

I n t e r n a t i o n a l T e l e c o m m u n i c a t i o n U n i o n

ITU-T X.1278
TELECOMMUNICATION
STANDARDIZATION SECTOR
OF ITU

(11/2018)

SERIES X: DATA NETWORKS, OPEN SYSTEM
COMMUNICATIONS AND SECURITY

Cyberspace security – Identity management

 Client to authenticator protocol/Universal
2-factor framework

Recommendation ITU-T X.1278

ITU-T X-SERIES RECOMMENDATIONS

DATA NETWORKS, OPEN SYSTEM COMMUNICATIONS AND SECURITY

PUBLIC DATA NETWORKS X.1–X.199

OPEN SYSTEMS INTERCONNECTION X.200–X.299

INTERWORKING BETWEEN NETWORKS X.300–X.399

MESSAGE HANDLING SYSTEMS X.400–X.499

DIRECTORY X.500–X.599

OSI NETWORKING AND SYSTEM ASPECTS X.600–X.699

OSI MANAGEMENT X.700–X.799

SECURITY X.800–X.849

OSI APPLICATIONS X.850–X.899

OPEN DISTRIBUTED PROCESSING X.900–X.999

INFORMATION AND NETWORK SECURITY

General security aspects X.1000–X.1029

Network security X.1030–X.1049

Security management X.1050–X.1069

Telebiometrics X.1080–X.1099

SECURE APPLICATIONS AND SERVICES (1)

Multicast security X.1100–X.1109

Home network security X.1110–X.1119

Mobile security X.1120–X.1139

Web security X.1140–X.1149

Security protocols (1) X.1150–X.1159

Peer-to-peer security X.1160–X.1169

Networked ID security X.1170–X.1179

IPTV security X.1180–X.1199

CYBERSPACE SECURITY

Cybersecurity X.1200–X.1229

Countering spam X.1230–X.1249

Identity management X.1250–X.1279

SECURE APPLICATIONS AND SERVICES (2)

Emergency communications X.1300–X.1309

Ubiquitous sensor network security X.1310–X.1319

Smart grid security X.1330–X.1339

Certified mail X.1340–X.1349

Internet of things (IoT) security X.1360–X.1369

Intelligent transportation system (ITS) security X.1370–X.1389

Distributed ledger technology security X.1400–X.1429

Distributed ledger technology security X.1430–X.1449

Security protocols (2) X.1450–X.1459

CYBERSECURITY INFORMATION EXCHANGE

Overview of cybersecurity X.1500–X.1519

Vulnerability/state exchange X.1520–X.1539

Event/incident/heuristics exchange X.1540–X.1549

Exchange of policies X.1550–X.1559

Heuristics and information request X.1560–X.1569

Identification and discovery X.1570–X.1579

Assured exchange X.1580–X.1589

CLOUD COMPUTING SECURITY

Overview of cloud computing security X.1600–X.1601

Cloud computing security design X.1602–X.1639

Cloud computing security best practices and guidelines X.1640–X.1659

Cloud computing security implementation X.1660–X.1679

Other cloud computing security X.1680–X.1699

For further details, please refer to the list of ITU-T Recommendations.

 Rec. ITU-T X.1278 (11/2018) i

Recommendation ITU-T X.1278

Client to authenticator protocol/Universal 2-factor framework

Summary

Recommendation ITU-T X.1278 describes an application layer protocol for communication between

an external authenticator and another client/platform, as well as bindings of this application protocol

to a variety of transport protocols using different physical media.

History

Edition Recommendation Approval Study Group Unique ID*

1.0 ITU-T X.1278 2018-11-29 17 11.1002/1000/13728

Keywords

Authentication, CTAP, identity, two-factor authentication, U2F.

* To access the Recommendation, type the URL http://handle.itu.int/ in the address field of your web

browser, followed by the Recommendation's unique ID. For example, http://handle.itu.int/11.1002/1000/11

830-en.

http://handle.itu.int/11.1002/1000/13728
http://handle.itu.int/11.1002/1000/11830-en
http://handle.itu.int/11.1002/1000/11830-en

ii Rec. ITU-T X.1278 (11/2018)

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of

telecommunications, information and communication technologies (ICTs). The ITU Telecommunication

Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical,

operating and tariff questions and issuing Recommendations on them with a view to standardizing

telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years, establishes

the topics for study by the ITU-T study groups which, in turn, produce Recommendations on these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are

prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a

telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain

mandatory provisions (to ensure, e.g., interoperability or applicability) and compliance with the

Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some other

obligatory language such as "must" and the negative equivalents are used to express requirements. The use of

such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may involve

the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence, validity or

applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others outside of

the Recommendation development process.

As of the date of approval of this Recommendation, ITU had not received notice of intellectual property,

protected by patents, which may be required to implement this Recommendation. However, implementers are

cautioned that this may not represent the latest information and are therefore strongly urged to consult the TSB

patent database at http://www.itu.int/ITU-T/ipr/.

 ITU 2019

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the prior

written permission of ITU.

http://www.itu.int/ITU-T/ipr/

 Rec. ITU-T X.1278 (11/2018) iii

Table of Contents

 Page

1 Scope ... 1

2 References ... 1

3 Definitions .. 1

4 Abbreviations and acronyms .. 1

5 Conventions .. 2

5.1 Conformance .. 2

6 Overview ... 2

7 Relationship to other specifications .. 3

8 Protocol structure .. 3

9 Protocol overview ... 3

10 Authenticator API ... 4

10.1 authenticatorMakeCredential (0x01) .. 4

10.2 authenticatorGetAssertion(0x02) ... 7

10.3 authenticatorGetNextAssertion (0x08) ... 10

10.4 Client logic ... 11

10.5 authenticatorCancel (0x03) .. 11

10.6 authenticatorGetInfo (0x04) ... 11

10.7 authenticatorClientPIN (0x06) ... 12

10.8 AuthenticatorReset (0x07) .. 21

11 Message encoding ... 21

11.1 Commands .. 22

11.2 Responses ... 29

11.3 Error responses ... 31

12 Interoperating with CTAP1/U2F authenticators ... 33

12.1 Using the CTAP2 authenticatorMakeCredential command with

CTAP1/U2F authenticators .. 33

12.2 Using the CTAP2 authenticatorGetAssertion command with CTAP1/U2F

authenticators .. 38

13 Transport-specific bindings .. 41

13.1 USB .. 41

13.2 ISO7816, ISO14443 and near-field communication (NFC) 50

Bibliography... 63

 Rec. ITU-T X.1278 (11/2018) 1

Recommendation ITU-T X.1278

Client to authenticator protocol/Universal 2-factor framework

1 Scope

The application layer protocol in this Recommendation defines the requirements for transport

protocols. Each transport binding defines the details of how such transport layer connections should

be set up, in a manner that meets the requirements of the application layer protocol.

2 References

The following ITU-T Recommendations and other references contain provisions which, through

reference in this text, constitute provisions of this Recommendation. At the time of publication, the

editions indicated were valid. All Recommendations and other references are subject to revision;

users of this Recommendation are therefore encouraged to investigate the possibility of applying the

most recent edition of the Recommendations and other references listed below. A list of the currently

valid ITU-T Recommendations is regularly published. The reference to a document within this

Recommendation does not give it, as a stand-alone document, the status of a Recommendation.

[IETF RFC 2119] IETF RFC 2119 (1997), Key words for use in RFCs to Indicate Requirement

Levels. <https://tools.ietf.org/html/rfc2119 >

[IETF RFC 5480] IETF RFC 5480 (2009), Elliptic Curve Cryptography Subject Public Key

Information. <https://tools.ietf.org/html/rfc5480>

[IETF RFC 7049] IETF RFC 7049 (2013), Concise Binary Object Representation (CBOR).
<https://tools.ietf.org/html/rfc7049>

[U2FRawMsgs] Balfanz, D. et al., (2017), FIDO U2F Raw Message Formats v1.0.
<https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-raw-message-formats-v1.2-ps-
20170411.html>

[WebAuthN] Dirk Balfanz; Alexei Czeskis; Jeff Hodges; J.C. Jones; Michael Jones; Akshay

Kumar; Huakai Liao; Rolf Lindemann; Emil Lundberg (2018), Web

Authentication: An API for accessing Public Key Credentials Level 1. 20

March. W3C Candidate Recommendation.
<https://www.w3.org/TR/webauthn/>

3 Definitions

None.

4 Abbreviations and acronyms

This Recommendation uses the following abbreviations and acronyms:

AAGUID Authenticator Attestation Globally Unique Identifier

AES Advanced Encryption Standard

APDU Application Protocol Data Unit

API Application Programming Interface

BLE Bluetooth Low Energy

CBOR Concise Binary Object Representation

CID Channel Identifier

https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc5480
https://tools.ietf.org/html/rfc7049
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-raw-message-formats-v1.2-ps-20170411.html
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-raw-message-formats-v1.2-ps-20170411.html
https://www.w3.org/TR/webauthn/
https://www.w3.org/TR/webauthn/
https://www.w3.org/TR/webauthn/

2 Rec. ITU-T X.1278 (11/2018)

COSE CBOR Object Signing and Encryption

CTAP Client to Authenticator Protocol

ECDH Elliptic Curve Diffie-Hellman

GATT Generic Attribute profile

HID Human Interface Device

HMAC Hash-based Message Authentication Code

JSON JavaScript Object Notation

LED Light Emitting Diode

LTK Long-Term link Key

MTU Maximum Transmission Unit

NFC Near-Field Communication

PKCS Public Key Cryptography Standards

RP Relying Party

RPA Resolvable Private Address

U2F Universal Two Factor

RPID Relying Party Identity

USB Universal Serial Bus

UUID Universally Unique Identifier

UX User Experience

5 Conventions

5.1 Conformance

All authoring guidelines, diagrams, examples, and notes in this Recommendation are non-normative.

Everything else in this Recommendation is normative.

The key words must, must not, required, should, should not, recommended, may and optional in this

Recommendation are to be interpreted as described in [IETF RFC 2119].

6 Overview

The client to authenticator protocol is intended to be used in scenarios where a user interacts with a

relying party (a website or native app) on a platform (e.g., a PC) which prompts the user to interact

with an external authenticator (e.g., a smartphone).

In order to provide evidence of user interaction, an external authenticator implementing this protocol

is expected to have a mechanism to obtain a user gesture. Possible examples of user gestures include,

a consent button, password, PIN, biometric or a combination of these.

Prior to executing this protocol, the client/platform (referred to as host hereafter) and external

authenticator (referred to as authenticator hereafter) must establish a confidential and mutually

authenticated data transport channel. This Recommendation does not specify the details of how such

a channel is established, nor how transport layer security must be achieved.

 Rec. ITU-T X.1278 (11/2018) 3

7 Relationship to other specifications

This Recommendation is part of the FIDO2 project which includes this client to authenticator protocol

(CTAP) and the [b-FIDOSrvrGuid] specifications, and is related to the W3C [WebAuthN]

specification. This Recommendation refers to two CTAP protocol versions:

1) The CTAP1/U2F protocol, which is defined by the U2F Raw Messages specification

[U2FRawMsgs]. CTAP1/U2F messages are recognizable by their APDU-like binary

structure. CTAP1/U2F may also be referred to as CTAP 1.2 or U2F 1.2. The latter was the

U2F specification version used as the basis for several portions of this Recommendation.

Authenticators implementing CTAP1/U2F are typically referred to as U2F authenticators or

CTAP1 authenticators.

2) The CTAP2 protocol, whose messages are encoded in the CTAP2 canonical CBOR encoding

form. Authenticators implementing CTAP2 are referred to as CTAP2 authenticators, FIDO2

authenticators, or WebAuthn authenticators.

Both CTAP1 and CTAP2 share the same underlying transport, that is, the universal serial bus (USB)

human interface device (HID), near-field communication (NFC), and Bluetooth smart/Bluetooth low

energy technology (BLE).

The [b-U2FUsbHid], [b-U2FNfc], [b-U2FBle] and [U2FRawMsgs] specifications, specifically, are

superseded by this Recommendation.

Occasionally, the term "CTAP" may be used without clarifying whether it is referring to CTAP1 or

CTAP2. In such cases, it should be understood as referring to the entirety of this Recommendation or

portions of this Recommendation that are not specific to either CTAP1 or CTAP2. For example, some

error messages begin with the term "CTAP" without clarifying whether they are CTAP1- or CTAP2-

specific because they are applicable to both CTAP protocol versions. CTAP protocol-specific error

messages are prefixed with either "CTAP1" or "CTAP2" as appropriate.

Using CTAP2 with CTAP1/U2F authenticators is defined in clause 12.

8 Protocol structure

This protocol is specified in three parts as follows.

• Authenticator API: At this level of abstraction, each authenticator operation is defined

similarly to an application programming interface (API) call. It accepts input parameters and

returns either an output or error code. Note that this API level is conceptual and does not

represent actual APIs. The actual APIs will be provided by each implementing platform.

• Message encoding: In order to invoke a method in the authenticator API, the host must

construct and encode a request and send it to the authenticator over the chosen transport

protocol. The authenticator will then process the request and return an encoded response.

• Transport-specific binding: Requests and responses are conveyed to external authenticators

over specific transport (e.g., USB, NFC, Bluetooth). For each transport technology, message

bindings are specified for this protocol.

This Recommendation specifies all three of the above parts for external FIDO2 authenticators.

9 Protocol overview

The general protocol between a platform and an authenticator is as follows:

1) The platform establishes the connection with the authenticator.

2) The platform gets information about the authenticator using the authenticatorGetInfo

command which helps it determine the capabilities of the authenticator.

4 Rec. ITU-T X.1278 (11/2018)

3) The platform sends a command for an operation if the authenticator is capable of supporting

it.

4) The authenticator replies with response data or error.

10 Authenticator API

Each operation in the authenticator API can be performed independently of the others, and all

operations are asynchronous. The authenticator may enforce a limit on outstanding operations to limit

resource usage. In this case, the authenticator is expected to return a busy status and the host is

expected to retry the operation later. Additionally, this protocol does not enforce in-order or reliable

delivery of requests and responses. If these properties are desired, they must be provided by the

underlying transport protocol or implemented at a higher layer by applications.

Note that this API level is conceptual and does not represent actual APIs. The actual APIs will be

provided by each implementing platform.

The authenticator API has the following methods and data structures.

10.1 authenticatorMakeCredential (0x01)

This method is invoked by the host to request generation of a new credential in the authenticator. It

takes the following input parameters (Table 1), which explicitly correspond to those defined in the

authenticatorMakeCredential operation section of the web authentication specification:

Table 1 – authenticatorMakeCredential input parameters

Parameter name Data type Required? Definition

clientDataHash Byte array Required Hash of the ClientData

contextual binding specified by

host. See [WebAuthN].

rp PublicKeyCredentialRpEntity Required This

PublicKeyCredentialRpEntity

data structure describes a relying

party with which the new public

key credential will be associated.

It contains the relying party

identifier, (optionally) a human-

friendly RP name, and

(optionally) a serialized URL

pointing to an RP icon image.

The RP name is to be used by

the authenticator when

displaying the credential to the

user for selection and usage

authorization.

user PublicKeyCredentialUserEntity Required This

PublicKeyCredentialUserEntity

data structure describes the user

account to which the new public

key credential will be associated

at the RP. It contains an RP-

specific user account identifier,

(optionally) a user name,

(optionally) a user display name,

and (optionally) a URL pointing

 Rec. ITU-T X.1278 (11/2018) 5

Table 1 – authenticatorMakeCredential input parameters

Parameter name Data type Required? Definition

to an image (of a user avatar, for

example). The authenticator

associates the created public key

credential with the account

identifier, and may also associate

any or all of the user name, user

display name, and image data

(pointed to by the URL, if any).

pubKeyCredParams CBOR array Required A sequence of CBOR maps

consisting of pairs of

PublicKeyCredentialType (a

string) and cryptographic

algorithm (a positive or negative

integer), where algorithm

identifiers are values that should

be registered in the IANA COSE

Algorithms registry [b-IANA-

COSE]. This sequence is ordered

from most preferred (by the RP)

to least preferred.

excludeList Sequence of

PublicKeyCredentialDescriptors

Optional A sequence of

PublicKeyCredentialDescriptor

structures, as specified in

[WebAuthN]. The authenticator

returns an error if the

authenticator already contains

one of the credentials

enumerated in this sequence.

This allows RPs to limit the

creation of multiple credentials

for the same account on a single

authenticator.

extensions CBOR map of extension

identifier → authenticator

extension input values

Optional Parameters to influence

authenticator operation, as

specified in [WebAuthN]. These

parameters might be

authenticator specific.

options Sequence of authenticator

options

Optional Parameters to influence

authenticator operation, as

specified in the Table 2.

pinAuth Byte array Optional First 16 bytes of HMAC-SHA-

256 of clientDataHash using

pinToken which platform got

from the authenticator: HMAC-
SHA-256(pinToken,

clientDataHash).

pinProtocol Unsigned integer Optional PIN protocol version chosen by

the client

The values in Table 2 are defined for use in the options parameter. All options are Booleans.

6 Rec. ITU-T X.1278 (11/2018)

Table 2 – authenticatorMakeCredential options parameter values

Key Default

value

Definition

rk false resident key: instructs the authenticator to store the key material on the device.

uv false user verification: instructs the authenticator to require a gesture that verifies the user

to complete the request. Examples of such gestures are fingerprint scan or a PIN.

When such a request is received, the authenticator performs the following procedure:

1) If the excludeList parameter is present and contains a credential ID that is present on this

authenticator, terminate this procedure and return error code

CTAP2_ERR_CREDENTIAL_EXCLUDED.

2) If the pubKeyCredParams parameter does not contain a valid COSEAlgorithmIdentifier

value that is supported by the authenticator, terminate this procedure and return error code

CTAP2_ERR_UNSUPPORTED_ALGORITHM.

3) If the options parameter is present, process all options and if any of the requested options

cannot be satisfied, terminate this procedure and return the

CTAP2_ERR_OPTION_NOT_SUPPORTED error.

4) Optionally, if the extensions parameter is present, process any extensions that this

authenticator supports. Authenticator extension outputs generated by the authenticator

extension processing are returned in the authenticator data.

