

INTERNATIONAL TELECOMMUNICATION UNION

 T.87
TELECOMMUNICATION
STANDARDIZATION SECTOR
OF ITU

(06/98)

SERIES T: TERMINALS FOR TELEMATIC SERVICES

Information technology – Lossless and
near-lossless compression of continuous-tone
still images – Baseline

ITU-T Recommendation T.87
(Previously CCITT Recommendation)

ITU-T T-SERIES RECOMMENDATIONS

TERMINALS FOR TELEMATIC SERVICES

For further details, please refer to ITU-T List of Recommendations.

 ITU-T Rec. T.87 (1998 E) i

INTERNATIONAL STANDARD 14495-1

ITU-T RECOMMENDATION T.87

INFORMATION TECHNOLOGY – LOSSLESS AND NEAR-LOSSLESS
COMPRESSION OF CONTINUOUS-TONE STILL IMAGES – BASELINE

Summary
This ITU-T Recommendation | ISO/IEC International Standard defines a set of lossless (bit-preserving) and nearly
lossless (where the error for each reconstructed sample is bounded by a pre-defined value) compression methods for
coding continuous-tone, gray-scale, or colour digital still images.

This ITU-T Recommendation | ISO/IEC International Standard:

– specifies a process for converting source image data to compressed image data;

– specifies processes for converting compressed image data to reconstructed image data;

– specifies coded representations for compressed image data;

– provides guidance on how to implement these processes in practice.

Source
The ITU-T Recommendation T.87 was approved on the 18th of June 1998. The identical text is also published as
ISO/IEC International Standard 14495-1.

ii ITU-T Rec. T.87 (1998 E)

FOREWORD

ITU (International Telecommunication Union) is the United Nations Specialized Agency in the field of telecommuni-
cations. The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of the ITU. The ITU-T is
responsible for studying technical, operating and tariff questions and issuing Recommendations on them with a view to
standardizing telecommunications on a worldwide basis.

The World Telecommunication Standardization Conference (WTSC), which meets every four years, establishes the
topics for study by the ITU-T Study Groups which, in their turn, produce Recommendations on these topics.

The approval of Recommendations by the Members of the ITU-T is covered by the procedure laid down in WTSC
Resolution No. 1.

In some areas of information technology which fall within ITU-T’s purview, the necessary standards are prepared on a
collaborative basis with ISO and IEC.

NOTE

In this Recommendation the term recognized operating agency (ROA) includes any individual, company, corporation or
governmental organization that operates a public correspondence service. The terms Administration, ROA and public
correspondence are defined in the Constitution of the ITU (Geneva, 1992).

INTELLECTUAL PROPERTY RIGHTS=

The ITU draws attention to the possibility that the practice or implementation of this Recommendation may involve the
use of a claimed Intellectual Property Right. The ITU takes no position concerning the evidence, validity or applicability
of claimed Intellectual Property Rights, whether asserted by ITU members or others outside of the Recommendation
development process.

As of the date of approval of this Recommendation, the ITU had not received notice of intellectual property, protected by
patents, which may be required to implement this Recommendation. However, implementors are cautioned that this may
not represent the latest information and are therefore strongly urged to consult the TSB patent database.

 ITU 1999

All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means, electronic or
mechanical, including photocopying and microfilm, without permission in writing from the ITU.

 ITU-T Rec. T.87 (1998 E) iii

CONTENTS

Page
1 Scope .. 1

2 Normative references .. 1
2.1 Identical Recommendations | International Standards ... 1
2.2 Additional references... 1

3 Definitions, abbreviations, symbols and conventions ... 2
3.1 Definitions ... 2
3.2 Abbreviations .. 4
3.3 Symbols ... 5

4 General description... 7
4.1 Purpose .. 7
4.2 Coding principles... 7
4.3 Source image ... 8
4.4 Encoding process... 9
4.5 Decoding process .. 10
4.6 Coding of multiple component images .. 10
4.7 Compressed image data ... 10
4.8 Interchange format... 10

5 Interchange format requirements .. 11

6 Encoder requirements ... 11

7 Decoder requirements ... 11

8 Conformance testing ... 12
8.1 Purpose .. 12
8.2 Encoder conformance tests .. 12
8.3 Decoder conformance tests.. 12

Annex A – Encoding procedures for a single component .. 16
A.1 Coding parameters and compressed image data .. 16
A.2 Initialisations and conventions... 16
A.3 Context determination ... 18
A.4 Prediction .. 19
A.5 Prediction error encoding .. 21
A.6 Update variables .. 22
A.7 Run mode .. 23
A.8 Flow of encoding procedures... 26

Annex B – Multi-component images.. 28
B.1 Introduction ... 28
B.2 Line interleaved mode ... 28
B.3 Sample interleaved mode... 29
B.4 Minimum Coded Unit (MCU) ... 30

Annex C – Compressed data format... 31
C.1 General aspects of the compressed data format specification.. 31
C.2 General JPEG-LS coding syntax ... 31
C.3 Abbreviated format for compressed image data .. 37
C.4 Abbreviated format for table-specification data .. 37

iv ITU-T Rec. T.87 (1998 E)

Page

Annex D – Control procedures .. 38
D.1 Control procedure for encoding an image ... 38
D.2 Control procedure for encoding a frame.. 38
D.3 Control procedure for encoding a scan.. 38
D.4 Control procedure for encoding a restart interval .. 41
D.5 Control procedure for encoding a Minimum Coded Unit (MCU) ... 41

Annex E – Conformance Tests... 43
E.1 Test images.. 43

Annex F – Decoding procedures.. 46
F.1 Process flow .. 46

Annex G – Description of the coding process.. 48
G.1 Context modelling ... 48
G.2 Encoding in the regular coding mode .. 49
G.3 Encoding in the run mode.. 51

Annex H – Examples and guidelines.. 52
H.1 Introduction ... 52
H.2 Example of how bits are output in the bit stream... 52
H.3 Detailed coding example ... 52
H.4 Example image data... 59
H.5 Use of SPIFF with JPEG-LS compressed image data ... 65

Annex I – Bibliography.. 67

Included diskette:

– JPEG-LS reference implementation

– JPEG-LS conformance testing image set

– Auxiliary programs and examples.

 ISO/IEC 14495-1 : 1999 (E)

 ITU-T Rec. T.87 (1998 E) 1

INTERNATIONAL STANDARD
ISO/IEC 14495-1 : 1999 (E)

ITU-T Rec. T.87 (1998 E)

ITU-T RECOMMENDATION

INFORMATION TECHNOLOGY – LOSSLESS AND NEAR-LOSSLESS
COMPRESSION OF CONTINUOUS-TONE STILL IMAGES – BASELINE

1 Scope

This Recommendation | International Standard defines a set of lossless (bit-preserving) and nearly lossless (where the
error for each reconstructed sample is bounded by a pre-defined value) compression methods for coding continuous-tone,
gray-scale, or colour digital still images.

This Recommendation | International Standard

– specifies a process for converting source image data to compressed image data;

– specifies processes for converting compressed image data to reconstructed image data;

– specifies coded representations for compressed image data;

– provides guidance on how to implement these processes in practice.

2 Normative references

The following Recommendations and International Standards contain provisions which, through references in this text,
constitute provisions of this Recommendation | International Standard. At the time of publication, the editions indicated
were valid. All Recommendations and Standards are subject to revision, and parties to agreements based on this
Recommendation | International Standard are encouraged to investigate the possibility of applying the most recent edition
of the Recommendations and Standards listed below. Members of IEC and ISO maintain registers of currently valid
International Standards. The Telecommunication Standardization Bureau of the ITU maintains a list of the currently valid
ITU-T Recommendations.

2.1 Identical Recommendations | International Standards
– CCITT Recommendation T.81 (1992) | ISO/IEC 10918-1:1994, Information technology – Digital

compression and coding of continuous-tone still images: Requirements and guidelines.

– ITU-T Recommendation T.83 (1994) | ISO/IEC 10918-2:1995, Information technology – Digital
compression and coding of continuous-tone still images: Compliance testing.

– ITU-T Recommendation T.84 (1996)| ISO/IEC 10918-3:1997, Information technology – Digital
compression and coding of continuous-tone still images: Extensions.

– ITU-T Recommendation T.84/Amd.11 | ISO/IEC 10918-3/Amd.11, Information technology – Digital
compression and coding of continuous-tone still images: Extensions – Amendment 1.

2.2 Additional references
– ISO/IEC 646:1991, Information technology – ISO 7-bit coded character set for information interchange.

– ISO 5807:1985, Information processing – Documentation symbols and conventions for data, program
and system flowcharts, program network charts and system resources charts.

– ISO/IEC 9899:1990, Programming languages – C.

__

1 Currently at the stage of draft.

ISO/IEC 14495-1 : 1999 (E)

2 ITU-T Rec. T.87 (1998 E)

3 Definitions, abbreviations, symbols and conventions

3.1 Definitions

For the purposes of this Recommendation | International Standard, the following definitions apply.

3.1.1 i , floor: Indicates the largest integer not exceeding i.

3.1.2 ���� i ���� , ceiling: Indicates the smallest integer not exceeded by i.

3.1.3 abs(i): The absolute value of i : –i if i < 0, i otherwise.

3.1.4 abbreviated format: A representation of compressed image data which is missing some or all of the mapping
table specifications required for decoding, or a representation of mapping tables without frame headers, scan headers, and
coded image data.

3.1.5 application environment: The standards for data representation, communication, or storage, which have been
established for a particular application.

3.1.6 bias: Deviation from zero of accumulated prediction errors.

3.1.7 bit stream: Partially encoded or decoded sequence of bits.

3.1.8 causal template: A set of fixed relative positions of samples (with respect to the current sample being coded)
which have been previously coded according to a pre-specified scan sequence.

3.1.9 coded image data segment: The coded representation of one restart interval.

3.1.10 coding: Encoding or decoding.

3.1.11 coding parameters: Integers used to specify the encoding process.

3.1.12 (coding) process: A general term for referring to an encoding process, a decoding process, or both.

3.1.13 colour image: A continuous-tone image that has more than one component.

3.1.14 columns: Samples per line in a component.

3.1.15 component: One of the two-dimensional arrays which comprise an image.

3.1.16 compressed data: Either compressed image data or parameter specification data or both.

3.1.17 compressed image (data): A coded representation of an image, as specified in this Recommendation |
International Standard.

3.1.18 compression: Reduction in the number of bits used to represent source image data.

3.1.19 context: Function of samples in the causal template used to determine the coding of the present sample.

3.1.20 context modelling: Procedure estimating a probability distribution of prediction error from the context.

3.1.21 continuous-tone image: An image whose components have more than one bit per sample.

3.1.22 decoder: An embodiment of a decoding process and a sample transformation process.

3.1.23 decoding process: A process which takes as its input compressed image data and outputs a reconstructed
image.

3.1.24 encoder: An embodiment of an encoding process.

3.1.25 encoding process: A process which takes as its input a source image and outputs compressed image data.

3.1.26 frame: A group of one or more scans through the data of one or more of the components in an image.

3.1.27 frame header: A marker segment that contains a start-of-frame marker and associated frame parameters that
are coded at the beginning of a frame.

3.1.28 Golomb coding: A special case of Huffman coding matched to geometric distributions.

3.1.29 (local) gradient: Either a vector of differences between values of samples in the causal template, or each
difference separately.

 ISO/IEC 14495-1 : 1999 (E)

 ITU-T Rec. T.87 (1998 E) 3

3.1.30 gray-scale image: A continuous-tone image that contains only one component.

3.1.31 horizontal sampling factor: The relative number of horizontal samples of a particular component with respect
to the number of horizontal samples in the other components.

3.1.32 Huffman encoding: A prefix coding procedure which assigns a variable length code to each input symbol, so
that the total code length is minimised.

3.1.33 image: A set of two-dimensional arrays of integer data.

3.1.34 image data: Either source image data or reconstructed image data.

3.1.35 interchange format: The representation of compressed image data for exchange between application
environments.

3.1.36 interleaved: The descriptive term applied to the repetitive multiplexing of groups of data from each component
in a scan in a specified order.

3.1.37 JPEG-LS: Used to refer globally to the encoding and decoding processes in this Recommendation |
International Standard and their embodiment in applications.

3.1.38 JPEG-LS preset coding parameters: Coding parameters for which a normative set of default values is
specified.

3.1.39 JPEG-LS preset parameters: A coding parameter or a mapping table specified in an LSE marker segment.

3.1.40 line interleaved: The mode of operation in which the interleaved entities are lines.

3.1.41 lossless: A descriptive term for the encoding and decoding processes in which the output of the decoding
process is identical to the input to the encoding process.

3.1.42 lossless coding: The mode of operation which refers to any one of the coding processes defined in this
Recommendation | Standard in which all of the procedures are lossless.

3.1.43 lossy: A descriptive term for encoding and decoding processes which are not lossless.

3.1.44 mapping table: A table used in a sampling mapping procedure.

3.1.45 marker: A two-byte code in which the first byte is hexadecimal FF (X'FF') and the second byte is a value
between 1 and hexadecimal FE (X'FE')

3.1.46 marker segment: A marker and associated set of parameters.

3.1.47 max(i,j): The largest of i or j : i if i > j, j otherwise.

3.1.48 min(i,j): The smallest of i or j : i if i < j, j otherwise.

3.1.49 minimum coded unit: The smallest group of samples that is coded.

3.1.50 near-lossless: A description term for lossy encoding and decoding processes and procedures in which the
output of the decoding process is such that each reconstructed image sample differs from the corresponding one in the
input to the encoding process by not more than a pre-specified value.

3.1.51 near-lossless coding: The mode of operation which refers to any one of the encoding process, decoding
process, or both, defined in this Recommendation | International Standard in which some of the procedures are near-
lossless.

3.1.52 non-interleaved: The descriptive term applied to the data processing sequence when the scan has only one
component.

3.1.53 parameter specification data: The coded representation of the parameters used in the encoder and decoder.

3.1.54 point transform: Scaling of a sample.

3.1.55 precision: Number of bits allocated to a particular sample.

3.1.56 predicted sample value: The output from the predictor.

3.1.57 prediction correction: The procedure that compensates for systematic biases in prediction.

3.1.58 prediction error: Difference between the current sample and the predicted sample value.

ISO/IEC 14495-1 : 1999 (E)

4 ITU-T Rec. T.87 (1998 E)

3.1.59 predictor: The procedure that computes a predicted sample value from previously reconstructed samples.

3.1.60 procedure: A set of steps which accomplishes one of the tasks which comprise an encoding or decoding
process.

3.1.61 reconstructed image (data): An image which is the output of a decoding process or a sample transformation
process.

3.1.62 reconstructed sample: The sample value reconstructed by the decoder. This equals the original sample value
in lossless coding, or differs from the original sample value by at most NEAR in magnitude in near-lossless coding.

3.1.63 regular mode: Mode of operation when coding samples while not in the run mode.

3.1.64 restart interval: The integer number of MCUs processed as an independent sequence within a scan.

3.1.65 restart marker: The marker that separates two restart intervals in a scan.

3.1.66 run: A sequence of consecutive samples whose values are identical for lossless coding, or are within the limits
required for near-lossless coding, and which is contained in the current image line.

3.1.67 run length: Number of samples in a run.

3.1.68 run mode: Mode of operation while coding runs.

3.1.69 run interruption sample: The sample following the last sample in a run when the run terminates before the
end of line.

3.1.70 sample: One element in the two-dimensional array which comprises a component.

3.1.71 sample interleaved: The mode of operation in which the interleaved entities are samples.

3.1.72 sample mapping procedure: A procedure that maps each sample value output by a decoding process to a
reconstructed sample value by means of mapping tables.

3.1.73 sample transformation process: A sample mapping procedure followed by an inverse point transform.

3.1.74 sample value: A non-negative integer indicating the image information in an image sample.

3.1.75 scan: A single pass through the data for one or more of the components in the image.

3.1.76 scan header: A marker segment that contains a start-of-scan marker and associated scan parameters that are
coded at the beginning of a scan.

3.1.77 source image (data): An image used as input to an encoder.

3.1.78 unary code: The unary code of a non-negative integer number n is composed of n zero bits followed by a one
bit.

3.1.79 vertical sampling factor: The relative number of vertical samples of a particular component with respect to the
number of vertical samples in the other components in the frame.

3.2 Abbreviations

For the purposes of this Recommendation | International Standard, the following abbreviations apply.

BPS Bits Per Sample

JPEG Joint Photographic Experts Group – The joint ISO/ITU committee responsible for developing
standards for continuous-tone still picture coding. It also refers to the standards produced by this
committee: CCITT Rec. T.81 | ISO/IEC 10918-1, ITU-T Rec. T.83 | ISO/IEC 10918-2, and ITU-T
Rec. T.84 | ISO/IEC 10918-3.

LSB Least Significant Bit

MCU Minimum Coded Unit

MSB Most Significant Bit

PGM Portable Grey Map

PPM Portable Pix Map

SPIFF Still Picture Interchange File Format

 ISO/IEC 14495-1 : 1999 (E)

 ITU-T Rec. T.87 (1998 E) 5

3.3 Symbols

The following symbols used in this Recommendation | International Standard are listed below. A convention is used that
parameters which are fixed in value during the encoding of a scan are indicated in boldface capital letters, and variables
which change in value during the encoding of a scan are indicated in italicised letters.

a, b, c, d positions of samples in the causal template
A[0..366] 367 counters storing accumulated prediction error magnitudes
Ah ignored field in scan header
Al successive approximation bit position, low
AppendToBitStream() a function in the C programming language
APPn marker reserved for application segments
B[0..364] 365 counters for storing bias values
BASIC_T1, BASIC_T2,
BASIC_T3 basic default threshold values
bpp number of bits needed to represent MAXVAL (not less than 2)
C SPIFF parameter
C[0..364] 365 counters storing prediction correction values
Ci component identifier
CLAMP out-of-range value clamping function
COM comment marker
ComputeRx() a function in the C programming language
D1, D2, D3 local gradients
DNL define-number-of-lines marker
DRI define restart interval marker
EMErrval Errval mapped to non-negative integers in run interruption mode
ENTRIES number of yet unspecified mapping table entries
EOI end-of-image marker
EOLine end of line indicator, used in run mode
Errval prediction error (quantized or unquantized, before and after modulo reduction)
g the order of a Golomb code
GetNextSample() a function in the C programming language
G(k) Golomb code function
glimit number of bits to which the length of a Golomb code word is limited
Hi horizontal sampling factor for the ith component
Hmax largest horizontal sampling factor
i, j, n integers
i..j the set of integers between i and j, including i and j.
ILV indication of the interleave mode used for the scan
Ix the value of the current sample in the input image
J[0..31] 32 variables indicating order of run-length codes
JPG marker reserved for JPEG extensions
JPGn marker reserved for JPEG extensions
k Golomb coding variable for regular mode
LG(k, glimit) limited length Golomb code function
LIMIT the value of glimit for a sample encoded in regular mode
Ll JPEG-LS preset parameters marker segment length specifier
LSE JPEG-LS preset parameters marker

ISO/IEC 14495-1 : 1999 (E)

6 ITU-T Rec. T.87 (1998 E)

m modulo counter for restart marker

MErrval Errval mapped to non-negative integers in regular mode

map auxiliary variable for error mapping at run interruption

MAXTAB, MAXTABX maximum index to a mapping table

MAXVAL maximum possible image sample value over all components of a scan

MAX_C maximum allowed value of C[0..364], equal to 127

MIN_C minimum allowed value of C[0..364], equal to –128

ModRange() a function in the C programming language

N[0..366] 367 counters for frequency of occurrence of each context

Nb number of samples in an MCU

Nf number of components in a frame

Nn[365..366] 2 counters for negative prediction error for run interruption

NEAR difference bound for near-lossless coding

Ns number of components in a scan

℘ probability distribution

P sample precision

Pt point transform parameter

Px predicted value for the current sample

Q context, determined from Q1, Q2, Q3

Q1, Q2, Q3 region numbers to quantize local gradients

qbpp number of bits needed to represent a mapped error value

Qi one of the three quantized region numbers Q1, Q2, Q3

Quantize() a function in the C programming language

Ra, Rb, Rc, Rd reconstructed values of samples in the causal template

RANGE range of prediction error representation

RegularModeProcessing a label in the C programming language

RESET threshold value at which A, B, and N are halved

RItype index for run interruption coding

rk rg is the rk-th power of 2

rg Golomb code order for run mode, a power of 2

RSTm restart marker number m

RunModeProcessing a label in the C programming language

RUNcnt repetitive sample count for run mode

RUNindex index for run mode order
RUNval repetitive reconstructed sample value in a run
Rx reconstructed value of the current sample
SIGN auxiliary variable used to hold the sign of a context

SOF55 JPEG-LS frame marker

SOI start-of-image marker

SOS start-of-scan marker

TABLE[0..MAXTAB] mapping table

T1, T2, T3 thresholds for local gradients

TdiTai replaced field in scan header
TEMP auxiliary variable used in the calculation of the Golomb variable in run interruption

coding

 ISO/IEC 14495-1 : 1999 (E)

 ITU-T Rec. T.87 (1998 E) 7

TID mapping table identification number

Tmi mapping table selector for the ith component

Tqi field in frame header (not used in the procedures of this Recommendation |
International Standard).

