

INTERNATIONAL TELECOMMUNICATION UNION

 T.180

TELECOMMUNICATION
STANDARDIZATION SECTOR
OF ITU

(06/98)

SERIES T: TERMINALS FOR TELEMATIC SERVICES

Homogeneous access mechanism to
communication services

ITU-T Recommendation T.180
(Previously CCITT Recommendation)

ITU-T T-SERIES RECOMMENDATIONS

TERMINALS FOR TELEMATIC SERVICES

For further details, please refer to ITU-T List of Recommendations.

 Recommendation T.180 (06/98) i

ITU-T RECOMMENDATION T.180

HOMOGENEOUS ACCESS MECHANISM TO COMMUNICATION SERVICES

Summary

This Recommendation specifies a homogenous access mechanism to communication services (called
XAPI). The XAPI, which is an abbreviation for eXtensive Application Programming Interface, is an
operating system and language-independent programming interface to general communication
services.

This Recommendation specifies a set of functions which allow XAPI users to have access to the
services of an underlying provider. These functions apply to all providers which are specified in this
Recommendation. A model of communication is introduced which defines the semantics of those
XAPI functions which are communication related.

Making available appropriate providers, the communication system can be tailored to specific
requirements, and all communication services are accessible via one homogenous access mechanism.

Source

ITU-T Recommendation T.180 was prepared by ITU-T Study Group 8 (1997-2000) and was
approved under the WTSC Resolution No. 1 procedure on the 18th of June 1998.

 Recommendation T.180 (06/98) ii

FOREWORD

ITU (International Telecommunication Union) is the United Nations Specialized Agency in the field of
telecommunications. The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of
the ITU. The ITU-T is responsible for studying technical, operating and tariff questions and issuing
Recommendations on them with a view to standardizing telecommunications on a worldwide basis.

The World Telecommunication Standardization Conference (WTSC), which meets every four years,
establishes the topics for study by the ITU-T Study Groups which, in their turn, produce Recommendations
on these topics.

The approval of Recommendations by the Members of the ITU-T is covered by the procedure laid down in
WTSC Resolution No. 1.

In some areas of information technology which fall within ITU-T’s purview, the necessary standards are
prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation the term recognized operating agency (ROA) includes any individual, company,
corporation or governmental organization that operates a public correspondence service. The terms
Administration, ROA and public correspondence are defined in the Constitution of the ITU (Geneva, 1992).

INTELLECTUAL PROPERTY RIGHTS

The ITU draws attention to the possibility that the practice or implementation of this Recommendation may
involve the use of a claimed Intellectual Property Right. The ITU takes no position concerning the evidence,
validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others
outside of the Recommendation development process.

As of the date of approval of this Recommendation, the ITU had not received notice of intellectual property,
protected by patents, which may be required to implement this Recommendation. However, implementors are
cautioned that this may not represent the latest information and are therefore strongly urged to consult the
TSB patent database.

 ITU 1999

All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from the ITU.

 Recommendation T.180 (06/98) iii

CONTENTS

 Page

1 Scope... 1

2 References... 1

3 Definitions .. 2

4 Abbreviations.. 3

5 Structure of this Recommendation ... 4

6 Introduction to the XAPI... 5

6.1 Location of the XAPI.. 5

6.2 Phases of communication ... 7

6.3 Applications that are supported by XAPI ... 9

7 A Model of communication.. 12

7.1 Classes of communication .. 12

7.1.1 Peer-to-peer communication.. 12

7.1.2 Multipeer communication.. 14

7.2 The state transition diagram as part of the model ... 18

8 Description of the XAPI ... 22

8.1 XAPI in point-to-point and in multipoint environments .. 22

8.2 XAPI functions and the corresponding state transition diagram 25

9 XAPI functions ... 31

9.1 Conventions .. 34

9.2 Communication-related functions... 35

9.2.1 X-CONCONF/x_conconf.. 35

9.2.2 X-CONIND/x_conind.. 36

9.2.3 X-CONREQ/x_conreq... 36

9.2.4 X-CONRSP/x_conrsp.. 37

9.2.5 X-RCVDATA/x_rcvdata... 38

9.2.6 X-RCVDIS/x_rcvdis ... 39

9.2.7 X-RCVINFO/x_rcvinfo... 40

9.2.8 X-RCVSP/x_rcvsp .. 40

9.2.9 X-RELCONF/x_relconf .. 41

9.2.10 X-RELIND/x_relind .. 41

9.2.11 X-RELREQ/x_relreq ... 42

9.2.12 X-RELRSP/x_relrsp .. 42

9.2.13 X-SNDDATA/x_snddata... 42

9.2.14 X-SNDDIS/x_snddis ... 43

 Recommendation T.180 (06/98) iv

 Page

9.2.15 X-SNDINFO/x_sndinfo... 44

9.2.16 X-SNDSP/x_sndsp .. 44

9.3 Not communication-related functions... 45

9.3.1 Functions for the initialization and de-initialization phase 45

9.3.2 Utility functions ... 47

Annex A – Interface definition language description .. 52

Annex B – Error codes... 65

Appendix I – Examples of XAPI access to service providers.. 69

I.1 XAPI access to the service provider for the ISDN B-channel 70

I.1.1 Scope ... 70

I.1.2 References.. 70

I.1.3 Definitions ... 71

I.1.4 Abbreviations... 71

I.1.5 Conventions ... 71

I.1.6 Introduction to the ISDN physical service provider access 72

I.1.7 Description of the access to the ISDN physical service provider 72

I.2 XAPI access to the service provider for BFT over T.30... 78

I.2.1 Scope ... 78

I.2.2 References.. 79

I.2.3 Definitions ... 79

I.2.4 Abbreviations... 79

I.2.5 Conventions ... 80

I.2.6 Introduction to the BFT(T.30) provider access ... 81

I.2.7 Description of the access to the BFT(T.30) provider 81

I.3 XAPI access to the service provider for FAX4 and BFT.. 92

I.3.1 Scope ... 92

I.3.2 References.. 93

I.3.3 Definitions ... 94

I.3.4 Abbreviations... 94

I.3.5 Conventions ... 94

I.3.6 Introduction to the FAX4/BFT service provider access 95

I.3.7 Description of the access to the FAX4/BFT service provider 95

I.4 XAPI access to the service provider for ACSE and ROSE .. 125

I.4.1 Scope ... 125

I.4.2 References.. 126

I.4.3 Definitions ... 127

I.4.4 Abbreviations... 127

 Recommendation T.180 (06/98) v

 Page

I.4.5 Conventions ... 127

I.4.6 Introduction to the ACSE/ROSE provider access ... 128

I.4.7 Description of the access to the ACSE/ROSE provider 131

I.5 XAPI access to a Service Provider for Audio and Video (AV) Control..................... 163

I.5.1 Scope ... 163

I.5.2 References.. 163

I.5.3 Definitions ... 164

I.5.4 Abbreviations... 164

I.5.5 Conventions ... 165

I.5.6 Introduction to the video codec service provider access 166

I.5.7 Description of the access to the Video Codec Service Provider.................... 167

I.6 XAPI access to the service provider for the T.120 conference control....................... 242

I.6.1 Scope ... 242

I.6.2 References.. 244

I.6.3 Definitions ... 244

I.6.4 Abbreviations... 244

I.6.5 Conventions ... 244

I.6.6 Introduction to the conference control provider access 245

I.6.7 Description of the access to the conference control provider 247

I.7 XAPI access to the service provider for T.127 MBFT ... 273

I.7.1 Scope ... 273

I.7.2 References.. 275

I.7.3 Definitions ... 275

I.7.4 Abbreviations... 275

I.7.5 Conventions ... 276

I.7.6 Introduction to the MBFT service provider access.. 277

I.7.7 Description of the access to the MBFT service provider............................... 277

Appendix II – Tutorial: XAPI and selected providers ... 310

II.1 XAPI and the ACSE/ROSE provider ... 310

II.2 XAPI and the specific T.120 conference provider.. 315

II.2.1 The T.120 system model.. 315

II.2.2 T.120 MBFT conferencing .. 317

 Recommendation T.180 (06/98) 1

Recommendation T.180

HOMOGENEOUS ACCESS MECHANISM TO COMMUNICATION SERVICES

(Geneva, 1998)

1 Scope

The XAPI, which is an abbreviation for eXtensive Application Programming Interface, is an
operating system and language-independent homogenous access mechanism to general
communication services. It is not dedicated to a certain layer, but allows access to all layers of the
OSI reference model and other layered communication models (e.g. conferencing). The XAPI
provides a framework of functions for the use in communication applications. All communication
services are accessible through this set of functions. The XAPI does not impose any restrictions on
the service interface of the underlying communication platform.

Which services are made available via the XAPI depends on the installed service providers, and not
on the XAPI, which only provides the access mechanism. New service providers can be added in the
XAPI configuration. Thus, the communication system can be tailored to specific requirements and all
communication services are accessible via one homogeneous access mechanism.

2 References

The following ITU-T Recommendations and other references contain provision which, through
reference in this text, constitute provisions of this Recommendation. At the time of publication, the
editions indicated were valid. All Recommendations and other references are subject to revision; all
users of this Recommendation are therefore encouraged to investigate the possibility of applying the
most recent edition of the Recommendations and other references listed below. A list of the currently
valid ITU-T Recommendations is regularly published.

– ITU-T Recommendation F.581 (1993), Guidelines for Programming Communication
Interfaces (PCIs) definition: Service Recommendation.

– ITU-T Recommendation H.320 (1997), Narrow-band visual telephone systems and terminal
equipment.

– ITU-T Recommendation T.30 (1996), Procedures for document facsimile transmission in
the general switched telephone network.

– ITU-T Recommendation T.120 (1996), Data protocols for multimedia conferencing.

– ITU-T Recommendation T.121 (1996), Generic application template.

– ITU-T Recommendation T.122 (1998), Multipoint communication service – Service
definition.

– ITU-T Recommendation T.123 (1996), Network specific data protocol stacks for multimedia
conferencing.

– ITU-T Recommendation T.124 (1998), Generic Conference Control.

– ITU-T Recommendation T.125 (1994), Multipoint communication service protocol
specification.

– ITU-T Recommendation T.127 (1995), Multipoint binary file transfer protocol.

2 Recommendation T.180 (06/98)

– ITU-T Recommendation T.434 (1996), Binary file transfer format for the telematic services.

– ITU-T Recommendation X.200 (1994) | ISO/IEC 7498-1:1994, Information technology –
Open Systems Interconnection – Basic Reference Model: The Basic Model.

3 Definitions

3.1 For the purposes of this Recommendation, the following terms as defined in
Recommendation X.200 apply:

– (N)-connection;

– (N)-entity;

– (N)-layer;

– (N)-service;

– (N)-Service Access Point (SAP).

3.2 For the purposes of this Recommendation, the following terms as defined in
Recommendation T.124 apply:

– conference;

– Multipoint Control Unit;

– node;

– terminal.

3.3 This Recommendation defines the following terms:

3.3.1 application connection: Serves for communication between application entities.

3.3.2 application entity: A service user, or some other entity, which may participate in a
connection.

3.3.3 application system: A protocol stack comprising some or all of the OSI layers 5 (Session) to
7 (Application).

3.3.4 communication endpoint: Synonymously used for "Service Endpoint".

3.3.5 communication platform: Consists in a number of communication service providers, in a
homogeneous access mechanism, by means of which service users, which are distributed in space,
may establish communication between them.

3.3.6 conference control: Encompasses functions such as conference establishment and
termination, information about each node which is participating in the same conference, information
about each application entity in the conference, coordination of conference conductorship, as well as
other miscellaneous functions.

3.3.7 connection: A logical association between two or more entities, enabling communication
between them.

3.3.8 control entity: A specific service user which handles conference control and which may
participate in a connection.

3.3.9 control connection: Serves for communication between control entities.

3.3.10 multipeer relationship: In a multipeer relationship, the users may negotiate the
characteristics of their interaction and, afterwards, communicate with each other obeying the rules
they have negotiated: all users (an entity and its peers) have potential equal rights.

 Recommendation T.180 (06/98) 3

3.3.11 multipoint aware application: An application entity which is able to participate in a
multipoint connection.

3.3.12 multipoint connection: A connection between more than two entities.

3.3.13 Peer-to-peer relationship: In a peer-to-peer relationship, the users may negotiate the
characteristics of their interaction and, afterwards, communicate obeying the rules they have
negotiated: both users (an entity and its peer entity) have potential equal rights.

3.3.14 point-to-point connection: A connection between two entities.

3.3.15 protocol module: The implementation of a communication protocol whose services can be
accessed via the XAPI. Usually a protocol module implements a single layer in the OSI sense.

3.3.16 service access point: The point at which services are provided to a user. Associated with
each SAP is an address.

3.3.17 service endpoint: Specifies the local link between a service user and a service provider. It
consists of two parts: a SAP address and an additional identifier (optional), which is unique within
the scope of the SAP.

3.3.18 service provider: A communication protocol stack that provides a certain service to the user
at the upper interface of its topmost protocol module.

3.3.19 session: A peer-to-peer or multipeer relationship between application entities which are
communicating via an application connection. In general, a session brings into focus a specific topic
of discussion.

3.3.20 transport system: A protocol stack comprising some or all of the OSI layers 1 (Physic) to
4 (Transport).

4 Abbreviations

This Recommendation uses the following abbreviations:

AAL ATM Adaptation Layer

ACSE Association Control Service Element

ATM Asynchronous Transfer Mode

AVC Audiovisual Control

BFT Binary File Transfer

CLS Connectionless Service

COS Connection oriented Service

CSCW Computer-Supported Cooperative Work

Fd File Descriptor

GCC Generic Conference Control

HDLC High-Level Data-Link Control

IDL Interface Definition Language

ISDN Integrated Services Digital Network

MBFT Multipoint Binary File Transfer

MCS Multipoint Communication Service

4 Recommendation T.180 (06/98)

MCU Multipoint Control Unit

MRPC Multipoint Remote Procedure Call

NSAP Network Service Access Point

NSM Network-Specific Mappings

OSI Open Systems Interconnection

PDId Parallel Data Identifier

PDU Protocol Data Unit

PSAP Presentation Service Access Point

PSTN Public Switched Telephone Network

QoS Quality of Service

RDC Remote Device Control

ROSE Remote Operations Service Element

RTSE Reliable Transfer Service Element

SAP Service Access Point

SP Service Primitive

SSAP Session Service Access Point

TCP Transmission Control Protocol

TSAP Transport Service Access Point

XAPI eXtensive Application Programming Interface

5 Structure of this Recommendation

The description of the XAPI is divided into three steps, each step representing a specific level of
abstraction. The main part of this Recommendation contains steps 1 and 2 which are common for all
providers. Step 3 is defined in Appendix I containing a list of examples of service providers.
Appendix I contains seven parts (I.1 to I.7).

Step 1:

Subclauses 6 and 7 introduce the XAPI and a model of communication which is supported by the
XAPI. The model represents appropriate connection-oriented communication service primitives
which apply not only to peer-to-peer but also to multipeer communication. The service primitives
and their sequences possible at a service access point describe a generic communication structure
which is applicable to data services as well as to multimedia services.

Step 2:

Subclauses 8 and 9 introduce the XAPI functions in detail. The relationship of the functions with
respect to the model of communication (step 1) is pointed out.

 Recommendation T.180 (06/98) 5

Step 3:

Steps 1 and 2 specify those aspects of the XAPI which apply to all providers and which are used by
all types of applications. Steps 1 and 2 do not contain any protocol-specific information as option or
service primitive definitions. All definitions that may be carried by XAPI services, but related to the
specific underlying protocol stacks, are contained as examples in the following subclauses of
Appendix I:

• Subclause I.1: XAPI access to the service provider for the ISDN B-channel

• Subclause I.2: XAPI access to the service provider for BFT over T.30

• Subclause I.3: XAPI access to the service provider for FAX4 and BFT

• Subclause I.4: XAPI access to the service provider for ACSE and ROSE

• Subclause I.5: XAPI access to the service provider for audio and video control

• Subclause I.6: XAPI access to the service provider for T.120 conference control

• Subclause I.7: XAPI access to the service provider for T.127 MBFT

An IDL description of the XAPI can be found in Annex A.

A list of error codes that may be returned by the XAPI functions is given in Annex B.

Appendix I describes the access of the XAPI user to specific providers.

A tutorial is presented in Appendix II.

6 Introduction to the XAPI

The XAPI, which is an abbreviation for eXtensive Application Programming Interface, is an
operating system and language-independent homogenous access mechanism to general
communication services. It is not dedicated to a certain layer, but allows access to all layers of the
OSI reference model and other layered communication models (e.g. conferencing). The XAPI
provides a framework of functions for the use in communication applications. All communication
services are accessible through this set of functions. The XAPI imposes no restrictions on the service
interface of the underlying communication platform.

The services made available via XAPI depend on the installed service providers, and not on XAPI
which only provides the access mechanism. New service providers can be added in the XAPI
configuration. Thus the communication system can be tailored to specific requirements, and all
communication features are accessible via one homogeneous interface.

This Recommendation specifies the general aspects of the XAPI, as they apply to all providers and as
they are used by all types of applications. It does not contain any protocol-specific information as
option or service primitive definitions. All definitions that are carried by XAPI services, but related
to the specific underlying protocols, are contained as examples in Appendix I: e.g. XAPI access to
the service provider for BFT over T.30, XAPI access to the service provider for ACSE and ROSE,
XAPI access to the service provider for audio and video control, XAPI access to the service provider
for T.120 MBFT, etc.

6.1 Location of the XAPI

The XAPI is a communication interface inside a terminal equipment. It allows a service user to
communicate with its respective service provider. Therefore, two entities can be distinguished
around the XAPI. These are the service user (XAPI user, or user for short) and the service provider
(or provider for short).

6 Recommendation T.180 (06/98)

The XAPI defines a number of functions. First, the XAPI allows for the binding between a user and a
provider (Initialization phase). After having performed successfully this process, a connection
between the user and its peer(s) may be established, maintained and released (Communication
establishment phase, Data transfer phase, Communication release phase). Finally, the interaction
between user and provider is terminated (De-initialization phase).

There are several XAPI utility functions which can be used in all phases of communication. These
functions are used to inform the XAPI user about current events on a service endpoint or indicate that
no event is available, to change the execution mode (i.e. synchronous or asynchronous mode) of the
XAPI functions for the service endpoint, to inform the user about the current characteristics of the
underlying service providers, to negotiate protocol options, to provide error handling, etc.

A service endpoint specifies a local link between a specific XAPI user and a specific provider.
During the initialization phase a service endpoint is created and activated for use in communication.
Figure 1 gives a picture of how the XAPI relates to user and provider after the creation of a
communication path between them. Fd is the name of the accessory service endpoint.

T0827060-97

XAPI

service user
(XAPI user)

service provider

Figure 1/T.180 – Local link between user and provider,
identified by the service endpoint Fd

The XAPI supports connection-mode operations defined in the framework of OSI
(e.g. ACSE/ROSE) and non-OSI (e.g. Video Codec Controller) as well as communication functions
for multipoint environments (e.g. conferencing).

The location of the XAPI depends on the choice of the underlying provider. Figure 2 shows the
general location of the XAPI within an OSI-like structured platform: the XAPI is located within the
application layer (layer 7) of the OSI Reference Model.

NOTE – The location also reflects the fact that the XAPI may be realized as a driver interface which is
designed for use in different system architectures. Therefore, task-oriented functions such as file handling
shall not be performed below the XAPI.

 Recommendation T.180 (06/98) 7

T0827070-97

XAPI user

XAPI

provider

Layer 6

Layer 5

Layer 4

Layer 2

Layer 1

Layer 3

Layer 7

Figure 2/T.180 – Location of the XAPI within an OSI-like
structured platform

6.2 Phases of communication

The XAPI supports connection-oriented communication between users. The four communication
phases provided by XAPI functions are:

• Initialization/de-initialization,

• Connection establishment,

• Data transfer,

• Connection release.

Communication-related additional functions which are not mapped to a specific communication
phase are listed in this subclause too.

In the following, these phases as well as the additional functions are briefly described. A detailed
definition of the functions is contained in clauses 8 and 9 respectively. Clause 7 introduces the
semantic model for the communication-relevant functions of the XAPI.

– Initialization/de-Initialization phase

 During the initialization phase, a service endpoint for the required service provider is created
and activated for use in communication. In the following, this service endpoint is called Fd
or Fd-i. When communication has finished, the endpoint is first deactivated and finally
destructed in the de-initialization phase. There are four XAPI functions, supporting
initialization and de-initialization. They are listed in the sequential order, in which they are
used:

 Open: x_open

 Bind: x_bind

 Unbind: x_unbind

 Close: x_close

8 Recommendation T.180 (06/98)

– Connection establishment phase

 During the connection establishment phase, users of the same service establish a connection
between them (e.g. a Telefax terminal is connected to the remote Telefax terminal), or each
of them establishes access to some appropriate multipoint connection by means of which
they may communicate in a multipoint fashion with each other (e.g. a multipoint aware user
application is connected to a multipoint session which offers communication facilities to
matching user applications).

 These functions are supported by the XAPI in the connection establishment phase:

 Connect request: x_conreq

 Connect confirm: x_conconf

 Connect indication: x_conind

 Connect response: x_conrsp

– Data transfer phase

 Once communication has been established, data may be transferred. There are functions to
initiate the transfer of data, and additional functions (i.e. x_sndsp and x_rcvsp) that may be
invoked during the data transfer phase. The latter serve for different purposes; e.g. the
functions are used to change the set of capabilities which characterize the data transfer
phase. These functions are supported by the XAPI in the data transfer phase:

 Send data: x_snddata

 Receive data: x_rcvdata

 Send service primitive: x_sndsp

 Receive service primitive: x_rcvsp

– Connection release phase

 The XAPI provides two ways to leave the communication: abortive release (disconnection)
and orderly release. The abortive release is a mandatory feature and is to be supported by all
service providers. The orderly release is an optional feature. These functions are supported
by the XAPI in the connection release phase:

 Send disconnect: x_snddis

 Receive disconnect: x_rcvdis

 Release request: x_relreq

 Release confirmation: x_relconf

 Release indication: x_relind

 Release response: x_relrsp

– Additional communication-related functions

 During connection establishment, data transfer, and connection release, general information
services (e.g. information on conferences that are currently in existence) may be invoked by
the user. In general, these services are not related to some specific connection. These
functions are supported by the XAPI:

 Send information: x_sndinfo

 Receive information: x_rcvinfo

 Recommendation T.180 (06/98) 9

 The function x_rcvend indicates to the user that the local resource management has finished
all operations concerning the release phase of a connection and that a new connection may
now be established:

 Receive end: x_rcvend

6.3 Applications that are supported by XAPI

Various kinds of applications are supported by XAPI. Figure 3 shows examples of XAPI users and
sketches underlying providers.

T0827080-97

XAPI

Applications

ISDN ATM PSTN Networks

XAPI
H.320
user

XAPI
FAX 3/4

user

XAPI
Mail
user

Homogeneous
access structure

Different types of
protocols and
transparent access

 XAPI
MBFT
 user

Figure 3/T.180 – Example: Applications, protocols and networks around the XAPI

Different types of applications are recognized that make use of XAPI. This implies that the use of
XAPI functions may have different interpretations in different application environments.

There are point-to-point applications, where two users are directly connected during the
communication phase and "multipoint-aware" applications, where many users may communicate
with each other. Typical examples for point-to-point applications are Binary File Transfer (according
to Recommendation T.434) or Telefax applications. As XAPI is the communication interface,
store-and-forward applications also fall into this type of point-to-point communication.

There are also applications where the user may be connected to a service (e.g. offered by the network
operator). The service itself may connect other providers on behalf of the requesting user and provide
the requested information. In this case, no direct connection exists between end-users for a specific
time period during the communication phase. (This may be the case when an application download is
necessary from a level-1 gateway, before the user can be connected to the service provider.)

Additionally, the XAPI may be used in cases where nesting of applications is supported: a first
"general" application is established and "specific" applications may be invoked afterwards
(see Figure 15). Conferences are an example of such a configuration, in which several users can
agree to establish a conference as the general application and subsequently select specific multipoint-
aware applications that are used in the conference (e.g. Multipoint Binary File Transfer, Still Image,
etc.).

10 Recommendation T.180 (06/98)

The different types of applications may have an impact on the use of the XAPI functions in the four
communication phases. For example, for the point-to-point applications, only one initialization phase
is necessary (i.e. only one connection is needed). In turn, for conference configurations, more than
one connection may be needed. Details are described in clause 7.

The XAPI divides XAPI user processes from service providers. So the XAPI is that part of the
functionality of a platform by means of which an arbitrary user may have access to appropriate
services to meet the user requirements.

Many types of applications may have access to different service providers. Figure 4 illustrates the
access to the communication platform.

R
ecom

m
endation T

.180 (06/98)
11

T0828060-98

Multipoint
Binary

File transfer
Conferencing

Moving
image

transfer

Pointer
service and

 joined viewing

Binary
file

transfer

Home
shopping CSCW

Telephony
G.711
G.722
G.728

Video-telephony Video-on-
demand

Still
image

transfer

Document
handling

Electronic
commerce

Joint
editing

XAPI

BFT
T.434

ROSE FAX4
T.563
T.503

MBFT
T.127

MRPC
Node
con-
troller
(Conf.)

GCC

X.225 MCS

X.224 TCP

T.30

PSTN

Header
accdg.
to T.70

H.221
H.230
H.242

I.430/I.431

I.363 (AAL 5)

I.361

I.432

H.221
H.230
H.242

X.21/X.2 bis

ISDN B-ISDN

Layer 7

Layer 6

Layer 5

Layer 4

Layer 3

Layer 2

Layer 1

X.21

Figure 4/T.180 – Example: Access to the communication platform

12 Recommendation T.180 (06/98)

Using this platform, single medium as well as multimedia applications and/or point-to-point as well
as multipoint applications are supported by appropriate providers.

Figure 4 bis shows the relationship between the XAPI, the T.611 and the T.200 interfaces.

T0828070-98

Generic Communication System

InternetMobile ATM

T.200

MM-Mail MM-Collaboration Telematic Services MM-Archive

Workflow Conferencing Video-on-Demand

T.611

Applications

T.611

CATV ISDNPSTN

Other MM
core services

Generic
teleservices XAPI – Homogeneous

Access Mechanism to
Communication Services

 X.25
Frame Relay

Figure 4 bis/T.180 – Relationship between XAPI, T.611, and T.200 interfaces

7 A Model of communication

This clause describes a model of communication which is supported by the XAPI. The model
represents appropriate connection-oriented communication service primitives, which apply not only
to peer-to-peer but also to multipeer communication. The service primitives and their sequences
possible at service access points describe a generic communication structure, which is applicable to
data services as well as to multimedia services.

7.1 Classes of communication

7.1.1 Peer-to-peer communication

The OSI reference model describes cooperation between computers independent of implementation
aspects.

The layer is one of the basic concepts of the OSI reference model. When referring to a single layer, it
is conventional to call it the (N)-layer. In the same way, the layer above is the (N + 1)-layer and the
layer beneath the (N − 1)-layer.

The (N)-layer protocol provides the functionality of the (N)-layer: every layer is defined by a precise
set of functions and associated messages [Protocol Data Units (PDUs)]. A "local part" of an
(N)-layer protocol is called (N)-entity.

 Recommendation T.180 (06/98) 13

The purpose of a protocol is to provide a service to users (entities) residing above the respective layer
boundary.

(N)-service users have access to the (N)-service only at (N)-Service Access Points [(N)-SAPs].
Associated with each SAP is an address. The address of that SAP can be used to identify the entity.
A service endpoint consists of a SAP address and an additional identifier, which is unique within the
scope of the SAP.

Most OSI relationships among communicating users (applications) are peer-to-peer. In a peer-to-peer
relationship, the users may negotiate the characteristics of their interaction: both users (an entity and
its peer entity) have potential equal rights.

In the framework of the OSI reference model, two modes of operations are defined: connection
oriented (CO) operation and connectionless (CL) operation.

For connection mode operation, an (N)-connection is defined as "an association established by the
(N)-layer between two or more (N + 1)-entities for the transfer of data". Three phases of operation
are characterizing this mode, namely connection establishment, data transfer, and connection release.

The definition of the OSI services for connections between two entities (point-to-point connections)
reflects these modes: for CO operation dedicated services such as (N)-CONNECT for connection
establishment, (N)-DATA in the data transfer phase, and (N)-DISCONNECT or (N)-RELEASE for
connection release are specified. The elements of these services are called service primitives. They
apply at specific service endpoints.

These primitives and their sequences specify services which may be accessed at (almost) any layer
boundary: the layer specific information is contained in accessory parameters. Thus the primitives
and their sequences give rise to call the model also a generic communication structure.

There are OSI services in the data transfer phase, which apply only to a few layers. The OSI Session
Service S-TOKEN-PLEASE is an example. In the model of communication described in this
subclause these (and other) services are subsumed under the primitives X-SNDSP and X-RCVSP
(see below).

Figure 5 shows the (N)-CONNECT service. User A is the initiator of an (N)-connection (A, B).
Correct (N)-connection establishment between entity A (user A) and its peer entity (user B) is
performed by communicating the service primitives 1 to 4 in the order stated.

14 Recommendation T.180 (06/98)

T0827100-97

41 23

(N)-service
user A

(N)-SAP A (N)-SAP B

(N)-service provider

1 (N)-CONNECT request
2 (N)-CONNECT indication
3 (N)-CONNECT response
4 (N)-CONNECT confirmation

(N)-service
user B

Figure 5/T.180 – Sequence of service primitives of the (N)-CONNECT service

7.1.2 Multipeer communication

The primitives described in 7.1.1 will now be used to access services offered in point-to-point
environments as well as in multipoint environments. To differentiate between the "pure" OSI
semantics of the services and the semantics described in this subclause, the services and the
primitives are prefixed by the character X- (e.g. X-CONNECT service).

The X-primitives allow entities to access connection-oriented services at specific service endpoints.
These services are:

• connection establishment service (X-CONNECT service);

• data transfer service (X-DATA service);

• primitive transfer service (X-SP service);

• disconnect service (X-DISCONNECT service);

• orderly release service (X-RELEASE service);

• information service (X-INFO service).

The semantics of these services are provider dependent. The X-primitives and the sequences of
service primitives at a service endpoint are defined in 7.2 (see Figure 10). The introduction of
connectionless services is out of the scope of this Recommendation.

A connection is a logical association between two or more entities, enabling communication between
them. As an example, and from the viewpoint of a service endpoint, a connection is established by
the usage of an allowed sequence of primitives of the X-CONNECT service. Which primitives apply
depends on the provider.

A connection between two entities is called a point-to-point connection. A connection between more
than two entities is called a multipoint connection.

In peer-to-peer relationships, two users (applications) may exchange information via a point-to-point
connection.

In multipeer-to-multipeer relationships, multiple users (applications) may exchange information via a
multipoint connection.

 Recommendation T.180 (06/98) 15

Point-to-point and multipoint environments offer the communication facilities of an underlying
provider to users rather than describe the relationship among users.

In point-to-point environments, the negotiation of the user requirements and the provider facilities is
usually performed by a single service, the X-CONNECT service. Afterwards, both users may send
and receive data using the X-DATA service.

In multipoint environments, negotiating the provider facilities is more complex than in point-to-point
environments. Therefore, it may be advantageous to separate the negotiation of the provider facilities
from that of the user requirements.

Conference environments may be looked at as multipoint environments, where specific conference
providing services are added. Separating conference users from conference providers,

conference users may access:

• conference control services (e.g. getting information on conferences, creating a conference,
joining a conference, leaving a conference, etc.); as well as

• conference application services (e.g. multipoint file transfer, whiteboard, audio, video,
device control, etc.); and

conference providers may support:

• conference control (providing the services required from users, controlling the conference
resources, ...); as well as

• application protocols (e.g. protocols providing file transfer, protocols providing whiteboards,
protocols providing audio, ...); and

• multipoint communication.

Application protocols are point-to-point protocols using point-to-point communication functions, or
multipoint protocols using multipoint communication functions. Conference control may comprise
specific conference management functions (e.g. conference conductorship).

Figure 6 shows an example of a conference, consisting in three conference users A, B, and C, and a
conference providing service S, and a conference provider. The service S consists in a user part and a
provider part (the latter being part of the conference provider).

T0827110-97

conference provider

conference control application a1 application a2

APs SAPs

conference
providing
service S

(user part)

conference
user A

conference
user B

conference
user C

Figure 6/T.180 – Users and provider of an example conference

16 Recommendation T.180 (06/98)

The service S (user part and/or provider part) supports conference control services as described
above whereas the remainder of the conference provider is concerned with functions of the
multipoint environment.

Figure 6 describes the separation of conference users from the conference provider rather than the
mapping of user and provider functions on real systems. Figure 7 shows a possible configuration for
the example conference, consisting in three terminals and a Multipoint Control Unit (MCU). The
multipoint connection (cK, cA, cB, cC) handles the communication between the control entities
(e.g. the T.120 Node Controller) of the terminals and the MCU. cX is the name of the control-SAP
(or endpoint of the SAP) identifying the control entity residing in system X.

T0827120-97

cK cA cB cC

MCU K Terminal A Terminal B Terminal C

conference
providing
service S
(user part)

(provider part)

conference
user A

conference
user B

conference
user C

Figure 7/T.180 – Example configuration: Multipoint connection (cK, cA, cB, cC)

The address space of the control connection will comprise addresses of control entities of terminals
and of other nodes (e.g. MCUs) participating in a conference. The connection may be identified by a
list of addresses, or by the name of a list (e.g. a number), or by some other mechanism.

If the conference providing service S is not subdivided in a user part and a provider part (i.e. there is
no service access point cK in the example above), then the services of S may be requested by
identifying the node or the service in the control connection: (K, cA, cB, cC) or (S, cA, cB, cC) in the
example above.

In general, a control connection serves for communication between control entities (residing in
terminals or in other nodes) and between control entities and provider parts of conference providing
services. As an example, creating a conference means establishing a control connection.

Figure 8 shows the multipoint connection (A-a1, B-a1, C-a1), which handles the communication
between the entities of the application a1: entities of application a1, residing at different terminals,
may communicate in a multipoint fashion with each other. X-ai is the name of the application-SAP
(or endpoint of the SAP) identifying the application entity ai residing in system X.

 Recommendation T.180 (06/98) 17

T0827130-97

A-a1 B-al C-a1

MCU K Terminal A Terminal B Terminal C

conference
providing
service S

conference
user A

conference
user B

conference
user C

(provider part)

Figure 8/T.180 – Example configuration: Multipoint connection (A-a1, B-a1, C-a1)

In the same way, the multipoint connection (A-a2, C-a2) will handle the communication between the
entities of the application a2.

Therefore, these connections are called application connections. Application connections rely on the
conference creation process performed earlier.

The address space of an application connection will comprise addresses of application entities. The
connection may be identified by a list of addresses, or by the name of a list (e.g. a number), or by
some other mechanism.

In general, an application connection serves for communication between application entities.

An application connection provides the activities of a session. As an example, the members of a
session may cooperate via the exchange of files interactively between them using the services of the
data transfer phase of an application connection. If supported by the connection, a session may
comprise the transfer of more than one data flow (e.g. file transfer) in parallel.

The identification of a connection should remain unchanged even in cases where the members
participating in a session will change. Therefore, it might be convenient to identify a connection by a
number rather than by listing the addresses of the actual participants.

Figure 9 shows the example configuration together with the three multipoint connections discussed
above.

T0827140-97

MCU K Terminal A Terminal B Terminal C

conference
providing
service S
(user part)

conference
user A

conference
user B

conference
user C

(provider part)

Figure 9/T.180 – Example configuration: Sketching all multipoint connections

18 Recommendation T.180 (06/98)

As pointed out above, a conference may handle more than one connection. Conference control may
be supplied by a separate connection (i.e. control connection). In this case,

– the X-CONNECT service at a control-SAP, identifying the control connection, will be used
to establish or join a conference or to invite to a conference; and

– for each multipoint aware application, the X-CONNECT service at an application-SAP,
identifying the specific application connection, will attach the application to the provider and
user requirements will be negotiated.

Roughly spoken, the control connection is concerned with the management of the conference
environment, and each application connection is concerned with the usage of the conference
environment by a specific application.

If no control connection is used, conference control functions are added to application connections.

In any case, each multipoint connection is established by applying the X-CONNECT service. Having
applied successfully this service, the connection is in the data transfer phase. The specific semantics
of the X-CONNECT service and the services of the data transfer phase depend on the provider.

7.2 The state transition diagram as part of the model

The access to each connection (point-to-point or multipoint) is handled by the usage of the service
primitives at appropriate service endpoints. This subclause specifies the service primitives and their
sequences possible at some service endpoint (local view). The specification of the interdependencies
between service primitives at different service endpoints accessing the same service (global view) is
outside the scope of this Recommendation.

Figure 10 shows a state transition diagram, which presents the sequences of service primitives
possible at a service endpoint. With this generic type of service any kind of CO OSI service may be
accessed as well as CO-oriented non-OSI services such as video (video codecs) or other
communication services (e.g. multipoint aware applications or conference systems).

 Recommendation T.180 (06/98) 19

T0827150-97

Idle

X-CONINDX-SNDDIS
X-RCVDIS
X-RELCONF X-SNDDIS

X-RCVDIS
X-CONRSP(−)

X-SNDDIS
X-RCVDIS

X-CONRSP(+)

X-RCVDATA
X-RCVSP

X-RELREQ

Outrel

X-SNDINFO
X-RCVINFO

X-SNDDATA
X-RCVDATA
X-SNDSP
X-RCVSP

X-RELIND

X-CONCONF(+)

OutconIncon

Inrel

X-RCVDIS
X-RELRSP

X-CONREQ

X-SNDDIS
X-RCVDIS
X-CONCONF(−)

Connected

any state

Figure 10/T.180 – Sequence of service primitives at a service endpoint

The semantics of the X-primitives are described below.

This diagram covers the connection establishment phase, the data transfer phase, and the connection
release phase. Which services are made available to users depend on the underlying provider.

In the following, the service primitives are described which are supporting these three phases.

The connect service may comprise end-to-end confirmation using the request, the indication, the
response, and the confirmation primitives in a peer-to-peer like manner (see Figure 5 for example),
or it may comprise some other functionality (i.e. no peer-to-peer confirmation).

In general, applying the connect service will force the local user as well as the provider to switch to
the data transfer phase of a connection. This service will address the remote user(s) and/or the
provider.

During connection establishment phase (X-CONNECT service), either:

• e1 two users of the same service (i.e. a user and its peer) establish a connection
between them, (one user is considered active and initiates the connection, while the
other user is passive and waits for any other service user to request a connection); or

• e2 a user establishes a control connection to communicate in a control service defined
fashion (e.g. to negotiate provider facilities); or

• e3 a user establishes an application connection (i.e. an application is connected to the
provider), which then offers multipoint services to the application; or

20 Recommendation T.180 (06/98)

• e4 a user establishes a connection combining e2 and e3 services.

The service primitives that are supporting the connection establishment phase are:

• X-CONREQ requests a connection to a remote service user (e1), or it requests access to
some appropriate server to communicate in a server-defined fashion (e2),
or it requests an application to be connected to the provider (e3), or it
requests a combined service, consisting in e2 and e3 services. The called
user's protocol address(es) or a service-related address is passed as an
argument. Additional parameters may be passed as arguments too.

• X-CONCONF is used in conjunction with X-CONREQ to establish a connection or an
access to the requested service. X-CONREQ does not wait for an answer
from the called user or service. On receipt of the X-CONCONF primitive,
the calling user may determine whether or not the request has been
accepted by the remote user or by the server.

• X-CONIND indicates a connection request from a remote service user. It provides the
calling user's protocol address, maybe some protocol-specific (or service-
specific) parameters proposed by the caller, and the user data from the
connect indication protocol data unit.

• X-CONRSP is initialized by the passive user to accept a connection or a service after
an X-CONIND has been received. Protocol-specific (service-specific)
parameters and user data may be submitted as arguments of the
X-CONRSP. A negative response may or may not be provided.

Once, a connection has been established, data may be transferred (X-DATA service). There are
service primitives to transfer data, and additional service primitives (X-SP service) that serve for
different purposes, e.g. they may be used to change the set of capabilities which characterize the
communication (e.g. change of QoS). Depending on the provider, transfer of parallel data flow may
be supported by the connection. Parallel data may be transferred by the provider due to differing
priorities. There are four primitives defined for use in the data transfer phase:

• X-SNDDATA enables the user to play the role of a source of user-relevant information.
Playing this role data of any type and of any priority (if supported by the
service provider) are sent over the connection to the communication
partner(s). The data transfer between the peers is controlled by protocol-
specific parameters that, usually, have been negotiated in the connection
establishment phase. Additional protocol-specific parameters may be
specified in the X-SNDDATA.

• X-RCVDATA enables the user to play the role of a sink of user-relevant information.
Playing this role data of any type and of any priority are received over the
connection which have been sent by the source. Beside the user data,
X-RCVDATA may deliver protocol-specific parameters as additional
information concerning the user data.

• X-SNDSP enables the user to transfer a protocol-specific service primitive, or other
control information, or some other connection-related information to the
provider and/or other user(s). Examples are the transfer of information
between the applications (e.g. for the OSI Session Provider, the S-TOKEN-
PLEASE rq. is transferred to the provider to request a data token from the
active side), or the change of the set of capabilities which characterize the
communication (e.g. for the H.320 service provider, the mode switch
request primitive is passed to the provider to initiate a change of the current
transmission mode). In the latter case, it depends on the

 Recommendation T.180 (06/98) 21

provider whether a service primitive is handled completely local
(e.g. changing only parameter values of a local codec) or leads to a data
transfer. The available service primitives are defined in the descriptions of
the appropriate service providers.

• X-RCVSP enables the user to receive a protocol-specific service primitive, or other
control information, or some other connection related information. The
primitive may indicate the receipt of a protocol data unit or may be
generated as result of some internal state changes or events in the local
service provider. The primitives that may be returned are defined in the
descriptions of the appropriate service providers.

Two ways are provided to release a connection: abortive release (X-DISCONNECT service) and
orderly release (X-RELEASE service). The abortive release is a mandatory feature and to be
supported by all XAPI service providers. The orderly release is an optional feature.

The abortive release may be invoked in the connection establishment phase or the data transfer
phase. The abortive release takes effect immediately on request. Once an abortive release has been
initiated there is no guarantee that data on the way between a user and its peer(s) will be delivered
correctly. They may be lost. Service primitives supporting abortive release are:

• X-SNDDIS initiates an abortive release during the data transfer phase or rejects an
incoming call during connection establishment. X-SNDDIS takes user
data and service primitive parameters as arguments.

• X-RCVDIS may be used during data transfer and connection establishment. The
parameters of the X-RCVDIS indicate the reason for the abortive release.

An orderly release may be invoked by either user in the data transfer phase only. The orderly release
procedure allows a user and its peer(s) to gracefully release a connection and thus prevents the loss
of data that may occur during an abortive release. Orderly release is a confirmed service. In an
orderly release, protocol-specific parameters may be negotiated between the user and its peer(s).
Conflicts are assumed to be solved by the provider. In the case of multipoint communication, the
orderly release causes specific synchronization. The usage of the orderly release service in multipoint
environments is for further study. Primitives supporting orderly release are:

• X-RELREQ initiates an orderly release during the data transfer phase. The function
takes user data and service primitive parameters as arguments, but it is
protocol dependent if they are supported by the service provider and will
be transferred to the remote user(s) or not. The connection is not
terminated before the release confirmation has arrived at the service
endpoint and data or service primitives can be received from the endpoint
while waiting for the release confirmation. Sending data is not possible in
this state.

• X-RELCONF receives a release confirmation from the service endpoint. The primitive
may contain user data and service primitive parameters. If a parameter
negotiation has been initiated with the X-RELREQ, the negotiation results
are contained as service primitive parameters of the release confirmation.
The communication is finished with the X-RELCONF. A negative
confirmation is not provided by the model.

• X-RELIND receives a release indication from the service endpoint. The primitive may
contain the user data and service primitive parameters submitted with the
X-RELREQ. The application has to respond to the indication with an
X-RELRSP immediately. After reception of the release indication, no
more data may be sent.

22 Recommendation T.180 (06/98)

• X-RELRSP responds to a previously received orderly release indication. The primitive
takes user data and service primitive parameters as arguments, but it is
protocol dependent if they are supported by the service provider or not. If
the remote user initiated a parameter negotiation with the release request,
the application may respond to the proposals returned by the X-RELIND
primitive. The final values for the negotiated parameters have to be
specified as service primitive parameters in the X-RELRSP. The
communication is finished with the X-RELRSP. Refusing the release with
X-RELRSP(−) is not provided by the model.

General information services (e.g. information on conferences that are currently in existence) may be
invoked by the user in any state (X-INFO service). In general, these services are not related to some
specific connection.

• X-SNDINFO initiates an information request.

• X-RCVINFO may be used to receive information.

In Figure 10, there are six possible states for a service endpoint representing the connection
establishment phase, the data transfer phase, and the connection release phase:

• Idle The service endpoint is active and the connection establishment phase may
performed.

• Outcon The endpoint is engaged in active connection establishment. An outgoing call
has been initiated and now a connect confirmation is awaited.

• Incon The endpoint is engaged in passive connection establishment. An incoming
connect indication has been received and now a connect response is awaited
from the user.

• Connected A connection has been established on this service endpoint which is now in
the data transfer phase.

• Inrel An orderly release indication has been received on this endpoint and now a
release response is awaited from the user.

• Outrel An orderly release has been initiated on this endpoint by the user and now an
orderly release confirmation is awaited.

The states Inrel and Outrel are significant only for services that support orderly release.

8 Description of the XAPI

This clause introduces the architecture of the XAPI, the XAPI functions, and the relationship of the
functions with respect to the model of communication, which was introduced in clause 7. XAPI
offers point-to-point applications as well as multipoint-aware applications a homogeneous access
mechanism to communication services.

8.1 XAPI in point-to-point and in multipoint environments

As stated in clause 6, the XAPI is a communication interface inside a terminal equipment. It allows a
service user to communicate with its respective service provider. The location of the XAPI depends
on the choice of the underlying provider.

Looking from the OSI Reference Model to audio or video applications (or to specific data
applications), the functionality of some OSI layers is not needed.

These layers are empty in Figure 11.

 Recommendation T.180 (06/98) 23

The left part of Figure 11 shows an ATM service provider offering the "OSI Network Service" (data,
or audio, or video) to the XAPI user. The right part of the figure shows an X.25 service provider
together with an X.224 service provider offering the OSI transport service to the XAPI user.

T0827160-97

Layer 4 (X.224)

Layer 3

Layer 1 (e.g. X.21)

Empty layer

Coordination function
Signal
Control

Functions:
Layer 4 to 7

XAPI
user
process

XAPI
service
provider

OSI
transport
service
provider

OSI
network
service
provider

Functions:
Layer 5 to 7

(e.g. X.25
packet layer)
(e.g. X.25
data link layer)

Layer 2

XAPI

Adaptation layer

ATM layer

Physical layer

Empty layer

Empty layer

Empty layer

Empty layer

Empty layer

Empty layer

Figure 11/T.180 – XAPI Access to the OSI transport service provider
and the OSI network service provider

In a conference environment, conference users and conference providers can be distinguished around
the XAPI.

Figure 12 shows a Generic Model of a Conference platform together with the concept of separating
conference control (using a control connection) and application functions (using application
connections) from each other, as described in clause 7.

The conference provider shown in Figure 12 may be looked at as the local part of the conference
provider (i.e. the restriction of the provider functionality to a system), as shown in Figure 4.

24 Recommendation T.180 (06/98)

T0827170-97

XAPI

Fd-cc Fd-a1

conference user

conference provider

conference
control

(XAPI user)

application-1
(XAPI user)

application-n
(XAPI user)

conference
control

(provider)

application-1
(provider)

application-n
(provider)

Fd-an

Figure 12/T.180 – Generic Model of a Conference platform: Separating conference
control and application functions

The functionality of the providers shown in Figure 12 depends on the specific local part of the
conference provider.

From the XAPI point of view this separation is supported by the creation of:

• a (conference) service endpoint (named Fd-cc in Figure 12) specifying a local link between
the XAPI user part of the conference control and its provider part; and

• a (application) service endpoint for each application process (named Fd-a1 to Fd-an in
Figure 12) specifying a local link between the user part of an application process and its
application protocol instance (provider part).

The interaction of an XAPI user and the corresponding provider at a specific Fd is described by the
sequences of XAPI service primitives at that specific service endpoint. For peer-to-peer as well as for
multipeer communication (e.g. for conferencing), the same XAPI functions apply for each service
endpoint:

– A service endpoint is initialized using the x_open() and the x_bind() functions.

– Connection establishment is supported by the x_conreq() and the x_conconf() functions
(or by the x_conind() and the x_conrsp() functions).

– The data transfer phase is supported by the x_snddata() and x_rcvdata(), and/or by the
x_sndsp() and x_rcvsp() functions.

– Connection release is supported by the x_snddis(), or by the x_rcvdis() functions (or by the
functions of the orderly release).

– The service endpoint is de-initialized using the x_unbind() and the x_close() functions.

– The functions x_sndinfo() and x_rcvinfo() may be used for transferring appropriate
information between user and provider via the XAPI.

NOTE – For conference control as well as for other applications, the connect service may comprise end-to-
end confirmation [using the request, the indication, the response, and the confirmation functions in a peer-to-
peer like manner (see Figure 3 for example)], or it may comprise minor functionality (i.e. no peer-to-peer
confirmation).

 Recommendation T.180 (06/98) 25

According to the Generic Model of a Conference platform (see Figure 12), there is a separate user
instance (accessing the provider at the service endpoint Fd-cc) that controls the conference, thus
unburdening these functions from all other conference applications. If such an instance does not
exist, conference control (if any) has to be handled by some (or by all) multipoint-aware applications.
This does not affect the usability of the XAPI: as for other cases, the XAPI user access to some
appropriate provider has to be specified in a separate part of Appendix I.

8.2 XAPI functions and the corresponding state transition diagram

The XAPI functions may be divided in two classes: the class of communication-related functions and
the class of not communication-related functions. Communication-related functions get their specific
semantics from the service primitives described in clause 7.

The communication-related XAPI functions together with the corresponding service primitives are
listed in Table 1.

Table 1/T.180 – Communication-related XAPI functions

XAPI function X-primitive

x_conreq() X-CONREQ

x_conind() X-CONIND

x_conrsp() X-CONRSP

x_conconf() X-CONCONF

x_snddata() X-SNDDATA

x_rcvdata() X-RCVDATA

x_sndsp() X-SNDSP

x_rcvsp() X-RCVSP

x_snddis() X-SNDDIS

x_rcvdis() X-RCVDIS

x_relreq() X-RELREQ

x_relind() X-RELIND

x_relrsp() X-RELRSP

x_relconf() X-RELCONF

x_sndinfo() X-SNDINFO

x_rcvinfo() X-RCVINFO

The XAPI functions that are not related to communication may be subdivided in two classes: the
class of functions supporting the initialization and de-initialization phase, and the class of utility
functions.

Table 2 shows the functions supporting initialization and de-initialization and a specific function,
indicating explicitly that the local resource management has finished all operations concerning the
connection release phase of a connection.

26 Recommendation T.180 (06/98)

Table 2/T.180 – XAPI functions supporting initialization/de-initialization

x_open() create and open a service endpoint

x_bind() activate a service endpoint

x_unbind() deactivate a service endpoint

x_close() close a service endpoint

x_rcvend() receive end indication from service provider

XAPI utility functions do not change the state of a service endpoint. Table 3 shows a list of the XAPI
utility functions (sorted ascending in alphabetical order).

Table 3/T.180 – List of utility functions

x_b2c() select a value of type character string out of a buffer

x_b2l() select a value of type long out of a buffer

x_c2b() write a value of type character string into a buffer

x_chexmod() change execution mode

x_error() produce an error message

x_getinfo() get protocol-specific information from the service provider

x_look() look for the current event on a service endpoint

x_l2b() write a value of type long into a buffer

x_optmgmt() manage options for a service endpoint

x_rcverror() retrieve error indication from a service provider

x_strerror() produce an error message string

x_sync() synchronize data structures of the XAPI library with the information from
the underlying service provider

Figure 13 shows a state transition diagram that presents the sequences of XAPI functions possible at
a service endpoint. XAPI utility functions are not shown. Except for state X_UNINIT, they may be
called in any state. Which functions are made available via the XAPI depends on the specific
providers.

 Recommendation T.180 (06/98) 27

T0827180-97

X_INCON

X_INREL

x_conreq()

x_conconf()

x_relreq() x_relind()

x_conind()

X_CONNECTED

X_OUTREL

X_OUTCON

X_IDLE

X_UNINIT

X_UNBND

x_open()

x_bind() x_unbind()

x_close()

x_conrsp()

x_rcvend()

X_WAITEND

x_snddis()
x_rcvdis()
x_relconf()

x_rcvdis()
x_relrsp()

x_snddis()
x_rcvdis()

x_rcvdata()
x_rcvsp()

x_sndinfo()
x_rcvinfo() x_snddata()

x_rcvdata()
x_sndsp()
x_rcvsp()

x_snddis()
x_rcvdis()
x_conrsp(),"–"

x_snddis()
x_rcvdis()
x_conconf(),"–"

any state without
X_UNINIT and

X_UNBND

Figure 13/T.180 – Sequence of XAPI function calls
(fragmentation of user data is not shown)

From the viewpoint of the mapping defined in Table 1, the structure shown in Figure 13 may be
looked at as a refinement of the structure shown in Figure 8. The refinement preserves all the
sequences of service primitives which are defined in Figure 8.

28 Recommendation T.180 (06/98)

For each service endpoint, the XAPI has nine possible states:

– X_UNINIT The service endpoint is not initialized. This is the initial and the final
state.

– X_UNBND The service endpoint is initialized but not activated.

– X_IDLE The service endpoint is active and the connection establishment phase
may performed.

– X_OUTCON The endpoint is engaged in active connection establishment. An
outgoing call has been initiated and now a connect confirmation is
awaited.

– X_INCON The endpoint is engaged in passive connection establishment. An
incoming connect indication has been received and now a connect
response is awaited from the user.

– X_CONNECTED A connection has been established on this service endpoint which is now
in the data transfer phase.

– X_INREL An orderly release indication has been received on this endpoint and now
a release response is awaited from the user.

– X_OUTREL An orderly release has been initiated on this endpoint by the user and
now an orderly release confirmation is awaited.

– X_WAITEND The connection established on this endpoint has been released. Now the
endpoint is waiting for an end indication from the service provider,
which indicates that the service provider is ready to establish a new
connection.

The states X_INREL and X_OUTREL are significant only for services that support orderly release.

Figure 14 shows an example sequence for the communication between two or more users. Fd is the
name of the service endpoint, which is created and activated by the usage of the x_open() and
x_bind() function calls. After having performed this phase successfully, a connection between the
user and its peer(s) is established [x_conreq() and x_conconf() functions]. In the Data transfer phase
data are exchanged between the users [x_snddata(), x_rcvdata()]. Afterwards, the connection is
released [x_snddis()], the x_rcvend() function is performed, and the service endpoint Fd is
deactivated [x_unbind()] and finally destructed [x_close()].

 Recommendation T.180 (06/98) 29

T0827190-97

Phases

Fd

at Fd

at Fd

at Fd

Fd

Ph
as

e
of

 lo
ca

l r
es

ou
rc

e
m

an
ag

em
en

t

(multi)peer-to-(multi)peer
example sequence

Connection
establishment
phase

x_open()
x_bind()

x_conreq()
x_conconf()

Data transfer
phase

x_snddata()
x_rcvdata()

(exchanging data among
users)

Connection
release phase

x_snddis()
x_rcvend()

x_unbind()
x_close()

Figure 14/T.180 – Example sequence of XAPI function calls

Figure 15 shows an example sequence of XAPI function calls for conference purposes together with
an example sequence for peer-to-peer communication.

The sequence at the right side consists of two parts of activities, namely an activity which handles
participation in a conference (service endpoint Fd-cc and accessory primitives) and an activity which
handles applications running in a conference (service endpoint Fd-a1 and accessory primitives). This
sequence also applies even to the case of a conference with only two users being involved (point-to-
point configuration).

30 Recommendation T.180 (06/98)

T0827200-97

Phases

P
ha

se
 o

f
lo

ca
l (

co
nf

er
en

ce
)

re
so

ur
ce

 m
an

ag
em

en
t

Participation in a conference

P
ha

se
 o

f
co

nf
er

en
ce

 m
an

ag
em

en
t

Fd-cc

at Fd-cc

Fd-a1Fd

at Fd-a1at Fd

at Fd at Fd-a1

at Fd at Fd-a1

at Fd-cc

Disconnecting from a conference

 Fd-a1Fd

 Fd-cc

P
ha

se
 o

f
lo

ca
l (

ap
pl

ic
at

io
n)

 r
es

ou
rc

e
m

an
ag

em
en

t

Peer-to-peer
example sequence

Example sequence
for conferencing

x_open()
x_bind()

x_conreq()
x_conconf()

x_open()
x_bind()

x_open()
x_bind()

x_conreq()
x_conconf()

x_conreq()
x_conconf()

x_snddata()
x_rcvdata()

(exchanging data among
two users)

x_snddata()
x_rcvdata()

(exchanging data among
users)

Connection
release
phase

x_snddis()
x_rcvend()

x_snddis()
x_rcvend()

x_unbind()
x_close()

x_unbind()
x_close()

x_rcvdis()
x_rcvend()

x_unbind()
x_close()

Connection
establish-
ment
phase

Data
transfer
phase

Figure 15/T.180 – Two example sequences of XAPI function calls for
peer-to-peer and for conferencing

As can be seen from the example, the latter sequences of function calls may coincide with those
defined in the peer-to-peer case.

Conference management services (see Figure 15) may be required at any instant of time after having
created a conference (e.g. adding an additional node to an existing conference). So the phase of
conference management will encompass the inner phases:

– local application resource management;

– connection establishment;

– data transfer; and

– connection release.

 Recommendation T.180 (06/98) 31

Users may join or leave a running conference and applications may be added to or removed from a
conference. These operations do not only affect the phases connection establishment, data transfer,
and connection release, but will require operations of the local application resource management too.
Last, but not least, the phase of local conference resource management may be influenced by these
operations and, therefore, it may encompass all other phases.

9 XAPI functions

The XAPI functions may be divided in two classes: the class of communication-related functions and
the class of not communication-related functions. The communication-related functions are
described in 9.2. The XAPI functions that are not related to communication may be subdivided in
two classes: the class of functions supporting the initialization and de-initialization phase, described
in 9.3.1, and the class of utility functions, described in 9.3.2.

A list of the XAPI functions is given in 8.2. Figure 13 shows the state transition diagram.

Annex A contains an IDL description of the XAPI. A list of error codes that may be returned by the
XAPI functions is given in Annex B.

General buffer format

Figure 16 shows the general buffer format.

Several entries can be concatenated in one buffer. Three types of buffers are used: Option, service
primitive parameter, or address buffers. The value of an entry immediately follows the entry header
with no padding or alignment characters in between. The header consists of three members: len,
name, and status.

The len field gives the total length of the entry. This comprises the entry header and the entry value.

The name field identifies the entry.

The status field is used to indicate success or failure of an option negotiation (see function
x_optmgmt); is it not used for service primitive parameter and address buffers.

T0827210-97

len name status value
alignment
characters

len name status value

first entry second entry

Figure 16/T.180 – General buffer format

For reading and writing buffer entries, the functions x_b2c(), x_b2l(), x_c2b(), and x_l2b() are
helpful. The reading functions x_b2c() and x_b2l() will return the len, name, status, and value of the
entry and an index to the next entry. The writing functions x_c2b() and x_l2b() take len, name, and
value as arguments, write them into the buffer and return an index to the next entry.

32 Recommendation T.180 (06/98)

Protocol options

The protocol options are introduced in XAPI as a flexible mechanism to exchange protocol
information between the user and the service provider. It enables the user to express special wishes
about the settings of some protocol parameters and it allows the service provider to pass information
about the protocol parameters used to the user. Protocol options are used to control the general
behaviour of a protocol module or to temporarily override some configuration parameters. Each
option is specific for a certain protocol module. They must not be confounded with service primitive
parameters.

The XAPI function x_optmgmt() is the only one that conveys options between the service user and
the service provider. Except for the XAPI-level options described below, all options are passed
transparently between provider and user. The XAPI is the carrier only. The options are interpreted,
processed, managed, and stored by the provider.

The service provider has a default value for each option it supports. These defaults are sufficient for
the majority of communication relations. Hence, a user should only request options actually needed
to perform the task and leave all others at their default value.

Each option is characterized by several attributes.

Option attributes

Connection-related options are intimately related to a particular connection in a connection-mode
service. Connection-related options are usually negotiated between the two peer entities during
connection setup. Therefore, some ancillary information is transferred from the calling entity to the
called entity and back in most cases. The interpretation and further processing of this information is
protocol-dependent.

An option can have purely local relevance. Local options are negotiated solely between the service
user and the local service provider. The remote entity is neither informed about the settings of local
options nor influenced by these options.

Options that are not connection-related do not contain information destined for the remote service
user. Some can have only local relevance; others have external relevance as they influence the
transmission of data.

An option can either or not be an absolute requirement. This is explicitly defined for each option. An
absolute requirement must not be diminished or changed by the service provider. In some cases an
option is partly absolute.

An option can be restricted to read-only access in some, or all, states of the service endpoint.

The scope of an option defines the period of time during which the option is in effect. The lifetime of
an option is the time the option has a value assigned and can be accessed by the user. The lifetime is
restricted to the time the service provider is accessible through a service endpoint. After the return of
x_open(), all options are set to their default values. They will lose their values when the last endpoint
accessing the service provider is closed. Do not confound the scope of an option with its lifetime.
The scope is limited to the time the option is in effect.

There are two classes of scope. Each option belongs to one and only one of these classes. The widest
scope possible is called permanent scope. It comprises the whole lifetime of the option. The scope of
connection-related options is the time the connection exists. Some connection-related options have
an even smaller scope as they are restricted to the data transfer phase of the connection. They come
out of scope when connection release is initiated, i.e. the service endpoint leaves the state
X_CONNECTED. Options retain their values while they are out of scope. The next time they come
into scope, they will start with the old value, which may be different from the default value.

 Recommendation T.180 (06/98) 33

Option negotiation

A service user can initiate an option negotiation with a call to x_optmgmt() with the NEGOTIATE
flag set in the flags field of the input parameter req.

The negotiation rules depend on whether an option is an absolute requirement or not. If the proposed
option value is legal and an absolute requirement, the following two outcomes are possible:

 The negotiation succeeds and the option is set to the required value; x_optmgmt()
successfully returns and reports SUCCESS in the status field of the option header.

 The negotiation is rejected if the option is supported but the proposed value cannot be
accepted. x_optmgmt() will successfully return in this case, but report FAILURE in the status
field of the option header.

If the proposed option value is legal but not an absolute requirement:

 The negotiated value is of equal or less quality than the proposed value. x_optmgmt() will
indicate this in the status field of the output option. SUCCESS indicates that the proposed
value could be negotiated; PARTSUCCESS indicates that the proposed value was
diminished.

 If the name field of the header is unknown to the protocol module selected by level, or if the
option is not supported at all, the function x_optmgmt() succeeds, but reports
NOTSUPPORT in the status field of this option on return.

Not all options are independent from one another. A requested option might conflict with the value
of another option. Therefore, options that depend on one another must not be negotiated
independently, but have to be submitted all together in one x_optmgmt() call to avoid temporary
inconsistencies or conflicts. Thus conflicts can be detected at negotiation time. If only one of two or
more dependent options shall be set to a new value, all the dependent options have to be negotiated
in one x_optmgmt() call, even if their values need not to be changed. If a conflict between dependent
options is detected by the service provider, x_optmgmt() will successfully return, but report
FAILURE in the status field of the concerned options.

If the service user submits multiple options in one call and one option is not supported by the service
provider, all other options within the buffer are not influenced by this and the legal options are
negotiated as usual.

A violation of access rights occurs when the user tries to negotiate an option which is restricted to
read-only access. The function x_optmgmt() will return successfully in this case, but the option is not
changed and READONLY is returned in the status field of this option.

If the service user submits multiple options in one call and one of them causes a violation of access
rights, all other options within the buffer are not influenced by this and the legal options are
negotiated as usual.

As x_optmgmt() handles options for one module only, multi-module conflicts cannot be detected at
negotiation time. It is left for the user to avoid conflicts between options of different protocol
modules.

XAPI-level options

There is only one XAPI-level option: the trace option O_TRACE. It switches on/off traces in XAPI
functions and protocol modules. The level argument in the x_optmgmt() call selects the target
module. The XAPI functions are selected with level XAPI_LEVEL. For protocol modules, the
protocol module identifier has to be used as level.

The option value specifies the trace level which controls the amount of traces generated.

34 Recommendation T.180 (06/98)

The following trace levels are defined:

– OV_NOTRACE switches all traces off (default value);

– OV_BUFFTRACE enables the buffer trace for received and sent PDUs; all trace messages
are disabled;

– OV_ERR enables error trace messages and disables buffer traces;

– OV_ERR_BUF enables error trace messages plus buffer traces;

– OV_WRN enables error and warning trace messages; buffer traces are disabled;

– OV_WRN_BUF enables error and warning trace messages plus buffer traces;

– OV_INF enables error, warning, and information trace messages; buffer traces
are disabled;

– OV_INF_BUF enables error, warning, and information trace messages plus buffer
traces.

Buffer traces and trace messages cannot be switched independently. A change in the O_TRACE
option value always effects both categories. The combinations of the different levels of message
traces and buffer traces may be calculated by the user with the bitwise-OR operator.

Option attributes

The option O_TRACE

– is an absolute requirement;

– is not connection related;

– has only local meaning;

– has permanent scope.

The way to access the generated trace data depends on the base operating system.

Note that the error messages generated by the service provider are not affected by the trace level.
These error messages are generated whenever an error condition is detected. Usually, they will be
written to a system-specific error log file.

9.1 Conventions

The description of the XAPI functions, their parameters and fields is independent of hardware and
operating systems.

For each XAPI function, a list of parameters is specified.

The meaning of the functions and parameters is described for two types of providers:

• point-to-point (abbreviation p-p);

• multipoint (mp) with the two types of endpoints being supported: the conference control
(abbreviation mp-c) and the application endpoint (mp-a).

If there is a different meaning for the function or parameters of the supported endpoints of the
provider types, this is noticed. If there is only one description for a function or parameter, it is
meaningful for all types of the supported endpoints.

In a multipoint environment, all communication-related functions at application endpoints are only
available if the conference control endpoint is in the active state.

Different providers may cause the specification of provider-specific parameters and/or sets of values
for these parameters.

 Recommendation T.180 (06/98) 35

For each specific provider, a separate part of Appendix I describes the XAPI functions, their
parameters, and values.

The description of the XAPI functions in the following subclauses is in an alphabetical order.

9.2 Communication-related functions

For each XAPI function, the relation between the function and the accessory service primitive is
defined. Afterwards, a description of the parameters of the XAPI function is given.

9.2.1 X-CONCONF/x_conconf

Description: This primitive enables the XAPI user to determine the status of a previously sent
connect request and is used in conjunction with X-CONREQ. In the case of a positive
connect confirm, the service endpoint changes to state "Connected". If the service
provider supports the capability of negative connect responses (confirm), then an
appropriate information may be returned to indicate that the communication was not
accepted. In this case, the service endpoint will be in state "Idle".

 The meaning of a positive X-CONCONF is for:
 p-p: a connection between peer entities is established
 mp-c: a control connection to a conference service provider and to other conference

members is established
 mp-a: the access of an application to a session in an active conference is established

Function in XAPI:

Name: x_conconf(fd, call, xerror)

Parameters:

fd: Identification of the local service endpoint where the active connection establishment
has been initiated with x_conreq

call: The parameter call contains information related to the newly established connection. It
is structured in the following parameters:

 – address: contains address information
 p-p: specifies the responding protocol address, i.e. the address of the responding

service user
 mp-c: specifies the address of the conference service provider and may contain a

list of active conference members
 mp-a: not used

 – parameter: contains the protocol specific parameters
 p-p: protocol-specific parameters of the peer-to-peer connection establishment
 mp-c: Conference-specific parameters
 mp-a: session and application-specific parameters

 – user_data: contains optional data
 p-p: contains any user data that are received from the responding user
 mp-c: additional conference-specific information received from the conference

service provider (e.g. information about authentication, billing) and other
conference members

 mp-a: additional information of the local application service provider

 – sequence: no meaning

 – flags: to indicate a local segmentation of information at the interface, or a
negative connect confirmation

36 Recommendation T.180 (06/98)

xerror: Error codes

Return value: indicates successful completion or failure

9.2.2 X-CONIND/x_conind

Description: X-CONIND enables a passive user to initiate connection establishment. This service
primitive may be diverted from an X-CONREQ. After the receipt of this primitive, the
endpoint changes to state "Incon".

 The meaning for:
 p-p: indicates the passive user to establish a connection between the active user and

itself
 mp-c: invitation to conference
 mp-a: indicates an application that it may use an application connection belonging to a

conference to facilitate communication between all or a group of conference members

Function in XAPI:

Name: x_conind(fd, call, xerror)

Parameters:

fd: Identification of the local service endpoint where the passive connection
establishment is initiated with x_conind

call: The parameter call contains information related to the new connection which will be
established. It is structured in the following parameters:

 – called_addr: contains address information of the called user

 – calling_addr: contains address information of the calling user

 – parameter: contains the protocol-specific parameters
 p-p: protocol specific parameters transferred in the connect indication primitive
 mp-c: Conference specific parameters
 mp-a: session- and application-specific parameters

 – user_data: contains optional data
 p-p: contains any user data transferred from the calling to the called user
 mp-c: additional conference-specific information sent to the conference service

provider or other conference members (e.g. information about authentication,
billing)

 (mp-a): additional information to the application

 – sequence: local unique identification number of the connect indication

 – flags: to indicate a local segmentation at the interface or a negative connect
confirmation

xerror: Error codes

Return value: indicates successful completion or failure

9.2.3 X-CONREQ/x_conreq

Description: This primitive enables a user to initiate active communication establishment. The
communication establishment is initialized and the endpoint changes to state
"Outcon".

 The meaning for:
 p-p: to establish a connection to another peer entity
 mp-c: to establish a control connection to a conference service provider and to other

conference members

 Recommendation T.180 (06/98) 37

 mp-a: the application wants to use an application connection belonging to a
conference to facilitate communication between all or a group of conference members

Function in XAPI:

Name: x_conreq(fd, sndcall, xerror)

Parameters:

fd: The identification of the local service endpoint where the communication will be
established

sndcall: The parameter sndcall specifies information needed by the service provider to
establish the communication. It is structured in the following parameters:

 – address: contains address information
 p-p: specifies the destination protocol address, i.e. the address of the called

service user
 mp-c: specifies the address of the conference service provider and may contain a

list of conference members to be invited
 mp-a: not used

 – parameter: contains the protocol-specific parameters that should be used in
connection establishment

 p-p: protocol-specific parameters needed for peer-to-peer connection
establishment

 mp-c: Conference-specific parameters
 mp-a: session- and application-specific parameters

 – user_data: contains optional data
 p-p: contains any user data that shall be sent to the called user with the connect

request
 mp-c: additional information for the conference service provider or other

conference members
 mp-a: additional information to the local session service provider

 – sequence: no meaning

 – flags: to indicate a local segmentation at the interface

xerror: Error codes

Return value: indicates successful completion or failure

9.2.4 X-CONRSP/x_conrsp

Description: This primitive is issued by a service user to respond to a previously received connect
indication. The communication establishment is now complete for the passive user
and the endpoint changes to state "Connected". The service provider may or may not
support the capability to send negative connect responses. In the case of a negative
response, no communication is established and the service endpoint will be in state
"Idle".

