

I n t e r n a t i o n a l T e l e c o m m u n i c a t i o n U n i o n

ITU-T X.1211
TELECOMMUNICATION
STANDARDIZATION SECTOR
OF ITU

(09/2014)

SERIES X: DATA NETWORKS, OPEN SYSTEM
COMMUNICATIONS AND SECURITY

Cyberspace security – Cybersecurity

 Techniques for preventing web-based attacks

Recommendation ITU-T X.1211

ITU-T X-SERIES RECOMMENDATIONS

DATA NETWORKS, OPEN SYSTEM COMMUNICATIONS AND SECURITY

PUBLIC DATA NETWORKS X.1–X.199
OPEN SYSTEMS INTERCONNECTION X.200–X.299
INTERWORKING BETWEEN NETWORKS X.300–X.399
MESSAGE HANDLING SYSTEMS X.400–X.499
DIRECTORY X.500–X.599
OSI NETWORKING AND SYSTEM ASPECTS X.600–X.699
OSI MANAGEMENT X.700–X.799
SECURITY X.800–X.849
OSI APPLICATIONS X.850–X.899
OPEN DISTRIBUTED PROCESSING X.900–X.999
INFORMATION AND NETWORK SECURITY

General security aspects X.1000–X.1029
Network security X.1030–X.1049
Security management X.1050–X.1069
Telebiometrics X.1080–X.1099

SECURE APPLICATIONS AND SERVICES
Multicast security X.1100–X.1109
Home network security X.1110–X.1119
Mobile security X.1120–X.1139
Web security X.1140–X.1149
Security protocols X.1150–X.1159
Peer-to-peer security X.1160–X.1169
Networked ID security X.1170–X.1179
IPTV security X.1180–X.1199

CYBERSPACE SECURITY
Cybersecurity X.1200–X.1229
Countering spam X.1230–X.1249
Identity management X.1250–X.1279

SECURE APPLICATIONS AND SERVICES
Emergency communications X.1300–X.1309
Ubiquitous sensor network security X.1310–X.1339

CYBERSECURITY INFORMATION EXCHANGE
Overview of cybersecurity X.1500–X.1519
Vulnerability/state exchange X.1520–X.1539
Event/incident/heuristics exchange X.1540–X.1549
Exchange of policies X.1550–X.1559
Heuristics and information request X.1560–X.1569
Identification and discovery X.1570–X.1579
Assured exchange X.1580–X.1589

CLOUD COMPUTING SECURITY
Overview of cloud computing security X.1600–X.1601
Cloud computing security design X.1602–X.1639
Cloud computing security best practices and guidelines X.1640–X.1659
Cloud computing security implementation X.1660–X.1679
Other cloud computing security X.1680–X.1699

For further details, please refer to the list of ITU-T Recommendations.

 Rec. ITU-T X.1211 (09/2014) i

Recommendation ITU-T X.1211

Techniques for preventing web-based attacks

Summary

Recommendation ITU-T X.1211 describes techniques that can mitigate web-based attacks which
occur when the vulnerabilities of the website hosts are exploited and malicious code is introduced
that can infect a user's computer. Several appendices illustrate how the attacks can occur as well as
remediation steps.

History
Edition Recommendation Approval Study Group Unique ID*

1.0 ITU-T X.1211 2014-09-26 17 11.1002/1000/12154

Keywords

Prevention, SQL injection, spyware, suspicious content, vulnerability, web-based attack.

* To access the Recommendation, type the URL http://handle.itu.int/ in the address field of your web

browser, followed by the Recommendation's unique ID. For example, http://handle.itu.int/11.1002/1000/11
830-en.

http://handle.itu.int/11.1002/1000/12154
http://handle.itu.int/11.1002/1000/11830-en
http://handle.itu.int/11.1002/1000/11830-en

ii Rec. ITU-T X.1211 (09/2014)

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of
telecommunications, information and communication technologies (ICTs). The ITU Telecommunication
Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical,
operating and tariff questions and issuing Recommendations on them with a view to standardizing
telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years,
establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on
these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are
prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a
telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain
mandatory provisions (to ensure, e.g., interoperability or applicability) and compliance with the
Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some
other obligatory language such as "must" and the negative equivalents are used to express requirements. The
use of such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may
involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence,
validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others
outside of the Recommendation development process.

As of the date of approval of this Recommendation, ITU had not received notice of intellectual property,
protected by patents, which may be required to implement this Recommendation. However, implementers
are cautioned that this may not represent the latest information and are therefore strongly urged to consult the
TSB patent database at http://www.itu.int/ITU-T/ipr/.

 ITU 2014

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the
prior written permission of ITU.

http://www.itu.int/ITU-T/ipr/

 Rec. ITU-T X.1211 (09/2014) iii

Table of Contents

 Page

1 Scope .. 1

2 References... 1

3 Terms and definitions ... 1

3.1 Terms defined elsewhere .. 1

3.2 Terms defined in this Recommendation ... 2

4 Abbreviations and acronyms .. 2

5 Conventions .. 3

6 General overview .. 3

7 Web-based attack protection system techniques .. 4

7.1 General techniques ... 4

7.2 Functional techniques ... 4

7.3 Management techniques ... 5

7.4 Security and privacy techniques ... 5

8 Functions of the web-based attack protection system .. 5

9 Information exchange format ... 6

Appendix I – Scenarios for web-based attacks .. 7

I.1 Scenario for malware infection .. 7

I.2 Cross-site request forgery (CAPEC-62) ... 7

I.3 Cross-site port attacks/server-side request forgery ... 8

I.4 SQL injection .. 8

I.5 Detecting malware in websites ... 9

Appendix II – Method for infecting user computers with malware ... 10

Appendix III – Typical examples of obfuscation technique .. 11

Appendix IV – Prevention techniques for web-based attacks ... 12

IV.1 Remove website vulnerabilities .. 12

IV.2 Signature matching ... 12

IV.3 Site blacklisting .. 12

IV.4 Detection of obfuscating techniques .. 12

IV.5 Evaluation of suspicious content behaviour ... 12

Appendix V – Typical examples of application security risks by OWASP 13

Bibliography... 22

 Rec. ITU-T X.1211 (09/2014) 1

Recommendation ITU-T X.1211

Techniques for preventing web-based attacks

1 Scope

This Recommendation provides techniques for preventing web-based attacks. It describes the use
scenarios to distributing malwares through the web as well as the functional techniques and
functions to prevent web-based attacks.

