
INTERNATIONAL TELECOMMUNICATION UNION

)45
4 4����
TELECOMMUNICATION (11/94)
STANDARDIZATION SECTOR
OF ITU

4%2-).!,3��&/2��4%,%-!4)#��3%26)#%3

02/'2!--).'��#/--5.)#!4)/.
).4%2&!#%���0#)	��!00,)�#/-��&/2
&!#3)-),%��'2/50������&!#3)-),%��'2/50����
4%,%4%8���4%,%8���%
-!),��!.$��&),%
42!.3&%2��3%26)#%3

)45
4��2ECOMMENDATION��4����

(Previously “CCITT Recommendation”)

FOREWORD

The ITU-T (Telecommunication Standardization Sector) is a permanent organ of the International Telecommunication
Union (ITU). The ITU-T is responsible for studying technical, operating and tariff questions and issuing Recommen-
dations on them with a view to standardizing telecommunications on a worldwide basis.

The World Telecommunication Standardization Conference (WTSC), which meets every four years, establishes the
topics for study by the ITU-T Study Groups which, in their turn, produce Recommendations on these topics.

The approval of Recommendations by the Members of the ITU-T is covered by the procedure laid down in WTSC
Resolution No. 1 (Helsinki, March 1-12, 1993).

ITU-T Recommendation T.611 was revised by ITU-T Study Group 8 (1993-1996) and was approved under the WTSC
Resolution No. 1 procedure on the 11th of November 1994.

NOTE

In this Recommendation, the expression “Administration” is used for conciseness to indicate both a telecommunication
administration and a recognized operating agency.

 ITU 1995

All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means, electronic or
mechanical, including photocopying and microfilm, without permission in writing from the ITU.

Recommendation T.611 (11/94) i

CONTENTS
Recommendation T.611 (11/94)

Page

PART I – GENERAL DESCRIPTION ... 1

1 Scope.. 1

2 Definitions and References .. 1
2.1 Interface Definitions ... 1
2.2 File Definitions ... 2
2.3 References... 3
2.4 Abbreviations and Acronyms ... 4
2.5 Operating Systems .. 6
2.6 Trade Marks.. 6

3 Structure of this Recommendation ... 6
3.1 Extensions to this Recommendation... 7

4 General Principles .. 7
4.1 Model.. 7
4.2 Information Exchange .. 8
4.3 Interface Configuration Environment (ICE)... 10
4.4 Submission Principle .. 11

5 Functional Behaviour ... 11
5.1 Functional Classes and Service Profiles ... 11
5.2 Error Handling .. 12
5.3 Multiple LAs and multiple CAs.. 13
5.4 Identification Means ... 13
5.5 Dispatch Received Files Facility (DRF) ... 15
5.6 Communications Control – CA-Record.. 15

6 Task Data Descriptions (TDDs) ... 23
6.1 Generic TDD Presentation.. 23
6.2 Description of TDD Elements .. 25
6.3 Code-ID .. 25
6.4 Text Based Encoding.. 25
6.5 Handling of Documents .. 35
6.6 TDD Functionality.. 36

7 Exchange Method... 55
7.1 Overview of Basic Exchange Method Functions.. 55
7.2 Basic Exchange Method Functions... 58
7.3 Implementation of Basic Exchange Method Functions .. 68

8 Transfer Formats .. 70
8.1 APPLI/COM Transfer Formats: Extended and Standard ASCII .. 72
8.2 APPLI/COM Transfer Format: T.61 .. 73
8.3 APPLI/COM Transfer Format: TIFF.. 73
8.4 Service Constraints applying to Transfer Formats..82

9 ICE ... 83
9.1 Presentation of the ICE... 85
9.2 Gaining access to the ICE Information... 85
9.3 Master ICE.. 85
9.4 CA-Descriptor... 86
9.5 CA-Descriptor Components ... 86

ii Recommendation T.611 (11/94)

Page

10 Functional Classes and Profiles.. 88

10.1 Functional Class A.. 88

10.2 Functional Class B.. 88

10.3 Additional Functions .. 90

10.4 Service Profiles ... 90

PART II – SERVICE DEPENDENCIES.. 91

11 Service: Telefax Group 3 ... 91

11.1 Service Specific Syntax Elements .. 91

11.2 Text Based Encoding.. 91

11.3 Additional Functionality ... 97

11.4 CA-Descriptor Settings... 100

12 Service: Telefax Group 4 ... 102

12.1 Service Specific Syntax Elements .. 102

12.2 Text Based Encoding.. 103

12.3 Additional Functionality ... 107

12.4 CA-Descriptor Settings... 107

13 Service: Teletex.. 107

13.1 Service Specific Syntax Elements .. 107

13.2 Text Based Encoding.. 112

13.3 Additional Functionality ... 115

13.4 CA-Descriptor Settings... 118

14 Service: Telex via Teletex.. 119

14.1 Service Specific Syntax Elements .. 119

14.2 Text Based Encoding.. 120

14.3 Additional Functionality ... 122

14.4 CA-Descriptor Settings... 123

15 Service: Telex... 125

15.1 Service Specific Syntax Elements .. 125

15.2 Text Based Encoding.. 125

15.3 Additional Functionality ... 127

15.4 CA-Descriptor Settings... 130

16 Service: E-Mail .. 131

16.1 Service Specific Syntax Elements .. 132

16.2 Text Based Encoding.. 133

16.3 Interpersonal Messaging... 142

16.4 Interpersonal Notification ... 153

16.5 Delivery Report .. 154

16.6 Mapping of MHS service elements... 156

16.7 E-Mail Profiles.. 158

16.8 CA-Descriptor Settings... 159

17 Service: File Transfer ... 159

17.1 Service Specific Syntax Elements .. 163

17.2 Text Based Encoding.. 164

17.3 Additional Functionality ... 167

17.4 CA-Descriptor Settings... 169

Recommendation T.611 (11/94) iii

Page

PART III – BINARY ENCODING SCHEME.. 170

18 Generic C description... 170
18.1 Binary encoding of TDDs... 170

PART IV – PLATFORM DEPENDENCIES.. 194

19 Implementation Dependencies ... 194
19.1 Mapping of Binary Coded TDD Data Types.. 194
19.2 Default Exchange Method .. 194
19.3 Implementation of Primitive Exchange Method... 195

Annex A – Syntax for Presentation and Encoding .. 204
A.1 BNF-style Syntax.. 204
A.2 C-Language Notation.. 205

Annex B – Location of the ICE... 205

Annex C – List of APPLI/COM Error Codes.. 207

Annex D – Examples of TTD Exchanges ... 209
D.1 A Sample Send Session .. 209
D.2 A Sample Receive Session ... 210
D.3 A Sample Trace Session ... 212

Annex E – Example of Interface Configuration Environment (ICE) .. 214

Annex F – Exchange Method of 1992 Version ... 216
F.1 Exchange Method Functions of 1992 version .. 216

Annex G – Service Specific Information .. 222
G.1 Call Identification Line of the Telefax G4 and Teletex Service ... 222
G.2 Terminal ID .. 222

Annex H – Summary of Transfer and Transmission Formats ... 223
H.1 Transfer Formats related to Transmission Formats .. 223
H.2 Transmission Formats related to Service.. 223

iv Recommendation T.611 (11/94)

SUMMARY

This Recommendation as approved in 1992 defines a Programming Communication Interface called “APPLI/COM”,
providing unified access to Telefax Group 3, Telefax Group 4, telex and teletex services.

Recommendation T.611 has been revised for clarity and to include E-mail services in general, Message Handling
Systems (MHS), as described in the ITU-T X.400-series of Recommendations, in particular and File Transfer Services.

Special consideration has been taken to assure backwards compatibility with the 1992 version of this Recommendation.

Recommendation T.611 (11/94) 1

Recommendation T.611
Recommendation T.611 (11/94)

PROGRAMMING COMMUNICATION INTERFACE (PCI)
APPLI/COM FOR FACSIMILE GROUP 3,

FACSIMILE GROUP 4, TELETEX, TELEX,
E-MAIL AND FILE TRANSFER SERVICES

(revised 1994)

PART I – GENERAL DESCRIPTION

1 Scope

This Recommendation defines the Programming Communication Interface (PCI) called “APPLI/COM”.

The general concepts of PCIs are defined in the ITU-T Recommendation F.581 (1992).

This PCI provides unified access to different communications services, such as telefax group 3 or other telematic
services.

This Recommendation currently specifies the access to the following telematic services:

– Telefax group 3;

– Telefax group 4;

– Teletex;

– Telex1);

– E-Mail services;

– File transfer services.

The principle of this interface is to exchange messages between two entities (i.e. the Local Application and the
Communication Application). This Recommendation describes the structure, contents of those messages and the way to
exchange them. Two message encoding schemes are defined: text based and binary structured.

Implementing this PCI is not required to participate in a telematic service. However, use of this interface will provide
binary compatibility between the above mentioned entities. As a result end-users will benefit from plug-in compatibility
between products coming from different manufacturers.

This Recommendation provides a framework for future extensions that keep functionalities consistent and upward
compatible.

To summarize, this Recommendation forms a high level API (Application Programming Interface) which shields all
telecommunication peculiarities but gives powerful control and monitoring on the telecommunication activity to the
application designers.

2 Definitions and References

2.1 Interface Definitions

The following definitions apply to the interface.

2.1.1 communication application (CA); A Communication Application (CA) is provided by hardware and/or
software allowing to participate in standardized telecommunications services. The telecommunications services
supported by this Recommendation are listed in clause 1.

1) The access to the telex service does not include the dialogue facility.

2 Recommendation T.611 (11/94)

2.1.2 local application (LA): A Local Application (LA) is an application able to generate files or documents and
possibly able to manage communications dialogues. Such LAs can be word processors, spread sheets, graphic editors,
file editors, etc. The LA shall generate messages conforming to this Recommendation.

2.1.3 task data description (TDD): A Task Data Description (TDD) describes the structure of the messages
exchanged between a LA and a CA (not the way to effectively exchange them). A Request TDD describes an exchange
originated by a LA towards a CA. A Response TDD describes an exchange originated by a CA towards a LA.

2.1.4 exchange method (EM): The Exchange Method (EM) describes how the TDDs are exchanged between a CA
and a LA. This Recommendation defines a generic Exchange Method which shall be adapted to the target operating
system by the means described in this Recommendation. Local area and wide area network environments are supported
by the generic Exchange Method.

2.1.5 CA-descriptor: The CA-Descriptor is a collection of information concerning the use of a CA. The
CA-Descriptor describes the facilities and features of a given CA so that any LA that uses that CA knows how to
proceed. The CA-Descriptor is a component of the Interface Configuration Environment (ICE).

2.1.6 interface configuration environment (ICE): The Interface Configuration Environment (ICE) is composed of
the Master ICE and related CA-Descriptors. The Master ICE lists all CAs that can be reached from within a given LA.
The aim of the ICE is to assist the LA in the selection of an appropriate CA with respect to the LA requirements.

2.2 File Definitions

This Recommendation deals with various kind of files: those interchanged between a LA and a CA and those exchanged
through a telecommunications network. The following definitions are used throughout the body of this
Recommendation.

2.2.1 transfer files: As shown in Figure 1 the Transfer Files are those files exchanged between a LA and a CA. The
format of these files (Transfer Format) is further defined in this Recommendation.

T0823360-95/d01

LA CA Telecommunications
network

Incoming file Received file

Outgoing file Transmitted file

Transfer files Transmission files

FIGURE 1/T.611

The distinct types of files defined by APPLI/COM

FIGURE 1/T.611...[D01] = 7 cm

Recommendation T.611 (11/94) 3

2.2.1.1 outgoing file: The Outgoing File is a file that the LA transmits to the CA in order to be transmitted by the CA
through a telecommunications network. The format of the file is from one of the possible Transfer Formats.

2.2.1.2 incoming file: The Incoming File is a file transmitted to the LA by the CA. It generally corresponds to files
received from the network. The format of the file is from one of the possible Transfer Formats.

2.2.1.3 transfer format: The Transfer Format defines the structure of the Transfer Files. Depending on the
telecommunication services used, some Transfer Formats are more suitable than others. The possible Transfer Formats
are defined in clause 8. A Transfer Format is identified by the Convert-ID. The identification and selection of a Transfer
Format is further described in 5.4.5.

2.2.2 transmission files: The Transmission Files are files exchanged by a CA through the network. Figure Error!
Bookmark not defined. depicts this. The format of these files, the Transmission Format, is defined intrinsically by the
telecommunications service used.

2.2.2.1 transmitted file: The Transmitted File is a file sent by the CA across a telecommunications network in a
format suitable for exchange by the protocol used in the telecommunications service.

2.2.2.2 received file: The Received File is a file built by the CA from information received through the
telecommunications network in the format used for exchange by the protocol used in the telecommunications service.

2.2.2.3 transmission format: The Transmission Format defines the structure of the Transmission Files depending on
the telecommunications service used. The Transmission Format is identified by the Type-ID (see 5.4.6).

2.3 References

This Recommendation refers to the following ITU-T Recommendations:

– Recommendation F.59, General characteristics of the international telex service.

– Recommendation F.60, Operational provisions for the international telex service.

– Recommendation F. 160, General operational provisions for the international public facsimile services.

– Recommendation F. 184, Operational provisions for international facsimile service between subscriber
stations with group 4 machines (telefax group 4).

– Recommendation F. 200, Teletex Service.

– Recommendation F. 581, Service Recommendation for Programming Communication Interfaces.

– Recommendation S.1, International telegraph alphabet No. 2.

– Recommendation T.4, Standardization of group 3 facsimile apparatus for document transmission.

– Recommendation T.6, Facsimile coding schemes and coding control functions for group 4 facsimile
apparatus.

– Recommendation T.30, Procedures for document facsimile transmission in the general switched
telephone network.

– Recommendation T.35, Procedure for the allocation of ITU members codes.

– Recommendation T.50, International Reference Alphabet.

– Recommendation T.51, Latin Alphabet coded character sets for Telematic services.

– Recommendation T.52, Non-Latin coded character sets for Telematic services.

– Recommendation T.61, Character repertoire and coded character sets for the international Teletex
service.

NOTE – Recommendation T.61 has been superseeded by Recommendation T.50-Series since 1993.

4 Recommendation T.611 (11/94)

– Recommendation T.62, Control procedures for Teletex and group 4 facsimile services.

– Recommendation T.434, Specification of Binary File Transfer (BFT).

– Recommendation T.500, General overview of the T.500-Series of Recommendations.

– Recommendation T.563, Terminal characteristics for group 4 facsimile apparatus.

– Recommendation T.571, Terminal characteristics for the Telematic File Transfer within the facsimile
group 4 and teletex apparatus.

– Recommendation X.208, Specification of Abstract Syntax Notation one (ASN.1).

– Recommendation X.209, Specification of Basic Encoding Rules for Abstract Syntax Notation one
(ASN.1).

– Recommendation X.400, Series of ITU-T Recommendations for Message Handling Systems.

It also refers to the following International Standards:

– ISO/IEC 639.2, Code for the presentation of code of languages.

– SO/IEC 9735: 1990, Electronic Data Interchange For Administration Commerce and Transport
(EDIFACT) – Application level syntax rules.

2.4 Abbreviations and Acronyms

API Application Programming Interface

APPLI/COM An Interface between Local Applications and Communication Applications

ASCII American Standard Codes for Information Interchange

ASN.1 Abstract Syntax Notation one as defined per ITU-T Recommendations X.208 and X.209

BFT Binary File Transfer as defined per ITU-T Recommendation T.434

BNF Backus Naur Form

BTM Basic Transparent mode as defined per ITU-T Recommendation T.434

CA Communication Application

CIL Call Identification Line

CR Carriage return

CTL Control Document; document type as defined per ITU-T Recommendation T.62

DCX A multipage PCX file

DLL Dynamic Link Library

DRF Dispatch Received Files

DTM Document Transparent mode as defined per ITU-T Recommendation T.434

E-Mail General used term for Electronic Mail services

EBCDIC Extended Binary Coded Data Interchange Code

EDI Electronic Data Interchange as defined per ITU-T Recommendation T.571

EM Exchange Method

EMail Service-ID for E-Mail services

Recommendation T.611 (11/94) 5

ESC Escape

FC Functional Class

FCA Functional Class A

FCB Functional Class B

FF Form Feed

FT Service-ID for File Transfer services

FX3 Service-ID for Telefax group 3 services

FX4 Service-ID for Telefax group 4 services

ICE Interface Configuration Environment

IPM Interpersonal Message – Message exchanged between users via UA (X.400 Terminology)

IRA International Reference Alphabet (T.50)

IRV International Reference Version (T.50)

ISDN Integrated Services Digital Network

LA Local Application

LAN Local Area Network

LF Line Feed

MD Monitor Document; document type as defined per ITU-T Recommendation T.62

MH Modified Hufman code; defined per ITU-T Recommendation T.4

MHS Message Handling System as defined per ITU-T X.400 Series of Recommendations

MR Modified Read code; defined per ITU-T Recommendation T.4

MS Message Store (X.400 Terminology)

MTA Message Transfer Agent (X.400 Terminology)

MTS Message Transfer System (X.400 Terminology)

O/R-Name Originator/Recipient name (X.400 Terminology)

OPD Operator Document; document type as defined per ITU-T Recommendation T.62

P1 MTS Transfer Protocol; protocol defining the MHS envelope for MTA-MTA exchange as
defined per ITU-T Recommendations X.411 (1988) and X.419 (1988, abstract syntax
definition)

P2 Interpersonnal Messaging Format (IPM), defined per ITU-T Recommendation X.420 (1984,
or as P22 1988)

P3 MTS Access Protocol, defined per ITU-T Recommendation X.419 (1988)

P7 MS Access Protocol, defined per ITU-T Recommendation X.413 (1988)

PCI Programmable Communication Interface

PCX A variety of raster information file used on personal computer software

6 Recommendation T.611 (11/94)

Pedi EDI user to user exchange format for X.400, defined per ITU-T Recommendations F.435
and X.435

PSTN Public Switched Telephone Network

SP Space

TDD Task Data Description

TFT Telematic File Transfer as defined per ITU-T Recommendation T.571

TIFF Tagged Image File Format

TLX Service-ID for Telex services (without dialogue facility)

TTX Service-ID for Teletex services

TX Service-ID for Telex via Teletex services

UA User Agent (X.400 Terminology)

WAN Wide Area Network

2.5 Operating Systems

The versions of the operating systems mentioned in this Recommendation are:

MacOS All versions

MS-DOS Version 3.1 or higher

UNIX All versions

Windows Version 3.0 or higher

OS/2 Version 1.0 or higher

Throughout this Recommendation the term DOS stands for MS-DOS compatible operating system versions.

2.6 Trade Marks

The following names are registered trade marks and belong to their respective holders:

MacOS Apple Computer, Inc.

MS-DOS Microsoft Corporation

UNIX AT&T

TIFF Aldus Corporation

Windows Microsoft Corporation

OS/2 International Business Machines Corporation

3 Structure of this Recommendation

This Recommendation covers:

– Interface requirements;

– Definitions;

– General principles;

– Application features;

– Classes of implementation;

– Task Data Description (TDD);

– Exchange Method;

– Incoming and outgoing files;

– Communications control – CA-Record.

Recommendation T.611 (11/94) 7

3.1 Extensions to this Recommendation

To accommodate the evolution of telecommunication technologies, this Recommendation has been structured so as to
accept new telecommunication services, or new options of existing telecommunication services without destroying the
overall outline.

In addition, this Recommendation provides extension mechanisms to enhance:

– the exchange method between LAs and CAs;

– the messages (TDDs);

– the transfer formats,

while preserving compatibility with the baseline Recommendation.

4 General Principles

The interface is guided by the following principles:

– Be independent of computer hardware (for instance, the interface can be supported by a communications
hardware or software).

– Be independent of operating systems and programming languages (the Exchange Method is the only part
that depends on operating systems and programming languages). This Recommendation provides
directives to achieve compatibility on the MS-DOS, OS/2, Windows and Unix operating systems. Other
operating systems will be considered on demand.

– The formal description of interface messages is based on a BNF-like2) description. Various coding
schemes may be used to present the interface messages.

– Be task submission oriented.

– Take into account the demand for multiple applications running on the same server as well as LAN/WAN
applications. The interface can be used when several local applications and/or several communication
applications are involved.

– Be extensible and flexible.

4.1 Model

The LA-CA interaction uses the client-server model as shown in Figure 2 below.

In this context:

– the CA is considered as a server providing some telecommunications services to the LA;

– the LA is considered as the client of a CA using the telecommunications services provided by this CA.

Consequently:

– as a server, the CA must comply with one of the two Functional Classes defined in clause 10, and with the
Exchange Methods defined in this Recommendation;

– as a client, no constraint applies on the LA, with respect to the interface.

As a result, the initiation of information exchange between LA and CA always belongs to the LA. The LA may choose
not to be disturbed in its local work by possible events coming from the CA.

4.1.1 Role of the LA

Regarding the interface, the LA may be functionally separated into two parts:

– the software which generates the outgoing files and/or read the incoming files;

– the software which manages the communication.

2) BNF Backus Naur Form.

8 Recommendation T.611 (11/94)

T0811870-93/d02

LA Client

CA Server

Type of
relationshipT.611 interface

FIGURE 2/T.611

The relationship between LA and CA
is modelled on the client-server model

FIGURE 2/T.611...[D02] = 8.5 CM

The latter provides:

1) Man-machine dialogues or automatic processing for sending the outgoing files, handling the incoming
files (display, print out, save), monitoring of CA activity, and requesting for particular system and/or
service management action.

2) Conversion of documents from/to a Transfer Format suitable for the CA.

3) Access to optional CA features as stated in the CA-Descriptor of the ICE.

NOTE – The LA, as a client, is not obliged to use all the CA features.

4.1.2 Role of the CA

The CA, as a server, is in charge of:

– the management of communications;

– the conversion of file formats from the Transfer Format to the Transmission Format (and vice versa);

– the management of CA features (if any) described in the CA-Descriptor of the ICE.

4.2 Information Exchange

Information to be accessed through the interface comprises:

– Outgoing Files: files or documents handed by the LA to the CA in order to be transmitted by the CA on a
network.

– Incoming Files: files or documents handed by the CA to the LA after their reception by the CA from the
network.

– CA-Records: groups of information that record any transmission and reception events managed by
the CA.

Information exchanged between CAs and LAs are carried out by Request TDDs and Response TDDs which fall in one
of the groups shown in Table 1. The table lists all TDD groups defined in this Recommendation. It specifies in particular
whether a Response TDD is generated by the CA for a given Request TDD. The TDDs themselves are described in
detail in clause 6.

Recommendation T.611 (11/94) 9

TABLE 1/T.611

TDD Groups

Proper operation of the interface requires the detailed description of a data definition and an interaction specification
between the LA and the CA. Exchange Methods may coexist depending on the particular needs of different
environments. Two methods of information exchange are defined (see clause 7):

– one is a file exchange method which may be easily implemented over a wide range of computers and
operating systems but provides lower computer throughput;

– the other is a primitive exchange method using operating system dependent mechanisms to transport
information. It provides higher throughput but reduced portability.

Therefore, the concept of Task Data Description (TDD) is introduced (see Figure 3). A TDD is an abstract data structure
interchanged between LA and CA, describing a particular task that the CA must carry out or describing a CA response to
one of these tasks.

T0811880-93/d03

LA

(Client)

CA

(Server)

FIGURE 3/T.611
Task Data Description (TDDs)

TDD

TDD

RESPONSE

REQUEST

FIGURE 3/T.611...[D03] = 4.5 CM

The TDDs are independent of the information exchange method used, in order to:

– simplify the testing procedures;

– leave the choice of the TDD encoding method open.

TDD Group Response? Comment

Send Yes if request requires one Asks the CA to send one or more files through the network,
using one telecommunications service, to a set of recipients

Receive Yes Asks the CA to retrieve an incoming file resulting from a
received file. The Response TDD is filled with the
incoming file location and the transfer format

Trace Yes Asks the CA to perform some action on one or a set of
CA-Record(s) belonging to a specific state. The action to
be performed is described inside the Trace request

Submit Yes Asks the CA to perform an action like converting a file to a
specific format, printing out a file according to telecommu-
nications service specific rules

Extend Yes Provides the possibility for extensions to the Recommenda-
tion. Can be implemented as formal changes to the Recom-
mendation, as national or as private extensions

10 Recommendation T.611 (11/94)

A TDD carries information about the task the LA expects the CA to do, plus all the appropriate parameters. Since the
communication of these tasks follows a “client-server” model, two kinds of TDDs are actually exchanged:

– a Request TDD generated by the LA toward the CA, describing the action to be accomplished;

– a Response TDD generated by the CA toward the LA, describing the response to a previous request.

By construction, a LA may send many Request TDDs without waiting for the corresponding Response TDDs. Some
requests are not expecting responses at all.

A CA may manage Request TDDs in any order.

4.2.1 TDD Coding

As described in more detail in 6.1, the TDDs may be encoded with different schemes, which are either text based or
binary structured.

4.2.2 Format of Exchanged Data

The format data are exchanged between LAs and CAs, namely the format of Outgoing and Incoming Files, shall
conform to well defined coding and presentation rules. This rules are called Transfer Formats. The Transfer Formats are
defined in detail in clause 8.

4.3 Interface Configuration Environment (ICE)

The Interface Configuration Environment (ICE) concept is used to identify the services offered by CAs within a
computing environment and the characteristics of each individual CA. The ICE structure has two levels :

1) The Master-ICE is a universally accessible file which lists all available CAs. It states how to gain access
to the detailed configuration information for each CA.

2) The CA-Descriptor is the source of the detailed configuration information about each CA. Access to the
CA-Descriptor information may be in the form of a file or be generated via dynamic methods tailored to
the computing environment such as executable files, Dynamic Link Libraries (DLLs) or other approaches.

Each CA has its own unique features. The CA-Descriptor provides access to a complete list of those features. The
combination of the Global ICE and CA-Descriptors provides a standardized means for LAs to access original and/or
extra features of CAs. Figure Error! Bookmark not defined. depicts the relation between the Master ICE and the CA-
Descriptors.

The ICE represents a global source for all LAs conforming to this Recommendation. The Master ICE shall contain the
following header information for each CA:

– the Services supported by the CA;

– the Exchange Method(s) supported by the CA;

– one or more Access methods for each CA-Descriptor.

The CA-Descriptor contains at the minimum the following set of interface related configuration information:

– the Exchange Method used to interchange TDDs between LAs and the CA;

– details of the Exchange Method (paths, buffers, entry points);

– TDD coding;

– functional Class;

– supported telecommunications services;

– CA facilities.

Recommendation T.611 (11/94) 11

T0823370-95/d04

FIGURE 4/T.611

Relation between Master ICE and CA-Descriptor

ICE # 1
CA descriptor

ICE # 2
CA descriptor

Master ICE
CA entry # 1

CA entry # 2

CA entry # n

ICE # n
CA descriptor

FIGURE 4/T.611...[D04] = 9.5 CM

Provision of the CA-Descriptor is mandatory for any CA. Any LA may rely on information included in the Master ICE
or CA-Descriptor. LAs shall not modify information contained in the Master-ICE or a CA-Descriptor.

The Master ICE is a logical file. The syntax and format of the Master-ICE and the CA-Descriptor is described in
clause 9. The location of the Master ICE on a given platform is described in Annex B.

4.4 Submission Principle

Since CAs and LAs may share differently the functions required to conform to a telecommunications service, some of
these functions are possibly duplicated or missing. Examples are:

– checking the conformance of a Transfer Format to specific service requirements;

– printing a document in accordance to the telecommunications service through which it was (or will be)
conveyed;

– converting Transmission Formats to or from Transfer Formats.

The submission principle allows LAs to take advantage of functions that the CA supports itself. This relieves the LA
from supporting functions that are already handled by the CA. This ensures that all the required telecommunications
service functions for any complying equipment are actually supported.

5 Functional Behaviour

5.1 Functional Classes and Service Profiles

Two Functional Classes (FCs) are defined. These classes are called Functional Class A (FCA) and Functional Class B
(FCB). Functional Class B is a superset of Functional Class A. For more detailed information refer to clause 10.

The Functional Class of a CA shall be explicitly stated in the manufacturer documentation and in the appropriate field of
the CA-Descriptor.

12 Recommendation T.611 (11/94)

Furthermore, the interface provides access to additional CA features. These features are not essential with respect to the
ITU-T Recommendations. Any of these additional features may be used by a LA independent from its Functional Class,
provided that the CA supports them. The additional features supported by a given CA shall be explicitly listed in the ICE
(see clause 9).

To further help reduce incompatibilities between different vendors’ applications, this Recommendation supports the
concept of Service Profiles. A Service Profile, defined for some services, groups a defined set of service features that
must be supported by the implementations claiming compatibility to this Recommendation (refer to clause 10).

5.2 Error Handling

5.2.1 Simple Errors

Syntax elements out of context (e.g. specification of transmission speed for the telex service) shall be ignored by the CA.
Execution shall continue.

5.2.2 Rejection

All syntactical errors (i.e. unrecognized syntax elements, missing syntax elements classified as mandatory, conflicting
syntax elements, multiple occurrences of a single syntax element, parameters out of range within a TDD) may lead to the
rejection of the TDD. Any invalid outgoing file format may also provoke the rejection of the corresponding TDD by the
CA. The CA may also discard the outgoing file. Furthermore, the CA may reject the TDD if the companion files are not
transferred to the CA within a certain delay.

5.2.3 Error Code Ranges

See Table 2.

TABLE 2/T.611

Assignment of error codes

A complete list of the error codes assigned within this Recommendation is given in Annex C.

Error code Meaning

0000 Success (no error) shall be supported by all CAs

0001-4999 Reserved for CA private use

5000-5999 Miscellaneous errors not fitting in other categories

6000-6999 Syntax errors

7000-7999 Resource and input/output errors (operating system and hardware related errors)

8000-8999 Conversion or Transfer Format related errors

9000-9999 Service dependent errors (service signals and failures)

Recommendation T.611 (11/94) 13

5.3 Multiple LAs and multiple CAs

Thanks to the interface, multiple LAs may be connected to one or several CAs simultaneously. In order to control access
to multiple CAs, the ICE has been defined. On behalf of the ICE, the LA shall carry out a two-step interface set-up
procedure during its initialization phase:

– first, the local application shall select an appropriate communications application by inspecting the
Interface Configuration Environment (ICE);

– then, the local application shall “login” to the selected CA.

Once the local application has logged into the communications application, it is free to use whatever service the CA
provides, until the local application logs out from the CA.

5.3.1 Step 1: Selection of a CA

The first step to be carried out by the local application during the interface set-up procedure is to gain access to the ICE,
which provides a list of CAs accessible from within the system (see 4.3 and clause 9).

5.3.2 Step 2: Login of a LA to a CA

Once the local application has selected an appropriate CA from the ICE, it has to register with the selected CA. This is
called the login process. The login process is performed using an unique login-name and returns a Connection-ID. This
Connection-ID is computed by the CA.

To perform the login, the LA shall rely on the information found in the CA-Descriptor.

The logout process allows the decoupling of the LA and the CA: it is invoked by the LA when the LA wishes to be
disconnected from the CA. As a result of this logout process, the Connection-ID shall be discarded by the CA and
becomes invalid. No further access on behalf of that Connection-ID shall be possible for the LA.

The login and logout processes facilitate the implementation of security schemes which are especially important on
multi-user systems. They also provide means to implement security mechanisms between the LA and the CA.

5.4 Identification Means

To cope with the various interchanges of information through the interface, it is required to identify unambiguously the
communicating entities and the communication events. These identifiers provide the means to:

– distinguish the various telecommunications events (COM-ID);

– identify the LAs logged in a given CA (LA-ID);

– identify the requests generated by one LA toward a given CA (REQ-ID);

– define the Transfer Format to be used (Convert-ID);

– define the Transmission Format to be used (Type-ID).

Following subclauses detail these identifiers.

5.4.1 Identification of CA Communications (COM-ID)

As long as a CA can handle different requests from different LAs and/or from the network, it is necessary to give an
identification to each of those events.

The COM-ID identifier is a unique identifier provided by the CA and assigned to each communications event that
occurred in a CA. The COM-ID is a field of the CA-Record (see 5.6.2).

14 Recommendation T.611 (11/94)

A new COM-ID is generated by the CA when a CA-Record is generated. This is the case when:

1) a LA issues a Send request to the CA;

2) a LA issues a Trace request, function Reschedule to the CA;

3) the CA processes a received file.

The COM-ID ensures that a particular LA can retrieve any scheduled transmission request, even if the LA-CA dialogue
was terminated for any reason.

5.4.2 Identification of LAs within a CA (LA-ID)

Since this Recommendation allows multiple LAs or multiple instances of a LA using a given CA simultaneously, LAs
have to be identified uniquely to a given CA.

For the purpose of distinguishing different LAs from one another, this Recommendation defines the LA-ID identifier
as the unique identifier designating a particular LA instance communicating with a CA. The LA-ID is a field of the
CA-Record (see 5.6.2).

The CA may refuse to process any Request TDDs that contain a LA-ID not known by that CA. That provides a means to
control the accesses to a CA (see 5.6.1).

The LA-ID is statically assigned to the LA or to the LA instance. The rule by which the LA-ID is assigned is beyond the
scope of this Recommendation.

5.4.3 Identification of LA requests (REQ-ID)

This Recommendation allows a LA to generate multiple requests to a CA. Since the interface allows Response TDDs to
be delivered to the LA in an order different from the one the requests were given, it is necessary to identify the Request
TDDs and the corresponding Response TDDs. This Recommendation thus defines the REQ-ID as the unique request
reference assigned to each Request TDD and to its corresponding Response TDD.

The REQ-ID is computed by the LA, by any appropriate means that guarantees uniqueness of REQ-IDs for that LA. The
algorithm to use for the REQ-ID computation is beyond the scope of this Recommendation. The REQ-ID is a field of the
CA-Record (see 5.6.2).

Recovery procedures that could be derived from the use of the REQ-ID are beyond the scope of this Recommendation.

5.4.4 Reference to LA requests (REQ-REF)

The reference to a LA request (REQ-ID) is used in the Trace TDD for referencing previous Send and/or Receive TDDs.

5.4.5 Identification of Transfer Formats (Convert-ID)

The Transfer Format – the format used to transfer a document between LA and CA – is identified by the Convert-ID. For
each service this Recommendation defines a mandatory set of different Convert-IDs, which shall be supported by the CA
implementation. See also Table H.1 and related service specific sections in Part II of this Recommendation.

5.4.6 Identification of Transmission Formats (Type-ID)

The Transmission Format – the format used to transmit a document through the service – is identified by the Type-ID.
Each service defines its set of Transmission Formats. See also related service specific sections in Part II of this
Recommendation.

Recommendation T.611 (11/94) 15

5.5 Dispatch Received Files Facility (DRF)

Some telecommunications services do not offer subaddressing facilities. On systems where the CA may be used by
several LAs simultaneously, it is necessary to assist the routing of the incoming documents to the intended recipients.
This process is called Dispatch Received Files (DRF).

When a CA receives a file from the network, it shall be assigned to a single recipient LA. Then, only the recipient LA
may access the received file. Selection of the recipient LA is a CA private process which is beyond the scope of this
Recommendation.

The CA-Record corresponding to the received file is then assigned the LA-ID of the recipient LA.

If the CA supports the Dispatch Received Files facility (DRF) then the recipient LA may dispatch received files to the
appropriate LA by means of the Trace:DISPATCH request (see 6.6.3). The CA-Record is then assigned the LA-ID of
the LA to which the received file is dispatched.

As this CA feature is optional, the support of DRF shall be declared in the CA-Descriptor (see clause 9).

If the CA does not support DRF, then the CA shall assign (by any appropriate means) the CA-Record to any LA using
the LA-ID field. When subaddressing is provided by the telecommunications service, the CA shall assign the CA-Record
to the intended recipient LA automatically.

The algorithms to use for dispatching the incoming calls to the appropriate LAs are beyond the scope of this
Recommendation.

5.6 Communications Control – CA-Record

Since the exchange method between a LA and a CA is based on a client-server model, the LA always originates Request
TDDs to a CA. Response TDDs from the CA are not spontaneous; the LA shall poll the CA in order to know whether
any Response TDDs are available.

This Recommendation provides the means for a LA to trace any communications events occurring in a CA; there is no
requirement for LAs to make use of those means.

A CA communications event gathers a collection of information, like date and time, originator, recipient(s),
communications service, etc.

The CA-Record is the functional collection of information kept by a CA in order to process a Send request or an
incoming call from the network. This information is kept into fields, each of which has a special purpose.

A CA-Record is generated by the CA when one of the following events occurs:

– The CA receives a Send request from a LA. In this case, if the Send request contains many recipients, the
CA shall expand the list of recipients and generate the same number of CA-Records as the number of
recipients in the list.

– The CA receives a Trace:RESCHEDULE request from a LA.

– The CA receives an incoming call from the network.

Optionally, a CA can generate a CA-Record in the “failed” state when the CA encounters error conditions which were
not directly the consequence of a Send request or of an incoming call.

16 Recommendation T.611 (11/94)

CA-Records are destroyed when the LA issues Trace:PURGE requests or by CA-specific means.

NOTE – A CA-Record can only be destroyed when it has reached a final state, i.e. the “retrieved”, “sent” or “failed” state
(see also Figures 5 and 6).

The CA-Record is an internal structure of the CA. The way to implement the CA-Record is beyond the scope of this
Recommendation.

5.6.1 Access Control of CA-Record

All actions originated by LAs on CA-Records are performed by means of the Trace request. Depending on the
configuration of the CA, a CA may elect to hide some information to a LA. For example, a CA may refuse the access to
“delayed” CA-Records originated by another LA.

To help control accesses to a CA, this Recommendation provides a mechanism to identify LAs by means of the LA-ID.
For example, all Trace requests originated by LAs incorporate the LA-ID.

Thanks to this mechanism, a particular CA may elect to restrict or extend the use of some control requests to only a
particular set of LAs. For example, the use of the Trace:DISPATCH request may be offered to only one LA or to a set of
different LAs, depending on the system configuration; the access to the Trace:PURGE request might also be reserved to
a single LA for administrative reasons.

The CA manufacturer shall state in its documentation how access controls (if any) are handled and, if appropriate, how
access controls may be customized to accommodate users’ configurations. Customizing CAs shall be exercized by
specific means that are beyond the scope of this Recommendation.

5.6.2 Fields of the CA-Record

The CA-Record contains a minimum list of fields which shall be supported by all CAs. CAs may support additional
fields; those fields shall be declared in the ICE.

Table 3 shows the minimum list of CA-Record fields that any CA shall support in the shown order:

TABLE 3/T.611

Minimum list of CA-Record fields

Field name Syntax Purpose

COM-ID COM-ID Maintain the unique communica-tion
identifier assigned to the CA-Records

LA-ID La-id Assigns the CA-Record to the LA which
originated it or to which it is destined

REQ-ID Req-id Maintains the reference of the request

STATE State Indicates the current state of the CA-
Record

DIRECTION “Xmit”/“Receive” Indicates whether the CA-Record was
generated for a transmission or a reception

NOTE – Support of additional fields (e.g. charging info, time stamps, addresses) may be added by
CA Manufacturers. See also 6.6.3.2.

Recommendation T.611 (11/94) 17

The CA-Record provides a LA the ability to control the CA it is logged in. A CA-Record is at any time in one of the six
following states (see Table 4).

TABLE 4/T.611

States of CA-Record

Transitions from one state to another are governed by actions internal to the CA, coming from the communications
network, or issued by the LA.

LAs can read the state fields of a CA-Record by means of the Trace:COPY request. A particular LA may access only
those records that have a matching LA-ID identifier value (unless the CA extends the access rights of some LAs). This
ensures a particular LA may consult only its relevant CA-Records.

The only exception to this rule is when the CA does not support DRF (see 5.5), in which case any LA can access any
CA-Record which is in the reception state.

The following describes the state transitions of a CA-Record in relation to the transmission and reception events
occurring at the CA.

5.6.3 Transmission Process – State Transitions

Transmissions are initiated by Send requests. When the CA receives a valid Send request from a logged-in LA, the CA
builds as many CA-Records as the number of recipients contained in the Send request.

Transmissions can also be originated by rescheduling transmissions that failed previously, by means of the
Trace:RESCHEDULE request. In some cases this can save the delay of the conversion of the documents to suitable
Transmission Formats, because those documents were already converted in a previous Send request.

The CA shall assign a COM-ID to each new CA-Record. If a Send request specifies multiple recipients, the CA assigns a
different COM-ID to each resulting CA-Record (one per recipient). The CA also sets the state field to the “delayed”
state. The CA then copies all information from the Send request into the CA-Record.

State name Concerns Means

“delayed” Transmission The associated document(s) have not yet been processed by
the CA. It waits until the CA moves it in the sending state

“sending” Transmission The associated document(s) have been processed by the
CA for transmission; the CA has not yet finished
processing it (because it is currently being sent or because
the transmission had failed and the CA will carry out other
attempts shortly)

“sent” Transmission The associated document(s) have successfully been
transmitted to the recipient

“failed” Transmission,
reception

The associated document(s) failed to be transmitted, (or)
errors occurred during reception (or) an internal error
occurred in the CA

“reception” Reception The record describes a document that is being received by
the CA at that time, or has been received but not retrieved
by the recipient LA

“retrieved” Reception The received document has been retrieved by the recipient
LA by means of the Receive request

18 Recommendation T.611 (11/94)

The CA scans at its own pace the list of the CA-Records in the “delayed” state and processes one of them. The choice of
the “delayed” CA-Record to process first is based on scheduled dates and times that were specified in the <SendTime>
field of the Send request (see Table 13, subclause 6.2). The elected CA-Record is switched to the “sending” state.

The CA transmits all documents contained in the “sending” CA-Record, one by one. If transmission fails because of
transmission errors, then the CA may keep the CA-Record in the “sending” state as long as it retries its transmission
attempts.

If the transmission eventually fails, the CA-Record is switched to the “failed” state. If the transmission eventually
succeeds, the CA-Record is switched to the “sent” state. Between two attempts on the same CA-Record, the CA may
pick up another CA-Record in the “delayed” state and process it as described above. Consequently, more than one
CA-Record may be in the “sending” state at a given moment.

Figure 5 illustrates these state transitions.

T0823380-95/d05

“idle”
(no CA Record)

FIGURE 5/T.611

State transitions of the CA-Record (transmissions)

Delayed

Falled

Sending

Sent

SEND
(start

transmission)

RESCHEDULE

DELETE CANCEL (success)
(failure)

State of the CA Record

Action from LA (TDD)

Internal CA action

Network interaction

FIGURE 5/T.611...[D05] = 9.5 CM

5.6.4 Reception process – State Transitions

When a CA has received an incoming communication from the network, it builds a CA-Record. This CA-Record is
assigned a unique COM-ID identifier and set to the “reception” state. All information concerning the incoming call (like
originator, date and time, etc.) is then copied to the CA-Record in the appropriate fields.

If failure has occured during reception, the CA-Record is switched to the “failed” state. Otherwise the CA-Record is
switched to the “retrieved” state, if a LA has retrieved it by means of the Receive request.

The Trace:DISPATCH request has no effect on the state of the CA-Record, i.e. it remains in the “reception” state; the
CA-Record is no longer visible to the “dispatching LA” and becomes visible to the recipient LA.

Figure 6 illustrates these state transitions.

Recommendation T.611 (11/94) 19

T0823390-95/d06

“idle”
(no CA Record)

Reception Failed

DISPATCH

RECEIVE PREVIEW

(failure)

Retrieved

FIGURE 6/T.611

State transitions of the CA-Record (reception)

State of the CA Record

Action from LA (TDD)

Internal CA action

Network interaction

(success)

FIGURE 6/T.611...[D06] = 11 CM

5.6.5 Actions – Notation Conventions

For the sake of legibility, the following conventions apply for the notation of the various actions involving CA-Records
(see Table 5).

TABLE 5/T.611

Notation of actions involving the CA-Record

Notation Means

Trace:DELETE rq DELETE request of Trace TDD

Recipient LA The intended recipient of the incoming call. The recipient can
be determined either automatically (example: subaddressing
mechanism) or by manual dispatch. Automatic processing is a
CA private matter whereas the manual dispatching can be
controlled through the interface (see 10.6.1)

Originating LA The LA that originated the CA-Record (via a Send request)

Transmit The CA attempts to carry out the transmit action on the
CA-Record

NOTE – The CA may allow LAs of its choice to behave like a recipient or originating LA. This can be
useful for many applications (example: Administration).

20 Recommendation T.611 (11/94)

5.6.6 Actions – Transmissions

This subclause describes all actions that impact the various states of the CA-Records that are involved in the
transmissions.

5.6.6.1 Delayed State

A CA-Record is in the “delayed” state as long as it has not been processed by the CA (i.e. no attempt was made to
transmit it) or as long as the originating LA did not delete it. The following actions may apply to a CA-Record in the
“delayed” state (see Table 6).

TABLE 6/T.611

Transmission actions for the “delayed” state

5.6.6.2 Sending State

A CA-Record is in the “sending” state when the CA attempts to transmit the information contained in it.

If the attempt fails, the CA-Record may remain in the “sending” state waiting for the next attempt; the CA shall delay the
next attempt with respects to the “retry delay” unless the “maximum number of attempts” is reached, in which case the
CA-Record is set to the “failed” status.

The following actions may apply to a CA-Record in the “sending” state (see Table 7).

TABLE 7/T.611

Transmission actions for the “sending” state

5.6.6.3 Sent State

A CA-Record is in the “sent” state when the CA succeeded in transmitting the information contained in it.

The following actions may apply to a CA-Record in the “sent” state (see Table 8).

Action Originator Purpose Resulting State

Trace:DELETE rq Originating LA To delete a Send request. This action
operates on only one CA-Record at a time

“failed”

Trace:COPY rq Originating LA To build a logical file containing a copy of
the list of the “delayed” CA-Records. This
action applies to all “delayed” CA-Records
originating from a single LA

“delayed”

Transmit CA The CA decides to handle the CA-Record,
because it has become due to process

“sending”

Action Originator Purpose Resulting State

Trace:CANCEL rq Originating LA To cancel a Send request. This affects only
one CA-Record at a time

“failed”

Trace:COPY rq Originating LA To build a logical file containing a copy of
the list of the “sending” CA-Records

“sending”

Recommendation T.611 (11/94) 21

TABLE 8/T.611

Transmission actions for the “sent” state

5.6.6.4 Failed State

A CA-Record is in the “failed” state when the CA failed to transmit the information contained in it for any reason.

NOTE – The failed state also applies for the reception process. See below for relevant information.

The following actions may apply to a CA-Record in the “failed” state (see Table 9).

TABLE 9/T.611

Transmission actions for the “failed” state

5.6.7 Actions – Receptions

This subclause describes all actions that impact the states of the CA-Records that relate to reception.

5.6.7.1 Reception State

A CA-Record is in the “reception” state when the CA successfully received an incoming call from the network, and the
CA-Record has not been dispatched already.

The following actions may apply to a CA-Record in the “reception” state (see Table 10).

Action Originator Purpose Resulting state

Trace:PURGE rq Originating LA To remove all the CA-Records being in the
“sent” state

Not applicable
because removed
(purged)

Trace:COPY rq Originating LA To build a logical file containing a copy of
the list of the “sent” CA-Records

“sent”

Action Originator Purpose Resulting State

Trace:PURGE rq Originating LA To remove CA-Records being in the
“failed” state

Not applicable
because removed
(purged)

Trace:RESCHEDULE rq Originating LA To ask for reprocessing of a failed request.
This can take advantage of previous
document conversions

“delayed”

Trace:COPY rq Originating LA To build a logical file containing a copy of
the list of the “failed” CA-Records

“failed”

22 Recommendation T.611 (11/94)

TABLE 10/T.611

Reception actions for the “reception” state

5.6.7.2 Retrieved State

A CA-Record is in the “retrieved” state when the CA-Record has been retrieved by a LA with a matching LA-ID by
means of the Receive request.

The following actions may apply to a CA-Record in the “retrieved” state (see Table 11).

TABLE 11/T.611

Reception actions for the “retrieved” state

5.6.7.3 Failed State

A CA-Record is in the “failed” state when the CA failed to receive an incoming call from the network for any reason.

NOTE – The failed state also applies for the transmission process. See 5.6.6.4 for relevant information.

When a CA fails to receive an incoming call, the CA switches the CA-Record from the “reception” state to the “failed”
state.

Action Originator Purpose Resulting State

RECEIVE rq Recipient LA To retrieve the document(s) relevant to the CA-Record
(as well as related information in the Response-TDD)

“retrieved”

Trace:PREVIEW rq any LA To receive a copy of the document(s) relevant to the
CA-Record. The CA-Record remains in the “reception”
state

“reception”

Trace:DISPATCH rq Recipient LA
or Admin

To assign one or more LA-ID(s) to a received CA-
Record (see also Note below)

“reception”

Trace:COPY rq Recipient LA To build a logical file containing a copy of the list of
the CA-Records in “reception” state, thus not having
been retrieved already. A recipient LA “sees” only its
relevant CA-Records, i.e. those matching the LA-ID

“reception”

NOTE – The Management of the Admin (Administrator) is a private matter of the CA.

Action Originator Purpose Resulting State

Trace:PURGE rq Recipient LA To remove CA-Records which are in the “retrieved”
state

Not applicable
because removed
(purged)

Trace:COPY rq Recipient LA To build a logical file containing a copy of the list of
the CA-Records in “retrieved” state. A recipient LA
“sees” only its relevant CA-Records, i.e. those
matching the LA-ID

“retrieved”

Recommendation T.611 (11/94) 23

When a CA-Record is in the “failed” state, no LA-ID is assigned to it. Depending on the configuration, the CA may (but
is not obliged to) assign a LA-ID on those “failed” records by any appropriate means. The Trace:RESCHEDULE request
does not apply on received “failed” CA-Records.

Table 12 details the actions that may apply on the CA-Records in the “failed” state.

TABLE 12/T.611

Reception actions for the “failed” state

6 Task Data Descriptions (TDDs)

The functionality offered by the CA through the interface is invoked by TDDs, which are passed as requests from the
LA to the CA and – depending on the function invoked – passed vice versa as response.

This clause describes the semantic, functionality, syntax and encoding of the various Request TDDs and responses.

6.1 Generic TDD Presentation

The TDDs can be encoded with different schemes. Some of these coding schemes are based on text descriptions,
i.e. ASCII or EBCDIC. Other coding schemes cannot be represented by text. Examples of such coding schemes include
the binary encoding scheme, which is presented in C-language notation in Part III of this Recommendation.

The various TDDs are hereafter described generically with a BNF-style syntax. The details of this syntax are explained
in A.1.

As an aid to understanding, together with the generic BNF-style syntax given below the text based encoding is used in
the subclauses to follow. However, the binary encoding scheme (defined in Part III of this Recommendation) may
alternatively be used for implementations.

