

TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU

T.88
Amendment 2
(06/2003)

SERIES T: TERMINALS FOR TELEMATIC SERVICES

Information technology – Lossy/lossless coding of bi-level images

Amendment 2: Extension of adaptive templates for halftone coding

ITU-T Recommendation T.88 (2000) - Amendment 2

INTERNATIONAL STANDARD ISO/IEC 14492 ITU-T RECOMMENDATION T.88

Information technology – Lossy/lossless coding of bi-level images Amendment 2

Extension of adaptive templates for halftone coding

Summary

The objective of this amendment is to further improve JBIG2's compression of periodic bi-level images, like the halftones used in printing. In particular, it improves compression for the clustered-dot halftones often used in very high resolution commercial printing. When applying the appropriate 16-pixel JBIG2 'template' for such applications, this amendment facilitates more compression by increasing the number of moveable (Adaptive Template, 'AT') pixels from 4 to 12. For periodic halftones at resolutions of over 2400 dpi, effectively exploiting these 12 AT pixels yields approximately 20% better compression than the best obtainable with the current 16-pixel JBIG2 template (by optimizing its maximum of 4 AT pixels). To signal the presence of this amendment's datastreams, new flag bits have been defined for both the overall JBIG2 File header and for relevant image Segment headers. The flag bits permit early detection of this amendment's datastreams, making it possible to quickly prevent current JBIG2 decoders from attempting to decode these new datastreams.

Source

Amendment 2 to ITU-T Recommendation T.88 (2000) was prepared by ITU-T Study Group 16 (2001-2004) and approved on 29 June 2003. An identical text is also published as ISO/IEC 14492, Amendment 2.

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of telecommunications. The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical, operating and tariff questions and issuing Recommendations on them with a view to standardizing telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years, establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain mandatory provisions (to ensure e.g. interoperability or applicability) and compliance with the Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some other obligatory language such as "must" and the negative equivalents are used to express requirements. The use of such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence, validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others outside of the Recommendation development process.

As of the date of approval of this Recommendation, ITU had received notice of intellectual property, protected by patents, which may be required to implement this Recommendation. However, implementors are cautioned that this may not represent the latest information and are therefore strongly urged to consult the TSB patent database.

© ITU 2003

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the prior written permission of ITU.

CONTENTS

		Page
1)	Subclause 4.2	1
2)	Subclause 6.2.2	2
3)	Subclause 6.2.5.3	2
4)	Subclause 6.2.5.4	3
5)	Subclause 6.2.5.7	4
6)	Subclause 7.4.6.2	4
7)	Subclause 7.4.6.2	4
8)	Subclause 7.4.6.3	5
9)	Subclause 7.4.6.4	6
10)	Annex D.4.2	6
11)	Annex F	7

INTERNATIONAL STANDARD ITU-T RECOMMENDATION

Information technology – Lossy/lossless coding of bi-level images Amendment 2

Extension of adaptive templates for halftone coding

1) Subclause 4.2

a) Eight symbols for additional adaptive template pixels (from A_5 to A_{12}) are added after A_4 as follows (with the additions underlined):

$A_1,\,A_2,\,A_3,\,A_4,\,\underline{A_5},\,\underline{A_6},\,\underline{A_7},\,\underline{A_8},\,\underline{A_9},\,\underline{A_{10}},\,\underline{A_{11}},\,\underline{A_{12}}$

Adaptive template pixels in the generic region decoding procedure

b) A new symbol "EXTTEMPLATE" is inserted after the symbol "EXRUNLENGTH" as follows (with the additions underlined):

EXRUNLENGTH The length of a run of identical export flag values

EXTTEMPLATE A parameter indicating whether extended reference template is used in a generic region decoding procedure

c) New 16 symbols "GBATX_i" and "GBATY_i" ($i=\{5,...,12\}$) are inserted after "GBATY₄" as follows (with the additions underlined):

