

I n t e r n a t i o n a l T e l e c o m m u n i c a t i o n U n i o n

ITU-T X.1080.0
TELECOMMUNICATION
STANDARDIZATION SECTOR
OF ITU

(03/2017)

SERIES X: DATA NETWORKS, OPEN SYSTEM
COMMUNICATIONS AND SECURITY

Information and network security – Telebiometrics

 Access control for telebiometrics data
protection

Recommendation ITU-T X.1080.0

ITU-T X-SERIES RECOMMENDATIONS

DATA NETWORKS, OPEN SYSTEM COMMUNICATIONS AND SECURITY

PUBLIC DATA NETWORKS X.1–X.199

OPEN SYSTEMS INTERCONNECTION X.200–X.299

INTERWORKING BETWEEN NETWORKS X.300–X.399

MESSAGE HANDLING SYSTEMS X.400–X.499

DIRECTORY X.500–X.599

OSI NETWORKING AND SYSTEM ASPECTS X.600–X.699

OSI MANAGEMENT X.700–X.799

SECURITY X.800–X.849

OSI APPLICATIONS X.850–X.899

OPEN DISTRIBUTED PROCESSING X.900–X.999

INFORMATION AND NETWORK SECURITY

General security aspects X.1000–X.1029

Network security X.1030–X.1049

Security management X.1050–X.1069

Telebiometrics X.1080–X.1099

SECURE APPLICATIONS AND SERVICES

Multicast security X.1100–X.1109

Home network security X.1110–X.1119

Mobile security X.1120–X.1139

Web security X.1140–X.1149

Security protocols X.1150–X.1159

Peer-to-peer security X.1160–X.1169

Networked ID security X.1170–X.1179

IPTV security X.1180–X.1199

CYBERSPACE SECURITY

Cybersecurity X.1200–X.1229

Countering spam X.1230–X.1249

Identity management X.1250–X.1279

SECURE APPLICATIONS AND SERVICES

Emergency communications X.1300–X.1309

Ubiquitous sensor network security X.1310–X.1339

PKI related Recommendations X.1340–X.1349

Internet of things (IoT) security X.1360–X.1369

Intelligent transportation system (ITS) security X.1370–X.1379

CYBERSECURITY INFORMATION EXCHANGE

Overview of cybersecurity X.1500–X.1519

Vulnerability/state exchange X.1520–X.1539

Event/incident/heuristics exchange X.1540–X.1549

Exchange of policies X.1550–X.1559

Heuristics and information request X.1560–X.1569

Identification and discovery X.1570–X.1579

Assured exchange X.1580–X.1589

CLOUD COMPUTING SECURITY

Overview of cloud computing security X.1600–X.1601

Cloud computing security design X.1602–X.1639

Cloud computing security best practices and guidelines X.1640–X.1659

Cloud computing security implementation X.1660–X.1679

Other cloud computing security X.1680–X.1699

For further details, please refer to the list of ITU-T Recommendations.

 Rec. ITU-T X.1080.0 (03/2017) i

Recommendation ITU-T X.1080.0

Access control for telebiometrics data protection

Summary

Recommendation ITU-T X.1080.0 provides specifications on how to protect telebiometrics

information against unauthorized access. A service-oriented view is taken, where only information

necessary for a particular purpose is provided, i.e., access is given not only on a right-to-know basis,

but also on a need-to-know basis.

The core of this Recommendation is an attribute specification included in an attribute certificate or

public-key certificate that specifies in detail what privileges a particular entity has for one or more

service types.

Security is provided by using a profile of the cryptographic message syntax (CMS). The CMS

profile provides authentication, integrity and, when required, confidentiality (encryption).

This profile is intended to provide security support for telebiometrics specifications in general. The

profile assumes, and is dependent upon, the correct deployment of a public-key infrastructure (PKI).

This Recommendation is also dependent on the deployment of a privilege management infrastructure

(PMI).

History

Edition Recommendation Approval Study Group Unique ID*

1.0 ITU-T X.1080.0 2017-03-30 17 11.1002/1000/13193

Keywords

Access control, Diffie-Hellman, PKI, telebiometrics.

* To access the Recommendation, type the URL http://handle.itu.int/ in the address field of your web

browser, followed by the Recommendation's unique ID. For example, http://handle.itu.int/11.1002/1000/11

830-en.

http://handle.itu.int/11.1002/1000/13193
http://handle.itu.int/11.1002/1000/11830-en
http://handle.itu.int/11.1002/1000/11830-en

ii Rec. ITU-T X.1080.0 (03/2017)

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of

telecommunications, information and communication technologies (ICTs). The ITU Telecommunication

Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical,

operating and tariff questions and issuing Recommendations on them with a view to standardizing

telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years,

establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on

these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are

prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a

telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain

mandatory provisions (to ensure, e.g., interoperability or applicability) and compliance with the

Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some

other obligatory language such as "must" and the negative equivalents are used to express requirements. The

use of such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may

involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence,

validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others

outside of the Recommendation development process.

As of the date of approval of this Recommendation, ITU had not received notice of intellectual property,

protected by patents, which may be required to implement this Recommendation. However, implementers

are cautioned that this may not represent the latest information and are therefore strongly urged to consult the

TSB patent database at http://www.itu.int/ITU-T/ipr/.

 ITU 2017

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the

prior written permission of ITU.

http://www.itu.int/ITU-T/ipr/

 Rec. ITU-T X.1080.0 (03/2017) iii

Table of Contents

 Page

1 Scope ... 1

2 References ... 1

3 Definitions .. 2

3.1 Terms defined elsewhere .. 2

3.2 Terms defined in this Recommendation ... 3

4 Abbreviations and acronyms .. 3

5 Conventions .. 4

6 Basic concepts and models ... 4

6.1 Protection in a single data protection domain .. 4

6.2 Cross data protection domain ... 6

6.3 Service-oriented model ... 6

6.4 The object and attribute model ... 7

6.5 Basic access control principles ... 7

6.6 Relationship to other access control schemes .. 7

6.7 Protocols overview ... 8

6.8 Use of CMS .. 8

6.9 Public-key certificate considerations .. 9

7 Provision of privilege information .. 9

7.1 Use of attribute certificates ... 9

7.2 Use of public-key certificates ... 9

7.3 The access service attribute type .. 10

7.4 Operations on objects as a whole ... 12

7.5 Operations on attributes .. 12

7.6 Error handling ... 13

8 Privilege assertion protocol .. 13

8.1 Overview .. 13

8.2 Common request components .. 14

8.3 Accessing a service ... 14

8.4 Read operation .. 14

8.5 Compare operation ... 15

8.6 Add operation ... 17

8.7 Delete operation .. 18

8.8 Modify operation .. 18

8.9 Rename object operation .. 20

8.10 Error handling ... 21

8.11 Information selection .. 21

8.12 Object information .. 22

iv Rec. ITU-T X.1080.0 (03/2017)

 Page

8.13 Defined error codes .. 22

9 Privilege assignment protocol ... 23

9.1 Scope of protocol .. 23

9.2 Content types .. 23

Annex A – Object identifier allocation for the ITU-T 1080-series .. 25

A.1 Top level of object identifier tree ... 25

A.2 Object identifiers for CMS content types ... 25

A.3 Object identifiers for privilege attribute types .. 26

Annex B – Cryptographic message syntax profile... 27

B.1 General ... 27

B.2 Use of the signedData content type .. 28

B.3 Use of envelopedData content type .. 30

B.4 Use of the authenticated-enveloped-data content type 34

B.5 Attributes .. 35

B.6 Cryptographic message syntax error codes .. 36

Annex C – Formal specification of the privilege assertion and assignment protocols 38

Appendix I – Informal specification for the cryptographic message syntax profile 44

Bibliography... 49

 Rec. ITU-T X.1080.0 (03/2017) v

Introduction

When collecting telebiometrics data from individuals, there is a risk of infringement of privacy.

There may be several reasons for protecting such information. Information may provide access to a

company or an organization or it may be of a sensitive nature that restricts its distribution.

The protection against unwanted disclosure of telebiometrics data has two major aspects:

– protection of data during transmission, typically by encryption, and protection of stored

data;

– control of access to stored data.

While telebiometric systems should have a high level of security with respect to confidentiality

(encryption), authentication, integrity, physical protection, use of firewalls, virus protection

programs, etc., it is also necessary to establish an elaborate access control system for access to

stored information, in particular information about individuals. This latter aspect is particularly

important for telebiometric systems.

General access control schemes have a shortcoming in that they mainly consider the right (or

refusal) to information, but do not consider, in detail, the need-to-know aspect. A need-to-know

implies that it is not sufficient to have the right to see the data, but it also must be established that

this information is to be used for legitimate purposes.

Information should only be provided for its intended use. Medical information about a patient is

collected to allow optimal treatment of that patient and should not be used for any other purpose,

except possibly for tightly controlled research projects that may require use of some pieces of

information from a specific collection of patients, otherwise information shall be protected against

information trawling.

There are two main types of access control: physical and logical. Physical access control limits

access to campuses, buildings, rooms and physical information technology (IT) assets. Logical

access limits connections to computer networks, system files and data. Only logical access control

is considered in this Recommendation

Access control includes secure authentication of accessors by the service provider. This

Recommendation assumes the use of digital signatures and an established public-key infrastructure

(PKI).

Recommendation ITU-T X.1080.0 may be referenced by other telebiometrics specifications.

Annex A, which is an integral part of this Recommendation, specifies the allocation of object

identifiers used by the ITU-T X.1080-series of Recommendations.

Annex B, which is an integral part of this Recommendation, provides a telebiometrics profile of the

cryptographic message syntax (CMS), as discussed in IETF RFC 5652, that is used by this

Recommendation. It can also be referenced by other telebiometrics specifications.

Annex C, which is an integral part of this Recommendation, provides a formal specification for the

privilege assertion and assignment protocols in the form an Abstract Syntax Notation One (ASN.1)

module.

Appendix I, which is not an integral part of this Recommendation, provides an informal

specification for the CMS profile in the form of an ASN.1 module.

 Rec. ITU-T X.1080.0 (03/2017) 1

Recommendation ITU-T X.1080.0

Access control for telebiometrics data protection

1 Scope

This Recommendation provides a specification for how privacy may be protected in a

telebiometrics environment by using privacy-based access control for telebiometrics (ACT). While

this Recommendation cannot identify all possible information types, it is within the scope to

provide general tools for handling all types of information in a secure way. This includes definition

of a protocol for assigning privileges and a protocol for accessing information using privilege

assertion. This Recommendation provides guidelines and does not contain compliance

requirements.

The following is outside the scope of this Recommendation:

– physical protection of the information;

– unauthorized access by operational personal that maintain the security system and therefore

having the possibility to circumvent security.

2 References

The following ITU-T Recommendations and other references contain provisions which, through

reference in this text, constitute provisions of this Recommendation. At the time of publication, the

editions indicated were valid. All Recommendations and other references are subject to revision;

users of this Recommendation are therefore encouraged to investigate the possibility of applying the

most recent edition of the Recommendations and other references listed below. A list of the

currently valid ITU-T Recommendations is regularly published. The reference to a document within

this Recommendation does not give it, as a stand-alone document, the status of a Recommendation.

[ITU-T X.500-series] Recommendation ITU-T X.5xx (2016) | ISO/IEC 9594-x series, Information

technology – Open Systems Interconnection – The Directory.

[ITU-T X.501] Recommendation ITU-T X.501 (2016) | ISO/IEC 9594-2, Information

technology – Open Systems Interconnection – The Directory: Models.

[ITU-T X.509] Recommendation ITU-T X.509 (2016) | ISO/IEC 9594-8, Information

technology – Open Systems Interconnection – The Directory: Public-key

and attribute certificate frameworks.

[ITU-T X.520] Recommendation ITU-T X.520 (2016) | ISO/IEC 9594-6, Information

technology – Open Systems Interconnection – The Directory: Selected

attribute types.

[ITU-T X.521] Recommendation ITU-T X.521 (2016) | ISO/IEC 9594-7, Information

technology – Open Systems Interconnection – The Directory: Selected

object classes.

[ITU-T X.680] Recommendation ITU-T X.680 (2015) | ISO/IEC 8824-1, Information

technology – Abstract Syntax Notation One (ASN.1): Specification of basic

notation.

[ITU-T X.681] Recommendation ITU-T X.681 (2015) | ISO/IEC 8824-2, Information

technology – Abstract Syntax Notation One (ASN.1): Information object

specification.

2 Rec. ITU-T X.1080.0 (03/2017)

[ITU-T X.682] Recommendation ITU-T X.682 (2015) | ISO/IEC 8824-3, Information

technology – Abstract Syntax Notation One (ASN.1): Constraint

specification.

[ITU-T X.683] Recommendation ITU-T X.683 (2015) | ISO/IEC 8824-4, Information

technology – Abstract Syntax Notation One (ASN.1): Parameterization of

ASN.1 specifications.

[ITU-T X.690] Recommendation ITU-T X.690 (2015) | ISO/IEC 8825-1, Information

technology – ASN.1 encoding rules: Specification of Basic Encoding Rules

(BER), Canonical Encoding Rules (CER) and Distinguished Encoding Rules

(DER).

[ITU-T X.1080.1] Recommendation ITU-T X.1080.1 (2011), e-Health and world-wide

telemedicines – Generic telecommunication protocol.

[ITU-T X.1081] Recommendation ITU-T X.1081 (2011), The telebiometric multimodal

model – A framework for the specification of security and safety aspects of

telebiometrics.

[IETF RFC 2631] IETF RFC 2631 (1999), Diffie-Hellman Key Agreement Method.

[IETF RFC 3185] IETF RFC 3185 (2001), Reuse of CMS Content Encryption Keys.

[IETF RFC 5083] IETF RFC 5083 (2007), Cryptographic Message Syntax (CMS) –

Authenticated-Enveloped-Data Content Type.

[IETF RFC 5652] IETF RFC 5652 (2009), Cryptographic Message Syntax (CMS).

[IETF RFC 5753] IETF RFC 5753 (2010), Use of Elliptic Curve Cryptography (ECC)

Algorithms in Cryptographic Message Syntax CMS.

[IETF RFC 5911] IETF RFC 5911 (2010), New ASN.1 Modules for Cryptographic Message

Syntax (CMS) and S/MIME.

[IETF RFC 6268] IETF RFC 6268 (2011), Additional New ASN.1 Modules for the

Cryptographic Message Syntax (CMS) and the Public Key Infrastructure

Using X.509 (PKIX).

3 Definitions

3.1 Terms defined elsewhere

This Recommendation uses the following terms defined elsewhere:

3.1.1 attribute certificate [ITU-T X.509]: A data structure, digitally signed by an attribute

authority that binds some attribute values with identification information about its holder.

