAPHID_CBOR function

CAPABILITY_NMSG 0x08 If set to 1, authenticator DOES NOT implement CTAPHID_MSG

function

13.2.9.1.4 CTAPHID_PING (0X01)

Sends a transaction to the device, which immediately echoes the same data back. This command is

defined to be a uniform function for debugging, latency and performance measurements.

Request

CMD CTAPHID_PING

BCNT 0..n

DATA n bytes

Response at success

CMD CTAPHID_PING

BCNT n

DATA N bytes

13.2.9.1.5 CTAPHID_CANCEL (0X11)

Cancel any outstanding requests on this CID. If there is an outstanding request that can be cancelled,

the authenticator MUST cancel it and that cancelled request will reply with the error

CTAP2_ERR_KEEPALIVE_CANCEL.

As the CTAPHID_CANCEL command is sent during an ongoing transaction, transaction semantics

do not apply. Whether a request was cancelled or not, the authenticator MUST NOT reply to the

CTAPHID_CANCEL message itself. The CTAPHID_CANCEL command MAY be sent by the

client during ongoing processing of a CTAPHID_CBOR request. The

CTAP2_ERR_KEEPALIVE_CANCEL response MUST be the response to that request, not an error

response in the HID transport.

A CTAPHID_CANCEL received while no CTAPHID_CBOR request is being processed, or on a

non-active CID SHALL be ignored by the authenticator.

CMD CTAPHID_CANCEL

BCNT 0

13.2.9.1.6 CTAPHID_ERROR (0X3F)

This command code is used in response messages only.

CMD CTAPHID_ERROR

BCNT 1

DATA Error code

 Rec. ITU-T X.1278.2 (04/2023) 119

The following error codes are defined:

ERR_INVALID_CMD 0x01 The command in the request is invalid

ERR_INVALID_PAR 0x02 The parameter(s) in the request is invalid

ERR_INVALID_LEN 0x03 The length field (BCNT) is invalid for the request

ERR_INVALID_SEQ 0x04 The sequence does not match expected value

ERR_MSG_TIMEOUT 0x05 The message has timed out

ERR_CHANNEL_BUSY 0x06 The device is busy for the requesting channel. The client

SHOULD retry the request after a short delay. Note that

the client MAY abort the transaction if the command is no

longer relevant.

ERR_LOCK_REQUIRED 0x0A Command requires channel lock

ERR_INVALID_CHANNEL 0x0B CID is not valid.

ERR_OTHER 0x7F Unspecified error

NOTE – These values are identical to the BLE transport values.

13.2.9.1.7 CTAPHID_KEEPALIVE (0X3B)

This command code is sent while processing a CTAPHID_MSG. It SHOULD be sent at least every

100ms and whenever the status changes. A KEEPALIVE sent by an authenticator does not constitute

a response and does therefore not end an ongoing transaction.

CMD CTAPHID_KEEPALIVE

BCNT 1

DATA Status code

The following status codes are defined:

STATUS_PROCESSING 1 The authenticator is still processing the current request.

STATUS_UPNEEDED 2 The authenticator is waiting for user presence.

13.2.9.2 Optional commands

The following commands are defined by this specification but are optional and does not have to be

implemented.

13.2.9.2.1 CTAPHID_WINK (0X08)

The wink command performs a vendor-defined action that provides some visual or audible

identification a particular authenticator. A typical implementation will do a short burst of flashes with

a LED or something similar. This is useful when more than one device is attached to a computer and

there is confusion which device is paired with which connection.

Request

CMD CTAPHID_WINK

BCNT 0

DATA N/A

120 Rec. ITU-T X.1278.2 (04/2023)

Response at success

CMD CTAPHID_WINK

BCNT 0

DATA N/A

13.2.9.2.2 CTAPHID_LOCK (0X04)

The lock command places an exclusive lock for one channel to communicate with the device. As long

as the lock is active, any other channel trying to send a message will fail. In order to prevent a stalling

or crashing application to lock the device indefinitely, a lock time up to 10 seconds MAY be set. An

application requiring a longer lock has to send repeating lock commands to maintain the lock.

Request

CMD CTAPHID_LOCK

BCNT 1

DATA Lock time in seconds 0..10. A value of 0 immediately releases the lock

Response at success

CMD CTAPHID_LOCK

BCNT 0

DATA N/A

13.2.9.3 Vendor specific commands

A CTAPHID MAY implement additional vendor specific commands that are not defined in this

specification, while being CTAPHID compliant. Such commands, if implemented, MUST use a

command in the range between CTAPHID_VENDOR_FIRST (0x40) and

CTAPHID_VENDOR_LAST (0x7F).

13.3 ISO7816 and Near Field Communication (NFC)

NOTE – See [b-CTAP].

13.3.1 Conformance

Please refer to [ISO/IEC 7816-4] or APDU definition.

13.3.2 Protocol

The general protocol between a client and an authenticator over ISO7816 [b-CTAP] is as follows:

1. Client sends an applet selection command

2. Authenticator replies with success if the applet is present

3. Client sends a command for an operation

4. Authenticator replies with response data or error

5. Return to 3.

Because of timeouts that may otherwise occur on some platforms, it is RECOMMENDED that the

authenticators reply to APDU commands within 800 milliseconds.

13.3.3 Applet selection

NOTE – See also clause 13.1, Secure protocol implementation.

 Rec. ITU-T X.1278.2 (04/2023) 121

A successful Select allows the client to know that the applet is present and active. A client SHALL

send a Select to the authenticator before any other command.

The CTAP2 AID consists of the following fields:

Field Value

RID 0xA000000647

PIX 0x2F0001

The command to select the applet is:

CLA INS P1 P2 Data In Le

0x00 0xA4 0x04 0x00 AID Variable

In response to the applet selection command, the authenticator replies with its version information

string in the successful response.

Clients and authenticators MAY support additional selection mechanisms. Clients MUST fall back

to the previously defined selection process if the additional selection mechanisms fail to select the

applet. Authenticators MUST at least support the previously defined selection process.

Given legacy support for CTAP1/U2F, the client MUST determine the capabilities of the device at

the selection stage.

• If the authenticator implements CTAP1/U2F, the version information SHALL be the string

"U2F_V2", or 0x5532465f5632, to maintain backwards-compatibility with CTAP1/U2F-

only clients.

• If the authenticator ONLY implements CTAP2, the device SHALL respond with

"FIDO_2_0", or 0x4649444f5f325f30.

• If the authenticator implements both CTAP1/U2F and CTAP2, the version information

SHALL be the string "U2F_V2", or 0x5532465f5632, to maintain backwards-compatibility

with CTAP1/U2F-only clients. CTAP2-aware clients MAY then issue a CTAP

authenticatorGetInfo command to determine if the device supports CTAP2 or not.

13.3.4 Applet deselection

NOTE – See also clause 13.1, Secure protocol implementation

• Authenticator SHALL deselect or disable applet upon receiving below NFCCTAP_CONTROL

END CTAP_MSG command.

○ Authenticators SHALL ignore subsequent CTAP commands until it receives the next

explicit Applet selection command.

○ NFCCTAP_CONTROL END CTAP_MSG command is as follows:

CLA INS P1 P2

0x80 0x12 (NFCCTAP_CONTROL) 0x01 (End CTAP_MSG Control Byte) 0x00

13.3.5 Framing

Conceptually, framing defines an encapsulation of CTAP commands. This encapsulation is done in

an APDU following [ISO 7816-4]. Authenticators MUST support short and extended length encoding

for this APDU. Fragmentation, if needed, is discussed in the following paragraph.

122 Rec. ITU-T X.1278.2 (04/2023)

13.3.5.1 Commands

Commands SHALL have the following format:

CLA INS P1 P2 Data In Le

0x80 0x10 0x00 0x00 CTAP Command Byte || CBOR Encoded Data Variable

13.3.5.2 Response

Response SHALL have the following format in case of success:

Case Data Status word

Success CTAP Status

code ||

Response data

"9000" – Success

Status

update

Status data "9100" – OK

When receiving this, the ISO transport layer will immediately issue an

NFCCTAP_GETREPONSE command unless a cancel was issued. The ISO

transport layer will provide the status data to the higher layers.

Errors

See [ISO 7816-4]

13.3.6 Fragmentation

APDU command may hold up to 255 or 65535 bytes of data using short or extended length encoding

respectively. APDU response may hold up to 256 or 65536 bytes of data using short or extended

length encoding respectively.

Some requests may not fit into a short APDU command, or the expected response may not fit in a

short APDU response. For this reason, client MAY encode APDU command in the following way:

• The request MAY be encoded using extended length APDU encoding.

• The request MAY be encoded using short APDU encoding. If the request does not fit a short

APDU command, the client MUST use ISO 7816-4 APDU chaining.