GBATY ₄	The Y location of adaptive template pixel 4 in a generic region decoding procedure
GBATX ₅	The X location of adaptive template pixel 5 in a generic region decoding procedure
GBATY ₅	The Y location of adaptive template pixel 5 in a generic region decoding procedure
GBATX ₆	The X location of adaptive template pixel 6 in a generic region decoding procedure
GBATY ₆	The Y location of adaptive template pixel 6 in a generic region decoding procedure
GBATX ₇	The X location of adaptive template pixel 7 in a generic region decoding procedure
GBATY ₇	The Y location of adaptive template pixel 7 in a generic region decoding procedure
GBATX ₈	The X location of adaptive template pixel 8 in a generic region decoding procedure
GBATY ₈	The Y location of adaptive template pixel 8 in a generic region decoding procedure
GBATX9	The X location of adaptive template pixel 9 in a generic region decoding procedure
GBATY ₉	The Y location of adaptive template pixel 9 in a generic region decoding procedure
GBATX ₁₀	The X location of adaptive template pixel 10 in a generic region decoding procedure
GBATY ₁₀	The Y location of adaptive template pixel 10 in a generic region decoding procedure
GBATX ₁₁	The X location of adaptive template pixel 11 in a generic region decoding procedure
GBATY ₁₁	The Y location of adaptive template pixel 11 in a generic region decoding procedure
GBATX ₁₂	The X location of adaptive template pixel 12 in a generic region decoding procedure
GBATY ₁₂	The Y location of adaptive template pixel 12 in a generic region decoding procedure

2) Subclause 6.2.2

In Table 2, new symbols "EXTTEMPLATE", "GBATX_i" and "GBATY_i" ($i=\{5,...,12\}$) are inserted, and the notes of the table are revised as follows (with the additions and revisions underlined):

Table 2 – Parameters for the generic region decoding procedure

Name	Туре	Size (bits)	Signed?	Description and restrictions
(Leave untouched)				
TPGDON	Integer	1	N	Whether typical prediction is used. ^{a)}
EXTTEMPLATE	<u>Integer</u>	<u>1</u>	<u>N</u>	Whether extended reference template is used. e)
(Leave untouched)				
GBATY ₄	Integer	8	Y	The Y location of the adaptive template pixel A ₄ . b)
GBATX ₅	<u>Integer</u>	<u>8</u>	<u>Y</u>	The X location of the adaptive template pixel A ₅ . d)
GBATY ₅	<u>Integer</u>	<u>8</u>	<u>Y</u>	The Y location of the adaptive template pixel A ₅ . d)
GBATX ₆	<u>Integer</u>	<u>8</u>	<u>Y</u>	The X location of the adaptive template pixel A ₆ . d)
GBATY ₆	<u>Integer</u>	<u>8</u>	<u>Y</u>	The Y location of the adaptive template pixel A ₆ . d)
GBATX ₇	<u>Integer</u>	<u>8</u>	<u>Y</u>	The X location of the adaptive template pixel A ₇ . d)
GBATY ₇	Integer	<u>8</u>	<u>Y</u>	The Y location of the adaptive template pixel A ₇ . d)
GBATX ₈	<u>Integer</u>	<u>8</u>	<u>Y</u>	The X location of the adaptive template pixel A _{8.} d)
GBATY ₈	<u>Integer</u>	<u>8</u>	<u>Y</u>	The Y location of the adaptive template pixel A ₈ . d)
GBATX ₉	<u>Integer</u>	<u>8</u>	<u>Y</u>	The X location of the adaptive template pixel A ₉ . d)
GBATY9	<u>Integer</u>	<u>8</u>	<u>Y</u>	The Y location of the adaptive template pixel A ₉ . d)
GBATX ₁₀	<u>Integer</u>	<u>8</u>	<u>Y</u>	The X location of the adaptive template pixel A ₁₀ . d)
GBATY ₁₀	<u>Integer</u>	<u>8</u>	<u>Y</u>	The Y location of the adaptive template pixel A ₁₀ . d)
GBATX ₁₁	<u>Integer</u>	<u>8</u>	<u>Y</u>	The X location of the adaptive template pixel A ₁₁ . d)
GBATY ₁₁	<u>Integer</u>	<u>8</u>	<u>Y</u>	The Y location of the adaptive template pixel A ₁₁ . d)
GBATX ₁₂	<u>Integer</u>	<u>8</u>	<u>Y</u>	The X location of the adaptive template pixel A ₁₂ . d)
GBATY ₁₂	Integer	<u>8</u>	<u>Y</u>	The Y location of the adaptive template pixel A ₁₂ . d)