2 References

None.

3 Terms and definitions

3.1 Terms defined elsewhere

This Recommendation uses the following terms defined elsewhere:

3.1.1 asset [b-ISO/IEC 27000]: Anything that has value to the organization.

NOTE – There are many types of assets, including:

a) information;

b) software, such as a computer program;

c) physical, such as computer;

d) services;

e) people, and their qualifications, skills, and experience; and

f) intangibles, such as reputation and image.

3.1.2 attack instance [b-ITU-T X.1544]: A specific detailed attack against an application or
system targeting vulnerabilities or weaknesses in that system.

3.1.3 attack pattern [b-ITU-T X.1544]: An abstraction of common approaches of attack
observed in the wild against applications or systems (e.g., SQL injection, man-in-the-middle,
session hijacking).

NOTE – A single attack pattern may potentially have many varying attack instances associable with it.

3.1.4 hypertext markup language (HTML) [b-ITU-T M.3030]: A system of coding
information from a wide range of domains (e.g., text, graphics, database query results) for display
by World Wide Web browsers. Certain special codes, called tags, are embedded in the document so
that the browser can be told how to render the information.

3.1.5 malware [b-ISO/IEC 27033-1]: Malicious software designed specifically to damage or
disrupt a system, attacking confidentiality, integrity and/or availability.

3.1.6 obfuscation technique [b-NIST SP 800-83]: A way of constructing a virus to make it more
difficult to detect.

3.1.7 personally identifiable information (PII) [b-ITU-T X.1252]: Any information a) that
identifies or can be used to identify, contact, or locate the person to whom such information
pertains; b) from which identification or contact information of an individual person can be derived;
or c) that is or can be linked to a natural person directly or indirectly.

3.1.8 threat [b-ITU-T X.800]: A potential violation of security.

3.1.9 security domain [b-ITU-T T.411]: The set of resources subject to a single security policy.

2 Rec. ITU-T X.1211 (09/2014)

3.1.10 security domain authority [b-ITU-T X.810]: A security authority that is responsible for
the implementation of a security policy for a security domain.

3.1.11 security policy [b-ITU-T T.411]: The set of rules that specify the procedures and services
required to maintain the intended level of security of a set of resources.

3.1.12 signature [b-NIST SP 800-83]: A set of characteristics of known malware instances that
can be used to identify known malware and some new variants of known malware.

3.1.13 spyware [b-NIST SP 800-83]: Malware intended to violate a user's privacy.

3.1.14 web browser plug-in [b-NIST SP 800-83]: A mechanism for displaying or executing
certain types of content through a Web browser.

3.2 Terms defined in this Recommendation

This Recommendation defines the following terms:

3.2.1 anomaly: A pattern in the data that does not conform to the expected behaviour.

3.2.2 drive-by-download attacks: A pattern of a web-based attack caused when a user visits a
website that exploits browser vulnerabilities and launches the automatic download and installation
of malware without the knowledge or permission of the user.

3.2.3 web-based attack: A pattern of attacks in which the attackers compromise the legitimate
websites resulting in a malicious code to be injected into an application, which in turn can be used
to infect the user's computer visiting those websites or use vulnerabilities of web sites to launch
attacks for user's computer systems that visit that web sites, which occurs without involvement of
malware.

3.2.4 web-based attack protection system: A set of systems which detects vulnerabilities,
malwares or malicious codes embedded in the legitimate website and informs the web administrator
of the detection result, leading ultimately to their removal.

NOTE – Detection activities may be planned by schedule or may be triggered by network events or requests
from other systems.

3.2.5 zombie computer: A computer that has been compromised and controlled by an attacker
who has installed malwares such as computer viruses, Trojan horse, or bot net, which can be used to
perform malicious attacks such as spreading e-mail spams and launching denial-of-service attacks.

4 Abbreviations and acronyms

This Recommendation uses the following abbreviations and acronyms:

CAPEC Common Attack Pattern Enumeration and Classification

CSRF Cross-Site Request Forgery

CWE Common Weakness Enumeration

DDoS Distributed Denial of Service

DOM Document Object Model

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

ID Identity

IODEF Incident Object Description Exchange Format

LDAP Lightweight Directory Access Protocol

 Rec. ITU-T X.1211 (09/2014) 3

MITM Man-in-the-Middle

OS Operating System

OWASP Open Web Applications Security Project

PC Personal Computer

PII Personally Identifiable Information

PUI Program Under Inspection

SNS Social Network Service

SQL Structured Query Language

SSRF Server-Side Request Forgery

S/W Software

URI Uniform Resource Identifier

URL Uniform Resource Locator

XSPA Cross-Site Port Attack

XSS Cross-Site Scripting

5 Conventions

None.

6 General overview

Malware that is used to comprome information assets is defined as software designed specifically to
damage or to disrupt a system, attacking confidentiality, integrity and/or availability. It includes
computer viruses, worms, Trojan horses, spyware, adware, most rootkits and other malicious
programs.

A web-based attack is an attack whereby the attackers try to compromise the legitimate websites by
exploiting existing vulnerabilities. This results in malicious code to be injected into the websites,
which can in turn be used to infect the computers of users visiting those websites. The malicious
code may have multiple forms: it can be a hidden iframe tag directing the user to visit an attack site,
or it can be malicious applications written in a computer program language (e.g., script or applets).
Typical examples of vulnerabilities of web-based attacks are Structured Query Language (SQL)
injection, and cross-site request forgery (CSRF).