Short APDU Chaining commands SHALL have the following format:

CLA INS P1 P2 Data In

0x90 0x10 0x00 0x00 CTAP Payload

Sample authenticatorMakeCredential request using short APDU encoding and chaining mode:

01A8015820687134968222EC17202E42505F8ED2B16AE22F16BB05B88C25DB9E

602645F14102A262696469746573742E63746170646E616D6569746573742E63

74617003A362696458202B6689BB18F4169F069FBCDF50CB6EA3C60A861B9A7B

63946983E0B577B78C70646E616D6571746573746374617040637461702E636F

6D6B646973706C61794E616D65695465737420437461700483A263616C672664

747970656A7075626C69632D6B6579A263616C6739010064747970656A707562

6C69632D6B6579A263616C67382464747970656A7075626C69632D6B657906A1

6B686D61632D736563726574F507A162726BF50850FC43AAA411D948CC6C3706

8B8DA1D5080901

would be sent to authenticator by platform in two short APDU commands:

• APDU command 1:

Platform Request:

90 10 00 00

 Rec. ITU-T X.1278.2 (04/2023) 123

F0

01A8015820687134968222EC17202E42505F8ED2B16AE22F16BB05B88C25DB9E

602645F14102A262696469746573742E63746170646E616D6569746573742E63

74617003A362696458202B6689BB18F4169F069FBCDF50CB6EA3C60A861B9A7B

63946983E0B577B78C70646E616D6571746573746374617040637461702E636F

6D6B646973706C61794E616D65695465737420437461700483A263616C672664

747970656A7075626C69632D6B6579A263616C6739010064747970656A707562

6C69632D6B6579A263616C67382464747970656A7075626C69632D6B657906A1

6B686D61632D736563726574F507A162

Authenticator Response:

9000

• APDU command 2:

Platform Request:

80 10 00 00

17

726BF50850FC43AAA411D948CC6C37068B8DA1D5080901

00

Authenticator Response:

00

A301667061636B6564025900A20021F5FC0B85CD22E60623BCD7D1CA48948909

249B4776EB515154E57B66AE12C500000055F8A011F38C0A4D15800617111F9E

DC7D0010F4D57B23DD0CB785680CDAA7F7E44F60A5010203262001215820DF01

7D0B286795BEA153D166A0A15B4F6B67A3AF4A101E10E8496F3DD3C5D1A92258

2094B22551E6325D7733C41BB2F5A642ADEE417C97E0906197B5B0CD8B8D6C6B

A7A16B686D61632D736563726574F503A363616C672663736967584730450220

7CCAC57A1E43DF24B0847EEBF119D28DCDC5048F7DCD8EDD79E79721C41BCF2D

022100D89EC75B92CE8FF9E46FE7F8C87995694A63E5B78AB85C47B9DA

6100

• APDU command 3:

Platform Request:

80 C0 00 00 00

Authenticator Response:

1C580A8EC83A63783563815901973082019330820138A003020102020900859B

726CB24B4C29300A06082A8648CE3D0403023047310B30090603550406130255

5331143012060355040A0C0B59756269636F205465737431223020060355040B

0C1941757468656E74696361746F72204174746573746174696F6E301E170D31

36313230343131353530305A170D3236313230323131353530305A3047310B30

0906035504061302555331143012060355040A0C0B59756269636F2054657374

31223020060355040B0C1941757468656E74696361746F722041747465737461

74696F6E3059301306072A8648CE3D020106082A8648CE3D030107034200

61A7

124 Rec. ITU-T X.1278.2 (04/2023)

• APDU command 4:

Platform Request:

80 C0 00 00 A7

Authenticator Response:

04AD11EB0E8852E53AD5DFED86B41E6134A18EC4E1AF8F221A3C7D6E636C80EA

13C3D504FF2E76211BB44525B196C44CB4849979CF6F896ECD2BB860DE1BF437

6BA30D300B30090603551D1304023000300A06082A8648CE3D04030203490030

46022100E9A39F1B03197525F7373E10CE77E78021731B94D0C03F3FDA1FD22D

B3D030E7022100C4FAEC3445A820CF43129CDB00AABEFD9AE2D874F9C5D343CB

2F113DA23723F3

9000

Some responses may not fit into a short APDU response. For this reason, authenticators MUST

respond in the following way:

• If the request was encoded using extended length APDU encoding, the authenticator MUST

respond using the extended length APDU response format.

• If the request was encoded using short APDU encoding, the authenticator MUST respond

using ISO 7816-4 APDU chaining.

13.3.7 Commands

13.3.7.1 NFCCTAP_MSG (0x10)

The NFCCTAP_MSG command send a CTAP message to the authenticator. This command SHALL

return as soon as processing is done. If the operation was not completed, it MAY return a 0x9100

result to trigger NFCCTAP_GETRESPONSE functionality if the client indicated support by setting

the relevant bit in P1.

The values for P1 for the NFCCTAP_MSG command are:

P1 Bits Meaning

0x80 The client supports NFCCTAP_GETRESPONSE

0x7F RFU, MUST be (0x00)

Values for P2 are all RFU and MUST be set to 0.

13.3.7.2 NFCCTAP_GETRESPONSE (0x11)

The NFCCTAP_GETRESPONSE command is issued up to receiving 0x9100 unless a cancel was

issued. This command SHALL return a 0x9100 result with a status indication if it has a status update,

the reply to the request with a 0x9000 result code to indicate success or an error value.

All values for P1 and P2 are RFU and MUST be set to 0x00.

13.4 Bluetooth Smart / Bluetooth Low Energy Technology

See also clause 13.1, Secure protocol implementation.

13.4.1 Conformance

Authenticator and client devices using Bluetooth low energy technology SHALL conform to

Bluetooth Core Specification 4.0 or later [b-BTCORE]. Bluetooth SIG specified universally unique

identifier (UUID) values SHALL be found on the Assigned Numbers website [b-BTASSNUM].

 Rec. ITU-T X.1278.2 (04/2023) 125

13.4.2 Pairing

Bluetooth Low Energy Technology is a long-range wireless protocol and thus has several implications

for privacy, security, and overall user-experience. Because it is wireless, Bluetooth Low Energy

Technology may be subject to monitoring, injection, and other network-level attacks.

For these reasons, clients and authenticators MUST create and use a long-term link key (LTK) and

SHALL encrypt all communications. Authenticator MUST never use short term keys.

Because Bluetooth Low Energy Technology has poor ranging (i.e., there is no good indication of

proximity), it may not be clear to a client with which Bluetooth Low Energy Technology authenticator

it should communicate. Pairing is the only mechanism defined in this protocol to ensure that clients

are interacting with the expected Bluetooth Low Energy Technology authenticator. As a result,

authenticator manufacturers SHOULD instruct users to avoid performing Bluetooth pairing in a

public space such as a cafe, shop or train station.

One disadvantage of using standard Bluetooth pairing is that the pairing is "system-wide" on most

operating systems. That is, if an authenticator is paired to a client which resides on an operating

system where Bluetooth pairing is "system-wide", then any application on that device might be able

to interact with an authenticator. This issue is discussed further in Implementation Considerations.

13.4.3 Link security

For Bluetooth Low Energy Technology connections, the authenticator SHALL enforce Security

Mode 1, Level 2 (unauthenticated pairing with encryption) or Security Mode 1, Level 3

(authenticated pairing with encryption) before any CTAP messages are exchanged.

13.4.4 Framing

Conceptually, framing defines an encapsulation of CTAP raw messages responsible for correct

transmission of a single request and its response by the transport layer.

All requests and their responses are conceptually written as a single frame. The format of the requests

and responses is given first as complete frames. Fragmentation is discussed next for each type of

transport layer.

13.4.4.1 Request from Client to Authenticator

Request frames MUST have the following format:

Offset Length Mnemonic Description

0 1 CMD Command identifier

1 1 HLEN High part of data length

2 1 LLEN Low part of data length

3 S DATA Data (s is equal to the length)

Supported commands are PING, MSG and CANCEL. The constant values for them are described below.

The CANCEL command cancels any outstanding MSG commands.

The data format for the MSG command is defined in clause 10, Message encoding.

13.4.4.2 Response from authenticator to client

Response frames MUST have the following format, which share a similar format to the request

frames:

126 Rec. ITU-T X.1278.2 (04/2023)

Offset Length Mnemonic Description

0 1 STAT Response status

1 1 HLEN High part of data length

2 1 LLEN Low part of data length

3 S DATA Data (s is equal to the length)

When the status byte in the response is the same as the command byte in the request, the response is

a successful response. The value ERROR indicates an error, and the response data contains an error

code as a variable-length, big-endian integer. The constant value for ERROR is described below.

Note that the errors sent in this response are errors at the encapsulation layer, e.g., indicating an

incorrectly formatted request, or possibly an error communicating with the authenticator's CTAP

message processing layer. Errors reported by the message processing layer itself are considered a

success from the encapsulation layer's point of view and are reported as a complete MSG response.

Data format is defined in clause 10, Message encoding.

13.4.4.3 Command, status, and error constants

The COMMAND constants and values are:

Constant Value

PING 0x81

KEEPALIVE 0x82

MSG 0x83

CANCEL 0xbe

ERROR 0xbf

The KEEPALIVE command contains a single byte with the following possible values:

Status constant Value

PROCESSING 0x01

UP_NEEDED 0x02

RFU 0x00, 0x03-0xFF

The ERROR constants and values are:

Error constant Value Meaning

ERR_INVALID_CMD 0x01 The command in the request is unknown/invalid

ERR_INVALID_PAR 0x02 The parameter(s) of the command is/are invalid or missing

ERR_INVALID_LEN 0x03 The length of the request is invalid

ERR_INVALID_SEQ 0x04 The sequence number is invalid

ERR_REQ_TIMEOUT 0x05 The request timed out

ERR_BUSY 0x06 The device is busy and can't accept commands at this time. The client

SHOULD retry the request after a short delay. Note that the client MAY

abort the transaction if the command is no longer relevant.

NA 0x0a Value reserved (HID)

 Rec. ITU-T X.1278.2 (04/2023) 127

Error constant Value Meaning

NA 0x0b Value reserved (HID)

ERR_OTHER 0x7f Other, unspecified error

NOTE – These values are identical to the HID transport values.

13.4.5 GATT service description

This profile defines two roles: Authenticator and client.

• The client SHALL be a GATT client.

• The authenticator SHALL be a GATT server.

The following figure illustrates the mandatory services and characteristics that SHALL be offered by

an authenticator as part of its GATT server:

Figure 5 – Mandatory GATT services and characteristics that MUST

be offered by an authenticator

Note that the generic access profile service [b-BTGAS] is not present as it is already mandatory for

any Bluetooth low energy technology compliant device.

The table below summarizes additional GATT sub-procedure requirements for an authenticator

(GATT Server) beyond those required by all GATT servers.

GATT Sub-Procedure Requirements

Write Characteristic Value Mandatory

Notifications Mandatory

Read Characteristic Descriptors Mandatory

Write Characteristic Descriptors Mandatory

The table below summarizes additional GATT sub-procedure requirements for a Client (GATT

Client) beyond those required by all GATT Clients.