 The meaning is for:
 p-p: the passive user responds to the indication to establish a connection
 mp-c: the member responds to an invitation to a conference
 mp-a: the application responds to the invitation that it may use an application

connection belonging to a conference to facilitate communication between all or a
group of conference members

38 Recommendation T.180 (06/98)

Function in XAPI:

Name: x_conrsp(fd, resfd, call, xerror)

Parameters:

fd: The parameter fd identifies the service endpoint where the connect indication arrived

resfd: Resfd specifies the local service endpoint where the connection is to be established. A
service user may accept a connection on either the same, or on a different, local
service endpoint than the one on which the connect indication arrived. Before the
connection can be accepted on the same endpoint (resfd = fd), the user must have
responded to any previous connect indications received on that service endpoint. If a
different service endpoint is specified (resfd ≠ fd), then both endpoints must refer to
the same service provider.

call: The parameter call contains information related to the new connection which will be
established. It is structured in the following parameters:

 – address: contains address information
 p-p: specifies the responding protocol address, i.e. the address of the responding

service user
 mp-c: specifies the address of the conference service provider and may contain a

list of active conference members
 mp-a: specifies all or a group of the actual in the session active conference

members (session-members)

 – parameter: contains the protocol-specific parameters
 p-p: protocol-specific parameters of the peer-to-peer connection establishment
 mp-c: Conference-specific parameters
 mp-a: session- and application-specific parameters

 – user_data: contains optional data
 p-p: any user data that are received from the responding user
 mp-c: additional conference-specific information received from the conference

service provider (e.g. information about authentication, billing) and other
conference members

 mp-a: additional information to be passed to the local session service provider

 – sequence: local unique identification number which corresponds to the connect
indication

 – flags: to indicate a local segmentation at the interface or a negative connect
confirmation

xerror: Error codes

Return value: indicates successful completion or failure

9.2.5 X-RCVDATA/x_rcvdata

Description: This primitive offers the user either normal or expedited data or data with a specific
priority. This service primitive does not change the state of the service endpoint.

 The meaning is for:
 p-p: the user receives data from the peer user
 mp-c: the conference member receives conference-specific information from another

conference member
 mp-a: the session member receives data or application-specific information from

another session member

 Recommendation T.180 (06/98) 39

Function in XAPI:

Name: x_rcvdata(fd, data, flags, xerror)

Parameters:

fd: Identification of the service endpoint

data: The parameter data contains the received data and related protocol-specific
information. It is structured in the following parameters:

 – parameter: additional information about the data
 p-p: service primitive parameters which provide additional information about

the user data
 mp-c: additional information about the conference data (e.g. identification of the

sending conference member)
 mp-a: additional information about the session data (e.g. identification of a

dataflow, if more than one dataflow is provided in the session; the identification
of the sending session member)

 – data: the received data

flags: indication of a local segmentation at the interface and the priority of the data
 p-p: indication of expedited data
 mp-c: priority of the data
 mp-a: priority of the data

xerror: Error codes

Return value: indicates successful completion or failure

9.2.6 X-RCVDIS/x_rcvdis

Description: This primitive informs the user that a disconnect condition has occurred. A disconnect
is an abortive release. The service primitive X-RCVDIS indicates the end of the data
transfer phase. The endpoint changes to state "Idle".

 The meaning is for:
 p-p: the end of the connection
 mp-c: no longer member in the conference
 mp-a: no longer member in the session

Function in XAPI:

Name: x_rcvdis(fd, disc, xerror)

Parameters:

fd: Identification of the service endpoint

disc: The parameter disc contains disconnect related information. It is structured in the
following parameters:

 – user_data:
 p-p: contains user data of the other user
 mp-c: contains user data of the conference providing service perhaps created by

another conference member
 mp-a: contains user data of another session member

 – parameter: contains service primitive parameters about the reason for
disconnecting

 – origination: specifies the origin of the disconnect

40 Recommendation T.180 (06/98)

 – sequence: local unique identification number which corresponds to a connect
indication. It is only meaningful in the case where the indication is immediately
followed by the disconnect.

xerror: Error codes

Return value: indicates successful completion or failure

9.2.7 X-RCVINFO/x_rcvinfo

Description: The X-RCVINFO primitive is used to receive appropriate information from the
provider. This service primitive does not change the state of the service endpoint. It is
allowed in all states except the states "Uninit" and "Unbnd".

Function in XAPI:

Name: x_rcvinfo(fd, level, info, par, flags, xerror)

Parameters:

fd: Identification of the service endpoint

level: Identification of the protocol module which generated the service primitive. This is
one of the protocol module IDs which are available

info: Identification of the name of the protocol-specific service primitive
 p-p: not used
 mp-c: e.g. Information services for the conference
 mp-a: e.g. Information services for the session

par: contains the parameters and user data of the service primitive

 – parameter: contains the parameters of the service primitive
 p-p: not used
 mp-c: e.g. parameters of the conference-specific information service
 mp-a: e.g. parameters of the session-specific information service

 – data: contains the user data of the service primitive

flags: indication of a local segmentation at the interface

xerror: Error codes

Return value: indicates successful completion or failure

9.2.8 X-RCVSP/x_rcvsp

Description: The X-RCVSP primitive is used to receive a protocol-specific service primitive. This
service primitive does not change the state of the service endpoint. It is only allowed
in the states "Connected" and "Outrel".

Function in XAPI:

Name: x_rcvsp(fd, level, spname, sp, flags, xerror)

Parameters:

fd: Identification of the service endpoint

level: Identification of protocol module which generated the service primitive. This is one of
the protocol module IDs which are available

spname: Identification of the name of the protocol-specific service primitive
 p-p: (e.g. in the OSI-session protocol S-TOKEN-PLEASE service)
 mp-c: Conference-specific services
 mp-a: Session-specific services

 Recommendation T.180 (06/98) 41

sp: contains the parameters and user data of the service primitive

 – parameter: contains the parameters of the service primitive
 p-p: contains the parameters of the service primitive
 mp-c: e.g. identification of the sending conference member
 mp-a: e.g. identification of a dataflow; if more than one dataflow is provided in

the session, the identification of the sending session member

 – data: contains the user data of the service primitive

flags: indication of a local segmentation at the interface

xerror: Error codes

Return value: indicates successful completion or failure

9.2.9 X-RELCONF/x_relconf

Description: The X-RELCONF primitive is used to receive the confirmation for a previously
requested orderly release. The endpoint changes to state "Idle". This primitive is only
used in a point-to-point configuration. The use in a multipoint environment is for
further study.

Function in XAPI:

Name: x_relconf(fd, rel, xerror)

Parameters:

fd: Identification of the service endpoint

rel: contains protocol-specific parameters and the user data
 – parameter: contains the release confirmation service primitive
 – user data: contains user data of the remote peer entity
 – flags: indication of a local segmentation at the interface

xerror: Error codes

Return value: indicates successful completion or failure

9.2.10 X-RELIND/x_relind

Description: The X-RELIND primitive is used to receive a release indication. This indicates the
end of the data transfer on this connection to the user. After reception of a release
indication, the user may not send any more data over the connection. The endpoint
changes to state "Inrel". This primitive is only used in a point-to-point configuration.
The use in a multipoint environment is for further study.

Function in XAPI:

Name: x_relind(fd, rel, xerror)

Parameters:

fd: Identification of the service endpoint

rel: contains protocol-specific parameters and the user data
 – parameter: contains the release indication service primitive
 – user data: contains user data of the remote peer entity
 – flags: indication of a local segmentation at the interface

xerror: Error codes

Return value: indicates successful completion or failure

42 Recommendation T.180 (06/98)

9.2.11 X-RELREQ/x_relreq

Description: The X-RELREQ primitive enables a user to initiate an orderly release of an existing
connection and indicates to the service provider that there is no more data to send. The
endpoint changes to state "Outrel". However, a user may continue to receive data until
the confirmation for the orderly release request has arrived at the service endpoint.
This primitive is only used in a point-to-point configuration. The use in a multipoint
environment is for further study.

Function in XAPI:

Name: x_relreq(fd, rel, xerror)

Parameters:

fd: Identification of the service endpoint

rel: contains protocol-specific parameters and the user data
 – parameter: contains the release request service primitive
 – user data: contains user data
 – flags: indication of a local segmentation at the interface

xerror: Error codes

Return value: indicates successful completion or failure

9.2.12 X-RELRSP/x_relrsp

Description: The X-RELRSP primitive responds to a previously received release indication. The
endpoint changes to state "Idle". This primitive is only used in a point-to-point
configuration. The use in a multipoint environment is for further study.

Function in XAPI:

Name: x_relrsp(fd, rel, xerror)

Parameters:

fd: Identification of the service endpoint

rel: contains protocol-specific parameters and the user data
 – parameter: contains the release response service primitive
 – user data: contains user data
 – flags: indication of a local segmentation at the interface

xerror: Error codes

Return value: indicates successful completion or failure

9.2.13 X-SNDDATA/x_snddata

Description: This primitive is used to send either normal or expedited data or data with a specific
priority. This service primitive does not change the state of the service endpoint.

 The meaning is for:
 p-p: the user sends data to the peer user
 mp-c: the conference member sends conference-specific information to one, a group

or all other conference members
 mp-a: the session member sends application-specific information (data) to a group or

all other session members

 Recommendation T.180 (06/98) 43

Function in XAPI:

Name: x_snddata(fd, data, flags, xerror)

Parameters:

fd: Identification of the service endpoint

data: The parameter data contains the data to be sent and related protocol-specific
information. It is structured in the following parameters:

 – parameter: additional information about the data
 p-p: service primitive parameters which provide additional information about

the user data
 mp-c: additional information about the conference data (e.g. identification of the

receiving conference member)
 mp-a: additional information about the session data (e.g. identification of a

dataflow; if more than one dataflow is provided in the session, the identification
of the sending session member)

 – data: the data to be sent

flags: indication of a local segmentation at the interface and the priority of the data
 p-p: indication of normal or expedited data
 mp-c: priority of the data
 mp-a: priority of the data

xerror: Error codes

Return value: indicates successful completion or failure

9.2.14 X-SNDDIS/x_snddis

Description: This primitive is used to initiate an abortive release. Upon successful return, the
endpoint changes to state "Idle".

 The meaning is for:
 p-p: the end of the connection
 mp-c: the member leaves the conference
 mp-a: the member leaves the session

Function in XAPI:

Name: x_snddis(fd, disc, xerror)

Parameters:

fd: Identification of the service endpoint

disc: The parameter disc contains disconnect-related information. It is structured in the
following parameters:

 – user_data: contains user data
 p-p: the user may send disconnect-related user data to the peer user
 mp-c: the conference member may send disconnect-related user data to the

conference providing service and so perhaps to other conference members
 mp-a: the session member may send disconnect-related user data to other

session members

 – parameter: contains service primitive parameters about the reason of
disconnecting

 – origination: no meaning

44 Recommendation T.180 (06/98)

 – sequence: local unique identification number which corresponds to a connect
indication. It is only meaningful when X-SNDDIS is an answer to a connect
indication

xerror: Error codes

Return value: indicates successful completion or failure

9.2.15 X-SNDINFO/x_sndinfo

Description: The X-SNDINFO primitive is used to send appropriate information to the provider.
This service primitive does not change the state of the service endpoint. It is allowed
in all states except the states "Uninit" and "Unbnd".

Function in XAPI:

Name: x_sndinfo(fd, level, info, par, flags, xerror)

Parameters:

fd: Identification of the service endpoint

level: Identification of the protocol module which shall get the info. This is one of the
protocol module IDs which are available

info: Identification of the name of the protocol-specific service primitive
 p-p: not used
 mp-c: e.g. Information services for the conference
 mp-a: e.g. Information services for the session

par: contains the parameters and user data of the service primitive

 – parameter: contains the parameters of the service primitive
 p-p: not used
 mp-c: e.g. parameters of the conference-specific information service
 mp-a: e.g. parameters of the session-specific information service

 – data: contains the user data of the service primitive

flags: indication of a local segmentation at the interface

xerror: Error codes

Return value: indicates successful completion or failure

9.2.16 X-SNDSP/x_sndsp

Description: The X-SNDSP primitive is used to pass a protocol-specific service primitive to the
service provider. The primitive does not change the state of the service endpoint. It is
only allowed in the state "Connected".

Function in XAPI:

Name: x_sndsp(fd, level, spname, sp, flags, xerror)

Parameters:

fd: Identification of the service endpoint

level: Identification of protocol module which shall get the service primitive. This is one of
the protocol module IDs which are available

spname: Identification of the name of the protocol-specific service primitive
 p-p: e.g. in the OSI-session protocol S-TOKEN-PLEASE service
 mp-c: Conference-specific services
 mp-a: Session-specific services

 Recommendation T.180 (06/98) 45

sp: contains the parameters and user data of the service primitive

 – parameter: contains the parameters of the service primitive
 p-p: contains the parameters of the service primitive
 mp-c: e.g. identification of the receiving conference member
 mp-a: e.g. identification of a dataflow; if more than one dataflow is provided in

the session, the identification of the sending session member

 – data: contains the user data of the service primitive

flags: indication of a local segmentation at the interface

xerror: Error codes

Return value: indicates successful completion or failure

9.3 Not communication-related functions

9.3.1 Functions for the initialization and de-initialization phase

A description of the functions for the initialization and de-initialization phase is given.

9.3.1.1 x_bind

Description: This function executes in two steps: first, link a transport system; second, associate a
protocol address to the service endpoint identified by fd. On successful completion the
service endpoint is activated and changes to state "Idle". The service provider may
now begin to enqueue incoming connect indications, or the application may start an
active connection establishment. If the service provider, which is accessed through the
endpoint identified by fd, comprises an application system only, a transport system has
to be linked below this application system in order to complete the protocol stack.
This first step can be omitted if the service provider’s protocol stack is already
complete; this means that it comprises a built-in transport system.

Name: x_bind(fd, trans_name, req, ret, info, xerror)

Parameters:

fd: Identification of the service endpoint

trans_name: specifies the name of the transport system

req: Identification of the name of the protocol-specific service primitive
 – own_address: contains the own protocol address
 – qlen: the number of incoming calls that may be queued by the service provider

for this endpoint

ret: Identification of the name of the protocol-specific service primitive
 – own_address: contains the protocol address which has been bound to the service

endpoint
 – qlen: negotiation of the number of incoming calls that may be queued by the

service provider for this endpoint

info: contains the characteristics of the service provider

xerror: Error codes

Return value: indicates successful completion or failure

46 Recommendation T.180 (06/98)

9.3.1.2 x_close

Description: Informs the service provider that the user is finished with the service endpoint
identified by fd, and frees any local XAPI library resources associated with the
endpoint. In addition, x_close() closes the file descriptor associated with the service
endpoint. The function x_close() should be called from the "Unbnd" state. However,
this function does not check state information, so it may be called from any state to
close a service endpoint. If this occurs, the local library resources associated with the
endpoint will be freed automatically, and the operating system specific call for closing
files, e.g. close(), will be issued for that file descriptor. This will break any connection
that may be associated with the service endpoint. An x_close() issued on a service
endpoint engaged in data transfer may cause data previously sent, or data not yet
received, to be lost. It is not recommended to simply close a file descriptor identifying
an XAPI service endpoint with the operating system-specific function call. Instead, the
x_close() function should always be used to close a service endpoint. This enables the
XAPI library to free the local resources allocated for this endpoint.

Name: x_close(fd, xerror)

Parameters:

fd: Identification of the service endpoint

xerror: Error codes

Return value: indicates successful completion or failure

9.3.1.3 x_open

Description: This function must be called as the first step to create a local service endpoint. A
service provider is to be accessed through the newly created endpoint.

Name: x_open (prov_name, mode, info, xerror)

Parameters:

prov_name: Name of the service provider

mode: specifies the initial execution mode for the service endpoint

info: contains the characteristics of the service provider to be accessed

xerror: Error codes

Return value: generates a valid file descriptor or indicates failure

9.3.1.4 x_rcvend

Description: Indicates that the service provider is ready to establish a new connection on this
endpoint. If charging units are supported, they will be returned.

Name: x_open(fd, end, xerror)

Parameters:

fd: Identification of the service endpoint

end: contains parameters

xerror: Error codes

Return value: indicates successful completion or failure

 Recommendation T.180 (06/98) 47

9.3.1.5 x_unbind

Description: Deactivates the service endpoint identified by fd which was previously activated by an
x_bind() call. On completion of x_unbind(), no further data or events destined for this
service endpoint will be accepted by the service provider. If the service provider
accessed through the endpoint has a dynamically linked transport system below its
application system, the transport system is unlinked from the application system.
Built-in transport systems are not affected by x_unbind(). In both cases, the protocol
address that has been associated with the endpoint on x_bind() is removed from the
service endpoint. If this was a passive endpoint (one with a value of qlen greater than
zero) the protocol address is now free again and may be used to activate another
passive endpoint. The deactivated service endpoint can be reactivated by a subsequent
call to x_bind().

Name: x_unbind(fd, xerror)

Parameters:

fd: Identification of the service endpoint

xerror: Error codes

Return value: indicates successful completion or failure

9.3.2 Utility functions

9.3.2.1 x_b2c

Description: Selects a value of type character string out of a buffer.

 Use this function to read options, service primitive parameters, and address buffers.

Name: x_b2c(nb, index, len, name, status, xerror)

Parameters:

nb: identifies a buffer

index: next entry in the chosen buffer

len: length of the entry value

name: name of the entry

status: indicates success or failure of an option negotiation; unused for address and parameter
buffers

xerror: Error codes

Return value: a value of type character string or indication of failure

9.3.2.2 x_b2l

Description: Selects a value of type long out of a buffer.

 Use this function to read option, service primitive parameter, and address buffers.

Name: x_b2l(nb, index, len, name, status, xerror)

Parameters:

nb: identifies a buffer

index: next entry in the chosen buffer

len: length of the entry value

name: name of the entry

48 Recommendation T.180 (06/98)

status: indicates success or failure of an option negotiation; unused for address and parameter
buffers

xerror: Error codes

Return value: a value of type long or indication of failure

9.3.2.3 x_c2b

Description: Writes a value of type character string into a buffer.

 Use this function to write option, service primitive parameter, and address buffers.

Name: x_c2b(nb, index, len, name, value, xerror)

Parameters:

nb: identifies a buffer

index: next entry in the chosen buffer

len: length of the entry value

name: name of the entry

value: value of the entry

xerror: Error codes

Return value: indicates successful completion or failure

9.3.2.4 x_chexmod

Description: Changes the execution mode for the service endpoint identified by fd. The mode
argument specifies the new execution mode:

 SYNCHRON to switch to synchronous execution mode
 ASYNCHRON to switch to asynchronous execution mode

 The initial execution mode for a service endpoint is assigned when the endpoint is
created with the x_open() function. The user may change the execution mode at any
time.

 Depending on the operating system, maybe not all execution modes are supported for
all service providers.

Name: x_chexmod(fd, mode, xerror)

Parameters:

fd: identifies the service endpoint

mode: specifies the new execution mode

xerror: Error codes

Return value: indicates successful completion or failure

9.3.2.5 x_error

Description: Writes a message to the standard error output.

 The whole message is written as follows: First, the string pointed to by errmsg
followed by a colon and a space is written. Then, the error message string
corresponding to the error indicated by xerror is written, followed by a newline
character.

 Recommendation T.180 (06/98) 49

 The messages are the same as returned by x_strerror(). If an error code is unknown,
x_error() writes the string

"<error>: error unknown"

 where <error> is the (decimal) error number supplied as value of xerror.

Name: x_error(errmsg, xerror)

Parameters:

errmsg: user-supplied error message

xerror: error code returned by an XAPI function call

Return value: indicates completion

9.3.2.6 x_getinfo

Description: Returns by info the current characteristics of the underlying service provider and/or
connection associated with the service endpoint identified by fd. This is the same
information as returned by x_open() and x_bind(), although not necessarily precisely
the same values as some of them might have been changed in a peer-to-peer
negotiation during connection establishment. The function x_getinfo() enables a
service user to access this information during any phase of communication.

Name: x_getinfo(fd, info, xerror)

Parameters:

fd: identifies the service endpoint

info: shows the current characteristics of the underlying service provider

xerror: Error codes

Return value: indicates successful completion or failure

9.3.2.7 x_look
Description: Returns the current event on the service endpoint identified by fd. The user should

then call x_look() to see which event occurred. The function x_look() acts independent
of the current execution mode.

 The function may also be used to poll a service endpoint periodically for
asynchronous events.

Name: x_look(fd, xerror)

Parameters:

fd: identifies the service endpoint

xerror: Error codes

Return value: indicates the current event or failure

9.3.2.8 x_l2b

Description: Writes a value of type long into a buffer.

 Use this function to write options, service primitive parameters, and address buffers.

Name: x_l2b(nb, index, len, name, value, xerror)

50 Recommendation T.180 (06/98)

Parameters:

nb: identifies a buffer

index: next entry in the chosen buffer

len: length of the entry value

name: name of the entry

value: value of the entry

xerror: Error codes

Return value: indicates successful completion or failure

9.3.2.9 x_optmgmt

Description: Enables a user to retrieve, verify or negotiate protocol options with the service
provider or the XAPI library. It can be used to negotiate non-connection-related
options or preset connection-related options for future connections. The function can
process and return all options related to the specified service endpoint. The function
may be called in all states of the endpoint except X_UNINIT.

 A call of x_optmgmt() is an atomic operation, i.e. it always acts independent of the
current execution mode and the caller is blocked until the return of x_optmgmt().

 The protocol module which is the object of the x_optmgmt() call is denoted by the
level parameter. To handle XAPI-level options, XAPI_LEVEL has to be specified as
level.

 The parameters req and ret both reference an option management structure which
contains the members options and flags.

 On input, the options buffer of req contains the requested options and the flags specify
the action that shall be taken with these options. On return, the result of the option
management call is available in ret. What is returned in the options buffer of ret and
in flags depends on the action which has been specified in req. The flags field of req
must specify one of the following actions: NEGOTIATE, CHECK, DEFAULT,
CURRENT. The status field in the header of each returned option is set to indicate the
result of the action. The value is SUCCESS, PARTSUCCESS, READONLY,
NOTSUPPORT, or FAILURE. The overall result of the action is returned in
ret->flags. It contains the worst single result, whereby the rating is done according to
the order (from worst to best) FAILURE, NOTSUPPORT, READONLY,
PARTSUCCESS, SUCCESS.

Name: x_optmgmt(fd, level, req, ret, xerror)

Parameters:

fd: identifies the service endpoint

level: a protocol module identifier that selects the target protocol module

req: contains the option specifications which shall be passed to the protocol module and
the action to take with the options:

 – options
 – flags

ret: contains the result of the option management call:
 – options
 – flags

xerror: Error codes

 Recommendation T.180 (06/98) 51

Return value: indicates successful completion or failure

9.3.2.10 x_rcverror

Description: Is used to retrieve an error indication that has been generated by the service provider.
It is the consuming function for the XAPI event ERROR and must be issued, if this
event occurred at a service endpoint or a previous function failed with ER_ERROR.

 The function behaves independent of the execution mode.

Name: x_rcverror(fd, err, xerror)

Parameters:

fd: identifies the service endpoint

err: gives some basic information about the location where the error has been detected,
and the reason for failure:

 – level: identifies the protocol module which generated the error indication
 – service: specifies the service that caused the error indication
 – cause: cause code
 – diagnostic: conditional, some additional information about the error

xerror: Error codes

Return value: indicates successful completion or failure

9.3.2.11 x_strerror

Description: Maps the XAPI error number errnum to an error message string and returns the string.
If an error code is unknown, x_strerror() returns the string

"<error>: error unknown"

 where <error> is the (decimal) error number supplied as input.

Name: x_strerror(errnum)

Parameters:

errnum: specifies an XAPI-level error code

Return value: error message string

9.3.2.12 x_sync

Description: Synchronizes the data structures managed by the XAPI library with the information
from the underlying service provider. In doing so it can convert an uninitialized file
descriptor (not obtained from an x_open() call) to an initialized service endpoint by
updating and allocating the necessary library data structures. Usually they are
allocated and initialized by x_open().

 The function x_sync() also allows two cooperating processes which both access the
same service endpoint, to synchronize their interaction with the service provider. It is
important to remember that the service provider treats all users of a service endpoint
as a single user. If multiple processes are using the same endpoint, they should
coordinate their activities so as not to violate the state of the service endpoint. The
function x_sync() returns the current state of the service endpoint to the caller, thereby
enabling the user to verify the state before taking further action. This coordination is
only valid among cooperating processes; it is possible that a process or an incoming
event could change the endpoint's state after an x_sync() is issued.

Name: x_sync(fd, xerror)

52 Recommendation T.180 (06/98)

Parameters:

fd: identifies the service endpoint

xerror: Error codes

Return value: indicates the current state or failure

ANNEX A

Interface definition language description

This annex provides additional information concerning the XAPI functions (see clause 9). It contains
an IDL description of the XAPI.

IDL defines the types of objects according to the operations that may be performed on them and the
parameters to those operations.

module x

{

/* --*/
/* Asynchronous events returned by x_look() */
/* --*/

const short NOEVENT = 0x0000; /* no event present at the endpoint */
const short ERROR = 0x0001; /* error condition detected by the */
 /* service provider */
const short CONIND = 0x0002; /* connection indication received */
const short CONCONF = 0x0004; /* connect confirmation received */
const short DATA = 0x0008; /* normal data received */
const short EXDATA = 0x0010; /* expedited data received */
const short SP = 0x0020; /* service primitive received */
const short DISCONNECT = 0x0040; /* disconnect received */
const short RELIND = 0x0080; /* orderly release indication received */
const short RELCONF = 0x0100; /* orderly release confirmation received */
const short GODATA = 0x0200; /* normal data may be sent again */
const short GOEXDATA = 0x0400; /* expedited data may be sent again */
const short END = 0x0800; /* end indication received */
const short EVENTS = 0x0FFF; /* event mask */

/* --*/
/* Bit-Flag Definitions */
/* The bit-masks are used in the flags field of call_struct, conind_struct, */
/* optmgmt_struct, release_struct and in the flags argument of x_snddata(), */
/* x_rcvdata(), x_snddis(), x_rcvdis, x_sndsp(), x_rcvsp() */
/* --*/

const unsigned long NOFLAG = 0x0000; /* no flag is set */
const unsigned long MORE = 0x0001; /* more data */
 /* used in struct x_call, x_conind, */
 /* x_snddata(), x_rcvdata() */

 Recommendation T.180 (06/98) 53

const unsigned long EXPEDITED = 0x0002; /* expedited data */
 /* used in x_snddata(), x_rcvdata() */
const unsigned long NEGATIVE = 0x0004; /* negative confirmation/response */
 /* used in struct x_call */

/* --*/
/* Option Management Bit-Flag Definitions */
/* The bit-masks are used in the flags field of optmgmt_struct. */
/* Input bits are marked with (i) and output bits with (o). */
/* --*/

const unsigned long NEGOTIATE = 0x00000100; /* (i) negotiate (set) options */
const unsigned long CHECK = 0x00000200; /* (i) check options */
const unsigned long DEFAULT = 0x00000400; /* (i) get default values of */
 /* options */
const unsigned long CURRENT = 0x00000800; /* (i) get current values of */
 /* options */
const unsigned long SUCCESS = 0x00001000; /* (o) successful option */
 /* negotiation */
const unsigned long PARTSUCCESS = 0x00002000; /* (o) partially successful */
 /* option negotiation */
const unsigned long READONLY = 0x00004000; /* (o) option is readonly */
const unsigned long NOTSUPPORT = 0x00008000; /* (o) option is not supported */
const unsigned long FAILURE = 0x00010000; /* (o) failure in option */
 /* negotiation */

/* --*/
/* Execution modes */
/* Used in x_open() and x_chexmod() calls */
/* --*/

const short SYNCHRON = 1; /* synchronous execution mode */
const short ASYNCHRON = 2; /* asynchronous execution mode */

/* --*/
/* Protocol Module Identifiers */
/* --*/

const unsigned long NO_MODULE = 0x7FFFFFFF; /* no protocol module present */
const unsigned long XAPI_LEVEL = 20; /* denotes the XAPI library; */
 /* to access XAPI-level */
 /* options with x_optmgmt() */
const unsigned long TOP_LEVEL = 2; /* Topmost protocol module */
 /* the special value is defined */
 /* in the provider info */

54 Recommendation T.180 (06/98)

/* --*/
/* General purpose service parameter values */
/* --*/

const unsigned long PV_TRUE = 1; /* parameter value boolean true */
const unsigned long PV_FALSE = 0; /* parameter value boolean false */

/* --*/
/* Names of address components */
/* --*/

const unsigned long A_OUTBAND_ADR = 1; /* outband address */
const unsigned long A_INBAND_ADR = 3; /* inband address */
const unsigned long A_INB_SUBADR = 4; /* inband subaddress */
const unsigned long A_SERVICE = 5; /* service indicator */
const unsigned long A_P_SELECTOR = 1000; /* presentation selector */
const unsigned long A_S_SELECTOR = 1001; /* session selector */
const unsigned long A_T_SELECTOR = 1002; /* transport selector */

/* --*/
/* Constants defining the maximum length for address components */
/* --*/

const unsigned long C_MAX_IBADR = 32; /* max. length of inband address */
const unsigned long C_MAX_IBSADR = 32; /* max. length of inband subaddress */
const unsigned long C_MAX_OBADR = 32; /* max. length of outband address */
const unsigned long C_MAX_SERVICE = 6; /* max. length of service indicator */
const unsigned long C_MAX_PSEL = 32; /* max. length of presentation selector */
const unsigned long C_MAX_SSEL = 16; /* max. length of session selector */
const unsigned long C_MAX_TSEL = 32; /* max. length of transport selector */

/* --*/
/* Constants defining the maximum length for session components */
/* --*/

const unsigned long C_MAX_REF = 64; /* max. length of service user reference */
 /* and common reference */
const unsigned long C_MAX_ARI = 4; /* max. length of additional information */

/* --*/
/* XAPI-level Options */
/* --*/

const unsigned long O_TRACE = 1; /* XAPI trace option */

 Recommendation T.180 (06/98) 55

/* --*/
/* Defined values for option O_TRACE */
/* --*/

const unsigned long OV_NOTRACE = 0x00; /* switches all traces off (default) */
const unsigned long OV_BUFFTRACE = 0x01; /* enables buffer trace for */
 /* received and sent PDUs; */
 /* all trace messages are disabled */
const unsigned long OV_ERR = 0x10; /* enables error trace messages */
 /* and disables buffer traces */
const unsigned long OV_ERR_BUF = 0x11; /* enables error trace messages */
 /* plus buffer traces */
const unsigned long OV_WRN = 0x30; /* enables error and warning */
 /* trace messages; */
 /* buffer traces are disabled */
const unsigned long OV_WRN_BUF = 0x31; /* enables error and warning trace */
 /* messages plus buffer traces */
const unsigned long OV_INF = 0x70; /* enables error, warning, and */
 /* info trace messages; */
 /* buffer traces are disabled */
const unsigned long OV_INF_BUF = 0x71; /* enables error, warning, and */
 /* info trace messages plus */
 /* buffer traces */

/* --*/
/* General Definitions */
/* --*/

const unsigned long INFINITE = ~0; /*0xFFFFFFFF; */
 /* BBB: value needs to be checked in */
 /* language mappings infinite size */
 /* suitable for unsigned long */
const unsigned long UNSPECIFIED = ~1; /* 0xFFFFFFFE; */
 /* BBB: value needs to be checked in
 /* language mappings unspecified size */
 /* suitable for unsigned long */

/* --*/
/* Service Provider Capabilities */
/* --*/

const unsigned long SPC_COS = 0x00000001; /* connection-mode service */
const unsigned long SPC_CLS = 0x00000002; /* connectionless service */
const unsigned long SPC_ORD_REL = 0x00000004; /* orderly release */
const unsigned long SPC_0DATA = 0x00000008; /* zero-length data units */
const unsigned long SPC_DATA = 0x00000010; /* (normal) data */
const unsigned long SPC_EXPDATA = 0x00000020; /* expedited data */
const unsigned long SPC_NEGCONRSP = 0x00000040; /* negative connect response */
const unsigned long SPC_NEGCONCNF = 0x00000080; /* negative connect confirm. */
const unsigned long SPC_MORECONRQ = 0x00000100; /* MORE in x_conreq() */

56 Recommendation T.180 (06/98)

const unsigned long SPC_MORECONCF = 0x00000200; /* MORE in x_conconf() */
const unsigned long SPC_MORECONIN = 0x00000400; /* MORE in x_conind() */
const unsigned long SPC_MORECONRP = 0x00000800; /* MORE in x_conrsp() */
const unsigned long SPC_MORERELRQ = 0x00001000; /* MORE in x_relreq() */
const unsigned long SPC_MORERELCF = 0x00002000; /* MORE in x_relconf() */
const unsigned long SPC_MORERELIN = 0x00004000; /* MORE in x_relind() */
const unsigned long SPC_MORERELRP = 0x00008000; /* MORE in x_relrsp() */
const unsigned long SPC_SP = 0x00010000; /* send service primitive */
const unsigned long SPC_MORESNDSP = 0x00020000; /* MORE in x_sndsp() */
const unsigned long SPC_MORERCVSP = 0x00030000; /* MORE in x_rcvsp() */
const unsigned long SPC_MORESNDDIS = 0x00040000; /* MORE in x_snddis() */
const unsigned long SPC_MORERCVDIS = 0x00050000; /* MORE in x_rcvdis() */
const unsigned long SPC_MASK = 0x000FFFFF; /* all defined capabilities */

/* --*/
/* Disconnect Origination */
/* --*/

const unsigned long PROVIDER_ABORT = 0x00000001; /* disconnect generated */
 /* by the service provider */
const unsigned long ABORT = 0x00000002; /* disconnect generated */
 /* by the user */

/* --*/
/* Services indicated in error_struct */
/* --*/

const unsigned long CONNECT_REQ = 0x01; /* connect request; x_conreq() */
const unsigned long CONNECT_RES = 0x02; /* connect response; x_conrsp() */
const unsigned long DATA_REQ = 0x03; /* data request; x_snddata() */
const unsigned long EXPDATA_REQ = 0x04; /* expedited data request; */
 /* x_snddata() */
const unsigned long DISC_REQ = 0x05; /* disconnect request; x_snddis() */
const unsigned long RELEASE_REQ = 0x06; /* release request; x_relreq() */
const unsigned long RELEASE_RES = 0x07; /* release response; x_relrsp() */
const unsigned long SND_SP = 0x08; /* send service primitive; */
 /* x_sndsp() */

/* --*/
/* Cause Codes indicated in error_struct */
/* --*/

const unsigned long CC_BADEVENT = 0x01; /* requested service unknown */
 /* to the service provider */
const unsigned long CC_UNEXPECT = 0x02; /* requested service not allowed */
 /* in current state of */
 /* service provider */
const unsigned long CC_NOTSUPPORT = 0x03; /* requested service not */
 /* supported by the service */
 /* provider */

 Recommendation T.180 (06/98) 57

const unsigned long CC_BADVALUE = 0x04; /* illegal value specified for a */
 /* a service parameter */
const unsigned long CC_MANDMISS = 0x05; /* mandatory service parameter */
 /* missing */
const unsigned long CC_OTHER = 0x06; /* any other error */
const unsigned long CC_NOSPACE = 0x07; /* no space */
const unsigned long CC_SPNAME = 0x08; /* SP_name incorrect */
const unsigned long CC_ADDCOMP = 0x09; /* additional component */
 /* incorrect */
const unsigned long CC_BADLENGTH = 0x0A; /* string or value too long */
const unsigned long CC_SEQ = 0x0B; /* SEQ incorrect */

/* --*/
/* Service parameters for x_rcvend() */
/* --*/

const unsigned long P_CONN_TIME = 0x01; /* Connection time */
const unsigned long P_DISC_TIME = 0x02; /* Disconnection time */
const unsigned long P_CHARGE = 0x03; /* Charging units */
const unsigned long P_DISC_REASON = 0x04; /* Disconnect reason */

/* --*/
/* Possible states of a service endpoint */
/* --*/

const short UNINIT = 0; /* uninitialized */
const short UNBND = 1; /* unbound */
const short IDLE = 2; /* idle */
const short OUTCON = 3; /* outgoing connection pending */
const short INCON = 4; /* incoming connection pending */
const short CONNECT = 5; /* connected / data transfer */
const short OUTREL = 6; /* outgoing release pending */
const short INREL = 7; /* incoming release pending */
const short WAITEND = 8; /* waiting for end indication */

typedef sequence < octet > octet_sequence;

/* --*/
/* provinfo_struct */
/* Service provider information structure; returned by x_open(), */
/* x_bind() and x_getinfo(). */
/* --*/

typedef unsigned long ten_unsigned_longs[10];

struct provinfo_struct
{
 /* Protocol module identifiers of the modules in the service
 * provider’s protocol stack. If no protocol module is present on
 * a certain layer in the protocol stack, the corresponding ln_pmid

58 Recommendation T.180 (06/98)

 * field(s) is(are) set to NO_MODULE
 */
 ten_unsigned_longs l7_pmid; /* layer 7 protocol module IDs */
 unsigned long l6_pmid; /* layer 6 protocol module ID */
 unsigned long l5_pmid; /* layer 5 protocol module ID */
 unsigned long l4_pmid; /* layer 4 protocol module ID */
 unsigned long l3_pmid; /* layer 3 protocol module ID */
 unsigned long l2_pmid; /* layer 2 protocol module ID */
 unsigned long l1_pmid; /* layer 1 protocol module ID */
 unsigned long Monitor_pmid; /* Monitor protocol module ID */

 unsigned long max_qlen; /* max. supported value for qlen */

 /* Buffer sizes recommended for the service provider. Output buffers
 * with these sizes will be sufficent in all cases.
 */
 unsigned long addr_buff_size; /* address buffer size */
 unsigned long optn_buff_size; /* option buffer size */
 unsigned long parm_buff_size; /* SP parameter buffer size */
 unsigned long data_frgmt_size; /* maximum data fragment size */
 unsigned long end_buff_size; /* end indication buffer size */

 /* Maximum data unit sizes supported by the service provider.
 */
 unsigned long max_sdu_size; /* max. size of a (normal) */
 /* service data unit */
 unsigned long max_esdu_size; /* max. size of an expedited */
 /* service data unit */
 unsigned long max_conn_user_data; /* max. user data size for */
 /* connection primitives */
 unsigned long max_disc_user_data; /* max. user data size for */
 /* disconnect primitives */
 unsigned long max_rels_user_data; /* max. user data size for */
 /* release primitives */

 /* The capabilities of the service provider are represented as
 * bit-field. A capability is supported by the application system,
 * if the corresponding bit is set in prov_capabilities; it is not
 * supported, if the bit is cleared.
 */
 unsigned long prov_capabilities; /* service provider capabilities */
};

 Recommendation T.180 (06/98) 59

/* --*/
/* bind_struct */
/* argument structure for x_bind() */
/* --*/

struct bind_struct
{
 octet_sequence own_address; /* own NSAP address */
 unsigned long qlen; /* number of incoming calls */
 /* to be queued for the endpoint */
};

/* --*/
/* call_struct */
/* argument structure for connection establishment */
/* --*/

struct call_struct
{
 octet_sequence address; /* address buffer */
 octet_sequence parameter; /* SP parameter buffer */
 octet_sequence user_data; /* user data buffer */
 unsigned long sequence_nr; /* sequence number */
 unsigned long flags; /* flags; MORE / NEGATIVE */
};

/* --*/
/* conind_struct */
/* argument structure for connect indication */
/* --*/

struct conind_struct
{
 octet_sequence called_addr; /* address buffer called address */
 octet_sequence calling_addr; /* address buffer calling address */
 octet_sequence parameter; /* SP parameter buffer */
 octet_sequence user_data; /* user data buffer */
 unsigned long sequence_nr; /* sequence number */
 unsigned long flags; /* flags; MORE */
};

60 Recommendation T.180 (06/98)

/* --*/
/* data_struct */
/* argument structure for x_snddata() and x_rcvdata() */
/* --*/

struct data_struct
{
 octet_sequence parameter; /* SP parameter buffer */
 octet_sequence data; /* data buffer */
};

/* --*/
/* discon_struct */
/* argument structure for x_snddis() and x_rcvdis() */
/* --*/

struct discon_struct
{
 octet_sequence user_data; /* user data buffer */
 octet_sequence parameter; /* SP parameter buffer */
 unsigned long origination; /* origination of disconnect; */
 /* used on output only */
 unsigned long sequence_nr; /* sequence number; used only */
 /* when an incoming call is rejected */
};

/* --*/
/* error_struct */
/* argument structure for x_rcverrors() */
/* --*/

struct error_struct
{
 unsigned long level; /* protocol module ID of the originator module */
 unsigned long service; /* requested service that caused the error */
 unsigned long cause; /* cause code specifying the reason of failure */
 unsigned long diagnostic; /* additional protocol-specific diagnostic information */
};

/* --*/
/* end_struct */
/* argument structure for x_rcvend() */
/* --*/

struct end_struct
{
 octet_sequence parameter; /* SP parameter buffer */
};

 Recommendation T.180 (06/98) 61

/* --*/
/* optmgmt_struct */
/* argument structure for x_optmgmt() */
/* --*/

struct optmgmt_struct
{
 octet_sequence options; /* option definitions */
 unsigned long flags; /* what to do with options */
};

/* --*/
/* release_struct */
/* argument structure for orderly release */
/* --*/

struct release_struct
{
 octet_sequence parameter; /* SP parameter buffer */
 octet_sequence user_data; /* user data buffer */
 unsigned long flags; /* flags; MORE */
};

/* --*/
/* sp_struct */
/* argument structure for x_sndsp() and x_rcvsp() */
/* --*/

struct sp_struct
{
 octet_sequence parameter; /* SP parameter buffer */
 octet_sequence data; /* data buffer */
};

exception XERROR
{
 short error_code;
};

interface ep
{

 short bind(in short fd,
 in string trans_name,
 in bind_struct req,
 out bind_struct ret,
 out provinfo_struct info)
 raises (XERROR);

62 Recommendation T.180 (06/98)

 short chexmod(in short fd,
 in short mode)
 raises (XERROR);

 short close(in short fd
)
 raises (XERROR);

 short conconf(in short fd,
 out call_struct call)
 raises (XERROR);

 short conind(in short fd,
 out conind_struct call)
 raises (XERROR);

 short conreq(in short fd,
 in call_struct sndcall)
 raises (XERROR);

 short conrsp(in short fd,
 in short resfd,
 in call_struct call)
 raises (XERROR);

 short getinfo(in short fd,
 out provinfo_struct info)
 raises (XERROR);

 short look(in short fd
)
 raises (XERROR);

 short optmgmt(in short fd,
 in unsigned long level,
 in optmgmt_struct req,
 out optmgmt_struct ret)
 raises (XERROR);

 short rcvdata(in short fd,
 out data_struct data,
 out unsigned long flags)
 raises (XERROR);

 short rcvdis(in short fd,
 out discon_struct disc,
 out unsigned long flags)
 raises (XERROR);

 Recommendation T.180 (06/98) 63

 short rcvend(in short fd,
 out end_struct end)
 raises (XERROR);

 short rcverror(in short fd,
 out error_struct err)
 raises (XERROR);

 short rcvinfo(in short fd,
 out unsigned long level,
 out unsigned long info,
 out sp_struct par,
 out unsigned long flags)
 raises (XERROR);

 short rcvsp(in short fd,
 out unsigned long level,
 out unsigned long spname,
 out sp_struct sp,
 out unsigned long flags)
 raises (XERROR);

 short relconf(in short fd,
 out release_struct rel)
 raises (XERROR);

 short relind(in short fd,
 out release_struct rel)
 raises (XERROR);

 short relreq(in short fd,
 in release_struct rel)
 raises (XERROR);

 short relrsp(in short fd,
 in release_struct rel)
 raises (XERROR);

 short snddata(in short fd,
 in data_struct data,
 in unsigned long flags)
 raises (XERROR);

 short snddis(in short fd,
 in discon_struct disc,
 in unsigned long flags)
 raises (XERROR);

64 Recommendation T.180 (06/98)

 short sndinfo(in short fd,
 in unsigned long level,
 in unsigned long info,
 in sp_struct par,
 in unsigned long flags)
 raises (XERROR);

 short sndsp(in short fd,
 in unsigned long level,
 in unsigned long spname,
 in sp_struct sp,
 in unsigned long flags)
 raises (XERROR);

 short sync(in short fd
)
 raises (XERROR);

 short unbind(in short fd
)
 raises (XERROR);

};

interface api
{
 string b2c (in octet_sequence nb,
 inout unsigned long index,
 out unsigned long len,
 out unsigned long name,
 out unsigned long status)
 raises (XERROR);

 long b2l(in octet_sequence nb,
 inout unsigned long index,
 out unsigned long len,
 out unsigned long name,
 out unsigned long status)
 raises (XERROR);

 short c2b(in octet_sequence nb,
 inout unsigned long index,
 in unsigned long len,
 in unsigned long name,
 in string value)
 raises (XERROR);

 short error(in string errmsg,
 in short xerror);

 Recommendation T.180 (06/98) 65

 short l2b(in octet_sequence nb,
 inout unsigned long index,
 in unsigned long len,
 in unsigned long name,
 in long value)
 raises (XERROR);

 short open(in string prov_name,
 in short mode,
 out provinfo_struct info)
 raises (XERROR);

 string strerror(in short errnum);
};

};

ANNEX B

Error codes

An application program using the XAPI has to deal with errors on three levels. The first is the XAPI
error level. Each function returns −1 to indicate failure and 0 (zero) to indicate success. In case of
failure, the integer output parameter xerror is set to one of the error codes defined below. The error
code provides some more detailed information about the reason of failure. In case of success, xerror
is set to NOERROR.

The second level is the operating system error level. When an operating system service routine
called by the application fails, the error is reported in an operating-system-dependent way. The XAPI
functions use operating system calls, too, but these calls are hidden from the application. When an
XAPI function fails due to an error in an operating system call, the error code reported by the system
is mapped to the corresponding XAPI-level error code, which is returned to the user as described
above. In some rare cases, if there is no XAPI error code corresponding to the system error, the XAPI
function will return failure and indicate the special XAPI-level error code ER_SYSERR. The
application may then access and check the operating system error code. For the meaning of the
system error codes, refer to the operating system documentation. Note that the system error codes
may (will) be different for the various base operating systems. This affects the portability of an
application that checks system error codes. The XAPI-level error codes, conversely, are identical for
all base operating systems.

Two utility functions can be used to map XAPI-level error codes to short text error messages. Both
utilities take the error code as argument; x_error prints the corresponding error message to the
standard error output stderr, while x_strerror returns the corresponding error message character
string. For system level errors there may be similar functions available among the operating system
services.

As result of a severe error, a major protocol error, for example, or some local resource problems, a
service endpoint and the corresponding file descriptor may be unusable for all XAPI and system calls
except x_close. To continue in this case, all users of the fd must close it, i.e. call x_close. Then a new
service endpoint may be created and initialized to continue with communication.

66 Recommendation T.180 (06/98)

The third level is the service provider error level. A service provider may generate an asynchronous
event ERROR whenever the application program shall be informed about an error condition. This
could be

– the reception of an incorrect or incomplete service primitive from the local application; or

– a request that is not allowed in the current protocol-specific state of the service provider.

The reception of an erroneous or out-of-order PDU from the peer entity is not indicated to the local
application but handled by the service provider in a protocol-specific way.

The ERROR event is indicated to the application as are all other asynchronous events and has to be
received from the service endpoint with the consuming function x_rcverror. On return, this function
yields a service-specific error code and possibly further information about the error as output. The
concrete error conditions and the corresponding error codes are defined in the service descriptions.

Error codes at the service provider error level are listed in the appropriate providers (see I.1 to I.7).
All other error codes that may be returned by the XAPI functions are listed below.

For each error code a short explanation of the possible reason is given. The error codes are sorted in
ascending numerical order.

NOERROR 8001 No error occurred; all in perfect order. This "error code" is
 returned in xerror if the function successfully completed.

ER_BADFD 8002 The file descriptor fd passed as argument does not identify a
 service endpoint. Maybe fd was not obtained as result of an
 x_open() call.

ER_OUTSTATE 8003 The function was issued in the wrong state of the service
 endpoint.

ER_LOOK 8004 An asynchronous event has occurred on this service endpoint
 and requires immediate attention. Call x_look(), please.

ER_NODATA 8005 The XAPI consuming function was called in asynchronous
 mode, but the requested event and no other asynchronous
 event are currently available at the service endpoint. The
 function x_rcvdata(), for instance, looks for a DATA rsp.
 EXDATA event; if none is present at the time of calling, this
 error code is returned in asynchronous mode.

ER_BADFLAG 8010 An invalid flag is specified in the flags field. This error is
 returned if either an unknown flag is specified or the flag is not
 allowed for this XAPI function. Note that for some flags it
 depends on the service provider capabilities whether a certain
 flag may be used with the function or not. Check the
 prov_capabilities field in the service provider information
 structure (provinfo_struct) which is returned as output of
 x_getinfo().

ER_BADNEG 8011 The negative flag is not the same (set or cleared) as in the
 previous function calls. If multiple calls to x_conrsp() are used
 to respond to one connect indication, the value of the
 NEGATIVE flag must be the same in all of these calls.

ER_NOINFOBUF 8012 No buffer has been specified to keep the service provider
 information returned by x_getinfo().

ER_BADNAME 8013 An invalid service provider identifier, or an invalid transport
 system identifier has been specified.

 Recommendation T.180 (06/98) 67

ER_BADADDR 8014 The specified protocol address is in an incorrect format or
 contained illegal information.

ER_DATASIZE 8015 The amount of user data specified in the call exceeds the limits
 allowed by the service provider. Check the values specified in
 the service provider information structure (provinfo_struct)
 which is returned as output of x_getinfo().

ER_NOADDR 8016 No own protocol address was specified in the x_bind() call and
 the service provider could not allocate one.

ER_ADDRBUSY 8017 There is already a service endpoint with qlen greater than 0
 bound to the requested address.

ER_ACCESS 8018 The application does not have permission to use the specified
 address.

ER_NOSYCH 8019 The synchronous execution mode is not supported for this
 service endpoint.

ER_NOASYCH 8020 The asynchronous execution mode is not supported for this
 service endpoint.

ER_BADSEQ 8021 An invalid sequence number is specified in an x_conrsp() or
 x_snddis() call. If multiple calls to x_conrsp() are used to
 respond to one connect indication, the value of the sequence
 number must be the same in all of these calls.

ER_QUEUEFULL 8022 The maximum number of outstanding (unresponded) connect
 indications has been reached. The user has to accept or reject
 some of these connections before more connect indications can
 be received with x_conind().

ER_BADQLEN 8023 At the time of activation, a queue length of zero has been
 specified for the endpoint referenced by fd. Thus, the endpoint
 must not be used with x_conind() calls to wait for incoming
 calls.

ER_WAITCONF 8024 The function x_conreq() was called in asynchronous mode and
 successfully initiated the connection establishment procedure,
 but did not wait for a response from the remote user. Now the
 local user has to arrange to wait for a connect confirmation,
 e.g. by calling x_conconf() in synchronous mode.

ER_MOREDATA 8025 The function x_conreq() was called in asynchronous mode
 with the MORE flag set. To complete the connect request,
 more user data is required; the local user has to make another
 x_conreq() call.

ER_INDOUTST 8026 The function x_conrsp() was called with fd equal to resfd, but
 there are outstanding connection indications on the endpoint.
 They must be handled, either by rejecting or accepting them
 on a different endpoint, before the endpoint identified by fd
 may be used in a connection.

ER_PROVMISM 8027 The file descriptors fd and resfd specified in the x_conrsp() call
 do not refer to the same service provider.

ER_RESQLEN 8028 The function x_conrsp() was called with fd not equal to resfd,
 and the endpoint referenced by resfd has been bound with a
 qlen that is greater than 0.

68 Recommendation T.180 (06/98)

ER_RESTRANS 8029 The function x_conrsp() was called with fd not equal to resfd,
 and the endpoint referenced by resfd has used a different
 transport system beneath the application system.

ER_BADACTN 8030 An invalid action is specified in the flags field as input of
 x_optmgmt().

ER_BADOPT 8031 At least one of the options submitted in the x_optmgmt() call
 specifies an illegal value.

ER_BADLEVEL 8032 The value specified as level in an x_optmgmt() or x_sndsp()
 call does not select any protocol module of the service
 provider. The identifiers of the protocol modules in the service
 provider‘s protocol stack are available in the provinfo_struct
 which is returned as output of x_open(), x_bind() and
 x_getinfo().

ER_NOERRBUFF 8033 No error_struct has been specified for the output of
 x_rcverror().

ER_NODIS 8034 No disconnect indication currently exists at the specified
 service endpoint.

ER_FLOW 8035 The sending function is called in asynchronous mode and the
 flow control mechanism prevents the service provider from
 accepting the request at this time.

ER_NOTSUPP 8036 This function is not supported by the underlying service
 provider.

ER_STATECHNG 8037 The service endpoint is just undergoing a state change and
 therefore the function x_sync() could not determine the current
 state.

ER_SYSERR 8041 An operating system call returned an error during execution of
 this XAPI function. More information about the failure might
 be gathered in an operating-system-dependent way.

ER_INTR 8042 The execution of this XAPI function was interrupted by a
 signal.

ER_PROTO 8043 This error indicates that a communication problem has been
 detected between XAPI and the service provider for which
 there is no other suitable XAPI error code defined.

ER_NOPARAM 8044 This error code may be returned by the functions x_b2c() and
 x_b2l() if there is no parameter value found in the buffer.

ER_NOSND 8045 A sending function was called but no further sending is
 allowed because the connection is destroyed. The events
 already received from the service provider may be consumed
 by the corresponding consuming functions (e.g. x_rcvdis()).

ER_ERROR 8046 An error indication has arrived. Call x_error(), please.

ER_LIMITS 8048 An system limit has been reached. When returned by x_open(),
 this indicates that the number of open file descriptors in the
 process or the system has been reached; when returned by a
 sending function, this indicates that a buffer was too long.

ER_CONFIG 8049 An error in accessing the service providers or transport
 systems configuration file has been detected.

 Recommendation T.180 (06/98) 69

ER_BADMODE 8050 An invalid mode has been specified.

ER_TRANSLINK 8051 The function x_bind() failed to link the specified transport
 system below the service providers application system. This
 error is returned for two reasons:

 The service provider has a built-in transport system which
 cannot be replaced by a dynamically linked transport system,
 or a system error occurred while dynamically linking the
 transport system. In this case more information about the
 reason of failure may be available on operating system level.

ER_NOEND 8052 The function x_rcvend() has been called, but no END event is
 available at the service endpoint.

ER_NOERROR 8054 The function x_rcverror() has been called, but no ERROR
 event is available at the service endpoint.

ER_NOCONREQ 8055 The function x_conreq() has been called on a passive service
 endpoint (i.e. when binding the endpoint with x_bind() the
 qlen field of bind_struct was greater than zero). Initiating a
 connection is only allowed on active service
 endpoints (qlen = 0).

ER_REM_GENRPC 8056 A general Remote Procedure Call (RPC) failure has occurred in
 the remote XAPI.

ER_REM_RPC_PROC 8057 The remote procedure call failed.

ER_REM_CALLBACK 8058 The remote XAPI failed to set up the callback channel.

ER_REM_NOSERVER 8059 The server process of the remote XAPI is not started or is
 terminated.

APPENDIX I

Examples of XAPI access to service providers

The access to the service providers specified in this appendix serve as examples. They do not claim
completeness (e.g. the access to a multipoint transport service provider may be specified). The list of
specifications presented in this appendix may be extended if required.

An application which requests access to a service has to select an appropriate service provider prior
to the usage of the service. Thus the communication system can be tailored to specific requirements,
and all communication services are accessible via one homogenous access mechanism.

Available providers

This appendix contains the following service providers:

I.1 XAPI access to the service provider for the ISDN B-channel;

I.2 XAPI access to the service provider for BFT over T.30;

I.3 XAPI access to the service provider for FAX4 and BFT;

I.4 XAPI access to the service provider for ACSE and ROSE;

I.5 XAPI access to the service provider for audio and video control;

I.6 XAPI access to the service provider for T.120 conference control;

I.7 XAPI access to the service provider for T.127 MBFT.

70 Recommendation T.180 (06/98)

I.1 XAPI access to the service provider for the ISDN B-channel

This part of Appendix I describes an example of how the service provider can be implemented, if an
application needs the access to the specified service.

I.1.1 Scope

The XAPI, which is an abbreviation for eXtensive Application Programming Interface, is an
operating system and language-independent programming interface to general communication
services. Detailed information about the XAPI is given in the main part of this Recommendation,
which is very important for understanding this appendix.

Which services are made available via the XAPI depends on the installed service providers and not
on the XAPI, which only provides the access mechanism.

This part describes the XAPI access to the ISDN B-channel.

Figure I.1-1 shows the structure of the protocol stack that is accessible via the XAPI when selecting
the ISDN B-channel service:

T0827220-97

Application

XAPI

I.430/I.431

B-channel

Figure I.1-1/T.180 – Structure of the ISDN B-channel service provider

I.1.2 References

The following ITU-T Recommendations and other references contain provisions which, through
reference in this text, constitute provisions of this Recommendation. At the time of publication, the
editions indicated were valid. All Recommendations and other references are subject to revision; all
users of this Recommendation are therefore encouraged to investigate the possibility of applying the
most recent edition of the Recommendations and other references listed below. A list of the currently
valid ITU-T Recommendations is regularly published.

[I.430] ITU-T Recommendation I.430 (1995), Basic user-network interface – Layer 1
specification.

 Recommendation T.180 (06/98) 71

[I.431] ITU-T Recommendation I.431 (1993), Primary rate user-network interface – Layer 1
specification.

[Q.921] ITU-T Recommendation Q.921 (1997), ISDN User-network interface – Data link layer
specification.

[ETS 300 129:1991-09] Integrated Services Digital Network (ISDN); User-network interface
data link layer specifications. Application of CCITT Recommendations
Q.920/I.440 and Q.921/I.441.

[Q.931] CCITT Recommendation Q.931 (1988), ISDN user-network interface layer 3
specification for basic call control.

[ETS 300 102-1:1990-12] Integrated Services Digital Network (ISDN); User-network interface
layer 3; Specifications for basic call control.

I.1.3 Definitions

I.1.4 Abbreviations

This part uses the following abbreviations:

DSS 1 Digital Subscriber Signalling System No. 1

ISDN Integrated Services Digital Network

ISO International Organization for Standardization

NSAP Network Service Access Point

OSI Open Systems Interconnection

PHT abbreviation string specifying service specific definitions of the B-channel (PHysical)
service provider, Transparent access (e.g. parameter names, service primitive names)

XAPI eXtensive Application Programming Interface

I.1.5 Conventions

Each service is described via three kinds of tables.

In the first kind of table the service and its service elements are described. It contains a row for each
service element of the service (where service element means either request, indication, response, or
confirmation) with its corresponding XAPI function and a short description.

In the second kind of table the use of the service primitive parameters within the service elements are
described. It contains a row for each service primitive parameter of the service. The service primitive
parameter name is stored within the first column, the succeeding columns contain the use of the
parameter in the service elements:

Blank The service parameter is absent.

C Presence of the service parameter is conditional. Firstly, there may be a condition in the
service provider to provide a parameter in an indication or confirmation. Secondly, there
may be interdependencies between parameters of the same or the preceding service
primitive.

M Presence of the service parameter is mandatory.

U Presence of the service parameter is a user option. If the user does not specify a value for
such a parameter and there is no default value for that parameter, nothing is passed to the
service provider. If the user does not specify a value for such a parameter and there is a
default value, the default value is passed to the service provider.

72 Recommendation T.180 (06/98)

(=) The value of the service parameter is identical to the value of the corresponding service
parameter in the preceding service element. In the special case of a parameter, whose
presence in the preceding service is a user option, for which a default value is defined,
and the parameter was not specified in the preceding service element, the symbol (=)
indicates that the parameter value is identical to the default value.

The third kind of table is used to describe the service primitive parameter containing the type of
value and its scope, possible default values and a detailed description. For each service primitive
parameter, one description table is given.

A naming convention is used throughout the XAPI in order to distinguish between the common
functions, identifiers and values, and service specific identifiers and values. All service-specific
settings of the XAPI ISDN B-channel service access are defined within the present part of this
appendix and start with X_PHT_ or x_pht_.

Extended naming conventions:

– SP_ Service Primitive;

– P_ Parameter;

– PV_ Parameter Value;

– O_ Option;

– OV_ Option Value.

I.1.6 Introduction to the ISDN physical service provider access

The ISDN B-channel service handles connection establishment, access to the B-channel for the data
transfer and disconnection.

The XAPI gives a uniform access method; it is hidden from the XAPI user whether the D-channel or
the B-channel is the destination for a special service request.

I.1.7 Description of the access to the ISDN physical service provider

I.1.7.1 Service initialization

I.1.7.1.1 Creation of an ISDN B-channel service access point with x_open()

A communication endpoint accessing the ISDN physical service provider is created when calling the
x_open() function with the service provider identification string "X_PHT_ISDN".

The service provider comprises the D-channel protocols and the B-channel protocol module on the
physical layer. Of course, no transport system has to be linked below it with the x_bind() function, as
the protocol stack is already complete.

I.1.7.1.2 Activation of an ISDN B-channel service access point with x_bind()

x_bind() is to be called to activate the ISDN B-channel service endpoint. The function has the task to
bind an address to the service endpoint.

No transport system has to be specified as argument of the x_bind() function, as the physical layer is
the only layer which is needed in the B-channel.

I.1.7.1.3 Protocol addresses

The protocol address to be used is the NSAP address. Selectors are meaningless for the
ISDN B-channel service.

 Recommendation T.180 (06/98) 73

I.1.7.1.3.1 The Application’s own Address

The own address may be specified in the own_address buffer of the bind_struct passed as argument
to the x_bind() function. For a passive application, it is returned in the called_addr buffer of the
x_conind() function.

For a passive application, it is not supported to specify the own responding NSAP address in the
address buffer of the call_struct in the x_conrsp() function, as this value is not transferred by the
network.

NOTE – The specification of the application's own protocol address is completely optional. If no address
information is specified, the own address is derived from system configuration information and the bound
value is returned as output parameter of the x_bind() function.

The own address consists of the NSAP address only. The NSAP address has to comprise the local
ISDN outband address, i.e. the address information used in the D-channel. The own ISDN inband
address and subaddress parameters as well as the protocol selectors are meaningless in the ISDN
B-channel service. If specified, they will be ignored.

Table I.1-1 shows the address component which has to be specified in the x_bind() call.

Table I.1-1/T.180 – Address component specified in the x_bind() call

ISDN network Address component Value

ISDN/DSS 1 A_OUTBAND_ADR A decimal digit, which is locally mapped
on the Multiple Subscriber Number (MSN)

I.1.7.1.3.2 The address of the communication partner

On the sending side, the address of the communication partner has to be specified in the address
buffer of the call_struct passed as argument to the x_conreq() function. On the receiving side, the
address of the communication partner is returned in the calling_addr buffer of the x_conind()
function.

The address of the communication partner comprises at least the peer’s ISDN outband address. The
peer’s ISDN inband address and subaddress as well as the protocol selectors are meaningless, as there
is a data transfer in the B-channel without further protocols.

Table I.1-2 shows the address component to be used in the address buffer specifying the called
NSAP address in an x_conreq() call.

Table I.1-2/T.180 – Address component specifying the
called NSAP address in an x_conreq() call

ISDN network Address component Value

ISDN/DSS 1 A_OUTBAND_ADR Optional the country code, optional the area code
and the Multiple Subscriber Number (MSN)

I.1.7.1.4 Configuration of the service provider

The protocol module of the service provider behaves according to configured protocol options.
Protocol options are used to control the general behaviour of a protocol module (they must not be
confounded with service primitive parameters). The preconfigured values of the protocol options are
sufficient for the majority of communication relations.

74 Recommendation T.180 (06/98)

Currently, there are no options for the protocol modules of the access to the ISDN B-channel, which
could be set by the XAPI function x_optmgmt().

I.1.7.2 Connection Establishment service

I.1.7.2.1 Service description

During the connection establishment phase, two users of the same service establish a connection
between them. The XAPI user must already have prepared a service endpoint before the connection
establishment phase can start.

The service elements and their corresponding XAPI functions needed for Connection Establishment
are described in Table I.1-3.

Table I.1-3/T.180 – Service elements and their corresponding
XAPI functions for Connection Establishment

Service element XAPI function Description

Connect Request x_conreq() The Connect Request is passed to the
provider to request the establishment of a
connection.

Connect Indication x_conind() The Connect Indication is generated by
the provider to indicate the request from a
remote terminal to establish a connection.

Connect Response x_conrsp() The Connect Response is passed to the
provider as reaction to a previously
received connect indication as positive or
negative response.

Connect Confirmation x_conconf() The Connect Confirmation is generated
by the provider as positive or negative
confirmation of a local establishment.

I.1.7.2.2 Service parameters

There are no service parameters to be specified during connection establishment.

I.1.7.3 Services in the connected state

I.1.7.3.1 Data Transfer service

I.1.7.3.1.1 Service description

The Data Transfer service can be used to transfer transparent data in the B-channel.

Flow control, i.e. the ability to read received data fast enough during the data transfer, is up to the
XAPI user. Also, the segmentation of larger portions which shall be transmitted is up to the XAPI
user.

The service elements and their corresponding XAPI functions needed for Data Transfer are described
in Table I.1-4.

 Recommendation T.180 (06/98) 75

Table I.1-4/T.180 – Service elements and their corresponding
XAPI functions for Data Transfer

Service elements XAPI function Description

Data Request x_snddata() The Data Request is passed to the
provider to transmit data.

Data Indication x_rcvdata() The Data Indication is generated by the
provider to indicate the received data.

I.1.7.3.1.2 Service parameters

There are no service parameters defined for the Data Transfer service.

I.1.7.4 Disconnect service

I.1.7.4.1 Service description

The Disconnect service allows either service user to disconnect the connection.

The service elements and their corresponding XAPI functions needed for Disconnection are
described in Table I.1-5.

Table I.1-5/T.180 – Service elements and their corresponding
XAPI functions for Disconnect

Service elements XAPI function Description

Disconnect Request x_snddis() The Disconnect Request is passed to the
provider to request a disconnection.

Disconnect Indication x_rcvdis() The Disconnect Indication is generated by
the provider to indicate the release of a
connection due to peer or to provider.

End Indication x_rcvend() The End Indication is generated by the
provider to indicate that the service
provider is ready to establish a new
connection. In addition, it contains some
information about the released connection.

I.1.7.4.2 Service parameters

Table I.1-6 specifies the parameters needed for disconnection.

Table I.1-6/T.180 – Parameters of the Disconnect service

Parameter Disconnect service

 Request Indication End Indication

X_PHT_P_REASON M

X_P__CONN_TIME M

X_P_DISC_TIME M

X_P_CHARGE C

X_P_DISC_REASON C

76 Recommendation T.180 (06/98)

I.1.7.4.3 Service parameter descriptions

Tables I.1-7 to I.1-11 define the parameters for the Disconnect service.

Table I.1-7/T.180

Parameter name X_PHT_P_REASON

Type of value unsigned long

Legal values The values are directly mapped from the underlying hardware. See the
hardware documentation to get further information.

Default value none

Description The parameter indicates the cause of the disconnection.

Table I.1-8/T.180

Parameter name X_P_CONN_TIME

Type of value unsigned long

Legal values the time in seconds since 01.01.1970 00:00:00 GMT

Default value none

Description This parameter contains the time of physical connection.

Table I.1-9/T.180

Parameter name X_P_DISC_TIME

Type of value unsigned long

Legal values the time in seconds since 01.01.1970 00:00:00 GMT

Default value none

Description This parameter contains the time of physical disconnection. If
X_P_CONN_TIME and X_P_DISCON_TIME are both set to zero, no
physical connection could be established.

Table I.1-10/T.180

Parameter name X_P_CHARGE

Type of value unsigned long

Legal values any number

Default value zero

Description This parameter contains, if available, the charging unit of the connection. It
is only set if both network and network connection provide this facility.

 Recommendation T.180 (06/98) 77

Table I.1-11/T.180

Parameter name X_P_DISC_REASON

Type of value unsigned long

Legal values The values are directly mapped from the underlying hardware. See the
hardware documentation to get further information.

Default value zero

Description This parameter contains, if available, the disconnection reason.

I.1.7.5 Usage of XAPI functions

This subclause provides some protocol-specific remarks to the use of the XAPI functions. The
functions are mentioned in alphabetical order.

• x_conconf The user_data buffer in the call_struct is empty, as transfer of user data is not
available in the connection establishment phase.

• x_conind The user_data buffer in the conind_struct is empty, as transfer of user data is not
available in the connection establishment phase.

• x_conreq The user_data buffer in the call_struct is empty, as transfer of user data is not
available in the connection establishment phase. Usage of the MORE flag is not
supported.

• x_conrsp The user_data buffer in the call_struct is empty, as transfer of user data is not
available in the connection establishment phase. Usage of the MORE flag is not
supported.

• x_rcvdata Expedited data are not available.

• x_rcvdis The user_data buffer in the discon_struct is empty, as transfer of user data is not
available in the disconnection.

• x_snddata Expedited data are not available. Usage of the MORE flag is not supported.

• x_snddis The user_data buffer in the discon_struct may not be used, as transfer of user
data is not available in the disconnection. Usage of the MORE flag is not
supported.

I.1.7.6 Tables of error codes

The XAPI error-level error codes are defined in Annex B.

I.1.7.6.1 CC_BADVALUE

An invalid mandatory parameter is given: diagnostic contains the corresponding parameter identifier.

I.1.7.6.2 CC_MANDMISS

A mandatory parameter is missing: diagnostic contains the number of missing mandatory
parameters.

I.1.7.6.3 CC_BADEVENT

An invalid event is specified: diagnostic contains the bad event identifier.

I.1.7.6.4 CC_SEQ

An incorrect sequence number is given: diagnostic contains the bad sequence number.

78 Recommendation T.180 (06/98)

I.1.7.6.5 CC_SPNAME

An invalid service primitive name is given: diagnostic contains the bad service primitive name.

I.1.7.6.6 CC_ADDCOMP

An additional parameter (neither address parameter nor service primitive parameter) is incorrect: no
diagnostic is given.

I.1.7.6.7 CC_BADLENGTH

An address or parameter buffer contains an illegal length value: diagnostic contains the length.

I.1.7.6.8 CC_UNEXPECT

If the cause code indicates a unexpected event, the value of diagnostic will contain the actual state
identifier in which the unexpected event caused the error indication.

I.1.7.6.9 CC_NOTSUPPORT

An event is given which is not supported: the value of diagnostic contains the identifier of the
unsupported event which has been submitted with the XAPI function call that caused the error
indication.

I.1.7.6.10 CC_OTHER

If the cause code indicates the CC_OTHER error code, the value of diagnostic contains the identifier
which caused the error indication.

I.2 XAPI access to the service provider for BFT over T.30

This part of Appendix I describes as an example how the service provider can be implemented, if an
application needs the access to the specified service.

I.2.1 Scope

The XAPI, which is an abbreviation for eXtensive Application Programming Interface, is an
operating system and language-independent programming interface to general communication
services. Detailed information about the XAPI is given in the main part of this Recommendation,
which is very important for understanding this appendix.

Which services are made available via the XAPI, depends on the installed service providers, and not
on the XAPI which only provides the access mechanism.