<TDD> := <TDD Header>
<Send> | <Receive> | <Trace> | <Submit> | <Extend>

<TDD Header> := -- dependent of encoding used. For text based encoding see 6.4.3,
-- for binary encoding scheme see appropriate clause in Part III
-- of this Recommendation

<Send> := <SendTDD> | <SendAckTDD>

<Receive> := <ReceiveTDD>

<Trace> := <DeleteTDD> | <CopyTDD> | <CancelTDD> | <PurgeTDD> |
<RescheduleTDD> | <DispatchTDD> | <PreviewTDD>

Action Originator Purpose Resulting State

Trace:PURGE rq Recipient LA To remove all the CA-Records being in the
“failed” state

Not applicable
because removed
(purged)

Trace:COPY rq Recipient LA To build a logical file containing a copy of
the list of the CA-Records in “failed” state.
A recipient LA “sees” all CA-Records in
this state

“failed”

24 Recommendation T.611 (11/94)

<Submit> := <PrintTDD> | <ConvertTDD> | <CheckTDD>
Recommendation T.611 (11/94)

<Extend> := <ExtendTDD> | <NationalTDD> | <PrivateTDD>

<SendTDD> := <SendFunction> <LaId> <ReqId> <Service>
[<SendTime>] [<Comment>] [<LastTime>] [<UserKey>]
<ServiceDependentKeywordsSend>

<ServiceDependentKeywordsSend> :=
-- defined in appropriate clause of Part II for each service

<SendAckTDD> := <SendAckFunction> <LaId> <ReqId> <Service> <Error>
<Status> [<ComId>] [<SendTime>] [<Comment>] [<LastTime>]
[<UserKey>] [<Minor>] [<Warning>]
<ServiceDependentKeywordsSendack>

<ServiceDependentKeywordsSendack> :=
-- defined in appropriate clause of Part II for each service

<ReceiveTDD> := <ReceiveFunction> <LaId> <ReqId> <Error> <Status> [<ComId>]
[<ReceiveTime>] [<Service>] [<Delete>] [<Minor>] [<Warning>]
<ServiceDependentKeywordsReceive>

<ServiceDependentKeywordsReceive> :=
-- defined in appropriate clause of Part II for each service

<DeleteTDD> := <DeleteFunction> <LaId> <ReqId> <Error> (<ComId> | <ReqRef>)
[<Minor>] [<Warning>]

<CopyTDD> := <CopyFunction> <LaId> <ReqId> <Error> <State> <Target> <Layout>
(<ComId> | <ReqRef>) [<Minor>] [<Warning>] [<Previewed>]
[<Dispatched>] [<Direction>] [<Time_Range>] [<Service>]
<ServiceDependentKeywordsCopy>

<ServiceDependentKeywordsCopy> :=
-- defined in appropriate clause of Part II for each service

<CancelTDD> := <CancelFunction> <LaId> <ReqId> <Error> (<ComId> | <ReqRef>)
[<Minor>] [<Warning>]

<PurgeTDD> := <PurgeFunction> <LaId> <ReqId> <Error> <State>
(<ComId> | <ReqRef>) [<Minor>] [<Warning>]

<RescheduleTDD> := <RescheduleFunction> <LaId> <ReqId> <Error> (<ComId> | <ReqRef>)
[<Address>] [<SendTime>] [<LastTime>] [<Minor>] [<Warning>]

<DispatchTDD> := <DispatchFunction> <LaId> <NewLa> {<NewLa>} <ReqId> <Error>
<ComId> [<Minor>] [<Warning>]

<PreviewTDD> := <PreviewFunction> <LaId> <ReqId> <Target> <Convert> <Error>
<ComId> [<Minor>] [<Warning>]

<PrintTDD> := <PrintFunction> <LaId> <ReqId> <Error> <FileName> <InFormat>
[<Printer>] [<Minor>] [<Warning>]

<ConvertTDD> := <ConvertFunction> <LaId> <ReqId> <Error> <FileName> <Target>
<InFormat> <OutFormat> [<Minor>] [<Warning>]

<CheckTDD> := <CheckFunction> <LaId> <ReqId> <Error> <FileName> <Check>
[<Minor>] [<Warning>]

Recommendation T.611 (11/94) 25

<ExtendTDD> := <ExtendFunction> <SubFunction> <LaId> <ReqId> <Error> [<Minor>]
[Warning] [<ExtendSubFunctionKeywords>]

<ExtendSubFunctionKeywords> :=
-- defined in appropriate clause of Part II for each service

<NationalTDD> := <NationalFunction> <SubFunction> <LaId> <ReqId> <Error> [<Minor>]
[Warning] [<NationalSubFunctionKeywords>]

<NationalSubFunctionKeywords> :=
-- for further study

<PrivateTDD> := <PrivateFunction> <SubFunction> <LaId> <ReqId> <Error> [<Minor>]
[Warning] [<PrivateSubFunctionKeywords>]

<PrivateSubFunctionKeywords> :=
-- for further study

6.2 Description of TDD Elements

In general, there are two types of syntax elements within a TDD:

1) those which parameters are only dependent on the functionality of the TDD;

2) those which parameters are dependent on the service the TDD is applied to.

In case the TDD is dealing with sending or receiving files or documents, the parameters of some syntax elements may
also be specific to

– the addressee (e.g. the attribute primary or copy recipient for E-Mail services);

– the document itself (e.g. Transfer and Transmission Format).

In Table 13 the non service dependent syntax elements of the TDDs are explained. The service, adressee or document
specific syntax elements of the TDDs are described in the appropriate clauses of Part II of this Recommendation.

6.3 Code-ID

The very first octet of every TDD, independent of its encoding, indicates the coding scheme. This octet is called the
Code-ID. Table 14 lists the possible Code-IDs assigned by this Recommendation.

6.4 Text Based Encoding

This subclause refers to encodings with the Code-ID set to "A", "B", "I" or "E".

For description of the text based encoding, the BNF-style syntax explained in A.1 is used in the following subclauses.

6.4.1 Syntax and Formatting

The syntax elements listed in 6.1 are encoded using keyword/parameter pairs. The mapping of the keyword/parameter
pairs to the syntax elements is shown in Table 15 below. Since some syntax elements and the corresponding
functionality depends on the underlying telecommunications service, only those beeing invariant to the
telecommunications service are presented. The syntax elements depending on a telecommunications service are
described in the appropriate clause of Part II of this Recommendation.

26 Recommendation T.611 (11/94)

TABLE 13/T.611

Summary of non service dependent TDD syntax elements

Syntax Element Purpose

<CancelFunction> Identifies the function requested by the TDD

<Check> Gives the format a given File shall be checked against. Used only in the <CheckTDD>

<CheckFunction> Identifies the function requested by the TDD

<ComId> ComId stands for COMmunication-ID. See 5.4.1

<Comment> Used to attach a free comment to a document, which shall be transmitted. This comment then is
stored in the CA-Record, rather than transmitted with the document through the
telecommunications service

<ConvertFunction> Identifies the function requested by the TDD

<CopyFunction> Identifies the function requested by the TDD

<Delete> Tells the CA whether a document received shall be deleted from the internal storage of the CA
after successful retrieval carried out by the calling LA

<DeleteFunction> Identifies the function requested by the TDD

<Direction> Specifies whether the CA-Record belongs to an incoming or an outgoing document

<Dispatched> Specifies if the <DispatchTDD> has been applied to the specific CA-Record

<DispatchFunction> Identifies the function requested by the TDD

<Error> This syntax element returns the error code generated by the CA in the Response-TDD. It shall be
checked by the LA for successful operation

<ExtendFunction> Identifies the function requested by the TDD

<ExtendSubFunction-
Keywords>

See appropriate clause of Part II of this Recommendation

<FileName> Contains the path to the file the document is stored in

<InFormat> Specifies the input format of a document. Only used in the <Convert-TDD>

<LaId> LaId stands for LA-ID. See 5.4.2

<LastTime> Gives the latest time a CA shall try to send the document specified in the related TDD

<Layout> Defines the layout of the target file of the <CopyTDD>

<Minor> This syntax element returns an additional error code in the Response-TDD

<NationalFunction> Identifies the function requested by the TDD

<NationalSubFunction-
Keywords>

For further study

<NewLa> Contains the new LA-ID for use with the <DispatchTDD>

<OutFormat> Specifies the output format of a document. Only used in the <Convert-TDD>

<Previewed> Specifies if the <PreviewTDD> has been applied to the specific CA-Record

Recommendation T.611 (11/94) 27

TABLE 13/T.611 (end)

Summary of non service dependent TDD syntax elements

Syntax Element Purpose

<Printer> ID of selected printer for use with the <PrintTDD>. Depends on the supporting operating system.
The CA manufacturer shall state in his documentation how to address the printers

<PrintFunction> Identifies the function requested by the TDD

<PrivateFunction> Identifies the function requested by the TDD

<PrivateSubFunction-
Keywords>

For further study

<PurgeFunction> Identifies the function requested by the TDD

<ReceiveFunction> Identifies the function requested by the TDD

<ReqId> ReqId stands for REQ-ID. See 5.4.3

<ReceiveTime> Gives the time the CA received the document specified in the related TDD

<ReqRef> ReqId stands for REQ-REF. See 5.4.4

<RescheduleFunction> Identifies the function requested by the TDD

<SendackFunction> Identifies the function requested by the TDD

<SendFunction> Identifies the function requested by the TDD

<SendTime> Gives the time the CA shall send the document specified in the related TDD

<Service> Specifies the telecommunications service used. See also Part II of this Recommendation

<ServiceDependent-
KeywordsReceive>

See appropriate clause of Part II of this Recommendation

<ServiceDependent-
KeywordsSend>

See appropriate clause of Part II of this Recommendation

<ServiceDependent-
KeywordsSendack>

See appropriate clause of Part II of this Recommendation

<State> Specifies the state of a CA-Record. See also Table 4 in 5.6.2

<Status> Returns the status of a transmission or reception in the Response-TDD

<SubFunction> Identifies the function requested by the TDD

<Target> Used in the <ConvertTDD> and in the <CopyTDD> to specify the path to the output file generated
by the CA

<TimeRange> Specifies a time range for selecting specific CA-Records

<UserKey> Contains a key attached to the Request-TDD of the <SendTDD> and the <SendAckTDD>

<Warning> This syntax element returns an additional warning code in the Response-TDD

28 Recommendation T.611 (11/94)

TABLE 14/T.611

TDD Encoding – Code-IDs

TABLE 15/T.611

Mapping of keyword/parameter pairs for Text Based Encoding

(A « denotes the new line format effector)

Code-ID

Value
Text

Presen-
tation

TDD Representation

41hex "A" Readable text, organized as lines of keyword/parameter pairs. The character set utilized shall
correspond to the APPLI/COM Extended ASCII character set (see Table 50)

42hex "B" Readable text, organized as lines of keyword/parameter pairs. The character set used shall
correspond to a national variant of the character set as defined per ITU-T Recommendation T.50

43hex "C" Binary encoding scheme (represented using C-language notation in Part III of this
Recommendation)

C5hex
a) "E" Readable text, organized as lines of keyword/parameter pairs. The character set utilized shall

correspond to an EBCDIC coded character set

49hex "I" Readable text, organized as lines of keyword/parameter pairs. The character set utilized shall
correspond to the APPLI/COM Standard ASCII character set (see Table 53)

50hex "P" The TDD presentation and syntax shall be regarded as being defined by private rules

Other values All other values not listed above are reserved for future standardization

a) If this Code-ID has to appear in the ICE, its binary value shall be made in accordance to the code presentation chosen for
the ICE itself, i.e. if the Code-ID of the ICE Header is "I" (APPLI/COM Standard ASCII) then the binary value of the "E"
shall be coded as 45hex.

Syntax Element Keyword/Parameter Pair

<CancelFunction> "FUNCTION" ":" "Cancel"«

<Check> "CHECK" ":" <Convert-id-parameter> «

<CheckFunction> "FUNCTION" ":" "Check"«

<ComId> "COMID" ":" <Com-id-parameter> «

<Comment> "COMMENT" ":" <Comment-parameter> «

<ConvertFunction> "FUNCTION" ":" "Convert"«

<CopyFunction> "FUNCTION" ":" "Copy"«

<Delete> "DELETE" ":" <Boolean-parameter> «

<DeleteFunction> "FUNCTION" ":" "Delete"«

<Direction> "DIRECTION" ":" <Direction-parameter> «

<Dispatched> "DISPATCHED" ":" <Boolean-parameter> «

<DispatchFunction> "FUNCTION" ":" "Dispatch"«

<Error> "ERROR" ":" <Error-parameter> «

Recommendation T.611 (11/94) 29

TABLE 15/T.611 (end)

Mapping of keyword/parameter pairs for Text Based Encoding

(A « denotes the new line format effector)

To improve the legibility of the TDD, all keyword/parameter pairs that appear shall be formatted by the use of format
effectors. Following rules apply:

– the syntax elements shall be arranged as lines of keyword/parameter pairs;

– the FUNCTION keyword must be always the first keyword presented; if a SUBFUNC keyword exists for
the TDD it must be second; the order of all other keywords is undefined;

Syntax Element Keyword/Parameter Pair

<ExtendFunction> "FUNCTION" ":" "Extend"«

<FileName> "FILENAME" ":" <Path-parameter> «

<InFormat> "INFORMAT" ":" <Convert-id-parameter> «

<LaId> "LA-ID" ":" <La-id-parameter> «

<LastTime> "LASTTIME" ":" <Date-time-parameter> «

<Layout> "LAYOUT" ":" <Layout-id-parameter> «

<Minor> "MINOR" ":" <Error-parameter> «

<NationalFunction> "FUNCTION" ":" "National"«

<NewLa> "NEWLA" ":" <La-id-parameter> «

<OutFormat> "OUTFORMAT" ":" <Convert-id-parameter> «

<Previewed> "PREVIEWED" ":" <Boolean-parameter> «

<Printer> "PRINTER" ":" <Printer-id-parameter> «

<PrintFunction> "FUNCTION" ":" "Print"«

<PrivateFunction> "FUNCTION" ":" "Private"«

<PurgeFunction> "FUNCTION" ":" "Purge"«

<ReceiveFunction> "FUNCTION" ":" "Receive"«

<ReceiveTime> "RCVTIME" ":" <Date-time-parameter> «

<ReqId> "REQ-ID" ":" <Req-id-parameter> «

<ReqRef> "REQREF" ":" <Req-id-parameter> «

<RescheduleFunction> "FUNCTION" ":" "Reschedule"«

<SendAckFunction> "FUNCTION" ":" "SendAck"«

<SendFunction> "FUNCTION" ":" "Send"«

<SendTime> "SENDTIME" ":" <Send-time-parameter> «

<Service> "SERVICE" ":" <Service-parameter> «

<State> "STATE" ":" <State-parameter> «

<Status> "STATUS" ":" <Status-parameter> «

<SubFunction> "SUBFUNC" ":" <Subfunc-parameter> «

<Target> "TARGET" ":" <Path-parameter> «

<TimeRange> "RANGE" ":" <Date-time-parameter> "," <Date-time-parameter> «

<UserKey> "USERKEY" ":" <Userkey-parameter> «

<Warning> "WARNING" ":" <Error-parameter> «

30 Recommendation T.611 (11/94)

– the line shall be terminated by a new line format effector (see Table Error! Bookmark not defined.);

– the parameter shall be separated from the keyword by a colon (":" character);

– each line may contain a comment. The comment shall be introduced by a ";" character and extents to the
end of the line. The comment is not interpreted by the CA. If a statement has to contain a ";" character, it
shall be escaped with a backslash ("\" character);

– a line may contain white space format effectors (see Table Error! Bookmark not defined.);

– the keywords are not case sensitive (upper case and lower case are treated equally);

– the parameter presentation is not case sensitive as well, except in those cases where it is required by the
service or the underlying operating system.

A Request TDD contains input parameters. The Response TDD may contain output parameters. The CA shall respect
following building rules for the Response TDD3):

– all input parameters of the Request TDD shall be returned in the Response TDD;

– at minimum all output parameters declared basic shall be put into the Response TDD by the CA;

– the order of the parameters contained in the Request TDD may be changed by the CA, except that the
FUNCTION keyword shall be the first keyword presented, followed by the SUBFUNC keyword if
applicable;

– the case of the parameters contained in the Request TDD may be changed by the CA;

– comments contained in the Request TDD may be stripped.

TABLE 16/T.611

Format effectors for the Text Based Encoding

Subclause 6.6 tells in detail which TDD parameters are used as input and which are used as output parameters.

6.4.2 Mapping of Keywords

6.4.3 Encoding of the TDD Header

In every TDD (and within the ICE) the <TDD Header> is always the first element specified. The <TDD Header> is
structured as shown below (for explanation of the BNF-based grammar see A.1):

<TDD Header> := <Code-ID> <Identification> <Version> <Standard> <Reserved>

<Code-ID> := "A" | "B" | "E" | "I"
-- for presentation of the Code-ID see also Table Error! Bookmark not defined.

3) These rules have changed considerably compared to the 1992 version of this Reccommendation. The rules defined there are far

more strict.

Format
Code-ID dependent coding

effector "A" "B" "E" "I"

New line 0D0Ahex or 0Ahex 0D0Ahex or 0Ahex For further study 0D0Ahex or 0Ahex

White space 20hex or 09hex 20hex or 09hex For further study 20hex or 09hex

Recommendation T.611 (11/94) 31

<Identification> := "*APPLI/COM*"

<Version> := "1994"
-- <Version> denotes year of approval of this Recommendation

<Standard> := "*ITU-T*"

<Reserved> := STRING (SIZE(0..16))
-- <Reserved> is reserved for further extensions of this
-- Recommendation

NOTE – The <TDD Header> syntax element contains the Code-ID as first element.

6.4.4 Encoding of Non Service Dependent Parameters

This subclause defines the encoding of the non service dependent parameters addressed in Table Error! Bookmark not
defined.. Service-dependent parameters are mentioned in 6.4.5. They are fully specified in the relevant subclauses of
Part II of this Recommendation.

6.4.4.1 Boolean-parameter

The Boolean-parameter is encoded as a STRING taking the presentations "YES" or "NO".

General Syntax:

<Boolean-parameter> := "YES" | "NO"

6.4.4.2 Com-id-parameter

The Com-id-parameter is encoded as a STRING containing the Communication-ID (COM-ID) computed by the CA. See
also 5.4.1.

General Syntax:

<Com-id-parameter> := STRING

6.4.4.3 Comment-parameter

The Comment-parameter is encoded as a STRING containing the Comment the LA specifies for the specific
communication event.

General Syntax:

<Comment-parameter> := STRING

6.4.4.4 Date-time-parameter

The Date-time-parameter is encoded as a STRING containing the date and time following the conventions "YY-MM-
DD-HH:MM" (year-month-day-hour:minutes).

General Syntax:

<Date-time-parameter> := <year> "-" <month> "-" <day> "-" <hours> ":" <minutes>

<year> := <digit> <digit>

<month> := "0" | "1" <digit>

<day> := "0" | ... | "3" <digit>

<hours> := "0" | ... | "2" <digit>

<minutes> := "0" | ... | "5" <digit>

<digit> := "0" | ... | "9"

32 Recommendation T.611 (11/94)

6.4.4.5 Direction-parameter

The Direction-parameter is encoded as a STRING which can take the presentations "XMIT" or "RECEIVE".

General Syntax:

<Direction-parameter> := "XMIT" | "RECEIVE"

6.4.4.6 Error-parameter

The Error-parameter is encoded as a structured STRING with the following layout:

"nnnn"/"Text..."

"nnnn" stands for a 4-digit, right-justified error number, filled to the left with "0"s. "0000" = success (no error). The
value of the error number itself depends on the communications software used. Error codes are counted decimal. For the
assignment of the error-code ranges refer to Table Error! Bookmark not defined. of 5.2.3.

"Text..." stands for a plain text with a length of up to 79 characters that describes the error. If the parameter field is not
long enough to accept plain text, the text is abbreviated as necessary. The plain text for error number "0000" is
"Success".

The error numbers which may be assigned are detailed in 5.2.3 and Annex C respectively.

General Syntax:

<Error-parameter> := <digit> <digit> <digit> <digit> / STRING(SIZE(0..79))

<digit> := "0" | ... | "9"

6.4.4.7 La-id-parameter

The La-id-parameter contains the reference of a LA-ID. It is presented as a STRING. The purpose of the parameter is to
identify the "owning" LA of a request.

General Syntax:

<La-id-parameter> := STRING

6.4.4.8 Layout-id-parameter

The Layout-id-parameter is encoded as NUMERIC-STRING, which can take the values "0", "1" or "2".

General Syntax:

<Layout-id-parameter> := "0" | "1" | "2"

6.4.4.9 Path-parameter

The Path-parameter is encoded as PATH.

General Syntax:

<Path-parameter> := STRING
-- limited to the platform-specific file naming conventions

6.4.4.10 Printer-id-parameter

The Printer-id-parameter contains the ID of a selected printer, encoded as a STRING. The contents of the STRING
depends on the supporting operating system. The CA manufacturer shall state in his documentation how to address
printers.

Recommendation T.611 (11/94) 33

General Syntax:

<Printer-id-parameter> := STRING

6.4.4.11 Req-id-parameter

The Req-id-parameter contains the REQ-ID (see 5.4.3). The parameter value is represented as a STRING. The purpose
of the parameter is to identify the relation of a response to a previous request. So the REQ-ID shall be unique within a
LA. It is the responsibility of the LA to ensure the REQ-ID is unique.

General Syntax:

<Req-id-parameter> := STRING

6.4.4.12 Send-time-parameter

The Send-time-parameter is encoded as a STRING containing the date and time following the conventions "YY-MM-
DD-HH:MM" (year-month-day-hour:minutes) or a specific indication for immediate or urgent treatment.

General Syntax:

<Send-time-parameter> := "IMMEDIATE" | "URGENT" | <Date-time-parameter>
-- The <Date-time-parameter> is described in 6.4.4.4

6.4.4.13 State-parameter

The State-parameter specifies the state of the CA-Record. It is encoded as STRING and may take one of the values
shown below:

"delayed" concerns transmission: the record has not yet been processed by the CA.

"sending" concerns transmission: the record is being processed by the CA for transmission.

"sent" concerns transmission: the record has been successfully transmitted to the recipient.

"failed" concerns transmission and reception: the record failed to be fully transmitted or errors
occurred during reception or an internal error inside of the CA did occur.

"reception" concerns reception: the record has been received but not yet retrieved.

"retrieved" concerns reception: the record has already been retrieved.

General Syntax:

<State-parameter> := "delayed" | "sending" | "sent" | "failed" | "reception" | "retrieved"

6.4.4.14 Status-parameter

The Status-parameter reflects the status of a send or receive event. It may show the following STRING values:

"+" positive;

"+–"partially negative;

"–" negative;

"?" unknown.

General Syntax:

<Status-parameter> := "+" | "+–" | "–" | "?"

34 Recommendation T.611 (11/94)

6.4.4.15 Subfunction-parameter

The Subfunction-parameter is encoded as a STRING which specifies the Subfunction to be invoked.

General Syntax:

<Subfunction-parameter> := STRING

6.4.4.16 Userkey-parameter

The Userkey-parameter is encoded as a STRING containing a User-key the LA specifies for the specific communication
event.

General Syntax:

<Userkey-parameter> := STRING

6.4.5 Encoding of Service Specific Parameters

This subclause describes some of the service specific parameters used in a similar fashion for various services. However,
a full description of the parameters mentioned is given in the appropriate clauses of Part II of this Recommendation.

6.4.5.1 Service-id-parameter

This parameter occurs in all send and receive TDDs. It specifies the service to be used. It is encoded as STRING and
may take one of the following values:

"FX3" for facsimile group 3 services

"FX4" for facsimile group 4 services

"TTX" for the teletex service

"TX" for the telex via teletex facilities service (without dialogue ability)

"TLX" for the telex service

"EMAIL" for e-mail services

"FT" for file transfer services

General Syntax:

<Service-id-parameter> := "FX3" | "FX4" | "TTX" | "TX" | "TLX" | "EMAIL" | "FT"

6.4.5.2 File-of-addrspec and Address-parameter

These parameters appear in all send and receive TDDs and is used in a similar fashion throughout all services.

The File-of-addrspec parameter is encoded as PATH which points to a file containing Addrspec-parameters, which
contain the Address-parameter.

The Address-parameter is encoded as STRING. For some telecommunications services this string may be further
restricted.

General Syntax:

<File-of-addrspec> := PATH
-- Path to a file containing a list of <Addrspec-parameter>s

<Addrspec-parameter> := <Address-parameter> <Other-parameters>
-- The <Addrspec-parameter> itself is fully detailed for each service
-- in the appropriate clause of Part II of this Recommendation.

<Address-parameter> := -- fully detailed in the appropriate clauses of Part II of this
-- Recommendation.

Recommendation T.611 (11/94) 35

6.4.5.3 Convert-id-parameter

This parameter appears in various TDDs. Some of them, i.e. the send and receive TDDs are service dependent.

In all cases the Convert-id-parameter is encoded as a STRING and contains the Convert-ID, which specifies the transfer
format. See also 5.4.5, clause 8 and Table H.Error! Bookmark not defined. as well as the appropriate clauses of Part II
of this Recommendation for more information about the Convert-ID.

General Syntax:

<Convert-id-parameter> := STRING

6.4.5.4 Type-id-parameter

This parameter appears in all send and receive TDDs and is used in a similar fashion throughout all services.

The Type-id-parameter is encoded as a STRING and contains the Type-ID, which specifies the Transmission Format.
See also 5.4.6, and Table H.Error! Bookmark not defined. as well as the appropriate clauses of Part II of this
Recommendation for more information about the Type-ID.

General Syntax:

<Type-id-parameter> := STRING

6.4.5.5 File-of-filespec and File-parameter

This parameter appears in all send and receive TDDs and is used in a similar fashion throughout all services. The
File-of-filespec parameter is encoded as a PATH which points to a file containing Filespec-parameters, which contain
the File-parameter.

The File-parameter itself is also encoded as PATH, which points to the file transferred.

General Syntax:

<File-of-filespec> := PATH
-- Path to a file containing a list of <Filespec-parameter>s

<Filespec-parameter> := <File-parameter> <Other-parameters>
-- The <Filespec-parameter> itself is fully detailed for each service
-- in the appropriate clause of Part II of this Recommendation.

<File-parameter> := PATH
-- Path to the file transferred.

6.5 Handling of Documents

6.5.1 Definitions used

Some telecommunications services offer the possibility to transport a single file or a collection of files within a single
communication event. The following definitions are useful:

6.5.1.1 document: A document is regarded to be a piece of information belonging to a common context which shall
be (or has been) transmitted within a session through an underlying telecommunications or communications service. A
document may consist of several files.

6.5.1.2 session: A session is an association between two end systems, which allows the end systems to interchange
data without loss or visible interruption.

6.5.1.3 file: A file is a compilation of data as it is maintained by the underlying operating system.

36 Recommendation T.611 (11/94)

6.5.2 Sending documents

Following functionality for sending documents is supported:

– send a document, consisting of one file, to one or many adressees;

– send a document, consisting of many files, to one or many adressees.

In order to successfully exchange a document via a telecommunications service, at least three items need to be specified:

– the path to the file (or the paths to the files) making up the document;

– the Transfer Format (Convert-ID), in which the document is exchanged between LA and CA;

– the Transmission Format (Type-ID), in which the document is exchanged via the network.

If the documents consists of one file, the path to the file may be given in the <Document> syntax element, the
Transmission Format in the <Type> syntax element and the Transfer Format in the <Convert> syntax element. Since
these syntax elements are service dependent in their values, they are described for each service in Part II of this
Recommendation.

If the document consists of more files, the three components shall be gathered conforming to a service specific syntax.
Since this syntax is service specific, it is also described for each service in Part II of this Recommendation. According to
this syntax, the gathered components shall be put into an indirection file by the LA. The path to this indirection file then
shall be specified in the appropriate syntax element of the TDD.

NOTE – The path to an indirection file is always specified with a leading "@" character.

6.5.3 Receiving documents

Following functionality for receiving documents is supported:

– receive a document, consisting of one file;

– receive a document, consisting of many files.

If a received document consists of many files, the CA builds an indirection file as described in 6.5.2 and prepends the
path of the file with a "@" character.

If the received document consists of one file, the path (optionally) given by the LA shall be used to store the document
itself. The Transmission Format then will be returned in the <Type>, the Transfer Format in the <Convert> syntax
element.

6.5.4 Format of the indirection file

The indirection file contains lines of service specific syntax elements, one line for each file. The code presentation shall
conform to the Code-ID used for TDDs. For a generic description of the syntax elements contained in the indirection file
refer to 6.4.5.5.

NOTE – The indirection file shall be processed in order of appearence.

6.6 TDD Functionality

This subclause describes the functionality which is triggered by the Request TDDs. It gives information how the syntax
elements shall be used in the request and in the response. Table Error! Bookmark not defined. explains the columns of
the TDD tables used in the following subclauses.

Recommendation T.611 (11/94) 37

TABLE 17/T.611

Explanation of the column headlines for the TDD tables

The general rules to be used are:

– A given TDD (request and response) belongs to a Functional Class. As a consequence, the related
keywords do not depend on the Functional Class.

– Keywords are divided into two categories: basic and additive ("+"). Additive keywords can be used by
LAs only if they are declared in the ICE (CA-Descriptor). Basic keywords are supported by all CAs.

– The use or not of a keyword has the same signification for both basic and additive keywords.

– If a keyword is absent in a TDD, then the default value of the parameter applies. A default value is always
an input parameter, i.e. the "Input/Output" classification is always "I".

– When a parameter is classified as "I" (input), then the CA shall not modify the value in the Response
TDD.

Column Content

Syntax
Element

Lists the syntax elements used for the TDD

C (Class) Stands for the class of the keyword. "B" stands for basic, which means that the keyword shall be supported by
all CAs, "+" means the keyword is supported by the CA if and only if the keyword is declared in the ICE

T (Type) Specifies whether the keyword is mandatory ("m") or optional ("o"). When the keyword is optional, then the
"Default" cell specifies a default value for the parameter

I/O
(Input/Output)

The Input/Output column lists the requirements concerning the parameter following the keyword in the request
and the response

When the column states "I", it means the parameter contains an "input" value, i.e. the CA shall interpret the
value as the one requested by the LA. The CA shall not modify the value and return it in the response

When the column states "I/O", it means the parameter contains an "input" value (like when "I" is specified)
and an "output" value is expected (i.e. set by the CA in the Response TDD)

When the column states "O", it means the parameter is an "output" value (i.e. set by the CA in the Response
TDD) and no value shall be set in the request (i.e. no parameter value shall be specified in the request). The
response shall contain the value used for that parameter by the CA

Keyword Gives the name of the keyword as it reads in the TDD when it is encoded as readable text. Case is NOT
significant, e.g. "Function" and "funcTion" shall be interpreted equally. See also 6.4.1

Parameter Lists the possible values for the parameter when it is encoded as readable text. The mapping of the parameter
types is described in 6.4.4

Default Lists the default values for the parameter (when applicable, i.e. when the "Type" cell reads "O")

Comment Gives short explanation for the use of the keywords and parameters

38 Recommendation T.611 (11/94)

Table Error! Bookmark not defined. explains how the "Type" and "Input/Output" classifications are used:

TABLE 18/T.611

Usage of "Type" and "Input/Output" classifications

6.6.1 Send

The <SendTDD> and the <SendAckTDD> are used to send one or more documents to one or more recipients. The
<SendAckTDD> response acts as an acknowledgement of a previous request. For the <SendTDD> request no response
is generated by the CA.

The <SendTDD> may be used to send documents to any number of recipients. <SendAckTDD> allows for only one
recipient per request. <SendAckTDD> is designed for those LAs that implement the Functional Class A only; they
therefore need a completion report from the CA. <SendTDD> is designed for LAs that implement the Functional
Class B; they therefore have the means to trace TDD requests via the Trace function. However, both type of LAs may
use <SendTDD> and <SendAckTDD>.

If a LA wants to send documents to a list of recipients, it shall use the <SendTDD> along with the <AddrList> syntax
element. The transmission status (<Status> syntax element) is not available through this function, since no Response-
TDD is generated. However, the status of the transmission can be obtained using the Trace:COPY functionality as
described in 6.6.3.

NOTE – The Trace functionality is only available through CAs conforming to Functional Class B (FCB).

Two tables are provided: one for the <SendTDD>, the other for the <SendAckTDD> situation.

The <SendAckTDD> response is always understood as a completion status, i.e. if the request succeeds, the response
shall be generated at the completion of the <SendAckTDD> request processing. So, whenever the Response-TDD is
available, the LA can rely definitely on contents of the status parameter showing the result of the transmission. The
status parameter will indicate one of the following 4 statuses:

1) document successfully and completely transmitted;

2) transmission failed, all attempts to transmit are given up by CA;

Type Input/Output The Keyword

"I"
Shall be specified in the request; a parameter value shall also be specified. In the response, the
keyword is also specified, with its parameter value unchanged

"m" "O"
Shall be specified in the request with an empty parameter value. In the response, the keyword
is also present, with a significant parameter value

"I/O"
Shall be specified in the request; the parameter value shall also be specified. In the response,
the keyword is also specified, with a possibly different parameter value. The parameter value
in the response is significant

"I"
In the request, the keyword may be present or not; if absent, the default value applies. The
response may include the keyword only if it was specified in the request; in this case, the
parameter value is unchanged

"o"
"O"

May be specified in the request (without any parameter value) if it is desired to obtain a
response parameter value for the keyword; in this case, a parameter value must be specified in
the response. Otherwise no response parameter value shall be returned. No default applies to
the keyword

"I/O"
May be specified in the request with a parameter value. If not specified in the request, the
default parameter value applies. In the response, the keyword is present only if it was present
in the Request; in this case, the response parameter value is significant. If the request does not
specify the keyword, then the response may not specify it either

Recommendation T.611 (11/94) 39

3) transmission partially failed, parts are already transmitted, but no complete transmission could be
achieved;

4) status unknown.

The <SendTDD> and the <SendAckTDD> are belonging to Functional Classes A and B.

If multiple recipients are specified in a <SendAckTDD> request, then the <Status> and <Error> may not be specified
(see Tables 19 and 20).

TABLE 19/T.611

Syntax elements of the <SendAckTDD>

Text Based Encoding

Syntax Element C T I/O Keyword Parameter Default Comment

<SendAckFunction> B m I FUNCTION "SendAck" – CA shall generate a response

<LaId> B m I LA-ID <La-id-
parameter>

–

<ReqID> B m I REQ-ID <Req-id-
parameter>

–

<Service> B m I SERVICE <Service-id-
parameter>

–

<Error> B m O ERROR <Error-
parameter>

– The error returned by the CA

<Status> B m O STATUS <Status-
parameter>

– Returns status from the CA

<ComId> B o O COMID <Com-id-
parameter>

– Identification of the communi-
cation (computed by the CA)

<SendTime> B o I SENDTIME <Send-time-
parameter>

"IMMEDIATE" CA shall actually process the
request at the time specified

<Comment> + o I COMMENT <Comment-
parameter>

–

<LastTime> + o I LASTTIME <Date-time-
parameter>

CA
dependent

Latest time for processing the
request expressed as an absolute
time

<Minor> + o O MINOR <Error-
parameter>

–

<UserKey> + o I USERKEY <Userkey-
parameter>

– Request and response shall
contain the same parameter
value. The CA shall not interpret
this parameter in any manner

<Warning> + o O WARNING <Error-
parameter>

–

40 Recommendation T.611 (11/94)

TABLE 20/T.611

Syntax elements of the <SendTDD>

6.6.2 Receive

The <ReceiveTDD> requests for retrieval of an incoming document already received by the CA. The <ReceiveTDD>
belongs to Functional Classes A and B (see Table 21).

The request specifies the telecommunications service, the storage area for the incoming file and the desired Transfer
Format. For some services, the recipient’s sub-address can also be used as a selector (see appropriate clause of Part II of
this Recommendation).

In order to retrieve (receive) a document, the LA may use two different approaches:

– either the LA retrieves what comes next without any pre-selections, in this case the LA must be able to
properly handle the received document independent of the document Transfer Format;

– or the LA first inspects a copy of a list of received documents by using the Trace <CopyTDD> request.
With that list, the LA may obtain the COM-ID of the document it wishes to retrieve. This is possible only
if the CA supports Functional Class B and the LA supports the <CopyTDD> function.

The <Convert> syntax element is used to store the actual Transfer Format of the document inside the Response TDD.
The <Status> and <Error> syntax elements are necessary to convey the status and error code of the receive event. If the
LA knows the COM-ID of the document it wishes to retrieve, it may also specify the <ComId> syntax element in the
request in order to extract that document.

The additive <Delete> syntax element controls document deletion within the CA. For normal operation, <Delete> shall
be true and the CA shall remove the document from its storage after document transfer. Thus, a document can only be
received once, forcing the CA-Record into the "retrieved" state, as described in 5.6.7.1.

Text Based Encoding

Syntax Element C T I/O Keyword Parameter Default Comment

<SendFunction> B m I FUNCTION "Send" – CA shall NOT generate a
response

<LaId> B m I LA-ID <La-id-
parameter>

–

<ReqId> B m I REQ-ID <Req-id-
parameter>

–

<Service> B m I SERVICE <Service-id-
parameter>

–

<SendTime> B o I SENDTIME <Send-time-
parameter>

"IMMEDIATE" CA shall actually process the
request at the time specified

<Comment> + o I COMMENT STRING –

<LastTime> + o I LASTTIME <Date-Time-
parameter>

CA-dependent Latest time for processing the
request expressed as an absolute
time

<UserKey> + o I USERKEY STRING – The CA shall not interpret this
parameter in any manner

Recommendation T.611 (11/94) 41

If <Delete> is set to false, the document shall be kept by the CA and the CA-Record shall remain in the reception state.
As a consequence, on the next attempt the same document might be retrieved again.

NOTE – The CA implementation may decide to perform the deletion only virtually and may keep the "deleted" documents
internally, e.g. to make them available for other LAs or to keep them for archiving purposes.

TABLE 21/T.611

Syntax elements of the <ReceiveTDD>

6.6.3 Trace

The TDDs belonging to the Trace group are used to manage the CA-Records. The Trace functionality is specific to
Functional Class B.

Text Based Encoding

Syntax Element C T I/O Keyword Parameter Default Comment

<ReceiveFunction> B m I FUNCTION "Receive" –

<LaId> B m I LA-ID <La-id-
parameter>

–

<ReqId> B m I REQ-ID <Req-id-
parameter>

–

<Error> B m O ERROR <Error-
parameter>

– The error returned by the CA

<Status> B m O STATUS <Status-
parameter>

– Returns status from the CA.
When no document is available,
the Response TDD shall specify
the value "–"

<ComId> B o I/O COMID <Com-id-
parameter>

– Identification of the commu-
nication (computed by the CA)

<Service> B o I/O SERVICE <Service-id-
parameter>

– If used in the Request, used as a
selection criterion

<Delete> + o I DELETE <Boolean-
parameter>

"Yes" If true, CA shall delete retrieved
document from its internal buffer

<Minor> + o O MINOR <Error-
parameter>

–

<ReceiveTime> + o O RCVTIME <Date-time-
parameter>

– Time of the document reception
by the CA

<Warning> + o O WARNING <Error-
parameter>

–

42 Recommendation T.611 (11/94)

The purpose of the various TDDs is to control the operation of a CA. Following TDDs are defined:

– <PurgeTDD> to PURGE any CA-Records in "failed", "retrieved" and "sent" states; this feature is useful
to clear the CA-Records which have reached an inactive state;

– <CopyTDD> to COPY any CA-Records in any state into a file; this feature is useful to build what is
commonly known as "journals" or "logs";

– <CancelTDD> to CANCEL any CA-Record in the "sending" state; this feature allows the LA to interrupt
and terminate the transmission that the CA is performing4);

– <DeleteTDD> to DELETE any CA-Record in the "delayed" state in order to cancel it;

– <RescheduleTDD> to RESCHEDULE any CA-Record in the "failed" state to give the CA a chance to
re-transmit it; this feature facilitates the management of transmissions that failed because the recipient was
busy or the request was badly formed, for example;

– <DispatchTDD> to DISPATCH any CA-Record in the "reception" state to assign it to the actual
recipient LA;

– <PreviewTDD> to PREVIEW a document associated with a CA-Record in the "reception" state.

It should be noted that all requests are performed on the behalf of a given LA (through the LA-ID). This limits the scope
of the functions above to those CA-Records assigned to that LA-ID (except for the obvious situations where the LA-ID
is not specified).

In order to delete a previous request being in the "send" state, the <DeleteTDD> shall be used.

If known, the LA may specify the <ComId> syntax element instead of the <ReqRef> syntax element.

6.6.3.1 Trace:DELETE

See Table 22.

6.6.3.2 Trace:COPY

In order to get a copy of CA-Records which refers to a specific state, the <CopyTDD> shall be used.

The <State> syntax element specifies the state of the CA-Records intended to be copied. The <Target> syntax element
specifies the path to the file into which the CA will generate its output. <Error> is used to store the error code of the
operation in the Response-TDD. The copied list is always in the format implied by the Code-ID of the requesting TDD.
The layout of the list is implied by the RECORDS entry of the ICE. The order of the fields in the target list shall be the
same as the order in which the corresponding keywords are declared by the RECORD entry.

If known, the LA may specify the <ComId> syntax element instead of the <ReqRef> syntax element.

The optional <Layout> syntax element can be used to specify the layout of the resulting copy. The values this parameter
may take are explained in Table Error! Bookmark not defined., examples are given in Figures Error! Bookmark not
defined. and Error! Bookmark not defined.. The character representation of the copy is implied by the <TDD Header>
of the corresponding <CopyTDD> (see Table 24).

4) It is not guaranteed that the cancel operation succeeds because of the nature of the interface.

Recommendation T.611 (11/94) 43

TABLE 22/T.611

Syntax elements of the <DeleteTDD>

TABLE 23/T.611

Impact of the <Layout> syntax element

Text Based Encoding

Syntax Element C T I/O Keyword Parameter Default Comment

<DeleteFunction> B m I FUNCTION "Delete" – Deletes CA-Records in the
"delayed" state

<LaId> B m I LA-ID <La-id-
parameter>

–

<ReqId> B m I REQ-ID <Req-id-
parameter>

–

<Error> B m O ERROR <Error-
parameter>

– The error returned by the CA

<Minor> + o O MINOR <Error-
parameter>

–

<Warning> + o O WARNING <Error-
parameter>

–

Use of <ComId> syntax element

<ComId> B m I COMID <Com-id-
parameter>

– Identification of the commu-
nication computed by the CA

Use of <ReqRef> syntax element

<ReqRef> B m I REQREF <Req-id-
parameter>

– Reference to a previous REQ-ID

Layout-id Explanation

0 Default value. The amount, layout and order of the fields presented in the resulting copy target are
defined within the ICE by the RECORD entry. The RECORD entry gives the length of the fields and
implies their order. The fields of a CA-Record are presented in one row, padded with SPACE to the
length specified in the RECORD entry. A headline is not provided

1 The fields are presented row by row as comma separated values (csv), included in apostrophes. The
first field row contains the keywords the field column refers to. See also Figure 7

2 The fields are presented row by row, separated by tabulator characters. The first field row contains the
keywords the field column refers to. See also Figure 8

44 Recommendation T.611 (11/94)

FIGURE 7/T.611

Example of comma separated value layout (Layout-id = 1)

FIGURE 8/T.611

Example of tabulator separated value layout (Layout-id = 2)

"COMID","DIRECTION","LA-ID","REQ-ID","STATE"

"0001","xmit","Jonny","REQ-1212","delayed"

"0002","xmit","Jonny","REQ-1213","sent"

"0003","receive","Jonny","REQ-1214","retrieved"

COMID DIRECTION LA-ID REQ-ID STATE

0001 xmit Jonny REQ-1212 delayed

0002 xmit Jonny REQ-1213 sent

0003 receive Jonny REQ-1214 retrieved

Recommendation T.611 (11/94) 45

TABLE 24/T.611

Syntax elements of the <CopyTDD>

Text Based Encoding

Syntax Element C T I/O Keyword Parameter Default Comment

<CopyFunction> B m I FUNCTION "Copy" – Copy all the CA-Records of a
specific state into the file pointed
to by the TARGET keyword

<LaId> B m I LA-ID <La-id-
parameter>

–

<ReqId> B m I REQ-ID <Req-id-
parameter>

–

<State> B m I STATE <State-
parameter>

All states State of the CA-Record

<Target> B m I TARGET <Path-
parameter>

– Destination file name

<Error> B m O ERROR <Error-
parameter>

– The error returned by the CA

<Layout> B o I LAYOUT <Layout-id-
parameter>

"0" Specifies layout of resulting
copy

<Direction> B o I DIRECTION <Direction-
parameter>

Both directions

<Dispatched> B o I DISPATCHED <Boolean-
parameter>

All CA-Records

<Previewed> B o I PREVIEWED <Boolean-
parameter>

All CA-Records

<Service> B o I SERVICE <Service-id-
parameter>

All services

<TimeRange> B o I RANGE <Date-time-
parameters>

All CA-Records

<Minor> + o O MINOR <Error-
parameter>

–

<Warning> + o O WARNING <Error-
parameter>

–

Use of <ComId> syntax element

<ComId> B m I COMID <Com-id-
parameter>

– Identification of the communi-
cation computed by the CA

Use of <ReqRef> syntax element

<ReqRef> B m I REQREF <Req-id-
parameter>

– Reference to a previous REQ-ID

46 Recommendation T.611 (11/94)

6.6.3.3 Trace:CANCEL

To cancel a previous "send" request, the LA shall use the <CancelTDD> (see Table 25).

If it is known, the LA may also specify the <ComId> syntax element instead of the <ReqRef> syntax element.

NOTE – Cancelation of a Send Request may not succeed due to the nature of the interface.

TABLE 25/T.611

Syntax elements of the <CancelTDD>

Text Based Encoding

Syntax Element C T I/O Keyword Parameter Default Comment

<CancelFunction> B m I FUNCTION "Cancel" – Cancel a CA-Record generated
by a previous request

<LaId> B m I LA-ID <La-id-
parameter>

–

<ReqId> B m I REQ-ID <Req-id-
parameter>

–

<Error> B m O ERROR <Error-
parameter>

– The error returned by the CA

<Minor> + o O MINOR <Error-
parameter>

–

<Warning> + o O WARNING <Error-
parameter>

–

Use of <ComId> syntax element

<ComId> B m I COMID <Com-id-
parameter>

– Identification of the communi-
cation computed by the CA

Use of <ReqRef> syntax element

<ReqRef> B m I REQREF <Req-id-
parameter>

– Reference to a previous REQ-ID

Recommendation T.611 (11/94) 47

6.6.3.4 Trace:PURGE

In order to purge CA-Records from the CA, the <PurgeTDD> shall be used (see Table 26).

The <State> syntax element specifies the state of the CA-Records to be purged (see 5.6). The <Error> syntax element
stores the error code of the operation in the Response-TDD.

If known, the LA may also specify the <ComId> syntax element instead of the <ReqRef> syntax element.

TABLE 26/T.611

Syntax elements of the <PurgeTDD>

Text Based Encoding

Syntax Element C T I/O Keyword Parameter Default Comment

<PurgeFunction> B m I FUNCTION "Purge" – Purge a CA-Record generated by
a previous request

<LaId> B m I LA-ID <La-id-
parameter>

–

<ReqId> B m I REQ-ID <Req-id-
parameter>

–

<State> B m I STATE <State-
parameter>

All statesa) State of the CA-Record

<Error> B m O ERROR <Error-
parameter>

– The error returned by the CA

<Minor> + o O MINOR <Error-
parameter>

–

<Warning> + o O WARNING <Error-
parameter>

–

Use of <ComId> syntax element

<ComId> B m I COMID <Com-id-
parameter>

– Identification of the communi-
cation computed by the CA

Use of <ReqRef> syntax element

<ReqRef> B m I REQREF <Req-id-
parameter>

– Reference to a previous REQ-ID

a) "All states" in this case stands for the states "sent", "failed" and "retrieved". Application of the "purge" functionality on other
states shall be ignored by the CA.

48 Recommendation T.611 (11/94)

6.6.3.5 Trace:RESCHEDULE

To reschedule a failed send Request, the <RescheduleTDD> shall be used. If known, the LA may also specify the
<ComId> syntax element instead of the <ReqRef> syntax element (see Table 27).

TABLE 27/T.611

Syntax elements of the <RescheduleTDD>

Text Based Encoding

Syntax Element C T I/O Keyword Parameter Default Comment

<Reschedule-
Function>

B m I FUNCTION "Reschedule" – Reschedule a CA-Record gene-
rated by a previous send request

<LaId> B m I LA-ID <La-id-
parameter>

–

<ReqId> B m I REQ-ID <Req-id-
parameter>

–

<Error> B m O ERROR <Error-
parameter>

– The error returned by the CA

<Address> B o I ADDRESS <Address-
parameter>

– Used for the "reschedule"
function only; specifies the new
recipient’s address

<SendTime> B o I SENDTIME <Send-time-
parameter>

"IMMEDIATE" Process the request at the time
specified

<LastTime> + o I LASTTIME <Date-time-
parameter>

CA dependent Limit time for processing the
request

<Minor> + o O MINOR <Error-
parameter>

–

<Warning> + o O WARNING <Error-
parameter>

–

Use of <ComId> syntax element

<ComId> B m I COMID <Com-id-
parameter>

– Identification of the communi-
cation computed by the CA

Use of <ReqRef> syntax element

<ReqRef> B m I REQREF <Req-id-
parameter>

– Reference to a previous REQ-ID

Recommendation T.611 (11/94) 49

6.6.3.6 Trace:DISPATCH

To dispatch a received file to a LA, the <DispatchTDD> shall be used (see Table 28).

The <NewLa> syntax element, which may be specified repeatedly, contains the LA-ID of the new LA. On successfull
return the new LA owns the received document and may retrieve it.

NOTE – The use of the dispatch function may be restricted.

TABLE 28/T.611

Syntax elements of the <DispatchTDD>

6.6.3.7 Trace:PREVIEW

The <PreviewTDD> allows an administrator of the CA to retrieve and dispatch the received documents, while still
keeping them available (for further dispatching). The PREVIEW function acts like the Receive function except that the
CA-Record stays in the reception state instead of changing to the received state (see Table 29).

The CA-Record will also have to record whether the received document was viewed by the administrator, and whether
the document was already dispatched. This allows a Trace:COPY function to search for the received documents that
were not already viewed or dispatched to their final recipients.

The following principles also apply:

When the CA generates a CA-Record (called "primary" CA-Record for the purpose of the explanation) after receiving an
incoming document, the primary CA-Record is assigned to the "Administrator" user. The primary CA-Record flags
"viewed" and "dispatched" are set to "no".

Text Based Encoding

Syntax Element C T I/O Keyword Parameter Default Comment

<DispatchFunction> B m I FUNCTION "Dispatch" – Dispatches documents associated
to the CA-Record designated by
the COM-ID

<LaId> B m I LA-ID <La-id-
parameter>

–

<ReqId> B m I REQ-ID <Req-id-
parameter>

–

<NewLa>+ B m I NEWLA <La-id-
parameter>

– Specifies the name of the new
"owner" of the document. Can be
repeatedly specified

<Error> B m O ERROR <Error-
parameter>

– The error returned by the CA

<ComId> B m I COMID <Com-id-
parameter>

– Identification of the communi-
cation computed by the CA

<Minor> + o O MINOR <Error-
parameter>

–

<Warning> + o O WARNING <Error-
parameter>

–

50 Recommendation T.611 (11/94)

To dispatch the incoming document, the Administrator "previews" the document thanks to the Trace:PREVIEW
function. The "viewed" primary CA-Record flag is then set to "yes". Then the Administrator dispatches the document to
one or many recipients. The primary CA-Record flag "dispatched" is then set to "yes".

A new copy of the primary CA-Record is generated internally for each recipient by the CA and has the following
attributes:

– State = Reception

– LA-ID = Login name of the recipient to which it was dispatched

– Viewed = "no"

– Dispatched = "no"

This CA-Record is called "secondary" CA-Record for the sake of clarity. Each secondary CA-Record is now owned by
the recipient to which it was dispatched. The recipient can retrieve it with the usual Trace:COPY function, and receive it
with the Receive function. If the system permits, the user might also dispatch or preview the received document thanks
to the same function calls.

This mechanisms allows the administrator of the CA to list all the recipients of a given document, watch who has
retrieved them, redispatch a document on demand, etc.

TABLE 29/T.611

Syntax elements of the <PreviewTDD>

6.6.4 Submit

The submit functionality is designed to enable the CA to perform various utility functions.

Text Based Encoding

Syntax Element C T I/O Keyword Parameter Default Comment

<PreviewFunction> B m I FUNCTION "Preview" – Retrieves documents associated
to the CA-Record designated by
the COM-ID

<LaId> B m I LA-ID <La-id-
parameter>

–

<ReqId> B m I REQ-ID <Req-id-
parameter>

–

<ComId> B m I COMID <Com-id-
parameter>

– Identification of the communi-
cation computed by the CA

<Convert> B m O CONVERT <Convert-id-
parameter>

– Transfer format of the target file

<Target> B m I TARGET <Path-
parameter>

– Target file name

<Error> B m O ERROR <Error-
parameter>

– The error returned by the CA

<Minor> + o O MINOR <Error-
parameter>

–

<Warning> + o O WARNING <Error-
parameter>

–

Recommendation T.611 (11/94) 51

The purpose of the submit functionality is to ask the CA to perform additional functions that it may implement, like file
format conversions, or printing incoming documents. These tasks are normally not accomplished by the CA but some
CA manufacturers may wish to support them. An example of a situation where the "printing" feature may be useful
could be the situation of a "CA server" on a LAN. The submit functionality supports the following TDDs:

– <PrintTDD> to PRINT a document, given its path and format;

– <ConvertTDD> to CONVERT a document, given its path, input format, output format and output
filename;

– <CheckTDD> to CHECK the Transfer Format of a document, given its path and the Transfer Format
against which it should be checked.

6.6.4.1 Submit: PRINT

See Table 30.

TABLE 30/T.611

Syntax elements of the <PrintTDD>

Text Based Encoding

Syntax Element C T I/O Keyword Parameter Default Comment

<PrintFunction> B m I FUNCTION "Print" – Submit the printing task to
the CA

<LaId> B m I LA-ID <La-id-
parameter>

–

<ReqId> B m I REQ-ID <Req-id-
parameter>

–

<FileName> B m I FILENAME <Path-
parameter>

– Original file

<InFormat> B m I INFORMAT <Convert-id-
parameter>

– Original format

<Error> B m O ERROR <Error-
parameter>

– The error returned by the CA

<Printer> + o I PRINTER <Printer-id-
parameter>

"STD" "STD" stands for the standard
printer configured inside of the
CA. Further possible values for
the values of the Printer-id are
declared on a per CA basis in the
"PRINT" component of the ICE
(see 9.5)

<Minor> + o O MINOR <Error-
parameter>

–

<Warning> + o O WARNING <Error-
parameter>

–

52 Recommendation T.611 (11/94)

6.6.4.2 Submit: CONVERT

See Table 31.

TABLE 31/T.611

Syntax elements of the <ConvertTDD>

6.6.4.3 Submit: CHECK

See Table 32.