A cross-site request forgery attack pattern [b-CAPEC-62] is a type of web-based attack whereby
unauthorized commands are transmitted or unwanted actions are requested to be executed on a
trusted website without the user's knowledge while the user is logged into a trusted website. A
Structured Query Language (SQL) injection attack pattern [b-CAPEC-66] is another type of
web-based attack on a database-driven website in which the attacker adds an SQL code to a web
from an input box to gain access to resources or make changes to data. It is used to steal information
from a database from which the data would normally not be available and/or to gain access to an
organization's host computers through the computer that is hosting the database. An in-line frame,
also known as iframe tag [b-iframe], is used to embed an invisible document within the current
hypertext markup language (HTML) document and tricking the user to click on the invisible
document through clickjacking [b-CAPEC-103].

Recently, web-based attacks have been increasing significantly due to increasing use of end-user
computing devices and the increasing number of websites that contain malware.

4 Rec. ITU-T X.1211 (09/2014)

Anti-virus techniques could be implemented at the server side and web application firewalls could
be implemented at proxies for cost-effective implementation of these techniques.

In web-based attacks, the administrators of the websites may not be aware that the websites have
been hacked and injected with malicious code, and that these are used to disseminate malicious
code. Moreover, users are not aware either that their computers may get infected by malicious code
from the sites they have visited. Installing anti-virus software (S/W) can prevent some incidents, but
does not provide ultimate solutions.

The reasons for an increase in web-based attacks are as follows:

• Drive-by-download attacks from mainstream web sites are increasing;

• Attacks are heavily obfuscated and dynamically changing, making traditional malware
detection and prevention solutions ineffective;

• Attacks are targeting web browser plug-ins of end users;

• SQL injection attacks are being used to infect mainstream websites;

• Malicious advertisements are redirecting users to malicious websites; and

• An explosive growth in unique and targeted malware samples.

7 Web-based attack protection system techniques

7.1 General techniques

The following techniques are characteristic of the web-based attack protection system:

• designed to be scalable, robust and resilient;

• operated across multiple security domains, each of which is managed by a responsible
security administrator; and

• exchange information about website vulnerabilities or malware-infected websites (i.e.,
websites with invisible iframe redirecting users to the malware-infected website
[b-CAPEC-103]);

NOTE – The existing incident object description exchange format (IODEF) [b-ITU-T X.1541] could be used
to exchange information.

• operated in one of the two types of deployment models: a centralized model and a
distributed model. In the centralized model, all information about the malware-infected
websites and types of malware should be reported to, maintained or controlled by the
centralized server. In the distributed model, each security domain should set up a
responsible agent and information about the malware-infected websites and types of
malware should be exchanged among the responsible agents that exist in distributed
locations;

• configured in a hierarchical manner to facilitate the scalable operation.

7.2 Functional techniques

The following functional techniques are characteristic of the web-based attack protection system:

• identify known malware from legitimate web content and prevent websites from the
malware being installed;

• detect the invisible iframe that redirects the user to other websites that install malware;

• detect vulnerabilities that can be used for typical web-based attacks such as SQL injection,
cross-site reference, etc., as described in Appendix IV;

• conduct signature-based analysis or equivalent analysis to detect the known malware in the
website;

 Rec. ITU-T X.1211 (09/2014) 5

• conduct behaviour-based analysis for identifying unknown malware;

• inform the administrator of the website of malware infection to remove malware in the
websites;

• detect obfuscated malware using string splitting, string encoding, custom string encoding,
script behaviour modification, obfuscating document object model (DOM) modification
functions, hiding links behind public services and page redirections in the website;

• detect malware which can be used for cross-site reference forgery attacks in the websites;

• evaluate behaviours of suspicious malware in the websites;

• inform users about infected websites in case a user visits those infected websites;

• when a web-based attack protection system detects malware in a website, inform the
security administrator that the website has been infected with malicious code and that it can
ultimately be used for a web-based attack;

• exchange information about blacklists of malicious websites; and

• identify website vulnerabilities including SQL injection and cross-site scripting, and inform
the administrator of those websites of their identified vulnerabilities.

7.3 Management techniques

The following management techniques are characteristic of the web-based attack protection system:

• support security management based on security policies when being deployed in different
security domains;

• have a unified interface to support management for a centralized management system;

• support trust management and only accept attack-related event data from the trusted
security domains;

• support the system resource management and protect the system from being overloaded;
and

• support operation and maintenance management including system configuration
management, log management, system status monitoring, etc.

7.4 Security and privacy techniques

The following security and privacy techniques are characteristic of the web-based attack protection
system:

• provide confidentiality, data origin authentication and integrity of information exchanged
through the communication interface between security domains;

• prevent leakage of personally identifiable information (PII) which the web-based
prevention system processes;

• provide resilience to various network-based attacks, for example, distributed denial of
service (DDoS) attacks; and

• provide an auditing functionality which can trace misuse or abuse of information collected
for the web-based attack protection system by unauthorized entities.

8 Functions of the web-based attack protection system

The web-based attack protection system should provide at least, but is not limited to, the following
functions:

• Detection of all known vulnerabilities in the websites;

• Detection of websites that contain malware used for malware distribution;

6 Rec. ITU-T X.1211 (09/2014)

• Notification of the administrator of websites that contain malware and have known
vulnerabilities that can be exploited by attackers;

• Collection of the necessary information about the vulnerabilities of the websites and the
malware that they contain;

• Sharing of information about malware-infected websites and those that are used for
malware distribution between trusted entities in a security domain and among multiple
domains;

• Implementation of the security policy of the web-based protection system in a domain; and

• Protection of the web-based attack protection system from any attacks.