This part describes the XAPI access to the BFT(T.30) service provider.

 Recommendation T.180 (06/98) 79

Figure I.2-1 shows the structure of the protocol stack that is accessible via the XAPI when selecting
the BFT(T.30) service provider:

T0827230-97

Application

XAPI

T.30 Adaption Layer
for BFT

B-channel

Figure I.2-1/T.180 – Structure of the BFT(T.30) service provider

I.2.2 References

The following ITU-T Recommendations and other references contain provisions which, through
reference in this text, constitute provisions of this Recommendation. At the time of publication, the
editions indicated were valid. All Recommendations and other references are subject to revision; all
users of this Recommendation are therefore encouraged to investigate the possibility of applying the
most recent edition of the Recommendations and other references listed below. A list of the currently
valid ITU-T Recommendations is regularly published.

[T.4] ITU-T Recommendation T.4 (1996), Standardization of Group 3 facsimile terminals for
document transmission.

[T.30] ITU-T Recommendation T.30 (1996), Procedures for document facsimile transmission in
the general switched telephone network.

[T.434] ITU-T Recommendation T.434 (1996), Binary file transfer format for the telematic services.

I.2.3 Definitions

This part defines the following terms:

I.2.3.1 service provider: A communication system that provides a certain service to user.

I.2.3.2 transport system: A protocol stack comprising some or all the OSI layer 1 (physical layer)
to 4 (transport layer)

I.2.4 Abbreviations

This part uses the following abbreviations:

BF3 acronym string specifying service specific definitions of the BFT(T.30) provider
(e.g. parameter names, service primitive names)

BFT Binary File Transfer

80 Recommendation T.180 (06/98)

DSS 1 Digital Subscriber Signalling System No. 1

ISDN Integrated Services Digital Network

ISO International Organization for Standardization

NSAP Network Service Access Point

OSI Open Systems Interconnection

TWA Two-Way Alternate

XAPI eXtensive Application Programming Interface

I.2.5 Conventions

Each service is described via three kinds of tables.

In the first table, the service and its service elements are described. It contains a row for each service
element of the service (where service element means either request, indication, response, or
confirmation) with its corresponding XAPI function and a short description.

In the second table, the use of the service primitive parameters within the service elements are
described. It contains a row for each service primitive parameter of the service. The service primitive
parameter name is stored within the first column; the following columns contain the use of the
parameter in the service elements:

Blank The service parameter is absent.

C Presence of the service parameter is conditional. Firstly, there may be a condition in the
service provider to provide a parameter in an indication or confirmation. Secondly, there
may be interdependencies between parameters of the same or the preceding service
primitive.

M Presence of the service parameter is mandatory.

U Presence of the service parameter is a user option. If the user does not specify a value for
such a parameter and there is no default value for that parameter, nothing is passed to the
service provider. If the user does not specify a value for such a parameter and there is a
default value, the default value is passed to the service provider.

(=) The value of the service parameter is identical to the value of the corresponding service
parameter in the preceding service element. In the special case of a parameter, whose
presence in the preceding service is a user option, for which a default value is defined, and
the parameter was not specified in the preceding service element, the symbol (=) indicates
that the parameter value is identical to the default value.

The third kind of table is used to describe the service primitive parameter containing the type of
value and its scope, possible default values and a detailed description. For each service primitive
parameter, one description table is given.

A naming convention is used throughout the XAPI in order to distinguish between the common
functions, identifiers and values, and service specific identifiers and values. All service-specific
settings of the XAPI BFT(T.30) service access are defined within the present part of this appendix
and start with X_BF3_ or x_bf3_.

Extended naming conventions:

– SP_ Service Primitive;

– P_ Parameter;

– PV_ Parameter Value;

 Recommendation T.180 (06/98) 81

– O_ Option;

– OV_ Option Value.

I.2.6 Introduction to the BFT(T.30) provider access

The BFT(T.30) service is provided by a T.30 adaption module, which transmits BFT [T.434]
encoded files according to Recommendation [T.30].

It gives the means of synchronized Binary File Transfer between cooperating Telematic applications:
An application can:

• establish a connection with another BFT user;

• exchange binary files in a synchronized manner; and

• release a connection.

There are no restrictions which are made for implementation.

This implementation expects data encoded according to Binary File Transfer format [T.434] in each
x_snddata() and delivers with each x_rcvdata() encoded data in the same format.

I.2.7 Description of the access to the BFT(T.30) provider

I.2.7.1 Service initialization

I.2.7.1.1 Creation of a BFT(T.30) Service Access Point with x_open()

A communication endpoint accessing the BFT(T.30) service provider is created when calling the
x_open() function with the service provider identification string "X_BFT_T.30_ISDN".

The service provider comprises the D-channel protocols and the B-channel protocol module
(T.30 adaptation) on the physical layer. Of course, no transport system has to be linked below it with
the x_bind() function, as the protocol stack is already complete.

I.2.7.1.2 Activation of BFT(T.30) Service Access Point with x_bind()

x_bind() is to be called to activate the BFT(T.30) service endpoint. The function has the task to bind
an address to the service endpoint.

No transport system has to be specified as argument of the x_bind() function, as the T.30 adaptation
layer is the only layer which is needed in the B-channel.

I.2.7.1.3 Protocol addresses

The protocol address to be used is the NSAP address. Selectors are meaningless for the BFT(T.30)
service.

I.2.7.1.3.1 The Application’s own Address

The own address may be specified in the own_address buffer of the bind_struct passed as argument
to the x_bind() function. It is returned in the called_addr buffer of the x_conind() function.

For a passive application it is not supported to specify the own responding NSAP address in the
address buffer of the call_struct in the x_conrsp() function, as this value is not transferred by the
network.

NOTE – The specification of the application's own protocol address is completely optional. If no address
information is specified, the own address is derived from system configuration information and the bound
value is returned as output parameter of the x_bind() function.

82 Recommendation T.180 (06/98)

The own address consists of the NSAP address only. The NSAP address has to comprise the local
ISDN outband address, i.e. the address information used in the D-channel. The own ISDN inband
address and subaddress parameters as well as the protocol selectors are meaningless in the
BFT(T.30) service. If specified, they will be ignored.

Table I.2-1 shows the address component which has to be specified in the x_bind() call.

Table I.2-1/T.180 – Address component specified in the x_bind() call

ISDN network Address component Value

ISDN/DSS 1 A_OUTBAND_ADR A decimal digit, which is locally mapped
on the MSN (multiple subscriber number)

I.2.7.1.3.2 The address of the communication partner

On the sending side the address of the communication partner has to be specified in the address
buffer of the call_struct passed as argument to the x_conreq() function. On the receiving side the
address of the communication partner is returned in the calling_addr buffer of the x_conind()
function.

The address of the communication partner comprises at least the peer’s ISDN outband address. The
peer’s ISDN inband address and subaddress as well as the protocol selectors are meaningless, as there
is a transparent data transfer in the B-channel without further protocols.

Table I.2-2 shows the address component to be used in the address buffer specifying the called
NSAP address in an x_conreq() call.

Table I.2-2/T.180 – Address component specifying the called
NSAP address in an x_conreq() call

ISDN network Address component Value

ISDN/DSS 1 A_OUTBAND_ADR Optional the country code, optional the area code,
and the Multiple Subscriber Number (MSN)

I.2.7.1.4 Configuration of the service provider

The protocol module of the service provider behaves according to configured protocol options.
Protocol options are used to control the general behaviour of a protocol module (they must not be
confounded with service primitive parameters). The preconfigured values of the protocol options are
sufficient for the majority of communication relations.

Currently, there are no options for the protocol modules of the BFT(T.30) service provider which
could be set by the XAPI function x_optmgmt().

I.2.7.2 Connection Establishment service

I.2.7.2.1 Service description

During connection establishment phase two users of the same service establish a connection between
each other. Both users must have already prepared an active service endpoint before they can enter
the connection establishment phase.

The service elements and their corresponding XAPI functions needed for BFT(T.30) Connection
Establishment are described in Table I.2-3.

 Recommendation T.180 (06/98) 83

Table I.2-3/T.180 – Service elements and their corresponding XAPI functions
for Connection Establishment

Service element XAPI function Description

Connect Request x_conreq() The Connect Request service is passed to
the provider to request the establishment
of a BFT(T.30) connection.

Connect Indication x_conind() The Connect Indication service is
generated by the provider to indicate the
request from a remote terminal to
establish a BFT(T.30) connection.

Connect Response x_conrsp() The Connect Response service is passed
to the provider as reaction to a
previously received connect indication as
positive or negative response.

Connect Confirmation x_conconf() The Connect Confirmation service is
generated by the provider as positive or
negative confirmation of a local
BFT(T.30) establishment.

I.2.7.2.2 Service parameters

There are no service parameters defined for the Connection Establishment service.

I.2.7.3 Services in the connected state

The T.30 adaption layer for BFT provides several services in the connected state. While the service
endpoint used to access the provider is in state X_CONNECTED these service primitives can be
passed to the provider rsp. retrieved from the provider with calls of x_snddata() and x_sndsp() rsp.
x_rcvdata() and x_rcvsp().

The data transfer works in a so called TWA (Two-Way Alternate) mode. This means the initiator and
responder act in a sink/source relationship, in which only one of them may send data at a time. The
owner of the Data Token, which is the initiator of the connection when entering the
X_CONNECTED state, may then give control to the responder by issuing the
X_BF3_SP_GIVE_TOKEN_Q service primitive.

I.2.7.3.1 Data Transfer service

I.2.7.3.1.1 Service description

The Data Transfer service allows the BFT(T.30) service users to transfer files alternately.

The service elements and their corresponding XAPI functions needed for Data Transfer are described
in Table I.2-4.

Table I.2-4/T.180 – Service elements and their corresponding XAPI functions
for Data Transfer

Service element XAPI function Description

Data Request x_snddata() The Data Request service is passed to the
provider to transmit data.

Data Indication x_rcvdata() The Data Indication service is generated by
the provider to indicate the received data.

84 Recommendation T.180 (06/98)

I.2.7.3.1.2 Service parameters

There are no service parameters defined for the Data Transfer service.

I.2.7.3.2 Checkpoint service

I.2.7.3.2.1 Service description

The BFT(T.30) service uses a checkpoint mechanism in the file transfer. This means each checkpoint
in BFT mode is confirmed by the receiver.

The service elements and their corresponding XAPI functions needed for the Checkpoint service are
described in Table I.2-5.

Table I.2-5/T.180 – Service elements and their corresponding XAPI functions
for the Checkpoint service

Service element XAPI
function

Service element
identifier

Description

Checkpoint Request x_sndsp() X_BF3_SP_CHK_Q The Checkpoint Request is
passed to the provider to
request the checkpointing from
the active side.

Checkpoint
Indication

x_rcvsp() X_BF3_SP_CHK_I The Checkpoint Indication is
generated by the provider at the
passive side to indicate the
reception of a Checkpoint
Request.

Checkpoint Response x_sndsp() X_BF3_SP_CHK_P The Checkpoint Response is
passed to the provider to
confirm the checkpoint at the
passive side.

Checkpoint
Confirmation

x_rcvsp() X_BF3_SP_CHK_C The Checkpoint Confirmation
is given to the sender of the
Checkpoint Request as
acknowledgement of the
command.

I.2.7.3.2.2 Service parameter

Table I.2-6 specifies the parameters of the Checkpoint service.

Table I.2-6/T.180 – Parameters of the Checkpoint service

Parameter Checkpoint service

 Request Indication Response Confirmatio
n

X_BF3_P_CHK_NR M M (=) M (=) M (=)

I.2.7.3.2.3 Service parameter description

Table I.2-7 describes the parameter for the Checkpoint service.

 Recommendation T.180 (06/98) 85

Table I.2-7/T.180

Parameter name X_BF3_P_CHK_NR

Type of value unsigned long

Legal values any number greater than zero

Default value none

Description This parameter identifies the current checkpoint.

I.2.7.3.3 End of File service

I.2.7.3.3.1 Service description

The BFT(T.30) service uses a checkpoint mechanism in the file transfer. If the last data was
transmitted, the End of File service is used.

The service elements and their corresponding XAPI functions needed for the End of File service are
described in Table I.2-8.

Table I.2-8/T.180 – Service elements and their corresponding XAPI functions
for the End of File service

Service element XAPI
function

Service element
identifier

Description

End of File Request x_sndsp() X_BF3_SP_EOF_Q The End of File Request is
passed to the provider to request
the final checkpoint from the
active side.

End of File
Indication

x_rcvsp() X_BF3_SP_EOF_I The End of File Indication is
generated by the provider at the
passive side to indicate the
reception of the final
checkpoint.

End of File Response x_sndsp() X_BF3_SP_EOF_P The End of File Response is
passed to the provider to
confirm the final checkpoint at
the passive side.

End of File
Confirmation

x_rcvsp() X_BF3_SP_EOF_C The End of File Confirmation is
sent to the originator of the End
of File Request as
acknowledgement of the
command.

I.2.7.3.3.2 Service parameter

Table I.2-9 specifies the parameter of the End of File service.

Table I.2-9/T.180 – Parameter of the End of File service

Parameter Checkpoint service

 Request Indication Response Confirmation

X_BF3_P_CHK_NR M M (=) M (=) M (=)

86 Recommendation T.180 (06/98)

I.2.7.3.3.3 Service parameter description

Table I.2-10 describes the parameter for the Checkpoint service.

Table I.2-10/T.180

Parameter name X_BF3_P_CHK_NR

Type of value unsigned long

Legal values any number greater than zero

Default value none

Description This parameter identifies the current checkpoint.

I.2.7.3.4 Data Token service

I.2.7.3.4.1 Service description

As stated above, data transfer works in a so-called TWA (Two-Way Alternate) mode. This means,
the initiator and the responder act in a sink/source relationship, in which only one of them may send
data at a time. The owner of the Data Token may give control to the responder by issuing the
X_BF3_SP_GIVE_TOKEN_Q service primitive.

The service elements and their corresponding XAPI functions needed for the Data Token service are
described in Table I.2-11.

Table I.2-11/T.180 – Service elements and their corresponding XAPI functions
for the Data Token service

Service element XAPI
function

Service element identifier Description

Data Token Request x_sndsp() X_BF3_SP_DATA_TOKEN_Q The Data Token Request is
passed to the provider to hand
over the right for transmitting
data from the active side to the
passive side. The active side
becomes now the passive side
and the passive side becomes
now the active side.

DataToken Indication x_rcvsp() X_BF3_SP_DATA_TOKEN_I The Data Token Indication is
generated by the provider to
indicate that the remote side has
handed over the right for
transmitting data. The active
side becomes now the passive
side and the passive side
becomes now the active side.

I.2.7.3.4.2 Service parameters

There are no service parameters defined for the Data Token service.

 Recommendation T.180 (06/98) 87

I.2.7.3.5 States in the connected state

In the BFT(T.30) protocol, the data transfer is managed in eight states, which may be entered by the
service provider while the endpoint used for access is in state X_CONNECTED:

States which are entered, if the service provider is the initiator (active side) (see Figure I.2-2):

state 10 This is the initial state. It is entered when the service endpoint enters state
X_CONNECTED. The service user is now able to transmit data with x_snddata(). This
is the only state from which an X_BF3_SP_DATA_TOKEN_Q can be issued. In all data
transfer states abortive disconnection has to be used to end the communication.

state 11 This state is entered after sending data with x_snddata(). In this state, the user may send
more data (x_snddata()), send X_BF3_SP_CHK_Q to indicate a checkpoint, or
X_BF3_SP_EOF_Q to indicate the end of the file. This state is also entered when an
X_BF3_SP_CHK_C was received, which indicates that the checkpoint is confirmed.

state 12 This state is entered when an X_BF3_SP_CHK_Q was sent and an X_BF3_SP_CHK_C
is pending.

state 13 This state is entered, when an X_BF3_SP_EOF_Q was sent and an X_BF3_SP_EOF_C
is pending.

T0827240-97

X_BF3_SP_DATA_TOKEN_Q

X_BF3_SP_CHK_C

X_BF3_SP_CHK_Q

X_BF3_SP_EOF_Q

X_BF3_SP_EOF_Cx_snddata()

x_snddata()

state 10 state 20

state 11 state 13

state 12

Figure I.2-2/T.180 – Data transfer states in active mode

States which are entered, if the service provider is the responder (receiving side) (see Figure I.2-3):

state 20 This is the initial state. It is entered when the service endpoint enters state
X_CONNECTED. The service user may now receive Data with the function
x_rcvdata(). If an X_BF3_SP_GIVE_TOKEN_I was received, the automaton enters the
state10. In all data transfer states abortive disconnection has to be used to end the
communication.

state 21 This state is entered after receiving data with x_rcvdata(). In this state, the user may
receive more data (x_rcvdata()), receive X_BF3_SP_CHK_I to indicate a checkpoint, or
X_BF3_SP_EOF_I to indicate the end of the file. This state is also entered, when an
X_BF3_SP_CHK_P was sent, which indicates that the checkpoint is confirmed.

88 Recommendation T.180 (06/98)

state 22 This state is entered when an X_BF3_SP_CHK_I was received, which indicates a
checkpoint. The service user has now to confirm this checkpoint by sending an
X_BF3_SP_CHK_P.

state 23 This state is entered when an X_BF3_SP_EOF_I was received, which indicates the
successfully transmission of the whole file. The service user has now to confirm the end
of the file with X_BF3_SP_EOF_P.

T0827250-97

X_BF3_SP_DATA_TOKEN_I

X_BF3_SP_EOF_P

X_BF3_SP_CHK_PX_BF3_SP_CHK_I

x_rcvdata()

x_rcvdata()

X_BF3_SP_EOF_I

state 20 state 10

state 23state 21

state 22

Figure I.2-3/T.180 – Data transfer states in passive mode

I.2.7.4 Connection Abort service

I.2.7.4.1 Service description

The abort service provides the means by which either BFT(T.30) service user or provider can
instantaneously release the connection and have the other BFT(T.30) service user informed of the
release. Use of this service will cause loss of undelivered data.

The service elements and their corresponding XAPI functions needed for abort of BFT(T.30)
connection are described in Table I.2-12.

Table I.2-12/T.180 – Service elements and their corresponding XAPI functions
for the Connection Abort service

Service element XAPI function Description

Abort Request x_snddis() The Abort Request is passed to the provider to request
an abnormal BFT(T.30) connection release.

Abort Indication x_rcvdis() The Abort Indication is generated by the provider to
indicate the abnormal release of a BFT(T.30)
connection.

End Indication x_rcvend() The End Indication is generated by the provider to
indicate that the service provider is ready to establish a
new connection.

 Recommendation T.180 (06/98) 89

I.2.7.4.2 Service parameter

Table I.2-13 specifies the parameter needed for a abortive BFT(T.30) release.

Table I.2-13/T.180 – Parameters of the Connection Abort service

Parameter Abort service

 Request Indication End Indication

X_BF3_P_REASON U

I.2.7.4.3 Service parameter description

Table I.2-14 defines the parameter for the abort service.

Table I.2-14/T.180

Parameter name X_FX3_P_REASON

Type of value unsigned long

Legal values X_FX3_PV_R_NOREASON /* no reason */
X_FX3_PV_R_NOBFT /* connection establishment not possible, no */
 /* facsimile terminal reached */
X_FX3_PV_R_SLOW /* error during file transfer, delivered */
 /* data too slow */
X_FX3_PV_R_NOANS /* abort because of incorrect behaviour
 of remote terminal */
X_FX3_PV_R_REMDISC /* remote disconnect */
X_FX3_PV_R_NOCMD /* unexpected disconnect during file reception */
X_FX3_PV_R_INCOMPAT /* Transfer mode is not supported by
 remote terminal, e.g. */
 /* high resolution, file transfer */
X_FX3_PV_R_BADDATA /* error during file transfer, wrong encoded BFT */
X_FX3_PV_R_PROTO /* protocol error, the remote terminal does not */
 /* conform to T.30 */

Default value X_FX3_PV_R_NOREASON

Description The parameter indicates the cause of the disconnection.

I.2.7.5 Usage of XAPI functions

This subclause provides some protocol-specific remarks to XAPI functions. The functions are
mentioned in alphabetical order. If a function is not listed, there are no special remarks.

• x_conconf The user_data buffer in the call_struct is empty, as transfer of user data is not
available in the connection establishment phase.

• x_conind The user_data buffer in the conind_struct is empty, as transfer of user data is not
available in the connection establishment phase.

• x_conreq The user_data buffer in the call_struct is empty, as transfer of user data is not
available in the connection establishment phase. Usage of the MORE flag is not
supported.

• x_conrsp The user_data buffer in the call_struct is empty, as transfer of user data is not
available in the connection establishment phase. Usage of the MORE flag is not
supported.

90 Recommendation T.180 (06/98)

• x_rcvdis The user_data buffer in the discon_struct is empty, as transfer of user data is not
available in the disconnection.

• x_snddata This function can only be called if BFT(T.30) service provider is in state 10 or
state 11. Expedited data is not available at the XAPI BFT(T.30) service access
point. Usage of the MORE flag is not supported.

• x_snddis The user_data buffer in the discon_struct may not be used, as transfer of user
data is not available in the disconnection. Usage of the MORE flag is not
supported.

• x_sndsp Usage of the MORE flag is not supported.

I.2.7.6 Tables of error codes

The XAPI error-level error codes are defined in Annex B.

I.2.7.6.1 CC_BADVALUE

An invalid mandatory parameter is given: diagnostic contains the corresponding parameter identifier.

I.2.7.6.2 CC_MANDMISS

A mandatory parameter is missing: diagnostic contains the number of missing mandatory
parameters.

I.2.7.6.3 CC_BADEVENT

An invalid event is specified: diagnostic contains the bad event identifier.

I.2.7.6.4 CC_SEQ

An incorrect sequence number is given: diagnostic contains the bad sequence number.

I.2.7.6.5 CC_SPNAME

An invalid service primitive name is given: diagnostic contains the bad service primitive name.

I.2.7.6.6 CC_ADDCOMP

An additional parameter (neither address parameter nor service primitive parameter) is incorrect: no
diagnostic is given.

I.2.7.6.7 CC_BADLENGTH

An address or parameter buffer contains an illegal length value: diagnostic contains the length.

I.2.7.6.8 CC_UNEXPECT

If the cause code indicates an unexpected event: the value of diagnostic will contain the actual state
identifier in which the unexpected event caused the error indication. Table I.2-15 contains the values
defined for the diagnostic parameter.

 Recommendation T.180 (06/98) 91

Table I.2-15/T.180

Name Description

X_BF3_STATE_10 A service is requested, which is not expected in this state. Only the
following services are expected:
• X_BF3_SP_DATA_TOKEN_Q
• x_snddata()
• x_snddis()

X_BF3_STATE_11 A service is requested, which is not expected in this state. Only the
following services are expected:
• x_snddata()
• X_BF3_SP_CHK_Q
• X_BF3_SP_EOF_Q
• x_snddis()

X_BF3_STATE_12 A service is requested, which is not expected in this state. Only the
following service is expected:
• x_snddis()

X_BF3_STATE_13 A service is requested, which is not expected in this state. Only the
following service is expected:
• x_snddis()

X_BF3_STATE_20 A service is requested, which is not expected in this state. Only the
following service is expected:
• x_snddis()

X_BF3_STATE_21 A service is requested, which is not expected in this state. Only the
following service is expected:
• x_snddis()

X_BF3_STATE_22 A service is requested, which is not expected in this state. Only the
following services are expected:
• X_BF3_SP_CHK_P
• x_snddis()

X_BF3_STATE_23 A service is requested, which is not expected in this state. Only the
following services are expected:
• X_BF3_SP_EOF_P
• x_snddis()

I.2.7.6.9 CC_NOTSUPPORT

An event is given which is not supported: the value of diagnostic contains the identifier of the
unsupported event which has been submitted with the XAPI function call that caused the error
indication.

I.2.7.6.10 CC_OTHER

If the cause code indicates the CC_OTHER error code, the value of diagnostic contains the identifier
which caused the error indication.

92 Recommendation T.180 (06/98)

I.2.7.7 Table of service primitives

Table I.2-16/T.180

Name Description

X_BF3_SP_DATA_TOKEN_Q Data token request

X_BF3_SP_DATA_TOKEN_I Data token indication

X_BF3_SP_CHK_Q Checkpoint request

X_BF3_SP_CHK_I Checkpoint indication

X_BF3_SP_CHK_P Checkpoint response

X_BF3_SP_CHK_C Checkpoint confirmation

X_BF3_SP_EOF_Q End of file request

X_BF3_SP_EOF_I End of file indication

X_BF3_SP_EOF_P End of file response

X_BF3_SP_EOF_C End of file confirmation

I.2.7.8 Table of service primitive parameters

Table I.2-17/T.180

Name Legal values

X_BF3_P_CHK_NR number greater than 0

X_BF3_P_REASON X_FX3_PV_R_NOREASON
X_FX3_PV_R_NOBFT
X_FX3_PV_R_SLOW
X_FX3_PV_R_NOANS
X_FX3_PV_R_REMDISC
X_FX3_PV_R_NOCMD
X_FX3_PV_R_INCOMPAT
X_FX3_PV_R_BADDATA
X_FX3_PV_R_PROTO

I.3 XAPI access to the service provider for FAX4 and BFT

This part of Appendix I describes an example of how the service provider can be implemented, if an
application needs the access to the specified service.

I.3.1 Scope

The XAPI, which is an abbreviation for eXtensive Application Programming Interface, is an
operating system and language-independent programming interface to general communication
services. Detailed information about the XAPI is given in the main part of this Recommendation,
which is very important for understanding this appendix.

Which services are made available via the XAPI depends on the installed service providers and not
on the XAPI, which only provides the access mechanism.

This part describes the XAPI access to the FAX4/BFT service provider.

 Recommendation T.180 (06/98) 93

Figure I.3-1 shows the structure of the protocol stack that is accessible via the XAPI when selecting
the FAX4/BFT service provider:

T0827260-97

Application

XAPI

FAX4/BFT protocol
module

T.62 protocol
module

Transport system
comprising
layers 1-4

Figure I.3-1/T.180 – Structure of the FAX4/BFT service provider

The XAPI user is able to select one transport system (comprising layers 1 to 4) among the set of
transport systems available in the XAPI communication platform to act as the underlying transport
service provider.

I.3.2 References

The following ITU-T Recommendations and other references contain provisions which, through
reference in this text, constitute provisions of this Recommendation. At the time of publication, the
editions indicated were valid. All Recommendations are subject to revision; all users of this
Recommendation and other references are therefore encouraged to investigate the possibility of
applying the most recent edition of the Recommendations and other references listed below. A list of
the currently valid ITU-T Recommendations is regularly published.

[T.62] ITU-T Recommendation T.62 (1993), Control procedures for teletex and Group 4
facsimile services.

[T.434] ITU-T Recommendation T.434 (1996), Binary file transfer format for the telematic
services.

94 Recommendation T.180 (06/98)

[T.503] CCITT Recommendation T.503 (1991), A document application profile for the
interchange of Group 4 facsimile documents.

[T.563] ITU-T Recommendation T.563 (1996), Terminal characteristics for Group 4 facsimile
apparatus.

[T.571] CCITT Recommendation T.571 (1992), Terminal characteristics for the telematic file
transfer within the teletex service.

I.3.3 Definitions

I.3.4 Abbreviations

This part uses the following abbreviations:

BFT Binary File Transfer

DSS 1 Digital Subscriber Signalling System No. 1

FX4 acronym string specifying service specific definitions of the FAX4/BFT provider
(e.g. parameter names, service primitive names)

HDLC High-Level Data-Link Control

ISDN Integrated Services Digital Network

ISO International Organization for Standardization

NSAP Network Service Access Point

OSI Open Systems Interconnection

XAPI eXtensive Application Programming Interface

I.3.5 Conventions

Each service is described via three kinds of tables.

In the first kind of table the service and its service elements are described. It contains a row for each
service element of the service (where service element means either request, indication, response, or
confirmation) with its corresponding XAPI function and a short description.

In the second kind of table the use of the service primitive parameters within the service elements are
described. It contains a row for each service primitive parameter of the service. The service primitive
parameter name is stored within the first column; the following columns contain the use of the
parameter in the service elements:

Blank The service parameter is absent.

C Presence of the service parameter is conditional. Firstly, there may be a condition in
the service provider to provide a parameter in an indication or confirmation.
Secondly, there may be interdependencies between parameters of the same or the
preceding service primitive.

M Presence of the service parameter is mandatory.

U Presence of the service parameter is a user option. If the user does not specify a
value for such a parameter and there is no default value for that parameter, nothing
is passed to the service provider. If the user does not specify a value for such a
parameter and there is a default value, the default value is passed to the service
provider.

 Recommendation T.180 (06/98) 95

(=) The value of the service parameter is identical to the value of the corresponding
service parameter in the preceding service element. In the special case of a
parameter, whose presence in the preceding service is a user option, for which a
default value is defined, and the parameter was not specified in the preceding service
element, the symbol (=) indicates that the parameter value is identical to the default
value.

The third kind of table is used to describe the service primitive parameter containing the type of
value and its scope, possible default values and a detailed description. For each service primitive
parameter, one description table is given.

A naming convention is used throughout the XAPI in order to distinguish between the common
functions, identifiers and values and service-specific identifiers and values. All service-specific
settings of the XAPI FAX4/BFT service access are defined within the present part of this appendix
and start with X_FX4_ or x_fx4_.

Extended naming conventions:

– SP_ Service Primitive;

– P_ Parameter;

– PV_ Parameter Value;

– O_ Option;

– OV_ Option Value.

I.3.6 Introduction to the FAX4/BFT service provider access

The FAX4/BFT service is provided by the combination of a transport system selected by the
application and the FAX4/BFT protocol module. The FAX4/BFT protocol module is implemented
according to the Recommendations [T.503], [T.563], [T.434] and [T.571] and resides on top of
[T.62].

It gives the means of synchronized FAX4/Binary File Transfer between cooperating Telematic
applications: An application can:

• establish a connection with another FAX4/BFT user;

• exchange facsimile/binary files in a synchronized manner; and

• release connection in an orderly manner.

Each protocol element is directly mapped to the corresponding session protocol element of T.62. The
only restriction is that resuming of interrupted documents is currently not accessible to the user of the
FAX4/BFT service.

The implementation expects T.6 coded Data in case of Facsimile Group 4 and in case of BFT any
binary data in each x_snddata() call. All ASN.1 coding is done within the service provider. The
checkpointing (page boundary) must be initiated by the service user. In case of BFT a checkpoint
should be inserted every 2 kilo-octets (according to Recommendation T.571) but other values may be
used to improve transmission speed.

I.3.7 Description of the access to the FAX4/BFT service provider

I.3.7.1 Service initialization

I.3.7.1.1 Selection of the FAX4/BFT service provider with x_open()

A communication endpoint accessing the FAX4/BFT service provider is created when calling the
x_open() function with an appropriate service provider identification string. The available identifiers

96 Recommendation T.180 (06/98)

depend on the actual system configuration. In the standard configuration, "X_FAX4_BFT_ISDN"
identifies the service provider which comprises the FAX4/BFT and T.62 session protocol modules as
well as a transport system based on the ISDN network. On the protocol levels two to four, there are
implementations of HDLC LAP B: ISO/IEC 8208 and Recommendation T.70.

If this service provider is selected, it is not necessary to link a transport system below it (using the
x_bind() function) as the protocol stack is already complete.

I.3.7.1.2 Selection of the underlying transport system with x_bind()

x_bind() is to be called to activate the FAX4/BFT service endpoint. The function has the following
tasks:

• if the service provider, which has been selected with x_open(), does not comprise a transport
system, link a transport system below the available protocol modules;

• bind an address to the service endpoint.

If the service provider X_FAX4_BFT_ISDN has been selected in the x_open() function, no transport
system has to be specified in the x_bind() function.

The list of all service providers and transport systems available in the standard configuration (and the
protocol modules they comprise) is contained in Annex B.

I.3.7.1.3 Protocol addresses

The reader should be familiar with those general concepts and the terminology, as the present part of
this appendix relies on the explanations given there and just informs about the service specifics.

The protocol address to be used for the BFT/FAX4 service is the NSAP address. Selectors are
meaningless for the FAX4/BFT service.

I.3.7.1.3.1 The application’s own address

The own address may be specified in the own_address buffer of the bind_struct passed as argument
to the x_bind() function. For a passive application it is returned in the called_addr buffer of the
x_conind() function.

For a passive application it is not supported to specify the own responding NSAP address in the
address buffer of the call_struct in the x_conrsp() function, as this value is not transferred by the
network.

Note that specification of the application's own protocol address is completely optional. If no address
information is specified, the own address is derived from system configuration information and the
bound value is returned as output parameter of the x_bind() function.

The own address consists of the NSAP address only. The NSAP address has to comprise the local
ISDN outband address, i.e. the address information used in the D-channel. The own ISDN inband
address and subaddress parameters as well as the protocol selectors are meaningless in the
FAX4/BFT service. If specified, they will be ignored.

Table I.3-1 shows the address component which has to be specified in the x_bind() call.

Table I.3-1/T.180 – Address component specified in the x_bind() call

ISDN network Address component Value

ISDN/DSS 1 A_OUTBAND_ADR A decimal digit, which is locally mapped
on the Multiple Subscriber Number (MSN)

 Recommendation T.180 (06/98) 97

I.3.7.1.3.2 The address of the communication partner

On the sending side, the address of the communication partner has to be specified in the address
buffer of the call_struct passed as argument to the x_conreq() function. On the receiving side, the
address of the communication partner is returned in the calling_addr buffer of the x_conind()
function.

The address of the communication partner comprises at least the peer’s ISDN outband address. The
peer’s ISDN inband address and subaddress as well as the protocol selectors are meaningless for the
BFT/FAX4 service.

Table I.3-2 shows the address component to be used in the address buffer specifying the called
NSAP address in an x_conreq() call.

Table I.3-2/T.180 – Address component specifying the called NSAP address
in an x_conreq() call

ISDN network Address component Value

ISDN/DSS 1 A_OUTBAND_ADR Optional the country code, optional the area code
and the Multiple Subscriber Number (MSN)

I.3.7.1.4 Configuration of the service provider

The protocol modules of the service provider behave according to configured protocol options.
Protocol options are used to control the general behaviour of a protocol module (they must not be
confounded with service primitive parameters). The preconfigured values of the protocol options are
sufficient for the majority of communication relations.

Currently, there are no options for the protocol modules of the FAX4/BFT service provider, which
could be set by the XAPI function x_optmgmt().

I.3.7.2 Connection Establishment service

I.3.7.2.1 Service description

During the connection establishment phase, two users of the same service establish a connection
between each other. Both users must have already prepared an active service endpoint before they
can enter the connection establishment phase.

The service elements and their corresponding XAPI functions needed for FAX4/BFT Connection
Establishment are described in Table I.3-3.

98 Recommendation T.180 (06/98)

Table I.3-3/T.180 – Service elements and their corresponding XAPI functions
for Connection Establishment

Service element XAPI function Description

Connect Request x_conreq() The Connect Request service is passed
to the provider to request the
establishment of a FAX4/BFT
connection.

Connect Indication x_conind() The Connect Indication service is
generated by the provider to indicate the
request from a remote terminal to
establish a FAX4/BFT connection.

Connect Response x_conrsp() The Connect Response service is passed
to the provider as reaction to a
previously received connect indication as
positive or negative response.

Connect Confirmation x_conconf() The Connect Confirmation service is
generated by the provider as positive or
negative confirmation of a local
FAX4/BFT establishment.

I.3.7.2.2 Service parameters

Table I.3-4 specifies the parameters of the FAX4/BFT Connection Establishment service.

Table I.3-4/T.180 – Parameters of the Connection Establishment service

Parameter Connect Service

 Request Indication Response Confirmation

X_FX4_P_OWN_TERMID M M

X_FX4_P_FAR_TERMID U C (=) U

X_FX4_P_REASON C

X_FX4_P_PLEASE_TOKEN U C (=)

X_FX4_P_DATE_TIME M M

 Recommendation T.180 (06/98) 99

I.3.7.2.3 Service parameter descriptions

Tables I.3-5 to I.3-9 describe the parameters for the Connection Establishment service.

Table I.3-5/T.180

Parameter name X_FX4_P_OWN_TERMID

Type of value char [X_FX4_C_MAX_TERMID]

Legal values A sequence of characters not ’\0’ terminated and no longer as
X_FX4_C_MAX_TERMID characters.

Default value none

Description The parameter indicates the own terminal identifier as described in
Recommendation F.2001 with a maximum length of X_FX4_C_MAX_TERMID
characters. The terminal identifier consists of up to 6 parts, namely:
– the DNIC (Data Network Identification Code) (maximum 4 characters);
– separator "-";
– the international phone number (maximum 12 characters);
– optional an extension (maximum 4 characters);
– separator "-";
– mnemonic part (minimum 3 characters);
The sum of all parts should not exceed 24 characters.

Table I.3-6/T.180

Parameter name X_FX4_P_FAR_TERMID

Type of value char [X_FX4_C_MAX_TERMID]

Legal values A sequence of characters not '\0' terminated and no longer as
X_FX4_C_MAX_TERMID characters.

Default value empty string

Description The parameter indicates the remote terminal identifier as described in
recommendation F.2001 with a maximum length of X_FX4_C_MAX_TERMID
characters. The terminal identifier consist of up to 6 parts, namely:
– the DNIC (Data Network Identification Code) (maximum 4 characters)
– separator "-";
– the international phone number (maximum 12 characters);
– optional an extension (maximum 4 characters);
– separator "-";
– mnemonic part (minimum 3 characters);
The sum of all parts should not exceed 24 characters.

1 Recommendation F.200, Teletex service: This Recommendation has been withdrawn.

100 Recommendation T.180 (06/98)

Table I.3-7/T.180

Parameter name X_FX4_P_REASON

Type of value long

Legal values X_FX4_PV_R_NO_REASON /* no error reason given */
X_FX4_PV_R_NO_CTX /* no more contexts of this type */
X_FX4_PV_R_LOCERR /* local terminal error */
X_FX4_PV_R_PROCERR /* procedure error */
X_FX4_PV_R_LOCPROCERR /* local terminal and procedure
 error */
X_FX4_PV_R_SSNAC /* session can not be accepted */
X_FX4_PV_R_ERRMSG /* error message exists (text) */
X_FX4_PV_R_NOMEM /* no memory available */
X_FX4_PV_R_TRANSERR /* transmission error */
X_FX4_PV_R_PNOERR /* wrong page number */
X_FX4_PV_R_FMTERR /* format error */
X_FX4_PV_R_RJCAP /* capabilities not supported */
X_FX4_PV_R_SVOK /* return code positive */
X_FX4_PV_R_SVNAV /* service not available */

Default value X_FX4_PV_R_NO_REASON

Description This parameter indicates the reason for a negative response or for an error request.

Table I.3-8/T.180

Parameter name X_FX4_P_PLEASE_TOKEN

Type of value unsigned long

Legal values PV_TRUE
PV_FALSE

Default value PV_FALSE

Description This parameter indicates a request control, which is used, if the transmission
token is requested. The current owner of the transmission token may ignore this
request or may give the transmission right to the passive side by issuing the
X_FX4_SP_GIVE_TOKEN_Q service primitive.

Initially, the initiator of a connection is the owner of the transmission token.

Table I.3-9/T.180

Parameter name X_FX4_P_DATE_TIME

Type of value char[X_FX4_C_MAX_DATE]

Legal values A sequence of chars, not ’\0’ terminated, up to X_FX4_C_MAX_DATE
characters long.

Default value none

Description The parameter indicates the connect time and has the following format:
YY-MM-DD-HH:mm
with YY = year
 MM = month
 DD = day
 HH = hour
 mm = minutes

 Recommendation T.180 (06/98) 101

I.3.7.3 Services in the connected state

The FAX4/BFT protocol module provides several services in the connected state. While the service
endpoint used to access the provider is in state X_CONNECTED these service primitives can be
passed to the provider rsp. retrieved from the provider with calls of x_snddata(), x_sndsp() rsp.
x_rcvdata(), x_rcvsp().

The data transfer works in a so called TWA (Two-Way Alternate) mode. This means the initiator and
responder act in a sink/source relationship, in which only one of them may send data at a time. The
responder may signal in some responses [x_conrsp(), X_FX4_SP_EOP_P, X_FX4_SP_EOD_P] a
request control to indicate that the responder has information to transmit. The owner of the Data
Token, which is the initiator of the connection when entering the X_CONNECTED state, may then
give control to the responder by issuing the X_FX4_SP_GIVE_TOKEN_Q service primitive. If the
token was exchanged, it must be exchanged again before an orderly release can be initiated. This
means in general:

• the initiator of the connection owns the Data Token;

• the responder may ask for the token (X_FX4_PV_PLEASE_TOKEN);

• the initiator may hand over the Data Token by the service primitive
X_FX4_SP_GIVE_TOKEN_Q;

• if the responder has got the Data Token, he must return the Data Token to the initiator by
issuing the service primitive X_FX4_SP_GIVE_TOKEN_Q before releasing the connection;

• only the initiator can initiate an orderly release request.

I.3.7.3.1 Start of Document service

I.3.7.3.1.1 Service description

The Start of Document service indicates the start of the document to the receiver of the document. It
also indicates the start of the first page.

The service elements and their corresponding XAPI functions needed for the Start of Document are
described in Table I.3-10.

Table I.3-10/T.180 – Service elements and their corresponding
XAPI functions for Start of Document

Service element XAPI
function

Service element
identifier

Description

Start of Document
Request

x_sndsp() X_FX4_SP_SOD_Q The Start of Document Request
is passed to the provider to
request the start of the
document transmission from
the active side.

Start of Document
Indication

x_rcvsp() X_FX4_SP_SOD_I The Start of Document
Indication is generated by the
provider to indicate that the
reception of a document has
started by the passive side.

102 Recommendation T.180 (06/98)

Table I.3-10/T.180 – Service elements and their corresponding
XAPI functions for Start of Document (concluded)

Service element XAPI
function

Service element
identifier

Description

Start of Document
Confirmation

x_rcvsp() X_FX4_SP_SOD_C The Start of Document
confirmation is sent to the
sender of the Start of Document
Request as acknowledgement of
the command. The user should
examine the parameters to
check if the capabilities were
accepted.

I.3.7.3.1.2 Service parameters

Table I.3-11 specifies the parameters of the Start of Document service.

Table I.3-11/T.180 – Parameters of the Start of Document service

Parameter Start of Document service

 Request Indication Confirmation

X_FX4_P_DOC_TYPE M M (=)

X_FX4_P_BFT_FNAME MCa) C (=)

X_FX4_P_BFT_PATH MCa) C (=)

X_FX4_P_BFT_COMPR MCa) C (=)

X_FX4_P_FAX_DENSITY UCb) C (=) C (=)

X_FX4_P_FAX_COMPRESSION UCb) C (=) C (=)

X_FX4_P_FAX_DIMENSION UCb) C (=) C (=)

X_FX4_P_DOCREF M M (=)

X_FX4_P_ACCEPT M

X_FX4_P_REASON M
a) Presence depends on the value of the parameter X_FX4_P_DOC_TYPE. If the value of

X_FX4_P_DOC_TYPE is X_FX4_PV_FAX, this parameter is mandatory.
b) Presence depends on the value of the parameter X_FX4_P_DOC_TYPE. If set to

X_FX4_PV_BFT, presence of this parameter is a user option.

I.3.7.3.1.3 Service parameter descriptions

Tables I.3-12 to I.3-21 describe the parameters for the Start of Document service.

 Recommendation T.180 (06/98) 103

Table I.3-12/T.180

Parameter name X_FX4_P_DOC_TYPE

Type of value long

Legal values X_FX4_PV_FAX
X_FX4_PV_BFT

Default value none

Description This parameter indicates the type of document which should be
transmitted. The value could be either X_FX4_PV_FAX or
X_FX4_PV_BFT. In case of X_FX4_PV_FAX, the document content has
to contain T.6 encoded data, or any other type of binary data.

Table I.3-13/T.180

Parameter name X_FX4_P_BFT_FNAME

Type of value char [X_FX4_C_MAX_NAME]

Legal values Any sequence of characters not containing ’\0’. The length is restricted to
X_FX4_C_MAX_NAME.

Default value none

Description This parameter indicates the file name of the binary file which should be
transmitted. This parameter may only be used, if the
X_FX4_P_DOC_TYPE is X_FX4_PV_BFT.

Table I.3-14/T.180

Parameter name X_FX4_P_BFT_PATH

Type of value char [X_FX4_C_MAX_PATH]

Legal values Any sequence of characters not containing ’\0’. The length is restricted to
X_FX4_C_MAX_PATH.

Default value none

Description This parameter indicates the path name of the binary file which should be
transmitted. This parameter may only be used, if the
X_FX4_P_DOC_TYPE is X_FX4_PV_BFT.

104 Recommendation T.180 (06/98)

Table I.3-15/T.180

Parameter name X_FX4_P_BFT_COMPR

Type of value char [X_FX4_C_MAX_NAME]

Legal values Any sequence of characters not containing ’\0’. The length is restricted to
X_FX4_C_MAX_NAME.

Default value none

Description This parameter indicates the compression mode in which the binary file is
transmitted.
This parameter may only be used, if the X_FX4_P_DOC_TYPE is
X_FX4_PV_BFT.
This parameter should be omitted if the file is not compressed.

Since Recommendation T.434 does not make any restriction on the
contents of this attribute, the sender and receiver agree upon a string for
the used compression algorithm.

Table I.3-16/T.180

Parameter name X_FX4_P_FAX_DENSITY

Type of value unsigned long

Legal values One of the following values:
X_FX4_PV_DENS_200;
X_FX4_PV_DENS_240;
X_FX4_PV_DENS_300;
X_FX4_PV_DENS_400.

Default value X_FX4_PV_DENS_200

Description This parameter indicates the density of the FAX4 document which should
be transmitted.
This parameter may only be used if the X_FX4_P_DOC_TYPE =
X_FX4_PV_FAX.

Table I.3-17/T.180

Parameter name X_FX4_P_FAX_DIMENSION

Type of value unsigned long

Legal values X_FX4_PV_DIM_A4

X_FX4_PV_DIM_B4

X_FX4_PV_DIM_A3

X_FX4_PV_DIM_AM_LETTER

X_FX4_PV_DIM_AM_LEGAL

X_FX4_PV_DIM_AM_LEDGER

X_FX4_PV_DIM_JAP_LETTER

X_FX4_PV_DIM_JAP_LEGAL

Default value X_FX4_PV_DIM_A4.

Description This parameter indicates the density of the FAX4 document which should
be transmitted.
This parameter may only be used if the X_FX4_P_DOC_TYPE is
X_FX4_PV_FAX.

 Recommendation T.180 (06/98) 105

Table I.3-18/T.180

Parameter name X_FAX4_P_FAX_COMPRESSION

Type of value unsigned long

Legal values PV_TRUE
PV_FALSE

Default value PV_TRUE

Description This parameter indicates the T.6 compression mode within the FAX4
document which should be transmitted. This parameter may only be used
if the X_FX4_P_DOC_TYPE is X_FX4_PV_FAX.

Table I.3-19/T.180

Parameter name X_FX4_P_DOCREF

Type of value char [X_FX4_C_MAX_DOC_REF]

Legal values Any sequence of the characters ’0’, ’1’, ’2’, ..., ’9’ not containing ’\0’. The
length is restricted to X_FX4_C_MAX_DOC_REF.

Default value none

Description This parameter indicates the document reference number. This number
should start by 1 and should be incremented for every document, which is
transmitted in the same connection. Leading zeros will be ignored.

Table I.3-20/T.180

Parameter name X_FX4_P_ACCEPT

Type of value unsigned long

Legal values PV_TRUE
PV_FALSE

Default value PV_TRUE

Description This parameter indicates if a Connect Request or Start of Document
Request was accepted (= PV_TRUE) or rejected (= PV_FALSE).

106 Recommendation T.180 (06/98)

Table I.3-21/T.180

Parameter name X_FX4_P_REASON

Type of value long

Legal values X_FX4_PV_R_NO_REASON /* no error reason given */
X_FX4_PV_R_NO_CTX /* no more contexts of this type */
X_FX4_PV_R_LOCERR /* local terminal error */
X_FX4_PV_R_PROCERR /* procedure error */
X_FX4_PV_R_LOCPROCERR /* local terminal and procedure
 error */
X_FX4_PV_R_SSNAC /* session can not be accepted */
X_FX4_PV_R_ERRMSG /* error message exists (text) */
X_FX4_PV_R_NOMEM /* no memory available */
X_FX4_PV_R_TRANSERR /* transmission error */
X_FX4_PV_R_PNOERR /* wrong page number */
X_FX4_PV_R_FMTERR /* format error */
X_FX4_PV_R_RJCAP /* capabilities not supported */
X_FX4_PV_R_SVOK /* return code positive */
X_FX4_PV_R_SVNAV /* service not available */

Default value X_FX4_PV_R_NO_REASON

Description This parameter indicates the reason for a negative response or for an error
request.

I.3.7.3.2 Data Transfer service

I.3.7.3.2.1 Service description

The Data Transfer service allows both FAX4/BFT service users to transfer documents alternately.

The service elements and their corresponding XAPI functions needed for Data Transfer are described
in Table I.3-22.

Table I.3-22/T.180 – Service elements and their corresponding
XAPI functions for Data Transfer

Service element XAPI function Description

Data Request x_snddata() The Data Request service is passed to
the provider to transmit real data (T.6
data or binary data).

Data Indication x_rcvdata() The Data Indication service is generated
by the provider to indicate the received
data (T.6 data or binary data).

I.3.7.3.2.2 Service parameter

Table I.3-23 specifies the parameter of the Data Transfer service.

Table I.3-23/T.180 – Parameters of the Data Transfer service

Parameter Data Transfer service

 Request Indication

X_FX4_P_BLOCK_NR M M

 Recommendation T.180 (06/98) 107

I.3.7.3.2.3 Service parameter description

Table I.3-24 describes the parameter for the Data Transfer service.

Table I.3-24/T.180

Parameter name X_FX4_P_BLOCK_NR

Type of value unsigned long

Legal values any number

Default value none

Description The parameter indicates the current block number in the current page.

I.3.7.3.3 Page Boundary service

I.3.7.3.3.1 Service description

The FAX4/BFT service uses a checkpoint mechanism in the document transfer. This means each
page (or checkpoint in BFT mode) is confirmed by the receiver.

The service elements and their corresponding XAPI functions needed for the Page Boundary service
are described in Table I.3-25.

Table I.3-25/T.180 – Service elements and their corresponding
XAPI functions for Page Boundary

Service element XAPI
function

Service element
identifier

Description

End of Page Request x_sndsp() X_FX4_SP_EOP_Q The End of Page Request is
passed to the provider to
request the checkpointing from
the active side.

End of Page
Indication

x_rcvsp() X_FX4_SP_EOP_I The End of Page Indication is
generated by the provider to
indicate the reception of a
checkpoint by the passive side.

End of Page
Response

x_sndsp() X_FX4_SP_EOP_P The End of Page Response is
passed to the provider to
confirm the checkpoint from
the active side.

End of Page
Confirmation

x_rcvsp() X_FX4_SP_EOP_C The End of Page Confirmation
is given to the sender of the
End of Page Request as
acknowledgement of the
command. The user should
examine the parameters to
check if the page was accepted.

I.3.7.3.3.2 Service parameters

Table I.3-26 specifies the parameters of the Page Boundary service.

108 Recommendation T.180 (06/98)

Table I.3-26/T.180 – Parameters of the Page Boundary service

Parameter Page Boundary service

 Request Indication Response Confirmatio
n

X_FX4_P_PAGE_NR M M (=) M (=) M (=)

X_FX4_P_REC_JEOP U C (=)

X_FX4_P_ACCEPT U C (=)

X_FX4_P_REASON U C (=)

X_FX4_P_PLEASE_TOKEN U C (=)

I.3.7.3.3.3 Service parameter descriptions

Tables I.3-27 to I.3-31 describe the parameters for the Page Boundary service.

Table I.3-27/T.180

Parameter name X_FX4_P_PAGE_NR

Type of value unsigned long

Legal values any number greater than zero

Default value none

Description This parameter indicates the current page number.

Table I.3-28/T.180

Parameter name X_FX4_P_REC_JEOP

Type of value unsigned long

Legal values PV_TRUE
PV_FALSE

Default value PV_FALSE

Description This parameter indicates if the receiver can not receive more pages. If this
parameter is set to PV_TRUE, the sender should abort the transmission.

Table I.3-29/T.180

Parameter name X_FX4_P_ACCEPT

Type of value unsigned long

Legal values PV_TRUE
PV_FALSE

Default value PV_TRUE

Description This parameter indicates if a Connect Request, Start of Document
Request or End of Page Request was accepted (= PV_TRUE) or rejected
(= PV_FALSE).

 Recommendation T.180 (06/98) 109

Table I.3-30/T.180

Parameter name X_FX4_P_REASON

Type of value long

Legal values X_FX4_PV_R_NO_REASON /* no error reason given */
X_FX4_PV_R_LOCERR /* local terminal error */
X_FX4_PV_R_PROCERR /* procedure error */
X_FX4_PV_R_NOMEM /* no memory available */
X_FX4_PV_R_TRANSERR /* transmission error */
X_FX4_PV_R_PNOERR /* wrong page number */
X_FX4_PV_R_FMTERR /* format error */

Default value X_FX4_PV_R_NO_REASON

Description This parameter indicates the reason of a negative response or error request.

Table I.3-31/T.180

Parameter name X_FX4_P_PLEASE_TOKEN

Type of value unsigned long

Legal values PV_TRUE
PV_FALSE

Default value PV_FALSE

Description This parameter indicates a request control which is used if the transmission
token is requested. The current owner of the transmission token may ignore
this request or may give the transmission request to the passive side by
issuing the X_FX4_SP_GIVE_TOKEN_Q service primitive.

I.3.7.3.4 End of document service

I.3.7.3.4.1 Service description

The FAX4/BFT service uses a checkpoint mechanism in the document transfer. This means each
page (or checkpoint in BFT mode) is confirmed from the receiver. If the last page was transmitted,
the End of Document service is used instead of End of Page.

The service elements and their corresponding XAPI functions needed for the End of Document
service are described in Table I.3-32.

110 Recommendation T.180 (06/98)

Table I.3-32/T.180 – Service elements and their corresponding XAPI functions
for End of Document

Service element XAPI
function

Service element
identifier

Description

End of Document
Request

x_sndsp() X_FX4_SP_EOD_Q The End of Document Request
is passed to the provider to
request the final checkpoint
from the active side.

End of Document
Indication

x_rcvsp() X_FX4_SP_EOD_I The End of Document
Indication is generated by the
provider to indicate the
reception of the final
checkpoint by the passive side.

End of Document
Response

x_sndsp() X_FX4_SP_EOD_P The End of Document
Response is passed to the
provider to confirm the final
checkpoint from the active side.

End of Document
Confirmation

x_rcvsp() X_FX4_SP_EOD_C The End of Document
Confirmation is sent to the
originator of the Start of
Document Request as
acknowledgement of the
command.

I.3.7.3.4.2 Service parameters

Table I.3-33 specifies the parameters of the End of Document service.

Table I.3-33/T.180 – Parameters of the End of Document service

Parameter End of Document service

 Request Indication Response Confirmatio
n

X_FX4_P_PAGE_NR M M (=) M (=) M (=)

X_FX4_P_PLEASE_TOKEN U C (=)

I.3.7.3.4.3 Service parameter descriptions

Tables I.3-34 and I.3-35 describe the parameters for the End of Document service.

Table I.3-34/T.180

Parameter name X_FX4_P_PAGE_NR

Type of value unsigned long

Legal values any number greater than zero

Default value none

Description This parameter indicates the current page number.

 Recommendation T.180 (06/98) 111

Table I.3-35/T.180

Parameter name X_FX4_P_PLEASE_TOKEN

Type of value unsigned long

Legal values PV_TRUE
PV_FALSE

Default value PV_FALSE

Description This parameter indicates a request control which is used if the
transmission token is requested. The current owner of the transmission
token may ignore this request or may give the transmission request to the
passive side by issuing the X_FX4_SP_GIVE_TOKEN_Q service
primitive.

I.3.7.3.5 Resynchronize document service

I.3.7.3.5.1 Service description

The FAX4/BFT service uses a resynchronization mechanism for an abnormal end of a document
transfer. This means the initiator of the document transfer indicates the passive side the abnormal end
of the document transfer phase; this indication is passed to the XAPI user.

The service elements and their corresponding XAPI functions needed for the Resynchronize
Document service are described in Table I.3-36.

Table I.3-36/T.180 – Service elements and their corresponding XAPI functions
for Resynchronize Document

Service element XAPI
function

Service element
identifier

Description

Resynchronize
Document Indication

x_rcvsp() X_FX4_SP_RSYN_I The Resynchronize Document
Indication is an indication of
the abnormal end of the
document transfer.

I.3.7.3.5.2 Service parameter

Table I.3-37 specifies the parameter of the Resynchronize Document service.

Table I.3-37/T.180 – Parameters of the Resynchronize
Document service

Parameter Resynchronize Document service

 Indication

X_FX4_P_REASON C

112 Recommendation T.180 (06/98)

I.3.7.3.5.3 Service parameter description

Table I.3-38 describes the parameter for the Resynchronize Document service.

Table I.3-38/T.180

Parameter name X_FX4_P_REASON

Type of value long

Legal values X_FX4_PV_R_NO_REASON /* no error reason given */
X_FX4_PV_R_LOCERR /* local terminal error */
X_FX4_PV_R_PROCERR /* procedure error */
X_FX4_PV_R_NOMEM /* no memory available */
X_FX4_PV_R_TRANSERR /* transmission error */
X_FX4_PV_R_PNOERR /* wrong page number */
X_FX4_PV_R_FMTERR /* format error */

Default value X_FX4_PV_R_NO_REASON

Description This parameter indicates the reason for an abnormal ending of a document.

I.3.7.3.6 Give Token service

I.3.7.3.6.1 Service description

The data transfer works in a so called TWA (Two-Way Alternate) mode. This means the initiator and
responder acts in a sink/source relationship, in which only one of them may send data at a time. The
responder may signal in some responses [x_conrsp(), X_FX4_SP_EOP_P, X_FX4_SP_EOD_P] a
request control to indicate that the responder has information to transmit. The owner of the Data
Token may then give control to the responder by issuing the X_FX4_SP_GIVE_TOKEN_Q service
primitive. If the token was exchanged, it must be exchanged again before an orderly release can be
initiated. This means in general:

• the initiator of the connection owns the Data Token;

• the responder may ask for the token (X_FX4_PV_PLEASE_TOKEN);

• the initiator may hand over the Data Token by the service primitive
X_FX4_SP_GIVE_TOKEN_Q;

• if the responder has received the Data Token, he must return the Data Token to the initiator
by issuing the service primitive X_FX4_SP_GIVE_TOKEN_Q before releasing the
connection;

• only the initiator can initiate an orderly release request.

The service elements and their corresponding XAPI functions needed for the Give Token service are
described in Table I.3-39.

 Recommendation T.180 (06/98) 113

Table I.3-39/T.180 – Service elements and their corresponding
XAPI functions for Give Token

Service element XAPI
function

Service element identifier Description

Give Token Request x_sndsp() X_FX4_SP_GIVE_TOKEN_Q The Give Token Request is
passed to the provider to hand
over the right for transmitting
data from the active side to the
passive side. The active side
now becomes the passive side
and the passive side now
becomes the active side.

Give Token Indication x_rcvsp() X_FX4_SP_GIVE_TOKEN_I The Give Token Indication is
generated by the provider to
indicate that the remote side has
handed over the right for
transmitting data. The active
side now becomes the passive
side and the passive side now
becomes the active side.

I.3.7.3.6.2 Service parameters

There are no service parameters defined for the Give Token service.

I.3.7.3.7 States in the connected state

In the FAX4/BFT protocol the data transfer is managed in ten states, which may be entered by the
service provider while the endpoint used for access is in state X_CONNECTED:

States which are entered, if the service provider is the initiator (active side) (see Figure I.3-2):

state 10 This is the initial state. It is entered when the service endpoint enters state
X_CONNECTED. Orderly release may be started from this state only. In all other data
transfer states abortive disconnection has to be used to end the communication. This is
also the only state from which an X_FX4_SP_GIVE_TOKEN_Q can be issued.

state 11 This state is entered when an X_FX4_SP_SOD_Q was sent and an X_FX4_SP_SOD_C
is pending.

state 12 This state is entered when a positive X_FX4_SP_SOD_C was received. The service user
is now able to transmit data with x_snddata().

state 13 This state is entered after sending data with x_snddata(). In this state, the user may send
more data (x_snddata()), send X_FX4_SP_EOP_Q to indicate a page boundary, or
X_FX4_SP_EOD_Q to indicate the end of the document.
This state is entered, when an X_FX4_SP_EOP_C was received, which indicates that
the checkpoint is confirmed.

state 14 This state is entered when an X_FX4_SP_EOP_Q was sent and an X_FX4_SP_EOP_C
is pending.

state 15 This state is entered when an X_FX4_SP_EOD_Q was received and an
X_FX4_SP_EOD_C is pending.

114 Recommendation T.180 (06/98)

T0827270-97

X_FX4_SP_EOP_Q

X_FX4_SP_EOD_C

X_FX4_SP_EOD_Q

X_DATA_Q

X_DATA_Q

X_FX4_SP_SOD_C

X_FX4_SP_SOD_Q

X_FX4_SP_GIVE_TOKEN_Q

X_FX4_SP_EOP_C

(accepted)

state 10 state 20

state 11

state 12

state 13

state 14

state 15

Figure I.3-2/T.180 – Data transfer states in active mode

States which are entered, if the service provider is the responder (receiving side) (see Figure I.3-3):

state 20 This is the initial state. It is entered when the service endpoint enters state
X_CONNECTED. Orderly release may be started from this state only. In all other data
transfer states, abortive disconnection has to be used to end the communication. If a
X_FX4_SP_GIVE_TOKEN_I was received, the automaton enters the state 10. Before
the connection can be orderly released, the token must be returned by

 Recommendation T.180 (06/98) 115

X_FX4_GIVE_TOKEN_Q to the initiator side. If an X_FX4_SP_RSYN_I was received,
the automaton will stay in this state.

state 21 This state is entered when an X_FX4_SP_SOD_I was received. The service user may
now receive Date with the function x_rcvdata(). If an X_FX4_SP_RSYN_I was
received, the automaton enters the state 20.

state 22 This state is entered when an X_FX4_SP_EOP_I was received, which indicates the end
of the current page (checkpoint). The service user has now to confirm this page by
sending an X_FX4_SP_EOP_P.

state 23 This state is entered when an X_FX4_SP_EOD_I was received, which indicates the
successfully transmission of the whole document. The service user has now to confirm
the end of the document with X_FX4_SP_EOD_P.

The user may ask for the transmission token (please token request), by setting the parameter
X_FX4_P_PLEASE_TOKEN equal PV_TRUE in the service primitives x_conrsp(),
X_FX4_SP_EOP_P or X_FX4_SP_EOD_P. The active side may then hand over the transmission
token by issuing the service primitive X_FX4_SP_GIVE_TOKEN_Q.

T0827280-97

X_FX4_SP_GIVE_TOKEN_I

X_FX4_SP_RSYN_I

X_FX4_SP_RSYN_I

X_DATA_I

X_FX4_SP_EOP_I
X_FX4_SP_EOD_P

X_FX4_SP_EOD_I

X_FX4_SP_EOP_P

X_FX4_SP_SOD_I

state 20 state 10

state 21

state 23

state 23

Figure I.3-3/T.180 – Data transfer states in passive mode

I.3.7.4 Connection Release service

I.3.7.4.1 Service description

The orderly release service allows FAX4/BFT service users to release the connection in an orderly
manner. The release may only be requested by the side who has initiated the connection and who

116 Recommendation T.180 (06/98)

owns the Data Token. The orderly release can not be requested during the document transfer phase
(between X_FX4_SP_SOD_Q and X_FX4_SP_EOD_Q).

The service elements and their corresponding XAPI functions needed for Connection Release are
described in Table I.3-40.

Table I.3-40/T.180 – Service elements and their corresponding
XAPI functions for Connection Release

Service element XAPI function Description

Release Request x_relreq() The Release Request is passed to the
provider to request a normal FAX4/BFT
connection release.

Release Indication x_relind() The Release Indication is generated by
the provider to indicate the orderly
release of a FAX4/BFT connection by
the remote side.

Release Response x_relrsp() The Release Response is passed to the
provider as reaction to a previously
received release indication as positive
response.

Release Confirmation x_relconf() The Release Confirmation is generated
by the provider as positive confirmation
of a normal FAX4/BFT release.

End Indication x_rcvend() The End Indication is generated by the
provider to indicate that the service
provider is ready to establish a new
connection. In addition it contains some
information about the released
connection.

I.3.7.4.2 Service parameters

Table I.3-41 specifies the parameters of the Connection Release service.

Table I.3-41/T.180 – Parameters of the Connection Release service

Parameter Connection Release service

 Request Indication Response Confirmation End
Indication

X_P_CONN_TIME M

X_P_DISC_TIME M

X_P_CHARGE C

X_P_DISC_REASON C

I.3.7.4.3 Service parameter descriptions

Tables I.3-42 to I.3-45 describe the parameters for the Connection Release service.

 Recommendation T.180 (06/98) 117

Table I.3-42/T.180

Parameter name X_P_CONN_TIME

Type of value unsigned long

Legal values the time in seconds since 01.01.1970 00:00:00 GMT

Default value none

Description This parameter contains the time of physical connection.

Table I.3-43/T.180

Parameter name X_P_DISC_TIME

Type of value unsigned long

Legal values the time in seconds since 01.01.1970 00:00:00 GMT

Default value none

Description This parameter contains the time of physical disconnection. If
X_P_CONN_TIME and X_P_DISCON_TIME both set to zero, no physical
connection could be established.

Table I.3-44/T.180

Parameter name X_P_CHARGE

Type of value unsigned long

Legal values any number

Default value zero

Description This parameter contains, if available, the charging unit of the connection. It
is only set if both network and network connection provide this facility.

Table I.3-45/T.180

Parameter name X_P_DISC_REASON

Type of value unsigned long

Legal values The values are directly mapped from the underlying hardware. See the
hardware documentation to get further information.

Default value zero

Description This parameter contains, if available, the disconnection reason.

I.3.7.5 Connection abort service

I.3.7.5.1 Service description

The abort service provides the means by which either FAX4/BFT service user or provider can
instantaneously release the connection and have the other FAX4/BFT service user informed of the
release. Use of this service will cause loss of undelivered data.

The service elements and their corresponding XAPI functions needed for abort of FAX4/BFT
connection are described in Table I.3-46.

118 Recommendation T.180 (06/98)

Table I.3-46/T.180 – Service elements and their corresponding
XAPI functions for Connection Abort

Service element XAPI function Description

Abort Request x_snddis() The Abort Request is passed to the
provider to request an abnormal
FAX4/BFT connection release.

Abort Indication x_rcvdis() The Abort Indication is generated by the
provider to indicate the abnormal release
of a FAX4/BFT connection.

End Indication x_rcvend() The End Indication is generated by the
provider to indicate that the service
provider is ready to establish a new
connection. In addition it contains some
information about the released
connection.

I.3.7.5.2 Service parameters

Table I.3-47 specifies the parameters needed for an abortive FAX4/BFT release.

Table I.3-47/T.180 – Parameters of the Connection Abort service

Parameter Abort Service

 Request Indication End
Indication

X_FX4_P_REASON M M

X_P_CONN_TIME M

X_P_DISC_TIME M

X_P_CHARGE C

X_P_DISC_REASON C

I.3.7.5.3 Service parameter descriptions

Tables I.3-48 to I.3-52 describe the parameters for the abort service.

 Recommendation T.180 (06/98) 119

Table I.3-48/T.180

Parameter name X_FX4_P_REASON

Type of value long

Legal values Legal values for Request and Indication:

X_FX4_PV_R_NO_REASON /* no error reason given */
X_FX4_PV_R_LOCERR /* local terminal error */
X_FX4_PV_R_PROCERR /* procedure error */
X_FX4_PV_R_NOMEM /* no memory available */
X_FX4_PV_R_TRANSERR /* transmission error */
X_FX4_PV_R_PNOERR /* wrong page number */
X_FX4_PV_R_FMTERR /* format error */

Legal values only for the Indication:

X_FX4_PV_R_NO_CTX /* no more contexts of this type */
X_FX4_PV_R_LOCPROCERR /* local terminal and procedure error */
X_FX4_PV_R_SSNAC /* session can not be accepted */
X_FX4_PV_R_ERRMSG /* error message exists (text) */
X_FX4_PV_R_RJCAP /* capabilities not supported */
X_FX4_PV_R_SVOK /* return code positive */
X_FX4_PV_R_SVNAV /* service not available */

Default value X_FX4_PV_R_NO_REASON

Description This parameter indicates the abort reason.

Table I.3-49/T.180

Parameter name X_P_CONN_TIME

Type of value unsigned long

Legal values the time in seconds since 01.01.1970 00:00:00 GMT

Default value none

Description This parameter contains the time of physical connection.

Table I.3-50/T.180

Parameter name X_P_DISC_TIME

Type of value unsigned long

Legal values the time in seconds since 01.01.1970 00:00:00 GMT

Default value none

Description This parameter contains the time of physical disconnection. If
X_P_CONN_TIME and X_P_DISCON_TIME both set to zero, no physical
connection could be established.

120 Recommendation T.180 (06/98)

Table I.3-51/T.180

Parameter name X_P_CHARGE

Type of value unsigned long

Legal values any number

Default value zero

Description This parameter contains, if available, the charging unit of the connection. It
is only set if both network and network connection provide this facility.

Table I.3-52/T.180

Parameter name X_P_DISC_REASON

Type of value unsigned long

Legal values The values are directly mapped from the underlying hardware. See the
hardware documentation to get further information.

Default value zero

Description This parameter contains, if available, the disconnection reason.

I.3.7.6 Usage of XAPI functions

This subclause provides some protocol-specific remarks to XAPI functions. The functions are
mentioned in alphabetical order. If a function is not listed, there are no special remarks.

• x_conconf The user_data buffer in the call_struct is empty, as transfer of user data is not
available in the connection establishment phase.

• x_conind The user_data buffer in the conind_struct is empty, as transfer of user data is
not available in the connection establishment phase.

• x_conreq The user_data buffer in the call_struct is empty, as transfer of user data is not
available in the connection establishment phase. Usage of the MORE flag is
not supported.

• x_conrsp The user_data buffer in the call_struct is empty, as transfer of user data is not
available in the connection establishment phase. Usage of the MORE flag is
not supported.

• x_rcvdata Expedited data are not available.

• x_rcvdis The user_data buffer in the discon_struct is empty, as transfer of user data is
not available in the disconnection.

• x_relconf The user_data buffer in the release_struct is empty, as transfer of user data is
not available in the connection release phase.

• x_relind The user_data buffer in the release_struct is empty, as transfer of user data is
not available in the connection release phase.

• x_relreq The user_data buffer in the release_struct is empty, as transfer of user data is
not available in the connection release phase. Usage of the MORE flag is not
supported.

• x_relrsp The user_data buffer in the release_struct is empty, as transfer of user data is
not available in the connection release phase. Usage of the MORE flag is not
supported.

 Recommendation T.180 (06/98) 121

• x_snddata This function can only be called, if FAX4/BFT service provider is in state 12
or 13. Expedited data is not available at the XAPI FAX4/BFT service access
point. Usage of the MORE flag is not supported.

• x_snddis The user_data buffer in the discon_struct may not be used, as transfer of user
data is not available in the disconnection. Usage of the MORE flag is not
supported.

• x_sndsp Usage of the MORE flag is not supported.