TABLE 32/T.611

Syntax elements of the <CheckTDD>

Text Based Encoding

Syntax Element C T I/O Keyword Parameter Default Comment

<ConvertFunction> B m I FUNCTION "Convert" – Submit the converting task to
the CA

<LaId> B m I LA-ID <La-id-
parameter>

–

<ReqId> B m I REQ-ID <Req-id-
parameter>

–

<FileName> B m I FILENAME <Path-
parameter>

– Original file

<Target> B m I TARGET <Path-
parameter>

– Target file

<InFormat> B m I INFORMAT <Convert-id-
parameter>

– Original format

<OutFormat> B m I OUTFORMAT <Convert-id-
parameter>

– Target format

<Error> B m O ERROR <Error-
parameter>

– The error returned by the CA

<Minor> + o O MINOR <Error-
parameter>

–

<Warning> + o O WARNING <Error-
parameter>

–

Text Based Encoding

Syntax Element C T I/O Keyword Parameter Default Comment

<DeleteFunction> B m I FUNCTION "Check" – Submit the checking task to
the CA

<LaId> B m I LA-ID <La-id-
parameter>

–

<ReqId> B m I REQ-ID <Req-id-
parameter>

–

Recommendation T.611 (11/94) 53

TABLE 32/T.611 (end)

Syntax elements of the <CheckTDD>

6.6.5 Extend

The extend functionality is divided into of three different TDD types. These are:

– <ExtendTDD> to EXTEND the functionality on a general basis;

– <NationalTDD> to extend the functionality on a NATIONAL basis;

– <PrivateTDD> to extend the functionality on a PRIVATE basis.

6.6.5.1 Extend: EXTEND

The <ExtendTDD> is designed to provide extended features that are not vital for the functioning of the interface, but use
of which becomes widespread or necessary. The <ExtendTDD> is an additional facility (see Table 33).

TABLE 33/T.611

Minimum syntax elements of the <ExtendTDD>

Text Based Encoding

Syntax Element C T I/O Keyword Parameter Default Comment

<FileName> B m I FILENAME <Path-
parameter>

– Original file

<Check> B m I CHECK <Convert-id-
parameter>

– Format to be checked against

<Error> B m O ERROR <Error-
parameter>

– The error returned by the CA

<Minor> + o O MINOR <Error-
parameter>

–

<Warning> + o O WARNING <Error-
parameter>

–

Text Based Encoding

Syntax Element C T I/O Keyword Parameter Default Comment

<ExtendFunction> B m I FUNCTION "Extend" –

<SubFunction> B m I SUBFUNC <Subfunction
-parameter>

– For assignement of values see
appropriate clause of Part II of
this Recommendation

<LaId> B m I LA-ID <La-id-
parameter>

–

<ReqId> B m I REQ-ID <Req-id-
parameter>

–

<Error> B m O ERROR <Error-
parameter>

– The error returned by the CA

54 Recommendation T.611 (11/94)

6.6.5.2 Extend: NATIONAL

The <NationalTDD> is designed to provide national features that are specific to each country. The <NationalTDD> is an
additional facility (see Table 34).

TABLE 34/T.611

Minimum syntax elements of the <NationalTDD>

6.6.5.3 Extend: PRIVATE

The <PrivateTDD> is designed to provide private features that are specific to each manufacturer. The <PrivateTDD> is
an additional facility (see Table 35).

TABLE 35/T.611

Minimum syntax elements of the <PrivateTDD>

Text Based Encoding

Syntax Element C T I/O Keyword Parameter Default Comment

<NationalFunction> B m I FUNCTION "National" –

<SubFunction> B m I SUBFUNC <Subfunction
-parameter>

– Parameter values are for further
study

<LaId> B m I LA-ID <La-id-
parameter>

–

<ReqId> B m I REQ-ID <Req-id-
parameter>

–

<Error> B m O ERROR <Error-
parameter>

– The error returned by the CA

Text Based Encoding

Syntax Element C T I/O Keyword Parameter Default Comment

<PrivateFunction> B m I FUNCTION "Private" –

<SubFunction> B m I SUBFUNC <Subfunction
-parameter>

– Parameter values are for further
study

<LaId> B m I LA-ID <La-id-
parameter>

–

<ReqId> B m I REQ-ID <Req-id-
parameter>

–

<Error> B m O ERROR <Error-
parameter>

– The error returned by the CA

Recommendation T.611 (11/94) 55

7 Exchange Method

This clause describes how TDDs and related data are transferred between LAs and CAs.

To transfer the TDDs and associated data, this Recommendation defines an abstract Exchange Method between LAs
and CAs. This Exchange Method can be realized by different means, which are more or less platform dependent.

To aid LA developers in writing portable code, the platform dependencies have been encapsulated on a functional level
which consists of the Basic Exchange Method Functions (BEM Functions).

Figure 9 depicts this situation.
Recommendation T.611 (11/94)

T0823400-95/d07

FIGURE 9/T.611

Usage of the Basic Exchange Method Functions

Local Application (LA)

LA main code

Basic Exange Method Functions

File Exchange
Method adaption

Primitive Exchange
Method adaption

T.611 Interface

Communication Application (CA)

FIGURE 9/T.611.....[D07] = 9.5 cm

The BEM Functions present a functional interface, which decouples the code of the LA from the real exchange methods
to be used.

The real exchange methods defined for the various platforms are either of type File Exchange Method or Primitive
Exchange Method. This two types of exchange method are fully detailed in 7.3.

NOTE – Since it is only required that the binary exchange of TDDs and associated data conforms to this Recommendation,
the use of the BEM Functions within the code of the LA is optional. The only requirement the LA shall meet is the conformation to
the real exchange method defined for each platform. Thus a LA implementor may decide to interface directly to one of the real
exchange methods defined.

7.1 Overview of Basic Exchange Method Functions
NOTE – The Basic Exchange Method Functions described in this subclause superseds the method documented in the 1992

version of this Recommendation. For details of the differences refer to Annex F where the previous version of the Basic Exchange
Method Functions has been included for convenience.

Different implementations of the Basic Exchange Method are possible. All have in common the Basic Exchange Method
Functions shown in Table 365).

5) In order to differentiate the set of BEM Functions defined in this Recommendation from the set defined in the 1992 version of this

Recommendation, the names of the BEM Functions are starting with an uppercase letter "E".

56 Recommendation T.611 (11/94)

TABLE 36/T.611

Summary of Exchange Method Functions

In general, the Basic Exchange Method Functions rely on a login procedure (ELogin) which returns a Connection-ID.
This Connection-ID is then used in all subsequent invocations of the Basic Exchange Method functions. The login
procedure is comparable to opening an interaction channel between a LA and a CA.

7.1.1 Sequence of Basic Exchange Method Functions

Firstly, a LA needs to login (function ELogin) to the requested CA. No TDD exchange can take place before the login
procedure is completed. By nature, the login procedure is a synchronous mechanism, i.e. the login requires a response
before another action can take place.

When a LA wishes to send a Request TDD to a CA, it shall carry out the following steps:

– build the Request TDD (by any appropriate means);

– invoke the EPutTDD function;

– invoke the EPutData function, if associated data have to be transferred.

When a LA needs to be informed of possible events bound for it, the LA shall:

– invoke the EPollTDD function.

When a LA needs to retrieve a Response TDD (the EPollTDD function above indicated available Response TDDs),
the LA shall:

– invoke the EGetTDD function;

– invoke the EGetData function, if associated data have to be retrieved.

BEM Function Purpose

ELogin LA opens a communication channel between LA and CA

ELogout LA closes the communication channel opened with ELogin ()

EPutTDD LA hands over a TDD to a CA

EPutData LA hands over data referring to a specific TDD

EPollTDD LA asks CA whether a Response TDD is available

EGetTDD LA gets a Response TDD from the CA

EGetData LA gets data referring to a specific TDD

ESetAlarm LA sets an alarm inside of the CA. CA then will wake up LA on specific events

EAbortData LA aborts transfer of data

NOTE – The Basic Exchange Method has been designed to work with many configurations, such as LA
and CA being on the same equipment or CA being a communication server on a LAN. The only assumption
is that the ICE shall be accessible from each LA.

Recommendation T.611 (11/94) 57

When a LA receives an alarm from the CA – applicable only if the CA supports alarms as stated in the ICE (see
clause 9) and if the LA implements the alarm invocation function –, it shall:

– invoke the EPollTDD function;

– invoke the EGetTDD function;

– invoke the EGetData function, if associated data have to be retrieved.

When a LA no longer needs to dialogue with a CA, it shall logout (function ELogout) from this CA. The CA thus knows
the LA-CA communications path is broken and thus will not use the alarm mechanism any longer.

The EPutTDD, EPollTDD, EGetTDD, ESetAlarm, ECallBackRoutine, ELogin and ELogout functions are synchronous,
i.e. the LA can proceed only when those functions have returned. The functions and their calling and return parameters
are shown in 7.2.

Figure 10 illustrates the behaviour described above.

T0823410-95/d08

FIGURE 10/T.611

Sample sequence of Basic Exchange Method Functions

LA CA

Request
TDD

Time

EPutTDD

EPollTDD

Alarm (Signal)

EPollTDD

EGetTDD

Response
TDD

Mandatory function call

Optional function call

CA performs
its task

FIGURE 10/T.611.....[D08] = 12 cm

It is assumed that the LA has already logged into the CA. Data transfer functions are not shown.

7.1.2 Alarm Support

If the CA implements the optional alarm feature, it means that the CA implements the ESetAlarm function. This function
allows a CA to wake up a given LA on specific alarm events.

Support of the alarm feature shall be stated in the ICE (see clause 9).

58 Recommendation T.611 (11/94)

7.1.3 Connection-ID

In order to identify a LA-CA communications path, the Connection-ID is defined. The Connection-ID is computed by
the CA on invocation of the Login request. The LA shall use this identifier throughout the interchange with the same CA
until the LA logs out.

NOTE – The Connection-ID is different from the COM-ID; the COM-ID identifies communication events occurring in
a CA.

7.1.4 CA-ID

The CA-ID identifies a CA. This identifier allows a LA to have simultaneous interactions with multiple LAs. Therefore
the CA-ID is a parameter used in each EM function call.

7.2 Basic Exchange Method Functions

The functions described below replace or supplement the functions of the basic exchange mechanism of the 1992 version
of this Recommendation (see also Annex F). For differentiation purposes, the names of the functions defined within this
Recommendation start with the uppercase letter "E".

All functions perform synchroneously, i.e the caller cannot continue execution until the called function returns.

Since the implementation of the BEM Functions is platform dependent, they are described in a generic way in the
subclauses to follow. The implementation of the functions for the various platforms is described in Part IV of this
Recommendation.

NOTE – The order the parameters are appearing in the following description of the BEM Functions is important for
compatibility.

The data types used for the generic description of the BEM Functions are defined in Table 37. They are mapped to real
data types in the appropriate clauses of Part IV of this Recommendation.

The Direction classification "Input" stands for "parameter shall be presented on function call", "Output" stands for
"parameter valid on return of function".

TABLE 37/T.611

Data types used for description of BEM Functions

7.2.1 Function ELogin

The function ELogin shall be supported by the CA. It shall be invoked by the LA before any LA-CA interchange of
Request TDDs and responses.

Data type Explanation

String Stands for a string of characters

Integer Stands for a number in the minimum range of + 215 ... (215 – 1)

Boolean Stands for a variable taking the value true or false

Memory address Stands for an address inside of LA’s memory

Recommendation T.611 (11/94) 59

7.2.1.1 Purpose

The function ELogin returns to the LA a Connection-ID that will be used all along the LA-CA interaction until the
LA logs out.

Furthermore the ELogin function allows to select a CA on user-provided criteria and returns a CA-ID, which shall be
used in subsequent BEM function calls to address the selected CA.

Selection of a CA is performed by specifying a string containing keywords like "FAX", "ECM" or "EMAIL", separated
by spaces, in the Selector parameter. Since it can be performed by external processes, the selection mechanism is out of
the scope of this Recommendation.

If the Selector parameter is specified, then the CA-ID parameter shall not be specified; when the function call returns,
either the CA-ID parameter contains a valid CA identifier that can be used in further BEM function calls, or the CA-ID
parameter is empty if no CA matched the selection criteria. If the Selector parameter is not specified in the function call,
then no selection is to be performed. In this case the CA-ID parameter shall be specified.

The ELogin function is the place where a CA may control access of a LA to it. This can be achieved by checking the
Login-name and the Password given by the LA. However, the extent to which control of the access rights is performed,
is up to the CA implementation.

7.2.1.2 Behaviour

The CA checks the parameters of the ELogin call. If they match, it then generates a Connection-ID the LA shall use
subsequently in other BEM Function calls. In addition, if the Selector parameter specifies criteria, the function returns
the CA-ID of a CA that match the criteria. If the Connection-ID returned is set to zero, it means the CA failed to connect
with the LA.

7.2.1.3 Parameters

See Table 38.

TABLE 38/T.611

Parameters of the ELogin function

Parameter Data type Comment Direction

Login-name String Name of the LA user connecting to the CA
(differs from the LA-ID)

Input

Password String A password string Input

Selector String A user-provided string specifying connection criteria Input

CA-ID Integer Identifier of the CA that accepts the connection Output

Connection-ID Integer Identifier (handle) of the LA-CA data channel.
Returned by the CA if the ELogin function succeeds.
Otherwise (e.g. identification failed) the CA sets the
value to zero and an appropriate return code is given
by the Status parameter (see below)

Output

Status Integer Return code; a value of zero indicates successful operation Output

60 Recommendation T.611 (11/94)

7.2.2 Function EPutTDD

The function EPutTDD shall be supported by the CA. It may be invoked by a LA. The EPutTDD also supports the
identification of the data files to be transferred to the CA.

Such data files are typically address-list files or documents or both.

7.2.2.1 Purpose

The EPutTDD function conveys a Request TDD to the CA and allows the LA to specify which files need to be
transferred to the CA. The actual transfer of data files to the CA is performed with the EPutData function.

7.2.2.2 Behaviour

The CA copies the Request TDD carried by the EPutTDD function into its internal structures. The result is reported
immediately to the requesting LA. If the LA requests a Data-ID by specifying a Data-ID address, CA returns the
identifier of a data group as Data-ID.

If this identifier is NULL, then no data files (or buffers) are to be transmitted to the CA. If the Data-ID is not NULL,
then the LA performs the subsequent data file transfers with EPutData function. The transfers shall occur immediately
after the call to EPutTDD function.

NOTE – The Data-ID returned may be valid for a limited time only.

7.2.2.3 Parameters

See Table 39.

TABLE 39/T.611

Parameters of the EPutTDD function

7.2.3 Function EPutData

This function allows the actual transfer of data (address lists and/or data files) from the LA to the CA. Depending on the
implementation the data can either be files of buffers.

Parameter Data type Comment Direction

Connection-ID Integer Identifier (handle) of the LA-CA data channel returned by
the ELogin function

Input

CA-ID Integer Identifier of the CA as returned by the ELogin function Input

TDD-location Memory
address

Memory location of the TDD to be passed to the CA.
After return from the function the LA’s TDD may be
deleted or used for other purposes

Input

TDD-size Integer Size in octets of the TDD passed to the CA Input

Data-ID Integer Identifier of the data group, returned by the CA if
requested

Input/Output

Status Integer Return code; a value of zero indicates successful operation Output

Recommendation T.611 (11/94) 61

7.2.3.1 Purpose

The group of files transferred within one function call relates to one previous Request TDD that was transmitted to
the CA by means of a previous EPutTDD function call.

The group is identified by the Data-ID that the CA returned as a result of the previous EPutTDD function call.

7.2.3.2 Behaviour

This function is invoked by the LA after the corresponding Request TDD was transmitted to the CA.

The LA shall build a data structure (Data-Descriptor) that describes where the files/buffers to be conveyed to the CA are
located. The specification of the data structure is language-dependent but cross platform compatibility ensures that the
binary layout does not depend on the platforms or languages.

The LA may transfer all the data in one shot or in multiple calls. The parameter Next indicates whether the function call
is the last in the data group or that more function calls relevant to that data group are to follow.

7.2.3.3 Parameters

See Table 40.

TABLE 40/T.611

Parameters of the EPutData function

7.2.4 Function EPollTDD

The EPollTDD function asks the CA how many Response TDDs are waiting to be handled by the requesting LA.
The EPollTDD returns the number of Response TDDs pending and the type and size of the first Response TDD that will
be returned by the next call to the EGetTDD function.

The EPollTDD function furthermore allows to select the type of TDD that is to be returned by the CA.

Parameter Data type Comment Direction

Connection-ID Integer Identifier (handle) of the LA-CA data channel Input

CA-ID Integer Identifier of the CA Input

Data-ID Integer Identifier of the data group, returned by the CA Input

Data-
Descriptor

Memory
address

Memory address of a data structure specifying which
files/buffers have to be conveyed to the CA

Input

Next Boolean Indicator stating whether more data will be conveyed in a
subsequent call to the function EPutData or that no more
data is to follow (end of the data group)

Input

Status Integer Return code; a value of zero indicates successful operation Output

62 Recommendation T.611 (11/94)

7.2.4.1 Purpose

The EPollTDD function allows to poll the CA in order to know how many Response TDDs are pending for retrieval.

7.2.4.2 Behaviour

The function allows the LA to select the type of Response TDD to be polled by giving a specific TDD-type parameter. If
the LA specifies no TDD-type (TDD-type set to zero), the function selects, if available, any type of TDD and returns the
selected type. The TDD selected, if any, then may be retrieved by a subsequent EGetTDD function call.

The EPollTDD function also returns the size of the Response TDD that will be returned, if any. The CA then should
allocate enough storage space to receive the Response TDD returned by the next call to EGetTDD. The size given by
the CA is an indication of the minimum buffer size that will hold the Response TDD.

Furthermore, the amount of pending Response TDDs – of the selected type – is returned. If the count returned is zero, no
Response TDDs – of the selected type – are pending.

When the CA has many Response TDDs available, it chooses the one it will return first. This Response TDD is the TDD
that will be transmitted to the LA at the next EGetTDD function call emitted by the same LA.

When no Response TDD is available for the requesting LA, the TDD-count is set to the value zero, in which case
the TDD size returned is set to zero as well.

If the TDD that was submitted is erroneous or unknown, e.g. the <TDD Header> is missing, then the function may return
the original Request TDD. In this case the CA shall set the returned TDD-type to zero and the return status to a non-zero
value.

The TDD-type values assigned are shown by Table 41.

TABLE 41/T.611

Assignment of TDD-types

Response TDD TDD-type Response TDD TDD-type

No TDD-typea) 00HEX DISPATCH Response 35HEX

SENDACK Response 10HEX PREVIEW Response 36HEX

RECEIVE Response 20HEX PRINT Response 40HEX

COPY Response 30HEX CONVERT Response 41HEX

DELETE Response 31HEX CHECK Response 42HEX

CANCEL Response 32HEX EXTEND Response 50HEX

PURGE Response 33HEX NATIONAL Response 60HEX

RESCHEDULE Response 34HEX PRIVATE Response 70HEX

a) Used as selector (on input) 00HEX stands for "all TDD-types"; as return value it stands for
unknown or erroneous TDD was submitted, or no Response TDD available.

Recommendation T.611 (11/94) 63

7.2.4.3 Parameters

See Table 42.

TABLE 42/T.611

Parameters of the EPollTDD function

7.2.5 Function EGetTDD

The function EGetTDD shall be supported by the CA. It may be invoked by a LA. EGetTDD allows to retrieve a
Response TDD and get a data group identifier to retrieve the accompanying data files/buffers.

7.2.5.1 Purpose

EGetTDD allows the LA to retrieve a Response TDD into memory and obtain a handle to a group of data files/buffers.
The handle is useful for all TDD types that involve data files/buffers, e.g. Receive or Trace:COPY.

7.2.5.2 Behaviour

The LA specifies the memory address where the CA shall copy a Response TDD that is available for the LA.

The CA shall return to the LA the Response TDD that was qualified by the previous EPollTDD function emitted by the
same LA. The LA shall have prepared a recipient Response TDD area in its internal structures. The invocation of a
EGetTDD function by a LA shall always be preceded by a EPollTDD function call. On call, the LA shall pre-set
the TDD size parameter to the size of its response area. On return, the TDD size parameter shall hold the size of the
Response TDD the CA provided.

If the LA invokes two or more consecutive EGetTDD functions (without an intermediate EPollTDD function call)
the CA may return invalid information.

Parameter Data type Comment Direction

Connection-ID Integer Identifier (handle) of the LA-CA data channel returned by
the ELogin function

Input

CA-ID Integer Identifier of the CA Input

TDD-type Integer Selects/returns the type of Response TDD
expected/available

Input/Output

TDD-size Integer Size of the next Response TDD ready to be retrieved Output

TDD-count Integer Count of Response TDDs pending. Zero indicates: no
response pending

Output

Status Integer Return code; a value of zero indicates successful operation Output

64 Recommendation T.611 (11/94)

The EGetTDD function also returns the Data-ID identifier as a handle to receive the accompanying data files (with a
subsequent EGetData function call).

If the Data-ID parameter value is not zero, then data files need to be retrieved by a subsequent call to the EGetData
function. If the Data-ID parameter is zero, then no additional data is to be retrieved from the CA.

7.2.5.3 Parameters

See Table 43.

TABLE 43/T.611

Parameters of the EGetTDD function

7.2.6 Function EGetData

This function allows the transfer of data files (or buffers) from the CA to the LA. It is called by the LA.

7.2.6.1 Purpose

This function is used to retrieve the data from the CA after receiving a Response TDD (with the EGetTDD function) that
specifies that data is to be retrieved (parameter Data-ID is not zero).

7.2.6.2 Behaviour

Immediately after the EGetTDD, the LA shall call the EGetData in order to receive the corresponding data (files or
buffers). The CA returns a data descriptor containing information about the received data. The CA also returns whether
additional calls to EGetTDD should be performed by the LA to retrieve further pertaining data.

The group of files transferred within one function call relates to one Response TDD (through a EGetTDD function call).
This group is identified by the Data-ID parameter (LA provided).

Parameter Data type Comment Direction

Connection-ID Integer Identifier (handle) of the LA-CA data channel returned by
the ELogin function

Input

CA-ID Integer Identifier of the CA Input

TDD-location Memory
address

Specifies the location where the Response TDD shall be
stored

Input

TDD-size Integer Size of the buffer reserved for storing the Response TDD Input/Output

Data-ID Integer Identifier of the data group, if any Output

Status Integer Return code; a value of zero indicates successful operation Output

Recommendation T.611 (11/94) 65

7.2.6.3 Parameters

See Table 44.

TABLE 44/T.611

Parameters of the EGetData function

7.2.7 Function ESetAlarm

The function ESetAlarm can optionally be supported by the CA. In this case, it can optionally be invoked by a LA. If the
ESetAlarm function is used by a LA, that LA shall supply an AlarmHandler. An AlarmHandler is a function which
receives the subsequent alarms generated by the CA.

A CA shall declare the support of the ESetAlarm function in the ICE.

7.2.7.1 Purpose

This function allows the LA to register to the connected CA the type of alarm events the LA supports. This function
shall not be invoked if the CA does not understand the alarm mechanism. Whether a CA understands the alarm
mechanism may be obtained from the ALARM element of the ICE (see clause 9).

The ESetAlarm function tells the CA that it can give an alarm to the LA by invoking the AlarmHandler supplied.

The LA may temporarily disable an alarm event by disabling the corresponding address of the AlarmHandler, e.g. by
setting the address to NULL. Restoring the alarm event for that alarm type is performed by enabling the address of the
AlarmHandler, e.g. by setting the address to the actual entry point of the AlarmHandler.

The alarm events defined are shown in Table 45.

7.2.7.2 Behaviour

The CA supporting the ESetAlarm function shall record the location of the AlarmHandler function assigned by the LA.
In the minimum, the CA can record as many AlarmHandler locations as there are different logged-in LAs. If an event
registered to a particular LA occurs, the CA shall send the alarm to the particular LA by invoking its AlarmHandler.

Parameter Data type Comment Direction

Connection-ID Integer Identifier (handle) of the LA-CA data channel returned by
the ELogin function

Input

CA-ID Integer Identifier of the CA Input

Data-ID Integer Identifier of the data group Input

Data-
Descriptor

Memory
address

Storage address of a descriptor for the data to be retrieved,
passed to the CA on input and filled by the CA on output

Input/Output

Next Boolean States whether additional data should be retrieved Output

Status Integer Return code; a value of zero indicates successful operation Output

66 Recommendation T.611 (11/94)

TABLE 45/T.611

Alarm events for the ESetAlarm function

7.2.7.3 Parameters

See Table 46.

TABLE 46/T.611

Parameters of the ESetAlarm function

Event name Comment

ASYNC_RESPONSES The LA will not poll the CA. The CA should send an alarm each time a
Response TDD is available

QUEUE_FULL The CA will not accept any further TDDs unless the CA is polled

DOCUMENT_RECEIVED A new document can be received

CONNECTION_LOST The LA-CA connection is lost

SEND_SUCCESS A document was successfully sent

SEND_FAILED A document failed to be sent

CORRUPTED_TDD The CA received a corrupted/unrecognizable TDD

SEND_EVENT A send event occurred in the CA

RECEIVE_EVENT A receive event occurred in the CA

CA_WILL_STOP The CA will no longer process requests. Logout immediately

ALARMS_UNAVAILABLE Alarms are no longer available

TDD_RESP_AVAILABLE A TDD response is available. The LA should poll the CA as soon as possible

NOTE – Some alarms need additional data to give accurate information about the event.

Parameter Data type Comment Direction

Connection-ID Integer Identifier (handle) of the LA-CA data channel returned by
the ELogin function

Input

CA-ID Integer Identifier of the CA Input

Alarm-event Integer Combination of the types of alarms the LA may react to Input

AlarmHandler Memory
address

Information addressing the entry point of the
AlarmHandler. This entry point shall be called by the CA
when one of the registered events occurs

This parameter as well as the AlarmHandler itself is
platform-dependent

Input

Status Integer Return code; a value of zero indicates successful operation Output

Recommendation T.611 (11/94) 67

7.2.7.4 AlarmHandler Function

Depending on the platform, the alarm triggered may have parameters that detail the reason for the alarm.

The AlarmHandler function defines a mechanism that allows a CA to alert the LA that some Response TDDs are
available. The use of this optional mechanism can improve the flow control between LAs and CAs on heavily loaded
systems.

The AlarmHandler is implemented by the LA. The CA calls that function when it needs to trigger an alarm. The alarms
the CA may trigger are specified by the LA by means of the ESetAlarm function.

Some alarms may have parameters. They are passed to the LA along with the function call.

Some alarms imply that the LA polls the CA after having received the alarm (e.g. when the CA has received a new
document). If the CA does not poll the CA quickly enough, the CA may trigger the alarm repeatedly until the LA
performs the expected action.

Since theAlarmHandler function is platform dependent, it is described in greater detail in the appropriate clauses of
Part IV of this Recommendation.

7.2.8 Function EAbortData

The EAbortData function allows to cancel the ongoing transfer of data. It has the effect of canceling the corresponding
TDD too.

7.2.8.1 Purpose

This function is invoked by the LA in order to cancel a data transfer started by EPutData or EGetData.

7.2.8.2 Behaviour

When aborting an EPutData data transfer, the CA shall destroy the corresponding Request TDD that was conveyed by
the previous EPutTDD function call.

When aborting an EGetData data transfer, the CA shall retain the corresponding Response TDD that was retrieved by
the previous EGetTDD function call.

Abortion of the data transfers in either direction may occur only between two EGetData or EPutData function calls
respectively.

Since the LA is responsible for the data transfer between the LA and the CA, calling EAbortData after the last data block
has no effect (the data transfer is completed anyway). For the same reason, calling EAbortData before the first data block
has the effect of cancelling the whole data transfer and the corresponding TDD.

7.2.8.3 Parameters

See Table 47.

7.2.9 Function ELogout

The function ELogout shall be supported by the CA. It shall be invoked by the LA on completion of any LA-CA
interchange of Request TDDs and responses.

7.2.9.1 Purpose

The function ELogout returns to the LA a status that states whether the LA-CA interaction has finished orderly.

7.2.9.2 Behaviour

Before completing the LA-CA dialogue, the CA may (but is not obliged to) process all pending Request TDDs that were
issued by that LA.

68 Recommendation T.611 (11/94)

TABLE 47/T.611

Parameters of the EAbortData function

7.2.9.3 Parameters

See Table 48.

TABLE 48/T.611

Parameters of the ELogout function

7.3 Implementation of Basic Exchange Method Functions

The Basic Exchange Method Functions offer a functional interface, which has to be adapted to the underlying platform
in a well defined way in order to provide a binary compatible interface.

For this purpose this Recommendation defines two real exchange mechanisms:

1) the Primitive Exchange Method; and

2) the File Exchange Method.

The Primitive Exchange Method is fast, but platform dependent; the File Exchange Method is far less platform
independent, but slower and lacks the ability to implement all features offered by the Basic Exchange Method Functions.

The platforms may impose the type of exchange method to support. See Part IV of this Recommendation.

7.3.1 Primitive Exchange Method

The Primitive Exchange Method implementation utilizes function calls. It thus requires from the CA to provide an
entry point for each of the Basic Exchange Method Functions. To achieve binary compatibility, the provision of this
entry point shall conform to the definitions made by this Recommendation for each platform (see Part IV of this
Recommendation).

Parameter Data type Comment Direction

Connection-ID Integer Identifier (handle) of the LA-CA data channel returned by
the ELogin function

Input

CA-ID Integer Identifier of the CA Input

Data-ID Integer Data group identifier Input

Status Integer Return code; a value of zero indicates successful operation Output

Parameter Data type Comment Direction

Connection-ID Integer Identifier (handle) of the LA-CA data channel returned by
the ELogin function

Input

CA-ID Integer Identifier of the CA Input

Status Integer Return code; a value of zero indicates successful operation Output

Recommendation T.611 (11/94) 69

7.3.2 File Exchange Method

The File Exchange Method implementation requires that TDDs are exchanged via files. For this reason, common file
directories have to be agreed upon and shared between the LA and the CA. Therefore, the CA shall declare the complete
paths for these directories in the appropriate section of the ICE.

Three file directories or, more abstract, areas have to be configured:

– an input area for TDDs that are transferred from the LA to the CA;

– an area for Response TDDs;

– an area for jobs that could not be processed due to syntactical errors or other errors. The CA removes
incorrect TDDs from the input area and places them in this area.

These three areas are referred to symbolically as COM_JOB, COM_ACK and COM_ERR respectively.

Because they are implementation-and installation-specific, the complete paths to these areas shall be configurable during
installation of the CA.

If a CA has to support multiple LA connections, it is suggested that the CA sets up three "mother"-areas (directories) as
described above and creates a sub-area (subdirectory) inside of each "mother"-area for each LA which may be
connected. The name of each sub-area may be derived from the LA-ID of the connecting LAs.

Adaptation of the Basic Exchange Method Functions to the File Exchange Method is rather complex, since the Basic
Exchange Method Functions have to be emulated by the adapter.

NOTE – A LA implementation may – although not encouraged by this Recommendation – also interface directly to the
File Exchange Method without using Basic Exchange Method Functions. The disadvantage of this approach is that portability to other
primitive based platforms is more difficult to obtain.

7.3.2.1 TDD Transfer

To issue a function request, the LA places a TDD as a file into the COM_JOB area.

Some implementations, mainly on single tasking platforms, also require that the LA executes a SYNC program. SYNC
stands for synchronization. The SYNC program ensures that the CA receives control and can process TDDs. Whether
there is a need for executing a SYNC is stated in the CA-Descriptor of the corresponding CA.

When the CA has finished processing the TDD, it places the Response-TDD in the COM_ACK response area and
deletes the Request-TDD in the COM_JOB input area. The Response-TDD placed by the CA has the same name as the
former Request-TDD.

The complete cycle of the job transfer is shown in Figure 11.

NOTE – It is not guaranteed that Response-TDDs will be provided in the same sequence as Request-TDDs. Processing is
not necessarily sequential.

7.3.2.2 Error Handling

Request-TDDs not processable by the CA (due to syntactical errors, etc.) are copied to the COM_ERR area and deleted
from the COM_JOB area. The keyword FATAL is inserted at the end of the Response TDD and an error message with
the form [Num/Text] is generated in the appended parameter field.

7.3.2.3 Sync Mechanism

If a SYNC program execution is required by the CA, the LA shall proceed as follows:

– after a Request-TDD is stored, the LA shall issue a SYNC to the CA ("SyncJob" function);

– before the LA polls a Response-TDD, another SYNC to the CA shall be issued ("SyncAck" function).

70 Recommendation T.611 (11/94)

Under DOS, OS/2, UNIX and UNIX-like operating system, the SYNC mechanism shall be implemented by executing
the "APPLI/COM" program from the LA.

The "SyncJob" and "SyncAck" functions (see above) are encoded as follows:

SyncJob: EXEC APPLI/COM JOB

SyncAck: EXEC APPLI/COM ACK

EXEC stands for the platform specific command to launch an executable program.

T0823420-95/d09

TDD TDD TDD

TDD TDD TDD

LA CA

COM_JOB

COM_ACK

Sync

FIGURE 11/T.611

File Exchange Method–TDD Transfer

FIGURE 11/T.611.....[D09] = 8.5 cm

8 Transfer Formats

For proper operation, some requirements apply to the format of the Outgoing and Incoming Files exchanged between LA
and CA. Incoming and Outgoing Files have a specific format which is not necessarily the same as the one used by the
Transmission Files, e.g. a word processing file to be exchanged through the basic mode of the telefax service. In this
case, format conversions are required (they shall be handled by the CA).

In order to exchange documents between LA and CA several Transfer Formats are defined by this Recommendation.
The Transfer Formats apply to the Transfer Files defined in 2.1. These formats should not be confused with the format
transmitted through the network (Transmission Formats) by the telecommunications services nor should they be
confused with the format used by TTDs (TDD coding).

Several Transfer Formats are possible:

– text oriented Transfer Formats;

– graphic oriented Transfer Formats;

– the transparent Transfer Format;

– private Transfer Formats which are either text or graphic oriented.

This Recommendation defines:

– 3 text oriented Transfer Formats (APPLI/COM Extended ASCII, APPLI/COM Standard ASCII and the
Teletex Format);

– 1 graphic oriented Transfer Format (APPLI/COM TIFF);

– the Transparent Format Transfer Format.

Recommendation T.611 (11/94) 71

The Transparent Format may be used only if the document is to be transmitted as a binary file by the telecommunications
service. In this case, no conversion of the contents of the file takes place thus the file will be transmitted unchanged.

This Recommendation is open for the support of private transfer formats. Hence other Transfer Formats (e.g. PostScript)
may be implemented by CA manufacturers to adapt native formats of commonly used application programs (e.g word
processors, data-bases or spreadsheets). To inform a LA about this support, the CA shall place the keyword ADDCONV
into the CA-Descriptor of the ICE (see clause 9).

A CA supporting an additional Transfer Format has to ensure that documents are treated properly for all services
supported by the CA. Restrictions imposed by the service itself have to be treated in a transparent way. Anyway, the
Transfer Formats supported by CA manufacturers shall be described in their related documentation.

Table 49 indicates how Transfer Formats shall be supported by the CA depending on the operating system and the
telecommunications service the CA offers.

TABLE 49/T.611

List of Transfer Formats

The Transfer Formats defined in this Recommendation can be read and generated for the appropriate services under the
appropriate operating systems by conforming CAs.

NOTE 1 – The text-oriented Transfer Formats for the telefax service are supported in the outgoing direction only.

Documents that are transferred to the CA in a text-oriented format shall be edited by the application in such a way that
the format and character set correspond to the requirements of the service, i.e. set the "number of characters/line",
"lines/page", "character pitch", "line spacing" and attributes such as "underline", "superscript" and "subscript".

The CA may reject documents with an incorrect format or character set.

NOTE 2 – If a LA wants to achieve service-independence the LA can use one of the "ASCII"-based formats for document
transfer, since they are the only Transfer Formats that cover most services.

Transfer Format Convert-id Means

APPLI/COM
ASCII437 ASCII Transfer Format as defined in 8.1.1. Use of this format

is restricted to some services. See 8.4

Extended ASCII ASCII ASCII Transfer Format as defined on the supporting CA.
This Transfer Format may differ from the ASCII437 Transfer
Format on those systems which do not support the same
extended ASCII character set

APPLI/COM
Standard ASCII

T.50 T.50 (IRA) Transfer Format as defined in 8.1.2. Use of this
format is restricted to some services. See 8.4

Teletex Format T.61 T.61 Transfer Format as defined in 8.2. Use of this format
is restricted to some services. See 8.4

APPLI/COM TIFF TIFF TIFF Transfer Format as defined in 8.3. Use of this format
is restricted to some services. See 8.4

Transparent Format VOID Stands for "no conversion to be done". Use is restricted for
transparent transfer of document in various "file transfer"
modes of the telecommunications services

72 Recommendation T.611 (11/94)

8.1 APPLI/COM Transfer Formats: Extended and Standard ASCII

The format codes shown in Table 50 are defined for the Transfer Formats APPLI/COM Extended ASCII and
APPLI/COM Standard ASCII. Not all services permit all the format specifications listed (see 8.4). A CA is allowed to
ignore ESC sequences. Furthermore, depending on the resident fonts used to perform ASCII to T.4 (or T.6) conversions,
the CA is allowed to fold lines or rotate pages when required, except if this is disabled explicitly by the LA; in this case,
if the CA may reject conversion or perform it downgraded.

TABLE 50/T.611

Format Effectors for APPLI/COM ASCII Transfer Formats

Format Possible Values HEX ASCII Default

Orientation Portrait 1B 4F 30 ESC O 0 √

Landscape 1B 4F 31 ESC O 1

10 Pitch 1B 50 30 ESC P 0 √

Pitch 12 Pitch 1B 50 31 ESC P 1

15 Pitch 1B 50 32 ESC P 2

6 lines/inch (1 spacing) 1B 4C 30 ESC L 0 √

Line spacing 4 lines/inch (1.5 spacing) 1B 4C 31 ESC L 1

3 lines/inch (2 spacing) 1B 4C 32 ESC L 2

12 lines/inch (0.5 spacing) 1B 4C 33 ESC L 3

Underline off 1B 55 30 ESC U 0 √

Underline on 1B 55 31 ESC U 1

Superscript off 1B 41 30 ESC A 0 √

Superscript on 1B 41 31 ESC A 1

Subscript off 1B 56 30 ESC V 0 √

Attributes Subscript on 1B 56 31 ESC V 1

Boldface off 1B 42 30 ESC B 0 √

Boldface on 1B 42 31 ESC B 1

Strike-out off 1B 53 30 ESC S 0 √

Strike-out on 1B 53 31 ESC S 1

Italics off 1B 49 30 ESC I 0 √

Italics on 1B 49 31 ESC I 1

Fold lines disallowed 1B 54 30 ESC T 0

Fold lines allowed 1B 54 31 ESC T 1 √

Text makeup Rotate page disallowed 1B 52 30 ESC R 0

Rotate page allowed 1B 52 31 ESC R 1 √

New line 0D 0A CR LF

New page 0D 0C CR FF

Font selection Select font number n 1B 43 ’n’ ESC C ’n’ ’n’ = 0

NOTE – The fonts to be selected have to be declared in the ICE (see clause 9). The fonts are normally fixed width fonts, with
a fixed character spacing. The conversion process shall ensure that characters shall neither overlap, nor be lost in the process.
For large font sizes, the line spacing may increase and the formatting change. However, it is the CA responsibility to ensure
that no contents is lost and text lines are legible.

Recommendation T.611 (11/94) 73

8.1.1 Character set of the APPLI/COM Extended ASCII Transfer Format

The characters supported by the APPLI/COM Extended ASCII Transfer Format for the Teletex, Telex and Telefax
services are shown in Tables 51, 52 and 536). This Transfer Format may be invoked in two ways:

– by specifying the parameter value "ASCII437" in the keyword "Convert" on those systems which
implement the code page 437. These systems shall declare it in the ICE;

– by specifying the parameter value "ASCII" in the keyword "Convert" on those systems which implement
the code page 437 as their native character set.

Otherwise, only the lower part of the table (i.e. octets from 20HEX to 7EHEX) is guaranteed to be faithfully converted.
NOTE – The following tables shall be read by selecting first a column, then a row, i.e. character "A" is column 4, row 1.

8.1.2 Character set of the APPLI/COM Standard ASCII Transfer Format

The characters supported by the APPLI/COM Standard ASCII Transfer Format for the Teletex, Telex and Telefax
services are shown in Tables 54, 55 and 56.

8.2 APPLI/COM Transfer Format: T.61

The APPLI/COM T.61 Transfer Format exactly corresponds to the ITU-T Recommendation T.61 for the Teletex service.
Documents that the application transfers in this format are mapped to the Teletex service as it is. The format and codes
shall be checked by the CA, but no conversion shall be performed. This format is suitable for applications that either
already generate this format or are meant to transmit complex text layouts via the Teletex service.

8.3 APPLI/COM Transfer Format: TIFF

TIFF is a graphics oriented transfer format. The name TIFF stands for "Tagged Image File Format". The format of TIFF
files includes the attributes that describe the image, such as resolution and dimensions, and are incorporated via tags in
the TIFF file header. Because the information can be reached via tags, the program that generates TIFF files
(TIFF writer) is not bound to a constant file structure, since a TIFF read program (TIFF reader) simply needs to know
the algorithm necessary to locate the tags.

The TIFF Transfer Format offers the following features:

– it contains pixel information;

– it supports data-compression formats;

– it is independent of the hardware of the generating system (it works with any byte order);

– it is flexible due to its own tag structures.

Because of the fact that the number of possible tag combinations are quite high and not all tags defined are required for
describing an image, several classes of TIFF formats have been formed during the course of TIFF’s development. For
this reason, this Recommendation gives a definition of the profile taken as a basis for an interface-compatible TIFF file.

As a TIFF writer, a CA can generate 4 classes of files:

– TIFF standard format, here known as class 1. This is the default class for a CA TIFF writer.

– TIFF format with compression value 2, here known as class 2. Support of this format is an optional
feature of the CA.

– TIFF format with ITU group 3 compression, here known as class 3. This format is supported by all CAs
that serve the group 3 Telefax service.

– TIFF format with the ITU group 4 compression, here known as class 4. This format is supported by CAs
that serve the group 4 Telefax service.

6) The character set of the APPLI/COM Extended ASCII Transfer Format is a subset of the IBM-PC character set and is therefore

highly suitable for implementations using these systems.

74 Recommendation T.611 (11/94)

�� �� �� �� �� �� �� �� �� �� !� "� #� $� %� &�

��

��

��

��

��

��

��

��

��

��

�!

�"

�#

�$

�%

�&
T0823430-95/d10

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

¶

§

SP

!

"

#

$

%

&

’

(

)

*

+

,

-

.

/

:

;

<

=

>

? O

G

H

I

J

K

L

M

N

P@

Q

R

S

T

U

V

W

X

Y

Z

[

\

]

^

_

‘

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

v

w

x

y

z

{

|

}

~

Ç

ü

é

â

ä

à

å

ç

ê

ë

è

ï

î

ì

Ä

Å

É

æ

Æ

ô

ö

ò

û

ù

Y

Ö

Ü

¢

£

¥

P

ƒ

á

í

ó

ú

ñ

Ñ

o

a

¿

¬
½

¼

¡

«

»

α
β
Γ
π
Σ
σ
µ
τ
Φ
Θ
Ω
δ
∞
∅
∈
∩

≡
±
≥
≤
⌠
⌡
÷
≈
°

⋅

√
n

2

t

(EX

TABLE 51/T.611

Character Set of APPLI/COM Extended ASCII Transfer Format for the Telefax Service group 3 and 4
(corresponds to the ASCII 437 character set)

Conversion direction Action performed

Outgoing

Incoming

All characters shown in the table are accepted into the Teletex service character set

The Transfer Format is not generated in this direction [except in such configurations
where the CA is capable of OCR (Optional Character Recognition)]

NOTE – The “BACKSLASH” (5C) and “BRACES” (7B and 7D) characters, which are often used under DOS
and OS/2, do not belong to the basic Teletex character set. Therefore, they must not be used in documents sent via this service.

HEX HEX HEX

(FIGURE) TABLE 51/T.611.....[D10] = 20 cm

Recommendation T.611 (11/94) 75

�� �� �� �� �� �� �� �� �� �� !� "� #� $� %� &�

��

��

��

��

��

��

��

��

��

��

�!

�"

�#

�$

�%

�&
T0823440-95/d11

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

¶

§

SP

!

"

#

$

%

&

'

(

)

*

+

,

-

.

/

:

;

<

=

>

? O

G

H

I

J

K

L

M

N

P@

Q

R

S

T

U

V

W

X

Y

Z

[

]

^

_

‘

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

v

w

x

y

z

|

~

Ç

ü

é

â

ä

à

å

ç

ê

ë

è

ï

î

ì

Ä

Å

É

æ

Æ

ô

ö

ò

û

ù

Y

Ö

Ü

¢

£

¥

á

í

ó

ú

ñ

Ñ

o

a

¿

½

¼

¡

«

»

β

µ

Ω

±

÷

°

⋅

2

(EX

TABLE 52/T.611

Character Set of APPLI/COM Extended ASCII Transfer Format for the Teletex service

Conversion direction Action performed

Outgoing

Incoming

All characters shown in the table are accepted into the Teletex service character set

In the receive direction some characters can come from the service that are not contained
in the table. These shall fall back onto characters that look similar to the original or by the
character «?» (3F). The character FA is not generated in the receive direction
anyway. The character F9 is generated instead

HEX HEX

HEX

(FIGURE) TABLE 52/T.611.....[D11] = 18 cm

76 Recommendation T.611 (11/94)

�� �� �� �� �� �� �� �� �� �� !� "� #� $� %� &�

��

��

��

��

��

��

��

��

��

��

�!

�"

�#

�$

�%

�&
T0823450-95/d12

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

SP

’

(

)

+

,

-

.

/

:

=

? O

G

H

I

J

K

L

M

N

P

Q

R

S

T

U

V

W

X

Y

Z

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

v

w

x

y

z

(EX

TABLE 53/T.611

Character Set of APPLI/COM Extended ASCII Transfer Format for the telex service

Conversion direction Action performed

Outgoing

Incoming

All characters shown in the table are accepted into the Telex service character set.
Uppercase letters are interpreted as lowercase letters

In the receive direction letters are always encoded in lowercase (Codes 61 to 7A).
Uppercase letters are not generated

HEX HEX

(FIGURE) TABLE 53/T.611.....[D12] = 18.5 cm

Recommendation T.611 (11/94) 77

�� �� �� �� �� �� �� ��

��

��

��

��

��

��

��

��

��

��

�!

�"

�#

�$

�%

�&
T0823460-95/d13

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

SP

!

"

#

$

%

&

’

(

)

*

+

,

-

.

/

:

;

<

=

>

? O

G

H

I

J

K

L

M

N

P@

Q

R

S

T

U

V

W

X

Y

Z

[

]

^

_

‘

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

v

w

x

y

z

|

~

{

}

\

(EX

TABLE 54/T.611

Character Set of APPLI/COM Standard ASCII Transfer Format
for the telefax service group 3 and 4

Conversion direction Action performed

Outgoing

Incoming

All characters shown in the table are accepted into the Telefax group 3 and group 4
service character set

The Transfer Format is not generated in this direction

NOTE – The “BACKSLASH” (5C) and “BRACES” (7B and 7D) characters, which are often used under DOS
and OS/2, do not belong to the Teletex character set. Therefore, they must not be used in documents sent via this service.

HEX HEX HEX

(FIGURE) TABLE 54/T.611.....[D13] = 20 cm

78 Recommendation T.611 (11/94)

�� �� �� �� �� �� �� ��

��

��

��

��

��

��

��

��

��

��

�!

�"

�#

�$

�%

�&
T0823470-95/d14

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

SP

!

"

#

$

%

&

’

(

)

*

+

,

-

.

/

:

;

<

=

>

? O

G

H

I

J

K

L

M

N

P@

Q

R

S

T

U

V

W

X

Y

Z

[

]

^

_

‘

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

v

w

x

y

z

|

~

(EX

TABLE 55/T.611

Character set of the APPLI/COM Standard ASCII Transfer Format for the teletex service

Conversion direction Action performed

Outgoing

Incoming

All characters shown in the table are accepted into the Teletex service character set

In the receive direction, characters can come that are not contained in the above table.
Such characters may be replaced by the character “?” (3F)HEX

(FIGURE) TABLE 55/T.611.....[D14] = 18.5 cm

Recommendation T.611 (11/94) 79

�� �� �� �� �� �� �� ��

��

��

��

��

��

��

��

��

��

��

�!

�"

�#

�$

�%

�&
T0823480-95/d15

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

SP

’

(

)

+

,

-

.

/

:

=

? O

G

H

I

J

K

L

M

N

P

Q

R

S

T

U

V

W

X

Y

Z

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

v

w

x

y

z

(EX

TABLE 56/T.611

Character set of APPLI/COM Standard ASCII Transfer Format for the Telex service

Conversion direction Action performed

Outgoing

Incoming

All characters shown in the table are accepted into the Telex service character set.
Uppercase letters are interpreted as lowercase letters

In the receive direction letters are always encoded in lowercase (Codes 61 to 7A).
Uppercase letters are not generated

HEX HEX

(FIGURE) TABLE 56/T.611.....[D15] = 18.5 cm

8.3.1 APPLI/COM TIFF Profile

The tags recognized by a CA and their handling are summarized in Table 57.

80 Recommendation T.611 (11/94)

TABLE 57/T.611

APPLI/COM TIFF Profile table

Tag TIFF-Reader TIFF-Writer

HEX Name
Accepted

value
(dec)

Default
value
(dec)

Class 1
value
(dec)

Class 2
value
(dec)

Class 3
value
(dec)

Class 4
value
(dec)

FE NewSubfileType
(Note 1)

"0", "2" "0" "0" "0" "0" "0"

FF SubfileType
(Note 1)

"0", "2" "0" "0" "0" "0" "0"

100 ImageWidth ’Width’
(Note 2)

Reject ’Width’ ’Width’ ’Width’ ’Width’

101 ImageLength ’Length’
(Note 3)

Reject ’Length’ ’Length’ ’Length’ ’Length’

102 BitsPerSample "1" "1" "1" "1" "1" "1"

103 Compression "1", "2", "3",
"4", "32773"

(Note 4)
"1" "1" "2" "3" "4"

106 Photometric-
Interpretation

"0", "1" "0" "0" "0" "0" "0"

107 Thresholding Ignore None

108 CellWidth Ignore None

109 CellLength Ignore None

10A FillOrder "1", "2"
(Note 5)

"1" "1" "1" "2" "2"

10D DocumentName Ignore None

10E ImageDescription Ignore None

10F Make Ignore None

110 Model Ignore None

111 StripOffsets ’Offset’ Reject ’Offset’ ’Offset’ ’Offset’ ’Offset’

112 Orientation "1" "1" "1" "1" "1" "1"

115 SamplesPerPixel "1" "1" "1" "1" "1" "1"

116 RowsPerStrip ’Rows’ Reject ’Rows’ ’Rows’ ’Rows’ ’Rows’

117 StripByteCounts ’Count’ Reject ’Count’ ’Count’ ’Count’ ’Count’

118 MinSampleValue "0" "0" "0" "0" "0" "0"

119 MaxSampleValue "1" "1" "1" "1" "1" "1"

11A XResolution "300"
(Note 6)

"300" "300" "300" ’X-res’ ’X-res’

11B YResolution "300"
(Note 6)

"300" "300" "300" ’Y-res’ ’Y-res’

Recommendation T.611 (11/94) 81

TABLE 57/T.611 (end)

APPLI/COM TIFF Profile table

Tag TIFF-Reader TIFF-Writer

HEX Name
Accepted

value
(dec)

Default
value
(dec)

Class 1
value
(dec)

Class 2
value
(dec)

Class 3
value
(dec)

Class 4
value
(dec)

11C PlanarConfiguration "1" "1" "1" "1" "1" "1"

11D PageName Ignore None

11E XPosition Ignore None

11F YPosition Ignore None

120 FreeOffsets Ignore None

121 FreeByteCount Ignore None

122 GrayResponseUnit Ignore None

123 GrayResponseCurve Ignore None

124 Group3Options "0", "4"
(Note 7)

"0" "0" "0" "4" "4"

125 Group4Options "0", "4"
(Note 7)

"0" "0" "0" "4" "0"

128 ResolutionUnit "2" "2" "2" "2" "2" "2"

129 PageNumber ’Page’ Reject ’Page’ ’Page’ ’Page’ ’Page’

12C ColorResponseUnit Ignore None

12D ColorResponseCurve Ignore None

NOTES

1 Both NewSubfileType and SubfileType tags should be accepted by the readers. The writer should generate the
NewSubfileType tag only because it has superseded the SubfileType tag.

2 The following applies: ImageWidth//XResolution <= 215 mm. If the quotient is exceeded, the document can be rejected.
Hence, if the XResolution is 204 dpi (G3 fax standard), the value 1728 for ImageWidth is not exceeded.

3 ImageLength is processed if the following applies to the quotient ImageLength/YResolution < 297 mm. This corresponds to
the length of a DIN A4 sheet of paper. The guarantee applies up to a resolution of 300 dpi. The processing of higher ImageLength
values is an optional feature of the CA.

4 Support of Compression values:
– 1: (uncompressed) is guaranteed only if the resolution value (XResolution, YResolution) is 300 dpi or exactly corresponds

to that of the fax service selected.
– 2: is an optional feature of the CA.
– 3 or 4: ITU group 3/4 compression is guaranteed only if the resolution value (XResolution, YResolution) exactly

corresponds to the resolutions of the Telefax services selected.
– 32773: (pack-bits compression) is an optional feature of the CA.

