
ITUPublications International Telecommunication Union

Recommendations Standardization Sector

Recommendation

ITU-T X.1277.2 (04/2023)

SERIES X: Data networks, open system communications
and security

Cyberspace security – Identity management

Universal authentication framework protocol
specification

ITU-T X-SERIES RECOMMENDATIONS

Data networks, open system communications and security

PUBLIC DATA NETWORKS X.1-X.199
OPEN SYSTEMS INTERCONNECTION X.200-X.299
INTERWORKING BETWEEN NETWORKS X.300-X.399
MESSAGE HANDLING SYSTEMS X.400-X.499
DIRECTORY X.500-X.599
OSI NETWORKING AND SYSTEM ASPECTS X.600-X.699
OSI MANAGEMENT X.700-X.799
SECURITY X.800-X.849
OSI APPLICATIONS X.850-X.899
OPEN DISTRIBUTED PROCESSING X.900-X.999
INFORMATION AND NETWORK SECURITY X.1000-X.1099
SECURE APPLICATIONS AND SERVICES (1) X.1100-X.1199
CYBERSPACE SECURITY X.1200-X.1299
 Cybersecurity X.1200-X.1229
 Countering spam X.1230-X.1249
 Identity management X.1250-X.1279
SECURE APPLICATIONS AND SERVICES (2) X.1300-X.1499
CYBERSECURITY INFORMATION EXCHANGE X.1500-X.1599
CLOUD COMPUTING SECURITY X.1600-X.1699
QUANTUM COMMUNICATION X.1700-X.1729
DATA SECURITY X.1750-X.1799
IMT-2020 SECURITY X.1800-X.1819

For further details, please refer to the list of ITU-T Recommendations.

 Rec. ITU-T X.1277.2 (04/2023) i

Recommendation ITU-T X.1277.2

Universal authentication framework protocol specification

Summary

The goal of the universal authentication framework is to provide a unified and extensible

authentication mechanism that supplants passwords while avoiding the shortcomings of current

alternative authentication approaches.

This approach is designed to allow the relying party to choose the best available authentication

mechanism for a particular end user or interaction, while preserving the option to leverage emerging

device security capabilities in the future without requiring additional integration effort.

Recommendation ITU-T X.1277.2 describes the architecture in detail, it defines the flow and content

of all UAF protocol messages and presents the rationale behind the design choices.

NOTE – Recommendation ITU-T X.1277.2 is technically aligned to FIDO UAF Protocol Specification v1.2
(2020).

History *

Edition Recommendation Approval Study Group Unique ID

1.0 ITU-T X.1277.2 2023-04-29 17 11.1002/1000/15543

Keywords

Authentication, CTAP, identity, protocol, security, UAF.

* To access the Recommendation, type the URL https://handle.itu.int/ in the address field of your web

browser, followed by the Recommendation's unique ID.

https://handle.itu.int/

ii Rec. ITU-T X.1277.2 (04/2023)

Introduction

The goal of this universal authentication framework is to provide a unified and extensible

authentication mechanism that supplants passwords while avoiding the shortcomings of current

alternative authentication approaches.

The design goal of the protocol is to enable relying parties to leverage the diverse and heterogeneous

set of security capabilities available on end users' devices via a single, unified protocol.

This approach is designed to allow the relying parties to choose the best available authentication

mechanism for a particular end user or interaction, while preserving the option for a relying party to

leverage emerging device security capabilities in the future, without requiring additional integration

effort.

 Rec. ITU-T X.1277.2 (04/2023) iii

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of
telecommunications, information and communication technologies (ICTs). The ITU Telecommunication
Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical,
operating and tariff questions and issuing Recommendations on them with a view to standardizing

telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years, establishes
the topics for study by the ITU-T study groups which, in turn, produce Recommendations on these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are
prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a
telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain
mandatory provisions (to ensure, e.g., interoperability or applicability) and compliance with the
Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some other
obligatory language such as "must" and the negative equivalents are used to express requirements. The use of
such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may involve
the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence, validity or
applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others outside of

the Recommendation development process.

As of the date of approval of this Recommendation, ITU had not received notice of intellectual property,
protected by patents/software copyrights, which may be required to implement this Recommendation.
However, implementers are cautioned that this may not represent the latest information and are therefore
strongly urged to consult the appropriate ITU-T databases available via the ITU-T website at
http://www.itu.int/ITU-T/ipr/.

© ITU 2023

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the prior
written permission of ITU.

http://www.itu.int/ITU-T/ipr/

iv Rec. ITU-T X.1277.2 (04/2023)

Table of Contents

 Page

1 Scope .. 1

2 References .. 1

3 Definitions ... 1

3.1 Terms defined elsewhere ... 1

4 Abbreviations and acronyms .. 2

5 Conventions ... 3

6 Overview .. 4

6.1 Architecture .. 4

6.2 Protocol conversation ... 5

6.3 Relationship to other specifications .. 7

7 Protocol details .. 7

7.1 Shared structures and types.. 7

7.2 Processing rules for the server policy ... 21

7.3 Version negotiation .. 23

7.4 Registration operation .. 24

7.5 Authentication operation .. 41

7.6 Deregistration operation ... 56

8 Considerations ... 59

8.1 Protocol core design considerations .. 59

8.2 Implementation considerations .. 63

8.3 Security considerations .. 63

8.4 Interoperability considerations .. 70

9 UAF supported assertion schemes ... 71

9.1 Assertion scheme "UAFV1TLV" .. 71

Annex A – UAF android protected confirmation assertion format ... 73

A.1 Data structures for APCV1CBOR ... 73

A.2 Authentication assertion ... 73

A.3 Processing rules .. 74

A.4 Example for metadata statement.. 78

Annex B – UAF web authentication assertion format .. 83

B.1 Data structures for WAV1CBOR .. 83

B.2 Processing rules .. 85

B.3 Mapping CTAP2 error codes to ASM error codes ... 94

Annex C – UAF authenticator Commands .. 98

C.1 UAF authenticator .. 98

C.2 Tags ... 101

C.3 Structures .. 108

 Rec. ITU-T X.1277.2 (04/2023) v

 Page

C.4 UserVerificationToken ... 113

C.5 Commands .. 114

C.6 KeyIDs and key handles .. 131

C.7 Access control for commands .. 132

C.8 Considerations .. 133

C.9 Relationship to other standards.. 133

C.10 Security guidelines ... 134

Annex D – UAF application API and transport binding .. 139

D.1 Audience ... 139

D.2 Scope ... 139

D.3 Architecture .. 140

D.4 Common definitions ... 141

D.5 Shared definitions ... 142

D.6 DOM API .. 148

D.7 Android Intent API ... 152

D.8 iOS Custom URL API .. 160

D.9 Transport binding profile ... 166

Annex E – UAF registry of predefined values .. 174

E.1 Authenticator characteristics.. 174

E.2 Predefined Tags .. 174

E.3 Predefined extensions ... 178

E.4 Other identifiers specific to UAF .. 192

Appendix I – UAF architectural overview .. 193

I.1 Background ... 193

I.2 UAF high-level architecture .. 196

I.3 UAF usage scenarios and protocol message flows .. 198

I.4 Privacy considerations ... 201

I.5 Relationship to other technologies .. 202

I.6 OATH, TCG, PKCS#11, and ISO 24727 ... 203

Appendix II – UAF Authenticator-Specific Module API .. 204

II.1 Code example format ... 204

II.2 ASM requests and responses ... 204

II.3 Using ASM API.. 222

II.4 ASM APIs for various platforms ... 223

II.5 CTAP2 interface ... 230

II.6 Security and privacy guidelines ... 233

Bibliography .. 237

 Rec. ITU-T X.1277.2 (04/2023) 1

Recommendation ITU-T X.1277.2

Universal authentication framework protocol specification

1 Scope

This Recommendation defines the universal authentication framework (UAF) protocol as a network

protocol and describes its architecture. It defines the flow and content of all UAF messages and

presents the rationale behind the design choices.

Particular application-level bindings are outside the scope of this Recommendation.

2 References

The following ITU-T Recommendations and other references contain provisions which, through

reference in this text, constitute provisions of this Recommendation. At the time of publication, the

editions indicated were valid. All Recommendations and other references are subject to revision;

users of this Recommendation are therefore encouraged to investigate the possibility of applying the

most recent edition of the Recommendations and other references listed below. A list of the currently

valid ITU-T Recommendations is regularly published. The reference to a document within this

Recommendation does not give it, as a stand-alone document, the status of a Recommendation.

[IETF RFC 1321] IETF RFC 1321 (1992), The MD5 Message-Digest Algorithm.

[IETF RFC 2119] IETF RFC 2119 (1997), Key words for use in RFCs to Indicate Requirement

Levels. Best Current Practice.

[IETF RFC 3629] IETF RFC 3629 (2003), UTF-8, a transformation format of ISO 10646.

[IETF RFC 4086] IETF RFC 4086 (2005), Randomness Requirements for Security.

[IETF RFC 4627] IETF RFC 4627 (2006), The application/json Media Type for JavaScript

Object Notation (JSON).

[IETF RFC 4648] IETF RFC 4648 (2006), The Base16, Base32, and Base64 Data Encodings.

[IETF RFC 5056] IETF RFC 5056 (2007), On the Use of Channel Bindings to Secure Channels.

[IETF RFC 5280] IETF RFC 5280 (2008), Internet X.509 Public Key Infrastructure Certificate

and Certificate Revocation List (CRL) Profile.

[IETF RFC 5929] IETF RFC 5929 (2010), Channel Bindings for TLS.

[IETF RFC 6234] IETF RFC 6234 (2011), US Secure Hash Algorithms (SHA and SHA-based

HMAC and HKDF).

[IETF RFC 6979] IETF RFC 6979 (2013), Deterministic Usage of the Digital Signature

Algorithm (DSA) and Elliptic Curve Digital Signature Algorithm (ECDSA).

[IETF RFC 8471] IETF RFC 8471 (2018), The Token Binding Protocol Version 1.0.

[W3C WebAuthn] W3C Recommendation (2021), Web Authentication: An API for accessing

Public Key Credentials Level 2.

3 Definitions

3.1 Terms defined elsewhere

None.

2 Rec. ITU-T X.1277.2 (04/2023)

3.2 Terms defined in this Recommendation

None.

4 Abbreviations and acronyms

This Recommendation uses the following abbreviations and acronyms:

AAGUID Authenticator Attestation Globally Unique Identifier

AAID Authenticator Attestation ID

AES Advanced Encryption Standard

AES-CCM Advanced Encryption Standard – Counter with CBC-MAC

AES-GCM Advanced Encryption Standard – Galois/Counter Mode

APDU Application Programming Data Unit

API Application Programming Interface

ASM Application-Specific Module

AV ASM Version

BNF Backus–Naur Form

BYOD Bring Your Own Device

CA Certificate Authority

CBC Cipher Block Chaining

DAA Direct Anonymous Attestation

DER Distinguished Encoding Rules

DLL Dynamic Link Library

DNS Domain Name Service

ECDAA Elliptical Curve Direct Anonymous Attestation

ECDSA Elliptic Curve Digital Signature Algorithm

EM Encoded Message

FAR False Acceptance Rate

FCH Final Challenge

FIM Federated Identity Management

FP Fingerprint

FPS Fingerprint Scanner

HMAC Keyed-hash Message Authentication Code

HTTP Hypertext Transfer Protocol

IdP Identity Provider

JS JavaScript

JSON JavaScript Object Notation

JWT JSON Web Token

KRD Key Registration Data

 Rec. ITU-T X.1277.2 (04/2023) 3

MAC Message Authentication Code

MITB Man-In-The-Browser

MITM Man-In-The-Middle

NFC Near Field Communications

OPT One-time Password

PKCS Public-Key Cryptography Standards

PNG Portable Network Graphic

PS Padding String

ROC Receiver Operator Characteristic

RP Relying Party

SAML Secure Authentication Markup Language

SE Secure Element

SDO Standards Development Organization

SM Signed Message

SW Software

TCB Trusted Computing Base

TCG Trusted Computing Group

TEE Trusted Execution Environment

TLS Transport Layer Security

TLV Tag-Length-Value

TOC Table of Contents

TOFU Trust On First Use

TPM Trusted Platform Module

UAF Universal Authentication Framework

UPV UAF protocol version

URI Uniform Resource Identifier

USB Universal Serial Bus

WAN Wide Area Network

WYSIWYS What You See Is What You Sign

5 Conventions

This Recommendation uses the key words "must", "must not", "required", "shall", "shall not",

"should", "should not", "recommended", "not ecommended", "may", and "optional" as defined in

[IETF RFC 2119].

• The use of "must", "required" or "shall" means that the definition is an absolute requirement

of the specification.

• The use of "must not" or "shall not" means that the definition is an absolute prohibition of

the specification.

4 Rec. ITU-T X.1277.2 (04/2023)

• The use of "should" or "recommended" means that there may exist valid reasons in

particular circumstances to ignore a particular item, but the full implications must be

understood and carefully weighed before choosing a different course.

• The use of "should not" or "not recommended" means that there may exist valid reasons in

particular circumstances when the particular behavior is acceptable or even useful, but the

full implications should be understood, and the case carefully weighed before implementing

any behavior described with this label.

• The use of "may" or "optional", means that an item is truly optional. One vendor may choose

to include the item because a particular marketplace requires it or because the vendor feels

that it enhances the product while another vendor may omit the same item. An

implementation which does not include a particular option must be prepared to interoperate

with another implementation which does include the option, though perhaps with reduced

functionality. In the same vein an implementation which does include a particular option

must be prepared to interoperate with another implementation which does not include the

option (except, of course, for the feature the option provides.)

6 Overview

6.1 Architecture

Figure 1 depicts the entities involved in UAF protocol.

Figure 1 – The UAF architecture

Of these entities, only these three directly create and/or process UAF protocol messages:

• Server, running on the relying party's infrastructure.

• UAF client, part of the user agent and running on the user device.

• Authenticator, integrated into the user device.

It is assumed in this Recommendation that a server has access to the UAF authenticator metadata

[b-MetadataStatement] describing all the authenticators it will interact with.

 Rec. ITU-T X.1277.2 (04/2023) 5

6.2 Protocol conversation

The core UAF protocol consists of four conceptual conversations between a UAF client and server.

• Registration: UAF allows the relying party to register an authenticator with the user's

account at the relying party. The relying party can specify a policy for supporting various

Authenticator types. A UAF client will only register existing authenticators in accordance

with that policy.

• Authentication: UAF allows the relying party to prompt the end user to authenticate using

a previously registered authenticator. This authentication can be invoked any time, at the

relying party's discretion.

• Transaction confirmation: In addition to providing a general authentication prompt, UAF

offers support for prompting the user to confirm a specific transaction.

 This prompt includes the ability to communicate additional information to the client for

display to the end user, using the client's transaction confirmation display. The goal of this

additional authentication operation is to enable relying parties to ensure that the user is

confirming a specified set of the transaction details (instead of authenticating a session to the

user agent).

• Deregistration: The relying party can trigger the deletion of the account-related

authentication key material.

Although this Recommendation defines the server as the initiator of requests, in a real-world

deployment the first UAF operation will always follow a user agent's (e.g., HTTP) request to a relying

party. The following clauses give a brief overview of the protocol conversation for individual

operations. More detailed descriptions can be found in clauses 7.4, 7.5 and 7.6.

6.2.1 Registration

Figure 2 shows the message flows for registration.

Figure 2 – UAF registration message flow

NOTE – The client application should use the appropriate application programming interface (API) to inform
the UAF client of the results of the operation

6.2.2 Authentication

Figure 3 depicts the message flows for the authentication operation.

6 Rec. ITU-T X.1277.2 (04/2023)

Figure 3 – Authentication message flow

6.2.3 Transaction confirmation

Figure 4 depicts the transaction confirmation message flow.

Figure 4 – Transaction confirmation message flow

NOTE – The client application should use the appropriate API to inform the UAF client of the results of the

operation.

6.2.4 Deregistration

Figure 5 depicts the deregistration message flow.

Figure 5 – Deregistration message flow

 Rec. ITU-T X.1277.2 (04/2023) 7

NOTE – The client application should use the appropriate API to inform the UAF client of the results of the

operation.

6.3 Relationship to other specifications

The following data elements might be referenced by other specifications and hence should not be

changed in their fundamental data type or high-level semantics without liaising with the other

specifications:

1. aaid, data type byte string and identifying the authenticator model, i.e., identical values mean

that they refer to the same authenticator model and different values mean they refer to

different authenticator models.

2. AppID, data type string representing the Application Identifier, i.e., identical values mean

that they refer to the same relying party.

3. keyID, data type byte string identifying a specific credential, i.e., identical values mean that

they refer to the same credential and different values mean they refer to different credentials.

NOTE – Some of the data elements might have an internal structure that might change. Other specifications
shall not rely on such internal structure.

7 Protocol details

This clause provides a detailed description of operations supported by the UAF protocol. Support of

all protocol elements is mandatory for conforming software, unless stated otherwise.

All string literals in this specification are constructed from Unicode codepoints within the set

U+0000..U+007F.

Unless otherwise specified, protocol messages are transferred with a UTF-8 content encoding.

NOTE – All data used in this protocol must be exchanged using a secure transport protocol.

The notation base64url(byte[8..64]) reads as 8-64 bytes of data encoded in base64url, "Base 64

Encoding with URL and Filename Safe Alphabet" [IETF RFC 4648] without padding.

The notation string[5] reads as five Unicode characters, represented as a UTF-8 [IETF RFC 3629]

encoded string of the type indicated in the declaration, typically a WebIDL [b-WebIDL-ED]

DOMString.

As the UTF-8 representation has variable length, the maximum byte length of string[5] is string[4*5].

All strings are case-sensitive unless stated otherwise.

This Recommendation uses WebIDL [b-WebIDL-ED] to define UAF protocol messages.

Implementations MUST serialize the UAF protocol messages for transmission using UTF-8 encoded

JSON [IETF RFC 4627].

7.1 Shared structures and types

This clause defines types and structures shared by various operations.

7.1.1 Version interface

Represents a generic version with major and minor fields.

interface Version {

 readonly attribute unsigned short major;

 readonly attribute unsigned short minor;

8 Rec. ITU-T X.1277.2 (04/2023)

};

7.1.1.1 Attributes

major of type unsigned short, readonly

Major version.

minor of type unsigned short, readonly

Minor version.

7.1.2 Operation enumeration

Describes the operation type of a UAF message or request for a message.

enum Operation {

 "Reg",

 "Auth",

 "Dereg"

};

Enumeration description

Reg Registration

Auth Authentication or Transaction Confirmation

Dereg Deregistration

7.1.3 OperationHeader dictionary

Represents a UAF message Request and Response header

dictionary OperationHeader {

 required Version upv;

 required Operation op;

 DOMString appID;

 DOMString serverData;

 Extension[] exts;

};

7.1.3.1 Dictionary OperationHeader members

upv of type required Version

UAF protocol version (upv). To conform with this version of the UAF spec set, the major

value MUST be 1 and the minor value MUST be 2.

op of type required Operation

 Rec. ITU-T X.1277.2 (04/2023) 9

Name of FIDO operation (op) this message relates to.

NOTE – "Auth" is used for both authentication and transaction confirmation.

appID of type DOMString

string[0..512].

The application identifier that the relying party would like to assert.

There are three ways to set the AppID [AppIDAndFacets]:

1. If the element is missing or empty in the request, the UAF client MUST set it to the

FacetID of the caller.

2. If the appID present in the message is identical to the FacetID of the caller, the UAF

client MUST accept it.

3. If it is a uniform resource identifier (URI) with hypertext transfer protocol (HTTPS)

protocol scheme, the UAF client MUST use it to load the list of trusted facet identifiers

from the specified URI. The UAF client MUST only accept the request, if the facet

identifier of the caller matches one of the trusted facet identifiers in the list returned

from dereferencing this URI.

NOTE – The new key pair that the authenticator generates will be associated with this application identifier.

serverData of type DOMString

string[1..1536].

A session identifier created by the relying party.

NOTE – The relying party can opaquely store things like expiration times for the registration session,

protocol version used and other useful information in serverData. This data is opaque to UAF clients.
Servers may reject a response that is lacking this data or contains unauthorized modifications to it.

exts of type array of Extension

List of UAF Message Extensions.

7.1.4 Authenticator attestation ID (AAID) typedef

typedef DOMString AAID;

string[9]

Each authenticator MUST have an AAID to identify UAF enabled authenticator models globally. The

AAID MUST uniquely identify a specific authenticator model within the range of all UAF-enabled

authenticator models made by all authenticator vendors, where authenticators of a specific model

must share identical security characteristics within the model (see clause 8.3).

The AAID is a string with format "V#M", where:

"#" is a separator

"V" indicates the authenticator vendor code. This code consists of 4 hexadecimal digits.

"M" indicates the authenticator model code. This code consists of 4 hexadecimal digits.

10 Rec. ITU-T X.1277.2 (04/2023)

The augmented Backus–Naur form (BNF) [b-ABNF] for the AAID is:

AAID = 4(HEXDIG) "#" 4(HEXDIG)

NOTE – HEXDIG is case insensitive, i.e., "03EF" and "03ef" are identical.

Authenticator vendors are responsible for assigning authenticator model codes to their authenticators.

7.1.5 KeyID typedef

typedef DOMString KeyID;

base64url(byte[32…2048])

KeyID is a unique identifier (within the scope of an AAID) used to refer to a specific UAuth.Key. It

is generated by the authenticator or application-specific module (ASM) and registered with a Server.

The (AAID, KeyID) tuple MUST uniquely identify an authentica'or's registration for a relying party.

Whenever a Server wants to provide specific information to a particular authenticator it MUST use

the (AAID, KeyID) tuple.

KeyID MUST be base64url encoded within the UAF message (see above).

During step-up authentication and deregistration operations, the Server SHOULD provide the KeyID

back to the authenticator for the latter to locate the appropriate user authentication key, and perform

the necessary operation with it.

Roaming authenticators which 'on't have internal storage for, and cannot rely on any ASM to store,

generated key handles SHOULD provide the key handle as part of the

AuthenticatorRegistrationAssertion.assertion.KeyID during the registration operation (see also

clause 8.3.7) and get the key handle back from the Server during the step-up authentication (in the

MatchCriteria dictionary which is part of the policy) or deregistration operations (see [b-

UAFAuthnrCommands] for more details).

NOTE – The exact structure and content of a KeyID is specific to the authenticator / ASM implementation.

7.1.6 ServerChallenge typedef

typedef DOMString ServerChallenge;

base64url(byte[8...64])

ServerChallenge is a server-provided random challenge. Security Relevance: The challenge is used

by the Server to verify whether an incoming response is new or has already been processed. See

clause 8.3.10 for more details.

The ServerChallenge SHOULD be mixed into the entropy pool of the authenticator. Security

Relevance: The Server SHOULD provide a challenge containing strong cryptographic randomness

whenever possible. See clause 8.2.1.

7.1.7 FinalChallengeParams dictionary

dictionary FinalChallengeParams {

 required DOMString appID;

 required ServerChallenge challenge;

 required DOMString facetID;

 Rec. ITU-T X.1277.2 (04/2023) 11

 required ChannelBinding channelBinding;

};

7.1.7.1 Dictionary FinalChallengeParams Members

appID of type required DOMString

string[1..512]

The value MUST be taken from the appID field of the OperationHeader

challenge of type required ServerChallenge

The value MUST be taken from the challenge field of the request (e.g.,

RegistrationRequest.challenge, AuthenticationRequest.challenge).

facetID of type required DOMString

string[1..512]

The value is determined by the UAF clientclient and it depends on the calling application. See

[b-AppIDAndFacets] for more details. Security Relevance: The facetID is determined by the

UAF clientclient and verified against the list of trusted facets retrieved by dereferencing the

appID of the calling application.

channelBinding of type required ChannelBinding

Contains the TLS information to be sent by the Client to the Server, binding the TLS channel

to the UAF operation.

7.1.8 CollectedClientData dictionary

CollectedClientData is an alternative to the FinalChallengeParams structure. It is used by platforms

supporting CTAP2 and Web Authentication. The exact definition of CollectedClientData can be

found in [W3C WebAuthn].

NOTE:

dictionary CollectedClientData {

 required DOMString challenge;

 required DOMString origin;

 required AlgorithmIdentifier hashAlg;

 DOMString tokenBinding;

 WebAuthnExtensions extensions;

};

Dictionary CollectedClientData Members

challenge of type required DOMString

Contains the base64url encoding of the challenge provided by the RP.

This field plays a similar role as the challenge field in FinalChallengeParams.

origin of type required DOMString

12 Rec. ITU-T X.1277.2 (04/2023)

The fully qualified origin of the requester, as provided to the authenticator by the

client, in the syntax defined by [b-IETF RFC 6454].

This field plays a similar role as the facetID field in FinalChallengeParams.

hashAlg of type required AlgorithmIdentifier

The hash algorithm used to compute the clientDataHash, e.g., "S256", etc.

This field is relevant here as the client can freely select the hash algorithm – unlike

FinalChallengeParams, where the authenticator MUST use the same algorithm as for

signing the assertion.

tokenBinding of type DOMString

Contains the base64url encoding of the Token Binding ID provided by the client. The

syntax is equivalent to the cid_pubkey in section ChannelBinding dictionary.

This field plays a similar role as the channelBinding field in FinalChallengeParams.

extensions of type WebAuthnExtensions

Additional parameters generated by processing of extensions passed in by the relying

party.

7.1.9 TLS ChannelBinding dictionary

ChannelBinding contains channel binding information [IETF RFC 5056].

NOTE – Security Relevance: The channel binding may be verified by the Server in order to detect and prevent
man-in-the-middle (MITM) attacks.

At this time, the following channel binding methods are supported:

• TokenBinding ID (tokenBinding [IETF RFC 8471]

• TLS ChannelID (cid_pubkey) [b-ChannelID]

• serverEndPoint [IETF RFC 5929]

• tlsServerCertificate

• tlsUnique [IETF RFC 5929]

Further requirements:

1. If data related to any of the channel binding methods, described here, is available to the UAF

client (i.e., included in this dictionary), it MUST be used according to the relevant

specification.

2. All channel binding methods described here MUST be supported by the Server. The Server

MAY reject operations if the channel binding cannot be verified successfully.

NOTE:

• If channel binding data or Token Binding ID is accessible to the web browser or client

application, it must be relayed to the UAF client in order to follow the assumptions made in

[b-SecRef];

• If channel binding data or Token Binding ID is accessible to the web server, it must be relayed

to the Server in order to follow the assumptions made in [b-SecRef]. The Server relies on the

web server to provide accurate channel binding information.

dictionary ChannelBinding {

 DOMString serverEndPoint;

 DOMString tlsServerCertificate;

 Rec. ITU-T X.1277.2 (04/2023) 13

 DOMString tlsUnique;

 DOMString cid_pubkey;

 DOMString tokenBinding;

};

7.1.9.1 Dictionary ChannelBinding Members

serverEndPoint of type DOMString

The field serverEndPoint MUST be set to the base64url-encoded hash of the TLS server

certificate if this is available. For example, for implementation that support MD5 or SHA-1

or SHA-256 the hash function MUST be selected as follows:

1. if the certificate's signatureAlgorithm uses a single hash function and that hash function

is either MD5 [IETF RFC 1321] or SHA-1 [IETF RFC 6234], then use SHA-256

[b-FIPS180-4];

2. if the certificate's signatureAlgorithm uses a single hash function and that hash function

is neither MD5 nor SHA-1, then use the hash function associated with the certificate's

signatureAlgorithm;

3. if the certificate's signatureAlgorithm uses no hash functions, or uses multiple hash

functions, then this channel binding type's channel bindings are undefined at this time

(updates to this channel binding type may occur to address this issue if it ever arises).

This field MUST be absent if the TLS server certificate is not available to the processing

entity (e.g., the UAF client) or the hash function cannot be determined as described.

tlsServerCertificate of type DOMString

This field MUST be absent if the TLS server certificate is not available to the UAF client.

This field MUST be set to the base64url-encoded, DER-encoded TLS server certificate, if this

data is available to the UAF client.

tlsUnique of type DOMString

MUST be set to the base64url-encoded TLS channel Finished structure. It MUST, however,

be absent, if this data is not available to the UAF client [IETF RFC 5929].

The use of the tlsUnique is deprecated as the security of the tls-unqiue channel binding type

[IETF RFC 5929] is broken, see [b-TLSAUTH].

cid_pubkey of type DOMString

MUST be absent if the client TLS stack does not provide TLS ChannelID [b-ChannelID]

information to the processing entity (e.g., the web browser or client application).

MUST be set to "unused" if TLS ChannelID information is supported by the client-side TLS

stack but has not been signaled by the TLS (web) server.

14 Rec. ITU-T X.1277.2 (04/2023)

Otherwise, it MUST be set to the base64url-encoded serialized [IETF RFC 4627] JwkKey

structure using UTF-8 encoding.

tokenBinding of type DOMString

MUST be absent if the client TLS stack does not provide Token Binding ID [IETF RFC 8471]

information to the processing entity (e.g., the web browser or client application).

MUST be set to "unused" if Token Binding ID information is supported by the client-side

TLS stack but has not been signaled by the TLS (web) server.

Otherwise, it MUST be set to the base64url-encoded serialized [IETF RFC 8471]

TokenBindingID structure using UTF-8 encoding.

7.1.10 JwkKey dictionary

JwkKey is a dictionary representing a JSON Web Key encoding of an elliptic curve public key

[b-JWK].

This public key is the ChannelID public key minted by the client TLS stack for the particular relying

party. [b-ChannelID] stipulates using only a particular elliptic curve, and the particular coordinate

type.

dictionary JwkKey {

 required DOMString kty = "EC";

 required DOMString crv = "P-256";

 required DOMString x;

 required DOMString y;

};

7.1.10.1 Dictionary JwkKey Members

kty of type required DOMString, defaulting to "EC"

Denotes the key type used for Channel ID. At this time only elliptic curve is supported by

[b-ChannelID], so it MUST be set to "EC" [b-JWA].

crv of type required DOMString, defaulting to "P-256"

Denotes the elliptic curve on which this public key is defined. At this time only the NIST

curve secp256r1 is supported by [b-ChannelID], so the crv parameter MUST be set to "P-256".

x of type required DOMString

Contains the base64url-encoding of the x coordinate of the public key (big-endian, 32-byte

value).

y of type required DOMString

Contains the base64url-encoding of the y coordinate of the public key (big-endian, 32-byte

value).

 Rec. ITU-T X.1277.2 (04/2023) 15

7.1.11 Extension dictionary

Extensions can appear in several places, including the UAF protocol messages, authenticator

commands, or in the assertion signed by the authenticator.

Each extension has an identifier, and the namespace for extension identifiers is UAF global (i.e., does

not depend on the message where the extension is present).

Extensions can be defined in a way such that a processing entity which does not understand the

meaning of a specific extension MUST abort processing, or they can be specified in a way that

unknown extension can (safely) be ignored.

Extension processing rules are defined in each section where extensions are allowed.

Generic extensions used in various operations.

dictionary Extension {

 required DOMString id;

 required DOMString data;

 required boolean fail_if_unknown;

};

7.1.11.1 Dictionary Extension members

id of type required DOMString

string[1..32].

Identifies the extension.

data of type required DOMString

Contains arbitrary data with a semantics agreed between server and client. Binary data is

base64url-encoded.

This field MAY be empty.

fail_if_unknown of type required boolean

Indicates whether unknown extensions must be ignored (false) or must lead to an error (true).

• A value of false indicates that unknown extensions MUST be ignored

• A value of true indicates that unknown extensions MUST result in an error.

NOTE – The UAF client might (a) process an extension or (b) pass the extension through to the ASM.
Unknown extensions must be passed through.

The ASM might (a) process an extension or (b) pass the extension through to the authenticator.

Unknown extensions must be passed through.

The authenticator must handle the extension or ignore it (only if it does not know how to handle it

and fail_if_unknown is not set). If the authenticator does not understand the meaning of the extension

and fail_if_unknown is set, it must generate an error (see definition of fail_if_unknown above).

When passing through an extension to the next entity, the fail_if_unknown flag must be preserved

(see [b-UAFASM] [b-UAFAuthnrCommands]).

Protocol messages are not signed. If the security depends on an extension being known or processed,

then such extension should be accompanied by a related (and signed) extension in the authenticator

assertion (e.g., TAG_UAFV1_REG_ASSERTION, TAG_UAFV1_AUTH_ASSERTION). If the

security has been increased (e.g., the authenticator according to the description in the metadata

16 Rec. ITU-T X.1277.2 (04/2023)

statement accepts multiple fingers but in this specific case indicates that the finger used at registration

was also used for authentication) there is no need to mark the extension as fail_if_unknown (i.e., tag

0x3E12 should be used [b-UAFAuthnrCommands]). If the security has been degraded (e.g., the

authenticator according to the description in the metadata statement accepts only the finger used at

registration for authentication but in this specific case indicates that a different finger was used for

authentication) the extension must be marked as fail_if_unknown (i.e., tag 0x3E11 must be used

[b-UAFAuthnrCommands]).

7.1.12 MatchCriteria dictionary

Represents the matching criteria to be used in the server policy.

The MatchCriteria object is considered to match an authenticator, if all fields in the object are

considered to match (as indicated in the particular fields).

dictionary MatchCriteria {

 AAID[] aaid;

 DOMString[] vendorID;

 KeyID[] keyIDs;

 unsigned long userVerification;

 unsigned short keyProtection;

 unsigned short matcherProtection;

 unsigned long attachmentHint;

 unsigned short tcDisplay;

 unsigned short[] authenticationAlgorithms;

 DOMString[] assertionSchemes;

 unsigned short[] attestationTypes;

 unsigned short authenticatorVersion;

 Extension[] exts;

};

7.1.12.1 Dictionary MatchCriteria Members

aaid of type array of AAID

List of AAIDs, causing matching to be restricted to certain AAIDs.

The field m.aaid MAY be combined with (one or more of) m.keyIDs, m.attachmentHint,

m.authenticatorVersion, and m.exts, but m.aaid MUST NOT be combined with any other

match criteria field.

If m.aaid is not provided – both m.authenticationAlgorithms and m.assertionSchemes MUST

be provided.

The match succeeds if at least one AAID entry in this array matches AuthenticatorInfo.aaid

[b-UAFASM].

NOTE 1 – This field corresponds to MetadataStatement.aaid [b-MetadataStatement].

 Rec. ITU-T X.1277.2 (04/2023) 17

vendorID of type array of DOMString

The vendorID causing matching to be restricted to authenticator models of the given vendor.

The first 4 characters of the AAID are the vendorID (see AAID)).

The match succeeds if at least one entry in this array matches the first 4 characters of the

AuthenticatorInfo.aaid [b-UAFASM].

NOTE 2 – This field corresponds to the first 4 characters of MetadataStatement.aaid [MetadataStatement].

keyIDs of type array of KeyID

A list of authenticator KeyIDs causing matching to be restricted to a given set of KeyID

instances. (see TAG_KEYID in [b-UAFRegistry]).

This match succeeds if at least one entry in this array matches.

NOTE 3 – This field corresponds to AppRegistration.keyIDs [b-UAFASM].

userVerification of type unsigned long

A set of 32 bit flags which may be set if matching should be restricted by the user verification

method (see [b-Registry]).

NOTE 4 – The match with AuthenticatorInfo.userVerification ([b-UAFASM]) succeeds, if the
following condition holds (written in Java):

if (

 // They are equal

 (AuthenticatorInfo.userVerification == MatchCriteria.userVerification) ||

 // USER_VERIFY_ALL is not set in both of them, and they have at least one common

bit set

 (

 ((AuthenticatorInfo.userVerification & USER_VERIFY_ALL) == 0) &&

 ((MatchCriteria.userVerification & USER_VERIFY_ALL) == 0) &&

 ((AuthenticatorInfo.userVerification & MatchCriteria.userVerification) != 0)

)

)

NOTE 5 – This field value can be derived from MetadataStatement.userVerificationDetails as follows
(in order to write matchCriteria that apply to the respective authenticator model):

For each entry in MetadataStatement.userVerificationDetails combine all sub-entries

MetadataStatement.userVerificationDetails[i][0].userVerification to

MetadataStatement.userVerificationDetails[i][N-1].userVerification into a single value using

a bitwise OR operation.

18 Rec. ITU-T X.1277.2 (04/2023)

The combined bitflags will either all be interpreted as alternatives or as "and" combinations

(depending on the flag USER_VERIFY_ALL). For example, an authenticator that allows

Passcode OR (both, Voice AND Face), will either look like:

1. Passcode OR Voice OR Face, or it will look like

2. Passcode AND Voice AND Face.

The algorithm above will encode it as alternative (1) if the USER_VERIFY_ALL flag is not

set. It will encode it as alternative (2) if the USER_VERIFY_ALL flag is set.

keyProtection of type unsigned short

A set of 16 bit flags which may be set if matching should be restricted by the key protections

used (see [b-Registry]).

This match succeeds, if at least one of the bit flags matches the value of

AuthenticatorInfo.keyProtection [b-UAFASM].

NOTE 6 – This field corresponds to MetadataStatement.keyProtection [b-MetadataStatement].

matcherProtection of type unsigned short

A set of 16-bit flags which may be set if matching should be restricted by the matcher

protection (see [b-Registry]).

The match succeeds if at least one of the bit flags matches the value of

AuthenticatorInfo.matcherProtection [b-UAFASM].

NOTE 7 – This field corresponds to the MetadataStatement.matcherProtection metadata statement. See
[MetadataStatement].

attachmentHint of type unsigned long

A set of 32-bit flags which may be set if matching should be restricted by the authenticator

attachment mechanism (see [b-Registry]).

This field is considered to match, if at least one of the bit flags matches the value of

AuthenticatorInfo.attachmentHint [b-UAFASM].

NOTE 8 – This field corresponds to the MetadataStatement.attachmentHint metadata statement.

tcDisplay of type unsigned short

A set of 16-bit flags which may be set if matching should be restricted by the transaction

confirmation display availability and type (see [b-Registry]).

This match succeeds if at least one of the bit flags matches the value of

AuthenticatorInfo.tcDisplay [b-UAFASM].

NOTE 9 – This field corresponds to the MetadataStatement.tcDisplay metadata statement. See [b-
MetadataStatement].

authenticationAlgorithms of type array of unsigned short

An array containing values of supported authentication algorithm TAG values (see [b-

Registry], prefix ALG_SIGN) if matching should be restricted by the supported authentication

algorithms. This field MUST be present, if field aaid is missing.

 Rec. ITU-T X.1277.2 (04/2023) 19

This match succeeds if at least one entry in this array matches the

AuthenticatorInfo.authenticationAlgorithm [b-UAFASM].

NOTE 10 – This field corresponds to the MetadataStatement.authenticationAlgorithm metadata statement. See
[b-MetadataStatement].

assertionSchemes of type array of DOMString

A list of supported assertion schemes if matching should be restricted by the supported

schemes. This field MUST be present, if field aaid is missing.

See clause 9 for details.

This match succeeds if at least one entry in this array matches

AuthenticatorInfo.assertionScheme [b-UAFASM].

NOTE 11 – This field corresponds to the MetadataStatement.assertionScheme metadata statement. See [b-
MetadataStatement].

attestationTypes of type array of unsigned short

An array containing the preferred attestation TAG values (see [b-UAFRegistry], prefix

TAG_ATTESTATION). The order of items MUST be preserved. The most-preferred

attestation type comes first.

This match succeeds if at least one entry in this array matches one entry in

AuthenticatorInfo.attestationTypes [b-UAFASM].

NOTE 12 – This field corresponds to the MetadataStatement.attestationTypes metadata statement. See [b-
MetadataStatement].

authenticatorVersion of type unsigned short

Contains an authenticator version number, if matching should be restricted by the

authenticator version in use.

This match succeeds if the value is lower or equal to the field AuthenticatorVersion included

in TAG_UAFV1_REG_ASSERTION or TAG_UAFV1_AUTH_ASSERTION or a

corresponding value in the case of a different assertion scheme.

NOTE 13 – Since the semantic of the authenticatorVersion depends on the AAID, the field
authenticatorVersion should always be combined with a single aaid in MatchCriteria.

This field corresponds to the MetadataStatement.authenticatorVersion metadata statement. See

[b-MetadataStatement].

The use of authenticatorVersion in the policy is deprecated since there is no standardized way

for the Client to learn the authenticatorVersion. The authenticatorVersion is included in the

auhentication assertion and hence can still be evaluated in the Server.

exts of type array of Extension

Extensions for matching policy.

7.1.13 Policy dictionary

Contains a specification of accepted authenticators and a specification of disallowed authenticators.

20 Rec. ITU-T X.1277.2 (04/2023)

dictionary Policy {

 required MatchCriteria[][] accepted;

 MatchCriteria[] disallowed;

};

7.1.13.1 Dictionary policy members

accepted of type array of array of required MatchCriteria

This field is a two-dimensional array describing the required authenticator characteristics for

the server to accept either a UAF registration, or authentication operation for a particular

purpose.

This two-dimensional array can be seen as a list of sets. List elements (i.e., the sets) are

alternatives (OR condition).

All elements within a set MUST be combined:

The first array index indicates OR conditions (i.e., the list). Any set of authenticator(s)

satisfying these MatchCriteria in the first index is acceptable to the server for this operation.

Sub-arrays of MatchCriteria in the second index (i.e., the set) indicate that multiple

authenticators (i.e., each set element) MUST be registered or authenticated to be accepted by

the server.

The MatchCriteria array represents ordered preferences by the server. Servers MUST put their

preferred authenticators first, and UAF clients SHOULD respect those preferences, either by

presenting authenticator options to the user in the same order, or by offering to perform the

operation using only the highest-preference authenticator(s).

NOTE 1 – This list MUST NOT be empty. If the Server accepts any authenticator, it can follow the example

below.

EXAMPLE 1: Example for an 'any' policy

{

 "accepted":

 [

 [{ "userVerification": 1023 }]

]

}

Note

1023 = 0x3ff = USER_VERIFY_PRESENCE | USER_VERIFY_FINGERPRINT | ... |

USER_VERIFY_NONE

NOTE 2 – 1023 = 0x3ff = USER_VERIFY_PRESENCE | USER_VERIFY_FINGERPRINT | ... |
USER_VERIFY_NONE

disallowed of type array of MatchCriteria

 Rec. ITU-T X.1277.2 (04/2023) 21

Any authenticator that matches any of MatchCriteria contained in the field disallowed MUST

be excluded from eligibility for the operation, regardless of whether it matches any

MatchCriteria present in the accepted list, or not.

7.2 Processing rules for the server policy

The UAF client MUST follow the following rules while parsing server policy:

1. During registration:

1. Policy.accepted is a list of combinations. Each combination indicates a list of criteria

for authenticators that the server wants the user to register.

2. Follow the priority of items in Policy.accepted[][]. The lists are ordered with highest

priority first.

3. Choose the combination whose criteria best match the features of the currently

available authenticators

4. Collect information about available authenticators

5. Ignore authenticators which match the Policy.disallowed criteria

6. Match collected information with the matching criteria imposed in the policy (see

clause 7.1.12 for more details on matching)

7. Guide the user to register the authenticators specified in the chosen combination

2. During authentication and transaction confirmation:

NOTE – Policy.accepted is a list of combinations. Each combination indicates a set of criteria which
is enough to completely authenticate the current pending operation

1. Follow the priority of items in Policy.accepted[][]. The lists are ordered with highest

priority first.

2. Choose the combination whose criteria best match the features of the currently

available authenticators

3. Collect information about available authenticators

4. Ignore authenticators which meet the Policy.disallowed criteria

5. Match collected information with the matching criteria described in the policy

6. Guide the user to authenticate with the authenticators specified in the chosen

combination

7. A pending operation will be approved by the server only after all criteria of a single

combination are entirely met

7.2.1 Examples

EXAMPLE 2: Policy matching either a fingerprint scanner (FPS)-, or face recognition-based

authenticator

{

 "accepted":

 [

 [{ "userVerification": 2, "authenticationAlgorithms": [1, 2, 5, 6], "assertionSchemes":

["UAFV1TLV"]}],

 [{ "userVerification": 16, "authenticationAlgorithms": [1, 2, 5, 6], "assertionSchemes":

["UAFV1TLV"]}]

22 Rec. ITU-T X.1277.2 (04/2023)

]

}

EXAMPLE 3: Policy matching authenticators implementing FPS and face recognition as alternative

combination of user verification methods.

{

 "accepted":

 [

 [{ "userVerification": 18, "authenticationAlgorithms": [1, 2, 5, 6], "assertionSchemes":

["UAFV1TLV"]}]

]

}

Combining these two bit-flags and the flag USER_VERIFY_ALL (USER_VERIFY_ALL = 1024)

into a single userVerification value would match authenticators implementing FPS and Face

Recognition as a mandatory combination of user verification methods.

EXAMPLE 4: Policy matching authenticators implementing FPS and face recognition as mandatory

combination of user verification methods.

{

 "accepted": [[{ "userVerification": 1042, "authenticationAlgorithms": [1, 2, 5, 6],

"assertionSchemes": ["UAFV1TLV"]}]]

}

The next example requires two authenticators to be used:

EXAMPLE 5: Policy matching the combination of an FPS based and a face recognition based

authenticator

{

 "accepted":

 [

 [

 { "userVerification": 2, "authenticationAlgorithms": [1, 2, 5, 6], "assertionSchemes":

["UAFV1TLV"]},

 { "userVerification": 16, "authenticationAlgorithms": [1, 2, 5, 6], "assertionSchemes":

["UAFV1TLV"]}

]

]

}

Other criteria can be specified in addition to the userVerification:

EXAMPLE 6: Policy requiring the combination of a bound FPS based and a bound face recognition

based authenticator

{

 "accepted":

 Rec. ITU-T X.1277.2 (04/2023) 23

 [

 [

 { "userVerification": 2, "attachmentHint": 1, "authenticationAlgorithms": [1, 2, 5, 6],

"assertionSchemes": ["UAFV1TLV"]},

 { "userVerification": 16, "attachmentHint": 1, "authenticationAlgorithms": [1, 2, 5, 6],

"assertionSchemes": ["UAFV1TLV"]}

]

]

}

The policy for accepting authenticators of vendor with ID 1234 only is as follows:

EXAMPLE 7: Policy accepting all authenticators from vendor with ID 1234

{

 "accepted":

 [[{ "vendorID": "1234", "authenticationAlgorithms": [1, 2, 5, 6], "assertionSchemes":

["UAFV1TLV"]}]]

}

7.3 Version negotiation

The UAF protocol includes multiple versioned constructs: UAF protocol version, the version of key

registration data and signed data objects (identified by their respective tags, see [b-UAFRegistry]),

and the ASM version, see [b-UAFASM].

NOTE – The Key Registration Data and Signed Data objects have to be parsed and verified by the Server. This
verification is only possible if the Server understands their encoding and the content. Each UAF protocol
version supports a set of Key Registration Data and SignedData object versions (called Assertion Schemes).

Similarly, each of the ASM versions supports a set Assertion Scheme versions.

As a consequence, the UAF client MUST select the authenticators which will generate the

appropriately versioned constructs.

For version negotiation the UAF client MUST perform the following steps:

1. Create a set (FC_Version_Set) of version pairs, ASM version (asmVersion) and UAF Protocol

version (upv) and add all pairs supported by the UAF client into FC_Version_Set

o e.g., [{upv1, asmVersion1}, {upv2, asmVersion1}, ...]

NOTE – The ASM versions are retrieved from the AuthenticatorInfo.asmVersion field. The UAF protocol
version is derived from the related AuthenticatorInfo.assertionScheme field.

2. Intersect FC_Version_Set with the set of upv included in UAF Message (i.e., keep only those

pairs where the upv value is also contained in the UAF Message).

3. Select authenticators which are allowed by the UAF Message Policy. For each authenticator:

o Construct a set (Authnr_Version_Set) of version pairs including authenticator

supported asmVersion and the compatible upv(s).

▪ e.g., [{upv1, asmVersion1}, {upv2, asmVersion1}, ...]

o Intersect Authnr_Version_Set with FC_Version_Set and select highest version pair

from it.

24 Rec. ITU-T X.1277.2 (04/2023)

▪ Take the pair where the upv is highest. In all these pairs leave only the one with

highest asmVersion.

o Use the remaining version pair with this authenticator

NOTE – Each version consists of major and minor fields. In order to compare two versions – compare the

Major fields and if they are equal compare the Minor fields.

Each UAF message contains a version field upv. UAF protocol version negotiation is always between

UAF client and server.

A possible implementation optimization is to have the RP web application itself preemptively convey

to the server the UAF protocol version(s) (UPV) supported by the Client. This allows the server to

craft its UAF messages using the UAF version most preferred by both the client and server.

7.4 Registration operation

NOTE – The Registration operation allows the Server and the Authenticator to agree on an authentication key.

 Rec. ITU-T X.1277.2 (04/2023) 25

Figure 6 – UAF registration sequence diagram

The steps 11a and 11b, and 12 to 13 are not always necessary as the related data could be cached.

Figure 7 depicts the cryptographic data flow for the registration sequence.

26 Rec. ITU-T X.1277.2 (04/2023)

Figure 7 – UAF registration cryptographic data flow

The server sends the AppID , the authenticator policy, the ServerChallenge and the username to the

UAF client.

The UAF client computes the FinalChallengeParams (FCP) from the ServerChallenge and some other

values and sends the AppID, the final challenge (FCH) and the username to the authenticator.

The ASM computes the finalChallengeHash (FCH) and calls the authenticator. The authenticator

creates a Key Registration Data object (e.g., TAG_UAFV1_KRD, see [b-UAFAuthnrCommands])

containing the hash of FCH, the newly generated user public key (UAuth.pub) and some other values

and signs it (see clause 8.1.2 for more details). This key registration data (KRD) object is then

cryptographically verified by the Server.

7.4.1 Registration request message

UAF Registration request message is represented as an array of dictionaries. The array MUST contain

exactly one dictionary. The request is defined as RegistrationRequest dictionary.

EXAMPLE 8: UAF registration request

[{

 "header": {

 "upv": {

 "major": 1,

 "minor": 2

 },

 "op": "Reg",

 "appID": "https://uaf.example.com/facets.json",

 "serverData": "ZQ_fRGDH2ar_LvrTM8JnQcl-wfnaOutiyCmpBgmMcuE"

 },

 "challenge": "Yb39SdUhU2B0089pS5L7VBW8afdlplnvR4B1Ana5vk4",

 Rec. ITU-T X.1277.2 (04/2023) 27

 "username": "alice@website.org",

 "policy": {

 "accepted": [

 [{

 "aaid": ["FFFF#FC03"]

 }],

 [{

 "userVerification": 512,

 "keyProtection": 1,

 "tcDisplay": 1,

 "authenticationAlgorithms": [1],

 "assertionSchemes": ["UAFV1TLV"]

 }],

 [{

 "userVerification": 4,

 "keyProtection": 1,

 "tcDisplay": 1,

 "authenticationAlgorithms": [1],

 "assertionSchemes": ["UAFV1TLV"]

 }],

 [{

 "userVerification": 4,

 "keyProtection": 1,

 "tcDisplay": 1,

 "authenticationAlgorithms": [2]

 }],

 [{

 "userVerification": 2,

 "keyProtection": 4,

 "tcDisplay": 1,

 "authenticationAlgorithms": [2]

 }],

 [{

 "userVerification": 4,

 "keyProtection": 2,

 "tcDisplay": 1,

 "authenticationAlgorithms": [1, 3]

28 Rec. ITU-T X.1277.2 (04/2023)

 }],

 [{

 "userVerification": 2,

 "keyProtection": 2,

 "authenticationAlgorithms": [2]

 }],

 [{

 "userVerification": 32,

 "keyProtection": 2,

 "assertionSchemes": ["UAFV1TLV"]

 },

 {

 "userVerification": 2,

 "authenticationAlgorithms": [1, 3],

 "assertionSchemes": ["UAFV1TLV"]

 },

 {

 "userVerification": 2,

 "authenticationAlgorithms": [1, 3],

 "assertionSchemes": ["UAFV1TLV"]

 },

 {

 "userVerification": 4,

 "keyProtection": 1,

 "authenticationAlgorithms": [1, 3],

 "assertionSchemes": ["UAFV1TLV"]

 }]

],

 "disallowed": [

 {

 "userVerification": 512,

 "keyProtection": 16,

 "assertionSchemes": ["UAFV1TLV"]

 },

 {

 "userVerification": 256,

 "keyProtection": 16

 Rec. ITU-T X.1277.2 (04/2023) 29

 },

 {

 "aaid": ["FFFF#FC02"],

 "keyIDs": ["RfY_RDhsf4z5PCOhnZExMeVloZZmK0hxaSi10tkY_c4"]

 }

]

 }

}]

7.4.2 RegistrationRequest dictionary

RegistrationRequest contains a single, versioned, registration request.

dictionary RegistrationRequest {

 required OperationHeader header;

 required ServerChallenge challenge;

 required DOMString username;

 required Policy policy;

};

7.4.2.1 Dictionary RegistrationRequest members

header of type required OperationHeader

Operation header. Header.op MUST be "Reg"

challenge of type required ServerChallenge

Server-provided challenge value

username of type required DOMString

string[1..128]

A human-readable user name intended to allow the user to distinguish and select from among

different accounts at the same relying party.

policy of type required Policy

Describes which types of authenticators are acceptable for this registration operation

7.4.3 AuthenticatorRegistrationAssertion dictionary

Contains the authenticator's response to a RegistrationRequest message:

dictionary AuthenticatorRegistrationAssertion {

 required DOMString assertionScheme;

 required DOMString assertion;

 DisplayPNGCharacteristicsDescriptor[] tcDisplayPNGCharacteristics;

 Extension[] exts;

30 Rec. ITU-T X.1277.2 (04/2023)

};

7.4.3.1 Dictionary AuthenticatorRegistrationAssertion members

assertionScheme of type required DOMString

The name of the Assertion Scheme used to encode the assertion. See UAF Supported

Assertion Schemes for details.

NOTE – This assertionScheme is not part of a signed object and hence considered the suspected

assertionScheme.

assertion of type required DOMString

base64url(byte[1..4096]) Contains the TAG_UAFV1_REG_ASSERTION object containing

the assertion scheme specific KeyRegistrationData (KRD) object which in turn contains the

newly generated UAuth.pub and is signed by the Attestation Private Key.

This assertion MUST be generated by the authenticator and it MUST be used only in this

Registration operation. The format of this assertion can vary from one assertion scheme to

another (e.g., for "UAFV1TLV" assertion scheme it MUST be TAG_UAFV1_KRD).

tcDisplayPNGCharacteristics of type array of DisplayPNGCharacteristicsDescriptor

Supported transaction PNG type [MetadataStatement]. For the definition of the

DisplayPNGCharacteristicsDescriptor structure. See [MetadataStatement].

exts of type array of Extension

Contains Extensions prepared by the authenticator

7.4.4 Registration response message

A UAF Registration response message is represented as an array of dictionaries. Each dictionary

contains a registration response for a specific protocol version. The array MUST NOT contain two

dictionaries of the same protocol version. The response is defined as RegistrationResponse dictionary.

EXAMPLE 9: Registration Response

[{

 "header": {

 "upv": {

 "major": 1,

 "minor": 2

 },

 "op": "Reg",

 "appID": "https://uaf.example.com/facets.json",

 "serverData": "ZQ_fRGDH2ar_LvrTM8JnQcl-wfnaOutiyCmpBgmMcuE"

 },

 "fcParams":

"eyJmYWNldElEIjoiaHR0cHM6Ly91YWYuZXhhbXBsZS5jb20iLCJhcHBJRCI6Imh0dHBz

Oi8vdWFmLmV4YW1

 Rec. ITU-T X.1277.2 (04/2023) 31

wbGUuY29tL2ZhY2V0cy5qc29uIiwiY2hhbGxlbmdlIjoiWWIzOVNkVWhVMkIwMDg5cFM

1TDdWQlc4YWZkbHBsbnZSNEI

 xQW5hNXZrNCIsImNoYW5uZWxCaW5kaW5nIjp7fX0",

 "assertions": [{

 "assertionScheme": "UAFV1TLV",

 "assertion": "AT73AgM-

sQALLgkARkZGRiNGQzAzDi4HAAEAAQIAAAEKLiAAbkZZjz4ysihP9vVgevgoH8SEV2

JITk

TxKFfsKbAiofQJLiAA2onnfjAyZ0Uc3GL4VyOEdRgIkz7qogqzmITcEPLovP0NLggAAAA

AAAEAAAAMLkEABNfRNiA1Hp

QSfrvD_9Qug55Vw2oaKmjgbC8TdiFXGZ6hjP7jYHV0GtYqO0EvrRRvsNBbnyhXUpq6P_i

Nq9laDGsHPj4CBi5GADBEAi

C57WZpOHWCTil_IuAYSEfuj3zgyY6KFp_rgNw5kO5OwwIgiZbTG6ZmY3T6ZqvdeOxcA

6FBgn6YLCncK-Wyk0XVY8kFLv

ABMIIB7DCCAZKgAwIBAgIBBDAKBggqhkjOPQQDAjBwMQswCQYDVQQGEwJOWj

EjMCEGA1UEAwwaRklETyBDb25mb3JtYW

NlIFRlc3QgVG9vbHMxFjAUBgNVBAoMDUZJRE8gQWxsaWFuY2UxJDAiBgNVBAsMG

0NlcnRpZmljYXRpb24gV29ya2luZy

BHcm91cDAeFw0xNzAyMjkxNDMxMTJaFw0yMjAyMjgxNDMxMTJaMHAxCzAJBgNV

BAYTAk5aMSMwIQYDVQQDDBpGSURPIE

NvbmZvcm1hY2UgVGVzdCBUb29sczEWMBQGA1UECgwNRklETyBBbGxpYW5jZTEk

MCIGA1UECwwbQ2VydGlmaWNhdGlvbi

BXb3JraW5nIEdyb3VwMFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAEZaRKB92Abz8n

qEZFf8Xz84ajfA7lLjt4O-i2wq

 1FnD_svIyTyEYm_QbOYJC0GUVE-L6V7OiD8K9Z4PfiBFRO-

qMdMBswDAYDVR0TBAUwAwEB_zALBgNVHQ8EBAMCBsAwCg

 YIKoZIzj0EAwIDSAAwRQIgWDy1Oxu8PT6diGXycY0rxb1e16omexfQ-

Iv9KOg5p9cCIQCFPPCArmDh3-EyxI_OaZFPvW

 2kG2hQBmi9PnC-bBrfYQ"

 }]

}]

NOTE – Line breaks in fcParams have been inserted for improving readability.

32 Rec. ITU-T X.1277.2 (04/2023)

7.4.5 RegistrationResponse dictionary

Contains all fields related to the registration response.

dictionary RegistrationResponse {

 required OperationHeader header;

 required DOMString fcParams;

 required AuthenticatorRegistrationAssertion[] assertions;

};

7.4.5.1 Dictionary RegistrationResponse members

header of type required OperationHeader

Header.op MUST be "Reg".

fcParams of type required DOMString

The base64url-encoded serialized [IETF RFC 4627] FinalChallengeParams using UTF8

encoding (see clause 7.1.7) or alternatively it contains the serialized CollectedClientData

object. In both cases, all parameters required for the server to verify the Final Challenge are

included.

assertions of type array of required AuthenticatorRegistrationAssertion

Response data for each Authenticator being registered.

7.4.6 Registration processing rules

7.4.6.1 Registration request generation rules for server

The policy contains a two-dimensional array of allowed MatchCriteria. This array can be considered

a list (first dimension) of sets (second dimension) of authenticators (identified by MatchCriteria). All

authenticators in a specific set MUST be registered simultaneously in order to match the policy. But

any of those sets in the list are valid, as the list elements are alternatives.

The Server MUST follow the following steps:

1. Construct appropriate authentication policy p

1. for each set of alternative authenticators do

1. Create an array of MatchCriteria objects, containing the set of authenticators to

be registered simultaneously that need to be identified by separate

MatchCriteria objects m.

1. For each collection of authenticators a to be registered simultaneously

that can be identified by the same rule, create a MatchCriteria object

m, where

▪ m.aaid MAY be combined with (one or more of) m.keyIDs,

m.attachmentHint, m.authenticatorVersion, and m.exts, but

m.aaid MUST NOT be combined with any other match criteria

field.

▪ If m.aaid is not provided – both m.authenticationAlgorithms

and m.assertionSchemes MUST be provided

2. Add m to v, e.g., v[j+1]=m.

 Rec. ITU-T X.1277.2 (04/2023) 33

2. Add v to p.allowed, e.g., p.allowed[i+1]=v

2. Create MatchCriteria objects m[] for all disallowed Authenticators.

1. For each already registered AAID for the current user

1. Create a MatchCriteria object m and add AAID and corresponding

KeyIDs to m.aaid and m.KeyIDs.

The Server MUST include already registered AAIDs and KeyIDs into

field p.disallowed to hint that the client should not register these again.

2. Create a MatchCriteria object m and add the AAIDs of all disallowed

Authenticators to m.aaid.

The status (as provided in the metadata TOC (Table-of-Contents file) [b-

MetadataService]) of some authenticators might be unacceptable. Such

authenticators SHOULD be included in p.disallowed.

3. If needed – create MatchCriteria m for other disallowed criteria (e.g.,

unsupported authenticationAlgs)

4. Add all m to p.disallowed.

2. Create a RegistrationRequest object r with appropriate r.header for each supported version,

and

1. Servers SHOULD NOT assume any implicit integrity protection of

r.header.serverData.

Servers that depend on the integrity of r.header.serverData SHOULD apply and verify

a cryptographically secure message authentication code (MAC) to serverData and they

SHOULD also cryptographically bind serverData to the related message, e.g., by re-

including r.challenge, see also section ServerData and KeyHandle.

NOTE – All other components (except the server) will treat r.header.serverData as an opaque value. As a
consequence, the server can implement any suitable cryptographic protection method.

2. Generate a random challenge and assign it to r.challenge

3. Assign the username of the user to be registered to r.username

4. Assign p to r.policy.

5. Append r to the array o of message with various versions (RegistrationRequest)

3. Send o to the UAF client

7.4.6.2 Registration request processing rules for UAF clients

The UAF client MUST perform the following steps:

1. Choose the message m with upv set to the appropriate version number.

2. Parse the message m

3. If a mandatory field in UAF message is not present or a field does not correspond to its type

and value – reject the operation

4. Filter the available authenticators with the given policy and present the filtered authenticators

to User. Make sure to not include already registered authenticators for this user specified in

RegRequest.policy.disallowed[].keyIDs

5. Obtain FacetID of the requesting Application. If the AppID is missing or empty, set the AppID

to the FacetID.

34 Rec. ITU-T X.1277.2 (04/2023)

Verify that the FacetID is authorized for the AppID according to the algorithms in

[AppIDAndFacets].

O If the FacetID of the requesting Application is not authorized, reject the operation

6. Obtain TLS data if it is available

7. Create a FinalChallengeParams structure fcp and set fcp.appID, fcp.challenge, fcp.facetID,

and fcp.channelBinding appropriately. Serialize [IETF RFC 4627] fcp using UTF8 encoding

and base64url encode it.