I.3.7.7 Tables of error codes

The XAPI error-level error codes are defined in Annex B.

I.3.7.7.1 CC_BADVALUE

An invalid mandatory parameter is given: diagnostic contains the corresponding parameter identifier.

I.3.7.7.2 CC_MANDMISS

A mandatory parameter is missing: diagnostic contains the number of missing mandatory
parameters.

I.3.7.7.3 CC_BADEVENT

An invalid event is specified: diagnostic contains the bad event identifier.

I.3.7.7.4 CC_SEQ

An incorrect sequence number is given: diagnostic contains the bad sequence number.

I.3.7.7.5 CC_SPNAME

An invalid service primitive name is given: diagnostic contains the bad service primitive name.

I.3.7.7.6 CC_ADDCOMP

An additional parameter (neither address parameter nor service primitive parameter) is incorrect: no
diagnostic is given.

I.3.7.7.7 CC_BADLENGTH

An address or parameter buffer contains an illegal length value: diagnostic contains the length.

I.3.7.7.8 CC_UNEXPECT

If the cause code indicates an unexpected event, the value of diagnostic will contain the actual state
identifier in which the unexpected event caused the error indication. Table I.3-53 contains the values
defined for the diagnostic parameter.

122 Recommendation T.180 (06/98)

Table I.3-53/T.180 – Data transfer states

Name Description

X_FX4_STATE_10 A service is requested, which is not expected in this state. Only the
following services are expected:

• X_FX4_SP_GIVE_TOKEN_Q

• X_FX4_SP_SOD_Q

• x_relreq()

• x_snddis()

X_FX4_STATE_11 A service is requested, which is not expected in this state. Only the
following service is expected:

• x_snddis()

X_FX4_STATE_12 A service is requested, which is not expected in this state. Only the
following services are expected:

• x_snddata()

• x_snddis()

X_FX4_STATE_13 A service is requested, which is not expected in this state. Only the
following services are expected:

• x_snddata()

• X_FX4_SP_EOP_Q

• X_FX4_SP_EOD_Q

• x_snddis()

X_FX4_STATE_14 A service is requested, which is not expected in this state. Only the
following service is expected:

• x_snddis()

X_FX4_STATE_15 A service is requested, which is not expected in this state. Only the
following service is expected:

• x_snddis()

X_FX4_STATE_20 A service is requested, which is not expected in this state. Only the
following service is expected:

• x_snddis()

X_FX4_STATE_21 A service is requested, which is not expected in this state. Only the
following service is expected:

• x_snddis()

X_FX4_STATE_22 A service is requested, which is not expected in this state. Only the
following services are expected:

• X_FX4_SP_EOP_P

• x_snddis()

X_FX4_STATE_23 A service is requested, which is not expected in this state. Only the
following services are expected:

• X_FX4_SP_EOD_P

• x_snddis()

 Recommendation T.180 (06/98) 123

I.3.7.7.9 CC_NOTSUPPORT

An event is given, which is not supported; the value of diagnostic contains the identifier of the
unsupported event which has been submitted with the XAPI function call that caused the error
indication.

I.3.7.7.10 CC_OTHER

If the cause code indicates the CC_OTHER error code, the value of diagnostic contains the identifier
which caused the error indication.

I.3.7.8 Table of service primitives

Table I.3-54/T.180

Name Description

X_FX4_SP_GIVE_TOKEN_Q Give token request

X_FX4_SP_GIVE_TOKEN_I Give token indication

X_FX4_SP_SOD_Q Start of document request

X_FX4_SP_SOD_I Start of document indication

X_FX4_SP_SOD_C Start of document confirmation

X_FX4_SP_EOP_Q End of page request

X_FX4_SP_EOP_I End of page indication

X_FX4_SP_EOP_P End of page response

X_FX4_SP_EOP_C End of page confirmation

X_FX4_SP_EOD_Q End of document request

X_FX4_SP_EOD_I End of document indication

X_FX4_SP_EOD_P End of document response

X_FX4_SP_EOD_C End of document confirmation

I.3.7.9 Table of service primitive parameters

Table I.3-55/T.180

Name Legal values

X_FX4_P_ACCEPT PV_TRUE
PV_FALSE

X_FX4_P_BFT_COMPR char [X_FX4_C_MAX_NAME]

X_FX4_P_BFT_FNAME char [X_FX4_C_MAX_NAME]

X_FX4_P_BFT_PATH char [X_FX4_C_MAX_PATH]

X_FX4_P_BLOCK_NR any number

X_FX4_P_DATE_TIME char [X_FX4_C_MAX_DATE]

X_FX4_P_DOCREF char [X_FX4_C_MAX_DOC_REF]

X_FX4_P_DOC_TYPE X_FX4_PV_BFT
X_FX4_PV_FAX

X_FX4_P_OWN_TERMID char [X_FX4_C_MAX_TERMID]

124 Recommendation T.180 (06/98)

Table I.3-55/T.180 (concluded)

Name Legal values

X_FX4_P_FAR_TERMID char [X_FX4_C_MAX_TERMID]

X_FX4_P_FAX_COMPRESSION PV_TRUE
PV_FALSE

X_FX4_P_FAX_DENSITY X_FX4_PV_DENS_200.
X_FX4_PV_DENS_240.
X_FX4_PV_DENS_300.
X_FX4_PV_DENS_400.

X_FX4_P_FAX_DIMENSION X_FX4_PV_DIM_A4
X_FX4_PV_DIM_B4
X_FX4_PV_DIM_A3
X_FX4_PV_DIM_AM_LETTER
X_FX4_PV_DIM_AM_LEGAL
X_FX4_PV_DIM_AM_LEDGER
X_FX4_PV_DIM_JAP_LETTER
X_FX4_PV_DIM_JAP_LEGAL

X_FX4_P_PAGE_NR number greater than 0

X_FX4_P_PLEASE_TOKEN PV_TRUE
PV_FALSE

X_FX4_P_REASON X_FX4_PV_R_NO_REASON
X_FX4_PV_R_NO_CTX
X_FX4_PV_R_LOCERR
X_FX4_PV_R_PROCERR
X_FX4_PV_R_LOCPROCERR
X_FX4_PV_R_SSNAC
X_FX4_PV_R_ERRMSG
X_FX4_PV_R_NOMEM
X_FX4_PV_R_TRANSERR
X_FX4_PV_R_PNOERR
X_FX4_PV_R_FMTERR
X_FX4_PV_R_RJCAP
X_FX4_PV_R_SVOK
X_FX4_PV_R_SVNAV

X_FX4_P_REC_JEOP PV_TRUE
PV_FALSE

X_P_CONN_TIME the time in seconds since 01.01.1970 00:00:00 GMT

X_P_DISC_TIME the time in seconds since 01.01.1970 00:00:00 GMT

X_P_CHARGE any number

X_P_DISC_REASON The values are directly mapped from the underlying
hardware. See the hardware documentation to get
further information.

 Recommendation T.180 (06/98) 125

I.4 XAPI access to the service provider for ACSE and ROSE

This part of Appendix I describes an example of how the service provider can be implemented, if an
application needs the access to the specified service.

I.4.1 Scope

The XAPI, which is an abbreviation for eXtensive Application Programming Interface, is an
operating system and language-independent programming interface to general communication
services. Detailed information about the XAPI is given in the main part of this Recommendation,
which is very important for understanding this appendix.

Which services are made available via the XAPI depends on the installed service providers, and not
on the XAPI which only provides the access mechanism.

This part describes the XAPI access to the ACSE/ROSE service provider.

In this provider, the connection establishment, release and abort service are performed via the ACSE
accessible at XAPI, whereas in the connected state the ROSE service is available via XAPI.

Figure I.4-1 shows the structure of the protocol stack that is accessible via the XAPI.

T0827290-97

Application

XAPI

X.227 protocol
module

X.229 protocol
module

X.226 protocol
module

X.225 protocol
module

transport system
comprising
layers 1-4

Figure I.4-1/T.180 – Structure of the ACSE/ROSE service provider

126 Recommendation T.180 (06/98)

The XAPI user is able to select one transport system (comprising the layers 1 to 4) among the set of
transport systems available in the XAPI communication platform to act as the underlying transport
service provider.

The interface is specified following the pattern of the standardized ROSE service interface [X.219]
and the standardized ACSE service interface [X.217].

I.4.2 References

The following ITU-T Recommendations and other references contain provisions which, through
reference in this text, constitute provisions of this Recommendation. At the time of publication, the
editions indicated were valid. All Recommendations and other references are subject to revision; all
users of this Recommendation are therefore encouraged to investigate the possibility of applying the
most recent edition of the Recommendations and other references listed below. A list of the currently
valid ITU-T Recommendations is regularly published.

[I.430] ITU-T Recommendation I.430 (1995), Basic user-network interface – Layer 1
specification.

[I.431] ITU-T Recommendation I.431 (1993), Primary rate user-network interface – Layer 1
specification.

[T.90] CCITT Recommendation T.90 (1992), Characteristics and protocols for terminals for
telematic services in ISDN.

[X.75] ITU-T Recommendation X.75 (1996), Packet-switched signalling system between public
networks providing data transmission services.

[X.200] ITU-T Recommendation X.200 | ISO/IEC 7498-1:1994, Information technology – Open
Systems Interconnection – Basic reference model: The basic model.

[X.208] CCITT Recommendation X.208 (1988), Specification of Abstract Syntax Notation One
(ASN 1).

[X.214] ITU-T Recommendation X.214 (1995) | ISO/IEC 8072:1996, Information technology –
Open Systems Interconnection – Transport service definition.

[X.217] ITU-T Recommendation X.217 (1995) | ISO/IEC 8649:1996, Information technology –
Open Systems Interconnection – Service definition for the association control service
element.

[X.219] CCITT Recommendation X.219 (1988) | ISO/IEC 9072-1:1989, Remote operations:
Model, notation and service definition.

[X.224] ITU-T Recommendation X.224 (1995) | ISO/IEC 8073:1997, Information technology –
Open Systems Interconnection – Protocol for providing the connection-mode transport
service.

[X.225] ITU-T Recommendation X.225 (1995) | ISO/IEC 8327-1:1996, Information technology –
Open Systems Interconnection – Connection-oriented session protocol: Protocol
specification.

[X.226) ITU-T Recommendation X.226 (1994) | ISO/IEC 8823-1:1994, Information technology –
Open Systems Interconnection – Connection-oriented presentation protocol: Protocol
specification.

[X.227] ITU-T Recommendation X.227 (1995) | ISO/IEC 8650-1:1996, Information technology –
Open Systems Interconnection – Connection-oriented protocol for the association
control service element: Protocol specification.

 Recommendation T.180 (06/98) 127

[X.229] CCITT Recommendation X.229 (1988) | ISO/IEC 9072-2:1989, Remote operations:
Protocol specification.

[ISO 8208] ISO/IEC 8208:1995, Information technology – Data communiations – X.25 Packet Layer
Protocol for Data Terminal Equipment.

I.4.3 Definitions

I.4.4 Abbreviations

This part uses the following abbreviations:

ACS abbreviation string specifying service specific definitions of the ACSE provider
(e.g. parameter names, service primitive names)

ACSE Association Control Service Element

APDU Application Protocol Data Unit

ASE Application Service Element

DSS 1 Digital Subscriber Signalling System No. 1

HDLC High-Level Data-Link Control

ISDN Integrated Services Digital Network

ISO International Organization for Standardization

NSAP Network Service Access Point

OSI Open Systems Interconnection

PSAP Presentation Service Access Point

PSEL Presentation Selector

ROS abbreviation string specifying service specific definitions of the ROSE provider
(e.g. parameter names, service primitive names)

ROSE Remote Operations Service Element

RTSE Reliable Transfer Service Element

SSAP ACSE/ROSE Service Access Point

SSEL Session Service Selector

TSAP Transport Service Access Point

TSEL Transport Service Selector

XAPI eXtensive Application Programming Interface

I.4.5 Conventions

Each service is described via three kinds of tables.

In the first kind of table the service and its service elements are described. It contains a row for each
service element of the service (where service element means either request, indication, response, or
confirmation) with its corresponding XAPI function and a short description.

In the second kind of table the use of the service primitive parameters within the service elements are
described. It contains a row for each service primitive parameter of the service. The service primitive
parameter name is stored within the first column, the following columns contain the use of the
parameter in the service elements:

128 Recommendation T.180 (06/98)

Blank The service parameter is absent.

C Presence of the service parameter is conditional. Firstly, there may be a condition in the
service provider to provide a parameter in an indication or confirmation; secondly, there
may be interdependencies between parameters of the same or the preceding service
primitive.

M Presence of the service parameter is mandatory.

U Presence of the service parameter is a user option. If the user does not specify a value for
such a parameter and there is no default value for that parameter, nothing is passed to the
service provider. If the user does not specify a value for such a parameter and there is a
default value, the default value is passed to the service provider.

(=) The value of the service parameter is identical to the value of the corresponding service
parameter in the preceding service element. In the special case of a parameter, whose
presence in the preceding service is a user option, for which a default value is defined,
and the parameter was not specified in the preceding service element, the symbol (=)
indicates that the parameter value is identical to the default value.

The third kind of table is used to describe the service primitive parameter containing the type of
value and its scope, possible default values and a detailed description. For each service primitive
parameter, one description table is given.

A naming convention is used throughout the XAPI in order to distinguish between the common
functions, identifiers and values, and service specific identifiers and values. All service-specific
settings of the XAPI ACSE/ROSE service access are defined within the present part of this appendix
and start with X_ROS_, x_ros_, X_ACS, or x_acs.

Extended naming conventions:

– SP_ Service Primitive;

– P_ Parameter;

– PV_ Parameter Value;

– O_ Option;

– OV_ Option Value.

I.4.6 Introduction to the ACSE/ROSE provider access

The ACSE/ROSE service is provided by the combination of a transport system and the Session,
Presentation, ACSE and ROSE protocol module, selected by the application. The ROSE protocol
module is implemented according to the requirements of [X.229] and the service which is provided
follows the pattern of [X.219]. The ACSE protocol module is implemented according to the
requirements of [X.227] and the service which is provided follows the pattern of [X.217].

It provides basic facilities for the control of an application-association between two
application-entities which communicate by means of a presentation-connection, e.g.

• establish an association with another ACSE user;

• normal release of an association with another ACSE user; and

• abnormal release of an association with another ACSE user.

It provides the means of interactive applications between cooperating ACSE/ROSE users. An
application can:

• invoke operations by one ACSE/ROSE user and perform operations by another
ACSE/ROSE user;

 Recommendation T.180 (06/98) 129

• support synchronous and asynchronous operations;

• group operations into a set of linked operations;

• perform the control of the application association by ACSE.

The referenced Remote Operation notation (RO-notation) allows an Application Service Element
(ASE) to be defined for the support of a particular application or group of applications. This ASE
consists of a BIND operation (establishes an association), one or more operations to implement an
interactive protocol, and an UNBIND operation (releases the association). The BIND and UNBIND
operations are implemented using the services provided by ACSE while the other operations are
implemented using the ROSE services. Therefore, the service provider gives access to the services of
the ROSE plus those of the ACSE service.

I.4.6.1 Restrictions to Recommendations X.227 and X.229

The ACSE service supports two modes of operation, i.e. the normal mode and the X.410-1984 mode.
At the XAPI, only the normal mode is accessible, which allows the ACSE user to take full advantage
of the functionality provided by both ACSE and the presentation service.

Functional units are used for the purpose of identification of Presentation service user requirements
and are negotiated during connection establishment.

Two categories of functional units are supported by the service provider:

a) Session functional units, comprising:

– Kernel;

– Duplex;

– Half-duplex;

– Minor synchronize;

– Exception;

– Capability data;

– Activity management.

b) Presentation functional units, comprising:

– Kernel.

The Presentation Context Definition List is also negotiated during connection establishment. To each
abstract syntax a transfer syntax is assigned, which is used for encoding and decoding the user data
during the lifetime of the connection. The possibility to negotiate a default context, as it is provided
by the ACSE Recommendation, is not supposed. Therefore, the negotiation of the Presentation
Context Definition List is mandatory during connection establishment. The negotiation is described
in the next subclause.

I.4.6.2 Service-specific features

Due to the goal of a modular and object-oriented design of the protocol modules, special attention to
the encoding/decoding mechanism of the user data is required.

The idea is, that each protocol itself encodes/decodes its PDUs to make the Presentation layer
independent of the layers above with their abstract syntax and transfer syntaxes. As a consequence
(and extending the standardized service interface), the application does not only provide the context
identifier and abstract syntax for each presentation context (i.e. each protocol module above
presentation) but also the (list of) transfer syntaxes supported by each protocol module.

130 Recommendation T.180 (06/98)

This has the following consequences for the ACSE-user:

– Negotiation of the presentation context definition list

 During connection establishment, a presentation context definition list is negotiated by the
ACSE-user communication partners. It consists of a list of triples, one for each abstract
syntax, which is proposed by the association initiator and accepted (or not accepted) by the
association responder. Each triple consists of an odd integer identifying the triple, the
abstract syntax and the (list of) supported transfer syntaxes. The odd integer identifying the
triple is called presentation context identifier. After negotiation, only the presentation
context identifier is used to identify an abstract syntax and the corresponding transfer syntax.

 NOTE – It must be ensured that the transfer syntaxes proposed in the presentation context definition
list match the supported transfer syntaxes of the protocol modules of the service provider.

– Encoding and decoding of the user data

 ACSE user data are treated as transparent data by the ACSE protocol module. If there is any
special format to be used for the ACSE user data, it is up to the application to generate and
interpret that format. The application is required to encode/decode the ACSE user data
passed/received to/from XAPI in the user_data parameter of call_struct, release_struct or
discon_struct. The data in the user data must be encoded as a data stream comprising a list of
one or more non-concatenated ASN.1 EXTERNAL types. The following rules apply to the
components of the EXTERNAL type:

• If presentation context negotiation has been completed, the presentation context
identifier also identifies the encoding rules (transfer syntax) for the data value and the
"direct-reference OBJECT IDENTIFIER" shall not be included;

• If presentation context negotiation is not complete, an object identifier value is also
needed which identifies the encoding rules (transfer syntax) used for the encoding.

ROSE defines five different Operation Classes which classify operations according to two possible
operation modes (synchronous and asynchronous). The Association Class defines which ROSE user
is allowed to invoke operations. The Operation Class and Association Class have to be agreed
between ROSE users. It is not part of the ACSE/ROSE provider to negotiate these features. OSI
Applications making use of ROSE (e.g. DTAM, DFR, MHS) define which Operation Class and
Association Class are allowed within a specific application.

Due to the fact that there is no negotiation of Operation and Association Class within the
ACSE/ROSE provider, the parameters Invoke-Id (to identify an operation and to correlate the request
of an invocation with its replies) and Linked-Id (in the case of a child operation to identify the parent
operation) can not be examined by ACSE/ROSE. In particular, it is not controlled if an invocation
exists for an incoming reply, i.e. result, error or rejection, or if the specified parent operation exists
for the invocation of a child operation.

ACSE/ROSE does not define a distinct abstract syntax for the encoding of its PDUs. Instead, it
provides a set of abstract syntax definitions that are used by the application making use of
ACSE/ROSE. Therefore, the service user must inform the service provider which abstract syntaxes
are used within the ROSE PDUs. To support this feature, each ROSE service primitive must be
provided with a service primitive parameter (X_ROS_P_CTXT_ID) that indicates the abstract syntax
of the application.

BIND and UNBIND encoding

At the XAPI, the ACSE/ROSE BIND/UNBIND operations are implemented using the primitives of
the ACSE services A_ASSOCIATE and A_RELEASE.

 Recommendation T.180 (06/98) 131

Application data encoding

The argument, result, or parameter components of ROSE APDUs are treated as transparent data by
the ROSE protocol module. It is under the responsibility of the XAPI user to encode and decode the
application data.

I.4.7 Description of the access to the ACSE/ROSE provider

I.4.7.1 Service initialization

I.4.7.1.1 Creation of a service access point with x_open()

A communication endpoint accessing the ACSE and ROSE protocol modules is created when calling
the x_open() function with an appropriate service provider identification string. A communication
endpoint accessing the ROSE protocol module is always created together. The available identifiers
depend on the actual system configuration. In the standard configuration "X_ACSE_ROSE_ISDN"
identifies the ISO ACSE/ROSE service provider with access to the ROSE and ACSE services. In this
case the application system comprises the ISO Session, Presentation, ACSE and ROSE protocol
modules; the transport system comprises ISO Transport Class 0, ISO 8208, HDLC LAP B and
I.430/I.431.

I.4.7.1.2 Activation of a service access point with x_bind()

x_bind() is to be called to activate the service endpoint. The function has the following tasks:

• if the service provider, which has been selected with x_open(), does not comprise a transport
system, link a transport system below the available protocol modules;

• bind an address to the service endpoint.

In the standard configuration, if "X_ACSE_ROSE_ISDN" was selected in the x_open() function,
no transport system has to be specified as argument of the x_bind() function as the service provider's
protocol stack is already complete.

I.4.7.1.3 Protocol addresses

The address to be used to identify the peer entity is the tuple of

 (PSEL, SSEL, TSEL, NSAP Address),

where the selectors are optional depending on the peer's requirements.

The XAPI service provider itself does not support selectors as address information on the local side;
the own address consists of the NSAP address only.

I.4.7.1.3.1 The application’s own address

The own address (only NSAP is supported as explained above) may be specified in the own_address
buffer of the bind_struct passed as argument to the x_bind() function. For a passive application, it is
returned in the called_addr buffer of the x_conind() function.

For a passive application it is not supported to specify the own responding NSAP address in the
address buffer of the call_struct in the x_conrsp() function, as this value is not transferred by the
network.

Note that specification of the application's own protocol address is completely optional. If no address
information is specified, the own address is derived from system configuration information and the
value actually bound is returned as output parameter of the x_bind() function.

132 Recommendation T.180 (06/98)

The own address consists of the NSAP address only. The NSAP address has to comprise the local
ISDN outband address, i.e. the address information used in the D-channel. The own ISDN inband
address and subaddress parameters as well as the protocol selectors are not supported. If specified,
they will be ignored.

Table I.4-1 shows the address component which has to be specified in the x_bind() call.

Table I.4-1/T.180 – Address component specified in the x_bind() call

ISDN network Address component Value

ISDN/DSS 1 A_OUTBAND_ADR A decimal digit, which is locally mapped
on the Multiple Subscriber Number (MSN)

I.4.7.1.3.2 The address of the communication partner

On the sending side, the address of the communication partner has to be specified in the address
buffer of the call_struct passed as argument to the x_conreq() function. On the receiving side, the
address of the communication partner is returned in the calling_addr buffer of the x_conind()
function.

The address of the communication partner comprises at least the peer’s ISDN outband address. The
peer’s ISDN inband address and subaddress are meaningless, whereas usage of protocol selectors is
according to the peer’s requirements.

Table I.4-2 shows the address components to be used in the address buffer specifying the called
Presentation address in an x_conreq() call:

Table I.4-2/T.180 – Address components specifying the called
NSAP address in an x_conreq() call

ISDN network Address component Value

ISDN/DSS 1 A_OUTBAND_ADR optional the country code, optional the area code
and the multiple subscriber number (MSN)

ISDN/DSS 1 A_T_SELECTOR called Transport selector (optional)

ISDN/DSS 1 A_S_SELECTOR called Session selector (optional)

ISDN/DSS 1 A_P_SELECTOR called Presentation selector (optional)

I.4.7.1.4 Configuration of the service provider

The protocol modules of the service provider behave according to configured protocol options.
Protocol options are used to control the general behaviour of a protocol module (they must not be
confounded with service primitive parameters). The pre-configured values of the protocol options are
sufficient for the majority of communication relations.

Currently, there are no options for the protocol modules of the Presentation service provider, which
could be set by the XAPI function x_optmgmt().

 Recommendation T.180 (06/98) 133

I.4.7.2 Connection Establishment service

I.4.7.2.1 Service description

During the connection establishment phase, two users of the same service establish a connection
between them. The XAPI user must already have prepared a service endpoint before the connection
establishment phase can start.

The service elements and their corresponding XAPI functions needed for ACSE Connection
Establishment are described in the Table I.4-3.

Table I.4-3/T.180 – Service elements and their corresponding XAPI functions
for Connection Establishment

Service element XAPI function Description

Connect Request x_conreq() The Connect Request is passed to the
provider to request the establishment of
a connection.

Connect Indication x_conind() The Connect Indication is generated by
the provider to indicate the request from
a remote terminal to establish a
connection.

Connect Response x_conrsp() The Connect Response is passed to the
provider as reaction to a previously
received Connect Indication as positive
or negative response.

Connect Confirmation x_conconf() The Connect Confirmation is generated
by the provider of a local establishment.

I.4.7.2.2 Service parameters

Table I.4-4 specifies the parameters of the ACSE Connection Establishment service.

NOTE – Some parameters belong together forming one data structure, so that they have to occur in a special
order.

The first is the context definition list, which is formed by a list of triples comprising the presentation
context id, the abstract syntax and a (list of) supported transfer syntaxes. Each triple must occur
always in the same order within the parameter buffer. The order is X_ACS_P_CTXT_ID,
X_ACS_P_AS and (possibly several times) X_ACS_P_TS.

The second is the context definition result list, which is also formed by a list of triples comprising the
presentation context identifier, the result, i.e. acceptance or rejection of the proposed presentation
context and, if the result is acceptance, the transfer syntax, which should be used. There are as many
triples as there are in the presentation context definition list.

The value of diagnosis parameter (X_ACS_P_DIAG) depends on the value of the result source
parameter (X_ACS_P_RES_SRC). Thus, it is important that the result source preceeds the diagnosis.

134 Recommendation T.180 (06/98)

Table I.4-4/T.180 – Parameters of the Connection Establishment service

Parameter Connect Service

 Request Indication Response Confirmation

X_ACS_P_MAX_SUDATA M C

X_ACS_P_APP_CTXT M M (=) M M (=)

X_ACS_P_CTXT_ID M M (=)

X_ACS_P_AS M M (=)

X_ACS_P_TS U C (=)

X_ACS_P_CTXT_RES M M M (=)

X_ACS_P_TS_RES C C C (=)

X_ACS_P_RES M M (=)

X_ACS_P_RES_SRC M

X_ACS_P_DIAG U C (=)

X_ACS_P_SUR M M (=) M M (=)

X_ACS_P_CAG_AEQ U C (=)

X_ACS_P_CAG_AEID U C (=)

X_ACS_P_CAG_APT U C (=)

X_ACS_P_CAG_APID U C (=)

X_ACS_P_CAD_AEQ U C (=)

X_ACS_P_CAD_AEID U C (=)

X_ACS_P_CAD_APT U C (=)

X_ACS_P_CAD_APID U C (=)

X_ACS_P_RES_AEQ U C (=)

X_ACS_P_RES_AEID U C (=)

X_ACS_P_RES_APT U C (=)

X_ACS_P_RES_APID U C (=)

X_ACS_P_INIT_SYN_POINT C C (=) C C (=)

X_ACS_P_TOKEN C C (=) C C (=)

X_ACS_P_S_CASUR U C (=)

X_ACS_P_S_CDSUR U C (=)

X_ACS_P_S_CR U C (=) U C (=)

X_ACS_P_S_ARI U C (=) U C (=)

X_ACS_P_PROV_REJ U

I.4.7.2.3 Service parameter description

Tables I.4-5 to I.4-34 list the parameters for the Connection Establishment service.

 Recommendation T.180 (06/98) 135

Table I.4-5/T.180

Parameter name X_ACS_P_MAX_SUDATA

Type of value unsigned long

Legal values X_ACS_PV_RESTRICTED, i.e. session user data are restricted

X_ACS_PV_UNRESTRICTED, i.e. session user data are not restricted

Default value none

Description A restriction of the session service user data length causes restrictions for
the ACSE user data.
The total length of an ASN.1 coded presentation PDU embedding an
ASN.1 coded ACSE PDU is restricted to 65 539 bytes.

Table I.4-6/T.180

Parameter name X_ACS_P_APP_CTXT

Type of value long[]

Legal values Values must be given as a sequence of long values which form an object
identifier identifying the application context name.

Default value none

Description The parameter identifies the application context. In the Response or
Confirmation service either the same or a different application context is
returned.

Table I.4-7/T.180

Parameter name X_ACS_P_CTXT_ID

Type of value long

Legal values Odd integer values which must be different for each presentation context
definition.

Default value none

Description The parameter indicates the presentation context identification. The
parameter has to be immediately followed by the parameter
X_ACS_P_AS and (several) X_ACS_P_TS at the XAPI interface.
X_ACS_P_CTXT_ID, X_ACS_P_AS and (several) X_ACS_P_TS are
components of the presentation context definition. There may be a list of
those triples which constitute the presentation context definition list.

136 Recommendation T.180 (06/98)

Table I.4-8/T.180

Parameter name X_ACS_P_AS

Type of value long[]

Legal values Values must be given as a sequence of long values which form an object
identifier identifying an abstract syntax.

Default value none

Description The parameter indicates the abstract syntax name. The parameter must
follow the parameter X_ACS_P_CTXT_ID and must be followed by
(several) X_ACS_P_TS at the XAPI interface. X_ACS_P_CTXT_ID,
X_ACS_P_AS and (several) X_ACS_P_TS are components of the
presentation context definition. There may be a list of those triples which
constitute the presentation context definition list.

Table I.4-9/T.180

Parameter name X_ACS_P_TS

Type of value long[]

Legal values Values must be given as a sequence of long values which form an object
identifier identifying an transfer syntax.

Default value {2, 1, 1} the object identifier of transfer syntax X.209

Description The parameter indicates the transfer syntax name. The parameter must
follow the parameter X_ACS_P_CTXT_ID and X_ACS_P_AS at the
XAPI interface. X_ACS_P_CTXT_ID, X_ACS_P_AS and (several)
X_ACS_P_TS are components of the presentation context definition.
There may be a list of those triples which constitute the presentation
context definition list.

Table I.4-10/T.180

Parameter name X_ACS_P_CTXT_RES

Type of value long

Legal values The value indicates the acceptance or rejection of the presentation context
definition. The following legal values are defined:

 X_ACS_PV_CTXT_ACC Acceptance;

 X_ACS_PV_CTXT_REJ_U User rejection;

 X_ACS_PV_CTXT_REJ_P Provider rejection;

 X_ACS_PV_CTXT_UNDEF Result is not specified yet.

Default value none

Description The parameter indicates the acceptance or rejection of each presentation
context definition list parameter. The parameter must be followed by
X_RTS_P_TS _RES at the XAPI interface. X_ACS_P_CTXT_RES and
X_ACS_P_TS_RES are components of the presentation context
definition result. There may be a list of those tuples which constitute the
presentation context definition result list.

 Recommendation T.180 (06/98) 137

Table I.4-11/T.180

Parameter name X_ACS_P_TS_RES

Type of value long[]

Legal values Values must be given as a sequence of long values which form an object
identifier identifying a transfer syntax.

Default value {2, 1, 1} the object identifier of transfer syntax X.209

Description The parameter indicates the transfer syntax name, which has been chosen
out of the list of proposed transfer syntaxes within the context definition
list and which has to be used. The parameter must follow the parameter
X_ACS_P_CTXT_RES at the XAPI interface only if the result is
acceptance. X_ACS_P_CTXT_RES and X_ACS_P_TS_RES are
components of the presentation context definition result. There may be a
list of those tuples which constitute the presentation context definition
result list.

Table I.4-12/T.180

Parameter name X_ACS_P_RES

Type of value unsigned long

Legal values X_ACS_PV_ACCEPT Association accepted;

X_ACS_PV_REJ_PERM Permanent rejection of the association;

X_ACS_PV_REJ_TRANS Transient rejection of the association.

Default value none

Description The parameter indicates the result of the connection establishment
procedure.

Table I.4-13/T.180

Parameter name X_ACS_P_RES_SRC

Type of value unsigned long

Legal values X_ACS_PV_ACSE_SU ACSE service user;

X_ACS_PV_ACSE_SP ACSE service provider;

X_ACS_PV_PRES_SP Presentation service provider.

Default value none

Description The parameter indicates the resulting source of the X_ACS_P_RES
parameter. If the value of the X_ACS_P_RES parameter is
X_ACS_PV_ACCEPT, the value of this parameter is
X_ACS_PV_ACSE_SU.

138 Recommendation T.180 (06/98)

Table I.4-14/T.180

Parameter name X_ACS_P_DIAG

Type of value unsigned long

Legal values X_ACS_PV_UNUSED UNUSED

X_ACS_PV_NO_ACSE No common ACSE version;

X_ACS_PV_NO_REASON No reason given;

X_ACS_PV_APP_CTXT_NAME Application context name not supported;

X_ACS_PV_CAG_AP_TITLE Calling AP title not recognized;

X_ACS_PV_CAG_AE_QUAL Calling AE qualifier not recognized;

X_ACS_PV_CAG_AP_ID Calling AP invocation identifier not
recognized;

X_ACS_PV_CAG_AE_ID Calling AE invocation identifier not
recognized;

X_ACS_PV_CAD_AP_TITLE Called AP title not recognized;

X_ACS_PV_CAD_AE_QUAL Called AE qualifier not recognized;

X_ACS_PV_CAD_AP_ID Called AP invocation identifier not
recognized;

X_ACS_PV_CAD_AE_ID Called AE invocation identifier not
recognized.

Default value none

Description The parameter provides diagnostic information about the result of the
connection services. The parameter is only used if the X_ACS_P_RES
parameter has the value X_ACS_PV_REJ_PERM or
X_ACS_PV_REJ_TRANS.

If the X_ACS_P_RES_SRC parameter has the value X_ACS_PV_ACSE_SP,
this parameter can take the values X_ACS_PV_UNUSED and
X_ACS_PV_NO_ACSE. If the X_ACS_P_RES_SRC parameter has the value
X_ACS_PV_ACSE_SU, this parameter can take all values except
X_ACS_PV_NO_ACSE.

Table I.4-15/T.180

Parameter name X_ACS_P_SUR

Type of value unsigned long

Legal values X_ACS_PV_SUR_HALFDUPLEX

X_ACS_PV_SUR_DUPLEX

X_ACS_PV_SUR_MINSYNC

X_ACS_PV_SUR_EXCEPT

X_ACS_PV_SUR_CDATA

X_ACS_PV_SUR_ACTMGMT

Default value none

Description The parameter indicates the session user requirements = functional units. The
values form a bitmask and must be given as one or more items in the integer
format OR’ed together (e.g. X_ACS_PV_SUR_HALFDUPLEX |
X_ACS_PV_SUR_ACTMGMT). Not all combination of values are allowed
(see [X.217]).

 Recommendation T.180 (06/98) 139

Table I.4-16/T.180

Parameter name X_ACS_P_CAG_AEQ

Type of value char[]

Legal values buffer with user encoded AE-qualifier

Default value none

Description The parameter indicates the calling AE-qualifier. It must be encoded as
ANY single ASN.1 type.

Table I.4-17/T.180

Parameter name X_ACS_P_CAG_AEID

Type of value long

Legal values any integer value

Default value none

Description This parameter indicates the calling AE invocation identifier.

Table I.4-18/T.180

Parameter name X_ACS_P_CAG_APT

Type of value char[]

Legal values buffer with user encoded AP title

Default value none

Description The parameter identifies the calling AP-title. It must be encoded as ANY
single ASN.1 type.

Table I.4-19/T.180

Parameter name X_ACS_P_CAG_APID

Type of value long

Legal values any integer value

Default value none

Description This parameter indicates the calling AP invocation identifier.

Table I.4-20/T.180

Parameter name X_ACS_P_CAD_AEQ

Type of value char[]

Legal values buffer with user encoded AE-qualifier

Default value none

Description The parameter indicates the called AE-qualifier. It must be encoded as
ANY single ASN.1 type.

140 Recommendation T.180 (06/98)

Table I.4-21/T.180

Parameter name X_ACS_P_CAD_AEID

Type of value long

Legal values any integer value

Default value none

Description This parameter indicates the called AE invocation identifier.

Table I.4-22/T.180

Parameter name X_ACS_P_CAD_APT

Type of value char[]

Legal values buffer with user encoded AP title

Default value none

Description The parameter identifies the called AP-title. It must be encoded as ANY
single ASN.1 type.

Table I.4-23/T.180

Parameter name X_ACS_P_CAD_APID

Type of value long

Legal values any integer value

Default value none

Description This parameter indicates the called AP invocation identifier.

Table I.4-24/T.180

Parameter name X_ACS_P_RES_AEQ

Type of value char[]

Legal values buffer with user encoded AE-qualifier

Default value none

Description The parameter indicates the responding AE-qualifier. It must be encoded
as ANY single ASN.1 type.

Table I.4-25/T.180

Parameter name X_ACS_P_RES_AEID

Type of value long

Legal values any integer value

Default value none

Description This parameter indicates the responding AE invocation identifier.

 Recommendation T.180 (06/98) 141

Table I.4-26/T.180

Parameter name X_ACS_P_RES_APT

Type of value char[]

Legal values buffer with user encoded AP title

Default value none

Description The parameter identifies the responding AP-title. It must be encoded as
ANY single ASN.1 type.

Table I.4-27/T.180

Parameter name X_ACS_P_RES_APID

Type of value long

Legal values any integer value

Default value none

Description This parameter indicates the responding AP invocation identifier.

Table I.4-28/T.180

Parameter name X_ACS_P_INIT_SYN_POINT

Type of value unsigned long

Legal values integer value in the range 0 to 999999

Default value none

Description The parameter identifies the initial synchronization point.

Table I.4-29/T.180

Parameter name X_ACS_P_TOKEN

Type of value unsigned long

Legal values X_ACS_PV_DATA_TOK_REQ Data token assigned to requestor side;
X_ACS_PV_DATA_TOK_ACP Data token assigned to acceptor side;
X_ACS_PV_DATA_TOK_ACP_C Data token assigned to acceptor choice;
X_ACS_PV_MIN_TOK_REQ Synchronize-minor token assigned to

requestor side;
X_ACS_PV_MIN_TOK_ACP Synchronize-minor token assigned to

acceptor side;
X_ACS_PV_MIN_TOK_ACP_C Synchronize-minor token assigned to

acceptor choice;
X_ACS_PV_MAJ_TOK_REQ Major/activity token assigned to

requestor side;
X_ACS_PV_MAJ_TOK_ACP Major/activity token assigned to

acceptor side;
X_ACS_PV_MAJ_TOK_ACP_C Major/activity token assigned to

acceptor choice.

Default value none

Description This parameter indicates a list of the initial sides to which the available
tokens are assigned. The value of the parameter is dependent on
X_ACS_P_SUR. Values of the parameter must be given as one or more items
OR’ed together (e.g. X_ACS_PV_DATA_TOK_REQ |
X_ACS_PV_MAJ_TOK_REQ). Not all combination of values are allowed.

142 Recommendation T.180 (06/98)

Table I.4-30/T.180

Parameter name X_ACS_P_S_CASUR

Type of value char[]

Legal values any sequence of characters, not ’\0’ terminated. The value is within the
range of 0 (zero) up to X_C_MAX_REF octets of characters.

Default value none

Description The parameter indicates the calling session service user reference, which
contains the identification of the calling application. It is part of the session
connection id, which is used to obviously identify the association.

Table I.4-31/T.180

Parameter name X_ACS_P_S_CDSUR

Type of value char[]

Legal values any sequence of characters, not ’\0’ terminated. The value is within the
range of 0 (zero) up to X_C_MAX_REF octets of characters.

Default value none

Description The parameter indicates the called session service user reference, which
contains the identification of the called application. It is part of the
session connection id, which is used to obviously identify the association.

Table I.4-32/T.180

Parameter name X_ACS_P_S_CR

Type of value char[]

Legal values any sequence of characters, not ’\0’ terminated. The value is within the
range of 0 (zero) up to X_C_MAX_REF octets of characters.

Default value none

Description The parameter indicates the common reference, which contains the date
and time reference information showing the year, month, day, hour and
minute. This time represents the local time at the calling terminal and is
intended to represent the time of call origination. It is part of the session
connection id, which is used to obviously identify the association.

Table I.4-33/T.180

Parameter name X_ACS_P_S_ARI

Type of value char[]

Legal values any sequence of characters, not ’\0’ terminated. The value is within the
range of 0 (zero) up to X_C_MAX_ARI octets of characters.

Default value none

Description The parameter indicates the additional information, which contains a
document reference number. It is part of the session connection id, which
is used to obviously identify the association.

 Recommendation T.180 (06/98) 143

Table I.4-34/T.180

Parameter name X_ACS_P_PROV_REJ

Type of value unsigned long

Legal values PV_TRUE
PV_FALSE

Default value PV_FALSE

Description The parameter has to be set to PV_TRUE when detecting a syntactical
error in the encoded user data or a semantic error in the proposed context
definition list. In this case the Presentation will perform a Presentation
provider reject.

I.4.7.3 Services in the connected state

The ROSE protocol module provides several services in the connected state which are accessible via
the XAPI:

• the RO-INVOKE service (request of a remote operation to be performed);

• the RO-RESULT service (return of the positive reply of a successfully performed operation);

• the RO-ERROR service (return of the negative reply of a unsuccessfully performed
operation);

• the RO-REJECT-U service (rejection of the request or reply); and

• the RO-REJECT-P service (information about problem).

While the service endpoint used to access the provider is in state X_CONNECTED the
corresponding service primitives can be passed to the provider or retrieved from the provider with
calls of x_sndsp() or x_rcvsp(), respectively.

The ROSE services specify operations which exceed the transfer services of other protocol modules
(e.g. pure transfer services in the RTSE, Session or Transport service access points). Transfer
services in XAPI sense enable XAPI users to send and receive either normal or expedited data
without additional parameters. ROSE operations transfer additional information beside the
application data. Due to this reason the functions x_sndsp() and x_rcvsp() are used to send and
receive, respectively, ROSE operations.

I.4.7.3.1 RO-INVOKE service

I.4.7.3.1.1 Service description

The RO-INVOKE service is used to request the start of a remote operation.

The service elements and their corresponding XAPI functions needed for RO-INVOKE are described
in Table I.4-35.

144 Recommendation T.180 (06/98)

Table I.4-35/T.180 – Service elements and their corresponding XAPI functions
for the invoke service

Service Element Service element
identifier

XAPI function Description

RO-INVOKE Request X_ROS_SP_ROIV_Q x_sndsp() The RO-INVOKE
Request is passed to the
provider to send a
request to start a remote
operation.

RO-INVOKE
Indication

X_ROS_SP_ROIV_I x_rcvsp() The RO-INVOKE
Indication is passed to
the provider to receive a
request for the start of a
remote operation.

I.4.7.3.1.2 Service parameters

Table I.4-36 specifies the parameters of the ROSE Invoke service.

Table I.4-36/T.180 – Parameters of the Invoke service

Parameter RO-INVOKE service

 Request Indication

X_ROS_P_CTXT_ID M M

X_ROS_P_INV_ID M M

X_ROS_P_LINK_ID U C (=)

X_ROS_P_VAL_INT C (Note 1) C (=) (Note 1)

X_ROS_P_VAL_ID C (Note 1) C (=) (Note 1)

NOTE 1 – Either of the parameters X_ROS_P_VAL_INT or X_ROS_P_VAL_ID is present.

NOTE 2 – The operation argument is contained in the data buffer of sp_struct of the x_sndsp()
rsp. x_rcvsp() function.

NOTE 3 – The parameter X_ROS_P_CTXT_ID is the presentation context identification which
was negotiated in the ACSE connection establishment for the application.

I.4.7.3.1.3 Service parameter description

Tables I.4-37 to I.4-41 specify the parameters for the ROSE Invoke services.

Table I.4-37/T.180

Parameter name X_ROS_P_CTXT_ID

Type of value long

Legal values odd integer value

Default value none

Description The parameter indicates the presentation context identification of the
application data of the RO-INVOKE service.

 Recommendation T.180 (06/98) 145

Table I.4-38/T.180

Parameter name X_ROS_P_INV_ID

Type of value long

Legal values any integer value

Default value none

Description The parameter identifies the request of a RO-INVOKE service and is used
to correlate this request with the corresponding replies or the invocation
of linked operations.

Table I.4-39/T.180

Parameter name X_ROS_P_LINK_ID

Type of value long

Legal values any integer value

Default value none

Description The parameter identifies a child-operation and the parameter identifies the
invocation of the linked parent-operation. The value is that of the
X_ROS_P_INV_ID parameter of the RO-INVOKE indication primitive
of the parent-operation.

Table I.4-40/T.180

Parameter name X_ROS_P_VAL_INT

Type of value long

Legal values any integer value

Default value none

Description The parameter indicates the identifier of the operation to be invoked. As
the identifier of the operation may either be an integer value or an object
identifier, either this parameter (X_ROS_P_VAL_INT) or the parameter
(X_ROS_P_VAL_ID) may be present.

Table I.4-41/T.180

Parameter name X_ROS_P_VAL_ID

Type of value long[]

Legal values Values must be given as a sequence of values in the decimal integer
format that are separated by blanks and enclosed in braces (NumberForm
of ASN.1 Object Identifier).

Default value none

Description The parameter indicates the identifier of the operation to be invoked. As
the identifier of the operation may either be an integer value or an object
identifier, either this parameter (X_ROS_P_VAL_ID) or the parameter
(X_ROS_P_VAL_INT) may be present.

146 Recommendation T.180 (06/98)

I.4.7.3.2 RO-RESULT service

I.4.7.3.2.1 Service description

The RO-RESULT service is used to reply to a previous RO-INVOKE service in the case of a
successfully performed operation.

The service elements and their corresponding XAPI functions needed for RO-RESULT are described
in Table I.4-42.

Table I.4-42/T.180 – Service elements and their corresponding XAPI functions
for the Result service

Service element Service element
identifier

XAPI function Description

RO-RESULT Request X_ROS_SP_RORE_Q x_sndsp() The RO-RESULT Request
is passed to the provider to
send a reply to a previous
RO_INVOKE service in
the case of a successfully
performed operation.

RO-RESULT
Indication

X_ROS_SP_RORE_I x_rcvsp() The RO-RESULT
Indication is generated by
the provider to indicate the
reply of a successfully
performed operation.

I.4.7.3.2.2 Service parameters

Table I.4-43 specifies the parameters of the RO-RESULT service.

Table I.4-43/T.180 – Parameters of the Result service

Parameter RO-Result service

 Request Indication

X_ROS_P_CTXT_ID M M

X_ROS_P_INV_ID M M (=)

X_ROS_P_VAL_INT U C (=)

X_ROS_P_VAL_ID U C (=)

NOTE 1 – The operation result is contained in the data buffer of sp_struct of the x_sndsp() rsp. x_rcvsp()
function.

NOTE 2 – The parameter X_ROS_P_CTXT_ID is the presentation context identification which was
negotiated in the ACSE connection establishment for the application.

 Recommendation T.180 (06/98) 147

I.4.7.3.2.3 Service parameter description

Tables I.4-44 to I.4-47 list the parameters for the RO-RESULT services.

Table I.4-44/T.180

Parameter name X_ROS_P_CTXT_ID

Type of value long

Legal values odd integer value

Default value none

Description The parameter indicates the presentation context identification of the
application data of the RO-RESULT service.

Table I.4-45/T.180

Parameter name X_ROS_P_INV_ID

Type of value long

Legal values any integer value

Default value none

Description The parameter identifies the corresponding RO-INVOKE service. The
value is that of the corresponding RO-INVOKE indication service
(X_ROS_SP_ROIV_Q).

Table I.4-46/T.180

Parameter name X_ROS_P_VAL_INT

Type of value long

Legal values any integer value

Default value none

Description The parameter indicates the identifier of an invoked and successfully
performed operation. The value is that of the corresponding RO-INVOKE
indication service (X_ROS_SP_ROIV_I) and is only present if
application data are available on this service. As the identifier of the
operation may either be an integer value or an object identifier, either this
parameter (X_ROS_P_VAL_INT) or the parameter
(X_ROS_P_VAL_ID) may be present.

148 Recommendation T.180 (06/98)

Table I.4-47/T.180

Parameter name X_ROS_P_VAL_ID

Type of value long[]

Legal values Values must be given as a sequence of values in the decimal integer
format that are separated by blanks and enclosed in braces (NumberForm
of ASN.1 Object Identifier).

Default value none

Description The parameter indicates the identifier of an invoked and successfully
performed operation. The value is that of the corresponding RO-INVOKE
indication service (X_ROS_SP_ROIV_I) and is only present if
application data are available on this service. As the identifier of the
operation may either be an integer value or an object identifier, either this
parameter (X_ROS_P_VAL_ID) or the parameter
(X_ROS_P_VAL_INT) may be present.

I.4.7.3.3 RO-ERROR service

I.4.7.3.3.1 Service description

The RO-ERROR service is used to reply to a previous RO-INVOKE service in the case of an
unsuccessfully performed operation.

The service elements and their corresponding XAPI functions needed for RO-ERROR are described
in Table I.4-48.

Table I.4-48/T.180 – Service elements and their corresponding XAPI functions
for the Error service

Service element Service element
identifier

XAPI function Description

RO-ERROR Request X_ROS_SP_ROER_Q x_sndsp() The RO-ERROR
Request is passed to
the provider to send a
reply to a previous
RO-INVOKE service
in the case of an
unsuccessfully
performed operation.

RO-ERROR
Indication

X_ROS_SP_ROER_I x_rcvsp() The RO-RESULT
Indication is generated
by the provider to
indicate the reply of an
unsuccessfully
performed operation.

 Recommendation T.180 (06/98) 149

I.4.7.3.3.2 Service parameters

Table I.4-49 specifies the parameters of the RO-ERROR service.

Table I.4-49/T.180 – Parameters of the Error service

Parameter RO-ERROR service

 Request Indication

X_ROS_P_CTXT_ID M M

X_ROS_P_INV_ID M M (=)

X_ROS_P_VAL_INT C (Note 1) C (=) (Note 1)

X_ROS_P_VAL_ID C (Note 1) C(=) (Note 1)

NOTE 1 – Either of the parameters X_ROS_P_VAL_INT or X_ROS_P_VAL_ID is present.

NOTE 2 – The operation parameter is contained in the data buffer of sp_struct of the x_sndsp()
rsp. x_rcvsp() function.

NOTE 3 – The parameter X_ROS_P_CTXT_ID is the presentation context identification which
was negotiated in the ACSE connection establishment for the application.

I.4.7.3.3.3 Service parameter description

Tables I.4-50 to I.4-53 list the parameters for the RO-ERROR services.

Table I.4-50/T.180

Parameter name X_ROS_P_CTXT_ID

Type of value long

Legal values odd integer value

Default value none

Description The parameter indicates the presentation context identification of the
application data of the RO-ERROR service.

Table I.4-51/T.180

Parameter name X_ROS_P_INV_ID

Type of value long

Legal values any integer value

Default value none

Description The parameter identifies the corresponding RO-INVOKE service. The
value is that of the corresponding RO-INVOKE indication service
(X_ROS_SP_ROIV_Q).

150 Recommendation T.180 (06/98)

Table I.4-52/T.180

Parameter name X_ROS_P_VAL_INT

Type of value long

Legal values any integer value

Default value none

Description The parameter identifies the error that occurred during the execution of
the operation. As the identifier of the error may either be an integer value
or an object identifier, either this parameter (X_ROS_P_VAL_INT) or
the parameter X_ROS_P_VAL_ID may be present.

Table I.4-53/T.180

Parameter name X_ROS_P_VAL_ID

Type of value long[]

Legal values Values must be given as a sequence of values in the decimal integer
format that are separated by blanks and enclosed in braces (NumberForm
of ASN.1 Object Identifier).

Default value none

Description The parameter identifies the error that occurred during the execution of
the operation. As the identifier of the error may either be an integer value
or an object identifier, either this parameter (X_ROS_P_VAL_INT) or
the parameter X_ROS_P_VAL_ID may be present.

I.4.7.3.4 RO-REJECT-U service

I.4.7.3.4.1 Service description

The RO-REJECT-U service is used by a ROSE user to reject a request (RO-INVOKE service) or a
reply (RO-RESULT, RO-ERROR services) of the other ROSE user if it has detected a problem.

The service elements and their corresponding XAPI functions needed for RO-REJECT-U are
described in Table I.4-54.

 Recommendation T.180 (06/98) 151

Table I.4-54/T.180 – Service elements and their corresponding XAPI functions
 for the Reject-U service

Service element Service element
identifier

XAPI function Description

RO-REJECT-U
Request

X_ROS_SP_ROREJU_Q x_sndsp() The RO-REJECT-U Request
is passed to the provider to
send a rejection to a previous
RO-INVOKE, RO-RESULT
or RO-ERROR service if a
problem has been detected
by the ROSE user.

RO-REJECT-U
Indication

X_ROS_SP_ROREJU_I x_rcvsp() The RO-REJECT-U
Indication is generated by the
provider to indicate a
rejection of a previous
RO-INVOKE, RO-RESULT
or RO-ERROR service.

I.4.7.3.4.2 Service parameters

Table I.4-55 specifies the parameters of the RO-REJECT-U service.

Table I.4-55/T.180 – Parameters of the Checkpoint service

Parameter RO-REJECT-U service

 Request Indication

X_ROS_P_INV_ID U C (=)

X_ROS_P_CTXT_ID M M

X_ROS_P_REJ_REAS M M (=)

NOTE – The parameter X_ROS_P_CTXT_ID is the presentation context identification
which was negotiated in the ACSE connection establishment for the application.

I.4.7.3.4.3 Service parameter description

Tables I.4-56 to I.4-58 list the parameters for the RO-REJECT-U service.

Table I.4-56/T.180

Parameter name X_ROS_P_INV_ID

Type of value long

Legal values any integer value

Default value none

Description The parameter identifies the corresponding RO-INVOKE service. The
value is that of the corresponding RO-INVOKE indication service
(X_ROS_SP_ROIV_Q).

152 Recommendation T.180 (06/98)

Table I.4-57/T.180

Parameter name X_ROS_P_CTXT_ID

Type of value long

Legal values odd integer value

Default value none

Description The parameter indicates the presentation context identification of the data
of the RO-REJECT-U service.

Table I.4-58/T.180

Parameter name X_ROS_P_REJ_REAS

Type of value unsigned long

Legal values X_ROS_PV_DUP_INV Duplication-invocation;

X_ROS_PV_UNREC_OP Unrecognized operation;

X_ROS_PV_MIST_ARG Mistyped argument;

X_ROS_PV_RES_LIM Resource limitation;

X_ROS_PV_INIT_REL Initiator-releasing;

X_ROS_PV_UNREC_LINKID Unrecognized linked identifier;

X_ROS_PV_UNEXP_LINKRES Unexpected link-response;

X_ROS_PV_UNEXP_CHDOP Unexpected child operation;

X_ROS_PV_RE_UNREC_INV Unrecognized invocation (reject of
RO_RESULT);

X_ROS_PV_UNEXP_RERES Unexpected result response;

X_ROS_PV_MIST_RES Mistyped result;

X_ROS_PV_ER_UNREC_INV Unrecognized invocation (reject of
RO-ERROR);

X_ROS_PV_UNEXP_ERRES Unexpected error response;

X_ROS_PV_UNREC_ER Unrecognized error;

X_ROS_PV_UNEXP_ER Unexpected error;

X_ROS_PV_MIST_PAR Mistyped parameter.

Default value none

Description The parameter specifies the reason for rejection.

I.4.7.3.5 RO-REJECT-P service

I.4.7.3.5.1 Service description

The RO-REJECT-P service is used to advise a ROSE user of a problem detected by a ROSE
provider.

The service elements and their corresponding XAPI functions needed for RO-REJECT-P are
described in Table I.4-59.

 Recommendation T.180 (06/98) 153

Table I.4-59/T.180 – Service elements and their corresponding XAPI functions
for the Reject-P service

Service element Service element
identifier

XAPI function Description

RO-REJECT-P
Indication

X_ROS_SP_ROREJP_I x_rcvsp() The RO-REJECT-P
Indication is generated by
the provider to indicate a
provider rejection to a
previous RO-INVOKE,
RO-RESULT or RO-
ERROR service if a
problem has been
detected by the ROSE
provider.

I.4.7.3.5.2 Service parameters

Table I.4-60 specifies the parameters of the RO-REJECT-P service.

Table I.4-60/T.180 – Parameters of the Reject-P service

Parameter RO-REJECT-P Service

 Indication

X_ROS_P_INV_ID C

X_ROS_P_PREJ_REAS M

NOTE – Due to the fact that the Linked-Id and Invoke-Id are not examined by the ROSE provider
and the application data of the ROSE APDUs are already encoded by the XAPI user, the ROSE
provider will accept all ROSE request service primitives from the XAPI user. Therefore, it is not
necessary to support the Returned-parameters parameter of the RO-REJECT-P service at the XAPI.

I.4.7.3.5.3 Service parameter description

Tables I.4-61 to I.4-62 list the parameters for the RO-REJECT-P service.

Table I.4-61/T.180

Parameter name X_ROS_P_INV_ID

Type of value long

Legal values any integer value

Default value none

Description The parameter identifies the corresponding invocation. The value is that of the
corresponding RO-INVOKE, RO-RESULT, RO-ERROR or RO-REJECT-U service.

154 Recommendation T.180 (06/98)

Table I.4-62/T.180

Parameter name X_ROS_P_PREJ_REAS

Type of value unsigned long

Legal values X_ROS_PV_UNREC_APDU unrecognized APDU

X_ROS_PV_MIST_APDU mistyped APDU

X_ROS_PV_BAD_STRU badly structured APDU

Default value none

Description The parameter specifies the reason for rejection.

I.4.7.3.6 State transition tables/diagrams

To handle the ROSE services while the service endpoint is in state X_CONNECTED, the ROSE
service provider distinguishes no additional states.

I.4.7.4 Connection Release service

I.4.7.4.1 Service description

The orderly release service allows either ACSE service user to release the ACSE connection in an
orderly manner. This is done cooperatively between the two ACSE service users without the loss of
data after all in-transit data have been delivered and accepted by both ACSE service users.

The service elements and their corresponding XAPI functions needed for ACSE Connection Release
service are described in Table I.4-63.

Table I.4-63/T.180 – Service elements and their corresponding XAPI functions
for the Connection Release service

Service element XAPI function Description

Release Request x_relreq() The Release Request is passed to the provider to
request a normal ACSE connection release.

Release Indication x_relind() The Release Indication is generated by the
provider to indicate the orderly release of a
ACSE connection by the remote side.

Release Response x_relrsp() The Release Response is passed to the provider
as reaction to a previously received Release
Indication as positive response.

Release Confirmation x_relconf() The Release Confirmation is generated by the
provider as positive confirmation of a normal
ACSE release.

End Indication x_rcvend() The End Indication is generated by the service
provider to indicate that the service provider is
ready to establish a new connection. In addition,
it contains some information about the released
connection.

 Recommendation T.180 (06/98) 155

I.4.7.4.2 Service parameters

Table I.4-64 specifies the parameters of the ACSE Connection Release service.

Table I.4-64/T.180 – Parameters of the Connection Release service

Parameter Release service

 Request Indication Response Confirmation End
Indication

X_ACS_P_REASON U C (=) U C (=)

X_P_CONN_TIME M

X_P_DISC_TIME M

X_P_CHARGE C

X_P_DISC_REASON C

I.4.7.4.3 Service parameter description

Tables I.4-65 to I.4-69 define the parameter for the Connection Release service.

Table I.4-65/T.180

Parameter name X_ACS_P_REASON

Type of value unsigned long

Legal values When used on the Request or Response primitive:

X_ACS_PV_NORMAL Normal;

X_ACS_PV_USDEF User defined.

When used on the Request primitive:

X_ACS_PV_URGENT Urgent.

When used on the reponse primitive:

X_ACS_PV_NOT_FIN Not finished.

Default value none

Description The parameter indicates the general urgency of the Release Request and in
the Release Reponse information about the Release Request.

Table I.4-66/T.180

Parameter name X_P_CONN_TIME

Type of value unsigned long

Legal values the time in seconds since 01.01.1970 00:00:00 GMT

Default value none

Description This parameter contains the time of physical connection.

156 Recommendation T.180 (06/98)

Table I.4-67/T.180

Parameter name X_P_DISC_TIME

Type of value unsigned long

Legal values the time in seconds since 01.01.1970 00:00:00 GMT

Default value none

Description This parameter contains the time of physical disconnection. If
X_P_CONN_TIME and X_P_DISCON_TIME were both set to zero, no
physical connection could be established.

Table I.4-68/T.180

Parameter name X_P_CHARGE

Type of value unsigned long

Legal values any number

Default value zero

Description This parameter contains, if available, the charging unit of the connection. It
is only set if both network and network connection provide this facility.

Table I.4-69/T.180

Parameter name X_P_DISC_REASON

Type of value unsigned long

Legal values The values are directly mapped from the underlying hardware. See the
hardware documentation to get further information.

Default value zero

Description This parameter contains, if available, the disconnection reason.

I.4.7.5 Connection Abort service

I.4.7.5.1 Service description

The abort service provides the means by which either ACSE service user or ACSE itself can
instantaneously release the ACSE connection and have the other ACSE service user informed of the
release. Use of this service will cause loss of undelivered data.

The origination parameter of the x_snddis() and x_rcvdis() function must be set to ABORT in this
case.

The service elements and their corresponding XAPI functions needed for user abort of ACSE
connection are described in the Table I.4-70.

 Recommendation T.180 (06/98) 157

Table I.4-70/T.180 – Service elements and their corresponding XAPI functions
for the Connection Abort service

Service element XAPI function Description

Abort Request x_snddis() The Abort Request is passed to the
provider to request an abnormal ACSE
connection release.

Abort Indication x_rcvdis() The Abort Indication is generated by the
provider to indicate the abnormal release
of an ACSE connection due to ACSE
user.

End Indication x_rcvend() The End Indication is generated by the
service provider to indicate that the
service provider is ready to establish a
new connection. In addition, it contains
some information about the released
connection.

I.4.7.5.2 Service parameters

Table I.4-71 specifies the ACSE service elements and their parameters needed for abortive ACSE
release.

NOTE – If the Abort service primitive contains user data, additional information is necessary to qualify the
user data. When relying on the XAPI ACSE/ROSE service provider, the coding/decoding of ACSE user data
has to be done by the ACSE service user.

If the abort service primitive contains user data and the ACSE Connect Request service primitive
contained a context definition list, a so-called "presentation context identifier list" (see also
6.4.2/[X.226]) has to be specified in the abort service primitive. It consists of a list of pairs
X_ACS_P_CTXT_ID (representing a presentation context id) and X_ACS_P_TS (representing the
name of the transfer syntax used for the coding of the specified presentation context).

The list has to contain one pair for each presentation context used in the user data parameter. The
second parameter of such a pair is optional; if omitted, the default value representing X.209 is used.
If the transfer syntax parameter is available, it has to follow immediately the corresponding context
id parameter. Furthermore, the elements contained in the list have to follow immediately one another.

Table I.4-71/T.180 – Parameters of the Connection Abort service

Parameter Abort service

 Request Indication End Indication

X_ACS_P_AB_SRC C

X_ACS_P_CTXT_ID C C (=)

X_ACS_P_TS C C (=)

X_P_CONN_TIME M

X_P_DISC_TIME M

X_P_CHARGE C

X_P_DISC_REASON C

158 Recommendation T.180 (06/98)

I.4.7.5.3 Service parameter description

Tables I.4-72 to I.4-78 list the parameters for the user abortive ACSE abort service.

Table I.4-72/T.180

Parameter name X_ACS_P_AB_SRC

Type of value unsigned long

Legal values X_ACS_PV_SU ACSE service user

X_ACS_PV_SP ACSE service provider

Default value X_ACS_PV_SU

Description The parameter indicates the initiating source of the abort.

Table I.4-73/T.180

Parameter name X_ACS_P_CTXT_ID

Type of value unsigned long

Legal values identifier of presentation contexts contained in the user data

Default value none

Description This parameter identifies one of the presentation contexts used in the user
data parameter of the service primitive. For each used presentation context, a
value has to be provided.

Table I.4-74/T.180

Parameter name X_ACS_P_TS

Type of value long[]

Legal values Values must be given as a sequence of long values which form an object
identifier identifying a transfer syntax.

Default value {2, 1, 1} the object identifier of transfer syntax X.209

Description The parameter indicates the transfer syntax name belonging to the previously
specified presentation context identifier. If available, it has to follow
immediately the parameter X_ACS_P_CTXT_ID.

Table I.4-75/T.180

Parameter name X_P_CONN_TIME

Type of value unsigned long

Legal values the time in seconds since 01.01.1970 00:00:00 GMT

Default value none

Description This parameter contains the time of physical connection.

 Recommendation T.180 (06/98) 159

Table I.4-76/T.180

Parameter name X_P_DISC_TIME

Type of value unsigned long

Legal values the time in seconds since 01.01.1970 00:00:00 GMT

Default value None

Description this parameter contains the time of physical disconnection. If
X_P_CONN_TIME and X_P_DISCON_TIME both set to zero, no physical
connection could be established.

Table I.4-77/T.180

Parameter name X_P_CHARGE

Type of value unsigned long

Legal values any number

Default value zero

Description This parameter contains, if available, the charging unit of the connection. It
is only set if both network and network connection provide this facility.

Table I.4-78/T.180

Parameter name X_P_DISC_REASON

Type of value unsigned long

Legal values The values are directly mapped from the underlying hardware. See the
hardware documentation to get further information.

Default value zero

Description This parameter contains, if available, the disconnection reason.

I.4.7.6 Connection Provider Abort service

I.4.7.6.1 Service description

The provider abort service provides the means by which the ACSE protocol modules may indicate
the release of the connection for reason below to the ACSE service provider.

The origination parameter of the x_snddis() and x_rcvdis() function must be set to
PROVIDER_ABORT in this case.

The provider abort service elements and their corresponding XAPI functions are described in
Table I.4-79.

160 Recommendation T.180 (06/98)

Table I.4-79/T.180 – Service elements and their corresponding XAPI functions
for the Connection Provider Abort service

Service element XAPI function Description

Provider Abort Indication x_rcvdis() The Provider Abort Indication service is
generated by the provider to indicate the
abnormal release of an ACSE connection
by the ACSE provider.

End Indication x_rcvend() The End Indication is generated by the
service provider to indicate that the
service provider is ready to establish a
new connection. In addition, it contains
some information about the released
connection.

I.4.7.6.2 Service parameters

Table I.4-80 specifies the parameters needed for provider abortive ACSE release.

Table I.4-80/T.180 – Parameters of the Connection Provider Abort service

Parameter Provider Abort service

 Indication End Indication

X_ACS_P_PRO_REAS C

X_P_CONN_TIME M

X_P_DISC_TIME M

X_P_CHARGE C

X_P_DISC_REASON C

I.4.7.6.3 Service parameter description

Tables I.4-81 to I.4-85 list the parameters for the provider abortive ACSE release service.

 Recommendation T.180 (06/98) 161

Table I.4-81/T.180

Parameter name X_ACS_P_PRO_REAS

Type of value unsigned long

Legal values X_ACS_PV_NOT_SPEC Reason not specified;

X_ACS_PV_UNREC_PPDU Unrecognized PPDU;

X_ACS_PV_UNEXP_PPDU Unexpected PPDU;

X_ACS_PV_UNEXP_SSP Unexpected session service primitive;

X_ACS_PV_UNREC_PAR Unrecognized PPDU parameter;

X_ACS_PV_UNEXP_PAR Unexpected PPDU parameter;

X_ACS_PV_INV_PARVAL Invalid PPDU parameter value;

X_ACS_PV_TRANS_DIS Transport connection aborted;

X_ACS_PV_SESS_PROTERR Session protocol error;

X_ACS_PV_SESS_PICS Session unable to support requested
feature.

Default value X_ACS_PV_NOT_SPEC

Description The parameter indicates the reason for the termination of the association.

Table I.4-82/T.180

Parameter name X_P_CONN_TIME

Type of value unsigned long

Legal values the time in seconds since 01.01.1970 00:00:00 GMT

Default value none

Description This parameter contains the time of physical connection.

Table I.4-83/T.180

Parameter name X_P_DISC_TIME

Type of value unsigned long

Legal values the time in seconds since 01.01.1970 00:00:00 GMT

Default value none

Description This parameter contains the time of physical disconnection. If
X_P_CONN_TIME and X_P_DISCON_TIME both set to zero, no physical
connection could be established.

Table I.4-84/T.180

Parameter name X_P_CHARGE

Type of value unsigned long

Legal values any number

Default value zero

Description This parameter contains, if available, the charging unit of the connection. It
is only set if both network and network connection provide this facility.

162 Recommendation T.180 (06/98)

Table I.4-85/T.180

Parameter name X_P_DISC_REASON

Type of value unsigned long

Legal values The values are directly mapped from the underlying hardware. See the
hardware documentation to get further information.

Default value zero

Description This parameter contains, if available, the disconnection reason.

I.4.7.7 Usage of XAPI functions

This subclause provides some protocol-specific remarks to the use of the XAPI functions. The
functions are mentioned in alphabetical order.

x_sndsp() This XAPI function contains in the data buffer of sp_struct the encoded argument,
result and parameter components of the ROSE APDUs in encoded form.

x_rcvsp() This XAPI function contains in the data buffer of sp_struct the argument, result and
parameter components of the ROSE APDUs in encoded format.

I.4.7.8 Tables of error codes

The XAPI error-level error codes are defined in Annex B.

I.4.7.8.1 CC_BADVALUE

If the cause code indicates a parameter error with a bad value, the value of diagnostic will contain the
erroneous parameter identifier which has been submitted with the XAPI function call that caused the
error indication or one of the identifiers X_ACS_CTX_DEF_LIST, X_ACS_CTX_DEF_RES_LIST,
X_ACS_CTX_ID_LIST, if the error occurred within a context definition list, a context definition
result list or a context identifier list, respectively.

I.4.7.8.2 CC_MANDMISS

If the cause code indicates that a mandatory parameter is missing, the value of diagnostic will
contain the missing parameter identifier that caused the error indication.

I.4.7.8.3 CC_BADEVENT

If the cause code indicates a bad event, the value of diagnostic will contain the bad event identifier
which has been submitted with the XAPI function call that caused the error indication.

I.4.7.8.4 CC_UNEXPECT

If the cause code indicates a unexpected event, the value of diagnostic will contain the actual state
identifier in which the unexpected event caused the error indication.

I.4.7.8.5 CC_NOTSUPPORT

If the cause code indicates an unsupported event, the value of diagnostic will contain the identifier of
the unsupported event which has been submitted with the XAPI function call that caused the error
indication.

I.4.7.8.6 CC_OTHER

If the cause code indicates the CC_OTHER error code, the value of diagnostic will contain the
identifier which caused the error indication.

 Recommendation T.180 (06/98) 163

I.5 XAPI access to a Service Provider for Audio and Video (AV) Control

This part of Appendix I describes an example of how the service provider can be implemented if an
application needs access to the specified service.

I.5.1 Scope

The XAPI, which is an abbreviation for eXtensive Application Programming Interface, is an
operating system and language-independent programming interface to general communication
services. Detailed information about the XAPI is given in the main part of this Recommendation,
which is very important for understanding this appendix.

Which services are made available via the XAPI depends on the installed service providers and not
on the XAPI, which only provides the access mechanism.

The AV Codec can be seen as the "heart" of an audiovisual terminal. The service provider enables
the XAPI user to:

• establish a connection to a remote communication partner;

• release or disconnect a previously established connection;

• control the communication to the remote partner; and

• control the behaviour of the local AV Codec.

The processing of audio and video signals is solely the task of the AV Codec. The AV Codec
Controller only controls this processing. The communication path for the terminal-to-network control
signals is provided in the D-channel while the AV communication with the remote entity, the path
for the terminal-to-terminal control signals is provided as a single B/H0/H11/H12-channel or multiple
B/H0-channels.

