

INTERNATIONAL TELECOMMUNICATION UNION

 T.173

TELECOMMUNICATION
STANDARDIZATION SECTOR
OF ITU

(07/97)

SERIES T: TERMINALS FOR TELEMATIC SERVICES

MHEG-3 script interchange representation

ITU-T Recommendation T.173
(Previously CCITT Recommendation)

ITU-T T-SERIES RECOMMENDATIONS

TERMINALS FOR TELEMATIC SERVICES

For further details, please refer to ITU-T List of Recommendations.

ITU-T RECOMMENDATION T.173

MHEG-3 SCRIPT INTERCHANGE REPRESENTATION

Source

ITU-T Recommendation T.173 was prepared by ITU-T Study Group 16 (1997-2000) and was
approved under the WTSC Resolution No. 1 procedure on the 10th of July 1997.

ii Recommendation T.173 (07/97)

FOREWORD

ITU (International Telecommunication Union) is the United Nations Specialized Agency in the field of
telecommunications. The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of
the ITU. The ITU-T is responsible for studying technical, operating and tariff questions and issuing
Recommendations on them with a view to standardizing telecommunications on a worldwide basis.

The World Telecommunication Standardization Conference (WTSC), which meets every four years,
establishes the topics for study by the ITU-T Study Groups which, in their turn, produce Recommendations
on these topics.

The approval of Recommendations by the Members of the ITU-T is covered by the procedure laid down in
WTSC Resolution No. 1.

In some areas of information technology which fall within ITU-T’s purview, the necessary standards are
prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a
telecommunication administration and a recognized operating agency.

INTELLECTUAL PROPERTY RIGHTS

The ITU draws attention to the possibility that the practice or implementation of this Recommendation may
involve the use of a claimed Intellectual Property Right. The ITU takes no position concerning the evidence,
validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others
outside of the Recommendation development process.

As of the date of approval of this Recommendation, the ITU had/had not received notice of intellectual
property, protected by patents, which may be required to implement this Recommendation. However,
implementors are cautioned that this may not represent the latest information and are therefore strongly urged
to consult the TSB patent database.

 ITU 1998

All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from the ITU.

 Recommendation T.173 (07/97) iii

CONTENTS

 Page

1 Scope... 1

2 Normative references .. 1

3 Definitions .. 2

3.1 Definitions .. 2

3.2 Abbreviations.. 6

4 General.. 7

5.1 Information object conformance... 8

5.1.1 Profiles... 8

5.1.2 Encoding.. 8

5.1.3 Syntax .. 8

5.1.4 Semantics... 8

5.2 Implementation conformance ... 8

5.2.1 Conformance requirements.. 9

5.2.2 Conformance documentation... 9

5.3 Application conformance.. 9

5.4 Test Methods... 10

6 Overview... 10

6.1 Description methodology.. 10

6.2 Data processing operations ... 10

6.3 Access to external data and functions... 11

7 MHEG/MHEG-3 relationship... 12

7.1 MHEG entities .. 12

7.2 Functional entities... 12

7.3 MHEG-SIR script interpreter.. 12

8 Elements of MHEG-SIR ... 13

8.1 Data types.. 13

8.1.1 Predefined types... 13

8.1.2 Declared constructed types .. 16

8.2 Data... 18

8.2.1 Immediate values ... 18

8.2.2 Constants ... 19

8.2.3 Variables .. 19

8.3 Functions... 20

8.3.1 Routines ... 20

iv Recommendation T.173 (07/97)

 Page

8.3.2 Services.. 21

8.3.3 Predefined functions .. 21

8.4 Messages ... 22

8.4.1 Package exceptions.. 22

8.4.2 Predefined messages.. 22

8.5 Instructions.. 22

8.6 Identifiers .. 23

8.6.1 Type identifiers .. 23

8.6.2 Data identifiers .. 23

8.6.3 Function identifiers.. 23

8.6.4 Message identifiers .. 24

9 The MHEG-SIR virtual machine .. 24

9.1 Structure of the MHEG-SIR virtual machine ... 24

9.2 Structures and notations.. 25

9.2.1 Table .. 25

9.2.2 Stack .. 25

9.2.3 Parameter stack.. 25

9.2.4 Queue... 25

9.2.5 Data representation .. 26

9.3 Memory areas.. 27

9.3.1 Mh-script memory areas .. 27

9.3.2 Rt-script memory areas.. 29

9.4 Script statuses ... 33

9.4.1 Mh-script statuses .. 33

9.4.2 Rt-script statuses.. 33

9.5 Processing units .. 34

9.5.1 Message reception ... 34

9.5.2 Mh-script initialization .. 35

9.5.3 Rt-script initialization.. 36

9.5.4 Rt-script execution unit ... 36

9.5.5 MHEG-SIR instruction execution unit .. 36

10 Provisions for run-time environment access... 37

10.1 General model... 37

10.2 Declaration of IDL interfaces.. 37

10.3 Invocation of external operations in an MHEG-SIR program.................................... 38

10.4 Handling of external exceptions in an MHEG-SIR program...................................... 38

10.5 Invocation of external operations by an MHEG-3 engine .. 39

 Recommendation T.173 (07/97) v

 Page

10.6 Handling of external exceptions by an MHEG-3 engine .. 39

10.7 Platform mapping specifications... 39

11 Provisions for MHEG object manipulation .. 40

11.1 Invoking MHEG actions ... 40

11.1.1 Sending messages to other scripts ... 40

11.1.2 Exchange of information with MHEG objects .. 40

11.2 Receiving MHEG messages ... 40

11.2.1 MHEG-3 API run operations... 41

11.2.2 MHEG API exceptions .. 41

12 MHEG-SIR declarations ... 41

12.1 Type declaration.. 42

12.1.1 Type identifier ... 42

12.1.2 Type description .. 42

12.2 Constant declaration ... 43

12.2.1 Data identifier .. 43

12.2.2 Type identifier ... 44

12.2.3 Constant value ... 44

12.3 Global variable declaration ... 44

12.3.1 Data identifier .. 44

12.3.2 Type identifier ... 45

12.3.3 Constant reference ... 45

12.4 Package declaration .. 45

12.4.1 Package identifier .. 45

12.4.2 Name.. 46

12.4.3 Service description .. 46

12.4.4 Exception description .. 47

12.5 Handler declaration... 48

12.5.1 Message identifier.. 48

12.5.2 Function identifier ... 48

12.6 Routine declaration ... 48

12.6.1 Function identifier ... 49

12.6.2 Type identifier ... 49

12.6.3 Parameter description .. 49

12.6.4 Local variable declaration.. 49

12.6.5 Program code... 50

13 MHEG-SIR instructions.. 50

vi Recommendation T.173 (07/97)

 Page

13.1 Presentation methodology... 50

13.1.1 Error conditions ... 51

13.1.2 Formal specification .. 51

13.1.3 Data table notation... 51

13.1.4 Template instruction notation.. 52

13.1.5 Primitives... 52

13.2 Classification of MHEG-SIR instructions .. 52

13.3 Description of instructions.. 54

13.3.1 No operation .. 54

13.3.2 Yield .. 54

13.3.3 Return .. 55

13.3.4 Free .. 55

13.3.5 Not ... 56

13.3.6 Or ... 56

13.3.7 Exclusive or ... 57

13.3.8 And .. 57

13.3.9 Equal reference .. 57

13.3.10 Equal.. 58

13.3.11 Less than .. 58

13.3.12 Greater than ... 59

13.3.13 Add .. 59

13.3.14 Subtract .. 59

13.3.15 Multiply ... 60

13.3.16 Divide .. 60

13.3.17 Negate .. 60

13.3.18 Remainder.. 61

13.3.19 Duplicate.. 61

13.3.20 Convert .. 61

13.3.21 Jump on true .. 62

13.3.22 Jump on false ... 62

13.3.23 Jump .. 63

13.3.24 Shift ... 63

13.3.25 Get object reference... 63

13.3.26 Long jump on true ... 64

13.3.27 Long jump on false .. 64

13.3.28 Long jump.. 65

13.3.29 Call... 65

13.3.30 External call ... 66

 Recommendation T.173 (07/97) vii

 Page

13.3.31 Push ... 68

13.3.32 Push reference.. 68

13.3.33 Push immediate.. 68

13.3.34 Pop... 69

13.3.35 Pop reference ... 69

13.3.36 Pop contents... 69

13.3.37 Allocate.. 70

13.3.38 Increment ... 70

13.3.39 Decrement.. 71

13.3.40 Get ... 71

13.3.41 Get contents ... 72

13.3.42 Set .. 73

13.3.43 Set contents.. 74

13.4 Type conversion rules ... 75

13.4.1 Reversible conversions .. 75

13.4.2 Lossless extensions.. 75

13.4.3 Lossy extensions.. 76

13.4.4 Truncations to boolean .. 76

13.4.5 Truncations between integer or between floating-point types 76

13.4.6 Truncations from floating-point to integer .. 76

14 IDL mapping to MHEG-SIR... 76

14.1 IDL specifications ... 77

14.2 IDL interfaces and modules .. 77

14.3 IDL operations .. 77

14.3.1 Operation name.. 77

14.3.2 Operation parameters... 77

14.3.3 Implicit parameter.. 77

14.3.4 Return value... 78

14.4 IDL attributes .. 78

14.4.1 Accessor... 78

14.4.2 Modifier ... 78

14.4.3 Readonly attribute.. 78

14.5 IDL inherited operations ... 78

14.6 IDL exceptions.. 78

14.6.1 Exception name ... 78

14.6.2 Exception members ... 78

14.6.3 Implicit member... 79

viii Recommendation T.173 (07/97)

 Page

14.7 IDL types... 79

14.7.1 char type... 79

14.7.2 enum type... 79

14.7.3 Constructed types... 79

14.7.4 any type.. 80

14.7.5 Restrictions on types.. 80

14.8 IDL constants .. 80

15 The MHEG-3 API... 80

15.1 ScriptInterpreter object ... 81

15.1.1 kill operation.. 81

15.1.2 prepare operation ... 81

15.2 MhScript object... 82

15.2.1 destroy operation ... 82

15.2.2 new operation .. 82

15.3 RtScript object .. 83

15.3.1 delete operation.. 83

15.3.2 setPriority operation... 83

15.3.3 getPriority operation .. 84

15.3.4 setData operation ... 84

15.3.5 getData operation... 84

15.3.6 allocate operation... 85

15.3.7 free operation ... 85

15.3.8 stop operation .. 86

15.3.9 reInit operation... 86

15.3.10 getRtScriptStatus operation ... 87

15.3.11 open operation ... 87

15.4 RoutineInvocation object .. 87

15.4.1 close operation... 87

15.4.2 routine_id readonly attribute.. 88

15.4.3 setParameter operation... 88

15.4.4 getPrototype operation... 89

15.4.5 run operation.. 89

15.4.6 reset operation.. 90

15.4.7 getInvocationStatus operation ... 90

Annex A – ASN.1 specification of interchanged scripts ... 90

 Recommendation T.173 (07/97) ix

 Page

Annex B – Coded representation of interchanged scripts .. 94

B.1 Coding for interchanged scripts .. 94

B.2 Coding for the program code .. 94

B.2.1 Instruction op-codes... 95

B.2.2 Instruction operands... 95

Annex C – MHEG-SIR predefined elements... 99

C.1 Predefined types.. 100

C.1.1 Primitive types ... 100

C.1.2 MHEG API types... 100

C.2 Predefined functions ... 101

C.2.1 MHEG API operations .. 101

C.2.2 MHEG-3 API operations ... 101

C.3 Predefined messages ... 102

C.3.1 MHEG-3 API operations ... 102

C.3.2 The InstructionExecutionError exception.. 102

C.3.3 MHEG-3 API exceptions... 103

C.3.4 MHEG API exceptions .. 103

Annex D – IDL Platform mapping specification form... 103

Annex E – MHEG API definition process ... 105

E.1 Generic API definition framework ... 105

E.1.1 MHEG elements input to MHEG API definition process 105

E.1.2 IDL elements output by MHEG API definition process................................ 105

E.1.3 Requirements on the MHEG API definition process 105

E.1.4 General structure of the MHEG API ... 107

E.1.5 IDL non-object datatype definition.. 107

E.1.6 IDL interface definition ... 112

E.1.7 IDL attribute definition.. 113

E.1.8 IDL operation definition .. 113

E.1.9 IDL exception definition.. 116

E.2 MHEG API mapping to MHEG-SIR .. 117

Annex F – IDL specification of the MHEG-3 API .. 118

Annex G – Relationships with other ITU-T Recommendations of the T.170-Series (and
parts of ISO/IEC 13522) ... 119

G.1 Relationships with ITU-T Rec. T.171 (and ISO/IEC 13522-1) 119

G.2 Relationships with ITU-T Rec. T.172 (and ISO/IEC 13522-5) 120

Appendix I – MHEG-SIR syntax (EBNF notation) ... 121

x Recommendation T.173 (07/97)

 Page

Appendix II – Textual notation for MHEG-SIR scripts... 123

Appendix III – MHEG entities... 126

III.1 MHEG objects .. 126

III.2 Mh-objects .. 127

III.3 Rt-objects .. 127

III.4 Interchanged MHEG objects... 127

Appendix IV – Main features of MHEG-SIR .. 128

IV.1 Features of using applications... 128

IV.1.1 Manipulation of MHEG entities .. 128

IV.1.2 Computations, variable handling and control structures 128

IV.1.3 External device control .. 128

IV.1.4 Data acquisition ... 129

IV.1.5 Access to external data .. 129

IV.1.6 Access to arbitrary external run-time services... 129

IV.2 Functional features.. 129

IV.2.1 Data processing operations .. 129

IV.2.2 Access to external data and functions.. 130

IV.3 Technical features.. 130

IV.3.1 Hardware independence... 131

IV.3.2 Final form representation... 131

IV.3.3 Compactness.. 131

IV.3.4 Ease of implementation ... 132

IV.3.5 Interpretation efficiency... 132

IV.3.6 Openness and extensibility .. 132

IV.3.7 Non-revisability ... 132

IV.3.8 Provisions for real-time interchange.. 132

IV.3.9 Semantic validation for quality of service purposes...................................... 132

IV.3.10 Syntax checkability (with regard to contamination hazards)......................... 132

IV.3.11 Non-proprietary representation.. 133

IV.3.12 Secure script processing .. 133

 Recommendation T.173 (07/97) xi

Introduction

This Recommendation, which is equivalent to ISO/IEC 13522-3, is a generic Recommendation
which extends the coded representation of the MHEG script object class defined in ITU-T
Recommendations of the T.170-Series, including T.171 and T.172. It specifies the MHEG script
interchange representation (MHEG-SIR) for the contents of script objects, i.e. the encoding of the
script data component of the MHEG script class.

The ITU-T Recommendations of the T.170-Series include the following approved
Recommendations:

– T.170 (1998), Framework of the T.170-Series of Recommendations.

– T.171 (1996), Protocols for interactive audiovisual services: Coded representation of
multimedia and hypermedia objects.

– T.172 (1998), MHEG-5 – support for base-level interactive applications.

– T.173 (1997), MHEG-3 script interchange representation.

– T.174 (1996), Application programming interface (API) for MHEG-1.

– T.175 (1998), Application programming interface (API) for MHEG-5.

– T.176 (1998), API for digital storage media command and control (DSM-CC).

Some ITU-T Recommendations of the T.170-Series are equivalent to ISO/IEC 13522 parts. This
standard consists of the following parts, under the general title: Information technology – Coding of
multimedia and hypermedia information:

– Part 1: Base notation;

– Part 3: MHEG script interchange representation;

– Part 4: Registration procedure for MHEG format identifier;

– Part 5: Support for base-level interactive applications;

– Part 6: Support for enhanced interactive applications.

Annexes A to G form an integral part of this Recommendation. Appendices I to IV are for
information only.

 Recommendation T.173 (07/97) 1

Recommendation T.173

MHEG-3 SCRIPT INTERCHANGE REPRESENTATION

(Geneva, 1997)

1 Scope

The scope of this Recommendation is to extend the coded representation of the MHEG script object
class defined by ITU-T Rec. T.171 (and ISO/IEC 13522-1) [5] and ITU-T Rec. T.172 (and ISO/IEC
13522-5) [7].

This Recommendation specifies the MHEG Script Interchange Representation (MHEG-SIR) for the
contents of script objects, i.e. the encoding of the script data component of the MHEG script class.

MHEG engines are system or application components that handle, interpret and present MHEG
objects. This Recommendation also specifies the semantics of interchanged scripts. These semantics
are defined in terms of minimum requirements on the behaviour of MHEG engines that support the
interpretation of interchanged scripts.

This Recommendation is applicable to all applications that interchange multimedia and hypermedia
information.

2 Normative references

The following ITU-T Recommendations, and other references contain provisions which, through
reference in this text, constitute provisions of this Recommendation. At the time of publication, the
editions indicated were valid. All Recommendations and other references are subject to revision; all
users of this Recommendation are therefore encouraged to investigate the possibility of applying the
most recent edition of the Recommendations and other references listed below. A list of the currently
valid ITU-T Recommendations is regularly published.

[1] ITU-T Recommendation X.680 (1994) | ISO/IEC 8824-1:1995, Information technology –
Abstract Syntax Notation One (ASN.1): Specification of basic notation.

[2] ITU-T Recommendation X.690 (1994) | ISO/IEC 8825-1:1995, Information technology –
ASN.1 encoding rules: Specification of Basic Encoding Rules (BER), Canonical Encoding
Rules (CER) and Distinguished Encoding Rules (DER).

[3] ITU-T Recommendations X.290 to X.296 (1995), OSI conformance testing methodology
and framework for protocol Recommendations for ITU-T applications.

 ISO/IEC 9646 Parts 1 to 5, Information technology – Open Systems Interconnection –
Conformance testing methodology and framework.

 Part 1: 1994, General concepts.

 Part 2: 1994, Abstract Test Suite specification.

 Part 3: 1992, The Tree and Tabular Combined Notation (TTCN).

 Part 4: 1994, Test scalization.

 Part 5: 1994, Requirements on test laboratories and clients for the conformance assessment
process.

2 Recommendation T.173 (07/97)

[4] ISO/IEC 10646-1:1993, Information technology – Universal Multiple-Octet Coded
Character Set (UCS) – Part 1: Architecture and Basic Multilingual Plane.

[5] ITU-T Recommendation T.171 (1996), Protocols for interactive audiovisual services:
Coded representation of multimedia and hypermedia objects.

 ISO/IEC 13522-1:1997, Information technology – Coding of multimedia and hypermedia
information: – Part 1: MHEG object representation – Base Notation (ASN.1).

[6] ISO/IEC 13522-4:1996, Information technology – Coding of multimedia and hypermedia
information – Part 4: MHEG registration procedure.

[7] ITU-T Recommendation T.172 (1998), MHEG-5 – support for base-level interactive
applications.

 ISO/IEC 13522-5:1997, Information technology – Coding of multimedia and hypermedia
information – Part 5: Support for base-level interactive applications.

[8] ISO/IEC 147501, Information technology – Open Distributed Processing – Interface
Definition Language. (Formerly ISO/IEC 14750-1.)

[9] IEEE 754:1985, IEEE standard for binary floating-point arithmetic.

3 Definitions

3.1 Definitions

For the purposes of this Recommendation, the definitions given in ITU-T Rec. X.680 | ISO/IEC
8824-1 [1], ITU-T Rec. X.690 | ISO/IEC 8825-1 [2] and the following definitions apply:

3.1.1 application programming interface (API): Boundary across which a software application
uses facilities of programming languages to invoke software services. These facilities may include
procedures or operations, shared data objects and resolution of identifiers.

3.1.2 attribute:

1) MHEG attribute (see ISO/IEC 13522-1 [5]);

2) IDL attribute (q.v.).

3.1.3 conforming MHEG-3 engine: MHEG-3 engine whose implementation conforms to the
provisions of this Recommendation.

3.1.4 conforming MHEG-3 interchanged script: Interchanged script that conforms to the
provisions of this Recommendation.

3.1.5 conforming MHEG-3 object: MHEG script object whose coded representation conforms to
the provisions of this Recommendation.

3.1.6 frame: Record of elements on the call stack that define an execution context; one such
record is pushed onto the call stack every time a routine is called, to memorize the current execution
context; one is popped from the call stack when the routine is returned from, to restore the execution
context at the time of calling.

3.1.7 hypermedia (adj.): Featuring access monomedia and multimedia information by interaction
with explicit links.

1 Presently at the stage of draft.

 Recommendation T.173 (07/97) 3

3.1.8 interchanged script: The coded representation of the "script data" attribute of an MHEG
script object.

3.1.9 interface definition language (IDL): Formal notation that is used to specify types and
objects through the definition of the interface that they provide, as defined by ISO/IEC 14750-1 [8].

3.1.10 IDL attribute: Named, typed association between an object and a value; it is declared as
part of an IDL interface; it is made visible to clients as a pair of operations: an accessor (get) and a
modifier (set); if it is read-only, it only provides an accessor.

3.1.11 IDL exception: Message that can be raised when an exceptional condition occurs during the
performance of the request to an IDL operation; it is defined in an IDL module and may have
members, which are returned to the caller together with the message identifier.

3.1.12 IDL instance: Object that provides the operations, signatures and semantics specified by an
IDL interface; its creation and management is implementation-specific.

3.1.13 IDL interface: Description, using IDL, of a set of operations that a client may request of an
IDL object.

3.1.14 IDL object: Identifiable, encapsulated entity that provides one or more services which can
be requested by a client.

3.1.15 IDL operation: Service that can be requested and is provided by an IDL object; it is defined
within an IDL interface by a name, a signature which defines the type of its parameters and return
value, and the list of exceptions that its invocation may raise.

3.1.16 mh-script: Internal representation, within an MHEG engine, of an "available" MHEG script
object.

3.1.17 MHEG action: Operation that applies to MHEG objects and consists of sequential and/or
parallel combinations of MHEG elementary actions.

3.1.18 MHEG action object: MHEG object that describes MHEG actions.

3.1.19 MHEG application: Application that involves the interchange of MHEG objects within
itself or with another application.

3.1.20 MHEG conforming object: Information object whose coded representation conforms to the
provisions of one of the parts of ISO/IEC 13522.

3.1.21 MHEG elementary action: One of the basic operations applying to MHEG objects; it maps
one MHEG API primitive.

3.1.22 MHEG engine: Process or set of processes able to interpret MHEG objects.

3.1.23 MHEG entity: Any MHEG object, rt-object, content data, script data, socket, channel or
other construction defined by ISO/IEC 13522.

3.1.24 MHEG link: MHEG object that defines spatio-temporal relationships among MHEG
objects expressed in terms of trigger conditions and actions.

3.1.25 MHEG object: Coded representation of an instance of an MHEG object class.

3.1.26 MHEG script class: MHEG class defining a structure to interchange script data in a
specified encoded form.

3.1.27 MHEG script object: The coded representation of an instance of an MHEG script class.

3.1.28 MHEG API: The API provided by an MHEG engine to MHEG applications for the
manipulation of MHEG objects.

3.1.29 MHEG-3 (adj.): Applies to entities that conform to the provisions of this Recommendation.

4 Recommendation T.173 (07/97)

3.1.30 MHEG-3 application: MHEG application that interchanges scripts within itself and/or with
other applications as the "script data" component of MHEG script objects, according to the
representation specified by this Recommendation.

3.1.31 MHEG-3 engine: MHEG engine that processes and interprets MHEG-SIR interchanged
scripts.

3.1.32 MHEG-3 profile: Profile of Recommendation T.173.

3.1.33 MHEG-SIR:

1) The script interchange representation defined by this Recommendation.

2) (adj.) Applies to an entity defined as part of this Script Interchange Representation.

3.1.34 (MHEG-SIR) call stack: Stack that is associated with each running rt-script by the MHEG-
SIR virtual machine and that contains a call frame for each active function invocation.

3.1.35 MHEG-SIR code: Encoded sequence of MHEG-SIR instructions.

3.1.36 (MHEG-SIR) constant: Static, typed, named value which is declared within an
interchanged script and whose value is globally accessible and unchanged throughout the execution
of the script.

3.1.37 (MHEG-SIR) constructed type: Type described as a combination of other types using one
of the following constructors: sequence, string, array, union, structure.

3.1.38 (MHEG-SIR) data identifier: Integer that uniquely identifies the name of a data element of
an interchanged script (constant, global variable, dynamic variable, local variable).

3.1.39 (MHEG-SIR) exception: Message triggered during the invocation of a service.

3.1.40 (MHEG-SIR) function: Named code sequence whose execution may be invoked by an
interchanged script; it may be a routine, a predefined function or a service.

3.1.41 (MHEG-SIR) function identifier: Integer that uniquely identifies a function within an
interchanged script.

3.1.42 (MHEG-SIR) global variable: Variable with global scope.

3.1.43 (MHEG-SIR) instruction: Elementary unit of code of an MHEG-SIR interchanged script; it
consists of an op-code followed by zero or more operands.