O FinalChallenge = base64url(serialize(utf8encode(fcp)))

8. For each authenticator that matches UAF protocol version (see clause 7.3) and user agrees to

register:

o Add AppID, Username, FinalChallenge, AttestationType and all other required fields to the

ASMRequest [b-UAFASM].

The UAF client MUST follow the server policy and find the single preferred

attestation type. A single attestation type MUST be provided to the ASM.

O Send the ASMRequest to the ASM. If the ASM returns an error, handle that error

appropriately. The status code returned by the ASM [b-UAFASM] must be mapped to

a status code defined in [b-UAFAppAPIAndTransport] as specified in clause

7.4.6.2.1.

7.4.6.2.1 Mapping ASM Status Codes to ErrorCode

ASMs are returning a status code in their responses to the client. The client needs to act on those

responses and also map the status code returned the ASM [b-UAFASM] to an ErrorCode specified in

[b-UAFAppAPIAndTransport].

The mapping of ASM status codes to ErrorCode is specified here:

ASM status code ErrorCode Comment

UAF_ASM_STATUS_OK NO_ERROR
Pass-through success

status.

UAF_ASM_STATUS_ERROR UNKNOWN Map to UNKNOWN.

UAF_ASM_STATUS_ACCESS_DENIED
AUTHENTICATOR_ACCESS_

DENIED

Map to
AUTHENTICATOR_AC

CESS_DENIED

UAF_ASM_STATUS_USER_CANCELLED USER_CANCELLED
Pass-through status

code.

UAF_ASM_STATUS_CANNOT_RENDER_T

RANSACTION_CONTENT
INVALID_TRANSACTION_CO

NTENT

Map to
INVALID_TRANSACTI

ON_CONTENT. This
code indicates a
problem to be resolved
by the entity providing

the transaction text.

 Rec. ITU-T X.1277.2 (04/2023) 35

ASM status code ErrorCode Comment

UAF_ASM_STATUS_KEY_DISAPPEARED_

PERMANENTLY
KEY_DISAPPEARED_PERMA

NENTLY

Pass-through status
code. It indicates that
the Uauth key
disappeared
permanently and the RP
App might want to

trigger re-registration of

the authenticator.

UAF_ASM_STATUS_AUTHENTICATOR_DI

SCONNECTED
NO_SUITABLE_AUTHENTICA

TOR or WAIT_USER_ACTION

Retry operation with
other suitable

authenticators and map
to
NO_SUITABLE_AUTHE

NTICATOR if the
problem persists. Return
WAIT_USER_ACTION
if being called while

retrying.

UAF_ASM_STATUS_USER_NOT_RESPONSI

VE
USER_NOT_RESPONSIVE

Pass-through status
code. The RP App
might want to retry the
operation once the user
pays attention to the

application again.

UAF_ASM_STATUS_INSUFFICIENT_AUTH

ENTICATOR_RESOURCES
INSUFFICIENT_AUTHENTICA

TOR_RESOURCES

The Client SHALL try
other authenticators
matching the policy. If

none exist, pass-through

status code.

UAF_ASM_STATUS_USER_LOCKOUT USER_LOCKOUT
Pass-through status

code.

UAF_ASM_STATUS_USER_NOT_ENROLLE

D
USER_NOT_ENROLLED

Pass-through status

code.

UAF_ASM_STATUS_SYSTEM_INTERRUPT

ED
SYSTEM_INTERRUPTED

Pass-through status

code.

Any other status code UNKNOWN

Map any unknown error
code to UNKNOWN.
This might happen
when a client
communicates with an
ASM implementing a

newer UAF
specification than the

client.

36 Rec. ITU-T X.1277.2 (04/2023)

7.4.6.3 Registration request processing rules for authenticator

See [b-UAFAuthnrCommands], section "Register Command".

7.4.6.4 Registration Response Generation Rules for UAF client

The UAF client MUST follow the steps:

1. Create a RegistrationResponse message

2. Copy RegistrationRequest.header into RegistrationResponse.header

NOTE – When the appID provided in the request was empty, the Client must set the appID in this header
to the facetID (see [b-AppIDAndFacets]).

The header might include extensions. Extension specific rules might affect the copy process. Those rules
are defined in the related section in [b-UAFRegistry].

3. Set RegistrationResponse.fcParams to FinalChallenge (base64url encoded serialized and utf8

encoded FinalChallengeParams)

4. Append the response from each authenticator into RegistrationResponse.assertions

5. Send RegistrationResponse message to Server

7.4.6.5 Registration response processing rules for server

NOTE 1 – The following processing rules assume that authenticator supports "UAFV1TLV" assertion scheme.
Currently "UAFV1TLV" is the only defined and supported assertion scheme. When a new assertion scheme

is added to UAF protocol – this section will be extended with corresponding processing rules.

The server MUST follow the steps:

1. Parse the message

1. If protocol version (RegistrationResponse.header.upv) is not supported – reject the

operation

2. If a mandatory field in UAF message is not present or a field does not correspond to

its type and value – reject the operation

2. Verify that RegistrationResponse.header.serverData, if used, passes any implementation-

specific checks against its validity. See also clause 8.3.7.

3. base64url decode RegistrationResponse.fcParams and convert it into an object (fcp)

4. If this fcp object is a FinalChallengeParams object, then verify each field in fcp and make

sure it is valid:

1. Make sure fcp.appID corresponds to the one stored by the Server

NOTE 2 – When the appID provided in the request was empty, the Client must set the appID to the facetID
(see [b-AppIDAndFacets]). In this case, the Uauth key cannot be used by other application facets.

2. Make sure fcp.facetID is in the list of trusted FacetIDs [b-AppIDAndFacets]

3. Make sure fcp.channelBinding is as expected (see clause 7.1.9)

NOTE 3 – There might be legitimate situations in which some methods of channel binding fail (see clause
8.3.4).

4. Make sure fcp.challenge has really been generated by the Server for this operation and

it is not expired

5. Reject the response if any of these checks fails

5. If this fcp object is a CollectedClientData object, then verify each field in fcp and make sure

it is valid:

 Rec. ITU-T X.1277.2 (04/2023) 37

1. Make sure fcp.origin is considered a legitimate origin for this registration request.

2. Make sure fcp.tokenBinding is as expected (see field cid_pubkey in clause 7.1.9)

NOTE 4 – There might be legitimate situations in which some methods of channel binding fail (see clause
8.3.4).

3. Make sure fcp.challenge has really been generated by the Server for this operation and

it is not expired

4. Reject the response if any of these checks fails

6. For each assertion a in RegistrationResponse.assertions

1. Parse data from a.assertion assuming it is encoded according to the suspected assertion

scheme a.assertionScheme and make sure it contains all mandatory fields (indicated

in Authenticator Metadata) it is supposed to have, verify that the assertion has a valid

syntax, and verify that the assertion does not include unknown fields (identified by

TAGs or IDs) that belong to extensions marked as "fail-if-unknown" set to true [b-

MetadataStatement].

▪ If it does not – continue with next assertion

2. if a.assertion contains an object of type TAG_UAFV1_REG_ASSERTION, then

▪ Retrieve the AAID from the assertion.

NOTE 5 – The AAID in TAG_UAFV1_KRD is contained in

a.assertion.TAG_UAFV1_REG_ASSERTION.TAG_UAFV1_KRD.TAG_AAID .

▪ Verify that a.assertionScheme matches Metadata(AAID).assertionScheme

▪ If it does not match – continue with next assertion

▪ Verify that the AAID indeed matches the policy specified in the registration

request.

▪ If it does not match the policy – continue with next assertion

▪ Locate authenticator-specific authentication algorithms from the authenticator

metadata [b-MetadataStatement] using the AAID.

▪ If fcp is of type FinalChallengeParams, then hash

RegistrationResponse.fcParams using hashing algorithm suitable for this

authenticator type. Look up the hash algorithm in authenticator metadata,

field AuthenticationAlgs. It is the hash algorithm associated with the first

entry related to a constant with prefix ALG_SIGN.

▪ FCHash = hash(RegistrationResponse.fcParams)

▪ If fcp is of type CollectedClientData, then hash

RegistrationResponse.fcParams using hashing algorithm specified in

fcp.hashAlg.

▪ FCHash = hash(RegistrationResponse.fcParams)

▪ if a.assertion.TAG_UAFV1_REG_ASSERTION contains TAG_UAFV1_KRD

as first element:

▪ Obtain Metadata(AAID).AttestationType for the AAID and make

sure that a.assertion.TAG_UAFV1_REG_ASSERTION contains the

most preferred attestation tag specified in field

MatchCriteria.attestationTypes in RegistrationRequest.policy (if this

field is present).

38 Rec. ITU-T X.1277.2 (04/2023)

▪ If a.assertion.TAG_UAFV1_REG_ASSERTION does not

contain the preferred attestation – it is RECOMMENDED to

skip this assertion and continue with next one

▪ Make sure that

a.assertion.TAG_UAFV1_REG_ASSERTION.TAG_UAFV1_KRD.

FinalChallengeHash == FCHash

▪ If comparison fails – continue with next assertion

▪ Obtain Metadata(AAID).AuthenticatorVersion for the AAID and

make sure that it is lower or equal to

a.assertion.TAG_UAFV1_REG_ASSERTION.TAG_UAFV1_KRD.

AuthenticatorVersion.

▪ If Metadata(AAID).AuthenticatorVersion is higher (i.e., the

authenticator firmware is outdated), it is RECOMMENDED to

assume increased risk. See sections "StatusReport dictionary"

and "Metadata TOC object Processing Rules" in [b-

MetadataService] for more details on this.

▪ Check whether

a.assertion.TAG_UAFV1_REG_ASSERTION.TAG_UAFV1_KRD.

RegCounter is acceptable, i.e., it is either not supported (value is 0 or

the field isKeyRestricted is set to 'false' in the related Metadata

Statement) or it is not exceedingly high

▪ If

a.assertion.TAG_UAFV1_REG_ASSERTION.TAG_UAFV1

_KRD.RegCounter is exceedingly high, this assertion might

be skipped and processing will continue with next one

▪ If a.assertion.TAG_UAFV1_REG_ASSERTION contains

ATTESTATION_BASIC_FULL tag

▪ If entry AttestationRootCertificates for the AAID in the

metadata [MetadataStatement] contains at least one element:

1. Obtain contents of all TAG_ATTESTATION_CERT

tags from

a.assertion.TAG_UAFV1_REG_ASSERTION.ATTES

TATION_BASIC_FULL object. The occurrences are

ordered (see [b-UAFAuthnrCommands]) and represent

the attestation certificate followed by the related

certificate chain.

2. Obtain all entries of AttestationRootCertificates for the

AAID in authenticator Metadata, field

AttestationRootCertificates.

3. Verify the attestation certificate and the entire

certificate chain up to the Attestation Root Certificate

using Certificate Path Validation as specified in [IETF

RFC 5280]

▪ If verification fails – continue with next

assertion

4. Verify

a.assertion.TAG_UAFV1_REG_ASSERTION.TAG_

 Rec. ITU-T X.1277.2 (04/2023) 39

UAFV1_KRD.ATTESTATION_BASIC_FULL.Signa

ture using the attestation certificate (obtained before).

▪ If verification fails – continue with next

assertion

▪ If Metadata(AAID).AttestationRootCertificates

for this AAID is empty – continue with next

assertion

▪ Mark assertion as positively verified

▪ If a.assertion.TAG_UAFV1_REG_ASSERTION contains an

object of type ATTESTATION_BASIC_SURROGATE

▪ There is no real attestation for the AAID, so we just assume the AAID

is the real one.

▪ If entry AttestationRootCertificates for the AAID in the

metadata is empty

1. Verify

a.assertion.TAG_UAFV1_REG_ASSERTION.ATTES

TATION_BASIC_SURROGATE.Signature using

a.assertion.TAG_UAFV1_REG_ASSERTION.TAG_

UAFV1_KRD.TAG_PUB_KEY

▪ If verification fails – continue with next

assertion

▪ If entry AttestationRootCertificates for the

AAID in the metadata is not empty – continue

with next assertion (as the AAID obviously is

expecting a different attestation method).

▪ Mark assertion as positively verified

▪ If a.assertion.TAG_UAFV1_REG_ASSERTION contains an

object of type ATTESTATION_ECDAA

▪ If entry ecdaaTrustAnchors for the AAID in the metadata

[b-MetadataStatement] contains at least one element:

1. For each of the ecdaaTrustAnchors entries, perform the

ECDAA Verify operation as specified in [b-

EcdaaAlgorithm].

▪ If verification fails – continue with next

ecdaaTrustAnchors entry

2. If no ECDAA Verify operation succeeded – continue

with next assertion

▪ If Metadata(AAID).ecdaaTrustAnchors for this AAID

is empty – continue with next assertion

▪ Mark assertion as positively verified and the authenticator

indeed is of model as indicated by the AAID.

▪ If a.assertion.TAG_UAFV1_REG_ASSERTION contains

another TAG_ATTESTATION tag – verify the attestation by

following appropriate processing rules applicable to that

40 Rec. ITU-T X.1277.2 (04/2023)

attestation. Currently this Recommendation defines the

processing rules for Basic Attestation and direct anonymous

attestation (ECDAA).

▪ if a.assertion.TAG_UAFV1_REG_ASSERTION contains a different

object than TAG_UAFV1_KRD as first element, then follow the rules

specific to that object.

▪ Extract

a.assertion.TAG_UAFV1_REG_ASSERTION.TAG_UAFV1_KRD.PublicK

ey into PublicKey,

a.assertion.TAG_UAFV1_REG_ASSERTION.TAG_UAFV1_KRD.KeyID

into KeyID,

a.assertion.TAG_UAFV1_REG_ASSERTION.TAG_UAFV1_KRD.SignCo

unter into SignCounter,

a.assertion.TAG_UAFV1_REG_ASSERTION.TAG_UAFV1_KRD.TAG_A

SSERTION_INFO.authenticatorVersion into AuthenticatorVersion,

a.assertion.TAG_UAFV1_REG_ASSERTION.TAG_UAFV1_KRD.TAG_A

AID into AAID.

3. if a.assertion does not contain an object of type TAG_UAFV1_REG_ASSERTION,

then then follow the respective processing rules of that assertion format if supported –

otherwise skip this assertion.

 For each positively verified assertion a

o Store PublicKey, KeyID, SignCounter, AuthenticatorVersion, AAID and

a.tcDisplayPNGCharacteristics into a record associated with the user's identity. If an

entry with the same pair of AAID and KeyID already exists then fail (should never

occur).

 Rec. ITU-T X.1277.2 (04/2023) 41

7.5 Authentication operation

See Figure 8.

Figure 8 – UAF authentication sequence diagram

The steps 7a and 7a and 8 to 9 are not always necessary as the related data could be cached.

The TransactionText (TranTxt) is only required in the case of transaction confirmation (see

clause 7.5.1), it is absent in the case of a pure Authenticate operation.

During this operation, the server asks the UAF client to authenticate user with server-specified

authenticators and return an authentication response.

In order for this operation to succeed, the authenticator and the relying party must have a previously

shared registration.

42 Rec. ITU-T X.1277.2 (04/2023)

Figure 9 – UAF authentication cryptographic data flow

Diagram of cryptographic flow:

The server sends the AppID (see [b-AppIDAndFacets]), the authenticator policy and the

ServerChallenge to the UAF client.

The UAF client computes the hash of the FinalChallengeParams, produced from the ServerChallenge

and other values, as described in this Recommendation, and sends the AppID and hashed

FinalChallengeParams to the Authenticator.

The authenticator creates the SignedData object (see TAG_UAFV1_SIGNED_DATA in [b-

UAFAuthnrCommands]) containing the hash of the final challenge parameters, and some other values

and signs it using the UAuth.priv key. This assertion is then cryptographically verified by the Server.

7.5.1 Transaction dictionary

Contains the Transaction Content provided by the Server:

dictionary Transaction {

 required DOMString contentType;

 required DOMString content;

 DisplayPNGCharacteristicsDescriptor tcDisplayPNGCharacteristics;

};

7.5.1.1 Dictionary Transaction members

contentType of type required DOMString

Contains the MIME Content-Type supported by the authenticator according to its metadata

statement (see [b-MetadataStatement]).

NOTE – For best interoperability, at least the values text/plain and/or image/png should be supported.

 Rec. ITU-T X.1277.2 (04/2023) 43

content of type required DOMString

base64url(byte[1...])

Contains the base64url encoded transaction content according to the contentType to be shown

to the user.

If contentType is "text/plain" then the content MUST be the base64url encoding of the UTF8

[IETF RFC 3629] encoded text with a maximum length of 200 characters. The Authenticator

SHALL display the default character if it does not know how to display the intended one.

If contentType is "image/png" or any other type, then it must be base64url encoded (i.e., the

base64url encoded PNG [b-PNG] image in the case of "image/png").

tcDisplayPNGCharacteristics of type DisplayPNGCharacteristicsDescriptor

Transaction content PNG characteristics. For the definition of the

DisplayPNGCharacteristicsDescriptor structure See [b-MetadataStatement]. This field

MUST be present if the contentType is "image/png".

7.5.2 Authentication request message

UAF Authentication request message is represented as an array of dictionaries. The array MUST

contain exactly one dictionary. The request is defined as in clause 7.5.3.

EXAMPLE 10: UAF Authentication Request

[{

 "header": {

 "upv": {

 "major": 1,

 "minor": 2

 },

 "op": "Auth",

 "appID": "https://uaf.example.com/facets.json",

 "serverData": "mz0YSKHLXDd_StbbDINZaRvW3Pa6sxrNMPYp2gOs3-Y"

 },

 "challenge": "4D8eUxdSzQ_Rbk7Gf0SooK7Xr9O2LU-g150stOpK0go",

 "policy": {

 "accepted": [

 [{

 "aaid": ["FFFF#FC01"]

 }],

 [{

 "userVerification": 512,

 "keyProtection": 1,

 "tcDisplay": 1,

 "authenticationAlgorithms": [1],

 "assertionSchemes": ["UAFV1TLV"]

44 Rec. ITU-T X.1277.2 (04/2023)

 }],

 [{

 "userVerification": 4,

 "keyProtection": 1,

 "tcDisplay": 1,

 "authenticationAlgorithms": [1],

 "assertionSchemes": ["UAFV1TLV"]

 }],

 [{

 "userVerification": 4,

 "keyProtection": 1,

 "tcDisplay": 1,

 "authenticationAlgorithms": [2]

 }],

 [{

 "userVerification": 2,

 "keyProtection": 4,

 "tcDisplay": 1,

 "authenticationAlgorithms": [2]

 }],

 [{

 "userVerification": 4,

 "keyProtection": 2,

 "tcDisplay": 1,

 "authenticationAlgorithms": [1, 3]

 }],

 [{

 "userVerification": 2,

 "keyProtection": 2,

 "authenticationAlgorithms": [2]

 }],

 [{

 "userVerification": 32,

 "keyProtection": 2,

 "assertionSchemes": ["UAFV1TLV"]

 },

 {

 Rec. ITU-T X.1277.2 (04/2023) 45

 "userVerification": 2,

 "authenticationAlgorithms": [1, 3],

 "assertionSchemes": ["UAFV1TLV"]

 },

 {

 "userVerification": 2,

 "authenticationAlgorithms": [1, 3],

 "assertionSchemes": ["UAFV1TLV"]

 },

 {

 "userVerification": 4,

 "keyProtection": 1,

 "authenticationAlgorithms": [1, 3],

 "assertionSchemes": ["UAFV1TLV"]

 }]

]

 }

}]

EXAMPLE 11: UAF Authentication Request with text/plain Transaction

[{

 "header": {

 "upv": {

 "major": 1,

 "minor": 2

 },

 "op": "Auth",

 "appID": "https://uaf.example.com/facets.json",

 "serverData": "DLbLt14MdqvuS4fESNCAPJmS8yIKPJ3Ad0xb1cMyu2Q"

 },

 "challenge": "vui9bgJ453N_kWlZbiwMz9q6uPvssjnXjkHYzk-LurY",

 "transaction": [

 {

 "contentType": "text/plain",

 "content": "VHJhbnNmZXIgMjAwMCQgdG8gRXZl"

 }

],

 "policy": {

46 Rec. ITU-T X.1277.2 (04/2023)

 "accepted": [

 [{

 "aaid": ["FFFF#FC01"]

 }],

 [{

 "userVerification": 512,

 "keyProtection": 1,

 "tcDisplay": 1,

 "authenticationAlgorithms": [1],

 "assertionSchemes": ["UAFV1TLV"]

 }],

 [{

 "userVerification": 4,

 "keyProtection": 1,

 "tcDisplay": 1,

 "authenticationAlgorithms": [1],

 "assertionSchemes": ["UAFV1TLV"]

 }],

 [{

 "userVerification": 4,

 "keyProtection": 1,

 "tcDisplay": 1,

 "authenticationAlgorithms": [2]

 }],

 [{

 "userVerification": 2,

 "keyProtection": 4,

 "tcDisplay": 1,

 "authenticationAlgorithms": [2]

 }],

 [{

 "userVerification": 4,

 "keyProtection": 2,

 "tcDisplay": 1,

 "authenticationAlgorithms": [1, 3]

 }],

 [{

 Rec. ITU-T X.1277.2 (04/2023) 47

 "userVerification": 2,

 "keyProtection": 2,

 "authenticationAlgorithms": [2]

 }],

 [{

 "userVerification": 32,

 "keyProtection": 2,

 "assertionSchemes": ["UAFV1TLV"]

 },

 {

 "userVerification": 2,

 "authenticationAlgorithms": [1, 3],

 "assertionSchemes": ["UAFV1TLV"]

 },

 {

 "userVerification": 2,

 "authenticationAlgorithms": [1, 3],

 "assertionSchemes": ["UAFV1TLV"]

 },

 {

 "userVerification": 4,

 "keyProtection": 1,

 "authenticationAlgorithms": [1, 3],

 "assertionSchemes": ["UAFV1TLV"]

 }]

]

 }

}]

7.5.3 AuthenticationRequest dictionary

Contains the UAF authentication request message:

dictionary AuthenticationRequest {

 required OperationHeader header;

 required ServerChallenge challenge;

 Transaction[] transaction;

 required Policy policy;

};

48 Rec. ITU-T X.1277.2 (04/2023)

7.5.3.1 Dictionary AuthenticationRequest members

header of type required OperationHeader

Header.op MUST be "Auth"

challenge of type required ServerChallenge

Server-provided challenge value

transaction of type array of Transaction

Transaction data to be explicitly confirmed by the user.

The list contains the same transaction content in various content types and various image sizes.

Refer to [b-MetadataStatement] for more information about Transaction Confirmation

Display characteristics.

policy of type required Policy

Server-provided policy defining what types of authenticators are acceptable for this

authentication operation.

7.5.4 AuthenticatorSignAssertion dictionary

Represents a response generated by a specific Authenticator:

dictionary AuthenticatorSignAssertion {

 required DOMString assertionScheme;

 required DOMString assertion;

 Extension[] exts;

};

7.5.4.1 Dictionary AuthenticatorSignAssertion members

assertionScheme of type required DOMString

The name of the Assertion Scheme used to encode assertion. See clause 9 for details.

NOTE – This assertionScheme is not part of a signed object and hence considered the suspected
assertionScheme.

assertion of type required DOMString

base64url(byte[1..4096]) Contains the assertion containing a signature generated by

UAuth.priv, i.e., TAG_UAFV1_AUTH_ASSERTION.

exts of type array of Extension

Any extensions prepared by the authenticator

7.5.5 AuthenticationResponse dictionary

Represents the response to a challenge, including the set of signed assertions from registered

authenticators.

dictionary AuthenticationResponse {

 required OperationHeader header;

 required DOMString fcParams;

 Rec. ITU-T X.1277.2 (04/2023) 49

 required AuthenticatorSignAssertion[] assertions;

};

7.5.5.1 Dictionary AuthenticationResponse members

header of type required OperationHeader

Header.op MUST be "Auth"

fcParams of type required DOMString

The field fcParams is the base64url-encoded serialized [IETF RFC 4627]

FinalChallengeParams in UTF8 encoding (see FinalChallengeParams dictionary) or

alternatively it contains the serialized CollectedClientData object. In both cases, all

parameters required for the server to verify the Final Challenge are included.

assertions of type array of required AuthenticatorSignAssertion

The list of authenticator responses related to this operation.

7.5.6 Authentication response message

UAF authentication response message is represented as an array of dictionaries. The array MUST

contain exactly one dictionary. The response is defined as in clause 7.5.5.

EXAMPLE 12: UAF Authentication Response

[{

 "header": {

 "upv": {

 "major": 1,

 "minor": 2

 },

 "op": "Auth",

 "appID": "https://uaf.example.com/facets.json",

 "serverData": "mz0YSKHLXDd_StbbDINZaRvW3Pa6sxrNMPYp2gOs3-Y"

 },

 "fcParams":

"eyJmYWNldElEIjoiaHR0cHM6Ly91YWYuZXhhbXBsZS5jb20iLCJhcHBJRCI6Imh0dHBz

Oi8vdWFmLmV4YW1

wbGUuY29tL2ZhY2V0cy5qc29uIiwiY2hhbGxlbmdlIjoiNEQ4ZVV4ZFN6UV9SYms3R2Yw

U29vSzdYcjlPMkxVLWcxNTB

 zdE9wSzBnbyIsImNoYW5uZWxCaW5kaW5nIjp7fX0",

 "assertions": [{

 "assertionScheme": "UAFV1TLV",

50 Rec. ITU-T X.1277.2 (04/2023)

 "assertion": "Aj7EAAQ-

dgALLgkARkZGRiNGQzAzDi4FAAEAAQIADy4IAB4gsCir67EvCi4gAMYR1ZSqYuPLiN

pYl

 omDJYGZZGQRGSlLlThqf8ZzF-k2EC4AAAkuIADaied-

MDJnRRzcYvhXI4R1GAiTPuqiCrOYhNwQ8ui8_Q0uBAABAAAA

 Bi5GADBEAiDDt4-

pzmEWZyakWcWGdtBQLIXSf75wL3tEjiCIry_QtQIgjw0oMlQqKOHdG2M26e1Z0bG4wGj

fow_vu5z

 p-VkALFo"

 }]

}]

EXAMPLE 13: UAF authentication response for text/plain transaction

[{

 "header": {

 "upv": {

 "major": 1,

 "minor": 2

 },

 "op": "Auth",

 "appID": "https://uaf.example.com/facets.json",

 "serverData": "mz0YSKHLXDd_StbbDINZaRvW3Pa6sxrNMPYp2gOs3-Y"

 },

 "fcParams":

"eyJmYWNldElEIjoiaHR0cHM6Ly91YWYuZXhhbXBsZS5jb20vaW5kZXguaHRtbCIsImFw

cElEIjoiaHR0cH

M6Ly91YWYuZXhhbXBsZS5jb20vZmFjZXRzLmpzb24iLCJjaGFsbGVuZ2UiOiI0RDhlVX

hkU3pRX1JiazdHZjBTb29LN1hyO

 U8yTFUtZzE1MHN0T3BLMGdvIiwiY2hhbm5lbEJpbmRpbmciOnt9fQ",

 "assertions": [{

 "assertionScheme": "UAFV1TLV",

 "assertion": "Aj7EAAQ-

dgALLgkARkZGRiNGQzAzDi4FAAEAAQIADy4IAB4gsCir67EvCi4gAMYR1ZSqYuPLiN

pYl

 omDJYGZZGQRGSlLlThqf8ZzF-k2EC4AAAkuIADaied-

MDJnRRzcYvhXI4R1GAiTPuqiCrOYhNwQ8ui8_Q0uBAABAAAA

 Bi5GADBEAiDDt4-

pzmEWZyakWcWGdtBQLIXSf75wL3tEjiCIry_QtQIgjw0oMlQqKOHdG2M26e1Z0bG4wGj

fow_vu5z

 Rec. ITU-T X.1277.2 (04/2023) 51

 p-VkALFo"

 }]

}]

Note

Line breaks in fcParams have been inserted for improving readability.

7.5.7 Authentication processing rules

7.5.7.1 Authentication request generation rules for server

The policy contains a 2-dimensional array of allowed MatchCriteria (see Policy). This array can be

considered a list (first dimension) of sets (second dimension) of authenticators (identified by

MatchCriteria). All authenticators in a specific set MUST be used for authentication simultaneously

in order to match the policy. But any of those sets in the list are valid, i.e., the list elements are

alternatives.

The Server MUST follow the steps:

1. Construct appropriate authentication policy p

1. for each set of alternative authenticators do

1. Create a 1-dimensional array of MatchCriteria objects v containing the set of

authenticators to be used for authentication simultaneously that need to be

identified by separate MatchCriteria objects m.

1. For each collection of authenticators a to be used for authentication

simultaneously that can be identified by the same rule, create a

MatchCriteria object m, where

▪ m.aaid MAY be combined with (one or more of) m.keyIDs,

m.attachmentHint, m.authenticatorVersion, and m.exts, but

m.aaid MUST NOT be combined with any other match criteria

field.

▪ If m.aaid is not provided – both m.authenticationAlgorithms

and m.assertionSchemes MUST be provided

▪ In case of step-up authentication (i.e., in the case where it is

expected the user is already known due to a previous

authentication step) every item in Policy.accepted MUST

include the AAID and KeyID of the authenticator registered for

this account in order to avoid ambiguities when having multiple

accounts at this relying party.

2. Add m to v, e.g., v[j+1]=m.

2. Add v to p.allowed, e.g., p.allowed[i+1]=v

2. Create MatchCriteria objects m[] for all disallowed authenticators.

1. Create a MatchCriteria object m and add AAIDs of all disallowed authenticators

to m.aaid.

The status (as provided in the metadata TOC [b-MetadataService]) of some

authenticators might be unacceptable. Such authenticators SHOULD be

included in p.disallowed.

2. If needed – create MatchCriteria m for other disallowed criteria (e.g.,

unsupported authenticationAlgs)

52 Rec. ITU-T X.1277.2 (04/2023)

3. Add all m to p.disallowed.

2. Create an AuthenticationRequest object r with appropriate r.header for the supported version,

and

1. Servers SHOULD NOT assume any implicit integrity protection of

r.header.serverData. Servers that depend on the integrity of r.header.serverData

SHOULD apply and verify a cryptographically secure Message Authentication Code

(MAC) to serverData and they SHOULD also cryptographically bind serverData to

the related message, e.g., by re-including r.challenge, see also clause 8.3.7.

NOTE – All other components (except the server) will treat r.header.serverData as an opaque
value. As a consequence, the server can implement any suitable cryptographic protection method.

2. Generate a random challenge and assign it to r.challenge

3. If this is a transaction confirmation operation – look up

TransactionConfirmationDisplayContentTypes/

TransactionConfirmationDisplayPNGCharacteristics from authenticator metadata of

every participating AAID, generate a list of corresponding transaction content and

insert the list into r.transaction.

1. If the authenticator reported (a dynamic)

AuthenticatorRegistrationAssertion.tcDisplayPNGCharacteristics during

Registration – it MUST be preferred over the (static) value specified in the

authenticator Metadata.

4. Set r.policy to our new policy object p created above, e.g., r.policy = p.

5. Add the authentication request message the array

3. Send the array of authentication request messages to the UAF client

7.5.7.2 Authentication request processing rules for UAF client

The UAF client MUST follow the steps:

1. Choose the message m with upv set to the appropriate version number.

2. Parse the message m

o If a mandatory field in the UAF message is not present or a field does not correspond

to its type and value then reject the operation

3. Obtain FacetID of the requesting Application. If the AppID is missing or empty, set the AppID

to the FacetID.

Verify that the FacetID is authorized for the AppID according to the algorithms in [b-

AppIDAndFacets].

o If the FacetID of the requesting Application is not authorized, reject the operation

4. Filter available authenticators with the given policy and present the filtered list to User.

5. Let the user select the preferred Authenticator.

6. Obtain TLS data if its available

7. Create a FinalChallengeParams structure fcp and set fcp.AppID, fcp.challenge, fcp.facetID,

and fcp.channelBinding appropriately. Serialize [IETF RFC 4627] fcp using UTF8 encoding

and base64url encode it.

o FinalChallenge = base64url(serialize(utf8encode(fcp)))

 Rec. ITU-T X.1277.2 (04/2023) 53

8. For each authenticator that supports an Authenticator Interface Version AIV compatible with

message version AuthenticationRequest.header.upv (see clause 7.3) and user agrees to

authenticate with:

o Add AppID, FinalChallenge, Transactions (if present), and all other fields to the

ASMRequest.

o Send the ASMRequest to the ASM. If the ASM returns an error, handle that error

appropriately. The status code returned by the ASM [b-UAFASM] must be mapped to

a status code defined in [b-UAFAppAPIAndTransport] as specified in

clause 7.4.6.2.1.

7.5.7.3 Authentication request processing rules for authenticator

See [b-UAFAuthnrCommands], section "Sign Command".

7.5.7.4 Authentication Response Generation Rules for UAF client

The UAF client MUST follow the steps:

1. Create an AuthenticationResponse message

2. Copy AuthenticationRequest.header into AuthenticationResponse.header

NOTE – When the appID provided in the request was empty, the Client must set the appID in this header to
the facetID (see [b-AppIDAndFacets]).

The header might include extensions. Extension specific rules might affect the copy process. Those

rules are defined in the related section in [b-UAFRegistry].

3. Fill out AuthenticationResponse.FinalChallengeParams with appropriate fields and then

stringify it

4. Append the response from each authenticator into AuthenticationResponse.assertions

5. Send AuthenticationResponse message to the Server

7.5.7.5 Authentication response processing rules for server

NOTE 1 – The following processing rules assume that authenticator supports "UAFV1TLV" assertion scheme.
Currently "UAFV1TLV" is the only defined and supported assertion scheme. When a new assertion scheme
is added to UAF protocol – this section will be extended with corresponding processing rules.

The Server MUST follow the steps:

1. Parse the message

1. If protocol version (AuthenticationResponse.header.upv) is not supported – reject the

operation

2. If a mandatory field in UAF message is not present or a field does not correspond to

its type and value – reject the operation

2. Verify that AuthenticationResponse.header.serverData, if used, passes any implementation-

specific checks against its validity. See clause 8.3.7.

3. base64url decode AuthenticationResponse.fcParams and convert into an object (fcp)

4. If this fcp object is a FinalChallengeParams object, then verify each field in fcp and make

sure it's valid:

1. Make sure fcp.appID corresponds to the one stored by the Server

 NOTE 2 – When the appID provided in the request was empty, the Client must set the appID
to the facetID (see [b-AppIDAndFacets]). In this case, the Uauth key cannot be used by other
application facets.

54 Rec. ITU-T X.1277.2 (04/2023)

2. Make sure fcp.facetID is in the list of trusted FacetIDs [b-AppIDAndFacets]

3. Make sure ChannelBinding is as expected

NOTE 3 – There might be legitimate situations in which some methods of channel binding
fail

4. Make sure fcp.challenge has really been generated by the Server for this operation and

it is not expired

5. Reject the response if any of the above checks fails

5. If this fcp object is a CollectedClientData object, then verify each field in fcp and make sure

it's valid:

1. Make sure fcp.origin is considered a legitimate origin for this registration request.

2. Make sure fcp.tokenBinding is as expected (see field cid_pubkey in clause 7.1.9)

NOTE – There might be legitimate situations in which some methods of channel binding fail (see clause 8.3.4).

3. Make sure fcp.challenge has really been generated by the Server for this operation and

it is not expired

4. Reject the response if any of the above checks fails

6. For each assertion a in AuthenticationResponse.assertions

1. Parse data from a.assertion assuming it is encoded according to the suspected assertion

scheme a.assertionScheme and make sure it contains all mandatory fields (indicated

in authenticator Metadata) it is supposed to have, verify that the assertion has a valid

syntax, and verify that the assertion does not include unknown fields (identified by

TAGs or IDs) that belong to extensions marked as "fail-if-unknown" set to true [b-

MetadataStatement].

▪ If it does not – continue with next assertion

2. if a.assertion contains an object of type TAG_UAFV1_AUTH_ASSERTION, then

▪ if a.assertion.TAG_UAFV1_AUTH_ASSERTION contains

TAG_UAFV1_SIGNED_DATA as first element:

1. Retrieve the AAID from the assertion.

NOTE

The AAID in TAG_UAFV1_SIGNED_DATA is contained in

a.assertion.TAG_UAFV1_AUTH_ASSERTION.TAG_UAFV1_SIG

NED_DATA.TAG_AAID.

2. Verify that a.assertionScheme matches

Metadata(AAID).assertionScheme

▪ If it does not match – continue with next assertion

3. Make sure that the AAID indeed matches the policy of the

Authentication Request

▪ If it does not meet the policy – continue with next assertion

4. Obtain Metadata(AAID).AuthenticatorVersion for this AAID and

make sure that it is lower or equal to

a.assertion.TAG_UAFV1_AUTH_ASSERTION.TAG_UAFV1_SIG

NED_DATA.TAG_ASSERTION_INFO.AuthenticatorVersion.

 Rec. ITU-T X.1277.2 (04/2023) 55

▪ If Metadata(AAID).AuthenticatorVersion is higher (i.e., the

authenticator firmware is outdated), it is RECOMMENDED to

assume increased authentication risk. See "StatusReport

dictionary" and "Metadata TOC object Processing Rules" in

[b-MetadataService] for more details on this.

5. Retrieve

a.assertion.TAG_UAFV1_AUTH_ASSERTION.TAG_UAFV1_SIG

NED_DATA.TAG_KEYID as KeyID

6. Locate UAuth.pub public key associated with (AAID, KeyID) in the

user's record.

▪ If such record does not exist – continue with next assertion

7. Verify the AAID against the AAID stored in the user's record at time

of Registration.

▪ If comparison fails – continue with next assertion

8. Locate authenticator specific authentication algorithms from

authenticator metadata (field AuthenticationAlgs)

9. Check the Signature Counter

a.assertion.TAG_UAFV1_AUTH_ASSERTION.TAG_UAFV1_SIG

NED_DATA.SignCounter and make sure it is either not supported by

the authenticator (i.e., the value provided and the value stored in the

user's record are both 0 or the value isKeyRestricted is set to 'false' in

the related Metadata Statement) or it has been incremented (compared

to the value stored in the user's record)

▪ If it is greater than 0, but did not increment – continue with

next assertion (as this is a cloned authenticator or a cloned

authenticator has been used previously).

10. If fcp is of type FinalChallengeParams, then hash

AuthenticationResponse.FinalChallengeParams using the hashing

algorithm suitable for this authenticator type. Look up the hash

algorithm in authenticator Metadata, field AuthenticationAlgs. It is

the hash algorithm associated with the first entry related to a constant

with prefix ALG_SIGN.

▪ FCHash =

hash(AuthenticationResponse.FinalChallengeParams)

11. If fcp is of type CollectedClientData, then hash

AuthenticationResponse.fcParams using hashing algorithm specified

in fcp.hashAlg.

▪ FCHash = hash(AuthenticationResponse.fcParams)

12. Make sure that

a.assertion.TAG_UAFV1_AUTH_ASSERTION.TAG_UAFV1_SIG

NED_DATA.TAG_FINAL_CHALLENGE_HASH == FCHash

▪ If comparison fails – continue with next assertion

13. If

a.assertion.TAG_UAFV1_AUTH_ASSERTION.TAG_UAFV1_SIG

NED_DATA.TAG_ASSERTION_INFO.authenticationMode == 2

56 Rec. ITU-T X.1277.2 (04/2023)

NOTE 4 – The transaction hash included in this

AuthenticationResponse must match the transaction content specified

in the related AuthenticationRequest. As does not mandate any

specific Server API, the transaction content could be cached by any

relying party software component, e.g., the Server or the relying party

Web Application.

▪ Make sure there is a transaction cached on relying party side.

▪ If not – continue with next assertion

▪ Go over all cached forms of the transaction content

(potentially multiple cached PNGs for the same transaction)

and calculate their hashes using hashing algorithm suitable for

this authenticator (same hash algorithm as used for

FinalChallenge).

▪ For each cachedTransaction add

hash(cachedTransaction) into

cachedTransactionHashList

▪ Make sure that a.TransactionHash is in

cachedTransactionHashList

▪ If it's not in the list – continue with next assertion

14. Use UAuth.pub key and appropriate authentication algorithm to

verify

a.assertion.TAG_UAFV1_AUTH_ASSERTION.TAG_SIGNATURE

▪ If signature verification fails – continue with next assertion

▪ Update SignCounter in user's record with

a.assertion.TAG_UAFV1_AUTH_ASSERTION.TAG_UAFV

1_SIGNED_DATA.SignCounter

▪ if a.assertion.TAG_UAFV1_AUTH_ASSERTION contains a different object

than TAG_UAFV1_SIGNED_DATA as first element, then follow the rules

specific to that object.

3. if a.assertion does not contain an object of type

TAG_UAFV1_AUTH_ASSERTION, then follow the respective processing rules of

that assertion format if supported – otherwise skip this assertion.

4. Treat this assertion a as positively verified.

7. Process all positively verified authentication assertions a.

7.6 Deregistration operation

This operation allows Server to ask the Authenticator to delete keys related to the particular relying

party.

The Server MAY explicitly enumerate the keys to be deleted, or the server MAY signal deregistration

of all keys on all authenticators managed by the UAF client and relating to a given appID.

NOTE – There are various deregistration use cases that both Server and Client implementations should allow
for. Two in particular are:

1. Servers should trigger this operation in the event a user removes their account at the relying

party.

 Rec. ITU-T X.1277.2 (04/2023) 57

2. Clients should ensure that relying party application facets – e.g., mobile apps, web pages –

have means to initiate a deregistration operation without having necessarily received a UAF

protocol message with an op value of "Dereg". This allows the relying party app facet to

remove a user's keys from authenticators during events such as relying party app removal or

installation.

7.6.1 Deregistration request message

The UAF Deregistration request message is represented as an array of dictionaries. The array MUST

contain exactly one dictionary. The request is defined as in clause 7.6.3.

EXAMPLE 14: UAF Deregistration Request

[{

 "header": {

 "upv": {

 "major": 1,

 "minor": 2

 },

 "op": "Dereg",

 "appID": "https://uaf.example.com/facets.json"

 },

 "authenticators": [

 {

 "keyID": "kbufhLYGoFFLJPRCUvwiUu-fr1nh3sX3IjM9i9lcOrQ",

 "aaid": "FFFF#FC03"

 }

]

}]

The example above contains a deregistration request. This request will deregister the key with the

specified keyID registered for the authenticator with aaid "FFFF#FC03" for the given appID.

NOTE – There is no deregistration response object.

7.6.2 DeregisterAuthenticator dictionary

dictionary DeregisterAuthenticator {

 required AAID aaid;

 required KeyID keyID;

};

7.6.2.1 Dictionary DeregisterAuthenticator members

aaid of type required AAID

AAID of the authenticator housing the UAuth.priv key to deregister, or an empty string if all

keys related to the specified appID are to be de-registered.

58 Rec. ITU-T X.1277.2 (04/2023)

keyID of type required KeyID

The unique KeyID related to UAuth.priv. KeyID is assumed to be unique within the scope of

an AAID only. If aaid is not an empty string, then:

1. keyID MAY contain a value of type KeyID, or,

2. keyID MAY be an empty string.

(1) signals deletion of a particular UAuth.priv key mapped to the (AAID, KeyID) tuple.

(2) signals deletion of all KeyIDs associated with the specified aaid.

If aaid is an empty string, then keyID MUST also be an empty string. This signals

deregistration of all keys on all authenticators that are mapped to the specified appID.

7.6.3 DeregistrationRequest dictionary

dictionary DeregistrationRequest {

 required OperationHeader header;

 required DeregisterAuthenticator[] authenticators;

};

7.6.3.1 Dictionary DeregistrationRequest members

header of type required OperationHeader

Header.op MUST be "Dereg".

authenticators of type array of required DeregisterAuthenticator

List of authenticators to be deregistered.

7.6.4 Deregistration processing rules

7.6.4.1 Deregistration request generation rules for server

The Server MUST follow the steps:

1. Create a DeregistrationRequest message m with m.header.upv set to the appropriate version

number.

2. If the server intends to deregister all keys on all authenticators managed by the UAF client for

this appID, then:

1. create one and only one DeregisterAuthenticator object o

2. Set o.aaid and o.keyID to be empty string values

3. Append o to m.authenticators, and go to step 5

3. If the server intends to deregister all keys on all authenticators with a given AAID managed

by the UAF client for this appID, then:

1. create one and only one DeregisterAuthenticator object o

2. Set o.aaid to the intended AAID and set o.keyID to be an empty string.

3. Append o to m.authenticators, and go to step 5

4. Otherwise, if the server intends to deregister specific (AAID, KeyID) tuples, then for each

tuple to be deregistered:

1. create a DeregisterAuthenticator object o

 Rec. ITU-T X.1277.2 (04/2023) 59

2. Set o.aaid and o.keyID appropriately

3. Append o to m.authenticators

5. delete related entry (or entries) in server's account database

6. Send message to UAF client

7.6.4.2 Deregistration request processing rules for UAF client

The UAF client MUST follow the steps:

1. Choose the message m with upv set to the appropriate version number.

2. Parse the message

o If a mandatory field in DeregistrationRequest message is not present or a field does

not correspond to its type and value – reject the operation

o Empty string values for o.aaid and o.keyID MUST occur in the first and only

DeregisterAuthenticator object o, otherwise reject the operation

3. Obtain FacetID of the requesting application. If the AppID is missing or empty, set the AppID

to the FacetID.

Verify that the FacetID is authorized for the AppID according to the algorithms in [b-

AppIDAndFacets].

o If the FacetID of the requesting Application is not authorized, reject the operation

4. If the set of authenticators compatible with the message version

DeregistrationRequest.header.upv and having an AAID matching one of the provided

AAIDs (an AAID of an authenticator matches if it is either (a) equal to one of the AAIDs

in the DeregistrationRequest or if (b) the AAID in the DeregistrationRequest is an empty

string) is empty, then return NO_SUITABLE_AUTHENTICATOR.

5. For each authenticator compatible with the message version

DeregistrationRequest.header.upv and having an AAID matching one of the provided

AAIDs (an AAID of an authenticator matches if it is either (a) equal to one of the AAIDs

in the DeregistrationRequest or if (b) the AAID in the DeregistrationRequest is an empty

string):

o Create appropriate ASMRequest for Deregister function and send it to the ASM. If the ASM

returns an error, handle that error appropriately. The status code returned by the ASM

[b-UAFASM] must be mapped to a status code defined in [b-UAFAppAPIAndTransport] as

specified in clause 7.4.6.2.1.

7.6.4.3 Deregistration request processing rules for authenticator

See [b-UAFASM] section "Deregister request".

8 Considerations

8.1 Protocol core design considerations

This clause describes the important design elements used in the protocol.

8.1.1 Authenticator metadata

It is assumed that server has access to a list of all supported authenticators and their corresponding

metadata. Authenticator metadata [b-MetadataStatement] contains information such as:

• Supported registration and authentication schemes.

60 Rec. ITU-T X.1277.2 (04/2023)

• Authentication factor, installation type, supported content-types and other supplementary

information, etc.

To decide which authenticators are appropriate for a specific transaction, server looks up the list of

authenticator metadata by AAID and retrieves the required information from it.

Each entry in the authenticator metadata repository MUST be identified with a unique authenticator

attestation ID (AAID).

8.1.2 Authenticator attestation

Authenticator attestation is the process of validating authenticator model identity during registration.

It allows relying parties to cryptographically verify that the authenticator reported by UAF client is

really what it claims to be.

Using authenticator attestation, a relying party "example-rp.com" will be able to verify that the

authenticator model of the "example-Authenticator", reported with AAID "1234#5678", is not

malware running on the User Device but is really an authenticator of model "1234#5678".

Authenticators SHOULD support "Basic Attestation" or "ECDAA" described in clause 8.1.2.1. New

attestation mechanisms may be added to the protocol over time.

Authenticators not providing sufficient protection for attestation keys (non-attested authenticators)

MUST use the UAuth.priv key in order to formally generate the same KeyRegistrationData object as

attested authenticators. This behavior MUST be properly declared in the authenticator metadata.

8.1.2.1 Basic attestation

There are two different flavors of basic attestation:

Full basic attestation:

Based on an attestation private key shared among a class of authenticators (e.g., same model).

Surrogate basic attestation:

Just syntactically a basic attestation. The attestation object self-signed, i.e., it is signed using the

UAuth.priv key, i.e., the key corresponding to the UAuth.pub key included in the attestation object.

As a consequence, it does not provide a cryptographic proof of the security characteristics. But it is

the best thing we can do if the authenticator is not able to have an attestation private key.

8.1.2.1.1 Full basic attestation

NOTE – Servers must have access to a trust anchor for verifying attestation public keys (i.e., attestation
certificate trust store) in order to follow the assumptions made in [b-SecRef]. Authenticators must provide its
attestation signature during the registration process for the same reason. The attestation trust anchor is shared
with Servers out of band (as part of the Metadata). This sharing process should be done according to [b-

MetadataService].

The protection measures of the authenticator's attestation private key depend on the specific

authenticator model's implementation.

The server must load the appropriate authenticator attestation root certificate from its trust store based

on the AAID provided in KeyRegistrationData object.

In this full basic attestation model, a large number of authenticators must share the same attestation

certificate and attestation private key in order to provide non-linkability (see clause 8.3).

Authenticators can only be identified on a production batch level or an AAID level by their attestation

certificate, and not individually. A large number of authenticators sharing the same attestation

certificate provides better privacy, but also makes the related private key a more attractive attack

target.

 Rec. ITU-T X.1277.2 (04/2023) 61

NOTE – When using full basic attestation: A given set of authenticators sharing the same manufacturer and

essential characteristics must not be issued a new attestation key before at least 100,000 devices are issued the
previous shared key.

Figure 10 – Attestation certificate chain

8.1.2.1.2 Surrogate basic attestation

In this attestation method, the UAuth.priv key MUST be used to sign the Registration Data object.

This behavior MUST be properly declared in the authenticator metadata.

NOTE – Authenticators not providing sufficient protection for attestation keys (non-attested authenticators)
must use this attestation method.

8.1.2.2 Direct anonymous attestation

The basic attestation scheme uses attestation "group" keys shared across a set of authenticators with

identical characteristics in order to preserve privacy by avoiding the introduction of global correlation

handles. If such an attestation key is extracted from one single authenticator, it is possible to create a

"fake" authenticator using the same key and hence indistinguishable from the original authenticators

by the relying party. Removing trust for registering new authenticators with the related key would

affect the entire set of authenticators sharing the same "group" key. Depending on the number of

authenticators, this risk might be unacceptably high.

This is especially relevant when the attestation key is primarily protected against malware attacks as

opposed to targeted physical attacks.

An alternative approach to "group" keys is the use of individual keys combined with a Privacy-CA

[b-TPMv1-2-Part1]. Translated to, this approach would require one Privacy-CA interaction for each

Uauth key. This means relatively high load and high availability requirements for the Privacy-CA.

Additionally the Privacy-CA aggregates sensitive information (i.e., knowing the relying parties the

user interacts with). This might make the Privacy-CA an interesting attack target.

Another alternative is the direct anonymous attestation. Direct anonymous attestation is a

cryptographic scheme combining privacy with security. It uses the authenticator specific secret once

to communicate with a single DAA issuer (either at manufacturing time or after being sold before

first use) and uses the resulting DAA credential in the DAA-Sign protocol with each relying party.

The (original) DAA scheme has been adopted for TPM v1.2 [b-TPMv1-2-Part1].

ECDAA (see [b-EcdaaAlgorithm] for details) is an improved DAA scheme based on elliptic curves

and bilinear pairings [b-CheLi2013-ECDAA]. This scheme provides significantly improved

performance compared with the original DAA and it is part of the TPMv2 specification [b-TPMv2-

Part1].

The ECDAA attestation algorithm is used as specified in [b-EcdaaAlgorithm].

8.1.3 Error handling

NOTE – Servers must inform the calling relying party Web Application Server (see clause 8.4) about any error
conditions encountered when generating or processing UAF messages through their proprietary API.

62 Rec. ITU-T X.1277.2 (04/2023)

Authenticators MUST inform the UAF client (see clause 8.4) about any error conditions encountered

when processing commands through the Authenticator Specific Module (ASM). See [b-UAFASM]

and [b-UAFAuthnrCommands] for details.

8.1.4 Assertion schemes

UAF Protocol is designed to be compatible with a variety of existing authenticators (TPMs,

fingerprint sensors, secure elements, etc.) and also future authenticators designed for. Therefore,

extensibility is a core capability designed into the protocol.

It is considered that there are two particular aspects that need careful extensibility. These are:

• Cryptographic key provisioning (KeyRegistrationData)

• Cryptographic authentication and signature (SignedData)

The combination of KeyRegistrationData and SignedData schemes is called an assertion scheme.

The UAF protocol allows plugging in new assertion schemes. See also clause 9.

The registration assertion defines how and in which format a cryptographic key is exchanged between

the authenticator and the server.

The authentication assertion defines how and in which format the authenticator generates a

cryptographic signature.

The generally-supported assertion schemes are defined in [b-UAFRegistry].

8.1.5 Username in authenticator

UAF supports authenticators acting as first authentication factor (i.e., replacing username and

password). As part of the UAF registration, the Uauth key is registered (linked) to the related user

account at the RP. The authenticator stores the username (allowing the user to select a specific account

at the RP in the case he has multiple ones). See [b-UAFAuthnrCommands], section "Sign Command"

for details.

8.1.6 Silent authenticators

UAF supports authenticators not requiring any types of user verification or user presence check. Such

authenticators are called Silent authenticators.

To meet user's expectations, such Silent authenticators need specific properties:

• It must be possible for a user to effectively remove a Uauth key maintained by a silent

authenticator (in order to avoid being tracked) at the user's discretion (see

[b-UAFAuthnrCommands]). This is not compatible with statelesss implementations storing

the Uauth private key wrapped inside a KeyHandle on the server.

• TransactionConfirmation is not supported (as it would require user input which is not

intended), see [b-UAFAuthnrCommands].

• They might not operate in first factor mode (see [b-UAFAuthnrCommands]) as this might

violate the privacy principles.

The MetadataStatement has to truthfully reflect the silent authenticator, i.e., field userVerification

needs to be set to USER_VERIFY_NONE.

8.1.7 TLS protected communication

NOTE –To protect the data communication between UAF client and server, a protected TLS channel must be
used by UAF client (or user agent) and the relying party for all protocol elements.

1. The server endpoint of the TLS connection must be at the relying party

2. The client endpoint of the TLS connection must be either the UAF client or the user

agent/App

 Rec. ITU-T X.1277.2 (04/2023) 63

3. TLS client and server should use TLS v1.2 or newer and should only use TLS v1.1 if TLS

v1.2 or higher are not available. The "anon" and "null" TLS crypto suites are not allowed and

must be rejected; insecure crypto-algorithms in TLS (e.g., MD5, RC4, SHA1) should be

avoided [b-SP800-131A].

4. TLS Extended Master Secret Extension and TLS Renegotiation indication extension should

be used to protect against MITM attacks.

5. The use of the tls-unique method is deprecated as its security is broken, see [b-TLSAUTH].

It is recommended, that the

1. TLS Client verifies and validates the server certificate chain according to [IETF RFC 5280],

section 6 "Certificate Path Validation". The certificate revocation status should be checked

(e.g., using OCSP or CRL based validation [IETF RFC 5280]) and the TLS server identity

should be checked as well.

2. TLS Client's trusted certificate root store is properly maintained and at least requires the CAs

included in the root store to annually pass Web Trust or ETSI audits for SSL CAs.

See [b-TR-03116-4] for more recommendations on how to use TLS.

8.2 Implementation considerations

8.2.1 Server challenge and random numbers

NOTE – A ServerChallenge needs appropriate random sources in order to be effective (see [IETF RFC 4086]

for more details). The (pseudo-)random numbers used for generating the Server Challenge should successfully
pass the randomness test specified in [b-Coron99] and they should follow the guideline given in [b-SP800-
90b].

8.2.2 Revealing KeyIDs

UAF uses key identifiers (KeyIDs) to identify Uauth keys registered by an authenticator to a relying

party. By design (see [b-UAFAuthnrCommands], section 6.2.4), KeyIDs do not reveal any secret

information. However, if an attacker could provide a username to a relying party and the relying party

server would reveal the related KeyID if an account for that username exists or give an error

otherwise, the attacker would implicitly learn whether the user has an account at that relying party.

As a consequence, relying parties should reveal a KeyID only after performing some basic

authentication steps, e.g., verifying the existence of a Cookie, authentication using Silent

Authenticator, etc.).

8.3 Security considerations

There is no "one size fits all" authentication method. The goal is to decouple the user verification

method from the authentication protocol and the authentication server, and to support a broad range

of user verification methods and a broad range of assurance levels. authenticators should be able to

leverage capabilities of existing computing hardware, e.g., mobile devices or smart cards.

The overall assurance level of electronic user authentications highly depends (a) on the security and

integrity of the user's equipment involved and (b) on the authentication method being used to

authenticate the user.

When using, users should have the freedom to use any available equipment and a variety of

authentication methods. The relying party needs reliable information about the security relevant parts

of the equipment and the authentication method itself in order to determine whether the overall risk

of an electronic authentication is acceptable in a particular business context. The metadata service [b-

MetadataService] is intended to provide such information.

It is important for the UAF protocol to provide this kind of reliable information about the security

relevant parts of the equipment and the authentication method itself to the server.

64 Rec. ITU-T X.1277.2 (04/2023)

The overall security is determined by the weakest link. In order to support scalable security in, the

underlying UAF protocol needs to provide a very high conceptual security level, so that the protocol

isn't the weakest link.

Relying parties define acceptable assurance levels. The Alliance envisions a broad range of UAF

clients, authenticators and servers to be offered by various vendors. Relying parties should be able to

select a server providing the appropriate level of security. They should also be in a position to accept

authenticators meeting the security needs of the given business context, to compensate assurance level

deficits by adding appropriate implicit authentication measures, and to reject authenticators not

meeting their requirements. Does not mandate a very high assurance level for authenticators, instead

it provides the basis for authenticator and user verification method competition.

Authentication vs. Transaction confirmation. Existing cloud services are typically based on

authentication. The user launches an application (i.e., user agent) assumed to be trusted and

authenticates to the cloud service in order to establish an authenticated communication channel

between the application and the cloud service. After this authentication, the application can perform

any actions to the cloud service using the authenticated channel. The service provider will attribute

all those actions to the user. Essentially the user authenticates all actions performed by the application

in advance until the service connection or authentication times out. This is a very convenient way as

the user does not get distracted by manual actions required for the authentication. It is suitable for

actions with low-risk consequences.

However, in some situations it is important for the relying party to know that a user really has seen

and accepted a particular content before he authenticates it. This method is typically being used when

non-repudiation is required. The resulting requirement for this scenario is called what you see is what

you sign (WYSIWYS).

UAF supports both methods; they are called "Authentication" and "Transaction Confirmation". The

technical difference is that with authentication the user confirms a random challenge, where in the

case of transaction confirmation the user also confirms a human readable content, i.e., the contract.

From a security point, in the case of authentication the application needs to be trusted as it performs

any action once the authenticated communication channel has been established. In the case of

transaction confirmation only the transaction confirmation display component implementing

WYSIWYS needs to be trusted, not the entire application.

Distinct attestable security components. For the relying party, in order to determine the risk

associated with an authentication, it is important to know details about some components of the user's

environment. Web Browsers typically send a "User Agent" string to the web server. Unfortunately,

any application could send any string as "User Agent" to the relying party. So, this method does not

provide strong security. UAF is based on a concept of cryptographic attestation. With this concept,

the component to be attested owns a cryptographic secret and authenticates its identity with this

cryptographic secret. In UAF the cryptographic secret is called "Authenticator Attestation Key". The

relying party gets access to reference data required for verifying the attestation.

To enable the relying party to appropriately determine the risk associated with an authentication, all

components performing significant security functions need to be attestable.

In UAF significant security functions are implemented in the "Authenticators". Security functions

are:

1. Protecting the attestation key.

2. Generating and protecting the Authentication key(s), typically one per relying party and user

account on relying party.

3. Verifying the user.

4. Providing the WYSIWYS capability ("Transaction Confirmation Display" component).

 Rec. ITU-T X.1277.2 (04/2023) 65

Some authenticators might implement these functions in software running on the user device, others

might implement these functions in "hardware", i.e., software running on a hardware segregated from

the user device. Some Authenticators might even be formally evaluated and accredited to some

national or international scheme. Each Authenticator model has an attestation ID (AAID), uniquely

identifying the related security characteristics. Relying parties get access to these security properties

of the authenticators and the reference data required for verifying the attestation.

Resilience to leaks from other verifiers. One of the important issues with existing authentication

solutions is a weak server-side implementation, affecting the security of authentication of typical

users to other relying parties. It is the goal of the UAF protocol to decouple the security of different

relying parties.

Decoupling user verification method from authentication protocol. In order to decouple the user

verification method from the authentication protocol, UAF is based on an extensible set of

cryptographic authentication algorithms. The cryptographic secret will be unlocked after user

verification by the authenticator. This secret is then used for the authenticator-to-relying party

authentication. The set of cryptographic algorithms is chosen according to the capabilities of existing

cryptographic hardware and computing devices. It can be extended in order to support new

cryptographic hardware.

Privacy protection. Different regions in the world have different privacy regulations. The UAF

protocol should be acceptable in all regions and hence must support the highest level of data

protection. As a consequence, UAF does not require transmission of biometric data to the relying

party, nor does it require the storage of biometric reference data [b-ISOBiometrics] at the relying

party. Additionally, cryptographic secrets used for different relying parties shall not allow the parties

to link actions to the same user entity. UAF supports this concept, known as non-linkability.

Consequently, the UAF protocol does not require a trusted third party to be involved in every

transaction.

Relying parties can interactively discover the AAIDs of all enabled Authenticators on the user device

using the discovery interface [b-UAFAppAPIAndTransport]. The combination of AAIDs adds to the

entropy provided by the client to relying parties. Based on such information, relying parties can

fingerprint clients on the internet (see Browser Uniqueness at eff.org and

https://wiki.mozilla.org/Fingerprinting). In order to minimize the entropy added by, the user can

enable/disable individual authenticators – even when they are embedded in the device (see [b-

UAFAppAPIAndTransport], section "privacy considerations").

8.3.1 Authenticator security

See [b-UAFAuthnrCommands].

8.3.2 Cryptographic algorithms

In order to keep key sizes small and to make private key operations fast enough for small devices, it

is suggested that implementers prefer elliptic curve digital signature algorithm (ECDSA) [b-ECDSA-

ANSI] in combination with SHA-256 / SHA-512 hash algorithms. However, the RSA algorithm is

also supported. See [b-Registry] "Authentication Algorithms" and "Public Key Representation

Formats" for a list of generally supported cryptographic algorithms.

One characteristic of ECDSA is that it needs to produce, for each signature generation, a fresh random

value. For effective security, this value must be chosen randomly and uniformly from a set of modular

integers, using a cryptographically secure process. Even slight biases in that process may be turned

into attacks on the signature schemes.