3.1.2 attribute type [ITU-T X.501]: That component of an attribute which indicates the class of

information held by that attribute.

3.1.3 attribute value [ITU-T X.501]: A particular instance of the class of information indicated

by an attribute type.

3.1.4 privilege [ITU-T X.509]: An attribute or property assigned to an entity by an authority.

3.1.5 privilege holder [ITU-T X.509]: An entity that has been assigned privilege. A privilege

holder may assert its privilege for a particular purpose.

3.1.6 privilege verifier [ITU-T X.509]: An entity verifying certificates against a privilege policy.

 Rec. ITU-T X.1080.0 (03/2017) 3

3.1.7 source of authority (SOA) [ITU-T X.509]: An attribute authority that a privilege verifier

for a particular resource trusts as the ultimate authority to assign a set of privileges for asserting that

resource.

3.2 Terms defined in this Recommendation

This Recommendation defines the following terms:

3.2.1 access control: A security technique used to regulate who can do what to information

resources in a computing environment.

3.2.2 access service: A service provided by a service provider for the execution of a particular

transaction.

3.2.3 accessor: A privilege holder that accesses a particular access service using its privilege.

3.2.4 attribute: A piece of information of a particular type that is associated with an object.

Information associated with an object is composed of attributes.

3.2.5 data protection domain: A domain where the information to be protected is under a single

management component.

3.2.6 distinguished name: A name identifying an object that is unique within a specific context

and which is formed by one or more name components reflecting the object's position in a hierarchy

of objects.

3.2.7 object: A person, a department, a professional or some other type of object about which

there is information and which is identifiable by a distinguished name.

3.2.8 object class: An identified family of entities that share certain characteristics.

3.2.9 operation: An interaction comprised of a request and a reply between an accessor and a

service provider for a particular objective.

3.2.10 specification: An ITU-T Recommendation, an International Standard or any specification

developed by a recognized Standards Developing Organization (SDO).

4 Abbreviations and acronyms

This Recommendation uses the following abbreviations and acronyms:

AA Attribute Authority

ABAC Attribute-based Access Control

ACL Access Control List

ACT Access Control for Telebiometrics

AES Advanced Encryption Standard

ASN.1 Abstract Syntax Notation One

BER Basic Encoding Rules

CA Certification Authority

CEK Content Encryption Key

CMS Cryptographic Message Syntax

DER Distinguished Encoding Rules

DH Diffie-Hellman

ECC Elliptic Curve Cryptography

4 Rec. ITU-T X.1080.0 (03/2017)

ECDH Elliptic Curve Diffie-Hellman

GCM Galois/Counter Mode

KEK Key-Encryption Key

LDAP Lightweight Directory Access Protocol

MAC Message Authentication Code

PDU Protocol Data Unit

PKI Public-Key Infrastructure

PMI Privilege Management Infrastructure

SDO Standards Developing Organization

SOA Source of Authority

5 Conventions

This Recommendation presents Abstract Syntax Notation One (ASN.1) notation in the bold

courier new typeface. When ASN.1 types and values are referenced in normal text, they are

differentiated from normal text by presenting them in the bold Courier New typeface.

If the items in a list are numbered (as opposed to using "–" or letters), then the items shall be

considered steps in a procedure.

6 Basic concepts and models

6.1 Protection in a single data protection domain

Figure 1 – Single data protection domain model

 Rec. ITU-T X.1080.0 (03/2017) 5

Figure 1 illustrates the various partners and protocols in an access control environment within a

single data protection domain. A data protection domain comprises all entities involved in

protection that are under common management.

An entity, called an accessor, may have a job function that requires permission to perform

operations on information about objects held by an information provider. As an example, a doctor

who is responsible for a patient needs to access the patient's health record to provide optimal

treatment, while other doctors not involved with the patient have no need for such information.

Permission to perform a particular operation on information should only be given if the accessor has

the right and a genuine need to perform that operation, i.e., it has been assigned the necessary

privilege.

It outside the scope of this Recommendation to specify under what conditions privileges are

assigned to entities. It is only within the scope to provide the necessary tools for managing

privileges in a secure way.

A data protection domain needs to establish one or more authorities to assign privileges to entities.

The term source of authority (SOA) defined in [ITU-T X.509] is used here as the term for the

ultimate authority for assigning privileges for a specific area within a data protection domain.

This Recommendation uses certificates to assign privilege to accessors. Privilege may be carried in

in attribute certificates in the attributes component or in public-key certificates in the

subjectDirectoryAttributes extension. Privileges that are permanent may typically be provided in

public-key certificates, while temporary privileges may typically be provided in attribute

certificates.

Figure 1 illustrates the relationship among the various components within a single data protection

domain. It shows two SOAs each responsible for assigning privileges for different aspects to

privilege holders.

Some privileges may be needed for daily operations of the accessor and are therefore of a more

permanent nature, while other privileges are assigned for handling special situations and are

therefore temporary in nature.

When privileges are assigned to an accessor, the assessor becomes a privilege holder and may use

their privilege to access information through the privilege assertion protocol. The privilege verifier,

representing the information provider, checks the asserted privilege before allowing access to the

information.

An SOA may forward privileges either by local means or by embedding them in a signed attribute

certificate in the privilege assignment protocol as illustrated in Figure 1.

6 Rec. ITU-T X.1080.0 (03/2017)

6.2 Cross data protection domain

Figure 2 – Cross data protection domain model

Figure 2 illustrates the case where an accessor needs access to information within another data

protection domain, e.g., to treat a patient for which vital health information is located in another

data protection domain.

In this environment, the accessor either directly or through a local SOA requests access to specific

information about a particular object. How this request is forwarded is outside the scope of this

Recommendation, but it could be by e-mail or by telephone.

The remote SOA generates an attribute certificate with an attribute of type accessService holding

the necessary privilege. This attribute certificate is signed by the remote SOA. The holder of the

attribute certificate may be either the local SOA or it may be the entity that needs the privilege.

If it is the local SOA having the privilege assigned, this SOA:

a) decrypts the content if required;

b) verifies the signature on the content;

c) extracts the attribute certificate from the content;

d) validates extracted attribute certificate;

e) creates a new attribute certificate with the privilege information taken from the received

attribute certificate and with the entity needing the privilege as the holder;

f) this attribute certificate together with the one received from the remote SOA is then

forwarded to the entity needing the privilege (i.e., the privilege holder).

6.3 Service-oriented model

The access control for telebiometrics is service oriented in the sense that an accessor may invoke a

set of distinct functions, called access services. An access service is a function provided by a

service provider capable of performing the particular access service. An example of an access

service is the capability to manipulate patient information within a hospital. An object identifier is

used to identify a particular access service type. This Recommendation does not define specific

 Rec. ITU-T X.1080.0 (03/2017) 7

access services, but provides the tools for establishing access services. Referencing specifications

may define access services relevant for their scope.

Although an accessor has access to a particular service, they may not have the privilege that covers

all aspects of that service.

6.4 The object and attribute model

The information model defined in [ITU-T X.501] is designed to handle different data structures.

This Recommendation uses this information model for access control.

In the ITU-T X.501 model, objects to be protected are organized in object classes, where objects

within an object class have common characteristics relevant within a specific context. An object

class is identified by an object identifier. [ITU-T 1080.1] expands on this concept by assigning

object identifiers to a group of object classes for categories relevant to telebiometrics.

[ITU-T X.521] also defines a set of general usable object classes. In cases where an object class that

is not directly related to telebiometrics is required, an already defined object class should be used

whenever possible.

The individual objects are identified by distinguished names as defined in [ITU-T X.501]. A

distinguished name consists of one or more name components that reflect its position within an

object hierarchy.

The information associated with an object is modelled as a set of attributes. Attributes with common

characteristics constitute an attribute type. An attribute type is identified by an object identifier. An

attribute is a sequence of an object identifier identifying the attribute type and one or more values of

that type. An object may only have one attribute of a particular type. [ITU-T X.520] defines a set of

general useable attribute types. Already defined attribute types should be used whenever possible.

Additional attribute types may be defined as required by individual specifications.

Individual usages of this Recommendation will have to provide a mapping between this information

model and the actual data base structure. This mapping becomes easy if the information is

maintained in a lightweight directory access protocol (LDAP) directory or in a secure directory

based on the specifications in the [ITU-T X.500-series].

6.5 Basic access control principles

The purpose of this clause is to provide an overview of the general principles for establishing access

control for telebiometrics. Traditional access control is mostly concerned with the right or refusal of

access to data, based on some permanent parameters. This Recommendation takes an extended

approach by also considering the need-to-know aspects. This is done by taking the service approach

as discussed in clause 6.3. To perform a particular operation, an accessor needs to have privilege

permitting access to the relevant access service and privilege permitting access to the necessary

information.

This privilege includes access to objects of one or more object classes, possibly limited to some

named objects. The type of operation that may be performed, may be different for different object

classes and named objects.

The operations on objects may include operation on individual attributes and attribute values. The

permitted operations may be different for different types of attributes.

6.6 Relationship to other access control schemes

There are various types of access controls to cover different access control requirements. It is the

intension here to briefly describe various access control schemes and to relate them to ACT.

8 Rec. ITU-T X.1080.0 (03/2017)

6.6.1 Basic access control as defined by ITU-T X.501

The basic access control as defined by [ITU-T X.501] is used for protecting information in a

directory as defined by [ITU-T X.500-series]. It provides for elaborate access control lists that

specifies, in detail, how and what different users are allowed to access. It differs from this

Recommendation by providing only for the right-to-know, but not for the need-to-know.

6.6.2 Rule-based access control

Both [ITU-T X.501] and [b-ITU-T X.841] define a type of rule-based access control. In this type of

access control, the data to be protected are tagged with information about what protection is

required, while the accessing users have certified information associated in an access request that

specifies the level of clearance they have with respect to accessing certain information. This

concept differs from this Recommendation by requiring tagging of stored data items, and by only

providing for right-to-know, but not for need-to-know.

6.6.3 Role-based access control as defined for smart grid

Role-based access control as specified in [b-IEC 62351-8] focuses on users and the jobs users

perform. A role is a collection of rights to objects (actions that can be performed at certain targets).

A user may have one or several roles. For access control, a role is a kind of intermediary that

reduces the amount of information needed in the access control list (ACL) by decreasing the

granularity of access control information. Permissions to objects of the system are not listed for

each user separately, but users are given roles, and rights of each role are only described once.

6.6.4 Attribute-based access control

Attribute-based access control (ABAC) is a logical access control model that is distinguishable

because it controls access to objects by evaluating rules against the attributes of entities (subject and

object), operations, and the environment relevant to a request. ABAC systems are capable of

enforcing both discretionary access control and mandatory access control concepts. ABAC enables

precise access control, which allows for a higher number of discrete inputs into an access control

decision, providing a greater set of possible combinations of those variables to reflect a larger and

more definitive set of possible rules to express policies.

For a good introduction to ABAC, see [b-NIST 800-162].

6.7 Protocols overview

6.7.1 Privilege assessment protocol

The privilege assessment protocol comprises a set of cryptographic message syntax (CMS) content

types. Each type of access requires a request content type and a result content type.

An instance of a content type is transmitted using CMS as profiled in Annex B. A formal ASN.1

module is provided in Annex C.

6.7.2 Privilege assignment protocol

The privilege assignment protocol is used for transmitting attribute certificates either between SOAs

or from an SOA to the privilege holder.

A single pair of content types is defined for this protocol: one content type for forwarding privilege

in the form of attribute certificates, and one content type for reporting the outcome.

An instance of a content type is transmitted using CMS as profiled in Annex B. A formal ASN.1

module is provided in in Annex C.

6.8 Use of CMS

A profile for telebiometrics use of CMS is provided in Annex B.

 Rec. ITU-T X.1080.0 (03/2017) 9

To ensure that the source of information is properly authenticated, contents of types defined by this

Recommendation shall be encapsulated in an instance of the signedData content type. As sensitive

information may be transmitted, it is recommended also to encapsulate it in an instance of the

envelopedData content type. The ct-autEnvelopedData content type is not used by this

Recommendation.

6.9 Public-key certificate considerations

An attribute certificate shall be signed by the issuer using its private key and it is to be verified by

the use of the corresponding public-key certificate issued to the attribute certificate issuer.

In principle, the same private key could be used for signing the CMS message using the signedData

content type, which would ease the verification process. However, there are security concerns using

the same private key for different purposes. The use of different private keys for the two purposes

should be considered, but is not mandated by this Recommendation.

7 Provision of privilege information

7.1 Use of attribute certificates

[ITU-T X.509] allows both public-key certificates and attribute certificates to carry privilege

information. In both cases, the privilege specifications are carried in attributes as defined by

[ITU-T X.501]. Attribute types for this purpose are distinct from attribute types used for modelling

information about objects. While attribute types defined for carrying information about objects

should be kept as simple as possible, attribute types for carrying privilege information will, by their

nature, be rather complex.

When using an attribute certificate to carry privilege information:

a) the holder component identifies the entity to which privileges are to be assigned. When a

privilege holder presents this attribute, certificate holding privileges to a privilege verifier,

the privilege verifier shall authenticate the accessor to verify that the accessor is actually

the privilege holder of the attribute certificate;

b) the issuer component shall hold the name of the SOA or the name of an attribute authority

(AA) that has been delegated to assign privileges. The privilege verifier shall also obtain

and validate the public-key certificate of the issuer to validate the signature on the attribute

certificate;

c) the attributes component shall hold an attribute of the type accessService, as defined in

clause 7.3.

The attribute certificate shall be signed by the SOA that approved the privilege or the AA to which

issuing has been delegated.

Validation will be simplified if the holder and the issuer have public-key certificates issued by the

same certification authority (CA).

7.2 Use of public-key certificates

When using a public-key certificate to carry privilege information:

a) the subject component identifies the accessor to which privileges have been assigned.

When an accessor presents this public-key certificate holding privileges to a privilege

verifier, the privilege verifier shall authenticate the accessor;

b) the issuer component shall hold the distinguished name of the CA that is responsible for

issuing the public-key certificate;

c) the subjectDirectoryAttributes extension shall hold an instance of the accessService

attribute type (see clause 7.3).

10 Rec. ITU-T X.1080.0 (03/2017)

7.3 The access service attribute type

7.3.1 Access service attribute syntax

An attribute of type accessService is intended to be included in the attributes component of an

attribute certificate or in the subjectDirectoryAttributes extension of a public-key certificate. It

has the following syntax:

AccessService ATTRIBUTE ::= {

 WITH SYNTAX AccessService

 ID id-at-accessService }

An attribute of type AccessService provides privilege information to allow a privilege verifier to

validate whether an access request should be honoured or not. It is a multi-valued attribute type

allowing multiple access service types and associate permissions to be included in the same

attribute.

An entity cannot use a service that is not included in this attribute.