128 Rec. ITU-T X.1278.2 (04/2023)

GATT sub-Procedure Requirements

Discover All Primary Services (*)

Discover Primary Services by Service UUID (*)

Discover All Characteristics of a Service (**)

Discover Characteristics by UUID (**)

Discover All Characteristic Descriptors Mandatory

Read Characteristic Value Mandatory

Write Characteristic Value Mandatory

Notification Mandatory

Read Characteristic Descriptors Mandatory

Write Characteristic Descriptors Mandatory

(*): Mandatory to support at least one of these sub-procedures.

(**): Mandatory to support at least one of these sub-procedures. Other GATT sub-procedures MAY be

used if supported by both client and server.

Specifics of each service are explained below. In the following descriptions: all values are big-endian

coded, all strings are in UTF-8 encoding, and any characteristics not mentioned explicitly are

optional.

13.4.5.1 CTAP service

An authenticator SHALL implement the CTAP Service described below. The UUID for the GATT

service is 0xFFFD; it SHALL be declared as a primary service. The service contains the following

characteristics:

Characteristic
name

Mnemonic Property Length UUID

Control Point fidoControlPoint Write Defined
by
Vendor
(20-512
bytes)

F1D0FFF1-DEAA-
ECEE-B42F-
C9BA7ED623BB

Status fidoStatus Notify N/A F1D0FFF2-DEAA-
ECEE-B42F-
C9BA7ED623BB

Control Point
Length

fidoControlPointLength Read 2 bytes F1D0FFF3-DEAA-
ECEE-B42F-
C9BA7ED623BB

Service
Revision
Bitfield

fidoServiceRevisionBitfield Read/Write Defined
by
Vendor
(1+
bytes)

F1D0FFF4-DEAA-
ECEE-B42F-
C9BA7ED623BB

Service
Revision

fidoServiceRevision Read Defined
by
Vendor
(20-512
bytes)

0x2A28

fidoControlPoint is a write-only command buffer.

 Rec. ITU-T X.1278.2 (04/2023) 129

fidoStatus is a notify-only response attribute. The authenticator will send a series of notifications

on this attribute with a maximum length of (ATT_MTU-3) using the response frames defined above.

This mechanism is used because this results in a faster transfer speed compared to a notify-read

combination.

fidoControlPointLength defines the maximum size in bytes of a single write request to

fidoControlPoint. This value SHALL be between 20 and 512.

fidoServiceRevision is superseded and is only relevant to U2F 1.0 support. It defines the revision

of the U2F Service. The value is a UTF-8 string. For version 1.0 of the specification, the value

fidoServiceRevision SHALL be 1.0 or in raw bytes: 0x312e30. This field SHALL be omitted if

protocol version 1.0 is not supported.

The fidoServiceRevision Characteristic MAY include a Characteristic Presentation Format

descriptor with format value 0x19, UTF-8 String.

fidoServiceRevisionBitfield defines the revision of the CTAP Service. The value is a bit field

which each bit representing a version. For each version bit the value is 1 if the version is supported,

0 if it is not. The length of the bitfield is 1 or more bytes. All bytes that are 0 are omitted if all the

following bytes are 0 too. The byte order is big endian. The client SHALL write a value to this

characteristic with exactly 1 bit set before sending any commands unless u2fServiceRevision is

present and U2F 1.0 compatibility is desired. If only U2F version 1.0 is supported, this characteristic

SHALL be omitted.

Byte (left to right) Bit Version

0 7 U2F 1.1

0 6 U2F 1.2

0 5 FIDO2

0 4-0 Reserved

For example, a device that only supports this specificstion will only have a

fidoServiceRevisionBitfield characteristic of length 1 with value 0x20.

13.4.5.2 Device information service

An authenticator SHALL implement the device information service [b-BTDIS] and it SHOULD

contain the following characteristics:

• Manufacturer Name String

• Model Number String

• Firmware Revision String

All values for the device information service are left to the vendors. However, vendors SHOULD

NOT create uniquely identifiable values so that authenticators do not become a method of tracking

users.

13.4.5.3 Generic access profile service

Every authenticator SHALL implement the generic access profile service [b-BTGAS] with the

following characteristics:

• Device Name

• Appearance

13.4.6 Protocol overview

The general overview of the communication protocol follows:

130 Rec. ITU-T X.1278.2 (04/2023)

1. Authenticator advertises the CTAP Service.

2. Client scans for authenticator advertising the CTAP Service.

3. Client performs characteristic discovery on the authenticator.

4. If not already paired, the client and authenticator SHALL perform BLE pairing and create a

LTK. Authenticator SHALL only allow connections from previously bonded clients without

user intervention.

5. Client checks if the fidoServiceRevisionBitfield characteristic is present. If so, the client

selects a supported version by writing a value with a single bit set.

6. Client reads the fidoControlPointLength characteristic.

7. Client registers for notifications on the fidoStatus characteristic.

8. Client writes a request (e.g., an enroll request) into the fidoControlPoint characteristic.

9. Optionally, the client writes a CANCEL command to the fidoControlPoint characteristic to

cancel the pending request.

10. Authenticator evaluates the request and responds by sending notifications over fidoStatus

characteristic.

11. The protocol completes when either:

○ The client unregisters for notifications on the fidoStatus characteristic, or:

○ The connection times out and is closed by the authenticator.

13.4.7 Authenticator advertising format

When advertising, the authenticator SHALL advertise the CTAP service UUID.

When advertising, the authenticator MAY include the TxPower value in the advertisement (see

[b-BTXPLAD]).

When advertising in pairing mode, the authenticator SHALL either: (1) set the LE Limited Mode bit

to zero and the LE General Discoverable bit to one OR (2) set the LE Limited Mode bit to one and

the LE General Discoverable bit to zero. When advertising in non-pairing mode, the authenticator

SHALL set both the LE Limited Mode bit and the LE General Discoverable Mode bit to zero in the

Advertising Data Flags.

The advertisement MAY also carry a device name which is distinctive and user-identifiable. For

example, "ACME Key" would be an appropriate name, while "XJS4" would not be.

The authenticator SHALL also implement the generic access profile [b-BTGAP] and device

information service [b-BTDIS], both of which also provide a user-friendly name for the device that

could be used by the client.

It is not specified when or how often an authenticator should advertise, instead that flexibility is left

to manufacturers.

13.4.8 Requests

Clients SHOULD make requests by connecting to the authenticator and performing a write into the

fidoControlPoint characteristic.

Upon receiving a CANCEL request, if there is an outstanding request that can be cancelled, the

authenticator MUST cancel it and that cancelled request will reply with the error

CTAP2_ERR_KEEPALIVE_CANCEL. Whether a request was cancelled or not, the authenticator

MUST NOT reply to the cancel message itself.

 Rec. ITU-T X.1278.2 (04/2023) 131

13.4.9 Responses

Authenticators SHOULD respond to clients by sending notifications on the fidoStatus characteristic.

Some authenticators might alert users or prompt them to complete the test of user presence (e.g., via

sound, light, vibration) Upon receiving any request, the authenticators SHALL send KEEPALIVE

commands every kKeepAliveMillis milliseconds until completing processing the commands. While

the authenticator is processing the request the KEEPALIVE command will contain status

PROCESSING. If the authenticator is waiting to complete the Test of User Presence, the

KEEPALIVE command will contains status UP_NEEDED. While waiting to complete the Test of User

Presence, the authenticator MAY alert the user (e.g., by flashing) in order to prompt the user to

complete the test of user presence. As soon the authenticator has completed processing and confirmed

user presence, it SHALL stop sending KEEPALIVE commands, and send the reply.

Upon receiving a KEEPALIVE command, the client SHALL assume the authenticator is still processing

the command; the client SHALL not resend the command. The authenticator SHALL continue sending

KEEPALIVE messages at least every kKeepAliveMillis to indicate that it is still handling the request.

Until a client-defined timeout occurs, the client SHALL NOT move on to other devices when it receives

a KEEPALIVE with UP_NEEDED status, as it knows this is a device that can satisfy its request.

13.4.10 Framing fragmentation

A single request/response sent over Bluetooth Low Energy Technology MAY be split over multiple

writes and notifications, due to the inherent limitations of Bluetooth Low Energy Technology which

is not currently meant for large messages. Frames are fragmented in the following way:

A frame is divided into an initialization fragment and zero or more continuation fragments.

An initialization fragment is defined as:

Offset Length Mnemonic Description

0 1 CMD Command identifier

1 1 HLEN High part of data length

2 1 LLEN Low part of data length

3 0 to (maxLen – 3) DATA Data

where maxLen is the maximum packet size supported by the characteristic or notification.

In other words, the start of an initialization fragment is indicated by setting the high bit in the first

byte. The subsequent two bytes indicate the total length of the frame, in big-endian order. The first

maxLen – 3 bytes of data follow.

Continuation fragments are defined as:

Offset Length Mnemonic Description

0 1 SEQ Packet sequence 0x00..0x7f (high bit always cleared)

1 0 to (maxLen – 1) DATA Data

where maxLen is the maximum packet size supported by the characteristic or notification.

In other words, continuation fragments begin with a sequence number, beginning at 0, implicitly with

the high bit cleared. The sequence number MUST wraparound to 0 after reaching the maximum

sequence number of 0x7f.

Example for sending a PING command with 40 bytes of data with a maxLen of 20 bytes:

132 Rec. ITU-T X.1278.2 (04/2023)

Frame Bytes

0 [810028] [17 bytes of data]

1 [00] [19 bytes of data]

2 [01] [4 bytes of data]

Example for sending a ping command with 400 bytes of data with a maxLen of 512 bytes:

Frame Bytes

0 [810190] [400 bytes of data]

13.4.11 Notifications

A client needs to register for notifications before it can receive them. Bluetooth Core Specification

4.0 or later [b-BTCORE] forces a device to remember the notification registration status over different

connections [b-BTCCC]. Unless a client explicitly unregisters for notifications, the registration will

be automatically restored when reconnecting. A client MAY therefor check the notification status

upon connection and only register if notifications aren't already registered. Please note that some

clients MAY disable notifications from a power management point of view (see below) and the

notification registration is remembered per bond, not per client. A client MUST NOT remember the

notification status in its own data storage.