Unused if MMR = 1

3) Subclause 6.2.5.3

a) The identification number of Figure 3 is changed to "Figure 3(a)", and its caption is revised (with the additions and revisions underlined):

		A_4	X	X	X	A_3	
	A_2	X	X	X	X	X	\mathbf{A}_1
X	X	X	X	0			

Figure 3(a) – Template when GBTEMPLATE = 0 and EXTTEMPLATE = 0, showing the AT pixels at their nominal locations

b) Unused if MMR = 1 or GBTEMPLATE \neq 0

Unused if USESKIP = 0 or MMR = 1

Used only if MMR = $\mathbf{0}$ and GBTEMPLATE = $\mathbf{0}$ and EXTTEMPLATE = $\mathbf{1}$

 $[\]frac{\text{Osed only if MMR} - 0 \text{ and GBTEMPLATE} - 0 \text{ and GBTEMPLATE}}{\text{Used only if MMR} = 0 \text{ and GBTEMPLATE} = 0$

b) New Figure 3(b) is inserted as follows:

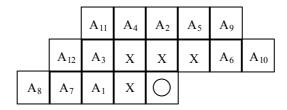


Figure 3(b) – Template when GBTEMPLATE = 0 and EXTTEMPLATE = 1, showing the AT pixels at their nominal locations

c) The second paragraph in subclause 6.2.5.3 is revised as follows (with the additions and revisions underlined):

Figure 3(a) shows the template which shall be used when **GBTEMPLATE** is 0 and **EXTTEMPLATE** is 0. Figure 3(b) shows the template which shall be used when **GBTEMPLATE** is 0 and **EXTTEMPLATE** is 1. Figure 4 shows the template which shall be used when **GBTEMPLATE** is 1. Figure 5 shows the template which shall be used when **GBTEMPLATE** is 3. In each of these figures, the pixel denoted by a circle corresponds to the pixel to be coded and is not part of the template. The pixels denoted by 'X' correspond to ordinary pixels in the template. The pixels denoted A_1 - A_{12} are special pixels in the template. They are denoted "adaptive" or AT pixels. These pixels are special in that their locations are not fixed, but can be placed at different locations. See 6.2.5.4 for a description of AT pixels. The legends A_1 - A_{12} indicate the AT pixels 1 to 12. The pixels' actual locations are specified as parameters to this decoding procedure; Figures 3-6 show the nominal locations of these AT pixels for each template.

4) Subclause 6.2.5.4

a) The second paragraph is revised as follows (with the additions and revisions underlined):

The pixels that are allowed to change are called AT pixels. Their nominal locations are indicated by 'A₁', 'A₂', 'A₃', 'A₄', 'A₅', 'A₆', 'A₇', 'A₈', 'A₉', 'A₁₀', 'A₁₁', and 'A₁₂' in Figures 3(a), 3(b), 4, 5 and 6. Note that some templates have fewer than sixteen AT pixels. In general, an AT pixel can be located anywhere in the field shown in Figure 7, not including the current pixel. Hence, there is the possibility to use an effective template size of 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, or 4 pixels by having the moved location of the AT pixel overlap a regular template pixel. The actual locations of the AT pixels for any invocation of this decoding procedure are specified as parameters to the decoding procedure. The location of the pixel A_1 is given by (GBATX₁, GBATY₁). If GBTEMPLATE is 0, then:

- the location of the pixel A₂ is given by (**GBATX₂**, **GBATY₂**);
- the location of the pixel A₃ is given by (**GBATX**₃, **GBATY**₃);
- and the location of the pixel A₄ is given by (**GBATX**₄, **GBATY**₄).