The accessService attribute type has the following syntax:

AccessService ::= SEQUENCE {

 serviceId OBJECT IDENTIFIER,

 objectDef SEQUENCE SIZE (1..MAX) OF ObjectSel,

 ... }

The components of a value of the AccessService data type are:

a) the serviceId component shall identify the type of access service for which the accessor

has privilege;

b) the objectDef component shall specify the object classes for which privilege is assigned to

the holder of the attribute certificate for the particular service type. It shall have one

element for each object class for which privilege has been assigned. For this access service,

the privilege holder has no access to object classes not listed by the objectDef component.

7.3.2 Selection of objects

The selection of objects for which the accessor has privileges are specified by an instance of the

ObjectSel data type.

ObjectSel ::= SEQUENCE {

 objecClass OBJECT-CLASS.&id,

 objSelect CHOICE {

 allObj [0] TargetSelect,

 objectNames [1] SEQUENCE SIZE (1..MAX) OF SEQUENCE {

 object CHOICE {

 names [1] SEQUENCE SIZE (1..MAX) OF DistinguishedName,

 subtree [2] DistinguishedName,

 ... },

 select TargetSelect,

 ... },

 ... },

 ... }

A value of the ObjectSel data type shall specify the privilege for each object class for which

privilege has been assigned for the accessed service type. It has the following components:

– the objectClass component shall specify the object class for which privileges are assigned;

– the objSelect component shall specify what objects of the object class for which privilege

has been assigned. It has two alternatives:

a) the allObj alternative shall be taken if the assigned privileges apply equally to all

objects of the class. It shall hold an instance of the TargetSelect data type;

 Rec. ITU-T X.1080.0 (03/2017) 11

b) the objectNames alternative shall be taken if privilege only applies to selected objects of

the identified object class. It may consist of multiple elements, where each element has

the following components:

i) the object component shall specify one or more objects for which privileges have

been assigned. It has the following alternatives:

 • the names alternative shall specify the name of one or more objects for which

the privileges apply;

 • the subtree alternative shall be taken for a group of objects where each object

has a distinguished name equal to the distinguished name held by this

alternative or has initial name components equal to that distinguished name;

ii) the select component shall hold an instance of the TargetSelect data type.

The TargetSelect data type has the following syntax:

TargetSelect ::= SEQUENCE {

 objOper ObjectOperations OPTIONAL,

 attrSel AttributeSel OPTIONAL,

 ... }

 (WITH COMPONENTS {..., objOper PRESENT } |

 WITH COMPONENTS {..., attrSel PRESENT })

The TargetSelect data type has the following two optional components, where at least one of them

shall be present:

a) the objOper component, when present, shall specify the allowed operations on the objects of

the object class or selected objects. If it is not present, no operations are allowed on the

objects as a whole;

b) the attrSel component, when present, shall hold a value of the AttributeSel data type (see

clause 7.3.3). If this component is not present, no operations on the attributes of the objects

are allowed.

7.3.3 Selection of attribute types

AttributeSel ::= SEQUENCE {

 attSelect CHOICE {

 allAttr [0] SEQUENCE {

 attrOper1 [0] AttributeOperations OPTIONAL,

 ... },

 attributes [1] SEQUENCE SIZE (1..MAX) OF SEQUENCE {

 select SEQUENCE SIZE (1..MAX) OF ATTRIBUTE.&id,

 attrOper2 [0] AttributeOperations OPTIONAL,

 ... },

 ... },

 ... }

The AttributeSel data type specify attribute types for which the privilege applies. It has the

following component:

– the attSelect component has two alternatives:

a) the allAttr alternative shall be selected if the privilege applies for all attributes of the

object(s). It has the following component:

i) the attrOper1 component shall specify the operations that may performed on

attributes;

b) the attributes alternative shall be taken, if the privilege applies only to some attributes

of the object(s). The accessor has no privilege for the attribute types not listed and it

shall not be made aware of such unlisted attribute types. This alternative has the

following components:

12 Rec. ITU-T X.1080.0 (03/2017)

i) the select component shall specify one or more attribute types for which the

privileges apply;

ii) the attrOper2 component shall specify the operations that may performed on

attributes.

7.4 Operations on objects as a whole

The following data type is used for specifying permitted operations against an object:

ObjectOperations ::= BIT STRING {

 read (0),

 add (1),

 modify (2),

 delete (3),

 rename (4),

 discloseOnError (5) }

The read permission shall be set for the accessor allowed to read information from an object.

The add permission shall be set for the accessor allowed to add new objects of the specific object

class. It requires add permission for all objects of a specific class. For each attribute to be added to

the object, the add permission shall be granted for the attribute type (see clause 7.5).

The modify permission shall be set for the accessor allowed to modify an existing object. The

accessor shall have modify permission for the object class as a whole or for the named object(s) to

be modified. If the accessor adds attributes, it shall have add permissions for the attribute types in

question. If the accessor deletes attributes, it shall have the delete permission for the attribute types

in question. If the accessor modifies attributes, it shall have the modify permission for the attribute

types in question. If the accessor deletes attributes, it shall have the deleteValue permission for the

attribute types in question. If the accessor replaces attributes, it shall have the replaceAttribute

permission for the attribute types in question.

The delete permission shall be set for the accessor allowed to delete an existing object. The

accessor shall have delete permission to the object class as a whole or to the named object(s) to be

deleted.

The rename permission shall be set for the accessor allowed to rename existing object(s). The

accessor shall have rename permission to the object class as a whole or to the named object(s) to be

renamed.

The discloseOnError shall be set for the accessor permitted to know the existence of the object

when an operation fails.

7.5 Operations on attributes

AttributeOperations ::= BIT STRING {

 read (0),

 compare (1),

 add (2),

 modify (3),

 delete (4),

 deleteValue (5),

 replaceAttribute (6),

 discloseOnError (7) }

The read permission shall be set for each of the wanted attribute types for the accessor allowed to

read such attributes. The accessor shall have read permission to the relevant object class as a whole

or to the relevant named objects. In addition, it shall have read permission to the all attributes of

these object classes or it shall have access to the relevant attribute type(s).

 Rec. ITU-T X.1080.0 (03/2017) 13

The compare permission shall be set for the accessor allowed to compare one or more attributes. The

privilege shall read permission to the object class as a whole or to the named object(s). In addition,

it shall have compare permission access to the all attributes of the allowed object classes or it shall

compare permission to the relevant attribute type(s).

The add permission shall be set for the accessor allowed to add one or more attributes. The accessor

shall have modify permission for the object class as a whole or for the named object(s). In addition,

it shall have add permission to relevant attributes types.

The modify permission shall be set for the accessor allowed to modify an attribute of a specific type.

In addition, the accessor shall have modify permission for the object class as a whole or to the

named object(s).

The delete permission shall be set for the accessor allowed to delete one or more attributes. In

addition, the accessor shall have modify permission for the object class as a whole or to the named

object(s).

The deleteValue permission shall be set for the accessor allowed to delete one or more attribute

values from an attribute of the attribute type(s). In addition, the accessor shall have modify

permission for the object class as a whole or to the named object(s).

The replaceAttribute permission shall be set for the accessor allowed to replace an attribute of a

given type with an attribute of the same type. In addition, the accessor shall have modify permission

for the object class as a whole or to the named object(s).

The discloseOnError shall be set for the accessor permitted to know the existence of an attribute

when an operation fails. In addition, it shall discloseOnError permission for the object as a whole.

7.6 Error handling

Errors may be generated as a result of the use of CMS as discussed in Annex A.5. When an error is

detected, no further checking is necessary. A CMS error is returned in the result of the access

requested.

Errors may also be generated as the result of the actual access request.

The error is reported by an instance of the AccessdErr data type defined in clause 8.10.

8 Privilege assertion protocol

8.1 Overview

The following information object set includes all the defined content types represented by

information objects defined by this Recommendation.

ActContentTypes CONTENT-TYPE ::= {

 privAssignRequest |

 privAssignResult |

 readRequest |

 readResult |

 compareRequest |

 compareResult |

 addRequest |

 addResult |

 deleteRequest |

 deleteResult |

 modifyRequest |

 modifyResult |

 renameRequest |

 renameResult,

 ... }

14 Rec. ITU-T X.1080.0 (03/2017)

The content types specified by the ActContentTypes set, constitute the privilege assertion protocol,

which includes a number of different access operations as specified in clauses 8.4 to 8.9.

8.2 Common request components

The following components are included in all requests:

CommonReqComp ::= SEQUENCE {

 attrCerts [31] AttributeCertificates OPTIONAL,

 serviceId [30] OBJECT IDENTIFIER,

 invokId [29] INTEGER,

 ... }

AtributeCertificates ::= SEQUENCE SIZE (1..MAX) OF AttributeCertificate

The common request parameters are:

a) the attrCert component, when present, shall specify the attribute certificate or the attribute

certification path that holds the privilege for the accessor. If this component is absent, the

privilege shall be supplied in the end-entity public-key certificate for the accessor;

b) the serviceId component shall specify the type of service to be invoked;

c) the invokId component shall take the value zero for the first operation invoked and then be

incremented by one for each subsequent invoked operation. It should have a range that

ensures that the same value is not reused, for a substantial period of time, for the

communication between two entities. It shall be provided to detect missing requests and to

detect reply attacks. The recipient of a request shall use the same value in the reply to allow

the accessor to pair a result with the corresponding request.

8.3 Accessing a service

All the operation types as specified in clauses 8.4 to 8.9 require access to a particular service. The

privilege verifier (recipient) shall check that the privilege assigned to the accessor within the

associated attribute certificate or public-key certificate permits access to the requested service.

If the accessor does not have the permission to invoke the requested service type or the service

provider does not support the requested service type, a noSuchService error code shall be returned.

If the accessor has the permission to invoke the service, it shall be checked whether the requested

operation is consistent with the type of service and if not, an invalidOperationForService error

code shall be returned.

8.4 Read operation

A read operation comprises a read request and a corresponding read result.

A read request is carried as an instance of the readRequest content type and the read result is carried

as an instance of the readResult content type.

readRequest CONTENT-TYPE ::= {

 ReadRequest

IDENTIFIED BY id-readRequest

The accessor uses the readRequest content type to read information about a particular object.

ReadRequest ::= SEQUENCE {

 COMPONENTS OF CommonReqComp,

 object [1] DistinguishedName,

 selection [2] InformationSelection,

 ... }

 Rec. ITU-T X.1080.0 (03/2017) 15

The ReadRequest data type specifies the syntax of the actual content and has the following

components:

a) the object component shall hold the distinguished name of the object about which

information is requested;

b) the selection component shall specify the type of information the accessor requests (see

clause 8.11).

The read request shall fail if the request specified an unknown object and a noSuchObject error code

shall be returned

The read request shall fail if the accessor does not have read permission for the object according to

the privilege assigned to the accessor. If the read permission is not granted, an

insufficientAccessRight error code shall be returned if the accessor has the discloseOnError

permission for the object, otherwise a noSuchObject error code shall be returned.

The read permission for the attribute type is required for each attribute to be returned. If the

accessor has no read permission to a particular attribute type, an attribute of that type is not returned

in the result. If the result is that no attributes are returned, the request fails. If the accessor has

discloseOnError permission for all of the attribute requests, an insufficientAccessRight error code

shall then be returned, otherwise a noInformation error code shall be returned.

readResult CONTENT-TYPE ::= {

 ReadResult

IDENTIFIED BY id-readResult }

The privilege verifier shall use an instance of the readResult content type to return either the

requested information or to report an error situation.

ReadResult ::= SEQUENCE {

 object DistinguishedName,

 result CHOICE {

 success [0] ObjectInformation,

 failure [1] AccessdErr,

 ... },

 ... }

The ReadResult data type specifies the syntax of the actual content and has the following

components:

a) the object component shall hold the name of the object about which information was

requested;

b) the result component shall hold the result of the read request. It has two alternatives:

– the success alternative shall be selected if information is to be returned and shall hold

an instance of the ObjectInformation data type (see clause 8.12). The returned

information is the intersection between what the accessor requested and what

information it is allowed to retrieve;

– the failure alternative shall be selected if an error is to be reported.

8.5 Compare operation

A compare operation comprises a compare request and a corresponding compare result.

A compare request is carried as an instance of the compareRequest content type and the compare

result is carried as an instance of the compareResult content type.

compareRequest CONTENT-TYPE ::= {

 CompareRequest

IDENTIFIED BY id-compareRequest }

16 Rec. ITU-T X.1080.0 (03/2017)

An instance of a compareRequest content type is used to compare a presented purported value of a

particular attribute type against an attribute value of the same type belonging to a particular object.

CompareRequest ::= SEQUENCE {

 COMPONENTS OF CommonReqComp,

 object [1] DistinguishedName,

 purported [2] AttributeValueAssertion,

 ... }

The CompareRequest data type specifies the actual content and has the following components

beyond those defined in clause 8.2:

a) the object component shall hold the distinguished name of the object for which an attribute

value is to be compared;

b) the purported component shall hold an attribute type and attribute value combination to be

compared with an attribute of the same type held by the object in question.

The compare request shall fail if the request specifies an unknown object and a noSuchObject error

code shall be returned.

The compare request shall fail if the accessor does not have read permission for the object

according to the privilege assigned to the accessor. If the read permission is not granted to the

object, an insufficientAccessRight error code shall be returned if the accessor has the

discloseOnError permission for the object, otherwise a noSuchObject error code shall be returned.

The compare request shall fail if the accessor does not have compare permission to the attribute type

in question. If the accessor has discloseOnError permission for the attribute type, an

insufficientAccessRight error code shall then be returned, otherwise a noInformation error code

shall be returned.

compareResult CONTENT-TYPE ::= {

 CompareResult

IDENTIFIED BY id-compareResult

The privilege verifier shall use an instance of the compareResult content type to return either the

requested information or to report an error situation.

CompareResult ::= SEQUENCE {

 object DistinguishedName,

 result CHOICE {

 success [0] CompareOK,

 failure [1] AccessdErr,

 ... },

 ... }

CompareOK ::= SEQUENCE {

 matched [0] BOOLEAN,

 matchedSubtype [1] BOOLEAN OPTIONAL,

 ... }

The CompareResult data type specifies the syntax of the actual content and has the following

components:

a) the object component shall hold the distinguished name of the object on which a compare

request was to be done;

b) the result component shall hold the result of the access request. It has two alternatives:

– if the success alternative is selected an instance of the CompareOK data type shall be

returned with the following components:

i) the matched component shall have the value TRUE if an attribute of the attribute type

or one of its subtypes had a value equal to the one in the request. In addition, the

 Rec. ITU-T X.1080.0 (03/2017) 17

matchedSubtype component shall be present and have the value TRUE for a subtype

match. The matched component shall have the value FALSE if there was no match for

either the attribute type or one of its subtypes;

– the failure alternative shall be selected if an error is to be returned.

