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Recommendation I TU-T T.832

Information technology — JPEG XR image coding system — I mage coding specification

Summary

Recommendation ITU-T T.832 specifies a coded image format, referred to as JPEG XR, which is designed primarily for
the storage and interchange of continuous-tone photographic content. The main body of the text specifies the syntax and
semantics of JPEG XR coded images and the associated decoding process. Annex A specifies a tag-based file storage
format for the storage and interchange of such coded images. Annex B specifies profiles and levels, which determine
conformance requirements for classes of encoders and decoders. Aspects of color imagery representations and color
management are discussed in Annex C. The typical expected encoding process is described in Annex D.

The first edition of Recommendation ITU-T T.832 was approved in 03/2009.
Corrigendum 1 (approved 12/2009) contained a set of various minor corrections.
Corrigendum 2 (approved 05/2011) contained additional minor corrections.

This revised edition (approved 01/2012) includes additional minor corrections.
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FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of
telecommunications, information and communication technologies (ICTs). The ITU Telecommunication
Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical,
operating and tariff questions and issuing Recommendations on them with a view to standardizing
telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years,
establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on
these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are
prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a
telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain
mandatory provisions (to ensure, e.g., interoperability or applicability) and compliance with the
Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some
other obligatory language such as "must" and the negative equivalents are used to express requirements. The
use of such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may
involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence,
validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others
outside of the Recommendation development process.

As of the date of approval of this Recommendation, ITU had received notice of intellectual property,
protected by patents, which may be required to implement this Recommendation. However, implementers
are cautioned that this may not represent the latest information and are therefore strongly urged to consult the
TSB patent database at http://www.itu.int/ITU-T/ipr/.

© ITU 2012

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the
prior written permission of ITU.
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I ntroduction

This Recommendation | International Standard specifies requirements and implementation guidelines for the
compressed representation of digital images for storage and interchange in a form referred to as JPEG XR. The JPEG
XR design provides a practical coding technology for a broad range of applications with excellent compression
capability and important additional functionalities. An input image is typically operated on by an encoder to create a
JPEG XR coded image. The decoder then operates on the coded image to produce an output image that is either an
exact or approximate reconstruction of the input image.

The primary intended application of JPEG XR is the representation of continuous-tone still images such as
photographic images. The manner of representation of the compressed image data and the associated decoding process
are specified. These processes and representations are generic, that is, they are applicable to a broad range of
applications using compressed color and grayscale images in communications and computer systems and within
embedded applications, including mobile devices.

As of 2008, the most widely used digital photography format is a nominal implementation of the first JPEG coding
format as specified in Rec. ITU-T T.81 | ISO/IEC 10918-1. This encoding uses a bit depth of 8 for each of three
channels, resulting in 256 representable values per channel (a total of 16 777 216 representable color values).

More demanding applications may require a bit depth of 16, providing 65 536 representable values for each channel,
and resulting in over 2.8 * 10" color values. Additional scenarios may necessitate even greater bit depths and sample
representation formats. When memory or processing power is at a premium, as few as five or six bits per channel may
be used.

The JPEG XR specification enables greater effective use of compressed imagery with this broadened diversity of
application requirements. JPEG XR supports a wide range of color encoding formats including monochrome, RGB,
CMYK and n-component encodings using a variety of unsigned integer, fixed point, and floating point decoded
numerical representations with a variety of bit depths. The primary goal is to provide a compressed format specification
appropriate for a wide range of applications while keeping the implementation requirements for encoders and decoders
simple. A special focus of the design is support for emerging high dynamic range (HDR) imagery applications.

JPEG XR combines the benefits of optimized image quality and compression efficiency together with low-complexity
encoding and decoding implementation requirements. It also provides an extensive set of additional functionalities,
including:

- high compression capability
- low computational and memory resource requirements
- lossless and lossy compression
- 1image tile segmentation for random access and large image formats
- support for low-complexity compressed-domain image manipulations
- support for embedded thumbnail images and progressive resolution refinement
- embedded codestream scalability for both image resolution and fidelity
- alpha plane support
- bit-exact decoder results for fixed and floating point image formats.
Important detailed design properties include:
- high performance, embedded system friendly compression
- small memory footprint
- integer-only operations with no divides
- asignal processing structure that is highly amenable to parallel processing
- use of the same signal processing operations for both lossless and lossy compression operation.
- Support for a wide range of decoded sample formats (many of which support high dynamic range imagery):
e monochrome, RGB, CMYK or n-component image representation
e 8- or 16-bit unsigned integer
e 16- or 32-bit fixed point
e 16- or 32-bit floating point
e several packed bit formats

e 1-bit per sample monochrome
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e 5-or 10-bit per sample RGB
e Radiance RGBE

The algorithm uses a reversible hierarchical lifting-based lapped biorthogonal transform. The transform has lossless
image representation capability and requires only a small number of integer processing operations for both encoding
and decoding. The processing is based on 16x16 macroblocks in the transform domain, which may or may not affect
overlapping areas in the spatial domain (with the overlapping property selected under the control of the encoder). The
design provides encoding and decoding with a minimal memory footprint suitable for embedded implementations.

The algorithm provides native support for both RGB and CMYK color types by converting these color formats to an
internal luma-dominant format through the use of a reversible color transform. In addition, YUV, monochrome and
arbitrary n-channel color formats are supported.

The transforms employed are reversible; both lossless and lossy operations are supported using the same algorithm.
Using the same algorithm for both types of operation simplifies implementation, which is especially important for
embedded applications.

A wide range of numerical encodings at multiple bit depths are supported: 8-bit and 16-bit formats, as well as additional
specialized packed bit formats, are supported for both lossy and lossless compression. (32-bit formats are supported
using lossy compression.) Up to 24 bits are retained through the various transforms. While only integer arithmetic is
used for internal processing, lossless and lossy coding are supported for floating point and fixed point image data — as
well as for integer image formats.

The main body of this Specification specifies the syntax and semantics of JPEG XR coded images and the associated
decoding process that produces an output image from a coded image. Annex A specifies a tag-based file storage format
for storage and interchange of such coded images. Annex B specifies profiles and levels, which determine conformance
requirements for classes of encoders and decoders. Aspects of color imagery representations and color management are
discussed in Annex C. The typical expected encoding process is described in Annex D.

Corrigendum 1 (2009) and Corrigendum 2 (2011) introduced a set of various minor corrections to Rec. ITU-T T.832
(2009). Further corrections were introduced in a revised second edition of Rec. ITU-T T.832 (2012).
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Recommendation I TU-T T.832

Information technology — JPEG XR image coding system —
I mage coding specification

1 Scope

This Recommendation | International Standard specifies a coding format, referred to as JPEG XR, which is designed
primarily for continuous-tone photographic content. The main body of the text specifies the syntax and semantics of
JPEG XR coded images and the associated decoding process. Annex A specifies a tag-based file storage format for the
storage and interchange of such coded images. Annex B specifies profiles and levels, which determine conformance
requirements for classes of encoders and decoders. Aspects of color imagery representations and color management are
discussed in Annex C. The typical expected encoding process is described in Annex D.

2 Nor mative r eferences

Normative references which have a scope that is limited to the use of the file format specified in Annex A are listed in
subclause A.2.

3 Definitions

For the purposes of this Recommendation | International Standard, the following definitions apply. Definitions of terms
which have a scope that is limited to the use of the file format specified in Annex A are listed in subclause A.3.

In this clause, italic font formatting is used to identify all occurrences of terms that are defined in this clause.

31 adaptive coefficient normalization: A parsing sub-process where transform coefficients are dynamically
partitioned into a VLC-coded part and a fixed-length coded part, in a manner designed to control (i.e., "normalize") bits
used to represent the VLC-coded part. The fixed-length coded part of DC coefficients and low-pass coefficients is called
FLC refinement and the fixed-length coded part of high-pass coefficients is called flexbits.

3.2 adaptive inverse scanning: A parsing sub-process where the Zigzag scan order associated with a set of
transform coefficients is dynamically modified, based on the statistics of previously-parsed transform coefficients.

33 adaptive VLC: A parsing sub-process where the code table associated with VLC parsing of a particular
syntax element is switched, among a finite set of fixed tables, based on the statistics of previously-parsed instances of
this syntax element.

34 alphaimage plane: An optional secondary image plane associated with an image, of the same dimensions as
the luma component of the primary image plane. The alpha image plane has one component, a luma component.

35 block: An mxn array of samples, or an mxn array of transform coefficients.

3.6 block index: An integer in the range 0 to 15, identifying, by its position in raster scan order, a particular 4x4

block, within a partition of a 16x16 block into 16 4x4 blocks.
37 byte: A sequence of 8 bits.

3.8 byte-aligned: A bit in a codestream is byte-aligned if its position is an integer multiple of 8 bits from the
beginning of the codestream, where the first bit in the codestream is at position 0.

39 chroma: A component of the primary image plane with non-zero index, or the transform coefficients and
sample values associated with this component.

3.10 coded block pattern high-pass: The coded block pattern high-pass is a syntax element indicating the coded
block status, i.e., the presence or absence of non-zero high-pass transform coefficients, for each of the blocks in the
macroblock.

311 coded block pattern low-pass: The coded block pattern low-pass is a syntax element indicating the presence
or absence of non-zero low-pass transform coefficients in the macroblock.

312 coded block status: The coded block status is an indication of the presence or absence of non-zero transform
coefficients in that block.
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3.13 codestream: A sequence of bits contained in a sequence of bytes from which syntax elements are parsed,
such that the most significant bit of the first byte is the first bit of the codestream, the next most significant bit of the
first byte is the second bit of the codestream, and so on, to the least significant bit of the first byte (which is the eighth
bit of the codestream), followed by the most significant bit of the second byte (which is the ninth bit of the codestream),
and so on, up to and including the least significant bit of the last byte of the sequence of bytes (which is the last bit of
the codestream).

3.14 component: One of the arrays of samples associated with an image plane.
3.15 context: A possible value of a specific instance of a context variable.

3.16 context variable: A variable used in the parsing process to select which data structure is to be used for the
adaptive VLC parsing of a given syntax element.

3.17 DC coefficient: The first subset when the transform coefficients, that are contained in a specific macroblock
and a specific component, are partitioned into 3 subsets.

3.18 DC-LP array: The array of all DC and low-pass transform coefficients, for all macroblocks associated with a
specific component.

3.19 decoder: An embodiment of a parsing process and decoding process.

3.20 decoding process: The process of computing output sample values from the parsed syntax elements of the
codestream.

321 dequantization: The process of rescaling the quantized transform coefficients after their value has been
parsed from the codestream and before they are presented to the inverse transform process.

3.22 discriminant: A collective term for one of DiscrimVall or DiscrimVal2, which are the two member
variables of an instance of the adaptive VLC data structure specified in subclause 5.5.5.

3.23 encoder: An embodiment of an encoding process.

3.24 encoding process: The process of converting source sample values into a codestream conforming to this
Specification.

3.25 extended image: The image produced by the decoding process prior to windowing. The extended image has
a luma array that is an integer multiple of 16 in width and height.

3.26 file: A finite-length sequence of bytes that is accessible to a decoder in a manner such that the decoder can
obtain access to the data at specified positions within the sequence of bytes (e.g. by storing the entire sequence of bytes
in random access memory or by performing "position seek" operations to specified positions within the sequence of

bytes).
3.27 fileformat: A specified structure for the content of a file.

3.28 fixed-length code (FLC): A code which assigns a finite set of allowable bit patterns to a specific set of
values, where each bit pattern has the same length.

3.29 FLC refinement: The fixed-length coded part of a DC coefficient or low-pass coefficient that is parsed using
adaptive fixed-length codes.

3.30 flexbits: The fixed-length coded part of the high-pass coefficient information which is parsed using adaptive
fixed-length codes.

331 frequency band: A collective term for one of the following three subsets of the transform coefficients for an
image, which are separately parsed: DC coefficients, low-pass coefficients, and high-pass coefficients.

3.32 frequency mode: A codestream structure mode where the DC, low-pass, high-pass and flexbits frequency
bands for each tile are grouped separately.

3.33 hard tiles: A codestream structure mode where the overlap operators are not applied across tile boundaries.
Instead, boundary overlap operators are applied at tile boundaries.

3.34 high-pass coefficients: The third subset, when the transform coefficients that are contained in a specific
macroblock and a specific component are partitioned into 3 subsets.

3.35 image: The result of the decoding process, consisting of a primary image plane and an optional alpha image
plane.

3.36 image plane: A collective term for a grouping of the components of the image.

3.37 initial level value: One of two values used to compute the VLC-coded part of a transform coefficient.
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3.38 internal color format: The color format associated with the spatial-domain samples obtained through the
inverse transform process and the sample reconstruction process, and distinguished from the output color format
associated with the output formatting process.

3.39 inverse core transform (ICT): The two steps of the inverse transform process that involve processing of
transform coefficients associated with each macroblock independently, with no overlap filtering.

3.40 inverse transform process: The part of the decoding process by which a set of dequantized transform
coefficients are converted into spatial-domain values.

341 inverse scanning: The process of reordering an ordered set of parsed Syntax elements from the codestream to
form an array of transform coefficients associated with a specific component and macroblock.

342 little-endian form: An ordering of the bytes that represent a numerical value as an integer number of bytes in
which the bytes representing the number are in ascending order of significance, i.e., with the least significant byte first,
followed by the next least significant byte, etc.

343 low-pass coefficients: The second subset, when the transform coefficients that are contained in a specific
macroblock and a specific component are partitioned into 3 subsets.

344 luma: The component of an image plane with index zero, and the transform coefficients and sample values
associated with this component. Although this term is commonly associated with a signal that conveys perceptual
brightness information, as used in this Specification the term is primarily an identifier of a particular array of samples or
transform coefficients for an image.

345 macroblock: The collection of transform coefficients or samples, across all components, that have the same
indices i and j with respect to a macroblock partition.

3.46 macroblock partition: The partitioning of each component, into 16x16, 88, or 16x8 blocks, depending on
the internal color format.

347 output bit depth: The representation, including the number of bits and the interpretation of the bit pattern,
used for the sample values of the output image that are the result of the decoding process.

3.48 output color format: The color format associated with the output image that is the result of the decoding
process.

3.49 output formatting process: The process of converting the arrays of samples — that are the result of the
sample reconstruction process — into the output samples that constitute the output of the decoding process. This
specifies a conversion (if necessary) into the appropriate output color format and output bit depth.

3.50 output image height: The height of the sub-array of the luma component of the primary image plane that is
output by the decoding process.

351 output image width: The width of the sub-array, of the luma component of the primary image plane that is
output by the decoding process.

3.52 overlap filtering: The steps of the inverse transform process that involve processing of transform
coefficients across adjacent blocks and macroblocks.
NOTE - When overlap filtering is applied, it is applied across macroblock boundaries as well as block boundaries. When the

codestream uses soft tiles, the overlap filtering is also applied across tile boundaries. Otherwise, overlap filtering does not occur
across tile boundaries.

353 parsing process: The process of extracting bit sequences from the codestream, converting these bit
sequences to syntax element values, and setting the values of global variables for use in the decoding process.

354 prediction: The process of computing an estimate of the sample value or data element that is currently being
decoded.

3.55 prediction residual: The difference between the result of a prediction process invoked for a sample or data
element, and its intended value.

3.56 primary image plane: The image plane that consists of all image components that are not a part of the alpha
image plane.

357 QP index: An integer, which for a particular frequency band and macroblock specifies the index into the
table of quantization parameters available for this frequency band and tile. This QP index thereby selects, for this
macroblock, the quantization parameter used for the deguantization of the transform coefficients in the specific
frequency band.
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3.58 QP set: The set of quantization parameters associated with a particular frequency band, corresponding to the
luma and chroma components.

3.59 guantization parameter (QP): A value used to compute the scaling factor for the dequantization of a
transform coefficient, before the inverse transform process is applied.

3.60 raster scan order: The scan order in which a two-dimensional array of values is scanned row-wise from left
to right, and the rows are scanned from the top row to the bottom.

3.61 refinement: The process of modifying a predicted or partially-computed transform coefficient.

3.62 run: The number of zero valued coefficient levels that precede a non-zero valued coefficient level in the
zigzag scan order during the inverse scanning process.

3.63 sample reconstruction process: The process of converting dequantized transform coefficients into samples
of the image.

3.64 soft tiles: A codestream structure mode where the overlap operators are applied across tile boundaries.

3.65 spatial co-location: Sub-arrays of samples are spatially co-located across components when they correspond
to the same spatial region of the decoded image. The macroblock partition of the image ensures that the i-th macroblock
horizontally and j-th macroblock vertically across all components are spatially co-located.

3.66 spatial mode: A codestream structure mode where the DC, low-pass, high-pass and flexbits frequency bands
for each specific macroblock are grouped together.

3.67 gpatial transformation: An element in the codestream indicating the preferred final displayed orientation of
the decoded image, as specified in subclause 8.3.8. The spatial transformation is only a suggestion, and decoder
conformance is checked only for the decoded image prior to the application of this transformation (i.e., for orientation
0).

3.68 start code: A bit pattern that specifies the beginning of a tile packet or other distinguished, contiguous set of
syntax elements in the codestream.

3.69 tile: The collection of macroblocks that have the same indices i and j with respect to a tile partition. Each tile
corresponds to the macroblocks for a rectangular region of the image.

3.70 tile packet: A contiguous subset of the codestream, which contains the coded syntax elements associated
with a specific tile.

371 tile partition: A partition of the image into rectangular arrays of macroblocks, as specified in subclause 6.4.

3.72 transform coefficients: The values, associated with each specific macroblock and specific component, that —
after dequantization — form the input arrays into the inverse transform process.

3.73 variable-length code (VLC): A code which assigns a finite set of allowable bit patterns to a specific set of
values, where each bit pattern is potentially of a different length.

3.74 VLC refinement: One of two values used to compute the VLC-coded part of a transform coefficient. The
number of bits required to specify the VLC-refinement is dependent on the value of the initial level value. The VLC
refinement is added to the initial level value to produce the VLC-coded part of the transform coefficient.

3.75 windowing: A selection of spatially co-located sub-arrays of the components of all present image planes
associated with an image that are output by the decoding process.

3.76 zigzag scan order: An adaptive ordering for the inverse scanning process, which assigns array indices to
each subsequent transform coefficient parsed from the codestream.

4 Abbreviations

For the purposes of this Recommendation | International Standard, the following abbreviations apply. Abbreviations
which have a scope that is limited to the use of the file format specified in Annex A are listed in subclause A.4.

CBPHP Coded Block Pattern High-Pass
CBPLP Coded Block Pattern Low-Pass
FCT Forward Core Transform

FLC Fixed-Length Code

HP High-Pass
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ICT Inverse Core Transform

JPEG  Joint Photographic Experts Group
LP Low-Pass

LSB Least Significant Bit

MSB  Most Significant Bit

QP Quantization Parameter

VLC  Variable-Length Code

5 Conventions

51 Conformance language
This Recommendation | International Standard consists of normative and informative text.

Normative text is text which expresses mandatory requirements. The word "shall" is used to express mandatory
requirements to be followed strictly in order to conform to this Specification and from which no deviation is permitted.
A conforming implementation is one that fulfils all mandatory requirements.

Informative text is text that is potentially helpful to the user, but not indispensable and can be removed, changed or
added editorially without affecting interoperability. All text in this Recommendation | International Standard is
normative, with the following exceptions: the Introduction, any parts of the text that are explicitly labelled as
"informative", statements appearing with the preamble "NOTE", behaviour described using the word "should", and
pseudocode comments delimited as specified in subclause 5.2.7. The word "should" is used to describe behaviour that is
preferred but is not necessarily required for conformance to this Specification.

The keywords "may" and "need not" indicate a course of action that is permissible in a conforming implementation.

The keyword "reserved" indicates a provision that is not specified at this time, shall not be used in implementations
conforming to this version of this Specification and may be specified in the future. The keyword "forbidden" indicates
"reserved" and in addition indicates that the provision will never be specified in the future.

5.2 Operators

NOTE — Many of the operators used in this Specification are similar to those used in the C programming language (e.g. as
specified in ISO/IEC 9899).

5.21  Arithmetic operators
+ Addition
- Subtraction (as a binary operator) or negation (as a unary prefix operator)
++ Increment by one as a unary postfix operator
-= Decrement by one as a unary postfix operator
* Multiplication
/ Integer division, where the result is truncated towards zero

+ Division in mathematical equations where no truncation or rounding is intended

Division in mathematical equations where no truncation or rounding is intended

< | x

x % a is defined as the modulus operator for x >=0 and a > 0

x % a is defined as —(((—x) % a)) forx <O and a> 0

%

"

NOTE 1 - Although sometimes used as unary prefix operators in the C programming language, the "++" and "¢ * " arithmetic

operators are not used as unary prefix operators in this Specification.
NOTE 2 - The division operators used in this Specification differ somewhat from those used in the C programming language.
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5.2.2 Logical operators

[ Logical OR

&& Logical AND

! Logical NOT
TRUE/FALSE convention:

- When a variable or arithmetic expression having a non-zero value is evaluated as a logical condition or as an
element of a logical expression, it is evaluated as TRUE, and when a variable or expression having a zero value

is evaluated as a logical condition or as an element of a logical expression, it is evaluated as FALSE.

- When the value of a variable or arithmetic expression is compared to the value TRUE (in text or using a
relational operator), it is compared to the value 1, and when the value of a variable or arithmetic expression is

compared to the value FALSE (in text or using a relational operator), it is compared to the value 0.

-  When a variable is set to the value TRUE, it is set to the value 1; and when a variable is set to the value FALSE,

it is set to the value 0.

5.23 Relational operators

>

>=

A

Greater than

Greater than or equal to
Less than

Less than or equal to
Equal to

Not equal to

5.2.4  Bit-wise operators

Bit-wise operators operate on bit pattern values that are produced by conversion of an integer value to an equivalent bit
pattern value. Bit-wise operators operate on a two's complement representation of the integer value using a number of
bits sufficient to represent the integer value (with a bit equal to 0 in the MSB of non-negative integer value
representations and otherwise with a bit equal to 1 in the MSB). The result of a bit-wise operator is then interpreted as a

two's complement representation of an integer value. The following bit-wise operators are defined:

&

X>>b

X <<b

AND. When operating on a bit pattern argument that contains fewer bits than the other
argument, the shorter argument is extended by adding more significant bits equal to
the MSB of the shorter argument such that the number of bits representing the shorter
argument is made the same as the number of bits for the longer argument.

OR. When operating on a bit pattern argument that contains fewer bits than the other
argument, the shorter argument is extended by adding more significant bits equal to
the MSB of the shorter argument such that the number of bits representing the shorter
argument is made the same as the number of bits for the longer argument.

XOR. When operating on a bit pattern argument that contains fewer bits than the other
argument, the shorter argument is extended by adding more significant bits equal to
the MSB of the shorter argument such that the number of bits representing the shorter
argument is made the same as the number of bits for the longer argument.

Arithmetic right shift of a two's complement integer representation of x by b binary
digits, where b is a non-negative integer. Bits shifted into the MSBs as a result of the
right shift have a value equal to the MSB of x prior to the shift operation.

Arithmetic left shift of a two's complement integer representation of x by b binary
digits, where b is a non-negative integer. Bits shifted into the LSBs as a result of the
left shift have a value equal to 0.
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5.25  Assignment operators
= Assignment operator
+= xt=aisdefinedasx=x+a

—= x—=aisdefinedasx=x—a

= x*=aisdefinedasx=x"a
*= x *=aisdefinedasx=x *a
<<= x <<=a is defined as x = (x << a)
>>= x >>= a is defined as x = (x >> a)

526

Operators are listed below in descending order of precedence. If several operators appear in the same line, they have
equal precedence. When several operators of equal precedence appear at the same level in an expression, evaluation
proceeds according to the associativity of the operator either from right to left or from left to right.

Precedence order of operators

Table 1 — Precedence order of operators

Operators Type of operation Associativity
0),I[],. Expression Left to Right
++, —— Postfix operators Right to Left
- ! Unary

Multiplication and division Left to Right
¥/ %, —
+, - Addition and subtraction Left to Right
<<, >> Arithmetic shift Left to Right
<, > <= >= Relational Left to Right
== 1= Equality test Left to Right
&, |, Bit-wise operator Left to Right
&&, || Logical operators Left to Right
7, =, F=, 4=, =, = <<=, >>= Assignment operators Right to Left

5.2.7  Pseudocode operations

Pseudocode is organized into "functions" that are specified in tabular form. A sample pseudocode table is presented in
Table 2. Pseudocode statements are each expressed as a row of the table. A group of statements enclosed in curly
brackets "{...}" is a compound statement and is treated functionally as a single statement. Each function definition
begins with a table row specifying the name of the function, the arguments of the function, and containing the opening
curly bracket of a compound statement.

Arguments passed to a pseudocode function are listed in parenthesis after the function name, and are comma delimited.
Two types of arguments are used in pseudocode function definitions, as follows:

- Non-array variables, which are passed by value (e.g. valueArgument! in Table 2).

- Arrays, which are passed by reference (e.g. arrayArgument2|[ ] in Table 2).

Non-array variables that are passed to a function are addressed within the function using a local variable name, even
when a global variable (subclause 5.5) has been used when calling the function. Since non-array variables are passed by
value rather than by reference, any changes made to the value of the local variable within the function do not affect the
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value of the (local or global) variable that was used as a calling argument by the invoking process when the function
was called. Since arrays are passed to a function by reference rather than by value, any changes made within the
function to the values of entries in such an array (specified using a local array name within the function) do persist after
the completion of the pseudocode function. Changes made to the values of global variables (subclause 5.5) that are
specified within a function using the name of the global variable also persist after the completion of the pseudocode
function.

Pseudocode functions may or may not return a value. When a function returns a value, the value that is returned is
specified by a "return" statement that appears as the last statement in the compound statement that specifies the
function, and the value that is returned is the value of the expression that is specified after the term "return" in the
pseudocode return statement. Functions that do not return a value do not contain a return statement. Table 2 provides an
example of a function definition for a function that returns the value of a variable valueReturn.

Table 2 — Example of a pseudocodetable

ExamplePseudocode(valueArgumentl, arrayArgument2[ ]) { Reference
statement
return valueReturn

The pseudocode convention shown in Table 3 is used to indicate an informative comment.

Table 3— Example of a pseudocode comment

ExamplePseudocodeComment( ) { Reference
/* this is a comment start and end */

The pseudocode convention shown in Table 4 specifies repeated execution of a "condition" checking followed by a
"statement" until the "condition" is no longer TRUE.

Table 4 — Example of a pseudocode while statement

ExamplePseudocodeW hileStatement( ) { Reference
while (condition)
statement
}

The pseudocode convention shown in Table 5 specifies evaluation of an "initial statement" followed by evaluation of a
"condition", and when the "condition" is TRUE, it specifies repeated execution of a "primary statement" followed by a
"subsequent statement", and repeating the checking of the condition and the execution of the primary statement and
subsequent statement until the checked condition no longer evaluates to the value TRUE.

Table 5 - Example of a pseudocode for statement

ExamplePseudocodeFor Statement( ) { Reference
for (initial statement; condition; subsequent statement)
primary statement
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The pseudocode convention shown in Table 6 specifies that a "statement" is executed if a "condition" is TRUE, and that
an "alternate statement" is otherwise performed.

Table 6 — Example of a pseudocode conditional statement

ExamplePseudocodeConditional Statement( ) { Reference
if (condition)
statement
else
alternative statement
}

The pseudocode convention shown in Table 7 specifies the initialization of the values of entries in an array. In this
example, iArr[0] is set equal to 2, iArr[1] is set equal to 4, iArr[2] is set equal to 6, and 1Arr[3] is set equal to 8.

Table 7 — Example of the initialization of valuesin an array in pseudocode

ExamplePseudocodeArrayl nitalization( ) { Reference
iArr[ ]={2,4, 6, 8}
i

5.2.8 Mathematical functions

Ceiling(x) Ceiling function. Returns the smallest integer that is greater than or equal to the real-
valued argument x.

Floor(x) Floor function. Returns the largest integer that is less than or equal to the real-valued
argument X.
Max(a, b) Maximum of two arguments as specified in Table 8.

Table 8 — Definition of mathematical function Max( )

Max(a, b) { Reference
if (a >=b)
valueReturn = a
else
valueReturn = b
return valueReturn

Min(a, b) Minimum of two arguments as specified in Table 9.

Table 9 — Definition of mathematical function Min()

Min(a, b) { Reference
if (a <=b)
valueReturn = a
else
valueReturn = b
return valueReturn

Abs(x) Absolute value of an argument as specified in Table 10.
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Table 10 — Definition of mathematical function Abs()

Abs(x) { Reference
if (x >=0)
valueReturn = x
else
valueReturn = —x
return valueReturn

}
Sign(x) Sign of an argument as specified in Table 11.
Table 11 — Definition of mathematical function Sign()
Sign(x) { Reference
if (x >= 0)
valueReturn = 1
else
valueReturn = —1
return valueReturn
}
Round(x) Rounding to integer value as specified in Table 12.
Table 12 — Definition of mathematical function Round()
Round(x) { Reference
valueReturn = Sign(x) * Floor(Abs(x) + 0.5)
return valueReturn
}

Clip(x, iLow, Clip integer value to a range lie between integers iLow and iHigh is specified in
iHigh) Table 13.

Table 13 — Definition of mathematical function Clip()

Clip(x, iLow, iHigh) { Reference
valueReturn = Max(x, iLow)
valueReturn = Min(valueReturn, iHigh)
return valueReturn

Sqrt(x) Square root of x
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531

Numones(x)  Returns the number of bits in an argument that are set, for a positive integer argument x
that is represented in two's complement arithmetic as specified in Table 14.

Table 14 — Definition of mathematical function Numones()

Numones(x) { Reference
valueReturn = 0
while (x 1=0) {
valueReturn += (x & 1)
X >>=1

}

return valueReturn

Syntax and semantics notation

Method of specifying syntax in tabular form

The syntax tables specify a superset of the syntax of all allowed codestreams. Additional constraints on the syntax may
also be specified, either directly or indirectly, in other subclauses.

Table 15 lists an example of pseudocode used to specify the syntax. When the name of a syntax element appears in the
first column, it specifies that the syntax element is parsed from the codestream and the codestream pointer is advanced
to the next bit position beyond the syntax element in the codestream parsing process.

Subclause 5.3.2 provides an example of how the semantics of a syntax element are specified in this Specification.

The column with the heading "Descriptor" specifies the parsing process of an associated syntax element as follows:

i(n): two's complement signed integer using n bits, where the most significant bit is the left-most bit. This
indicates a fixed-length syntax element. The value of n is the size of the syntax element in bits. For example, i(3)
indicates a 3-bit syntax element, and i(iVar) indicates a syntax element of length iVar, where iVar is a variable
computed from the values of other previously parsed syntax elements.

u(n): unsigned integer using n bits, where the most significant bit is the left-most bit. This indicates a fixed-
length syntax element. The value of n is the size of the syntax element in bits. For example, u(3) indicates a 3-bit
syntax element, and u(iVar) indicates a syntax element of length iVar, where iVar is a variable computed from
the values of other previously parsed syntax elements.

le(n): unsigned integer using n bits in little-endian form, where n is an integer multiple of 8. This indicates a
fixed-length syntax element. The value of n is the size of the syntax element in bits. For example, le(16)
indicates a 16-bit syntax element, and le(iVar) indicates a syntax element of length iVar, where iVar is a variable
having a value that is an integer multiple of 8 that is computed from the values of other previously parsed syntax
elements.

e(v): entropy coded syntax element where the most significant bit of the code is the left-most bit. This indicates a
variable-length coded syntax element, and a fixed VLC table is used to parse this syntax element.

ae(v): adaptive entropy coded syntax element where the most significant bit of the code is the left most bit. This
indicates a variable-length coded syntax element, where the VLC table used to parse the syntax element is
selected adaptively based on the values of other previously parsed syntax elements.

The column with the heading "Reference" provides one or more links to semantics or information about constraints on
an associated syntax element.
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Table 15 — Syntax table example

HEADER EXAMPLE(){ Descriptor Reference
/* A statement can be a syntax element or a conditional statement
that specifies the presence and type of syntax element */
/* The conditional statements are expressed in terms of the
pseudocode operations defined in subclause 5.2.7 */
if (condition)
SYNTAX ELEMENT EXAMPLE u(8) 53.2

532 SYNTAX_ELEMENT_EXAMPLE semantics

SYNTAX ELEMENT EXAMPLE is an example 8-bit syntax element having semantics and constraints specified in
this subclause, as identified in the "Reference" column of the associated syntax table in subclause 5.3.1.

5.3.3 Syntax functions

The codestream is formatted as an ordered sequence of bytes. These bytes contain sequences of bits. The syntax
elements appear within a sequence of bits in the order specified in the syntax tables, and for each syntax element, the
most-significant bit of the syntax element representation is the first bit in the sequence of bits that represents the syntax
element and the least-significant bit of the syntax element representation is the right-most bit. The bits of the syntax
elements shall be extracted from the bytes that represent them by extracting the most-significant bit of the first syntax
element from the most-significant bit of the first byte, the next bit of the syntax element from the next less significant
bit of the byte, etc., proceeding through to the least-significant bit of the byte and then the most-significant bit of the
following byte, if the bit pattern for the syntax element is longer than 8, etc. After the bits of the first syntax element,
the same convention shall be followed, starting at the next bit, for the bits of the next syntax element and then for the
subsequent syntax elements.

Unless otherwise specified, the bytes of the codestream are ordered in the sequence of bytes that forms the codestream
such that the conceptually-first byte is placed first in the sequence of bytes, the second byte is placed second, etc. (i.c.,
so-called "network" or "big endian" byte ordering is used for the codestream unless otherwise specified).

The syntax functions IS BYTE ALIGNED() and POS SEEK(iLoc) are used in the specification of some syntax
structures. These functions assume the existence of a codestream pointer referring to the position of the next bit to be
read from the codestream by the parsing process. Prior to operation of the parsing process, the codestream pointer refers
to the position of the first bit of the first byte of the codestream.

IS BYTE ALIGNED( ) is a syntax function specified as follows:

- If the current position in the codestream is on a byte boundary, i.e., the next bit in the codestream is the first bit
in a byte, the return value of IS BYTE ALIGNED( ) is equal to TRUE.

- Otherwise, the return value of [S BYTE ALIGNED( ) is equal to FALSE.

POS_SEEK(iLoc) is a syntax function that sets the codestream pointer to position of the first bit of the byte that is iLoc
bytes from the start of the codestream, where iLoc is a non-negative integer argument, and the first byte of the
codestream corresponds to iLoc equal to 0.

54 Formatting conventions

54.1 Variableand array naming conventions

Global variables are in scope throughout more than one subclause. The extent of the scope of each global variable is
specified in subclause 5.5. The name of a global variable begins with an upper case letter and includes some lower case
letters or numerals, and does not include underscore characters, e.g. as in "ImageWidth". With the exception of image
variables (subclause 5.5.1), all other global variables are associated with a specific image plane; therefore, a separate
instance of each global variable exists for the primary image plane and for the alpha image plane (in the case where an
alpha image plane is present).

In the parsing syntax and pseudocode tables of clause 8, the global variable IsCurrPlaneAlphaFlag is used to indicate
which set of global variables are referenced in the table; if IsCurrPlaneAlphaFlag is equal to FALSE, the global
variables referenced are those of the primary image plane; otherwise (IsCurrPlaneAlphaFlag is equal to TRUE), the
global variables referenced are those of the alpha image plane.
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The scope of local variables is limited to one subclause. They begin with a lower case letter and may include some
upper case letters or numerals and do not include underscore characters, e.g. iValue.

Square parentheses are used for the indexing of arrays. Arrays can be either syntax elements or variables. A one-
dimensional array is referred to as a list. Array indices count from zero. For example, the first element of
arrayExample[ ] is arrayExample[0].

5.4.2  Datastructure naming conventions

An instance of a data structure is labelled by bold-faced letters. The member variables of a data structure are formatted
like global variables. To reference a member variable of a data structure instance, the data structure instance's name is
associated with the member variable with a period ".", e.g. AbslevellndexDCLum.Tablelndex indicates that the
member variable Tablelndex is part of the data structure instance AbslevellndexDCLum.

54.3 Syntax element naming conventions

Syntax elements are labelled by a name in upper case letters, in which at least one underscore character is included.

5.4.4  Syntax structure naming conventions

Syntax structure is a term used to refer to a collection of syntax elements. Syntax structures are identified by a name in
upper case letters, in which at least one underscore character is included, followed by a pair of parentheses. Within the
parentheses, there may be one or more variables. These variables correspond to variables or values that are associated
with the pseudocode table for this syntax structure when the syntax structure is invoked within another syntax structure.

5.4.5 Naming conventionsfor mnemonic constants

Mnemonics are used to refer to constant values taken by syntax elements in the parsing and decoding process.
Mnemonics constants are in upper case letters without underscores and may include numbers, e.g. YUV420. The
mnemonic constants that are used are defined in Table 16. The mnemonic constant RESERVED is used to specify a
value that is reserved for future use.

Table 16 — Defined mnemonic values

M nemonics Syntax element and Reference

YUV444, YUV422, YUV420, YONLY, CMYK, Table 22 for syntax element OUTPUT _CLR_FMT
CMYKDIRECT, RGB, RGBE, NCOMPONENT

YUV444, YUVA422, YUV420, YONLY, YUVK, Table 28 for syntax element INTERNAL _CLR FMT
NCOMPONENT

BD1WHITE1, BD8, BD16, BD16S, BD16F, BD32S, Table 23 for syntax element OUTPUT_BITDEPTH

BDS5, BD10, BD565, BDIBLACK1

ALL, NOFLEXBITS, NOHIGHPASS, DCONLY Table 29 for syntax element BANDS PRESENT

5.4.6  Naming conventionsfor numerical values

Integer numbers are expressed as bit patterns, hexadecimal values, or decimal numbers. Bit patterns and hexadecimal
values have both a numerical value and an associated particular length in bits.

Hexadecimal notation, indicated by prefixing the hexadecimal number by "0x", may be used instead of binary notation
to denote a bit pattern having a length that is an integer multiple of 4. For example, 0x41 represents an eight-bit pattern
having only its second most significant bit and its least significant bit equal to 1. Numerical values that are specified
under a "Code" heading in tables that are referred to as "code tables" are bit pattern values (specified as a string of
digits equal to 0 or 1 in which the left-most bit is considered the most-significant bit). Other numerical values not
prefixed by "0x" are decimal values. When used in expressions, a hexadecimal value is interpreted as having a value
equal to the value of the corresponding bit pattern evaluated as a binary representation of an unsigned integer (i.e., as
the value of the number formed by prefixing the bit pattern with a sign bit equal to 0 and interpreting the result as a
two's complement representation of an integer value). For example, the hexadecimal value OxF is equivalent to the 4-bit
pattern '1111' and is interpreted in expressions as being equal to the decimal number 15.

5.4.7 Array dimensionsconvention

Arrays of height valHeight and width valWidth are denoted as having dimension valHeightxvalWidth. For variable and
function names, the character "x" is used as the cross symbol. Otherwise, the cross symbol "x" is used in all other cases.
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55 Global variables

In subclause 5.5, bold font formatting is used to identify each global variable in the subclause it is described. Changes in
value applied to global variables persist beyond single pseudocode functions. The scope of that persistence is specified
by the subclause in which the global variable is defined.

551 Imagevariables

The following global variables maintain information relevant to the entire image.
ExtendedWidth[i]: This variable specifies the extended image width of component i.
ExtendedHeight[i]: This variable holds the extended image height of component i.

IndexOffset Tile[n]: This variable specifies the offset of the n-th tile packet from the start of the coded image data in
bytes.

ImagePrimary[i][X][y]: For each specific triple (i, X, y), where 0 <= i < NumComponents (subclause 8.4.11), 0 <= x <
ExtendedWidth[i], 0 <= y < ExtendedHeight[i], the associated variable ImagePrimary[i][x][y] holds the image plane
sample values associated with the component i, located at the sample position indicated by the values x and y, for the
primary image plane.

ImageAlpha[i][x][y]: For each specific triple (i, x,y), where i = 0, 0 <= x < ExtendedWidth[i], 0 <= y <
ExtendedHeight[i], this variable holds the image plane sample value, at the sample position determined by the values x
and y, for the alpha image plane.

MBHeight: This variable holds the value associated with the number of vertical macroblock partitions.

MBWidth: This variable holds the value associated with the number of horizontal macroblock partitions.
NumTileCols: This variable holds the value associated with the number of tile partitions in the image horizontally.
NumTileRows: This variable holds the value associated with the number of tile partitions in the image vertically.

TopMBIndexOfTil€li]: This variable holds the value associated with the macroblock index of the top macroblock row
of the i-th tile row.

LeftMBIndexOfTilej]: This variable holds the value associated with the macroblock index of the left macroblock
column of the j-th tile column.

NumMBInTile[n]: This variable holds the value associated with the number of macroblocks in the n-th tile.

NumBandsOfPrimary: This variable holds the value associated with the value of NumBands (defined in
subclause 5.5.2) for the primary image plane.

SubseguentBytes: This variable holds the value associated with the number of bytes of subsequent data that precede
the CODED_TILES( ) (subclause 8.2.2) syntax element and follow the image plane headers and the tiles index table.
5.5.2 Imageplanevariables

The following global variables maintain information relevant for all tiles of the current image plane.

I sCurrPlaneAlphaFlag: This variable is equal to TRUE if the current plane that is being parsed or decoded is the alpha
image plane; otherwise, this variable is equal to FALSE. It is also used to specify which set of image plane variables,
tile variables, and macroblock variables are being referenced.

NumComponents: This variable holds the value associated with the number of color components present in the
codestream for the current image plane. For the primary image plane, its value can be obtained by calling
DetermineNumComponents( ) (subclause 8.4.11). For the alpha image plane, its value is equal to 1.

NumBands: This variable holds the value associated with the number of frequency bands present in the codestream for
the current image plane. Its value can be obtained by calling DetermineNumBands( ) (subclause 8.4.4).

NumL PQPs: This variable holds the value associated with the number of low pass QP sets. This variable may have a
constant value over an image plane or it may vary from tile to tile.

NumHPQPs: This variable holds the value associated with the number of high pass QP sets. This variable may have a
constant value over an image plane or it may vary from tile to tile.

MBQPIndexL P[M Bx][MBy]: (MBx and MBy are defined in subclause 5.5.4) This variable holds the QP index into
the table of quantization parameters for LP coefficients, corresponding to the macroblock indexed by MBx and MBy.
The same index applies for all color components.

14 Rec. ITU-T T.832(01/2012)



MBQPIndexHP[M Bx][MBy]: (MBx and MBy are defined in subclause 5.5.4) This variable holds the QP index into
the table of quantization parameters for HP coefficients, corresponding to the macroblock indexed by MBx and MBy.
The same index applies for all color components.

MbDCLP[MBX][MBY][il[j]: (MBx and MBy are defined in subclause 5.5.4) When j is equal to 0, this variable holds
the DC transform coefficient for the macroblock indexed by MBx and MBy, associated with the color component
indexed by i. For non-zero values of the index j, this variable holds the j-th LP transform coefficient for the macroblock
indexed by MBx and MBy, and associated with the color component indexed by i. The index j ranges from 0 to 15 for
luma components of all color formats and chroma components of all color formats except YUV 4:2:0 and YUV 4:2:2.
In the YUV 4:2:0 chroma component case, j ranges from 0 to 3, and in the YUV 4:2:2 chroma component case, j ranges
from 0 to 7.

M BBuffer[MBx][MBy][i][j]: (MBx and MBy are defined in subclause 5.5.4) This variable holds the j-th transform

coefficient - associated with the color component i — for the macroblock indexed by MBx and MBy. The index j ranges
from 0 to 255.

The ordering of the 256 transform coefficients in the macroblock is as follows: let iBlkIndex represent the block index
of a 4x4 block of component i in the macroblock, indexed in raster scan order, with iBlkIndex ranging from 0 to 15.
Then the 16 transform coefficients for this block (indexed in raster scan order in the block) are represented by the
values of MBBuffer[MBx][MBy][i][j], where j ranges from (16*iBlkIndex + 0) to (16*iBlkIndex + 15), inclusive.

MBCBPHP[MBx][MBy][i]: (MBx and MBy are defined in subclause 5.5.4) This variable holds the coded block status
for the macroblock indexed by MBx and MBy, associated with the color component indexed by i. The association of a
bit of this variable to the block in the macroblock is specified in subclause 8.7.17.1, and a bit takes the value 1 if the
corresponding block has non-zero HP transform coefficients to be scanned.

PredDCL P[MBX][MBYVY][i][j]: (MBx and MBy are defined in subclause 5.5.4) This variable holds the predicted DC
and LP coefficient values, for the macroblock indexed by MBx and MBYy, associated with the color component indexed
by i; the index j ranges from O to 6. The predicted DC value corresponds to index 0.

M odelBitsM BHP[M Bx][M By][i]: (MBx and MBy are defined in subclause 5.5.4) This variable holds the value of the
member variable MBits[i], associated with the data structure ModelHP as defined in subclause 5.5.6, for the
macroblock indexed by MBx and MBy. The index i ranges from 0 to 1. For each macroblock, two values are stored:
one value for the luma component, and one value for the chroma components.

NOTE - The values ModelBitsMBHP[MBx][MBy][i] are used in the parsing process to communicate the state between the
parsing of the syntax structures MB_HP( ) and MB_FLEXBITS( ). See Table 83.

ImagePlan€|i][x][y]: This variable holds the sample value associated with the color component i, located at the position
indicated by the values x and y, where 0 <= i < NumComponents, 0 <= x < ExtendedWidth[i], 0 <=y <
ExtendedHeight[i], for the current image plane being decoded.

553 Tilevariables
The following global variables maintain information that is relevant for all macroblocks in the current tile:

Tilelndexx: This variable holds the column index of the current tile. The value of TileIndexx is in the range 0 <=
TileIndexx < NumTileCols.

Tilelndexy: This variable holds the row index of the current tile. The value of Tilelndexy is in the range 0 <=
TileIndexy < NumTileRows.

NumMBInCurrentTile: This variable holds the value associated with the number of macroblocks in the current tile.
DCQuantParamli]: This variable holds the DC quantization parameter for the color component i of the current tile.

LPQuantParam[i][j]: This variable holds the LP quantization parameter for the color component i, and the
quantization parameter index j of the current tile.

HPQuantParam[i][j]: This variable holds the HP quantization parameter for the color component i and the
quantization parameter index j of the current tile.

554  Macroblock variables
The following global variables hold information relevant for a specific macroblock:

M Bx: This variable holds the column index of the current macroblock, with respect to the block indices associated with
the macroblock partition of the image.

MBYy: This variable holds the row index of the current macroblock, with respect to the block indices associated with the
macroblock partition of the image.
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MBDCM ode: This variable holds the DC coefficient prediction mode for the current macroblock.
MBL PM ode: This variable holds the LP coefficient prediction mode for the current macroblock.
MBHPM ode: This variable holds the HP coefficient prediction mode for the current macroblock.
DClInput[i]: This variable holds the DC transform coefficient value for each color component i.

L PInput[i][j]: This variable holds the j-th LP transform coefficient value for each color component i.

HPInputVLCJi][j][K]: This variable holds the most significant bits of the k-th HP transform coefficient value for the
j-th block of the macroblock for each color component i.

HPInputFlex[i][j][K]: This variable holds the least significant bits of the k-th HP transform coefficient value for the
j-th block of the macroblock for each color component i.

I sM BL eftEdgeof TileFlag: This variable indicates whether the current macroblock is along the left edge of the tile. It is
set equal to TRUE if MBx is equal to LeftMBIndexOfTile[ TileIndexx]. Otherwise, it is set equal to FALSE.

IsMBTopEdgeofTileFlag: This variable indicates whether current macroblock is along the top edge of the tile. It is set
equal to TRUE if MBy is equal to TopMBIndexOfTile[TileIndexy]. Otherwise, it is set equal to FALSE.

5.5.5 Datastructuresfor adaptive VLC table selection
5551 General

Syntax elements which are parsed using adaptive VLC tables are associated with a set of global state variables. The data
structure template AdaptiveVL C is used to associate these variables to their respective syntax element.

AdaptiveVLC data structure template member variables are as follows:

- DiscrimVall: This variable accumulates statistics about the code table choice, used for adaptively switching to
other code tables.

- DiscrimVal2: This is a second variable used to accumulate statistics about the code table choice, used for
adaptively switching to other code tables. When there are more than two code tables for the parsing of a given
syntax element, the associated AdaptiveVLC data structure instance requires two discriminants.

— Tablelndex: The index selecting which code table is used for the current macroblock.

- DeltaTableIndex: The index selecting which Delta Table is used for modifying DiscrimVall, for the current
macroblock.

- Delta2Tablelndex: The index selecting which Delta Table is used for modifying DiscrimVal2, for the current
macroblock.

The collective term discriminant is used, when referring to either DiscrimVall or DiscrimVal2; these two member
variables are jointly referred to as the discriminants associated with a specific AdaptiveVLC data structure instance.

Subclauses 5.5.5.2 through to 5.5.5.4 define the instances of the AdaptiveVLC data structure that are used for the
parsing of syntax elements associated with DC, LP, and HP transform coefficients.

NOTE - Informative remarks related to this subclause are provided in subclause D.9.

55.5.2 DC adaptiveVL C data structureinstances

AbslevellndDCL um: This data structure instance accumulates statistics for the ABS LEVEL INDEX syntax element,
during parsing of the syntax structure DECODE_ABS LEVEL() (Table 50) from within DECODE_DC( ) (Table 49),
referring to luma DC values. The corresponding TableIndex chooses between the code tables for the syntax element
ABS LEVEL INDEX, which are specified in subclause 8.7.14.5.

AbslevellndDCChr: This data structure instance accumulates statistics for the ABS_ LEVEL INDEX syntax element,
during parsing of the syntax structure DECODE_ABS LEVEL() (Table 50) from within DECODE_DC( ) (Table 49),
referring to chroma DC values. The corresponding TableIndex chooses between the code tables for the syntax element
ABS LEVEL INDEX, which are specified in subclause 8.7.14.5.

5.5.5.3 Low-passadaptiveVLC data structureinstances

DecFirstindLPLum: This data structure instance accumulates statistics for the FIRST INDEX syntax element, during
parsing of the syntax structure DECODE FIRST INDEX( ) (Table 75) from within DECODE BLOCK( ) (Table 72),
referring to luma LP values. The corresponding Tablelndex chooses between the code tables for the syntax element
FIRST INDEX, which are specified in subclause 8.7.18.9.7.
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DeclndL PLumO: This data structure instance accumulates statistics for the INDEX A syntax element, during parsing
of the syntax structure DECODE INDEX( ) (Table 74) from within DECODE_BLOCK( ) (Table 72), referring to luma
LP values, with the local variable iContext (local to the pseudocode table for DECODE _BLOCK( )) equal to 0. The
corresponding Tablelndex chooses between the code tables for the syntax element INDEX A, which are specified in
subclause 8.7.18.9.4.

DeclndLPLum1: This data structure instance accumulates statistics for the INDEX A syntax element, during parsing
of the syntax structure DECODE INDEX( ) (Table 74) from within DECODE_BLOCK( ) (Table 72), referring to luma
LP values, with the local variable iContext (local to the pseudocode table for DECODE _BLOCK( )) equal to 1. The
corresponding Tablelndex chooses between the code tables for the syntax element INDEX A, which are specified in
subclause 8.7.18.9.4.

DecFirstindLPChr: This data structure instance accumulates statistics for the FIRST INDEX syntax element, during
parsing of the syntax structure DECODE_FIRST INDEX( ) (Table 75) from within DECODE BLOCK( ) (Table 72),
referring to chroma LP values. The corresponding TableIndex chooses between the code tables for the syntax element
FIRST INDEX, which are specified in subclause 8.7.18.9.7.

DeclndL PChrO0: This data structure instance accumulates statistics for the INDEX_ A syntax element, during parsing of
the syntax structure DECODE _INDEX( ) (Table 74) from within DECODE BLOCK( ) (Table 72), referring to chroma
LP values, with the local variable iContext (local to the pseudocode table for DECODE_BLOCK( )) equal to 0. The
corresponding TableIlndex chooses between the code tables for the syntax element INDEX A, which are specified in
subclause 8.7.18.9.4.

DeclndL PChr 1: This data structure instance accumulates statistics for the INDEX A syntax element, during parsing of
the syntax structure DECODE INDEX( ) (Table 74) from within DECODE BLOCK( ) (Table 72), referring to chroma
LP values, with the local variable iContext (local to the pseudocode table for DECODE_BLOCK( )) equal to 1. The
corresponding TableIndex chooses between the code tables for the syntax element INDEX A, which are specified in
subclause 8.7.18.9.4.

AbsLevellIndLPO: This data structure instance accumulates statistics for the ABS LEVEL INDEX syntax element,
during parsing of the syntax structure DECODE ABS LEVEL() (Table 50) from within DECODE BLOCK()
(Table 72), referring to LP values with iContext (local to the pseudocode table for DECODE_BLOCK( )) equal to 0.
The corresponding TableIndex chooses between the code tables for the syntax element ABS LEVEL INDEX, which
are specified in subclause 8.7.14.5.

AbsLevellndLP1: This data structure instance accumulates statistics for the ABS LEVEL INDEX syntax element,
during parsing of the syntax structure DECODE ABS LEVEL() (Table 50) from within DECODE BLOCK()
(Table 72), referring to LP values with iContext (local to the pseudocode table for DECODE_BLOCK( )) equal to 1.
The corresponding TableIndex chooses between the code tables for the syntax element ABS LEVEL INDEX, which
are specified in subclause 8.7.14.5.

5.5.5.4 High-passadaptiveVL C data structure instances

DecFirstindHPLum: This data structure instance accumulates statistics for the FIRST INDEX syntax element, during
parsing of the syntax structure DECODE_FIRST INDEX( ) (Table 75) from within DECODE BLOCK( ) (Table 72),
referring to luma HP values. The TableIndex chooses between the code tables for the syntax element FIRST INDEX,
which are specified in subclause 8.7.18.9.7.

DeclndHPLumO: This data structure instance accumulates statistics for the INDEX A syntax element, during parsing
of the syntax structure DECODE_INDEX( ) (Table 74) from within DECODE_BLOCK (Table 72), referring to luma
HP values, with the local variable iContext (local to the pseudocode table for DECODE BLOCK( )) equal to 0. The
TableIndex chooses between the code tables for the syntax element INDEX A, which are specified in subclause
8.7.18.9.4.

DeclndHPLum1: This data structure instance accumulates statistics for the INDEX A syntax element, during parsing
of the syntax structure DECODE INDEX( ) (Table 74) from within DECODE BLOCK( ) (Table 72), referring to luma
HP values, with the local variable iContext (local to the pseudocode table for DECODE BLOCK( )) equal to 1. The
TableIndex chooses between the code tables for the syntax element INDEX A, which are specified in subclause
8.7.18.9.4.

DecFirstindHPChr: This data structure instance accumulates statistics for the FIRST INDEX syntax element, during
parsing of the syntax structure DECODE FIRST INDEX() (Table 75) from within DECODE BLOCK( ) (Table 72),
referring to chroma HP values. The TableIndex chooses between the code tables for the syntax element FIRST INDEX,
which are specified in subclause 8.7.18.9.7.

DeclndHPChr0: This data structure instance accumulates statistics for the INDEX A syntax element, during parsing
of the syntax structure DECODE INDEX() (Table 74) from within DECODE BLOCK( ) (Table 72), referring to
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chroma HP values, with the local variable iContext (local to the pseudocode table for DECODE BLOCK( )) equal to O.
The TableIndex chooses between the code tables for the syntax element INDEX A, which are specified in subclause
8.7.18.9.4.

DeclndHPChr1: This data structure instance accumulates statistics for the INDEX A syntax element, during parsing
of the syntax structure DECODE INDEX( ) (Table 74) from within DECODE BLOCK( ) (Table 72), referring to
chroma HP values, with the local variable iContext (local to the pseudocode table for DECODE _BLOCK( )) equal to 1.
The Tablelndex chooses between the code tables for the syntax element INDEX A, which are specified in subclause
8.7.18.9.4.

AbsL evellndHPO: This data structure instance accumulates statistics for the ABS LEVEL INDEX syntax element,
during parsing of the syntax structure DECODE ABS LEVEL() (Table 50) from within DECODE BLOCK()
(Table 72), referring to HP values with iContext (local to the pseudocode table for DECODE BLOCK( )) equal to 0.
The Tablelndex chooses between the code tables for the syntax element ABS LEVEL INDEX, which are specified in
subclause 8.7.14.5.

AbsLevellndHP1: This data structure instance accumulates statistics for the ABS LEVEL INDEX syntax element,
during parsing of the syntax structure DECODE ABS LEVEL() (Table 50) from within DECODE BLOCK()
(Table 72), referring to HP values with iContext (local to the pseudocode table for DECODE BLOCK( )) equal to 1.
The Tablelndex chooses between the code tables for the syntax element ABS LEVEL INDEX. This syntax element's
code tables are specified in subclause 8.7.14.5.

DecNUumCBPHP: This data structure instance accumulates statistics for the NUM_CBPHP syntax element, during
parsing of the syntax structure MB_CBPHP( ) (subclause 8.7.17.2). The Tablelndex chooses between the code tables
for the syntax element NUM_CBPHP, which are specified in subclause 8.7.17.4.1.

DecNumBIKCBPHP: This data structure instance accumulates statistics for the NUM_BLKCBPHP syntax element,
during parsing of the syntax structure MB_CBPHP( ) (subclause 8.7.17.2). The TableIndex chooses between the code
tables for NUM_BLKCBPHP, which are specified in subclause 8.7.17.4.2.

NOTE - The number of code tables for the NUM_BLKCBPHP syntax element is either 5 or 9, depending on the
INTERNAL_CLR_FMT of the image.

5.5.6  Adaptive coefficient normalization data structure instances

The parsing of syntax elements associated with transform coefficients involves maintaining state variables which are
used for adaptive coefficient normalization. Each frequency band (DC, LP, HP) maintains its own collection of state
variables to track these statistics. To denote the association of these variables, a data structure is used. The data structure
template M odel is defined as follows:

Model data structure template member variables:

- MState[i]: This variable maintains the associated state, where MState[0] represents the information for the luma
component, and MState[1] represents the information for the chroma components.

- MBits[i]: This variable represents the number of bits, where MBits[0] represents the information for the luma
component, and MBits[ 1] represents the information for the chroma components.

The following instances of the M odel data structure are used for the DC, LP, and HP bands:
M odelDC: This data structure instance maintains the statistics for the DC band.
ModelL P: This data structure instance maintains the statistics for the LP band.

ModelHP: This data structure instance maintains the statistics for the HP band.

5.5.7 Adaptive CBPHP prediction data structureinstance

The CBPHP prediction mechanism is adapted based on the statistics of CBPHP of previous macroblocks. Each color
component maintains its own collection of state variables to track these statistics. To denote the association of these
variables, the data structure template CBPHPM odel is defined as follows:

CBPHPM odel has three member variables indexed by i, where i is equal to either 0 or 1. This data structure template
holds two independent sets of statistics: one for the luma component, corresponding to i = 0, and one for the chroma
components, corresponding to i = 1. The three member variables are as follows:

- CBPHPState[i]: This variable maintains the state.

— CountOnes[i]: This variable represents the count of blocks, computed as specified in subclause 8.10.2, with the
value of coded status (derived from CBPHP) equal to 1.

- CountZeroes[i]: This variable represents the count of blocks, computed as specified in subclause 8.10.2, with the
value of coded status equal to 0.
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The following instance of the CBPHPModel data structure is used for the HP band:
CBPHPM odelHP: This data structure instance maintains the CBPHP statistics for the HP band.

5.5.8 Adaptive count CBPLP variables

The following global variables maintain information that is relevant for the parsing of syntax elements associated with
CBPLP:

CountZeroCBPLP: This variable holds the sample value associated with a count the number of times the CBPLP is
equal to zero.

CountMaxCBPLP: This variable holds the sample value associated with a count the number of times the CBPLP is
equal to its maximum (subclause 8.9.3).

5.6 Adaptive VL C deltaDisc tables

The following global variables maintain lists of the appropriate values of deltaDisc when a syntax element is parsed
using a VLC having a code table that can be adaptively selected:

AbslevellndexDelta[i][j]: This variable holds the value associated with the incremental discriminant value for the i-th
syntax element and the j-th code table associated with syntax element ABS LEVEL INDEX (subclause 8.7.14.5).

FirstindexDelta[i][j]: This variable holds the value associated with the incremental discriminant value for the i-th
syntax element and the j-th code table associated with syntax element FIRST INDEX (subclause 8.7.18.9.7).

Index1Delta[i][j]: This variable holds the value associated with the incremental discriminant value for the i-th syntax
element and the j-th code table associated with syntax element INDEX A (subclause 8.7.18.9.4).

NumCBPHPDelta[i][j]: This variable holds the value associated with the incremental discriminant value for the i-th
syntax element and the j-th code table associated with syntax element NUM_CBPHP (subclause 8.7.17.4.1).

NumBIkCBPHPDelta[i][j]: This variable holds the value associated with the incremental discriminant value for the i-
th syntax element and the j-th code table associated with syntax element NUM_BLKCBPHP (subclause 8.7.17.4.2).

5.7 Adaptive inver se scanning tables
The following global variables maintain lists of the various coefficient scanning orders and related statistics:

L owpassScanOrder([i]: This variable holds the value associated with the location where the i-th lowpass transform
coefficient is put into a block in the raster scan order.

HighpassHor ScanOrder[i]: This variable holds the value associated with the location where the i-th highpass
transform coefficient is put into a block in the raster scan order with horizontal scanning.

HighpassVer ScanOrder[i]: This variable holds the value associated with the location where the i-th highpass
transform coefficient is put into a block in the raster scan order with vertical scanning.

ScanOrderQ[i]: This variable holds the value associated with the first of two possible initialization values for the
lowpass and highpass coefficient scans.

ScanOrder1[i]: This variable holds the value associated with the second of two possible initialization values for the
lowpass and highpass coefficient scans.

LowpassTotalg[i]: This variable holds the value associated with the statistics used to determine how the lowpass scan
order is updated.

HighpassHor Totalg[i]: This variable holds the value associated with the statistics used to determine how the highpass
horizontal scan order is updated.

HighpassVer Totalqi]: This variable holds the value associated with the statistics used to determine how the highpass
vertical scan order is updated.

ScanTotalgi]: This variable holds the value associated with the initialization of the lists used to determine how the
lowpass and highpass scan order is updated.
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6 Image and codestream structures

6.1 General

In clause 6, italic font formatting is used to identify all occurrences of terms defined in clause 3.

6.2 Image planes and component arrays

An image is composed of one or two image planes: a primary image plane, and, when present, an alpha image plane.
An image plane is an ordered set of components. A component is an array of samples. The primary image plane may
have multiple components; NumComponents (subclause 8.4.11) specifies the number of components, with 1 <=
NumComponents <= 4111. For this primary image plane, each component is an ExtendedHeight[i] x ExtendedWidth[i]
array of samples, where ExtendedWidth[i] and ExtendedHeight[i] specify (respectively) the width and height of the
array for the i-th component, for the index i, 0 <= i < NumComponents.

For both the primary image plane and the alpha image plane, the component corresponding to the index i = 0 is defined
to be the luma component of the respective image plane; in the case where NumComponents is greater than 1, the
components of the primary image plane corresponding to non-zero indices are defined to be the chroma components of
this image plane.

The alpha image plane is an image plane that contains exactly one component. The dimensions of this component are
the same as those of the luma component of the primary image plane.
NOTE - The purpose of an alpha image plane is to indicate a level of blend of the primary image plane with relation to the
background on which the image is being rendered. A common interpretation of the alpha image plane is as a multiplicative
processing (normalized to between 0 and 1) applied to the sample values of the primary image plane. The normalized value of
the alpha image plane determines the proportion of the blending. The value O indicates full transparency and the maximum
representable value indicates full opacity.

ExtendedHeight[0] is referred to as the extended image height. It specifies the number of rows in the luma array that are
processed within the decoding process. Its value is set equal to HEIGHT MINUS1 + 1 + TOP_MARGIN +
BOTTOM_MARGIN.

ExtendedWidth[0] is referred to as the extended image width. It specifies the number of columns in the luma array that
are processed within the decoding process. Its value is set equal to WIDTH MINUSI + 1 + LEFT MARGIN +
RIGHT MARGIN.

The chroma component array sizes are specified such that ExtendedHeight[i] is equal to ExtendedHeight[1] and
ExtendedWidth[i] is equal to ExtendedWidth[1] for all i > 1. The values of ExtendedHeight[1] and ExtendedWidth[1]
are specified in Table 17.

Table 17 — Pseudocode to calculate chroma component array sizes

CalculateChromaComponentArraySizes( ) { Reference

if INTERNAL CLR_FMT == YUV420) {
ExtendedHeight[1] = ExtendedHeight[0] / 2
ExtendedWidth[1] = ExtendedWidth[0] / 2

} else if INTERNAL_CLR_FMT ==YUV422) {
ExtendedHeight[ 1] = ExtendedHeight[0]
ExtendedWidth[1] = ExtendedWidth[0] / 2

} else {
ExtendedHeight[1] = ExtendedHeight[0]
ExtendedWidth[1] = Extended Width[0]

——

ead

6.3 I mage windowing

Image windowing is specified by four syntax elements: TOP. MARGIN, BOTTOM MARGIN, RIGHT MARGIN, and
LEFT MARGIN. These syntax elements determine the columns and rows of the extended image that are not present in
the output image. With respect to a raster scan ordering in the luma array of an image plane, the first TOP_ MARGIN
rows are not output, nor are the last BOTTOM_MARGIN rows; also, the first LEFT _MARGIN columns are not output,
nor are the last RIGHT MARGIN columns of the luma component. Similarly, the spatially co-located portions of the
chroma components are not output, in a manner that retains the ratios between the sizes of the arrays for the chroma
components and that of the luma component, as specified in subclause 6.2.
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6.4 Image partitioning

The luma component is partitioned horizontally and vertically into an integer number of 16x16 blocks of samples. Label
these blocks arrayLumaMBJ[j][k], where 0 <= j < (ExtendedWidth[0] / 16) and 0 <= k < (ExtendedHeight[0] / 16) are
the block indices defined by this partitioning. MBHeight is defined to be equal to ExtendedHeight[0]/ 16, and
MBWidth is defined to be equal to ExtendedWidth[0] / 16.

In a similar fashion, the chroma components are partitioned into blocks arrayChromaMBJi][j][k] of size 8x8 for 4:2:0
sampling, of size 16x8 for 4:2:2 sampling, or of size 16x16 in the default case.

This partitioning of the components into blocks is called a macroblock partition.

For each specific pair of indices (j, k), the macroblock arrayMBJ[j][k] is defined to be the collection of blocks
arrayComplonentMBJi][j][k], for 0 <= i < NumComponents. Across all components (all wvalues of i),
arrayComponent[i][j][k] and arrayChromaMBJi][j][k] are spatially co-located.

Let 0 = LeftMBIndexOfTile[0] < LeftMBIndexOfTile[1] < ... < LeftMBIndexOfTile[NumTileCols] = MBWidth, and 0
= TopMBIndexOfTile[0] < TopMBIndexOfTile[1] < ... < TopMBIndexOfTile[NumTileRows] = MBHeight be two
increasing sequences of integers, where the sequences are of length NumTileCols + 1 and NumTileRows + 1,
respectively. LeftMBIndexOfTile[ | is calculated by calling DetermineLeftBoundaryofTile( ) (subclause 8.3.25) and
TopMBIndexOfTile[ ] is calculated by calling DetermineTopBoundaryofTile( ) (subclause 8.3.26). Associated with any
such pair of sequences, a tile partition may be defined: partition the macroblocks of each into tiles arrayTile[m][n], for
0 <= m < NumTileCols, and 0 <= n < NumTileRows, where arrayTile[m][n] is defined to be the set of all macroblocks
MBJj][k] LeftMBIndexOfTilelm] <= j < LeftMBIndexOfTilelm+1] and TopMBIndexOfTile[n] <= k <
TopMBIndexOfTile[n+1].

The i-th tile column corresponds to the set of all tiles of the form arrayTile[i][n], for 0 <= n < NumTileRows; similarly,
the j-th tile row corresponds to the set of all tiles arrayTile[m][j], for 0 <= m < NumTileCols. The i-th tile width is
defined to be LeftMBIndexOfTile[i+1] — LeftMBIndexOfTile[i]; likewise, the i-th tile height is defined to be
TopMBIndexOfTile[i+1] — TopMBIndexOfTile[i]. Both the tile width and the tile height correspond to an integer
number of macroblocks. The codestream specifies a tile partition for the image, which impacts the order of the parsing
of sample values associated with the image, as specified in the codestream parsing and decoding processes. The tile
partition shall satisfy 1 <= NumTileCols <= 4096, and 1 <= NumTileRows <= 4096.
NOTE - Figure 1 provides an informative overview of the image plane partitions and implicit windowing where (a) extended
image plane dimension is indicated by bold rectangle, (b) output image plane edges on left and bottom is indicated by dashed
lines), (c) 2x4 regular tiling pattern is shown (d) macroblock in tile (1,2) is shown and (e) blocks within macroblock are shown in
expanded subfigure. Color components are not explicitly shown.

Internal image

S

\
\
\
\
— Output image

Macroblock

Figure 1 —Informative overview of image partitions and internal windowing
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6.5 Transform coefficients and frequency bands

The decoding process includes an inverse transform operation. The transform coefficients associated with each
component and each macroblock are split into three subsets, or frequency bands, which are called the DC coefficient,
the low-pass coefficients, and the high-pass coefficients.
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For each color component of the macroblock, one of the following three conditions holds:

- If the component is a luma component or a chroma component with no down sampling, the following is true. The
component contains 256 transform coefficients for each macroblock. These 256 transform coefficients are
partitioned into three subsets. One set is of size 1, and this coefficient constitutes the DC coefficient of this
component. Another set is of size 15; this set constitutes the low-pass coefficients. The third set is of size 240,
and constitutes the high-pass coefficients.

- If the component is a chroma component with a sampling rate of % for both the horizontal and vertical
directions, the following holds true. The component contains 64 transform coefficients for each macroblock.
These 64 transform coefficients are partitioned into three subsets. One set is of size 1, and this coefficient
constitutes the DC coefficient of this component. Another set is of size 3; this set constitutes the low-pass
coefficients. The third set is of size 60, and constitutes the high-pass coefficients.

- If the component is a chroma component with a sampling rate of % for the horizontal direction and a sampling
rate of 1 for the vertical direction, the following holds true. The component contains 128 transform coefficients
for each macroblock. These 128 transform coefficients are partitioned into three subsets. One set is of size 1, and
this coefficient constitutes the DC coefficient of this component. Another set is of size 7; this set constitutes the
low-pass coefficients. The third set is of size 120, and constitutes the high-pass coefficients.

NOTE 1 - The partitioning of transform coefficients into three sets, and the use of the terms DC, low-pass, and high-pass is based
on the hierarchical nature of the transform.

Transform coefficients are dynamically partitioned into a VLC-coded part and a fixed-length coded part. The fixed-
length coded part of the DC and low-pass coefficient is called FLC refinement.

The fixed-length coded part of the high-pass coefficient is called flexbits. Flexbits can be carried in a separate tile packet
as specified in subclause 6.6.
NOTE 2 - This partition of transform coefficients is designed to control the number of bits used to represent the VLC-coded part.

6.6 Codestream structure

A codestream is laid out in one of two orderings called the spatial mode and the frequency mode. In both modes, the
codestream is laid out as a header, followed by a sequence of tile packets.
NOTE - Figure 2 provides an informative overview of the codestream structure for the spatial mode and the frequency mode.

The fact that tiles can be out of order, and the fact that there can be codestream segments of unspecified content between the tiles
is not shown in Figure 2.

IMG_HDR INDEXTBL TILE1 TILE2 | srevereerereess

MB 1 |M1372 |M1373 | .......................... !

Spatial mode

DC LOWPASS HIGHPASS FLEXBITS

! Frequency mode |

T:832(12)_F02

Figure 2 — Infor mative overview of codestream structure. Image header isfollowed by a sequence of tiles
which arein spatial or frequency mode

In the spatial mode, a single tile packet carries the codestream of each tile in macroblock raster scan order (scanning left
to right, top to bottom). The bits associated with each macroblock are located together.

In the frequency mode, the codestream of each tile is carried in multiple tile packets, where each tile packet carries
transform coefficients of one frequency band of that tile. The DC tile packet carries information of the DC value of each
macroblock, in raster scan order. The LP tile packet carries information of the LP coefficients value of each
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macroblock. The HP tile packet carries information of the VLC-coded part of the HP coefficients of each macroblock.
Finally, the flexbits tile packet carries information regarding the low order bits of the HP coefficients.

6.7 Precision and word length
This subclause is informative: It is not an integral part of this Specification.

The SCALED _FLAG syntax element specifies whether scaling is performed in the output formatting stage. If
SCALED_FLAG is equal to TRUE, the final output is divided by 8 in the output formatting stage and thus the effective
precision of the decoding processes such as the inverse transform is higher. If SCALED FLAG is equal to FALSE,
there is no such division operation on the final output and the effective prevision of the decoding processes of the
inverse transform is lower.

