

I n t e r n a t i o n a l T e l e c o m m u n i c a t i o n U n i o n

ITU-T X.1206
TELECOMMUNICATION
STANDARDIZATION SECTOR
OF ITU

(04/2008)

SERIES X: DATA NETWORKS, OPEN SYSTEM
COMMUNICATIONS AND SECURITY
Telecommunication security

 A vendor-neutral framework for automatic
notification of security related information and
dissemination of updates

Recommendation ITU-T X.1206

ITU-T X-SERIES RECOMMENDATIONS
DATA NETWORKS, OPEN SYSTEM COMMUNICATIONS AND SECURITY

PUBLIC DATA NETWORKS

Services and facilities X.1–X.19
Interfaces X.20–X.49
Transmission, signalling and switching X.50–X.89
Network aspects X.90–X.149
Maintenance X.150–X.179
Administrative arrangements X.180–X.199

OPEN SYSTEMS INTERCONNECTION
Model and notation X.200–X.209
Service definitions X.210–X.219
Connection-mode protocol specifications X.220–X.229
Connectionless-mode protocol specifications X.230–X.239
PICS proformas X.240–X.259
Protocol Identification X.260–X.269
Security Protocols X.270–X.279
Layer Managed Objects X.280–X.289
Conformance testing X.290–X.299

INTERWORKING BETWEEN NETWORKS
General X.300–X.349
Satellite data transmission systems X.350–X.369
IP-based networks X.370–X.379

MESSAGE HANDLING SYSTEMS X.400–X.499
DIRECTORY X.500–X.599
OSI NETWORKING AND SYSTEM ASPECTS

Networking X.600–X.629
Efficiency X.630–X.639
Quality of service X.640–X.649
Naming, Addressing and Registration X.650–X.679
Abstract Syntax Notation One (ASN.1) X.680–X.699

OSI MANAGEMENT
Systems Management framework and architecture X.700–X.709
Management Communication Service and Protocol X.710–X.719
Structure of Management Information X.720–X.729
Management functions and ODMA functions X.730–X.799

SECURITY X.800–X.849
OSI APPLICATIONS

Commitment, Concurrency and Recovery X.850–X.859
Transaction processing X.860–X.879
Remote operations X.880–X.889
Generic applications of ASN.1 X.890–X.899

OPEN DISTRIBUTED PROCESSING X.900–X.999
TELECOMMUNICATION SECURITY X.1000–

For further details, please refer to the list of ITU-T Recommendations.

 Rec. ITU-T X.1206 (04/2008) i

Recommendation ITU-T X.1206

A vendor-neutral framework for automatic notification of security related
information and dissemination of updates

Summary
Recommendation ITU-T X.1206 provides a framework for automatic notification of security related
information and dissemination of updates. The key point of the framework is that it is a
vendor-neutral framework. Once an Asset is registered, updates on vulnerabilities information and
patches or updates can be automatically made available to the users or directly to applications
regarding the Asset.

Source
Recommendation ITU-T X.1206 was approved on 18 April 2008 by ITU-T Study Group 17
(2005-2008) under the WTSA Resolution 1 procedure.

ii Rec. ITU-T X.1206 (04/2008)

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of
telecommunications, information and communication technologies (ICTs). The ITU Telecommunication
Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical,
operating and tariff questions and issuing Recommendations on them with a view to standardizing
telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years,
establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on
these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are
prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a
telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain
mandatory provisions (to ensure e.g. interoperability or applicability) and compliance with the
Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some
other obligatory language such as "must" and the negative equivalents are used to express requirements. The
use of such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may
involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence,
validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others
outside of the Recommendation development process.

As of the date of approval of this Recommendation, ITU had not received notice of intellectual property,
protected by patents, which may be required to implement this Recommendation. However, implementers
are cautioned that this may not represent the latest information and are therefore strongly urged to consult the
TSB patent database at http://www.itu.int/ITU-T/ipr/.

© ITU 2009

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the
prior written permission of ITU.

http://www.itu.int/ITU-T/ipr/

 Rec. ITU-T X.1206 (04/2008) iii

CONTENTS

 Page
1 Scope .. 1

2 References... 1

3 Definitions .. 1
3.1 Terms defined in this Recommendation... 1

4 Abbreviations.. 2

5 Conventions .. 2

6 Introduction .. 2

7 Current situation regarding vulnerability information.. 3

8 Overview of vendor-neutral framework ... 5
8.1 Multiple sources of vulnerability information, updates and patches.............. 5
8.2 Example application operation ... 6
8.3 Security and privacy considerations... 7

9 Recommendation architecture .. 7
9.1 Message core layer ... 7
9.2 Message/application layer .. 8
9.3 Scalability ... 8
9.4 Extensibility.. 8
9.5 Platform independence ... 9
9.6 Client/Server communication... 9

10 Components of the framework ... 9
10.1 Message container .. 9
10.2 Version message... 13

11 Schemas .. 19
11.1 Message_Core .. 19
11.2 Message_Version ... 21

Bibliography... 26

 Rec. ITU-T X.1206 (04/2008) 1

Recommendation ITU-T X.1206

A vendor-neutral framework for automatic notification of security related
information and dissemination of updates

1 Scope
This Recommendation provides a framework of bidirectional flow of automatic notification and
distribution of vulnerability information as well as the distribution of updates and/or patches. In
addition, this Recommendation makes it possible for system administrators to know the condition of
any Asset within their realm of responsibility.

Clauses 6 and 7 describe the problems of maintaining Assets from an Asset identification point of
view, as well as information dissemination and systems/networks management points of view.

Clause 8 describes the overview of the vendor-neutral framework, which includes an example
system supported by the adoption of the framework, comportments of the framework and an
exemplary sequence of exchanges within the framework. Clause 8 also describes the security that
should be considered in the vendor-neutral framework.

Clause 9 describes the functionalities and features of this Recommendation.

Clause 10 provides the definitions of the data structures of components of this Recommendation.

Clause 11 contains the XML schema defined and described in clause 10.

This Recommendation provides a framework that any vendor can use for notification, as well as the
receiving of vulnerability information and dissemination of required patches/updates for covered
Assets, and defines the format of the information that should be used in and between components
implementing this framework.

This Recommendation does not define protocols to be used in the communication between
components as many protocols are supported without special consideration.

Some common roles and responsibilities will be needed to be established for operation based on the
vendor-neutral framework; however, a discussion regarding the establishment and operation of
possible roles and their resulting responsibilities is not within the scope of this Recommendation.

2 References
None.

3 Definitions

3.1 Terms defined in this Recommendation

This Recommendation defines the following terms:

3.1.1 agent: An implementation of this Recommendation operating in support of an installed
asset on a given device, in support of server functionality or in support of local server functionality.