NOTE – If such random values cannot be provided under all possible environmental conditions, then a
deterministic version of ECDSA should be used (see [IETF RFC 6979]).

66 Rec. ITU-T X.1277.2 (04/2023)

8.3.3 Client trust model

The environment on a user device comprises 4 entities:

• User agents (a native app or a browser)

• UAF clients (a shared service potentially used by multiple user agents)

• Authenticator specific modules (ASMs)

• Authenticators

Figure 11 – UAF client trust model

The security and privacy principles that underpin mobile operating systems require certain behaviours

from apps. Must uphold those principles wherever possible. This means that each of these

components has to enforce specific trust relationships with the others to avoid the risk of rogue

components subverting the integrity of the solution.

One specific requirement on handsets is that apps originating from different vendors must not be

allowed directly to view or edit each other's data (e.g., UAF credentials).

Given that UAF clients are intended to provide a shared service, the principle of siloed app data has

been applied to the UAF client, rather than individual apps. This means that if two or more UAF

clients are present on a device, then each UAF client is unable to access authentication keys created

by another UAF client. A given UAF client may however provide services to multiple user agents, so

that the same authentication key can authenticate to different facets of the same relying party, even if

one facet is a third-party browser.

This exclusive access restriction is enforced through the KHAccessToken. When a UAF client

communicates with an ASM, the ASM reads the identity of the UAF client caller1 and includes that

Client ID in the KHAccessToken that it sends to the authenticator. Subsequent calls to the

authenticator must include the same Client ID in the KHAccessToken. Each authentication key is

 Rec. ITU-T X.1277.2 (04/2023) 67

also bound to the ASM that created it, by means of an ASMToken (a random unique ID for the ASM)

that is also included in the KHAccessToken.

Finally, the user agents that a UAF client will recognize are determined by the relying party itself.

The UAF client requests a list of trusted Apps from the RP as part of the registration and

authentication protocols. This prevents user agents that have not been explicitly authorized by the

relying party from using the credentials.

In this manner, in a compliant installation, UAF credentials can only be accessed via apps that the

relying party explicitly trusts and through the same client and ASM that performed the original

registration.

It should be noted that the specification allows for UAF clients to be built directly into User Agents.

However, such implementations will restrict the ability to support multiple facets for relying party

applications unless they also expose the UAF client API for other User Agents to consume.

8.3.3.1 Isolation using KHAccessToken

Authenticators might be implemented in dedicated hardware and hence might not be able to verify

the calling software entity (i.e., the ASM).

The KHAccessToken allows restricting access to the keys generated by the authenticator to the

intended ASM. It is based on a Trust On First Use (TOFU) concept.

Authenticators are capable of binding Uauth.Key with a key provided by the caller (i.e., the ASM).

This key is called KHAccessToken.

This technique allows making sure that registered keys are only accessible by the caller that originally

registered them. A malicious App on a mobile platform won't be able to access keys by bypassing the

related ASM (assuming that this ASM originally registered these keys).

The KHAccessToken is typically specific to the AppID, PersonaID, ASMToken and the CallerID.

See [b-UAFASM] for more details.

NOTE – On some platforms, the ASM additionally might need special permissions in order to communicate
with the authenticator. Some platforms do not provide means to reliably enforce access control among
applications.

8.3.4 TLS binding

Various channel binding methods have been proposed (e.g., [IETF RFC 5929] and [b-ChannelID]).

UAF relies on TLS server authentication for binding authentication keys to AppIDs. There are threats:

1. Attackers might fraudulently get a TLS server certificate for the same AppID as the relying

party, and they might be able to manipulate the domain name service (DNS) system.

2. Attackers might be able to steal the relying party's TLS server private key and certificate and

they might be able to manipulate the DNS system.

And there are functionality requirements:

1. UAF transactions might span across multiple TLS sessions. As a consequence, "tls-unique"

defined in [IETF RFC 5929] might be difficult to implement.

2. Data centers might use SSL concentrators.

3. Data centers might implement load-balancing for TLS endpoints using different TLS

certificates. As a consequence, "tls-server-end-point" defined in [IETF RFC 5929], i.e., the

hash of the TLS server certificate might be inappropriate.

4. Unfortunately, hashing of the TLS server certificate (as in "tls-server-end-point") also limits

the usefulness of the channel binding in a particular, but quite common circumstance. If the

client is operated behind a trusted (to that client) proxy that acts as a TLS man-in-the-middle,

your client will see a different certificate than the one the server is using. This is actually

68 Rec. ITU-T X.1277.2 (04/2023)

quite common on corporate or military networks with a high security posture that want to

inspect all incoming and outgoing traffic. If the Server just gets a hash value, there's no way

to distinguish this from an attack. If sending the entire certificate is acceptable from a

performance perspective, the server can examine it and determine if it is a certificate for a

valid name from a non-standard issuer (likely administratively trusted) or a certificate for a

different name (which almost certainly indicates a forwarding attack).

See clause 7.1.9 for more details.

8.3.5 Session management

UAF does not define any specific session management methods. However, several UAF functions

rely on a robust session management being implemented by the relying party's web application:

• Registration: A web application might trigger registration after authenticating an existing

user via legacy credentials. So, the session is used to maintain the authentication state until

the registration is completed.

• Authentication: After success authentication, the session is used to maintain the

authentication state during the operations performed by the user agent or mobile app.

Best practices should be followed to implement robust session management (e.g., [b-OWASP2013]).

8.3.6 Personas

UAF supports unlinkability of accounts at different relying parties by using relying party specific

keys.

Sometimes users have multiple accounts at a particular relying party and even want to maintain

unlinkability between these accounts.

Today, this is difficult and requires certain measures to be strictly applied.

UAF does not want to add more complexity to maintaining unlinkability between accounts at a relying

party.

In the case of roaming authenticators, it is recommended to use different authenticators for the various

personas (e.g., "business", "personal"). This is possible as roaming authenticators typically are small

and not excessively expensive.

In the case of bound authenticators, this is different. UAF recommends the "Persona" concept for this

situation.

All relevant data in an authenticator are related to one Persona (e.g., "business" or "personal"). Some

administrative interface (not defined in this Recomendation) of the authenticator may allow

maintaining and switching Personas.

The authenticator MUST only "know" / "recognize" data (e.g., authentication keys, usernames,

KeyIDs, …) related to the Persona being active at that time.

With this concept, the User can switch to the "Personal" Persona and register new accounts. After

switching back to "Business" Persona, these accounts will not be recognized by the authenticator

(until the User switches back to "Personal" Persona again).

To support the persona feature, the Authenticator-specific Module API [b-UAFASM] supports the

use of a 'PersonaID' to identify the persona in use by the authenticator. How Personas are managed

or communicated with the user is out of scope.

8.3.7 ServerData and KeyHandle

Data contained in the field serverData (see clause 7.1.3) of UAF requests is sent to the UAF client

and will be echoed back to the server as part of the related UAF response message.

 Rec. ITU-T X.1277.2 (04/2023) 69

NOTE 1 – The Server should not assume any kind of implicit integrity protection of such data nor any implicit

session binding. The Server must explicitly bind the serverData to an active session.

NOTE 2 – In some situations, it is desirable to protect sensitive data such that it can be stored in arbitrary
places (e.g., in serverData or in the KeyHandle). In such situations, the confidentiality and integrity of such
sensitive data must be protected. This can be achieved by using a suitable encryption algorithm, e.g.,
Advanced encryption standard (AES) with a suitable cipher mode. This cipher mode needs to be used correctly.
For cipher block chaining (CBC), for example, a fresh random IV for each encryption is required. The data

might have to be padded first in order to obtain an integral number of blocks in length. The integrity protection
can be achieved by adding a MAC or a digital signature on the ciphertext, using a different key than for the
encryption, e.g., using keyed-hash message authentication code (HMAC) [b-FIPS198-1]. Alternatively, an
authenticated encryption scheme as for example advanced encryption standard – Galois/counter mode (AES-
GCM) [b-SP800-38D] or advanced encryption standard – counter with CBC-MAC (AES-CCM) [b-SP800-
38C] could be used. Such a scheme provides both integrity and confidentiality in a single algorithm and using
a single key.

NOTE 3 – When protecting serverData, the MAC or digital signature computation should include some data
that binds the data to its associated message, for example by re-including the challenge value in the
authenticated serverData.

8.3.8 Authenticator information retrieved through UAF application API vs. metadata

Several authenticator properties (e.g., UserVerificationMethods, KeyProtection,

TransactionConfirmaInDisplay, ...) are available in the metadata [b-MetadataStatement] and through

the UAF Application API. The properties included in the metadata are authoritative and are provided

by a trusted source. When in doubt, decisions should be based on the properties retrieved from the

Metadata as opposed to the data retrieved through the UAF application API.

However, the properties retrieved through the UAF application API provide a good "hint" what to

expect from the authenticator. Such "hints" are well suited to drive and optimize the user experience.

8.3.9 Policy verification

UAF Response messages do not include all parameters received in the related UAF request message

into the to-be-signed object. As a consequence, any MITM could modify such entries.

Server will detect such changes if the modified value is unacceptable.

For example, a MITM could replace a generic policy by a policy specifying only the weakest possible

Authenticator. Such a change will be detected by Server if the weakest possible Authenticator does

not match the initial policy (see clauses 7.4.6.5 and 7.5.7.5).

8.3.10 Replay attack protection

The UAF protocol specifies two different methods for replay-attack protection:

1. Secure transport protocol (TLS).

2. Server challenge.

The TLS protocol by itself protects against replay-attacks when implemented correctly [b-TLS].

Additionally, each protocol message contains some random bytes in the ServerChallenge field. The

server should only accept incoming UAF messages which contain a valid ServerChallenge value.

This is done by verifying that the ServerChallenge value, sent by the client, was previously generated

by the server. See FinalChallengeParams.

It should also be noted that under some (albeit unlikely) circumstances, random numbers generated

by the server may not be unique, and in such cases, the same ServerChallenge may be presented more

than once, making a replay attack harder to detect.

70 Rec. ITU-T X.1277.2 (04/2023)

8.3.11 Protection against cloned authenticators

UAF relies on the UAuth.Key to be protected and managed by an authenticator with the security

characteristics specified for the model (identified by the AAID). The security is better when only a

single authenticator with that specific UAuth.Key instance exists. Consequently, UAF specifies some

protection measures against cloning of authenticators.

First, if the UAuth private keys are protected by appropriate measures then cloning should be hard as

such keys cannot be extracted easily.

Second, UAF specifies a signature counter (see clause 7.5.7.5 and [b-UAFAuthnrCommands]). This

counter is increased by every signature operation. If a cloned authenticator is used, then the

subsequent use of the original authenticator would include a signature counter lower to or equal to

the previous (malicious) operation. Such an incident can be detected by the server.

8.3.12 Anti-fraud signals

There is the potential that some attacker misuses a Authenticator for committing fraud, more

specifically they would:

1. Register the authenticator to some relying party for one account

2. Commit fraud

3. Deregister the authenticator

4. Register the authenticator to some relying party for another account

5. Commit fraud

6. Deregister the AUTHENTICAI

7. and so on...

NOTE – Authenticators might support a Registration Counter (RegCounter). The RegCounter will be

incremented on each registration and hence might become exceedingly high in such fraud scenarios. See [b-
UAFAuthnrCommands] for more details.

8.4 Interoperability considerations

UAF supports Web Applications, Mobile Applications and Native PC Applications. Such

applications are referred to as enabled applications.

Figure 12 – UAF interoperability overview

 Rec. ITU-T X.1277.2 (04/2023) 71

Web applications typically consist of the web application server and the related Web App. The Web

App code (e.g., HTML and JavaScript) is rendered and executed on the client side by the user agent.

The web App code talks to the user agent via a set of JavaScript APIs, e.g., HTML DOM. The DOM

API is defined in [b-UAFAppAPIAndTransport]. The protocol between the web App and the relying

party web application server is typically proprietary.

Mobile apps play the role of the user agent and the Web app (Client). The protocol between the

mobile App and the relying party web application server is typically proprietary.

Native PC applications play the role of the user agent, the web App (Client). Those applications are

typically expected to be independent from any particular relying party web application server.

It is recommended for enabled applications to use the messages according to the format specified in

this Recommendation.

It is recommended for enabled application to use the UAF HTTP Binding defined in [b-

UAFAppAPIAndTransport].

NOTE – The KeyRegistrationData and SignedData objects [b-UAFAuthnrCommands] are generated and

signed by the Authenticators and have to be verified by the Server. Verification will fail if the values are
modified during transport.

The ASM API [b-UAFASM] specifies the standardized API to access authenticator specific modules

(ASMs) on desktop PCs and mobile devices.

The document b-[UAFAuthnrCommands] does not specify a particular protocol or API. Instead, it

lists the minimum data set and a specific message format which needs to be transferred to and from

the authenticator.

9 UAF supported assertion schemes

9.1 Assertion scheme "UAFV1TLV"

This scheme is mandatory to implement for Servers. This scheme is mandatory to implement for

authenticators.

This assertion scheme allows the authenticator and the server to exchange an asymmetric

authentication key generated by the authenticator.

This assertion scheme is using tag-length-value (TLV) compact encoding to encode registration and

authentication assertions generated by authenticators. This is the default assertion scheme for UAF

protocol.

TAGs and algorithms are defined in [b-UAFRegistry].

The authenticator MUST use a dedicated key pair (UAuth.pub/UAuth.priv) suitable for the

authentication algorithm specified in the metadata statement [MetadataStatement] for each relying

party. This key pair SHOULD be generated as part of the registration operation.

Conforming Servers MUST implement all authentication algorithms and key formats listed in [b-

Registry] unless they are explicitly marked as optional in [b-Registry].

Conforming Servers MUST implement all attestation types (TAG_ATTESTATION_*) listed in

document [b-UAFRegistry] unless they are explicitly marked as optional in [b-UAFRegistry].

Conforming authenticators MUST implement (at least) one attestation type defined in [b-

UAFRegistry], as well as one authentication algorithm and one key format listed in [b-Registry].

9.1.1 KeyRegistrationData

See [b-UAFAuthnrCommands], section "TAG_UAFV1_KRD".

72 Rec. ITU-T X.1277.2 (04/2023)

9.1.2 SignedData

See [b-UAFAuthnrCommands], section "TAG_UAFV1_SIGNED_DATA".

 Rec. ITU-T X.1277.2 (04/2023) 73

Annex A

UAF Android protected confirmation assertion format

(This annex forms an integral part of this Recommendation.)

This annex defines the assertion format "APCV1CBOR" in order to use Android protected

confirmation for UAF transaction confirmation.

A.1 Data structures for APCV1CBOR

A.1.1 Registration assertion

The registration assertion for the assertion format "APCV1CBOR" contains an object as specified in

section 5.2.1 in [b-UAFAuthnrCommands], with the following specifics:

1. Only Surrogate Basic Attestation is supported. The extension

"fido.uaf.android.key_attestation" [b-UAFRegistry] MUST be present.

2. The signature field (TAG_SIGNATURE) SHALL have zero bytes length, since the key

cannot be used to create a self-signature.

A.2 Authentication assertion

The authentication assertion is a TLV structure containing a CBOR encoded to-be-signed object:

 TLV

Structure
Description

1 UINT16 Tag TAG_APCV1CBOR_AUTH_ASSERTION

1.1
UINT16

Length
Length of the structure.

1.2 UINT16 Tag TAG_APCV1CBOR_SIGNED_DATA

1.2.1
UINT16

Length
Length of the structure.

1.2.2 UINT8 tbsData The serialized Android Protected Confirmation CBOR object.

1.3 UINT16 Tag TAG_AAID

1.3.1
UINT16

Length
Length of AAID

1.3.2
UINT8[]

AAID
Authenticator Attestation ID

1.4 UINT16 Tag TAG_KEYID

1.4.1
UINT16

Length
Length of KeyID

74 Rec. ITU-T X.1277.2 (04/2023)

 TLV

Structure
Description

1.4.2
UINT8[]

KeyID
(binary value of) KeyID

1.5 UINT16 Tag TAG_SIGNATURE

1.5.1
UINT16

Length
Length of Signature

1.5.2
UINT8[]

Signature

Signature calculated using UAuth–priv over tbsData – not including any TAGs

nor the KeyID and AAID.

NOTE – Only the data in tbsData is included in the signature computation. All other fields are essentially
unauthenticated and are treated as 'hints' only.

A.3 Processing rules

A.3.1 Registration response processing rules for ASM

Refer to [b-UAFAuthnrCommands] document for more information about the TAGs and structure

mentioned in this paragraph.

1. Locate authenticator using authenticatorIndex. If the authenticator cannot be located, then fail

with UAF_ASM_STATUS_AUTHENTICATOR_DISCONNECTED.

2. If a user is already enrolled with this authenticator (such as biometric enrollment, PIN setup,

etc. for example) then the ASM MUST request that the authenticator verifies the user.

NOTE 1 – If the authenticator supports UserVerificationToken (see [b-UAFAuthnrCommands]), then the

ASM must obtain this token in order to later include it with the Register command.

If the user is locked out (e.g., too many failed attempts to get verified) and the authenticator

cannot automatically trigger unblocking, return UAF_ASM_STAtUS_USER_LOCKOUT.

o If verification fails, return UAF_ASM_STATUS_ACCESS_DENIED

3. If the user is not enrolled with the authenticator, then take the user through the enrollment

process.

o If neither the ASM nor the Authenticator can trigger the enrollment process, return

UAF_ASM_STATUS_UsER_NOT_ENROLLED.

o If enrollment fails, return UAF_ASM_STATUS_ACCESS_DENIED

4. Hash the provided RegisterIn.finalChallenge using the authenticator-specific hash function

(FinalChallengeHash)

An authenticator's preferred hash function information MUST meet the algorithm defined in

the AuthenticatorInfo.authenticationAlgorithm field.

5. Generate a key pair with apropriate protection settings and mark it for use with Android

Protected Confirmation, see https://developer.android.com/training/articles/security-android-

protected-confirmation.

6. Create a TAG_AUTHENTICATOR_ASSERTION structure containing a

TAG_UAFV1_REG_ASSERTION object with the following specifics:

o set signature of Surrogate Basic Attestation to 0 bytes length

https://developer.android.com/training/articles/security-android-protected-confirmation
https://developer.android.com/training/articles/security-android-protected-confirmation

 Rec. ITU-T X.1277.2 (04/2023) 75

o add the Android Hardware Key Attestation extension

7. If the authenticator is a bound authenticator

o Store CallerID (see [b-UAFASM]), AppID, TAG_KEYHANDLE, TAG_KEYID and

CurrentTimestamp in the ASM's database.

NOTE 2 – What data an ASM will store at this stage depends on underlying authenticator's architecture. For

example some authenticators might store AppID, KeyHandle, KeyID inside their own secure storage. In this
case ASM does not have to store these data in its database.

8. Create a RegisterOut object

o Set RegisterOut.assertionScheme according to "APCV1CBOR"

o Encode the content of TAG_AUTHENTICATOR_ASSERTION (i.e.,

TAG_UAFV1_REG_ASSERTION) in base64url format and set as

RegisterOut.assertion as described in section "Data Structures for APCV1CBOR".

o Return RegisterOut object

A.3.2 Registration response processing rules for server

Instead of skipping the assertion as described in step 6.9, follow these rules:

1. if a.assertionScheme == "APCV1CBOR" AND

a.assertion.TAG_UAFV1_REG_ASSERTION contains TAG_UAFV1_KRD as first

element:

1. Obtain Metadata(AAID).AttestationType for the AAID and make sure that

a.assertion.TAG_UAFV1_REG_ASSERTION contains the most preferred

attestation tag specified in field MatchCriteria.attestationTypes in

RegistrationRequest.policy (if this field is present).

▪ If a.assertion.TAG_UAFV1_REG_ASSERTION does not contain the pre–

erred attestation – it is RECOMMENDED to skip this assertion and continue

with next one

2. Make sure that

a.assertion.TAG_UAFV1_REG_ASSERTION.TAG_UAFV1_KRD.FinalChallenge

Hash == FCHash

▪ I– comparison fails – continue with next assertion

3. Obtain Metadata(AAID).AuthenticatorVersion for the AAID and make sure that it is

lower or equal to

a.assertion.TAG_UAFV1_REG_ASSERTION.TAG_UAFV1_KRD.AuthenticatorV

ersion.

▪ If Metadata(AAID).AuthenticatorVersion is higher (i.e., the authenticator

firmware is outdated), it is RECOMMENDED to assume increased risk. See

sections "StatusReport dictionary" and "Metadata TOC object Processing

Rules" in [b-MetadataService] for more details on this.

4. Check whether

a.assertion.TAG_UAFV1_REG_ASSERTION.TAG_UAFV1_KRD.RegCounter is

0 since it is not supported in this assertion scheme.

▪ If

a.assertion.TAG_UAFV1_REG_ASSERTION.TAG_UAFV1_KRD.RegCou

nter is non-zero, this assertion might be skipped, and processing will continue

with the next one

76 Rec. ITU-T X.1277.2 (04/2023)

5. Make sure a.assertion.TAG_UAFV1_REG_ASSERTION contains an object of type

ATTESTATION_BASIC_SURROGATE

▪ There is no real attestation for the AAID, so we just assume the AAID is the real one.

▪ If entry AttestationRootCertificates for the AAID in the metadata is not

empty – continue with next assertion (as the AAID obviously is expecting a

different attestation method).

▪ Verify that extension "fido.uaf.android.key_attestation" is present and check

whether it is positively verified according to its server processing rules as

specified [b-UAFRegistry].

▪ If verification fails – continue with next assertion

▪ Verify that the attestation statement included in that extension includes the flag

TRUSTED_CONFIRMATION_REQUIRED indicating that the key will be

restricted to sign valid transaction confirmation assertions (see

https://developer.android.com/training/articles/security-key-attestation and

https://developer.android.com/training/articles/security-android-protected-

confirmation).

▪ If verification fails – continue with next assertion

▪ Mark assertion as positively verified

6. Extract

a.assertion.TAG_UAFV1_REG_ASSERTION.TAG_UAFV1_KRD.PublicKey into

PublicKey,

a.assertion.TAG_UAFV1_REG_ASSERTION.TAG_UAFV1_KRD.KeyID into

KeyID,

a.assertion.TAG_UAFV1_REG_ASSERTION.TAG_UAFV1_KRD.SignCounter

into SignCounter,

a.assertion.TAG_UAFV1_REG_ASSERTION.TAG_UAFV1_KRD.TAG_ASSERT

ION_INFO.authenticatorVersion into AuthenticatorVersion,

a.assertion.TAG_UAFV1_REG_ASSERTION.TAG_UAFV1_KRD.TAG_AAID

into AAID.

A.3.3 Authentication response generation rules for ASM

See [b-UAFASM] for details of the ASM API.

1. if this is a bound authenticator, verify callerid against the one stored at registration time and

return UAF_ASM_STATUS_ACCESS_DENIED if it does not match.

2. The ASM MUST request the authenticator to verify the user.

3. Hash the provided AuthenticateIn.finalChallenge using the preferred authenticator-specific

hash function (FinalChallengeHash).

The authenticator's preferred hash function information MUST meet the algorithm defined in

the AuthenticatorInfo.authenticationAlgorithm field.

4. If AuthenticateIn.keyIDs is not empty,

1. If this is a bound authenticator, then look up ASM's database with

AuthenticateIn.appID and AuthenticateIn.keyIDs and obtain the KeyHandles

associated with it.

▪ Return UAF_ASM_STATUS_KEY_DISAPPEARED_PERMANENTLY if the

related key disappeared permanently from the authenticator.

https://developer.android.com/training/articles/security-key-attestation
https://developer.android.com/training/articles/security-android-protected-confirmation
https://developer.android.com/training/articles/security-android-protected-confirmation

 Rec. ITU-T X.1277.2 (04/2023) 77

▪ Return UAF_ASM_STATUS_ACCESS_DENIED if no entry has been found.

2. If this is a roaming authenticator, then treat AuthenticateIn.keyIDs as KeyHandles

5. If AuthenticateIn.keyIDs is empty, lookup all KeyHandles matching this request.

6. If multiple KeyHandles exist that match this request, show the related distinct usernames and

ask the user to choose a single username. Remember the KeyHandle related to this key.

7. Call ConfirmationPrompt.Builder and pass the transactionText as parameter to method

setPromptText see also https://developer.android.com/training/articles/security-android-

protected-confirmation.

8. Pass the FinalChallengeHash as parameter to method setExtraData, see also

https://developer.android.com/training/articles/security-android-protected-confirmation

9. Call build method of the ConfirmationPrompt and then call method presentPrompt providing

an appropriate callback that will sign the dataThatWasConfirmed with the key identified by

the KeyHandle remembered earlier.

10. Create TAG_APCV1CBOR_AUTH_ASSERTION structure.

1. Copy the serialized dataThatWasConfirmed CBOR object into field tbsData.

2. Copy AAID and KeyID into the respective TLV fields.

3. Copy signature into the TAG_SIGNATURE field.

11. Create the AuthenticateOut object

1. Set AuthenticateOut.assertionScheme to "APCV1CBOR"

2. Encode the content of TAG_APCV1CBOR_AUTH_ASSERTION in base64url

format and set as AuthenticateOut.assertion

3. Return the AuthenticateOut object

The authenticator metadata statement MUST truly indicate the type of transaction confirmation

display implementation. Typically, the "Transaction Confirmation Display" flag will be set to

TRANSACTION_CONFIRMATION_DISPLAY_ANY (bitwise) or

TRANSACTION_CONFIRMATION_DISPLAY_PRIVILEGED_SOFTWARE.

A.3.4 Authentication response processing rules for server

Instead of skipping the assertion according to step 6.6 in section 3.5.7.5 [b-UAFProtocol], follow

these rules:

NOTE – The extraData in tbsData.dataThatWasConfirmed is the finalChallengeHash as computed by the
ASM. The promptText in tbsData.dataThatWasConfirmed is the AuthenticateIn.Transaction.content value.
AuthenticateIn.Transaction.contentType is "text/plain".

1. if a.assertionScheme == "APCV1CBOR" AND a.assertion startes with a valid CBOR

structure as defined in clause A.2, then

1. set tbsData to the CBOR object contained in a.assertion.tbsData.

2. Verify the AAID against the AAID stored in the user's record at time of Registration.

▪ If comparison fails – continue with next assertion

3. Locate UAuth.pub associated with (a.assertion.AAID, a.assertion.KeyID) in the

user's record.

▪ If such record does not exist – continue with next assertion

4. Locate authenticator specific authentication algorithms from authenticator metadata

(field AuthenticationAlgs)

https://developer.android.com/training/articles/security-android-protected-confirmation
https://developer.android.com/training/articles/security-android-protected-confirmation
https://developer.android.com/training/articles/security-android-protected-confirmation

78 Rec. ITU-T X.1277.2 (04/2023)

5. If fcp is of type FinalChallengeParams, then hash

AuthenticationResponse.FinalChallengeParams using the hashing algorithm suitable

for this authenticator type. Look up the hash algorithm in authenticator Metadata,

field AuthenticationAlgs. It is the hash algorithm associated with the first entry

related to a constant with prefix ALG_SIGN.

▪ FCHash = hash(AuthenticationResponse.FinalChallengeParams)

6. If fcp is of type ClientData, then hash AuthenticationResponse.fcParams using

hashing algorithm specified in fcp.hashAlg.

▪ FCHash = hash(AuthenticationResponse.fcParams)

7. Make sure that tbsData.dataThatWasConfirmed.extraData == FCHash

▪ If comparison fails – continue with next assertion

8. Make sure there is a transaction cached on relying party side in the list

cachedTransactions.

▪ If not – continue with next assertion

NOTE – The promtpText included in this AuthenticationResponse must match the transaction content

specified in the related AuthenticationRequest. As UAF does not mandate any specific Server API, the

transaction content could be cached by any relying party software component, e.g., the Server or the relying
party Web Application.

9. Make sure that tbsData.dataThatWasConfirmed.promptText is included in the list

cachedTransactions

▪ If it's not in the list – continue with next assertion

10. Use the UAuth.pub key found in step 1.2 and the appropriate authentication

algorithm to verify the signature a.assertion.Signature of the to-be-signed object

tbsData.

▪ If signature verification fails – continue with next assertion

A.4 Example for metadata statement

This example authenticator has the following characteristics:

• Authenticator implementing transaction confirmation display using TrustedUI (i.e., in TEE)

• Leveraging TEE backed key store and user verification

• Only fingerprint-based user verification is implemented – no alternative password

EXAMPLE 1: MetadataStatement for UAF Authenticator

{

 "description": "Sample UAF Authenticator supporting Android Protected Confirmation",

 "aaid": "1234#5679",

 "authenticatorVersion": 2,

 "upv": [

 { "major": 1, "minor": 2 }

],

 "assertionScheme": "APCV1CBOR",

 "authenticationAlgorithm": 1,

 Rec. ITU-T X.1277.2 (04/2023) 79

 "publicKeyAlgAndEncoding": 256,

 "attestationTypes": [15880],

 "userVerificationDetails": [

 [{

 "userVerification": 2,

 "baDesc": {

 "selfAttestedFAR": 0.00002,

 "maxRetries": 5,

 "blockSlowdown": 30,

 "maxTemplates": 5

 }

 }]

],

 "keyProtection": 6,

 "isKeyRestricted": true,

 "matcherProtection": 2,

 "cryptoStrength": 128,

 "operatingEnv": "TEEs based on ARM TrustZone HW",

 "attachmentHint": 1,

 "isSecondFactorOnly": false,

 "tcDisplay": 5,

 "tcDisplayContentType": "text/plain",

 "attestationRootCertificates": [],

 "supportedExtensions": [{

 "id": "fido.uaf.android.key_attestation",

 "data": "{ \"attestationRootCertificates\": [

\"MIICPTCCAeOgAwIBAgIJAOuexvU3Oy2wMAoGCCqGSM49BAMCMHsxIDAeBgNVB

AMM

F1NhbXBsZSBBdHRlc3RhdGlvbiBSb290MRYwFAYDVQQKDA1GSURPIEFsbGlhbmNl

MREwDwYDVQQLDAhVQUYgVFdHLDESMBAGA1UEBwwJUGFsbyBBbHRvMQswC

QYDVQQI

DAJDQTELMAkGA1UEBhMCVVMwHhcNMTQwNjE4MTMzMzMyWhcNNDExMTAzM

TMzMzMy

80 Rec. ITU-T X.1277.2 (04/2023)

WjB7MSAwHgYDVQQDDBdTYW1wbGUgQXR0ZXN0YXRpb24gUm9vdDEWMBQGA1

UECgwN

RklETyBBbGxpYW5jZTERMA8GA1UECwwIVUFGIFRXRywxEjAQBgNVBAcMCVBhb

G8g

QWx0bzELMAkGA1UECAwCQ0ExCzAJBgNVBAYTAlVTMFkwEwYHKoZIzj0CAQYIK

oZI

zj0DAQcDQgAEH8hv2D0HXa59/BmpQ7RZehL/FMGzFd1QBg9vAUpOZ3ajnuQ94PR7

aMzH33nUSBr8fHYDrqOBb58pxGqHJRyX/6NQME4wHQYDVR0OBBYEFPoHA3CLhxF

b

C0It7zE4w8hk5EJ/MB8GA1UdIwQYMBaAFPoHA3CLhxFbC0It7zE4w8hk5EJ/MAwG

A1UdEwQFMAMBAf8wCgYIKoZIzj0EAwIDSAAwRQIhAJ06QSXt9ihIbEKYKIjsPkri

 VdLIgtfsbDSu7ErJfzr4AiBqoYCZf0+zI55aQeAHjIzA9Xm63rruAxBZ9ps9z2XN

 lQ==\"] }",

 "fail_if_unknown": false

 }],

 "icon": "data:image/png;base64,

iVBORw0KGgoAAAANSUhEUgAAAE8AAAAvCAYAAACiwJfcAAAAAXNSR0IArs4c6

QAAAARnQU1BAACx

jwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAahSURBVGhD7Zr5bxRlGMf9Kz

TB8AM/YEhE2W7p

QZcWKKBclSpHATlELARE7kNECCA3FkWK0CKKSCFIsKBcgVCDWGNESdAYidwggg

JBiRiMhFc/4wy8

884zu9NdlnGTfZJP2n3nO++88933fveBBx+PqCzJkTUvBbLmpUDWvBTImpcCSZvXLCdX

9R05Sk19

bb5atf599fG+/erA541q47aP1LLVa9SIyVNUi8Ii8d5kGTsi30NFv7ai9n7QZPMwbdys2erU2X

Mq

Udy8+ZcaNmGimE8yXN3RUd3a18nF0fUlovZ+0CTzWpd2Vj+eOm1bEyy6Dx4i5pUMGWv

eo506q227

dtuWBIuffr6oWpV0FPNLhow1751Nm21LvPH3rVtWjfz66Lfql8tX7FRl9YFSXsmSseb9ceO

GbYk7

 Rec. ITU-T X.1277.2 (04/2023) 81

MNUcGPg8ZsbMe9rfQUaaV/JMX9sqdzDCSvp0kZHmTZg9x7bLHcMnThb16eJ+mVfQq8y

aUZQNG64i

XZ+0/kq6uOZFO0QtatdWKfXnRQ99Bj91R5OIFnk54jN0mkUiqlO3XDW+Ml+98mKB6tW

7rWpZcPc+

0zg4tLrYlUc86E6eGDjIMubVpcusearfgIYGRk6brhZVr/JcHzooL7550jedLExopWcApi2ZUq

hu

7JLvrVsQU81zkzOPeemMRYvVuQsX7PbiDQY5JvZonftK+1VY8H9utx530h0ob+jmRYqj6

ouaYvEe

nW/WlYjp8cwbMm682tPwqW1R4tj/2SH13IRJYl4moZvXpiSqDr7dXtQHxa/PK3/+BWsK1d

TgHu6V

8tQJ3bwFkwpFrUOQ50s1r3levm8zZcq17+BBaw7K8lEK5qzkYeark9A8p7P3GzDK+nd3DQ

ow+6UC

8SVN82iuv38im7NtaXtV1CVq6Rgw4pksmbdi3bu2De7YfaBBxcqfvqPrUjFQNTQ22lfdUVV

T68rT

JKF5DnSmUjgdqg4mSS9pmsfDJR3G6ToH0iW9aV7LWLHYXKllTDt0LTAtkYIaamp1QjV

v++uyGUxV

dJ0DNVXSm+b1qRxpl84ddfX1Lp1O/d69tsod0vs5hGre9xu8o+fpLR1cGhNTD6Z57C9KMW

XefJdO

Z94bb9oqd1ROnS7qITTzHimMqivbO3g0DdVyk3WQBhBztK35YKNdOnc8O3acS6fDZFgK

aXLsEJp5

rdrliBqp89cJcs/m7Tvs0rkjGfN4b0kPoZn3UJuIOrnZ22yP1fmvUx+O5gSqebV1m+zSuYNVh

q7T

WbDiLVvljplLlop6CLXP+2qtvGLIL/1vimISdMBgzSoFZyu6Tqd+jzxgsPaV9BCqee/NjYk6v

6lK

9cwiUc/STtf1HDpM3b592y7h3Thx5ozK69HLpYWuAwaqS5cv26q7ceb8efVYaReP3iFU8zj1

knSw

ZXHMmnCjY0Ogalo7UQfSCM3qQQr2H/XFP7ssXx45Yl91ByeCep4moZoH+1fG3xD4tT7x

8kwyj8nw

b9ev26V0B6d+7H4zKvudAH537FjqyzOHdJnHEuzmXq/WjxObvNMbv7nhywsX2aVsWtC8

+48aLeap

82 Rec. ITU-T X.1277.2 (04/2023)

E7p5wKZi0A2AQRV5nvR4E+uJc+b61kApqInxBgmd/4V5QP/mt18HDC7sRHftmeu5lmhV0

rn/ALX2

32bqd4BFnDx7Vi1cWS2uff0IbB47qexxmUj9QutYjupd3tYD6abWBBMrh+apNbOKrNF1+u

gCa4ri

XGfwMPPtViavhU3YMOAAnuUb/R07L0yOSeOadE88ApsXFGff30ynhlJgM51CU6vN9Ezg

npvHBFUy

iVraePiwJ53DF5ZTZnomENg85kNUd2oJi2Wpr4OmmkfN4x4zHfiVFc8Dv8NzuhNqOidilGv

A6DGu

eZwO78AAQn6ciEk6+rw5VcvjvqNDYPOoIUwaKShrxAuXLlkH4aYuGfMYDc10WF5Ta31

hPJOfcUhr

U/JlINi6c6elRYdBpo6++Yfjx61lGNfRm4MD5rJ1j3FoGHnjDSBNarYUgMLyMszKpb7tXpo

HfPs8

h3Wp1LzNfNk54XxC1wDGUmYzXYefh6z/cKtVm4EBxa9VQGDzYr3LrUMRjHEKkk7zaF

KYQA2hGQU1

z+85NFWpXDrkz3vx10GqxQ6BzeNboBk5n8k4nebRh+k1hWfxTF0D1EyWUs5nv+dgQqKa

xzuCdE0i

sHl02NQ8ah0mXr12La3m0f9wik9+wLNTMY/86MPo8yi31OfxmT6PWoqG9+DZukYna56m

SZt5WWSy

 5qVA1rwUyJqXAlnzkiai/gHSD7RkTyihogAAAABJRU5ErkJggg=="

}

 Rec. ITU-T X.1277.2 (04/2023) 83

Annex B

UAF web authentication assertion format

(This annex forms an integral part of this Recommendation.)

This annex defines the assertion format "WAV1CBOR" in order to use web authentication assertions

through the UAF protocol.

B.1 Data structures for WAV1CBOR

B.1.1 Registration assertion

The registration assertion for the assertion format "WAV1CBOR" is a TLV encoded object

containing the CBOR encoded authenticatorData, the name of the attestation format, and the

atestation statement itself.

 TLV

Structure
Description

1 UINT16 Tag TAG_WAV1CBOR_REG_ASSERTION

1.1
UINT16

Length
Length of the structure.

1.2 UINT16 Tag TAG_WAV1CBOR_REG_DATA

1.2.1
UINT16

Length
Length of the structure.

1.2.2 UINT8 tbsData
The binary authenticatorData structure as specified in section 6.1 in [W3C
WebAuthn] with non-empty attestedCredentialData field being present followed

by (i.e., binary concatenation) the clientDataHash.

1.3 UINT16 Tag TAG_ATTESTATION_FORMAT

1.3.1
UINT16

Length
Length of attestation format

1.3.2

UINT8[]
Attestation

Format

Authenticator attestation format, see field "fmt" in section sctn-attestation in

[W3C WebAuthn]

1.4 UINT16 Tag TAG_ATTESTATION_STATEMENT

1.4.1
UINT16

Length
Length of attestation statement

1.4.2
UINT8[]
Attestation

Statement

Authenticator attestation statement, see field "stmt" in section sctn-attestation in

[W3C WebAuthn]. This field contains the signature in sub-field "sig".

84 Rec. ITU-T X.1277.2 (04/2023)

B.1.2 Authentication assertion

The authentication assertion is a TLV structure containing the CBOR encoded authenticatorData

object, the authenticator model name (AAGUID), the key identifier and the signature of the

authenticatorData object.

 TLV

Structure
Description

1
UINT16

Tag
TAG_WAV1CBOR_AUTH_ASSERTION

1.1
UINT16

Length
Length of the structure.

1.2
UINT16

Tag
TAG_WAV1CBOR_SIGNED_DATA

1.2.1
UINT16

Length
Length of the structure.

1.2.2
UINT8

tbsData

As described in step 11 in section 6.3.3 in [W3C WebAuthn]: The binary
authenticatorData structure as specified in section 6.1 in [W3C WebAuthn] with

empty attestedCredentialData field being present followed by (i.e., binary

concatenation) the clientDataHash.

1.3
UINT16

Tag
TAG_AAGUID

1.3.1
UINT16

Length
Length of AAGUID

1.3.2
UINT8[]

AAGUID
Authenticator attestation GUID, see section 6.4.1 in [W3C WebAuthn]

1.4
UINT16

Tag
TAG_KEYID

1.4.1
UINT16

Length
Length of KeyID

1.4.2
UINT8[]

KeyID

(binary value of) Credential ID (see definition of CredentialID in [W3C

WebAuthn])

1.5
UINT16

Tag
TAG_SIGNATURE

1.5.1
UINT16

Length
Length of Signature

 Rec. ITU-T X.1277.2 (04/2023) 85

 TLV

Structure
Description

1.5.2
UINT8[]

Signature

Signature calculated using UAuth.priv over tbsData – not including any TAGs nor

the KeyID and AAGUID.

B.2 Processing rules

B.2.1 Registration response processing rules for ASM

See [b-UAFASM] for details of the ASM API.

Refer to [b-UAFAuthnrCommands] document for more information about the TAGs and structure

mentioned in this paragraph.

1. Locate authenticator using authenticatorIndex. If the authenticator cannot be located, then fail

with error code UAF_ASM_STATUS_AUTHENTICATOR_DISCONNECTED.

2. Connect to the authenticator and call authenticatorGetInfo [b-CTAP]. Remember whether the

authenticator supports residentKeys (rk), clientPin, User Presence (up), User Verification

(uv). Also remember whether the authenticator is a roaming authenticator (plat=false), or a

platform authenticator (plat=true). If the connection fails, then fail with error code

UAF_ASM_STATUS_AUTHENTICATOR_DISCONNECTED.

3. If clientPin is the requested user verification method (see UVM extension), but step 2

indicated that clientPin is not yet set (i.e., clientPin present but set to false), then ask user to

set (enroll) clientPin.

o If neither the ASM nor the Authenticator can trigger the enrollment process, return

UAF_ASM_STATUS_USER_NOT_ENROLLED.

o If enrollment fails, return UAF_ASM_STATUS_ACCESS_DENIED

4. Hash the provided ASMRequest.args.finalChallenge using the authenticator-specific hash

function and store the result in FinalChallengeHash.

An authenticator's preferred hash function information MUST meet the algorithm defined in

the AuthenticatorInfo.authenticationAlgorithm field.

5. for each extension included in ASMRequest.exts

o If the extension "fido.uaf.rk" is found, set parameter rk to the value of that extension

and continue with the next extension.

o If the extension "fido.uaf.ac" is found, set parameter ac to the value of that extension

and continue with the next extension.

o If the extension was not handled before, create a corresponding WebAuthn2 extension

(see [W3C WebAuthn]) extension in extensionsCBOR. If no corresponding

WebAuthn extension is specified, ignore this extension (if fail_if_unknown is false)

or return UAF_ASM_STATUS_ERROR (if fail_if_unknown is true).

6. Call authenticatorMakeCredential [b-CTAP] (either via CTAP or via a platform proprietary

API), send the required information and receive result containing the error code of that

operation.

 NOTE 1 – This interface has the following input parameters (see [b-CTAP]):

o clientDataHash (required, byte array).

o rp (required, PublicKeyCredentialRpEntity). Identity of the relying party.

86 Rec. ITU-T X.1277.2 (04/2023)

o user (required, PublicKeyCredentialUserEntity).

o pubKeyCredParams (required, CBOR array).

o excludeList (optional, sequence of PublicKeyCredentialDescriptors).

o extensions (optional, CBOR map). Parameters to influence authenticator operation.

o options (optional, sequence of authenticator options, i.e., parameters rk, uv, and up).

o pinAuth (optional, byte array).

o pinProtocol (optional, unsigned integer).

The output parameters are (see [b-CTAP]):

o authData (required, sequence of bytes). The authenticator data object.

o fmt (required, String). The attestation statement format identifier.

o attStmt (required, sequence of bytes). The attestation statement.

Use the following values for the respective parameters:

o Set rp.rpId to the ASMRequest.args.AppID

o Set user.Id to the fido.uaf.userid extension retrieved from ASMRequest.exts; set

user.displayName to ASMRequest.args.username. Fail if the fido.uaf.userid extension

is missing in ASMRequest.exts.

o Set clientDataHash to FinalChallengeHash

o Set pubKeyCredParams.type to "public-key" and pubKeyCredParams.alg to the

preferred algorithm, e.g., "ES256".

o Set excludeList to an empty list

o Set extensions to the CBOR map extensionsCBOR

o Set pinAuth and pinProtocol to the respective values supported by this ASM (to the

extent the underlying platform allows specifying these values).

o Set options to an empty object and add items as follows:

1. If extension "UVM" (userVerificationMethod, see [b-UAFRegistry]) is

present and uvm.userVerificationMethod includes one or more of the flags

USER_VERIFY_FINGERPRINT, USER_VERIFY_PASSCODE,

USER_VERIFY_VOICEPRINT, USER_VERIFY_FACEPRINT,

USER_VERIFY_LOCATION, USER_VERIFY_EYEPRINT,

USER_VERIFY_PATTERN, or USER_VERIFY_HANDPRINT set

options.userVerification to true and set options.userPresence to true.

2. If extension "UVM" (userVerificationMethod, see [b-UAFRegistry]) is

present and uvm.userVerificationMethod is equal to

USER_VERIFY_CLIENTPIN set options.userVerification to true and set

options.userPresence to false.

3. If extension "UVM" (userVerificationMethod, see [b-UAFRegistry]) is

present and uvm.userVerificationMethod is equal to

USER_VERIFY_PRESENCE set options.userVerification to false and set

options.userPresence to true.

4. If extension "UVM" (userVerificationMethod, see [b-UAFRegistry]) is

present and uvm.userVerificationMethod is eequal to USER_VERIFY_NONE

set options.userVerification to false and set options.userPresence to false.

 Rec. ITU-T X.1277.2 (04/2023) 87

 NOTE 2 – If the authenticator uses clientPin but the clientPin was not set (indicated by

CTAP2_ERR_PIN_NOT_SET), the ASM should ask the user for the clientPin and provide it to
the authenticator.

7. If result is not equal to CTAP2_OK and retry cannot fix the problem, then map the CTAP

error code to a UAF ASM error code using the table in clause B.4 and return the resulting

error code.

8. Create a TAG_WAV1CBOR_REG_ASSERTION structure:

o Copy result.AuthData concatenated with the finalChallengeHash into field

TAG_WAV1CBOR_SIGNED_DATA

o Copy result.fmt into field TAG_ATTESTATION_FORMAT

o Copy result.stmt into field TAG_ATTESTATION_STATEMENT

9. Create a RegisterOut object

o Set RegisterOut.assertionScheme to "WAV1CBOR"

o Encode the content of TAG_WAV1CBOR_REG_ASSERTION in base64url format

and set as RegisterOut.assertion.

10. set ASMResponse.responseData to RegisterOut.

11. set ASMResponse.statusCode to the correct status code corresponding to the result received

earlier.

12. set ASMResponse.exts to empty

13. Return ASMResponse object

B.2.2 Registration response processing rules for server

Instead of skipping the assertion as described in step 6.8 in section 3.4.6.5 of [b-UAFProtocol], follow

these rules:

1. if a.assertionScheme == "WAV1CBOR" AND

a.assertion.TAG_WAV1CBOR_REG_ASSERTION contains

TAG_WAV1CBOR_SIGNED_DATA as first element:

1. extract authenticatorData from TAG_WAV1CBOR_SIGNED_DATA.tbsData

2. read claimedAAGUID from authenticatorData.attestedCredentialData.AAGUID.

3. Verify that a.assertionScheme matches Metadata(claimedAAGUID).assertionScheme

▪ If it does not match – continue with next assertion

4. Verify that the claimedAAGUID indeed matches the policy specified in the

registration request.

 NOTE 1 – Depending on the policy (e.g., in the case of AND combinations), it might be required to

evaluate other assertions included in this RegistrationResponse in order to determine whether this

AAGUID matches the policy.

▪ If it does not match the policy – continue with next assertion

5. Locate authenticator-specific authentication algorithms from the authenticator

metadata [MetadataStatement] identified by claimedAAGUID (field

authenticationAlgs).

6. If fcp is of type FinalChallengeParams [b-UAFProtocol], then hash

RegistrationResponse.fcParams using hashing algorithm suitable for this authenticator

type. Look up the hash algorithm in authenticator metadata, field AuthenticationAlgs.

88 Rec. ITU-T X.1277.2 (04/2023)

It is the hash algorithm associated with the first entry related to a constant with prefix

ALG_SIGN.

▪ FCHash = hash(RegistrationResponse.fcParams)

7. If fcp is of type CollectedClientData [b-UAFProtocol], then hash

RegistrationResponse.fcParams using hashing algorithm specified in fcp.hashAlg.

▪ FCHash = hash(RegistrationResponse.fcParams)

8. Obtain Metadata(claimedAAGUID).AttestationType for the claimedAAGUID and

make sure that a.assertion.TAG_WAV1CBOR_REG_ASSERTION contains the most

preferred attestation tag specified in field MatchCriteria.attestationTypes in

RegistrationRequest.policy (if this field is present).

▪ If a.assertion.TAG_WAV1CBOR_REG_ASSERTION does not contain the

preferred attestation – it is RECOMMENDED to skip this assertion and

continue with next one

9. set tbsData to the data contained in a.assertion.tbsData.

10. set authenticatorData to the CBOR object tbsData starts with. Use the "length" field

of the CBOR object to determine its end.

11. set clientDataHash to the remaining bytes of the tbsData (i.e., the bytes following the

CBOR object).

12. Make sure that clientDataHash == FCHash

▪ If comparison fails – continue with next assertion

13. Extract the up and uv bits from authenticatorData. Verify whether these bits match the

UVM extension sent in the request. Fail if the verification result is not acceptable.

 NOTE 2 –

▪ up=false and uv=false means silent authentication (USER_VERIFY_NONE)

▪ up=true and uv=false means user presence check only

(USER_VERIFY_PRESENCE)

▪ up=false and uv=true means user verification that does not provide user presence

check, e.g., client Pin or some other user verification method not necessarily

implemented fully inside the authenticator boundary

(USER_VERIFY_CLIENTPIN)

▪ up=true and uv=true means user verification using a user verification method

implemented inside the authenticator boundary (e.g.,

USER_VERIFY_FINGERPRINT, ...) or client Pin plus user presence check

(USER_VERIFY_CLIENTPIN) AND USER_VERIFY_PRESENCE –

depending on the authenticator capabilities as declared in the related Metadata

Statement.

14. If a UVM extension is included in the response, extract this value and compare it verify

whether it matches the extension from the request. Fail if the verification result is not

acceptable.

15. If

a.assertion.TAG_WAV1CBOR_REG_ASSERTION.TAG_ATTESTATION_STAT

EMENT contains ATTESTATION_BASIC_FULL tag

▪ If entry AttestationRootCertificates for the claimedAAGUID in the metadata

[MetadataStatement] contains at least one element:

 Rec. ITU-T X.1277.2 (04/2023) 89

1. Obtain contents of all TAG_ATTESTATION_CERT tags from

a.assertion.TAG_WAV1CBOR_REG_ASSERTION.ATTESTATIO

N_BASIC_FULL object. The occurrences are ordered (see [b-

UAFAuthnrCommands]) and represent the attestation certificate

followed by the related certificate chain.

2. Obtain all entries of AttestationRootCertificates for the

claimedAAGUID in authenticator Metadata, field

AttestationRootCertificates.

3. Verify the attestation certificate and the entire certificate chain up to

the Attestation Root Certificate using Certificate Path Validation as

specified in [IETF RFC 5280]

▪ If verification fails – continue with next assertion

4. Verify

a.assertion.TAG_WAV1CBOR_REG_ASSERTION.TAG_ATTEST

ATION_STATEMENT.sig using the attestation certificate (obtained

before).

▪ If verification fails – continue with next assertion

▪ If Metadata(claimedAAGUID).AttestationRootCertificates for this

claimedAAGUID is empty – continue with next assertion

▪ Mark assertion as positively verified

16. if

a.assertion.TAG_WAV1CBOR_REG_ASSERTION.TAG_ATESTATION_STATE

MENT contains an object of type ATTESTATION_BASIC_SURROGATE

▪ There is no real attestation for the AAGUID, so we just assume the

claimedAAGUID is the real one.

▪ If entry AttestationRootCertificates for the claimedAAGUID in the metadata is

not empty – continue with next assertion (as the AAGUID obviously is

expecting a different attestation method).

▪ Verify that extension "fido.uaf.android.key_attestation" is present and check

whether it is positively verified according to its server processing rules as

specified [b-UAFRegistry].

1. If verification fails – continue with next assertion

▪ Mark assertion as positively verified

17. If a.assertion.TAG_WAV1CBOR_REG_ASSERTION contains an object of type

ATTESTATION_ECDAA

▪ If entry ecdaaTrustAnchors for the claimedAAGUID in the metadata

[MetadataStatement] contains at least one element:

1. For each of the ecdaaTrustAnchors entries, perform the ECDAA Verify

operation as specified in [EcdaaAlgorithm].

▪ If verification fails – continue with next ecdaaTrustAnchors

entry

2. If no ECDAA Verify operation succeeded – continue with next

assertion

90 Rec. ITU-T X.1277.2 (04/2023)

▪ Mark assertion as positively verified and the authenticator indeed is of model as

indicated by the claimedAAGUID.

▪ If Metadata(claimedAAID).ecdaaTrustAnchors for this claimedAAGUID is

empty – continue with next assertion

▪ Mark assertion as positively verified and the authenticator indeed is of model as

indicated by the claimedAAGUID.

18. If a.assertion.TAG_UAFV1_REG_ASSERTION contains another

TAG_ATTESTATION tag – verify the attestation by following appropriate

processing rules applicable to that attestation. Currently this Recommendation defines

the processing rules for Basic Attestation and direct anonymous attestation (ECDAA).

19. Extract authenticatorData.attestedCredentialData.credentialPubKey into PublicKey,

authenticatorData.attestedCredentialData.credentialID into KeyID,

authenticatorData.counter into SignCounter,

authenticatorData.attestedCredentialData.AAGUID into AAGUID.

20. Set AuthenticatorVersion to 0 (as it is not included in the message).

B.2.3 Authentication response generation rules for ASM

See [b-UAFASM] for details of the ASM API.

1. Locate the authenticator using authenticatorIndex. If the authenticator cannot be located, then

fail with UAF_ASM_STATUS_AUTHENTICATOR_DISCONNECTED.

2. if this is a bound authenticator, verify callerid against the one stored at registration time and

return UAF_ASM_STATUS_ACCESS_DENIED if it does not match.

3. Hash the provided AuthenticateIn.finalChallenge using the preferred authenticator-specific

hash function (FinalChallengeHash).

The authenticator's preferred hash function information MUST meet the algorithm defined in

the AuthenticatorInfo.authenticationAlgorithm field.

4. Create an empty list KeyIDRecords of KeyID, related KeyHandle and related username

5. If AuthenticateIn.keyIDs is not empty,

1. If this is a bound authenticator, then look up ASM's database with

AuthenticateIn.appID and AuthenticateIn.keyIDs and matching entry into

KeyIDRecords

▪ Return UAF_ASM_STATUS_KEY_DISAPPEARED_PERMANENTLY if the

related key disappeared permanently from the authenticator.

▪ Return UAF_ASM_STATUS_ACCESS_DENIED if no entry has been found.

2. If this is a roaming authenticator, then for each entry in AuthenticateIn.keyIDs add an

entry in KeyIDRecords with entry.KeyID and entry.KeyHandle set to the respective

keyID in AuthenticateIn.keyIDs. Set entry.userName to empty.

6. If AuthenticateIn.keyIDs is empty, lookup all KeyHandles matching this request and add an

entry in KeyIDRecords with entry.KeyID and entry.KeyHandle set to the respective

KeyHandles. Set entry.userName the related userName.

7. If KeyIDRecords containes multiple entries, show the related distinct usernames and ask the

user to choose a single username. Remember the KeyHandle and the related KeyID to this

key.

 Rec. ITU-T X.1277.2 (04/2023) 91

8. If AuthenticateIn.transaction is NOT empty then select the entry n with the content type best

matching the authenticator capabilities.

1. if AuthenticateIn.transaction[n].contentType == "text/plain"

then create a corresponding txAuthSimple extension in extensionsCBOR.

2. if AuthenticateIn.transaction[n].contentType != "text/plain"

then create a corresponding txAuthGeneric extension in extensionsCBOR.

9. for each extension included in ASMRequest.exts

create a corresponding WebAuthn extension (see [W3C WebAuthn]) extension in

extensionsCBOR. If no corrsponding WebAuthn extension is specified, ignore this extension.

10. Call authenticatorGetAssertion (either via CTAP or via a platform proprietary API), send the

require information and receive the expected result containing the error code of that operation.

 NOTE 1 – authenticatorGetAssertion has the following input parameters (see [b-CTAP]):

1. rpId (required, String). Identity of the relying party.

2. clientDataHash (required, byte array).

3. allowList (optional, sequence of PublicKeyCredentialDescriptors).

4. extensions (optional, CBOR map).

5. options (optional, sequence of authenticator options, i.e., up for user presence and uv

for user verification).

6. pinAuth (optional, byte array).

7. pinProtocol (optional, unsigned integer).

The output parameters are (see [b-CTAP]):

8. credential (optional, PublicKeyCredentialDescriptor).

9. authData (required, byte array).

10. signature (required, byte array).

11. user (required, PublicKeyCredentialUserEntity).

12. numberOfCredentials (optional, integer).

Use the following values for the respective parameters:

13. Set rpId to the ASMRequest.args.AppID

14. Set clientDataHash to FinalChallengeHash

15. Set allowList to the KeyHandle remembered earlier

16. Set extensions to the CBOR map extensionsCBOR

17. Set pinAuth and pinProtocol to the respective values supported by this ASM (to the

extent the underlying platform allows specifying these values).

18. Set options to an empty object and add items as follows

▪ If extension "UVM" (userVerificationMethod, see [b-UAFRegistry]) is present

and uvm.userVerificationMethod includes one or more of the flags

USER_VERIFY_FINGERPRINT, USER_VERIFY_PASSCODE,

USER_VERIFY_VOICEPRINT, USER_VERIFY_FACEPRINT,

USER_VERIFY_LOCATION, USER_VERIFY_EYEPRINT,

92 Rec. ITU-T X.1277.2 (04/2023)

USER_VERIFY_PATTERN, or USER_VERIFY_HANDPRINT set

options.uv to true and set options.up to true.

▪ If extension "UVM" (userVerificationMethod, see [b-UAFRegistry]) is present

and uvm.userVerificationMethod is equal to USER_VERIFY_CLIENTPIN

set options.uv to true and set options.up to false. Remember to provide the

clientPIN to the authenticator.

▪ If extension "UVM" (userVerificationMethod, see [b-UAFRegistry]) is present

and uvm.userVerificationMethod is equal to USER_VERIFY_PRESENCE set

options.uv to false and set options.up to true.

▪ If extension "UVM" (userVerificationMethod, see [b-UAFRegistry]) is present

and uvm.userVerificationMethod is equal to USER_VERIFY_NONE set

options.uv to false and set options.up to false.

 NOTE 2 – If the authenticator uses clientPin but the clientPin was not set (indicated by

CTAP2_ERR_PIN_NOT_SET), the ASM should ask the user for the clientPin and provide it to
the authenticator.

 If result is not equal to CTAP2_OK and retry cannot fix the problem, then map the CTAP

error code to a UAF ASM error code using the table in clause B.4 and return the resulting error code.

 If the numberOfCredentials in the response is > 1, then follow the rules in section "Client

Logic" [b-CTAP] to receive and process the remaining (numberOfCredentials-1) responses (see

authenticatorGetNextAssertion in [b-CTAP]).

 Create TAG_WAV1CBOR_AUTH_ASSERTION structure.

0. Copy AAGUID (if known) into the respective TLV fields. Otherwise set the field to

an empty value (zero length).

NOTE 3 – In the case of a platform authenticator, the AAGUID value can be

remembered at registration time. In the case of a roaming authenticator, it might be

possible to call authenticatorGetInfo [b-CTAP] which provides the AAGUID in the
response.

1. Copy the remembered KeyID into the respective TLV field.

2. Copy result.authData into the value of the TAG_WAV1CBOR_SIGNED_DATA

field.

3. Copy result.signature into the value of the TAG_SIGNATURE field.

 Create the AuthenticateOut object

0. Set AuthenticateOut.assertionScheme to "WAV1CBOR"

1. Encode the content of TAG_WAV1CBOR_AUTH_ASSERTION in base64url format

and set as AuthenticateOut.assertion

 set ASMResponse.responseData to AuthenticateOut object.

 set ASMResponse.statusCode to the correct status code corresponding to the result received

earlier.

 set ASMResponse.exts to empty

 Return ASMResponse object

B.2.4 Authentication response processing rules for server

Instead of skipping the assertion according to step 6.5 in section 3.5.7.5 of [b-UAFProtocol], follow

these rules:

 Rec. ITU-T X.1277.2 (04/2023) 93

1. if a.assertionScheme == "WAV1CBOR" AND a.assertion starts with a valid structure as

defined in clause A.2 then

1. set tbsData to the data contained in a.assertion.tbsData.

2. set authenticatorData to the CBOR object tbsData starts with. Use the "length" field

of the CBOR object to determine its end.

3. set clientDataHash to the remaining bytes of the tbsData (i.e., the bytes following the

CBOR object).

4. read claimedAAGUID from a.assertion.AAGUID (note that it might be empty).

5. read claimedKeyID from a.assertion.KeyID.

6. Locate UAuth.pub associated with (claimedAAGUID, claimedKeyID) in the user's

record. If claimedAAGUID is empty, search for a matching claimedKeyID.

▪ If such record does not exist – continue with next assertion

▪ If multiple records match the search criteria – use the first one

7. if claimedAAGUID is empty, set it to the AAGUID stored along with UAuth.pub

8. Verify that a.assertionScheme matches Metadata(claimedAAGUID).assertionScheme

▪ If it does not match – continue with next assertion

9. Verify whether the claimedAAGUID indeed matches the policy of the Authentication

Request.

▪ If it does not meet the policy – continue with next assertion

10. Check the Signature Counter authenticatorData.SignCounter and make sure it is either

not supported by the authenticator (i.e., the value provided and the value stored in the

user's record are both 0 or the value isKeyRestricted is set to 'false' in the related

Metadata Statement) or it has been incremented (compared to the value stored in the

user's record)

▪ If it is greater than 0, but didn't increment – continue with next assertion (as this

is a cloned authenticator or a cloned authenticator has been used previously).

11. Locate authenticator specific authentication algorithms from authenticator metadata

(field AuthenticationAlgs)

12. If fcp is of type FinalChallengeParams, then hash

AuthenticationResponse.FinalChallengeParams using the hashing algorithm suitable

for this authenticator type. Look up the hash algorithm in authenticator Metadata, field

AuthenticationAlgs. It is the hash algorithm associated with the first entry related to a

constant with prefix ALG_SIGN.

▪ FCHash = hash(AuthenticationResponse.FinalChallengeParams)

13. If fcp is of type CollectedClientData [b-UAFProtocol], then hash

AuthenticationResponse.fcParams using hashing algorithm specified in fcp.hashAlg.