VERS SPIFF parameter

Vi vertical sampling factor for the ith component

Vmax largest vertical sampling factor

Wt width of table entries, in bytes

Wxy number of bytes used to represent Y and X

x current sample position

xi number of samples per line in the ith component

X number of samples per line in the component with largest horizontal dimension

Xe number of samples per line in the component with largest horizontal dimension,
specified in an LSE marker segment

X'values' values within the quotes are hexadecimal

Y number of lines in the component with the largest vertical dimension

Ye number of lines in the component with the largest vertical dimension, specified in an
LSE marker segment

yi number of lines in the ith component

4 General description

4.1 Purpose

There are three main elements specified in this Recommendation | International Standard:

a) Encoder: An embodiment of an encoding process. An encoder takes as input source image data and
parameter specifications and, by means of a specified set of procedures, generates as output compressed
image data. Encoding procedures are specified in Annexes A, B, and D.

b) Decoder: An embodiment of a decoding process and a sample transformation process. A decoder takes as
input compressed image data and parameter specifications and, by means of a specified set of procedures,
generates as output reconstructed image data. Decoding procedures are described in Annex F.

c) Interchange format: A compressed image data representation which includes all parameter specifications
used in the encoding process. The interchange format is for exchange between application environments.
The interchange format is specified in Annex C.

4.2 Coding principles

The main procedures for the lossless (and near-lossless) encoding process specified in this Recommendation |
International Standard are shown in Figure 1. Procedures in Figure 1 are presented in this clause in the order the encoding
process is carried out (see Annex A).

In this Recommendation | International Standard, a source image is input to the encoder sample after sample in a pre-
defined scan pattern, and lossless image compression is formulated as an inductive inference problem as follows. When
coding the current sample, after having scanned past data, inferences can be made on the value of this sample by
assigning a conditional probability ℘ for the value of the current image sample, conditioned on previously received
samples. This inference method is called modelling. The minimum average code length contribution of the current sample
is –log2(℘). For near-lossless image compression this principle is modified to use reconstructed values of the preceding
samples (instead of the original values) as conditioning data. During the encoding process, shorter codes are assigned to
more probable events. The decoder can reconstruct the conditional probability used to encode the current samples, since
it depends only on already decoded data.

ISO/IEC 14495-1 : 1999 (E)

8 ITU-T Rec. T.87 (1998 E)

T0828120-98/d01

predictiondigital source
image data

compressed
image data

context
modelling

error
encoding

run
mode

Figure 1 – Simplified encoder diagram

Figure 1 [D01]

4.3 Source image

Source images to which the encoding process specified in this Recommendation | International Standard can be applied
are defined in this clause.

4.3.1 Dimensions and sampling factors

As shown in Figure 2, a source image is defined to consist of Nf components. Each component, with unique identifier Ci,
is defined to consist of a rectangular array of samples of xi columns by yi lines. The component dimensions are derived
from two parameters, X and Y, where X is the maximum of the xi values and Y is the maximum of the yi values for all
components in the frame. For each component, sampling factors Hi and Vi are defined relating component dimensions xi
and yi to maximum dimensions X and Y, according to the following expressions:

 x X H
H

 y Y V
Vi

i

max
i

i

max
= × = ×

�

�
�

�
 and

where Hmax and Vmax are the maximum sampling factors for all components in the frame.

As an example, consider an image having 3 components with maximum dimensions of 512 lines and 512 columns, and
with the following sampling factors:

– Component 0 H0 = 4, V0 = 1
– Component 1 H1 = 2, V1 = 2
– Component 2 H2 = 1, V2 = 1

Then X = 512, Y = 512, Hmax = 4, Vmax = 2, and xi and yi for each component are:

– Component 0 x0 = 512, y0 = 256
– Component 1 x1 = 256, y1 = 512
– Component 2 x2 = 128, y2 = 256

NOTE – The X, Y, Hi, and Vi parameters are contained in the frame header of the compressed image data, whereas the individual
component dimensions xi and yi are derived by the decoder. Source images with dimensions which do not satisfy the expressions
above for xi and yi cannot be properly reconstructed.

4.3.2 Sample precision and point transform

A sample is an integer with precision P bits, with any value in the range 0 through 2P – 1. All samples of all components
within an image shall have the same precision P. P is restricted to the range 2-16 bits.

Samples may optionally be divided by a power of 2 by a point transform applied prior to encoding. The point transform is
an integer divide by 2Pt, where Pt is the value of the point transform parameter. The output of the decoding process is re-
scaled by multiplying by 2Pt.

4.3.3 Orientation

Figure 2 indicates the orientation of an image component by the terms top, bottom, left, and right. The order by which the
samples of an image component are input to the encoding procedures is defined to be left-to-right and top-to-bottom
within the component. File formats (such as SPIFF, see 4.8.1) determine which edges of a source image are defined as
top, bottom, left, and right.

 ISO/IEC 14495-1 : 1999 (E)

 ITU-T Rec. T.87 (1998 E) 9

xiCNf

C2
C1

. . .
 . .

. .
. .

y i

Ci

T0828130-98/d02

CNf–1

b) Characteristics of an image componenta) Source image with multiple components

RightLeft

Bottom

Line
Top

Samples

Figure 2 – Source image characteristics

Figure 2 [D02]

4.4 Encoding process

4.4.1 Context modelling – Basics

The encoding process is described in outline below. The encoding process is specified in Annexes A, B, and D. An
informative Annex, G, is included for additional explanation.

In this Recommendation | International Standard, the modelling approach used is based on the notion of "context". In
context modelling, the encoding of each sample value is performed by conditioning on a small number of neighbouring
samples. The context modelling procedure determines a probability distribution used to encode the current sample, whose
position, x, is shown in Figure 3. The context is determined from four neighbourhood reconstructed samples at positions
a, b, c, and d of the same component, as shown in Figure 3. From the values of the reconstructed samples at a, b, c, and d,
the context first determines if the information in the sample x should be encoded in the regular or run mode:

– the run mode is selected when it is estimated from the context that successive samples are very likely to be
nearly identical within the tolerances required for near-lossless coding (identical, for lossless coding);

– the regular mode is selected when it is estimated from the context that samples are not very likely to be
nearly identical within the tolerances required for near-lossless coding (identical, for lossless coding).

4.4.2 Regular mode: Prediction and error encoding

In the regular mode, the context determination procedure is followed by a prediction procedure. The predictor combines
the reconstructed values of the three neighbourhood samples at positions a, b, and c to form a predicted sample value at
position x as shown in Figure 3. The prediction error is computed as the difference between the actual sample value at
position x and its predicted value. This prediction error is then corrected by a context-dependent term to compensate for
systematic biases in prediction. In the case of near-lossless coding, the prediction error is then quantized.

c b

T0828140-98/d03

d

a x

Figure 3 – Causal template used
for context modelling and prediction

Figure 3 [D03]

The corrected prediction error (further quantized for near-lossless coding) is then encoded using a procedure derived
from Golomb coding (specified in Annex A and further described in Annex G).

NOTE – Golomb coding corresponds to Huffman coding for a geometric distribution.

ISO/IEC 14495-1 : 1999 (E)

10 ITU-T Rec. T.87 (1998 E)

The Golomb coding procedures specified in this Recommendation | International Standard depend on the context as well
as prediction errors previously encoded for the same context.

4.4.3 Run mode

If the reconstructed values of the samples at a, b, c, and d are identical for lossless coding, or the differences between
them (the local gradients, specified in Annex A) are within the bounds set for near-lossless coding, the context modelling
procedure selects the run mode and the encoding process skips the prediction and error encoding procedures. In run
mode, the encoder looks, starting at x, for a sequence of consecutive samples with values identical (or within the bound
specified for near-lossless coding) to the reconstructed value of the sample at a. A run is ended by a sample of a different
value (or one which exceeds the bound specified for near-lossless coding), or by the end of the current line, whichever
comes first. The length information, which also specifies one of the above two run-ending alternatives, is encoded using a
procedure specified in Annex A, which is extended from Golomb coding but has improved performance and adaptability.

4.5 Decoding process

The encoding and decoding processes are approximately symmetrical. Annex A specifies the encoding process, and
Annex F describes the decoding process. The decoding process is followed by a sample mapping procedure which uses
the value of each decoded sample as an index to a look-up table, provided in the compressed image data. The
corresponding table entry might be of a different precision to that of the encoded sample.

NOTE – The sample mapping procedure is aimed at facilitating the use of this Recommendation | International Standard for the
encoding of palletised and symbolic images. In the case of palletised images, the encoder would encode only one component, and
the difference in precision would permit, for example, the display of single-component images as pseudo-colour ones. In the case
of symbolic images, each decoded sample is a representation of the real image value, which is in the corresponding entry in the
look-up table.

If no table is provided for a specific component, the output of the sample mapping procedure is identical to the input. The
use of sample mapping is specified in Annex C.

4.6 Coding of multiple component images

The coding processes described in this Recommendation | International Standard can be applied to multiple components
of an image, as well as to a single component image. Annex B describes how the coding processes shall be applied to
images containing multiple components.

4.7 Compressed image data

The compressed image data output by the encoding process consists of marker segments and coded image data segments.
The marker segments contain information required by the decoding process, including the image dimensions. The marker
syntax is specified in Annex C, while the procedures for encoding the image data are specified in Annexes A, B, and D.

4.8 Interchange format

The interchange format is specified in Annex C based on Annex B of CCITT Rec. T.81 | ISO/IEC 10918-1. The
interchange format allows a decoder to decode the compressed image data, regardless of specific application
environments. Applications requiring further image information, for example for identifying an image to higher
level applications, are recommended to use the SPIFF image file format, specified in Annex F of ITU-T Rec. T.84 |
ISO/IEC 10918-3.

The following extension has been made to the SPIFF file format to allow its use with image data coded according to this
Recommendation | International Standard:

4.8.1 Addition to SPIFF file header

In the file header described in Annex F.2.1 of ITU-T Rec. T.84 | ISO/IEC 10918-3, an additional value is allocated to
parameter C describing the compression type. For data streams coded in accordance with this Recommendation |
International Standard, C has the value X'06'. This has been standardised in ITU-T Rec. T.84 | ISO/IEC 10918-3 Amd.1,
which also changes the version number VERS field in the SPIFF header to X'0200'.

 ISO/IEC 14495-1 : 1999 (E)

 ITU-T Rec. T.87 (1998 E) 11

5 Interchange format requirements

The interchange format is the coded representation of compressed image data for exchange between application
environments.

The interchange format requirements are that any compressed image data represented in interchange format shall comply
with the syntax and code assignments appropriate for the coding processes defined in this Recommendation | International
Standard, as specified in Annex C.

6 Encoder requirements

An encoding process converts source image data (as defined in 4.2) to compressed image data (as defined in Annex C).
Annexes A, B and D specify the encoding process.

An encoder is an embodiment of the encoding process. In order to conform with this Recommendation | International
Standard, an encoder shall satisfy at least one of the following two requirements.

An encoder shall:

a) convert source image data to compressed image data which conform to the interchange format syntax
specified in Annex C;

b) convert source image data to compressed image data which comply with the abbreviated format for
compressed image data syntax specified in Annex C.

Conformance tests for the above requirements are specified in clause 8 of this Recommendation | International Standard.
NOTE – There is no requirement in this Recommendation | International Standard that any encoder which embodies the encoding
process specified in Annexes A, B and D shall be able to operate for all ranges of the parameters which are allowed. An encoder is
only required to meet the applicable conformance tests specified in clause 8, and to generate the compressed image data format
according to Annex C for those parameter values which it does use.

7 Decoder requirements

A decoding process converts compressed image data to reconstructed image data. Since the decoding process is uniquely
defined by the encoding process, there is no separate normative definition of the decoding process.

NOTE – The decoding process is not specified for non-compliant compressed image data.

A subsequent sample mapping procedure uses the value of each sample output by the decoding process as an index to
map each sample value to an output sample value using the mapping tables specified for that sample component in Annex
C. If no table is specified for that sample component, then the output sample value is identical to the sample value output
by the decoding process. In this case, an inverse point transform may also be applied (see 4.3.2), thus completing a
sample transformation process.

A decoder is an embodiment of the decoding process implicitly specified by the encoding process as specified in Annexes
A, B and D, followed by the embodiment of the sample transformation process defined above. In order to conform to this
Recommendation | International Standard, a decoder shall satisfy all three of the following requirements.

A decoder shall:

a) convert to reconstructed image data any compressed image data with parameters within the range
supported by the application, and which comply with the interchange format syntax specified in Annex C.
In the reconstructed image data output by the embodiment of the decoding process (before sample
transformation), the value of each sample shall be identical to the reconstructed value defined in the
encoding process specified in Annex A;

b) accept and properly store any table-specification data which conform to the abbreviated format for table-
specification data syntax specified in Annex C;

c) convert to reconstructed image data any compressed image data with parameters within the range
supported by the application, and which conforms to the abbreviated format for compressed image data
syntax specified in Annex C, provided that the table specification data required for sample mapping has
previously been installed in the decoder.

For the decoding process implicitly specified by the encoding process as specified in Annexes A, B and D, the
conformance tests for the above requirements are specified in clause 8 of this Recommendation | International Standard.

ISO/IEC 14495-1 : 1999 (E)

12 ITU-T Rec. T.87 (1998 E)

NOTE – There is no requirement in this Recommendation | International Standard that any decoder which embodies the decoding
process implicitly specified in Annexes A, B and D and the sample transformation process shall be able to operate for all ranges of
the parameters which are allowed. A decoder is only required to meet the applicable conformance tests specified in clause 8, and
to decode the compressed image data format specified in Annex C for those parameter values which it does use.

8 Conformance testing

8.1 Purpose

The conformance tests specified in this Recommendation | International Standard are intended to increase the likelihood
of compressed image data interchange by specifying a range of tests for both encoders and decoders. The tests are not
exhaustive tests of the respective functionality, and hence do not guarantee complete interoperability between
independently implemented encoders and decoders. The main purpose of these conformance tests is to verify the validity
of encoding and decoding process implementations, and the corresponding compressed image data. It is not an objective
of these tests to carry out extensive verification of the interchange format or marker segment syntax. The marker segment
syntax follows closely the interchange formats specified in Annex B of CCITT Rec. T.81 | ISO/IEC 10918-1, and testing
procedures similar to those specified in ITU-T Rec. T.83 | ISO/IEC 10918-2 can be used for the purpose of verifying
interchange format and marker segment syntax.

The tests are based on a set of test images which are incorporated into this specification in digital form. In addition, a
reference encoder and decoder supporting the conformance tests specified in this Recommendation | International
Standard (for the IBM PC) are incorporated into this specification in digital form.

8.2 Encoder conformance tests

Encoders are tested by encoding a source test image (see Annex E) using the encoder under test, and then decoding the
compressed image data thus produced using a reference decoder. The image reconstructed by the reference decoder shall
match the source image exactly in the case of lossless coding (parameter NEAR = 0, see Annex A). In the case of near-
lossless coding (parameter NEAR > 0), the image reconstructed by the reference decoder shall match the image
reconstructed by the reference decoder when fed with the compressed test image data.

The encode/decode cycle shall be carried out for each of the tests listed in Table E.2 using the test images listed in the
"Source Image" column, and using the parameters specified in the "NEAR", "ILV", "Sub-sampling", and "Other
JPEG-LS parameters" columns of the table. Restart markers shall not be inserted. The encoder testing procedure is
illustrated in Figure 4.

NOTE 1 – An encoder can additionally be tested without a reference decoder by comparing the compressed image data produced
by the encoder, for each of the tests in Table E.2, to the compressed test image data listed in Table E.2. This comparison shall be
restricted to the coded data segments only, excluding marker segments (as different marker segments may represent the same
coding parameters). The coded data segments produced by the encoder shall match those contained in the compressed test image
data exactly. This procedure is illustrated in Figure 5.

NOTE 2 – The tests described in this clause represent minimal encoder conformance verification. More extensive encoder testing
can be achieved by encoding arbitrary source images with the encoder under test, decoding the compressed image thus produced
using a reference decoder, and comparing the image data reconstructed by the reference decoder with the original source image
data. The image reconstructed by the reference decoder should match the source test image exactly in the case of lossless coding
(parameter NEAR = 0, see Annex A). In the case of near-lossless coding (parameter NEAR > 0), the image reconstructed by the
reference decoder should match the output image data generated by the application of an encoding / decoding cycle to the same
source image.

The above conformance tests shall be performed without sample mapping and with Pt = 0.

8.3 Decoder conformance tests

Decoders are tested by decoding compressed test image data (see Annex E) using the decoder under test and comparing
the reconstructed image to the corresponding source test image. The image reconstructed by the decoder under test shall
exactly match the source test image in the case of lossless coding (NEAR = 0). In the case of near-lossless coding
(NEAR > 0), the image reconstructed by the decoder under test shall match the image reconstructed by the reference
decoder when fed with the compressed test image data.

 ISO/IEC 14495-1 : 1999 (E)

 ITU-T Rec. T.87 (1998 E) 13

T0828150-98/d04

Yes

Yes

No

No

START

Input source test
image

Set encoder
parameters

Encode with encoder
under test

Decode with
reference decoder

Compare

Match?

All
tests done?

PASS

FAIL

Figure 4 – Encoder testing with reference decoder

Figure 4 [D04]

ISO/IEC 14495-1 : 1999 (E)

14 ITU-T Rec. T.87 (1998 E)

T0828160-98/d05

Yes

Yes

No

No

START

Input source test
image

Set encoder
parameters

Encode with encoder
under test

All
tests done?

PASS

FAIL

Compare with
compressed test

image data

Match
exactly?

Figure 5 – Encoder testing without reference decoder

Figure 5 [D05]

The decoding conformance tests shall be carried out for each of the tests listed in Table E.2, using as an input the
compressed test image data listed in the "Compressed file name" column, with the parameters specified in the "NEAR",
"ILV", "Sub-sampling", and "Other JPEG-LS parameters" columns of the table. The source test images used for the
comparison are listed in the "Source image" column of Table E.2. In the case of lossless coding, no reference encoder or
decoder is necessary for this decoder conformance test. The decoder testing procedure is illustrated in Figure 6.