3.1.2 asset: A device, separately identifiable piece of hardware, application, operating system or
instance of executable code.

3.1.3 client: A device which requests services from another device.

3.1.4 device: A system acting as either a client, server, or both, local server.

3.1.5 group: A number of devices operated on as a single unit.

2 Rec. ITU-T X.1206 (04/2008)

3.1.6 local server: A client acting as a server node for additional downstream clients.

3.1.7 message: A request for a specific action to be performed, e.g., general actions such as
"Register" an asset as being of a given version and/or contained components of given versions,
"Request" existing or future available updates, patches or vulnerability information, etc. Messages
extending the functionality of this Recommendation may be defined outside the scope of this
Recommendation.

3.1.8 message data: Information provided in support of a given message. Among an almost
infinite number of possibilities, specific examples defined in this Recommendation are data
defining version information, vulnerability information pertaining to given versions as well as
updates or patches for specific versions.

3.1.9 message set: A combination and association of a universally unique identifier, a message
and the message's associated message data's definition, all defined within an XML schema derived
from and extending Message_Core defined herein.

3.1.10 patch: A broadly released fix for a product-specific, security-related vulnerability. A
method of updating a file that replaces only the parts being changed, rather than the entire file.

3.1.11 server: A device used to service requests from other devices.

3.1.12 vulnerability: Any weakness, administrative process or act, or physical exposure that
makes a computer or network of computers susceptible to exploit by a threat.

4 Abbreviations
This Recommendation uses the following abbreviations and acronyms:

API Application Programming Interface

GUID Globally Unique IDentifier

HTTP HyperText Transfer Protocol

ISIRT Information Security Incident Response Team

ISP Internet Service provider

OS Operating System

POAS Platform/Operating System/Application/Service

URI Uniform Resource Identifier

5 Conventions
None.

6 Introduction
As more people begin to use computers in their homes and workplaces, and fewer have any kind of
official training in the operation of their computers, let alone security-related issues, one quickly
approaches the point where security, not only becomes almost impossible to maintain, but it
becomes more difficult for those responsible for maintaining security on a system level to know
much about the condition of the systems they are responsible for and provide services until some
breach or accident occurs, by which time it is already too late.

That is primarily due to the fact that so many different computers are in different states of
maintenance and update. Where security-related issues are concerned, system management is much
less of a preventative process than of a disaster management and recovery process.

 Rec. ITU-T X.1206 (04/2008) 3

Although a number of applications and even operating systems (OS) have their own update
mechanisms, they all have a number of problems in common. One such problem is that all the
update mechanisms rely on being enabled, in the first place, and, in the second, allowed to do their
job when the user is notified of an update being available, assuming that the user has enabled the
notifications.

Likely worst of all though is that these problems leave system administrators totally out of the
picture, so that without installing their own monitoring systems on each computer under their
responsibility, they have no idea as to the general level of security within the networks and systems
they are responsible for.

Another consideration is that while updating software to the latest available it is often the case
where updates alone are not the solution, but instead improved usage practices for which no update,
other than the information being received by the end user, is of use. Even though various
applications and OSs may have updating mechanisms in place, none of them has a uniform method
of keeping users informed of the latest best practices leading to continued secure use.

Also of importance are the methods used to distribute updates. Currently, all updates through the
various update mechanisms source the updates through dedicated channels, one for each update
session. But where updates, or other important information made available to various redistribution
centers, e.g., ISPs or corporate networks, are subsequently distributed within the networks in a
trusted and secure manner, the bandwidth required for distribution could effectively be cut in half or
at least reduced to a great extent just as in the case of hypertext transfer protocol (HTTP) proxies.

Another concern that is mismanaged in most cases is where users themselves find a problem
regarding the use or actions of a given asset, without having anyone to refer the problem to. Even if
some method is in place for users to contact system administrators or other support personnel, using
such a system ends up more like a game of "20 questions" where the user and support person must
go back and forth asking for information and replying usually with more questions.

It is often difficult for even an experienced support person to have a clear understanding of what
exactly comprises many assets. Due to modular software architectures and various pieces of
software actually comprising modules from different vendors, all with their own versioning
systems, even if an update or relevant piece of information about a given product or sub-module is
made available, knowing to what and to whom it applies can be a difficult task, often leading the
less informed to ignore much of what their systems may rely for security.

In the end, one ends up with users being uninformed and those responsible for system wide security
being essentially left out of the loop.

7 Current situation regarding vulnerability information
Vulnerability information is presently released by many vendors and many security-related
organizations, such as the Information Security Incident Response Team (ISIRT), in an effort to
make users aware of the security-related issues as well as providing updates and patches, when
required. However, it is often the case that end users neither make use of the information, updates or
patches or even know if, whatever is provided, applies to them.

There are various reasons for this situation, but first one should understand why end users might
find it hard to make use of the information made available to them.

An end user normally uses version information of assets to determine whether they include the
system, software or components that are affected by a newly-founded vulnerability. However, there
are some difficulties for using version information to detect the affected system, software or
components.
• Ambiguity of version notation

4 Rec. ITU-T X.1206 (04/2008)

The rules of version notation vary from vendor to vendor. This variation may cause the end user's
interpretation of the version information to be different from the intention of the vendor. Not
understanding the vendor-specific version system, end users may not know that a given update,
patch or information applies to them.

For example, in the case that there are 3 versions, "v1", "v1.1", and "v1.2", of the system that are
described as a target in the vulnerability information, if the vulnerability information is described as
below.
 "Systems Affected

 * XXXX v1 the affected system "

Could have the following two different meanings:
 1) v1 is just v1.0.
 2) v1 means v1.x, so all sub-versions of version 1.

Trying to standardize the version notation is not a practical solution; so it is necessary to read and
understand the vendor-specific rules of the version notation, but it is not realistic to hope that end
users will do so.
• The version of a given product cannot always be used as a criteria for determining what

may actually be vulnerable.

For some vendors, the version of the products that are generally known by the users might not be
able to be used to detect whether the product has vulnerabilities or not. (Figure 1)

In most component-oriented products, the presence of a vulnerability may have to be determined by
the version of each component that comprises the product, not the version of the product itself.

Figure 1 – Hierarchic structure of "version"

• Products that embed another vendor's products as components

Most vulnerability information usually refers to a given product. An end user may not use the
specific product referred to, but instead may use the product through the use of another application
that loads or otherwise makes use of a given vulnerable product's service. As a matter of fact, with
open published application programming interfaces (APIs), a vendor of products used in other
applications may have little to no knowledge of where their products are used or in what other
applications they may be loaded or otherwise used.