3.1.44 (MHEG-SIR) instruction execution unit: Within an MHEG-SIR script interpreter, virtual
processing unit that executes an MHEG-SIR instruction.

3.1.45 MHEG-SIR interchanged script: Interchanged script coded according to MHEG-SIR.

3.1.46 (MHEG-SIR) local variable: Variable with local scope within a routine.

3.1.47 (MHEG-SIR) message: Event that may be received by the script interpreter during the
execution of the script; it may be either predefined (MHEG API exception, MHEG-3 API operation
and exception, internal exception) or declared within an interchanged script (exception provided by
an external interface).

3.1.48 (MHEG-SIR) message identifier: Integer that uniquely identifies a message within an
interchanged script.

3.1.49 (MHEG-SIR) message queue: Queue that is associated with each running rt-script by the
MHEG-SIR virtual machine and that contains the messages targeted at the rt-script.

3.1.50 (MHEG-SIR) object reference: MHEG-SIR value that represents an IDL instance and that
is passed as the parameter of an external call to request a service from this instance.

 Recommendation T.173 (07/97) 5

3.1.51 (MHEG-SIR) operand: Parameter of an instruction; it is encoded next to the instruction’s
op-code.

3.1.52 (MHEG-SIR) package: Set of external functions that are provided by a module of the run-
time environment and that are accessible to an rt-script and declared within an interchanged script; it
is composed of services and exceptions.

3.1.53 (MHEG-SIR) parameter: Piece of data exchanged with a function call, a message or an
instruction.

3.1.54 (MHEG-SIR) parameter stack: Stack that is associated with each running rt-script by the
MHEG-SIR virtual machine and that is used to provide parameters to and retrieve results of
instructions.

3.1.55 (MHEG-SIR) predefined type: A type whose description and identifier are predefined by
this Recommendation and thus need not be declared within interchanged scripts; it may be either a
primitive type or a constructed type.

3.1.56 (MHEG-SIR) primitive type: Basic predefined type, as opposed to constructed type.

3.1.57 (MHEG-SIR) routine: Function that is declared within an interchanged script together with
the virtual machine code that defines its semantics.

3.1.58 (MHEG-SIR) rt-script execution unit: Within an MHEG-SIR script interpreter, virtual
processing unit that executes script code.

3.1.59 (MHEG-SIR) script interpreter: The part of an MHEG-3 engine, that handles and
interprets interchanged scripts.

3.1.60 (MHEG-SIR) service: External function that is declared within an interchanged script and
whose implementation is made accessible to an rt-script by the run-time environment on the
execution platform.

3.1.61 (MHEG-SIR) variable: Within the MHEG-SIR virtual machine, named, typed memory unit
whose value may be changed at any time when its scope is active and whose most recent value may
be read.

3.1.62 (MHEG-SIR) virtual machine: Abstract description of the memory units and instruction
execution engine of an MHEG-SIR script interpreter.

3.1.63 multimedia (adj.): That handles several types of representation media.

3.1.64 multimedia and hypermedia application: Application that features presentation of
multimedia information to the user and interactive navigation across this information by the user.

3.1.65 multimedia application: Application that features presentation of multimedia information
to the user.

3.1.66 platform mapping specification: Specification of how MHEG-3 engine implementations
shall map IDL specifications to run-time environment components on one type of platform.

3.1.67 queue: Collection of elements that are inserted and removed in First-In First-Out (FIFO)
order.

3.1.68 rt-script: Run-time instance (or copy) of an mh-script, created by an MHEG engine.

3.1.69 scope: Context of reference for a variable; if it is global, the variable may be referenced by
any script instruction; if it is local, the variable may only be referenced in the local execution context.

6 Recommendation T.173 (07/97)

3.1.70 scripting language: Programming language intended for easy and rapid design of
applications by non-professional programmers.

3.1.71 script interchange representation (SIR): Coded representation used by an application to
interchange scripts for the purpose of implementing dynamic behaviour.

3.1.72 stack: Collection of elements that are inserted (pushed) and removed (popped) in Last-In
First-Out (LIFO) order.

3.2 Abbreviations

This Recommendation uses the following abreviations:

API Application Programming Interface

ASN.1 Abstract Syntax Notation One

CORBA Common Object Request Broker Architecture

CS Call Stack

CT Constant Table

DER Distinguished Encoding Rules

DID Data IDentifier

DT Data Table

EBNF Extended Backus-Naur Form

ER Error Register

ETR ETSI Technical Report

FID Function IDentifier

FIFO First-In First-Out

FP Frame Pointer

FR Function Register

GT Global variable definition Table

HT Handler definition Table

IDL Interface Definition Language

IEC International Electrotechnical Commission

IP Instruction Pointer

IR Instruction Register

ISO International Organization For Standardization

ITU-T International Telecommunication Union – Telecommunication Standardization
Sector

JTC Joint Technical Committee

LIFO Last-In First-Out

LT Local variable Table

MHEG Multimedia and Hypermedia information coding Experts Group

 Recommendation T.173 (07/97) 7

MID Message IDentifier

MPEG/DSM-CC Moving Picture Experts Group – Digital Storage Media Command and Control

MQ Message Queue

PID Package IDentifier

PS Parameter Stack

PT Package definition Table

QP Queue Pointer

rt Run-time

RT Routine definition Table

SIR Script Interchange Representation

SP Stack Pointer

ST Service definition Table

TID Type IDentifier

TLV Type-Length-Value

TT Type definition Table

VT Variable Table

XT eXception definition Table

4 General

ITU-T T.170-Series (and ISO/IEC 13522) specifies the coded representation of
multimedia/hypermedia information objects (MHEG objects) for interchange as final form units
within or across services and applications, by any means of interchange including local area
networks, wide area telecommunication or broadcast networks, storage media, etc.

MHEG objects are usually produced by computer tools taking as a source form multimedia
applications designed using multimedia scripting languages. In this context, one of the MHEG object
classes, the script class, is intended to complement the other MHEG classes in expressing the
functionality commonly supported by scripting languages. Script objects express more powerful
control mechanisms and describe more complex relationships among MHEG objects than can be
expressed by MHEG action and link objects alone. Furthermore, script objects express access and
interaction with external services provided by the run-time environment.

Other Recommendations of the T.170-Series define the coded representation for script objects in an
open manner so that script objects may encapsulate either standardized or proprietary script code.
Script objects encapsulate scripts that may be encoded in any encoding format as registered
according to ISO/IEC 13522-4 [6].

5 Conformance

This Recommendation defines conformance requirements

– on information objects, i.e. MHEG script objects;

– on implementations, i.e. MHEG engine implementations.

8 Recommendation T.173 (07/97)

5.1 Information object conformance

A conforming MHEG-3 script object shall meet all of the following criteria:

1) its coded representation shall conform to the provisions of the ITU-T T.170-Series (and of
the parts of ISO/IEC 13522);

2) its coded representation shall encapsulate a conforming MHEG-3 interchanged script.

The information object conformance is evaluated on the information objects that are interchanged in
the purpose of their execution on a terminal.

5.1.1 Profiles

This Recommendation defines no profiles.

NOTE 1 – However, MHEG-3 profiles may be defined by other standards or by other parts of
ISO/IEC 13522. In accordance with the profile definition framework, standardized MHEG-3 profiles should
be at least as constraining; information objects claiming conformance to such profiles should at least conform
to this Recommendation.

An MHEG-3 profile should define all of the following:

– a profile of the MHEG-SIR virtual machine defined by this Recommendation;

– a profile of IDL, together with its mapping to MHEG-SIR, for the expression of interface between
scripts and the external environment;

– an API for the manipulation of MHEG objects defined by ITU-T T.170-Series (and of the parts of
ISO/IEC 13522), together with a mapping of this interface to MHEG-SIR.

NOTE 2 – According to ISO Standards, MHEG-3 profiles should ensure upward compatibility of the ASN.1
encoding, so that interchanged scripts conforming to an MHEG-3 profile also conform to this
Recommendation.

5.1.2 Encoding

A conforming MHEG-3 interchanged script shall be encoded according to the encoding rules defined
by Annex B.

5.1.3 Syntax

A conforming MHEG-3 interchanged script shall conform to the ASN.1 syntax defined by Annex A.

5.1.4 Semantics

A conforming MHEG-3 interchanged script shall only include semantically valid declarations and
instruction sequences as defined by clauses 12 and 13.

5.2 Implementation conformance

An implementation of this Recommendation is an MHEG-3 engine.

A conforming MHEG-3 engine shall support the interpretation of conforming MHEG-3 script
objects.

This Recommendation defines the semantics of MHEG-3 interchanged scripts. This implies
conformance requirements not on information objects, but on the behaviour of MHEG-3 engines.

NOTE 1 – Although a conforming script might not realize the semantics implied by its designer, the way
conforming engines behave in interpreting this script is predictable.

NOTE 2 – This Recommendation does not consider conformance for a system, an engine or a process as far
as it is not related to the interpretation of interchanged scripts.

 Recommendation T.173 (07/97) 9

5.2.1 Conformance requirements

A conforming MHEG-3 engine shall meet all of the following criteria:

1) it shall parse and interpret conforming MHEG-3 interchanged scripts according to the virtual
machine behaviour defined in this Recommendation (see clause 9);

2) it shall support communication with the run-time environment and with MHEG objects
according to the IDL mapping behaviour defined in this Recommendation (see clauses 10,
11 and 14);

3) it shall provide the MHEG-3 API defined in this Recommendation (see clause 15 and
Annex F);

4) for the purpose of manipulation of MHEG objects by interchanged scripts, it shall support an
MHEG API and its mapping according to the framework defined in this Recommendation
(see Annex E);

5) for the purpose of communication with the run-time environment, it shall support a platform
mapping specification according to the framework defined in this Recommendation (see
Annex D);

6) it may provide additional functions or facilities not required by this Recommendation or by
the platform mapping specification. Each such non-standard extension shall be identified as
such in the system documentation.

5.2.2 Conformance documentation

A conformance document with the following information shall be available for an implementation
claiming conformance to this Recommendation. The conformance document shall meet all of the
following criteria:

1) it shall list all the mandatory features required by this Recommendation, with reference to
the appropriate clauses and subclauses;

2) it shall either include the platform mapping specification to which the implementation
conforms or reference a registered platform mapping specification in an unambiguous way;

3) it shall contain a statement that indicates the full names, numbers, and dates of the standards
that apply;

4) it shall state which of the optional features defined in this Recommendation and in the
platform mapping specification are supported by the implementation;

5) it shall describe the behaviour of the implementation for all implementation-defined features
defined in this Recommendation and in the platform mapping specification. This
requirement shall be met by listing these features and by providing either a specific reference
to the system documentation or full syntax and semantics of these features. The conformance
document may specify the behaviour of the implementation for those features where this
Recommendation or the platform mapping specification states that implementations may
vary or where features are identified as undefined or unspecified.

No specifications other than those specified by this Recommendation and the platform mapping
specification shall be present in the conformance document.

5.3 Application conformance

An application of this Recommendation (called MHEG-3 application) is an MHEG application that
interchanges scripts within itself and/or with other applications as the "script data" component of
MHEG script objects according to the encoded representation specified by this Recommendation.

10 Recommendation T.173 (07/97)

5.4 Test Methods

Any measurement of conformance to this Recommendation shall be performed using test methods
that conform to ITU-T X.290-Series (and ISO/IEC 9646) [3].

6 Overview

This Recommendation extends the provisions of other Recommendations of ITU-T T.170-Series
(and other parts of ISO/IEC 13522) so that MHEG objects and applications support functionality of
multimedia scripting languages in a standard way. Considering the functionality supported by other
Recommendations of ITU-T T.170-Series (and other parts of ISO/IEC 13522), these extensions are
divided in two main topics:

– data processing operations (see 6.2);

– access to external data and functions (see 6.3).

For the support of both topics, this Recommendation specifies:

– complete and detailed provisions for the encoding of interchanged scripts;

– the required behaviour of a script interpreter.

6.1 Description methodology

For the description of these provisions, this Recommendation follows a methodology that considers
four description levels:

– level a): informal text description;

– level b): precise description of semantics;

– level c): formal description of syntax;

– level d): formal description of encoding.

These levels are used in the following clauses as follows:

– level a): clauses 8 to 11;

– level b): clauses 12 to 15;

– level c): Annexes A, E, F, G;

– level d): Annexes B, C.

NOTE – Informative Appendices I and II also use level c) description.

6.2 Data processing operations

To deal with data processing operations, MHEG-SIR defines the structure of interchanged scripts
that consist of data declarations and function declarations, the latter encapsulating sequences of
instructions.

Clause 8 defines the elements of the MHEG-SIR virtual machine code.

Clause 9 specifies the MHEG-SIR virtual machine, i.e. a model of how MHEG-SIR script
interpreters shall perform interpretation of MHEG-SIR script code. This virtual machine is used
afterwards to describe the semantics of MHEG-SIR instructions. Clause 9 states requirements on the
functionality that script interpreters shall provide; however, it does not specify how to implement this
functionality.

Clause 12 defines the declarations of MHEG-SIR interchanged scripts. It specifies their structure, i.e.
the way they shall be represented, and their semantics, i.e. the way they shall be interpreted by

 Recommendation T.173 (07/97) 11

MHEG-SIR script interpreters. The semantics are specified using the virtual machine formalism
introduced in clause 9.

Clause 13 defines the MHEG-SIR instructions. It specifies their structure, i.e. the way they shall be
represented, and their semantics, i.e. the way they shall be interpreted by MHEG-SIR script
interpreters. These semantics are specified using the virtual machine formalism introduced in
clause 9.

Annex A formally defines the precise syntax of interchanged scripts using the ASN.1 notation.

Annex B formally defines the encoding of interchanged scripts.

Annex C lists the predefined elements of MHEG-SIR and defines their encoding.

Annex G formally defines the instantiation of this Recommendation to ITU-T Recs. T.171 (and
ISO/IEC 13522-1) and T.172 (and ISO/IEC 13522-5), i.e. the MHEG objects in these parts to which
MHEG-SIR applies, and the way it applies to them.

6.3 Access to external data and functions

To deal with access to external data and functions, MHEG-SIR uses IDL to describe interfaces in an
abstract, language-independent way and thus unify the way external data and functions are viewed by
script interpreters.

In the MHEG-SIR context, IDL is used to separate clearly the way (MHEG-SIR specific) the use of
external data or functions is expressed by interchanged scripts from the way (at least
platform-dependent, and maybe application-dependent) these data or functions are provided by the
external environment. MHEG-SIR thus defines how the interfaces are used, while the application is
responsible for defining how they are provided.

To allow script interpreters to manipulate MHEG entities and exchange information with them,
MHEG-3 engines provide script interpreters with access to the MHEG entities (data) and invocation
of the MHEG actions (functions) through an MHEG API defined using IDL. The MHEG types and
actions are predefined in MHEG-SIR to achieve compact coding and efficient interpretation of
MHEG object manipulation.

To allow script interpreters to co-operate with the run-time environment, the run-time environment
provides access to its data and functions according to a platform mapping specification of IDL. This
specification describes how IDL operations need to be provided on a particular platform so that
MHEG-3 engines are able to use them as external services.

NOTE – Packages may be provided in the form of libraries, device drivers, operating system components,
processes, telecommunication services, etc.

Clause 7 describes assumptions on the structure of MHEG-3 engines and their relationships with
their environment.

Clause 10 describes the general mechanisms used to access to external data and functions provided
by the run-time environment.

Clause 11 describes the general mechanisms used to manipulate MHEG objects.

Clause 14 specifies the IDL mapping for MHEG-SIR, i.e. the mechanisms used by the MHEG-SIR
representation to describe IDL packages and invoke IDL operations.

Clause 15 specifies the structure and semantics of the MHEG-3 API, i.e. the set of operations that
may be used to manipulate scripts.

Annex D specifies the IDL platform mapping specification form, i.e. the template for the document
that need be filled in and registered for each platform type, to specify the platform-specific

12 Recommendation T.173 (07/97)

provisions that services provided by the run-time environment on this platform shall fulfil, and to
which MHEG-3 engines shall conform so that they are able to co-operate with services provided by
the run-time environment on this platform and therefore to interpret scripts that call upon such
services.

Annex E specifies the framework that shall be used to define an MHEG API using IDL and the
procedure that shall be followed to map it to MHEG-SIR.

Annex F defines the precise syntax of the MHEG-3 API using the IDL notation.

7 MHEG/MHEG-3 relationship

This clause introduces general assumptions about MHEG-3 engines, which are used afterwards to
describe the performance of a script interpreter and its relationships with its external environment.

MHEG-3 engines shall provide the functionality described hereafter in some way, in order to behave
as expected as far as interpretation of interchanged scripts is concerned.

However, there is no requirement on MHEG-3 engines to implement this functionality as described.

NOTE – For instance, the MHEG-3 engine functional components described thereafter need not correspond
to actual (e.g. software) components of MHEG-3 engine implementations.

7.1 MHEG entities

MHEG-3 engines handle MHEG entities: MHEG objects, mh-objects, rt-objects, interchanged
MHEG objects, sockets, channels.

NOTE – MHEG entities are described in more detail in Appendix III.

7.2 Functional entities

MHEG-3 engines may be viewed as consisting of the following functional components:

– MHEG object parser: parses interchanged MHEG objects and transforms them into
mh-objects under control of the mh-object manager;

– mh-object manager: controls the life cycle and allows access to all mh-objects;

– rt-object manager: controls the life cycle and allows access to all rt-objects;

– reference resolver: transforms an MHEG reference into a usable identifier or handle;

– link handler: watches active links and triggers the corresponding actions when their
conditions become true;

– action interpreter: interprets MHEG elementary actions;

– script interpreter: parses MHEG-SIR interchanged scripts and interprets rt-scripts; provides
access to the run-time environment;

– presentation agent: interface with the presentation environment; orders presentation of
rt-contents; receives user selections and modifications;

– access agent: interface with the communication environment; provides access to
interchanged MHEG objects and to content data.

7.3 MHEG-SIR script interpreter

Within an MHEG-3 engine, the script interpreter shall be responsible for the following:

– parsing interchanged scripts (provided by the MHEG object parser);

 Recommendation T.173 (07/97) 13

– preparing the appropriate data structures for further execution of rt-scripts;

– executing script code;

– realizing the default effect of MHEG actions targeted at mh-scripts or rt-scripts;

– invoking the appropriate handler (in the script program) for these MHEG actions;

– forwarding MHEG elementary actions invoked by the script program to the action
interpreter;

– managing interchange with the run-time environment (locating and loading packages,
invoking services, receiving messages, passing data) using the appropriate platform-specific
communication mechanisms.

8 Elements of MHEG-SIR

This clause describes the main elements of MHEG-SIR and how interchanged scripts shall use them.

The entities that are declared and manipulated by MHEG-SIR interchanged scripts are:

– data types;

– data;

– functions;

– messages.

These concepts are defined in the following subclauses; however, the detailed structure of their
declarations is specified in clause 12.

8.1 Data types

Data types are used to describe the structure of:

– the script's own data (constants and variables);

– the parameters and return values of the script's routines;

– the parameters and return values of external functions;

– the parameters of messages handled by scripts.

As scripts need adapt themselves to the signature of functions that may be provided by the external
environment, MHEG-SIR defines a wide range of types corresponding to the IDL data types.

The encoding of data type definitions in an interchanged script is defined by Annex A. This
Recommendation imposes no requirement on the way MHEG-3 engines represent these data types.

The MHEG-SIR uses two kinds of data types:

– predefined types (see 8.1.1);

– declared types (see 8.1.2).

All types may be referenced in a unique, unambiguous way by their type identifier.

8.1.1 Predefined types

Predefined types may be either primitive or constructed types.

Predefined types have predefined type identifiers and therefore need not be declared by interchanged
scripts. The list of predefined types and their identifiers is given in Annex C.

14 Recommendation T.173 (07/97)

8.1.1.1 Primitive types

The primitive types correspond to the IDL primitive types. This is the list of MHEG-SIR primitive
types:

– void;

– octet;

– short;

– long;

– unsigned short;

– unsigned long;

– float;

– double;

– boolean;

– character;

– data identifier;

– object reference.

For easier reference, primitive types have individual letter codes as indicated by Table 1:

Table 1/T.173 – Letter codes of primitive types

Type Letter code

octet O

short S

long L

unsigned short W (as Word)

unsigned long U

float F

double D

boolean B

character C

data identifier I (as Identifier)

object reference R (as Reference)

8.1.1.1.1 void type

The void type shall only be used to express the type of return value of a function. Functions whose
type of return value is void do not return any data. An interchanged script shall have no constants or
variables of void type. The void type shall not be used in the definition of constructed types.

8.1.1.1.2 octet type

Data whose type is octet shall take a numeric value within the range [0 .. 255]. Octet variables without
explicit initial value shall be initialized to 0.

 Recommendation T.173 (07/97) 15

8.1.1.1.3 short type

Data whose type is short shall take a signed integer value within the range [–32 768 .. 32 767]. Short
variables without explicit initial value shall be initialized to 0.

8.1.1.1.4 long type

Data whose type is long shall take a signed integer value within the range
[−2147483648 .. 2147483647]. Long variables without explicit initial value shall be initialized to 0.

8.1.1.1.5 unsigned short type

Data whose type is unsigned short shall take an unsigned integer value within the range [0 .. 65535].
Unsigned short variables without explicit initial value shall be initialized to 0.

8.1.1.1.6 unsigned long type

Data whose type is unsigned long shall take an unsigned integer value within the range
[0 .. 4294967295]. Unsigned long variables without explicit initial value shall be initialized to 0.

8.1.1.1.7 float type

Data whose type is float shall take a single-precision floating point value within the range specified
by IEEE 754 [9]. Float variables without explicit initial value shall be initialized to 0.

8.1.1.1.8 double type

Data whose type is double shall take a double-precision floating point value within the range specified
by IEEE 754 [9]. Double variables without explicit initial value shall be initialized to 0.

8.1.1.1.9 boolean type

Data whose type is boolean shall have either "true" or "false" as their value. Boolean variables without
explicit initial value shall be initialized to "false".

8.1.1.1.10 character type

Data whose type is character shall take a character value within the BMPString character set as defined
by the Basic Multilingual Plane of ISO/IEC 10646-1 [4]. Character variables without explicit initial
value shall have an undefined initial value.

Conforming MHEG-3 engines may state that they only adopt a restricted set of characters, e.g. based
on the standard collections of Annex A of ISO/IEC 10646-1 [4]. In this case, they shall document
these adopted subsets and the level of implementation in the conformance document.

8.1.1.1.11 data identifier type

Data whose type is data identifier shall take an unsigned integer value within the range [0 .. 65535].
This value is used to identify a constant, global variable, dynamic variable, local variable or routine
parameter of the script, as defined by 8.6.2 below. There shall be no constants of data identifier type.
Data identifier variables without explicit initial value shall have an undefined initial value.

8.1.1.1.12 object reference type

Data whose type is object reference shall take as value a handle that references an IDL object to which
services or predefined functions apply. Encoding of object references is defined by the platform
mapping specification. There shall be no constants of object reference type. The object reference type
shall not be used in the definition of constructed types. Object reference variables without explicit
initial value shall have an undefined initial value.

16 Recommendation T.173 (07/97)

Object references are used as the implicit first parameter of all external calls to specify the object to
which the call applies. Object reference values shall be provided by the external environment, as an
output parameter or return value of an external call (XCALL) instruction. The get object reference
(GETOR) instruction is used to get a first object reference on the root object of a given package. The
null object reference is used to refer to the original object of the MHEG-3 API (instance of
ScriptInterpreter).

8.1.1.2 Predefined constructed types

To allow scripts to express manipulation of MHEG data more easily, the MHEG API data types are
predefined.

Although they are not defined within interchanged scripts, predefined constructed types, like
declared constructed types, can be expressed using type constructors and type identifiers, as
described in 8.1.2. Only predefined type identifiers shall be used to express the structure of
predefined constructed types.

8.1.2 Declared constructed types

Constructed types shall be defined using one constructor and one or several type identifiers
identifying either a declared or predefined type.

The constructor of a constructed type shall be one of the following:

– sequence (see 8.1.2.1);

– string (see 8.1.2.2);

– array (see 8.1.2.3);

– structure (see 8.1.2.4);

– union (see 8.1.2.5).

Declared types are defined within interchanged scripts.

MHEG-SIR types shall not be redefined in an interchanged script. The structure of a declared type
shall not match that of a predefined type or that of another declared type.

There shall not be more than 16 384 types declared in an interchanged script.

8.1.2.1 sequence types

Sequence types shall be defined by:

– their size (optional);

– their element type.

The size shall be an unsigned short value. It represents the maximum number of elements of the
sequence. If the type definition specifies no size, the number of elements may be any size up to the
maximum. Sequence types with an explicit size are called bounded sequence types.

The maximum size of any sequence type is 65 535 elements.

The element type may be any primitive, constructed or predefined type except void and object
reference. The element type shall be referenced using its type identifier. Sequence type definitions shall
not lead to infinite recursion.