8.6 Add operation

An add operation comprises an add request and a corresponding add result.

An add request is carried as an instance of the addRequest content type and the add result is carried

as an instance of the addResult content type.

addRequest CONTENT-TYPE ::= {

 AddRequest

IDENTIFIED BY id-addRequest }

An instance of an addRequest content type is used to add a new object to the information system.

AddRequest ::= SEQUENCE {

 COMPONENTS OF CommonReqComp,

 object [1] DistinguishedName,

 attr [2] SEQUENCE SIZE (1..MAX) OF Attribute {{SupportedAttributes}}

 OPTIONAL,

 ... }

The AddRequest data type specifies the syntax of the actual content and has the following

components:

a) the object component shall hold the distinguished name of the new object to be added;

b) the attr component, when present, shall hold one or more attributes to be associated with

the new object.

If the accessor does not have the add permission for the object class, an insufficientAccessRight

error code shall be returned.

If an object already exists with the supplied distinguished name and the accessor has the

discloseOnError permission, an objectAlreadyExists error code shall be returned, otherwise an

insufficientAccessRight error code shall be returned.

If the accessor does not have the add permission for all of the attributes to be included with the

object, the request fails. If the accessor has the discloseOnError permission for all the attribute

types listed, an insufficientAccessRight error code shall be returned, otherwise a noInformation

error code shall be returned.

addResult CONTENT-TYPE ::= {

 AddResult

IDENTIFIED BY id-addResult }

The privilege verifier shall use an instance of the addResult content type to return either the

requested information or to report an error situation.

AddResult ::= CHOICE {

 success [0] NULL,

 failure [1] AccessdErr,

 ... }

The AddResult data type specifies the syntax of the actual content and has the following

components:

a) the success alternative shall be taken, if the object was added;

b) the failure alternative shall be taken, if an error is to be returned.

18 Rec. ITU-T X.1080.0 (03/2017)

8.7 Delete operation

A delete operation comprises a delete request and a corresponding delete result.

A delete request is carried as an instance of the deleteRequest content type and the delete result is

carried as an instance of the deleteResult content type.

deleteRequest CONTENT-TYPE ::= {

 DeleteRequest

IDENTIFIED BY id-deleteRequest }

An instance of a deleteRequest content type is used to delete an existing object from the

information system.

DeleteRequest ::= SEQUENCE {

 COMPONENTS OF CommonReqComp,

 object DistinguishedName,

 ... }

The DeleteRequest data type specifies the syntax of the actual content and has the following

component:

a) the object component shall hold the distinguished name of the entry to be deleted.

If the object to be deleted does not exists, then a noSuchObject error code shall be returned.

If the accessor does not have the delete permission for the object class, an

insufficientAccessRight error code shall be returned if the accessor has the discloseOnError

permission for the object, otherwise a noSuchObject error code shall be returned.

deleteResult CONTENT-TYPE ::= {

 DeleteResult

IDENTIFIED BY id-deleteResult }

The privilege verifier shall use an instance of the deleteResult content type either to return the

requested information or to report an error situation.

DeleteResult ::= CHOICE {

 success [0] NULL,

 failure [1] AccessdErr,

 ... }

An instance of the DeleteResult data type has two alternatives:

a) the success alternative shall be taken if the object deletion was done;

b) the failure alternative shall be taken if an error is to be reported.

8.8 Modify operation

A modify operation comprises a modify request and a corresponding modify result.

A modify request is carried as an instance of the modifyRequest content type and the modify result

is carried as an instance of the modifyResult content type.

modifyRequest CONTENT-TYPE ::= {

 ModifyRequest

IDENTIFIED BY id-modifyRequest }

An instance of a modifyRequest content type is used to modify an existing object.

ModifyRequest ::= SEQUENCE {

 COMPONENTS OF CommonReqComp,

 object DistinguishedName,

 changes SEQUENCE SIZE (1..MAX) OF ObjectModification,

 select InformationSelection,

 Rec. ITU-T X.1080.0 (03/2017) 19

 ... }

ObjectModification ::= CHOICE {

 addAttribute [0] Attribute{{SupportedAttributes}},

 deleteAttribute [1] AttributeType,

 addValues [2] Attribute{{SupportedAttributes}},

 deleteValues [3] Attribute{{SupportedAttributes}},

 replaceAttribute [4] Attribute{{SupportedAttributes}},

 ... }

The ModifyRequest data type specifies the syntax of the actual content and has the following

components:

a) the object component shall hold the distinguished name of the object to be modified:

– if the object does not exists, a noSuchObject error code shall be returned;

– if the accessor does not have modify permission to the object, an

insufficientAccessRight error code shall be returned if the accessor have the

discloseOnError permission for the object, otherwise a noSuchObject error code shall

be returned.

b) the changes component shall hold information for modifying one or more attributes:

– the addAttribute alternative shall hold a new attribute to be added:

i) if the accessor does not have the add permission for the attribute type, an

insufficientAccessRight error code shall be returned;

ii) if an attribute of the type already exists, an attributeAlreadyExists error code

shall be returned if the accessor has discloseOnError permission for the attribute

type, otherwise an insufficientAccessRight error code shall be returned;

– the deleteAttribute alternative shall identify the attribute to be deleted:

i) if the accessor does not have the delete permission for the attribute type, an

insufficientAccessRight error code shall be returned;

ii) if an attribute of the type does not exist, a noSuchAttribute error code shall be

returned;

– the addValues alternative shall identify an existing attribute by the attribute type. The

values to be added to the attribute are the values included in this alternative.

i) if no attribute of the given type is held by the object, a noSuchAttribute error code

shall be returned if the accessor has the discloseOnError permission, otherwise an

insufficientAccessRight error code shall be returned;

ii) if the accessor does not have the addValue permission, an insufficientAccessRight

error code shall be returned;

iii) if an attempt is made to add an already existing value, an

attributeValueAlreadyExists error code shall be returned if the accessor has the

discloseOnError permission, otherwise an insufficientAccessRight error code

shall be returned;

– this deleteValues alternative shall identify an attribute by the attribute type. The values

to be deleted from the attribute are the values included in this alternative.

i) if no attribute of the given type is held by the object, a noSuchAttribute error code

shall be returned if the accessor has the discloseOnError permission, otherwise an

insufficientAccessRight error code shall be returned;

ii) if the accessor does not have the deleteValue permission, an

insufficientAccessRight error code shall be returned if the accessor has the

20 Rec. ITU-T X.1080.0 (03/2017)

discloseOnError permission, otherwise a noSuchAttributeValue error code shall be

returned;

iii) if the accessor tries to delete an attribute value that does not exist, a

noSuchAttributeValue error code shall be returned;

– the replaceAttribute alternative shall replace an existing attribute with a new attribute

of the same type.

i) if no attribute of the given type is held by the object, a noSuchAttribute error code

shall be returned if the accessor has the discloseOnError permission, otherwise an

insufficientAccessRight error code shall be returned;

ii) if the accessor does not have the replaceAttribute permission, an

insufficientAccessRight error code shall be returned if the accessor has the

discloseOnError permission, otherwise a noSuchAttribute error code shall be

returned.

modifyResult CONTENT-TYPE ::= {

 ModifyResult

IDENTIFIED BY id-modifyResult }

The privilege verifier shall use an instance of the modifyResult content type either to return the

requested information or to report an error situation.

ModifyResult ::= SEQUENCE {

 result CHOICE {

 success [0] ObjectInformation,

 failure [1] AccessdErr,

 ... },

 ... }

An instance of the ModifyResult data type has two alternatives:

a) the success alternative shall be taken if the object modification was done;

b) the failure alternative shall be taken if an error is to be returned.

8.9 Rename object operation

A rename object operation comprises a rename request and a corresponding rename result.

A rename request is carried as an instance of the renameRequest content type and the rename result

is carried as an instance of the renameResult content type.

renameRequest CONTENT-TYPE ::= {

 RenameRequest

IDENTIFIED BY id-renameRequest }

An instance of a renameRequest content type is used to change the name of an existing object.

RenameRequest ::= SEQUENCE {

 COMPONENTS OF CommonReqComp,

 object DistinguishedName,

 new DistinguishedName,

 ... }

The RenameRequest data type specifies the syntax of the actual content and has the following

components:

a) the object component shall specify the current distinguished name of the object to be

renamed;

b) the new component shall provide the new distinguished name for the object.

 Rec. ITU-T X.1080.0 (03/2017) 21

If the object to be renamed does not exists, then a noSuchObject error code shall be returned.

If the accessor does not have the rename permission for the named object, an

insufficientAccessRight error code shall be returned if the accessor has the discloseOnError

permission for the named object, otherwise a noSuchObject error code shall be returned.

renameResult CONTENT-TYPE ::= {

 RenameResult

IDENTIFIED BY id-renameResult }

RenameResult ::= SEQUENCE {

 result CHOICE {

 success [0] NULL,

 failure [1] AccessdErr,

 ... },

 ... }

An instance of the RenameResult data type has two alternatives:

a) the success alternative shall be taken if the object modification was done;

b) the failure alternative shall be taken if an error is to be returned.

8.10 Error handling

When an exception condition occurs during handling of a request, an error code has to be returned

by the recipient by including an instance of the AccessErr data type in the result.

AccessdErr ::= CHOICE {

 cmsErr [0] CmsErr,

 ActErr [1] PbactErr,

 ... }

The cmsErr alternative shall be taken if an exception condition occurred while evaluating the CMS

defined content types (see clause A.5).

The pbactErr alternative shall be taken if there was no error in detected when evaluating instances

of the CMS content types, but an error was detected in an encapsulated instance of a PBACT

specific content type.

8.11 Information selection

The InformationSelection data type is used for specifying what information is requested by a read

or modify request.

InformationSelection ::= SEQUENCE {

 attributes CHOICE {

 allAttributes [0] NULL,

 select [1] SEQUENCE SIZE (1..MAX) OF ATTRIBUTE.&id,

 ... },

 infoTypes ENUMERATED {

 attributeTypesOnly (0),

 attributeTypeAndValues (1),

 ... },

 ...}

The InformationSelection data type has the following components:

a) the attributes component shall specify what attributes should be returned. It has two

alternatives:

– the allAttributes alternative shall be taken if the accessor wants all information about

the object; or

22 Rec. ITU-T X.1080.0 (03/2017)

– the select alternative shall be taken when only a selected set of attributes are

requested;

b) the infoTypes component has the following enumeration items:

– the attributeTypesOnly enumeration item shall be taken if only attribute types are to be

returned. In this case, the accessor shall have read permission for the attribute type

according to the current privilege. If that is not the case, the attribute type is removed

from the result. If that results in no information being returned, the request fails;

– the attributeTypesAndValues enumeration item shall be taken if both type and values

shall be returned for the privilege inforce. In this case, the accessor shall have read

permission for the attribute type according to the current privilege. If that is not the

case, the attribute type and value are removed from the result. If that results in no

information being returned, the request fails.

8.12 Object information

When information about an object is to be returned, it shall be returned as an instance of the

following data type:

ObjectInformation ::= SEQUENCE {

 object DistinguishedName,

 info CHOICE {

 attr SET SIZE (1..MAX) OF Attribute {{SupportedAttributes}},

 type SET SIZE (1..MAX) OF AttributeType },

 ... }

The object component shall hold the distinguished name of the object for which information is

returned.

The info component shall hold a set of attributes holding the requested information or set of

attribute types.

If there is no information to returned, the request shall fail.

8.13 Defined error codes

The error codes for the specific PBACT content types are defined here.

PbactErr ::= ENUMERATED {

 noSuchService,

 invalidOperationForService,

 insufficientAccessRight,

 noSuchObject,

 noSuchAttribute,

 noSuchAttributeValue,

 objectAlreadyExists,

 attributeAlreadyExists,

 attributeValueAlreadyExists,

 noInformation,

 ... }

a) the noSuchService error code shall be returned if the accessor specifies a service for which

it has no permission and is not allowed to know about or which is not supported;

b) the invalidOperationForService error code shall be returned if a requested operation is not

relevant for the service requested;

c) the insufficientAccessRight error code shall be returned when the accessor requests

service to which it has no permission or when it wants to perform an operation for which it

has no permission according the service to be accessed;

 Rec. ITU-T X.1080.0 (03/2017) 23

d) the noSuchObject error code shall be returned if an accessor tries to access a non-existing

object or an object it is not allowed to know the existence of;

e) the noSuchAttribute error code shall be returned if an accessor tries to access a non-

existing attribute or an attribute it is not allowed to know the existence of;

f) the noSuchAttributeValue error code shall be returned if an accessor tries to access a non-

existing attribute value or an attribute value it is not allowed to know the existence of;

g) the objectAlreadyExists error code shall be returned if an attempt is made to add an object

with a distinguished name equal to a distinguished name of an already existing object

providing that the accessor has permission to know the existence of that object;

h) the attributeAlreadyExists error code shall be returned if an attempt is made to add an

attribute of a type that already exists within the object in question providing that the

accessor has permission to know the existence of that attribute type within the object.

i) the attributeValueAlreadyExists error code shall be returned if an attempt is made to add

an attribute to an object that already holds an attribute of the same type providing the

accessor has permission to know the existence of that attribute;

j) the noInformation error code shall be returned if information is requested but either not

available or the accessor has no permission to know the existence of that data.

9 Privilege assignment protocol

9.1 Scope of protocol

The privilege assignment protocol is used for assigning privileges:

a) from an SOA to an intermediate AA for further delegation;

b) from an SOA directly to an entity using the assigned privileges to assert those privileges;

c) from an AA directly to an entity using the assigned privileges to assert those privileges; and

d) when multiple AAs are in the path between SOA and the privilege holder, from one AA to

another AA.

NOTE – It is recommended to make the delegation path as short as possible.

9.2 Content types

The privilege assignment protocol makes use of two content type: one content type for assigning

privileges and one content type for confirming the assignment.

9.2.1 The privilege assignment request content type

A privilege assignment request is carried in an instance of the privAssignRequest content type.

privAssignRequest CONTENT-TYPE ::= {

 PrivAssignRequest

IDENTIFIED BY id-privAssignRequest }

The syntax of the actual content is specified by the following data type:

PrivAssignRequest ::= SEQUENCE {

 attrCerts AttributeCertificates OPTIONAL,

 ... }

This data type only has one component holding a sequence of attribute certificates. If the privilege

assignment request is sent from an SOA, the sequence consists of only one attribute certificate. If

there is a single AA in between the SOA and the privilege holder, the request from the AA to the

privilege holder shall include both the attribute certificate issued by the SOA and the attribute

24 Rec. ITU-T X.1080.0 (03/2017)

certificate issued by the AA. One more attribute certificate is required for each additional AA

between the SOA and the privilege holder.