▪ FCHash = hash(AuthenticationResponse.fcParams)

14. Make sure that clientDataHash == FCHash

▪ If comparison fails – continue with next assertion

15. Extract the up and uv bits from authenticatorData. Verify whether these bits match the

UVM extension sent in the request. Fail if the verification result is not acceptable.

 NOTE 1 –

94 Rec. ITU-T X.1277.2 (04/2023)

▪ up=false and uv=false means silent authentication (USER_VERIFY_NONE)

▪ up=true and uv=false means user presence check only

(USER_VERIFY_PRESENCE)

▪ up=false and uv=true means user verification that does not provide user

presence, e.g., client Pin or some other user verification method not necessarily

implemented fully inside the authenticator boundary

(USER_VERIFY_CLIENTPIN)

▪ up=true and uv=true means user verification using a user verification method

implemented inside the authenticator boundary (e.g.,

USER_VERIFY_FINGERPRINT, ...) or client Pin plus user presence check

(USER_VERIFY_CLIENTPIN) AND USER_VERIFY_PRESENCE –

depending on the authenticator capabilities as declared in the related Metadata

Statement.

16. If a UVM extension is included in the response, extract this value and compare it verify

whether it matches the extension from the request. Fail if the verification result is not

acceptable.

17. If authenticatorData contains "txAuthSimple" (see section 10.2 of [W3C WebAuthn])

or "txAuthGeneric" (see section 10.3 of [W3C WebAuthn]) extension(s),

 NOTE 2 – The transaction/transaction hash included in this AuthenticationResponse must match

the transaction content specified in the related AuthenticationRequest. As does not mandate any

specific Server API, the transaction content could be cached by any relying party software component,
e.g., the Server or the relying party Web Application.

▪ Make sure there is a transaction cached on relying party side.

▪ If not – continue with next assertion

▪ Go over all cached forms of the transaction content (potentially multiple cached

PNGs for the same transaction) and calculate their hashes using hashing

algorithm suitable for this authenticator (same hash algorithm as used for

FinalChallenge).

▪ For each cachedTransaction add hash(cachedTransaction) into

cachedTransactionHashList

▪ Make sure that the transaction ("txAuthSimple") or the transaction hash

("txAuthGeneric") included in the extension is in cachedTransactionHashList

▪ If it's not in the list – continue with next assertion

18. Use the UAuth.pub key found in step 1.9 and the appropriate authentication algorithm

to verify the signature a.assertion.Signature of the to-be-signed object tbsData.

▪ If signature verification fails – continue with next assertion

▪ Update SignCounter in user's record with authenticatorData.SignCounter.

 NOTE 3 – The values of claimedAAGUID and claimedKeyID are now confirmed since the public
key we looked up using those values was the correct one.

B.3 Mapping CTAP2 error codes to ASM error codes

In many cases the status code returned via [b-CTAP] needs to be processed and handled by the ASM.

If the communication to the authenticator via [b-CTAP] finally failed with an error, the following

error code mapping rules apply:

 Rec. ITU-T X.1277.2 (04/2023) 95

CTAP2

Code
CTAP2 Name ASM Error Name

0x00 CTAP1_ERR_SUCCESS, CTAP2_OK UAF_ASM_STATUS_OK

0x01 CTAP1_ERR_INVALID_COMMAND UAF_ASM_STATUS_ERROR

0x02 CTAP1_ERR_INVALID_PARAMETER UAF_ASM_STATUS_ERROR

0x03 CTAP1_ERR_INVALID_LENGTH UAF_ASM_STATUS_ERROR

0x04 CTAP1_ERR_INVALID_SEQ UAF_ASM_STATUS_ERROR

0x05 CTAP1_ERR_TIMEOUT UAF_ASM_STATUS_USER_NOT_RESPONSIVE

0x06 CTAP1_ERR_CHANNEL_BUSY UAF_ASM_STATUS_ERROR

0x0A CTAP1_ERR_LOCK_REQUIRED UAF_ASM_STATUS_ERROR

0x0B CTAP1_ERR_INVALID_CHANNEL UAF_ASM_STATUS_ERROR

0x11
CTAP2_ERR_CBOR_UNEXPECTED_TYP

E
UAF_ASM_STATUS_ERROR

0x12 CTAP2_ERR_INVALID_CBOR UAF_ASM_STATUS_ERROR

0x14 CTAP2_ERR_MISSING_PARAMETER UAF_ASM_STATUS_ERROR

0x15 CTAP2_ERR_LIMIT_EXCEEDED UAF_ASM_STATUS_ERROR

0x16
CTAP2_ERR_UNSUPPORTED_EXTENSI

ON
UAF_ASM_STATUS_ERROR

0x19 CTAP2_ERR_CREDENTIAL_EXCLUDED UAF_ASM_STATUS_ERROR

0x21 CTAP2_ERR_PROCESSING UAF_ASM_STATUS_ERROR

0x22 CTAP2_ERR_INVALID_CREDENTIAL UAF_ASM_STATUS_ERROR

0x23 CTAP2_ERR_USER_ACTION_PENDING UAF_ASM_STATUS_USER_NOT_RESPONSIVE

0x24 CTAP2_ERR_OPERATION_PENDING UAF_ASM_STATUS_ERROR

0x25 CTAP2_ERR_NO_OPERATIONS UAF_ASM_STATUS_ERROR

0x26
CTAP2_ERR_UNSUPPORTED_ALGORIT

HM
UAF_ASM_STATUS_ERROR

0x27 CTAP2_ERR_OPERATION_DENIED UAF_ASM_STATUS_ACCESS_DENIED

0x28 CTAP2_ERR_KEY_STORE_FULL
UAF_ASM_STATUS_INSUFFICIENT_AUTHENTIC

ATOR_RESOURCES

96 Rec. ITU-T X.1277.2 (04/2023)

CTAP2

Code
CTAP2 Name ASM Error Name

0x2A
CTAP2_ERR_NO_OPERATION_PENDIN

G
UAF_ASM_STATUS_ERROR

0x2B CTAP2_ERR_UNSUPPORTED_OPTION UAF_ASM_STATUS_ERROR

0x2C CTAP2_ERR_INVALID_OPTION UAF_ASM_STATUS_ERROR

0x2D CTAP2_ERR_KEEPALIVE_CANCEL UAF_ASM_STATUS_ERROR

0x2E CTAP2_ERR_NO_CREDENTIALS UAF_ASM_STATUS_ERROR

0x2F CTAP2_ERR_USER_ACTION_TIMEOUT UAF_ASM_STATUS_USER_NOT_RESPONSIVE

0x30 CTAP2_ERR_NOT_ALLOWED UAF_ASM_STATUS_ERROR

0x31 CTAP2_ERR_PIN_INVALID UAF_ASM_STATUS_ACCESS_DENIED

0x32 CTAP2_ERR_PIN_BLOCKED UAF_ASM_STATUS_USER_LOCKOUT

0x33 CTAP2_ERR_PIN_AUTH_INVALID UAF_ASM_STATUS_ACCESS_DENIED

0x34 CTAP2_ERR_PIN_AUTH_BLOCKED UAF_ASM_STATUS_USER_LOCKOUT

0x35 CTAP2_ERR_PIN_NOT_SET UAF_ASM_STATUS_USER_NOT_ENROLLED

0x36 CTAP2_ERR_PIN_REQUIRED UAF_ASM_STATUS_ACCESS_DENIED

0x37 CTAP2_ERR_PIN_POLICY_VIOLATION UAF_ASM_STATUS_ACCESS_DENIED

0x38 CTAP2_ERR_PIN_TOKEN_EXPIRED UAF_ASM_STATUS_ACCESS_DENIED

0x39 CTAP2_ERR_REQUEST_TOO_LARGE
UAF_ASM_STATUS_INSUFFICIENT_AUTHENTIC

ATOR_RESOURCES

0x3A CTAP2_ERR_ACTION_TIMEOUT UAF_ASM_STATUS_USER_NOT_RESPONSIVE

0x3B CTAP2_ERR_UP_REQUIRED UAF_ASM_STATUS_ACCESS_DENIED

0x7F CTAP1_ERR_OTHER UAF_ASM_STATUS_ERROR

0xDF CTAP2_ERR_SPEC_LAST UAF_ASM_STATUS_ERROR

0xE0 CTAP2_ERR_EXTENSION_FIRST UAF_ASM_STATUS_ERROR

0xEF CTAP2_ERR_EXTENSION_LAST UAF_ASM_STATUS_ERROR

0xF0 CTAP2_ERR_VENDOR_FIRST UAF_ASM_STATUS_ERROR

 Rec. ITU-T X.1277.2 (04/2023) 97

CTAP2

Code
CTAP2 Name ASM Error Name

0xFF CTAP2_ERR_VENDOR_LAST UAF_ASM_STATUS_ERROR

98 Rec. ITU-T X.1277.2 (04/2023)

Annex C

UAF authenticator commands

(This annex forms an integral part of this Recommendation.)

UAF authenticators may take different forms. Implementations may range from a secure application

running inside tamper-resistant hardware to software-only solutions on consumer devices.

This annex defines normative aspects of UAF authenticators and offers security and implementation

guidelines for authenticator implementors.

This annex specifies low-level functionality which UAF authenticators should implement in order to

support the UAF protocol. It has the following goals:

• Define normative aspects of UAF authenticator implementations

• Define a set of commands implementing UAF functionality that may be implemented by

different types of authenticators

• Define UAFV1TLV assertion scheme-specific structures which will be parsed by a server

NOTE – The UAF Protocol supports various assertion schemes. Commands and structures defined in this
Recommendation assume that an authenticator supports the UAFV1TLV assertion scheme. Authenticators
implementing a different assertion scheme do not have to follow requirements specified in this
Recommendation.

The overall architecture of the UAF protocol and its various operations is described in

[b-UAFProtocol]. The following simplified architecture diagram illustrates the interactions and actors

this Recommendation is concerned with:

Figure C.1 – UAF authenticator commands

C.1 UAF authenticator

The UAF authenticator is an authentication component that meets the UAF protocol requirements as

described in [b-UAFProtocol]. The main functions to be provided by UAF authenticators are:

1. [Mandatory] Verifying the user or the user's presence with the verification mechanism built

into the authenticator. The verification technology can vary, from biometric verification to

simply verifying physical presence, or no user verification at all (the so-called Silent

Authenticator).

2. [Mandatory] Performing the cryptographic operations defined in [b-UAFProtocol].

3. [Mandatory] Creating data structures that can be parsed by Server.

4. [Mandatory] Attesting itself to the Server if there is a built-in support for attestation.

 Rec. ITU-T X.1277.2 (04/2023) 99

5. [Optional] Displaying the transaction content to the user using the transaction confirmation

display.

Figure C.2 – Authenticator logical sub-components

Some examples of UAF Authenticators:

• A fingerprint sensor built into a mobile device

• PIN authenticator implemented inside a secure element

• A mobile phone acting as an authenticator to a different device

• A universal serial bus (USB) token with built-in user presence verification

• A voice or face verification technology built into a device

C.1.1 Types of authenticators

There are four types of authenticators defined in this Recommendation. These definitions are not

normative (unless otherwise stated) and are provided merely for simplifying some of the descriptions.

NOTE – The following is the rationale for considering only these four types of authenticators:

• Bound authenticators are typically embedded into a user's computing device and thus can

utilize the host's storage for their needs. It makes more sense from an economic perspective

to utilize the host's storage rather than have embedded storage. Trusted execution

environments (TEE), secure elements and trusted platform modules (TPM) are typically

designed in this manner.

• First-factor roaming authenticators must have an internal storage for key handles.

• Second-factor roaming authenticators can store their key handles on an associated server, in

order to avoid the need for internal storage.

• Defining such constraints makes the specification simpler and clearer for defining the

mainstream use-cases.

Vendors, however, are not limited to these constraints. For example, a bound authenticator which has

internal storage for storing key handles is possible. Vendors are free to design and implement such

authenticators as long as their design follows the normative requirements described in this

Recommendation.

• First-factor bound authenticator

o These authenticators have an internal matcher. The matcher is able to verify an already

enrolled user. If there is more than one user enrolled – the matcher can also identify a

user.

100 Rec. ITU-T X.1277.2 (04/2023)

o There is a logical binding between this authenticator and the device it is attached to (the

binding is expressed through a concept called KeyHandleAccessToken). This

authenticator cannot be bound with more than one device.

o These authenticators do not store key handles in their own internal storage. They always

return the key handle to the ASM and the latter stores it in its local database.

o Authenticators of this type may also work as a second factor.

o Examples

▪ A fingerprint sensor built into a laptop, phone or tablet

▪ Embedded secure element in a mobile device

▪ Voice verification built into a device

• Second-factor (2ndF) bound authenticator

o This type of authenticator is similar to first-factor bound authenticators, except that it can

operate only as the second-factor in a multi-factor authentication

o Examples

▪ USB dongle with a built-in capacitive touch device for verifying user presence

▪ A "Trustlet" application running on the trusted execution environment of a mobile

phone, and leveraging a secure keyboard to verify user presence

• First factor (1stF) roaming authenticator

o These authenticators are not bound to any device. User can use them with any number of

devices.

o It is assumed that these authenticators have an internal matcher. The matcher is able to

verify an already enrolled user. If there is more than one user enrolled – the matcher can

also identify a user.

o It is assumed that these authenticators are designed to store key handles in their own

internal secure storage and not expose externally.

o These authenticators may also work as a second factor.

o Examples

▪ A Bluetooth LE based hardware token with built-in fingerprint sensor

▪ PIN protected USB hardware token

▪ A first-factor bound authenticator acting as a roaming authenticator for a different

device on the user's behalf

• Second-factor roaming authenticator

o These authenticators are not bound to any device. A user may use them with any number

of devices.

o These authenticators may have an internal matcher. The matcher is able to verify an

already enrolled user. If there is more than one user enrolled, then the matcher can also

identify a particular specific user.

o It is assumed that these authenticators do not store key handles in their own internal

storage. Instead, they push key handles to the Server and receive them back during the

authentication operation.

o These authenticators can only work as second factors.

o Examples:

▪ USB dongle with a built-in capacitive touch device for verifying user presence

 Rec. ITU-T X.1277.2 (04/2023) 101

▪ A "Trustlet" application running on the trusted execution environment of a mobile

phone, and leveraging a secure keyboard to verify user presence

Throughout the Recommendation there will be special conditions applying to these types of

authenticators.

In some deployments, the combination of ASM and a bound authenticator can act as a roaming

authenticator (for example when an ASM with an embedded authenticator on a mobile device acts as

a roaming authenticator for another device). When this happens such an authenticator MUST follow

the requirements applying to bound authenticators within the boundary of the system the authenticator

is bound to, and follow the requirements that apply to roaming authenticators in any other system it

connects to externally.

Conforming authenticators MUST implement at least one attestation type defined in [b-

UAFRegistry], as well as one authentication algorithm and one key format listed in [b-Registry].

NOTE – As stated above, the bound authenticator does not store key handles and roaming authenticators do

store them. In the example above the ASM would store the key handles of the bound authenticator and hence
meets these assumptions.

C.2 Tags

In this Recommendation UAF Authenticators use "Tag-Length-Value" (TLV) format to communicate

with the outside world. All requests and response data MUST be encoded as TLVs.

Commands and existing predefined TLV tags can be extended by appending other TLV tags (custom

or predefined). Refer to [b-UAFRegistry] for information about predefined TLV tags.

TLV formatted data has the following simple structure:

2 bytes 2 bytes Length bytes

Tag Length in bytes Data

All lengths are in bytes. e.g., a UINT32[4] will have length 16.

Although 2 bytes are allotted for the tag, only the first 14 bits (values up to 0x3FFF) should be used

to accommodate the limitations of some hardware platforms.

Arrays are implicit. The description of some structures indicates where multiple values are permitted,

and in these cases, if same tag appears more than once, all values are signifanct and should be treated

as an array.

For convenience in decoding TLV-formatted messages, all composite tags – those with values that

must be parsed by recursive descent – have the 13th bit (0x1000) set.

A tag that has the 14th bit (0x2000) set indicates that it is critical, and a receiver MUST abort

processing the entire message if it cannot process that tag.

Since UAF authenticators may have extremely constrained processing environments, an ASM MUST

follow a normative ordering of structures when sending commands.

It is assumed that ASM and Server have sufficient resources to handle parsing tags in any order so

structures send from authenticator MAY use tags in any order.

102 Rec. ITU-T X.1277.2 (04/2023)

C.2.1 Command tags

Table – UAF authenticator command TLV tags (0x3400 – 0x34FF, 0x3600-0x36FF)

Name Value Description

TAG_UAFV1_GETINFO_CMD 0x3401 Tag for GetInfo command.

TAG_UAFV1_GETINFO_CMD_RESPONSE 0x3601 Tag for GetInfo command response.

TAG_UAFV1_REGISTER_CMD 0x3402 Tag for Register command.

TAG_UAFV1_REGISTER_CMD_RESPONSE 0x3602 Tag for Register command response.

TAG_UAFV1_SIGN_CMD 0x3403 Tag for Sign command.

TAG_UAFV1_SIGN_CMD_RESPONSE 0x3603 Tag for Sign command response.

TAG_UAFV1_DEREGISTER_CMD 0x3404 Tag for Deregister command.

TAG_UAFV1_DEREGISTER_CMD_RESPONSE 0x3604
Tag for Deregister command

response.

TAG_UAFV1_OPEN_SETTINGS_CMD 0x3406 Tag for OpenSettings command.

TAG_UAFV1_OPEN_SETTINGS_CMD_RESPONSE 0x3606
Tag for OpenSettings command

response.

C.2.2 Tags used only in authenticator commands

Table – Non-command tags (0x2800 – 0x28FF, 0x3800 – 0x38FF)

Name Value Description

TAG_KEYHANDLE 0x2801

Represents key handle.

Refer to [b-Glossary] for more

information about key handle.

TAG_USERNAME_AND_KEYHANDLE 0x3802

Represents an associated Username and

key handle.

This is a composite tag that contains a
TAG_USERNAME and
TAG_KEYHANDLE that identify a

registration valid oin the authenticator.

Refer to [b-Glossary] for more

information about username.

TAG_USERVERIFY_TOKEN 0x2803 Represents a User Verification Token.

 Rec. ITU-T X.1277.2 (04/2023) 103

Table – Non-command tags (0x2800 – 0x28FF, 0x3800 – 0x38FF)

Name Value Description

Refer to [b-Glossary] for more
information about user verification

tokens.

TAG_APPID 0x2804

A full AppID as a UINT8[] encoding of

a UTF-8 string.

Refer to [b-Glossary] for more

information about AppID.

TAG_KEYHANDLE_ACCESS_TOKEN 0x2805 Represents a key handle Access Token.

TAG_USERNAME 0x2806
A Username as a UINT8[] encoding of

a UTF-8 string.

TAG_ATTESTATION_TYPE 0x2807 Represents an Attestation Type.

TAG_STATUS_CODE 0x2808 Represents a Status Code.

TAG_AUTHENTICATOR_METADATA 0x2809
Represents a more detailed set of

authenticator information.

TAG_ASSERTION_SCHEME 0x280A

A UINT8[] containing the UTF8-
encoded Assertion Scheme as defined

in [b-UAFRegistry]. ("UAFV1TLV")

TAG_TC_DISPLAY_PNG_CHARACTERISTICS 0x280B

If an authenticator contains a PNG-
capable transaction confirmation
display that is not implemented by a
higher-level layer, this tag is describing

this display. See [MetadataStatement]
for additional information on the format

of this field.

TAG_TC_DISPLAY_CONTENT_TYPE 0x280C

A UINT8[] containing the UTF-8-
encoded transaction display content
type as defined in [b-

MetadataStatement]. ("image/png")

TAG_AUTHENTICATOR_INDEX 0x280D Authenticator Index

TAG_API_VERSION 0x280E API Version

TAG_AUTHENTICATOR_ASSERTION 0x280F

The content of this TLV tag is an
assertion generated by the authenticator.
Since authenticators may generate
assertions in different formats – the
content format may vary from

authenticator to authenticator.

104 Rec. ITU-T X.1277.2 (04/2023)

Table – Non-command tags (0x2800 – 0x28FF, 0x3800 – 0x38FF)

Name Value Description

TAG_TRANSACTION_CONTENT 0x2810
Represents transaction content sent to

the authenticator.

TAG_AUTHENTICATOR_INFO 0x3811
Includes detailed information about

authenticator's capabilities.

TAG_SUPPORTED_EXTENSION_ID 0x2812
Represents extension ID supported by

authenticator.

TAG_TRANSACTIONCONFIRMATION_TOKEN 0x2813

Represents a token for transaction
confirmation. It might be returned by
the authenticator to the ASM and given
back to the authenticator at a later stage.
The meaning of it is similar to

TAG_USERVERIFY_TOKEN, except
that it is used for the user's approval of

a displayed transaction text.

C.2.3 Tags used in UAF protocol

Table – Tags used in the UAF Protocol (0x2E00 – 0x2EFF, 0x3E00 – 0x3EFF). Normatively

defined in [b-UAFRegistry]

Name Value Description

TAG_UAFV1_REG_ASSERTION 0x3E01 Authenticator response to Register command.

TAG_UAFV1_AUTH_ASSERTION 0x3E02 Authenticator response to Sign command.

TAG_UAFV1_KRD 0x3E03 Key Registration Data

TAG_UAFV1_SIGNED_DATA 0x3E04
Data signed by authenticator with the

UAuth.priv key

TAG_ATTESTATION_CERT 0x2E05

Each entry contains a single X.509 DER-
encoded [ITU-X690-2008] certificate.
Multiple occurrences are allowed and form the

attestation certificate chain. Multiple
occurrences must be ordered. The attestation
certificate itself MUST occur first. Each
subsequent occurrence (if exists) MUST be the

issuing certificate of the previous occurrence.

TAG_SIGNATURE 0x2E06 A cryptographic signature

ATTESTATION_BASIC_FULL 0x3E07
Full Basic Attestation as defined in [b-

UAFProtocol]

 Rec. ITU-T X.1277.2 (04/2023) 105

Table – Tags used in the UAF Protocol (0x2E00 – 0x2EFF, 0x3E00 – 0x3EFF). Normatively

defined in [b-UAFRegistry]

Name Value Description

ATTESTATION_BASIC_SURROGATE 0x3E08
Surrogate Basic Attestation as defined in [b-

UAFProtocol]

ATTESTATION_ECDAA 0x3E09

Elliptic curve based direct anonymous
attestation as defined in [b-UAFProtocol]. In
this case the signature in TAG_SIGNATURE
is a ECDAA signature as specified in [b-

EcdaaAlgorithm].

TAG_KEYID 0x2E09 Represents a KeyID.

TAG_FINAL_CHALLENGE_HASH 0x2E0A

Represents a Hash of the Final Challenge.

Refer to [b-UAFASM] for more information

about the Final Challenge Hash.

TAG_AAID 0x2E0B

Represents an authenticator Attestation ID.

Refer to [b-UAFProtocol] for more

information about the AAID.

TAG_PUB_KEY 0x2E0C Represents a Public Key.

TAG_COUNTERS 0x2E0D Represents a use counters for the authenticator.

TAG_ASSERTION_INFO 0x2E0E
Represents assertion information necessary for

message processing.

TAG_AUTHENTICATOR_NONCE 0x2E0F

Represents a nonce value generated by the

authenticator.

The Authenticator Nonce allows the

authenticator to enforce the to-be-signed object
being different each time it is generated – even
under attack scenarios in which the caller (e.g.,
ASM) sends similar data. Side channels attacks
are more difficult to perform if the data to-be-

signed is different each time.

TAG_TRANSACTION_CONTENT_HASH 0x2E10 Represents a hash of transaction content.

TAG_EXTENSION
0x3E11,

0x3E12

This is a composite tag indicating that the

content is an extension.

If the tag is 0x3E11 – it's a critical extension
and if the recipient does not understand the

contents of this tag, it MUST abort processing

of the entire message.

This tag has two embedded tags –

TAG_EXTENSION_ID and
TAG_EXTENSION_DATA. For more

106 Rec. ITU-T X.1277.2 (04/2023)

Table – Tags used in the UAF Protocol (0x2E00 – 0x2EFF, 0x3E00 – 0x3EFF). Normatively

defined in [b-UAFRegistry]

Name Value Description

information about UAF extensions refer to [b-

UAFProtocol]

Note

This tag can be appended to any command and

response.

Using tag 0x3E11 (as opposed to tag 0x3E12)
has the same meaning as the flag

fail_if_unknown in [b-UAFProtocol].

TAG_EXTENSION_ID 0x2E13
Represents extension ID. Content of this tag is

a UINT8[] encoding of a UTF-8 string.

TAG_EXTENSION_DATA 0x2E14
Represents extension data. Content of this tag

is a UINT8[] byte array.

C.2.4 Status codes

Table – UAF authenticator status codes (0x00 – 0xFF)

Name Value Description

UAF_CMD_STATUS_OK 0x00 Success.

UAF_CMD_STATUS_ERR_UNKNOWN 0x01 An unknown error.

UAF_CMD_STATUS_ACCESS_DENIED 0x02
Access to this operation is

denied.

UAF_CMD_STATUS_USER_NOT_ENROLLED 0x03

User is not enrolled with

the authenticator and the

authenticator cannot

automatically trigger

enrollment.

UAF_CMD_STATUS_CANNOT_RENDER_TRANSACTION_CONTENT 0x04
Transaction content cannot

be rendered.

UAF_CMD_STATUS_USER_CANCELLED 0x05

User has cancelled the

operation. No retry should

be performed.

UAF_CMD_STATUS_CMD_NOT_SUPPORTED 0x06 Command not supported.

UAF_CMD_STATUS_ATTESTATION_NOT_SUPPORTED 0x07
Required attestation not

supported.

UAF_CMD_STATUS_PARAMS_INVALID 0x08

The parameters for the

command received by the

authenticator are

malformed/invalid.

 Rec. ITU-T X.1277.2 (04/2023) 107

Table – UAF authenticator status codes (0x00 – 0xFF)

Name Value Description

UAF_CMD_STATUS_KEY_DISAPPEARED_PERMANENTLY 0x09

The UAuth key which is

relevant for this command

disappeared from the

authenticator and cannot be

restored. On some

authenticators this error

occurs when the user

verification reference data

set was modified (e.g., new

fingerprint template

added).

UAF_CMD_STATUS_TIMEOUT 0x0a

The operation in the

authenticator took longer

than expected (due to

technical issues) and it was

finally aborted.

UAF_CMD_STATUS_USER_NOT_RESPONSIVE 0x0e

The user took too long to

follow an instruction, e.g.,

didn't swipe the finger

within the accepted time.

UAF_CMD_STATUS_INSUFFICIENT_RESOURCES 0x0f

Insufficient resources in the

authenticator to perform

the requested task.

UAF_CMD_STATUS_USER_LOCKOUT 0x10

The operation failed

because the user is locked

out and the authenticator

cannot automatically

trigger an action to change

that. Typically the user

would have to enter an

alternative password
(formally: undergo some

other alternative user

verification method) to re-

enable the use of the main

user verification method.

Note

Any method the user can

use to (re-) enable the main

user verification method is

considered an alternative

user verification method

and must be properly

declared as such. For

example, if the user can

enter an alternative

password to re-enable the

use of fingerprints or to add

additional fingers, the

authenticator obviously
supports fingerprint or

108 Rec. ITU-T X.1277.2 (04/2023)

Table – UAF authenticator status codes (0x00 – 0xFF)

Name Value Description

password based user

verification.

UAF_CMD_STATUS_SYSTEM_INTERRUPTED 0x12

The system interrupted the

operation. Retry might

make sense.

C.3 Structures

C.3.1 RawKeyHandle

RawKeyHandle is a structure generated and parsed by the authenticator. Authenticators MAY define

RawKeyHandle in different ways and the internal structure is relevant only to the specific

authenticator implementation.

RawKeyHandle for a typical first-factor bound authenticator has the following structure.

Table – RawKeyHandle structure

Depends on hashing

algorithm (e.g., 32 bytes)

Depends on key type

(e.g., 32 bytes)

Username Size

(1 byte)
Max 128 bytes

KHAccessToken UAuth.priv Size Username

First Factor authenticators MUST store usernames in the authenticator, and they MUST link the

username to the related key. This MAY be achieved by storing the username inside the

RawKeyHandle. Second Factor authenticators MUST NOT store the username.

The ability to support usernames is a key difference between first-, and second-factor authenticators.

The RawKeyHandle MUST be cryptographically wrapped before leaving the authenticator boundary

since it typically contains sensitive information, e.g., the user authentication private key (UAuth.priv).

C.3.2 Structures to be parsed by server

The structures defined in this section are created by UAF authenticators and parsed by servers.

Authenticators MUST generate these structures if they implement "UAFV1TLV" assertion scheme.

NOTE – "UAFV1TLV" assertion scheme assumes that the authenticator has exclusive control over all data

included inside TAG_UAFV1_KRD and TAG_UAFV1_SIGNED_DATA.

The nesting structure MUST be preserved, but the order of tags within a composite tag is not

normative. Servers MUST be prepared to handle tags appearing in any order.

C.3.2.1 TAG_UAFV1_REG_ASSERTION

The following TLV structure is generated by the authenticator during processing of a Register

command. It is then delivered to the server intact, and parsed by the server. The structure embeds a

TAG_UAFV1_KRD tag which among other data contains the newly generated UAuth.pub.

If the authenticator wants to append custom data to TAG_UAFV1_KRD structure (and thus sign with

Attestation Key) – this data MUST be included as TAG_EXTENSION_DATA in a

TAG_EXTENSION object inside TAG_UAFV1_KRD.

 Rec. ITU-T X.1277.2 (04/2023) 109

If the authenticator wants to send additional data to Server without signing it – this data MUST be

included as TAG_EXTENSION_DATA in a TAG_EXTENSION object inside

TAG_UAFV1_REG_ASSERTION and not inside TAG_UAFV1_KRD.

Currently this Recommendation only specifies ATTESTATION_BASIC_FULL,

ATTESTATION_BASIC_SURROGATE and ATTESTATION_ECDAA. In case if the

authenticator is required to perform "Some_Other_Attestation" on TAG_UAFV1_KRD – it MUST

use the TLV tag and content defined for "Some_Other_Attestation" (defined in [b-Registry]).

 TLV Structure Description

1 UINT16 Tag TAG_UAFV1_REG_ASSERTION

1.1 UINT16 Length Length of the structure

1.2 UINT16 Tag TAG_UAFV1_KRD

1.2.1 UINT16 Length Length of the structure

1.2.2 UINT16 Tag TAG_AAID

1.2.2.1 UINT16 Length Length of AAID

1.2.2.2 UINT8[] AAID Authenticator Attestation ID

1.2.3 UINT16 Tag TAG_ASSERTION_INFO

1.2.3.1 UINT16 Length Length of Assertion Information

1.2.3.2
UINT16

AuthenticatorVersion
Vendor assigned authenticator version

1.2.3.3 UINT8 AuthenticationMode
For Registration this must be 0x01 indicating that the user has explicitly

verified the action.

1.2.3.4
UINT16

SignatureAlgAndEncoding

Signature Algorithm and Encoding of the attestation signature.

Refer to [b-Registry] for information on supported algorithms and their

values.

1.2.3.5
UINT16

PublicKeyAlgAndEncoding

Public Key algorithm and encoding of the newly generated UAuth.pub

key.

Refer to [b-Registry] for information on supported algorithms and their

values.

1.2.4 UINT16 Tag TAG_FINAL_CHALLENGE_HASH

1.2.4.1 UINT16 Length Final Challenge Hash length

1.2.4.2
UINT8[]

FinalChallengeHash
(binary value of) Final Challenge Hash provided in the Command

1.2.5 UINT16 Tag TAG_KEYID

110 Rec. ITU-T X.1277.2 (04/2023)

 TLV Structure Description

1.2.5.1 UINT16 Length Length of KeyID

1.2.5.2 UINT8[] KeyID (binary value of) KeyID for the key generated by the Authenticator

1.2.6 UINT16 Tag TAG_COUNTERS

1.2.6.1 UINT16 Length Length of Counters

1.2.6.2 UINT32 SignCounter

Signature Counter.

Indicates how many times this authenticator has performed signatures in

the past.

1.2.6.3 UINT32 RegCounter

Registration Counter.

Indicates how many times this authenticator has performed registrations

in the past.

1.2.7 UINT16 Tag TAG_PUB_KEY

1.2.7.1 UINT16 Length Length of UAuth.pub

1.2.7.2 UINT8[] PublicKey
User authentication public key (UAuth.pub) newly generated by

authenticator

1.3

(choice

1)
UINT16 Tag ATTESTATION_BASIC_FULL

1.3.1 UINT16 Length Length of structure

1.3.2 UINT16 Tag TAG_SIGNATURE

1.3.2.1 UINT16 Length Length of signature

1.3.2.2 UINT8[] Signature

Signature calculated with Basic Attestation Private Key over

TAG_UAFV1_KRD content.

The entire TAG_UAFV1_KRD content, including the tag and it's length

field, MUST be included during signature computation.

1.3.3 UINT16 Tag

TAG_ATTESTATION_CERT (multiple occurrences possible)

Multiple occurrences must be ordered. The attestation certificate MUST

occur first. Each subsequent occurrence (if exists) MUST be the issuing

certificate of the previous occurrence. The last occurence MUST be
chained to one of the certificates included in field

attestationRootCertificate in the related Metadata Statement

[MetadataStatement].

1.3.3.1 UINT16 Length Length of Attestation Cert

1.3.3.2 UINT8[] Certificate

Single X.509 DER-encoded [ITU-X690-2008] Attestation Certificate or a

single certificate from the attestation certificate chain (see description

above).

 Rec. ITU-T X.1277.2 (04/2023) 111

 TLV Structure Description

1.3

(choice

2)
UINT16 Tag ATTESTATION_BASIC_SURROGATE

1.3.1 UINT16 Length Length of structure

1.3.2 UINT16 Tag TAG_SIGNATURE

1.3.2.1 UINT16 Length Length of signature

1.3.2.2 UINT8[] Signature

Signature calculated with newly generated UAuth.priv key over

TAG_UAFV1_KRD content.

The entire TAG_UAFV1_KRD content, including the tag and it's length

field, MUST be included during signature computation.

1.3

(choice

3)
UINT16 Tag ATTESTATION_ECDAA

1.3.1 UINT16 Length Length of structure

1.3.2 UINT16 Tag TAG_SIGNATURE

1.3.2.1 UINT16 Length Length of signature

1.3.2.2 UINT8[] Signature The binary ECDAA signature as specified in [EcdaaAlgorithm].

C.3.2.2 TAG_UAFV1_AUTH_ASSERTION

The following TLV structure is generated by an authenticator during processing of a Sign command.

It is then delivered to Server intact and parsed by the server. The structure embeds a

TAG_UAFV1_SIGNED_DATA tag.

If the authenticator wants to append custom data to TAG_UAFV1_SIGNED_DATA structure (and

thus sign with Attestation Key) – this data MUST be included as an additional tag inside

TAG_UAFV1_SIGNED_DATA.

If the authenticator wants to send additional data to Server without signing it – this data MUST be

included as an additional tag inside TAG_UAFV1_AUTH_ASSERTION and not inside

TAG_UAFV1_SIGNED_DATA.

 TLV Structure Description

1 UINT16 Tag TAG_UAFV1_AUTH_ASSERTION

1.1 UINT16 Length Length of the structure

1.2 UINT16 Tag TAG_UAFV1_SIGNED_DATA

1.2.1 UINT16 Length Length of the structure

1.2.2 UINT16 Tag TAG_AAID

112 Rec. ITU-T X.1277.2 (04/2023)

 TLV Structure Description

1.2.2.1 UINT16 Length Length of AAID

1.2.2.2 UINT8[] AAID Authenticator Attestation ID

1.2.3 UINT16 Tag TAG_ASSERTION_INFO

1.2.3.1 UINT16 Length Length of Assertion Information

1.2.3.2
UINT16

AuthenticatorVersion
Vendor assigned authenticator version

1.2.3.3 UINT8 AuthenticationMode

Authentication Mode indicating whether user explicitly verified

or not and indicating if there is a transaction content or not.

• 0x01 means that user has been explicitly verified

• 0x02 means that transaction content has been shown on the
display and user confirmed it by explicitly verifying with

authenticator

1.2.3.4
UINT16

SignatureAlgAndEncoding

Signature algorithm and encoding format.

Refer to [b-Registry] for information on supported algorithms

and their values.

1.2.4 UINT16 Tag TAG_AUTHENTICATOR_NONCE

1.2.4.1 UINT16 Length
Length of authenticator Nonce – MUST be at least 8 bytes, and

NOT longer than 64 bytes.

1.2.4.2 UINT8[] AuthnrNonce (binary value of) A nonce randomly generated by Authenticator

1.2.5 UINT16 Tag TAG_FINAL_CHALLENGE_HASH

1.2.5.1 UINT16 Length Length of Final Challenge Hash

1.2.5.2
UINT8[]

FinalChallengeHash

(binary value of) Final Challenge Hash provided in the

Command

1.2.6 UINT16 Tag TAG_TRANSACTION_CONTENT_HASH

1.2.6.1 UINT16 Length

Length of Transaction Content Hash. This length is 0 if
AuthenticationMode == 0x01, i.e., authentication, not

transaction confirmation.

1.2.6.2 UINT8[] TCHash (binary value of) Transaction Content Hash

1.2.7 UINT16 Tag TAG_KEYID

1.2.7.1 UINT16 Length Length of KeyID

 Rec. ITU-T X.1277.2 (04/2023) 113

 TLV Structure Description

1.2.7.2 UINT8[] KeyID (binary value of) KeyID

1.2.8 UINT16 Tag TAG_COUNTERS

1.2.8.1 UINT16 Length Length of Counters

1.2.8.2 UINT32 SignCounter

Signature Counter.

Indicates how many times this authenticator has performed

signatures in the past.

1.3 UINT16 Tag TAG_SIGNATURE

1.3.1 UINT16 Length Length of Signature

1.3.2 UINT8[] Signature

Signature calculated using UAuth.priv over

TAG_UAFV1_SIGNED_DATA structure.

The entire TAG_UAFV1_SIGNED_DATA content, including
the tag and it's length field, MUST be included during signature

computation.

C.4 UserVerificationToken

This Recommendation does not specify how exactly user verification must be performed inside the

authenticator. Verification is considered to be an authenticator, and vendor, specific operation.

This Recommendation provides an example on how the "vendor_specific_UserVerify" command (a

command which verifies the user using Authenticator's built-in technology) could be securely bound

to UAF Register and Sign commands. This binding is done through a concept called

UserVerificationToken. Such a binding allows decoupling "vendor_specific_UserVerify" and "UAF

Register/Sign" commands from each other.

Here is how it is defined:

• The ASM invokes the "vendor_specific_UserVerify" command. The authenticator verifies

the user and returns a UserVerificationToken back.

• The ASM invokes UAF.Register/Sign command and passes UserVerificationToken to it. The

authenticator verifies the validity of UserVerificationToken and performs the operation if it

is valid.

The concept of UserVerificationToken is non-normative. An authenticator might decide to implement

this binding in a very different way. For example, an authenticator vendor may decide to append a

UAF Register request directly to their "vendor_specific_UserVerify" command and process both as

a single command.

If UserVerificationToken binding is implemented, it should either meet one of the following criteria

or implement a mechanism providing similar, or better security:

• UserVerificationToken must allow performing only a single UAF Register or UAF Sign

operation.

• UserVerificationToken must be time bound, and allow performing multiple UAF operations

within the specified time.

114 Rec. ITU-T X.1277.2 (04/2023)

C.5 Commands

UAF authenticators which are designed to be interoperable with ASMs from different vendors MUST

implement the command interface defined in this section. Examples of such authenticators:

• Bound authenticators in which the core authenticator functionality is developed by one

vendor, and the ASM is developed by another vendor

• Roaming authenticators

UAF authenticators which are tightly integrated with a custom ASM (typically bound authenticators)

MAY implement a different command interface.

NOTE – Examples of such different command interface include native key store or key chain APIs. It is
important to declare whether the Uauth keys are restricted to sign valid UAF assertions only. See
[b-MetadataStatement] entry "isKeyRestricted".

All UAF authenticator commands and responses are semantically similar – they are all represented

as TLV-encoded blobs. The first 2 bytes of each command is the command code. After receiving a

command, the authenticator must parse the first TLV tag and figure out which command is being

issued.

C.5.1 GetInfo command

C.5.1.1 Command description

This command returns information about the connected authenticators. It may return 0 or more

authenticators. Each authenticator has an assigned authenticatorIndex which is used in other

commands as an authenticator reference.

C.5.1.2 Command structure

 TLV structure Description

1 UINT16 Tag TAG_UAFV1_GETINFO_CMD

1.1 UINT16 Length Entire Command Length – must be 0 for this command

C.5.1.3 Command response

 TLV structure Description

1 UINT16 Tag TAG_UAFV1_GETINFO_CMD_RESPONSE

1.1 UINT16 Length Response length

1.2 UINT16 Tag TAG_STATUS_CODE

1.2.1 UINT16 Length Status Code Length

1.2.2 UINT16 Value Status Code returned by Authenticator

1.3 UINT16 Tag TAG_API_VERSION

1.3.1 UINT16 Length Length of API Version (must be 0x0001)

 Rec. ITU-T X.1277.2 (04/2023) 115

 TLV structure Description

1.3.2 UINT8 Version
Authenticator API Version (must be 0x01). This version
indicates the types of commands, and formatting associated

with them, that are supported by the authenticator.

1.4 UINT16 Tag
TAG_AUTHENTICATOR_INFO (multiple occurrences

possible)

1.4.1 UINT16 Length Length of Authenticator Info

1.4.2 UINT16 Tag TAG_AUTHENTICATOR_INDEX

1.4.2.1 UINT16 Length Length of AuthenticatorIndex (must be 0x0001)

1.4.2.2 UINT8 AuthenticatorIndex Authenticator Index

1.4.3 UINT16 Tag TAG_AAID

1.4.3.1 UINT16 Length Length of AAID

1.4.3.2 UINT8[] AAID Vendor assigned AAID

1.4.4 UINT16 Tag TAG_AUTHENTICATOR_METADATA

1.4.4.1 UINT16 Length Length of Authenticator Metadata

1.4.4.2 UINT16 AuthenticatorType

Indicates whether the authenticator is bound or roaming, and
whether it is first-, or second-factor only. The ASM must
use this information to understand how to work with the

authenticator.

Predefined values:

• 0x0001 – Indicates second-factor authenticator (first-

factor when the flag is not set)

• 0x0002 – Indicates roaming authenticator (bound

authenticator when the flag is not set)

• 0x0004 – Key handles will be stored inside authenticator

and won't be returned to ASM

• 0x0008 – Authenticator has a built-in UI for enrollment

and verification. ASM should not show its custom UI

• 0x0010 – Authenticator has a built-in UI for settings, and

supports OpenSettings command.

• 0x0020 – Authenticator expects TAG_APPID to be
passed as an argument to commands where it is defined

as an optional argument

• 0x0040 – At least one user is enrolled in the
authenticator. Authenticators which don't support the

concept of user enrollment (e.g.,
USER_VERIFY_NONE, USER_VERIFY_PRESENCE)

must always have this bit set.

116 Rec. ITU-T X.1277.2 (04/2023)

 TLV structure Description

• 0x0080 – Authenticator supports user verification tokens
(UVTs) as described in this Recommendation. See clause

C.4, UserVerificationToken.

• 0x0100 – Authenticator only accepts
TAG_TRANSACTION_TEXT_HASH in Sign
command. This flag MAY ONLY be set if

TransactionConfirmationDisplay is set to 0x0003 (see

clause C.5.3, Sign Command).

1.4.4.3 UINT8 MaxKeyHandles

Indicates maximum number of key handles this
authenticator can receive and process in a single command.

This information will be used by the ASM when invoking

SIGN command with multiple key handles.

1.4.4.4 UINT32 UserVerification User verification method (as defined in [b-Registry])

1.4.4.5 UINT16 KeyProtection Key Protection type (as defined in [b-Registry]).

1.4.4.6 UINT16 MatcherProtection Matcher protection type (as defined in [b-Registry]).

1.4.4.7
UINT16

TransactionConfirmationDisplay

Transaction confirmation type (as defined in [b-Registry]).

NOTE – If authenticator does not support Transaction

Confirmation – this value must be set to 0.

1.4.4.8 UINT16 AuthenticationAlg Authentication algorithm (as defined in [b-Registry]).

1.4.5 UINT16 Tag TAG_TC_DISPLAY_CONTENT_TYPE (optional)

1.4.5.1 UINT16 Length Length of content type.

1.4.5.2 UINT8[] ContentType
Transaction Confirmation Display Content Type. See [b-
MetadataStatement] for additional information on the format

of this field.

1.4.6 UINT16 Tag
TAG_TC_DISPLAY_PNG_CHARACTERISTICS

(optional,multiple occurrences permitted)

1.4.6.1 UINT16 Length Length of display characteristics information.

1.4.6.2 UINT32 Width See [b-MetadataStatement] for additional information.

1.4.6.3 UINT32 Height See [b-MetadataStatement] for additional information.

1.4.6.4 UINT8 BitDepth See [b-MetadataStatement] for additional information.

1.4.6.5 UINT8 ColorType See [b-MetadataStatement] for additional information.

1.4.6.6 UINT8 Compression See [b-MetadataStatement] for additional information.

 Rec. ITU-T X.1277.2 (04/2023) 117

 TLV structure Description

1.4.6.7 UINT8 Filter See [b-MetadataStatement] for additional information.

1.4.6.8 UINT8 Interlace See [b-MetadataStatement] for additional information.

1.4.6.9 UINT8[] PLTE

A PLTE packet descriptor, defined by 3 byte word.

Offset Length Mnemonic Description

0 1 R Red channel value

1 1 G Green channel value

2 1 B Blue channel value

See [b-MetadataStatement] for additional information.

1.4.7 UINT16 Tag TAG_ASSERTION_SCHEME

1.4.7.1 UINT16 Length Length of Assertion Scheme

1.4.7.2 UINT8[] AssertionScheme Assertion Scheme (as defined in [b-UAFRegistry])

1.4.8 UINT16 Tag
TAG_ATTESTATION_TYPE (multiple occurrences

possible)

1.4.8.1 UINT16 Length Length of AttestationType

1.4.8.2 UINT16 AttestationType
Attestation Type values are defined in [b-UAFRegistry] by

the constants with the prefix TAG_ATTESTATION.

1.4.9 UINT16 Tag
TAG_SUPPORTED_EXTENSION_ID (optional, multiple

occurrences possible)

1.4.9.1 UINT16 Length Length of SupportedExtensionID

1.4.9.2 UINT8[] SupportedExtensionID
SupportedExtensionID as a UINT8[] encoding of a UTF-8

string

C.5.1.4 Status codes

• UAF_CMD_STATUS_OK

• UAF_CMD_STATUS_ERR_UNKNOWN

• UAF_CMD_STATUS_PARAMS_INVALID

C.5.2 Register command

This command generates a UAF registration assertion. This assertion can be used to register the

authenticator with a server.

118 Rec. ITU-T X.1277.2 (04/2023)

C.5.2.1 Command structure

 TLV structure Description

1 UINT16 Tag TAG_UAFV1_REGISTER_CMD

1.1 UINT16 Length Command Length

1.2 UINT16 Tag TAG_AUTHENTICATOR_INDEX

1.2.1 UINT16 Length Length of AuthenticatorIndex (must be 0x0001)

1.2.2 UINT8 AuthenticatorIndex Authenticator Index

1.3 UINT16 Tag TAG_APPID (optional)

1.3.1 UINT16 Length Length of AppID

1.3.2 UINT8[] AppID AppID (max 512 bytes)

1.4 UINT16 Tag TAG_FINAL_CHALLENGE_HASH

1.4.1 UINT16 Length Final Challenge Hash Length

1.4.2 UINT8[] FinalChallengeHash Final Challenge Hash provided by ASM (max 32 bytes)

1.5 UINT16 Tag TAG_USERNAME

1.5.1 UINT16 Length Length of Username

1.5.2 UINT8[] Username Username provided by ASM (max 128 bytes)

1.6 UINT16 Tag TAG_ATTESTATION_TYPE

1.6.1 UINT16 Length Length of AttestationType

1.6.2 UINT16 AttestationType Attestation Type to be used

1.7 UINT16 Tag TAG_KEYHANDLE_ACCESS_TOKEN

1.7.1 UINT16 Length Length of KHAccessToken

1.7.2 UINT8[] KHAccessToken KHAccessToken provided by ASM (max 32 bytes)

1.8 UINT16 Tag TAG_USERVERIFY_TOKEN (optional)

1.8.1 UINT16 Length Length of VerificationToken

1.8.2 UINT8[] VerificationToken User verification token

 Rec. ITU-T X.1277.2 (04/2023) 119

C.5.2.2 Command response

TLV structure Description

1 UINT16 Tag TAG_UAFV1_REGISTER_CMD_RESPONSE

1.1 UINT16 Length Command Length

1.2 UINT16 Tag TAG_STATUS_CODE

1.2.1 UINT16 Length Status Code Length

1.2.2 UINT16 Value Status code returned by Authenticator

1.3 UINT16 Tag TAG_AUTHENTICATOR_ASSERTION

1.3.1 UINT16 Length Length of Assertion

1.3.2 UINT8[] Assertion Registration Assertion (see section TAG_UAFV1_REG_ASSERTION).

1.4 UINT16 Tag TAG_KEYHANDLE (optional)

1.4.1 UINT16 Length Length of key handle

1.4.2 UINT8[] Value (binary value of) key handle

C.5.2.3 Status codes

• UAF_CMD_STATUS_OK

• UAF_CMD_STATUS_ERR_UNKNOWN

• UAF_CMD_STATUS_ACCESS_DENIED

• UAF_CMD_STATUS_USER_NOT_ENROLLED

• UAF_CMD_STATUS_USER_CANCELLED

• UAF_CMD_STATUS_ATTESTATION_NOT_SUPPORTED

• UAF_CMD_STATUS_PARAMS_INVALID

• UAF_CMD_STATUS_TIMEOUT

• UAF_CMD_STATUS_USER_NOT_RESPONSIVE

• UAF_CMD_STATUS_INSUFFICIENT_RESOURCES

• UAF_CMD_STATUS_USER_LOCKOUT

C.5.2.4 Command description

The authenticator must perform the following steps (see below table for command structure):

If the command structure is invalid (e.g., cannot be parsed correctly), return

UAF_CMD_STATUS_PARAMS_INVALID.

1. If this authenticator has a transaction confirmation display and is able to display AppID, then

make sure Command.TAG_APPID is provided, and show its content on the display when

verifying the user. Return UAF_CMD_STATUS_PARAMS_INVALID if

120 Rec. ITU-T X.1277.2 (04/2023)

Command.TAG_APPID is not provided in such case. Update Command.KHAccessToken

with TAG_APPID:

o Update Command.KHAccessToken by mixing it with Command.TAG_APPID. An

example of such mixing function is a cryptographic hash function.

NOTE – This method allows us to avoid storing the AppID separately in the RawKeyHandle.

▪ For example: Command.KHAccessToken=hash(Command.KHAccessToken |

Command.TAG_APPID)

2. If the user is already enrolled with this authenticator (via biometric enrollment, PIN setup or

similar mechanism) – verify the user. If the verification has been already done in a previous

command – make sure that Command.TAG_USERVERIFY_TOKEN is a valid token.

 If the user is locked out (e.g., too many failed attempts to get verified) and the authenticator

cannot automatically trigger unblocking, return UAF_CMD_STATUS_USER_LOCKOUT.

o If the user does not respond to the request to get verified – return

UAF_CMD_STATUS_USER_NOT_RESPONSIVE

o If verification fails – return UAF_CMD_STATUS_ACCESS_DENIED

o If user explicitly cancels the operation – return

UAF_CMD_STATUS_USER_CANCELLED

3. If the user is not enrolled with the authenticator, then take the user through the enrollment

process. If the enrollment process cannot be triggered by the authenticator, return

UAF_CMD_STATUS_USER_NOT_ENROLLED.

o If the authenticator can trigger enrollment, but the user does not respond to the request

to enroll – return UAF_CMD_STATUS_USER_NOT_RESPONSIVE

o If the authenticator can trigger enrollment, but enrollment fails – return

UAF_CMD_STATUS_ACCESS_DENIED

o If the authenticator can trigger enrollment, but the user explicitly cancels the enrollment

operation – return UAF_CMD_STATUS_USER_CANCELLED

4. Make sure that Command.TAG_ATTESTATION_TYPE is supported. If not – return

UAF_CMD_STATUS_ATTESTATION_NOT_SUPPORTED

5. Generate a new key pair (UAuth.pub/UAuth.priv) If the process takes longer than accepted –

return UAF_CMD_STATUS_TIMEOUT

6. Create a RawKeyHandle, for example as follows

o Add UAuth.priv to RawKeyHandle

o Add Command.KHAccessToken to RawKeyHandle

o If a first-factor authenticator, then add Command.Username to RawKeyHandle

 If there are not enough resources in the authenticator to perform this task – return

UAF_CMD_STATUS_INSUFFICIENT_RESOURCES.

7. Wrap RawKeyHandle with Wrap.sym key

8. Create TAG_UAFV1_KRD structure

o If this is a second-factor roaming authenticator – place key handle inside TAG_KEYID.

Otherwise generate a KeyID and place it inside TAG_KEYID.

o Copy all the mandatory fields (see clause C.3.2.1)

9. Perform attestation on TAG_UAFV1_KRD based on provided Command.AttestationType.

10. Create TAG_AUTHENTICATOR_ASSERTION

o Create TAG_UAFV1_REG_ASSERTION

 Rec. ITU-T X.1277.2 (04/2023) 121

▪ Copy all the mandatory fields (see clause C.3.2.1)

▪ If this is a first-factor roaming authenticator – add KeyID and key handle into

internal storage

▪ If this is a bound authenticator – return key handle inside TAG_KEYHANDLE

2. Put the entire TLV structure for TAG_UAFV1_REG_ASSERTION as the value of

TAG_AUTHENTICATOR_ASSERTION

Return TAG_UAFV1_REGISTER_CMD_RESPONSE

0. Use UAF_CMD_STATUS_OK as status code

1. Add TAG_AUTHENTICATOR_ASSERTION

2. Add TAG_KEY_HANDLE if the key handle must be stored outside the Authenticator

The authenticator MUST NOT process a Register command without verifying the user (or enrolling

the user, if this is the first time the user has used the authenticator).

The authenticator MUST generate a unique UAuth key pair each time the Register command is called.

The authenticator SHOULD either store key handle in its internal secure storage or cryptographically

wrap it and export it to the ASM.

For silent authenticators, the key handle MUST never be stored on a Server, otherwise this would

enable tracking of users without providing the ability for users to clear key handles from the local

device.

If KeyID is not the key handle itself (e.g., such as in case of a second-factor roaming authenticator) –

it MUST be a unique and unguessable byte array with a maximum length of 32 bytes. It MUST be

unique within the scope of the AAID.

In the case of bound authenticators implementing a different command interface, the ASM could

generate a temporary KeyID and provide it as input to the authenticator in a Register command and

change it to the final KeyID (e.g., derived from the public key) when the authenticator has completed

the Register command execution.

NOTE – If the KeyID is generated randomly (instead of, for example, being derived from a key handle or the
public key) – it should be stored inside RawKeyHandle so that it can be accessed by the authenticator while
processing the Sign command.

If the authenticator does not support SignCounter or RegCounter it MUST set these to 0 in

TAG_UAFV1_KRD. The RegCounter MUST be set to 0 when a factory reset for the authenticator

is performed. The SignCounter MUST be set to 0 when a factory reset for the authenticator is

performed.

C.5.3 Sign command

This command generates a UAF assertion. This assertion can be further verified by a Server which

has a prior registration with this authenticator.

C.5.3.1 Command structure

 TLV structure Description

1 UINT16 Tag TAG_UAFV1_SIGN_CMD

1.1 UINT16 Length Length of Command

1.2 UINT16 Tag TAG_AUTHENTICATOR_INDEX

1.2.1 UINT16 Length Length of AuthenticatorIndex (must be 0x0001)

122 Rec. ITU-T X.1277.2 (04/2023)

 TLV structure Description

1.2.2
UINT8

AuthenticatorIndex
Authenticator Index

1.3 UINT16 Tag TAG_APPID (optional)

1.3.1 UINT16 Length Length of AppID

1.3.2 UINT8[] AppID AppID (max 512 bytes)

1.4 UINT16 Tag TAG_FINAL_CHALLENGE_HASH

1.4.1 UINT16 Length Length of Final Challenge Hash

1.4.2
UINT8[]

FinalChallengeHash
(binary value of) Final Challenge Hash provided by ASM (max 32 bytes)

1.5 UINT16 Tag TAG_TRANSACTION_CONTENT (optional)

1.5.1 UINT16 Length Length of Transaction Content

1.5.2
UINT8[]

TransactionContent
(binary value of) Transaction Content provided by the ASM

1.5 UINT16 Tag

TAG_TRANSACTION_CONTENT_HASH (optional and mutually exclusive

with TAG_TRANSACTION_CONTENT). This TAG is only allowed for

authenticators not able to display the transaction text, i.e., authenticator with

tcDisplay=0x0003 (i.e., flags

TRANSACTION_CONFIRMATION_DISPLAY_ANY and

TRANSACTION_CONFIRMATION_DISPLAY_PRIVILEGED_SOFTWARE

are set).

1.5.1 UINT16 Length Length of Transaction Content Hash

1.5.2
UINT8[]

TransactionContentHash
(binary value of) Transaction Content Hash provided by the ASM

1.6 UINT16 Tag TAG_KEYHANDLE_ACCESS_TOKEN

1.6.1 UINT16 Length Length of KHAccessToken

1.6.2
UINT8[]

KHAccessToken
(binary value of) KHAccessToken provided by ASM (max 32 bytes)

1.7 UINT16 Tag TAG_USERVERIFY_TOKEN (optional)

1.7.1 UINT16 Length Length of the User Verification Token

1.7.2
UINT8[]

VerificationToken
User Verification Token

1.8 UINT16 Tag TAG_KEYHANDLE (optional, multiple occurrences permitted)

 Rec. ITU-T X.1277.2 (04/2023) 123

 TLV structure Description

1.8.1 UINT16 Length Length of KeyHandle

1.8.2 UINT8[] KeyHandle (binary value of) key handle

C.5.3.2 Command response

 TLV

structure
Description

1 UINT16 Tag TAG_UAFV1_SIGN_CMD_RESPONSE

1.1
UINT16

Length
Entire Length of Command Response

1.2 UINT16 Tag TAG_STATUS_CODE

1.2.1
UINT16

Length
Status Code Length

1.2.2 UINT16 Value Status code returned by authenticator

1.3

(choice 1)
UINT16 Tag

TAG_USERNAME_AND_KEYHANDLE (optional, multiple occurances)

This TLV tag can be used to convey multiple (>=1) {Username, Keyhandle} entries.

Each occurance of TAG_USERNAME_AND_KEYHANDLE contains one pair.

If this tag is present, TAG_AUTHENTICATOR_ASSERTION must not be present

1.3.1
UINT16

Length
Length of the structure

1.3.2 UINT16 Tag TAG_USERNAME

1.3.2.1
UINT16

Length
Length of Username

1.3.2.2
UINT8[]

Username
Username

1.3.3 UINT16 Tag TAG_KEYHANDLE

1.3.3.1
UINT16

Length
Length of KeyHandle

1.3.3.2
UINT8[]

KeyHandle
(binary value of) key handle

1.3

(choice 2)
UINT16 Tag

TAG_AUTHENTICATOR_ASSERTION (optional)

If this tag is present, TAG_USERNAME_AND_KEYHANDLE must not be present

1.3.1
UINT16

Length
Assertion Length

124 Rec. ITU-T X.1277.2 (04/2023)

 TLV

structure
Description

1.3.2
UINT8[]

Assertion
Authentication assertion generated by the authenticator (see clause C.3.2.2).

C.5.3.3 Status codes

• UAF_CMD_STATUS_OK

• UAF_CMD_STATUS_ERR_UNKNOWN

• UAF_CMD_STATUS_ACCESS_DENIED

• UAF_CMD_STATUS_USER_NOT_ENROLLED

• UAF_CMD_STATUS_USER_CANCELLED

• UAF_CMD_STATUS_CANNOT_RENDER_TRANSACTION_CONTENT

• UAF_CMD_STATUS_PARAMS_INVALID

• UAF_CMD_STATUS_KEY_DISAPPEARED_PERMANENTLY

• UAF_CMD_STATUS_TIMEOUT

• UAF_CMD_STATUS_USER_NOT_RESPONSIVE

• UAF_CMD_STATUS_USER_LOCKOUT

C.5.3.4 Command description

NOTE – First-factor authenticators should implement this command in two stages.

The first stage will be executed only if the authenticator finds out that there are multiple key handles

after filtering with the KHAccessToken. In this stage, the authenticator must return a list of usernames

along with corresponding key handles.

In the second stage, after the user selects a username, this command will be called with a single key

handle and will return a UAF assertion based on this key handle.

If a second-factor authenticator is presented with more than one valid key handles, it must exercise

only the first one and ignore the rest.

The command is implemented in two stages to ensure that only one assertion can be generated for

each command invocation.

Authenticators must take the following steps:

If the command structure is invalid (e.g., cannot be parsed correctly), return

UAF_CMD_STATUS_PARAMS_INVALID.

1. If this authenticator has a transaction confirmation display, and is able to display the AppID –

make sure Command.TAG_APPID is provided, and show it on the display when verifying

the user. Return UAF_CMD_STATUS_PARAMS_INVALID if Command.TAG_APPID is

not provided in such case.

o Update Command.KHAccessToken by mixing it with Command.TAG_APPID. An

example of such a mixing function is a cryptographic hash function.

▪ Command.KHAccessToken=hash(Command.KHAccessToken |

Command.TAG_APPID)

2. If TransactionContent is not empty

o If this is a silent authenticator, then return UAF_CMD_STATUS_ACCESS_DENIED

 Rec. ITU-T X.1277.2 (04/2023) 125

o If the authenticator does not support transaction confirmation (it has set

TransactionConfirmationDisplay to 0 in the response to a GetInfo Command), then

return UAF_CMD_STATUS_ACCESS_DENIED

o If the authenticator has a built-in transaction confirmation display and the Authenticator

implements displaying transaction text before user verification, then show

Command.TransactionContent and Command.TAG_APPID (optional) on display and

wait for the user to confirm it by passing user verification (see step below):

▪ Return UAF_CMD_STATUS_USER_NOT_RESPONSIVE if the user does not

respond.

▪ Return UAF_CMD_STATUS_USER_CANCELLED if the user cancels the

transaction.

▪ Return

UAF_CMD_STATUS_CANNOT_RENDER_TRANSACTION_CONTENT if the

provided transaction content cannot be rendered.