NOTE – As a consequence, the type identifier of the sequence may be nested within the type definition only
below a union constructor.

Data whose type is a defined sequence type shall take as their value an ordered list of zero or more
values of the element type.

 Recommendation T.173 (07/97) 17

Variables of a sequence type without explicit initial value shall be initialized to a null list (sequence of
zero element).

8.1.2.2 string types

String types are semantically equivalent to sequence types whose element type is character.

NOTE – To optimize their handling, string values may be implemented in a different way than sequences of
character would. Therefore, strings and sequences of character remain distinct, although semantically
equivalent, types.

String types shall be defined by their size (optional).

The size shall be an unsigned short value. It represents the maximum number of elements of the
string. If the type definition specifies no size, the number of elements may be any size up to the
maximum. String types with an explicit size are called bounded string types.

The maximum size of any string type is 65 535 characters.

Data whose type is a defined string type shall take as their value a string of zero or more characters.

Variables of a string type without explicit initial value shall be initialized to a null string (sequence of
zero character).

8.1.2.3 array types

Array types shall be defined by:

– their size;

– their element type.

The size shall be an unsigned short value. It represents the exact number of elements in the array.

The element type may be any primitive, constructed or predefined type except void and object
reference. The element type shall be referenced using its type identifier. Array type definitions shall
not lead to infinite recursion.

NOTE – As a consequence, the type identifier of the array may be nested within the type definition only
below a union constructor.

Data whose type is a defined array type shall take as their value an ordered list of values of the
element type, the length of the list being specified by the size of the array.

Variables of an array type without explicit initial value shall be initialized to a list of elements whose
initial value is determined by the element type.

8.1.2.4 structure types

Structure types shall be defined by an ordered list of 1 to 256 element types.

The element types may be any primitive, constructed or predefined type except void and object
reference. The element types shall be referenced using their type identifiers. Structure type definitions
shall not lead to infinite recursion.

NOTE – As a consequence, the type identifier of the structure may be nested within the type definition only
below a union constructor.

Data whose type is a defined structure type shall take as their value an ordered list of values of the
element type that corresponds to their rank in the type definition.

Variables of a structure type without explicit initial value shall be initialized to a list of elements
whose initial value is determined by their element type.

18 Recommendation T.173 (07/97)

8.1.2.5 union types

Union types shall be defined by an ordered list of element types.

There shall not be more than 256 choices (element types) in a union type.

The element types may be any primitive, constructed or predefined type except void and object
reference. The element types shall be referenced using their type identifiers.

Data whose type is a defined union type shall take as their value:

– an integer which represents the index (starting at 0) in the choice list;

– a value of the element type whose rank in the type definition is the above index.

Variables of a union type without explicit initial value shall have an undefined initial value.

8.2 Data

The MHEG-SIR defines three kinds of data:

– immediate values (see 8.2.1);

– constants (see 8.2.2);

– variables (see 8.2.3).

All data used by an interchanged script are of a definite data type, either predefined or declared.

Two data values shall be equal if and only if:

– they are of the same type, i.e. they have the same type identifier;

– if they are of a primitive type then they are identical;

– if they are of a structure, sequence or array type then every element of one list is equal to the
element of the same rank in the other list;

– if they are of a union type then their tags are identical and their values are equal to each other.

As a consequence,

– values of a string type shall not be compared with values of a sequence of character type;

– values of a bounded sequence type shall not be compared with values of another bounded
sequence type or with values of an unbounded sequence type, since they have different type
identifiers;

– values of a bounded string type shall not be compared with values of another bounded string
type or with values of an unbounded string type, since they have different type identifiers.

All variables and constants are referenced in a unique, unambiguous way by their data identifier.

8.2.1 Immediate values

Immediate values are data that are not declared within the interchanged script, and may therefore
only be used "immediately", i.e. as they are encountered. An immediate value may be encountered in
an interchanged script:

– as a constant value;

– as the initial value of a variable;

– as the operand of a push immediate (PUSHI) instruction.

Besides, immediate values are used in the course of the script execution through the parameter stack,
as parameters for instructions or functions.

Unless the context restricts it otherwise, immediate values may be of any type except void.

 Recommendation T.173 (07/97) 19

The encoding of data values in an interchanged script is defined by Annex A. This Recommendation
imposes no requirement on the way MHEG-3 engines represent data values of a particular type.

8.2.2 Constants

Constants shall be declared within the interchanged script and defined by:

– a data type;

– a value of this data type.

Constants may be of any type except:

– object reference;

– data identifier;

– void.

Constants have a global scope and may be referenced using their data identifier throughout the
interchanged script.

There shall not be more than 4096 constants declared in an interchanged script.

8.2.3 Variables

Variables shall be declared within the interchanged script and defined by:

– a data type;

– optionally, a value of this data type, to be taken as the initial value for this constant.

Variables may be of any type except void.

Variables are referenced using their data identifier. A reference to a variable may be used with either
of the following semantics:

– "right-hand" semantics: the same as if the value of this variable was provided instead;

– "left-hand" semantics: states that this variable has to be assigned a data value.

In the latter case, the value to be assigned to the variable may be an immediate value (including a
computed value), the value of a constant or the value of a variable (including the future value of a
function's output parameter).

The MHEG-SIR defines three kinds of variables:

– global variables (see 8.2.3.1);

– local variables (see 8.2.3.2);

– dynamic variables (see 8.2.3.3).

8.2.3.1 Global variables

Global variables have a global scope which covers the entire interchanged script. They may be
referenced using their data identifier from any routine or variable. They may be assigned a new value
at any time during execution of the rt-script.

There shall not be more than 28 672 global variables declared in an interchanged script.

8.2.3.2 Local variables

Local variables have a lexical scope which is restricted to the execution of the code of the routine to
which they belong. They may be referenced using their data identifier only within the code of this
routine.

There are two kinds of local variables:

20 Recommendation T.173 (07/97)

– local variables that are declared within the routine declaration as part of the local variable
declaration;

– actual parameters of the routine, whether passed by value or by reference, which are declared
within the routine declaration as part of the routine signature.

There shall not be more than 256 local variables declared in each routine of an interchanged script.

8.2.3.3 Dynamic variables

Dynamic variables have a dynamic scope which extends from the time when they are created using
an allocate (ALLOC) instruction up to the time when they are released using a free (FREE)
instruction. At creation, they are given a data identifier by the script interpreter. They may be
referenced using their data identifier at any time during the execution of the script. However, as the
data identifier of a dynamic variable is only known at run-time, it can only be used as a parameter
stack or a variable value, not as the operand of an instruction.

There shall not be more than 32 512 dynamic variables used at a given time during execution of an
rt-script.

8.3 Functions

The MHEG-SIR defines three kinds of functions:

– routines (see 8.3.1);

– services (see 8.3.2);

– predefined functions (see 8.3.3).

All functions shall have a signature (or prototype) which consists of:

– a type of return value;

– an ordered list of formal parameters defined by their type and passing mode.

All functions are referenced in a unique, unambiguous way using their function identifier.

Functions shall be either synchronous or asynchronous. When a synchronous function is called, the
caller waits for the completion of the function execution and may therefore retrieve its result. When
an asynchronous function is called, the caller only waits for an acknowledgement of reception of the
request; it then resumes execution without waiting for the completion of the function.

As a consequence, asynchronous functions shall not have output parameters or a return value.
Routines are always synchronous.

8.3.1 Routines

Routines are internal functions of interchanged scripts.

Routines shall be declared within the interchanged script. Routines shall consist of:

– a signature;

– local variables;

– program code.

There shall not be more than 4096 routines declared in an interchanged script.

Execution of a routine may be triggered:

– by an explicit call (CALL) instruction, with the routine's function identifier being the operand
of the instruction;

 Recommendation T.173 (07/97) 21

– upon reception of an exception during an external call (XCALL) instruction, where the
message identifier of the received exception is mapped to the routine's function identifier by
the handler definition table;

– upon examining the queue of received messages, either when no routine is executing or upon
encountering a yield (YIELD) instruction, where the message identifier of the received
message is mapped to the routine's function identifier by the handler definition table or is an
MHEG-3 API run operation targeted at the routine.

Parameters may be passed to routines using either of the following modes:

– by value: a value of the parameter type is passed to the routine;

– by reference: a data identifier referencing a global variable, dynamic variable or constant
whose type is the same as the parameter type is passed to the routine.

In both cases, the value of the passed parameter becomes the value of the local variable whose index
corresponds to the parameter's index. The local variable corresponding to a parameter passed by
reference shall be of the data identifier type.

Data identifiers to local variables shall not be passed by reference.

8.3.2 Services

Services are external functions provided by the run-time environment that an interchanged script may
invoke.

Services shall be declared within the interchanged script, as part of a package declaration, by:

– their signature;

– their IDL global operation name.

There shall not be more than 256 services declared in each package of an interchanged script.

There shall not be more than 192 packages declared in an interchanged script.

A service may be called by an external call (XCALL) instruction.

Parameters may be passed to services using one of the following modes:

– in: a data identifier referencing a variable or constant whose type is the same as the
parameter type is passed to the service;

– inout: a data identifier referencing a variable whose type is the same as the parameter type is
passed to the service; upon returning, the variable is updated with its new value;

– out: same as inout, however the value of the variable is not used by the service.

8.3.3 Predefined functions

Predefined functions correspond to the operations of the MHEG-3 engine's interface.

Predefined functions have predefined function identifiers and therefore shall not be declared within
an interchanged script.

As this Recommendation is not specifically linked to one of the ITU-T Recommendations of the
T.170-Series (and parts of ISO/IEC 13522), the MHEG API operations used to manipulate MHEG
objects are not explicitly defined. However, this Recommendation specifies the procedure that shall
be used to define an MHEG API and to specify the mapping of operations of this MHEG API to
predefined function identifiers. This is described in Annex E.

In addition, this Recommendation defines the MHEG-3 API, i.e. the interface that MHEG-3 engines
shall provide for the manipulation of scripts. This interface is described in clause 15 and Annex F.

22 Recommendation T.173 (07/97)

This interface may be used from within scripts and is therefore mapped to predefined function
identifiers. The list of these predefined functions and their identifiers is given in Annex C.

Predefined functions may be called and passed parameters to using the same mechanisms as with
services.

8.4 Messages

The MHEG-SIR defines two kinds of messages:

– package exceptions (see 8.4.1);

– predefined messages (see 8.4.2).

All messages shall have a signature (or prototype) which consists of an ordered list of formal
parameters (members) defined by their type.

All messages are referenced in a unique, unambiguous way by their message identifier.

8.4.1 Package exceptions

Package exceptions are sent to an rt-script by the run-time environment as a consequence of the
invocation of a service by this rt-script.

Package exceptions shall be declared within the interchanged script, as part of a package declaration,
by:

– their signature;

– their IDL global exception name.

There shall not be more than 256 exceptions declared in each package of an interchanged script.

8.4.2 Predefined messages

Predefined messages sent to an rt-script may be one of the following:

– an exception of the MHEG-3 engine interface (i.e. the MHEG API), raised by the MHEG-3
engine as a consequence of the invocation of a predefined function by the rt-script;

– the consequence of invocation of an operation of the MHEG-3 API targeted at the rt-script;

– the InstructionExecutionError exception, which is raised as the consequence of an error
occurring in the execution of an instruction of the rt-script.

Predefined messages have predefined message identifiers and therefore shall not be declared within
an interchanged script.

As this Recommendation is not specifically linked to one of the ITU-T Recommendations of the
T.170-Series (and parts of ISO/IEC 13522), the MHEG API exceptions are not explicitly defined.
However, this Recommendation specifies the procedure that shall be used to define an MHEG API
and to specify the mapping of exceptions of this MHEG API to predefined message identifiers. This
is described in Annex E.

Annex C specifies how the InstructionExecutionError and the messages resulting from MHEG-3 API
operations shall be mapped to predefined message identifiers.

8.5 Instructions

The program code part of routines consists of a sequence of instructions. Unlike the rest of an
interchanged script, which is handled upon preparation of the script, instructions need only be dealt
with after creation of an rt-script, when the routine to which they belong is activated.

 Recommendation T.173 (07/97) 23

An instruction shall consist of one op-code (operation code) followed by zero or more operands. The
number, type and encoding of operands is fully determined by the op-code.

As a rule, operands complete the instruction, whereas parameter values are taken from the parameter
stack.

The performance of the instruction execution unit is described in clause 9, whereas the precise
semantics of each instruction are described in clause 13.

8.6 Identifiers

Identifiers are used to reference MHEG-SIR entities (i.e. types, data, functions and messages) in an
unambiguous way, throughout interchanged scripts.

8.6.1 Type identifiers

Type Identifiers (TIDs) shall be encoded on two bytes as follows:

– primitive types and predefined types shall have predefined TIDs as defined by Annex C;

– declared types whose index (starting at 0) in the type declaration table is X shall have
(X + 4000h) as TID.

Hence:

– TIDs between 0 and 3FFFh shall reference predefined types;

– TIDs between 4000h and 7FFFh shall reference declared types.

8.6.2 Data identifiers

Data Identifiers (DIDs) shall be encoded on two bytes as follows:

– constants whose index (starting at 0) in the constant declaration table is X shall have X as
DID;

– global variables whose index (starting at 0) in the global variable declaration table is X shall
have (X + 1000h) as DID;

– local variables whose index (starting at 0) in the local variable declaration table is X shall
have (X + 8000h) as DID;

– dynamic variables shall have DIDs starting at 8100h. The procedure for allocating data
identifiers to dynamic variables is not specified; MHEG-3 engines may therefore have
different allocation schemes.

Hence:

– DIDs between 0 and 0FFFh shall reference constants;

– DIDs between 1000h and 7FFFh shall reference global variables;

– DIDs between 8000h and 80FFh shall reference local variables;

– DIDs between 8100h and FFFFh shall reference dynamic variables.

8.6.3 Function identifiers

Function Identifiers (FIDs) shall be encoded on two bytes as follows:

– routines whose index (starting at 0) in the routine declaration table is X shall have X as FID;

– predefined functions whose index (starting at 0) in the predefined function table is X shall
have (X + 1000h) as FID;

– services whose index (starting at 0) in a package declaration is X and whose package index
in the package declaration table is Y (starting at 0) shall have (((Y + 64) << 8) + X) as FID.

24 Recommendation T.173 (07/97)

Hence:

– FIDs between 0 and 0FFFh shall reference routines;

– FIDs between 1000h and 3FFFh shall reference predefined functions;

– FIDs between 4000h and FFFFh shall reference services.

8.6.4 Message identifiers

Message Identifiers (MIDs) shall be encoded on two bytes as follows:

– predefined messages whose index (starting at 0) in the predefined message table is X shall
have X as MID;

– exceptions whose index (starting at 0) in a package declaration table is X and whose package
index (starting at 0) in the package declaration table is Y shall have (((Y + 64) << 8) + X) as
MID.

Hence:

– MIDs between 0 and 3FFFh shall reference predefined messages;

– MIDs between 4000h and FFFFh shall reference package exceptions.

9 The MHEG-SIR virtual machine

This clause presents the MHEG-SIR virtual machine, i.e. the execution model for the MHEG-SIR
code.

9.1 Structure of the MHEG-SIR virtual machine

The MHEG-SIR virtual machine is a set of logical, abstract components. The description of the
MHEG-SIR virtual machine is intended for clarification of the operational semantics of the
MHEG-SIR code.

An MHEG-3 engine shall have the same interpretation behaviour for MHEG-SIR code as the
described virtual machine. It shall interpret MHEG-SIR declarations and instructions so as to
produce similar external effects in all respects.

However, this implies no requirements on the technology or organization that may actually be used
to implement an MHEG-3 engine. An actual script interpreter need not be designed as described by
the virtual machine, as long as it provides equivalent functionality.

The MHEG-SIR virtual machine consists of:

– memory areas (see 9.3);

– processing units (see 9.5).

Some memory areas are associated with an mh-script and so shared by all the rt-scripts created from
it. Other memory areas are associated with each rt-script.

Processing units only apply to one rt-script. However, an MHEG-3 engine may run several rt-scripts
at the same time. In this case, it shall maintain a separate run-time context for each active rt-script.

NOTE – In other terms, the MHEG-SIR virtual machine is single-threaded. Multi-threaded applications can
be achieved by associating each thread with a separate rt-script.

 Recommendation T.173 (07/97) 25

9.2 Structures and notations

9.2.1 Table

A table T consists of an array of homogeneous entries T[i] that may be accessed via their index i.
These entries have the same structure, but not necessarily the same size. Entries consist of one or
several fields fld. Some entries may be void. Indices are MHEG-SIR identifiers, i.e. consecutive
numeric values taken in a given range, not necessarily starting at 0 for a given table. The underlying
access mechanism (sequential indexing, direct access, hashcoding, etc.) is not specified. The notation
uses the following primitives to express manipulation of a table T:

– T[i] to access entry i;

– T[i] = VAL to assign value VAL to entry i;

– T[i].fld to access field fld of entry i;

– T[i].fld = VAL to assign value VAL to field fld of entry i.

9.2.2 Stack

A stack consists of an array of homogeneous elements. Elements are inserted on the top of the stack.
Only the top element (last inserted) may be accessed at any time. When it is removed from the stack,
it is lost, and the next element becomes the top of the stack. The notation uses the following
primitives to express manipulation of the call stack CS:

– CS.push(F): inserts frame F on the top of the stack, increments the frame pointer register (FP);

– CS.pop(): decrements FP, removes the top-of-stack frame, then returns it;

– CS[FP]: returns the value of the top-of-stack frame.

In the same way as for tables, the "." notation is used to access stack element fields.

9.2.3 Parameter stack

The parameter stack is a special case because it is a byte (untyped) stack used to store typed values.
The notation uses the following primitives to express manipulation of the parameter stack PS, where
tid is the type identifier of a primitive type, as indicated by Table 1:

– PS.push(VAL): inserts value VAL on the top of the stack;

– PS.pop(tid): removes the top-of-stack value, whose type identifier is tid, then returns it;

– PS[SP](tid): returns the value of the top-of-stack value, whose type identifier is tid.

9.2.4 Queue

A queue consists of an array of homogeneous elements. Elements are inserted at the end of the
queue. Only the start element (first inserted) may be accessed at any time. When it is removed from
the queue, it is lost, and the next element becomes the start of the queue. The notation uses the
following primitives to express manipulation of the message queue MQ:

– MQ.insert(M): inserts message value M at the end of the queue;

– MQ.remove(): increments the Queue Pointer (QP) register, removes the element at the start of
the queue, and returns it;

– MQ[QP]: returns the value of the element at the start of the queue.

In the same way as for tables, the "." notation is used to access queue element fields.

26 Recommendation T.173 (07/97)

9.2.5 Data representation

The representation of the structures and data is implementation-dependent. Although script
interpreters may represent each value of a data type with a minimum number of bytes, they are not
required to do so. Table 2 states this minimum number:

Table 2/T.173 – Minimum number of bytes to represent values

Type Minimum number of bytes to represent
a value of the type

octet 1

short 2

long 4

unsigned short 2

unsigned long 4

float 4

double 8

boolean 1

character 2 (1 for restricted character sets)

data identifier 2

object reference Implementation-dependent

string Character size x (string length + 1)

sequence Size of element type x sequence length (actual
number of elements) + 2

array Size of element type x array size

structure Sum of the sizes of the element types

union Size of the "biggest" element type + 1

type identifier 2

function identifier 2

message identifier 2

package identifier 1

NOTE – The notation makes no distinction between fixed-length values and variable-length values. Script
interpreters may store variable-length values on the heap. VT[i].val is used to access the value of a variable
even though it could actually be stored in the variable table as a handle to the heap.

When VAL is a value of a constructed type, access to its elements is noted as follows:

– VAL.tag: tag of a union;

– VAL.val: value of a union;

– VAL[n]: value of the nth element of a sequence, string, structure or array;

– VAL.lg: actual length of a sequence or string.

Execution semantics are expressed using a C-like syntax. Expressions within single quotes indicate
the corresponding value, e.g. "void" indicates TID value 0.

 Recommendation T.173 (07/97) 27

9.3 Memory areas

In the MHEG-SIR virtual machine, memory areas are used to hold all the necessary information used
to interpret a particular interchanged script.

Memory areas may be associated with either an mh-script (see 9.3.1) or an rt-script (see 9.3.2).

9.3.1 Mh-script memory areas

Mh-script memory areas should be completely filled at load-time, i.e. upon initialization of an
mh-script. They shall be accessible for use by all rt-scripts created from this mh-script. Mh-script
memory areas shall not be modified at run-time until the mh-script is destroyed, unless otherwise
specified (e.g. for the package definition table). Mh-script memory areas comprise:

– data areas (see 9.3.1.1);

– code areas (see 9.3.1.2).

9.3.1.1 Data areas

Data areas are used to store the definitions and values of the script's global data. Data areas comprise:

– the Type definition Table (TT) (see 9.3.1.1.1);

– the Constant Table (CT) (see 9.3.1.1.2);

– the Global variable definition Table (GT) (see 9.3.1.1.3).

9.3.1.1.1 Type definition table

The type definition table maps all the script's defined types, represented by type identifiers, to their
description:

– TT[TID].val: description of the type.

NOTE – The representation used for the type description is not specified; however, it should allow to check
easily whether a value belongs to a type.

9.3.1.1.2 Constant table

The constant table maps all the script’s constants, represented by data identifiers, to their type and
value:

– CT[DID].TID: type of the constant (expressed as a type identifier);

– CT[DID].val: value of the constant (depending on its type).

9.3.1.1.3 Global variable definition table

The global variable definition table maps all the script's global variables, represented by data
identifiers, to their type and initial value:

– GT[DID].TID: type of the global variable (expressed as a type identifier);

– GT[DID].val: initial value of the global variable (depending on its type).

9.3.1.2 Code areas

Code areas are used to store the addresses and program code of the script's functions. Code areas
comprise:

– the Routine definition Table (RT) (see 9.3.1.2.1);

– the Package definition Table (PT) (see 9.3.1.2.2);

– the Service definition Table (ST) (see 9.3.1.2.3);

– the eXception definition Table (XT) (see 9.3.1.2.4);

28 Recommendation T.173 (07/97)

– the Handler definition Table (HT) (see 9.3.1.2.5);

– the program code area, consisting of the sequence of instructions of each routine (see
9.3.1.2.6).

9.3.1.2.1 Routine definition table

The routine definition table maps all the script's routines, represented by function identifiers, to their
signature description, their local variable declaration and their program code:

a) RT[FID].TID: type of return value (expressed as a type identifier);

b) RT[FID].nbp: number of parameters;

c) RT[FID].sig: signature description, where:

1) RT[FID].sig[i].TID is the type (expressed as a type identifier) of the ith parameter;

2) RT[FID].sig[i].mod is the passing mode (value or reference) of the ith parameter;

d) RT[FID].LT: declaration of the routine's local variables (whose nbp first elements are the
actual parameters of the routine);

e) RT[FID].IP: pointer to the first instruction in the routine code.

Local variables used to hold parameters passed by reference shall have data identifier as their type,
while local variable used to hold parameters passed by value shall have the same type as in the
signature description for the corresponding parameter.

9.3.1.2.2 Package definition table

The package definition table maps all the script's defined packages, represented by Package
Identifiers (PIDs) as declared by the MHEG-SIR package declaration table, to package names and
additional information:

– PT[PID].name: name of the package;

– PT[PID].nbf: number of services in the package;

– PT[PID].nbm: number of exceptions defined by the package;

– PT[PID].sts: current status of the package (unchecked, available, ready, opened);

– PT[PID].or: initial object reference of the package.

A package is initially at unchecked status. It becomes available once the package availability
procedure has been performed successfully. It then becomes ready once the package load procedure
has been performed successfully. Finally, it is opened when there is a valid initial object reference to
the package, stored in the PT[PID].or field, for use by further service invocations.

As an exception to the rule stated in 9.3.1,

– The PT[PID].sts fields may be modified at run-time, each time the status of a package
changes.

– The PT[PID].or fields may be modified at run-time, when a package is loaded.

9.3.1.2.3 Service definition table

The service definition table maps all the script's defined external services, represented by
MHEG-SIR function identifiers, to their signature description and to their IDL global operation
name:

a) ST[FID].TID: type of return value (expressed as a type identifier);

b) ST[FID].syn: calling mode (synchronous, asynchronous);

c) ST[FID].nbp: number of parameters;

 Recommendation T.173 (07/97) 29

d) ST[FID].sig: signature description, where:

1) ST[FID].sig[i].TID is the type (expressed as a type identifier) of the ith parameter;

2) ST[FID].sig[i].mod is the passing mode (in, inout or out) of the ith parameter;

e) ST[FID].name: the IDL global name of the operation which the service invokes.

The IDL platform-specific mapping specification shall be used to map ST[MID].name to a platform-
specific name.