 Rec. ITU-T X.1206 (04/2008) 5

• System administrators are unaware of the condition of assets under their responsibility

As system administrators are dependent on users maintaining their own systems and without
personally verifying the status of each and every system themselves or relying on self reporting, it is
impossible to know the status of the systems they are ultimately responsible for. Without self
reporting, which is often inaccurate and incomplete for many of the reasons already mentioned
regarding versioning or, custom monitoring applications, which require development and
maintenance, those responsible for maintaining the security of corporate or Internet service provider
(ISP) networks have few tools available.

8 Overview of vendor-neutral framework
This clause describes the overview of the vendor-neutral framework for the distribution of
vulnerability, update and patch information.

By adopting the framework, vulnerability information, update and patch distribution systems, such
as is shown in Figure 2, may be constructed using a simple subscription scheme. Each asset, device
or local server may register with any and all available servers to receive requested (pull) or
suggested (push) vulnerability information, updates and/or patches.

Figure 2 – Example application architecture

8.1 Multiple sources of vulnerability information, updates and patches
Using the same message scheme, any entity may make requests and/or provide vulnerability
information, updates and/or patches to any other entity. In this specific example, an ISP is acting as
a collection point to act as a source to all its subscribers. Additionally, individual subscribers can
register with independent third-party sources for information updates, code analysis or even code
updates or patches. Of course, it would be necessary for any application attempting to apply a given
update or patch to accept the update or patch as authorized, but how this is accomplished, other than
somehow using the supported inclusion of signatures, is beyond the scope of this Recommendation.

6 Rec. ITU-T X.1206 (04/2008)

8.2 Example application operation

8.2.1 Process for requests and delivery of information and updates
The asset, for example a text editor, is installed and, during its installation, a previously installed
agent is notified of the installation. From the information provided to the agent during the asset's
installation, the agent then makes a subscription request to the user's ISP for any and all
vulnerability information, updates and/or patches.

Previous or subsequent to receiving the subscription request from the user's agent, the ISP contacts
various sources of vulnerability information updates and patches based on the information provided
by the agent as to the source or vendor of the newly installed application.

Additionally, the user's agent has, in this example, the ability to separately query other sources of
vulnerability information and make any received information available to the user for viewing. How
this latest process is initiated might be through a website promoting the vulnerability information
source's services and through a download link, or through providing a message as defined in this
Recommendation upon which the agent could then act.

Figure 3 – Example application messages

8.2.2 Message for requests and delivery of information and updates
An ISP, which could just as easily be the administrators of a corporate or private network, makes
requests from various providers of vulnerability information, updates and patches. The ISP may
request either the full contents of what is available, so as to act as a local repository from the
beginning of operation, or may simply request a list (Catalog) of available vulnerability
information, updates and patches from which it can later request individual elements in their
entirety. Although not shown here, a request for the full contents could be replied to with a "Major
Message Not Supported" as well as a "Minor Message Not Supported", in which case the requesting
service would try to request a list (Catalog) version instead. However, it is preferable for providers
to make their request policies publicly known so that request negotiation is not necessary.

 Rec. ITU-T X.1206 (04/2008) 7

In this specific example, the ISP requests only a catalog from a vendor as the vendor's complete
repository of vulnerability information, updates and/or patches might be quite extensive. But, since
a catalog request also acts as a subscription for all future information, updates and patches, the ISP
can be assured that anything it delivers to agents acting on behalf of its users will be the latest
available. On the other hand, since the vulnerability information provider, e.g., Provider 1, likely
has a lesser amount of data online, requesting the entirety of what is available may be practical.

During the installation of an asset, the installation process may pass a Request:Full (Major:Minor
message types) message to a locally installed agent to request all current and future vulnerability
information, updates and patches as they become available for the specific version of the asset or
any of its contained components.

The agent then makes a Request:Full to the ISP on behalf of the newly installed asset.

Since the ISP, in this example, already carries vulnerability information from Provider 1 in its
repository, it may deliver that instantly, or wait until a reply from the vendor is received and any and
all information combined and then delivered.

The ISP having determined the vendor to be a source of information applicable to the asset, from its
stored catalog, the ISP then checks its cache to see if the information is locally available or if not,
makes a request from the vendor for the full information available which it will then deliver to the
agent, as well as optionally caching the information in its own repository.

Through a user interface to the agent, the user may locate a useful source of vulnerability
information independently and possibly using a pre-constructed request from a provider, e.g.,
provider 2, that the user may have downloaded, instructs the agent to request either a catalog or
actual vulnerability information available or as it becomes available in the future.

After a given asset or component thereof has been upgraded, the requests for updates to the
previous version are cancelled using Register:End and requests for applicable information updates
for the new versions may be made using Register:null. Similarly, if an asset is removed from
service, future information updates may be cancelled through the use of Register:End as well.

8.3 Security and privacy considerations
In the framework of this Recommendation, user information is not transmitted to the vendor side.
However, it is necessary to consider authentication and integrity verification of delivered
information and the following methods are suggested to be used:
• Sources should identify themselves using signatures in messages.
• Agents should verify authenticity and integrity of delivered messages.
• Updates have to be on a non-individualized basis, (non-personalized) so that no specific

information of the end-user system is delivered into the network.
• Download or installation on end-user equipment requires the endorsement of the end-user.

9 Recommendation architecture

9.1 Message core layer
The message core provides platform/operating system/application/service (POAS) independent
communication between compliant server and client applications built to POAS dependent
requirements. The message core layer abstracts away to specific message compliant
implementations the complexities involved in how to perform a given operation leaving an
administrator only needing to concentrate on what operations need to be performed.

8 Rec. ITU-T X.1206 (04/2008)

9.2 Message/application layer
The message/application layer consists of two main elements. The first element is POAS
independent processes or functions normally carried out during asset or device operations, e.g.,
requesting vulnerability information, updates or patches. These operations are at a higher level and
apply to systems and functions regardless of how a given system is implemented. For example, all
systems need updating or patching periodically, or vulnerability information regarding them
becomes available that users should be made aware of.

The problem is that virtually every different system performs those exact same high level functions
in totally different ways at the implementation level. In the Recommendation architecture, it is at
this layer, where POAS independent requirements clash with lower level implementations that the
primary interface is created.

In general, an identifier is assigned to high level operations/processes that are required to be
executed on systems regardless of the system type. Systems of different types then use these
identifiers to communicate instructions to each other. Upon receiving a given instruction, the
receiving system simply passes that instruction, along with any associated data, to a system specific
handler assigned to process that given instruction.

In many ways, this is no different than processing and rendering a compressed video stream or
reading a file, such as this document on a multiplicity of different platforms. Each platform
dependent video player or doc file reader is responsible for processing the received data based on
the standards involved.