▪ Compute hash of TransactionContent

▪ TAG_UAFV1_SIGNED_DATA.TAG_TRANSACTION_CONTENT_HASH

= hash(Command.TransactionContent)

▪ Set TAG_UAFV1_SIGNED_DATA.AuthenticationMode to 0x02

3. If the user is already enrolled with the authenticator (such as biometric enrollment, PIN setup,

etc.) then verify the user. If the verification has already been done in one of the previous

commands, make sure that Command.TAG_USERVERIFY_TOKEN is a valid token.

 If the user is locked out (e.g., too many failed attempts to get verified) and the authenticator

cannot automatically trigger unblocking, return UAF_CMD_STATUS_USER_LOCKOUT.

o If the user does not respond to the request to get verified – return

UAF_CMD_STATUS_USER_NOT_RESPONSIVE

o If verification fails – return UAF_CMD_STATUS_ACCESS_DENIED

o If the user explicitly cancels the operation – return

UAF_CMD_STATUS_USER_CANCELLED

4. If the user is not enrolled then return UAF_CMD_STATUS_USER_NOT_ENROLLED

NOTE – This should not occur as the Uauth key must be protected by the authenticator's user verification
method. If the authenticator supports alternative user verification methods (e.g., alternative password and

fingerprint verification and the alternative password must be provided before enrolling a finger and only the
finger print is verified as part of the Register or Sign operation, then the authenticator should automatically
and implicitly ask the user to enroll the modality required in the operation (instead of just returning an error).

5. Unwrap all provided key handles from Command.TAG_KEYHANDLE values using

Wrap.sym

o If this is a first-factor roaming authenticator:

▪ If Command.TAG_KEYHANDLE are provided, then the items in this list are

KeyIDs. Use these KeyIDs to locate key handles stored in internal storage

▪ If no Command.TAG_KEYHANDLE are provided – unwrap all key handles stored

in internal storage

 If no RawKeyHandles are found – return

UAF_CMD_STATUS_KEY_DISAPPEARED_PERMANENTLY.

6. Filter RawKeyHandles with Command.KHAccessToken (RawKeyHandle.KHAccessToken

== Command.KHAccessToken)

126 Rec. ITU-T X.1277.2 (04/2023)

7. If the number of remaining RawKeyHandles is 0, then fail with

UAF_CMD_STATUS_ACCESS_DENIED

8. If number of remaining RawKeyHandles is > 1

o If this authenticator has a user interface and wants to use it for this purpose: Ask the user

which of the usernames he wants to use for this operation. Select the related

RawKeyHandle and jump to step #8.

o If this is a second-factor authenticator, then choose the first RawKeyHandle only and

jump to step #8.

o Copy {Command.KeyHandle, RawKeyHandle.username} for all remaining

RawKeyHandles into TAG_USERNAME_AND_KEYHANDLE tag.

▪ If this is a first-factor roaming authenticator, then the returned

TAG_USERNAME_AND_KEYHANDLEs must be ordered by the key handle

registration date (the latest-registered key handle must come the latest).

NOTE – If two or more key handles with the same username are found, a first-factor roaming authenticator
may only keep the one that is registered most recently and delete the rest. This avoids having unusable (old)
private key in the authenticator which (surprisingly) might become active after deregistering the newly
generated one.

o Copy TAG_USERNAME_AND_KEYHANDLE into

TAG_UAFV1_SIGN_CMD_RESPONSE and return

9. If number of remaining RawKeyHandles is 1

o If the Uauth key related to the RawKeyHandle cannot be used or disappeared and cannot

be restored – return UAF_CMD_STATUS_KEY_DISAPPEARED_PERMANENTLY.

o Create TAG_UAFV1_SIGNED_DATA and set

TAG_UAFV1_SIGNED_DATA.AuthenticationMode to 0x01

o If TransactionContent is not empty

▪ If the authenticator has a built-in transaction confirmation display and the

authenticator implements displaying transaction text after user verification, then

show Command.TransactionContent and Command.TAG_APPID (optional) on

display and wait for the user to confirm it:

▪ Return UAF_CMD_STATUS_USER_NOT_RESPONSIVE if the user does not

respond.

▪ Return UAF_CMD_STATUS_USER_CANCELLED if the user cancels the

transaction.

▪ Return

UAF_CMD_STATUS_CANNOT_RENDER_TRANSACTION_CONTENT if

the provided transaction content cannot be rendered.

▪ Compute hash of TransactionContent

▪ TAG_UAFV1_SIGNED_DATA.TAG_TRANSACTION_

CONTENT_HASH = hash(Command.TransactionContent)

▪ Set TAG_UAFV1_SIGNED_DATA.AuthenticationMode to 0x02

o If TransactionContent is not set, but TransactionContentHash is not empty

▪ If this is a silent authenticator, then return

UAF_CMD_STATUS_ACCESS_DENIED

▪ If the conditions for receiving TransactionContentHash are not satisfied (if the

authenticator's TransactionConfirmationDisplay is NOT set to 0x0003 in the

 Rec. ITU-T X.1277.2 (04/2023) 127

response to a GetInfo Command), then return

UAF_CMD_STATUS_PARAMS_INVALID

▪ Perform the following steps

▪ TAG_UAFV1_SIGNED_DATA.TAG_TRANSACTION_CONTENT_HASH

= Command.TransactionContentHash

▪ Set TAG_UAFV1_SIGNED_DATA.AuthenticationMode to 0x02

o Create TAG_UAFV1_AUTH_ASSERTION

▪ Fill in the rest of TAG_UAFV1_SIGNED_DATA fields

▪ Perform the following steps

▪ Increment SignCounter and put into TAG_UAFV1_SIGNED_DATA

▪ Copy all the mandatory fields (see clause C.3.2.2)

▪ If TAG_UAFV1_SIGNED_DATA.AuthenticationMode == 0x01 – set

TAG_UAFV1_SIGNED_DATA.TAG_TRANSACTION_CONTENT_HASH.

Length to 0

▪ Sign TAG_UAFV1_SIGNED_DATA with UAuth.priv

 If these steps take longer than expected by the authenticator – return

UAF_CMD_STATUS_TIMEOUT.

o Put the entire TLV structure for TAG_UAFV1_AUTH_ASSERTION as the value of

TAG_AUTHENTICATOR_ASSERTION

o Copy TAG_AUTHENTICATOR_ASSERTION into

TAG_UAFV1_SIGN_CMD_RESPONSE and return

Authenticator MUST NOT process Sign command without verifying the user first.

Authenticator MUST NOT reveal Username without verifying the user first.

Bound authenticators MUST NOT process Sign command without validating KHAccessToken first.

Bound authenticators implementing a different command interface, MAY implement a different

method for binding keys to a specific AppID, if such method provides at least the same security level

(i.e., relying the OS/platform to determine the calling App). See [b-UAFASM] section

"KHAccessToken" for more details.

UAuth.priv keys MUST never leave Authenticator's security boundary in plaintext form. UAuth.priv

protection boundary is specified in Metadata.keyProtection field in Metadata

[b-MetadataStatement]).

If Authenticator's Metadata indicates that it does support Transaction Confirmation Display – it

MUST display provided transaction content in this display and include the hash of content inside

TAG_UAFV1_SIGNED_DATA structure.

Authenticators supporting Transaction Confirmation Display SHALL either display the transaction

text before user verification (see step #2) or after it (see step 9.3). Displaying the transaction text

before user verification is preferred.

Silent Authenticators MUST NOT operate in first-factor mode in order to follow the assumptions

made in [SecRef]; . However, a native App or web page could "cache" the keyHandle or a Cookie

and hence would be considered a first-factor that could be combined with a Silent Authenticator

(when doing do).

If Authenticator does not support SignCounter, then it MUST set it to 0 in

TAG_UAFV1_SIGNED_DATA. The SignCounter MUST be set to 0 when a factory reset for the

Authenticator is performed, in order to follow the assumptions made in [b-SecRef].

128 Rec. ITU-T X.1277.2 (04/2023)

Some Authenticators might support Transaction Confirmation display functionality not inside the

Authenticator but within the boundaries of ASM. Typically, these are software-based Transaction

Confirmation displays. When processing the Sign command with a given transaction such

Authenticators should assume that they do have a builtin Transaction Confirmation display and

should include the hash of transaction content in the final assertion without displaying anything to

the user. Also, such Authenticator's Metadata file MUST clearly indicate the type of Transaction

Confirmation display. Typically, the flag of Transaction Confirmation display will be

TRANSACTION_CONFIRMATION_DISPLAY_ANY or

TRANSACTION_CONFIRMATION_DISPLAY_PRIVILEGED_SOFTWARE. See [b-Registry]

for flags describing Transaction Confirmation Display type.

C.5.4 Deregister command

This command deletes a registered UAF credential from authenticator.

C.5.4.1 Command structure

 TLV Structure Description

1 UINT16 Tag TAG_UAFV1_DEREGISTER_CMD

1.1 UINT16 Length Entire Command Length

1.2 UINT16 Tag TAG_AUTHENTICATOR_INDEX

1.2.1 UINT16 Length Length of AuthenticatorIndex (must be 0x0001)

1.2.2
UINT8

AuthenticatorIndex
Authenticator Index

1.3 UINT16 Tag TAG_APPID (optional)

1.3.1 UINT16 Length Length of AppID

1.3.2 UINT8[] AppID AppID (max 512 bytes)

1.4 UINT16 Tag TAG_KEYID

1.4.1 UINT16 Length Length of KeyID

1.4.2 UINT8[] KeyID (binary value of) KeyID provided by ASM

1.5 UINT16 Tag TAG_KEYHANDLE_ACCESS_TOKEN

1.5.1 UINT16 Length Length of KeyHandle Access Token

1.5.2
UINT8[]

KHAccessToken

(binary value of) KeyHandle Access Token provided by ASM (max

32 bytes)

 Rec. ITU-T X.1277.2 (04/2023) 129

C.5.4.2 Command response

 TLV Structure Description

1 UINT16 Tag TAG_UAFV1_DEREGISTER_CMD_RESPONSE

1.1 UINT16 Length Entire Length of Command Response

1.2 UINT16 Tag TAG_STATUS_CODE

1.2.1 UINT16 Length Status Code Length

1.2.2 UINT16 StatusCode StatusCode returned by Authenticator

C.5.4.3 Status codes

• UAF_CMD_STATUS_OK

• UAF_CMD_STATUS_ERR_UNKNOWN

• UAF_CMD_STATUS_ACCESS_DENIED

• UAF_CMD_STATUS_CMD_NOT_SUPPORTED

• UAF_CMD_STATUS_PARAMS_INVALID

C.5.4.4 Command description

Authenticator must take the following steps:

If the command structure is invalid (e.g., cannot be parsed correctly), return

UAF_CMD_STATUS_PARAMS_INVALID.

1. If this authenticator has a Transaction Confirmation display and is able to display AppID,

then make sure Command.TAG_APPID is provided. Return

UAF_CMD_STATUS_PARAMS_INVALID if Command.TAG_APPID is not provided in

such case.

o Update Command.KHAccessToken by mixing it with Command.TAG_APPID. An

example of such mixing function is a cryptographic hash function.

▪ Command.KHAccessToken=hash(Command.KHAccessToken |

Command.TAG_APPID)

2. If this authenticator does not store key handles internally, then return

UAF_CMD_STATUS_CMD_NOT_SUPPORTED

3. If the length of TAG_KEYID is zero (i.e., 0000 Hex), then

o if TAG_APPID is provided, then

▪ for each KeyHandle that maps to TAG_APPID do

1. if RawKeyHandle.KHAccessToken == Command.KHAccessToken, then delete

KeyHandle from internal storage, otherwise, note an error occured

▪ if an error occured, then return UAF_CMD_STATUS_ACCESS_DENIED

o if TAG_APPID is not provided, then delete all KeyHandles from internal storage where

RawKeyHandle.KHAccessToken == Command.KHAccessToken

o Go to step 5

130 Rec. ITU-T X.1277.2 (04/2023)

4. If the length of TAG_KEYID is NOT zero, then

o Find KeyHandle that matches Command.KeyID

o Ensure that RawKeyHandle.KHAccessToken == Command.KHAccessToken

▪ If not, then return UAF_CMD_STATUS_ACCESS_DENIED

o Delete this KeyHandle from internal storage

5. Return UAF_CMD_STATUS_OK

NOTE – The authenticator must unwrap the relevant KeyHandles using Wrap.sym as needed.

Bound authenticators MUST NOT process Deregister command without validating KHAccessToken

first.

Bound authenticators implementing a different command interface, MAY implement a different

method for binding keys to a specific AppID, if such method provides at least the same security level

(i.e., relying the OS/platform to determine the calling App). See [b-UAFASM] section

"KHAccessToken" for more details.

Deregister command SHOULD NOT explicitly reveal whether the provided keyID was registered or

not.

NOTE – This command never returns

UAF_CMD_STATUS_KEY_DISAPPEARED_PERMANENTLY as this could reveal the keyID
registration status.

C.5.5 OpenSettings command

This command instructs the Authenticator to open its built-in settings UI (e.g., change PIN, enroll

new fingerprint, etc).

The Authenticator must return UAF_CMD_STATUS_CMD_NOT_SUPPORTED if it does not

support such functionality.

If the command structure is invalid (e.g., cannot be parsed correctly), the authenticator must return

UAF_CMD_STATUS_PARAMS_INVALID.

C.5.5.1 Command structure

 TLV Structure Description

1 UINT16 Tag TAG_UAFV1_OPEN_SETTINGS_CMD

1.1 UINT16 Length Entire Command Length

1.2 UINT16 Tag TAG_AUTHENTICATOR_INDEX

1.2.1 UINT16 Length Length of AuthenticatorIndex (must be 0x0001)

1.2.2 UINT8 AuthenticatorIndex Authenticator Index

C.5.5.2 Command Response

 TLV Structure Description

1 UINT16 Tag TAG_UAFV1_OPEN_SETTINGS_CMD_RESPONSE

1.1 UINT16 Length Entire Length of Command Response

 Rec. ITU-T X.1277.2 (04/2023) 131

 TLV Structure Description

1.2 UINT16 Tag TAG_STATUS_CODE

1.2.1 UINT16 Length Status Code Length

1.2.2 UINT16 StatusCode StatusCode returned by Authenticator

C.5.5.3 Status Codes

• UAF_CMD_STATUS_OK

• UAF_CMD_STATUS_ERR_UNKNOWN

• UAF_CMD_STATUS_CMD_NOT_SUPPORTED

• UAF_CMD_STATUS_PARAMS_INVALID

C.6 KeyIDs and key handles

There are four types of authenticators defined in this Recommendation, and due to their specifics they

behave differently while processing commands. One of the main differences between them is how

they store and process key handles. This section tries to clarify it by describing the behavior of every

type of authenticator during the processing of relevant command.

C.6.1 First-factor bound authenticator

Register

Command

Authenticator does not store key handles. Instead KeyHandle is always returned to ASM

and stored in ASM database.

KeyID is a randomly generated 32 bytes number (or simply the hash of the KeyHandle or

the public key).

Sign

Command

When there is no user session (no cookies, a clear machine) the Server does not provide
any KeyID (since it does not know which KeyIDs to provide). In this scenario the ASM

selects all key handles and passes them to Authenticator.

During step-up authentication (when there is a user session) Server provides relevant
KeyIDs. ASM selects key handles that correspond to provided KeyIDs and pass to

Authenticator.

Deregister

Command

Since Authenticator does not store key handles, then there is nothing to delete inside

Authenticator.

ASM finds the KeyHandle corresponding to provided KeyID and deletes it.

C.6.2 2ndF bound authenticator

Register

Command

Authenticator might not store key handles. Instead, the KeyHandle might be returned to

the ASM and stored in the ASM database.

KeyID is a randomly generated 32 bytes number (or simply the hash of the KeyHandle or

the public key).

Sign

Command

This Authenticator cannot operate without Server providing KeyIDs. Thus it cannot be
used when there is no user session (no cookies, a clear machine); unless, for example, the

user identifies their account and the server is then able to provide a KeyID.

During step-up authentication (when there is a user session) Server provides relevant
KeyIDs. ASM selects key handles that correspond to provided KeyIDs and pass to

Authenticator.

132 Rec. ITU-T X.1277.2 (04/2023)

Deregister

Command

If the Authenticator does not store key handles, then there is nothing to delete inside it.

The ASM finds the KeyHandle corresponding to provided KeyID and deletes it.

C.6.3 First-factor roaming authenticator

Register

Command

Authenticator stores key handles inside its internal storage. KeyHandle is never returned

back to ASM.

KeyID is a randomly generated 32 bytes number (or simply the hash of KeyHandle)

Sign

Command

When there is no user session (no cookies, a clear machine) Server does not provide any
KeyID (since it does not know which KeyIDs to provide). In this scenario Authenticator

uses all key handles that correspond to the provided AppID.

During step-up authentication (when there is a user session) Server provides relevant
KeyIDs. Authenticator selects key handles that correspond to provided KeyIDs and uses

them.

Deregister

Command
Authenticator finds the right KeyHandle and deletes it from its storage.

C.6.4 2ndF roaming authenticator

Register

Command

Typically, neither the authenticator nor the ASM store key handles. Instead, the
KeyHandle is sent to the Server (in place of KeyID) and stored in User's record. From

Server's perspective it's a KeyID. In fact, the KeyID is identical to the KeyHandle.

Sign

Command

This authenticator cannot operate without server providing KeyIDs. Thus, it cannot be

used when there is no user session (no cookies, a clear machine).

During step-up authentication server provides KeyIDs which are in fact key handles.

Authenticator finds the right KeyHandle and uses it.

Deregister

Command

Since authenticator and ASM do not store key handles, then there is nothing to delete on

client side.

C.7 Access control for commands

Authenticators MAY implement various mechanisms to guard access to privileged commands.

The following table summarizes the access control requirements for each command.

All UAF authenticators MUST satisfy the access control requirements defined below.

Authenticator vendors MAY offer additional security mechanisms.

Terms used in the table:

• NoAuth – no access control

• UserVerify – explicit user verification

• KHAccessToken – MUST be known to the caller (or alternative method with similar security

level MUST be used)

• KeyHandleList – MUST be known to the caller

• KeyID – MUST be known to the caller

 Rec. ITU-T X.1277.2 (04/2023) 133

Table – Access control for commands

Command
First-factor bound

authenticator

2ndF bound

authenticator

First-factor

roaming

authenticator

2ndF roaming

authenticator

GetInfo NoAuth NoAuth NoAuth NoAuth

OpenSettings NoAuth NoAuth NoAuth NoAuth

Register UserVerify UserVerify UserVerify UserVerify

Sign

UserVerify
KHAccessToken

KeyHandleList

UserVerify
KHAccessToken

KeyHandleList

UserVerify

KHAccessToken

UserVerify
KHAccessToken

KeyHandleList

Deregister
KHAccessToken

KeyID

KHAccessToken

KeyID

KHAccessToken

KeyID

KHAccessToken

KeyID

C.8 Considerations

C.8.1 Algorithms and key sizes

The proposed algorithms and key sizes are chosen such that compatibility to TPMv2 is possible.

C.8.2 Indicating the authenticator model

Some authenticators (e.g., TPMv2) do not have the ability to include their model identifier (i.e.,

vendor ID and model name) in attested messages (i.e., the to-be-signed part of the registration

assertion). The TPM's endorsement key certificate typically contains that information directly or at

least it allows the model to be derived from the endorsement key certificate.

The relying party expects the ability to cryptographically verify the authenticator model (i.e., AAID).

If the authenticator cannot securely include its model (i.e., AAID) in the registration assertion (i.e.,

in the KRD object), we require the ECDAA-Issuers public key (ipkk) to be dedicated to one single

authenticator model (identified by its AAID).

Using this method, the issuer public key is uniquely related to one entry in the Metadata Statement

and can be used by the server to get a cryptographic proof of the Authenticator model.

C.9 Relationship to other standards

The existing standard specifications most relevant to UAF authenticator are [b-TPM], [b-TEE] and

[b-SecureElement].

Hardware modules implementing these standards may be extended to incorporate UAF functionality

through their extensibility mechanisms such as by loading secure applications (trustlets, applets, etc.)

into them. Modules which do not support such extensibility mechanisms cannot be fully leveraged

within UAF framework.

C.9.1 TEE

In order to support UAF inside TEE a special Trustlet (trusted application running inside TEE) may

be designed which implements UAF Authenticator functionality specified in this Recommendation

and also implements some kind of user verification technology (biometric verification, PIN or

anything else).

An additional ASM must be created which knows how to work with the Trustlet.

134 Rec. ITU-T X.1277.2 (04/2023)

C.9.2 Secure elements

In order to support UAF inside Secure Element (SE) a special Applet (trusted application running

inside SE) may be designed which implements UAF Authenticator functionality specified in this

Recommendation and also implements some kind of user verification technology (biometric

verification, PIN or similar mechanisms).

An additional ASM must be created which knows how to work the Applet.

C.9.3 TPM

TPMs typically have a built-in attestation capability however the attestation model supported in TPMs

is currently incompatible with UAF's basic attestation model. The future enhancements of UAF may

include compatible attestation schemes.

Typically, TPMs also have a built-in PIN verification functionality which may be leveraged for UAF.

In order to support UAF with an existing TPM module, the vendor should write an ASM which:

• Translates UAF data to TPM data by calling TPM APIs

• Creates assertions using TPMs API

• Reports itself as a valid UAF authenticator to UAF client

A special AssertionScheme, designed for TPMs, must be also created (see [MetadataStatement]) and

published by Alliance. When Server receives an assertion with this AssertionScheme it will treat the

received data as TPM-generated data and will parse/validate it accordingly.

C.9.4 Unreliable transports

The command structures described in this Recommendation assume a reliable transport and provide

no support at the application-layer to detect or correct for issues such as unreliable ordering,

duplication, dropping or modification of messages. If the transport layer(s) between the ASM and

Authenticator are not reliable, the non-normative private contract between the ASM and

Authenticator may need to provide a means to detect and correct such errors.

C.10 Security guidelines

Category Guidelines

AppIDs and KeyIDs

Registered AppIDs and KeyIDs must not be returned by an authenticator in

plaintext, without first performing user verification.

If an attacker gets physical access to a roaming authenticator, then it should not

be easy to read out AppIDs and KeyIDs.

Attestation Private

Key

Authenticators must protect the attestation private key as a very sensitive asset.
The overall security of the authenticator depends on the protection level of this

key.

It is highly recommended to store and operate this key inside a tamper-resistant

hardware module, e.g., [b-SecureElement].

It is assumed by registration assertion schemes, that the authenticator has

exclusive control over the data being signed with the attestation key.

Authenticators must ensure that the attestation private key:

1. is only used to attest authentication keys generated and protected by the

authenticator, using the defined data structures, KeyRegistrationData.

2. is never accessible outside the security boundary of the authenticator.

Attestation must be implemented in a way such that two different relying parties
cannot link registrations, authentications or other transactions (see [b-

UAFProtocol]).

 Rec. ITU-T X.1277.2 (04/2023) 135

Category Guidelines

Certifications
Vendors should strive to pass common security standard certifications with
authenticators, such as [b-FIPS140-3 and similar. Passing such certifications will

positively impact the UAF implementation of the authenticator.

Cryptographic

(Crypto) Kernel

The crypto kernel is a module of the authenticator implementing cryptographic
functions (key generation, signing, wrapping, etc.) necessary for UAF, and

having access to UAuth.priv, Attestation Private Key and Wrap.sym.

For optimal security, this module should reside within the same security boundary
as the UAuth.priv, Att.priv and Wrap.sym keys. If it resides within a different
security boundary, then the implementation must guarantee the same level of

security as if they would reside within the same module.

It is highly recommended to generate, store and operate this key inside a trusted

execution environment [b-TEE].

In situations where physical attacks and side channel attacks are considered in the
threat model, it is highly recommended to use a tamper-resistant hardware

module.

Software-based authenticators must make sure to use state of the art code
protection and obfuscation techniques to protect this module, and whitebox

encryption techniques to protect the associated keys.

Authenticators need good random number generators using a high quality entropy

source, for:

1. generating authentication keys

2. generating signatures

3. computing authenticator-generated challenges

The authenticator's random number generator (RNG) should be such that it

cannot be disabled or controlled in a way that may cause it to generate predictable

outputs.

If the authenticator does not have sufficient entropy for generating strong random

numbers, it should fail safely.

See the section of this table regarding random numbers

KeyHandle
It is highly recommended to use authenticated encryption while wrapping key
handles with Wrap.sym. For example, Algorithms such as AES-GCM and AES-

CCM are most suitable for this operation.

Liveness Detection /
Presentation Attack

Detection

The user verification method should include liveness detection [b-
NSTCBiometrics], i.e., a technique to ensure that the sample submitted is actually

from a (live) user.

In the case of PIN-based matching, it is necessary to ensure that malware cannot

emulate PIN entry.

Matcher

By definition, the matcher component is part of the authenticator. This does not
impose any restrictions on the authenticator implementation, but implementers
need to make sure that there is a proper security boundary binding the matcher

and the other parts of the authenticator together.

Tampering with the matcher module may have significant security consequences.
It is highly recommended for this module to reside within the integrity boundaries

of the authenticator, and be capable of detecting tampering.

It is highly recommended to run this module inside a trusted execution

environment [b-TEE] or inside a secure element [b-SecureElement].

136 Rec. ITU-T X.1277.2 (04/2023)

Category Guidelines

Authenticators which have separated matcher and CryptoKernel modules should
implement mechanisms which would allow the CryptoKernel to securely receive

assertions from the matcher module indicating the user's local verification status.

Software based Authenticators (if not in trusted execution environment) must
make sure to use state of the art code protection and obfuscation techniques to

protect this module.

When an Authenticator receives an invalid UserVerificationToken it should treat

this as an attack, and invalidate the cached UserVerificationToken.

A UserVerificationToken should have a lifetime not exceeding 10 seconds.

Authenticators must implement anti-hammering protections for their matchers.

Biometrics based authenticators must protect the captured biometrics data (such
as fingerprints) as well as the reference data (templates), and make sure that the

biometric data never leaves the security boundaries of authenticators.

Matchers must only accept verification reference data enrolled by the user, i.e.,

they must not include any default PINs or default biometric reference data.

Private Keys
(UAuth.priv and
Attestation Private

Key)

This Recommendation requires (a) the attestation key to be used for attestation
purposes only and (b) the authentication keys to be used for authentication
purposes only. The related to-be-signed objects (i.e., Key Registration Data and

SignData) are designed to reduce the likelihood of such attacks:

1. They start with a tag marking them as specific objects

2. They include an authenticator-generated random value. As a consequence, all

to-be-signed objects are unique with a very high probability.

3. They have a structure allowing only very few fields containing uncontrolled
values, i.e., values which are neither generated nor verified by the

authenticator

Random Numbers

The Authenticator uses its random number generator to generate authentication
key pairs, client side challenges, and potentially for creating ECDSA signatures.
Weak random numbers will make vulnerable to certain attacks. It is important for

the Authenticator to work with good random numbers only.

The (pseudo-)random numbers used by authenticators should successfully pass
the randomness test specified in [b-Coron99] and they should follow the

guidelines given in [b-SP800-90b].

Additionally, authenticators may choose to incorporate entropy provided by the

Server via the ServerChallenge sent in requests (see [b-UAFProtocol]).

When mixing multiple entropy sources, a suitable mixing function should be

used, such as those described in [IETF RFC 4086].

RegCounter

The RegCounter provides an anti-fraud signal to the relying parties. Using the
RegCounter, the relying party can detect authenticators which have been

excessively registered.

If the RegCounter is implemented: ensure that:

1. it is increased by any registration operation and

2. it cannot be manipulated/modified otherwise (e.g., via API calls, etc.)

A registration counter should be implemented as a global counter, i.e., one
covering registrations to all AppIDs. This global counter should be increased by 1

upon any registration operation.

NOTE – The RegCounter value should not be decreased by Deregistration

operations.

 Rec. ITU-T X.1277.2 (04/2023) 137

Category Guidelines

SignCounter

When an attacker is able to extract a Uauth.priv key from a registered
authenticator, this key can be used independently from the original authenticator.

This is considered cloning of an authenticator.

Good protection measures of the Uauth private keys is one method to prevent
cloning authenticators. In some situations the protection measures might not be

sufficient.

If the Authenticator maintains a signature counter SignCounter, then the Server

would have an additional method to detect cloned authenticators.

If the SignCounter is implemented: ensure that:

1. It is increased by any authentication / transaction confirmation operation and

2. it cannot be manipulated/modified otherwise (e.g., API calls, etc.)

Signature counters should be implemented that are dedicated for each private key

in order to preserve the user's privacy.

A per-key SignCounter should be increased by 1, whenever the corresponding

UAuth.priv key signs an assertion.

A per-key SignCounter should be deleted whenever the corresponding UAuth key

is deleted.

If the authenticator is not able to handle many different signature counters, then a
global signature counter covering all private keys should be implemented. A
global SignCounter should be increased by a random positive integer value

whenever any of the UAuth.priv keys is used to sign an assertion.

NOTE – There are multiple reasons why the SignCounter value could be 0 in a
registration response. A SignCounter value of 0 in an authentication response

indicates that the authenticator does not support the SignCounter concept.

Transaction
Confirmation

Display

A transaction confirmation display must ensure that the user is presented with the
provided transaction content, e.g., not overlaid by other display elements and
clearly recognizable. See [b-CLICKJACKING] for some examples of threats and

potential counter-measures.

UAuth.priv

An authenticator must protect all UAuth.priv keys as its most sensitive assets.
The overall security of the authenticator depends significantly on the protection

level of these keys.

It is highly recommended that this key is generated, stored and operated inside a

trusted execution environment.

In situations where physical attacks and side channel attacks are considered
within the threat model, it is highly recommended to use a tamper-resistant

hardware module.

Authenticators must ensure that UAuth.priv keys:

1. are specific to the particular account at one relying party (relying party is

identified by an AppID)

2. are generated based on good random numbers with sufficient entropy. The

challenge provided by the Server during registration and authentication
operations should be mixed into the entropy pool in order to provide additional

entropy.

3. are never directly revealed, i.e., always remain in exclusive control of the

Authenticator

4. are only being used for the defined authentication modes, i.e.,

1. authenticating to the application (as identified by the AppID) they have been

generated for, or

138 Rec. ITU-T X.1277.2 (04/2023)

Category Guidelines

2. confirming transactions to the application (as identified by AppID) they have

been generated for, or

3. are only being used to create the defined data structures, i.e., KRD, SignData.

Username
A username must not be returned in plaintext in any condition other than the
conditions described for the SIGN command. In all other conditions usernames

must be stored within a KeyHandle.

Verification

Reference Data

The verification reference data, such as fingerprint templates or the reference
value of a PIN, are by definition part of the authenticator. This does not impose
any particular restrictions on the authenticator implementation, but implementers
need to make sure that there is a proper security boundary binding all parts of the

authenticator together.

Wrap.sym

If the authenticator has a wrapping key (Wrap.sym), then the authenticator must
protect this key as its most sensitive asset. The overall security of the

authenticator depends on the protection of this key.

Wrap.sym key strength must be equal or higher than the strength of secrets stored
in a RawKeyHandle. Refer to [b-SP800-57] and [b-SP800-38F] publications for
more information about choosing the right wrapping algorithm and implementing

it correctly.

It is highly recommended to generate, store and operate this key inside a trusted

execution environment.

In situations where physical attacks and side channel attacks are considered in the
threat model, it is highly recommended to use a tamper-resistant hardware

module.

If the authenticator uses Wrap.sym, it must ensure that unwrapping corrupted
KeyHandle and unwrapping data which has invalid contents (e.g., KeyHandle

from invalid origin) are indistinguishable to the caller.

 Rec. ITU-T X.1277.2 (04/2023) 139

Annex D

UAF application API and transport binding

(This annex forms an integral part of this Recommendation.)

This annex describes APIs and an interoperability profile for client applications to utilize UAF. This

includes methods of communicating with a UAF client for both web platform and Android

applications, transport requirements, and an HTTPS interoperability profile for sending UAF

messages to a compatible server.

The UAF technology replaces traditional username and password-based authentication solutions for

online services, with a stronger and simpler alternative. The core UAF protocol consists of four

conceptual conversations between a UAF client and Server: Registration, Authentication, Transaction

Confirmation, and Deregistration. As specified in the core protocol, these messages do not have a

defined network transport, or describe how application software that a user interfaces with can use

UAF. This Recommendation describes the API surface that a client application can use to

communicate with UAF client software, and transport patterns and security requirements for

delivering UAF Protocol messages to a remote server.

The reader should also be familiar with the Glossary of Terms [b-Glossary] and the UAF Protocol

specification [b-UAFProtocol].

D.1 Audience

This annex is of interest to client-side application authors that wish to utilize UAF, as well as

implementers of web browsers, browser plugins and clients, in that it describes the API surface they

need to expose to application authors.

D.2 Scope

This annex describes:

• The local ECMAScript [b-ECMA-262] API exposed by a UAF-enabled web browser to

client-side web applications.

• The mechanisms and APIs for Android [b-ANDROID] applications to discover and utilize a

shared UAF client service.

• The general security requirements for applications initiating and transporting UAF protocol

exchanges.

• An interoperability profile for transporting UAF messages over HTTPS [IETF RFC 2818].

The following are out of scope for this annex:

• The format and details of the underlying UAF Protocol messages

• APIs for, and any details of interactions between Server software and the server-side

application stack.

NOTE – The goal of describing standard APIs and an interoperability profile for the transport of UAF messages
here is to provide an example of how to develop a UAF-enabled application and to promote the ease of
integrating interoperable layers from different vendors to build a complete UAF solution. For any given
application instance, these particular patterns may not be ideal and are not mandatory. Applications may use
alternate transports, bundle UAF Protocol messages with other network data, or discover and utilize alternative
APIs as they see fit.

140 Rec. ITU-T X.1277.2 (04/2023)

D.3 Architecture

The overall architecture of the UAF protocol and its various operations is described in the UAF

Protocol Specification [b-UAFProtocol]. The following simplified architecture diagram illustrates the

interactions and actors this Recommendation is concerned with:

Figure D.1 – UAF application API architecture and transport layers

This annex describes the shaded components in Figure D.1.

D.3.1 Protocol conversation

The core UAF protocol consists of five conceptual phases:

• Discovery allows the relying party server to determine the availability of capabilities at the

client, including metadata about the available authenticators.

• Registration allows the client to generate and associate new key material with an account at

the relying party server, subject to policy set by the server and acceptable attestation that the

authenticator and registration matches that policy.

• Authentication allows a user to provide an account identifier, proof-of-possession of

previously registered key material associated with that identifier, and potentially other

attested data, to the relying party server.

• Transaction Confirmation allows a server to request that a client and authenticator with the

appropriate capabilities display some information to the user, request that the user

authenticate locally to their authenticator to confirm it, and provide proof-of-possession of

previously registered key material and an attestation of the confirmation back to the relying

party server.

• Deregistration allows a relying party server to tell an authenticator to forget selected locally

managed key material associated with that relying party in case such keys are no longer

considered valid by the relying party.

 Rec. ITU-T X.1277.2 (04/2023) 141

Discovery does not involve a protocol exchange with the Server. However, the information available

through the discovery APIs might be communicated back to the server in an application-specific

manner, such as by obtaining a UAF protocol request message containing an authenticator policy

tailored to the specific capabilities of the user device.

Although the UAF protocol abstractly defines the server as the initiator of requests, UAF client

applications working as described in this Recommendation will always transport UAF protocol

messages over a client-initiated request/response protocol such as HTTP.

The protocol flow from the point of view of the relying party client application for registration,

authentication, and transaction confirmation is as follows:

1. The client application either explicitly contacts the server to obtain a UAF Protocol Request

Message, or this message is delivered along with other client application content.

2. The client application invokes the appropriate API to pass the UAF protocol request message

asynchronously to the UAF client, and receives a set of callbacks.

3. The UAF client performs any necessary interactions with the user and authenticator(s) to

complete the request and uses a callback to either notify the client application of an error, or

to return a UAF response message.

4. The client application delivers the UAF response message to the server over a transport

protocol such as HTTP.

5. The server optionally returns an indication of the results of the operation and additional data

such as authorization tokens or a redirect.

6. The client application optionally uses the appropriate API to inform the UAF client of the

results of the operation. This allows the UAF client to perform "housekeeping" tasks for a

better user experience, e.g., by not attempting to use again later a key that the server refused

to register.

7. The client application optionally processes additional data returned to it in an application-

specific manner, e.g., processing new authorization tokens, redirecting the user to a new

resource or interpreting an error code to determine if and how it should retry a failed

operation.

Deregister does not involve a UAF protocol round-trip. If the relying party server instructs the client

application to perform a deregistration, the client application simply delivers the UAF protocol

Request message to the UAF client using the appropriate API. The UAF client does not return the

results of a deregister operation to the relying party client application or Server.

UAF protocol messages are JSON structures, but client applications are discouraged from modifying

them. These messages may contain embedded cryptographic integrity protections and any

modifications might invalidate the messages from the point of view of the UAF client or Server.

D.4 Common definitions

These elements are shared by several APIs and layers.

D.4.1 UAF status codes

This table lists UAF protocol status codes.

NOTE – These codes indicate the result of the UAF operation at the Server. They do not represent the HTTP
[IETF RFC 7230] layer or other transport layers. These codes are intended for consumption by both the client-
side web app and UAF client to inform application-specific error reporting, retry and housekeeping behavior.

142 Rec. ITU-T X.1277.2 (04/2023)

Code Meaning

1200 OK. Operation completed

1202
Accepted. Message accepted, but not completed at this time. The RP may need time to process the
attestation, run risk scoring, etc. The server SHOULD NOT send an authenticationToken with a

1202 response

1400 Bad Request. The server did not understand the message

1401
Unauthorized. The userid must be authenticated to perform this operation, or this KeyID is not

associated with this UserID.

1403 Forbidden. The userid is not allowed to perform this operation. Client SHOULD NOT retry

1404 Not Found.

1408 Request Timeout.

1480 Unknown AAID. The server was unable to locate authoritative metadata for the AAID.

1481

Unknown KeyID. The server was unable to locate a registration for the given UserID and KeyID

combination.

This error indicates that there is an invalid registration on the user's device. It is recommended that

UAF client deletes the key from local device when this error is received.

1490
Channel Binding Refused. The server refused to service the request due to a missing or mismatched

channel binding(s).

1491
Request Invalid. The server refused to service the request because the request message nonce was

unknown, expired or the server has previously serviced a message with the same nonce and user ID.

1492

Unacceptable Authenticator. The authenticator is not acceptable according to the server's policy, for
example because the capability registry used by the server reported different capabilities than client-

side discovery.

1493 Revoked Authenticator. The authenticator is considered revoked by the server.

1494
Unacceptable Key. The key used is unacceptable. Perhaps it is on a list of known weak keys or uses

insecure parameter choices.

1495
Unacceptable Algorithm. The server believes the authenticator to be capable of using a stronger

mutually-agreeable algorithm than was presented in the request.

1496 Unacceptable Attestation. The attestation(s) provided were not accepted by the server.

1497
Unacceptable Client Capabilities. The server was unable or unwilling to use required capabilities

provided supplementally to the authenticator by the client software.

1498
Unacceptable Content. There was a problem with the contents of the message and the server was

unwilling or unable to process it.

1500 Internal Server Error

D.5 Shared definitions

NOTE – This section defines a number of JSON structures, specified with WebIDL [b-WebIDL-ED]. These
structures are shared among APIs for multiple target platforms.

 Rec. ITU-T X.1277.2 (04/2023) 143

D.5.1 UAFMessage dictionary

The UAFMessage dictionary is a wrapper object that contains the raw UAF protocol Message and

additional JSON data that may be used to carry application-specific data for use by either the client

application or UAF client.

dictionary UAFMessage {

 required DOMString uafProtocolMessage;

 Object additionalData;

};

D.5.1.1 Dictionary UAFMessage members

uafProtocolMessage of type required DOMString

This key contains the UAF protocol Message that will be processed by the UAF client or

Server. Modification by the client application may invalidate the message. A client application

MAY examine the contents of a message, for example, to determine if a message is still fresh.

Details of the structure of the message can be found in the UAF protocol Specification

[UAFProtocol].

additionalData of type Object

This key allows the Server or client application to attach additional data for use by the UAF

client as a JSON object, or the UAF client or client application to attach additional data for

use by the client application.

D.5.2 Version interface

Describes a version of the UAF protocol or UAF client for compatibility checking.

interface Version {

 readonly attribute unsigned short major;

 readonly attribute unsigned short minor;

};

D.5.2.1 Attributes

major of type unsigned short, readonly

Major version number.

minor of type unsigned short, readonly

Minor version number.

D.5.3 Authenticator interface

Used by several phases of UAF, the Authenticator interface exposes a subset of both verified metadata

[b-MetadataStatement] and transient information about the state of an available authenticator.

interface Authenticator {

 readonly attribute DOMString title;

144 Rec. ITU-T X.1277.2 (04/2023)

 readonly attribute AAID aaid;

 readonly attribute DOMString description;

 readonly attribute Version[] supportedUAFVersions;

 readonly attribute DOMString assertionScheme;

 readonly attribute unsigned short authenticationAlgorithm;

 readonly attribute unsigned short[] attestationTypes;

 readonly attribute unsigned long userVerification;

 readonly attribute unsigned short keyProtection;

 readonly attribute unsigned short matcherProtection;

 readonly attribute unsigned long attachmentHint;

 readonly attribute boolean isSecondFactorOnly;

 readonly attribute unsigned short tcDisplay;

 readonly attribute DOMString tcDisplayContentType;

 readonly attribute DisplayPNGCharacteristicsDescriptor[] tcDisplayPNGCharacteristics;

 readonly attribute DOMString icon;

 readonly attribute DOMString[] supportedExtensionIDs;

};

D.5.3.1 Attributes

title of type DOMString, readonly

A short, user-friendly name for the authenticator.

NOTE 1 – This text must be localized for current locale.

If the ASM does not return a title in the AuthenticatorInfo object [b-UAFASM], the UAF client must

generate a title based on the other fields in AuthenticatorInfo, because title must not be empty.

aaid of type AAID, readonly

The Authenticator Attestation ID, which identifies the type and batch of the authenticator. See

[b-UAFProtocol] for the definition of the AAID structure.

description of type DOMString, readonly

A user-friendly description string for the authenticator.

NOTE 2 – This text must be localized for current locale.

It is intended to be displayed to the user. It might deviate from the description specified in the

authenticator's metadata statement [b-MetadataStatement].

If the ASM does not return a description in the AuthenticatorInfo object [b-UAFASM], the UAF

client must generate a meaningful description to the calling App based on the other fields in

AuthenticatorInfo, because description must not be empty.

supportedUAFVersions of type array of Version, readonly

Indicates the UAF protocol Versions supported by the authenticator.

assertionScheme of type DOMString, readonly

 Rec. ITU-T X.1277.2 (04/2023) 145

The assertion scheme the authenticator uses for attested data and signatures.

Assertion scheme identifiers are defined in the UAF Registry of Predefined Values. [b-

UAFRegistry]

authenticationAlgorithm of type unsigned short, readonly

Supported Authentication Algorithm. The value MUST be related to constants with prefix

ALG_SIGN.

attestationTypes of type array of unsigned short, readonly

A list of supported attestation types. The values are defined in [b-UAFRegistry] by the

constants with the prefix TAG_ATTESTATION.

userVerification of type unsigned long, readonly

A set of bit flags indicating the user verification methods supported by the authenticator. The

algorithm for combining the flags is defined in [b-UAFProtocol], section 3.1.12.1. The values

are defined by the constants with the prefix USER_VERIFY.

keyProtection of type unsigned short, readonly

A set of bit flags indicating the key protection used by the authenticator. The values are

defined by the constants with the prefix KEY_PROTECTION.

matcherProtection of type unsigned short, readonly

A set of bit flags indicating the matcher protection used by the authenticator. The values are

defined by the constants with the prefix MATCHER_PROTECTION.

attachmentHint of type unsigned long, readonly

A set of bit flags indicating how the authenticator is currently connected to the User Device.

The values are defined by the constants with the prefix ATTACHMENT_HINT.

NOTE – Because the connection state and topology of an authenticator may be transient, these values are only

hints that can be used in applying server-supplied policy to guide the user experience. This can be used to, for
example, prefer a device that is connected and ready for authenticating or confirming a low-value transaction,
rather than one that is more secure but requires more user effort.

These values are not reflected in authenticator metadata and cannot be relied upon by the

relying party, although some models of authenticator may provide attested measurements with

similar semantics as part of UAF protocol messages.

isSecondFactorOnly of type boolean, readonly

Indicates whether the authenticator can only be used as a second-factor.

tcDisplay of type unsigned short, readonly

A set of bit flags indicating the availability and type of transaction confirmation display. The

values are defined by the constants with the prefix

TRANSACTION_CONFIRMATION_DISPLAY.

This value MUST be 0 if transaction confirmation is not supported by the authenticator.

tcDisplayContentType of type DOMString, readonly

The MIME content-type supported by the transaction confirmation display, such as text/plain

or image/png.

This value MUST be non-empty if transaction confirmation is supported (tcDisplay is non-

zero).

146 Rec. ITU-T X.1277.2 (04/2023)

tcDisplayPNGCharacteristics of type array of DisplayPNGCharacteristicsDescriptor,

readonly

The set of PNG characteristics currently supported by the transaction confirmation display (if

any).

NOTE – See [b-MetadataStatement] for additional information on the format of this field and the definition of

the DisplayPNGCharacteristicsDescriptor structure.

This list MUST be non-empty if PNG-image based transaction confirmation is supported, i.e.,

tcDisplay is non-zero and tcDisplayContentType is image/png.

icon of type DOMString, readonly

A PNG [b-PNG] icon for the authenticator, encoded as a data: url [IETF RFC 2397].

NOTE – If the ASM does not return an icon in the AuthenticatorInfo object [b-UAFASM], the UAF client

must set a default icon, because icon must not be empty.

supportedExtensionIDs of type array of DOMString, readonly

A list of supported UAF protocol extension identifiers. These MAY be vendor-specific.

D.5.3.2 Authenticator interface constants

A number of constants are defined for use with the bit flag fields userVerification, keyProtection,

attachmentHint, and tcDisplay. To avoid duplication and inconsistencies, these are defined in the

Registry of Predefined Values [b-Registry].

D.5.4 DiscoveryData dictionary

dictionary DiscoveryData {

 required Version[] supportedUAFVersions;

 required DOMString clientVendor;

 required Version clientVersion;

 required Authenticator[] availableAuthenticators;

};

D.5.4.1 Dictionary DiscoveryData Members

supportedUAFVersions of type array of required Version

A list of the UAF protocol versions supported by the client, most-preferred first.

clientVendor of type required DOMString

The vendor of the UAF client.

clientVersion of type required Version

The version of the UAF client. This is a vendor-specific version for the client software, not a

UAF version.

availableAuthenticators of type array of required Authenticator

An array containing Authenticator dictionaries describing the available UAF authenticators.

The order is not significant. The list MAY be empty.

 Rec. ITU-T X.1277.2 (04/2023) 147

D.5.5 ErrorCode interface

interface ErrorCode {

 const short NO_ERROR = 0x0;

 const short WAIT_USER_ACTION = 0x01;

 const short INSECURE_TRANSPORT = 0x02;

 const short USER_CANCELLED = 0x03;

 const short UNSUPPORTED_VERSION = 0x04;

 const short NO_SUITABLE_AUTHENTICATOR = 0x05;

 const short PROTOCOL_ERROR = 0x06;

 const short UNTRUSTED_FACET_ID = 0x07;

 const short KEY_DISAPPEARED_PERMANENTLY = 0x09;

 const short AUTHENTICATOR_ACCESS_DENIED = 0x0c;

 const short INVALID_TRANSACTION_CONTENT = 0x0d;

 const short USER_NOT_RESPONSIVE = 0x0e;

 const short INSUFFICIENT_AUTHENTICATOR_RESOURCES = 0x0f;

 const short USER_LOCKOUT = 0x10;

 const short USER_NOT_ENROLLED = 0x11;

 const short SYSTEM_INTERRUPTED = 0x12;

 const short UNKNOWN = 0xFF;

};

D.5.5.1 Constants

NO_ERROR of type short

The operation completed with no error condition encountered. Upon receipt of this code, an

application should no longer expect an associated UAFResponseCallback to fire.

WAIT_USER_ACTION of type short

Waiting on user action to proceed. For example, selecting an authenticator in the client user

interface, performing user verification, or completing an enrollment step with an

authenticator.

INSECURE_TRANSPORT of type short

window.location.protocol is not "https" or the DOM contains insecure mixed content.

USER_CANCELLED of type short

The user declined any necessary part of the interaction to complete the registration.

UNSUPPORTED_VERSION of type short

The UAFMessage does not specify a protocol version supported by this UAF client.

NO_SUITABLE_AUTHENTICATOR of type short

148 Rec. ITU-T X.1277.2 (04/2023)

No authenticator matching the authenticator policy specified in the UAFMessage is available

to service the request, or the user declined to consent to the use of a suitable authenticator.

PROTOCOL_ERROR of type short

A violation of the UAF protocol occurred. The interaction may have timed out; the origin

associated with the message may not match the origin of the calling DOM context, or the

protocol message may be malformed or tampered with.

UNTRUSTED_FACET_ID of type short

The client declined to process the operation because the caller's calculated facet identifier was

not found in the trusted list for the application identifier specified in the request message.

KEY_DISAPPEARED_PERMANENTLY of type short

The UAuth key disappeared from the authenticator and cannot be restored.

NOTE – The RP App might want to re-register the authenticator in this case.

AUTHENTICATOR_ACCESS_DENIED of type short

The authenticator denied access to the resulting request.

INVALID_TRANSACTION_CONTENT of type short

Transaction content cannot be rendered, e.g., format does not fit authenticator's need.

NOTE – The transaction content format requirements are specified in the authenticator's metadata statement.

USER_NOT_RESPONSIVE of type short

The user took too long to follow an instruction, e.g., didn't swipe the finger within the accepted

time.

INSUFFICIENT_AUTHENTICATOR_RESOURCES of type short

Insufficient resources in the authenticator to perform the requested task.

USER_LOCKOUT of type short

The operation failed because the user is locked out and the authenticator cannot automatically

trigger an action to change that. For example, an authenticator could allow the user to enter

an alternative password to re-enable the use of fingerprints after too many failed finger

verification attempts. This error will be reported if such method either does not exist or the

ASM / authenticator cannot automatically trigger it.

USER_NOT_ENROLLED of type short

The operation failed because the user is not enrolled to the authenticator and the authenticator

cannot automatically trigger user enrollment.

SYSTEM_INTERRUPTED of type short

The system interrupted the operation. Retry might make sense.

UNKNOWN of type short

An error condition not described by the above-listed codes.

D.6 DOM API

This section describes the API details exposed by a web browser or browser plugin to a client-side

web application executing in a Document [b-DOM] context.

 Rec. ITU-T X.1277.2 (04/2023) 149

D.6.1 Feature detection

UAF DOM APIs are rooted in a new fido object, a property of window.navigator code; the existence

and properties of which MAY be used for feature detection.

EXAMPLE 1

<script>

if(!!window.navigator.fido.uaf) { var useUAF = true; }

</script>

D.6.2 UAF Interface

The window.navigator.fido.uaf interface is the primary means of interacting with the UAF client. All

operations are asynchronous.

interface uaf {

 void discover (DiscoveryCallback completionCallback, ErrorCallback errorCallback);

 void checkPolicy (UAFMessage message, ErrorCallback cb);

 void processUAFOperation (UAFMessage message, UAFResponseCallback

completionCallback, ErrorCallback errorCallback);

 void notifyUAFResult (int responseCode, UAFMessage uafResponse);

};

D.6.2.1 Methods

discover

Discover if the user's client software and devices support UAF and if authenticator capabilities

are available that it may be willing to accept for authentication.

Parameter Type Nullable Optional Description

completionCallback DiscoveryCallback ✘ ✘ The callback that receives
DiscoveryData from the UAF

client.

errorCallback ErrorCallback ✘ ✘ A callback function to receive error

and progress events.

Return type: void

checkPolicy

Ask the browser or browser plugin if it would be able to process the supplied request message

without prompting the user.

Unlike other operations using an ErrorCallback, this operation MUST always trigger the

callback and return NO_ERROR if it believes that the message can be processed and a suitable

authenticator matching the embedded policy is available, or the appropriateErrorCode value

otherwise.

NOTE – Because this call should not prompt the user, it should not incur a potentially disrupting context-
switch even if the UAF client is implemented out-of-process.

150 Rec. ITU-T X.1277.2 (04/2023)

Parameter Type Nullable Optional Description

message UAFMessage ✘ ✘ A UAFMessage containing the policy and

operation to be tested.

cb ErrorCallback ✘ ✘ The callback function which receives the

status of the operation.

Return type: void

processUAFOperation

Invokes the UAF client, transferring control to prompt the user as necessary to complete the

operation, and returns to the callback a message in one of the supported protocol versions

indicated by the UAFMessage.

Parameter Type Nullable Optional Description

message UAFMessage ✘ ✘ The UAFMessage to be

used by the client software.

completionCallback UAFResponseCallback ✘ ✘ The callback that receives the
client response

UAFMessage from the
UAF client, to be delivered to

the relying party server.

errorCallback ErrorCallback ✘ ✘ A callback function to receive
error and progress events

from the UAF client.

Return type: void

notifyUAFResult

Used to indicate the status code resulting from a UAF message delivered to the remote server.

Applications MUST make this call when they receive a UAF status code from a server. This

allows the UAF client to perform housekeeping for a better user experience, for example not

attempting to use keys that a server refused to register.

NOTE – If, and how, a status code is delivered by the server, is application and transport specific. A non-
normative example can be found below in the HTTPS Transport Interoperability Profile.

Parameter Type Nullable Optional Description

responseCode int ✘ ✘ The uafResult field of a ServerResponse.

uafResponse UAFMessage ✘ ✘ The UAFMessage to which this

responseCode applies.

Return type: void

D.6.3 UAFResponseCallback

A UAFResponseCallback is used upon successful completion of an asynchronous operation by the

UAF client to return the protocol response message to the client application for transport to the server.

NOTE – This callback is also called in the case of deregistration completion, even though the response object
is empty then.

 Rec. ITU-T X.1277.2 (04/2023) 151

callback UAFResponseCallback = void (UAFMessage uafResponse);

D.6.3.1 Callback UAFResponseCallback Parameters

uafResponse of type UAFMessage

The message and any additional data representing the UAF client's response to the server's

request message.

D.6.4 DiscoveryCallback

A DiscoveryCallback is used upon successful completion of an asynchronous discover operation by

the UAF client to return the DiscoveryData to the client application.

callback DiscoveryCallback = void (DiscoveryData data);

D.6.4.1 Callback DiscoveryCallback Parameters

data of type DiscoveryData

Describes the current state of UAF client software and authenticators available to the

application.

D.6.5 ErrorCallback

An ErrorCallback is used to return progress and error codes from asynchronous operations performed

by the UAF client.

callback ErrorCallback = void (ErrorCode code);

D.6.5.1 Callback ErrorCallback Parameters

code of type ErrorCode

A value from the ErrorCode interface indicating the result of the operation.

For certain operations, an ErrorCallback may be called multiple times, for example with the

WAIT_USER_ACTION code.

D.6.6 Privacy considerations for the DOM API

Differences in the capabilities on a user device may (among many other characteristics) allow a server

to "fingerprint" a remote client and attempt to persistently identify it, even in the absence of any

explicit session state maintenance mechanism. Although it may contribute some amount of signal to

servers attempting to fingerprint clients, the attributes exposed by the Discovery API are designed to

have a large anonymity set size and should present little or no qualitatively new privacy risk.

Nonetheless, an unusual configuration of Authenticators may be sufficient to uniquely identify a user.

It is recommended that user agents expose the Discovery API to all applications without requiring

explicit user consent by default, but user agents or Client implementers should provide users with the

means to opt-out of discovery if they wish to do so for privacy reasons.

D.6.7 Security considerations for the DOM API

D.6.7.1 Insecure mixed content

When UAF APIs are called and operations are performed in a Document context in a web user agent,

such a context MUST NOT contain insecure mixed content. The exact definition insecure mixed

152 Rec. ITU-T X.1277.2 (04/2023)

content is specific to each user agent, but generally includes any script, plugins and other "active"

content, forming part of or with access to the DOM, that was not itself loaded over HTTPS.

The UAF APIs must immediately trigger the ErrorCallback with the INSECURE_TRANSPORT

code and cease any further processing if any APIs defined in this Recommendation are invoked by a

Document context that was not loaded over a secure transport and/or which contains insecure mixed

content.

D.6.7.2 The same origin policy, HTTP redirects and cross-origin content

When retrieving or transporting UAF protocol messages over HTTP, it is important to maintain

consistency among the web origin of the document context and the origin embedded in the UAF

protocol message. Mismatches may cause the protocol to fail or enable attacks against the protocol.

Therefore:

UAF messages should not be transported using methods that opt-out of the Same Origin Policy

[b-SOP], for example, using <script src="url"> to non-same-origin URLs or by setting the Access-

Control-Allow-Origin header at the server.

When transporting UAF messages using XMLHttpRequest the client should not follow redirects that

are to URLs with a different origin than the requesting document.

UAF messages should not be exposed in HTTP responses where the entire response body parses as

valid ECMAScript. Resources exposed in this manner may be subject to unauthorized interactions by

hostile applications hosted at untrusted origins through cross-origin embedding using <script

src="url">.

Web applications should not share UAF messages across origins through channels such as

postMessage() [b-webmessaging].

D.6.8 Implementation notes for browser/plugin authors

Web applications utilizing UAF depend on services from the web browser as a trusted platform. The

APIs for web applications do not provide a means to assert an origin as an application identity for the

purposes of operations as this will be provided to the UAF client by the browser based on its

privileged understanding of the actual origin context.

The browser must enforce that the web origin communicated to the UAF client as the application

identity is accurate.

The browser must also enforce that resource instances containing insecure mixed-content cannot

utilize the UAF DOM APIs.

D.7 Android Intent API

This section describes how an Android [b-ANDROID] client application can locate and communicate

with a conforming Client installation operating on the host device.

NOTE – As with web applications, a variety of integration patterns are possible on the Android platform. The
API described here allows an app to communicate with a shared UAF client on the user device in a loosely-

coupled fashion using Android Intents.

D.7.1 Android-specific definitions

D.7.1.1 org.fidoalliance.uaf.permissions.FIDO_CLIENT

UAF clients running on Android versions prior to Android 5 MUST declare the

org.fidoalliance.uaf.permissions.FIDO_CLIENT permission and they also MUST declare the related

"uses-permission". See the below example of this permission expressed in an Android app manifest

file <permission/> and <uses-permission/> element.

 Rec. ITU-T X.1277.2 (04/2023) 153

UAF clients running on Android version 5 or later MUST NOT declare this permission and they also

MUST NOT declare the related "uses-permission".

EXAMPLE 2

<permission

 android:name="org.fidoalliance.uaf.permissions.FIDO_CLIENT"

 android:label="Act as a FIDO Client."

 android:description="This application acts as a FIDO Client. It may

 access authentication devices available on the system, create and

 delete FIDO registrations on behalf of other applications."

 android:protectionLevel="dangerous"

/>

<uses-permission android:name="org.fidoalliance.uaf.permissions.FIDO_CLIENT"/>

NOTE – Since Clients perform security relevant tasks (e.g., verifying the AppID/FacetID relation and asking
for user consent), users should carefully select the Clients they use. Requiring apps acting as Clients to declare

and use this permission allows them to be identified as such to users.

There are not any Client resources needing "protection" based upon the FIDO_CLIENT permission.

The reason for having Client declare the FIDO_CLIENT permission is solely that users should be

able to carefully decide which UAF clients to install.

Android version 5 changed the way it handles the case where multiple apps declare the same

permission [b-Android5Changes]; it blocks the installation of all subsequent apps declaring that

permission.

The best way to flag the fact that an app may act as a client needs to be determined for Android

version 5.

D.7.1.2 org.fidoalliance.uaf.permissions.ACT_AS_WEB_BROWSER

Android applications requesting services from the UAF client can do so under their own identity, or

they can act as the user's agent by explicitly declaring an RFC6454 [b-IETF RFC 6454] serialization

of the remote server's origin when invoking the UAF client.

An application that is operating on behalf of a single entity MUST NOT set an explicit origin.

Omitting an explicit origin will cause the UAF client to determine the caller's identity as android:apk-

key-hash:<hash-of-public-key>. The UAF client will then compare this with the list of authorized

application facets for the target AppID and proceed if it is listed as trusted.

NOTE – See the UAF Protocol Specification [b-UAFProtocol] for more information on application and facet

identifiers.

If the application is explicitly intended to operate as the user's agent in the context of an arbitrary

number of remote applications (as when implementing a full web browser) it may set its origin to the

RFC6454 [b-IETF RFC 6454] Unicode serialization of the remote application's Origin. The

application MUST satisfy the necessary conditions described in Transport Security Requirements for

authenticating the remote server before setting the origin.

Use of the origin parameter requires the application to declare the

org.fidoalliance.uaf.permissions.ACT_AS_WEB_BROWSER permission, and the UAF client

MUST verify that the calling application has this permission before processing the operation.

EXAMPLE 3

<permission

154 Rec. ITU-T X.1277.2 (04/2023)

 android:name="org.fidoalliance.uaf.permissions.ACT_AS_WEB_BROWSER"

 android:label="Act as a browser for FIDO registrations."

 android:description="This application may act as a web browser,

 creating new and accessing existing FIDO registrations for any domain."

 android:protectionLevel="dangerous"

/>

D.7.1.3 channelBindings

In the DOM API, the browser or browser plugin is responsible for supplying any available channel

binding information to the Client, but an Android application, as the direct owner of the transport

channel, must provide this information itself.

The channelBindings data structure is:

Map<String,String>

with the keys as defined for the ChannelBinding structure in the UAF Protocol Specification. [b-

UAFProtocol]

The use of channel bindings for TLS helps assure the server that the channel over which UAF protocol

messages are transported is the same channel the legitimate client is using and that messages have

not been forwarded through a malicious party.

UAF defines support for the tls-unique and tls-server-end-point bindings from [IETF RFC 5929], as

well as server certificate and ChannelID [b-ChannelID] bindings. The client should supply all channel

binding information available to it.

Missing or invalid channel binding information may cause a relying party server to reject a

transaction.

D.7.1.4 UAFIntentType enumeration

This enumeration describes the type of operation for the intent implementing the Android API.

NOTE – UAF uses only a single intent to simplify behavior in the situation even where multiple clients may
be installed. In such a case, the user will be prompted which of the installed UAF clients should be used to
handle an implicit intent.

If the user selected to make different UAF clients the default for different intents representing

different phases, it could produce inconsistent results or fail to function at all.