5) If the pinAuth parameter is present and pinProtocol is 1, verify it by matching it against the

first 16 bytes of HMAC-SHA-256 of clientDataHash parameter using pinToken: HMAC-SHA-

256(pinToken, clientDataHash).

o If the verification succeeds, set the "uv" bit to 1 in the response.

o If the verification fails, return CTAP2_ERR_PIN_AUTH_INVALID error.

 If the pinAuth parameter is not present and clientPin is set on the authenticator, return

CTAP2_ERR_PIN_REQUIRED error.

6) If the authenticator has a display, show the items contained within the user and rp parameter

structures to the user. Alternatively, request user interaction in an authenticator-specific way

(e.g., flash the light emitting diode (LED) light). Request permission to create a credential.

If the user declines permission, return the CTAP2_ERR_OPERATION_DENIED error.

7) Generate a new credential key pair for the algorithm specified.

8) If "rk" in the options parameter is set to true, the following should be carried out:

o If a credential for the same RP ID and account ID already exists on the authenticator,

overwrite that credential.

o Store the user parameter along the newly-created key pair.

o If the authenticator does not have enough internal storage to persist the new credential,

return CTAP2_ERR_KEY_STORE_FULL.

9) Generate an attestation statement for the newly-created key using clientDataHash.

Upon success, the authenticator returns an attestation object (see Table 3) in its response as defined

in [WebAuthN]:

 Rec. ITU-T X.1278 (11/2018) 7

Table 3 – Attestation object

Member

name
Data type Required? Definition

authData Sequence of bytes Required The authenticator data object.

fmt String Required The attestation statement format

identifier.

attStmt Sequence of bytes, the structure

of which depends on the

attestation statement format

identifier

Required
The attestation statement, whose format is

identified by the "fmt" object member.

The client treats it as an opaque object.

10.2 authenticatorGetAssertion(0x02)

This method is used by a host to request cryptographic proof of user authentication as well as user

consent to a given transaction, using a previously generated credential that is bound to the

authenticator and relying party identifier. It takes the following input parameters as shown in Table 4,

which explicitly correspond to those defined in the authenticatorGetAssertion operation section of

the Web Authentication specification [WebAuthN]:

Table 4 – authenticatorGetAssertion input parameters

Parameter

name
Data type Required? Definition

rpId String Required Relying party identifier. See

[WebAuthN].

clientDataHash Byte array Required Hash of the serialized client data

collected by the host. See

[WebAuthN].

allowList Sequence of

PublicKeyCredentialDescriptors

Optional A sequence of

PublicKeyCredentialDescriptor

structures, each denoting a

credential, as specified in

[WebAuthN]. The authenticator is

requested to only generate an

assertion using one of the denoted

credentials.

extensions CBOR map of extension

identifier → authenticator

extension input values

Optional Parameters to influence

authenticator operation. These

parameters might be authenticator

specific.

options Sequence of authenticator

options

Optional Parameters to influence

authenticator operation, as specified

in Table 5.

8 Rec. ITU-T X.1278 (11/2018)

Table 4 – authenticatorGetAssertion input parameters

Parameter

name
Data type Required? Definition

pinAuth Byte array Optional The first 16 bytes of HMAC-SHA-

256 of clientDataHash using

pinToken which the platform

obtained from the authenticator:
HMAC-SHA-256(pinToken,

clientDataHash).

pinProtocol Unsigned integer Optional PIN protocol version selected by the

client.

The values in Table 5 are defined for use in the options parameter (All options are Booleans.

Table 5 – authenticatorGetAssertion options parameter values

Key Default

value

Definition

up true User presence: instructs the authenticator to require user consent to complete the

operation.

uv false User verification: instructs the authenticator to require a gesture that identifies the user

in order to complete the request. Examples of such gestures are fingerprint scan or a

PIN.

When such a request is received, the authenticator performs the following procedure:

1) Locate all credentials that are eligible for retrieval under the specified criteria:

o If an allowList is present and is non-empty, locate all denoted credentials present on this

authenticator and bound to the specified rpId.

o If an allowList is not present, locate all credentials that are present on this authenticator

and bound to the specified rpId.

2) If pinAuth parameter is present and pinProtocol is 1, verify it by matching it against the first

16 bytes of HMAC-SHA-256 of clientDataHash parameter using pinToken: HMAC-SHA-

256(pinToken, clientDataHash).

o If the verification succeeds, set the "uv" bit to 1 in the response.

o If the verification fails, return CTAP2_ERR_PIN_AUTH_INVALID error.

 If pinAuth parameter is not present and clientPin has been set on the authenticator, set the

"uv" bit to 0 in the response.

3) Optionally, if the extensions parameter is present, process any extensions that this

authenticator supports. Authenticator extension outputs generated by the authenticator

extension processing are returned in the authenticator data.

4) Collect user consent if required. This step must happen before the following steps due to

privacy reasons (i.e., authenticator cannot disclose existence of a credential until the user

interacted with the device):

 Rec. ITU-T X.1278 (11/2018) 9

o If the "uv" option was specified and set to true:

 If the device does not support user-identifiable gestures, return the

CTAP2_ERR_OPTION_NOT_SUPPORTED error.

 Collect a user-identifiable gesture. If gesture validation fails, return the

CTAP2_ERR_OPERATION_DENIED error.

o If the "up" option was specified and set to true, collect the user's consent.

 If no consent is obtained and a timeout occurs, return the

CTAP2_ERR_OPERATION_DENIED error.

5) If no credentials were located in step 1, return CTAP2_ERR_NO_CREDENTIALS.

6) If only one credential was located in step 1, go to step 9.

7) Order the credentials by the time they were created. The first credential is the most recent

credential that was created.

8) If the authenticator does not have a display:

o Remember the authenticatorGetAssertion parameters.

o Create a counter and set it to the total number of credentials.

o Start a timer. This is used during authenticatorGetNextAssertion command.

o Update the response to include the first credential's publicKeyCredentialUserEntity

information and numberOfCredentials.

9) If the authenticator has a display:

o Display all these credentials to the user, using their friendly name along with other stored

account information.

o Also, display the rpId of the requester (specified in the request) and ask the user to select

a credential.

o If the user declines to select a credential or takes too long (as determined by the

authenticator), terminate this procedure and return the

CTAP2_ERR_OPERATION_DENIED error.

10) Sign the clientDataHash along with authData with the selected credential, using the structure

specified in [WebAuthN].

Upon success, the authenticator returns the structure outlined in Table 6 in its response:

Table 6 – authenticator response structure

Member name Data type Required? Definition

credential PublicKeyCredentialDescriptor Optional PublicKeyCredentialDescriptor

structure containing the credential

identifier whose private key was

used to generate the assertion.

May be omitted if the allowList

has exactly one credential.

authData Byte array Required The signed-over contextual

bindings made by the

authenticator, as specified in

[WebAuthN].

signature Byte array Required The assertion signature produced

by the authenticator, as specified

in [WebAuthN].

10 Rec. ITU-T X.1278 (11/2018)

Table 6 – authenticator response structure

Member name Data type Required? Definition

user PublicKeyCredentialUserEntity Required PublicKeyCredentialUserEntity

structure containing the user

account information. For single

account per RP case, authenticator

returns "id" field to the platform

which will be returned to the

[WebAuthN] layer. For multiple

accounts per RP case, where the

authenticator does not have a

display, authenticator returns "id"

as well as other fields to the

platform. The platform will use

this information to show the

account selection UX to the user

and for the user selected account,

it will ONLY return "id" back to

the [WebAuthN] layer and discard

other user details.

numberOfCredentials Integer Optional Total number of account

credentials for the RP. This

member is required when more

than one account for the RP and

the authenticator does not have a

display. Omitted when returned

for the

authenticatorGetNextAssertion

method.

10.3 authenticatorGetNextAssertion (0x08)

The client calls this method when the authenticatorGetAssertion response contains the

numberOfCredentials member and the number of credentials exceeds 1. This method is used to obtain

the next per-credential signature for a given authenticatorGetAssertion request.

This method takes no arguments as it always follows a call to authenticatorGetAssertion or

authenticatorGetNextAssertion.

When such a request is received, the authenticator performs the following procedure:

1) If the authenticator does not remember any authenticatorGetAssertion parameters, return

CTAP2_ERR_NOT_ALLOWED.

2) If the credential counter is 0, return CTAP2_ERR_NOT_ALLOWED.

3) If timer since the last call to authenticatorGetAssertion/authenticatorGetNextAssertion is

greater than 30 seconds, discard the current authenticatorGetAssertion state and return

CTAP2_ERR_NOT_ALLOWED.

4) Sign the clientDataHash with the credential using the credential counter as index (e.g.,

credentials[n] assuming 1-based array), using the structure specified in [WebAuthN].

5) Reset the timer.

6) Decrement the credential counter.

 Rec. ITU-T X.1278 (11/2018) 11

Upon success, the authenticator returns the same structure as returned by the

authenticatorGetAssertion method. The numberOfCredentials member is omitted.

10.4 Client logic

If the client receives numberOfCredentials member value exceeding 1 in response to the

authenticatorGetAssertion call:

1) Call authenticatorGetNextAssertion numberOfCredentials minus 1 times.

o Make sure 'rp' member matches the current request.

o Remember the 'response' member.

o Add credential user information to the 'credentialInfo' list.

2) Draw a user experience (UX) that displays credentialInfo list.

3) Let the user select which credential to use.

4) Return the value of the 'response' member associated with the user choice.

5) Discard all other responses.

10.5 authenticatorCancel (0x03)

Using this method, the host can request the authenticator to cancel all ongoing operations and return

to a ready state. It takes no input parameters and returns success or failure.

10.6 authenticatorGetInfo (0x04)

Using this method the host can request that the authenticator report a list of all supported protocol

versions, supported extensions, authenticator attestation globally unique identifier (AAGUID) of the

device, and its capabilities. This method takes no inputs.

Upon success, the authenticator returns the structure outlined in Table 7.

Table 7 – authenticatorGetInfo return structure

Member

name

Data type Required? Definition

versions Sequence of

strings

Required List of supported versions

extensions Sequence of

strings

Optional List of supported extensions

aaguid Byte string Required The claimed AAGUID. 16 bytes in length and encoded

the same as MakeCredential AuthenticatorData, as

specified in [WebAuthN].

options Map Optional List of supported options

maxMsgSize Unsigned

integer

Optional Maximum message size supported by the authenticator

pinProtocols Array of

unsigned

integers

Optional List of supported PIN protocol versions

All options are in the form key-value pairs with string IDs and Boolean values. When an option is not

present, the default is applied as outlined in Table 8 with the following list of supported options:

12 Rec. ITU-T X.1278 (11/2018)

Table 8 – authenticatorGetInfo supported options

Option

ID

Definition Default

plat Platform device: indicates that the device is attached to the client and therefore

cannot be removed and used on another client.

false

rk Resident key: indicates that the device is capable of storing keys on the device

itself and therefore can satisfy the authenticatorGetAssertion request with

allowList parameter not specified or empty.

false

clientPin Client PIN: If present and set to true, it indicates that the device is capable of

accepting a PIN from the client and PIN has been set. If present and set to

false, it indicates that the device is capable of accepting a PIN from the client

and PIN has not yet been set. If absent, it indicates that the device is not

capable of accepting a PIN from the client.

Not

supported

up User presence: indicates that the device is capable of testing user presence as

part of the authenticatorGetAssertion request.

true

uv User verification: indicates that the device is capable of verifying the user as

part of the authenticatorGetAssertion request.

false

10.7 authenticatorClientPIN (0x06)

One of the design goals of this command is to have a minimum amount of burden on the authenticator

and to not send an actual encrypted PIN to the authenticator in normal authenticator usage scenarios

to have more security. Consequently, design only sends the PIN in encrypted format while setting or

changing a PIN. On normal PIN usage scenarios, design uses randomized pinToken which is

generated at every power cycle.

This command is used by the platform to establish key agreement with the authenticator and getting

sharedSecret, setting a new PIN on the authenticator, changing existing PIN on the authenticator and

getting "pinToken" from the authenticator which can be used in subsequent

authenticatorMakeCredential and authenticatorGetAssertion operations.

It takes the input parameters outlined in Table 9:

Table 9 – authenticatorClientPIN input parameters

Parameter name Data type Required? Definition

pinProtocol Integer Required PIN protocol version chosen by the client. For this

version of the spec, this shall be the number 1.

subCommand Integer Required The authenticator client PIN sub-command currently

being requested

keyAgreement COSE_KEY Optional Public key of platformKeyAgreementKey

pinAuth Byte array Optional The first 16 bytes of HMAC-SHA-256 of encrypted

contents using sharedSecret. See 'Setting a new PIN',

'Changing existing PIN' and 'Getting pinToken' from

the authenticator for more details.

newPinEnc Byte array Optional Encrypted new PIN using sharedSecret. Encryption is

done over UTF-8 representation of new PIN.

pinHashEnc Byte array Optional Encrypted first 16 bytes of SHA-256 of PIN using

sharedSecret.

 Rec. ITU-T X.1278 (11/2018) 13

Table 9 – authenticatorClientPIN input parameters

Parameter name Data type Required? Definition

getKeyAgreement Boolean Optional Asks authenticator to return public key of its

authenticatorKeyAgreementKey for getting

SharedSecret from the authenticator.

getRetries Boolean Optional Asks authenticator to return number of PIN attempts

remaining before lockout.

The list of sub commands for PIN Protocol Version 1 are given in Table 10.

Table 10 – sub commands for PIN Protocol Version 1

Sub-command name Sub-command number

Get Retries 1

Get Key Agreement 2

Set PIN 3

Change PIN 4

Get PIN token 5

Upon success, the authenticator returns the following structure in its response (see Table 11).

Table 11 – authenticatorClientPIN response structure

Parameter

name

Data type Required? Definition

KeyAgreement COSE_KEY Optional Authenticator key agreement public key in COSE_KEY

format. This will be used to establish a sharedSecret

between platform and the authenticator.

pinToken Byte array Optional Encrypted pinToken using sharedSecret to be used in

subsequent authenticatorMakeCredential and

authenticatorGetAssertion operations.

retries Unsigned

integer

Optional Number of PIN attempts remaining before lockout. This

is optionally used to show in UI when collecting the PIN

in 'Setting a new PIN', 'Changing existing PIN' and

'Getting pinToken' from the authenticator flows.

10.7.1 Client PIN support requirements

• The platform has to fulfil the following PIN support requirements while gathering input from

the user:

o Minimum PIN Length: 4 Unicode characters

o Maximum PIN Length: UTF-8 representation must not exceed 255 bytes

• The authenticator has to fulfil the following PIN support requirements:

o Minimum PIN Length: 4 bytes

o Maximum PIN Length: 255 bytes

o Maximum incorrect PIN retry count: 8

 Each correct PIN entry resets retries counter

14 Rec. ITU-T X.1278 (11/2018)

 Once the authenticator reaches the maximum incorrect PIN retry count, the

authenticator has to be reset before any further operations requiring the use of the

PIN.

o PIN storage on the device has to be of the same or better security assurances as of private

keys on the device.

NOTE – Authenticators can implement minimum PIN lengths that are longer than 4 characters.

10.7.2 Authenticator configuration operations upon power up

The authenticator generates the following configuration at power up. This is to have less burden on

the authenticator as a key agreement is an expensive operation. This also ensures randomness across

power cycles.

Below are the operations the authenticator performs on each power up:

• Generate "authenticatorKeyAgreementKey":

o Generate an ECDH P-256 key pair called "authenticatorKeyAgreementKey" denoted by

(a, aG) where "a" denotes the private key and "aG" denotes the public key.

 See [b-RFC 6090] Section 4.1 and [b-SP800-56A] for more Elliptic Curve Diffie-

Hellman (ECDH) key agreement protocol details.

• Generate "pinToken":

o Generate a random integer of the length, which is a multiple of 16 bytes (AES block

length).

o "pinToken" is used so that there is minimum burden on the authenticator and the platform

does not have to send actual encrypted PIN to the authenticator in normal authenticator

usage scenarios. This also provides more security as the actual PIN is not being sent, not

even in encrypted form. "pinToken" will be given to the platform upon verification of

the PIN to be used in subsequent authenticatorMakeCredential and

authenticatorGetAssertion operations.

10.7.3 Getting sharedSecret from the authenticator

The platform sets the ECDH key agreement to arrive at sharedSecret to be used only during that

transaction. The authenticator does not have to keep a list of sharedSecrets for all active sessions. If

there are subsequent authenticatorClientPIN transactions, a new sharedSecret is generated each time.

The platform performs the following operations to arrive at the sharedSecret:

• The platform sends authenticatorClientPIN command by setting getKeyAgreement

parameter to true.

• The platform optionally can set getRetries parameter to true to get the retries count. Retries

count is the number of attempts remaining before lockout so when the device is near the

authenticator lockout stage, the platform can optionally warn the user to be careful while

entering PIN.

• The authenticator replies with the public key of authenticatorKeyAgreementKey, "aG".

o The authenticator optionally also sends retires count if getRetries parameter is set to true.

• The platform generates "platformKeyAgreementKey":

o The platform generates ECDH P-256 key pair called "platformKeyAgreementKey"

denoted by (b, bG) where "b" denotes the private key and "bG" denotes the public key.

• The platform generates "sharedSecret"

o The platform generates "sharedSecret" using SHA-256 over ECDH key agreement

protocol using private key of platformKeyAgreementKey, "b" and public key of

authenticatorKeyAgreementKey, "aG": SHA-256((baG).x).

 Rec. ITU-T X.1278 (11/2018) 15

 SHA-256 is done over only "x" curve point of baG.

 See [b-RFC 6090] Section 4.1 and appendix (C.2) of [b-SP800-56A] for more ECDH

key agreement protocol details and key representation.

10.7.4 Setting a new PIN

The following operations are performed to set up a new PIN:

• The platform gets sharedSecret from the authenticator.

• The platform collects new PIN ("newPinUnicode") from the user in Unicode format.

o The platform checks the Unicode character length of "newPinUnicode" against the

minimum 4 Unicode character requirement and returns

CTAP2_ERR_PIN_POLICY_VIOLATION if the check fails.

o Let "newPin" be the UTF-8 representation of "newPinUnicode".

 The platform checks the byte length of "newPin" against the max UTF-8

representation limit of 255 bytes and returns

CTAP2_ERR_PIN_POLICY_VIOLATION if the check fails.