9.2.2 The privilege assignment result content type

A privilege assignment result is carried in an instance of the privAssignResult content type.

privAssignResult CONTENT-TYPE ::= {

 PrivAssignResult

IDENTIFIED BY id-privAssignResult }

The syntax of the actual content is specified by the following data type:

PrivAssignResult ::= SEQUENCE {

 result CHOICE {

 success NULL,

 failure PrivAssignErr },

 ... }

PrivAssignErr ::= CHOICE {

--cmsErr [0] CmsErr,

 assignErr [1] AssignErr,

 ... }

9.2.3 Defined error codes

AssignErr ::= ENUMERATED {

 invalidAttributeCertificate (0),

 invalidDelegationPath

 invalidPublicKeyCertificate

 ... }

 Rec. ITU-T X.1080.0 (03/2017) 25

Annex A

Object identifier allocation for the ITU-T 1080-series

(This annex forms an integral part of this Recommendation.)

A.1 Top level of object identifier tree

Annex A of [ITU-T X.1081] allocates arcs below the arch allocated for telebiometrics, which is:

id-telebio OBJECT IDENFIER ::= { joint-iso-itu-t(2) telebiometrics(42) }

Below this arc, [ITU-T 1081] allocates the following arc for telehealth:

id-th OBJECT IDENTIFIER ::= { id-telebio th(3) }

[ITU-T X.1080.1] has allocated several arcs below the id-th arc. Arc '0' is allocated for ASN.1

modules defined within [ITU-T 1080.1]. Other arcs are allocated for entity categories This

Recommendation specifies that arc '0' shall also be used for allocation of object identifiers for the

ITU-T X.1080-series in general. To avoid collision, the value 10 is used for allocation of object

identifiers for the ITU-T X.1080-series.

id-telehelth OBJECT IDENTIFIER ::= { id-th all(0) telehealth(10) }

The following arcs are allocated for the different parts of the ITU-T X.1080-series:

id-x1080-0 OBJECT IDENTIFIER ::= { id-telehelth part0(0) }

id-x1080-1 OBJECT IDENTIFIER ::= { id-telehelth part1(1) }

id-x1080-2 OBJECT IDENTIFIER ::= { id-telehelth part2(2) }

An arc for a particular part of the ITU-T X.1080-series is divided as follows:

– modules have the arc '0';

– CMS content types have the arc '1';

– attribute types have the arch '2'.

A particular part may allocate additional arcs according to its needs.

For this Recommendation, the following arc is allocated for modules:

id-x1080-0-module OBJECT IDENTIFIER ::= { id-x1080-0 module(0) }

The following arc is allocated for CMS content types:

id-x1080-0-Cont OBJECT IDENTIFIER ::= { id-x1080-0 cmsCont(1) }

The following arc is allocated for attribute types used for assigning privileges:

id- x1080-0-attr OBJECT IDENTIFIER ::= { id-x1080-0 prAttr(2) }

A.2 Object identifiers for CMS content types

The following object identifiers are allocated for the content types defined for the privilege

assignment protocol and for the privilege assessment protocol:

id-privAssignReq OBJECT IDENTIFIER ::= { id-x1080-0-Cont privAssignRequest(1) }

id-privAssignRes OBJECT IDENTIFIER ::= { id-x1080-0-Cont privAssignResult(2) }

id-readRequest OBJECT IDENTIFIER ::= { id-x1080-0-Cont readRequest(3) }

id-readResult OBJECT IDENTIFIER ::= { id-x1080-0-Cont readResult(4) }

id-compareRequest OBJECT IDENTIFIER ::= { id-x1080-0-Cont compareRequest(5) }

id-compareResult OBJECT IDENTIFIER ::= { id-x1080-0-Cont compareResult(6) }

id-addRequest OBJECT IDENTIFIER ::= { id-x1080-0-Cont addRequest(7) }

26 Rec. ITU-T X.1080.0 (03/2017)

id-addResult OBJECT IDENTIFIER ::= { id-x1080-0-Cont addResult(8) }

id-deleteRequest OBJECT IDENTIFIER ::= { id-x1080-0-Cont deleteRequest(9) }

id-deleteResult OBJECT IDENTIFIER ::= { id-x1080-0-Cont deleteResult(10) }

id-modifyRequest OBJECT IDENTIFIER ::= { id-x1080-0-Cont modifyRequest(11) }

id-modifyResult OBJECT IDENTIFIER ::= { id-x1080-0-Cont modifyResult(12) }

id-renameRequest OBJECT IDENTIFIER ::= { id-x1080-0-Cont renameRequest(13) }

id-renameResult OBJECT IDENTIFIER ::= { id-x1080-0-Cont renameResult(14) }

A.3 Object identifiers for privilege attribute types

id-at-accessSer OBJECT IDENTIFIER ::= { id-pbactPrivAttr 1 }

 Rec. ITU-T X.1080.0 (03/2017) 27

Annex B

Cryptographic message syntax profile

(This annex forms an integral part of this Recommendation.)

B.1 General

Cryptographic message syntax (CMS) is defined in [IETF RFC 5652]. It defines communication

capabilities that allow for data integrity, authentication and confidentiality. [IETF RFC 5083] add

additional specifications. [IETF RFC 5911] and [IETF RFC 6268] provides new ASN.1 modules

for CMS. This annex provides a profile of CMS for use by telebiometrics specifications by

references to these specifications.

CMS is a versatile specification to be used in many different environments. This profile does not

make use of all the CMS capabilities. This profile includes the CMS data types used by this

Recommendation and other telebiometrics specifications. These other telebiometrics specifications

may refer to this annex for their use of CMS.

It is not the intention to make a specification for an implementation that is not compliant with the

IETF RFCs, but only to discuss those aspects of CMS that are relevant to telebiometrics

specifications. Appendix I provides an informal ASN.1 module reflecting the telebiometrics use of

CMS.

CMS defines different content types to be used for different purposes. The telebiometrics

specifications make use of the signedData content type for providing authentication and integrity,

they make use of the envelopedData content type for providing encryption and thereby

confidentiality and they make use of the ct-authEnvelopedData content type. The signedData

content type is used when digital signing is required, while the envelopedData content type is used

when confidentiality is required. When used, an instance of the envelopedData content type is

encapsulated in an instance of the signedData content type. The ct-authEnvelopedData content type

is used when multiple messages constitute a particular task.

Not all aspects of the above content types are used by the telebiometrics specifications. This annex

therefore provides a profile for the use of CMS in telebiometrics. For easy reference, the relevant

aspects of CMS are included here.

An instance of a content type defined by telebiometrics specifications is encapsulated in an instance

of the envelopedData content type, if confidentiality is required; otherwise, it is encapsulated in an

instance of the signedData content type. Alternatively, such a content type instance may be included

in an instance of the ct-authEnvelopedData content type.

A content type, according to [IETF RFC 6268], is defined using the following information object

class:

CONTENT-TYPE ::= TYPE-IDENTIFIER

The CONTENT-TYPE information object class is equivalent to the ASN.1 built information object class

TYPE-IDENTIFIER. A CONTENT-TYPE information object is used to bind the content type identified by

an object identifier to the abstract syntax of the content.

The following ContentInfo data type provides the general syntax for a content type:

ContentInfo ::= SEQUENCE {

 contentType CONTENT-TYPE.&id ({TelebSupportedcontentTypes}),

 content CONTENT-TYPE.&Type

 ({TelebSupportedcontentTypes}{@contentType})OPTIONAL,

 ... }

28 Rec. ITU-T X.1080.0 (03/2017)

TelebSupportedcontentTypes CONTENT-TYPE ::=

 { signedData | envelopedData | ct-authEnvelopedData, ...}

The supported content types are the signedData content type, the envelopedData content type, the

ct-authEnvelopedData content type and the set of content types defined by a particular

telebiometrics specification.

CMS requires that a CMS version be specified for a data type to indicate the specific syntax used

for that data type. The following versions are defined:

CMSVersion ::= INTEGER{ v0(0), v1(1), v2(2), v3(3), v4(4), v5(5) }

[IETF RFC 6268] defines the following parameterized data type used throughout the specifications:

Attributes { ATTRIBUTE:AttrList } ::=

 SET SIZE (1..MAX) OF Attribute {{ AttrList }}

B.2 Use of the signedData content type

The following content type is specified in clause 5 of [IETF RFC 5652]. Using a slightly modified

notation reflecting its use in telebiometrics, it is specified as follows:

signedData CONTENT-TYPE ::= {

 SignedData

 IDENTIFIED BY id-signedData }

SignedData ::= SEQUENCE {

 version CMSVersion (v3),

 digestAlgorithms SET (SIZE (1)) OF AlgorithmIdentifier

 {{Teleb-Hash-Algorithms}},

 encapContentInfo EncapsulatedContentInfo,

 certificates [0] IMPLICIT SET (SIZE (1..MAX)) OF Certificate OPTIONAL,

 crls [1] IMPLICIT RevocationInfoChoices OPTIONAL,

 signerInfos SignerInfos,

 ... }

NOTE 1 – [IETF RFC 6268] uses a somewhat modified version of the AlgorithmIdentifier data type.

However, this profile uses the AlgorithmIdentifier data type as defined in [ITU-T X.509].

The version component shall take the value v3 according to clause 5.1 of [IETF RFC 5652].

The digestAlgorithms component shall consist of a single element specifying a hashing algorithm

from the set of applicable hashing algorithms as defined by the applicable telebiometrics

specification.

The following definition allows any hash algorithm to be included.

Teleb-Hash-Algorithms ALGORITHM ::= {...}

NOTE 2 – This profile does not mandate a specific hash algorithm. Reference specifications or

implementer's' agreements may replace the dots with a set of hash algorithms to be supported in a specific

environment.

NOTE 3 – CMS allows for multiple digital signatures and thereby for multiple hash algorithms. Multiple

digital signatures are not relevant for telebiometrics specifications.

The encapContentInfo component shall hold an instance of the following data type:

EncapsulatedContentInfo ::= SEQUENCE {

 eContentType CONTENT-TYPE.&id({envelopedData, ...}),

 eContent [0] EXPLICIT OCTET STRING

 (CONTAINING CONTENT-TYPE.&Type({envelopedData, ...}

 {@eContentType})) OPTIONAL }

 Rec. ITU-T X.1080.0 (03/2017) 29

This data type has the following components:

a) the eContentType component shall hold the object identifier identifying the encapsulated

content type. This component shall hold the identity of the envelopedData content type, if

encryption is required. If encryption is not required, it shall hold one of the content types

specified by the relevant telebiometrics specification;

b) the econtent component shall hold the actual encapsulated content wrapped in an octet-

string. It shall always be present.

NOTE 4 – This component is defined as optional. However, all relevant content types have a defined

content.

The certificates component shall hold the public-key certificates sufficient to establish a single

certification path as specified by the PkiPath data type defined in [ITU-T X.509].

The crls component is not relevant for the telebiometrics specifications and shall be absent.

The signerInfos component shall hold an instance of the SignerInfos data type:

SignerInfos ::= SET (SIZE (1)) OF SignerInfo

SignerInfo ::= SEQUENCE {

 version CMSVersion (v1),

 sid SignerIdentifier,

 digestAlgorithm AlgorithmIdentifier {{Teleb-Hash-Algorithms}},

 signedAttrs [0] IMPLICIT Attributes{{SignedAttributes}} OPTIONAL,

 signatureAlgorithm AlgorithmIdentifier {{Teleb-Signature-Algorithms}},

 signature SignatureValue,

 unsignedAttrs [1] IMPLICIT Attributes {{UnsignedAttributes}} OPTIONAL,

 ... }

SignerIdentifier ::= CHOICE {

 issuerAndSerialNumber IssuerAndSerialNumber,

 subjectKeyIdentifier [0] SubjectKeyIdentifier,

 ...}

IssuerAndSerialNumber ::= SEQUENCE {

 issuer Name,

 serialNumber CertificateSerialNumber }

SignedAttributes ATTRIBUTE ::= { contentType | messageDigest, ... }

Teleb-Signature-Algorithms ALGORITHM ::= {...}

SignatureValue ::= OCTET STRING

UnsignedAttributes ATTRIBUTE ::= {...}

This profile only supports one signer, so an instance of the SignerInfos data type shall have one

and only one element. The SignerInfo data type has the following components:

a) the version component shall specify v1 according to [IETF RFC 5652];

b) the sid component shall identify the end-entity public-key certificate of the signer and shall

hold an instance of the SignerIdentifier data type. This data type specifies two

alternatives

– the issuerAndSerialNumber alternative identifies the end-entity public-key certificate by

specifying the distinguished name of the issuing CA and the public-key certificate

serial number. This alternative shall always be taken;

– the subjectKeyIdentifier alternative shall not be taken;

30 Rec. ITU-T X.1080.0 (03/2017)

c) the digestAlgorithm component shall have the same value as the one used in

digestAlgorithms component of the SignerInfo data type;

d) the signedAttrs component shall hold a list of signed attributes. [IETF RFC 5652] requires

that at least instances of the contentType and messageDigest attribute types shall be

included. This profile does not any require additional attribute to be included, but

referencing specifications may add to the list;

e) the signatureAlgorithm component shall hold the signature algorithm used for creating the

digital signature held by the signature component;

NOTE 5 – This profile does not mandate a specific signature algorithm. Reference specifications or

implementer's' agreements may replace the dots with a set of signature algorithms to be supported for a

specific telebiometrics specification.

f) the signature and the unsignedAttrs components as specified by [IETF RFC 5652].

B.3 Use of envelopedData content type

B.3.1 General

The envelopedData content type allows for encryption of data. This requires establishment of shared

symmetric keys. [IETF RFC 5652] provides for different techniques for generating such symmetric

keys. The key agreement technique, known as the Diffie-Hellman (DH) key agreement method is

required by this profile. The DH key agreement method is specified [IETF RFC 2631] for non-

elliptic curve technique. [IETF RFC 5753] provides specifications for use of elliptic curve

techniques.

The DH method results in a shared secret that may be used as keying material that allows

generation of shared, symmetric keys. This profile recognizes two modes of DH operation: the

ephemeral-static mode and the static-static mode.

The ephemeral-static mode requires that the recipient have a public-key certificate with a DH public

key as certified by the issuing CA. This public-key certificate shall be available to the sender. The

sender creates a new DH key pair for each message it sends. In this way, the shared secret becomes

different for each message.

The static-static mode requires that each of the communicating entities have a certified DH public-

key certificate. As this mode would result in the same shared secret for each message, some random

user keying material has to be supplied by the sender to get different keying material for each

message.

This profile requires that the ephemeral-static mode shall be supported.

Both methods require both entities in a communication to have the certified DH end-entity public-

key certificate of its partner, as communications go in both directions.