9.3 Scalability
The scalability of systems implemented using this Recommendation is supported via the
topographical server/client identification architecture which supports a client of one server being a
server to other clients below. In effect, any topographical grouping of servers and clients are
supported that can be described by nodes in a tree graph. Also, the ability to bundle messages for
delivery according to belonging to a specific client or group allows any server at whatever level
above a given client to be able to communicate and interact with that client.
• Clients and servers are identified by/assigned a 128-bit globally unique identifier (GUID)
• Clients may be pre-assigned a GUID or have one reassigned on registration with a given

Server or both
• Depending on topographic policy, a client may be assigned/use different GUIDs for

interacting with different Servers
• In cases where a client is itself a server for other clients (local server), the local server may

"Shadow" the true GUID of the server it reports to or vice versa
• Clients may report/be assigned to more than one server with each server being responsible

for providing a different range of services.

9.4 Extensibility
New platforms, applications, functions and services can be added simply by creating a schema
deriving from and extending this Recommendation's message core schema.

From a defined message schema, modules can then be created for whatever platform desired with
the assurance of full interoperability.

Based on a new message schema's messages and message data structures, user interfaces can easily
be created on the fly as needed or desired.

Common messages can be "re-used" for new message sets either by importing the existing message
definition, the message data structure or both, as needed.

 Rec. ITU-T X.1206 (04/2008) 9

9.5 Platform independence
• This Recommendation is the "Normative" interface among and between all participating

entities.
• Modules implementing this Recommendation are created on a POAS dependent basis to

implement messages, functions and services as required.
• Any participating device can issue any specified message or request to any other

participating device independent of the platform either device is implemented on. In
specific cases, contained message data may or likely will contain platform specific content,
but in all cases, this Recommendation is designed to remove the need for cross platform
knowledge. This Recommendation only supports one device to command another device
what to do, not how to do it.

9.6 Client/Server communication

9.6.1 Public protocol
• XML based.

9.6.2 Server-client communication modes
• Server push

– Server sends notifications and updates as they become available to client for which the
client has registered for.

• Server pull
– Server sends requests for operations, notifications and updates to client.

• Client push
– Client sends notifications and updates to server.

• Client pull
– Client sends requests for operations, notifications and updates to server.

10 Components of the framework

This Recommendation is defined using XML and consists of a messaging architecture supporting
the addressing of sources and destinations of messages, and the carriage of messages as well as the
associated message data.

This clause provides the definitions of the data format of the main components: the message
container, the register message and the version message.

10.1 Message container
The message container acts as both an envelope for the carrying, routing and delivery of messages
and replies as well as an abstract base upon which the other messages and replies may be created by
extension and derivation.

10.1.1 Message_Core
All messages used in the Recommendation architecture are defined by importing, extending and
deriving from Message_Core.

The root element of the message structure is Message_Core.

10 Rec. ITU-T X.1206 (04/2008)

10.1.1.1 Syntax

10.1.1.2 Semantics
Header – Contains general routing and message identification information. [REQUIRED]

Payload – Contains an XML Choice of one or more bundled Message_Core messages, or a single
message. For use in situations where messages may be cached at a given node (local server), or
when a server controlling/servicing a local server may wish to receive messages and message data
from clients controlled/serviced by the local server. [REQUIRED]

10.1.2 Header
The message header contains a protocol ID for extensibility and interoperability purposes,
addressing information such as source(s) and destination(s) for a given message, a field to carry a
message ID and a field to carry message origination time information.

10.1.2.1 Syntax

10.1.2.2 Semantics
PID – Protocol ID. A 128-bit value used to identify a specific version and/or extension to the
message protocol, or a complete replacement thereof which at a minimum imports Message_Core,
Header, and PID. To signal conformance with this Recommendation, applications may use a value
of #h00000001. [REQUIRED]

Server_GUID – A 128-bit value used by clients to uniquely identify either a server or a local server
to which the clients directly report. [OPTIONAL]

Client_GUID – A 128-bit value used by servers and local servers to uniquely identify clients
reporting to them. [OPTIONAL]

Message_ID – A 128-Bit value used to uniquely identify a given message. Although the method to
select an appropriate Message_ID is non-normative, it is expected that a given system peer will use
the same value of Message_ID in subsequent replies. [OPTIONAL]

Sent_Time – Contains the time at which a given message was sent. [OPTIONAL]

Signature – An enveloped XML signature. [OPTIONAL]

 Rec. ITU-T X.1206 (04/2008) 11

10.1.3 Payload
The functionality associated with the contents of a given Payload is defined by the definition and
association of a UUID and/or CID with a Message and Message associated Message_Data. The
UUID/CID, Message and Message_Data elements are the main points of extensibility in the
Recommendation architecture and are what gives the Recommendation architecture its
cross-platform independence. A defined Message and its associated Message_Data are referred to
as a Message Set.

By defining and associating a UUID and/or CID with the definition of a message set XML schema,
which imports and extends the Message_Core schema, and by the implementation of a module for a
given message set which includes the Message and Message_Data schema, modules can be loaded
into any Recommendation-compliant application with full interoperability assured.

10.1.3.1 Syntax

10.1.3.2 Semantics
Message_Core – Provides the ability to package and deliver multiple messages from multiple
sources. If chosen [REQUIRED]

AbstractMessage – The relevant message and module identifier as well as specific message type
indication and message specific data. [REQUIRED]

10.1.4 AbstractMessage
The AbstractMessage data structure is used to carry information to identify exactly which message
and message mode is being requested, but also to carry any necessary data for the requested
message to be carried out.

This data structure is intended to be extended by any specific message defined via a normative
schema and, due to its being implemented in the core schema as an abstract class, cannot be used
without an extending definition.

12 Rec. ITU-T X.1206 (04/2008)

10.1.4.1 Syntax

10.1.4.2 Semantics
AbstractCID – A 128-bit value used to uniquely identify a single given functionality. A given
implemented module, identified by a given UUID may implement support for more than one type of
functionality identified by a CID. Conversely, more than one module may implement the same
functionality but for different applications, e.g., a word processor version module and a video editor
version module. [REQUIRED]

AbstractUUID – A 128-bit value used to uniquely identify an implemented module that can process
Messages with which its ID is associated. ［OPTIONAL]

AbstractMajor_Message – A string which is used to carry instructions either from servers to clients
or vice versa. Such instructions are defined in schemas importing and extending the Message_Core
schema, and may include, but are not limited to, "Register", "Request", etc. [REQUIRED]

AbstractMinor_Message – An additional message identifier string to further define the mode of the
indicated message. Such instructions are defined in schemas importing and extending the
Message_Core schema and modes may be, but are not limited to "Full", "Catalog", etc. [OPTIONAL]

AbstractMessage_Data – Data required for the processing of the requested message. [OPTIONAL]

Signature – An enveloped XML signature. [OPTIONAL]

10.1.5 Message_Core_Reply
The Message_Core_Reply data structure is used to carry a status reply and any additionally desired
data to whatever entity that initiated in a given communication stream.