9 Information exchange format

Information sharing about exchanging malware analysis information (e.g., malware attribute
enumeration and characterization) should be reinforced. The implementers of this Recommendation
may use [b-ITU-T X.1546] for exchanging malware analysis information.

 Rec. ITU-T X.1211 (09/2014) 7

Appendix I

Scenarios for web-based attacks

(This appendix does not form an integral part of this Recommendation.)

I.1 Scenario for malware infection

Figure I.1 depicts a typical scenario of web-based attacks.

1. Attackers compromise a legitimate website which has vulnerabilities and then install a
malware or a script which is used to attack the user's computer or install tags to redirect the
user's access to the website that contains the malware to attack the user's computer which
has visited that website.

2. When a user, a victim, visits the website which has been compromised by the attackers, the
user's computer is attacked by the malware embedded or is redirected to another website
which contains malware to attack the user's computer.

3. When the user's computer has browser vulnerabilities which can be used by the specific
malware, the user's computer is infected by that malware without the knowledge or
permission of the user.

4. The malware installed in the user's computer might be used to launch massive distributed
denial of service (DDoS) attacks or to steal personal information such as identity (ID) and
password which are then forwarded to the attackers.

Figure I.1 – Typical scenario of web-based attacks

I.2 Cross-site request forgery (CAPEC-62)

The cross-site request forgery (CSRF) may cause a victim to unwittingly submit one or more
hypertext transfer protocol (HTTP) requests to a vulnerable website that a user trusts. A typical
cross-site request forgery attack may compromise data integrity accordingly and give an attacker
the ability to modify information stored by a vulnerable website.

8 Rec. ITU-T X.1211 (09/2014)

When a website requires user authentication, it often does not require a user to type in their
password for every HTTP request. Instead, a website identifies a user's authentication state between
multiple HTTP requests by tokens such as session cookies or the HTTP authorization header.
However, there is a problem: web browsers memorize the token associated with a uniform resource
locator (URL) and automatically attach the token when a new HTTP request is issued to the
website, even if the request is not intended by the user. CSRF takes advantage of the browser's
behaviour. With CSRF, a user just needs to visit a malicious website that can include JavaScript
logic that issues (potentially hidden) HTTP requests to other websites (such as the user's bank), and
those HTTP requests might be authorized by the website because of the presence of the tokens.
CSRF enables various kinds of various attacks, such as sending e-mails from a web-based mail
service, posting a comment to a blog on the user's behalf, altering the user's buddy list in social
network service (SNS) or changing settings in a home router.

I.3 Cross-site port attacks/server-side request forgery

Cross-site port attacks/server-side request forgery (XSPA/SSRF) is a method of abusing
web-applications that process URLs provided by a web-browser input. A typical XSPA/SSRF
attack is targeted at the intranet of the vulnerable application. The attack may cause port scanning,
compromise data confidentiality, lead to unauthorized code execution and exploitation of vulnerable
intranet resources. The application is considered vulnerable to XSPA/SSRF when it does not
validate the output received from a remote host and the input provided by the end user. As an
example, the application that downloads an image from a URL provided by a user could access an
intranet resource when the user posts the URL, as 'http://localhost/secret.txt'. In some cases, special
uniform resource identifier (URI) schemas may be used so that a vulnerable application would send
a request to special services such as 'https', 'gopher', 'ftp' or 'ldap'. Language-specific schemas such
as 'php://fd', 'php://memory' could be used as well.

Figure I.2 – Typical scenario of cross-site port attacks/server-side request forgery

I.4 SQL injection

A typical SQL injection [b- CAPEC-66] scenario is based on a poor sanity check of input data for
web-applications. Input channels may vary from GET and POST HTTP-requests, browser cookies,
XML-based payloads, file inputs and others.

Targeted input is then injected into the SQL-query. Here is the basic example of SQL-injection in a
HTTP "GET" parameter:

• Given the original query – "SELECT title, content FROM table1 WHERE id = %d"

 Rec. ITU-T X.1211 (09/2014) 9

where, "id" is the targeted parameter.

Under normal conditions "id" is some natural number. But, due to lack of sanity check instead of a
number, the attacker may provide the following input:

• %d = "1 UNION SELECT user, password FROM secret_table".

This would lead to unauthorized access to the "secret_table" resulting in the disclosure of sensitive
data directly in the browser's output.

Depending on the SQL-database implementation such attack could lead to:

• disclosure of sensitive data from database or file system;

• data loss/modification;

• injection of backdoors and privileges escalation; and

• deployment of malware to end-users visiting the site.

I.5 Detecting malware in websites

Techniques used for detecting malware can be grouped into two categories: anomaly-based
detection and signature-based detection [b-NA].

In an anomaly-based detection technique, the criteria for determining maliciousness of a program
under inspection are what constitute normal behaviours. A special type of anomaly-based detection
is referred to as specification-based detection. Specification-based detection techniques use some
specification or rule set of valid behaviour in order to decide the maliciousness of a program under
inspection. Programs violating the rule set or specification are regarded as malicious.

In a signature-based detection, the criteria for determining the maliciousness of a program under
inspection are the characterization of what is known to be malicious. The characterization or
signature of malicious behaviour is the key to a signature-based detection method's effectiveness.

Each of the detection techniques can employ one of three different approaches: static, dynamic, or
hybrid. The specific approach or analysis of an anomaly-based or signature-based technique is
determined by how the technique gathers information to detect malware. Static analysis uses syntax
or structural properties of the program (static)/process (dynamic) under inspection (PUI) to
determine its maliciousness. For example, a static approach to signature-based detection would only
use structural information (e.g., sequence of bytes) to determine the maliciousness, whereas a
dynamic approach will use runtime information (e.g., systems seen on the runtime stack) of PUI.

In general, a static approach attempts to detect malware before the program under inspection
executes. Conversely, a dynamic approach attempts to detect malicious behaviour during program
execution or after program execution.