NOTE – The tests specified represent minimal decoder conformance verification. More extensive decoder testing may be achieved
by encoding arbitrary source image data with a reference encoder, decoding the compressed image data thus produced using the
decoder under test and a reference decoder, and comparing the image data output by both decoders. The image data reconstructed
by the decoder under test should match that reconstructed by the reference decoder for all samples.

 ISO/IEC 14495-1 : 1999 (E)

 ITU-T Rec. T.87 (1998 E) 15

T0828170-98/d06

FAIL

PASS

START

Match?

Input compressed
test image

Decode with
decoder under test

Compare with output
of reference decoder

Figure 6 – Decoder testing procedure

All
tests done?

Yes

No

No

Yes

Figure 6 [D06]

ISO/IEC 14495-1 : 1999 (E)

16 ITU-T Rec. T.87 (1998 E)

Annex A

Encoding procedures for a single component

(This annex forms an integral part of this Recommendation | International Standard)

This annex specifies the encoding procedures defined by this Recommendation | International Standard. Clauses A.1
to A.7 define the encoding process. Clause A.8 summarises the provisions of this annex. The encoding procedures in this
annex correspond to scans of a single component. The necessary modifications for dealing with multiple-component
scans are specified in Annex B. Annex G (informative) includes a general description of the encoding process.

NOTE – There is no requirement in this Recommendation | International Standard that any encoder or decoder shall implement
the procedures in precisely the manner specified in this annex. It is necessary only that an encoder or decoder implement the
function specified in this annex. The sole criterion for an encoder or a decoder to be considered in conformance with this
Recommendation | International Standard is that it satisfy the requirements determined by the conformance tests given in clause 8.

A.1 Coding parameters and compressed image data

A number of parameters are necessary to specify the coding process in this Recommendation | International Standard.
The coding of these parameters in the compressed image data, and a normative set of default values for some of these
parameters are specified in Annex C. This Recommendation | International Standard does not specify how these
parameters are set in the encoding process by any application using it, if non-default values are used.

The bits generated by the encoding process forming the compressed image data shall be packed into 8-bit bytes. These
bits shall fill bytes in decreasing order of significance. As an example, when outputting a binary code an, an–1, an–2, ….
a0, where an is the first output bit, and a0 is the last output bit, an will fill the most significant available bit position in the
currently incomplete output byte, followed by an–1, an–2, and so on. When an output byte is completed, it is placed as the
next byte of the encoded bit stream, and a new byte is started. An incomplete byte, just before a marker, is padded with
zero-valued bits before the insertion of any marker.

NOTE 1 – This padding differs from the padding method specified in CCITT Rec. T.81 | ISO/IEC 10918-1.

Marker segments are inserted in the data stream as specified in Annex D. In order to provide for easy detection of marker
segments, a single byte with the value X'FF' in a coded image data segment shall be followed with the insertion of a single
bit '0'. This inserted bit shall occupy the most significant bit of the next byte. If the X'FF' byte is followed by a single bit
'1', then the decoder shall treat the byte which follows as the second byte of a marker, and process it in accordance with
Annex C. If a '0' bit was inserted by the encoder, the decoder shall discard the inserted bit, which does not form part of
the data stream to be decoded.

NOTE 2 – This marker segment detection procedure differs from the one specified in CCITT Rec. T.81 | ISO/IEC 10918-1.

A.2 Initialisations and conventions

A.2.1 Initialisations

The context modelling procedure specified in this annex uses the causal template a, b, c and d depicted in Figure 3. When
encoding the first line of a source image component, the samples at positions b, c, and d are not present, and their
reconstructed values are defined to be zero. If the sample at position x is at the start or end of a line so that either a and c,
or d is not present, the reconstructed value for a sample in position a or d is defined to be equal to Rb, the reconstructed
value of the sample at position b, or zero for the first line in the component. The reconstructed value at a sample in
position c, in turn, is copied (for lines other than the first line) from the value that was assigned to Ra when encoding the
first sample in the previous line.

 ISO/IEC 14495-1 : 1999 (E)

 ITU-T Rec. T.87 (1998 E) 17

The following initialisations shall be performed at the start of the encoding process of a scan, as well as in other situations
specified in Annex D. All variables are defined to be integers with sufficient precision to allow the execution of the
required arithmetic operations without overflow or underflow, given the bounds on the parameters indicated in Annex C:

1) Compute the parameter RANGE: For lossless coding (NEAR = 0), RANGE = MAXVAL + 1. For
near-lossless coding (NEAR > 0):

 RANGE MAXVAL NEAR
NEAR

= +
+� � +2

2 1
1*

*

 NOTE – MAXVAL and NEAR are coding parameters whose values are either default or set by the application
(see Annex C).

 Compute the parameters qbpp = log RANGE , bpp = max(2, �log(MAXVAL+1)), and
LIMIT =€2 * (bpp + max(8,bpp)).

2) Initialise the variables N[0..366], A[0..366], B[0..364] and C[0..364], where the nomenclature [0..i]
indicates that there are i+1 instances of the variable. The instances are indexed by [Q], where Q is an
integer between 0 and i. The indexes [0..364] correspond to the regular mode contexts (total of 365,
see A.3), whilst the indexes [365] and [366] correspond to run mode interruption contexts. For example,
C[5] corresponds to the variable C in the regular mode context indexed by 5. Each one of the entries of A
is initialised with the value

 max ,2
2

5

6
RANGE +�

�
�
�

�
�

�
�

2

 those of N are initialised with the value 1, and those of B and C with the value 0.

3) Initialise the variables for the run mode: RUNindex=0 and J[0..31] = {0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3,
3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 9,10,11,12,13,14,15}.

4) Initialise the two run interruption variables Nn[365] and Nn[366] to 0.

A.2.2 Conventions for code segments

In the remaining clauses of this annex, various procedures of the encoding process are specified in software code
segments, written in the C programming language, as specified in ISO/IEC 9899. The syntax and semantics of C shall be
assumed in all code segments contained in this annex.

All variables used in the code segments are assumed to be integer, and to have sufficient precision to allow the execution
of the required arithmetic operations without overflow or underflow, given the bounds on the parameters indicated in
Annex C. When division and right shift operations are indicated, all variables used are non-negative integers so that the
exact computation of quotients, remainders and shifted quantities is unambiguously specified. The code segments are
used to specify parts of the encoding process, and do not constitute, by themselves or in any aggregation, a full
implementation of the process.

In addition to the variables and parameters specified in 3.1 for the encoding and decoding processes, the following
auxiliary labels, global variables, and functions are used in the software code segments:

abs(i) Function: returns the absolute value of i in accordance with the definition in 3.1.3

RunModeProcessing Label: indicates the beginning of the run mode process as defined in A.7

RegularModeProcessing Label: indicates the gradient quantization step as defined in A.3.3

max(i, j) Function: returns the maximum of i and j in accordance with the definition
in 3.1.47

min(i, j) Function: returns the minimum of i and j in accordance with the definition
in 3.1.48

ISO/IEC 14495-1 : 1999 (E)

18 ITU-T Rec. T.87 (1998 E)

GetNextSample() Function: reads the next sample in the source image and sets the corresponding
values of x, a, b, c, d, Ix, Ra, Rb, Rc, Rd. In multi-component images, the concept
of next sample depends on the interleaving mode used, as described in Annex B. If
the sample read is at the end of the current image line, GetNextSample() sets the
"global" variable EOLine to 1. In all other cases, EOLine is reset to 0.

When processing samples in regular mode, it is implicitly assumed that
GetNextSample() is invoked before the processing of each sample. Invocation of
GetNextSample() is shown explicitly in the description of the run mode in A.7,
due to the special treatment required at ends of lines in that mode. The
reconstructed values Ra, Rb, Rc, and Rd inherit their value from a previous
computation of a reconstructed value Rx as described in A.4.4, A.7.1, and A.7.2.

EOLine Global variable: set by GetNextSample(): equal to 1 if the current sample is the
last in the line, 0 otherwise.

AppendToBitStream(i, j) Function: appends the non-negative number i in binary form to the encoded bit
stream, using j bits. Most significant bits are appended first. The process
guarantees that j bits are sufficient to represent i exactly.

Quantize(i) Function: returns the quantized value of i following the procedure applied to
Errval in Code segment A.8 ("if" statement). This function is used to quantize the
prediction error in near-lossless coding.

ModRange(i, RANGE) Function: returns the value of i modulo RANGE as described in A.4.5.

ComputeRx() Function: returns the reconstructed value Rx of the current sample as described in
Code segment A.8 (after the "if" statement). This function reconstructs the value
of Rx from the quantized prediction error.

A.3 Context determination

After a number of samples have been coded scanning from left to right and from top to bottom, the sample x positioned as
in Figure 3 shall be encoded. The context at this sample shall be determined by the previously reconstructed values Ra,
Rb, Rc, and Rd corresponding to the samples a, b, c, and d as shown in Figure 3, respectively. In lossless coding, the
reconstructed values are identical to those of the source image data. The steps in context determination, to be performed
in the presented order, are the following:

A.3.1 Local gradient computation

The first step in the context determination procedure shall be to compute the local gradient values, D1, D2, D3 of the
neighbourhood samples, as indicated in Code segment A.1.

 Code segment A.1 – Local gradient computation for context determination

 D1 = Rd – Rb;
 D2 = Rb – Rc;
 D3 = Rc – Ra;

A.3.2 Mode selection

If the local gradients are all zero (for lossless coding), or their absolute values are less than or equal to NEAR, the
allowed error for near-lossless coding, the encoder shall enter the run mode, otherwise the encoder shall enter the regular
mode. The mode selection procedure is specified in Code segment A.2. In the case of lossless coding, this mode selection
procedure is equivalent to the procedure shown in Code segment A.3, where the encoder is checking if Ra=Rb=Rc=Rd.

 Code segment A.2 – Mode selection procedure

 if ((abs(D1) <= NEAR) && (abs(D2) <= NEAR) && (abs(D3) <= NEAR))
 goto RunModeProcessing
 else
 goto RegularModeProcessing;

 ISO/IEC 14495-1 : 1999 (E)

 ITU-T Rec. T.87 (1998 E) 19

 Code segment A.3 – Mode selection procedure for lossless coding

 if (D1 == 0 && D2 == 0 && D3 == 0)
 goto RunModeProcessing;
 else
 goto RegularModeProcessing;

If run mode is selected, the encoding process shall proceed as specified in A.7. Clauses A.3.3 to A.6.2 apply only to
regular mode.

A.3.3 Local gradient quantization

The context determination procedure shall continue by quantizing D1, D2, and D3 according to the procedure specified
in Code segment A.4. For this purpose, non-negative thresholds, T1, T2, and T3, are used. The default values of these
thresholds – and ways to explicitly override these defaults – are specified in C.2.4.1. In Code segment A.4, the entry Di to
the procedure is one of the values D1, D2, or D3 from the local gradient computation step. According to their relation
with the thresholds, a region number Qi is obtained (Q1, Q2, and Q3 respectively). This forms a vector (Q1, Q2, Q3)
representing the context for the sample x. Since there are 9 quantization regions for each of the gradients, Q1, Q2,
and Q3, each is allocated one of nine possible numbers between –4 and 4.

 Code segment A.4 – Quantization of the gradients

if (Di <= –T3) Qi = –4;
else if (Di <= –T2) Qi = –3;
else if (Di <= –T1) Qi = –2;
else if (Di < – NEAR) Qi = –1;
else if (Di <= NEAR) Qi = 0;
else if (Di < T1) Qi = 1;
else if (Di < T2) Qi = 2;
else if (Di < T3) Qi = 3;
else Qi = 4;

A.3.4 Quantized gradient merging

If the first non-zero element of the vector (Q1, Q2, Q3) is negative, then all the signs of the vector (Q1, Q2, Q3) shall be
reversed to obtain (–Q1, –Q2, –Q3).

In this case, the variable SIGN shall be set to –1, otherwise it shall be set to +1. After this possible "merging", the vector
(Q1, Q2, Q3) is mapped, on a one-to-one basis, into an integer Q representing the context for the sample x. The function
mapping the vector (Q1, Q2, Q3) to the integer Q is not specified in this Recommendation | International Standard. This
Recommendation | International Standard only requires that the mapping shall be one-to-one, that it shall produce an
integer in the range [0..364], and that it be defined for all possible values of the vector (Q1, Q2, Q3), including the vector
(0, 0, 0).

NOTE – A total of 9 × 9 × 9 = 729 possible vectors are defined by the procedure in Code segment A.4. The vector (0, 0, 0) and its
corresponding mapped value can only occur in regular mode for sample interleaved multi-component scans, as detailed in
Annex B.

A.4 Prediction

This prediction procedure is performed only in the regular (non-run) mode. The following steps shall be performed in the
order specified.

ISO/IEC 14495-1 : 1999 (E)

20 ITU-T Rec. T.87 (1998 E)

A.4.1 Edge-detecting predictor

An estimate Px of the value at the sample at x to be encoded shall be determined from the values Ra, Rb, and Rc at the
positions a, b, and c specified in Figure 3, as indicated in Code segment A.5.

 Code segment A.5 – Edge-detecting predictor

 if (Rc >= max(Ra, Rb))
 Px = min(Ra, Rb);
 else {
 if (Rc <= min(Ra, Rb))
 Px = max(Ra, Rb);
 else
 Px = Ra + Rb – Rc;
 }

A.4.2 Prediction correction

After Px is computed, the prediction shall be corrected according to the procedure depicted in Code segment A.6, which
depends on SIGN, the sign detected in the context determination procedure. The new value of Px shall be clamped to the
range [0..MAXVAL]. The prediction correction value C[Q] is derived from the bias as specified in A.6.2.

 Code segment A.6 – Prediction correction from the bias

 if (SIGN == +1)
 Px = Px + C[Q];
 else
 Px = Px – C[Q];
 if (Px > MAXVAL)
 Px = MAXVAL;
 else if (Px < 0)
 Px = 0;

A.4.3 Computation of prediction error

Using the value of Px, corrected by the above procedure, the prediction error, Errval, shall be computed. If the sign of the
context, given by SIGN, is negative, the sign of the error shall be reversed. This is shown in Code segment A.7 for the
sample at position x, with value Ix.

 Code segment A.7 – Computation of prediction error

 Errval = Ix – Px;
 if (SIGN == –1)
 Errval = – Errval;

A.4.4 Error quantization for near-lossless coding, and reconstructed value computation

In lossless coding (NEAR = 0), the reconstructed value Rx shall be set to Ix. In near-lossless coding (NEAR > 0), the
error shall be quantized. After quantization, the reconstructed value Rx of the sample x, which is used to encode further
samples, shall be computed in the same manner as the decoder computes it. These operations are shown in Code
segment A.8.

 Code segment A.8 – Error quantization and computation of the reconstructed value
in near-lossless coding

 if (Errval > 0)
 Errval = (Errval + NEAR) / (2 * NEAR + 1);
 else
 Errval = – (NEAR – Errval) / (2 * NEAR + 1);
 Rx = Px + SIGN * Errval * (2 * NEAR + 1);
 if (Rx < 0)
 Rx = 0;
 else if (Rx > MAXVAL)
 Rx = MAXVAL;

 ISO/IEC 14495-1 : 1999 (E)

 ITU-T Rec. T.87 (1998 E) 21

A.4.5 Modulo reduction of the prediction error

The error shall be reduced to the range relevant for coding, � �(–)RANGE RANGE/ .. /2 2 1− . This is achieved with
the steps detailed in Code segment A.9 (function ModRange()).

 Code segment A.9 – Modulo reduction of the error

 if (Errval < 0)
 Errval = Errval + RANGE;
 if (Errval >= ((RANGE + 1) / 2))
 Errval = Errval – RANGE;

A.5 Prediction error encoding

The next step of the regular mode shall be to encode the error. For this, the variables A[0..364] and N[0..364] are used to
compute the Golomb coding variable k. The computation of the variable k is context-dependent and shall be performed as
indicated in Code segment A.10. The variable Errval shall then be mapped to a non-negative integer, MErrval, and
encoded using the code function LG(k, LIMIT) (Annex G contains an informative description of this procedure).

A.5.1 Golomb coding variable computation

The variable k, for the limited length Golomb code function LG(k, LIMIT), shall be computed by the procedure
indicated in Code segment A.10. This variable is context-dependent.

 Code segment A.10 – Computation of the Golomg coding variable k

 for(k=0; (N[Q]<<k)<A[Q]; k++);

A.5.2 Error mapping

The prediction error, Errval shall be mapped to a non-negative value, MErrval as specified in Code segment A.11. For
lossless coding, the mapping procedure checks the value of k (the Golomb coding variable) and according to its value
performs a "regular mapping" (k ≠ 0), or a "special mapping" (k = 0 and B[Q] less or equal than –N[Q]/2), which is
equivalent to encoding –(Errval+1) with the regular mapping. For near-lossless coding, the mapping is independent of the
value of k.

 Code segment A.11 – Error mapping to non-negative values

 if ((NEAR == 0) && (k == 0) && (2 * B[Q] <= – N[Q])) {
 if (Errval >= 0)
 MErrval = 2 * Errval + 1
 else
 MErrval = –2 * (Errval + 1);
 }
 else {
 if (Errval >= 0
 MErrval = 2 * Errval;
 else
 MErrval = –2 * Errval – 1;
 }

A.5.3 Mapped-error encoding

The mapped error value, MErrval, shall be encoded with the limited length Golomb code function LG(k, LIMIT) defined
by the following procedure:

1. If the number formed by the high order bits of MErrval (all but the k least significant bits) is less than
LIMIT – qbpp – 1, this number shall be appended to the encoded bit stream in unary representation, that
is, by as many zeros as the value of this number, followed by a binary one. The k least significant bits of
MErrval shall then be appended to the encoded bit stream without change, with the most significant bit
first, followed by the remaining bits in decreasing order of significance.

ISO/IEC 14495-1 : 1999 (E)

22 ITU-T Rec. T.87 (1998 E)

2. Otherwise, LIMIT – qbpp – 1 zeros shall be appended to the encoded bit stream, followed by a binary
one. The binary representation of MErrval – 1 shall then be appended to the encoded bit stream using
qbpp bits, with the most significant bit first, followed by the remaining bits in decreasing order of
significance.

A.6 Update variables

The last step of the encoding of the sample x in the regular mode is the update of the variables A, B, C, and N. It is
important to note that this update shall be performed at the end of the coding procedure, after k and MErrval are
computed.

A.6.1 Update

The variables A[Q], B[Q], and N[Q] are updated according to the current prediction error, as in Code segment A.12. The
variables A[Q] and B[Q] accumulate prediction error magnitudes and values for context Q, respectively. The variable
N[Q] accounts for the number of occurrences of the context Q since initialisation.

 Code segment A.12 – Variables update

 B[Q] = B[Q] + Errval *(2 *NEAR + 1);
 A[Q] = A[Q] + abs(Errval);
 if (N[Q] == RESET) {
 A[Q] == A[Q] >> 1;
 if (B[Q] >= 0)
 B[Q] = B[Q] >> 1;
 else
 B[Q] = –((1-B[Q]) >> 1);
 N[Q] = N[Q] >> 1;
 }
 N[Q] = N[Q] + 1;

NOTE – In lossless coding, the value added to B[Q] is the signed error, after modulo reduction.

RESET is a JPEG-LS coding parameter whose value is either default or set by the application (see Annex C).

A.6.2 Bias computation

The bias variable B[Q] allows an update of the prediction correction value C[Q] by at most one unit every iteration. The
variables are clamped to limit their range of possible values. The prediction correction value C[Q] shall be computed
according to the procedure in Code segment A.13, which also yields an update of B[Q].