• The platform sends authenticatorClientPIN command with the following parameters to the

authenticator:

o keyAgreement: public key of platformKeyAgreementKey, "bG".

o newPinEnc: Encrypted newPin using sharedSecret: AES256-CBC(sharedSecret,

IV=0, newPin).

 During encryption, newPin is padded with trailing 0x00 bytes and is a minimum of

64 bytes length. This is to prevent a leak of PIN length while communicating to the

authenticator. There is no PKCS #7 padding used in this scheme.

o pinAuth: LEFT(HMAC-SHA-256(sharedSecret, newPinEnc), 16).

 The platform sends the first 16 bytes of the HMAC-SHA-256 result.

• The authenticator performs the following operations upon receiving the request:

o The authenticator generates "sharedSecret": SHA-256((abG).x) using the private key of

authenticatorKeyAgreementKey, "a" and the public key of platformKeyAgreementKey,

"bG".

 SHA-256 is done only over the "x" curve point of "abG"

 See [b-RFC 6090] section 4.1 and Appendix C.2 of [b-SP800-56A] for more ECDH

key agreement protocol details and key representation.

o The authenticator verifies pinAuth by generating LEFT(HMAC-SHA-256(sharedSecret,

newPinEnc), 16) and matching against input pinAuth parameter.

 If pinAuth verification fails, authenticator returns

CTAP2_ERR_PIN_AUTH_INVALID error.

o The authenticator decrypts newPinEnc using above "sharedSecret" producing newPin

and checks newPin length against a minimum PIN length of 4 characters.

 The decrypted padded newPin should be of at least 64 bytes length and authenticator

determines actual PIN length by looking for first 0x00 byte which terminates the

PIN.

 If minimum PIN length check fails, the authenticator returns

CTAP2_ERR_PIN_POLICY_VIOLATION error.

 The authenticator may have additional constraints for the PIN policy. The current

specification only enforces a minimum length of 4 characters.

16 Rec. ITU-T X.1278 (11/2018)

o The authenticator stores LEFT(SHA-256(newPin), 16) on the device and returns

CTAP2_OK.

10.7.5 Changing existing PIN

The following operations are performed to change an existing PIN:

• The platform gets sharedSecret from the authenticator.

• The platform collects current PIN ("curPinUnicode") and new PIN ("newPinUnicode") from

the user.

o The platform checks the Unicode character length of "newPinUnicode" against the

minimum 4 Unicode character requirement and returns

CTAP2_ERR_PIN_POLICY_VIOLATION if the check fails.

o Let "curPin" be the UTF-8 representation of "curPinUnicode" and "newPin" be the

UTF-8 representation of "newPinUnicode"

 The platform checks the byte length of "curPin" and "newPin" against the max

UTF-8 representation limit of 255 bytes and returns

CTAP2_ERR_PIN_POLICY_VIOLATION if the check fails.

• The platform sends authenticatorClientPIN command with the following parameters to the

authenticator:

• keyAgreement: public key of platformKeyAgreementKey, "bG".

• pinHashEnc: Encrypted first 16 bytes of SHA-256 hash of curPin using sharedSecret:

AES256-CBC(sharedSecret, IV=0, LEFT(SHA-256(curPin),16)).

o newPinEnc: Encrypted "newPin" using sharedSecret: AES256-CBC(sharedSecret,

IV=0, newPin).

 During encryption, newPin is padded with trailing 0x00 bytes and is a minimum of

64 bytes length. This is to prevent a leak of PIN length while communicating to the

authenticator. There is no PKCS #7 padding used in this scheme.

o pinAuth: LEFT(HMAC-SHA-256(sharedSecret, newPinEnc || pinHashEnc), 16).

 The platform sends the first 16 bytes of the HMAC-SHA-256 result.

• The authenticator performs the following operations upon receiving the request:

o The authenticator generates "sharedSecret": SHA-256((abG).x) using the private key of

authenticatorKeyAgreementKey, "a" and the public key of platformKeyAgreementKey,

"bG".

 SHA-256 is done only over the "x" curve point of "abG"

 See [b-RFC 6090] section 4.1 and Appendix C.2 of [b-SP800-56A] for more ECDH

key agreement protocol details and key representation.

o The authenticator verifies pinAuth by generating LEFT(HMAC-SHA-256(sharedSecret,

newPinEnc || pinHashEnc), 16) and matching against input pinAuth parameter.

 If pinAuth verification fails, authenticator returns

CTAP2_ERR_PIN_AUTH_INVALID error.

o The authenticator decrypts pinHashEnc and verifies against its internal stored LEFT(SHA-

256(curPin), 16).

 If a mismatch is detected the authenticator generate new

"authenticatorKeyAgreementKey" first and then returns

CTAP2_ERR_PIN_INVALID error.

 Rec. ITU-T X.1278 (11/2018) 17

 Generate a new ECDH P-256 key pair called "authenticatorKeyAgreementKey"

denoted by (a, aG) where "a" denotes the private key and "aG" denotes the

public key.

 See [b-RFC 6090] section 4.1 and [b-SP800-56A] for more ECDH key

agreement protocol details.

o The authenticator decrypts newPinEnc using the above "sharedSecret" producing newPin

and checks newPin length against a minimum PIN length of 4 characters.

 The decrypted padded newPin should be of at least 64 bytes length and authenticator

determines actual PIN length by looking for first 0x00 byte which terminates the

PIN.

 If the minimum PIN length check fails, the authenticator returns

CTAP2_ERR_PIN_POLICY_VIOLATION error.

 The authenticator may have additional constraints for PIN policy. The current

specification only enforces a minimum length of 4 characters.

o The authenticator stores LEFT(SHA-256(newPin), 16) on the device and returns

CTAP2_OK.

10.7.6 Getting pinToken from the authenticator

This step only has to be performed once for the lifetime of the authenticator/platform handle. Getting

pinToken once provides high security without any additional roundtrips every time (except for the

first key-agreement phase) and its overhead is minimal.

The following operations are performed to get the pinToken which will be used in subsequent

authenticatorMakeCredential and authenticatorGetAssertion operations:

• The platform gets sharedSecret from the authenticator.

• The platform collects PIN from the user.

• The platform sends authenticatorClientPIN command with the following parameters to the

authenticator:

o keyAgreement: public key of platformKeyAgreementKey, "bG".

o pinHashEnc: AES256-CBC(sharedSecret, IV=0, LEFT(SHA-256(PIN),16)).

• The authenticator performs the following operations upon receiving the request:

o The authenticator generates "sharedSecret": SHA-256((abG).x) using the private key of

authenticatorKeyAgreementKey, "a" and the public key of platformKeyAgreementKey,

"bG".

 SHA-256 is done over only "x" curve point of "abG"

 See [b-RFC 6090] Section 4.1 and appendix (C.2) of [b-SP800-56A] for more ECDH

key agreement protocol details and key representation.

o The authenticator decrypts pinHashEnc and verifies against its internal stored LEFT(SHA-

256(curPin), 16).

 If a mismatch is detected the authenticator generate new

"authenticatorKeyAgreementKey" first and then returns

CTAP2_ERR_PIN_INVALID error.

 Generate a new ECDH P-256 key pair called "authenticatorKeyAgreementKey"

denoted by (a, aG) where "a" denotes the private key and "aG" denotes the

public key.

 See [b-RFC 6090] section 4.1 and [b-SP800-56A] for more ECDH key

agreement protocol details.

18 Rec. ITU-T X.1278 (11/2018)

o The authenticator returns the encrypted pinToken using "sharedSecret": AES256-

CBC(sharedSecret, IV=0, pinToken).

 pinToken should be a multiple of 16 bytes (AES block length) without any padding

or IV. There is no PKCS #7 padding used in this scheme.

10.7.7 Using pinToken

The platform has the flexibility to manage the lifetime of pinToken based on the scenario; however,

it should get rid of the pinToken as soon as possible when not required. The authenticator also can

expire the pinToken based on certain conditions like changing a PIN, timeout happening on the

authenticator, machine waking up from a 'suspend' state, etc. If the pinToken has expired, the

authenticator will return CTAP2_ERR_PIN_TOKEN_EXPIRED and the platform can act on the

error accordingly.

10.7.7.1 Using pinToken in authenticatorMakeCredential

The following operations are performed to use pinToken in authenticatorMakeCredential API:

• The platform gets pinToken from the authenticator.

• The platform sends authenticatorMakeCredential command with the following additional

optional parameter:

o pinAuth: LEFT(HMAC-SHA-256(pinToken, clientDataHash), 16).

 The platform sends the first 16 bytes of the HMAC-SHA-256 result.

• The authenticator verifies pinAuth by generating LEFT(HMAC-SHA-256(pinToken,

clientDataHash), 16) and matching against input pinAuth parameter.

• The authenticator returns authenticatorMakeCredential response with "uv" bit set to 1.

If platform sends zero length pinAuth, the authenticator needs to wait for user touch and then returns

either CTAP2_ERR_PIN_NOT_SET if pin is not set or CTAP2_ERR_PIN_INVALID if pin has been

set. This is done for the case where multiple authenticators are attached to the platform and the

platform wants to enforce clientPin semantics, but the user has to select which authenticator to send

the pinToken to.

10.7.7.2 Using pinToken in authenticatorGetAssertion

The following operations are performed to use pinToken in authenticatorGetAssertion API:

• The platform gets pinToken from the authenticator.

• The platform sends authenticatorGetAssertion command with the following additional

optional parameter:

o pinAuth: LEFT(HMAC-SHA-256(pinToken, clientDataHash), 16).

• The authenticator verifies pinAuth by generating LEFT(HMAC-SHA-256(pinToken,

clientDataHash), 16) and matching against input pinAuth parameter.

• The authenticator returns authenticatorGetAssertion response with "uv" bit set to 1.

If the platform sends zero length pinAuth, the authenticator needs to wait for user touch and then

returns either CTAP2_ERR_PIN_NOT_SET if pin is not set or CTAP2_ERR_PIN_INVALID if pin

has been set. This is done for the case where multiple authenticators are attached to the platform and

the platform wants to enforce clientPin semantics, but the user has to select which authenticator to

send the pinToken to.

10.7.7.3 Without pinToken in authenticatorGetAssertion

The following operations are performed without using pinToken in authenticatorGetAssertion API:

 Rec. ITU-T X.1278 (11/2018) 19

• The platform sends authenticatorGetAssertion command without pinAuth optional

parameter.

• The authenticator returns authenticatorGetAssertion response with "uv" bit set to 0.

20 Rec. ITU-T X.1278 (11/2018)

Figure 1 – Client pin

 Rec. ITU-T X.1278 (11/2018) 21

10.8 AuthenticatorReset (0x07)

This method is used by the client to reset an authenticator back to a factory default state, invalidating

all generated credentials. In order to prevent accidental trigger of this mechanism, some form of user

approval may be performed on the authenticator itself, meaning that the client will have to poll the

device until the reset has been performed. The actual user flow to perform the reset will vary

depending on the authenticator and it is outside the scope of this Recommendation.

11 Message encoding

Many transport types (e.g., Bluetooth Smart) are bandwidth constrained, and serialization formats

such as JavaScript object notation (JSON) are too heavyweight for such environments. For this

reason, all encoding is done using the concise binary encoding CBOR [IETF RFC 7049].

To reduce the complexity of the messages and the resources required to parse and validate them, all

messages must use canonical CBOR as specified below. All encoders must generate canonical CBOR

without duplicate map keys. All decoders should enforce canonical CBOR and should reject messages

with duplicate map keys. Canonical CBOR for CTAP (CTAP1/U2F and CTAP2) uses the following

rules:

• Integers must be encoded as small as possible.

o 0 to 23 and -1 to -24 must be expressed in the same byte as the major type;

o 24 to 255 and -25 to −256 must be expressed only with an additional uint8_t;

o 256 to 65535 and −257 to −65536 must be expressed only with an additional uint16_t;

o 65536 to 4294967295 and −65537 to −4294967296 must be expressed only with an

additional uint32_t.

• The expression of lengths in major types 2 to 5 must be as short as possible. The rules for

these lengths follow the above rule for integers.

• Indefinite-length items must be made into definite-length items.

• The keys in every map must be sorted from the lowest value to highest. Sorting is performed

on the bytes of the representation of the key data items without paying attention to the 3/5 bit

splitting for major types. The sorting rules are:

o If the major types are different, the one with the lower value in numerical order sorts

earlier.

o If two keys have different lengths, the shorter one sorts earlier.

o If two keys have the same length, the one with the lower value in (byte-wise) lexical

order sorts earlier.

As some authenticators are memory constrained, the depth of nested CBOR structures used by all

message encodings is limited to at most four (4) levels of any combination of CBOR maps and/or

CBOR arrays. Authenticators must support at least 4 levels of CBOR nesting. Clients, platforms and

servers must not use more than 4 levels of CBOR nesting.

Similarly, because some authenticators are memory constrained, the maximum message size

supported by an authenticator may be limited. By default, authenticators must support messages of at

least 1024 bytes. Authenticators may declare a different maximum message size supported using the

maxMsgSize authenticatorGetInfo result parameter. Clients, platforms and servers must not send

messages larger than 1024 bytes unless the authenticator's maxMsgSize indicates support for the

larger message size. Authenticators may return the CTAP2_ERR_REQUEST_TOO_LARGE error if

size or memory constraints are exceeded.

22 Rec. ITU-T X.1278 (11/2018)

If there are map keys that an implementation does not understand, they must be ignored. Note that

this enables additional fields to be used as new features are added without breaking existing

implementations.

Messages from the host to the authenticator are called "commands" and messages from the

authenticator to the host are called "replies". All values are big-endian encoded.

11.1 Commands

All commands are structured as shown in Table 12.

Table 12 – authenticatorReset commands

Name Length Required? Definition

Command value 1 byte Required The value of the command to execute

Command

parameters

variable Optional CBOR [IETF RFC 7049] encoded set of parameters. Some

commands have parameters, while others do not (see

below)

The assigned values for commands and their descriptions are shown in Table 13.

Table 13 – authenticatorReset assigned values

Command name Command value Has parameters?

authenticatorMakeCredential 0x01 yes

authenticatorGetAssertion 0x02 yes

authenticatorCancel 0x03 no

authenticatorGetInfo 0x04 no

authenticatorClientPIN 0x06 yes

authenticatorReset 0x07 no

authenticatorGetNextAssertion 0x08 no

authenticatorVendorFirst 0x40 NA

authenticatorVendorLast 0xBF NA

Command codes in the range between authenticatorVendorFirst and authenticatorVendorLast

may be used for vendor-specific implementations. For example, the vendor may choose to put in

some testing commands. Note that the FIDO client will never generate these commands. All other

command codes are reserved for future use and may not be used.

Command parameters are encoded using a CBOR map (CBOR major type 5). The CBOR map must

be encoded using the definite length variant.

Some commands have optional parameters. Therefore, the length of the parameter map for these

commands may vary. For example, authenticatorMakeCredential may have 4, 5, 6 or 7 parameters,

while authenticatorGetAssertion may have 2, 3, 4 or 5 parameters.

All command parameters are CBOR encoded following the JSON to CBOR conversion procedures

as per the CBOR specification [IETF RFC 7049]. Specifically, parameters that are represented as

 Rec. ITU-T X.1278 (11/2018) 23

DOM objects in the Authenticator API layers (formally defined in the Web API [WebAuthN]) are

converted first to JSON and subsequently to CBOR.

EXAMPLE 1

A PublicKeyCredentialRpEntity DOM object defined as follows:
 var rp = {

 name: "Acme"

 };

would be CBOR encoded as follows:
 a1 # map(1)

 64 # text(4)

 6e616d65 # "name"

 64 # text(4)

 41636d65 # "Acme"

EXAMPLE 2

A PublicKeyCredentialUserEntity DOM object defined as follows:
 var user = {

 id:

Uint8Array.from(window.atob("MIIBkzCCATigAwIBAjCCAZMwggE4oAMCAQIwggGTMII="),

c=>c.charCodeAt(0)),

 icon: "https://pics.acme.com/00/p/aBjjjpqPb.png",

 name: "johnpsmith@example.com",

 displayName: "John P. Smith"

 };

would be CBOR encoded as follows:

 a4 # map(4)

 62 # text(2)

 6964 # "id"

 58 20 # bytes(32)

 3082019330820138a003020102 # userid

 3082019330820138a003020102 # ...

 308201933082 # ...

 64 # text(4)

 69636f6e # "icon"

 7828 # text(40)

 68747470733a2f2f706963732e61636d # "https://pics.acme.com/00/p/aBjjjpqPb.png"

 652e636f6d2f30302f702f61426a6a6a # ...

 707150622e706e67 # ...

 64 # text(4)

 6e616d65 # "name"

 76 # text(22)

 6a6f686e70736d697468406578616d70 # "johnpsmith@example.com"

 6c652e636f6d # ...

 6b # text(11)

 646973706c61794e616d65 # "displayName"

 6d # text(13)

 4a6f686e20502e20536d697468 # "John P. Smith"

EXAMPLE 3

A DOM object that is a sequence of PublicKeyCredentialParameters defined as follows:
 var pubKeyCredParams = [

 {

 type: "public-key",

 alg: -7 // "ES256" as registered in the IANA COSE Algorithms registry

 },

 {

 type: "public-key",

 alg: -257 // "RS256" as registered by WebAuthn

 }

24 Rec. ITU-T X.1278 (11/2018)

];

would be CBOR encoded as:
 82 # array(2)

 a2 # map(2)

 63 # text(3)

 616c67 # "alg"

 26 # -7 (ES256)

 64 # text(4)

 74797065 # "type"

 6a # text(10)

 7075626C69632D6B6579 # "public-key"

 a2 # map(2)

 63 # text(3)

 616c67 # "alg"

 390100 # -257 (RS256)

 64 # text(4)

 74797065 # "type"

 6a # text(10)

 7075626C69632D6B6579 # "public-key"

For each command that contains parameters, the parameter map keys and value types are specified

in Table 14.

Table 14 – parameter map key and value types

Command Parameter name Key Value type

authenticatorMakeCredential clientDataHash 0x01 byte string (CBOR major type 2).

rp 0x02 CBOR definite length map (CBOR major

type 5).

user 0x03 CBOR definite length map (CBOR major

type 5).

pubKeyCredParams 0x04 CBOR definite length array (CBOR

major type 4) of CBOR definite length

maps (CBOR major type 5).

excludeList 0x05 CBOR definite length array (CBOR

major type 4) of CBOR definite length

maps (CBOR major type 5).

extensions 0x06 CBOR definite length map (CBOR major

type 5).

options 0x07 CBOR definite length map (CBOR major

type 5).

pinAuth 0x08 byte string (CBOR major type 2).

pinProtocol 0x09 PIN protocol version chosen by the

client. For this version of the spec, this

shall be the number 1.

authenticatorGetAssertion rpId 0x01 UTF-8 encoded text string (CBOR major

type 3).