If the application workflow requires multiple calls to the client (and it usually does) the application

should read the componentName from the intent extras it receives from startActivityForResult() and

pass it to setComponent() for subsequent intents to be sure they are explicitly resolved to the same

UAF client.

enum UAFIntentType {

 "DISCOVER",

 "DISCOVER_RESULT",

 "CHECK_POLICY",

 "CHECK_POLICY_RESULT",

 "UAF_OPERATION",

 "UAF_OPERATION_RESULT",

 Rec. ITU-T X.1277.2 (04/2023) 155

 "UAF_OPERATION_COMPLETION_STATUS"

};

Enumeration description

DISCOVER Discovery

DISCOVER_RESULT Discovery results

CHECK_POLICY
Perform a no-op check if a message could be

processed.

CHECK_POLICY_RESULT Check Policy results.

UAF_OPERATION

Process a Registration, Authentication,
Transaction Confirmation or Deregistration

message.

UAF_OPERATION_RESULT UAF Operation results.

UAF_OPERATION_COMPLETION_STATUS

Inform the UAF client of the completion status of
a Registration, Authentication, Transaction

Confirmation or Deregistration message.

D.7.2 org.fidoalliance.intent.FIDO_OPERATION Intent

All interactions between a UAF client and an application on Android takes place via a single Android

intent:

org.fidoalliance.intent.FIDO_OPERATION

The specifics of the operation are carried by the MIME media type and various extra data included

with the intent.

The operations described in this Recommendation are of MIME media type

application/fido.uaf_client+json and this MUST be set as the type attribute of any intent.

NOTE – Client applications can discover if a UAF client (or several) is available on the system by using
PackageManager.queryIntentActivities(Intent intent, int flags) with this intent to see if any activities are
available.

Extra Type Description

UAFIntentType String One of the UAFIntentType enumeration values describing the intent.

discoveryData String DiscoveryData JSON dictionary.

componentName String
The component name of the responding UAF client. It must be serialized

using ComponentName.flattenString()

errorCode short ErrorCode value for operation

message String UAFMessage request to test or process, depending on UAFIntentType.

http://developer.android.com/reference/android/content/pm/PackageManager.html#queryIntentActivities(android.content.Intent,%20int)
http://developer.android.com/reference/android/content/ComponentName.html#flattenToString()

156 Rec. ITU-T X.1277.2 (04/2023)

Extra Type Description

origin String

An RFC6454 Web Origin [b-IETF RFC 6454] string for the request, if the
caller has the

org.fidoalliance.permissions.ACT_AS_WEB_BROWSER permission.

channelBindings String The JSON dictionary of channel bindings for the operation.

responseCode short The uafResult field of a ServerResponse.

The following table shows what intent extras are expected, depending on the value of the

UAFIntentType extra:

UAFIntentType value
discover

yData

componen

tName

errorC

ode

messag

e
origin

channelBi

ndings

respons

eCode

"DISCOVER"

"DISCOVER_RESULT"
OPTION

AL

REQUIRE

D

REQUI

RED

"CHECK_POLICY" REQUI

RED

OPTIO

NAL

"CHECK_POLICY_RESULT" REQUIRE

D

REQUI

RED

"UAF_OPERATION" REQUI

RED

OPTIO

NAL

REQUIRE

D

"UAF_OPERATION_RESUL

T"
 REQUIRE

D

REQUI

RED

OPTIO

NAL

"UAF_OPERATION_COMPL

ETION_STATUS"
 REQUI

RED
 REQUI

RED

D.7.2.1 UAFIntentType.DISCOVER

This Android intent invokes the UAF client to discover the available authenticators and capabilities.

The UAF client generally will not show a UI associated with the handling of this intent, but

immediately return the JSON structure. The calling application cannot depend on this however, as

the UAF client MAY show a UI for privacy purposes, allowing the user to choose whether and which

authenticators to disclose to the calling application.

This intent MUST be invoked with startActivityForResult().

D.7.2.2 UAFIntentType.DISCOVER_RESULT

An intent with this type is returned by the UAF client as an argument to onActivityResult() in

response to receiving an intent of type DISCOVER.

If the resultCode passed to onActivityResult() is RESULT_OK, and the intent extra errorCode is

NO_ERROR, this intent has an extra, discoveryData, containing a String representation of a

DiscoveryData JSON dictionary with the available authenticators and capabilities.

 Rec. ITU-T X.1277.2 (04/2023) 157

D.7.2.3 UAFIntentType.CHECK_POLICY

This intent invokes the UAF client to discover if it would be able to process the supplied message

without prompting the user. The action handling this intent SHOULD NOT show a UI to the user.

This intent requires the following extras:

• message, containing a String representation of a UAFMessage representing the request

message to test.

• origin, an OPTIONAL extra that allows a caller with the

org.fidoalliance.uaf.permissions.ACT_AS_WEB_BROWSER permission to supply an

RFC6454 Origin [b-IETF RFC 6454] string to be used instead of the application's own

identity.

This intent MUST be invoked with startActivityForResult().

D.7.2.4 UAFIntentType.CHECK_POLICY_RESULT

This Android intent is returned by the UAF client as an argument to onActivityResult() in response

to receiving a CHECK_POLICY intent.

In addition to the resultCode passed to onActivityResult(), this intent has an extra, errorCode,

containing an ErrorCode value indicating the specific error condition or NO_ERROR if the UAF

client could process the message.

D.7.2.5 UAFIntentType.UAF_OPERATION

This Android intent invokes the UAF client to process the supplied request message and return a

response message ready for delivery to the UAF server.

The sender SHOULD assume that the UAF client will display a user interface allowing the user to

handle this intent, for example, prompting the user to complete their verification ceremony.

This intent requires the following extras:

• message, containing a String representation of a UAFMessage representing the request

message to process.

• channelBindings, containing a String representation of a JSON dictionary as defined by the

ChannelBinding structure in the UAF Protocol Specification [b-UAFProtocol].

• origin, an OPTIONAL parameter that allows a caller with the

org.fidoalliance.uaf.permissions.ACT_AS_WEB_BROWSER permission to supply an

RFC6454 Origin [b-IETF RFC 6454] string to be used instead of the application's own

identity.

This intent MUST be invoked with startActivityForResult().

D.7.2.6 UAFIntentType.UAF_OPERATION_RESULT

This intent is returned by the UAF client as an argument to onActivityResult(), in response to

receiving a UAF_OPERATION intent.

If the resultCode passed to onActivityResult() is RESULT_CANCELLED, this intent will have an

extra, errorCode parameter, containing an ErrorCode value indicating the specific error condition.

If the resultCode passed to onActivityResult() is RESULT_OK, and the errorCode is NO_ERROR,

this intent has a message, containing a String representation of a UAFMessage, being the UAF

protocol response message to be delivered to the Server.

158 Rec. ITU-T X.1277.2 (04/2023)

D.7.2.7 UAFIntentType.UAF_OPERATION_COMPLETION_STATUS

This intent MUST be delivered to the UAF client to indicate the processing status of a UAF message

delivered to the remote server. This is especially important as a new registration may be considered

by the client to be in a pending state until it is communicated that the server accepted it.

D.7.3 Alternate Android AIDL Service UAF client Implementation

The Android Intent API can also be implemented using Android AIDL services as an alternative

transport mechanism to Android Intents. While Android Intents work at the UI layer, Android AIDL

services are performed at a lower level. This can ease integration with relying party apps, since UAF

requests can be fulfilled without interfering with existing relying party app UI and application

lifecycle behavior.

The UAF Android AIDL service needs to be defined in the UAF client manifest. This is done using

the <service> tag for an Android AIDL service instead of the <activity> tag in Android Intents. Just

as with Android intents, the manifest definition for the AIDL service uses an intent filter (note

org.fidoalliance.aidl.FIDO_OPERATION versus org.fidoalliance.intent.FIDO_OPERATION) to

identify itself as a UAF client to the relying party app:

EXAMPLE 4

<service android:name="foo" >

<intent-filter>

<action android:name="org.fidoalliance.aidl.FIDO_OPERATION" />

<category android:name="android.intent.category.DEFAULT" />

<data android:mimeType="application/fido.uaf_client+json" />

</intent-filter>

</service>

Once the relying party app chooses a UAF client from the list discovered by

PackageManager.queryIntentServices(), the relying party app and the UAF client share the following

AIDL interface to service UAF requests:

EXAMPLE 5

package org.fidoalliance.aidl

oneway interface IUAFOperation

{

 void process(in Intent uafRequest, in IUAFResponseListener uafResponseListener);

}

NOTE – Android AIDL services use Binder.getCallingUid() instead of Activity.getCallingActivity() with

Android Intents to identify the caller and obtain FacetID information.

For consistency, the Intents for the Android AIDL service are the same as defined in the Android

Intent specification in the UAF standard. In process(), the uafRequest parameter is the Intent that

would be passed to startActivityForResult(). The uafResponseListener parameter is a listener

interface that receives the result. The following AIDL defines this interface:

EXAMPLE 6

package org.fidoalliance.aidl

interface IUAFResponseListener

 Rec. ITU-T X.1277.2 (04/2023) 159

{

 void onResult(in Intent uafResponse);

}

In the listener, the uafResponse parameter is the Intent that would be passed to onActivityResult.

D.7.4 Security considerations for Android implementations

Android applications may choose to implement the user-interactive portion of in at least two ways:

• by authoring an Android activity using Android-native user interface components, or

• with an HTML-based experience by loading an Android WebView and injecting the UAF

DOM APIs with addJavaScriptInterface().

An application that chooses to inject the UAF interface into a WebView MUST follow all appropriate

security considerations that apply to usage of the DOM APIs, and those that apply to user agent

implementers.

In particular, the content of a WebView into which an API will be injected MUST be loaded only

from trusted local content or over a secure channel as specified in transport security requirements and

must not contain insecure mixed-content.

Applications SHOULD NOT declare the ACT_AS_WEB_BROWSER permission unless they need

to act as the user's agent for an un-predetermined number of third-party applications. Where an

Android application has an explicit relationship with a relying party application(s), the preferred

method of access control is for those applications to list the Android application's identity as a trusted

facet. See the UAF Protocol Specification [b-UAFProtocol] for more information on application and

facet identifiers.

To protect against a malicious application registering itself as a UAF client, relying party applications

can obtain the identity of the responding application, and utilize it in risk management decisions

around the authentication or transaction events.

For example, a relying party might maintain a list of application identities known to belong to

malware and refuse to accept operations completed with such clients, or a list of application identities

of known-good clients that receive preferred risk-scoring.

Relying party applications running on Android versions prior to Android 5 MUST make sure that a

UAF client has the "uses-permission" for org.fidoalliance.uaf.permissions.FIDO_CLIENT. Relying

party applications running on Android 5 SHOULD NOT implement this check.

NOTE – Relying party applications SHOULD implement the check on Android prior to 5 by using the package

manager to verify that the Client indeed declared the org.fidoalliance.uaf.permissions.FIDO_CLIENT
permission (see example below). Relying party applications SHOULD NOT use a "uses-permission" for

FIDO_CLIENT.

EXAMPLE 7

boolean checkFIDOClientPermission(String packageName)

 throws NameNotFoundException {

 for (String requestedPermission :

 getPackageManager().getPackageInfo(packageName,

 PackageManager.GET_PERMISSIONS).requestedPermissions) {

 if (requestedPermission.matches(

 "org.fidoalliance.uaf.permissions.FIDO_CLIENT"))

 return true;

160 Rec. ITU-T X.1277.2 (04/2023)

 }

 return false;

}

Relying party applications which use the AIDL service implementation of the UAF client Intent API

MUST use an explicit intent to bind to the AIDL service. Failing to do so may result in binding to an

unexpected and possibly malicious service, because intent filter resolution depends on application

installation order and intent filter priority. Android 5.0 and later will throw a SecurityException if an

implicit intent is used, but earlier versions do not enforce this behavior.

D.8 iOS Custom URL API

This section describes how an iOS relying party application can locate and communicate with a

conforming UAF client installed on the host device.

NOTE – Because of sandboxing and no true multitasking support, the iOS operating system offers very limited
ways to do interprocess communication (IPC).

Any IPC solution for a UAF client must be able to:

1. Identify the calling app in order to provide FacetID approval.

2. Allow transition to another app without user intervention

Currently the only IPC method on iOS that satisfies both of these requirements is custom URL

handlers.

Custom URL handlers use the iOS operating system to handle URL requests from the sender, launch

the receiving app, and then pass the request to the receiving app for processing. By enabling custom

URL handlers for two different applications, it is possible to achieve bidirectional IPC between them-

-one custom URL handler to send data from app A to app B and another custom URL handler to send

data from app B to app A.

Because iOS has no true multitasking, there must be an app transition to process each request and

response. Too many app transitions can negatively affect the user experience, so relying party

applications must carefully choose when it is necessary to query the UAF client.

D.8.1 iOS-specific definitions

D.8.1.1 X-Callback-URL transport

When the relying party application communicates with the UAF client, it sends a URL with the

standard x-callback-url format (see x-callback-url.com):

EXAMPLE 8

FidoUAFClient1://x-callback-url/[UAFxRequestType]?x-success=[RelyingPartyURL]://x-

callback-url/

 [UAFxResponseType]&

 key=[SecretKey]&

 state=[STATE]&

 json=[Base64URLEncodedJSON]

• FidoUAFClient1 is the iOS custom URL scheme used by UAF clients. As specified in the x-

callback-url standard, version information for the transport layer is encoded in the URL

scheme itself (in this case, FidoUAFClient1). This is so other applications can check for

support for the 1.0 version by using the canOpenURL call.

http://x-callback-url.com/

 Rec. ITU-T X.1277.2 (04/2023) 161

• [UAFxRequestType] is the type that should be used for request operations, which are

described later in this Recommendation.

• [RelyingPartyURL] is the URL that the relying party app has registered in order to receive

the response. According to the x-callback-url standard, this is defined using the x-success

parameter.

• [UAFxResponseType] is the type that should be used for response operations, which are

described later in this Recommendation.

• [SecretKey] is a base64url-encoded, without padding, random key generated for each request

by the calling application.

The response from the UAF client will be encrypted with this key in order to prevent rogue

applications from obtaining information by spoofing the return URL.

• [STATE] is data that can be used to match the request with the response.

• Finally [Base64URLEncodedJSON] contains the message to be sent to the UAF client.

Items are stored in JSON format and then base64url-encoded without padding.

For UAF clients, the custom URL scheme handler entrypoint is the openURL() function:

Objective-C

EXAMPLE 9

(BOOL)application:(UIApplication *)application openURL:(NSURL *)url

sourceApplication:(NSString *)sourceApplication annotation:(id)annotation

SWIFT

EXAMPLE 10

func application(_ application: UIApplication, open url: URL, sourceApplication: String?,

annotation: Any) -> Bool {

 ...

}

Here, the URL above is received via the url parameter. For security considerations, the

sourceApplication parameter contains the iOS bundle ID of the relying party application. This bundle

ID MUST be used to verify the application FacetID.

Conversely, when the UAF client responds to the request, it sends the following URL back in standard

x-callback-url format:

EXAMPLE 11

[RelyingPartyURL]://x-callback-url/

 [UAFxResponseType]?

 state=[STATE]&

 json=[Base64URLEncodedJWE]

The parameters in the response are similar to those of the request, except that the

[Base64URLEncodedEncryptedJSON] parameter is encrypted with the public key before being

base64url-encoded without padding. [STATE] is the same STATE as was sent in the request--it is

echoed back to the sender to verify the matched response.

In the relying party application's openURL() handler, the url parameter will be the URL listed above

and the sourceApplication parameter will be the iOS bundle ID for the client application.

162 Rec. ITU-T X.1277.2 (04/2023)

D.8.1.2 Secret Key Generation

A new secret encryption key MUST be generated by the calling application every time it sends a

request to UAF client. The UAF client MUST then use this key to encrypt the response message

before responding to the caller.

JSON Web Encryption (JWE), JSON Serialization (JWE Section 7.2) format MUST be used to

represent the encrypted response message.

The encryption algorithm is that specified in "A128CBC-HS256" where the JWE "Key Management

Mode" employed is "Direct Encryption" and the JWE "Content Encryption Key (CEK)" is the secret

key generated by the calling application and passed to the UAF client in the key parameter of the

request.

EXAMPLE 12

{

 "unprotected": {"alg": "dir", "enc": "A128CBC-HS256"},

 "iv": "...",

 "ciphertext": "...",

 "tag": "..."

}

D.8.1.3 Origin

iOS applications requesting services from the Client can do so under their own identity, or they can

act as the user's agent by explicitly declaring an RFC6454 [b-IETF RFC 6454] serialization of the

remote server's origin when invoking the UAF client.

An application that is operating on behalf of a single entity MUST NOT set an explicit origin.

Omitting an explicit origin will cause the UAF client to determine the caller's identity as "ios:bundle-

id". The UAF client will then compare this with the list of authorized application facets for the target

AppID and proceed if it is listed as trusted.

See the UAF Protocol Specification [b-UAFProtocol] for more information on application and facet

identifiers.

If the application is explicitly intended to operate as the user's agent in the context of an arbitrary

number of remote applications (as when implementing a full web browser) it may set origin to the

RFC 6454 [b-IETF RFC 6454] Unicode serialization of the remote application's Origin. The

application MUST satisfy the necessary conditions described in transport security requirements for

authenticating the remote server before setting origin.

D.8.1.4 channelBindings

In the DOM API, the browser or browser plugin is responsible for supplying any available channel

binding information to the Client, but an iOS application, as the direct owner of the transport channel,

must provide this information itself.

The channelBindings data structure is Map<String,String> with the keys as defined for the

ChannelBinding structure in the UAF Protocol Specification. [b-UAFProtocol]

The use of channel bindings for TLS helps assure the server that the channel over which UAF protocol

messages are transported is the same channel the legitimate client is using and that messages have

not been forwarded through a malicious party. UAF defines support for the tls-unique and tls-server-

end-point bindings from [IETF RFC 5929], as well as server certificate and ChannelID [b-ChannelID]

bindings. The client should supply all channel binding information available to it.

 Rec. ITU-T X.1277.2 (04/2023) 163

Missing or invalid channel binding information may cause a relying party server to reject a

transaction.

D.8.1.5 UAFxType

This value describes the type of operation for the x-callback-url operations implementing the iOS

API.

enum UAFxType {

 "DISCOVER",

 "DISCOVER_RESULT",

 "CHECK_POLICY",

 "CHECK_POLICY_RESULT",

 "UAF_OPERATION",

 "UAF_OPERATION_RESULT",

 "UAF_OPERATION_COMPLETION_STATUS"

};

Enumeration description

DISCOVER Discovery

DISCOVER_RESULT Discovery results

CHECK_POLICY
Perform a no-op check if a message could be

processed.

CHECK_POLICY_RESULT Check Policy results.

UAF_OPERATION
The UAF message operation type (for example

Registration).

UAF_OPERATION_RESULT UAF Operation results.

UAF_OPERATION_COMPLETION_STATUS
Inform the UAF client of the completion status of

a UAF operation (such as Registration.

D.8.2 JSON values

The specifics of the UAFxType operation are carried by various JSON values encoded in the json x-

callback-url parameter.

JSON value Type Description

discoveryData String DiscoveryData JSON dictionary.

errorCode short ErrorCode value for operation

message String UAFMessage request to test or process, depending on UAFxType.

164 Rec. ITU-T X.1277.2 (04/2023)

JSON value Type Description

origin String An RFC6454 Web Origin [b-IETF RFC 6454] string for the request.

channelBindings String The channel bindings JSON dictionary for the operation.

responseCode short The uafResult field of a ServerResponse.

The following table shows what JSON values are expected, depending on the value of the UAFxType

x-callback-url operation:

UAFxType operation
discover

yData

errorC

ode

messag

e
origin

channelBi

ndings

response

Code

"DISCOVER"

"DISCOVER_RESULT"
OPTION

AL

REQUI

RED

"CHECK_POLICY" REQUI

RED

OPTIO

NAL

"CHECK_POLICY_RESULT" REQUI

RED

"UAF_OPERATION" REQUI

RED

OPTIO

NAL

REQUIRE

D

"UAF_OPERATION_RESULT" REQUI

RED

OPTIO

NAL

"UAF_OPERATION_COMPLE

TION_STATUS"
 REQUI

RED
 REQUIR

ED

D.8.2.1 DISCOVER

This operation invokes the UAF client to discover the available authenticators and capabilities. The

UAF client generally will not show a user interface associated with the handling of this operation, but

will simply return the resulting JSON structure.

The calling application cannot depend on this however, as the client MAY show a user interface for

privacy purposes, allowing the user to choose whether and which authenticators to disclose to the

calling application.

NOTE – iOS custom URL scheme handlers always require an application switch for every request and
response, even if no user interface is displayed.

D.8.2.2 DISCOVER_RESULT

An operation with this type is returned by the UAF client in response to receiving an x-callback-url

operation of type DISCOVER.

 Rec. ITU-T X.1277.2 (04/2023) 165

If x-callback-url JSON value errorCode is NO_ERROR, this x-callback-url operation has a JSON

value, discoveryData, containing a String representation of a DiscoveryData JSON dictionary listing

the available authenticators and their capabilities.

D.8.2.3 CHECK_POLICY

This operation invokes the UAF client to discover if the client would be able to process the supplied

message, without prompting the user.

The related Action handling this operation SHOULD NOT show an interface to the user.

NOTE – iOS custom URL scheme handlers always require an application switch for every request and

response, even if no UI is displayed.

This x-callback-url operation requires the following JSON values:

• message, containing a String representation of a UAFMessage representing the request

message to test.

• origin, an OPTIONAL JSON value that allows a caller to supply an RFC6454 Origin [IETF

RFC 6454] string to be used instead of the application's own identity.

D.8.2.4 CHECK_POLICY_RESULT

This operation is returned by the UAF client in response to receiving a CHECK_POLICY x-callback-

url operation.

The x-callback-url JSON value errorCode containing an ErrorCode value indicating the specific

error condition or NO_ERROR if the Client could process the message.

D.8.2.5 UAF_OPERATION

This operation invokes the UAF client to process the supplied request message and return a result

message ready for delivery to the UAF server. The sender SHOULD assume that the UAF client will

display a UI to the user to handle this x-callback-url operation, e.g., prompting the user to complete

their verification ceremony.

This x-callback-url operation requires the following JSON values:

• message, containing a String representation of a UAFMessage representing the request

message to process.

• channelBindings, containing a String representation of a JSON dictionary as defined by the

ChannelBinding structure in the UAF Protocol Specification [b-UAFProtocol].

• origin, an OPTIONAL JSON value that allows a caller to supply an RFC6454 Origin [b-

IETF RFC 6454] string to be used instead of the application's own identity.

D.8.2.6 UAF_OPERATION_RESULT

This x-callback-url operation is returned by the UAF client in response to receiving a

UAF_OPERATION x-callback-url operation.

The x-callback-url JSON value errorCode containing an ErrorCodevalue indicating the specific error

condition.

If x-callback-url JSON value errorCode is NO_ERROR, this x-callback-url operation has a JSON

value, message, containing a String representation of a UAFMessage, being the UAF protocol

response message to be delivered to the Server.

D.8.2.7 UAF_OPERATION_COMPLETION_STATUS

This x-callback-url operation MUST be delivered to the UAF client to indicate the completion status

of a UAF message delivered to the remote server. This is especially important as, e.g., a new

registration may be considered in a pending status until it is known the server accepted it.

166 Rec. ITU-T X.1277.2 (04/2023)

D.8.3 Implementation guidelines for iOS implementations

Each iOS Custom URL based request results in a human-noticeable context switch between the App

and UAF client and vice versa. This will be most noticeable when invoking DISCOVER and

CHECK_POLICY requests since typically these requests will be invoked automatically, without

user's involvement. Such a context switch impacts the User Experience and therefore it's

RECOMMENDED to avoid making these two requests and integrate without using them.

D.8.4 Security considerations for iOS implementations

A security concern with custom URLs under iOS is that any app can register any custom URL. If

multiple applications register the same custom URL, the behavior for handling the URL call in iOS

is undefined.

On the UAF client side, this issue with custom URL scheme handlers is solved by using the

sourceApplication parameter which provides the bundle ID of the URL originator. This is effective

as long as the device has not been jailbroken and as long as Apple has done due diligence vetting

submissions to the app store for malware with faked bundle IDs. The sourceApplication parameter

can be matched with the FacetID list to ensure that the calling app is approved to use the credentials

for the relying party.

On the relying party app side, encryption is used to prevent a rogue app from spoofing the relying

party app's response URL. The relying party app generates a random encryption key on every request

and sends it to the client. The client then encrypts the response to this key. In this manner, only the

relying party app can decrypt the response. Even in the event that malware is able to spoof the relying

party app's URL and intercept the response, it would not be able to decode it.

To protect against potentially malicious applications registering themselves to handle the UAF client

custom URL scheme, relying party Applications can obtain the bundle-id of the responding app and

utilize it in risk management decisions around the authentication or transaction events. For example,

a relying party might maintain a list of bundle-ids known to belong to malware and refuse to accept

operations completed with such clients, or a list of bundle-ids of known-good clients that receive

preferred risk-scoring.

D.9 Transport binding profile

This section describes general normative security requirements for how a client application transports

UAF protocol messages, gives specific requirements for Transport Layer Security (TLS), and

describes an interoperability profile for using HTTP over TLS [IETF RFC 2818] with the UAF

protocol.

D.9.1 Transport security requirements

The UAF protocol contains no inherent means of identifying a relying party server, or for end-to-end

protection of UAF protocol messages. To perform a secure UAF protocol exchange, the following

abstract requirements apply:

1. The client application must securely authenticate the server endpoint as authorized, from that

client's viewpoint, to represent the Web origin [b-IETF RFC 6454] (scheme:host:port tuple)

reported to the UAF client by the client application. Most typically this will be done by using

TLS and verifying the server's certificate is valid, asserts the correct DNS name, and chains

up to a root trusted by the client platform. Clients MAY also utilize other means to

authenticate a server, such as via a pre-provisioned certificate or key that is distributed with

an application, or alternative network authentication protocols such as Kerberos [IETF RFC

4120].

2. The transport mechanism for UAF protocol messages must provide confidentiality for the

message, to prevent disclosure of their contents to unauthorized third parties. These

 Rec. ITU-T X.1277.2 (04/2023) 167

protections should be cryptographically bound to proof of the server's identity as described

above.

3. The transport mechanism for UAF protocol messages must protect the integrity of the

message from tampering by unauthorized third parties. These protections should be

cryptographically bound to proof of the server's identity in as described above.

D.9.2 TLS security requirements

If using HTTP over TLS ([IETF RFC 2246] [IETF RFC 4346], [IETF RFC 5246] or

[b-TLS13draft02]) to transport an UAF protocol exchange, the following specific requirements apply:

1. If there are any TLS errors, whether "warning" or "fatal" or any other error level with the

TLS connection, the HTTP client must terminate the connection without prompting the user.

For example, this includes any errors found in certificate validity checking that HTTP clients

employ, such as via TLS server identity checking, Certificate Revocation Lists (CRLs) [IETF

RFC 5280], or via the Online Certificate Status Protocol (OCSP).

2. Whenever comparisons are made between the presented TLS server identity (as presented

during the TLS handshake, typically within the server certificate) and the intended source

TLS server identity (e.g., as entered by a user, or embedded in a link), server identity checking

must be employed. The client must terminate the connection without prompting the user upon

any error condition.

3. The TLS server certificate must either be provisioned explicitly out-of-band (e.g., packaged

with an app as a "pinned certificate") or be trusted by chaining to a root included in the

certificate store of the operating system or a major browser by virtue of being currently in

compliance with their root store program requirements. The client must terminate the

connection without user recourse if there are any error conditions when building the chain of

trust.

4. The "anon" and "null" crypto suites are not allowed and insecure cryptographic algorithms

in TLS (e.g., MD4, RC4, SHA1) should be avoided (see NIST SP800-131A [b-SP800-

131A]).

5. The client and server should use the latest practicable TLS version.

6. The client should supply, and the server should verify whatever practicable channel binding

information is available, including a ChannelID [b-ChannelID] public key, the tls-unique and

tls-server-end-point bindings [IETF RFC 5929], and TLS server certificate binding [b-

UAFProtocol]. This information provides protection against certain classes of network

attackers and the forwarding of protocol messages, and a server may reject a message that

lacks or has channel binding data that does not verify correctly.

D.9.3 HTTPS transport interoperability profile

Conforming applications MAY support this profile.

Complex and highly-optimized applications utilizing UAF will often transport UAF protocol

messages in-line with other application protocol messages. The profile defined here for transporting

UAF protocol messages over HTTPS is intended to:

• Provide an interoperability profile to enable easier composition of client-side application

libraries and server-side implementations for UAF-enabled products from different vendors.

• Provide detailed illustration of specific necessary security properties for the transport layer

and HTTP interfaces, especially as they may interact with a browser-hosted application.

• This profile is also utilized in the examples that constitute the appendices of this

Recommendation. This profile is OPTIONAL to implement. RFC 2119 key words are used

in this clause to indicate necessary security and other properties for implementations that

intend to use this profile to interoperate [IETF RFC 2119].

168 Rec. ITU-T X.1277.2 (04/2023)

NOTE – Certain UAF operations, in particular, transaction confirmation, will always require an application-

specific implementation. This interoperability profile only provides a skeleton framework suitable for
replacing username/password authentication.

D.9.3.1 Obtaining a UAF Request message

A UAF-enabled web application might typically deliver request messages as part of a response body

containing other application content, e.g., in a script block as such:

EXAMPLE 13

...

<script type="application/json">

{

"initialRequest": {

// initial request message here

},

"lifetimeMillis": 60000; // hint: this initial request is valid for 60 seconds

}

</script>

...

However, request messages have a limited lifetime, and an installed application cannot be delivered

with a request, so client applications generally need the ability to retrieve a fresh request.

When sending a request message over HTTPS with XMLHttpRequest or another HTTP API:

1. The URI of the server endpoint, and how it is communicated to the client, is application-

specific.

2. The client MUST set the HTTP method to POST.

3. The client SHOULD set the HTTP "Content-Type" header to "application/fido+uaf;

charset=utf-8".

4. The client SHOULD include "application/fido+uaf" as a media type in the HTTP "Accept"

header. Conforming servers MUST accept "application/fido+uaf" as media type.

5. The client MAY need to supply additional headers, such as a HTTP, to demonstrate, in an

application-specific manner, their authorization to perform a request.

6. The entire POST body MUST consist entirely of a JSON structure described by the

GetUAFRequest dictionary.

7. The server's response SHOULD set the HTTP "Content-Type" to "application/fido+uaf;

charset=utf-8"

8. The client SHOULD decode the response byte string as UTF-8 with error handling.

9. The decoded body of the response MUST consist entirely of a JSON structure described by

the ReturnUAFRequest interface.

D.9.3.2 Operation enum

Describes the operation type of a UAF message or request for a message.

enum Operation {

 "Reg",

 Rec. ITU-T X.1277.2 (04/2023) 169

 "Auth",

 "Dereg"

};

Enumeration description

Reg Registration

Auth Authentication or Transaction Confirmation

Dereg Deregistration

D.9.3.3 GetUAFRequest dictionary

dictionary GetUAFRequest {

 Operation op;

 DOMString previousRequest;

 DOMString context;

};

D.9.3.3.1 Dictionary GetUAFRequest Members

op of type Operation

The type of the UAF request message desired. Allowable string values are defined by the

Operation enum. This field is OPTIONAL but MUST be set if the operation is not known to

the server through another context, e.g., an operation-specific URL endpoint.

previousRequest of type DOMString

If the application is requesting a new UAF request message because a previous one has

expired, this OPTIONAL key can include the previous one to assist the server in locating any

state that should be re-associated with a new request message, should one be issued.

context of type DOMString

Any additional contextual information that may be useful or necessary for the server to

generate the correct request message. This key is OPTIONAL and the format and nature of

this data is application-specific.

D.9.3.4 ReturnUAFRequest dictionary

dictionary ReturnUAFRequest {

 required unsigned long statusCode;

 DOMString uafRequest;

 Operation op;

 long lifetimeMillis;

};

170 Rec. ITU-T X.1277.2 (04/2023)

D.9.3.4.1 Dictionary ReturnUAFRequest members

statusCode of type required unsigned long

The UAF Status Code for the operation (see section 3.1 UAF Status Codes).

uafRequest of type DOMString

The new UAF Request Message, OPTIONAL, if the server decided to issue one.

op of type Operation

An OPTIONAL hint to the client of the operation type of the message, useful if the server

might return a different type than was requested. For example, a server might return a

deregister message if an authentication request referred to a key it no longer considers valid.

Allowable string values are defined by the Operation enum.

lifetimeMillis of type long

If the server returned a uafRequest, this is an OPTIONAL hint informing the client application

of the lifetime of the message in milliseconds.

D.9.3.5 SendUAFResponse dictionary

dictionary SendUAFResponse {

 required DOMString uafResponse;

 DOMString context;

};

D.9.3.5.1 Dictionary SendUAFResponse members

uafResponse of type required DOMString

The UAF Response Message. It MUST be set to UAFMessage.uafProtocolMessage returned

by UAF client.

context of type DOMString

Any additional contextual information that MAY be useful or necessary for the server to

process the response message. This key is OPTIONAL and the format and nature of this data

is application-specific.

D.9.3.6 Delivering a UAF response

Although it is not the only pattern possible, an asynchronous HTTP request is a useful way of

delivering a UAF Response to the remote server for either web applications or standalone

applications.

When delivering a response message over HTTPS with XMLHttpRequest or another API:

1. The URI of the server endpoint and how it is communicated to the client is application-

specific.

2. The client MUST set the HTTP method to POST.

3. The client MUST set the HTTP "Content-Type" header to "application/fido+uaf; charset=utf-

8".

4. The client SHOULD include "application/fido+uaf" as a media type in the HTTP "Accept"

header.

 Rec. ITU-T X.1277.2 (04/2023) 171

5. The client MAY need to supply additional headers, such as a HTTP Cookie, to demonstrate,

in an application-specific manner, their authorization to perform an operation.

6. The entire POST body MUST consist entirely of a JSON structure described by the

SendUAFResponse.

7. The server's response SHOULD set the "Content-Type" to "application/fido+uaf;

charset=utf-8" and the body of the response MUST consist entirely of a JSON structure

described by the ServerResponse interface.

D.9.3.7 ServerResponse interface

The ServerResponse interface represents the completion status and additional application-specific

additional data that results from successful processing of a Register, Authenticate, or Transaction

Confirmation operation. This message is not formally part of the UAF protocol, but the statusCode

should be posted to the UAF client, for housekeeping, using the notifyUAFResult() operation.

interface ServerResponse {

 readonly attribute int statusCode;

 [Optional]

 readonly attribute DOMString description;

 [Optional]

 readonly attribute Token[] additionalTokens;

 [Optional]

 readonly attribute DOMString location;

 [Optional]

 readonly attribute DOMString postData;

 [Optional]

 readonly attribute DOMString newUAFRequest;

};

D.9.3.7.1 Attributes

statusCode of type int, readonly

The UAF response status code. Note that this status code describes the result of processing

the tunneled UAF operation, not the status code for the outer HTTP transport.

description of type DOMString, readonly

A detailed message describing the status code or providing additional information to the user.

additionalTokens of type array of Token, readonly

This key contains new authentication or authorization token(s) for the client that are not

natively handled by the HTTP transport. Tokens SHOULD be processed prior to processing

of location.

location of type DOMString, readonly

If present, indicates to the client web application that it should navigate the Document context

to the URI contained on this field after processing any tokens.

postData of type DOMString, readonly

172 Rec. ITU-T X.1277.2 (04/2023)

If present in combination with location, indicates that the client should POST the contents to

the specified location after processing any tokens.

newUAFRequest of type DOMString, readonly

The server may use this to return a new UAF protocol message. This might be used to supply

a fresh request to retry an operation in response to a transient failure, to request additional

confirmation for a transaction, or to send a deregistration message in response to a permanent

failure.

D.9.3.8 Token interface

NOTE – The UAF server is not responsible for creating additional tokens returned as part of a UAF response.
Such tokens exist to provide a means for the relying party application to update the authentication/authorization
state of the client in response to a successful UAF operation. For example, these fields could be used to allow
UAF to serve as the initial authentication leg of a federation protocol, but the scope and details of any such
federation are outside of the scope of UAF.

interface Token {

 readonly attribute TokenType type;

 readonly attribute DOMString value;

};

D.9.3.8.1 Attributes

type of type TokenType, readonly

The type of the additional authentication / authorization token.

value of type DOMString, readonly

The string value of the additional authentication / authorization token.

D.9.3.9 TokenType enum

enum TokenType {

 "HTTP_COOKIE",

 "OAUTH",

 "OAUTH2",

 "SAML1_1",

 "SAML2",

 "JWT",

 "OPENID_CONNECT"

};

Enumeration description

HTTP_COOKIE

If the user agent is a standard web browser or other HTTP native client with a
cookie store, this TokenType SHOULD NOT be used. Cookies should be set

directly with the Set-Cookie HTTP header for processing by the user agent.
For non-HTTP or non-browser contexts this indicates a token intended to be
set as an HTTP cookie. For example, a native VPN client that authenticates

 Rec. ITU-T X.1277.2 (04/2023) 173

Enumeration description

with UAF might use this TokenType to automatically add a cookie to the

browser cookie jar.

OAUTH Indicates that the token is of type OAUTH. [IETF RFC 5849].

OAUTH2 Indicates that the token is of type OAUTH2. [IETF RFC 6749].

SAML1_1 Indicates that the token is of type SAML 1.1. [b-SAML11].

SAML2 Indicates that the token is of type SAML 2.0. [b-SAML2-CORE]

JWT Indicates that the token is of type JSON Web Token (JWT). [b-JWT]

OPENID_CONNECT
Indicates that the token is an OpenID Connect "id_token". [b-

OpenIDConnect]

D.9.3.10 Security considerations

It is important that the client set, and the server require, the method be POST and the "Content-Type"

HTTP header be the correct values. Because the response body is valid ECMAScript, to protect

against unauthorized cross-origin access, a server must not respond to the type of request that can be

generated by a script tag, e.g., <script src="https://example.com/fido/uaf/getRequest">. The request

a user agent generates with this kind of embedding cannot set custom headers.

Likewise, by requiring a custom "Content-Type" header, cross-origin requests cannot be made with

an XMLHttpRequest without triggering a CORS preflight access check.

As UAF messages are only valid when used same-origin, servers should not supply an "Access-

Control-Allow-Origin" header with responses that would allow them to be read by non-same-origin

content.

To protect from some classes of cross-origin, browser-based, distributed denial-of-service attacks,

request endpoints should ignore, without performing additional processing, all requests with an

"Access-Control-Request-Method" HTTP header or an incorrect "Content-Type" HTTP header.

If a server chooses to respond to requests made with the GET method and without the custom

"Content-Type" header, it should apply a prefix string such as "while(1);" or

"&&&BEGIN_UAF_RESPONSE&&&" to the body of all replies and so prevent their being read

through cross-origin <script> tag embedding. Legitimate same-origin callers will need to (and alone

be able to) strip this prefix string before parsing the JSON content.

174 Rec. ITU-T X.1277.2 (04/2023)

Annex E

UAF registry of predefined values

(This annex forms an integral part of this Recommendation.)

This annex defines the registry of UAF-specific constants that are used and referenced in various

UAF specifications. It is expected that, over time, new constants will be added to this registry. For

example, new authentication algorithms and new types of authenticator characteristics will require

new constants to be defined for use within the specifications.

Sspecific constants that are common to multiple protocol families are defined in [b-Registry].

E.1 Authenticator characteristics

E.1.1 Assertion schemes

Names of assertion schemes are strings with a length of 8 characters.

UAF TLV based assertion scheme "UAFV1TLV"

This assertion scheme allows the authenticator and the Server to exchange an asymmetric

authentication key generated by the authenticator. The authenticator MUST generate a key

pair (UAuth.pub/UAuth.priv) to be used with algorithm suites listed in [b-Registry] section

"Authentication Algorithms" (with prefix ALG_). This assertion scheme is using a compact

Tag Length Value (TLV) encoding for the KRD and SignData messages generated by the

authenticators. This is the default assertion scheme for the UAF protocol.

E.2 Predefined Tags

The internal structure of UAF authenticator commands is a "Tag-Length-Value" (TLV) sequence.

The tag is a 2-byte unique unsigned value describing the type of field the data represents, the length

is a 2-byte unsigned value indicating the size of the value in bytes, and the value is the variable-sized

series of bytes which contain data for this item in the sequence.

Although 2 bytes are allotted for the tag, only the first 14 bits (values up to 0x3FFF) should be used

to accommodate the limitations of some hardware platforms.

A tag that has the 14th bit (0x2000) set indicates that it is critical and a receiver must abort processing

the entire message if it cannot process that tag.

A tag that has the 13th bit (0x1000) set indicates a composite tag that can be parsed by recursive

descent.

E.2.1 Tags used in the protocol

The following tags have been allocated for data types in UAF protocol messages:

TAG_UAFV1_REG_ASSERTION 0x3E01

The content of this tag is the authenticator response to a Register command.

TAG_UAFV1_AUTH_ASSERTION 0x3E02

The content of this tag is the authenticator response to a Sign command.

TAG_UAFV1_KRD 0x3E03

Indicates Key Registration Data.

TAG_UAFV1_SIGNED_DATA 0x3E04

Indicates data signed by the authenticator using UAuth.priv key.

 Rec. ITU-T X.1277.2 (04/2023) 175

TAG_APCV1CBOR_AUTH_ASSERTION 0x3E05

The content of this tag is the authenticator response to a Sign command.

TAG_APCV1CBOR_SIGNED_DATA 0x3E06

Indicates Android Protected Confirmation data signed by the authenticator using UAuth.priv

key.

TAG_ATTESTATION_CERT 0x2E05

Indicates DER encoded attestation certificate.

TAG_SIGNATURE 0x2E06

Indicates a cryptographic signature.

TAG_KEYID 0x2E09

Represents a generated KeyID.

TAG_FINAL_CHALLENGE_HASH 0x2E0A

Represents a generated final challenge hash as defined in [b-UAFProtocol].

TAG_AAID 0x2E0B

Represents an Authenticator Attestation ID as defined in [b-UAFProtocol].

TAG_PUB_KEY 0x2E0C

Represents a generated public key.

TAG_COUNTERS 0x2E0D

Represents the use counters for an authenticator.

TAG_ASSERTION_INFO 0x2E0E

Represents authenticator information necessary for message processing.

TAG_AUTHENTICATOR_NONCE 0x2E0F

Represents a nonce value generated by the authenticator.

TAG_TRANSACTION_CONTENT_HASH 0x2E10

Represents a hash of the transaction content sent to the authenticator.

TAG_EXTENSION 0x3E11, 0x3E12

This is a composite tag indicating that the content is an extension.

TAG_EXTENSION_ID 0x2E13

Represents extension ID. Content of this tag is a UINT8[] encoding of a UTF-8 string.

TAG_EXTENSION_DATA 0x2E14

Represents extension data. Content of this tag is a UINT8[] byte array.

TAG_RAW_USER_VERIFICATION_INDEX 0x0103

This is the raw UVI as it might be used internally by authenticators. This TAG SHALL NOT

appear in assertions leaving the authenticator boundary as it could be used as global

correlation handle.

TAG_USER_VERIFICATION_INDEX 0x0104

The user verification index (UVI) is a value uniquely identifying a user verification data

record.

176 Rec. ITU-T X.1277.2 (04/2023)

Each UVI value MUST be specific to the related key (in order to provide unlinkability). It

also must contain sufficient entropy that makes guessing impractical. UVI values MUST NOT

be reused by the Authenticator (for other biometric data or users).

The UVI data can be used by Servers to understand whether an authentication was authorized

by the exact same biometric data as the initial key generation. This allows the detection and

prevention of "friendly fraud".

As an example, the UVI could be computed as SHA256(KeyID | SHA256(rawUVI)), where

the rawUVI reflects (a) the biometric reference data, (b) the related OS level user ID and (c)

an identifier which changes whenever a factory reset is performed for the device, e.g., rawUVI

= biometricReferenceData | OSLevelUserID | FactoryResetCounter.

Servers supporting UVI extensions MUST support a length of up to 32 bytes for the UVI

value.

Example of the TLV encoded UVI extension (contained in an assertion, i.e.,

TAG_UAFV1_REG_ASSERTION or TAG_UAFV1_AUTH_ASSERTION)

 ...

 04 01 -- TAG_USER_VERIFICATION_INDEX (0x0104)

 20 -- length of UVI

 00 43 B8 E3 BE 27 95 8C -- the UVI value itself

 28 D5 74 BF 46 8A 85 CF

 46 9A 14 F0 E5 16 69 31

 DA 4B CF FF C1 BB 11 32

 82

 ...

TAG_RAW_USER_VERIFICATION_STATE 0x0105

This is the raw UVS as it might be used internally by authenticators. This TAG SHALL NOT

appear in assertions leaving the authenticator boundary as it could be used as global

correlation handle.

TAG_USER_VERIFICATION_STATE 0x0106

The user verification state (UVS) is a value uniquely identifying the set of active user

verification data records.

Each UVS value MUST be specific to the related key (in order to provide unlinkability). It

also must contain sufficient entropy that makes guessing impractical. UVS values MUST

NOT be reused by the Authenticator (for other biometric data sets or users).

The UVS data can be used by Servers to understand whether an authentication was authorized

by one of the biometric data records already known at the initial key generation.

As an example, the UVS could be computed as SHA256(KeyID | SHA256(rawUVS)), where

the rawUVS reflects (a) the biometric reference data sets, (b) the related OS level user ID and

 Rec. ITU-T X.1277.2 (04/2023) 177

(c) an identifier which changes whenever a factory reset is performed for the device, e.g.,

rawUVS = biometricReferenceDataSet | OSLevelUserID | FactoryResetCounter.

Servers supporting UVS extensions MUST support a length of up to 32 bytes for the UVS

value.

Example of the TLV encoded UVS extension (contained in an assertion, i.e.,

TAG_UAFV1_REG_ASSERTION or TAG_UAFV1_AUTH_ASSERTION)

 ...

 06 01 -- TAG_USER_VERIFICATION_STATE (0x0106)

 20 -- length of UVS

 00 18 C3 47 81 73 2B 65 -- the UVS value itself

 83 E7 43 31 46 8A 85 CF

 93 6C 36 F0 AF 16 69 14

 DA 4B 1D 43 FE C7 43 24

 45

 ...

TAG_USER_VERIFICATION_CACHING 0x0108

This extension allows an app to specify such user verification caching time, i.e., the time for

which the user verification status can be "cached" by the authenticator.

The value of this extension is defined as follows:

 TLV

Structure
Description

1 UINT16 Tag TAG_USER_VERIFICATION_CACHING

1.1
UINT16

Length
Length of UVC structure in bytes

1.2 UINT16 maxUVC in seconds

1.3 UINT8
(optional) verifyIfExceeded. If 0(=:false): return error if maxUVC exceeded. If non-

zero (=:true): verify user if maxUVC exceeded.

Example of the TLV encoded UVC extension (contained in an authentication request)

 ...

 08 01 -- TAG_USER_VERIFICATION_CACHING (0x0108)

 05 -- length of UVC

 2c 01 00 00 -- the UVC value itself: maxUVC = 0x012c (300 secs),

 01 -- followd by verifyIfExceeded = 1 (true)

178 Rec. ITU-T X.1277.2 (04/2023)

 ...

TAG_RESIDENT_KEY 0x0109

Is the key resident in the authenticator. The value is a boolean. See clause E.3.6, Require

Resident Key Extension for details.

TAG_RESERVED_5 0x0201

Reserved for future use. Name of the tag will change, value is fixed.

E.3 Predefined extensions

E.3.1 User verification method extension

This extension can be added:

• by servers to the UAF Request object (request extension) in the OperationHeader in order to

ask the authenticator for using a specific user verification method and confirm that in the

related response extension.

• by clients to the ASM Request object (request extension) in order to ask the authenticator for

using a specific user verification method and confirm that in the related response extension.

• by ASMs to the authenticator command (request extension) in order to ask the authenticator

for using a specific user verification method and confirm that in the related response

extension.

• by authenticators to the assertion generated in response to a request in order to confirm a

specifc user verification method that was used for the action.

Extension identifier

fido.uaf.uvm

When present in a request (request extension)

Same as described in authenticator argument.

UAF client processing

The client SHOULD pass the (request) extension through to the authenticator.

Authenticator argument

The payload of this extension is an array of:

 UINT32 userVerificationMethod

The array can have multiple entries. Each entry SHALL have a single bit flag set. In this case

the authenticator SHALL verify the user using all (multiple) methods as indicated.

The semantics of the fields are as follows:

userVerificationMethod

The authentication method used by the authenticator to verify the user. Available values are

defined in [b-Registry], "User Verification Methods" section.

Authenticator processing

The authenticator supporting this extension:

 Rec. ITU-T X.1277.2 (04/2023) 179

1. SHOULD limit the user verification methods selectable by the user to the user

verification method(s) specified in the request extension.

2. SHALL truthfully report the selected user verification method(s) back in the related

response extension added to the assertion.

Authenticator data

The payload of this extension is an array of the following structure:

 UINT32 userVerificationMethod

 UINT16 keyProtection

 UINT16 matcherProtection

The array can have multiple entries describing all user verification methods used.

The semantics of the fields are as follows:

userVerificationMethod

The authentication method used by the authenticator to verify the user. Available values are

defined in [b-Registry], "User Verification Methods" section.

keyProtection

The method used by the authenticator to protect the registration private key material.

Available values are defined in [b-Registry], "Key Protection Types" section. This value has

no meaning in the request extension.

matcherProtection

The method used by the authenticator to protect the matcher that performs user verification.

Available values are defined in [b-Registry], "Matcher Protection Types" section.

Server processing

If the Server requested the UVM extension,

1. it SHOULD verify that a proper response is provided (if client side support can be

assumed), and

2. it SHOULD verify that the UVM response extension specifies one or more acceptable

user verification method(s).

E.3.2 User ID Extension

This extension can be added

• by Servers to the UAF Request object (request extension) in the OperationHeader.

• by Clients to the ASM Request object (request extension).

• by ASMs to the TAG_UAFV1_REGISTER_CMD object using TAG_EXTENSION

(request extension).

• by Authenticators to the registration or authentication assertion using TAG_EXTENSION

(response extension).

The main purpose of this extension is to allow relying parties finding the related user record by an

existing index (i.e., the user ID). This user ID is not intended to be displayed.

Authenticators SHOULD truthfully indicate support for this extension in their Metadata Statement.

180 Rec. ITU-T X.1277.2 (04/2023)

Extension identifier

fido.uaf.userid

Extension fail-if-unknown flag

false, i.e., this (request and response) extension can safely be ignored by all entities.

Extension data value

Content of this tag is the UINT8[] encoding of the user ID as UTF-8 string.

E.3.3 Android SafetyNet extension

This extension can be added

• by servers to the UAF Request object (request extension) in the OperationHeader in order to

trigger generation of the related response extension.

• by clients to the ASM Request object (request extension) in order to trigger generation of the

related response extension.

• by the ASM to the respective exts array in the ASMResponse object (response extension).

• by the client to the respective exts array in either the OperationHeader, or the

AuthenticatorRegistrationAssertion, or the AuthenticatorSignAssertion of the UAF

Response object (response extension).

Extension identifier

fido.uaf.safetynet

Extension fail-if-unknown flag

false, i.e., this (request and response) extension can safely be ignored by all entities.

Extension data value

When present in a request (request extension)

empty string, i.e., the Server might add this extension to the UAF Request with an empty data

value in order to trigger the generation of this extension for the UAF Response.

EXAMPLE 1: SafetyNet Request Extension

"exts": [{"id": "fido.uaf.safetynet", "data": "", "fail_if_unknown": false}]

When present in a response (response extension)

• If the request extension was successfully processed, the data value is set to the JSON

web signature attestation response as returned by the call to

com.google.android.gms.safetynet.SafetyNetApi.AttestationResponse.

• If the client or the ASM support this extension, but the underlying Android platform

does not support it (e.g., Google Play Services is not installed), the data value is set to

the string "p" (i.e., platform issue).

EXAMPLE 2: SafetyNet Response Extension – not supported by platform

"exts": [{"id": "fido.uaf.safetynet", "data": "p", "fail_if_unknown": false}]

• If the client or the ASM support this extension and the underlying Android platform

supports it, but the functionality is temporarily unavailable (e.g., Google servers are

unreachable), the data value is set to the string "a" (i.e., availability issue).

EXAMPLE 3: SafetyNet Response Extension – temporarily unavailable

"exts": [{"id": "fido.uaf.safetynet", "data": "a", "fail_if_unknown": false}]

https://developers.google.com/android/reference/com/google/android/gms/safetynet/SafetyNetApi.AttestationResponse

 Rec. ITU-T X.1277.2 (04/2023) 181

NOTE 1 – If neither the client nor the ASM support this extension, it won't be present in the response object.

UAF client processing

Clients running on Android should support processing of this extension.

If the client finds this (request) extension with empty data value in the UAF Request and it

supports processing this extension, then the Client

1. MUST call the Android API SafetyNet.SafetyNetApi.attest(mGoogleApiClient,

nonce) (see SafetyNet online documentation) and add the response (or an error code

as described above) as extension to the response object.

2. MUST NOT copy the (request) extension to the ASM Request object (deviating from

the general rule in [b-UAFProtocol], sections 3.4.6.2 and 3.5.7.2).

If the client does not support this extension, it MUST copy this extension from the UAF

Request to the ASM Request object (according to the general rule in [b-UAFProtocol],

sections 3.4.6.2 and 3.5.7.2).

If the ASM supports this extension it MUST call the SafetyNet API (see above) and add the

response as extension to the ASM Response object. The Client MUST copy the extension in

the ASM Response to the UAF Response object (according to sections 3.4.6.4. and 3.5.7.4

step 4 in [b-UAFProtocol]).

When calling the Android API, the nonce parameter MUST be set to the serialized JSON

object with the following structure:

{

 "hashAlg": "S256", // the hash algorithm

 "fcHash": "…" // the finalChallengeHash

}

Where:

• hashAlg identifies the hash algorithm according to [SignatureFormat], section IANA

Considerations.

• fcHash is the base64url encoded hash value of FinalChallenge (see sections 3.6.3 and

3.7.4 in [b-UAFASM] for details on how to compute finalChallengeHash).

We use this method to bind this SafetyNet extension to the respective UAF message.

Only hash algorithms belonging to the Authentication Algorithms mentioned in [b-

Registry] SHALL be used (e.g., SHA256 because it belongs to

ALG_SIGN_SECP256R1_ECDSA_SHA256_RAW).

Authenticator argument

N/A

Authenticator processing

N/A. This extension is related to the Android platform in general and not to the authenticator

in particular. As a consequence there is no need for an authenticator to receive the (request)

extension nor to process it.

Authenticator data

N/A

https://developer.android.com/training/safetynet/attestation

182 Rec. ITU-T X.1277.2 (04/2023)

Server processing

If the server requested the SafetyNet extension,

1. it SHOULD verify that a proper response is provided (if client side support can be

assumed), and

2. it SHOULD verify the SafetyNet AttestationResponse (see SafetyNet online

documentation).

NOTE 2 – The package name in AttestationResponse might relate to either the Client or the ASM.

NOTE 3 – The response extension is not part of the signed assertion generated by the authenticator. If an
MITM or man-in-the-browser (MITB) attacker would remove the response extension, the server might not be
able to distinguish this from the "SafetyNet extension not supported by Client/ASM" case.

E.3.4 Android Key Attestation

This extension can be added

• by Servers to the UAF Registration Request object (request extension) in the

OperationHeader in order to trigger generation of the related response extension.

• by Clients to the ASM Registration Request object (request extension) in order to trigger

generation of the related response extension.

• by the ASM to the respective exts array in the ASMResponse object related to a registration

response (response extension).

• by the Client to the respective exts array in either the OperationHeader, or the

AuthenticatorRegistrationAssertion of the UAF Registration Response object (response

extension).

Extension identifier

fido.uaf.android.key_attestation

Extension fail-if-unknown flag

false, i.e., this (request and response) extension can safely be ignored by all entities.

Extension data value

When present in a request (request extension)

empty string, i.e., the Server might add this extension to the UAF Request with an empty data

value in order to trigger the generation of this extension for the UAF Response.

EXAMPLE 4: Android KeyAttestation Request Extension

"exts": [{"id": "fido.uaf.android.key_attestation", "data": "", "fail_if_unknown": false}]

When present in a response (response extension)

• If the request extension was successfully processed, the data value is set to a JSON

array containing the base64 encoded entries of the array returned by the call to the

KeyStore API function getCertificateChain.

EXAMPLE 5: Retrieve KeyAttestation and add it as extension

Calendar notBefore = Calendar.getInstance();

Calendar notAfter = Calendar.getInstance();

notAfter.add(Calendar.YEAR, 10);

KeyPairGenerator kpGenerator = KeyPairGenerator.getInstance(

 KeyProperties.KEY_ALGORITHM_EC, "AndroidKeyStore");

https://developer.android.com/training/safetynet/attestation
https://developer.android.com/training/safetynet/attestation

 Rec. ITU-T X.1277.2 (04/2023) 183

kpGenerator.initialize(

 new KeyGenParameterSpec.Builder(keyUUID,

KeyProperties.PURPOSE_SIGN)

 .setDigests(KeyProperties.DIGEST_SHA256)

 .setAlgorithmParameterSpec(new ECGenParameterSpec("prime256v1"))

 .setCertificateSubject(

 new X500Principal(String.format("CN=%s, OU=%s",

 keyUUID, aContext.getPackageName())))

 .setCertificateSerialNumber(BigInteger.ONE)

 .setKeyValidityStart(notBefore.getTime())

 .setKeyValidityEnd(notAfter.getTime())

 .setUserAuthenticationRequired(true)

 .setAttestationChallenge(fcHash) -- bind to Final Challenge

 .build());

kpGenerator.generateKeyPair(); // generate Uauth key pair

Certificate[] certarray=myKeyStore.getCertificateChain(keyUUID);

String certArray[]=new String[certarray.length];

int i=0;

for (Certificate cert : certarray) {

 byte[] buf = cert.getEncoded();

 certArray[i] = new String(Base64.encode(buf, Base64.DEFAULT))

 .replace("\n", "");

 i++;

}

JSONArray jarray=new JSONArray(certArray);

String key_attestation_data=jarray.toString();

EXAMPLE 6: Example of successfull key attestation extension response

"exts": [{"id": "fido.uaf.android.key_attestation", "data":

"[\"MIIClDCCAjugAwIBAgIBATAKBggqhkjOPQQD

AjCBiDELMAkGA1UEBhMCVVMxEzARBgNVBAgMCkNhbGlmb3JuaWE

xFTATBgNVBAoMDEdvb2dsZSwgSW5jLjEQMA4GA1UECwwHQW5k

cm9pZDE7MDkGA1UEAwwyQW5kcm9pZCBLZXlzdG9yZSBTb2Z0d2FyZ

SBBdHRlc3RhdGlvbiBJbnRlcm1lZGlhdGUwIBcNNzAwMTAx

MDAwMDAwWhgPMjEwNjAyMDcwNjI4MTVaMB8xHTAbBgNVBAMMF

EFuZHJvaWQgS2V5c3RvcmUgS2V5MFkwEwYHKoZIzj0CAQYIKoZI

zj0DAQcDQgAEJ/As4L+Kgbcxwcx+5LPQi35quIxg981k/TeWr2IPBLh8+NJ+

buDBhQ9O5ln6B7JjbJc4Fvko1Pdz7spKTQdWpKOB

+zCB+DALBgNVHQ8EBAMCB4AwgccGCisGAQQB1nkCAREEgbgwgbUC

AQIKAQACAQEKAQEEBkZDSEFTSAQAMGm/hT0IAgYBXtPjz6C/

184 Rec. ITU-T X.1277.2 (04/2023)

hUVZBFcwVTEvMC0EKGNvbS5hbmRyb2lkLmtleXN0b3JlLmFuZHJvaWRr

ZXlzdG9yZWRlbW8CAQExIgQgdM/LUHSI9SkQhZHHpQWR

nzJ3MvvB2ANSauqYAAbS2JgwMqEFMQMCAQKiAwIBA6MEAgIBAKUF

MQMCAQSqAwIBAb+DeAMCAQK/hT4DAgEAv4U/AgUAMB8GA1Ud

IwQYMBaAFD/8rNYasTqegSC41SUcxWW7HpGpMAoGCCqGSM49BAMC

A0cAMEQCICgYLmk24alwS9Lm06y2lLiqWDddrWh4gmUUv4+A

5k2TAiAEttheSBBaNbQJGQCh3mY92v8nP5obU60IKjpPetRswQ==\",\"MIIC

eDCCAh6gAwIBAgICEAEwCgYIKoZIzj0EAwIwgZg

xCzAJBgNVBAYTAlVTMRMwEQYDVQQIDApDYWxpZm9ybmlhMRYw

FAYDVQQHDA1Nb3VudGFpbiBWaWV3MRUwEwYDVQQKDAxHb29nb

GU

sIEluYy4xEDAOBgNVBAsMB0FuZHJvaWQxMzAxBgNVBAMMKkFuZHJ

vaWQgS2V5c3RvcmUgU29mdHdhcmUgQXR0ZXN0YXRpb24gUm9

vdDAeFw0xNjAxMTEwMDQ2MDlaFw0yNjAxMDgwMDQ2MDlaMIGIMQ

swCQYDVQQGEwJVUzETMBEGA1UECAwKQ2FsaWZvcm5pYTEVMBM

GA1UECgwMR29vZ2xlLCBJbmMuMRAwDgYDVQQLDAdBbmRyb2lkMT

swOQYDVQQDDDJBbmRyb2lkIEtleXN0b3JlIFNvZnR3YXJlIEF

0dGVzdGF0aW9uIEludGVybWVkaWF0ZTBZMBMGByqGSM49AgEGCCq

GSM49AwEHA0IABOueefhCY1msyyqRTImGzHCtkGaTgqlzJhP

+rMv4ISdMIXSXSir+pblNf2bU4GUQZjW8U7ego6ZxWD7bPhGuEBSjZjBk

MB0GA1UdDgQWBBQ//KzWGrE6noEguNUlHMVlux6RqTA

fBgNVHSMEGDAWgBTIrel3TEXDo88NFhDkeUM6IVowzzASBgNVHRM

BAf8ECDAGAQH/AgEAMA4GA1UdDwEB/wQEAwIChDAKBggqhkj

OPQQDAgNIADBFAiBLipt77oK8wDOHri/AiZi03cONqycqRZ9pDMfDktQP

jgIhAO7aAV229DLp1IQ7YkyUBO86fMy9Xvsiu+f+uXc

/WT/7\",\"MIICizCCAjKgAwIBAgIJAKIFntEOQ1tXMAoGCCqGSM49BAM

CMIGYMQswCQYDVQQGEwJVUzETMBEGA1UECAwKQ2FsaW

Zvcm5pYTEWMBQGA1UEBwwNTW91bnRhaW4gVmlldzEVMBMGA1UE

CgwMR29vZ2xlLCBJbmMuMRAwDgYDVQQLDAdBbmRyb2lkMTMwMQ

YDVQQDDCpBbmRyb2lkIEtleXN0b3JlIFNvZnR3YXJlIEF0dGVzdGF0aW9

uIFJvb3QwHhcNMTYwMTExMDA0MzUwWhcNMzYwMTA2MD

A0MzUwWjCBmDELMAkGA1UEBhMCVVMxEzARBgNVBAgMCkNhbGl

mb3JuaWExFjAUBgNVBAcMDU1vdW50YWluIFZpZXcxFTATBgNVBA

oMDEdvb2dsZSwgSW5jLjEQMA4GA1UECwwHQW5kcm9pZDEzMDEGA

1UEAwwqQW5kcm9pZCBLZXlzdG9yZSBTb2Z0d2FyZSBBdHRlc3

RhdGlvbiBSb290MFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAE7l1ex+H

A220Dpn7mthvsTWpdamguD/9/SQ59dx9EIm29sa/6Fs

vHrcV30lacqrewLVQBXT5DKyqO107sSHVBpKNjMGEwHQYDVR0OBBY

EFMit6XdMRcOjzw0WEOR5QzohWjDPMB8GA1UdIwQYMBaAFM

it6XdMRcOjzw0WEOR5QzohWjDPMA8GA1UdEwEB/wQFMAMBAf8wDg

YDVR0PAQH/BAQDAgKEMAoGCCqGSM49BAMCA0cAMEQCIDUho+

+LNEYenNVg8x1YiSBq3KNlQfYNns6KGYxmSGB7AiBNC/NR2TB8fVvaN

TQdqEcbY6WFZTytTySn502vQX3xvw==\"]", "fail_if_unknown": false}]

 Rec. ITU-T X.1277.2 (04/2023) 185

NOTE 1 – Line-breaks been added for readibility.