5 The FillOrder value 2 (= 'reverse bit-order') is allowed only if the Compression value is 3 or 4.

6 For Compression values 3 and 4 the actual resolution value (XResolution, YResolution) in dpi that exactly corresponds to that
of the Telefax service selected shall be specified. The default value of the reader does not apply since the X and Y resolution shall
be applied. The LA is responsible for local conversion of received resolutions.

7 If the Compression value is 3, the value of the Group3Options is 4; otherwise, it is 0. Other combinations shall be rejected.

82 Recommendation T.611 (11/94)

Table 58 summarizes the rules applying to the TIFF Profile table.

TABLE 58/T.611

Rules for TIFF Profile table

8.4 Service Constraints applying to Transfer Formats

Due to the nature of the telecommunications services selected, several constraints are applied to the transfer formats.
These constraints are summarized in Table 59.

TABLE 59/T.611

Transfer Format Constraints

Column Rule

Tag Identifies the name of the tag and its value in hexadecimal notation. If a tag not listed
here is encountered by a TIFF reader, the reader may reject the TIFF file

Reader –
Accepted value

Summarizes the accepted values. Only the values listed are guaranteed to be accepted by
a CA. Other values may be rejected by a CA and thus shall be avoided by a generating
LA. If a value states "ignore", the tag is ignored by the reader

Reader –
Default value

Shows the default value applied if the tag is not specified. If a value states "reject",
the TIFF file shall be rejected if the tag is absent. If a value states "ignore", no default is
applicable, since the tag is ignored by the reader

Writer The writer columns contain the values generated by the appropriate CA TIFF writer class.
If a value states "none", no tag and value is generated in this class

Telecommunications
Service

Allowed
Transfer Format Constraints

Telex ASCII, T.50
No format specifications but the text makeup is allowed. All other
specifications shall be ignored. There are also constraints in the
character set

Teletex

ASCII, T.50, T.61
Only the Teletex specific format specifications are allowed. All other
specifications shall be either ignored or the file shall be rejected.
There are also constraints in the character set

VOID Only allowed in conjunction with a TFT (Telematic File Transfer)
type selection

ASCII, T.50a) All formats and attributes are allowed. If a CA does not support a
specific attribute or format, it is allowed to ignore it

Telefax (G3/G4) TIFF Only allowed if none of the TFT (Telematic File Transfer) types was
selected

VOID Only allowed in conjunction with a TFT (Telematic File Transfer)
type selection

a) Only applicable in outgoing direction.

Recommendation T.611 (11/94) 83

9 ICE

Before a LA can start interacting with a CA, the LA needs to know which CA it requires (based on criteria like the type
of telecommunication services supported) and how to "talk" to that CA. Since the interface described in this
Recommendation aims at multiple platforms, the mechanism prescribed to obtain information from CAs prior to
interacting with them is based on reading configuration information. This configuration information is named the
Interface Configuration Environment (ICE).

A CA provider shall supply this configuration information, so that LAs can get information about a specific CA and the
access to that CA.

The part of the ICE which gives information about a specific CA is called the CA-Descriptor. Depending on whether the
system is a standalone system or utilizes a Local Area Network (LAN), information about the reachable CAs can be
found in different places. Since multiple CAs can be reachable by a LA, there is a need for centralizing the locations of
the individual CA-Descriptors in a "Master ICE" file. The location of the Master ICE file itself is defined on a
per-platform basis (see Annex B).

Therefore, on a given system, a LA shall first read the Master ICE file to discover which CAs it can reach and the
location of those CAs’ CA-Descriptors. Then the LA reads the CA-Descriptor of the CA it wants to utilize. Finally,
the LA logs in to that CA by using the information found in that CA’s CA-Descriptor.

To illustrate these concepts, three typical configurations can be considered:

a) a standalone system supporting multiple LAs and multiple CAs;

b) a LAN-based system where LAs and CAs are located on different machines, and a file server is present;

c) a LAN-based system where LAs and CAs are located on different machines, and no file server is present;

In case a), the Master ICE is located in a specific file path (the precise location depends on the platform, see Annex B),
and the Master ICE lists all the CAs on that system with the location of their respective CA-Descriptor (see Figure 12).

T0823490-95/d16

FIGURE 12/T.611

Standalone System supporting multiple CAs

Standalone Computer running CA(s)

Access to
Telecommunication

Services

CA-Descriptor
for CA #n

Master ICE

CA-Descriptor
for CA #2

CA-Descriptor
for CA #1

FIGURE 12/T.611.....[D16] = 9 cm

84 Recommendation T.611 (11/94)

In case b), the Master ICE is located on the file server, in a file path that all workstations can reach. The Master ICE lists
all the CAs on the LAN and gives the absolute paths of their respective CA-Descriptor (which can be located on other
machines than the file server itself) (see Figure 13).

T0823500-95/d17

LAN

FIGURE 13/T.611

LAN based System with File service

CA-Descriptor
for CA #1

Master ICE

Workstation

Workstation

File server

Workstation

CA-Descriptor
for CA #2

FIGURE 13/T.611.....[D17] = 9.5 cm

In case c), since no file server can centralize the Master ICE file for the whole system, a Master ICE file is located on
each machine that supports one or more CAs, at a fixed location as in case a). The location of the CA-Descriptors is
recorded in the Master ICE with paths relative to that machine (see Figure 14).

T0823510-95/d18

LAN

FIGURE 14/T.611

Peer to peer LAN system

CA-Descriptor
for CA #2

Workstation

CA-Descriptor
for CA #1

Workstation

Master ICE Master ICE

FIGURE 14/T.611.....[D18] = 10 cm

Recommendation T.611 (11/94) 85

9.1 Presentation of the ICE

The ICE is presented using readable text coding, as it is described for TDDs in 6.4.1. Except on those systems where the
native coding of characters is EBCDIC (Code-ID = "E"), IRA coding is used (Code-ID = "I"). The ICE – Master ICE
and CA-Descriptors – shall be presented in form of lines using the IRA character repertoire and shall be formatted as
described for TDDs in 6.4.1.

9.2 Gaining access to the ICE Information

Access to the Master ICE shall be accomplished by means of a "file access method" which is common to most operating
systems. In turn, all of the available access methods to obtain CA-Descriptor information for an individual CA shall be
defined within the Master ICE. The access methods may be "file-based" or may take advantage of more dynamic
methods which may be available within a particular operating environment (e.g DLLs for Windows and executable files
or device drivers for DOS).

9.3 Master ICE

The Master ICE file lists all the CAs that a LA can reach. It contains information about the CA identifier, the supported
communication services, the type of exchange mechanism supported and the location of the CA’s CA-Descriptor where
further information can be obtained.

9.3.1 Formal Description

This subclause describes the syntax of the Master ICE. The first syntax element in the Master ICE is the <Master ICE
Header>. No other element, including SPACE and TABULATION format effectors are allowed before.The detailed
syntax, described in BNF-based grammar is shown below (for a description of the BNF-based grammar see A.1):

<Master ICE> := <Master ICE Header> <CA Entries>

<Master ICE Header> := "I*APPLI/COM*" <Version> "*ITU-T*MASTER_ICE"
-- for definition of <ICE Header> see also 6.3.2.3

<Version> := "1994"
-- <Version> denotes year of approval of this Recommendation

<CA Entries> := "#" <CA Entry> {"#" <CA Entry>}

<CA Entry> := <CA Identifier> <CA Product Info> <CA EM>
<CA Service> {<CA Service>}
<CA ICE Location> {<CA ICE Location>}

<CA Identifier> := "CA-ID" ":" NUMERIC-STRING
-- identifies the CA

<CA Product Info> := "APPLI/COM" ":" STRING(SIZE(1..255))
-- Information about the product, CA manufacturer-provided

<CA EM> := "EM" ":" "FILE" | "PRIMITIVE"
-- exchange mechanism supported by the CA
-- refer to 7.3

<CA Service> := "SERVICE" ":" <Service-id-parameter>
-- telecommunication services supported by the CA
-- refer to 6.4.5.1 and 10.4

<CA ICE Location> := "ACCESS" ":" PATH
-- points to the location of the CA-Descriptor file or driver

86 Recommendation T.611 (11/94)

9.3.2 Configuration

The Master ICE may be configured either manually by means of an "editor" software during the installation of a
particular CA or dynamically by means of an appropriate "driver" software provided by the CA manufacturer7).

The ICE shall be configured so that it takes into account all possible communications applications accessible from within
a system8).

9.4 CA-Descriptor

The CA-Descriptor contains the information relevant to a given CA. It is composed of sections that group logically
related entries.

9.4.1 Formal Description

This subclause describes the syntax of the CA-Descriptor. The first syntax element in the CA-Descriptor is the
<CA-Descriptor Header>. No other element, including SPACE and TABULATION format effectors are allowed before.
The detailed syntax, described in BNF-based grammar is shown below:

<CA-Descriptor> := <CA-Descriptor Header> <CA-Descriptor-component>

<CA-Descriptor Header> := "I*APPLI/COM*" <Version> "*ITU-T*ICE"
-- for definition of <CA-Descriptor Header> see also 6.3.2.3

<Version> := "1994"
-- <Version> denotes year of approval of this Recommendation

<CA-Descriptor-component> := "#" <Section> {<Section>}

<Section> := <Section-Parameter> {<Section-Parameter>}

<Section-Parameter> := <Parameter-Name> ":" <Parameter-Value>

<Parameter-Name> := STRING(SIZE(1..16))

<Parameter-Value> := STRING(SIZE(1..255))

9.4.2 Configuration

The CA-Descriptor information shall be provided by the CA-Manufacturer in the form of a file or via a dynamic means
such as a device driver, executable file or DLL. The access method(s) for the CA-Descriptor shall be defined in the
Master ICE as part of the installation procedure for each CA. The CA-Descriptor may be configured either manually by
means of an "editor" software during the installation of a particular CA or dynamically by means of an appropriate
"driver" software provided by the CA manufacturer. However, a LA relying on the information from a CA-Descriptor
regarding a particular CA shall not assume that the CA is active at that very moment (loaded and running). To be certain
that a particular CA is really active, the LA shall login to that CA. Only when login succeeds shall the CA be considered
active. For information about the login procedure refer to 7.1 and 7.2.1.

9.5 CA-Descriptor Components

Tables 60, 61 and 62 describe the relevant keyword and the corresponding parameter values of the CA-Descriptor.
Subclause 6.4.4 gives complementary information about the coding of the parameter values.

7) Since access to files and to operating system device drivers is similar on popular operating systems, the Master ICE itself may be

implemented statically as a file or dynamically in form of an operating system device driver.

8) It is not necessary for a CA to run within the same physical equipment as the LA does. The CA must only provide access by
means of a device driver or similar.

Recommendation T.611 (11/94) 87

9.5.1 Parameters of the GENERAL Section

See Table 60.

TABLE 60/T.611

CA-Descriptor information items independent of operating system or exchange mechanism

Keyworda) Parameter Interpretation

ALIAS "yes" | "no" Specifies whether the CA supports alias names (user friendly names)

CODEPAGE* STRING Specifies the additional code pages for the extended ASCII character sets
the CA supports. String indicates the number of the code page (e.g. "850")

CODING* Code-ID Specifies which TDD encoding scheme is supported by the CA. See 63 for the
supported values that can be specified. If the Code-ID "E" has to appear
in the ICE, its binary value shall be set in accordance to the code presentation
chosen for the ICE itself, i.e. if the Code-id of the ICE Header is "I"
(APPLI/COM Standard ASCII) then the binary value of the "E" shall be
coded as 45HEX

CONVCHK* <Convert-id-parameter> Declares which transfer formats are supported in the Submit TDD function
CONVERT and/or CHECK. For the syntax of the <Convert-id-parameter>
see also 6.4.5.3

COUNTRY STRING Specifies the country for which the CA is configured. Used to register country
specific features like gaining access to the conversion facility or accessing the
black list of dialling numbers. The value to be placed in the parameter is to be
taken from ITU-T Recommendation T.35. It has to be presented as a decimal
counted, numeric string, i.e. "154" for the Seychelles

DRF "yes" | "no" Boolean-parameter; states whether the CA supports the "Dispatch Received
Files" facility

EXTEND* <keyword> Provides the possibility for extensions to the Recommendation. Can only
be implemented as formal changes to the Recommendation. All the
CA-supported keywords shall be listed

FC "A" | "B" States which Functional Class the CA supports

FONT0 NUMERIC-STRING A digit in the range "1" .. "9" to specify the number of declared fonts. Fonts
are described starting from identifier "Font1" up to "Font 9" (see below)

FONTx* STRING ","
NUMERIC-STRING

The name of the font followed by the pitch (in characters per inch).
The "x" value ranges from 1 to 9

NATIONAL* <keyword> Provides the possibility for national extensions to the Recommendation.
Can only be implemented with the approval of national Administrations.
(All supported keywords shall be listed)

PRINT* <Printer-id-parameter> Declares which printers could be addressed by the CA in the Submit TDD
function PRINT. For the syntax of the <Printer-id-parameter> see also
6.4.4.10

PRIVATE* <keyword> Provides the possibility for private extensions to the Recommendation.
(All supported keywords shall be listed)

RECORD* <keyword> ","
NUMERIC-STRING

Gives the complete list of CA-Record field names supported by the CA, in
the order they are found in the file resulting from the Trace:COPY function.
The CA shall state the keyword followed by – and separated by comma –
the length the field will have in the resulting file. See also Table 23

SUBMIT* "PRINT" |
"CONVERT" |

"CHECK"

Declares which functions are supported in the Submit TDD function.
This keyword shall be repeated as many times as required

a) A "*" (star) at the end of a keyword indicates that this keyword may be repeated.

88 Recommendation T.611 (11/94)

9.5.2 Parameters of the EM Section

See Table 61.

TABLE 61/T.611

CA-Descriptor information items applying for the file exchange mechanism

9.5.3 Parameters of the OPERATING SYSTEM Section

See Table 62.

9.5.4 Parameters of the SERVICE Section

See Table 63.

More service specific information items are described in the related clauses of Part II of this Recommendation.

10 Functional Classes and Profiles

10.1 Functional Class A

Functional Class A (FCA) specifies a set of Transfer Formats and specifies the interactions between LAs and CAs in
order to send and receive documents.

FCA requires the support of:

– the <SendTDD> and the <SendAckTDD> that allows a LA to send a document through a CA;

– the <ReceiveTDD> that allows a LA to retrieve documents received by a CA.

In addition, the LA may select various CA-offered options like the use of additional keywords ("ADDKEYS") or the
provision of the submit functionality ("SUBMIT").

10.2 Functional Class B

In addition to FCA features, Functional Class B (FCB) provides the complete Trace functionality.

FCB is a superset of FCA and gives further integration of communications functions to the users’ applications.

Keyword Parameter Interpretation

EM "file" | "primitive" Exchange Method used to interchange TDDs between LAs and CAs.
"file" and "primitive" are the supported values (see 7.3 for further details)

SYNC "yes" | "no" Indicates whether the CA is "sync-driven". See section 7.3 for further details

F_JOB_Q PATH Specifies the path of the TDD request files. See 7.3 for further details

F_ACK_Q PATH Specifies the path of the TDD response files. See 7.3 for further details

ERROR_Q PATH Specifies the path of the TDD response files relating to errors. See 7.3 for
further details

ALARM "yes" | "no" This Boolean-parameter states whether the CA supports the SetAlarm
function

Recommendation T.611 (11/94) 89

TABLE 62/T.611

CA-Descriptor information items applying to the operating system

TABLE 63/T.611

CA-Descriptor information items applying to the service section

Keyworda) Parameter Interpretation

ENVIRON* "MSDOS" |
"WINDOWS" | "UNIX" |

"OS2" | "MacOS"

This keyword specifies the operating environment of the CA. If a CA supports
several environments, the ICE shall contain as many ENVIRON keyword
instances as the number of different operating systems supported

DRIVER PATH Name of the driver that must be opened to initiate dialogues with the CA.
See Annex E for further details

INT HEX,HEX Indicates the interrupt number. Two hexadecimal numbers; the first specifies
the multiplex number, the second the program code number. If the interrupt is
not multiplexed, then the second hex number shall not be specified

LIB "yes" | "no" This Boolean-parameter states whether the CA is a static library (LA must be
linked to it)

LIB-NAME* PATH Path(s) of the library(ies) (used in conjunction with the LIB keyword)

DLL "yes" | "no" Dynamic Link Library. See Annex E. The ‘DLL-NAME’ keyword shall be
supported only if the DLL exchange mechanism is supported

DLL-NAME* PATH Path(s) of the DLL file(s) (used in conjunction with the DLL keyword)

DDE "yes" | "no" Dynamic Data Exchange mechanism. In the WINDOWS environment if
the application supports the DDE exchange mechanism, it shall specify "yes".
See Annex E. The next three keywords shall be included in the ICE if
the DDE mechanism is used

WIN-APP STRING Application Name (MsDos format) XXXXXXXX.XXX

SUBJECT* STRING All CA "Subjects" shall be mentioned (if any) otherwise leave empty (to be
used with the DDE keyword)

ITEM* STRING All CA "Items" shall be mentioned (if any) otherwise leave empty (to be used
with the DDE keyword)

a) A "*" (star) at the end of a keyword indicates that this keyword may be repeated.

Keyworda) Parameter Interpretation

ADDCONV* STRING
(SIZE (1..8))

Lists additional Transfer Formats supplied by the CA. The names listed here
shall be used to select the Transfer Formats at appropriate places

ADDKEYS* <keyword> Lists all the additional keywords supported by the CA. Only keywords
classified as "+" in the TDD tables of clause 6 may be specified here

a) A "*" (star) at the end of a keyword indicates that this keyword may be repeated.

90 Recommendation T.611 (11/94)

10.3 Additional Functions

The Submit and Extend functionalities are additional facilities that should be declared in the ICE by the CA (see
also 9.5).

10.4 Service Profiles

Support of all the features of a given telecommunication service may be impossible, due to the large number of functions
to implement. On the other hand, offering too many options for the support of a given service leads to compliant but
incompatible implementations.

To help reduce incompatibilities between different vendors’ applications, this Recommendation supports the concept of
Service Profiles. A Service Profile groups a defined set of service features that must be supported by the implemen-
tations claiming compatibility to this Recommendation.

The set of features to be supported for a given Service Profile is defined on a per-service basis.

An implementation may thus claim compatibility to a Service Profile and support additional features. It is therefore
garanteed that two implementations (i.e. a CA and a LA) supporting the same Service Profile will be able to offer all the
features mentioned in the Service Profile, and optionally offer additional features not mandatory for that Service Profile.

CAs shall declare in the Master ICE the Service Profiles supported (see 9.5).

Recommendation T.611 (11/94) 91

PART II – SERVICE DEPENDENCIES
Recommendation T.611 (11/94)

11 Service: Telefax Group 3

Besides the telefax service specific keywords for <SendTDD>, <SendAckTDD> and <ReceiveTDD>, there is one
additional function defined: Poll - to poll a remote fax station for a document to be retrieved. This function shall be
implemented using the <ExtendTDD>. The extension is called <PollExtension>

Together with the <PollExtension> also the <SendTDD> and the SendAckTDD> may be extended to perform a Poll
operation while sending a document.

The extensions are described at appropriate places within this clause.

11.1 Service Specific Syntax Elements

<ServiceDependentKeywordsSend> :=
((<Recipient> [<PollSendExtension>]) | <RecipientSpec>)
((<Document> <Convert> [<Type>] [From] [To]) | <DocumentSpec>)
[<SubAddress>] [<G3Speed>] [<GenCil>] [<HighRes>] [<UseEcm>]

<ServiceDependentKeywordsSendack> :=
<Recipient> [<PollSendExtension>]
((<Document> <Convert> [<Type>] [From] [To]) | <DocumentSpec>)
[<SubAddress>] [<G3Speed>] [<GenCil>] [<HighRes>] [<UseEcm>]

<ServiceDependentKeywordsReceive> :=
[<Originator>]
((<Document> <Convert> <Type>) | <DocumentSpec>)
[SubAddress] [<CvFax3>] [<G3Speed>]

<ExtendSubFunctionKeywords> :=
<PollExtension>

<PollSendExtension> := <DoPoll> <PollPassword> [<PollSelector>]

<PollExtension> := <PollSubFunction> <Recipient> <PollPassword> [<PollSelector>] [<SendTime>]
[<ComId>] [<Minor>] [<Warning>]

See Table 64.

11.2 Text Based Encoding

11.2.1 Mapping of Keywords

See Table 65.

11.2.2 Encoding of Parameters

See also 6.4.4 for the encoding of non service dependent parameters used.

11.2.2.1 Service-id-parameter

The Service-id parameter is encoded as STRING set to the constant value "FX3".

Syntax:

<Service-id-parameter> := "FX3"

92 Recommendation T.611 (11/94)

TABLE 64/T.611

Additional syntax elements for Telefax Group 3

11.2.2.2 Type-id-parameter

The Type-id-parameter is encoded as STRING set to one of the following values:

"STD" Basic Telefax G3 Service (MH)

"BTM" Telematic File Transfer (TFT) of Telefax G3 Service: Basic Transparent Mode

"DTM" Telematic File Transfer (TFT) of Telefax G3 Service: Document Transparent Mode

"EDI" Telematic File Transfer (TFT) of Telefax G3 Service: Edifact

"BFT" Telefax G3 Service: Binary File Transfer

NOTE – The Transmission Format STD (=Modified Hufman Code, MH) is defined per ITU-T Recommendation T.4,
the TFT formats BTM, DTM and EDI are defined per ITU-T Recommendation T.571 and T.30 (Annexes) and the Transmission
Format BFT is defined per ITU-T Recommendation T.434.

Syntax:

<Type-id-parameter> := "STD" | "BTM" | "DTM" | "BFT" | "EDI"

Syntax element Purpose

<Convert> Specifies the Transfer Format to be used

<CvFax3> Specifies the desired Transfer Format for received files

<Document>, <DocumentSpec> Specifies the document or the documents to be sent or being received

<DoPoll> Specifies whether recipient shall be polled in a <SendTDD> or <SendAckTDD>

<G3Speed> Specifies the modulation speed desired (input) or that was used (output)

<GenCil> Specifies the insertion of a CIL when generating the outgoing fax

<HighRes> Indicates the resolution

<Minor> This syntax element returns an additional error code in the Response-TDD

<Originator> Specifies the communications address of the originator

<PollPassword> Specifies the password for polling remote device

<PollSelector> Gives a handle to the recipient in order to poll for a specific document

<PollSubFunction> Specifies the subfunction of the Poll <ExtendTDD>

<Recipient>, <RecipientSpec> Specifies the communications address(es) of the recipient(s)

<SubAddress> Specifies the Originator’s sub-address

<To> Transmission should finish on page number specified

<Type> Specifies the Transmission Format used

<UseEcm> ECM is desired (input) or was activated (output)

<Warning> This syntax element returns an additional warning code in the Response-TDD

Recommendation T.611 (11/94) 93

TABLE 65/T.611

Text Based Encoding of additional syntax elements for Telefax Group 3
(A « denotes the new line format effector)

11.2.2.3 Convert-id-parameter

The Convert-id-parameter is encoded as STRING set to one of the following values:

"ASCII" APPLI/COM Extended ASCII (For outgoing files only)

"ASCII437" APPLI/COM Extended ASCII (For outgoing files only)

"T.50" APPLI/COM Standard ASCII (For outgoing files only)

"TIFF" TIFF Transfer Format as defined in 8.3

"TIFF2" (For incoming files only). APPLI/COM TIFF Class 2 as specified in 8.3

"TIFF3" (For incoming files only). APPLI/COM TIFF Class 3 as specified in 8.3

"VOID" No conversion to be done

Syntax Element Keyword/Parameter Pair

<Convert> "CONVERT" ":" <Convert-id-parameter> «

<CvFax3> "CVFAX3" ":" <Convert-id-parameter> «

<Document> "FILENAME" ":" <File-parameter> «

<DocumentSpec> "FILENAME" ":" "@" <File-of-filespec> «

<DoPoll> "DOPOLL" ":" <Boolean-parameter> «

<From> "FROM" ":" NUMERIC-STRING «

<G3Speed> "G3SPEED" ":" <G3-speed-parameter> «

<GenCil> "GENCIL" ":" <Boolean-parameter> «

<HighRes> "HIGHRES" ":" <Resolution-parameter> «

<Minor> "MINOR" ":" <Error-parameter> «

<Originator> "ADDRESS" ":" <Address-parameter> «

<PollPassword> "PASSWORD" ":" <Password-parameter> «

<PollSelector> "POLLSELECT" ":" <Poll-select-parameter> «

<PollSubFunction> "SUBFUNC" ":" "Poll" «

<Recipient> "ADDRESS" ":" <Address-parameter> «

<RecipientSpec> "ADDRESS" ":" "@" <File-of-addrspec> «

<SubAddress> "SUBADDR" ":" <Sub-address-parameter> «

<To> "TO" ":" NUMERIC-STRING «

<Type> "TYPE" ":" <Type-id-parameter> «

<UseEcm> "USEECM" ":" <Boolean-parameter> «

<Warning> "WARNING" ":" <Error-parameter> «

94 Recommendation T.611 (11/94)

NOTE – If a LA requests a Telefax document that has been received, it is possible to:

– obtain the document in APPLI/COM TIFF class 2 by specifying TIFF2;

– obtain the document in APPLI/COM TIFF class 3 by specifying TIFF3,

provided the CA is capable of generating that special TIFF format. If only TIFF is specified, the document will be delivered in
the APPLI/COM TIFF default class (class 1). However, in the send direction it is sufficient to specify TIFF only (without number
extension), since the compression information is contained in the Transfer Format itself.

The use of the Convert-id-parameter also depends on the Type-id selected. Table 66 depicts this.

TABLE 66/T.611

Permitted Convert-id assignements dependent on Type-id and traffic direction

Syntax:

<Convert-id-parameter> := <Convert-std> | <Convert-bin>

<Convert-std> := <Convert-std-in> | <Convert-std-out>

<Convert-std-in> := "TIFF" | "TIFF2" | "TIFF3"
-- incoming documents

<Convert-std-out> := <Ascii> | "T.50" | "TIFF"
-- outgoing documents

<Ascii> := "ASCII" | STRING ("ASCII" + <Code-page>)

<Code-page> := <digit> <digit> <digit>

<digit> := "0" | ... | "9"

<Convert-bin> := "VOID"

11.2.2.4 File-of-addrspec and Address-parameter

The File-of-addrspec parameter is encoded as PATH which points to a file containing Addrspec-parameters, which
contain the Address-parameter.

The Address-parameter is encoded as STRING. The STRING shall contain the telephone number. If the phone number
starts with a "!" then it may contain special characters that are treated as operators (or modifiers) rather than dial digits,
as shown in Table 67 below.

The telephone number may be terminated by a "#" character (number sign) and may be followed by a subaddress
(subaddress of the remote equipment). The encoding of the subaddress is defined in 11.2.2.7.

Alternatively an alias name may be given instead of the phone number, provided the alias is introduced with a "&"
character. It is assumed that the CA knows how to decode the alias specified. This is typically used when the CA
implements a phone book.

Type-id Convert-id for outgoing traffic Convert-id for incoming traffic

STD ASCII, ASCIIxxxa), T.50, TIFF TIFF, TIFFxb)

BTM, DTM, BFT, EDI VOID

a) xxx stands for a code-page, declared in the ICE, e.g. ASCII437 if code-page 437 has been declared.
b) x stands for the TIFF class to be read, which is a value between 2.3.

Recommendation T.611 (11/94) 95

TABLE 67/T.611

Dial string modifiers for the PSTN

Syntax:

<File-of-addrspec> := PATH
-- The path points to a file containing one or more
-- <Addrspec-parameter>s

<Addrspec-parameter> := <Address-parameter>
["," <Cover-path> "," <Cover-conv> ["," [<Cover-type>] ["," <Nopgbrk>]]]

<Address-parameter> := (<Phone-number> ["#" <Subaddress>]) |
("!" <Dial-command> ["#" <Subaddress>]) |
("&" <Alias>)
-- contains telephone dialing sequence or alias

<Phone-number> := NUMERIC-STRING

<Dial-command> := <Dial-operator> {<Dial-operator>}

<Dial-operator> := "0" | ... | "9" | "*" | "#" | ";" | ":" | "," | "T" | "t" | "P" | "p" | "W" | "w" | "@"

<Subaddress> := <Subaddress-parameter>
-- see 11.2.2.7

<Alias> := STRING

<Cover-path> := PATH
-- Path to a file containing a cover page for specific addressee

Input Type Explanation

"0" | ... | "9" | "*" | "#" Dial digit Dial without interpretation

"!" Modifier First character in the dialling sequence string: enter the "raw dialling mode"

";" Modifier Pause in the dialling process. Duration is CA dependent. Note that the ";"
must be escaped by the "\" character, otherwise the CA may understand it as
a comment introducer

":" Modifier Same as ";" but does not need to be escaped

, Modifier Pause dialling for 2 seconds

"T" | "t" Modifier Enforce "tone" dialling for subsequent digits

"P" | "p" Modifier Enforce "pulse" dialling for subsequent digits

"W" | "w" Modifier CA waits and listens for a 3-seconds, continuous dial tone

"@" Modifier CA listens for remote ringing signal followed by a 5-seconds silence. If
remote answer is not detected, CA responds as defaulted

NOTE – The dial string modifiers may be subject to national administration agreements.

96 Recommendation T.611 (11/94)

<Cover-conv> := <Convert-id-parameter>
-- Specifies the Transfer Format of the cover page file

<Cover-type> := <Type-id-parameter>
-- Specifies the Transmission Format of the cover page

<Nopgbrk> := <Boolean-parameter>
-- If set to true ("Yes") then no page break will occur between the cover
-- page and the main document

11.2.2.5 File-of-filespec and File-parameter

The File-of-filespec parameter is encoded as PATH which points to a file containing Filespec-parameters, which contain
the File-parameter. The File-parameter itself is also encoded as PATH, which points to the file transferred.

Syntax:

<File-of-filespec> := PATH
-- The path points to a file containing one or more
-- <Filespec-parameter>s

<Filespec-parameter> := <File-parameter> "," <File-conv> ["," <File-type>]

<File-parameter> := PATH
-- Path to the file transferred

<File-conv> := <Convert-id-parameter>
-- Specifies the Transfer Format of the file.

<File-type> := <Type-id-parameter>
-- Specifies the Transmission Format of the file

11.2.2.6 G3-speed-parameter

The G3-speed-parameter is encoded as NUMERIC-STRING set to one of the following values:

"2400" 2400 bits per second

"4800" 4800 bits per second

"7200" 7200 bits per second

"9600" 9600 bits per second

"12200" 12200 bits per second

"14400" 14400 bits per second

Syntax:

<G3-speed-parameter> := "2400" | "4800" | "7200" | "9600" | "12200" | "14400"

11.2.2.7 Sub-address-parameter

The Sub-address-parameter is encoded as STRING that represents a sub-address. As defined per ITU-T Recommenda-
tion T.30 (1994) the STRING is restricted to digits ("0".."9") and the characters "+" and "−". The "_" (underline)
character shall be translated into a IRA space character (20HEX) by the CA. The length of the Sub-address-parameter is
restricted to 20 octets.

Syntax:

<Sub-address-parameter> := <Subaddress-digit> {<Subaddress-digit>}

<Subaddress-digit> := "0" | ... | "9" | "*" | "#"
-- the length of the <Sub-address-parameter> is restricted to 20 octets.

Recommendation T.611 (11/94) 97

11.2.2.8 Resolution-parameter

The Resolution-parameter is encoded as NUMERIC-STRING set to one of the following values:

"0" 8 pels per mm horizontal, 3,85 lines per mm vertical (98 dpi vertical)

"1" 8 pels per mm horizontal, 7,7 lines per mm vertical (196 dpi vertical)

"2" 200 dpi horizontal, 200 dpi vertical (200 dpi)

"3" 300 dpi horizontal, 300 dpi vertical (300 dpi)

"4" 400 dpi horizontal, 300 dpi vertical (400 dpi)

"5" 8 pels per mm horizontal, 15,4 lines per mm vertical (392 dpi vertical)

"6" 16 pels per mm horizontal, 15,4 lines per mm vertical (392 dpi vertical)

Syntax:

<Resolution-parameter> := "0" | ... | "6"

11.2.2.9 Password-parameter

The Password-parameter is encoded as STRING. As defined per ITU-T Recommendation T.30 (1994) the character-set
of the STRING is restricted to digits ("0".."9") and the characters "+" and "−". The "_" (underline) character shall be
translated into a IRA space character (20HEX) by the CA.

Syntax:

<Password-parameter> := <Password-digit> {<Password-digit>}

<Password-digit> := "0" | ... | "9" | "*" | "#"
-- the length of the <Password-parameter> is restricted to 20 octets.

11.2.2.10 Poll-select-parameter

The Poll-select-parameter is encoded as STRING. As defined per ITU-T Recommendation T.30 (1994) the character-set
of the STRING is restricted to digits ("0".."9") and the characters "+" and "−". The "_" (underline) character shall be
translated into a IRA space character (20HEX) by the CA.

Syntax:

<Poll-select-parameter> := <Poll-select-digit> {<Poll-select-digit>}

<Poll-select-digit> := "0" | ... | "9" | "*" | "#"
-- the length of the <Poll-select-parameter> is restricted to 20 octets.

11.3 Additional Functionality

11.3.1 Function: Send and SendAck

See Tables 68 and 69.

11.3.2 Function: Receive

See Table 70.

11.3.3 Function: Poll

This extension consists in giving a LA the ability to retrieve a series of documents posted by a remote fax device.

For instance, if user "John" sends documents to remote fax "Tom", and "Tom" has posted documents to be retrieved by
"John", the "Polling" extension allows "John" to receive the documents from "Tom" in the same communication session.

The <ExtendTDD>, expanded with the <PollExtension> is used to specifically retrieve the documents posted by the
remote device (see Table 71).

98 Recommendation T.611 (11/94)

TABLE 68/T.611

Additional functionality of the <SendTDD> for Telefax Group 3

Syntax Element C T I/O
Text Based Encoding

Comment

Keyword Parameter Default

<G3Speed> B o I G3SPEED <G3-speed-
parameter>

Highest speed
available

Modulation speed. If the CA
cannot return the modulation
speed used, it shall blank the
field

<GenCil> + o I GENCIL <Boolean-
parameter>

"Yes" Asks the CA to generate a CIL in
the transmitted file

<HighRes> + o I HIGHRES <Resolution-
parameter>

"0" Enforces higher resolution when
set to values greater than "0".
See also 11.2.2.8

<SubAddress> + o I SUBADDR <Sub-address-
parameter>

– Originator’s sub-address

<UseEcm> + o I USEECM <Boolean-
parameter>

"Yes" States whether Error Correction
Mode shall be used

Send to one addressee

<Recipient> B m I ADDRESS <Address-
parameter>

– Specifies one recipient’s call
number

<DoPoll> + o I DOPOLL <Boolean-
parameter>

"No" If "Yes" receiver is polled for
sending a document

<PollPassword> + o I PASSWORD <Password-
parameter>

–

<PollSelector> + o I SELECT <Poll-select-
parameter>

–

Send to one or many addressees

<RecipientSpec> + m I ADDRESS "@" <File-of-
addrspec>

– Specifies a list of recipients

Send only one file

<Convert> B m I CONVERT <Convert-id-
parameter>

– States the Transfer Format of the
outgoing file

<Document> B m I FILENAME <File-
parameter>

– The single outgoing file to be
transmitted, delivered under the
Transfer Format specified by the
Convert keyword

<Type> B o I TYPE <Type-id-
parameter>

"STD" Specifies the document type to
be sent

<From> + o I FROM NUMERIC-
STRING

First page The first page to be actually sent;
does only apply to text files

<To> + o I TO NUMERIC-
STRING

Last page The last page to be actually sent;
does only apply to text files

Send one or many files

<DocumentSpec> + m I FILENAME "@" <File-of-
filespec>

– Specifies a list of files; uses a
special syntax

Recommendation T.611 (11/94) 99

TABLE 69/T.611

Additional functionality of the <SendAckTDD> for Telefax Group 3

Syntax Element C T I/O
Text Based Encoding

Comment

Keyword Parameter Default

<Recipient> B m I/O ADDRESS <Address-
parameter>

– Specifies one recipient’s call
number

<G3Speed> B o I/O G3SPEED <G3-speed-
parameter>

Highest speed
available

Modulation speed. If the CA
cannot return the modulation
speed used, it shall blank the
field

<GenCil> + o I GENCIL <Boolean-
parameter>

"Yes" Asks the CA to generate a CIL in
the transmitted file

<HighRes> + o I HIGHRES <Resolution-
parameter>

"0" Enforces higher resolution when
set to values greater than "0".
See also 11.2.2.8

<SubAddress> + o I SUBADDR <Sub-address-
parameter>

– Originator’s sub-address

<UseEcm> + o I/O USEECM <Boolean-
parameter>

"Yes" States whether Error Correction
Mode shall be used

<DoPoll> + o I DOPOLL <Boolean-
parameter>

"No" if "Yes" receiver is polled for
sending a document

<PollPassword> + o I PASSWORD <Password-
parameter>

–

<PollSelector> + o I SELECT <Poll-select-
parameter>

–

Send only one file

<Convert> B m I CONVERT <Convert-id-
parameter>

– States the Transfer Format of the
outgoing file

<Document> B m I FILENAME <File-
parameter>

– The single outgoing file to be
transmitted, delivered under the
Transfer Format specified by the
Convert keyword

<Type> B o I TYPE <Type-id-
parameter>

"STD" Specifies the document type to
be sent

<From> + o I FROM NUMERIC-
STRING

First page The first page to be actually sent;
does only apply to text files

<To> + o I TO NUMERIC-
STRING

Last page The last page to be actually sent;
does only apply to text files

Send one or many files

<DocumentSpec> + m I FILENAME "@" <File-of-
filespec>

– Specifies a list of files; uses a
special syntax

100 Recommendation T.611 (11/94)

TABLE 70/T.611

Additional functionality of the <ReceiveTDD> for Telefax Group 3

11.4 CA-Descriptor Settings

A CA supporting the FX3 service shall specify the supported Type-IDs (Transmission Formats) in the CA-Descriptor
(see 9.5)

For support of the Poll TDD, the EXTEND keyword of the CA-Descriptor has to be set accordingly. Table 72 depicts
this.

Syntax Element C T I/O
Text Based Encoding

Comment

Keyword Parameter Default

<CvFax3> B o I CVFAX3 <Convert-id-
parameter>

"TIFF" Transfer format desired by the
LA

<Originator> B o O ADDRESS <Address-
parameter>

– Specifies orginator’s phone
number

<G3Speed> + o O G3SPEED <G3-speed-
parameter>

– Modulation speed. If the CA
cannot return the modulation
speed used, field will be left
empty

<SubAddress> + o I/O SUBADDR <Sub-address-
parameter>

– Recipient’s sub-address; if
specified in the Request, used
as a selector for the retrieval

Only one file received

<Convert> B m O CONVERT <Convert-id-
parameter>

– States the Transfer Format of the
received file

<Document> B m I/O FILENAME <File-
parameter>

– The filename may be pre-set by
the LA on request. If only one
file is received, the name shall be
retained by the CA. If many files
are received the name may be
overwritten by the CA

<Type> B o O TYPE <Type-id-
parameter>

– Specifies the document type
received

Many files received

<DocumentSpec> + m O FILENAME "@" <File-of-
filespec>

– Specifies a list of files; uses a
special syntax

Recommendation T.611 (11/94) 101

TABLE 71/T.611

Syntax elements of <PollExtension> for Telefax Group 3

TABLE 72/T.611

Additional CA-Descriptor settings for Telefax Group 3

Syntax Element C T I/O
Text Based Encoding

Comment

Keyword Parameter Default

<PollSubFunction> B m I SUBFUNC "Poll" – CA shall generate a response

<Recipient> B m I ADDRESS <Address-
parameter>

– Specifies one recipient’s call
number

<PollPassword> B m I PASSWORD <Password-
parameter>

–

<PollSelector> B o I SELECT <Poll-select-
parameter>

<SendTime> B o I SENDTIME <Send-time-
parameter>

"IMMEDIATE" CA shall actually process the
request at the time specified

<ComId> B o O COMID <Com-id-
parameter>

– Identification of the communica-
tion (computed by the CA)

Keyword Parameter CA declares that

FX3 "STD" the Basic Telefax service (MH) is supported

FX3 "BTM" Basic Transparent Mode is supported

FX3 "DTM" Document Transparent Mode is supported

FX3 "BFT" Binary File Transfer is supported

FX3 "EDI" Electronic Data Interchange is supported

EXTEND "Poll" the Poll functionality is supported

102 Recommendation T.611 (11/94)

12 Service: Telefax Group 4

12.1 Service Specific Syntax Elements

<ServiceDependentKeywordsSend> :=
(<Recipient> | <RecipientSpec>)
((<Document> <Convert> [<Type>] [<Name>] [<UserInfo>] [<Prolog>] [From]
[To]) | <DocumentSpec>) [<SubAddress>] [<HighRes>]

<ServiceDependentKeywordsSendAck> :=
<Recipient>
((<Document> <Convert> [<Type>] [<Name>] [<UserInfo>] [<Prolog>] [<Cil>]
[From] [To]) | <DocumentSpec>) [<SubAddress>] [<HighRes>]

<ServiceDependentKeywordsReceive> :=
[<Originator>]
((<Document> <Convert> <Type> [<Name>] [<UserInfo>] [<Prolog>] [<Cil>]
[<FirstPg>]) | <DocumentSpec>) [<CvFax4>] [<SubAddress>]

See Table 73.

TABLE 73/T.611

Additional syntax elements for Telefax Group 4

Syntax Element Purpose

<Cil> Specifies the contents of the Call Identification Line as defined per ITU-T Recommen-
dation F.200. See also G.1

<Convert> Specifies the Transfer Format to be used

<CvFax4> Specifies the desired Transfer Format for received files

<Document>, <DocumentSpec> Specifies the document or the documents to be sent or being received

<FirstPg> Specifies the number of the first received page

<From> Transmission should start from the page number specified

<HighRes> Indicates the resolution

<Name> Assigns a name to the document to be sent or indicates the name of the received
document as defined per ITU-T Recommendation T.571

<Originator> Specifies the communications address of the originator

<Prolog> Path to the "prolog" document. This is a document, coded according to ITU
Recommendation T.61, which is prepended to the main document to be sent

<Recipient>, <RecipientSpec> Specifies the communications address(es) of the recipient(s)

<SubAddress> Specifies the Originator’s sub-address

<To> Transmission should finish on page number specified

<Type> Specifies the Transmission Format used

<UserInfo> Specifies a comment attached to the document to be sent/received. The comment is
transmitted via the telecommunications service

Recommendation T.611 (11/94) 103

12.2 Text Based Encoding

12.2.1 Mapping of Keywords

See Table 74.

TABLE 74/T.611

Text Based Encoding of additional syntax elements for Telefax Group 4
(A « denotes the new line format effector)

12.2.2 Encoding of Parameters

See also 6.4.4 for the encoding of non service dependent parameters used.

12.2.2.1 Service-id-parameter

The Service-id parameter is encoded as STRING set to the constant value "FX4".

Syntax:

<Service-id-parameter> := "FX4"

Syntax Element Keyword/Parameter Pair

<Cil> "CIL" ":" <Cil-parameter> «

<Convert> "CONVERT" ":" <Convert-id-parameter> «

<CvFax4> "CVFAX4" ":" <Convert-id-parameter> «

<Document> "FILENAME" ":" <File-parameter> «

<DocumentSpec> "FILENAME" ":" "@" <File-of-filespec> «

<FirstPg> "FIRSTPG" ":" NUMERIC-STRING «

<From> "FROM" ":" NUMERIC-STRING «

<HighRes> "HIGHRES" ":" <Resolution-parameter> «

<Name> "NAME" ":" STRING (SIZE(1..12)) «

<Originator> "ADDRESS" ":" <Address-parameter> «

<Prolog> "PROLOG" ":" <Path-parameter> «

<Recipient> "ADDRESS" ":" <Address-parameter> «

<RecipientSpec> "ADDRESS" ":" "@" <File-of-addrspec> «

<SubAddress> "SUBADDR" ":" <Sub-address-parameter> «

<To> "TO" ":" NUMERIC-STRING «

<Type> "TYPE" ":" <Type-id-parameter> «

<UserInfo> "USERINFO" ":" STRING (SIZE(1..12)) «

104 Recommendation T.611 (11/94)

12.2.2.2 Type-id-parameter

The Type-id-parameter is encoded as STRING set to one of the following values:

"STD" Basic Telefax G4 Service (MR)

"DTM" Telematic File Transfer (TFT) of Telefax G4 Service: Document Transparent Mode

"EDI" Telematic File Transfer (TFT) of Telefax G4 Service: Edifact

"BFT" Telefax G4 Service: Binary File Transfer

NOTE – The Transmission Format STD (=Modified Read Code, MR) is defined per ITU-T Recommendation T.6, the TFT
formats DTM and EDI are defined per ITU-T Recommendation T.571 and the Transmission Format BFT is defined per ITU-T
Recommendation T.434.

Syntax:

<Type-id-parameter> := "STD" | "DTM" | "BFT" | "EDI"

12.2.2.3 Convert-id-parameter

The Convert-id-parameter is encoded as STRING set to one of the following values:

"ASCII" APPLI/COM Extended ASCII (For outgoing files only)

"ASCII437" APPLI/COM Extended ASCII (For outgoing files only)

"T.50" APPLI/COM Standard ASCII (For outgoing files only)

"T.61" APPLI/COM Transfer Format T.61

"TIFF" TIFF Transfer Format as defined in 8.3

"TIFF2" (For incoming files only). APPLI/COM TIFF Class 2 as specified in 8.3

"TIFF4" (For incoming files only). APPLI/COM TIFF Class 4 as specified in 8.3

"VOID" No conversion to be done

NOTE – If a LA requests a Telefax document that has been received, it is possible to:

– obtain the document in APPLI/COM TIFF class 2 by specifying TIFF2;

– obtain the document in APPLI/COM TIFF class 4 by specifying TIFF4,

provided the CA is capable of generating that special TIFF format. If only TIFF is specified, the document will be delivered in the
APPLI/COM TIFF default class (class 1). However, in the send direction it is sufficient to specify TIFF only (without number
extension), since the compression information is contained in the Transfer Format itself.

The use of the Convert-id-parameter also depends on the Type-ID selected. Table 75 depicts this.

TABLE 75/T.611

Permitted Convert-id assignements dependent on Type-id and traffic direction

Type-id Convert-id for outgoing traffic Convert-id for incoming traffic

STD ASCII, ASCIIxxxa), T.50, TIFF TIFF, TIFFxb)

DTM, BFT, EDI VOID

a) xxx stands for a code-page, declared in the ICE, e.g. ASCII437 if code-page 437 has been declared.
b) x stands for the TIFF class to be read, the possible values are either 2 or 4.

Recommendation T.611 (11/94) 105

Syntax:

<Convert-id-parameter> := <Convert-std> | <Convert-bin> | <Convert-txt>

<Convert-std> := <Convert-std-in> | <Convert-std-out>

<Convert-std-in> := "TIFF" | "TIFF2" | "TIFF4"
-- incoming documents

<Convert-std-out> := <Ascii> | "T.50" | "TIFF"
-- outgoing documents

<Convert-txt> := <Ascii> | "T.50" | "T.61"

<Ascii> := "ASCII" | STRING ("ASCII" + <Code-page>)

<Code-page> := <digit> <digit> <digit>

<digit> := "0" | ... | "9"

<Convert-bin> := "VOID"

12.2.2.4 File-of-addrspec and Address-parameter

The File-of-addrspec parameter is encoded as PATH which points to a file containing Addrspec-parameters, which
contain the Address-parameter.

The Address-parameter is encoded as STRING. The STRING consists of the recipient’s terminal identifier as defined per
ITU-T Recommentation F.184. The mnemonic part of the terminal identifier may be omitted or specified as a question
mark ("?"), in which case no verification of the subscriber’s address is performed. See also Annex G.2.

Alternatively an alias name may be given instead of the terminal identifier, provided the alias is introduced with a "&"
character. It is assumed that the CA knows how to decode the alias specified. Typical use of this feature is when the CA
implements a phone book.

Syntax:

<File-of-addrspec> := PATH
-- The path points to a file containing one or more
-- <Addrspec-parameter>s

<Addrspec-parameter> := <Address-parameter>
["," <Cover-path> "," <Cover-conv> ["," [<Cover-type>] ["," <Nopgbrk>]]]

<Address-parameter> := <Terminal-id> | ("&" <Alias>)

<Terminal-id> := STRING
-- The string shall present the terminal-id as defined per
-- ITU-T Recommendation F.184

<Alias> := STRING

<Cover-path> := PATH
-- Path to a file containing a cover page for specific addressee

<Cover-conv> := <Convert-id-parameter>
-- Specifies the Transfer Format of the cover page file

<Cover-type> := <Type-id-parameter>
-- Specifies the Transmission Format of the cover page

<Nopgbrk> := <Boolean-parameter>
-- If set to true ("Yes") then no page break will occur between the cover
-- page and the main document

106 Recommendation T.611 (11/94)

12.2.2.5 File-of-filespec and File-parameter

The File-of-filespec parameter is encoded as PATH which points to a file containing Filespec-parameters, which contain
the File-parameter. The File-parameter itself is also encoded as PATH, which points to the file transferred.

Syntax:

<File-of-filespec> := PATH
-- The path points to a file containing one or more
-- <Filespec-parameter>s

<Filespec-parameter> := <File-parameter> "," <File-conv> ["," [<File-type>]
["," <Send-parameter> | <SendAck-parameter> | <Receive-parameter>]]

<Send-parameter> := [<File-name>] ["," <File-userinfo>]

<SendAck-parameter> := [<File-name>] ["," [<File-userinfo>] ["," <File-cil>]]

<Receive-parameter> := [<File-name>] ["," [<File-userinfo>] ["," <File-cil>]]

<File-parameter> := PATH
-- Path to the file transferred

<File-conv> := <Convert-id-parameter>
-- Specifies the Transfer Format of the file.

<File-type> := <Type-id-parameter>
-- Specifies the Transmission Format of the file

<File-name> := STRING (SIZE(1..12))
-- Specifies the name of the file to be transmitted

<File-userinfo> := STRING (SIZE(1..12))
-- Specifies additional user to user info to be transmitted

<File-cil> := Cil-parameter
-- See 12.2.2.6 below.

12.2.2.6 Cil-parameter

A string of 72 characters as defined per ITU-T Recommendation F.200, composed as follows (see also G.1):

Terminal identifier of recipient Length: 24 characters

Separator The character "/" (2FHEX)

Terminal identifier of originator Length: 24 characters

Separator The character "/" (2FHEX)

Local date and time of originator Length: 14 characters, format: "YY-MM-DD-HH:MM"

Separator The character "/" (2FHEX)

Reference information Length: 7 characters

Syntax:

<Cil-parameter> := <Recipient-tid> "/" <Originator-tid> "/" <Local-time> "/" <Ref-info>

<Recipient-tid> := STRING (SIZE(24))
-- The string presents the terminal-id as defined per
-- ITU-T Recommendation F.184

<Originator-tid> := STRING (SIZE(24))
-- The string presents the terminal-id as defined per
-- ITU-T Recommendation F.184

<Local-time> := <Date-time-parameter>

<Ref-info> := STRING (SIZE(7))

Recommendation T.611 (11/94) 107

12.2.2.7 Sub-address-parameter

The Sub-address-parameter is encoded as NUMERIC-STRING that represents a sub-address.

Syntax:

<Sub-address-parameter> := NUMERIC-STRING (SIZE(1..4))

12.2.2.8 Resolution-parameter

The Sub-address-parameter is encoded as NUMERIC-STRING set to one of the following values:

"0" 200 dpi

"1" 240 dpi

"2" 300 dpi

"3" 400 dpi

"4" 400 dpi

Syntax:

<Resolution-parameter> := "0" | ... | "4"

12.3 Additional Functionality

12.3.1 Function: Send and SendAck

See Tables 76 and 77.

12.3.2 Function: Receive

See Table 78.

12.4 CA-Descriptor Settings

A CA supporting the FX4 service shall specify the supported Type-id (document Transmission Formats) in the
CA-Descriptor (see 9.5) Table 79 below shows the possible assignments.

13 Service: Teletex

13.1 Service Specific Syntax Elements

<ServiceDependentKeywordsSend> :=
(<Recipient> | <RecipientSpec>)
((<Document> <Convert> [<Type>] [<Name>] [<UserInfo>] [<Prolog>] [From]
[To] [T61Options]) | <DocumentSpec>) [<SubAddress>]

<ServiceDependentKeywordsSendAck> :=
<Recipient>
((<Document> <Convert> [<Type>] [<Name>] [<UserInfo>] [<Prolog>] [<Cil>]
[From] [To] [T61Options]) | <DocumentSpec>) [<SubAddress>]

<ServiceDependentKeywordsReceive> :=
[<Originator>]
((<Document> <Convert> <Type> [<Name>] [<UserInfo>] [<Prolog>] [<Cil>]
[<FirstPg>]) | <DocumentSpec>) [<CvTtx>] [<SubAddress>]

See Table 80.