This part does not refer to a concrete AV Codec, but describes the access to an ideal service provider
according to Recommendation H.320 and related Recommendations. A concrete service provider,
which is built on a certain AV Codec hardware, need not implement exactly this ideal service
provider. Thus, it is necessary to have some release notes for each concrete service provider that
explain the differences to the ideal service provider.

Each concrete service provider has to implement all services described throughout this part and their
standardized parameters. Note that the set of allowed values for a standardized service parameter
may be restricted by a concrete service provider. It should not be necessary to extend the value range
of a standardized parameter because it is defined as the maximum possible according to the
Recommendations. The non-standardized service parameters described here provide a guideline for
the implementation of useful non-standard features in a concrete service provider. They need not be
implemented at all and even additional non-standard parameters, not mentioned here, may be
implemented. But in order to provide portability of XAPI applications, it is a good idea to follow
these guidelines as far as possible in the design of a concrete service provider. (For the same reason
XAPI application programmers should not persist in the presence of a certain non-standard
parameter.)

I.5.2 References

The following ITU-T Recommendations and other references contain provisions which, through
reference in this text, constitute provisions of this Recommendation. At the time of publication, the
editions indicated were valid. All Recommendations and other references are subject to revision; all
users of this Recommendation are therefore encouraged to investigate the possibility of applying the
most recent edition of the Recommendations and other references listed below. A list of the currently
valid ITU-T Recommendations is regularly published.

164 Recommendation T.180 (06/98)

[H.221] ITU-T Recommendation H.221 (1997), Frame structure for a 64 to 1920 kbit/s channel
in audiovisual teleservices.

[H.230] ITU-T Recommendation H.230 (1997), Frame-synchronous control and indication
signals for audiovisual systems.

[H.231] ITU-T Recommendation H.231 (1997), Multipoint control units for audiovisual systems
using digital channels up to 1920 Kbit/s.

[H.242] ITU-T Recommendation H.242 (1993), System for establishing communication between
audiovisual terminals using digital channels up to 2 Mbit/s.

[H.243] ITU-T Recommendation H.243 (1997), Procedures for establishing communication
between three or more audiovisual terminals using digital channels up to 1920 Kbit/s.

[H.261] ITU-T Recommendation H.261 (1993), Video codec for audiovisual services at
p × 64 kbit/s.

[H.320] TU-T Recommendation H.320 (1997), Narrow-band visual telephone systems and
terminal equipment.

[H.331] ITU-T Recommendation H.331 (1993), Broadcasting type audiovisual multipoint
systems and terminal equipment.

[I.430] ITU-T Recommendation I.430 (1995), Basic user network interface – Layer 1
specification.

[I.431] ITU-T Recommendation I.431 (1993), Primary rate user network interface – Layer 1
specification.

I.5.3 Definitions

I.5.4 Abbreviations

This part uses the following abbreviations:

AC Additional Channel

AV Audio and Video

BAS Bit-rate Allocation Signal

C&I Control and Indication (H.320)

DSS 1 Digital Subscriber Signalling System No. 1

ECS Encryption Control Signal

FAS Frame Alignment Signal

H0 Channel consisting of six 64 kbit/s time-slots (384 kbit/s)

H11 Channel consisting of twenty-four 64 kbit/s time-slots (1536 kbit/s)

H12 Channel consisting of thirty 64 kbit/s time-slots (1920 kbit/s)

HSD High-Speed Data

IC Initial Channel

ISDN Integrated Services Digital Network

ISO International Organization for Standardization

LSD Low-Speed Data

 Recommendation T.180 (06/98) 165

MBE Multiple Byte Extension

MCU Multipoint Control Unit

MLP Multi-Layer Protocol

NSAP Network Service Access Point

OSI Open Systems Interconnection

PHC is used as service identification part in the names defined by the Access to an AV Codec
Controller Service. The letters PHC are short for "Physical layer, access to an H-Codec
controller".

SBE Single Byte Extension

SC Service Channel

TS Time Slot

XAPI eXtensive Application Programming Interface

I.5.5 Conventions

Each service is described via three kinds of tables.

In the first kind of table the service and its service elements are described. It contains a row for each
service element of the service (where service element means either request, indication, response, or
confirmation) with its corresponding XAPI function and a short description.

In the second kind of table the use of the service primitive parameters within the service elements are
described. It contains a row for each service primitive parameter of the service. The service primitive
parameter name is stored within the first column; the succeeding columns contain the use of the
parameter in the service elements:

Blank The service parameter is absent.

C Presence of the service parameter is conditional. Firstly, there may be a condition in the
service provider to provide a parameter in an indication or confirmation, secondly, there
may be interdependencies between parameters of the same or the preceding service
primitive.

M Presence of the service parameter is mandatory.

U Presence of the service parameter is a user option. If the user does not specify a value for
such a parameter and there is no default value for that parameter, nothing is passed to the
service provider. If the user does not specify a value for such a parameter and there is a
default value, the default value is passed to the service provider.

(=) The value of the service parameter is identical to the value of the corresponding service
parameter in the preceding service element. In the special case of a parameter, whose
presence in the preceding service is a user option, for which a default value is defined, and
the parameter was not specified in the preceding service element, the symbol (=) indicates
that the parameter value is identical to the default value.

The third kind of table is used to describe the service primitive parameter containing the type of
value and its scope, possible default values and a detailed description. For each service primitive
parameter, one description table is given.

A naming convention is used throughout the XAPI in order to distinguish between the common
functions, identifiers and values, and service-specific identifiers and values. All service-specific
settings of the XAPI AV Codec service access are defined within the present part of this appendix
and start with X_PHC_ or x_phc_.

166 Recommendation T.180 (06/98)

Extended naming conventions:

– SP_ Service Primitive;

– P_ Parameter;

– PV_ Parameter Value;

– O_ Option;

– OV_ Option Value.

I.5.6 Introduction to the video codec service provider access

Because of the technical progress in video processing and in telecommunication, it is possible to
transfer AV data in a high quality in narrow-band networks. Recommendation H.320 and its related
Recommendations define inband and outband signalling procedures as well as codings for audio and
video data for visual telephone systems. Recommendation H.221 defines the frame structure for 64
to 1920 kbit/s channel in audiovisual services, and Recommendation H.242 defines a system for
establishing communication between audiovisual terminals using digital channels up to 2 Mbit/s.

An important requirement of the H.320 series is the compatibility of videophones to ISDN – and
analog telephones. All videophones start the connection establishment phase using one
B/H0/H11/H12-channel, audio mode G.711 (3.1 kHz, 64 kbit/s). After the connection is established,
both terminals exchange their capabilities and change to the best common mode of operation. This
initialization procedure is defined in Recommendation H.242. In order to increase bandwidth,
additional B/H0-channels may be established by the calling terminal. A larger bandwidth allows the
improvement of the quality of speech as well as the best quality for the motion image sequences.

Table I.5-1 shows important video communication modes in ISDN according to
Recommendations H.221 and H.242:

Table I.5-1/T.180 – Audio/Video communication modes in ISDN

Number of B-channels Video Audio

Use of one B-channel 46.4 kbit/s 16 kbit/s: 3.1 kHz

Use of two B-channels 68.8 kbit/s 56 kbit/s: 3.1 kHz or 7 kHz

 92.8 kbit/s 32 kbit/s: 7 kHz

 108.8 kbit/s 16 kbit/s: 3.1 kHz

NOTE – The use of two B-channels improves the quality of videophone communications. The video
bandwidth of 108.8 kbit/s provides the best quality of picture in ISDN if two B-channels are used.

The XAPI Audio/Video Codec Control Service, as the name already suggests, provides the means to
control a service provider performing audio/video communication conforming to the requirements of
H.320 and its related Recommendations H.221, H.230, H.231, H.242 and H.243.

Service primitives for connection establishment and release as well as for switching the mode of
communication (e.g. change bandwidth for the audio data, change number of used lines) or the local
receive capabilities are provided.

The audio/video data themselves are actually not passed between XAPI user and service provider via
XAPI function calls. These isochronous data streams have to be transferred without any delays
between the system components. Commonly available hardware in personal computers does not
allow to carry these data fast enough via the bus, therefore they are transferred by directly
interconnecting audio/video I/O equipment, AV Codec and network interface.

 Recommendation T.180 (06/98) 167

According to Recommendation H.320 and related Recommendations, the subscribers are also able to
initiate a transfer of asynchronous data (e.g. transmission of still images, transmission of group 3 or
group 4 facsimile documents) besides audio/video communication. Transfer of asynchronous data is
not covered by the restrictions explained above. Therefore, a data transfer service is provided to
exchange asynchronous data between the XAPI user and the service provider. The available video
bandwidth is decreased by the data transfer rate.

I.5.7 Description of the access to the Video Codec Service Provider

I.5.7.1 Service initialization

I.5.7.1.1 Creation of a AV Codec Service Access Point with x_open()

A communication endpoint accessing the AV Codec service provider is created when calling the
x_open() function with an appropriate service provider identification string. The available identifiers
depend on the actual system configuration. In the standard configuration, "X_PHC_ISDN" identifies
the AV Codec control service provider with ISDN as underlying network.

I.5.7.1.2 Activation of a AV Codec Service Access Point with x_bind()

x_bind() is to be called to activate the AV Codec service endpoint. The function has the task to bind
the application’s own address to the service endpoint.

I.5.7.1.3 Addresses

The network address (NSAP) is used to identify the called or calling entity.

I.5.7.1.3.1 Specification of the application’s own address

The own address may be specified in the own_address buffer of the bind_struct passed as argument
to the x_bind() function. For a passive application it is returned in the called_addr buffer of the
x_conind() function.

For a passive application it is not supported to specify the (own) responding NSAP address in the
address buffer of the call_struct in the x_conrsp() call, because this value is not transferred by the
network.

Note that specification of the application’s own protocol address in the x_bind() call is optional. If no
address information is specified, it is taken from the XAPI configuration and the actually bound
address is returned as output parameter of the x_bind() function. It is strongly recommended to trust
in the XAPI configuration and not to specify the own address in the x_bind() call.

The own address consists of the NSAP address only. The NSAP address has to comprise the local
ISDN outband address, i.e. the address information used in the D-channel. The own ISDN inband
address and subaddress parameters as well as the protocol selectors are meaningless in the
Audio/Video Codec Control service. If specified, they will be ignored.

Table I.5-2 shows the address component which has to be specified in the x_bind() call:

Table I.5-2/T.180 – Address component specified in the x_bind() call

ISDN network Address component Value

ISDN/DSS 1 A_OUTBAND_ADR A decimal digit, which is locally mapped to one of
the available MSNs (Multiple Subscriber Numbers)

168 Recommendation T.180 (06/98)

Binding of multiple addresses

In an audiovisual communication according to Recommendations H.221/H.241, multiple channels
(up to six B-channels) may be used for one connection. Therefore, multiple addresses have to be
bound to a service endpoint if this feature is to be used. The binding of multiple addresses can be
achieved by specifying as many A_OUTBAND_ADR address components in the own_address
buffer of the x_bind () call, as addresses have to be bound. The number of A_OUTBAND_ADR
components is limited to six for the AV Codec Control service provider.

A passive application has to specify one address for each B-channel to be established. If two
B-channels shall be established on the same address, this address has to be mentioned twice in the
own_address buffer. Or, the other way around, if an address is specified only once, then only one
(ISDN) connection will be accepted for that address.

I.5.7.1.3.2 The address of the communication partner

On the active side, the address of the communication partner has to be specified in the address buffer
of the call_struct passed as argument to the x_conreq() function. On the passive side, the address of
the communication partner is returned in the calling_addr buffer of the x_conind() function.

The address of the communication partner comprises at least the peer’s ISDN outband address. The
peer’s ISDN inband address and subaddress as well as the protocol selectors are meaningless for the
Audio/Video Codec Control service.

Note that only one called outband address may be specified in the x_conreq(). It is used to establish
the initial channel of the AV connection. Additional channels may be added later with the elements
of the Mode Switch service. Therefore, only one calling address is returned in the connect indication
on the passive side.

Table I.5-3 shows the address component to be used in the address buffer specifying the called
NSAP address in a x_conreq() call :

Table I.5-3/T.180 – Address component specifying the called NSAP
address in a x_conreq() call

ISDN network Address component Value

ISDN/DSS 1 A_OUTBAND_ADR Optional the country code, optional the area
code and the Multiple Subscriber Number
(MSN)

I.5.7.1.4 Configuration of the service provider

Protocol options are used to control the general behavior of the service provider. There is a default
value defined for each option. These preconfigured values are sufficient for the majority of
communication relations. The Option Management service can be used to set protocol options and to
retrieve the current or default values of protocol options.

I.5.7.2 Connection Establishment service

I.5.7.2.1 Service description

During the connection establishment phase, two users of the same service establish a connection
between them. The XAPI user must already have prepared a service endpoint before the connection
establishment phase can start.

 Recommendation T.180 (06/98) 169

For active establishment of an AV connection, the XAPI function x_conreq() is used. The user can
optionally specify local capabilities as service parameters. The local capabilities define the receiver
capabilities of the own AV terminal. The service provider generates a positive or negative connect
confirmation primitive as a response to the connect request. The positive confirmation signals that an
ISDN connection, the Initial Channel (IC), has been established successfully and that both terminals
have started to exchange their capabilities on the IC. Later, when the mode initialization procedure is
completed on the IC, Additional Channels (ACs) may be added to the connection to increase the total
bandwidth. The establishment of additional channels is done with elements of the Mode Switch
service. Note that only the AV terminal that initiated the establishment of the IC [the terminal which
called x_conreq()], is allowed to establish additional channels.

At the passive side, the service provider generates a connect indication to indicate a pending call of a
remote AV terminal. The XAPI user can accept or reject the call by calling the XAPI function
x_conrsp(). If the connection is accepted, the capability exchange procedure and the mode
initialization procedure according to Recommendation H.242 starts. In the x_conrsp() function call,
the local receive capabilities may optionally be specified as service parameters. The default
capabilities are used, if none are specified.

For both the active and the passive sides, the X_PHC_SP_INIT_COMPL service primitive
indicates the successful completion of the mode initialization procedure. Both terminals have
exchanged their receive capabilities and switched their receiver/transmitter to a common mode of
communication. If the initialization procedure fails, the AV connection is cleared and the service
provider generates a disconnect indication. The XAPI user then has to call x_rcvdis() as consuming
function.

The elements of the Connection Establishment service and the corresponding XAPI functions are
defined in Table I.5-4.

Table I.5-4/T.180 – Service elements and their corresponding XAPI functions
for Connection Establishment

Service element XAPI function Description

Connect Request x_conreq() The Connect Request is passed to the provider to request the
establishment of an AV connection. The own local
capabilities to be used in the initial capability exchange may
be specified as service parameters. If no capabilities are
specified, the default values are used.

Connect Indication x_conind() The Connect Indication is generated by the provider to
indicate a pending call from a remote terminal. The physical
connection is not yet established. A positive connect response
will accept the call and start the mode initialization procedure
according to Recommendation H.242. The AV connection
will be fully operational after successful completion of the
initialization procedure. This is indicated with an
X_PHC_SP_INIT_COMPL primitive. A negative connect
response will reject the call.

170 Recommendation T.180 (06/98)

Table I.5-4/T.180 – Service elements and their corresponding XAPI functions
for Connection Establishment (concluded)

Service element XAPI function Description

Connect Response x_conrsp() The Connect Response is passed to the provider as reaction to
a previously received connect indication. A positive connect
response will accept the call and start the mode initialization
procedure according to Recommendation H.242. A negative
connect response will reject the call. If the call is accepted,
the own local capabilities to be used in the initial capability
exchange may be specified as service parameters. If no
capabilities are specified, the default values are used.

Connect
Confirmation

x_conconf() The Connect Confirmation is generated by the provider as
positive or negative response to a previous connection
establishment request. A positive confirmation indicates that
the remote terminal accepted the call and the mode
initialization procedure is just going on. When it is finished
successfully, the AV connection is fully operational. During
mode initialization the audio path of the connection may be
already available.

The element of the mode initialization procedure and the corresponding XAPI function are defined in
Table I.5-5.

Table I.5-5/T.180 – Service elements and their corresponding XAPI function
for mode initialization

Service element XAPI
function

Service element identifier Description

Initialization
Complete

x_rcvsp() X_PHC_SP_INIT_COMPL The X_PHC_SP_INIT_COMPL
primitive is generated by the
service provider to indicate that
the mode initialization procedure
according to
Recommendation H.242 has been
finished successfully. The local
and remote capabilities and the
selected receive and transmit
communication mode are
presented to the XAPI user as
service parameters. Both
terminals are operating in the
indicated mode. The XAPI user
should store the remote
capabilities and observe them as
limits to avoid failures in later
mode switch requests.

I.5.7.2.2 Service parameters

The following tables specify the parameters of the Connection Establishment service. There are two
groups of parameters: the capability parameters and the communication mode parameters.

 Recommendation T.180 (06/98) 171

The table below shows the local and remote receiving capability parameters. The capabilities are
important for the selection of the communication mode used between the two AV terminals. Each
side has to select a transmitting mode which is compatible with the receive capabilities of the other
terminal. The selected transmitting mode is indicated to the partner with BAS commands and the
own transmitter is switched to the selected mode. The other terminal has to switch its receiver
according to the mode indicated by the received BAS commands. The local capability parameters
share the prefix X_PHC_P_LCAP_ in their names, and the remote capability parameters share the
prefix X_PHC_P_RCAP_ .

The specification of local capabilities is optional. If a capability parameter is not specified in a
service element, the default value will be used by the service provider. The default value itself is
defined by the value of a protocol option. For each capability parameter there is a corresponding
protocol option which defines the default value for this parameter. For the protocol option, a constant
default value is defined in the XAPI configuration.

The local receive capabilities are transmitted to the remote terminal during connection establishment.
If the value X_PHC_PV_CAPNON is specified for a capability parameter (either explicit or implicit
as default), this capability is not transmitted to the remote terminal.

The receive capabilities of the remote terminal will be available after successful completion of the
H.242 mode initialization procedure. They are presented to the service user as parameters of the init-
complete service element (X_PHC_SP_INIT_COMPL). For capabilities which were not transmitted
by the remote terminal, the value X_PHC_PV_CAPNON is returned.

Table I.5-6 specifies the capability parameters of the Connection Establishment service.

Table I.5-6/T.180 – Capability Parameters of the Connection Establishment service

Parameter Connect service

 Request Indication Response Confirmation Init Complete

X_PHC_P_LCAP_AUDIO U U M

X_PHC_P_LCAP_VIDEO U U M

X_PHC_P_LCAP_DATA U U M

X_PHC_P_LCAP_HDATA U U M

X_PHC_P_LCAP_TFRATE U U M

X_PHC_P_LCAP_TFLINES U U M

X_PHC_P_LCAP_MISC U U M

X_PHC_P_LCAP_DATAPPL U U M

X_PHC_P_LCAP_NONSTD U U C

X_PHC_P_FALLBACK U

X_PHC_P_RCAP_AUDIO M

X_PHC_P_RCAP_VIDEO M

X_PHC_P_RCAP_DATA M

X_PHC_P_RCAP_HDATA M

X_PHC_P_RCAP_TFRATE M

X_PHC_P_RCAP_TFLINES M

X_PHC_P_RCAP_MISC M

X_PHC_P_RCAP_DATAPPL M

X_PHC_P_RCAP_NONSTD C

172 Recommendation T.180 (06/98)

Table I.5-7 specifies the communication mode parameters. They are always returned by the init-
complete primitive and indicate the receive and transmit mode that is currently used in the
audiovisual communication on the actually established connection. The receive mode parameters
share the prefix X_PHC_P_RMOD_ in their names and the transmit mode parameters share the
prefix X_PHC_P_TMOD_.

Table I.5-7/T.180 – Communication mode parameters of the
Connection Establishment service

Parameter Connect service

 Request Indication Response Confirmation Init-complete

X_PHC_P_RMOD_AUDIO M

X_PHC_P_RMOD_VIDEO M

X_PHC_P_RMOD_DATA M

X_PHC_P_RMOD_HDATA M

X_PHC_P_RMOD_TFRATE M

X_PHC_P_RMOD_SYNC M

X_PHC_P_RMOD_DATAPPL M

X_PHC_P_RMOD_MISC M

X_PHC_P_TMOD_AUDIO M

X_PHC_P_TMOD_VIDEO M

X_PHC_P_TMOD_DATA M

X_PHC_P_TMOD_HDATA M

X_PHC_P_TMOD_TFRATE M

X_PHC_P_TMOD_SYNC M

X_PHC_P_TMOD_DATAPPL M

X_PHC_P_TMOD_MISC M

X_PHC_P_MODE_TFLINES M

I.5.7.2.3 Service parameter descriptions

Tables I.5-8 to I.5-26 define the capability parameters for the elements of the Connection
Establishment service. The definitions of the communication mode parameters can be found below
in I.5.7.3.2, "Mode Switch service".

 Recommendation T.180 (06/98) 173

I.5.7.2.3.1 Local capability parameters

Table I.5-8/T.180

Parameter name X_PHC_P_LCAP_AUDIO

Type of value long

Legal values X_PHC_PV_CAPNON
X_PHC_PV_AUDIO_711_A
X_PHC_PV_AUDIO_711_U
X_PHC_PV_AUDIO_722_64
X_PHC_PV_AUDIO_722_48
X_PHC_PV_AUDIO_16K
X_PHC_PV_AUDIO_ISO

Default value The default value is defined by the value of the X_PHC_O_LCAP_AUDIO option.

Description The parameter specifies the audio reception capabilities of the local receiver. The
parameter values correspond to the audio capabilities defined in the BAS table of
Recommendation H.221:

X_PHC_PV_CAPNON No audio capability defined;
X_PHC_PV_AUDIO_711_A Audio decoding G.711, A-law;
X_PHC_PV_AUDIO_711_U Audio decoding G.711, µ-law;
X_PHC_PV_AUDIO_722_64 Audio decoding G.722 (mode 1) and G.711;
X_PHC_PV_AUDIO_722_48 Audio decoding G.722 (modes 1, 2, 3) and G.711;
X_PHC_PV_AUDIO_16K Audio decoding G.728 and G.711;
X_PHC_PV_AUDIO_ISO Audio decoding ISO standard at all rates up to
 384 kbit/s;

It is possible to select more than one of the audio capabilities listed above. In this
case the parameter values have to be combined using a bit-wise OR. Each
parameter value sets one bit position of the X_PHC_P_LCAP_AUDIO parameter.

174 Recommendation T.180 (06/98)

Table I.5-9/T.180

Parameter name X_PHC_P_LCAP_VIDEO

Type of value long

Legal values X_PHC_PV_CAPNON
X_PHC_PV_VIDEO_QCIF
X_PHC_PV_VIDEO_CIF
X_PHC_PV_VIDEO_PINV1
X_PHC_PV_VIDEO_PINV2
X_PHC_PV_VIDEO_PINV3
X_PHC_PV_VIDEO_PINV4
X_PHC_PV_VIDEO_IMP
X_PHC_PV_VIDEO_ISO
X_PHC_PV_VIDEO_AVISO

Default value The default value is defined by the value of the X_PHC_O_LCAP_VIDEO
option.

Description The parameter specifies the video reception capabilities of the local receiver. The
parameter values correspond to the video capabilities defined in the BAS table of
Recommendation H.221:

 X_PHC_PV_CAPNON No video capability defined;
X_PHC_PV_VIDEO_QCIF Video decoding of QCIF only;
X_PHC_PV_VIDEO_CIF Video decoding of CIF and QCIF;
X_PHC_PV_VIDEO_PINV1 Minimum picture interval of 1/29.97;
X_PHC_PV_VIDEO_PINV2 Minimum picture interval of 2/29.97;
X_PHC_PV_VIDEO_PINV3 Minimum picture interval of 3/29.97;
X_PHC_PV_VIDEO_PINV4 Minimum picture interval of 4/29.97;
X_PHC_PV_VIDEO_IMP Improved video algorithm (for future use only!);
X_PHC_PV_VIDEO_ISO Video decoding to ISO standard.

 X_PHC_PV_VIDEO_AVISO Video decoding composite audio/video signal to
 ISO standard.

It is possible to select more than one of the video capabilities listed above. In this
case the parameter values have to be combined using a bit-wise OR. Each
parameter value sets one bit position of the X_PHC_P_LCAP_VIDEO parameter.

 Recommendation T.180 (06/98) 175

Table I.5-10/T.180

Parameter name X_PHC_P_LCAP_DATA

Type of value long

Legal values X_PHC_PV_CAPNON

X_PHC_PV_DATA_VAR
X_PHC_PV_DATA_300 X_PHC_PV_DATA_1200
X_PHC_PV_DATA_4800 X_PHC_PV_DATA_6400
X_PHC_PV_DATA_8000 X_PHC_PV_DATA_9600
X_PHC_PV_DATA_14400 X_PHC_PV_DATA_16000
X_PHC_PV_DATA_24000 X_PHC_PV_DATA_32000
X_PHC_PV_DATA_40000 X_PHC_PV_DATA_48000
X_PHC_PV_DATA_56000 X_PHC_PV_DATA_62400
X_PHC_PV_DATA_64000

X_PHC_PV_DATA_MLP4000 X_PHC_PV_DATA_MLP6400
X_PHC_PV_DATA_VARMLP

Default value The default value is defined by the value of the X_PHC_O_LCAP_DATA option.

Description The parameter specifies the Low-Speed Data (LSD) reception capabilities of the
local receiver. The parameter values correspond to the LSD capabilities defined in
the BAS table of Recommendation H.221:

X_PHC_PV_CAPNON No LSD capability defined;
X_PHC_PV_DATA_VAR Can accept variable rate of LSD;
X_PHC_PV_DATA_300 Can accept LSD at 300 bit/s;
X_PHC_PV_DATA_1200 Can accept LSD at 1200 bit/s;
X_PHC_PV_DATA_4800 Can accept LSD at 4800 bit/s;
X_PHC_PV_DATA_6400 Can accept LSD at 6400 bit/s;
X_PHC_PV_DATA_8000 Can accept LSD at 8000 bit/s;
X_PHC_PV_DATA_9600 Can accept LSD at 9600 bit/s;
X_PHC_PV_DATA_14400 Can accept LSD at 14 400 bit/s;
X_PHC_PV_DATA_16000 Can accept LSD at 16 000 bit/s;
X_PHC_PV_DATA_24000 Can accept LSD at 24 000 bit/s;
X_PHC_PV_DATA_32000 Can accept LSD at 32 000 bit/s;
X_PHC_PV_DATA_40000 Can accept LSD at 40 000 bit/s;
X_PHC_PV_DATA_48000 Can accept LSD at 48 000 bit/s;
X_PHC_PV_DATA_56000 Can accept LSD at 56 000 bit/s;
X_PHC_PV_DATA_62400 Can accept LSD at 62 400 bit/s;
X_PHC_PV_DATA_64000 Can accept LSD at 64 000 bit/s;
X_PHC_PV_DATA_MLP4000 Can accept MLP at 4 kbit/s in the SC;
X_PHC_PV_DATA_MLP6400 Can accept MLP at 6.4 kbit/s in the SC;
X_PHC_PV_DATA_VARMLP Can accept MLP at up to 64 kbit/s in the IC.

It is possible to select more then one of the low-speed data capabilities listed above.
In this case the parameter values have to be combined using a bit-wise OR. Each
parameter value sets one bit position of the X_PHC_P_LCAP_DATA parameter.

176 Recommendation T.180 (06/98)

Table I.5-11/T.180

Parameter
name

X_PHC_P_LCAP_HDATA

Type of value long

Legal values X_PHC_PV_CAPNON

X_PHC_PV_HDATA_64 X_PHC_PV_HDATA_128
X_PHC_PV_HDATA_192 X_PHC_PV_HDATA_256
X_PHC_PV_HDATA_320 X_PHC_PV_HDATA_384
X_PHC_PV_HDATA_512 X_PHC_PV_HDATA_768
X_PHC_PV_HDATA_1152 X_PHC_PV_HDATA_1536
X_PHC_PV_HDATA_VAR

X_PHC_PV_HDATA_MLP62 X_PHC_PV_HDATA_MLP64
X_PHC_PV_HDATA_MLP128 X_PHC_PV_HDATA_MLP192
X_PHC_PV_HDATA_MLP256 X_PHC_PV_HDATA_MLP320
X_PHC_PV_HDATA_MLP384
X_PHC_PV_HDATA_VARMLP

Default value The default value is defined by the value of the X_PHC_O_LCAP_HDATA option.

Description The parameter specifies the high-speed data reception capabilities of the local receiver.
The parameter values correspond to the HSD capabilities defined in the BAS table of
Recommendation H.221:

X_PHC_PV_CAPNON No HSD capability defined;
X_PHC_PV_HDATA_64 Can accept HSD at 64 kbit/s;
X_PHC_PV_HDATA_128 Can accept HSD at 128 kbit/s;
X_PHC_PV_HDATA_192 Can accept HSD at 192 kbit/s;
X_PHC_PV_HDATA_256 Can accept HSD at 256 kbit/s;
X_PHC_PV_HDATA_320 Can accept HSD at 320 kbit/s;
X_PHC_PV_HDATA_384 Can accept HSD at 384 kbit/s;
X_PHC_PV_HDATA_512 Can accept HSD at 512 kbit/s (for future use only);
X_PHC_PV_HDATA_768 Can accept HSD at 768 kbit/s (for future use only);
X_PHC_PV_HDATA_1152 Can accept HSD at 1152 kbit/s (for future use only);
X_PHC_PV_HDATA_1536 Can accept HSD at 1536 kbit/s (for future use only);
X_PHC_PV_HDATA_VAR Can accept variable rate of HSD;
X_PHC_PV_HDATA_MLP62 Can accept MLP at 62.4 kbit/s;
X_PHC_PV_HDATA_MLP64 Can accept MLP at 64 kbit/s;
X_PHC_PV_HDATA_MLP128 Can accept MLP at 128 kbit/s;
X_PHC_PV_HDATA_MLP192 Can accept MLP at 192 kbit/s;
X_PHC_PV_HDATA_MLP256 Can accept MLP at 256 kbit/s;
X_PHC_PV_HDATA_MLP320 Can accept MLP at 320 kbit/s;
X_PHC_PV_HDATA_MLP384 Can accept MLP at 384 kbit/s;
X_PHC_PV_HDATA_VARMLP Can accept MLP at variable rate.

 It is possible to select more then one of the high-speed data capabilities listed above. In
this case the parameter values have to be combined using a bit-wise OR. Each parameter
value sets one bit position of the X_PHC_P_LCAP_HDATA parameter.

 Recommendation T.180 (06/98) 177

Table I.5-12/T.180

Parameter name X_PHC_P_LCAP_TFRATE

Type of value long

Legal values X_PHC_PV_CAPNON
X_PHC_PV_TFRATE_128
X_PHC_PV_TFRATE_192
X_PHC_PV_TFRATE_256
X_PHC_PV_TFRATE_512
X_PHC_PV_TFRATE_768
X_PHC_PV_TFRATE_1152
X_PHC_PV_TFRATE_1472

Default value The default value is defined by the value of the X_PHC_O_LCAP_TFRATE option.

Description The parameter specifies the transfer rate reception capabilities of the local receiver.
The parameter values correspond to the transfer rate capabilities defined in the BAS
table of Recommendation H.221:

X_PHC_PV_CAPNON No transfer rate capability defined;
X_PHC_PV_TFRATE_128 Capable of accepting transfer rate 128 kbit/s;
X_PHC_PV_TFRATE_192 Capable of accepting transfer rate 192 kbit/s;
X_PHC_PV_TFRATE_256 Capable of accepting transfer rate 256 kbit/s;
X_PHC_PV_TFRATE_512 Capable of accepting transfer rate 512 kbit/s;
X_PHC_PV_TFRATE_768 Capable of accepting transfer rate 768 kbit/s;
X_PHC_PV_TFRATE_1152 Capable of accepting transfer rate 1152 kbit/s;
X_PHC_PV_TFRATE_1472 Capable of accepting transfer rate 1472 kbit/s.

It is possible to select more then one of the transfer rate capabilities listed above. In
this case the parameter values have to be combined using a bit-wise OR. Each
parameter value sets one bit position of the X_PHC_P_LCAP_TFRATE parameter.

178 Recommendation T.180 (06/98)

Table I.5-13/T.180

Parameter name X_PHC_P_LCAP_TFLINES

Type of value long

Legal values X_PHC_PV_TFLINES_1B
X_PHC_PV_TFLINES_2B
X_PHC_PV_TFLINES_3B
X_PHC_PV_TFLINES_4B
X_PHC_PV_TFLINES_5B
X_PHC_PV_TFLINES_6B
X_PHC_PV_TFLINES_1H
X_PHC_PV_TFLINES_2H
X_PHC_PV_TFLINES_3H
X_PHC_PV_TFLINES_4H
X_PHC_PV_TFLINES_5H
X_PHC_PV_TFLINES_H11
X_PHC_PV_TFLINES_H12

Default value The default value is defined by the value of the X_PHC_O_LCAP_TFLINES option.

Description The parameter specifies the transfer line reception capabilities of the local receiver.
The parameter values correspond to the transfer line capabilities defined in the BAS
table of Recommendation H.221:

X_PHC_PV_TFLINES_1B Can handle AV data on one 64 kbit/s channel only;
X_PHC_PV_TFLINES_2B Can handle AV data on one or two 64 kbit/s
 channels;
X_PHC_PV_TFLINES_3B Can handle AV data on one to three 64 kbit/s
 channels;
X_PHC_PV_TFLINES_4B Can handle AV data on one to four 64 kbit/s
 channels;
X_PHC_PV_TFLINES_5B Can handle AV data on one to five 64 kbit/s
 channels;
X_PHC_PV_TFLINES_6B Can handle AV data on one to six 64 kbit/s
 channels;
X_PHC_PV_TFLINES_1H Can handle AV data on one 384 kbit/s channel;
X_PHC_PV_TFLINES_2H Can handle AV data on one or two 384 kbit/s
 channels;
X_PHC_PV_TFLINES_3H Can handle AV data on one to three 384 kbit/s
 channels;
X_PHC_PV_TFLINES_4H Can handle AV data on one to four 384 kbit/s
 channels;
X_PHC_PV_TFLINES_5H Can handle AV data on one to five 384 kbit/s
 channels;
X_PHC_PV_TFLINES_H11 Can handle AV data on a 1536 kbit/s channel;
X_PHC_PV_TFLINES_H12 Can handle AV data on a 1920 kbit/s channel.

The selected parameter value defines the maximum number of transfer lines which
can be handled by the local receiver. According to Recommendation H.242 the
transfer lines capability has an explicit meaning (the ability to handle as many
channels as indicated) but also an implicit meaning. The calling terminal implicitly
signals its intention to establish the indicated number of channels and the called
terminal implicitly signals its intention to accept the indicated number of
connections.

 Recommendation T.180 (06/98) 179

Table I.5-14/T.180

Parameter name X_PHC_P_LCAP_MISC

Type of value long

Legal values X_PHC_PV_CAPNON
X_PHC_PV_MISC_ENCR
X_PHC_PV_MISC_ESC
X_PHC_PV_MISC_MBE
X_PHC_PV_MISC_RESTRICT
X_PHC_PV_MISC_6BHCOMP

Default value The default value is defined by the value of the X_PHC_O_LCAP_MISC option.

Description The parameter specifies the miscellaneous reception capabilities of the local
receiver. The parameter values correspond to the capabilities defined in the BAS
table of Recommendation H.221:

X_PHC_PV_CAPNON No capability of this type defined;
X_PHC_PV_MISC_ENCR Capable of handling the encryption on the ECS
 channel;
X_PHC_PV_MISC_ESC Capable of accepting non-zero call/family ESC
 codes;
X_PHC_PV_MISC_MBE Capable of handling multiple-byte extension
 messages;

 X_PHC_PV_MISC_RESTRICT Restricted mode: can work only at
 p × 56 kbit/s;
X_PHC_PV_MISC_6BHCOMP Capable of providing compatibility between 6B
 and H0

terminals.

It is possible to select more than one of the miscellaneous capabilities listed above.
In this case the parameter values have to be combined using a bit-wise OR. Each
parameter value sets one bit position of the X_PHC_P_LCAP_MISC parameter.

Table I.5-15/T.180

Parameter
name

X_PHC_P_LCAP_DATAPPL

Type of value long

Legal values X_PHC_PV_CAPNON
X_PHC_PV_APPL_STILLPIC_LSD
X_PHC_PV_APPL_STILLPIC_HSD
X_PHC_PV_APPL_STILLPIC_SPATIAL
X_PHC_PV_APPL_STILLPIC_PROG
X_PHC_PV_APPL_STILLPIC_ARITH
X_PHC_PV_APPL_STILLIMAGE
X_PHC_PV_APPL_CURSORDATA
X_PHC_PV_APPL_FAX3
X_PHC_PV_APPL_FAX4
X_PHC_PV_APPL_V120_LSD
X_PHC_PV_APPL_V120_HSD

180 Recommendation T.180 (06/98)

Table I.5-15/T.180 (concluded)

Default value The default value is defined by the value of the X_PHC_O_LCAP_DATAPPL
option.

Description The parameter specifies the reception application capabilities within LSD/HSD
channels of the local receiver. The parameter values correspond to the capabilities
defined in the BAS table of Recommendation H.221:

X_PHC_PV_CAPNON No capability of this type defined;
X_PHC_PV_APPL_STILLPIC_LSD Capable of the ISO still picture baseline
 mode on LSD;
X_PHC_PV_APPL_STILLPIC_HSD Capable of the ISO still picture baseline
 mode on HSD;
X_PHC_PV_APPL_STILLPIC_SPATIAL Capable of the ISO still picture and
 spatial modes;
X_PHC_PV_APPL_STILLPIC_PROG Capable of the ISO still picture and
 progressive modes;
X_PHC_PV_APPL_STILLPIC_ARITH Capable of the ISO still picture and
 arithmetic modes;
X_PHC_PV_APPL_STILLIMAGE Capable of still image encoded according
 to Recommendation H.261;
X_PHC_PV_APPL_CURSORDATA Can handle graphic cursor data;
X_PHC_PV_APPL_FAX3 Capable receiving Fax group 3;
X_PHC_PV_APPL_FAX4 Capable receiving Fax group 4;
X_PHC_PV_APPL_V120_LSD Capable of V.120 terminal adaptation
 within LSD;
X_PHC_PV_APPL_V120_HSD Capable of V.120 terminal adaptation
 within HSD.

It is possible to select more than one of the application capabilities listed above. In
this case the parameter values have to be combined using a bit-wise OR. Each
parameter value sets one bit position of the X_PHC_P_LCAP_DATAPPL parameter.

Table I.5-16/T.180

Parameter name X_PHC_P_LCAP_NONSTD

Type of value unsigned char [], 5 ... 255 bytes
or no value at all to revoke a previously specified non-standard capability

Legal values a sequence of bytes not longer than X_PHC_C_MAX_NONSTD

Default value none

Description The parameter specifies the non-standard reception capabilities of the local
receiver. The maximum length for a non-CCITT capabilities message is
255 bytes. The minimum length is 5 bytes.

[byte 0] Country code according to Recommendation T.35;
[byte 1] Country code;
[byte 2, 3] Manufacturer code (e.g. company 4711);
[byte 4-n] e.g. terminal type identity.

The first two bytes define the country code and the next two bytes specify
the terminal manufacturer code. The first byte of the country code is set
according to Recommendation T.35; the second byte and bytes 3 to 4 of the
manufacturer code are assigned nationally.

Note that due to the effective bandwidth of the BAS (0.4 kbit/s or 50 bytes
per second), the transmission time for a capability exchange including non-
standard capabilities of maximum length may be more than 5 seconds.

 Recommendation T.180 (06/98) 181

Table I.5-17/T.180

Parameter name X_PHC_P_FALLBACK

Type of value unsigned long

Legal values PV_TRUE
PV_FALSE

Default value PV_TRUE

Description The parameter specifies the fallback feature of the local terminal. The
X_PHC_P_FALL_BACK parameter is a user optional service parameter of
the Connect Request service element. It enables/disables the automatic
retrial if the initial connection establishment with service "video phone"
failed. In the retrial the service "phone" is used what usually allows to
establish a connection to a non video phone terminal, e.g. an ordinary ISDN
phone. If the retrial is successful, the audio mode G.711 unframed is
indicated in the init-complete. If the retrial is not successful, the connect
request fails and a negative connect confirmation is passed to the user.

If X_PHC_P_FALL_BACK is set to PV_FALSE the automatic "phone"
retrial is omitted and a connect request will fail if the "video phone" call is
not accepted.

I.5.7.2.3.2 Remote capability parameters

Table I.5-18/T.180

Parameter name X_PHC_P_RCAP_AUDIO

Type of value long

Legal values X_PHC_PV_CAPNON
X_PHC_PV_AUDIO_711_A
X_PHC_PV_AUDIO_711_U
X_PHC_PV_AUDIO_722_64
X_PHC_PV_AUDIO_722_48
X_PHC_PV_AUDIO_16K
X_PHC_PV_AUDIO_ISO

Default value none

Description The parameter specifies the audio reception capabilities of the remote
receiver. The parameter values are described above; see parameter
X_PHC_P_LCAP_AUDIO. The value X_PHC_PV_CAPNON indicates
that no value is set by the remote terminal.

182 Recommendation T.180 (06/98)

Table I.5-19/T.180

Parameter name X_PHC_P_RCAP_VIDEO

Type of value long

Legal values X_PHC_PV_CAPNON
X_PHC_PV_VIDEO_QCIF
X_PHC_PV_VIDEO_CIF
X_PHC_PV_VIDEO_PINV1
X_PHC_PV_VIDEO_PINV2
X_PHC_PV_VIDEO_PINV3
X_PHC_PV_VIDEO_PINV4
X_PHC_PV_VIDEO_IMP
X_PHC_PV_VIDEO_ISO
X_PHC_PV_VIDEO_AVISO

Default value none

Description The parameter specifies the video reception capabilities of the remote
receiver. The parameter values are described above; see parameter
X_PHC_P_LCAP_VIDEO. The value X_PHC_PV_CAPNON indicates
that no value is set by the remote terminal.

Table I.5-20/T.180

Parameter name X_PHC_P_RCAP_DATA

Type of value long

Legal values X_PHC_PV_CAPNON

X_PHC_PV_DATA_VAR
X_PHC_PV_DATA_300 X_PHC_PV_DATA_1200
X_PHC_PV_DATA_4800 X_PHC_PV_DATA_6400
X_PHC_PV_DATA_8000 X_PHC_PV_DATA_9600
X_PHC_PV_DATA_14400 X_PHC_PV_DATA_16000
X_PHC_PV_DATA_24000 X_PHC_PV_DATA_32000
X_PHC_PV_DATA_40000 X_PHC_PV_DATA_48000
X_PHC_PV_DATA_56000 X_PHC_PV_DATA_62400
X_PHC_PV_DATA_64000

X_PHC_PV_DATA_MLP4000 X_PHC_PV_DATA_MLP6400
X_PHC_PV_DATA_VARMLP

Default value none

Description The parameter specifies the low-speed data reception capabilities of the
remote receiver. The parameter values are described above; see parameter
X_PHC_P_LCAP_DATA. The value X_PHC_PV_CAPNON indicates
that no value is set by the remote terminal.

 Recommendation T.180 (06/98) 183

Table I.5-21/T.180

Parameter name X_PHC_P_RCAP_HDATA

Type of value long

Legal values X_PHC_PV_CAPNON

X_PHC_PV_HDATA_64 X_PHC_PV_HDATA_128
X_PHC_PV_HDATA_192 X_PHC_PV_HDATA_256
X_PHC_PV_HDATA_320 X_PHC_PV_HDATA_384
X_PHC_PV_HDATA_512 X_PHC_PV_HDATA_768
X_PHC_PV_HDATA_1152 X_PHC_PV_HDATA_1536
X_PHC_PV_HDATA_VAR

X_PHC_PV_HDATA_MLP62 X_PHC_PV_HDATA_MLP64
X_PHC_PV_HDATA_MLP128 X_PHC_PV_HDATA_MLP192
X_PHC_PV_HDATA_MLP256 X_PHC_PV_HDATA_MLP320
X_PHC_PV_HDATA_MLP384
X_PHC_PV_HDATA_VARMLP

Default value none

Description The parameter specifies the high-speed data reception capabilities of the
remote receiver. The parameter values are described above; see parameter
X_PHC_P_LCAP_HDATA. The value X_PHC_PV_CAPNON indicates
that no value is set by the remote terminal.

Table I.5-22/T.180

Parameter name X_PHC_P_RCAP_TFRATE

Type of value long

Legal values X_PHC_PV_CAPNON
X_PHC_PV_TFRATE_128
X_PHC_PV_TFRATE_192
X_PHC_PV_TFRATE_256
X_PHC_PV_TFRATE_512
X_PHC_PV_TFRATE_768
X_PHC_PV_TFRATE_1152
X_PHC_PV_TFRATE_1472

Default value none

Description The parameter specifies the transfer rate reception capabilities of the
remote receiver. The parameter values are described above; see parameter
X_PHC_P_LCAP_TFRATE. The value X_PHC_PV_CAPNON indicates
that no value is set by the remote terminal.

184 Recommendation T.180 (06/98)

Table I.5-23/T.180

Parameter name X_PHC_P_RCAP_TFLINES

Type of value long

Legal values X_PHC_PV_TFLINES_1B
X_PHC_PV_TFLINES_2B
X_PHC_PV_TFLINES_3B
X_PHC_PV_TFLINES_4B
X_PHC_PV_TFLINES_5B
X_PHC_PV_TFLINES_6B
X_PHC_PV_TFLINES_1H
X_PHC_PV_TFLINES_2H
X_PHC_PV_TFLINES_3H
X_PHC_PV_TFLINES_4H
X_PHC_PV_TFLINES_5H
X_PHC_PV_TFLINES_H11
X_PHC_PV_TFLINES_H12

Default value none

Description The parameter specifies the transfer line reception capabilities of the
remote receiver. The parameter values are described above; see parameter
X_PHC_P_LCAP_TFLINES.

Table I.5-24/T.180

Parameter name X_PHC_P_RCAP_MISC

Type of value long

Legal values X_PHC_PV_CAPNON
X_PHC_PV_MISC_ENCR
X_PHC_PV_MISC_ESC
X_PHC_PV_MISC_MBE
X_PHC_PV_MISC_RESTRICT
X_PHC_PV_MISC_6BHCOMP

Default value none

Description The parameter specifies the miscellaneous reception capabilities of the
remote receiver. The parameter values are described above; see parameter
X_PHC_P_LCAP_MISC. The value X_PHC_PV_CAPNON indicates
that no value is set by the remote terminal.

 Recommendation T.180 (06/98) 185

Table I.5-25/T.180

Parameter name X_PHC_P_RCAP_DATAPPL

Type of value long

Legal values X_PHC_PV_CAPNON
X_PHC_PV_APPL_STILLPIC_LSD
X_PHC_PV_APPL_STILLPIC_HSD
X_PHC_PV_APPL_STILLPIC_SPATIAL
X_PHC_PV_APPL_STILLPIC_PROG
X_PHC_PV_APPL_STILLPIC_ARITH
X_PHC_PV_APPL_STILLIMAGE
X_PHC_PV_APPL_CURSORDATA
X_PHC_PV_APPL_FAX3
X_PHC_PV_APPL_FAX4
X_PHC_PV_APPL_V120_LSD
X_PHC_PV_APPL_V120_HSD

Default value none

Description The parameter specifies the reception application capabilities within
LSD/HSD channels of the remote receiver. The parameter values are
described above; see parameter X_PHC_P_LCAP_DATAPPL. The value
X_PHC_PV_CAPNON indicates that no value is set by the remote
terminal.

Table I.5-26/T.180

Parameter name X_PHC_P_RCAP_NONSTD

Type of value unsigned char [], 5 ... 255 bytes

Legal values a sequence of bytes not longer than X_PHC_C_MAX_NONSTD

Default value none

Description The parameter specifies the non-standard reception capabilities of the
remote receiver. The parameter values are described above; see parameter
X_PHC_P_LCAP_NONSTD.

I.5.7.3 Services in the connected state

The connected state of an audiovisual communication is entered with the reception of the
init-complete (X_PHC_SP_INIT_COMPL) service primitive. There are four services available that
can be used in the connected state to control the communication:

• the Capability Exchange service to initiate a capability exchange with the remote terminal,
e.g. to signal a different own capability set;

• the Mode Switch service to change the currently used communication mode, e.g. to open or
close a low speed data channel;

• the Data Transfer service to send and receive data on a previously opened data channel;

• the Control and Indication (C&I) service to send BAS commands to the remote terminal or
receive BAS commands sent by the remote terminal.

The capability exchange, the mode switch, and the C&I services all use the BAS for transmission.
Therefore, requests from these services have to be scheduled so that the BAS is used by only one
service at a time. The (effective) transfer rate available in the BAS is 0.4 kbit/s, which is equal to
50 bytes per second; thus the time needed for transmission of a command must not be neglected. The

186 Recommendation T.180 (06/98)

longest possible non-standard command, for example, comprises 256 bytes, and the transmission in
the BAS would take a little bit more than five seconds. During this time the BAS is occupied and
cannot be used to transmit another request.

To avoid that the BAS is overrun, a flow control mechanism is used. After each request concerning
the BAS, the application has to wait for the corresponding confirmation before the next BAS request
is passed to the service provider. This does not only apply within a service but also between the three
services using the BAS. If, for example, the application just requested a capability exchange, no
mode switch request and no transmit C&I request may be passed to the service provider until the
capability exchange confirmation is received. For each request concerning the BAS, the service
provider checks whether there is an outstanding confirmation and will reject the request and generate
an error indication with cause CC_UNEXPECT if there is one.

I.5.7.3.1 Capability Exchange service

The Capability Exchange service is used to change one or more receive capabilities of the local
terminal dynamically while the AV communication is active. The service elements capability
exchange request and capability exchange confirmation are provided for this. They are defined as
service primitives that are exchanged with the service provider through the XAPI function x_sndsp()
and x_rcvsp().

I.5.7.3.1.1 Service description

The capability exchange request primitive initiates a capability exchange sequence according to
Recommendation H.242. It forces framing in both directions of transmission and the exchange of
terminal capability codes with the peer entity. Either terminal may initiate the sequence, and there is
no problem caused by both doing so simultaneously or nearly simultaneously. The terminal X which
initiates the capability exchange first reinstates framing with the procedure defined in
Recommendation H.242 and then transmits its current capability set. When the other terminal Y
detects the incoming capability set, it begins transmission of its own set of capability codes. Note
that the receiving terminal Y need not change its capability set in response to the new capability set
of terminal Y.

The successful completion of the capability exchange sequence is indicated to the initiator with an
capability exchange confirmation service primitive. It conveys two capability sets as output service
parameters: the own capabilities (that have been included in the request) and the capabilities of the
remote terminal. Both capability sets are complete, i.e. all parameters are present with one exception:
the non-standard capability parameter is not present if no non-standard capabilities are specified
locally or received from the remote terminal. Note that a capability parameter will take the value
X_PHC_PV_CAPNON if no such capability is present. The application should store the remote
capabilities and observe them as limits to avoid failures in later mode switch requests.

The capability exchange request requires the BAS for transmission and thus has to be coordinated
with the other BAS requests (see I.5.7.3 above). No capability exchange request may be submitted
while a capability exchange-, an add line-, a mode switch-, or a transfer C&I confirmation is
outstanding.

The capability exchange sequence is supervised by a timer (value about 10s). If the timer expires
without multiframe alignment, an error indication is generated with cause code CC_OTHER and
diagnostic X_PHC_DC_UNSYNC. If multiframe alignment could be achieved, but, even with
retrials, no complete capability set of the remote terminal was received within one timer period, an
error indication with cause CC_OTHER and diagnostic X_PHC_DC_NOCAPSET is generated.

 Recommendation T.180 (06/98) 187

The specification of the own, local capabilities parameters in the capability exchange request service
primitive is optional. For each parameter not specified in the capability exchange request service
primitive, the protocol machine adds the currently used value to the transmitted capability set. If the
XAPI user wants to revoke a capability from the currently used set, it depends on the capability
parameter which value has to be specified in the capability exchange request:

• For a parameter that represents a group of capabilities and whose actual value is formed as
the bit-wise OR combination of several defined values, X_PHC_PV_CAPNON has to be
specified to revoke all capabilities of this group. To revoke only some of the present
capabilities, the new value is formed by switching off the bits corresponding to the
capabilities to be revoked.

 Example: Assume that the variable curr_data_cap holds the current value of low-speed data
capabilities and that this value is equal to X_PHC_PV_DATA_1200 |
X_PHC_PV_DATA_9600 | X_PHC_PV_DATA_14400.

 To revoke the capability to receive LSD at 1200 bit/s, the value curr_data_cap
& ~X_PHC_PV_DATA_1200 has to be specified for parameter X_PHC_P_LCAP_DATA
in a capability exchange request.

• For a parameter that takes exactly one value (and not the bit-wise OR combination of several
defined values), the new value has to be specified to revoke or decrease capabilities.

 Example: To decrease the number of transfer lines supported from at most six B-channels to
at most two B-channels, the value of the X_PHC_P_LCAP_TFLINES has to be changed
from X_PHC_PV_TFLINES_6B to X_PHC_PV_TFLINES_2B in a capability exchange.

• To revoke non-standard capabilities, the parameter X_PHC_LCAP_NONSTD has to be
specified in a capability exchange request without a value.

Hint: There is a way to find out the currently active capability sets: a capability exchange request
without any parameter will leave all local capabilities untouched and initiate a capability exchange
with the currently used set. The capability exchange confirmation will yield the complete own and
remote capability set.

The service elements and their corresponding XAPI functions needed for Capability Exchange are
described in Table I.5-27.

Table I.5-27/T.180 – Service elements and their corresponding XAPI functions
for Capability Exchange

Service
element

XAPI
function

Service element identifier Description

Capability
Exchange
Request

x_sndsp() X_PHC_SP_CAP_EXCHANGE_Q The Capability Exchange Request is
passed to the provider to initiate a
capability exchange sequence
according to
Recommendation H.242. The service
element may be used by the active
and the passive communication
partner. The identifier of the
corresponding service primitive is
X_PHC_SP_CAP_EXCHANGE_Q.

188 Recommendation T.180 (06/98)

Table I.5-27/T.180 – Service elements and their corresponding XAPI functions
for Capability Exchange (concluded)

Service
element

XAPI
function

Service element identifier Description

Capability
Exchange
Confirmation

x_rcvsp() X_PHC_SP_CAP_EXCHANGE_C The Capability Exchange
Confirmation is passed to the
initiator of the capability exchange
request as acknowledgement of the
command. The possibly changed
local and remote capabilities are
indicated to the user as service
parameters. The identifier of the
corresponding service primitive is
X_PHC_SP_CAP_EXCHANGE_C.

I.5.7.3.1.2 Service parameters

Table I.5-28 specifies the parameters of the Capability Exchange service.

Table I.5-28/T.180 – Parameters of the Capability Exchange service

Parameter Capability Exchange service

 Request Confirmation

X_PHC_P_LCAP_AUDIO U M

X_PHC_P_LCAP_VIDEO U M

X_PHC_P_LCAP_DATA U M

X_PHC_P_LCAP_HDATA U M

X_PHC_P_LCAP_TFRATE U M

X_PHC_P_LCAP_TFLINES U M

X_PHC_P_LCAP_MISC U M

X_PHC_P_LCAP_DATAPPL U M

X_PHC_P_LCAP_NONSTD U C

X_PHC_P_RCAP_AUDIO M

X_PHC_P_RCAP_VIDEO M

X_PHC_P_RCAP_DATA M

X_PHC_P_RCAP_HDATA M

X_PHC_P_RCAP_TFRATE M

X_PHC_P_RCAP_TFLINES M

X_PHC_P_RCAP_MISC M

X_PHC_P_RCAP_DATAPPL M

X_PHC_P_RCAP_NONSTD C

The definitions of the capability parameters can be found above in I.1.7.2, "Connection
Establishment service".

 Recommendation T.180 (06/98) 189

I.5.7.3.2 Mode Switch service

The Mode Switch service enables the application program to dynamically switch the mode of an
active AV communication or increase/decrease the number of connected channels in a multichannel
connection. The service can be used at any time during a communication, after the mode
initialization procedure has been completed, i.e. after an X_PHC_SP_INIT_COMPL has been
received. The mode switching sequence as described in Recommendation H.242 is performed to
change the used communication mode. Furthermore, the application is notified about mode switches
which are initiated by the remote terminal.

I.5.7.3.2.1 Service description

There are service elements to increase or decrease the number of channels in a multichannel
connection and there are service elements that initiate or indicate a change of the communication
mode on the currently established channels.

In an AV communication the two transmission directions are, in principle, independent. There may
be symmetrical modes where the mode in receive direction is the same as in transmit direction and
asymmetrical ones where the two modes differ. For a conversational application, a videophone for
example, a symmetrical mode would be best, whereas to operate a remote supervision camera would
require an asymmetrical communication mode.

Thus, the communication mode as indicated to the application program distinguishes receive and
transmission modes. For convenience, the global communication mode is split into several
categories, e.g. video mode, audio mode, and data mode. For each category there is one service
parameter giving the current receive mode and one for the transmit mode. The only exception is the
number of established transfer lines (B-channels) because each channel provides a full-duplex
connection that can be used in both directions simultaneously. There is only one parameter giving the
number of currently connected lines.

After successful completion of the mode initialization procedure on the Initial Channel (IC),
Additional Channels (ACs) may be added to the AV connection with an add line request to increase
the total bandwidth. Only the active AV terminal that initiated the establishment of the IC [the
terminal which called x_conreq()], is allowed to establish additional channels. Up to five ACs may
be added simultaneously with one add line request. The number of channels to be established and the
addresses to be used are specified as service parameters. The add line confirmation, which is
generated as acknowledgment to an add line request, indicates the number of successfully established
new channels. A value of 0 indicates that no new channels could be established. A mode switch
indication (see below) will follow when the new channels are synchronized to the initial channel and
included in the AV communication. The parameter X_PHC_P_MODE_TFLINES then indicates the
now available bandwidth (number of channels). As default the new channels are used to increase the
video bandwidth. No add line request may be submitted while an add line confirmation or any other
confirmation from a BAS request (capability exchange-, mode switch-, or transfer C&I confirmation)
is outstanding. Altogether, inclusive of the initial channel, no more channels will be established than
those indicated by the value of the X_PHC_P_LCAP_TFLINES parameter. An add line request with
this maximum number of channels already reached will be answered immediately with an add line
confirmation of 0 channels.

The add line request may be used to establish additional B-channels in a multi-B-channel connection
and to set up additional H0-channels in a multi-H0-channel connection. Only channels of the same
type may be combined in a multichannel connection.

When establishing new channels, the service provider uses the addresses (phone numbers) in the
same sequence as they are specified in the add line request. Each number is tried only once. The
process stops when either the requested or maximum number of channels is reached or the specified

190 Recommendation T.180 (06/98)

numbers are exhausted. Then the add line confirmation is generated which indicates the number of
successful established channels and the corresponding addresses. Unused addresses are ignored. In
the case of basic rate interfaces (S0) one has to specify a number twice to set up two B-channels on
the same interface. If an additional channel shall be established at the same interface as the initial
channel, the number used in the x_conreq() has to be specified in the add line request too.

On the passive side, the service provider automatically accepts incoming calls for additional
channels, as long as the maximum number of channels defined in X_PHC_P_LCAP_TFLINES is not
yet reached. When the new channel is successfully synchronized with the initial channel, the passive
application is informed about the new number of channels with a mode switch indication. As on the
active side, the parameter X_PHC_P_MODE_TFLINES indicates the now available number of
channels. Note that only the terminal that initiated establishment of the initial channel is allowed to
establish additional channels. The service provider will generate an error indication with cause code
CC_UNEXPECT if an add line request is submitted on the passive side of an AV connection.

With a hang-up line request, previously established additional channels may be disconnected again.
A parameter specifies the number of channels to be closed. The hang-up line request implies a mode
switch request that decreases the used transfer rate so that the specified number of channels becomes
idle. These idle channels are then disconnected. Note that only additional channels may be closed
with a hang-up line request; the initial channel has to be disconnected with x_relreq() or x_snddis().
As response to a hang-up line request, the application gets a mode switch indication in which the
value of X_PHC_P_MODE_TFLINES is decremented by the number of closed channels. The
hang-up line request may be used by either the active terminal or the passive terminal. If used on the
passive side, it is advisable to decrease the value of X_PHC_P_LCAP_TFLINES accordingly in a
following capability exchange, to prevent the active terminal from re-establishing the closed
additional channels.

The mode switch request can be used by either terminal at any time after successful mode
initialization (reception of X_PHC_SP_INIT_COMPL) to dynamically change the mode in an active
AV communication. The mode switching sequence according to Recommendation H.242 is
followed. If a mode switch is requested while the Codec is receiving or transmitting unframed, the
appropriate frame reinstatement procedure is executed automatically prior to the mode switch to
enforce a framed mode. The service provider generates a mode switch confirmation as response to a
previous mode switch request. The new communication mode is indicated by the service parameters.
The mode switch request requires the BAS for transmission and thus has to be coordinated with the
other BAS requests (see I.5.7.3 above). No mode switch request may be submitted while a mode
switch-, an add line-, a capability exchange-, or a transfer C&I confirmation is outstanding.

A mode switch request will fail:

• if one of the specified parameters has an invalid value. The service provider will generate an
error indication with cause CC_BADVALUE in this case;

• if an inconsistent combination of audio, video, and data is specified, the service provider will
generate an error indication with cause CC_OTHER and diagnostic
X_PHC_DC_BADCOMBI in this case;

• if the requested mode is in conflict with the known receive and decode capabilities of the
remote terminal. The service provider will generate an error indication with cause
CC_OTHER and diagnostic X_PHC_DC_CAPCONFLICT in this case.

 Recommendation T.180 (06/98) 191

If a mode switch request fails, the current communication mode is retained.

The mode switch indication is generated by the service provider to inform the application about a
mode switch initiated by the remote partner or an automatic mode switch triggered by a local
condition. Usually no action is required on this indication.

Some notes to communication mode switching:

NOTE 1 – An AV terminal always has to switch its receiver/decoder according to the BAS commands
received from the other end terminal, which itself has to transmit data as specified by the previously sent
BAS commands. This, of course, applies for both directions. If the own transmitting mode is changed, the
remote terminal has to change its receive mode accordingly. Conversely, if the remote terminal initiates a
mode switch, the service provider automatically switches the local receiver to the new mode and indicates the
mode switch to the application. No action is required on this indication.

NOTE 2 – The own transmitting mode may be changed only according to the known receive and decode
capabilities of the remote terminal. The service provider checks whether the new mode specified in a mode
switch request is within the known capabilities of the remote terminal. The current mode will not be changed,
if the specified new mode is in conflict with the remote capabilities for one category, even if the values
specified in other categories are supported by the remote terminal. In this case, the mode switch confirmation
generated as response to the mode switch request, will indicate an unchanged communication mode.

NOTE 3 – The service provider will automatically initiate a mode switch if the remote terminal changes its
capabilities so that the current mode is no longer receivable/decodable. The new transmission mode is
selected by the service provider in accordance with the new capability set of the remote terminal. The new
mode is indicated to the application. No action is required on this indication.

NOTE 4 – It is not possible to request a change of the own receive/decoding mode because it always has to
correspond to the transmission/encoding mode of the remote terminal. (See also Note 1.) However, there is
an indirect way to control the own receiver: A new, different capability set is indicated to the remote terminal
with a capability exchange request. If the current reception mode is then no longer allowed with the new
capability set, the remote terminal has to switch to another transmission mode and the own receiver has to
follow this. But this only works if the own capability set is decreased. If the capability set is increased,
i.e. previously unsupported capabilities are signalled, the remote terminal is not enforced to take advantage of
the new capabilities and change its transmission mode. The currently used transmission mode may be kept as
long as it corresponds to the receiving capabilities of the other side.

NOTE 5 – If the video bandwidth would become zero as the result of a mode switch request, the service
provider automatically sends a video command "Freeze picture Request" (VCF) to the remote terminal before
the mode switch is executed. The VCF will freeze the picture at the remote terminal until a picture release
signal is sent or a time-out period of at least six seconds has expired. The VCF is not automatically repeated
by the service provider. If the application wishes to continue the freezing of the picture, it should send VCF
repeatedly with an appropriate period.

The service elements and their corresponding XAPI functions needed for Mode Switch are described
in Table I.5-29.

192 Recommendation T.180 (06/98)

Table I.5-29/T.180 – Service elements and their corresponding XAPI functions
for Mode Switch

Service element XAPI
function

Service element identifier Description

Add Line
Request

x_sndsp() X_PHC_SP_ADD_LINE_Q The Add Line Request primitive is
passed to the provider to establish
additional channels for a multi
channel connection and include the
new channels in the AV
communication. The number of
ACs to be established and the
addresses to be used are specified
as parameters.

X_PHC_SP_ADD_LINE_Q is the
identifier of the service primitive.

Add Line
Confirmation

x_rcvsp() X_PHC_SP_ADD_LINE_C The Add Line Confirmation is
passed to the application as a
response to a previous add line
request. The number of established
new channels and the
corresponding phone numbers are
indicated to the application as
output service parameters.

X_PHC_SP_ADD_LINE_C is the
identifier of the service primitive.

Hang-up Line
Request

x_sndsp() X_PHC_SP_HUP_LINE_Q The Hang-up Line Request may be
submitted to close some or all of
the additional channels. The initial
channel is not affected.

X_PHC_SP_HUP_LINE_Q is the
identifier of the service primitive.

Mode Switch
Request

x_sndsp() X_PHC_SP_MODE_SWITCH_Q The Mode Switch Request
primitive is passed to the provider
to initiate a change of the current
transmission mode. The new mode
is defined by the service
parameters. Only categories to be
changed must be specified. All
others keep their values.

X_PHC_SP_MODE_SWITCH_Q
is the identifier of the service
primitive.

 Recommendation T.180 (06/98) 193

Table I.5-29/T.180 – Service elements and their corresponding XAPI functions
for Mode Switch (concluded)

Service element XAPI
function

Service element identifier Description

Mode Switch
Confirmation

x_rcvsp() X_PHC_SP_MODE_SWITCH_C The Mode Switch Confirmation is
passed to the application as a
response to a previous mode switch
request. The service parameters
indicate the current receive and
transmit mode. If mode switching
succeeded, the transmit mode is
equal to the one specified in the
request.

X_PHC_SP_MODE_SWITCH_C
is the identifier of the service
primitive.

Mode Switch
Indication

x_rcvsp() X_PHC_SP_MODE_SWITCH_I The Mode Switch Indication is
passed to the application when the
communication mode was changed
by the provider without request
from the application. See Notes
above for the situations where such
automatically mode changes are
necessary. The service parameters
indicate the new receive and
transmit mode.

X_PHC_SP_MODE_SWITCH_I is
the identifier of the service
primitive.

NOTE 6 – The current communication mode is indicated to the application with:

1) the X_PHC_SP_INIT_COMPL primitive;

2) the X_PHC_SP_MODE_SWITCH_C; and

3) the X_PHC_SP_MODE_SWITCH_I.

The application may save this mode information internally, if it is required to know the current mode at any
time. If the application hasn't done so, or the saved mode information has unfortunately been lost, there is a
simple way to retrieve the current communication mode from the service provider: a mode switch request
with no parameters will leave the current communication mode unchanged and will be answered immediately
by the provider with a mode switch confirmation that indicates the current mode within the service
parameters.

194 Recommendation T.180 (06/98)

I.5.7.3.2.2 Service parameters

Table I.5-30 specifies the parameters of the Mode Switch service.

Table I.5-30/T.180 – Parameters of the Mode Switch service

Parameter Mode Switch service element

 Mode Switch
Request

Mode Switch
Indication

Mode Switch
Confirmation

X_PHC_P_RMOD_AUDIO M M

X_PHC_P_RMOD_VIDEO M M

X_PHC_P_RMOD_DATA M M

X_PHC_P_RMOD_HDATA M M

X_PHC_P_RMOD_TFRATE M M

X_PHC_P_RMOD_SYNC M M

X_PHC_P_RMOD_DATAPPL M M

X_PHC_P_RMOD_MISC M M

X_PHC_P_TMOD_AUDIO U M M

X_PHC_P_TMOD_VIDEO U M M

X_PHC_P_TMOD_DATA U M M

X_PHC_P_TMOD_HDATA U M M

X_PHC_P_TMOD_TFRATE U M M

X_PHC_P_TMOD_SYNC M M

X_PHC_P_TMOD_DATAPPL U M M

X_PHC_P_TMOD_MISC U M M

X_PHC_P_MODE_TFLINES U M M

X_PHC_P_NUM_LINES M M M

A_OUTBAND_ADR M C

I.5.7.3.2.3 Receive mode parameters

Tables I.5-31 to I.5-49 describe the parameters for the Mode Switch service.

 Recommendation T.180 (06/98) 195

Table I.5-31/T.180

Parameter name X_PHC_P_RMOD_AUDIO

Type of value long

Legal values X_PHC_PV_MDAU_OFF_U
X_PHC_PV_MDAU_OFF_F
X_PHC_PV_MDAU_G711A_U
X_PHC_PV_MDAU_G711A_F
X_PHC_PV_MDAU_G711U_U
X_PHC_PV_MDAU_G711U_F
X_PHC_PV_MDAU_G722_M1
X_PHC_PV_MDAU_G722_M2
X_PHC_PV_MDAU_G722_M3
X_PHC_PV_MDAU_ISO_64
X_PHC_PV_MDAU_ISO_128
X_PHC_PV_MDAU_ISO_192
X_PHC_PV_MDAU_ISO_256
X_PHC_PV_MDAU_ISO_384
X_PHC_PV_MDAU_G728

Default value none

Description This parameter is returned by the service provider in mode switch indications
and confirmations. It indicates the current audio receive mode.

X_PHC_PV_MDAU_OFF_U No audio signal and no framing in the
 I-channel;

 X_PHC_PV_MDAU_OFF_F No audio signal, FAS and BAS in use;

X_PHC_PV_MDAU_G711A_U G.711 audio at 64 kbit/s, A-law, no
 framing;

X_PHC_PV_MDAU_G711A_F G.711 audio at 56 kbit/s, A-law, FAS
and BAS in use;

 X_PHC_PV_MDAU_G711U_U G.711 audio at 64 kbit/s, µ-law, no
 framing;

X_PHC_PV_MDAU_G711U_F G.711 audio at 56 kbit/s, µ-law, FAS and
 BAS in use;

X_PHC_PV_MDAU_G722_M1 G.722 7 kHz audio at 64 kbit/s, no
 framing (mode 1);

 X_PHC_PV_MDAU_G722_M2 G.722 7 kHz audio at 56 kbit/s, no
 framing (mode 2);

X_PHC_PV_MDAU_G722_M3 G.722 7 kHz audio at 48 kbit/s, no
 framing (mode 3);

X_PHC_PV_MDAU_ISO_64 ISO standard audio at 64 kbit/s in time-
 slot 2 (TS2) of an H0 or greater channel;

X_PHC_PV_MDAU_ISO_128 ISO standard audio at 128 kbit/s in TS2
 and TS3 of an H0 or greater channel;

 X_PHC_PV_MDAU_ISO_192 ISO standard audio at 192 kbit/s in TS2
 to TS4 of an H0 or greater channel;

X_PHC_PV_MDAU_ISO_256 ISO standard audio at 256 kbit/s in TS2
 to TS5 of an H0 or greater channel;

X_PHC_PV_MDAU_ISO_384 ISO standard audio at 384 kbit/s in TS2
 to TS7 of a channel greater than H0;
X_PHC_PV_MDAU_G728 G.728 audio at 16 kbit/s.