The following content type is specified in clause 6 of [IETF RFC 5652] and updated by

[IETF RFC 6268]:

envelopedData CONTENT-TYPE ::= {

 EnvelopedData

 IDENTIFIED BY id-envelopedData }

EnvelopedData ::= SEQUENCE {

 version CMSVersion(v0 | v2),

 originatorInfo [0] IMPLICIT OriginatorInfo OPTIONAL,

 recipientInfos RecipientInfos,

 encryptedContentInfo EncryptedContentInfo,

 ...,

 [[2: unprotectedAttrs [1] IMPLICIT Attributes

 {{UnprotectedAttributes}} OPTIONAL]] }

 Rec. ITU-T X.1080.0 (03/2017) 31

UnprotectedAttributes ATTRIBUTE ::=

 { aa-CEKReference | aa-CEKMaxDecrypts | aa-KEKDerivationAlg }

The EnvelopedData component has the following components:

a) the version component shall according to [IETF RFC 5652] have the value v2 if the

unprotectedAttrs component is present, otherwise it shall have the value v0;

b) the originatorInfo component shall be absent;

c) the recipientInfos component shall hold an instance of the RecipientInfos data type as

specified in clause B.3.2;

d) the encryptedContentInfo component shall hold an instance of the EncryptedContentInfo

data type as specified in clause B.3.4;

e) the unprotectedAttrs component is required if it is expected that the next to be transmitted

in the direction in question is an instance of the ct-authEnvelopedData content type,

otherwise it may be absent.

B.3.2 Recipient information

The RecipientInfos data type allows for multiple instances of the RecipientInfo data type.

However, for the purpose of this profile, it shall be limited to a single instance. An instance of the

RecipientInfo data type specifies different alternatives on how to establish a shared secret between

the two communicating parties.

RecipientInfos ::= SET SIZE (1) OF RecipientInfo

RecipientInfo ::= CHOICE {

 ktri KeyTransRecipientInfo,

 kari [1] KeyAgreeRecipientInfo,

 kekri [2] KEKRecipientInfo,

 pwri [3] PasswordRecipientinfo,

 ori [4] OtherRecipientInfo,

 ... }

This profile only makes use of two of the RecipientInfo alternatives as defined in

[IETF RFC 5652]:

a) the kari alternative is the only alternative to be used for the envelopedData content type.

The KeyAgreeRecipientInfo data type provides information required for establishment of a

shared secret as detailed in clause B.3.3;

b) the kekri alternative is the only alternative to be used for the ct-authEnvelopedData content

type. The KEKRecipientInfo data type provides information required for establishment of a

shared secret as detailed in clause B.4.

B.3.3 Key agreement

KeyAgreeRecipientInfo ::= SEQUENCE {

 version CMSVersion (v3),

 originator [0] EXPLICIT OriginatorIdentifierOrKey,

 ukm [1] EXPLICIT UserKeyingMaterial OPTIONAL,

 keyEncryptionAlgorithm KeyEncryptionAlgorithmIdentifier,

 recipientEncryptedKeys RecipientEncryptedKeys,

 ... }

OriginatorIdentifierOrKey ::= CHOICE {

 issuerAndSerialNumber IssuerAndSerialNumber,

 subjectKeyIdentifier [0] SubjectKeyIdentifier,

 originatorKey [1] OriginatorPublicKey,

 ... }

32 Rec. ITU-T X.1080.0 (03/2017)

OriginatorPublicKey ::= SEQUENCE {

 algorithm AlgorithmIdentifier {{SupportedDHPublicKeyAlgorithms}},

 publicKey BIT STRING,

 ... }

SupportedDHPublicKeyAlgorithms ALGORITHM ::= {...}

UserKeyingMaterial ::= OCTET STRING (SIZE (64))

KeyEncryptionAlgorithmIdentifier ::=

 AlgorithmIdentifier{{SupportedKeyIncryptAlgorithms}}

SupportedKeyIncryptAlgorithms ALGORITHM ::= {...}

RecipientEncryptedKeys ::= SEQUENCE (SIZE (1)) OF RecipientEncryptedKey

RecipientEncryptedKey ::= SEQUENCE {

 rid KeyAgreeRecipientIdentifier,

 encryptedKey EncryptedKey }

KeyAgreeRecipientIdentifier ::= CHOICE {

 issuerAndSerialNumber IssuerAndSerialNumber,

--rKeyId [0] IMPLICIT RecipientKeyIdentifier,

 ... }

EncryptedKey ::= OCTET STRING

The KeyAgreeRecipientInfo data type has the following components:

a) the version component shall according to [IETF RFC 5652] take the value v3;

b) the originator component shall hold an instance of the OriginatorIdentifierOrKey data

type with the following alternatives:

– the issuerAndSerialNumber alternative shall be taken if the static-static method is used.

It shall then hold an instance of the IssuerAndSerialNumber data type. This data type

shall identify the sender's DH public-key certificate.

i) the issuer component shall hold the distinguished name of the issuing CA and

shall be equal to the issuer component of the public-key certificate in question;

ii) the serialNumber component shall be equal to the serialNumber component of the

public-key certificate in question;

– the subjectKeyIdentifier alternative shall not be taken;

– the originatorKey alternative shall be taken for the ephemeral-static DH method. It

shall then hold an instance of the OriginatorPublicKey data type with the following

components:

i) the algorithm component shall hold a reference to the DH public-key algorithm

used;

 NOTE 1 – This profile does not mandate a specific DH public-key algorithm. Reference

specifications or implementer's' agreements may replace the dots with a set of DH public-key

algorithms to be supported in a specific environment.

ii) the publicKey component shall hold the DH public key as generated by the sender.

The sender shall generate a new DH key pair for each use of this content type.

From the local private key and the public key of the recipient, the sender can generate the shared

secret. The recipient shall generate an identical shared secret by using its private key together with

the sender's public key as provided in the OriginatorPublicKey or in the IssuerAndSerialNumber

data type.

 Rec. ITU-T X.1080.0 (03/2017) 33

c) the ukm component shall be present when the static-static method is used and shall the hold

an instance of the UserKeyingMaterial data type.

 From the shared secret, the value in the ukm component (if relevant) and some other

information as specified in [IETF RFC 2631] both parties generate the so-called key-

encryption key (KEK). This key is subsequently used for encrypting the content encryption

key (CEK) generated by the sender. This technique is referred to as key wrapping;

d) the keyEncryptionAlgorithm component shall specify the key wrapping algorithm and shall

hold an instance of the KeyEncryptionAlgorithmIdentifier data type;

 NOTE 2 – This profile does not mandate a specific set of key wrapping algorithms. New algorithms

may be defined in the future. Advanced encryption standard (AES) Key Wrap Algorithms are

defined by [IETF RFC 3394]. Reference specifications or implementer's' agreements may replace

the dots with a set of wrap algorithms to be supported in a specific environment.

e) the recipientEncryptedKeys component shall hold an instance of the

RecipientEncryptedKeys data type. Such an instance shall only consist of a single element,

i.e., a single instance of the RecipientEncryptedKey data type. This data type has the

following two components:

– the rid component shall hold the identification of the recipient by its end-entity public-

key certificate;

– the encryptedKey component shall hold the encrypted CEK used for encrypting the

content, as discussed under item c).

B.3.4 Reuse of CMS content encryption keys

If the CEK is to be used for a subsequent ct-authEnvelopedData content type instance as specified

in [IETF RFC 3185], the appropriate reference information shall be entered into the unprotected

attributes as discussed in clause B.3.1. This information shall be retained by both parties. If high

level of security is required, the attribute of type aa-CEKMaxDecrypts should have the value '1' or be

omitted.

B.3.5 Encrypted content information

An instance of the EncryptedContentInfo data type holds the encrypted encapsulated content.

EncryptedContentInfo ::= SEQUENCE {

 contentType CONTENT-TYPE.&id ({EncryptedContentSet}),

 contentEncryptionAlgorithm SEQUENCE {

 algorithm ALGORITHM.&id ({SymmetricEncryptionAlgorithms}),

 parameter ALGORITHM.&Type

 ({SymmetricEncryptionAlgorithms}{@.algorithm})} OPTIONAL,

 encryptedContent [0] IMPLICIT EncryptedContent OPTIONAL,

 ... }

EncryptedContentSet CONTENT-TYPE ::= {...}

SymmetricEncryptionAlgorithms ALGORITHM ::= {...}

EncryptedContent ::= OCTET STRING

The encryptedContentInfo component of the EnvelopedData data type shall hold an instance of the

EncryptedContentInfo data type:

a) the contentType component shall hold the content type for the encrypted content. The list of

possible content types is those for which encryption is an option;

b) the contentEncryptionAlgorithm and the encryptedContent components as required by

[IETF RFC 5652].

34 Rec. ITU-T X.1080.0 (03/2017)

B.4 Use of the authenticated-enveloped-data content type

B.4.1 General

As specified in [ITU-T X.1080.1], protocols for telebiometrics general consists of a set-up exchange

to establish a session followed by multiple exchanges of information and ending with the

termination of the session. In such an environment, it may not be necessary to establish a new key

encryption key for each message.

[IETF RFC 5083] specifies a content type ct-authEnvelopedData not included in [IETF RFC 5652].

This content type allows for use of efficient authenticated encryption techniques. This profile makes

use of the AES-GCM algorithms a defined by [IETF RFC 5084] together with the reuse of the CEK

as defined in [IETF RFC 3185]. For details, these specifications should be consulted.

The ct-authEnvelopedData content type is defined as:

ct-authEnvelopedData CONTENT-TYPE ::= {

 AuthEnvelopedData

 IDENTIFIED BY id-ct-authEnvelopedData }

AuthEnvelopedData ::= SEQUENCE {

 version CMSVersion (v0),

 originatorInfo [0] IMPLICIT OriginatorInfo OPTIONAL,

 recipientInfos RecipientInfos,

 authEncryptedContentInfo EncryptedContentInfo,

 authAttrs [1] IMPLICIT Attributes {{AuthAttributes}} OPTIONAL,

 mac MessageAuthenticationCode,

 unauthAttrs [2] IMPLICIT Attributes {{UnauthAttributes}} OPTIONAL }

AuthAttributes ATTRIBUTE ::= {...}

MessageAuthenticationCode ::= OCTET STRING

UnauthAttributes ATTRIBUTE ::=

 { aa-CEKReference | aa-CEKMaxDecrypts | aa-KEKDerivationAlg }

The AuthEnvelopedData data type has the following components:

a) the version component shall according to [IETF RFC 5083] have the value v0;

b) the originatorInfo component shall be absent;

c) the recipientInfos component shall hold an instance of the RecipientInfos data type. This

data type is described in clause B.3.2. The kekri alternative, in addition to kari alternative,

is relevant for this content type. When the kekri alternative is taken, this alternative shall

hold an instance of the KEKRecipientInfo data type as specified in clause B.4.2;

d) the authEncryptedContentInfo component shall hold an instance of the

EncryptedContentInfo data type as specified in clause B.3.5;

e) the authAttrs component, when present, shall hold a set of attributes to be under

authentication protection;

f) the mac component shall hold the generated message authentication code (MAC);

g) the unauthAttrs component hold attributes of the same type as specified in clause B.3.1,

item e). If it is known that the content type instance is the last one for the session in

question for the direction, then this component may be absent.

B.4.2 KEK recipient information

KEKRecipientInfo ::= SEQUENCE {

 version CMSVersion (v4),

 kekid KEKIdentifier,

 keyEncryptionAlgorithm KeyEncryptionAlgorithmIdentifier,

 Rec. ITU-T X.1080.0 (03/2017) 35

 encryptedKey EncryptedKey }

KEKIdentifier ::= SEQUENCE {

 keyIdentifier OCTET STRING,

 date GeneralizedTime OPTIONAL,

 other OtherKeyAttribute OPTIONAL,

 ... }

The KEKRecipientInfo data type has the following components:

a) the version component shall according to [IETF RFC 5652] take the value v4;

b) the kekid component shall hold an instance of the KEKIdentifier data type with the

following components:

– the keyIdentifier component shall hold identifier for CEK retained from a previous

exchanged as specified in clause B.3.4;

– the other components are not necessary;

c) the keyEncryptionAlgorithm component shall hold the wrapping algorithm as specified in

clause B.3.3, item d). It is recommended to use the same wrapping algorithm for all content

instances for a particular telebiometrics session.

B.5 Attributes

The following attributes type are defined by [IETF RFC 5652]. Instances of these attribute types are

intended to be included as signed attributes.

contentType ATTRIBUTE ::= {

 WITH SYNTAX CONTENT-TYPE.&id({envelopedData, ...})

 EQUALITY MATCHING RULE objectIdentifierMatch

 SINGLE VALUE TRUE

 ID id-contentType }

messageDigest ATTRIBUTE ::= {

 WITH SYNTAX OCTET STRING

 EQUALITY MATCHING RULE octetStringMatch

 SINGLE VALUE TRUE

 ID id-messageDigest }

The following attributes type are defined by [IETF RFC 3185]. Instances of these

attribute types may be included as unsigned attributes.

aa-CEKReference ATTRIBUTE ::= {

 WITH SYNTAX CEKReference

 EQUALITY MATCHING RULE octetStringMatch

 SINGLE VALUE TRUE

 ID id-aa-CEKReference }

CEKReference ::= OCTET STRING

aa-CEKMaxDecrypts ATTRIBUTE ::= {

 WITH SYNTAX CEKMaxDecrypts

 EQUALITY MATCHING RULE integerMatch

 SINGLE VALUE TRUE

 ID id-aa-CEKMaxDecrypts }

CEKMaxDecrypts ::= INTEGER

aa-KEKDerivationAlg ATTRIBUTE ::= {

 WITH SYNTAX KEKDerivationAlgorithm

 EQUALITY MATCHING RULE integerMatch

 SINGLE VALUE TRUE

 ID id-aa-KEKDerivationAlg }

36 Rec. ITU-T X.1080.0 (03/2017)

KEKDerivationAlgorithm ::= SEQUENCE {

 kekAlg AlgorithmIdentifier,

 pbkdf2Param PBKDF2-params }

PBKDF2-params ::= SEQUENCE {

 salt CHOICE {

 specified OCTET STRING,

-- otherSource AlgorithmIdentifier {{PBKDF2-SaltSources}}

 ... },

 iterationCount INTEGER (1..MAX),

 keyLength INTEGER (1..MAX) OPTIONAL,

 prf AlgorithmIdentifier {{PBKDF2-PRFs}},

 ... }

PBKDF2-PRFs ALGORITHM ::= {...}

PBKDF2-params ::= SEQUENCE {

 salt CHOICE {

 specified OCTET STRING,

 otherSource AlgorithmIdentifier {{PBKDF2-SaltSources}} },

 iterationCount INTEGER (1..MAX),

 keyLength INTEGER (1..MAX) OPTIONAL,

 prf AlgorithmIdentifier {{PBKDF2-PRFs}} DEFAULT algid-hmacWithSHA1

}

id-pkcs OBJECT IDENTIFIER ::=

 { iso(1) member-body(2) usa(840) rsadsi(113549) pkcs(1) }

id-pkcs-9 OBJECT IDENTIFIER ::= { id-pkcs pkcs-9(9) }

id-aa OBJECT IDENTIFIER ::= { id-pkcs-9 smime(16) attributes(2) }

id-contentType OBJECT IDENTIFIER ::= { id-pkcs-9 3 }

id-messageDigest OBJECT IDENTIFIER ::= { id-pkcs-9 4 }

id-aa-CEKReference OBJECT IDENTIFIER ::= { id aa 30 }

id-aa-CEKMaxDecrypts OBJECT IDENTIFIER ::= { id aa 31 }

id-aa-KEKDerivationAlg OBJECT IDENTIFIER ::= { id aa 32 }

B.6 Cryptographic message syntax error codes

[b-IETF RFC 7191] provides a list of CMS error codes for all possible uses of CMS. Listed below

is a subset of those error codes relevant for telebiometrics. For the description of the error codes,

please consult [b-IETF RFC 7191].