Additionally, if **GBTEMPLATE** is 0 and **EXTTEMPLATE** is 1, then:

- the location of the pixel A₅ is given by (GBATX₅, GBATY₅);
- the location of the pixel A₆ is given by (**GBATX**₆, **GBATY**₆);
- the location of the pixel A₇ is given by (**GBATX**₇, **GBATY**₇);
- the location of the pixel A₈ is given by (GBATX₈, GBATY₈);
- the location of the pixel A₉ is given by (GBATX₉, GBATY₉);
- the location of the pixel A₁₀ is given by (**GBATX**₁₀, **GBATY**₁₀);
- the location of the pixel A₁₁ is given by (GBATX₁₁, GBATY₁₁);
- the location of the pixel A₁₂ is given by (**GBATX**₁₂, **GBATY**₁₂).
- *b) Note 2 is revised as follows (with the additions and revisions underlined):*

NOTE 2 – The indices of the AT pixels in Figures 3(a) and 3(b) correspond to the expected goodness. If moving only one AT pixel from the nominal location shown in Figure 3(a), it is advisable to move A_4 . The next pixel to move is A_3 and so on.

c) Table 5 is revised as follows (with the additions and revisions underlined):

GBTEMPLATE		<u>0</u>		0		1		2		3			
EXTTE	EXTTEMPLATE		<u>1</u>		<u>0</u>		<u>0</u>		<u>0</u>		<u>0</u>		
GBATX ₁	GBATY ₁	<u>-2</u>	<u>0</u>	3	-1	3	-1	2	-1	2	-1		
GBATX ₂	GBATY ₂	0	<u>-2</u>	-3	-1	NA	NA	NA	NA	NA	NA		
GBATX ₃	GBATY ₃	<u>-2</u>	<u>-1</u>	2	-2	NA	NA	NA	NA	NA	NA		
GBATX ₄	GBATY ₄	<u>-1</u>	<u>-2</u>	-2	-2	NA	NA	NA	NA	NA	NA		
GBATX ₅	GBATY ₅	<u>1</u>	<u>-2</u>	<u>NA</u>	<u>NA</u>	<u>NA</u>	<u>NA</u>	<u>NA</u>	<u>NA</u>	<u>NA</u>	<u>NA</u>		
GBATX ₆	GBATY ₆	<u>2</u>	<u>-1</u>	<u>NA</u>	<u>NA</u>	<u>NA</u>	<u>NA</u>	<u>NA</u>	<u>NA</u>	<u>NA</u>	<u>NA</u>		
GBATX ₇	GBATY ₇	<u>-3</u>	<u>0</u>	<u>NA</u>	<u>NA</u>	<u>NA</u>	<u>NA</u>	<u>NA</u>	<u>NA</u>	<u>NA</u>	<u>NA</u>		
GBATX ₈	GBATY ₈	<u>-4</u>	<u>0</u>	<u>NA</u>	<u>NA</u>	<u>NA</u>	<u>NA</u>	<u>NA</u>	<u>NA</u>	<u>NA</u>	<u>NA</u>		
GBATX9	GBATY9	<u>2</u>	<u>-2</u>	<u>NA</u>	<u>NA</u>	<u>NA</u>	<u>NA</u>	<u>NA</u>	<u>NA</u>	<u>NA</u>	<u>NA</u>		
GBATX ₁₀	GBATY ₁₀	<u>3</u>	<u>-1</u>	<u>NA</u>	<u>NA</u>	<u>NA</u>	<u>NA</u>	<u>NA</u>	<u>NA</u>	<u>NA</u>	<u>NA</u>		
GBATX ₁₁	GBATY ₁₁	<u>-2</u>	<u>-2</u>	<u>NA</u>	<u>NA</u>	<u>NA</u>	<u>NA</u>	<u>NA</u>	<u>NA</u>	<u>NA</u>	<u>NA</u>		
GBATX ₁₂	GBATY ₁₂	<u>-3</u>	<u>-1</u>	<u>NA</u>	<u>NA</u>	<u>NA</u>	<u>NA</u>	<u>NA</u>	<u>NA</u>	<u>NA</u>	<u>NA</u>		
NOTE – NA m	eans that the para	meter ha	is no nomi	NOTE – NA means that the parameter has no nominal value.									