NOTE - Encoding with SCALED_FLAG equal to TRUE typically improves rate-distortion performance for lossy coding.

7 Overview of decoder

This clause is informative: it is not an integral part of this Specification.

7.1 General

A block diagram of the decoder, comprising of the parsing process and decoding process, is shown in Figure 3.

Par sing process

Image layer MB layer and coefficient Adaptation of
—p andtile layer > parsing and inverse » VLC table selection
parsing coefficient scanning and models

Decoding process

Coefficient Coefficient
remapping "l prediction

Dequantization

Sample reconstr uction

| |
| First-level First-level Second-level Second-level I
| . . [ Output
| inverse overlap inverse overlap ; >
! |
|

L+ transform filtering transform filtering formatting

T832(12)_F03

Figure 3 —Infor mative decoding process block diagram

The parsing process consists of the following stages:
1) Image layer and tile layer codestream parsing
2)  Macroblock layer codestream parsing which includes parsing the transform coefficients and inverse scanning
3) Adaptation of VLC table selection and context models.
The decoding process consists of the following stages:
4)  Coefficient remapping
5)  Coefficient prediction
6) Dequantization
7)  Sample reconstruction, which consists of the following stages:

a)  First-level inverse transform
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b)  When indicated, a first-level overlap filter
c) Second-level inverse transform
d)  When indicated, a second-level overlap filter
8)  Output formatting
Clause 8 specifies the stages in the parsing processes. An overview of these steps is provided in subclause 7.2.

Clause 9 specifies the stages in the decoding processes. An overview of these processes is provided in subclause 7.3.

7.2 Overview of parsing process

7.21 Overview of image layer codestream parsing

The image level codestream structure is specified in subclause 8.2. It consists of the image header, the header of the
primary image plane, and, when present, the header of the alpha image plane. The syntax of the image header is
specified by subclause 8.3.

The image plane header defines information that is unique to that plane, and its syntax is specified by subclause 8.4.

The tile index table is used to locate the data that corresponds to a particular tile. The syntax of tile index table is
specified by subclause 8.5.

7.22 Overview of tilelayer codestream parsing

The syntax of the tile layer is specified by subclause 8.7. A tile-packet consists of a tile-packet header, followed by
compressed data associated with macroblocks of the tile.

In spatial mode, all the compressed data pertinent to a macroblock is located together in a single tile-packet and the
parsing of syntax elements for a spatial-mode tile is specified in subclause 8.7.2.

In frequency mode, each tile packet contains the data associated with a particular transform band; in this mode, a tile-
packet is classified as a DC tile-packet, an LP tile-packet, a HP tile-packet, or a flexbits tile-packet.

The syntax elements contained in the DC tile-packet, LP tile-packet, HP tile-packet and flexbits tile-packet are specified
in subclauses 8.7.3, 8.7.5, 8.7.7, and 8.7.9, respectively.

If the quantization parameters associated with each band are not specified at the image plane header; they are specified
at the tile level.

7.2.3  Overview of macroblock layer codestream parsing

The macroblock layer is parsed to generate the coefficients of the different frequency bands. These coefficients are
inverse transformed to reconstruct the macroblock.

Subclause 8.7.11 defines the syntax structure MB_DC(), which parses the syntax elements related to the DC
coefficient, for each component.

Subclause 8.7.16.1 defines the syntax structure MB_LP( ), which parses the syntax elements related to the low-pass
coefficients for each component and also performs inverse scanning of the coefficients.

The first step in decoding the HP coefficients involves derivation of CBPHP, which determines which 4x4 blocks of the
macroblock have non-zero coefficients. The CBPHP is parsed as specified by the function MB_CBPHP in subclause
8.7.17.2. Subclause 8.7.18.2 defines the syntax structure MB_HP(') which parses the syntax elements for parsing the
VLC part of the HP coefficients, and also performs the inverse scanning of the coefficients. The process of parsing
syntax elements related to Flexbits and thus refine the HP coefficients is specified in subclause 8.7.19.1.

The VLC table used to parse the syntax elements can be adapted based on the value of previously parsed syntax
elements. The adaptation processes for VLC table selection and other context models are also specified in pseudocode
in these subclauses.

7.3 Overview of the decoding process

7.3.1  Overview of coefficient mapping

The DC, LP and HP transform coefficients are remapped, and this remapping process is specified in subclause 9.5.
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7.3.2 Overview of coefficient prediction

The transform coefficient may be predicted from the coefficients of the neighbouring blocks and macroblocks, and this
prediction process is specified in subclause 9.6.

7.3.3  Overview of dequantization

The dequantization process specifies how the transform coefficients are scaled by the quantizer parameter, and this
process is specified in subclause 9.8. The derivation of the quantization parameter is specified in subclause 9.7.

7.3.4  Overview of sample reconstruction
Subclause 9.9 defines the sample reconstruction process.

The inverse transform takes a two-level lapped transform. The steps are as follows:

- An inverse core transform (ICT) is applied to each 4x4 block corresponding to reconstructed DC and LP
coefficients arranged in an array known as the DC-LP array. The first-level inverse transform process is
specified in subclause 9.9.2.

- An overlap filter operation, when indicated, is applied to 4x4 areas evenly straddling blocks in the DC-LP array.
For images with soft tiles, this filter is applied to all such blocks. For images with hard tiles, this filter is applied
only to the interior of tiles. Furthermore, an overlap filter is applied to boundary 2x4 and 4x2 areas, as well as
the four 2x2 corner areas. For images with hard tiles, these filters are additionally applied at tile boundaries. The
first-level overlap filtering process is specified in subclause 9.9.3. For INTERNAL CLR FMT equal to
YUV420 or YUV422, alternate filter operations are applied to the 2x2 interior blocks and 2x1 and 1x2 edge
blocks of the chroma components. For these cases, a prediction process is used for the corner samples, denoted
'OverlapPostFilter]' in Figure 4 and detailed in Table 154 and Table 155.

— The resulting array contains coefficients of the 4x4 blocks corresponding to the first-level transform. These
coefficients are combined with the reconstructed HP coefficients into a larger array. This coefficient
combination process is specified in subclause 9.9.4.

- AnICT is applied to each 4x4 block. The second-level inverse transform process is specified in subclause 9.9.5.

- An overlap filter operation, when indicated, is applied to 4x4 areas evenly straddling blocks in the DC-LP array.
For images with soft tiles, this filter is applied to all such blocks. For images with hard tiles, this filter is applied
only to the interior of tiles. Furthermore, an overlap filter is applied to boundary 2x4 and 4x2 areas, as well as
the four 2x2 corner areas. For images with hard tiles, these filters are additionally applied at tile boundaries. The
second-level overlap filtering process is specified in subclause 9.9.6.

The flow chart for the sample reconstruction process is shown in Figure 4.
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Subclause 9.10 defines the outputting process which accounts for the various transformations required to handle the
different color formats and bit depths.

8 Syntax, semantics, and parsing process

8.1 General

This clause specifies the codestream layout and the processes related to parsing syntax elements from the codestream.
The parsing of syntax elements requires information about the order of syntax elements as they occur in the codestream,
along with the manner of correctly interpreting these syntax elements. At a given point in the parsing of the codestream,
the order and presence of syntax elements is conditional upon the state of the decoder itself at that time (based on the
previously parsed and interpreted syntax elements as specified by the pseudocode of this subclause).

This clause also specifies the adaptation processes that are associated with variable-length decoding, and with adaptive
coefficient normalization. These adaptation processes require specific state variables to be maintained by the decoder in
order to properly parse the syntax elements of the codestream. Therefore, the processes of initializing and updating
these state variables are also specified in this clause.

26
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The codestream is comprised of the following layers: image, tile, macroblock and block. Furthermore, the macroblock
and block layers are laid out differently for the spatial and frequency modes of the codestream. The parsing processes of
this subclause are organized by this hierarchy. Below the macroblock level, the parsing processes are further grouped by
frequency band; separate syntax structures specify the decoding of the DC, LP and HP frequency bands.

82  CODED_IMAGE()

8.21 Syntax structure

The CODED_IMAGE( ) syntax structure is specified by Table 18.

NOTE - Throughout the parsing of syntax elements, it is assumed that, if ALPHA_IMAGE_PLANE_FLAG is equal to TRUE,
there are two sets of parsed syntax elements: one set corresponding to the primary image plane and used if IsCurrPlaneAlphaFlag
is equal to FALSE, and one set corresponding to the alpha image plane and used if IsCurrPlaneAlphaFlag is equal to TRUE.

Table 18— CODED_IMAGE() syntax structure

CODED _IMAGE() { Descriptor Reference
IMAGE HEADER() 8.3
IsCurrPlaneAlphaFlag = FALSE
IMAGE PLANE HEADER() 8.4
if ALPHA IMAGE PLANE FLAG) {

IsCurrPlaneAlphaFlag = TRUE

IMAGE PLANE HEADER() 8.4
}
if INDEX TABLE PRESENT FLAG)

INDEX TABLE TILES() 8.5
SubsequentBytes = VLW ESC() 8.2.4
if (SubsequentBytes > 0) {

iBytes = PROFILE LEVEL INFO() 8.6

valueAdditionalBytes = SubsequentBytes — iBytes

for (iBytes = 0; iBytes < valueAdditionalBytes; iBytes++)

RESERVED A BYTE u(8) 8.2.3
}
CODED TILES() 8.7
H

8.2.2 SubsequentBytes

SubsequentBytes specifies the number of bytes of subsequent data that precede the CODED TILES( ). The value of
this variable is determined by a VLW _ESC( ) syntax structure as specified in subclause 8.2.4. When SubsequentBytes
is not equal to 0, it is a requirement of codestream conformance that SubsequentBytes shall not be less than 4.

The value of the variable valueAdditionalBytes is derived from the value of SubsequentBytes as shown in the syntax
structure table of subclause 8.2.1.

The value of valueAdditionalBytes shall be equal to 0 in codestreams encoded according to this version of this
Specification. The use of other values of valueAdditionalBytes is reserved for future specification by ITU-T | ISO/IEC.
Decoders shall allow this variable to have any value and shall use this value to determine the quantity of
RESERVED A BYTE syntax elements that follow.

NOTE - The purpose of the specification for decoders to allow this variable to have any value is to enable the future definition of
a backward-compatible usage of different values of this variable.

823 RESERVED_A_BYTE

RESERVED A BYTE is an 8-bit syntax element. The use of this syntax element is reserved for future specification by
ITU-T | ISO/IEC. When present, the value of this syntax element shall be ignored by the decoder.

NOTE - The purpose of the specification for decoders to ignore the value of RESERVED_A_BYTE is to enable the future
definition of a backward-compatible usage of this syntax element.
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824 VLW_ESC()

8.24.1 Syntax structure
The VLW _ESC( ) syntax structure is specified by Table 19.

Table19-VLW_ESC() syntax structure

VLW_ESC() { Descriptor Reference
FIRST BYTE u(8) 8.2.4.2
if (FIRST BYTE < 0xFB) {
SECOND BYTE u(8) 8.2.4.3

iValue = FIRST BYTE * 256 + SECOND BYTE

} else if (FIRST BYTE == 0xFB) {
FOUR BYTES u(32) 8.2.4.4
iValue = FOUR BYTES

} else if (FIRST BYTE == 0xFC) {
EIGHT BYTES u(64) 8.2.4.5
iValue = EIGHT BYTES

} else /* FIRST BYTE is OxFD, or OxFE, or OxFF */
iValue = 0 /* Escape Mode */

return iValue

8242 FIRST_BYTE

FIRST BYTE is an 8-bit syntax element that affects the computation of iValue as specified in subclause 8.2.4.1.

8.24.3 SECOND_BYTE
SECOND_ BYTE is an 8-bit syntax element that affects the computation of iValue as specified in subclause 8.2.4.1.

8.244 FOUR_BYTES
FOUR_BYTES is a 32-bit syntax element that affects the computation of iValue as specified in subclause 8.2.4.1.

8.245 EIGHT_BYTES
EIGHT BYTES is a 64-bit syntax element that affects the computation of iValue as specified in subclause 8.2.4.1.
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83  IMAGE_HEADER()

831 Syntax structure
The IMAGE_HEADER( ) syntax structure is specified by Table 20.

Table20-IMAGE_HEADER() syntax structure

IMAGE_HEADER() { Descriptor Reference
GDI SIGNATURE u(64) 8.3.2
RESERVED B u(4) 833
HARD_ TILING FLAG u(1l) 8.3.4
RESERVED C u3) 8.3.5
TILING FLAG u(l) 8.3.6
FREQUENCY MODE CODESTREAM FLAG u(l) 8.3.7
SPATIAL XFRM_ SUBORDINATE u(3) 8.3.8
INDEX TABLE PRESENT FLAG u(1) 8.3.9
OVERLAP_MODE u(2) 8.3.10
SHORT HEADER FLAG u(l) 8.3.11
LONG_WORD FLAG u(l) 8.3.12
WINDOWING FLAG u(1) 8.3.13
TRIM FLEXBITS FLAG u(l) 8.3.14
RESERVED D u(l) 83.15
RED BLUE NOT SWAPPED FLAG u(l) 8.3.16
PREMULTIPLIED ALPHA FLAG u(1) 8.3.17
ALPHA IMAGE PLANE FLAG u(l) 8.3.18
OUTPUT CLR_FMT u(4) 8.3.19
OUTPUT BITDEPTH u(4) 8.3.20
if SHORT HEADER FLAG) {

WIDTH_MINUSI u(16) 8321
HEIGHT MINUSI u(16) 8.3.22
} else {
WIDTH_MINUSI u(32) 8.3.21
HEIGHT MINUSI u(32) 8.3.22
}
if (TILING_FLAG) {
NUM VER TILES MINUSI u(12) 8.3.23
NUM HOR TILES MINUSI1 u(12) 8.3.24
}
for (n=0; n <NUM_VER_TILES MINUSI; nt++)
if (SHORT HEADER FLAG)
TILE WIDTH IN MB|n] u(8) 8.3.25
else
TILE_WIDTH_IN_MBJn] u(16) 8.3.25
for (n=0; n< NUM_HOR_TILES MINUSI; n++)
if SHORT HEADER_FLAG)
TILE HEIGHT IN_MBIn] u(8) 8.3.26
else
TILE HEIGHT IN MBIn] u(16) 8.3.26
if (WINDOWING FLAG) {
TOP_MARGIN u(6) 8.3.27
LEFT MARGIN u(6) 8.3.28
BOTTOM_MARGIN u(6) 8.3.29
RIGHT MARGIN u(6) 8.3.30
}
}
832 GDI_SIGNATURE
GDI SIGNATURE is a 64-bit syntax element that identifies the codestream.

0x574D50484F544F00.
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NOTE - This signature corresponds to "WMPHOTO" using the UTF-8 character set encoding specified in ISO/IEC 10646
Annex D, followed by a byte equal to 0.

833 RESERVED_B

RESERVED B is a 4-bit syntax element that shall be equal to 1 in all codestreams conforming to this version of this
Specification. All other values are reserved.

NOTE - Alternative values for RESERVED_B may be specified in the future as an indication of a codestream that is not
compatible with prior decoder versions.

834 HARD_TILING_FLAG

HARD TILING FLAG is a 1-bit syntax element. If HARD TILING FLAG is equal to TRUE, overlap filtering is not
performed across tile boundaries (hard tiles). Otherwise (HARD TILING FLAG is equal to FALSE), overlap filtering
is performed across tile boundaries (soft tiles).

835 RESERVED_C

RESERVED C is a 3-bit syntax element that shall be equal to 1 in all codestreams conforming to this version of this
Specification. All other values are reserved. Decoders conforming to this version of this Specification shall ignore the
value of RESERVED C.

NOTE - The purpose of the specification for decoders to ignore the value of RESERVED_C is to enable the future definition of
a backward-compatible usage of different values of this syntax element.

83.6 TILING_FLAG

TILING FLAG is a 1-bit syntax element. If TILING FLAG is equal to TRUE, both the syntax elements
NUM_ VER TILES MINUS1 and NUM_HOR TILES MINUSI are present in the codestream. Otherwise, these
syntax elements are not present, and the number of tiles is equal to 1.

8.37 FREQUENCY_MODE_CODESTREAM_FLAG
FREQUENCY_MODE CODESTREAM FLAG is a 1-bit syntax element.

If FREQUENCY MODE CODESTREAM FLAG is equal to FALSE, the codestream is laid out in the spatial mode. If
FREQUENCY MODE CODESTREAM FLAG is equal to TRUE, the codestream is laid out in the frequency mode.

8.3.8 SPATIAL_XFRM_SUBORDINATE

SPATIAL XFRM_ SUBORDINATE is a 3-bit syntax element that, in the absence of any overriding indication as
determined by the application or by a file format usage context, indicates a preferred spatial transformation that should
be applied to the decoded image, as specified by Table 21 as follows.

—  The "RCW" table column, when equal to 1, indicates a 90 degree clockwise rotation request of the
output image.

—  The "FlipH" table column, when equal to 1, indicates a horizontal flip request of the output image.
- The "FlipV" table column, when equal to 1, indicates a vertical flip request of the output image.

- The "Example" table column visually illustrates the application of the requested transformation to an
image of the character "P".

- The "Fill" table column indicates the location of the [0][0] image sample coordinate position after
application of the requested transformation, as follows:

. "TL" indicates that row O represents the top edge of the image and column 0 represents the left
edge of the image.

. "BL" indicates that row O represents the bottom edge of the image and column 0 represents the left
edge of the image.

. "TR" indicates that row O represents the top edge of the image and column 0 represents the right
edge of the image.

. "BR" indicates that row O represents the bottom edge of the image and column O represents the
right edge of the image.

. "RT" indicates that row O represents the right edge of the image and column 0 represents the top

edge of the image.

. "RB" indicates that row O represents the right edge of the image and column O represents the
bottom edge of the image.
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. "LT" indicates that row O represents the left edge of the image and the column 0 represents the top
edge of the image.

. "LB" indicates that row 0 represents the left edge of the image and column 0 represents the bottom
edge of the image.

NOTE - The TIFF 6.0 specification includes an "Orientation" tag with a similar purpose. The TIFF Orientation tag values that
correspond to the SPATIAL_XFRM_SUBORDINATE values 0, 1, 2,3, 4,5,6,and 7 are 1, 4, 2, 3, 6, 7, 5, and 8, respectively.

Table 21 —Interpretation of SPATIAL_XFRM_SUBORDINATE

SPATIAL_XFRM_SUBORDINATE | RCW | FlipH | Flipv | Example Fill
0 0 0 0 P TL
1 0 0 1 h BL
2 0 1 0 q TR
3 0 1 1 d BR
4 1 0 0 1 RT
5 1 0 1 ‘ RB
6 1 1 0 r LT
7 1 1 1 n LB

839 INDEX_TABLE_PRESENT_FLAG

INDEX TABLE PRESENT FLAG is a 1-bit syntax element that specifies whether the index table is present in the
codestream. If FREQUENCY MODE CODESTREAM FLAG is equal to TRUE, or NUM_VER TILES MINUSI is
greater than 0, or NUM_HOR TILES MINUSI is greater than 0, it is a requirement of codestream conformance that
INDEX TABLE PRESENT FLAG shall be equal to TRUE. If INDEX TABLE PRESENT FLAG is equal to TRUE,
the index table is present in the codestream. Otherwise, the index table is not present in the codestream. See subclause
8.5.

8.3.10 OVERLAP_MODE
OVERLAP MODE is a 2-bit syntax element that specifies the overlap processing mode.

When OVERLAP_MODE is equal to 0, no overlap filtering is performed. Otherwise, if OVERLAP MODE is equal to
1, only the second level overlap filtering is performed. Otherwise, if OVERLAP MODE is equal to 2, both first level
and second level overlap filtering are performed. The value 3 is reserved.

NOTE - The trade-offs between complexity and compression efficiency related to the different overlap modes are discussed in
the informative subclause D.4.

8311 SHORT_HEADER_FLAG

SHORT HEADER FLAG is a 1-bit syntax element that specifies the number of bits required to represent the syntax
elements for the width and the height of the image and the tiles. If SHORT HEADER FLAG is equal to TRUE,
WIDTH_MINUSI and HEIGHT MINUSI are 16-bit syntax elements, and TILE WIDTH IN MBJ[n], when present,
and TILE HEIGHT IN MB[n], when present, are 8-bit syntax elements. Otherwise, WIDTH MINUS1 and
HEIGHT MINUS1 are 32-bit syntax elements, and TILE WIDTH IN MB[n], when present, and
TILE HEIGHT_IN_MB|n], when present, are 16-bit syntax elements.

8312 LONG_WORD_FLAG

LONG WORD FLAG is a 1-bit syntax element that specifies the range of values of variables associated with the
decoding process (clause 9). The constraints imposed by LONG_WORD_ FLAG equal to FALSE have the following
scope:

— All values of the global array variable MbDCLP[ ][ ][ ][ ]
- All values of the global array variable MBBuffer[ ][ ][ ][ ]
- All values of the global array variable PredDCLP[ ][ ][ ][ ]

- Values of global array variable ImagePlane[ ][ ][] in the sample reconstruction process specified in
subclause 9.9.

NOTE 1 — Values of the global array variable ImagePlane[ ][ ][] in the output formatting process specified in
subclause 9.10 are not included in the scope of the constraints imposed by LONG _WORD_FLAG equal to FALSE.
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- All values of local variables used in the sample reconstruction process specified in subclause 9.9 except the
index variables used to address the elements of arrays.

NOTE 2 — Local variables used in the output formatting process specified in subclause 9.10 are not included in the scope
of the constraints imposed by LONG_WORD_FLAG equal to FALSE.

The variables associated with the decoding process specified in clause 9 shall be constrained as follows:

- IfLONG WORD FLAG is equal to TRUE, it is a requirement for codestream conformance to this Specification
that the range of values of all variables associated with the decoding process (clause 9) shall not exceed the
signed 32-bit range from —2°' range to 2°'~1, inclusive, although the range of values of these variables may
exceed the signed 16-bit range from —2'° range to 2'°~1, inclusive. Thus all variables of the decoding process
can be stored by decoders as 32 bit two's complement integers while producing output conforming to this
Specification (regardless of the value of LONG_WORD_FLAG).

— Otherwise (LONG_WORD FLAG is equal to FALSE), it is a requirement for codestream conformance to this
Specification that the range of values of the specific affected variables listed above shall not exceed the signed
16-bit range from —2'° range to 2'°—1, inclusive, and that the range of values of all intermediate expressions and
other variables associated with the decoding process for the codestream shall not exceed the signed 32-bit range
from —2°' range to 2*'~1, inclusive. In this case, it is sufficient for decoders to store the affected variables of the
decoding process as 16 bit two's complement integers in order to produce output images conforming to this
Specification.

NOTE 3 — Decoder implementations need not use two's complement arithmetic using fixed-word-length storage and
processing. However, in the case where such a representation is used, 32-bit variable storage and 32-bit arithmetic
processing elements are sufficient to decode an image, regardless of the value of LONG_WORD_FLAG. The

LONG_WORD_FLAG eclement can be used by the decoder to optimize its resource usage for the sample reconstruction
process.

8.3.13 WINDOWING_FLAG

WINDOWING FLAG is a 1-bit syntax element that specifies whether syntax elements specifying windowing
dimensions (TOP_MARGIN, LEFT MARGIN, BOTTOM MARGIN, and RIGHT MARGIN as specified in
subclauses 8.3.27 through to 8.3.30) are present in the codestream. If WINDOWING FLAG is equal to TRUE, these
syntax elements are present in the codestream. If WINDOWING FLAG is equal to FALSE, these syntax elements are
not present in the codestream.

8314 TRIM_FLEXBITS FLAG

TRIM_FLEXBITS FLAG is a 1-bit syntax element that specifies whether TRIM_FLEXBITS syntax element is present
in the TILE SPATIAL( ) syntax structure and TILE FLEXBITS( ) syntax structure. If TRIM_FLEXBITS FLAG is
equal to TRUE, TRIM_FLEXBITS is present. Otherwise, TRIM_FLEXBITS is not present.

8315 RESERVED_D

RESERVED D is a 1-bit syntax element. The value of RESERVED_D shall be equal to 0. Other values are reserved.
Decoders shall ignore the value of this syntax element.

NOTE - The purpose of the specification for decoders to ignore the value of RESERVED_D is to enable the future definition of
a backward-compatible usage of different values of this syntax element.

8.3.16 RED BLUE_NOT_SWAPPED FLAG

RED BLUE NOT_SWAPPED FLAG is a 1-bit syntax element. Its interpretation is specified as follows:

- If OUTPUT CLR FMT is equal to RGB and OUTPUT BITDEPTH is equal to BD5, BD565, or BD10, the
value of RED BLUE NOT SWAPPED FLAG affects the operation of the output formatting process.

- Otherwise, the value of RED BLUE NOT SWAPPED FLAG shall be equal to 0 in all codestreams
conforming to this version of this Specification. The value 1 is reserved. Decoders conforming to this version of
this Specification shall ignore the value of RED BLUE NOT SWAPPED FLAG in this case.

NOTE - The specification of semantics for RED_BLUE_NOT_SWAPPED_FLAG was not included in the original edition of

this Specification. The specification of RED_BLUE_NOT_SWAPPED_FLAG was added later to address a problem with respect

to the observed behaviour of existing implementations. In principle, when OUTPUT_CLR_FMT is equal to RGB and

OUTPUT_BITDEPTH is equal to BD5, BD565, or BD10, the value 1 for RED_BLUE_NOT_SWAPPED_FLAG should

ordinarily provide better compression capability than the value 0. However, early product implementations of this Specification

have operated in a manner corresponding to the value 0.
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8.3.17 PREMULTIPLIED_ALPHA_FLAG

PREMULTIPLIED ALPHA FLAG is a 1-bit syntax element that can be used, when an alpha image plane is present, to
indicate that the coded image channels other than the alpha channel are considered to be in pre-multiplied form in
relation to the alpha channel.
NOTE 1 — The designation of an alpha channel as pre-multiplied indicates that the decoded sample values do not require
multiplication by the alpha channel values when performing compositing (as any such necessary multiplication process was
performed as a pre-processing step prior to encoding).

When PREMULTIPLIED ALPHA FLAG is equal to TRUE in the IMAGE HEADER() of the coded image that
contains the alpha image plane, the channels other than the alpha channel are indicated to be in pre-multiplied form in
relation to the alpha channel.

When no alpha image plane is present, PREMULTIPLIED ALPHA FLAG shall be equal to FALSE, and decoders
shall ignore the value of this syntax element.

When an alpha image plane is present as a separate alpha image plane, PREMULTIPLIED ALPHA FLAG shall be
equal to FALSE in the IMAGE _HEADER() of the coded image that does not contain the alpha image plane, and
decoders shall ignore the value of this syntax element in the IMAGE HEADER() of the coded image that does not
contain the alpha image plane.

When an alpha image plane is present and PREMULTIPLIED ALPHA FLAG is equal to FALSE in the
IMAGE_HEADER() of the coded image that contains the alpha image plane, other indicators provided by other means
not specified in the main body of this Specification should be used to determine whether the channels other than the
alpha channel (when present) are considered to be in pre-multiplied form in relation to the alpha channel. When an
alpha image plane is present and PREMULTIPLIED ALPHA FLAG is equal to FALSE in the IMAGE HEADER()
of the coded image that contains the alpha image plane and such other indicators are not available, it is suggested that
the default interpretation should be that the channels other than the alpha channel are considered not to be in pre-
multiplied form in relation to the alpha channel.

NOTE 2 - The specification of semantics for PREMULTIPLIED_ALPHA_FLAG was not included in the original edition of this

Specification. The specification of PREMULTIPLIED_ALPHA_FLAG was added later to correct for the ambiguity of

interpretation resulting from absence of such an indicator (when no indication is provided by other means outside the coded

image syntax). In the original edition of this Specification, the bit corresponding to PREMULTIPLIED_ALPHA_FLAG was
required to be equal to 0 and decoders were required to ignore the value of this bit.

NOTE 3 — When the file format specified in Annex A is used, the PIXEL_FORMAT value indicates whether the channels other
than the alpha channel (when present) are considered to be in pre-multiplied form in relation to the alpha channel, and the value
of PREMULTIPLIED_ALPHA_FLAG is required to be consistent with the PIXEL_FORMAT value. When the codestream is
conveyed by some means other than the file format specified in Annex A, some indicator may be available to indicate whether
the channels other than the alpha channel (when present) are considered to be in pre-multiplied form in relation to the alpha
channel, and the value of PREMULTIPLIED_ALPHA_FLAG should be set to be consistent with any such indicator.

8318 ALPHA_IMAGE_PLANE_FLAG

ALPHA IMAGE PLANE FLAG is a 1-bit syntax element that specifies whether an alpha image plane is present in
the codestream. If ALPHA IMAGE PLANE FLAG is equal to TRUE, an alpha image plane is present. If
ALPHA IMAGE PLANE FLAG is equal to FALSE, no alpha image plane is present in the codestream.

NOTE - If ALPHA_IMAGE_PLANE_FLAG is equal to FALSE, an alpha image plane can be carried as a separate image within
a system or file.
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8319 OUTPUT_CLR_FMT

OUTPUT _CLR _FMT is a 4-bit syntax element that specifies the color format of the output image as specified in
Table 22.

Table22-OUTPUT_CLR_FMT

OUTPUT CLR FMT Mnemonic
0 YONLY
1 YUV420
2 YUVA422
3 YUV444
4 CMYK
5 CMYKDIRECT
6 NCOMPONENT
7 RGB
8 RGBE
9-15 RESERVED

If IsCurrPlaneAlphaFlag is equal to TRUE, the value of OUTPUT _CLR_FMT shall be equal to O.

For the cases where OUTPUT_CLR_FMT is equal to YUV420, YUV422, or YUV444, there are three output color
components: the component corresponding to index 0 is the Y component, while the U and V correspond to color
components 1 and 2, respectively. For CMYK and CMYKDIRECT, components 0, 1, 2, and 3 correspond respectively
to the C, M, Y, and K components. For RGB, components 0, 1 and 2 correspond respectively to R, G, and B, and for
RGBE, components 0, 1, 2, and 3 correspond respectively to the R, G, B, and E components.

8320 OUTPUT_BITDEPTH

OUTPUT BITDEPTH is a 4-bit syntax element that specifies the bit depth and corresponding representation of the
output image, as specified in Table 23. BDIWHITE1, BDIBLACKI1, BD§, BD16, BD5 and BD10 are unsigned integer
formats, corresponding to 1, 1, 8, 16, 5 and 10 bits per component, respectively, having a representation specified in
subclause 9.10.8. In BDIWHITEL, a value of 0 indicates the minimum level or black for the specific channel and the
value 1 indicates the maximum value for that channel. In BDIBLACKI, a value of 1 indicates the minimum level or
black for the specific channel and the value 0 indicates the maximum value for that channel. BD16S and BD32S are
signed (two's complement) integer formats corresponding to 16 and 32 bits per component, respectively. BD16F is 16-
bit Half float (1-bit sign, 5-bit exponent and 10-bit mantissa where the most significant bit is the sign bit) having a
representation as specified in subclause 9.10.7.3. BD32F is 32-bit float (1-bit sign, 8-bit exponent, and 23 bit mantissa
where the most significant bit is the sign bit) having a representation as specified in subclause 9.10.7.3. BD565
corresponds to unsigned integer formats where the R, G and B components have 5, 6 and 5 bits, respectively, having a
representation as specified in subclause 9.10.8.

The values of OUTPUT _BITDEPTH and OUTPUT CLR_FMT shall be constrained as specified in subclause 9.10.
NOTE - Subclause 9.10.7 provides more details on the representation of these formats.

Table23-OUTPUT_BITDEPTH

OUTPUT BITDEPTH M nemonic

0 BD1WHITE1
1 BDS
2 BD16
3 BD16S
4 BDI16F
5 RESERVED
6 BD32S
7 BD32F
8 BD5
9 BD10
10 BD565

11-14 RESERVED
15 BDIBLACKI1
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8321 WIDTH_MINUS1

WIDTH_MINUS1 plus 1 is the output image width. If SHORT HEADER FLAG is equal to TRUE,
WIDTH_MINUSI is a 16-bit syntax element. Otherwise, WIDTH_MINUSI is a 32-bit syntax element. When
OUTPUT _CLR FMT is equal to YUV420 or YUV422, it is a requirement of codestream conformance to this
Specification that the value of WIDTH MINUSI1 + 1 shall be an integer multiple of 2.

It is a requirement of codestream conformance to this Specification that the value of WIDTH MINUS1 + 1 +
LEFT _MARGIN + RIGHT MARGIN shall be an integer multiple of 16. When INTERNAL CLR _FMT is equal to
YUV420 or YUV422 and OVERLAP _MODE is equal to 2, it is a requirement of codestream conformance to this
Specification that the value of WIDTH_MINUS1 + 1 + LEFT MARGIN + RIGHT MARGIN shall be greater than or
equal to 32.

NOTE - Images with INTERNAL_CLR_FMT equal to YUV420 or YUV422 and OVERLAP_MODE equal to 2 must have a
width of at least 2 macroblocks due to the adjacent coefficient residual process described in subclause 9.9.3.1.

8322 HEIGHT_MINUS1

HEIGHT MINUS1 plus 1 is the output image height. If SHORT HEADER FLAG is equal to TRUE,
HEIGHT MINUSI is a 16-bit syntax element. Otherwise, HEIGHT MINUSI is a 32-bit syntax element. When
OUTPUT CLR _FMT is equal to YUV420, it is a requirement of codestream conformance to this Specification that the
value of HEIGHT MINUSI + 1 shall be an integer multiple of 2.

It is a requirement of codestream conformance to this Specification that the value of HEIGHT MINUSI + 1 +
TOP_MARGIN + BOTTOM_MARGIN shall be an integer multiple of 16.

8323 NUM_VER_TILES MINUS1

NUM_VER TILES MINUSI is a 12-bit syntax element that is present when TILING FLAG is equal to TRUE, and
specifies the number of tiles in a row minus 1. When NUM_VER TILES MINUSI is not present, its value shall be
inferred to be equal to 0.

NOTE - "Vertical" indicates that the partitioning of the image corresponding to these tiles runs in the vertical direction.

8.324 NUM_HOR _TILES MINUSL

NUM_HOR TILES MINUSI is a 12-bit syntax element that is present when TILING FLAG is equal to TRUE, and
specifies the number of tiles in a column minus 1. When NUM_HOR TILES MINUSI is not present, its value shall be
inferred to be equal to 0.

NOTE - "Horizontal" indicates that the partitioning of the image corresponding to these tiles runs in the horizontal direction.

8.3.25 TILE_WIDTH_IN_MB[n]

TILE WIDTH_IN_MBJn] is a syntax element that specifies the width (in macroblock units) of the n-th tile column,
where the O-th tile column is the left-most tile column in the image, and subsequent tile columns are numbered
consecutively, left to right. If SHORT HEADER FLAG is equal to TRUE, TILE WIDTH IN MBJn] is an 8-bit
syntax element. Otherwise, it is a 16-bit syntax element.

The width of the right-most tile in macroblock units is derived by subtracting the cumulative width of the previous tiles
from the width of the coded area in macroblock units ExtendedWidth[0] divided by 16.

The position of the left boundary of the tile, LeftMBIndexOfTile[], 1is calculated by calling
DetermineLeftBoundaryofTile( ) in the pseudocode in Table 24.

Table 24 — Pseudocode to deter mine the position of the left boundaries of thetiles

Deter mineL eftBoundaryofTile( ) { Reference
LeftMBIndexOfTile[0] =0
for (n=0; n <NUM_VER TILES MINUSI; n++)
LeftMBIndexOfTile[n+1] = LeftMBIndexOfTile[n] + TILE WIDTH_IN_MBI[n]
LeftMBIndexOfTilelNUM_VER TILES MINUSI1 + 1] =MBWidth

When INTERNAL CLR FMT is equal to YUV420 or YUV422, OVERLAP MODE is equal to 2, and
HARD TILING FLAG is equal to TRUE, TILE WIDTH IN MB|n] shall be greater than or equal to 2 for all tiles.

Rec. ITU-T T.832 (01/2012) 35



When INTERNAL CLR FMT is equal to YUV420 or YUV422, OVERLAP MODE is equal to 2, and
HARD TILING FLAG is equal to TRUE, MBWidth — LeftMBIndexOfTile(]NUM_VER TILES MINUSI1] shall be
greater than or equal to 2.

8326 TILE_HEIGHT_IN_MB[n]

TILE _HEIGHT _IN_MBJn] is a syntax element that specifies the height (in macroblock units) of the n-th tile row,
where the 0-th tile row is the top tile row in the image, and subsequent tile rows are numbered consecutively, top to
bottom. If SHORT HEADER FLAG is equal to TRUE, TILE HEIGHT IN MB[n] is an 8-bit syntax element.
Otherwise, it is a 16-bit syntax element.

The height of the bottom tile in macroblock units is derived by subtracting the transmitted heights (plus 1) from the
height of the coded area in macroblock units ExtendedHeight[0] divided by 16.

The position of the top boundary of the tile, TopMBIndexOfTile[], is calculated by calling
DetermineTopBoundaryofTile( ) as specified in the pseudocode in Table 25.

Table 25 — Pseudocode to deter mine the position of the top boundaries of thetiles

DetermineTopBoundaryofTile( ) { Reference
TopMBIndexOfTile[0] = 0
for (n=0; n <NUM HOR_TILES MINUSI; nt++)
TopMBIndexOfTile[n+1] = TopMBIndexOfTile[n] + TILE HEIGHT IN MB[n]
TopMBIndexOfTileflNUM HOR TILES MINUSI + 1] = MBHeight

The number of macroblocks in a tile, NumMBInTile[ ], is calculated by calling DetermineNumMBInTile( ) as specified
in the pseudocode in Table 26.

Table 26 — Pseudocode to deter mine the number of macroblocksin each tile

DetermineNumMBInTile() { Reference
n=0
for (i=0; i <NUM_HOR_TILES MINUSI + I; i++)
for (j=0; j < NUM_VER_TILES MINUSI + I; j++) {
NumMBInTile[n] =
TILE HEIGHT IN MBJ[i] * TILE WIDTH IN MBJ[j]
nt++

8.3.27 TOP_MARGIN

TOP_MARGIN is a 6-bit syntax element that is present when WINDOWING_FLAG is equal to TRUE, and specifies
the vertical offset of the top boundary of the output image relative to the top edge of the extended image. When
TOP_MARGIN is not present, its value shall be inferred to be equal to 0. When OUTPUT CLR_FMT is equal to
YUV420, it is a requirement of codestream conformance to this Specification that the value of TOP_ MARGIN shall be
an integer multiple of 2.

8328 LEFT_MARGIN

LEFT MARGIN is a 6-bit syntax element that is present when WINDOWING FLAG is equal to TRUE, and specifies
the horizontal offset of the left boundary of the output image relative to the left edge of the extended image. When
LEFT MARGIN is not present, its value shall be inferred to be equal to 0. When OUTPUT CLR_FMT is equal to
YUV420 or YUV422, it is a requirement of codestream conformance to this Specification that the value of
LEFT _MARGIN shall be an integer multiple of 2.

8329 BOTTOM_MARGIN

BOTTOM_MARGIN is a 6-bit syntax element that is present when WINDOWING FLAG is equal to TRUE, and
specifies the vertical offset of the bottom of the output image relative to the bottom edge of the extended image. When
BOTTOM_MARGIN is not present, its value shall be inferred as follows:

- IfHEIGHT MINUSI + 1 is an integer multiple of 16, BOTTOM_MARGIN shall be inferred to be equal to 0.
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— Otherwise, BOTTOM_MARGIN shall be inferred to be equal to 16 — (HEIGHT MINUSI + 1) % 16).

When OUTPUT_CLR_FMT is equal to YUV420, it is a requirement of codestream conformance to this Specification
that the value of BOTTOM_MARGIN shall be an integer multiple of 2.

8330 RIGHT_MARGIN

RIGHT MARGIN is a 6-bit syntax element that is present when WINDOWING FLAG is equal to TRUE, and
specifies the horizontal offset of the right boundary of the output image relative to the right edge of the extended image.
When RIGHT MARGIN is not present, its value shall be inferred as follows:

- If WIDTH_MINUSI + 1 is an integer multiple of 16, RIGHT MARGIN shall be inferred to be equal to 0.
- Otherwise, RIGHT MARGIN shall be inferred to be equal to 16 — (WIDTH_MINUSI + 1) % 16).

When OUTPUT _CLR_FMT is equal to YUV420 or YUV422, it is a requirement of codestream conformance to this
Specification that the value of RIGHT MARGIN shall be an integer multiple of 2.

84 IMAGE_PLANE_HEADER()

841 Syntax structure
The IMAGE PLANE HEADER( ) syntax structure is specified by Table 27.

Table 27 - IMAGE_PLANE_HEADER() syntax structure

IMAGE_PLANE_HEADER() { Descriptor Reference
INTERNAL CLR_FMT u(3) 8.4.2
SCALED FLAG u(1) 8.4.3
BANDS PRESENT u(4) 8.4.4

if INTERNAL_CLR_FMT == YUV444 || INTERNAL_CLR_FMT == YUV420 ||
INTERNAL CLR FMT == YUV422) {

if INTERNAL CLR_FMT == YUV420 | | INTERNAL CLR FMT == YUV422) {

RESERVED E BIT u(l) 8.4.5

CHROMA CENTERING X u(3) 8.4.6
} else /* INTERNAL CLR FMT ==YUV444 */

RESERVED F u(4) 8.4.7
if INTERNAL _CLR_FMT == YUV420) {

RESERVED G BIT u(l) 8.4.8

CHROMA CENTERING Y u(3) 8.4.9
} else

RESERVED H u(4) 8.4.10

t else if INTERNAL_CLR_FMT = = NCOMPONENT) {

NUM_COMPONENTS MINUSI u(4) 8.4.11
if (NUM_COMPONENTS MINUSI1 == 0xF)

NUM_COMPONENTS_EXTENDED MINUS16 u(12) 8.4.12
else

RESERVED H u(4) 8.4.10

}

if (OUTPUT_BITDEPTH ==BD16 || OUTPUT BITDEPTH ==BDI16S ||
OUTPUT BITDEPTH == BD325)

SHIFT BITS u(8) 8.4.13
if (OUTPUT BITEPTH == BD32F) {
LEN MANTISSA u(8) 8.4.14
EXP BIAS i(8) 8.4.15
}
DC IMAGE PLANE UNIFORM FLAG u(l) 8.4.16
if (DC_IMAGE PLANE UNIFORM_FLAG)
DC _QP() 8.4.22
if (BANDS PRESENT != DCONLY) {
RESERVED 1 BIT u(l) 8.4.17
LP IMAGE PLANE UNIFORM FLAG u(1) 8.4.18
if (LP_IMAGE PLANE UNIFORM FLAG) {
NumLPQPs =1
LP_QP() 8.4.23
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if (BANDS PRESENT != NOHIGHPASS) {

RESERVED J BIT u(l) 8.4.19
HP IMAGE PLANE UNIFORM FLAG u(1) 8.4.20
if (HP_IMAGE PLANE UNIFORM FLAG) {

NumHPQPs =1

HP_QP() 8.4.24

—~

}

}

while (IS BYTE_ALIGNED( ))

BYTE_ALIGNMENT BIT u(1l) 8.4.21

84.2 INTERNAL_CLR_FMT

INTERNAL CLR FMT is a 3-bit syntax element that specifies the internal color format of the coded image as
specified in Table 28. For OUTPUT BITDEPTH of BD16F and BD32F and OUTPUT CLR FMT of RGBE, only
YUV444 shall be used. The values of INTERNAL CLR FMT and OUTPUT CLR FMT shall be constrained as
specified in subclause 9.10.

Table28 —INTERNAL_CLR_FMT

INTERNAL CLR FMT M nemonic
YONLY
YUV420
YUV422
YUV444
YUVK

RESERVED

NCOMPONENT

RESERVED

NN | AW [—|O

When IsCurrPlaneAlphaFlag is equal to TRUE, the value of INTERNAL CLR_FMT shall be equal to 0.

For the cases where INTERNAL CLR FMT is equal to YUV420, YUV422, or YUV444, there are three internal color
components: the component corresponding to index 0 is the Y component, and the U and V correspond to color
components 1 and 2, respectively. For YUVK, components 0, 1, 2, and 3 correspond to the Y, U, V, and K components,
respectively.

843 SCALED_FLAG

SCALED FLAG is a 1-bit syntax element that specifies whether scaling is performed in the output formatting stage. If
SCALED FLAG is equal to FALSE, scaling is not performed. If SCALED FLAG is equal to TRUE, scaling is
performed as specified in subclause 9.10.6.

844 BANDS PRESENT

BANDS PRESENT is a 4-bit syntax element that indicates whether the various frequency bands are present in the
codestream, as specified in Table 29.

Table29 - BANDS PRESENT

BANDS PRESENT Mnemonic Interpretation
0 ALL All sub-bands are present
1 NOFLEXBITS Flexbits is not present
2 NOHIGHPASS Flexbits and HP are not present
3 DCONLY Only DC is present
4-15 RESERVED
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The number of bands present in the codestream, NumBands, is specified by calling DetermineNumBands( ), which is
specified by the pseudocode in Table 30. When IsCurrPlaneAlphaFlag is equal to TRUE, it is a requirement of
codestream conformance to this Specification that the value of NumBands shall be less than or equal to the value of
NumBandsOfPrimary.

Table 30 — Pseudocode to deter mine the number of bands present in the codestr eam, NumBands

DetermineNumBands( ) { Reference
if BANDS PRESENT == ALL)
NumBands = 4
else if (BANDS PRESENT == NOFLEXBITS)
NumBands = 3
else if (BANDS PRESENT == NOHIGHPASS)
NumBands =2
else /* (BANDS PRESENT ==DCONLY) */
NumBands = 1
if (IsCurrPlaneAlphaFlag = = FALSE)
NumBandsOfPrimary = NumBands
}

845 RESERVED_E BIT

RESERVED E BIT is a 1-bit syntax element and is present when INTERNAL CLR _FMT is equal to YUV422 or
INTERNAL CLR FMT is equal to YUV420.

When RESERVED E BIT is present, its value shall be equal to 0. The value 1 for RESERVED E BIT is reserved.

The value of RESERVED E BIT shall be ignored by decoders.

NOTE - The purpose of the specification for decoders to ignore the value of RESERVED_E_BIT is to enable the future
definition of a backward-compatible usage of different values of this syntax element.

846 CHROMA_CENTERING_X

CHROMA CENTERING X is a 3-bit syntax element. It is present when INTERNAL CLR _FMT is equal to YUV422
or YUV420. When CHROMA CENTERING_X is not present, its value should be inferred to be equal to 0.

CHROMA CENTERING X indicates the positioning alignment of the chroma sampling grid with respect to the luma
sampling grid. When present and in the range of 0 to 4, inclusive, CHROMA_ CENTERING X indicates that the left-
most sample of each row of each chroma array of the image is considered to be horizontally positioned at the position
CHROMA CENTERING X with respect to the left-most sample of each row of the luma array, in units of quarter
luma sample positions. When present and equal to 7, CHROMA CENTERING X indicates that the positioning
alignment is unknown or unspecified.

For example, when CHROMA CENTERING X is equal to 0 and INTERNAL CLR FMT is equal to YUV422 or
YUV420, each chroma sample is considered to be horizontally located at the same position as the left-most sample of a
pair of luma samples.

The value of CHROMA CENTERING X shall be equal to 0, 1, 2, 3, 4, or 7. The values 5 and 6 are reserved. Decoders
conforming to this version of this Specification should treat the values 5 and 6 as equivalent to the value 7.

NOTE - CHROMA_CENTERING_X is useful to aid in performing appropriate upsampling conversion from 4:2:0 or 4:2:2 to
4:4:4. However, the use of CHROMA_CENTERING_X is not required for decoder conformance to this Specification, as the
manner of performing such an upsampling process is outside the scope of this Specification.

847 RESERVED_F
RESERVED F is a 4-bit syntax element that is present when INTERNAL CLR _FMT is equal to YUV444.

When RESERVED F is present, its value shall be equal to 0. Decoders shall ignore the value of this syntax element.

NOTE - The specification for decoders to ignore the value of RESERVED _F is to enable the future definition of a backward-
compatible usage of different values of this syntax element.

84.8 RESERVED_G BIT
RESERVED G BIT is a 1-bit syntax element that is present when INTERNAL CLR FMT is equal to YUV420.
When RESERVED_ G BIT is present, its value shall be equal to 0. The value 1 for RESERVED G BIT is reserved.
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Decoders shall ignore the value of RESERVED G _BIT.

NOTE - The specification for decoders to ignore the value of RESERVED_G_BIT is to enable the future definition of a
backward-compatible usage of different values of this syntax element.

849 CHROMA_CENTERING_Y

CHROMA CENTERING Y is a 3-bit syntax element. It is present when INTERNAL CLR _FMT is equal to YUV420.
When CHROMA CENTERING Y is not present, its value should be inferred to be equal to 0.

CHROMA CENTERING Y indicates the positioning alignment of the chroma sampling grid with respect to the luma
sampling grid. When present and in the range of 0 to 4, inclusive, CHROMA CENTERING Y indicates that the top-
most sample of each column of each chroma array of the image is considered to be vertically positioned at the position
CHROMA CENTERING Y with respect to the top-most sample of each column of the luma array, in units of quarter
luma sample positions. When present and equal to 7, CHROMA CENTERING Y indicates that the positioning
alignment is unknown or unspecified.

For example, when CHROMA CENTERING Y is equal to 0 and INTERNAL CLR _FMT is equal to YUV420, each
chroma sample is considered to be vertically located at the same position as the upper sample of a pair of luma samples.

The value of CHROMA CENTERING Y shall be equal to 0, 1, 2, 3, 4, or 7. The values 5 and 6 are reserved. Decoders
conforming to this version of this Specification should treat the values 5 and 6 as equivalent to the value 7.

NOTE - CHROMA_CENTERING_Y is useful to aid in performing appropriate upsampling conversion from 4:2:0 to 4:2:2 or
4:4:4. However, the use of CHROMA_CENTERING_Y is not required for decoder conformance to this Specification, as the
manner of performing such an upsampling process is outside the scope of this Specification.

84.10 RESERVED_H

RESERVED H is a 4-bit syntax element that is present when INTERNAL CLR FMT is equal to one of YUV444,
YUV422, or NCOMPONENT.

When RESERVED H is present, its value shall be equal to 0. Decoders shall ignore the value of this syntax element.

NOTE - The specification for decoders to ignore the value of RESERVED_H is to enable the future definition of a backward-
compatible usage of different values of this syntax element.

84.11 NUM_COMPONENTS MINUSL

NUM_COMPONENTS MINUSI is a 4-bit syntax element that is present when INTERNAL CLR FMT is equal to
NCOMPONENT.

The number of components, NumComponents, is specified in pseudocode in Table 31.

84.12 NUM_COMPONENTS EXTENDED_MINUS16

NUM_COMPONENTS EXTENDED MINUS16 is a 12-bit syntax element that is present when
NUM_COMPONENTS MINUSI is equal to OxF.

The number of components, NumComponents, is specified in pseudocode in Table 31.

Table 31 — Pseudocode to deter mine the number of components present in the codestr eam

DetermineNumComponents( ) { Reference
if INTERNAL CLR_FMT = = NCOMPONENT)
if (NUM_COMPONENTS_ MINUSI = = 0xF)

NumComponents =
NUM_COMPONENTS_EXTENDED MINUSI16 + 16

else
NumComponents = NUM_COMPONENTS MINUSI + 1

else if INTERNAL CLR_FMT==YONLY)

NumComponents = 1
else if INTERNAL CLR_FMT ==YUV420 | |

INTERNAL_CLR_FMT ==YUV422 ||

INTERNAL CLR_FMT ==YUV444)

NumComponents = 3
else if INTERNAL CLR_FMT == YUVK)

NumComponents = 4
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84.13 SHIFT_BITS

SHIFT BITS is an 8-bit syntax element that is present when OUTPUT BITDEPTH is equal to BD16, BD16S, or
BD32S. SHIFT BITS is used to left-shift the sample values in the output formatting stage as specified in subclause
9.10.7.

8.4.14 LEN_MANTISSA

LEN_MANTISSA is an 8-bit syntax element that is present when OUTPUT BITDEPTH is equal to BD32F. It
specifies the number of mantissa bits that are specified by the integer representation of floating point data as specified in
subclause 9.10.7 prior to output conversion processing.

8.4.15 EXP_BIAS

EXP_BIAS is an 8-bit syntax element that is present when OUTPUT BITDEPTH is equal to BD32F. This element
specifies the bias of the exponent in the representation of floating point data as specified in subclause 9.10.7.

84.16 DC_IMAGE_PLANE_UNIFORM FLAG

DC_IMAGE_PLANE UNIFORM FLAG is a 1-bit syntax element that specifies whether a single QP set is used for
the DC band for all the macroblocks in the corresponding image plane. If DC_ IMAGE PLANE UNIFORM FLAG is
equal to TRUE, a single QP set is used for the DC band of all tiles in the image (and hence for all macroblocks of all
tiles), and this QP set is present in the image plane header. In this case, the DC QP set used for all tiles shall be set equal
to the value specified in the image plane header. If DC_ IMAGE PLANE UNIFORM_FLAG is equal to FALSE, the
DC band of each tile may use a different QP set, and these QP sets are specified in the tile headers.

84.17 RESERVED_|I_BIT

RESERVED I BIT is a 1-bit syntax element. It is a requirement of codestream conformance to this Specification that
the value of RESERVED 1 BIT shall be equal to FALSE. Decoders shall ignore (remove from the codestream and
discard) the value of RESERVED 1 BIT.

NOTE - The purpose of the specification for decoders to ignore the value of RESERVED_I BIT is to enable the future
definition of a backward-compatible usage of different values of this syntax element.

84.18 LP_IMAGE_PLANE_UNIFORM FLAG

LP IMAGE PLANE UNIFORM FLAG is a 1-bit syntax element that specifies whether a single QP set is used for the
LP band. If LP._ IMAGE PLANE UNIFORM_FLAG is equal to TRUE, a single QP set is used for the LP band of all
tiles in the image (and hence for all macroblocks of all tiles), and this QP set is specified in the image plane header. In
this case, the LP QP set for all tiles shall be set equal to the corresponding values specified in the image plane header. If
LP IMAGE PLANE UNIFORM FLAG is equal to FALSE, the LP band of each tile may use a different QP set, and
these QP sets are specified in the tile header.

84.19 RESERVED_J BIT

RESERVED J BIT is a 1-bit syntax element. It is a requirement of codestream conformance to this Specification that
the value of RESERVED J BIT shall be equal to FALSE. Decoders shall ignore (remove from the codestream and
discard) the value of RESERVED J BIT.

NOTE - The purpose of the specification for decoders to ignore the value of RESERVED_J BIT is to enable the future
definition of a backward-compatible usage of different values of this syntax element.

84.20 HP_IMAGE_PLANE_UNIFORM_FLAG

HP IMAGE PLANE UNIFORM FLAG is a 1-bit syntax element that specifies whether a single QP set is used for the
HP band. If HP IMAGE PLANE UNIFORM FLAG is equal to TRUE, a single QP set shall be used for the HP band
of all tiles in the image (and hence for all macroblocks of all tiles), and this QP set is specified in the image plane
header. In this case, the HP QP set for all tiles shall be set equal to the values specified in the image plane header. If
HP IMAGE PLANE UNIFORM_FLAG is equal to FALSE, multiple QP sets may be used for the HP bands of each
color component in each tile, and these QP sets are specified in the tile headers.

84.21 BYTE_ALIGNMENT_BIT

BYTE ALIGNMENT BIT is a 1-bit syntax element. When it is present, its value shall be equal to 0. The value 1 is
reserved.

Rec. ITU-T T.832 (01/2012) 41



8.4.22 DC_QP()

8.4.22.1 Syntax structure
The DC_QP( ) syntax structure is specified by Table 32.

Table32-DC_QP() syntax structure

DC QP(){ Descriptor Reference
if (NumComponents != 1)
COMPONENT MODE u(2) 8.4.22.2
if (COMPONENT MODE == UNIFORM)
DC_QUANT u(8) 8.4.22.3
else if (COMPONENT MODE == SEPARATE) {
DC QUANT LUMA u(8) 8.4.22.4
DC_QUANT CHROMA u(8) 8.4.22.5
} else if (COMPONENT_MODE ==
INDEPENDENT)
for (i = 0; i < NumComponents; i++)
DC QUANT CH]Ji] u(8) 8.4.22.6
H

NOTE - This function, DC_QP( ), is called from two locations: IMAGE_PLANE_HEADER or TILE_HEADER_DC. Care
should be taken to use the correct value of DC_QUANT_CH] ] when quantization parameters vary on a per tile basis.

8.4.22.2 COMPONENT_MODE

COMPONENT_MODE is a 2-bit syntax element that is present if NumComponents > 1, and specifies whether the color
components use or do not use the same QP set across components as specified in subclauses 8.4.22, 8.4.23 and 8.4.24.
If NumComponents = = 1, the value of COMPONENT MODE is inferred to be UNIFORM.

Table33-COMPONENT_MODE

Value COMPONENT MODE
0 UNIFORM
1 SEPARATE
2 INDEPENDENT
3 RESERVED

8.4.22.3 DC_QUANT

DC_QUANT is an 8-bit syntax element that is present if COMPONENT MODE is equal to UNIFORM. In this case,
the value of the DC QP for all the color components shall be set to DC_QUANT.

8.4.22.4 DC_QUANT_LUMA

DC_QUANT LUMA is an 8-bit syntax element that is present if COMPONENT MODE is equal to SEPARATE. In
this case, the value of the DC QP for the luma component shall be set to DC_ QUANT LUMA.

8.4.22.5 DC_QUANT_CHROMA

DC_QUANT _CHROMA is an 8-bit syntax element that is present if COMPONENT MODE is equal to SEPARATE.
In this case, the value of the DC QP for the chroma components shall be set to DC_QUANT CHROMA.

8.4.22.6 DC_QUANT _CH]i]

DC QUANT CHYJi] is an 8-bit syntax element that is present if COMPONENT MODE is equal to INDEPENDENT.
In this case, the value of the DC QP for the i-th color component shall be set to DC_QUANT _CH]Ji].
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84.23 LP_QP()

8.4.23.1 Syntax structure
The LP_QP( ) syntax structure is specified by Table 34.

Table34—-LP_QP() syntax structure

LP_QP(){ Descriptor Reference
for (q = 0; ¢ <NumLPQPs; g++) {
if NumComponents != 1)

COMPONENT MODE u(2) 84222
if (COMPONENT MODE = = UNIFORM)

LP QUANT[q] u(8) 8.4.232
clse if (COMPONENT MODE = = SEPARATE) |

LP QUANT LUMA[q] u(8) 8.4.233

LP QUANT CHROMAq] u(8) 8.4.234

} else if(COMPONENT MODE = = INDEPENDENT)
for (i = 0; i < NumComponents; i++)
LP QUANT CHIi][q] u(8) 8.4.23.5

NOTE - This function, LP_QP( ), is called from two locations: IMAGE_PLANE_HEADER or TILE_HEADER_LOWPASS.
Care should be taken to use the correct value of LP_QUANT_CH]J ][ ] when quantization parameters vary on a per tile basis.

8.4.23.2 LP_QUANTIq]

LP_QUANT](q] is an 8-bit syntax element that is present if COMPONENT MODE is equal to UNIFORM. In this case,
the value of the g-th LP QP for all the color components shall be set to LP. QUANT][q].

8.4.23.3 LP_QUANT_LUMA[(q]

LP_ QUANT LUMA[q] is an 8-bit syntax element that is present if COMPONENT MODE is equal to SEPARATE. In
this case, the value of the gq-th LP QP for the luma component shall be set to LP. QUANT LUMA[(q].

8.4.23.4 LP_QUANT_CHROMA[q]

LP_ QUANT CHROMAJq] is an 8-bit syntax element that is present if COMPONENT MODE is equal to
SEPARATE. In this case, the value of the g-th LP QP for the chroma components shall be set to
LP_ QUANT CHROMA[q].

8.4.23.5 LP_QUANT_CHIi][q]

LP_QUANT CH]Ji][q] is an 8-bit syntax element that is present if COMPONENT MODE is equal to INDEPENDENT.
In this case, the value of the gq-th LP QP for the i-th color component shall be set to LP. QUANT_CH[i][q].

8.4.24 HP_QP()

8.4.24.1 Syntax structure
The HP_QP( ) syntax structure is specified by Table 35.

Table35-HP_QP() syntax structure

HP QP(){ Descriptor Reference
for (@ =0; g < NumHPQPs; g++) {

if NumComponents != 1)
COMPONENT MODE u(2) 8.4.22.2

if (COMPONENT MODE == UNIFORM)
HP_QUANT[q] u(8) 8.4.24.2

else if (COMPONENT MODE == SEPARATE) {
HP QUANT LUMA[q] u(8) 8.4.24.3
HP QUANT CHROMAJq] u(8) 8.4.24.4
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} else if (COMPONENT MODE = = INDEPENDENT)
for (i = 0; i < NumComponents; i++)
HP QUANT CH]Ji][q] u(8) 8.4.24.5

[—~

NOTE - This function, HP_QP( ), is called from two locations: IMAGE_PLANE_HEADER or TILE_HEADER_HIGHPASS.
Care should be taken to use the correct value of HP_ QUANT_CH] ][ ] when quantization parameters vary on a per tile basis.

8.4.24.2 HP_QUANTIq]

HP_QUANT][(q] is an 8-bit syntax element that is present if COMPONENT MODE is equal to UNIFORM. In this case,
the value of the g-th HP QP for all the color components shall be set to HP. QUANT[(q].

8.4.24.3 HP_QUANT_LUMA[q]

HP QUANT_LUMAIq] is an 8-bit syntax element that is present if COMPONENT MODE is equal to SEPARATE. In
this case, the value of the g-th HP QP for the luma component shall be set to HP. QUANT LUMA[q].

8.4.24.4 HP_QUANT_CHROMA[(q]

HP_QUANT _CHROMA[q] is an 8-bit syntax element that is present if COMPONENT MODE is equal to
SEPARATE. In this case, the value of the g-th HP QP for the chroma components shall be set to
HP_QUANT CHROMAIq].

8.4.24.5 HP_QUANT _CHTil[q]

HP _QUANT _ CH]Ji][q] is an 8-bit syntax element that is present if COMPONENT MODE is equal to INDEPENDENT.
In this case, the value of the g-th HP QP for the i-th color component shall be set to HP. QUANT _CH]Ji][q].

85  INDEX_TABLE_TILES()

85.1  Syntax structure
The INDEX TABLE TILES( ) syntax structure is specified by Table 36.

Table36—INDEX_TABLE_TILES() syntax structure

INDEX TABLE TILES(){ Descriptor Reference
if (FREQUENCY MODE CODESTREAM FLAG ==FALSE)
valueNumlIndexTableEntries = NUM_HOR_TILES MINUSI + 1) *
(NUM_VER _TILES MINUSI + 1)
else /* FREQUENCY MODE_CODESTREAM FLAG ==TRUE */
valueNumlIndexTableEntries = (NUM_HOR_TILES MINUSI1 + 1) *
(NUM_VER TILES MINUSI + 1) * NumBandsOfPrimary

INDEX TABLE STARTCODE u(16) 8.5.2
for (n = 0; n < valueNumlIndexTableEntries; n++)
IndexOffsetTile[n] = VLW _ESC() 8.5.3

852 INDEX_TABLE_STARTCODE

INDEX TABLE STARTCODE is a 16-bit syntax element which indicates the start of the INDEX TABLE TILES().
This element shall have the value 0x0001. Other values of INDEX TABLE STARTCODE are reserved.

8.5.3 IndexOffsetTile[n]

IndexOffsetTile[n] is a variable that specifies the offset of the n-th tile packet from the start of the coded image data.
The value of this variable is determined by a VLW_ESC( ) syntax structure.
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The ordering of this information is as follows: Index offset elements corresponding to each tile shall be consecutively
ordered in low-to-high order of the frequency, i.e. DC followed by low-pass, high-pass, and flexbits. IndexOffsetTile
entries are ordered in the raster scan order of the respective tiles, i.e. left-to-right for the top row of the tile, followed by
left-to-right for the next row, and so on through to the bottom row of the tile.

For spatial mode codestreams, only one IndexOffsetTile is sent per tile. For images with missing sub-bands (such as
when BANDS PRESENT is not equal to ALL), Index Offset elements are sent only for the sub-bands that are present.
An example of this syntax element for an image with four spatial tiles and two frequency bands (DC and LP, i.c.
BANDS PRESENT is equal to NOHIGHPASS) is specified below. Here, pDCTile[n] and pLPTile[n] are the index
offset elements of the DC and LP bands of tile n:

pDCTile[0] pLPTile[0] pDCTile[1] pLPTile[1] pDCTile[2] pLPTile[2] pDCTile[3] pLPTile[3]
When the number of tile packets is 1, the index offset of the only packet is 0.
8.6 PROFILE_LEVEL_INFO()

8.6.1 Syntax structure
The PROFILE LEVEL INFO( ) syntax structure is specified by Table 37.

Table37—PROFILE_LEVEL _INFO() syntax structure

PROFILE LEVEL INFO(){ Descriptor Reference
numBytes = 0
for (iLast = 0; iLast == 0; iLast = LAST FLAG) {
PROFILE IDC u(8) 8.6.2
LEVEL IDC u(8) 8.6.3
RESERVED L u(15) 8.6.4
LAST FLAG u(l) 8.6.5
numBytes += 4
}
return numBytes
!

8.6.2 PROFILE_IDC

PROFILE IDC (when present) is an 8-bit syntax element. When present, the values of PROFILE IDC and
LEVEL IDC indicate a set of profile and level constraints as specified in Annex B.

8.6.3 LEVEL_IDC

LEVEL IDC (when present) is an 8-bit syntax element. When present, the values of PROFILE IDC and LEVEL _IDC
indicate a set of profile and level constraints as specified in Annex B.

8.64 RESERVED_L

RESERVED L is a 15-bit syntax element. When present, the value of RESERVED L shall be equal to 0. Other values
are reserved. Decoders shall ignore the value of this syntax element.

NOTE - The purpose of the specification for decoders to ignore the value of RESERVED_L is to enable the future definition of a
backward-compatible usage of different values of this syntax element.

No particular combination of PROFILE IDC, LEVEL IDC, and RESERVED L shall appear more than once in the
PROFILE LEVEL INFO( ) syntax structure.

865 LAST_FLAG

LAST FLAG (when present) is a 1-bit syntax element. It indicates whether the preceding PROFILE IDC,
LEVEL IDC, and RESERVED L syntax elements are the last such syntax elements in the PROFILE LEVEL INFO()
syntax structure.
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8.7
8.7.1

CODED_TILES()

Syntax structure

The CODED_TILES( ) syntax structure is specified by Table 38.

Table 38— CODED_TILES() syntax structure

CODED TILES(){

Descriptor

Reference

if FREQUENCY MODE CODESTREAM FLAG ==FALSE)

for (n=0; n < (NUM_HOR_TILES MINUSI + 1) *
(NUM VER TILES MINUSI + 1); n++) {

NumMBInCurrentTile = NumMBInTile[n]

POS SEEK(IndexOffsetTile[n])

TILE SPATIAL()

8.7.2

!

else { /* FREQUENCY _MODE CODESTREAM FLAG ==TRUE */

for (n=0; n < (NUM_HOR_TILES_MINUSI + 1) *
(NUM VER TILES MINUSI + 1); n++) {

NumMBInCurrentTile = NumMBInTile[n]

POS SEEK(IndexOffsetTile[n * NumBandsOfPrimary])

TILE DC()

8.7.3

}

if (NumBandsOfPrimary > 1)

for (n=0; n< (NUM_HOR_TILES MINUSI + 1) *
(NUM_VER TILES MINUSI + 1); n++) {

NumMBInCurrentTile = NumMBInTile[n]

POS_SEEK(IndexOffsetTile[n * NumBandsOfPrimary + 1])

TILE LOWPASS()

8.7.5

}

if (NumBandsOfPrimary > 2)

for (n=0; n < (NUM_HOR_TILES_MINUSI + 1) *
(NUM VER TILES MINUSI + 1); n++) {

NumMBInCurrentTile = NumMBInTile[n]

POS SEEK(IndexOffsetTile[n * NumBandsOfPrimary + 2])

TILE HIGHPASS()

8.7.7

}

if NumBandsOfPrimary > 3)

for (n=0; n < (NUM_HOR_TILES MINUSI + 1) *
(NUM_VER TILES MINUSI + 1); n++) {

NumMBInCurrentTile = NumMBInTile[n]

POS SEEK(IndexOffsetTile[n * NumBandsOfPrimary + 3])

TILE FLEXBITS()

8.7.9

46
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8.7.2 TILE_SPATIAL()
The TILE_SPATIAL( ) syntax structure is specified by Table 39.

Table39-TILE_SPATIAL() syntax structure

TILE SPATIAL(){ Descriptor | Reference
TILE_ STARTCODE u(24) 8.7.10.1
ARBITRARY BYTE u(8) 8.7.10.2
if (TRIM_FLEXBITS FLAG)

TRIM FLEXBITS u(4) 8.7.10.3
IsCurrPlaneAlphaFlag = FALSE
TILE_HEADER DC() 8.7.4
if (BANDS PRESENT !=DCONLY) { /* BANDS PRESENT of Primary Plane */
TILE HEADER LOWPASS() 8.7.6
if (BANDS PRESENT != NOHIGHPASS)
TILE_ HEADER HIGHPASS() 8.7.8
}
if (ALPHA IMAGE PLANE FLAG) {
IsCurrPlaneAlphaFlag = TRUE
TILE_HEADER DC() 8.7.4
if (BANDS_PRESENT !=DCONLY) {
/* BANDS PRESENT of Alpha plane */
TILE HEADER _LOWPASS() 8.7.6
if (BANDS PRESENT != NOHIGHPASS)
TILE HEADER HIGHPASS() 8.7.8
}
}
for (n = 0; n < NumMBInCurrentTile; n++) {
IsCurrPlaneAlphaFlag = FALSE
if (BANDS PRESENT !=DCONLY) {
if NumLPQPs > 1 && USE DC QP _FLAG ==FALSE)
LP_QP_INDEX[n] = DECODE QP INDEX(NumLPQPs) 8.7.10.10
if (BANDS PRESENT != NOHIGHPASS && NumHPQPs > 1 &&
USE LP QP FLAG ==FALSE)
HP QP INDEX[n]=DECODE QP INDEX(NumHPQPs) 8.7.10.10
}
MB_DC() 8.7.11
if (BANDS PRESENT !=DCONLY) {
MB LP() 8.7.16.1
if (BANDS PRESENT != NOHIGHPASS) {
MB_CBPHP() 8.7.17.2
MB HP FLEX() 8.7.18.3
}
}
if (ALPHA IMAGE PLANE FLAG) {
IsCurrPlaneAlphaFlag = TRUE
if (BANDS PRESENT !=DCONLY) {
/* BANDS PRESENT of Alpha plane*/
if NumLPQPs > 1 && USE DC QP_FLAG ==FALSE)
LP_QP_INDEX[n] = DECODE_QP INDEX(NumLPQPs) 8.7.10.10
if (BANDS PRESENT != NOHIGHPASS && NumHPQPs > 1 &&
USE LP QP FLAG ==FALSE)
HP_QP_INDEX[n] = DECODE QP INDEX(NumHPQPs) 8.7.10.10
H
MB _DC() 8.7.11
if (BANDS PRESENT !=DCONLY) {
MB_LP() 8.7.16.1
if (BANDS PRESENT != NOHIGHPASS) {
MB_CBPHP() 8.7.17.2
MB HP FLEX() 8.7.18.3

;

H

} /* for if (ALPHA IMAGE PLANE FLAG) */

} /* for (n = 0; n < NumMBInCurrentTile; n++) */
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while (IS BYTE ALIGNED())

BYTE ALIGNMENT BIT u(1) 8.4.21

8.73 TILE_DC()
The TILE DC( ) syntax structure is specified by Table 40.

Table40-TILE_DC() syntax structure

TILE DC(){ Descriptor Reference
TILE STARTCODE u(24) 8.7.10.1
ARBITRARY BYTE u(8) 8.7.10.2
IsCurrPlaneAlphaFlag = FALSE
TILE HEADER_DC() 8.7.4

if (ALPHA IMAGE PLANE FLAG) {
IsCurrPlaneAlphaFlag = TRUE
TILE HEADER DC() 8.7.4

}
for (n = 0; n < NumMBInCurrentTile; n++) {
IsCurrPlaneAlphaFlag = FALSE
MB DC() 8.7.11
if (ALPHA_IMAGE PLANE FLAG) {
IsCurrPlaneAlphaFlag = TRUE
MB_DC() 8.7.11

}

}

while (IS BYTE_ALIGNED())
BYTE ALIGNMENT BIT u(l) 8.4.21

874 TILE_HEADER_DC()
The TILE HEADER DC( ) syntax structure is specified by Table 41.

Table41-TILE_HEADER_DC() syntax structure

TILE HEADER DC(){ Descriptor Reference
if (DC_IMAGE PLANE UNIFORM FLAG = = FALSE)
DC QP() 8.4.22
}
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8.75

TILE_LOWPASS()

The TILE LOWPASS( ) syntax structure is specified by Table 42.