13.4.12 Request collisions

Because there is no concept of a session between the authenticator and a client (only between the host

and the client), a BLE authenticator cannot distinguish between different clients. If two clients on the

same host register for notifications from an authenticator at the same time, some existing host

platforms will allow this by reusing the same underlying BLE connection. However, when the

authenticator generates a notification, the host platform has insufficient information to route it to a

particular client. Depending on the host platform implementation, the notification may be delivered

to either or both clients. The result is undefined behaviour, which will likely result in both requests

failing.

13.4.13 Implementation considerations

13.4.13.1 Bluetooth pairing: Client considerations

As noted in pairing, a disadvantage of using standard Bluetooth pairing is that the pairing is "system-

wide" on most operating systems. That is, if an authenticator is paired to a client that resides on an

operating system where Bluetooth pairing is "system-wide", then any application on that device might

be able to interact with an authenticator. This poses both security and privacy risks to users.

While client operating system security is partly out of scope, further revisions of this specification

MAY propose mitigations for this issue.

13.4.13.2 Bluetooth pairing: Authenticator considerations

The method to put the authenticator into Pairing Mode should be such that it is not easy for the user

to do accidentally especially if the pairing method is Just Works. For example, the action could be

pressing a physically recessed button or pressing multiple buttons. A visible or audible cue that the

authenticator is in Pairing Mode should be considered. As a counter example, a silent, long press of

a single non-recessed button is not advised as some users naturally hold buttons down during regular

operation.

Note that at times, authenticators may legitimately receive communication from an unpaired device.

For example, a user attempts to use an authenticator for the first time with a new client; he turns it

on, but forgets to put the authenticator into pairing mode. In this situation, after connecting to the

 Rec. ITU-T X.1278.2 (04/2023) 133

authenticator, the client will notify the user that he needs to pair his authenticator. The authenticator

should make it easy for the user to do so, e.g., by not requiring the user to wait for a timeout before

being able to enable pairing mode.

Some client platforms (most notably iOS) do not expose the AD Flag LE Limited and General

Discoverable Mode bits to applications. For this reason, [b-BTSD] authenticators are also strongly

RECOMMENDED to include the Service Data field in the Scan Response. The Service Data field is

3 or more octets long. This allows the Flags field to be extended while using the minimum number

of octets within the data packet. All octets that are 0x00 are not transmitted as long as all other octets

after that octet are also 0x00 and it is not the first octet after the service UUID. The first 2 bytes

contain the CTAP Service UUID, the following bytes are flag bytes.

To help clients show the correct UX, authenticators can use the Service Data field to specify whether

or not authenticators will require a Passkey (PIN) during pairing.

Service Data Bit Meaning (if set)

7 Device is in pairing mode.

6 Device requires Passkey Entry [b-BTPESTK]

13.4.14 Handling command completion

It is important for low-power devices to be able to conserve power by shutting down or switching to

a lower-power state when they have satisfied a client's requests. However, the protocol makes this

hard as it typically includes more than one command/response. This is especially true if a user has

more than one key handle associated with an account or identity, multiple key handles may need to

be tried before getting a successful outcome. Furthermore, clients that fail to send follow up

commands in a timely fashion may cause the authenticator to drain its battery by staying powered up

anticipating more commands.

A further consideration is to ensure that a user is not confused about which command she is

confirming by completing the test of user presence. That is, if a user performs the test of user presence,

that action SHOULD perform exactly one operation.

We combine these considerations into the following series of recommendations:

Upon initial connection to an authenticator, and upon receipt of a response from an authenticator, if

a client has more commands to issue, the client MUST transmit the next command or fragment within

kMaxCommandTransmitDelayMillis milliseconds.

• Upon final response from an authenticator, if the client decides it has no more commands to

send it SHOULD indicate this by disabling notifications on the fidoStatus characteristic.

When the notifications are disabled, the authenticator MAY enter a low power state or

disconnect and shut down.

Any time the client wishes to send a message, it MUST have first enabled notifications on the

fidoStatus characteristic and wait for the ATT acknowledgement to be sure the authenticator is

ready to process messages.

• Upon successful completion of a command which required a test of user presence, e.g., upon

a successful authentication or registration command, the authenticator can assume the client

is satisfied, and MAY reset its state or power down.

NOTE – Authenticators supporting large blobs SHOULD wait kMaxCommandTransmitDelayMillis if the

command response contained a largeBlobKey, even after consuming user presence, otherwise they may miss

such commands.

Upon sending a command response that did not consume a test of user presence, the authenticator

MUST assume that the client may wish to initiate another command and leave the connection open

until the client closes it or until a timeout of at least kErrorWaitMillis elapses. Examples of

134 Rec. ITU-T X.1278.2 (04/2023)

command responses that do not consume user presence include failed authenticate or register

commands, as well as get version responses, whether successful or not. After kErrorWaitMillis

milliseconds have elapsed without further commands from a client, an authenticator MAY reset its

state or power down.

Constant Value

kMaxCommandTransmitDelayMillis 1500 milliseconds

kErrorWaitMillis 2000 milliseconds

kKeepAliveMillis 500 milliseconds

13.4.15 Data throughput

Bluetooth Low Energy Technology does not have particularly high throughput, this can cause

noticeable latency to the user if request/responses are large. Some ways that implementers can reduce

latency are:

• Support the maximum transmission unit (MTU) size allowable by hardware (up to the 512-

byte max from the Bluetooth specifications).

• Make the attestation certificate as small as possible; do not include unnecessary extensions.

13.4.16 Advertising

Though the standard does not appear to mandate it (in any way that we've found thus far), advertising

and device discovery seems to work better when the authenticators advertise on all 3 advertising

channels and not just one.

13.4.17 Authenticator address type

In order to enhance the user's privacy and specifically to guard against tracking, it is

RECOMMENDED that authenticators use resolvable private addresses (RPAs) instead of static

addresses.

The defined transports are USB, NFC, and BLE.

14 Defined extensions

This clause defines authenticator extensions and any necessary corresponding client extension

processing for them.

NOTE – Extensions may be defined such that extension processing may occur without any extension input.

14.1 Credential Protection (credProtect)

14.1.1 Feature detection

Extension identifier

credProtect

This registration extension allows relying parties to specify a credential protection policy when

creating a credential. Additionally, authenticators MAY choose to establish a default credential

protection policy greater than userVerificationOptional (the lowest level) and unilaterally enforce

such policy. Authenticators not supporting some form of user verification MUST NOT support this

extension.

Authenticators supporting some form of user verification MUST process this extension and persist

the credProtect value with the credential, even if the authenticator is not protected by some form of

user verification at the time.

NOTE 1 – Support for this extension is mandatory in some cases. See clause 11, Mandatory features.

 Rec. ITU-T X.1278.2 (04/2023) 135

Client extension input

create() : A single USVString specifying a protection level of the credential to be created.

partial dictionary AuthenticationExtensionsClientInputs {

 USVString credentialProtectionPolicy;

 boolean enforceCredentialProtectionPolicy = false;

};

Client extension processing

If this extension is not present in an authenticatorMakeCredential request:

1. The platform MAY enforce its own default credentialProtectionPolicy value by adding this

extension.

If this extension is present in an authenticatorMakeCredential request:

Verify that the credentialProtectionPolicy string value is one of following:

o userVerificationOptional:

▪ This reflects "FIDO_2_0" semantics. In this configuration, performing some

form of user verification is OPTIONAL with or without credentialID list. This

is the default state of the credential if the extension is not specified.

o userVerificationOptionalWithCredentialIDList:

▪ In this configuration, credential is discovered only when its credentialID is

provided by the platform or when some form of user verification is performed.

o userVerificationRequired:

▪ This reflects that discovery and usage of the credential MUST be preceded by

some form of user verification.

Evaluate the boolean enforceCredentialProtectionPolicy's value. This controls whether it is

better to fail to create a credential rather than ignore the protection policy. When

enforceCredentialProtectionPolicy is true, and credentialProtectionPolicy's value is

either userVerificationOptionalWithCredentialIDList or userVerificationRequired, the platform

SHOULD NOT create the credential in a way that does not implement the requested protection policy.

(For example, by creating it on an authenticator that does not support this extension.)

The platform SHOULD NOT alter the credentialProtectionPolicy value: the relying party's

desired credential protection policy overrides any default credential protection policies imposed by

the platform.

NOTE 2 – Platforms may require enterprise policy, or other configuration to conform to standards like

[b-FIPS140-3]. Those may require modification of the relying party's desired credential protection policy. The

relying party's desired credential protection policy SHOULD NOT be modified in other circumstances.

NOTE 3 – For non-discoverable credentials, credentialProtectionPolicy values userVerificationOptional and

userVerificationOptionalWithCredentialIDList will both have the same authenticator behaviour since the

relying party must always supply an allowList containing credential IDs when attempting to use

authenticatorGetAssertion with such credentials.

Client extension output

None. Authenticator returns the result in authenticator extension output.

Authenticator extension input

Map credentialProtectionPolicy value to credProtect and send it to the authenticator.

• authenticatorMakeCredential additional behaviours

136 Rec. ITU-T X.1278.2 (04/2023)

The list of possible values for credProtect is:

credentialProtectionPolicy credProtect Value

userVerificationOptional 0x01

userVerificationOptionalWithCredentialIDList 0x02

userVerificationRequired 0x03

The platform sends the authenticatorMakeCredential request with the following CBOR map entry in

the "extensions" field to the authenticator:

• "credProtect": <credProtect Value>

The value of the map entry MUST be the credProtect value the authenticator set for the created

credential.