 Code segment A.13 – Update of bias-related variables B[Q] and C[Q]

 if (B[Q] <= –N[Q]) {
 B[Q] = B[Q] + N[Q];
 if (C[Q] > MIN_C)
 C[Q] = C[Q – 1;
 if (B[Q] <= –N[Q])
 B[Q] = –N[Q] + 1;
 }
 else if (B[Q] > 0) {
 B[Q] = B[Q] – N[Q];
 if C[Q] < MAX_C)
 C[Q] = C[Q] + 1;
 ο if (B[Q] > 0)
 B[Q] = 0
 }

The constants MIN_C and MAX_C are defined in 3.3.

 ISO/IEC 14495-1 : 1999 (E)

 ITU-T Rec. T.87 (1998 E) 23

A.7 Run mode

If the local gradients are all equal to zero (for lossless coding), or their absolute values are less than or equal to NEAR
(for near-lossless coding), then the process shall enter run mode (see A.3.2). In lossless coding, the encoder shall read
subsequent samples into Ix while Ix equals the reconstructed value Ra, which refers to the corresponding sample a at the
beginning of the run, or the end of the current image line is encountered. In near-lossless coding, if the absolute value of
the difference between Ix and Ra is less than or equal to the allowed error (NEAR), the run continues. The encoding of
the run length shall be followed by the encoding of the last scanned sample (i.e. run interruption sample) in case the run is
interrupted other than by the end of the current image line being encountered.

The run mode procedure is composed of two main steps: run scanning and run-length coding; and run interruption
coding.

A.7.1 Run scanning and run-length coding

Given a "code-order" rg, where rg is restricted to a rk-th power of 2, a one bit code word '1', is used to encode run
segments of length rg as well as shorter segments that were interrupted by the end of a line. A rk+1 bit code word shall be
used to encode any remaining run segment. The first case represents a "hit" situation, where a run of length rg is achieved
except at the end of a line, while the second case is a "miss" situation, where the run is interrupted before achieving the
"maximal" segment length rg. In this miss situation, a prefix bit, '0', shall be sent, followed by the actual length of the
remaining run segment, which shall be encoded with rk bits. The value of rg shall be adapted, according to a pre-defined
table J of 32 entries for values of rk (see A.2.1, Step 3) , each time a run segment of length rg is scanned (the index to the
table J increases) or a miss has occurred (the index to the table J decreases). The applicable procedures are given below.

NOTE – The following description of the run scanning and coding procedures suggests an implementation in which the run length
is encoded only after detecting the termination of the run. However, it is possible to start encoding the run length as soon as a run
of length rg is detected.

A.7.1.1 Run scanning

The first step in the run mode is to read the source image data into Ix and determine a run length, RUNcnt. This is
specified as indicated in Code segment A.14.

 Code segment A.14 – Run-length determination for run mode

 RUNval = Ra;
 RUNcnt = 0;
 while (abs(Ix – RUNval) <= NEAR) {
 RUNcnt = RUNcnt + 1;
 Rx = RUNval;
 if (EOLine == 1)
 break;
 else
 GetNextSample();
 }

NOTE – The test abs(Ix – RUNval) <= NEAR reduces, in the lossless case, to Ix == RUNval.

A.7.1.2 Run-length coding

The variable RUNcnt computed following the procedure in Code segment A.14 represents the run length. The next step is
to encode this number. A '1' shall be appended to the bit stream for each run of length rg, where rg shall be obtained from
the 32-entries table J. The index, RUNindex, to the table J shall be increased by 1, up to a maximum value of 31, each
time a run of length rg is reached. The table J contains values for rk, not rg. The complete procedure for this part is
specified in Code segment A.15. If the run is interrupted by an end of line (setting EOLine = 1), and the remaining length
after successive subtractions of rg is greater than zero, an extra '1' shall be appended to the bit stream. Else, if the run was
interrupted by a sample of a different value, the remaining length is coded by a code word of length rk+1 (a prefix bit, '0',
followed by rk bits to encode the remaining run length), and the index RUNindex is decreased by 1 (not to less than 0).
This is detailed in Code segment A.16.

ISO/IEC 14495-1 : 1999 (E)

24 ITU-T Rec. T.87 (1998 E)

 Code segment A.15 – Encoding of run segments of length rg

 while (RUNcnt >= (1 << J[RUNindex])) {
 AppendToBitStream(1,1);
 RUNcnt = RUNcnt – (1 << J[RUNindex]);
 if (RUNindex < 31)
 RUNindex = RUNindex +1;
 }

 Code segment A.16 – Encoding of run segments of length less than rg

 if (abs(Ix – RUNval) > NEAR) {
 AppendToBitStream(0,1);
 AppendToBitStream(RUNcnt, J[RUNindex]);
 if (RUNindex > 0)
 RUNindex = RUNindex –1;
 }
 else if (RUNcnt > 0)
 AppendToBitStream(1,1);

A.7.2 Run interruption sample encoding

If the run is interrupted other than by the end of the image line, the new sample that caused the run interruption shall be
encoded. This shall be done by encoding the difference between the value Ix at the current position x, and the
reconstructed value at a or b (both positions relative to x). In this mode of operation, two different contexts are used: The
first is when the absolute value of the difference between Ra and Rb is not larger than NEAR, and the second when this
absolute value is larger than NEAR.

NOTE – The basic concepts in the run interruption encoding are the same as those used to encode a new sample in the regular
encoding mode, with the additional requirement that Ix must differ from Ra by more than NEAR, otherwise the run would have
continued.

The following actions shall be carried out:

1. Compute the index RItype as indicated in Code segment A.17. This index defines a context in this mode,
similar to the variable Q in regular mode.

 Code segment A.17 – Index computation

 if (abs(Ra – Rb) <= NEAR
 RItype = 1;
 else
 RItype = 0;

2. Compute the prediction error, as indicated in Code segment A.18

 Code segment A.18 – Prediction error for a run interruption sample

 if (RItype ==1)
 Px = Ra;
 else
 Px = Rb
 Errval = Ix – Px;

3. Correct, if necessary, the sign of Errval (see Code segment A.19). This step is analogous to the context-
merging procedure in the regular coding mode. For near-lossless coding, Errval shall be quantized and Rx
computed, as shown in Figure A.8. The error shall then be reduced using the variable RANGE, following
the same steps as in A.4.5 (this reduction is performed by the function ModRange below).

 ISO/IEC 14495-1 : 1999 (E)

 ITU-T Rec. T.87 (1998 E) 25

 Code segment A.19 – Error computation for a run interruption sample

 if ((RItype == 0) && (Ra > Rb)) {
 Errval = –Errval;
 SIGN = –1;
 }
 else
 SIGN = 1;
 if (NEAR > 0) {
 Errval = Quantize(Errval);
 Rx = ComputeRx ();
 }
 else
 Rx = Ix;
 Errval = ModRange (Errval,RANGE);

4. Compute the auxiliary variable TEMP. This variable is used for the computation of the Golomb variable k.

 Code segment A.20 – Computation of the auxiliary variable TEMP

 if (RItype == 0)
 TEMP = A[365];
 else
 TEMP = A[366] + (N[366] >> 1);

5. Set Q = RItype + 365. The Golomb variable k shall be computed, following the same procedure as in the
regular mode, Code segment A.10, but using TEMP instead of A[Q].

6. Compute the flag map, as indicated in Code segment A.21. This variable influences the mapping of Errval
to non-negative values, as indicated in Code segment A.22.

 Code segment A.21 – Computation of map for Errval mapping

 if ((k == 0) && (Errval > 0) && (2 * Nn[Q] < N[Q]))
 map = 1;
 else if ((Errval < 0) && (2 * Nn[Q] >= N[Q]))
 map = 1;
 else if ((Errval < 0) && (k ! = 0))
 map = 1;
 else
 map = 0;

7. Errval is now mapped:

 Code segment A.22 – Errval mapping for run interruption sample

 EMErrval = 2 * abs(Errval) – RItype – map;

8. Encode EMErrval following the same procedures as in the regular mode (see A.5.3), but using the limited
length Golomb code function LG(k, glimit), where glimit = LIMIT – J[RUNindex] – 1 and RUNindex
corresponds to the value of the variable before the decrement specified in Code segment A.16.

ISO/IEC 14495-1 : 1999 (E)

26 ITU-T Rec. T.87 (1998 E)

9. Update the variables for run interruption sample encoding, according to Code segment A.23.

 Code segment A.23 – Update of variables for run interruption sample

 if Errval < 0)
 Nn[Q] = Nn[Q] + 1;
 A[Q] = A[Q] + ((EMErrval + 1 RItype) >> 1);
 if (N[Q] == RESET) {
 A[Q] = A[Q] >> 1;
 N[Q] = N[Q] >> 1;
 Nn[Q] = Nn[Q] >> 1;
 }
 N[Q] = N[Q] + 1;

A.8 Flow of encoding procedures

The order in which the encoding procedures shall be performed is summarised below.

1. Initialisation:

 a) Assign default parameter values to JPEG-LS preset coding parameters not specified by the
application (see A.1).

 b) Initialise the non-defined samples of the causal template (see A.2.1).

 c) Compute the parameter RANGE (see A.2.1): For lossless coding, RANGE = MAXVAL + 1. For
near-lossless coding

 RANGE MAXVAL NEAR
NEAR

= +
+� � +2

2 1
1*

*
.

 Compute the parameters qbpp = �log RANGE , bpp = max(2,�log(MAXVAL + 1)), and
LIMIT = 2 * (bpp + max(8, bpp)).

 d) For each context Q, initialise four variables (see A.2.1): A[Q]= max 2,
 2

2

5

6
RANGE +
�
�

�
�

�

�

�
�

�

�

�
�

,

B[Q] = C[Q] = 0, N[Q] = 1. For A[Q] and N[Q], Q is an integer between 0 and 366; for B[Q] and
C[Q], Q is an integer between 0 and 364 (regular mode contexts only).

 e) Initialise the variables for the run mode procedure: RUNindex=0 and J[0..31] = {0, 0, 0, 0, 1, 1, 1, 1,
2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 9,10,11,12,13,14,15}.

 f) Initialise the two run interruption variables Nn[365] and Nn[366] to 0 (see A.2.1).

 g) Set current sample to the first sample in the source image.

2. For the current sample, compute the local gradients according to Code segment A.1.

3. Select the coding mode following the procedure in Code segment A.2. If run mode is selected, go to Step
17, otherwise continue with the regular mode.

4. Quantize the local gradients according to the steps detailed in Code segment A.4.

5. Check and change if necessary the signs of the components of the vector representing the context,
modifying accordingly the variable SIGN (see A.3.4).

6. Compute Px according to Code segment A.5.

7. Correct Px using C[Q] and the variable SIGN, and clamp the corrected value to the interval
[0..MAXVAL] according to the procedure in Code segment A.6.

8. Compute the prediction error and, if necessary, invert its sign according to the procedure in Code
segment A.7.

9. For near-lossless coding, quantize the error and compute the reconstructed value of the current sample
according to Code segment A.8. For lossless coding, update the reconstructed value by setting Rx equal
to Ix.

 ISO/IEC 14495-1 : 1999 (E)

 ITU-T Rec. T.87 (1998 E) 27

10. Reduce the error to the relevant range according to Code segment A.9.

11. Compute the context-dependent Golomb variable k according to the procedure in Code segment A.10.

12. Perform the error mapping according to the procedure in Code segment A.11.

13. Encode the mapped error value MErrval using the limited length Golomb code function LG(k, LIMIT), as
specified in A.5.3.

14. Update the variables according to Code segment A.12.

15. Update the prediction correction value C[Q] according to the procedure in Code segment A.13.

16. Go to step 2 to process the next sample.

17. Run mode coding:

 a) Set RUNval = Ra. While (abs(Ix – RUNval) <= NEAR), increment RUNcnt, and if not at the end of a
line, read a new sample. Set Rx = RUNval each time the sample x is added to the run (see Code
segment A.14).

 b) While RUNcnt ≥ 2J[RUNIndex], do (see Code segment A.15):

 i) Append '1' to the bit stream.

 ii) RUNcnt = RUNcnt –2J[RUNIndex].

 iii) If RUNindex < 31, then increment RUNindex by one.
 c) If the run was interrupted by the end of a line (see Code segment A.16):

 i) If RUNcnt > 0, append '1' to the bit stream.
 ii) Go to Step 16.

 d) Append '0' to the bit stream (see Code segment A.16).

 e) Append RUNcnt in binary representation (using J[RUNindex] bits) to the bit stream (MSB first, see
Code segment A.16).

 f) If RUNindex > 0, then decrement RUNindex by one (see Code segment A.16).
18. Run interruption sample encoding: perform the operations in A.7.2, and then go to Step 16.

ISO/IEC 14495-1 : 1999 (E)

28 ITU-T Rec. T.87 (1998 E)

Annex B

Multi-component images
(This annex forms an integral part of this Recommendation | International Standard)

B.1 Introduction

For encoding images with more than one component (e.g. colour images), this Recommendation | International Standard
supports combinations of single-component scans and multi-component scans, as specified in Annex C. For
multi-component scans, two modes (described below) are supported: line interleaved and sample interleaved. The
specific components per scan are specified in the scan header (see Annex C), as well as the interleave mode (as specified
by parameter ILV), which describes the structure within a single scan. The parameter ILV admits the values 0
(non-interleaved), 1 (line interleaved) and 2 (sample interleaved).

For multi-component scans, a single set of context counters (A, B, C, N and Nn) is used across all the components in the
scan. The prediction and context modelling procedures shall be performed as in the single-component case, and are
component independent, meaning that samples from one component are not used to predict or compute the context of
samples from another component.

All the encoding and decoding variables (e.g. A[0..366]) shall be set to their initial values, as described in Annex A, when
a new scan is to be encoded (starting from Step 1 in A.8). The dimensions of each component are given by the
information in the frame header. The byte completion padding described in A.1 applies also to multi-component scans.

B.2 Line interleaved mode

B.2.1 Description

This mode is specified by setting the parameter ILV in the start of scan marker segment to a value of 1. In this mode, for
each component Ci in a scan, a set of Vi consecutive lines is encoded before starting the encoding of Vi++++1 lines of the
subsequent component Ci++++1. The values Vi are specified in the start of frame marker segment as vertical sampling factors,
see Annex C. For a scan with Ns components, the number of lines interleaved and encoded follows the sequence

V1 V2 … VNs, V1 V2 … VNs, V1 V2 … VNs, etc.

The value of the variable RUNindex for the run mode is component dependent, one value of the variable being used for
each component. The prediction and context determination procedures shall be performed as in the single-component
mode, and do not use information from the multiple components. Except for the first line of the first component, which is
always coded at the beginning of a new byte in the encoded bit stream, there is no byte alignment between encoded lines,
and encoded lines can start and end at any bit position in the byte.

B.2.2 Process flow

The process flow for the line interleaved encoding mode is specified below, in terms of the general process flow given
in A.8. For convenience, the steps are numbered identically to those in A.8.

1. Initialise a single set of variables as in Step 1 in the procedure described in A.8, except for the run mode
variable RUNindex, for which one copy per component is initialised.

2. Follow Steps 2-15 in A.8 for the current sample in the current component (i). The reconstructed values Ra,
Rb, Rc, and Rd used for context modelling and prediction correspond to the current component.

16. Return to Step 2. If all the samples of Vi consecutive lines of the ith component have been processed,
continue with samples of component i + 1 (or component 1, if i was the last component). Otherwise,
continue with samples from component i.

17. The run and run interruption sample encoding procedures in Steps 17 and 18 of A.8 shall be followed,
using the copy of RUNindex corresponding to the component i. The same test as in Step 16 above shall be
performed to determine which component follows in the procedure.

 ISO/IEC 14495-1 : 1999 (E)

 ITU-T Rec. T.87 (1998 E) 29

B.3 Sample interleaved mode

B.3.1 Description

This mode is specified by setting the parameter ILV in the start of scan marker segment to a value of 2. In this mode, one
sample at a time per component shall be encoded. The runs are common to all the components. The encoder shall only
enter a run mode if the condition for run mode is satisfied for all the components in the scan, and shall continue in the run
mode only if the condition for continuation is also satisfied for all the components. A single number, equal to the number
of consecutive times the joint condition for continuation is met, shall be encoded with the procedure described in A.7,
representing the length of the joint run. Only one variable RUNindex is used.

In the run interruption sample encoding procedure, the sample shall be encoded with RItype=0, as the decoder has no
knowledge of the cause of the run interruption (the run stops when any of the components runs are interrupted). The same
value of the variable glimit is used for all the components, corresponding to the common value of RUNindex. As in the
line interleaved mode, the same counters shall be used across all components, and the prediction and context
determination procedures shall be performed as in the single-component mode, and shall not use information from the
multiple components.

NOTE – It is only in this mode that there are 365 possible regular contexts rather than 364. The additional context in this mode
arises as a run mode is not necessarily implied when Q1 = Q2 = Q3 = 0 for a given component.

In this interleaved mode all components which belong to the same scan shall have the same dimensions.

B.3.2 Process flow

The process flow for the sample interleaved mode is described below in terms of the general process flow given in A.8.
For convenience, the steps are numbered identically in this clause.

1. Initialise a single set of variables, as in step 1 in the procedure described in A.8.

2. Compute the local gradients for all the components as in Step 2 in A.8, in a component-independent form.
At this step, three local gradients shall be computed for each component.

3. If all the local gradients for all the components are smaller than or equal to NEAR in absolute value, go
into run mode, otherwise go to regular mode.

4. Follow steps 4 to 15 in the procedure described in A.8 for each one of the current samples of each
component. Steps 4-15 for the sample j of the component i shall be completed before the steps 4-15 for the
sample j of the next component i+1 are performed. Steps 4-15 of sample j+1 of any component are not
performed until these steps are completed for all the samples j for all the components. The same set of
variables is used in these steps, but the context determination and the prediction are performed for each
component separately. The encoding of the sample j in component i+1 uses the variables already updated
by the sample j in the previous component i.

16. All the samples in the same position j, for all the components, have now been encoded. The encoder shall
now return to step 2 above to continue with the sample in position j+1 for all the components.

17. The run mode encoding procedure shall be followed.

 a) The condition in Step 17.a) in A.8 is tested for all the components, using Ix and Ra corresponding to
the same component. The run continues if and only if the condition holds for all the components. If
the run continues, then Rx shall be set to the corresponding value of Ra in the same component.

 b) Perform steps 17.b) to 17.f) in A.8. These steps are performed only once, since the runs are common
for all the components, and one number represents the length of the joint run.

18. Perform the operations in A.7.2 (run interruption sample encoding), for each of the components. The state
variable RItype=0 at all times, and the procedures in Code segment A.17 shall be skipped. Each run
interruption sample shall be completely encoded before starting to process the next sample.

19. Return to Step 2.

ISO/IEC 14495-1 : 1999 (E)

30 ITU-T Rec. T.87 (1998 E)

B.4 Minimum Coded Unit (MCU)

For non-interleaved mode (Ns = 1, ILV = 0), the minimum coded unit is one line. For sample interleaved mode (Ns > 1,
ILV = 2), the MCU is a set of Ns lines, one line per component, in the order specified in the scan header.

NOTE – The order in the scan header is determined by the order in the frame header.

For line interleaved mode (Ns > 1, ILV = 1), the MCU is V1 lines of component C1 followed by V2 lines of
component C2 … followed by VNs lines of component CNs. In addition, the encoding process shall extend the number of
lines if necessary so that the last MCU is completed. Any line added by an encoding process to complete a last
partial MCU shall be removed by the decoding process.