When [b-IETF RFC 7191] refers to a certificate, it is a reference to the public-key certificate used

for the CMS defined content types.

CmsErrorCode ::= ENUMERATED {

 decodeFailure (1),

 badContentInfo (2),

 badSignedData (3),

 badEncapContent (4),

 badCertificate (5),

 badSignerInfo (6),

 badSignedAttrs (7),

 badUnsignedAttrs (8),

 missingContent (9),

 noTrustAnchor (10),

 notAuthorized (11),

 badDigestAlgorithm (12),

 badSignatureAlgorithm (13),

 Rec. ITU-T X.1080.0 (03/2017) 37

 unsupportedKeySize (14),

 unsupportedParameters (15),

 signatureFailure (16),

 incorrectTarget (23),

 missingSignature (29),

 versionNumberMismatch (31),

 revokedCertificate (33),

 badEncryptedData (62),

 badEnvelopedData (63),

 badKeyAgreeRecipientInfo (66),

 badKEKRecipientInfo (67),

 badEncryptContent (68),

 badEncryptAlgorithm (69),

 missingCiphertext (70),

 decryptFailure (71),

 badMACAlgorithm (72),

 badAuthAttrs (73),

 badUnauthAttrs (74),

 invalidMAC (75),

 mismatchedDigestAlg (76),

 missingCertificate (77),

 tooManySigners (78),

 missingSignedAttributes (79),

 derEncodingNotUsed (80),

 invalidAttributeLocation (82),

 badAttributes (85),

 noMatchingRecipientInfo (91),

 unsupportedKeyWrapAlgorithm (92),

 badKeyTransRecipientInfo (93),

 other (127) }

38 Rec. ITU-T X.1080.0 (03/2017)

Annex C

Formal specification of the privilege assertion and assignment protocols

(This annex forms an integral part of this Recommendation.)

Pbact-access { joint-iso-itu-t(2) telebiometrics(42) e-health-protocol(3)

 modules(0) pbact-access(6) version1(1) }

DEFINITIONS IMPLICIT TAGS ::=

BEGIN

-- EXPORTS All

IMPORTS

 -- from Rec. ITU-T X.501 | ISO/IEC 9594-2

 ATTRIBUTE, Attribute{}, AttributeType, AttributeTypeAndValue,

 AttributeValueAssertion, DistinguishedName, OBJECT-CLASS, SupportedAttributes

 FROM InformationFramework {joint-iso-itu-t ds(5) module(1)

 informationFramework(1) 8}

 -- from Rec. ITU-T X.509 | ISO/IEC 9594-8

 AttributeCertificate

 FROM AttributeCertificateDefinitions {joint-iso-itu-t ds(5) module(1)

 attributeCertificateDefinitions(32) 8}

 CmsErrorCode, CONTENT-TYPE

 FROM CmsTelebiometric { joint-iso-itu-t(2) telebiometrics(42) th(3) part0(0)

 modules(0) cmsProfile(1) version1(1) } ;

accessService ATTRIBUTE ::= {

 WITH SYNTAX AccessService

 ID id-at-accessService }

AccessService ::= SEQUENCE {

 serviceId OBJECT IDENTIFIER,

 objectDef SEQUENCE SIZE (1..MAX) OF ObjectSel,

 ... }

ObjectSel ::= SEQUENCE {

 objecClass OBJECT-CLASS.&id,

 objSelect CHOICE {

 allObj [0] TargetSelect,

 objectNames [1] SEQUENCE SIZE (1..MAX) OF SEQUENCE {

 object CHOICE {

 names [1] SEQUENCE SIZE (1..MAX) OF DistinguishedName,

 subtree [2] DistinguishedName,

 ... },

 select TargetSelect,

 ... },

 ... },

 ... }

TargetSelect ::= SEQUENCE {

 objOper ObjectOperations OPTIONAL,

 attrSel AttributeSel OPTIONAL,

 ... }

 (WITH COMPONENTS {..., objOper PRESENT } |

 WITH COMPONENTS {..., attrSel PRESENT })

 Rec. ITU-T X.1080.0 (03/2017) 39

AttributeSel ::= SEQUENCE {

 attSelect CHOICE {

 allAttr [0] SEQUENCE {

 attrOper1 [0] AttributeOperations OPTIONAL,

 ... },

 attributes [1] SEQUENCE SIZE (1..MAX) OF SEQUENCE {

 select SEQUENCE SIZE (1..MAX) OF ATTRIBUTE.&id,

 attrOper2 [0] AttributeOperations OPTIONAL,

 ... },

 ... },

 ... }

ObjectOperations ::= BIT STRING {

 read (0),

 add (1),

 modify (2),

 delete (3),

 rename (4),

 discloseOnError (5) }

AttributeOperations ::= BIT STRING {

 read (0),

 compare (1),

 add (2),

 modify (3),

 delete (4),

 deleteValue (5),

 replaceAttribute (6),

 discloseOnError (7) }

PbactContentTypes CONTENT-TYPE ::= {

 privAssignRequest |

 privAssignResult |

 readRequest |

 readResult |

 compareRequest |

 compareResult |

 addRequest |

 addResult |

 deleteRequest |

 deleteResult |

 modifyRequest |

 modifyResult |

 renameRequest |

 renameResult,

 ... }

CommonReqComp ::= SEQUENCE {

 attrCerts [31] AttributeCertificates OPTIONAL,

 serviceId [30] OBJECT IDENTIFIER,

 invokId [29] INTEGER,

 ... }

AttributeCertificates ::= SEQUENCE SIZE (1..MAX) OF AttributeCertificate

readRequest CONTENT-TYPE ::= {

 ReadRequest

IDENTIFIED BY id-readRequest }

ReadRequest ::= SEQUENCE {

 COMPONENTS OF CommonReqComp,

 object [1] DistinguishedName,

 selection [2] InformationSelection,

 ... }

40 Rec. ITU-T X.1080.0 (03/2017)

readResult CONTENT-TYPE ::= {

 ReadResult

IDENTIFIED BY id-readResult }

ReadResult ::= SEQUENCE {

 object DistinguishedName,

 result CHOICE {

 success [0] ObjectInformation,

 failure [1] AccessdErr,

 ... },

 ... }

compareRequest CONTENT-TYPE ::= {

 CompareRequest

IDENTIFIED BY id-compareRequest }

CompareRequest ::= SEQUENCE {

 COMPONENTS OF CommonReqComp,

 object [1] DistinguishedName,

 purported [2] AttributeValueAssertion,

 ... }

compareResult CONTENT-TYPE ::= {

 CompareResult

IDENTIFIED BY id-compareResult }

CompareResult ::= SEQUENCE {

 object DistinguishedName,

 result CHOICE {

 success [0] CompareOK,

 failure [1] AccessdErr,

 ... },

 ... }

CompareOK ::= SEQUENCE {

 matched [0] BOOLEAN,

 matchedSubtype [1] BOOLEAN DEFAULT FALSE,

 ... }

addRequest CONTENT-TYPE ::= {

 AddRequest

IDENTIFIED BY id-addRequest }

AddRequest ::= SEQUENCE {

 COMPONENTS OF CommonReqComp,

 object [1] DistinguishedName,

 attr [2] SEQUENCE SIZE (1..MAX) OF Attribute {{SupportedAttributes}}

 OPTIONAL,

 ... }

addResult CONTENT-TYPE ::= {

 AddResult

IDENTIFIED BY id-addResult }

AddResult ::= CHOICE {

 success [0] NULL,

 failure [1] AccessdErr,

 ... }

deleteRequest CONTENT-TYPE ::= {

 DeleteRequest

IDENTIFIED BY id-deleteRequest }

 Rec. ITU-T X.1080.0 (03/2017) 41

DeleteRequest ::= SEQUENCE {

 COMPONENTS OF CommonReqComp,

 object DistinguishedName,

 ... }

deleteResult CONTENT-TYPE ::= {

 DeleteResult

IDENTIFIED BY id-deleteResult }

DeleteResult ::= CHOICE {

 success [0] NULL,

 failure [1] AccessdErr,

 ... }

modifyRequest CONTENT-TYPE ::= {

 ModifyRequest

IDENTIFIED BY id-modifyRequest }

ModifyRequest ::= SEQUENCE {

 COMPONENTS OF CommonReqComp,

 object DistinguishedName,

 changes SEQUENCE SIZE (1..MAX) OF ObjectModification,

 select InformationSelection,

 ... }

ObjectModification ::= CHOICE {

 addAttribute [0] Attribute{{SupportedAttributes}},

 deleteAttribute [1] AttributeType,

 addValues [2] Attribute{{SupportedAttributes}},

 deleteValues [3] Attribute{{SupportedAttributes}},

 replaceAttribute [4] Attribute{{SupportedAttributes}},

 ... }

modifyResult CONTENT-TYPE ::= {

 ModifyResult

IDENTIFIED BY id-modifyResult }

ModifyResult ::= SEQUENCE {

 result CHOICE {

 success [0] ObjectInformation,

 failure [1] AccessdErr,

 ... },

 ... }

renameRequest CONTENT-TYPE ::= {

 RenameRequest

IDENTIFIED BY id-renameRequest }

RenameRequest ::= SEQUENCE {

 COMPONENTS OF CommonReqComp,

 object DistinguishedName,

 new DistinguishedName,

 ... }

renameResult CONTENT-TYPE ::= {

 RenameResult

IDENTIFIED BY id-renameResult }

RenameResult ::= SEQUENCE {

 result CHOICE {

 success [0] NULL,

 failure [1] AccessdErr,

 ... },

42 Rec. ITU-T X.1080.0 (03/2017)

 ... }

AccessdErr ::= CHOICE {

 cmsErr [0] CmsErrorCode,

 pbactErr [1] PbactErr,

 ... }

InformationSelection ::= SEQUENCE {

 attributes CHOICE {

 allAttributes [0] NULL,

 select [1] SEQUENCE SIZE (1..MAX) OF ATTRIBUTE.&id,

 ... },

 infoTypes ENUMERATED {

 attributeTypesOnly (0),

 attributeTypeAndValue (1),

 ... },

 ... }

ObjectInformation ::= SEQUENCE {

 name DistinguishedName,

 info SET SIZE (1..MAX) OF Attribute {{SupportedAttributes}},

 ... }

PbactErr ::= ENUMERATED {

 noSuchService,

 invalidOperationForService,

 insufficientAccessRight,

 noSuchObject,

 noSuchAttribute,

 noSuchAttributeValue,

 objectAlreadyExists,

 attributeAlreadyExists,

 attributeValueAlreadyExists,

 noInformation,

 ... }

privAssignRequest CONTENT-TYPE ::= {

 PrivAssignRequest

IDENTIFIED BY id-privAssignRequest }

PrivAssignRequest ::= SEQUENCE {

 attrCerts [1] AttributeCertificates OPTIONAL,

 ... }

privAssignResult CONTENT-TYPE ::= {

 PrivAssignResult

IDENTIFIED BY id-privAssignResult }

PrivAssignResult ::= SEQUENCE {

 result CHOICE {

 success NULL,

 failure PrivAssignErr },

 ... }

PrivAssignErr ::= CHOICE {

 cmsErr [0] CmsErrorCode,

 assignErr [1] AssignErr,

 ... }

AssignErr ::= ENUMERATED {

 invalidAttributeCertificate (0),

 ... }

-- object identifier allocations

 Rec. ITU-T X.1080.0 (03/2017) 43

-- top tree

id-pbact OBJECT IDENTIFIER ::=

 { joint-iso-itu-t(2) telebiometrics(42) e-health-protocol(3) pbact(20) }

id-pbactmodule OBJECT IDENTIFIER ::= { id-pbact module(0) }

id-pbactCont OBJECT IDENTIFIER ::= { id-pbact cmsCont(1) }

id-pbactPrivAttr OBJECT IDENTIFIER ::= { id-pbact prAttr(2) }

-- Content types

id-privAssignRequest OBJECT IDENTIFIER ::= { id-pbactCont privAssignRequest(1) }

id-privAssignResult OBJECT IDENTIFIER ::= { id-pbactCont privAssignResult(2) }

id-readRequest OBJECT IDENTIFIER ::= { id-pbactCont readRequest(3) }

id-readResult OBJECT IDENTIFIER ::= { id-pbactCont readResult(4) }

id-compareRequest OBJECT IDENTIFIER ::= { id-pbactCont compareRequest(5) }

id-compareResult OBJECT IDENTIFIER ::= { id-pbactCont compareResult(6) }

id-addRequest OBJECT IDENTIFIER ::= { id-pbactCont addRequest(7) }

id-addResult OBJECT IDENTIFIER ::= { id-pbactCont addResult(8) }

id-deleteRequest OBJECT IDENTIFIER ::= { id-pbactCont deleteRequest(9) }

id-deleteResult OBJECT IDENTIFIER ::= { id-pbactCont deleteResult(10) }

id-modifyRequest OBJECT IDENTIFIER ::= { id-pbactCont modifyRequest(11) }

id-modifyResult OBJECT IDENTIFIER ::= { id-pbactCont modifyResult(12) }

id-renameRequest OBJECT IDENTIFIER ::= { id-pbactCont renameRequest(13) }

id-renameResult OBJECT IDENTIFIER ::= { id-pbactCont renameResult(14) }

-- Artribute types for carring privilege definitions

id-at-accessService OBJECT IDENTIFIER ::= { id-pbactPrivAttr 1 }

END

44 Rec. ITU-T X.1080.0 (03/2017)

Appendix I

Informal specification for the cryptographic message syntax profile

(This appendix does not form an integral part of this Recommendation.)

An implementation only supporting the CmsTelebiometric module is not conformant with the IETF

CMS specification and shall not be seen as an implementation specification. It is provided here for

information and for consistency checking.