196 Recommendation T.180 (06/98)

Table I.5-32/T.180

Parameter name X_PHC_P_RMOD_VIDEO

Type of value long

Legal values X_PHC_PV_MDVI_OFF

X_PHC_PV_MDVI_H261
X_PHC_PV_MDVI_ISO
X_PHC_PV_MDVI_AVISO

X_PHC_PV_MDVI_PINV1
X_PHC_PV_MDVI_PINV2
X_PHC_PV_MDVI_PINV3
X_PHC_PV_MDVI_PINV4

Default value none

Description This parameter is returned by the service provider in mode switch indications and
confirmations. It indicates the current video receive mode.

A legal value of the video mode parameter is either X_PHC_PV_MDVI_OFF or
a combination of one video coding value, one video picture format value, and one
video frame rate value. The bit-wise OR operator is used to combine the three
values.

X_PHC_PV_MDVI_OFF Video switched off;

Video coding

X_PHC_PV_MDVI_H261 Video is on, coding is according to
 Recommendation H.261.

 Video data occupies all capacity not otherwise
 allocated;

X_PHC_PV_MDVI_ISO Video is on, coding is according to ISO
 standard. Video data occupies all capacity not
 otherwise allocated;

X_PHC_PV_MDVI_AVISO ISO standard composite audio/video data
 occupy all capacity not otherwise allocated.

Video frame rate

X_PHC_PV_MDVI_PINV1 Picture Interval is 1/29.75 s;
X_PHC_PV_MDVI_PINV2 Picture Interval is 2/29.75 s;
X_PHC_PV_MDVI_PINV3 Picture Interval is 3/29.75 s;
X_PHC_PV_MDVI_PINV4 Picture Interval is 4/29.75 s.

 Recommendation T.180 (06/98) 197

Table I.5-33/T.180

Parameter name X_PHC_P_RMOD_DATA

Type of value long

Legal values X_PHC_PV_MDAT_LSDOFF
X_PHC_PV_MDAT_LSD300 X_PHC_PV_MDAT_LSD1200
X_PHC_PV_MDAT_LSD4800 X_PHC_PV_MDAT_LSD6400
X_PHC_PV_MDAT_LSD8000 X_PHC_PV_MDAT_LSD9600
X_PHC_PV_MDAT_LSD14400 X_PHC_PV_MDAT_LSD16000
X_PHC_PV_MDAT_LSD24000 X_PHC_PV_MDAT_LSD32000
X_PHC_PV_MDAT_LSD40000 X_PHC_PV_MDAT_LSD48000
X_PHC_PV_MDAT_LSD56000 X_PHC_PV_MDAT_LSD62400
X_PHC_PV_MDAT_LSD64000 X_PHC_PV_MDAT_LSDVAR

 X_PHC_PV_MDAT_MLPOFF
X_PHC_PV_MDAT_MLP4000 X_PHC_PV_MDAT_MLP6400
X_PHC_PV_MDAT_MLPVAR

Default value none

Description This parameter is returned by the service provider in mode switch
indications and confirmations. It indicates the current LSD/MLP receive
bit rate. For each rate the occupied bits of the I-channel are mentioned.
LSD and MLP may be switched on simultaneously, but the used bits must
not overlap.

A legal value of the LSD/MLP mode parameter is the bit-wise OR
combination of one LSD value and one MLP value. The combination of
variable LSD and variable MLP is not allowed. LSD and MLP both
switched off is indicated by the value (X_PHC_PV_MDAT_LSDOFF |
X_PHC_PV_MDAT_MLPOFF).

X_PHC_PV_MDAT_LSDOFF LSD switched off;

X_PHC_PV_MDAT_LSD300 LSD on at fixed rate of 300 bit/s in
 SC, octets 38 to 40;

X_PHC_PV_MDAT_LSD1200 LSD on at fixed rate of 1200 bit/s
 in SC, octets 29 to 40;

 X_PHC_PV_MDAT_LSD4800 LSD on at fixed rate of 4800 bit/s
 in SC, octets 33 to 80;

X_PHC_PV_MDAT_LSD6400 LSD on at fixed rate of 6400 bit/s
 in SC, octets 17 to 80;

X_PHC_PV_MDAT_LSD8000 LSD on at fixed rate of 8000 bit/s
 in bit 7;

X_PHC_PV_MDAT_LSD9600 LSD on at fixed rate of 9600 bit/s
 in bit 7 and octets 25 to 40 of SC;

198 Recommendation T.180 (06/98)

Table I.5-33/T.180 (concluded)

 X_PHC_PV_MDAT_LSD14400 LSD on at fixed rate of 1200 bit/s
 in bit 7 and octets 25 to 40 of SC;

X_PHC_PV_MDAT_LSD16000 LSD on at fixed rate of 16 000 bit/s
 in bits 6 and 7;
X_PHC_PV_MDAT_LSD24000 LSD on at fixed rate of 24 000 bit/s
 in bits 5 to 7;

X_PHC_PV_MDAT_LSD32000 LSD on at fixed rate of 32 000 bit/s
 in bits 4 to 7;

 X_PHC_PV_MDAT_LSD40000 LSD on at fixed rate of 40 000 bit/s
 in bits 3 to 7;

X_PHC_PV_MDAT_LSD48000 LSD on at fixed rate of 48 000 bit/s
 in bits 2 to 7;

X_PHC_PV_MDAT_LSD56000 LSD on at fixed rate of 56 000 bit/s
 in bits 1 to 7;

X_PHC_PV_MDAT_LSD62400 LSD on at fixed rate of 62 400 bit/s
 in bits 1 to 7 and octets 17 to 80 of
 SC;

X_PHC_PV_MDAT_LSD64000 LSD on at fixed rate of 64 000 bit/s
 in bits 1 to 8, no framing;

X_PHC_PV_MDAT_LSDVAR LSD on at variable rate occupying
 all I-channel capacity not allocated
 for audio, FAS, BAS, ECS, and
 fixed-rate MLP;

X_PHC_PV_MDAT_MLPOFF MLP switched off;

X_PHC_PV_MDAT_MLP4000 MLP on at fixed rate of 4000 bit/s
 in SC, octets 41 to 80;

X_PHC_PV_MDAT_MLP6400 MLP on at fixed rate of 6400 bit/s
 in SC, octets 17 to 80;

X_PHC_PV_MDAT_MLPVAR MLP on at variable rate occupying
 all I-channel capacity not allocated
 for audio, FAS, BAS, ECS, and
 fixed rate LSD.

 Recommendation T.180 (06/98) 199

Table I.5-34/T.180

Parameter name X_PHC_P_RMOD_HDATA

Type of value long

Legal values X_PHC_PV_MDHD_HSDOFF
X_PHC_PV_MDHD_HSD64 X_PHC_PV_MDHD_HSD128
X_PHC_PV_MDHD_HSD192 X_PHC_PV_MDHD_HSD256
X_PHC_PV_MDHD_HSD320 X_PHC_PV_MDHD_HSD384

X_PHC_PV_MDHD_HMLPOFF
X_PHC_PV_MDHD_HMLP62 X_PHC_PV_MDHD_HMLP128
X_PHC_PV_MDHD_HMLP192 X_PHC_PV_MDHD_HMLP256
X_PHC_PV_MDHD_HMLP320 X_PHC_PV_MDHD_HMLP384

Default value none

Description This parameter is returned by the service provider in mode switch indications
and confirmations. It indicates the current HSD/H-MLP receive mode. For each
mode the occupied time-slots of an H0 or greater channel are mentioned. HSD
and H-MLP may be switched on simultaneously, but the used time-slots must
not overlap.

A legal value of the HSD/H-MLP mode parameter is the bit-wise OR
combination of one HSD value and one H-MLP value. HSD and H-MLP both
switched off is indicated by the value (X_PHC_PV_MDHD_HSDOFF |
X_PHC_PV_MDHD_HMLPOFF).

NOTE – HSD/H-MLP commands are defined in Annex A/H.221.

X_PHC_PV_MDHD_HSDOFF HSD switched off;

X_PHC_PV_MDHD_HSD64 HSD on in highest numbered
 channel/time-slot; FAS and BAS are
 removed in the case of multiple
 B-channels;

X_PHC_PV_MDHD_HSD128 HSD on in 2 highest-numbered time-slots
 of an H0 or greater channel;

X_PHC_PV_MDHD_HSD192 HSD on in 3 highest-numbered time-slots
 of an H0 or greater channel;

X_PHC_PV_MDHD_HSD256 HSD on in 4 highest-numbered time-slots
 of an H0 or greater channel;

X_PHC_PV_MDHD_HSD320 HSD on in 5 highest-numbered time-slots
 of an H0 or greater channel;

X_PHC_PV_MDHD_HSD384 HSD on in highest numbered H0 channel,
 or 6 highest numbered time-slots of a
 greater channel;

200 Recommendation T.180 (06/98)

Table I.5-34/T.180 (concluded)

Description X_PHC_PV_MDHD_HMLPOFF H-MLP switched off;

X_PHC_PV_MDHD_HMLP62 H-MLP on at 62.4 kbit/s in the second
 B-channel, occupying all bits except FAS
 and BAS positions;

X_PHC_PV_MDHD_HMLP64 H-MLP on at 64 kbit/s in time-slot 2 of an
 H0 or greater channel;

X_PHC_PV_MDHD_HMLP128 H-MLP on at 128 kbit/s in time-slots 2
 and 3 of an H0 or greater channel;

 X_PHC_PV_MDHD_HMLP192 H-MLP on at 192 kbit/s in time-slots 2 to
 4 of an H0 or greater channel;

X_PHC_PV_MDHD_HMLP256 H-MLP on at 256 kbit/s in time-slots 2 to
 5 of an H0 or greater channel;

X_PHC_PV_MDHD_HMLP320 H-MLP on at 320 kbit/s in time-slots 2 to
 6 of an H0 or greater channel;

X_PHC_PV_MDHD_HMLP384 H-MLP on at 384 kbit/s in time-slots 2 to
 7 of a channel greater than H0.

Table I.5-35/T.180

Parameter name X_PHC_P_RMOD_DATAPPL

Type of value long

Legal values X_PHC_PV_MDAP_LSDISOSP
X_PHC_PV_MDAP_HSDISOSP
X_PHC_PV_MDAP_LSDCURS
X_PHC_PV_MDAP_LSDFAX
X_PHC_PV_MDAP_HSDFAX
X_PHC_PV_MDAP_LSDV120
X_PHC_PV_MDAP_HSDV120

Default value none

Description This parameter is returned by the service provider in mode switch indications and
confirmations. It indicates to which application the data belong that are currently
received as LSD rsp. HSD. A legal value of the data application parameter is either a
single LSD value, a single HSD value, or the bit-wise OR combination of one LSD
value and one HSD value. (Note that LSD and HSD may be activated
simultaneously.)

X_PHC_PV_MDAP_LSDISOSP ISO still picture switched on in LSD;

X_PHC_PV_MDAP_HSDISOSP ISO still picture switched on in HSD;

X_PHC_PV_MDAP_LSDCURS Graphics cursor data switched on in LSD;

X_PHC_PV_MDAP_LSDFAX FAX switched on in LSD;

X_PHC_PV_MDAP_HSDFAX FAX switched on in HSD;

X_PHC_PV_MDAP_LSDV120 V.120 terminal adaptation switched on in LSD;

X_PHC_PV_MDAP_HSDV120 V.120 terminal adaptation switched on in HSD.

 Recommendation T.180 (06/98) 201

Table I.5-36/T.180

Parameter name X_PHC_P_RMOD_TFRATE

Type of value long

Legal values X_PHC_PV_MDTR_1X64 X_PHC_PV_MDTR_2X64
X_PHC_PV_MDTR_3X64 X_PHC_PV_MDTR_4X64
X_PHC_PV_MDTR_5X64 X_PHC_PV_MDTR_6X64

X_PHC_PV_MDTR_1X384 X_PHC_PV_MDTR_2X384
X_PHC_PV_MDTR_3X384 X_PHC_PV_MDTR_4X384
X_PHC_PV_MDTR_5X384

X_PHC_PV_MDTR_128 X_PHC_PV_MDTR_192
X_PHC_PV_MDTR_256 X_PHC_PV_MDTR_512
X_PHC_PV_MDTR_768 X_PHC_PV_MDTR_1152
X_PHC_PV_MDTR_1472 X_PHC_PV_MDTR_1536
X_PHC_PV_MDTR_1920

Default value none

Description This parameter is returned by the service provider in mode switch indications
and confirmations. It indicates the current receive transfer rate.

If the transfer rate is less than the connected capacity, the information
occupies the lowest-numbered channel(s)/time-slot(s).

X_PHC_PV_MDTR_1X64 Signal occupies one 64 kbit/s channel;

X_PHC_PV_MDTR_2X64 Signal occupies two 64 kbit/s channels
 with FAS/BAS in each;

X_PHC_PV_MDTR_3X64 Signal occupies three 64 kbit/s channels
 with FAS/BAS in each;

X_PHC_PV_MDTR_4X64 Signal occupies four 64 kbit/s channels
 with FAS/BAS in each;

X_PHC_PV_MDTR_5X64 Signal occupies five 64 kbit/s channels
 with FAS/BAS in each;

X_PHC_PV_MDTR_6X64 Signal occupies six 64 kbit/s channels
 with FAS/BAS in each;

X_PHC_PV_MDTR_1X384 Signal occupies one 384 kbit/s
 channels with FAS and BAS in the
 first 64 kbit/s time-slot. The effective
 channel may be the whole of an H0
 channel or the lowest-numbered time-
 slots of an H11 or an H12 channel;

X_PHC_PV_MDTR_2X384 Signal occupies two 384 kbit/s channels
 with FAS/BAS in each;

X_PHC_PV_MDTR_3X384 Signal occupies three 384 kbit/s
channels with FAS/BAS in each;

X_PHC_PV_MDTR_4X384 Signal occupies four 384 kbit/s
channels with FAS/BAS in each;

X_PHC_PV_MDTR_5X384 Signal occupies five 384 kbit/s channels
 with FAS/BAS in each;

202 Recommendation T.180 (06/98)

Table I.5-36/T.180 (concluded)

 X_PHC_PV_MDTR_128 Signal occupies 128 kbit/s, with FAS
 and BAS in the first 64 kbit/s time-slot
 (TS1). The effective channel occupies
 the lowest-numbered time-slots of a
 channel with corresponding or higher
 capacity;

X_PHC_PV_MDTR_192 Signal occupies 192 kbit/s, with FAS
 and BAS in TS1;

X_PHC_PV_MDTR_256 Signal occupies 256 kbit/s, with FAS
 and BAS in TS1;

X_PHC_PV_MDTR_512 Signal occupies 512 kbit/s, with FAS
 and BAS in TS1;

X_PHC_PV_MDTR_768 Signal occupies 768 kbit/s, with FAS
 and BAS in TS1;

X_PHC_PV_MDTR_1152 Signal occupies 1152 kbit/s, with FAS
 and BAS in TS1;

X_PHC_PV_MDTR_1472 Signal occupies 1472 kbit/s, with FAS
 and BAS in TS1;

X_PHC_PV_MDTR_1536 Signal occupies 1536 kbit/s, with FAS
 and BAS in TS1;

X_PHC_PV_MDTR_1920 Signal occupies 1920 kbit/s, with FAS
 and BAS in TS1.

Table I.5-37/T.180

Parameter name X_PHC_P_RMOD_SYNC

Type of value long

Legal values X_PHC_PV_MDSY_NONE
X_PHC_PV_MDSY_ICHAN
X_PHC_PV_MDSY_ACHAN

Default value none

Description This parameter is returned by the service provider in mode switch indications and
confirmations. It indicates the current synchronization status in receive direction.

X_PHC_PV_MDSY_NONE All incoming signals are received unframed;

X_PHC_PV_MDSY_ICHAN FAS and BAS are received in the I-channel;

X_PHC_PV_MDSY_ACHAN FAS and BAS are received in all additional
 channels and they are synchronized with the
 I-channel, i.e. multiframe alignment is validated.

 Recommendation T.180 (06/98) 203

Table I.5-38/T.180

Parameter name X_PHC_P_RMOD_MISC

Type of value long

Legal values X_PHC_PV_MDMS_ECSACT
X_PHC_PV_MDMS_6BH0COMP
X_PHC_PV_MDMS_RESTRICT
X_PHC_PV_MDMS_DERESTRICT

Default value none

Description This parameter is returned by the service provider in mode switch indications and
confirmations. It indicates miscellaneous attributes currently active in receive
direction. The attributes are independent and represented as one bit within the
parameter value. If the bit is set to 1, the attribute is active; otherwise, it is inactive.
The bit-wise AND operator can be used to check a single attribute from the
parameter value.

X_PHC_PV_MDMS_ECSACT ECS channel active;

X_PHC_PV_MDMS_6BH0COMP 6B-H0 compatibility mode is active.
 (For H0 terminals only);

X_PHC_PV_MDMS_RESTRICT Communicating over a restricted network
 (Bit 7 of the I-channel is treated as SC
 and bit 8 is discarded in every other
 channel);

X_PHC_PV_MDMS_DERESTRICT Revert to unrestricted network operation
 (Bit 8 of the I-channel is treated as SC).

I.5.7.3.2.4 Transmit mode parameters

Table I.5-39/T.180

Parameter name X_PHC_P_TMOD_AUDIO

Type of value long

Legal values X_PHC_PV_MDAU_OFF_U
X_PHC_PV_MDAU_OFF_F
X_PHC_PV_MDAU_G711A_U
X_PHC_PV_MDAU_G711A_F
X_PHC_PV_MDAU_G711U_U
X_PHC_PV_MDAU_G711U_F
X_PHC_PV_MDAU_G722_M1
X_PHC_PV_MDAU_G722_M2
X_PHC_PV_MDAU_G722_M3
X_PHC_PV_MDAU_ISO_64
X_PHC_PV_MDAU_ISO_128
X_PHC_PV_MDAU_ISO_192
X_PHC_PV_MDAU_ISO_256
X_PHC_PV_MDAU_ISO_384
X_PHC_PV_MDAU_G728

204 Recommendation T.180 (06/98)

Table I.5-39/T.180 (concluded)

Default value none

Description This parameter may be specified in a mode switch request to select the
audio mode to be used in transmit direction.

The parameter is returned by the service provider in mode switch
indications and confirmations. There it indicates the currently active
audio mode in transmit direction.

See the corresponding receive mode parameter
X_PHC_P_RMOD_AUDIO for a description of the defined values.

Table I.5-40/T.180

Parameter name X_PHC_P_TMOD_VIDEO

Type of value long

Legal values X_PHC_PV_MDVI_OFF
X_PHC_PV_MDVI_H261
X_PHC_PV_MDVI_ISO
X_PHC_PV_MDVI_AVISO
X_PHC_PV_MDVI_PINV1
X_PHC_PV_MDVI_PINV2
X_PHC_PV_MDVI_PINV3
X_PHC_PV_MDVI_PINV4

Default value none

Description This parameter may be specified in a mode switch request to select the video
mode to be used in transmit direction.

The parameter is returned by the service provider in mode switch indications
and confirmations. There it indicates the currently active video mode in transmit
direction.

See the corresponding receive mode parameter X_PHC_P_RMOD_VIDEO for a
description of the defined values.

A legal value of the video mode parameter is either X_PHC_PV_MDVI_OFF or
a combination of one video coding value, one video picture format value, and
one video frame rate value. The bit-wise OR operator is used to combine the
three values.

 Recommendation T.180 (06/98) 205

Table I.5-41/T.180

Parameter name X_PHC_P_TMOD_DATA

Type of value long

Legal values X_PHC_PV_MDAT_LSDOFF
X_PHC_PV_MDAT_LSD300 X_PHC_PV_MDAT_LSD1200
X_PHC_PV_MDAT_LSD4800 X_PHC_PV_MDAT_LSD6400
X_PHC_PV_MDAT_LSD8000 X_PHC_PV_MDAT_LSD9600
X_PHC_PV_MDAT_LSD14400 X_PHC_PV_MDAT_LSD16000
X_PHC_PV_MDAT_LSD24000 X_PHC_PV_MDAT_LSD32000
X_PHC_PV_MDAT_LSD40000 X_PHC_PV_MDAT_LSD48000
X_PHC_PV_MDAT_LSD56000 X_PHC_PV_MDAT_LSD62400
X_PHC_PV_MDAT_LSD64000 X_PHC_PV_MDAT_LSDVAR

X_PHC_PV_MDAT_MLPOFF
X_PHC_PV_MDAT_MLP4000 X_PHC_PV_MDAT_MLP6400
X_PHC_PV_MDAT_MLPVAR

Default value none

Description This parameter may be specified in a mode switch request to switch
on/off LSD or MLP in transmit direction at a certain bit rate. LSD and
MLP may be switched on simultaneously, but the occupied bits of the I-
channel must not overlap.

The parameter is returned by the service provider in mode switch
indications and confirmations. There it indicates the currently enabled
LSD/MLP bit rate in transmit direction.

See the corresponding receive mode parameter
X_PHC_P_RMOD_DATA for a description of the defined values.

A legal value of the LSD/MLP mode parameter is the bit-wise OR
combination of one LSD value and one MLP value. The combination of
variable LSD and variable MLP is not allowed.

Table I.5-42/T.180

Parameter name X_PHC_P_TMOD_HDATA

Type of value long

Legal values X_PHC_PV_MDHD_HSDOFF
X_PHC_PV_MDHD_HSD64 X_PHC_PV_MDHD_HSD128
X_PHC_PV_MDHD_HSD192 X_PHC_PV_MDHD_HSD256
X_PHC_PV_MDHD_HSD320 X_PHC_PV_MDHD_HSD384
X_PHC_PV_MDHD_HMLPOFF
X_PHC_PV_MDHD_HMLP62 X_PHC_PV_MDHD_HMLP128
X_PHC_PV_MDHD_HMLP192 X_PHC_PV_MDHD_HMLP256
X_PHC_PV_MDHD_HMLP320 X_PHC_PV_MDHD_HMLP384

206 Recommendation T.180 (06/98)

Table I.5-42/T.180 (concluded)

Default value none

Description This parameter may be specified in a mode switch request to switch
on/off HSD or H-MLP in transmit direction at a certain bit rate. HSD and
H-MLP may be switched on simultaneously, but the occupied time-slots
of an H0 or greater channel must not overlap.

The parameter is returned by the service provider in mode switch
indications and confirmations. There it indicates the currently enabled
HSD/H-MLP bit rate in transmit direction.

See the corresponding receive mode parameter
X_PHC_P_RMOD_HDATA for a description of the defined values.

A legal value of the HSD/H-MLP mode parameter is the bit-wise OR
combination of one HSD value and one H-MLP value.

Table I.5-43/T.180

Parameter name X_PHC_P_TMOD_DATAPPL

Type of value long

Legal values X_PHC_PV_MDAP_LSDISOSP
X_PHC_PV_MDAP_HSDISOSP
X_PHC_PV_MDAP_LSDCURS
X_PHC_PV_MDAP_LSDFAX
X_PHC_PV_MDAP_HSDFAX
X_PHC_PV_MDAP_LSDV120
X_PHC_PV_MDAP_HSDV120

Default value none

Description This parameter may be specified in a mode switch request to define the
application that transmits data as LSD or HSD. The information is passed
to the remote terminal as a BAS command. A legal value of the data
application parameter is either a single LSD value, a single HSD value, or
the bit-wise OR combination of one LSD value and one HSD value. (Note
that LSD and HSD may be activated simultaneously.)

The parameter is returned by the service provider in mode switch
indications and confirmations. It indicates which application currently
uses LSD or HSD for transmission.

See the corresponding receive mode parameter
X_PHC_P_RMOD_DATAPPL for a description of the defined values.

 Recommendation T.180 (06/98) 207

Table I.5-44/T.180

Parameter name X_PHC_P_TMOD_TFRATE

Type of value long

Legal values X_PHC_PV_MDTR_1X64
X_PHC_PV_MDTR_2X64
X_PHC_PV_MDTR_3X64
X_PHC_PV_MDTR_4X64
X_PHC_PV_MDTR_5X64
X_PHC_PV_MDTR_6X64
X_PHC_PV_MDTR_1X384
X_PHC_PV_MDTR_2X384
X_PHC_PV_MDTR_3X384
X_PHC_PV_MDTR_4X384
X_PHC_PV_MDTR_5X384
X_PHC_PV_MDTR_128
X_PHC_PV_MDTR_192
X_PHC_PV_MDTR_256
X_PHC_PV_MDTR_512
X_PHC_PV_MDTR_768
X_PHC_PV_MDTR_1152
X_PHC_PV_MDTR_1472
X_PHC_PV_MDTR_1536
X_PHC_PV_MDTR_1920

Default value none

Description This parameter may be specified in a mode switch request to select the transfer
rate in transmit direction. The specified value must not exceed the available
connected capacity. If it is less than the connected capacity, the information
occupies the lowest-numbered channel(s)/time-slot(s).

Note the difference between e.g. X_PHC_PV_MDTR_2X64 and
X_PHC_PV_MDTR_128. The first value is applicable for a connected
capacity of two or more B-channels only, whereas the second can only be used
if the connected capacity is a H0 or greater channel.

The parameter is returned by the service provider in mode switch indications
and confirmations. There it indicates the currently active transfer rate in
transmit direction.

See the corresponding receive mode parameter X_PHC_P_RMOD_TFRATE
for a description of the defined values.

208 Recommendation T.180 (06/98)

Table I.5-45/T.180

Parameter name X_PHC_P_TMOD_SYNC

Type of value long

Legal values X_PHC_PV_MDSY_UNFRAM
X_PHC_PV_MDSY_IC_FRMD
X_PHC_PV_MDSY_AC_FRMD

Default value none

Description This parameter is returned by the service provider in mode switch indications
and confirmations. It indicates the currently synchronization state in transmit
direction.
X_PHC_PV_MDSY_UNFRAM Transmission is unframed in all channels.
X_PHC_PV_MDSY_IC_FRMD FAS and BAS are transmitted in the
 I-channel and the remote terminal sends
 A = 0;
X_PHC_PV_MDSY_AC_FRMD FAS and BAS are transmitted in all
 additional channels and the remote
 terminal sends A = 0 in each, i.e.
 multiframe alignment is validated.

Table I.5-46/T.180

Parameter name X_PHC_P_TMOD_MISC

Type of value long

Legal values X_PHC_PV_MDMS_ECSACT
X_PHC_PV_MDMS_6BH0COMP
X_PHC_PV_MDMS_RESTRICT
X_PHC_PV_MDMS_DERESTRICT

Default value none

Description This parameter may be specified in a mode switch request to define
miscellaneous attributes that shall be active in transmit direction. The attributes
are independent and represented as one bit within the parameter value. If the bit
is set to 1, the attribute is active; otherwise, it is not active. The bit-wise AND
operator can be used to select a single attribute from the parameter value.

The parameter is returned by the service provider in mode switch indications
and confirmations. It indicates which miscellaneous attributes are currently
active for transmission.

See the corresponding receive mode parameter X_PHC_P_RMOD_MISC for a
description of the defined values.

 Recommendation T.180 (06/98) 209

I.5.7.3.2.5 Transfer line parameters

Table I.5-47/T.180

Parameter name X_PHC_P_MODE_TFLINES

Type of value long

Legal values X_PHC_PV_MDTL_NONE

X_PHC_PV_MDTL_1XB
X_PHC_PV_MDTL_2XB
X_PHC_PV_MDTL_3XB
X_PHC_PV_MDTL_4XB
X_PHC_PV_MDTL_5XB
X_PHC_PV_MDTL_6XB

X_PHC_PV_MDTL_1XH0
X_PHC_PV_MDTL_2XH0
X_PHC_PV_MDTL_3XH0
X_PHC_PV_MDTL_4XH0
X_PHC_PV_MDTL_5XH0

X_PHC_PV_MDTL_H11
X_PHC_PV_MDTL_H12

Default value none

Description This parameter indicates the number of connected lines. Note that there is no
difference between receive and transmit directions because each line can be used in
both directions.
X_PHC_PV_MDTL_NONE No connection
X_PHC_PV_MDTL_1XB 1 B-channel connected; total capacity 64 kbit/s;
X_PHC_PV_MDTL_2XB 2 B-channels connected; total capacity 128 kbit/s;
X_PHC_PV_MDTL_3XB 3 B-channels connected; total capacity 192 kbit/s;
X_PHC_PV_MDTL_4XB 4 B-channels connected; total capacity 256 kbit/s;
X_PHC_PV_MDTL_5XB 5 B-channels connected; total capacity 320 kbit/s;
X_PHC_PV_MDTL_6XB 6 B-channels connected; total capacity 384 kbit/s;
X_PHC_PV_MDTL_1XH0 1 H0-channel connected; total capacity 384 kbit/s;
X_PHC_PV_MDTL_2XH0 2 H0-channels connected; total capacity 768 kbit/s;
X_PHC_PV_MDTL_3XH0 3 H0-channels connected; total capacity 1152 kbit/s;
X_PHC_PV_MDTL_4XH0 4 H0-channels connected; total capacity 1536 kbit/s;
X_PHC_PV_MDTL_5XH0 5 H0-channels connected; total capacity 1920 kbit/s;
X_PHC_PV_MDTL_H11 1 H11-channel connected; total capacity 1536 kbit/s;
X_PHC_PV_MDTL_H12 1 H12-channel connected; total capacity 1920 kbit/s.

210 Recommendation T.180 (06/98)

Table I.5-48/T.180

Parameter name X_PHC_P_NUM_LINES

Type of value long

Legal values 1 ... 5

Default value none

Description This parameter is mandatory for add line requests and hang-up line requests. In case
of add line it specifies the number of additional channels to established and in case
of hang-up line the number of additional channels to be closed.

The parameter is returned by an add line confirmation. There it indicates the number
of successfully established new channels.

Including the initial channel, at most the number of lines indicated by the value of
the X_PHC_P_LCAP_TFLINES parameter will be established. The value of
X_PHC_P_NUM_LINES will be decremented internally if the requested value plus
the number of already established channels would exceed this maximum value.

Table I.5-49/T.180

Parameter name X_A_OUTBAND_ADR

Type of value unsigned char []

Legal values See the corresponding clause in the main part of this Recommendation.

Default value none

Description This parameter is mandatory for add line requests. It specifies one outband
address (phone number) to be used for establishment of an additional channel. The
parameter may be specified more than once in the parameter buffer, at most five
times. Note that the number of channels to be established is defined by the
X_PHC_P_NUM_LINES parameter and not by the number of addresses.
Additional addresses are ignored.

The parameter is returned in an add line confirmation if an additional channel was
successfully established. The value is one of the addresses specified in the request.
It indicates the number used to dial up the channel. The parameter will appear in
the parameter buffer as many times as new additional channels were established.

I.5.7.3.3 Data Transfer service

Beside the AV communication, additional channels for asynchronous data transfer may be activated
with the Mode Switch service. The data transfer service enables the application program to access a
previously activated data channel. The audio and video channels cannot be accessed with the Data
Transfer service. Other services have to be used to control AV communication.

NOTE 1 – According to Recommendation H.242 and T.120, MLP and H-MLP are combined to a single MLP
subchannel, if both are activated. The bit rate of the combined channel is the sum of the MLP and H-MLP bit
rates.

NOTE 2 – Activated data channels occupy a part of the total bandwidth and thus decrease the available
bandwidth for video data. Audio bandwidth is not influenced by the activation of data channels.

NOTE 3 – LSD and HSD channels can be used in one direction only. To get a full-duplex connection for
asynchronous data transfer, both terminals have to activate an LSD or HSD channel. The bit rates need not
necessarily be the same in both directions.

 Recommendation T.180 (06/98) 211

I.5.7.3.3.1 Service description

The Data Transfer service comprises two elements. The XAPI function x_snddata() is used to
transmit data on a previously established data channel, and the XAPI function x_rcvdata() is used to
receive data from a data channel.

If a data channel has been opened for receiving, the service provider will store data at the service
endpoint until it is received by the application with an x_rcvdata() call. If the application does not
call x_rcvdata() for a longer time, the service provider may run out of storage if no flow control
mechanism is used that would stop the sender before this happens. In case of data overflow, some or
all of the stored data is released without notification. To avoid loss of data, an application should call
x_rcvdata() as soon as data is available at the service endpoint.

The service elements and their corresponding XAPI functions needed for Data Transfer are described
in Table I.5-50.

Table I.5-50/T.180 – Service elements and their corresponding XAPI functions
for Data Transfer

Service element XAPI function Description

Data Request x_snddata() The Data Request is passed to the provider to transmit
asynchronous data.

– not applicable for AV Data:
The service parameter X_PHC_P_DATA_TYPE is
used to specify the type of data passed to the provider.

Data Indication x_rcvdata() The Data Indication is generated by the provider to indicate
received data.

– not applicable for AV Data:
The service parameter X_PHC_P_DATA_TYPE
specifies the type of data received by the provider.

I.5.7.3.3.2 Service parameter

Table I.5-51 specifies the parameter of the Data Transfer service.

Table I.5-51/T.180 – Parameter of the Data Transfer service

Parameter Data Transfer service

 Request Indication

X_PHC_P_DATA_TYPE M M

212 Recommendation T.180 (06/98)

I.5.7.3.3.3 Service parameter description

Table I.5-52 describes the parameter for the Data Transfer service.

Table I.5-52/T.180

Parameter name X_PHC_P_DATA_TYPE

Type of value long

Legal values X_PHC_PV_LSD_DATA
X_PHC_PV_HSD_DATA
X_PHC_PV_MLP_DATA

Default value none

Description This parameter is used to specify the type of data sent or received by the
service provider. The following values for the service parameter
X_PHC_P_DATA_TYPE are defined:

X_PHC_PV_LSD_DATA low-speed data;
X_PHC_PV_HSD_DATA high-speed data;
X_PHC_PV_MLP_DATA multilayer protocol.

I.5.7.3.4 Control and Indication service

The Control and Indication (C&I) service enables the application to transmit commands and
indications to the remote communication partner and to receive commands and indications sent by
the remote partner. The service can be used at any time during a communication after the mode
initialization procedure has been completed, i.e. after an X_PHC_SP_INIT_COMPL has been
received.

The C&I service provides the basic commands and indications defined in Recommendation H.230.
They are classified into four groups:

1) C&I related to audio;

2) C&I related to video;

3) C&I for maintenance purposes; and

4) C&I related to simple multipoint conferences not using MLP.

Beside this, the C&I service provides some means to transmit and receive non-standard commands
according to Recommendation H.221.

Recommendations H.242 and H.243 define some procedures to be followed in establishment and
during an audiovisual communication. Recommendation H.242 deals with the communication of two
AV terminals, while Recommendation H.243 concerns conference calls of three or more AV
terminals and the communication between the MCU (Multipoint Control Unit) and an AV terminal.
In order to provide interoperability with other AV terminals and communication equipment, the
application should obey the rules given in these Recommendations.

I.5.7.3.4.1 Service description

The transmit C&I request can be used by either terminal at any time after successful mode
initialization (reception of X_PHC_SP_INIT_COMPL) to transmit a single command or a sequence
of commands within the BAS to the remote terminal. The BAS is accessible only if operating in a
framed mode. No automatic frame reinstatement is provided. A transmit C&I request will fail if the
I-channel is not synchronized at the time the transmission is requested. An error indication primitive
with cause code CC_OTHER and diagnostic X_PHC_DC_UNSYNC is generated by the service

 Recommendation T.180 (06/98) 213

provider and an ERROR event occurs at the service endpoint. The application has to call
x_rcverror() to consume the event and retrieve the error indication. To avoid this failure, the
application should check the current synchronization state of the I-channel before a C&I transmission
is requested. If transmission is currently unframed, the application has to switch to a framed mode
prior to the C&I transmit request. (The parameter X_PHC_P_TMOD_SYNC of mode switch
indications and confirmations shows the current synchronization state in transmission direction.)

The service provider generates a transmit C&I confirmation as response to a previous transmit
C&I request. This confirmation has only local meaning and is used for flow control purposes. It
indicates that transmission of the command or command sequence on the BAS completed and the
BAS is now free again for other requests. The confirmation does not imply that the remote terminal
understood or accepted the command. Note that due to the effective bandwidth of the BAS (0.4 kbit/s
or 50 bytes per second), the transmission time for a longer command sequence will soon count in
seconds, which is a really long time in modern computing.

The transmit C&I request requires the BAS for transmission and thus has to be coordinated with the
other BAS requests (see I.5.7.3 above). No transmit C&I request may be submitted while a transmit
C&I-, a mode switch-, an add line-, or a capability exchange confirmation is outstanding.

A transmit C&I indication is generated by the service provider to indicate received commands or
indications to the application. It depends on the received command whether an action is required by
the application or whether the service provider or Codec already took the appropriate action and the
command is indicated for information only.

The service elements and their corresponding XAPI functions needed for Control and Indication are
described in Table I.5-53.

214 Recommendation T.180 (06/98)

Table I.5-53/T.180 – Service elements and their corresponding XAPI functions
for Control and Indication

Service element XAPI
function

Service element identifier Description

Transmit C&I Request x_sndsp() X_PHC_SP_TRA_CAI_Q The Transmit C&I Request
primitive is passed to the
provider to send one or more
commands or indications to
the remote terminal. The
commands and indications
to be transmitted are
specified as service
parameters.
X_PHC_SP_TRA_CAI_Q is
the identifier of the service
primitive.

Transmit C&I
Confirmation

x_rcvsp() X_PHC_SP_TRA_CAI_C The Transmit C&I
Confirmation primitive is
generated by the service
provider as acknowledgment
of a previous transmit C&I
request. It indicates that
transmission completed.
There are no service
parameters defined.
X_PHC_SP_TRA_CAI_C is
the identifier of the service
primitive.

Received C&I
Indication

x_rcvsp() X_PHC_SP_REC_CAI_I The Received C&I
Indication primitive is
passed to the application to
indicate the reception of a
command or indication from
the communication partner.
The service parameters
specify the received
command or indication.
X_PHC_SP_REC_CAI_I is
the identifier of the service
primitive.

I.5.7.3.4.2 Service parameters

Table I.5-54 specifies the parameters of the Control and Indication service. Each parameter
corresponds to one command or indication. In a transmit C&I request, multiple parameters
(commands) may be specified. The commands are transmitted one after another in the sequence of
the parameters in the parameter buffer.

An X_PHC_SP_REC_CAI_I primitive always returns only one received command or indication to
the application.

 Recommendation T.180 (06/98) 215

NOTE 1 – There are C&I parameters that have no value. These "no-value-parameters" represent simple
commands like, Video Command "Freeze Picture". If the parameter is specified in a transmit C&I request, the
corresponding command is sent to the remote partner. And, vice versa, if the parameter is returned by a
received C&I indication, the corresponding command or indication has been received from the remote
terminal (or MCU).

NOTE 2 – The service provider may act in one of the following ways upon the reception of a C&I:

1) The requested (appropriate) action is taken and no indication is passed to the application. Some
commands that are handled by the Codec internally are treated in this way. A received video
command "Freeze Picture Request", for example, is handled internally and the user will note the
result: a frozen picture on the screen. It is not necessary to inform the application program.

2) The requested (appropriate) action is taken and an X_PHC_SP_REC_CAI_I is passed to the
application program for information. Some commands that are handled by the Codec internally
and/or require immediate reaction are treated in this way. A received loopback command "Video
Loop Request", for example, is handled internally but maybe it would a good idea to inform the user
that video loopback is active and thus the own picture is not transmitted to the remote terminal any
more.

3) No action is taken and the received command or indication is passed on to the application program
with an X_PHC_SP_REC_CAI_I. It depends on the C&I whether the application has to act on this
indication or not. A received "Multipoint Indication Visualization" (MIV), for example, is simply
passed on by the service provider. Such a MIV is transmitted by an MCU to indicate to a terminal
that its video signal is being seen by the other terminals. It is up to the application to use this
information and, e.g. put on a little red light to inform the person in front of the camera.

Table I.5-54/T.180 – Parameters of the Control and Indication service

Parameter Control and Indication service

 Request Indication

X_PHC_P_H230_AIM U C

X_PHC_P_H230_AIA U C

X_PHC_P_H230_VCF U

X_PHC_P_H230_VCU U

X_PHC_P_H230_VIS U C

X_PHC_P_H230_VIA U C

X_PHC_P_H230_VIA2 U C

X_PHC_P_H230_VIA3 U C

X_PHC_P_H230_VIR U C

X_PHC_P_H230_LCA U C

X_PHC_P_H230_LCV U C

X_PHC_P_H230_LCD U C

X_PHC_P_H230_LCO U C

X_PHC_P_H230_MCV U

X_PHC_P_H230_MIV C

X_PHC_P_H230_MCC C

X_PHC_P_H230_CN_MCC C

216 Recommendation T.180 (06/98)

Table I.5-54/T.180 – Parameters of the Control and Indication service (concluded)

Parameter Control and Indication service

 Request Indication

X_PHC_P_H230_MCS C

X_PHC_P_H230_MCN C

X_PHC_P_H230_MIZ C

X_PHC_P_H230_CN_MIZ C

X_PHC_P_H230_MIS C

X_PHC_P_H230_CN_MIS C

X_PHC_P_CMD_NONSTD U C

Tables I.5-55 to I.5-78 describe the parameters for the Control and Indication Service.

I.5.7.3.4.3 C&I service parameters related to audio

Table I.5-55/T.180

Parameter name X_PHC_P_H230_AIM

Type of value no value

Legal values not applicable

Default value not applicable

Description This parameter is returned in a receive C&I indication if an Audio Indicate
"Muted" (AIM) symbol has been received. The symbol is used to indicate that
the content of the audio channel does not represent a normal audio signal. The
audio encoder may be without audio input or an electronically-generated tone
may have been substituted.

The service provider does not take any action upon receipt of AIM.

The parameter may be specified in a transmit C&I request to disconnect the
audio source (microphone) from the input of the audio encoder and send an
AIM to the remote terminal.

Table I.5-56/T.180

Parameter name X_PHC_P_H230_AIA

Type of value no value

Legal values not applicable

Default value not applicable

Description This parameter is returned in a receive C&I indication if an Audio Indicate
"Active" (AIA) symbol has been received. It is the complementary to AIM (see
above).

The service provider does not take any action upon receipt of AIA.
The parameter may be specified in a transmit C&I request to reconnect the
audio source (microphone) to the input of the audio encoder and send an AIA to
the remote terminal.

 Recommendation T.180 (06/98) 217

I.5.7.3.4.4 C&I service parameters related to video

Table I.5-57/T.180

Parameter name X_PHC_P_H230_VCF

Type of value no value

Legal values not applicable

Default value not applicable

Description This parameter may be specified in a transmit C&I request to send a Video
Command "Freeze Picture Request" (VCF) symbol to the remote terminal. See
Recommendation H230 for the meaning of VCF.

The service provider does not indicate a received VCF to the application.

Table I.5-58/T.180

Parameter name X_PHC_P_H230_VCU

Type of value no value

Legal values not applicable

Default value not applicable

Description This parameter may be specified in a transmit C&I request to send a Video
Command "Fast Update Request" (VCU) symbol to the remote terminal. See
Recommendation H230 for the meaning of VCU.

The service provider does not indicate a received VCU to the application.

Table I.5-59/T.180

Parameter name X_PHC_P_H230_VIS

Type of value no value

Legal values not applicable

Default value not applicable

Description This parameter is returned in a receive C&I indication if a Video Indicate
"Suppressed" (VIS) symbol has been received. It is used to indicate that the
content of the video does not represent a normal camera image. The video
encoder may be without video input or an electronically-generated pattern may
have been substituted.

The service provider does not take any action upon receipt of VIS.

The parameter may be specified in a transmit C&I request to disconnect the
current video source from the input of the video encoder and send a VIS to the
remote terminal.

218 Recommendation T.180 (06/98)

Table I.5-60/T.180

Parameter name X_PHC_P_H230_VIA

Type of value no value

Legal values not applicable

Default value not applicable

Description This parameter is returned in a receive C&I indication if a Video Indicate
"Active" (VIA) symbol has been received. It is the complementary to VIS
(see above). If there are more video sources to be distinguished, VIA indicates
that "video No. 1" is now active.

The service provider does not take any action upon receipt of VIA.

The parameter may be specified in a transmit C&I request to connect video
source No. 1 (usually the camera) to the input of the video encoder and send a
VIA to the remote terminal.

Table I.5-61/T.180

Parameter name X_PHC_P_H230_VIA2

Type of value no value

Legal values not applicable

Default value not applicable

Description This parameter is returned in a receive C&I indication if a Video Indicate
"Source 2 Active" (VIA2) symbol has been received. It is equivalent to VIA,
but designating "video No. 2" the as source.

The service provider does not take any action upon receipt of VIA2.

The parameter may be specified in a transmit C&I request to connect video
source No. 2 to the input of the video encoder and send a VIA2 to the remote
terminal.

Table I.5-62/T.180

Parameter name X_PHC_P_H230_VIA3

Type of value no value

Legal values not applicable

Default value not applicable

Description This parameter is returned in a receive C&I indication if a Video Indicate
"Source 3 Active" (VIA3) symbol has been received. It is equivalent to VIA, but
designating "video No. 3" as the source.

The service provider does not take any action upon receipt of VIA3.

The parameter may be specified in a transmit C&I request to connect video
source No. 3 to the input of the video encoder and send a VIA3 to the remote
terminal.

 Recommendation T.180 (06/98) 219

Table I.5-63/T.180

Parameter name X_PHC_P_H230_VIR

Type of value no value

Legal values not applicable

Default value not applicable

Description This parameter is returned in a receive C&I indication if a Video Indicate
"Ready to Activate" (VIR) symbol has been received.

The service provider does not take any action upon receipt of VIR.

The parameter may be specified in a transmit C&I request to send a VIR to the
remote terminal. The symbol is transmitted by a terminal whose user has
decided not to send video unless she/he will also receive video from the other
end.

I.5.7.3.4.5 C&I service parameters for maintenance purposes

Table I.5-64/T.180

Parameter name X_PHC_P_H230_LCA

Type of value no value

Legal values not applicable

Default value not applicable

Description This parameter is returned in a receive C&I indication if a Loopback Command
"Audio Loop Request" (LCA) symbol has been received.

The service provider (Codec) acts on this command and connects the output of
the audio decoder to the input of the audio encoder.

The parameter may be specified in a transmit C&I request to send an LCA to the
remote terminal.

Table I.5-65/T.180

Parameter name X_PHC_P_H230_LCV

Type of value no value

Legal values not applicable

Default value not applicable

Description This parameter is returned in a receive C&I indication if a Loopback Command
"Video Loop Request" (LCV) symbol has been received.

The service provider (Codec) acts on this command and connects the output of
the video decoder to the input of the video encoder.

The parameter may be specified in a transmit C&I request to send an LCV to the
remote terminal.

220 Recommendation T.180 (06/98)

Table I.5-66/T.180

Parameter name X_PHC_P_H230_LCD

Type of value no value

Legal values not applicable

Default value not applicable

Description This parameter is returned in a receive C&I indication if a Loopback Command
"Digital Loop Request" (LCD) symbol has been received.

The service provider (Codec) acts on this command and disconnects the output
of the multiplexer from the outgoing path, replacing it with the input to the
demultiplexer. In the case of multiple B or H0 connections, loopback is activated
in each connection.

The parameter may be specified in a transmit C&I request to send an LCD to the
remote terminal.

Table I.5-67/T.180

Parameter name X_PHC_P_H230_LCO

Type of value no value

Legal values not applicable

Default value not applicable

Description This parameter is returned in a receive C&I indication if a Loopback Command
"Loops Off" (LCO) symbol has been received.

The service provider (Codec) acts on this command and disconnects all currently
active loops and restores data, audio, and video signal paths to their normal
condition.

The parameter may be specified in a transmit C&I request to send an LCO to the
remote terminal.

I.5.7.3.4.6 C&I service parameters related to multipoint conferences

Table I.5-68/T.180

Parameter name X_PHC_P_H230_MCV

Type of value no value

Legal values not applicable

Default value not applicable

Description The parameter may be specified in a transmit C&I request to send a Multipoint
Command "Visualization Forcing" (MCV).

The symbol is transmitted by a terminal to force an associated MCU to
broadcast the own video signal. (Used, e.g. to transmit the picture of the
chairman or another VIP.)

 Recommendation T.180 (06/98) 221

Table I.5-69/T.180

Parameter name X_PHC_P_H230_MIV

Type of value no value

Legal values not applicable

Default value not applicable

Description This parameter is returned in a receive C&I indication if a Multipoint Indication
"Visualization" (MIV) symbol has been received.

The symbol is transmitted by an MCU to indicate to a terminal that its video
signal is being seen by the other terminals. Also known as "On-Air" indication.

The service provider does not take any action upon receipt of MIV.

Table I.5-70/T.180

Parameter name X_PHC_P_H230_MCC

Type of value no value

Legal values not applicable

Default value not applicable

Description This parameter is returned in a receive C&I indication if a Multipoint Command
"Conference" (MCC) symbol has been received.

The symbol is transmitted by an MCU to a terminal to force a symmetrical
communication mode. The terminal receiving MCC must make its outgoing
transfer rate equal to its incoming transfer rate and its outgoing audio rate equal
to its incoming audio rate.

If necessary, the service provider switches the used communication mode as
required and informs the application with a mode switch indication.

For further study: How to handle mode switch requests from the application
while MCC is active? a) Ignore them, b) let them fail, c) handle as usual,
d) restrict them to mode categories other then transfer and audio rate?

Table I.5-71/T.180

Parameter name X_PHC_P_H230_CN_MCC

Type of value no value

Legal values not applicable

Default value not applicable

Description This parameter is returned in a receive C&I indication if a Multipoint Command
"Cancel MCC" has been received.

The symbol is transmitted by an MCU to cancel the effect of a previously sent
MCC.

The restrictions to mode switch requests which became active with the MCC are
now lifted.

222 Recommendation T.180 (06/98)

Table I.5-72/T.180

Parameter name X_PHC_P_H230_MCS

Type of value no value

Legal values not applicable

Default value not applicable

Description This parameter is returned in a receive C&I indication if a Multipoint Command
"Symmetrical Data Transmission" (MCS) symbol has been received.

The symbol is transmitted by an MCU when setting up data broadcasting. On
receipt, a terminal must prepare itself for data reception and insure, by mode
change if necessary, that its outgoing data channel occupies the same capacity as
its incoming data channel. A terminal in receipt of MCS cannot initiate data
broadcasting.

If necessary, the service provider switches the used communication mode as
required and informs the application with a mode switch indication.

Table I.5-73/T.180

Parameter name X_PHC_P_H230_MCN

Type of value no value

Legal values not applicable

Default value not applicable

Description This parameter is returned in a receive C&I indication if a Multipoint Command
"Negating MCS" (MCN) symbol has been received.

The symbol is transmitted by an MCU at the completion of data broadcasting.
On receipt, a terminal close any outgoing data channel which it has opened as
result of a previous reception of MCS. Following the end of data reception and
the receipt of MCN, a terminal is permitted to initiate data broadcasting.

If necessary, the service provider uses the outgoing data channels as required
and informs the application with a mode switch indication.

Table I.5-74/T.180

Parameter name X_PHC_P_H230_MIZ

Type of value no value

Legal values not applicable

Default value not applicable

Description This parameter is returned in a receive C&I indication if a Multipoint
Indication "Zero-communication" (MIZ) symbol has been received.

The symbol is transmitted by an MCU to a terminal for information, with the
meaning that no other terminals are yet connected to the MCU.

The service provider does not take any action upon receipt of MIZ.

 Recommendation T.180 (06/98) 223

Table I.5-75/T.180

Parameter name X_PHC_P_H230_CN_MIZ

Type of value no value

Legal values not applicable

Default value not applicable

Description This parameter is returned in a receive C&I indication if a Multipoint Indication
"Cancel MIZ" has been received.

The symbol is transmitted by an MCU to revoke a previous MIZ.

The service provider does not take any action upon receipt of Cancel MIZ.

Table I.5-76/T.180

Parameter name X_PHC_P_H230_MIS

Type of value no value

Legal values not applicable

Default value not applicable

Description This parameter is returned in a receive C&I indication if a Multipoint
Indication "Secondary Status" (MIS) symbol has been received.

The symbol is transmitted by an MCU to a terminal for information, with the
meaning that since other terminals of higher capability are participating in the
conference-call, this terminal will not necessarily receive all the signals that
are sent to those other terminals (see Recommendation H.243).

The service provider does not take any action upon receipt of MIS.

Table I.5-77/T.180

Parameter name X_PHC_P_H230_CN_MIS

Type of value no value

Legal values not applicable

Default value not applicable

Description This parameter is returned in a receive C&I indication if a Multipoint
Indication "Cancel MIS" has been received.

The symbol is transmitted by an MCU to revoke a previous MIS.

The service provider does not take any action upon receipt of Cancel MIS.

224 Recommendation T.180 (06/98)

I.5.7.3.4.7 C&I service parameters for non-standard commands

Table I.5-78/T.180

Parameter name X_PHC_P_CMD_NONSTD

Type of value unsigned char [], 5 ... 255 bytes

Legal values Any sequence of bytes.
The minimum length is 5, the maximum length is X_PHC_C_MAX_NONSTD
(255).
The first 4 bytes have a special meaning, see description below.

Default value none

Description This parameter may be specified in a transmit C&I request to send a non-CCITT
command message to the remote terminal. The first two bytes of the value specify a
country code, and the next two bytes specify a terminal manufacturer code. The
meaning of all following bytes is defined by the manufacturer.
 [byte 0] Country code according to Recommendation T.35
 [byte 1] Country code
 [bytes 2,3] Manufacturer Code (e.g. Company 4711)
 [bytes 5-n] Manufacturer specific

The second byte of the country code and the manufacturer code are assigned
nationally.

This parameter is returned in a receive C&I indication if a non-CCITT command
message has been received. The first four bytes have the same meaning as defined
above. The service provider takes no action upon receipt of a non-CCITT command
message and does not check country and/or manufacturer code. All bytes are passed
on as received. The len field specifies the length of the message.

Note that due to the effective bandwidth of the BAS (0.4 kbit/s rsp. 50 bytes per
second), the transmission time for a non-standard command of maximum length will
be more than 5 seconds.

I.5.7.4 Connection Release service

I.5.7.4.1 Service description

The Connection Release service enables the XAPI user to release the AV connection in an orderly
manner. It may be used by either terminal after successful mode initialization (reception of service
primitive X_PHC_SP_INIT_COMPL). The "mode 0 forcing" procedure is initiated and all B-/H0-
channels are released in a controlled manner as defined in Recommendation H.242. No orderly
release indication (to be consumed with a x_relind() calls) is defined. If an orderly connection release
is initiated by the remote terminal, the local terminal will get a mode switch indication (service
primitive X_PHC_MODE_SWITCH_I) as a result of the mode 0 forcing. After this, the
disconnection of the initial channel will be indicated to the application with a disconnect indication
(see below).

The elements of the Connection Release service and the corresponding XAPI functions are described
in Table I.5-79.

 Recommendation T.180 (06/98) 225

Table I.5-79/T.180 – Service elements and their corresponding XAPI functions
for Connection Release

Service element XAPI Function Description

Release Request x_relreq() The Release Request is passed to the provider to request
an orderly AV connection release.

Release
Confirmation

x_relconf() The Release Confirmation is generated by the provider
as positive confirmation of an orderly AV Connection
release.

End Indication x_rcvend() The End Indication is generated by the provider to
indicate that the service provider is ready to establish a
new connection. In addition it contains some
information about the released connection.

I.5.7.4.2 Service parameters

Table I.5-80 specifies the parameters of the Connection Release service:

Table I.5-80/T.180

Parameter Connection Release service

 Request Confirmation End Indication

X_P_CONN_TIME M

X_P_DISC_TIME M

X_P_CHARGE C

X_P_DISC_REASON C

I.5.7.4.3 Service parameter descriptions

Tables I.5-81 to I.5-84 describe the parameters for the Connection Release service.

Table I.5-81/T.180

Parameter name X_P_CONN_TIME

Type of value unsigned long

Legal values the time in seconds since 01.01.1970 00:00:00 GMT

Default value none

Description This parameter contains the time of physical connection of the I-channel.

226 Recommendation T.180 (06/98)

Table I.5-82/T.180

Parameter name X_P_DISC_TIME

Type of value unsigned long

Legal values the time in seconds since 01.01.1970 00:00:00 GMT

Default value none

Description This parameter contains the time of physical disconnection of the I-channel.
If X_P_CONN_TIME and X_P_DISCON_TIME both set to zero, no
physical connection could be established.

Table I.5-83/T.180

Parameter name X_P_CHARGE

Type of value unsigned long

Legal values any number

Default value zero

Description This parameter contains the number of charging units for the connection
(including all transfer lines used). It will be present only if both network and
network connection provide this facility.

Table I.5-84/T.180

Parameter name X_P_DISC_REASON

Type of value unsigned long

Legal values The values are directly mapped from the underlying hardware. See the
hardware documentation to get further information.

Default value zero

Description This parameter contains, if available, the reason for disconnecting the
I-channel.

I.5.7.5 Connection Abort service

I.5.7.5.1 Service description

The Connection Abort service allows either user of the AV Codec control service to disconnect all
established channels at once. The mode 0 forcing procedure of Recommendation H.242 is not
followed. Use of this service will cause loss of undelivered data of the data transfer service
(LSD/HSD).

The service elements and their corresponding XAPI functions needed for disconnection of an AV
Codec connection are described in Table I.5-85.

 Recommendation T.180 (06/98) 227

Table I.5-85/T.180 – Service elements and their corresponding XAPI functions
for Connection Abort

Service element XAPI function Description

Disconnect Request x_snddis() The Disconnect Request is passed to the provider to
request a disconnection.

Disconnect Indication x_rcvdis() The Disconnect Indication is generated by the provider
to indicate the release of all channels of an AV
connection including the initial channel. The
disconnection may be initiated by the local service
provider or the remote peer entity.

End Indication x_rcvend() The End Indication is generated by the provider to
indicate that the endpoint is ready again to establish a
new connection. In addition it contains some
information about the aborted connection.

I.5.7.5.2 Service parameters

Table I.5-86 specifies the parameters of the Connection Abort service:

Table I.5-86/T.180

Parameter Abort service

 Request Indication End Indication

X_P_CONN_TIME M

X_P_DISC_TIME M

X_P_CHARGE

X_P_DISC_REASON

I.5.7.5.3 Service parameter descriptions

Tables I.5-87 to I.5-90 describe the parameters for the Connection Abort service.

Table I.5-87/T.180

Parameter name X_P_CONN_TIME

Type of value unsigned long

Legal values the time in seconds since 01.01.1970 00:00:00 GMT

Default value none

Description This parameter contains the time of physical connection of the I-channel.

228 Recommendation T.180 (06/98)

Table I.5-88/T.180

Parameter name X_P_DISC_TIME

Type of value unsigned long

Legal values the time in seconds since 01.01.1970 00:00:00 GMT

Default value none

Description This parameter contains the time of physical disconnection of the
I-channel. If X_P_CONN_TIME and X_P_DISCON_TIME both set to
zero, no physical connection could be established.

Table I.5-89/T.180

Parameter name X_P_CHARGE

Type of value unsigned long

Legal values any number

Default value zero

Description This parameter contains the number of charging units for the
connection (including all transfer lines used). It will be present only if
both network and network connection provide this facility.

Table I.5-90/T.180

Parameter name X_P_DISC_REASON

Type of value unsigned long

Legal values The values are directly mapped from the underlying hardware. See the
hardware documentation to get further information.

Default value zero

Description This parameter contains, if available, the reason for disconnecting the
I-channel.

I.5.7.6 Local Control service

The Local Control service is based on the XAPI function x_sndsp() and enables the user of the AV
Codec control service to trigger local actions. The service can be used by either partner at any time
after successful mode initialization. One of the defined actions is, for example, to send a picture
release signal within the H.261 data to cancel a previously submitted VCF (video command freeze
picture request).

The elements of the Local Control service and their parameters are listed in Tables I.5-91 and I.5-92.

 Recommendation T.180 (06/98) 229

Table I.5-91/T.180 – Service element and their corresponding XAPI function
for Local Control

Service element XAPI
function

Service element identifier Description

Local Control
Request

x_sndsp() X_PHC_SP_LCTRL_Q The Local Control Request
primitive is submitted to the
provider to initiate the local action
specified as service parameter.
Multiple actions with one request
are not supported.

Table I.5-92/T.180 – Parameters of the Local Control

Parameter Local Control service

 Request

X_PHC_P_H261CMD_SNDINTRA U

X_PHC_P_H261CMD_PICTREL U

I.5.7.6.1 Service parameter descriptions

Tables I.5-93 and I.5-94 describe the parameters for the Local Control service.

Table I.5-93/T.180

Parameter name X_PHC_P_H261CMD_SNDINTRA

Type of value no value

Legal values not applicable

Default value not applicable

Description This parameter may be specified in a local control request to initiate the
sending of one intra coded frame. This action is sometimes useful if an
external video switch is used to change the source of video input signals. After
switching the video source, an enforced intra frame will help the remote
decoder to get back on the right way.

The general H.261 encoding mode as specified by the
X_PHC_O_H261_ENCODE option is not influenced by an enforced intra
frame.

Table I.5-94/T.180

Parameter name X_PHC_P_H261CMD_PICTREL

Type of value no value

Legal values not applicable

Default value not applicable

Description This parameter may be specified in a local control request to send a picture
release signal within H.261 data to the remote terminal. On reception of
picture release, the remote terminal will cancel a previously received VCF
(video command freeze picture request).

230 Recommendation T.180 (06/98)

I.5.7.7 Option management

The management of protocol options is based on the XAPI function x_optmgmt(). It enables the
XAPI user to set the value of a protocol option, to check a value without changing the current value,
and to retrieve the current or default value. See the main part of this Recommendation for a detailed
description of option management in general and the manual page of the x_optmgmt() function. The
option management may be used in any state of the service endpoint. Protocol options have only
local meaning. If a connection is established on an endpoint, changes in protocol options are not
indicated to the remote partner. But the data transmission over this connection may be influenced by
the current setting of some protocol options. For each protocol option, there is a default value defined
in the XAPI configuration. This default is sufficient for the majority of applications and usually need
not be changed.

The AV Codec control service supports five groups of protocol options:

• the default capability options: For each local capability parameter there is a corresponding
protocol option which defines the default value for this parameter. If the parameter is not
specified in a request, the value of the corresponding protocol option is used instead;

• standard H.261 options which control the video encoding process;

• non-standard H.261 options;

• non-standard audio options;

• non-standard maintenance options.

The standard options have to be implemented by each concrete service provider while the
non-standard options need not be present in all implementations. Sometimes it depends on the Codec
hardware if an option can be implemented or not. All options have permanent scope, i.e. they are in
effect for the whole lifetime of the service endpoint. The default option values are usually configured
to the maximum values supported by the underlying hardware.

I.5.7.7.1 Protocol option descriptions

Tables I.5-95 to I.5-118 describe the protocol options.

I.5.7.7.1.1 Default capability options

Table I.5-95/T.180

Option name X_PHC_O_LCAP_AUDIO

Type of value long

Legal values X_PHC_PV_CAPNON
X_PHC_PV_AUDIO_711_A
X_PHC_PV_AUDIO_711_U
X_PHC_PV_AUDIO_722_64
X_PHC_PV_AUDIO_722_48
X_PHC_PV_AUDIO_16K
X_PHC_PV_AUDIO_ISO

Default value The configured default value may be retrieved with the x_optmgmt() function.

Description The option defines the default value of parameter X_PHC_P_LCAP_AUDIO, which
specifies the local audio reception capabilities in the connection establishment and
capability exchange service. The option may take the same values as defined for the
parameter. See above for a description of these values.

 Recommendation T.180 (06/98) 231

Table I.5-96/T.180

Option name X_PHC_O_LCAP_VIDEO

Type of value long

Legal values X_PHC_PV_CAPNON
X_PHC_PV_VIDEO_QCIF
X_PHC_PV_VIDEO_CIF
X_PHC_PV_VIDEO_PINV1
X_PHC_PV_VIDEO_PINV2
X_PHC_PV_VIDEO_PINV3
X_PHC_PV_VIDEO_PINV4
X_PHC_PV_VIDEO_IMP
X_PHC_PV_VIDEO_ISO
X_PHC_PV_VIDEO_AVISO

Default value The configured default value may be retrieved with the x_optmgmt() function.

Description The option defines the default value of parameter X_PHC_P_LCAP_VIDEO, which
specifies the local video reception capabilities in the connection establishment and
capability exchange service. The option may take the same values as defined for the
parameter. See above for a description of these values.

Table I.5-97/T.180

Option name X_PHC_O_LCAP_DATA

Type of value long

Legal values X_PHC_PV_CAPNON
X_PHC_PV_DATA_VAR
X_PHC_PV_DATA_300 X_PHC_PV_DATA_1200
X_PHC_PV_DATA_4800 X_PHC_PV_DATA_6400
X_PHC_PV_DATA_8000 X_PHC_PV_DATA_9600
X_PHC_PV_DATA_14400 X_PHC_PV_DATA_16000
X_PHC_PV_DATA_24000 X_PHC_PV_DATA_32000
X_PHC_PV_DATA_40000 X_PHC_PV_DATA_48000
X_PHC_PV_DATA_56000 X_PHC_PV_DATA_62400
X_PHC_PV_DATA_64000
X_PHC_PV_DATA_MLP4000 X_PHC_PV_DATA_MLP6400
X_PHC_PV_DATA_VARMLP

Default value The configured default value may be retrieved with the x_optmgmt() function.

Description The option defines the default value of parameter X_PHC_P_LCAP_DATA, which
specifies the local LSD and MLP reception capabilities in the connection
establishment and capability exchange service. The option may take the same values
as defined for the parameter. See above for a description of these values.

232 Recommendation T.180 (06/98)

Table I.5-98/T.180

Option name X_PHC_O_LCAP_HDATA

Type of value long

Legal values X_PHC_PV_CAPNON
X_PHC_PV_HDATA_64 X_PHC_PV_HDATA_128
X_PHC_PV_HDATA_192 X_PHC_PV_HDATA_256
X_PHC_PV_HDATA_320 X_PHC_PV_HDATA_384
X_PHC_PV_HDATA_512 X_PHC_PV_HDATA_768
X_PHC_PV_HDATA_1152 X_PHC_PV_HDATA_1536
X_PHC_PV_HDATA_VAR
X_PHC_PV_HDATA_MLP62 X_PHC_PV_HDATA_MLP64
X_PHC_PV_HDATA_MLP128 X_PHC_PV_HDATA_MLP192
X_PHC_PV_HDATA_MLP256 X_PHC_PV_HDATA_MLP320
X_PHC_PV_HDATA_MLP384
X_PHC_PV_HDATA_VARMLP

Default value The configured default value may be retrieved with the x_optmgmt() function.

Description The option defines the default value of parameter X_PHC_P_LCAP_HDATA,
which specifies the local HSD and HMLP reception capabilities in the connection
establishment and capability exchange service. The option may take the same
values as defined for the parameter. See above for a description of these values.

Table I.5-99/T.180

Option name X_PHC_O_LCAP_TFRATE

Type of value long

Legal values X_PHC_PV_CAPNON
X_PHC_PV_TFRATE_128
X_PHC_PV_TFRATE_192
X_PHC_PV_TFRATE_256
X_PHC_PV_TFRATE_512
X_PHC_PV_TFRATE_768
X_PHC_PV_TFRATE_1152
X_PHC_PV_TFRATE_1472

Default value The configured default value may be retrieved with the x_optmgmt() function.

Description The option defines the default value of parameter X_PHC_P_LCAP_TFRATE,
which specifies the local transfer rate capabilities in the connection establishment
and capability exchange service. The option may take the same values as defined
for the parameter. See above for a description of these values.

 Recommendation T.180 (06/98) 233

Table I.5-100/T.180

Option name X_PHC_O_LCAP_TFLINES

Type of value long

Legal values X_PHC_PV_TFLINES_1B
X_PHC_PV_TFLINES_2B
X_PHC_PV_TFLINES_3B
X_PHC_PV_TFLINES_4B
X_PHC_PV_TFLINES_5B
X_PHC_PV_TFLINES_6B
X_PHC_PV_TFLINES_1H
X_PHC_PV_TFLINES_2H
X_PHC_PV_TFLINES_3H
X_PHC_PV_TFLINES_4H
X_PHC_PV_TFLINES_5H
X_PHC_PV_TFLINES_H11
X_PHC_PV_TFLINES_H12

Default value The configured default value may be retrieved with the x_optmgmt() function.

Description The option defines the default value of parameter X_PHC_P_LCAP_TFLINES,
which specifies the local transfer lines capabilities in the connection
establishment and capability exchange service. The option may take the same
values as defined for the parameter. See above for a description of these values.

Table I.5-101/T.180

Option name X_PHC_O_LCAP_MISC

Type of value long

Legal values X_PHC_PV_CAPNON
X_PHC_PV_MISC_ENCR
X_PHC_PV_MISC_ESC
X_PHC_PV_MISC_MBE
X_PHC_PV_MISC_RESTRICT
X_PHC_PV_MISC_6BHCOMP

Default value The configured default value may be retrieved with the x_optmgmt() function.

Description The option defines the default value of parameter X_PHC_P_LCAP_MISC,
which specifies some local miscellaneous capabilities in the connection
establishment and capability exchange service. The option may take the same
values as defined for the parameter. See above for a description of these
values.

234 Recommendation T.180 (06/98)

Table I.5-102/T.180

Option name X_PHC_O_LCAP_DATAPPL

Type of value long

Legal values X_PHC_PV_CAPNON
X_PHC_PV_APPL_STILLPIC_LSD
X_PHC_PV_APPL_STILLPIC_HSD
X_PHC_PV_APPL_STILLPIC_SPATIAL
X_PHC_PV_APPL_STILLPIC_PROG
X_PHC_PV_APPL_STILLPIC_ARITH
X_PHC_PV_APPL_STILLIMAGE
X_PHC_PV_APPL_CURSORDATA
X_PHC_PV_APPL_FAX3
X_PHC_PV_APPL_FAX4
X_PHC_PV_APPL_V120_LSD
X_PHC_PV_APPL_V120_HSD

Default value The configured default value may be retrieved with the x_optmgmt() function.

Description The option defines the default value of parameter
X_PHC_P_LCAP_DATAPPL, which specifies the local data application
capabilities in the connection establishment and capability exchange service.
The option may take the same values as defined for the parameter. See above
for a description of these values.

I.5.7.7.1.2 Standard H.261 options

Table I.5-103/T.180

Option name X_PHC_O_H261_ENCODE

Type of value long

Legal values X_PHC_OV_H261_SIMPLE
X_PHC_OV_H261_CIF
X_PHC_OV_H261_INTER
X_PHC_OV_H261_MOTNEST
X_PHC_OV_H261_LOOPFILTER

Default value The configured default value may be retrieved with the x_optmgmt() function.

Description This option controls the H.261 video encoding. A value of
X_PHC_OV_H261_SIMPLE specifies the simplest possible encoding, intra frames
only in QCIF format. The other defined values each control one additional encoding
feature that may be enabled by setting this value. To enable more than one feature, the
corresponding values have to be combined with the bit-wise OR operator.
X_PHC_OV_H261_CIF Use CIF instead of QCIF;
X_PHC_OV_H261_INTER Use intra and inter frames;
X_PHC_OV_H261_MOTNEST Use intra and inter frames and motion
 estimation;
X_PHC_OV_H261_LOOPFILTER Switch the loop filter on.

The values X_PHC_OV_H261_INTER and X_PHC_OV_H261_MOTNEST must not
be specified together.

The option is not an absolute requirement. The specified value may be diminished by
the service provider if the requested feature is not supported by the Codec hardware.