Table42 - TILE_LOWPASS( ) syntax structure

TILE LOWPASS(){

Descriptor

Reference

TILE_ STARTCODE

u(24)

8.7.10.1

ARBITRARY BYTE

u(8)

8.7.10.2

IsCurrPlaneAlphaFlag = FALSE

if (BANDS PRESENT != DCONLY) /* BANDS PRESENT of
primary image plane */

TILE HEADER_LOWPASS()

8.7.6

if ALPHA IMAGE PLANE FLAG) {

IsCurrPlaneAlphaFlag = TRUE

if (BANDS_PRESENT !=DCONLY) /* BANDS_PRESENT of
alpha image plane */

TILE HEADER LOWPASS()

8.7.6

}

for (n = 0; n < NumMBInCurrentTile; n++) {

IsCurrPlaneAlphaFlag = FALSE

if (BANDS PRESENT !=DCONLY) { /* BANDS PRESENT of
primary image plane */

if (NumLPQPs > 1 && USE DC QP FLAG = = FALSE)

LP_QP_INDEX[n] =
DECODE QP INDEX(NumLPQPs) /* primary image plane */

8.7.10.10

MB_LP()

8.7.16.1

}

if ALPHA_IMAGE PLANE FLAG) {

IsCurrPlaneAlphaFlag = TRUE

if (BANDS_PRESENT !=DCONLY) { /* BANDS_PRESENT of
alpha image plane */

if (NumLPQPs > 1 && USE DC QP FLAG = = FALSE)

LP_QP_INDEX[n] = DECODE_QP_INDEX(NumLPQPs)
/* alpha image plane */

8.7.10.10

MB_LP()

8.7.16.1

!

}

while (IS BYTE_ALIGNED())

BYTE ALIGNMENT BIT

u(l)

8.4.21

8.7.6

TILE_HEADER_LOWPASY()

The TILE HEADER LOWPASS( ) syntax structure is specified by Table 43.

Table43-TILE_HEADER_L OWPASS() syntax structure

TILE_HEADER_L OWPASS() { Descriptor Reference
if (LP_ IMAGE PLANE UNIFORM FLAG == FALSE) {
USE DC QP FLAG u(1) 8.7.10.4
if (USE DC QP FLAG)
NumLPQPs =1
else {
NUM LP QPS MINUSI u(4) 8.7.10.5

NumLPQPs =NUM_LP_QPS MINUSI + 1

LP_QP()

8.4.23

[—~
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8.7.7

50

TILE_HIGHPASY()
The TILE_HIGHPASS( ) syntax structure is specified by Table 44.

Table44 - TILE_HIGHPASS() syntax structure

TILE HIGHPASS(){

Descriptor

Reference

TILE_STARTCODE

u(24)

8.7.10.1

ARBITRARY BYTE

u(8)

8.7.10.2

IsCurrPlaneAlphaFlag = FALSE

if ( BANDS PRESENT !=DCONLY &&

BANDS PRESENT != NOHIGHPASS)
/* BANDS PRESENT of primary image plane */

TILE HEADER HIGHPASS()

8.7.8

if ALPHA IMAGE PLANE FLAG) {

IsCurrPlaneAlphaFlag = TRUE

if (BANDS_PRESENT !=DCONLY &&
BANDS_PRESENT !=NOHIGHPASS)
/* BANDS PRESENT of alpha image plane */

TILE HEADER HIGHPASS()

8.7.8

}

for (n = 0; n < NumMBInCurrentTile; n++) {

IsCurrPlaneAlphaFlag = FALSE

if (BANDS PRESENT !=DCONLY &&
BANDS PRESENT != NOHIGHPASS) {
/* BANDS PRESENT of primary image plane */

if NumHPQPs > 1 && USE LP QP FLAG = = FALSE)

HP QP INDEX[n] = DECODE QP INDEX(NumHPQPs)

8.7.10.10

MB_CBPHP()

8.7.17.2

MB_HP()

8.7.18.2

}

if ALPHA IMAGE PLANE FLAG) {

IsCurrPlaneAlphaFlag = TRUE

if (BANDS PRESENT !=DCONLY &&
BANDS PRESENT != NOHIGHPASS) {
/* BANDS PRESENT of alpha image plane */

if NumHPQPs > 1 && USE LP QP FLAG = = FALSE)

HP QP INDEX[n] = DECODE QP INDEX(NumHPQPs)

8.7.10.10

MB_CBPHP()

8.7.17.2

MB_HP()

8.7.18.2

H

}

while (IS BYTE_ALIGNED())

BYTE _ALIGNMENT BIT

u(l)

8.4.21
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8.7.8 TILE_HEADER_HIGHPASY()
The TILE HEADER HIGHPASS( ) syntax structure is specified by Table 45.

Table45-TILE_HEADER_HIGHPASS() syntax structure

TILE HEADER HIGHPASS() { Descriptor Reference
if (HP_ IMAGE PLANE UNIFORM FLAG == FALSE) {
USE LP QP FLAG u(1) 8.7.10.6

if (USE_LP QP FLAG)
NumHPQPs = NumLPQPs

else {
NUM HP QPS MINUSI u(4) 8.7.10.7
NumHPQPs = NUM HP QPS MINUSI + 1
HP QP() 8.4.24

879 TILE_FLEXBITY()
The TILE_FLEXBITS( ) syntax structure is specified by Table 46.

Table46—TILE_FLEXBITS() syntax structure

TILE FLEXBITS(){ Descriptor Reference
TILE STARTCODE u(24) 8.7.10.1
ARBITRARY BYTE u(8) 8.7.10.2
if (TRIM_FLEXBITS FLAG)

TRIM FLEXBITS u(4) 8.7.10.3

for (n = 0; n < NumMBInCurrentTile; n++) {
IsCurrPlaneAlphaFlag = FALSE
if (BANDS PRESENT == ALL)
/* BANDS PRESENT of primary image plane */
MB_FLEXBITS() 8.7.19.1
if (ALPHA _IMAGE PLANE FLAG) {
IsCurrPlaneAlphaFlag = TRUE
if (BANDS PRESENT == ALL)
/* BANDS PRESENT of alpha image plane */
MB_FLEXBITS() 8.7.19.1

}

}

while (IS BYTE_ALIGNED())
BYTE ALIGNMENT BIT u(l) 8.4.21

8.7.10 Tilelevel semantics

8.710.1 TILE_STARTCODE

TILE_STARTCODE is a 24-bit syntax element that is present at the beginning of tile-level syntax structures. The value
of TILE_STARTCODE shall be equal to 0x000001.

NOTE 1 - Decoders should check the value of TILE_STARTCODE to ensure that it has the correct value. If some value other
than 0x000001 is detected, decoders should infer the presence of an error condition. It is suggested that the subsequent data for
any tiles that begin with an incorrect value of TILE_STARTCODE should be discarded. When such an error condition is
detected and the tile is not a flexbits tile-packet, it is suggested for the decoder to infer zero values for the transform coefficients
in such a packet. When such an error condition is detected and the tile is a flexbits tile-packet, it is suggested for the decoder to
infer zero values for all flexbits of such a tile-packet. Alternative approaches to handling such conditions may be preferable in
some uses.

NOTE 2 - There is no guarantee that a byte-aligned 24-bit pattern evaluating to 0x000001 will not occur at any other location in
the codestream. Therefore, TILE_STARTCODE can only be used to reconfirm the start of a tile in conjunction with the index
table entries and not as a guaranteed indicator of the start of a tile.
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8.7.10.2 ARBITRARY_BYTE

ARBITRARY BYTE is an 8-bit syntax element. This syntax element may have any value. The value of this syntax
element shall be ignored by the decoder.

8.7.10.3 TRIM_FLEXBITS

TRIM_FLEXBITS is a 4-bit syntax element that is present if TRIM_FLEXBITS FLAG is equal to TRUE. Otherwise,
TRIM_FLEXBITS shall be inferred to be equal to 0.

NOTE - The number of bits per transform coefficient that are present in the flexbits tile-packet is specified by the value of
(ModelBitsMBHP[MBx][MBy][i] « TRIM_FLEXBITS) as specified in subclauses 8.7.18.3 and 8.7.19.1.

8.7.10.4 USE_DC_QP_FLAG

USE DC QP FLAG is a 1-bit syntax element which specifies whether the LP band uses the same QP set as the DC
band. If USE DC QP _FLAG is equal to TRUE, the values of the LP QP set are set to those of the DC band QP set;
otherwise, the values of the LP QP set are explicitly specified in the codestream. When USE_DC_QP_FLAG is not
present, its value shall be inferred to be equal to FALSE.

8.7.10.5 NUM_LP_QPS MINUSL

NUM_LP_QPS MINUSI is a 4-bit syntax element that is present if LP_ IMAGE PLANE UNIFORM FLAG is equal
to FALSE. This syntax element specifies the number of LP band QPs, per color component in each tile, minus 1.

8.7.10.6 USE_LP_QP_FLAG

USE _LP QP _FLAG is a 1-bit syntax element that specifies whether the HP band uses the same QP sets as the LP band.
If USE LP_ QP FLAG is equal to TRUE, the values of the HP QP sets are set to those of the LP band QP sets;
otherwise, the values of the HP QP sets are explicitly specified in the codestream. When USE _LP QP _FLAG is not
present, its value shall be inferred to be equal to FALSE.

8.7.10.7 NUM_HP_QPS MINUSL

NUM_HP_QPS_MINUSI is a 4-bit syntax element that is present if HP_ IMAGE PLANE UNIFORM_FLAG is equal
to FALSE. This syntax element specifies the number of HP band QPs, per color component in each tile, minus 1.

8.7.10.8 LP_QP_INDEX]n]

LP_QP_INDEX]|n] is a variable-length syntax element that is present when BANDS PRESENT is not equal to
DCONLY, NumLPQPs is greater than 1, and USE_ DC QP _FLAG is equal to FALSE. It specifies the QP index used
for the LP band of the n-th macroblock, in raster scan order, of the tile. The LP band QP for each color component shall
be derived from the g-th QP set when LP_QP_INDEX|n] takes the value q. The LP QP index is parsed using the syntax
structure DECODE_QP_INDEX( ). When LP_QP_INDEX][n] is not present, its value shall be inferred to be equal to 0.

8.7.10.9 HP_QP_INDEX[n]

HP QP INDEX][n] is a variable-length syntax element that is present when BANDS PRESENT is not equal to
DCONLY or NOHIGHPASS, NumHPQPs is greater than 1, and USE LP QP FLAG is equal to FALSE. It specifies
the QP index for the HP band of the n-th macroblock, in raster scan order, of the tile. The HP band QP for each color
component shall be derived from the g-th QP set when HP_QP_INDEX]n] takes the value q. The HP QP index is
parsed using the syntax structure DECODE_QP_INDEX( ). When HP_QP_INDEX]n] is not present, its value shall be
inferred as follows:

- If USE LP QP FLAG is equal to TRUE, HP QP INDEX[n] shall be inferred to be equal to
LP_QP_INDEX[n].

- Otherwise, HP_QP_INDEX][n] shall be inferred to be equal to 0.
8.7.10.10 DECODE_QP_INDEX()

DECODE_QP_INDEX( ) is called when there is a table of quantization parameters associated with either the LP or HP
band. When called, DECODE QP _INDEX( ) returns the index into this table, that represents the quantization
parameter to be used. This syntax structure takes the parameter iNumQP, which specifies the size of the relevant
quantization parameter table.

The syntax structure DECODE_QP_INDEX( ) is specified by Table 47.
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Table 47 —- DECODE_QP_INDEX( ) syntax structure

DECODE QP INDEX(iNumQP) { Descriptor Reference
iBitsQPIndex[ ]={0,0,1,1,2,2,3,3,3,3,4,4,4,4,4, 4,4}
iBits = iBitsQPIndex[iNumQP]

IS QPINDEX NONZERO FLAG u(1) 8.7.10.11
if (IS QPINDEX NONZERO FLAG == FALSE)

iQPIndex =0
else { /* iBits > ( as iNumQP > 1 */

QPINDEX REF u(iBits) 8.7.10.12

iQPIndex = QPINDEX REF + |

}

return iQPIndex

8.7.10.11 IS QPINDEX_NONZERO_FLAG

IS_QPINDEX NONZERO FLAG is a 1-bit syntax element. If IS QPINDEX NONZERO FLAG is equal to TRUE,
the QP index is derived from the syntax element QPINDEX REF. Otherwise, the QP index is set to 0.

8.7.10.12 QPINDEX_REF

QPINDEX REF is a syntax element that specifies the QP index when IS QPINDEX NONZERO FLAG is equal to
TRUE. The value of QPINDEX REF shall be in the range of 0 to iNumQP—2. All other values are reserved.
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8.711 MB_DC()
The MB_DC( ) syntax structure is specified by Table 48.

54

Table48—-MB_DC() syntax structure

MB DC(){

Descriptor

Reference

/* IsCurrPlaneAlphaFlag is equal to TRUE for parsing alpha image plane,

and IsCurrPlaneAlphaFlag is equal to FALSE for parsing primary
image plane */

iBand =0 /* 0 = DC band, 1 = LP band, 2 = HP band */

blnitializeContext = (IsMBLeftEdgeOfTileFlag && IsMBTopEdgeOfTileFlag)

if (blnitializeContext) {

InitializeDCVLC()

8.8.3.1

InitializeModelMB(ModelDC, iBand)

8.12.1

}

iLapMean[ ] = {0, 0}

if INTERNAL_CLR_FMT == YONLY | |

INTERNAL _CLR_FMT == YUVK ||
INTERNAL CLR _FMT = = NCOMPONENT)

for (n=0; n < NumComponents; n++) {

IS DC_CH FLAG

u(l)

8.7.14.1

bAbsLevel =IS DC CH FLAG

m=0

if (n 1= 0)

m=1

if (bAbsLevel)

iLapMean[m] = iLapMean[m] + 1

bChroma = FALSE /* Luma */

DClnput[n] =
DECODE DC(ModelDC.MBits[m], iBand, bChroma, bAbsLevel)

8.7.12

!

else { /* INTERNAL CLR_FMT is not YONLY, YUVK,

or NCOMPONENT */

VAL DC YUV /* Parse with VAL DC YUV Code table */

e(v)

8.7.14.2

/* Luma (Y) DC Parsing */

bAbsLevel = (VAL DC YUV & 4) 1=0)

if (bAbsLevel)

iLapMean[0] = iLapMean[0] + 1

bChroma = FALSE /* i.e., Luma */

DClnput[0] =
DECODE DC(ModelDC.MBits[0], iBand, bChroma, bAbsLevel)

8.7.12

/* First chroma (U) DC Parsing */

bAbsLevel = (VAL DC YUV & 2) I=0)

if (bAbsLevel)

iLapMean[1] = iLapMean[1] + 1

bChroma = TRUE /* i.e., Chroma */

DClnput[1] =
DECODE DC(ModelDC.MBits[1], iBand, bChroma, bAbsLevel)

8.7.12

/* Second chroma (V) DC Parsing */

bAbsLevel = (VAL DC YUV & 1) I=0)

if (bAbsLevel)

iLapMean[1] = iLapMean[1] + 1 /* Same index for U and V */

bChroma = TRUE /* i.e., Chroma */

DClnput[2] =
DECODE DC(ModelDC.MBits[1], iBand, bChroma, bAbsLevel)

8.7.12

}

UpdateModeIMB(iLapMean| ], ModelDC, iBand)

8.12.2

bResetContext = (MBx = = (LeftMBIndexOfTile[TileIndexx + 1] — 1) | |

(MBx — LeftMBIndexOfTile[TileIndexx]) % 16 == 0)

if (bResetContext)

AdaptDC()

8.8.4.1
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8.7.12 DECODE_DC()

Table 49 - DECODE_DC() syntax structure

DECODE DC(iModelBits, iBand, bChroma, bAbsL evel) {

Descriptor

Reference

iDC=0

iContext =0

if (bAbsLevel)

iDC =DECODE ABS LEVEL(iBand, bChroma, iContext) — 1

8.7.13

if (iIModelBits) {

DC REF

u(iModelBits)

8.7.14.3

iDCRef = DC_REF

iDC = (iDC<< iModelBits) | iDCRef

}

if iDC 1= 0) {

SIGN FLAG

u)

8.7.14.4

if (SIGN_FLAG)

iDC =—-iDC

}

return iDC

8.7.13 DECODE_ABS LEVEL()

Table 50 - DECODE_ABS LEVEL () syntax structure

DECODE_ABS LEVEL (iBand, bChroma, iContext) {

Descriptor

Reference

/* sAdaptVL C is local instance of AdaptiveVLC data structure */

if (iBand = = 0) /* DC */

if (bChroma)

sAdaptVLC = AbsLevelIndDCChr

else

sAdaptVLC = AbsL evelIndDCL um

elseif (iIBand==1) /* LP */

if (iContext)

sAdaptVLC = AbsL evelIndL P1

else

sAdaptVLC = AbsL evell ndL PO

else if (iBand == 2) /* HP */

if (iContext)

sAdaptVLC = AbsL evellndHP1

else

sAdaptVL C = AbsL evellIndHPO

iRemap[ ] = {2, 3, 4, 6, 10, 14}

iFixedLen[ ] = {0,0, 1, 2,2, 2}

ABS LEVEL INDEX /* Parse with table indexed by sSAdaptVL C.Tablelndex */

ae(v)

8.7.14.5

sAdaptVL C.DiscrimVall += AbslevellndexDelta[0]JABS LEVEL INDEX]

Table 86

if (ABS LEVEL INDEX < 6) {

iFixed = iFixedLen[ABS LEVEL INDEX]

iLevel = iRemap[ABS LEVEL INDEX]

if (iFixed > 0) {

LEVEL REF

u(iFixed)

8.7.14.6

iLevel += LEVEL REF

}

} else { /* Escape mode */

FIXED NUM

u4)

8.7.14.7

iFixed = FIXED NUM + 4

if (iFixed = = 19) {

FIXED NUM EXT

u(2)

8.7.14.8

iFixed += FIXED NUM_EXT

if (iFixed = = 22) {

FIXED NUM EXT2

u(3)

8.7.14.9

iFixed += FIXED NUM EXT2
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;

}

LEVEL REF u(iFixed) 8.7.14.6

iLevel = 2 + (1 << iFixed) + LEVEL REF

;

return iLevel

8.7.14 Macroblock DC() semantics

8.7.14.1 1S DC_CH_FLAG

IS DC_CH _FLAG is a 1-bit syntax element that is present if INTERNAL CLR_FMT is one of YONLY, YUVK, or
NCOMPONENT. If IS DC_CH_FLAG is equal to TRUE, the variable-length coded part of the DC coefficient of the
corresponding color component is specified in the codestream. If IS DC_CH_FLAG is equal to FALSE, the variable-
length coded part of the DC coefficient of the corresponding color component is equal to 0.

8.7.142 VAL_DC_YUV

VAL DC YUV is a variable-length syntax element that is present if INTERNAL CLR_FMT is not one of YONLY,
YUVK, or NCOMPONENT. The value of VAL _DC YUYV is a 3-bit number, which jointly specifies the zero/non-zero
status of the DC coefficients of the Y, U and V, respectively (i.e., (VAL DC YUV & 4) specifies the Y,
(VAL DC_YUV & 2) specifies the U, and (VAL DC YUV & 1) specifies the V). The code table used in parsing
VAL DC YUV is specified in Table 51.

Table51 — Codetablefor VAL_DC_YUV

Code Value
10 0
001 1
0000 1 2
0001 3
11 4
010 5
0000 0 6
011 7

8.7.14.3 DC_REF

DC REF is a syntax element which specifies the FLC refinement in the DC value. The number of bits, iModelBits,
needed to specify DC_REF is computed as specified in subclause 8.7.12.

8.7.14.4 SIGN_FLAG

SIGN_FLAG is a 1-bit syntax element which specifies the sign of a coefficient. If SIGN_FLAG is equal to TRUE, the
coefficient is negative. Otherwise, the coefficient is positive.

8.7.14.5 ABS_LEVEL_INDEX

ABS LEVEL INDEX is a variable-length syntax element that has a value in the range of 0 to 6, inclusive. This syntax
element is used in the computation of the VLC-coded part of the transform coefficient. The VLC-coded part of a
transform coefficient is parsed in two stages: the initial level value and the VLC refinement. If ABS LEVEL INDEX is
less than 6, the initial level and the number of bits required to specify the VLC refinement are specified by this syntax
element. If ABS LEVEL INDEX is equal to 6, further syntax elements are parsed to determine the initial level value
and the number of bits required to specify the VLC refinement, as specified in subclause 8.7.13.

The coding of this syntax element uses one of two tables, adaptively determined as specified by the parsing process (see
subclause 8.8). The two code tables are specified in Table 52.
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Table52 — Codetablefor ABS LEVEL_INDEX

Code 0 Code 1 Value
01 1 0
10 01 1
11 001 2
001 0001 3
0001 00001 4
00000 000000 5
00001 000001 6

8.7.14.6 LEVEL_REF

LEVEL REF is a syntax element which specifies the VLC refinement. The number of bits, iFixed, needed to specify
this syntax element is computed as specified in subclause 8.7.13 from ABS LEVEL INDEX if ABS LEVEL INDEX
is less than 6, or from FIXED NUM, FIXED NUM EXT, and FIXED NUM_EXT2 if ABS LEVEL INDEX is
greater than or equal to 6.

8.7.14.7 FIXED_NUM

FIXED NUM is a 4-bit syntax element that is present if ABS LEVEL INDEX is equal to 6. It specifies the number of
bits needed to specify the initial level value.

8.7.14.8 FIXED_NUM_EXT

FIXED NUM_EXT is a 2-bit syntax element that is present if FIXED NUM is equal to 15. It specifies the number of
extension bits needed to specify the initial level value.

8.7.14.9 FIXED_NUM_EXT2

FIXED NUM _EXT?2 is a 3-bit syntax element that is present if FIXED NUM is equal to 15 and FIXED NUM EXT is
equal to 3. It specifies the number of additional extension bits needed to specify the initial level value.

8.7.15 Macroblock low-pass
8.7.16 General

This subclause specifies the derivation of the LP coefficients of the blocks in a macroblock. The presence of non-zero
entropy coded LP coefficients, i.e. coded block pattern low-pass, in a macroblock is represented by the variable iCBPLP
as computed, as specified in Table 53, from the syntax elements CBPLP YUVI or CBPLP YUV2 or
CBPLP_CH_BIT.

If INTERNAL CLR FMT is not equal to YUV420 or YUV422, the coded block status of the n-th color component is
specified by (ICBPLP >>n) & 1). If INTERNAL CLR _FMT is equal to YUV420 or YUV422, the coded block status
of the luma component is specified by (iCBPLP & 1). If the coded block status bit of a component is non-zero, there
can be up to 15 non-zero LP coefficients associated with that component. These coefficients are parsed by invoking the
process DECODE _BLOCK( ) specified by subclause 8.7.18.5, and the inverse scanning order is determined by
invoking the process AdaptiveLPScan( ).

If INTERNAL CLR _FMT is equal to YUV420 or YUV422, the coded block status of the U and V component is
jointly specified by ((iCBPLP >> 1) & 1). If the coded block status bit is non-zero, the LP coefficients of U and V are
parsed jointly by invoking the process DECODE_BLOCK( ) specified in subclause 8.7.18.5. The U and V coefficients
are interleaved, and a fixed inverse scanning order (specified by iRemapArr and iRemapOffset) is used. If
INTERNAL CLR FMT is equal to YUV420, there can be up to 3 U and 3 V coefficients and the inverse scanning
order is U[1], V[1], U[2], V[2], U[3], V[3]. If INTERNAL CLR FMT is equal to YUV422, there can be up to 7 U and
7 V coefficients and the inverse scanning order is U[4], V[4], U[1], V[1], U[2], V[2], U[3], V]3], U[5], V[5], U[6],
VI[6].

The value of the LP coefficients is refined by invoking the process REFINE LP(), and this process is invoked
irrespective of the value of iCBPLP.

8.7.16.1 MB_LP()
The MB_LP( ) syntax structure is specified by Table 53.
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Table53-MB_LP() syntax structure

MB LPO){

Descriptor

Reference

/* IsCurrPlaneAlphaFlag is equal to TRUE for parsing alpha image plane, and
IsCurrPlaneAlphaFlag is equal to FALSE for parsing primary image plane */

iBand=1/*0=DC1=LP,2=HP */

iTransposed44[ ]= {0, 4,8, 12, 1,5,9, 13,2, 6, 10, 14,3, 7, 11, 15}

iTranspose422[ ]={0,2,1,3,4,6,5,7}

iTranspose420[ 1= {0, 2, 1, 3}

blnitializeContext = (IsMBLeftEdgeOfTileFlag && IsMBTopEdgeOfTileFlag)

if (bInitializeContext) {

InitializeCountCBPLP( )

8.9.2

InitializeLPVLC( )

8.8.3.2

InitializeAdaptiveScanLP( )

8.11.2

InitializeModeIMB(ModelLP, iBand)

8.12.1

;

bResetTotals = (MBx — LeftMBIndexOfTile[ TileIndexx]) % 16) == 0)

if (bResetTotals)

ResetTotalsAdaptiveScanLP( )

8.11.4

iLapMean[ ] = {0, 0}

if INTERNAL_CLR_FMT == YUV422 ||
INTERNAL CLR FMT = = YUV420)

iFullPlanes = 2

else

iFullPlanes = NumComponents

if INTERNAL_CLR_FMT == YUV420 | |
INTERNAL_CLR_FMT ==YUV422 ||
INTERNAL CLR FMT == YUV444) {

iMax = iFullPlanes * 4 — 5 /* Max value of CBPLP */

if (CountZeroCBPLP <= 0 | | CountMaxCBPLP < 0) {

CBPLP_YUVI

e(v)

8.7.16.3.1

if (CountMaxCBPLP < CountZeroCBPLP)

iCBPLP =iMax — CBPLP YUV1

else

iCBPLP = CBPLP YUV

} else {

CBPLP YUV2

u(iFullPlanes)

8.7.16.3.2

iCBPLP = CBPLP_YUV2

}

UpdateCountCBPLP(iCBPLP, iMax)

8.9.3

} else {

iCBPLP =0

for (n=0; n < NumComponents; n++) {

CBPLP CH BIT

u)

8.7.16.3.3

iCBPLP |= (CBPLP CH BIT <<n)

;

}

for (n = 0; n < NumComponents; n++) {

if INTERNAL CLR FMT == YUV420)

jMax =3

else if INTERNAL CLR FMT == YUV422)

jMax =7

else

jMax = 15

for (j = 0; j <= jMax; j++)

LPInput[k][j]=0

}

for (n = 0; n < iFullPlanes; n++) {

if(n==0)

ilndex =0

else

ilndex =1

iNumNonZero = 0

if (ICBPLP >>n) & 1) {

58
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iRLCoeffs[i] =0

iLocation = 1

if (INTERNAL CLR FMT ==YUV420) && n)

iLocation = 10

if (INTERNAL CLR FMT == YUV422) && n)

iLocation = 2

iNumNonZero =
DECODE BLOCK(ilndex, iRLCoeffs[ ], iBand, iLocation)

8.7.18.5

if (INTERNAL _CLR_FMT == YUV420 ||
INTERNAL CLR FMT == YUV422) && n) {

iTemp[14] = 0 /* Initializing the array iTemp to zero. */

iRemapArr| |={4,1,2,3,5,6,7}

iRemapOffset = 0

if INTERNAL CLR_FMT ==YUV420)

iRemapOffset = 1

if INTERNAL CLR _FMT ==YUV422)

iCountChr = 14

else

iCountChr = 6

i=0

for (k = 0; k< iNumNonZero; k++) {

i +=iRLCoeffs[k * 2]

iTemp[i] = iRLCoeffs[k * 2 + 1]

1+t

}

for (k = 0; k <iCountChr; k++) {

iRemap = iRemapArr[(k >> 1) + iRemapOffset]

if INTERNAL CLR _FMT ==YUV420)

LPInput[(k & 1) + 1][iTranspose420[iRemap]] = iTemp[k]

else

LPInput[(k & 1) + 1][iTranspose422[iRemap]] = iTemp[k]

H

} else {

i=1

for (k = 0; k< iNumNonZero; k++) {

i += iRLCoeffs[k*2]

AdaptiveLPScan(n, i, iRLCoeffs[k * 2 + 1]) /* Updates LPInput */

8.11.6

i++

;

H

y /% if (ICBPLP>>n) & 1) */

iModelBits = ModelLP.MBits[ilndex]

iLapMean[ilndex] += iNumNonZero

if (iModelBits)

if (INTERNAL CLR _FMT==YUV420) && n)

for (k=1;k <4; k++) {

LPInput[1][iTranspose420[k]]=
REFINE LP(LPInput[1][iTranspose420[k]], iModelBits)

8.7.16.2

LPInput[2][iTranspose420[k]] =
REFINE LP(LPInput[2][iTranspose420[k]], iModelBits)

8.7.16.2

i

else if (INTERNAL CLR FMT==YUV422) && n)

for (k=1; k <8; k++) {

LPInput[1][iTranspose422[k]]=
REFINE LP(LPInput[1][iTranspose422[k]], iModelBits)

8.7.16.2

LPInput[2][iTranspose422[k]] =
REFINE LP(LPInput[2][iTranspose422[k]], iModelBits)

8.7.16.2

}

else

for (k=1; k <16; k++)

LPInput[n][iTranspose444[k]] =
REFINE LP(LPInput[n][iTranspose444[k]], iModelBits)

8.7.16.2

} /* for(n=0...%

UpdateModelMB(iLapMean[ ], ModelLP, iBand)

8.12.2

bResetContext = (MBx = = (LeftMBIndexOfTile[TileIndexx + 17— 1) | |
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(MBx — LeftMBIndexOfTile[TileIndexx]) % 16 == 0)

if (bResetContext)

AdaptLP()

8.8.4.2

8.7.16.2 REFINE_LP()

Table54 — REFINE_L P() syntax structure

REFINE_L P(iCoeff, iModelBits) {

Descriptor

Reference

COEFF_REF

u(iModelBits)

8.7.16.3.4

if (iCocff > 0) {

iCoeff <<= iModelBits

iCoeff += COEFF REF

} else if (iCoeff < 0) {

iCoeff <<= iModelBits

iCoeff —= COEFF REF

} else {

iCoeff = COEFF_REF

if (1Coeft) {

SIGN FLAG

u(1l)

8.7.14.4

if SIGN FLAG)

1Coeff = —iCoeff

}

}

return iCoeff

8.7.16.3 MB_LP() and REFINE_LP() semantics

8.7.16.3.1CBPLP_YUV1

CBPLP_YUVI1 is a syntax element that is present if INTERNAL CLR FMT is one of YUV420, YUV422, or
YUV444, and also CountZeroCBPLP is less than or equal to 0 or CountMaxCBPLP is less than 0 it jointly specifies the

coded block pattern low-pass of the Y, U and V color components as follows:

- IfINTERNAL CLR FMT is YUV444, the parsing of CBPLP_YUV1 is specified by Table 55.

- IfINTERNAL CLR FMT is YUV420 or YUV422, the parsing of CBPLP_YUV1 is specified by Table 56.
NOTE - If (CountZeroCBPLP > 0 && CountMaxCBPLP >= 0), the coded block pattern low-pass band is computed as specified

in subclause 8.7.16.1.

Table 55— Codetablefor CBPLP_YUV1when INTERNAL_CLR_FMT isequal toYUV444

Code Value
0 0
100 1
1010 2
1011 3
1100 4
1101 5
1110 6
1111 7

Table 56 — Codetablefor CBPLP_YUV1when INTERNAL_CLR_FMT isequal to YUV420 or YUV422

Code Value
0 0
10 1
110 2
111 3
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8.7.16.3.2CBPLP_YUV?2

CBPLP_YUV2 is a syntax element that is present when INTERNAL CLR FMT is equal to YUV420, YUV422, or
YUV444, and CountZeroCBPLP is greater than 0 and CountMaxCBPLP is greater than or equal to 0. The number of
bits required to specify this syntax element is specified by iFullPlanes.

8.7.16.3.3CBPLP_CH_BIT

CBPLP_CH BIT is a 1-bit syntax element that is present for each color component in an image when
INTERNAL CLR FMT is not one of YUV422, YUV420, or YUV444. It specifies the coded block pattern low-pass of
the corresponding color component. If CBPLP_CH_BIT is equal to 0, all the coefficients in the LP band for this
macroblock of the corresponding color component are set to the value 0. If CBPLP_CH_BIT is equal to 1, the LP band
for this macroblock of the corresponding component is non-zero.

8.7.16.3.4COEFF_REF

COEFF_REF is a syntax element that refines the value of LP coefficients. The number of bits used to parse this syntax
element is specified by iModelBits.

8.7.17 Coded block pattern high-pass (CBPHP)
8.7.17.1 General

The CBPHP derivation process is hierarchical, and proceeds as follows:

First step: the syntax element NUM_CBPHP and REFINE CBPHP( ) process specify the residual CBPHP status of
block-groups where each block-group consists of multiple blocks as specified below.

If INTERNAL CLR FMT is equal to YUV444, YUV422, or YUV420, there is a NUM_CBPHP syntax element for
each macroblock and each block-group consists of 2x2 group of luma blocks, and the co-located chroma blocks. For
each 2x2 group of luma block, the co-located chroma blocks consists of a) 2x2 group of U blocks and 2x2 group of V
blocks for YUV444, b) 2x1 group of U blocks and 2x1 group of V blocks for YUV422, and ¢) 1 U block and 1 V block
for YUV420. Thus, there are 4 block-groups in each macroblock. NUM_CBPHP takes a value between 0 and 4 and
specifies the number of block-groups where CBPHP residual values are non-zero, i.e. block-groups that have CBPHP
status that differ from their predicted values. The REFINE CBPHP( ) process is invoked to determine which of the
block groups has non-zero residual CBPHP values.

If INTERNAL CLR _FMT is equal to YONLY, YUVK, or NCOMPONENT, there is a NUM_CBPHP syntax for each
color component in that macroblock, and each block-group consists of 2x2 groups of blocks in that color component.
Thus, there are 4 block-groups for each color component. NUM_CBPHP takes a value between 0 and 4 and specifies
the number of block groups (in that color component) where CBPHP residual values are non-zero, and the
REFINE_CBPHP( ) process is invoked to determine which of the block groups has non-zero residual CBPHP values.

Second step: If the residual CBPHP status of a block-group is equal to 0, the residual CBPHP of all the blocks in the
group is inferred to be equal to 0. If the residual CBPHP status of a given block-group is non-zero, the
NUM_BLKCBPHP and subsequent syntax elements are used to indicate the residual CBPHP of specific blocks in that
block-group as summarized below:

If INTERNAL CLR _FMT is equal to YUV444, YUV422, or YUV420, there is a NUM_BLKCBPHP syntax element
for each block-group with non-zero residual CBPHP status. NUM_BLKCBPHP takes a value between 0 and 8. If
NUM_BLKCBPHP plus 1 is less than 6, it indicates that the residual CBPHP of all the chroma blocks in the block
group are equal to 0. The luma blocks that have non-zero residual CBPHP are indicated by the value of
NUM_ BLKCBPHP and CODE_INC. If NUM_BLKCBPHP plus 1 is greater than or equal to 6, the residual CBPHP of
at least some chroma blocks in this block-group are non-zero, and the syntax elements CHR CBPHP is parsed to
specify if a) the U, or b) V, or c¢) both U and V, color components have blocks with non-zero residual CBPHP. In this
case, the luma blocks that have non-zero residual CBPHP are indicated by the value of NUM_ BLKCBPHP, VAL INC
and CODE_INC.

If INTERNAL CLR FMT is equal to YUV444 or YUV422, the chroma component with non-zero residual CBPHP has
multiple blocks. If INTERNAL CLR FMT is equal to YUV444, the syntax element NUM_CH BLK and the process
REFINE CBPHP( ) specify the chroma blocks that have non-zero residual CBPHP. If INTERNAL CLR FMT is equal
to YUV422, the syntax element CBPHP CH_BLK specifies the chroma blocks that have non-zero residual CBPHP.

If INTERNAL CLR FMT is equal to YONLY, YUVK, or NCOMPONENT, there is a NUM_BLKCBPHP syntax
element for each block-group (in each color component) where residual CBPHP status is non-zero. NUM_BLKCBPHP
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takes a value between 0 and 4. The blocks in this block-group that have non-zero residual CBPHP are indicated by the
value of NUM_BLKCBPHP and CODE_INC.

Third step: On the completion of the second step for all block groups in a macroblock, the residual CBPHP values for
all the blocks in color component i are stored in the corresponding iDiffCBPHP[i] variable. These values are stored in a
hierarchical raster scan order, where each consecutive nibble of 4 bits corresponds to one 2x2 block group. Within each
nibble, the blocks of a block-group are in raster scan order, and 2x2 block-groups in a macroblock are also in raster scan
order. If INTERNAL CLR FMT is equal to YUV422 or YUV420), the hierarchical scan order for the chroma
components is identical to the normal scan order.

The PredCBPHP( ) process is invoked to compute the actual CBPHP values from the residual CBPHP values. The value
of (MBCBPHP[MBx][MBYy][i] >>j) & 1) specifies the coded block status of the j-th block (in the same hierarchical
raster scan order as iDiffCBPHP) associated with the i-th color component in the macroblock indexed by MBx and
MBy.

8.7.17.2 MB_CBPHP()
The MB_CBPHP( ) syntax structure is specified by Table 57.

Table57 -MB_CBPHP() syntax structure

MB_CBPHP() { Descriptor Reference
/* IsCurrPlaneAlphaFlag is equal to TRUE for parsing alpha image plane, and
IsCurrPlaneAlphaFlag is equal to FALSE for parsing primary image plane */
/* sAdaptVL C is local instance of AdaptiveVLC data structure */
iFLC[]=1{0,2,1,2,2,0}
iOfff 1=1{0,4,2,8,12, 1}
iOut[ 1={0, 15,3,12,1,2,4,8,5,6,9,10,7, 11, 13, 14}
iDiffCBPHP[NumComponents] =0 /* Initializing the array to zero */
blnitializeContext =
(IsMBLeftEdgeOfTileFlag && IsMBTopEdgeOfTileFlag)
if (blnitializeContext)
InitializeCBPHPVLC( ) 8.8.3.4
if INTERNAL_CLR_FMT ==YUVK ||
INTERNAL CLR _FMT ==NCOMPONENT)
iComponent = NumComponents
else
iComponent = 1
for (i=0; i <iComponent; i++) {
sAdaptVLC = DecNumCBPHP
/* reference AdaptiveVLC struct for NUM CBPHP */
NUM_CBPHP /* using SAdaptVLC */ ae(v) 8.7.17.4.1
sAdaptVLC.DiscrimVall += Table 89
NumCBPHPDelta[sAdaptVL C.DeltaTableIndex][NUM_CBPHP]
/* sAdaptVL C.DeltaTableIndex is equal to 0 */
iCBPHP = REFINE_CBPHP(NUM_CBPHP) 8.7.17.3
for (iBlock = 0; iBlock < 4; iBlock++)
if GCBPHP & (1 << iBlock)) {
sAdaptVLC = DecNumBIKCBPHP
/* reference AdaptiveVLC struct for NUM BLKCBPHP */

NUM_BLKCBPHP /* using sSAdaptVLC */ ae(v) 8.7.17.4.2
sAdaptVL C.DiscrimVall += Table 90,
NumBIkCBPHPDelta[sAdaptVL C.DeltaTableIndex][NUM BLKCBPHP] Table 91

iVal = NUM_BLKCBPHP+I
iBIkCBPHP =0
if (iVal >=6) { /* Is chroma */
CHR CBPHP e(v) 8.7.17.4.3
iBIkKCBPHP = 0x10 * (CHR_CBPHP + 1)
if (iVal >=9) {
VAL INC e(v) 8.7.17.4.4
iVal += VAL INC
}
iVal—=6

}
iCode = iOff[iVal]
if GFLC[iVal]) {
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CODE _INC u(FLC[iVal]) | 8.7.17.4.5
iCode += CODE_INC

}

iBIkCBPHP += iOut[iCode]

if INTERNAL CLR_FMT ==YUV444) {
iDiffCBPHP[0] |= ((iBIKCBPHP & 0x0F) << (iBlock * 4))
for (k=0; k <2; k++)

if ((iBIkCBPHP >> (k + 4)) & 0x01) {
NUM_CH_BLK e(v) 8.7.17.4.6
iCBPHPChr = REFINE_CBPHP(NUM_CH BLK + 1) 8.7.17.3
iDiffCBPHP[k + 1] |= (iCBPHPChr << (iBlock * 4))
}
/* INTERNAL CLR FMT ==YUV444 */

} else if INTERNAL CLR FMT ==YUV422) {
iDiffCBPHP[0] |= ((iBIkCBPHP & 0x0F) << (iBlock * 4))
for (k=0; k <2; k++)

if (iIBIKCBPHP >> (k + 4)) & 0x01) {
iShift[4] = {0, 1,4, 5}
CBPHP CH BLK e(v) 8.7.17.4.7
iCBPHPChr = iShiftf CBPHP CH BLK + 1]
iDiffCBPHP[k + 1] |= iCBPHPChr << iShift[iBlock])

}
} else if INTERNAL CLR _FMT ==YUV420) {

iDiffCBPHP[0] |= ((iBIKCBPHP & 0x0F) << (iBlock * 4))
iDiffCBPHP[1] |= (((iBIkCBPHP >>4) & 0x01) << iBlock)
iDiffCBPHP[2] |= (((iBIkCBPHP >> 5) & 0x01) << iBlock)
} else /* Default */
iDiffCBPHP[i] |= (((BIKCBPHP ) << (iBlock * 4))
} /* if GCBPHP...) */
L/
PredCBPHP(iDiffCBPHP) 8.7.17.5.1

8.7.17.3 REFINE_CBPHP()

Table 58 - REFINE_CBPHP() syntax structure

REFINE CBPHP(iNum) { Descriptor Reference
if (Num ==2) {
REF CBPHPI e(v) 8.7.17.4.8

iRef=REF CBPHPI
}else if (INum==1) {
REF CBPHP u(2) 8.7.17.4.9
iRef = (1<<REF CBPHP)
} else if (INum == 3) {
REF CBPHP u(2) 8.7.17.4.9
iRef = (0xOF "~ (1<<REF CBPHP))
} else if (INum == 4)
iRef = 0xOF
else
iRef=0
return iRef

8.7.17.4 MB_CBPHP( ) and REFINE_CBPHP( ) semantics

8.7.17.41NUM_CBPHP

NUM_CBPHP is a variable syntax element that specifies the number of block-groups where CBPHP residual values
CBPHP status differs from their predicted values as specified in subclause 8.7.17.1. NUM_CBPHP is parsed using one
of two VLC tables specified in Table 59. The adaptive VLC structure used to parse NUM_CBPHP is initialized to the
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VLC table corresponding to Code 0 as specified in subclause 8.8.3.4, and the structure is updated as specified in
subclause 8.8.4.

Table 59 — Code table for NUM_CBPHP()

Code0O | Code 1 Value
1 1 0
01 000 1
001 001 2
0000 010 3
0001 011 4

8.7.17.42NUM_BLKCBPHP

NUM_ BLKCBPHP is a variable-length syntax element that specifies the CBPHP status of each block-group where
residual CBPHP status is non-zero as specified in subclause 8.7.17.1. If INTERNAL CLR FMT is equal to YUVK,
NCOMPONENT, or YONLY, NUM_BLKCBPHP is coded using one of the two VLC tables specified in Table 60.
Otherwise, NUM_BLKCBPHP is parsed using one of the two VLC tables specified in Table 61. The adaptive VLC
structure used to parse NUM_BLKCBPHP is initialized to the VLC table corresponding to Code 0 as specified in
subclause 8.8.3.4, and the structure is updated as specified in subclause 8.8.4.

Table 60 — Code tablefor NUM_BLKCBPHP
if INTERNAL_CLR_FMT isoneof {YUVK, NCOMPONENT, YONLY}

Code0 Code 1 Value
1 1 0
01 000 1
001 001 2
0000 010 3
0001 011 4

Table 61 — Codetablefor NUM_BLKCBPHP

if INTERNAL_CLR_FMT isnot oneof {YUVK, NCOMPONENT, YONLY}

Code 0 Code 1 Value
010 1 0
00000 001 1
0010 010 2
00001 0001 3
00010 000001 4
1 011 5
011 00001 6
00011 0000000 7
0011 0000001 8

8.7.17.43CHR_CBPHP

CHR CBPHP is a syntax element that specifies the chroma components have non-zero CBPHP in a block-group as
specified in subclause 8.7.17.1. The VLC used to parse CHR _CBPHP is specified in Table 62.

Table 62 — Codetablefor CHR_CBPHP, VAL_INC, and CBPHP_CH_BLK

Code Value
1 0
01 1
00 2

NOTE - Non-zero residual CBPHP in a) U component blocks are indicated by CHR_CBPHP = 0, b) V component blocks are
indicated by CHR_CBPHP = 1, and ¢) both U and V component blocks are indicated by CHR_CBPHP = 2.
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8.7.17.44VAL_INC

VAL INC is a syntax element that refines the CBPHP of a block-group as specified in subclause 8.7.17.1 when
NUM_BLKCBPHP plus 1 is greater than or equal to 9. The VLC that specifies the parsing of VAL INC is specified in
Table 62.

8.7.17.45CODE_INC

CODE INC is a syntax element that specifies the location of coded blocks in a block-group as specified in
subclause 8.7.17.1. The size of this syntax element is specified by iFLC[iVal], where iFLC][ ] and iVal are specified in
subclause 8.7.17.2.

8.7.17.46NUM_CH_BLK

When INTERNAL CLR FMT is equal to YUV444, NUM_CH_BLK is a syntax element that specifies the number of
coded chroma blocks in a 2x2 block-group as specified in subclause 8.7.17.1. The VLC that specifies the parsing of
NUM _CH _BLK is specified in Table 63.

Table 63— Codetablefor NUM_CH_BLK

Code Value
1 0
01 1
000 2
001 3

8.7.17.47CBPHP_CH_BLK

When INTERNAL CLR FMT is equal to YUV422, CBPHP_CH BLK is a syntax element that refines the chroma
CBPHP for a block-group as specified in subclause 8.7.17.1. The VLC that specifies the parsing of CBPHP_CH BLK
is specified in Table 62.

8.7.17.48REF_CBPHP1

REF CBPHP1 is a variable size syntax element that refines the CBPHP of a block-group as specified in
subclause 8.7.17.1. The VLC that specifies the parsing of REF_CBPHP1 is specified in Table 64.

Table 64 — Codetablefor REF_CBPHP1

Code Value
00 3
01 5
100 6
101 9
110 10
111 12

8.7.17.49REF_CBPHP
REF_CBPHP is a 2-bit syntax element that refines the CBPHP of a block-group as specified in subclause 8.7.17.1.

8.7.17.5 CBPHP prediction

The CBPHP of neighbouring blocks is used to predict the CBPHP of current block as specified by subclause 8.7.17.5.1.
The prediction of CBPHP in each component is performed independently. The prediction of CBPHP for the U and V
components in the YUV422 case is specified by subclause 8.7.17.5.3.The prediction of CBPHP for the U and V
components in the YUV420 is specified by subclause 8.7.17.5.4. In all other cases, the prediction of CBPHP is
specified by subclause 8.7.17.5.2. After the CBPHP of the current block is reconstructed, the CBPHP prediction model
is updated as specified by subclause 8.10.2.
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8.7.17.5.1 PredCBPHP()

Table 65 — Pseudocode for function PredCBPHP()

PredCBPHP(iDiffCBPHP] ]) { Reference

blnitializeContext =
(IsMBLeftEdgeOfTileFlag && IsMBTopEdgeOfTileFlag)

if (blnitializeContext)

InitializeCBPHPModel( ) 8.10.1

if INTERNAL CLR_FMT ==YUV420 | |
INTERNAL CLR FMT ==YUV422)

iComponent = 1

else

iComponent = NumComponents

for (i=0; i <iComponent; i++)

MBCBPHP[MBx][MBy][i] = PredCBPHP444(i, iDiffCBPHP) 8.7.17.5.2
if INTERNAL CLR FMT == YUV422) {
MBCBPHP[MBx][MBy][1] = PredCBPHP422(1, iDiffCBPHP) 8.7.17.5.3
MBCBPHP[MBx][MBy][2] = PredCBPHP422(2, iDiffCBPHP) 8.7.17.5.3
} else if INTERNAL CLR FMT = = YUV420) {
MBCBPHP[MBx][MBy][1] = PredCBPHP420(1, iDiffCBPHP) 8.7.17.5.4
MBCBPHP[MBx][MBy][2] = PredCBPHP420(2, iDiffCBPHP) 8.7.17.5.4
}
}
8.7.17.5.2PredCBPHP444( )

Table 66 — Pseudocode for function PredCBPHP444( )

PredCBPHP444(i, iDiff CBPHP) { Reference

cl=0

if (i>0)

cl=1

iCBPHP = iDiffCBPHP[i]

if (CBPHPM odelHP.CBPHPState[c1] == 0) {

if (IsMBLeftEdgeofTileFlag)

if IsMBTopEdgeofTileFlag)

iCBPHP "= 1

else

iCBPHP "= (MBCBPHP[MBx][MBy—1][i] >> 10) & 1)

else

iCBPHP = (MBCBPHP[MBx—1][MBy][i] >> 5) & 1)

iCBPHP "= (0x02 & (iCBPHP << 1))

iCBPHP "= (0x10 & (iCBPHP << 3))

iCBPHP "= (0x20 & (iCBPHP << 1))

iCBPHP "= ((iCBPHP & 0x33) << 2)

iCBPHP "= ((iCBPHP & 0x00CC) << 6)

iCBPHP "= ((iCBPHP & 0x3300) << 2)

} else if (CBPHPM odelHP.CBPHPState[c1] = = 2)

iCBPHP "= 0x0000FFFF

iNOrig = Numones(iCBPHP)

UpdateCBPHPModel(c1, iNOrig) 8.10.2

return iCBPHP
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8.7.17.5.3PredCBPHP422( )

Table 67 — Pseudocode for function PredCBPHP422( )

PredCBPHP422(i, iDiffCBPHP[ ]) { Reference
iCBPHP = iDiffCBPHP][i]
if (CBPHPM odelHP.CBPHPState[1] == 0) {
if (IsMBLeftEdgeofTileFlag)
if IsMBTopEdgeofTileFlag)
iCBPHP "= 1
else
iCBPHP "= (MBCBPHP[MBx][MBy—1][i] >>6) & 1)

else
iCBPHP "= (MBCBPHP[MBx—1][MBy][i]>> 1) & 1)
iCBPHP "= ((iCBPHP & 0x01) << 1)
iCBPHP "= ((iCBPHP & 0x03) << 2)
iCBPHP "= ((iCBPHP & 0x0C) << 2)
iCBPHP "= ((iCBPHP & 0x30) << 2)
} else if (CBPHPM odelHP.CBPHPState[1] == 2)
iCBPHP "= 0x00FF
iNOrig = Numones(iCBPHP) * 2
UpdateCBPHPModel(1, iNOrig) 8.10.2
return iCBPHP

8.7.17.5.4PredCBPHP420( )

Table 68 — Pseudocode for function PredCBPHP420( )

PredCBPHP420(i, iDiff CBPHP[ ]) { Reference
iCBPHP = iDiffCBPHPi]
if (CBPHPM odelHP.CBPHPState[1] == 0) {
if (IsMBLeftEdgeofTileFlag)
if IsMBTopEdgeofTileFlag)
iCBPHP "= 1
else
iCBPHP "= (MBCBPHP[MBx][MBy—1][i] >>2) & 1)

else
iCBPHP "= (MBCBPHP[MBx—1][MBy][i]>> 1) & 1)
iCBPHP "= (0x02 & (iCBPHP << 1))
iCBPHP "= ((iCBPHP & 0x3) << 2)
} else if (CBPHPM odelHP.CBPHPState[1] == 2)
iCBPHP "= 0x0F
iNOrig = Numones(iCBPHP) * 4
UpdateCBPHPModel(1, iNOrig) 8.10.2
return iICBPHP

8.7.18 Macroblock high-pass
8.7.18.1 General

The presence of non-zero HP coefficients in j-th block in color component is specified by
((IMBCBPHP[MBx][MBYy][i] >>j) & 1), where the blocks are scanned in the hierarchical raster scan order specified in
subclause 8.7.17.1. If there are non-zero coefficients in a block, these coefficients are parsed by invoking the process
DECODE _BLOCK ADAPTIVE(), specified in subclause 8.7.18.4, which, in turn, invokes the process
DECODE_BLOCK( ), specified in subclause 8.7.18.5, for parsing the coefficients, and invokes the process
AdaptiveHPScan( ) to determine the inverse scanning order of the coefficients.
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8.7.182 MB_HP()

68

Table69—-MB_HP() syntax structure

MB _HP() {

Descriptor

Reference

/* IsCurrPlaneAlphaFlag is equal to TRUE for parsing alpha image plane, and

IsCurrPlaneAlphaFlag is equal to FALSE for parsing primary image plane */

iBand =2

iHierScanOrder] ] = {0, 1,4, 5,2, 3,6,7,8,9, 12, 13, 10, 11, 14, 15}

blnitializeContext = (IsMBLeftEdgeOfTileFlag && IsMBTopEdgeOfTileFlag)

if (blnitializeContext) {

InitializeHPVLC()

8.8.3.3

InitializeAdaptiveScanHP( )

8.11.3

InitializeModelMB(ModelHP, iBand)

8.12.1

}

bResetTotals = (MBx — LeftMBIndexOfTile[ TileIndexx]) % 16) == 0)

if (bResetTotals)

ResetTotalsAdaptiveScanHP( )

8.11.5

iLapMean[ ] = {0, 0}

for (i = 0; i < NumComponents; i++) {

bChroma = (i > 0)

iNBlocks = 4

if (bChroma && INTERNAL CLR_FMT == YUV420)

iNBlocks = 1

else if (bChroma && INTERNAL CLR FMT ==YUV422)

iNBlocks = 2

iCBPHP = MBCBPHP[MBx][MBy][i]

for (iBlock = 0; iBlock < iNBlocks * 4; iBlock++) {

iBlockMap = iBlock

if (iNBlocks = = 4)

iBlockMap = iHierScanOrder[iBlock]

for (k=0; k < 16; k++)

HPInputVLC[i][iBlock][k] = 0

iNumNonZero =
DECODE BLOCK ADAPTIVE(CBPHP & 1, bChroma, i, iBlockMap)

8.7.18.4

iLapMean[bChroma] += iNumNonZero

iCBPHP >>= 1

!

!

ModelBitsMBHP[MBx][MBy][0] = ModelHP.MBits[0]

ModelBitsMBHP[MBx][MBy][1] = ModelHP.MBits[1]

UpdateModelMB(iLapMean][ ], ModelHP, iBand)

8.12.2

bResetContext = (MBx = = (LeftMBIndexOfTile[TileIndexx + 1] — 1) | |

(MBx — LeftMBIndexOfTile[TileIndexx]) % 16 == 0)

if (bResetContext)

AdaptHP()

8.8.4.3
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8.7.183 MB_HP_FLEX()

Table70—-MB_HP_FLEX() syntax structure

MB HP FLEX(){

Descriptor

Reference

/* IsCurrPlaneAlphaFlag is equal to TRUE for parsing alpha image plane, and
IsCurrPlaneAlphaFlag is equal to FALSE for parsing primary image plane */

iBand =2

iHierScanOrder] ] = {0, 1,4, 5,2, 3,6,7,8,9, 12, 13, 10, 11, 14, 15}

blnitializeContext = (IsMBLeftEdgeOfTileFlag && IsMBTopEdgeOfTileFlag)

if (blnitializeContext) {

InitializeHPVLC()

8.8.3.3

InitializeAdaptiveScanHP( )

8.11.3

InitializeModelMB(ModelHP, iBand)

8.12.1

}

bResetTotals = (MBx — LeftMBIndexOfTile[ TileIndexx]) % 16) == 0)

if (bResetTotals)

ResetTotalsAdaptiveScanHP( )

8.11.5

iLapMean[ ] = {0, 0}

for (i = 0; i < NumComponents; i++) {

ilndex =0

bChroma=1>0

if (i> 0)

ilndex = 1

iModelBits = ModelHP.MBits[ilndex]

iNBlocks = 4

if (bChroma && INTERNAL CLR_FMT == YUV420)

iNBlocks = 1

else if (bChroma && INTERNAL CLR FMT ==YUV422)

iNBlocks = 2

iCBPHP = MBCBPHP[MBx][MBy][i]

for (iBlock = 0; iBlock < iNBlocks*4; iBlock++) {

iBlockMap = iBlock

if (iNBlocks = = 4)

iBlockMap = iHierScanOrder[iBlock]

for (k=0; k < 16; k++)

HPInputVLC[i][iBlock][k] = 0

iNumNonZero =
DECODE BLOCK ADAPTIVE(CBPHP & 1, bChroma, i, iBlockMap)

8.7.18.4

if (BANDS PRESENT != NOFLEXBITS)

BLOCK FLEXBITS(i, iBlockMap, iModelBits, TRIM_FLEXBITS)

8.7.19.2

iLapMean[bChroma] += iNumNonZero

iCBPHP >>= 1

}

}

ModelBitsMBHP[MBx][MBy][0] = ModelHP MBits[0]

[
ModelBitsMBHP[MBx][MBy][1] = ModelHP.MBits[ 1]

UpdateModelMB(iLapMean[ ], ModelHP, iBand)

8.12.2

bResetContext = (MBx = = (LeftMBIndexOfTile[ TileIndexx + 1] — 1) | |
(MBx — LeftMBIndexOfTile[TileIndexx]) % 16 == 0)

if (bResetContext)

AdaptHP()

8.8.4.3
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8.7.18.4 DECODE_BLOCK_ADAPTIVE()

Table 71— DECODE_BLOCK_ADAPTIVE() syntax structure

DECODE BLOCK ADAPTIVE(bNoSkip, bChroma, iComponent, iBlock) {

Descriptor

Reference

iBand=2/¥0=DC1=LP,2=HP */

for (1=0;i<32;i++)

iLocalCoeff[i] =0

iLocation = 1

iNumNonZero = 0

if (bNoSkip) {

iNumNonZero =
DECODE BLOCK(bChroma, iLocalCoeff] ], iBand, iLocation)

8.7.18.5

k = iLocation

for (kk = 0; kk <iNumNonZero; kk++) {

k += iLocalCoeff[kk * 2]

AdaptiveHPScan(iComponent, iBlock, k, iLocalCoefi[kk * 2 + 1])

8.11.7

k-

!

!

return iNumNonZero

H

8.7.18.5 DECODE_BLOCK()
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Table 72— DECODE_BL OCK( ) syntax structure

DECODE BL OCK (bChroma, iCoeff[ ], iBand, iL ocation) {

Descriptor

Reference

iINumNZ =1

iFirstindex = DECODE FIRST INDEX(bChroma, iBand)

8.7.18.8

SIGN_FLAG

u(l)

8.7.14.4

iSR = (iFirstIndex & 1)

iSRn = (iFirstIndex >>2)

iContext = (iSR & iSRn)

if (iFirstIndex & 2)

iCoeff[1] = DECODE ABS LEVEL(iBand, bChroma, iContext)

8.7.13

else

iCoeff[1] = 1

if (SIGN_FLAG)

iCocff[1] = —iCoeff[ 1]

iCoeff[0] = 0

if SR ==0)

iCoeff[0] = DECODE RUN(15 — iLocation)

8.7.18.6

iLocation += iCoeft]0] + 1

while (iSRn 1= 0) {

iSR = (iSRn & 1)

iCoeff[iNumNZ * 2]1=0

if iSR==0)

iCoeff[iNumNZ * 2] = DECODE RUN(15 — iLocation)

8.7.18.6

iLocation += (iCoeff[iNumNZ * 2] + 1)

ilndex = DECODE INDEX(iLocation, bChroma, iBand, iContext)

8.7.18.7

iSRn = (ilndex >> 1)

iContext &= iSRn

SIGN FLAG

u(l)

8.7.14.4

if (ilndex & 1)

iCoeff[(iNumNZ * 2) + 1] =
DECODE ABS LEVEL(iBand, bChroma, iContext)

8.7.13

else

iCoeff[(iINumNZ * 2) + 1] = 1

if (SIGN_FLAG)

iCoeff[(iNumNZ * 2) + 1] = —iCoeff[(iNumNZ * 2) + 1]

iNumNZ++

!

return iNumNZ
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8.7.18.6 DECODE_RUN()

Table 73— DECODE_RUN() syntax structure

DECODE_RUN(iMaxRun) {

Descriptor Reference

iRemap[ 1= {1,2,3,5,7,1,2,3,5,7,1,2,3,4,5}

iRunBin[]= {1, 1,-1,-1,2,2,2,1,1,1,1,0,0,0,0}

iRunFixedLength[ ] = {0,0, 1, 1,3,0,0,1,1,2,0,0,0,0, 1}

if (iMaxRun < 5) {

iRun = 1;

if (iIMaxRun !=1) {

RUN_VALUE

e(v) 8.7.18.9.1

iRun = RUN VALUE

H

} else {

RUN_INDEX

e(v) 8.7.18.9.2

ilndex = RUN INDEX + 5* iRunBin[iMaxRun]|

iFixed = iRunFixedLength[ilndex]

iRun = iRemap[ilndex]

if (iFixed) {

RUN REF

u(iFixed) | 8.7.18.9.3

iRun += RUN REF

}

;

return iRun

8.7.18.7 DECODE_INDEX( )

Table 74— DECODE_INDEX( ) syntax structure

DECODE_INDEX(iL ocation, bChroma, iBand, iContext) {

Descriptor Reference

/* sAdaptVL C is local instance of AdaptiveVLC data structure */

if (iBand == 1) /* LP */

if (bChroma)

if (iContext)

sAdaptVLC = DeclndL PChr1

else

sAdaptVLC = DeclndL PChr0

else /* Luma */

if (iContext)

sAdaptVLC = DeclndLPLum1

else

sAdaptVLC = DeclndL PLumO

else if (iBand == 2) /* HP */

if (bChroma)

if (iContext)

sAdaptVLC = DeclndHPChr1

else

sAdaptVLC = DeclndHPChr0

else /* Luma */

if (iContext)

sAdaptVLC = DeclndHPLum1

else

sAdaptVLC = DeclndHPL umO

if (iLocation < 15) {

INDEX A /* variable-length parse with SAdaptVLC */

ae(v) 8.7.18.9.4

/* update the discriminants for SAdaptVLC */

SAdaptVLC.DiscrimVall +=
Index1Delta[sAdaptVL C.DeltaTableIndex][INDEX A]

Table 88

sAdaptVL C.DiscrimVal2 +=

Table 88
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Index 1Delta[SAdaptVL C.Delta2 TableIndex][INDEX A]

ilndex = INDEX A

} else if (iLocation = = 15) {

INDEX B e(v) 8.7.18.9.5
ilndex = INDEX B
} else {
INDEX C FLAG u(l) 8.7.18.9.6
ilndex = INDEX C FLAG
}
return ilndex
8.7.18.8 DECODE_FIRST_INDEX()
Table 75 - DECODE_FIRST_INDEX( ) syntax structure
DECODE_FIRST INDEX(bChroma, iBand) { Descriptor Reference
/* sAdaptVL C is local instance of AdaptiveVLC data structure */
if iBand==1) /* LP */
if (bChroma)
sAdaptVLC = DecFirstindL PChr
else /* Luma */
sAdaptVL C = DecFirstindL PLum
else if (iIBand == 2) /* HP */
if (bChroma)
sAdaptVLC = DecFirstindHPChr
else /* Luma */
sAdaptVL C = DecFirstindHPLum
FIRST INDEX /* Decode with SAdaptVLC */ ae(v) 8.7.18.9.7
/* update Discriminants for SAdaptVLC */
sAdaptVLC.DiscrimVall += Table 87
FirstIndexDelta[SAdaptVL C.DeltaTableIndex][FIRST INDEX]
sAdaptVL C.DiscrimVal2 += Table 87
FirstindexDelta[sAdaptVL C.Delta2TableIndex][FIRST INDEX]
return FIRST INDEX

8.7.18.9 Block-level semantics

8.7.18.9.1 RUN_VALUE

RUN_VALUE is a variable-length syntax element that is present when iMaxRun is greater than 1 and iMaxRun is less
than 5. It specifies the value of run. If iMaxRun is equal to 2, the parsing of RUN_VALUE is specified by Table 76.
Otherwise, if iMaxRun is equal to 3, the parsing of RUN_VALUE is specified by Table 77. Otherwise, (if iMaxRun is

equal to 4), the parsing of RUN_VALUE is specified by Table 78.

72

Table 76 — Codetable of RUN_VALUE if iMaxRun = =

Code Value
1 1
2

Table 77 — Code table of RUN_VALUE if iMaxRun ==

Code Value
1 1
01 2
00 3
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Table 78 — Codetable of RUN_VALUE if iMaxRun ==4

Code Value
1 1
01 2
001 3
000 4

8.7.18.9.2RUN_INDEX

RUN INDEX is a variable-length syntax element that is present when iMaxRun is greater than or equal to 5. It
specifies the value of iRun in subclause 8.7.18.6. The parsing of RUN INDEX is specified by Table 79.

Table 79 — Code table of RUN_INDEX

Code Value
1 0
01 1
001 2
0000 3
0001 4

8.7.18.9.3RUN_REF

RUN_REF is a fixed-length syntax element that specifies the value of iRun in subclause 8.7.18.6. The presence and size
of the RUN_REF syntax element is indicated by iFixed, as specified in subclause 8.7.18.6.

8.7.18.9.4INDEX_A

INDEX A is a variable-length syntax element that is present when iLocation is less than 15. It has a value in the range
of 0 to 5, inclusive. The coding of this symbol uses one of four tables. The choice of table is adaptively determined as
specified in subclause 8.8.4. The VLC tables are specified in Table 80.

Table 80 — Code tablefor INDEX_A

CodeO | Codel | Code2 | Code3 Value
1 01 0000 0 0000 0
0 0000 0000 0001 00001 1
001 10 01 01 2
00001 0001 10 1 3
01 11 11 0001 4
0001 001 001 001 5

INDEX A jointly codes the following two events:

- The binary event of whether the magnitude of the next non-zero coefficient is equal to 1 or greater than 1 as
follows:

- If (INDEX_ A & 1) is equal to 0, this magnitude is equal to 1.
- Otherwise, this magnitude is greater than 1.

- The ternary of event whether this coefficient is the last coefficient in the block, and if there are more non-zero
coefficients, whether the run before the next non-zero coefficient is zero or non-zero, as follows:

- If INDEX_A >> 1) is equal to 0, this coefficient is the last coefficient in the block.
- Otherwise, if INDEX_ A >> 1) is equal to 1, the run before the next non-zero coefficient is zero.

— Otherwise (i.e. when (INDEX A >> 1) is equal to 2), the run before the next non-zero coefficient is non-zero.
NOTE - Thus INDEX_A has an alphabet size of 2*3= 6.
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8.7.18.9.5INDEX_B

INDEX B is a variable-length syntax element that is present when iLocation is equal to 15. It has a value in the range
of 0 to 3, inclusive. The VLC table is specified in Table 81.

Table81 - Codetablefor INDEX_B

Code Value
0 0
10 2
110 1
111 3

INDEX B jointly codes the following two events:

- The binary event of whether the magnitude of the next non-zero coefficient is equal to 1 or greater than 1 as
follows:

e If (INDEX B & 1) is equal to 0, this magnitude is equal to 1.
e Otherwise, this magnitude is greater than 1.

- The binary event of whether this coefficient is the last coefficient in the block or if there are more non-zero
coefficients, as follows:

e If(INDEX B>>1)is equal to 0, this coefficient is the last coefficient in the block.

o Otherwise, the run before the next non-zero coefficient is zero.
NOTE - Thus INDEX_B has an alphabet size of 2#2=4.

8.7.18.9.6INDEX_C_FLAG

INDEX C FLAG is a 1-bit syntax element that is present when iLocation is equal to 16. It specifies the presence of
subsequent run/level symbols.

8.7.18.9.7FIRST_INDEX

FIRST INDEX is a variable-length syntax element that has a value in the range of 0 to 11, inclusive. The coding of this
syntax element uses one of five tables. The choice of table is adaptively determined as specified in subclause 8.8.4. The
VLC tables are specified in Table 82.

Table 82— Codetablefor FIRST_INDEX

Code0 Codel | Code?2 Code 3 Code 4 Value
0000 1 0010 11 001 010 0
0000 01 00010 | 001 11 1 1
0000 000 | 0000 00 | 0000 000 | 0000 000 | 0000 001 2
0000 001 [ 0000 01 | 0000 001 | 0000 1 0001 3
0010 0 0011 0000 1 0001 0 0000 010 | 4
010 010 010 010 011 5
0010 1 0001 1 0000 010 [ 0000 001 [ 0000 0000 | 6
1 11 011 011 0010 7
0011 0 011 100 0001 1 0000 011 8
0001 100 101 100 0011 9
0011 1 0000 1 0000 011 | 0000 01 0000 0001 | 10
011 101 0001 101 0000 1 11

FIRST INDEX jointly codes the following three events:
- The binary event of whether the run before the first non-zero coefficient is non-zero or zero as follows:
e If (FIRST INDEX & 1) is equal to 0, this run is non-zero.
e Otherwise this run is zero.

- The binary event of whether the magnitude of the first non-zero coefficient is equal to 1 or greater than 1 as
follows:

o If (FIRST INDEX & 2) is equal to 0, this magnitude is equal to 1.

74 Rec. ITU-T T.832(01/2012)



e Otherwise, this magnitude is greater than 1.

- The ternary event of whether the first coefficient is the last coefficient in the block, and if there are more non-
zero coefficients whether the run before the next non-zero coefficient is zero or non-zero, as follows.

o If (FIRST INDEX >>2) is equal to 0, the first coefficient is the last coefficient in the block.
e Otherwise, if (FIRST INDEX >> 2) is equal to 1, the run before the next non-zero coefficient is zero.

e Otherwise (FIRST _INDEX >> 2) is equal to 2), the run before the next non-zero coefficient is non-zero.
NOTE - Thus FIRST_INDEX has an alphabet size of 2*3*3 = 12.

8.7.19 Macroblock FLEXBITS
8.7.19.1 MB_FLEXBITS()

Table83—-MB_FLEXBITS() syntax structure

MB FLEXBITS() { Descriptor Reference
/* IsCurrPlaneAlphaFlag is equal to TRUE for parsing alpha image plane,
and IsCurrPlaneAlphaFlag is equal to FALSE for parsing primary
image plane */
iHierScanOrder[ ] = {0, 1,4,5,2,3,6,7,8,9,12,13,10, 11, 14, 15}
for (i = 0; i < NumComponents; i++) {

ilndex =0

if (i>0)
ilndex =1

iModelBits = ModelBitsMBHP[MBx][MBy][ilndex]

iNBlocks = 4

if ((ilndex == 1) && (INTERNAL CLR FMT == YUV420))
iNBlocks = 1

else if (ilndex && (INTERNAL CLR FMT ==YUV422))
iNBlocks =2

for (iBlock = 0; iBlock < iNBlocks * 4; iBlock++) {
iBlockMap = iBlock
if (iINBlocks ==4)
iBlockMap = iHierScanOrder[iBlock]
BLOCK_FLEXBITS(i, iBlockMap, iModelBits, TRIM_FLEXBITS) 8.7.19.2

NOTE - Informative remarks related to this subclause are provided in subclause D.9.

8.7.19.2 BLOCK_FLEXBITY()

Table84 —-BLOCK_FLEXBITS() syntax structure

BLOCK_ FLEXBITS(iComponent, iBlock, iModelBits, iTrimFlexBits) { Descriptor Reference
iTranspose444[ 1= {0,4,8,12,1,5,9,13,2,6,10,14,3,7, 11, 15}
iFlexBitsLeft = iModelBits — iTrimFlexBits
if (iFlexBitsLeft < 0)

iFlexBitsLeft =0
if (iFlexBitsLeft)
for (n=1; n < 16; n++)
HPInputFlex[iComponent][iBlock][iTranspose444[n]]= 8.7.19.3
DECODE_FLEX(HPInputVLC[iComponent][iBlock][iTranspose444[n]],
iFlexBitsLeft) << iTrimFlexBits
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8.7.19.3 DECODE_FLEX()

Table 85— DECODE_FLEX() syntax structure

DECODE_FLEX(iVL CCoeff, iFlexBitsL eft) { Descriptor Reference
FLEX REF u(iFlexBitsLeft) | 8.7.19.4.1
if (iVLCCoeff > 0)
iFlexCoeff = FLEX REF
else if (IVLCCoeff < 0)
iFlexCoeff = —FLEX REF
else {
iFlexCoeff = FLEX REF
if (iFlexCoefY) {
SIGN FLAG u(l) 8.7.14.4
if (SIGN_FLAG)
iFlexCoeff = —iFlexCoeff

!

}

return iFlexCoeff

8.7.19.4 FLEXBI TS semantics
8.7.19.41FLEX_REF

FLEX REF is a syntax element that specifies the flexbits part of the HP coefficient. The size of this syntax element is
specified by iFlexBits.

8.8 Adaptive VL C code table selection
88.1 Genera

Adaptive VLC table selection is a process by which the entropy coding method adapts to image statistics and thus
provides better compression. First, a small number of representative VLC tables are predefined. These tables are
designed so as to be suitable for a wide range of statistics. During the entropy coding process, the most appropriate code
table is selected based on the history of recently coded symbols. The VLC tables and the information required for
adaptation are precomputed as follows.

