ITU-T V.56

TELECOMMUNICATION
STANDARDIZATION SECTOR

DATA COMMUNICATION OVER THE TELEPHONE NETWORK

COMPARATIVE TESTS OF MODEMS FOR USE OVER TELEPHONE-TYPE CIRCUITS

ITU-T Recommendation V.56

(Extract from the Blue Book)

OF ITU

NOTES

1	ITU-T Recommendation V.56 was published in Fascicle VIII.1 of the Blue Book. This file is an extract from
the Blue	Book. While the presentation and layout of the text might be slightly different from the Blue Book version, the
contents	of the file are identical to the <i>Blue Book</i> version and convright conditions remain unchanged (see below).

2	In	this	Recommendation,	the	expression	"Administration"	is	used	for	conciseness	to	indicate	both	a
telecomn	nuni	catio	n administration and	d a re	ecognized or	perating agency.								

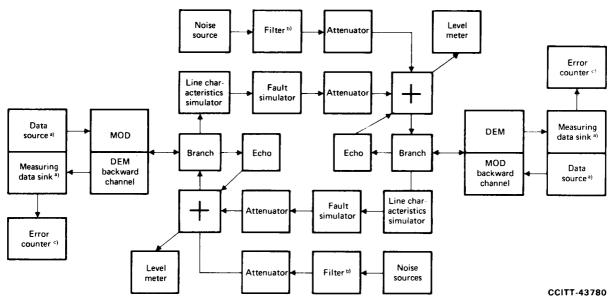
© ITU 1988, 1993

COMPARATIVE TESTS OF MODEMS FOR USE OVER TELEPHONE-TYPE CIRCUITS

(Geneva, 1972; amended at Geneva, 1976 and 1980, Malaga-Torremolinos, 1984 and at Melbourne, 1988)

To facilitate the work of Administrations in making comparative tests of modems for use over telephone-type circuits offered by different manufacturers, it is recommended that the tests should be made in the laboratory under the following operating conditions:

1 List of test parameters (see Table 1/V.56)


TABLE 1/V.56

Test parameters

Ref. No.	Parameter	Four-wire	Two-wire switched network		
		point-to-point	Serial modems	Parallel modems	
1	Total attenuation or receiving signal level	X	X		
2	Attenuation distortion	X	X		
3	Envelope or group delay distorsion	X	X		
4	Frequency shift (or offset)	X	X		
5	Sudden changes of attenuation	X	X		
6	Interruptions	X	X		
7	Phase hits	X	X		
8	Phase jitter	X	X		
9	Harmonic distortion	X	X	X	
10	Listener echo		X		
11	"White" noise	X	X		
12	Implusive noise	X	X		
13	Single tone interference		X		

2 Block diagram for standard test measuring set-up

It is proposed that comparative tests be made using either all or parts of the measuring set-up shown in Figure 1/V.56.

a) 511-bit pseudo random text.

FIGURE 1/V.56

Measuring set-up for the standard tests of modems

3 Test parameters

3.1 Parameters of the line characteristics simulator

3.1.1 Symmetric line distortion

See Tables 2/V.56 and 3/V.56. The tolerances for all values are \pm 5%.

3.1.2 Asymmetric line distortion

See Tables 4/V.56 and 5/V.56. The tolerances for all values are \pm 5%.

3.1.3 Ripple distortion

The ripple distortion is within the tolerance scheme of Recommendation M.1020 [1]. See Tables 6/V.56 and 7/V.56. The tolerances for all values are \pm 5% \pm 0.1 ms.

TABLE 2/V.56

Frequency (Hz)		Attenuation distortion (dB)	
	Mode 1	Mode 2	Mode 3
	(see Note 1)	(see Note 2)	(see Note 5)
300 500 800 ≈ 1600	6 3 1 0	12 8 2 a) 0	K ₁ b) 0.35 K ₁ 0
2500	Unspecified	8	0.2 K ₁
2800	3	Unspecified	0.3 K ₁
3000	6	12	0.4 K ₁

a) To be clarified.

b) 300-3400-Hz band pass filter; the filter is left out if impulsive noise in the form of a square wave is used. For bit and block error count, see Recommendation V.52.