• If the client or the ASM support this extension, but the underlying Android platform

does not support it (e.g., Android version does not yet support it), the data value is set

to the string "p" (i.e., platform issue).

EXAMPLE 7: KeyAttestation Response Extension – not supported by platform

"exts": [{"id": "fido.uaf.android.key_attestation", "data": "p",

"fail_if_unknown": false}]

• If the client or the ASM support this extension and the underlying Android platform

supports it, but the functionality is temporarily unavailable (e.g., Google servers are

unreachable), the data value is set to the string "a".

EXAMPLE 8: KeyAttestation Response Extension – temporarily unavailable

"exts": [{"id": "fido.uaf.android.key_attestation", "data": "a",

"fail_if_unknown": false}]

NOTE 2 – If neither the client nor the ASM support this extension, it will not be present in the response object.

Client processing

Clients running on Android MUST pass this (request) extension with empty data value to the

ASM.

If the ASM supports this extension it MUST call the KeyStore API (see above) and add the

response as extension to the ASM Response object. The Client MUST copy the extension in

the ASM Response to the UAF Response object (according to section 3.4.6.4 step 4 in

[b-UAFProtocol]).

More details on Android key attestation can be found at:

• https://developer.android.com/training/articles/keystore.html

• https://developer.android.com/training/articles/security-key-attestation

• https://source.android.com/security/keystore/

• https://source.android.com/security/keystore/implementer-ref.html

Authenticator argument

N/A

Authenticator processing

The authenticator generates the attestation response. The call keyStore.getCertificateChain is

finally processed by the authenticator.

Authenticator data

N/A

Server processing

If the Server requested the key attestation extension,

1. it MUST follow the registration response processing rules (see UAF Protocol,

section 3.4.6.5) before processing this extension

2. it MUST verify the syntax of the key attestation extension and it MUST perform

RFC5280 compliant chain validation of the entries in the array to one

attestationRootCertificate specified in the Metadata Statement – accepting that that

https://developer.android.com/training/articles/keystore.html
https://developer.android.com/training/articles/security-key-attestation
https://source.android.com/security/keystore/
https://source.android.com/security/keystore/implementer-ref.html

186 Rec. ITU-T X.1277.2 (04/2023)

the keyCertSign bit in the key usage extension of the certificate issuing the leaf

certificate is NOT set (which is a deviation from RFC5280).

3. it MUST determine the leaf certificate from that chain, and it MUST perform the

following checks on this leaf certificate

1. Verify that KeyDescripion.attestationChallenge == FCHash (see UAF Protocol,

section 3.4.6.5 Step 6.)

2. Verify that the public key included in the leaf certificate is identical to the public

key included in the UAF Surrogate attestation block

3. If the related Metadata Statement claims keyProtection

KEY_PROTECTION_TEE, then refer to KeyDescription.teeEnforced using

"authzList". If the related Metadata Statement claims keyProtection

KEY_PROTECTION_SOFTWARE, then refer to

KeyDescription.softwareEnforced using "authzList".

4. Verify that

1. authzList.origin == KM_TAG_GENERATED

2. authzList.purpose == KM_PURPOSE_SIGN

3. authzList.keySize is acceptable, i.e., =2048 (bit) RSA or =256 (bit)

ECDSA.

4. authzList.digest == KM_DIGEST_SHA_2_256.

5. authzList.userAuthType only contains acceptable user verification

methods.

6. authzList.authTimeout == 0 (or not present).

7. authzList.noAuthRequired is not present (unless the Metadata

Statement marks this authenticator as silent authenticator, i.e.,

userVerificaton set to USER_VERIFY_NONE).

8. authzList.allApplications is not present, since Uauth keys MUST be

bound to the generating app (AppID).

NOTE 3 – The response extension is not part of the signed assertion generated by the authenticator. If an
MITM or MITB attacker would remove the response extension, the server might not be able to distinguish this
from the "KeyAttestation extension not supported by ASM/Authenticator" case.

ExtensionDescriptor data value (for Metadata Statement)

In the case of extension id="fido.uaf.android.key_attestation", the data field of the

ExtensionDescriptor as included in the Metadata Statement will contain a dictionary

containing the following data fields

DOMString attestationRootCertificates[]

Each element of this array represents a PKIX [IETF RFC 5280] X.509 certificate that is valid

for this authenticator model. Multiple certificates might be used for different batches of the

same model. The array does not represent a certificate chain, but only the trust anchor of that

chain.

Each array element is a base64-encoded (section 4 of [IETF RFC 4648]), DER-encoded

[ITU-TX690-2008] PKIX certificate value.

NOTE 4 – A certificate listed here is either a root certificate or an intermediate CA certificate.

NOTE 5 – The field data is specified with type DOMString in [MetadataStatement] and hence will contain

the serialized object as described above.

 Rec. ITU-T X.1277.2 (04/2023) 187

An example for the supportedExtensions field in the Metadata Statement could look as follows

(with line breaks to improve readability):

EXAMPLE 9: Example of a supportedExtensions field in Metadata Statement

"supportedExtensions": [{

 "id": "fido.uaf.android.key_attestation",

 "data": "{ \"attestationRootCertificates\": [

\"MIICPTCCAeOgAwIBAgIJAOuexvU3Oy2wMAoGCCqGSM49BAMCMHsxIDAe

BgNVBAMM

F1NhbXBsZSBBdHRlc3RhdGlvbiBSb290MRYwFAYDVQQKDA1GSURPIEFsbGlh

bmNl

MREwDwYDVQQLDAhVQUYgVFdHLDESMBAGA1UEBwwJUGFsbyBBbHRvM

QswCQYDVQQI

DAJDQTELMAkGA1UEBhMCVVMwHhcNMTQwNjE4MTMzMzMyWhcNNDEx

MTAzMTMzMzMy

WjB7MSAwHgYDVQQDDBdTYW1wbGUgQXR0ZXN0YXRpb24gUm9vdDEWM

BQGA1UECgwN

RklETyBBbGxpYW5jZTERMA8GA1UECwwIVUFGIFRXRywxEjAQBgNVBAcM

CVBhbG8g

QWx0bzELMAkGA1UECAwCQ0ExCzAJBgNVBAYTAlVTMFkwEwYHKoZIzj0C

AQYIKoZI

zj0DAQcDQgAEH8hv2D0HXa59/BmpQ7RZehL/FMGzFd1QBg9vAUpOZ3ajnuQ94

PR7

aMzH33nUSBr8fHYDrqOBb58pxGqHJRyX/6NQME4wHQYDVR0OBBYEFPoHA3

CLhxFb

C0It7zE4w8hk5EJ/MB8GA1UdIwQYMBaAFPoHA3CLhxFbC0It7zE4w8hk5EJ/MA

wG

A1UdEwQFMAMBAf8wCgYIKoZIzj0EAwIDSAAwRQIhAJ06QSXt9ihIbEKYKIjsP

kri

VdLIgtfsbDSu7ErJfzr4AiBqoYCZf0+zI55aQeAHjIzA9Xm63rruAxBZ9ps9z2XN

lQ==\"] }",

 "fail_if_unknown": false

 }]

E.3.5 User verification caching

In several cases it is good enough for the relying party to know whether the user was verified by the

authenticator "some time" ago. This extension allows an app to specify such user verification caching

time, i.e., the time for which the user verification status can be "cached" by the authenticator.

For example: Do not ask the user for a fresh user verification to authorize a payment of 4€ if the user

was verified by this authenticator within the past 300 seconds.

This extension allows the authenticator to bridge the gap between a "silent" authenticator, i.e., an

authenticator never verifying the user and a "traditional" authenticator, i.e., an authenticator always

asking for fresh user verification.

188 Rec. ITU-T X.1277.2 (04/2023)

We formally define one extension for the request and a separate extension for the response as the

request extension can be safely ignored, but the response extension cannot.

Authenticator supporting this extension MUST truthfully specify both, the UVC Request and UVC

Response extension in the supportedExtensions list of the related Metadata Statement

[MetadataStatement]. The TAG of the UVC Response extension must be specified in that list.

E.3.5.1 UVC request

This extension can be added by Servers to the UAF Request object (request extension) in the

OperationHeader in order to trigger generation of the related response extension.

Extension identifier

fido.uaf.uvc-req

Extension fail-if-unknown flag

false, i.e., the request extension can safely be ignored by all entities.

UVC extension data value

A (base64url-encoded) TLV object as defined in the description of

TAG_USER_VERIFICATION_CACHING. In the UVC Extension provided through the

DOM API [b-UAFAppAPIAndTransport], the field verifyIfExceeded MAY NOT be present.

The Client MAY add the field verifyIfExceeded in order to improve processing.

Client processing

• In a registration request: Simple pass-through to the platform preferred authenticator.

• In a sign request: Simple pass-through to an authenticator which would not require

fresh user verification and still meets all other authentication selection criteria (if such

authenticator exists). If this is not possible, then use the preferred authenticator (as

normal) but pass-through this extension.

Authenticator argument

Same TLV object as defined in "Extension data value", but as binary object included in the

Registration / Authentication command.

Authenticator processing

In a registration request:

The Authenticator MUST always freshly verify the user and create a key marked with the

maximum user verification caching time as specified (referred to as regMaxUVC), i.e., in

signAssertion the acceptable maximum user verification time can never exceed this value.

The field (verifyIfExceeded) is not allowed in a registration request.

In a sign request:

If the authenticator supports specifying user verification caching time in a sign request:

1. compute maxUVC = min(maxUVC, regMaxUVC)

2. compute elapsedTime, i.e., the time since last user verification.

3. If (elapsedTime > maxUVC) AND verifyIfExceeded==false then return error

4. If (elapsedTime > maxUVC) AND ((verifyIfExceeded==true)OR(verifyIfExceeded is

NOT PRESENT)) then verify user

5. If (elapsedTime ≤ maxUVC) then Sign the assertion as normal

6. Add the UVC Response extension to the assertion.

 Rec. ITU-T X.1277.2 (04/2023) 189

If the authenticator does not support specifying user verification caching time in a sign

request, this extension will be ignored by the authenticator. This will be detected by the server

since no extension output will be generated by the authenticator.

Authenticator data

N/A

Server processing

N/A

E.3.5.2 UVC response

This extension can be added by the authenticator to the AuthenticatorRegistrationAssertion, or the

AuthenticatorSignAssertion of the UAF response object (response extension).

Extension Identifier

fido.uaf.uvc-resp (TAG_USER_VERIFICATION_CACHING)

Extension fail-if-unknown flag

true, i.e., the response extension (included in the UAF assertion) MAY NOT be ignored if

unknown. If the server is not prepared to process the UVC response extension, it MUST fail.

Extension data value

N/A

Client processing

N/A

Authenticator argument

N/A

Authenticator processing

N/A

Authenticator data

If the extension is supported and the request extension was received and evaluated during the

respective call, then the binary TLV object as described in the description of

TAG_USER_VERIFICATION_CACHING will be included in the assertion generated by the

Authenticator.

Where the field maxUVC contains an upper bound of trueUVC and where the field

verifyIfExceeded will not be present.

The upper bound value is to be computed as follows:

1. Compute the elapsed seconds since last user verification (=:trueUVC).

2. Compute some upper bound of trueUVC, must not exceed min(command.maxUVC,

regMaxUVC).

Where command.maxUVC refers to the maxUVC value of the related UVC Request.

Where regMaxUVC is the maxUVC value specified in the related registration call (see

above) or 0 if no such value was provided at registration time.

For example, use min(maxUVC, createMaxUVC) or min(round trueUVC to 5 seconds,

maxUVC, createMaxUVC).

190 Rec. ITU-T X.1277.2 (04/2023)

Server processing

If the Server requested the UVC extension,

1. Verify that the Metadata Statement related to this Authenticator indicates support for

this extension in the field supportedExtensions

2. Verify that assertion.maxUVC is less or equal to request.maxUVC, fail if it isn't.

3. Verify that assertion.maxUVC is acceptable, fail if it isn't.

If the Server did not request the UVC extension (but encounters it in the response) or if the

server does not understand the UVC response extension, it MUST fail.

E.3.5.3 Privacy considerations

Using the UVC request extension with verifyIfExceeded set to FALSE might allow the caller to triage

the last time the user was verified without requiring any input from the user and without notifying the

user. We do not allow this field to be set through the DOM API (i.e., by web pages). However, native

applications can use this field and hence could be able to determine the last time the user was verified.

Native applications have substantially more permissions and hence can have more detailed

knowledge about the user's behavior than web pages (e.g., track whether the device is used by

evaluating accelerometers).

In the UVC Response extension the authenticator can provide an upper bound of the trueUVC value

in order to prevent disclosure of exact time of user verification.

E.3.5.4 Security considerations

Servers not expecting user verification being used, might expect a fresh user verification and an

explicit user consent being provided. Authenticators supporting this extension shall only use it when

they are asked for that (i.e., UVC Request extension is present). Additionally the authenticator must

indicate if the user was not freshly verified using the UVC Response extension. This response

extension is marked with "fail-if-unknown" set to true, to make sure that servers receiving this

extension know that the user might not have been freshly verified.

E.3.6 Require resident key extension

This extension is intended to simplify the integration of authenticators implementing [b-CTAP] with

UAF [b-UAFProtocol].

Extension Identifier

fido.uaf.rk (TAG_RESIDENT_KEY)

Extension fail-if-unknown flag

false, i.e., the extension MAY be ignored if unknown.

Extension data value

boolean, i.e., rk=true or rk=false.

Client processing

N/A

Authenticator argument

boolean, i.e., rk=true or rk=false.

Authenticator processing

If the authenticator supports this extension, it should:

 Rec. ITU-T X.1277.2 (04/2023) 191

1. persistently store the credential's cryptographic key material internally is rk=true

2. NOT persistently store the credential's cryptographic key material internally is

rk=false

NOTE – It is expected that:

1. authenticators with isSecondFactorOnly=false in their Metadata Statement will persistently

store the credential's cryptographic key material internally if the extension is missing.

2. authenticators with isSecondFactorOnly=true in their Metadata Statement will NOT

persistently store the credential's cryptographic key material internally if the extension is

missing.

Authenticator data

boolean, i.e., rk=true or rk=false in an assertion, indicating whether the current credential is

resident in the authenticator or not.

Server processing

A response extension fido.uaf.rk set to false indicates that the FIDO Server needs to provide

a keyHandle for triggering authentication. This means that the authenticator can only be used

as a second factor (see also isSecondFactorOnly in [MetadataStatement].

If the Server did not request the fido.uaf.rk extension (but encounters it in the response) or if

the server does not understand the fido.uaf.rk response extension, it can silently ignore the

extension.

E.3.7 Attestation conveyance extension

This extension is intended to simplify the integration of authenticators implementing [b-CTAP] with

UAF [b-UAFProtocol].

Extension Identifier

fido.uaf.ac

Extension fail-if-unknown flag

false, i.e., the extension MAY be ignored if unknown.

Extension data value

string, i.e., ac='direct', ac='indirect', or ac='none'.

Client processing

If the ac value is

direct

the Client SHALL pass-through the attestation statement as received from the Authenticator.

indirect

the Client SHALL either

1. pass-through the attestation statement as received from the Authenticator or

2. replace the attestation statement received from the Authenticator using some

anonymization CA.

none

the Client SHALL remove the attestation statement received from the Authenticator.

192 Rec. ITU-T X.1277.2 (04/2023)

Authenticator argument

N/A

Authenticator processing

If the authenticator supports this extension, it should:

1. return an attestation statement according to the conveyance indicated.

Authenticator data

N/A (only indirectly through the generated attestation statement)

Server processing

The server should verify the attestation statement if it asked for it (i.e., ac='direct' or

ac='indirect').

If the Server specified ac='none', but received an attestation statement, it can silently ignore

it.

E.4 Other identifiers specific to UAF

E.4.1 UAF application identifier (AID)

This AID [b-ISO/IEC-7816-5] is used to identify UAF authenticator applications in a Secure Element.

The UAF AID consists of the following fields:

Table 1 – UAF Applet AID

Field RID AC AX

Value 0xA000000647 0xAF 0x0001

 Rec. ITU-T X.1277.2 (04/2023) 193

Appendix I

UAF architectural overview

(This appendix does not form an integral part of this Recommendation.)

The UAF strong authentication framework enables online services and websites, whether on the open

Internet or within enterprises, to transparently leverage native security features of end-user computing

devices for strong user authentication and to reduce the problems associated with creating and

remembering many online credentials. The UAF reference architecture describes the components,

protocols, and interfaces that make up the UAF strong authentication ecosystem.

This appendix describes the Universal Authentication Framework (UAF) reference architecture. The

target audience for this Recommendation is decision makers and technical architects who need a high-

level understanding of the UAF strong authentication solution and its relationship to other relevant

industry standards.

The UAF specifications are as follows:

• UAF protocol

• UAF application API and transport binding

• UAF authenticator commands

• UAF authenticator-specific module API

• UAF registry of predefined values

• UAF application programming data unit (APDU)

The following additional documents provide important information relevant to the UAF

specifications:

• AppID and Facets Specification

• Metadata Statements

• Metadata Service

• Registry of Predefined Values

• ECDAA Algorithm

• Security Reference

• Glossary

I.1 Background

There are two key protocols included that cater to two basic options for user experience when dealing

with Internet services. The two protocols share many of underpinnings but are tuned to the specific

intended use cases.

I.1.1 Universal Authentication Framework (UAF) protocol

The UAF protocol allows online services to offer password-less and multi-factor security. The user

registers their device to the online service by selecting a local authentication mechanism such as

swiping a finger, looking at the camera, speaking into the mic, entering a PIN, etc. The UAF protocol

allows the service to select which mechanisms are presented to the user.

Once registered, the user simply repeats the local authentication action whenever they need to

authenticate to the service. The user no longer needs to enter their password when authenticating from

that device. UAF also allows experiences that combine multiple authentication mechanisms such as

fingerprint + PIN.

194 Rec. ITU-T X.1277.2 (04/2023)

This Recommendation that you are reading describes the UAF reference architecture.

I.1.2 Universal 2nd Factor (U2F) protocol

The U2F protocol allows online services to augment the security of their existing password

infrastructure by adding a strong second factor to user login. The user logs in with a username and

password as before. The service can also prompt the user to present a second factor device at any time

it chooses. The strong second factor allows the service to simplify its passwords (e.g., 4-digit PIN)

without compromising security.

During registration and authentication, the user presents the second factor by simply pressing a button

on a USB device or tapping over near field communication (NFC). The user can use their U2F device

across all online services that support the protocol leveraging built-in support in web browsers.

Please refer to the website for an overview and documentation set focused on the U2F protocol.

I.1.3 UAF documentation

To understand the UAF protocol, it is recommended that new audiences start by reading this

architecture overview document and become familiar with the technical terminology used in the

specifications (the glossary). Then they should proceed to the individual UAF documents in the

recommended order listed below.

• UAF overview: This appendix. Provides an introduction to the UAF architecture, protocols,

and specifications.

• Technical glossary: Defines the technical terms and phrases used in Alliance specifications

and documents.

• Universal Authentication Framework (UAF)

o UAF protocol specification: Message formats and processing rules for all UAF protocol

messages.

o UAF application API and Transport Binding specification: APIs and interoperability

profile for client applications to utilize UAF.

o UAF authenticator commands: Low-level functionality that UAF Authenticators

should implement to support the UAF protocol.

o UAF authenticator-specific module API: Authenticator-specific module API provided

by an ASM to the client.

o UAF registry of predefined values: defines all the strings and constants reserved by

UAF protocols.

o UAF APDU: defines a mapping of UAF authenticator commands to application protocol

data units (APDUs).

• AppID and facet specification: Scope of user credentials and how a trusted computing base

which supports application isolation may make access control decisions about which keys

can be used by which applications and web origins.

• Metadata statements: Information describing form factors, characteristics, and capabilities

of Authenticators used to inform interactions with and make policy decisions about the

authenticators.

• Metadata service: Baseline method for relying parties to access the latest Metadata

statements.

• ECDAA algorithm: Defines the direct anonymous attestation algorithm for Authenticators.

• Registry of predefined values: defines all the strings and constants reserved by protocols

with relevance to multiple protocol families.

 Rec. ITU-T X.1277.2 (04/2023) 195

• Security reference: Provides an analysis of security based on detailed analysis of security

threats pertinent to the protocols based on its goals, assumptions, and inherent security

measures.

The remainder of this overview section of the reference architecture document introduces the key

drivers, goals, and principles which inform the design of UAF.

Following the overview, this appendix describes:

• A high-level look at the components, protocols, and APIs defined by the architecture

• The main UAF use cases and the protocol message flows required to implement them.

• The relationship of the protocols to other relevant industry standards.

I.1.4 UAF goals

In order to address today's strong authentication issues and develop a smoothly-functioning low-

friction ecosystem, a comprehensive, open, multi-vendor solution architecture is needed that

encompasses:

• User devices, whether personally acquired, enterprise-issued, or enterprise bring your own

device (BYOD), and the device's potential operating environment, e.g., home, office, in the

field, etc.

• Authenticators1

• Relying party applications and their deployment environments

• Meeting the needs of both end users and relying parties

• Strong focus on both browser- and native-app-based end-user experience

This solution architecture must feature:

• UAF authenticator discovery, attestation, and provisioning

• Cross-platform strong authentication protocols leveraging UAF authenticators

• A uniform cross-platform authenticator API

• Simple mechanisms for relying party integration

This work envisions an open, multi-vendor, cross-platform reference architecture with these goals:

• Support strong, multi-factor authentication: Protect relying parties against unauthorized

access by supporting end user authentication using two or more strong authentication factors

("something you know", "something you have", "something you are").

• Build on, but not require, existing device capabilities: Facilitate user authentication using

built-in platform authenticators or capabilities (fingerprint sensors, cameras, microphones,

embedded TPM hardware), but do not preclude the use of discrete additional authenticators.

• Enable selection of the authentication mechanism: Facilitate relying party and user choice

amongst supported authentication mechanisms in order to mitigate risks for their particular

use cases.

• Simplify integration of new authentication capabilities: Enable organizations to expand

their use of strong authentication to address new use cases, leverage new device's capabilities,

and address new risks with a single authentication approach.

• Incorporate extensibility for future refinements and innovations: Design extensible

protocols and APIs in order to support the future emergence of additional types of

authenticators, authentication methods, and authentication protocols, while maintaining

reasonable backwards compatibility.

• Leverage existing open standards where possible, openly innovate and extend where

not: An open, standardized, royalty-free specification suite will enable the establishment of

196 Rec. ITU-T X.1277.2 (04/2023)

a virtuous-circle ecosystem, and decrease the risk, complexity, and costs associated with

deploying strong authentication. Existing gaps -- notably uniform authenticator provisioning

and attestation, a uniform cross-platform authenticator API, as well as a flexible strong

authentication challenge-response protocol leveraging the user's authenticators will be

addressed.

• Complement existing single sign-on, federation initiatives: While industry initiatives

(such as OpenID, OAuth, SAML, and others) have created mechanisms to reduce the reliance

on passwords through single sign-on or federation technologies, they do not directly address

the need for an initial strong authentication interaction between end users and relying parties.

• Preserve the privacy of the end user: Provide the user control over the sharing of device

capability information with relying parties, and mitigate the potential for collusion amongst

relying parties.

• Unify end-user experience: Create easy, fun, and unified end-user experiences across all

platforms and across similar authenticators.

I.2 UAF high-level architecture

The UAF architecture is designed to meet the goals and yield the desired ecosystem benefits. It

accomplishes this by filling in the status-quo's gaps using standardized protocols and APIs.

Figure I.1 summarizes the reference architecture and how its components relate to typical user devices

and relying parties.

The specific components of the reference architecture are described below.

Figure I.1 – UAF high-level architecture

I.2.1 UAF client

A UAF client implements the client side of the UAF protocols, and is responsible for:

• Interacting with specific UAF Authenticators using the UAF Authenticator Abstraction layer

via the UAF Authenticator API.

• Interacting with a user agent on the device (e.g., a mobile app, browser) using user agent-

specific interfaces to communicate with the UAF server. For example, a specific browser

 Rec. ITU-T X.1277.2 (04/2023) 197

plugin would use existing browser plugin interfaces or a mobile app may use a specific SDK.

The user agent is then responsible for communicating UAF messages to a UAF server at a

relying party.

The UAF architecture ensures that client software can be implemented across a range of system types,

operating systems, and web browsers. While client software is typically platform-specific, the

interactions between the components should ensure a consistent user experience from platform to

platform.

I.2.2 UAF server

A UAF server implements the server side of the UAF protocols and is responsible for:

• Interacting with the relying party web server to communicate UAF protocol messages to a

UAF client via a device user agent.

• Validating UAF authenticator attestations against the configured authenticator metadata to

ensure only trusted authenticators are registered for use.

• Manage the association of registered UAF authenticators to user accounts at the relying party.

• Evaluating user authentication and transaction confirmation responses to determine their

validity.

The UAF server is conceived as being deployable as an on-premises server by relying parties or as

being outsourced to a enabled third-party service provider.

I.2.3 UAF protocols

The UAF protocols carry UAF messages between user devices and relying parties. There are protocol

messages addressing:

• Authenticator registration: The UAF registration protocol enables relying parties to:

o Discover the UAF authenticators available on a user's system or device. Discovery will

convey UAF authenticator attributes to the relying party thus enabling policy decisions

and enforcement to take place.

o Verify attestation assertions made by the UAF authenticators to ensure the authenticator

is authentic and trusted. Verification occurs using the attestation public key certificates

distributed via authenticator metadata.

o Register the authenticator and associate it with the user's account at the relying party.

Once an authenticator attestation has been validated, the relying party can provide a

unique secure identifier that is specific to the relying party and the UAF authenticator.

This identifier can be used in future interactions between the pair {RP, Authenticator}

and is not known to any other devices.

• User authentication: Authentication is typically based on cryptographic challenge-response

authentication protocols and will facilitate user choice regarding which UAF authenticators

are employed in an authentication event.

• Secure transaction confirmation: If the user authenticator includes the capability to do so, a

relying party can present the user with a secure message for confirmation. The message

content is determined by the relying party and could be used in a variety of contexts such as

confirming a financial transaction, a user agreement, or releasing patient records.

• Authenticator Deregistration: Deregistration is typically required when the user account is

removed at the relying party. The relying party can trigger the deregistration by requesting

the Authenticator to delete the associated UAF credential with the user account.

198 Rec. ITU-T X.1277.2 (04/2023)

I.2.4 UAF authenticator abstraction layer

The UAF authenticator abstraction layer provides a uniform API to clients enabling the use of

authenticator-based cryptographic services for supported operations. It provides a uniform lower-

layer "authenticator plugin" API facilitating the deployment of multi-vendor UAF authenticators and

their requisite drivers.

I.2.5 UAF authenticator

A UAF authenticator is a secure entity, connected to or housed within user devices, that can create

key material associated to a relying party. The key can then be used to participate in UAF strong

authentication protocols. For example, the UAF authenticator can provide a response to a

cryptographic challenge using the key material thus authenticating itself to the relying party.

To meet the goal of simplifying integration of trusted authentication capabilities, a UAF authenticator

will be able to attest to its particular type (e.g., biometric) and capabilities (e.g., supported crypto

algorithms), as well as to its provenance. This provides a relying party with a high degree of

confidence that the user being authenticated is indeed the user that originally registered with the site.

I.2.6 UAF authenticator metadata validation

In the UAF context, attestation is how Authenticators make claims to a relying party during

registration that the keys they generate, and/or certain measurements they report, originate from

genuine devices with certified characteristics. An attestation signature, carried in a UAF registration

protocol message is validated by the UAF server. UAF Authenticators are created with attestation

private keys used to create the signatures and the UAF server validates the signature using that

authenticator's attestation public key certificate located in the authenticator metadata. The metadata

holding attestation certificates is shared with UAF servers out of band.

I.3 UAF usage scenarios and protocol message flows

The UAF ecosystem supports the use cases briefly described in this clause.

I.3.1 UAF authenticator acquisition and user enrollment

It is expected that users will acquire UAF authenticators in various ways: they purchase a new system

that comes with embedded UAF authenticator capability; they purchase a device with an embedded

UAF authenticator, or they are given a authenticator by their employer or some other institution such

as their bank.

After receiving a UAF authenticator, the user must go through an authenticator-specific enrollment

process, which is outside the scope of the UAF protocols. For example, in the case of a fingerprint

sensing authenticator, the user must register their fingerprint(s) with the authenticator. Once

enrollment is complete, the UAF authenticator is ready for registration with UAF enabled online

services and websites.

I.3.2 Authenticator registration

Given the UAF architecture, a relying party is able to transparently detect when a user begins

interacting with them while possessing an initialized UAF authenticator. In this initial introduction

phase, the website will prompt the user regarding any detected UAF authenticator(s), giving the user

options regarding registering it with the website or not. See Figure I.2.

 Rec. ITU-T X.1277.2 (04/2023) 199

Figure I.2 – Registration message flow

I.3.3 Authentication

Following registration, the UAF authenticator will be subsequently employed whenever the user

authenticates with the website (and the authenticator is present). The website can implement various

fallback strategies for those occasions when the authenticator is not present. These might range from

allowing conventional login with diminished privileges to disallowing login. See Figure I.3.

Figure I.3 – Authentication message flow

This overall scenario will vary slightly depending upon the type of UAF Authenticator being

employed. Some authenticators may sample biometric data such as a face image, fingerprint, or voice

print. Others will require a PIN or local authenticator-specific passphrase entry. Still others may

200 Rec. ITU-T X.1277.2 (04/2023)

simply be a hardware bearer authenticator. Note that it is permissible for a client to interact with

external services as part of the authentication of the user to the authenticator as long as the privacy

principles are adhered to.

I.3.4 Step-up authentication

Step-up authentication is an embellishment to the basic website login use case. Often, online services

and websites allow unauthenticated, and/or only nominally authenticated use – for informational

browsing, for example. However, once users request more valuable interactions, such as entering a

members-only area, the website may request further higher-assurance authentication. This could

proceed in several steps if the user then wishes to purchase something, with higher-assurance steps

with increasing transaction value.

UAF will smoothly facilitate this interaction style since the website will be able to discover which

UAF authenticators are available on wielding users' systems and select incorporation of the

appropriate one(s) in any particular authentication interaction. Thus, online services and websites will

be able to dynamically tailor initial, as well as step-up authentication interactions according to what

the user is able to wield and the needed inputs to website's risk analysis engine given the interaction

the user has requested.

I.3.5 Transaction confirmation

There are various innovative use cases possible given UAF-enabled relying parties with end-users

wielding UAF Authenticators. Website login and step-up authentication are relatively simple

examples. A somewhat more advanced use case is secure transaction processing. See Figure I.4.

Figure I.4 – Confirmation message flow

Imagine a situation in which a relying party wants the end-user to confirm a transaction (e.g., financial

operation, privileged operation, etc.) so that any tampering of a transaction message during its route

to the end device display and back can be detected. The architecture has a concept of "secure

transaction" which provides this capability. Basically if a UAF Authenticator has a transaction

confirmation display capability, UAF architecture makes sure that the system supports What You See

is What You Sign mode (WYSIWYS). A number of different use cases can derive from this capability

 Rec. ITU-T X.1277.2 (04/2023) 201

– mainly related to authorization of transactions (send money, perform a context specific privileged

action, confirmation of email/address, etc.).

I.3.6 Authenticator deregistration

There are some situations where a relying party may need to remove the UAF credentials associated

with a specific user account in Authenticator. For example, the user's account is cancelled or deleted,

the user's authenticator is lost or stolen, etc. In these situations, the RP may request the authenticator

to delete authentication keys that are bound to user account. See Figure I.5.

Figure I.5 – Deregistration message flow

I.3.7 Adoption of new types of UAF authenticators

Authenticators will evolve and new types are expected to appear in the future. Their adoption on the

part of both users and relying parties is facilitated by the architecture. In order to support a new UAF

Authenticator type, relying parties need only to add a new entry to their configuration describing the

new authenticator, along with its Attestation Certificate. Afterwards, end users will be able to use the

new UAF Authenticator type with those relying parties.

I.4 Privacy considerations

User privacy is fundamental to and is supported in UAF by design. Some of the key privacy-aware

design elements are summarized here:

• A UAF device does not have a global identifier visible across relying parties and does not

have a global identifier within a particular relying party. If for example, a person looes their

UAF device, someone finding it cannot "point it at a relying party" and discover if the original

user had any accounts with that relying party. Similarly, if two users share a UAF device and

each has registered their account with the same relying party with this device, the relying

party will not be able to discern that the two accounts share a device, based on the UAF

protocol alone.

• The UAF protocol generates unique asymmetric cryptographic key pairs on a per-device,

per-user account, and per-relying party basis. Cryptographic keys used with different relying

parties will not allow any one party to link all the actions to the same user, hence the

unlinkability property of UAF.

• The UAF protocol operations require minimal personal data collection: at most they

incorporate a user's relying party username. This personal data is only used for purposes, for

example to perform user registration, user verification, or authorization. This personal data

202 Rec. ITU-T X.1277.2 (04/2023)

does not leave the user's computing environment and is only persisted locally when

necessary.

• In UAF, user verification is performed locally. The UAF protocol does not convey biometric

data to relying parties, nor does it require the storage of such data at relying parties.

• Users explicitly approve the use of a UAF device with a specific relying party. Unique

cryptographic keys are generated and bound to a relying party during registration only after

the user's consent.

• UAF authenticators can only be identified by their attestation certificates on a production

batch-level or on manufacturer- and device model-level. They cannot be identified

individually. The UAF specifications require implementers to ship UAF authenticators with

the same attestation certificate and private key in batches of 100,000 or more in order to

provide unlinkability.

I.5 Relationship to other technologies

OpenID, SAML and OAuth

Protocols (both UAF and U2F) complement federated identity management (FIM) frameworks, such

as OpenID and SAML, as well as web authorization protocols, such as OAuth. FIM relying parties

can leverage an initial authentication event at an identity provider (IdP). However, OpenID and

SAML do not define specific mechanisms for direct user authentication at the IdP.

When an IdP is integrated with an enabled authentication service, it can subsequently leverage the

attributes of the strong authentication with its relying parties. The following diagram illustrates this

relationship. Strong authentication (1) would logically occur first, and the FIM protocols would then

leverage that authentication event into single sign-on events between the identity provider and its

federated relying parties (2).

Figure I.6 – UAF and federated identity frameworks

 Rec. ITU-T X.1277.2 (04/2023) 203

I.6 OATH, TCG, PKCS#11, and ISO/IEC 24727

These are either initiatives (OATH, Trusted Computing Group (TCG)), or industry standards

(PKCS#11, ISO 24727). They all share an underlying focus on hardware authenticators.

PKCS#11 and ISO 24727 define smart-card-based authenticator abstractions.

TCG produces specifications for the Trusted Platform Module, as well as networked trusted

computing.

OATH, the "Initiative for Open AuTHentication", focuses on defining symmetric key provisioning

protocols and authentication algorithms for hardware One-Time Password (OTP) authenticators.

The framework shares several core notions with the foregoing efforts, such as an authentication

abstraction interface, authenticator attestation, key provisioning, and authentication algorithms. This

work will leverage and extend some of these specifications.

Specifically, this work will complement them by addressing:

• Authenticator discovery

• User experience

• Harmonization of various authenticator types, such as biometric, OTP, simple presence,

smart card, TPM, etc.

204 Rec. ITU-T X.1277.2 (04/2023)

Appendix II

UAF Authenticator-Specific Module API

(This appendix does not form an integral part of this Recommendation.)

UAF authenticators may be connected to a user device via various physical interfaces (SPI, USB,

Bluetooth, etc.). The UAF Authenticator-Specific module (ASM) is a software interface on top of

UAF authenticators which gives a standardized way for UAF clients to detect and access the

functionality of UAF authenticators, and hides internal communication complexity from clients.

The ASM is a platform-specific software component offering an API to UAF clients, enabling them

to discover and communicate with one or more available authenticators.

A single ASM may report on behalf of multiple authenticators.

The intended audience for this Annex is UAF authenticator and UAF client vendors.

NOTE – Platform vendors might choose to not expose the ASM API defined in this Recommendation to
applications. They might instead choose to expose ASM functionality through some other API (such as, for

example, the Android KeyStore API, or iOS KeyChain API). In these cases, it is important to make sure that
the underlying ASM communicates with the UAF authenticator in a manner defined in this Recommendation.

The UAF protocol and its various operations is described in the UAF Protocol Specification

[b-UAFProtocol]. The following simplified architecture diagram illustrates the interactions and actors

this Recommendation is concerned with:

Figure III.1 – UAF ASM API architecture

II.1 Code example format

ASM requests and responses are presented in WebIDL format.

II.2 ASM requests and responses

The ASM API is defined in terms of JSON-formatted request and reply messages. In order to send a

request to an ASM, a UAF client creates an appropriate object (e.g., in ECMAscript), "stringifies" it

(also known as serialization) into a JSON-formated string, and sends it to the ASM. The ASM

de-serializes the JSON-formatted string, processes the request, constructs a response, stringifies it,

returning it as a JSON-formatted string.

NOTE – The ASM request processing rules in this Recommendation explicitly assume that the underlying
authenticator implements the "UAFV1TLV" assertion scheme (e.g., references to TLVs and tags) as described
in [b-UAFProtocol]. If an authenticator supports a different assertion scheme then the corresponding
processing rules must be replaced with appropriate assertion scheme-specific rules.

 Rec. ITU-T X.1277.2 (04/2023) 205

Authenticator implementers MAY create custom authenticator command interfaces other than the

one defined in [b-UAFAuthnrCommands]. Such implementations are not required to implement the

exact message-specific processing steps described in this section. However,

1. the command interfaces MUST present the ASM with external behavior equivalent to that

described below in order for the ASM to properly respond to the client request messages

(e.g., returning appropriate UAF status codes for specific conditions).

2. all authenticator implementations MUST support an assertion scheme as defined [b-

UAFRegistry] and MUST return the related objects, i.e., TAG_UAFV1_REG_ASSERTION

and TAG_UAFV1_AUTH_ASSERTION as defined in [b-UAFAuthnrCommands].

II.2.1 Request enum

enum Request {

 "GetInfo",

 "Register",

 "Authenticate",

 "Deregister",

 "GetRegistrations",

 "OpenSettings"

};

Enumeration description

GetInfo GetInfo

Register Register

Authenticate Authenticate

Deregister Deregister

GetRegistrations GetRegistrations

OpenSettings OpenSettings

II.2.2 StatusCode interface

If the ASM needs to return an error received from the authenticator, it SHALL map the status code

received from the authenticator to the appropriate ASM status code as specified here.

If the ASM does not understand the authenticator's status code, it SHALL treat it as

UAF_CMD_STATUS_ERR_UNKNOWN and map it to UAF_ASM_STATUS_ERROR if it cannot

be handled otherwise.

If the caller of the ASM interface (i.e., the Client) does not understand a status code returned by the

ASM, it SHALL treat it as UAF_ASM_STATUS_ERROR. This might occur when new error codes

are introduced.

interface StatusCode {

 const short UAF_ASM_STATUS_OK = 0x00;

206 Rec. ITU-T X.1277.2 (04/2023)

 const short UAF_ASM_STATUS_ERROR = 0x01;

 const short UAF_ASM_STATUS_ACCESS_DENIED = 0x02;

 const short UAF_ASM_STATUS_USER_CANCELLED = 0x03;

 const short UAF_ASM_STATUS_CANNOT_RENDER_TRANSACTION_CONTENT =

0x04;

 const short UAF_ASM_STATUS_KEY_DISAPPEARED_PERMANENTLY = 0x09;

 const short UAF_ASM_STATUS_AUTHENTICATOR_DISCONNECTED = 0x0b;

 const short UAF_ASM_STATUS_USER_NOT_RESPONSIVE = 0x0e;

 const short UAF_ASM_STATUS_INSUFFICIENT_AUTHENTICATOR_RESOURCES =

0x0f;

 const short UAF_ASM_STATUS_USER_LOCKOUT = 0x10;

 const short UAF_ASM_STATUS_USER_NOT_ENROLLED = 0x11;

 const short UAF_ASM_STATUS_SYSTEM_INTERRUPTED = 0x12;

};

II.2.2.1 Constants

UAF_ASM_STATUS_OK of type short

No error condition encountered.

UAF_ASM_STATUS_ERROR of type short

An unknown error has been encountered during the processing.

UAF_ASM_STATUS_ACCESS_DENIED of type short

Access to this request is denied.

UAF_ASM_STATUS_USER_CANCELLED of type short

Indicates that user explicitly canceled the request.

UAF_ASM_STATUS_CANNOT_RENDER_TRANSACTION_CONTENT of type short

Transaction content cannot be rendered, e.g., format does not fit authenticator's need.

UAF_ASM_STATUS_KEY_DISAPPEARED_PERMANENTLY of type short

Indicates that the UAuth key disappeared from the authenticator and canot be restored.

UAF_ASM_STATUS_AUTHENTICATOR_DISCONNECTED of type short

Indicates that the authenticator is no longer connected to the ASM.

UAF_ASM_STATUS_USER_NOT_RESPONSIVE of type short

The user took too long to follow an instruction, e.g., didn't swipe the finger within the accepted

time.

UAF_ASM_STATUS_INSUFFICIENT_AUTHENTICATOR_RESOURCES of type short

Insufficient resources in the authenticator to perform the requested task.

UAF_ASM_STATUS_USER_LOCKOUT of type short

The operation failed because the user is locked out and the authenticator cannot automatically

trigger an action to change that. Typically the user would have to enter an alternative password

 Rec. ITU-T X.1277.2 (04/2023) 207

(formally: undergo some other alternative user verification method) to re-enable the use of

the main user verification method.

NOTE – Any method the user can use to (re-) enable the main user verification method is considered an
alternative user verification method and must be properly declared as such. For example, if the user can enter

an alternative password to re-enable the use of fingerprints or to add additional fingers, the authenticator
obviously supports fingerprint or password based user verification.

UAF_ASM_STATUS_USER_NOT_ENROLLED of type short

The operation failed because the user is not enrolled to the authenticator and the authenticator

cannot automatically trigger user enrollment.

UAF_ASM_STATUS_SYSTEM_INTERRUPTED of type short

Indicates that the system interrupted the operation. Retry might make sense.

II.2.2.2 Mapping authenticator status codes to ASM status codes

Authenticators are returning a status code in their responses to the ASM. The ASM needs to act on

those responses and also map the status code returned by the authenticator to an ASM status code.

The mapping of authenticator status codes to ASM status codes is specified here:

Authenticator status code ASM status code Comment

UAF_CMD_STATUS_OK UAF_ASM_STATUS_OK Pass-through success status

UAF_CMD_STATUS_ERR_UNK

NOWN
UAF_ASM_STATUS_ERROR Pass-through unspecific error status

UAF_CMD_STATUS_ACCESS_

DENIED

UAF_ASM_STATUS_ACCESS_

DENIED
Pass-through status code

UAF_CMD_STATUS_USER

_NOT_ENROLLED

UAF_ASM_STATUS_USER

_NOT_ENROLLED (or
UAF_ASM_STATUS_ACCESS_

DENIED in some situations)

According to [b-

UAFAuthnrCommands], this might
occur at the Sign command or at the

Register command if the authenticator

cannot automatically trigger user

enrollment. The mapping depends on

the command as follows.

In the case of "Register" command, the

error is mapped to

UAF_ASM_STATUS_USER_NOT_E

NROLLED in order to tell the calling
Client the there is an authenticator

present, but the user enrollment needs

to be triggered outside the

authenticator.

In the case of the "Sign" command, the

Uauth key needs to be protected by

one of the authenticator's user

verification methods at all times. So, if

this error occurs it is considered an

internal error and hence mapped to
UAF_ASM_STATUS_ACCESS_DEN

IED.

UAF_CMD_STATUS_CANNOT_

RENDER

_TRANSACTION_CONTENT

UAF_ASM_STATUS_CANNOT_

RENDER

_TRANSACTION_CONTENT

Pass-through status code as it indicates

a problem to be resolved by the entity

providing the transaction text.

208 Rec. ITU-T X.1277.2 (04/2023)

Authenticator status code ASM status code Comment

UAF_CMD_STATUS_USER_CA

NCELLED

UAF_ASM_STATUS_USER_CA

NCELLED

Map to

UAF_ASM_STATUS_USER_CANC

ELLED.

UAF_CMD_STATUS_CMD

_NOT_SUPPORTED

UAF_ASM_STATUS_OK or

UAF_ASM_STATUS_ERROR

If the ASM is able to handle that

command on behalf of the

authenticator (e.g., removing the key

handle in the case of Dereg command

for a bound authenticator), the

UAF_ASM_STATUS_OK must be
returned. Map the status code to

UAF_ASM_STATUS_ERROR

otherwise.

UAF_CMD_STATUS_ATTESTA

TION

_NOT_SUPPORTED

UAF_ASM_STATUS_ERROR

Indicates an ASM issue as the ASM

has obviously not requested one of the

supported attestation types indicated in

the authenticator's response to the

GetInfo command.

UAF_CMD_STATUS_PARAMS_

INVALID
UAF_ASM_STATUS_ERROR

Indicates an ASM issue as the ASM

has obviously not provided the correct

parameters to the authenticator when

sending the command.

UAF_CMD_STATUS_KEY_

DISAPPEARED_PERMANENTL

Y

UAF_ASM_STATUS_KEY_

DISAPPEARED_PERMANENTL

Y

Pass-through status code. It indicates

that the Uauth key disappeared

permanently, and the RP App might

want to trigger re-registration of the

authenticator.

UAF_STATUS_CMD_TIMEOUT UAF_ASM_STATUS_ERROR

Retry operation and map to

UAF_ASM_STATUS_ERROR if the

problem persists.

UAF_CMD_STATUS_USER

_NOT_RESPONSIVE

UAF_ASM_STATUS_USER

_NOT_RESPONSIVE

Pass-through status code. The RP App

might want to retry the operation once

the user pays attention to the

application again.

UAF_CMD_STATUS_

INSUFFICIENT_RESOURCES

UAF_ASM_STATUS_INSUFFICI

ENT

_AUTHENTICATOR_RESOURC

ES

Pass-through status code.

UAF_CMD_STATUS_USER_LO

CKOUT

UAF_ASM_STATUS_USER_LO

CKOUT
Pass-through status code.

Any other status code UAF_ASM_STATUS_ERROR

Map any unknown error code to

UAF_ASM_STATUS_ERROR. This

might happen when an ASM

communicates with an authenticator

implementing a newer UAF

specification than the ASM.

 Rec. ITU-T X.1277.2 (04/2023) 209

II.2.3 ASMRequest dictionary

All ASM requests are represented as ASMRequest objects.

dictionary ASMRequest {

 required Request requestType;

 Version asmVersion;

 unsigned short authenticatorIndex;

 object args;

 Extension[] exts;

};

II.2.3.1 Dictionary ASMRequest members

requestType of type required Request

Request type

asmVersion of type Version

ASM message version to be used with this request. For the definition of the Version dictionary

see [b-UAFProtocol]. The asmVersion MUST be 1.2 (i.e., major version is 1 and minor

version is 2) for this version of the specification.

authenticatorIndex of type unsigned short

Refer to the GetInfo request for more details. Field authenticatorIndex MUST NOT be set for

GetInfo request.

args of type object

Request-specific arguments. If set, this attribute MAY take one of the following types:

• RegisterIn

• AuthenticateIn

• DeregisterIn

exts of type array of Extension

List of UAF extensions. For the definition of the Extension dictionary see [b-UAFProtocol].

II.2.4 ASMResponse dictionary

All ASM responses are represented as ASMResponse objects.

dictionary ASMResponse {

 required short statusCode;

 object responseData;

 Extension[] exts;

};

210 Rec. ITU-T X.1277.2 (04/2023)

II.2.4.1 Dictionary ASMResponse members

statusCode of type required short

MUST contain one of the values defined in the StatusCode interface

responseData of type object

Request-specific response data. This attribute MUST have one of the following types:

• GetInfoOut

• RegisterOut

• AuthenticateOut

• GetRegistrationOut

exts of type array of Extension

List of UAF extensions. For the definition of the Extension dictionary see [b-UAFProtocol].

II.2.5 GetInfo request

Return information about available authenticators.

1. Enumerate all of the authenticators this ASM supports

2. Collect information about all of them

3. Assign indices to them (authenticatorIndex)

4. Return the information to the caller

NOTE – Where possible, an authenticatorIndex should be a persistent identifier that uniquely identifies an
authenticator over time, even if it is repeatedly disconnected and reconnected. This avoids possible confusion
if the set of available authenticators changes between a GetInfo request and subsequent ASM requests, and

allows a client to perform caching of information about removable authenticators for a better user experience.

NOTE – It is up to the ASM to decide whether authenticators which are disconnected temporarily will be
reported or not. However, if disconnected authenticators are reported, the Client might trigger an operation via
the ASM on those. The ASM will have to notify the user to connect the authenticator and report an appropriate
error if the authenticator isn't connected in time.

For a GetInfo request, the following ASMRequest member(s) MUST have the following value(s).

The remaining ASMRequest members SHOULD be omitted:

• ASMRequest.requestType MUST be set to GetInfo

For a GetInfo response, the following ASMResponse member(s) MUST have the following value(s).

The remaining ASMResponse members SHOULD be omitted:

• ASMResponse.statusCode MUST have one of the following values

o UAF_ASM_STATUS_OK

o UAF_ASM_STATUS_ERROR

• ASMResponse.responseData MUST be an object of type GetInfoOut. In the case of an error

the values of the fields might be empty (e.g., array with no members).

See section 3.2.2 Mapping Authenticator Status Codes to ASM Status Codes for details on the

mapping of authenticator status codes to ASM status codes.

II.2.5.1 GetInfoOut dictionary

dictionary GetInfoOut {

 required AuthenticatorInfo[] Authenticators;

 Rec. ITU-T X.1277.2 (04/2023) 211

};

II.2.5.1.1 Dictionary GetInfoOut members

Authenticators of type array of required AuthenticatorInfo

List of authenticators reported by the current ASM. MAY be empty an empty list.

II.2.5.2 AuthenticatorInfo dictionary

dictionary AuthenticatorInfo {

 required unsigned short authenticatorIndex;

 required Version[] asmVersions;

 required boolean isUserEnrolled;

 required boolean hasSettings;

 required AAID aaid;

 required DOMString assertionScheme;

 required unsigned short authenticationAlgorithm;

 required unsigned short[] attestationTypes;

 required unsigned long userVerification;

 required unsigned short keyProtection;

 required unsigned short matcherProtection;

 required unsigned long attachmentHint;

 required boolean isSecondFactorOnly;

 required boolean isRoamingAuthenticator;

 required DOMString[] supportedExtensionIDs;

 required unsigned short tcDisplay;

 DOMString tcDisplayContentType;

 DisplayPNGCharacteristicsDescriptor[] tcDisplayPNGCharacteristics;

 DOMString title;

 DOMString description;

 DOMString icon;

};

II.2.5.2.1 Dictionary AuthenticatorInfo members

authenticatorIndex of type required unsigned short

Authenticator index. Unique, within the scope of all authenticators reported by the ASM,

index referring to an authenticator. This index is used by the UAF client to refer to the

appropriate authenticator in further requests.

asmVersions of type array of required Version

212 Rec. ITU-T X.1277.2 (04/2023)

A list of ASM Versions that this authenticator can be used with. For the definition of the

Version dictionary see [b-UAFProtocol].

isUserEnrolled of type required boolean

Indicates whether a user is enrolled with this authenticator. Authenticators which don't have

user verification technology MUST always return true. Bound authenticators which support

different profiles per operating system (OS) user MUST report enrollment status for the

current OS user.

hasSettings of type required boolean

A boolean value indicating whether the authenticator has its own settings. If so, then a UAF

client can launch these settings by sending a OpenSettings request.

aaid of type required AAID

The "Authenticator Attestation ID" (AAID), which identifies the type and batch of the

authenticator. See [b-UAFProtocol] for the definition of the AAID structure.

assertionScheme of type required DOMString

The assertion scheme the authenticator uses for attested data and signatures.

AssertionScheme identifiers are defined in the UAF Protocol specification [b-UAFProtocol].

authenticationAlgorithm of type required unsigned short

Indicates the authentication algorithm that the authenticator uses. Authentication algorithm

identifiers are defined in are defined in [b-Registry] with ALG_ prefix.

attestationTypes of type array of required unsigned short

Indicates attestation types supported by the authenticator. Attestation type TAGs are defined

in [b-UAFRegistry] with TAG_ATTESTATION prefix

userVerification of type required unsigned long

A set of bit flags indicating the user verification method(s) supported by the authenticator.

The algorithm for combining the flags is defined in [b-UAFProtocol], section 3.1.12.1. The

values are defined by the USER_VERIFY constants in [b-Registry].

keyProtection of type required unsigned short

A set of bit flags indicating the key protections used by the authenticator. The values are

defined by the KEY_PROTECTION constants in [b-Registry].

matcherProtection of type required unsigned short

A set of bit flags indicating the matcher protections used by the authenticator. The values are

defined by the MATCHER_PROTECTION constants in [b-Registry].

attachmentHint of type required unsigned long

A set of bit flags indicating how the authenticator is currently connected to the system hosting

the UAF client software. The values are defined by the ATTACHMENT_HINT constants

defined in [b-Registry].

NOTE 1 – Because the connection state and topology of an authenticator may be transient, these values are

only hints that can be used by server-supplied policy to guide the user experience, e.g., to prefer a device that
is connected and ready for authenticating or confirming a low-value transaction, rather than one that is more
secure but requires more user effort. These values are not reflected in authenticator metadata and cannot be
relied on by the relying party, although some models of authenticator may provide attested measurements with
similar semantics as part of UAF protocol messages.

isSecondFactorOnly of type required boolean

 Rec. ITU-T X.1277.2 (04/2023) 213

Indicates whether the authenticator can be used only as a second factor.

isRoamingAuthenticator of type required boolean

Indicates whether this is a roaming authenticator or not.

supportedExtensionIDs of type array of required DOMString

List of supported UAF extension IDs. MAY be an empty list.

tcDisplay of type required unsigned short

A set of bit flags indicating the availability and type of the authenticator's transaction

confirmation display. The values are defined by the

TRANSACTION_CONFIRMATION_DISPLAY constants in [b-Registry].

This value MUST be 0 if transaction confirmation is not supported by the authenticator.

tcDisplayContentType of type DOMString

Supported transaction content type [b-MetadataStatement].

This value MUST be present if transaction confirmation is supported, i.e., tcDisplay is non-

zero.

tcDisplayPNGCharacteristics of type array of DisplayPNGCharacteristicsDescriptor

Supported transaction Portable Network Graphic (PNG) type [b-MetadataStatement]. For the

definition of the DisplayPNGCharacteristicsDescriptor structure see [b-MetadataStatement].

This list MUST be present if PNG-image based transaction confirmation is supported, i.e.,

tcDisplay is non-zero and tcDisplayContentType is image/png.

title of type DOMString

A human-readable short title for the authenticator. It should be localized for the current locale.

NOTE 2 – If the ASM does not return a title, the UAF client must provide a title to the calling App. See section

"Authenticator interface" in [b-UAFAppAPIAndTransport].

description of type DOMString

Human-readable longer description of what the authenticator represents.

NOTE 3 – This text should be localized for current locale.

The text is intended to be displayed to the user. It might deviate from the description specified in the

metadata statement for the authenticator [MetadataStatement].

If the ASM does not return a description, the UAF client will provide a description to the calling

application. See section "Authenticator interface" in [b-UAFAppAPIAndTransport].

icon of type DOMString

Portable Network Graphic (PNG) format image file representing the icon encoded as a data:

url [IETF RFC 2397].

NOTE 4 – If the ASM does not return an icon, the UAF client will provide a default icon to the calling
application. See section "Authenticator interface" in [b-UAFAppAPIAndTransport].

II.2.6 Register request

Verify the user and return an authenticator-generated UAF registration assertion.

For a Register request, the following ASMRequest member(s) MUST have the following value(s).

The remaining ASMRequest members SHOULD be omitted:

• ASMRequest.requestType MUST be set to Register

• ASMRequest.asmVersion MUST be set to the desired version

214 Rec. ITU-T X.1277.2 (04/2023)

• ASMRequest.authenticatorIndex MUST be set to the target authenticator index

• ASMRequest.args MUST be set to an object of type RegisterIn

• ASMRequest.exts MAY include some extensions to be processed by the ASM or the by

Authenticator.

For a Register response, the following ASMResponse member(s) MUST have the following value(s).

The remaining ASMResponse members SHOULD be omitted:

• ASMResponse.statusCode MUST have one of the following values:

o UAF_ASM_STATUS_OK

o UAF_ASM_STATUS_ERROR

o UAF_ASM_STATUS_ACCESS_DENIED

o UAF_ASM_STATUS_USER_CANCELLED

o UAF_ASM_STATUS_AUTHENTICATOR_DISCONNECTED

o UAF_ASM_STATUS_USER_NOT_RESPONSIVE

o UAF_ASM_STATUS_INSUFFICIENT_AUTHENTICATOR_RESOURCES

o UAF_ASM_STATUS_USER_LOCKOUT

o UAF_ASM_STATUS_USER_NOT_ENROLLED

• ASMResponse.responseData MUST be an object of type RegisterOut. In the case of an error

the values of the fields might be empty (e.g., empty strings).

II.2.6.1 RegisterIn object

dictionary RegisterIn {

 required DOMString appID;

 required DOMString username;

 required DOMString finalChallenge;

 required unsigned short attestationType;

};

II.2.6.1.1 Dictionary RegisterIn members

appID of type required DOMString

The server Application Identity.

username of type required DOMString

Human-readable user account name

finalChallenge of type required DOMString

base64url-encoded challenge data [IETF RFC 4648]

attestationType of type required unsigned short

Single requested attestation type

II.3.6.2 RegisterOut Object

dictionary RegisterOut {

 Rec. ITU-T X.1277.2 (04/2023) 215

 required DOMString assertion;

 required DOMString assertionScheme;

};

II.3.6.2.1 Dictionary RegisterOut members

assertion of type required DOMString

UAF authenticator registration assertion, base64url-encoded

assertionScheme of type required DOMString

Assertion scheme.

AssertionScheme identifiers are defined in the UAF Protocol specification [b-UAFProtocol].

II.3.6.3 Detailed description for processing the Register request

Refer to [b-UAFAuthnrCommands] for more information about the TAGs and structure mentioned

in this paragraph.

1. Locate authenticator using authenticatorIndex. If the authenticator cannot be located, then

fail with UAF_ASM_STATUS_AUTHENTICATOR_DISCONNECTED.

2. If a user is already enrolled with this authenticator (such as biometric enrollment, PIN setup,

etc. for example) then the ASM MUST request that the authenticator verifies the user.

NOTE 1 – If the authenticator supports UserVerificationToken (see [b-UAFAuthnrCommands]), then the

ASM must obtain this token in order to later include it with the Register command.

 If the user is locked out (e.g., too many failed attempts to get verified) and the authenticator

cannot automatically trigger unblocking, return UAF_ASM_STATUS_USER_LOCKOUT.

o If verification fails, return UAF_ASM_STATUS_ACCESS_DENIED

3. If the user is not enrolled with the authenticator, then take the user through the enrollment

process.

o If neither the ASM nor the Authenticator can trigger the enrollment process, return

UAF_ASM_STATUS_USER_NOT_ENROLLED.

o If enrollment fails, return UAF_ASM_STATUS_ACCESS_DENIED

4. Verify whether registerIn.appID and the appID included in the finalChallenge parameter are

identical. The registerIn.finalChallenge value needs to be (1) base64url decoded and (2)

parsed into a JSON object first.

o If verification fails, return UAF_ASM_STATUS_ACCESS_DENIED

5. Construct KHAccessToken (see section KHAccessToken for more details)

6. Hash the provided RegisterIn.finalChallenge using the authenticator-specific hash function

(FinalChallengeHash)

An authenticator's preferred hash function information MUST meet the algorithm defined in

the AuthenticatorInfo.authenticationAlgorithm field.

7. Create a TAG_UAFV1_REGISTER_CMD structure and pass it to the authenticator

o Copy FinalChallengeHash, KHAccessToken, RegisterIn.Username,

UserVerificationToken, RegisterIn.AppID, RegisterIn.AttestationType

216 Rec. ITU-T X.1277.2 (04/2023)

1. Depending on AuthenticatorType some arguments may be optional. Refer to [b-

UAFAuthnrCommands] for more information on authenticator types and their

required arguments.

o Add the extensions from the ASMRequest.exts dictionary appropriately to the

TAG_UAFV1_REGISTER_CMD as TAG_EXTENSION object.

8. Invoke the command and receive the response. If the authenticator returns an error, handle

that error appropriately. If the connection to the authenticator gets lost and cannot be restored,

return UAF_ASM_STATUS_AUTHENTICATOR_DISCONNECTED. If the operation

finally fails, map the authenticator error code to the the appropriate ASM error code (see

section 3.2.2 Mapping Authenticator Status Codes to ASM Status Codes for details).

9. Parse TAG_UAFV1_REGISTER_CMD_RESP

o Parse the content of TAG_AUTHENTICATOR_ASSERTION (e.g.,

TAG_UAFV1_REG_ASSERTION) and extract TAG_KEYID

10. If the authenticator is a bound authenticator

o Store CallerID, AppID, TAG_KEYHANDLE, TAG_KEYID and CurrentTimestamp in

the ASM's database.

NOTE 2 – What data an ASM will store at this stage depends on underlying authenticator's architecture. For
example, some authenticators might store AppID, KeyHandle, KeyID inside their own secure storage. In this
case ASM does not have to store these data in its database.