9.3.1.2.4 Exception definition table

The exception definition table maps all the interchanged script’s defined messages, represented by
message identifiers, to their signature description and their IDL global exception name:

– XT[MID].name: the IDL global name of the exception which causes the message;

– XT[MID].nbm: number of members;

– XT[MID].sig: signature description, where XT[MID].sig[i].TID is the type (expressed as a type
identifier) of the ith member.

The IDL platform-specific mapping specification is used to map XT[MID].name to a platform-specific
name.

9.3.1.2.5 Handler definition table

The handler definition table maps messages, represented by message identifiers, to routines
represented by function identifiers:

– HT[MID].FID: identifier of routine to invoke for handling the message.

If a message is mapped to a routine in the handler table, the signature of this routine needs to match
the signature of this message. Matching between the signatures shall be checked at load-time and
non-matching entries shall be rejected.

The handler definition table is used by the rt-script execution unit. When the rt-script execution unit
removes a message from the message queue, it invokes the routine that corresponds to the message,
with the message parameters as its parameters.

9.3.1.2.6 Program code area

An instruction consists of one 1-byte op-code followed by zero to three operand bytes. The op-code
completely determines the number and length of its operands, according to the instructions table.
Both op-codes and operands are coded in an optimized fashion so as to ease switching.

NOTE – A script interpreter (especially on 32-bit machines) may align instructions at load-time, i.e. insert
padding bytes in order to represent each instruction on four bytes; this makes it easy to increment the
instruction pointer. As a variant, a script interpreter may instead leave instructions packed, and determine the
number of bytes to increment at run-time.

9.3.2 Rt-script memory areas

Rt-script memory areas are initialized upon creation of the rt-script and may be modified during its
execution. Rt-script memory areas comprise:

– dynamic memory areas (see 9.3.2.1);

– registers (see 9.3.2.2).

9.3.2.1 Dynamic memory areas

Dynamic memory areas are used to represent the data and the current execution context of the
rt-script.

30 Recommendation T.173 (07/97)

Dynamic memory areas comprise:

– the Variable Table (VT) (see 9.3.2.1.1);

– the Call Stack (CS) (see 9.3.2.1.2);

– the Parameter Stack (PS) (see 9.3.2.1.3);

– the Message Queue (MQ) (see 9.3.2.1.4);

– the heap (see 9.3.2.1.5).

9.3.2.1.1 Variable table

The variable table maps the rt-script's variables, represented by data identifiers, to their type and
current value:

– VT[DID].TID: type of the variable (expressed as a type identifier);

– VT[DID].val: current value of the variable (depending on its type).

The variable table is initialized upon creation of the rt-script. It consists of two subtables:

– a copy of the global variable table associated with the mh-script;

– the local variable table of the currently executing routine.

VT[DID].val fields are modified every time a variable is assigned by the execution of a variable
assignment instruction.

When the current routine changes (following execution of a CALL, RET or YIELD instruction), the
local variable table is stored and replaced in the VT by the local variable table of the new routine.
The first entries of a local variable table are the parameters passed to the function.

9.3.2.1.2 Call stack

The call stack is used to store the current invocation context.

The call stack is an array of call frames. Every frame shall correspond to the context at the time of
invocation of an active function (routine, external function or MHEG action). Frames shall be stored
on the CS in order of invocation. The top frame of the CS, if any, shall describe the execution
context of the routine that called the currently executing function.

Each frame shall consist of the following elements:

– CS[i].FID: function identifier of the caller;

– CS[i].IP: pointer to the instruction to return to after the current function returns;

– CS[i].LT: local variable table of the caller (at invocation time);

– CS[i].SP: pointer to the top of the parameter stack (at invocation time).

The LT field of a call frame shall have the structure of a variable table:

– CS[i].LT[DID].TID: type identifier of the variable whose identifier is DID;

– CS[i].LT[DID].val: value of the variable.

The call stack is modified by certain control flow instructions. Initially the call stack shall be empty.
When a function is invoked, a frame describing this call shall be pushed onto the call stack. When a
function is returned from, this frame shall be popped from the call stack. The address of the top
frame of the call stack shall be stored at all times in the FP register.

 Recommendation T.173 (07/97) 31

9.3.2.1.3 Parameter stack

The parameter stack is used to store the parameters and return values of instructions. The parameter
stack is an array of data values. The type of the data value is determined by the operation sequence
that pushes the value on the stack.

The parameter stack is used by the MHEG-SIR instruction execution unit. Initially the parameter
stack shall be empty. It is modified by most instructions (arithmetic operators, logical operators,
comparison operations, stack manipulation, variable assignment, conditional jumps, calls). When an
instruction is executed, it shall pop its parameters from the parameter stack and push its return value
back onto the parameter stack. The address of the top frame of the parameter stack shall be stored at
all times in the Stack Pointer (SP) register.

9.3.2.1.4 Message queue

The message queue is used to buffer the messages that are received by the script interpreter. Each
item in the queue shall consist of the following elements:

– MQ[i].MID: message identifier;

– MQ[i].LT: list of message parameters.

The LT field of a message queue item shall have the structure of a variable table:

– MQ[i].LT[j].TID: type identifier of the jth parameter;

– MQ[i].LT[j].val: value of the jth parameter.

Messages shall be inserted into the message queue by the script interpreter asynchronously as they
are generated in the external environment. The message queue shall be processed by the rt-script
execution unit when either of the following occurs:

– the rt-script is not running, i.e. there is no currently executing routine;

– a YIELD instruction is encountered.

The start of the message queue (next message to pop) shall be stored at all times in the QP (Queue
Pointer) register. Initially the message queue shall be empty.

9.3.2.1.5 Heap

The heap is used to store dynamic variables, represented by data identifiers, as their type and current
value:

– VT[DID].TID: type of the variable (expressed as a type identifier);

– VT[DID].val: current value of the variable (depending on its type).

Dynamic variables are referenced by handles of an opaque type, whose representation is not
specified. Data identifiers are internally mapped to these handles so that dynamic variables be
accessed in the same way as other variables.

VT[DID].val fields are modified every time a variable is assigned by the execution of a variable
assignment instruction.

The application is responsible for explicit allocation and de-allocation of dynamic variables using the
ALLOC and FREE instructions.

NOTE – Script interpreters may also use the heap to store the values of global or local variables of a variable-
length type. In this case, a heap handle is stored in the table instead of the data itself.

32 Recommendation T.173 (07/97)

9.3.2.2 Registers

Registers hold specific states of the virtual machine and need to be frequently modified during the
execution of an rt-script.

The registers maintained by the MHEG-SIR virtual machine are:

– the Instruction Pointer (IP) or program counter (see 9.3.2.2.1);

– the Frame Pointer (FP) (see 9.3.2.2.5);

– the Stack Pointer (SP) (see 9.3.2.2.4);

– the Queue Pointer (QP) (see 9.3.2.2.6);

– the Instruction Register (IR) (see 9.3.2.2.2);

– the Error Register (ER) (see 9.3.2.2.3);

– the Function Register (FR) (see 9.3.2.2.7).

The representation of data held by pointer registers is not specified. All registers shall be initialized
to a null value whose representation is not specified.

9.3.2.2.1 Instruction pointer register

The IP register points to the next instruction to be executed within a routine's program code. This
register shall be modified by the rt-script execution unit and by the MHEG-SIR instruction execution
unit as part of the execution of instructions.

9.3.2.2.2 Instruction register

The IR register holds the code for the instruction which is currently executing. This register shall be
updated by the rt-script execution unit each time a new instruction is loaded, and accessed by the
MHEG-SIR instruction execution unit.

NOTE – The IR need not be more than 4 bytes long, but its actual size is not specified.

9.3.2.2.3 Error register

The ER holds the code of the last error encountered during execution of an instruction. This register
shall be updated by the MHEG-SIR instruction execution unit, every time it encounters an error. The
null value indicates that up to the current time no error has been encountered during the execution of
the rt-script.

The error codes are predefined. The error codes raised by each instruction are defined in clause 13.

When an error is raised during execution of an instruction, ER shall be set to a non-null value and an
InstructionExecutionError exception shall be raised. This results in the corresponding message being
inserted into the message queue.

9.3.2.2.4 Stack pointer register

The SP register points to the top of the parameter stack. The value of this register shall be updated by
the MHEG-SIR instruction execution unit as follows:

– it shall be incremented every time data is pushed onto the parameter stack;

– it shall be decremented every time data is popped off the parameter stack.

9.3.2.2.5 Frame pointer register

The FP register points to the top frame of the call stack. The value of this register shall be updated by
the MHEG-SIR instruction execution unit as follows:

– it shall be incremented every time a function is called;

 Recommendation T.173 (07/97) 33

– it shall be decremented every time a function is returned from.

9.3.2.2.6 Queue pointer register

The QP register points to the next message to be removed from the message queue. The value of this
register shall be decremented by the script interpreter every time a message is removed.

9.3.2.2.7 Function register

The FR register holds the FID of the currently executing function. The value of this register shall be
updated by the script interpreter every time a function is called or returned from.

9.4 Script statuses

9.4.1 Mh-script statuses

The status of an mh-script shall be either available or not available.

9.4.1.1 Not available

The status of an mh-script shall be not available if it is in one of the following cases:

– mh-script initialization (i.e. the effect of the MHEG-3 API prepare operation) has not been
achieved on this mh-script;

– mh-script destruction (i.e. the effect of the MHEG-3 API destroy operation) has been
requested on this mh-script.

9.4.1.2 Available

The status of an mh-script shall be available if mh-script initialization has been successfully
achieved on this mh-script and if mh-script destruction has not yet been requested.

This implies that:

– the interchanged script has been parsed and the mh-script memory areas fully completed
accordingly;

– the packages referenced in the mh-script are available and have been loaded according to the
package load procedure.

9.4.2 Rt-script statuses

The status of an rt-script shall be one of the following: not ready, ready, running, erroneous.

9.4.2.1 Not ready

The status of an rt-script shall be not ready if it is in one of the following cases:

– rt-script initialization (i.e. the effect of the MHEG-3 API new operation) has not been
achieved on this rt-script;

– rt-script destruction (i.e. the effect of the MHEG-3 API delete operation) has been requested
on this rt-script.

The status of an rt-script is initially not ready. Otherwise, it changes to not ready when a delete
operation is invoked on this rt-script.

9.4.2.2 Ready

The status of an rt-script shall be ready if all of the following conditions are met:

– rt-script initialization has been successfully achieved on this mh-script;

34 Recommendation T.173 (07/97)

– rt-script destruction has not yet been requested on this rt-script;

– the IP register is set to "null", i.e. there is no currently executing routine;

– the ER register is set to "null".

This implies that the calling stack, message queue and parameter stack are void.

However, the global variable values need not be the same as the initial values; once it has no more
instruction to execute and no message in the message queue, an rt-script goes back to ready status.

The status of an rt-script changes:

– from not ready to ready when a new operation is invoked on this rt-script;

– from running to ready when the rt-script execution unit no longer has instructions to
execute or as the result of invoking a stop or reinit operation;

– from erroneous to ready as the result of invoking a stop or reinit operation.

9.4.2.3 Running

The status of an rt-script shall be running if all of the following conditions are met:

– rt-script initialization has been achieved without error on this mh-script;

– rt-script destruction has not yet been requested on this rt-script;

– the IP register is not "null", i.e. there is a currently executing routine;

– the ER register is set to "null".

The status of an rt-script changes from ready to running when there is a message in the message
queue and the rt-script execution unit is activated. This may occur as the result of invoking a run
operation.

9.4.2.4 Erroneous

The status of an rt-script shall be erroneous if the ER register is not "null", i.e. if an error has
occurred during the rt-script execution.

The status of an rt-script changes from running to erroneous when an instruction execution error is
raised by the rt-script instruction execution unit.

9.5 Processing units

This subclause describes the MHEG-SIR virtual machine's flow of control and the semantics of
instructions.

For the purposes of the virtual machine description, the script interpreter's main process is assumed
to run in parallel with all active rt-script execution units. Scheduling of the different tasks is not
specified.

9.5.1 Message reception

The script interpreter's main process receives and handles events. In the absence of any events, it is
idle. Events received by the script interpreter may be:

– MHEG-3 API operation invocations;

– messages corresponding to the occurrence of an exception raised as the result of invoking
either a service or predefined function.

 Recommendation T.173 (07/97) 35

9.5.1.1 MHEG-3 API operations

MHEG-3 API operations may be invoked by an rt-script execution unit, by another component of the
MHEG-3 engine or by external processes outside the MHEG-3 engine.

When an MHEG-3 API operation is invoked, the main process shall proceed as specified by the
semantics of the MHEG-3 API described in clause 15.

9.5.1.2 External exception

When a message coming from either the action interpreter (MHEG API exception) or the run-time
environment is targeted at an rt-script, then if this message actually corresponds to an exception
raised by the MHEG API or the run-time environment as a consequence of the invocation of an
operation resulting from an XCALL instruction by this rt-script, the main process shall parse the
exception’s parameters and construct an message structure consisting of the message identifier of the
exception followed by its actual members (starting with the object reference of the originating
object). Then:

– if the exception results from the invocation of a currently executing synchronous operation,
the main process shall request the rt-script execution unit to terminate the XCALL instruction
(therefore popping its frame from the call stack) without looking for output parameters or a
return value, then immediately afterwards to trigger the routine corresponding to the
exception's message identifier, with the exception's members as its actual parameters; the
effect shall be the same as if this routine had been invoked by a CALL instruction;

– if the exception results from the invocation of a previously terminated synchronous operation
(whether successfully or not), the main process shall ignore the exception;

– if the exception results from the invocation of an asynchronous operation, the main process
shall insert the constructed message into the message queue of the target rt-script.

9.5.1.3 InstructionExecutionError exception

When the internal InstructionExecutionError exception is raised by the execution of an instruction, the
main process shall construct a message structure consisting of the message identifier corresponding
to this exception, followed by one member set to the value of the error register, then insert it into the
message queue of the rt-script whose execution raised the exception.

9.5.1.4 MHEG-3 API exception

When an exception resulting from the invocation of an MHEG-3 API operation is returned to an
rt-script, the main process shall construct a message structure consisting of the message identifier
corresponding to the exception, followed by its members, then insert it into the message queue of the
rt-script that invoked the operation.

9.5.2 Mh-script initialization

When the MHEG-3 API prepare operation is invoked, the script interpreter shall access the stream or
file using the provided system identifier and parse the script. The script interpreter shall then:

– parse the declarations part and initialize the CT, GT, TT, RT, ST, PT, XT, HT and the
RT[i].LT for each routine i; this includes the appropriate checks (handler verification,
package availability procedure);

– parse the structure of the instructions part to fill in the program code area of each routine;

– perform the package load procedure, establishing static links with packages according to the
platform mapping specification;

– put the mh-script to available status.

36 Recommendation T.173 (07/97)

NOTE – The semantics of package loading need to be defined by the platform mapping specification. The
MHEG-3 engine may take the responsibility to optimize its resource management strategy, e.g. by unloading
packages temporarily in order to release memory, or by loading packages only as rt-scripts are created or
even as services are invoked.

9.5.3 Rt-script initialization

When the MHEG-3 API new operation is invoked, the script interpreter shall create a context for the
target rt-script, i.e. the script interpreter shall:

– initialize the dynamic memory areas;

– initialize all registers to null values;

– create an rt-script execution unit for the rt-script;

– put the rt-script to ready status.

9.5.4 Rt-script execution unit

When activated and unless requested to stop the current rt-script, the rt-script execution unit shall
perform as follows:

rt-script-execution-unit ()
{
FID fid = ’null’;
if (IP == ’null’) // no next instruction
{
 while (fid == ’null’)
 {
 if (QP == ’null’) then exit; // return
 fid= HT[MQ[QP].MID].FID; // find handler for message
 if (fid != ’null’) then // handler found
 {
 CS.push({IP, FR, SP, ’null’}); // stack routine call
 FR = fid;
 IP = RT[FR].IP; // branch to start of routine
 }
 MQ.remove(); // remove message
 }
}
// endif

while (IP != ’null’):
{
 IR = *IP++; // load next instruction and increment program counter
 instruction-execution-unit(); // call the MHEG-SIR instruction execution unit
}
// endwhile
return; // return to script interpreter
}

9.5.5 MHEG-SIR instruction execution unit

When called by the rt-script execution unit, the MHEG-SIR instruction execution unit of an rt-script
shall decode the op-code contained in the first byte of the IR, then interpret the instruction
corresponding to this op-code as specified by clause 13, then return.

The instruction execution unit pops from the parameter stack those parameters that are used to
perform the instruction (if any). It pushes on the parameter stack those parameters that are the result
of the instruction (if any).

 Recommendation T.173 (07/97) 37

Table 3 summarizes the effects of the instructions on the various elements of the MHEG-SIR virtual
machine as defined by this clause.

10 Provisions for run-time environment access

This clause describes the mechanisms defined by this Recommendation to make it possible for
rt-scripts to access and interchange data with external functions provided by the run-time
environment on the execution platform.

10.1 General model

The interface that external software available in the run-time environment provides need to be
declared in the interchanged script as part of its package declaration, so that the script interpreter
knows how to access this interface when the script invokes it.

A package declaration describes a set of services (i.e. external functions) by their signature, i.e. the
type and passing mode of each parameter.

MHEG-SIR specifies how calling external functions, passing parameters, getting back return values
and handling exceptions shall be expressed within interchanged scripts.

This Recommendation also specifies how these expressions shall be interpreted by MHEG-3
engines.

This Recommendation also deals with interchange (i.e. function call, parameters passing, return
value retrieval and exception handling) between an MHEG-3 engine and the run-time environment.
For this purpose, this Recommendation contains provisions for specifying how access to these
functions should be provided to MHEG-3 engines by external software. Such a convention, called a
platform mapping specification, is dependent on the run-time platform.

Platform mapping specifications conforming to the provisions of this Recommendation need to be
registered to ensure the interoperability of run-time environment services with any compliant
MHEG-3 engine on this platform. If a platform mapping specification exists for the platform,
MHEG-3 engines shall conform to this platform mapping specification in order to access run-time
environment services.

MHEG-3 engine implementations shall document in their conformance document the platform
mapping specification(s) to which they conform.

NOTE – If existing software does not comply with the platform mapping specification and needs to be
accessed from MHEG-SIR scripts, it may be embedded into an interface that translates its own interface
conventions into those of the platform mapping specification.

10.2 Declaration of IDL interfaces

The interface of external software intended for use by an interchanged script may contain:

– operation declarations;

– exception declarations;

– type declarations.

Types shall be declared in the type declaration of this interchanged script.

Operations and exceptions shall be declared in the package declaration of this interchanged script.
This package declaration shall be assigned a package identifier and shall consist of:

– the name of the package;

38 Recommendation T.173 (07/97)

– a set of service descriptions;

– a set of exception descriptions.

Service descriptions shall be assigned a function identifier and shall consist of:

– the name of the operation;

– the function signature, i.e. the type and passing mode of each parameter and the type of the
return value.

Exception descriptions shall be assigned a message identifier and shall consist of:

– the name of the exception;

– the exception signature, i.e. the type of each member.

Identifiers (package identifiers, type identifiers, function identifiers) are used by MHEG-SIR scripts
to refer to types and functions; a function identifier for an external operation can be built from a
package identifier and the index of the service declaration in this package, while a message identifier
for an external exception can be built from a package identifier and the index of the exception
declaration in this package.

Names (package names, operation names, exception names) shall be used by the script interpreter to
link with the actual implementation of the external software.

An MHEG-SIR package declaration lies at the same abstraction level as an IDL specification. This
Recommendation defines the rules for mapping an IDL specification into a package declaration.
Clause 14 specifies:

– how an IDL data type description shall be mapped to an MHEG-SIR data type description;

– how an IDL operation description shall be mapped to an MHEG-SIR service description;

– how an IDL exception description shall be mapped to an MHEG-SIR exception description.

10.3 Invocation of external operations in an MHEG-SIR program

A service described in a package declaration shall be invoked from an MHEG-SIR program as
follows:

– variables of expected types corresponding to the return value (if any) and to each parameter
shall be declared within the interchanged script (except the originating object's object
reference, which shall be implicit);

– the program shall assign those variables which correspond to input or input/output
parameters;

– the program shall push onto the stack the data identifiers of all these variables in right-to-left
order [the identifier of the variable corresponding to the return value is pushed first, then the
actual parameters, with the object reference (implicit parameter) of the target being pushed
last];

– the program shall invoke the operation using an external call (XCALL) instruction with the
function identifier of the invoked operation as operand;

– the program shall exploit the function results using the variables corresponding to the return
value, the inout parameters and the out parameters.

10.4 Handling of external exceptions in an MHEG-SIR program

An exception described in a package declaration shall be handled by an MHEG-SIR program as
follows:

 Recommendation T.173 (07/97) 39

– variables of expected types corresponding to each member shall be declared within the
interchanged script (except the originating object's object reference, which shall be implicit);

– a routine whose parameters correspond to the exception members shall be declared within
the routine declaration part of the interchanged script;

– the mapping between the identifiers of this handling routine and the exception shall be
declared in the handler declaration part of the interchanged script.

10.5 Invocation of external operations by an MHEG-3 engine

When an interchanged script expresses invocation of an operation as described in 10.3, the script
interpreter shall behave as described by the semantics of the XCALL instruction in clause 13. As part
of this performance, it shall interpret the mechanisms described in 10.3 in translating them into the
run-time environment access mechanisms as defined by the platform mapping specifications.

NOTE – For instance, an MHEG-3 engine may translate a variable identifier pushed onto the stack as a
service parameter into either a value or a real memory address to be passed to the external software that
provides the service.

10.6 Handling of external exceptions by an MHEG-3 engine

When an exception is raised by an external service, this results in a message being transmitted to the
MHEG-3 engine according to the run-time environment access mechanisms defined by the platform
mapping specifications.

The script interpreter shall then behave as described in 9.5.1.2.

10.7 Platform mapping specifications

A platform mapping specification shall contain all of the following:

– the description of the platform to which the specification applies;

– the package availability procedure, which MHEG-3 engines shall use to check the
availability of a given package within the run-time environment;

– the package load procedure, which MHEG-3 engines shall use to make the operations of a
given package accessible to an rt-script;

– the package unload procedure, which MHEG-3 engines shall use to unload a package;

– the operation invocation procedure, which MHEG-3 engines shall use to invoke a given
operation;

– the data encoding rules, which MHEG-3 engines shall use to encode the value of in or
inout parameters of an operation and to decode the value of out or inout parameters of an
operation or exception members;

– the parameter passing procedures, which MHEG-3 engines shall use to pass in, inout and
out parameters to an operation;

– the return value retrieval procedure, which MHEG-3 engines shall use to retrieve the
return value of an operation;

– the exception retrieval procedure, which MHEG-3 engines shall use to retrieve exceptions
raised by an operation.

The contents of a platform mapping specification are defined in Annex D.

40 Recommendation T.173 (07/97)

11 Provisions for MHEG object manipulation

This clause describes the mechanisms defined by this Recommendation to make it possible for
rt-scripts to manipulate MHEG objects.

11.1 Invoking MHEG actions

MHEG-SIR is used to express invocation of MHEG actions as defined by the MHEG API.

The MHEG API is defined using IDL. The mapping from an IDL definition to an MHEG-SIR
package declaration and type declaration is defined in clause 14. However, the MHEG API package
is considered as a predefined one. So its declaration shall not be included explicitly in interchanged
scripts. The mapping mechanism is similar to the external function declaration mechanism described
in clause 10, except that the IDL types and operations defined by the MHEG API shall not be
declared as part of the MHEG-SIR code, but are instead dealt with as predefined types and
predefined external functions.

The mechanism used to invoke an MHEG action is similar to the invocation of a service provided by
the run-time environment. An XCALL instruction is used. Types defined in the MHEG API package
are referred to using a predefined type identifier. Functions described in the MHEG API package are
referred to using a predefined function identifier.

11.1.1 Sending messages to other scripts

The MHEG-3 API package is considered as a predefined one. Within an interchanged script,
messages may be efficiently targeted at other scripts using the predefined functions mapping
MHEG-3 API operations. An rt-script can thus pass and receive parameters and call routines from
another rt-script.

NOTE – This may be used to implement the concept of "library" or "utility" scripts. This may also be used to
synchronize rt-scripts.

11.1.2 Exchange of information with MHEG objects

Exchange of information between an rt-script and other MHEG entities (including other rt-scripts)
may be expressed using the MHEG API operations mapping the MHEG "set data" and "get data"
actions. MHEG content objects embedding generic values may be used to constitute a shared
memory area among MHEG objects.

Waiting for a signal from another object may be translated by a loop including a call to the
MHEG API operation mapping the MHEG "get data" action until the expected value is retrieved.

Generating a signal may be translated by a call to the MHEG API operation corresponding to the "set
data" MHEG action.

NOTE – As far as exchange of information among rt-scripts is concerned, use of the mechanism described in
11.1.1 is recommended.

11.2 Receiving MHEG messages

MHEG-SIR is used to express handling of messages resulting from MHEG actions. These messages
may be either of the following:

– MHEG-3 API run operations;

– MHEG API exceptions.