Let the set of VLC tables be: vT1, vT2, ..., vTn where the ordering of the tables is predefined based on their relative
similarity. That is VT 1 and vT 2 exhibit greater similarity to each other than vT 1 and vT3 do to each other. The measure
of similarity between tables can be qualified by using relative entropy. Let table vTi be a VLC table used for entropy
coding of symbol iX, and let VT and VTK be the two nearest tables (in terms of similarity). For each value of symbol
iX, a metric deltaDisc estimating the relative advantage of coding this value using table vTj or table VTK instead of
table VTi is precomputed and stored in tables VTi.DeltaTableIndex and vTi.Delta2TableIndex. This deltaDisc is positive
if this symbol is more efficiently coded by the new table instead of the current table. This deltaDisc is negative if this
symbol is less efficiently coded by the new table instead of the current table. For example, if a given value of the
symbol requires 3 bits in the new table, while it requires 5 bits in the current table, this value is more efficiently coded
in the new table and the corresponding deltaDisc is (5 — 3 = 2).

The table selection proceeds as follows: After entropy coding a symbol, the adaptation process computes the relative
advantage of the two nearest tables for coding this symbol. The weights obtained from the tables VTi.DeltaTableIndex
and vTi.Delta2TableIndex are added to two discriminants, vTi.DiscrimVall and vTi.DiscrimVal2, that are used for
accumulating the statistics regarding code table transition. The AdaptVLCTablel() (subclause 8.8.4.4) and the
AdaptVLCTable2( ) (subclause 8.8.4.5) pseudocode functions specify how these discriminants are compared to
predefined threshold, and decide whether to continue to use the current table or to transition to one of the nearest tables.
If there is a transition, the discriminants are reset to zero.

As the discriminants are computed based on previously coded symbols both at the encoder and at the decoder, there is
no need for additional side information to signal the selected VLC. For coding some symbols, there are only two code
tables, and there is only one possible transition. The adaptation complexity is further reduced in these cases as there is
only the DeltaTableIndex and only one discriminant is required.

NOTE - Informative remarks related to this subclause are provided in subclause D.9.
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8.8.2 Adaptive VLC deltaDisc tables

When a syntax element is parsed using a VLC having a code table that can be adaptively selected, the associated
AdaptiveVLC data structure's member variables DiscrimVall and DiscrimVal2 are modified by adding an amount
deltaDisc. The specific value of this deltaDisc is dependent on the syntax element being parsed, the VLC code table
currently being used to parse this syntax element, the current value of this syntax element, and (when there are two
discriminants) which discriminant is being modified.

Based on these factors, the appropriate values of deltaDisc are specified by collecting them in tables. For each syntax
element, a distinct collection of tables of deltaDisc values are defined; in the sequel these tables will be called deltaDisc
tables. A syntax element which is parsed using adaptive VLC tables will have N code tables for each syntax element,
for some positive integer N > 1. If there are N code tables for a syntax element, there are N — 1 deltaDisc tables (one
deltaDisc table for switching between code tables i and i + 1, for i ranging between 0 and N — 2 inclusive). The
AdaptiveVLC data structure associates to DiscrimVall the associated variable DeltaTablelndex (Delta2 TableIndex for
DiscrimVal2); DeltaTableIndex defines which of the N — 1 deltaDisc tables is in use for the current macroblock.

The syntax element itself takes values between 0 and M — 1, where M represents the number of entries in this syntax
element's code table. For each of these values, there is defined an associated deltaDisc value. In this way, when the
syntax element takes the value iVal, the modification of an AdaptiveVLC data structures discriminants is specified as
follows (here, SAdaptVL C is a local variable used in place of particular AdaptiveVLC data structure instance):

e SAdaptVLC.DiscrimVall is incremented by deltaDisc[SAdaptVL C.DeltaTableIndex][iVal].
e SAdaptVLC.DiscrimVal2 is incremented by deltaDisc[SAdaptVL C.Delta2 TableIndex][iVal].

Table 86, Table 87, Table 88, Table 89, Table 90, and Table 91 specify the set of deltaDisc code tables for adaptive
VLC syntax elements.

For the syntax element ABS LEVEL INDEX (subclause 8.7.14.5), there is one deltaDisc table for switching between
Code tables 0 and 1, as specified in Table 86.

Table 86 — Constant table AbslevellndexDeltalm][n]

Index value Valuefor
n m=0
0 1
1 0
2 -1
3 -1
4 -1
5 -1
6 -1

For the syntax element FIRST INDEX (subclause 8.7.18.9.7), there are four Delta tables, with the table associating a
different deltaDisc value for each DeltaTableIndex and each value of FIRST INDEX; the deltaDisc values are specified
in Table 87.
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Table 87 — Constant table FirstindexDelta|m][n]

Index value Valuefor Valuefor Valuefor Valuefor
n m=0 m=1 m=2 m=23
0 1 2 -1 0
1 1 2 1 1
2 1 -1 0 0
3 1 -1 2 1
4 1 -1 0 -2
5 0 0 0 0
6 0 -2 0 -1
7 -1 -1 0 -1
8 2 0 -2 -2
9 1 0 0 -1
10 0 -2 1 -2
11 0 -1 1 -2

For the syntax element INDEX A (subclause 8.7.18.9.4), there are three Delta tables, as specified by Table 88.

Table 88 — Constant table Index1Deltalm][n]

Index value Valuefor Valuefor Valuefor
n m=0 m=1 m=2
0 -1 -2 -1
1 1 0 -1
2 1 0 0
3 1 2 1
4 0 0 -2
5 1 0 0

For the syntax element NUM_CBPHP (subclause 8.7.17.4.1), there is one deltaDisc table for switching between Code
tables 0 and 1 as specified in Table 89.

Table 89 — Constant table NumCBPHPDeta[m][n]

Index value Valuefor
n m=0
0 0
1 -1
2 0
3 1
4 1

For the syntax element NUM_BLKCBPHP (subclause 8.7.17.4.2), there is one deltaDisc table for switching between
Code tables 0 and 1. In the case where the INTERNAL CLR FMT is YONLY, NCOMPONENT, or YUVK, the code
tables have five symbols and the deltaDisc table is specified by Table 90.
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Table 90 — Constant table NumBIkCBPHPDetam][n]

when INTERNAL_CLR_FMT is
YONLY, NCOMPONENT, or YUVK

Index value Valuefor
n m=0
0 0
1 -1
2 0
3 1
4 1

For all other values of INTERNAL CLR FMT, the code table for NUM_BLKCBPHP has nine symbols, and the

deltaDisc table is specified by Table 91.

Table 91 — Constant table NumBIkCBPHPDelta
for INTERNAL_CLR_FMT other than
YONLY, NCOMPONENT, and YUVK

8.8.3 Initialization

Index value
n

Valuefor
m=0

2

O|IN|]O|O |~ WOWIDN|(F]|O

The relevant adaptive VLC data structures that are associated with each of the three bands DC, LP and HP are
initialized by the functions InitializeDCVLC(), InitializeLPVLC(), and InitializeHPVLC( ). These functions are
specified in subclauses 8.8.3.1, 8.8.3.2, and 8.8.3.3, respectively. The adaptive VLC structure associated with CBPHP is

initialized by the function InitializecCBPHPVLC( ) that is specified in subclause 8.8.3.4.

These functions in turn make use of the functions InitializeVLCTablel() and InitializeVLCTable2( ) which are
specified in subclauses 8.8.3.5 and 8.8.3.6, respectively.

NOTE - InitializeVLCTable1( ) is used for initializing VLC code tables when there are exactly two code tables. If there are more
than two code table tables, InitializeVLCTable2( ) is used.

8.8.3.1 InitializeDCVLC()

Table 92 — Pseudocode for function InitializeDCVLC()

InitializeDCVLC() { Reference
AbsL evellndDCL um = InitializeVLCTable1(AbsL evellIndDCL um) 8.8.3.5
AbslL evelIndDCChr = InitializeVLCTablel(AbsL evellndDCChr) 8.8.3.5

H
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8.8.3.2 InitializeL PVLC()

Table 93 — Pseudocode for function InitializeL PVLC()

8.8.33 InitializeHPVLC()

InitializeL PVLC() { Reference
DecFirstIndL PLum = InitializeVLCTable2(DecFir stindL PLum) 8.8.3.6
Decl ndL PL umO = InitializeVLCTable2(Decl ndL PL umQ) 8.8.3.6
DeclndL PLum1 = InitializeVLCTable2(Decl ndL PLum1) 8.8.3.6
DecFirstIndL PChr = InitializeVLCTable2(DecFir stIndL PChr) 8.8.3.6
DeclndLPChrO0 = InitializeVLCTable2(Decl ndL PChr 0) 8.8.3.6
DeclndLPChr1 = InitializeVLCTable2(Decl ndL PChr 1) 8.8.3.6
AbsL evellndL PO = InitializeVLCTable1(AbsL evelIndL PO) 8.8.3.5
AbsL evellndL P1 = InitializeVLCTable1(AbsL evelIndL P1) 8.8.3.5
H
Table 94 — Pseudocode for function InitializeHPVLC()
InitializgHPVLC() { Reference
DecFirstindHPL um = InitializeVLCTable2(DecFir stindHPL um) 8.8.3.6
DeclndHPL umO = InitializeVLCTable2(Decl ndHPL um0) 8.8.3.6
DeclndHPLum1 = InitializeVLCTable2(DeclndHPLum1) 8.8.3.6
DecFirstindHPChr = InitializeVLCTable2(DecFir stindHPChr) 8.8.3.6
DeclndHPChr 0 = InitializeVLCTable2(Decl ndHPChr 0) 8.8.3.6
DeclndHPChr 1 = InitializeVLCTable2(Decl ndHPChr 1) 8.8.3.6
AbsL evellndHPO = InitializeVLCTable1(AbsL evellndHPO) 8.8.3.5
AbsL evellndHP1 = InitializeVLCTable1(AbsL evellndHP1) 8.8.3.5

8.8.3.4 InitializcCBPHPVLC()

Table 95 — Pseudocode for function InitializecCBPHPVLC()

InitializeZCBPHPVLC() { Reference
DecNumCBPHP = InitializeVLCTable1(DecNumCBPHP) 8.8.3.5
DecNumBIKCBPHP = InitializeVLCTablel (DecNumBIKCBPHP) 8.8.3.5

8.8.35 InitializeVLCTablel()
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Table 96 — Pseudocode for function InitializeVL CTablel()

InitializeVL CTablel(sAdaptVLC) {

Reference

/* sAdaptVL C is an instance of the AdaptiveVLC data structure */

sAdaptVL C.Tablelndex = 0

sAdaptVL C.DeltaTableIndex = 0

sAdaptVL C.DiscrimVall = 0

return SAdaptVLC
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8.8.3.6 InitializeVLCTable2()

Table 97 — Pseudocode for function InitializeVL CTable2()

InitializeVL CTable2(sAdaptVLC) { Reference
/* sAdaptVL C is an instance of the AdaptiveVLC data structure */
sAdaptVL C.Tablelndex = 1
sAdaptVL C.DeltaTableIndex = 0
sAdaptVL C.Delta2TableIndex = 1
sAdaptVL C.DiscrimVall =0
sAdaptVL C.DiscrimVal2 = 0
return SAdaptVLC

8.8.4  Update of adaptive VL C code table selection

The relevant adaptive VLC data structures that are associated with each of the three bands DC, LP and HP are updated
by the functions AdaptDC( ), AdaptLP( ), and AdaptHP( ), respectively. The pseudocode for the functions AdaptDC( ),
AdaptLP( ), and AdaptHP( ) are specified in subclause 8.8.4.1, subclause 8.8.4.2, and subclause 8.8.4.3, respectively:

The functions AdaptLP() and AdaptHP() perform the updates by using the functions AdaptVLCTablel() and
AdaptVLCTable2( ) which are specified in subclauses 8.8.4.4 and 8.8.4.5.

8.8.4.1 AdaptDC()

Table 98 — Pseudocode for function AdaptDC()

AdaptDC() { Reference
AbsL evellndDCL um = AdaptVLCTablel(AbsL evellndDCL um) 8.8.4.4
AbslL evelIndDCChr = AdaptVLCTablel(AbsL evelIndDCChr) 8.8.4.4

!

8.8.4.2 AdaptLP()

Table 99 — Pseudocode for function AdaptLP()

AdaptLP() { Reference
DecFirstlndL PLum = AdaptVLCTable2(DecFirstindL PLum, 4) 8.8.4.5
DeclndL PLumO = AdaptVLCTable2(DeclndL PLumo0, 3) 8.8.4.5
DeclndLPLum1 = AdaptVLCTable2(DeclndL PLuml, 3) 8.8.4.5
DecFirstIndL PChr = AdaptVLCTable2(DecFirstindL PChr, 4) 8.8.4.5
DeclndL PChr0 = AdaptVLCTable2(DeclndL PChrO0, 3) 8.8.4.5
DeclndLPChr1 = AdaptVLCTable2(DeclndL PChr1, 3) 8.8.4.5
AbsL evelIndL PO = AdaptVLCTablel(AbsL evell ndL P0) 8.8.4.4
AbslL evelIndL P1 = AdaptVLCTablel(AbsL evellndL P1) 8.8.4.4

h
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8.8.4.3 AdaptHP()

Table 100 — Pseudocode for function AdaptHP()

AdaptHP() { Reference
DecFirstindHPL um = AdaptVLCTable2(DecFirstindHPLum, 4) 8.8.4.5
DeclndHPL umO0 = AdaptVLCTable2(DeclndHPLumO, 3) 8.8.4.5
DeclndHPLum1 = AdaptVLCTable2(DeclndHPLum1, 3) 8.8.4.5
DecFirstindHPChr = AdaptVLCTable2(DecFirstindHPChr, 4) 8.8.4.5
DeclndHPChr0 = AdaptVLCTable2(Decl ndHPChr0, 3) 8.8.4.5
DeclndHPChr1 = AdaptVLCTable2(DeclndHPChr 1, 3) 8.8.4.5
AbsL evellndHPO = AdaptVLCTablel(AbsL evellndHPO) 8.8.4.4
AbsL evelIndHP1 = AdaptVLCTablel(AbsL evelIndHP1) 8.8.4.4
DecNumCBPHP = AdaptVLCTablel(DecNumCBPHP) 8.8.4.4
DecNumBIKCBPHP = AdaptVLCTablel(DecNumBIKCBPHP) 8.8.4.4

!

8.8.4.4 AdaptVLCTablel()

AdaptVLCTablel( )is used for choosing VLC code tables when there are exactly two code tables. In this case, the index
Tablelndex takes only the values 0 or 1, and there is only one parameter (DiscrimVall) which determines the selection
of VLC code tables. DeltaTablelndex takes only the value 0, and there is only the one deltaDisc table.

Table 101 — Pseudocode for function AdaptVLCTablel()

AdaptVL CTablel(sAdaptVLC) { Reference
/* sSAdaptVL C is an instance of the AdaptiveVLC data structure */
iMaxTablelndex = 1 /* Only two code tables */
cLowerBound = —8§
cUpperBound = 8
/* sAdaptVL C.DeltaTableIndex = 0, since only 2 code tables */
if (SAdaptVL C.DiscrimVall < cLowerBound &&

sAdaptVL C.Tablelndex != 0) {
sAdaptVL C.TableIndex— —
sAdaptVL C.DiscrimVall = 0
} else if (SAdaptVL C.DiscrimVall > cUpperBound &&
sAdaptVL C.TableIndex != iMaxTablelndex ) {
sAdaptVL C.TableIndex++
sAdaptVL C.DiscrimVall =0
} else {
/* no change to table, but clip the discriminant */
if (SAdaptVL C.DiscrimVall <—64)
sAdaptVL C.DiscrimVall = —64
if (SAdaptVL C.DiscrimVall > 64)
sAdaptVL C.DiscrimVall = 64

}
return SAdaptVLC

8.8.4.5 AdaptVLCTable2()

AdaptVLCTable2( ) is used for choosing VLC code tables when there are more than two possible code tables. In this
case, the index Tablelndex can take values between 0 and the maximum table index for that set of VLC code tables.
This maximum table index is contained in the parameter iMaxTablelndex. For AdaptVLCTable2( ), there are two
parameters (DiscrimVall and DiscrimVal2) which determine the selection of VLC code tables. DiscrimVall determines
whether the code table index should be decreased, while DiscrimVal2 determines whether the code table index should
be increased.
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Table 102 — Pseudocode for function AdaptVLCTable2()

AdaptVL CTable2(sAdaptVLC, iMaxTablel ndex) { Reference
/* sAdaptVL C is an instance of the AdaptiveVLC struct */
/* iMaxTablelndex — max table index possible for this struct instance */
bChange = FALSE
iDiscrimLow = sAdaptVL C.DiscrimVall
iDiscrimHigh = sAdaptVL C.DiscrimVal2
cLowerBound = —8
cUpperBound = 8
if (iDiscrimLow < cLowerBound && sAdaptVL C.TableIndex != 0) {
sAdaptVL C.TableIndex— —
bChange = TRUE
} else if (iDiscrimHigh > cUpperBound &&
sAdaptVL C.TableIndex != iMaxTableIndex ) {
sAdaptVL C.TableIndex++
bChange = TRUE

}
if (bChange) {
sAdaptVL C.DiscrimVall = 0
sAdaptVL C.DiscrimVal2 = 0
if (SAdaptVL C.Tablelndex = = iMaxTableIndex) {
sAdaptVL C.DeltaTableIndex = sAdaptVL C.Tablelndex — 1
sAdaptVL C.Delta2TableIndex = SAdaptVL C.TableIndex — 1
} else if (SAdaptVL C.Tablelndex == 0) {
sAdaptVL C.DeltaTableIndex = sAdaptVL C.TableIndex
sAdaptVL C.Delta2TableIndex = sAdaptVL C.TableIndex
} else {
sAdaptVL C.DeltaTableIndex = SAdaptVL C.TableIndex — 1
sAdaptVL C.Delta2TableIndex = sAdaptVL C.TableIndex

}

} else { /* no change to table, but clip the discriminant */
if (SAdaptVL C.DiscrimVall <—64)
sAdaptVL C.DiscrimVall = —64
if (SAdaptVL C.DiscrimVall > 64)
sAdaptVL C.DiscrimVall = 64
if (SAdaptVL C.DiscrimVal2 < —64)
sAdaptVL C.DiscrimVal2 = —64
if (SAdaptVL C.DiscrimVal2 > 64)
sAdaptVL C.DiscrimVal2 = 64

H
return SAdaptVLC

[—~

8.9 Adaptation of CBPLP state variables

89.1 Genera

The parsing of CBPLP depends on the value of the variables CountZeroCBPLP and CountMaxCBPLP. The functions
specified in this subclause specify the initialization and updating of these constants.

8.9.2 InitializeCountCBPLP()

The variable CountZeroCBPLP and CountMaxCBPLP for LP coefficients are initialized by the function
InitializeCountCBPLP( ) specified in Table 103.

Table 103 — Pseudocode for function I nitializeCountCBPL P()

InitializeCountCBPLP() { Reference
CountZeroCBPLP = 1
CountMaxCBPLP =1
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8.9.3 UpdateCountCBPLP()

The function UpdateCountCBPLP( ) updates the variables CountZeroCBPLP and CountMaxCBPLP. The pseudocode
for this function is specified in Table 104.

Table 104 — Pseudocode for function UpdateCountCBPLP()

UpdateCountCBPL P(iCBPL P, iMax) { Reference
CountZeroCBPLP += 1 — (4 * (iCBPLP == 0))
CountZeroCBPLP = Max(—8, Min(7,CountZeroCBPLP))
CountMaxCBPLP +=1 — (4 * (iCBPLP = = iMax))
CountMaxCBPLP = Max(—8, Min(7,CountMaxCBPLP))

8.10 Adaptive CBPHP prediction

CBPHP prediction depends on the value of member variables of the data structure instance CBPHPModelHP. The
functions specified in this subclause specify the initialization and updating of this data structure.

8.10.1 InitializeCBPHPM odel()

The data structure instance CBPHPModelHP is initialized in the function InitializeCBPHPModel( ) specified in
Table 105.

Table 105 — Pseudocode for function I nitializezCBPHPM odel( )

InitializezCBPHPModel( ) { Reference
CBPHPM odelHP.CBPHPState[0] = CBPHPM odelHP.CBPHPState[1] = 0
CBPHPM odelHP.CountOnes[0] = CBPHPM odelHP.CountOnes[1] = —4
CBPHPM odelHP.CountZeroes[0] = CBPHPM odelHP.CountZeroes[1] = 4

8.10.2 UpdateCBPHPModel( )

The wvariables associated with the data structure instance CBPHPModelHP are updated by the function
UpdateCBPHPModel( ) as specified in Table 106.

Table 106 — Pseudocode for function UpdateCBPHPM odel( )

UpdateCBPHPM odel(i, INOrig) { Reference
iNDiff =3
CBPHPM odelHP.CountOnes[i] += iNOrig — iNDiff
CBPHPM odelHP.CountOnes[i] = Clip(CBPHPM odelHP.CountOnesl[i], —16,15)
CBPHPModelHP.CountZeroes[i] += 16 — iNOrig — iNDiff
CBPHPM odelHP.CountZeroes[i] = Clip(CBPHPM odelHP.CountZeroes[i], —16, 15)
if (CBPHPM odelHP.CountOnes[i] < 0)
if (CBPHPM odelHP.CountOnes[i] < CBPHPModelHP.CountZeroes[i])
CBPHPM odelHP.CBPHPState[i] = 1
else
CBPHPM odelHP.CBPHPState[i] = 2
else if (CBPHPM odelHP.CountZeroes[i] < 0)
CBPHPM odelHP.CBPHPState[i] = 2
else
CBPHPM odelHP.CBPHPState[i] = 0

84 Rec. ITU-T T.832(01/2012)



8.11 Adaptive inver se scanning

The parsing of syntax elements corresponding to LP and HP coefficients depends on the state of the inverse scanning
tables LowpassScanOrder([i], HighpassHorScanOrder[i], and HighpassVerScanOrder[i]. The functions specified in this
subclause define the initialization and updating of these tables.

8.11.1 Adaptiveinverse scanning tables

The inverse scanning order of transform coefficients is a permutation of the integers 1 to 15. Let the integer i represent
the order in which a given transform coefficient is parsed from the codestream, and let the local example list
listScanOrder| ] specify an inverse scanning order as follows: the i-th transform coefficient is put into the block in the
j-th position in raster scan order, where j is equal to listScanOrderf[i].

The three lists LowpassScanOrder][ |, HighpassHorScanOrder[ ], and HighpassVerScanOrder| ], are used to specify the
inverse scanning order of LP coefficients, HP coefficients in the case of prediction from the left (subclause 9.6), and HP
coefficients in the case of prediction from the top, respectively. These lists are initialized to scan orders as specified
below. However, the lists are adaptive, and thus may change over the course of parsing, based on the statistics of non-
zero transform coefficients in the codestream.

The three lists LowpassScanOrder[ ], HighpassHorScanOrder[ ], and HighpassVerScanOrder[ | are initialized as
specified in subclauses 8.11.2 and 8.11.3. The initial orders are specified by the two lists ScanOrderO[ | and
ScanOrder1[ ], which are specified by Table 107.

Table 107 — Definitions of ScanOrder 0 and ScanOrder 1

i 1 (23 |4)]5]|6 7 (8] 910111213 |14 15

ScanOr der O[] a1 |s|sl2]9le|i23|w0|B|7]14|l11]15

ScanOrder 1[i] 1 2 5 4 3 6 9 8 7 (1215|1310 11 | 14

Each of the lists LowpassScanOrder|[ ], HighpassHorScanOrder[ ] and HighpassVerScanOrder| ] also has an associated
list that determines how the scan order is updated. These corresponding lists are LowpassTotals[ ],
HighpassHorTotals[ ], and HighpassVerTotals[ ], respectively. These associated lists are initialized to be equal to the
list ScanTotals[ ], which is specified by Table 108.

Table 108 — Definition of ScanTotals

i 1 2 (3] 4|5 6 (7]8 | 91011121314 15

ScanT otald[i] 32 130 (28 |26 (2422|2018 )16 (14| 12|10 ] 8 6 4

The three lists LowpassScanOrder][ |, HighpassHorScanOrder[ |, and HighpassVerScanOrder| ] are updated as specified
in subclause 8.11.

8.11.2 InitializeAdaptiveScanL P()

The adaptive inverse scanning tables for LP coefficients are initialized in the function InitializeAdaptiveScanLP( )
specified in Table 109.

Table 109 — Pseudocode for function InitializeAdaptiveScanL P( )

InitializeAdaptiveScanL P( ) { Reference
for (i=1;i<=15; it++) {
LowpassScanOrder[i] = ScanOrder0[i] ScanOrder0[i] specified in subclause 8.11.1
LowpassTotals[i] = ScanTotals[i] ScanTotals[i] specified in subclause 8.11.1
}
!
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8.11.3 InitializeAdaptiveScanHP()

The adaptive inverse scanning tables for HP coefficients are initialized in the function InitializeAdaptiveScanHP( )
specified in Table 110.

Table 110 — Pseudocode for function InitializeAdaptiveScanHP( )

I nitializeAdaptiveScanHP() { Reference
for (i=1;i<= 15; i++) {

HighpassHorScanOrder[i] = ScanOrder0[i]

ScanOrder0[i] specified in subclause 8.11.1

HighpassVerScanOrder[i] = ScanOrder1[i]

ScanOrder1[i] specified in subclause 8.11.1

HighpassHorTotals[i] = ScanTotals[i]

ScanTotals[i] specified in subclause 8.11.1

HighpassVerTotals[i] = ScanTotals[i]

ScanTotals[i] specified in subclause 8.11.1

[—~

8.11.4 ResetTotalsAdaptiveScanL P()

The list LowpassTotals of the adaptive inverse scanning tables for LP coefficients is reset in the function
ResetTotalsAdaptiveScanLP( ) specified in Table 111.

Table 111 — Pseudocode for function ResetT otalsAdaptiveScanL P()

Reset TotalsAdaptiveScanL P( ) {

Reference

for (i=1;1i<=15; i++)

LowpassTotals[i] = ScanTotals[i]

ScanTotals[i] specified in subclause 8.11.1

8.11.5 ResetTotalsAdaptiveScanHP()

The lists HighpassHorTotals and HighpassVerTotals of the adaptive inverse scanning tables for HP coefficients are

reset in the function ResetTotalsAdaptiveScanHP( ) specified in Table 112.
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Table 112 — Pseudocode for function Reset T otalsAdaptiveScanHP( )

Reset TotalsAdaptiveScanHP( ) {

Reference

for (i=1;i<=15;i++) {

HighpassHorTotals[i] = ScanTotals[i]

ScanTotals[i] specified in subclause 8.11.1

HighpassVerTotals[i] = ScanTotals[i]

ScanTotals[i] specified in subclause 8.11.1
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8.11.6 Adaptivel PScan()

The function AdaptiveLPScan( ) updates the list LPInput[k], and also updates the variables associated with tracking and
modifying the LP scan order LowpassScanOrder([i] as specified in Table 113.

Table 113 — Pseudocode for function Adaptivel PScan()

Adaptivel PScan(n, i, iValue) { Reference

k = LowpassScanOrder[i]

LPInput[n][k] =iValue

LowpassTotals[i]++

if (1 > 1) && (LowpassTotals[i] > LowpassTotals[i—1])) {
valueTemp = LowpassTotals]i]
LowpassTotals[i] = LowpassTotals[i—1]
LowpassTotals[i—1] = valueTemp
valueTemp = LowpassScanOrder[i]
LowpassScanOrder[i] = LowpassScanOrder[i—1]
LowpassScanOrder[i—1] = valueTemp

8.11.7 AdaptiveHPScan( )

The function AdaptiveHPScan( ) updates the list HPInputVLC[iComponent][iBlock][k], and also updates the variables
associated with tracking and modifying the HP scan orders HighpassHorScanOrder[i] and HighpassVerScanOrder[i] as
specified in Table 114.

Table 114 — Pseudocode for function AdaptiveHPScan( )

AdaptiveHPScan(iComponent, iBlock, i, iValue) { Reference
if (MBHPMode == 1) { /* vertical scan order */

k = HighpassVerScanOrder][i]

HighpassVerTotals[i]++

HPInputVLC[iComponent][iBlock][k] = iValue

if (i>1) &&
(HighpassVerTotals[i] > HighpassVerTotals[i—1])) {
valueTemp = HighpassVerTotals[i]
HighpassVerTotals[i] = HighpassVerTotals[i—1]
HighpassVerTotals[i—1] = valueTemp
valueTemp = HighpassVerScanOrder][i]
HighpassVerScanOrder[i] = HighpassVerScanOrder[i—1]
HighpassVerScanOrder[i—1] = valueTemp

;

} else { /* horizontal scan order */

k = HighpassHorScanOrder[i]

HighpassHorTotals[i]++

HPInputVLC[iComponent][iBlock][k] = iValue

if (i>1) &&
(HighpassHorTotals[i] > HighpassHorTotals[i—1])) {
valueTemp = HighpassHorTotals[i]
HighpassHorTotals[i] = HighpassHorTotals[i—1]
HighpassHorTotals[i—1] = valueTemp
valueTemp = HighpassHorScanOrder[i]
HighpassHorScanOrder[i] = HighpassHorScanOrder[i—1]
HighpassHorScanOrder[i—1] = valueTemp

The variable MBHPMode is computed during the HP prediction direction computation process specified in
subclause 9.6.3.2. The scan order is selected based on the value of the variable MBHPMode. AdaptiveHPScan( ) shall
only be invoked on a macroblock after the HP prediction direction computation process specified in subclause 9.6.3.2
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has been invoked and completed for this macroblock. The HP prediction direction process shall be invoked only after
the completion of the LP transform coefficient parsing process.

NOTE - See subclause 9.6 for more information.

8.12 Adaptive coefficient normalization

8.12.1 InitializeModelMB()

The initialization of the Model data structure is specified by the function InitializeModelIMB() as specified in
Table 115.

Table 115 — Pseudocode for function InitializeM odelM B( )

InitializeM odelM B(M odel, iBand) { Reference
/* iBand is the frequency band (DC=0,LP =1, HP=2) */
M odel.MState[0] = M odel.MState[1] = 0
M odel.MBits[0] = M odel . MBits[1] = (2 — iBand) * 4

8.12.2 UpdateModelMB()
The adaptation of the Model data structure is specified by the function UpdateModeIMB( ) as specified in Table 116.

Table 116 — Pseudocode for function UpdateM odelM B( )

UpdateM odelMB(iLapMean| ], Model, iBand) { Reference

/* INTERNAL CLR FMT is the color format of the image */

/* iBand is the frequency band (DC =0, LP =1, HP =2) */

iModelWeight = 70

iWeight0[3] = {240 /*DC*/, 12 /*LP*/, 1}

iWeight1[3][]MAX COMPONENTS] = {
{0, 240, 120, 80, 60, 48, 40,34, 30, 27, 24, 22, 20, 18, 17, 16},
{0,12,6,4,3,2,2,2,2,1,1,1,1, 1,1, 1},
{0,16,8,5,4,3,3,2,2,2,2, 1,1, 1,1, 1}

}

iWeight2[6] = {120, 37, 2 /*YUV420%*/, 120, 18, 1 /*YUV422*/}
iLapMean[0] *= iWeightO[iBand]
if INTERNAL CLR FMT == YUV420)

iLapMean[1] *= iWeight2[iBand]
else if INTERNAL CLR FMT ==YUV422)

iLapMean[1] *=iWeight2[3 + iBand]
else {

iLapMean[1] *= iWeightl[iBand][NumComponents — 1]

if (iBand ==2)

iLapMean[1] >>=4

}
iNumModels = 2

if INTERNAL CLR FMT == YONLY)
iNumModels = 1
for (j = 0; j <iNumModels; j++) {
iMS = M odel.MState[j]
iDelta = ((iLapMean[j] — iModelWeight) >> 2)
if (iDelta <= —8) {
iDelta +=4
if (iDelta < —16)
iDelta=—-16
iMS += iDelta
if (iIMS <-8)
if (M odel . MBits[j] == 0)
iMS = -8
else {
iMS =0
M odel.MBits[j]— —
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}
} else if (iDelta >= 8) {
iDelta — 4
if (iDelta > 15)
iDelta =15
iMS += iDelta
if (iIMS > 8)
if (M odel MBits[j] >= 15) {
Model MBits[j] = 15

iMS =8
} else {
iMS=0

M odel MBits[j]++

}

}
M odel.MState[j] = iMS

[—~

9 Decoding process

9.1 General

This clause specifies the decoding process. The decoding process is interdependent with the initialization of variables
and parsing of syntax elements as specified in clause 8.

The decoding process specified in this clause is distinguished from the codestream parsing process in the following
manner: the codestream parsing process manages all control flow regarding the correct parsing of codestream syntax
elements. This includes maintaining state variables for adaptive VLC selection, adaptive coefficient normalization, and
other related information. The processes in this clause therefore are written with the assumption that, when they are
invoked, the input variables required for this process have been correctly parsed from the codestream.

The decoding process is specified so that the decoded samples from any two JPEG XR decoders will be numerically
identical. Any decoder which produces results that match the process specified here conforms to the requirements of
this Specification.

The image decoding process proceeds as specified in subclause 9.2.

9.2 Image decoding
The outputs of this process are the output samples of the image.

The image decoding process proceeds as in Table 117.

Table 117 — Pseudocode for function ImageDecoding()

ImageDecoding( ) { Reference

ImagePlaneDecoding( ) 9.3
/* resulting sample values are stored in the variables ImagePlane[i][x][y] */

if (OUTPUT_CLR FMT ==RGB) &&
((OUTPUT_BITDEPTH ==BDSY) | | (OUTPUT_BITDEPTH == BD565) | |
(OUTPUT _BITDEPTH == BD10))) /* Packed RGB */
outputArrays = 1

else if (OUTPUT_CLR_FMT ==RGB) | | (OUTPUT_CLR_FMT ==YUV444) | |
(OUTPUT CLR FMT ==YUV422) || (OUTPUT CLR FMT ==YUV420))
outputArrays = 3

else if (OUTPUT _CLR _FMT == RGBE)
outputArrays = 4

else
outputArrays = NumComponents

for (i = 0; i < outputArrays; i++) {
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if (1> 0) && (OUTPUT CLR FMT == YUV420))
outputHeight = (HEIGHT MINUS1+1)/2
else
outputHeight = HEIGHT MINUSI + 1
if (OUTPUT BITDEPTH == BDIWHITELI) | |
(OUTPUT BITDEPTH == BD1BLACK1)) /* Horizonally packed flags */
outputWidth = WIDTH_MINUS1 /8 + 1
else if ((i > 0) &&
((OUTPUT CLR _FMT ==YUV422) || (OUTPUT CLR FMT == YUV420)))
outputWidth = (WIDTH MINUSI1 + 1) /2
else
outputWidth = WIDTH_MINUSI + |
for (y = 0; y < outputHeight; y++)
for (x = 0; x < outputWidth; x++)
ImagePrimary[i][x][y] = ImagePlane[i][x][y]

}
if ALPHA IMAGE PLANE FLAG == TRUE)
ImagePlaneDecoding( ) 9.3
/* resulting sample values, corresponding to the alpha image plane,
are stored in the variables ImagePlane[0][x][y] */
for (y =0; y <= HEIGHT MINUSI; y++)
for (x = 0; x <= WIDTH_MINUSI; x++)
ImageAlpha[0][x][y] = ImagePlane[0][x][y]

NOTE - Throughout the parsing of syntax elements in clause 8, it is assumed that if ALPHA_IMAGE_PLANE_FLAG is equal
to TRUE, there are two sets of parsed syntax elements: one set corresponding to the primary image plane, and one set
corresponding to the alpha image plane. In the same manner, this subclause assumes that there are two sets of global variables
being used in the decoding process, corresponding to the primary and alpha image planes, respectively.

9.3 Image plane decoding
This process is invoked for each image plane.
The outputs of this process are the decoded samples for this image plane, ImagePlane[i][x][y].

The image plane decoding process proceeds as specified in Table 118.

Table 118 — Pseudocode for function I magePlaneDecoding( )

ImagePlaneDecoding( ) { Reference
ImagePlaneDCQP( ) 9.7.1.1
ImagePlaneLPQP() 9.7.2.1
ImagePlaneHPQP() 9.7.3.1

for (TileIndexy = 0; TileIndexy < NumTileRows; TileIndexy++)

for (TileIndexx = 0; TileIndexx < NumTileCols; TileIndexx++)
TileTransformCoefficientProcessing( ) 94.1
/* At this point, transform coefficients for the entire image plane have

been obtained */

SampleReconstruction( ) 9.9.1
/* This process performs both levels of the inverse transform and overlap
operations on the entire image */

OutputFormatting( ) 9.10.2

94 Tiletransform coefficient processing

941 Overview
This process is invoked for each tile. The inputs to this process are the horizontal and vertical indices of the current tile.

The outputs of this process are transform coefficients for each macroblock in the tile.
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The transform coefficient processing proceeds as specified in Table 119.

Table 119 — Pseudocode for function TileTransformCoefficientProcessing( )

TileTransformCoefficientProcessing( ) { Reference
TileLevelDCQP( ) 9.7.1.2
TileLevel LPQP( ) 9.7.2.2
TileLevel HPQP( ) 9.7.3.2
n=0
for (MBy = TopMBIndexOfTile[TileIndexy]; MBy < TopMBIndexOfTile[TileIndexy + 1]; MBy++)

for (MBx = LeftMBIndexOfTile[TileIndexx]; MBx < LeftMBIndexOfTile[TileIndexx + 1]; MBx++) {
MBQPIndexLP[MBx][MBy] = LP_QP INDEX]n]
MBQPIndexHP[MBx][MBy] = HP QP INDEX[n]
DCTransformCoefficientDecoding( ) 9.4.2
LPTransformCoefficientDecoding( ) 9.4.3
HPTransformCoefficientDecoding( ) 9.4.4

n+=1

NOTE - The computation of the global variable MBHPMode is dependent upon the completion of the LP transform coefficient
decoding process. MBHPMode is computed at the beginning of the HP coefficient decoding process.

9.4.2 DC transform coefficient decoding

The outputs of this process are DC transform coefficients for each color component of the current macroblock.

The DC transform coefficient processing proceeds as specified in Table 120.

Table 120 — Pseudocode for function DCTransfor mCoefficientDecoding( )

DCTransformCoefficientDecoding() {

Reference

DCMBCoefficientRemap( ) 9.5.1
DCPredictionGeneral( ) 9.6.1.1
DequantizeDCCoefficients( ) 9.8.1

9.4.3 Low-passtransform coefficient decoding

The outputs of this process are LP transform coefficients for each color component of the current macroblock.

The LP transform coefficient processing proceeds as specified in Table 121.

Table 121 — Pseudocode for function L PTransformCoefficientDecoding( )

L PTransfor mCoefficientDecoding() {

Reference

LPMBCoefficientRemap( ) 9.5.2
LPPredictionGeneral( ) 9.6.2.1
DequantizeL PCoefficients( ) 9.8.2

9.4.4  High-passtransform coefficient decoding

Input to this process is the value of MBHPMode for the current macroblock.

The outputs of this process are HP transform coefficients for each color component of the current macroblock.

The HP transform coefficient processing proceeds as specified in Table 122.
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Table 122 — Pseudocode for function HPTransformCoefficientDecoding( )

HPTransformCoefficientDecoding( ) { Reference
CalcHPPredMode( ) 9.6.3.2
HPMBCoefficientRemap( ) 9.53
DequantizeHPCoefficients( ) 9.8.3
HPCoefficientPrediction( ) 9.6.3.3

H

9.5 Coefficient remapping

This subclause specifies the coefficient remapping processes for DC, LP and HP coefficients.

9.5.1 DC coefficient remapping

Input to this process is a list DCInput[i] of DC level values for each color component i, and the variables MBx and
MBYy, which identify the current macroblock.

The output of this process is the list of values MbDCLP[MBx][MBy][i][0], of DC transform coefficients, for each color
component i of the current macroblock.

NOTE - The values DCInput[i] are the outputs of the MB_DC( ) syntax structure of subclause 8.7.11.
The values in the array MbDCLP[MBx][MBy][i][0] are set by Table 123.

Table 123 — Pseudocode for function DCM BCoefficientRemap( )

DCM BCoefficientRemap( ) { Reference
for (i = 0; i < NumComponents; i++)
MbDCLP[MBx][MBy][i][0] = DCInput[i]

9.5.2  Low-pass coefficient remapping

Inputs to this process are a list of variables LPInput[i][j] which hold the j-th LP transform coefficient value for each
color component i.

The output of this process is the array of variables MbDCLP[MBx][MBy][i][j] which hold the j-th LP transform
coefficients, indexed in raster scan order, of color component i.

The LP coefficient remapping process proceeds as specified by Table 124.

Table 124 — Pseudocode for function L PM BCoefficientRemap()

L PM BCoefficientRemap( ) { Reference
for (i = 0; i < NumComponents; i++)
if (i = 0) && (INTERNAL_CLR_FMT ==YUV422) ||
(INTERNAL CLR FMT == YUV420))
if INTERNAL CLR FMT ==YUV422)
for(=1;j<=7;j+1)
if (BANDS PRESENT != DCONLY)
MbDCLP[MBx][MBy][i][j] = LPInput[i][j]
else
MbDCLP[MBx][MBy][i][j] = 0
else /* INTERNAL CLR FMT ==YUV420 */
for (j=1;j <=3; j++)
if (BANDS PRESENT != DCONLY)
MbDCLP[MBx][MBy][i][j] = LPInput[i][j]
else
MbDCLP[MBx][MBy][i][j] =0

else
for (j=1;j <= 15; j++)
if BANDS PRESENT != DCONLY)
MbDCLP[MBx][MBy][il[j] = LPInput[i][j]
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else
MbDCLP[MBx][MBy][i][j]=0

9.5.3 High-pass macroblock coefficient remapping

The HP coefficient remapping process proceeds as in Table 125.

Table 125 — Pseudocode for function HPM BCoefficientRemap( )

HPM BCoefficientRemap( ) { Reference
for (i = 0; i < NumComponents; i++) {

if (i 1= 0 && INTERNAL CLR FMT ==YUV420)
jMax =3

else if (i != 0 && INTERNAL CLR FMT ==YUV422)
jMax =7

else
jMax = 15

for (j = 0; j <= jMax; j++)
HPBlockCoefficientRemap(i, j) 9.54

9.54 High-passblock coefficient remapping

Inputs to this process are: the array HPInputVLC[currentComponent][blkIndex][j] for the current color component
currentComponent, and the current block index blkIindex, with j ranging from 1 to 15, the array
HPInputFlex[currentComponent][blkIndex][j] for the current color component currentComponent, and the current block
index blkIndex, with j ranging from 1 to 15, the variable ModelBitsf MBx][MBy], representing the number of flexbits
for the current macroblock, and the variables MBx and MBy, which identify the current macroblock.

Outputs of this process are the values MBBuffer[MBx][MBy][currentComponent][k] of HP transform coefficients, with
k ranging from (16 * blkIndex + 1) to (16 * blkIndex + 15), corresponding to the current block. Pseudocode for this
process is in Table 126.

Table 126 — Pseudocode for function HPBlock CoefficientRemap( )

H PBlock CoefficientRemap(currentComponent, blklndex) { Reference
if (currentComponent = = 0)
ilndex =0
else
ilndex = 1

for G=1;j<=15; j+4) {
k =16 * blkIndex + j
if (BANDS_PRESENT == ALL ||
BANDS PRESENT == NOFLEXBITS)
MBBuffer[MBx][MBy][currentComponent][k] =
HPInputVLC[currentComponent][blkIndex][j] <<
ModelBitsMBHP[MBx][MBy][ilndex]

else
MBBuffer[MBx][MBy][currentComponent][k] = 0
if (BANDS PRESENT == ALL)
MBBuffer[MBx][MBy][currentComponent][k] +=
HPInputFlex[currentComponent][blkIndex][j]
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9.6 Transform coefficient prediction
9.6.1 DC coefficient prediction
9.6.1.1 Overview of DC prediction

This subclause is informative: it is not an integral part of this Specification.

Four modes are defined for the prediction of the DC coefficient of a macroblock. These modes are:
- Predict from left
- Predict from top
- Predict from left and top

- No prediction

The prediction mode is determined from the position of the macroblock, as well as the DC values to the left, top and
top-left of the macroblock. Furthermore, if the image has chroma components, the corresponding DC values of the
chroma components are also used.

9.6.1.2 DCPredictionGeneral()

Inputs to this process are the Boolean variables IsMBLeftEdgeofTileFlag and IsMBTopEdgeofTileFlag, as well as the
values MbDCLP[MBx][MBy][i][0], for each color component i of the current macroblock. The variable
IsMBLeftEdgeofTileFlag is equal to TRUE when the current macroblock is at the left edge of the tile;
IsMBTopEdgeofTileFlag is equal to TRUE when the current macroblock is at the top edge of the current tile.

NOTE - The values MbDCLP[MBx][MBy][i][0] come from the DC coefficient remapping process of subclause 9.5.1.

Outputs of this process are the updated values MbDCLP[MBx][MBy][i][0], for each color component i of the current
macroblock.

The DC prediction process proceeds as in Table 127.

Table 127 — Pseudocode for function DCPredictionGeneral( )

DCPredictionGeneral() { Reference
CalcDCPredMode( ) 9.6.1.3
DCCoefficientPrediction( ) 9.6.1.4
UpdateDCPredictionVariables( ) 9.6.1.5

!

9.6.1.3 DC prediction direction computation

Inputs to this process are the variables IsMBLeftEdgeofTileFlag and IsMBTopEdgeofTileFlag, and the values
PredDCLP[MBx—1][MBy][i][0], PredDCLP[MBx][MBy—1][i][0], and PredDCLP[MBx—1][MBy—1][i][0], for each
color component i.

The output of this process is the value of MBDCMode. The possible values of MBDCMode are as follows: 0 specifies
prediction from the left macroblock, 1 specifies prediction from the top macroblock, 2 specifies prediction from both
the top and left macroblocks, and 3 specifies no prediction.

The DC prediction direction process proceeds as shown by Table 128.

Table 128 — Pseudocode for function CalcDCPredM ode( )

CalcDCPredMode( ) { Reference

if IsMBLeftEdgeofTileFlag == TRUE &&
IsMBTopEdgeofTileFlag = = TRUE)
MBDCMode = 3 /* no prediction */

else if (IsMBLeftEdgeofTileFlag == TRUE &&
IsMBTopEdgeofTileFlag = = FALSE)
MBDCMode = 1 /* prediction from top only */

else if (IsMBLeftEdgeofTileFlag = = FALSE &&
IsMBTopEdgeofTileFlag = = TRUE)
MBDCMode = 0 /* prediction from left only */

else /* if (IsMBLeftEdgeofTileFlag == FALSE &&
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IsMBTopEdgeofTileFlag == FALSE) */ {

iLeft = PredDCLP[MBx—1][MBy][0][0]

iTop = PredDCLP[MBx][MBy—1][0][0]

iTopLeft = PredDCLP[MBx— 1 ][MBy—1][0][0]

if INTERNAL CLR FMT ==Y ONLY | |
INTERNAL CLR FMT = =NCOMPONENT) {

iStrHor = Abs(iTopLeft — iLeft)

iStrVer = Abs(iTopLeft — iTop)

} else {

iLeftU = PredDCLP[MBx—1][MBy][1][0]

iTopU = PredDCLP[MBx][MBy—1][1][0]

iTopLeftU = PredDCLP[MBx—1][MBy—1][1][0]

iLeftV = PredDCLP[MBx—1][MBy][2][0]

iTopV = PredDCLP[MBx][MBy—1][2][0]

iTopLeftV = PredDCLP[MBx—1][MBy—1][2][0]

iScale =2

if INTERNAL CLR FMT = = YUV420)
iScale =8

if INTERNAL CLR FMT = = YUV422)
iScale =4

iStrHor = Abs(iTopLeft — iLeft) * iScale +
Abs(iTopLeftU — iLeftU) + Abs(iTopLeftV — iLeftV)

iStrVer = Abs(iTopLeft — iTop) * iScale +
Abs(iTopLeftU — iTopU) + Abs(iTopLeftV — iTopV)

}

iOrWt=4

if ((iStrHor * i0OrWt) < iStrVer)

MBDCMode =1

else if ((iStrVer * iOrWt) <iStrHor)

MBDCMode =0

else

MBDCMode =2

The value MBDCMode is used in subsequent stages of the DC prediction process.

9.6.1.4 DC coefficient prediction

This process occurs when MBDCMode is not equal to 3.

Inputs to this process are the variable MBDCMode representing the DC prediction direction, and the array variable

MbDCLP[MBx][MBy][i][0] for each color component i.

Outputs to this process are the updated values MbDCLP[MBx][MBy][i][0], for each color component i of the current

macroblock.

The DC coefficient prediction process proceeds according to Table 129.

Table 129 — Pseudocode for function DCCoefficientPrediction( )

DCCoefficientPrediction() {

Reference

for (i = 0; i < NumComponents; i++) {

iLeft = PredDCLP[MBx—1][MBy][i][0]
iTop = PredDCLP[MBx][MBy—1][i][0]

if (MBDCMode = = 0)

MbDCLP[MBx][MBy][i][0] += iLeft

else if (MBDCMode == 1)

MbDCLP[MBx][MBy][i][0] += iTop

else if (MBDCMode ==2) {

if (i==0) || (INTERNAL_CLR_FMT != YUV420) &&
(INTERNAL CLR FMT != YUV422))

MbDCLP[MBx][MBy][i][0] += (iTop + iLeft) >> 1

else /* (INTERNAL CLR_FMT == YUV420 | |
INTERNAL CLR FMT = = YUV422)*/

Rec. ITU-T T.832 (01/2012) 95



MbDCLP[MBx][MBy][i][0] +=
(iTop +ileft+ 1) >>1

9.6.1.5 Update of DC prediction variables

Outputs of this process are the updated variables PredDCLP[MBx][MBYy][i], for each color component i, where MBx
and MBy are indexing the current macroblock.

The update of DC prediction variables process proceeds as shown by Table 130.

Table 130 — Pseudocode for function UpdateDCPredictionVariables( )

UpdateDCPredictionVariables( ) { Reference
for (i = 0; i < NumComponents; i++)
PredDCLP[MBx][MBy][i][0] = MbDCLP[MBx][MBy][i][0]

9.6.2 Low-passprediction

9.6.2.1 Overview of low-pass prediction
This subclause is informative: it is not an integral part of this Specification.

Three modes are defined for the prediction of the LP coefficient of the inner transform of a macroblock. These modes
are:

- Prediction from left when MBLPMode is equal to 0

— Prediction from top when MBLPMode is equal to 1

- No prediction when MBLPMode is equal to 2

The LP coefficient prediction mode (MBLPMode) is determined by the DC coefficient prediction mode, together with
the quantization parameters of both the current block and the block from which the DC values were predicted.

This rule ensures that prediction of LP coefficients does not take place across macroblocks with different quantization
parameters.

Not all of the LP coefficients associated with a macroblock are predicted. The definition and indices of DC and LP
coefficients that are predicted are shown in Figure 5. The DC coefficient of the blocks shown in dark grey is at position
0, and the LP coefficients that can be predicted are shown in light grey. For the color format YUV422, the LP
coefficient associated with position 5 is predicted from position 1 in Figure 5. if MBDCMode is equal to 1, irrespective
of the value of MBLPMode, and the LP coefficient associated with position 4 (indicated by crosshatch) can be predicted

from both top and left.
. 11213 . 1
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Figure5—-DC and LP coefficientsin (a) 4x4, (b) 422 chroma, and (c) 420 chroma block

9.6.2.2 LPPredictionGeneral()

Inputs to this process are the variable MBDCMode for the current macroblock, as well as the values
MbDCLP[MBx][MBy][i][j], for each color component i of the current macroblock, and index j referencing the LP
transform coefficients, indexed in raster scan order.

NOTE - The values MbDCLP[MBx][MBy][i][j] come from the LP coefficient remapping process of subclause 9.5.2.
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Outputs to this process are the values MbDCLP[MBx][MBy][i][j], for each color component i of the current
macroblock.

The LP prediction process proceeds as in Table 131.

Table 131 — Pseudocode for function L PPredictionGeneral()

L PPredictionGeneral() { Reference
CalcLPPredMode( ) 9.6.2.3
LPCoefficientPrediction( ) 9.6.2.4
UpdateLPPredictionVariables( ) 9.6.2.5

!

9.6.2.3 Low-pass prediction direction computation
Inputs to this process are the variables MBDCMode and MBQPIndexLP[MBx][MBYy].

The output to this process is the value of MBLPMode. The possible values of MBLPMode are as follows: the value 0
represents prediction from the left macroblock, the value 1 represents prediction from the top macroblock, and the
value 2 represents no prediction.

The LP prediction direction process proceeds as in Table 132.

Table 132 — Pseudocode for function CalcL PPredM ode( )

CalcL PPredM ode( ) { Reference

if (MBDCMode == 0 &&
MBQPIndexLP[MBx][MBy] = = MBQPIndexLP[MBx—1][MBy])
MBLPMode = 0

else if MBDCMode == 1 &&
MBQPIndexLP[MBx][MBy] = = MBQPIndexLP[MBx][MBy—1])
MBLPMode = 1

else
MBLPMode = 2

[—~

9.6.2.4 Low-pass coefficient prediction

Inputs to this process are: the variable MBLPMode representing the LP prediction direction; the variables MBx and
MBYy, which index the current macroblock in the image; and the variables PredDCLP[MBx][MBy][i][j].

Outputs to this process are the updated values MbDCLP[MBx][MBy][i][j], for each color component i of the current
macroblock, and j an index referencing the LP transform coefficients, indexed in raster scan order.

The LP coefficient prediction process proceeds as in Table 133.

Table 133 — Pseudocode for function L PCoefficientPrediction()

L PCoefficientPrediction() { Reference
for (i=0; i < NumComponents; i++) {
if i==0]| (INTERNAL CLR_FMT !=YUV420) &&
(INTERNAL CLR FMT !=YUV422))) {
if (MBLPMode == 0) {
MbDCLP[MBx][MBy][i][4] += PredDCLP[MBx—1][MBy][i][4]
MbDCLP[MBx][MBy][i][8] += PredDCLP[MBx—1][MBy][i][5]
MbDCLP[MBx][MBy][i][12] += PredDCLP[MBx—1][MBy][i][6]
} else if (MBLPMode == 1)
]
]
]

MbDCLP[MBx][MBy][i]
MbDCLP[MBx][MBy][i]
MbDCLP[MBx][MBy][i]

1] += PredDCLP[MBx][MBy—1][i][1]
2] += PredDCLP[MBx][MBy—1][i][2]
3] += PredDCLP[MBx][MBy~—1][i][3]

[
8
[l
i
[
[
[

}
} else if INTERNAL CLR_FMT ==YUV420) { /*iis equal to 1 or 2 here */

if (MBLPMode = = 0) /* Prediction from left */
MbDCLP[MBx][MBy][i][2] += PredDCLP[MBx—1][MBy][i][2]
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else if (MBLPMode = = 1) /* Prediction from top */

MbDCLP[MBx][MBy][i][1] += PredDCLP[MBx][MBy—1][i][1]
} else if INTERNAL CLR FMT ==YUV422) /*iis equal to 1 or 2 here */
if (MBLPMode == 0) { /* Prediction from left */
MbDCLP[MBx][MBy][i][4] += PredDCLP[MBx—1][MBy][i][4]
MbDCLP[MBx][MBYy][i][2] += PredDCLP[MBx—1][MBy][i][2]
MbDCLP[MBx][MBy][i][6] += PredDCLP[MBx—1][MBy][i][6]

} else if (MBLPMode == 1) { /* Prediction from top */
MbDCLP[MBx][MBy][i][4] += PredDCLP[MBx][MBy—1][i][4]
MbDCLP[MBx][MBy][i][1] += PredDCLP[MBx][MBy—1][i][5]
MbDCLP[MBx][MBy][i][5] += MbDCLP[MBx]|[MBy][i][1]

/* In this line, prediction occurs using the current macroblock's data */

} else if (MBDCMode == 1)

MbDCLP[MBx][MBy][i][5] += MbDCLP[MBx][MBy][i][1]
/* When the color format is YUV422,
MBLPMode is equal to 2 (no prediction), and
MBDCMode is equal to 1 (prediction from the top), the LP
coefficient associated with j=5 is predicted from that for j=1 */

]
]
]

9.6.2.5 Update of low-pass prediction variables
Inputs to this process are the variables MBx and MBy, which index the current macroblock in the image.

Outputs of this process are the variables PredDCLP[MBx][MBy][i][j], for each color component i, and selected LP
indexes j.

The update of LP prediction variables process proceeds as in Table 134.

Table 134 — Pseudocode for function Updatel. PPredictionVariables()

Updatel PPredictionVariables() { Reference
for (i = 0; i < NumComponents; i++) {

if i==0]|| (INTERNAL _CLR_FMT !=YUV420) &&
(INTERNAL CLR_FMT !=YUV422))) {
PredDCLP[MBx][MBy][i][1] = MbDCLP[MBx][MBy][i][1]
PredDCLP[MBx][MBy][i][2] = MbDCLP[MBx][MBy][i][2]
PredDCLP[MBx][MBy][i][3] = MbDCLP[MBx][MBy][i][3]
PredDCLP[MBx][MBy][i][4] = MbDCLP[MBx][MBy][i][4]
PredDCLP[MBx][MBy][i][5] = MbDCLP[MBx][MBy][i][8]
PredDCLP[MBx][MBy][i][6] = MbDCLP[MBx][MBy][i][12]

} else if INTERNAL CLR FMT == YUV420) {
PredDCLP[MBx][MBy][i][1] = MbDCLP[MBx][MBy][i][1]
PredDCLP[MBx][MBy][i][2] = MbDCLP[MBx][MBy][i][2]

} else if INTERNAL CLR FMT ==YUV422) {
PredDCLP[MBx][MBy][i][1] = MbDCLP[MBx][MBy][i][1]
PredDCLP[MBx][MBy][i][2] = MbDCLP[MBx][MBy][i][2]
PredDCLP[MBx][MBy][i][4] = MbDCLP[MBx][MBy][i][4]
PredDCLP[MBx][MBy][i][5] = MbDCLP[MBx][MBy][i][5]
PredDCLP[MBx][MBy][i][6] = MbDCLP[MBx][MBy][i][6]

}

}
!

9.6.3 High-passprediction

9.6.3.1 Overview of high-pass prediction

This subclause is informative: it is not an integral
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There are two prediction processes involving HP coefficients: the HP prediction direction process, and the HP
prediction process. The process that computes HP prediction direction also sets the HP direction variable MBHPMode
which determines the initial HP inverse scanning order. Therefore, the process that computes HP prediction direction
shall be executed before the HP coefficient inverse scanning process. The HP prediction process is executed after the
HP coefficient remapping process.

Information in the LP transform coefficients is used to compute a simple metric to determine the orientation of
prediction of HP coefficients associated with each macroblock. Three modes are defined for the prediction of the HP
coefficients of the outer transform. The same mode is used for all blocks within a macroblock for which in-macroblock
prediction is possible. For blocks that have no valid reference within the macroblock, null prediction is used. The three
modes are:

- Prediction from left when MBHPMode is equal to 0
- Prediction from top when MBHPMode is equal to 1
- No prediction when MBHPMode is equal to 2

Prediction from left is shown in Figure 6. Prediction from top is similar, with the pattern of arrows transposed to point
downwards.

T832(12)_F06

Figure 6 — HP prediction from left

NOTE - In the implementation of a decoder, the only information that needs to be available for future use is 1 DC + 6 LP =7
coefficients per macroblock component (fewer for YUV420 / YUV422 chrominance). Therefore, at most for YUV444, 21
coefficients need to be cached per macroblock. Furthermore, the coefficients used for prediction from left can be discarded after
the next macroblock is predicted. For YUV444, therefore, it is necessary to only cache 12 coefficients per macroblock for use in
the next row of macroblocks. More state is required on the encoder side: the HP coefficients must be maintained throughout this
process, as the encoding of HP coefficients is dependent on the encoding of LP coefficients.

9.6.3.2 High-pass prediction direction computation
Inputs to this process are the variables MBx and MBy, indexing the location of the current macroblock in the image.
The output of this process is the variable MBHPMode for the current macroblock.

The HP prediction process proceeds as in Table 135.
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Table 135 — Pseudocode for function CalcHPPredM ode( )

CalcHPPredMode( ) { Reference
iStrHor = Abs(MbDCLP[MBx][MBy][0][1]) +
Abs(MbDCLP[MBx][MBy][0][2]) +
Abs(MbDCLP[MBx][MBy][0 ][ D
iStrVer = Abs(MbDCLP[MBx][MBy][0][4]) +
Abs(MbDCLP[MBx][MBy][0][8]) +
Abs(MbDCLP[MBx][MBy][0][12])
if (INTERNAL_CLR_FMT !=YONLY) &&
(INTERNAL _CLR_FMT != NCOMPONENT)) {
for(i=1;i<=2;it++) {
iStrHor += Abs(MbDCLP[MBx][MBy][i][1])
if INTERNAL CLR_FMT ==YUV420)
iStrVer += Abs(MbDCLP[MBx][MBy][i][2])
else if INTERNAL CLR _FMT ==YUV422) {
iStrVer += Abs(MbDCLP[MBx][MBy][i][2]) +
Abs(MbDCLP[MBx][MBy][i][6])
iStrHor += Abs(MbDCLP[MBx][MBy][i][5])
} else
iStrVer += Abs(MbDCLP[MBx][MBy][i][4])

|_||_4,_,|_u_|,_|

}
}
iOrWt=4
if (iStrHor * i0rWt <iStrVer)
MBHPMode = 0 /* predict from left */
else if (iStrVer * iOrWt < iStrHor)
MBHPMode = 1 /* predict from top */
else
MBHPMode = 2 /* no prediction */

9.6.3.3 High-passprediction

Inputs to this process are: the variable MBHPMode, which indicates the HP prediction direction; the values MBx and
MBYy, which index the current macroblock in the image; and the values MBBuffer[MBx][MBy][i][j], which hold the HP
transform coefficients obtained from the HP coefficient remapping process of subclause 9.5.3. The outputs of this
process are the updated values MBBuffer[MBx][MBy][i][k] of HP transform coefficients.

The HP prediction process proceeds as in Table 136.

Table 136 — Pseudocode for function HPCoefficientPrediction()

HPCoefficientPrediction() { Reference
if INTERNAL CLR FMT ==YUV420) | | INTERNAL CLR FMT ==YUV422)
iComponents = 1
else
iComponents = NumComponents
for (i=0; i <iComponents; i++) {
if (MBHPMode = =0) {
blkId[ ] = {1,2,3,5,6,7,9,10,11,13,14,15}
for j=0;j<12;j++) {
MBBuffer[MBx][MBy][i][16*blkId[j] + 4] +
MBBuffer[MBx][MBy][i][16*(blkId[j] — 1) +4]
MBBuffer[MBx][MBy][i][16*bIkId[j] + 8] +
MBBuffer[MBx][MBy][i][16*(blkId[j] — 1) + 8]
MBBuffer[MBx][MBy][i][16*blkId[j] + 12] +=
MBBuffer[MBx][MBy][i][16*(blkId[j] — 1) + 12]

}
} else if (MBHPMode == 1) {
blkId[ ] = {4,5,6,7,8,9,10,11,12,13,14,15}
for (j=0;j<12;j++) {
MBBuffer[]MBx][MBy][i][16*bIkId[j] + 1] +=
MBBuffer[MBx][MBy][i][16*(blkId[j] — 4) + 1]
MBBuffer[MBx][MBy][i][16*blkId[j] + 2] +=
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MBBufferlMBx][MBy][i][16*(blkId[j] — 4) + 2]

MBBuffer[]MBx][MBy][i][16*bIkId[j] + 3] +=
MBBuffer]MBx][MBy][i][16*(blkId[j] — 4) + 3]

H

}

}

if INTERNAL CLR FMT == YUV420) {

for (i=1;i<=2;it+) {

if (MBHPMode == 0) {

bIkId[ ] = {1,3}

for =05 <2;j+4) {

MBBuffer[MBx][MBy][i][16*bIkId[j] + 4] +=

]

MBBuffer[MBx][MBy][i][16*(blkId[j] — 1) + 4]

MBBuffer[MBx][MBy][i][16*bIkId[j] + 8] +=
MBBuffer[MBx][MBy][i][16*(bIkId[j] — 1) + 8]

MBBuffer[MBx][MBy][i][16*bIkId[j] + 12] +=
MBBuffer]MBx][MBy][i][16*(bIkId[j] — 1) + 12]

}

} else if (MBHPMode == 1) {

bIkId[ ] = (2.3}

for =05 <2;j+) {

MBBuffer[MBx][MBy][i][16*bIkId[j] + 1
MBBuffer]MBx][MBy][i][16*(bIkId[j

4=
-2)+ 1]

MBBuffer[]MBx][MBy][i][16*blkId[j] + 2
MBBuffer]MBx][MBy][i][16*(bIkId[j

+=
—2)+2]

MBBuffer[MBx][MBy][i][16*bIkId[j] + 3
MBBuffer[MBx][MBy][i][16*(bIkId[j

+=
—2)+3]

}

;

}

} else if INTERNAL CLR _FMT ==YUV422) {

for (i=1;1i<=2;it+) {

if (MBHPMode = = 0) {

bIkId[ ] = {1,3,5,7}

for G=0;j<4;j++) {

MBBuffer[MBx][MBy][i][16*bIkId[j] + 4] +=

]

MBBuffer]MBx][MBy][i][16*(blkId[j] — 1) + 4]

MBBuffer]MBx][MBy][i][16*bIkId[j] + 8] +=
MBBuffer] MBx][MBy][i][16*(bIkId[j] - 1) + 8]

MBBuffer[MBx][MBy][i][16*bIkId[j] + 12] +=
MBBuffer]MBx][MBy][i][16*(bIkId[j] — 1) + 12]

}

} else if (MBHPMode == 1) {

bIkId[ ] = {2,4,6,3,5.7}

for G=0;j<6;j++) {

+=
-2)+ 1]

MBBuffer[MBx][MBy][i][16*bIkId[j] + 1
MBBuffer]MBx][MBy][i][16*(bIkId[j

+=
—2)+72]

MBBuffer[]MBx][MBy][i][16*bIkId[j] + 2
MBBuffer]MBx][MBy][i][16*(blkId[j

MBBuffer[MBx][MBy][i][16*bIkId[j] + 3
MBBuffer[MBx][MBy][i][16*(bIkId[j

4=
—2)+3]
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9.7 Derivation of quantization parameters
9.7.1  Derivation of DC quantization parameters

9.7.1.1 Image planelevel derivation of DC quantization parameters

This process derives the array DCQuantParam[i] of image plane level DC quantization parameters for each color
component i, if these parameters are specified at the image plane level; otherwise, it does nothing, and it is expected that
the tile-level derivation process will derive the array DCQuantParam([i], for each tile in the image plane.

The image plane level derivation process of DC quantization parameters proceeds as in Table 137.

Table 137 — Pseudocode for function ImagePlaneDCQP()

ImagePlaneDCQP() { Reference
if (DC IMAGE PLANE UNIFORM FLAG == TRUE)
AssignDCQuantizationParameters( ) 9.7.1.3

NOTE - If DC_IMAGE_PLANE_UNIFORM_FLAG is equal to FALSE, the quantization parameters are specified at tile level.

9.7.1.2 Tilelevel derivation of DC quantization parameters

If these parameters are specified at the tile level, this process derives the array DCQuantParam[i] of tile-level DC
quantization parameters for each color component i. Otherwise, it does nothing and it is assumed that the image plane
level derivation process has already derived the array DCQuantParam[i].

The tile-level derivation process of DC quantization parameters proceeds as in Table 138.

Table 138 — Pseudocode for function TileL evel DCQP()

TileL evelDCQP() { Reference
if (DC_ IMAGE PLANE UNIFORM FLAG ==FALSE)
AssignDCQuantizationParameters( ) 9.7.1.3

NOTE - If DC_IMAGE_PLANE_UNIFORM_FLAG is equal to TRUE, quantization parameters were set at the image plane
level.

9.7.1.3 Assignment of DC quantization parameters

The assignment process of DC quantization parameters proceeds as in Table 139.

Table 139 — Pseudocode for function AssignDCQuantizationPar ameter ()

AssignDCQuantizationParameter () { Reference
if (COMPONENT MODE == UNIFORM)
for (i = 0; i <=NumComponents—1; i++)
DCQuantParam[i] = DC_ QUANT
else if (COMPONENT MODE == SEPARATE) {
DCQuantParam[0] = DC QUANT LUMA
for (i=1; i <=NumComponents—1; i++)
DCQuantParam[i] = DC QUANT CHROMA
} else if (COMPONENT MODE = = INDEPENDENT)
for (i = 0; i <=NumComponents—1; i++)
DCQuantParam[i] = DC_QUANT CH]Ji]
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9.7.2 Derivation of low-pass quantization parameters

9.7.2.1 Image plane level derivation of low-pass quantization parameters

This process derives the values LPQuantParam[i][j] of image plane level LP quantization parameters, for each color
component i, and each allowable index j (for image plane level LP quantization parameters, j can only take the value 0).
These values are derived if LP_ IMAGE PLANE UNIFORM FLAG is equal to TRUE, which indicates that these
quantization parameters are specified at the image plane level; otherwise, it does nothing, and it is expected that the tile-
level derivation process will derive the array LPQuantParam[i][j], for each tile in the image plane.

The image plane level derivation process of LP quantization parameters proceeds as in Table 140.

Table 140 — Pseudocode for function I magePlanel. PQP()

ImagePlanel PQP() { Reference
if (LP_ IMAGE PLANE UNIFORM FLAG)
AssignLPQuantizationParameters( ) 9.7.2.3

NOTE 1 — When LP_IMAGE_PLANE_UNIFORM_FLAG is equal to TRUE, NumLPQPs is always equal to 1.
NOTE 2 - If LP_IMAGE_PLANE_UNIFORM_FLAG is equal to FALSE, quantization parameters are set at the tile level.

9.7.2.2 Tilelevel derivation of low-pass quantization parameters

This process derives the values LPQuantParam[i][j] of tile-level LP quantization parameters, for each color component
i, and each allowable index j (ranging from 0 to NumLPQPs—1). These values are derived if these quantization
parameters are specified at the tile level; otherwise, it does nothing, and the image plane level derivation process
derived the array LPQuantParam[i][j], used for each tile in the current image plane.

The tile-level derivation process of LP quantization parameters proceeds as in Table 141.

Table 141 — Pseudocode for function TileL evelL PQP()

TileLevel LPQP() { Reference

if (LP_IMAGE_PLANE UNIFORM_FLAG !=TRUE) &&
(USE DC QP FLAG ==TRUE)) {
NumLPQPs = 1
for (i = 0; i <=NumComponents—1; i++)

LPQuantParam[i][0] = DCQuantParam[i]

} else if (LP IMAGE PLANE UNIFORM FLAG != TRUE)

AssignLPQuantizationParameters( ) 9.7.2.3

NOTE - When LP_IMAGE_PLANE_UNIFORM_FLAG is equal to TRUE, nothing is done in this function, because
quantization parameters were set at image plane level.
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9.7.2.3 Assignment of low-pass quantization parameters

The assignment process of LP quantization parameters proceeds as in Table 142.

Table 142 — Pseudocode for function AssignL PQuantizationParameter ()

AssignL PQuantizationParameters( ) { Reference
for (j = 0; j < NumLPQPs; j++) {
if (COMPONENT MODE == UNIFORM)
for (i = 0; i <=NumComponents—1; i++)
LPQuantParam[i][j]=LP QUANT][j]
else if (COMPONENT MODE == SEPARATE) {
LPQuantParam[0][j] = LP QUANT LUMAJ[j]
for (i=1; i <=NumComponents—1; i++)
LPQuantParam[i][j]=LP QUANT CHROMA]Jj]
} else if (COMPONENT MODE == INDEPENDENT)
for (i = 0; i <=NumComponents—1; i++)
LPQuantParam[i][j]=LP_QUANT CHIi][j]

9.7.3  Derivation of high-pass quantization parameters

9.7.3.1 Image planelevel derivation of high-pass quantization parameters

This process derives the values HPQuantParam[i][j] of image plane level HP quantization parameters, for each color
component i, and each allowable index j. These values are derived if these quantization parameters are specified at the
image plane level; otherwise, it does nothing, and it is expected that the tile-level derivation process will derive the
array HPQuantParam[i][j], for each tile in the image plane.

The image plane level derivation process of HP quantization parameters proceeds as in Table 143.

Table 143 — Pseudocode for function I magePlaneH PQP( )

ImagePlaneHPQP( ) { Reference
if (HP_IMAGE PLANE UNIFORM_FLAG)
AssignHPQuantizationParameters( ) 9.7.3.3

NOTE 1 - When HP_IMAGE_PLANE_UNIFORM_FLAG is equal to TRUE, NumHPQPs is always equal to 1.
NOTE 2 — When HP_IMAGE_PLANE_UNIFORM_FLAG is equal to FALSE, quantization parameters are set at the tile level.