 Rec. ITU-T X.1278 (11/2018) 25

Table 14 – parameter map key and value types

Command Parameter name Key Value type

clientDataHash 0x02 byte string (CBOR major type 2).

allowList 0x03 CBOR definite length array (CBOR

major type 4) of CBOR definite length

maps (CBOR major type 5).

extensions 0x04 CBOR definite length map (CBOR major

type 5).

options 0x05 CBOR definite length map (CBOR major

type 5).

pinAuth 0x06 byte string (CBOR major type 2).

pinProtocol 0x07 PIN protocol version chosen by the

client. For this version of the

specification this shall be the number 1.

authenticatorClientPIN pinProtocol 0x01 Unsigned integer. (CBOR major type 0)

subCommand 0x02 Unsigned integer. (CBOR major type 0)

keyAgreement 0x03 COSE_KEY

pinAuth 0x04 byte string (CBOR major type 2).

newPinEnc 0x05 byte string (CBOR major type 2). It is

UTF-8 representation of encrypted input

PIN value.

pinHashEnc 0x06 byte string (CBOR major type 2).

getKeyAgreement 0x07 Boolean. (CBOR major type 7,

additional simple value information

20(False)/21(True)).

getRetries 0x08 Boolean. (CBOR major type 7,

additional simple value information

20(False)/21(True)).

EXAMPLE 4

The following is a complete encoding example of the authenticatorMakeCredential command

(using the same account and crypto parameters as above) and the corresponding

authenticatorMakeCredential_Response response:
 01 # authenticatorMakeCredential command

 a5 # map(5)

 01 # unsigned(1) - clientDataHash

 58 20 # bytes(32)

 687134968222ec17202e42505f8ed2b1 #

h'687134968222ec17202e42505f8ed2b16ae22f16bb05b88c25db9e602645f141'

 6ae22f16bb05b88c25db9e602645f141 #

 02 # unsigned(2) - rp

 a2 # map(2)

 62 # text(2)

 6964 # "id"

 68 # text(8)

26 Rec. ITU-T X.1278 (11/2018)

 61636d652e636f6d # "acme.com"

 64 # text(4)

 6e616d65 # "name"

 64 # text(4)

 41636d65 # "Acme"

 03 # unsigned(3) - user

 a4 # map(4)

 62 # text(2)

 6964 # "id"

 58 20 # bytes(32)

 3082019330820138a003020102 # userid

 3082019330820138a003020102 # ...

 308201933082 # ...

 64 # text(4)

 69636f6e # "icon"

 78 28 # text(40)

 68747470733a2f2f706963732e616 # "https://pics.acme.com/00/p/aBjjjpqPb.png"

 36d652e636f6d2f30302f702f6142 #

 6a6a6a707150622e706e67 #

 64 # text(4)

 6e616d65 # "name"

 76 # text(22)

 6a6f686e70736d697468406578616 # "johnpsmith@example.com"

 d706c652e636f6d #

 6b # text(11)

 646973706c61794e616d65 # "displayName"

 6d # text(13)

 4a6f686e20502e20536d697468 # "John P. Smith"

 04 # unsigned(4) - pubKeyCredParams

 82 # array(2)

 a2 # map(2)

 63 # text(3)

 616c67 # "alg"

 26 # -7 (ES256)

 64 # text(4)

 74797065 # "type"

 6a # text(10)

 7075626C69632D6B6579 # "public-key"

 a2 # map(2)

 63 # text(3)

 616c67 # "alg"

 390100 # -257 (RS256)

 64 # text(4)

 74797065 # "type"

 6a # text(10)

 7075626C69632D6B6579 # "public-key"

 07 # unsigned(7) - options

 a1 # map(1)

 70 # text(16)

 6b657953746f72616765446576696 # "keyStorageDevice"

 365 #

 f5 # primitive(21)

authenticatorMakeCredential_Response response:
 00 # status = success

 a3 # map(3)

 01 # unsigned(1)

 66 # text(6)

 7061636b6564 # "packed"

 02 # unsigned(2)

 58 9a # bytes(154)

 c289c5ca9b0460f9346ab4e42d842743 # authData

 404d31f4846825a6d065be597a87051d # ...

 410000000bf8a011f38c0a4d15800617 # ...

 111f9edc7d00108959cead5b5c48164e # ...

 8abcd6d9435c6fa363616c6765455332 # ...

 353661785820f7c4f4a6f1d79538dfa4 # ...

 c9ac50848df708bc1c99f5e60e51b42a # ...

 521b35d3b69a61795820de7b7d6ca564 # ...

 e70ea321a4d5d96ea00ef0e2db89dd61 # ...

 d4894c15ac585bd23684 # ...

 03 # unsigned(3)

 a3 # map(3)

 63 # text(3)

 Rec. ITU-T X.1278 (11/2018) 27

 616c67 # "alg"

 26 # -7 (ES256)

 63 # text(3)

 736967 # "sig"

 58 47 # bytes(71)

 3045022013f73c5d9d530e8cc15cc # signature...

 9bd96ad586d393664e462d5f05612 # ...

 35e6350f2b728902210090357ff91 # ...

 0ccb56ac5b596511948581c8fddb4 # ...

 a2b79959948078b09f4bdc6229 # ...

 63 # text(3)

 783563 # "x5c"

 81 # array(1)

 59 0197 # bytes(407)

 3082019330820138a003020102 # certificate...

 020900859b726cb24b4c29300a # ...

 06082a8648ce3d040302304731 # ...

 0b300906035504061302555331 # ...

 143012060355040a0c0b597562 # ...

 69636f20546573743122302006 # ...

 0355040b0c1941757468656e74 # ...

 696361746f7220417474657374 # ...

 6174696f6e301e170d31363132 # ...

 30343131353530305a170d3236 # ...

 313230323131353530305a3047 # ...

 310b3009060355040613025553 # ...

 31143012060355040a0c0b5975 # ...

 6269636f205465737431223020 # ...

 060355040b0c1941757468656e # ...

 74696361746f72204174746573 # ...

 746174696f6e3059301306072a # ...

 8648ce3d020106082a8648ce3d # ...

 03010703420004ad11eb0e8852 # ...

 e53ad5dfed86b41e6134a18ec4 # ...

 e1af8f221a3c7d6e636c80ea13 # ...

 c3d504ff2e76211bb44525b196 # ...

 c44cb4849979cf6f896ecd2bb8 # ...

 60de1bf4376ba30d300b300906 # ...

 03551d1304023000300a06082a # ...

 8648ce3d040302034900304602 # ...

 2100e9a39f1b03197525f7373e # ...

 10ce77e78021731b94d0c03f3f # ...

 da1fd22db3d030e7022100c4fa # ...

 ec3445a820cf43129cdb00aabe # ...

 fd9ae2d874f9c5d343cb2f113d # ...

 a23723f3 # ...

EXAMPLE 5

The following is a complete encoding example of the authenticatorGetAssertion command and

the corresponding authenticatorGetAssertion_Response response:
 02 # authenticatorGetAssertion

command

 a4 # map(4)

 01 # unsigned(1)

 68 # text(8)

 61636d652e636f6d # "acme.com"

 02 # unsigned(2)

 58 20 # bytes(32)

 687134968222ec17202e42505f8ed2b1 # clientDataHash

 6ae22f16bb05b88c25db9e602645f141 # ...

 03 # unsigned(3)

 82 # array(2)

28 Rec. ITU-T X.1278 (11/2018)

 a2 # map(2)

 62 # text(2)

 6964 # "id"

 58 40 # bytes(64)

 f22006de4f905af68a43942f02 # credential ID

 4f2a5ece603d9c6d4b3df8be08 # ...

 ed01fc442646d034858ac75bed # ...

 3fd580bf9808d94fcbee82b9b2 # ...

 ef6677af0adcc35852ea6b9e # ...

 64 # text(4)

 74797065 # "type"

 6a # text(10)

 7075626C69632D6B6579 # "public-key"

 a2 # map(2)

 62 # text(2)

 6964 # "id"

 58 32 # bytes(50)

 03030303030303030303030303 # credential ID

 03030303030303030303030303 # ...

 03030303030303030303030303 # ...

 0303030303030303030303 # ...

 64 # text(4)

 74797065 # "type"

 6a # text(10)

 7075626C69632D6B6579 # "public-key"

 05 # unsigned(5)

 a1 # map(1)

 62 # text(2)

 747569 # "uv"

 f5 # true

authenticatorGetAssertion_Response response:
 00 # status = success

 a3 # map(5)

 01 # unsigned(1) - Credential

 a2 # map(2)

 62 # text(2)

 6964 # "id"

 58 40 # bytes(64)

 f22006de4f905af68a43942f024f2 # credentialId

 a5ece603d9c6d4b3df8be08ed01fc # ...

 442646d034858ac75bed3fd580bf9 # ...

 808d94fcbee82b9b2ef6677af0adc # ...

 c35852ea6b9e # ...

 64 # text(4)

 74797065 # "type"

 6a # text(10)

 7075626C69632D6B6579 # "public-key"

 02 # unsigned(2)

 58 25 # bytes(37)

 625ddadf743f5727e66bba8c2e387922 # authData

 d1af43c503d9114a8fba104d84d02bfa # ...

 0100000011 # ...

 03 # unsigned(3)

 58 47 # bytes(71)

 304502204a5a9dd39298149d904769b5 # signature

 1a451433006f182a34fbdf66de5fc717 # ...

 d75fb350022100a46b8ea3c3b933821c # ...

 6e7f5ef9daae94ab47f18db474c74790 # ...

 eaabb14411e7a0 # ...

 04 # unsigned(4) - publicKeyCredentialUserEntity

 a4 # map(4)

 6b # text(11)

 646973706c61794e616d65 # "displayName"

 6d # text(13)

 4a6f686e20502e20536d697468 # "John P. Smith"

 64 # text(4)

 6e616d65 # "name"

 76 # text(22)

 6a6f686e70736d697468406578616d # "johnpsmith@example.com"

 706c652e636f6d # ...

 Rec. ITU-T X.1278 (11/2018) 29

 62 # text(2)

 6964 # "id"

 58 20 # bytes(32)

 3082019330820138a003020102 # userid

 3082019330820138a003020102 # ...

 308201933082 # ...

 64 # text(4)

 69636f6e # "icon"

 7828 # text(40)

 68747470733a2f2f706963732e6163 # "https://pics.acme.com/00/p/aBjjjpqPb.png"

 6d652e636f6d2f30302f702f61426a # ...

 6a6a707150622e706e67 # ...

 05 # unsigned(5) - numberofCredentials

 01 # unsigned(1)

11.2 Responses

All responses are structured as shown in Table 15:

Table 15 – Response structure

Name Length Required? Definition

Status 1 byte Required The status of the response. 0x00 means success; all other values

are errors. See Table 17 for error values.

Response

Data

variable Optional CBOR encoded set of values.

Response data is encoded using a CBOR map (CBOR major type 5). The CBOR map must be encoded

using the definite length variant.

For each response message, the map keys and value types are specified in Table 16.

Table 16 – Map key and value types

Response message Member name Key Value type

authenticatorMakeCredential_Response fmt 0x01 text string (CBOR

major type 3).

 authData 0x02 byte string (CBOR

major type 2).

 attStmt 0x03 definite length

map (CBOR major

type 5).

authenticatorGetAssertion_Response credential 0x01 definite length

map (CBOR major

type 5).

 authData 0x02 byte string (CBOR

major type 2).

 signature 0x03 byte string (CBOR

major type 2).

30 Rec. ITU-T X.1278 (11/2018)

Table 16 – Map key and value types

Response message Member name Key Value type

 publicKeyCredentialUserEntity 0x04 definite length

map (CBOR major

type 5). Must not

be present if UV

bit is not set.

 numberOfCredentials 0x05 unsigned

integer(CBOR

major type 0).

authenticatorGetNextAssertion_Response credential 0x01 definite length

map (CBOR major

type 5).

 authData 0x02 byte string (CBOR

major type 2).

 signature 0x03 byte string (CBOR

major type 2).

 publicKeyCredentialUserEntity 0x04 definite length

map (CBOR major

type 5).

authenticatorGetInfo_Response versions 0x01 definite length

array (CBOR

major type 4) of

UTF-8 encoded

strings (CBOR

major type 3).

 extensions 0x02 definite length

array (CBOR

major type 4) of

UTF-8 encoded

strings (CBOR

major type 3).

 aaguid 0x03 byte string (CBOR

major type 2). 16

bytes in length and

encoded the same

as MakeCredential

AuthenticatorData,

as specified in

[WebAuthN].

 Rec. ITU-T X.1278 (11/2018) 31

Table 16 – Map key and value types

Response message Member name Key Value type

 options 0x04 Definite length

map (CBOR major

type 5) of key-

value pairs where

keys are UTF8

strings (CBOR

major type 3) and

values are

Booleans (CBOR

simple value 21).

 maxMsgSize 0x05 CBOR definite

length array

(CBOR major type

4) of CBOR

unsigned integers

(CBOR major type

0) This is the

maximum message

size supported by

the authenticator.

 pinProtocols 0x06 array of unsigned

integers (CBOR

major type). This

is the list of

pinProtocols

supported by the

authenticator.

authenticatorClientPIN_Response keyAgreement 0x01 Authenticator

public key in

COSE_KEY

format.

 pinToken 0x02 byte string (CBOR

major type 2).

 retries 0x03 Unsigned integer

(CBOR major type

0). This is number

of retries left

before lockout.

11.3 Error responses

The error response values range from 0x01 – 0xff. This range is split based on the error type (see

Table 17).

Error response values in the range between CTAP2_OK and CTAP2_ERR_SPEC_LAST are

reserved for specification purposes.

Error response values in the range between CTAP2_ERR_VENDOR_FIRST and

CTAP2_ERR_VENDOR_LAST may be used for vendor-specific implementations. All other

response values are reserved for future use and may not be used. These vendor-specific error codes

are not interoperable and the platform should treat these errors as any other unknown error codes.

32 Rec. ITU-T X.1278 (11/2018)

Error response values (Table 17: Error responses) in the range between

CTAP2_ERR_EXTENSION_FIRST and CTAP2_ERR_EXTENSION_LAST may be used for

extension-specific implementations. These errors need to be interoperable for vendors who decide to

implement such optional extensions.

Table 17 – Error responses

Code Name Description

0x00 CTAP1_ERR_SUCCESS Indicates successful response.

0x01 CTAP1_ERR_INVALID_COMMAND The command is not a valid CTAP

(CTAP1/U2F and CTAP2) command.

0x02 CTAP1_ERR_INVALID_PARAMETER The command included an invalid

parameter.

0x03 CTAP1_ERR_INVALID_LENGTH Invalid message or item length.

0x04 CTAP1_ERR_INVALID_SEQ Invalid message sequencing.

0x05 CTAP1_ERR_TIMEOUT Message timed out.

0x06 CTAP1_ERR_CHANNEL_BUSY Channel busy.

0x0A CTAP1_ERR_LOCK_REQUIRED Command requires channel lock.

0x0B CTAP1_ERR_INVALID_CHANNEL Command not allowed on this CID.

0x10 CTAP2_ERR_CBOR_PARSING Error while parsing CBOR.

0x11 CTAP2_ERR_CBOR_UNEXPECTED_TYPE Invalid/unexpected CBOR error.

0x12 CTAP2_ERR_INVALID_CBOR Error when parsing CBOR.

0x13 CTAP2_ERR_INVALID_CBOR_TYPE Invalid or unexpected CBOR type.

0x14 CTAP2_ERR_MISSING_PARAMETER Missing non-optional parameter.

0x15 CTAP2_ERR_LIMIT_EXCEEDED Limit for number of items exceeded.

0x16 CTAP2_ERR_UNSUPPORTED_EXTENSION Unsupported extension.

0x17 CTAP2_ERR_TOO_MANY_ELEMENTS Limit for number of items exceeded.

0x18 CTAP2_ERR_EXTENSION_NOT_SUPPORTED Unsupported extension.

0x19 CTAP2_ERR_CREDENTIAL_EXCLUDED Valid credential found in the excludeList.

0x20 CTAP2_ERR_CREDENTIAL_NOT_VALID Credential not valid for authenticator.

0x21 CTAP2_ERR_PROCESSING Processing (Lengthy operation is in

progress).

0x22 CTAP2_ERR_INVALID_CREDENTIAL Credential not valid for the authenticator.

0x23 CTAP2_ERR_USER_ACTION_PENDING Authentication is waiting for user

interaction.

0x24 CTAP2_ERR_OPERATION_PENDING Processing, lengthy operation is in

progress.

0x25 CTAP2_ERR_NO_OPERATIONS No request is pending.

0x26 CTAP2_ERR_UNSUPPORTED_ALGORITHM The authenticator does not support

requested algorithm.

0x27 CTAP2_ERR_OPERATION_DENIED Not authorized for requested operation.

0x28 CTAP2_ERR_KEY_STORE_FULL Internal key storage is full.

0x29 CTAP2_ERR_NOT_BUSY The authenticator cannot cancel as it is not

busy.

0x2A CTAP2_ERR_NO_OPERATION_PENDING No outstanding operations.

 Rec. ITU-T X.1278 (11/2018) 33

Table 17 – Error responses

Code Name Description

0x2B CTAP2_ERR_UNSUPPORTED_OPTION Unsupported option.

0x2C CTAP2_ERR_INVALID_OPTION Unsupported option.

0x2D CTAP2_ERR_KEEPALIVE_CANCEL Pending keep alive was cancelled.

0x2E CTAP2_ERR_NO_CREDENTIALS No valid credentials provided.

0x2F CTAP2_ERR_USER_ACTION_TIMEOUT Timeout waiting for user interaction.

0x30 CTAP2_ERR_NOT_ALLOWED Continuation command, such as,

authenticatorGetNextAssertion not

allowed.

0x31 CTAP2_ERR_PIN_INVALID PIN blocked.

0x32 CTAP2_ERR_PIN_BLOCKED PIN blocked.