There are hybrid techniques that combine the two approaches. In this case, static and dynamic
information is used to detect malware.

There are several detection techniques for malware in websites; these are described in Appendix III.

10 Rec. ITU-T X.1211 (09/2014)

Appendix II

Method for infecting user computers with malware

(This appendix does not form an integral part of this Recommendation.)

This appendix describes typical scenarios that could be used by attackers, in order to help
administrators understand them.

The first step for a web-based attack is to install and run various malicious codes on a user's
computer. The malicious codes may include keystroke loggers and rootkits (which can turn user
computers into zombie computers or leak sensitive user information to attackers).

The objective of the attack could be achieved by either exploring several known vulnerabilities of
different software components accessible from a browser (e.g., operating system components
accessible from a browser through ActiveX, etc.), or through attack techniques using social
engineering to trick users into installing and running malware on their system. In addition, this
attack attempts to steal user's credentials by phishing techniques or cross-site scripting attacks run
in a hidden iframe.

There are a number of techniques which are used to infect a user's computer with malware:
exploiting an ActiveX component, social engineering techniques, missing codec, malware removal
tool techniques and cross-site request forgery attacks. Detailed information can be found in
[b-NTobjectives]. In addition, there is a list of common attack patterns along with a complete list of
schema and classification in [b-ITU-T X.1544].

 Rec. ITU-T X.1211 (09/2014) 11

Appendix III

Typical examples of obfuscation technique

(This appendix does not form an integral part of this Recommendation.)

The injected malicious content uses an obfuscated technique in order to hide malware both from the
human eye and vulnerability [b-ITU-T X.1520] detection software. Obfuscating techniques are
quite effective due to the following reasons:

• Many website administrators are wary of deleting script codes they do not understand.

• Database administrators have trouble cleaning infected databases, not knowing which
patterns to look for.

• Many detection methods rely on regular expression or other string search-related methods,
and thus have problems identifying obfuscated HTML.

There are several obfuscation methods: string splitting, string encoding, custom string encoding,
script behaviour modification, obfuscating DOM modification functions, hiding links behind public
services and page redirection. Detailed information is described in [b-NTobjectives].

12 Rec. ITU-T X.1211 (09/2014)

Appendix IV

Prevention techniques for web-based attacks

(This appendix does not form an integral part of this Recommendation.)

This appendix presents several techniques for detecting malware in websites [b-NTobjectives]. The
malicious content can be detected by content signature matching, blacklisting attack sites or
analysing content for suspicious behaviour by proprietary algorithms.

IV.1 Remove website vulnerabilities

The simplest way is to remove websites vulnerabilities, including SQL injection and cross-site
scripting. If the attacker is not able to insert malicious content into the website, client browser will
not execute the malware inserted in the website. Therefore, the most efficient way to prevent
web-based attacks is to remove all vulnerabilities from websites.

IV.2 Signature matching

Since there are a number of obfuscation techniques and automation tools to obfuscate malware, it is
impractical to detect malware content in the website by using a signature-based detection method. It
is well known that attackers are able to automate encoding malicious content with a new key for
each website, thus resulting in creating a different signature of malware for each website. However,
plain malware content is not changed frequently, and thus malware in the website can be detected
with a signature. If plain malware content is obtained by decoding the encoded malware and the
signature of plain malware is calculated from plain malware, this method can detect the malware by
comparing the calculated signature of malware with a precompiled list of all known malware
content signatures .

IV.3 Site blacklisting

Blacklisting attack websites is among the most valuable detection techniques. Although malicious
content can be completely hosted on a good website (with no requirements to load automatically
any scripts or iframes from an attack site, thus hiding their connection to the attack site), it is
necessary to exchange some data with the attack website to complete the intended attack. This
necessary data exchange can have many different forms: the attack script needs to download
malware from the attack website, or send gathered private data from the users' system to the
attackers' site or something else. In any case, the attack script needs to make a connection to an
attack site.

If there is a detection algorithm for external resources to the blacklisted site list, it can be suspicious
that the website may have a malware. Therefore, any hits against blacklisted sites will indicate the
presence of malicious content on a page being analysed.

IV.4 Detection of obfuscating techniques

If a website includes the page content encoded with obfuscating techniques, it could be a reasonable
indicator that the website has a malicious purpose. For instance, if a website has content with a long
encoded string, it could be a malicious content. However, although the long encoded string is
suspicious, it cannot always be assumed that the website has a malicious content until it is decoded
and its action is analysed.

 Rec. ITU-T X.1211 (09/2014) 13

IV.5 Evaluation of suspicious content behaviour

The most efficient way is to analyse the behaviour of suspicious content. If the content's activity is
suspicious, it can be an indicator of malicious intent. The typical behaviours that could be regarded
as malicious include accessing the local hard drive, instantiating a shell application object and
downloading (accessing) external executable content.

14 Rec. ITU-T X.1211 (09/2014)

Appendix V

Typical examples of application security risks by OWASP

(This appendix does not form an integral part of this Recommendation.)

The Open Web Application Security Project (OWASP), an open-source collaboration of web-based
security tools, technologies and methodologies from industry leaders, educational organizations and
individuals from around the world, published the OWASP top 10 successful web-based attacks
[b-OWASP] and common weakness enumeration (CWE) [b-ITU-T X.1524] CWE-928:
Weaknesses in OWASP top ten [b-CWE] as shown in Table V.1.

15 Rec. ITU-T X.1211 (09/2014)

Table V.1 – OWASP top 10 application security risks

Type of
attack

Threat agent Attack vector Security weakness Technical impact Business impact References to
the CWE
identifier

A-1 –
Injection

Anyone who
can send
untrusted data to
the system,
including
external users,
internal users,
and
administrators.

Attackers send simple
text-based attacks that
exploit the syntax of the
targeted interpreter.
Almost any source of data
can be an injection vector,
including internal sources.