NOTE – Some authenticators for high-security environments may be configured to always set credProtect

3 for all created credentials regardless of what the platform requests. In this case if a relying party causes an

authenticatorMakeCredential request to be sent with credProtect 2 (using the credProtect extension), the

authenticator will create the credential, set the credential's credProtect policy to 3, and respond via the

credProtect extension result that it set the policy to 3.

Sample CTAP2 authenticatorMakeCredential Request (CBOR):

{

 ...

 6: {"credProtect": 0x01},

 ...

}

Authenticator extension processing

credProtect value is persisted with the credential. If no credProtect extension was included in the

request the authenticator SHOULD use the default value of 1 for compatibility with CTAP2.0

platforms. The authenticator MUST NOT return an unsolicited credProtect extension output.

Authenticator extension output

• The authenticator responds with the following CBOR map entry in the "extensions" field of

the authenticator data object:

o "credProtect": <credProtect Value>

Sample "extensions" field value in the authenticatorData:

{"credProtect": 0x01}

14.2 Credential Blob (credBlob)

This extension enables RPs to provide a small amount of extra credential configuration information

(credBlob value) to the authenticator when a credential is made. This information is an opaque blob

to the authenticator. Authenticator MUST support at least 32 bytes to be stored. Authenticator reflects

amount of byte storage it supports as maxCredBlobLength parameter in authenticatorGetInfo. If

authenticator supports this extension,

• If the rk option ID is present and true

o Authenticator MUST support it for discoverable credentials.

o Authenticator MAY choose to also support it for non-discoverable credentials.

• Else (implying the authenticator does not support discoverable credentials)

 Rec. ITU-T X.1278.2 (04/2023) 137

o Authenticator MUST support it for non-discoverable credentials.

If RPs want to put PII or sensitive information in this field, they MUST use the credProtect extension,

setting the credentialProtectionPolicy as userVerificationRequired and

enforceCredentialProtectionPolicy as true. This will prevent a credential that is not protected by some

form of user verification from being created.

Authenticators MUST support credProtect extension if they wish to support credBlob extension.

14.2.1 Feature detection

To detect whether authenticator supports this feature, following conditions MUST be met:

• Authenticator MUST return credBlob in extensions field in authenticatorGetInfo in

addition to other extensions it may support.

○ Authenticator MUST also support dependent extension credProtect.

• Authenticator MUST return maxCredBlobLength (0x0F) in authenticatorGetInfo.

Extension identifier

credBlob

Client extension input

create() : ArrayBuffer containing opaque data in an RP-specific format.

partial dictionary AuthenticationExtensionsClientInputs {

 ArrayBuffer credBlob;

};

get() : A boolean value to indicate that this extension is requested by the relying party.

partial dictionary AuthenticationExtensionsClientInputs {

 boolean getCredBlob;

};

Client extension processing

create() : If credBlob size is less than or equal to maxCredBlobLength, platform passes the

information to the authenticator. Otherwise, platform ignores it.

get() : None.

Client extension output

None. Authenticator returns the result in authenticator extension output.

Authenticator extension input

• authenticatorMakeCredential authenticator extension input

o The platform sends the credBlob value in authenticatorMakeCredential request with

the following CBOR map entry in the "extensions" field to the authenticator:

▪ "credBlob": Byte String containing the credBlob value

• authenticatorGetAssertion authenticator extension input

o The platform sends the authenticatorGetAssertion request with the following CBOR

map entry in the "extensions" field to the authenticator:

▪ "credBlob":true

138 Rec. ITU-T X.1278.2 (04/2023)

Authenticator extension processing

credBlob value is persisted with the Credential during authenticatorMakeCredential and

returned during authenticatorGetAssertion.

Authenticator extension output

• authenticatorMakeCredential authenticator extension output

o If the authenticator is able to store the credBlob value, it returns the following CBOR

map entry in the "extensions" fields to the authenticator:

▪ "credBlob": true

o If the authenticator is not able to store the credBlob value (e.g., credBlob exceeds

maxCredBlobLength, or extension is not supported for non-discoverable

credentials), it returns the following CBOR map entry in the "extensions" field to to

the authenticator:

▪ "credBlob": false

• authenticatorGetAssertion authenticator extension output

o If the authenticator has the credBlob value for the credential, it returns the credBlob

value in the following CBOR map entry in the "extensions" fields to the

authenticator:

▪ "credBlob": Byte String.

o If the authenticator does NOT have the credBlob value for the credential, it returns

an empty Byte String in the following CBOR map entry in the "extensions" fields to

the authenticator:

▪ "credBlob": (empty) Byte String.

14.3 Large blob Key (largeBlobKey)

The credBlob extension allows for a small amount of opaque data to be stored with a credential. In

contrast, this extension allows for a much larger amount of data to be stored in the large-blob array,

protected by a key that is stored and accessed using this extension. Details of the interaction with the

large-blob array are given in clause 8.10.3, Large, per-credential blobs.

Conceptually this extension extends the state of a discoverable credential with 32 bytes of opaque

storage that may, or may not, be present for any given credential. This is called the largeBlobKey.

Since this value is a random key, an authenticator MAY derive it as needed from other key material,

rather than storing the value itself. If an authenticator does this, the same value MUST NOT be

plausibly derivable via other means. For example, it MUST NOT also be obtainable via the hmac-

secret extension using any salt that is predictable or constant across different credentials.

NOTE – Client platforms SHOULD use the largeBlobKey registration extension when creating the credential

if they wish to later use the largeBlobKey authentication extension to fetch the largeBlobKey. Authenticators

MAY optionally generate a largeBlobKey for a credential if the Large Blob Key (largeBlobKey) extension is

absent, but MUST NOT return an unsolicited largeBlobKey extension response or largeBlobKey (0x05) in the

authenticatorMakeCredential response structure.

Platforms can detect support for this extension by checking for all of the following in the

authenticatorGetInfo response:

1. largeBlobKey in the extensions field.

2. largeBlobs mapped to true in the options field.

 Rec. ITU-T X.1278.2 (04/2023) 139

Client extension input / output / processing

None. This extension is used to enable storage of large blobs in the large-blob array, which

requires additional platform behaviour. It is not suitable to be directly exposed to RPs.

Authenticator input for authenticatorMakeCredential

"largeBlobKey": boolean.

Authenticator processing for authenticatorMakeCredential:

1. If the value of largeBlobKey is not true, return CTAP2_ERR_INVALID_OPTION. (The

extension should be omitted rather than asserted to be false.)

2. If the options field of the authenticatorMakeCredential request does not map rk to true,

return CTAP2_ERR_INVALID_OPTION.

3. If other processing steps for authenticatorMakeCredential complete successfully then update

the new credential's state to store a freshly generated 32-byte key as its largeBlobKey.

4. Set the value of largeBlobKey (0x05) in the authenticatorMakeCredential response structure

(i.e., not in the extensions field of the authenticator data) to the value of the generated

largeBlobKey.

Authenticator authenticatorMakeCredential extension output

None. Since platforms cannot filter the content of the authenticator extension output, none is

provided to avoid internal details of large-blob support leaking out of the abstraction layer.

Authenticator authenticatorGetAssertion extension input

"largeBlobKey": boolean

Authenticator authenticatorGetAssertion extension processing

• If the value of largeBlobKey is not true, return CTAP2_ERR_INVALID_OPTION. (The

extension should be omitted rather than asserted to be false.)

• If other processing steps for authenticatorGetAssertion complete successfully, and the

credential has an associated largeBlobKey, then set the value of largeBlobKey (0x07) in the

authenticatorGetAssertion response structure (i.e., not in the extensions field of the

authenticator data) to the stored largeBlobKey.

Authenticator authenticatorGetAssertion extension output

None. Since platforms cannot filter the content of the authenticator extension output, none is

provided to avoid internal details of large-blob support leaking out of the abstraction layer.

14.4 Minimum PIN Length Extension (minPinLength)

Extension identifier

minPinLength

This extension returns the current minimum PIN length value. This value does not decrease unless

the authenticator is reset, in which case, all the credentials are reset. This extension is only applicable

during credential creation.

See also clause 9.4, Set Minimum Pin Length for the overall feature description.

NOTE – An example use case for this extension is: an organization supplies configured authenticators to their

users, with a current minimum PIN length value tailored to the organization's requirements. Upon users

registering their credentials with the organization's systems using the authenticators, the organization may use

140 Rec. ITU-T X.1278.2 (04/2023)

this extension to determine whether the current minimum PIN length continues to meet the organization's

requirements.

Client extension input

create() : A boolean value to indicate that this extension is requested by the relying party.

partial dictionary AuthenticationExtensionsClientInputs {

 boolean minPinLength;

};

get() : Not applicable.

Client extension processing

None, except creating the authenticator extension input from the client extension input.

Client extension output

None. Authenticator returns the result in authenticator extension output.

Authenticator extension input

Boolean asking for minimum PIN length value in Unicode code points. The platform sends the

authenticatorMakeCredential request with the following CBOR map entry in the "extensions"

field to the authenticator:

• "minPinLength": true

Authenticator extension processing

The authenticator checks whether the authenticatorMakeCredential's rp.id parameter is present

on its minPinLengthRPIDs list. If so, the RP is authorized to receive the current minimum PIN

length value. If not, the RP is not authorized to receive the current minimum PIN length value.

Authenticator extension output

• If the RP is

authorized, the authenticator sets the minPinLength return value to the current minimum

PIN length value.

not authorized, the authenticator ignores the extension and does not return any

authenticator extension output.

CDDL:

"minPinLength": uint

14.5 HMAC Secret Extension (hmac-secret)

Extension identifier

hmac-secret

This extension is used by the platform to retrieve a symmetric secret from the authenticator when it

needs to encrypt or decrypt data using that symmetric secret. This symmetric secret is scoped to a

credential. The authenticator and the platform each only have the part of the complete secret to

prevent offline attacks. This extension can be used to maintain different secrets on different machines.

If authenticator supports this extension, authenticator MUST support it for both discoverable and non-

discoverable credentials.

Client extension input

create() : A boolean value to indicate that this extension is requested by the relying party.