 Recommendation T.173 (07/97) 41

11.2.1 MHEG-3 API run operations

The MHEG "set parameters" and "run" actions that may be targeted to an rt-script should result in the
MHEG-3 API setParameter and run operations. Invocation of the run operation results in a message
being inserted into the rt-script’s message queue with:

– as message identifier, a predefined message identifier which is mapped to the routine
identifier of the targeted routine;

– as members, the parameters previously set by the setParameter operation.

11.2.2 MHEG API exceptions

The MHEG API exceptions are considered as messages which are sent to the script interpreter as the
result of invoking an MHEG API operation. These exceptions have predefined message identifiers.
The script interpreter shall process these messages in the same way as it would process an exception
coming from the run-time environment, as described in 9.5.1.2.

12 MHEG-SIR declarations

This clause defines the structure of interchanged scripts. This clause also specifies the way the virtual
machine deals with parsing of an interchanged script.

The following notation conventions are used:

– non-terminals are written as normal text;

– terminal types are written in uppercase;

– enumerated values are enclosed in single quotes;

– ":=" indicates a definition;

– "|" indicates a choice in a production;

– "*" indicates zero or more occurrences of the preceding type;

– "+" indicates one or more occurrences of the preceding type;

– "?" indicates zero or one occurrence of the preceding type (optional type).

NOTE – The complete grammar of interchanged scripts is described in Appendix I.

An interchanged script shall consist of:

– a sequence of type declarations;

– a sequence of constant declarations;

– a sequence of global variable declarations;

– a sequence of package declarations;

– a sequence of message handler declarations;

– a sequence of routine declarations.

InterchangedScript ::= TypeDeclaration*
 ConstantDeclaration*
 VariableDeclaration*
 PackageDeclaration*
 HandlerDeclaration*
 RoutineDeclaration*

42 Recommendation T.173 (07/97)

12.1 Type declaration

Type declarations are used to describe the types of the interchanged script.

A type declaration shall consist of:

– a type identifier (optional);

– a type description.

TypeDeclaration ::= TypeIdentifier?
 TypeDescription

12.1.1 Type identifier

Type identifiers are used to reference the type description throughout the interchanged script.

The type identifier shall be a positive integer within the range allowed for declared types. It shall
correspond to the maximum number of predefined types incremented by the index (starting at 0) of
the declaration in the type declarations part.

If the type identifier is not provided, it shall be computed by the script parser.

TypeIdentifier ::= INTEGER

12.1.2 Type description

Type descriptions describe the structure of a declared type.

The type description shall be one of the following:

– a string description;

– a sequence description;

– an array description;

– a structure description;

– a union description.

TypeDescription ::= SequenceDescription
 | StringDescription
 | ArrayDescription
 | StructureDescription
 | UnionDescription

12.1.2.1 String description

A string description shall consist of an integer (optional).

StringDescription ::= INTEGER? // String (max) size

The integer represents the maximum size of the string; if it is not provided, the string shall be
unbounded.

12.1.2.2 Sequence description

A sequence description shall consist of:

– an integer (optional);

– a type identifier.

SequenceDescription ::= INTEGER? // Sequence (max) size
 TypeIdentifier

 Recommendation T.173 (07/97) 43

The integer represents the maximum size of the sequence; if it is not provided, the sequence shall be
unbounded.

The type identifier represents the type of element of the sequence.

12.1.2.3 Array description

An array description shall consist of:

– an integer;

– a type identifier.

ArrayDescription ::= INTEGER // Array size
 TypeIdentifier

The integer represents the size of the array.

The type identifier represents the type of element of the array.

12.1.2.4 Structure description

A structure description shall consist of a sequence of type identifiers.

StructureDescription ::= TypeIdentifier+

Each type identifier represents the type of one of the fields of the structure.

12.1.2.5 Union description

A union description shall consist of a sequence of one or more type identifiers.

UnionDescription ::= TypeIdentifier+

Each type identifier represents the type of one of the choices of the union.

12.2 Constant declaration

Constant declarations are used to describe the types and values of the constants of the interchanged
script.

A constant declaration shall consist of:

– a data identifier (optional);

– a type identifier;

– a constant value.

ConstantDeclaration ::= DataIdentifier?
 TypeIdentifier
 ConstantValue

12.2.1 Data identifier

Data identifiers are used to reference data throughout the interchanged script.

The data identifier shall be a positive integer within the range allowed for constants. It shall
correspond to the index (starting from 0) of the declaration in the constant declarations part.

If the data identifier is not provided, it shall be computed by the script parser.

DataIdentifier ::= INTEGER

44 Recommendation T.173 (07/97)

12.2.2 Type identifier

The type identifier represents the type to which the value of the constant belongs.

12.2.3 Constant value

The constant value represents the value to which the constant corresponds throughout the script.

If the type of the constant is a primitive or string type, the constant value shall consist of an
immediate value expressed in this type.

If the type of the constant is a sequence type, the constant value shall consist of a sequence of constant
values, whose length is less or equal to the size of the sequence type and whose type is the element
type of the sequence description.

If the type of the constant is an array type, the constant value shall consist of a sequence of constant
values, whose length is equal to the size of the array type and whose type is the element type of the
array description.

If the type of the constant is a structure type, the constant value shall consist of a sequence of constant
values, whose length is equal to the number of elements in the structure type; each of these values
shall be of the same type as the corresponding element type in the structure description.

If the type of the constant is a union type, the constant value shall consist of an integer representing
the index (starting from 0) of the choice in the union type and a constant value whose type is the type
of element of the corresponding rank in the union description.

ConstantValue ::= BOOLEAN
 | OCTET
 | INTEGER // all numeric types
 | REAL // float or double
 | STRING // character or string
 | DataIdentifier
 | ConstantValue* // sequence, array or structure
 | UnionValue

UnionValue ::= INTEGER // Tag index
 ConstantValue

12.3 Global variable declaration

Global variable declarations are used to describe the types and initial values of the global variables of
the interchanged script.

A global variable declaration shall consist of:

– a data identifier (optional);

– a type identifier;

– a constant reference (optional).

VariableDeclaration ::= DataIdentifier?
 TypeIdentifier
 ConstantReference? // Initial value

12.3.1 Data identifier

Data identifiers are used to reference data throughout the interchanged script.

 Recommendation T.173 (07/97) 45

The data identifier shall be a positive integer within the range allowed for global variables. It shall
correspond to the maximum number of constants incremented by the index (starting from 0) of the
declaration in the global variable declarations part.

If the data identifier is not provided, it shall be computed by the script parser.

12.3.2 Type identifier

The type identifier represents the type to which the value of the global variable belongs.

12.3.3 Constant reference

The constant reference represents the initial value of the global variable.

The constant reference shall be one of the following:

– a data identifier referencing a constant;

– a constant value as described in 12.2.3.

In any case, the value to which this constant reference refers shall be of the type of the global
variable.

If the constant reference is not provided, the script interpreter shall assign the global variable a
default value if its type allows for it. Otherwise, it shall remain undefined until assigned by an
instruction.

ConstantReference ::= DataIdentifier
 | ConstantValue

12.4 Package declaration

Package declarations are used to describe the external services and exceptions used by the
interchanged script.

A package declaration shall consist of:

– a package identifier (optional);

– a string representing the package name;

– a sequence of service descriptions;

– a sequence of exception descriptions.

PackageDeclaration ::= PackageIdentifier?
 VisibleString // Package name
 ServiceDescription*
 ExceptionDescription*

12.4.1 Package identifier

Package identifiers are used to reference packages throughout the interchanged script.

The package identifier shall be a positive integer within the range allowed for packages. It shall
correspond to the index (starting at 0) of the declaration in the package declarations part.

If the package identifier is not provided, it shall be computed by the script parser.

PackageIdentifier ::= INTEGER

46 Recommendation T.173 (07/97)

12.4.2 Name

A package name is used by the script interpreter to access the package within the run-time
environment, according to the package availability procedure described by the platform mapping
specification.

12.4.3 Service description

Service descriptions describe external function prototypes.

A service description shall consist of:

– a function identifier (optional);

– a string representing the operation name;

– a calling mode (optional);

– a type identifier (optional);

– a sequence of parameter descriptions.

ServiceDescription ::= FunctionIdentifier?
 VisibleString? // IDL global name
 CallingMode?
 TypeIdentifier? // return value
 ServiceParameterDescription*

12.4.3.1 Function identifier

Function identifiers are used to reference functions throughout the interchanged script.

The function identifier shall be a positive integer within the range allowed for services. It shall
correspond to the maximum number of routines plus the maximum number of predefined functions
plus the package identifier multiplied by 256, incremented by the index (starting from 0) of the
service in the package declaration.

If the function identifier is not provided, it shall be computed by the script parser.

FunctionIdentifier ::= INTEGER

12.4.3.2 Name

The operation name is used by the script interpreter to access the operation within the run-time
environment, according to the operation invocation procedure described by the platform mapping
specification.

12.4.3.3 Calling mode

The calling mode represents the way the operation shall be invoked.

The calling mode shall be either "synchronous" or "asynchronous".

If the value is not specified, the calling mode shall be "synchronous".

CallingMode ::= ’SYNCHRONOUS’ | ’ASYNCHRONOUS’

12.4.3.4 Type identifier

The type identifier represents the type of return value of the service.

If the type identifier is not specified, it shall be interpreted as a void type, i.e. the function shall have
no return value.

 Recommendation T.173 (07/97) 47

If the calling mode of the operation is "asynchronous", the type identifier shall be either "void" or not
specified.

12.4.3.5 Parameter description

Parameter descriptions are used to specify the type and passing mode of service parameters.

A parameter description shall consist of:

– a passing mode;

– a type identifier.

ServiceParameterDescription ::= ServicePassingMode?
 TypeIdentifier

12.4.3.5.1 Passing mode

The passing mode indicates whether the value of the parameter at the time of invocation of the
service is used by the service (input parameter) and whether this parameter is modified by the service
for use by its caller (output parameter).

The passing mode shall be one of the following: "in", "inout" or "out".

If the passing mode is not specified, it shall be interpreted as an in parameter.

NOTE – The object reference parameter is implicit, so it should not be specified as part of the declaration. It
is dealt with as an in parameter.

If the calling mode of the operation is "asynchronous", the passing mode shall be either "in" or not
specified.

ServicePassingMode ::= ’IN’ | ’OUT’ | ’INOUT’

12.4.3.5.2 Type identifier

The type identifier represents the type of the considered service parameter.

12.4.4 Exception description

Exception descriptions describe prototypes of exceptions that may be raised during the execution of
external functions.

An exception description shall consist of:

– a message identifier (optional);

– a string representing the exception name;

– a sequence of type identifiers representing the members of the exception.

ExceptionDescription ::= MessageIdentifier?
 VisibleString? //IDL exception global name
 TypeIdentifier* //Parameter types

12.4.4.1 Message identifier

Message identifiers are used to reference messages throughout the interchanged script.

The message identifier shall be a positive integer within the range allowed for exceptions. It shall
correspond to the maximum number of predefined messages plus the package identifier multiplied by
256, incremented by the index (starting at 0) of the exception in the package declaration.

48 Recommendation T.173 (07/97)

If the message identifier is not provided, it shall be computed by the script parser.

MessageIdentifier ::= INTEGER

12.4.4.2 Name

An exception name is used by the script interpreter to retrieve the exception within the run-time
environment, according to the exception retrieval procedure described by the platform mapping
specification.

12.4.4.3 Parameter description

Each parameter of the message corresponds to one member of the exception. It is described by its
type identifier.

12.5 Handler declaration

Handler declarations are used to associate a message with the function that handles it.

A handler declaration shall consist of:

– a message identifier;

– a function identifier.

HandlerDeclaration ::= MessageIdentifier
 FunctionIdentifier

12.5.1 Message identifier

The message identifier indicates the message to be handled.

The message identifier shall be a positive integer within the whole range allowed to messages,
representing either a predefined message or an exception.

12.5.2 Function identifier

The function identifier indicates the function to be triggered when the message is removed from the
message queue.

The function identifier shall be a positive integer within the whole range allowed to function,
representing a routine, a predefined function or a service.

The description of the formal parameter types for the function shall be the same as for the message,
so that the function may be called with the message actual parameters as its parameters. If signatures
do not match, the handler shall be rejected by the script parser.

12.6 Routine declaration

Routine declarations are used to describe the structure and program code of the internal functions of
the interchanged script.

A routine declaration shall consist of:

– a function identifier (optional);

– a type identifier (optional);

– a sequence of parameter descriptions;

– a sequence of local variable declarations;

– MHEG-SIR program code.

 Recommendation T.173 (07/97) 49

RoutineDeclaration ::= FunctionIdentifier?
 TypeIdentifier? // for return value
 RoutineParameterDescription*
 LocalVariableDeclaration*
 OCTET STRING // program code

12.6.1 Function identifier

The function identifier shall be a positive integer within the range allowed for routines. It shall
correspond to the index (starting from 0) of the routine in the routine declarations part.

If the function identifier is not provided, it shall be computed by the script parser.

12.6.2 Type identifier

The type identifier represents the type of return value of the routine.

If the type identifier is not specified, it shall be interpreted as a void type, i.e. the function shall have
no return value.

12.6.3 Parameter description

Parameter descriptions are used to specify the type and passing mode of routine parameters.

A parameter description shall consist of:

– a passing mode (optional);

– a type identifier.

RoutineParameterDescription ::= RoutinePassingMode?
 TypeIdentifier

12.6.3.1 Passing mode

The passing mode indicates whether the parameter shall be passed to the routine using its value
(input parameter) or a reference to the variable that holds its value (input/output parameter).

The passing mode shall be one of the following: "value" or "reference".

RoutinePassingMode ::= ’VALUE’ | ’REFERENCE’

12.6.3.2 Type identifier

The type identifier represents the type of the considered routine parameter.

12.6.4 Local variable declaration

Local variable declarations are used to describe the types and initial values of variables whose scope
is limited to one execution of a routine.

A local variable declaration shall have the same structure as a global variable declaration, as defined
in 12.3. It shall consist of:

– a data identifier (optional);

– a type identifier;

– a constant reference (optional).

12.6.4.1 Data identifier

The data identifier shall be a positive integer within the range allowed for local variables. It shall
correspond to the maximum number of constants plus the maximum number of global variables

50 Recommendation T.173 (07/97)

incremented by the index (starting from 0) of the declaration in the local variable declarations of the
routine, incremented by the number of formal parameters of the routine.

If the data identifier is not provided, it shall be computed by the script parser.

12.6.4.2 Type identifier

The type identifier represents the type to which the value of the local variable belongs.

12.6.4.3 Constant reference

The constant reference represents the initial value of the local variable.

The constant reference shall be one of the following:

– a data identifier referencing a constant;

– a constant value as defined in 12.2.3.

In any case, the value to which this constant reference refers shall be of the type of the local variable.

If the constant reference is not provided, the script interpreter shall assign the local variable a default
value if its type allows for it. Otherwise, it shall remain undefined until assigned by an instruction.

12.6.5 Program code

The program code consists of the sequence of instructions of the routine, intended for execution by
the script interpreter when the routine is triggered. The syntax and semantics of the MHEG-SIR
instructions is described in clause 13.

The last instruction of a routine shall be a RET instruction.

13 MHEG-SIR instructions

This clause defines the semantics of the MHEG-SIR instructions.

13.1 Presentation methodology

Each instruction is defined in the corresponding subclause by a set of entries as follows:

Short description: A brief description of the instruction's semantics.

Synopsis: Mnemonic Operand1 ... OperandN

Operands: A description of the types and semantics of each operand carried with the
instruction (if any).

Stack: A visual synopsis of the instruction's effect on the parameter stack, e.g.
..., Parameter1, Parameter2 � ..., Result

Types: A list of the types of parameters to which the instruction applies (if it is a
template instruction).

Parameters: A description of the semantics of each element of the parameter stack
which is popped, pushed or otherwise effected by the instruction (if any).

Effect: A textual specification of the interpretation semantics of the instruction.

Formal
specification:

A formal specification of the interpretation semantics of the instruction
using the notation described in this subclause.

Errors: A list of the errors that may be raised during execution of the instruction.

 Recommendation T.173 (07/97) 51

13.1.1 Error conditions

The semantics of the instruction, as described by the formal specification, shall apply only if the
operands are valid. Otherwise, an InstructionExecutionError exception shall be raised and the error
register shall be set to InvalidOperand. The result of the instruction execution is unspecified.

When the parameter stack is looked up, i.e. on a PS.pop or a PS[SP] primitive, if the parameter stack
does not hold enough parameters then an InstructionExecutionError exception shall be raised and the
error register shall be set to StackUnderflow. The resulting state of the parameter stack is unspecified.

If the result of an arithmetic operation falls in a range that exceeds that of the target type, arithmetic
operations shall raise an InstructionExecutionError exception and the error register shall be set to
ArithmeticOverflow or DivisionByZero, as applicable.

If an identifier does not refer to a valid entity (type, data, function, message, package) then when its
value in the corresponding table is accessed (e.g. using DT[i]), an InstructionExecutionError exception
shall be raised and the error register shall be set to InvalidIdentifier.

If IP is set to an invalid pointer then an InstructionExecutionError exception shall be raised and the
error register shall be set to JumpOutOfRange.

When a dynamic variable is allocated and allocation is impossible due to lack of memory space or
data identifiers, then the new() primitive shall raise an InstructionExecutionError exception and set the
error register to AllocationFailed.

Triggering of the other error conditions is specified explicitly throughout 13.3. The error code values
are defined in Annex C.

13.1.2 Formal specification

The "formal specification" entry of an instruction description gives a concise formal notation of the
effect that the instruction execution unit shall produce as it interprets the instruction; however, as this
specification is expressed in terms of a sequence of operations, there may be other methods to lead to
the same result, so this formal specification does not require the instruction execution unit to perform
as expressed as long as the effect is the same.

The error cases described in 13.1.1 are implicit and are not expressed in the formal specification. The
other error cases are explicitly mentioned.

To specify the semantics of an instruction in a formal way, a C-like syntax is used. It uses the
notations and concepts defined in clauses 8 and 9, plus the following notations:

– Data Table (DT) notation (see 13.1.3);

– template instruction notation (see 13.1.4);

– primitives (see 13.1.5).

13.1.3 Data table notation

The notation DT(i), where i stands for a data identifier, corresponds to:

– the entry whose key is i in the constant table, if i is the data identifier of a constant;

– the entry whose key is i in the global variable table, if i is the data identifier of a global
variable;

– the entry whose key is i in the local variable table of the currently executing routine, if i is
the data identifier of a local variable;

– the dynamic variable whose handle is mapped to i, if i is the data identifier of a dynamic
variable.

52 Recommendation T.173 (07/97)

This macro may be expressed as follows:

 #define DT(i) (i < 4096) ? CT[i] : VT[i])

13.1.4 Template instruction notation

A number of instructions (e.g. arithmetic and logical instruction) operate on values of a given type
and produce a result with the same type. The <T> notation is used to express a template instruction.
<Mnemonic>_<T> represents all instructions <Mnemonic> with <T> being replaced by the type letter of
any primitive type to which the instruction is applicable, as described by the "Types" entry in the
instruction description.

NOTE – Operations on mixed types should be handled by explicitly inserting type conversion instructions in
the instruction sequence.

13.1.5 Primitives

The following primitive notations are used in the formal specification of the instructions:

– DID new(tid): allocates a dynamic variable of the type identifier by tid;

– void raise(exc): raises an InstructionExecutionError exception and sets ER to error code exc;

– void delete(did): releases the dynamic variable identified by did;

– int sizeof(tid): returns the size of values of the type identified by tid, expressed in the same
units as the PS pointer addresses;

– type(<T>): macro to be replaced by the C type name.

13.2 Classification of MHEG-SIR instructions

The MHEG-SIR instructions may be clustered into categories according to their effect on the control
flow, on the variable tables or on the parameter stack, and according to the types of stack parameters
that they accept:

a) Instructions that affect the control flow:

1) unconditional jump instructions: JMP, LJMP;

2) conditional jump instructions: JT, JF, LJT, LJF;

3) function invocations: CALL, XCALL;

4) miscellaneous control flow instructions: RET, YIELD.

b) Instructions that do not affect the control flow, but affect the value of variables:

1) complex variable modifiers: SET, SETC;

2) arithmetic operators on variables: INC, DEC;

3) stack pop instructions: POPR, POP, POPC;

4) memory management instructions: ALLOC, FREE.

c) Instructions that do not affect the control flow or the variables, but affect the parameter stack:

1) conversion instructions: CVT;

2) arithmetic operators: ADD, SUB, MUL, DIV, REM, NEG;

3) logical operators: AND, OR, XOR, NOT;

4) logical shift operators: SHIFT;

5) comparison operators: EQ, GT, LT, EQR;

6) complex data accessors: GET, GETC;

 Recommendation T.173 (07/97) 53

7) miscellaneous stack manipulation instructions: PUSHI, PUSHR, PUSH, DUP, GETOR.

d) instructions that have no effect: NOP.

NOTE – Most instructions only operate on primitive type values. Only the following instructions are used to
manipulate constructed values: EQR, GET, GETC, SET, SETC, ALLOC, FREE, CALL, XCALL.

The effect of instructions is summarized in Table 3. The operations are listed in canonical order,
i.e. by ascending op-code number. Some mnemonics represent template instructions and therefore
have type suffixes.

Table 3/T.173 – Synopsis of MHEG-SIR instructions and their effect

Mnemonics Ref. Opcode
(hexa)

Op. size Op. type Parameter types PS effect VT
effect

Control
flow effect

NOP 13.3.1 00 0
YIELD 13.3.2 02 0 x
RET 13.3.3 03 0 0|1 � 0|1 x
FREE 13.3.4 08 0 1 � 0 x
NOT_<T> 13.3.5 10-13 0 BOWU 1 � 1
OR_<T> 13.3.6 14-17 0 BOWU 2 � 1
XOR_<T> 13.3.7 18-1B 0 BOWU 2 � 1
AND_<T> 13.3.8 1C-1F 0 BOWU 2 � 1
EQR 13.3.9 20 0 2 � 1
EQ_<T> 13.3.10 21-2B 0 OSLWUFDBCIR 2 � 1
LT_<T> 13.3.11 30-37 0 COSLWUFD 2 � 1
GT_<T> 13.3.12 38-3F 0 COSLWUFD 2 � 1
ADD_<T> 13.3.13 40-47 0 OSLWUFD 2 � 1
SUB_<T> 13.3.14 48-4F 0 OSLWUFD 2 � 1
MUL_<T> 13.3.15 50-57 0 OSLWUFD 2 � 1
DIV_<T> 13.3.16 58-5F 0 OSLWUFD 2 � 1
NEG_<T> 13.3.17 62-67 0 SLFD 1 � 1
REM_<T> 13.3.18 79-7D 0 OSLWU 2 � 1
DUP_<T> 13.3.19 81-8B 0 OSLWUFDBCIR 1 � 2
CVT_<TT> 13.3.20 94-BE 0 OSLWUFDBC 1 � 1
JT 13.3.21 C0 1 offset 1 � 0 x
JF 13.3.22 C1 1 offset 1 � 0 x
JMP 13.3.23 C2 1 offset x
SHIFT_<T> 13.3.24 C5-C7 1 offset OWU 1 � 1
GETOR 13.3.25 C9 1 PID 0 � 1
LJT 13.3.26 D0 2 offset 1 � 0 x
LJF 13.3.27 D1 2 offset 1 � 0 x
LJMP 13.3.28 D2 2 offset x
CALL 13.3.29 D4 2 FID n � 0|1 x
XCALL 13.3.30 D6 2 FID n � 0|1 x
PUSH 13.3.31 E0 2 DID 0 � 1
PUSHR 13.3.32 E1 2 DID 0 � 1
PUSHI 13.3.33 E3 2 value 0 � 1
POP 13.3.34 E4 2 DID 1 � 0 x
POPR 13.3.35 E5 2 DID 1 � 0 x
POPC 13.3.36 E6 2 DID 1 � 0 x
ALLOC 13.3.37 E8 2 TID 0 � 1 x
INC 13.3.38 EA 2 DID 1 � 0 x
DEC 13.3.39 EB 2 DID 1 � 0 x

54 Recommendation T.173 (07/97)

Table 3/T.173 – Synopsis of MHEG-SIR instructions and their effect (concluded)

Mnemonics Ref. Opcode
(hexa)

Op. size Op. type Parameter types PS effect VT
effect

Control
flow effect

GET 13.3.40 F0 3 DID, idx idx � 1
GETC 13.3.41 F2 3 DID, idx idx+1 � 0 x
SET 13.3.42 F4 3 DID, idx idx+1 � 0 x
SETC 13.3.43 F6 3 DID, idx idx+1 � 0 x

13.3 Description of instructions

13.3.1 No operation

Short description: Do nothing.

Synopsis: NOP

Operands: None.

Types: Not applicable.