Injection flaws occur when
an application sends
untrusted data to an
interpreter. Injection flaws
are very prevalent,
particularly in legacy code,
often found in SQL queries,
lightweight directory access
protocol (LDAP) queries,
XPath queries, operating
system (OS) commands,
program arguments, etc.
Injection flaws are easy to
discover when examining
code, but more difficult via
testing. Scanners and
fuzzers can help attackers
find them.

Injection can result
in data loss or
corruption, lack of
accountability, or
denial of access.
Injection can
sometimes lead to
complete host
takeover.

Consider the
business value of the
affected data and the
platform running the
interpreter. All data
could be stolen,
modified, or deleted.
Could your
reputation be
harmed?

CWE-77,
CWE-78,
CWE-89,
CWE-90,
CWE-91,
CWE-929

16 Rec. ITU-T X.1211 (09/2014)

Table V.1 – OWASP top 10 application security risks

Type of
attack

Threat agent Attack vector Security weakness Technical impact Business impact References to
the CWE
identifier

A-2 –
Broken
authentication
and session
management

Consider
anonymous
external
attackers, as
well as users
with their own
accounts, who
may attempt to
steal accounts
from others.
Also, consider
insiders wanting
to disguise their
actions.

Attacker uses leaks or
flaws in the authentication
or session management
functions (e.g., exposed
accounts, passwords,
session IDs) to
impersonate users.

Developers frequently build
custom authentication and
session management
schemes, but building these
correctly is hard. As a
result, these custom
schemes frequently have
flaws in areas such as
logout, password
management, timeouts,
remember me, secret
question, account update,
etc. Finding such flaws can
sometimes be difficult, as
each implementation is
unique.

Such flaws may
allow some or even
all accounts to be
attacked. Once
successful, the
attacker can do
anything the victim
could do.
Privileged accounts
are frequently
targeted.

Consider the
business value of the
affected data or
application functions.
Also, consider the
business impact of
public exposure of
the vulnerability.

CWE-256,
CWE-287,
CWE-384,
CWE-311,
CWE-319,
CWE-522,
CWE-523,
CWE-613,
CWE-620,
CWE-640,
CWE-930

17 Rec. ITU-T X.1211 (09/2014)

Table V.1 – OWASP top 10 application security risks

Type of
attack

Threat agent Attack vector Security weakness Technical impact Business impact References to
the CWE
identifier

A-3 – Cross-
site scripting
(XSS)

Consider anyone
who can send
untrusted data to
the system,
including
external users,
internal users,
and
administrators.

Attacker sends text-based
attack scripts that exploit
the interpreter in the
browser. Almost any
source of data can be an
attack vector, including
internal sources such as
data from the database.

XSS is the most prevalent
web application security
flaw. XSS flaws occur
when an application
includes user supplied data
in a page sent to the
browser without properly
validating or escaping that
content. There are three
known types of XSS flaws:
1) Stored, 2) Reflected, and
3) DOM based XSS.
Detection of most XSS
flaws is fairly easy via
testing or code analysis.

Attackers can
execute scripts in a
victim's browser to
hijack user
sessions, deface
web sites, insert
hostile content,
redirect users,
hijack the user's
browser using
malware, etc.

Consider the
business value of the
affected system and
all the data it
processes.
Also consider the
business impact of
public exposure of
the vulnerability.

CWE-79,
CWE-931

A-4 –
Insecure
direct object
references

Consider the
types of users of
your system. Do
any users have
only partial
access to certain
types of system
data?

Attacker, who is an
authorized system user,
simply changes a
parameter value that
directly refers to a system
object to another object
the user is not authorized
for. Is access granted?

Applications frequently use
the actual name or key of
an object when generating
web pages. Applications do
not always verify the user is
authorized for the target
object. This results in an
insecure direct object
reference flaw. Testers can
easily manipulate
parameter values to detect
such flaws. Code analysis
quickly shows whether
authorization is properly
verified.

Such flaws can
compromise all the
data that can be
referenced by the
parameter. Unless
object references
are unpredictable, it
is easy for an
attacker to access
all available data of
that type.

Consider the
business value of the
exposed data.
Also consider the
business impact of
public exposure of
the vulnerability

CWE-22,
CWE-99,
CWE-639,
CWE-932

18 Rec. ITU-T X.1211 (09/2014)

Table V.1 – OWASP top 10 application security risks

Type of
attack

Threat agent Attack vector Security weakness Technical impact Business impact References to
the CWE
identifier

A-5 –
Security
misconfigura
tion

Consider
anonymous
external
attackers as well
as users with
their own
accounts that
may attempt to
compromise the
system. Also,
consider insiders
wanting to
disguise their
actions.

Attacker accesses default
accounts, unused pages,
unpatched flaws,
unprotected files and
directories, etc. to gain
unauthorized access to or
knowledge of the system.

Security misconfiguration
can happen at any level of
an application stack,
including the platform, web
server, application server,
database, framework and
custom code. Developers
and system administrators
need to work together to
ensure that the entire stack
is configured properly.
Automated scanners are
useful for detecting missing
patches, misconfigurations,
use of default accounts,
unnecessary services, etc.

The system could
be completely
compromised
without you
knowing it. All of
your data could be
stolen or modified
slowly over time.
Recovery costs
could be expensive

The system could be
completely
compromised
without you knowing
it. All your data
could be stolen or
modified slowly over
time.
Recovery costs could
be expensive.

CWE-2,
CWE-16,
CWE-209,
CWE-215,
CWE-548,
CWE-933

19 Rec. ITU-T X.1211 (09/2014)

Table V.1 – OWASP top 10 application security risks

Type of
attack

Threat agent Attack vector Security weakness Technical impact Business impact References to
the CWE
identifier

A-6 –
Sensitive
data
exposure

Consider who
can gain access
to your sensitive
data and any
backups of that
data. This
includes the data
at rest, in transit,
and even in your
customers'
browsers.
Include both
external and
internal threats.