 Rec. ITU-T X.1278.2 (04/2023) 141

partial dictionary AuthenticationExtensionsClientInputs {

 boolean hmacCreateSecret;

};

get() : A JavaScript object defined as follows:

dictionary HMACGetSecretInput {

 required ArrayBuffer salt1; // 32-byte random data

 ArrayBuffer salt2; // Optional additional 32-byte random data

};

partial dictionary AuthenticationExtensionsClientInputs {

 HMACGetSecretInput hmacGetSecret;

};

The salt2 input is OPTIONAL. It can be used when the platform wants to roll over the symmetric

secret in one operation.

Client extension processing

1. If present in a create():

o If set to true, pass a CBOR true value as the authenticator extension input.

o If set to false, do not process this extension.

2. If present in a get():

o Verify that salt1 is a 32-byte ArrayBuffer.

o If salt2 is present, verify that it is a 32-byte ArrayBuffer.

o Pass salt1 and, if present, salt2 as the authenticator extension input.

Client extension output

create(): Boolean true value indicating that the authenticator has processed the extension.

partial dictionary AuthenticationExtensionsClientOutputs {

 boolean hmacCreateSecret;

};

get(): A dictionary with the following data:

dictionary HMACGetSecretOutput {

 required ArrayBuffer output1;

 ArrayBuffer output2;

};

partial dictionary AuthenticationExtensionsClientOutputs {

 HMACGetSecretOutput hmacGetSecret;

};

Authenticator extension input

Same as the client extension input, except represented in CBOR.

142 Rec. ITU-T X.1278.2 (04/2023)

Authenticator extension processing

• authenticatorGetInfo additional behaviours

The authenticator indicates to the platform that it supports the "hmac-secret" extension via the

"extensions" parameter in the authenticatorGetInfo response.

Sample CTAP2 authenticatorGetInfo response (CBOR):

{

 1: ["FIDO_2_0"],

 2: ["hmac-secret"],

 ...

}

• authenticatorMakeCredential additional behaviours

The platform sends the authenticatorMakeCredential request with the following CBOR map

entry in the "extensions" field to the authenticator:

• "hmac-secret": true

Sample CTAP2 authenticatorMakeCredential Request (CBOR):

{

 1: h’687134968222EC17202E42505F8ED2B16AE22F16BB05B88C25DB9E602645F141',

 ...

 6: {"hmac-secret": true},

}

o The authenticator generates two random 32-byte values (called

CredRandomWithUV and CredRandomWithoutUV) and associates them with the

credential.

NOTE – Authenticator SHOULD generate CredRandomWithUV/CredRandomWithoutUV and associate

them with the credential, even if hmac-secret extension is not present in authenticatorMakeCredential

request.

o If the platform has sent the hmac-secret extension to the authenticator, then

▪ If the authenticator succeeded in above step of generating

CredRandomWithUV/CredRandomWithoutUV and associating it with the

credential, it responds with the following CBOR map entry in the

"extensions" fields to the platform:

▪ "hmac-secret": true

▪ Else (The authenticator did not succeed in above step of generating

CredRandomWithUV/CredRandomWithoutUV and associating it with the

credential), it responds with the following CBOR map entry in the

"extensions" fields to the platform:

▪ "hmac-secret": false

o Else (the platform has not sent the hmac-secret extension to the authenticator)

▪ Authenticator does not add any response from this extension to the

"extensions" field of the authenticatorMakeCredential response.

• authenticatorGetAssertion additional behaviours

o The platform gets sharedSecret from the authenticator.

 Rec. ITU-T X.1278.2 (04/2023) 143

o The platform sends the authenticatorGetAssertion request with the following CBOR

map entry in the "extensions" field to the authenticator:

▪ "hmac-secret":

▪ keyAgreement(0x01): public key of platform key-agreement key.

▪ saltEnc(0x02): Encryption of the one or two salts (called salt1 (32

bytes) and salt2 (32 bytes)) using the shared secret as follows:

▪ One salt case: encrypt(shared secret, salt1)

▪ Two salt case: encrypt(shared secret, salt1 || salt2)

▪ saltAuth(0x03): authenticate(shared secret, saltEnc)

▪ pinUvAuthProtocol(0x04): (optional) as selected when getting the

shared secret. CTAP2.1 platforms MUST include this parameter if the

value of pinUvAuthProtocol is not 1.

Sample CTAP2 authenticatorGetAssertion Request (CBOR):

{

 1: "example.com",

 2:

h’687134968222EC17202E42505F8ED2B16AE22F16BB05B88C25DB9E602645F141',

 ...

 4: {

 "hmac-secret":

 {

 1:

 {

 1: 2,

 3: -25,

 -1: 1,

 -2:

h’0DE6479775C5B704BF780073809DE1B36A29132E187709C1E364F299F8847769',

 -3:

h’3BBE9BEDCC1AC8328BA6397A5F46AF85FC7C51B35BEDFD9E3E47AC6F34248B35'

 },

 2:

h’59E195FC58C614C07C99F587495F374871E9873AD37D5BCA1EED200926C3C6BA528D

77A48AF9592BD7E7A88051887F214E13CFDF406C3A1C57D529BABF987D4A',

 3: h’17B93F3BDB95380ED512EC6F542CE140'

 }

 }

}

o The authenticator performs the following operations when processing this extension:

▪ If pinUvAuthProtocol is absent and a pinUvAuthProtocol value of 1 is

supported by the authenticator, let the value of pinUvAuthProtocol be 1

144 Rec. ITU-T X.1278.2 (04/2023)

▪ If pinUvAuthProtocol is absent and a pinUvAuthProtocol value of 1 is not

supported by the authenticator, then return

CTAP2_ERR_PIN_AUTH_INVALID.

▪ If "up" is set to false, authenticator returns

CTAP2_ERR_UNSUPPORTED_OPTION.

▪ The authenticator waits for user consent.

▪ If request asks for user verification, authenticator waits for user verification.

▪ If user verification is requested via Client PIN mechanism, verify the

user by verifying the Client PIN parameters in the request as

mentioned in the authenticatorGetAssertion steps.

▪ If user verification is requested via a built-in user verification method,

verify the user by built-in user verification method as mentioned in

the authenticatorGetAssertion steps.

▪ The authenticator calls decapsulate on the provided platform key-agreement

key to obtain a shared secret.

▪ Authenticator calls verify(shared secret, saltEnc, saltAuth)

▪ If the verification fails, return CTAP2_ERR_PIN_AUTH_INVALID.

▪ Authenticator obtains salt1 and salt2 by calling decrypt(shared secret,

saltEnc). If the decryption fails, or if the result is not 32 or 64 bytes long,

return CTAP1_ERR_INVALID_PARAMETER. Otherwise salt1 is the first

32 bytes of the result and salt2 is the remaining bytes, if any.

▪ The authenticator chooses which CredRandom to use for next step based on

whether user verification was done or not in above steps.

▪ If uv bit is set to 1 in the response, let CredRandom be

CredRandomWithUV.

▪ If uv bit is set to 0 in the response, let CredRandom be

CredRandomWithoutUV.

▪ If the authenticator cannot find corresponding CredRandom associated with

the credential, authenticator ignores this extension and does not add any

response from this extension to "extensions" field of the

authenticatorGetAssertion response.

▪ The authenticator generates one or two HMAC-SHA-256 values, depending

upon whether it received one salt (32 bytes) or two salts (64 bytes):

▪ output1: HMAC-SHA-256(CredRandom, salt1)

▪ output2: HMAC-SHA-256(CredRandom, salt2)

▪ The authenticator returns output1 and (when there were two salts) output2,

encrypted to the platform using the shared secret, as part of "extensions"

parameter:

▪ One salt case: "hmac-secret": encrypt(shared secret, output1)

▪ Two salt case: "hmac-secret": encrypt(shared secret, output1 ||

output2)

 Rec. ITU-T X.1278.2 (04/2023) 145

Sample "extensions" field value in the authenticatorData:

{"hmac-secret":

h’1F91526CAE456E4CBB71C4DDE7BB877157E6E54DFED3015D7D4DBB2269AFCDE6

A91B8D267EBBF848EB95A68E79C7AC705E351D543DB0165887D6290FD47A40C4'

}

Figure 6 – hmac-secret

Authenticator extension output

Same as the client extension output, except represented in CBOR.

146 Rec. ITU-T X.1278.2 (04/2023)

Annex A

Terms defined by reference

(This annex forms an integral part of this Recommendation.)

• [b-CRED] defines the following terms:

o create()

o get()

• [WebAuthN] defines the following terms:

o AuthenticationExtensionsClientInputs

o AuthenticationExtensionsClientOutputs

o PublicKeyCredentialDescriptor

o PublicKeyCredentialParameters

o PublicKeyCredentialRpEntity

o PublicKeyCredentialUserEntity

o authenticatorSelection

o displayName

o id

o name

o type

o userVerification (for PublicKeyCredentialRequestOptions)

• [WebAuthN] defines the following terms:

o assertion signature

o attestation

o attestation object

o attestation statement format identifier

o attested credential data

o authenticator

o authenticator data

o authenticator extension input

o authenticator extension output

o authenticatorgetassertion operation

o authenticatormakecredential operation

o client platform

o client side

o credential key pair

o discoverable credential

o enterprise attestation

 Rec. ITU-T X.1278.2 (04/2023) 147

o extension identifier

o generating an attestation object

o hash of the serialized client data

o lookup credential source by credential id algorithm

o private key

o public key credential

o public key credential source

o relying party identifier

o rp id

o server-side credential

o user handle

o user verification

• [b-WebIDL] defines the following terms:

o ArrayBuffer

o USVString

o boolean

• [b-CTAP] covers additional considerations including IANA and extended security

considerations.