Table 5 – The nominal values of the AT pixel locations

5) Subclause 6.2.5.7

The step d) ii) is changed as follows (with the additions and revisions underlined):

- d) If LTP = 0 then, from left to right, decode each pixel of the current row of GBREG. The procedure for each pixel is as follows:
 - i) If **USESKIP** is **1** and the pixel in the bitmap **SKIP** at the location corresponding to the current pixel is **1**, then set the current pixel to **0**.
 - ii) Otherwise:
 - Place the template given by parameters GBTEMPLATE, GBATX₁ through <u>GBATX₁₂</u> and GBATY₁ through <u>GBATY₁₂</u> so that the current pixel is aligned with the location denoted by a circle in the figure describing the appearance of the template with identifier GBTEMPLATE.

6) Subclause 7.4.6.2

a) Figure 46 is replaced by the following figure:

Figure 46 – Generic region segment flags field structure

7) Subclause 7.4.6.2

The notations of Bit 4 are added for EXTTEMPLATE, and reserved bits are changed to Bits 5-7 as follows (with the additions and revisions underlined):

Bit 4 EXTTEMPLATE

This field specifies whether extended reference template is used.

Bits 5-7 Reserved; must be zero.

4 ITU-T Rec. T.88 (2000)/Amd.2 (06/2003)

8) **Subclause 7.4.6.3**

a) The first paragraph is changed as follows (with the additions and revisions underlined):

This field is only present if MMR is 0. If GBTEMPLATE is 0 and EXTTEMPLATE is 0, it is an eight-byte field, formatted as shown in Figure 47(a) and as described below.

The identification number of Figure 47 is changed to Figure 47(a) as follows (with the revision underlined):

GBATX ₁	GBATY ₁	GBAT X ₂	GBATY ₂	GBATX ₃	GBATY ₃	GBATX ₄	GBATY ₄

Figure 47(a) – Generic region AT flags field structure when GBTEMPLATE is 0 and EXTTEMPLATE is 0

c) New Figure 47(b) is inserted immediately after as follows:

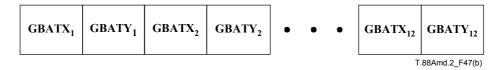


Figure 47(b) - Generic region AT flags field structure when GBTEMPLATE is 0 and EXTTEMPLATE is 1

d) The last paragraph is revised as follows (with the additions and revisions underlined):

If GBTEMPLATE is 0 and EXTTEMPLATE is 1, it is a 32-byte field, formatted as shown in Figure 47(b) and as described below.

- Byte 0 GBATX₁
- Byte 1 GBATY₁
- Byte 2 GBATX₂
- Byte 3 GBATY₂
- Byte 4 GBATX₃
- Byte 5 GBATY₃
- Byte 6 GBATX₄
- Byte 7 GBATY₄
- Byte 8 GBATX₅
- Byte 9 GBATY₅
- Byte 10 GBATX₆
- ____
- Byte 11 GBATY₆
- Byte 12 GBATX₇
- Byte 13 GBATY₇
 Byte 14 GBATX₈
- Byte 15 GBATY₈
- Byte 16 GBATX9
- ____
- Byte 17 GBATY₉
- Byte 18 GBATX₁₀
- Byte 19 GBATY₁₀

ISO/IEC 14492:2001/Amd.2:2003 (E)

Byte 20 GBATX₁₁

Byte 21 GBATY₁₁

Byte 22 GBATX₁₂

Byte 23 GBATY₁₂

The AT coordinate X and Y fields are signed values, and may take on values that are permitted according to Figure 7.