Attackers typically do not
break crypto directly.
They break something
else, such as steal keys,
do man-in-the-middle
(MITM) attacks, or steal
clear text data off the
server, while in transit, or
from the user's browser.

The most common flaw is
simply not encrypting
sensitive data. When crypto
is employed, weak key
generation and
management, and weak
algorithm usage is
common, particularly weak
password hashing
techniques. Browser
weaknesses are very
common and easy to detect,
but hard to exploit on a
large scale. External
attackers have difficulty
detecting server side flaws
due to limited access and
they are also usually hard to
exploit.

Failure frequently
compromises all
data that should
have been
protected.
Typically, this
information
includes sensitive
data such as health
records, credentials,
personal data,
credit cards, etc.

Consider the
business value of the
lost data and impact
to your reputation.
What is your legal
liability if this data is
exposed? Also,
consider the damage
to your reputation.

CWE-310,
CWE 311,
CWE-312,
CWE-319,
CWE-325,
CWE-326,
CWE-934

20 Rec. ITU-T X.1211 (09/2014)

Table V.1 – OWASP top 10 application security risks

Type of
attack

Threat agent Attack vector Security weakness Technical impact Business impact References to
the CWE
identifier

A-7 –
Function
level access
control

Anyone with
network access
can send your
application a
request. Could
anonymous
users access
private
functionality or
regular users a
privileged
function?

Attacker, who is an
authorized system user,
simply changes the URL
or a parameter to a
privileged function. Is
access granted?
Anonymous users could
access private functions
that are not protected.

Applications do not always
protect application
functions properly.
Sometimes, function level
protection is managed via
configuration and the
system is misconfigured.
Sometimes, developers
must include the proper
code checks, and they
forget.
Detecting such flaws is
easy. The hardest part is
identifying which pages
(URLs) or functions exist
to attack.

Such flaws allow
attackers to access
unauthorized
functionality.
Administrative
functions are key
targets for this type
of attack.

Consider the
business value of the
exposed functions
and the data they
process.
Also, consider the
impact to your
reputation if this
vulnerability became
public.

CWE 285,
CWE-287,
CWE-935

21 Rec. ITU-T X.1211 (09/2014)

Table V.1 – OWASP top 10 application security risks

Type of
attack

Threat agent Attack vector Security weakness Technical impact Business impact References to
the CWE
identifier

A-8 – Cross-
site request
forgery
(CSRF)

Consider anyone
who can load
content into
your users'
browsers, and
thus force them
to submit a
request to your
website. Any
website or other
HTML feed that
your users
access could do
this.

Attacker creates forged
HTTP requests and tricks
a victim into submitting
them via image tags, XSS
or numerous other
techniques. If the user is
authenticated, the attack
succeeds.

CSRF takes advantage of
the fact that most web
applications allow attackers
to predict all the details of a
particular action.
Because browsers send
credentials like session
cookies automatically,
attackers can create
malicious web pages which
generate forged requests
that are indistinguishable
from legitimate ones.
Detection of CSRF flaws is
fairly easy via penetration
testing or code analysis.

Attackers can trick
victims into
performing any
state changing
operation the
victim is authorized
to perform, e.g.,
updating account
details, making
purchases, logout
and even login.

Consider the
business value of the
affected data or
application functions.
Imagine not being
sure if users intended
to take these actions.
Consider the impact
to your reputation.

CWE-346,
CWE-352,
CWE-441,
CWE-642,
CWE-935

A-9 – Using
components
with known
vulnerabilitie
s

Some vulnerable
components
(e.g., framework
libraries) can be
identified and
exploited with
automated tools,
expanding the
threat agent pool
beyond targeted
attackers to
include chaotic
actors.

Attacker identifies a weak
component through
scanning or manual
analysis. He customizes
the exploit as needed and
executes the attack. It gets
more difficult if the used
component is deep in the
application.

Virtually every application
has these issues because
most development teams do
not focus on ensuring that
their components/libraries
are up to date. In many
cases, the developers do not
even know all the
components they are using,
never mind their versions.
Component dependencies
make things even worse.

The full range of
weaknesses is
possible, including
injection, broken
access control,
XSS, etc. The
impact could range
from minimal to
complete host
takeover and data
compromise.

Consider what each
vulnerability might
mean for the
business controlled
by the affected
application. It could
be trivial or it could
mean complete
compromise.

CWE-937

22 Rec. ITU-T X.1211 (09/2014)

Table V.1 – OWASP top 10 application security risks

Type of
attack

Threat agent Attack vector Security weakness Technical impact Business impact References to
the CWE
identifier

A-10 –
Unvalidated
redirects and
forwards

Consider anyone
who can trick
your users into
submitting a
request to your
website. Any
website or other
HTML feed that
your users use
could do this.

Attacker links to
unvalidated redirect and
tricks victims into
clicking it. Victims are
more likely to click on it,
since the link is to a valid
site. Attacker targets
unsafe forward to bypass
security checks.

Applications frequently
redirect users to other
pages, or use internal
forwards in a similar
manner. Sometimes, the
target page is specified in
an unvalidated parameter,
allowing attackers to
choose the destination
page.
Detecting unchecked
redirects is easy. Look for
redirects where you can set
the full URL. Unchecked
forwards are harder,
because they target internal
pages.

Such redirects may
attempt to install
malware or trick
victims into
disclosing
passwords or other
sensitive
information.
Unsafe forwards
may allow access
control bypass.

Consider the
business value of
retaining your users'
trust.
What if they get
owned by malware?
What if attackers can
access internal only
functions

CWE-601,
CWE-938

 Rec. ITU-T X.1211 (09/2014) 23

Bibliography

[b-ITU-T M.3030] Recommendation ITU-T M.3030 (2002), Telecommunications Markup
Language (tML) framework.