9.7.3.2 Tilelevel derivation of high-pass quantization parameters

This process derives the values HPQuantParam([i][j] of tile-level HP quantization parameters, for each color component
i, and each allowable index j (ranging from O to NumHPQPs—1). These values are derived if these quantization
parameters are specified at the tile level; otherwise, this process has no effect, and it is expected that the image plane
level derivation process derived the array HPQuantParam([i][j], used for each tile in the current image plane.

The tile-level derivation process of HP quantization parameters proceeds as in Table 144.
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Table 144 — Pseudocode for function TileL evelHPQP( )

TileLevelHPQP() {

Reference

if (HP_IMAGE_PLANE_UNIFORM_FLAG != TRUE) &&
(USE_LP QP FLAG == TRUE)) {

NumHPQPs = NumLPQPs

for (i = 0; i <=NumComponents—1; i++)

for (j = 0; j <=NumLPQPs; j++)

HPQuantParam[i][j] = LPQuantParam[i][j]

} else if (HP_ IMAGE PLANE UNIFORM FLAG != TRUE)

AssignHPQuantizationParameters( )

9.7.3.3

NOTE - When HP_IMAGE_PLANE_UNIFORM_FLAG is equal to TRUE, nothing is done in this function, because
quantization parameters were set at image plane level.

9.7.3.3 Assignment of high-pass quantization parameters

The assignment process of HP quantization parameters proceeds as in Table 145.

9.8
981

This process is applied for the DC coefficients of a macroblock, for all color components.

Table 145 — Pseudocode for function AssignHPQuantizationParameter ()

AssignHPQuantizationParameters( ) {

Reference

for (j =0; j < NumHPQPs; j++) {

if (COMPONENT MODE == UNIFORM)

for (i = 0; i <=NumComponents—1; i++)

HPQuantParam[i][j] = HP QUANTYJj]

else if (COMPONENT MODE == SEPARATE) {

HPQuantParam[0][j] = HP QUANT LUMA[j]

for (i=1; i <=NumComponents—1; i++)

HPQuantParam[i][j]= HP QUANT CHROMA]Jj]

} else if (COMPONENT MODE == INDEPENDENT)

for (i = 0; i <=NumComponents—1; i++)

HPQuantParam[i][j] = HP QUANT CHIi][j]

Dequantization

Dequantization of DC coefficients

The input to this process is the array DCQuantParam[i] of DC quantization parameters for each color component i; the
array MbDCLP[MBx][MBy][i][0] of DC transform coefficients for each color component i of the current macroblock;
and the variables MBx and MBy which identify the current macroblock in the image.

This process uses the local variable array iQuantScalingFactor([i], holding the scaling factor, for each color component i.

The output of this process is an array of scaled DC transform coefficients MbDCLP[MBx][MBy][i][0], for each color
component i.

The dequantization process for DC coefficients proceeds as in Table 146.
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Table 146 — Pseudocode for function DequantizeDCCoefficients( )

DeguantizeDCCoefficients( ) { Reference
for (i = 0; i < NumComponents; i++) {
if(i==0)
iQuantScalingFactor[i] = QuantMap(DCQuantParam[i], 1) 9.8.4
else
iQuantScalingFactor[i] = QuantMap(DCQuantParam([i], 0) 9.8.4

MbDCLP[MBx][MBYy][i][0] =
MbDCLP[MBx][MBy][i][0] * iQuantScalingFactor[i]

9.8.2 Dequantization of low-pass coefficients
This process is applied for the LP coefficients of an entire macroblock, for all color components.

Inputs to this process are the values LPQuantParam[i][j] of LP quantization parameters, for each color component i and
index j; the quantization parameter index MBQPIndexLP[MBx][MBy]; the array MbDCLP[MBx][MBy][i][j] of LP
transform coefficients, with i representing the color component, and j referencing the LP transform coefficients, indexed
in raster scan order.

The output of this process is an array of scaled LP transform coefficients MbDCLP[MBx][MBy][i][j], for each color
component i and index j ranging from 1 to 15, referencing the respective LP transform coefficient.

The dequantization process for LP coefficients proceeds as in Table 147.

Table 147 — Pseudocode for function Dequantizel. PCoefficients( )

Deguantizel PCoefficients( ) { Reference
for (i = 0; i < NumComponents; i++) {

k = MBQPIndexLP[MBx][MBy]
valueQP[i] = LPQuantParam[i][k]

ifi==0)

iQuantScalingFactor[i] = QuantMap(valueQP[i], 1) 9.8.4
else

iQuantScalingFactor[i] = QuantMap(valueQP[i], 0) 9.8.4

if (i==0) /* Luma Component */
for = 1;j<=15;j++)
MbDCLP[MBx][MBy][i][j] =
MbDCLP[MBx][MBYy][i][j] * iQuantScalingFactor[i]
else if (INTERNAL_CLR_FMT !=YUV422) &&
(INTERNAL CLR FMT !=YUV420))
for = 1;j<=15;j++)
MbDCLP[MBx][MBy][i][j] =
MbDCLP[MBx][MBYy][i][j] * iQuantScalingFactor[i]
else if INTERNAL CLR FMT ==YUV422)
for (=1;j <=7 j++)
MbDCLP[MBx][MBy][i][j] =
MbDCLP[MBx][MBy][i][j] * iQuantScalingFactor][i]
else /* if INTERNAL CLR _FMT ==YUV420) */
for (j=1;j<=3;j+1)
MbDCLP[MBx][MBy][i][j] =
MbDCLP[MBx][MBy][i][j] * iQuantScalingFactor[i]

9.8.3 Dequantization of high-pass coefficients
This process is applied for the HP coefficients of an entire macroblock, for all color components.

Inputs to this process are the values HPQuantParam[i][j] of HP quantization parameters, for each color component i and
index j; the quantization parameter index MBQPIndexHP[MBx][MBy]; the array MBBufferfMBx][MBy][i][j] of HP
transform coefficients, where i and j are indices, with i representing the color component, and j ranging from 1 to 255.
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The output of this process is an array of scaled HP transform coefficients MBBuffer[MBx][MBy][i][j], for each color
component i and index j ranging from 1 to 255, referencing the respective HP transform coefficient.

The dequantization process for HP coefficients proceeds as in Table 148.

Table 148 — Pseudocode for function DequantizeHPCoefficients( )

DequantizeHPCoefficients( ) { Reference
for (i = 0; i < NumComponents; i++) {
k = MBQPIndexHP[MBx][MBy]
valueQP[i] = HPQuantParam[i][k]
iQuantScalingFactor[i] = QuantMap(valueQP[i], 1) 9.8.4
if (i==0) /* Luma Component */
for (blkIndex = 0; blkIndex <= 15; blkIndex++)
for =1, j <= 15; j++)
MBBuffer[MBx][MBy][i][16*blkIndex + j] =
MBBuffer[MBx][MBy][i][16*blkIndex + j] *
iQuantScalingFactor][i]
else if (INTERNAL_CLR_FMT !=YUV422) &&
(INTERNAL CLR _FMT !=YUV420))
for (blkIndex = 0; blkIndex <= 15; blkIndex++)
for G=1;j <=15;j++)
MBBuffer[MBx][MBy][i][16*blkIndex + j] =
MBBuffer[MBx][MBy][i][16*blkIndex + j] *
iQuantScalingFactor[i]
else if INTERNAL CLR FMT ==YUV422)
for (blkIndex = 0; blkIndex <= 7; blkIndex++)
for j=1:;j <= 15;j++)
MBBuffer[MBx][MBy][i][16*blkIndex + j] =
MBBuffer[MBx][MBy][i][16*blkIndex + j] *
iQuantScalingFactor(i]
else /* if INTERNAL _CLR_FMT ==YUV420) */
for (blkIndex = 0; blkIndex <= 3; blkIndex++)
for G=1;j <= 15; j++)
MBBuffer[MBx][MBy][i][16*blkIndex + j] =
MBBuffer[MBx][MBy][i][16*blkIndex + j] *
iQuantScalingFactor(i]

9.84 QuantMap()

The function QuantMap is used above to compute the scaling parameters based on the parsed syntax elements QP. The
pseudocode for this function is specified in Table 149.

Table 149 — Pseudocode for function QuantMap( )

QuantM ap(iQP, iScaledShift) { Reference
if (0==1QP)
iQuantScalingFactorResult = 1
else if ISCALED FLAG) {
iNotScaledShift = —2
if (1IQP <32) {
iMan = (iQP + 3)>>2
iExp=0
} else if (QP <48) {
iMan = (16 + (iIQP % 16) + 1) >> 1
iExp = (IQP>>4) + iNotScaledShift
} else {
iMan = 16 + (iQP % 16)
iExp = (iIQP>>4) —1 + iNotScaledShift

}

iQuantScalingFactorResult = iMan << iExp
} else { /* SCALED_FLAG is TRUE, but not (0 ==iQP) */
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if (iIQP < 16) {

iMan = iQP
iExp = iScaledShift
} else {

iMan = 16 + (iQP % 16)
iExp = ((iIQP >>4) — 1) + iScaledShift

}

iQuantScalingFactorResult = iMan << iExp

}

return iQuantScalingFactorResult

NOTE - The input parameter iScaledShift takes the value of either 0 or 1, dependent on the component and band. When
SCALED_FLAG is equal to TRUE, the quantization scaling factor value can be modified by a power of 2. See the note at the end of
subclause 9.9.2.

9.9 Samplereconstruction

99.1 Overview

Inputs to this process are the values MbDCLP[MBx][MBYy][i][j] and MBBuffer[ MBx][MBy][i][j] for the entire image
plane, and the syntax element OVERLAP _MODE.

Outputs of this process are the decoded samples for the image plane.

The sample reconstruction process proceeds as in Table 150.

Table 150 — Pseudocode for function SampleReconstruction()

SampleReconstruction() { Reference
FirstLevellnverseTransform( ) 9.9.2
if (OVERLAP _MODE ==2)

FirstLevelOverlapFiltering( ) 9.9.3
SecondLevelCoefficientCombination( ) 9.9.4
SecondLevellnverseTransform( ) 9.9.5
if (OVERLAP MODE !=0)

SecondLevelOverlapFiltering( ) 9.9.6

!

NOTE - Because the first-level overlap filtering process in general involves interaction with adjacent macroblocks, the first-level
transform process must be complete for these adjacent macroblocks, prior to the overlap filtering process being invoked. The
precedence of this relationship also holds between the second level processes: the second level's transform process must be
complete for the adjacent macroblocks prior to the second level overlap filtering process.

9.9.2 Firstlevel inversetransform
Inputs to this process are the values MbDCLP[MBx][MBy][i][j] for the entire color component.
Outputs to this process are the modified values MbDCLP[MBx][MBy][i][j] for the current macroblock.

The first-level inverse transform process is specified as in Table 151.

108 Rec. ITU-T T.832(01/2012)



Table 151 — Pseudocode for function FirstL evellnverseTransform()

FirstL evellnverseTransform() { Reference
for (i = 0; i < NumComponents; i++)
for (MBy = 0; MBy < MBHeight; MBy++)
for (MBx = 0; MBx < MBWidth; MBx++)
if i==0) || (INTERNAL_CLR_FMT !=YUV420) &&
(INTERNAL CLR_FMT !=YUV422)) {
ICT4x4(MbDCLP[MBxX][MByI[il[ ] 9.9.7.1
if (> 0) && SCALED FLAG)
for (j=0;j <= 15; j++)
MbDCLP[MBx][MBy][i][j] = 2 * MbDCLP[MBx][MBy[i][j]
} else if INTERNAL CLR_FMT ==YUV420) {

T2x2h(MbDCLP[MBx][MBy][i][ ], 0) 9.9.7.2
arrayLocal[ ] = {MbDCLP[MBx][MBy][i][1], MbDCLP[MBx][MBy][i][2]}
InvPermute2pt(arrayLocal[ ]) 9.9.7.6

MbDCLP[MBx][MBy][i][1] = arrayLocal[0]

MbDCLP[MBx][MBYy][i][2] = arrayLocal[1]

if (> 0) && SCALED FLAG)

for =0;j <=3; j+H)
MbDCLP[MBx][MBy][i][j] = 2 * MbDCLP[MBx][MBy][il[j]
} else if INTERNAL CLR FMT ==YUV422) {

arrayLocal[ ] = {MbDCLP[MBx][MBy][i][0], MbDCLP[MBx][MBy][i][4]}
T2pt(arrayLocal[ ]) 9.9.7.7
MbDCLP[MBx][MBy][i][0] = arrayLocal[0]
MbDCLP[MBx][MBYy][i][4] = arrayLocal[1]

T2x2h(MbDCLP[MBx][MBy][i][ ], 0) 9.9.7.2
arrayLocal[ ] = {MbDCLP[MBx][MBy][i][1], MbDCLP[MBx][MBy][i][2]}
InvPermute2pt(arrayLocal[ ]) 9.9.7.6

MbDCLP[MBx][MBYy][i][1] = arrayLocal[0]
MbDCLP[MBx][MBYy][i][2] = arrayLocal[1]
arrayLocal[ ] = {MbDCLP[MBx][MBy][i][4], MbDCLP[MBx][MBy][i][6],

MbDCLP[MBx][MBy][i][5], MbDCLP[MBx][MBy][i][7]}
T2x2h(arrayLocal[ ], 0) 9.9.7.2
MbDCLP[MBx][MBYy][i][4] = arrayLocal[0]
MbDCLP[MBx][MBy][i][6] = arrayLocal[1]
MbDCLP[MBx][MBy][i][5] = arrayLocal[2]
MbDCLP[MBx][MBy][i][7] = arrayLocal[3]
arrayLocal[ ] = {MbDCLP[MBx][MBy][i][5], MbDCLP[MBx][MBy][i][6]}
InvPermute2pt(arrayLocal[ ]) 9.9.7.6
MbDCLP[MBx][MBy][i][5] = arrayLocal[0]
MbDCLP[MBx][MBy][i][6] = arrayLocal[1]
if (1> 0) && SCALED FLAG)

for(G=0;j<=7;j++)

MbDCLP[MBx][MBy][i][j] = 2 * MbDCLP[MBx][MBy][i][j]

NOTE - The purpose of the multiplication by 2 for chroma components, in circumstances where scaling is involved, is to re-
normalize the chroma with respect to the Y component. Due to possible conversion from RGB to YUV during encoding, the U
and V components may have a numerical range that has increased by one bit. If SCALED_FLAG is equal to TRUE, the dynamic
range of the (DC and LP) U and V component values could potentially grow beyond 16 bits, due to the numerical range
expansion associated with the two levels of transform on the encode side (for the DC and LP coefficients). Therefore, the
quantization parameter for these chroma components is set to half the value used for luma components. The coefficients are
scaled by this factor of two at the end of the first-level transform process.

9.9.3 First level overlap filtering
9.9.3.1 Overview

NOTE - The process specification below formalizes the geometric nature of the overlap filtering process. The various cases are
described below:
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interior: At every point where four 4x4 blocks meet in a corner, the 4x4 overlap filter process is applied to the 4x4
block straddling these four blocks evenly (i.e., overlapping with a 2x2 corner of each block). When
HARD_TILING_FLAG is equal to FALSE, the 4x4 overlap filter process is applied across tile boundaries as well.

top and bottom two rows: Along both the top two sample rows and the bottom two sample rows, a 4-point overlap
filter process is applied evenly across adjacent block boundaries (overlapping with a 1x2 strip of each block). When
HARD_TILING_FLAG is equal to TRUE, the 4-point overlap filter process is applied across the top 2 rows and
bottom 2 rows of tiles as well.

right-most and left-most two columns: Along both the left-most two sample columns and the right-most two sample
columns, a 4-point overlap filter process is applied evenly across adjacent block boundaries (overlapping with a 2x1
strip of each block). When HARD_TILING_FLAG is equal to TRUE, the 4-point overlap filter process is applied
across the top 2 columns and bottom 2 columns of tiles as well.

four corners: Over the corner 2x2 blocks in the top-left, top-right, bottom-left and bottom-right, a 4-point overlap
filter process is applied in a raster scan order (top-left, top-right, bottom-left, then bottom-right). When
HARD_TILING_FLAG is equal to TRUE, the 4-point overlap filter process is applied to the four corners of each tile
as well.

Additionally, when INTERNAL_CLR_FMT is equal to either YUV422 or YUV420, alternate processes are considered for the
chroma components for each of the above cases. These case are described below:

chroma interior: The 2x2 overlap filter process is applied to the 2x2 block straddling interior block boundaries. When
HARD_TILING_FLAG is equal to FALSE, the 2x2 overlap filter process is applied across tile boundaries as well.

chroma top and bottom rows: Along both the top sample row and the bottom sample row, a 2-point overlap filter
process is applied evenly across adjacent block boundaries. When HARD_TILING_FLAG is equal to TRUE, the 2-
point overlap filter process is applied across the top row and bottom row of tiles as well.

chroma right-most and left-most columns: Along both the left-most sample column and the right-most sample column,
a 2-point overlap filter process is applied evenly across adjacent block boundaries. When HARD_TILING_FLAG is
equal to TRUE, the 2-point overlap filter process is applied across the top column and bottom column of tiles as well.

chroma four corners: Over the corner 1x1 blocks in the top-left, top-right, bottom-left and bottom-right, an adjacent
coefficient residual process (specified in subclause 9.9.3.3 and subclause 9.9.3.4) is applied. When
HARD_TILING_FLAG is equal to TRUE, the adjacent coefficient residual process is applied to the four corners of
each tile as well.

Inputs to this process are the values MbDCLP[MBx][MBy][i][j] for the entire image plane, and the values MBWidth
and MBHeight.

Outputs to this process are the modified values MbDCLP[MBx][MBy][i][j] for the current macroblock.

The first-level overlap filtering process is specified in Table 152.

Table 152 — Pseudocode for function FirstL evelOverlapFiltering()

FirstL evelOverlapFiltering() { Reference

for (i = 0; i < NumComponents; i++)

if (i==0) || (INTERNAL CLR FMT != YUV420) &&(INTERNAL CLR FMT |= YUV422)))

FirstLevelOverlapFilteringPrimary(i) 9.9.3.2

else if INTERNAL CLR_FMT ==YUV422)

FirstLevelOverlapFiltering422(i) 9.9.3.3

else if INTERNAL CLR FMT == YUV420)

FirstLevelOverlapFiltering420(i) 9.9.34

9.9.3.2 FirstLevelOverlapFilteringPrimary()

Pseudocode for the function FirstLevelOverlapFilteringPrimary( ) is specified in Table 153.

Table 153 — Pseudocode for function FirstL evelOverlapFilteringPrimary()

FirstL evelOverlapFilteringPrimary(i) { Reference

for (Ty = 0; Ty <= (NumTileRows — 1); Ty++) {

for (Tx = 0; Tx <= (NumTileCols — 1); Tx++) {

for (y = TopMBIndexOfTile[Ty]; y <= (TopMBIndexOfTile[Ty + 1] — 2); y++)

for (x = LeftMBIndexOfTile[Tx]; x <= (LeftMBIndexOfTile[Tx + 1] — 2); x++)

FirstLevelCallOverlapPostFilter4x4(i, x, y) 9.9.3.5

if (Tx==0) || (HARD TILING FLAG == TRUE)) { /* Left edge */

x = LeftMBIndexOfTile[Tx]

for (y = TopMBIndexOfTile[Ty]; y <= TopMBIndexOfTile[Ty + 1] — 2; y++) {

arrayLocal[ ] = {MbDCLP[x][y][i][8], MbDCLP[x][y][i][12].
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MbDCLP[x][y+1][i][0], MbDCLP[x][y+1][i][4]}

OverlapPostFilter4(arrayLocal[ ])

9.9.8.2

MbDCLP[x][y][i][8] = arrayLocal[0]

MbDCLP[x][y][i][12] = arrayLocal[1]

MbDCLP[x][y+1][i][0] = arrayLocal[2]

MbDCLP[x][y+1][i][4] = arrayLocal[3]

arrayLocal[ ] = {MbDCLP[x][y][i][9], MbDCLP[x][y][il[13],
MbDCLP[x][y+1][i][1], MbDCLP[x][y+1][i][5]}

OverlapPostFilter4(arrayLocal[ ])

9.9.8.2

MbDCLP[x][y][i][9] = arrayLocal[0]

MbDCLP[x][y][i][13] = arrayLocal[1]

]
MbDCLP[x][y+1][i][1] = arrayLocal[2]
MbDCLP[x][y+1][i][5] = arrayLocal[3]

}

}

if ((Ty ==0) || (HARD TILING FLAG == TRUE)) { /* Top edge */

y = TopMBIndexOfTile[Ty]

for (x = LeftMBIndexOfTile[Tx]; x <= LeftMBIndexOfTile[Tx + 1] — 2; x++) {

arrayLocal[ ] = {MbDCLP[x][y][i][2], MbDCLP[x][y][il[3],
MbDCLP[x+1][y][i][0], MbDCLP[x+1][y][i][1]}

OverlapPostFilter4(arrayLocal[ ])

9.9.8.2

MbDCLP[x][y][i][2] = arrayLocal[0]

MbDCLP[x][y][i][3] = arrayLocal[1]

MbDCLP[x+1][y][i][0] = arrayLocal[2]

MbDCLP[x+1][y][i][1] = arrayLocal[3]

arrayLocal[ ] = {MbDCLP[x][y][i][6], MbDCLP[x][y][i][7],
MbDCLP[x+1][y][i][4], MbDCLP[x+1][y1[il[5]}

OverlapPostFilter4(arrayLocal[ ])

9.9.8.2

MbDCLP[x][y][i][6] = arrayLocal[0]

MbDCLP[x][y][i][7] = arrayLocal[1]

1061171
MbDCLP[x+1][y][i][4] = arrayLocal[2]
MbDCLP[x+1][y][i][5] = arrayLocal[3]

H

}

if ((Tx ==NumTileCols — 1) | | ( HARD TILING FLAG == TRUE)) { /* Right edge */

x = LeftMBIndexOfTile[Tx + 1] — 1

for (y = TopMBIndexOfTile[Ty]; y <= TopMBIndexOfTile[Ty + 1] — 2; y++) {

arrayLocal[ ] = {MbDCLP[x][y][i][10], MbDCLP[x][y][i][14],
MbDCLP[x][y+1][i][2]. MbDCLP[x][y+1][i][6]}

OverlapPostFilter4(arrayLocal[ ])

9.9.8.2

MbDCLP[x][y][i][10] = arrayLocal[0]

MbDCLP[x][y][i][14] = arrayLocal[1]

MbDCLP[x][y+1][i][2] = arrayLocal[2]

MbDCLP[x][y+1][i][6] = arrayLocal[3]

arrayLocal[ ] = {MbDCLP[x][y][i][11], MbDCLP[x][y][il[15],
MbDCLP[x][y+1][i][3], MbDCLP[x][y+1][i][7]}

OverlapPostFilter4(arrayLocal[ ])

9.9.8.2

MbDCLP[x][y][i][11] = arrayLocal[0]

MbDCLP[x][y][i][15] = arrayLocal[1]

]
MbDCLP[x][y+1][i][3] = arrayLocal[2]
MbDCLP[x][y+1][i][7] = arrayLocal[3]

}

}

if ((Ty ==NumTileRows — 1) | | (HARD TILING FLAG ==TRUE)) { /* Bottom edge */

y = TopMBIndexOfTile[Ty + 1] — 1

for (x = LeftMBIndexOfTile[Tx]; x <= LeftMBIndexOfTile[Tx + 1] — 2; x++) {

arrayLocal[ ] = {MbDCLP[x][y][i][10], MbDCLP[x][y][i][11],
MbDCLP[x+1][y][i][8], MbDCLP[x+1][y][i][9]}

OverlapPostFilter4(arrayLocal[ ])

9.9.8.2

MbDCLP[x][y][i][10] = arrayLocal[0]

MbDCLP[x][y][i][11] = arrayLocal[1]

MbDCLP[x+1][y][i][8] = arrayLocal[2]

MbDCLP[x+1][y][i][9] = arrayLocal[3]

arrayLocal[ | = {MbDCLP[x][y][i][14], MbDCLP[x][y][i][15],
MbDCLP[x+1][y][i][12], MbDCLP[x+1][y][i][13]}

OverlapPostFilter4(arrayLocal[ ])

9.9.8.2
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MbDCLP[x][y][i

—

4] = arrayLocal[0]
5

[i][1
[i][1

[
MbDCLP[x][y][i][15] = arrayLocal[1]
MbDCLP[x+1][y][i][12] = arrayLocal[2]
MbDCLP[x+1][y][i][13] = arrayLocal[3]

}

}

if (Tx==0) && (Ty ==0)) | | (HARD TILING FLAG = = TRUE)) { /* Top left corner */

x = LeftMBIndexOfTile[Tx]

y = TopMBIndexOfTile[Ty]

arrayLocal[ | = {MbDCLP[x][y][i][0], MbDCLP[x][y][i][1],
MbDCLP[x][y][i][4], MbDCLP[x][y][i][5]}

OverlapPostFilter4(arrayLocal[ ])

9.9.8.2

MbDCLP[x][y][i][0] = arrayLocal

[0]
MbDCLP[x][y][i][1] = arrayLocal[1]
MbDCLP[x][y][i][4] = arrayLocal[2]
MbDCLP[x][y][i][5] = arrayLocal[3]

}

if ((Tx == NumTileCols — 1) && (Ty ==0)) | | (HARD_TILING_FLAG == TRUE)) {
/* Top right corner */

x = LeftMBIndexOfTile[Tx + 1] — 1

y = TopMBIndexOfTile[Ty]

arrayLocal[ ] = {MbDCLP[x][y][i][2], MbDCLP[x][y][i][3],
MbDCLP[x][y][i][6], MbDCLP[x][y][i][7]}

OverlapPostFilter4(arrayLocal[ ])

9.9.8.2

MbDCLP[x][y][i][2] = arrayLocal[0

MbDCLP[x][y][i][3] = arrayLocal[
X

]
1y1[l[3] 1]
MbDCLP[x][y][i][6] = arrayLocal[2]
MbDCLP[x][y][i][7] = arrayLocal[3]

}

if (Tx ==0) && (Ty == NumTileRows — 1)) | | (HARD TILING FLAG == TRUE)) {
/* Bottom left corner */

x = LeftMBIndexOfTile[Tx]

y = TopMBIndexOfTile[Ty + 1] — 1

arrayLocal[ | = {MbDCLP[x][y][i][8], MbDCLP[x][y][i][9],
MbDCLP[x][y][i][12]. MbDCLP[x][y][i][13]}

OverlapPostFilter4(arrayLocal[ ])

9.9.8.2

MbDCLP[x][y][i][8] = arrayLocal[0]

MbDCLP[x][y][i][9] = arrayLocal[1]

1iy1li]
MbDCLP[x][y][i][12] = arrayLocal[2]
MbDCLP[x][y][i][13] = arrayLocal[3]

}

if ((Tx ==NumTileCols — 1) && (Ty == NumTileRows — 1)) | |
(HARD TILING FLAG ==TRUE)) { /* Bottom right corner */

x = LeftMBIndexOfTile[Tx + 1] — 1

y = TopMBIndexOfTile[Ty + 1] — 1

arrayLocal[ ] = {MbDCLP[x][y][i][10], MbDCLP[x][y][i][11],
MbDCLP[x][y][i][14], MbDCLP[x][y][i][15]}

OverlapPostFilter4(arrayLocal[ ])

9.9.8.2

MbDCLP[x][y][i][10] = arrayLocal

MbDCLP[x][y][i][11] = arrayLocal

[0]
X]y]l ] [1]
MbDCLP[x][y][i][14] = arrayLocal[2]
MbDCLP[x][y][i][15] = arrayLocal[3]

}

if (HARD_TILING_FLAG ==FALSE) && (Tx !=NumTileCols — 1)) {
/* Right across for soft tiles */

x = LeftMBIndexOfTile[Tx + 1] — 1

for (y = TopMBIndexOfTile[Ty]; y <= (TopMBIndexOfTile[Ty + 1] — 2); y++)

FirstLevelCallOverlapPostFilter4x4(i, x, y)

9.9.3.5

}

if (HARD_TILING FLAG == FALSE) && (Ty = NumTileRows — 1)) {
/* Bottom across for soft tiles */

y = TopMBIndexOfTile[Ty + 1] — 1

for (x = LeftMBIndexOfTile[Tx]; x <= (LeftMBIndexOfTile[Tx + 1] — 2); x++)

FirstLevelCallOverlapPostFilter4x4(i, x, y)

9.9.3.5

}

if (HARD TILING FLAG == FALSE) && (Tx != NumTileCols — 1) &&
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(Ty !'=NumTileRows — 1)) { /* Bottom across for soft tiles */

x = LeftMBIndexOfTile[Tx + 1] — 1

y = TopMBIndexOfTile[Ty + 1] — 1

FirstLevelCallOverlapPostFilter4x4(i, x, y)

9.9.3.5

}

if (HARD_TILING _FLAG = = FALSE) && (Tx = = 0) && (Ty != NumTileRows — 1)) {

/* Left edge for soft tiles */

x = LeftMBIndexOfTile[Tx]

y = TopMBIndexOfTile[Ty + 1] — 1

arrayLocal[ ] = {MbDCLP[x][y][i][8], MbDCLP[x][y][il[12],
MbDCLP[x][y+1][i][0], MbDCLP[x][y+11[i][4]}

OverlapPostFilter4(arrayLocal[ ])

9.9.8.2

MbDCLP[x][y][i][8] = arrayLocal[0]

MbDCLP[x][y][i][12] = arrayLocal[1]

MbDCLP[x][y+1][i][0] = arrayLocal[2]

MbDCLP[x][y+1][i][4] = arrayLocal[3]

arrayLocal[ ] = {MbDCLP[x][y][i][9], MbDCLP[x][y][il[13],
MbDCLP[x][y+1][i][1]. MbDCLP[x][y+1][i][5]}

OverlapPostFilter4(arrayLocal[ ])

9.9.8.2

MbDCLP[x][y][i][9] = arrayLocal[0]

MbDCLP[x][y][i][13] = arrayLocal[1]

]
MbDCLP[x][y+1][i][1] = arrayLocal[2]
MbDCLP[x][y+1][i][5] = arrayLocal[3]

}

if (HARD_TILING_FLAG == FALSE) && (Tx = NumTileCols — 1) && (Ty == 0)) {

/* Top edge for soft tiles */

x = LeftMBIndexOfTile[Tx + 1] — 1

y = TopMBIndexOfTile[Ty]

arrayLocal[ ] = {MbDCLP[x][y][i][2], MbDCLP[x][y][i][3],
MbDCLP[x+1][y][i][0], MbDCLP[x+1][y][i][1]}

OverlapPostFilter4(arrayLocal[ ])

9.9.8.2

MbDCLP[x][y][i][2] = arrayLocal[0]

MbDCLP[x][y][i][3] = arrayLocal[1]

MbDCLP[x+1][y][i][0] = arrayLocal[2]

MbDCLP[x+1][y][i][1] = arrayLocal[3]

arrayLocal[ ] = {MbDCLP[x][y][i][6], MbDCLP[x][y][i][7],
MbDCLP[x+1][y][i][4], MbDCLP[x+1][y1[il[5]}

OverlapPostFilter4(arrayLocal[ ])

9.9.8.2

MbDCLP[x][y][i][6] = arrayLocal[0]

MbDCLP[x][y][i][7] = arrayLocal[ 1]

MbDCLP[x+1][y][i][4] = arrayLocal[2]

10yl
MbDCLP[x+1][y][i][5] = arrayLocal[3]

}

if (HARD_TILING FLAG == FALSE) && (Tx == NumTileCols — 1) &&
(Ty !'=NumTileRows — 1)) { /* Right edge for soft tiles */

x = LeftMBIndexOfTile[Tx + 1] — 1

y = TopMBIndexOfTile[Ty + 1] — 1

arrayLocal[ ] = {MbDCLP[x][y][i][10], MbDCLP[x][y][i][14],
MbDCLP[x][y+1][i][2]. MbDCLP[x][y+1][i][6]}

OverlapPostFilter4(arrayLocal[ ])

9.9.8.2

MbDCLP[x][y][i][10] = arrayLocal[0]
MbDCLP[x][y][i][14] = arrayLocal[1]

MbDCLP[x][y+1][i][2] = arrayLocal[2]

MbDCLP[x][y+1][i][6] = arrayLocal[3]

arrayLocal[ ] = {MbDCLP[x][y][i][11], MbDCLP[x][y][il[15],
MbDCLP[x][y+1][i][4], MbDCLP[x][y+1][i][7]}

OverlapPostFilter4(arrayLocal[ ])

9.9.8.2

MbDCLP[x][y][i][11] = arrayLocal[0]

MbDCLP[x][y][i][15] = arrayLocal[1]

MbDCLP[x][y+1][i][4] = arrayLocal[2]

]
MbDCLP[x][y+1][i][7] = arrayLocal[3]

}

if (HARD_TILING_FLAG ==FALSE) && (Tx !=NumTileCols — 1) &&
(Ty == NumTileRows — 1)) { /* Bottom edge for soft tiles */

x = LeftMBIndexOfTile[Tx + 1] — 1

y = TopMBIndexOfTile[Ty + 1] — 1
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arrayLocal[ ] = {MbDCLP[x][y][i][10], MbDCLP[x][y][il[11],
MbDCLP[x+1][y][i][8], MbDCLP[x+1][y][i][9]}

OverlapPostFilter4(arrayLocal[ ]) 9.9.8.2
MbDCLP[x][y][i][10] = arrayLocal[0]
MbDCLP[x][y][i][11] = arrayLocal[1]
MbDCLP[x+1][y][i][8] = arrayLocal[2]
MbDCLP[x+1][y][i][9] = arrayLocal[3]
arrayLocal[ | = {MbDCLP[x][y][i][14], MbDCLP[x][y][i][15],
MbDCLP[x+1][y][i][12], MbDCLP[x+1][y][i][13]}
OverlapPostFilter4(arrayLocal[ ]) 9.9.8.2
MbDCLP[x][y][i][14] = arrayLocal[0]
MbDCLP[x][y][i][15] = arrayLocal[1]
MbDCLP[x+1][y][i][12] = arrayLocal[2]
MbDCLP[x+1][y][i][13] = arrayLocal[3]
}
}
H
9.9.3.3 FirstLevelOverlapFilteringd22( )
Pseudocode for the function FirstLevelOverlapFiltering422( ) is specified in Table 154.
Table 154 — Pseudocode for function FirstL evelOverlapFiltering422()
FirstL evelOverlapFiltering422(i) { Reference
for (Ty = 0; Ty <= (NumTileRows — 1); Ty ++) {
if ((Ty==0) || (HARD TILING FLAG == TRUE)) { /* Top edge */
/* OverlapPostFilter] */
y = TopMBIndexOfTile[Ty]
MbDCLP[LeftMBIndexOfTile[0]][y][i][0] —= MbDCLP[LeftMBIndexOfTile[0]][y][i][1]
/* Upper left corner difference */
MbDCLP[LeftMBIndexOfTile[NumTileCols] — 1][y][i][1] —=
MbDCLP[LeftMBIndexOfTile[NumTileCols] — 1][y][i][0] /* Upper right corner difference */
if (HARD TILING FLAG ==TRUE)
for (Tx = 1; Tx <(NumTileCols — 1); Tx++) {
MbDCLP[LeftMBIndexOfTile[Tx]][y][i][0] —= MbDCLP[LeftMBIndexOfTile[ Tx]][y][i][1]
MbDCLP[LeftMBIndexOfTile[Tx] — 1][y][i][1] —=
MbDCLP[LeftMBIndexOfTile[Tx] — 1][y][i][0]
}
}
if ((Ty == NumTileRows — 1) | | (HARD TILING FLAG == TRUE)) { /* Bottom edge */
/* OverlapPostFilter] */
y = TopMBIndexOfTile[Ty + 1] — 1
MbDCLP[LeftMBIndexOfTile[0]][y][i][6] —= MbDCLP[LeftMBIndexOfTile[0]][y][i][7]
/* Bottom left corner difference */
MbDCLP[LeftMBIndexOfTile[NumTileCols] — 1][y][i][7] —=
MbDCLP[LeftMBIndexOfTile[NumTileCols] — 1][y][i][6] /* Bottom right corner difference */
if (HARD TILING FLAG == TRUE)
for (Tx = 1; Tx <(NumTileCols — 1); Tx++) {
MbDCLP[LeftMBIndexOfTile[Tx]][y][i][6] —= MbDCLP[LeftMBIndexOfTile[Tx]][y][i][7]
MbDCLP[LeftMBIndexOfTile[Tx] — 1][y][i][7] —=
MbDCLP[LeftMBIndexOfTile[Tx] — 1][y][i][6]
}
}
for (Tx = 0; Tx <= (NumTileCols — 1); Tx++) {
for (y = TopMBIndexOfTile[Ty]; y <= (TopMBIndexOfTile[Ty + 1] — 1); y++)
for (x = LeftMBIndexOfTile[Tx]; x <= (LeftMBIndexOfTile[Tx + 1] — 2); x++) {
arrayLocal[ | = {MbDCLP[x][y][i][3], MbDCLP[x+1][y][il[2],
MbDCLP[x][y][i][5], MbDCLP[x+1][y][i][4]}
OverlapPostFilter2x2(arrayLocal[ ]) 9.9.8.3

MbDCLP[x][y][i][3] = arrayLocal[0]

MbDCLP[x+1][y][i][2] = arrayLocal[1]

MbDCLP[x][y][i][5] = arrayLocal[2]
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MbDCLP[x+1][y][i][4] = arrayLocal[3]

if (y = (TopMBIndexOfTile[Ty + 1] — 1)) {

arrayLocal[ ] = {MbDCLP[x][y][i][7], MbDCLP[x+1][y][i][6],
MbDCLP[x][y+1][i][1], MbDCLP[x+1][y+1][i][0]}

OverlapPostFilter2x2(arrayLocal[ ])

9.9.8.3

MbDCLP[x][y][i][7] = arrayLocal[0]

MbDCLP[x+1][y][i][6] = arrayLocal[1]

MbDCLP[x][y+1][i][1] = arrayLocal[2]

MbDCLP[x+1][y+1][i][0] = arrayLocal[3]

;

}

if (Tx==0) || (HARD TILING FLAG == TRUE)) { /* Left edge */

x = LeftMBIndexOfTile[Tx]

for (y = TopMBIndexOfTile[Ty]; y <= (TopMBIndexOfTile[Ty + 1] — 1); y++) {

arrayLocal[ ] = {MbDCLP[x][y][i][2], MbDCLP[x][yl[il[4]}

OverlapPostFilter2(arrayLocal[ ])

9.9.8.4

MbDCLP[x][y][i][2] = arrayLocal[0]

MbDCLP[x][y][i][4] = arrayLocal[1]

if (y != (TopMBIndexOfTile[Ty + 1] — 1)) {

arrayLocal[ ] = {MbDCLP[x][y][i][6], MbDCLP[x][y+1][i][0]}

OverlapPostFilter2(arrayLocal[ ])

9.9.8.4

MbDCLP[x][y][i][6] = arrayLocal[0]

MbDCLP[x][y+1][i][0] = arrayLocal[ 1]

H

}

}

if (Tx == NumTileCols — 1) | | (HARD TILING FLAG = = TRUE)) { /* Right edge */

x = LeftMBIndexOfTile[Tx + 1] — 1

for (y = TopMBIndexOfTile[Ty]; y <= (TopMBIndexOfTile[ Ty + 1] — 1); y++) {

arrayLocal[ ] = {MbDCLP[x][y][i][3], MbDCLP[x][yI[il[5]}

OverlapPostFilter2(arrayLocal[ ])

9.9.8.4

MbDCLP[x][y][i][3] = arrayLocal[0]

MbDCLP[x][y][i][5] = arrayLocal[ 1

]
if (y = (TopMBIndexOfTile[Ty + 1] — 1)) {

arrayLocal[ ] = {MbDCLP[x][y][i][7], MbDCLP[x][y+1][i][1]}

OverlapPostFilter2(arrayLocal[ ])

9.9.8.4

MbDCLP[x][y][i][7] = arrayLocal[0]

MbDCLP[x][y+1][i][1] = arrayLocal[1]

;

}

}

if (Ty ==0) || (HARD TILING FLAG == TRUE)) { /* Top edge */

y = TopMBIndexOfTile[Ty]

for (x = LeftMBIndexOfTile[Tx]; x <= (LeftMBIndexOfTile[Tx + 1] — 2); x++) {

arrayLocal[ ] = {MbDCLP[x][y][i][1], MbDCLP[x+1][y][i][0]}

OverlapPostFilter2(arrayLocal[ ])

9.9.8.4

MbDCLP[x][y][i][1] = arrayLocal[0]

MbDCLP[x+1][y][i][0] = arrayLocal[1]

}

}

if ((Ty == NumTileRows — 1) | | (HARD TILING FLAG == TRUE)) { /* Bottom edge */

y = TopMBIndexOfTile[Ty + 1] — 1

for (x = LeftMBIndexOfTile[Tx]; x <= (LeftMBIndexOfTile[Tx + 1] — 2); x++) {

arrayLocal[ ] = {MbDCLP[x][y][i][7], MbDCLP[x+1][y][i][6]}

OverlapPostFilter2(arrayLocal[ ])

9.9.8.4

MbDCLP[x][y][i][7] = arrayLocal[0]

MbDCLP[x+1][y][i][6] = arrayLocal[1]

}

}

if (HARD_TILING_FLAG ==FALSE) && (Tx != NumTileCols — 1)) {
/* Right across for soft tiles */

x = LeftMBIndexOfTile[Tx + 1] — 1

for (y = TopMBIndexOfTile[Ty]; y <= (TopMBIndexOfTile[Ty + 1] — 2); y++) {

arrayLocal[ ] = {MbDCLP[x][y][i][3], MbDCLP[x+1][y][i][2],
MbDCLP[x][y][i][5], MbDCLP[x+1][y][i][4]}
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OverlapPostFilter2x2(arrayLocal[ ]) 9.9.8.3

MbDCLP[x][y][i][3] = arrayLocal[0]

MbDCLP[x+1][y][i][2] = arrayLocal[1]

MbDCLP[x][y][i][5] = arrayLocal[2]

MbDCLP[x+1][y][i][4] = arrayLocal[3]

arrayLocal[ ] = {MbDCLP[x][y][i][7], MbDCLP[x+1][y][i][6],
MbDCLP[x][y+1][i][1], MbDCLP[x+1][y+1][i][0]}

OverlapPostFilter2x2(arrayLocal[ ]) 9.9.8.3

MbDCLP[x][y][i][7] = arrayLocal[0]

MbDCLP[x+1][y][i][6] = arrayLocal[1]

MbDCLP[x][y+1][i][1] = arrayLocal[2]

MbDCLP[x+1][y+1][i][0] = arrayLocal[3]

}

;

if (HARD_TILING FLAG = =FALSE) && (Ty !=NumTileRows — 1)) {
/* Bottom across for soft tiles */

y = TopMBIndexOfTile[Ty + 1] — 1

for (x = LeftMBIndexOfTile[Tx]; x <= (LeftMBIndexOfTile[Tx + 1] — 2); x++) {

arrayLocal[ ] = {MbDCLP[x][y][i][3], MbDCLP[x+1][y][i][2],
MbDCLP[x][y][i][5], MbDCLP[x+1][y][i][4]}

OverlapPostFilter2x2(arrayLocal[ ]) 9.9.8.3

MbDCLP[x][y][i][3] = arrayLocal[0]

MbDCLP[x+1][y][i][2] = arrayLocal[1]

MbDCLP[x][y][i][5] = arrayLocal[2]

MbDCLP[x+1][y][i][4] = arrayLocal[3]

arrayLocal[ ] = {MbDCLP[x][y][i][7], MbDCLP[x+1][y][i][6],
MbDCLP[x][y+1][i][1], MbDCLP[x+1][y+1][i][0]}

OverlapPostFilter2x2(arrayLocal[ ]) 9.9.8.3

MbDCLP[x][y][i][7] = arrayLocal[0]

MbDCLP[x+1][y][i][6] = arrayLocal[1]

MbDCLP[x][y+1][i][1] = arrayLocal[2]

MbDCLP[x+1][y+1][i][0] = arrayLocal[3]

}

}

if (HARD_TILING_FLAG == FALSE) && (Tx != NumTileCols — 1) &&
(Ty !=NumTileRows — 1)) {

x = LeftMBIndexOfTile[Tx + 1] — 1

y = TopMBIndexOfTile[Ty + 1] — 1

arrayLocal[ ] = {MbDCLP[x][y][i][3], MbDCLP[x+1][y][i][2],
MbDCLP[x][y][i][5], MbDCLP[x+1][y][i][4]}

OverlapPostFilter2x2(arrayLocal[ ]) 9.9.8.3

MbDCLP[x][y][i][3] = arrayLocal[0]

MbDCLP[x+1][y][i][2] = arrayLocal[1]

MbDCLP[x][y][i][5] = arrayLocal[2]

MbDCLP[x+1][y][i][4] = arrayLocal[3]

arrayLocal[ ] = {MbDCLP[x][y][i][7], MbDCLP[x+1][y][i][6],
MbDCLP[x][y+1][i][1], MbDCLP[x+1][y+1][i][0]}

OverlapPostFilter2x2(arrayLocal[ ]) 9.9.8.3

MbDCLP[x][y][i][7] = arrayLocal[0]

MbDCLP[x+1][y][i][6] = arrayLocal[1]

MbDCLP[x][y+1][i][1] = arrayLocal[2]

MbDCLP[x+1][y+1][i][0] = arrayLocal[3]

}

if (HARD TILING FLAG == FALSE) && (Tx = = 0) && (Ty != NumTileRows — 1)) {

x = LeftMBIndexOfTile[ Tx]

y = TopMBIndexOfTile[Ty + 1] — 1

arrayLocal[ ] = {MbDCLP[x][y][i][2], MbDCLP[x][y][i][4]}

OverlapPostFilter2(arrayLocal[ ]) 9.9.8.4

MbDCLP[x][y][i][2] = arrayLocal[0

]
MbDCLP[x][y][i][4] = arrayLocal[1]

arrayLocal[ ] = {MbDCLP[x][y][i][6], MbDCLP[x][y+1][i][0]}

OverlapPostFilter2(arrayLocal[ ]) 9.9.8.4

MbDCLP[x][y][i][6] = arrayLocal[0]

MbDCLP[x][y+1][i][0] = arrayLocal[1]

}

if (HARD TILING FLAG == FALSE) && (Tx = = NumTileCols — 1) &&
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(Ty !=NumTileRows — 1)) {

x = LeftMBIndexOfTile[Tx + 1] — 1

y = TopMBIndexOfTile[Ty + 1] — 1

arrayLocal[ ] = {MbDCLP[x][y][i][3], MbDCLP[x][y][i][5]}

OverlapPostFilter2(arrayLocal[ ])

9.9.8.4

MbDCLP[x][y][i][3] = arrayLocal[0]

MbDCLP[x][y][i][5] = arrayLocal[1]

arrayLocal[ ] = {MbDCLP[x][y][i][7], MbDCLP[x][y+1][i][1]}

OverlapPostFilter2(arrayLocal[ ])

9.9.8.4

MbDCLP[x][y][i][7] = arrayLocal[0]

MbDCLP[x][y+1][i][1] = arrayLocal[ 1]

}

if (HARD TILING FLAG == FALSE) && (Tx != NumTileCols — 1) && (Ty ==0)) {

x = LeftMBIndexOfTile[Tx + 1] — 1

y = TopMBIndexOfTile[Ty]

arrayLocal[ ] = {MbDCLP[x][y][i][1], MbDCLP[x+1][y][i][0]}

OverlapPostFilter2(arrayLocal[ ])

9.9.8.4

MbDCLP[x][y][i][1] = arrayLocal[0]

MbDCLP[x+1][y][i][0] = arrayLocal[1]

}

if (HARD_TILING_FLAG == FALSE) && (Tx != NumTileCols — 1) &&
(Ty == NumTileRows — 1)) {

x = LeftMBIndexOfTile[Tx + 1] — 1
y = TopMBIndexOfTile[Ty + 1] — 1

arrayLocal[ ] = {MbDCLP[x][y][i][7], MbDCLP[x+1][y][i][6]}

OverlapPostFilter2(arrayLocal[ ])

9.9.8.4

MbDCLP[x][y][i][7] = arrayLocal[0]

MbDCLP[x+1][y][i][6] = arrayLocal[1]

}

}

if (Ty==0) || (HARD TILING FLAG == TRUE)) { /*Top edge */

/* OverlapPostFilter] */

y = TopMBIndexOfTile[Ty]

MbDCLP[LeftMBIndexOfTile[0]][y][i][0] += MbDCLP[LeftMBIndexOfTile[0]][y][i][1]
/* Upper left corner addition */

MbDCLP[LeftMBIndexOfTile[NumTileCols] — 1][y][i][1] +=
MbDCLP[LeftMBIndexOfTile[NumTileCols] — 1][y][i][0] /* Upper right corner addition */

if (HARD TILING FLAG == TRUE)

for (Tx = 1; Tx <(NumTileCols — 1); Tx++) {

MbDCLP[LeftMBIndexOfTile[ Tx]][y][i][0] += MbDCLP[LeftMBIndexOfTile[ Tx]][y][il[1]

MbDCLP[LeftMBIndexOfTile[Tx] — 1][y][i][1] +=
MbDCLP[LeftMBIndexOfTile[Tx] — 1][y][i][0]

}

}

if ((Ty ==NumTileRows — 1) | | (HARD TILING FLAG ==TRUE)) { /* Bottom edge */

/* OverlapPostFilter] */

y = TopMBIndexOfTile[Ty + 1] — 1

MbDCLP[LeftMBIndexOfTile[0]][y][i][6] += MbDCLP[LeftMBIndexOfTile[0]][y][i][7]
/* Bottom left corner addition */

MbDCLP[LeftMBIndexOfTile[NumTileCols] — 1][y][i][7] +=
MbDCLP[LeftMBIndexOfTile[NumTileCols] — 1][y][i][6] /* Bottom right corner addition */

if (HARD TILING FLAG == TRUE)

for (Tx = 1; Tx <(NumTileCols — 1); Tx++) {

MbDCLP[LeftMBIndexOfTile[ Tx]][y][i][6] += MbDCLP[LeftMBIndexOfTile[ Tx]I[y][il[7]

MbDCLP[LeftMBIndexOfTile[Tx] — 1][y][i][7] +=
MbDCLP[LeftMBIndexOfTile[Tx] — 1][y][i][6]

Rec. ITU-T T.832 (01/2012)

117



9.9.3.4 FirstLevelOverlapFiltering420()
Pseudocode for the function FirstLevelOverlapFiltering420( ) is specified in Table 155.

Table 155 — Pseudocode for function FirstL evelOverlapFiltering420( )

FirstL evelOverlapFiltering420(i) {

Reference

for (Ty = 0; Ty <= (NumTileRows — 1); Ty ++) {

if (Ty ==0) || (HARD TILING FLAG == TRUE)) { /* Top edge */

/* OverlapPostFilter] */

y = TopMBIndexOfTile[Ty]

MbDCLP[LeftMBIndexOfTile[0]][y][i][0] —= MbDCLP[LeftMBIndexOfTile[0]][y][i][1]
/* Upper left corner difference */

MbDCLP[LeftMBIndexOfTile[NumTileCols] — 1][y][i][1] —=
MbDCLP[LeftMBIndexOfTile[NumTileCols] — 1][y][i][0] /* Upper right corner difference */

if (HARD TILING FLAG = = TRUE)

for (Tx = 1; Tx < (NumTileCols — 1); Tx++) {

MbDCLP[LeftMBIndexOfTile[ Tx]][y][i][0] == MbDCLP[LeftMBIndexOfTile[ Tx][y][il[1]

MbDCLP[LeftMBIndexOfTile[Tx] — 1][y][il[1] —=
MbDCLP[LeftMBIndexOfTile[Tx] — 1][y][i][0]

;

}

if (Ty = = NumTileRows — 1) || (HARD TILING FLAG = = TRUE)) { /* Bottom edge */

/* OverlapPostFilter1 */

y = TopMBIndexOfTile[Ty + 1] — 1

MbDCLP[LeftMBIndexOfTile[0]][y][i][2] —= MbDCLP[LeftMBIndexOfTile[0]][y][i][3]
/* Bottom left corner difference */

MbDCLP[LeftMBIndexOfTile[NumTileCols] — 1][y][i][3] —=
MbDCLP[LeftMBIndexOfTile[NumTileCols] — 1][y][i][2] /* Bottom right corner difference */

if (HARD _TILING _FLAG ==TRUE)

for (Tx = 1; Tx < (NumTileCols — 1); Tx++) {

MbDCLP[LeftMBIndexOfTile[Tx]][y][i][2] == MbDCLP[LefiMBIndexOfTile[ Tx]][y][i][3]

MbDCLP[LeftMBIndexOfTile[Tx] — 1][y][i][3] —=
MbDCLP[LeftMBIndexOfTile[Tx] — 1][y][i][2]

;

}

for (Tx = 0; Tx <= (NumTileCols — 1); Tx++) {

for (y = TopMBIndexOfTile[Ty]; y <= (TopMBIndexOfTile[Ty + 1] — 2); y++)

for (x = LeftMBIndexOfTile[Tx]; x <= (LeftMBIndexOfTile[Tx + 1] — 2); x++) {

arrayLocal[ ] = {MbDCLP[x][y][i][3], MbDCLP[x+1][y][i][2],
MbDCLP[x][y+1][i][1], MbDCLP[x+1][y+1][i][0]}

OverlapPostFilter2x2(arrayLocal[ ])

9.9.8.3

MbDCLP[x][y][i][3] = arrayLocal[0]

MbDCLP[x+1][y][i][2] = arrayLocal[1]

MbDCLP[x][y+1][i][1] = arrayLocal[2]

MbDCLP[x+1][y+1][i][0] = arrayLocal[3]

}

if (Tx ==0) || (HARD TILING FLAG = = TRUE)) { /* Left edge */

x = LeftMBIndexOfTile[ Tx]

for (y = TopMBIndexOfTile[Ty]; y <= (TopMBIndexOfTile[ Ty + 1] — 2); y++) {

arrayLocal[ ] = {MbDCLP[x][y][i][2], MbDCLP[x][y+1][i][0]}

OverlapPostFilter2(arrayLocal[ ])

9.9.8.4

MbDCLP[x][y][i][2] = arrayLocal[0]

MbDCLP[x][y+1][i][0] = arrayLocal[1]

H
}

if (Tx == NumTileCols — 1) | | (HARD TILING FLAG == TRUE)) { /* Right edge */

x = LeftMBIndexOfTile[Tx + 1] — 1

for (y = TopMBIndexOfTile[Ty]; y <= (TopMBIndexOfTile[ Ty + 1] — 2); y++) {

arrayLocal[ ] = {MbDCLP[x][y][i][3], MbDCLP[x][y+ ][i][1]}

OverlapPostFilter2(arrayLocal[ ])

9.9.8.4

MbDCLP[x][y][i][3] = arrayLocal[0]

MbDCLP[x][y+1][i][1] = arrayLocal[1]

;

}

if (Ty ==0) || (HARD TILING FLAG == TRUE)) { /* Top edge */
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y = TopMBIndexOfTile[Ty]

for (x = LeftMBIndexOfTile[Tx]; x <= (LeftMBIndexOfTile[Tx + 1] — 2); x++) {

arrayLocal[ ] = {MbDCLP[x][y][i][1], MbDCLP[x+1][y][i][0]}

OverlapPostFilter2(arrayLocal[ ]) 9.9.8.4

MbDCLP[x][y][i][1] = arrayLocal[0]

MbDCLP[x+1][y][i][0] = arrayLocal[1]

}

}

if (Ty == NumTileRows — 1) || (HARD TILING FLAG == TRUE)) { /* Bottom edge */

y = TopMBIndexOfTile[Ty + 1] — 1

for (x = LeftMBIndexOfTile[Tx]; x <= (LeftMBIndexOfTile[Tx + 1] — 2); x++) {

arrayLocal[ ] = {MbDCLP[x][y][i][3], MbDCLP[x+1][y][i][2]}

OverlapPostFilter2(arrayLocal[ ]) 9.9.8.4

MbDCLP[x][y][i][3] = arrayLocal[0]

MbDCLP[x+1][y][i][2] = arrayLocal[1]

}

}

if (HARD_TILING_FLAG ==FALSE) && (Tx !=NumTileCols — 1)) {
/* Right across for soft tiles */

x = LeftMBIndexOfTile[Tx + 1] — 1

for (y = TopMBIndexOfTile[Ty]; y <= (TopMBIndexOfTile[ Ty + 1] — 2); y++) {

arrayLocal[ | = {MbDCLP[x][y][i][3], MbDCLP[x+1][y][il[2],
MbDCLP[x][y+1][i][1], MbDCLP[x+1][y+1][i][0]}

OverlapPostFilter2x2(arrayLocal[ ]) 9.9.8.3

MbDCLP[x][y][i][3] = arrayLocal[0]

MbDCLP[x+1][y][i][2] = arrayLocal[ 1]

MbDCLP[x][y+1][i][1] = arrayLocal[2]

MbDCLP[x+1][y+1][i][0] = arrayLocal[3]

}

}

if (HARD_TILING FLAG ==FALSE) && (Ty !=NumTileRows — 1)) {
/* Bottom across for soft tiles */

y = TopMBIndexOfTile[Ty + 1] — 1

for (x = LeftMBIndexOfTile[Tx]; x <= (LeftMBIndexOfTile[Tx + 1] — 2); x++) {

arrayLocal[ ] = {MbDCLP[x][y][i][3], MbDCLP[x+1][y][i][2],
MbDCLP[x][y+1][i][1], MbDCLP[x+1][y+1][i][0]}

OverlapPostFilter2x2(arrayLocal[ ]) 9.9.8.3

MbDCLP[x][y][i][3] = arrayLocal[0]

MbDCLP[x+1][y][i][2] = arrayLocal[ 1]

MbDCLP[x][y+1][i][1] = arrayLocal[2]

MbDCLP[x+1][y+1][i][0] = arrayLocal[3]

H

}

if (HARD_TILING FLAG ==FALSE) && (Tx !=NumTileCols — 1) &&
(Ty !=NumTileRows — 1)) {

x = LeftMBIndexOfTile[Tx + 1] — 1
y = TopMBIndexOfTile[Ty + 1] — 1

arrayLocal[ ] = {MbDCLP[x][y][i][3], MbDCLP[x+1][y][i][2],
MbDCLP[x][y+1][i][1], MbDCLP[x+1][y+1][i][0]}

OverlapPostFilter2x2(arrayLocal[ ]) 9.9.8.3

MbDCLP[x][y][i][3] = arrayLocal[0]

MbDCLP[x+1][y][i][2] = arrayLocal[ 1]

MbDCLP[x][y+1][i][1] = arrayLocal[2]

MbDCLP[x+1][y+1][i][0] = arrayLocal[3]

}

if (HARD TILING FLAG == FALSE) && (Tx == 0) && (Ty != NumTileRows — 1)) {

x = LeftMBIndexOfTile[Tx]

y = TopMBIndexOfTile[Ty + 1] — 1

arrayLocal[ ] = {MbDCLP[x][y][i][2], MbDCLP[x][y+1][i][0]}

OverlapPostFilter2(arrayLocal[ ]) 9.9.8.4

MbDCLP[x][y][i][2] = arrayLocal[0]

MbDCLP[x][y+1][i][0] = arrayLocal[ 1]

}

if (HARD_TILING FLAG == FALSE) && (Tx == NumTileCols — 1) &&
(Ty !=NumTileRows — 1)) {

x = LeftMBIndexOfTile[Tx + 1] — 1
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y = TopMBIndexOfTile[Ty + 1] — 1

arrayLocal[ ] = {MbDCLP[x][y][i][3], MbDCLP[x][y+ ][i][1]}

OverlapPostFilter2(arrayLocal[ ])

9.9.8.4

MbDCLP[x][y][i][3] = arrayLocal[0]

MbDCLP[x][y+1][i][1] = arrayLocal[1]

}

if (HARD TILING FLAG = = FALSE) && (Tx != NumTileCols — 1) && (Ty == 0)) {

x = LeftMBIndexOfTile[Tx + 1] — 1

y = TopMBIndexOfTile[Ty]

arrayLocal[ ] = {MbDCLP[x][y][i][1], MbDCLP[x+1][y][i][0]}

OverlapPostFilter2(arrayLocal[ ])

9.9.8.4

MbDCLP[x][y][i][1] = arrayLocal[0]

MbDCLP[x+1][y][i][0] = arrayLocal[ 1]

}

if (HARD_TILING_FLAG ==FALSE) && (Tx !=NumTileCols — 1) &&
(Ty == NumTileRows — 1)) {

x = LeftMBIndexOfTile[Tx + 1] — 1

y = TopMBIndexOfTile[Ty + 1] — 1

arrayLocal[ ] = {MbDCLP[x][y][i][3], MbDCLP[x+1][yl[il[2]}

OverlapPostFilter2(arrayLocal[ ])

9.9.8.4

MbDCLP[x][y][i][3] = arrayLocal[0]

MbDCLP[x+1][y][i][2] = arrayLocal[1]

}
}

if ((Ty ==0) || (HARD TILING FLAG == TRUE)) { /*Top edge */

/* OverlapPostFilter] */

y = TopMBIndexOfTile[Ty]

MbDCLP[LeftMBIndexOfTile[0]][y][i][0] += MbDCLP[LeftMBIndexOfTile[0]][y][i][1]
/* Upper left corner addition */

MbDCLP[LeftMBIndexOfTile[NumTileCols] — 1][y][i][1] +=
MbDCLP[LeftMBIndexOfTile[NumTileCols] — 1][y][i][0] /* Upper right corner addition */

if (HARD TILING_FLAG ==TRUE)

for (Tx = 1; Tx <(NumTileCols — 1); Tx++) {

MbDCLP[LeftMBIndexOfTile[ Tx]][y][i][0] += MbDCLP[LeftMBIndexOfTile[ Tx]][y][il[1]

MbDCLP[LeftMBIndexOfTile[Tx] — 1][y][i][1] =
MbDCLP[LeftMBIndexOfTile[Tx] — 1][y][i][0]

}
}

if (Ty == NumTileRows — 1) || (HARD TILING FLAG == TRUE)) { /* Bottom edge */

/* OverlapPostFilter] */

y = TopMBIndexOfTile[Ty + 1] — 1

MbDCLP[LeftMBIndexOfTile[0]][y][i][2] += MbDCLP[LeftMBIndexOfTile[0]][y][i][3]
/* Bottom left corner addition */

MbDCLP[LeftMBIndexOfTile[NumTileCols] — 1][y][i][3] +=
MbDCLP[LeftMBIndexOfTile[NumTileCols] — 1][y][i][2] /* Bottom right corner addition */

if (HARD TILING_FLAG ==TRUE)

for (Tx = 1; Tx <(NumTileCols — 1); Tx++) {

MbDCLP[LeftMBIndexOfTile[ Tx]][y][i][2] += MbDCLP[LeftMBIndexOfTile[ Tx]][y][il[3]

MbDCLP[LeftMBIndexOfTile[Tx] — 1][y][i][3] =
MbDCLP[LeftMBIndexOfTile[Tx] — 1][y][i][2]
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9.9.35 FirstLevelCallOverlapPostFilter x4x4( )
Pseudocode for the function FirstLevelCallOverlapPostFilter4x4( ) is specified in Table 156.

Table 156 — Pseudocode for function FirstL evel CallOverlapPostFilter 4x4( )

FirstL evelCallOverlapPostFilter 4xA(i, X, y) {

Reference

arrayLocal[ ] = {MbDCLP[x][y][i][10], MbDCLP[x][y][i][11],
MbDCLP[x+1][y][i][8], MbDCLP[x+1][y][i][9],
MbDCLP[x][y][i][14], MbDCLP[x][y][il[15],
MbDCLP[x+1][y][i][12], MbDCLP[x+11[y][i][13],
MbDCLP[x][y+1][i][2], MbDCLP[x][y+1][i][3],
MbDCLP[x+1][y+1][i][0], MbDCLP[x+1][y+1][i][1],
MbDCLP[x][y+1][i][6], MbDCLP[x][y+1][i][ 7],
MbDCLP[x+1][y+1][i][4], MbDCLP[x+1][y+1][i][5]}

OverlapPostFilter4x4(arrayLocal[ ])

9.9.8.1

MbDCLP[x][y][i][10] = arrayLocal[0]

MbDCLP[x][y][i][11] = arrayLocal[1]

MbDCLP[x+1][y][i][8] = arrayLocal[2]

]
MbDCLP[x+1][y][i][9] = arrayLocal[3]

MbDCLP[x][y][i][14] = arrayLocal[4]

[1]
MbDCLP[x][y][i][15] = arrayLocal[5]

MbDCLP[x+1][y][i][12] = arrayLocal[6]
MbDCLP[x+1][y][i][13] = arrayLocal[7]

MbDCLP[x][y+1][i][2] = arrayLocal[§]

MbDCLP[x][y+1][i][3] = arrayLocal[9]

MbDCLP[x+1][y+1][i][0] = arrayLocal[10]
MbDCLP[x+1][y+1][i][1] = arrayLocal[11]

MbDCLP[x][y+1][i][6] = arrayLocal[12]

6]
MbDCLP[x][y+1][i][7] = arrayLocal[13]

MbDCLP[x+1][y+1][i][4] = arrayLocal[ 14]
MbDCLP[x+1][y+1][i][5] = arrayLocal[15]

994  Second level coefficient combination

NOTE - At this point in the process, the DC-LP array coefficients have gone through the first-level transform and overlap
filtering. The DC-LP array coefficients and the HP coefficients are then combined in an image plane represented by the values
ImagePlane[i][x][y], where the color component is specified by i, and x and y mark the location of the sample in the image plane.

Inputs to this process are the values MbDCLP[MBx][MBYy][i][j], and MBBuffer[MBx][MBy][i][j], for the current

macroblock.

Outputs to this process are the values of ImagePlane[i][x][y], for the current macroblock.

The second level coefficient combination process proceeds as in Table 157.
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Table 157 — Pseudocode for function SecondL evel CoefficientCombination( )

SecondL evel CoefficientCombination( ) {

Reference

for (i = 0; i < NumComponents; i++) {

for (MBy = 0; MBy < MBHeight; MBy++)

for (MBx = 0; MBx < MBWidth; MBx++)

if (i==0) || (INTERNAL_CLR_FMT != YUV420) &&
(INTERNAL CLR FMT != YUV422))) {

for j=0;j <= 15;j++) {

x=16*MBx+4*({1%4)

y=16*MBy +4*(j/4)

ImagePlane[i][x][y] = MbDCLP[MBx][MBy][i][j]

}

for (j = 0; j <= 255; j++) {

Xx=16*MBx+4* ((j/16) % 4) + (j % 4)

y=16*MBy+4*(G/64)+((/H %4

k=% 16

if (k !=0) /* only the HP coefficients are copied */

ImagePlanel[i][x][y] = MBBuffer[MBx][MBy][i][j]

}

} else if INTERNAL CLR FMT = = YUV422) {

for(G=0;j<=7;j+) {

X=8*MBx+4*(j%2)

y=16*MBy + 4 * (j/2)

ImagePlane[i][x][y] = MbDCLP[MBx][MBy][i][j]

}

for =0;j <=127; j++) {

x=8*MBx+4*((j%32)/16)+((%32)%4)

y=16* MBy +4 *(j/32) + ((/4) % 4)

k=j%16

if (k = 0) /* only the HP coefficients are copied */

ImagePlane[i][x][y] = MBBufferfMBx][MBy][i][j]

H

} else if INTERNAL CLR_FMT = = YUV420) {

forG=0;j<=3;j+) {

Xx=8*MBx+4*(j%2)

y=8*MBy +4*(i/2)

ImagePlane[i][x][y] = MbDCLP[MBx][MBy][i][j]

1

J
for j=0;j <= 63; j++) {

Xx=8* MBx +4* (% 32)/16) + ((j % 32) % 4)

y=8*MBy +4*(j/32)+((j/4) % 4)

k=% 16

if (k = 0) /* only the HP coefficients are copied */

ImagePlane[i][x][y] = MBBuffer]MBx][MBy][i][j]

[—~

9.9.5 Second level inversetransform
Inputs to this process are the values ImagePlane[i][x][y] for the entire image plane.
Outputs to this process are the modified values ImagePlane[i][x][y] for the current macroblock.

The second level inverse transform process is specified as in Table 158.
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Table 158 — Pseudocode for function SecondL evell nver seTransform()

SecondL evell nverseTransform() {

Reference

for (i = 0; i < NumComponents; i++)

for (x = 0; x < ExtendedWidth[i]; x +=4)

for (y = 0; y < ExtendedHeight[i]; y +=4) {

ImagePlane[i][x+2][y], ImagePlane[i][x+3][y],

ImagePlane[i][x][y+1], ImagePlane[i][x+1][y+1],
ImagePlane[i
ImagePlane[i
ImagePlane[i
ImagePlane[i
ImagePlane[i

[x][y+2], ImagePlane[i][x+1][y+2],

i][x][y+3], ImagePlane[i][x+1][y+3],

etk ot Rt et

arrayLocal[ ] = {ImagePlane[i][x][y], ImagePlane[i][x+1][y],

[x+2][y+1], ImagePlane[i][x+3][y+1],
[x+2][y+2], ImagePlane[i][x+3][y+2],

i][x+2][y+3], ImagePlane[i][x+3][y+3]}

1CT4x4(arrayLocal[ ])

9.9.7.1

ImagePlane[i][x][y] = arrayLocal[0]

1=
ImagePlanel[i][x+1][y] = arrayLocal[1]
]

[v]
ImagePlane[i][x+2][y] = arrayLocal[2]
ImagePlane[i][x+3][y] = arrayLocal[3]

ImagePlane[i][x][y+1] = arrayLocal[4]

ImagePlanel[i][x+1][y+1] = arrayLocal[5]

ImagePlane[i][x+2][y+1] = arrayLocal[6]

ImagePlane[i][x+3][y+1] = arrayLocal[7]

ImagePlanel[i][x+1][y+2] = arrayLocal[9]

ImagePlane[i][x+3][y+2] = arrayLocal[11]

ImagePlane[i][x][y+3] = arrayLocal[12]

ImagePlanel[i][x+1][y+3] = arrayLocal[13]

ImagePlane[i][x+2][y+3] = arrayLocal[14]

]
i]
1
1
]
]
]
ImagePlane[i][x][y+2] = arrayLocal[8]
]
]
]
]
J
]
]

[x
[
[
[
[
[
ImagePlane[i][x+2][y+2] = arrayLocal[10]
[
[
[
[
[

ImagePlane[i][x+3][y+3] = arrayLocal[ 15]

9.9.6  Second level overlap filtering

Inputs to this process are the values ImagePlane[i][x][y] for the entire image plane.

Outputs to this process are the modified values ImagePlane[i][x][y] for the entire image plane.

Outputs to this process are the modified values ImagePlane[i][x][y] for the current macroblock.
NOTE - The process specification below formalizes the geometric nature of the overlap filtering process. There are 4 cases:

(1) (interior): at every point in the image plane where 4 blocks meet in a corner, the 4x4 overlap filter is applied to the 4x4 block

straddling these 4 blocks evenly (i.e., overlapping with a 2x2 corner of each block).

(2) (top and bottom 2 rows): along both the top two sample rows and the bottom two sample rows of the image plane, the 4-point
overlap filter is applied evenly across adjacent block boundaries (overlapping with a 1x2 strip of each block).

(3) (right-most and left-most columns): along both the left-most two sample columns and the right-most two sample columns, the
4-point overlap filter is applied evenly across adjacent block boundaries (overlapping with a 2x1 strip of each block)

(4) (four corners of the image plane): over the corner 2x2 blocks in the top-left, top-right, bottom-left and bottom-right, the 4-
point overlap filter process is applied in a raster scan order (top-left, top-right, bottom-left, then bottom-right).