 Recommendation T.180 (06/98) 235

Table I.5-104/T.180

Option name X_PHC_O_H261_CODERPINV

Type of value long

Legal values 1 ... 100

Default value The configured default value may be retrieved with the x_optmgmt() function.

Description This option controls the minimum picture interval used in H.261 video encoding.
The interval is not specified as absolute value but relative to the maximum speed
supported by the Codec hardware. The option value specifies the percentage of the
maximum speed to be used in encoding. A value of 50, for example, tells the Codec
to work as fast as possible, and a value of 100 means "full speed ahead". Note that a
decreased picture interval usually results in improved picture quality because more
data can be transmitted for one picture.

Table I.5-105/T.180

Option name X_PHC_O_H261_AUDIODELAY

Type of value long

Legal values 0 ... 1000

Default value 0

Description This option controls the delay of received audio signals. It compensates the signal
processing time of the video decoder to maintain lip synchronization. The option
value specifies the audio delay in milliseconds.

I.5.7.7.1.3 Non-standard H.261 options

Table I.5-106/T.180

Option name X_PHC_O_H261NS_SOURCE

Type of value long

Legal values 1 ... 16

Default value The configured default value may be retrieved with the x_optmgmt() function.
Usually it is set to 1.

Description This option selects the source for input video signals. The option value specifies the
source number. It depends on the hardware which number corresponds to which
connector. If the requested source is not available or not ready, the x_optmgmt()
call fails with NOTSUPPORT, and the current setting is retained.

236 Recommendation T.180 (06/98)

Table I.5-107/T.180

Option name X_PHC_O_H261NS_DCODFILTER

Type of value unsigned char [] with at least one element

Legal values The legal values depend on the concrete service provider. See the release notes
for further information. There is one option value that has to be implemented by
all concrete service providers supporting this option: an array with only one
element that is set to 0. This value specifies that no filter is enabled.

Default value 0, no filter enabled

Description This option selects and enables one of the present video decoding filters. It
depends on the concrete service provider what kind of filters are present and with
which numbers they are denoted. The first byte of the option value specifies the
filter to be used. A value of 0 disables all filters. The additional elements of the
option value (if there are any at all) are parameters which control the operation of
the filter. The number of filter parameters and their meaning depend on the filter
selected by the first element of the option value.

This option can be used, for example, to enable a filter that smoothes the edges in
the decoded video picture.

Table I.5-108/T.180

Option name X_PHC_O_H261NS_INTERPAR

Type of value unsigned char [4]

Legal values The legal values depend on the concrete service provider. See the release notes for
further information.

Default value The configured default value may be retrieved with the x_optmgmt() function.

Description This option defines four parameters that control the coding of inter frames in
Recommendation H.261.
byte [0] upper boundary;
byte [1] lower boundary;
byte [2] fixed value;
byte [3] switch on/off adaptive quantization; a value of 1 means on, 0 means off.

Table I.5-109/T.180

Option name X_PHC_O_H261NS_MOTNPAR

Type of value unsigned char [] with at least one element

Legal values The legal values depend on the concrete service provider. See the release notes
for further information.

Default value The configured default value may be retrieved with the x_optmgmt() function.

Description This option selects one of the present algorithms for motion estimation in H.261
video encoding. It depends on the concrete service provider which algorithms
are present and with which numbers they are denoted. The first byte of the
option value selects the algorithm by number. The additional elements of the
option value (if there are any at all) are parameters used within the algorithm.
The number of parameters and their meaning depend on the selected algorithm.
Note that the use of motion estimation is enabled rsp. disabled with the standard
option H.261 encoding (X_PHC_O_H261_ENCODE).

 Recommendation T.180 (06/98) 237

Table I.5-110/T.180

Option name X_PHC_O_H261NS_LOOPPAR

Type of value unsigned char [] with at least one element

Legal values The legal values depend on the concrete service provider. See the release notes
for further information.

Default value The configured default value may be retrieved with the x_optmgmt() function.

Description This option selects one of the present loop filters for use in H.261 video
encoding. It depends on the concrete service provider which filters are present
and with which numbers they are denoted. The first byte of the option value
selects the filter by number. The additional elements of the option value (if there
are any at all) are parameters that control the filter. The number of parameters
and their meaning depend on the selected filter.

Note that the use of motion estimation is enabled rsp. disabled with the standard
option H.261 encoding (X_PHC_O_H261_ENCODE).

Table I.5-111/T.180

Option name X_PHC_O_H261NS_PREFILTER

Type of value unsigned char [] with at least one element

Legal values The legal values depend on the concrete service provider. See the release notes
for further information. There is one option value that has to be implemented
by all concrete service providers supporting this option: an array with only one
element that is set to 0. This value specifies that no filter is enabled.

Default value 0, no filter enabled

Description This option selects and enables one of the present video pre-filters. It depends
on the concrete service provider what kind of filters are present and with
which numbers they are denoted. The first byte of the option value specifies
the filter to be used. A value of 0 disables all filters. The additional elements
of the option value (if there are any at all) are parameters which control the
operation of the filter. The number of filter parameters and their meaning
depend on the filter selected by the first element of the option value.

This option can be used, for example, to enable a filter that smoothes the edges
in the decoded video picture.

238 Recommendation T.180 (06/98)

Table I.5-112/T.180

Option name X_PHC_O_H261NS_POSTFILTER

Type of value unsigned char [] with at least one element

Legal values The legal values depend on the concrete service provider. See the release notes
for further information. There is one option value that has to be implemented by
all concrete service providers supporting this option: an array with only one
element that is set to 0. This value specifies that no filter is enabled.

Default value 0, no filter enabled

Description This option selects and enables one of the present video post filters. It depends
on the concrete service provider what kind of filters are present and with which
numbers they are denoted. The first byte of the option value specifies the filter
to be used. A value of 0 disables all filters. The additional elements of the option
value (if there are any at all) are parameters which control the operation of the
filter. The number of filter parameters and their meaning depend on the filter
selected by the first element of the option value.

This option can be used, for example, to enable a filter that smoothes the edges
in the decoded video picture.

Table I.5-113/T.180

Option name X_PHC_O_H261NS_OUTPUT

Type of value long

Legal values X_PHC_OV_VFRMT_PAL_N
X_PHC_OV_VFRMT_PAL_M
X_PHC_OV_VFRMT_PAL_BG
X_PHC_OV_VFRMT_PAL_443
X_PHC_OV_VFRMT_SECAM
X_PHC_OV_VFRMT_NTSC_M
X_PHC_OV_VFRMT_NTSC_443
X_PHC_OV_VFRMT_BW

Default value The configured default value may be retrieved with the x_optmgmt() function.

Description This option controls the video output format. Only one output format may be
selected at one time, i.e. the defined values must not be combined.
X_PHC_OV_VFRMT_PAL_N PAL with 50 Hz;
X_PHC_OV_VFRMT_PAL_M PAL with 60 Hz;
X_PHC_OV_VFRMT_PAL_443 PAL with 60 Hz;
X_PHC_OV_VFRMT_SECAM SECAM with 50 Hz;
X_PHC_OV_VFRMT_NTSC_M NTSC with 60 Hz;
X_PHC_OV_VFRMT_NTSC_443 NTSC with 60 Hz;
X_PHC_OV_VFRMT_BW monochrome black and white.
The option is an absolute requirement. The x_optmgmt() call will fail if the
requested video output format is not supported by the Codec hardware.

 Recommendation T.180 (06/98) 239

Table I.5-114/T.180

Option name X_PHC_O_H261NS_INPUT

Type of value long

Legal values X_PHC_OV_VFRMT_PAL_N
X_PHC_OV_VFRMT_PAL_M
X_PHC_OV_VFRMT_PAL_BG
X_PHC_OV_VFRMT_PAL_443
X_PHC_OV_VFRMT_SECAM
X_PHC_OV_VFRMT_NTSC_M
X_PHC_OV_VFRMT_NTSC_443
X_PHC_OV_VFRMT_BW

Default value The configured default value may be retrieved with the x_optmgmt() function.

Description This option controls the video input format. Only one input format may be
selected at one time, i.e. the defined values must not be combined. The option
may take the same values as the output format option. The selected format
applies to all video signal sources, if there is more than one available.
The option is an absolute requirement. The x_optmgmt() call will fail if the
requested video input format is not supported by the Codec hardware.

I.5.7.7.1.4 Non-standard audio options

Table I.5-115/T.180

Option name X_PHC_O_NSAUD_SOURCE

Type of value long

Legal values 1 ... 16

Default value The configured default value may be retrieved with the x_optmgmt() function.
Usually it is set to 1.

Description This option selects the source for input audio signals. The option value
specifies the source number. It depends on the hardware which number
corresponds to which connector rsp. signal level. If the requested source is not
available or not ready, the x_optmgmt() call fails with NOTSUPPORT and the
current setting is retained.

Table I.5-116/T.180

Option name X_PHC_O_NSAUD_SPEAKER

Type of value long

Legal values 0, 1

Default value 1

Description This option controls the local speaker. A value of 1 switches the speaker on,
and a value of 0 switches it off. The setting of the audio volume is not
influenced by this option.

240 Recommendation T.180 (06/98)

Table I.5-117/T.180

Option name X_PHC_O_NSAUD_VOLUME

Type of value long

Legal values any value in the range of 0 ... 127 with 127 being loudest

Default value The configured default value may be retrieved with the x_optmgmt() function.
Usually it is set to 63.

Description This option controls the audio output volume.

I.5.7.7.1.5 Non-standard maintenance options

Table I.5-118/T.180

Option name X_PHC_O_NSMNT_LOCAL_LOOP

Type of value long

Legal values X_PHC_OV_LLP_OFF
X_PHC_OV_LLP_AUDIO
X_PHC_OV_LLP_VIDEO
X_PHC_OV_LLP_DIGITAL

Default value X_PHC_OV_LLP_OFF, all local loops deactivated

Description This option controls a local loop back of output signals to the input.
Corresponding to the remote loops there are three local loops defined: audio,
video and digital.

For each loop there is one value defined that has to be specified as option value
to activate the loop. To activate more than one loop simultaneously, the option
has to be set to the bit-wise OR combination of the corresponding values. The
option value X_PHC_OV_LLP_OFF deactivates all local loops

X_PHC_OV_LLP_OFF All local loops deactivated;
X_PHC_OV_LLP_AUDIO Local loop back of audio output signals to
 audio input;
X_PHC_OV_LLP_VIDEO Local loop back of video output signals to
 video input;
X_PHC_OV_LLP_DIGITAL Local loop back of digital output to digital
 input.

I.5.7.8 Usage of XAPI functions

This subclause provides some protocol-specific remarks on the use of the XAPI functions. The
functions are mentioned in alphabetical order.

x_conconf The user_data buffer in the call_struct is empty, as transfer of user data is not
supported in the connection establishment phase.

x_conind The user_data buffer in the conind_struct is empty, as transfer of user data is not
supported in the connection establishment phase.

x_conreq The user_data buffer in the call_struct has to be empty, as transfer of user data is not
supported in the connection establishment phase. Usage of the MORE flag is not
supported.

x_conrsp The user_data buffer in the call_struct has to be empty, as transfer of user data is not
supported in the connection establishment phase. Usage of the MORE flag is not
supported.

 Recommendation T.180 (06/98) 241

x_bind The address buffer own_address.buf of the bind_struct may be set to the NULL
pointer. In this case the endpoint is bound to a preconfigured address. The service
endpoint may be bound to multiple addresses. To achieve this, the address parameter
A_OUTBAND_ADR may be repeated in the address buffer.

x_open To create an endpoint accessing the AV Codec control service provider for ISDN,
the service provider name "X_PHC_ISDN" must be used.

x_relconf The user_data buffer in the release_struct is empty, as transfer of user data is not
supported in the connection release phase.

x_relind The AV Codec control service provider does not support passive orderly release.
The XAPI event RELIND will never occur when accessing this provider. Thus the
x_relind() consuming function need not be called by the application.

x_relreq The user_data buffer in the release_struct has to be empty, as transfer of user data is
not supported in the connection release phase. Usage of the MORE flag is not
supported.

x_relrsp The AV Codec control service provider does not support passive orderly release. No
release indication is defined to which the application could respond. Thus the
application need not call the XAPI function x_relresp().

x_rcvdata Expedited data is not supported. This service is not applicable for AV data.

x_rcvdis The user_data buffer in the discon_struct is empty, as transfer of user data is not
supported by the connection abort service.

x_snddata Expedited data is not supported. This service is not applicable for AV data.

x_snddis The user_data buffer in the discon_struct has to be empty, as transfer of user data is
not supported by the connection abort service. Usage of the MORE flag is not
supported.

I.5.7.9 Tables of error codes

The XAPI error-level error codes are defined in Annex B.

I.5.7.9.1 CC_BADVALUE

The cause code CC_BADVALUE indicates that a parameter with a bad value was specified. The
value of diagnostic then indicates the erroneous parameter identifier which has been submitted with
the XAPI function call that caused the error indication.

I.5.7.9.2 CC_MANDMISS

The cause code CC_MANDMISS indicates that a mandatory parameter is missing. The value of
diagnostic then indicates the missing parameter identifier that caused the error indication.

I.5.7.9.3 CC_BADEVENT

The cause code CC_BADEVENT indicates that an unknown event occurred. The value of diagnostic
then indicates the bad event identifier which has been submitted with the XAPI function call that
caused the error indication.

I.5.7.9.4 CC_UNEXPECT

The cause code CC_UNEXPECT indicates that an event occurred which is unexpected in the current
state of communication. The value of diagnostic then indicates the actual state identifier in which the
unexpected event caused the error indication.

242 Recommendation T.180 (06/98)

I.5.7.9.5 CC_NOTSUPPORT

The cause code CC_NOTSUPPORT indicates that an unsupported event occurred. The value of
diagnostic then indicates the identifier of the unsupported event which has been submitted with the
XAPI function call that caused the error indication.

I.5.7.9.6 CC_OTHER

The cause code CC_OTHER is used if none of the cause codes mentioned above applies. The
following diagnostic codes are defined in the AV Codec control service:

X_PHC_DC_UNSYNC A transmit C&I request was submitted while the initial channel
is not synchronized.

X_PHC_DC_NOCAPSET No complete capability set of the remote terminal was received
in a capability exchange.

X_PHC_DC_BADCOMBI An inconsistent combination of audio, video, and data is
specified in a mode switch request.

X_PHC_DC_CAPCONFLICT The new mode specified in a mode switch request is in conflict
with the known receive and decode capabilities of the remote
terminal.

I.6 XAPI access to the service provider for the T.120 conference control

This part of Appendix I describes an example of how the service provider can be implemented, if an
application needs access to the specified service.

I.6.1 Scope

The XAPI, which is an abbreviation for eXtensive Application Programming Interface, is an
operating system and language-independent programming interface to general communication
services. Detailed information about the XAPI is given in the main part of this Recommendation,
which is very important for understanding this appendix.

Which services are made available via the XAPI depends on the installed service providers and not
on the XAPI which only provides the access mechanism.

This part describes the XAPI access to the T.120 conference control. The Generic Conference
Control (GCC) protocol is specified in Recommendation T.124.

Figure I.6-1 shows the structure of the protocol stack that is accessible via the XAPI when selecting
the conference control provider.

 Recommendation T.180 (06/98) 243

T0827300-97

Application

XAPI

T.120 Conference control module
(node controller)

T.124 GCC protocol
module

Conference provider
(without node controller
and application protocols)

T.125 MCS protocol
module

T.123 network-specific
transport protocol module

Figure I.6-1/T.180 – Structure of the T.120 conference control provider

The XAPI user is able to select one transport system (comprising the layers 1 to 4) among the set of
transport systems available in the XAPI communication platform to act as the underlying transport
service provider.

The conference control provider consists of the T.120 conference control module (node controller)
and the T.124 GCC protocol module, the T.125 MCS protocol module, and the T.123
Network-specific-transport protocol stack modules.

The conference provider comprises the T.124 GCC protocol module, the T.125 MCS protocol
module, the T.123 Network-specific transport protocol stack modules, the node controller module
and the application protocol modules (e.g. the T.127 MBFT protocol module).

When a user (at the terminal) is connected to a conference, all modules of the conference provider
are initialized and activated. First the node controller module, the T.124 GCC protocol module, the
T.125 MCS protocol module, and the T.123 Network-specific transport protocol stack modules will
be initialized and activated. Afterwards, applications may be connected to the conference (see I.7,
"XAPI access to the service provider for T.127 MBFT").

244 Recommendation T.180 (06/98)

The reader should be familiar with the T.120-series of Recommendations (see References).

I.6.2 References

The following ITU-T Recommendations and other references contain provisions which, through
reference in this text, constitute provisions of this Recommendation. At the time of publication, the
editions indicated were valid. All Recommendations and other references are subject to revision; all
users of this Recommendation are therefore encouraged to investigate the possibility of applying the
most recent edition of the Recommendations and other references listed below. A list of the currently
valid ITU-T Recommendations is regularly published.

[T.120] ITU-T Recommendation T.120 (1996), Data protocols for multimedia conferencing.

[T.122] ITU-T Recommendation T.122 (1993), Multipoint communication service – Service
definition.

[T.123] ITU-T Recommendation T.123 (1996), Network specific data protocol stacks for
multimedia conferencing.

[T.124] ITU-T Recommendation T.124 (1998), Generic Conference Control.

[T.125] ITU-T Recommendation T.125 (1998), Multipoint communication service protocol
specification.

I.6.3 Definitions

I.6.4 Abbreviations

This part uses the following abbreviations:

DSS 1 Digital Subscriber Signalling System No.1

GCC Generic Conference Control

HDLC High-Level Data-Link Control

ISDN Integrated Services Digital Network

MCS Multipoint Communication Service

MCU Multipoint Control Unit

MBFT Multipoint Binary File Transfer

PDU Protocol Data Unit

SP Service Primitive

XAPI eXtensive Application Programming Interface

I.6.5 Conventions

Each service is described via three kinds of tables.

In the first kind of table the service and its service elements are described. It contains a row for each
service element of the service (where service element means either request, indication, response, or
confirmation) with its corresponding XAPI function and a short description.

In the second kind of table the use of the service primitive parameters within the service elements are
described. It contains a row for each service primitive parameter of the service. The service primitive
parameter name is stored within the first column; the succeeding columns contain the use of the
parameter in the service elements:

Blank The service parameter is absent.

 Recommendation T.180 (06/98) 245

C Presence of the service parameter is conditional. Firstly, there may be a condition in the
service provider to provide a parameter in an indication or confirmation; secondly, there may
be interdependencies between parameters of the same or the preceding service primitive.

M Presence of the service parameter is mandatory.

U Presence of the service parameter is a user option. If the user does not specify a value for
such a parameter and there is no default value for that parameter, nothing is passed to the
service provider. If the user does not specify a value for such a parameter and there is a
default value, the default value is passed to the service provider.

(=) The value of the service parameter is identical to the value of the corresponding service
parameter in the preceding service element. In the special case of a parameter, whose
presence in the preceding service is a user option, for which a default value is defined, and
the parameter was not specified in the preceding service element, the symbol (=) indicates
that the parameter value is identical to the default value.

The third kind of table is used to describe the service primitive parameter containing the type of
value and its scope, possible default values and a detailed description. For each service primitive
parameter one description table is given.

A naming convention is used throughout the XAPI in order to distinguish between the common
functions, identifiers and values, and service-specific identifiers and values. All service-specific
settings of the node controller service access are defined within the present part of this appendix and
start with X_CON_ or x_con_.

Extended naming conventions:

– SP_ Service Primitive;

– P_ Parameter;

– PV_ Parameter Value;

– O_ Option;

– OV_ Option Value.

I.6.6 Introduction to the conference control provider access

The conference control provider enables a user to participate in a conference.

The service is provided by a combination of a transport system according to Recommendation T.123,
the MCS protocol module according to Recommendations T.125 and T.122, the GCC protocol
module according to Recommendation T.124, and functions of the node controller.

The T.120 conference control provider offers the XAPI user the following groups of services as
defined in the T.124 GCC service:

• conference establishment and termination;

• conference roster;

• application roster;

• conference conductorship;

• miscellaneous functions.

All mandatory and some conditional services of the T.124 GCC service are supported. The following
services of the above specified groups are supported:

• Conference establishment and termination – conference creation, conference query, joining a
conference, invitation to a conference (passive only), leaving a conference, indication of
ejection of a user, indication of termination of a conference;

246 Recommendation T.180 (06/98)

• Conference roster – indication of the actual conference roster, announce of the presence in a
conference (this service is not visible to the XAPI user);

• Application roster – application roster report indication;

• Conference conductorship – indication of conductor assign and release, information about
the conference conductor, if any;

• Miscellaneous functions.

Recommendation T.120 supports the following configurations:

• direct connection between two terminals without MCU

T0827310-97

Terminal Terminal

Figure I.6-2/T.180 – Example configuration: Direct
connection between two terminals without MCU

• connection between terminals and multiport terminals without MCUs

T0827320-97

Terminal
Multiport
terminal

Terminal

Figure I.6-3/T.180 – Example configuration: Connection between
terminals and multiport terminals without MCUs

• hierarchical configuration of MCUs and terminals

T0827330-97

MCU

MCU MCU

Terminal Terminal Terminal Terminal

Figure I.6-4/T.180 – Example configuration: Hierarchical
configuration of MCUs and terminals

 Recommendation T.180 (06/98) 247

Restrictions, which are made for implementation:

Only the hierarchical configuration of MCUs and terminals is supported. Each terminal is directly
connected to a MCU (see Figure I.6-4).

The XAPI interface is taken into consideration only in a terminal. Therefore, only GCC services
which correspond to a terminal are allowed.

Optional and most conditional services are not supported:

• Conference establishment and termination – active invitation to conference, lock or unlock
the conference, information about change between locked or unlocked, active termination of
a conference, active ejection of a user, active conference transfer;

• Conference roster – information about the actual conference roster;

• Application roster – active or passive invocation of an application;

• Conference conductorship – active conductor assign, active conductor release, conductor
please, conductor give, conductor permission ask and grant;

• Miscellaneous functions – conference time remaining, conference time inquire, conference
extend, conference assistance, conference text message.

I.6.7 Description of the access to the conference control provider

I.6.7.1 Service initialization

I.6.7.1.1 Creation of a conference control service access point with x_open()

A communication endpoint accessing conference control service provider is created when calling the
x_open() function with an appropriate service provider identification string. The available identifiers
depend on the actual system configuration. In the standard configuration, "X_T.120_CONF_ISDN"
identifies the conference control provider with the node controller, T.124 GCC and T.122/T.125
MCS as underlying functionality as well as a transport system based on the ISDN network. On the
protocol levels two to four, there are implementations of HDLC LAP B, ISO 8208 and T.70.

I.6.7.1.2 Selection of the underlying transport system with x_bind()

x_bind() is to be called to activate the conference control service endpoint. The function has the
following tasks:

• If the service provider, which has been selected with x_open(), does not comprise a transport
system, link a transport system below the available protocol modules;

• Bind an address to the service endpoint.

If the service provider X_T.120_CONF_ISDN has been selected in the x_open() function, no
transport system has to be specified in the x_bind() function.

I.6.7.1.3 Protocol addresses

The protocol address to be used for the conference control service is the NSAP address. Selectors are
meaningless for the conference control service.

I.6.7.1.3.1 The application’s own address

The own address may be specified in the own_address buffer of the bind_struct passed as argument
to the x_bind() function. It is returned in the called_addr buffer of the x_conind() function.

For a passive application it is not supported to specify the own responding NSAP address in the
address buffer of the call_struct in the x_conrsp() function, as this value is not transferred by the
network.

248 Recommendation T.180 (06/98)

Note that specification of the application’s own protocol address is completely optional. If no address
information is specified, the own address is derived from system configuration information and the
bound value is returned as output parameter of the x_bind() function.

The own address consists of the NSAP address only. The NSAP address has to comprise the local
ISDN outband address, i.e. the address information used in the D-channel. The own ISDN inband
address and subaddress parameters as well as the protocol selectors are meaningless for the
conference control service. If specified, they will be ignored.

Table I.6-1 shows the address component which has to be specified in the x_bind() call:

Table I.6-1/T.180 – Address component specified in the x_bind() call

ISDN network Address component Value

ISDN/DSS 1 A_OUTBAND_ADR A decimal digit, which is locally mapped on the
Multiple Subscriber Number (MSN)

I.6.7.1.3.2 The address of the communication partner

On the sending side, the address of the communication partner has to be specified in the address
buffer of the call_struct passed as argument to the x_conreq() function. On the receiving side, the
address of the communication partner is returned in the calling_addr buffer of the x_conind()
function.

The address of the communication partner comprises at least the peer’s ISDN outband address. The
peer’s ISDN inband address and subaddress as well as the protocol selectors are meaningless for the
conference control service.

Table I.6-2 shows the address component to be used in the address buffer specifying the called
NSAP address in a x_conreq() call:

Table I.6-2/T.180 – Address component specifying
the called NSAP address in a x_conreq() call

ISDN network Address component Value

ISDN/DSS 1 A_OUTBAND_ADR Optional the country code, optional the area
code and the Multiple Subscriber Number
(MSN)

I.6.7.1.4 Configuration of the service provider

Protocol options are used to control the general behavior of the service provider. There is a default
value defined for each option. These preconfigured values are sufficient for the majority of
communication relations.

XAPI enables applications to express their wishes about the settings of protocol options by using the
XAPI function x_optmgmt().

Tables I.6-3 and I.6-4 define the protocol options.

 Recommendation T.180 (06/98) 249

Table I.6-3/T.180

Option name X_CON_O_AROSTER

Type of value unsigned long

Legal values PV_TRUE

PV_FALSE

Default value PV_TRUE

Attributes

Description Receiving of application roster indications.

Table I.6-4/T.180

Option name X_CON_O_CROSTER

Type of value unsigned long

Legal values PV_TRUE

PV_FALSE

Default value PV_TRUE

Attributes

Description Receiving of Conference Roster Indications.

I.6.7.2 Connection Establishment service

I.6.7.2.1 Service description

The Connection Establishment service enables the XAPI user to become a participant of a
conference. There are two possibilities to become a participant:

• The XAPI user itself will actively become a participant of a conference. In this case the
x_conreq and x_conconf connection establishment service elements are used.

• The XAPI user is invited to a conference. In this case the x_conind and x_conrsp connection
establishment service elements are used.

When the terminal is a participant of the conference, all supported applications (e.g. T.127 MBFT)
can be started.

The elements of the Connection Establishment service and the corresponding XAPI functions for the
active participation are defined in Table I.6-5.

250 Recommendation T.180 (06/98)

Table I.6-5/T.180 – Service elements and their corresponding XAPI
functions for Connection Establishment for active participation

Service element XAPI function Description

Connect Request x_conreq() The Connect Request is passed to the provider to
request the establishment of a connection to the Top
provider of the conference. The own local capabilities
to be used may be specified as service parameters. If
no capabilities are specified, the default values are
used.

Connect Confirmation x_conconf() The Connect Confirmation is a positive or negative
response to a previous connection establishment
request. A positive confirmation indicates that the
terminal is a participant of the conference.

The elements of the Connection Establishment service and the corresponding XAPI functions for
invitation to participate in a conference are defined in Table I.6-6.

Table I.6-6/T.180 – Service elements and their corresponding XAPI functions
for Connection Establishment for invitation to participate

Service element XAPI function Description

Connect Indication x_conind() The Connect Indication is passed from the provider to
the user to request the establishment of a connection to
the conference. The own local capabilities to be used
may be specified as service parameters. If no
capabilities are specified, the default values are used.

Connect Response x_conrsp() The Connect Response is a positive or negative
response to a previous connection establishment
indication. A positive response indicates that the
terminal will be a participant of the conference.

I.6.7.2.2 Service parameters for active participation

Table I.6-7 specifies the parameters of the Connection Establishment service for active participation
in a conference.

The specification of provider capabilities is optional. If a capability parameter is not specified in a
service element, the default value will be used by the service provider. The default value itself is
defined by the value of a protocol option. For each capability parameter there is a corresponding
protocol option which defines the default value for this parameter. For the protocol option, a constant
default value is defined in the XAPI configuration.

 Recommendation T.180 (06/98) 251

Table I.6-7/T.180 – Parameters of the active participation service

Parameter Connect service

 Request Confirmation

X_CON_P_CR_JOIN M

X_CON_P_CONF_NAME M M (=)

X_CON_P_CNAME_M_CD C

X_CON_P_CNAME_M_CG U

X_CON_P_CONV_PASS U

X_CON_P_PASS C C

X_CON_P_PASS_CLEAR C

X_CON_P_LOCKED C C

X_CON_P_LISTED C C

X_CON_P_CONDUCT C C

X_CON_P_TERM_MOD C C

X_CON_P_COND_PRIV C C

X_CON_P_COND_M_PRIV C C

X_CON_P_NCOND_M_PRIV C C

X_CON_P_CONF_DESCR C C

X_CON_P_CALLER_ID U

X_CON_P_LOC_NETADDR U

X_CON_P_NODE_NAME U

X_CON_P_PART_NAME U

X_CON_P_SITE_INFO U

X_CON_P_NODE_ID C

X_CON_P_DATA_PRI U C

X_CON_P_RESULT M

I.6.7.2.3 Service parameter description for active participation

Tables I.6-8 to I.6-30 define the parameters for the elements x_conreq and x_conconf of the
Connection Establishment service.

Table I.6-8/T.180

Parameter name X_CON_P_CR_JOIN

Type of value unsigned long

Legal values X_CON_PV_CREATE

X_CON_PV_JOIN

Default value X_CON_PV_CREATE

Description The parameter indicates if a new conference shall be created or if the user
wishes to join an existing conference.

252 Recommendation T.180 (06/98)

Table I.6-9/T.180

Parameter name X_CON_P_CONF_NAME

Type of value struct X_CON_P_CONF_NAME {
 string<256> numeric_string;
 string<256> text_string;
};

Legal values a numerical string along with an optional text string, from zero to 255
characters each

Default value none

Description Name by which the conference is identified

Table I.6-10/T.180

Parameter name X_CON_P_CNAME_M_CD

Type of value string<255>

Legal values a numerical string up to 255 digits in length

Default value none

Description Name Modifier by which the conference is identified in the called node if a
conference with identical conference name already exists. This parameter is
only meaningful if joining a conference (X_CON_P_CR_JOIN =
X_CON_PV_JOIN).

Table I.6-11/T.180

Parameter name X_CON_P_CNAME_M_CG

Type of value string<255>

Legal values a numerical string up to 255 digits in length

Default value none

Description Name Modifier by which the conference is identified in the calling node if a
conference with identical conference name already exists

Table I.6-12/T.180

Parameter name X_CON_P_CONV_PASS

Type of value struct X_CON_P_CONV_PASS {
 string<256> numeric_string;
 string<256> text_string;
};

Legal values a numerical string along with an optional text string, from zero to 255
characters each

Default value None

Description Password used by the convener to identify itself. It can be used in later
operations, when he rejoins the conference.

 Recommendation T.180 (06/98) 253

Table I.6-13/T.180

Parameter name X_CON_P_PASS

Type of value struct X_CON_P_PASS {
 string<256> numeric_string;
 string<256> text_string;
};string

Legal values a numerical string along with an optional text string, from zero to 255
characters each

Default value none

Description Password for a password-protected conference. If the XAPI user creates the
conference (X_CON_P_CR_JOIN = X_CON_PV_CREATE), the conference
may be protected with a password in the x_conreq function. If the XAPI user
joins the conference (X_CON_P_CR_JOIN = X_CON_PV_JOIN), the
x_conreq function must contain this parameter for a password-protected
conference. If the password is not o.k., in this case the x_conconf function
may contain more information about the password.

Table I.6-14/T.180

Parameter name X_CON_P_PASS_CLEAR

Type of value unsigned long

Legal values PV_TRUE

PV_FALSE

Default value none

Description It indicates whether it is a password-protected conference. This parameter is
used only in the x_conconf function, when it is a response to a x_conreq with
the parameter (X_CON_P_CR_JOIN = X_CON_PV_JOIN).

Table I.6-15/T.180

Parameter name X_CON_P_LOCKED

Type of value unsigned long

Legal values PV_TRUE

PV_FALSE

Default value PV_FALSE

Description Setting this parameter indicates that the conference is locked. Nobody can
join the conference by itself. New conference participants can only be
invited. In the x_conreq function the value PV_TRUE is allowed only in the
case when creating a conference (i.e. X_CON_P_CR_JOIN =
X_CON_PV_CREATE).

254 Recommendation T.180 (06/98)

Table I.6-16/T.180

Parameter name X_CON_P_LISTED

Type of value unsigned long

Legal values PV_TRUE

PV_FALSE

Default value PV_TRUE

Description This parameter indicates that this conference may be listed when using the
conference information service. This parameter must be used in the x_conreq
function when a conference is created (X_CON_P_CR_JOIN =
X_CON_PV_CREATE) but not when joining a conference
(X_CON_P_CR_JOIN = X_CON_PV_JOIN). This parameter is used in the
x_conconf function when a conference is joined (X_CON_P_CR_JOIN =
X_CON_PV_JOIN) but not when creating a conference
(X_CON_P_CR_JOIN = X_CON_PV_CREATE).

Table I.6-17/T.180

Parameter name X_CON_P_CONDUCT

Type of value PV_TRUE

PV_FALSE

Legal values PV_FALSE

Default value none

Description This parameter indicates that the conference may be placed in the conducted
mode. This parameter must be used in the x_conreq function when a
conference is created (X_CON_P_CR_JOIN = X_CON_PV_CREATE) but
not when joining a conference (X_CON_P_CR_JOIN = X_CON_PV_JOIN).
This parameter is used in the x_conconf function when a conference is joined
(X_CON_P_CR_JOIN = X_CON_PV_JOIN) but not when creating a
conference (X_CON_P_CR_JOIN = X_CON_PV_CREATE).

Table I.6-18/T.180

Parameter name X_CON_P_TERM_MOD

Type of value unsigned long

Legal values X_CON_PV_AUTOMATIC

X_CON_PV_MANUAL

Default value X_CON_PV_AUTOMATIC

Description This parameter indicates whether the conference shall remain in existence
until explicitly terminated (X_CON_PV_MANUAL) or if the conference
will terminate in the case no nodes are joined to it
(X_CON_PV_AUTOMATIC). This parameter must be used in the x_conreq
function when a conference is created (X_CON_P_CR_JOIN =
X_CON_PV_CREATE) but not when joining a conference
(X_CON_P_CR_JOIN = X_CON_PV_JOIN). This parameter is used in the
x_conconf function when a conference is joined (X_CON_P_CR_JOIN =
X_CON_PV_JOIN) but not when creating a conference
(X_CON_P_CR_JOIN = X_CON_PV_CREATE).

 Recommendation T.180 (06/98) 255

Table I.6-19/T.180

Parameter name X_CON_P_COND_PRIV

Type of value sequence<unsigned long, 6>

Legal values PV_TRUE / PV_FALSE Conference termination;

PV_TRUE / PV_FALSE Eject a user;

PV_TRUE / PV_FALSE Add a user;

PV_TRUE / PV_FALSE Lock a conference;

PV_TRUE / PV_FALSE Unlock a conference;

PV_TRUE / PV_FALSE Conference transfer.

Default Value PV_TRUE, PV_TRUE, PV_TRUE, PV_TRUE, PV_TRUE, PV_TRUE

Description This parameter indicates which functions the convener is designating as
allowable to be used by the conference conductor, if any. The values are
specified in the same order as listed above. This parameter may be used in
the x_conreq function when a conference is created (X_CON_P_CR_JOIN =
X_CON_PV_CREATE) but not when joining a conference
(X_CON_P_CR_JOIN = X_CON_PV_JOIN). This parameter may be in the
x_conconf function when a conference is joined (X_CON_P_CR_JOIN =
X_CON_PV_JOIN) but not when creating a conference
(X_CON_P_CR_JOIN = X_CON_PV_CREATE).

Table I.6-20/T.180

Parameter name X_CON_P_COND_M_PRIV

Type of value sequence<unsigned long, 6>

Legal values PV_TRUE / PV_FALSE Conference termination;

PV_TRUE / PV_FALSE Eject a user;

PV_TRUE / PV_FALSE Add a user;

PV_TRUE / PV_FALSE Lock a conference;

PV_TRUE / PV_FALSE Unlock a conference;

PV_TRUE / PV_FALSE Conference transfer.

Default value PV_TRUE, PV_TRUE, PV_TRUE, PV_TRUE, PV_TRUE, PV_TRUE

Description This parameter indicates which functions the convener is designating as
allowable to be used by any node in a conducted-mode conference. The
values are specified in the same order as listed above. This parameter may be
used in the x_conreq function when a conference is created
(X_CON_P_CR_JOIN = X_CON_PV_CREATE) but not when joining a
conference (X_CON_P_CR_JOIN = X_CON_PV_JOIN). This parameter
may be in the x_conconf function when a conference is joined
(X_CON_P_CR_JOIN = X_CON_PV_JOIN) but not when creating a
conference (X_CON_P_CR_JOIN = X_CON_PV_CREATE).

256 Recommendation T.180 (06/98)

Table I.6-21/T.180

Parameter name X_CON_P_NCOND_M_PRIV

Type of value sequence <unsigned long, 6>

Legal values PV_TRUE / PV_FALSE Conference termination;

PV_TRUE / PV_FALSE Eject a user;

PV_TRUE / PV_FALSE Add a user;

PV_TRUE / PV_FALSE Lock a conference;

PV_TRUE / PV_FALSE Unlock a conference;

PV_TRUE / PV_FALSE Conference transfer.

Default value PV_TRUE, PV_TRUE, PV_TRUE, PV_TRUE, PV_TRUE, PV_TRUE

Description This parameter indicates which functions the convener is designating as
allowable to be used by any node in a non-conducted-mode conference. The
values are specified in the same order as listed above. This parameter may be
used in the x_conreq function when a conference is created
(X_CON_P_CR_JOIN = X_CON_PV_CREATE) but not when joining a
conference (X_CON_P_CR_JOIN = X_CON_PV_JOIN). This parameter
may be in the x_conconf function when a conference is joined
(X_CON_P_CR_JOIN = X_CON_PV_JOIN) but not when creating a
conference (X_CON_P_CR_JOIN = X_CON_PV_CREATE).

Table I.6-22/T.180

Parameter name X_CON_P_CONF_DESCR

Type of value string<256>

Legal values a text string, from zero to 255 characters

Default value none

Description This parameter may be used to describe the conference. This parameter may
be used in the x_conreq function when a conference is created
(X_CON_P_CR_JOIN = X_CON_PV_CREATE) but not when joining a
conference (X_CON_P_CR_JOIN = X_CON_PV_JOIN). This parameter
may be in the x_conconf function when a conference is joined
(X_CON_P_CR_JOIN = X_CON_PV_JOIN) but not when creating a
conference (X_CON_P_CR_JOIN = X_CON_PV_CREATE).

Table I.6-23/T.180

Parameter name X_CON_P_CALLER_ID

Type of value string<256>

Legal values a text string, from zero to 255 characters

Default value none

Description This parameter may be used to describe the calling node.

 Recommendation T.180 (06/98) 257

Table I.6-24/T.180

Parameter name X_CON_P_LOC_NETADDR

Type of value unsigned long

Legal values PV_TRUE

PV_FALSE

Default value PV_FALSE

Description This parameter is used to indicate whether the local provider shall send the
own Network Address parameter or not. This parameter is included in the
conference description list.

Table I.6-25/T.180

Parameter name X_CON_P_NODE_NAME

Type of value string<255>

Legal values a string up to 255 characters

Default value none

Description This parameter is used to indicate the name of a node. This parameter is
included in the conference description list.

Table I.6-26/T.180

Parameter name X_CON_P_PART_NAME

Type of value sequence<string<255> >

Legal values a list of strings each up to 255 characters

Default value none

Description This parameter is used to indicate the names of the participants.

Table I.6-27/T.180

Parameter name X_CON_P_SITE_INFO

Type of value string<255>

Legal values a string up to 255 characters

Default value none

Description This parameter is used to indicate information about the node. This
parameter is included in the conference description list.

Table I.6-28/T.180

Parameter name X_CON_P_NODE_ID

Type of value unsigned long

Legal values an integer between 1001 and 65535

Default value none

Description This parameter is used to indicate the own node identification from the local
provider to the user.

258 Recommendation T.180 (06/98)

Table I.6-29/T.180

Parameter name X_CON_P_DATA_PRI

Type of value unsigned long

Legal values an integer between 1 and 4

Default value 1

Description This parameter is used to indicate the number of data transfer priorities.

Table I.6-30/T.180

Parameter name X_CON_P_RESULT

Type of value unsigned long

Legal values X_CON_PV_ACCEPT

X_CON_PV_USER_REJECTED

X_CON_PV_RESOURCE_NOT_AVAIL

X_CON_PV_SYMMETRY_BREAK

X_CON_PV_ILOCKED_NOT_SUPP

X_CON_PV_NAME/MOD_EXIST

X_CON_PV_DOM_PAR_UNACC

X_CON_PV_DOM_NOT_HIERARCH

X_CON_PV_LOWER_LAY_DIS

X_CON_PV_UNSPECIFIED

X_CON_PV_INV_CONF

X_CON_PV_INV_PASSW

X_CON_PV_CHALLENGE_RSP_REQ

X_CON_PV_INV_CHALLENGE_RSP

X_CON_PV_INV_CONVENER_PASSW

Accepted;

User rejected;

Resources not available;

Symmetry breaking;

Locked conference not supported;

Conference name and modifier already
exist;

Domain parameters unacceptable;

Domain not hierarchical;

Lower layer initiated disconnect;

Unspecified failure;

Invalid conference;

Invalid password;

Challenge response required;

Invalid challenge response;

Invalid convener password.

Default value X_CON_PV_ACCEPT

Description This parameter indicates the success or failure of the connection establishment request.

I.6.7.2.4 Service parameters for invitation to participate in a conference

Table I.6-31/T.180 – Parameters for invitation to participate service

Parameter Connect service

 Indication Response

X_CON_P_CONF_NAME M M (=)

X_CON_P_CNAME_MOD C

X_CON_P_CALLER_ID U

X_CON_P_PASS_CLEAR M

X_CON_P_LOCKED M

X_CON_P_LISTED M

 Recommendation T.180 (06/98) 259

Table I.6-31/T.180 – Parameters for invitation to participate service (concluded)

Parameter Connect service

 Indication Response

X_CON_P_CONDUCT M

X_CON_P_TERM_MOD M

X_CON_P_COND_PRIV C

X_CON_P_COND_M_PRIV C

X_CON_P_NCOND_M_PRIV C

X_CON_P_CONF_DESCR C

X_CON_P_LOC_NETADDR U

X_CON_P_DATA_PRI C C

X_CON_P_RESULT M

I.6.7.2.5 Service parameter description for invitation to participate in a conference

Tables I.6-32 to I.6-46 define the parameters for the elements x_conind and x_conrsp of the
Connection Establishment service.

Table I.6-32/T.180

Parameter name X_CON_P_CONF_NAME

Type of value struct X_CON_P_CONF_NAME {
 string<256> numeric_string;
 string<256> text_string;
};

Legal values a numerical string along with an optional text string, from zero to 255
characters each

Default value none

Description Name by which the conference is identified.

Table I.6-33/T.180

Parameter name X_CON_P_CNAME_MOD

Type of value string<255>

Legal values a numerical string up to 255 digits in length

Default value none

Description Name Modifier by which the conference is identified in the called node if a
conference with identical conference name already exists.

260 Recommendation T.180 (06/98)

Table I.6-34/T.180

Parameter name X_CON_P_CALLER_ID

Type of value string<256>

Legal values This parameter is a text string, from zero to 255 characters.

Default value none

Description This parameter may be used to describe the calling node.

Table I.6-35/T.180

Parameter name X_CON_P_PASS_CLEAR

Type of value unsigned long

Legal values PV_TRUE

PV_FALSE

Default value none

Description It indicates whether it is a password-protected conference.

Table I.6-36/T.180

Parameter name X_CON_P_LOCKED

Type of value unsigned long

Legal values PV_TRUE

PV_FALSE

Default value PV_FALSE

Description Setting this parameter indicates that the conference is locked. Nobody can
join the conference itself. A new conference participant can only be invited.

Table I.6-37/T.180

Parameter name X_CON_P_LISTED

Type of value unsigned long

Legal values PV_TRUE

PV_FALSE

Default value PV_TRUE

Description This parameter indicates that this conference may be listed when using the
conference information service.

Table I.6-38/T.180

Parameter name X_CON_P_CONDUCT

Type of value PV_TRUE

PV_FALSE

Legal values PV_FALSE

Default value none

Description This parameter indicates that the conference may be placed in the conducted
mode.

 Recommendation T.180 (06/98) 261

Table I.6-39/T.180

Parameter name X_CON_P_TERM_MOD

Type of value unsigned long

Legal values X_CON_PV_AUTOMATIC

X_CON_PV_MANUAL

Default value X_CON_PV_AUTOMATIC

Description This parameter indicates whether the conference shall remain in existence
until explicitly terminated (X_CON_PV_MANUAL) or if the conference
will terminate when there are no nodes joined to it
(X_CON_PV_AUTOMATIC).

Table I.6-40/T.180

Parameter name X_CON_P_COND_PRIV

Type of value sequence <unsigned long>

Legal values PV_TRUE / PV_FALSE Conference termination;

PV_TRUE / PV_FALSE Eject a user;

PV_TRUE / PV_FALSE Add a user;

PV_TRUE / PV_FALSE Lock a conference;

PV_TRUE / PV_FALSE Unlock a conference;

PV_TRUE / PV_FALSE Conference transfer.

Default value PV_TRUE , PV_TRUE , PV_TRUE , PV_TRUE , PV_TRUE , PV_TRUE

Description This parameter indicates which functions the convener has designated as
allowable to be used by the conference conductor, if any. The values are
specified in the same order as listed above.

Table I.6-41/T.180

Parameter name X_CON_P_COND_M_PRIV

Type of value sequence<unsigned long, 6>

Legal values PV_TRUE / PV_FALSE Conference termination;

PV_TRUE / PV_FALSE Eject a user;

PV_TRUE / PV_FALSE Add a user;

PV_TRUE / PV_FALSE Lock a conference;

PV_TRUE / PV_FALSE Unlock a conference;

PV_TRUE / PV_FALSE Conference transfer.

Default value PV_TRUE, PV_TRUE, PV_TRUE, PV_TRUE, PV_TRUE, PV_TRUE

Description This parameter indicates which functions the convener has designated as
allowable to be used by any node in a conducted-mode conference. The
values are specified in the same order as listed above.

262 Recommendation T.180 (06/98)

Table I.6-42/T.180

Parameter name X_CON_P_NCOND_M_PRIV

Type of value sequence <unsigned long, 6>

Legal values PV_TRUE / PV_FALSE Conference termination;

PV_TRUE / PV_FALSE Eject a user;

PV_TRUE / PV_FALSE Add a user;

PV_TRUE / PV_FALSE Lock a conference;

PV_TRUE / PV_FALSE Unlock a conference;

PV_TRUE / PV_FALSE Conference transfer.

Default value PV_TRUE, PV_TRUE, PV_TRUE, PV_TRUE, PV_TRUE, PV_TRUE

Description This parameter indicates which functions the convener has designated as
allowable to be used by any node in a non-conducted-mode conference. The
values are specified in the same order as listed above.

Table I.6-43/T.180

Parameter name X_CON_P_CONF_DESCR

Type of value string<256>

Legal values This parameter is a text string, from zero to 255 characters.

Default value none

Description This parameter may be used to describe the conference.

Table I.6-44/T.180

Parameter name X_CON_P_LOC_NETADDR

Type of value unsigned long

Legal values PV_TRUE

PV_FALSE

Default value PV_FALSE

Description This parameter is used to indicate whether the local provider shall send the
own Network Address parameter or not. This parameter is included in the
conference description list.

Table I.6-45/T.180

Parameter name X_CON_P_DATA_PRI

Type of value unsigned long

Legal values an integer between 1 and 4

Default value 1

Description This parameter is used to indicate the number of data transfer priorities.

 Recommendation T.180 (06/98) 263

Table I.6-46/T.180

Parameter name X_CON_P_RESULT

Type of value unsigned long

Legal values X_CON_PV_ACCEPT Accepted;

X_CON_PV_USER_REJECT User rejected;

X_CON_PV_UNSPECIFIED Unspecified failure.

Default value X_CON_PV_ACCEPT

Description This parameter indicates the success or failure of the connection
establishment request.

In the non-connected state there is also the Query Information service available.

I.6.7.3 Services in the connected state

There are no services available except all information services.

I.6.7.4 Disconnect service

I.6.7.4.1 Service description

The Disconnect service enables the XAPI user to leave a conference. There are two possibilities to
leave the conference:

• The XAPI user itself will actively leave a conference. In this case the x_snddis XAPI
function is used.

• The XAPI user is disconnected from a conference. In this case the x_rcvdis XAPI function is
used.

The service elements of the Disconnect service and the corresponding XAPI functions are defined in
Table I.6-47.

Table I.6-47/T.180 – Service elements and their corresponding XAPI
functions for the Disconnect service

Service element XAPI function Description

Disconnect Request x_snddis() The Disconnect Request is passed to the
provider to disconnect itself from the
conference.

Disconnect Indication x_rcvdis() The Disconnect Indication is passed to the user
to indicate that the node is no longer a
participant of the conference.

End Indication x_rcvend() The End Indication is generated by the provider
to indicate that the service provider is ready to
establish a new connection.

I.6.7.4.2 Service parameters

Table I.6-48 specifies the parameters of the Disconnect service.

264 Recommendation T.180 (06/98)

Table I.6-48/T.180 – Parameters of the Disconnect service

Parameter Disconnect service

 Request Indication

X_CON_P_TERM_NODE C

X_CON_P_REASON C

I.6.7.4.3 Service parameter description

Tables I.6-49 and I.6-50 define the parameters for the functions x_snddis and x_rcvdis of the
Disconnect service.

Table I.6-49/T.180

Parameter name X_CON_P_TERM_NODE

Type of value unsigned long

Legal values an integer between 1001 and 65535

Default value none

Description This parameter indicates the node ID of that node which was requesting the
termination.

Table I.6-50/T.180

Parameter name X_CON_P_REASON

Type of value unsigned long

Legal values X_CON_PV_USER_INI User initiated;

X_CON_PV_EJECTED_NODE Ejected node;

X_CON_PV_UNKNOWN Unknown;

X_CON_PV_NORM_TERM Requested normal termination;

X_CON_PV_TIMED_TERM Requested timed conference termination;

X_CON_PV_NO_PART No more participants in automatically
terminating conference;

X_CON_PV_ERROR Error termination;

X_CON_PV_HNODE_DIS Higher node disconnected;

X_CON_PV_HNODE_EJECT Higher node ejected.

Default value none

Description This parameter indicates the reason for the disconnection.

In the non-connected state there is also the Query Information service available.

I.6.7.5 Conference Information service

I.6.7.5.1 Conference Query service

This service may be used to determine what conferences are currently in existence at a particular
MCU. This service is available to the user in every state of the XAPI.

 Recommendation T.180 (06/98) 265

I.6.7.5.1.1 Service description

The service elements and their corresponding XAPI functions needed for the Conference Query
service are described in Table I.6-51.

Table I.6-51/T.180 – Service elements and their corresponding XAPI
functions for the Query service

Service element Service element
identifier

XAPI function Description

Query Request X_CON_QUERY_Q x_sndinfo() The Information Request is passed to the
provider to request the information about
actual listed conferences in the requested
MCU.

Query
Confirmation

X_CON_QUERY_C x_rcvinfo() The Information Confirmation is a
positive or negative response to a
previous information request.

I.6.7.5.1.2 Service parameters

Table I.6-52 specifies the parameters of the Query service.

Table I.6-52/T.180 – Parameters of the Query service

Parameter Conference Query service

 Request Confirmation

X_CON_P_DESCR_LIST C

X_CON_P_USER_DATA O O

X_CON_P_RESULT M

I.6.7.5.1.3 Service parameter description

Tables I.6-53 to I.6-55 specify the parameters of the Query service.

266 Recommendation T.180 (06/98)

Table I.6-53/T.180

Parameter name X_CON_P_DESCR_LIST

Type of value typedef struct Description {
 string Conf_Name;
 string Name_Modifier;
 string Conf_Descript;
 unsigned long Lock_Unlock;
 unsigned long Passw_in_Clear;
 string Net_Addr;
};

sequence<Description>;

Legal values Conf_Name: A text string Conference name;

Name_Modifier: A text string Conference name modifier;

Conf_Descript: A text string Conference description;

Lock_Unlock: PV_TRUE,PV_FALSE Conference locked or unlocked;

Passw_in_Clea PV_TRUE,PVFALSE Password in the clear required;

Net_Addr: A text string Network address.

Default value none

Description This parameter contains the conference description list with the specified parameters
for each listed conference in the requested node.

Table I.6-54/T.180

Parameter name X_CON_P_USER_DATA

Type of value string<256>

Legal values This parameter is a text string, from zero to 255 characters.

Default value none

Description This parameter may be used for optional user data.

Table I.6-55/T.180

Parameter name X_CON_P_RESULT

Type of value unsigned long

Legal values X_CON_PV_ACCEPT Accepted;

X_CON_PV_USER_REJECTED User rejected;

X_CON_PV_DOM_PAR_UNACC Domain parameters unacceptable;

X_CON_PV_DOM_NOT_HIERARCH Domain not hierarchical;

X_CON_PV_LOWER_LAY_DIS Lower layer initiated disconnect;

X_CON_PV_UNSPECIFIED Unspecified failure.

Default value X_CON_PV_ACCEPT

Description This parameter indicates the success or failure of the Conference Query
service.

 Recommendation T.180 (06/98) 267

I.6.7.5.2 Conference Conductor Inquire service

This service may be issued to find out whether the conference is conducted or not. If so, further
information is given:

– which node is the conductor;

– if the requesting node has been granted conducted-mode permission.

This service is available to the user only in the connected state of the XAPI.

I.6.7.5.2.1 Service description

The service elements and their corresponding XAPI functions needed for the Conductor Inquire
service are described Table I.6-56.

Table I.6-56/T.180 – Service elements and their corresponding XAPI
functions for the Conductor Inquire service

Service element Service element
identifier

XAPI function Description

Conductor
Inquire Request

X_COND_INQUIRE_Q x_sndinfo() The Information Request is passed to
the provider to request the information
about the conductor.

Conductor
Inquire
Confirmation

X_COND_INQUIRE_C x_rcvinfo() The Information Confirmation is a
positive or negative response to a
previous information request.

I.6.7.5.2.2 Service parameters

Table I.6-57 specifies the parameters of the conference Conductor Inquire service.

Table I.6-57/T.180 – Parameter of the Conductor Inquire service

Parameter Conference Conductor Inquire service

 Request Confirmation

X_CON_P_CONDUCTED M

X_CON_P_COND_NODE C

X_CON_P_PERMISSION C

I.6.7.5.2.3 Service parameter description

Tables I.6-58 to I.6-60 specify the parameters of the Conductor Inquire service.

Table I.6-58/T.180

Parameter name X_CON_P_CONDUCTED

Type of value unsigned long

Legal values PV_TRUE
PV_FALSE

Default value PV_FALSE

Description This parameter indicates whether the conference is currently in conducted or
non-conducted mode.

268 Recommendation T.180 (06/98)

Table I.6-59/T.180

Parameter name X_CON_P_COND_NODE

Type of value unsigned long

Legal values an integer between 1001 and 65 535

Default value none

Description This parameter indicates the node ID of the current conference conductor. It
is only available if the conference is in the conducted mode.

Table I.6-60/T.180

Parameter name X_CON_P_PERMISSION

Type of value unsigned long

Legal values PV_TRUE

PV_FALSE

Default value none

Description This parameter indicates if the conference is in the conducted mode, whether
or not the local node has been granted conducted mode permission.

I.6.7.5.3 Conference Roster Report service

This service informs the user, in the case when the conference roster has changed for any reason.
This service is available to the user only in the connected state of the XAPI.

I.6.7.5.3.1 Service description

The service element and their corresponding XAPI function needed for the Conference Roster Report
service are described in Table I.6-61.

Table I.6-61/T.180 – Service element and their corresponding XAPI
function for the Conference Roster Report service

Service element Service element
identifier

XAPI function Description

Conference Roster
Indication

X_CON_C_REP_I x_rcvinfo() The service informs the user in the
case when the Conference Roster
changes.

I.6.7.5.3.2 Service parameter

Table I.6-62 specifies the parameter of the Conference Roster Report service.

Table I.6-62/T.180 – Parameter of the Conference Roster Report service

Parameter Conference Roster Service

 Indication

X_CON_P_CROSTER M

 Recommendation T.180 (06/98) 269

I.6.7.5.3.3 Service parameter description

Table I.6-63 specifies the parameter of the Conference Roster Report service.

Table I.6-63/T.180

Parameter name X_CON_P_CROSTER

Type of value typedef struct Conference {
 unsigned long NodeID;
 unsigned long Node_Type;
 string Node_Name;
 sequence<string<255> > Part_List;
 string Site_Info;
 string Net_Addr;
 string User_Data;
};

sequence<Conference>;

Legal values NodeID A number in the range 1 001 to 65 535;

Node_Type X_CON_PV_TERMINAL,
 X_CON_PV_MULTIPORT_TERMINAL,
 or X_CON_PV_MCU;

Node_Name A text string;

Part_List A list of text strings Participants’ names;

Site_Info A text string Additional information about the node;

Net_Addr A text string Network Address;

User_Data A text string Additional user data.

Default value none

Description This parameter contains a description of each node joined to the conference. The
parameters Node Name, Participants Names, Site Information, Network Address,
and User Data in the List of Conference Nodes are conditional.

I.6.7.5.4 Application Roster Report service

This service informs the user in the case when a application roster has changed. This service is
available to the user only in the connected state of the XAPI.

I.6.7.5.4.1 Service description

The service element and their corresponding XAPI function needed for the Application Roster
Report service are described in Table I.6-64.

270 Recommendation T.180 (06/98)

Table I.6-64/T.180 – Service element and their corresponding XAPI
function for the Application Roster Report service

Service Element Service element
identifier

XAPI function Description

Application Roster
Indication

X_CON_A_REP_I x_rcvinfo() The Service informs the user in the
case when the Application Roster
changes. The Application Roster
Indication is generated by the provider
to support a session member with
session-specific information.

I.6.7.5.4.2 Service parameter

Table I.6-65 specifies the parameters of the Application Roster Report service.

Table I.6-65/T.180 – Parameter of the
Application Roster Report service

Parameter Application Roster Service

 Indication

X_CON_P_AROSTER M

I.6.7.5.4.3 Service parameter description

Table I.6-66 specifies the parameter of the Application Roster Report service.

Table I.6-66/T.180

Parameter name X_CON_P_AROSTER

Type of value typedef struct ApplicationRecord {
 unsigned long NodeID;
 unsigned long EntityID;
 unsigned long Active;
 unsigned long Cond_Cap;
 string UserApplicationID;
 sequence<string> NCollapsCapsList;
};
typedef struct ApplicationCapability {
 unsigned long CapabilityID;
 unsigned long CapabilityValue;
};
typedef struct Session{
 string ApplicationProtocolKey;
 unsigned long SessionID;
 sequence<ApplicationRecord> ApplicationRecordList;
 sequence<ApplicationCapability> ApplicationCapabilityList;
};
sequence<Session>;

 Recommendation T.180 (06/98) 271

Table I.6-66/T.180 (concluded)

Legal values NodeID A number in the range 1 001 to 65 535
EntityID A 16-bit numeric identifier
Active PV_TRUE / PV_FALSE Ready to receive data;
Cond_Cap PV_TRUE / PV_FALSE Conducting capable;
UserApplicationID A text string Identifies the conference control

user application;
NCollapsCapsList A list of text strings Non-collapsing capabilities;
CapabilityID A number Identifies an application

capability;
CapabilityValue A number Dependent from the capability

class;
ApplicationProtocolKey A text string Identifies the GCC protocol;
SessionID A number in the range 1 to 65 535.

Default value none

Description The Application Roster includes a list of roster entries for all Protocol Session.

I.6.7.5.5 Conductor Report service

I.6.7.5.5.1 Service description

The service element and their corresponding XAPI function needed for the Conductor Report service
are described in Table I.6-67.

Table I.6-67/T.180 – Service element and their corresponding XAPI
function for the Conductor Report service

Service element Service element
identifier

XAPI
function

Description

Conductor Report
Indication

X_CON_COND_INFO x_rcvinfo() The service informs the user in the
case when information is received
about changes in the conductorship.

I.6.7.5.5.2 Service parameters

Table I.6-68 specifies the parameters of the Conductor Report service.

Table I.6-68/T.180 – Parameters of the Conductor Report service

Parameter Conductor Service

 Indication

X_CON_P_COND_MODE M

X_CON_P_REQ_NODE C

I.6.7.5.5.3 Service parameter description

Tables I.6-69 and I.6-70 specify the parameters of the Conductor Report service.

272 Recommendation T.180 (06/98)

Table I.6-69/T.180

Parameter name X_CON_P_COND_MODE

Type of value unsigned long

Legal values PV_TRUE

PV_FALSE

Default value PV_FALSE

Description This parameter indicates that the conference is now in the conducted mode
(PV_TRUE) or in the non-conducted mode (PV_FALSE).

Table I.6-70/T.180

Parameter name X_CON_P_REQ_NODE

Type of value unsigned long

Legal values an integer between 1001 and 65 535

Default value none

Description This parameter is used to indicate the node identification of the conductor.
This parameter is only meaningful when the conference is in the conducted
mode (X_CON_P_COND_MODE = PV_TRUE).

I.6.7.6 Tables of error codes

The XAPI error-level error codes are defined in Annex B.

I.6.7.6.1 CC_BADVALUE

If the cause code indicates a parameter error with a bad value, the value of diagnostic will contain the
erroneous parameter identifier which has been submitted with the XAPI function call that caused the
error indication or one of the identifiers X_ACS_CTX_DEF_LIST, X_ACS_CTX_DEF_RES_LIST,
X_ACS_CTX_ID_LIST, if the error occurred within a context definition list, context definition
result list or context identifier list, respectively.

I.6.7.6.2 CC_MANDMISS

If the cause code indicates a mandatory parameter is missing, the value of diagnostic will contain the
missing parameter identifier that caused the error indication.

I.6.7.6.3 CC_BADEVENT

If the cause code indicates a bad event, the value of diagnostic will contain the bad event identifier
which has been submitted with the XAPI function call that caused the error indication.

I.6.7.6.4 CC_UNEXPECT

If the cause code indicates a unexpected event, the value of diagnostic will contain the actual state
identifier in which the unexpected event caused the error indication.

I.6.7.6.5 CC_NOTSUPPORT

If the cause code indicates an unsupported event, the value of diagnostic will contain the identifier of
the unsupported event which has been submitted with the XAPI function call that caused the error
indication.

 Recommendation T.180 (06/98) 273

I.6.7.6.6 CC_OTHER

If the cause code indicates the CC_OTHER error code, the value of diagnostic will contain the
identifier which caused the error indication.

I.7 XAPI access to the service provider for T.127 MBFT

This part of Appendix I describes an example how the service provider can be implemented, if an
application needs access to the specified service.

I.7.1 Scope

The XAPI, which is an abbreviation for eXtensive Application Programming Interface, is an
operating system and language-independent programming interface to general communication
services. Detailed information about the XAPI is given in the main part of this Recommendation,
which is very important for understanding this appendix.

Which services are made available via the XAPI depends on the installed service providers and not
on the XAPI, which only provides the access mechanism.

This part describes the XAPI access to the Multipoint Binary File Transfer (MBFT) Protocol. The
MBFT protocol is specified in Recommendation T.127.

Figure I.7-1 shows the structure of the protocol stack that is accessible via the XAPI when selecting
the MBFT service provider.

274 Recommendation T.180 (06/98)

T0827340-97

Application

XAPI

T.127 MBFT protocol
module

T.124 GCC protocol
module

T.125 MCS protocol
module

T.123 network-specific
transport protocol module

Conference provider
(without node controller

and application protocols)

Figure I.7-1/T.180 – Structure of the T.127 MBFT service provider

The MBFT service provider consists of the T.127 MBFT protocol module, the T.124 GCC protocol
module, the T.125 MCS protocol module, and the T.123 Network-specific transport protocol stack
modules.

The conference provider comprises the T.124 GCC protocol module, the T.125 MCS protocol
module, the T.123 Network-specific transport protocol stack modules, the node controller module,
and the application protocol modules (e.g. the T.127 MBFT protocol module).

All modules of the conference provider – with the exception of the application protocol modules –
are initialized and activated, when the user (at the terminal) is connected to a conference.

Afterwards, applications may be connected to the conference. The location of an application protocol
module is shown in Figure I.7-1: each application protocol uses the protocol stack which was
initialized and activated in the phase, when a terminal was connected to the conference (see I.6,
XAPI access to the T.120 conference control provider).

The reader should be familiar with the T.120 suite of standards (see References).

 Recommendation T.180 (06/98) 275

I.7.2 References

The following ITU-T Recommendations and other references contain provisions which, through
reference in this text, constitute provisions of this Recommendation. At the time of publication, the
editions indicated were valid. All Recommendations and other references are subject to revision; all
users of this Recommendation are therefore encouraged to investigate the possibility of applying the
most recent edition of the Recommendations and other references listed below. A list of the currently
valid ITU-T Recommendations is regularly published.

[T.120] ITU-T Recommendation T.120 (1996), Data protocols for multimedia conferencing.

[T.121] ITU-T Recommendation T.121 (1996), Generic application template.

[T.122] ITU-T Recommendation T.122 (1998), Multipoint communication service – Service
definition.

[T.123] ITU-T Recommendation T.123 (1996), Network specific data protocol stacks for
multimedia conferencing.

[T.124] ITU-T Recommendation T.124 (998), Generic Conference Control.

[T.125] ITU-T Recommendation T.125 (1994), Multipoint communication service protocol
specification.

[T.127] ITU-T Recommendation T.127 (1995), Multipoint binary file transfer protocol.

I.7.3 Definitions

This part defines the following terms:

I.7.3.1 application: Synonymously used for User Application.

I.7.3.2 application protocol entity: The instantiation of an Application Protocol in a terminal.
Application Protocol Entities are employed by User Applications, but are not themselves User
Applications.

I.7.3.3 application protocol module: Synonymously used for Application Protocol Entity.

I.7.3.4 application record: A set of information for a specific Application Protocol Entity at a
specific node.

I.7.3.5 session: A set of peer Application Protocol Entities.

A group of file transfer applications communicating with each other are said to be participating in the
same file transfer session.

I.7.3.6 MBFT specific transaction: A sequence of one or more actions (i.e. sending and receiving
MBFT PDUs, MCS PDUs, and GCC PDUs respectively) which are needed to distribute a file.

I.7.3.7 user application: An entity which makes use of one or more Application Protocol Entities.
User Applications have access to an Application Protocol Entity via the XAPI.

I.7.4 Abbreviations

This part uses the following abbreviations:

APE Application Protocol Entity

BFT Binary File Transfer

GCC Generic Conference Control

MCS Multipoint Communication Service

276 Recommendation T.180 (06/98)

MBFT Multipoint Binary File Transfer

PDU Protocol Data Unit

SP Service Primitive

XAPI eXtensive Application Programming Interface

I.7.5 Conventions

Each service is described via three kinds of tables. The kind of description is derived from the kind
of service and protocol description within OSI Standards.

In the first kind of table the service and its service elements are described. It contains a row for each
service element of the service (where service element means either request, indication, response, or
confirmation) with its corresponding XAPI function and a short description.

In the second kind of table the use of the service primitive parameters within the service elements are
described. It contains a row for each service primitive parameter of the service. The service
primitive parameter name is stored within the first column; the succeeding columns contain the use
of the parameter in the service elements:

Blank The service parameter is absent.

C Presence of the service parameter is conditional. Firstly, there may be a condition in the
service provider to provide a parameter in an indication or confirmation; secondly, there may
be interdependencies between parameters of the same or the preceding service primitive.

M Presence of the service parameter is mandatory.

U Presence of the service parameter is a user option. If the user does not specify a value for
such a parameter and there is no default value for that parameter, nothing is passed to the
service provider. If the user does not specify a value for such a parameter and there is a
default value, the default value is passed to the service provider.

(=) The value of the service parameter is identical to the value of the corresponding service
parameter in the preceding service element. In the special case of a parameter, whose
presence in the preceding service is a user option, for which a default value is defined, and
the parameter was not specified in the preceding service element, the symbol (=) indicates
that the parameter value is identical to the default value.

The third kind of table is used to describe the service primitive parameter containing the type of
value and its scope, possible default values and a detailed description. For each service primitive
parameter, one description table is given.

A naming convention is used throughout the XAPI in order to distinguish between the common
functions, identifiers and values, and service-specific identifiers and values. All service-specific
settings of the T.127 MBFT service provider access are defined within the present part of this
appendix and start with X_MBF_ or x_mbf_.

Extended naming conventions:

– SP_ Service Primitive;

– P_ Parameter;

– PV_ Parameter Value;

– O_ Option;

– OV_ Option Value.

 Recommendation T.180 (06/98) 277

I.7.6 Introduction to the MBFT service provider access

The T.127 MBFT Protocol [T.127] supports the interchange of binary files within an interactive
conferencing or group working environment where the [T.120] series of Recommendations is in use.
It provides mechanisms for:

• simultaneous distribution of multiple files;

• broadcasting of files to all participants within a conference;

• selective distribution of files to a subset of participants;

• conductor control of file distribution;

• retrieval of files from remote sites;

• partial retransmission of files following an interruption;

• remote directory access.

The following services of the above specified groups are supported:

• simultaneous distribution of multiple files;

• broadcasting of files to all participants within a conference;

• selective distribution of files to a subset of participants;

• conductor control of file distribution.

A file transfer user application initiates a file transfer session via its MBFT protocol entity,
specifying the application capabilities and session mode. Once a session has been established, all
MBFT specific transactions are performed by the MBFT protocol entity on behalf of the user
application.

I.7.7 Description of the access to the MBFT service provider

I.7.7.1 Service initialization

I.7.7.1.1 Creation of a T.127 MBFT service access point with x_open()

A communication endpoint accessing the T.127 MBFT service provider is created when calling the
x_open() function with an appropriate service provider identification string. The available identifiers
depend on the actual system configuration. In the standard configuration, "X_T.127_MBFT"
identifies the T.127 MBFT protocol module.

I.7.7.1.2 Activation of a T.127 MBFT service access point with x_bind()

x_bind() is to be called to activate the T.127 MBFT service endpoint. The function has the task to
bind the application's own address to the service endpoint.

In the standard configuration, if "X_T.127_MBFT" was selected in the x_open() function, a suitable
conference system, for example "X_T.120_CONF_ISDN" has to be specified as argument of the
x_bind() function in order to complete the service provider's protocol stack.

Figure I.7-1 illustrates the protocol modules contained in X_T.120_CONF_PRO.

I.7.7.1.3 Addresses

Prior to connecting an application to a conference, the user has to become a participant within a
conference. The address information, which is needed to identify a node within a conference is
handled in this early phase (i.e. in the phase of creating or joining a conference). Therefore, binding
the application's own address to the service endpoint will rely on this information.

278 Recommendation T.180 (06/98)

I.7.7.1.3.1 Specification of the application’s own address

No specific address is in use when activating the service endpoint.

No other parameters are needed.

It is strongly recommended to trust in the XAPI configuration and not to specify the own address or
other parameters in the x_bind() call.

I.7.7.1.3.2 The address of the communication partner

This parameter has been provided by the conference connection establishment phase [T.124].

I.7.7.1.4 Configuration of the service provider

Protocol options are used to control the general behaviour of the service provider. There is a default
value defined for each option. These preconfigured values are sufficient for the majority of
communication relations.