 $^{^{}b)}$ K_1 is a multiplier with values 1, 2, 3, 4, 5, 6 and 7.

TABLE 3/V.56

Frequency (Hz)	Attenuation distortion (dB)					
	Mode 1 (see Note 1)	Mode 2 (see Note 2)	Mode 3 (see Note 5)			
500	3	4.5	1.20 K ₁ ^{a)}			
600	1.5	3	1.90 K ₁			
1000	0.5	1.5	0.32 K ₁			
≈ 1800	0	0	0			
2600	0.5	1.5	0.12 K ₁			
2800	3	3	0.23 K ₁			
2900	Unspecified	4	0.31 K ₁			
3000	Unspecified	Unspecified	0.40 K ₁			

a) K_1 is a multiplier with values 1, 2, 3, 4, 5, 6 and 7.

TABLE 4/V.56

Frequency (Hz)	Attenuation distortion (dB)						
	Mode 1 (see Note 1)	Mode 2 (see Note 2)	Mode 3 (see Note 5)				
800 2000 2500 2800 3000	0 0.75 Unspecified 3 6	0 Unspecified 8 Unspecified 12	0 Unspecified 8 K ₂ ^{a)} Unspecified 12 K ₂				

 $^{^{}a)}$ K₂ is a multiplier with values 0.4, 0.8, 1.2 and 1.6.

TABLE 5/V.56

Frequency (Hz)		Group-delay distortion (ms)	
	Mode 1 (see Note 1)	Mode 2 (see Note 2)	Mode 3 (see Note 5)
500 1900 2600 2800 2900 3000	0 Unspecified 0.5 3 Unspecified Unspecified	0 Unspecified 1.5 3 4 Unspecified	0 0.075 K ₃ ^{a)} Unspecified 0.225 K ₃ Unspecified 0.30 K ₃

a) K_3 is a multiplier with values 0.5, 1, 2, 4 and 8. All values of Mode 3 are provisional.

TABLE 6/V.56

Frequency	Group-delay distortion (ms)
(Hz)	Mode 1
500	2.0
600	1.3
1000	0 (see Note 3)
1400	0.5 (see Note 4)
1800	0 (see Note 3)
2200	0.5 (see Note 4)
2600	0.3 (see Note 3)
2800	2.0

TABLE 7/V.56

Frequency	Group-delay distortion (ms)		
(Hz)	Mode 2		
500	2.0		
600	0,8		
800	0.8 (see Note 4)		
1000	0.6 (see Note 4)		
1200	0.5 (see Note 4)		
1400	0 (see Note 3)		
1600	0.5 (see Note 4)		
1800	0 (see Note 3)		
2000	0.5 (see Note 4)		
2200	0 (see Note 3)		
2400	0.5 (see Note 4)		
2600	0.3 (see Note 3)		
2800	2.0		

Notes to Tables 2/V.56 to 7/V.56

- Note 1 Mode 1 is in conformity with Recommendation M.1020 [1].
- Note 2 Mode 2 is in conformity with Recommendation M.1025 [2].
- *Note 3* Ripple valley values (minima).
- Note 4 Ripple peak values (maxima).
- *Note 5* Mode 3 is in conformity with the relevant European specifications.
- 3.2 Parameters of the fault simulator
 - a) Phase hits: with external control of timing (e.g. 0.25; 1; 100 Hz) adjustable continuously or in steps up to 165 degrees.

- b) Frequency shifts e.g. \pm 5 Hz, \pm 6 Hz or \pm 10 Hz by means of channel converters.
- c) Peak-to-peak phase jitter from 0.2 degree to 30 degrees continuously from 50 to 300 Hz, sinusoidal waveform.
- d) Sudden changes of attenuation: with external control of timing (e.g. 0.1; 0.25; 1; 100 Hz) adjustable continuously or in steps up to total attenuation.
- e) Interruptions: with fixed duration of 1 ms and repetition period of 1s and/or with single interruptions with variable duration.
- 3.3 *Noise sources* (this subject needs further study)
 - a) White noise.
 - b) Impulsive noise: with adjustable level and adjustable pulse duration between 100 μs and 1 ms and with repetition period of 1 second.
 - c) Statistically distributed noise by recording or by simulation which is information to assist in standardizing a "Random noise simulator" which would encourage the utilization of block error counts.
 - d) Single tone interference: with adjustable level of an additional signal frequency, variable between 300 and 3100 Hz.
 - e) Harmonic distortion:
 - i) using a calibrating signal frequency of 700 Hz with the same r.m.s. level as the data signal and with its adjustable harmonic levels: a_{H2} , a_{H3} and a_{H4} , and
 - ii) using a calibrating signal frequency of 700 Hz with the same peak-to-peak level as the data signal and with its adjustable harmonic levels: a_{H2} , a_{H3} , and a_{H4} .