 ISO/IEC 14495-1 : 1999 (E)

 ITU-T Rec. T.87 (1998 E) 31

Annex C

Compressed data format
(This annex forms an integral part of this Recommendation | International Standard)

This annex specifies three compressed data formats for the JPEG-LS processes:
1. the interchange format;
2. the abbreviated format for compressed image data;
3. the abbreviated format for mapping tables and parameters specification data.

These compressed data formats closely follow the compressed data formats specified in Annex B of CCITT Rec. T.81 |
ISO/IEC 10918-1. Markers identify the various structural parts of the compressed data format. Marker segments for two
markers from the JPGn markers reserved for JPEG extensions in CCITT Rec. T.81 | ISO/IEC 10918-1 are specified in
this annex. The specifications for lossless processes in Annex B of CCITT Rec. T.81 | ISO/IEC 10918-1 apply unless
explicitly revised in this annex.

NOTE – Implementers should obtain the latest version of Annex B of CCITT Rec. T.81 | ISO/IEC 10918-1 for normative
referencing purposes.

C.1 General aspects of the compressed data format specification

In this annex, the terms "coding processes", "encoding process", "decoding process", and "compressed data" refer,
respectively, to the lossless and near-lossless coding processes, encoding process, decoding process, and compressed data
as defined in this Recommendation | International Standard.

C.1.1 Marker assignments

Two markers from the JPGn set (which were reserved for JPEG extensions) are assigned in this Recommendation |
International Standard, in addition to the marker code assignments in Table B.1 of CCITT Rec. T.81 | ISO/IEC 10918-1.

SOF55 (X'FFF7') identifies a new Start of Frame marker for JPEG-LS processes.

LSE (X'FFF8') identifies marker segments used for JPEG-LS preset parameters.

Each of these markers starts a marker segment. These marker segments begin with a two-byte segment length parameter.

In addition, the SOI, EOI, SOS, DNL, DRI, RSTm, APPn, and COM are valid markers in JPEG-LS.

All other markers defined in Annex B of CCITT Rec. T.81 | ISO/IEC 10918-1 shall not be present in JPEG-LS
compressed data.

C.1.2 Coded data segments

A coded image data segment contains the output of the encoding process defined in this Recommendation | International
Standard for a restart interval. It consists of an integer number of bytes.

NOTE – Making the coded image data segment an integer number of bytes is achieved as follows: 0-bits are used, if necessary, to
pad the end of the coded image data to complete the final byte of a segment. In order to provide for easy detection of marker
segments, any X'FF' byte generated by the encoding process defined in this Recommendation | International Standard is followed
by a "stuffed" zero bit, provided that the X'FF' byte is not part of an inserted marker segment.

C.2 General JPEG-LS coding syntax

This clause specifies the interchange format syntax which applies to the JPEG-LS coding process.

C.2.1 High level syntax

The high level syntax shown in Figure B.2 of CCITT Rec. T.81 | ISO/IEC 10918-1 applies to the JPEG-LS coding
processes defined in this Recommendation | International Standard.

C.2.2 Frame header syntax

The new frame marker SOF55 (X'FFF7') is defined for JPEG-LS coding. The frame header specified in B.2.2 of CCITT
Rec. T.81 | ISO/IEC 10918-1 applies with the following differences:

– A Y (number of lines) value of zero means either that the value is defined in an LSE marker segment
(which could precede or follow the SOF55 but shall not occur later than immediately following the first
scan) or in a DNL marker immediately following the first scan. Y shall not be changed after that point.

ISO/IEC 14495-1 : 1999 (E)

32 ITU-T Rec. T.87 (1998 E)

– An X (number of columns) value of zero is allowed and means that the value shall be defined in an LSE
marker segment. The value shall be defined before the first SOS marker and shall not be changed after the
first scan.

A non-zero value of Y or of X shall not be changed by LSE marker segments.

C.2.3 Scan header syntax

The scan header specified in clause B.2.3 of CCITT Rec. T.81 | ISO/IEC 10918-1 applies to JPEG-LS coding with the
following differences.

−ο The start of spectral selection (Ss) parameter is replaced with the NEAR parameter.

−ο The end of spectral selection (Se) parameter is replaced with the ILV parameter.

−ο For lossless coding, the NEAR parameter shall be zero. For near-lossless coding, this parameter is

expressed as a positive quantity from 1 to min 255,
2

MAXVAL�

�
�

�

�
� (see C.2.4.1.1 for a definition of

MAXVAL).

−ο For a single component scan, the ILV parameter is specified as having the value 0. In a line interleaved
scan, ILV is specified as having the value 1. In a sample interleaved scan, ILV is specified as having the
value 2. Sample interleave is allowed in a scan only if the components of the scan have an identical number
of columns and of lines. The interleave modes are defined in Annex B.

−ο The TdiTai (the DC and AC entropy table selectors) byte is replaced with a mapping table selector Tmi
byte. The table selected with Tmi shall have been specified by the time the decoder is ready to decode the
scan containing component Ci. Mapping table selectors can have values from 0 to 255 (see C.2.4.1.2). A
value of zero indicates that no mapping table will be used for that component. If the point transform (Pt),
specified by the Al parameter (see CCITT Rec. T.81 | ISO/IEC 10918-1), is not zero, all Tmi shall be zero.

C.2.4 Table-specification and miscellaneous marker segment syntax

This Recommendation | International Standard requires an additional marker segment, LSE, which is described below.

C.2.4.1 JPEG-LS preset parameters specification syntax

The LSE marker segment may be present where tables or miscellaneous marker segments may appear. If tables specified
in this marker segment for a given table ID appear more than once, each specification shall replace the previous
specification. Figure C.1 specifies the marker segment following an LSE marker which defines either the JPEG-LS preset
coding parameters whose values are used to override default parameter values, or mapping tables, or oversize image
dimensions, and are collectively called "JPEG-LS preset parameters". Each specification of a JPEG-LS preset parameter
in an LSE marker segment shall replace the previous specification.

LlLSE ID

Figure C.1 – JPEG-LS preset parameters marker segment syntax

The marker and parameters shown in Figure C.1 are defined below.
LSE JPEG-LS preset parameters marker; marks the beginning of the JPEG-LS preset parameters marker

segment.
Ll JPEG-LS preset parameters length; specifies the length of the JPEG-LS preset parameters marker

segment shown in Figure C.1.

ID parameter ID; specifies which JPEG-LS preset parameters follow. If ID = X'01', the JPEG-LS preset
coding parameters follow. If ID = X'02', a mapping table specification follows. If ID = X'03', a
mapping table continuation follows. If ID = X'04', X and Y parameters greater than 16 bits are
defined.

NOTE – The value of the length field in the definition of Ll and in subsequent descriptions of marker segments does not include
the marker (see B.1.1.4 of CCITT Rec. T.81 | ISO/IEC 10918-1).

The parameters for each specified ID are specified in the following subclauses.

 ISO/IEC 14495-1 : 1999 (E)

 ITU-T Rec. T.87 (1998 E) 33

C.2.4.1.1 JPEG-LS preset coding parameters

Figure C.2 specifies the JPEG-LS preset coding parameters which follow the LSE when ID is equal to X'01'.

Figure C.2 – LSE marker segment for JPEG-LS preset coding parameters

The new parameters shown in Figure C.2 are defined below. The size and allowed values of each parameter are given in
Table C.1.

MAXVAL maximum possible value for any image sample in the scan. This must be greater than or equal to
the actual maximum value for the components in the scan.

T1 first quantization threshold value for the local gradients.

T2 second quantization threshold value for the local gradients.

T3 third quantization threshold value for the local gradients.

RESET value at which the counters A, B, and N are halved.

Table C.1 – LSE marker segment parameter sizes and
values for JPEG-LS preset coding parameters

NOTE 1 – P is the number of bits per image sample, contained in the start of frame marker segment, as defined in CCITT
Rec. T.81 | ISO/IEC 10918-1.

For MAXVAL, T1, T2, T3 and RESET, a value of 0 indicates reverting to default values as given in Table C.2. The
SOI marker also resets these parameters to default values given in Table C.2. The default values of T1, T2, and T3
specified in C.2.4.1.1.1 are calculated from the values of MAXVAL and NEAR that are in force at the time that T1, T2,
and T3 are used.

NOTE 2 – The values of T1, T2, and T3 may change during the encoding process other than by an LSE marker segment, for
example, if default values are used and the value of NEAR is changed by a scan header.

Table C.2 – Default values for JPEG-LS preset coding parameters

NOTE 3 – When an LSE marker is used, default parameter values can be specified by either using the value 0 or by explicitly
specifying the default value in the marker segment.

LSE LI 1 MAXVAL T1 T2 T3 RESET

Parameter Size
(bits) Values

Ll 16 13

ID 8 1

MAXVAL 16 0, or 1 ≤ MAXVAL < 2P

T1 16 0, or NEAR + 1 ≤ T1 ≤ MAXVAL

T2 16 0, or T1 ≤ T2 ≤ MAXVAL

T3 16 0, or T2 ≤ T3 ≤ MAXVAL

RESET 16 0, or 3 ≤ RESET ≤ max(255, MAXVAL)

MAXVAL 2P–1

T1 See C.2.4.1.1.1

T2 See C.2.4.1.1.1

T3 See C.2.4.1.1.1

RESET 64

ISO/IEC 14495-1 : 1999 (E)

34 ITU-T Rec. T.87 (1998 E)

C.2.4.1.1.1 Default threshold values

The default threshold values T1, T2, and T3, for gradient quantization, are given in terms of MAXVAL, NEAR and the
"basic" default threshold values for the case MAXVAL = 255, lossless coding (NEAR = 0), denoted BASIC_T1,
BASIC_T2, and BASIC_T3. These default values are given in Table C.3.

Table C.3 – Default threshold values in case MAXVAL ==== 255, NEAR ==== 0

The clamping function defined in Figure C.3 for integers i and j is also needed.

CLAMP() = if or ,
 otherwise.

i, j j i i j
i

> <MAXVAL

Figure C.3 – Clamping functions for default thresholds

In the case where MAXVAL ≥ 128, the dependence of the default values on MAXVAL is specified by
FACTOR = �(min(MAXVAL, 4095) + 128)/256 . The default values in this case are given in Figure C.4.

T1 = CLAMP(FACTOR * (BASIC_T1 – 2) + 2 + 3*NEAR, NEAR + 1)
T2 = CLAMP(FACTOR * (BASIC_T2 – 3) + 3 + 5*NEAR, T1)
T3 = CLAMP(FACTOR * (BASIC_T3 – 4) + 4 + 7*NEAR, T2)

Figure C.4 – Default values in case MAXVAL ≥≥≥≥ 128

Otherwise, if MAXVAL < 128, the dependence of the default values on MAXVAL is specified by
FACTOR = �256/(MAXVAL + 1) . The default values in this case are given in Figure C.5.

T1 = CLAMP(max(2, �BASIC_T1/FACTOR + 3*NEAR), NEAR + 1)
T2 = CLAMP(max(3, �BASIC_T2/FACTOR + 5*NEAR), T1)
T3 = CLAMP(max(4, �BASIC_T3/FACTOR + 7*NEAR), T2)

Figure C.5 – Default values in case MAXVAL <<<< 128

C.2.4.1.2 Mapping table specification

Figure C.6 specifies the mapping table contained in the LSE marker segment when ID is equal to X'02'.

Figure C.6 – LSE marker segment for mapping table specification

BASIC_T1 3

BASIC_T2 7

BASIC_T3 21

LSE LI 2 TID Wt Table [0..MAXTAB]

 ISO/IEC 14495-1 : 1999 (E)

 ITU-T Rec. T.87 (1998 E) 35

The new parameters shown in Figure C.6 are defined below. The size and allowed values of each parameter are given in
Table C.4.

TID table ID; specifies the identification number of the table specified.

Wt width of table entries in bytes; specifies the number of bytes per entry in the selected
table.

TABLE[0..MAXTAB] sample mapping table; each entry has Wt bytes.

MAXTAB defined in Figure C.7:

MAXTAB
MAXVAL Wt MAXVAL

Wt
=

+ + <

� �

�

�
�

�
�

 if (5 * (1)) 65535

– 1 otherwise65530

Figure C.7 – Definition of MAXTAB

The value of MAXVAL in Figure C.7 is the one in force at the time the table is referred to in a scan header.

Table C.4 – LSE marker segment parameter sizes and values for mapping table specification

When mapping tables are used, the decoder uses the reconstructed value Rx to index the corresponding table. If
MAXTAB = MAXVAL, then the table specified in the LSE marker segment has one entry for each possible value Rx.
Therefore, the table has MAXVAL + 1 entries, and the entries are written in the bit stream in ascending order of Rx.
Each entry in the table contains Wt bytes. The decoder translates the value Rx to the Wt-byte long value TABLE[Rx].
This Recommendation | International Standard does not define an interpretation for the Wt bytes in an entry.

NOTE – A possible interpretation is a vector in some colour space. For example, with Wt = 3, the 3 bytes in a table entry could be
interpreted as R,G,B values in a colour palette.

If MAXTAB < MAXVAL, then a complete mapping table with MAXVAL entries does not fit an LSE marker segment
of maximum possible length (Ll = 65535 bytes), and the LSE marker segment with ID equal to X'02' must be
immediately followed by one or more LSE marker segments with ID equal to X'03' ("mapping table continuation"), until
a total of MAXVAL + 1 table entries have been specified.

C.2.4.1.3 Mapping table continuation

The structure of the mapping table continuation segment is similar to that of the preceding mapping table specification as
specified in C.2.4.1.2, with the following differences:

−ο the length field Ll contains the number 5 + Wt*(MAXTABX + 1), for a value MAXTABX defined in
Figure C.8

−ο the ID field contains the value X'03'

−ο the table entries are TABLE[0..MAXTABX]

MAXTABX is defined in Figure C.8 in terms of the number ENTRIES of mapping table entries that are still unspecified
following the most recent table mapping specification segment (with ID = X'02') and any associated mapping table
continuation segments (with ID = X'03') preceding the current one.

Parameter Size (bits) Values

Ll 16 5 + Wt*(MAXTAB + 1)

ID 8 2

TID 8 1 to 255

Wt 8 1 to 255

TABLE[i],
i = 0..MAXTAB

Wt*8 0 to 2Wt*8 – 1

ISO/IEC 14495-1 : 1999 (E)

36 ITU-T Rec. T.87 (1998 E)

MAXTABX
ENTRIES Wt ENTRIES

Wt
=

+ + <

�

�
�

�
�

�

�
�

�
�

–

–

1 if (5 * (1)) 65536
65530 1 otherwise

Figure C.8 – Definition of MAXTABX for mapping table continuation

The values TID and Wt shall be identical to those of the preceding mapping table specification segment. A mapping
table continuation segment shall follow a mapping table specification segment with the same TID value, or another
mapping table continuation segment with the same TID value.

If MAXTABX = ENTRIES – 1, then the current mapping table continuation segment is the last segment associated with
the current TID value. If MAXTABX < ENTRIES – 1, then ENTRIES is reduced by (MAXTABX + 1), and is
followed by more mapping table continuation segments with the same TID value.

Table entries shall be written in increasing order of Rx, within a mapping table specification or continuation marker
segment, and from one segment to the next.

LSE marker segments may be present anywhere in the compressed image data where tables or miscellaneous marker
segments are permitted. At the time the table is referred to, the number of its entries (as determined by the mapping table
specification segment and any associated mapping table continuation segments) must be consistent with the value of
MAXVAL currently in effect.

C.2.4.1.4 Oversize image dimension

Figure C.9 specifies the oversize image dimension parameters contained in the LSE marker segment when ID is equal
to X'04'. The oversize image dimension parameters enable the specification of image dimensions Ye and Xe that can be
larger than 216 – 1.

Figure C.9 – LSE marker segment for oversize image dimension

The new parameters shown in Figure C.9 are defined below. The size and allowed values of each parameter are given in
Table C.5.

Wxy number of bytes used to represent Ye and Xe.

Ye number of lines in the image.

Xe number of columns in the image.

Table C.5 – LSE marker segment parameter sizes and values for oversize image dimension

A Ye value of zero means that the value is defined either in a DNL marker immediately following the first scan or in a
following LSE marker segment that shall not occur later than immediately following the first scan.

LSE LI 4 Wxy Ye Xe

 < Wxy > < Wxy >

Parameter Size (bits) Values

Ll 16 4+2*Wxy

ID 8 4

Wxy 8 2 to 4

Ye Wxy*8 0 to 2Wxy*8–1

Xe Wxy*8 1 to 2Wxy*8–1

 ISO/IEC 14495-1 : 1999 (E)

 ITU-T Rec. T.87 (1998 E) 37

C.2.5 Restart interval definition syntax

The restart interval marker segment is specified in Figure B.9 of CCITT Rec. T.81 | ISO/IEC 10918-1. Table B.7 of
CCITT Rec. T.81 | ISO/IEC 10918-1 is modified in this Recommendation | International Standard to allow the segment
length to vary from 4 to 6 bytes. This permits the restart interval to vary from two to four bytes to accommodate the
largest possible number of columns and lines. If the restart interval is a 24- or 32-bit parameter, the convention still
applies that the Most Significant Bit (MSB) shall come first and the Least Significant Bit (LSB) shall come last.

C.2.6 Define number of lines syntax

Figure B.12 of CCITT Rec. T.81 | ISO/IEC 10918-1 specifies the marker segment which defines the number of lines.
Table B.10 of CCITT Rec. T.81 | ISO/IEC 10918-1 is modified in this Recommendation | International Standard to allow
the segment length to vary from 4 to 6 bytes. This permits the number of lines to vary from two to four bytes to
accommodate the larger possible number of lines. If the number of lines parameter is a 24- or 32-bit parameter, the
convention still applies that the MSB shall come first and the LSB shall come last.

C.3 Abbreviated format for compressed image data

LSE marker segments which define mapping tables may be omitted if the application environment provides methods for
table specification other than by means of the compressed image data.

C.4 Abbreviated format for table-specification data

LSE marker segments which define mapping tables may be present in compressed data that have no frames.

ISO/IEC 14495-1 : 1999 (E)

38 ITU-T Rec. T.87 (1998 E)

Annex D

Control procedures
(This annex forms an integral part of this Recommendation | International Standard)

This annex describes the encoder control procedures for the encoding process.
NOTE 1 – There is no requirement in this Recommendation | International Standard that any encoder or decoder shall implement
the procedures in precisely the manner specified by the flow charts in this annex. It is necessary only that an encoder or decoder
implement the function specified in this annex. The sole criterion for an encoder or decoder to be considered in conformance with
this Recommendation | International Standard is that it satisfy the requirements given in clause 8.
NOTE 2 – Implementation-specific setup steps are not indicated in this annex and may be necessary.

D.1 Control procedure for encoding an image

The encoder control procedure for encoding an image is shown in Figure D.1.

T0828180-98/d07

Figure D.1 – Control procedure for encoding an image

Encode_image

Append SOI
marker

Encode_frame

Append EOI
marker

Done

Figure D.1 [D07]

D.2 Control procedure for encoding a frame

In all cases where markers are appended to the compressed image data, optional X'FF' fill bytes may precede the marker.

The control procedure for encoding a frame is oriented around the scans in the frame. The frame header is first appended,
and then the scans are coded. Table specifications and other marker segments may precede the SOF55 marker, as
indicated by [Append tables/miscellaneous] in Figure D.2.

Figure D.2 shows the encoding process frame control procedure.