Parameters: None.

Stack: ... � ...

Effect: None.

Formal
specification:

0;

Errors:

13.3.2 Yield

Short description: Handle pending messages.

Synopsis: YIELD

Operands: None.

Stack: ... � ...

Types: Not applicable.

Parameters: None.

Effect: If there is a pending message in the message queue, handle it by calling
the corresponding routine. Upon returning, iterate the process until the
message queue is empty.

 Recommendation T.173 (07/97) 55

Formal
specification:

while (QP != ’null’)
{
 FID fid = HT[MQ[QP].MID].FID;
 if (fid == ’null’) then raise(’HandlerNotFound’);
 else
 {
 CS.push({IP-1, FR, SP, LT});
 // IP-1: allows to re-iterate the YIELD instruction
 FR = fid;
 IP = RT[FR].IP;
 LT = MQ[QP].LT;
 }
 MQ.remove();
}

Errors: HandlerNotFound

13.3.3 Return

Short description: Return to caller.

Synopsis: RET

Operands: None.

Stack: ..., (Val) � ..., (Val)

Types: Not applicable.

Parameters: If the current routine signature has a return value, Val shall be interpreted
as of the type of this return value.

Otherwise, no stack parameter shall be considered.

Effect: Return to the calling routine. Pop the call stack and restore the context of
the previous frame. If the current routine has a return value, check that
there is a value of the same type on the top of the parameter stack. If there
is no calling function to return to, stop and go back to ready status.

Formal
specification:

if (sizeof(RT[FR].TID) != (SP - CS[FP].SP))
 then raise(’InvalidReturnValue’);
IP = CS[FP].IP;
FR = CS[FP].FR;
LT = CS[FP].LT;
CS.pop();

Errors: InvalidReturnValue

13.3.4 Free

Short description: Release dynamic variable.

Synopsis: FREE

Operands: None.

Stack: ..., Did � ...

Types: Not applicable.

Parameters: Did shall be interpreted as a data identifier.

56 Recommendation T.173 (07/97)

Effect: Check that Did is the data identifier of a dynamic variable. Release the
dynamic memory associated with Did, and make the data identifier
invalid.

Formal
specification:

if (did < 8100h) then raise(’InvalidParameter’);
delete(VT[PS.pop(’data identifier’)]);

Errors: StackUnderflow
InvalidIdentifier

13.3.5 Not

Short description: Logical negation.

Synopsis: NOT_<T>

Operands: None.

Stack: ..., Val � ..., Neg

Types: Boolean or any unsigned integer (B, O, W, U).

Parameters: Val shall be interpreted as of type <T>
Neg shall be of type <T>.

Effect: Replace the top element of the parameter stack by its logical negation if
<T> is B, its bitwise negation otherwise (i.e. its complement-to-one):
 Neg = ~Val

Formal
specification:

type(<T>) buf = PS.pop(<T>);
if (<T> == ’boolean’) then PS.push(! buf);
else PS.push(~ buf);

Errors: StackUnderflow

13.3.6 Or

Short description: Logical disjunction.

Synopsis: OR_<T>

Operands: None.

Stack: ..., Val1, Val2 � ..., Disj

Types: Boolean or any unsigned integer (B, O, W, U).

Parameters: Val1 and Val2 shall be interpreted as of type <T>.
Disj shall be of type <T>.

Effect: Replace the top two elements of the parameter stack by their logical
disjunction if <T> is B, their bitwise disjunction otherwise:
 Disj = Val1 | Val2

Formal
specification:

type(<T>) buf = PS.pop(<T>);
if (<T> == ’boolean’) then buf = buf || PS.pop(’boolean’);
else buf |= PS.pop(<T>);
PS.push(buf);

Errors: StackUnderflow

 Recommendation T.173 (07/97) 57

13.3.7 Exclusive or

Short description: Logical exclusion.

Synopsis: XOR_<T>

Operands: None.

Stack: ..., Val1, Val2 � ..., Excl

Types: Boolean or any unsigned integer (B, O, W, U).

Parameters: Val1 and Val2 shall be interpreted as of type <T>.
Excl shall be of type <T>.

Effect: Replace the top two elements of the parameter stack by their logical
exclusion if <T> is B, their bitwise exclusion otherwise:
 Excl = Val1 ^ Val2

Formal
specification:

type(<T>) buf = PS.pop(<T>);
if (<T> == ’boolean’) then buf = (buf != PS.pop(’boolean’));
else buf ^= PS.pop(<T>);
PS.push(buf);

Errors: StackUnderflow

13.3.8 And

Short description: Logical conjunction.

Synopsis: AND_<T>

Operands: None.

Stack: ..., Val1, Val2 � ..., Conj

Types: Boolean or any unsigned integer (B, O, W, U).

Parameters: Val1 and Val2 shall be interpreted as of type <T>.
Conj shall be of type <T>.

Effect: Replace the top two elements of the parameter stack by their logical
conjunction if <T> is B, their bitwise conjunction otherwise:
 Conj = Val1 & Val2

Formal
specification:

type(<T>) buf = PS.pop(<T>);
if (<T> == ’boolean’) then buf = buf && PS.pop(’boolean’);
else buf &= PS.pop(<T>);
PS.push(buf);

Errors: StackUnderflow

13.3.9 Equal reference

Short description: Compare constructed values.

Synopsis: EQR

Operands: None.

Stack: ..., Did1, Did2 � ..., Bool

Types: Not applicable.

Parameters: Did1 and Did2 shall be interpreted as of data identifier type.
Bool shall be of boolean type.

58 Recommendation T.173 (07/97)

Effect: Check that Did1 and Did2 identify data of the same type.
Return "true" if the data identified by Did1 and Did2 are equal (see 8.2),
"false" otherwise:
 Bool = (DT(Did1) == DT(Did2))

Formal
specification:

DID did2 = PS.pop(’data identifier’);
DID did1 = PS.pop(’data identifier’);
if (DT(did1).tid != DT(did2).tid) then raise(’TypeMismatch’);
if (DT(did1).val == DT(did2).val) then PS.push(’true’);
else PS.push(’false’)

Errors: TypeMismatch
StackUnderflow
InvalidIdentifier

13.3.10 Equal

Short description: Equality.

Synopsis: EQ_<T>

Operands: None.

Stack: ..., Val1, Val2 � ..., Comp

Types: Any primitive type except void (O, S, L, W, U, F, D, B, C, I, R).

Parameters: Val1 and Val2 shall be interpreted as of type <T>.
Comp shall be of boolean type.

Effect: Replace the top two elements of the parameter stack by "true" if they are
equal and "false" otherwise:
 Comp = (Val1 == Val2)

Formal
specification:

type(<T>) buf = PS.pop(<T>);
if (buf == PS.pop<T>) then PS.push(’true’);
else PS.push(’false’);

Errors: StackUnderflow

13.3.11 Less than

Short description: Strict inferiority.

Synopsis: LT_<T>

Operands: None.

Stack: ..., Val1, Val2 � ..., Comp

Types: Character or any numeric (C, O, S, L, W, U, F, D).

Parameters: Val1 and Val2 shall be interpreted as of type <T>.
Comp shall be of boolean type.

Effect: Replace the top two elements of the parameter stack by "true" if the top
element is greater than the next, and "false" otherwise:
 Comp = (Val1 < Val2)
To compare characters, the numeric order shall be used.

Formal
specification:

type(<T>) buf = PS.pop(<T>);
if (PS.pop<T> < buf) then PS.push(’true’);
else PS.push(’false’);

Errors: StackUnderflow

 Recommendation T.173 (07/97) 59

13.3.12 Greater than

Short description: Strict superiority.

Synopsis: GT_<T>

Operands: None.

Stack: ..., Val1, Val2 � ..., Comp

Types: Character or any numeric (C, O, S, L, W, U, F, D).

Parameters: Val1 and Val2 shall be interpreted as of type <T>.
Comp shall be of boolean type.

Effect: Replace the top two elements of the parameter stack by "true" if the top
element is less than the next, and "false" otherwise:
 Comp = (Val1 > Val2)
To compare characters, the numeric order shall be used.

Formal
specification:

type(<T>) buf = PS.pop(<T>);
if (PS.pop<T> > buf) then PS.push(’true’);
else PS.push(’false’);

Errors: StackUnderflow

13.3.13 Add

Short description: Arithmetic addition.

Synopsis: ADD_<T>

Operands: None.

Stack: ..., Num1, Num2 � ..., Sum

Types: Any numeric (O, S, L, W, U, F, D).

Parameters: Num1 and Num2 shall be interpreted as of type <T>.
Sum shall be of type <T>.

Effect: Replace the top two elements of the parameter stack by their sum:
 Sum = Num1 + Num2

Formal
specification:

type(<T>) buf = PS.pop(<T>);
buf += PS.pop(<T>);
PS.push(buf);

Errors: StackUnderflow
ArithmeticOverflow

13.3.14 Subtract

Short description: Arithmetic subtraction.

Synopsis: SUB_<T>

Operands: None.

Stack: ..., Num1, Num2 � ..., Diff

Types: Any numeric (O, S, L, W, U, F, D).

Parameters: Num1 and Num2 shall be interpreted as of type <T>.
Diff shall be of type <T>.

Effect: Replace the top two elements of the parameter stack by their difference:
 Diff = Num1 − Num2

60 Recommendation T.173 (07/97)

Formal
specification:

type(<T>) buf = PS.pop(<T>);
buf = PS.pop(<T>) −buf;
PS.push(buf);

Errors: StackUnderflow
ArithmeticOverflow

13.3.15 Multiply

Short description: Arithmetic multiplication.

Synopsis: MUL_<T>

Operands: None.

Stack: ..., Num1, Num2 � ..., Prod

Types: Any numeric (O, S, L, W, U, F, D).

Parameters: Num1 and Num2 shall be interpreted as of type <T>.
Prod shall be of type <T>.

Effect: Replace the top two elements of the parameter stack by their product:
 Prod = Num1 * Num2

Formal
specification:

type(<T>) buf = PS.pop(<T>);
buf *= PS.pop(<T>);
PS.push(buf);

Errors: StackUnderflow
ArithmeticOverflow

13.3.16 Divide

Short description: Arithmetic division.

Synopsis: DIV_<T>

Operands: None.

Stack: ..., Num1, Num2 � ..., Quot

Types: Any numeric (O, S, L, W, U, F, D).

Parameters: Num1 and Num2 shall be interpreted as of type <T>.
Quot shall be of type <T>.

Effect: Replace the top two elements of the parameter stack by their quotient:
 Quot = Num1/Num2

Formal
specification:

type(<T>) buf = PS.pop(<T>);
buf = PS.pop(<T>) / buf;
PS.push(buf);

Errors: StackUnderflow
DivisionByZero

13.3.17 Negate

Short description: Sign change.

Synopsis: NEG_<T>

Operands: None.

Stack: ..., Num � ..., Opp

Types: Any signed numeric (S, L, F, D).

 Recommendation T.173 (07/97) 61

Parameters: Num shall be interpreted as of type <T>.
Opp shall be of type <T>.

Effect: Replace the top element of the parameter stack by its opposite:
 Opp = −Num1

Formal
specification:

type(<T>) buf = PS.pop<T>;
PS.push(−buf);

Errors: StackUnderflow

13.3.18 Remainder

Short description: Arithmetic remainder.

Synopsis: REM_<T>

Operands: None.

Stack: ..., Num1, Num2 � ..., Rem

Types: Any integer (O, S, L, W, U).

Parameters: Num1 and Num2 shall be interpreted as of type <T>.
Rem shall be of type <T>.

Effect: Replace the top two elements of the parameter stack by their remainder:
 Rem = Num1 % Num2

Formal
specification:

type(<T>) buf = PS.pop(<T>);
buf = PS.pop(<T>) % buf;
PS.push(buf);

Errors: StackUnderflow
DivisionByZero

13.3.19 Duplicate

Short description: Duplicate value.

Synopsis: DUP_<T>

Operands: None.

Stack: ..., Val � ..., Val, Val

Types: Any primitive type except void (O, S, L, W, U, F, D, B, C, I, R)

Parameters: Val shall be interpreted as of type <T>.

Effect: Duplicate the value on the top of stack.

Formal
specification:

type(<T>) buf = PS[SP](<T>);
PS.push(buf);

Errors: StackUnderflow

13.3.20 Convert

Short description: Convert value.

Synopsis: CVT_<T1><T2>

Operands: None.

Stack: ..., Val � ..., Res

62 Recommendation T.173 (07/97)

Types: Boolean, character or any numeric (O, S, L, W, U, F, D, B, C); see allowed
combinations in 13.4.

Parameters: Val shall be interpreted as of type <T1> (source type).
Res shall be of type <T2> (destination type).

Effect: Replace the value on the top of stack by an equivalent value in the
destination type. Conversion rules defined in 13.4 apply.

Formal
specification:

type(<T2>) buf = (type(<T2>)) (PS.pop(<T1>));
PS.push(buf);

Errors: StackUnderflow

13.3.21 Jump on true

Short description: "If" conditional short jump.

Synopsis: JT Off

Operands: Off shall be a one-byte signed offset (in complement-to-two notation)
specifying the number of instructions to move forwards or backwards
within the current routine.

Stack: ..., Test � ...

Types: Not applicable.

Parameters: Test shall be interpreted as of boolean type.

Effect: If the top element of the stack is "true" then
if Off is positive, jump Off instructions forwards;
if Off is negative, jump -Off instructions backwards.

Formal
specification:

if (PS.pop(’boolean’)) then IP += Off;

Errors: StackUnderflow
JumpOutOfRange

13.3.22 Jump on false

Short description: "Else" conditional short jump.

Synopsis: JF Off

Operands: Off shall be a one-byte signed offset (in complement-to-two notation)
specifying the number of instructions to move forwards or backwards
within the current routine.

Stack: ..., Test � ...

Types: Not applicable.

Parameters: Test shall be interpreted as of boolean type.

Effect: If the top element of the stack is "false" then
if Off is positive, jump Off instructions forwards;
if Off is negative, jump -Off instructions backwards.

Formal
specification:

if ! (PS.pop(’boolean’)) then IP += Off;

Errors: StackUnderflow
JumpOutOfRange

 Recommendation T.173 (07/97) 63

13.3.23 Jump

Short description: Unconditional short jump.

Synopsis: JMP Off

Operands: Off shall be a one-byte signed offset (in complement-to-two notation)
specifying the number of instructions to move forwards or backwards
within the current routine.

Stack: ... � ...

Types: Not applicable.

Parameters: None.

Effect: If Off is positive, jump Off instructions forwards;
if Off is negative, jump -Off instructions backwards.

Formal
specification:

IP += Off;

Errors: JumpOutOfRange

13.3.24 Shift

Short description: Logical shift.

Synopsis: SHIFT_<T> Off

Operands: Off shall be a one-byte signed offset (in complement-to-two notation)
specifying the number of bit places to shift the parameter leftwards or
rightwards.

Stack: ..., Val � ..., Pwr

Types: Any unsigned integer (O, W, U).

Parameters: Val shall be interpreted as of type <T>.
Pwr shall be of type <T>.

Effect: Replace the top element of the stack by its value shifted right Off bits if
Off is positive, or left -Off bits if Off is negative. If Off is beyond range, the
result is unspecified.

Formal
specification:

type(<T>) buf = PS.pop(<T>);
if (Off >=0) then buf >>= Off;
else if (buf < 0)
 buf = −(−buf << −Off);
else buf <<= −Off;
PS.push(buf);

Errors: StackUnderflow
ShiftOutOfRange

13.3.25 Get object reference

Short description: Get initial object reference to package.

Synopsis: GETOR Pid

Operands: Pid shall be the one-byte representation of a package identifier specifying
the package to access.

Stack: ... � ..., Obref

Types: Not applicable.

64 Recommendation T.173 (07/97)

Parameters: Obref shall be of object reference type.

Effect: Retrieve an object reference to the initial object of the package.

Formal
specification:

if (PT[PID].sts = ’not available’) then raise(’BadPackageStatus’);
PS.push(PT[PID].or);

Errors: InvalidIdentifier
BadPackageStatus

13.3.26 Long jump on true

Short description: "If" conditional long jump.

Synopsis: LJT Off

Operands: Off shall be a two-byte signed offset (in complement-to-two notation)
specifying the number of instructions to move forwards or backwards
within the current routine.

Stack: ..., Test � ...

Types: Not applicable.

Parameters: Test shall be interpreted as of boolean type.

Effect: If the top element of the stack is "true" then
if Off is positive, jump Off instructions forwards;
if Off is negative, jump -Off instructions backwards.

Formal
specification:

if (PS.pop(’boolean’)) then IP += Off;

Errors: StackUnderflow
JumpOutOfRange

13.3.27 Long jump on false

Short description: "Else" conditional long jump.

Synopsis: LJF Off

Operands: Off shall be a two-byte signed offset (in complement-to-two notation)
specifying the number of instructions to move forwards or backwards
within the current routine.

Stack: ..., Test � ...

Types: Not applicable.

Parameters: Test shall be interpreted as of boolean type.

Effect: If the top element of the stack is "false" then
if Off is positive, jump Off instructions forwards;
if Off is negative, jump -Off instructions backwards.

Formal
specification:

if ! (PS.pop(’boolean’)) then IP += Off;

Errors: StackUnderflow
JumpOutOfRange

 Recommendation T.173 (07/97) 65

13.3.28 Long jump

Short description: Unconditional long jump.

Synopsis: LJMP Off

Operands: Off shall be a two-byte signed offset (in complement-to-two notation)
specifying the number of instructions to move forwards or backwards
within the current routine.

Stack: ... � ...

Types: Not applicable.

Parameters: None.

Effect: If Off is positive, jump Off instructions forwards;
if Off is negative, jump -Off instructions backwards.

Formal
specification:

IP += Off;

Errors: JumpOutOfRange

13.3.29 Call

Short description: Call routine.

Synopsis: CALL Fid

Operands: Fid shall be the two-byte representation of a function identifier specifying
the routine to invoke.

Stack: ..., ParN, ... , Par1 � ...

Types: Not applicable.

Parameters: Par1, ..., ParN (where N is the number of parameters of the routine) are the
actual parameters of the routine. They shall be interpreted as of the same
type as the formal parameters of the routine when those are passed by
value, and they shall be interpreted as of data identifier type and reference
a variable of the same type of the formal parameters of the routine when
those are passed by reference.

Effect: Pop the top elements of the parameter stack and invoke the routine
specified by Fid with these elements as actual parameters. For parameters
passed by reference, check that the data identifier does not reference a
local variable and points to data of the same type as in the signature. Push
one frame onto the call stack with the current context. Initialize the local
variable table for the routine. Set the instruction pointer to the first
instruction of the routine.

66 Recommendation T.173 (07/97)

Formal
specification:

TID tid;
CS.push(IP, FR, SP, LT);
FR = Fid;
LT = RT[Fid].LT;
for (short i = 0; i < RT[Fid].nbp; i--;)
{
 switch (RT[Fid].sig[i].mod)
 {
 case ’value’:
 tid = RT[Fid].sig[i].TID;
 break;
 case ’reference’:
 tid == ’data identifier’;

 if (8000h <= PS[SP](tid) < 8100h)

 then raise(’InvalidParameter’);
 if (RT[Fid].sig[i].TID !=
 DT(PS[SP](tid)).TID)
 then raise(’TypeMismatch’);
 break;
 };
 LT[I+0x8000].val = PS.pop(tid);
};
IP = RT[Fid].IP;

Errors: InvalidIdentifier
StackUnderflow
TypeMismatch
InvalidParameter

13.3.30 External call

Short description: Call external function.

Synopsis: XCALL Fid

Operands: Fid shall be the two-byte representation of a function identifier specifying
the service or predefined function to invoke.

Stack: ..., ParN, ... , Par1 � ..., (Ret)

Types: Not applicable.

Parameters: Par1 shall be interpreted as of object reference type. It indicates the
reference of the IDL instance to which to apply the operation.
Par2, ..., ParN (where N is the number of parameters of the function,
plus 1) are the actual parameters of the function. Whatever the passing
mode, they shall be interpreted as of data identifier type.
If the function has a return value type other than void, Ret shall be of this
type.

Effect: Check that the parameters reference data of the same type as in the
function’s signature. Pop the top elements of the parameter stack and
invoke the external function specified by Fid with these elements as
actual parameters. Push one frame onto the call stack with the current
context. Pass parameters to and invoke the external function. If the
invocation is asynchronous, pop the call stack as soon as the request is
acknowledged. If the invocation is synchronous, wait for completion of
the request. If an exception is raised, activate the handler of the exception.
Otherwise, retrieve the function’s output parameters and return value,

 Recommendation T.173 (07/97) 67

push the return value onto the parameter stack and pop the call stack.
Formal
specification:

DID buf[ST[Fid].nbp];
Object obref = PS.pop(’object reference’);
for (short i = 0; i < ST[Fid].nbp; i++;)
{
 if (ST[Fid].sig[i].TID != DT(PS[SP](’data identifier’).TID))

 then raise(’TypeMismatch’);
 buf[I] = PS.pop(’data identifier’);
};
CS.push(IP, FR, SP, LT);
FR = Fid;
LT[0].tid = ’object reference’;
LT[0].val = obref;
for (short i = 1;i < ST[Fid].nbp; i++}
 LT[i].TID = ’data identifier’;
 LT[i].val = buf[i];
}
short Pid = (Fid>>8)−64;
if (PT[Pid].sts != ’available’) then raise(’BadPackageStatus’);
_open_package(PT[Pid].name);

// open a context to invoke the service
_pass_in_parameter(LT[0]);

// according to the platform mapping specification procedure
for (short I=1; i<ST[Fid].nbp; i++;)
 switch(ST[Fid].sig[i].mod)
 {
 case ’in’: _pass_in_parameter (LT[i]);
 case ’out’: _pass_out_parameter (LT[i]);
 case ’inout’: _pass_inout_parameter (LT[i]);
 };

if (ST[Fid].mod == ’asynchronous’) then
{
 _invoke_operation(PT[Pid].name, ST[Fid].name);
 {IP, FR, SP, LT} = CS.pop();
}
else
{
 result = _invoke_operation(PT[Pid].name, ST[Fid].name);
 if (result == ’ok’) then
 {
 _retrieve_out_parameter();
 {IP, FR, SP, LT} = CS.pop();
 if (ST[Fid].TID != ’void’) then
 PS.push(_retrieve_return_value());
 }
 else // the result is an exception formatted as a message
 {
 FR = HT[result.MID];
 LT = result.LT;
 IP = RT[FT].IP;
 }
}

_close_package(PT[Pid].name);
// close service invocation context

68 Recommendation T.173 (07/97)

Errors: InvalidIdentifier
StackUnderflow
TypeMismatch
BadPackageStatus
InvalidObjectReference

13.3.31 Push
Short description: Push data value.
Synopsis: PUSH Did

Operands: Did shall be the two-byte representation of a data identifier holding the
value to push onto the stack.

Stack: ... � ..., Val

Types: Not applicable.
Parameters: Val shall be of the same type as the constant or variable identified by Did.
Effect: Check that Did identifies a constant or variable of a primitive type. Push

the value of the constant or variable whose data identifier is Did onto the
parameter stack.

Formal
specification:

if (DT(Did).tid > ’object reference’) then raise(’InvalidType’);
PS.push(DT(Did).val);

Errors: InvalidIdentifier
InvalidType

13.3.32 Push reference

Short description: Push data identifier.

Synopsis: PUSHR Did

Operands: Did shall be the two-byte representation of a data identifier to push onto
the stack.

Stack: ... � ..., Val

Types: Not applicable.

Parameters: Val shall be of data identifier type.

Effect: Push Did onto the parameter stack.

Formal
specification:

PS.push(Did);

Errors: None.

13.3.33 Push immediate

Short description: Push short integer.

Synopsis: PUSHI Int

Operands: Int shall be the two-byte representation of a signed short integer value (in
complement-to-two notation) specifying the value to push onto the stack.

Stack: ... � ..., Val

Types: Not applicable.

Parameters: Val shall be of short type.

Effect: Push Int onto the parameter stack.

 Recommendation T.173 (07/97) 69

Formal
specification:

PS.push(Int);

Errors: None.

13.3.34 Pop

Short description: Pop value and assign it to a variable.

Synopsis: POP Did

Operands: Did shall be the two-byte representation of the data identifier of the
variable to which to assign the top element of the stack.

Stack: ..., Val � ...

Types: Not applicable.

Parameters: Val shall be interpreted as of the type of the variable identified by Did.

Effect: Check that Did identifies a variable of a primitive type. Pop Val from the
parameter stack into the variable identified by Did.

Formal
specification:

TID tid = VT(Did).TID;
if (tid > ’object reference’) then raise(’InvalidType’)
VT(Did).val = PS.pop(tid);

Errors: InvalidIdentifier
StackUnderflow
InvalidType

13.3.35 Pop reference

Short description: Pop value and assign it to the variable referenced by a variable.