0x33 CTAP2_ERR_PIN_AUTH_INVALID PIN authentication, pinAuth, verification

failed.

0x34 CTAP2_ERR_PIN_AUTH_BLOCKED PIN authentication, pinAuth, blocked.

Requires power recycle to reset.

0x35 CTAP2_ERR_PIN_NOT_SET No PIN has been set.

0x36 CTAP2_ERR_PIN_REQUIRED PIN is required for the selected operation.

0x37 CTAP2_ERR_PIN_POLICY_VIOLATION PIN policy violation. Currently only

enforces minimum length.

0x38 CTAP2_ERR_PIN_TOKEN_EXPIRED pinToken expired on authenticator.

0x39 CTAP2_ERR_REQUEST_TOO_LARGE The authenticator cannot handle this

request due to memory constraints.

0x7F CTAP1_ERR_OTHER Other unspecified error.

0xDF CTAP2_ERR_SPEC_LAST CTAP 2 spec last error.

0xE0 CTAP2_ERR_EXTENSION_FIRST Extension specific error.

0xEF CTAP2_ERR_EXTENSION_LAST Extension specific error.

0xF0 CTAP2_ERR_VENDOR_FIRST Vendor specific error.

0xFF CTAP2_ERR_VENDOR_LAST Vendor specific error.

12 Interoperating with CTAP1/U2F authenticators

This clause defines how a platform maps CTAP2 requests to CTAP1/U2F requests and CTAP1/U2F

responses to CTAP2 responses in order to support CTAP1/U2F authenticators via CTAP2. CTAP2

requests can be mapped to CTAP1/U2F requests provided the CTAP2 request does not have

parameters that only CTAP2 authenticators can fulfil. The processes for RPs to use to verify

CTAP1/U2F based authenticatorMakeCredential and authenticatorGetAssertion responses are also

defined below. The platform may choose to skip this feature and work only with CTAP (CTAP1/U2F

and CTAP2) devices.

12.1 Using the CTAP2 authenticatorMakeCredential command with CTAP1/U2F

authenticators

The platform follows the following procedure (see also Figure 2).

1) The platform tries to get information about the authenticator by sending authenticatorGetInfo

command as specified in CTAP2 protocol overview.

34 Rec. ITU-T X.1278 (11/2018)

2) CTAP1/U2F authenticator returns a command error or improperly formatted CBOR

response. For any failure the platform may fall back to CTAP1/U2F protocol.

3) Map CTAP2 authenticatorMakeCredential request to U2F_REGISTER request.

4) The platform verifies that CTAP2 request does not have any parameters that CTAP1/U2F

authenticators cannot fulfil.

 All of the conditions below must be true for the platform to proceed to the next step. If

any of the conditions below is not true, platform errors out with

CTAP2_ERR_OPTION_NOT_SUPPORTED.

 pubKeyCredParams must use the ES256 algorithm (−7).

 Options must not include "rk" set to true.

 Options must not include "uv" set to true.

 If excludeList is not empty:

 If the excludeList is not empty, the platform must send signing request with check-

only control byte to the CTAP1/U2F authenticator using each of the credential ids

(key handles) in the excludeList. If any of them does not result in an error that means

that this is a known device. Afterwards, the platform must still send a dummy

registration request (with a dummy appid and invalid challenge) to CTAP1/U2F

authenticators that it believes are excluded. This indicates that the user still needs to

touch the CTAP1/U2F authenticator before the RP gets told that the token is already

registered.

o Use clientDataHash parameter of CTAP2 request as CTAP1/U2F challenge parameter

(32 bytes).

o Let rpIdHash be a byte array of size 32 initialized with SHA-256 hash of rp.id

parameter as CTAP1/U2F application parameter (32 bytes).

5) Send the U2F_REGISTER request to the authenticator as specified in [U2FRawMsgs].

6) Map the U2F registration response message (see the "Registration Response Message:

Success" section of [U2FRawMsgs]) to a CTAP2 authenticatorMakeCredential response

message:

o Generate authenticatorData from the U2F registration response message received

from the authenticator:

 Initialize attestationData:

 Let credentialIdLength be a 2-byte unsigned big-endian integer representing

the length of the Credential ID initialized with CTAP1/U2F response key handle

length.

 Let credentialID be a credentialIdLength byte array initialized with

CTAP1/U2F response key handle bytes.

 Let x9encodedUserPublicKeybe the user public key returned in the U2F

registration response message [U2FRawMsgs]. Let

coseEncodedCredentialPublicKey be the result of converting

x9encodedUserPublicKey's value from ANS X9.62 / Sec-1 v2 uncompressed

curve point representation ([IETF RFC 5480] clause 2.2) to COSE_Key

representation ([b-RFC 8152] section 7).

 Let attestationData be a byte array with the structure outlined in Table 18.

 Rec. ITU-T X.1278 (11/2018) 35

 Table 18 – attestationData structure

Length (in bytes) Description Value

16 The AAGUID of

the authenticator.

Initialized with all zeros.

2 Byte length L of

Credential ID

Initialized with

credentialIdLength bytes.

credentialIdLength Credential ID. Initialized with credentialID

bytes.

77 The credential

public key.

Initialized with
coseEncodedCredentialPubli

cKey bytes.

 Initialize authenticatorData:

 Let flags be a byte whose zeroth bit (bit 0, UP) is set, and whose sixth bit (bit 6,

AT) is set, and all other bits are zero (bit zero is the least significant bit). See

also the Authenticator Data section of [WebAuthN].

 Let signCount be a 4-byte unsigned integer initialized to zero.

 Let authenticatorData be a byte array with the structure outlined in Table 19.

 Table 19 – authenticatorData structure

Length (in bytes) Description Value

32 SHA-256 hash

of the rp.id.

Initialized with rpIdHash

bytes.

1 Flags Initialized with flags'

value.

4 Signature

counter

(signCount).

Initialized with

signCount bytes.

Variable Length Attestation

Data.

Initialized with

attestationData's

value.

o Let attestationStatement be a CBOR map (see "attStmtTemplate" in Generating an

Attestation Object [WebAuthN]) with the following keys whose values are as follows:

 Set "x5c" as an array of the one attestation cert extracted from CTAP1/U2F response.

 Set "sig"'s value to be the "signature" bytes from the U2F registration response

message [U2FRawMsgs].

o Let attestationObject be a CBOR map (see "attObj" in Attestation object

[WebAuthN]) with the following keys whose values are as follows:

 Set "authData"'s value to authenticatorData.

 Set "fmt"'s value to "fido-u2f".

 Set "attStmt"'s value to attestationStatement.

7) Return attestationObject to the caller.

Example 6

Sample CTAP2 authenticatorMakeCredential request (CBOR):
{1: h'687134968222EC17202E42505F8ED2B16AE22F16BB05B88C25DB9E602645F141',

 2: {"id": "acme.com",

https://www.w3.org/TR/webauthn/#rp-id

36 Rec. ITU-T X.1278 (11/2018)

 "name": "acme.com"},

 3: {"id": "1098237235409872",

 "name": "johnpsmith@example.com",

 "icon": "https://pics.acme.com/00/p/aBjjjpqPb.png",

 "displayName": "John P. Smith"},

 4: [{"type": "public-key", "alg": -7},

 {"type": "public-key", "alg": -257}]}

CTAP1/U2F request from above CTAP2 authenticatorMakeCredential request.
687134968222EC17202E42505F8ED2B16AE22F16BB05B88C25DB9E602645F141 # clientdatahash

1194228DA8FDBDEEFD261BD7B6595CFD70A50D70C6407BCF013DE96D4EFB17DE # rpidhash

Sample CTAP1/U2F response from the device
05 # Reserved Byte (1 Byte)

04E87625896EE4E46DC032766E8087962F36DF9DFE8B567F3763015B1990A60E # User Public Key (65 Bytes)

1427DE612D66418BDA1950581EBC5C8C1DAD710CB14C22F8C97045F4612FB20C # ...

91 # ...

40 # Key Handle Length (1 Byte)

3EBD89BF77EC509755EE9C2635EFAAAC7B2B9C5CEF1736C3717DA48534C8C6B6 # Key Handle (Key Handle Length Bytes)

54D7FF945F50B5CC4E78055BDD396B64F78DA2C5F96200CCD415CD08FE420038 # ...

3082024A30820132A0030201020204046C8822300D06092A864886F70D01010B # X.509 Cert (Variable length Cert)

0500302E312C302A0603550403132359756269636F2055324620526F6F742043 # ...

412053657269616C203435373230303633313020170D31343038303130303030 # ...

30305A180F32303530303930343030303030305A302C312A302806035504030C # ...

2159756269636F205532462045452053657269616C2032343931383233323437 # ...

37303059301306072A8648CE3D020106082A8648CE3D030107034200043CCAB9 # ...

2CCB97287EE8E639437E21FCD6B6F165B2D5A3F3DB131D31C16B742BB476D8D1 # ...

E99080EB546C9BBDF556E6210FD42785899E78CC589EBE310F6CDB9FF4A33B30 # ...

39302206092B0601040182C40A020415312E332E362E312E342E312E34313438 # ...

322E312E323013060B2B0601040182E51C020101040403020430300D06092A86 # ...

4886F70D01010B050003820101009F9B052248BC4CF42CC5991FCAABAC9B651B # ...

BE5BDCDC8EF0AD2C1C1FFB36D18715D42E78B249224F92C7E6E7A05C49F0E7E4 # ...

C881BF2E94F45E4A21833D7456851D0F6C145A29540C874F3092C934B43D222B # ...

8962C0F410CEF1DB75892AF116B44A96F5D35ADEA3822FC7146F6004385BCB69 # ...

B65C99E7EB6919786703C0D8CD41E8F75CCA44AA8AB725AD8E799FF3A8696A6F # ...

1B2656E631B1E40183C08FDA53FA4A8F85A05693944AE179A1339D002D15CABD # ...

810090EC722EF5DEF9965A371D415D624B68A2707CAD97BCDD1785AF97E258F3 # ...

3DF56A031AA0356D8E8D5EBCADC74E071636C6B110ACE5CC9B90DFEACAE640FF # ...

1BB0F1FE5DB4EFF7A95F060733F5 # ...

30450220324779C68F3380288A1197B6095F7A6EB9B1B1C127F66AE12A99FE85 # Signature (variable Length)

32EC23B9022100E39516AC4D61EE64044D50B415A6A4D4D84BA6D895CB5AB7A1 # ...

AA7D081DE341FA # ...

Authenticator Data from CTAP1/U2F response
1194228DA8FDBDEEFD261BD7B6595CFD70A50D70C6407BCF013DE96D4EFB17DE # rpidhash

41 # flags

00000000 # Sign Count

00000000000000000000000000000000 # AAGUID

0040 # Key Handle Length (1 Byte)

3EBD89BF77EC509755EE9C2635EFAAAC7B2B9C5CEF1736C3717DA48534C8C6B6 # Key Handle (Key Handle Length Bytes)

54D7FF945F50B5CC4E78055BDD396B64F78DA2C5F96200CCD415CD08FE420038 # ...

A5010203262001215820E87625896EE4E46DC032766E8087962F36DF9DFE8B56 # Public Key

7F3763015B1990A60E1422582027DE612D66418BDA1950581EBC5C8C1DAD710C # ...

B14C22F8C97045F4612FB20C91 # ...

Mapped CTAP2 authenticatorMakeCredential response(CBOR)
{"fmt": "fido-u2f",

 "authData": h'1194228DA8FDBDEEFD261BD7B6595CFD70A50D70C6407BCF013DE96D4EFB17DE

 4100403EBD89BF77EC509755

 EE9C2635EFAAAC7B2B9C5CEF1736C3717DA48534C8C6B654D7FF945F50B5CC4E

 78055BDD396B64F78DA2C5F96200CCD415CD08FE420038A50102032620012158

 20E87625896EE4E46DC032766E8087962F36DF9DFE8B567F3763015B1990A60E

 1422582027DE612D66418BDA1950581EBC5C8C1DAD710CB14C22F8C97045F461

 2FB20C91',

 "attStmt": {"sig": h'30450220324779C68F3380288A1197B6095F7A6EB9B1B1C127F66AE12A99FE85

 32EC23B9022100E39516AC4D61EE64044D50B415A6A4D4D84BA6D895CB5AB7A1

 AA7D081DE341FA',

 "x5c": [h'3082024A30820132A0030201020204046C8822300D06092A864886F70D01010B

 0500302E312C302A0603550403132359756269636F2055324620526F6F742043

 412053657269616C203435373230303633313020170D31343038303130303030

 30305A180F32303530303930343030303030305A302C312A302806035504030C

 2159756269636F205532462045452053657269616C2032343931383233323437

 37303059301306072A8648CE3D020106082A8648CE3D030107034200043CCAB9

 2CCB97287EE8E639437E21FCD6B6F165B2D5A3F3DB131D31C16B742BB476D8D1

 E99080EB546C9BBDF556E6210FD42785899E78CC589EBE310F6CDB9FF4A33B30

 39302206092B0601040182C40A020415312E332E362E312E342E312E34313438

 322E312E323013060B2B0601040182E51C020101040403020430300D06092A86

 Rec. ITU-T X.1278 (11/2018) 37

 4886F70D01010B050003820101009F9B052248BC4CF42CC5991FCAABAC9B651B

 BE5BDCDC8EF0AD2C1C1FFB36D18715D42E78B249224F92C7E6E7A05C49F0E7E4

 C881BF2E94F45E4A21833D7456851D0F6C145A29540C874F3092C934B43D222B

 8962C0F410CEF1DB75892AF116B44A96F5D35ADEA3822FC7146F6004385BCB69

 B65C99E7EB6919786703C0D8CD41E8F75CCA44AA8AB725AD8E799FF3A8696A6F

 1B2656E631B1E40183C08FDA53FA4A8F85A05693944AE179A1339D002D15CABD

 810090EC722EF5DEF9965A371D415D624B68A2707CAD97BCDD1785AF97E258F3

 3DF56A031AA0356D8E8D5EBCADC74E071636C6B110ACE5CC9B90DFEACAE640FF

 1BB0F1FE5DB4EFF7A95F060733F5']}}

38 Rec. ITU-T X.1278 (11/2018)

Figure 2 – Mapping: WebAuthn authenticatorMakeCredential to and

from CTAP1/U2F registration messages

12.2 Using the CTAP2 authenticatorGetAssertion command with CTAP1/U2F

authenticators

The platform follows the following procedure (see also Figure 3).

 Rec. ITU-T X.1278 (11/2018) 39

1) The platform tries to get information about the authenticator by sending authenticatorGetInfo

command as specified in CTAP2 protocol overview.

o CTAP1/U2F authenticator returns a command error or improperly formatted CBOR

response. For any failure, platform may fall back to CTAP1/U2F protocol.

2) Map CTAP2 authenticatorGetAssertion request to U2F_AUTHENTICATE request:

o The platform verifies that CTAP2 request does not have any parameters that CTAP1/U2F

authenticators cannot fulfil:

 All of the conditions below must be true for the platform to proceed to the next step.

If any of the conditions below is not true, platform errors out with

CTAP2_ERR_OPTION_NOT_SUPPORTED.

 Options must not include "uv" set to true.

 allowList must have at least one credential.

o If allowList has more than one credential the platform has to loop over the list and send

individual different U2F_AUTHENTICATE commands to the authenticator. For each

credential in the credential list, map CTAP2 authenticatorGetAssertion request to

U2F_AUTHENTICATE as below:

 Let controlByte be a byte initialized as follows:

 For USB, set it to 0x07 (check-only). This should prevent a call getting blocked

on waiting for user input. If a response returns success, then call again setting

the enforce-user-presence-and-sign.

 For NFC, set it to 0x03 (enforce-user-presence-and-sign). The tap has already

provided the presence and will not block.

 Use clientDataHash parameter of CTAP2 request as CTAP1/U2F challenge

parameter (32 bytes).

 Let rpIdHash be a byte array of size 32 initialized with SHA-256 hash of rp.id

parameter as CTAP1/U2F application parameter (32 bytes).

 Let credentialID be the byte array initialized with the ID for this

PublicKeyCredentialDescriptor.

 Let keyHandleLength be a byte initialized with length of credentialID byte array.

 Let u2fAuthenticateRequest be a byte array with the structure outlined in

Table 20.

Table 20 – u2fAuthenticateRequest structure

Length (in bytes) Description Value

1 Control byte Initialized with controlByte's

value.

32 Challenge parameter Initialized with clientDataHash

parameter bytes.

32 Application parameter Initialized with rpIdHash bytes.

1 Key handle length Initialized with

keyHandleLength's value.

keyHandleLength Key handle Initialized with credentialID

bytes.

3) Send u2fAuthenticateRequest to the authenticator.

40 Rec. ITU-T X.1278 (11/2018)

4) Map the U2F authentication response message (see the "Authentication Response Message:

Success" section of [U2FRawMsgs]) to a CTAP2 authenticatorGetAssertion response

message:

o Generate authenticatorData from the U2F authentication response message received

from the authenticator:

 Let flags be a byte whose zeroth bit (bit 0, UP) is set to 1 if CTAP1/U2F response

user presence byte is set to 1, and all other bits are zero (bit zero is the least significant

bit). See also the Authenticator Data section of [WebAuthN].

 Let signCount be a 4-byte unsigned integer initialized with CTAP1/U2F response

counter field.

 Let authenticatorData is a byte array of the structure outlined in Table 21.

Table 21 – authenticatorData structure

Length (in bytes) Description Value

32 SHA-256 hash of the rp.id. Initialized with rpIdHash bytes.

1 Flags Initialized with flags' value.

4 Signature counter

(signCount)
Initialized with signCount bytes.

o Let authenticatorGetAssertionResponse be a CBOR map with the following keys

whose values are as follows:

 Set 0x01 with the credential from allowList that whose response succeeded.

 Set 0x02 with authenticatorData bytes.

 Set 0x03 with the signature field from CTAP1/U2F authentication response message.