The second-level overlap filtering process is specified in Table 159.
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Table 159 — Pseudocode for function SecondL evel OverlapFiltering()

SecondL evel OverlapFiltering( ) {

Reference

for (i = 0; i < NumComponents; i++) {

if (i 1= 0) && (INTERNAL CLR FMT == YUV422) || INTERNAL CLR _FMT = = YUV420)))

dx =2

else

dx =1

if (i 1= 0) && (INTERNAL CLR FMT == YUV420))

dy=2

else

dy=1

for (Tx = 0; Tx <= (NumTileCols — 1); Tx++) {

for (Ty = 0; Ty <= (NumTileRows — 1); Ty++) {

for (x =16 * LeftMBIndexOfTile[Tx] / dx + 2; x < (16 * LeftMBIndexOfTile[Tx + 1]/ dx — 2);
x+=4)

for (y = 16 * TopMBIndexOfTile[Ty] / dy + 2; y < (16 * TopMBIndexOfTile[Ty + 1]/ dy — 2);
y+=4){

arrayLocal[ ] = {ImagePlane[i][x][y], ImagePlane[i][x+1][y],
ImagePlane[i][x+2][y], ImagePlane[i][x+3][y],
ImagePlane[i][x][y+1], ImagePlane[i][x+1][y+1],
ImagePlane[i][x+2][y+1], ImagePlane[i][x+3][y+1],
ImagePlane[i][x][y+2], ImagePlane[i][x+1][y+2],
]
]

=

r—|r—||—|r—|
—

ImagePlane[i][x+2][y+2], ImagePlane[i][x+3][y+2],
ImagePlane[i][x][y+3], ImagePlane[i][x+1][y+3],
ImagePlane[i][x+2][y+3], ImagePlane[i][x+3][y+3]}

—

OverlapPostFilter4x4(arrayLocal[ ])

9.9.8.1

ImagePlane[i][x][y] = arrayLocal[0]

ImagePlane[i][x+1][y] = arrayLocal[1]

]
ImagePlane[i][x+2][y] = arrayLocal[2]
ImagePlane[i][x+3][y] = arrayLocal[3]

ImagePlane[i][x][y+1] = arrayLocal[4]

ImagePlane[i][x+1][y+1] = arrayLocal[5]

ImagePlanel[i][x+2][y+1] = arrayLocal[6]

ImagePlane[i][x+3][y+1] = arrayLocal[7]

ImagePlane[i][x+1][y+2] = arrayLocal[9]

ImagePlanel[i][x+2][y+2] = arrayLocal[10]

ImagePlane[i][x+3][y+2] = arrayLocal[11]

ImagePlane[i][x][y+3] = arrayLocal[12]

ImagePlane[i][x+1][y+3] = arrayLocal[13]

ImagePlanel[i][x+2][y+3] = arrayLocal[14]

]
1l
1l
1[x
1
1l
Il
ImagePlane[i][x][y+2] = arrayLocal[8]
1
1l
Il
1
1
1l
Il

ImagePlane[i][x+3][y+3] = arrayLocal[15]

;

if (Tx==0) || (HARD TILING FLAG == TRUE)) { /* Left edge */

for (y = 16 * TopMBIndexOfTile[Ty] / dy + 2; y < (16 * TopMBIndexOfTile[Ty + 1] / dy — 2);
y+=4){

x =16 * LeftMBIndexOfTile[Tx] / dx

arrayLocal[ ] = {ImagePlane[i][x][y], ImagePlane[i][x][y+1],
ImagePlane[i][x][y+2], ImagePlane[i][x][y+3]}

OverlapPostFilter4(arrayLocall ])

9.9.8.2

ImagePlane[i][x][y] = arrayLocal[0]

ImagePlane[i][x][y+1] = arrayLocal[1]

ImagePlane[i][x][y+2] = arrayLocal[2]

ImagePlanel[i][x][y+3] = arrayLocal[3]

x =16 * LeftMBIndexOfTile[Tx] / dx + 1

arrayLocal[ ] = {ImagePlane[i][x][y], ImagePlane[i][x][y+1],
ImagePlane[i][x][y+2], ImagePlane[i][x][y+3]}

OverlapPostFilter4(arrayLocall ])

9.9.8.2

ImagePlane[i][x][y] = arrayLocal[0]

ImagePlane[i][x][y+1] = arrayLocal[1]

1[x]
ImagePlane[i][x][y+2] = arrayLocal[2]
ImagePlane[i][x][y+3] = arrayLocal[3]

}

}

if (Ty ==0) || (HARD TILING FLAG == TRUE)) { /* Top edge */
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for (x = 16 * LeftMBIndexOfTile[Tx] / dx + 2; x < (16 * LeftMBIndexOfTile[Tx + 1]/ dx — 2);
x+=4) {

y =16 * TopMBIndexOfTile[Ty] / dy

arrayLocal[ | = {ImagePlane[i][x][y], ImagePlane[i][x+1][y],
ImagePlane[i][x+2][y], ImagePlane[i][x+3][y]}

OverlapPostFilter4(arrayLocal[ ]) 9.9.8.2

ImagePlane[i][x][y] = arrayLocal[0]

ImagePlane[i][x+1][y] = arrayLocal[1]

ImagePlanel[i][x+2][y] = arrayLocal[2]

ImagePlane[i][x+3][y] = arrayLocal[3]

y =16 * TopMBIndexOfTile[Ty] / dy + 1

arrayLocal[ ] = {ImagePlane[i][x][y], ImagePlane[i][x+1][y],
ImagePlane[i][x+2][y], ImagePlane[i][x+3][y]}

OverlapPostFilter4(arrayLocal[ ]) 9.9.8.2

ImagePlane[i][x][y] = arrayLocal[0]

ImagePlane[i][x+1][y] = arrayLocal[1]

x40
ImagePlane[i][x+2][y] = arrayLocal[2]
ImagePlane[i][x+3][y] = arrayLocal[3]

;

}

if (Tx == NumTileCols — 1) | | ( HARD TILING FLAG ==TRUE)) { /* Right edge */

for (y = 16 * TopMBIndexOfTile[Ty] / dy + 2; y < (16 * TopMBIndexOfTile[Ty + 1]/ dy — 2);
yr=4{

x =16 * LeftMBIndexOfTile[Tx + 1]/ dx — 2

arrayLocal[ ] = { ImagePlane[i][x][y], ImagePlane[i][x][y+1],
ImagePlane[i][x][y+2], ImagePlane[i][x][y+3]}

OverlapPostFilter4(arrayLocal[ ]) 9.9.8.2

ImagePlane[i][x][y] = arrayLocal[0]

ImagePlane[i][x][y+1] = arrayLocal[ 1]

ImagePlanel[i][x][y+2] = arrayLocal[2]

ImagePlane[i][x][y+3] = arrayLocal[3]

x =16 * LeftMBIndexOfTile[Tx + 1] /dx — 1

arrayLocal[ ] = {ImagePlane[i][x][y], ImagePlane[i][x][y+1],
ImagePlane[i][x][y+2], ImagePlane[i][x][y+3]}

OverlapPostFilter4(arrayLocall ]) 9.9.8.2

ImagePlane[i][x][y] = arrayLocal[0]

ImagePlane[i][x][y+1] = arrayLocal[1]
i

11x]
ImagePlane[i][x][y+2] = arrayLocal[2]
ImagePlanel[i][x][y+3] = arrayLocal[3]

}

}

if ((Ty == NumTileRows — 1) | | (HARD TILING FLAG ==TRUE)) { /* Bottom edge */

for (x = 16 * LeftMBIndexOfTile[Tx] / dx + 2; x < (16 * LeftMBIndexOfTile[Tx + 1]/ dx — 2);
x+=4) {

y =16 * TopMBIndexOfTile[Ty + 1]/ dy — 2

arrayLocal[ ] = {ImagePlane[i][x][y], ImagePlane[i][x+1][y],
ImagePlane[i][x+2][y], ImagePlane[i][x+3][y]}

OverlapPostFilter4(arrayLocall ]) 9.9.8.2

ImagePlane[i][x][y] = arrayLocal[0]

ImagePlane[i][x+1][y] = arrayLocal[1]

ImagePlane[i][x+2][y] = arrayLocal[2]

ImagePlane[i][x+3][y] = arrayLocal[3]

y =16 * TopMBIndexOfTile[Ty + 1] /dy — 1

arrayLocal[ ] = {ImagePlane[i][x][y], ImagePlane[i][x+1][y],
ImagePlane[i][x+2][y], ImagePlane[i][x+3][y]}

OverlapPostFilter4(arrayLocal[ ]) 9.9.8.2

ImagePlane[i][x][y] = arrayLocal[0]

ImagePlane[i][x+1][y] = arrayLocal[1]

iJ[x+1][
ImagePlane[i][x+2][y] = arrayLocal[2]
ImagePlane[i][x+3][y] = arrayLocal[3]

}

}

if (Tx == 0) && (Ty = = 0)) | | (HARD TILING FLAG == TRUE)) { /* Top left edge */

x =16 * LeftMBIndexOfTile[Tx] / dx

y =16 * TopMBIndexOfTile[Ty] / dy

arrayLocal[ ] = {ImagePlane[i][x][y], ImagePlane[i][x+1][y],
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ImagePlane[i][x][y+1], ImagePlane[i][x+1][y+1]}

OverlapPostFilter4(arrayLocal[ ]) 9.9.8.2

ImagePlane[i][x][y] = arrayLocal[0]

ImagePlanel[i][x+1][y] = arrayLocal[1]

]
ImagePlane[i][x][y+1] = arrayLocal[2]
ImagePlane[i][x+1][y+1] = arrayLocal[3]

}

if (Tx = = NumTileCols — 1) && (Ty = = 0)) | | (HARD_TILING _FLAG = = TRUE)) {
/* Top right edge */

x =16 * LeftMBIndexOfTile[Tx + 1]/ dx — 2

y =16 * TopMBIndexOfTile[Ty] / dy

arrayLocal[ | = {ImagePlane[i][x][y], ImagePlane[i][x+1][y],
ImagePlane[i][x][y+1], ImagePlane[i][x+1][y+1]}

OverlapPostFilter4(arrayLocal[ ]) 9.9.8.2

ImagePlane[i][x][y] = arrayLocal[0]

ImagePlane[i][x+1][y] = arrayLocal[1]

]
ImagePlanel[i][x][y+1] = arrayLocal[2]
ImagePlane[i][x+1][y+1] = arrayLocal[3]

}

if (Tx==0) && (Ty == NumTileRows — 1)) | | (HARD_TILING_FLAG == TRUE)) {
/* Bottom left edge */

x =16 * LeftMBIndexOfTile[Tx] / dx

y =16 * TopMBIndexOfTile[Ty + 1]/ dy — 2

arrayLocal[ ] = {ImagePlane[i][x][y], ImagePlane[i][x+1][y],
ImagePlane[i][x][y+1], ImagePlane[i][x+1][y+1]}

OverlapPostFilter4(arrayLocall ]) 9.9.8.2

ImagePlane[i][x][y] = arrayLocal[0]

ImagePlane[i][x+1][y] = arrayLocal[1]

]
ImagePlane[i][x][y+1] = arrayLocal[2]
ImagePlanel[i][x+1][y+1] = arrayLocal[3]

}

if (((Tx == NumTileCols — 1) && (Ty == NumTileRows — 1)) | |
(HARD TILING FLAG ==TRUE)) { /* Bottom right edge */

x =16 * LeftMBIndexOfTile[Tx + 1]/ dx — 2

y =16 * TopMBIndexOfTile[Ty + 1]/ dy — 2

arrayLocal[ ] = {ImagePlane[i][x][y], ImagePlane[i][x+1][y],
ImagePlane[i][x][y+1], ImagePlane[i][x+1][y+1]}

OverlapPostFilter4(arrayLocal[ ]) 9.9.8.2

ImagePlane[i][x][y] = arrayLocal[0]

ImagePlane[i][x+1][y] = arrayLocal[1]

i
ImagePlane[i][x][y+1] = arrayLocal[2]
ImagePlane[i][x+1][y+1] = arrayLocal[3]

}

if (HARD_TILING_FLAG == FALSE) && (Tx != NumTileCols — 1)) {
/* Right across for soft tiles */

x =16 * LeftMBIndexOfTile[Tx + 1]/ dx — 2

for (y = 16 * TopMBIndexOfTile[Ty] / dy + 2; y < (16 * TopMBIndexOfTile[Ty + 1]/ dy — 2);
y+=4){

arrayLocal[ ] = {ImagePlane[i][x][y], ImagePlane[i][x+1][y],
ImagePlane[i][x+2][y],ImagePlane[i][x+3][y],
ImagePlane[i][x][y+1], ImagePlane[i][x+1][y+1],
ImagePlane[i][x+2][y+1], ImagePlane[i][x+3][y+1],
ImagePlane[i][x][y+2], ImagePlane[i][x+1][y+2],
ImagePlane[i][x+2][y+2], ImagePlane[i][x+3][y+2],
ImagePlanel[i][x][y+3], ImagePlane[i][x+1][y+3],
ImagePlane[i][x+2][y+3], ImagePlane[i][x+3][y+3]}

OverlapPostFilter4x4(arrayLocal[ ]) 9.9.8.1

ImagePlane[i][x][y] = arrayLocal[0]

ImagePlane[i][x+1][y] = arrayLocal[1]

]
ImagePlanel[i][x+2][y] = arrayLocal[2]
ImagePlane[i][x+3][y] = arrayLocal[3]

ImagePlanel[i][x+2][y+1] = arrayLocal[6]

ImagePlane[i][x+3][y+1] = arrayLocal[7]

1

1l

1l
ImagePlane[i][x][y+1] = arrayLocal[4]
ImagePlane[i][x+1][y+1] = arrayLocal[5]

1l

i

1[x

ImagePlane[i][x][y+2] = arrayLocal[8]
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ImagePlane[i][x+1][y+2] = arrayLocal[9

]
0]
1

ImagePlane[i][x+2][y+2] = arrayLocal[
1]

ImagePlane[i][x+3][y+2] = arrayLocal[

ImagePlane[i][x+1][y+3] = arrayLocal[13]

ImagePlane[i][x+2][y+3] = arrayLocal[ 14]

[l
[
G
ImagePlane[i][x][y+3] = arrayLocal[12]
[l
[
G

ImagePlane[i][x+3][y+3] = arrayLocal[15]

}

}

if (HARD_TILING FLAG = = FALSE) && (Ty = NumTileRows — 1)) {

/* Bottom across for soft tiles */

y =16 * TopMBIndexOfTile[Ty + 1]/ dy — 2

for (x = 16 * LeftMBIndexOfTile[Tx] / dx + 2; x < (16 * LeftMBIndexOfTile[Tx + 1]/ dx — 2);

x+=4) {

arrayLocal[ ] = {ImagePlane[i][x][y], ImagePlane[i][x+1][y],
ImagePlane[i][x+2][y], ImagePlane[i][x+3][y],
ImagePlane[i][x][y+1], ImagePlane[i][x+1][y+1],
ImagePlane[i][x+2][y+1], ImagePlane[i][x+3][y+1],
ImagePlane[i][x][y+2], ImagePlane[i][x+1][y+2],
ImagePlane[i][x+2][y+2], ImagePlane[i][x+3][y+2],
ImagePlane[i][x][y+3], ImagePlane[i][x+1][y+3],
ImagePlane[i][x+2][y+3], ImagePlane[i][x+3][y+3]}

OverlapPostFilter4x4(arrayLocal[ ])

9.9.8.1

ImagePlane[i][x][y] = arrayLocal[0]

ImagePlane[i][x+1][y] = arrayLocal[1]

]
ImagePlane[i][x+2][y] = arrayLocal[2]
ImagePlane[i][x+3][y] = arrayLocal[3]

ImagePlanel[i][x][y+1] = arrayLocal[4]

ImagePlane[i][x+1][y+1] = arrayLocal[5]

ImagePlane[i][x+2][y+1] = arrayLocal[6]

ImagePlane[i][x+3][y+1] = arrayLocal[7]

]
0]
1

ImagePlane[i][x+2][y+2] = arrayLocal[
11]

ImagePlane[i][x+3][y+2] = arrayLocal[

ImagePlane[i][x][y+3] = arrayLocal[12]

ImagePlanel[i][x+1][y+3] = arrayLocal[13]

ImagePlane[i][x+2][y+3] = arrayLocal[14]

i]

1

1

1

Il

1

1
ImagePlane[i][x][y+2] = arrayLocal[8]
ImagePlane[i][x+1][y+2] = arrayLocal[9

1

1

1

Il

1l

1

ImagePlane[i][x+3][y+3] = arrayLocal[ 15]

}

}

if (HARD_TILING_FLAG == FALSE) && (Tx = NumTileCols — 1) &&

(Ty !=NumTileRows — 1)) {

x =16 * LeftMBIndexOfTile[Tx + 1]/ dx — 2

y =16 * TopMBIndexOfTile[Ty + 1]/ dy — 2

arrayLocal[ ] = {ImagePlane[i][x][y], ImagePlane[i][x+1][y],
ImagePlane[i][x+2][y], ImagePlane[i][x+3][y],
ImagePlane[i][x][y+1], ImagePlane[i][x+1][y+1],
ImagePlane[i][x+2][y+1], ImagePlane[i][x+3][y+1],
ImagePlane[i][x][y+2], ImagePlane[i][x+1][y+2],
ImagePlane[i][x+2][y+2], ImagePlane[i][x+3][y+2],
ImagePlane[i][x][y+3], ImagePlane[i][x+1][y+3],
ImagePlane[i][x+2][y+3], ImagePlane[i][x+3][y+3]}

OverlapPostFilter4x4(arrayLocal[ ])

9.9.8.1

ImagePlane[i][x][y] = arrayLocal[0]

ImagePlane[i][x+1][y] = arrayLocal[1]

]
ImagePlanel[i][x+2][y] = arrayLocal[2]
ImagePlane[i][x+3][y] = arrayLocal[3]

ImagePlane[i][x][y+1] = arrayLocal[4]

ImagePlane[i][x+1][y+1] = arrayLocal[5]

ImagePlane[i][x][y+2] = arrayLocal[8]

ImagePlane[i][x+1][y+2] = arrayLocal[9]

ImagePlanel[i][x+2][y+2] = arrayLocal[10]

1

]

1l

1[x

1
ImagePlane[i][x+2][y+1] = arrayLocal[6]
ImagePlane[i][x+3][y+1] = arrayLocal[7]

1[x

1

Il

il

ImagePlane[i][x+3][y+2] = arrayLocal[11]
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ImagePlanel[i][x][y+3] = arrayLocal[12]

[l
ImagePlane[i][x+1][y+3] = arrayLocal[13]
ImagePlane[i][x+2][y+3] = arrayLocal[ 14]
ImagePlanel[i][x+3][y+3] = arrayLocal[15]

}

if (HARD_TILING_FLAG ==FALSE) && (Tx == 0) && (Ty != NumTileRows — 1)) {
/* Left edge for soft tiles */

y =16 * TopMBIndexOfTile[Ty + 1]/ dy — 2

x =16 * LeftMBIndexOfTile[Tx] / dx

arrayLocal[ ] = {ImagePlane[i][x][y], ImagePlane[i][x][y+1],
ImagePlane[i][x][y+2], ImagePlane[i][x][y+3]}

OverlapPostFilter4(arrayLocal[ ])

9.9.8.2

ImagePlane[i][x][y] = arrayLocal[0]

ImagePlane[i][x][y+1] = arrayLocal[1]

[1
ImagePlane[i][x][y+2] = arrayLocal[2]
ImagePlane[i][x][y+3] = arrayLocal[3]

x =16 * LeftMBIndexOfTile[Tx] / dx + 1

arrayLocal[ ] = {ImagePlane[i][x][y], ImagePlane[i][x][y+1],
ImagePlane[i][x][y+2], ImagePlane[i][x][y+3]}

OverlapPostFilter4(arrayLocal[ ])

9.9.8.2

ImagePlane[i][x][y] = arrayLocal[0]

ImagePlane[i][x][y+1] = arrayLocal[1]

X
X

iJ[x]
ImagePlane[i][x][y+2] = arrayLocal[2]
ImagePlane[i][x][y+3] = arrayLocal[3]

}

if (HARD_TILING_FLAG == FALSE) && (Tx = NumTileCols — 1) && (Ty == 0)) {
/* Top edge for soft tiles */

x =16 * LeftMBIndexOfTile[Tx + 1]/ dx — 2

y = 16 * TopMBIndexOfTile[Ty] / dy

arrayLocal[ | = {ImagePlane[i][x][y], ImagePlane[i][x+1][y],
ImagePlane[i][x+2][y], ImagePlane[i][x+3][y]}

OverlapPostFilter4(arrayLocal[ ])

9.9.8.2

ImagePlane[i][x][y] = arrayLocal[0]

ImagePlane[i][x+1][y] = arrayLocal[1]

ImagePlane[i][x+2][y] = arrayLocal[2]

ImagePlane[i][x+3][y] = arrayLocal[3]

y =16 * TopMBIndexOfTile[Ty] / dy + 1

arrayLocal[ ] = {ImagePlane[i][x][y], ImagePlane[i][x+1][y],
ImagePlane[i][x+2][y], ImagePlane[i][x+3][y]}

OverlapPostFilter4(arrayLocal[ ])

9.9.8.2

ImagePlane[i][x][y] = arrayLocal[0]

ImagePlane[i][x+1][y] = arrayLocal[1]

JxH1[
ImagePlane[i][x+2][y] = arrayLocal[2]
ImagePlane[i][x+3][y] = arrayLocal[3]

}

if (HARD_TILING_FLAG ==FALSE) && (Tx == NumTileCols — 1) &&
(Ty !=NumTileRows — 1)) { /* Right edge for soft tiles */

y =16 * TopMBIndexOfTile[Ty + 1]/ dy — 2

x =16 * LeftMBIndexOfTile[Tx + 1]/ dx — 2

arrayLocal[ ] = {ImagePlane[i][x][y], ImagePlane[i][x][y+1],
ImagePlane[i][x][y+2], ImagePlane[i][x][y+3]}

OverlapPostFilter4(arrayLocall ])

9.9.8.2

ImagePlane[i][x][y] = arrayLocal[0]

ImagePlane[i][x][y+1] = arrayLocal[ 1]

ImagePlane[i][x][y+2] = arrayLocal[2]

ImagePlanel[i][x][y+3] = arrayLocal[3]

x =16 * LeftMBIndexOfTile[Tx + 1] /dx — 1

arrayLocal[ ] = {ImagePlane[i][x][y], ImagePlane[i][x][y+1],
ImagePlane[i][x][y+2], ImagePlane[i][x][y+3]}

OverlapPostFilter4(arrayLocal[ ])

9.9.8.2

ImagePlane[i][x][y] = arrayLocal[0]

ImagePlane[i][x][y+1] = arrayLocal[1]

X
X

i][x]
ImagePlane[i][x][y+2] = arrayLocal[2]
ImagePlane[i][x][y+3] = arrayLocal[3]

}

if (HARD TILING FLAG == FALSE) && (Tx = NumTileCols — 1) &&
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(Ty == NumTileRows — 1)) { /* Bottom edge for soft tiles */

x =16 * LeftMBIndexOfTile[Tx + 1]/ dx — 2

y =16 * TopMBIndexOfTile[Ty + 1]/ dy — 2

arrayLocal[ | = {ImagePlane[i][x][y], ImagePlane[i][x+1][y],
ImagePlane[i][x+2][y], ImagePlane[i][x+3][y]}

OverlapPostFilter4(arrayLocal[ ]) 9.9.8.2

ImagePlane[i][x][y] = arrayLocal[0]

ImagePlanel[i][x+1][y] = arrayLocal[1]

ImagePlane[i][x+2][y] = arrayLocal[2]

ImagePlane[i][x+3][y] = arrayLocal[3]

y =16 * TopMBIndexOfTile[Ty + 1]/ dy — 1

arrayLocal[ | = {ImagePlane[i][x][y], ImagePlane[i][x+1][y],
ImagePlane[i][x+2][y], ImagePlane[i][x+3][y]}

OverlapPostFilter4(arrayLocal[ ]) 9.9.8.2

ImagePlane[i][x][y] = arrayLocal[0]

ImagePlane[i][x+1][y] = arrayLocal[1]

IxH1[
ImagePlanel[i][x+2][y] = arrayLocal[2]
ImagePlane[i][x+3][y] = arrayLocal[3]

9.9.7 Inversetransform basic operations

9.9.7.1 1CT4x4()

NOTE 1 — The 2D ICT4x4( ) is built using the three operators: T2x2h, InvTodd and InvToddodd, preceded by the permutation
function InvPermute. After the initial permutation, the transform operation consists of two stages, where each stage operates on
all 16 of the input values.

The function ICT4x4( ) is specified by the pseudocode in Table 160.

Table 160 — Pseudocode for function |CT4x4()

| CT4x4(iCoeff[ ]) { Reference
/* Permute the coefficients */
InvPermute(iCoeff] ]) 9.9.7.5

/* First stage */

arrayLocal[ ] = {iCoeff[0], iCoeff] 1], iCoeff[4], iCoefl[5]}
T2x2h(arrayLocal[ ], 1) 9.9.7.2
iCoeff[0] = arrayLocal[0]

iCoeff[1] = arrayLocal[1]

iCoeff[4] = arrayLocal[2]

iCoeff[5] = arrayLocal[3]

arrayLocal[ ] = {iCoeft]2], iCoeff]3], iCoeft][6], iCoefi] 7]}
InvTodd(arrayLocal[ ]) 9.9.7.3
iCoeff[2] = arrayLocal[0]

iCoeff[3] = arrayLocal[1]

iCoeff][6] = arrayLocal[2]

iCoeff[7] = arrayLocal[3]

arrayLocal[ ] = {iCoeff[8], iCoeff[12], iCoeft]9], iCoeff[13]}
InvTodd(arrayLocal[ ]) 9.9.7.3
iCoeff[8] = arrayLocal[0]

iCoeff[12] = arrayLocal[1]

iCoeff[9] = arrayLocal[2]

iCoeff[13] = arrayLocal[3]

arrayLocal[ ] = {iCoeff][10], iCoeff[11], iCoeff] 14], iCoeff]15]}
InvToddodd(arrayLocal[ ]) 9.9.7.4
iCoeff[10] = arrayLocal[0]
iCoeff[11] = arrayLocal[1]
iCoeff][14] = arrayLocal[2]
iCoeff[15] = arrayLocal[3]
/* Second stage */
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NOTE 2 - Each stage consists of four 2x2 transforms which may be done in any arbitrary sequence, or concurrently, within the
stage. However, the first-stage transforms must be complete before any of the second-stage transforms are initiated.

arrayLocal[ ] = {iCoeff[0], iCoeff[3], iCoeff]12], iCoeff[15]}

T2x2h(arrayLocal[ ], 0)

9.9.7.2

iCoeff[0] = arrayLocal[0]

iCoeff[3] = arrayLocal[1]

iCoeff[12] = arrayLocal[2]

iCoeff[15] = arrayLocal[3]

arrayLocal[ ] = {iCoeft]5], iCoeff]6], iCoeff[9], iCoeff[10]}

T2x2h(arrayLocal[ ], 0)

9.9.7.2

iCoeff]5] = arrayLocal[0]

iCoeff[6] = arrayLocal[1]

iCoeff][9] = arrayLocal[2]

iCoeff[10] = arrayLocal[3]

arrayLocal[ ] = {iCoeff[1], iCoeff]2], iCoeff]13], iCoeff[14]}

T2x2h(arrayLocal[ ], 0)

9.9.7.2

iCoeff] 1] = arrayLocal[0]

iCoeff[2] = arrayLocal[1]

iCoeff[13] = arrayLocal[2]

iCoeff]14] = arrayLocal[3]

arrayLocal[ ] = {iCoeft[4], iCoeff] 7], iCoeff[8], iCoeff]11]}

T2x2h(arrayLocal[ ], 0)

9.9.7.2

iCoeff[4] = arrayLocal[0]

iCoeff[7] = arrayLocal[1]

iCoeff[8] = arrayLocal[2]

iCoeff[11] = arrayLocal[3]

9.9.7.2 T2x2h()
The function T2x2h( ) is specified in Table 161.

NOTE - The variable valRound is a rounding control variable. The value of valRound is set to O or 1 by the function that invokes
T2x2h( ). The inverse of T2x2Th( ) is two successive applications of T2x2Th, operating on variables of the array iCoeff[ ] with

the same value of valRound.

Table 161 — Pseudocode for function T2x2h()

T2x2h(iCoeff[ ], valRound) {

Reference

iCoeff[0] += iCoeff[3]

iCoeff[ 1] —= iCoeff]2]

valT1 = ((iCoeft]0] — iCoeff] 1] + valRound) >> 1)

valT2 = iCoeff]2]

iCoeff[2] = valT1 — iCoeff[3]

iCoeff[3] = valT1 — valT2

]
iCoeff[0] —= iCoeff[3]
iCoeff 1] += iCoeff[2]

9.9.7.3 InvTodd()

The function InvTodd( ) is specified by the pseudocode in Table 162.
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Table 162 — Pseudocode for function InvTodd( )

InvTodd(iCoeff[ ]) {

Reference

iCoeff[1] += iCoeff[3]

iCoeff[0] —= iCoeff]2]

iCoeff[3] —= (iCocff[1] >> 1)

iCoeff[0] —= ((3* iCocff[1] + 4) >> 3)

]
]
iCoeff[2] += ((iCoeff]0] + 1) >> 1)
]
]

iCocff[1] += ((3* iCocff[0] + 4) >> 3)
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iCoeff[2] —= ((3* iCoeff[3] + 4) >> 3)
iCoeff[3] += ((3* iCoeff[2] + 4) >>3
iCoeff][2] —= ((iCoeff[1] + 1) >> 1)

iCoeff[3] = ((iCoeff[0] + 1) >> 1) — iCoeff[3]
iCoeff] 1] += iCoeff]2]

iCoeff[0] —= iCoeff]3]

9.9.7.4 InvToddodd()
The function, InvToddodd( ) is specified by the pseudocode in Table 163.

Table 163 — Pseudocode for function InvToddodd

InvToddodd(iCoeff] 1) { Reference
iCoeff[3] += iCoeff]0]
iCoeff][2] —= iCoeff[1]
valT1 = iCoeff[3] >> 1
valT2 = iCoeff[2] >> 1
iCoeff[0] —= valT1
iCoeff[ 1] += valT2
iCoeff[0] —= ((iCoeff[1] * 3 + 3) >> 3)
iCoeff[1] += ((iCoeff[0] * 3 + 3) >>2)

]
]
]
iCoeff[0] —= ((iCoeff[1] * 3 + 4) >> 3)
iCoeff]1] —= valT2
iCoeff[0] += valT1
iCoeff[2] += iCoefi]1]
iCoeff[3] —= iCoeff]0]
iCoeff] 1] = —iCoeff]1]
iCoeff][2] = —iCoeff]2]

9.9.75 InvPermute()

The function InvPermute( ) operates on an ordered array of 16 sample values, producing a permuted list. The input to
this function is the ordered array arraylnput[i], for i ranging from 0 to 15. The output of this function is the re-ordered
array arraylnput[i].

To define the permutation, the array InvPermAurr[i] is specified, for i ranging from 0 to 15, in Table 164.

Table 164 — I nver se Permutation

i InvPermArr(i]
0 0
1 8
2 4
3 13
4 2
5 15
6 3
7 14
8 1
9 12
10 5
11 9
12 7
13 11
14 6
15 10

The function InvPermute( ) is specified as in Table 165.
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Table 165 — Pseudocode for function I nvPermute( )

InvPermute(arrayl nput[ 1) { Reference
for i=0;i<=15; i++)
array Temp[InvPermArr[i]] = arrayInput[i]
for (i=0;i<=15; i++)
arraylnput[i] = arrayTemp][i]

9.9.7.6 InvPermute2pt()

The function InvPermute2pt( ) operates on an ordered array of 2 sample values, producing a permuted list. The input to
this function is the ordered array arraylnput[i], for i ranging from 0 to 1. The output of this function is the re-ordered
array arrayInput[i].

The function InvPermute2pt( ) is specified as in Table 166.

Table 166 — Pseudocode for function I nvPer mute2pt( )

I nvPermute2pt( ) { Reference
array Temp[0] = arrayInput[1]
array Temp[1] = arraylnput[0]
for(i=0;i<=1;it++)

arraylnput[i] = arrayTemp][i]

9.9.7.7 T2pt()
The function T2pt( ) is specified by the pseudocode in Table 167.

Table 167 — Pseudocode for function T2pt( )

T2pt(iCoeff 1) { Reference
iCoeff[0] —= (iCoeff[1]+1) >> 1
iCoeff[ 1] += iCoeff[0]

!

9.9.8 Overlap filtering functions

9.9.8.1 OverlapPostFilter4x4()
The function OverlapPostFilterdx4( ) is specified in Table 168.

Table 168 — Pseudocode for function OverlapPostFilter 4x4( )

OverlapPostFilter 4x4(iCoeff[ ]) { Reference
arrayLocal[ ] = {iCoeff[0], iCoeft]3], iCoeff]12], iCoeff[15]}
T2x2h(arrayLocal[ ], 0) 9.9.7.2

iCoeff[0] = arrayLocal[0]

iCoeff[3] = arrayLocal[1]

iCoeff[12] = arrayLocal[2]

iCoeff]15] = arrayLocal[3]

arrayLocal[ ] = {iCoeff[1], iCoeft]2], iCoeft]13], iCoeff[ 14]}
T2x2h(arrayLocal[ ], 0) 9.9.7.2
iCoeff[1] = arrayLocal[0]

iCoeff][2] = arrayLocal[1]

iCoeff[13] = arrayLocal[2]

iCoeff[14] = arrayLocal[3]

arrayLocal[ ] = {iCoeff[4], iCoeft]7], iCoeft]8], iCoeff[11]}
T2x2h(arrayLocal[ ], 0) 9.9.7.2
iCoeff[4] = arrayLocal[0]
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iCoeff] 7] = arrayLocal[1]

iCoeff[8] = arrayLocal[2]

iCoeff]11] = arrayLocal[3]

arrayLocal[ ] = {iCoeft]5], iCoeff]6], iCoeff[9], iCoeff[10]}

T2x2h(arrayLocal[ ], 0)

9.9.7.2

iCoeff[5] = arrayLocal[0]

iCoeff][6] = arrayLocal[1]

iCoeff[9] = arrayLocal[2]

iCoeff[10] = arrayLocal[3]

arrayLocal[ ] = {iCoeff]13], iCoeff[12]}

InvRotate(arrayLocal[ ])

9.9.8.5

iCoeff[13] = arrayLocal[0]

iCoeff[12] = arrayLocal[1]

arrayLocal[ ] = {iCoeff[9], iCoefl]8]}

InvRotate(arrayLocal[ ])

9.9.8.5

iCoeff[9] = arrayLocal[0]

iCoeff[8] = arrayLocal[1]

arrayLocal[ ] = {iCoeff[7], iCoeft]3]}

InvRotate(arrayLocal[ ])

9.9.8.5

iCoeff[7] = arrayLocal[0]

iCoeff][3] = arrayLocal[1]

arrayLocal[ ] = {iCoef1[6], iCoef]2]}

InvRotate(arrayLocal[ ])

9.9.8.5

iCoeff[6] = arrayLocal[0]

iCoeff][2] = arrayLocal[1]

arrayLocal[ ] = {iCoefi[10], iCoeff[11], iCoeff[14], iCoeff]15]}

InvToddoddPOST(arrayLocal[ ])

9.9.8.8

iCoeff[10] = arrayLocal[0]

iCoeff[11] = arrayLocal[1]

iCoeff]14] = arrayLocal[2]

iCoeff]15] = arrayLocal[3]

arrayLocal[ ] = {iCoeff[0], iCoeft]15]}

InvScale(arrayLocal[ ])

9.9.8.6

iCoeff[0] = arrayLocal[0]

iCoeff]15] = arrayLocal[1]

arrayLocal[ ] = {iCoeff[1], iCoeft]14]}

InvScale(arrayLocal[ ])

9.9.8.6

iCoeff[1] = arrayLocal[0]

iCoeff][14] = arrayLocal[1]

arrayLocal[ ] = {iCoeff[4], iCoefi]11]}

InvScale(arrayLocal[ ])

9.9.8.6

iCoeff[4] = arrayLocal[0]

iCoeff]11] = arrayLocal[1]

arrayLocal[ ] = {iCoeff]5], iCoeft]10]}

InvScale(arrayLocal[ ])

9.9.8.6

iCoeff[5] = arrayLocal[0]

iCoeff[10] = arrayLocal[ 1]

arrayLocal[ ] = {iCoeff]0], iCoeff][3], iCoeff[12], iCoeff[ 15]}

T2x2hPOST(arrayLocal[ ])

9.9.8.7

iCoeff[0] = arrayLocal[0]

iCoeff]3] = arrayLocal[1]

iCoeff[12] = arrayLocal[2]

iCoeff[15] = arrayLocal[3]

arrayLocal[ ] = {iCoeff[1], iCoeft]2], iCoeff]13], iCoeff[14]}

T2x2hPOST(arrayLocal[ ])

9.9.8.7

iCoeff[1] = arrayLocal[0]

iCoeff[2] = arrayLocal[1]

iCoeff[13] = arrayLocal[2]

iCoeff][14] = arrayLocal[3]

arrayLocal[ ] = {iCoeft[4], iCoeff] 7], iCoeff[8], iCoeff[11]}

T2x2hPOST(arrayLocal[ ])

9.9.8.7

iCoeff[4] = arrayLocal[0]

iCoeff] 7] = arrayLocal[1]

iCoeff[8] = arrayLocal[2]

iCoeff[11] = arrayLocal[3]
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arrayLocal[ ] = {iCoeff[5], iCoeff]6], iCoeff[9], iCoeff]10]}

T2x2hPOST (arrayLocal[ ]) 9.9.8.7

iCoeff]5] = arrayLocal[0]

iCoeff[6] = arrayLocal[1]

iCoeff[9] = arrayLocal[2]

iCoeff[10] = arrayLocal[3]

9.9.8.2 OverlapPostFilter4()
The function OverlapPostFilter4d( ) is specified in Table 169.

Table 169 — Pseudocode for function OverlapPostFilter4()

OverlapPostFilter 4(iCoeffl 1) { Reference

iCoeff[0] +— iCoeff[3]

iCoefi]1] += iCoeff]2]

iCoeff[3] —= ((iCoeff[0] + 1) >> 1)

iCoeff[2] —= ((iCoeff[ 1] + 1) >> 1)

InvScale(iCoeff[0], iCoefi[3]) 9.9.8.6

InvScale(iCoeff[ 1], iCoeff[2]) 9.9.8.6

iCoeff[0] += ((iCoeff[3] * 3+ 4) >> 3)

iCoeff[ 1] += ((iCoeff[2] * 3 + 4) >> 3)

iCoeff[3] —= (iiCoeff[0] >> 1)

]
iCoeff[2] —= (iCoeff[1] >> 1)

iCoeff[0] += iCoeff[3]

iCoeff[ 1] += iCoeff]2]

— |— = |— = |—

iCoeff][3] = —iCoeff]3]

iCoeff]2] = —iCoeff2]

InvRotate(iCoeft]2], iCoeff[3]) 9.9.8.5

iCoeff[3] += ((iCoeff[0] + 1) >> 1)

iCoeff[2] += ((iCoeff[1] + 1) >> 1)
iCoeff[0] —= iCoeff]3]
iCoeff[ 1] —= iCoeff]2]

9.9.8.3 OverlapPostFilter2x2()
The function OverlapPostFilter2x2( ) is specified in Table 170.

Table 170 — Pseudocode for function OverlapPostFilter 2x2( )

OverlapPostFilter 2x2(iCoeff[ 1) { Reference
iCoeff]0] += iCoeff]3]
iCoeff[1] += iCoeff[2]

iCoeff]3] —= ((iCoeff[0

iCoeff[2] —= ((iCoeff] 1

iCoeff][ 1] += ((iCoeff]0] + 2) >> 2)

iCoeftf]0] += ((iCoeff[1]+ 1) >> 1)

iCoeff]0] += (iCoeff[1] >> 5)

iCoeff[0] += (iCoeff] 1] >> 9)

iCoeff[0] += (iCoeff[ 1] >> 13)

iCoeff[ 1] += ((iCoeff[0] + 2) >> 2)

iCoeff[3] += ((iCoeff[0] + 1) >> 1)

iCoeff[2] += ((iCoeff[1] + 1) >> 1)

iCoeff[0] —= iCoeff]3]

iCoeff[1] —= iCoeff]2]

+ 1)>> 1)
+1)>>1)

= — =
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9.9.8.4 OverlapPostFilter2()
The function OverlapPostFilter2( ) is specified in Table 171.

Table 171 — Pseudocode for function OverlapPostFilter2( )

OverlapPostFilter 2(iCoeff[ ]) { Reference
iCoeff][ 1] += ((iCoeff]0] + 2) >> 2)
iCoeft]0] += ((iCoeff[1]+ 1) >> 1)
iCoeff]0] += (iCoeff[1] >> 5)
iCoeff[0] += (iCoeff] 1] >> 9)
iCoeff[0] += (iCoeff[ 1] >> 13)
iCoeff[ 1] += ((iCoeff[0] + 2) >> 2)

9.9.85 InvRotate()
The function InvRotate( ) is specified by the pseudocode in Table 172.

Table 172 — Pseudocode for function InvRotate( )

InvRotate(iCoeff[ 1) { Reference
iCoeff[0] —= ((iCoeff]1] + 1) >> 1)
iCoeff] 1] += ((iCoeff[0] + 1) >> 1)

}

9.9.8.6 InvScale()
The function InvScale( ) is specified by the pseudocode in Table 173.

Table 173 — Pseudocode for function InvScale()

InvScale(iCoeff[ ]) { Reference
iCoeff]0] += iCoeff[ 1]
iCoeff]1] = (iCoeff[0] >> 1) — iCoeff[1]
iCoeff[0] += (iCoeff[1] * 3 + 0) >>3
iCoeff] 1] += (iCoeff]0] * 3 + 0) >> 4
iCoeff] 1] += (iCoeff[0] >> 7)
iCoeff[1] —= (iCoeff[0] >> 10)

9.9.8.7 T2x2hPOST()
The function T2x2hPOST( ) is specified by the pseudocode in Table 174.

Table 174 — Pseudocode for function T2x2hPOST ()

T2x2hPOST (iCoeff[ ]) { Reference
iCoeff]1] —= iCoeff]2]
iCoeff[0] += (iCoeff[3] * 3 +4) >>3
iCoeff[3] —= (iCoeff[1] >> 1)
iCoeff]2] = ((iCoeff[0] — iCoeff[1]) >> 1) — iCoeff]2]
valT1 = iCoeff]2]
iCoeff]2] = iCoeff[3]
iCoeff[3] = valTl
iCoeff[0] —= iCoeff[3]
iCoeff[1] += iCoeff]2]

[—~
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9.9.8.8 InvToddoddPOST ()
The function InvToddoddPOST( ) is specified by the pseudocode in Table 175.

Table 175 — Pseudocode for function InvToddoddPOST ()

InvT oddoddPOST (iCoeff[ ]) { Reference
iCoeff]3] += iCoeff]0]
iCoeff][2] —= iCoeff]1]
valT1 = iCoeff[3] >> 1
valT2 = iCoeff[2] >> 1
iCoeff[0] —= valT1
iCoeff[1] += valT2
iCoeff[0] —= (iCoeff[1] * 3 + 6) >> 3
iCoeff[1] += (iCoeff]0] * 3 +2) >> 2
iCoeff[0] —= (iCoeff[1] * 3 +4)>>3
iCoeff[1] —= valT2
iCoeff[0] += valT1

iCoeff]2] += iCoeff]1]

iCoeff[3] —= iCoeff]0]

9.10  Output formatting

The final stage of the decoder consists of converting the sample values reconstructed in the internal format to the
intended output format as specified in subclause 9.10.2.

9.10.1 Overview
This subclause is informative: it is not an integral part of this Specification.

First, the decoder may be required to perform upsampling to obtain an intermediate YUV444 format. Next, color format
conversion is applied to convert the internal color formats to output formats. The color format conversions are specified
below. A bias is added to the sample values, to re-centre the values around the nominal value for a neutral or zero
intensity representation. When the scaling mode is used, on the decoder side, the values are rounded down after color
conversion. For high numerical range formats (BD16, BD16S, BD32S and BD32F), the internal integer representations
need to be converted to output representations. Finally, the values are clipped to fit the appropriate range.

9.10.2 Output formatting stage

At the completion of the transform and overlap filtering, the sample values for the image are reconstructed in an internal
color format and an internal two's complement integer representation. The output formatting stage converts the decoded
image plane data into a representation specified by the OUTPUT CLR _FMT and the output bit depth. In the
specification of output formatting, the term INTERNAL CLR_FMT refers to the corresponding syntax element of the
primary image plane.

The output formatting process is specified for the combinations of OUTPUT BITDEPTH and OUTPUT_CLR_FMT
that are listed in Table 176.

In this table, "+" indicates that output formatting is specified for the corresponding combinations of
OUTPUT BIT DEPTH and OUTPUT CLR FMT. The combination of OUTPUT BIT DEPTH and
OUTPUT_CLR_FMT shall not have the value corresponding to empty cells.
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Table 176 — Confor mance-specified output for matting combinations of OUTPUT_BITDEPTH and
OUTPUT_CLR_FMT

OUTPUT_BITDEPTH |OUTPUT_CLR_FMT
YONLY [YUV420 [YUV422 [YUV444 [RGB [RGBE |[CMYK |[CMYKDIRECT [NCOMPONENT
BDIWHITEI +
BDIBLACK1 +
BD5 +
BD565 +
BD8 + + + + + + + + +
BD10 + + +
BD16 + + + + + + +
BD16S + + +
BDI16F + +
BD328 + +
BD32F + +

The output formatting stage consists of several sub-processes that are performed as specified in Table 177.

Table 177 — Pseudocode for function OutputFor matting()

OutputFor matting() { Reference
SamplingConversion( ) 9.10.3.1
ConvertInternal ToOutputClrFmt( ) 9.10.4.1
AddBias( ) 9.10.5
ComputeScaling( ) 9.10.6
PostscalingProcess( ) 9.10.7.1
ClippingAndPackingStage( ) 9.10.8.1

H

9.10.3 Sampling conversion

9.10.3.1 General
The sampling conversion process is specified in Table 178.

The combinations of INTERNAL CLR FMT and OUTPUT CLR_FMT for which sampling conversions are specified
for conformance purposes are specified in Table 179. In this table, "+" indicates that no sampling conversion is
required. It is a requirement of codestream conformance to this Specification that the combination of
INTERNAL CLR FMT and OUTPUT CLR _FMT shall not have a value corresponding to any empty cell in
Table 179.

In the illustrated case in Table 178 in which upsampling is specified both vertically and horizontally for
INTERNAL CLR _FMT equal to YUV420, the upsampling process to be performed by the decoder shall produce an
array of two-dimensionally upsampled samples at the index values for which such samples are produced as specified by
Table 178. However, decoders may use alternative upsampling methods (different from that specified by Table 178) —
the actual filtering method used to produce the values of the entries in the upsampled array is outside the scope of this
Specification. The particular filtering method specified by Table 178 is an example of how such upsampled array values
may be produced. For example, upsampling may be applied both vertically and horizontally as a single process, or the
relative ordering of the vertical and horizontal upsampling may be switched.
NOTE - When TILING_FLAG is equal to TRUE and the transform processing does not cross tile boundaries (due either to
HARD_TILING_FLAG being equal to TRUE or OVERLAP_MODE being equal to 0), the example upsampling method
illustrated in Table 178 for cases with INTERNAL_CLR_FMT equal to YUV422 or YUV420 will produce an upsampled image
in which the output samples next to tile boundaries may be affected by the values of decoded samples in other tiles. For many
applications, it may be desirable to instead design the upsampling process to be performed separately within each tile in order to
avoid this cross-tile dependency.
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Table 178 — Pseudocode for function SamplingConversion( )

SamplingConversion() { Reference
if (INTERNAL_CLR_FMT ==YUV422) | | INTERNAL CLR_FMT ==YUV420)) &&
((OUTPUT CLR FMT ==YUV444) || (OUTPUT CLR FMT ==RGB)) {
if INTERNAL CLR FMT ==YUV420)
Upsample( ) in the vertical direction 9.10.3.2
if (NTERNAL CLR FMT ==YUV422) | | INTERNAL CLR FMT == YUV420))
Upsample( ) in the horizontal direction 9.10.3.2
}
!
Table 179 — Confor mance-specified sampling conver sions
OUTPUT_CLR FMT INTERNAL CLR FMT
YONLY YUV420 YUV422 YUV444 YUVK NCOMPONENT
YONLY +
YUV420 +
YUV422 +
YUV444 + Upsample() |Upsample() [+
in the vertical |in the
and horizontal | horizontal
directions direction
RGB with + Upsample() |Upsample() [+
OUTPUT_BITDEPTH in the vertical |in the
equal to BD5, BD565, and horizontal | horizontal
BD8, BD10, BD16, directions direction
BD16S or BD32S
RGB with +
OUTPUT_BITDEPTH
equal to BD16F or
BD32F
RGBE +
CMYK +
CMYKDIRECT +
NCOMPONENT +

9.10.3.2 Upsample()

In the chroma upsampling function, for the chroma component i (1 <= i < NumComponents), let iOriArray[ ] be the
original sample array before upsampling, and ilntArray[ | be the upsampled array. If upsampling is performed in the
horizontal direction, iOriArray[ ] is one input sample row of length ExtendedWidth[i] and ilntArray[ ] is one output
sample row of length ExtendedWidth[0], and the variable iOriLength is set equal to ExtendedWidth[i]. Otherwise,
iOriArray[ ] is one input sample column of length ExtendedHeight[i] and ilntArray[ ] is one output sample column of
length ExtendedHeight[0], and iOriLength is set equal to ExtendedHeight[i].

The upsampling process to be performed by the decoder shall produce an array of upsampled samples at the index
values for which such samples are produced as specified by Table 180. However, decoders may use alternative
upsampling methods (different from that specified by Table 180) — the actual filtering method used to produce the
values of the entries in the upsampled array is outside the scope of this Specification. The particular filtering method
specified by Table 180 is an example of how such upsampled array values may be produced. For example, a different
type of filtering or a different number of taps may be used during the upsampling process than the two-tap filtering
specified by Table 180.
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Table 180 — Pseudocode for function Upsample( )

Upsample() { Reference
for (k = 0; k <iOriLength; k++) {
ilntArray[2 * k] = ((iH[2] * iOriArray[Max(0, k — 1)] +
iH[3] * iOriArray[k] + 4) >> 3)
ilntArray[2 * k + 1] = ((H[O0] * iOriArray[k] +
iH[1] * iOriArray[Min(iOriLength — 1, k + 1)] + 4) >> 3)

The values of the filter coefficients iH[0], iH[1], iH[2], iH[3] for the chroma positions are specified by Table 181 as a
function of the variable chromaCentering. If Upsample( ) is applied in the horizontal direction, chromaCentering is set
equal to CHROMA CENTERING X; otherwise, it is set equal to CHROMA CENTERING Y.

Table 181 — Upsampling filter coefficient for different chroma positions

chromaCentering | iH[O] | iH[1] | iH[2] | iH[3]

Al |—=|O
o) BN Koy RUL 3 PN
O|= (N |Ww|
AWM~ |O
Al |0

9.104 Conversion from INTERNAL_CLR_FMT to OUTPUT_CLR_FMT
9.10.4.1 Overview

The conversion process proceeds as specified in Table 182.

Table 182 — Pseudocode for function Convertlnternal ToOutputClr Fmt( )

Convertlnternal ToOutputClr Fmt() { Reference
if (INTERNAL_CLR_FMT == YUVK) &&
(OUTPUT _CLR_FMT == CMYK))

InvColorFmtConvert3() 9.10.4.4
else if (INTERNAL_CLR_FMT ==YUVK) &&
(OUTPUT CLR FMT == CMYKDIRECT))
InvColorFmtConvert4( ) 9.10.4.5
else if (INTERNAL_CLR_FMT ==YONLY) &&
(OUTPUT_CLR_FMT == RGB))
InvColorFmtConvert1() 9.104.2
else if (INTERNAL_CLR_FMT ==YUV444) | |
(INTERNAL_CLR_FMT ==YUV422) | |
(INTERNAL_CLR_FMT ==YUV420)) &&
((OUTPUT _CLR FMT ==RGB) || (OUTPUT _CLR_FMT == RGBE)))
InvColorFmtConvert2( ) 9.10.4.3
else if (INTERNAL _CLR _FMT ==YONLY) &&
((OUTPUT_CLR_FMT ==YUV444) | | (OUTPUT_CLR_FMT ==YUV422) ||
(OUTPUT_CLR_FMT == YUV420))) {
if (OUTPUT _CLR_FMT == YUV420)
chromaHeight = ExtendedHeight[0] / 2
else
chromaHeight = ExtendedHeight[0]
if (OUTPUT _CLR _FMT ==YUV422) | | (OUTPUT_CLR_FMT ==YUV420))
chromaWidth = ExtendedWidth[0] / 2
else
chromaWidth = ExtendedWidth[0]
for(i=1;1<3;i++)
for (y = 0; y < chromaHeight; y++)
for (x = 0; x < chromaWidth; x++)
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ImagePlane[i][x][y] = 0 /* Ensure that chroma is inferred as zero */

The combinations of INTERNAL CLR FMT and OUTPUT CLR FMT for which color format conversions are
specified for conformance purposes are specified in Table 183. In this table, "+" indicates that no color format
conversion is required. For cases that require color format conversion, the function name for the conversion process is
specified in the table cell. It is a requirement of codestream conformance to this Specification that the combination of
INTERNAL CLR FMT and OUTPUT CLR FMT shall not have a value corresponding to any empty cell in
Table 183.

Table 183 — Confor mance-specified color format conversions

OUTPUT CLR_FMT  |INTERNAL CLR FMT

YONLY YUV420 YUV422 YUV444 YUVK NCOMPONENT
YONLY +
YUV420 +
YUV422 T
YUV444 + + + +
RGB with InvColorFmt |InvColorFmt |InvColorFmt [InvColorFmt

OUTPUT_BITDEPTH Convertl() Convert2( ) Convert2( ) Convert2( )
equal to BD5, BD565,
BDS§, BD10, BD16,
BD16S or BD32S
RGB with InvColorFmt
OUTPUT_BITDEPTH Convert2( )
equal to BD16F or
BD32F

RGBE InvColorFmt
Convert2( )

CMYK InvColorFmt
Convert3( )
CMYKDIRECT InvColorFmt
Convert4( )
NCOMPONENT T

The pseudocode functions InvColorFmtConvertl(), InvColorFmtConvert2(), InvColorFmtConvert3(), and
InvColorFmtConvert4( ) that are referred to in Table 183 are specified in subclause 9.10.4.2, subclause 9.10.4.3,
subclause 9.10.4.4, and subclause 9.10.4.5, respectively.

9.10.4.2 InvColorFmtConvert1()

The operations in InvColorFmtConvert1( ) are specified in Table 184.

Table 184 — Pseudocode for function InvColor FmtConvert1()

InvColor FmtConvert1() { Reference
for (y = 0; y < ExtendedHeight[0]; y++)
for (x = 0; x < ExtendedWidth[0]; x++) {
/* ImagePlane[0][x][y] G=Y */
ImagePlane[1][x][y] = ImagePlane[0][x][y] /* R=Y */
ImagePlane[2][x][y] = ImagePlane[0][x][y] /* B=Y */

9.10.4.3 InvColor FmtConvert2()

The operations in InvColorFmtConvert2( ) are specified in Table 185.
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Table 185 — Pseudocode for function InvColor FmtConvert2()

InvColor FmtConvert2() {

Reference

for (y = 0; y < ExtendedHeight[0]; y++)

for (x = 0; x < ExtendedWidth[0]; x++) {

tempT = —ImagePlane[1][x][y]
Ft=-U%*

arrayOut[1] = ImagePlane[0][x][y] — Floor(tempT =+ 2)
/* G =Y — Floor(t + 2) */

arrayOut[0] = tempT + arrayOut[1] — Ceiling(ImagePlane[2][x][y] + 2)
/*R=t+ G — Ceiling(V+2)*/

arrayOut[2] = ImagePlane[2][x][y] + arrayOut[0]
/*B=V+R*

if (OUTPUT_BITDEPTH == BD5 || OUTPUT BITDEPTH == BD565 | |
OUTPUT BITDEPTH = = BD10) &&
IRED BLUE NOT SWAPPED FLAG) {

tempT = arrayOut[0]

arrayOut[0] = arrayOut[2]

arrayOut[2] = tempT

!

for (1=0;1i<3;it++)

ImagePlane[i][x][y] = arrayOut[i]

9.10.4.4 InvColor FmtConvert3()

The operations in InvColorFmtConvert3( ) are specified in Table 186.

Table 186 — Pseudocode for function InvColor FmtConvert3()

InvColor FmtConvert3() {

Reference

for (y = 0; y < ExtendedHeight[0]; y++)

for (x = 0; x < ExtendedWidth[0]; x++) {

arrayOut[3] = ImagePlane[3][x][y] + Floor(ImagePlane[0][x][y] + 2)
/* k=K + Floor(Y + 2) */

arrayOut[ 1] = arrayOut[3] — ImagePlane[0][x][y] —
Floor(ImagePlane[1][x][y] + 2) /* m =k — Y — Floor(U + 2) */

arrayOut[0] = ImagePlane[1][x][y] + arrayOut[1] +
Floor(ImagePlane[2][x][y] = 2) /* ¢ = U + m + Floor(V + 2) */

arrayOut[2] = arrayOut[0] — ImagePlane[2][x][y]
Fy=c—-V*

for (1=0;1i<4;it+)

ImagePlane[i][x][y] = arrayOut[i]

;

9.10.4.5 InvColor FmtConvert4()

The operations in InvColorFmtConvert4( ) are specified in Table 187.

Table 187 — Pseudocode for function InvColor FmtConvert4()

InvColor FmtConvert4() {

Reference

for (y = 0; y < ExtendedHeight[0]; y++)

for (x = 0; x < ExtendedWidth[0]; x++) {

arrayOut[3] = ImagePlane[0][x][y] /* k=Y */

arrayOut[1] = ImagePlane[2][x][y] /* m=V */

1] 1yl
arrayOut[0] = ImagePlane[1][x][y] /* c=U */
arrayOut[2] = ImagePlane[3][x][y] /* y=K */

for (1=0;i<4;it++)

ImagePlane[i][x][y] = arrayOut[i]
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9.105 AddBias()

The function AddBias( ) specified in Table 188 performs the computation and addition of bias to the sample values.

Table 188 — Pseudocode for function AddBias()

AddBias() { Reference
if SCALED FLAG)
iScale = 3
else
iScale =0
if (OUTPUT BITDEPTH == BD5)
iBias = (1 <<4)
else if (OUTPUT BITDEPTH = = BD565)
iBias = (1 <<5)
else if (OUTPUT BITDEPTH == BD8)
iBias = (1 <<7)
else if (OUTPUT BITDEPTH == BD10)
iBias = (1 <<9)
else if (OUTPUT BITDEPTH == BD16)
iBias = (1 << 15)
else
iBias =0
if (OUTPUT_BITDEPTH ==BD16) | | (OUTPUT_BITDEPTH ==BDI16S) | |
(OUTPUT BITDEPTH == BD328))
iBias = (iBias >> SHIFT BITS)
if (OUTPUT_CLR _FMT ==RGB) | | (OUTPUT_CLR_FMT ==YUV444) | |
(OUTPUT _CLR FMT ==YUV422) || (OUTPUT_CLR_FMT ==YUV420) ||
(OUTPUT _CLR_FMT ==YONLY) || (OUTPUT _CLR FMT ==NCOMPONENT) | |
(OUTPUT CLR FMT == CMYKDIRECT)) {
if (OUTPUT_CLR_FMT ==RGB) | | (OUTPUT_CLR_FMT ==YUV444) | |
(OUTPUT CLR FMT ==YUV422) || (OUTPUT CLR FMT == YUV420))
outputComponents = 3
else
outputComponents = NumComponents
for (i =0; i < outputComponents; i++) {
if (1> 0) && (OUTPUT CLR FMT == YUV420))
outputHeight = ExtendedHeight[0] / 2
else
outputHeight = ExtendedHeight[0]
if (i>0) &&
((OUTPUT CLR FMT ==YUV422) || (OUTPUT CLR FMT == YUV420)))
outputWidth = ExtendedWidth[0] / 2
else
outputWidth = ExtendedWidth[0]
for (y = 0; y < outputHeight; y++)
for (x = 0; x < outputWidth; x++)
ImagePlane[i][x][y] += (iBias << iScale)

}
} else if (OUTPUT CLR FMT == CMYK) {

for 1=0;1i<3;itt)
for (y = 0; y < ExtendedHeight[0]; y++)
for (x = 0; x < ExtendedWidth[0]; x++)
ImagePlane[i][x][y] += ((iBias >> 1) << iScale) /* ¢, m, y */
for (y = 0; y < ExtendedHeight[0]; y++)
for (x = 0; x < ExtendedWidth[0]; x++)
ImagePlane[3][x][y] —= ((iBias >> 1) <<iScale) /* k */
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9.10.6 ComputeScaling()

The function ComputeScaling( ) specified in Table 189 performs the computation of the scaling factor iScale, and the
rounding factor iRoundingFactor, and modifies sample values based on these two factors.

Table 189 — Pseudocode for function ComputeScaling()

ComputeScaling() { Reference
iScale=0
iRoundingFactor = 0
if (SCALED FLAQG) {
iScale =3
if (OUTPUT_BITDEPTH ==BDS) | | (OUTPUT_BITDEPTH == BD565) | |
(OUTPUT_BITDEPTH ==BDS) | | (OUTPUT_BITDEPTH == BD10) | |
(OUTPUT_BITDEPTH ==BD16S) | | (OUTPUT_BITDEPTH == BDI6F) | |
(OUTPUT BITDEPTH == BD32S) || (OUTPUT BITDEPTH == BD32F))
iRoundingFactor = 3
else if (OUTPUT_BITDEPTH == BDIWHITE]1) | |
(OUTPUT BITDEPTH ==BDI1BLACKI) || (OUTPUT BITDEPTH == BD16))
iRoundingFactor = 4

}
if (OUTPUT_CLR FMT ==RGB) || (OUTPUT_CLR_FMT ==RGBE) | |
(OUTPUT _CLR FMT ==YUV444) || (OUTPUT _CLR_FMT ==YUV422) ||
(OUTPUT _CLR_FMT == YUV420))
outputComponents = 3
else
outputComponents = NumComponents
for (i=0; i < outputComponents; i++) {
if (1> 0) && (OUTPUT_CLR_FMT == YUV420))
outputHeight = ExtendedHeight[0] / 2
else
outputHeight = ExtendedHeight[0]
if (I>0) &&
((OUTPUT _CLR_FMT ==YUV422) || (OUTPUT _CLR_FMT == YUV420)))
outputWidth = ExtendedWidth[0] / 2
else
outputWidth = ExtendedWidth[0]
if (OUTPUT BITDEPTH == BD565)) && (i !=1))
jScale = iScale + 1
else
jScale = iScale
for (y = 0; y < outputHeight; y++)
for (x = 0; x < outputWidth; x++)
ImagePlane[i][x][y] = ((ImagePlane[i][x][y] + iRoundingFactor) >> jScale)
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9.10.7 Postscaling process

9.10.7.1 Overview
The function PostscalingProcess( ) is specified in Table 190.

Table 190 — Pseudocode for function PostscalingProcess( )

PostscalingProcess( ) { Reference
if (OUTPUT _CLR_FMT = = RGBE)
for (y = 0; y < ExtendedHeight[0]; y++)
for (x = 0; x < ExtendedWidth[0]; x++) {
for (k =0; k < 3; k++)
localArrayIn[k] = ImagePlane[k][x][y]
PostScalingF2(localArrayOut| ], localArrayIn[ ]) /* Produces 4 outputs for 3 inputs */ | 9.10.7.4
for (k= 0; k < 4; k++)
ImagePlane[k][x][y] = local ArrayOut[k]

!

else {
if (OUTPUT_CLR FMT ==RGB) | | (OUTPUT_CLR FMT ==YUV444) ||
(OUTPUT CLR FMT ==YUV422) || (OUTPUT CLR FMT == YUV420))
outputComponents = 3
else
outputComponents = NumComponents
for (i = 0; i < outputComponents; i++) {
if (> 0) && (OUTPUT CLR FMT == YUV420))
outputHeight = ExtendedHeight[0] / 2
else
outputHeight = ExtendedHeight[0]
if (1> 0) &&
((OUTPUT CLR FMT ==YUV422) || (OUTPUT CLR FMT == YUV420)))
outputWidth = ExtendedWidth[0] / 2
else
outputWidth = ExtendedWidth[0]
if (OUTPUT_BITDEPTH == BD16) | | (OUTPUT_BITDEPTH ==BDI16S) | |
(OUTPUT BITDEPTH == BD328))
for (y = 0; y < outputHeight; y++)
for (x = 0; x < outputWidth; x++)
ImagePlane[i][x][y] = PostScalingInt(ImagePlane[i][x][y]) 9.10.7.2
else if (OUTPUT BITDEPTH == BD32F) | | (OUTPUT BITDEPTH == BDI16F))
for (y = 0; y < outputHeight; y++)
for (x = 0; x < outputWidth; x++)
ImagePlane[i][x][y] = PostScalingFl(ImagePlane[i][x][y]) 9.10.7.3

9.10.7.2 PostScalinglnt( )

The sample values are left-shifted by the amount determined by SHIFT BITS. For input value inX, the output shifted
value outX is determined as specified in Table 191.

Table 191 — Pseudocode for function PostScalingint( )

PostScalingl nt(inX) { Reference
outX = inX << SHIFT BITS
return outX

NOTE - In this manner, the output is moved from a 27-bit or 24-bit nominal range scaling to the range scaling specified for
image reconstruction. The 27-bit range scaling applies when the data is scaled, and the 24-bit range scaling applies when the data
is unscaled.

144 Rec. ITU-T T.832(01/2012)



9.10.7.3 PostScalingFI( )

When OUTPUT BITDEPTH is equal to BD32F or BD16F, the integer sample value iX is converted to a value fV that
can be interpreted as a floating point representation.

The PostScalingF1( ) process computes the value fV as specified in Table 192.

Table 192 — Pseudocode for function PostScalingFI()

PostScalingFI(iX) { Reference
if (iX <0)
iS=1
else
iS=0
if (OUTPUT BITDEPTH == BDI16F) {
iEM = Min(Abs(iX), 32767)
fV = ((iS << 15) | iEM) /* Concatenate these fields*/
} else {/* OUTPUT BITDEPTH == BD32F */
iX = Abs(iX)
iE = (iX >> LEN MANTISSA)
iM = ((iX & ((1 << LEN MANTISSA) — 1)) | (1 << LENMANTISSA))

if (E==0) {
iM "= (1 << LEN MANTISSA)
E=1

}

iE =iE — EXP BIAS + 127
while ((iM < (1 <<LEN MANTISSA)) && (iE > 1) && (iM > 0)) {
iE—=1
iM <<= 1
}
if (M < (1 <<LEN_MANTISSA))
iE=0
else
iM ~= (1 << LEN_MANTISSA)
iM <<= (23 - LEN_MANTISSA)
fV = ((iS << 31) | iE << 23) | iM) /* Concatenate these fields */

return fV

9.10.7.4 PostScalingF2( )

When OUTPUT _CLR_FMT is equal to RGBE, the three integer sample values of array arrayln[ | (R, G, and B) are
converted to an array arrayOut| ] of four integer values forming the RGBE representation (Rrgbe, Grgbe, Brgbe and
Ergbe). The function PostScalingF2( ) specified in Table 193 performs the conversion.

Table 193 — Pseudocode for function PostScalingF2( )

PostScalingF2(arrayOut[ ], arrayIn[ ]) { Reference
/* arrayIn[ = {R, G, B} */
/* arrayOut[ ]= {Rrgbe, Grgbe, Brgbe, Ergbe} */
if (arrayIn[0] <= 0) {
arrayOut[0] = 0
iEr=0
} else if ((arrayIn[0] >> 7) > 1) {
arrayOut[0] = (arrayIn[0] & 0x7F) + 128
iEr = (arrayIn[0] >> 7)
} else {
arrayOut[0] = arrayIn[0]
iEr=1

}

if (arrayIn[1] <= 0) {
arrayOut[1] =0
iEg=0
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} else if ((arrayIn[1]>>7)> 1) {
arrayOut[ 1] = (arrayIn[1] & 0x7F) + 128
iEg = (arrayIn[1] >> 7)

} else {
arrayOut[1] = arrayIn[1]
iEg=1

}

if (arrayIn[2] <= 0) {
arrayOut[2] =0
iEb=0

} else if ((arrayIn[2] >>7) > 1) {
arrayOut[2] = (arrayIn[2] & 0x7F) + 128
iEb = (arrayIn[2] >> 7)

} else {
arrayOut[2] = arrayIn[2]
iEb=1

}
arrayOut[3] = Max(iEr, Max(iEg, iEb))
if (arrayOut[3] > iEr) {
iShift = (arrayOut[3] — iEr)
arrayOut[0] = ((2 * arrayOut[0] + 1) >> (iShift + 1))

}
if (arrayOut[3] > iEg) {
iShift = (arrayOut[3] — iEg)
arrayOut[1] = ((2 * arrayOut[1] + 1) >> (iShift + 1))

}
if (arrayOut[3] > iEb) {
iShift = (arrayOut[3] — iEb)
arrayOut[2] = ((2 * arrayOut[2] + 1) >> (iShift + 1))

H

9.10.8 Clipping and packing stage

9.10.8.1 General

The ClippingAndPackingStage( ) process by which clipping, packing, and windowing are performed is specified in
Table 194. The clipping ensures that the sample values are constrained to the appropriate range. The packing process
packs multiple samples into single variables for some values of OUTPUT BITDEPTH. The windowing process uses
the LEFT MARGIN, TOP_ MARGIN, WIDTH_MINUS1 and HEIGHT MINUSI syntax elements to discard the data
outside of the image area that is to be output.

Table 194 — Pseudocode for function ClippingAndPackingStage( )

ClippingAndPackingStage( ) { Reference
if((OUTPUT _CLR_FMT ==RGB) &&
((OUTPUT _BITDEPTH ==BD5) || (OUTPUT_BITDEPTH == BD565) | |
(OUTPUT BITDEPTH == BD10))) /* Packed RGB */
outputArrays = 1
else if (OUTPUT_CLR_FMT ==RGB) | | (OUTPUT_CLR_FMT ==YUV444) | |
(OUTPUT CLR FMT ==YUV422) || (OUTPUT CLR FMT == YUV420))
outputArrays = 3
else if (OUTPUT CLR _FMT == RGBE)
outputArrays = 4
else
outputArrays = NumComponents
for (i =0; i < outputArrays; i++) {
if (> 0) && (OUTPUT CLR FMT == YUV420)) {
outputHeight = (HEIGHT MINUS1 +1)/2
n=TOP MARGIN /2
} else {
outputHeight = HEIGHT MINUSI1 + 1
n=TOP MARGIN

}
if (1> 0) &&
((OUTPUT CLR FMT == YUV422) | | (OUTPUT CLR FMT == YUV420))) {
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outputWidth = (WIDTH MINUSI1 + 1) /2
m=LEFT MARGIN/2
} else {
outputWidth = WIDTH MINUSI + |
m=LEFT MARGIN
}
if (OUTPUT_BITDEPTH == BDS) | | (OUTPUT_BITDEPTH ==BDI16) | |
(OUTPUT BITDEPTH == BDI16Y))
for (y = 0; y < outputHeight; y++)
for (x = 0; x < outputWidth; x++)
ImagePlane[i][x][y] = ClippingBasic(ImagePlane[i][x + m][y + n]) 9.10.8.2
else if (OUTPUT BITDEPTH = = BD565)
for (y = 0; y < outputHeight; y++)
for (x = 0; x < outputWidth; x++)
ImagePlane[i][x][y] = ClipAndPackBD565(ImagePlane[0][x + m][y + n], 9.10.8.3
ImagePlane[1][x + m][y + n], ImagePlane[2][x + m][y + n])
else if (OUTPUT BITDEPTH = = BDS5)
for (y = 0; y < outputHeight; y++)
for (x = 0; x < outputWidth; x++)
ImagePlane[i][x][y] = ClipAndPackBD5(ImagePlane[0][x + m][y + n], 9.10.8.4
ImagePlane[1][x + m][y + n], ImagePlane[2][x + m][y + n])
else if (OUTPUT BITDEPTH == BDI10)
if (OUTPUT _CLR _FMT == RGB)
for (y = 0; y < outputHeight; y++)
for (x = 0; x < outputWidth; x++)
ImagePlane[i][x][y] = ClipAndPackBD10(ImagePlane[0][x + m][y + n], 9.10.8.5
ImagePlane[1][x + m][y + n], ImagePlane[2][x + m][y + n])

else
for (y = 0; y < outputHeight; y++)
for (x = 0; x < outputWidth; x++)
ImagePlane[i][x][y] = ClipAndPackBD10(ImagePlane[i][x + m][y + n], 0, 0) 9.10.8.5
else if (OUTPUT BITDEPTH == BDI1WHITE]) || (OUTPUT BITDEPTH == BDI1BLACK1))
for (y = 0; y < outputHeight; y++)
for (x = 0; x < outputWidth; x+=8) { /* Up to 8 samples are packed into each output byte */
pNum = Min(outputWidth — x, 8) /* Number of values to pack into current output byte */
for (p = pNum; m < §; p++) /* Prevent junk beyond valid image data in array */
valList[p] = 0 /* Actual value does not matter in this region */
for (p = 0; p < pNum; p++)
valList[p] = ImagePlane[i][x + m + p][y + n]
ImagePlane[i][x >> 3][y] = ClipAndPackBD1BorW(valList) 9.10.8.6

}
else /* OUTPUT BITDEPTH equal to BD16F, BD32F, or BD32S */

for (y = 0; y < outputHeight; y++)
for (x = 0; x < outputWidth; x++)
ImagePlane[i][x][y] = ImagePlane[i][x + m][y + n]

9.10.8.2 ClippingBasic( )
The pseudocode function ClippingBasic( ) is specified in Table 195.

Table 195 — Pseudocode for function ClippingBasic()

ClippingBasic(iSample) {

if (OUTPUT BITDEPTH == BDS) {
iLow =0
iHigh = 255

} else if (OUTPUT BITDEPTH == BD16) {
iLow =0
iHigh = 65535

} else if (OUTPUT BITDEPTH == BD16S) {
iLow = —32768
iHigh = 32767
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}

iResult = Clip(iSample, iLow, iHigh) /* Clip within the range iLow to iHigh */

return iResult

9.10.8.3 ClipAndPackBD565( )
The pseudocode function ClipAndPackBD565( ) is specified in Table 196.

Table 196 — Pseudocode for function ClipAndPackBD565( )

ClipAndPackBD565(i0, i1, i2) {

iLow =0

iHigh =31

i0 = Clip(i0, iLow, iHigh)

i2 = Clip(i2, iLow, iHigh)

iLow =0

iHigh = 63

il = Clip(il, iLow, iHigh)

iResult=i0 + (il <<5) + (i2 << 11)

return iResult

9.10.8.4 ClipAndPackBD5( )
The pseudocode function ClipAndPackBD5( ) is specified in Table 197.

Table 197 — Pseudocode for function ClipAndPackBD5( )

ClipAndPackBD5(i0, i1, i2) {

iLow =0

iHigh = 31

i0 = Clip(i0, iLow, iHigh)

i1 = Clip(il, iLow, iHigh)

i2 = Clip(i2, iLow, iHigh)

iResult =0 + (il <<5) + (i2 << 10)

return iResult

9.10.8.5 ClipAndPackBD10( )
The pseudocode function ClipAndPackBD10( ) is specified in Table 198.

Table 198 — Pseudocode for function ClipAndPackBD10()

ClipAndPackBD10(iSample0, iSamplel, iSample2) {

iLow =0

iHigh = 1023

if OUTPUT CLR FMT ==RGB) {

10 = Clip(iSample0, iLow, iHigh)

il = Clip(iSamplel, iLow, iHigh)

i2 = Clip(iSample2, iLow, iHigh)

iResult =0 + (il << 10) + (i2 << 20)

} else

iResult = Clip(iSample0, iLow, iHigh)

return iResult
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9.10.8.6 ClipAndPackBD1BorW()
The pseudocode function ClipAndPackBD1BorW( ) is specified in Table 199.