Synopsis: POPR Did

Operands: Did shall be the two-byte representation of the data identifier of a variable
of data identifier type, whose value identifies the variable to which to
assign the value of the top element of the stack.

Stack: ..., Val � ...

Types: Not applicable.

Parameters: Val shall be interpreted as of the type of VT(Did).val.

Effect: Check that Did identifies a variable of data identifier type.
Pop Val from the parameter stack and assign it to the variable identified
by Did.

Formal
specification:

TID tid = type(VT(Did).val.TID);
if (tid != ’data identifier’) then raise(’InvalidType’);
VT(VT(Did).val).val = PS.pop(tid);

Errors: InvalidIdentifier
StackUnderflow
InvalidType

13.3.36 Pop contents

Short description: Pop variable and assign its value to a variable.

Synopsis: POPC Did1

70 Recommendation T.173 (07/97)

Operands: Did1 shall be the two-byte representation of the data identifier of the
variable to which to assign the value of the data identified by the top
element of the stack.

Stack: ..., Did2 � ...

Types: Not applicable.

Parameters: Did2 shall be interpreted as of data identifier type. The data identified by
Did2 shall be interpreted as of the type of the data identified by Did1.

Effect: Check that Did1 and Did2 identify data of the same type.
Pop Did2 from the parameter stack and assign the value of Did2 to the
variable identified by Did1.

Formal
specification:

DID did2 = PS.pop(’data identifier’);
if (VT(Did1).TID != DT(did2).TID) then raise(’TypeMismatch’);
VT(Did1).val = DT(did2).val;

Errors: InvalidIdentifier
StackUnderflow
TypeMismatch

13.3.37 Allocate

Short description: Create dynamic variable.

Synopsis: ALLOC Tid

Operands: Tid shall be the two-byte representation of a type identifier specifying the
type of the dynamic variable to allocate.

Stack: ..., � ..., Did

Types: Not applicable.

Parameters: Did shall be of data identifier type.

Effect: Generate a dynamic variable whose type is identified by Tid. Push its data
identifier onto the parameter stack.

Formal
specification:

DID did = new(Tid);
VT[did].val = ’null’; // default value for the type
VT[did].TID = Tid;
PS.push(did);

Errors: AllocationFailed
InvalidIdentifier

13.3.38 Increment

Short description: Increment variable.

Synopsis: INC Did

Operands: Did shall be the two-byte representation of the data identifier of the
variable which to increment.

Stack: ..., Val � ...,

Types: Not applicable.

Parameters: Val shall be interpreted as of the type of the variable identified by Did.

 Recommendation T.173 (07/97) 71

Effect: Check that Did identifies a variable of a numeric type. Pop the parameter
stack and increment the value of the variable identified by Did by the
popped value.

Formal
specification:

TID tid = VT(Did).TID;
if (VT(Did).TID > ’double’) raise(’InvalidType’);
VT(Did).val += PS.pop(<T>);

Errors: InvalidIdentifier
StackUnderflow
InvalidType
ArithmeticOverflow

13.3.39 Decrement

Short description: Decrement variable.

Synopsis: DEC Did

Operands: Did shall be the two-byte representation of the data identifier of the
variable which to decrement. The variable identified by Did shall be of a
numeric type.

Stack: ..., Val � ...,

Types: Not applicable.

Parameters: Val shall be interpreted as of the type of the variable identified by Did.

Effect: Check that Did identifies a variable of a numeric type. Pop the parameter
stack and decrement the value of the variable identified by Did by the
popped value.

Formal
specification:

TID tid = VT(Did).TID;
if (VT(Did).TID > ’double’) raise(’InvalidType’);
VT(Did).val -= PS.pop(<T>);

Errors: InvalidIdentifier
StackUnderflow
InvalidType
ArithmeticOverflow

13.3.40 Get

Short description: Get value of element of data of constructed type.

Synopsis: GET Did Lvl

Operands: Did shall be the two-byte representation of the data identifier of the data to
access.
Lvl shall be a one-byte unsigned quantity representing the number of
nested levels to go to access the sought value.

Stack: ..., Idx(Lvl), ..., Idx(1) � ..., Val

Types: Not applicable.

Parameters: Idx(1), ... Idx(Lvl) shall be interpreted as of unsigned short type.
Val shall be of the same type as the accessed element.

72 Recommendation T.173 (07/97)

Effect: Replace a list of indices on the parameter stack by the value of the
element addressed by the popped indices within the constructed type data
identified by Did:
 Val = DT(Did)[Idx(1),...,Idx(Lvl)]
Check that the accessed element is of a primitive type. If Lvl equals 0,
perform as a PUSH instruction.

Formal
specification:

void *buf = &DT(Did);
unsigned short idx;
for (;Lvl>0; Lvl--;)

{
 if (buf->TID <= ’object reference’) then raise(’InvalidLevel’);
 idx = PS.pop(’unsigned short’);
 if (buf->lg < idx) then raise (’InvalidIndex’);
 buf = &buf->.val[idx];
}
if (buf->TID > ’object reference’) then raise(’InvalidType’);
PS.push(buf->val);

Errors: InvalidIdentifier
InvalidLevel
StackUnderflow
InvalidIndex
InvalidType

13.3.41 Get contents

Short description: Set data contents to element of data of constructed type.

Synopsis: GETC Did1 Lvl

Operands: Did1 shall be the two-byte representation of the data identifier of the data
to access.
Lvl shall be a one-byte unsigned quantity representing the number of
nested levels to go to access the element to access.

Stack: ..., Did2, Idx(Lvl), ..., Idx(1) � ...,

Types: Not applicable.

Parameters: Idx(1), ... Idx(Lvl) shall be interpreted as of unsigned short type.

Effect: Pop a list of indices and a data identifier Did2 from the parameter stack.
Within the constructed type data identified by Did1, assign the variable
identified by Did2 to the element addressed by the popped list of indices:
 VT(Did2).Val = DT(Did1)[Idx(1),...,Idx(Lvl)]
Check that the element to access is of the same type as the data identified
by Did2.

 Recommendation T.173 (07/97) 73

Formal
specification:

void *buf = &DT(Did1);
unsigned short idx;
for (;Lvl>0; Lvl--;)
{

 if (buf->TID <= ’object reference’) then raise(’InvalidLevel’);
 idx = PS.pop(’unsigned short’);
 if (buf->lg < idx) then raise (’InvalidIndex’);
 buf = &buf->.val[idx];
}
DID did2 = PS.pop(’data identifier’);
if (VT(did2).TID != buf->TID) then raise(’TypeMismatch’);
VT(did2).val = buf->val;

Errors: InvalidIdentifier
InvalidLevel
StackUnderflow
InvalidIndex
TypeMismatch

13.3.42 Set

Short description: Set element of variable of constructed type to value.

Synopsis: SET Did Lvl

Operands: Did shall be the two-byte representation of the data identifier of the
variable to modify.
Lvl shall be a one-byte unsigned quantity representing the number of
nested levels to go to access the element to modify.

Stack: ..., Val, Idx(Lvl), ..., Idx(1) � ...,

Types: Not applicable.

Parameters: Idx(1), ... Idx(Lvl) shall be interpreted as of unsigned short type.
Val shall be interpreted as of the same type as the element to modify.

Effect: Pop a list of indices and a value from the parameter stack. Within the
structured variable identified by Did, assign the element addressed by the
popped list of indices to the popped value:
 VT(Did)[Idx(1),...,Idx(Lvl)] = Val
Check that the element to modify is of a primitive type. If Lvl equals 0,
perform as a POP instruction.

Formal
specification:

void *buf = &VT(Did);
unsigned short idx;
for (;Lvl>0; Lvl--;)
{
 if (buf->TID <= ’object reference’) then raise(’InvalidLevel’);
 idx = PS.pop(’unsigned short’);
 if (buf->lg < idx) then raise (’InvalidIndex’);
 buf = &buf->.val[idx];
}
if (buf->TID > ’object reference’) then raise(’InvalidType’);
buf->val = PS.pop(buf->TID);

74 Recommendation T.173 (07/97)

Errors: Invalid Identifier
InvalidLevel
StackUnderflow
InvalidIndex
InvalidType

13.3.43 Set contents

Short description: Set element of variable of constructed type to data contents.

Synopsis: SETC Did1 Lvl

Operands: Did1 shall be the two-byte representation of the data identifier of the
variable to modify.
Lvl shall be a one-byte unsigned quantity representing the number of
nested levels to go to access the element to modify.

Stack: ..., Did2, Idx(Lvl), ..., Idx(1) � ...,

Types: Not applicable.

Parameters: Idx(1), ... Idx(Lvl) shall be interpreted as of unsigned short type.
Did2 shall be interpreted as of data identifier type.

Effect: Pop a list of indices and a data identifier from the parameter stack. Within
the structured variable identified by Did1, assign the element addressed by
the popped list of indices to the value identified by the popped data:
 VT(Did1)[Idx(1),...,Idx(Lvl)] = DT(Did2).
Check that Did2 identifies a data of the type of the element to modify. If
Lvl equals 0, perform as a POPC instruction.

Formal
specification:

void *buf = VT(Did1);
unsigned short idx;
for (;Lvl>0; Lvl--;)
{
 if (buf->TID <= ’object reference’) then raise(’InvalidLevel’);
 idx = PS.pop(’unsigned short’);
 if (buf->lg < idx) then raise (’InvalidIndex’);
 buf = &buf->.val[idx];
}
DID did2 = PS.pop(’data identifier’);
if (DT(did2).TID != buf->TID) then raise(’TypeMismatch’);
buf->val = DT(did2).val;

Errors: InvalidIdentifier
InvalidLevel
StackUnderflow
InvalidIndex
TypeMismatch

 Recommendation T.173 (07/97) 75

13.4 Type conversion rules

This subclause defines the rules that shall apply when a convert (CVT) instruction is used to convert
a parameter stack value (hence a value of a primitive type) from a source type to a destination type.

Values of the data identifier and object reference types shall not be converted to or from a value of
another type.

As regards the other primitive types, not all type conversions are allowed; however, any of them can
be converted to any other using sequences of conversions.

Table 4 shows the allowed type conversions together with the number of the subclause in which they
are defined:

Table 4/T.173 – Type conversions

Source/Destination O S L W U F D B C

O N/A 13.4.2.2 N/A 13.4.2.2 N/A N/A N/A 13.4.4 N/A

S N/A N/A 13.4.2.3 13.4.1 13.4.3 N/A N/A 13.4.4 N/A

L N/A 13.4.5 N/A N/A 13.4.1 13.4.2.3 N/A 13.4.4 N/A

W 13.4.5 13.4.1 13.4.2.3 N/A 13.4.2.3 N/A N/A 13.4.4 13.4.1

U N/A N/A 13.4.1 13.4.5 N/A 13.4.2.3 N/A 13.4.4 N/A

F N/A N/A 13.4.6 N/A 13.4.6 N/A 13.4.2.3 N/A N/A

D N/A N/A N/A N/A N/A 13.4.5 N/A N/A N/A

B 13.4.2.1 13.4.2.1 N/A N/A N/A N/A N/A N/A N/A

C N/A N/A N/A 13.4.1 N/A N/A N/A N/A N/A

13.4.1 Reversible conversions

The following conversions are lossless (i.e. preserve information) when reversed:

– between unsigned short and character (WC, CW);

– between short and unsigned short (SW, WS);

– between long and unsigned long (LU, UL).

For all these conversions, the result of the conversion shall be the value of the target type that has the
same complement-to-two notation as the source value.

13.4.2 Lossless extensions

The following conversions extend the source value in a lossless fashion:

– from boolean (BO, BS) (see 13.4.2.1);

– from octet to a numeric type (OS, OW) (see 13.4.2.2);

– from a signed numeric type to a signed numeric type with a larger range (SL, LF, FD)
(see 13.4.2.3);

– from an unsigned numeric type to any numeric type with a larger range (WL, WU, UF)
(see 13.4.2.3).

13.4.2.1 Conversions from boolean

If the value of the source boolean is false, the value in the destination type shall be 0.

76 Recommendation T.173 (07/97)

If the value of the source boolean is true, the value in the destination type shall be the value which
corresponds to all bits set at 1 (in complement-to-two notation), i.e.:

– 255 for an octet destination type;

– −1 for a short destination type.

13.4.2.2 Conversions from octet to a numeric type

The value in the destination type shall be the octet value.

13.4.2.3 Lossless conversions from a numeric to a larger numeric type

The value in the destination type shall be the same numeric value as the value in the source type.

13.4.3 Lossy extensions

The conversion from short to unsigned long (SU) shall perform as follows:

– if the source value is positive or null, the destination value shall be the same numeric value
as the source value;

– if the source value is strictly negative, the destination value is unspecified.

13.4.4 Truncations to boolean

Truncations from an octet or numeric type to boolean (OB, SB, WB, LB, UB) shall perform as
follows:

– if the source value is 0, the destination value shall be "false";

– if the source value is different from 0, the destination value shall be "true".

13.4.5 Truncations between integer or between floating-point types

Truncations from an integer type to an octet or integer type (WO, LS, UW) or from a floating-point
type to another floating-point type (DF) shall perform as follows:

– if the source value is within the range of the destination type, then the destination value shall
be the same numeric value as the source value;

– otherwise, the destination value is unspecified.

13.4.6 Truncations from floating-point to integer

Truncations from a floating-point type to an integer type (FL, FU) shall perform as follows:

– first the decimal part of the source value shall be truncated to an integer value (rounding
down);

– then the rules defined in 13.4.5 shall apply to the truncated value.

14 IDL mapping to MHEG-SIR

This clause specifies how an IDL specification shall be mapped to the declarations of an
interchanged script, when this IDL specification is intended for use by the script as an external
service provider.

This clause defines the mapping to MHEG-SIR declarations for:

– IDL interfaces and modules;

– IDL types;

– IDL constants;

 Recommendation T.173 (07/97) 77

– references to IDL objects;

– IDL operations;

– IDL attributes;

– IDL exceptions.

14.1 IDL specifications

An IDL specification shall be mapped to an MHEG-SIR PackageDeclaration declared as a component
of an external-package-declarations component of the InterchangedScript. The name of the IDL
specification shall be mapped to the name component of this package declaration.

NOTE – Examples of IDL specifications are MHEG API, MPEG/DSM-CC.

If the number of operations or exceptions of an IDL specification exceed the size of a package, the
specification shall be split into several packages sharing the same name, but having different MHEG-
SIR identifiers.

14.2 IDL interfaces and modules

As the package declaration is a "flat" organization, there is neither a mapping for an IDL module nor
for an IDL interface. However, a reference to the embedding interface (i.e. a parameter of type
Object) shall be provided as an implicit parameter to each invocation of function describing an IDL
operation.

14.3 IDL operations

An IDL operation shall be mapped to an MHEG-SIR services component of the package declaration
that maps the IDL specification to which the operation belongs.

14.3.1 Operation name

The global name for an IDL operation shall be mapped to the MHEG-SIR name component of this
service description.

14.3.2 Operation parameters

The parameters of an IDL operation shall be mapped to the parameters-description component of the
service description. In a ServiceParameterDescription, each IDL parameter type shall be mapped to the
type component which identifies a type declared according to the type mapping rules defined in this
clause. The IDL passing mode for a parameter shall be mapped to the passing-mode component of the
corresponding MHEG-SIR service parameter description.

If the operation has neither an output parameter nor a return value and is specifically designed to
return several exceptions in sequence (e.g. for notification purposes), the value of its calling-mode
component should be "asynchronous". Otherwise, the value of the calling-mode component shall be
"synchronous".

If a semantically synchronous operation is intended to raise several exceptions in sequence, it should
be split into two MHEG-SIR operations: a synchronous one and an asynchronous one.

14.3.3 Implicit parameter

When an IDL operation is mapped to an MHEG-SIR service description, the object instance to which
the operation applies shall remain an implicit parameter, i.e. it shall not be expressed as part of the
signature of the service.

78 Recommendation T.173 (07/97)

NOTE – However, upon invoking the operation, this parameter is provided as the leading actual parameter as
if its type were "object reference" and its passing-mode were "in".

14.3.4 Return value

The return value type of an IDL operation shall be mapped to the return-value-type component of the
service description.

14.4 IDL attributes

An IDL attribute shall be mapped to two service descriptions within a package declaration: one
accessor service, whose function is to get the value of the attribute, and one modifier service, whose
function is to set the value of the attribute.

14.4.1 Accessor

As concerns the accessor service, the global IDL attribute name whose final identifier is prefixed
with "get_" shall be mapped to the MHEG-SIR name component of the service description. An
accessor service shall have no explicit parameter. The IDL attribute type shall be mapped to the
return-value-type component of the service description.

Example: In the MHEG-3 API, the routine_id attribute of the RoutineInvocation object shall be mapped
to the IDL global name MHEG_3::RoutineInvocation::get_RoutineId

14.4.2 Modifier

As concerns the modifier service, the global IDL attribute name whose final identifier is prefixed
with "set_" shall be mapped to the MHEG-SIR name component of the service description. A
modifier service shall have one parameter with in passing mode and such that the IDL attribute type
shall be mapped to the type component of the parameters description for this service. A modifier
service shall have no return value.

14.4.3 Readonly attribute

If an IDL attribute is defined as readonly, only the accessor service shall be provided as part of the
package declaration.

14.5 IDL inherited operations

Inherited IDL operations shall be mapped as if they were defined in the specific interface.

14.6 IDL exceptions

An IDL exception shall be mapped to an MHEG-SIR exception-description component of the package
declaration that maps the IDL specification to which the exception belongs.

14.6.1 Exception name

The IDL global name of the exception shall be mapped to the MHEG-SIR name component of this
exception description.

14.6.2 Exception members

Members of an IDL exception shall be mapped to the parameters-description component of this
exception description. In this parameters description, each IDL member type shall be mapped to the
type component which identifies a type declared according to the type mapping rules defined in this
clause.

 Recommendation T.173 (07/97) 79

14.6.3 Implicit member

When an IDL exception is mapped to an MHEG-SIR exception description, the object instance from
which the exception originates shall remain an implicit member, i.e. shall not be expressed as part of
the signature of the exception.

NOTE – However, upon raising the exception, this member is provided as the leading actual member as if its
type were "object reference".

14.7 IDL types

An IDL type shall be mapped to an MHEG-SIR TypeDeclaration declared as a component of the
type-declarations component of the InterchangedScript. A type declaration shall have a global scope in
the interchanged script.

IDL basic types and constructors shall be mapped to MHEG-SIR primitive types and constructors as
summarized in Table 5:

Table 5/T.173 – Type mapping

IDL MHEG-SIR

void void

octet octet

short short

unsigned short unsigned short

long long

unsigned long unsigned long

float float

double double

boolean boolean

char character

enum unsigned long

string string

sequence sequence

array array

struct structure

union union

(object) object reference

any data identifier (see below)

14.7.1 char type

Mapping IDL char types to MHEG-SIR character types shall involve transcoding values from
ISO 8859-1 to ISO/IEC 10646-1.

14.7.2 enum type

The range checking of enum values need not be preserved.

14.7.3 Constructed types

An IDL type definition shall be mapped to an MHEG-SIR TypeDescription. If the IDL type is a basic
type or if it has already been the subject of another type declaration, this type description shall

80 Recommendation T.173 (07/97)

consist of a type identifier. Otherwise, it shall be constructed according to the following mapping
rules:

– an IDL struct field shall be mapped to its rank in the MHEG-SIR structure description; its
name shall not be preserved;

– an IDL union tag value shall be mapped to its rank in the MHEG-SIR union description; its
name and value shall not be otherwise preserved;

– a multidimensional IDL array shall be mapped to an MHEG-SIR array whose element type is
array.

14.7.4 any type

The IDL any type shall be mapped to MHEG-SIR data identifier provided that the any type is used
with an associated key to determine the actual type:

 struct { Key the_key; any value }

where Key is a string, numeric or enum type whose value completely determines the type of the value
field.

The above IDL type shall be mapped to an MHEG-SIR structure of two elements:

– an unsigned short representing a valid TID within the script, to map the key;

– a data identifier representing a variable of the type identified by the first element and which
holds the value.

Any other use of the any type is not guaranteed to have its semantics preserved when mapped to
MHEG-SIR.

14.7.5 Restrictions on types

If two IDL constructed types have the same structure, they shall be mapped to a single MHEG-SIR
type.

14.8 IDL constants

IDL constants shall be mapped to an MHEG-SIR ConstantDeclaration declared as a component of the
constant-declarations component of the InterchangedScript. A constant declaration shall have a global
scope in the interchanged script.

15 The MHEG-3 API

This clause specifies the syntax and semantics of the MHEG-3 API.

Interchanged scripts shall use the MHEG-3 API according to the IDL interface syntax defined in this
clause and in Annex F.

MHEG-SIR script interpreters shall provide the MHEG-3 API according to the IDL interface syntax
defined in this clause and in Annex F, with the semantics defined in this clause. The invocation of
the operations shall have the effect specified in this clause.

All MHEG-SIR predefined functions that map MHEG-3 API operations shall be synchronous.

The MHEG-3 API definition consists of a unique IDL module called MHEG_3. This module defines
predefined types, three exceptions and four object interfaces; there is no inheritance relationship
among the four objects.

 Recommendation T.173 (07/97) 81

15.1 ScriptInterpreter object

The ScriptInterpreter object represents the script interpreter. It shall be unique. It is used as a factory
for MhScript objects.

To invoke operations on the ScriptInterpreter object, interchanged scripts shall use "null" as the value
of the implicit object reference parameter.

15.1.1 kill operation

Synopsis

Interface: ScriptInterpreter

Operation: kill

Result: void

Description

The kill operation is used to kill the ScriptInterpreter object and terminate the script interpreter
process.

When the operation is invoked, the main process shall invoke a destroy operation on all available
MhScript objects then terminate the script interpreter process.

Unlike the other MHEG-3 API operations, this operation is not an MHEG-SIR predefined function.
Therefore, it shall not be available for use by MHEG-SIR interchanged scripts.

15.1.2 prepare operation

Synopsis

Interface: ScriptInterpreter

Operation: prepare

Result: MhScript

In: ContentReference content_reference

Exception: InvalidParameter

Exception: InvalidScript

Exception: OperationFailed

Description

The prepare operation is used to create an MhScript object from an interchanged script and request the
script interpreter to initialize that mh-script.

The content_reference parameter specifies the location of the interchanged script. It consists of two
strings: a public identifier and a system identifier. If any one of these strings is null, it shall be
ignored. At least one of both string field values shall be non-null.

When the operation is invoked, the main process shall perform the mh-script initialization operations
as specified by 9.5.2. As soon as this has been achieved, the status of the mh-script shall become
available.

The result of the operation shall be an object reference to the created MhScript.

The InvalidParameter exception shall be raised if the content_reference parameter does not allow to
access an interchanged script. Then the rank member shall be 1.

82 Recommendation T.173 (07/97)

The InvalidScript exception shall be raised if an illegal statement is detected during parsing of the
interchanged script. Then the the_entity member shall represent the type of the first entity in the
declarations part on which an error has been detected, whereas the identifier member shall represent
the identifier of this entity as follows:

– a TID for a type declaration;

– a DID for a constant declaration or a variable declaration;

– a FID for a service declaration or a routine declaration;

– a MID for an exception declaration or a handler declaration;

– a PID for a package declaration.

The OperationFailed exception shall be raised if the mh-script initialization operations cannot be
completed although no error has been detected in the syntax of the interchanged script.

Whenever an exception is raised, the MhScript object shall not be created and the status of the mh-
script shall remain not available.

15.2 MhScript object

The MhScript object represents an available mh-script. It is used as a factory for RtScript objects.

15.2.1 destroy operation

Synopsis

Interface: MhScript

Operation: destroy

Result: void

Description

The destroy operation is used to kill the MhScript object and destroy the corresponding mh-script.

When the operation is invoked, the main process shall perform the following steps in the specified
order:

– put the target mh-script to not available status;

– invoke a delete operation on all existing RtScript objects that have been created by this mh-
script;

– perform the package unload procedure for all packages;

– release all the mh-script memory areas attached to the mh-script.

15.2.2 new operation

Synopsis

Interface: MhScript

Operation: new

Result: RtScript

Exception: OperationFailed

Description

The new operation is used to create an RtScript object from the mh-script and request the script
interpreter to initialize that rt-script.

 Recommendation T.173 (07/97) 83

When the operation is invoked, the main process shall perform the rt-script initialization operations
as specified by 9.5.3. After successful initialization, the status of the rt-script shall become ready.

The result of the operation shall be an object reference to the created RtScript.

The OperationFailed exception shall be raised if the rt-script initialization operations cannot be
completed. Then the RtScript object shall not be created and the status of the rt-script shall remain
not ready.

15.3 RtScript object

The RtScript object represents an rt-script whose status is ready, running or erroneous. It is used as
a factory for RoutineInvocation objects.

15.3.1 delete operation

Synopsis

Interface: RtScript

Operation: delete

Result: void

Description

The delete operation is used to kill the RtScript object and destroy the corresponding rt-script.