[b-ITU-T T.411] Recommendation ITU-T T.411 (1993) | ISO/IEC 8613-1:1994, Information
technology − Open Document Architecture (ODA) and interchange format:
Introduction and general principles.

[b-ITU-T X.800] Recommendation ITU-T X.800 (1991), Security architecture for Open
Systems Interconnection for CCITT applications.

[b-ITU-T X.810] Recommendation ITU-T X.810 (1995) | ISO/IEC 10181-1:1996, Information
technology − Open Systems Interconnection − Security frameworks for open
systems: Overview.

[b-ITU-T X.1252] Recommendation ITU-T X.1252 (2010), Baseline identity management terms
and definitions.

[b-ITU-T X.1520] Recommendation ITU-T X.1520 (2014), Common vulnerabilities and
exposures.

[b-ITU-T X.1524] Recommendation ITU-T X.1524 (2012), Common weakness enumeration.

[b-ITU-T X.1541] Recommendation ITU-T X.1541 (2012), Incident object description
exchange format.

[b-ITU-T X.1544] Recommendation ITU-T X.1544 (2013), Common attack pattern
enumeration and classification.

[b-ITU-T X.1546] Recommendation ITU-T X.1546 (2014), Malware attribute enumeration and
characterization.

[b-ISO/IEC 27000] ISO/IEC 27000:2014, Information technology – Security techniques –
Information security management systems – Overview and vocabulary.

[b-ISO/IEC 27033-1] ISO/IEC 27033-1:2009, Information technology – Security techniques –
Network security – Part 1: Overview and concepts.

[b-CAPEC-62] CAPEC-62: Cross Site Request Forgery (aka Session Riding).
https://capec.mitre.org/data/definitions/62.html

[b-CAPEC-66] CAPEC-66: SQL Injection.
https://capec.mitre.org/data/definitions/66.html

[b-CAPEC-103] CAPEC-103: Clickjacking.
https://capec.mitre.org/data/definitions/103.html

[b-CWE] CWE-928: Weaknesses in OWASP Top Ten (2013).
http://cwe.mitre.org/data/graphs/928.html

[b-iframe] W3C (2014), HTML <iframe> Tag.
http://www.w3schools.com/tags/tag_iframe.asp

[b-NA] Idika, Nwokedi, and Mathur, Aditya P. (2007), A Survey of Malware
Detection Techniques, Department of Computer Science, Purdue University,
2 February.
http://www.serc.net/system/files/SERC-TR-286.pdf

https://capec.mitre.org/data/definitions/62.html
https://capec.mitre.org/data/definitions/66.html
https://capec.mitre.org/data/definitions/103.html
http://cwe.mitre.org/data/graphs/928.html
http://www.w3schools.com/tags/tag_iframe.asp
http://www.serc.net/system/files/SERC-TR-286.pdf

24 Rec. ITU-T X.1211 (09/2014)

[b-NIST SP 800-83] NIST Special Publication 800-83 (2005), Guide to Malware Incident
Prevention and Handling.

[b-NTobjectives] Kuykendall, Dan (2009), Is Your Website Already Infected? Analyzing and
Detecting Malicious Content, 20 March.
http://www.manvswebapp.com/is-your-website-already-infected

[b-OWASP] OWASP (2013), OWASP Top 10 application security risks.
https://www.owasp.org/index.php/Top_10_2013-Top_10

http://www.manvswebapp.com/is-your-website-already-infected
https://www.owasp.org/index.php/Top_10_2013-Top_10

Printed in Switzerland
Geneva, 2014

SERIES OF ITU-T RECOMMENDATIONS

Series A Organization of the work of ITU-T

Series D General tariff principles

Series E Overall network operation, telephone service, service operation and human factors

Series F Non-telephone telecommunication services

Series G Transmission systems and media, digital systems and networks

Series H Audiovisual and multimedia systems

Series I Integrated services digital network

Series J Cable networks and transmission of television, sound programme and other multimedia signals

Series K Protection against interference

Series L Construction, installation and protection of cables and other elements of outside plant

Series M Telecommunication management, including TMN and network maintenance

Series N Maintenance: international sound programme and television transmission circuits

Series O Specifications of measuring equipment

Series P Terminals and subjective and objective assessment methods

Series Q Switching and signalling

Series R Telegraph transmission

Series S Telegraph services terminal equipment

Series T Terminals for telematic services

Series U Telegraph switching

Series V Data communication over the telephone network

Series X Data networks, open system communications and security

Series Y Global information infrastructure, Internet protocol aspects and next-generation networks

Series Z Languages and general software aspects for telecommunication systems

	ITU-T Rec. X.1211 (09/2014) -
 Techniques for preventing web-based attacks
	Summary
	History
	FOREWORD
	1 Scope
	Table of Contents
	2 References
	3 Terms and definitions
	3.1 Terms defined elsewhere
	3.2 Terms defined in this Recommendation

	4 Abbreviations and acronyms
	5 Conventions
	6 General overview
	7 Web-based attack protection system techniques
	7.1 General techniques
	7.2 Functional techniques
	7.3 Management techniques
	7.4 Security and privacy techniques

	8 Functions of the web-based attack protection system
	9 Information exchange format
	Appendix I -
Scenarios for web-based attacks
	I.1 Scenario for malware infection
	I.2 Cross-site request forgery (CAPEC-62)
	I.3 Cross-site port attacks/server-side request forgery
	I.4 SQL injection
	I.5 Detecting malware in websites

	Appendix II -
Method for infecting user computers with malware
	Appendix III -
Typical examples of obfuscation technique
	Appendix IV -
 Prevention techniques for web-based attacks
	IV.1 Remove website vulnerabilities
	IV.2 Signature matching
	IV.3 Site blacklisting
	IV.4 Detection of obfuscating techniques
	IV.5 Evaluation of suspicious content behaviour

	Appendix V -
 Typical examples of application security risks by OWASP
	Bibliography