9) Subclause 7.4.6.4

The parameters "EXTTEMPLATE", "GBATX_i" and "GBATY_i" ($i=\{5,...,12\}$) are inserted in Table 34 as follows (with the additions underlined):

Table 34 – Parameters used to decode a generic region segment

Name	Value
MMR	As shown in 7.4.6.2.
GBTEMPLATE	As shown in 7.4.6.2.
TPGDON	As shown in 7.4.6.2.
EXTTEMPLATE	<u>As shown in 7.4.6.2.</u>
USESKIP	0
GBW	As specified by the region segment bitmap width in this segment's region segment data header.
GBH	As specified by the region segment bitmap height in this segment's region segment data header.
GBATX ₁	See 7.4.6.3.
GBATY ₁	See 7.4.6.3.
GBATX ₂	See 7.4.6.3.
GBATY ₂	See 7.4.6.3.
GBATX ₃	See 7.4.6.3.
GBATY ₃	See 7.4.6.3.
GBATX ₄	See 7.4.6.3.
GBATY ₄	See 7.4.6.3.
GBATX ₅	See 7.4.6.3.
GBATY ₅	See 7.4.6.3.
GBATX ₆	See 7.4.6.3.
GBATY ₆	See 7.4.6.3.
GBATX ₇	See 7.4.6.3.
GBATY ₇	See 7.4.6.3.
GBATX ₈	See 7.4.6.3.
GBATY ₈	See 7.4.6.3.
GBATX ₉	See 7.4.6.3.
GBATY ₉	See 7.4.6.3.
GBATX ₁₀	See 7.4.6.3.
GBATY ₁₀	See 7.4.6.3.
GBATX ₁₁	See 7.4.6.3.
GBATY ₁₁	See 7.4.6.3.
GBATX ₁₂	See 7.4.6.3.
GBATY ₁₂	See 7.4.6.3.

10) Annex D.4.2

The notations of Bit 2 are added to show the presence of the generic region segment using templates with 12 AT pixels, and reserved bits are changed to Bits 3-7 as follows (with the additions and revisions underlined):

<u>Bit 2</u> <u>If this bit is 0, no generic region segments uses the templates with 12 AT pixels. If the file contains one or more generic region segments using such templates, this bit must be 1.</u>

Bits $\underline{3}$ -7 Reserved; must be 0.

11) Annex F

4 adaptive pixels; see Figure 3).

New Table F.8 is inserted immediately after Table F.7 for a new profile as follows:

Table F.8 – Profile description for profile 0x00000008

Profile identification	0x0000008			
Requirements	Maximum compression for graphic arts			
Generic region coding	Arithmetic only; only 16-pixel template			
Refinement region coding	Not available			
Halftone region coding	No skip mask used			
Numerical data	Arithmetic only			
Resources required	Very high-speed processor			
Application examples	Pre-press in printing			
Additional constraints	Every page must have at least two stripes.			
	• Set GBTEMPLATE = 0 and EXTTEMPLATE = 1.			
	• Restrict AT pixel locations to immediately preceding 32 lines (from 0 to –31 in the vertical coordinate) in Figure 7.			
	Use only generic coding.			
NOTE - The profiles in Table F.1 and F.2 are unchanged (e.g., any 16-pel template used is limited to				

SERIES OF ITU-T RECOMMENDATIONS

Series A	Organization of the work of ITU-T
Series B	Means of expression: definitions, symbols, classification
Series C	General telecommunication statistics
Series D	General tariff principles
Series E	Overall network operation, telephone service, service operation and human factors
Series F	Non-telephone telecommunication services
Series G	Transmission systems and media, digital systems and networks
Series H	Audiovisual and multimedia systems
Series I	Integrated services digital network
Series J	Cable networks and transmission of television, sound programme and other multimedia signals
Series K	Protection against interference
Series L	Construction, installation and protection of cables and other elements of outside plant
Series M	TMN and network maintenance: international transmission systems, telephone circuits, telegraphy, facsimile and leased circuits
Series N	Maintenance: international sound programme and television transmission circuits
Series O	Specifications of measuring equipment
Series P	Telephone transmission quality, telephone installations, local line networks
Series Q	Switching and signalling
Series R	Telegraph transmission
Series S	Telegraph services terminal equipment
Series T	Terminals for telematic services
Series U	Telegraph switching
Series V	Data communication over the telephone network
Series X	Data networks and open system communications
Series Y	Global information infrastructure and Internet protocol aspects
Series Z	Languages and general software aspects for telecommunication systems