CmsTelebiometric { joint-iso-itu-t(2) telebiometrics(42) th(3) part0(0)

 modules(0) cmsProfile(1) version1(1) }

DEFINITIONS ::=

BEGIN

-- EXPORTS All

IMPORTS

 -- from Rec. ITU-T X.501 | ISO/IEC 9594-2

 ATTRIBUTE, Attribute{}, DistinguishedName, objectIdentifierMatch

 FROM InformationFramework {joint-iso-itu-t ds(5) module(1)

informationFramework(1) 8}

 -- from Rec. ITU-T X.509 | ISO/IEC 9594-8

 ALGORITHM, AlgorithmIdentifier, Certificate, CertificateSerialNumber

 FROM AuthenticationFramework {joint-iso-itu-t ds(5) module(1)

authenticationFramework(7) 8}

 -- from Rec. ITU-T X.520 | ISO/IEC 9594-6

 integerMatch, octetStringMatch

 FROM SelectedAttributeTypes {joint-iso-itu-t ds(5) module(1)

selectedAttributeTypes(5) 8} ;

CONTENT-TYPE ::= TYPE-IDENTIFIER

ContentType ::= CONTENT-TYPE.&id

ContentInfo ::= SEQUENCE {

 contentType CONTENT-TYPE.&id ({TelebSupportedcontentTypes}),

 content CONTENT-TYPE.&Type

 ({TelebSupportedcontentTypes}{@contentType})OPTIONAL,

 ... }

TelebSupportedcontentTypes CONTENT-TYPE ::=

 { signedData | envelopedData | ct-authEnvelopedData, ...}

CMSVersion ::= INTEGER{ v0(0), v1(1), v2(2), v3(3), v4(4), v5(5) }

Attributes { ATTRIBUTE:AttrList } ::=

 SET SIZE (1..MAX) OF Attribute {{ AttrList }}

signedData CONTENT-TYPE ::= {

 SignedData

 IDENTIFIED BY id-signedData }

SignedData ::= SEQUENCE {

 version CMSVersion (v3),

 digestAlgorithms SET (SIZE (1)) OF AlgorithmIdentifier

 Rec. ITU-T X.1080.0 (03/2017) 45

 {{Teleb-Hash-Algorithms}},

 encapContentInfo EncapsulatedContentInfo,

 certificates [0] IMPLICIT SET (SIZE (1..MAX)) OF Certificate OPTIONAL,

--crls [1] IMPLICIT RevocationInfoChoices OPTIONAL,

 signerInfos SignerInfos,

 ... }

Teleb-Hash-Algorithms ALGORITHM ::= {...}

EncapsulatedContentInfo ::= SEQUENCE {

 eContentType CONTENT-TYPE.&id({IncludedContent}),

 eContent [0] EXPLICIT OCTET STRING

 (CONTAINING CONTENT-TYPE.&Type({IncludedContent}

 {@eContentType})) OPTIONAL }

IncludedContent CONTENT-TYPE ::= {envelopedData, ...}

SignerInfos ::= SET (SIZE (1)) OF SignerInfo

SignerInfo ::= SEQUENCE {

 version CMSVersion (v1),

 sid SignerIdentifier,

 digestAlgorithm AlgorithmIdentifier {{Teleb-Hash-Algorithms}},

 signedAttrs [0] IMPLICIT Attributes{{SignedAttributes}} OPTIONAL,

 signatureAlgorithm AlgorithmIdentifier {{Teleb-Signature-Algorithms}},

 signature SignatureValue,

 unsignedAttrs [1] IMPLICIT Attributes {{UnsignedAttributes}} OPTIONAL,

 ... }

SignerIdentifier ::= CHOICE {

 issuerAndSerialNumber IssuerAndSerialNumber,

--subjectKeyIdentifier [0] SubjectKeyIdentifier,

 ...}

IssuerAndSerialNumber ::= SEQUENCE {

 issuer DistinguishedName,

 serialNumber CertificateSerialNumber }

SignedAttributes ATTRIBUTE ::= { contentType | messageDigest, ... }

Teleb-Signature-Algorithms ALGORITHM ::= {...}

SignatureValue ::= OCTET STRING

UnsignedAttributes ATTRIBUTE ::= {...}

envelopedData CONTENT-TYPE ::= {

 EnvelopedData

 IDENTIFIED BY id-envelopedData }

EnvelopedData ::= SEQUENCE {

 version CMSVersion(v0 | v2),

--originatorInfo [0] IMPLICIT OriginatorInfo OPTIONAL,

 recipientInfos RecipientInfos,

 encryptedContentInfo EncryptedContentInfo,

 ...,

 [[2: unprotectedAttrs [1] IMPLICIT Attributes

 {{UnprotectedAttributes}} OPTIONAL]] }

RecipientInfos ::= SET SIZE (1) OF RecipientInfo

UnprotectedAttributes ATTRIBUTE ::=

 { aa-CEKReference | aa-CEKMaxDecrypts | aa-KEKDerivationAlg }

46 Rec. ITU-T X.1080.0 (03/2017)

RecipientInfo ::= CHOICE {

--ktri KeyTransRecipientInfo,

 kari [1] KeyAgreeRecipientInfo,

 kekri [2] KEKRecipientInfo,

--pwri [3] PasswordRecipientinfo,

--ori [4] OtherRecipientInfo,

 ... }

KeyAgreeRecipientInfo ::= SEQUENCE {

 version CMSVersion (v3),

 originator [0] EXPLICIT OriginatorIdentifierOrKey,

 ukm [1] EXPLICIT UserKeyingMaterial OPTIONAL,

 keyEncryptionAlgorithm KeyEncryptionAlgorithmIdentifier,

 recipientEncryptedKeys RecipientEncryptedKeys,

 ... }

OriginatorIdentifierOrKey ::= CHOICE {

 issuerAndSerialNumber IssuerAndSerialNumber,

--subjectKeyIdentifier [0] SubjectKeyIdentifier,

 originatorKey [1] OriginatorPublicKey,

 ... }

OriginatorPublicKey ::= SEQUENCE {

 algorithm AlgorithmIdentifier {{SupportedDHPublicKeyAlgorithms}},

 publicKey BIT STRING,

 ... }

SupportedDHPublicKeyAlgorithms ALGORITHM ::= {...}

UserKeyingMaterial ::= OCTET STRING (SIZE (64))

KeyEncryptionAlgorithmIdentifier ::=

 AlgorithmIdentifier{{SupportedKeyIncryptAlgorithms}}

SupportedKeyIncryptAlgorithms ALGORITHM ::= {...}

RecipientEncryptedKeys ::= SEQUENCE (SIZE (1)) OF RecipientEncryptedKey

RecipientEncryptedKey ::= SEQUENCE {

 rid KeyAgreeRecipientIdentifier,

 encryptedKey EncryptedKey }

KeyAgreeRecipientIdentifier ::= CHOICE {

 issuerAndSerialNumber IssuerAndSerialNumber,

--rKeyId [0] IMPLICIT RecipientKeyIdentifier,

 ... }

EncryptedKey ::= OCTET STRING

EncryptedContentInfo ::= SEQUENCE {

 contentType CONTENT-TYPE.&id ({EncryptedContentSet}),

 contentEncryptionAlgorithm SEQUENCE {

 algorithm ALGORITHM.&id ({SymmetricEncryptionAlgorithms}),

 parameter ALGORITHM.&Type

 ({SymmetricEncryptionAlgorithms}{@.algorithm})} OPTIONAL,

 encryptedContent [0] IMPLICIT EncryptedContent OPTIONAL,

 ... }

EncryptedContentSet CONTENT-TYPE ::= {...}

SymmetricEncryptionAlgorithms ALGORITHM ::= {...}

EncryptedContent ::= OCTET STRING

 Rec. ITU-T X.1080.0 (03/2017) 47

ct-authEnvelopedData CONTENT-TYPE ::= {

 AuthEnvelopedData

 IDENTIFIED BY id-ct-authEnvelopedData }

AuthEnvelopedData ::= SEQUENCE {

 version CMSVersion (v0),

--originatorInfo [0] IMPLICIT OriginatorInfo OPTIONAL,

 recipientInfos RecipientInfos,

 authEncryptedContentInfo EncryptedContentInfo,

 authAttrs [1] IMPLICIT Attributes {{AuthAttributes}} OPTIONAL,

 mac MessageAuthenticationCode,

 unauthAttrs [2] IMPLICIT Attributes {{UnauthAttributes}} OPTIONAL }

AuthAttributes ATTRIBUTE ::= {...}

MessageAuthenticationCode ::= OCTET STRING

UnauthAttributes ATTRIBUTE ::=

 { aa-CEKReference | aa-CEKMaxDecrypts | aa-KEKDerivationAlg }

KEKRecipientInfo ::= SEQUENCE {

 version CMSVersion (v4),

 kekid KEKIdentifier,

 keyEncryptionAlgorithm KeyEncryptionAlgorithmIdentifier,

 encryptedKey EncryptedKey }

KEKIdentifier ::= SEQUENCE {

 keyIdentifier OCTET STRING,

--date GeneralizedTime OPTIONAL,

--other OtherKeyAttribute OPTIONAL,

 ... }

contentType ATTRIBUTE ::= {

 WITH SYNTAX CONTENT-TYPE.&id({envelopedData, ...})

 EQUALITY MATCHING RULE objectIdentifierMatch

 SINGLE VALUE TRUE

 ID id-contentType }

messageDigest ATTRIBUTE ::= {

 WITH SYNTAX OCTET STRING

 EQUALITY MATCHING RULE octetStringMatch

 SINGLE VALUE TRUE

 ID id-messageDigest }

aa-CEKReference ATTRIBUTE ::= {

 WITH SYNTAX CEKReference

 EQUALITY MATCHING RULE octetStringMatch

 SINGLE VALUE TRUE

 ID id-aa-CEKReference }

CEKReference ::= OCTET STRING

aa-CEKMaxDecrypts ATTRIBUTE ::= {

 WITH SYNTAX CEKMaxDecrypts

 EQUALITY MATCHING RULE integerMatch

 SINGLE VALUE TRUE

 ID id-aa-CEKReference }

CEKMaxDecrypts ::= INTEGER

aa-KEKDerivationAlg ATTRIBUTE ::= {

 WITH SYNTAX KEKDerivationAlgorithm

 EQUALITY MATCHING RULE integerMatch

 SINGLE VALUE TRUE

48 Rec. ITU-T X.1080.0 (03/2017)

 ID id-aa-KEKDerivationAlg }

KEKDerivationAlgorithm ::= SEQUENCE {

 kekAlg AlgorithmIdentifier {{SupportedKeyIncryptAlgorithms}},

 pbkdf2Param PBKDF2-params }

PBKDF2-params ::= SEQUENCE {

 salt CHOICE {

 specified OCTET STRING,

-- otherSource AlgorithmIdentifier {{PBKDF2-SaltSources}}

 ... },

 iterationCount INTEGER (1..MAX),

 keyLength INTEGER (1..MAX) OPTIONAL,

 prf AlgorithmIdentifier {{PBKDF2-PRFs}},

 ... }

PBKDF2-PRFs ALGORITHM ::= {...}

id-pkcs OBJECT IDENTIFIER ::=

 { iso(1) member-body(2) usa(840) rsadsi(113549) pkcs(1) }

id-pkcs-9 OBJECT IDENTIFIER ::= { id-pkcs pkcs-9(9) }

id-ct OBJECT IDENTIFIER ::= { id-pkcs-9 smime(16) ct(1) }

id-aa OBJECT IDENTIFIER ::= { id-pkcs-9 smime(16) attributes(2) }

id-contentType OBJECT IDENTIFIER ::= { id-pkcs-9 3 }

id-messageDigest OBJECT IDENTIFIER ::= { id-pkcs-9 4 }

id-aa-CEKReference OBJECT IDENTIFIER ::= { id-aa 30 }

id-aa-CEKMaxDecrypts OBJECT IDENTIFIER ::= { id-aa 31 }

id-aa-KEKDerivationAlg OBJECT IDENTIFIER ::= { id-aa 32 }

id-signedData OBJECT IDENTIFIER ::= {iso(1) member-body(2)

us(840)rsadsi(113549) pkcs(1) pkcs7(7) 2}

id-envelopedData OBJECT IDENTIFIER ::= {iso(1) member-body(2) us(840)

rsadsi(113549) pkcs(1) pkcs7(7) 3}

id-ct-authEnvelopedData OBJECT IDENTIFIER ::= { id-ct 23 }

END -- CmsTelebiometric

 Rec. ITU-T X.1080.0 (03/2017) 49

Bibliography

[b-ITU-T X.841] Recommendation ITU-T X.841 (2000) | ISO/IEC 15816:2002, Information

technology – Security techniques – Security information objects for access

control.

[b-IEC 62351-8] IEC TS 62351-8:2011, Power systems management and associated information

exchange– Data and communications security – Part 8: Role-based access

control.

[b-NIST 800-56A] NIST Special Publication 800-56A, Revision 2 (2013), Recommendation for

Pair-Wise Key-Establishment. Schemes Using Discrete Logarithm

Cryptography.

[b-NIST 800-162] NIST Special Publication 800-162 (2014), Guide to Attribute Based Access

Control (ABAC) Definition and Considerations.

[b-IETF RFC 5480] IETF RFC 5480 (2009), Elliptic Curve Cryptography Subject Public Key

Information.

[b-IETF RFC 7191] IETF RFC 7191 (2014), Cryptographic Message Syntax (CMS) – Key Package

Receipt and Error Content Types.

Printed in Switzerland
Geneva, 2017

SERIES OF ITU-T RECOMMENDATIONS

Series A Organization of the work of ITU-T

Series D Tariff and accounting principles and international telecommunication/ICT economic and policy

issues

Series E Overall network operation, telephone service, service operation and human factors

Series F Non-telephone telecommunication services

Series G Transmission systems and media, digital systems and networks

Series H Audiovisual and multimedia systems

Series I Integrated services digital network

Series J Cable networks and transmission of television, sound programme and other multimedia signals

Series K Protection against interference

Series L Environment and ICTs, climate change, e-waste, energy efficiency; construction, installation

and protection of cables and other elements of outside plant

Series M Telecommunication management, including TMN and network maintenance

Series N Maintenance: international sound programme and television transmission circuits

Series O Specifications of measuring equipment

Series P Telephone transmission quality, telephone installations, local line networks

Series Q Switching and signalling, and associated measurements and tests

Series R Telegraph transmission

Series S Telegraph services terminal equipment

Series T Terminals for telematic services

Series U Telegraph switching

Series V Data communication over the telephone network

Series X Data networks, open system communications and security

Series Y Global information infrastructure, Internet protocol aspects, next-generation networks, Internet

of Things and smart cities

Series Z Languages and general software aspects for telecommunication systems