10.1.5.1 Syntax

 Rec. ITU-T X.1206 (04/2008) 13

10.1.5.2 Semantics
Header – Structure, data and requirements identical to Message_Core:Header.

Payload – Contains an XML Choice of one or more bundled Message_Core_Reply messages, or a
single Message_Core_Reply message. For use in situations where messages may be cached at a
given node (local server), or when a server controlling/servicing a local server may wish to receive
messages and message data from clients controlled/serviced by the local server. [REQUIRED]

10.1.6 Abstract_Reply
The Abstract_Reply data structure is used to carry a status reply and any additionally desired data to
whatever entity that initiated a given communication stream.

10.1.6.1 Syntax

10.1.6.2 Semantics
CID – A 128-bit value used to identify a specific version and/or extension to the message protocol
or, a complete replacement thereof which at a minimum imports Message_Core, Header, and PID.
To signal conformance with this Recommendation, applications may use a value of #h00000001.
[REQUIRED]

UUID – A 128-bit value used to uniquely identify an implemented module that can process replies
with which its ID is associated. ［OPTIONAL]

Reply_ID – A 128-bit value used to uniquely identify a given reply. Although the method to select
an appropriate Reply_ID is non-normative, it is expected that a given system peer will use the same
value as Message_ID in received requests to which this is a reply. [OPTIONAL]

AbstractReplyString – Extended by messages importing the Message_Core schema and contains
strings indicating the status of the previous request to which the reply is in response to. Such strings
may be but are not limited to, "Failed", "Succeeded", "Message not supported", etc. [REQUIRED]

Reply_Description – Plain text or HTML giving further information regarding the
AbstractReplyString. [OPTIONAL]

AbstractReply_Data – Any implementation dependant data required. [OPTIONAL]

Signature – An enveloped XML signature. [OPTIONAL]

10.2 Version message
The version message is used between components of a system to request and make available
vulnerability information as well as updates and/or patches.

14 Rec. ITU-T X.1206 (04/2008)

10.2.1 Version:Message
Version:Message is designed to directly substitute for any location where AbstractMessage exists,
and its data structure is both restricted as well as extended to uniquely support the process of make
available, request and deliver vulnerability information, updates and/or patches.

10.2.1.1 Syntax

10.2.1.2 Semantics
CID – Overrides and restricts the Message_Core:AbstractCID base class with a specific assigned
value of #h02. It uniquely identifies this message as belonging to the version message class.
[REQUIRED]

UUID – Overrides the message Message_Core:AbstractUUID base class and is used to uniquely
identify an implemented module that can process Messages with which its ID is associated.
［REQUIRED]

Major_Message – Overrides and restricts the Message_Core:AbstractMajor_Message base class
with an enumerated list of possible values "Register", "Request", "Deliver", "Analyse". [REQUIRED]

The values are used as follows:
• "Register" – Notify the receiving client that the asset and its version as described in the

Version:Message_Data is in use and that vulnerability information, updates and patches
should be delivered as they are made available.

• "Request" – Request available vulnerability information, updates and patches for any
products minimally satisfying the requirements specified in Version:Message_Data.

• "Deliver" – Vulnerability information, one or more updates or patches are included in
Version:Message_Data.

• "Analyse" – The information contained in Version:Message_Data is requested to be
analysed. The reason for the request may be known a priori or an explanation may be given
in version:Info – version:Description or version:Info – version:Container –
version:Description depending on which is more appropriate for the application.

 Rec. ITU-T X.1206 (04/2008) 15

Minor_Message – Overrides and restricts the Message_Core:AbstractMinor_Message base class
with an enumerated list of possible values "Full", "Catalog" and "End". [OPTIONAL]

The values are used as follows:
• "Full" – Request all available and applicable updates and/or patches.
• "Catalog" – Deliver a list of vulnerability information, updates and/or patches available for

products specified in Version:Message_Data.
• "End" – End a subscription according to information contained in Version:Message_Data.

Message_Data – Overrides and restricts the Message_Core:AbstractMessage_Data base class with
a specific data structure used to carry the identification of product version as well as carry any
applicable vulnerability information, updates and/or patches. [OPTIONAL]

Signature – An enveloped XML signature. [OPTIONAL]

10.2.2 Version:Message_Data
Version:Message_Data is designed to directly substitute for any location where
AbstractMessage_Data exist and its data structure is both restricted, as well as extended to uniquely
support the process of carrying product version, vulnerability information, updates and/or patches.

10.2.2.1 Syntax

10.2.2.2 Semantics
Version_Info – Information used to identify, to the required level of specificity, products and their
versions as well as supporting the carriage of vulnerability information, updates and/or patches.

10.2.3 Version_Info
Used to not only identify products, along with their vendor, version and version related information,
but also to carry vulnerability information, updates and patches, as required for distribution to
applications requiring them.

16 Rec. ITU-T X.1206 (04/2008)

10.2.3.1 Syntax

10.2.3.2 Semantics
Product_Name – The name of the top level product the identified version information pertains to,
e.g., for a given DVD drive which contains a specific flash system version, the Product_Name
would refer to the DVD drive product name. [OPTIONAL]

Product_Version – The version of the top level product the identified version information pertains
to. Referring to the previous example, the Product_Version would reply to the specific version of
the DVD drive. [OPTIONAL]

Company – The vendor, provider or author of the identified product or asset. [OPTIONAL]

Info – A data structure used to carry vulnerability information for actual implementations of
products or assets, as indicated by the previous field values. [OPTIONAL]

Signature – An enveloped XML signature. [OPTIONAL]

NOTE – The information contained in Info is always to be used to identify a given asset with the
Product_Name and Product_Version being used only as a matter of convenience; however, where the asset
identified in Info is a top level product, Product_Name and Product_Version as suggested to be used to
clearly indicate that no "parent" for the identified asset exists.