D.3 Control procedure for encoding a scan

A scan consists of a single pass through the data of each component in the scan. Table specifications and other marker
segments may precede the SOS marker. If more than one component is coded in the scan, the data are interleaved. If
restart is enabled, the data are segmented into restart intervals. If restart is enabled, a RSTm marker is placed in the coded
data between restart intervals. If restart is disabled, the control procedure is the same, except that the entire scan contains

 ISO/IEC 14495-1 : 1999 (E)

 ITU-T Rec. T.87 (1998 E) 39

a single restart interval. The compressed image data generated by a scan are always followed by a marker, either the EOI
marker or the marker of the next marker segment.

ISO/IEC 14495-1 : 1999 (E)

40 ITU-T Rec. T.87 (1998 E)

T0828190-98/d08

Encode_frame

Encode_scan

First scan?

[Append tables/miscellaneous]
Append SOF55 marker and rest

of frame header

[Append DNL
segment]

Done

More scans?

No

No

Yes

Yes

Figure D.2 – Control procedure for encoding a frame

Figure D.3 shows the encoding process scan control procedure. The loop is terminated when the encoding process has
coded the number of restart intervals which make up the scan. "m" is the restart interval modulo counter needed for the
RSTm marker. The modulo arithmetic for this counter is shown after the "Append RSTm marker" procedure.

T0828200-98/d09

Encode_scan

[Append tables/miscellaneous]
Append SOS marker and rest

of scan header, m=0

Encode_restart
interval

More intervals?

Done
Append RSTm

marker
m=(m+1) AND 7

No

Yes

Figure D.3 – Control procedure for encoding a scan

 ISO/IEC 14495-1 : 1999 (E)

 ITU-T Rec. T.87 (1998 E) 41

D.4 Control procedure for encoding a restart interval

Figure D.4 shows the encoding process control procedure for a restart interval. The loop is terminated either when the
encoding process has coded the number of minimum coded units (MCU) in the restart interval or when it has completed
the image scan.

T0828210-98/d10

No

Yes

Done

Prepare_for_marker

More MCU?

Encode_MCU

Reset_encoder

Encode_restart
_interval

Figure D.4 – Control procedure for encoding a restart interval

Figure D.4 [D10]

The "Reset_encoder" procedure consists at least of the following:

a) initialise variables according to the corresponding interleave mode as if the first line of each component in
the restart interval were the first line of the same component in a scan (see A.2.1, B.2.2 and B.3.2);

b) do all other implementation-dependent setups that may be necessary.

The procedure "Prepare_for_marker" terminates the coded image data segment by:

a) padding the final byte with zero bits

NOTE – The number of minimum coded units (MCU) in the final restart interval must be adjusted to match the number of MCUs
in the scan. The number of MCUs is calculated from the frame and scan parameters.

D.5 Control procedure for encoding a Minimum Coded Unit (MCU)

The minimum coded unit is defined in Annex B. Within a given MCU the samples are coded in the order in which they
occur in the MCU. The control procedure for encoding an MCU is shown in Figure D.5.

In Figure D.5, Nb refers to the number of samples in the MCU. The order in which samples occur in the MCU is defined
in Annex B.

The procedures for encoding a sample are specified in Annexes A and B.

ISO/IEC 14495-1 : 1999 (E)

42 ITU-T Rec. T.87 (1998 E)

T0828220-98/d11

Yes

No

Done

Encode_MCU

n = n+1
Encode sample

Figure D.5 – Control procedure for encoding a Minimum Coded Unit (MCU)

n = 0

n = Nb?

Figure D.5 [D11]

 ISO/IEC 14495-1 : 1999 (E)

 ITU-T Rec. T.87 (1998 E) 43

Annex E

Conformance tests
(This annex forms an integral part of this Recommendation | International Standard)

This annex specifies test images for conformance testing as specified in clause 8.

E.1 Test images

The conformance tests for encoders and decoders specified in this Recommendation | International Standard are based on
a collection of test images, which form part of this Recommendation | International Standard, and consist of a set of
single- and multi-component image data, both source image data, and image data encoded in accordance with the
processes specified in this Recommendation | International Standard.

Source images are stored as computer files in PGM (single-component) or PPM (multi-component) format. Details of
these formats are given in E.1.3. Components of a three-component multi-component test image are labelled "red",
"green", and "blue". Compressed image data is stored in digital computer files in the format specified in this
Recommendation | International Standard.

E.1.1 Source images

The list of source test images is detailed in Table E.1.

Table E.1 – Source test images

TEST8 is an 8-bit per sample RGB colour image composed of areas of photographic, graphic, text, and random data.
Other images starting with the prefix TEST8 are derived from TEST8 as indicated in the "Comments" column of
Table E.1. TEST16 is a 12-bit per sample monochrome image with a similar composition. Sub-sampling an image
component by mX is achieved by using every m-th sample of the component in the appropriate direction, starting from
the first sample, and without interpolation.

NOTE – The mixture of data in the test images was designed to exercise many paths of the encoding and decoding processes.
There is no guarantee, however, that every possible path of the processes will be exercised.

E.1.2 Compressed image data

The list of compressed image data is detailed in Table E.2.

Each compressed image contains one frame, with the number of scans specified in the table. For multi-scan images, each
scan contains one component ("red", "green" and "blue" in this order), and the same NEAR parameter is used for all
scans. Scans contain no restart markers.

For Test No. 7 and Test No. 8, the components of image TEST8 are given in the "Source Image(s)" column and are sub-
sampled as indicated in Table E.1.

For parameters not explicitly specified in the table, all tests use default values as defined in Annex C, except for Tests
Nos. 9 and 10, which use non-default values for T1, T2, T3 and RESET.

Image
name

Precision
(bits per
sample)

Components Dimensions

(columns × lines)

Comments

TEST8 8 3 256 ×256 Reference 8-bps colour image

TEST8R 8 1 256 × 256 "red" component of TEST8

TEST8G 8 1 256 × 256 "green" component of TEST8

TEST8B 8 1 256 × 256 "blue" component of TEST8

TEST8GR4 8 1 256 × 64 "green" component of TEST8, sub-sampled
4X in the vertical direction

TEST8BS2 8 1 128 × 128 "blue" component of TEST8, sub-sampled
2X in both vertical and horizontal directions

TEST16 12 1 256 × 256 Reference 12-bps monochrome image

ISO/IEC 14495-1 : 1999 (E)

44 ITU-T Rec. T.87 (1998 E)

Table E.2 – Compressed image data

E.1.3 Test image formats

For the purpose of conformance testing, the source test images are stored in computer files using the following formats.
All character coding in the formats is in accordance with ISO/IEC 646:1991.

NOTE – These formats are defined only for the purpose of distributing test images for conformance testing as part of this
Recommendation | International Standard. This Recommendation | International Standard does not prescribe any specific format as
input for the encoding process, or as output from the decoding process.

E.1.3.1 PGM format (for single-component images)

The file starts with a header consisting of 3 lines in the following format:

P5
X Y
MAXVAL

Here, "P5" is text coded in accordance with ISO/IEC 646, X and Y are, respectively, the number of columns and lines of
the image (decimal integers represented in character coded format, separated by a space), and MAXVAL is the
maximum sample value (a decimal integer represented in character coded format). As an example, the header for
TEST16.PGM has the following format:

P5
256 256
4095

The header is followed by X*Y samples in binary format, stored in raster scan order, line by line. For TEST8 and its
derived images, each sample occupies one byte. For TEST16, each sample occupies two bytes, with the most significant
byte of the sample stored before the least significant byte, and with the 12 bits of the sample stored in the least significant
bits of the two bytes representing the sample.

E.1.3.2 PPM format (for multi-component images)

This is a three-component file format which starts with a header consisting of three lines in the following format:

P6
X Y
MAXVAL

Test
No.

Compressed
file name

Source
image(s)

Compo-
nents NEAR Scans ILV Sub-

sampling
Other JPEG-LS

parameters

1 T8C0E0.JLS TEST8 3 0 3 0 none default

2 T8C1E0.JLS TEST8 3 0 1 1 (line) none default

3 T8C2E0.JLS TEST8 3 0 1 2 (sample) none default

4 T8C0E3.JLS TEST8 3 3 3 0 none default

5 T8C1E3.JLS TEST8 3 3 1 1 (line) none default

6 T8C2E3.JLS TEST8 3 3 1 2 (sample) none default

7 T8SSE0.JLS TEST8R
TEST8GR4
TEST8BS2

3 0 1 1 (line) See below default

8 T8SSE3.JLS TEST8R
TEST8GR4
TEST8BS2

3 3 1 1 (line) See below default

9 T8NDE0.JLS TEST8BS2 1 0 1 0 none T1=T2=T3=9
RESET=31

10 T8NDE3.JLS TEST8BS2 1 3 1 0 none T1=T2=T3=9
RESET=31

11 T16E0.JLS TEST16 1 0 1 0 none default

12 T16E3.JLS TEST16 1 3 1 0 none default

 ISO/IEC 14495-1 : 1999 (E)

 ITU-T Rec. T.87 (1998 E) 45

Here, "P6" is character coded text, X and Y are, respectively, the number of columns and lines of the image (decimal
integers represented in character coded format, separated by a space), and MAXVAL is the maximum sample value (a
decimal integer represented in character coded format). As an example, the header for TEST8.PPM has the following
format:

P6
256 256
255

The header is followed by 3*X*Y samples in binary format, stored in raster scan order, line by line, and column by
column, with samples interleaved from each component in "red", "green", "blue" order. For TEST8 and its derived
images, each sample occupies one byte (thus, each sample position within a line occupies 3 bytes, corresponding to the 3
image components).

ISO/IEC 14495-1 : 1999 (E)

46 ITU-T Rec. T.87 (1998 E)

Annex F

Decoding procedures
(This annex does not form an integral part of this Recommendation | International Standard)

F.1 Process flow

The coding specified in this Recommendation | International Standard is fairly symmetric, meaning that both the encoding
and decoding processes use the same basic procedures and follow almost the same steps in reverse order (besides a few
sign changes). For the decoding process, therefore, only the process flow is shown. Details on the different procedures
can be found in the detailed clauses in Annex A.

NOTE – There is no requirement in this Recommendation | International Standard that any encoder or decoder shall implement
the procedures in precisely the manner specified in this Annex. It is necessary only that an encoder or decoder implement the
function specified in this Annex. The sole criterion for an encoder or a decoder to be considered in conformance with this
Recommendation | Standard is that it satisfy the requirements determined by the conformance tests given in clause 8.

1. Initialisation:

 a) Assign default values to non-specified JPEG-LS preset coding parameters (see A.1).

 b) Initialise the non-defined samples of the causal template (see A.2.1).

 c) Compute the variable RANGE (see A.2.1). For lossless coding, RANGE = MAXVAL + 1. For

near-lossless coding, RANGE
MAXVAL NEAR

NEAR
=

+
+� � +

2
2 1

1
*

*

 Compute the parameters qbpp = �log RANGE�, bpp = max(2, �log(MAXVAL + 1)�), and
LIMIT = 2*(bpp + max(8, bpp)).

 d) For each context Q, initialise four variables (see A.2.1): A[Q] = max ,2
RANGE +
�
�

�
�

�

�

�
�

�

�

�
�

 2

2

5

6 ,

B[Q] =€C[Q] = 0, N[Q] = 1. For A[Q] and N[Q], Q is an integer between 0 and 366; for B[Q]
and C[Q], Q is an integer between 0 and 364 (regular mode contexts only).

 e) Initialise the variables for the run mode: RUNindex = 0 and J[0..31] = {0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
3, 3, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 9,10,11,12,13,14,15}.

 f) Initialise the two run interruption variables Nn[365], Nn[366] = 0.

2. Compute the local gradients according to Code segment A.1.

3. Select the mode following the procedure in Code segment A.2. If run mode is selected, go to run mode
(step 18), otherwise continue with the regular mode.

4. Quantize the local gradients according to the steps detailed in Code segment A.4.

5. Check and change if necessary the sign of the context, modifying accordingly the variable SIGN
(see A.3.4).

6. Compute Px according to Code segment A.5.

7. Correct Px using C[Q] and the variable SIGN and clamp the corrected value to the interval [0..MAXVAL]
according to the procedure in Code segment A.6.

8. Compute the context-dependent Golomb variable k according to the procedure in Code segment A.10.

9. Decode the mapped error value MErrval:

 a) Read the unary code. If it contains less than LIMIT – qbpp – 1 zeros, use it to form the most
significant bits of MErrval and read k additional bits, to compose the k least significant bits of
MErrval.

 b) If the unary code contains LIMIT – qbpp – 1 zeros, read qbpp additional bits to get a binary
representation of MErrval –1.

10. Perform the inverse of the error mapping indicated in Code segment A.11, where now MErrval is given
and Errval is computed.

11. Update the variables according to Code segment A.12.

 ISO/IEC 14495-1 : 1999 (E)

 ITU-T Rec. T.87 (1998 E) 47

12. For near-lossless coding, multiply Errval by (2*NEAR+1).

13. Invert sign of Errval if the variable SIGN is negative.

14. Compute Rx = (Errval + Px) modulo [RANGE*(2*NEAR+1)]. For near-lossless coding, map Rx to the
interval [–NEAR..RANGE*(2*NEAR+1)–1–NEAR]. Clamp Rx to [0..MAXVAL]. This is done by the
following procedure, where the C programming language is used as specified in A.2.2:

if ()
 (1);
else if ()

 ();

if ()

else if ()
 ;

Rx
Rx Rx

Rx
Rx Rx

Rx
Rx

Rx
Rx

< −
= + +
> +

= − +

<
=
>

=

NEAR
RANGE NEAR

MAXVAL NEAR
RANGE NEAR

MAXVAL
MAXVAL

* *

* *

;

2

2

0
0

15. Map Rx using the inverse point transform Pt specified by the parameter Al (see B.2.3 of CCITT
Rec. T.81 | ISO/IEC 10918-1) and the applicable mapping table, if any, as specified in Annex C.

16. Compute the prediction correction value C[Q] according to the procedure in Code segment A.13.

17. Process next sample of the same component or of next component, starting from Step 2, as specified in
Annex B.

18. Run mode decoding:

 a) Read a bit, R, from the bit stream.

 b) If R = '1' then

 i) Fill the image with 2J[RUNindex] samples of value Ra, or until a line is completed.

 ii) If exactly 2J[RUNindex] samples were filled in the previous step, and RUNindex<31, then increase
RUNindex by one. If the last sample in the line has not yet been decoded, return to step 18.a) to
read more bits from the bit stream. Otherwise, go to Step 17.

 c) If R = '0' then

 i) Read J[RUNindex] bits from the bit stream and fill the image with the value Ra for as many
samples as the number formed by these bits (MSB first).

 ii) If RUNindex>0, decrement RUNindex by one.

 iii) Decode the run interruption sample value, reversing the procedures in A.7.2.

 iv) Go to Step 17.

ISO/IEC 14495-1 : 1999 (E)

48 ITU-T Rec. T.87 (1998 E)

Annex G

Description of the coding process
(This annex does not form an integral part of this Recommendation | International Standard)

G.1 Context modelling

G.1.1 Derivation of gradient

The context modelling procedure specified in Annex A uses the causal template a, b, c, and d depicted in Figure 3. The
context that conditions the coding of the current sample is built from the differences D1, D2, and D3 of the reconstructed
values Ra, Rb, Rc, and Rd at the sample positions a, b, c, and d: D1 = Rd–Rb, D2 = Rb–Rc, and D3 = Rc–Ra. In lossless
coding, the reconstructed values are identical to those of the source image data. These differences are referred to as the
local gradient, and capture the level of activity (smoothness, edginess) surrounding the sample at position x. These local
gradient values are used to estimate the statistical behaviour of the prediction errors to be encoded.

Without further processing of the local gradient values D1, D2, and D3, a very large number of contexts could be
generated. This has a number of disadvantages:

– If a small number of samples are coded in the same context, there will in general not be enough
information to collect the relevant statistics for the context;

– The memory requirements to implement the coding procedures specified in this Recommendation |
International Standard increase with the number of contexts.

Gradients with similar characteristics are therefore merged to create conditioning contexts. In this Recommendation |
International Standard, only a small number of statistical parameters need to be estimated per context. This allows for a
large number of contexts without excessive penalty in code length due to the number of parameters modelled (model
cost), or in memory requirements.

G.1.2 Quantization

The gradient merging procedure is based on quantizing the local gradient defined above. Assuming the image to be
symmetric (that is, there is no preference to vertical over horizontal orientations), D1, D2, and D3 influence the
modelling in the same way, and each of these differences is quantized into a small number of approximately equiprobable
regions.

The probability of a local gradient taking the value v is assumed to be the same as the probability of it taking the value
−v. The quantizer is therefore symmetric about a difference value of zero. A further reduction in the number of contexts is
obtained by merging quantized gradients of opposite signs. The quantized triplet (Q1, Q2, Q3) is merged with the triplet
(–Q1, –Q2, –Q3). This last merging procedure is compensated by changing the sign of the prediction error.

G.1.3 Prediction

G.1.3.1 Prediction basis

In the context modelling procedure, the local gradients are quantized. In order to partially compensate for this
information loss, the context determination procedure is followed by a prediction step. The idea behind this procedure is
that the value at the current sample x can be estimated from the reconstructed values of the samples surrounding it. Then,
instead of coding the value itself, the prediction error is encoded.

The prediction procedure in this Recommendation | International Standard is based on the subset of samples at positions
a, b, and c of the causal template depicted in Figure 3, where x denotes the position of the current sample to be encoded.

G.1.3.2 Edge detection

The first step in the prediction procedure defined by this Recommendation | International Standard is to perform a simple
test to detect vertical or horizontal edges. If an edge is not detected, then the predicted value Px, at the sample position x,
is Ra+Rb–Rc, as this would be the value at x if a plane is passed through the a, b, and c sample locations, with respective
heights Ra, Rb, Rc, and the constraint is imposed that the current sample belongs to the same plane. This constraint
expresses the expected smoothness of the image in the absence of edges. If a vertical edge is detected, the value at b,
(Rb), is predicted. If an horizontal edge is detected, the value at a, (Ra), is predicted. This procedure is performed by the
simple formula in Figure G.1.

 ISO/IEC 14495-1 : 1999 (E)

 ITU-T Rec. T.87 (1998 E) 49

Px
Ra Rb Rc Ra Rb
Ra Rb Rc Ra Rb

Ra Rb Rc
=

min(,) if max(,)
max(,) if min(,)

+ otherwise.

≥
≤

�

�
�

�
� –

Figure G.1 – Basic edge-detecting predictor

G.1.3.3 Prediction correction

Following the basic predictor, the predicted value is corrected by a bias-dependent term. The encoding procedure in this
Recommendation | International Standard assumes the distribution of prediction errors to be two-sided geometric,
symmetric, and centred between –1 and 0. In context-based models, systematic, context-dependent biases in the
prediction errors are not uncommon. To alleviate the effect of systematic biases, this Recommendation | International
Standard defines a bias correction procedure aimed at centring the distribution of prediction errors in the targeted
interval. This procedure is based on the accumulated value of errors incurred so far for samples of the same context. After
this procedure, the final corrected prediction error is computed. For near-lossless coding, this error is then quantized.

G.2 Encoding in the regular coding mode

After the context is determined, and if it does not take the encoding process into the run mode, the prediction, bias, and
corrected prediction error are computed. The last step of the encoding process in this mode of operation is to encode this
corrected prediction error. For this, a scheme derived from Golomb coding is used. This means that only two statistical
parameters, representing the decay rate of the distribution and its bias, have to be estimated for each context. All possible
error values are mapped into non-negative ones prior to encoding.

G.2.1 Code definition

Golomb coding was first introduced as a means for encoding series containing non-negative run lengths. For a positive
integer parameter g, the Golomb code of order g encodes an integer n greater than or equal to 0 in two parts: a unary
representation of the integer part of n/g, and a binary representation of n modulo g. Golomb codes are optimal for
geometric probability distributions for non-negative integers. For every distribution of this form, there exists a value of
the parameter g such that the code yields the shortest possible average code length over all uniquely decipherable codes
for non-negative integers.