EXAMPLE 7

Sample CTAP2 authenticatorGetAssertion request (CBOR):
{1: "acme.com",

 2: h'687134968222EC17202E42505F8ED2B16AE22F16BB05B88C25DB9E602645F141',

 3: [{"type": "public-key",

 "id": h'3EBD89BF77EC509755EE9C2635EFAAAC7B2B9C5CEF1736C3717DA48534C8C6B6

 54D7FF945F50B5CC4E78055BDD396B64F78DA2C5F96200CCD415CD08FE420038'}],

 5: {"up": true}}

CTAP1/U2F request from above CTAP2 authenticatorGetAssertion request

687134968222EC17202E42505F8ED2B16AE22F16BB05B88C25DB9E602645F141 # clientdatahash

1194228DA8FDBDEEFD261BD7B6595CFD70A50D70C6407BCF013DE96D4EFB17DE # rpidhash

40 # Key Handle Length (1 Byte)

3EBD89BF77EC509755EE9C2635EFAAAC7B2B9C5CEF1736C3717DA48534C8C6B6 # Key Handle (Key Handle Length Bytes)

54D7FF945F50B5CC4E78055BDD396B64F78DA2C5F96200CCD415CD08FE420038 # ...

Sample CTAP1/U2F Response from the device
01 # User Presence (1 Byte)

0000003B # Sign Count (4 Bytes)

304402207BDE0A52AC1F4C8B27E003A370CD66A4C7118DD22D5447835F45B99C # Signature (variable Length)

68423FF702203C517B47877F85782DE10086A783D1E7DF4E3639E771F5F6AFA3 # ...

5AAD5373858E # ...

Authenticator Data from CTAP1/U2F Response
1194228DA8FDBDEEFD261BD7B6595CFD70A50D70C6407BCF013DE96D4EFB17DE # rpidhash

01 # User Presence (1 Byte)

0000003B # Sign Count (4 Bytes)

Mapped CTAP2 authenticatorGetAssertion response(CBOR)
{1: {"type": "public-key",

 "id": h'3EBD89BF77EC509755EE9C2635EFAAAC7B2B9C5CEF1736C3717DA48534C8C6B6

https://www.w3.org/TR/webauthn/#rp-id

 Rec. ITU-T X.1278 (11/2018) 41

 54D7FF945F50B5CC4E78055BDD396B64F78DA2C5F96200CCD415CD08FE420038'},

 2: h'1194228DA8FDBDEEFD261BD7B6595CFD70A50D70C6407BCF013DE96D4EFB17DE

 010000003B',

 3: h'304402207BDE0A52AC1F4C8B27E003A370CD66A4C7118DD22D5447835F45B99C

 68423FF702203C517B47877F85782DE10086A783D1E7DF4E3639E771F5F6AFA3

 5AAD5373858E'}

Figure 3 – Mapping: WebAuthn authenticatorGetAssertion to and

from CTAP1/U2F authentication messages

13 Transport-specific bindings

13.1 USB

13.1.1 Design rationale

CTAP (CTAP1/U2F and CTAP2) messages are framed for USB transport using the human interface

device (HID) protocol. We henceforth refer to the protocol as CTAPHID. The CTAPHID protocol is

designed with the following design objectives in mind:

• driverless installation on all major host platforms;

42 Rec. ITU-T X.1278 (11/2018)

• multi-application support with concurrent application access without the need for

serialization and centralized dispatching;

• fixed latency response and low protocol overhead;

• scalable method for CTAPHID device discovery.

Since HID data is sent as interrupt packets, and multiple applications may access the HID stack at

once, a non-trivial level of complexity has to be added to handle this.

13.1.2 Protocol structure and data framing

The CTAP (CTAP1/U2F and CTAP2) protocol is designed to be concurrent and stateless in such a

way that each performed function is not dependent on previous actions. However, there has to be

some form of "atomicity" that varies between the characteristics of the underlying transport protocol,

which for the CTAPHID protocol introduces the following terminology:

• transaction;

• message;

• packet.

A transaction is the highest level of aggregated functionality, which in turn consists of a request,

followed by a response message. Once a request has been initiated, the transaction has to be entirely

completed before a second transaction can take place and a response is never sent without a previous

request. Transactions exist only at the highest CTAP (CTAP1/U2F and CTAP2) protocol layer.

Request and response messages are in turn divided into individual fragments, known as packets. The

packet is the smallest form of protocol data unit, which in the case of CTAPHID are mapped into

HID reports.

13.1.3 Concurrency and channels

Additional logic and overhead is required to allow a CTAPHID device to deal with multiple "clients",

i.e. multiple applications accessing the single resource through the HID stack. Each client

communicates with a CTAPHID device through a logical channel, where each application uses a

unique 32-bit channel identifier for routing and arbitration purposes.

A channel identifier is allocated by the FIDO authenticator device to ensure its system-wide

uniqueness. The actual algorithm for generation of channel identifiers is vendor specific and not

defined by this Recommendation.

Channel ID 0 is reserved and 0xffffffff is reserved for broadcast commands, i.e. at the time of

channel allocation.

13.1.4 Message and packet structure

Packets are one of two types, initialization packets and continuation packets. As the name suggests,

the first packet sent in a message is an initialization packet, which also becomes the start of a

transaction. If the entire message does not fit into one packet (including the CTAPHID protocol

overhead), one or more continuation packets have to be sent in strict ascending order to complete the

message transfer.

A message sent from a host to a device is known as a request and a message sent from a device back

to the host is known as a response. A request always triggers a response and response messages are

never sent ad hoc, i.e., without a prior request message. However, a keep-alive message can be sent

between a request and a response message.

The request and response messages have an identical structure. A transaction is started with the

initialization packet of the request message and ends with the last packet of the response message.

 Rec. ITU-T X.1278 (11/2018) 43

Packets are always of a fixed size (defined by the endpoint and HID report descriptors) and although

all bytes may not be needed in a particular packet, the full size always has to be sent. Unused bytes

should be set to zero.

An initialization packet is defined as:

Offset Length Mnemonic Description

0 4 CID Channel identifier

4 1 CMD Command identifier (bit 7 always set)

5 1 BCNTH High part of payload length

6 1 BCNTL Low part of payload length

7 (s – 7) DATA Payload data (s is equal to the fixed packet size)

The command byte always has the highest bit set to distinguish it from a continuation packet, which

is described below.

A continuation packet is defined as:

Offset Length Mnemonic Description

0 4 CID Channel identifier

4 1 SEQ Packet sequence 0x00..0x7f (bit 7 always cleared)

5 (s – 5) DATA Payload data (s is equal to the fixed packet size)

With this approach, a message with a payload less or equal to (s – 7) may be sent as one packet. A

larger message is then divided into one or more continuation packets, starting with sequence number

0, which then increments by one to a maximum of 127.

With a packet size of 64 bytes (max for full-speed devices), this means that the maximum message

payload length is 64 – 7 + 128 * (64 – 5) = 7609 bytes.

13.1.5 Arbitration

In order to handle multiple channels and clients concurrency, the CTAPHID protocol has to maintain

certain internal states, block conflicting requests and maintain protocol integrity. The protocol relies

on each client application (channel) behaving politely, i.e., it does not actively act to destroy other

channels. With this said, a malign or malfunctioning application can cause issues for other channels.

Expected errors and potentially stalling applications should, however, be handled properly.

13.1.5.1 Transaction atomicity, idle and busy states

A transaction always consists of three stages:

1) A message is sent from the host to the device.

2) The device processes the message.

3) A response is sent back from the device to the host.

The protocol is built on the assumption that a plurality of concurrent applications may try to perform

transactions at any time, with each transaction being atomic, i.e., it cannot be interrupted by another

application once started.

The application channel that manages to get through the first initialization packet when the device is

in idle state will keep the device locked for other channels until the last packet of the response message

has been received. The device then returns to idle state, ready to perform another transaction for the

same or a different channel. Between two transactions, no state is maintained in the device and a host

application must assume that any other process may execute other transactions at any time.

44 Rec. ITU-T X.1278 (11/2018)

If an application tries to access the device from a different channel while the device is busy with a

transaction, that request will immediately fail with a busy-error message sent to the requesting

channel.

13.1.5.2 Transaction timeout

A transaction has to be completed within a specified period of time to prevent a stalling application

to cause the device to be completely locked out for access by other applications. If, for example, an

application sends an initialization packet that signals that continuation packets will follow and that

application crashes, the device will back out that pending channel request and return to an idle state.

13.1.5.3 Transaction abort and re-synchronization

If an application for any reason "gets lost", gets an unexpected response or error, it may at any time

issue an abort-and-resynchronize command. If the device detects an INIT command during a

transaction that has the same channel ID as the active transaction, the transaction is aborted (if

possible) and all buffered data flushed (if any). The device then returns to an idle state to become

ready for a new transaction.

13.1.5.4 Packet sequencing

The device keeps track of packets arriving in correct and ascending order and that no expected packets

are missing. The device will continue to assemble a message until all parts of it has been received or

that the transaction times out. Spurious continuation packets appearing without a prior initialization

packet will be ignored.

13.1.6 Channel locking

In order to deal with aggregated transactions that may not be interrupted, such as the tunnelling of

vendor-specific commands, a channel lock command may be implemented. By sending a channel

lock command, the device prevents other channels from communicating with the device until the

channel lock has timed out or been explicitly unlocked by the application.

This feature is optional and has not been considered by general CTAP (CTAP1/U2F and CTAP2)

HID applications.

13.1.7 Protocol version and compatibility

The CTAPHID protocol is designed to be extensible, yet maintaining backwards compatibility to the

extent it is applicable. This means that a CTAPHID host shall support any version of a device with

the command set available in that particular version.

13.1.8 HID device implementation

This description assumes knowledge of the USB and HID specifications and is intended to provide

the basics for implementing a CTAPHID device. There are several ways to implement USB devices

and reviewing these different methods is beyond the scope of this Recommendation. This

Recommendation targets the interface part, where a device is regarded as either a single or multiple

interface (composite) device.

The description further assumes (but is not limited to) a full-speed USB device (12 Mbit/s). Although

not excluded per se, USB low-speed devices are not practical for use given the 8-byte report size

limitation together with the protocol overhead.

13.1.8.1 Interface and endpoint descriptors

The device implements two endpoints (except the control endpoint 0), one for IN and one for OUT

transfers. The packet size is vendor defined, but the reference implementation assumes a full-speed

device with two 64-byte endpoints.

 Rec. ITU-T X.1278 (11/2018) 45

Interface descriptor

Mnemonic Value Description

bNumEndpoints 2 One IN and one OUT endpoint

bInterfaceClass 0x03 HID

bInterfaceSubClass 0x00 No interface subclass

bInterfaceProtocol 0x00 No interface protocol

Endpoint 1 descriptor

Mnemonic Value Description

bmAttributes 0x03 Interrupt transfer

bEndpointAdresss 0x01 1, OUT

bMaxPacketSize 64 64-byte packet max

bInterval 5 Poll every 5 millisecond

Endpoint 2 descriptor

Mnemonic Value Description

bmAttributes 0x03 Interrupt transfer

bEndpointAdresss 0x81 1, IN

bMaxPacketSize 64 64-byte packet max

bInterval 5 Poll every 5 millisecond

The actual endpoint order, intervals, endpoint numbers and endpoint packet size may be defined

freely by the vendor and the host application is responsible for querying these values and handle these

accordingly. For the sake of clarity, the values listed above are used in the following examples.

13.1.8.2 HID report descriptor and device discovery

A HID report descriptor is required for all HID devices, even though the reports and their

interpretation (scope, range, etc.) makes very little sense from an operating system perspective. The

CTAPHID only provides two "raw" reports, which map directly to the IN and OUT endpoints.

However, the HID report descriptor has an important purpose in CTAPHID, as it is used for device

discovery.

For the sake of clarity, a bit of high-level C-style abstraction is provided.

EXAMPLE 8
// HID report descriptor

const uint8_t HID_ReportDescriptor[] = {

 HID_UsagePage (FIDO_USAGE_PAGE),

 HID_Usage (FIDO_USAGE_CTAPHID),

 HID_Collection (HID_Application),

 HID_Usage (FIDO_USAGE_DATA_IN),

 HID_LogicalMin (0),

 HID_LogicalMaxS (0xff),

 HID_ReportSize (8),

 HID_ReportCount (HID_INPUT_REPORT_BYTES),

 HID_Input (HID_Data | HID_Absolute | HID_Variable),

46 Rec. ITU-T X.1278 (11/2018)

 HID_Usage (FIDO_USAGE_DATA_OUT),

 HID_LogicalMin (0),

 HID_LogicalMaxS (0xff),

 HID_ReportSize (8),

 HID_ReportCount (HID_OUTPUT_REPORT_BYTES),

 HID_Output (HID_Data | HID_Absolute | HID_Variable),

HID_EndCollection

};

A unique Usage Page is defined (0xF1D0) for the FIDO alliance and under this realm, a CTAPHID

Usage is defined as well (0x01). During CTAPHID device discovery, all HID devices present in the

system are examined and devices that match this usage pages and usage are then considered to be

CTAPHID devices.

The length values specified by the HID_INPUT_REPORT_BYTES and the HID_OUTPUT_REPORT_BYTES

should typically match the respective endpoint sizes defined in the endpoint descriptors.

13.1.9 CTAPHID commands

The CTAPHID protocol implements the following commands.

13.1.9.1 Mandatory commands

The following list describes the minimum set of commands required by a CTAPHID device. Optional

and vendor-specific commands may be implemented as described in respective clauses of this

Recommendation.

13.1.9.1.1 CTAPHID_MSG (0x03)

This command sends an encapsulated CTAP1/U2F message to the device. The semantics of the data

message is defined in the U2F Raw Message Format encoding specification [U2FRawMsgs]. It

should be noted that keep-alive messages may be sent from the device to the client before the response

message is returned.

Request

CMD CTAPHID_MSG

BCNT 1..(n + 1)

DATA U2F command byte

DATA + 1 n bytes of data

Response at success

CMD CTAPHID_MSG

BCNT 1..(n + 1)

DATA U2F status code

DATA + 1 n bytes of data

13.1.9.1.2 CTAPHID_CBOR (0x10)

This command sends an encapsulated CTAP CBOR encoded message. The semantics of the data

message is defined in clause 11.

 Rec. ITU-T X.1278 (11/2018) 47

Request

CMD CTAPHID_CBOR

BCNT 1..(n + 1)

DATA CTAP command byte

DATA + 1 n bytes of CBOR encoded data

Response at success

CMD CTAPHID_MSG

BCNT 1..(n + 1)

DATA CTAP status code

DATA + 1 n bytes of CBOR encoded data

13.1.9.1.3 CTAPHID_INIT (0x06)

This command has two functions.

If sent on an allocated channel identifier (CID), it synchronizes a channel, discarding the current

transaction, buffers and state as quickly as possible. It will then be ready for a new transaction. The

device then responds with the CID of the channel it received the INIT on, using that channel.

If sent on the broadcast CID, it requests the device to allocate a unique 32-bit channel identifier that

can be used by the requesting application during its lifetime. The requesting application generates a

nonce that is used to match the response. When the response is received, the application compares

the sent nonce with the one received. After a positive match, the application stores the received

channel ID and uses that for subsequent transactions.

To allocate a new channel, the requesting application shall use the broadcast channel

CTAPHID_BROADCAST_CID (0xFFFFFFFF). The device then responds with the newly allocated

channel in the response, using the broadcast channel.

Request

CMD CTAPHID_INIT

BCNT 8

DATA 8-byte nonce

Response at success

CMD CTAPHID_INIT

BCNT 17 (see note below)

DATA 8-byte nonce

DATA+8 4-byte channel ID

DATA+12 CTAPHID protocol version identifier

DATA+13 Major device version number

DATA+14 Minor device version number

DATA+15 Build device version number

DATA+16 Capabilities flags

48 Rec. ITU-T X.1278 (11/2018)

The protocol version identifies the protocol version implemented by the device. A CTAPHID host

shall accept a response size that is longer than the anticipated size to allow for future extensions of

the protocol, yet maintaining backwards compatibility. Future versions will maintain the response

structure to this current version, but additional fields may be added.

The meaning and interpretation of the version number is vendor defined.

The following device capability flags are defined. Unused values are reserved for future use and must

be set to zero by device vendors.

CAPABILITY_WINK If set to 1, authenticator implements CTAPHID_WINK function

CAPABILITY_CBOR If set to 1, authenticator implements CTAPHID_CBOR function

CAPABILITY_NMSG If set to 1, authenticator DOES NOT implement CTAPHID_MSG function

13.1.9.1.4 CTAPHID_PING (0x01)

Sends a transaction to the device, which immediately echoes the same data back. This command is

defined to be a uniform function for debugging, latency and performance measurements.

Request

CMD CTAPHID_PING

BCNT 0..n

DATA n bytes

Response at success

CMD CTAPHID_PING

BCNT n

DATA N bytes

13.1.9.1.5 CTAPHID_CANCEL (0x11)

Cancel any outstanding requests on this CID.

Request

CMD CTAPHID_CANCEL

BCNT 0

Response at success

CMD CTAPHID_CANCEL

BCNT 0

 Rec. ITU-T X.1278 (11/2018) 49

13.1.9.1.6 CTAPHID_ERROR (0x3F)

This command code is used in response messages only.

CMD CTAPHID_ERROR

BCNT 1

DATA Error code

The following error codes are defined:

ERR_INVALID_CMD The command in the request is invalid.

ERR_INVALID_PAR The parameter(s) in the request is invalid.

ERR_INVALID_LEN The length field (BCNT) is invalid for the request.

ERR_INVALID_SEQ The sequence does not match expected value.

ERR_MSG_TIMEOUT The message has timed out.

ERR_CHANNEL_BUSY The device is busy for the requesting channel.

13.1.9.1.7 CTAPHID_KEEPALIVE (0x3B)

This command code is sent while processing a CTAPHID_MSG. It should be sent at least every

100 ms and whenever the status changes.

CMD CTAPHID_KEEPALIVE

BCNT 1

DATA Status code

The following status codes are defined:

STATUS_PROCESSING 1 The authenticator is still processing the current request.

STATUS_UPNEEDED 2 The authenticator is waiting for user presence.

13.1.9.2 Optional commands

The following commands are defined by this Recommendation but are optional and do not have to

be implemented.

13.1.9.2.1 CTAPHID_WINK (0x08)

The wink command performs a vendor-defined action that provides some visual or audible

identification of a particular authenticator device. A typical implementation will do a short burst of

flashes with an LED or something similar. This is useful when more than one device is attached to a

computer and there is confusion as to which device is paired with which connection.