11. Create a RegisterOut object

o Set RegisterOut.assertionScheme according to AuthenticatorInfo.assertionScheme

o Encode the content of TAG_AUTHENTICATOR_ASSERTION (e.g.,

TAG_UAFV1_REG_ASSERTION) in base64url format and set as

RegisterOut.assertion.

o Return RegisterOut object

II.2.7 Authenticate request

Verify the user and return authenticator-generated UAF authentication assertion.

For an Authenticate request, the following ASMRequest member(s) MUST have the following

value(s). The remaining ASMRequest members SHOULD be omitted:

• ASMRequest.requestType MUST be set to Authenticate.

• ASMRequest.asmVersion MUST be set to the desired version.

• ASMRequest.authenticatorIndex MUST be set to the target authenticator index.

• ASMRequest.args MUST be set to an object of type AuthenticateIn

• ASMRequest.exts MAY include some extensions to be processed by the ASM or the by

Authenticator.

For an Authenticate response, the following ASMResponse member(s) MUST have the following

value(s). The remaining ASMResponse members SHOULD be omitted:

• ASMResponse.statusCode MUST have one of the following values:

o UAF_ASM_STATUS_OK

o UAF_ASM_STATUS_ERROR

o UAF_ASM_STATUS_ACCESS_DENIED

o UAF_ASM_STATUS_USER_CANCELLED

 Rec. ITU-T X.1277.2 (04/2023) 217

o UAF_ASM_STATUS_CANNOT_RENDER_TRANSACTION_CONTENT

o UAF_ASM_STATUS_KEY_DISAPPEARED_PERMANENTLY

o UAF_ASM_STATUS_AUTHENTICATOR_DISCONNECTED

o UAF_ASM_STATUS_USER_NOT_RESPONSIVE

o UAF_ASM_STATUS_USER_LOCKOUT

o UAF_ASM_STATUS_USER_NOT_ENROLLED

• ASMResponse.responseData MUST be an object of type AuthenticateOut. In the case of an

error the values of the fields might be empty (e.g., empty strings).

II.2.7.1 AuthenticateIn object

dictionary AuthenticateIn {

 required DOMString appID;

 DOMString[] keyIDs;

 required DOMString finalChallenge;

 Transaction[] transaction;

};

II.2.7.1.1 Dictionary AuthenticateIn members

appID of type required DOMString

appID string

keyIDs of type array of DOMString

base64url [RFC4648] encoded keyIDs

finalChallenge of type required DOMString

base64url [RFC4648] encoded final challenge

transaction of type array of Transaction

An array of transaction data to be confirmed by user. If multiple transactions are provided,

then the ASM MUST select the one that best matches the current display characteristics.

NOTE – This may, for example, depend on whether user's device is positioned horizontally or vertically at the
moment of transaction.

II.2.7.2 Transaction object

dictionary Transaction {

 required DOMString contentType;

 required DOMString content;

 DisplayPNGCharacteristicsDescriptor tcDisplayPNGCharacteristics;

};

II.2.7.2.1 Dictionary Transaction members

contentType of type required DOMString

218 Rec. ITU-T X.1277.2 (04/2023)

Contains the MIME Content-Type supported by the authenticator according to its metadata

statement (see [MetadataStatement])

content of type required DOMString

Contains the base64url-encoded [IETF RFC 4648] transaction content according to the

contentType to be shown to the user.

tcDisplayPNGCharacteristics of type DisplayPNGCharacteristicsDescriptor

Transaction content PNG characteristics. For the definition of the

DisplayPNGCharacteristicsDescriptor structure See [MetadataStatement].

II.2.7.3 AuthenticateOut object

dictionary AuthenticateOut {

 required DOMString assertion;

 required DOMString assertionScheme;

};

II.2.7.3.1 Dictionary AuthenticateOut members

assertion of type required DOMString

Authenticator UAF authentication assertion.

assertionScheme of type required DOMString

Assertion scheme

II.2.7.4 Detailed description for processing the Authenticate request

Refer to the [b-UAFAuthnrCommands] for more information about the TAGs and structure

mentioned in this paragraph.

1. Locate the authenticator using authenticatorIndex. If the authenticator cannot be located, then

fail with UAF_ASM_STATUS_AUTHENTICATOR_DISCONNECTED.

2. If no user is enrolled with this authenticator (such as biometric enrollment, PIN setup, etc.),

return UAF_ASM_STATUS_ACCESS_DENIED

3. The ASM MUST request the authenticator to verify the user.

o If the user is locked out (e.g., too many failed attempts to get verified) and the

authenticator cannot automatically trigger unblocking, return

UAF_ASM_STATUS_USER_LOCKOUT.

o If verification fails, return UAF_ASM_STATUS_ACCESS_DENIED

NOTE 1 – If the authenticator supports UserVerificationToken (see [b-UAFAuthnrCommands]), the ASM

must obtain this token in order to later pass to Sign command.

4. Construct KHAccessToken (see section KHAccessToken for more details)

5. Hash the provided AuthenticateIn.finalChallenge using an authenticator-specific hash

function (FinalChallengeHash).

 The authenticator's preferred hash function information MUST meet the algorithm defined

in the AuthenticatorInfo.authenticationAlgorithm field.

6. If this is a Second Factor authenticator and AuthenticateIn.keyIDs is empty, then return

UAF_ASM_STATUS_ACCESS_DENIED

7. If AuthenticateIn.keyIDs is not empty,

 Rec. ITU-T X.1277.2 (04/2023) 219

o If this is a bound authenticator, then look up ASM's database with AuthenticateIn.appID

and AuthenticateIn.keyIDs and obtain the KeyHandles associated with it.

▪ Return UAF_ASM_STATUS_KEY_DISAPPEARED_PERMANENTLY if the

related key disappeared permanently from the authenticator.

▪ Return UAF_ASM_STATUS_ACCESS_DENIED if no entry has been found.

o If this is a roaming authenticator, then treat AuthenticateIn.keyIDs as KeyHandles

8. Create TAG_UAFV1_SIGN_CMD structure and pass it to the authenticator.

o Copy AuthenticateIn.AppID, AuthenticateIn.Transaction.content (if not empty),

FinalChallengeHash, KHAccessToken, UserVerificationToken, KeyHandles

▪ Depending on AuthenticatorType some arguments may be optional. Refer to [b-

UAFAuthnrCommands] for more information on authenticator types and their

required arguments.

▪ If multiple transactions are provided, select the one that best matches the current

display characteristics.

NOTE 2 – This may, for example, depend on whether user's device is positioned horizontally or vertically at

the moment of transaction.

▪ Decode the base64url encoded AuthenticateIn.Transaction.content before passing it

to the authenticator

o Add the extensions from the ASMRequest.exts dictionary appropriately to the

TAG_UAFV1_REGISTER_CMD as TAG_EXTENSION object.

9. Invoke the command and receive the response. If the authenticator returns an error, handle

that error appropriately. If the connection to the authenticator gets lost and cannot be restored,

return UAF_ASM_STATUS_AUTHENTICATOR_DISCONNECTED. If the operation

finally fails, map the authenticator error code to the appropriate ASM error code (see

section 3.2.2 Mapping Authenticator Status Codes to ASM Status Codes for details).

10. Parse TAG_UAFV1_SIGN_CMD_RESP

o If it's a first-factor authenticator and the response includes

TAG_USERNAME_AND_KEYHANDLE, then

▪ Extract usernames from TAG_USERNAME_AND_KEYHANDLE fields

▪ If two or more equal usernames are found, then choose the one which has registered

most recently

NOTE 3 – After this step, a first-factor bound authenticator which stores KeyHandles inside the ASM's
database may delete the redundant KeyHandles from the ASM's database. This avoids having unusable (old)
private key in the authenticator which (surprisingly) might become active after deregistering the newly
generated one.

▪ Show remaining distinct usernames and ask the user to choose a single username

▪ Set TAG_UAFV1_SIGN_CMD.KeyHandles to the single KeyHandle associated

with the selected username.

▪ Go to step #8 and send a new TAG_UAFV1_SIGN_CMD command

 Create the AuthenticateOut object

0. Set AuthenticateOut.assertionScheme as AuthenticatorInfo.assertionScheme

1. Encode the content of TAG_AUTHENTICATOR_ASSERTION (e.g.,

TAG_UAFV1_AUTH_ASSERTION) in base64url format and set as

AuthenticateOut.assertion

2. Return the AuthenticateOut object

220 Rec. ITU-T X.1277.2 (04/2023)

NOTE 4 – Some authenticators might support "Transaction Confirmation Display" functionality not inside the

authenticator but within the boundaries of the ASM. Typically these are software based Transaction

Confirmation Displays. When processing the Sign command with a given transaction such ASM should show
transaction content in its own UI and after user confirms it -- pass the content to authenticator so that the
authenticator includes it in the final assertion.

See [b-Registry] for flags describing Transaction Confirmation Display type.

The authenticator metadata statement MUST truly indicate the type of transaction confirmation

display implementation. Typically the "Transaction Confirmation Display" flag will be set to

TRANSACTION_CONFIRMATION_DISPLAY_ANY (bitwise) or

TRANSACTION_CONFIRMATION_DISPLAY_PRIVILEGED_SOFTWARE.

II.2.8 Deregister request

Delete registered UAF record from the authenticator.

For a Deregister request, the following ASMRequest member(s) MUST have the following value(s).

The remaining ASMRequest members SHOULD be omitted:

• ASMRequest.requestType MUST be set to Deregister

• ASMRequest.asmVersion MUST be set to the desired version

• ASMRequest.authenticatorIndex MUST be set to the target authenticator index

• ASMRequest.args MUST be set to an object of type DeregisterIn

For a Deregister response, the following ASMResponse member(s) MUST have the following

value(s). The remaining ASMResponse members SHOULD be omitted:

• ASMResponse.statusCode MUST have one of the following values:

o UAF_ASM_STATUS_OK

o UAF_ASM_STATUS_ERROR

o UAF_ASM_STATUS_ACCESS_DENIED

o UAF_ASM_STATUS_AUTHENTICATOR_DISCONNECTED

II.2.8.1 DeregisterIn object

dictionary DeregisterIn {

 required DOMString appID;

 required DOMString keyID;

};

II.2.8.1.1 Dictionary DeregisterIn members

appID of type required DOMString

Server Application Identity

keyID of type required DOMString

Base64url-encoded [IETF RFC 4648] key identifier of the authenticator to be de-registered.

The keyID can be an empty string. In this case all keyIDs related to this appID MUST be

deregistered.

 Rec. ITU-T X.1277.2 (04/2023) 221

II.2.8.2 Detailed description for processing the Deregister request

Refer to [b-UAFAuthnrCommands] for more information about the TAGs and structures mentioned

in this paragraph.

1. Locate the authenticator using authenticatorIndex

2. Construct KHAccessToken (see section KHAccessToken for more details).

3. If this is a bound authenticator, then

o If the value of DeregisterIn.keyID is an empty string, then lookup all pairs of this appID

and any keyID mapped to this authenticatorIndex and delete them. Go to step 4.

o Otherwise, lookup the authenticator related data in the ASM database and delete the

record associated with DeregisterIn.appID and DeregisterIn.keyID. Go to step 4.

4. Create the TAG_UAFV1_DEREGISTER_CMD structure, copy KHAccessToken and

DeregisterIn.keyID and pass it to the authenticator.

NOTE – In the case of roaming authenticators, the keyID passed to the authenticator might be an
empty string. The authenticator is supposed to deregister all keys related to this appID in this case.

5. Invoke the command and receive the response. If the authenticator returns an error, handle

that error appropriately. If the connection to the authenticator gets lost and cannot be restored,

return UAF_ASM_STATUS_AUTHENTICATOR_DISCONNECTED. If the operation

finally fails, map the authenticator error code to the appropriate ASM error code (see

clause 3.2.2 Mapping Authenticator Status Codes to ASM Status Codes for details). Return

proper ASMResponse.

II.2.9 GetRegistrations request

Return all registrations made for the calling UAF client.

For a GetRegistrations request, the following ASMRequest member(s) MUST have the following

value(s). The remaining ASMRequest members SHOULD be omitted:

• ASMRequest.requestType MUST be set to GetRegistrations

• ASMRequest.asmVersion MUST be set to the desired version

• ASMRequest.authenticatorIndex MUST be set to corresponding ID

For a GetRegistrations response, the following ASMResponse member(s) MUST have the following

value(s). The remaining ASMResponse members SHOULD be omitted:

• ASMResponse.statusCode MUST have one of the following values:

o UAF_ASM_STATUS_OK

o UAF_ASM_STATUS_ERROR

o UAF_ASM_STATUS_AUTHENTICATOR_DISCONNECTED

• The ASMResponse.responseData MUST be an object of type GetRegistrationsOut. In the

case of an error the values of the fields might be empty (e.g., empty strings).

II.2.9.1 GetRegistrationsOut object

dictionary GetRegistrationsOut {

 required AppRegistration[] appRegs;

};

II.2.9.1.1 Dictionary GetRegistrationsOut members

appRegs of type array of required AppRegistration

222 Rec. ITU-T X.1277.2 (04/2023)

List of registrations associated with an appID (see AppRegistration below). MAY be an empty

list.

II.2.9.2 AppRegistration object

dictionary AppRegistration {

 required DOMString appID;

 required DOMString[] keyIDs;

};

II.2.9.2.1 Dictionary AppRegistration Members

appID of type required DOMString

Server Application Identity.

keyIDs of type array of required DOMString

List of key identifiers associated with the appID

II.2.9.3 Detailed description for processing the Getregistrations request

1. Locate the authenticator using authenticatorIndex

2. If this is bound authenticator, then

o Lookup the registrations associated with CallerID and AppID in the ASM database and

construct a list of AppRegistration objects

NOTE – Some ASMs might not store this information inside their own database. Instead it might have been
stored inside the authenticator's secure storage area. In this case the ASM must send a proprietary command
to obtain the necessary data.

3. If this is not a bound authenticator, then set the list to empty.

4. Create GetRegistrationsOut object and return

II.2.10 OpenSettings request

Display the authenticator-specific settings interface. If the authenticator has its own built-in user

interface, then the ASM MUST invoke TAG_UAFV1_OPEN_SETTINGS_CMD to display it.

For an OpenSettings request, the following ASMRequest member(s) MUST have the following

value(s). The remaining ASMRequest members SHOULD be omitted:

• ASMRequest.requestType MUST be set to OpenSettings

• ASMRequest.asmVersion MUST be set to the desired version

• ASMRequest.authenticatorIndex MUST be set to the target authenticator index

For an OpenSettings response, the following ASMResponse member(s) MUST have the following

value(s). The remaining ASMResponse members SHOULD be omitted:

• ASMResponse.statusCode MUST have one of the following values:

o UAF_ASM_STATUS_OK

II.3 Using ASM API

In a typical implementation, the UAF client will call GetInfo during initialization and obtain

information about the authenticators. Once the information is obtained it will typically be used during

UAF message processing to find a match for given UAF policy. Once a match is found the UAF

client will send the appropriate request (Register/Authenticate/Deregister...) to this ASM.

 Rec. ITU-T X.1277.2 (04/2023) 223

The UAF client may use the information obtained from a GetInfo response to display relevant

information about an authenticator to the user.

II.4 ASM APIs for various platforms

II.4.1 Android ASM Intent API

On Android systems UAF ASMs MAY be implemented as a separate APK-packaged application.

The UAF client invokes ASM operations via Android Intents. All interactions between the UAF client

and an ASM on Android takes place through the following intent identifier:

org.fidoalliance.intent.FIDO_OPERATION

To carry messages described in this Recommendation, an intent MUST also have its type attribute

set to application/fido.uaf_asm+json.

ASMs MUST register that intent in their manifest file and implement a handler for it.

UAF clients MUST append an extra, message, containing a String representation of a ASMRequest,

before invoking the intent.

UAF clients MUST invoke ASMs by calling startActivityForResult()

UAF clients SHOULD assume that ASMs will display an interface to the user in order to handle this

intent, e.g., prompting the user to complete the verification ceremony. However, the ASM SHOULD

NOT display any user interface when processing a GetInfo request.

After processing is complete the ASM will return the response intent as an argument to

onActivityResult(). The response intent will have an extra, message, containing a String

representation of a ASMResponse.

II.4.1.1 Discovering ASMs

UAF clients can discover the ASMs available on the system by using

PackageManager.queryIntentActivities(Intent intent, int flags) with the Intent described above to see

if any activities are available.

A typical UAF client will enumerate all ASM applications using this function and will invoke the

GetInfo operation for each one discovered.

II.4.1.2 Alternate Android AIDL service ASM implementation

The Android Intent API can also be implemented using Android AIDL services as an alternative

transport mechanism to Android Intents. Please see Android Intent API section

[b-UAFAppAPIAndTransport] for differences between the Android AIDL service and Android Intent

implementation.

This API should be used if the ASM itself does not implement any user interface.

NOTE – The advantage of this AIDL Server based API is that it does not cause a focus lose on the caller App.

II.4.2 Java ASM API for Android

NOTE – The Java ASM API is useful for ASMs for KeyStore based authenticators. In this case the platform
limits key use-access to the application generating the key. The ASM runs in the process scope of the RP App.

public interface IASM {

 enum Event {

 PLUGGED, /** Indicates that the authenticator was Plugged to system */

 UNPLUGGED /** Indicates that the authenticator was Unplugged from system */

224 Rec. ITU-T X.1277.2 (04/2023)

 }

 public interface IEnumeratorListener {

 /**

 This function is called when an authenticator is plugged or

 unplugged.

 @param eventType event type (plugged/unplugged)

 @param serialized AuthenticatorInfo JSON based GetInfoResponse object

 */

 void onNotify(Event eventType, String authenticatorInfo);

 }

 public interface IResponseReceiver {

 /**

 This function is called when ASM's response is ready.

 @param response serialized response JSON based event data

 @param exchangeData for ASM if it needs some

 data back right after calling the callback function.

 onResponse will set the exchangeData to the data to

 be returned to the ASM.

 */

 void onResponse(String response, StringBuilder exchangeData);

 }

 /**

 Initializes the ASM. This is the first function to

 be called.

 @param ctx the Android Application context of the calling application (or null)

 @param enumeratorListener caller provided Enumerator

 @return ASM StatusCode value

 */

 short init(Context ctx, IEnumeratorListener enumeratorListener);

 /**

 Process given JSON request and returns JSON response.

 If the caller wants to execute a function defined in ASM JSON

 schema then this is the function that must be called.

 @param act the calling Android Activity or null

 @param inData input JSON data

 @param ProcessListener event listener for receiving events from ASM

 Rec. ITU-T X.1277.2 (04/2023) 225

 @return ASM StatusCode value

 */

 short process(Activity act, String inData, IResponseReceiver responseReceiver);

 /**

 Uninitializes (shut's down) the ASM.

 @return ASM StatusCode value

 */

 short uninit();

}

II.4.3 C++ ASM API for iOS

NOTE – The C++ ASM API is useful for ASMs for KeyChain based authenticators. In this case the platform

limits key use-access to the application generating the key. The ASM runs in the process scope of the RP App.

#include

namespace FIDO_UAF {

class IASM {

 public:

 typedef enum {

 PLUGGED, /** Indicates that the authenticator was Plugged to system */

 UNPLUGGED /** Indicates that the authenticator was Unplugged from system */

 } Event;

 class IEnumeratorListener {

 virtual ~IEnumeratorListener() {}

 /**

 This function is called when an authenticator is plugged or

 unplugged.

 @param eventType event type (plugged/unplugged)

 @param serialized AuthenticatorInfo JSON based GetInfoResponse object

 */

 virtual void onNotify(Event eventType, const std::string& authenticatorInfo) {};

 };

 class IResponseReceiver {

 virtual ~IResponseReceiver() {}

 /**

 This function is called when ASM's response is ready.

226 Rec. ITU-T X.1277.2 (04/2023)

 @param response serialized JSON based event data

 @param exchangeData for ASM if it needs some

 data back right after calling the callback function.

 */

 virtual void onResponse(const std::string& response, std::string &exchangeData) {};

 };

 /**

 Initializes the ASM. This is the first function to

 be called.

 @param unc the platform UINavigationController or one of the derived classes

 (e.g., UINavigationController) in order to allow smooth UI integration of the ASM.

 @param EnumerationListener caller provided Enumerator

 @return ASM StatusCode value

 */

 virtual short int init(UINavigationController unc, IEnumerator EnumerationListener)=0;

 /**

 Process given JSON request and returns JSON response.

 If the caller wants to execute a function defined in ASM JSON

 schema then this is the function that must be called.

 @param unc the platform UINavigationController or one of the derived classes

 (e.g., UINavigationController) in order to allow smooth UI integration of the ASM

 @param InData input JSON data

 @param ProcessListener event listener for receiving events from ASM

 @return ASM StatusCode value

 */

 virtual short int process(UINavigationController unc, const std::string& InData, ICallback

ProcessListener)=0;

 /**

 Uninitializes (shut's down) the ASM.

 @return ASM StatusCode value

 */

 virtual short int uninit()=0;

};

}

II.4.4 Windows ASM API

On Windows, an ASM is implemented in the form of a dynamic link library (DLL). The following is

an example asmplugin.h header file defining a Windows ASM API:

 Rec. ITU-T X.1277.2 (04/2023) 227

EXAMPLE 1

/*! @file asm.h

*/

#ifndef __ASMH_

#define __ASMH_

#ifdef _WIN32

#define ASM_API __declspec(dllexport)

#endif

#ifdef _WIN32

#pragma warning (disable : 4251)

#endif

#define ASM_FUNC extern "C" ASM_API

#define ASM_NULL 0

/*! \brief Error codes returned by ASM Plugin API.

* Authenticator specific error codes are returned in JSON form.

* See JSON schemas for more details.

*/

enum asmResult_t

{

 Success = 0, /**< Success */

 Failure /**< Generic failure */

};

/*! \brief Generic structure containing JSON string in UTF-8

* format.

* This structure is used throughout functions to pass and receives

* JSON data.

*/

struct asmJSONData_t

{

 int length; /**< JSON data length */

 char *pData; /**< JSON data */

};

/*! \brief Enumeration event types for authenticators.

228 Rec. ITU-T X.1277.2 (04/2023)

These events will be fired when an authenticator becomes

 available (plugged) or unavailable (unplugged).

*/

enum asmEnumerationType_t

{

 Plugged = 0, /**< Indicates that authenticator Plugged to system */

 Unplugged /**< Indicates that authenticator Unplugged from system */

};

namespace ASM

{

 /*! \brief Callback listener.

 FIDO UAF client must pass an object implementating this interface to

 Authenticator::Process function. This interface is used to provide

 ASM JSON based response data.*/

 class ICallback

 {

 public

 virtual ~ICallback() {}

 /**

 This function is called when ASM's response is ready.

 *

 @param response JSON based event data

 @param exchangeData must be provided by ASM if it needs some

 data back right after calling the callback function.

 The lifecycle of this parameter must be managed by ASM. ASM must

 allocate enough memory for getting the data back.

 */

 virtual void Callback(const asmJSONData_t &response,

 asmJSONData_t &exchangeData) = 0;

 };

 /*! \brief Authenticator Enumerator.

 FIDO UAF client must provide an object implementing this

 interface. It will be invoked when a new authenticator is plugged or

 when an authenticator has been unplugged. */

 class IEnumerator

 {

 Rec. ITU-T X.1277.2 (04/2023) 229

 public

 virtual ~IEnumerator() {}

 /**

 This function is called when an authenticator is plugged or

 unplugged.

 * @param eventType event type (plugged/unplugged)

 @param AuthenticatorInfo JSON based GetInfoResponse object

 */

 virtual void Notify(const asmEnumerationType_t eventType, const

 asmJSONData_t &AuthenticatorInfo) = 0;

 };

}

/**

Initializes ASM plugin. This is the first function to be

 called.

*

@param pEnumerationListener caller provided Enumerator

*/

ASM_FUNC asmResult_t asmInit(ASM::IEnumerator

 *pEnumerationListener);

/**

Process given JSON request and returns JSON response.

*

If the caller wants to execute a function defined in ASM JSON

 schema then this is the function that must be called.

*

@param pInData input JSON data

@param pListener event listener for receiving events from ASM

*/

ASM_FUNC asmResult_t asmProcess(const asmJSONData_t *pInData,

 ASM::ICallback *pListener);

/**

Uninitializes ASM plugin.

*

*/

ASM_FUNC asmResult_t asmUninit();

#endif // __ASMPLUGINH_

A Windows-based UAF client MUST look for ASM DLLs in the following registry paths:

230 Rec. ITU-T X.1277.2 (04/2023)

HKCU\Software\FIDO\UAF\ASM

HKLM\Software\FIDO\UAF\ASM

The UAF client iterates over all keys under this path and looks for "path" field:

[HK**\Software\FIDO\UAF\ASM\<exampleASMName>]

"path"="<ABSOLUTE_PATH_TO_ASM>.dll"

path MUST point to the absolute location of the ASM DLL.

II.5 CTAP2 interface

ASMs can (optionally) provide a CTAP 2 interface in order to allow the authenticator being used as

external authenticator from a Web Authentication enabled platform supporting the CTAP 2 protocol

[b-CTAP].

In this case the CTAP2 enabled ASM provides the CTAP2 interface upstream through one or more

of the transport protocols defined in [b-CTAP] (e.g., USB, NFC, BLE). Note that the CTAP2 interface

is the connection to the CTAP Client enabled platform.

In the following section we specify how the ASM needs to map the parameters received via the

CTAP2 interface to UAF Authenticator Commands [b-UAFAuthnrCommands].

II.5.1 authenticatorMakeCredential

NOTE – This interface has the following input parameters (see [b-CTAP]):

1. clientDataHash (required, byte array).

2. rp (required, PublicKeyCredentialEntity). Identity of the relying party.

3. user (required, PublicKeyCredentialUserEntity).

4. pubKeyCredParams (required, CBOR array).

5. excludeList (optional, sequence of PublicKeyCredentialDescriptors).

6. extensions (optional, CBOR map). Parameters to influence authenticator operation.

7. options (optional, sequence of authenticator options, i.e., "rk" and "uv"). Parameters to

influence authenticator operation.

8. pinAuth (optional, byte array).

9. pinProtocol (optional, unsigned integer).

The output parameters are (see [b-CTAP]):

1. authData (required, sequence of bytes). The authenticator data object.

2. fmt (required, String). The attestation statement format identifier.

3. attStmt (required, sequence of bytes). The attestation statement.

II.5.1.1 Processing rules for authenticatorMakeCredential

1. invoke Register command for UAF authenticator as described in [b-UAFAuthnrCommands]

section 6.2.4 using the following field mapping instructions:

o authenticatorIndex set appropriately, e.g., 1.

o If webauthn_appid is present, then

1. Verify that the effective domain of AppID is identical to the effective domain

of rp.id.

2. Set AppID to the value of extension webauthn_appid (see [W3C WebAuthn]).

o If webauthn_appid is not present, then set AppID to rp.id (see [W3C WebAuthn]).

o FinalChallengeHash set to clientDataHash.

 Rec. ITU-T X.1277.2 (04/2023) 231

o Username set to user.displayName (see [W3C WebAuthn]). This string will be displayed

to the user in order to select a specific account if the user has multiple accounts at that

relying party.

o attestationType set to the attestation supported by that authenticator, e.g.,

ATTESTATION_BASIC_FULL or ATTESTATION_ECDAA.

o KHAccessToken set to some persistent identifier used for this authenticator. If the

authenticator is bound to the platform this ASM is running on, it needs to be a secret

identifier only known to this ASM instance. If the authenticator is a "roaming

authenticator", i.e., external to the platform this ASM is running on, the identifier can

have value 0.

o Add the fido.uaf.userid extension with value user.id to the Register command.

o Use the pinAuth and pinProtocol parameters appropriately when communicating with

the authenticator (if supported).

2. If this is a bound authenticator and the Authenticator does not support the fido.uaf.userid, let

the ASM remember the user.id value related to the generated UAuth key pair.

3. If the command was successful, create the result object as follows

o set authData to a freshly generated authenticator data object, containing the

corresponding values taken from the assertion geenrated by the authenticator. That

means:

1. set authData.rpID to the SHA256 hash of AppID.

2. initialize authData with 0 and then set set flag authData.AT to 1 and set

authData.UP to 1 if the authenticator is not a silent authenticator. Set flag

authData.uv to 1 if the authenticator is not a silent authenticator. The flags

authData.UP and authData.UV need to be 0 if it is a silent authenticator. Set

authData.ED to 1 if the authenticator added extensions to the assertion. In this

case add the individual extensions to the CBOR map appropriately.

3. set authData.signCount to the uafAssertion.signCounter.

4. set authData.attestationData.AAGUID to the AAID of this authenticator.

Setting the remaining bytes to 0.

5. set authData.attestationData.CredentialID to uafAssertion.keyHandle and set

the length L of the Credential ID to the size of the keyHandle.

6. set authData.attestationData.pubKey to uafAssertion.publicKey with

appropriate encoding conversion

o set fmt to the "fido-uaf".

o set attStmt to the AUTHENTICATOR_ASSERTION element of the

TAG_UAFV1_REGISTER_CMD_RESPONSE returned by the authenticator.

4. Return authData, fmt and attStmt.

II.5.2 authenticatorGetAssertion

NOTE – This interface has the following input parameters (see [b-CTAP]):

1. rpId (required, String). Identity of the relying party.

2. clientDataHash (required, byte array).

3. allowList (optional, sequence of PublicKeyCredentialDescriptors).

4. extensions (optional, CBOR map).

5. options (optional, sequence of authenticator options, i.e., "up" and "uv").

232 Rec. ITU-T X.1277.2 (04/2023)

The output parameters are (see [b-CTAP]):

1. credential (optional, PublicKeyCredentialDescriptor).

2. authData (required, byte array).

3. signature (required, byte array).

4. user (required, PublicKeyCredentialUserEntity).

5. numberOfCredentials (optional, integer).

II.5.2.1 Processing rules for authenticatorGetAssertion

1. invoke Sign command for UAF authenticator as described in [b-UAFAuthnrCommands]

section 6.3.4 using the following field mapping instructions

o authenticatorIndex set appropriately, e.g., 1.

o If webauthn_appid is present, then

1. Verify that the effective domain of AppID is identical to the effective domain of rpId.

2. Set AppID to the value of extension webauthn_appid (see [W3C WebAuthn]).

o If webauthn_appid is not present, then set AppID to rpId (see [W3C WebAuthn]).

o FinalChallengeHash set to clientDataHash.

o TransactionContent set to value of extension webauthn_txAuthGeneric or

webauthn_txAuthsimple (see [W3C WebAuthn]) depending on which extension is

present and supported by this authenticator. If the authenticator does not natively support

transactionConfirmation, the hash of the value included in either of the webauthn_tx*

extensions can be computed by the ASM and passed to the authenticator in

TransactionContentHash. See [b-UAFAuthnrCommands] section 6.3.1 for details.

o KHAccessToken set to the persistent identifier used for this authenticator (at

authenticatorMakeCredential).

o If allowList is present then add the .id field of each element as KeyHandle element to the

command.

o Use the pinAuth and pinProtocol parameters appropriately when communicating with

the authenticator (if supported).

2. If the command was successful (with potential ambiguities of RawKeyHandles resolved),

create the result object as follows

o set credential.id to the keyHandle returned by the authenticator command. Set

credential.type to "public-key-uaf" and set credential.transports to the transport currently

being used by this authenticator (e.g., "usb").

o set authData to the UAFV1_SIGNED_DATA element included in the

AUTHENTICATOR_ASSERTION element.

o set signature to the SIGNATURE element included in the

AUTHENTICATOR_ASSERTION element.

o If the authenticator returned the fido.uaf.userid extension, then set user.id to the value of

the fido.uaf.userid extension as returned by the authenticator.

o If the authenticator did not return the fido.uaf.userid extension but the ASM remembered

the user ID, then set user.id to the value of the user ID remembered by the ASM.

3. Return credential, authData, signature, user.

II.5.3 authenticatorGetNextAssertion

Not supported. This interface will always return a single assertion.

 Rec. ITU-T X.1277.2 (04/2023) 233

II.5.4 authenticatorCancel

Cancel the existing authenticator command if it is still pending.

II.5.5 authenticatorReset

Reset the authenticator back to factory default state. In order to prevent accidental trigger of this

mechanism, some form of user approval MAY be performed by the authenticator itself.

II.5.6 authenticatorGetInfo

This interface has no input parameters.

NOTE – Output parameters are (see [b-CTAP]):

1. versions (required, sequence of strings). List of protocol versions supported by the

authenticator.

2. extensions (optional, sequence of strings). List of extensions supported by the authenticator.

3. aaguid (optional, string). The AAGUID claimed by the authenticator.

4. options (optional, map). Map of "plat", "rk", "clientPin", "up", "uv"

5. maxMsgSize (optional, unsignd integer). The maximum message size accepted by the

authenticator.

6. pinProtocols (optional, array of unsigned integers).

II.5.6.1 Processing rules for authenticatorGetInfo

This interface is expected to report a single authenticator only.

1. Invoke the GetInfo command [b-UAFAuthnrCommands] for the connected authenticator.

o authenticatorIndex set appropriately, e.g., 1.

2. If the command was successful, create the result object as follows

o set versions to "FIDO_2_0" as this is the only version supported by CTAP2 at this time.

o set extensions to the list of extensions returned by the authenticator (one entry per field

SupportedExtensionID).

o set aaguid to the AAID returned by the authenticator, setting all remaining bytes to 0.

o set options appropriately.

o set maxMsgSize to the maximum message size supported by the authenticator – if known

o set pinProtocols to the list of supported pin protocols (if any).

3. Return versions, extensions, aaguid, options, mxMsgSize (if known) and pinProtocols (if

any).

II.6 Security and privacy guidelines

ASM developers must carefully protect the UAF data they are working with. ASMs must follow these

security guidelines:

• ASMs MUST implement a mechanism for isolating UAF credentials registered by two

different UAF clients from one another. One UAF client MUST NOT have access to UAF

credentials that have been registered via a different UAF client. This prevents malware from

exercising credentials associated with a legitimate Client.

NOTE 1 – ASMs must properly protect their sensitive data against malware using platform-provided isolation
capabilities in order to follow the assumptions made in [SecRef]. Malware with root access to the system or
direct physical attack on the device are out of scope for this requirement.

NOTE 2 – The following are examples for achieving this:

o If an ASM is bundled with a UAF client, this isolation mechanism is already built-in.

234 Rec. ITU-T X.1277.2 (04/2023)

o If the ASM and UAF client are implemented by the same vendor, the vendor may

implement proprietary mechanisms to bind its ASM exclusively to its own UAF client.

o On some platforms ASMs and the UAF clients may be assigned with a special privilege

or permissions which regular applications don't have. ASMs built for such platforms may

avoid supporting isolation of UAF credentials per UAF clients since all UAF clients will

be considered equally trusted.

• An ASM designed specifically for bound authenticators MUST ensure that UAF credentials

registered with one ASM cannot be accessed by another ASM. This is to prevent an

application pretending to be an ASM from exercising legitimate UAF credentials.

o Using a KHAccessToken offers such a mechanism.

• An ASM MUST implement platform-provided security best practices for protecting UAF-

related stored data.

• ASMs MUST NOT store any sensitive UAF data in its local storage, except the following:

o CallerID, ASMToken, PersonaID, KeyID, KeyHandle, AppID

NOTE 3 – An ASM, for example, must never store a username provided by a Server in its local storage in a

form other than being decryptable exclusively by the authenticator.

• ASMs SHOULD ensure that applications cannot use silent authenticators for tracking

purposes. ASMs implementing support for a silent authenticator MUST show, during every

registration, a user interface which explains what a silent authenticator is, asking for the users

consent for the registration. Also, it is RECOMMENDED that ASMs designed to support

roaming silent authenticators either

o Run with a special permission/privilege on the system, or

o Have a built-in binding with the authenticator which ensures that other applications

cannot directly communicate with the authenticator by bypassing this ASM.

II.6.1 KHAccessToken

KHAccessToken is an access control mechanism for protecting an authenticator's UAF credentials

from unauthorized use. It is created by the ASM by mixing various sources of information together.

Typically, a KHAccessToken contains the following four data items in it: AppID, PersonaID,

ASMToken and CallerID.

AppID is provided by the Server and is contained in every UAF message.

PersonaID is obtained by the ASM from the operational environment. Typically a different

PersonaID is assigned to every operating system user account.

ASMToken is a randomly generated secret which is maintained and protected by the ASM.

NOTE – In a typical implementation an ASM will randomly generate an ASMToken when it is launched the
first time and will maintain this secret until the ASM is uninstalled.

CallerID is the ID the platform has assigned to the calling UAF client (e.g., "bundle ID" for iOS). On

different platforms the CallerID can be obtained differently.

NOTE – For example on Android platform ASM can use the hash of the caller's apk-signing-cert.

The ASM uses the KHAccessToken to establish a link between the ASM and the key handle that is

created by authenticator on behalf of this ASM.

The ASM provides the KHAccessToken to the authenticator with every command which works with

key handles.

NOTE – The following example describes how the ASM constructs and uses KHAccessToken.

• During a Register request

 Rec. ITU-T X.1277.2 (04/2023) 235

o Set KHAccessToken to a secret value only known to the ASM. This value will always

be the same for this ASM.

o Append AppID

▪ KHAccessToken = AppID

o If a bound authenticator, append ASMToken, PersonaID and CallerID

▪ KHAccessToken |= ASMToken | PersonaID | CallerID

o Hash KHAccessToken

▪ Hash KHAccessToken using the authenticator's hashing algorithm. The reason of

using authenticator specific hash function is to make sure of interoperability between

ASMs. If interoperability is not required, an ASM can use any other secure hash

function it wants.

▪ KHAccessToken=hash(KHAccessToken)

o Provide KHAccessToken to the authenticator

o The authenticator puts the KHAccessToken into RawKeyHandle (see

[b-UAFAuthnrCommands] for more details)

• During other commands which require KHAccessToken as input argument

o The ASM computes KHAccessToken the same way as during the Register request and

provides it to the authenticator along with other arguments.

o The authenticator unwraps the provided key handle(s) and proceeds with the command

only if RawKeyHandle.KHAccessToken is equal to the provided KHAccessToken.

• The authenticator unwraps the provided key handle(s) and proceeds with the

command only if RawKeyHandle.KHAccessToken is equal to the provided

KHAccessToken.

Bound authenticators MUST support a mechanism for binding generated key handles to ASMs. The

binding mechanism MUST have at least the same security characteristics as mechanism for protcting

KHAccessToken described above. As a consequence, it is RECOMMENDED to securely derive

KHAccessToken from AppID, ASMToken, PersonaID and the CallerID.

Alternative methods for binding key handles to ASMs can be used if their security level is equal or

better.

From a security perspective, the KHAccessToken method relies on the OS/platform to:

1. allow the ASM keeping the ASMToken secret

2. and let the ASM determine the CalledID correctly

3. and let the Client verify the AppID/FacetID correctly

NOTE – It is recommended for roaming authenticators that the KHAccessToken contains only the AppID
since otherwise users won't be able to use them on different machines (PersonaID, ASMToken and CallerID
are platform specific). If the authenticator vendor decides to do that in order to address a specific use case,
however, it is allowed.

Including PersonaID in the KHAccessToken is optional for all types of authenticators. However an

authenticator designed for multi-user systems will likely have to support it.

If an ASM for roaming authenticators does not use a KHAccessToken which is different for each

AppID, the ASM MUST include the AppID in the command for a deregister request containing an

empty KeyID.

II.6.2 Access Control for ASM APIs

The following table summarizes the access control requirements for each API call.

236 Rec. ITU-T X.1277.2 (04/2023)

ASMs MUST implement the access control requirements defined below. ASM vendors MAY

implement additional security mechanisms.

Terms used in the table:

• NoAuth – no access control

• CallerID – UAF client's platform-assigned ID is verified

• UserVerify – user must be explicitly verified

• KeyIDList – must be known to the caller

Commands

First-factor

bound

authenticator

Second-factor

bound

authenticator

First-factor

roaming

authenticator

Second-factor

roaming

authenticator

GetInfo NoAuth NoAuth NoAuth NoAuth

OpenSettings NoAuth NoAuth NoAuth NoAuth

Register UserVerify UserVerify UserVerify UserVerify

Authenticate

UserVerify
AppID

CallerID

PersonaID

UserVerify
AppID

KeyIDList

CallerID

PersonaID

UserVerify

AppID

UserVerify
AppiD

KeyIDList

GetRegistrations*
CallerID

PersonaID

CallerID

PersonaID
X X

Deregister

AppID
KeyID

PersonaID

CallerID

AppID
KeyID

PersonaID

CallerID

AppID

KeyID

AppID

KeyID

 Rec. ITU-T X.1277.2 (04/2023) 237

Bibliography

NOTE – This Recommendation is technically aligned to to [b-UAF]

[b-ABNF] Augmented BNF for Syntax Specifications: ABNF

[b-AppIDAndFacets] FIDO AppID and Facets.

[b-ChannelID] Transport Layer Security (TLS) Channel IDs.

[b-CheLi2013-ECDAA] Flexible and Scalable Digital Signatures in TPM 2.0.

[b-Coron99] An accurate evaluation of Maurer's universal test

[b-CTAP] Fido Alliance, Client to Authenticator Protocol (CTAP),
https://fidoalliance.org/specs/fido-v2.1-ps-20210615/fido-client-to-authenticator-protocol-v2.1-ps-
errata-20220621.html

[b-EcdaaAlgorithm] FIDO ECDAA Algorithm. 28 November 2017.

[b-ECDSA-ANSI] Public Key Cryptography for the Financial Services Industry – Key

Agreement and Key Transport Using Elliptic Curve Cryptography ANSI

X9.63-2011 (R2017).

[b-FIPS140-3] FIPS PUB 140-3 (2019), Security Requirements for Cryptographic

Modules.

[b-FIPS180-4] FIPS PUB 180-4: Secure Hash Standard (SHS).

[b-FIPS198-1] FIPS PUB 198-1: The Keyed-Hash Message Authentication Code

(HMAC).

[b-Glossary] FIDO Technical Glossary

[b-ISO/IEC 24727] ISO/IEC 24727, Identification cards – Integrated cirucuit card

promramming interfaces.

[b-ISOBiometrics] ISO/IEC 2382-37, Harmonized Biometric Vocabulary.

[b-IETF RFC 6454] IETF RFC 6454 (2011), The Web Origin Concept.

[b-JWA] JSON Web Algorithms (JWA8)

[b-JWK] JSON Web Key (JWK).

[b-MetadataService] FIDO Metadata Service.

[b-MetadataStatement] FIDO Metadata Statements.

[b-OWASP2013] OWASP Top 10 – 2013. The Ten Most Critical Web Application

Security Risks.

[b-PNG] Portable Network Graphics (PNG) Specification (Second Edition).

[b-Registry] FIDO Registry of Predefined Values.

[b-SecRef] FIDO Security Reference.

[b-SP800-131A] NIST Special Publication 800-131A: Transitions: Recommendation for

Transitioning the Use of Cryptographic Algorithms and Key Lengths.

[b-SP800-38C] NIST Special Publication 800-38C: Recommendation for Block Cipher

Modes of Operation: The CCM Mode for Authentication and

Confidentiality.

[b-SP800-38D] NIST Special Publication 800-38C: Recommendation for Block Cipher

Modes of Operation: Galois/Counter Mode (GCM) and GMAC.

https://fidoalliance.org/specs/fido-v2.1-ps-20210615/fido-client-to-authenticator-protocol-v2.1-ps-errata-20220621.html
https://fidoalliance.org/specs/fido-v2.1-ps-20210615/fido-client-to-authenticator-protocol-v2.1-ps-errata-20220621.html

238 Rec. ITU-T X.1277.2 (04/2023)

[b-SP800-63] NIST Special Publication 800-63-2: Electronic Authentication Guideline

August 2013.

[b-SP800-90b] NIST Special Publication 800-90B: Recommendation for the Entropy

Sources Used for Random Bit Generation.

[b-TLS] The Transport Layer Security (TLS) Protocol Version 1.2. RFC 5246

[b-TLSAUTH] Triple Handshakes and Cookie Cutters: Breaking and Fixing

Authentication over TLS.

[b-TPMv1-2-Part1] TPM 1.2 Part 1: Design Principles.

[b-TPMv2-Part1] Trusted Platform Module Library, Part 1: Architecture.

[b-TR-03116-4] Technische Richtlinie TR-03116-4: eCard-Projekte der Bundesregierun.

[b-UAF] FIDO (2020), UAF Protocol Specification.

https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-protocol-v1.2-ps-20201020.html.

[b-UAFAppAPIAndTransport] FIDO (2020), UAF Application API and Transport Binding

Specification.

[b-UAFASM] FIDO (2020), UAF Authenticator-Specific Module.

[b-UAFAuthnrCommands] FIDO (2020), UAF Authenticator Commands.

[b-UAFRegistry] FIDO (2018), Registry of Predefined Values.

[b-WebIDL] Web IDL. 15 December 2016.

[b-WebIDL-ED] Web IDL. 13 November 2014.

https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-protocol-v1.2-ps-20201020.html

Published in Switzerland
Geneva, 2023

SERIES OF ITU-T RECOMMENDATIONS

Series A Organization of the work of ITU-T

Series D Tariff and accounting principles and international telecommunication/ICT economic and policy issues

Series E Overall network operation, telephone service, service operation and human factors

Series F Non-telephone telecommunication services

Series G Transmission systems and media, digital systems and networks

Series H Audiovisual and multimedia systems

Series I Integrated services digital network

Series J Cable networks and transmission of television, sound programme and other multimedia signals

Series K Protection against interference

Series L
Environment and ICTs, climate change, e-waste, energy efficiency; construction, installation and

protection of cables and other elements of outside plant

Series M Telecommunication management, including TMN and network maintenance

Series N Maintenance: international sound programme and television transmission circuits

Series O Specifications of measuring equipment

Series P Telephone transmission quality, telephone installations, local line networks

Series Q Switching and signalling, and associated measurements and tests

Series R Telegraph transmission

Series S Telegraph services terminal equipment

Series T Terminals for telematic services

Series U Telegraph switching

Series V Data communication over the telephone network

Series X Data networks, open system communications and security

Series Y
Global information infrastructure, Internet protocol aspects, next-generation networks, Internet of

Things and smart cities

Series Z Languages and general software aspects for telecommunication systems

	Recommendation ITU-T X.1277.2 (04/2023) Universal authentication framework protocol specification
	Summary
	History
	Introduction
	FOREWORD
	Table of Contents
	1 Scope
	2 References
	3 Definitions
	3.1 Terms defined elsewhere
	3.2 Terms defined in this Recommendation

	4 Abbreviations and acronyms
	5 Conventions
	6 Overview
	6.1 Architecture
	6.2 Protocol conversation
	6.2.1 Registration
	6.2.2 Authentication
	6.2.3 Transaction confirmation
	6.2.4 Deregistration

	6.3 Relationship to other specifications

	7 Protocol details
	7.1 Shared structures and types
	7.1.1 Version interface
	7.1.1.1 Attributes

	7.1.2 Operation enumeration
	7.1.3 OperationHeader dictionary
	7.1.3.1 Dictionary OperationHeader members

	7.1.4 Authenticator attestation ID (AAID) typedef
	7.1.5 KeyID typedef
	7.1.6 ServerChallenge typedef
	7.1.7 FinalChallengeParams dictionary
	7.1.7.1 Dictionary FinalChallengeParams Members

	7.1.8 CollectedClientData dictionary
	7.1.9 TLS ChannelBinding dictionary
	7.1.9.1 Dictionary ChannelBinding Members

	7.1.10 JwkKey dictionary
	7.1.10.1 Dictionary JwkKey Members

	7.1.11 Extension dictionary
	7.1.11.1 Dictionary Extension members

	7.1.12 MatchCriteria dictionary
	7.1.12.1 Dictionary MatchCriteria Members

	7.1.13 Policy dictionary
	7.1.13.1 Dictionary policy members

	7.2 Processing rules for the server policy
	7.2.1 Examples

	7.3 Version negotiation
	7.4 Registration operation
	7.4.1 Registration request message
	7.4.2 RegistrationRequest dictionary
	7.4.2.1 Dictionary RegistrationRequest members

	7.4.3 AuthenticatorRegistrationAssertion dictionary
	7.4.3.1 Dictionary AuthenticatorRegistrationAssertion members

	7.4.4 Registration response message
	7.4.5 RegistrationResponse dictionary
	7.4.5.1 Dictionary RegistrationResponse members

	7.4.6 Registration processing rules
	7.4.6.1 Registration request generation rules for server
	7.4.6.2 Registration request processing rules for UAF clients
	7.4.6.2.1 Mapping ASM Status Codes to ErrorCode

	7.4.6.3 Registration request processing rules for authenticator
	7.4.6.4 Registration Response Generation Rules for UAF client
	7.4.6.5 Registration response processing rules for server

	7.5 Authentication operation
	7.5.1 Transaction dictionary
	7.5.1.1 Dictionary Transaction members

	7.5.2 Authentication request message
	7.5.3 AuthenticationRequest dictionary
	7.5.3.1 Dictionary AuthenticationRequest members

	7.5.4 AuthenticatorSignAssertion dictionary
	7.5.4.1 Dictionary AuthenticatorSignAssertion members

	7.5.5 AuthenticationResponse dictionary
	7.5.5.1 Dictionary AuthenticationResponse members

	7.5.6 Authentication response message
	7.5.7 Authentication processing rules
	7.5.7.1 Authentication request generation rules for server
	7.5.7.2 Authentication request processing rules for UAF client
	7.5.7.3 Authentication request processing rules for authenticator
	7.5.7.4 Authentication Response Generation Rules for UAF client
	7.5.7.5 Authentication response processing rules for server

	7.6 Deregistration operation
	7.6.1 Deregistration request message
	7.6.2 DeregisterAuthenticator dictionary
	7.6.2.1 Dictionary DeregisterAuthenticator members

	7.6.3 DeregistrationRequest dictionary
	7.6.3.1 Dictionary DeregistrationRequest members

	7.6.4 Deregistration processing rules
	7.6.4.1 Deregistration request generation rules for server
	7.6.4.2 Deregistration request processing rules for UAF client
	7.6.4.3 Deregistration request processing rules for authenticator

	8 Considerations
	8.1 Protocol core design considerations
	8.1.1 Authenticator metadata
	8.1.2 Authenticator attestation
	8.1.2.1 Basic attestation
	8.1.2.1.1 Full basic attestation
	8.1.2.1.2 Surrogate basic attestation

	8.1.2.2 Direct anonymous attestation

	8.1.3 Error handling
	8.1.4 Assertion schemes
	8.1.5 Username in authenticator
	8.1.6 Silent authenticators
	8.1.7 TLS protected communication

	8.2 Implementation considerations
	8.2.1 Server challenge and random numbers
	8.2.2 Revealing KeyIDs

	8.3 Security considerations
	8.3.1 Authenticator security
	8.3.2 Cryptographic algorithms
	8.3.3 Client trust model
	8.3.3.1 Isolation using KHAccessToken

	8.3.4 TLS binding
	8.3.5 Session management
	8.3.6 Personas
	8.3.7 ServerData and KeyHandle
	8.3.8 Authenticator information retrieved through UAF application API vs. metadata
	8.3.9 Policy verification
	8.3.10 Replay attack protection
	8.3.11 Protection against cloned authenticators
	8.3.12 Anti-fraud signals

	8.4 Interoperability considerations

	9 UAF supported assertion schemes
	9.1 Assertion scheme "UAFV1TLV"
	9.1.1 KeyRegistrationData
	9.1.2 SignedData

	Annex A UAF Android protected confirmation assertion format
	A.1 Data structures for APCV1CBOR
	A.1.1 Registration assertion

	A.2 Authentication assertion
	A.3 Processing rules
	A.3.1 Registration response processing rules for ASM
	A.3.2 Registration response processing rules for server
	A.3.3 Authentication response generation rules for ASM
	A.3.4 Authentication response processing rules for server

	A.4 Example for metadata statement

	Annex B UAF web authentication assertion format
	B.1 Data structures for WAV1CBOR
	B.1.1 Registration assertion
	B.1.2 Authentication assertion

	B.2 Processing rules
	B.2.1 Registration response processing rules for ASM
	B.2.2 Registration response processing rules for server
	B.2.3 Authentication response generation rules for ASM
	B.2.4 Authentication response processing rules for server

	B.3 Mapping CTAP2 error codes to ASM error codes

	Annex C UAF authenticator commands
	C.1 UAF authenticator
	C.2 Tags
	C.2.1 Command tags
	C.2.2 Tags used only in authenticator commands
	C.2.3 Tags used in UAF protocol
	C.2.4 Status codes

	C.3 Structures
	C.3.1 RawKeyHandle
	C.3.2 Structures to be parsed by server
	C.3.2.1 TAG_UAFV1_REG_ASSERTION
	C.3.2.2 TAG_UAFV1_AUTH_ASSERTION

	C.4 UserVerificationToken
	C.5 Commands
	C.5.1 GetInfo command
	C.5.1.1 Command description
	C.5.1.2 Command structure
	C.5.1.3 Command response
	C.5.1.4 Status codes

	C.5.2 Register command
	C.5.2.1 Command structure
	C.5.2.2 Command response
	C.5.2.3 Status codes
	C.5.2.4 Command description

	C.5.3 Sign command
	C.5.3.1 Command structure
	C.5.3.2 Command response
	C.5.3.3 Status codes
	C.5.3.4 Command description

	C.5.4 Deregister command
	C.5.4.1 Command structure
	C.5.4.2 Command response
	C.5.4.3 Status codes
	C.5.4.4 Command description

	C.5.5 OpenSettings command
	C.5.5.1 Command structure
	C.5.5.2 Command Response
	C.5.5.3 Status Codes

	C.6 KeyIDs and key handles
	C.6.1 First-factor bound authenticator
	C.6.2 2ndF bound authenticator
	C.6.3 First-factor roaming authenticator
	C.6.4 2ndF roaming authenticator

	C.7 Access control for commands
	C.8 Considerations
	C.8.1 Algorithms and key sizes
	C.8.2 Indicating the authenticator model

	C.9 Relationship to other standards
	C.9.1 TEE
	C.9.2 Secure elements
	C.9.3 TPM
	C.9.4 Unreliable transports

	C.10 Security guidelines

	Annex D UAF application API and transport binding
	D.1 Audience
	D.2 Scope
	D.3 Architecture
	D.3.1 Protocol conversation

	D.4 Common definitions
	D.4.1 UAF status codes

	D.5 Shared definitions
	D.5.1 UAFMessage dictionary
	D.5.1.1 Dictionary UAFMessage members

	D.5.2 Version interface
	D.5.2.1 Attributes

	D.5.3 Authenticator interface
	D.5.3.1 Attributes
	D.5.3.2 Authenticator interface constants

	D.5.4 DiscoveryData dictionary
	D.5.4.1 Dictionary DiscoveryData Members

	D.5.5 ErrorCode interface
	D.5.5.1 Constants

	D.6 DOM API
	D.6.1 Feature detection
	D.6.2 UAF Interface
	D.6.2.1 Methods

	D.6.3 UAFResponseCallback
	D.6.3.1 Callback UAFResponseCallback Parameters

	D.6.4 DiscoveryCallback
	D.6.4.1 Callback DiscoveryCallback Parameters

	D.6.5 ErrorCallback
	D.6.5.1 Callback ErrorCallback Parameters

	D.6.6 Privacy considerations for the DOM API
	D.6.7 Security considerations for the DOM API
	D.6.7.1 Insecure mixed content
	D.6.7.2 The same origin policy, HTTP redirects and cross-origin content

	D.6.8 Implementation notes for browser/plugin authors

	D.7 Android Intent API
	D.7.1 Android-specific definitions
	D.7.1.1 org.fidoalliance.uaf.permissions.FIDO_CLIENT
	D.7.1.2 org.fidoalliance.uaf.permissions.ACT_AS_WEB_BROWSER
	D.7.1.3 channelBindings
	D.7.1.4 UAFIntentType enumeration

	D.7.2 org.fidoalliance.intent.FIDO_OPERATION Intent
	D.7.2.1 UAFIntentType.DISCOVER
	D.7.2.2 UAFIntentType.DISCOVER_RESULT
	D.7.2.3 UAFIntentType.CHECK_POLICY
	D.7.2.4 UAFIntentType.CHECK_POLICY_RESULT
	D.7.2.5 UAFIntentType.UAF_OPERATION
	D.7.2.6 UAFIntentType.UAF_OPERATION_RESULT
	D.7.2.7 UAFIntentType.UAF_OPERATION_COMPLETION_STATUS

	D.7.3 Alternate Android AIDL Service UAF client Implementation
	D.7.4 Security considerations for Android implementations

	D.8 iOS Custom URL API
	D.8.1 iOS-specific definitions
	D.8.1.1 X-Callback-URL transport
	D.8.1.2 Secret Key Generation
	D.8.1.3 Origin
	D.8.1.4 channelBindings
	D.8.1.5 UAFxType

	D.8.2 JSON values
	D.8.2.1 DISCOVER
	D.8.2.2 DISCOVER_RESULT
	D.8.2.3 CHECK_POLICY
	D.8.2.4 CHECK_POLICY_RESULT
	D.8.2.5 UAF_OPERATION
	D.8.2.6 UAF_OPERATION_RESULT
	D.8.2.7 UAF_OPERATION_COMPLETION_STATUS

	D.8.3 Implementation guidelines for iOS implementations
	D.8.4 Security considerations for iOS implementations

	D.9 Transport binding profile
	D.9.1 Transport security requirements
	D.9.2 TLS security requirements
	D.9.3 HTTPS transport interoperability profile
	D.9.3.1 Obtaining a UAF Request message
	D.9.3.2 Operation enum
	D.9.3.3 GetUAFRequest dictionary
	D.9.3.3.1 Dictionary GetUAFRequest Members

	D.9.3.4 ReturnUAFRequest dictionary
	D.9.3.4.1 Dictionary ReturnUAFRequest members

	D.9.3.5 SendUAFResponse dictionary
	D.9.3.5.1 Dictionary SendUAFResponse members

	D.9.3.6 Delivering a UAF response
	D.9.3.7 ServerResponse interface
	D.9.3.7.1 Attributes

	D.9.3.8 Token interface
	D.9.3.8.1 Attributes

	D.9.3.9 TokenType enum
	D.9.3.10 Security considerations

	Annex E UAF registry of predefined values
	E.1 Authenticator characteristics
	E.1.1 Assertion schemes

	E.2 Predefined Tags
	E.2.1 Tags used in the protocol

	E.3 Predefined extensions
	E.3.1 User verification method extension
	E.3.2 User ID Extension
	E.3.3 Android SafetyNet extension
	E.3.4 Android Key Attestation
	E.3.5 User verification caching
	E.3.5.1 UVC request
	E.3.5.2 UVC response
	E.3.5.3 Privacy considerations
	E.3.5.4 Security considerations

	E.3.6 Require resident key extension
	E.3.7 Attestation conveyance extension

	E.4 Other identifiers specific to UAF
	E.4.1 UAF application identifier (AID)

	Appendix I UAF architectural overview
	I.1 Background
	I.1.1 Universal Authentication Framework (UAF) protocol
	I.1.2 Universal 2nd Factor (U2F) protocol
	I.1.3 UAF documentation
	I.1.4 UAF goals

	I.2 UAF high-level architecture
	I.2.1 UAF client
	I.2.2 UAF server
	I.2.3 UAF protocols
	I.2.4 UAF authenticator abstraction layer
	I.2.5 UAF authenticator
	I.2.6 UAF authenticator metadata validation

	I.3 UAF usage scenarios and protocol message flows
	I.3.1 UAF authenticator acquisition and user enrollment
	I.3.2 Authenticator registration
	I.3.3 Authentication
	I.3.4 Step-up authentication
	I.3.5 Transaction confirmation
	I.3.6 Authenticator deregistration
	I.3.7 Adoption of new types of UAF authenticators

	I.4 Privacy considerations
	I.5 Relationship to other technologies
	I.6 OATH, TCG, PKCS#11, and ISO/IEC 24727

	Appendix II UAF Authenticator-Specific Module API
	II.1 Code example format
	II.2 ASM requests and responses
	II.2.1 Request enum
	II.2.2 StatusCode interface
	II.2.2.1 Constants
	II.2.2.2 Mapping authenticator status codes to ASM status codes

	II.2.3 ASMRequest dictionary
	II.2.3.1 Dictionary ASMRequest members

	II.2.4 ASMResponse dictionary
	II.2.4.1 Dictionary ASMResponse members

	II.2.5 GetInfo request
	II.2.5.1 GetInfoOut dictionary
	II.2.5.1.1 Dictionary GetInfoOut members

	II.2.5.2 AuthenticatorInfo dictionary
	II.2.5.2.1 Dictionary AuthenticatorInfo members

	II.2.6 Register request
	II.2.6.1 RegisterIn object
	II.2.6.1.1 Dictionary RegisterIn members
	II.3.6.2 RegisterOut Object
	II.3.6.2.1 Dictionary RegisterOut members

	II.3.6.3 Detailed description for processing the Register request

	II.2.7 Authenticate request
	II.2.7.1 AuthenticateIn object
	II.2.7.1.1 Dictionary AuthenticateIn members

	II.2.7.2 Transaction object
	II.2.7.2.1 Dictionary Transaction members

	II.2.7.3 AuthenticateOut object
	II.2.7.3.1 Dictionary AuthenticateOut members

	II.2.7.4 Detailed description for processing the Authenticate request

	II.2.8 Deregister request
	II.2.8.1 DeregisterIn object
	II.2.8.1.1 Dictionary DeregisterIn members

	II.2.8.2 Detailed description for processing the Deregister request

	II.2.9 GetRegistrations request
	II.2.9.1 GetRegistrationsOut object
	II.2.9.1.1 Dictionary GetRegistrationsOut members

	II.2.9.2 AppRegistration object
	II.2.9.2.1 Dictionary AppRegistration Members

	II.2.9.3 Detailed description for processing the Getregistrations request

	II.2.10 OpenSettings request

	II.3 Using ASM API
	II.4 ASM APIs for various platforms
	II.4.1 Android ASM Intent API
	II.4.1.1 Discovering ASMs
	II.4.1.2 Alternate Android AIDL service ASM implementation

	II.4.2 Java ASM API for Android
	II.4.3 C++ ASM API for iOS
	II.4.4 Windows ASM API

	II.5 CTAP2 interface
	II.5.1 authenticatorMakeCredential
	II.5.1.1 Processing rules for authenticatorMakeCredential

	II.5.2 authenticatorGetAssertion
	II.5.2.1 Processing rules for authenticatorGetAssertion

	II.5.3 authenticatorGetNextAssertion
	II.5.4 authenticatorCancel
	II.5.5 authenticatorReset
	II.5.6 authenticatorGetInfo
	II.5.6.1 Processing rules for authenticatorGetInfo

	II.6 Security and privacy guidelines
	II.6.1 KHAccessToken
	II.6.2 Access Control for ASM APIs

	Bibliography