XAPI enables applications to express their wishes about the settings of protocol options by using the
XAPI function x_optmgmt().

Tables I.7-1 to I.7-8 define the protocol options.

Table I.7-1/T.180

Option name X_MBF_O_M_TYPE

Type of value unsigned long

Legal values X_MBF_OV_RCV_ONLY File Receive Only MBFT Protocol module
X_MBF_OV_SND_ONLY File Send Only MBFT Protocol module
X_MBF_OV_SND_RCV File Receive and Send MBFT Protocol module

Default value none

Attributes

Description Indicates the type of the T.127 MBFT protocol module.

Table I.7-2/T.180

Option name X_MBF_O_MAX_FILE_SIZE

Type of value unsigned long

Legal values X_MBF_OV_FS_UNLIM Unlimited;
X_MBF_OV_FS_MAX_VAL Maximum file data payload in octets.

Default value X_MBF_OV_FS_UNLIM

Description Indicates the maximum file size. Each T.127 MBFT protocol module must
specify the maximum file data payload in octets that it is capable of
receiving.

 Recommendation T.180 (06/98) 279

Table I.7-3/T.180

Option name X_MBF_O_MAX_DAT_PAYL

Type of value unsigned long

Legal values X_MBF_OV_DP_DEF Default value (8192 octets);
X_MBF_OV_DP_MAX_VAL Maximum number (less or equal 65 536
 octets).

Default value X_MBF_OV_DP_DEF

Description Indicates the maximum data payload. This is the maximum number of octets
allowed in the data field of T.127 MBFT start and data PDUs.

Table I.7-4/T.180

Option name X_MBF_O_COMPR

Type of value unsigned long

Legal values PV_TRUE
PV_FALSE

Default value PV_FALSE

Attributes

Description Compresses files before being transferred. When actually transferring files, it
is possible to select or deselect this option.

Table I.7-5/T.180

Option name X_MBF_O_NB_OF_CWOR

Type of value unsigned long

Legal values X_MBF_OV_CW_DEF Default value (512 codewords);
X_MBF_OV_CW_NUM Total number of codewords (less or equal 65 536).

Default value X_MBF_OV_CW_DEF

Description Specifies the total number of codewords to be used by the V.42 bis
compression algorithm. This is an upper bound on V.42 bis parameter P1.

Table I.7-6/T.180

Option name X_MBF_O_MAX_STR_LNGH

Type of value unsigned long

Legal values X_MBF_OV_STR_DEF Default value (6);
X_MBF_OV_STR_VAL Maximum string length (less or equal 250).

Default value X_MBF_OV_STR_DEF

Description Specifies the maximum string length input to the V.42 bis encoder. This is an
upper bound on V.42 bis parameter P2.

280 Recommendation T.180 (06/98)

Table I.7-7/T.180

Option name X_MBF_O_AROSTER

Type of value unsigned long

Legal values X_MBF_OV_AR_NO Application Roster not desired;
X_MBF_OV_AR_OWN Receive only Application Roster Entries of the

session(s) in which the user application is enrolled;
X_MBF_OV_AR_ALL Receive all Application Roster Entries of all MBFT

sessions.

Default value X_MBF_OV_AR_ALL

Attributes

Description Regulates the contents of an Application Roster Indication.

Table I.7-8/T.180

Option name X_MBF_O_CROSTER

Type of value unsigned long

Legal values PV_TRUE
PV_FALSE

Default value PV_TRUE

Attributes

Description Receiving of Conference Roster Indications.

I.7.7.2 Connection Establishment service

I.7.7.2.1 Service description

Prior to connecting a file transfer application to a conference, the user has to become a conference
participant.

All application-related activities within a conference (e.g. transferring or receiving files) are
organized as sessions.

During connection establishment phase, a file transfer user application establishes a connection
(i.e. creating a new session or joining an already existing session) to other file transfer user
applications. The connection is identified by the conference name and the session name respectively.
The file transfer user application must already have prepared a service endpoint before the
connection establishment phase can start.

Only active establishment of a connection is provided (i.e. the XAPI function x_conreq() applies).
The service provider generates a positive or negative connect confirmation primitive as response to
the connect request. The positive confirmation signals that the file transfer user application is now
participating in the requested session.

The elements of the Connection Establishment service and the corresponding XAPI functions are
defined in Table I.7-9.

 Recommendation T.180 (06/98) 281

Table I.7-9/T.180 – Service elements and their corresponding XAPI
functions for Connection Establishment

Service element XAPI function Description

Connect Request x_conreq() The Connect Request is passed to the provider
to request the establishment of an connection for
file transfer purposes.

Connect Confirmation x_conconf() The Connect Confirmation is generated by the
provider as positive or negative response to a
previous connection establishment request. A
positive confirmation indicates that the provider
accepted the call.

I.7.7.2.2 Service parameters

Table I.7-10 specifies the parameters of the Connection Establishment service.

There are two groups of parameters: the parameters which specify general aspects of a MBFT session
and the MBFT service provider capability parameters.

The parameters specifying general aspects of a MBFT session are:

– the user application ID;

– the conference name;

– the session name;

– whether or not the provider should support the conductor role;

– the type of activity: transmit files only, receive files only, transmit and receive files; files
which are neither transmitted nor received (application inactive);

– the actual list of participants in the session.

The specification of provider capabilities is optional. If a capability parameter is not specified in a
service element, the default value will be used by the service provider. The default value itself is
defined by the value of a protocol option. For each capability parameter there is a corresponding
protocol option which defines the default value for this parameter. For the protocol option, a constant
default value is defined in the XAPI configuration.

Table I.7-10/T.180 – Parameters of the Connection Establishment service

Parameter Connect Service

 Request Confirmation

X_MBF_P_CNAME M M(=)

X_MBF_P_CNAME_M C C(=)

X_MBF_P_SESS_TYPE M M

X_MBF_P_SESS_ID U M

X_MBF_P_LIST_OF_MEMB U

X_MBF_P_USER_APP_ID U

X_MBF_P_COND_OP_CAP U

X_MBF_P_M_MODE U M

X_MBF_P_MAX_FILE_SIZE U C

282 Recommendation T.180 (06/98)

Table I.7-10/T.180 – Parameters of the Connection Establishment service (concluded)

Parameter Connect Service

 Request Confirmation

X_MBF_P_MAX_DAT_PAYL U C

X_MBF_P_COMPR U C

X_MBF_P_NB_OF_CWOR U C

X_MBF_P_MAX_STR_LNGH U C

X_MBF_P_NON_STD_CAP C C

X_MBF_P_NODE_ID C

X_MBF_P_ENTITY_ID C

X_MBF_P_RESULT M

I.7.7.2.3 Service parameter descriptions

Tables I.7-11 to I.7-27 describe the parameters for the Connection Establishment service.

Table I.7-11/T.180

Parameter name X_MBF_P_CNAME

Type of value struct X_MBF_P_CNAME {
 string<256> numeric_string;
 string<256> text_string;
};

Legal values a numerical string along with an optional text string, from zero to 255
characters each

Default value none

Description Name by which the conference is identified.

Table I.7-12/T.180

Parameter name X_MBF_P_CNAME_M

Type of value string<255>

Legal values a numerical string up to 255 digits in length

Default value none

Description Name Modifier by which the conference is identified if a conference with
identical conference name already exists.

 Recommendation T.180 (06/98) 283

Table I.7-13/T.180

Parameter name X_MBF_P_SESS_TYPE

Type of value unsigned long

Legal values X_MBF_PV_SESS_REG Registration session;
X_MBF_PV_SESS_STD Standard Base session;
X_MBF_PV_SESS_NSTD Non-Standard base session;
X_MBF_PV_SESS_PUB Public session;
X_MBF_PV_SESS_PRI Private session.

Default value X_MBF_PV_SESS_STD

Description Parameter by which the session type is identified.

Table I.7-14/T.180

Parameter name X_MBF_P_SESS_ID

Type of value unsigned long

Legal values a number in the range 1 to 65 535

Default value none

Description Session Identifier.

Table I.7-15/T.180

Parameter name X_MBF_P_LIST_OF_MEMB

Type of value sequence<unsigned long>

Legal values a list of numbers in the range 1001 to 65 535

Default value none

Description This parameter is used to invite participants (specified by their NodeIDs) to a
private session.

Table I.7-16/T.180

Parameter name X_MBF_P_USER_APP_ID

Type of value string

Legal values a text string

Default value none

Description User Application Identifier.

284 Recommendation T.180 (06/98)

Table I.7-17/T.180

Parameter name X_MBF_P_COND_OP_CAP

Type of value unsigned long

Legal values PV_TRUE
PV_FALSE

Default value PV_FALSE

Description The Conducting Operation Capable parameter indicates whether the MBFT
Protocol module is capable of operating as a session conductor. Each MBFT
Session has its own conductor, namely the MBFT Protocol module at the
conducting node participating in that Session. If there is more than one
MBFT Protocol module at the conducting node in a given MBFT Session,
then it is a local matter for GCC at the conducting node to decide which
MBFT Protocol module adopts the role of session conductor.

Table I.7-18/T.180

Parameter name X_MBF_P_M_MODE

Type of value unsigned long

Legal values X_MBF_PV_MM_REC Receive files only;
X_MBF_PV_MM_SND Transmit files only;
X_MBF_PV_MM_SND_REC Transmit and receive files;
X_MBF_PV_MM_N_SND_REC Neither transmit nor receive files.

Default value none

Description Indicates the T.127 MBFT protocol module mode. It is dependent from the
protocol option X_MBF_O_M_TYPE.

Table I.7-19/T.180

Parameter name X_MBF_P_MAX_FILE_SIZE

Type of value unsigned long

Legal values X_MBF_PV_FS_UNLIM Unlimited;
X_MBF_PV_FS_MAX_VAL Maximum file data payload in octets.

Default value X_MBF_PV_FS_UNLIM

Description Indicates the maximum file size. Each T.127 MBFT protocol module must
specify the maximum file data payload in octets that it is capable of
receiving.

Table I.7-20/T.180

Parameter name X_MBF_P_MAX_DAT_PAYL

Type of value unsigned long

Legal values X_MBF_PV_DP_DEF Default value (8192 octets);
X_MBF_PV_DP_MAX_VAL Maximum number (less or equal 65 536
 octets).

Default value X_MBF_PV_DP_DEF

Description Indicates the maximum data payload. This is the maximum number of octets
allowed in the data field of T.127 MBFT start and data PDUs.

 Recommendation T.180 (06/98) 285

Table I.7-21/T.180

Parameter name X_MBF_P_COMPR

Type of value unsigned long

Legal values PV_TRUE
PV_FALSE

Default value PV_FALSE

Description This parameter is used to negotiate use of V.42bis compression for file data.
T.127 MBFT protocol modules should assert this capability if they are able
to receive V.42bis compressed data.

Table I.7-22/T.180

Parameter name X_MBF_P_NB_OF_CWOR

Type of value unsigned long

Legal values X_MBF_PV_CW_DEF Default value (512 codewords);
X_MBF_PV_CW_NUM Total number of codewords (less or equal 65 536).

Default value X_MBF_PV_CW_DEF

Description Specifies the total number of codewords to be used by the V.42 bis
compression algorithm. This is an upper bound on V.42 bis parameter P1.

Table I.7-23/T.180

Parameter name X_MBF_P_MAX_STR_LNGH

Type of value unsigned long

Legal values X_MBF_PV_STR_DEF Default value (6);
X_MBF_PV_STR_VAL Maximum string length (less or equal 250).

Default value X_MBF_PV_STR_DEF

Description Specifies the maximum string length input to the V.42 bis encoder. This is an
upper bound on V.42 bis parameter P2.

Table I.7-24/T.180

Parameter name X_MBF_P_NON_STD_CAP

Type of value unsigned long

Legal values X_MBF_PV_NSC_UNSP Unspecified.

Default value X_MBF_PV_NSC_UNSP

Description This parameter is used to negotiate non-standard functions, including non-
standard compression techniques.

286 Recommendation T.180 (06/98)

Table I.7-25/T.180

Parameter name X_MBF_P_NODE_ID

Type of value unsigned long

Legal values a number in the range 1001 to 65 535

Default value none

Description Indicates the own Node ID.

Table I.7-26/T.180

Parameter name X_MBF_P_ENTITY_ID

Type of value unsigned long

Legal values a 16-bit numeric identifier

Default value none

Description Indicates the Entity ID of the corresponding MBFT Protocol module. The
combination of the Entity ID and the Node ID uniquely identifies the MBFT
Protocol module in a conference.

Table I.7-27/T.180

Parameter name X_MBF_P_RESULT

Type of value unsigned long

Legal values X_MBF_PV_R_ACCEPT Connection accepted;

X_MBF_PV_R_INV_CONF Rejection; invalid conference;

X_MBF_PV_R_T_CONG Rejection; temporary congestion;

X_MBF_PV_R_TM_RES Rejection; too many resources;

X_MBF_PV_R_TM_USER Rejection; too many users;

X_MBF_PV_R_NS_SESS_TYPE Rejection; session type not
supported;

X_MBF_PV_R_WRONG_SESS_TYPE Rejection; wrong session type;

X_MBF_PV_R_NO_REASON Rejection, reason not specified.

Default value X_MBF_PV_R_ACCEPT

Description Indicates the success or failure of the connection establishment request.

I.7.7.3 Services in the connected state

The purpose of the services provided in the connected state is to distribute files among the session
members. Additional services comprise getting information about the session (e.g. getting the actual
list of the session members) and changing (some of) the session parameters negotiated in the
connection establishment phase.

I.7.7.3.1 Services which apply to file distribution

Once the session has been established, all MBFT specific transactions are performed by the
T.127 MBFT protocol module on behalf of the user application.

 Recommendation T.180 (06/98) 287

I.7.7.3.1.1 File Offer service

I.7.7.3.1.1.1 Service description

The File Offer service is used to offer a file to all intended recipients. These recipients are either all
participants of the conference or a subset of them. Establishing a private sub-session within the
existing session or using an already existing sub-session is part of the File Offer service and may be
used to restrict the number of recipients.

The service elements and their corresponding XAPI functions needed are described in Table I.7-28.

Table I.7-28/T.180 – Service elements and their corresponding XAPI functions for File Offer

Service element Service element
identifier

XAPI function Description

File Offer Request X_MBF_SP_FO_Q x_sndsp() The File Offer Request is passed to
the provider to send a request to all
intended recipients.

File Offer Indication X_MBF_SP_FO_I x_rcvsp() The File Offer Indication is
generated by the provider to
indicate the offering of a file.

File Offer Response X_MBF_SP_FO_P x_sndsp() The File Offer Response is passed
to the provider to indicate
acceptance or rejection.

File Offer
Confirmation

X_MBF_SP_FO_C x_rcvsp() The File Offer Confirmation is
generated by the provider as
acknowledgement of the previous
request.

Two modes of offering a file are supported by the File Offer service. The recipients may either accept
(reject) the offer or they are not asked to acknowledge the offer. In the latter case, only the request
and the indication primitives apply.

I.7.7.3.1.1.2 Service parameters

Table I.7-29 specifies the parameters of the File Offer service.

Table I.7-29/T.180 – Parameters of the File Offer service

Parameter File Offer service

 Request Indication Response Confirmation

X_MBF_P_NODE_ID M

X_MBF_P_ENTITY_ID M

X_MBF_P_FHEADER_T434 M M (=)

X_MBF_P_SELECTIVE M

X_MBF_P_FTS_MEMB C

X_MBF_P_FILE_REF M M (=) C (=) C (=)

X_MBF_P_COMPR U C (=)

288 Recommendation T.180 (06/98)

Table I.7-29/T.180 – Parameters of the File Offer service (concluded)

Parameter File Offer service

 Request Indication Response Confirmation

X_MBF_P_NB_OF_CWOR U C (=)

X_MBF_P_MAX_STR_LNGH U C (=)

X_MBF_P_ACK_Q M M (=)

X_MBF_P_REJ_FTS_MEMB C

X_MBF_P_ACK_P C

X_MBF_P_FO_REASON C

I.7.7.3.1.1.3 Service parameter descriptions

Tables I.7-30 to I.7-39 list the parameters of the File Offer service. The parameters
X_MBF_P_COMPR, X_MBF_P_NB_OF_CWOR, and X_MBF_P_MAX_STR_LNGH are
described in the connection establishment phase. Therefore, their description is omitted in this
subclause.

Table I.7-30/T.180

Parameter name X_MBF_P_NODE_ID

Type of value unsigned long

Legal values a number in the range 1001 to 65 535

Default value none

Description Indicates the Node ID of the file offering user application.

Table I.7-31/T.180

Parameter name X_MBF_P_ENTITY_ID

Type of value unsigned long

Legal values a 16-bit numeric identifier

Default value none

Description Indicates the MBFT Protocol Entity ID of the file offering user application.
The combination of the Entity ID and the Node ID uniquely identifies the
MBFT Protocol Entity in a conference and so the corresponding MBFT user
application.

 Recommendation T.180 (06/98) 289

Table I.7-32/T.180

Parameter name X_MBF_P_FHEADER_T434

Type of value struct

Legal values a list of optional BFT file attributes defined in Recommendation T.434

Default value T.434 protocol version number

Description Uses the T.434 file header structure and should include sufficient
information to allow intending recipients to determine whether the file is
required.

Table I.7-33/T.180

Parameter name X_MBF_P_SELECTIVE

Type of value unsigned long

Legal values PV_TRUE Distribution to a subgroup;

PV_FALSE Broadcasting.

Default value PV_FALSE

Description Indicates the distribution of the file to all or to a subgroup of file transfer
session members.

Table I.7-34/T.180

Parameter name X_MBF_P_FTS_MEMB

Type of value sequence<sequence<unsigned long, 2> >

Legal values a list of tuples, each consisting of two numbers: NodeID and EntityID

Default value none

Description Contains a list of user applications for establishing a private sub-session.

Table I.7-35/T.180

Parameter name X_MBF_P_FILE_REF

Type of value string

Legal values a numerical number

Default value none

Description Indicates the file reference number (i.e. dataflow identification). This number
should start by 1 and should be incremented for every file transfer which is
transmitted in the same connection. Leading zeros will be ignored.

290 Recommendation T.180 (06/98)

Table I.7-36/T.180

Parameter name X_MBF_P_ACK_Q

Type of value unsigned long

Legal values PV_TRUE
PV_FALSE

Default value PV_FALSE

Description Indicates that receiving user applications must signal whether or not they
wish to accept the file.

Table I.7-37/T.180

Parameter name X_MBF_P_REJ_FTS_MEMB

Type of value sequence<sequence<unsigned long, 3> >

Legal values A list of tripels, each consisting of three numbers: NodeID, EntityID, and
Reason for Rejection.

Default value none

Description Indicates the members which are unable or do not wish to receive the offered
file. The possible reasons for rejection are:
X_MBF_PV_FOR_NORESP No response;
X_MBF_PV_FOR_UNSPEC Unspecified;
X_MBF_PV_FOR_FEXIST File exists;
X_MBF_PV_FOR_FNOTREQUIRE File not required;
X_MBF_PV_FOR_INSUFFRES Insufficient resources;

X_MBF_PV_FOR_UNSUPPCOMPR Compression unsupported;
algorithm identified in File Offer
not supported.

Table I.7-38/T.180

Parameter name X_MBF_P_ACK_P

Type of value unsigned long

Legal values PV_TRUE
PV_FALSE

Default value PV_FALSE

Description Indicates the intention to receive the offered file.

 Recommendation T.180 (06/98) 291

Table I.7-39/T.180

Parameter name X_MBF_P_FO_REASON

Type of value unsigned long

Legal values X_MBF_PV_FOR_UNSPEC Unspecified;
X_MBF_PV_FOR_FEXIST File exists;
X_MBF_PV_FOR_FNOTREQUIRE File not required;
X_MBF_PV_FOR_INSUFFRES Insufficient resources;

X_MBF_PV_FOR_UNSUPPCOMPR Compression unsupported;
algorithm identified in File Offer
not supported.

Default value none

Description Informs the transmitter why the intended recipient is unable or does not wish
to receive the file offered.

I.7.7.3.1.2 Start of File service

I.7.7.3.1.2.1 Service description

The Start of File service indicates the start of the document to the receiver. It also indicates the start
of the first data part.

The service elements and their corresponding XAPI functions needed are described in Table I.7-40.

Table I.7-40/T.180 – Service elements and their corresponding XAPI
functions for Start of File

Service element Service element
identifier

XAPI function Description

Start of File Request X_MBF_SP_SOF_Q x_sndsp() The Start of File Request is passed
to the provider to send a request to
all intended recipients.

Start of File Indication X_MBF_SP_SOF_I x_rcvsp() The Start of File Indication is
generated by the provider to
indicate the start of a file.

I.7.7.3.1.2.2 Service parameters

Table I.7-41 specifies the parameters of the Start of File service.

Table I.7-41/T.180 – Parameters of the Start of File service

Parameter Start of File service

 Request Indication

X_MBF_P_NODE_ID M

X_MBF_P_ENTITY_ID M

X_MBF_P_FHEADER_T434 M M (=)

X_MBF_P_FILE_REF M (=) M (=)

X_MBF_P_EOF M M (=)

292 Recommendation T.180 (06/98)

Table I.7-41/T.180 – Parameters of the Start of File service (concluded)

Parameter Start of File service

 Request Indication

X_MBF_P_CRC M M (=)

X_MBF_P_COMPR U C (=)

X_MBF_P_NB_OF_CWOR U C (=)

X_MBF_P_MAX_STR_LNGH U C (=)

X_MBF_P_DATA_OFFSET M M (=)

I.7.7.3.1.2.3 Service parameter descriptions

Tables I.7-42 to I.7-48 list the parameters of the Start of File service. The parameters
X_MBF_P_COMPR, X_MBF_P_NB_OF_CWOR, and X_MBF_P_MAX_STR_LNGH are
described in the connection establishment phase. Therefore, their description is omitted in this
subclause.

Table I.7-42/T.180

Parameter name X_MBF_P_NODE_ID

Type of value unsigned long

Legal values a number in the range 1001 to 65 535

Default value none

Description Indicates the Node ID of the file offering user application.

Table I.7-43/T.180

Parameter name X_MBF_P_ENTITY_ID

Type of value unsigned long

Legal values a 16-bit numeric identifier

Default value none

Description Indicates the MBFT Protocol Entity ID of the file offering user application.
The combination of the Entity ID and the Node ID uniquely identifies the
MBFT Protocol module in a conference.

Table I.7-44/T.180

Parameter name X_MBF_P_FHEADER_T434

Type of value struct

Legal values a list of optional BFT file attributes defined in Recommendation T.434

Default value T.434 protocol version number

Description Uses the T.434 file header structure and should include all fields defined in
the source file.

 Recommendation T.180 (06/98) 293

Table I.7-45/T.180

Parameter name X_MBF_P_FILE_REF

Type of value string

Legal values a numerical number

Default value none

Description Indicates the file reference number which was given in the File Offer
Request.

Table I.7-46/T.180

Parameter name X_MBF_P_EOF

Type of value unsigned long

Legal values PV_TRUE
PV_FALSE

Default value PV_FALSE

Description Indicates the end of the file.

Table I.7-47/T.180

Parameter name X_MBF_P_CRC

Type of value unsigned long

Legal values X_MBF_PV_CRC_NO No CRC;
X_MBF_PV_CRC_SINGLE Single CRC sent at end of File Transfer;
X_MBF_PV_CRC_CUMU Cumulative CRC.

Default value X_MBF_PV_CRC_NO

Description Indicates the use of a cyclic redundancy check.

Table I.7-48/T.180

Parameter name X_MBF_P_DATA_OFFSET

Type of value unsigned long

Legal values

Default value none

Description Specifies the starting offset in octets from the beginning of the file data
(so zero denotes the origin).

I.7.7.3.1.3 Data Transfer service

I.7.7.3.1.3.1 Service Description

The Data Transfer service is used to transfer files between session members.

The service elements and their corresponding XAPI functions needed are described in Table I.7-49.

294 Recommendation T.180 (06/98)

Table I.7-49/T.180 – Service elements and their corresponding XAPI
functions for Data Transfer

Service element XAPI function Description

Data Transfer Request x_snddata() The Data Transfer Request is passed to
the provider to transmit data.

Data Transfer Indication x_rcvdata() The Data Transfer Indication is generated
by the provider to indicate the received
data.

I.7.7.3.1.3.2 Service parameters

Table I.7-50 specifies the parameters of the Data Transfer service.

Table I.7-50/T.180 – Parameters of the Data Transfer service

Parameter Data Transfer service

 Request Indication

X_MBF_P_FILE_REF M (=) M (=)

X_MBF_P_EOF M M (=)

X_MBF_P_ABORT M M (=)

X_MBF_P_CRC_CHECK C C

I.7.7.3.1.3.3 Service parameter descriptions

Tables I.7-51 to I.7-54 list the parameters of the Data Transfer service.

Table I.7-51/T.180

Parameter name X_MBF_P_FILE_REF

Type of value string

Legal values a numerical number

Default value none

Description Indicates the file reference number which was given in the File Offer
Request.

Table I.7-52/T.180

Parameter name X_MBF_P_EOF

Type of value unsigned long

Legal values PV_TRUE
PV_FALSE

Default value PV_FALSE

Description Indicates the end of the file.

 Recommendation T.180 (06/98) 295

Table I.7-53/T.180

Parameter name X_MBF_P_ABORT

Type of value unsigned long

Legal values PV_TRUE
PV_FALSE

Default value PV_FALSE

Description This parameter is set to TRUE if the file transfer is being aborted.

Table I.7-54/T.180

Parameter name X_MBF_P_CRC_CHECK

Type of value unsigned long

Legal values a 32-bit number

Default value none

Description The cyclic redundancy check.

I.7.7.3.1.4 Please Privilege service

I.7.7.3.1.4.1 Service description

The Please Privilege service is used in the conducted mode by user applications at non-conducting
nodes to request permission to act from the conductor. The following privileges are available:

– source file transfers;

– request file transfers;

– selective file transfers;

– source file transfers with higher priority;

– issue a file transfer abort;

– use non-standard extensions.

The service elements and their corresponding XAPI functions needed are described in Table I.7-55.

Table I.7-55/T.180 – Service elements and their corresponding XAPI
functions for Please Privilege

Service element Service element
identifier

XAPI function Description

Please Privilege
Request

X_MBF_SP_PP_Q x_sndsp() The Please Privilege Request
is passed to the provider to
request privileges from the
conductor.

Please Privilege
Indication

X_MBF_SP_PP_I x_rcvsp() The Please Privilege
Indication is generated by the
provider to indicate a
privilege request.

I.7.7.3.1.4.2 Service parameters

Table I.7-56 specifies the parameters of the Please Privilege service.

296 Recommendation T.180 (06/98)

Table I.7-56/T.180 – Parameters of the
Please Privilege service

Parameter Please Privilege service

 Request Indication

X_MBF_P_PRI_FT U C (=)

X_MBF_P_PRI_FQ U C (=)

X_MBF_P_PRI_SEL U C (=)

X_MBF_P_PRI_ORITY U C (=)

X_MBF_P_PRI_ABORT U C (=)

X_MBF_P_PRI_NSTD U C (=)

I.7.7.3.1.4.3 Service parameter descriptions

Tables I.7-57 to I.7-62 list the parameters of the Please Privilege service.

Table I.7-57/T.180

Parameter name X_MBF_P_PRI_FT

Type of value unsigned long

Legal values PV_TRUE
PV_FALSE

Default value PV_FALSE

Description Indicates whether the requesting user application wants permission to source
file transfers.

Table I.7-58/T.180

Parameter name X_MBF_P_PRI_FQ

Type of value unsigned long

Legal values PV_TRUE
PV_FALSE

Default value PV_FALSE

Description Indicates whether the requesting user application wants permission to request
files or retransmissions.

Table I.7-59/T.180

Parameter name X_MBF_P_PRI_SEL

Type of value unsigned long

Legal values PV_TRUE
PV_FALSE

Default value PV_FALSE

Description Indicates whether the requesting user application wants permission to
selective file transfer.

 Recommendation T.180 (06/98) 297

Table I.7-60/T.180

Parameter name X_MBF_P_PRI_ORITY

Type of value unsigned long

Legal values PV_TRUE
PV_FALSE

Default value PV_FALSE

Description Indicates whether the requesting user application wants permission to send
with a higher priority.

Table I.7-61/T.180

Parameter name X_MBF_P_PRI_ABORT

Type of value unsigned long

Legal values PV_TRUE
PV_FALSE

Default value PV_FALSE

Description Indicates whether the requesting user application wants permission to issue a
file transfer abort.

Table I.7-62/T.180

Parameter name X_MBF_P_PRI_NSTD

Type of value unsigned long

Legal values PV_TRUE
PV_FALSE

Default value PV_FALSE

Description Indicates whether the requesting user application wants permission to use
any negotiated non-standard extensions to the MBFT protocol.

I.7.7.3.1.5 Assign Privilege service

I.7.7.3.1.5.1 Service description

The Assign Privilege service is used in the conducted mode by the conductor to grant or revoke
privileges for user applications at non-conducting nodes. The following privileges are available:

– source file transfers;

– request file transfers;

– selective file transfers;

– source file transfers with higher priority;

– issue a file transfer abort;

– use non-standard extensions.

The service elements and their corresponding XAPI functions needed are described in Table I.7-63.

298 Recommendation T.180 (06/98)

Table I.7-63/T.180 – Service elements and their corresponding XAPI
functions for Assign Privilege

Service element Service element
identifier

XAPI function Description

Assign Privilege
Request

X_MBF_SP_AP_Q x_sndsp() The Assign Privilege
Request is passed to the
provider to assign privileges
to user applications at non-
conducting nodes.

Assign Privilege
Indication

X_MBF_SP_AP_I x_rcvsp() The Assign Privilege
Indication is generated by the
provider to indicate assigned
privileges from the
conductor.

I.7.7.3.1.5.2 Service parameters

Table I.7-64 specifies the parameters of the Assign Privilege service.

Table I.7-64/T.180 – Parameter of the Assign Privilege service

Parameter Assign Privilege service

 Request Indication

X_MBF_P_PRI_LST M M (=)

I.7.7.3.1.5.3 Service parameter descriptions

Table I.7-65 describes the parameter of the Assign Privilege service.

 Recommendation T.180 (06/98) 299

Table I.7-65/T.180

Parameter name X_MBF_P_PRI_LST

Type of value sequence<sequence<unsigned long, 8> >

Legal values A list of 8-tuples, each consisting of eight numbers: NodeID, EntityID, and the
six privileges parameters.

Default value none

Description Contains a list of one or more user applications and the privileges assigned to
them:
The File Transfer parameter indicates whether the user application has been
granted permission to source file transfers.
The File Request parameter indicates whether the user application has been
granted permission to request files or retransmissions.
The Selective File Transfer parameter indicates whether the user application has
been granted permission to selective file transfer.
The Priority parameter indicates whether the user application has been granted
permission to send with a higher priority.
The Abort parameter indicates whether the user application has been granted
permission to issue a file transfer abort.
The Non-Standard parameter indicates whether the user application has been
granted permission to issue any negotiated non-standard extensions to the
MBFT protocol.

I.7.7.3.2 Information services

The services described in this subclause allow session members to get information about the current
session. The member may either request information or he will get information from the provider in
cases where specific parameters characterizing the current session have changed their values.

I.7.7.3.2.1 Application Roster service

I.7.7.3.2.1.1 Service description

The Application Roster service is used to support members with session-specific information.

The service elements and their corresponding XAPI functions needed are described in Table I.7-66.

Table I.7-66/T.180 – Service element and their corresponding XAPI
function for Application Roster

Service element Service element
identifier

XAPI function Description

Application Roster
Indication

X_MBF_SP_AR_I x_rcvinfo() The Application Roster
Indication is generated by the
provider to support a session
member with session-
specific information.

I.7.7.3.2.1.2 Service parameters

Table I.7-67 specifies the parameters of the Application Roster service.

300 Recommendation T.180 (06/98)

Table I.7-67/T.180 – Parameter of the Application Roster service

Parameter Application Roster service

 Indication

X_MBF_P_AROSTER M

I.7.7.3.2.1.3 Service parameter descriptions

Table I.7-68/T.180 defines the parameter for the Application Roster service.

Table I.7-68/T.180

Parameter name X_MBF_P_AROSTER

Type of value typedef struct ApplicationRecord {
 unsigned long NodeID;
 unsigned long EntityID;
 unsigned long Active;
 unsigned long Cond_Cap;
 string UserApplicationID;
 sequence<string> NCollapsCapsList;
};

typedef struct ApplicationCapability {
 unsigned long CapabilityID;
 unsigned long CapabilityValue;
};

typedef struct Session{
 string ApplicationProtocolKey;
 unsigned long SessionID;
 sequence<ApplicationRecord> ApplicationRecordList;
 sequence<ApplicationCapability> ApplicationCapabilityList;
};

sequence<Session>;

Legal values NodeID: A number in the range 1001 to 65 535;

EntityID: A 16-bit numeric identifier;

Active: PV_TRUE/PV_FALSE Ready to receive data;

Cond_Cap: PV_TRUE/PV_FALSE Conducting capable;

UserApplicationID: A text string Identifies the MBFT user
application;

NCollapsCapsList: A list of text strings Non-Collapsing capabilities;

CapabilityID: A number Identifies an Application
Capability;

CapabilityValue: A number Dependent from the Capability
Class;

ApplicationProtocolKey: A text string Identifies the MBFT Protocol;

SessionID: A number in the range 1 to 65 535.

Default value none

Description The Application Roster includes a list of roster entries for a specific or each MBFT
Protocol Session.

 Recommendation T.180 (06/98) 301

I.7.7.3.2.2 Conference Roster service

I.7.7.3.2.2.1 Service description

The service elements and their corresponding XAPI functions needed are described in Table I.7-69.

Table I.7-69/T.180 – Service element and their corresponding XAPI
function for Conference Roster

Service element Service element
identifier

XAPI function Description

Conference Roster
Indication

X_MBF_SP_CR_I x_rcvinfo() The Service indicates whenever
the Conference Roster changes.

I.7.7.3.2.2.2 Service parameters

Table I.7-70 specifies the parameter of the Conference Roster service.

Table I.7-70/T.180 – Parameter of the Conference Roster service

Parameter Conference Roster service

 Indication

X_MBF_P_CROSTER M

I.7.7.3.2.2.3 Service parameter descriptions

Table I.7-71 defines the parameter for the Conference Roster service.

Table I.7-71/T.180

Parameter name X_MBF_P_CROSTER

Type of value typedef struct Conference {
 unsigned long NodeID;
 unsigned long Node_Type;
 string Node_Name;
 sequence<string<255> > Part_List;
 string Site_Info
 string Net_Addr;
 string User_Data;
};

sequence<Conference>;

302 Recommendation T.180 (06/98)

Table I.7-71/T.180 (concluded)

Legal values NodeID: A number in the range 1001 to 65 535;

Node_Type: X_CON_PV_TERMINAL,
 X_CON_PV_MULTIPORT_TERMINAL,
 or X_CON_PV_MCU;

Node_Name: A text string;

Part_List: A list of text strings Participants’ Names;

Site_Info A text string Additional Information about the node;

Net_Addr: A text string Network address;

User_Data: A text string Additional user data.

Default value none

Description This parameter contains a description of each node joined to the conference. The
parameters Node Name, Participants Names, Site Information, Network Address, and
User Data in the List of Conference Nodes are conditional.

I.7.7.3.2.3 Conference Conductor Inquire service

This service may be issued to find out whether the conference is conducted or not, and if so, which
node is the conductor, and if the requesting node has been granted conducted-mode permission.

I.7.7.3.2.3.1 Service description

The service elements and their corresponding XAPI functions needed are described in Table I.7-72.

Table I.7-72/T.180 – Service elements and their corresponding XAPI
functions for Conference Conductor Inquire

Service element Service element
identifier

XAPI function Description

Conference Conductor
Inquire Request

X_MBF_SP_CCI_Q x_sndinfo() The Conference Conductor Inquire
Request is passed to the provider to
request information about the
conductor.

Conference Conductor
Inquire Confirmation

X_MBF_SP_CCI_C x_rcvinfo() The Conference Conductor Inquire
Confirmation is a positive or
negative response to a previous
information request.

I.7.7.3.2.3.2 Service parameters

Table I.7-73 specifies the parameters of the Conference Conductor Inquire service.

 Recommendation T.180 (06/98) 303

Table I.7-73/T.180 – Parameters of the Conference Conductor Inquire service

Parameter Conference Conductor Inquire service

 Request Confirmation

X_MBF_P_CONDUCTED M

X_MBF_P_COND_NODE C

X_MBF_P_PERMISSION C

I.7.7.3.2.3.3 Service parameter descriptions

Tables I.7-74 to I.7-76 define the parameters for the Conference Conductor Inquire service.

Table I.7-74/T.180

Parameter name X_MBF_P_CONDUCTED

Type of value unsigned long

Legal values PV_TRUE

PV_FALSE

Default value none

Description Indicates the conducted mode.

Table I.7-75/T.180

Parameter name X_MBF_P_COND_NODE

Type of value unsigned long

Legal values a number between 1001 and 65 535

Default value none

Description Indicates the node ID of the current conference conductor. It is only available
if the conference is in the conducted mode.

Table I.7-76/T.180

Parameter name X_MBF_P_PERMISSION

Type of value unsigned long

Legal values PV_TRUE

PV_FALSE

Default value none

Description Indicates whether or not the local node has been granted conducted mode
permission. It is only available if the conference is in the conducted mode.

I.7.7.3.2.4 Conductor Report service

I.7.7.3.2.4.1 Service description

The service element and their corresponding XAPI function needed is described in Table I.7-77.

304 Recommendation T.180 (06/98)

Table I.7-77/T.180 – Service elements and their corresponding XAPI
functions for Conductor Report

Service element Service element
identifier

XAPI function Description

Conductor Report
Indication

X_MBF_CONDR_I x_rcvinfo() The Conductor Report Indication
informs about changes in the
conductorship.

I.7.7.3.2.4.2 Service parameters

Table I.7-78 specifies the parameters of the Conductor Report service.

Table I.7-78/T.180 – Parameters of the Conductor Report service

Parameter Conductor Report Service

 Indication

X_MBF_P_COND_MODE M

X_MBF_P_REQ_NODE C

I.7.7.3.2.4.3 Service parameter descriptions

Tables I.7-79 and I.7-80 define the parameters for the Conductor Report service.

Table I.7-79/T.180

Parameter name X_CON_P_COND_MODE

Type of value unsigned long

Legal values PV_TRUE

PV_FALSE

Default value PV_FALSE

Description This parameter indicates that the conference is now in the conducted mode
(PV_TRUE) or in the non-conducted mode (PV_FALSE).

Table I.7-80/T.180

Parameter name X_CON_P_REQ_NODE

Type of value unsigned long

Legal values a number between 1001 and 65 535

Default value none

Description Indicates the conductor node identification. This parameter is only
meaningful when the conference is now in the conducted mode
(X_MBF_P_COND_MODE = PV_TRUE).

I.7.7.3.3 Services which change session parameters

A T.127 MBFT protocol module may change its capabilities at any time by re-enrolling. To do this,
the user application issues a service request with the revised parameter values. Any changes of

 Recommendation T.180 (06/98) 305

parameter values will not affect transactions already in progress. Changes will take effect when the
next transaction is initiated.

I.7.7.3.3.1 Change Resource service

I.7.7.3.3.1.1 Service description

The Change Resource service is used to request the provider to change the values of specific session-
related parameters.

The service elements and their corresponding XAPI functions needed are described in Table I.7-81.

Table I.7-81/T.180 – Service elements and their corresponding XAPI
functions for Change Resource

Service element Service element
identifier

XAPI function Description

Change Resource
Request

X_MBF_SP_CHR_Q x_sndsp() The Change Resource
Request is passed to the
provider to request the
change of values of session-
related parameters.

Change Resource
Confirmation

X_MBF_SP_CHR_C x_rcvsp() The Change Resource
Confirmation is generated by
the provider as
acknowledgement of the
previous request.

I.7.7.3.3.1.2 Service parameters

Table I.7-82 specifies the parameters of the Change Resource service.

Table I.7-82/T.180 – Parameters of the Change Resource service

Parameter Change Resource service

 Request Confirmation

X_MBF_P_COND_OP_CAP U

X_MBF_P_M_MODE U M

X_MBF_P_LIST_OF_MEMB U

X_MBF_P_EXPEL_MEMB U

X_MBF_P_MAX_FILE_SIZE U C

X_MBF_P_MAX_DAT_PAYL U C

X_MBF_P_COMPR U C

X_MBF_P_NB_OF_CWOR U C

X_MBF_P_MAX_STR_LNGH U C

X_MBF_P_NON_STD_CAP C C

X_MBF_P_CHR_RESULT M

306 Recommendation T.180 (06/98)

I.7.7.3.3.1.3 Service parameter descriptions

Tables I.7-83 to I.7-93 list the parameters of the Change Resource service.

Table I.7-83/T.180

Parameter name X_MBF_P_COND_OP_CAP

Type of value unsigned long

Legal values PV_TRUE

PV_FALSE

Default value PV_FALSE

Description The Conducting Operation Capable parameter indicates whether the MBFT
Protocol module is capable of operating as a session conductor. Each MBFT
Session has its own conductor, namely the MBFT Protocol module at the
conducting node participating in that Session. If there is more than one MBFT
Protocol module at the conducting node in a given MBFT Session, then it is a
local matter for GCC at the conducting node to decide which MBFT Protocol
module adopts the role of session conductor.

Table I.7-84/T.180

Parameter name X_MBF_P_M_MODE

Type of value unsigned long

Legal values X_MBF_PV_MM_REC Receive files only;

X_MBF_PV_MM_SND Transmit files only;

X_MBF_PV_MM_SND_REC Transmit and receive files;

X_MBF_PV_MM_N_SND_REC Neither transmit nor receive files.

Default value none

Description Indicates the T.127 MBFT protocol module mode. It is dependent from the
protocol option X_MBF_O_M_TYPE.

Table I.7-85/T.180

Parameter name X_MBF_P_LIST_OF_MEMB

Type of value sequence<unsigned long>

Legal values A list of numbers in the range 1001 to 65 535

Default value none

Description This parameter is used to invite participants (specified by their NodeIDs) to a
private session.

 Recommendation T.180 (06/98) 307

Table I.7-86/T.180

Parameter name X_MBF_P_EXPEL_MEMB

Type of value sequence<unsigned long>

Legal values A list of numbers in the range 1001 to 65 535

Default value none

Description This parameter is used to expel members (specified by their NodeIDs) from a
private session.

Table I.7-87/T.180

Parameter name X_MBF_P_MAX_FILE_SIZE

Type of value unsigned long

Legal values X_MBF_PV_FS_UNLIM Unlimited;

X_MBF_PV_FS_MAX_VAL Maximum file data payload in octets.

Default value X_MBF_PV_FS_UNLIM

Description Indicates the maximum file size. Each T.127 MBFT protocol module must
specify the maximum file data payload in octets that it is capable of
receiving.

Table I.7-88/T.180

Parameter name X_MBF_P_MAX_DAT_PAYL

Type of value unsigned long

Legal values X_MBF_PV_DP_DEF Default value (8192 octets)

X_MBF_PV_DP_MAX_VAL Maximum number (less or equal 65 536
 octets)

Default value X_MBF_PV_DP_DEF

Description Indicates the maximum data payload. This is the maximum number of octets
allowed in the data field of T.127 MBFT start and data PDUs.

Table I.7-89/T.180

Parameter name X_MBF_P_COMPR

Type of value unsigned long

Legal values PV_TRUE

PV_FALSE

Default value PV_FALSE

Description This parameter is used to negotiate use of V.42 bis compression for file data.
T.127 MBFT protocol modules should assert this capability if they are able
to receive V.42 bis compressed data.

308 Recommendation T.180 (06/98)

Table I.7-90/T.180

Parameter name X_MBF_P_NB_OF_CWOR

Type of value unsigned long

Legal values X_MBF_PV_CW_DEF Default value (512 codewords)

X_MBF_PV_CW_NUM Total number of codewords (less or equal
 65 536).

Default value X_MBF_PV_CW_DEF

Description Specifies the total number of codewords to be used by the V.42 bis
compression algorithm. This is an upper bound on V.42 bis parameter P1.

Table I.7-91/T.180

Parameter name X_MBF_P_MAX_STR_LNGH

Type of value unsigned long

Legal values X_MBF_PV_STR_DEF Default value (6)

X_MBF_PV_STR_VAL Maximum string length (less or equal 250)

Default value X_MBF_PV_STR_DEF

Description Specifies the maximum string length input to the V.42 bis encoder. This is an
upper bound on V.42 bis parameter P2.

Table I.7-92/T.180

Parameter name X_MBF_P_NON_STD_CAP

Type of value unsigned long

Legal values X_MBF_PV_NSC_UNSP Unspecified

Default value X_MBF_PV_NSC_UNSP

Description This parameter is used to negotiate non-standard functions, including non-
standard compression techniques.

Table I.7-93/T.180

Parameter name X_MBF_P_CHR_RESULT

Type of value unsigned long

Legal values X_MBF_PV_CHR_SUCC Success;

X_MBF_PV_R_T_CON Rejection; temporary congestion;

X_MBF_PV_R_DOM_DIS Rejection; conference domain disconnected;

X_MBF_PV_R_TM_RES Rejection; too many resources;

X_MBF_PV_R_TM_USER Rejection; too many users;

X_MBF_PV_R_NO_REASON Rejection, reason not specified.

Default value X_MBF_PV_CHR_SUCC

Description Indicates the success or failure of the Change Resource Request.

 Recommendation T.180 (06/98) 309

I.7.7.4 Disconnect Service

I.7.7.4.1 Service description

The Disconnect service is used to disconnect a member from the session. The Disconnect may be
performed:

• by any session member;

• by the session provider.

The Disconnect service does not guarantee delivery of information once the release phase is entered.

The service elements and their corresponding XAPI functions needed for disconnection are described
in Table I.7-94.

Table I.7-94/T.180 – Service elements and their corresponding XAPI
functions for Disconnect

Service element XAPI function Description

Disconnect Request x_snddis() The Disconnect Request is passed to the
provider to request a session
disconnection.

Disconnect Indication x_rcvdis() The Disconnect Indication is generated by
the provider to indicate the session
disconnection initiated by the session
provider.

End Indication x_rcvend() The End Indication is generated by the
provider to indicate that the service
provider is ready to establish a new
connection.

I.7.7.4.2 Service Parameters

There are no MBFT protocol-specific parameters of the Disconnect service.

I.7.7.5 Tables of error codes

The XAPI error-level error codes are defined in Annex B.

I.7.7.5.1 CC_BADVALUE

If the cause code indicates a parameter error with a bad value, the value of diagnostic will contain the
erroneous parameter identifier which has been submitted with the XAPI function call that caused the
error indication.

I.7.7.5.2 CC_MANDMISS

If the cause code indicates a mandatory parameter is missing, the value of diagnostic will contain the
missing parameter identifier that caused the error indication.

I.7.7.5.3 CC_BADEVENT

If the cause code indicates a bad event, the value of diagnostic will contain the bad event identifier
which has been submitted with the XAPI function call that caused the error indication.

310 Recommendation T.180 (06/98)

I.7.7.5.4 CC_UNEXPECT

If the cause code indicates a unexpected event, the value of diagnostic will contain the actual state
identifier in which the unexpected event caused the error indication.

I.7.7.5.5 CC_NOTSUPPORT

If the cause code indicates an unsupported event, the value of diagnostic will contain the identifier of
the unsupported event which has been submitted with the XAPI function call that caused the error
indication.

I.7.7.5.6 CC_OTHER

If the cause code indicates the CC_OTHER error code, the value of diagnostic will contain the
identifier which caused the error indication.

APPENDIX II

Tutorial: XAPI and selected providers

This appendix describes the overall structure of selected providers and gives some information with
respect to the XAPI. Subclauses I.4 (ACSE/ROSE), I.6 (T.120 Conference Control), and I.7 (MBFT)
supply the reader with the full information needed to access these providers via the XAPI.

II.1 XAPI and the ACSE/ROSE provider

In this subclause the overall structure of the OSI Association Control Service Element (ACSE) and
the OSI Remote Operation Service Element (ROSE) is presented. These services describe the
communication between two OSI application entities, namely an invoking (or client) application
entity, a performing (or server) application entity and their usage of remote operation services.

The application entities will first establish an application association and then, in the connected state,
will use remote operations for communication purposes.

ACSE provides the elements that are used to manage the establishment and release of an application
association. The association control service is provided by the service primitives:

• A-ASSOCIATE request/indication/response/confirmation;

• A-RELEASE request/indication/response/confirmation;

• A-ABORT request/indication;

• A-P-ABORT indication.

Recommendation X.227 specifies the protocol for the ACSE. The protocol data units are listed
below:

• A-ASSOCIATE-REQUEST application-protocol-data-unit (AARQ);

• A-ASSOCIATE-RESPONSE application-protocol-data-unit (AARE);

• A-RELEASE-REQUEST application-protocol-data-unit (RLRQ);

• A-RELEASE-RESPONSE application-protocol-data-unit (RLRE);

• A-ABORT application-protocol-data-unit (ABRT).

ROSE provides the capability to request that a process be executed on the same or on another
system. It passes a description of the operation and associated parameters from the client to the
server that may provide a result on the outcome. The ROSE services are provided in conjunction
with the ACSE.

 Recommendation T.180 (06/98) 311

The remote operation service is provided by the service primitives:

• RO-INVOKE request/indication;

• RO-RESULT request/indication;

• RO-ERROR request/indication;

• RO-REJECT-U request/indication;

• RO-REJECT-P indication.

Recommendation X.229 specifies the protocol and procedures for the ROSE. The protocol data units
are listed below:

• RO-INVOKE application-protocol-data-unit (ROIV);

• RO-RESULT application-protocol-data-unit (RORS);

• RO-ERROR application-protocol-data-unit (ROER);

• RO-REJECT application-protocol-data-unit (RORJ).

Figure II.1 shows the structure of the protocol stack that is accessible via the XAPI when selecting an
provider comprising ACSE and ROSE. The ROSE service is provided by the combination of a
Transport system, the Session, the Presentation, and the ROSE protocol module, selected by the
application.

T0827350-97

XAPI user

X.227 protocol
module (ACSE)

X.229 protocol
module (ROSE)

X.226 protocol
module (Present.)

X.225 protocol
module (Session)

transport system
comprising
layers 1-4

service
provider

XAPI
Fd-AR

Figure II.1/T.180 – Structure of the ACSE/ROSE provider

Figure II.2 shows the client/server model. Both systems are structured as shown in Figure II.1. In
addition, two ROSE protocol-data-units are depicted which may serve as examples for the
communication between the two application entities.

312 Recommendation T.180 (06/98)

An application can:

• invoke operations by one ROSE user and perform operations by an other ROSE user;

• perform the control of the application association by ACSE.

T0827360-97

X.227 X.229 X.227 X.229

X.226 X.226

ROIV

RORS

XAPIXAPI

XAPI user
client

XAPI user
client

Fd-AR-client Fd-AR-client

Figure II.2/T.180 – Client/server model based on XAPI ACSE/ROSE provider

Figure I.3 shows an example sequence of XAPI function calls. The client system initiates an
association, connecting the client to the server. Afterwards, and in the connected state, the client
requests a remote service operation which is performed by the server. The positive reply is returned
to the client.

 Recommendation T.180 (06/98) 313

T0827370-97

x_conreq

(A-ASSOCIATE req.)

(A-ASSOCIATE ind.)

AARQ

[A-ASSOCIATE rsp.(+)]

A-ASSOCIATE conf.(+)]

AARE

(RO-INVOKE req.)

(RO-INVOKE ind.)

ROIV

(RO-RESULT req.)

(RO-RESULT ind.)

RORS

x_conind

x_conrsp(+)

x_conconf(+)

x_sndsp

x_rcvsp

x_sndsp

x_rcvsp

Fd-AR-client Fd-AR-server

Figure II.3/T.180 – An example sequence

A service endpoint (e.g. Fd-AR-client) accessing the ACSE/ROSE provider is created when using
the x_open function and is activated when using the x_bind function:

x_open

– Name of the service provider ("X_ACSE_ROSE_ISDN");

– Execution mode;

– Information (e.g. characteristics of the local service provider);

– xerror (error codes or the parameter Fd-AR-client).

x_bind

– Fd-AR-client;

– Name of the transport system (not needed in the standard configuration);

– Requested own protocol address;

– Bound own protocol address;

– Information;

– xerror (error codes).

In the standard configuration, if "X_ACSE_ROSE_ISDN" was selected in the x_open function, no
transport system has to be specified as argument of the x_bind function as the service provider's
protocol stack is already complete.

314 Recommendation T.180 (06/98)

Connection establishment is performed by ACSE. The address to be used to identify the peer entity
(called address) is the tuple of (Presentation-selector, Session-selector, Transport-selector, NSAP
Address), where the selectors are optional depending on the peer’s requirements.

x_conreq

– Fd-AR-client,

– Called address (see above), user data, protocol parameters (see below),

– xerror.

The protocol parameters are listed below (list not complete). For brevity, only those parameters are
listed which apply for the Request primitive and which are mandatory for this primitive.

– X_ACS_P_APP_CTXT: This parameter identifies the application context. In the Response
or Confirmation primitive either the same or a different application context is returned.

– X_ACS_P_CTXT_ID: This parameter identifies the presentation context identification.

– X_ACS_P_AS: This parameter indicates the abstract syntax name.

– X_ACS_P_SUR: This parameter indicates the session user requirements.

ROSE defines five different Operation Classes which classify operations according to two possible
operation modes (synchronous and asynchronous). The Association Class defines which ROSE user
is allowed to invoke operations. The Operation Class and Association Class have to be agreed
between ROSE users. It is not part of the ROSE provider to negotiate these features. OSI
Applications making use of ROSE (e.g. DTAM, MHS) define which Operation Class and
Association Class are allowed within a specific application.

Due to the fact that there is no negotiation of Operation and Association Classes within the ROSE
provider, the parameters Invoke-Id (to identify an operation and to correlate the request of an
invocation with its replies) and Linked-Id (in the case of a child operation to identify the parent
operation) can not be examined by ROSE. Especially it is not controlled, if an invocation exists to an
incoming reply, i.e. result, error or rejection or if the specified parent operation exists to the
invocation of an child operation.

ROSE does not define a distinct abstract syntax for the encoding of its PDUs. Instead, it provides a
set of abstract syntax definitions that are used by the application making use of ROSE. Therefore, the
service user must inform the service provider which abstract syntax are used within the ROSE PDUs.
To support this feature, each ROSE service primitive must be provided with a service primitive
parameter (X_ROS_P_CTXT_ID) that indicates the abstract syntax of the application.

While the service endpoint used to access the provider is in the connected state, the corresponding
service primitives can be passed to the provider or retrieved from the provider using the XAPI
function calls x_sndsp and x_rcvsp.

x_sndsp/x-rcvsp

– Fd-AR-client;

– Level (identifies the protocol module which shall get the service primitive);

– Spname (e.g. RO-INVOKE);

– Sp (parameters of the service primitive (see below) and user data);

– xerror.

 Recommendation T.180 (06/98) 315

The RO-INVOKE primitive is used to request the start of a remote operation. The parameters of this
primitive are listed below.

– X_ROS_P_CTXT_ID: This parameter indicates the presentation context identification of the
application data of the RO-INVOKE primitive. This parameter is the presentation context
identification which was negotiated in the ACSE establishment for the application.

– X_ROS_P_INV_ID: This parameter identifies the RO-INVOKE primitive and is used to
correlate this primitive with the corresponding replies.

– X_ROS_P_LINK_ID: This parameter identifies a child-operation and identifies the
invocation of the linked parent-operation. The value is that of the X_ROS_P_INV_ID
parameter of the RO-INVOKE indication primitive of the parent-operation.

– X_ROS_P_VAL_INT: This parameter indicates the identifier of the operation to be invoked.
As the identifier of the operation may either be an integer value or an object identifier, either
this parameter (legal values are any integer values) or the parameter X_ROS_P_VAL_ID
may be present.

– X_ROS_P_VAL_ID: This parameter indicates the identifier of the operation to be invoked.
As the identifier of the operation may either be an integer value or an object identifier, either
this parameter or the parameter X_ROS_P_VAL_INT may be present.

II.2 XAPI and the specific T.120 conference provider

II.2.1 The T.120 system model

The T.120 protocol provides a means of telecommunicating all forms of data/telematic media
between two or more multimedia terminals and of managing such communication. They provide a
multipoint data communication service that has a particular application in multimedia conferencing.

The T.120 protocol can handle one or more simultaneous "conferences"; any terminal may
participate in more than one of these if authorized to do so; the convener of any one conference may
control the participation in that conference and the flow of information in that conference.

Audio/Video applications and/or data applications such as File Transfer or Still Image may be used
in a conference.

Figure II.4 shows the structure of a T.120-series-based Conference platform. Furthermore, the
location of the XAPI is depicted.

316 Recommendation T.180 (06/98)

T0827380-97

Man-machine
interface

User of the conference

Control/
Data

Control/
Data

Conference Shell (eventually void)

Conference
Control
User Part

U
 s

 e
 r Conference-

Data
Applications
User Part

XAPI
Fd-cc Fd-ai

Node
Controller

Application
Protocol
Entities
(T.126,
T.127...)

Generic Conference Control
T.124 (GCC)

Multipoint Communication Service
T.122/T.125 (MCS)

Network Transport Protocols (T.123)

Figure II.4/T.180 – Structure of a T.120-series conference terminal

The XAPI conference user (see Figure 12) comprises the user parts of:

– the Conference Control communicating with the provider (i.e. the Node Controller) via the
service endpoint Fd-cc,

– zero, one or more (standard or non-standard) Data Applications each communicating with
the provider via a separate service endpoint Fd-a1, ..., -ak.

A Conference Shell functionality making the access of a human user to conference services easier
may or may not be part of the XAPI user.

The XAPI conference provider comprises the:

– Node Controller;

– (standard or non-standard) Data Application Protocol Entities;

– the remaining provider functions as shown in Figure II.4 (GCC, MCS, ...).

 Recommendation T.180 (06/98) 317

The term "Node Controller" is used to describe the element that provides the T.120 management
function or role at a terminal or Multipoint Control Unit (MCU).

The T.124 Generic Conference Control (GCC) provides a set of services for setting up and managing
the multipoint conference.

The T.122/T.125 Multipoint Communication Service (MCS) provides a general multipoint
connection-oriented data service. It collects point-to-point Transport connections and combines them
to form a Multipoint Domain. Within that Domain a large number of logical channels are provided
that can provide one-to-one, one-to-many and many-to-one data delivery.

II.2.2 T.120 MBFT conferencing

Recommendation T.127 defines the Multipoint Binary File Transfer (MBFT) Protocol. This protocol
supports the interchange of binary files within an interactive conferencing or group working
environment where the T.120-series of Recommendations is in use.

A basic file transfer application conforming to this Recommendation may simply offer the ability to
broadcast one file at a time to all applications which support the MBFT protocol. Optional advanced
features defined in T.127 include:

– broadcast of multiple files simultaneously;

– "private" distribution of files to a selected subset of the conference;

– conductor control of file distribution.

Prior to activating a file transfer application, the user has to create or to join a conference (the node
that creates a conference is called the convener). In general, the XAPI conference user at a terminal
has access to conference management functions such as:

c1 information services to determine what conferences are currently in existence;

c2 creation of a conference;

c3 joining an existing conference;

c4 leaving a conference;

c5 adding a node to an existing conference;

c6 terminating the entire conference;

c7 forcing a particular node to be disconnected from a conference;

c8 requesting that an Application Protocol Entity be invoked at a specified set of nodes,

... ...

via the service endpoint Fd-cc (see Figure 12).

Functions such as disconnecting a node from a conference are only defined for the convener or some
other specific nodes.

Figure II.5 shows an example configuration. User A (at terminal A) creates a call-through
conference, i.e. A calls into MCU K and adds the users B (at terminal B) and C (at terminal C),
which are called by that MCU.

318 Recommendation T.180 (06/98)

A Multipoint Control Unit (MCU) is a special network element that serves to connect terminals and
other MCU’s in a multipoint fashion.

NOTE – The example given in Figure II.5 represents the same conference configuration as that given in
clause 7 (e.g. Figure 7).

T0827390-97

Terminal A (convener) Terminal B

Terminal C
MCU K

Figure II.5/T.180 – An example conference configuration

Figure II.6 shows an example sequence at terminal A sketching the creation of the conference
specified above in terms of XAPI function calls.

 Recommendation T.180 (06/98) 319

T0827400-97

Fd-cA Action of the Node Controller other actions

x_conreq

(requesting the creation
of a conference)

creating a
GCC-Conference-Create rq.

x_conconf(+)

(conference created)

A is member of the conference
no applications are in use

(protocol element from A to K)

(protocol element from K to A)

x_sndsp
creating a
GCC-Conference-Add rq.

(protocol element from A to K,
which initiates the invitation
of terminal B:
GCC-Conference-Invite rq at K)

(B accepts invitation ...)
(protocol element from K to A)

x_rcvsp

(A adds B to the conference)

(B is added to the conference)

A and B are members of the conference
no applications are in use

x_sndsp

(A adds C to the conference)

creating a
GCC-Conference-Add rq.

x_rcvsp

(C is added to the conference)

(protocol element from A to K,
which initiates the invitation
of terminal C:
GCC-Conference-Invite rq at K)

(C accepts invitation ...)
(protocol element from K to A)

A, B, and C are members of the conference
no applications are in use

Figure II.6/T.180 – Creation of a conference example sequence

The service endpoint Fd-cA accessing the conference control provider (Node Controller of
terminal A) is created when using the x_open function and is activated when using the x_bind
function:

x_open

– Name of the service provider ("X_T.120_CONF_ISDN", ...);

320 Recommendation T.180 (06/98)

– Execution mode;

– Information (e.g. characteristics of the local service provider);

– xerror (error codes or the parameter "Fd-cA").

x_bind

– Fd-cA;

– Requested own protocol address;

– Bound own protocol address;

– Information;

– xerror.

Communication establishment (creating a new conference at MCU K to which terminal A is
automatically joined) is supervised by the Node Controller. User A initiates the function:

x_conreq

– Fd-cA;

– Called address, user data, protocol parameters (see below);

– xerror.

The protocol parameters are listed below (list not complete):

– Conference Name: Name by which the conference to be created is identified;

– Conference Locked: Setting this flag immediately locks a conference;

– Conference Listed: The TRUE setting of this flag indicates that this conference may be
listed;

– Conference Conductible: The TRUE setting of this flag indicates that this conference may be
placed in conducted mode;

– Termination Method: This parameter indicates whether the conference shall remain in
existence until explicitly terminated by the Convener or convener-designated node.

Having successfully performed all actions shown in Figure II.6, the XAPI users A (convener), B and
C are members of the conference. No applications are in use at this point in time. At that time, the
control connection is defined by the tuple (Fd-cA, Fd-cB, Fd-cC, K). It consists in the GCC
Broadcast Channel, the Convenor Channel, and – for each node – the Node ID channel
(see Annex A/Recommendation T.120).

In the remainder of this subclause, MBFT-related structures and actions are described.

The conference user at a terminal has access to MBFT management and information transfer
functions such as:

f1 connecting the MBFT application to the conference;

f2 offer a file;

f3 accept a file,

... ...

via the service endpoint Fd-file-transfer.

The purpose of the example conference is to "broadcast" files from one participant to others.
Therefore, a file transfer application is used which is supported by the MBFT T.127 protocol.

Two types of channels are used within T.127: control channels and data channels. Control channels
are used for managing all aspects of the file transfer (offering files, requesting files), whereas data
channels are used exclusively for the transfer of file data. Only one file can be transmitted on each

 Recommendation T.180 (06/98) 321

data channel at a time, but additional data channels can be used to allow distribution of multiple files
simultaneously.

Figure II.7 shows the terminals, the MCU, and the MBFT channel structure for the example
configuration. MBFT-CHANNEL-0 is the name of the control channel and MBFT-CHANNEL-1 is
the name of a broadcast data channel on which files are distributed. Fd-fA, Fd-fB, and Fd-fC are the
respective service endpoints.

T0827410-97

XAPI

GCC T.124

MCS T.122/T.125

Fd-cA Fd-fA
XAPI

GCC T.124

MCS T.122/T.125

Fd-cB Fd-fB

XAPI

GCC T.124

MCS T.122/T.125

Fd-cC Fd-fC

XAPI

GCC T.124

MCS T.122/T.125

Fd-mcuK

MCU K

Terminal A (convener)

Terminal C

Terminal B

Conf.
Control

File transfer
user appl.

Conf.
Control

File transfer
user appl.

Node
Contr.

MBFT
T.127

Node
Contr.

MBFT
T.127

MBFT-CHANNEL-1
(Data Channel)MBFT-CHANNEL-1

(Data Channel)

MBFT-CHANNEL-0
(Control Channel)

Node
Contr.

Conf.
Control

File transfer
user appl.

Node
Contr.

MBFT
T.127

MBFT-CHANNEL-0
(Control Channel)

MBFT-CHANNEL-1
(Data Channel)

MBFT-CHANNEL-0
 (Control Channel)

Figure II.7/T.180 – The MBFT channel structure (example)

Other channels, such as the GCC Broadcast Channel, or the Convener Channel are not shown in
Figure II.7.

322 Recommendation T.180 (06/98)

NOTE – In general, the functionality of a MCU will differ from that of a terminal. Nevertheless, using a
XAPI for MCUs as shown in Figure II.7 may contribute to a more sophisticated architecture of such a node
and may ease software development.

A MBFT session is characterized by:

– a single control channel (see Figure II.7);

– a single broadcast data channel (see Figure II.7);

– zero or more acknowledged data channels (not used for the example);

– zero or more private sub-sessions (not used for the example);

– a session ID.

A MBFT session may now be initiated locally by the user application or remotely through use of the
GCC-Application-Invoke mechanism.

Figure II.8 shows user A connecting the file transfer application to the conference and receiving a
file.

 Recommendation T.180 (06/98) 323

T0827420-97

Fd-fA

x_conreq

(initiating a
MBFT Standard
Base Session)

Actions of the MBFT T.127
protocol (and related actions)

GCC-Permission-To-Enroll ind.

MCS-Attach-User req.

MCS-Attach-User con.
(getting the MBFT User ID)

MCS-Channel-Join req.
(Channel ID = MBFT User ID)

MCS-Channel-Join con.
(User ID channel joined)

MCS-Channel-Join req.
(Channel ID = MBFT-CHANNEL-0)

MCS-Channel-Join con.
(control channel joined)

MCS-Channel-Join req.
(Channel ID = MBFT-CHANNEL-1)

MCS-Channel-Join con.
(data channel joined)

• • •
GCC-Application-Enroll req.
(Active, Session ID)

GCC-Application-Enroll con.

GCC-Application-Roster-Report ind.

[obtain a File-OfferPDU (MBFT-CHANNEL-0)]

[obtain a File-StartPDU (MBFT-CHANNEL-1)]

[obtain a File-DataPDU (MBFT-CHANNEL-1)]

x_conconf(+)

x_rcvsp

x_rcvsp

x_rcvdata

Figure II.8/T.180 – User A: Connecting the file transfer
application to the conference and receiving a file

After having obtained a MBFT User ID, the T.127 protocol shall join control and data channels by
issuing two MCS-Channel-Join requests, specifying MBFT-CHANNEL-0 and MBFT-CHANNEL-1
as respective channels to join. Once positive confirmation of joining these channels has been
received ("channel joined" in Figure II.8), the application shall enrol active by issuing a
GCC-Application-Enrol request from the T.127 protocol to the GCC provider.

Afterwards, files may be exchanged. Figure II.8 shows the receipt of a file.

324 Recommendation T.180 (06/98)

A service endpoint (e.g. Fd-fA) accessing the MBFT T.127 protocol is created when using the
x_open function and is activated when using the x_bind function:

x_open

– Name of the service provider ("X_T.127_MBFT", ...);

– Execution mode;

– Information (e.g. characteristics of the local service provider);

– xerror (error codes or the parameter "Fd-fA").

x_bind

– Fd-fA;

– xerror.

During the connection establishment phase, an MBFT user establishes a connection (i.e. creating a
new session or joining an already existing session) to other MBFT users. The connection is identified
by the conference name and the session identifier respectively.

x_conreq

– Fd-fA;

– Conference name, session type, session identifier, other parameters;

– xerror.

Some protocol parameters are listed below:

– Conference Name: Name by which the conference is identified;

– Session type: Parameter by means of which the session type is identified;

– Session Identifier: Number by which the session is identified;

– Other parameters: e.g. indicating the maximum file size, negotiating use of V.42 bis
compression for file data, ...

NOTE – In the example above the application connection is defined by (Fd-fA, Fd-fB, Fd-fC). It consists in
MBFT-CHANNEL-0, MBFT-CHANNEL-1, and – for each MBFT application protocol entity – the MBFT
User ID Channel.

ITU-T RECOMMENDATIONS SERIES

Series A Organization of the work of the ITU-T

Series B Means of expression: definitions, symbols, classification

Series C General telecommunication statistics

Series D General tariff principles

Series E Overall network operation, telephone service, service operation and human factors

Series F Non-telephone telecommunication services

Series G Transmission systems and media, digital systems and networks

Series H Audiovisual and multimedia systems

Series I Integrated services digital network

Series J Transmission of television, sound programme and other multimedia signals

Series K Protection against interference

Series L Construction, installation and protection of cables and other elements of outside plant

Series M TMN and network maintenance: international transmission systems, telephone circuits,
telegraphy, facsimile and leased circuits

Series N Maintenance: international sound programme and television transmission circuits

Series O Specifications of measuring equipment

Series P Telephone transmission quality, telephone installations, local line networks

Series Q Switching and signalling

Series R Telegraph transmission

Series S Telegraph services terminal equipment

Series T Terminals for telematic services

Series U Telegraph switching

Series V Data communication over the telephone network

Series X Data networks and open system communications

Series Y Global information infrastructure

Series Z Programming languages

	ITU-T Rec. T.180 (06/98) HOMOGENEOUS ACCESS MECHANISM TO COMMUNICATION SERVICES
	Summary
	Source
	FOREWORD
	CONTENTS
	HOMOGENEOUS ACCESS MECHANISM TO COMMUNICATION SERVICES
	1 Scope
	2 References
	3 Definitions
	4 Abbreviations
	5 Structure of this Recommendation
	6 Introduction to the XAPI
	6.1 Location of the XAPI
	6.2 Phases of communication
	6.3 Applications that are supported by XAPI

	7 A Model of communication
	7.1 Classes of communication
	7.2 The state transition diagram as part of the model

	8 Description of the XAPI
	8.1 XAPI in point-to-point and in multipoint environments
	8.2 XAPI functions and the corresponding state transition diagram

	9 XAPI functions
	9.1 Conventions
	9.2 Communication-related functions
	9.3 Not communication-related functions

	ANNEX A
	Interface definition language description
	ANNEX B
	Error codes
	APPENDIX I
	Examples of XAPI access to service providers
	I.1 XAPI access to the service provider for the ISDN B-channel
	I.2 XAPI access to the service provider for BFT over T.30
	I.3 XAPI access to the service provider for FAX4 and BFT
	I.4 XAPI access to the service provider for ACSE and ROSE
	I.5 XAPI access to a Service Provider for Audio and Video (AV) Control
	I.6 XAPI access to the service provider for the T.120 conference control
	I.7 XAPI access to the service provider for T.127 MBFT
	APPENDIX II
	Tutorial: XAPI and selected providers
	II.1 XAPI and the ACSE/ROSE provider
	II.2 XAPI and the specific T.120 conference provider