108 Recommendation T.611 (11/94)

TABLE 76/T.611

Additional functionality of the <SendTDD> for Telefax Group 4

Syntax Element C T I/O
Text Based Encoding

Comment

Keyword Parameter Default

<HighRes> + o I HIGHRES <Resolution-
parameter>

"0" Enforces higher resolution when
set to values greater than "0".
See also 12.2.2.8

<SubAddress> + o I SUBADDR <Sub-address-
parameter>

– Originator’s sub-address

Send to one addressees

<Recipient> B m I ADDRESS <Address-
parameter>

– Specifies one recipient’s call
number

Send to one or many addressees

<RecipientSpec> + m I ADDRESS "@" <File-of-
addrspec>

– Specifies a list of recipients

Send only one file

<Convert> B m I CONVERT <Convert-id-
parameter>

– States the Transfer Format of the
outgoing file

<Document> B m I FILENAME <File-
parameter>

– The single outgoing file to be
transmitted, delivered under the
Transfer Format specified by the
Convert keyword

<Type> B o I TYPE <Type-id-
parameter>

"STD" Specifies the document type to
be sent

<Name> + o I NAME STRING
(SIZE(1..12))

– Assigns a "name" to the files to
be sent. 12 characters maximum.
It corresponds to the filename
parameter in TFT (see ITU-T
Rec. T.571)

<UserInfo> + o I USERINFO STRING
(SIZE(1..12))

– Assigns a user comment to the
document. This comment is
transmitted with the document.
12 characters maximum

<Prolog> + o I PROLOG PATH – Filename of the "control
document" (full path)

<From> + o I FROM NUMERIC-
STRING

First page The first page to be actually sent;
does only apply to text files

<To> + o I TO NUMERIC-
STRING

Last page The last page to be actually sent;
does only apply to text files

Send one or many files

<DocumentSpec> + m I FILENAME "@" <File-of-
filespec>

– Specifies a list of files; uses a
special syntax

Recommendation T.611 (11/94) 109

TABLE 77/T.611

Additional functionality of the <SendAckTDD> for Telefax Group 4

Syntax Element C T I/O
Text Based Encoding

Comment

Keyword Parameter Default

<Recipient> B m I ADDRESS <Address-
parameter>

– Specifies one recipient’s call
number

<HighRes> + o I HIGHRES <Resolution-
parameter>

"0" Enforces higher resolution when
set > "0". See 12.2.2.8

<SubAddress> + o I SUBADDR <Sub-address-
parameter>

– Originator’s sub-address

Send only one file

<Convert> B m I CONVERT <Convert-id-
parameter>

– Transfer format of the outgoing
file

<Document> B m I FILENAME <File-
parameter>

– Single file to be transmitted,
delivered under the Transfer
Format specified by the Convert
keyword

<Type> B o I TYPE <Type-id-
parameter>

"STD" Specifies the document type to
be sent

<Cil> B o O CIL <Cil-
parameter>

– Call identification line built by
the CA (see ITU-T Rec. F.200)

<Name> + o I NAME STRING
(SIZE(1..12))

– Assigns a "name" to the files to
be sent. Corresponds to the
filename parameter in TFT (see
ITU-T Rec. T.571)

<UserInfo> + o I USERINFO STRING
(SIZE(1..12))

– Assigns a user comment to the
document. This comment is
transmitted with the document

<Prolog> + o I PROLOG PATH – Filename of the "control
document" (full path)

<From> + o I FROM NUMERIC-
STRING

First page The first page to be actually sent;
does only apply to text files

<To> + o I TO NUMERIC-
STRING

Last page The last page to be actually sent;
does only apply to text files

Send one or many files

<DocumentSpec> + m I FILENAME "@" <File-of-
filespec>

– Specifies a list of files; uses a
special syntax

110 Recommendation T.611 (11/94)

TABLE 78/T.611

Additional functionality of the <ReceiveTDD> for Telefax Group 4

Syntax Element C T I/O Text Based Encoding Comment

Keyword Parameter Default

<Originator> B o O ADDRESS <Address-
parameter>

– Specifies orginator’s phone
number

<CvFax4> B o I CVFAX4 <Convert-id-
parameter>

"TIFF" Transfer format desired by
the LA

<SubAddress> + o I/O SUBADDR <Sub-address-
parameter>

– Recipient’s sub-address; if
specified in the Request, used
as a selector for the retrieval

Only one file received

<Convert> B m O CONVERT <Convert-id-
parameter>

– States the Transfer Format of the
received file

<Document> B m I/O FILENAME <File-
parameter>

– The filename may be pre-set by
the LA on request. If only one
file is received, the name shall be
retained by the CA. If many files
are received the name may be
overwritten by the CA

<Type> B o O TYPE <Type-id-
parameter>

– Specifies the document type
received

<Cil> B o O CIL <Cil-
parameter>

– Call identification line built by
the CA (see ITU-T Rec. F.200)

<Name> + o O NAME STRING
(SIZE(1..12))

– Returns the name of the
incoming file (12 characters
maximum)

<UserInfo> + o O USERINFO STRING
(SIZE(1..12))

– Assigns a user comment to the
document. This comment is
transmitted with the document.
12 characters maximum

<FirstPg> + o O FIRSTPG NUMERIC-
STRING

– Number of the first page
received

<Prolog> + o I PROLOG PATH – Filename of the Control
document

Many files received

<DocumentSpec> + m O FILENAME "@" <File-of-
filespec>

– Specifies a list of files; uses a
special syntax

Recommendation T.611 (11/94) 111

TABLE 79/T.611

Additional CA-Descriptor settings for Telefax Group 4

TABLE 80/T.611

Additional syntax elements for the Teletex service

Keyword Parameter CA declares that

FX4 "STD" the Basic Telefax service is supported

FX4 "OPD" the Operator Document transmission is supported

FX4 "MD" the Monitor Document transmission is supported

FX4 "CTL" Control Document transmission is supported

FX4 "DTM" Document Transparent Mode is supported

FX4 "BFT" Binary File Transfer is supported

FX4 "EDI" Electronic Data Interchange is supported

Syntax element Purpose

<Cil> Specifies the contents of the Call Identification Line as defined per
ITU-T Recommendation F.200. See also G.1

<Convert> Specifies the Transfer Format to be used

<CvTtx> Specifies the desired Transfer Format for received files

<Document>, <DocumentSpec> Specifies the document or the documents to be sent or being received

<FirstPg> Specifies the number of the first received page

<From> Transmission should start from the page number specified

<Name> Assigns a name to the document to be sent or indicates the name of the received
document as defined per ITU-T Recommendation T.571

<Originator> Specifies the communications address of the originator

<Prolog> Path to the "prolog" document

<Recipient>, <RecipientSpec> Specifies the communications address(es) of the recipient(s)

<SubAddress> Specifies the Originator’s sub-address

<T61Options> Indicates the T.61 coding specific options

<To> Transmission should finish on page number specified

<Type> Specifies the Transmission Format used

<UserInfo> Specifies a comment attached to the document to be sent/received. The comment is
transmitted via the telecommunications service

112 Recommendation T.611 (11/94)

13.2 Text Based Encoding

13.2.1 Mapping of Keywords

See Table 81.

TABLE 81/T.611

Text Based Encoding of additional syntax elements for the Teletex service
(A « denotes the new line format effector)

13.2.2 Encoding of Parameters

See also 6.4.4 for the encoding of non service dependent parameters used.

13.2.2.1 Service-id-parameter

The Service-id parameter is encoded as STRING set to the constant value "TTX".

Syntax:

<Service-id-parameter> := "TTX"

Syntax Element Keyword/Parameter Pair

<Cil> "CIL" ":" <Cil-parameter> «

<Convert> "CONVERT" ":" <Convert-id-parameter> «

<CvTtx> "CVTTX" ":" <Convert-id-parameter> «

<Document> "FILENAME" ":" <File-parameter> «

<DocumentSpec> "FILENAME" ":" "@" <File-of-filespec> «

<FirstPg> "FIRSTPG" ":" NUMERIC-STRING «

<From> "FROM" ":" NUMERIC-STRING «

<Name> "NAME" ":" (SIZE (1..12)) «

<Originator> "ADDRESS" ":" <Address-parameter> «

<Prolog> "PROLOG" ":" <Path-parameter> «

<Recipient> "ADDRESS" ":" <Address-parameter> «

<RecipientSpec> "ADDRESS" ":" "@" <File-of-addrspec> «

<SubAddress> "SUBADDR" ":" <Sub-address-parameter> «

<T61Options> "T61OPTS" ":" <T61-options-parameter> «

<To> "TO" ":" NUMERIC-STRING «

<Type> "TYPE" ":" <Type-id-parameter> «

<UserInfo> "USERINFO" ":" STRING (SIZE (1..12)) «

Recommendation T.611 (11/94) 113

13.2.2.2 Type-id-parameter

The Type-id-parameter is encoded as STRING set to one of the following values:

"STD" Basic Teletex Service (T.61)

"OPD" Basic Teletex Service: Operator Document

"MD" Basic Teletex Service: Monitor Document

"CTL" Basic Teletex Service: Control Document

"DTM" Telematic File Transfer (TFT) of Teletex Service: Document Transparent Mode

"EDI" Telematic File Transfer (TFT) of Teletex Service: Edifact

"BFT" Teletex Service: Binary File Transfer
NOTE – The Transmission Format STD is defined per ITU-T Recommendation T.61, the document types OPD, MD and

CTL are defined per ITU-T Recommendation T.62 (Annex E), the TFT formats DTM and EDI are defined per ITU-T Recommenda-
tion T.571 and the Transmission Format BFT is defined per ITU-T Recommendation T.434.

Syntax:

<Type-id-parameter> := "STD" | "OPD" | "MD" | "CTL" | "DTM" | "BFT" | "EDI"

13.2.2.3 Convert-id-parameter

The Convert-id-parameter is encoded as STRING set to one of the following values:

"ASCII" APPLI/COM Extended ASCII

"ASCII437" APPLI/COM Extended ASCII

"T.50" APPLI/COM Standard ASCII

"T.61" Basic Teletex Service coding as defined per ITU-T Recommendation T.61

"VOID" No conversion to be done

The use of the Convert-id-parameter also depends on the Type-id selected. Table 82 depicts this.

TABLE 82/T.611

Permitted Convert-id assignements dependent on Type-id

Syntax:

<Convert-id-parameter> := <Convert-txt> | <Convert-bin>

<Convert-txt> := <Ascii> | "T.50" | "T.61"

<Ascii> := "ASCII" | STRING ("ASCII" + <Code-page>)

<Code-page> := <digit> <digit> <digit>

<digit> := "0" | ... | "9"

<Convert-bin> := "VOID"

Type-id Permitted Convert-id for incoming and outgoing traffic

STD, OPD, MD, CTL ASCII, ASCIIxxxa), T.50, T.61

DTM, BFT, EDI VOID

a) xxx stands for a code-page, declared in the ICE, e.g. ASCII437 if code-page 437 has been declared.

114 Recommendation T.611 (11/94)

13.2.2.4 File-of-addrspec and Address-parameter

The File-of-addrspec parameter is encoded as PATH which points to a file containing Addrspec-parameters, which
contain the Address-parameter.

The Address-parameter is encoded as STRING. The STRING consists of the recipient’s terminal identifier as defined per
ITU-T Recommentation F.200. The mnemonic part of the terminal identifier may be omitted or specified as a question
mark ("?"), in which case no verification of the subscriber’s address is performed. See also G.2.

Alternatively the presence of the call number as raw dialling number may be indicated by placing an exclamation point
("’!") in front of the first digit. This means the calling equipment must dial the digits that follow the exclamation point as
is, without interpretation.

Furthermore an alias name may be given instead of the terminal identifier, provided the alias is introduced with a "&"
character. It is assumed that the CA knows how to decode the alias specified.

Syntax:

<File-of-addrspec> := PATH
-- The path points to a file containing one or more
-- <Addrspec-parameter>s

<Addrspec-parameter> := <Address-parameter>

<Address-parameter> := <Terminal-id> | ("!" <Dial-sequence>) | ("&" <Alias>)

<Terminal-id> := STRING
-- The string shall present the terminal-id as defined per
-- ITU-T Recommendation F.200

<Dial-sequence> := NUMERIC-STRING

<Alias> := STRING

13.2.2.5 File-of-filespec and File-parameter

The File-of-filespec parameter is encoded as PATH which points to a file containing Filespec-parameters, which contain
the File-parameter. The File-parameter itself is also encoded as PATH, which points to the file transferred.

Syntax:

<File-of-filespec> := PATH
-- The path points to a file containing one or more
-- <Filespec-parameter>s

<Filespec-parameter> := <File-parameter> "," <File-conv> ["," [<File-type>]
["," <Send-parameter> | <SendAck-parameter> | <Receive-parameter>]]

<Send-parameter> := [<File-name>] ["," <File-userinfo>]

<SendAck-parameter> := [<File-name>] ["," [<File-userinfo>] ["," <File-cil>]]

<Receive-parameter> := [<File-name>] ["," [<File-userinfo>] ["," <File-cil>]]

<File-parameter> := PATH
-- Path to the file transferred

<File-conv> := <Convert-id-parameter>
-- Specifies the Transfer Format of the file.

<File-type> := <Type-id-parameter>
-- Specifies the Transmission Format of the file

<File-name> := STRING (SIZE(1..12))
-- Specifies the name of the file to be transmitted

Recommendation T.611 (11/94) 115

<File-userinfo> := STRING (SIZE(1..12))
-- Specifies additional user to user info to be transmitted

<File-cil> := Cil-parameter
-- See 13.2.2.6

13.2.2.6 Cil-parameter

A string of 72 characters as defined per ITU-T Recommendation F.200, composed as follows (see also G.1):

Terminal identifier of recipient Length: 24 characters

Separator The character "/" (2FHEX)

Terminal identifier of originator Length: 24 characters

Separator The character "/" (2FHEX)

Local date and time of originator Length: 14 characters, format: "YY-MM-DD-HH:MM"

Separator The character "/" (2FHEX)

Reference information Length: 7 characters

Syntax:

<Cil-parameter> := <Recipient-tid> "/" <Originator-tid> "/" <Local-time> "/" <Ref-info>

<Recipient-tid> := STRING (SIZE(24))
-- The string presents the terminal-id as defined per
-- ITU-T Recommendation F.184

<Originator-tid> := STRING (SIZE(24))
-- The string presents the terminal-id as defined per
-- ITU-T Recommendation F.184

<Local-time> := <Date-time-parameter>

<Ref-info> := STRING (SIZE(7))

13.2.2.7 Sub-address-parameter

The Sub-address-parameter is encoded as NUMERIC-STRING that represents a sub-address.

Syntax:

<Sub-address-parameter> := NUMERIC-STRING (SIZE(1..4))

13.2.2.8 T61-options-parameter

For further study.

Syntax:

<T61-options-parameter> := STRING

13.3 Additional Functionality

13.3.1 Function: Send and SendAck

See Tables 83 and 84.

13.3.2 Function: Receive

See Table 85.

116 Recommendation T.611 (11/94)

TABLE 83/T.611

Additional functionality of the <SendTDD> for the Teletex service

Syntax Element C T I/O
Text Based Encoding

Comment

Keyword Parameter Default

<SubAddress> + o I SUBADDR <Sub-address-
parameter>

– Originator’s sub-address

Send to one addressee

<Recipient> B m I ADDRESS <Address-
parameter>

– Specifies one recipient’s call
number

Send to one or many addressees

<RecipientSpec> + m I ADDRESS "@" <File-of-
addrspec>

– Specifies a list of recipients

Send only one file

<Convert> B m I CONVERT <Convert-id-
parameter>

– Transfer format of the outgoing
file

<Document> B m I FILENAME <File-
parameter>

– Single file to be transmitted.

<Type> B o I TYPE <Type-id-
parameter>

"STD" Specifies the document type to
be sent

<Name> + o I NAME STRING
(SIZE(1..12))

– Filename parameter in TFT
(T.571)

<UserInfo> + o I USERINFO STRING
(SIZE(1..12))

– Userinfo is transmitted with the
document

<Prolog> + o I PROLOG PATH – Path to control document (T.62)

<From> + o I FROM NUMERIC-
STRING

First page The first page to be actually sent;
does only apply to text files

<To> + o I TO NUMERIC-
STRING

Last page The last page to be actually sent;
does only apply to text files

<T61Options> + o I T61OPTS <T61-options-
parameter>

–

Send one or many files

<DocumentSpec> + m I FILENAME "@" <File-of-
filespec>

– Specifies a list of files; uses a
special syntax

Recommendation T.611 (11/94) 117

TABLE 84/T.611

Additional functionality of the <SendAckTDD> for the Teletex service

Syntax Element C T I/O
Text Based Encoding

Comment

Keyword Parameter Default

<Recipient> B m I ADDRESS <Address-
parameter>

– Specifies one recipient’s call
number

<SubAddress> + o I SUBADDR <Sub-address-
parameter>

– Originator’s sub-address

Send only one file

<Convert> B m I CONVERT <Convert-id-
parameter>

– Transfer format of the outgoing
file

<Document> B m I FILENAME <File-
parameter>

– Single file to be transmitted,
delivered under the Transfer
Format specified by the Convert
keyword

<Type> B o I TYPE <Type-id-
parameter>

"STD" Specifies the document type to
be sent

<Cil> B o O CIL <Cil-
parameter>

– Call identification line built by
the CA (see ITU-T Rec. F.200)

<Name> + o I NAME STRING
(SIZE(1..12))

– Assigns a "name" to the files to
be sent. Corresponds to the
filename parameter in TFT (see
ITU-T Rec. T.571)

<UserInfo> + o I USERINFO STRING
(SIZE(1..12))

– Assigns an user comment to the
document. This comment is
transmitted with the document

<Prolog> + o I PROLOG PATH – Filename of the "control
document" (full path)

<From> + o I FROM NUMERIC-
STRING

First page The first page to be actually sent;
does only apply to text files

<To> + o I TO NUMERIC-
STRING

Last page The last page to be actually sent;
does only apply to text files

<T61Options> + o I T61OPTS <T61-options-
parameter>

–

Send one or many files

<DocumentSpec> + m I FILENAME "@" <File-of-
filespec>

– Specifies a list of files; uses a
special syntax

118 Recommendation T.611 (11/94)

TABLE 85/T.611

Additional functionality of the <ReceiveTDD> for the Teletex service

13.4 CA-Descriptor Settings

A CA supporting the TTX service shall specify the supported Type-id (document Transmission Formats) in the
CA-Descriptor (see 9.5) Table 86 below shows the possible assignments.

Syntax Element C T I/O
Text Based Encoding

Comment

Keyword Parameter Default

<Originator> B o O ADDRESS <Address-
parameter>

– Specifies orginator’s phone
number

<CvTtx> B o I CVTTX <Convert-id-
parameter>

"T.61" Transfer format desired by
the LA

<SubAddress> + o I/O SUBADDR <Sub-address-
parameter>

– Recipient’s sub-address; if
specified in the Request, used
as a selector for retrieval

Only one file received

<Convert> B m O CONVERT <Convert-id-
parameter>

– States the Transfer Format of
the received file

<Document> B m I/O FILENAME <File-
parameter>

– Filename may be pre-set by the
LA. If only one file is received,
the path shall be retained by the
CA. If many files are received
the name may be overwritten
by the CA

<Type> B o O TYPE <Type-id-
parameter>

– Specifies the document type
received

<Cil> B o O CIL <Cil-
parameter>

– Call identification line built by
the CA (see ITU-T Rec. F.200)

<Name> + o O NAME STRING
(SIZE(1..12))

– Returns the name of the
incoming file (12 characters
maximum)

<UserInfo> + o O USERINFO STRING
(SIZE(1..12))

– Assigns an user comment to the
document. This comment is
transmitted with the document

<FirstPg> + o O FIRSTPG NUMERIC-
STRING

– Number of the first page
received

<Prolog> + o I PROLOG PATH – Filename of the Control
document

Many files received

<DocumentSpec> + m O FILENAME "@" <File-of-
filespec>

– Specifies a list of files; uses a
special syntax

Recommendation T.611 (11/94) 119

TABLE 86/T.611

Additional CA-Descriptor settings for the Teletex service

14 Service: Telex via Teletex

14.1 Service Specific Syntax Elements

<ServiceDependentKeywordsSend> :=
(<Recipient> | <RecipientSpec>)
((<Document> <Convert> [<Type>] [From] [To]) | <DocumentSpec>)
[<SubAddress>] [<Notify>]

<ServiceDependentKeywordsSendAck> :=
<Recipient>
((<Document> <Convert> [<Type>] [From] [To]) | <DocumentSpec>)
[<SubAddress>] [<Notify>]

<ServiceDependentKeywordsReceive> :=
[<Originator>] ((<Document> <Convert> <Type>) | <DocumentSpec>)
[<CvTx>] [<SubAddress>]

TABLE 87/T.611

Additional syntax elements for the Telex via Teletex service

Keyword Parameter CA declares that

TTX "STD" the basic Teletex service (T.61) is supported

TTX "OPD" the Operator Document transmission is supported

TTX "MD" the Monitor Document transmission is supported

TTX "CTL" Control Document transmission is supported

TTX "DTM" Document Transparent Mode is supported

TTX "BFT" Binary File Transfer is supported

TTX "EDI" Electronic Data Interchange is supported

Syntax element Purpose

<Convert> Specifies the Transfer Format to be used

<CvTx> Specifies the desired Transfer Format for received files

<Document>, <DocumentSpec> Specifies the document or the documents to be sent or being received

<From> Transmission should start from the page number specified

<Notify> Specifies whether delivery notification is requested

<Originator> Specifies the communications address of the originator

<Recipient>, <RecipientSpec> Specifies the communications address(es) of the recipient(s)

<SubAddress> Specifies the Originator’s sub-address

<To> Transmission should finish on page number specified

<Type> Specifies the Transmission Format used

120 Recommendation T.611 (11/94)

14.2 Text Based Encoding

14.2.1 Mapping of Keywords

See Table 88.

TABLE 88/T.611

Text Based Encoding of additional syntax elements for the Telex via Teletex service
(A « denotes the new line format effector)

14.2.2 Encoding of Parameters

See also 6.4.4 for the encoding of non service dependent parameters used.

14.2.2.1 Service-id-parameter

The Service-id parameter is encoded as STRING set to the constant value "TX".

Syntax:

<Service-id-parameter> := "TX"

14.2.2.2 Type-id-parameter

The Type-id-parameter is encoded as STRING set to the constant value "STD".

Syntax:

<Type-id-parameter> := "STD"

NOTE – The Transmission Format STD is defined per ITU-T Recommendation S.1.

Syntax Element Keyword/Parameter Pair

<Convert> "CONVERT" ":" <Convert-id-parameter> «

<CvTx> "CVTX" ":" <Convert-id-parameter> «

<Document> "FILENAME" ":" <File-parameter> «

<DocumentSpec> "FILENAME" ":" "@" <File-of-filespec> «

<From> "FROM" ":" NUMERIC-STRING «

<Notify> "NOTIFY" ":" <Boolean-parameter> «

<Originator> "ADDRESS" ":" <Address-parameter> «

<Recipient> "ADDRESS" ":" <Address-parameter> «

<RecipientSpec> "ADDRESS" ":" "@" <File-of-addrspec> «

<SubAddress> "SUBADDR" ":" <Sub-address-parameter> «

<To> "TO" ":" NUMERIC-STRING «

<Type> "TYPE" ":" <Type-id-parameter> «

Recommendation T.611 (11/94) 121

14.2.2.3 Convert-id-parameter

The Convert-id-parameter is encoded as STRING set to one of the following values:

"ASCII" APPLI/COM Extended ASCII

"ASCII437" APPLI/COM Extended ASCII

"T.50" APPLI/COM Standard ASCII

Syntax:

<Convert-id-parameter> := <Ascii> | "T.50"

<Ascii> := "ASCII" | STRING ("ASCII" + <Code-page>)

<Code-page> := <digit> <digit> <digit>

<digit> := "0" | ... | "9"

14.2.2.4 File-of-addrspec and Address-parameter

The File-of-addrspec parameter is encoded as PATH which points to a file containing Addrspec-parameters, which
contain the Address-parameter.

The Address-parameter is encoded as STRING forming the call number. If a subscriber identification verification is to
be performed, the answerback unit of the receiving terminal must be entered after the call number, separated by a "equal"
sign ("=").

Alternatively an alias name may be given instead of the terminal identifier, provided the alias is introduced with a "&"
character. It is assumed that the CA knows how to decode the alias specified.

NOTE – If it is intended to perform a subscriber identification verification, the complete answerback unit must be entered
after the equal sign, and not just the alphabetic component of the receiver.

Syntax:

<File-of-addrspec> := PATH
-- The path points to a file containing one or more
-- <Addrspec-parameter>s

<Addrspec-parameter> := <Address-parameter>

<Address-parameter> := <Telex-address> | ("&" <Alias>)

<Telex-address> := STRING
-- The string shall present a valid telex address

<Alias> := STRING

14.2.2.5 File-of-filespec and File-parameter

The File-of-filespec parameter is encoded as PATH which points to a file containing Filespec-parameters, which contain
the File-parameter. The File-parameter itself is also encoded as PATH, which points to the file transferred.

Syntax:

<File-of-filespec> := PATH
-- The path points to a file containing one or more
-- <Filespec-parameter>s

<Filespec-parameter> := <File-parameter> "," <File-conv> ["," <File-type>]

<File-parameter> := PATH
-- Path to the file transferred

<File-conv> := <Convert-id-parameter>
-- Specifies the Transfer Format of the file.

<File-type> := <Type-id-parameter>
-- Specifies the Transmission Format of the file

122 Recommendation T.611 (11/94)

14.2.2.6 Sub-address-parameter

The Sub-address-parameter is encoded as NUMERIC-STRING that represents a sub-address.

Syntax:

<Sub-address-parameter> := NUMERIC-STRING

14.3 Additional Functionality

14.3.1 Function: Send and SendAck

See Tables 89 and 90.

TABLE 89/T.611

Additional functionality of the <SendTDD> for the Telex via Teletex service

Syntax Element C T I/O
Text Based Encoding

Comment

Keyword Parameter Default

<Notify> + o I NOTIFY <Boolean-
parameter>

"Yes"

<SubAddress> + o I SUBADDR <Sub-address-
parameter>

– Originator’s sub-address

Send to one addressee

<Recipient> B m I ADDRESS <Address-
parameter>

– Specifies one recipient’s call
number

Send to one or many addressees

<RecipientSpec> + m I ADDRESS "@" <File-of-
addrspec>

– Specifies a list of recipients

Send only one file

<Convert> B m I CONVERT <Convert-id-
parameter>

– Transfer format of the outgoing
file

<Document> B m I FILENAME <File-
parameter>

– Single file to be transmitted,
delivered under the Transfer
Format specified by the Convert
keyword

<Type> B o I TYPE <Type-id-
parameter>

"STD" Specifies the document type to
be sent

<From> + o I FROM NUMERIC-
STRING

First page The first page to be actually sent;
does only apply to text files

<To> + o I TO NUMERIC-
STRING

Last page The last page to be actually sent;
does only apply to text files

Send one or many files

<DocumentSpec> + m I FILENAME "@" <File-of-
filespec>

– Specifies a list of files; uses a
special syntax

Recommendation T.611 (11/94) 123

TABLE 90/T.611

Additional functionality of the <SendAckTDD> for the Telex via Teletex service

14.3.2 Function: Receive

See Table 91.

14.4 CA-Descriptor Settings

A CA supporting the TX service shall specify the supported Type-id (document Transmission Formats) in the
CA-Descriptor (see 9.5) Table 9.2 shows the possible assignments.

Syntax Element C T I/O
Text Based Encoding

Comment

Keyword Parameter Default

<Recipient> B m I ADDRESS <Address-
parameter>

– Specifies one recipient’s call
number

<Notify> + o I NOTIFY <Boolean-
parameter>

"Yes"

<SubAddress> + o I SUBADDR <Sub-address-
parameter>

– Originator’s sub-address

Send only one file

<Convert> B m I CONVERT <Convert-id-
parameter>

– Transfer format of the outgoing
file

<Document> B m I FILENAME <File-
parameter>

– Single file to be transmitted,
delivered under the Transfer
Format specified by the Convert
keyword

<Type> B o I TYPE <Type-id-
parameter>

"STD" Specifies the document type to
be sent

<From> + o I FROM NUMERIC-
STRING

First page The first page to be actually sent;
does only apply to text files

<To> + o I TO NUMERIC-
STRING

Last page The last page to be actually sent;
does only apply to text files

Send one or many files

<DocumentSpec> + m I FILENAME "@" <File-of-
filespec>

– Specifies a list of files; uses a
special syntax

124 Recommendation T.611 (11/94)

TABLE 91/T.611

Additional functionality of the <ReceiveTDD> for the Telex via Teletex service

TABLE 92/T.611

Additional CA-Descriptor settings for the Telex via Teletex service

Syntax Element C T I/O
Text Based Encoding

Comment

Keyword Parameter Default

<Originator> B o O ADDRESS <Address-
parameter>

– Specifies originator’s phone
number

<CvTx> B o I CVTX <Convert-id-
parameter>

"T.50" Transfer format desired by
the LA

<SubAddress> + o I/O SUBADDR <Sub-address-
parameter>

– Recipient’s sub-address; if
specified in the Request, used
as a selector for the retrieval

Only one file received

<Convert> B m O CONVERT <Convert-id-
parameter>

– States the Transfer Format of
the received file

<Document> B m I/O FILENAME <File-
parameter>

– The filename may be pre-set by
the LA on request. If only one
file is received, the name shall be
retained by the CA. If many files
are received the name may be
overwritten by the CA

<Type> B o O TYPE <Type-id-
parameter>

– Specifies the document type
received

Many files received

<DocumentSpec> + m O FILENAME "@" <File-of-
filespec>

– Specifies a list of files; uses a
special syntax

Keyword Parameter CA declares that

TX "STD" the basic service is supported

Recommendation T.611 (11/94) 125

15 Service: Telex
Recommendation T.611 (11/94)

15.1 Service Specific Syntax Elements

<ServiceDependentKeywordsSend> :=
(<Recipient> | <RecipientSpec>)
((<Document> <Convert> [<Type>] [From] [To]) | <DocumentSpec>)
[<SubAddress>]

<ServiceDependentKeywordsSendAck> :=
<Recipient>
((<Document> <Convert> [<Type>] [From] [To]) | <DocumentSpec>)
[<SubAddress>]

<ServiceDependentKeywordsReceive> :=
[<Originator>] ((<Document> <Convert> <Type>) | <DocumentSpec>)
[<CvTlx>] [<SubAddress>]

See Table 93.

TABLE 93/T.611

Additional syntax elements for the Telex service

15.2 Text Based Encoding

15.2.1 Mapping of Keywords

See Table 94.

15.2.2 Encoding of Parameters

See also 6.4.4 for the encoding of non service dependent parameters used.

15.2.2.1 Service-id-parameter

The Service-id-parameter is encoded as STRING set to the constant value "TLX".

Syntax:

<Service-id-parameter> := "TLX"

Syntax element Purpose

<Convert> Specifies the Transfer Format to be used

<CvTlx> Specifies the desired Transfer Format for received files

<Document>, <DocumentSpec> Specifies the document or the documents to be sent or being received

<From> Transmission should start from the page number specified

<Originator> Specifies the communications address of the originator

<Recipient>, <RecipientSpec> Specifies the communications address(es) of the recipient(s)

<SubAddress> Specifies the Originator’s sub-address

<To> Transmission should finish on page number specified

<Type> Specifies the Transmission Format used

126 Recommendation T.611 (11/94)

TABLE 94/T.611

Text Based Encoding of additional syntax elements for the Telex service

(A « denotes the new line format effector)

15.2.2.2 Type-id-parameter

The Type-id-parameter is encoded as STRING set to the constant value "STD".

Syntax:

<Type-id-parameter> := "STD"

NOTE – The Transmission Format STD is defined per ITU-T Recommendation S.1.

15.2.2.3 Convert-id-parameter

The Convert-id-parameter is encoded as STRING set to one of the following values:

"ASCII" APPLI/COM Extended ASCII

"ASCII437" APPLI/COM Extended ASCII

"T.50" APPLI/COM Standard ASCII

Syntax:

<Convert-id-parameter> := <Ascii> | "T.50"

<Ascii> := "ASCII" | STRING ("ASCII" + Code-page>)

<Code-page> := <digit> <digit> <digit>

<digit> := "0" | ... | "9"

15.2.2.4 File-of-addrspec and Address-parameter

The File-of-addrspec parameter is encoded as PATH which points to a file containing Addrspec-parameters, which
contain the Address-parameter.

The Address-parameter is encoded as STRING forming the call number. If a subscriber identification verification is to
be performed, the answerback unit of the receiving terminal must be entered after the call number, separated by an
"equal" sign ("=").

Syntax Element Keyword/Parameter Pair

<Convert> "CONVERT" ":" <Convert-id-parameter> «

<CvTlx> "CVTLX" ":" <Convert-id-parameter> «

<Document> "FILENAME" ":" <File-parameter> «

<DocumentSpec> "FILENAME" ":" "@" <File-of-filespec> «

<From> "FROM" ":" NUMERIC-STRING «

<Originator> "ADDRESS" ":" <Address-parameter> «

<Recipient> "ADDRESS" ":" <Address-parameter> «

<RecipientSpec> "ADDRESS" ":" "@" <File-of-addrspec> «

<SubAddress> "SUBADDR" ":" <Sub-address-parameter> «

<To> "TO" ":" NUMERIC-STRING «

<Type> "TYPE" ":" <Type-id-parameter> «

Recommendation T.611 (11/94) 127

Alternatively an alias name may be given instead of the terminal identifier, provided the alias is introduced with a "&"
character. It is assumed that the CA knows how to decode the alias specified.

NOTE – If it is intended to perform a subscriber identification verification, the complete answerback unit must be entered
after the equal sign, and not just the alphabetic component of the receiver.

Syntax:

<File-of-addrspec> := PATH
-- The path points to a file containing one ore more
-- <Addrspec-parameter>s

<Addrspec-parameter> := <Address-parameter>

<Address-parameter> := <Telex-address> | ("&" <Alias>)

<Telex-address> := STRING
-- The string shall present a valid telex address

<Alias> := STRING

15.2.2.5 File-of-filespec and File-parameter

The File-of-filespec parameter is encoded as PATH which points to a file containing Filespec-parameters, which contain
the File-parameter. The File-parameter itself is also encoded as PATH, which points to the file transferred.

Syntax:

<File-of-filespec> := PATH
-- The path points to a file containing one ore more
-- <Filespec-parameter>s

<Filespec-parameter> := <File-parameter> "," <File-conv> ["," <File-type>]

<File-parameter> := PATH
-- Path to the file transferred

<File-conv> := <Convert-id-parameter>
-- Specifies the Transfer Format of the file

<File-type> := <Type-id-parameter>
-- Specifies the Transmission Format of the file

15.2.2.6 Sub-address-parameter

The Sub-address-parameter is encoded as NUMERIC-STRING that represents a sub-address.

Syntax:

<Sub-address-parameter>:= NUMERIC-STRING

15.3 Additional Functionality

15.3.1 Function: Send and SendAck

See Table 95 and 96.

128 Recommendation T.611 (11/94)

TABLE 95/T.611

Additional functionality of the <SendTDD> for the Telex service

Text Based Encoding

Syntax Element C T I/O Keyword Parameter Default Comment

<SubAddress> + o I SUBADDR <Sub-address-
parameter>

– Originator's sub-address

Send to one addressee

<Recipient> B m I ADDRESS <Address-
parameter>

– Specifies one recipient's call
number

Set to one or many addressees

<RecipientSpec> + m I ADDRESS "@" <File-of-
addrspec>

– Specifies a list of recipients

Send only one file

<Convert> B m I CONVERT <Convert-id-
parameter>

– Transfer format of the outgoing
file

<Document> B m I FILENAME <File-
parameter>

– Single file to be transmitted,
delivered under the Transfer
Format specified by the Convert
keyword

<Type> B o I TYPE <Type-id-
parameter>

"STD" Specifies the document type to
be sent

<From> + o I FROM NUMERIC-
STRING

First page The first page to be actually sent;
does only apply to text files

<To> + o I TO NUMERIC-
STRING

Last page The last page to be actually sent;
does only apply to text files

Send one or many files

<DocumentSpec> + m I FILENAME "@" <File-of-
filespec>

– Specifies a list of files; uses a
special syntax

Recommendation T.611 (11/94) 129

TABLE 96/T.611

Additional functionality of the <SendAckTDD> for the Telex via Teletex service

Text Based Encoding

Syntax Element C T I/O Keyword Parameter Default Comment

<Recipient> B m I ADDRESS <Address-
parameter>

– Specifies one recipient's call
number

<SubAddress> + o I SUBADDR <Sub-address-
parameter>

– Originator's sub-address

Send only one file

<Convert> B m I CONVERT <Convert-id-
parameter>

– Transfer format of the outgoing
file

<Document> B m I FILENAME <File-
parameter>

– Single file to be transmitted,
delivered under the Transfer
Format specified by the Convert
keyword

<Type> B o I TYPE <Type-id-
parameter>

"STD" Specifies the document type to
be sent

<From> + o I FROM NUMERIC-
STRING

First page The first page to be actually sent;
does only apply to text files

<To> + o I TO NUMERIC-
STRING

Last page The last page to be actually sent;
does only apply to text files

Send one or many files

<DocumentSpec> + m I FILENAME "@" <File-of-
filespec>

– Specifies a list of files; uses a
special syntax

130 Recommendation T.611 (11/94)

15.3.2 Function: Receive

See Table 97.

TABLE 97/T.611

Additional functionality of the <ReceiveTDD> for the Telex via Teletex service

15.4 CA-Descriptor Settings

A CA supporting the TX service shall specify the supported Type-id (document Transmission Formats) in the
CA-Descriptor (see 9.5) Table 98 shows the possible assignments.

TABLE 98/T.611

Additional CA-Descriptor settings for the Telex service

Text Based Encoding

Syntax Element C T I/O Keyword Parameter Default Comment

<Originator> B o O ADDRESS <Address-
parameter>

– Specifies orginator's phone
number

<CvTlx> B o I CVTLX <Convert-id-
parameter>

"T.50" Transfer format desired by the
LA

<SubAddress> + o I/O SUBADDR <Sub-address-
parameter>

– Recipient's sub-address; if
specified in the Request, used as
a selector for the retrieval

Only one file received

<Convert> B m O CONVERT <Convert-id-
parameter>

– States the Transfer Format of the
received file

<Document> B m I/O FILENAME <File-
parameter>

– The filename may be pre-set by
the LA on request. If only one
file is received, the name shall be
retained by the CA. If many files
are received the name may be
overwritten by the CA

<Type> B o O TYPE <Type-id-
parameter>

– Specifies the document type
received

Many files received

<DocumentSpec> + m O FILENAME "@" <File-of-
filespec>

– Specifies a list of files; uses a
special syntax

Keyword Parameter CA declares that

TX "STD" the basic service is supported

Recommendation T.611 (11/94) 131

16 Service: E-Mail

This Recommendation allows sending or receiving information through E-Mail services. Full exhaustive control of
E-Mail services through the interface is not intended.

The definitions made hereafter furthermore enable the access to the Message Handling System (MHS), as described in
the ITU-T X.400-Series of Recommendations. In terms of MHS, the interface provides access to Interpersonal
Messaging.

The implementation of the CA may rely on other E-Mail supporting interfaces as shown in Figure 15. The CA shown
uses an underlying E-Mail interface to communicate with the E-Mail service provider. In general, the CA is free to use
any E-Mail interface to access and control the E-Mail services.

T0823530-94/d19

Local Application

APPLI/COM Interface

Communication
Application

any E-Mail Interface (Service Interface)

E-Mail Service
Provider

Network Interface

Network

FIGURE 15/T.611

Model for E-Mail access

FIGURE 15/T.611...[D19] = 14.5 CM

MHS and other E-Mail systems standardize the syntax and semantic of Interpersonal Messages (IPMs) as well as the
syntax and semantic of Interpersonal Notifications (IPNs)9) and Delivery Reports (DRs).

9) For MHS, ITU-T Recommendation X.420 standardizes the syntax of IPMs and IPNs. In the version from 1984 of

ITU-T Recommendation X.420 the notifications were called SR-UAPDU.

132 Recommendation T.611 (11/94)

A recipient may create and send an IPN automatically or on request of the LA (explicit notification). The IPNs may
either be:

– a Receipt Notification (RN): the IPM was received;

– a Non Receipt Notification (NRN): the IPM was not delivered; in this case, the undelivered IPM may be
transmitted with the NRN.

Contrary to an IPN the DR is created by the message transfer system. The DRs are distinguished in:

– a Delivery Report (DR); or

– a Non-delivery Report (NDR).

In the Send and SendAck TDDs the LA may specify, which Interpersonal Notification (IPN) or Delivery Report (DR)
shall be generated for each recipient. For more information see 16.2.2.6, 16.4 and 16.5.

MHS and other E-Mail systems allow complete IPMs - consisting of heading and body parts – to be transferred as body
part in a message.

This Recommendation supports the transfer of such body parts in the Send (SendAck) and Receive TDDs through a
specific Type-id-parameter (the Type-ID MESSAGE, see 16.2.2.2). Since the content of such a body part is encoded10),
this Recommendation allows to decode and encode such a body part by use of the EncodeIPM and DecodeIPM TDDs.

In case of MHS the IPM is encoded according to ASN.1 BER.

The EncodeIPM and DecodeIPM TDDs shall be implemented using the <ExtendTDD>. The extensions are called:

– <EncodeIPMExtension>; and

– <DecodeIPMExtension> respectively.

The EncodeIPM and DecodeIPM TDDs are described in 16.3.3.

16.1 Service Specific Syntax Elements

Below the service dependent extensions of the generic TDD syntax referred to in 6.1 are shown:

<ServiceDependentKeywordsSend> :=
<S-RecipientSpec> [<S-OriginatorSpec>]
((<Document> <Convert> [<Type>]) | <DocumentSpec>)
<IpmId> [<Alternate>] [<ContType>] [<DiscloRec>] [<ExpiryTime>]
[<ImplicitConv>] [<Importance>] [<Language>] [<Priority>] [<RelatedSpec>]
[<ReplyId>] [<ReplyTime>] [<Sensitivity>] [<Subject>] [<UserInfo>]

<ServiceDependentKeywordsSendAck> :=
<S-RecipientSpec> [<S-OriginatorSpec>]
((<Document> <Convert> [<Type>]) | <DocumentSpec>)
<IpmId> [<Alternate>] [<ContType>] [<DiscloRec>] [<ExpiryTime>]
[<ImplicitConv>] [<Importance>] [<Language>] [<Priority>] [<RelatedSpec>]
[<ReplyId>] [<ReplyTime>] [<Sensitivity>] [<Subject>] [<UserInfo>]
[<MsgSubId>] [<SubmitTime>]

<ServiceDependentKeywordsReceive> :=
<R-RecipientSpec> [<R-OriginatorSpec>]
((<Document> <Convert> <Type>) | <DocumentSpec>)
<IpmId> [<RelatedSpec>] [<ContType>] [<ExpiryTime>] [<Forwarded>]
[<Importance>] [<IncompleteCopy>] [<Language>] [<Priority>] [<ReplyId>]
[<ReplyTime>] [<Sensitivity>] [<Subject>] [<SubmitTime>] [<UserInfo>]

10) In case of MHS the IPM is encoded according to ASN.1 BER.

Recommendation T.611 (11/94) 133

<ExtendSubFunctionKeywords> :=
<EncodeIPMExtension> | <DecodeIPMExtension>

<EncodeIPMExtension> := <EncodeIPMSubFunction>
((<Document> <Convert> [<Type>]) | <DocumentSpec>) <Message>
<S-RecipientSpec> [<S-OriginatorSpec>] <IpmId> [<ContType>] [<ExpiryTime>]
[<Importance>] [<Priority>] [<RelatedSpec>] [<ReplyId>] [<ReplyTime>]
<S-Originator> [<Sensitivity>] [<Subject>] [<UserInfo>]

<DecodeIPMExtension> := <DecodeIPMSubFunction>
<Message> ((<Document> <Convert> <Type>) | <DocumentSpec>)
<S-RecipientSpec> [<S-OriginatorSpec>] <IpmId> [<ContType>] [<ExpiryTime>]
[<Forwarded>] [<Importance>] [<Language>] [<Priority>] [<RelatedSpec>]
[<ReplyId>] [<ReplyTime>] [<Sensitivity>] [<Subject>] [<UserInfo>]

Table 99 describes the additional syntax elements for the E-Mail services. For a mapping of MHS service elements to the
syntax elements used in this Recommendation refer to Table 112 in 16.6.

16.2 Text Based Encoding

16.2.1 Mapping of Keywords

See Table 100.

16.2.2 Encoding of Parameters

See also section 6.4.4 for the encoding of non service dependent parameters used.

16.2.2.1 Service-id-parameter

The Service-id parameter is encoded as STRING set to the constant value "EMAIL".

Syntax:

<Service-id-parameter> := "EMAIL"

16.2.2.2 Type-id-parameter

The Type-id-parameter is encoded as STRING set to one of the following values:

"STD" IA5 Text body part

"TELETEX" Teletex body part

"G3FAX" Telefax Group 3 body part

"G4CLASS1" Telefax Group 4 body part

"VIDEOTEX" Videotex body part

"MESSAGE" Body part contains an IPM (consisting of heading and bodyparts) as transferred by
the E-Mail system

"BILATERAL" Bilateral defined body part contents

"NATIONAL" National defined body part contents

"ODA" ODA body part

Syntax:

<Type-id-parameter> := "STD" | "TELETEX" | "G3FAX" | "G4CLASS1" | "VIDEOTEX" | "MESSAGE" |
"BILATERAL" | "NATIONAL" | "ODA"11).

11) For MHS ITU-T Recommendation X.420 defines a set of parameters related to each body part. These parameters are transferred

by using the Filespec-parameter (see section 16.2.2.8).

134 Recommendation T.611 (11/94)

TABLE 99/T.611

Additional syntax elements for E-Mail services

Syntax element Purpose

<Alternate> Specifies whether alternate recipient(s) are allowed

<ContType> Specifies the content type of the message exchanged

<Convert> Specifies the Transfer Format to be used

<DecodeIPMSubFunction> Identifies the DecodeIPM Subfunction

<DiscloRec> Recipients disclosure

<Document>, <DocumentSpec> Specifies the document or the documents to be sent or being received (or to be
exchanged with the EncodeIPM and DecodeIPM subfunctions)

<EncodeIPMSubFunction> Identifies the EncodeIPM Subfunction

<ExpiryTime> Date/Time of expiration of the message (Expiry Time)

<Forwarded> Autoforwarded indication

<ImplicitConv> Implicit conversion

<Importance> Importance of the message contents

<IncompleteCopy> Reflects the MHS incomplete copy indication

<IpmId> Message ID

<Language> Identification of the language used

<Message> Path to the ASN.1 BER coded message of the EncodeIPM and DecodeIPM
subfunctions

<MsgSubId> Message submission identifier, returned by the E-Mail service provider after it has
accepted the request

<Priority> Priority of the message contents

<R-OriginatorSpec>,
<S-OriginatorSpec>

Path to the file containing the address specifications of the originator, authorizing
user(s) and reply-to user(s) of the message

<R-RecipientSpec>,
<S-RecipientSpec>

Path to the file containing the address specifications of all intended recipients of
the message, i.e. primary, copy and blind copy recipient(s)

<RelatedSpec> Path name of the file containing the Relatedspecs of all messages related to the
present one

<ReplyId> ID of the message, for which this one is a response

<ReplyTime> Date-Time by when the recipient(s) of the message should reply to the authorizing
users (Reply Time)

<Sensitivity> Sensitivity of the message contents

<Subject> Subject the message is referring to

<SubmitTime> Date-Time at which the E-Mail service provider processed the request (Message
Submission Time)

<Type> Specifies the Transmission Format used

<UserInfo> User-provided optional envelope identifier that is forwarded along with the
message. Can be used for user-specific identification purposes

Recommendation T.611 (11/94) 135

TABLE 100/T.611

Text Based Encoding of additional syntax elements for E-Mail services

(A « stands for new line)

Syntax Element Keyword/Paramete Pair

<Alternate> "ALTERNATE" ":" <Boolean-parameter> «

<ContType> "CONT-TYPE" ":" <Content-type-parameter> «

<Convert> "CONVERT" ":" <Convert-id-parameter> «

<DecodeIPMSubFunction> "SUBFUNC" ":" "DecodeIPM" «

<DiscloRec> "DISCLO-REC" ":" <Boolean-parameter> «

<Document> "FILENAME" ":" <File-parameter> «

<DocumentSpec> "FILENAME" ":" "@" <File-of-filespec> «

<EncodeIPMSubFunction> "SUBFUNC" ":" "EncodeIPM" «

<ExpiryTime> "EXPIRYTIME" ":" <Date-time-parameter> «

<Forwarded> "FORWARDED" ":" <Boolean-parameter> «

<ImplicitConv> "IMPLICIT-CONV" ":" <Boolean-parameter> «

<Importance> "IMPORTANCE" ":" <Importance-parameter> «

<IncompleteCopy> "INC-COPY" ":" <Boolean-parameter> «

<IpmId> "IPM-ID" ":" <Ipm-id-parameter> «

<Language> "LANGUAGE" ":" <Language-id-parameter> «

<Message> "MESSAGE" ":" <Path-parameter> «

<MsgSubId> "MSG-SUB-ID" ":" <Msg-sub-id-parameter> «

<Priority> "PRIORITY" ":" <Priority-parameter> «

<R-OriginatorSpec> "ADDRESS" ":" "@" <File-of-originatorspec> «

<R-RecipientSpec> "RECIPIENT" ":" "@" <File-of-r-recipientspec> «

<RelatedSpec> "RELATED" ":" "@" <File-of-relatedspec> «

<ReplyId> "REPLYID" ":" <Ipm-id-parameter> «

<ReplyTime> "REPLYTIME" ":" <Date-time-parameter> «

<S-OriginatorSpec> "ORIGINATOR" ":" "@" <File-of-originatorspec> «

<S-RecipientSpec> "ADDRESS" ":" "@" <File-of-s-recipientspec> «

<Sensitivity> "SENSITIVITY" ":" <Sensitivity-parameter> «

<Subject> "SUBJECT" ":" <Subject-parameter> «

<SubmitTime> "SUBMITTIME" ":" <Date-time-parameter> «

<Type> "TYPE" ":" <Type-id-parameter> «

<UserInfo> "USERINFO" ":" <Userinfo-parameter> «

136 Recommendation T.611 (11/94)

16.2.2.3 Convert-id-parameter

The Convert-id-parameter is encoded as STRING set to one of the following values:

"ASCII" APPLI/COM Extended ASCII

"ASCII437" APPLI/COM Extended ASCII

"T.50" APPLI/COM Standard ASCII

"T.61" APPLI/COM Teletex format

"TIFF" APPLI/COM TIFF

"VOID" No conversion to be done

"PROBE" Specifies an empty document (i.e. no document at all) for delivery testing procedures

The use of the Convert-id-parameter also depends on the Type-id selected. Table 101 depicts this.

TABLE 101/T.611

Permitted Convert-id assignements dependent on Type-id

Syntax:

<Convert-id-parameter> := <Convert-probe> | <Convert-std> | <Convert-ttx> | <Convert-img> | <Convert-bin>

<Convert-probe> := "PROBE"
-- Special mode, where no documents are transmitted; can only be sent

<Convert-std> := "T.50"

<Convert-ttx> := <Ascii> | "T.50" | "T.61"

<Convert-img> := <Ascii> | "T.50" | "TIFF"

<Convert-bin> := "VOID"

<Ascii> := "ASCII" | STRING ("ASCII" + Code-page>)

<Code-page> := <digit> <digit> <digit>

<digit> := "0" | ... | "9"

16.2.2.4 MHS Addresses

MHS Addresses are referenced by the Originatorspec-parameter, R-Recipientspec-parameter and S-Recipientspec-
parameter or by the Ipm-id-parameter (see 16.2.2.5, 16.2.2.6 and 16.2.2.11).

The syntax of the MHS Addresses, namely Mhs-or-descriptor, Mhs-or-name, Mhs-dl-name and Mhs-or-address, is
specified below.

Type-id Convert-id for outgoing traffic Convert-id for incoming traffic

STD T.50

TELETEX ASCII, ASCIIxxxa), T.50, T.61

G3FAX, G4CLASS1 ASCII, ASCIIxxx, T.50, TIFF TIFF

VIDEOTEX, MESSAGE,
BILATERAL, NATIONAL, ODA

VOID

a) xxx stands for a code-page, declared in the ICE, e.g. ASCII437 if code-page 437 has been declared.

Recommendation T.611 (11/94) 137

The MHS-or-address is encoded as STRING representing a compilation of address elements, each specifying a part of
the address.

An address element is composed of an address field identifier, followed by a separator ("=" sign) and the address field
attribute.

Table 102 below lists the address field identifiers predefined for MHS services within this Recommendation12).
NOTE – The addressing scheme of Table 102 can also be used for other E-Mail environments if appropriate. The creation

of additional, not predefined address elements is possible using the formal BNF-style syntax description of the <Private-addr-
element> below.