Request

CMD CTAPHID_WINK

BCNT 0

DATA N/A

50 Rec. ITU-T X.1278 (11/2018)

Response at success

CMD CTAPHID_WINK

BCNT 0

DATA N/A

13.1.9.2.2 CTAPHID_LOCK (0x04)

The lock command places an exclusive lock for one channel to communicate with the device. As long

as the lock is active, any other channel trying to send a message will fail. In order to prevent a stalling

or crashing application to lock the device indefinitely, a lock time up to 10 seconds may be set. An

application requiring a longer lock has to send repeating lock commands to maintain the lock.

Request

CMD CTAPHID_LOCK

BCNT 1

DATA Lock time in seconds 0..10. A value of 0 immediately releases the lock.

Response at success

CMD CTAPHID_LOCK

BCNT 0

DATA N/A

13.1.9.3 Vendor specific commands

A CTAPHID may implement additional vendor-specific commands that are not defined in this

Recommendation, even if they are CTAPHID compliant. Such commands, if implemented must have

a command in the range between CTAPHID_VENDOR_FIRST (0x40) and

CTAPHID_VENDOR_LAST (0x7F).

13.2 ISO7816, ISO14443 and near-field communication (NFC)

13.2.1 Conformance

Please refer to [b-ISOIEC-7816-4] for application protocol data unit (APDU) definition.

13.2.2 Protocol

The general protocol between a FIDO2 client and an authenticator over ISO7816/ISO14443 is as

follows:

1) The client sends an applet selection command.

2) The authenticator replies with success if the applet is present.

3) The client sends a command for an operation.

4) The authenticator replies with response data or error.

13.2.3 Applet selection

A successful Select allows the client to know that the applet is present and active. A client shall send

a select to the authenticator before any other command.

The FIDO2 AID consists of the following fields:

 Rec. ITU-T X.1278 (11/2018) 51

Field Value

RID 0xA000000647

AC 0x2f

AX 0x0001

The command to select the FIDO applet is:

CLA INS P1 P2 Lc Data In Le

0x00 0xA4 0x04 0x0C 0x08 AID TBD (version string length)

In response to the applet selection command, the FIDO authenticator replies with its version

information string in the successful response.

Given legacy support for CTAP1/U2F, the client must determine the capabilities of the device at the

selection stage.

• If the authenticator implements CTAP1/U2F, the version information shall be the string

U2F_V2 to maintain backwards compatibility with CTAP1/U2F-only clients.

• If the authenticator only implements CTAP2, the device shall respond with data that is NOT

U2F_V2.

• If the authenticator implements both CTAP1/U2F and CTAP2, the version information shall

be the string U2F_V2 to maintain backwards compatibility with CTAP1/U2F-only clients.

CTAP2-aware clients may then issue a CTAP authenticatorGetInfo command to determine

if the device supports CTAP2 or not.

13.2.4 Framing

Conceptually, framing defines an encapsulation of FIDO2 commands. In NFC, this encapsulation is

done in an APDU following [b-ISOIEC-7816-4]. Fragmentation, if needed, is discussed in the

following paragraph.

13.2.4.1 Commands

Commands shall have the following format:

CLA INS P1 P2 Data In Le

0x80 0x10 0x00 0x00 CTAP Command Byte || CBOR Encoded Data Variable

13.2.4.2 Response

Response shall have the following format in case of success:

Case Data Status word

Success Response data "9000" – Success

Status update Status data "9100" – OK

When receiving this, CTAP (CTAP1/U2F and CTAP2) will

immediately issue an NFCCTAP_GETREPONSE command

unless a cancel was issued. CTAP (CTAP1/U2F and CTAP2)

will provide the status data to the higher layers.

Errors See [b-ISOIEC-7816-4]

52 Rec. ITU-T X.1278 (11/2018)

13.2.5 Fragmentation

APDU command may hold up to 255 or 65535 bytes of data using short or extended length encoding

respectively. APDU response may hold up to 256 or 65536 bytes of data using short or extended

length encoding respectively.

Some requests may not fit into a short APDU command, or the expected response may not fit in a

short APDU response. For this reason, FIDO2 client may encode an APDU command in the following

way:

• The request may be encoded using extended length APDU encoding.

• The request may be encoded using short APDU encoding. If the request does not fit a short

APDU command, the client must use ISO 7816-4 APDU chaining.

Some responses may not fit into a short APDU response. For this reason, FIDO2 authenticators must

respond in the following way:

• If the request was encoded using extended length APDU encoding, the authenticator must

respond using the extended length APDU response format.

• If the request was encoded using short APDU encoding, the authenticator must respond using

ISO 7816-4 APDU chaining.

13.2.6 Commands

13.2.6.1 NFCCTAP_MSG (0x10)

The NFCCTAP_MSG command sends a CTAP (CTAP1/U2F and CTAP2) message to the

authenticator. This command shall return as soon as processing is done. If the operation was not

completed, it may return a 0x9100 result to trigger NFCCTAP_GETRESPONSE functionality if the

client indicated support by setting the relevant bit in P1.

The values for P1 for the NFCCTAP_MSG command are:

P1 Bits Meaning

0x80 The client supports NFCCTAP_GETRESPONSE

0x7F RFU, must be 0x00

Values for P2 are all RFU and must be set to 0.

13.2.6.2 NFCCTAP_GETRESPONSE (0x11)

The NFCCTAP_GETRESPONSE command is issued up to receiving 0x9100 unless a cancel was

issued. This command shall return a 0x9100 result with a status indication if it has a status update,

the reply to the request with a 0x9000 result code to indicate success or an error value.

All values for P1 and P2 are RFU and must be set to 0x00.

13.2.7 Bluetooth smart/Bluetooth low energy technology

13.2.7.1 Conformance

The authenticator and client devices using Bluetooth Low Energy technology shall conform to

Bluetooth Core Specification 4.0 or later [b-BTCORE]

Bluetooth SIG specified universally unique identifier (UUID) values shall be found on the Assigned

Numbers website [b-BTASSNUM].

 Rec. ITU-T X.1278 (11/2018) 53

13.2.7.2 Pairing

Bluetooth low energy technology is a long-range wireless protocol and thus has several implications

for privacy, security and overall user-experience. As it is wireless, Bluetooth low energy technology

may be subject to monitoring, injection and other network-level attacks.

For these reasons, clients and authenticators must create and use a long-term link key (LTK) and shall

encrypt all communications. The authenticator must never use short-term keys.

Bearing in mind that Bluetooth low energy technology has poor ranging (i.e., there is no good

indication of proximity), it may not be clear to a FIDO client with which Bluetooth low energy

technology the authenticator should communicate. Pairing is the only mechanism defined in this

protocol to ensure that FIDO clients are interacting with the expected Bluetooth low energy

technology authenticator. As a result, the authenticator manufacturers should instruct users to avoid

performing Bluetooth pairing in a public space such as a cafe, shop or train station.

A disadvantage of using standard Bluetooth pairing is that the pairing is "system-wide" on most

operating systems. That is, if an authenticator is paired to a FIDO client who resides on an operating

system where Bluetooth pairing is "system-wide", then any application on that device might be able

to interact with an authenticator. This issue is discussed further in clause 13.2.7.12, 'Implementation

considerations'.

13.2.7.3 Link security

For Bluetooth low energy technology connections, the authenticator shall enforce Security Mode

1, Level 2 (unauthenticated pairing with encryption) or Security Mode 1, Level 3 (authenticated

pairing with encryption) before any FIDO messages are exchanged.

13.2.7.4 Framing

Conceptually, framing defines an encapsulation of FIDO raw messages responsible for correct

transmission of a single request and its response by the transport layer.

All requests and their responses are conceptually written as a single frame. The format of the requests

and responses is given first as complete frames. Fragmentation is then discussed for each type of

transport layer.

13.2.7.4.1 Request from client to authenticator

Request frames must have the format given in Table 22.

Table 22 – Request frames format

Offset Length Mnemonic Description

0 1 CMD Command identifier

1 1 HLEN High part of data length

2 1 LLEN Low part of data length

3 s DATA Data (s is equal to the length)

Supported commands are PING, MSG and CANCEL. The constant values for the commands are described

below.

The CANCEL command cancels any outstanding MSG commands.

The data format for the MSG command is defined in clause 11.

54 Rec. ITU-T X.1278 (11/2018)

13.2.7.4.2 Response from authenticator to client

Response frames must have the format given in Table 23, which share a similar format to the request

frames:

Table 23 – Response frames format

Offset Length Mnemonic Description

0 1 STAT Response status

1 1 HLEN High part of data length

2 1 LLEN Low part of data length

3 s DATA Data (s is equal to the length)

When the status byte in the response is the same as the command byte in the request, the response is

a successful response. The value ERROR indicates an error, and the response data contains an error

code as a variable-length, big-endian integer. The constant value for ERROR is described below.

Note that the errors sent in this response are errors at the encapsulation layer, e.g., indicating an

incorrectly formatted request, or possibly an error communicating with the authenticator's FIDO

message processing layer. Errors reported by the FIDO message processing layer itself are considered

a success from the encapsulation layer's point of view, and are reported as a complete MSG response.

Data format is defined in clause 11.

13.2.7.4.3 Command, status and error constants

The COMMAND constants and values are:

Constant Value

PING 0x81

KEEPALIVE 0x82

MSG 0x83

CANCEL 0xbe

ERROR 0xbf

The KEEPALIVE command contains a single byte with the following possible values:

Status constant Value

PROCESSING 0x01

UP_NEEDED 0x02

RFU 0x00, 0x03-0xFF

The ERROR constants and values are:

Error constant Value Meaning

ERR_INVALID_CMD 0x01 The command in the request is unknown/invalid

ERR_INVALID_PAR 0x02 The parameter(s) of the command is/are invalid or missing

ERR_INVALID_LEN 0x03 The length of the request is invalid

 Rec. ITU-T X.1278 (11/2018) 55

Error constant Value Meaning

ERR_INVALID_SEQ 0x04 The sequence number is invalid

ERR_REQ_TIMEOUT 0x05 The request timed out

NA 0x06 Value reserved (HID)

NA 0x0a Value reserved (HID)

NA 0x0b Value reserved (HID)

ERR_OTHER 0x7f Other, unspecified error

13.2.7.4.5 GATT service description

This profile defines two roles: FIDO authenticator and FIDO client.

• The FIDO client shall be a generic attribute profile (GATT) client.

• The FIDO authenticator shall be a GATT server.

Figure 4 illustrates the mandatory services and characteristics that shall be offered by a FIDO

authenticator as part of its GATT server.

Figure 4 – Mandatory GATT services and characteristics that must be

offered by a FIDO authenticator

Note that the generic access service [b-BTGAS] is not present as it is already mandatory for any

Bluetooth low energy technology compliant device.

Table 24 summarizes additional GATT sub-procedure requirements for a FIDO authenticator (GATT

server) beyond those required by all GATT servers.

56 Rec. ITU-T X.1278 (11/2018)

Table 24 – GATT sub-procedure requirements for a FIDO authenticator

GATT sub-procedure Requirements

Write Characteristic Value Mandatory

Notifications Mandatory

Read Characteristic Descriptors Mandatory

Write Characteristic Descriptors Mandatory

Table 25summarizes additional GATT sub-procedure requirements for a FIDO client (GATT client)

beyond those required by all GATT clients.

Table 25 – GATT sub-procedure requirements for a FIDO client

GATT sub-procedure Requirements

Discover All Primary Services (*)

Discover Primary Services by Service

UUID

(*)

Discover All Characteristics of a Service (**)

Discover Characteristics by UUID (**)

Discover All Characteristic Descriptors Mandatory

Read Characteristic Value Mandatory

Write Characteristic Value Mandatory

Notification Mandatory

Read Characteristic Descriptors Mandatory

Write Characteristic Descriptors Mandatory

(*) Mandatory to support at least one of these sub-procedures.
(**) Mandatory to support at least one of these sub-procedures.

Other GATT sub-procedures may be used if supported by both client and server.

The specifics of each service are explained below. In the following descriptions all values are big-

endian coded, all strings are in UTF-8 encoding, and any characteristics not mentioned explicitly are

optional.

13.2.7.5.1 FIDO service

An authenticator shall implement the FIDO service described in Table 26. The UUID for the FIDO

GATT service is 0xFFFD and it shall be declared as a primary service. The service contains the

following characteristics:

 Rec. ITU-T X.1278 (11/2018) 57

Table 26 – FIDO services

Characteristic

name

Mnemonic Property Length UUID

FIDO Control

Point

fidoControlPoint Write Defined by

vendor (20-

512 bytes)

F1D0FFF1-DEAA-

ECEE-B42F-

C9BA7ED623BB

FIDO Status fidoStatus Notify N/A F1D0FFF2-DEAA-

ECEE-B42F-

C9BA7ED623BB

FIDO Control

Point Length

fidoControlPointLength Read 2 bytes F1D0FFF3-DEAA-

ECEE-B42F-

C9BA7ED623BB

FIDO Service

Revision Bitfield

fidoServiceRevisionBitf

ield
Read/Write Defined by

vendor (1+

bytes)

F1D0FFF4-DEAA-

ECEE-B42F-

C9BA7ED623BB

FIDO Service

Revision

fidoServiceRevision Read Defined by

vendor

(20-512

bytes)

0x2A28

fidoControlPoint is a write-only command buffer.

fidoStatus is a notify-only response attribute. The authenticator will send a series of notifications

on this attribute with a maximum length of (ATT_MTU-3) using the response frames defined above.

This mechanism is used because this results in a faster transfer speed compared to a notify-read

combination.

fidoControlPointLength defines the maximum size in bytes of a single write request to

fidoControlPoint. This value shall be between 20 and 512.

fidoServiceRevision is a deprecated field that is only relevant to U2F 1.0 support. It defines the

revision of the U2F service. The value is a UTF-8 string. For version 1.0 of the specification, the

value fidoServiceRevision shall be 1.0 or in raw bytes: 0x312e30. This field shall be omitted if

protocol version 1.0 is not supported.

The fidoServiceRevision characteristic may include a characteristic presentation format descriptor

with format value 0x19, UTF-8 String.

fidoServiceRevisionBitfield defines the revision of the FIDO service. The value is a bit field

with each bit representing a version. For each version bit the value is 1 if the version is supported, 0

if it is not. The length of the bitfield is 1 or more bytes. All bytes that are 0 are omitted if all the

following bytes are also 0. The byte order is big endian. The client shall write a value to this

characteristic with exactly 1 bit set before sending any FIDO commands unless u2fServiceRevision

is present and U2F 1.0 compatibility is desired. If only U2F version 1.0 is supported, this

characteristic shall be omitted.

Byte (left to right) Bit Version

0 7 U2F 1.1

0 6 U2F 1.2

0 5 FIDO 2.0

0 4-0 Reserved

58 Rec. ITU-T X.1278 (11/2018)

For example, a device that only supports FIDO2 Rev 1 will only have a fidoServiceRevisionBitfield

characteristic of length 1 with the value 0x20.

13.2.7.5.2 Device information service

An authenticator shall implement the device information service [b-BTDIS] with the following

characteristics:

• Manufacturer name string

• Model number string

• Firmware revision string

All values for the device information service are left to the vendors. However, vendors should not

create uniquely identifiable values so that authenticators do not become a method of tracking users.

13.2.7.5.3 Generic access profile service

Every authenticator shall implement the generic access profile service [b-BTGAS] with the following

characteristics:

• Device name

• Appearance

13.2.7.6 Protocol overview

The general overview of the communication protocol follows:

1) The authenticator advertises the FIDO service.

2) The client scans for the authenticator advertising the FIDO service.

3) The client performs characteristic discovery on the authenticator.

4) If not already paired, the client and the authenticator shall perform BLE pairing and create

an LTK. The authenticator shall only allow connections from previously bonded clients

without user intervention.

5) The client checks if the fidoServiceRevisionBitfield characteristic is present. If so, the

client selects a supported version by writing a value with a single bit set.

6) The client reads the fidoControlPointLength characteristic.

7) The client registers for notifications on the fidoStatus characteristic.

8) The client writes a request (e.g., an enroll request) into the fidoControlPoint characteristic.

9) The authenticator evaluates the request and responds by sending notifications over

fidoStatus characteristic.

10) The protocol completes when either:

• the client unregisters for notifications on the fidoStatus characteristic, or

• the connection times out and is closed by the authenticator.

13.2.7.7 Authenticator advertising format

When advertising, the authenticator shall advertise the FIDO service UUID.

When advertising, the authenticator may include the TxPower value in the advertisement (see

[b-BTXPLAD]).

When advertising in pairing mode, the authenticator shall either:

1) set the LE limited mode bit to zero and the LE general discoverable bit to one, or

2) set the LE limited mode bit to one and the LE general discoverable bit to zero.

 Rec. ITU-T X.1278 (11/2018) 59

When advertising in the non-pairing mode, the authenticator shall set both the LE limited mode bit

and the LE general discoverable mode bit to zero in the advertising data flags.

The advertisement may also carry a device name which is distinctive and user-identifiable. For

example, "ACME Key" would be an appropriate name, while "XJS4" would not be.

The authenticator shall also implement the generic access profile [b-BTGAP] and device information

service [b-BTDIS], both of which also provide a user-friendly name for the device that could be used

by the client.

It is not specified when or how often an authenticator should advertise, instead that flexibility is left

to manufacturers.

13.2.7.8 Requests

Clients should make requests by connecting to the authenticator and performing a write into the

fidoControlPoint characteristic.

13.2.7.9 Responses

Authenticators should respond to clients by sending notifications on the fidoStatus characteristic.

Some authenticators might alert users or prompt them to complete the test of user presence (e.g., via

sound, light, vibration) Upon receiving any request, the authenticators shall send KEEPALIVE

commands every kKeepAliveMillis milliseconds until completing the processing of the commands.

While the authenticator is processing the request the KEEPALIVE command will contain status

PROCESSING. If the authenticator is waiting to complete the test of user presence, the KEEPALIVE

command will contains status UP_NEEDED. While waiting to complete the test of user presence, the

authenticator may alert the user (e.g., by flashing) in order to prompt the user to complete the test of

user presence. As soon as the authenticator has completed processing and confirmed user presence,

it shall stop sending KEEPALIVE commands and send the reply.

Upon receiving a KEEPALIVE command, the client shall assume the authenticator is still processing

the command; the client shall not resend the command. The authenticator shall continue sending

KEEPALIVE messages at least every kKeepAliveMillis to indicate that it is still handling the

request. Until a client-defined timeout occurs, the client shall not move on to other devices when it

receives a KEEPALIVE with UP_NEEDED status, as it knows this is a device that can satisfy its request.