10.2.4 Info

10.2.4.1 Syntax

10.2.4.2 Semantics
Source – A textual description, e.g., name, of the vendor or vulnerability information provider
providing the included code or vulnerability information. [OPTIONAL]

 Rec. ITU-T X.1206 (04/2008) 17

ID – An ID by which the given set of Info data may be identified. Although the method of
assignment is not specified, it is suggested that IDs assigned need only be unique within a series for
a given Asset from a given Source. [OPTIONAL]

Date – An XML date value relevant to the Info data. [OPTIONAL]

Description – A textual or HTML description of either the code contained within an optional
instance of Info_Container, or a uniform resource identifier (URI) reference thereof for the specific
Asset version described in a specific instance of this data structure. [OPTIONAL]

Container – Data structure for the carriage of the code in the form of an update or patch. [REQUIRED]

Signature – An enveloped XML signature. [OPTIONAL]

10.2.5 Container
A container for version identification information, as well as vulnerability information, an update or
a patch.

10.2.5.1 Syntax

10.2.5.2 Semantics
Package – Method of packaging used by the specific version and/or the contents of Code. [OPTIONAL]

Format – Format of the specific version. [OPTIONAL]

Version – Version as applicable, either included for requests or used to identify the contents of
Version_Control and/or Code. [REQUIRED]

Contained_Versions – A list, defined using the Version_Info (see above) data structure which
contains descriptions of all components of the current asset or component. [OPTIONAL]

File_Name – File name. [OPTIONAL]

Language – For assets for which different versions are available for different countries, based on
language, this field is used to identify the language. [OPTIONAL]

Author_Comments – Any textual content as desired. [OPTIONAL]

Description – A textual or HTML description of the specific version contained in Code, or a textual
or HTML description of vulnerability information pertaining to the asset identified by Version

18 Rec. ITU-T X.1206 (04/2008)

and/or File_Name used by or within Version_Info : Product_Name and Version_Info :
Product_Version.

Code – A Container for executable code as well as version control information.

Signature – An enveloped XML signature. [OPTIONAL]

10.2.6 Code
A container for actual code or strings of bytes, e.g., as memory dump, or URL references thereto as
well as information useful for controlling version updates.

10.2.6.1 Syntax

10.2.6.2 Semantics
Script – Code in scripted form. [OPTIONALLY REQUIRED]

Binary – Code in compiled binary form. [OPTIONALLY REQUIRED]

Byte – Data provided for analysis. [OPTIONALLY REQUIRED]

Version_Control – A data structure used to indicate relationships between successive versions and
their possible update paths. [OPTIONAL]

10.2.7 Version_Control
A container for carrying lists of sequences of versions superseded by a given version as well as a
list identifying to which versions the identified update or patch may be applied.

10.2.7.1 Syntax

10.2.7.2 Semantics
Supersedes – A sequenced list of versions superseded by the Version_Info. [OPTIONAL]

Update_Path – A list of versions to which the current update or patch may be applied. [OPTIONAL]

10.2.8 Supersedes
A list of assets which are superseded by the specified version.

10.2.8.1 Syntax

10.2.8.2 Semantics
Version_Info – (see info).

 Rec. ITU-T X.1206 (04/2008) 19

10.2.9 Update_Path
A list of assets to which the contained update or patch may be applied.

10.2.9.1 Syntax

10.2.9.2 Semantics
Version_Info – (see info).

10.2.10 ReplyStatus

10.2.10.1 Syntax

10.2.10.2 Semantics
ReplyStatus – Contains one of the following:

"Failed" – The requested operation could not be completed.

"Succeeded" – The requested operation succeeded.

"Major message Not Supported" – The requested major message identifier or its use in the given
context is not supported.

"Minor message Not Supported" – The requested minor message identifier or its use in the given
context is not supported.

"Handler not available" – The message type identified is not supported.

11 Schemas

11.1 Message_Core
<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:messagecore="http://www.itu.int//xml-namespace/itu-t/x.1206/CORE/"
xmlns:ns1="http://www.w3.org/2000/09/xmldsig#" targetNamespace=" http://www.itu.int//xml-namespace/itu-t/x.1206/CORE/"
elementFormDefault="qualified" attributeFormDefault="unqualified">

 <xs:import namespace="http://www.w3.org/2000/09/xmldsig#" schemaLocation="xmldsig-core-schema.xsd"/>

 <xs:element name="Message_Core">

 <xs:annotation>

 <xs:documentation>Vulnerability Information, Update and Patch Notification Architecture</xs:documentation>

 </xs:annotation>

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Header" type="messagecore:HeaderType"/>

 <xs:element name="Payload">

 <xs:complexType>

 <xs:choice>

 <xs:element ref="messagecore:Message_Core" maxOccurs="unbounded"/>

 <xs:element ref="messagecore:AbstractMessage" maxOccurs="unbounded"/>

 </xs:choice>

20 Rec. ITU-T X.1206 (04/2008)

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:complexType name="HeaderType">

 <xs:sequence>

 <xs:element name="PID" type="xs:string"/>

 <xs:element name="Server_GUID" type="xs:string" minOccurs="0"/>

 <xs:element name="Client_GUID" type="xs:string" minOccurs="0"/>

 <xs:element name="Message_ID" type="xs:string" minOccurs="0"/>

 <xs:element name="Sent_Time" type="xs:dateTime" minOccurs="0"/>

 <xs:element name="Signature" type="ns1:SignatureType" minOccurs="0"/>

 </xs:sequence>

 </xs:complexType>

 <xs:element name="AbstractMessage" type="messagecore:AbstractMessageType" abstract="true"/>

 <xs:complexType name="AbstractMessageType">

 <xs:sequence>

 <xs:element ref="messagecore:AbstractCID"/>

 <xs:element ref="messagecore:AbstractUUID" minOccurs="0"/>

 <xs:element ref="messagecore:AbstractMajor_Message"/>

 <xs:element ref="messagecore:AbstractMinor_Message" minOccurs="0"/>

 <xs:element ref="messagecore:AbstractMessage_Data" minOccurs="0"/>

 <xs:element name="Signature" type="ns1:SignatureType" minOccurs="0"/>

 </xs:sequence>

 </xs:complexType>

 <xs:element name="AbstractCID" type="messagecore:AbstractCIDType" abstract="true"/>

 <xs:complexType name="AbstractCIDType">

 <xs:simpleContent>

 <xs:extension base="xs:string"/>

 </xs:simpleContent>

 </xs:complexType>

 <xs:element name="AbstractUUID" type="messagecore:AbstractUUIDType" abstract="true"/>

 <xs:complexType name="AbstractUUIDType">

 <xs:simpleContent>

 <xs:extension base="xs:string"/>

 </xs:simpleContent>

 </xs:complexType>

 <xs:element name="AbstractMajor_Message" type="messagecore:AbstractMajorMessageType" abstract="true"/>

 <xs:complexType name="AbstractMajorMessageType">

 <xs:simpleContent>

 <xs:extension base="xs:string"/>

 </xs:simpleContent>

 </xs:complexType>

 <xs:element name="AbstractMinor_Message" type="messagecore:AbstractMinorMessageType" abstract="true"/>