148 Rec. ITU-T X.1278.2 (04/2023)

Appendix I

IDL Index

(This appendix does not form an integral part of this Recommendation.)

partial dictionary AuthenticationExtensionsClientInputs {

 USVString credentialProtectionPolicy;

 boolean enforceCredentialProtectionPolicy = false;

};

partial dictionary AuthenticationExtensionsClientInputs {

 ArrayBuffer credBlob;

};

partial dictionary AuthenticationExtensionsClientInputs {

 boolean getCredBlob;

};

partial dictionary AuthenticationExtensionsClientInputs {

 boolean minPinLength;

};

partial dictionary AuthenticationExtensionsClientInputs {

 boolean hmacCreateSecret;

};

dictionary HMACGetSecretInput {

 required ArrayBuffer salt1; // 32-byte random data

 ArrayBuffer salt2; // Optional additional 32-byte random data

};

partial dictionary AuthenticationExtensionsClientInputs {

 HMACGetSecretInput hmacGetSecret;

};

partial dictionary AuthenticationExtensionsClientOutputs {

 boolean hmacCreateSecret;

};

dictionary HMACGetSecretOutput {

 required ArrayBuffer output1;

 ArrayBuffer output2;

https://w3c.github.io/webauthn/#dictdef-authenticationextensionsclientinputs
https://heycam.github.io/webidl/#idl-USVString
https://fidoalliance.org/specs/fido-v2.1-ps-20210615/fido-client-to-authenticator-protocol-v2.1-ps-20210615.html#dom-authenticationextensionsclientinputs-credentialprotectionpolicy
https://heycam.github.io/webidl/#idl-boolean
https://fidoalliance.org/specs/fido-v2.1-ps-20210615/fido-client-to-authenticator-protocol-v2.1-ps-20210615.html#dom-authenticationextensionsclientinputs-enforcecredentialprotectionpolicy
https://w3c.github.io/webauthn/#dictdef-authenticationextensionsclientinputs
https://heycam.github.io/webidl/#idl-ArrayBuffer
https://fidoalliance.org/specs/fido-v2.1-ps-20210615/fido-client-to-authenticator-protocol-v2.1-ps-20210615.html#dom-authenticationextensionsclientinputs-credblob
https://w3c.github.io/webauthn/#dictdef-authenticationextensionsclientinputs
https://heycam.github.io/webidl/#idl-boolean
https://fidoalliance.org/specs/fido-v2.1-ps-20210615/fido-client-to-authenticator-protocol-v2.1-ps-20210615.html#dom-authenticationextensionsclientinputs-getcredblob
https://w3c.github.io/webauthn/#dictdef-authenticationextensionsclientinputs
https://heycam.github.io/webidl/#idl-boolean
https://fidoalliance.org/specs/fido-v2.1-ps-20210615/fido-client-to-authenticator-protocol-v2.1-ps-20210615.html#dom-authenticationextensionsclientinputs-minpinlength
https://w3c.github.io/webauthn/#dictdef-authenticationextensionsclientinputs
https://heycam.github.io/webidl/#idl-boolean
https://fidoalliance.org/specs/fido-v2.1-ps-20210615/fido-client-to-authenticator-protocol-v2.1-ps-20210615.html#dom-authenticationextensionsclientinputs-hmaccreatesecret
https://fidoalliance.org/specs/fido-v2.1-ps-20210615/fido-client-to-authenticator-protocol-v2.1-ps-20210615.html#dictdef-hmacgetsecretinput
https://heycam.github.io/webidl/#idl-ArrayBuffer
https://fidoalliance.org/specs/fido-v2.1-ps-20210615/fido-client-to-authenticator-protocol-v2.1-ps-20210615.html#dom-hmacgetsecretinput-salt1
https://heycam.github.io/webidl/#idl-ArrayBuffer
https://fidoalliance.org/specs/fido-v2.1-ps-20210615/fido-client-to-authenticator-protocol-v2.1-ps-20210615.html#dom-hmacgetsecretinput-salt2
https://w3c.github.io/webauthn/#dictdef-authenticationextensionsclientinputs
https://fidoalliance.org/specs/fido-v2.1-ps-20210615/fido-client-to-authenticator-protocol-v2.1-ps-20210615.html#dictdef-hmacgetsecretinput
https://fidoalliance.org/specs/fido-v2.1-ps-20210615/fido-client-to-authenticator-protocol-v2.1-ps-20210615.html#dom-authenticationextensionsclientinputs-hmacgetsecret
https://w3c.github.io/webauthn/#dictdef-authenticationextensionsclientoutputs
https://heycam.github.io/webidl/#idl-boolean
https://fidoalliance.org/specs/fido-v2.1-ps-20210615/fido-client-to-authenticator-protocol-v2.1-ps-20210615.html#dom-authenticationextensionsclientoutputs-hmaccreatesecret
https://fidoalliance.org/specs/fido-v2.1-ps-20210615/fido-client-to-authenticator-protocol-v2.1-ps-20210615.html#dictdef-hmacgetsecretoutput
https://heycam.github.io/webidl/#idl-ArrayBuffer
https://fidoalliance.org/specs/fido-v2.1-ps-20210615/fido-client-to-authenticator-protocol-v2.1-ps-20210615.html#dom-hmacgetsecretoutput-output1
https://heycam.github.io/webidl/#idl-ArrayBuffer
https://fidoalliance.org/specs/fido-v2.1-ps-20210615/fido-client-to-authenticator-protocol-v2.1-ps-20210615.html#dom-hmacgetsecretoutput-output2

 Rec. ITU-T X.1278.2 (04/2023) 149

};

partial dictionary AuthenticationExtensionsClientOutputs {

 HMACGetSecretOutput hmacGetSecret;

};

https://w3c.github.io/webauthn/#dictdef-authenticationextensionsclientoutputs
https://fidoalliance.org/specs/fido-v2.1-ps-20210615/fido-client-to-authenticator-protocol-v2.1-ps-20210615.html#dictdef-hmacgetsecretoutput
https://fidoalliance.org/specs/fido-v2.1-ps-20210615/fido-client-to-authenticator-protocol-v2.1-ps-20210615.html#dom-authenticationextensionsclientoutputs-hmacgetsecret

150 Rec. ITU-T X.1278.2 (04/2023)

Bibliography

NOTE – This Recommendation is technically equivalent to [b-CTAP], Client to Authenticator

Protocol (CTAP).

[b-ISO/IEC 19790] ISO/IEC 19790:2012, Information technology – Security techniques – Security

requirements for cryptographic modules.

[b- ISO/IEC 24759] ISO/IEC 24759:2017, Information technology – Security techniques – Test

requirements for cryptographic modules.

[b-BTASSNUM] Bluetooth Assigned Numbers.

[b-BTCCC] Client Characteristic Configuration. Bluetooth Core Specification 4.0, Volume

3, Part G, clause 3.3.3.3.

[b-BTCORE] Bluetooth Core Specification 4.0. URL.

[b-BTDIS] Device Information Service v1.1.

[b-BTGAP] Generic Access Profile. Bluetooth Core Specification 4.0, Volume 3, Part C,

clause 12.

[b-BTGAS] Generic Access Profile service. Bluetooth Core Specification 4.0, Volume 3,

Part C, clause 12.

[b-BTPESTK] Passkey Entry. Bluetooth Core Specification 4.0, Volume 3, Part H,

clause 2.3.5.3.

[b-BTSD] Bluetooth Service Data AD Type. Bluetooth Core Specification 4.0, Volume 3,

Part C, clause 11.

[b-BTXPLAD] Bluetooth TX Power AD Type. Bluetooth Core Specification 4.0, Volume 3,

Part C, clause 11.

[b-CRED] Mike West. Credential Management Level 1. 17 January 2019. WD.
https://www.w3.org/TR/credential-management-1/

[b-CTAP] Fido Alliance, Client to Authenticator Protocol (CTAP),
https://fidoalliance.org/specs/fido-v2.1-ps-20210615/fido-client-to-authenticator-protocol-v2.1-ps-errata-
20220621.html

[b-CMVP] National Institute of Standards and Technology Canadian Centre for Cyber

Security (2023), Implementation Guidance for FIPS 140-2 and the

Cryptographic Module Validation Program – CMV.

[b-FIPS140-2] FIPS PUB 140-2 (2011), Security Requirements for Cryptographic Modules.

[b-FIPS140-3] FIPS PUB 140-3 (2019), Security Requirements for Cryptographic Modules.

March.

[b-IANA-COSE] IANA CBOR Object Signing and Encryption (COSE) Algorithms Registry.

[b-Registry] R. Lindemann; D. Baghdasaryan; B. Hill. FIDO Registry of Predefined Values.

25 May 2021. Review Draft.

https://fidoalliance.org/specs/common-specs/fido-registry-v2.2-rd-20210525.html.

[b-SEC1V2] SEC1: Elliptic Curve Cryptography, Version 2.0. May 2009.

[b-SP800-56A] NIST Special Publication 800-56A: Recommendation for Pair-Wise Key

Establishment Schemes Using Discrete Logarithm Cryptography (Revised).

March 2007.

https://fidoalliance.org/specs/fido-v2.1-ps-20210615/fido-client-to-authenticator-protocol-v2.1-ps-errata-20220621.html
https://fidoalliance.org/specs/fido-v2.1-ps-20210615/fido-client-to-authenticator-protocol-v2.1-ps-errata-20220621.html
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.140-3.pdf
https://www.iana.org/assignments/cose/cose.xhtml#algorithms
https://fidoalliance.org/specs/common-specs/fido-registry-v2.2-rd-20210525.html

 Rec. ITU-T X.1278.2 (04/2023) 151

[b-U2FRawMsgs] D. Balfanz; J. Ehrensvard; J. Lang. FIDO U2F Raw Message Formats v1.2.