Table 199 — Pseudocode for function ClipAndPackBD1BorW( )

ClipAndPackBD1BorW (valList) {
/* valList[0] holds the value associated with the first sample value in the scan order, and
valList[7] holds the value associated with the last sample value in the scan order */
valList[0] = Clip(valList[0], 0, 1)

valList[1] = Clip(valList[1], 0, 1)
valList[2] = Clip(valList[2], 0, 1)
valList[3] = Clip(valList[3], 0, 1)
valList[4] = Clip(valList[4], 0, 1)
valList[5] = Clip(valList[5], 0, 1)
valList[6] = Clip(valList[6], 0, 1)
valList[7] = Clip(valList[7], 0, 1)

if (OUTPUT BITDEPTH == BDI1BLACKI)
iResult = (1 — valList[7]) + ((1 — valList[6]) << 1) + ((1 — valList[5]) << 2) +
((1 — valList[4]) << 3) + ((1 — valList[3]) << 4) + ((1 — valList[2]) << 5) +
((1 — valList[1]) << 6) + ((1 — valList[0]) << 7)
else /* OUTPUT BITDEPTH == BDIWHITEI */
iResult = valList[7] + (valList[6] << 1) + (valList[5] << 2) +
(valList[4] << 3) + (valList[3] << 4) + (valList[2] << 5) +
(valList[1] << 6) + (valList[0] << 7)
return iResult

Rec. ITU-T T.832 (01/2012)

149



Annex A

Tag-based file format

(This annex forms an integral part of this Recommendation | International Standard.)

A.l General

This annex specifies a format for files containing JPEG XR images. It uses syntax structures (IFD_ENTRY/( ) structures
as specified in subclause A.7) that each contain a syntax element (FIELD TAG as specified in subclause A.7.2) that can
be referred to as a tag. Therefore, this file format is referred to as being tag-based. The value of the tag serves as an
identifier of the type of data contained in the syntax structure that is associated with the tag.

NOTE 1 - The file format specified in this annex is based on that specified for use in ISO 12234-2, ISO 12639, TIFF 6.0, and

EXIF 2.2, and is intended to provide a form of consistency and compatibility with those Specifications — e.g. to enable the
sharing of some functional components designed for reading, writing, and otherwise making use of such files.

NOTE 2 - This specification of this file format does not preclude the existence of alternative file format specifications for files
containing JPEG XR images.

NOTE 3 — When a file is formatted as specified in this annex, in addition to the syntax structures that are specified by this annex,
arbitrary data (formatted in a manner not specified by this annex) may also be present at locations within the file that lie between
or beyond the locations in the file that contain the syntax structures specified by this annex.

NOTE 4 - The use of the filename extension ".jxr" is suggested for files conforming to the file format specified in this annex.

The FILE HEADER( ) syntax structure specified in subclause A.5 shall be present at the beginning of the file (at byte
position 0).

The variable FileSizeInBytes is considered to be equal to the total number of bytes in the file. The method of
determining the value of FileSizeInBytes is determined by the application and is not specified in this Specification. The
value of FileSizeInBytes shall not exceed 2** — 1.

For purposes of this Specification, a decoder is assumed to be capable of either storing the entire file in random access
memory or performing random access seek operations to access the data at arbitrary specified positions in the file.

A.2 Normative references

The following Recommendations and International Standards contain provisions which, through reference in this text,
constitute provisions of this annex to this Recommendation | International Standard. At the time of publication, the
editions indicated were valid. All Recommendations and Standards are subject to revision, and parties to agreements
based on this Recommendation | International Standard are encouraged to investigate the possibility of applying the
most recent edition of the Recommendations and Standards listed below. Members of IEC and ISO maintain registers of
currently valid International Standards. The Telecommunication Standardization Bureau of the ITU maintains a list of
currently valid ITU-T Recommendations.

A.2.1 Identical Recommendations| I nternational Standards

None.

A.2.2 Paired Recommendations | International Standards equivalent in technical content
None.

A.2.3 Additional references

- ISO/IEC 10646:2003, Information technology — Universal multiple-octet coded character set (UCS) Annex D:
UCS Transformation Format 8 (UTF-8).

- ISO/IEC/IEEE 60559 (2011), Information technology — Microprocessor Systems — Floating-Point arithmetic.

A3 Definitions

For the purposes of this annex to this Recommendation | International Standard, the following definitions apply. In this
subclause, italic font formatting is used to identify all occurrences of terms that are defined in this subclause or in
clause 3.
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A31 interleaved alpha image plane: Images with the value of ALPHA IMAGE PLANE FLAG set equal to 1
have an interleaved alpha image plane.

A.32 separate alpha image plane: Images with optional alpha image plane and the value of
ALPHA IMAGE PLANE FLAG set equal to zero have a separate alpha image plane. For such images, data relating
to the alpha image plane is present in the CODED_IMAGE( ) syntax structure specified by the ALPHA OFFSET
syntax element.

A.3.3 universal multiple-octet coded character set transformation format 8 (UTF-8): The 8-bit character set
encoding specified in ISO/IEC 10646 Annex D.

A4 Abbreviations

For the purposes of this annex to this Recommendation | International Standard, the following abbreviations apply.
CIE Commission Internationale de 1'Eclairage (International Commission on Illumination)
FCC Federal Communications Commission
ICC International Color Consortium
NTSC National Television System Committee
RP Recommended Practice
SMPTE Society of Motion Picture and Television Engineers

UTF Universal multiple-octet coded character set Transformation Format (as specified by ISO/IEC
10646)

UUID  Universal Unique Identifier (as specified by ISO/IEC 11578)
A5 FILE HEADER()

A.5.1 Syntaxstructure
The FILE_HEADER( ) syntax structure is specified by Table A.1.

TableA.1-FILE_HEADER() syntax structure

FILE_ HEADER(){ Descriptor Reference
FIXED FILE HEADER II 2BYTES u(16) A52
FIXED FILE HEADER 0XBC BYTE u(8) A53
FILE VERSION ID u(8) A54
FIRST IFD OFFSET le(32) A.5.5

H

A52 FIXED FILE_ HEADER |l 2BYTES

FIXED FILE HEADER_II 2BYTES shall be equal to 0x4949.
A53 FIXED FILE_HEADER _OXBC BYTE

FIXED FILE HEADER 0XBC_BYTE shall be equal to 0xBC.

A54 FILE_VERSION_ID

FILE VERSION ID shall be equal to 1. Other values of FILE VERSION _ID are reserved for future use, as modified
in additional parts or amendments, by ITU-T | ISO/IEC.

A55 FIRST_IFD_OFFSET

FIRST IFD OFFSET specifies the byte position, relative to the beginning of the file, of the first
IMAGE FILE DIRECTORY( ) syntax structure (subclause A.6) in the file. The value of FIRST IFD OFFSET shall
be an integer multiple of 2.
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A6  IMAGE_FILE_DIRECTORY()

A.6.1 Syntax structure
The IMAGE _FILE DIRECTORY( ) syntax structure is specified by Table A.2.

TableA.2—IMAGE_FILE_DIRECTORY() syntax structure

IMAGE FILE DIRECTORY(){ Descriptor Reference
NUM ENTRIES le(16) A.6.2
for (iINumEntries = 0;
iNumEntries < NUM_ENTRIES;

iNumEntries++)
IFD_ENTRY() A7
ZERO OR NEXT IFD OFFSET 16(32) A.6.3

H

A.6.2 NUM_ENTRIES

NUM_ENTRIES specifies the number of entries in the IMAGE FILE DIRECTORY() syntax structure.
NUM_ENTRIES shall not be equal to 0. The value 0 for NUM_ENTRIES is reserved for future use by ITU-T |
ISO/IEC.

A6.3 ZERO OR_NEXT_IFD_OFFSET

ZERO OR NEXT IFD OFFSET is interpreted as follows:

e If ZERO OR NEXT IFD OFFSET is equal to 0, this indicates that no additional
IMAGE FILE DIRECTORY( ) syntax structures are present in the file.

e  Otherwise, ZERO_OR NEXT IFD_OFFSET specifies the byte position, relative to the beginning of the file,
to the next IMAGE_FILE DIRECTORY( ) syntax structure in the file.

The value of ZERO_OR_NEXT IFD OFFSET shall be an integer multiple of 2.

Decoders may ignore any IMAGE FILE DIRECTORY( ) syntax structures at locations in the file specified by any
ZERO OR NEXT IFD OFFSET syntax element.

A7  IFD_ENTRY()

A.7.1 Syntax structure
The IFD_ENTRY/( ) syntax structure is specified by Table A.3.

Table A.3—1FD_ENTRY/() syntax structure

IFD ENTRY() { Descriptor Reference
FIELD TAG le(16) A72
ELEMENT TYPE le(16) A.7.3
NUM ELEMENTS le(32) A4
VALUES OR_OFFSET le(32) A7.5

H

The interpretation and presence of syntax elements of the IFD ENTRY/( ) syntax structure is specified in Table A.4.
The data associated with a FIELD_TAG value is interpreted as the value of the syntax element or syntax structure in the
column of the table with the heading "Syntax element or syntax structure". The term "variable" is used in the table to
indicate cases in which NUM_ELEMENTS may have any value corresponding to the quantity of associated data. The
column of the table with the heading "Presence" is interpreted as follows.

"Required" specifies that the FIELD TAG value shall be present in an [IFD_ENTRY( ) syntax structure of each
IMAGE FILE DIRECTORY( ) syntax structure in the file.

"Optional" indicates that the FIELD TAG value may or may not be present in an IFD ENTRY() syntax
structure of each IMAGE _FILE DIRECTORY( ) syntax structure in the file.

IFD entries with combinations of FIELD TAG, ELEMENT TYPE, and NUM_ELEMENTS that do not appear in
Table A.4, with the FIELD TAG value in the range of 0x1000 to 0x3FFF and 0x5000 to Ox7FFF are reserved for future
use by ITU-T | ISO/IEC. Decoders shall ignore (parse and discard) any IFD_ENTRY( ) syntax structures in which such
combinations appear.
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NOTE 1 - The purpose of the specification for decoders to ignore IFD entries with such combinations of FIELD_TAG,
ELEMENT_TYPE, and NUM_ELEMENTS is to enable the future definition of a backward-compatible usage of additional
combinations.

IFD entries with combinations of FIELD TAG, ELEMENT TYPE, and NUM_ELEMENTS that do not appear in
Table A.4, with the FIELD TAG value in the range of 0x0000 to 0xOFFF, 0x4000 to 0x4FFF, and 0x8000 to OxFFFF
are available for unspecified use and interpretation as determined by the application. Decoders shall parse any
IFD_ENTRY() syntax structures in which such combinations appear and, for purposes relevant to determining
conformance to this Specification, shall ignore these syntax structures. Any use of such FIELD TAG values shall not
affect the expressed requirements for conformance to this Specification. Additionally, ITU-T and ISO/IEC reserve the
ability to potentially specify uses for such FIELD TAG values in future revisions of this Specification.

NOTE 2 - Since interpretation of such FIELD_TAG values may be application-specific, it is recommended to remove any such

IFD_ENTRY() syntax structures that have unknown interpretations when transferring files between differing application
domains.

NOTE 3 - The use of a field tag value equal to 0x02BC in tag-based encoded files (such as files formatted according to
ISO 12234-2, ISO 12639, TIFF 6.0, or EXIF 2.2), is specified in section 5 of the Adobe Extensible Metadata Platform (XMP)
specification. The use of a field tag value equal to 0x8769 is specified in section 4.6.3 of the JEITA EXIF 2.2 specification. The
use of a field tag value equal to 0x8773 is specified in section B.3 of the ICC ICC.1 specification and in section B.4 of
ISO 15076-1, which specify two versions of ICC profile data. The provision to allow these field tag values to be present is
intended to allow the use of the XMP, EXIF 2.2, ICC.1 and ISO 15076-1 specifications with files encoded according to this
Specification (without imposing normative conformance requirements related to such use). The use of ICC profile data is further
discussed in Annex C.

Table A.4—Interpretation, allowed combinations, and presence of
syntax elements of the [FD_ENTRY () syntax structure

FIELD_TAG ELEMENT_TYPE | NUM_ELEMENTS Syntax element or Presence
syntax structure

0x010D UTF8 variable DOCUMENT NAME Optional

0x010E UTF8 variable IMAGE_DESCRIPTION Optional

0x010F UTFS8 variable EQUIPMENT MAKE Optional

0x0110 UTFS8 variable EQUIPMENT MODEL Optional

0x011D UTF8 variable PAGE NAME Optional

0x0129 USHORT 2 PAGE_NUMBER Optional

0x0131 UTF8 variable SOFTWARE NAME VERSION Optional

0x0132 UTF8 20 DATE_TIME Optional

0x013B UTF8 variable ARTIST NAME Optional

0x013C UTF8 variable HOST _COMPUTER Optional

0x8298 UTEF8 variable COPYRIGHT NOTICE Optional

0xA001 USHORT 1 COLOR _SPACE Optional

0xBCO01 BYTE 16 PIXEL FORMAT Required

0xBC02 BYTE, USHORT, 1 SPATIAL_XFRM_PRIMARY Optional
or ULONG

0xBC04 ULONG 1 IMAGE _TYPE Optional

0xBC05 BYTE 4 PTM _COLOR INFO() Optional

0xBC06 BYTE variable PROFILE_LEVEL CONTAINER() Optional

0xBC80 BYTE, USHORT, 1 IMAGE_WIDTH Required
or ULONG

0xBC81 BYTE, USHORT, 1 IMAGE _HEIGHT Required
or ULONG

0xBC82 FLOAT 1 WIDTH_RESOLUTION Optional

0xBC83 FLOAT 1 HEIGHT RESOLUTION Optional

0xBCCO BYTE, USHORT, 1 IMAGE_OFFSET Required
or ULONG

0xBCCl1 BYTE, USHORT, 1 IMAGE_BYTE_COUNT Required
or ULONG

0xBCC2 BYTE, USHORT, 1 ALPHA OFFSET Optional
or ULONG

0xBCC3 BYTE, USHORT, 1 ALPHA_BYTE_COUNT Optional
or ULONG

0xBCC4 BYTE 1 IMAGE_BAND_ PRESENCE Optional

0xBCC5 BYTE 1 ALPHA_BAND_PRESENCE Optional

0xEA1C UNDEFINED variable PADDING DATA Optional
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A72 FIELD_TAG

FIELD_TAG identifies the data contained in the IFD_ENTRY( ) syntax structure. When the IFD _ENTRY( ) syntax
structure is not the first IFD ENTRY/( ) syntax structure of the IMAGE FILE DIRECTORY( ) syntax structure, the
value of FIELD TAG shall be greater than the value of FIELD TAG in the preceding IFD _ENTRY( ) syntax structure
of the IMAGE_FILE DIRECTORY( ) syntax structure.

A.73 ELEMENT_TYPE

ELEMENT TYPE identifies the type of data contained in the IFD _ENTRY() syntax structure as specified by
Table A.S.

TableA5—ELEMENT_TYPE

ELEMENT TYPE Mnemonic SizeOfElement
RESERVED Not specified
BYTE 1

UTFS8
USHORT
ULONG
URATIONAL

SBYTE
UNDEFINED
SSHORT
SLONG
SRATIONAL
FLOAT

12 DOUBLE 8
13-65535 RESERVED Not specified

OO N|O|O|(R[W|IN|F|O

=
o

KMl Bl =] =]l —

[EEY
[N

The value of ELEMENT TYPE shall not be equal to RESERVED in files conforming to this version of this annex.
Such values are reserved for use in future versions of this Specification. Decoders that encounter files containing
ELEMENT TYPE equal to RESERVED shall ignore the associated data.

When ELEMENT TYPE is equal to UNDEFINED, the value of FIELD TAG shall be equal to 0x8773 if it is not equal
to 0xEA1C in files conforming to this version of this annex. Other values of ELEMENT TYPE are reserved for use in
future versions of this Specification.

The quantity of data associated with each syntax element VALUES OR_OFFSET, as specified by ELEMENT TYPE
in units of bytes, is specified in the SizeOfElement column of Table A.5. The interpretation of the data elements
associated with each value of ELEMENT TYPE is specified as follows.

- If ELEMENT TYPE is equal to BYTE, USHORT, or ULONG, each data element is interpreted as an unsigned
integer of the specified length in little-endian form.

- Otherwise, if ELEMENT TYPE is equal to SBYTE, SSHORT, or SLONG, each data element is interpreted as a
two's complement signed integer of the specified length in little-endian form.

- Otherwise, if ELEMENT TYPE is equal to UTFS, each data element is interpreted as a UTF-8 character set code
as specified by ISO/IEC 10646 Annex D, and the value of the last data element of the IFD _ENTRY( ) shall be
equal to 0 (null). Any such field may contain multiple strings of UTF-8 characters, each terminated with a 0-valued
character. The NUM_ELEMENTS for such multi-string payloads is the total number of bytes in all of the
associated strings including the O-valued byte at the end of each such string. Within the associated
NUM_ELEMENTS bytes, there shall not be any two consecutive bytes equal to 0.

- Otherwise, if ELEMENT TYPE is equal to UNDEFINED, the interpretation of the data elements depends on the
FIELD TAG value as follows:

- If the value of FIELD TAG is equal to 0OXEA1C (PADDING DATA), the interpretation of each data
element is specified in subclause A.7.33.

- Otherwise, the interpretation of the data elements is not specified by this Specification.

- Otherwise, if ELEMENT TYPE is equal to URATIONAL, each data element is interpreted as a rational number
having a numerator equal to the first four bytes of the data element value, interpreted as an unsigned integer of the
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specified length in little-endian form, and a denominator equal to the remaining four bytes of the data element
value, interpreted as an unsigned integer of the specified length in little-endian form.

- Otherwise, if ELEMENT TYPE is equal to SRATIONAL, each data element is interpreted as a rational number
having a numerator equal to the first four bytes of the data element value, interpreted as a two's complement signed
integer of the specified length in little-endian form, and a denominator equal to the remaining four bytes of the data
element value, interpreted as a two's complement signed integer of the specified length in little-endian form.

- Otherwise, if ELEMENT TYPE is equal to FLOAT, each data element is interpreted as a four-byte IEC 60559
floating-point number in little-endian form.

- Otherwise (ELEMENT TYPE is equal to DOUBLE), each data element is interpreted as an eight-byte IEC 60559
floating-point number in little-endian form.

A.74 NUM_ELEMENTS

NUM_ELEMENTS specifies the number of data elements associated with the IFD_ENTRY( ) syntax structure. Let
iSizeOfElement be equal to the value in the SizeOfElement column of Table A.5 for the value of ELEMENT TYPE.
The total number of bytes of data associated with the IFD ENTRY() syntax structure is
NUM_ELEMENTS * iSizeOfElement.

NOTE - NUM_ELEMENTS must be set to the total quantity of data elements, including termination indicator values such as
null-valued terminators as applicable.

A.75 VALUES OR_OFFSET
VALUES OR OFFSET is interpreted as follows:

e Let iSizeOfElement be equal to the value in the SizeOfElement column of Table A.5 for the value of
ELEMENT TYPE. If NUM ELEMENTS * iSizeOfElement is less than or equal to 4,
VALUES OR_OFFSET contains the data elements associated with the [IFD_ENTRY/( ) syntax structure.

e  Otherwise, VALUES OR_OFFSET specifies the byte position, relative to the beginning of the file, of the
data elements associated with the IFD _ENTRY() syntax structure. In this case, the value of the
VALUES OR_OFFSET syntax element shall be an integer multiple of 2.

A.7.6 DOCUMENT_NAME

DOCUMENT NAME (when present) provides, as a UTF-8 character string, a name for the image. There are no
specific conformance requirements for the content of the associated character string (other than that it follows the
format conventions of the ELEMENT TYPE definition of the UTFS8 data type as specified in subclause A.7.3).

NOTE 1 - The name of this syntax element alludes to the intended interpretation instead of any normative meaning.

NOTE 2 - DOCUMENT_NAME is specified here in a manner that is intended to be consistent with the "DocumentName" tag
specified in ISO 12639 and TIFF 6.0.

A.77 IMAGE_DESCRIPTION

IMAGE DESCRIPTION (when present) provides, as a UTF-8 character string, a title or description of the image
subject matter. There are no specific conformance requirements for the content of the associated character string (other
than that it follows the format conventions of the ELEMENT TYPE definition of the UTFS8 data type as specified in
subclause A.7.3).

NOTE 1 - The name of this syntax element alludes to the intended interpretation instead of any normative meaning.

NOTE 2 - IMAGE_DESCRIPTION is specified here in a manner that is intended to be consistent with the "ImageDescription”
tag specified in ISO 12234-2, ISO 12639, TIFF 6.0, and EXIF 2.2.

A.7.8 EQUIPMENT_MAKE

EQUIPMENT MAKE (when present) provides, as a UTF-8 character string, a name for the manufacturer or vendor of
the camera, image-capturing device, scanner, or other equipment that generated the image. There are no specific
conformance requirements for the content of the associated character string (other than that it follows the format
conventions of the ELEMENT TYPE definition of the UTF8 data type as specified in subclause A.7.3).

NOTE 1 - The name of this syntax element alludes to the intended interpretation instead of any normative meaning.

NOTE 2 - EQUIPMENT_MAKE is specified here in a manner that is intended to be consistent with the "Make" tag specified in
ISO 12234-2,ISO 12639, TIFF 6.0, and EXIF 2.2.

A.79 EQUIPMENT_MODEL

When present, EQUIPMENT MODEL provides, as a UTF-8 character string, a model name or model number of the
camera, image-capturing device, scanner, or other equipment that generated the image. There are no specific
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conformance requirements for the content of the associated character string (other than that it follows the format
conventions of the ELEMENT TYPE definition of the UTF8 data type as specified in subclause A.7.3).
NOTE 1 - The name of this syntax element alludes to the intended interpretation instead of any normative meaning.

NOTE 2 - EQUIPMENT_MODEL is specified here in a manner that is intended to be consistent with the "Model" tag specified
in ISO 12234-2, ISO 12639, TIFF 6.0, and EXIF 2.2.

A.7.10 PAGE_NAME

PAGE NAME (when present) provides, as a UTF-8 character string, a name to be considered to be the name of a page
to which the image is considered to belong. There are no specific conformance requirements for the content of the
associated character string (other than that it follows the format conventions of the ELEMENT TYPE definition of the
UTEF8 data type as specified in subclause A.7.3).

NOTE 1 - The name of this syntax element alludes to the intended interpretation instead of any normative meaning.

NOTE 2 - PAGE_NAME is specified here in a manner that is intended to be consistent with the "PageName" tag specified in
ISO 12639 and TIFF 6.0.

A.7.11 PAGE_NUMBER

PAGE NUMBER (when present) provides, as a pair of unsigned integers, a "page number" (the first number) to be
considered the page number of a page from a sequence of pages (the second number) to which the image is considered
to belong. There are no specific conformance requirements for the content of the associated character string (other than
that it follows the format conventions of the ELEMENT TYPE definition of the USHORT data type as specified in
subclause A.7.3).

NOTE 1 - The name of this syntax element alludes to the intended interpretation instead of any normative meaning.

NOTE 2 - PAGE_NUMBER is specified here in a manner that is intended to be consistent with the "PageNumber" tag specified
in TIFF 6.0.

A.7.12 SOFTWARE_NAME_VERSION

SOFTWARE NAME VERSION (when present) provides, as a UTF-8 character string, name and version number
information for one or more software packages used in generating the image or file. There are no specific conformance
requirements for the content of the associated character string (other than that it follows the format conventions of the
ELEMENT TYPE definition of the UTF8 data type as specified in subclause A.7.3).

NOTE 1 - The name of this syntax element alludes to the intended interpretation instead of any normative meaning.

NOTE 2 - SOFTWARE_NAME_VERSION is specified here in a manner that is intended to be consistent with the "Software"
tag specified in ISO 12234-2, ISO 12639, TIFF 6.0, and EXIF 2.2.

A.7.13 DATE_TIME

DATE TIME (when present) provides, as a UTF-8 character string, the date and time of the creation or last
modification of the image.

The value of NUM_ELEMENTS for the DATE_TIME tag shall be equal to 20.

The interpretation of the UTF-8 character string associated with the DATE TIME tag shall be as follows:

- If the UTF-8 character string associated with the DATE TIME tag is the string "0000:00:00 00:00:00" or this
string with all "0" characters replaced by space (0x20) characters as in the string " : : : : ", followed by a
byte equal to 0, this indicates that the date and time are unknown.

- Otherwise, the UTF-8 character string associated with the DATE TIME tag shall be formatted as
"YYYY:MM:DD HH:MM:SS", followed by a byte equal to 0, where the formatting of this string shall be as
follows.

e The "YYYY" part of the string shall contain a character string representation of a four-digit decimal number
for a calendar year.

n.n n.n

e Each colon character ":" part of the string shall be a colon ":" character (a byte equal to 0x3A).

e The "MM" part of the string shall contain a character string representation of a two-digit decimal number in
the range from "01" to "12" for a month within the year (where "01" indicates January, "02" indicates
February, etc.) or two space (0x20) characters.

e The "DD" part of the string shall contain a character string representation of a two-digit decimal number in
the range from "01" to "31" for a day within the month (where "01" indicates the first day of the month, "02"
indicates the second day of the month, etc.).

o The character separating the "DD" and "HH" parts of the string shall be a space character " " (a byte equal to
0x20).
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e The "HH" part of the string shall contain a character string representation of a two-digit decimal number in
the range from "00" to "23" for an hour within the day, following a 24-hour time of day convention (where
"00" indicates a time in the first hour of the day, "01" indicates a time in the second hour of the day, etc.).

NOTE 1 - The time 00:00:00 is used to indicate midnight. Similarly, 00:00:01 indicates one second after midnight and 23:59:59
indicates one second prior to midnight.

e The "MM" part of the string shall contain a character string representation of a two-digit decimal number in
the range from "00" to "59" for a minute within the hour (where "00" indicates a time in the first minute of the
hour, "01" indicates a time within the second minute of the hour, etc.).

e The "SS" part of the string shall contain a character string representation of a two-digit decimal number in the
range from "00" to "59" for a second within the minute (where "00" indicates a time in the first second of the
minute, "01" indicates a time within the second second of the minute, etc.).

The time zone for the date and time are not specified in this version of this Specification.

NOTE 2 - For example, the date and time may be referenced to the local time zone in which the encoding equipment is operated
or is ordinarily kept.

There are no additional specific conformance requirements for the content of the associated character string.
NOTE 3 - The name of this syntax element alludes to the intended interpretation instead of any normative meaning.

NOTE 4 - DATE_TIME is specified here in a manner that is intended to be consistent with the "DateTime" tag specified in
ISO 12234-2, ISO 12639, TIFF 6.0, and EXIF 2.2.

A.7.14 ARTIST_NAME

ARTIST NAME (when present) provides, as a UTF-8 character string, one or more names and possibly additional
information relating to persons involved in the creation of the image. There are no specific conformance requirements
for the content of the associated character string (other than that it follows the format conventions of the
ELEMENT TYPE definition of the UTF8 data type as specified in subclause A.7.3).

NOTE 1 - The name of this syntax element alludes to the intended interpretation instead of any normative meaning.

NOTE 2 - ARTIST_NAME is specified here in a manner that is intended to be consistent with the "Artist" tag specified in
I1SO 12234-2, 1SO 12639, TIFF 6.0, and EXIF 2.2. An example preferred use of ARTIST_NAME is the string value "Camera
owner, John Smith; Photographer, Michael Brown; Image creator, Ken James" (followed by a byte equal to 0).

A.7.15 HOST_COMPUTER

HOST COMPUTER (when present) provides, as a UTF-8 character string, an indication of a computer, operating
system, or other system used in generating the image or file. There are no specific conformance requirements for the
content of the associated character string (other than that it follows the format conventions of the ELEMENT TYPE
definition of the UTF8 data type as specified in subclause A.7.3).

NOTE 1 - The name of this syntax element alludes to the intended interpretation instead of any normative meaning.

NOTE 2 - HOST_COMPUTER is specified here in a manner that is intended to be consistent with the "HostComputer" tag
specified in ISO 12639 and TIFF 6.0.

A.7.16 COPYRIGHT_NOTICE

COPYRIGHT NOTICE (when present) provides, as a UTF-8 character string, an indication of copyright rights
associated with the image or file. There are no specific conformance requirements for the content of the associated
character string (other than that it follows the format conventions of the ELEMENT_ TYPE definition of the UTFS§ data
type as specified in subclause A.7.3).

NOTE 1 - The name of this syntax element alludes to the intended interpretation instead of any normative meaning.

NOTE 2 - COPYRIGHT_NOTICE is specified here in a manner that is intended to be consistent with the "Copyright" tag
specified in ISO 12234-2, ISO 12639, TIFF 6.0, and EXIF 2.2. A complete copyright statement should be listed in the character
string including any dates and statements of claims — for example, "Copyright, John Smith, 2009. All rights reserved" (followed
by a byte equal to 0). When desired, this character string can also list a royalty clearing house. The string may be used to indicate
either or both photographer and editor copyrights as well as any additional or alternative copyrights that apply to the image or
file. When a photographer statement is included, it should appear first. When no photographer copyright statement is included
and an editor or additional or alternative copyright statement is included, the absence of a photographer copyright statement
should be indicated by a space character (0x20) followed by a byte equal to O (null) at the beginning of the character string.
When an editor copyright statement is included, it should appear next. When no editor copyright statement is included and some
additional or alternative copyright statement is included, the absence of an editor copyright statement should be indicated by a
space character (0x20) followed by a byte equal to O (null) at the position in the character string at which the editor copyright
statement would otherwise appear. When some additional or alternative copyright statement is included, it should appear next.
When present, each additional or alternative copyright statement should end with a byte equal to O (null). When a royalty clearing
house listing is included, this listing should appear last.
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A.7.17 COLOR_SPACE

COLOR_SPACE (when present) equal to 1, when the value in the Num column in Table A.6 for the line corresponding
to the value of PIXEL FORMAT is equal to UINT, indicates that the associated image should be interpreted according
to the sSRGB specification IEC 61966-2-1. COLOR_SPACE equal to 0xFFFF, when used with an unsigned pixel format
as specified by PIXEL FORMAT, indicates that the sRGB specification may not be the preferred method of
interpretation of the associated image.

COLOR_SPACE shall not be equal to 1 when PIXEL. FORMAT specifies a fixed or floating point pixel format.

When present, COLOR_SPACE shall be equal to 1 or OXFFFF. All other values are reserved for future use by ITU-T |
ISO/IEC. All values other than 1 and OXFFFF shall be treated the same as the value O0xFFFF by decoders.

NOTE - sRGB image data is used in many systems, being interpreted directly by various receiving devices.

A.7.18 PIXEL_FORMAT

PIXEL FORMAT consists of a string of 16 BYTE values. The values of the bytes ordered from first to last in this

string are interpreted as digit pairs appearing from left to right in the hexadecimal integer values specified in Table A.6.
NOTE 1 - The PIXEL_FORMAT values specified in Table A.6 originated as UUID values as specified by ISO/IEC 11578.
UUID values are commonly shown as a string of hexadecimal digits separated by dash "-" characters. The bytes of such a UUID
value are typically stored in a file using a rearranged form of such a typical dashed-form description. In Table A.6, that
convention is not followed. Instead, the values are specified in a manner intended to ease the interpretation of the value as a
string of 16 BYTE values that can be directly compared to the provided strings of hexadecimal digits. The rearrangement of the
common form of UUID specification to produce the equivalent ordered string of BYTE values as shown in Table A.6 can be
performed as follows:

- The first (left-most) four bytes (which precede the first dash character in the common form of UUID
value specification) are ordered first, represented in little-endian (byte-reversed) form.

—  The next two bytes (which precede the second dash character in the common form of UUID value
specification) are ordered next, represented in little-endian (byte-reversed) form.

—  The next two bytes (which precede the third dash character in the common form of UUID value
specification) are ordered next, represented in little-endian (byte-reversed) form.

—  The remaining bytes in the common form of UUID value specification follow, in left-to-right order.

The headings of Table A.6 are interpreted as follows:

"Mnemonic name" indicates a string associated with the syntax element corresponding to the value of
PIXEL_FORMAT.

- "NC" specifies the following:

o [f the value of PIXEL FORMAT specifies that no alpha channel is present (as specified by the entry in the
"Alpha" column), it is a requirement for file format conformance to this annex that the value of
NumComponents as calculated in Table 31 shall be equal to the value of the entry in the "NC" column.

e Otherwise, if the alpha channel is present as a separate alpha image plane (as specified by the entry in the
"Alpha" column and the presence of ALPHA OFFSET), it is a requirement for file format conformance to
this annex that the value of NumComponents as calculated in Table 31 for the CODED IMAGE( ) syntax
structure at the position specified by IMAGE OFFSET shall be equal to the value of the entry in the "NC"
column minus 1, and the value of NumComponents as calculated in Table 31 for the CODED IMAGE()
syntax structure at the position specified by ALPHA OFFSET shall be equal to 1.

e Otherwise (the alpha channel is present as an interleaved alpha image plane), it is a requirement for file
format conformance to this annex that the value of NumComponents as calculated in Table 31 for the primary
image plane shall be equal to the value of the entry in the "NC" column minus 1, and the value of
NumComponents as calculated in Table 31 for the alpha image plane shall be equal to 1.

- "Alpha" specifies whether the PIXEL FORMAT specifies the presence of an alpha channel. An entry marked
with "v™" indicates that an alpha channel is present and an entry not marked with "v™" indicates that an alpha
channel is not present.

- "BPC" specifies a requirement for file format conformance to this annex that the value of the
OUTPUT BITDEPTH syntax element of the CODED IMAGE( ) syntax structure at the position specified by
IMAGE_OFFSET shall be equal to the value of the entry in the "BPC" column and, when present, the value of
the OUTPUT BITDEPTH syntax element of the CODED IMAGE( ) syntax structure at the position specified
by ALPHA_OFFSET shall be equal to value of the entry in the "BPC" column.

- "Num" specifies the numeric interpretation of values in the decoded image.
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- "Color" specifies a requirement for file format conformance to this annex that the value of the
OUTPUT _CLR_FMT syntax element of the CODED IMAGE( ) syntax structure at the position specified by
IMAGE_OFFSET shall be equal to the value of the entry in the "Color" column.

NOTE 2 - Image data may be structured as single channel monochrome "Gray", three-channel "RGB", four-channel "CMYK",
or n-Channel ("NCOMPONENT") with » in the range of 2 to 16, inclusive.
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Table A.6 —Interpretation of PIXEL_FORMAT

PIXEL FORMAT value Mnemonic NC [ Alpha BPC Num Color
0x24C3DD6F034EFE4BB1853D77768DC90D 24bppRGB 3 BDS8 UINT RGB
0x24C3DD6F034EFE4BB1853D77768DC90C 24bppBGR 3 BDS8 UINT RGB
0x24C3DD6F034EFE4BB1853D77768DC90E 32bppBGR 3 BDS8 UINT RGB
0x24C3DD6F034EFE4BB1853D77768DC915 48bppRGB 3 BD16 UINT RGB
0x24C3DD6F034EFE4BB1853D77768DC912 48bppRGBFixedPoint 3 BDI16S SINT RGB
0x24C3DD6F034EFE4BB1853D77768DC93B 48bppRGBHalf 3 BDI16F Float RGB
0x24C3DD6F034EFE4BB1853D77768DC918 96bppRGBFixedPoint 3 BD32S SINT RGB
0x24C3DD6F034EFE4BB1853D77768DC940 64bppRGBFixedPoint 3 BDI16S SINT RGB
0x24C3DD6F034EFE4BB1853D77768DC942 64bppRGBHalf 3 BDI16F Float RGB
0x24C3DD6F034EFE4BB1853D77768DC941 128bppRGBFixedPoint 3 BD32S SINT RGB
0x24C3DD6F034EFE4BB1853D77768DC91B 128bppRGBFloat 3 BD32F Float RGB
0x24C3DD6F034EFE4BB1853D77768DCO0F 32bppBGRA 4 v BDS8 UINT RGB
0x24C3DD6F034EFE4BB1853D77768DC916 64bppRGBA 4 v BDI16 UINT RGB
0x24C3DD6F034EFE4BB1853D77768DC91D 64bppRGBAFixedPoint 4 v BDI16S SINT RGB
0x24C3DD6F034EFE4BB1853D77768DC93 A 64bppRGBAHalf 4 v BD16F Float RGB
0x24C3DD6F034EFE4BB1853D77768DC91E 128bppRGBAFixedPoint 4 v BD32S SINT RGB
0x24C3DD6F034EFE4BB1853D77768DC919 128bppRGBAFloat 4 v BD32F Float RGB
0x24C3DD6F034EFE4BB1853D77768DC910 32bppPBGRA 4 v BDS8 UINT RGB
0x24C3DD6F034EFE4BB1853D77768DC917 64bppPRGBA 4 v BD16 UINT RGB
0x24C3DD6F034EFE4BB1853D77768DCI91A 128bppPRGBAFloat 4 v BD32F Float RGB
0x24C3DD6F034EFE4BB1853D77768DC91C 32bppCMYK 4 BDS8 UINT CMYK
0x24C3DD6F034EFE4BB1853D77768DC92C 40bppCMYKAlpha 5 v BDS8 UINT CMYK
0x24C3DD6F034EFE4BB1853D77768DCI1F 64bppCMYK 4 BDI16 UINT CMYK
0x24C3DD6F034EFE4BB1853D77768DC92D 80bppCMYKAlpha 5 v BDI16 UINT CMYK
0x24C3DD6F034EFE4BB1853D77768DC920 24bpp3Channels 3 BDS8 UINT [ NCOMPONENT
0x24C3DD6F034EFE4BB1853D77768DC921 32bpp4Channels 4 BDS8 UINT | NCOMPONENT
0x24C3DD6F034EFE4BB1853D77768DC922 40bppS5Channels 5 BD8 UINT | NCOMPONENT
0x24C3DD6F034EFE4BB1853D77768D(C923 48bpp6Channels 6 BD8 UINT [ NCOMPONENT
0x24C3DD6F034EFE4BB1853D77768DC924 56bpp7Channels 7 BDS8 UINT [ NCOMPONENT
0x24C3DD6F034EFE4BB1853D77768DC925 64bpp8Channels 8 BDS8 UINT | NCOMPONENT
0x24C3DD6F034EFE4BB1853D77768DC92E 32bpp3ChannelsAlpha 4 v BD8 UINT [ NCOMPONENT
0x24C3DD6F034EFE4BB1853D77768DCI92F 40bpp4ChannelsAlpha 5 v BDS8 UINT | NCOMPONENT
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PIXEL FORMAT value Mnemonic NC [ Alpha BPC Num Color
0x24C3DD6F034EFE4BB1853D77768DC930 48bpp5ChannelsAlpha 6 v BDS UINT | NCOMPONENT
0x24C3DD6F034EFE4BB1853D77768DC931 56bpp6ChannelsAlpha 7 v BDS8 UINT | NCOMPONENT
0x24C3DD6F034EFE4BB1853D77768DC932 64bpp7ChannelsAlpha 8 v BDS8 UINT | NCOMPONENT
0x24C3DD6F034EFE4BB1853D77768DC933 72bpp8ChannelsAlpha 9 v BDS UINT NCOMPONENT
0x24C3DD6F034EFE4BB1853D77768DC926 48bpp3Channels 3 BDI16 UINT NCOMPONENT
0x24C3DD6F034EFE4BB1853D77768DC927 64bpp4Channels 4 BD16 UINT | NCOMPONENT
0x24C3DD6F034EFE4BB1853D77768DC928 80bppS5Channels 5 BDI16 UINT NCOMPONENT
0x24C3DD6F034EFE4BB1853D77768DC929 96bpp6Channels 6 BDI16 UINT | NCOMPONENT
0x24C3DD6F034EFE4BB1853D77768DC92A 112bpp7Channels 7 BD16 UINT | NCOMPONENT
0x24C3DD6F034EFE4BB1853D77768DC92B 128bpp8Channels 8 BDI16 UINT NCOMPONENT
0x24C3DD6F034EFE4BB1853D77768DC934 64bpp3ChannelsAlpha 4 v BDI16 UINT NCOMPONENT
0x24C3DD6F034EFE4BB1853D77768DC935 80bpp4ChannelsAlpha 5 v BD16 UINT | NCOMPONENT
0x24C3DD6F034EFE4BB1853D77768DC936 96bpp5ChannelsAlpha 6 v BD16 UINT | NCOMPONENT
0x24C3DD6F034EFE4BB1853D77768DC937 112bpp6ChannelsAlpha 7 v BDI16 UINT NCOMPONENT
0x24C3DD6F034EFE4BB1853D77768DC938 128bpp7ChannelsAlpha 8 v BDI16 UINT NCOMPONENT
0x24C3DD6F034EFE4BB1853D77768DC939 144bpp8ChannelsAlpha 9 v BD16 UINT | NCOMPONENT
0x24C3DD6F034EFE4BB1853D77768DC908 8bppGray 1 BD8 UINT YONLY
0x24C3DD6F034EFE4BB1853D77768DC90B 16bppGray 1 BDI16 UINT YONLY
0x24C3DD6F034EFE4BB1853D77768DC913 16bppGrayFixedPoint 1 BD16S SINT YONLY
0x24C3DD6F034EFE4BB1853D77768DCI93E 16bppGrayHalf 1 BDI16F Float YONLY
0x24C3DD6F034EFE4BB1853D77768DC93F 32bppGrayFixedPoint 1 BD32S SINT YONLY
0x24C3DD6F034EFE4BB1853D77768DC911 32bppGrayFloat 1 BD32F Float YONLY
0x24C3DD6F034EFE4BB1853D77768DC905 BlackWhite 1 BD1IWHITE1 or BDIBLACKI1 UINT YONLY
0x24C3DD6F034EFE4BB1853D77768DC909 16bppBGRS555 3 BDS5 UINT RGB
0x24C3DD6F034EFE4BB1853D77768DC90A 16bppBGR565 3 BD565 UINT RGB
0x24C3DD6F034EFE4BB1853D77768DC914 32bppBGR101010 3 BD10 UINT RGB
0x24C3DD6F034EFE4BB1853D77768DC93D 32bppRGBE 3 BDS8 Float RGBE
0x24C3DD6F034EFE4BB1853D77768DC954 32bppCMYKDIRECT 4 BDS UINT CMYKDIRECT
0x24C3DD6F034EFE4BB1853D77768DC955 64bppCMYKDIRECT 4 BDI16 UINT CMYKDIRECT
0x24C3DD6F034EFE4BB1853D77768DC956 40bppCMYKDIRECTAIlpha 5 v BDS UINT CMYKDIRECT
0x24C3DD6F034EFE4BB1853D77768DC943 80bppCMYKDIRECTAlIpha 5 v BDI16 UINT CMYKDIRECT
0x24C3DD6F034EFE4BB1853D77768DC944 12bppYCC420 3 BDS UINT YUV420
0x24C3DD6F034EFE4BB1853D77768DC945 16bppYCC422 3 BDS UINT YUV422
0x24C3DD6F034EFE4BB1853D77768DC946 20bppYCC422 3 BDI10 UINT YUV422
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PIXEL FORMAT value Mnemonic NC [ Alpha BPC Num Color
0x24C3DD6F034EFE4BB1853D77768DC947 32bppYCC422 3 BDI16 UINT YUV422
0x24C3DD6F034EFE4BB1853D77768DC948 24bppYCC444 3 BDS UINT YUV444
0x24C3DD6F034EFE4BB1853D77768DC949 30bppYCC444 3 BD10 UINT YUV444
0x24C3DD6F034EFE4BB1853D77768DC9%4A 48bppYCC444 3 BDI16 UINT YUV444
0x24C3DD6F034EFE4BB1853D77768DC94B 48bppY CC444FixedPoint 3 BD16S SINT YUV444
0x24C3DD6F034EFE4BB1853D77768DC94C 20bppYCC420Alpha 4 v BDS8 UINT YUV420
0x24C3DD6F034EFE4BB1853D77768DC94D 24bppYCC422Alpha 4 v BDS UINT YUV422
0x24C3DD6F034EFE4BB1853D77768DC94E 30bppYCC422Alpha 4 v BDI10 UINT YUV422
0x24C3DD6F034EFE4BB1853D77768DC94F 48bppYCC422Alpha 4 v BD16 UINT YUV422
0x24C3DD6F034EFE4BB1853D77768DC950 32bppYCC444Alpha 4 v BDS8 UINT YUV444
0x24C3DD6F034EFE4BB1853D77768DC951 40bppY CC444 Alpha 4 v BDI10 UINT YUV444
0x24C3DD6F034EFE4BB1853D77768DC952 64bppYCC444Alpha 4 v BD16 UINT YUV444
0x24C3DD6F034EFE4BB1853D77768DC953 64bppY CC444 AlphaFixedPoint 4 v BD16S SINT YUV444
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The manner of output for the decoded image data produced from a conforming decoder may be determined by the
application. However, each PIXEL FORMAT value specified in Table A.6 has a corresponding defined output format
that is specified for reference purposes as the output of a hypothetical reference decoder. This reference output format is
in the form of an ordered string of bytes defined as follows:

If PIXEL FORMAT is equal to 24bppRGB, the decoded channels are interleaved on a sample-by-sample basis in
raster scan order, where the ordering of the interleaving is R, then G, then B, and each sample value for each
channel is output as a single byte.

Otherwise, if PIXEL FORMAT is equal to 32bppRGBE, the decoded channels are interleaved on a sample-by-
sample basis in raster scan order, where the ordering of the interleaving is B, then G, then R, then E, and each
sample value for each channel is output as a single byte.

Otherwise, if PIXEL FORMAT is equal to 48bppRGB, 48bppRGBFixedPoint, or 48bppRGBHalf, the decoded
channels are interleaved on a sample-by-sample basis in raster scan order, where the ordering of the interleaving
is R, then G, then B, and each sample value for each channel is output using 16 bits in little-endian form.

Otherwise, if PIXEL FORMAT is equal to 96bppRGBFixedPoint, the decoded channels are interleaved on a
sample-by-sample basis in raster scan order, where the ordering of the interleaving is R, then G, then B, and each
sample value for each channel is output using 32 bits in little-endian form.

Otherwise, if PIXEL FORMAT is equal to 64bppRGBFixedPoint or 64bppRGBHalf, the decoded channels are
interleaved on a sample-by-sample basis in raster scan order, where the ordering of the interleaving is R, then G,
then B, then a padding channel, and each sample value for each channel is output using 16 bits in little-endian
form.

Otherwise, if PIXEL FORMAT is equal to 128bppRGBFixedPoint or 128bppRGBFloat, the decoded channels
are interleaved on a sample-by-sample basis in raster scan order, where the ordering of the interleaving is R, then
G, then B, then a padding channel, and each sample value for each channel is output using 32 bits in little-endian
form.

Otherwise, if PIXEL FORMAT is equal to 64bppRGBA, 64bppRGBAFixedPoint, 64bppRGBAHalf, or
64bppPRGBA, the decoded channels are interleaved on a sample-by-sample basis in raster scan order, where the
ordering of the interleaving is R, then G, then B, then Alpha, and each sample value for each channel is output
using 16 bits in little-endian form.

Otherwise, if PIXEL FORMAT is equal to 128bppRGBAFixedPoint, 128bppRGBAFloat, or
128bppPRGBAFloat, the decoded channels are interleaved on a sample-by-sample basis in raster scan order,
where the ordering of the interleaving is R, then G, then B, then Alpha, and each sample value for each channel is
output using 32 bits in little-endian form.

Otherwise, if PIXEL FORMAT is equal to 24bppBGR, the decoded channels are interleaved on a sample-by-
sample basis in raster scan order, where the ordering of the interleaving is B, then G, then R, and each sample
value for each channel is output as a single byte.

Otherwise, if PIXEL FORMAT is equal to 32bppBGR, the decoded channels are interleaved on a sample-by-
sample basis in raster scan order, where the ordering of the interleaving is B, then G, then R, then a padding
channel, and each sample value for each channel is output as a single byte.

Otherwise, if PIXEL FORMAT is equal to 32bppPBGRA, the decoded channels are interleaved on a sample-by-
sample basis in raster scan order, where the ordering of the interleaving is B, then G, then R, then Alpha, and each
sample value for each channel is output as a single byte.

Otherwise, if PIXEL FORMAT is equal to 16bppBGRS565, the output is in the form of packed bit fields within
the integer values specified by Table 196, and these integer values are output in raster scan order using 16 bits in
little-endian form. (See Note 3 below.)

Otherwise, if PIXEL FORMAT is equal to 16bppBGRS555, the output is in the form of packed bit fields within
the integer values specified by Table 197, and these integer values are output in raster scan order using 16 bits in
little-endian form. (See Note 3 below.)

Otherwise, if PIXEL FORMAT is equal to 32bppBGR101010, the output is in the form of packed bit fields
within the integer values specified by Table 198, and these integer values are output in raster scan order using 32
bits in little-endian form. (See Note 3 below.)

NOTE 3 — When the PIXEL_FORMAT is equal to 16bppBGR565, 16bppBGRS555, or 32bppBGR 101010, the positions of the
bits representing the actual R and B components depend on the value of the RED_BLUE_NOT_SWAPPED_FLAG. In these
cases, if RED_BLUE_NOT_SWAPPED_FLAG is equal to 0, the R component bits are in the MSBs of the packed bit fields
and the B component bits are in the LSBs; otherwise, in these cases the R component bits are in the LSBs of the packed bit
fields and the B component bits are in the MSBs.

Otherwise, if PIXEL FORMAT is equal to BlackWhite, the output is in the form of packed bit fields within the
integer values specified by Table 199, and these integer values are output as bytes in raster scan order.
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Otherwise, if PIXEL FORMAT is equal to 32bppCMYK or 32bppCMYKDIRECT, the decoded channels are
interleaved on a sample-by-sample basis in raster scan order, where the ordering of the interleaving is C, then M,
then Y, then K, and each sample value for each channel is output as a single byte.

Otherwise, if PIXEL FORMAT is equal to 40bppCMYKAIpha or 40bppCMYKDIRECTAIpha, the decoded
channels are interleaved on a sample-by-sample basis in raster scan order, where the ordering of the interleaving
is C, then M, then Y, then K, then Alpha, and each sample value for each channel is output as a single byte.

Otherwise, if PIXEL FORMAT is equal to 64bppCMYK or 64bppCMYKDIRECT, the decoded channels are
interleaved on a sample-by-sample basis in raster scan order, where the ordering of the interleaving is C, then M,
then Y, then K, and each sample value for each channel is output using 16 bits in little-endian form.

Otherwise, if PIXEL FORMAT is equal to 80bppCMYKAIlpha or 80bppCMYKDIRECTAIpha, the decoded
channels are interleaved on a sample-by-sample basis in raster scan order, where the ordering of the interleaving
is C, then M, then Y, then K, then Alpha, and each sample value for each channel is output using 16 bits in little-
endian form.

Otherwise, if PIXEL FORMAT is equal to 12bppYCC420, 16bppYCC422, or 24bppYCC444, the Y samples are
output first in raster scan order, then the U samples are output in raster scan order, then the V samples are output
in raster scan order, and each sample value for each channel is output as a single byte.

Otherwise, if PIXEL FORMAT is equal to 20bppYCC422, 32bppYCC422, 30bppYCC444, 48bppY CC444, or
48bppY CC444FixedPoint, the Y samples are output first in raster scan order, then the U samples are output in
raster scan order, then the V samples are output in raster scan order, and each sample value for each channel is
output using 16 bits in little-endian form.

Otherwise, if PIXEL FORMAT is equal to 20bppYCC420Alpha or 24bppYCC422Alpha, the Y samples are
output first in raster scan order, then the U samples are output in raster scan order, then the V samples are output
in raster scan order, then the Alpha samples are output in raster scan order, and each sample value for each
channel is output as a single byte.

Otherwise, if PIXEL FORMAT is equal to 32bppYCC444Alpha, the Y samples are output first in raster scan
order, then the U samples are output in raster scan order, then the V samples are output in raster scan order, then
the Alpha samples are output in raster scan order, and each sample value for each channel is output as a single
byte.

Otherwise, if PIXEL FORMAT is equal to 30bppYCC422Alpha, 48bppY CC422Alpha, 40bppYCC444Alpha,
64bppY CC444Alpha, or 64bppY CC444AlphaFixedPoint, the Y samples are output first in raster scan order, then
the U samples are output in raster scan order, then the V samples are output in raster scan order, then the Alpha
samples are output in raster scan order, and each sample value for each channel is output using 16 bits in little-
endian form.

Otherwise, if PIXEL FORMAT is equal to 24bpp3Channels, 32bpp4Channels, 40bpp5Channels,
48bpp6Channels, S6bpp7Channels, or 64bpp8Channels, the decoded channels are ordered by increasing channel
number, and the samples of each channel are output in raster scan order, and each sample value for each channel
is output as a single byte.

Otherwise, if PIXEL FORMAT is equal to 48bpp3Channels, 64bpp4Channels, 80bpp5Channels,
96bpp6Channels, 112bpp7Channels, or 128bpp8Channels, the decoded channels are ordered by increasing
channel number, and the samples of each channel are output in raster scan order, and each sample value for each
channel is output using 16 bits in little-endian form.

Otherwise, if PIXEL FORMAT is equal to 32bpp3ChannelsAlpha, 40bpp4ChannelsAlpha,
48bpp5ChannelsAlpha, 56bpp6ChannelsAlpha, 64bpp7ChannelsAlpha, or 72bpp8ChannelsAlpha, the decoded
channels are ordered by increasing channel number with the Alpha channel being considered as having the
highest channel number and the samples of each channel are output in raster scan order, and each sample value
for each channel is output as a single byte.

Otherwise, if PIXEL FORMAT is equal to  64bpp3ChannelsAlpha, 80bpp4ChannelsAlpha,
96bppSChannelsAlpha, 112bpp6ChannelsAlpha, 128bpp7ChannelsAlpha, or 144bpp8ChannelsAlpha, the
decoded channels are ordered by increasing channel number and the last channel is considered the Alpha channel,
and the samples of each channel are output in raster scan order, and each sample value for each channel is output
using 16 bits in little-endian form.

Otherwise, if PIXEL FORMAT is equal to 8bppGray, there is only one decoded channel, and the samples of that
channel are output in raster scan order, and each sample value is output as a single byte.

Otherwise, if PIXEL FORMAT is equal to 16bppGray, 16bppGrayFixedPoint, or 16bppGrayHalf, , there is only
one decoded channel, and the samples of that channel are output in raster scan order, and each sample value is
output using 16 bits in little-endian form.
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— Otherwise (PIXEL FORMAT is equal to 32bppGrayFixedPoint or 32bppGrayFloat), there is only one decoded
channel, and the samples of that channel are output in raster scan order, and each sample value is output using 32
bits in little-endian form.

NOTE 4 - Particular care should be taken with regard to the interpretation of this defined output format for PIXEL_FORMAT
values with mnemonic names that include "RGB", "BGR", or "CMYK" as part of the mnemonic name due to the specification of
little-endian form for packed bit fields. In particular, the first byte of each packed bit field for the PIXEL_FORMAT values
16bppBGR565, 16bppBGRS555, and 32bppBGR 101010 actually contains the LSBs of the packed bit fields due to the use of little-
endian form. Similarly, if the four bytes that contain the decoded channel samples for the PIXEL_FORMAT values 32bppRGBE,
32bppBGR, 32bppPBGRA, 32bppCMYK, and 32bppCMYKDIRECT are written or read as 32-bit integers in little-endian form
rather than as ordered strings of four bytes in which each byte represents a sample value, the ordering of the channels will be
swapped relative to the ordering described herein.

This defined format is specified for reference purposes and may be used by some decoders as an interface format for the
output of decoded pictures. However, the use of this defined format is not a requirement for conformance to this
Specification.

Interpretation of alpha channel information (when present) is considered pre-multiplied or not pre-multiplied as follows:

- If PIXEL FORMAT is equal to 32bppPBGRA, 64bppPRGBA, or 128bppPRGBAFloat, the channels other than
the alpha channel are considered to be in pre-multiplied form in relation to the alpha channel.

- Otherwise, the channels other than the alpha channel are considered not to be in pre-multiplied form in relation to
the alpha channel. In these cases, the value of PREMULTIPLIED ALPHA FLAG in the associated
IMAGE_HEADER( ) of the coded image that contains the alpha channel shall be equal to 0.

NOTE 5 — The designation of an alpha channel as pre-multiplied indicates that the decoded sample values do not require

multiplication by the alpha channel values when performing compositing (as any such necessary multiplication process was
performed as a pre-processing step prior to encoding).

JPEG XR supports three types of numerical encoding: unsigned integer, fixed point, and floating point, each at a variety
of bit depths.

PIXEL FORMAT values having the "Num" column of Table A.6 indicating "UINT" are unsigned integer formats as
follows.

- If BPC is equal to BDS, the minimum value is 0 and the maximum value is 255, providing 256 unique values.

- Otherwise (BPC is equal to BD16), the minimum value is 0 and the maximum value is 65 535, providing 65 536
unique values.

In unsigned integer cases, a value of zero ordinarily represents the minimum level or the encoding black for the specific
channel and the maximum possible value represents the maximum value for that channel. When all viewable channels
for a pixel format are at their maximum numerical value, this corresponds to the brightest representable color, or the
encoding white. Exceptions to this general rule include the following unsigned integer cases:

- When OUTPUT BITDEPTH is BDIBLACKI, a value of zero represents the maximum level or white and a
value of one represents the minimum level or black.

- When the OUTPUT CLR FMT is YUV444, YUV422, or YUV420, the U and V components are interpreted as
color difference representations that are offset by a constant value, such that the middle value of the range of
possible integer values is used for the representation of both the encoding black and the encoding white.

- When the OUTPUT _CLR _FMT is CMYK or CMYKDIRECT, the K component is interpreted as a degree of
proximity toward black, such that the maximum value for the K component is used for the encoding black and the
minimum value for the K component is used for the encoding white.

- When the OUTPUT CLR FMT is NCOMPONENT and the number of encoded components other than the
Alpha channel (when present) is greater than 3, in the absence of other information to assist in the color channel

interpretation, the fourth channel should be interpreted as a K channel indicating a degree of proximity toward
black as in the cases when the OUTPUT_CLR_FMT is CMYK or CMYKDIRECT (see also Annex C).

PIXEL FORMAT values having mnemonic names that end in "FixedPoint" specify fixed point representations.

NOTE 6 — A fixed point numerical representation is not commonly supported in prior image file formats. It is supported in
JPEG XR as a way to encode an extended range of numerical values more directly while retaining the performance advantages of
integer processing.

JPEG XR supports fixed point numerical encoding for 16-bit and 32-bit signed values. In this Specification, the
abbreviation SINT is used to refer to signed integer or fixed point values.

Fixed point values having BPC equal to 16 or 32 are interpreted as follows.

— 16-bit Fixed Point, a format referred to as s2.13: The 16 bits that make up an individual value are interpreted as a
sign bit, two integer bits and thirteen fractional bits. Using this interpretation, a numerical range of —4.0 to
+3.999... can be represented, with the value of 1.0 represented by the signed integer value 8 192 (0x2000).
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— 32-bit Fixed Point, a format referred to as s7.24: The 32 bits that make up an individual value are interpreted as a
sign bit, seven integer bits and twenty-four fractional bits. Using this interpretation, a numerical range of —128.0
to +127.999... can be represented, with the value of 1.0 represented by the signed integer value 16 777 216
(0x01000000).
NOTE 7 -JPEG XR does not enable fully lossless compression for 32-bit data in general. The encoding and decoding
algorithms use 32-bit computations, and some dynamic range is lost to necessary headroom for signal processing calculations
such as overlap and core transform computations. A minimum of 22 bits and typically 24 bits or more precision is retained
through the end-to-end encoding and decoding process.

PIXEL FORMAT values having the "Num" column of Table A.6 indicating "Float" (floating point values) are floating
point formats.

JPEG XR supports floating point numerical encoding for 16-bit and 32-bit depths. A packed bit RGB float format is also
supported in the form of the RGBE format.

The format of the floating point values is based on the "BPC" column of Table A.6 as follows:

- BPC equal to BD16F indicates the "s5e10" format. The 16 bits are formatted in accordance with the HALF
floating point format, with 1 sign bit, 5 exponent bits and 10 normalized mantissa bits.

- BPC equal to BD8 with PIXEL _FORMAT equal to 32bppRGBE indicates a packed bit representation such that
three 16-bit floating point values are represented using four bytes. The bytes include unsigned 8-bit mantissas for
the red, green and blue channels, plus a shared 8-bit exponent.

NOTE 8 — When the exponent for each channel is the same, this representation is a more compact method to encode image
data as compared to the representation where BPC is equal to 16 and PIXEL_FORMAT is not equal to 32bppRGBE.

- BPC equal to 32F indicates the "s8e23" format. The numerical value is encoded as a 4-byte IEC 60559 floating
point number in little-endian form. This encoding uses 1 sign bit, 8 exponent bits and 23 normalized mantissa
bits.

NOTE 9 - JPEG XR does not enable fully lossless compression for 32-bit data in general. The encoding and decoding

algorithms use 32-bit computations, so some precision is lost during these calculations. A minimum of 22 bits and typically 24
bits or more precision is retained through the end-to-end encoding and decoding process.

NOTE 10 — For some applications, the bounded range provided by an integer or fixed point representation may not be sufficient.
Therefore, JPEG XR also supports a floating point numerical representation. Floating point formatting of image data will typically
not compress as efficiently, but floating point capability provides a dramatically larger numerical range while maintaining high
precision for small absolute values.

A.7.19 SPATIAL_XFRM_PRIMARY

SPATIAL XFRM PRIMARY (when present) indicates a preferred spatial transformation that should be applied to the
decoded image. The value of SPATIAL XFRM PRIMARY (when present) shall be in the range of 0 to 7, inclusive, in
files conforming to this version of this Specification. Decoders conforming to this version of this Specification should
interpret values outside the range from 0 to 7 as equivalent to the value 0. When SPATIAL XFRM_PRIMARY is not
present, its value shall be inferred to be equal to 0.

The interpretation of the value of SPATIAL XFRM PRIMARY is the same as the interpretation specified in subclause
8.3.8 for the syntax element SPATIAL XFRM_ SUBORDINATE.

When the file format specified in this annex is used, the value of SPATIAL XFRM SUBORDINATE should be
ignored.

A.7.20 IMAGE_TYPE

IMAGE_TYPE indicates an attribute of an individual image in a multi-image file. When present, the value of
IMAGE_TYPE shall be in the range of 0 to 3, inclusive. All other values are reserved for future use by ITU-T | ISO/IEC.
Decoders shall ignore the most significant 30 bits of IMAGE TYPE.

If IMAGE TYPE & 1 is equal to 1, the accompanying image is indicated to be a "preview" image; otherwise the
accompanying image is not indicated to be a preview image. A preview image is an alternate representation of another
image in the file. The n-th preview image in the file is an alternate representation of the n-th image in the file that is not
indicated to be a preview image, where n indicates the ordering in the sequence of IMAGE FILE DIRECTORY
structures in the file. A preview image should be encoded using a reduced resolution or a reduced quantity of encoded
data relative to another image in the file.

NOTE 1 — The only constraint on ordering of images indicated to be a preview image and images not indicated to be a preview

image aside is the ordering correspondence constraint. That is, the first preview image is a preview of the first image that is not a

preview image; the second preview image is a preview of the second image that is not a preview image; and so on. Provided this
constraint is met, preview images and images that are not preview images can otherwise be arranged in any order.

A preview image shall be encoded using the mnemonic value of PIXEL FORMAT equal to the mnemonic value of
PIXEL FORMAT for the corresponding image that is not indicated to be a preview image, or a mnemonic value of
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PIXEL FORMAT from the following list: 8bppGray, 24bppBGR, 12bppYCC420, 16bppYCC422, 24bppYCC444,
32bppCMYK, 32bppCMYKDIRECT, 24bpp3Channels, 32bpp4Channels, 40bpp5Channels, 48bpp6Channels,
56bpp7Channels, 64bpp8Channels, 32bppBGRA, 20bppYCC420Alpha, 24bppYCC422Alpha, 32bppYCC444Alpha,
40bppCMYKAlIpha, 40bppCMYKDIRECTAlpha, 32bpp3ChannelsAlpha, 40bpp4ChannelsAlpha,
48bpp5ChannelsAlpha, 56bpp6ChannelsAlpha, 64bpp7ChannelsAlpha, 72bpp8ChannelsAlpha.

NOTE 2 - A preview image is intended to be used for enabling faster, reduced-complexity access to a basic representation of the

image content. If multiple images in a file are indicated to be preview images, the first such image should ordinarily be used by
applications.

If IMAGE_TYPE >> 1) & 1 is equal to 1, the accompanying image is indicated to be an individual "page" of a sequence
of "page" images in the file; otherwise the accompanying image is indicated not to be an individual page image of a
sequence of page images in the file. When (IMAGE _TYPE >> 1) & 1 is equal to 1, there should be more than one image
in the file for which IMAGE_TYPE >> 1) & 1 is equal to 1. When (IMAGE_TYPE >> 1) & 1 is equal to 1, there shall
not be any images in the file for which (IMAGE_TYPE >> 1) & 1 is equal to 0.

All images in a sequence of pages shall have the same dimensions, as follows:

- For all images with IMAGE TYPE & 1 equal to 0 and (IMAGE_TYPE >> 1) & 1 equal to 1, the value of
IMAGE HEIGHT and IMAGE WIDTH shall be equal to the value of IMAGE HEIGHT and IMAGE WIDTH
for any other image in the file with IMAGE TYPE & 1 equal to 0 and (IMAGE_TYPE >> 1) & 1 equal to 1.

- For all images with IMAGE TYPE & 1 equal to 1 and (IMAGE TYPE >> 1) & 1 equal to 1, the value of
IMAGE HEIGHT and IMAGE WIDTH shall be equal to the value of IMAGE HEIGHT and IMAGE WIDTH
for any other image in the file with IMAGE TYPE & 1 equal to 1 and (IMAGE TYPE >> 1) & 1 equal to 1.

When a file contains only a single image, IMAGE_TYPE should not be present.

A.7.21 PTM_COLOR_INFO()
The PTM_COLOR_INFO( ) syntax structure (when present) is specified by Table A.7.

Table A.7—PTM_COLOR_INFO() syntax structure

PTM _COLOR _INFO(){ Descriptor Reference
COLOR PRIMARIES u(8) A.7.21.1
TRANSFER CHARACTERISTICS u(8) A.7.21.2
MATRIX COEFFICIENTS u(8) A.7.21.3
RESERVED K u(7) A7.21.4
FULL RANGE FLAG u(1l) A.7.21.5

!

A.7.21.1COLOR_PRIMARIES

COLOR_PRIMARIES (when present) indicates the chromaticity coordinates of the color primaries for the image as
specified in Table A.8 in terms of the CIE 1931 definition of x and y as specified by ISO 11664-1.

Table A.8—Interpretation of COLOR_PRIMARIES syntax element

Value Primaries Informative remark
0 Reserved For future use by ITU-T | ISO/IEC
1 primary X y Rec. ITU-R BT.709-5
green 0.300 0.600 Rec. ITU-R BT.1361 conventional colour gamut system
blue 0.150 0.060 and extended colour gamut system
red 0.640 0.330 IEC 61966-2-1 (SRGB or sYCC)
white D65 0.3127 0.3290

IEC 61966-2-4 (xvYCC)

Society of Motion Picture and Television Engineers
RP 177 (1993) Annex B

2 Unspecified Image characteristics are unknown or are determined by
the application.
3 Reserved For future use by ITU-T | ISO/IEC
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4 primary X y Rec. ITU-R BT.470-6 System M (historical)
green 0.21 0.71 United States NTSC 1953 Recommendation for
blue 0.14 0.08 transmission standards for colour television
red 0.67 0.33 United States FCC Title 47 Code of Federal Regulations
white C 0.310 0.316 (2003) 73.682 (a) (20)

5 primary X y Rec. ITU-R BT.470-6 System B, G (historical)
green 0.29 0.60 Rec. ITU-R BT.601-6 625
blue 0.15 0.06 Rec. ITU-R BT.1358 625
red 0.64 0.33 Rec. ITU-R BT.1700 625 PAL and 625 SECAM
white D65 0.3127 0.3290

6 primary X y Rec. ITU-R BT.601-6 525
green 0.310 0.595 Rec. ITU-R BT.1358 525
blue 0.155 0.070 Rec. ITU-R BT.1700 NTSC
red 0.630 0.340 Society of Motion Picture and Television Engineers
white D65 0.3127 0.3290 170M (2004)

(functionally the same as the value 7)

7 primary X y Society of Motion Picture and Television Engineers
green 0.310 0.595 240M (1999)
blue 0.155 0.070 (functionally the same as the value 6)
red 0.630 0.340
white D65 0.3127 0.3290

8-255 Reserved For future use by ITU-T | ISO/IEC

A.7.21.2TRANSFER_CHARACTERISTICS

TRANSFER CHARACTERISTICS (when present) indicates the opto-electronic transfer characteristic of the image
color components as specified in Table A.9 as a function of a real-valued linear optical intensity input vLc in the range of

Oto 1.

NOTE - Although the transfer characteristics equations found in Table A.9 are provided in the form of a mapping from a real-
valued source signal intensity to a real-valued output value as might occur in an analog image capture system, it is intended to be
interpreted as guidance to aid in the rendering of the decoded image (by providing a model of a hypothetical capturing system)

rather than as a description of the actual image scene signal capturing process.

Table A.9—Interpretation of TRANSFER_CHARACTERISTICS syntax element

Value Transfer characteristics

Infor mative remark

0 Reserved

For future use by ITU-T | ISO/IEC

1 vV =1.099 * vLc045 —0.099  for 1 >=vLe >=0.018
vV =4.500 * vLc

for 0.018 > vLc>=0

Rec. ITU-R BT.709-5

Rec. ITU-R BT.1361 conventional
colour gamut system

(functionally the same as the value 6)

2 Unspecified

Image characteristics are unknown or are
determined by the application.

Reserved

For future use by ITU-T | ISO/IEC

4 Assumed display gamma 2.2

Rec. ITU-R BT.470-6 System M
(historical)

United States National Television
System Committee 1953
Recommendation for transmission
standards for colour television
United States Federal Communications
Commission Title 47 Code of Federal
Regulations (2003) 73.682 (a) (20)
ITU-R Rec. BT.1700 (2007 revision)
625 PAL and 625 SECAM

5 Assumed display gamma 2.8

Rec. ITU-R BT.470-6 System B, G
(historical)
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Value | Transfer characteristics Informative remark
6 vV = 1.099 * vLc045 - 0.099  for 1 >= vLc >=0.018 Rec. ITU-R BT.601-6 525 or 625
vV =4.500 * vLc for 0.018 > vLc>=0 Rec. ITU-R BT.1358 525 or 625
Rec. ITU-R BT.1700 NTSC
Society of Motion Picture and Television
Engineers 170M (2004)
(functionally the same as the value 1)
7 vV = 1.1115 * vLc045 — 0.1115for 1 >= vLc >= 0.0228 Society of Motion Picture and Television
vV =4.0*vLc for 0.0228 > vLc >=0 Engineers 240M (1999)
vV =vLc for 1 >vLe>=0 Linear transfer characteristics
9 Reserved For future use by ITU-T | ISO/IEC
10 Reserved For future use by ITU-T | ISO/IEC
1 vV =1.099 * vLc0-43 —0.099  for vLe >=0.018 IEC 61966-2-4 (xvYCC)
vV =4.500 * vLc for 0.018 > vLc >—0.018
vV =-1.099 * (- vLc)045 +0.099 for —0.018 >= vLc
12 vV =1.099 * vLc045 — 0.099  for 1.33 > vLe >=0.018 Rec. ITU-R BT.1361 extended colour
vV =4.500 * vLc for 0.018 > vLc >=—0.0045 gamut system
VV =—(1.099 * (—4 * vLc)045 —0.099 ) + 4 for —0.0045 > vLc >= —0.25
13 vV =1.055 * vLe(1/24) — 0,055 for 1 > vLc >= 0.0031308 IEC 61966-2-1 (sRGB or sYCC)
vV =12.92 * vLc for 0.0031308 > vLec >=0
14..255 [ Reserved For future use by ITU-T | ISO/IEC

A.7.21.3MATRIX_COEFFICIENTS

MATRIX COEFFICIENTS (when present) indicates the matrix coefficients associated with derivation of luma and
chroma signals from the green, blue, and red primaries, as specified using Table A.10 and the value of
FULL RANGE FLAG as specified below.