TABLE 102/T.611

Address field identifiers and attributes

Syntax:

-- Syntax of <Mhs-or-address> (referenced by other parameter syntaxes)

<Mhs-or-address> :=
 "/" <Mandatory-address-element> {"/" <Mandatory-address-element>}
{"/" <Optional-address-element>} {"/" <Private-addr-element>}
-- for use with MHS systems
-- at least one <Mandatory-address-element> shall be present

<Mandatory-address-element> :=
("C" "=" STRING (SIZE(1..3))) | -- CountryName
("A" "=" STRING (SIZE(1..16))) | -- AdministrationDomainName
("P" "=" STRING (SIZE(1..16))) | -- PrivateDomainName
("O" "=" STRING (SIZE(1..64))) | -- OrganizationName
-- See also Table 102 for assignments

<Optional-address-element> :=
("OU"<n> "=" STRING (SIZE(1..32))) | -- OrganizsationUnitName
("Q" "=" STRING (SIZE(1..3))) | -- GenerationQualifier
("S" "=" STRING (SIZE(1..40))) | -- Surname

12) Each address field identifier addresses an O/R-Name attribute as specified in ITU-T Recommendation X.402.

Address field identifier Address field attribute Maximum attribute
field length

C CountryName 3

A AdministrationDomainName 16

P PrivateDomainName 16

O OrganizationName 64

OUn (0 ≤ n ≤ 4) OrganizationUnitName 32

Q GenerationQualifier 3

S Surname 40

G GivenName 16

I Initials 5

X121 X.121Address 16

T-ID TerminalIdentifier 24

PD-BOX PostalOfficeBoxAddress 60

138 Recommendation T.611 (11/94)

("G" "=" STRING (SIZE(1..16))) | -- GivenName
("I" "=" STRING (SIZE(1..5))) | -- Initials
("X121" "=" STRING (SIZE(1..16))) | -- X.121 Address
("T-ID" "=" STRING (SIZE(1..24))) | -- Terminal identifier
("PD-BOX" "=" STRING (SIZE(1..60))) | -- PostalOfficeBoxAddress
-- See also Table 102 for assignments

<n> := "0" | ... | "4"

<Private-addr-element> := <Field-identifier> "=" <Field-attribute>
-- private or additional defined address element

-- Syntax of <Mhs-or-descriptor> (referenced by other parameter syntaxes)

<Mhs-or-descriptor> := (<Mhs-or-name> ["+" [<Mhs-free-name>] ["+" <Mhs-phone-number>]]) |
("+" <Mhs-free-name> ["+" <Mhs-phone-number>])

<Mhs-free-name> := STRING (SIZE(1..64))

<Mhs-phone-number> := STRING (SIZE(1..32))

-- Syntax of <Mhs-or-name> (referenced by other parameter syntaxes)

<Mhs-or-name> := (<Mhs-or-address> ["+" <Mhs-dl-name>]) | ("+" <Mhs-dl-name>)

<Mhs-dl-name> := STRING (SIZE(1..64))
-- stands for Distribution List name according to ITU-T
-- Recommendation X.402

NOTE – The <Mhs-dl-name> is different from the <Alias> used in some syntaxes, since the alias is expanded locally (in
the CA) whereas the <Mhs-dl-name> is expanded by the MTS.

16.2.2.5 File-of-originatorspec

The File-of-originatorspec construction specifies the originators of the message. It is encoded as PATH. The path given
shall address a file containing one ore more Originatorspec-parameter(s).

Syntax:

<File-of-originatorspec> := PATH
-- The path points to a file containing one ore more
-- <Originatorspec-parameter>s

<Originatorspec-parameter> :=
<Addr-descriptor> | <Mhs-or-descriptor> "," <O-type>
-- for definition of <Mhs-or-descriptor> see 16.2.2.4

<Addr-descriptor> := STRING
-- Contents as required by the underlying (non-MHS) E-Mail system;
-- shall not contain "," characters

<O-type> := "Authorizing" | "Originator" | "ReplyTo"

16.2.2.6 File-of-r-recipientspec and File-of-s-recipientspec

The File-of-r-recipientspec and File-of-s-recipientspec constructions specify the recipients of the message. They are
encoded as PATH. The path given shall address a file containing one ore more R-recipientspec-parameter(s) or
S-recipientspec-parameter(s) respectively.

Syntax:

<File-of-r-recipientspec> := PATH
-- The path points to a file containing one ore more
-- <R-recipientspec-parameter>s

Recommendation T.611 (11/94) 139

<File-of-s-recipientspec> := PATH
-- The path points to a file containing one ore more
-- <S-recipientspec-parameter>s

<R-recipientspec-parameter> :=
<Addr-descriptor> | <Mhs-or-descriptor>
"," <R-type> ["," [<Reply>] ["," [<Notify>] ["," <Report>]]]
-- Receiving side
-- for definition of the <Mhs-or-descriptor> see 16.2.2.4

<S-recipientspec-parameter> :=
("&" <Alias>) | <Addr-descriptor> | <Mhs-or-descriptor>
"," <S-type> ["," [<Reply>] ["," [<Notify>] ["," <Report>]]]
-- Sending side may specify an (local) alias instead of a descriptor
-- for definition of the <Mhs-or-descriptor> see 16.2.2.4

<Alias> := STRING
-- The Alias shall not contain "," or ";" characters!

<Addr-descriptor> := STRING
-- Contents as required by underlying (non-MHS) E-Mail system;
-- shall not contain "," characters

<R-type> := "Primary" | "Copy" | "Blind" | "Intended"

<S-type> := "Primary" | "Copy" | "Blind"

<Reply> := "NoReply" | "Reply"
-- NoReply is taken as default if not specified

<Notify> := "NoNotify" | "NotifyNotReceived" | "NotifyReceived" | "NotifyExplicit"
-- NoNotify is taken as default if not specified

<Report> := "NoReport" | "BasicReport" | "ConfirmedReport"13)

-- NoReport is taken as default if not specified

16.2.2.7 File-of-relatedspec

The File-of-relatedspec construction specifies IPM-IDs a message is related to. It is encoded as PATH. The path given
shall address a file containing one ore more Relatedspec-parameter(s).

Syntax:

<File-of-relatedspec> := PATH
-- The path points to a file containing one ore more
-- <Relatedspec-parameter>s

<Relatedspec-parameter> := <Ipm-Id-parameter> "," <Relation>
-- See 16.2.2.11 for definition of the Ipm-id-parameter

<Relation> := "Reference" | "Obsolete"

16.2.2.8 File-of-filespec and File-parameter

The File-of-filespec parameter is encoded as PATH which points to a file containing Filespec-parameters, which contain
the File-parameter. The File-parameter itself is also encoded as PATH, which points to the file transferred.

If the special Convert-id-parameter "PROBE" is specified, the File-parameter may be omitted (see also 16.2.2.3).

13) In case of MHS, "BasicReport" maps to non-delivery-report and "ConfirmedReport" maps to report of ITU-T

Recommendation X.411.

140 Recommendation T.611 (11/94)

Syntax:

<File-of-filespec> := PATH
-- The path points to a file containing one ore more
-- <Filespec-parameter>s

<Filespec-parameter> := <File-parameter> "," <File-conv>
[["," <File-type>] ["," <Body-part-parameter>]]

<File-parameter> := PATH
-- Path to the file transferred

<File-conv> := <Convert-id-parameter>
-- Specifies the Transfer Format of the file

<File-type> := <Type-id-parameter>
-- Specifies the Transmission Format of the file

<Body-part-parameter> := STRING
-- Syntax left open for further study

16.2.2.9 Content-type-parameter

The Content-type-parameter is encoded as STRING set to one of the following values:

"mhsIPM84" Interpersonal Message (IPM) according to P2 protocol as defined per ITU-T Recommen-
dation X.420 (1984)

"mhsIPM88" Interpersonal Message (IPM) according to P2 protocol as defined per ITU-T Recommen-
dation X.420 (1988)

"mhsIPN84" Interpersonal Notification (IPN) according to P2 protocol as defined per ITU-T Recommen-
dation X.420 (1984)

"mhsIPN88" Interpersonal Notification (IPN) according to P2 protocol as defined per ITU-T Recommen-
dation X.420 (1988)

"mhsDR" Delivery Report (DR) as defined per ITU-T Recommendation X.420

"cmcIPM" Reserved for Interpersonal Messages (IPM) conforming to the Common Messaging Call
E-Mail interface

"cmcIPN" Reserved for Interpersonal Notifications (IPN) conforming to the Common Messaging Call
E-Mail interface

"cmcDR" Reserved for Delivery Reports (DR) conforming to the Common Messaging Call E-Mail
interface

any other Reserved for further study

Syntax:

<Content-type-parameter> := "mhsIPM84" | "mhsIPM88" | "mhsIPN84" | "mhsIPN88" | "mhsDR"
| "cmcIPM" | "cmcIPN" | "cmcDR"

16.2.2.10 Importance-parameter

The Importance-parameter is encoded as NUMERIC-STRING set to one of the following values:

"0" low

"1" normal (default)

"2" high

Syntax:

<Importance-parameter> := "0" | ... | "2"

16.2.2.11 Ipm-id-parameter

The Ipm-id-parameter is encoded as STRING.

Recommendation T.611 (11/94) 141

In MHS based systems it is a construct of two components:

– a unique, user relative identifier (a local identifier);

– an optional O/R Address which identifies the user.

Syntax:

<Ipm-id-parameter> := <Free-ipm-id> | <Mhs-ipm-id>

-- for definition of the <Mhs-or-descriptor> see 16.2.2.4

<Free-ipm-id> := STRING
-- Contents as required by underlying (non-MHS) E-Mail system
-- The string shall not contain "," or ";" characters

<Mhs-ipm-id> := <Local-ipm-id> ["," <Mhs-or-address>]
-- for use in MHS systems
-- for definition of the <Mhs-or-address> see 16.2.2.4

<Local-ipm-id> := STRING (SIZE(1..64))
-- The string shall not contain "," or ";" characters

16.2.2.12 Language-id-parameter

The Language-id-parameter is encoded as STRING between 2 and 5 characters long. For assignment of the language
code for MHS refer to ISO 639.2

Syntax:

<Language-id-parameter> := STRING (SIZE(2..5))

16.2.2.13 Msg-sub-id-parameter

The Msg-sub-id-parameter is encoded as STRING. The Msg-sub-id-parameter identifies uniquely and unambiguously
the message submission. It is generated by the E-Mail system14).

Syntax:

<Msg-sub-id-parameter> := <Free-sub-id> | <Mhs-sub-id>

<Free-sub-id> := STRING
-- For use in non-MHS systems

<Mhs-sub-id> := <Global-id> "," <Local-id>
-- For use in MHS systems

<Global-id> := "/" "C" "=" STRING (SIZE(1..3)) -- CountryName
 "/" "A" "=" STRING (SIZE(1..16)) -- AdministrationDomainName
["/" "P" "=" STRING (SIZE(1..16))] -- PrivateDomainName
-- see also definition of <Mhs-or-address>, 16.2.2.4

<Local-id> := STRING (SIZE(1..32))

16.2.2.14 Priority-parameter

The Priority-parameter is encoded as NUMERIC-STRING set to one of the following values:

"0" normal (default)

"1" non-urgent

"2" urgent

14) In case of MHS, the Msg-sub-id-parameter corresponds to the MPDUIndentifier (ITU-T Recommendation X.411 of 1984),

renamed MTSIdentifier in the 1988 version of the ITU-T Recommendation X.411.

142 Recommendation T.611 (11/94)

Syntax:

<Priority-parameter> := "0" | "1" | "2"

16.2.2.15 Subject-parameter

The Subject-parameter is encoded as STRING.

Syntax:

<Subject-parameter> := STRING (SIZE(1..128))

16.2.2.16 Sensitivity-parameter

The Sensitivity-parameter is encoded as NUMERIC-STRING set to one of the following values:

"0" no sensitivity specified (default)

"1" personal

"2" private

"3" company confidential

Syntax:

<Sensitivity-parameter> := "0" | ... | "3"

16.2.2.17 Userinfo-parameter

The Userinfo-parameter is encoded as STRING.

Syntax:

<Userinfo-parameter> := STRING (SIZE(1..16))

16.3 Interpersonal Messaging

16.3.1 Function: Send and SendAck

The Response TDD of the SendAck function shall be generated by the CA as soon as the document (the message) has
been submitted to the E-Mail provider of the originator and the E-Mail provider has returned the <MsgSubId> to the CA.
In other words: the submission is acknowledged, not the transmission of the message. See Tables 103 and 104.

16.3.2 Function: Receive

See Table 105.

16.3.3 Function: EncodeIPM and DecodeIPM

The EncodeIPM and DecodeIPM TDDs allow an LA to encode or decode a complete IPM - containing heading and
body parts - into/from a "MESSAGE" type body part (see 16.2.2.2)

The encoding/decoding procedure requires that the LA provides a TDD containing syntax elements referring to the
heading of the IPM to be encoded/decoded as well as syntax elements launching the encode/decode operation itself.
Table 106 shows the EncodeIPM TDD extensions to the <ExtendTDD>, Table 107 shows the DecodeIPM TDD
extensions.

Recommendation T.611 (11/94) 143

TABLE 103/T.611

Additional functionality of the <SendTDD> for access to E-Mail services

Text Based Encoding

Syntax Element C T I/O Keyword Parameter Default Comment

<IpmId> B m I IPM-ID <Ipm-id-
parameter>

– Message identifier

<S-RecipientSpec> B m I ADDRESS "@" <File-of-s-
recipientspec>

– Path of the file containing the
Recipientspecs of all intended
recipients

<S-OriginatorSpec> B m I ORIGINATOR "@" <File-of-
originatorspec>

– Path name of the file containing
the originator and authorising
users

<Alternate> B o I ALTERNATE <Boolean-
parameter>

"No" Alternate recipient(s) allowed

<ContType> B o I CONT-TYPE <Content-type-
parameter>

"mhsIPM84" Content Type

<DiscloRec> B o I DISCLO-REC <Boolean-
parameter>

"No" Recipient(s) disclosure

<ExpiryTime> B o I EXPIRYTIME <Date-time-
parameter>

– Expiration of the message
(Expiry Time)

<ImplicitConv> B o I IMPLICIT-CONV <Boolean-
parameter>

"Yes" Implicit conversion

<Importance> B o I IMPORTANCE <Importance-
parameter>

"1" Importance of the contents

<Language> B o I LANGUAGE <Language-id-
parameter>

– Identification of the language
used

<Priority> B o I PRIORITY <Priority-
parameter>

"0" Priority of the contents

144 Recommendation T.611 (11/94)

TABLE 103/T.611 (end)

Additional functionality of the <SendTDD> for access to E-Mail services

Text Based Encoding

Syntax Element C T I/O Keyword Parameter Default Comment

<RelatedSpec> B o I RELATED "@" <File-of-
Relatedspec>

– Path name of the file containing
the Relatedspecs of all messages
related to the present one

<ReplyId> B o I REPLYID <Ipm-id-
parameter>

– ID of the message, for which
this one is a response

<ReplyTime> B o I REPLYTIME <Date-time-
parameter>

– Date-Time by when the
recipient(s) of the message
should reply to the authorizing
users (Reply Time)

<Sensitivity> B o I SENSITIVITY <Sensitivity-
parameter>

"0" Sensitivity of the contents

<Subject> B o I SUBJECT <Subject-
parameter>

–

<Userinfo> + o I USERINFO <Userinfo-
parameter>

– User-provided optional
envelope identifier

Send only one file

<Convert> B m I CONVERT <Convert-id-
parameter>

– Transfer format of the outgoing
file

<Document> B m I FILENAME <File-
parameter>

– Single file to be transmitted,
delivered under the Transfer
Format specified by the Convert
keyword

<Type> B o I TYPE <Type-id-
parameter>

"STD" Specifies the document type to
be sent

Send one or many files

<DocumentSpec> + m I FILENAME "@" <File-of-
filespec>

– Specifies a list of files; uses a
special syntax

Recommendation T.611 (11/94) 145

TABLE 104/T.611

Additional functionality of the <SendAckTDD> for access to E-Mail services

Text Based Encoding

Syntax Element C T I/O Keyword Parameter Default Comment

<IpmId> B m I IPM-ID <Ipm-id-
parameter>

– Message identifier

<S-RecipientSpec> B m I ADDRESS "@" <File-of-s-
recipientspec>

– Path of the file containing the
Recipientspecs of all intended
recipients

<S-OriginatorSpec> B m I ORIGINATOR "@" <File-of-
originatorspec>

– Path name of the file containing
the originator and authorizing
users

<Alternate> B o I ALTERNATE <Boolean-
parameter>

"No" Alternate recipient(s) allowed

<ContType> B o I CONT-TYPE <Content-type-
parameter>

"mhsIPM84" Content Type

<DiscloRec> B o I DISCLO-REC <Boolean-
parameter>

"No" Recipient(s) disclosure

<ExpiryTime> B o I EXPIRYTIME <Date-time-
parameter>

– Expiration of the message
(Expiry Time)

<ImplicitConv> B o I IMPLICIT-CONV <Boolean-
parameter>

"Yes" Implicit conversion

<Importance> B o I IMPORTANCE <Importance-
parameter>

"1" Importance of the contents

<Language> B o I LANGUAGE <Language-id-
parameter>

– Identification of the language
used

<MsgSubId> B o O MSG-SUB-ID <Msg-sub-id-
parameter>

– Message submission identifier.
Returned by the E-Mail service
provider after it has accepted
the request

<Priority> B o I PRIORITY <Priority-
parameter>

"0" Priority of the contents

<RelatedSpec> B o I RELATED "@" <File-of-
Relatedspec>

– Path name of the file containing
the Relatedspecs of all messages
related to the present one

<ReplyId> B o I REPLYID <Ipm-id-
parameter>

– ID of the message, for which
this one is a response

146 Recommendation T.611 (11/94)

TABLE 104/T.611 (end)

Additional functionality of the <SendAckTDD> for access to E-Mail services

Text Based Encoding

Syntax Element C T I/O Keyword Parameter Default Comment

<ReplyTime> B o I REPLYTIME <Date-time-
parameter>

– Date-Time by when the
recipient(s) of the message
should reply to the authorizing
users (Reply Time)

<Sensitivity> B o I SENSITIVITY <Sensitivity-
parameter>

"0" Sensitivity of the contents

<Subject> B o I SUBJECT <Subject-
parameter>

–

<SubmitTime> B o O SUBMITTIME <Date-time-
parameter>

– Date-time at which the request
is processed by the E-Mail
service provider

<Userinfo> + o I USERINFO <Userinfo-
parameter>

– User-provided optional
envelope identifier

Send only one file

<Convert> B m I CONVERT <Convert-id-
parameter>

– Transfer format of the outgoing
file

<Document> B m I FILENAME <File-
parameter>

– Single file to be transmitted,
delivered under the Transfer
Format specified by the Convert
keyword.

<Type> B o I TYPE <Type-id-
parameter>

"STD" Specifies the document type to
be sent

Send one or many files

<DocumentSpec> + m I FILENAME "@" <File-of-
filespec>

– Specifies a list of files; uses a
special syntax

Recommendation T.611 (11/94) 147

TABLE 105/T.611

Additional functionality of the <ReceiveTDD> for access to E-Mail services

Text Based Encoding

Syntax Element C T I/O Keyword Parameter Default Comment

<IpmId> B m O IPM-ID <Ipm-id-
parameter>

– Message identifier

<R-RecipientSpec> B m I RECIPIENT "@" <File-of-r-
recipientspec>

– Path of the file containing the
Recipientspecs of all intended
recipients

<R-OriginatorSpec> B m I ADDRESS "@" <File-of-
originatorspec>

– Path name of the file containing
the originator and authorizing
users

<ContType> B o O CONT-TYPE <Content-type-
parameter>

– Content Type

<ExpiryTime> B o O EXPIRYTIME <Date-time-
parameter>

– Expiration of the message
(Expiry Time)

<Forwarded> B o O FORWARDED <Boolean-
parameter>

– Autoforwarded indication

<Importance> B o O IMPORTANCE <Importance-
parameter>

– Importance of the contents

<Language> B o O LANGUAGE <Language-id-
parameter>

– Identification of the language
used

<Priority> B o O PRIORITY <Priority-
parameter>

– Priority of the contents

<RelatedSpec> B o I RELATED "@" <File-of-
relatedspec>

– Path name of the file receiving
the Relatedspecs of all messages
related to the present one

<ReplyId> B o O REPLYID <Ipm-id-
parameter>

– ID of the message, for which
this one is a response

<ReplyTime> B o O REPLYTIME <Date-time-
parameter>

– Date-Time by when the
recipient(s) of the message
should reply to the authorizing
users (Reply Time)

<Sensitivity> B o O SENSITIVITY <Sensitivity-
parameter>

"0" Sensitivity of the contents

<Subject> B o O SUBJECT <Subject-
parameter>

–

148 Recommendation T.611 (11/94)

TABLE 105/T.611 (end)

Additional functionality of the <ReceiveTDD> for access to E-Mail services

Text Based Encoding

Syntax Element C T I/O Keyword Parameter Default Comment

<SubmitTime> B o O SUBMITTIME <Date-time-
parameter>

– Date-time at which the request
is processed by the E-Mail
service provider

<IncCopy> + o O INC-COPY <Boolean-
parameter>

– Incomplete copy indicator

<Userinfo> + o O USERINFO <Userinfo-
parameter>

– User-provided optional
envelope identifier

Only one file received

<Convert> B m O CONVERT <Convert-id-
parameter>

– States the Transfer Format of
the received file

<Document> B m I/O FILENAME <File-
parameter>

– The filename may be pre-set by
the LA on request. If only one
file is received, the name shall
be retained by the CA. If many
files are received the name may
be overwritten by the CA

<Type> B o O TYPE <Type-id-
parameter>

– Specifies the document type
received

Many files received

<DocumentSpec> + m O FILENAME "@" <File-of-
filespec>

– Specifies a list of files; uses a
special syntax

Recommendation T.611 (11/94) 149

TABLE 106/T.611

Additional syntax elements for the <EncodeIPMExtension> of E-Mail services

Text Based Encoding

Syntax Element C T I/O Keyword Parameter Default Comment

Syntax elements belonging to the encode procedure itself (job description)

<EncodeIPM-
SubFunction>

B m I SUBFUNC "EncodeIPM" –

<Message> B m I MESSAGE <Path-
parameter>

–- Path to file that will receive the
encoded IPM

<Minor> + o O MINOR <Error-
parameter>

–

<Warning> + o O WARNING <Error-
parameter>

–

Only one body part shall be encoded

<Convert> B m I CONVERT <Convert-id-
parameter>

– Transfer format of the body part
to be encoded

<Document> B m I FILENAME <File-
parameter>

– Single body part to be encoded,
delivered under the Transfer
Format specified by the Convert
keyword

<Type> B o I TYPE <Type-id-
parameter>

"STD" Specifies the document type to
be encoded

One or many body parts shall be encoded

<DocumentSpec> + m I FILENAME "@" <File-of-
filespec>

– Specifies a list of files; uses a
special syntax

Syntax elements holding the heading information for the IPM to be encoded

<IpmId> B m I IPM-ID <Ipm-id-
parameter>

– Message identifier

<S-RecipientSpec> B m I ADDRESS "@" <File-of-s-
recipientspec>

– Path of the file containing the
Recipientspecs of all intended
recipients

<S-OriginatorSpec> B m I ORIGINATOR "@" <File-of-
originatorspec>

– Path name of the file containing
the originator and authorizing
users

<ContType> B o I CONT-TYPE <Content-type-
parameter>

"mhsIPM84" Content Type

<ExpiryTime> B o I EXPIRYTIME <Date-time-
parameter>

– Expiration of the message

150 Recommendation T.611 (11/94)

TABLE 106/T.611 (end)

Additional syntax elements for the <EncodeIPMExtension> of E-Mail services

Text Based Encoding

Syntax Element C T I/O Keyword Parameter Default Comment

<Importance> B o I IMPORTANCE <Importance-
parameter>

"1" Importance of the contents

<Priority> B o I PRIORITY <Priority-
parameter>

"0" Priority of the contents

<RelatedSpec> B o I RELATED "@" <File-of-
Relatedspec>

– Path name of the file containing
the Relatedspecs of all messages
related to the present one

<ReplyId> B o I REPLYID <Ipm-id-
parameter>

– ID of the message, for which
this one is a response

<ReplyTime> B o I REPLYTIME <Date-time-
parameter>

– Date-Time by when the
recipient(s) of the message
should reply to the authorizing
users (Reply Time)

<Sensitivity> B o I SENSITIVITY <Sensitivity-
parameter>

"0" Sensitivity of the contents

<Subject> B o I SUBJECT <Subject-
parameter>

–

<Userinfo> + o I USERINFO <Userinfo-
parameter>

– User-provided

Recommendation T.611 (11/94) 151

TABLE 107/T.611

Additional syntax elements for the <DecodeIPMExtension> of E-Mail services

Text Based Encoding

Syntax Element C T I/O Keyword Parameter Default Comment

Syntax elements belonging to the decode procedure itself (job description)

<DecodeIPM-
SubFunction>

B m I SUBFUNC "DecodeIPM" –

<Message> B m I MESSAGE <Path-
parameter>

– Path to file that holds the IPM
to be decoded

<Minor> + o O MINOR <Error-
parameter>

–

<Warning> + o O WARNING <Error-
parameter>

–

If only one body part is present

<Convert> B m O CONVERT <Convert-id-
parameter>

– States the Transfer Format of
the decoded body part

<Document> B m O FILENAME <File-
parameter>

– The filename may be pre-set by
the LA on request. If only one
body part is available, the name
shall be retained by the CA. If
many body parts are available
the name may be overwritten by
the CA

<Type> B o O TYPE <Type-id-
parameter>

– Specifies the document type
received

If many body parts are present

<DocumentSpec> + m I FILENAME "@" <File-of-
filespec>

– Specifies a list of files; uses a
special syntax

Syntax elements receiving the heading information of the IPM to be decoded

<IpmId> B m O IPM-ID <Ipm-id-
parameter>

– Message identifier.

<R-RecipientSpec> B m I RECIPIENT "@" <File-of-r-
recipientspec>

– Path of the file containing the
Recipientspecs of all intended
recipients

152 Recommendation T.611 (11/94)

TABLE 107/T.611 (end)

Additional syntax elements for the <DecodeIPMExtension> of E-Mail services

Text Based Encoding

Syntax Element C T I/O Keyword Parameter Default Comment

<R-OriginatorSpec> B m I ADDRESS "@" <File-of-
originatorspec>

– Path name of the file containing
the originator and authorizing
users

<ContType> B o O CONT-TYPE <Content-type-
parameter>

– Content Type

<ExpiryTime> B o I EXPIRYTIME <Date-time-
parameter>

– Expiration of the message
(Expiry Time)

<Forwarded> B o O FORWARDED <Boolean-
parameter>

– Autoforwarded indication

<Importance> B o O IMPORTANCE <Importance-
parameter>

– Importance of the contents

<Language> B o O LANGUAGE <Language-id-
parameter>

– Identification of the language
used

<Priority> B o O PRIORITY <Priority-
parameter>

– Priority of the contents

<RelatedSpec> B o I RELATED "@" <File-of-
Relatedspec>

– Path name of the file containing
the Relatedspecs of all messages
related to the present one

<ReplyId> B o O REPLYID <Ipm-id-
parameter>

– ID of the message, for which
this one is a response

<ReplyTime> B o O REPLYTIME <Date-time-
parameter>

– Date-Time by when the
recipient(s) of the message
should reply to the authorizing
users (Reply Time)

<Sensitivity> B o O SENSITIVITY <Sensitivity-
parameter>

"0" Sensitivity of the contents

<Subject> B o O SUBJECT <Subject-
parameter>

–

<Userinfo> + o O USERINFO <Userinfo-
parameter>

– User-provided

Recommendation T.611 (11/94) 153

16.4 Interpersonal Notification

An LA may transmit an Interpersonal Notification (IPN) with a Send TDD and may receive an IPN with the Receive
TDD.

The IPN is treated by the CA as a special document, called the IPN document, i.e, the CA expects from the LA a
specially prepared file containing the IPN parameters, when an IPN has to be sent. The CA shall convert the IPN
document into the format required by the E-Mail system and transmit it to the recipient. Conversly, the CA shall present
an IPN document to the LA when it receives an IPN through the network.

To differentiate between IPMs and IPNs (and DRs, see 16.5) the Content-type-parameter of the <ContType> syntax
element is used (see also 16.2.2.9).

The IPN document shall conform to the same syntactical rules as those applying to TDDs.

The following subclauses describe the syntax and the text based encoding of the IPN document.

16.4.1 Syntax of IPN Document

The IPN Document is defined for MHS and conforms to following BNF-style syntax (see Table 108).

<IPN-Document> := <NotifyType> <SubjectIPM> <ReceiptTime>
[<IPNOrigin>] [<PrefRecipient>] [<Reason>] [<AutoComment>] [<SupplmInfo>]

TABLE 108/T.611

Syntax elements of the IPN Document

Syntax element Purpose

<AutoComment> Comment of the originator of this notification, if the related IPM was auto-
forwarded; only used for non-receipt-notifications of type NRN-FORW

<Reason> Identifies why the IPM related to this notification was discarded:

0: ipm-expired
1: ipm-obsoleted
2: user-subscription-terminated

only used for non-receipt-notifications of type NRN-DISC

<IPNOrigin> Identifies the originator of this notification

<NotifyType> Type of the notification:

RN: receipt notification
NRN-DISC: non-receipt-notification (discarded)
NRN-FORW: non-receipt-notification (auto-forwarded)
OTHER: other notification types

<PrefRecipient> The preferred recipient of the IPM related to this notification

<ReceiptTime> Identifies the time when the originator of this notification received the related IPM;
only used for receipt notification (RN)

<SubjectIPM> Identifies the IPM related to this notification

<SupplmInfo> Supplementary information of the originating MTA; only used for receipt-
notifications (RN)

154 Recommendation T.611 (11/94)

16.4.2 Text based Encoding

16.4.2.1 Mapping of Keywords

See Table 109.

TABLE 109/T.611

Text Based Encoding of IPN syntax elements for E-Mail services

(A « stands for new line)

16.4.2.2 Encoding of Parameters

For description of the text based encoding of:

– <Mhs-or-descriptor> refer to 16.2.2.4

– <Date-time-parameter> refer to 6.4.4.4

– <Ipm-id-parameter> refer to 16.2.2.11

16.5 Delivery Report

An LA may receive a Delivery Report (DR) with the Receive TDD.

The DR is treated by the CA as a special document, called the DR document. The CA shall present such a DR document
to the LA when it receives a DR through the network.

To differentiate between IPMs and DRs (and IPNs, see 16.4) the Content-type-parameter of the <ContType> syntax
element is used (see also 16.2.2.9).

The DR document delivered by the CA shall conform to exactly the same syntactical rules as applied to TDDs.

The following subclauses describe the syntax and the text based encoding of the DR document.

16.5.1 Syntax of DR Document

The DR Document is defined for MHS and conforms to following BNF-style syntax (see Table 110).

<DR-Document> := <ReportType> <ActRecipient> <MsgSubId> [<ReceiveTime>] [<Reason>]
[<Diagnostic>] [<SupplmInfo>]

Syntax Element Keyword / Parameter Pair

<AutoComment> "AUTO-COMMENT" ":" STRING (SIZE(1..256)) «

<Reason> "REASON" ":" "0" | "1" | "2" «

<IPNOrigin> "IPN-ORIGIN" ":" <Mhs-or-descriptor> «

<NotifyType> "NOTIFY-TYPE" ":" "RN" | "NRN-DISC" | "NRN-FORW" | "OTHER" «

<PrefRecipient> "DISCLO-REC" ":" <Mhs-or-descriptor> «

<ReceiptTime> "RECEIPT-TIME" ":" <Date-time-parameter> «

<SubjectIPM> "SUBJECT-IPM" ":" "@" <Ipm-id-parameter> «

<SupplmInfo> "SUPPLM-INFO" ":" STRING (SIZE(1..256)) «

Recommendation T.611 (11/94) 155

TABLE 110/T.611

Syntax elements of the DR Document

16.5.2 Text based Encoding

16.5.2.1 Mapping of Keywords

See Table 111.

TABLE 111/T.611

Text Based Encoding of DR syntax elements for E-Mail services

(A « stands for new line)

16.5.2.2 Encoding of Parameters

For description of the text based encoding of:

– <Mhs-or-name> refer to 16.2.2.4

– <Msg-sub-id-parameter> refer to 16.2.2.13

– <Date-time-parameter> refer to 6.4.4.4

Syntax element Purpose

<ActRecipient> Identifies the actual recipient of the IPM related to this report

<Diagnostic> Additional diagnostic information to the report as defined by ITU-T
Recommendation X.411; only used for non-delivery reports (NDR)

<MsgSubId> Identifies the IPM related to this report (MTSIdentifier)

<Reason> Identifies why the IPM related to this report was not delivered as defined by ITU-T
Recommendation X.411; only used for non-delivery reports (NDR);

<ReceiveTime> Time at which the message was delivered (DeliveryTime); only used for delivery
reports (DR)

<ReportType> Type of the delivery report:

DR: delivery report
NDR: non-delivery report

<SupplmInfo> Supplementary information of the originating MTA

Syntax Element Keyword / Parameter Pair

<ActRecipient> "ACT-RECIPIENT" ":" <Mhs-or-name> «

<Diagnostic> "DIAGNOSTIC" ":" NUMERIC-STRING «

<MsgSubId> "MSG-SUB-ID" ":" <Msg-sub-id-parameter> «

<Reason> "REASON" ":" NUMERIC-STRING «

<ReceiveTime> "RCVTIME" ":" <Date-time-parameter> «

<ReportType> "REPORT-TYPE" ":" "DR" | "NDR" «

<SupplmInfo> "SUPPLM-INFO" ":" STRING (SIZE(1..256)) «

156 Recommendation T.611 (11/94)

16.6 Mapping of MHS service elements

Table 112 shows the mapping of MHS service elements as defined per ITU-T X.400-Series of Recommendation to the
the syntax elements defined by this Recommendation. Listed are the corresponding keywords used in text based
presentation of the TDDs and their support for a sending and/or receiving LA.

TABLE 112/T.611

Mapping of MHS service elements

MHS service element Syntax element Keyword Sending LA Receiving LA

Alternate Recipient Allowed
Indication

<Alternate> ALTERNATE Supported Not supported

Authorizing User’s Indication <R-OriginatorSpec>
<S-OriginatorSpec>

ADDRESS
ORIGINATOR

–
Supported

Supported
–

Auto-forwarded Message
Indication

<Forwarded> FORWARDED Not supported Supported

Blind Copy Recipients
Indication

<R-RecipientSpec>
<S-RecipientSpec>

RECIPIENT
ADDRESS

–
Supported

Supported
–

Content Type Indication <ContType> CONT-TYPE Supported Supported

Conversion Prohibition <ImplicitConv> IMPLICIT-CONV Supported Not supported

Cross Referencing Indication <RelatedSpec> RELATED Supported Supported

Deferred Delivery Indication <SendTime> SENDTIME Supported Not supported

Delivery Report Request <R-RecipientSpec>
<S-RecipientSpec>

RECIPIENT
ADDRESS

–
Supported

Supported
–

Delivery Time Indication <ReceiveTime> RCVTIME Not supported Supported

Disclosure of Other Recipients <DiscloRec> DISCLO-REC Supported Not supported

Expiry Date Indication <ExpiryTime> EXPIRYTIME Supported Supported

Forwarded IP Message <Type> TYPE Supported Supported

Grade of Delivery Selection <Priority> PRIORITY Supported Supported

Importance Indication <Importance> IMPORTANCE Supported Supported

Incomplete Copy Indicationa) <IncompleteCopy> INC-COPY Not supported Supported

Intended Recipient Indication <R-RecipientSpec> RECIPIENT Not supported Supported

IP Message Indication <IpmId> IPM-ID Supported Supported

Recommendation T.611 (11/94) 157

TABLE 112/T.611 (end)

Mapping of MHS service elements

MHS service element Syntax element Keyword Sending LA Receiving LA

Language Indication <Language> LANGUAGE Not supported Supported

Latest Delivery Indicationa) <LastTime> LASTTIME Supported Not supported

Message Identificationa) <Userinfo> USERINFO Supported Supported

Message Submission
Identification

<MsgSubId> MSG-SUB-ID Supportedb) Not supported

Multi-Destination Delivery <R-RecipientSpec>
<S-RecipientSpec>

RECIPIENT
ADDRESS

–
Supported

Supported
–

Multi-Part Body implicit n/ac) Supported Supported

Non-Receipt Notification <R-RecipientSpec>
<S-RecipientSpec>

RECIPIENT
ADDRESS

–
Supported

Supported
–

Non-Delivery Report <R-RecipientSpec>
<S-RecipientSpec>

RECIPIENT
ADDRESS

–
Supported

Supported
–

Obsoleting IPM Indication <RelatedSpec> RELATED Supported Supported

Originator Indication <R-OriginatorSpec>
<S-OriginatorSpec>

ADDRESS
ORIGINATOR

–
Supported

Supported
–

Primary and Copy Recipients
Indication

<R-RecipientSpec>
<S-RecipientSpec>

RECIPIENT
ADDRESS

–
Supported

Supported
–

Probe Indication <Convert> CONVERT Supported Not supported

Receipt Notification <R-RecipientSpec>
<S-RecipientSpec>

RECIPIENT
ADDRESS

–
Supported

Supported
–

Reply IP Message Indication <ReplyId> REPLYID Supported Supported

Reply Recipients Indication <R-RecipientSpec>
<S-RecipientSpec>

RECIPIENT
ADDRESS

–
Supported

Supported
–

Reply IPM Indication <RelatedSpec> RELATED Supported Supported

Reply Time Indication <ReplyTime> REPLYTIME Supported Supported

Sensitivity Indication <Sensitivity> SENSITIVITY Supported Supported

Subject Indication <Subject> SUBJECT Supported Supported

Submission Time Indication <SubmitTime> SUBMITIME Supportedb) Supported

a) The service elements IncompleteCopyIndication, LatestDeliveryIndication and MessageIdentification are additional. There-
fore they are not addressed in the profile definition.

b) The MessageSubmissionIdentification and the SubmissionTimeStamp is originated and maintained by the Message Transfer
System (MTS). Both keywords are used in the <SendAckTDD> as output parameter.

c) The assignment of a keyword is not applicable.

158 Recommendation T.611 (11/94)

Table 113 sumarizes the time stamps used within this Recommendation related to service elements of the message
transfer system and the interpersonal messaging system.

These service elements, their meaning and the corresponding keywords of the text based encoding are shown in
Table 113. Another column of this table indicates, if the time stamps may be specified by the sending LA (Send TDD)
and if they may be received by an LA (Receive TDD).

TABLE 113/T.611

Summary of MHS Time-stamps

16.7 E-Mail Profiles

This Recommendation provides access to E-Mail services as described in the ITU-T X.400-Series of Recommendation
as well as to other E-Mail environments.

Powerful stored-and-forward telecommunication services make high demands on an interface specification. The Send,
SendAck and Receive TDDs are enhanced by a large number of basic E-Mail specific elements respecting the
philosophie of this Recommendation. Most of these addressed service elements are optional.

Enhanced features provided at the interface level for E-Mail access are:

– transmission and reception of notifications;

– reception of delivery reports;

– transmission and reception of E-Mail message(s) included in an E-Mail message (e.g. IPM as body part).

Service Element Keyword Send/receive Meaning

Expiry Date Indication EXPIRYTIME s/r This optional heading field of an IPM specifies the
time when the authorizing user(s) consider the IPM
to lose validity

Reply Time Indication REPLYTIME s/r This optional heading field of an IPM specifies the
time by when the authorizing user(s) request that
any replies to the subject IPM be originated

Deferred Delivery
Indication

SENDTIME s/– Specifies the time before which the message should
not be delivered to the recipient(s); it may be
generated by the originator of the message

Latest Delivery Indication LASTTIME s/– Specifies the time after which the message should
not be delivered to the recipient(s); it may be
generated by the originator of the message

Delivery Time Indication RCVTIME –/r Specifies the time at which the message was
delivered to the recipient message transfer system
user; it shall be generated by the message transfer
system if the message was successfully delivered

Submission Time
Indication

SUBMITTIME s/r Specifies the time at which the message transfer
system accepts responsibility for the message; it
shall be generated by the message transfer system

Receipt Time Indication RECEIPT-TIME s/r Only used for receipt notification (RN); identifies
the time when the originator of a notification has
received the related IPM

Recommendation T.611 (11/94) 159

It is required that a CA implementation conforms to this Recommendation, even if not all possible features are
supported. To improve the interoperability between LAs and CAs from different vendors, the concept of "profile" is
introduced.

The profiles:

– X400-IPM;

– BasicX400-IPM;

– SimpleEMail.

define functional service subsets offered at the interface level described in this Recommendation15).

Together with the ICE and the functional classes the profile concept identifies the E-Mail service elements supported by
a CA.

A CA may support one or more profiles. Moreover, implementers may describe and name their own profiles.

16.7.1 Service Profile X400-IPM

The X400-IPM profile comprises all X.400 service elements provided at the interface level of this Recommendation to
support the conveyance of IPMs16) (see Table 114).

16.7.2 Service Profile BasicX400-IPM

The BasicX400-IPM profile specifies the basic functional subset of X.400 service elements provided at the interface
level of this Recommendation to support the conveyance of IPMs (see Table 115).

16.7.3 Service Profile SimpleEMail

The SimpleEMail profile was introduced to enable access to E-Mail services which are not conforming to the open
communication X.400-Series of Recommendation. It provides a minimal functional subset of E-Mail service elements
provided at the interface level of this Recommendation (see Table 116).

16.8 CA-Descriptor Settings

A CA supporting E-Mail services shall specify in the CA-Descriptor the body parts (document Transmission Formats),
the profile(s) and the Content-Types supported (see also 9.5).

For support of the EncodeIPM and DecodeIPM TDD, the EXTEND keyword of the CA-Descriptor has to be set
accordingly. Table 117 depicts this.

17 Service: File Transfer

This Recommendation allows sending or receiving information through File Transfer services. However, full control of
File Transfer services through the interface is not intended.

15) Other profiles like EDIM and EDIN are for further study.

16) The profile X400-IPM is specified according to the European Procurement Handbook for Open Systems (EPHOS), i.e. the
profiles ENV 41201 and ENV 41202.

160 Recommendation T.611 (11/94)

TABLE 114/T.611

Service Profile X400-IPM

Service element Syntax element Support of CA

Alternate Recipient Allowed Indication <Alternate> Mandatory

Authorizing User’s Indication <R-OriginatorSpec>, <S-OriginatorSpec> Mandatory

Auto-forwarded Message Indication <Forwarded> Mandatory

Blind Copy Recipients Indication <R-RecipientSpec>, <S-RecipientSpec> Mandatory

Content Type Indication <ContType> Mandatory

Conversion Prohibition <ImplicitConv> Mandatory

Cross Referencing Indication <RelatedSpec> Mandatory

Deferred Delivery Indication <SendTime> Mandatory

Delivery Report <R-RecipientSpec>, <S-RecipientSpec> Mandatory

Delivery Time Indication <ReceiveTime> Mandatory

Disclosure of Other Recipients <DiscloRec> Mandatory

Expiry Date Indication <ExpiryTime> Mandatory

Forwarded IP Message <Type> Mandatory

Grade of Delivery Selection <Priority> Mandatory

Importance Indication <Importance> Mandatory

Intended Recipient Indication <R-RecipientSpec> Mandatory

IP Message Indication <IpmId> Mandatory

Language Indication <Language> Mandatory

Message Submission Identification <MsgSubId> Mandatory

Multi-Destination Delivery <R-RecipientSpec>, <S-RecipientSpec> Mandatory

Multi-Part Body Implicit Mandatory

Non-Receipt Notification <R-RecipientSpec>, <S-RecipientSpec> Mandatory

Non-Delivery Report <R-RecipientSpec>, <S-RecipientSpec> Mandatory

Obsoleting IPM Indication <RelatedSpec> Mandatory

Originator Indication <R-OriginatorSpec>, <S-OriginatorSpec> Mandatory

Primary and Copy Recipients Indication <R-RecipientSpec>, <S-RecipientSpec> Mandatory

Probe Indication <Convert> Mandatory

Receipt Notification <R-RecipientSpec>, <S-RecipientSpec> Mandatory

Reply IP Message Indication <ReplyId> Mandatory

Reply Recipients Indication <R-RecipientSpec>, <S-RecipientSpec> Mandatory

Reply IPM Indication <RelatedSpec> Mandatory

Reply Time Indication <ReplyTime> Mandatory

Sensitivity Indication <Sensitivity> Mandatory

Subject Indication <Subject> Mandatory

Submission Time Indication <SubmitTime> Mandatory

Recommendation T.611 (11/94) 161

TABLE 115/T.611

Service Profile BasicX400-IPM

Service element Syntax element Support of CA

Alternate Recipient Allowed Indication <Alternate> –

Authorizing User's Indication <R-OriginatorSpec>, <S-OriginatorSpec> Mandatory

Auto-forwarded Message Indication <Forwarded> –

Blind Copy Recipients Indication <R-RecipientSpec>, <S-RecipientSpec> Mandatory

Content Type Indication <ContType> Mandatory

Conversion Prohibition <ImplicitConv> –

Cross Referencing Indication <RelatedSpec> Mandatory

Deferred Delivery Indication <SendTime> Mandatory

Delivery Report <R-RecipientSpec>, <S-RecipientSpec> –

Delivery Time Indication <ReceiveTime> –

Disclosure of Other Recipients <DiscloRec> –

Expiry Date Indication <ExpiryTime> Mandatory

Forwarded IP Message <Type> Mandatory

Grade of Delivery Selection <Priority> Mandatory

Importance Indication <Importance> Mandatory

Intended Recipient Indication <R-RecipientSpec> –

IP Message Indication <IpmId> Mandatory

Language Indication <Language> Mandatory

Message Submission Identification <MsgSubId> –

Multi-Destination Delivery <R-RecipientSpec>, <S-RecipientSpec> Mandatory

Multi-Part Body implicit Mandatory

Non-Receipt Notification <R-RecipientSpec>, <S-RecipientSpec> –

Non-Delivery Report <R-RecipientSpec>, <S-RecipientSpec> –

Obsoleting IPM Indication <RelatedSpec> Mandatory

Originator Indication <R-OriginatorSpec>, <S-OriginatorSpec> Mandatory

Primary and Copy Recipients Indication <R-RecipientSpec>, <S-RecipientSpec> Mandatory

Probe Indication <Convert> –

Receipt Notification <R-RecipientSpec>, <S-RecipientSpec> –

Reply IP Message Indication <ReplyId> Mandatory

Reply Recipients Indication <R-RecipientSpec>, <S-RecipientSpec> Mandatory

Reply IPM Indication <RelatedSpec> Mandatory

Reply Time Indication <ReplyTime> Mandatory

Sensitivity Indication <Sensitivity> Mandatory

Subject Indication <Subject> Mandatory

Submission Time Indication <SubmitTime> –

162 Recommendation T.611 (11/94)

TABLE 116/T.611

Service Profile SimpleEMail

Service element Syntax element Support of CA

Alternate Recipient Allowed Indication <Alternate> –

Authorizing User's Indication <R-OriginatorSpec>, <S-OriginatorSpec> Mandatory

Auto-forwarded Message Indication <Forwarded> –

Blind Copy Recipients Indication <R-RecipientSpec>, <S-RecipientSpec> Mandatory

Content Type Indication <ContType> Mandatory

Conversion Prohibition <ImplicitConv> –

Cross Referencing Indication <RelatedSpec> Mandatory

Deferred Delivery Indication <SendTime> –

Delivery Report <R-RecipientSpec>, <S-RecipientSpec> –

Delivery Time Indication <ReceiveTime> –

Disclosure of Other Recipients <DiscloRec> –

Expiry Date Indication <ExpiryTime> –

Forwarded IP Message <Type> –

Grade of Delivery Selection <Priority> Mandatory

Importance Indication <Importance> –

Intended Recipient Indication <R-RecipientSpec> –

IP Message Indication <IpmId> Mandatory

Language Indication <Language> –

Message Submission Identification <MsgSubId> –

Multi-Destination Delivery <R-RecipientSpec>, <S-RecipientSpec> Mandatory

Multi-Part Body Implicit Mandatory

Non-Receipt Notification <R-RecipientSpec>, <S-RecipientSpec> –

Non-Delivery Report <R-RecipientSpec>, <S-RecipientSpec> –

Obsoleting IPM Indication <RelatedSpec> –

Originator Indication <R-OriginatorSpec>, <S-OriginatorSpec> Mandatory

Primary and Copy Recipients Indication <R-RecipientSpec>, <S-RecipientSpec> Mandatory

Probe Indication <Convert> –

Receipt Notification <R-RecipientSpec>, <S-RecipientSpec> –

Reply IP Message Indication <ReplyId> Mandatory

Reply Recipients Indication <R-RecipientSpec>, <S-RecipientSpec> Mandatory

Reply IPM Indication <RelatedSpec> Mandatory

Reply Time Indication <ReplyTime> Mandatory

Sensitivity Indication <Sensitivity> Mandatory

Subject Indication <Subject> Mandatory

Submission Time Indication <SubmitTime> –

Recommendation T.611 (11/94) 163

TABLE 117/T.611

Additional CA-Descriptor settings for E-Mail services

17.1 Service Specific Syntax Elements

<ServiceDependentKeywordsSend> :=
(<Recipient> | <RecipientSpec>)
((<Document> <Convert> [<Type>]) | <DocumentSpec>)
<Compress> <Environ> [<Password>] [<Name>]

<ServiceDependentKeywordsSendAck> :=
<Recipient>
((<Document> <Convert> [<Type>]) | <DocumentSpec>)
<Compress> <Environ> [<Password>] [<Name>]

Keyword Parameter CA declares that

EMAIL "STD" text body parts are supported; "STD" maps to the appropriate basic alphabet of the
selected E-Mail service

EMAIL "TELETEX" teletex body parts are supported

EMAIL "VIDEOTEX" videotex body parts are supported

EMAIL "G3FAX" telefax group 3 body parts are supported

EMAIL "G4CLASS1" telefax group 4 body parts are supported

EMAIL "MIXEDMODE" mixed mode body parts are supported

EMAIL "MESSAGE" IPM body parts are supported

EMAIL "BILATERAL"a) bilateral defined body parts are supported

EMAIL "NATIONAL" national defined body parts are supported

EMAIL "ODA" ODA body parts are supported

CONT-TYPE "mhsIPMxx" MHS IPM content protocol is supported (xx stands for the year of release of the
related Recommendation, e.g. 84 for 1984)

CONT-TYPE "mhsIPNxx" MHS IPN content protocol is supported (the CA understands IPN documents as
described in Error! Not a valid result for table.)

CONT-TYPE "mhsDR" MHS DR content protocol is supported (the CA understands DR documents as
described in 16.5)

PROFILE "X400-IPM" the X400 profile is supported

PROFILE "BasicX400-IPM" the BasicX400 profile is supported

PROFILE "SimpleEMail" the SimpleEMail profile is supported

EXTEND "EncodeIPM" the EncodeIPM functionality is supported

EXTEND "DecodeIPM" the DecodeIPM functionality is supported

a) "Bilateral" is used for other body part types not mentioned (in this list).

NOTE – A CA may also support other or private E-Mail systems. In this case the type of E-Mail system should be reflected in the
CONT-TYPE and PROFILE parameters (e.g "CONT-TYPE : cmcIPM" for support of CMC Interfaces, see 16.2.2.9).

164 Recommendation T.611 (11/94)

<ServiceDependentKeywordsReceive> :=
[<Originator>]
((<Document> <Convert> <Type>) | <DocumentSpec>)
<Compress> <Environ> [<Password>] [<Name>]

See Table 118.

TABLE 118/T.611

Additional syntax elements for FT services

17.2 Text Based Encoding

17.2.1 Mapping of Keywords

See Table 119.

TABLE 119/T.611

Text Based Encoding of additional syntax elements for FT services

(A « stands for new line)

Syntax element Purpose

<Compress> Specifies the data compression format of the transferred file(s)

<Convert> Specifies the Transfer Format to be used

<Document>, <DocumentSpec> Specifies the document or the documents to be sent or being received

<Environ> Specifies the operating system the file was created under by the originator

<Name> Name the file has under the originating operating system

<Originator> Specifies the communications address of the originator

<Password> Password needed to access remote station

<Recipient>, <RecipientSpec> Specifies the communications address(es) of the recipient(s)

<Type> Specifies the Transmission Format used

Syntax element Keyword/Parameter Pair

<Compress> "COMPRESS" ":" <Compress-parameter> «

<Convert> "CONVERT" ":" <Convert-id-parameter> «

<Document> "FILENAME" ":" <File-parameter> «

<DocumentSpec> "FILENAME" ":" "@" <File-of-filespec> «

<Environ> "ENVIRON" ":" <Environ-parameter> «

<Name> "NAME" ":" <Name-parameter> «

<Originator> "ADDRESS" ":" <Address-parameter> «

<Password> "PASSWORD" ":" <Password-parameter> «

<Recipient> "ADDRESS" ":" <Address-parameter> «

<RecipientSpec> "ADDRESS" ":" "@" <File-of-addrspec> «

<Type> "TYPE" ":" <Type-id-parameter> «

Recommendation T.611 (11/94) 165

17.2.2 Encoding of Parameters

See also 6.4.4 for the encoding of non service dependent parameters used.