3.4 Listener echo

Listener echo: with the variable echo attenuation between 0 and 20 dB and variable echo time delay τ_E between 0 and 20 ms (worst case relevant).

4 Measuring procedure

4.1 Measurement of the bit error rate (p_S) as a function of the signal-to-noise ratio (S/N) in the case of white noise

The receiving level at the summation point should be -30 dBm for switched line comparisons and -20 dBm for leased line comparisons.

For a comparison, the value of S/N ratio at defined p_S values can be ascertained (e.g. $3 \cdot 10^{-4}$ or 10^{-5}).

4.2 Measurement of the number of the bit error per second (F/t) as a function of the different faults and noise parameters (X)

The receiving level at the summation point should be -30 dBm for switched line comparisons and -20 dBm for leased line comparisons.

For a comparison, the value of F/t for different defined fault and noise parameters, or the value of the

different parameters at the limit of the error-free region, can be ascertained.

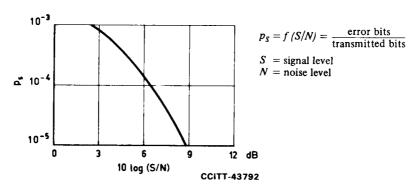


FIGURE 2/V.56

Example of bit error rate as a function of the signal-to-noise ratio

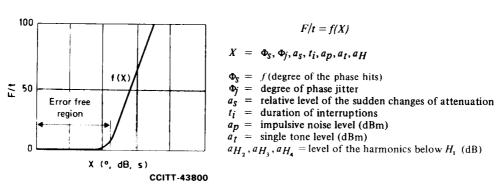


FIGURE 3/V.56

Example of bit error per second as a function of the value of different fault and noise parameters

TABLE 8/V.56 Eighteen selected tests according to §§ 1, 2, 3 and 4

Test	Test parameter according to Table 1/V.56	Test parameters according to §	Measuring procedure according to §
A	11	3.3a)	4.1
В	2, 3, 11	3.1.1 mode 1, 3.3a)	4.1
С	2, 3, 11	3.1.1 mode 2, 3.3a)	4.1
D	2, 3, 11	3.1.2 mode 1, 3.3a)	4.1
Е	2, 3, 11	3.1.2 mode 2, 3.3a)	4.1
F	2, 3, 4, 11	3.1.1 mode 1, 3.2b) (± 6 Hz), 3.3.a)	4.1
G	2, 3, 4, 11	3.1.1 mode 2, 3.2b) (± 10 Hz), 3.3.a)	4.1
Н	2, 3, 7	3.1.1 mode 1, 3.2a)	4.2
J	2, 3, 7	3.1.1 mode 1, 3.2a)	4.2
K	8	3.2c)	4.2
L	2, 3, 5	3.1.1 mode 1, 3.2d)	4.2
M	2, 3, 5	3.1.1 mode 2, 3.2d)	4.2
N	6	3.2e)	4.2
P	12	3.3b)	4.2
R	13	3.3d)	4.2
S	9	3.3 c) ii)	4.1
Т	10, 11	3.4, 3.3a)	4.1
U	Statistic noise	3.3c)	4.1 (for block errors)

References

- [1] CCITT Recommendation Characteristics of special quality international leased circuits with special bandwidth conditioning, Vol. IV, Rec. M.1020.
- [2] CCITT Recommendation Characteristics of special quality international leased circuits with basic bandwidth conditioning, Vol. IV, Rec. M.1025.