 <xs:complexType name="AbstractMinorMessageType">

 <xs:simpleContent>

 <xs:extension base="xs:string"/>

 Rec. ITU-T X.1206 (04/2008) 21

 </xs:simpleContent>

 </xs:complexType>

 <xs:element name="AbstractMessage_Data" type="messagecore:AbstractMessage_DataType" abstract="true"/>

 <xs:complexType name="AbstractMessage_DataType"/>

 <xs:element name="Message_Core_Reply">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Header" type="messagecore:HeaderType"/>

 <xs:element name="Payload">

 <xs:complexType>

 <xs:choice>

 <xs:element ref="messagecore:Message_Core_Reply" maxOccurs="unbounded"/>

 <xs:element ref="messagecore:AbstractReply"/>

 </xs:choice>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="AbstractReply" type="messagecore:AbstractReplyType"/>

 <xs:complexType name="AbstractReplyType">

 <xs:sequence>

 <xs:element name="CID" type="messagecore:AbstractCIDType"/>

 <xs:element name="UUID" type="messagecore:AbstractUUIDType" minOccurs="0"/>

 <xs:element name="Reply_ID" type="xs:string" minOccurs="0"/>

 <xs:element ref="messagecore:AbstractReplyStatus"/>

 <xs:element name="Reply_Description" type="messagecore:Description_Type" minOccurs="0"/>

 <xs:element ref="messagecore:AbstractReply_Data" minOccurs="0"/>

 <xs:element name="Signature" type="ns1:SignatureType" minOccurs="0"/>

 </xs:sequence>

 </xs:complexType>

 <xs:element name="AbstractReplyStatus" type="messagecore:AbstractReplyStatusType" abstract="true"/>

 <xs:complexType name="AbstractReplyStatusType">

 <xs:simpleContent>

 <xs:extension base="xs:string"/>

 </xs:simpleContent>

 </xs:complexType>

 <xs:element name="AbstractReply_Data" type="messagecore:AbstractReply_DataType" abstract="true"/>

 <xs:complexType name="AbstractReply_DataType"/>

 <xs:complexType name="Description_Type">

 <xs:attribute name="ref" type="xs:anyURI" use="optional"/><![CDATA[]]></xs:complexType>

</xs:schema>

11.2 Message_Version
<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:messagecore=" http://www.itu.int//xml-namespace/itu-t/x.1206/CORE/"
xmlns:version=" http://www.itu.int//xml-namespace/itu-t/x.1206/CORE/MESSAGE/VERSION/"
xmlns:xmldsig="http://www.w3.org/2000/09/xmldsig#" targetNamespace=" http://www.itu.int//xml-namespace/itu-
t/x.1206/CORE/MESSAGE/VERSION/" elementFormDefault="qualified" attributeFormDefault="unqualified">

 <xs:import namespace="http://www.example.com/CORE" schemaLocation="Message_Core.xsd"/>

22 Rec. ITU-T X.1206 (04/2008)

 <xs:import namespace="http://www.w3.org/2000/09/xmldsig#" schemaLocation="xmldsig-core-schema.xsd"/>

 <xs:element name="Message" type="messagecore:AbstractMessageType" substitutionGroup="messagecore:AbstractMessage">

 <xs:annotation>

 <xs:documentation>Vulnerability Information, Update and Patch Notification Message : Version</xs:documentation>

 </xs:annotation>

 </xs:element>

 <xs:element name="CID" type="messagecore:AbstractCIDType" substitutionGroup="messagecore:AbstractCID"/>

 <xs:element name="UUID" type="messagecore:AbstractUUIDType" substitutionGroup="messagecore:AbstractUUID"/>

 <xs:element name="Major_Message" type="version:Major_MessageType" substitutionGroup="messagecore:AbstractMajor_Message"/>

 <xs:complexType name="Major_MessageType">

 <xs:simpleContent>

 <xs:restriction base="messagecore:AbstractMajorMessageType">

 <xs:enumeration value="Register"/>

 <xs:enumeration value="Request"/>

 <xs:enumeration value="Deliver"/>

 <xs:enumeration value="Analyse"/>

 </xs:restriction>

 </xs:simpleContent>

 </xs:complexType>

 <xs:element name="Minor_Message" type="version:Minor_MessageType" substitutionGroup="messagecore:AbstractMinor_Message"/>

 <xs:complexType name="Minor_MessageType">

 <xs:simpleContent>

 <xs:restriction base="messagecore:AbstractMinorMessageType">

 <xs:enumeration value="Full"/>

 <xs:enumeration value="Catalog"/>

 <xs:enumeration value="End"/>

 </xs:restriction>

 </xs:simpleContent>

 </xs:complexType>

 <xs:element name="Message_Data" type="version:Message_DataType" substitutionGroup="messagecore:AbstractMessage_Data"/>

 <xs:complexType name="Message_DataType">

 <xs:complexContent>

 <xs:extension base="messagecore:AbstractMessage_DataType">

 <xs:sequence>

 <xs:element name="Version_Info" type="version:Version_InfoType" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

 <xs:element name="Reply" type="messagecore:AbstractReplyType" substitutionGroup="messagecore:AbstractReply"/>

 <xs:element name="ReplyStatus" substitutionGroup="messagecore:AbstractReplyStatus">

 <xs:complexType>

 <xs:simpleContent>

 <xs:restriction base="messagecore:AbstractReplyStatusType">

 <xs:enumeration value="Failed"/>

 <xs:enumeration value="Succeeded"/>

 <xs:enumeration value="Major Message Not Supported"/>

 <xs:enumeration value="Minor Message Not Supported"/>

 Rec. ITU-T X.1206 (04/2008) 23

 <xs:enumeration value="Handler not available"/>

 </xs:restriction>

 </xs:simpleContent>

 </xs:complexType>

 </xs:element>

 <xs:element name="Reply_Data" type="messagecore:AbstractReply_DataType" substitutionGroup="messagecore:AbstractReply_Data"/>

 <xs:complexType name="Version_InfoType">

 <xs:complexContent>

 <xs:extension base="messagecore:AbstractReply_DataType">

 <xs:sequence>

 <xs:element name="Product_Name" type="xs:string" minOccurs="0"/>

 <xs:element name="Product_Version" type="xs:string" minOccurs="0"/>

 <xs:element name="Company" type="xs:string" minOccurs="0"/>

 <xs:element name="Info" minOccurs="0" maxOccurs="unbounded">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Source" type="xs:string" minOccurs="0"/>