Table A.10 — Interpretation of MATRIX_COEFFICIENTS syntax element

Value Matrix Informative remark

0 RGB, GBR No matrix transformation. See subclause A.7.21.5.
IEC 61966-2-1 (sSRGB)

1 vKr=0.2126; vKb = 0.0722 Rec. ITU-R BT.709-5

Rec. ITU-R BT.1361 conventional colour gamut system and extended colour
gamut system

IEC 61966-2-1 (sYCC)
IEC 61966-2-4 xvYCCrqgo
Society of Motion Picture and Television Engineers RP 177 (1993) Annex B

Unspecified Image characteristics are unknown or are determined by the application.
3 Reserved For future use by ITU-T | ISO/IEC
vKr=0.30; vKb=0.11 United States Federal Communications Commission Title 47 Code of Federal
Regulations (2003) 73.682 (a) (20)
5 vKr=0.299; vKb =0.114 Rec. ITU-R BT.470-6 System B, G (historical)

Rec. ITU-R BT.601-6 625

Rec. ITU-R BT.1358 625

Rec. ITU-R BT.1700 625 PAL and 625 SECAM

IEC 61966-2-4 xvYCCgp

(functionally the same as the value 6)

6 vKr=0.299; vKb =0.114 Rec. ITU-R BT.601-6 525

Rec. ITU-R BT.1358 525

Rec. ITU-R BT.1700 NTSC

Society of Motion Picture and Television Engineers 170M (2004)
(functionally the same as the value 5)

7 vKr=0.212; vKb = 0.087 Society of Motion Picture and Television Engineers 240M (1999)
8 YCgCo See subclause A.7.21.5.
9-255 Reserved For future use by ITU-T | ISO/IEC
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A.7.21.4RESERVED_K

RESERVED K (when present) is a 7-bit syntax element that shall be equal to 0 in all codestreams conforming to this
version of this Specification. All other values are reserved. Decoders conforming to this version of this Specification
shall ignore the value of RESERVED K.

NOTE - The purpose of the specification for decoders to ignore the value of RESERVED_K is to enable the future definition of a
backward-compatible usage of different values of this syntax element.

A.7.21.5FULL_RANGE_FLAG

FULL RANGE FLAG (when present) is wused together with TRANSFER CHARACTERISTICS and
MATRIX COEFFICIENTS to provide an indication of the preferred interpretation of the image color components.

NOTE 1 - Although the equations found below are provided in the form of a mapping from source signals E'Rr, E’'G and E’g to
integer output values iR, iG, and iB or Y, Cb, and Cr, they are intended to be interpreted as guidance to aid in the rendering of the
decoded image (by providing a model of a hypothetical capturing system) rather than as a description of the actual image scene
signal capturing process.

These syntax elements are interpreted as follows:

- If TRANSFER_CHARACTERISTICS is not equal to 11 or 12, E’g, E’G and E’g are considered to be real-valued
signals with values between 0 and 1.

— Otherwise (TRANSFER CHARACTERISTICS is equal to 11 (IEC 61966-2-4) or 12 (Rec. ITU-R BT.1361
extended colour gamut system)), E'r, E’'G and E’g are considered to be real-valued signals with a larger range not
specified in this Specification.

- Nominal black is considered to have the property E'’r =0, E'c =0 and E'g =0.

- Nominal white is considered to have the property E'g =1, E'g =1 and E'g = 1.

— The value of valueBitDepthWhite is calculated as follows:

If OUTPUT BITDEPTH is equal to BDS, the value of valueBitDepthWhite is set equal to 8.

Otherwise, if OUTPUT BITDEPTH is equal to BD10, the value of valueBitDepthWhite is set equal
to 10.

Otherwise, if OUTPUT_BITDEPTH is equal to BD16S, the value of valueBitDepthWhite is set equal
to 13.

Otherwise, if OUTPUT_BITDEPTH is equal to BD16, the value of valueBitDepthWhite is set equal
to 16.

— The value of valueWhite is set equal to the result of (1 << valueBitDepthWhite) taken as real-value.

— The value of chromaOffset is calculated as follows:

e If OUTPUT BITDEPTH is equal to BD8, BD10, or BD16, the value of chromaOffset is set equal to
valueWhite / 2.

e Otherwise, if OUTPUT BITDEPTH is equal to BD16S, the value of chromaOffset is set equal to 0.
- If MATRIX COEFFICIENTS is equal to O or 8, the following applies.
e IfFULL RANGE FLAG is equal to FALSE, the following equations apply:
Rg = valueWhite + 256 * (219 * E'x + 16)

Gg = valueWhite + 256 * (219 * E'g + 16)
Bs = valueWhite + 256 * (219 * E'z + 16)

e  Otherwise (FULL RANGE FLAG is equal to TRUE), the following equations apply:
Rs = (valueWhite — 1) * E'g
Gs = (valueWhite — 1) * E'g
Bs = (valueWhite — 1) * E'g
e If MATRIX COEFFICIENTS is equal to 0, the following equations apply.
iR = Round(Rs)

iG = Round(Gs)
iB = Round(Bs)
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Otherwise (MATRIX COEFFICIENTS is equal to 8), the following equations apply

Y =Round(0.5 * Gg + 0.25 * (Rg + Bg))
Cb =Round(0.5 * Gg — 0.25 * (Rg + Bg)) + chromaOffset
Cr =Round(0.5 * (Rg — Bg)) + chromaOffset

NOTE 2 - For purposes of the YCgCo nomenclature used in Table A.10, Cb and Cr of the above equations may be
referred to as Cg and Co, respectively. If OUTPUT_BITDEPTH is equal to BDS, BD10, or BD16, the inverse
conversion for the above three equations should be computed as

t=Y — (Cb — chromaOffset)
iG=t+ 2 * (Cb — chromaOffset)
iB =t — (Cr — chromaOffset)

iR =1iB + 2 * (Cr — chromaOffset)

Otherwise, if OUTPUT_BITDEPTH is equal to BD16S, the inverse conversion for the above three equations should
be computed as.

t=Y —(Cb>>1)
iG=t+Cb
iB=t—(Cr>>1)
iR=1iB + Cr

— Otherwise, if MATRIX COEFFICIENTS is equal to 1, 4, 5, 6, or 7, the following applies:

The following equations apply:

E'y=vKr * E'R + (1 — vKr — vKb) * E'c + vKb * E'g
E'pg=0.5* (E5 —E'y) + (1 — vKb)

E'px = 0.5 * (E'rx —E'y) + (1 — vKr)

NOTE 3 - E|, is real-valued with the value 0 associated with nominal black and the value 1 associated with nominal
white. E',, and E',, are real-valued with the value 0 associated with both nominal black and nominal white. When
TRANSFER_CHARACTERISTICS is not equal to 11 or 12, E', is real-valued with values in the range of 0 to 1.
When TRANSFER_CHARACTERISTICS is not equal to 11 or 12, E',, and E',, are real-valued with values in the
range of ¢ 0.5 to 0.5. When TRANSFER_CHARACTERISTICS is equal to 11 (IEC 61966-2-4), or 12 (ITU-R
BT.1361 extended colour gamut system), E',, E',; and E',, are real-valued with a larger range not specified in this
Specification.

If FULL RANGE FLAG is equal to FALSE and OUTPUT BITDEPTH is equal to BDS, BD10, or BD16,
Y, Cb and Cr are related to E’y, E’pg and E’pg by the following:

Y = Clip(Round(valueWhite + 256 * (219 * E'y + 16)), 0, valueWhite — 1)
Cb = Clip(Round(valueWhite + 256 * (224 * E'pg) + chromaOffset), 0, valueWhite — 1)
Cr = Clip(Round(valueWhite + 256 * (224 * E'pg ) + chromaOffset), 0, valueWhite — 1)

If FULL_RANGE FLAG is equal to FALSE and OUTPUT BITDEPTH is equal to BD16S, Y, Cb and
Cr are related to E’y, E'pg and E’pg by the following:

Y = Round(valueWhite + 256 * (219 * E'y + 16))
Cb = Round(valueWhite + 256 * (224 * E'pg) + chromaOffset)
Cr = Round(valueWhite + 256 * (224 * E'pr) + chromaOffset)

Otherwise (FULL_RANGE_FLAG is equal to TRUE), Y, Cb and Cr are related to Ey, E’pg and E’pgr by
the following:

Y = Round((valueWhite — 1) * E'y)

Cb = Round((valueWhite — 1) * E'pg + chromaOffset)
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Cr = Round((valueWhite — 1) * E'pg + chromaOffset)

- Otherwise, no interpretation of FULL RANGE FLAG, TRANSFER CHARACTERISTICS, and
MATRIX COEFFICIENTS is specified in this version of this Specification.

A.7.22 PROFILE_LEVEL_CONTAINER()

PROFILE LEVEL CONTAINER( ) (when present) has the same syntax and semantics as PROFILE LEVEL INFO()
in subclause 8.6.

A.7.23 IMAGE_WIDTH

IMAGE_WIDTH specifies the width of the image in units of sample columns after decoding and before application of
the spatial transformation indicated by the (actual or inferred) value of SPATIAL XFRM PRIMARY. The value of
IMAGE WIDTH shall be equal to WIDTH_MINUSI + 1.

NOTE — When ALPHA_OFFSET is present, the value of IMAGE_WIDTH is equal to the value of WIDTH_MINUSI1 + 1 from

the CODED_IMAGE( ) syntax structure at the position specified by ALPHA_OFFSET and is also equal to the value of
WIDTH_MINUSI + 1 from the CODED_IMAGE( ) syntax structure at the position specified by IMAGE_OFFSET.

A.7.24 IMAGE_HEIGHT

IMAGE_HEIGHT specifies the height of the image in units of sample rows after decoding and before application of the
spatial transformation indicated by the (actual or inferred) value of SPATIAL XFRM PRIMARY. The value of
IMAGE _HEIGHT shall be equal to HEIGHT MINUSI + 1.

NOTE — When ALPHA_OFFSET is present, the value of IMAGE_HEIGHT is equal to the value of HEIGHT _MINUSI + 1 from

the CODED_IMAGE( ) syntax structure at the position specified by ALPHA_OFFSET and is also equal to the value of
HEIGHT_MINUSI + 1 from the CODED_IMAGE( ) syntax structure at the position specified by IMAGE_OFFSET.

A.7.25 WIDTH_RESOLUTION

WIDTH_RESOLUTION (when present) indicates a nominal width of the associated image after decoding and before
application of the spatial transformation indicated by the (actual or inferred) value of SPATIAL XFRM PRIMARY.
WIDTH_RESOLUTION is in units of columns per inch (columns per 2.54 cm). When WIDTH_RESOLUTION is equal
to 0 or is not present, a value of 96 columns per inch should be inferred. The nominal width of the image (before
application of the spatial transformation indicated by SPATIAL XFRM PRIMARY) is indicated to be
IMAGE WIDTH = WIDTH RESOLUTION inches.

NOTE - The nominal width may be interpreted as an indication of a suggested width for printing or display of the image. The

combination of IMAGE_WIDTH, IMAGE_HEIGHT, WIDTH_RESOLUTION and HEIGHT_RESOLUTION may be used to
determine an indication of a suggested display or printing aspect ratio for the image.

A.7.26 HEIGHT_RESOLUTION

HEIGHT RESOLUTION (when present) indicates a nominal height of the associated image after decoding and before
application of the spatial transformation indicated by the (actual or inferred) value of SPATIAL XFRM PRIMARY.
HEIGHT RESOLUTION is in units of rows per inch (rows per 2.54 cm). When HEIGHT RESOLUTION is equal to 0
or is not present, a value of 96 rows per inch should be inferred. The nominal height of the image (before application of
the spatial transformation indicated by SPATIAL XFRM PRIMARY) is indicated to be IMAGE HEIGHT -+
HEIGHT RESOLUTION inches.

NOTE - The nominal height may be interpreted as an indication of a suggested height for printing or display of the image. The

combination of IMAGE_WIDTH, IMAGE_HEIGHT, WIDTH_RESOLUTION and HEIGHT_RESOLUTION may be used to
determine an indication of a suggested display or printing aspect ratio for the image.

A.7.27 IMAGE_OFFSET

IMAGE_OFFSET specifies the byte position, relative to the beginning of the file, of the start of a CODED IMAGE()
syntax structure in the file (see subclause 8.2) containing the primary image plane in the
IMAGE FILE DIRECTORY(). When ALPHA OFFSET is not present, but an alpha plane is present, the
CODED_IMAGE() syntax structure at the position specified by IMAGE OFFSET also contains the alpha image plane.

A.7.28 IMAGE_BYTE_COUNT

IMAGE BYTE COUNT specifies the quantity of the image codestream data in the file as follows:

- IfIMAGE BYTE COUNT is not equal to 0, the quantity of the image codestream data in the file is indicated to
be equal to the value of IMAGE BYTE COUNT.
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— Otherwise IMAGE _BYTE_COUNT is equal to 0), the quantity of image codestream data in the file is indicated
to be equal to FileSizeInBytes — IMAGE OFFSET.

NOTE — When IMAGE_BYTE_COUNT is equal to 0, no additional syntax structures are present in the file after the
CODED_IMAGE( ) syntax structure at the position specified by IMAGE_OFFSET.

A.7.29 ALPHA_OFFSET

ALPHA OFFSET (when present) specifies the byte position, relative to the beginning of the file, of the start of a
CODED IMAGE() syntax structure for the alpha plane of the image in the IMAGE FILE DIRECTORY(). When
PIXEL FORMAT does not indicate the presence of an alpha channel, ALPHA OFFSET shall not be present.

When PIXEL FORMAT indicates the presence of an alpha channel, the form of the encoding of the alpha channel is
specified as follows.

- If ALPHA OFFSET is present, the alpha channel is present in a separate CODED IMAGE( ) syntax structure of
the same IMAGE_FILE DIRECTORY( ) syntax structure from the CODED IMAGE( ) for the primary image
plane. In this case, the syntax element ALPHA IMAGE PLANE FLAG for the CODED _IMAGE() syntax
structure at the position specified by IMAGE OFFSET (subclause A.7.27) shall be equal to zero and the syntax
element ALPHA IMAGE PLANE FLAG for the CODED_ IMAGE( ) syntax structure at the position specified
by ALPHA OFFSET shall be equal to 1. In this case, the alpha image plane is a separate alpha image plane.

— Otherwise, the alpha channel is present within the same CODED IMAGE( ) syntax structure as the primary
image plane and the syntax element ALPHA IMAGE PLANE FLAG shall be equal to one. In this case, the
alpha image plane is an interleaved alpha image plane.

When ALPHA BYTE COUNT is present, ALPHA OFFSET shall also be present.

A.7.30 ALPHA_BYTE_COUNT

ALPHA BYTE COUNT (when present) specifies the quantity of the alpha plane codestream data in the file. When
ALPHA OFFSET is present, ALPHA BYTE COUNT shall also be present.

A.7.31 IMAGE_BAND_PRESENCE

IMAGE _BAND_ PRESENCE (when present) indicates which frequency bands are present in the accompanying image
data as specified in Table A.11. When IMAGE BAND_ PRESENCE is not present, its value shall be inferred to be equal
to 0. The value of IMAGE BAND PRESENCE, when present, shall be equal to the value of BANDS PRESENT of the
primary image plane of the CODED IMAGE( ) syntax structure at the position specified by IMAGE OFFSET.

Table A.11 —Interpretation of IMAGE_BAND_PRESENCE and ALPHA_BAND_PRESENCE

IMAGE_BAND_PRESENCE Bands present
or
ALPHA BAND PRESENCE
0 DC, LP, HP, and Flexbits
1 DC, LP, and HP only
2 DC and LP only
3 DC only

A.7.32 ALPHA_BAND_PRESENCE

ALPHA BAND PRESENCE (when present) indicates which frequency bands are represented in the accompanying
alpha channel data as specified in Table A.11. When ALPHA OFFSET is not present, ALPHA BAND PRESENCE
shall not be present. When ALPHA OFFSET is present and ALPHA BAND PRESENCE is not present, its value shall
be inferred to be equal to 0. If the alpha channel is present as an interleaved alpha image plane, the value of
ALPHA BAND PRESENCE, when present, shall be equal to the value of BANDS PRESENT of the alpha image plane
of the CODED_IMAGE( ) syntax structure at the position specified by IMAGE OFFSET. If the alpha channel is present
as a separate alpha image plane, the value of ALPHA BAND_ PRESENCE, when present, shall be equal to the value of
BANDS PRESENT of the CODED_IMAGE( ) syntax structure at the position specified by ALPHA OFFSET.

A.7.33 PADDING_DATA

PADDING DATA (when present) consists of a string of byte values of the indicated quantity. PADDING DATA is
formatted as follows:

— The first byte shall be equal to 0x1C.
— The second byte (when present) shall be equal to OXxEA.
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— The remaining bytes (when present) shall be equal to 0 in all codestreams conforming to this version of this
Specification. Decoders conforming to this version of this Specification shall ignore the value of the remaining
bytes.

NOTE - One use for PADDING_DATA is to reserve space within a file for potential later replacement by other data.
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Annex B

Profilesand levels
(This annex forms an integral part of this Recommendation | International Standard.)

B.1 General

This annex specifies sets of constraints on the syntax and values of derived parameters that enhance interoperability by
establishing bounds on the capabilities that are needed for the decoding of images encoded according to this
Recommendation | International Standard. These sets of constraints are classified into profile and level constraints.

NOTE - Typically, a profile constraint restricts the use of algorithmic features, while a level constraint restricts the range of values
in a manner intended to constrain resource requirements such as memory storage capacity.

Decoders that claim conformance to a specified profile of this Specification at some specified level shall be capable of
decoding any coded image that conforms to all specified constraints for the specified profile at the specified level or any
lower specified level and has such conformance expressed syntactically as specified in this annex.

Conformance of a coded image to a particular profile and level is expressed by a PROFILE LEVEL INFO() syntax
structure. When the PROFILE LEVEL INFO( ) syntax structure is not present, the following inference rules apply:

- PROFILE IDC shall be inferred to be equal to 111.
- LEVEL IDC shall be inferred to be equal to 255.

B.2 Profiles

B.2.1 Sub-Baselineprofile

The Sub-Baseline profile is defined as the set of coded image syntax that has LONG_WORD FLAG set equal to
FALSE, has OVERLAP _MODE set equal to either 0 or 1, and that is consistent with the use of the following
PIXEL FORMAT mnemonic values (specified in Table A.6): 24bppRGB, 24bppBGR, 32bppBGR, 8bppGray,
BlackWhite, 16bppBGRS555, 16bppBGR565, or 32bppBGR101010.

NOTE 1 - Although this constraint is specified in terms of concepts defined in Annex A, it also applies when the file format

specified in Annex A is not in use. Concepts specified in Annex A are used in this annex only as a reference to establish the set of
features supported by the profiles specified in this annex.

NOTE 2 — Encoders may need to set SCALED_FLAG equal to 0 for 32bppBGR101010 encoding to avoid exceeding the dynamic
range constraints imposed when LONG_WORD_FLAG is equal to FALSE.

Conformance of a coded image to the Sub-Baseline profile is indicated by PROFILE IDC equal to 44. The value 44 for
PROFILE _IDC shall not be used in a PROFILE LEVEL INFO( ) syntax structure unless the associated coded image
conforms to the constraints specified for the Sub-Baseline profile.

Values of PROFILE IDC that are less than 44 may additionally be interpreted by decoders as expressing conformance of
the associated coded image to the Sub-Baseline profile.

B.2.2 Basdineprofile

The Baseline profile is defined as the set of coded image syntax that is consistent with the use of the following
PIXEL FORMAT mnemonic values (specified in Table A.6): 24bppRGB, 24bppBGR, 32bppBGR, 48bppRGB,
48bppRGBFixedPoint, 64bppRGBFixedPoint, 8bppGray, 16bppGray, 16bppGrayFixedPoint, BlackWhite,
16bppBGRS555, 16bppBGR565, or 32bppBGR101010.

NOTE - Although this constraint is specified in terms of concepts defined in Annex A, it also applies when the file format

specified in Annex A is not in use. Concepts specified in Annex A are used in this annex only as a reference to establish the set of
features supported by the profiles specified in this annex.

Conformance of a coded image to the Baseline profile is indicated by PROFILE IDC equal to 55. The value 55 for
PROFILE IDC shall not be used in a PROFILE LEVEL INFO( ) syntax structure unless the associated coded image
conforms to the constraints specified for the Baseline profile.

Values of PROFILE _IDC that are less than 55 may additionally be interpreted by decoders as expressing conformance of
the associated coded image to the Baseline profile.

B.2.3 Main profile
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The Main profile is defined as the set of coded image syntax that is consistent with the use of the following
PIXEL FORMAT mnemonic values (specified in Table A.6): 24bppRGB, 24bppBGR, 32bppBGR, 48bppRGB,
48bppRGBFixedPoint, 48bppRGBHalf, 96bppRGBFixedPoint, 64bppRGBFixedPoint, 64bppRGBHalf,
128bppRGBFixedPoint, 128bppRGBFloat, 32bppBGRA, 64bppRGBA, 64bppRGBAFixedPoint, 64bppRGBAHalf,
128bppRGBAFixedPoint, 128bppRGBAFloat, 32bppPBGRA, 64bppPRGBA, 128bppPRGBAFloat, 32bppCMYK,
40bppCMYKAIlpha, 64bppCMYK, 80bppCMYKAIlpha, 24bpp3Channels, 32bpp4Channels, 40bpp5Channels,
48bpp6Channels, 56bpp7Channels, 64bpp8Channels, 32bpp3ChannelsAlpha, 40bpp4ChannelsAlpha,
48bpp5ChannelsAlpha, 56bpp6ChannelsAlpha, 64bpp7ChannelsAlpha, 72bpp8ChannelsAlpha, 48bpp3Channels,
64bpp4Channels, 80bpp5Channels, 96bpp6Channels, 112bpp7Channels, 128bpp8Channels, 64bpp3ChannelsAlpha,
80bpp4ChannelsAlpha, 96bppS5ChannelsAlpha, 112bpp6ChannelsAlpha, 128bpp7ChannelsAlpha,
144bpp8ChannelsAlpha, 8bppGray, 16bppGray, 16bppGrayFixedPoint, 16bppGrayHalf, 32bppGrayFixedPoint,
32bppGrayFloat, BlackWhite, 16bppBGR555, 16bppBGR565, 32bppBGR101010, or 32bppRGBE.

NOTE - Although this constraint is specified in terms of concepts defined in Annex A, it also applies when the file format
specified in Annex A is not in use. Concepts specified in Annex A are used in this annex only as a reference to establish the set of
features supported by the profiles specified in this annex.

Conformance of a coded image to the Main profile is indicated by PROFILE IDC equal to 66. The value 66 for
PROFILE IDC shall not be used in a PROFILE LEVEL INFO( ) syntax structure unless the associated coded image
conforms to the constraints specified for the Main profile.

Values of PROFILE IDC that are less than 66 may additionally be interpreted by decoders as expressing conformance of
the associated coded image to the Main profile.

B.2.4 Advanced profile

The Advanced profile is defined as the set of all coded image syntax that is specified in this Specification.

NOTE - Some image codestreams that conform to the Advanced profile cannot be stored in a file as specified in Annex A due to
the lack of specification of any PIXEL_FORMAT value in Annex A that is consistent with the content of the image codestream.
For example, a coded image with NumComponents equal to 32 cannot be stored in a file as specified in Annex A.

Conformance of a coded image to the Advanced profile is indicated by PROFILE IDC equal to 111. The value 111 for
PROFILE IDC shall not be used in a PROFILE LEVEL INFO( ) syntax structure unless the associated coded image
conforms to the constraints specified for the Advanced profile.

Values of PROFILE IDC that are less than 111 may additionally be interpreted by decoders as expressing conformance
of the associated coded image to the Advanced profile.

B.25 Reserved valuesof PROFILE_IDC

The value of PROFILE IDC in a PROFILE LEVEL_ INFO( ) syntax structure shall not be equal to any value other than
44,55, 66, or 111. Such other values are reserved for future use by ITU-T | ISO/IEC.

B.3 Levels

Conformance of a coded image to a particular level is indicated by LEVEL IDC equal to the value shown in the "Level"
column of Table B.1.

For a value of LEVEL IDC specified by the "Level" column of Table B.1, the associated coded image shall obey the
following constraints using values obtained from the corresponding row of Table B.1:

- WIDTH_MINUSI + LEFT _MARGIN + RIGHT _MARGIN shall be less than MaxImageDimension.

- HEIGHT MINUSI + TOP_MARGIN + BOTTOM_MARGIN shall be less than MaxImageDimension.
- NUM_HOR _TILES MINUSI shall be less than MaxDimensionInTiles.

- NUM_VER TILES MINUSI shall be less than MaxDimensionInTiles.

- TILE WIDTH_IN MBJ[n] * 16, when present, shall be less than MaxTileDimension for all values of n greater
than or equal to 0 and less than NUM_VER TILES MINUSI.

- (MBWidth — LeftMBIndexOfTile]NUM_VER TILES MINUSI1]) * 16 shall be less than MaxTileDimension.

- TILE HEIGHT IN_MBJn] * 16, when present, shall be less than MaxTileDimension for all values of n greater
than or equal to 0 and less than NUM_HOR_TILES MINUSI.

- (MBHeight — TopMBIndexOfTilef]NUM_HOR TILES MINUSI1]) * 16 shall be less than MaxTileDimension.

— When LEVEL _IDC is not equal to 255, the value of ImageBufferBytes(valNC) as specified by Table B.2 shall be
less than MaxBufferSizeInBytes, where the value of vaINC is determined as follows:

e If LEVEL IDC is within a PROFILE LEVEL CONTAINER( ) syntax structure, valNC is set equal to
the value in the "NC" column of Table A.6 for the corresponding value of PIXEL FORMAT.
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e Otherwise, if ALPHA IMAGE PLANE FLAG is equal to FALSE, vaINC is set equal to the value
returned by DetermineNumComponents( ) for the primary image plane.

e Otherwise, valNC is set equal to the value returned by DetermineNumComponents( ) for the primary
image plane plus 1.

When LEVEL IDC is less than or equal to 128, SHORT HEADER FLAG shall be equal to 1.

Table B.1 — Parameters of levels of conformance to this Specification

Level M ax| mageDimension MaxDimensionInTiles | MaxTileDimension | MaxBuffer SizelnBytes

210 7 510 52

3 211 25 211 224

16 212 26 12 7%

32 2 27 212 528

64 ol4 78 12 330

128 21 210 P 772

255 2 2" 2% Not applicable

NOTE — When LEVEL_IDC is equal to 255 and TILING_FLAG is equal to TRUE, the number of bits used for the syntax
elements TILE_WIDTH_IN_MB[n] and TILE_HEIGHT_IN_MB|[n] cannot express a value greater than 2'% 1.

Table B.2 — Pseudocode for function | mageBuffer Bytes(valNC)

ImageBuffer Bytes(valNC) { Reference
numBytes = 0
if (OUTPUT BITDEPTH == BDg)
numBytes = vaINC * ExtendedWidth[0] * ExtendedHeight[0]
else if (OUTPUT_BITDEPTH ==BD16) | | (OUTPUT _BITDEPTH == BDI16S) ||
(OUTPUT BITDEPTH == BDI16F))
numBytes = 2 * vaINC * ExtendedWidth[0] * ExtendedHeight[0]
else if (OUTPUT BITDEPTH == BD32S) || (OUTPUT BITDEPTH = = BD32F))
numBytes = 4 * vaINC * ExtendedWidth[0] * ExtendedHeight[0]
else if (OUTPUT_BITDEPTH ==BDI1WHITE]1) | |
(OUTPUT BITDEPTH == BDI1BLACK1))
numBytes = ExtendedWidth[0] * ExtendedHeight[0] / 8
else if (OUTPUT BITDEPTH == BD5) | | (OUTPUT BITDEPTH = = BD565))
numBytes = 2 * ExtendedWidth[0] * ExtendedHeight[0]
else /* In the remaining case, OUTPUT BITDEPTH is equal to BD10 */
if (OUTPUT _CLR_FMT ==RGB)
numBytes = 4 * ExtendedWidth[0] * ExtendedHeight[0]
else
numBytes = 2 * vaINC * ExtendedWidth[0] * ExtendedHeight[0]
return numBytes

The value of LEVEL IDC in a PROFILE LEVEL INFO( ) syntax structure shall not be equal to any value other than a
value specified in Table B.1. Such other values are reserved for future use by ITU-T | ISO/IEC. Any reserved value of
LEVEL IDC that is lower than some value that is specified in Table B.1 shall be interpreted by decoders as expressing
conformance of the associated image to the higher value of LEVEL IDC that is specified in Table B.1 (in the context of
the associated value of PROFILE IDC).
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Annex C

Color imagery representation and color management
(This annex does not form an integral part of this Recommendation | International Standard.)

C1 Background information

While it might be theoretically possible to agree on one method for assigning specific numerical values to real world
colors, doing so is not practical. Since any specific device has its own limited range for color reproduction, the device's
range may be a small portion of the agreed-upon universal color range. As a result, such an approach is an extremely
inefficient use of the available numerical values, especially when using only 8 bits (or 256 unique values) per channel.

To represent pixel values as efficiently as possible, devices use a numeric encoding optimized for their own range of
possible colors or gamut. In addition, a color profile is often provided that describes the numeric encoding for the
specific device relative to some pre-defined reference standard. For example, a color profile may include a specification
of a non-linear transformation from the range of integer values to the luminance (or radiance) of the color values as
reproduced. This non-linear transformation is called the color component transfer function (CCTF). In some cases, it
may be possible to specify the CCTF using a power function with a single numerical value specifying the exponent or
"gamma". The term "gamma" is also sometimes used more informally to refer to any CCTF, although this terminology is
not strictly correct. Color profiles deal with all aspects of the color interpretation of digital values, and in addition to
specifying the CCTF, specify the relations between device values and the profile connection space (PCS) coordinates,
which in the case of ICC profiles are based on the CIE 1931 2° standard observer specified in ISO 11664-1. Color
profiles may provide additional information about the encoded image, such as the viewing conditions or image state. ICC
profiles also provide a transform to a standard reference medium for interoperability. Color profiles make it possible to
convert image data between different color encodings, thereby controlling the capture and production of colors using a
variety of devices. This science is known as "color management".

Most common photo and image formats use an 8-bit or 16-bit unsigned integer value to represent some function of the
intensity of each color channel. The minimum value (0) often represents the minimum intensity in a single channel. The
encoding of black is achieved in such usage when all channels are zero. The maximum value (2" — 1 for an unsigned bit
depth of n bits) often represents 100% intensity or full saturation of an individual channel. When all channels have this
maximal value, this typically corresponds to an encoding of white. Various alternative encoding conventions also exist,
such as several color representations specified by the ITU-R for which black may be represented by the value 16 and
white may be represented by the value 235 for each color channel.

The exact meaning of "black", "full saturation" and "white" as well as the specific colors produced by all the
intermediate numerical steps in the numerical representation range is dependent on how these values are initially created
or captured or how these values are rendered. Different source or destination devices (including cameras, scanners,
displays or printers) may use different numerical values to represent the same "real world" color.

The process of converting colors, and their numerical representation, to the ranges covered by different devices creates
some significant complications. First, colors optimized for the gamut of the source device are re-optimized for the gamut
of the destination device. This process involves some artistic judgment, as there is no single correct method. Then, the
converted colors are encoded using the destination device encoding.

In addition, any intermediate image processing has the potential to produce values that extend beyond the black (low
limit) or white (high limit) point of the particular color encoding, often resulting in these calculated values being clipped
to the associated limits. A working space color encoding with a limited numerical range can cause values to be corrupted
during intermediate calculations, even though subsequent image processing may bring these values back within the
displayable (black to white) range of the target rendering destination. Because of this issue, many modern image
processing software applications use a much larger gamut, including representation of numerical values of greater bit
depths, for all intermediate image processing calculations. (It is not uncommon to use 32-bit floating point values for
intermediate calculations, minimizing any image corruption caused by rounding errors and clipping at the range limits
during the intermediate steps of image processing calculations.) However, most common image formats today require
that this image data be converted back to a range-limited, unsigned integer representation, limited to the gamut as
defined by a specific color profile. So once again, the potential for data corruption exists.

C.z2 Color interpretation in the JPEG XR context

To address these challenges, JPEG XR provides a much more flexible approach to the numerical encoding of image data
by supporting a wide range of different pixel formats. JPEG XR supports three basic types of numerical encoding, each
at a variety of bit depths — specifically, these types are unsigned integer, fixed-point, and floating point representations.
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A variety of pixel formats are supported by JPEG XR using unsigned integer representations in bit depths of 8 and 16, as
well as smaller bit depths for specialized applications. JPEG XR also supports a number of additional pixel formats that
avoid some problematic aspects involved in the unsigned integer representations.

ICC profile data as specified by ICC.1:2001-04 (ICC version 2.4.0.0) or ISO 15076-1 (ICC version 4.2.0.0) can provide
at least one unambiguous interpretation of the colors associated with encoded image data. Multiple interpretations may
be provided using different rendering intents. The file format specified in Annex A supports the inclusion of ICC profile
data for imagery encoded according to this Specification by allowing the use of the field tag value 0x8773, which is
specified in ICC.1:2001-04 and ISO 15076-1 for use in tag-based file formats for embedding of ICC profile data.

Unless otherwise selected by the user, device, or software receiving the image data, the perceptual rendering intent
(0xA2BO0 in ICC.1:2001-04 or ISO 15076-1) transform should be used for interpretation of the color imagery.

Unsigned integer RGB formats, as may be specified using the PIXEL FORMAT tag defined in subclause A.7.18, are a
common form of imagery representation. When present with unsigned integer pixel formats, embedded ICC Profile data
provides a non-ambiguous definition of the color interpretation of an image. The color interpretation of JPEG XR image
data should be defined either explicitly using embedded ICC profile data. When, for an unsigned pixel format, ICC
profile data is not present, COLOR_SPACE is not present or not equal to 1, PTM_COLOR_INFO() is not present, and
color interpretation information is not available by other means, unsigned integer RGB data should be assumed to use the
sRGB color encoding specified in IEC 61966-2-1.

Fixed point values are essentially signed, scaled integer values. Rather than interpreting the numbers as the integer step
from the minimum limit to the maximum limit for a particular color encoding, a fixed point number is scaled. In this
fixed point color space, zero could represent either the minimum device value, or it could represent absolute black (zero
photons). A value of 1.0 could represent the maximum device value, or when applied to all channels that make up a
pixel, it could represent a perfect diffuse white. The specific scaling for each bit depth specifies exactly what point in the
entire signed integer range is interpreted as a value of 1.0. The type of black encoded at zero (e.g. the device black or
zero photons), and the type of white encoded at 1.0 (e.g. some encoding maximum or a perfect diffuse white) are
determined from the color profile associated with the encoding.

Unlike unsigned integer values that are often interpreted based on a color component transfer function (CCTF) that may
be different for different color encodings, it is preferred that the fixed point color encodings used for the JPEG XR
context should be based on a linear CCTF (equivalent to a gamma equal to 1.0).

Floating point numerical formats, as may be specified using the PIXEL FORMAT tag defined in subclause A.7.18,
should also be based on a linear CCTF (gamma = 1.0) color encoding. ICC profiles embedded in images using a floating
point pixel format as specified by PIXEL FORMAT in subclause A.7.18 should therefore have a linear CCTF in the
relative colorimetric rendering intent (0xA2B1 in ISO 15076-1) transform.

Fixed point or floating point RGB data, as may be specified using the PIXEL FORMAT tag defined in subclause
A.7.18, should use the scRGB color space defined in IEC 61966-2-2, but without the offset and scaling that are applied
to produce scRGB unsigned integer values (i.e the floating point scRGB is only a matrix transform from the CIE 1931
XYZ color space specified in ISO 11664-1). scRGB is a linear CCTF (gamma = 1.0) color encoding that uses the same
color primaries and white point chromaticity as sSRGB, but has a different CCTF and image state. The scRGB black point
is the numerical value 0.0 and corresponds to zero photons in the scene. The scRGB perfect diffuse white point is
specified by all three color channels set to a value of 1.0.

Since the color rendering of scene colorimetry is often scene-specific, the perceptual intent transforms found in
embedded scRGB-float ICC profiles may be image-specific. However, the use of a default perceptual rendering may be
appropriate under some circumstances.

Devices and software receiving scRGB image data may also provide users with the opportunity to custom color render
scene-referred colorimetry. If such edits are to be saved, it is recommended that where possible they should be
incorporated as changes to the perceptual rendering intent (0xA2B0 in ISO 15076-1) transform in the embedded ICC
profile, with the scRGB image data left unchanged.

For Gray pixel formats, as may be specified using the PIXEL FORMAT tag defined in subclause A.7.18, in the absence
of ICC profile data, the represented Gray value should be inferred as the value of all three color components of the
corresponding RGB format.

In the absence of an ICC profile, when no other indication of the color interpretation is available by other means, any
CMYK pixel format (as defined in subclause A.7.18) should be assumed to be encoded according to CGATS/SWOP
(Committee for Graphics Arts Technologies Standards/Specifications for Web Offset Publications) TR003 2007 CMYK.

NOTE 1 - A profile for CGATS/SWOP TR003 2007 CMYK is available from the ICC Profile Registry. The profile name in the
registry is SWOP2006_Coated3v2.icc.

There is no inherent description of the color context for n-channel data, so when using an n-channel pixel format, it is
recommended that an ICC profile should always be included (when applicable). However, if an ICC profile is not present
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and no other indication of the color interpretation is available by other means, the following default color context
assumptions are recommended:

180

When n = 3, the three channels should be assumed to be red, green, and blue (RGB) encoded using the SRGB
color space.

When n > 3, the first four channels should be assumed to be cyan, yellow, magenta and black (CMYK) encoded
according to CGATS/ SWOP TR003 2007 CMYK. Any additional channels should be discarded.

NOTE 2 - A profile for CGATS/SWOP TR003 2007 CMYK is available from the ICC Profile Registry. The profile name in
the registry is SWOP2006_Coated3v2.icc.
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Annex D

Encoder processing
(This annex does not form an integral part of this Recommendation | International Standard.)

D.1 Overview

The encoder carries out the following steps:
- Pre-scaling
— Color conversion
— Transform
- Outer pre-filter
- Outer FCT
— Inner pre-filter
- Inner FCT
— Coefficient prediction
—  Quantization
- Coefficient scanning

- Entropy coding

These steps are explained in the subclauses below.

D.2 Pre-scaling

The pre-scaling steps are applied for 16-bit unsigned integer (BD16), 16-bit signed integer (BD16S), 16-bit float
(BD16F), 32-bit signed integer (BD32S), 32-bit float (BD32F) and RGBE. They are usually used when the input data
range is greater than 27/24 bits. The 27-bit limit is used when data is scaled, and the 24-bit limit applies when the data is
unscaled. For the most common cases such as for 16-bit data, the pre-scaling steps are omitted although they may still be
used.

For OUTPUT _BITDEPTH equal to BD16, BD16S, or BD32S, input values are right-shifted by the value specified by
SHIFT BITS. The function PreScaling1( ) is specified in Table D.1.

Table D.1 - Pseudocode for function PreScalingl()

PreScalingl(il nput) { Reference
iOutput = (ilnput >> SHIFT BITS)
return iOutput

H

For OUTPUT BITDEPTH equal to BD16F, a sign bit extension is applied. The function PreScalingBD16F() is
specified in Table D.2.

Table D.2 — Pseudocode for function PreScalingBD16F( )

PreScalingBD16F(fV) { Reference
if (fV <0)
iS=1
else
iS=0
iX = (fV & 0x7fff) * iS — iS
return iX
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For OUTPUT BITDEPTH equal to BD32F, the encoder first selects a value of mantissa length LEN. MANTISSA, and
an exponent bias EXP BIAS. LEN MANTISSA is less than or equal to 23. The function PreScalingBD32F() is
specified in Table D.3.

Table D.3 - Pseudocode for function PreScalingBD32F( )

PreScalingBD32F(fV) { Reference
if(fV==0)
iX=0
else {
iS = (fV >>31) & 0x00000001
iE = (fV >> 23) & 0x000000FF
iM = (fV & 0x007FFFFF) | 0x800000
if GE==0) {
iM ~= 0x800000
iE++

}
iE = iE — 127 + EXP_BIAS
ifGE<=1) {
ifE< 1)
iM >>= (1 — iE)
iE=1
if (iM & 0x800000) = = 0)
iE=0

}
iM = (((iM & 0x007FFFFF) + (I << (23 — LEN MANTISSA — 1))) >> (23 — LEN_ MANTISSA))

iX = ((E << LEN_MANTISSA) | iM) " iS — iS
}

return iX

For OUTPUT _CLR_FMT equal to RGBE, the function PreScalingRGBE( ) is specified in Table D.4 and Table D.5.

Table D.4 — Pseudocode for function PreScalingRGBE()

PreScalingRGBE(arrayOut[ ], arrayln[ ]) { Reference
arrayOut[0] = RGBEForwardConversion(arrayIn[0], arrayIn[3])
arrayOut[1] = RGBEForwardConversion(arrayIn[1], arrayIn[3])
arrayOut[2] = RGBEForwardConversion(arrayIn[2], arrayIn[3])

}
Table D.5 - Pseudocode for function RGBEForwar dConversion()
RGBEForwardConversion(iRGB, iE) { Reference
if GEE==0)
return 0
iAppend = 1
iE —=1

while ((IRGB & 0x80) == 0) && (iE > 0)) {
iRGB = (iRGB << 1) + iAppend

iAppend = 0
iE—=1
}
if (EE==0)
iX =iRGB
else {
iE++

iX = (iRGB & 0x7f) + (iE << 7)

}

return iX
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D.3 Color conversion

D.3.1 General

The encoder uses a reversible color format conversion to convert between the OUTPUT CLR FMT and
INTERNAL CLR FMT.

RGB to YUV444 color format conversion is performed using FwdColorFmtConvert1( ) that is specified in subclause
D.3.2. In order to convert from RGB to YUV422 or YUV420, downsampling must be performed after color format
conversion using FwdColorFmtConvertl(). RGB to YONLY conversions may be performed using
FwdColorFmtConvert1( ) by discarding the U and V components on the encoder side. CMYK to YUVK color format
conversion is performed using FwdColorFmtConvert2( ) that is specified in subclause D.3.3. CMYKDIRECT to YUVK
color format conversion is performed using FwdColorFmtConvert3( ) that is specified in subclause D.3.4.

Prior to color conversion, a bias is subtracted from all values, to zero centre their range. The amount of the bias is
determined by the source bit depth, and is exactly as specified in subclause 9.10.5. When the scaling mode is used, the
color values are shifted left prior to encoder color conversion.

D.3.2 FwdColorFmtConvertl()

The function FwdColorFmtConvertl() implements the following operations to convert from RGB to YUV444 in
Table D.6. When the decoded image is intended to be formatted using OUTPUT CLR FMT equal to RGB and
OUTPUT_BITDEPTH equal to BD5, BD565, or BD10, the process depends on the selected behaviour for the decoder
with respect to the RED BLUE NOT_SWAPPED FLAG syntax element.

NOTE - The specification of semantics for RED_BLUE_NOT_SWAPPED_FLAG was not included in the original edition of this
Specification. The specification of RED_BLUE_NOT_SWAPPED_FLAG was added later to address a problem with respect to
the observed behaviour of existing implementations. In principle, when OUTPUT_CLR_FMT is equal to RGB and
OUTPUT_BITDEPTH is equal to BD5, BD565, or BD10, the value 1 for RED_BLUE_NOT_SWAPPED_FLAG should
ordinarily provide better compression capability than the value 0. However, early product implementations of this Specification
have operated in a manner corresponding to the value 0. Encoders that are designed primarily for interoperability with early
product implementations of this Specification should therefore use the value 0 for RED_BLUE_NOT_SWAPPED_FLAG when
OUTPUT_CLR_FMT is equal to RGB and OUTPUT_BITDEPTH is equal to BD5, BD565, or BD10. It is anticipated that, as time
passes, decoder implementations will also properly support operation with the value 1 for RED_BLUE_NOT_SWAPPED_FLAG
when OUTPUT_CLR_FMT is equal to RGB and OUTPUT_BITDEPTH is equal to BD5, BD565, or BD10.

Table D.6 — Pseudocode for function FwdColor FmtConvert1()

FwdColorFmtConvertl(arrayIn[ ], arrayOut[ ]) { Reference
/* arrayIn[ ] = {R, G, B} */
/* arrayOut[ ] = {Y, U, V} */
if (OUTPUT_CLR FMT ==RGB) &&
(OUTPUT BITDEPTH ==BDS5 || OUTPUT _BITDEPTH == BDS565 | |
OUTPUT BITDEPTH ==BDI10) && !RED BLUE NOT SWAPPED FLAG) {
/* swappedRBflag =1 */
arrayTemp[0] = arrayIn[2]
arrayTemp[1] = arrayIn[1]
arrayTemp[2] = arrayIn[0]
} else {
/* swappedRBflag = 0 */
arrayTemp[0] = arrayIn[0]
arrayTemp[1] = arrayIn[1]
arrayTemp[2] = arrayIn[2]
}
arrayOut[2] = arrayTemp[2] — arrayTemp[0]
/* V =B — R, except when swappedRBflag is equal to 1 */
tempT = arrayTemp[0] — arrayTemp|[ 1] + Ceiling(arrayOut[2] + 2)
/*t=R — G + Ceiling(V + 2), except when swappedRBflag is equal to 1 */
arrayOut[0] = arrayTemp[1] + Floor(tempT + 2)
/*Y =G + Floor(t + 2) */
arrayOut[1] = —tempT /* U =—t */

D.3.3 FwdColorFmtConvert2()
The function FwdColorConvert2( ) implements the following operations to convert from CMYK to YUVK in Table D.7.
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Table D.7 — Pseudocode for function FwdColor FmtConvert2()

FwdColor FmtConvert2(arrayin[ ], arrayOut[ ]) { Reference
/* arrayIn[ ] = {c, m, y, k} */
/* arrayOut[ ] = {Y, U, V, K} */
arrayOut[2] = arrayIn[0] — arrayIn[2] /* c —y */
arrayOut[1] = arrayIn[0] — arrayIn[1] + Floor(arrayOut[2] + 2) /* ¢ — m — Floor(V + 2) */
arrayOut[0] = arrayIn[3] — arrayIn[1] + Floor(arrayOut[1] =~ 2) /* k — m — Floor(U + 2) */
arrayOut[3] = arrayIn[3] — Floor(arrayOut[0] + 2) /* K = k — Floor(Y + 2) */

D.3.4 FwdColorFmtConvert3()

The function FwdColorConvert3( ) implements the following operations to convert from CMYKDIRECT to YUVK in
Table D.8.

Table D.8 — Pseudocode for function FwdColor FmtConvert3()

FwdColor FmtConvert3(arrayin[ ], arrayOut[ ]) { Reference
/* arrayIn[ ] = {c, m, y, k} */
/* arrayOut[ 1= {Y, U, V, K} */
arrayOut[2] = arrayIn[1] /* V=m */

arrayOut[ 1] = arrayIn[0] /* U = ¢ */
arrayOut[0] = arrayIn[3] /* Y =k */
arrayOut[3] = arrayIn[2] /* K =y */

D.3.5 Macroblock alignment and padding

The width and height of images are not always integer multiples of 16. When an image width or height is not an integer
multiple of 16, the image is extended by some means so that the extended image has dimensions that are multiples of 16.

A suggested method of image extension is to perform horizontal replication of the bottom and right edge sample values
to the extent necessary to form an input array having a conforming (multiple of 16) extended image width and height.

D.4 Transform

The encoder uses a two level lapped transform, which is structured as follows:

- A pre-filter operation is optionally applied to 4x4 areas evenly straddling blocks in two dimensions. For images
with soft tiles, this filter is applied to all such blocks. For images with hard tiles, this filter is applied only to the
interior of tiles. Furthermore, a pre-filter is applied to boundary areas which are 2x4 or 4x2 in size, and a pre-
filter is applied to the four 2x2 corners on each color component. For images with hard tiles, these filters are
additionally applied at tile boundaries.

— An FCT is applied to all 4x4 blocks. This completes the first transform level.

- DC coefficients of the 4x4 blocks are grouped together. 16 such coefficients are present for each macroblock
color component, and these are structured as 4x4 blocks in the DC-LP array.

- A second level pre-filter operation is optionally applied to 4x4 areas evenly straddling blocks in two dimensions
in the DC-LP array. For images with soft tiles, this filter is applied to all such blocks. For images with hard tiles,
this filter is applied only to the interior of tiles. Furthermore, a pre-filter is applied to boundary 2x4 and 4x2 areas,
and a pre-filter is applied to the four 2x2 corner areas. For images with hard tiles, these filters are additionally
applied at tile boundaries.

— The FCT is applied to each 4x4 block corresponding to DC coefficients in a macroblock color component.

The pre-filtering operation is applied across macroblock boundaries and optionally across tile boundaries. If
HARD TILING FLAG is set equal to FALSE, the pre-filtering is applied across tile boundaries. Otherwise, the pre-
filtering operation is not applied across tile boundaries and tile boundaries are treated as image edges instead.

These operations are repeated for all color components. For the special cases of INTERNAL CLR FMT equal to
YUV422 or YUV420, appropriately modified transforms are applied (for instance a 2x2 transform is used as the block
transform of the chroma component DC-LP arrays of YUV420).
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"OverlapPreFilter]" in Figure D.1 is used to denote the corner prediction process, and the process is equivalent to
"OverlapPostFilter]" detailed in Table 154 and Table 155.

An overview of this process is shown in Figure D.1.
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The application of overlap filters is governed by the OVERLAP MODE syntax element. Lossless coding is possible
with all overlap modes, although OVERLAP MODE equal to 0 is usually best or sufficient for lossless coding.
OVERLAP MODE equal to 1 produces the shortest codestream for a large class of images and quantization levels.
OVERLAP MODE equal to 2 is recommended for high quantization levels but with slightly higher complexity.
OVERLAP_MODE equal to 0 is recommended for lowest complexity encoding / decoding; however this mode
implements a hierarchical block transform and potentially introduces blocking at low bit rates.

The Forward Core Transform (FCT) process can be written as the cascade of three elementary 2x2 transform operations,

which are
1) 2x2 Hadamard transform: T2x2h( )
2) 1D rotate: TOdd( )
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3) 2D rotate: TOddOdd( )

D.41 T2x2h()
As specified in subclause 9.9.7.2.

D.42 TOdd()
TOdd() is specified by the pseudocode in Table D.9.

Table D.9 — Pseudocode for function TOdd()

TOdd(iCoeff[ 1) {
iCoeff[ 1] —= iCoeff]2]
iCoeff[0] += iCoeff]3]
iCoeff]2] += ((iCoeff[1] + 1) >> 1)
iCoeff[3] = ((iCoeft]0] + 1) >> 1) — iCoeff[3]
iCoeff[1] —= ((3* iCoeff[0] + 4) >> 3)
iCoeff[0] += ((3* iCoeff[ 1] + 4) >> 3)
iCoeff]3] —= ((3* iCoeff[2] + 4) >> 3)
iCoeff[2] += ((3* iCoeff[3] + 4) >> 3)
iCoeff[3] += (iCoeff[ 1] >> 1)

iCoeff[2] —= ((iCoeff[0] + 1) >> 1)
iCoeff[ 1] —= iCoeff]3]
iCoeff]0] += iCoeff]2]

D.4.3 TOddOdd()
TOddOdd( ) is specified by the pseudocode in Table D.10.

Table D.10 — Pseudocode for function TOddOdd()

TOddOdd(iCoeff[ ]) {
iCoeff[1] = —iCoeff] 1]
iCoeff[2] = —iCoeff]2]
iCoeff[3] += iCoeff]0]
iCoeff[2] —= iCoeff]1]
iCoeff[0] —= (valT1 = iCoeff[3] >> 1)
iCoeff] 1] += (valT2 = iCoeff]2] >> 1)
iCoeff[0] += ((iCoeff]1] * 3 + 4) >> 3)
iCoeff[1] —= ((iCoeff[0] * 3 + 3) >>2)
iCoeff[0] += ((iCoeff[1] * 3 + 3) >> 3)
iCoeff[ 1] —= valT2
iCoeft]0] += valT1
iCoeff[2] += iCoeff[1]
iCoeff[3] —= iCoeff]0]

— — == — = — = — = —

D.44 FwdPermute()

The forward permutation function FwdPermute( ) operates on an ordered array of 16 sample values, producing a
permuted list. The input to this function is the ordered array arrayInput[i], for i ranging from 0 to 15. The output of this
function is the re-ordered array arraylnput[i].

To define the permutation, the array FwdPermArt[i] is specified, for i ranging from O to 15, in Table D.11.
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Table D.11 — Forward Permutation

i FwdPermArr([i]
0 0
1 8
2 4
3 6
4 2
5 10
6 14
7 12
8 1
9 11
10 15
11 13
12 9
13 3
14 7
15 5

The function FwdPermute( ) is specified in Table D.12.

Table D.12 — Pseudocode for function FwdPer mute()

FwdPermute(arraylnput[ 1) {

Reference

for (i=0; i <= 15; i++)

array Temp[FwdPermAurr[i]] = arrayInput][i]

for (i=0; i <= 15; i++)

arrayInput[i] = arrayTemp][i]

[—~

D.45 FCT operations
D.4.5.1 FCT4x4()

The input to the FCT4x4 function is an array of length 16, denoted iCoeff] ]. The output of this function is a modified

array of length 16 denoted iCoeff] ].

The FCT4x4() is built using the three operators: T2x2h( ), TOdd() and TOddOdd( ), followed by the permutation
function FwdPermute( ). The FCT begins with two transform stages. Each stage consists of four 2x2 transforms which
may be done in any arbitrary sequence, or concurrently, within the stage. However, the first-stage transforms must be
complete before any of the second-stage transforms are initiated. Also, for each function called in the FCT, the inverse of
that function is called in the ICT pseudocode (subclause 9.9.7.1), with the exact same set of parameters.

After these two transform stages complete, the coefficients need to be re-ordered by the FwdPermute( ) function.

The FCT4x4( ) function is specified by the pseudocode in Table D.13.

Table D.13 — Pseudocode for function FCT 4x4( )

FCT4x4(Coeff] ]) |

Reference

/* First stage */

arrayLocal[ ] = {iCoeft]0], iCoeft]3], iCoeft]12], iCoeff[15]}

T2x2h(arrayLocal[ ], 0)

9.9.7.2

iCoeft[0] = arrayLocal[0]

iCoeff][3] = arrayLocal[1]

iCoeff[12] = arrayLocal[2]

iCoeff[15] = arrayLocal[3]

arrayLocal[ ] = {iCoefl]5], iCoeft]6], iCoeff]9], iCoeff[10]}

T2x2h(arrayLocal[ ], 0)

9.9.7.2

iCoeff[5] = arrayLocal[0]

iCoeff[6] = arrayLocal[1]

iCoeff[9] = arrayLocal[2]
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iCoeff[10] = arrayLocal[3]

arrayLocal[ ] = {iCoeff[1], iCoeff]2], iCoeff]13], iCoeff[14]}
T2x2h(arrayLocal[ ], 0) 9.9.7.2
iCoeff]1] = arrayLocal[0]

iCoeff[2] = arrayLocal[1]

iCoeff]13] = arrayLocal[2]

iCoeff]14] = arrayLocal[3]

arrayLocal[ ] = {iCoeff][4], iCoeff] 7], iCoeff]8], iCoefi[11] }
T2x2h(arrayLocal[ ], 0) 9.9.7.2
iCoeff[4] = arrayLocal[0
iCoeff]7] = arrayLocal[ 1
iCoeff[8] = arrayLocal[2]

iCoeff[11] = arrayLocal[3]

/* Second stage */

arrayLocal[ ] = {iCoeff]0], iCoeff] 1], iCoeff[4], iCoeff[S]}
T2x2h(arrayLocal[ ], 1) 9.9.7.2
iCoeff[0] = arrayLocal[0]

iCoeff[1] = arrayLocal[1]

iCoeff[4] = arrayLocal[2]

iCoeff]5] = arrayLocal[3]

arrayLocal[ ] = {iCoeff]2], iCoeft]3], iCoeft]6], iCoeff][ 7]}
TOdd(arrayLocal[ ]) D.4.3
iCoeff]2] = arrayLocal[0

iCoeff]3] = arrayLocal[ 1
iCoeff]6] = arrayLocal[2
iCoeff]7] = arrayLocal[3]

arrayLocal[ ] = {iCoeff[8], iCoeff]12], iCoeff]9], iCoeff[13]}
TOdd(arrayLocal[ ]) D.4.3
iCoeff[8] = arrayLocal[0]

iCoeff]12] = arrayLocal[1]

iCoeff[9] = arrayLocal[2]

iCoeff][13] = arrayLocal[3]

arrayLocal[ ] = {iCoefi]10], iCoeff[11], iCoeff[14], iCoeft]15]}
TOddOdd(arrayLocal[ ]) D.4.3
iCoeff]10] = arrayLocal[0]
iCoeff]11] = arrayLocal[1]
iCoeff]14] = arrayLocal[2]
iCoeff[15] = arrayLocal[3]

/* Permute the coefficients */
FwdPermute(iCoeff] ]) D.4.4

— |—

]
]
]

D.452 FCT2x2()
The function FCT2x2( ) is identical to the T2x2h( ) function specified in Table 161.

D.5 Overlap prefiltering

D.5.1 Overview
Four operators determine the overlap pre-filters used in the transform. These are:
1) Overlap Prefilter4x4
2) OverlapPrefilter4
3) OverlapPreFilter2x2
4) OverlapPreFilter2
The pre-filter makes use of the operators T2x2hEnc( ), FwdRotate( ), FwdScale( ) and FwdTOddOdd( ) that are specified
in Table D.14, Table D.15, Table D.16, and Table D.17, respectively.

D.5.1.1 T2x2hEnc()
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T2x2hEnc( ) is specified by the pseudocode in Table D.14.

Table D.14 — Pseudocode for function T2x2hEnc()

T2x2hEnc(iCoeff[ ) {
iCoeff[0] += iCoeff]3]
iCoeff][ 1] —= iCoeff]2]
valT1 = iCoeff]3]
valT2 = iCoeff]2]
iCoeff]2] = ((iCoeff[0] — iCoeff[1]) >> 1) — valTl
iCoeff[3] = valT2 + (iCoeff[1] >> 1)
iCoeff[1] += iCoeff]2]
iCoeff[0] —= (iCoeff[3] * 3+ 4) >>3

[—~

D.5.1.2 FwdRotate( )
FwdRotate( ) is specified by the pseudocode in Table D.15.

Table D.15 — Pseudocode for function FwdRotate( )

FwdRotate(iCoeff[ ]) {
iCoeff1] —= (iCoeff[0] + 1) >> 1
iCoeff[0] += (iCoeff[1] + 1) >> 1
:

D.5.1.3 FwdScale( )
FwdScale( ) is specified by the pseudocode in Table D.16.

Table D.16 — Pseudocode for function FwdScale( )

FwdScale(i Coeff[ ]) {

iCoeff[1] —= (iCoeff[0] * 3 + 0) >> 4
iCoeff[ 1] —= (iCoeff[0] >> 7)

iCoeff] 1] += (iCoeff[0] >> 10)
iCoeff[0] —= (iCoeff[1] * 3+ 0) >>3
iCoeff[1] = (iCoeff[0] >> 1) — iCoefl] 1]
iCoeff[0] —= iCoeff]1]

D.5.1.4 FwdTOddOdd()
FwdTOddOdd( ) is specified by the pseudocode in Table D.17.

Table D.17 — Pseudocode for function FwdT OddOdd( )

FwdTOddOdd(iCoeff[ ]) {

iCoeff[3] += iCoeff]0]

iCoeff[2] —= iCoeff] 1]

valT1 =iCoeff[3] >> 1

valT2 = iCoeff[2] >> 1

iCoeff[0] —= valT1

iCoeff[1] += valT2

iCoeff[0] += (iCoeff[1] * 3 + 4) >>3
iCoeff[1] —= (iCoeff]0] * 3 + 2) >>2
iCoeff]0] += (iCoeff[1] * 3 + 6) >>3
iCoeff[1] —= valT2

iCoeff[0] += valT1

iCoeff]2] += iCoeff] 1]

iCoeff[3] —= iCoeff]0]

— — = |— = — = |—

[—~
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D.5.1.5 OverlapPreFilter 4x4( )

The 4x4 pre-filter is applied to all block junctions (areas straddling 4 blocks evenly) in all color components when
OVERLAP MODE is 1 or 2. Also, the 4x4 filter is applied to all block junctions in the DC-LP array for all planes when
OVERLAP _MODE is 2, and for only the luma plane when OVERLAP _MODE is 2 and INTERNAL CLR FMT is
equal to YUV420 or YUV422.

The function OverlapPreFilter4x4( ) is specified in Table D.18.

Table D.18 — Pseudocode for function OverlapPreFilter 4x4()

OverlapPreFilter 4x4(iCoeff[ ) { Reference
arrayLocal[ ] = {iCoeff[0], iCoeff[3], iCoefi]12], iCoeff[15]}
T2x2hEnc(arrayLocal[ ]) D.5.1.1

iCoeff[0] = localArray[0]

iCoeff[3] = local Array[1]

iCoeff] 12] = local Array|[2]

iCoeff[15] = localArray[3]

arrayLocal[ ] = {iCoeff] 1], iCoeff]2], iCoeff[13], iCoeff] 14]}
T2x2hEnc(arrayLocal[ ]) D.5.1.1
iCoeff] 1] = localArray[0]

iCoeff[2] = localArray[1]

iCoeff[13] = localArray[2]

iCoeff[14] = localArray[3]

arrayLocal[ ] = {iCoeft]4], iCoeft] 7], iCoeff[8], iCoeff[11]}
T2x2hEnc(arrayLocal[ ]) D.5.1.1
iCoeff[4] = local Array[0]

iCoeff[7] = local Array[1]

iCoeft[8] = localArray[2]

iCoeff[11] = localArray[3]

arrayLocal[ ] = {iCoeft]5], iCoeft]6], iCoeff]9], iCoecff[10]}
T2x2hEnc(arrayLocal[ ]) D.5.1.1
iCoeff]5] = localArray[0]

iCoeff[6] = localArray[1]

iCoeff]9] = localArray[2]

iCoeff[10] = localArray[3]
arrayLocal[ ] = {iCoeft]0], iCoeff[ 15]}
FwdScale(arrayLocall ]) D.5.1.3
iCoeff[0] = local Array[0]

iCoeff[15] = localArray[1]
arrayLocal[ ] = {iCoeft] 1], iCoeff[ 14]}
FwdScale(arrayLocall ]) D.5.1.3
iCoeff] 1] = localArray[0]

iCoeff[14] = localArray[1]
arrayLocal[ ] = {iCoeft[4], iCoeff[11]}
FwdScale(arrayLocall ]) D.5.1.3
iCoeff[4] = local Array[0]

iCoeff[11] = localArray[1]
arrayLocal[ ] = {iCoeft]5], iCoeff[10]}
FwdScale(arrayLocall ]) D.5.1.3
iCoeff]5] = localArray[0]

iCoeff[10] = localArray[1]

arrayLocal[ ] = {iCoeff]13], iCoeff[12]}
FwdRotate(arrayLocal[ ]) D.5.1.2
iCoeff[ 13] = local Array[0]
iCoeff[12] = localArray[1]
arrayLocal[ ] = {iCoeff]9], iCoeft]8]}
FwdRotate(arrayLocal[ ]) D.5.1.2
iCoeff]9] = localArray[0]

iCoeff[8] = localArray[1]
arrayLocal[ ] = {iCoeff]7], iCoeft]3]}
FwdRotate(arrayLocal[ ]) D.5.1.2
iCoeff] 7] = local Array[0]
iCoeff[3] = local Array[1]
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arrayLocal[ ] = {iCoeff[6], iCoeff]2]}
FwdRotate(arrayLocal[ ]) D.5.1.2
iCoeff[6] = local Array[0]

iCoeff]2] = localArray[1]

arrayLocal[ ] = {iCoeff[10], iCoeft]11], iCoeff][ 14], iCoeff[15]}
FwdTOddOdd(arrayLocal[ ]) D.5.1.4
iCoeff[10] = localArray[0]

iCoeff[11] = localArray[1]

iCoeff[14] = localArray[2]

iCoeff][ 15] = localArray[3]

arrayLocal[ ] = {iCoeff]0], iCoeff]12], iCoeff]3], iCoeff[15]}
T2x2h(arrayLocal[ ], 0) 9.9.7.2
iCoeff[0] = localArray[0]

iCoeff[12] = localArray[1]

iCoeff[3] = local Array[2]

iCoeff] 15] = localArray[3]

arrayLocal[ ] = {iCoeff[1], iCoeff]2], iCoefi]13], iCoeff[ 14]}
T2x2h(arrayLocal[ ], 0) 9.9.7.2
iCoeff]1] = local Array[0]

iCoeff]2] = localArray[1]

iCoeff[13] = localArray[2]

iCoeff] 14] = local Array[3]

arrayLocal[ ] = {iCoeff[4], iCoeff]7], iCoefl[8], iCoeff]11]}
T2x2h(arrayLocal[ ], 0) 9.9.7.2
iCoeff[4] = localArray[0]

iCoeff[7] = localArray[1]

iCoeff[8] = local Array[2]

iCoeff[11] = localArray[3]

arrayLocal[ ] = {iCoeff[5], iCoeft[6], iCoeff]9], iCoeft]10]}
T2x2h(arrayLocal[ ], 0) 9.9.7.2
iCoeff]5] = local Array[0]
iCoeft]6] = localArray[1]
iCoeff[9] = localArray[2]
iCoeff[ 10] = local Array[3]

D.5.2 OverlapPreFilter4()

Linear 4-point filters are applied to edge straddling 2x4 and 4x2 areas on the boundary of the image. If the input data is
an array of length 4, denoted iCoeff] ], the 4-point pre-filter, OverlapPreFilter4( ), is specified in Table D.19.

Table D.19 — Pseudocode for function OverlapPreFilter4()

OverlapPreFilter 4(iCoeff[ ]) { Reference
iCoeff[0] += iCoeff[3]
iCoeff[1] += iCoeff]2]
iCoeff[3] —= ((iCoeff[0] + 1) >> 1)
iCocff[2] —= ((iCoeff 1] + 1) >> 1)

iCoeff[2] += (iCoeff[1] >> 1)

FwdRotate(iCoeff]2], iCoeff[3]) D.5.1.2
iCoeff][3] = —iCoeff]3]
iCoeff][2] = —iCoeff]2]
iCoeff[0] —= iCoeff]3]
iCoeff[1] —= iCoeff]2]
iCoeff]3] += (iCoeff[0] >> 1)
]
]

iCoeff[0] —= ((iCoeff[3] * 3 + 4) >> 3)
iCoeff[1] —= ((iCoeff[2] * 3 + 4) >>3)
FwdScale(iCoeff]0], iCoeff[3]) D.5.1.3
FwdScale(iCoeff] 1], iCoeff]2]) D.5.1.3

iCoeff[3] += ((iCoeff]0] + 1) >> 1)

iCoeff[2] += ((iCoeff[1] + 1) >> 1)
iCoeff[0] —= iCoeff]3]
iCoeff[ 1] —= iCoeff]2]
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D.5.3 OverlapPrefilter2x2

The 2x2 pre-filter is applied to areas straddling blocks in the DC-LP array for the chroma components when
INTERNAL CLR _FMT is equal to YUV420 or YUV422 data. The OverlapPreFilter2x2( ) function is specified in
Table D.20.

Table D.20 — Pseudocode for function OverlapPreFilter 2x2( )

OverlapPreFilter 2x2(iCoeff[ ]) {
iCoeff[0] += iCoeff[3]
iCoeff]1
iCoeff[3

= ((iCoeff[0] + 1) >> 1)

] +=iCoeff]2]

] —
iCoeff[2] —= ((iCoeff[1] + 1) >> 1)
iCoeff[1] —= ((iCoeff[0] + 2) >> 2)
iCoeff[0] —= (iCoeff[1] >> 5)
iCoeff[0] —= (iCoeff[1] >>9)
iCoeff[0] —= (iCoeff[1] >> 13)
iCoeff[0] —= ((iCoeff[1] + 1) >> 1)
iCoeff[1] —= ((iCoeff[0] + 2) >> 2)
iCoeff[3] += ((iCoeff[0] + 1) >> 1)
iCoeff[2] += ((iCoeff]1] + 1) >> 1)
iCoeff]0] —= iCoeff]3]
iCoeff[1] —= iCoeff]2]

D.54 OverlapPreFilter2

As for the 2-point filters, the 2-point pre-filter is applied to boundary 2x1 and 1x2 samples that straddle blocks. The
2-point pre-filter function OverlapPreFilter2( ) is specified in Table D.21.

Table D.21 — Pseudocode for function OverlapPreFilter2()

OverlapPreFilter 2(iCoeff[ ]) {
iCoeff[1] —= ((iCoeff[0] + 2) >> 2)
iCoeff[0] —= (iCoeff[1] >> 13)
iCoeff[0] —= (iCoeff]1] >>9)

iCoeff[0] —= (iCoeff[ 1] >> 5)

] —
] —

iCoeff[0] —= ((iCoeff[1] + 1) >> 1)
iCoeff[1] —= ((iCoeff[0] + 2) >> 2)

D.6 Coefficient prediction

The coefficient prediction process is the same as the corresponding process in the decoder. See subclause 9.6.

D.7 Coefficient scanning

The coefficient scanning process is the same as the corresponding process in the decoder.

D.8 Quantization

Quantization is a process whereby the transform coefficients are divided by the quantization scaling factor and rounded
to an integer value, called the quantized value.

For lossless coding, the quantization scaling factor is selected to be equal to 1. For lossy coding, the quantization scaling
factor is selected to be greater than 1.

The quantization scaling factor used for quantization is determined as a function of the quantization factor in the same
manner as for the decoding process. Larger values of the quantization parameter correspond to larger quantization
scaling factors and (typically) correspond to lower fidelity representation of the image content.
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On the encoder side, the specific rounding method used in the process of quantization is implementation specific, and is
not covered in this Specification.

The quantization parameter is allowed to differ across HP, LP and DC bands. The DC QP index within a tile is fixed.
The DC QP index across tiles may vary. The HP and LP QP indices within a tile may take on either the same value, or
one of a multiple value set. The QP index used may change at every macroblock, and is specified in the codestream.

D.9 Adaptive coefficient normalization

Adaptive coefficient normalization partitions the transform coefficients into a VLC-coded part and an FLC part (called
FLEXBITS). The VLC-coded part is obtained from a coarse quantization of the coefficient referred to as the normalized
coefficient, while the FLEXBITS represents the least significant bits and provides a refinement layer over the VLC-
coded part. Sign information may also be present as part of FLEXBITS when the normalized coefficient is equal to 0.
The partition between the VLC coded and the FLC coded parts is performed as follows:

1) The functions MB _HP() (subclause 8.7.18.2) and MB_HP FLEX() (subclause 8.7.18.3) specify how
iLapMean[0] and iLapMean[1] are used to compute the total number of non-zero coefficients that have been
coded for the luma and chroma components, respectively.

2) The UpdateModeIMB() function (subclause 8.12.2) specifies how this information is used to compute
Model.MBits[0] and Model.MBits[1] which are the number of least significant bits that form the FLEXBITS
portion of the luma and chroma components, respectively. The more significant bits are VLC coded.

In effect, the number of non-zero coded coefficients is used as a measure of the statistical variance of the block. Thus, a
larger number of non-zero coded coefficients in a block produces higher values of iLapMean[ ], and thus result in
FLEXBITS forming a larger fraction of the partition. As a result of this partition, entropy coding is applied only to the
normalized coefficients with reduced dynamic range, and thus reduces the computational and memory complexity of
entropy coding at both encoder and decoder. An overview of the adaptive coefficient normalization process at the
encoder is shown in Figure D.2.

Normalized
coefficients Refinement
Coefficients (VLC coded) (FLC coded)
—/— | | —
—— Partitioning process - —
_ [— |
™ —p | —
| | —
— ] —/
— | — |
Run-level / VLC codiy
¢ FLC codi
VLC coded coding
Codestream .
portion
|

[ |
Fixed length coded portion (Flexbits)

T832(12)_FD.2

Figure D.2 — Representation of the adaptive normalization process and partitioning of coefficientsinto VLC
coded and FL C coded parts
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