17.2.2.1 Service-id-parameter

The Service-id parameter is encoded as STRING set to the constant value "FT".

Syntax:

<Service-id-parameter> := "FT"

17.2.2.2 Type-id-parameter

The Type-id-parameter is encoded as STRING set to the constant value "STD".

Syntax:

<Type-id-parameter> := "STD"

17.2.2.3 Convert-id-parameter

The Convert-id-parameter is encoded as STRING set to the constant value "VOID".

Syntax:

<Convert-id-parameter> := "VOID"

17.2.2.4 File-of-addrspec and Address-parameter

The File-of-addrspec parameter is encoded as PATH which points to a file containing Addrspec-parameters, which
contain the Address-parameter.

The Address-parameter is encoded as STRING. The STRING shall contain the telephone number. If the phone number
starts with a "!" then it may contain special characters that are treated as operators (or modifiers) rather than dial digits.
The characters allowed are for further study.

Alternatively an alias name may be given instead of the phone number, provided the alias is introduced with an "&"
character. It is assumed that the CA knows how to decode the alias specified.

Syntax:

<File-of-addrspec> := PATH
-- The path points to a file containing one ore more
-- <Addrspec-parameter>s

<Addrspec-parameter> := <Address-parameter>

<Address-parameter> := <Phone-number> | ("!" <Dial-command>) | ("&" <Alias>)
-- contains telephone number, dialing sequence or alias

<Phone-number> := NUMERIC-STRING

<Dial-command> := STRING
-- for further study

<Alias> := STRING

17.2.2.5 File-of-filespec and File-parameter

The File-of-filespec parameter is encoded as PATH which points to a file containing Filespec-parameters, which contain
the File-parameter. The File-parameter itself is also encoded as PATH, which points to the file transferred.

166 Recommendation T.611 (11/94)

Syntax:

<File-of-filespec> := PATH
-- The path points to a file containing one ore more
-- <Filespec-parameter>s

<Filespec-parameter> := <File-parameter> "," <File-conv>
["," [<File-type>] ["," [<File-compress>] ["," <File-name>]]]

<File-parameter> := PATH
-- Path to the file transferred

<File-conv> := <Convert-id-parameter>
-- Specifies the Transfer Format of the file

<File-type> := <Type-id-parameter>
-- Specifies the Transmission Format of the file

<File-compress> := <Compress-parameter>
-- Specifies the compression

<File-name> := <Name-parameter>
-- Specifies the name of the file

17.2.2.6 Compress-parameter

The Compress-parameter is encoded as STRING set to one of the following values:

"VOID" No compression (default)

any other Compression identifier

Syntax:

<Compress-parameter> := "VOID" | <Compress-identifier>

<Compress-identifier> := STRING
-- e.g. "ZIP", "AZJ", "ARJ", "LZH" or "V42"

17.2.2.7 Environ-parameter

The Environ-parameter is coded as STRING set to one of the following values:

"MSDOS" MS-DOS

"WINDOWS" Windows

"UNIX" Unix

"OS2" OS/2

"MacOS" Mac

any other Reserved for further study

Syntax:

<Environ-parameter> := "MSDOS" | "WINDOWS" | "UNIX" | "OS2" | "MacOS"

17.2.2.8 Password-parameter

The Password-parameter is encoded as STRING.

Syntax:

<Password-parameter> := STRING

17.2.2.9 Name-parameter

The Name-parameter is encoded as STRING between 1 and 16 characters long.

Syntax:

<Name-parameter> := STRING (SIZE(1..16))

Recommendation T.611 (11/94) 167

17.3 Additional Functionality

17.3.1 Function: Send and SendAck

See Tables 120 and 121.

TABLE 120/T.611

Additional functionality of the <SendTDD> for File Transfer

Text Based Encoding

Syntax Element C T I/O Keyword Parameter Default Comment

<Environ> B m I ENVIRON <Environ-
parameter>

– Operating system of sender

<Password> B o I PASSWORD <Password-
parameter>

– Password for access of remote
filesystem

Send to one addressee

<Recipient> B m I ADDRESS <Address-
parameter>

– Specifies one recipient's call
number

Send to one or many addressees

<RecipientSpec> + m I ADDRESS "@" <File-of-
addrspec>

– Specifies a list of recipients

Send only one file

<Convert> B m I CONVERT <Convert-id-
parameter>

– States the Transfer Format of the
outgoing file

<Document> B m I FILENAME <File-
parameter>

– The single outgoing file to be
transmitted, delivered under the
Transfer Format specified by the
Convert keyword

<Type> B o I TYPE <Type-id-
parameter>

"STD" Specifies the document type to
be sent

<Compress> B o I COMPRESS <Compress-
parameter>

"VOID" Compression

<Name> B o I NAME <Name-
parameter>

– Name of file under original
environment

Send one or many files

<DocumentSpec> + m I FILENAME "@" <File-of-
filespec>

– Specifies a list of files; uses a
special syntax

168 Recommendation T.611 (11/94)

TABLE 121/T.611

Additional functionality of the <SendAckTDD> for File Transfer

Text Based Encoding

Syntax Element C T I/O Keyword Parameter Default Comment

<Recipient> B m I/O ADDRESS <Address-
parameter>

– Specifies one recipient's call
number

<Environ> B m I ENVIRON <Environ-
parameter>

– Operating system of sender

<Password> B o I PASSWORD <Password-
parameter>

– Password for access of remote
filesystem

Send only one file

<Convert> B m I CONVERT <Convert-id-
parameter>

– States the Transfer Format of the
outgoing file

<Document> B m I FILENAME <File-
parameter>

– The single outgoing file to be
transmitted, delivered under the
Transfer Format specified by the
Convert keyword

<Type> B o I TYPE <Type-id-
parameter>

"STD" Specifies the document type to
be sent

<Compress> B o I COMPRESS <Compress-
parameter>

"VOID" Compression

<Name> B o I NAME <Name-
parameter>

– Name of file under original
environment

Send one or many files

<DocumentSpec> + m I FILENAME "@" <File-of-
filespec>

– Specifies a list of files; uses a
special syntax

Recommendation T.611 (11/94) 169

17.3.2 Function: Receive

See Table 122.

TABLE 122/T.611

Additional functionality of the <ReceiveTDD> for File Transfer

17.4 CA-Descriptor Settings

A CA supporting the File Transfer service shall specify the Type-id-parameter "STD" (see Table 123).

TABLE 123/T.611

Additional CA-Descriptor settings for File Transfer

Text Based Encoding

Syntax Element C T I/O Keyword Parameter Default Comment

<Environ> B m O ENVIRON <Environ-
parameter>

– Operating system of sender

<Password> B o I PASSWORD <Password-
parameter>

– Password for access of remote
filesystem

<Originator> B o O ADDRESS <Address-
parameter>

– Specifies orginator's phone
number

Only one file received

<Convert> B m O CONVERT <Convert-id-
parameter>

– States the Transfer Format of
the received file

<Document> B m I/O FILENAME <File-
parameter>

– The filename may be pre-set by
the LA on request. If only one
file is received, the name shall
be retained by the CA. If many
files are received the name may
be overwritten by the CA

<Type> B o O TYPE <Type-id-
parameter>

– Specifies the document type
received

<Compress> B o O COMPRESS <Compress-
parameter>

"VOID" Compression

<Name> B o O NAME <Name-
parameter>

– Name of file under original
environ

Many files received

<DocumentSpec> + m O FILENAME "@" <File-
of-filespec>

– Specifies a list of files; uses a
special syntax

Keyword Parameter CA declares that

FT "STD" the basic file transfer service is supported

170 Recommendation T.611 (11/94)

PART III – BINARY ENCODING SCHEME
Recommendation T.611 (11/94)

18 Generic C description

This clause describes the binary encoding scheme for the TDDs using a “generic” C-language description (see also A.2).
The binary coding scheme requires the Code-ID set to “C” (see 6.3). The purpose of this description is to provide binary
compatibility of TDDs between different vendors’ applications using the binary encoding scheme.

The descriptions provided have to be adapted to the supporting platform to perform properly (see also Part IV of this
Recommendation).

The following generic C data types are used to describe the TDDs. These data types shall be mapped onto their specific,
platform-dependent C data type counterparts (see Table 124).

TABLE 124/T.611

Generic C data types

18.1 Binary encoding of TDDs

The Request TDDs and Responses are represented by C structures. The components of those structures correspond to the
syntax elements used in text-based encodings, as defined in clause 6 and the appropriate clauses of Part Error!
Reference source not found. of this Recommendation.

The binary layout, described with C-Language structures, has been chosen so that elements of different data types are
aligned to a 4 byte boundary.

Each TDD consists of, in order:

– a 4 octet wide binary header;

– a 16 octet wide TDD descriptor, which contains the offsets to four specific sections in the TDD layout;
the offsets are computed from the base of the binary header.

The rest of the binary layout is made up by the four specific sections, which may appear in any order:

– TDD section 1 – Contains the common input parameters, i.e. the ones described in clause 6.

– TDD section 2 – Contains the service dependent input parameters, i.e. the ones described in the
appropriate clause of Part II of this Recommendation.

– TDD section 3 – Contains the common output parameters, i.e. the ones described in clause 6.

– TDD section 4 – Contains the service dependent out parameters, i.e. the ones described in the appropriate
clause of Part II of this Recommendation.

Because of this structure it is possible for applications to add or enhance parameters of a TDD with private parameters.

Generic C data type Comment

INT16 A signed integer value, coded on 16 bits

UINT32 An unsigned integer value, coded on 32 bits

CHAR A character, coded on 8 bits

BYTE An octet, coded on 8 bits

Recommendation T.611 (11/94) 171

Figure 16 below depicts this structure.

T0823520-95/d20

Header

Descriptor

Section 1

Section 2

Section 3

Section 4

Code-ID

Bite order

Version

TDD Function

Offset Section 1

Offset Section 2

Offset Section 3

Offset Section 4

Private Parameter

Private Parameter

Private Parameter

Private Parameter

FIGURE 16/T.611

Binary Structure of TDD

Service specific
Input-Parameter

Common
Input Parameter

Common
Output Parameter

Service specific
Output Parameter

FIGURE 16/T.611...[D20] = 3 CM (118%)

18.1.1 TDD Header

/***
* <TDD> syntax element
***/

struct tdd {
struct tdd_header hdr; /* <TDD Header> syntax element, see below */
struct tdd_descriptor ofs; /* Descriptor containing offsets, see below */
}; /* Function dependent TDD structures ... */

/***
* <TDD Header> syntax element
***/

struct tdd_header {
BYTE_code_id; /* Code-ID, constant set to 0x43 (’C’) */
BYTE_byte_order; /* Optional constant value indicating byte order */
BYTE_itu_version; /* Constant indicating version of this Recommendation */
BYTE_function; /* Function code */
};

172 Recommendation T.611 (11/94)

/***
* Offset descriptor
***/

struct tdd_descriptor {
UINT32cinp; /* offset to section 1 (common input parameter) */
UINT32sinp; /* offset to section 2 (service dependent input parameter) */
UINT32coup; /* offset to section 3 (common output parameter) */
UINT32soup; /* offset to section 4 (service dependent output parameter) */
};

18.1.2 Service independent TDD structures

/***
* <SendTDD> structure
***/

struct send_tdd_inp { /* common input parms */
La_id_type la_id; /* <LaId> */
Req_id_type req_id; /* <ReqID> */
Service_type service; /* <Service> */
Date_time_type sendtime; /* <SendTime> */
Date_time_type lasttime; /* <LastTime> */
Comment_type comment; /* <Comment> */
Userkey_type userkey; /* <UserKey> */
};

/***
* <SendackTDD> structure
***/

struct sendack_tdd_inp { /* common input parms */
La_id_type la_id; /* <LaId> */
Req_id_type req_id; /* <ReqID> */
Service_type service; /* <Service> */
Date_time_type sendtime; /* <SendTime> */
Date_time_type lasttime; /* <LastTime> */
Comment_type comment; /* <Comment> */
Userkey_type userkey; /* <UserKey> */
};

struct sendack_tdd_out { /* common output parms */
Comid_type comid; /* <ComId> */
Status_type status; /* <Status> */
Error_type error; /* <Error> */
Error_type minor; /* <Minor> */
Error_type warning; /* <Warning> */
};

/***
* <ReceiveTDD> structure
***/

struct receive_tdd_inp { /* common input parms */
La_id_type la_id; /* <LaId> */
Req_id_type req_id; /* <ReqID> */
Service_type service; /* <Service> */
Boolean_type deletedoc; /* <Delete > */
Comid_type comid; /* <Comid > */
};

Recommendation T.611 (11/94) 173

struct receive_tdd_out { /* common output parms */
Comid_type comid; /* <ComId> */
Status_type status; /* <Status> */
Error_type error; /* <Error> */
Error_type minor; /* <Minor> */
Error_type warning; /* <Warning> */
Service_type service; /* <Service> */
Date_time_type rcvtime; /* <ReceiveTime> */
};

/***
* <CopyTDD> structure
***/

struct copy_tdd_inp { /* common input parms */
La_id_type la_id; /* <LaId> */
Req_id_type req_id; /* <ReqID> */
Comid_type comid; /* <ComId> */
Req_id_type reqref; /* <ReqRef> */
State_type state; /* <State> */
Path_type target; /* <Target> */
Layout_id_type layout; /* <Layout> */
};

struct copy_tdd_out { /* common output parms */
Error_type error; /* <Error> */
Error_type minor; /* <Minor> */
Error_type warning; /* <Warning> */
};

/***
* <DeleteTDD> structure
***/

struct delete_tdd_inp { /* common input parms */
La_id_type la_id; /* <LaId> */
Req_id_type req_id; /* <ReqID> */
Comid_type comid; /* <ComId> */
Req_id_type reqref; /* <ReqRef> */
};

struct delete_tdd_out { /* common output parms */
Error_type error; /* <Error> */
Error_type minor; /* <Minor> */
Error_type warning; /* <Warning> */
};

/***
* <CancelTDD> structure
***/

struct cancel_tdd_inp { /* common input parms */
La_id_type la_id; /* <LaId> */
Req_id_type req_id; /* <ReqID> */
Comid_type comid; /* <ComId> */
Req_id_type reqref; /* <ReqRef> */
};

174 Recommendation T.611 (11/94)

struct cancel_tdd_out { /* common output parms */
Error_type error; /* <Error> */
Error_type minor; /* <Minor> */
Error_type warning; /* <Warning> */
};

/***
* <PurgeTDD> structure
***/

struct purge_tdd_inp { /* common input parms */
La_id_type la_id; /* <LaId> */
Req_id_type req_id; /* <ReqID> */
Comid_type comid; /* <ComId> */
Req_id_type reqref; /* <ReqRef> */
State_type state; /* <State> */
};

struct purge_tdd_out { /* common output parms */
Error_type error; /* <Error> */
Error_type minor; /* <Minor> */
Error_type warning; /* <Warning> */
};

/***
* <RescheduleTDD> structure
***/

struct reschedule_tdd_inp { /* common input parms */
La_id_type la_id; /* <LaId> */
Req_id_type req_id; /* <ReqID> */
Comid_type comid; /* <ComId> */
Req_id_type reqref; /* <ReqRef> */
Address_type address; /* <Address> */
Date_time_type sendtime; /* <SendTime> */
Date_time_type lasttime; /* <LastTime> */
};

struct reschedule_tdd_out { /* common output parms */
Error_type error; /* <Error> */
Error_type minor; /* <Minor> */
Error_type warning; /* <Warning> */
};

/***
* <DispatchTDD> structure
***/

struct dispatch_tdd_inp { /* common input parms */
La_id_type la_id; /* <LaId> */
Req_id_type req_id; /* <ReqID> */
Comid_type comid; /* <ComId> */
La_id_type newla; /* <NewLa> */
};

struct dispatch_tdd_out { /* common output parms */
Error_type error; /* <Error> */
Error_type minor; /* <Minor> */
Error_type warning; /* <Warning> */
};

Recommendation T.611 (11/94) 175

/***
* <PreviewTDD> structure
***/

struct preview_tdd_inp { /* common input parms */
La_id_type la_id; /* <LaId> */
Req_id_type req_id; /* <ReqID> */
Comid_type comid; /* <ComId> */
Path_type target; /* <Target> */
Convert_id_type convert; /* <Convert> */
};

struct preview_tdd_out { /* common output parms */
Error_type error; /* <Error> */
Error_type minor; /* <Minor> */
Error_type warning; /* <Warning> */
};

/***
* <PrintTDD> structure
***/

struct print_tdd_inp { /* common input parms */
La_id_type la_id; /* <LaId> */
Req_id_type req_id; /* <ReqID> */
Path_type filename; /* <FileName> */
Convert_id_type informat; /* <InFormat> */
Printer_id_type printer; /* <Printer> */
};

struct print_tdd_out { /* common output parms */
Error_type error; /* <Error> */
Error_type minor; /* <Minor> */
Error_type warning; /* <Warning> */
};

/***
* <ConvertTDD> structure
***/

struct convert_tdd_inp { /* common input parms */
La_id_type la_id; /* <LaId> */
Req_id_type req_id; /* <ReqID> */
Path_type filename; /* <FileName> */
Path_type target; /* <Target> */
Convert_id_type informat; /* <InFormat> */
Convert_id_type outformat; /* <OutFormat> */
};

struct convert_tdd_out { /* common output parms */
Error_type error; /* <Error> */
Error_type minor; /* <Minor> */
Error_type warning; /* <Warning> */
};

/***
* <CheckTDD> structure
***/

176 Recommendation T.611 (11/94)

struct check_tdd_inp { /* common input parms */
La_id_type la_id; /* <LaId> */
Req_id_type req_id; /* <ReqID> */
Path_type filename; /* <FileName> */
Convert_id_type check; /* <Check> */
};

struct check_tdd_out { /* common output parms */
Error_type error; /* <Error> */
Error_type minor; /* <Minor> */
Error_type warning; /* <Warning> */
};

/***
* <ExtendTDD> structure
***/

struct extend_tdd_inp { /* common input parms */
Subfunc_type subfunc; /* <SubFunction> */
La_id_type la_id; /* <LaId> */
Req_id_type req_id; /* <ReqID> */
};

struct extend tdd out { /* common output parms */
Error_type error; /* <Error> */
Error_type minor; /* <Minor> */
Error_type warning; /* <Warning> */
};

/***
* <NationalTDD> structure
***/

struct national_tdd_inp { /* common input parms */Subfunc_type
subfunc; /* /* <NationalFunction>, for further study */
La_id_type la_id; /* <LaId> */
Req_id_type req_id; /* <ReqID> */
/* ... <--- others are added here, for further study */
};

struct national_c_out { /* common output parms */
Error_type error; /* <Error> */
Error_type minor; /* <Minor> */
Error_type warning; /* <Warning> */
/* ... <--- others are added here, for further study */
};

/***
* <PrivateTDD> structure
***/

struct private_tdd_inp { /* common input parms */
Subfunc_type subfunc; /* <PrivateFunction>, for further study */
La_id_type la_id; /* <LaId> */
Req_id_type req_id; /* <ReqID> */
/* ... <--- others are added here, for further study */
};

Recommendation T.611 (11/94) 177

struct private_tdd_out { /* common output parms */
Error_type error; /* <Error> */
Error_type minor; /* <Minor> */
Error_type warning; /* <Warning> */
/* ... <--- others are added here, for further study */
};

18.1.3 Service Independent Constants and Type Definitions

/***
* Constants used for fields of struct tdd_header
***/

/* code_id field */
#define CODE_ID 0x43 /* Code-ID, set to ’C’ */

/* byte_order field */
#define L_BYTEORDER 0x4C /* Little Endian (Intel, low-high) byte order */
#define B_BYTEORDER 0x42 /* Big endian byte order */

/* itu_version field */
#define ITU_VERSION 94 /* Current version (1994) */

/* function field */
#define SENDACK_TDD 0x10 /* <SendAckFunction> */
#define SEND_TDD 0x11 /* <SendFunction> */
#define RECEIVE_TDD 0x20 /* <ReceiveFunction> */
#define COPY_TDD 0x30 /* <CopyFunction> */
#define DELETE_TDD 0x31 /* <DeleteFunction> */
#define CANCEL_TDD 0x32 /* <CancelFunction> */
#define PURGE_TDD 0x33 /* <PurgeFunction> */
#define RESCHEDULE_TDD 0x34 /* <RescheduleFunction> */
#define DISPATCH_TDD 0x35 /* <DispatchFunction> */
#define PREVIEW_TDD 0x36 /* <PreviewFunction> */
#define PRINT_TDD 0x40 /* <PrintFunction> */
#define CONVERT_TDD 0x41 /* <ConvertFunction> */
#define CHECK_TDD 0x42 /* <CheckFunction> */
#define EXTEND_TDD 0x50 /* <ExtendFunction> */
#define NATIONAL_TDD 0x60 /* <NationalFunction> */
#define PRIVATE_TDD 0x70 /* <PrivateFunction> */

/***
* Constants used for struct extend_tdd_inp
***/

/* subfunction field */
#define POLL_FX3 0x0101 /* FX3: Poll */

#define ENCODE_IPM 0x2010 /* EMAIL: EncodeIPM */
#define DECODE_IPM 0x2011 /* EMAIL: DecodeIPM */

/***
* Type definitions
* Some types are service dependent. Their values might be restricted or expanded upon further.
***/

178 Recommendation T.611 (11/94)

/*
** !DDRESS?TYPE
** Some telecommunication services may constrain or expand this type furthermore.
*/

typedef CHAR Address_type[127+1];

/*
** "OOLEAN?TYPE
** Takes the values true or false
*/

typedef enum { false=0, true } Boolean_type;

/*
** #OMID�TYPE
*/

typedef CHAR Comid type[31+1];

/*
** #OMMENT�TYPE
*/

typedef CHAR Comment type[127+1];

/*
** #ONVERT?ID?TYPE
** The (asciiz) strings assigned for text based encoding shall be used.
*/

typedef CHAR Convert_id_type[15+1];

/*
** $ATE?TIME?TYPE�AND�3END?TIME?TYPE
** The date and time specification follows closely the ANSI specification
** The values "IMMEDIATE" and "URGENT" are set by specifying the seconds
** part of the struct below (tm_sec) with (-1) or (-2)
*/

typedef struct {
INT16 tm_sec; /* seconds; used for "IMMEDIATE" and "URGENT"
specification */
INT16 tm_min; /* minutes */
INT16 tm_hour; /* hours */
INT16 tm_mday; /* day of month */
INT16 tm_mon; /* month */
INT16 tm_year; /* full year */
} Date_time_type;

#define Send_time_type Date_time_type
#define IMMEDIATE (-1) /* Set into tm_sec of above struct */
#define URGENT (-2)

/*
** %RROR?TYPE

 The definition of the Error type does not include the text part of the error message; If the text
** part is needed, it shall be treated as a private extension!
*/

typedef UINT32 Error_type;

Recommendation T.611 (11/94) 179

/*
** ,A?ID?TYPE
** Reference of an LA-ID. Presented as a string.
** The purpose of the parameter is to identify the "owning" LA of a request.
*/

typedef CHAR La_id_type[15+1];

/*
** ,AYOUT?ID?TYPE
** Defines the layout of the <CopyTDD> target file.
*/

typedef enum {std=0, csv, tab } Layout_id_type;

/*
** 0ATH?TYPE
** Full path addressing a file of a directory. Stands for full path to document, file or directory.
** Full path means: path given absolute, without relative components.
*/

typedef CHAR Path_type[255+1];

/*
** 0RINTER?ID?TYPE
** ID of selected printer. Represented as a string. Depends on the supporting operating system.
** The CA manufacturer shall state in documentation how to address printers.
*/

typedef CHAR Printer_id_type[127+1];

/*
** 2EQ?ID?TYPE
** Reference of a Request ID. The parameter value is represented as a string encoded as implied
** by the APPLI/COM header ID of the TDD. The purpose of the parameter is to identify the
** relation of a response to a previous request. So the REQ-ID shall be unique within an LA. It is the
** responsibility of the LA to ensure the REQ-ID is unique.
*/

typedef CHAR_Req_id_type[31+1];

/*
** 3ERVICE?TYPE
** Specifies the ITU-T Service to be used.
*/

typedef enum { fx3=1, fx4, ttx, tlx, tx, email, ft } Service_type;

/*
** 3TATE?TYPE
** Specifies the state of the CA-Record. See also %RROR��2EFERENCE�SOURCE�NOT�FOUND�.
*/

typedef enum { delayed=1, sending, sent, send_failed, reception, retrieved, receive_failed } State_type;

/*
** 3TATUS?TYPE
*/

typedef enum {unknown, positive, partial, negative } Status_type;

180 Recommendation T.611 (11/94)

/*
** 3UBFUNC?TYPE
*/

typedef UINT32 Subfunc_type;

/*
** 4YPE?ID?TYPE
** Specifies the Type (Subtype) of a telecommunications service. Each telecommunications
** service has its own set of Type-ids. See appropriate clause of Part %RROR��2EFERENCE�SOURCE�NOT
FOUND� of this Recommendation.

*/

typedef enum{ std=0, btm, dtm, bft, edi, opd, md, ctl, teletex, g3fax, g4class1, videotex, message, bilateral,
national, oda } Type_id_type;

/*
** 5SERKEY?TYPE
*/

typedef CHAR_Userkey_type[31+1];

18.1.4 FX3 dependent TDD Structures, Constants and Definitions

/***
* FX3: Service specific structure for <SendTDD>
***/

struct send_fx3_inp {
G3_speed_type g3speed; /* <G3Speed> */
Boolean_type gencil; /* <GenCil> */
G3_high_res_type highres; /* <HighRes> */
G3_sub_address_type subaddr; /* <SubAddress> */
Boolean_type useecm; /* <UseEcm> */
Address_type address; /* <Recipient> or <RecipientSpec> */
Boolean_type dopoll; /* <DoPoll> */
Poll_password_type password; /* <PollPassword> */
Poll_select type select; /* <PollSelector> */
Path_type filename; /* <Document> or <DocumentSpec> */
Convert_id_type convert; /* <Convert> */
Type_id_type type; /* <Type> */
INT16 from; /* <From> */
INT16 to; /* <To> */
};

/***
* FX3: Service specific structures for <SendAckTDD>
***/

Recommendation T.611 (11/94) 181

struct sendack_fx3_inp {
G3_speed_type g3speed; /* <G3Speed> */
Boolean_type gencil; /* <GenCil> */
G3_high_res_type highres; /* <HighRes> */
G3_sub_address_type subaddr; /* <SubAddress> */
Boolean_type useecm; /* <UseEcm> */
Address_type address; /* <Recipient> */
Boolean_type dopoll; /* <DoPoll> */
Poll_password_type password; /* <PollPassword> */
Poll_select_type select; /* <PollSelector> */
Path_type filename; /* <Document> or <DocumentSpec> */
Convert_id_type convert; /* <Convert> */
Type_id_type type; /* <Type> */
INT16 from; /* <From> */
INT16 to; /* <To> */
};

struct sendack_fx3_out {
Address_type address; /* <Recipient> */
G3_speed_type g3speed; /* <G3Speed> */
Boolean_type useecm; /* <UseEcm> */
};

/***
* FX3: Service specific structures for <ReceiveTDD>
***/

struct receive_fx3_inp {
Convert_id_type cvfax3; /* <CvFax3> */
G3_sub_address_type subaddr; /* <SubAddress> */
Path_type filename; /* <Document> */
};

struct receive_fx3_out {
Address_type address; /* <Originator> */
G3_speed_type g3speed; /* <G3Speed> */
G3_sub_address_type subaddr; /* <SubAddress> */
Path_type filename; /* <Document> or <DocumentSpec> */
Convert_id_type convert; /* <Convert> */
Type_id_type type; /* <Type> */
};

/***
* FX3: Structures for poll <ExtendTDD>
***/

struct poll_fx3_inp {
Address_type address; /* <Address> */
Poll_password_type password; /* <PollPassword> */
Poll_select_type select; /* <PollSelector> */
Date_time_type sendtime; /* <SendTime> (optional) */
};

struct poll_fx3_out {
Comid_type comid; /* <ComId> */
};

182 Recommendation T.611 (11/94)

/***
* #ONSTANTS�TO�BE�USED�FOR�SPECIFIC�FIELDS�OF�THE�3END��3ENDACK�AND�2ECEIVE�4$$.
* Use of some definitions made in 18.1.3 are restricted. This applies to the following
* definitions:
*
* Service_type is restricted to: fx3.
* Type_id_type is restricted to: std, btm, dtm, bft and edi.
* Convert_id_type: See Table 78 for further information.
***/

/*
** '�?SPEED?TYPE
*/

typedef enum {bps2400=1, bps4800, bps7200, bps9600, bps12200, bps14400} G3_speed_type;

/*
** '�?SUB?ADDRESS?TYPe
*/

typedef CHAR G3_sub_address_type[23+1];

/*
** '�?HIGH?RES?TYPE
*/

typedef enum {g3dpi98=0, g3dpi196, g3dpi200, g3dpi300, g3dpi400, g3dpi392_8, g3dpi392_16 }
G3_high_res_type;

/*
** 0OLL?PASSWORD?TYPE
*/

typedef CHAR Poll_password_type[23+1]; */ only first 20 digits are valid */

/*
** 0OLL?SELECT?TYPE
*/

typedef CHAR_Poll_password_type[23+1]; */ only first 20 digits are valid */

18.1.5 FX4 dependent TDD Structures, Constants and Definitions

Recommendation T.611 (11/94) 183

/***
* FX4: Service specific structure for <SendTDD>
***/

struct send_fx4_inp {
G4_high_res_type highres; /* <HighRes> */
G4_sub_address_type subaddr; /* <SubAddress> */
Address_type address; /* <Recipient> or <RecipientSpec> */
Path_type filename; /* <Document> or <DocumentSpec> */
Convert_id_type convert; /* <Convert> */
Type_id_type type; /* <Type> */
String12_type name; /* <Name> */
String12_type userinfo; /* <UserInfo> */
Path_type prolog; /* <Prolog> */
INT16 from; /* <From> */
INT16 to; /* <To> */
};

/***
* FX4: Service specific structures for <SendAckTDD>
***/

struct sendack_fx4_inp {
G4_high_res_type highres; /* <HighRes> */
G4_sub_address_type subaddr; /* <SubAddress> */
Address_type address; /* <Recipient> */
Path_type filename; /* <Document> or <DocumentSpec> */
Convert_id_type convert; /* <Convert> */
Type_id_type type; /* <Type> */
String12_type name; /* <Name> */
String12_type userinfo; /* <UserInfo> */
Path_type prolog; /* <Prolog> */
INT16 from; /* <From> */
INT16 to; /* <To> */
};

struct sendack_fx4_out {
Cil_type cil; /* <Cil> */
};

/***
* FX4: Service specific structures for <ReceiveTDD>
***/

struct receive_fx4_inp {
Convert_id_type cvfax4; /* <CvFax4> */
G4_sub_address_type subaddr; /* <SubAddress> */
Path_type filename; /* <Document> */
Path_type prolog; /* <Prolog> */
};

struct receive_fx4_out {
Address_type address; /* <Originator> */
G4_sub_address_type subaddr; /* <SubAddress> */
Path_type filename; /* <Document> or <DocumentSpec> */
Convert_id_type convert; /* <Convert> */
Type_id_type type; /* <Type> */
String12_type name; /* <Name> */
String12_type userinfo; /* <UserInfo> */
Cil_type cil; /* <Cil> */
INT16 firstpg; /* <FirstPg> */
};

184 Recommendation T.611 (11/94)

/***
* #ONSTANTS�TO�BE�USED�FOR�SPECIFIC�FIELDS�OF�THE�3END��3ENDACK�AND�2ECEIVE�4$$.
* Use of some definitions made in 18.1.3 are restricted. This applies to the following
* definitions:
*
* Service_type is restricted to: fx4.
* Type_id_type is restricted to: std, dtm, bft, edi, opd, md, and ctl.
* Convert_id_type: See Table 87 for further information.
***/

/*
** 3TRING��?TYPE
*/

typedef CHAR String12_type[15+1];

/*
** '�?SUB?ADDRESS?TYPE
*/

typedef CHAR G4_sub_address_type[7+1];

/*
** '�?HIGH?RES?TYPE
*/

typedef enum {g4dpi200=1, g4dpi240, g4dpi300, g4dpi400} G4_high_res_type;

/*
** #IL?TYPE
*/

typedef struct {
CHAR receiver_tid[24];
CHAR sep1; /* = ’/’ (slash) */
CHAR sender_tid[24];
CHAR sep2; /* = ’/’ (slash) */
CHAR datetime[14];
CHAR sep3; /* = ’/’ (slash) */
CHAR refinfo[7];
} Cil_type; /* There is no terminating 0x00; Total length = 72 */

18.1.6 TTX dependent TDD Structures, Constants and Definitions

/***
* TTX: Service specific structure for <SendTDD>
***/

struct send_ttx_inp {
Ttx_sub_address_type subaddr; /* <SubAddress> */
Address_type address; /* <Recipient> or <RecipientSpec> */
Path_type filename; /* <Document> or <DocumentSpec> */
Convert_id_type convert; /* <Convert> */
Type_id_type type; /* <Type> */
String12_type name; /* <Name> */
String12_type userinfo; /* <UserInfo> */
Path_type prolog; /* <Prolog> */
INT16 from; /* <From> */
INT16 to; /* <To> */
T61_options_type t61options; /* <T61Options> */
};

Recommendation T.611 (11/94) 185

/***
* TTX: Service specific structures for <SendAckTDD>
***/

struct sendack_ttx_inp {
Ttx_sub_address_type subaddr; /* <SubAddress> */
Address_type address; /* <Recipient> */
Path_type filename; /* <Document> or <DocumentSpec> */
Convert_id_type convert; /* <Convert> */
Type_id_type type; /* <Type> */
String12_type name; /* <Name> */
String12_type userinfo; /* <UserInfo> */
Path_type prolog; /* <Prolog> */
INT16 from; /* <From> */
INT16 to; /* <To> */
T61_options_type}; t61options; /* <T61Options> */
};

struct sendack_ttx_out {
Cil_type cil; /* <Cil> */
};

/***
* TTX: Service specific structures for <ReceiveTDD>
***/

struct receive_ttx_inp {
Convert_id_type cvttx; /* <CvTtx> */
Ttx_sub_address_type subaddr; /* <SubAddress> */
Path_type filename; /* <Document> */
Path_type prolog; /* <Prolog> */
};

struct receive_ttx_out {
Address_type address; /* <Originator> */
Ttx_sub_address_type subaddr; /* <SubAddress> */
Path_type filename; /* <Document> or <DocumentSpec> */
Convert_id_type convert; /* <Convert> */
Type_id_type type; /* <Type> */
String12_type name; /* <Name> */
String12_type userinfo; /* <UserInfo> */
Cil_type cil; /* <Cil> */
INT16 firstpg; /* <FirstPg> */
};

186 Recommendation T.611 (11/94)

/***
* #ONSTANTS�TO�BE�USED�FOR�SPECIFIC�FIELDS�OF�THE�3END��3ENDACK�AND�2ECEIVE�4$$.
* Use of some definitions made in 18.1.3 are restricted. This applies to the following
* definitions:
*
* Service_type is restricted to: ttx.
* Type_id_type is restricted to: std, dtm, bft and edi.
* Convert_id_type: See Table 94 for further information.
***/

/*
** 3TRING��?TYPE

 See definition of FX4!
*/
/*
typedef CHAR String12_type[15+1];
*/

/*
** 4TX?SUB?ADDRESS?TYPE
*/
typedef CHAR Ttx_sub_address_type[7+1];
/*
** #IL?TYPE

 See definition of FX4!
*/
/*
typedef struct {

CHAR receiver_tid[24];
CHAR sep1 /* = ’/’ (slash) */
CHAR sender_tid[24];
CHAR sep2 /* = ’/’ (slash) */
CHAR datetime[14];
CHAR sep3 /* = ’/’ (slash) */
CHAR refinfo[7];
} Cil_type;

*/
/*
** 4��?OPTIONS?TYPE

�

typedef CHAR T61_options_type[15+1];

18.1.7 TX dependent TDD Structures, Constants and Definitions

/***
* TX: Service specific structure for <SendTDD>
***/

struct send_tx_inp {
Boolean_type notify; /* <Notify> */
Tx_sub_address_type subaddr; /* <SubAddress> */
Address_type address; /* <Recipient> or <RecipientSpec> */
Path_type filename; /* <Document> or <DocumentSpec> */
Convert_id_type convert; /* <Convert> */
Type_id_type type; /* <Type> */
INT16 from; /* <From> */
INT16 to; /* <To> */
};

Recommendation T.611 (11/94) 187

/***
* TX: Service specific structures for <SendAckTDD>
***/

struct sendack_tx_inp {
Boolean_type notify; /* <Notify> */
Tx_sub_address_type subaddr; /* <SubAddress> */
Address_type address; /* <Recipient> */
Path_type filename; /* <Document> or <DocumentSpec> */
Convert_id_type convert; /* <Convert> */
Type_id_type type; /* <Type> */
INT16 from; /* <From> */
INT16 to; /* <To> */
};

struct sendack_tx_out {};

/***
* TX: Service specific structures for <ReceiveTDD>
***/

struct receive_tx_inp {
Convert_id_type cvtx; /* <CvTx> */
Tx_sub_address_type subaddr; /* <SubAddress> */
Path_type filename; /* <Document> */
};

struct receive_tx_out {
Address_type address; /* <Originator> */
Tx_sub_address_type subaddr; /* <SubAddress> */
Path_type filename; /* <Document> or <DocumentSpec> */
Convert_id_type convert; /* <Convert> */
Type_id_type type; /* <Type> */
};

/***
* #ONSTANTS�TO�BE�USED�FOR�SPECIFIC�FIELDS�OF�THE�3END��3ENDACK�AND�2ECEIVE�4$$.
* Use of some definitions made in 18.1.3 are restricted. This applies to the following
* definitions:
*
* Service_type is restricted to: tx.
* Type_id_type is restricted to: std
* Convert_id_type is restricted to: "ASCII", "ASCIIxxx", "T.50"
***/

/*
** 4X?SUB?ADDRESS?TYPE
*/

typedef CHAR Tx_sub_address_type[7+1];

18.1.8 TLX dependent TDD Structures, Constants and Definitions

188 Recommendation T.611 (11/94)

/***
* TLX: Service specific structure for <SendTDD>
***/

struct send_tlx_inp {
Tlx_sub_address_type subaddr; /* <SubAddress> */
Address_type address; /* <Recipient> or <RecipientSpec> */
Path_type filename; /* <Document> or <DocumentSpec> */
Convert_id_type convert; /* <Convert> */
Type_id_type type; /* <Type> */
INT16 from; /* <From> */
INT16 to; /* <To> */
};

/***
* TLX: Service specific structures for <SendAckTDD>
***/

struct sendack_tlx_inp {
Tlx_sub_address_type subaddr; /* <SubAddress> */
Address_type address; /* <Recipient> */
Path_type filename; /* <Document> or <DocumentSpec> */
Convert_id_type convert; /* <Convert> */
Type_id_type type; /* <Type> */
INT16 from; /* <From> */
INT16 to; /* <To> */
};

struct sendack_tlx_out {};

/***
* TLX: Service specific structures for <ReceiveTDD>
***/

struct receive_tlx_inp {
Convert_id_type cvtlx; /* <CvTx> */
Tlx_sub_address_type subaddr; /* <SubAddress> */
Path_type filename; /* <Document> */
};

Recommendation T.611 (11/94) 189

struct receive_tlx_out {
Address_type address; /* <Originator> */
Tlx_sub_address_type subaddr; /* <SubAddress> */
Path_type filename; /* <Document> or <DocumentSpec> */
Convert_id_type convert; /* <Convert> */
Type_id_type type; /* <Type> */
};

/***
* #ONSTANTS�TO�BE�USED�FOR�SPECIFIC�FIELDS�OF�THE�3END��3ENDACK�AND�2ECEIVE�4$$.
* Use of some definitions made in 18.1.3 are restricted. This applies to the following
* definitions:
*
* Service_type is restricted to: tlx.
* Type_id_type is restricted to: std
* Convert_id_type is restricted to: "ASCII", "ASCIIxxx", "T.50"
***/

/*
** 4LX?SUB?ADDRESS?TYPE
*/

typedef CHAR Tlx_sub_address_type[7+1];

18.1.9 EMAIL dependent TDD Structures, Constants and Definitions

/***
* EMAIL: Service specific structure for <SendTDD>
***/

struct send_email_inp {
Ipm_id_type ipm_id; /* <IpmId> */
Path_type s_recipient; /* <S-Recipient> */
Boolean_type alternate; /* <Alternate> (optional) */
Cont_type_type cont_type; /* <ContType> (optional) */
Boolean_type disclo_rec; /* <DiscloRec> (optional) */
Date_time_type expirytime; /* <ExpiryTime> (optional) */
Boolean_type implicit_conv; /* <ImplicitConv> (optional) */
Importance_type importance; /* <Importance> (optional) */
Language_id_type language; /* <Language> (optional) */
Priority_type priority; /* <Priority> (optional) */
Path_type related; /* <Related> (optional) */
Ipm_id_type reply_id; /* <ReplyId> (optional) */
Date_time_type replytime; /* <ReplyTime> (optional) */
Path_type s_originator; /* <S-Originator> (optional) */
Sensitivity_type sensitivity; /* <Sensitivity> (optional) */
Subject_type subject; /* <Subject> (optional) */
Userinfo_type userinfo; /* <UserInfo> (optional) */
};

/***
* EMAIL:Service specific structures for <SendAckTDD>
***/

struct sendack_email_inp {
Ipm_id_type ipm_id; /* <IpmId> */
Path_type s_recipient; /* <S-Recipient> */
Boolean_type alternate; /* <Alternate> (optional) */
Cont_type_type cont_type; /* <ContType> (optional) */

190 Recommendation T.611 (11/94)

Boolean_type disclo_rec; /* <DiscloRec> (optional) */
Date_time_type expirytime; /* <ExpiryTime> (optional) */
Boolean_type implicit_conv; /* <ImplicitConv> (optional) */
Importance_type importance; /* <Importance> (optional) */
Language_id_type language; /* <Language> (optional) */
Priority_type priority; /* <Priority> (optional) */
Path_type related; /* <Related> (optional) */
Ipm_id_type reply_id; /* <ReplyId> (optional) */
Date_time_type replytime; /* <ReplyTime> (optional) */
Path_type s_originator; /* <S-Originator> (optional) */
Sensitivity_type sensitivity; /* <Sensitivity> (optional) */
Subject_type subject; /* <Subject> (optional) */
Userinfo_type userinfo; /* <UserInfo> (optional) */
};

struct sendack_email_out {
Msg_sub_id_type msg_sub_id; /* <MsgSubId> (optional) */
Date_time_type submittime; /* <SubmitTime> (optional) */
};

/***
* EMAIL:Service specific structures for <ReceiveTDD>
***/

struct receive_email_inp {
Path_type r_originator; /* <R-Originator> */
Path_type r_recipient; /* <R-Recipient> */
Path_type related; /* <Related> (optional) */
};

struct receive_email_out {
Ipm_id_type ipm_id; /* <IpmId> */
Cont_type_type cont_type; /* <ContType> */
Date_time_type expirytime; /* <ExpiryTime> */
Boolean_type forwarded; /* <Forwarded> */
Importance_type importance; /* <Importance> */
Boolean_type inc_copy; /* <IncCopy> */
Language_id_type language; /* <Language> */
Priority_type priority; /* <Priority> */
Ipm_id_type reply_id; /* <ReplyId> */
Date_time_type replytime; /* <ReplyTime> */
Sensitivity_type sensitivity; /* <Sensitivity> */
Subject_type subject; /* <Subject> */
Date_time_type submittime; /* <SubmitTime> */
Userinfo_type userinfo; /* <UserInfo> */
};

/***
* EMAIL: Structure of file-record of R-Recipientspec
***/

struct r_recipientspec {
X_name_type x_name;
R_recipient_type r_type;
Boolean_type reply;
Notify_type notify;
Report_type report;
};

Recommendation T.611 (11/94) 191

/***
* EMAIL: Structure of file-record of S-Recipientspec
***/

struct s_recipientspec {
X_name_type x_name;
S_recipient_type s_type;
Boolean_type reply;
Notify_type notify;
Report_type report;
};

/***
* EMAIL: Structure of file-record of Originatorspec
***/

struct originatorspec {
X_name_type x_name;
Originator_type o_type;
};

/***
* EMAIL: Structure of file-record of Relatedspec
***/

struct relatedspec {
Ipm_id_type ipm_id;
Relation_type relation;
};

/***
* #ONSTANTS�TO�BE�USED�FOR�SPECIFIC�FIELDS�OF�THE�3END��3ENDACK�AND�2ECEIVE�4$$.
* Use of some definitions made in 18.1.3 are restricted. This applies to the following
* definitions:
*
* Service_type is restricted to: email.
* Type_id_type is restricted to: std, teletex, g3fax, g4class1, videotex, message,
* bilateral, national
* Convert_id_type: See Table 113 for further information.
***/

/*
** #ONT?TYPE?TYPE
*/

typedef enum { mhsIPM84=0, mhsIPM88, mhsIPN84, mhsIPN88, mhsDR, cmcIPM, cmcIPN, cmcDR}
Cont_type_type;

/*
**)MPORTANCE?TYPE
*/

typedef enum { low = 0, normal, high } Importance_type;

/*
**)PM?ID?TYPE
*/

typedef struct {
BYTE id[63+1];
BYTE oraddress[511+1];
} Ipm_id_type;

192 Recommendation T.611 (11/94)

/*
** ,ANGUAGE?ID?TYPE
*/

typedef CHAR Language_id_type[5+1];

/*
** -SG?SUB?ID?TYPE
*/

typedef CHAR Msg_sub_id_type[67+1];

/*
** 0RIORITY?TYPE
*/

typedef enum { standard=0, nonurgent, urgent } Priority_type;

/*
** 2ELATION?TYPE
*/

typedef enum { reference=0, obsolete } Relation_type;

/*
** 3UBJECT?TYPE
*/

typedef CHAR Subject_type[127+1];

/*
** 3ENSITIVITY?TYPE
*/

typedef enum { none=0, personal, privateonly, companyconfidential } Sensitivity_type;

/*
** 5SERINFO?TYPE
*/

typedef CHAR Userinfo_type[15+1];

/*
** 8?NAME?TYPE
*/

typedef struct {
Boolean_type is_alias;
CHAR addr_or_alias[511+1];
} X_name_type;

/*
** 3?RECIPIENT?TYPE
*/

typedef enum { sndprimary=1, sndcopy, sndblind } S_recipient_type;

Recommendation T.611 (11/94) 193

/*
** 2?RECIPIENT?TYPE
*/

typedef enum { recprimary=1, reccopy, recblind, recintended } R_recipient_type;

/*
** .OTIFY?TYPE
*/

typedef enum { nonotify=1, notreceived, received, explicit } Notify_type;

/*
** 2EPORT?TYPE
*/

typedef enum { noreport=1, basic, confirmed } Report_type;

/*
** /RIGINATOR?TYPE
*/

typedef enum { authorizing=1, originator, replyto } Originator_type;

18.1.10 FT dependent TDD Structures, Constants and Definitions

/***
* FT: Service specific structure for <SendTDD>
***/

struct send_ft_inp {
Environ_type environ; /* <Environ> */
Password_type password; /* <Password> (optional) */
Address_type address; /* <Recipient> or <RecipientSpec> */
Path_type filename; /* <Document> or <DocumentSpec> */
Convert_id_type convert; /* <Convert> */
Type_id_type type; /* <Type> */
Compress_type compress; /* <Compress> */
Name_type name; /* <Name> (optional) */
};

/***
* FT: Service specific structures for <SendAckTDD>
***/

struct sendack_ft_inp {
Environ_type environ; /* <Environ> */
Password_type password; /* <Password> (optional) */
Address_type address; /* <Recipient> */
Path_type filename; /* <Document> or <DocumentSpec> */
Convert_id_type convert; /* <Convert> */
Type_id_type type; /* <Type> */
Compress_type compress; /* <Compress> */
Name_type name; /* <Name> (optional) */
};

struct sendack_ft_out {};

194 Recommendation T.611 (11/94)

/***
* FT: Service specific structures for <ReceiveTDD>
***/

struct receive_ft_inp {
Password_type password; /* <Password> (optional) */
Path_type filename; /* <Document> (optional) */
};

struct receive_ft_out {
Environ_type environ; /* <Environ> */
Address_type address; /* <Originator> */
Path_type filename; /* <Document> or <DocumentSpec> */
Convert_id_type convert; /* <Convert> */
Type_id_type type; /* <Type> */
Compress_type compress; /* <Compress> */
Name_type name; /* <Name> */
};

/***
* #ONSTANTS�TO�BE�USED�FOR�SPECIFIC�FIELDS�OF�THE�3END��3ENDACK�AND�2ECEIVE�4$$.
* Use of some definitions made in18.1.3 are restricted. This applies to the following
* definitions:
*
* Service_type is restricted to: ft
* Type_id_type is restricted to: std
* Convert_id_type: std, void.
***/

/*
** #OMPRESS?TYPE
* See also 17.2.2.6
*/

typedef CHAR Compress_type[7+1];

/*
** %NVIRON?TYPE
*/

typedef enum { msdos=1, windows, unix, os2, macos } Environ_type;

/*
** 0ASSWORD?TYPE
*/

typedef CHAR Password_type[15+1];

/*
** .AME?TYPE
*/

typedef CHAR Name_type[15+1];

Recommendation T.611 (11/94) 195

PART IV – PLATFORM DEPENDENCIES
Recommendation T.611 (11/94)

19 Implementation Dependencies

This clause describes the implementation dependencies for the various platforms.

The only platform dependent issue of this Recommendation is the implementation of the Primitive Exchange Method
(see 7.3.1). The Primitive Exchange Method provides direct access to the Basic Exchange Method functions described
in 7.1. subclause 19.3 describes the implementation of the Primitive Exchange Method for each platform.

The implementation of the Primitive Exchange Method is optional for some platforms, since the more platform
independent file exchange method might have been be chosen as default exchange method for specific platforms.
subclause 19.2 lists the default assignements for the different platforms.

The binary encoding scheme provided in Part III of this Recommendation is not platform dependent. However, since for
the description of this encoding a generic C-language has been used, the mapping of the generic C data types to the real
data types used for a specific platform is given first in 19.1 below.

19.1 Mapping of Binary Coded TDD Data Types

See Table 125.

TABLE 125/T.611

Mapping of generic C data types for the various platforms

19.2 Default Exchange Method

See Table 126.

TABLE 126/T.611

Default Exchange Method assignements for the various platforms

Platform
Real C type corresponding to generic C data type

INT16 UINT32 CHAR BYTE

MS-DOS short int unsigned long int char unsigned char

WINDOWS short int dword char byte

Unix short int unsigned long int char unsigned char

OS/2 short int unsigned long int char unsigned char

MacOS For further study

Platform Default Exchange Method

MS-DOS File Exchange Method

WINDOWS Primitive Exchange Method

Unix For further study

OS/2 For further study

MacOS For further study

196 Recommendation T.611 (11/94)

19.3 Implementation of Primitive Exchange Method

The implementation of the Primitive Exchange Method shall be achieved by providing access to the Basic Exchange
Method functions, which are described in general in 7.1. To ensure binary compatibility across a specific platform, the
rules, data types and function prototypes specified in following subclauses for each platform shall be strictly respected.