 <xs:element name="ID" type="xs:string" minOccurs="0"/>

 <xs:element name="Date" type="xs:string" minOccurs="0"/>

 <xs:element name="Description" minOccurs="0">

 <xs:complexType>

 <xs:attribute name="ref" type="xs:anyURI" use="optional"/><![CDATA[]]></xs:complexType>

 </xs:element>

 <xs:element name="Container">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Package" type="xs:string" minOccurs="0"/>

 <xs:element name="Format" type="xs:string" minOccurs="0"/>

 <xs:element name="Version" type="xs:string"/>

 <xs:element name="Contained_Versions" type="version:Version_InfoType" minOccurs="0"/>

 <xs:element name="File_name" type="xs:string" minOccurs="0"/>

 <xs:element name="Language" type="xs:string" minOccurs="0"/>

 <xs:element name="Author_Comments" type="xs:string" minOccurs="0"/>

 <xs:element name="Description" type="messagecore:Description_Type" minOccurs="0"/>

 <xs:element name="Code" minOccurs="0">

 <xs:complexType>

 <xs:sequence>

 <xs:choice>

 <xs:element name="Script">

 <xs:complexType>

 <xs:attribute name="ref" type="xs:anyURI" use="optional"/>

 </xs:complexType>

 </xs:element>

 <xs:element name="Binary">

 <xs:complexType>

 <xs:simpleContent>

 <xs:extension base="xs:base64Binary">

 <xs:attribute name="ref" type="xs:anyURI" use="optional"/>

24 Rec. ITU-T X.1206 (04/2008)

 </xs:extension>

 </xs:simpleContent>

 </xs:complexType>

 </xs:element>

 <xs:element name="Byte">

 <xs:complexType>

 <xs:simpleContent>

 <xs:extension base="xs:base64Binary">

 <xs:attribute name="ref" type="xs:anyURI" use="optional"/>

 </xs:extension>

 </xs:simpleContent>

 </xs:complexType>

 </xs:element>

 </xs:choice>

 <xs:element name="Version_Control" minOccurs="0">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Supersedes" minOccurs="0">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Version_info"
type="version:Version_InfoType" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="Update_Path" minOccurs="0">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Version_Info"
type="version:Version_InfoType" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="Signature" type="xmldsig:SignatureType" minOccurs="0"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="Signature" type="xmldsig:SignatureType" minOccurs="0"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="Signature" type="xmldsig:SignatureType" minOccurs="0"/>

 </xs:sequence>

 Rec. ITU-T X.1206 (04/2008) 25

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

</xs:schema>

26 Rec. ITU-T X.1206 (04/2008)

Bibliography

[b-ITU-T X.667] Recommendation ITU-T X.667 (2004) | ISO/IEC 9834-8:2005,
Information technology – Open Systems Interconnection – Procedures
for the operation of OSI Registration Authorities: Generation and
registration of Universally Unique Identifiers (UUIDs) and their use
as ASN.1 object identifier components.

[b-IETF RFC 3023] IETF RFC 3023 (2001), XML Media Types.
<http://www.ietf.org/rfc/rfc3023.txt?number=3023>

[b-IETF RFC 3075] IETF RFC 3075 (2001), XML-Signature Syntax and Processing.
<http://www.ietf.org/rfc/rfc3075.txt?number=3075>

[b-XML Datatypes] W3C Datatypes:2001, XML Schema Part 2: Datatypes, W3C
Recommendation, Copyright © [2 May 2001] World Wide Web
Consortium, (Massachusetts Institute of Technology, Institut National
de Recherche en Informatique et en Automatique, Keio University),
http://www.w3.org/TR/2001/RECxmlschema-2-20010502/.

[b-XML Signature] W3C Signature Schema:2001, XML Signature Schema, W3C
Recommendation, Copyright © [1 March 2001] World Wide Web
Consortium, (Massachusetts Institute of Technology, Institut National
de Recherche en Informatique et en Automatique, Keio University),
http://www.w3.org/TR/xmldsigcore/xmldsig-core-schema.xsd.

[b-XML Structures] W3C XML Schema Part 1:2001, XML Schema Part 1: Structures,
W3C Recommendation, Copyright © [2 May 2001] World Wide Web
Consortium, (Massachusetts Institute of Technology, Institut National
de Recherche en Informatique et en Automatique, Keio University),
http://www.w3.org/TR/2001/RECxmlschema-1-20010502/.

http://www.ietf.org/rfc/rfc3023.txt?number=3023
http://www.ietf.org/rfc/rfc3075.txt?number=3075
http://www.w3.org/TR/2001/RECxmlschema-2-20010502/
http://www.w3.org/TR/xmldsigcore/xmldsig-core-schema.xsd
http://www.w3.org/TR/2001/RECxmlschema-1-20010502/

Printed in Switzerland
Geneva, 2009

SERIES OF ITU-T RECOMMENDATIONS

Series A Organization of the work of ITU-T

Series D General tariff principles

Series E Overall network operation, telephone service, service operation and human factors

Series F Non-telephone telecommunication services

Series G Transmission systems and media, digital systems and networks

Series H Audiovisual and multimedia systems

Series I Integrated services digital network

Series J Cable networks and transmission of television, sound programme and other multimedia signals

Series K Protection against interference

Series L Construction, installation and protection of cables and other elements of outside plant

Series M Telecommunication management, including TMN and network maintenance

Series N Maintenance: international sound programme and television transmission circuits

Series O Specifications of measuring equipment

Series P Telephone transmission quality, telephone installations, local line networks

Series Q Switching and signalling

Series R Telegraph transmission

Series S Telegraph services terminal equipment

Series T Terminals for telematic services

Series U Telegraph switching

Series V Data communication over the telephone network

Series X Data networks, open system communications and security

Series Y Global information infrastructure, Internet protocol aspects and next-generation networks

Series Z Languages and general software aspects for telecommunication systems

	ITU-T Rec. X.1206 (04/2008) – A vendor-neutral framework for automaticnotification of security related information anddissemination of updates
	Summary
	Source
	FOREWORD
	CONTENTS
	1 Scope
	2 References
	3 Definitions
	3.1 Terms defined in this Recommendation

	4 Abbreviations
	5 Conventions
	6 Introduction
	7 Current situation regarding vulnerability information
	8 Overview of vendor-neutral framework
	8.1 Multiple sources of vulnerability information, updates and patches
	8.2 Example application operation
	8.3 Security and privacy considerations

	9 Recommendation architecture
	9.1 Message core layer
	9.2 Message/application layer
	9.3 Scalability
	9.4 Extensibility
	9.5 Platform independence
	9.6 Client/Server communication

	10 Components of the framework
	10.1 Message container
	10.2 Version message

	11 Schemas
	11.1 Message_Core
	11.2 Message_Version

	Bibliography