G.2.2 Power-of-2 case

The special case of Golomb codes where g is a k-power of 2 leads to very simple encoding/decoding procedures: the code
for n consists of the number formed by the higher order bits of n, in unary representation, followed by the k least
significant bits of n. This specific case is the one used in this Recommendation | International Standard and is denoted
by G(k). In the following example, k stands for the Golomb variable, where g is equal to the k-th power of 2.

G.2.3 Example

This example applies for G(2). The value n=19 is assumed. The binary representation of 19 is 10011. The two (k=2)
lowest significant bits are sent as they are (11). This corresponds to 3 = 19 modulo 4. The remaining higher significant
bits, 100, represent the integer part of the quotient 19/4, i.e. the number 4. This number is sent in unary form as four zeros
and a terminating one, 00001. Combining both parts, with the unary part first, the code for n=19, with k=2, is 0000111.

G.2.4 Limited length Golomb code

In practice, when encoding a bounded set of non-negative integers, it is desirable to limit the maximum length of
a Golomb code word (which for G(0) is j + 1, where j denotes the maximal integer in the set, often a large number) to
a number glimit of bits. A method for this is to use the code LG(k, glimit) defined in this clause, where it is assumed
k <€�log j� (otherwise the expanding code G(k) would be systematically outperformed by G(�log j� –1).

ISO/IEC 14495-1 : 1999 (E)

50 ITU-T Rec. T.87 (1998 E)

To encode a non-negative integer n, the number q formed by the higher order bits of n is computed. If
q <€glimit − �log j�€–1, the encoding process proceeds as for G(k). Since k < �log j�, the total code length after
appending k bits is within the required limit. If q ≥ glimit – �log j� –1, then glimit – �log j� –1 is encoded in unary
representation (i.e. glimit – �log j� –1 zeros followed by a one), which acts as an "escape code," followed by an explicit
binary representation of n–1, with �log j� bits, for a total of glimit bits. If glimit > �log j� +1, n = 0 always satisfies the
condition for regular Golomb encoding, so that the length limitation is applied only in cases where n > 0, and the binary
code for n–1 is �log j�€bits long as claimed.

G.2.5 Coding negative values

Golomb codes were originally designed for non-negative integer values. Prediction errors from the prediction procedure
described in Annex A can also be negative, and hence their distribution is in general two-sided geometric and symmetric,
rather than one-sided. One way of extending the above coding scheme to handle this situation is to map all possible error
values into non-negative ones prior to encoding. This requires a good estimation of the centre of this two-sided
distribution, which is closely related to the bias measurement described in Annex A. In this Recommendation |
International Standard, the mapping described in Annex A and Annex F approximates the optimal solution for two-sided
geometric distributions. Table G.1 shows an example of coding of prediction errors with this mapping, and the limited
length Golomb code LG(2,32), for 8-bit alphabets (�log j� = 8, following the notation of G.2.4). In this example, the
limitation does not apply for mapped values smaller than 92.

Table G.1 – Example coding of prediction errors

Prediction error Mapped value Code LG(2,32)

0 0 1 00

–1 1 1 01

1 2 1 10

–2 3 1 11

2 4 01 00

–3 5 01 01

3 6 01 10

–4 7 01 11

4 8 001 00

–5 9 001 01

5 10 001 10

–6 11 001 11

6 12 0001 00

–7 13 0001 01

7 14 0001 10

–8 15 0001 11

8 16 00001 00

–9 17 00001 01

9 18 00001 10

13s4

–10

19 00001 11

10 20 000001 00

–11 21 000001 01

11 22 000001 10

–12 23 000001 11

12 24 0000001 00

… … …

50 100 0000000000000000000
00001 01100011

 ISO/IEC 14495-1 : 1999 (E)

 ITU-T Rec. T.87 (1998 E) 51

G.2.6 Parameter determination

One of the crucial steps in schemes using Golomb coding is the determination of the optimal value of the code
parameter k, the value yielding the shortest possible average code length for the mapped prediction errors. In this
Recommendation | International Standard, the value of k is context-dependent and varies adaptively. The value of k for
each context is updated each time a sample belonging to that context is encoded. The updated value is based on the
accumulated sum of absolute values of prediction errors that occurred in the same context and is defined in Annex A.

G.3 Encoding in the run mode

In a pure Huffman coding process, at least one bit per sample is needed. In order to increase the compression in uniform
image areas, a run mode coding procedure is added in this Recommendation | International Standard.

If the reconstructed values at sample positions a, b, c, and d are identical, or their absolute difference is less than or equal
to the allowed error in near-lossless coding, the process enters the run mode. In this mode, the encoder scans the image,
starting from the sample at position x until a sample is met which is not identical to the reconstructed value of the sample
at a (or not nearly identical within the bounds set for near-lossless coding), or the end of the current sample line is
encountered. The encoder encodes the length of the run and the sample immediately after the run ends (if the run was not
terminated by reaching the end of the current line). The procedure defined in this Recommendation | International
Standard for coding run lengths can be viewed as an extension of Golomb coding. In run mode, the coding process does
not use prediction.

ISO/IEC 14495-1 : 1999 (E)

52 ITU-T Rec. T.87 (1998 E)

Annex H

Examples and guidelines
(This annex does not form an integral part of this Recommendation | International Standard)

H.1 Introduction

This annex includes a number of examples intended to indicate how the encoding process works, and how the resulting
bit stream should be output. The examples are intended to indicate the coding principles only, as the very small image
data set used will in practice result in data expansion rather than compression, particularly after marker segments and file
format information is added to the output bit stream.

H.2 Example of how bits are output in the bit stream

Assume the encoder to be at the beginning of the coded image data segment and that the encoding process outputs the
following binary codes:

 101001 (length 6)
 111 (length 3)
 1100000001 (length 10)

These binary numbers are written with the most significant bit in the leftmost position. The output bit stream will contain
the byte 10100111 followed by 11100000. The current incomplete byte will contain 001xxxxx. The most significant bit
of the next binary code will fill the 4th most significant bit of the current incomplete byte. If there were no more output
codes after the three listed above, the incomplete byte would be padded with zeros as 0010000 to terminate the coded
image data segment.

H.3 Detailed coding example

This coding example is based on the sixteen-byte sample image shown in Figure H.1.

0 0 0 0 0 0 0

0 1 2 3 4 5

1

2

3

4

0

0

64

68 64

68

0 0

100

145

50

145

90

145

43

145

145

145

74

145

205

74

205

T0828230-98/d12

Index

Figure H.1 – Example image data

Figure H.1 [D12]

The inner box represents the actual image, whilst the shaded area represents the implied values for Rb,Rc and Rd, when
the sample Ix is in the first line, for Ra and Rc when the sample Ix is in the first column, and for Rd when the sample Ix is
in the last column. Lossless coding and default parameters are assumed.

NOTE – To represent the output bit stream, when more than 5 bits of the same kind appear one after the other, they will be
denoted as the count of the bits, followed by the bit value in word form. For example, 1010000001 will be represented as 101+6
zero bits+1.

Firstly, Line 1, Samples 1 through 3 are encoded:

D1=D2=D3=0, so run mode is entered.

Rc=0 Rb=0 Rd=0

Ra=0 Ix=0

 ISO/IEC 14495-1 : 1999 (E)

 ITU-T Rec. T.87 (1998 E) 53

The parameter values before encoding are:
NOTE – In all the tables in this example, Errval (mod) indicates the value of Errval after modulo division.

and hence the output bits are 1 1 + 23 zero bits + 1 1 0 1 1 0 0 1 0

The parameter values after updating are:

Line 1, Sample 4 is now coded:

The parameter values before encoding are:

and hence the output bits are 8 zero bits + 1 0 0

The parameter values after updating are:

Line 2, Sample 1 is now encoded:

D1=D2=D3=0, so run mode is entered.

The parameter values before encoding are:

and hence the output bits are 0 0 0 1 0 0 0 1 1 1

The parameter values after updating are:

RUNval RUNcnt RUNindex RItype Errval
(mod)

TEMP k map EMErrval Q A[Q] N[Q] Nn[Q]

0 2 0 1 90 4 2 0 179 366 4 1 0

RUNindex A[Q] N[Q] Nn[Q]

1 93 2 0

Rc=0 Rb=0 Rd=0

Ra=90 Ix=74

Q1 Q2 Q3 Px SIGN Errval Errval
(mod)

k MErrval A[Q] B[Q] C[Q] N[Q]

0 0 4 90 –1 16 16 2 32 4 0 0 1

A[Q] B[Q] C[Q] N[Q]

20 0 1 2

Rc=0 Rb=0 Rd=0

Ra=0 Ix=68

RUNval RUNcnt RUNindex RItype Errval
(mod)

TEMP k map EMErrval Q A[Q] N[Q] Nn[Q]

0 0 1 1 68 94 6 0 135 366 93 2 0

RUNindex A[Q] N[Q] Nn[Q]

0 160 3 0

ISO/IEC 14495-1 : 1999 (E)

54 ITU-T Rec. T.87 (1998 E)

Line 2, Sample 2 is now encoded:

The parameter values before encoding are:

and hence the output bits are 8 zero bits + 1 1 1

The parameter values after updating are:

Line 2, Sample 3 is now encoded.

The parameter values before encoding are:

And hence the output bits are 23 zero bits + 1 0 1 0 1 1 1 0 1

The parameter values after updating are:

Line 2, Sample 4 is now encoded.

The parameter values before encoding are:

And hence the output bits are 23 zero bits + 1 1 0 1 1 1 0 1 1

Rc=0 Rb=0 Rd=90

Ra=68 Ix=50

Q1 Q2 Q3 Px SIGN Errval Errval
(mod)

k MErrval A[Q] B[Q] C[Q] N[Q]

4 0 –4 68 1 –18 –18 2 35 4 0 0 1

A[Q] B[Q] C[Q] N[Q]

22 –1 –1 2

Rc=0 Rb=90 Rd=74

Ra=50 Ix=43

Q1 Q2 Q3 Px SIGN Errval Errval
(mod)

k MErrval A[Q] B[Q] C[Q] N[Q]

3 –4 4 90 –1 47 47 2 94 4 0 0 1

A[Q] B[Q] C[Q] N[Q]

51 0 1 2

Rc=90 Rb=74 Rd=74

Ra=43 Ix=205

Q1 Q2 Q3 Px SIGN Errval Errval
(mod)

k MErrval A[Q] B[Q] C[Q] N[Q]

0 3 –4 43 –1 –162 94 2 188 4 0 0 1

 ISO/IEC 14495-1 : 1999 (E)

 ITU-T Rec. T.87 (1998 E) 55

The parameter values after updating are:

Line 3, Sample 1 is now encoded.

Rc=0 Rb=68 Rd=50

Ra=68 Ix=64

The parameter values before encoding are:

And hence the output bits are 1 0 0 1 1 0

The parameter values after updating are:

Line 3, Sample 2 is now encoded.

The parameter values before encoding are:

And hence the output bits are 23 zero bits + 1 1 0 1 1 1 1 0 0

The parameter values after updating are:

Line 3, Sample 3 is now encoded.

Rc=50 Rb=43 Rd=205

Ra=145 Ix=145

A[Q] B[Q] C[Q] N[Q]

98 0 1 2

Q1 Q2 Q3 Px SIGN Errval Errval
(mod)

k MErrval A[Q] B[Q] C[Q] N[Q]

3 –4 4 67 –1 3 3 5 6 51 0 1 2

A[Q] B[Q] C[Q] N[Q]

54 0 2 3

Rc=68 Rb=50 Rd=43

Ra=64 Ix=145

Q1 Q2 Q3 Px SIGN Errval Errval
(mod)

k MErrval A[Q] B[Q] C[Q] N[Q]

3 3 –2 50 –1 –95 –95 2 189 4 0 0 1

A[Q] B[Q] C[Q] N[Q]

99 –1 –1 2

ISO/IEC 14495-1 : 1999 (E)

56 ITU-T Rec. T.87 (1998 E)

The parameter values before encoding are:

And hence the output bits are 0 0 0 1 1 0

The parameter values after updating are:

Line 3, Sample 4 is now encoded.

The parameter values before encoding are:

And hence the output bits are 23 zero bits + 1 0 1 1 1 0 1 1 0

The parameter values after updating are:

Line 4, Sample 1 is now encoded.

Rc=68 Rb=64 Rd=145

Ra=64 Ix=100

The parameter values before encoding are:

And hence the output bits are 18 zero bits + 1 0 0

The parameter values after updating are:

A[Q] B[Q] C[Q] N[Q]

40 0 1 2

Q1 Q2 Q3 Px SIGN Errval Errval
(mod)

k MErrval A[Q] B[Q] C[Q] N[Q]

4 –3 –4 138 1 7 7 2 14 4 0 0 1

A[Q] B[Q] C[Q] N[Q]

11 0 1 2

Rc=43 Rb=205 Rd=205

Ra=145 Ix=145

Q1 Q2 Q3 Px SIGN Errval Errval
(mod)

k MErrval A[Q] B[Q] C[Q] N[Q]

0 4 –4 205 1 –60 –60 2 119 4 0 0 1

A[Q] B[Q] C[Q] N[Q]

64 –1 –1 2

Q1 Q2 Q3 Px SIGN Errval Errval
(mod)

k MErrval A[Q] B[Q] C[Q] N[Q]

4 –2 2 64 1 36 36 2 72 4 0 0 1

 ISO/IEC 14495-1 : 1999 (E)

 ITU-T Rec. T.87 (1998 E) 57

Line 4, Sample 2 is now encoded.

The parameter values before encoding are:

And hence the output bits are 1 0 0 0 1 0

The parameter values after updating are:

Line 4, Samples 3 through 4 is now encoded.

Rc=145 Rb=145 Rd=145

Ra=145 Rx=145

D1=D2=D3=0, so enter run mode

The parameter values before encoding are (N/A indicates that the value is non-applicable, as no run interruption sample is
to be encoded):

And hence the output bits are 1 1

The parameter values after updating are:

RUNindex A[Q] N[Q] Nn[Q]

2 N/A N/A N/A

So, the JPEG-LS coded data segment, without any marker segments, should be:

Rc=64 Rb=145 Rd=145

Ra=100 Ix=145

Q1 Q2 Q3 Px SIGN Errval Errval
(mod)

k MErrval A[Q] B[Q] C[Q] N[Q]

0 4 –4 144 1 1 1 5 2 64 –1 –1 2

A[Q] B[Q] C[Q] N[Q]

65 0 –1 3

RUNval RUNcnt RUNindex RItype Errval
(mod)

TEMP k map EMErrval Q A[Q] N[Q] Nn[Q]

145 2 0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

Binary Hexadecimal

1100 0000 0000 0000 0000 0000 0110 1100 C0 00 00 6C

1000 0000 0010 0000 1000 1110 0000 0001 80 20 8E 01

1100 0000 0000 0000 0000 0000 0101 0111 C0 00 00 57

0100 0000 0000 0000 0000 0000 0110 1110 40 00 00 6E

1110 0110 0000 0000 0000 0000 0000 0001 E6 00 00 01

1011 1100 0001 1000 0000 0000 0000 0000 BC 18 00 00

0000 0101 1101 1000 0000 0000 0000 0000 05 D8 00 00

1001 0001 0110 0000 91 60

ISO/IEC 14495-1 : 1999 (E)

58 ITU-T Rec. T.87 (1998 E)

The last five bits (italicised) in the above table are padding.

 ISO/IEC 14495-1 : 1999 (E)

 ITU-T Rec. T.87 (1998 E) 59

H.4 Example image data

H.4.1 Bit stream from Example H.3

The complete compressed image data from Example H.3 is shown in Figure H.2:

FF D8 FF F7 00 0B 08 00 04 00 04 01 01 11 00 FF
DA 00 08 01 01 00 00 00 00 C0 00 00 6C 80 20 8E
01 C0 00 00 57 40 00 00 6E E6 00 00 01 BC 18 00
00 05 D8 00 00 91 60 FF D9

Figure H.2 – Compressed image data from Example H.3

Figure H.3 is a detailed description of this data.

NOTE – In these examples, the compressed image data is given in hexadecimal form. In the figures explaining this data, the data
to the left of the '#' symbol is given in hexadecimal notation, text following the '#' symbol is a comment. Any numbers in a
comment are given as decimal values.

 FF D8 # Start of image (SOI) marker
 FF F7 # Start of JPEG-LS frame (SOF55) marker – marker segment follows
 00 0B # Length of marker segment = 11 bytes including the length field
 08 # P = Precision = 8 bits per sample
 00 04 # Y = Number of lines = 4
 00 04 # X = Number of columns = 4
 01 # Nf = Number of components in the frame = 1
 01 # C1 = Component ID = 1 (first and only component)
 11 # Sub-sampling: H1 = 1, V1 = 1
 00 # Tq1 = 0 (this field is always 0)

 FF DA # Start of scan (SOS) marker
 00 08 # Length of marker segment = 8 bytes including the length field
 01 # Ns = Number of components for this scan = 1
 01 # Ci = Component ID = 1
 00 # Tm1 = Mapping table index = 0 (no mapping table)
 00 # NEAR = 0 (lossless)
 00 # ILV = 0 (interleave mode = non-interleaved)
 00 # Al = 0, Ah = 0 (no point transform)

 C0 00 ... 91 60 # 30 bytes of compressed image data

 FF D9 # End of image (EOI) marker

Figure H.3 – Explanation of compressed image data from Example H.3

In this example, the compressed image data has a length of 36 bytes, and the marker segment bytes have a length of
27 bytes for a total of 63 bytes.

H.4.2 Interleaved data

Figure H.4 is based on the data from file T8SSE3.JLS (Test 8 in Annex E). This is a three-component image, with
256 lines and 256 columns (196 623 bytes of source data). The first component is not sub-sampled, whilst the second
component is sub-sampled in lines by a factor of four and the third component is sub-sampled in lines and in columns by
a factor of two. The image data consists of a single scan, encoded in line interleaved mode with default JPEG-LS preset
coding parameters. Near-lossless coding, NEAR = 3, has been used.

ISO/IEC 14495-1 : 1999 (E)

60 ITU-T Rec. T.87 (1998 E)

FF D8 FF F7 00 11 08 01 00 01 00 03 01 24 00 02
21 00 03 12 00 FF DA 00 0C 03 01 00 02 00 03 00
03 01 00 00 01
...
........ 6B A8 FF D9

Figure H.4 – Compressed image data from conformance Test 8

Figure H.5 is a detailed description of this data.

 FF D8 # Start of image (SOI) marker
 FF F7 # Start of JPEG-LS frame (SOF55) marker – marker segment follows
 00 11 # Length of marker segment = 17 bytes including the length field
 08 # P = Precision = 8 bits per sample
 01 00 # Y = Number of lines = 256
 01 00 # X = Number of columns = 256
 03 # Nf = Number of components in the frame = 3
 01 # C1 = Component ID = 1 ("red" component)
 24 # Sub-sampling for component 1: H1 = 2, V1 = 4
 00 # Tq1 = 0 (this field is always 0)
 02 # C2 = Component ID = 2 ("green" component)
 21 # Sub-sampling for component 2: H2 = 2, V2 = 1
 00 # Tq2 = 0 (this field is always 0)
 03 # C3 = Component ID = 3 ("blue" component)
 12 # Sub-sampling for component 3: H3 = 1, V3 = 2
 00 # Tq3 = 0 (this field is always 0)

 FF DA # Start of scan (SOS) marker
 00 0C # Length of marker segment = 12 bytes including the length field
 03 # Ns = Number of components for this scan = 3
 01 # C1 = Component ID = 1
 00 # Tm1 = Mapping table index = 0 (no mapping table)
 02 # C2 = Component ID = 2
 00 # Tm2 = Mapping table index = 0 (no mapping table)
 03 # C3 = Component ID = 3
 00 # Tm3 = Mapping table index = 0 (no mapping table)
 03 # NEAR = 3 (near-lossless maximum error)
 01 # ILV = 1 (interleave mode = line interleave)
 00 # Al = 0, Ah = 0 (no point transform)

 00 01 … 6B A8 # 32194 bytes of compressed image data

 FF D9 # End of image (EOI) marker

Figure H.5 – Explanation of compressed image data from conformance Test 8

In this example, the compressed image data has a length of 32 194 bytes, and the marker segment bytes have a length of
37 bytes for a total of 32 231 bytes.