To perform properly, the implementation has to rely on certain data structures and constants. The data structures and
constants common to all implementations are shown below in C language description:

/*
** This generic C language description uses certain generic types which are mapped to
** real data types in the platform dependent descriptions further below.
** The generic types used are: NUMBER, BUFPOINTER, LISTPOINTER and WORD.
*/

/***
* The structure bem_data_buffer describes a buffer.
* The types NUMBER and BUFPOINTER have to be mapped to each platform
***/

struct bem_data_buffer {
NUMBER buffer_size;
BUFPOINTER buffer;
};

/***
* The structure bem_data_files describes a list of filenames.
* The types NUMBER and LISTPOINTER have to be mapped to each platform
***/

struct bem_data_files {
NUMBER number_of_files;
LISTPOINTER file_name[];
};

/***
* The structure bem_data_descriptor describes the data conveyed between LAs and CAs
* (data files, address lists etc.). The data may be in files and/or in memory. The structure
* bem_data_descriptor accounts for these situations.
*
* When data are in memory, the structure bem_data_descriptor allows to actually convey that
* data through the EPutData or EGetData functions. When data are in files, bem_data_descriptor
* describes the actual file names that contain that data, i.e., the structure does not contain the data
* itself.
*
* The type WORD denotes a 16 bit unsigned integer, which has to be mapped to each platform
***/

struct bem_data_descriptor {
WORD key; /* key = 0 for data in buffer */

/* key = 1 for data in file */
WORD type; /* type = 1 for "document lists" */

/* type = 2 for "recipient lists", etc.*/
/* used only in SEND, SENDACK and RECEIVE */
/* ignored otherwise */

union {
struct bem_data_buffer buffer; /* data in memory buffer */
struct bem_data_files file; /* data in file */
} bof; /* buffer or file */

};

Recommendation T.611 (11/94) 197

#define BEM_DATA struct bem_data_descriptor

/* Constants used for the "key" field of BEM_DATA */
#define BUFFER_KEY 0 /* key: data in buffer */
#define FILE_KEY 1 /* key: data in file */

/* Constants used for the "type" field of BEM_DATA */
#define DOCUMENT_TYPE 1 /* type: document list */
#define RECIPIENT_TYPE 2 /* type: recipient list (= address list) */
#define ORIGINATOR_TYPE 3 /* type: originator list */
#define RELATED_TYPE 4 /* type: related list */

/* Constants used for TDD Types, see also 7.2.4.2 */
#define NO_TDD_RESPONSE 0x00
#define SENDACK_RESPONSE 0x10
#define RECEIVE_RESPONSE 0x20
#define COPY_RESPONSE 0x30
#define DELETE_RESPONSE 0x31
#define CANCEL_RESPONSE 0x32
#define PURGE_RESPONSE 0x33
#define RESCHEDULE_RESPONSE 0x34
#define DISPATCH_RESPONSE 0x35
#define PREVIEW_RESPONSE 0x36
#define PRINT_RESPONSE 0x40
#define CONVERT_RESPONSE 0x41
#define CHECK_RESPONSE 0x42
#define EXTEND_RESPONSE 0x50
#define NATIONAL_RESPONSE 0x60
#define PRIVATE_RESPONSE 0x70

/* Constants used for Alarm_types (may be or’ed), see also 7.2.7.1 */
#define ASYNC_RESPONSES 0x0001
#define QUEUE_FULL 0x0002
#define DOCUMENT_RECEIVED 0x0004
#define CONNECTION_LOST 0x0008
#define SEND_SUCCESS 0x0010
#define SEND_FAILED 0x0020
#define CORRUPTED_TDD 0x0040
#define SEND_EVENT 0x0080
#define RECEIVE_EVENT 0x0100
#define CA_WILL_STOP 0x0200
#define ALARMS_UNAVAILABLE 0x0400
#define TDD_RESP_AVAILABLE 0x0800

NOTE – Handling the Data-ID parameter in function EPutTDD for input and output. On input: the LA sets a non-NULL
address if the LA needs to transfer data files in subsequent EPutData function calls. If the LA needs not to transfer files, then this
parameter is set to NULL. On Output: if the input parameter was set to NULL, the CA does not change that value. Otherwise the CA
computes a Data-ID and returns it at the address specified in the input.

19.3.1 MSDOS

Access to the Basic Exchange Method shall occur through a DOS interrupt mechanism. The following rules shall be
respected by the calling LA:

– the interrupt number used by the CA shall be taken from the ICE (CA-Descriptor);

– if a multiplex scheme is used, the multiplex number shall be taken from the ICE (CA-Descriptor) and
loaded into register AH before call;

198 Recommendation T.611 (11/94)

– all parameters shall be transferred to the CA by pushing them onto the caller’s stack. The stack shall have
at least 256 bytes of headroom when calling;

– the parameters shall be pushed using C-call conventions (from right to left), pointers shall be pushed as
double-word addresses (far pointers);

– the addressing of a desired function shall be achieved through a function code, also pushed onto the
caller’s stack as leftmost parameter;

– the return value shall be passed in the AX register;

– the segment registers (as well as the stack-pointer) shall be preserved by the CA during call; all other
registers may be destroyed by the CA;

– the stack cleanup (popping of the calling parameters) shall be performed by the caller after function return
(C-language calling convention).

To address the various functions the function codes defined in Table 127 shall be used.

TABLE 127/T.611

DOS function codes

19.3.1.1 C Function Prototypes and Definitions

#define STATUS short int

#define BEM_DATA struct bem_data_descriptor

struct bem_data_buffer {
unsigned long buffer_size; /* = generic type NUMBER */
unsigned char far * buffer; /* = generic type BUFPOINTER */
};

struct bem_data_files {
unsigned long number_of_files; /* = generic type NUMBER */
char far * file_name[]; /* = generic type LISTPOINTER */
};

Basic Exchange Method Function Function code

ELogin () 1

EPutTDD () 2

EPutData () 3

EPollTDD () 4

EGetTDD () 5

EGetData () 6

ESetAlarm () 7

EAbortData () 8

ELogout () 9

Recommendation T.611 (11/94) 199

struct bem_data_descriptor {
unsigned short int key; /* = generic type WORD */
unsigned short int type; /* = generic type WORD */
union {

struct bem_data_buffer buffer;
struct bem_data_files file;
} bof;

};

***/

* ELogin ()

*

***/

STATUS ELogin (
short int function_code, /* ELogin = 0x0001 */
char far * Login_name,
char far * Password,
char far * Selector,
short int far * CA_ID,
short int far * Connection_ID
);

***/

* EPutTDD ()

*

*

* If the address of Data_ID is set to NULL on call, CA will not provide the Data_ID and process
* the TDD immediately, assuming the pathes given in the TDD are correct

***/

STATUS EPutTDD (
short int function_code, /* EPutTDD = 0x0002 */
short int Connection_ID,
short int CA_ID,
unsigned char far * TDD_location,
short int TDD_size,
unsigned long far * Data_ID
);

* Stack: SP+18 Connection_ID far pointer

* SP+14 CA_ID far pointer

* SP+10 Selector far pointer

* SP+6 Password far pointer

* SP+2 Login_name far pointer

* SP --> 0x0001 word value; function code to identify ELogin ()

* Stack: SP+12 Data_ID far pointer

* SP+10 TDD_size word value

* SP+6 TDD_location far pointer

* SP+4 CA_ID word value

* SP+2 Connection_ID word value

* SP --> 0x0002 word value; function code to identify EPutTDD ()

200 Recommendation T.611 (11/94)

***/

* EPutData ()

*

***/

STATUS EPutData (
short int function_code, /* EPutData = 0x0003 */
short int Connection_ID,
short int CA_ID,
unsigned long Data_ID,
BEM_DATA far * Data,
short int Next
);

***/

* EPollTDD ()

*

***/

STATUS EPollTDD (
short int function_code, /* EPollTDD = 0x0004 */
short int Connection_ID,
short int CA_ID,
unsigned short far * TDD_type,
short int far * TDD_size,
short int far * TDD_count
);

***/

* EGetTDD ()

*

* Stack: SP+14 Data_ID far pointer

* SP+10 TDD_size far pointer

* SP+6 TDD_location far pointer

* SP+4 CA_ID word value

* SP+2 Connection_ID word value

* SP --> 0x0005 word value; function code to identify EGetTDD ()

***/

* Stack: SP+14 Next word value

* SP+10 Data far pointer

* SP+6 Data_ID dword value

* SP+4 CA_ID word value

* SP+2 Connection_ID word value

* SP --> 0x0003 word value; function code to identify EPutData ()

* Stack: SP+14 TDD_count far pointer

* SP+10 TDD_size far pointer

* SP+6 TDD_type far pointer

* SP+4 CA_ID word value

* SP+2 Connection_ID word value

* SP --> 0x0004 word value; function code to identify EPollTDD ()

Recommendation T.611 (11/94) 201

STATUS EGetTDD (
short int function_code, /* EGetTDD = 0×0005 */
short int Connection_ID,
short int CA_ID,
unsigned char far * TDD_location,
short int far * TDD_size,
unsigned long far * Data_ID
);

***/

* EGetData ()

*

* Stack: SP+14 Next far pointer

* SP+10 Data far pointer

* SP+6 Data_ID dword value

* SP+4 CA_ID word value

* SP+2 Connection_ID word value

* SP --> 0x0006 word value; function code to identify EGetData ()

***/

STATUS EGetData (
short int function_code, /* EGetData = 0x0006 */
short int Connection_ID,
short int CA_ID,
unsigned long Data_ID,
BEM_DATA far * Data,
short int far * Next
);

***/

* ESetAlarm ()

*

* Stack: SP+8 Alarm_handler far pointer

* SP+6 Alarm_event word value

* SP+4 CA_ID word value

* SP+2 Connection_ID word value

* SP --> 0x0007 word value; function code to identify ESetAlarm ()

***/

void FAR AlarmHandler (
short int Connection_ID,
short int CA_ID,
unsigned short Alarm_type,
unsigned char far * Parameter, /* additional parameter buffer */
short int Length /* length of parameter buffer */
);

STATUS ESetAlarm (
short int function_code, /* ESetAlarm = 0x0007 */
short int Connection_ID,
short int CA_ID,
unsigned short Alarm_event,
void (* far Alarm_handler) ()
);

202 Recommendation T.611 (11/94)

***/

* EAbortData ()

*

***/

STATUS EAbortData (
short int function_code, /* EAbortData = 0x0008 */
short int Connection_ID,
short int CA_ID,
unsigned long Data_ID
);

***/

* ELogout ()

*

***/

STATUS ELogout (
short int function_code, /* ELogout = 0x0009 */
short int Connection_ID,
short int CA_ID
);

19.3.2 WINDOWS

To access the Basic Exchange Method functions, the CA provider shall offer a Dynamic Link Library (DLL), which
opposes the Exchange Method functions described in the following subclause to the LA.

The Name of the DLL shall be stated at the appropriate place in the ICE by the configurator of the target platform. In
order to access the DLL functions, the LA shall first issue a Windows "LoadLibrary" system function call, using the
name of the chosen DLL parameter.

19.3.2.1 C Function Prototypes and Definitions

#include <windows.h>

#define BEM_DATA struct bem_data_descriptor

struct bem_data_buffer {
int buffer_size; /* = generic type NUMBER */
HANDLE buffer; /* = generic type BUFPOINTER */
};

struct bem_data_files {
int number_of_files; /* = generic type NUMBER */
LPSTR file_name[1]; /* = generic type LISTPOINTER */
};

* Stack: SP+6 Data_ID dword value

* SP+4 CA_ID word value

* SP+2 Connection_ID word value

* SP --> 0x0008 word value; function code to identify EAbortData ()

* Stack: SP+4 CA_ID word value

* SP+2 Connection_ID word value

* SP --> 0x0009 word value; function code to identify ELogout ()

Recommendation T.611 (11/94) 203

struct bem_data_descriptor {
word key; /* = generic type WORD */
word type; /* = generic type WORD */
union {

struct bem_data_buffer buffer;
struct bem_data_files file;
} bof;

};

/***

* ELogin ()

***/

void FAR PASCAL ELogin (
LPSTR Login_name, /* User name */
LPSTR Password, /* User’s password */
LPSTR Selector, /* CA Selector */
int far * CA_ID, /* CA Identifier */
int far * Connection_ID, /* Connection ID */
int far * Status /* 0 success, 1 fail */
);

/***

* EPutTDD ()

*

* If the address of Data_ID is set to NULL on call, CA will not provide the Data_ID and process
* the TDD immediately, assuming the pathes given in the TDD are correct

***/

void FAR PASCAL EPutTDD (
int Connection_ID, /* Connection ID */
int CA_ID, /* CA Identifier */
LPSTR TDD_location, /* TDD buffer text */
int TDD_size, /* size of the TDD text */
int far * Data_ID, /* Data identifier */
int far * Status /* 0 success, 1 fail */
);

/***

* EPutData ()

***/

void FAR PASCAL EPutData (
int Connection_ID, /* Connection ID */
int CA_ID, /* CA Identifier */
int Data_ID, /* Data identifier */
BEM_DATA far * Data, /* Data descriptor */
int Next, /* next boolean */
int far * Status /* 0 success, 1 fail */
);

/***

* EPollTDD ()

***/

204 Recommendation T.611 (11/94)

void FAR PASCAL EPollTDD (
int Connection_ID, /* Connection ID */
int CA_ID, /* CA Identifier */
word far * TDD_type, /* Type of next TDD */
int far * TDD_size, /* Size of next TDD */
int far * TDD_count, /* Count of waiting TDDs */
int far * Status /* 0 success, 1 fail */
);

/***

* EGetTDD ()

***/

void FAR PASCAL EGetTDD (
int Connection_ID, /* Connection ID */
int CA_ID, /* CA Identifier */
LPSTR TDD_location, /* TDD buffer text */
int far * TDD_size, /* size of the TDD text */
int far * Data_ID, /* Data identifier */
int far * Status /* 0 success, 1 fail */
);

/***

* EGetData ()

***/

void FAR PASCAL EGetData (
int Connection_ID, /* Connection ID */
int CA_ID, /* CA Identifier */
int Data_ID, /* Data identifier */
BEM_DATA far * Data, /* Data descriptor */
int far * Next, /* next boolean */
int far * Status /* 0 success, 1 fail */
);

/***

* ESetAlarm ()

***/

void FAR PASCAL AlarmHandler (
int Connection_ID, /* Connection ID */
int CA_ID, /* CA Identifier */
word Alarm_type, /* Alarm type */
HANDLE Parameter, /* additional parameter buffer */
int Length /* length of parameter buffer */
);

void FAR PASCAL ESetAlarm (
int Connection_ID, /* Connection ID */
int CA_ID, /* CA Identifier */
word Alarm_type, /* Alarm event */
FARPROC Alarm_handler, /* Alarm handler entry */
int far * Status /* 0 success, 1 fail */
);

Recommendation T.611 (11/94) 205

/***

* EAbortData ()

***/

void FAR PASCAL EAbortData (
int Connection_ID, /* Connection ID */
int CA_ID, /* CA Identifier */
int Data_ID, /* Data identifier */
int far * Status /* 0 success, 1 fail */
);

/***

* ELogout ()

***/

void FAR PASCAL ELogout (
int Connection_ID, /* Connection ID */
int CA_ID,
int far * Status /* 0 success, 1 fail */
);

19.3.3 UNIX

For further study.

19.3.4 OS/2

For further study.

19.3.5 MacOS

For further study.

Annex A

Syntax for Presentation and Encoding
(This annex forms an integral part of this Recommendation)

A.1 BNF-style Syntax

In order to provide a generic description, a BNF-based syntax is used. The general BNF rules described below are
employed throughout this Recommendation.

– A terminal token (leaf) is noted by a literal. If the literal cannot be distinghished from the literals used to
describe the syntax, then the token shall be enclosed in double quotes (").

– Strings of characters enclosed in double quote characters denote terminal tokens that consist of the
constant text formed by those strings.

– A non-terminal token (node) is noted by a literal delimited by the "<" (lower than) and ">" (greater than)
characters.

– An optional token (or group of tokens) is delimited with the "[" and "]" characters.

– A group of tokens is delimited by the "(" and ")" characters. Groups can be nested.

– A group of tokens enclosed in "{" and "}" may be repeated 0, 1 or more times.

– The character "|" is used to separate alternative tokens (or groups of tokens).

206 Recommendation T.611 (11/94)

– The string ":=" is used as the production delimiter.

– Tokens are separated by space or tabulation characters (or a combination of the two).

– The string "--" is used to introduce a comment in the BNF description. The comment finishes at the end of
the line. BNF comments cannot be nested.

Applied to text based encodings:

– The terminal token STRING denotes a string of characters encoded as implied by the value of the Code-
ID (see Table 14). The string of characters may be of a limited size, as stated by the token
STRING(SIZE(xxx..yyy)). In this case, xxx denotes the minimum string length, yyy denotes the
maximum string length.

– The special notation "STRING(xxxx + yyyy)" where "xxxx" and "yyyy" are character strings results in a
string formed by the concatenation of "xxxx" and "yyyy".

– The terminal token PATH denotes a STRING containing only characters valid as absolute path
specification for the underlying operating system.

– The terminal token NUMERIC-STRING denotes a string of characters representing a number. Only digits
0 to 9 may be used.

– The token « indicates that a line break occurs. However, it is possible to include a comment in a TDD by
ending the TDD line with a semicolon character, the comment itself, and the line break.

– The order implied by the production rules in the BNF description may not be the order in which the
tokens have to be encoded. The additional rules for the encoding schemes specify the order, if any, that
has to be respected.

A.2 C-Language Notation

The generic C-Language notation used is based on the current ANSI standard. So, if gathered in a file, the descriptions
can be compiled by existing ANSI compilers. However, in the operating system dependent sections, application of the
appropriate compilers is required. In general, the descriptions are based on following conventions:

– The first 16 characters of definitions and variable names are significant;

– Upper and lower case are differentiated.

Annex B

Location of the ICE
(This annex forms an integral part of this Recommendation)

The Interface Configuration Environment (ICE), represents a "global" source for all local applications (LAs) conforming
to this Recommendation.

On the operating systems UNIX, MacOS and the operating systems belonging to the Microsoft family (OS/2, MS-DOS,
etc.), the Master ICE is represented by a file17). In a LAN computing environment such as Netware, Vines or LAN
Manager, the Master ICE is also presented as a file. This file shall be opened and read by the application in order to
extract the information about the CAs accessible within the system. The name of the file on the systems or networks
mentioned above is "APPLICOM.ICE".

17) A "file" in this context means either a real operating system file or an operating system device driver, which behaves exactly as a

file.

Recommendation T.611 (11/94) 207

The Master ICE file is located differently on the above-mentioned systems. On some systems there exists an
"environment variable"18), which may hold the path to the ICE. In those cases the variable is named "APPLICOM" (all
capitals). The following algorithms for determining the ICE location shall be used (see Table B.1):

TABLE B.1/T.611

Determination of Master ICE location

In a LAN computing environment, the Master ICE file should be installed by the system administrator on a shared
directory which is accessible by all potential LAs.

Individual CA-Descriptor files or drivers for CAs in a single user or LAN environment do not need to be installed on the
same directory as the Master-ICE, but should be placed on directories accessible to all LAs.

The following naming convention shall be used for CA-Descriptor files or drivers:

CAnnnnAC.<ext>

where:

nnnn is a number in the range 1..9999

and:

<ext> := ("ini" | "exe" | "dll" | <other>)

"ini" shall be used for the case of a texte file, and <other> may be defined by the CA-Manufacturer based upon the
naming conventions used within the target computing environment.

Access to the CA-Descriptor(s) for an individual CA shall be defined within the Master-ICE in the form of a path
parameter (path plus file name). The default location for the CA-Descriptor if no path is defined shall be upon the same
path as the Master-ICE.

18) Operating systems like UNIX or MS-DOS provide a so called "Environment" which consists of a set of ASCII strings applied to

an ASCII represented variable.

Operating System Algorithm

UNIX First look in the Environment variable "APPLICOM". If there is no variable, then the ICE is located
in the /dev subdirectory and named "APPLICOM_ICE"

MacOS The ICE is located in the System folder

MS-DOS Look in the Environment variable "APPLICOM". If this variable does not exist, this should be
regarded as an error

Windows File is named "ICE.INI" and located in the local windows directory of the LA system. If this file
does not exist, look into file "WIN.INI" in the windows directory, section [APPLICOM_ICE]

208 Recommendation T.611 (11/94)

Annex C

List of APPLI/COM Error Codes
(This annex forms an integral part of this Recommendation)

Table C.1 states the error codes which shall be used commonly by CA implementations conforming to this
Recommendation.

TABLE C.1/T.611

List of error codes

Error codea) Error text Comment

0000 Success No error – Successfull operation

0001-4999 Private use Reserved for CA private use

5000 CA Interface Error

5001 Unsupported Service specified

5002 File "FILENAME" already exists CA cannot create or write "FILENAME" file

5003 Error creating "TARGET" CA cannot create or write "TARGET" file

5004 Error reading Address List

5005 Error reading Document List

5006 Error reading Document

5007 Error writing Document

5008 "Code-ID" not supported

5009 Invalid "Connection-ID"

5010 Invalid "CA-ID"

5011-5499 Reserved Reserved for further study

5500-5999 Private use Reserved for CA private use

6000 Syntax Error

6001 Unknown Function requested

6002 TDD is empty

6003 APPLI/COM Header is invalid Invalid length or contents

6004 Parser Error (TDD line too long)

6005 Parser Error (TDD line too short)

6006 Multiple Occurencies of Keyword

6007 Parameter has wrong Size

6008 Keyword ERROR is missing

6009 Mandatory Keyword is missing

6010 Undefined Keyword

6011 Conflicting Keywords

6012 Parameter out of Range

6013 Keywords out of Sequence Order: FUNCTION, SUBFUNC, others...

6014 Keyword Separator missing Colon (":") is missing

6015 Invalid "LA-ID"

Recommendation T.611 (11/94) 209

TABLE C.1/T.611 (end)

List of error codes

Error codea) Error text Comment

6016 Invalid "REQ-ID"

6017 Invalid "COM-ID"

6018 Invalid "Service-ID"

6019 "Type-ID" does not fit to "Service-ID"

6020 "Conversion-ID" does not fit to "Type-ID"

6021 "TARGET" File missing Applies to COPY TDD

6022 Invalid Code-ID Allowed are: "A", "B", "C", "E", "I" or "P"

6023 Incompatible Interface Version APPLI/COM Header Version does not fit

6024-6499 Reserved Reserved for further study

6500-6999 Private use Reserved for CA private use

7000 Hardware/System related Error

7001-7499 Reserved Reserved for further study

7500-7999 Private use Reserved for CA private use

8000 Error during Document Conversion

8001 Invalid Transfer Format

8002 Unexpected End of Document

8003 Unexpected Error accessing Document

8004 Error during T.61 Conversion

8005 Error during ASCII Conversion

8006 Error during TIFF Conversion

8007 Error during T.4 Conversion

8008 Error during T.6 Conversion

8009-8499 Reserved Reserved for further study

8500-8999 Private use Reserved for CA private use

9000 Transmission Error

9001 Connection broken

9002 Remote Destination busy

9003 Connection set-up failed

9006 Transmission Error (Transport Layer)

9007 Transmission Error (Session Layer)

9008 Remote Destination closed Connection

9009 Remote Destination has call denied

9010 Remote Destination not compatible

9011 Transmission Failure – Document Error

9012-9499 Reserved Reserved for further study

9500-9999 Private use Reserved for CA private use

a) Error codes are given in decimal.

210 Recommendation T.611 (11/94)

Annex D

Examples of TTD Exchanges
(This annex does not form an integral part of this Recommendation)

D.1 A Sample Send Session

An LA-running on a MS-DOS (or Windows) based system - wants to send a document (which contains graphic
information), say the document "c:\dtp\graphic1.tif" to an addressee via facsimile group 3 services. What the LA must do
in sequence is:

– look for a CA which is capable of performing the facsimile group 3 service by inspecting the ICE and, if
found, perform a Login to that CA by a Login function call (if not already done);

– prepare the document as an APPLI/COM TIFF file (if not already done);

– build a SEND TDD;

– hand over the TDD to the CA;

– repeatedly poll the CA (or waiting for get informed by the alarm function) until the Response-TDD
becomes available;

– retrieve the Response-TDD to learn the status of the transmission;

– logout of the CA (or) perform other functions with the same CA.

Let us assume that the LA has already logged into the CA and the "c:\dtp\graphic1.tif" file is already prepared in TIFF
format. Then the LA has to prepare the Send TDD in its memory. The LA uses the default coding (T.50) for preparation
of the TDD. The TDD may look like shown in Figure D.1.

FIGURE D.1/T.611

I*APPLI/COM*1994*ITU-T*

; Send a graphics document via facsimile group 3

; Fields into which a value may return are pre-set with underline (5FHEX) characters.

FUNCTION : SendAck ; Send with response

LA-ID : myLA ; Name of LA

REQ-ID : g_0815 ; Request-id, generated by LA

SERVICE : FX3 ; Facsimile G3 service

ADDRESS : 08154711 ; Recipient

FILENAME : c:\dtp\graphic1.tif ; Full path to document

CONVERT : TIFF ; Transfer format

COMID : ________________________ ; Unique CA ID (Response)

STATUS : ________________________ ; Status of transmission (Response)

ERROR : ________________________ ; Error occurred ? (Response)

Recommendation T.611 (11/94) 211

Once the TDD is prepared, the LA internally calls the basic exchange mechanism function PutTDD which hands over
the TDD to the CA.

Then the LA repeatedly polls the CA using the basic exchange mechanism function PollTDD until the Response-TDD
becomes available. Using the basic exchange mechanism function GetTDD the LA retrieves the TDD from the CA into
its own memory and inspects the results. The Response-TDD could look like shown in Figure D.2.

FIGURE D.2/T.611

As one can see from the STATUS and ERROR field, the transmission was successful.

D.2 A Sample Receive Session

An LA running on any operating environment wants to know if there are some documents to be received within a
facsimile CA. What the LA must do in the sequence is:

– look for a CA which is capable of performing the facsimile service by inspecting the ICE and, if found,
Login into that CA by a Login function call;

– prepare a receive TDD and hand it to the CA using PutTDD function;

– repeatedly poll the CA (using the PollTDD function) (or waiting for get informed by a back-called alarm
function) until the Response-TDD becomes available;

– retrieve the Response-TDD (using the GetTDD function) to know the status of the reception;

– logout of the CA or perform other functions.

The LA uses the default coding (T.50) for preparation of the receive TDD. The TDD may look like the shown in
Figure D.3.

I*APPLI/COM*1994*ITU-T*

; Send a graphics document via facsimile group 3

; Fields into which a value may return are pre-set with underline (5FHEX) characters.

FUNCTION : SendAck ; Send with response

LA-ID : myLA ; Name of LA

REQ-ID : g_0815 ; Request-id, generated by LA

SERVICE : FX3 ; Facsimile G3 service

ADDRESS : 0498154711 ; Recipient

FILENAME : c:\dtp\graphic1.tif ; Full path to document

CONVERT : TIFF ; Transfer format

COMID : 123456 ; Unique CA ID (Response)

STATUS : + ; Status of transmission (Response)

ERROR : 0000/Success ; Error occurred ? (Response)

212 Recommendation T.611 (11/94)

FIGURE D.3/T.611

Having prepared the TDD, the LA internally calls the basic exchange mechanism function PutTDD and hands over the
TDD to the CA.

Having done this, the LA repeatedly polls the CA using the basic exchange mechanism function PollTDD until the
Response-TDD becomes available. Using the basic exchange mechanism function GetTDD the LA retrieves the TDD
from the CA into its own memory and inspects the results. The Response-TDD could look shown in Figure D.4.

I*APPLI/COM*1994*ITU-T*

; Receive a T.4 document via facsimile group 3

; Fields into which a value may return are pre-set with underline (5FHEX) characters.

FUNCTION : Receive ; Send with response

LA-ID : myLA ; Name of LA

REQ-ID : g_0816 ; Request-id, generated by LA

SERVICE : FX3 ; Facsimile G3 service

FILENAME : c:\file.ext ; Full path to document

Cvfax3 : TIFF ; Desired transfer format

TypeID : ________________________ ; Status of the received file

ADDRESS : ________________________ ; Sender’s addressee, filled by CA

CONVERT : ________________________ ; Transfer format

COMID : ________________________ ; Unique CA ID (Response)

STATUS : ________________________ ; Status of transmission (Response)

ERROR : ________________________ ; Error occurred ? (Response)

Recommendation T.611 (11/94) 213

FIGURE D.4/T.611

As one can see from the STATUS and ERROR field, the reception was received by the CA.

D.3 A Sample Trace Session

An LA running on any operating environment could have information about the transitory of definitive state of a
communication record (CA-Record). What the LA must do in the sequence is:

– look for a CA which is capable of performing any telecommunication service by inspecting the ICE and,
if found, Login into that CA by a Login function call;

– prepare a Trace TDD and hand it to the CA using PutTDD function;

– repeatedly poll the CA (using the PollTDD function) – or wait to get informed by a back-called alarm
function – until the Response-TDD becomes available;

– retrieve the Response-TDD (using the GetTDD function) to learn the status of the reception;

– logout of the CA or performing other functions.

The LA uses the default coding (T.50) for preparation of the receive TDD. The TDD may look like as shown in
Figure D.5.

I*APPLI/COM*1994*ITU-T*

; Receive a T.4 document via facsimile group 3

; Fields into which a value may return are pre-set with underline (5FHEX) characters.

FUNCTION : Receive ;Send with response

LA-ID : myLA ;Name of LA

REQ-ID : g_0816 ;Request-id, generated by LA

SERVICE : FX3 ;Facsimile G3 service

FILENAME : c:\file.ext ;Full path to document

Cvfax3 : TIFF ;Desired transfer format

TypeID : STD ;Status of the received file

ADDRESS : 033145782762 ;Sender’s addressee, filled by CA

CONVERT : T.4 ;Transfer format

COMID : 000001 ;Unique CA ID (Response)

STATUS : + ;Status of transmission (Response)

ERROR : 0000/Success ;Error occurred ? (Response)

214 Recommendation T.611 (11/94)

FIGURE D.5/T.611

Having prepared the TDD, the LA internally calls the basic exchange mechanism function PutTDD and hands over the
TDD to the CA.

Having done this, the LA repeatedly polls the CA using the basic exchange mechanism function PollTDD until the
Response-TDD becomes available. Using the basic exchange mechanism function GetTDD the LA retrieves all
CA-Records in a particular state from the CA. The Response-TDD could look like shown in Figure D.6.

FIGURE D.6/T.611

As one can see from the ERROR field, the copy was received by the CA.

I*APPLI/COM*1994*ITU-T*

; Rectieve a list of all CA-Records in sending state

; Fields into which a value may return are pre-set with underline (5FHEX) characters.

FUNCTION : Copy ; Send with response

LA-ID : myLA ; Name of LA

REQ-ID : g_0816 ; Request-id, generated by LA

State : sending ; CA-Records being processed

Target : c:\file.ext ; Full path to document

ERROR : _______________________ ; Error occurred ? (Response)

I*APPLI/COM*1994*ITU-T*

; Rectieve a list of all CA-Records in sending state

; Fields into which a value may return are pre-set with underline (5FHEX) characters.

FUNCTION : Copy ; Send with response

LA-ID : myLA ; Name of LA

REQ-ID : g_0816 ; Request-id, generated by LA

State : sending ; CA-Records being processed

Target : c:\file.ext ; Full path to document

ERROR : 0000/Success ; Error occurred ? (Response)

Recommendation T.611 (11/94) 215

Annex E

Example of Interface Configuration Environment (ICE)
(This annex does not form an integral part of this Recommendation)

An example of a Master ICE configuration (located on an MS-DOS based machine as a file) is given in Figure E.1. The
example shows a Master ICE which provides access to multiple CAs which support multiple services and access
methods.

FIGURE E.1/T.611

Sample Master ICE

An example of CA-Descriptors (located on a MS-DOS based machine in a file) is given in Figure E.2.

I*APPLI/COM*1994*ITU-T*MASTER_ICE

; Note that there may be one or more CAs referenced in the Master ICE and that each shall
; include the keywords APPLICOM; SERVICE; EM and ACCESS.

; A new CA-Entry is denoted by a "#" (number sign) as shown below.

; Beginning of new CA-Entry

APPLICOM: Product1 (c) by DonaldDuck ; CA Product and Manufacturer

SERVICE: FX3 ; supports fax group 3 service

SERVICE: EMAIL ; supports EMAIL service

EM: file ; File exchange method

ACCESS: CA1AC.INI ; File based CA-Descriptor

; Beginning of new CA- Header

APPLICOM: Product2 (c) by MickeyMouse ; CA Product and Manufacturer

SERVICE: FX3 ; supports fax group 3 service

SERVICE: TLX ; supports telex service

SERVICE: FT ; supports file transfer service

EM: primitive ; Primitive exchange method

CA-ID: 007 ; ID of CA

ACCESS: CA2AC.INI ; File based CA-Descriptor

ACCESS: CA2AC.EXE ; CA-Descriptor executable

ACCESS: CA2AC.DLL ; CA-Descriptor DLL

216 Recommendation T.611 (11/94)

FIGURE E.2/T.611

Sample CA-Descriptors

I*APPLI/COM*1994*ITU-T*ICE

; Note that there may be any type of configuration information which may be stored here.
; A new configuration information is always led in by a "#" (number sign) as shown below.

; Beginning of new configuration

APPLICOM: Product1 (c) by Company XYZ ; CA Product & Manufacturer

FC: A ; APPLI/COM Functional Class

EM: FILE ; TDD Exchange Method

SYNC: No ; Not "sync" driven

CODING: I ; TDD Coding

F_JOB_Q: c:\applicom\job ; Job Queue

F_ACK_Q: c:\applicom\ack ; Acknowledge Queue (Response)

ERROR_Q: c:\applicom\err ; Error Queue (Response)

TLX: STD ; Telex (without dialogue facility) supported

TX: STD ; Telex via Teletex service supported

TTX: STD ; Teletex service & Type options

TTX: OPD ; Teletex service & Type options

TTX: CTL ; Teletex service & Type options

TTX: DTM ; Teletex service & Type options

TTX: EDI ; Teletex service & Type options

FX3: STD ; Telefax service group 3

ADDKEYS: LASTTIME ; Additive Keywords

ADDKEYS: SUBADDR ; Additive Keywords

; Beginning of new configuration

APPLICOM: Product2 (c) by Company ABC ; CA Product & Manufacturer

FC: B ; APPLI/COM Functional Class

EM: primitive ; TDD Exchange Method

ALARM: yes ; Callback supported

CODING: I ; TDD Coding

DRIVER: applicom ; Driver provided

FX3: STD ; Fax G3 service & Type options

FX3: DTM ; Fax G3 service & Type options

FX3: BFT ; Fax G3 service & Type options

SUBMIT: CONVERT ; Supports the Conversion Submissions

CONVCHK: TIFF2 ; Conversions to/from TIFF2 can be asked

CONVCHK: PCX ; Conversions to/from PCX can be asked

ADDKEYS: LASTTIME ; Additive Keywords

ADDKEYS: SPEED ; Additive Keywords

ADDKEYS: COMMENT ; Additive Keywords

...

Recommendation T.611 (11/94) 217

Annex F

Exchange Method of 1992 Version
(This annex does not form an integral part of this Recommendation)

This annex lists the Exchange Method Functions of the 1992 version of this Recommendation, which are superseeded by
the new, so called Basic Exchange Method Functions. Table F.1 below depicts this.

TABLE F.1/T.611

Exchange Method Comparison

F.1 Exchange Method Functions of 1992 version

F.1.1 Function Login

The function Login shall be supported by the CA. It shall be invoked by the LA before any LA-CA interchange of
Request TDDs and responses.

F.1.1.1 Purpose

The function Login returns to the LA a "Connection-ID" that will be used all along the LA-CA interaction until the LA
logs out.

The login function is the place where a CA may control access of an LA to it. This can be achieved by checking the
Login-name and the Password given by the LA. However, to which extent control of the access rights is performed, is up
to the CA implementation.

F.1.1.2 Behaviour

The CA checks the parameters of the Login call. If they match, it then generates a Connection-ID the LA shall use
subsequently in PutTDD, PollTDD, GetTDD and Logout function calls. The LA shall wait for the return status to
proceed: if the Connection-ID returned is set to Null (zero), it means the CA failed to connect the LA due to
identification failures.

F.1.1.3 Parameters

The following parameters are required (see Table F.2).

Exchange Method Function
(1992)

Basic Exchange Method Functions
(this Recommendation)

Login () ELogin ()

PutTDD () EPutTDD ()

– EPutData ()

PollTDD () EPollTDD ()

GetTDD () EGetTDD ()

– EGetData ()

SetAlarm () ESetAlarm ()

– EAbortData ()

Logout () ELogout ()

218 Recommendation T.611 (11/94)

TABLE F.2/T.611

Parameters of the Login function

F.1.2 Function PutTDD

The function PutTDD shall be supported by the CA. It may be invoked by an LA.

F.1.2.1 Purpose

The purpose of the PutTDD function is to transmit a Request TDD from an LA to a CA.

F.1.2.2 Behaviour

The CA copies the Request TDD carried by the PutTDD function into its internal structures. The result is composed of a
status notified immediately to the requesting LA, and a REQ-ID reference.

The TDD is then parsed by the CA which will further process it as required by the nature of the TDD.

F.1.2.3 Parameters

The following parameters are required (see Table F.3).

TABLE F.3/T.611

Parameters of the PutTDD function

Parameter Name Structure Comment Direction

Login-Name String States the name of the LA user, used to connect an LA to a CA
(differs from the LA-ID)

Input Parameter

Password String The LA gives its password so that the CA can identify the LA Input Parameter

Connection-ID Integer Returned by the CA if the Login function succeeds. Otherwise
(e.g. identification failed) the CA sets the value to NULL and
the error code is given by the Status parameter (see below)

Output Parameter

Status Integer Return error code (0000 means success) Output Parameter

Parameter Name Structure Comment Direction

Connection-ID Integer The connection identifier returned by the Login function Input Parameter

TDD location Memory
address

Specifies where the LA’s TDD is located so that the CA can
copy it into its own internal structure. When the function is
complete, the LA’s TDD may be deleted or used for other
purposes

Input Parameter

TDD size Integer Indicates the size of the TDD so that the CA can allocate
enough internal resources to handle it

Input Parameter

Status Integer Acknowledges the PutTDD function. Return error code (0000
means success)

Output Parameter

Recommendation T.611 (11/94) 219

F.1.3 Function PollTDD

The PollTDD function asks the CA how many Response TDDs are waiting to be handled by the requesting LA. The
PollTDD returns the number of Response TDDs waiting, and the type and size of the first Response TDD that will be
returned by the next call to the GetTDD function.

F.1.3.1 Purpose

The purpose of the PollTDD function is to prepare the LA for the handling of a possible Response TDD coming from a
CA. It also gives an indication of the number of Response TDDs that are waiting to be handled by the LA.

F.1.3.2 Behaviour

When the CA has many Response TDDs available, it chooses the one it will return first. This Response TDD is the TDD
that will be transmitted to the LA at the next GetTDD function call emitted by the same LA.

When no Response TDD is available for the requesting LA, the return status is set to the value zero, in which case the
TDD size returned is set to zero. If the TDD that was submitted is erroneous or unknown, e.g. the <TDD Header> is
missing, then the function returns the original Request TDD, and sets the return status to the value zero.

When a Response TDD is available, the LA shall allocate an empty TDD which will hold the copy of the Response TDD
still under CA control. Table F.4 below shows the various TDD types defined.

TABLE F.4/T.611

Assignment of TDD types

F.1.3.3 Parameters

The following parameters are required (see Table F.5).

F.1.4 Function GetTDD

The function GetTDD shall be supported by the CA. It may be invoked by an LA.

F.1.4.1 Purpose

The purpose of the GetTDD function is to retrieve a Response TDD from a CA. The CA copies the Response TDD into
an internal structure of the LA.

Number TDD type Number TDD type

0 Unknown or erroneous TDD was submitted, or
no Response TDD available

4 SUBMIT Response

1 SEND Response 5 EXTEND Response

2 RECEIVE Response 6 NATIONAL Response

3 TRACE group Response 7 PRIVATE Response

220 Recommendation T.611 (11/94)

TABLE F.5/T.611

Parameters of the PollTDD function

F.1.4.2 Behaviour

The LA indicates the location of an empty TDD where the CA shall copy a Response TDD that is available for the LA.

The CA shall return to the LA the Response TDD that was qualified by the previous PollTDD function emitted by the
same LA. The LA shall have prepared a recipient Response TDD area in its internal structures. The invocation of a
GetTDD function by an LA shall always be preceded by a PollTDD function call.

If the LA invokes two or more consecutive GetTDD functions (without an intermediate PollTDD function call) always
the same TDD will be returned (the one indicated in the last PollTDD function return).

F.1.4.3 Parameters

The following parameters are required (see Table F.6).

TABLE F.6/T.611

Parameters of the GetTDD function

Parameter Name Structure Comment Direction

Connection-ID Integer The connection identifier returned by the Login function Input Parameter

TDD size Integer Indicates the size of the next Response TDD so that the LA
can prepare enough resources to handle it

Output Parameter

TDD type Integer Indicates which type of TDD the LA shall receive next. See
above for values

Output Parameter

TDD count Integer Indicates the number of Response TDDs that are waiting to be
retrieved by the LA. NULL means no TDD is waiting

Output Parameter

Status Integer Acknowledges the PollTDD function. Return error code
(0000 means success)

Output Parameter

Parameter Name Structure Comment Direction

Connection-ID Integer The connection identifier returned by the Login function Input Parameter

TDD location Memory
address

Specifies where the CA can copy the Response TDD into the
LA’s internal structure. When the function is complete, the
CA’s Response TDD may be deleted or used for other
purposes

Input/Output
Parameter

TDD size Integer Indicates the size of the empty TDD handed to the CA Input Parameter

Status Integer Acknowledges the GetTDD function. Return error code
(0000 means success)

Output Parameter

Recommendation T.611 (11/94) 221

F.1.5 Function SetAlarm

The function SetAlarm can optionally be supported by the CA. It can optionally be invoked by an LA. If the SetAlarm
function is used by an LA, then that LA shall support the CallBackRoutine function. Support of the SetAlarm function is
declared in the ICE.

F.1.5.1 Purpose

The purpose of the SetAlarm function is to declare to the CA the entry point of the CallBackRoutine function. The
SetAlarm function indicates to the CA it can awake the LA by invoking the CallBackRoutine function. This function
may be invoked only once during an LA/CA dialogue session.

F.1.5.2 Behaviour

The CA shall record the location of the CallBackRoutine function assigned by the LA. The CA can record as many
CallBackRoutine locations as there are different logged-in LAs. The CA can then awake a particular LA by invoking its
CallBackRoutine.

F.1.5.3 Parameters

The following parameters are required (see Table F.7).

TABLE F.7/T.611

Parameters of the SetAlarm function

F.1.6 Function CallBackRoutine

The CallBackRoutine function can optionally be supported by the LA. It can optionally be invoked by a CA. In order to
be invoked by the CA, the LA shall have declared it to the CA by means of the SetAlarm function.

F.1.6.1 Purpose

The CallBackRoutine function defines a mechanism that allows a CA to alert the LA that some Response TDDs are
available. The use of this optional mechanism can improve the flow control between LAs and CAs on heavily loaded
systems.

Invocation of the CallBackRoutine by a CA does not guarantee that the LA will poll the CA within a certain delay. It
only ensures that the LA will receive an alarm from a specific CA.

The CA may invoke repeatedly the CallBackRoutine function of a given LA if that LA does not poll the CA quickly
enough.

There is only one CallBack Address allowed per LA. However, if an LA wishes to be called in dependency of a specific
event, the LA has to implement this feature by itself within the back-called function.

Parameter Name Structure Comment Direction

Connection-ID Integer The connection identifier returned by the Login function Input Parameter

CallBackRoutine
location

Memory
address

Specifies the entry point of a particular LA CallBackRoutine
function

Input Parameter

Status Integer Acknowledges the SetAlarm function. Return error code
(0000 means success)

Output Parameter

222 Recommendation T.611 (11/94)

F.1.6.2 Behaviour

The CallBackRoutine is designed to allow a logged-in CA to alert the LA that the CA needs to be polled via the
PollTDD function. Thus the LA should poll the CA as soon as possible so that the CA does not enter an overflow error
condition.

F.1.6.3 Parameter

The following parameter is required (see Table F.8).

TABLE F.8/T.611

Parameters of the CallBackRoutine function

F.1.7 Function Logout

The function Logout shall be supported by the CA. It shall be invoked by the LA on completion of any LA-CA
interchange of Request TDDs and responses.

F.1.7.1 Purpose

The function Logout returns to the LA a status that states whether the LA-CA interaction has finished orderly.

F.1.7.2 Behaviour

Before completing the LA-CA dialogue, the CA may (but is not obliged to) process all pending Request TDDs that were
put out by that LA.

F.1.7.3 Parameters

The following parameters are required (see Table F.9).

TABLE F.9/T.611

Parameters of the Logout function

Parameter Name Structure Comment Direction

Connection-ID Integer The connection identifier returned by the Login function Input Parameter

Parameter Name Structure Comment Direction

Connection-ID Integer The connection identifier returned by the Login function Input Parameter

Status Integer Returned by the CA. Indicates whether logout was orderly
processed. Return error code (0000 means success).

Output Parameter

Recommendation T.611 (11/94) 223

Annex G

Service Specific Information

(This annex does not form an integral part of this Recommendation)

G.1 Call Identification Line of the Telefax G4 and Teletex Service

The Call Identification Line (CIL) as defined by ITU-T Recommendation F.200 and is laid out as indicated in
Figure G.1.

T0811890-93/d21

Terminal ID
(Receiver)

Terminal ID
(Sender)

Date & Time Reference
Information

24 characters 24 characters 14 characters 7 characters

72 characters

FIGURE G.1/T.611

Layout of the Call Identification Line; “/” is character code 2FHEX

FIGURE G.1/T.611...[D21] = 5 CM

G.2 Terminal ID

The Terminal ID is defined for the Teletex service per ITU-T Recommendation F.200 and for the Telefax Group 4
service per ITU-T Recommendation F.184. It is laid out as shown in Figure G.2. DNIC stands for Data Network
Identification Code.

T0818090-94/d22

1 1

=DNIC Subscriber Access number
(=)

Extension
Mne-
monic

max. 4 max. 12 characters max. 4 min. 3

max. 15 characters

max. 24 characters

FIGURE G.2/T.611

Telefax G4 / Teletex Terminal ID

FIGURE G.2/T.611...[D22] = 7 CM

224 Recommendation T.611 (11/94)

Annex H

Summary of Transfer and Transmission Formats
(This annex does not form an integral part of this Recommendation)

H.1 Transfer Formats related to Transmission Formats

See Table H.1

TABLE H.1/T.611

Summary of Transfer Formats

H.2 Transmission Formats related to Service

See Table H.2.

Service- Type-id-parameter
Allowed Convert-id-parameter for

id-parameter
Outgoing documents Incoming documents

FX3 STD ASCII, ASCIIxxxa), T.50, TIFF TIFF, TIFFxb)

BTM, DTM, BFT, EDI VOID

FX4 STD ASCII, ASCIIxxx, T.50, TIFF TIFF, TIFFx

DTM, BFT, EDI VOID

TLX STD ASCII, ASCIIxxx, T.50, T.61

TX STD ASCII, ASCIIxxx, T.50, T.61

TTX STD ASCII, ASCIIxxx, T.50, T.61

OPD, MD, CTL ASCII, ASCIIxxx, T.50, T.61

DTM, BFT, EDI VOID

EMAIL STD T.50

TELETEX ASCII, ASCIIxxx, T.50, T.61

5 G3FAX, G4CLASS1 ASCII, ASCIIxxx, T.50, TIFF TIFFx

VIDEOTEX, MESSAGE,
BILATERAL, NATIONAL, ODA

VOID

FT STD VOID

a) "xxx" in "ASCIIxxx" stands for the code-page declared in the ICE (e.g. "ASCII437").
b) "x" stands for the TIFF class to be read, which equals a value between 2 and 4.

Recommendation T.611 (11/94) 225

TABLE H.2/T.611

Summary of Transmission Formats (Document types)

Service-id Type-id Means

TLX STD Telex service (without dialogue facility)

TX STD Telex via TELETEX Conversion Facility

TTX STDa) Basic TELETEX (T.61)

OPDa) Basic TELETEX (T.61): Operator Document

MDa) Basic TELETEX (T.61): Monitor Document

CTLa) Basic TELETEX (T.61): Control Document

DTMb) Telematic File Transfer (TFT) of TELETEX Service: Document Transparent Mode

BFTc) Binary File Transfer of TELETEX Service

EDIb) Telematic File Transfer (TFT) of TELETEX Service: Edifact

FX3 STD Basic Telefax G3 Service (MH)

BTMb) Telematic File Transfer (TFT) of Telefax G3 Service: Basic Transparent Mode

DTMb) Telematic File Transfer (TFT) of Telefax G3 Service: Document Transparent Mode

BFTd) Binary File Transfer of Telefax G3 Service

EDIb) Telematic File Transfer (TFT) of Telefax G3 Service: Edifact

FX4 STD Basic Telefax G4 Service (MR)

DTMb) Telematic File Transfer (TFT) of Telefax G4 Service: Document Transparent Mode

BFTc) Binary File Transfer of Telefax G4 Service

EDIb) Telematic File Transfer (TFT) of Telefax G4 Service: Edifact

EMAIL STD IA5 Text body part

TELETEX Teletex body part

G3FAX Telefax Group 3 body part

G4CLASS1 Telefax Group 4 body part

VIDEOTEX Videotex body part

MESSAGE body part contains an IPM (consisting of heading and bodyparts) as transferred by the
E-Mail system.

BILATERAL Bilateral defined body part contents

NATIONAL National defined body part contents

ODA ODA body part

FT STD Basic File Transfer

a) Document type according to Annex E/T.62.
b) Telematic File Transfer (TFT) according to Recommendation T.571.
c) Binary File Transfer according to Recommendation T.434.
d) Binary File Transfer according to Recommendation T.434 and T.30 (Annexes).

	ITU-T Rec. T.611 (11/94) PROGRAMMING COMMUNICATION INTERFACE (PCI) APPLI/COM FOR FACSIMILE GROUP 3, FACSIMILE GROUP 4
	FOREWORD
	CONTENTS
	SUMMARY
	PROGRAMMING COMMUNICATION INTERFACE (PCI) APPLI/COM FOR FACSIMILE GROUP 3, FACSIMILE GROUP 4, TELETEX, TELEX, E-MAIL AND FILE TRANSFER SERVICES
	PART I - GENERAL DESCRIPTION
	1 Scope
	2 Definitions and References
	2.1 Interface Definitions
	2.2 File Definitions
	2.3 References
	2.4 Abbreviations and Acronyms
	2.5 Operating Systems
	2.6 Trade Marks

	3 Structure of this Recommendation
	3.1 Extensions to this Recommendation

	4 General Principles
	4.1 Model
	4.2 Information Exchange
	4.3 Interface Configuration Environment (ICE)
	4.4 Submission Principle

	5 Functional Behaviour
	5.1 Functional Classes and Service Profiles
	5.2 Error Handling
	5.3 Multiple LAs and multiple CAs
	5.4 Identification Means
	5.5 Dispatch Received Files Facility (DRF)
	5.6 Communications Control - CA-Record

	6 Task Data Descriptions (TDDs)
	6.1 Generic TDD Presentation
	6.2 Description of TDD Elements
	6.3 Code-ID
	6.4 Text Based Encoding
	6.5 Handling of Documents
	6.6 TDD Functionality

	7 Exchange Method
	7.1 Overview of Basic Exchange Method Functions
	7.2 Basic Exchange Method Functions
	7.3 Implementation of Basic Exchange Method Functions

	8 Transfer Formats
	8.1 APPLI/COM Transfer Formats: Extended and Standard ASCII
	8.2 APPLI/COM Transfer Format: T.61
	8.3 APPLI/COM Transfer Format: TIFF
	8.4 Service Constraints applying to Transfer Formats

	9 ICE
	9.1 Presentation of the ICE
	9.2 Gaining access to the ICE Information
	9.3 Master ICE
	9.4 CA-Descriptor
	9.5 CA-Descriptor Components

	10 Functional Classes and Profiles
	10.1 Functional Class A
	10.2 Functional Class B
	10.3 Additional Functions
	10.4 Service Profiles

	PART II - SERVICE DEPENDENCIES
	11 Service: Telefax Group 3
	11.1 Service Specific Syntax Elements
	11.2 Text Based Encoding
	11.3 Additional Functionality
	11.4 CA-Descriptor Settings

	12 Service: Telefax Group 4
	12.1 Service Specific Syntax Elements
	12.2 Text Based Encoding
	12.3 Additional Functionality
	12.4 CA-Descriptor Settings

	13 Service: Teletex
	13.1 Service Specific Syntax Elements
	13.2 Text Based Encoding
	13.3 Additional Functionality
	13.4 CA-Descriptor Settings

	14 Service: Telex via Teletex
	14.1 Service Specific Syntax Elements
	14.2 Text Based Encoding
	14.3 Additional Functionality
	14.4 CA-Descriptor Settings

	15 Service: Telex
	15.1 Service Specific Syntax Elements
	15.2 Text Based Encoding
	15.3 Additional Functionality
	15.4 CA-Descriptor Settings

	16 Service: E-Mail
	16.1 Service Specific Syntax Elements
	16.2 Text Based Encoding
	16.3 Interpersonal Messaging
	16.4 Interpersonal Notification
	16.5 Delivery Report
	16.6 Mapping of MHS service elements
	16.7 E-Mail Profiles
	16.8 CA-Descriptor Settings

	17 Service: File Transfer
	17.1 Service Specific Syntax Elements
	17.2 Text Based Encoding
	17.3 Additional Functionality
	17.4 CA-Descriptor Settings

	PART III - BINARY ENCODING SCHEME
	18 Generic C description
	18.1 Binary encoding of TDDs

	PART IV - PLATFORM DEPENDENCIES
	19 Implementation Dependencies
	19.1 Mapping of Binary Coded TDD Data Types
	19.2 Default Exchange Method
	19.3 Implementation of Primitive Exchange Method

	Annex A
	Syntax for Presentation and Encoding
	A.1 BNF-style Syntax
	A.2 C-Language Notation
	Annex B
	Location of the ICE
	Annex C
	List of APPLI/COM Error Codes
	Annex D
	Examples of TTD Exchanges
	D.1 A Sample Send Session
	D.2 A Sample Receive Session
	D.3 A Sample Trace Session
	Annex E
	Example of Interface Configuration Environment (ICE)
	Annex F
	Exchange Method of 1992 Version
	F.1 Exchange Method Functions of 1992 version
	Annex G
	Service Specific Information
	G.1 Call Identification Line of the Telefax G4 and Teletex Service
	G.2 Terminal ID
	Annex H Summary of Transfer and Transmission Formats
	H.1 Transfer Formats related to Transmission Formats
	H.2 Transmission Formats related to Service