Proposed Standard.
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-raw-message-formats-v1.2-ps-
20170411.html

[b-WebIDL] Web IDL. 15 December 2016. ED.

https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-raw-message-formats-v1.2-ps-20170411.html
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-raw-message-formats-v1.2-ps-20170411.html
https://heycam.github.io/webidl/

Published in Switzerland
Geneva, 2023

SERIES OF ITU-T RECOMMENDATIONS

Series A Organization of the work of ITU-T

Series D Tariff and accounting principles and international telecommunication/ICT economic and policy issues

Series E Overall network operation, telephone service, service operation and human factors

Series F Non-telephone telecommunication services

Series G Transmission systems and media, digital systems and networks

Series H Audiovisual and multimedia systems

Series I Integrated services digital network

Series J Cable networks and transmission of television, sound programme and other multimedia signals

Series K Protection against interference

Series L
Environment and ICTs, climate change, e-waste, energy efficiency; construction, installation and

protection of cables and other elements of outside plant

Series M Telecommunication management, including TMN and network maintenance

Series N Maintenance: international sound programme and television transmission circuits

Series O Specifications of measuring equipment

Series P Telephone transmission quality, telephone installations, local line networks

Series Q Switching and signalling, and associated measurements and tests

Series R Telegraph transmission

Series S Telegraph services terminal equipment

Series T Terminals for telematic services

Series U Telegraph switching

Series V Data communication over the telephone network

Series X Data networks, open system communications and security

Series Y
Global information infrastructure, Internet protocol aspects, next-generation networks, Internet of

Things and smart cities

Series Z Languages and general software aspects for telecommunication systems

	Recommendation ITU-T X.1278.2 (04/2023) Client to authenticator protocol
	Summary
	History
	FOREWORD
	Table of Contents
	Introduction
	1 Scope
	2 References
	3 Definitions
	3.1 Terms defined elsewhere
	3.2 Terms defined in this Recommendation

	4 Abbreviations and acronyms
	5 Conventions
	6 Relationship to other specifications
	7 Protocol structure and overview
	8 Authenticator API
	8.1 authenticatorMakeCredential (0x01)
	8.1.1 Platform actions for authenticatorMakeCredential (non-normative)
	8.1.2 authenticatorMakeCredential Algorithm
	8.1.3 Discoverable credentials

	8.2 authenticatorGetAssertion (0x02)
	8.2.1 Platform actions for authenticatorGetAssertion (non-normative)
	8.2.2 authenticatorGetAssertion Algorithm

	8.3 authenticatorGetNextAssertion (0x08)
	8.3.1 Client logic

	8.4 authenticatorGetInfo (0x04)
	8.5 authenticatorClientPIN (0x06)
	8.5.1 PIN composition requirements
	8.5.2 PIN/UV Auth protocol global state
	8.5.2.1 pinUvAuthToken state
	8.5.2.2 PIN-entry and user verification retries counters

	8.5.3 Utility functions
	8.5.3.1 Perform built-in user verification algorithm
	8.5.3.2 pinUvAuthToken state maintenance functions

	8.5.4 PIN/UV Auth protocol abstract definition
	8.5.5 authenticatorClientPIN (0x06) command definition
	8.5.5.1 Authenticator configuration operations upon power up
	8.5.5.2 Platform getting PIN retries from authenticator
	8.5.5.3 Platform getting UV retries from authenticator
	8.5.5.4 Obtaining the shared secret
	8.5.5.5 Setting a new PIN
	8.5.5.6 Changing existing PIN
	8.5.5.7 Operations to obtain a pinUvAuthToken
	8.5.5.7.1 Getting PINUVAUTHTOKEN using GETPINTOKEN (SUPERSEDED)
	8.5.5.7.2 Getting pinUvAuthToken using getPinUvAuthTokenUsingPinWithPermissions (ClientPIN)
	8.5.5.7.3 Getting PinUvAuthToken using GetP inUvAuthTokenUsingUvWithPermissions (built-in user verification methods)

	8.5.6 PIN/UV Auth Protocol One
	8.5.7 PIN/UV Auth Protocol Two
	8.5.8 PRF values used

	8.6 authenticatorReset (0x07)
	8.7 authenticatorBioEnrollment (0x09)
	8.7.1 Feature detection
	8.7.2 Get bio modality
	8.7.3. Get fingerprint sensor info
	8.7.4 Enrolling fingerprint
	8.7.5 Cancel current enrollment
	8.7.6 Enumerate enrollments
	8.7.7 Rename/Set FriendlyName
	8.7.8 Remove enrollment

	8.8 authenticatorCredentialManagement (0x0A)
	8.8.1 Feature detection
	8.8.2 Getting credentials metadata
	8.8.3 Enumerating RPs
	8.8.4 Enumerating credentials for an RP
	8.8.5 DeleteCredential
	8.8.6 Updating user information
	8.8.7 Truncation of relying party identifiers

	8.9 authenticatorSelection (0x0B)
	8.10 authenticatorLargeBlobs (0x0C)
	8.10.1 Feature detection
	8.10.2 Reading and writing serialized data
	8.10.3 Large, per-credential blobs
	8.10.4 Reading per-credential large-blob data

	8.10.5 Writing per-credential large-blob data for a new credential
	8.10.6 Updating per-credential large-blob data
	8.10.7 Garbage collection of large-blob data

	8.11 authenticatorConfig (0x0D)
	8.11.1 Enable enterprise attestation
	8.11.2 Toggle always require user verification
	8.11.3 Vendor prototype command
	8.11.4 Setting a minimum PIN length

	8.12 Prototype authenticatorBioEnrollment (0x40) (For backwards compatibility with "FIDO_2_1_PRE")
	8.13 Prototype authenticatorCredentialManagement (0x41) (For backwards compatibility with "FIDO_2_1_PRE")

	9 Feature-specific descriptions and actions
	9.1 Enterprise attestation
	9.1.1 Feature detection
	9.1.2 Platform Actions
	9.1.3 Authenticator Actions

	9.2 Always require user verification
	9.2.1 Feature detection
	9.2.2 Platform actions
	9.2.3 Authenticator actions
	9.2.4 Disabling CTAP1/U2F

	9.3 Authenticator certifications
	9.3.1 Authenticator actions

	9.4 Set minimum PIN length
	9.4.1 Feature detection
	9.4.2 Platform actions
	9.4.3 Authenticator actions

	10 Message encoding
	10.1 Command codes
	10.2 Status codes
	10.3 Utility functions

	11 Mandatory features
	12 Interoperating with CTAP1/U2F authenticators
	12.1 Framing of U2F commands
	12.1.1 U2F Request message framing
	12.1.2 U2F Response message framing

	12.2 Using the CTAP2 authenticatorMakeCredential Command with CTAP1/U2F authenticators
	12.3 Using the CTAP2 authenticatorGetAssertion Command with CTAP1/U2F authenticators
	12.4 Cross-version credential compatibility

	13 Transport-specific bindings
	13.1 Secure protocol implementation
	13.2 USB human interface device (USB HID)
	13.2.1 Design rationale
	13.2.2 Protocol structure and data framing
	13.2.3 Concurrency and channels
	13.2.4 Message and packet structure
	13.2.5 Arbitration
	13.2.5.1 Transaction atomicity, idle and busy states
	13.2.5.2 Transaction timeout
	13.2.5.3 Transaction abort and re-synchronization
	13.2.5.4 Packet sequencing

	13.2.6 Channel locking
	13.2.7 Protocol version and compatibility
	13.2.8 HID device implementation
	13.2.8.1 Interface and endpoint descriptors
	13.2.8.2 HID report descriptor and device discovery

	13.2.9 CTAPHID commands
	13.2.9.1 Mandatory commands
	13.2.9.1.1 CTAPHID_MSG (0X03)
	13.2.9.1.2 CTAPHID_CBOR (0X10)
	13.2.9.1.3 CTAPHID_INIT (0X06)
	13.2.9.1.4 CTAPHID_PING (0X01)
	13.2.9.1.5 CTAPHID_CANCEL (0X11)
	13.2.9.1.6 CTAPHID_ERROR (0X3F)
	13.2.9.1.7 CTAPHID_KEEPALIVE (0X3B)

	13.2.9.2 Optional commands
	13.2.9.2.1 CTAPHID_WINK (0X08)
	13.2.9.2.2 CTAPHID_LOCK (0X04)

	13.2.9.3 Vendor specific commands

	13.3 ISO7816 and Near Field Communication (NFC)
	13.3.1 Conformance
	13.3.2 Protocol
	13.3.3 Applet selection
	13.3.4 Applet deselection
	13.3.5 Framing
	13.3.5.1 Commands
	13.3.5.2 Response

	13.3.6 Fragmentation
	13.3.7 Commands
	13.3.7.1 NFCCTAP_MSG (0x10)
	13.3.7.2 NFCCTAP_GETRESPONSE (0x11)

	13.4 Bluetooth Smart / Bluetooth Low Energy Technology
	13.4.1 Conformance
	13.4.2 Pairing
	13.4.3 Link security
	13.4.4 Framing
	13.4.4.1 Request from Client to Authenticator
	13.4.4.2 Response from authenticator to client
	13.4.4.3 Command, status, and error constants

	13.4.5 GATT service description
	13.4.5.1 CTAP service
	13.4.5.2 Device information service
	13.4.5.3 Generic access profile service

	13.4.6 Protocol overview
	13.4.7 Authenticator advertising format
	13.4.8 Requests
	13.4.9 Responses
	13.4.10 Framing fragmentation
	13.4.11 Notifications
	13.4.12 Request collisions
	13.4.13 Implementation considerations
	13.4.13.1 Bluetooth pairing: Client considerations
	13.4.13.2 Bluetooth pairing: Authenticator considerations

	13.4.14 Handling command completion
	13.4.15 Data throughput
	13.4.16 Advertising
	13.4.17 Authenticator address type

	14 Defined extensions
	14.1 Credential Protection (credProtect)
	14.1.1 Feature detection

	14.2 Credential Blob (credBlob)
	14.2.1 Feature detection

	14.3 Large blob Key (largeBlobKey)
	14.4 Minimum PIN Length Extension (minPinLength)
	14.5 HMAC Secret Extension (hmac-secret)

	Annex A Terms defined by reference
	Appendix I IDL Index
	Bibliography