 ISO/IEC 14495-1 : 1999 (E)

 ITU-T Rec. T.87 (1998 E) 61

H.4.3 Non-interleaved data

This example is the same as that in H.4.2, but each component is encoded in a separate scan with no interleaving (see
Figure H.6).

FF D8 FF F7 00 11 08 01 00 01 00 03 01 24 00 02
21 00 03 12 00 FF DA 00 08 01 01 00 03 00 00 00
01 ..
...
..... 08 80 FF DA 00 08 01 02 00 03 00 00 00 00
...
................. 62 00 FF DA 00 08 01 03 00 03
00 00 00 01
...
79 64 A0 FF D9

Figure H.6 – Non-interleaved compressed image data

ISO/IEC 14495-1 : 1999 (E)

62 ITU-T Rec. T.87 (1998 E)

Figure H.7 is a detailed description of this data.

 FF D8 # Start of image (SOI) marker
 FF F7 # Start of JPEG-LS frame (SOF55) marker – marker segment follows
 00 11 # Length of marker segment = 17 bytes including the length field
 08 # P = Precision = 8 bits per sample
 01 00 # Y = Number of lines = 256
 01 00 # X = Number of columns = 256
 03 # Nf = Number of components in the frame = 3
 01 # C1 = Component ID = 1
 24 # Sub-sampling for component 1: H1 = 2, V1 = 4
 00 # Tq1 = 0 (this field is always 0)
 02 # C2 = Component ID = 2
 21 # Sub-sampling for component 2: H2 = 2, V2 = 1
 00 # Tq2 = 0 (this field is always 0)
 03 # C3 = Component ID = 3
 12 # Sub-sampling for component 3: H3 = 1, V3 = 2
 00 # Tq3 = 0 (this field is always 0)

 FF DA # Start of scan (SOS) marker
 00 08 # Length of marker segment = 8 bytes including the length field
 01 # Ns = Number of components for this scan = 1
 01 # C1 = Component ID = 1
 00 # Tm1 = Mapping table index = 0 (no mapping table)
 03 # NEAR = 3 (near-lossless maximum error)
 00 # ILV = 0 (interleave mode = non-interleaved)
 00 # Al = 0, Ah = 0 (no point transform)

 00 01 ... 08 80 # 206 77 bytes of compressed image data

 FF DA # Start of scan (SOS) marker
 00 08 # Length of marker segment = 8 bytes including the length field
 01 # Ns = Number of components for this scan = 1
 02 # C1 = Component ID = 2
 00 # Tm1 = Mapping table index = 0 (no mapping table)
 03 # NEAR = 3 (near-lossless maximum error)
 00 # ILV = 0 (interleave mode = non-interleaved)
 00 # Al = 0, Ah = 0 (no point transform)

 00 00 ... 62 00 # 5658 bytes of compressed image data

 FF DA # Start of scan (SOS) marker
 00 08 # Length of marker segment = 8 bytes including the length field
 01 # Ns = Number of components for this scan = 1
 03 # C1 = Component ID = 3
 00 # Tm1 = Mapping table index = 0 (no mapping table)
 03 # NEAR = 3 (near-lossless maximum error)
 00 # ILV = 0 (interleave mode = non-interleaved)
 00 # Al = 0, Ah = 0 (no point transform)

 00 01 ... 64 A0 # 6257 bytes of compressed image data

 FF D9 # End of image (EOI) marker

Figure H.7– Explanation of non-interleaved compressed image data

 ISO/IEC 14495-1 : 1999 (E)

 ITU-T Rec. T.87 (1998 E) 63

In this example, the compressed image data has a length of 32 592 bytes, and the marker segment bytes have a length of
53 bytes for a total of 32 645 bytes.

H.4.4 Conformance data

Figure H.8 is based on the data from file T8NDE3.JLS (Test 10 in Annex E). This is a single-component image, with 128
lines and 128 columns (16 399 bytes of source data). The image data has been encoded with near-lossless coding, NEAR
= 3, and uses non-default parameters: T1 = T2 = T3 = 9, RESET = 31.

FF D8 FF F7 00 0B 08 00 80 00 80 01 01 11 00 FF
F8 00 0D 01 00 FF 00 09 00 09 00 09 00 1F FF DA
00 08 01 01 00 03 00 00 00 01
...
................................ 04 80 FF D9

Figure H.8 – Compressed image data from conformance Test 10

Figure H.9 is a detailed description of this data.

 FF D8 # Start of image (SOI) marker
 FF F7 # Start of JPEG-LS frame (SOF55) marker – marker segment follows
 00 0B # Length of marker segment = 11 bytes including the length field
 08 # P = Precision = 8 bits per sample
 00 80 # Y = Number of lines = 128
 00 80 # X = Number of columns = 128
 01 # Nf = Number of components in the frame = 1
 01 # C1 = Component ID = 1 (first and only component)
 11 # Sub-sampling: H1 = 1, V1 = 1
 00 # Tq1 = 0 (this field is always 0)

 FF F8 # LSE – JPEG-LS preset parameters marker
 00 0D # Length of marker segment = 13 bytes including the length field
 01 # ID = 1, JPEG-LS preset coding parameters
 00 FF # MAXVAL = 255
 00 09 # T1 = 9
 00 09 # T2 = 9
 00 09 # T3 = 9
 00 1F # RESET = 31

 FF DA # Start of scan (SOS) marker
 00 08 # Length of marker segment = 8 bytes including the length field
 01 # Ns = Number of components for this scan = 1
 01 # C1 = Component ID = 1
 00 # Tm1 = Mapping table index = 0 (no mapping table)
 03 # NEAR = 3 (near-lossless maximum error)
 00 # ILV = 0 (interleave mode = non-interleaved)
 00 # Al = 0, Ah = 0 (no point transform)

 00 01 ... 04 80 # 6069 bytes of encoded data

 FF D9 # End of image (EOI) marker

Figure H.9 – Explanation of compressed image data from conformance Test 10

In this example, the compressed image data has a length of 6069 bytes, and the marker segment bytes have a length of 42
bytes for a total of 6111 bytes.

ISO/IEC 14495-1 : 1999 (E)

64 ITU-T Rec. T.87 (1998 E)

H.4.5 Example of a palletised image

This example assumes a palletised image referenced as indices (4 lines × 3 columns over a 4-symbol alphabet), indexed
as shown in Figure H.10:

00 00 01
01 01 02
02 02 03
03 03 03

Figure H.10 – Indexed data for palletised image

The sample mapping table is as indicated in Figure H.11:

Index RGB triplet

00 FF FF FF
01 FF 00 00
02 00 FF 00
03 00 00 FF

Figure H.11 – Sample mapping table for palletised image

Figure H.12 shows the compressed image data.

FF D8 FF F7 00 0B 02 00 04 00 03 01 01 11 00 FF
F8 00 11 02 05 03 FF FF FF FF 00 00 00 FF 00 00
00 FF FF DA 00 08 01 01 05 00 00 00 DB 95 F0 FF
D9

Figure H.12 – Compressed data for palletised image

Figure H.13 is a detailed description of this data.

 ISO/IEC 14495-1 : 1999 (E)

 ITU-T Rec. T.87 (1998 E) 65

 FF D8 # Start of image (SOI) marker
 FF F7 # Start of JPEG-LS frame (SOF55) marker – marker segment follows
 00 0B # Length of marker segment = 11 bytes including the length field
 02 # P = Precision = 2 bits per sample
 00 04 # Y = Number of lines = 4
 00 03 # X = Number of columns = 3
 01 # Nf = Number of components in the frame = 1
 01 # C1 = Component ID = 1 (first and only component)
 11 # Sub-sampling: H1 = 1, V1 = 1
 00 # Tq1 = 0 (this field is always 0)

 FF F8 # LSE – JPEG-LS preset parameters marker
 00 11 # Length of marker segment = 17 bytes including the length field
 02 # ID = 2, mapping table
 05 # TID = 5 Table identifier (arbitrary)
 03 # Wt = 3 Width of table entry
 FF FF FF # Entry for index 0
 FF 00 00 # Entry for index 1
 00 FF 00 # Entry for index 2
 00 00 FF # Entry for index 3

 FF DA # Start of scan (SOS) marker
 00 08 # Length of marker segment = 8 bytes including the length field
 01 # Ns = Number of components for this scan = 1
 01 # C1 = Component ID = 1
 05 # Tm1 = Mapping table identifier = 5
 00 # NEAR = 0 (near-lossless max error)
 00 # ILV = 0 (interleave mode = non-interleaved)
 00 # Al = 0, Ah = 0 (no point transform)

 DB 95 F0 # 3 bytes of compressed image data

 FF D9 # End of image (EOI) marker

Figure H.13 – Explanation of compressed data for palletised image

H.5 Use of SPIFF with JPEG-LS compressed image data

H.5.1 Example of minimum SPIFF file header

An example of the minimum SPIFF (see ITU-T Rec. T.84 | ISO/IEC 10918-3) file header is given below in Table H.1.
The use of SPIFF is non-mandatory, but recommended for applications which transfer compressed image data between
application environments. Although the example below gives a minimal SPIFF compliant file, implementers should be
aware that for conformance with SPIFF, file decoders need to be able to parse the SPIFF directory entries correctly, even
if no action is taken with respect to their content.

The example is based on SPIFF as amended in ITU-T Rec. T.84 | ISO/IEC 10918-3 Amd.1. This includes a number of
changes to the original version, in particular in introducing a new value of the parameter C, compression type specifically
for JPEG-LS as defined in this Recommendation | International Standard.

NOTE – For the definition of symbols in Table H.1, see ITU-T T.84 | ISO/IEC 10918-3 Amd.1.

ISO/IEC 14495-1 : 1999 (E)

66 ITU-T Rec. T.87 (1998 E)

Table H.1 – Example of minimum SPIFF file format

Parameter Description Values

MN Magic number X'FFD8FFE8'

HLEN Length of header, 32 bytes X'0020'

IDENT Identifies 'SPIFF' X'535049464600'

VERS Version number (2.0) X'0200'

P Profile ID (not specified) X'00'

NC Number of components (3) X'03'

HEIGHT Height (2048) X'00000800'

WIDTH Width (3072) X'00000C00'

S Colour space (uncalibrated RGB) X'0A'

BPS Bits per sample (8) X'08'

C Compression type (JPEG-LS) X'06'

R Resolution units (dpi) X'01'

VRES Vertical resolution (300 dpi) X'0000012C'

HRES Horizontal resolution (300 dpi) X'0000012C'

variable Zero or more directory entries, comprising a header
(X'FFE8'), a length count (2 bytes), an identifier
(4 bytes), and contents (variable)

varies, can be omitted

EMN EMN for End of Directory tag X'FFE8'

EODLEN EOD length, including SOI (8) X'0008'

EODTAG EOD tag identifier (1) X'00000001'

SOI Start of image X'FFD8'

variable Image data varies

EOI End of image X'FFD9'

 ISO/IEC 14495-1 : 1999 (E)

 ITU-T Rec. T.87 (1998 E) 67

Annex I

Bibliography
(This annex does not form an integral part of this Recommendation | International Standard)

GALLAGER and VOORHIS (D.V.), Optimal source codes for geometrically distributed integer alphabets, IEEE
Transactions on Information Theory, Vol. 21, pp. 228-230, March 1975.

GOLOMB (S.W.), Run-length encodings, IEEE Transactions on Information Theory, Vol. 12, pp. 399-401, July 1966.

HUFFMAN (D.A.), A method for the construction of minimum redundancy codes, Proceedings IRE, Vol. 40,
pp. 1098-1101, 1952.

LANGDON, Jr. (G.), An adaptive run-length coding algorithm, IBM Technical Disclosure Bulletin, Vol. 26,
pp. 3783-3785, December 1983.

LANGDON (G.G.), Sunset: A hardware-oriented algorithm for lossless compression of gray-scale images, Proceedings
SPIE Medical Imaging V: Image Capture, Formatting, Display, Vol. 1444, pp. 272-282, May 1991.

MARTUCCI (S.A.), Reversible compression of HDTV images using median adaptive prediction and arithmetic coding,
Proceedings IEEE International Symposium on Circuits and Systems, pp. 1310-1313, 1990.

MEMON (N.D.) and SAYOOD (K.), Lossless image compression: A comparative study, Proceedings SPIE, Vol. 2418,
pp. 8-20, February 1995.

MERHAV (N.), SEROUSSI (G.) and WEINBERGER (M.J.), Modeling and low-complexity adaptive coding for image
prediction residuals, Proceedings IEEE International Conference on Image Processing 96, Vol. II, pp. 353-356,
Lausanne, Switzerland, September 1996.

NETRAVALI (A.) and LIMB (J.O.), Picture coding: A Review, Proceedings of IEEE, Vol. 68, pp. 366-406, 1980.

ONO (F.), KINO (S.), YOSHIDA (M.) and KIMURA (T.), Bi-level image coding with Melcode – Comparison of block
type code and arithmetic type code, Proceedings of Globecom 89, pp. 255-60, November 1989.

PENNEBAKER (W.B.) and MITCHELL (J.L.), JPEG: Still Image Data Compression Standard, Van Nostrand
Reinhold, New York, 1993.

RABBANI (M.) and JONES (P.), Digital Image Compression Techniques, Tutorial Texts in Optical Engineering,
Vol. TT7, SPIE Press, 1991.

RICE (R.F.), Some practical universal noiseless coding techniques, Tech. Report JPL, Vol. 79-22, Jet Propulsion
Laboratory, Pasadena, CA, March 1979.

RICE (R.F.), Some practical universal noiseless coding techniques: III, Tech. Report JPL, Vol. 91-3, Jet Propulsion
Laboratory, Pasadena, CA, November 1991.

RISSANEN (J.), A universal data compression system, IEEE Transactions on Information Theory, Vol. 29,
pp. 656-664, 1983.

RISSANEN (J.), Universal coding, information, prediction, and estimation, IEEE Transactions on Information Theory,
Vol. 30, pp. 629-636, 1984.

RISSANEN (J.) and LANGDON, Jr. (G.G.); Universal modelling and coding, IEEE Transactions on Information
Theory, Vol. 27, pp. 12-23, 1981.

TEUHOLA (J.), A compression method for clustered bit-vectors, Information Proc. Letters, Vol. 7, pp. 308-311, 1978.

TODD (S.), LANGDON (G.G.) and RISSANEN (J.), Parameter reduction and context selection for compression of gray-
scale images, IBM Journal of Research and Development, Vol. 29 (2), pp. 188-193, 1985.

WEINBERGER (M.J.), RISSANEN (J.) and ARPS (R.), Applications of universal context modelling to lossless
compression of gray-scale images, IEEE Transactions on Image Processing, Vol. 5, pp. 575-586, April 1996.

WEINBERGER (M.J.), SEROUSSI (G.) and SAPIRO (G.), LOCO-I: A low complexity, context-based, lossless image
compression algorithm, Proceedings Data Compression Conference, Snowbird, Utah, pp. 140-149, April 1996.

WU (X.), An algorithmic study in lossless image compression, Proceedings of the 1996 Data Compression Conference,
Snowbird, Utah, pp. 150-159, April 1996.

ITU-T RECOMMENDATIONS SERIES

Series A Organization of the work of the ITU-T

Series B Means of expression: definitions, symbols, classification

Series C General telecommunication statistics

Series D General tariff principles

Series E Overall network operation, telephone service, service operation and human factors

Series F Non-telephone telecommunication services

Series G Transmission systems and media, digital systems and networks

Series H Audiovisual and multimedia systems

Series I Integrated services digital network

Series J Transmission of television, sound programme and other multimedia signals

Series K Protection against interference

Series L Construction, installation and protection of cables and other elements of outside plant

Series M TMN and network maintenance: international transmission systems, telephone circuits,
telegraphy, facsimile and leased circuits

Series N Maintenance: international sound programme and television transmission circuits

Series O Specifications of measuring equipment

Series P Telephone transmission quality, telephone installations, local line networks

Series Q Switching and signalling

Series R Telegraph transmission

Series S Telegraph services terminal equipment

Series T Terminals for telematic services

Series U Telegraph switching

Series V Data communication over the telephone network

Series X Data networks and open system communications

Series Y Global information infrastructure

Series Z Languages and general software aspects for telecommunication systems

	ITU-T Rec. T.87 (06/98) INFORMATION TECHNOLOGY - LOSSLESS AND NEAR-LOSSLESS COMPRESSION OF CONTINUOUS-TONE STILL IMAGES - BAS
	Summary
	Source
	FOREWORD
	CONTENTS
	INFORMATION TECHNOLOGY - LOSSLESS AND NEAR-LOSSLESS COMPRESSION OF CONTINUOUS-TONE STILL IMAGES - BASELINE
	1 Scope
	2 Normative references
	2.1 Identical Recommendations | International Standards
	2.2 Additional references

	3 Definitions, abbreviations, symbols and conventions
	3.1 Definitions
	3.2 Abbreviations
	3.3 Symbols

	4 General description
	4.1 Purpose
	4.2 Coding principles
	4.3 Source image
	4.4 Encoding process
	4.5 Decoding process
	4.6 Coding of multiple component images
	4.7 Compressed image data
	4.8 Interchange format

	5 Interchange format requirements
	6 Encoder requirements
	7 Decoder requirements
	8 Conformance testing
	8.1 Purpose
	8.2 Encoder conformance tests
	8.3 Decoder conformance tests

	Annex A Encoding procedures for a single component
	A.1 Coding parameters and compressed image data
	A.2 Initialisations and conventions
	A.3 Context determination
	A.4 Prediction
	A.5 Prediction error encoding
	A.6 Update variables
	A.7 Run mode
	A.8 Flow of encoding procedures
	Annex B Multi-component images
	B.1 Introduction
	B.2 Line interleaved mode
	B.3 Sample interleaved mode
	B.4 Minimum Coded Unit (MCU)
	Annex C Compressed data format
	C.1 General aspects of the compressed data format specification
	C.2 General JPEG-LS coding syntax
	C.3 Abbreviated format for compressed image data
	C.4 Abbreviated format for table-specification data
	Annex D Control procedures
	D.1 Control procedure for encoding an image
	D.2 Control procedure for encoding a frame
	D.3 Control procedure for encoding a scan
	D.4 Control procedure for encoding a restart interval
	D.5 Control procedure for encoding a Minimum Coded Unit (MCU)
	Annex E Conformance tests
	E.1 Test images
	Annex F Decoding procedures
	F.1 Process flow
	Annex G Description of the coding process
	G.1 Context modelling
	G.2 Encoding in the regular coding mode
	G.3 Encoding in the run mode
	Annex H Examples and guidelines
	H.1 Introduction
	H.2 Example of how bits are output in the bit stream
	H.3 Detailed coding example
	H.4 Example image data
	H.5 Use of SPIFF with JPEG-LS compressed image data
	Annex I Bibliography