13.2.7.10 Framing fragmentation

A single request/response sent over Bluetooth low energy technology may be split over multiple

writes and notifications, due to the inherent limitations of Bluetooth low energy technology which is

currently not meant for large messages. Frames are fragmented in the following way:

A frame is divided into an initialization fragment and one or more continuation fragments.

An initialization fragment is defined as outlined in Table 27.

Table 27 – Initialization fragment

Offset Length Mnemonic Description

0 1 CMD Command identifier

1 1 HLEN High part of data length

2 1 LLEN Low part of data length

3 0 to (maxLen – 3) DATA Data

where maxLen is the maximum packet size supported by the characteristic or notification.

60 Rec. ITU-T X.1278 (11/2018)

In other words, the start of an initialization fragment is indicated by setting the high bit in the first

byte. The subsequent two bytes indicate the total length of the frame, in big-endian order. The first

maxLen – 3 bytes of data follow.

Continuation fragments are as defined in Table 28,

Table 28 – Continuation fragment

Offset Length Mnemonic Description

0 1 SEQ Packet sequence 0x00..0x7f (high bit always cleared)

1 0 to (maxLen – 1) DATA Data

where maxLen is the maximum packet size supported by the characteristic or notification.

In other words, continuation fragments begin with a sequence number, beginning at 0, implicitly with

the high bit cleared. The sequence number must wrap around to 0 after reaching the maximum

sequence number of 0x7f.

The following is the example for sending a PING command with 40 bytes of data with a maxLen of

20 bytes:

Frame Bytes

0 [810028] [17 bytes of data]

1 [00] [19 bytes of data]

2 [01] [4 bytes of data]

The following is the example for sending a ping command with 400 bytes of data with a maxLen of

512 bytes:

Frame Bytes

0 [810190] [400 bytes of data]

13.2.7.11 Notifications

A client needs to register for notifications before it can receive them. Bluetooth Core Specification

4.0 or later [b-BTCORE] forces a device to remember the notification registration status over different

connections [b-BTCCC]. Unless a client explicitly unregisters for notifications, the registration will

be automatically restored when reconnecting. A client may therefore check the notification status

upon connection and only register if notifications are not already registered. Please note that some

clients may disable notifications from a power management point of view (see below) and the

notification registration is remembered per bond, not per client. A client must not remember the

notification status in its own data storage.

13.2.7.12 Implementation considerations

13.2.7.12.1 Bluetooth pairing: client considerations

As outlined in clause 13.2.7.2, a disadvantage of using standard Bluetooth pairing is that the pairing

is "system-wide" on most operating systems. That is, if an authenticator is paired to a FIDO client

which resides on an operating system where Bluetooth pairing is "system-wide", then any application

on that device might be able to interact with an authenticator. This poses both security and privacy

risks to users.

 Rec. ITU-T X.1278 (11/2018) 61

While the client operating system security is partly out of FIDO's scope, further revisions of this

Recommendation may propose mitigations for this issue.

13.2.7.12.2 Bluetooth pairing: authenticator considerations

The method to put the authenticator into pairing mode should be such that it is not easy for the user

to do so accidentally, especially if the pairing method is Just Works. For example, the action could

be pressing a physically recessed button or pressing multiple buttons. A visible or audible cue that

the authenticator is in pairing mode should be considered. As a counter example, a silent, long press

of a single non-recessed button is not advised as some users naturally hold buttons down during

regular operation.

Note that at times, authenticators may legitimately receive communication from an unpaired device.

For example, a user attempting to use an authenticator for the first time with a new client. The client

turns on the authenticator, but forgets to put it into pairing mode. In this situation, after connecting to

the authenticator, the client will notify the user that he needs to pair his authenticator. The

authenticator should make it easy for the user to do so, e.g., by not requiring the user to wait for a

timeout before being able to enable pairing mode.

Some client platforms (most notably iOS) do not expose the AD flag LE limited and general

discoverable mode bits to applications. For this reason, authenticators are also strongly recommended

to include the Service Data field [b-BTSD] in the scan response. The Service Data field is 3 or more

octets long. This allows the flags field to be extended while using the minimum number of octets

within the data packet. All octets that are 0x00 are not transmitted as long as all other octets after that

octet are also 0x00 and it is not the first octet after the service UUID. The first 2 bytes contain the

FIDO service UUID, the bytes following are flag bytes.

To help clients show the correct UX, authenticators can use the service data field to specify whether

or not authenticators will require a Passkey (PIN) during pairing.

Service data bit Meaning (if set)

7 Device is in pairing mode.

6 Device requires Passkey entry [b-BTPESTK].

13.2.7.13 Handling command completion

It is important for low-power devices to be able to conserve power by shutting down or switching to

a lower-power state when they have satisfied a client's requests. However, the FIDO protocol makes

this hard as it typically includes more than one command/response. This is especially true if a user

has more than one key handle associated with an account or identity. Multiple key handles may need

to be tried before getting a successful outcome. Furthermore, clients that fail to send follow-up

commands in a timely fashion may cause the authenticator to drain its battery by staying powered up

while anticipating more commands.

A further consideration is to ensure that users are not confused about the command they are

confirming by completing the test of user presence. That is, if a user performs the test of user presence,

that action should perform exactly one operation.

We combine these considerations into the following series of recommendations:

• Upon initial connection to an authenticator, and upon receipt of a response from an

authenticator, if a client has more commands to issue, the client must transmit the next

command or fragment within kMaxCommandTransmitDelayMillis milliseconds (Table 29).

• Upon final response from an authenticator, if the client decides it has no more commands to

send it should indicate this by disabling notifications on the fidoStatus characteristic. When

62 Rec. ITU-T X.1278 (11/2018)

the notifications are disabled the authenticator may enter a low power state or disconnect and

shut down.

• Any time the client wishes to send a FIDO message, it must have first enabled notifications

on the fidoStatus characteristic and wait for the ATT acknowledgement to be sure that the

authenticator is ready to process messages.

• Upon successful completion of a command which required a test of user presence, e.g., upon

a successful authentication or registration command, the authenticator can assume that the

client is satisfied, and may reset its state or power down.

• Upon sending a command response that did not consume a test of user presence, the

authenticator must assume that the client may wish to initiate another command, and leave

the connection open until the client closes it or until a timeout of at least kErrorWaitMillis

elapses. Examples of command responses that do not consume user presence include failed

authenticate or register commands, as well as get version responses, whether successful or

not. After kErrorWaitMillis milliseconds (Table 38) have elapsed without further

commands from a client, an authenticator may reset its state or power down.

Table 29 – Timeout values

Constant Value

kMaxCommandTransmitDelayMillis 1500 milliseconds

kErrorWaitMillis 2000 milliseconds

kKeepAliveMillis 500 milliseconds

13.2.7.14 Data throughput

Bluetooth low energy technology does not have particularly high throughput, this can cause

noticeable latency to the user if requests/responses are large. Some ways that implementers can reduce

latency are to:

• support the maximum maximum transmission unit (MTU) size allowable by hardware (up to

the 512-byte max from the BLE specifications);

• make the attestation certificate as small as possible while excluding unnecessary extensions

in the process.

13.2.7.15 Advertising

Though the Recommendation does not appear to mandate it (in any way found thus far), advertising

and device discovery seems to work better when the authenticators advertise on all three advertising

channels and not just one.

13.2.7.16 Authenticator address type

In order to enhance the user's privacy and specifically to guard against tracking, it is recommended

that authenticators use resolvable private addresses (RPAs) instead of static addresses.

 Rec. ITU-T X.1278 (11/2018) 63

Bibliography

[b-BTASSNUM] Bluetooth Assigned Numbers <https://www.bluetooth.org/en-us/specification/assigned-numbers>

[b-BTCCC] Client Characteristic Configuration. Bluetooth Core Specification 4.0, Volume

3, Part G, Section 3.3.3.3. <https://www.bluetooth.com/specifications/adopted-specifications>

[b-BTCORE] Bluetooth Core Specification 4.0.
<https://www.bluetooth.com/specifications/adopted-specifications>

[b-BTDIS] Device Information Service v1.1.
https://www.bluetooth.com/specifications/adopted-specifications

[b-BTGAP] Generic Access Profile. Bluetooth Core Specification 4.0, Volume 3, Part C,

Section 12.
https://www.bluetooth.com/specifications/adopted-specifications

[b-BTGAS] Generic Access Profile service. Bluetooth Core Specification 4.0, Volume 3,

Part C, Section 12.
https://developer.bluetooth.org/gatt/services/Pages/ServiceViewer.aspx?u=org.bluetooth.service.generic_ac
cess.xml

[b-BTPESTK] Passkey Entry. Bluetooth Core Specification 4.0, Volume 3, Part H,

Section 2.3.5.3. https://www.bluetooth.com/specifications/adopted-specifications

[b-BTSD] Bluetooth Service Data AD Type. Bluetooth Core Specification 4.0, Volume 3,

Part C, Section 11. https://www.bluetooth.com/specifications/adopted-specifications

[b-BTXPLAD] Bluetooth TX Power AD Type. Bluetooth Core Specification 4.0, Volume 3,

Part C, Section 11. https://www.bluetooth.com/specifications/adopted-specifications

[b-FIDOSrvrGuid] FIDO2 Server Guidelines.
<https://drafts.fidoalliance.org/fido-2/latest/fido-server-v2.0-wd-20180202.html>

[b-IANA-COSE] Schaad, J., Selander, G., Atkins, D., Turner, S. IANA CBOR Object Signing

and Encryption (COSE) Algorithms Registry.
<https://www.iana.org/assignments/cose/cose.xhtml#algorithms>

[b-ISOIEC-7816-4] ISO/IEC 7816-4:2013, Identification cards – Integrated circuit cards– Part 4:

Organization, security and commands for interchange.

[b-RFC 6090] IETF RFC 6090 (2011), Fundamental Elliptic Curve Cryptography

Algorithms. <https://tools.ietf.org/html/rfc6090>

[b-RFC 8152] IETF RFC 8152 (2017), CBOR Object Signing and Encryption (COSE).
<https://tools.ietf.org/html/rfc8152>

[b-SP800-56A] NIST Special Publication 800-56A (Revised) (2007), Recommendation for

Pair-Wise Key Establishment Schemes Using Discrete Logarithm

Cryptography <https://csrc.nist.gov/publications/nistpubs/800-56A/SP800-56A_Revision1_Mar08-

2007.pdf>

[b-U2FUsbHid] Fido Alliance Proposed Standard (2017), FIDO U2F HID Protocol

Specification.
<https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-hid-protocol-v1.2-ps-20170411.html>

[b-U2FNfc] Fido Alliance Proposed Standard (2017), FIDO NFC Protocol Specification

v1.0.
<https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-nfc-protocol-v1.2-ps-20170411.html>

[b-U2FBle] D. Balfanz. FIDO Bluetooth® Specification. Proposed Standard. URL:
<https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-bt-protocol-v1.2-ps-20170411.html>

https://www.bluetooth.org/en-us/specification/assigned-numbers
https://www.bluetooth.com/specifications/adopted-specifications
https://www.bluetooth.com/specifications/adopted-specifications
https://www.bluetooth.com/specifications/adopted-specifications
https://www.bluetooth.com/specifications/adopted-specifications
https://developer.bluetooth.org/gatt/services/Pages/ServiceViewer.aspx?u=org.bluetooth.service.generic_access.xml
https://developer.bluetooth.org/gatt/services/Pages/ServiceViewer.aspx?u=org.bluetooth.service.generic_access.xml
https://www.bluetooth.com/specifications/adopted-specifications
https://www.bluetooth.com/specifications/adopted-specifications
https://www.bluetooth.com/specifications/adopted-specifications
https://drafts.fidoalliance.org/fido-2/latest/fido-server-v2.0-wd-20180202.html
https://www.iana.org/assignments/cose/cose.xhtml#algorithms
https://tools.ietf.org/html/rfc6090
https://tools.ietf.org/html/rfc8152
https://csrc.nist.gov/publications/nistpubs/800-56A/SP800-56A_Revision1_Mar08-2007.pdf
https://csrc.nist.gov/publications/nistpubs/800-56A/SP800-56A_Revision1_Mar08-2007.pdf
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-hid-protocol-v1.2-ps-20170411.html
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-nfc-protocol-v1.2-ps-20170411.html
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-bt-protocol-v1.2-ps-20170411.html

Printed in Switzerland
Geneva, 2019

SERIES OF ITU-T RECOMMENDATIONS

Series A Organization of the work of ITU-T

Series D Tariff and accounting principles and international telecommunication/ICT economic and

policy issues

Series E Overall network operation, telephone service, service operation and human factors

Series F Non-telephone telecommunication services

Series G Transmission systems and media, digital systems and networks

Series H Audiovisual and multimedia systems

Series I Integrated services digital network

Series J Cable networks and transmission of television, sound programme and other multimedia

signals

Series K Protection against interference

Series L Environment and ICTs, climate change, e-waste, energy efficiency; construction, installation

and protection of cables and other elements of outside plant

Series M Telecommunication management, including TMN and network maintenance

Series N Maintenance: international sound programme and television transmission circuits

Series O Specifications of measuring equipment

Series P Telephone transmission quality, telephone installations, local line networks

Series Q Switching and signalling, and associated measurements and tests

Series R Telegraph transmission

Series S Telegraph services terminal equipment

Series T Terminals for telematic services

Series U Telegraph switching

Series V Data communication over the telephone network

Series X Data networks, open system communications and security

Series Y Global information infrastructure, Internet protocol aspects, next-generation networks,

Internet of Things and smart cities

Series Z Languages and general software aspects for telecommunication systems

	ITU-T Rec. X.1278 (11/2018) -
Client to authenticator protocol/Universal 2-factor framework
	Summary
	History
	FOREWORD
	Table of Contents
	1 Scope
	2 References
	3 Definitions
	4 Abbreviations and acronyms
	5 Conventions
	5.1 Conformance

	6 Overview
	7 Relationship to other specifications
	8 Protocol structure
	9 Protocol overview
	10 Authenticator API
	10.1 authenticatorMakeCredential (0x01)
	10.2 authenticatorGetAssertion(0x02)
	10.3 authenticatorGetNextAssertion (0x08)
	10.4 Client logic
	10.5 authenticatorCancel (0x03)
	10.6 authenticatorGetInfo (0x04)
	10.7 authenticatorClientPIN (0x06)
	10.7.1 Client PIN support requirements
	10.7.2 Authenticator configuration operations upon power up
	10.7.3 Getting sharedSecret from the authenticator
	10.7.4 Setting a new PIN
	10.7.5 Changing existing PIN
	10.7.6 Getting pinToken from the authenticator
	10.7.7 Using pinToken
	10.7.7.1 Using pinToken in authenticatorMakeCredential
	10.7.7.2 Using pinToken in authenticatorGetAssertion
	10.7.7.3 Without pinToken in authenticatorGetAssertion

	10.8 AuthenticatorReset (0x07)

	11 Message encoding
	11.1 Commands
	11.2 Responses
	11.3 Error responses

	12 Interoperating with CTAP1/U2F authenticators
	12.1 Using the CTAP2 authenticatorMakeCredential command with CTAP1/U2F authenticators
	12.2 Using the CTAP2 authenticatorGetAssertion command with CTAP1/U2F authenticators

	13 Transport-specific bindings
	13.1 USB
	13.1.1 Design rationale
	13.1.2 Protocol structure and data framing
	13.1.3 Concurrency and channels
	13.1.4 Message and packet structure
	13.1.5 Arbitration
	13.1.5.1 Transaction atomicity, idle and busy states
	13.1.5.2 Transaction timeout
	13.1.5.3 Transaction abort and re-synchronization
	13.1.5.4 Packet sequencing

	13.1.6 Channel locking
	13.1.7 Protocol version and compatibility
	13.1.8 HID device implementation
	13.1.8.1 Interface and endpoint descriptors
	13.1.8.2 HID report descriptor and device discovery

	13.1.9 CTAPHID commands
	13.1.9.1 Mandatory commands
	13.1.9.1.1 CTAPHID_MSG (0x03)
	13.1.9.1.2 CTAPHID_CBOR (0x10)
	13.1.9.1.3 CTAPHID_INIT (0x06)
	13.1.9.1.4 CTAPHID_PING (0x01)
	13.1.9.1.5 CTAPHID_CANCEL (0x11)
	13.1.9.1.6 CTAPHID_ERROR (0x3F)
	13.1.9.1.7 CTAPHID_KEEPALIVE (0x3B)

	13.1.9.2 Optional commands
	13.1.9.2.1 CTAPHID_WINK (0x08)
	13.1.9.2.2 CTAPHID_LOCK (0x04)

	13.1.9.3 Vendor specific commands

	13.2 ISO7816, ISO14443 and near-field communication (NFC)
	13.2.1 Conformance
	13.2.2 Protocol
	13.2.3 Applet selection
	13.2.4 Framing
	13.2.4.1 Commands
	13.2.4.2 Response

	13.2.5 Fragmentation
	13.2.6 Commands
	13.2.6.1 NFCCTAP_MSG (0x10)
	13.2.6.2 NFCCTAP_GETRESPONSE (0x11)

	13.2.7 Bluetooth smart/Bluetooth low energy technology
	13.2.7.1 Conformance
	13.2.7.2 Pairing
	13.2.7.3 Link security
	13.2.7.4 Framing
	13.2.7.4.1 Request from client to authenticator
	13.2.7.4.2 Response from authenticator to client
	13.2.7.4.3 Command, status and error constants
	13.2.7.4.5 GATT service description
	13.2.7.5.1 FIDO service
	13.2.7.5.2 Device information service
	13.2.7.5.3 Generic access profile service

	13.2.7.6 Protocol overview
	13.2.7.7 Authenticator advertising format
	13.2.7.8 Requests
	13.2.7.9 Responses
	13.2.7.10 Framing fragmentation
	13.2.7.11 Notifications
	13.2.7.12 Implementation considerations
	13.2.7.12.1 Bluetooth pairing: client considerations
	13.2.7.12.2 Bluetooth pairing: authenticator considerations

	13.2.7.13 Handling command completion
	13.2.7.14 Data throughput
	13.2.7.15 Advertising
	13.2.7.16 Authenticator address type

	Bibliography