When the operation is invoked, the main process shall perform the following steps in the specified
order:

– put the target rt-script to not ready status;

– invoke a close operation on all RoutineInvocation objects that have been created by the rt-
script;

– terminate all processing units;

– release all rt-script memory areas attached to the rt-script.

15.3.2 setPriority operation

Synopsis

Interface: RtScript

Operation: setPriority

Result: void

In: unsigned short priority

Description

The setPriority operation is used to modify the scheduling priority associated with the rt-script.

The priority parameter specifies the new priority value.

When the operation is invoked, the main process may modify its scheduling policy accordingly. The
precise effect of this operation is not specified by this Recommendation. Depending on the
implementation, it may have no effect. However, the execution unit of an rt-script with a lower
priority value than another rt-script shall not be given more CPU time than the execution unit of the
latter.

84 Recommendation T.173 (07/97)

15.3.3 getPriority operation

Synopsis

Interface: RtScript

Operation: getPriority

Result: unsigned short

Description

The getPriority operation is used to retrieve the current value of the scheduling priority associated
with the rt-script. If no priority has been explicitly set to this rt-script, the default value specified by
the script interpreter shall be used.

15.3.4 setData operation

Synopsis

Interface: RtScript

Operation: setData

Result: void

In: DID variable_id

In: any variable_value

Exception: InvalidParameter

Exception: OperationFailed

Description

The setData operation is used to assign a value to a global or dynamic variable of the rt-script.

The variable_id parameter specifies the data identifier of the data to modify.

The variable_value parameter specifies the value to assign to the variable. The type of the actual
parameter is determined by the type of the variable.

When the operation is invoked, the main process shall request the rt-script execution unit to assign
the target variable to the provided value.

The InvalidParameter exception shall be raised:

– if the variable_id parameter references a constant, a local variable or a non-existing constant
or variable. Then the rank member shall be 1;

– if the variable_value parameter is not of an IDL type that matches the MHEG-SIR type of the
target variable. Then the rank member shall be 2.

The OperationFailed exception shall be raised if the status of the rt-script is running or erroneous.

15.3.5 getData operation

Synopsis

Interface: RtScript

Operation: getData

Result: any

In: DID data_id

Exception: InvalidParameter

Exception: OperationFailed

 Recommendation T.173 (07/97) 85

Description

The getData operation is used to retrieve the current value of a constant or variable.

The data_id parameter specifies the data identifier of the data to access.

When the operation is invoked, the rt-script execution unit shall return the current value of the
constant or variable.

The result of the operation shall be the requested value and shall be of an IDL type that matches the
MHEG-SIR type of the target constant or variable.

The InvalidParameter exception shall be raised if the data_id parameter references a non-existing
constant or variable. Then the rank member shall be 1.

The OperationFailed exception shall be raised if the status of the rt-script is running or erroneous.

15.3.6 allocate operation

Synopsis

Interface: RtScript

Operation: allocate

Result: DID

In: TID variable_type_id

Exception: InvalidParameter

Exception: OperationFailed

Description

The allocate operation is used to create a dynamic variable of a given type within the rt-script.

The variable_type_id parameter specifies the MHEG-SIR type identifier of the target variable, as
declared within the rt-script.

When the operation is invoked, the rt-script execution unit shall perform as if it would execute an
ALLOC instruction with variable_type_id as operand, i.e. it shall reserve appropriate heap memory,
generate a new DID and return it.

The result of the operation shall be the data identifier of the new dynamic variable.

The InvalidParameter exception shall be raised if the value of the variable_type_id parameter is neither
a predefined type nor a type declared within the rt-script. Then the rank member shall be 1.

The OperationFailed exception shall be raised wherever the ALLOC instruction would raise an error.
Then the variable shall not be allocated and the error register shall not be modified.

15.3.7 free operation

Synopsis

Interface: RtScript

Operation: free

Result: void

In: DID variable_id

Exception: InvalidParameter

86 Recommendation T.173 (07/97)

Description

The free operation is used to destroy a dynamic variable of the rt-script.

The variable_id parameter specifies the data identifier of the variable to be released.

When the operation is invoked, the rt-script execution unit shall perform as if it would execute a
FREE instruction with variable_id as parameter, i.e. it shall release the dynamic variable and make its
identifier invalid.

The InvalidParameter exception shall be raised if the variable_id parameter does not refer to an existing
dynamic variable previously allocated through the MHEG-3 API. Then the rank member shall be 1.

NOTE – A script interpreter may use a data identifier allocation policy that allows to distinguish easily
variables allocated through the MHEG-3 API from variables allocated using an instruction, for instance by
the range to which their data identifier belongs.

15.3.8 stop operation

Synopsis

Interface: RtScript

Operation: stop

Result: void

Exception: OperationFailed

Description

The stop operation is used to put the rt-script back into ready status.

When the operation is invoked, the script interpreter shall request the rt-script execution unit to stop,
flush the calling stack, message queue and parameter stack and reset all registers. It shall then put the
rt-script to ready status. Unlike the reInit operation, the global and dynamic variables shall not be
changed.

The OperationFailed exception shall be raised if the operation could not be performed successfully,
for instance if the rt-script memory areas have been corrupted due to an execution error.

15.3.9 reInit operation

Synopsis

Interface: RtScript

Operation: reInit

Result: void

Exception: OperationFailed

Description

The reInit operation is used to put the rt-script back into its initial state, i.e. just after initialization.

When the operation is invoked, the script interpreter shall:

– terminate the rt-script execution unit;

– release all dynamic variables;

– set the global variables back to their initial values (as in the mh-script global variable
definition table);

– flush the parameter stack, the message queue and the calling stack, releasing local variable
tables;

 Recommendation T.173 (07/97) 87

– reset all registers;

– finally, put the rt-script to ready status.

The OperationFailed exception shall be raised if the operation could not be performed successfully,
for instance if the rt-script memory areas have been corrupted due to an execution error.

15.3.10 getRtScriptStatus operation

Synopsis

Interface: RtScript

Operation: getRtScriptStatus

Result: RtScriptStatus

Description

The getRtScriptStatus operation is used to retrieve the current status of the rt-script.

The result of the operation shall be one of the following: READY, RUNNING or ERRONEOUS.

15.3.11 open operation

Synopsis

Interface: RtScript

Operation: open

Result: RoutineInvocation

In: FID routine_id

Exception: InvalidParameter

Description

The open operation is used to create an RoutineInvocation object from the rt-script.

The routine_id parameter specifies the function identifier of the routine with which the new
RoutineInvocation object is associated.

The script interpreter may opt for either of the following policies:

a) to retrieve the signature of the target routine when the open operation is invoked, so as to
check the validity of the passed parameters "on the fly", i.e. as soon as a setParameter
operation is invoked;

b) to check the validity of parameters only upon invocation of the run operation.

The result of the operation shall be an object reference to the created RoutineInvocation.

The InvalidParameter exception shall be raised if the routine_id parameter does not identify a valid
routine of the rt-script. In this case, the rank member shall be 1.

15.4 RoutineInvocation object

The RoutineInvocation object represents an invocation context of a routine. This invocation context is
used to pass parameters to and to request execution of a given routine of the rt-script.

15.4.1 close operation

Synopsis

Interface: RoutineInvocation

Operation: close

88 Recommendation T.173 (07/97)

Result: void

Description

The close operation is used to kill the RoutineInvocation object and close the corresponding routine
invocation context.

15.4.2 routine_id readonly attribute

Synopsis:

Interface: RoutineInvocation

Attribute: FID routine_id

Description

The routine_id attribute is a readonly attribute that is set at creation of the RoutineInvocation object by
the open operation. Its value shall be the function identifier of the routine that the RoutineInvocation
object addresses.

Interchanged scripts shall access the value of this attribute using the get_RoutineId predefined
function.

15.4.3 setParameter operation

Synopsis

Interface: RoutineInvocation

Operation: setParameter

Result: void

In: unsigned short rank

In: TID parameter_type_id

In: any parameter_value

Exception: InvalidParameter

Description

The setParameter operation is used to pass the value of a parameter of the routine for use by the next
run operation.

The rank parameter specifies the rank of the passed parameter in the routine signature description,
where 0 indicates the first parameter. It therefore corresponds to the index of the parameter in the
routine’s local variable table.

The parameter_type_id parameter specifies the MHEG-SIR type identifier of the passed parameter, as
declared within the rt-script.

The parameter_value parameter specifies the value of the passed parameter. The type of the value is
determined by the parameter_type_id parameter.

When the operation is invoked, the script interpreter shall buffer the parameter for use by the next
run operation on this routine. If the script interpreter opts for policy a) defined in 15.3.11, it shall
check the validity of the parameter_type_id and parameter_value parameters with regard to the routine’s
signature.

If the script interpreter opts for policy a) defined in 15.3.11, the InvalidParameter exception shall be
raised:

 Recommendation T.173 (07/97) 89

– if the operation's rank parameter exceeds the number of the last parameter of the routine.
Then the exception's rank member shall be 1;

– if the parameter_type_id parameter does not correspond to the type of parameter in the
routine's signature. Then the exception's rank member shall be 2;

– if the parameter_value parameter is not of an appropriate type, i.e. an IDL type that matches
the type described by the parameter_type_id parameter, when the passing mode is by value,
and a DID type when the passing mode is by reference. Then the exception's rank member
shall be 3;

– when the passing mode is by reference, if the parameter_value parameter is a DID that does
not identify an existing global or dynamic variable whose type matches the parameter type
defined by the routine's signature. Then the exception's rank member shall be 3.

15.4.4 getPrototype operation

Synopsis

Interface: RoutineInvocation

Operation: getPrototype

Result: Prototype

Description

The getPrototype operation is used to retrieve the signature of the routine.

When the operation is invoked, the script interpreter shall return the signature of the routine.

The result of the operation shall be a description of the routine signature:

a) the return_value_type field shall be set to RT[routine_id].TID;

b) the nth item of the signature field shall correspond to RT[routine_id].sig[n]:

1) the passing_mode field shall be set to BY_VALUE, or BY_REFERENCE respectively, when
RT[routine_id].sig[n].mod is 'value', 'reference' respectively;

2) the parameter_type_id field shall be set to RT[routine_id].sig[n].TID.

15.4.5 run operation

Synopsis

Interface: RoutineInvocation

Operation: run

Result: void

Exception: OperationFailed

Description

The run operation is used to request the execution of the routine with the parameter values
previously provided using the setParameter operation.

When the operation is invoked, the main process shall:

– create a message whose message identifier is the index of the routine (i.e. the value of the
routine_id attribute) and whose parameters are the parameters set by the preceding
setParameter operations;

– insert this message into the message queue of the target rt-script;

– if the current status of the rt-script is ready, put it to running.

90 Recommendation T.173 (07/97)

If the script interpreter opts for policy b) defined in 15.3.11, it shall check the validity, with regard to
the routine’s signature, of all the type identifiers and values of the parameters previously provided
using the setParameter operation.

The OperationFailed exception shall be raised if any of the provided parameters does not map the
routine’s signature.

15.4.6 reset operation

Synopsis

Interface: RoutineInvocation

Operation: reset

Result: void

Description

The reset operation is used to clear the routine invocation context to prepare a new invocation.

When the operation is invoked, the parameters previously buffered as the result of a setParameter
operation shall be cleared.

NOTE – Using this operation after each run avoids any risk of collision. Not using it allows to repeat the
same invocation without supplying the parameters again.

15.4.7 getInvocationStatus operation

Synopsis

Interface: RoutineInvocation

Operation: getInvocationStatus

Result: InvocationStatus

Description

The getInvocationStatus operation is used to retrieve the current routine invocation status.

The result of the operation shall be one of the following values:

– NOT_STARTED: no run operation has been invoked since the creation of the object or since
the last reset operation;

– PROCESSING: a run operation has been invoked but the routine execution has not been
completed by the rt-script execution unit (either the request is in the message queue or the
routine is currently under execution);

– TERMINATED: the routine execution triggered by the last invoked run operation has been
completed by the rt-script execution unit;

– ABORTED: the routine execution triggered by the last invoked run operation has resulted in
an instruction execution error.

ANNEX A

ASN.1 specification of interchanged scripts

This Annex specifies the ASN.1 notation, according to ITU-T Rec. X.680 | ISO/IEC 8824-1 [1], for
the syntax of the "script data" component of the MHEG "script" class.

Interchanged scripts shall have the syntax defined by the ASN.1 ISOMHEG-sir module.

 Recommendation T.173 (07/97) 91

-- Module: MHEG-SIR (sir)--
--
-- Copyright statement:
-- --------------------
-- (c) ITU, 1996.
-- Permission to copy in any form is granted for use with conforming to
-- MHEG-3 engines and applications as defined by this Recommendation
-- provided this notice is included in all copies.

ISOMHEG-sir {joint-iso-itu-t (2) mheg (19) version (1) script-interchange-representation (11)}
DEFINITIONS IMPLICIT TAGS ::= BEGIN

EXPORTS InterchangedScript;

InterchangedScript ::= SEQUENCE
{
 type-declarations SEQUENCE (SIZE (1.. max-nb-declared-types)) OF
 TypeDeclaration OPTIONAL,
 constant-declarations [0] SEQUENCE (SIZE (1 .. max-nb-constants)) OF
 ConstantDeclaration OPTIONAL,
 global-variable-declarations [1] SEQUENCE (SIZE (1 .. max-nb-global-variables)) OF
 VariableDeclaration OPTIONAL,
 external-package-declarations [2] SEQUENCE (SIZE (1 .. max-nb-packages)) OF
 PackageDeclaration OPTIONAL,
 handler-declarations [3] SEQUENCE (SIZE (1 .. max-nb-messages)) OF
 HandlerDeclaration OPTIONAL,
 routine-declarations [4] SEQUENCE (SIZE (1 .. max-nb-routines)) OF
 RoutineDeclaration OPTIONAL
}

TypeDeclaration ::= SEQUENCE
{
 identifier [0] TypeIdentifier OPTIONAL,
 description TypeDescription
}

TypeDescription ::= CHOICE
{
 string-description [1] INTEGER (0..max-size-string) OPTIONAL,
 sequence-description [2] SequenceDescription,
 array-description [3] ArrayDescription,
 structure-description [4] StructureDescription,
 union-description [5] UnionDescription
}

SequenceDescription ::= SEQUENCE
{
 bound INTEGER (0 .. max-size-sequence),
 element-type TypeIdentifier
}

ArrayDescription ::= SEQUENCE
{
 size INTEGER (1 .. max-size-array),
 element-type TypeIdentifier
}

UnionDescription ::= SEQUENCE (SIZE (1 .. max-size-union)) OF TypeIdentifier

StructureDescription ::= SEQUENCE (SIZE (1 .. max-size-structure)) OF TypeIdentifier

92 Recommendation T.173 (07/97)

ConstantDeclaration ::= SEQUENCE
{
 identifier [0] DataIdentifier OPTIONAL,
 type TypeIdentifier ALL EXCEPT 0,
 value ConstantValue
}
ConstantValue ::= CHOICE
{
 octet [1] OctetValue,
 short [2] ShortValue,
 long [3] LongValue,
 unsigned-short [4] UnsignedShortValue,
 unsigned-long [5] UnsignedLongValue,
 float [6] FloatValue,
 double [7] DoubleValue,
 boolean [8] BooleanValue,
 character [9] CharacterValue,
 data-identifier [10] DataIdentifier (0..<max-nb-constants),
 string [11] StringValue,
 sequence [12] SequenceValue,
 array [13] ArrayValue,
 structure [14] StructureValue,
 union [15] UnionValue
}

SequenceValue ::= SEQUENCE (SIZE (0 .. max-size-sequence)) OF ConstantValue

ArrayValue ::= SEQUENCE (SIZE (1 .. max-size-array)) OF ConstantValue

UnionValue ::= SEQUENCE
{
 tag INTEGER (0 .. < max-size-union),
 value ConstantValue
}

StructureValue ::= SEQUENCE (SIZE (1 .. max-size-structure)) OF ConstantValue

VariableDeclaration ::= SEQUENCE
{
 identifier [0] DataIdentifier OPTIONAL,
 type TypeIdentifier,
 initial-value ConstantReference OPTIONAL
}

PackageDeclaration ::= SEQUENCE
{
 identifier [0] PackageIdentifier OPTIONAL,
 name VisibleString OPTIONAL,
 services SEQUENCE (SIZE (0 .. max-nb-services)) OF
 ServiceDescription,
 exceptions SEQUENCE (SIZE (0 .. max-nb-exceptions)) OF
 ExceptionDescription
}

ServiceDescription ::= SEQUENCE
{
 identifier [0] FunctionIdentifier OPTIONAL,
 name VisibleString OPTIONAL,
 calling-mode ENUMERATED {synchronous (0), asynchronous (1)}
 DEFAULT synchronous,

 Recommendation T.173 (07/97) 93

 return-value-type TypeIdentifier DEFAULT 0,
 parameters-description SEQUENCE OF ServiceParameterDescription OPTIONAL
}

ServiceParameterDescription ::= SEQUENCE
{
 passing-mode ENUMERATED {in (1), out (2), inout (3)} DEFAULT in,
 type TypeIdentifier ALL EXCEPT 0
}

ExceptionDescription ::= SEQUENCE
{
 identifier [0] MessageIdentifier OPTIONAL,
 name VisibleString OPTIONAL,
 parameters-description SEQUENCE OF TypeIdentifier OPTIONAL
}

HandlerDeclaration ::= SEQUENCE
{
 message-identifier MessageIdentifier,
 function-identifier FunctionIdentifier
}

RoutineDeclaration ::= SEQUENCE
{
 routine-description RoutineDescription,
 program-code OCTET STRING
}

RoutineDescription ::= SEQUENCE
{
 identifier [0] FunctionIdentifier OPTIONAL,
 return-value-type TypeIdentifier DEFAULT 0,
 parameters-description [1] SEQUENCE OF RoutineParameterDescription OPTIONAL,
 local-variable-table [2] SEQUENCE (SIZE (0 .. max-nb-local-variables)) OF
 VariableDeclaration OPTIONAL
}

RoutineParameterDescription ::= SEQUENCE
{
 passing-mode ENUMERATED {value (1), reference (3)} DEFAULT value,
 type TypeIdentifier ALL EXCEPT 0
}

ConstantReference ::= CHOICE
{
 identifier [16] DataIdentifier,
 value ConstantValue
}

max-size-sequence INTEGER ::= 65535
max-size-string INTEGER ::= 65535
max-size-array INTEGER ::= 65536
max-size-union INTEGER ::= 256
max-size-structure INTEGER ::= 256
max-nb-global-variables INTEGER ::= 28672
max-nb-constants INTEGER ::= 4096
max-nb-local-variables INTEGER ::= 256
max-nb-dynamic-variables INTEGER ::= 32512
max-nb-data INTEGER ::= 65536
 -- max-nb-constants+max-nb-global-variables+max-nb-local-variables+max-nb-dynamic-

94 Recommendation T.173 (07/97)

 -- variables
max-nb-packages INTEGER ::= 192
max-nb-services INTEGER ::= 256
max-nb-routines INTEGER ::= 4096
max-nb-predef-functions INTEGER ::= 12288
max-nb-functions INTEGER ::= 65536
 -- max-nb-packagesxmax-nb-services+max-nb-predef-functions+max-nb-routines
max-nb-exceptions INTEGER ::= 256
max-nb-predef-messages INTEGER ::= 16384
max-nb-messages INTEGER ::= 65536
 -- max-nb-packagesxmax-nb-exceptions+max-nb-predef-messages
max-nb-declared-types INTEGER ::= 16384
max-nb-predef-types INTEGER ::= 16384
max-nb-types INTEGER ::= 32768
 -- max-nb-predef-types + max-nb-declared-types

OctetValue ::= OCTET STRING (SIZE (1))
ShortValue ::= INTEGER (−32768 .. 32767)
LongValue ::= INTEGER (−2147483648 .. 2147483647)
UnsignedShortValue ::= INTEGER (0 .. 65535)
UnsignedLongValue ::= INTEGER (0 .. 4294967295)
FloatValue ::= REAL
DoubleValue ::= REAL
BooleanValue ::= BOOLEAN
CharacterValue ::= BMPString (SIZE (1))
StringValue ::= BMPString (SIZE (0.. max-size-string))

TypeIdentifier ::= INTEGER (0 .. < max-nb-types)
DataIdentifier ::= INTEGER (0 .. < max-nb-data)
FunctionIdentifier ::= INTEGER (0 .. < max-nb-functions)
MessageIdentifier ::= INTEGER (0 .. < max-nb-messages)
PackageIdentifier ::= INTEGER (0 .. < max-nb-packages)

END

ANNEX B

Coded representation of interchanged scripts

B.1 Coding for interchanged scripts

Interchanged scripts shall be encoded according to the ASN.1 Distinguished Encoding Rules (DER)
as specified by ITU-T Rec. X.690 | ISO/IEC 8825-1 [2].

NOTE – This is intended to make the MHEG-3 engine's decoding task as efficient as possible by removing
all ASN.1 encoding options that might delay or complicate it.

B.2 Coding for the program code

The value of the program-code component of the RoutineDeclaration type defined by ISOMHEG-sir (see
Annex A) shall be encoded according to the rules defined in this subclause.

The sequence of instructions that make up the program code of a routine shall be encoded as a
sequence of octets. The order of encoding will be the same as the order in which the instructions are
intended to be executed.

Each instruction shall be encoded using one octet for the op-code, followed by zero to three octets
for the operands, depending on the op-code.

 Recommendation T.173 (07/97) 95

B.2.1 Instruction op-codes

The op-codes shall be encoded using the bitstring defined by Table B.1.

B.2.2 Instruction operands

According to the op-code of the instruction, the operands shall have the length and encoding defined
by Table B.1. All multiple-byte operands shall be encoded in big-endian order, i.e. most significant
byte first.

B.2.2.1 Data identifier operands

DID operands shall be encoded using two octets as follows:

– if bit 16 is "1" and bits 15 to 9 are "0", the DID shall reference a local variable, where bits 8
to 1 represent the local variable index (from 0 to 255);

– if bit 16 is "1" otherwise, the DID shall reference a dynamic variable, where bits 15 to 1
represent the dynamic variable index (from 0 to 32511) incremented by 256;

– if bits 16 to 13 are "0000", the DID shall reference a constant, where bits 12 to 1 represent
the constant index (from 0 to 4095);

– otherwise, the DID shall reference a global variable, where bits 15 to 1 represent the global
variable index (from 0 to 28671) incremented by 4096.

B.2.2.2 Function identifier operands

FID operands shall be encoded on two octets as follows:

– if bits 16 to 13 are "0000", the FID shall reference a routine, where bits 12 to 1 represent the
routine index (from 0 to 4095);

– if bits 16 and 15 are "00" otherwise, the FID shall reference a predefined function, where bits
14 to 1 represent the predefined function index (from 0 to 12287) incremented by 4096;

– otherwise, the FID shall reference a service, where bits 16 to 9 represent the package
identifier (from 0 to 191) incremented by 64, and where bits 8 to 1 represent the service
index (from 0 to 255) within this package.

B.2.2.3 Miscellaneous numeric operands

1-octet "offset" operands shall be encoded in complement-to-one notation on 1 octet: bit 8 represents
the direction of movement, bits 7 to 1 represent the number of units to shift in that direction.

2-octet "offset" operands shall be encoded in complement-to-one notation on 2 octets: bit 16
represents the direction of movement, bits 15 to 1 represent the number of units to shift in that
direction.

"Value" operands shall be encoded in complement-to-two notation on two octets, for interpretation
as signed integer values.

"Index" operands shall be encoded on one octet, for interpretation as unsigned integer values.

96 Recommendation T.173 (07/97)

Table B.1/T.173 – Encoding of MHEG-SIR instructions

Instruction
mnemonics

Op-code
(binary)

Opcode
(hexa)

Op1
length

Op1 encoding Op2
length

Op2 encoding

NOP 0000 0000 00 0

YIELD 0000 0010 02 0

RET 0000 0011 03 0

FREE 0000 1000 08 0

NOT_B 0001 0000 10 0

NOT_O 0001 0001 11 0

NOT_W 0001 0010 12 0

NOT_U 0001 0011 13 0

OR_B 0001 0100 14 0

OR_O 0001 0101 15 0

OR_W 0001 0110 16 0

OR_U 0001 0111 17 0

XOR_B 0001 1000 18 0

XOR_O 0001 1001 19 0

XOR_W 0001 1010 1A 0

XOR_U 0001 1011 1B 0

AND_B 0001 1100 1C 0

AND_O 0001 1101 1D 0

AND_W 0001 1110 1E 0

AND_U 0001 1111 1F 0

EQR 0010 0000 20 0

EQ_O 0010 0001 21 0

EQ_S 0010 0010 22 0

EQ_L 0010 0011 23 0

EQ_W 0010 0100 24 0

EQ_U 0010 0101 25 0

EQ_F 0010 0110 26 0

EQ_D 0010 0111 27 0

EQ_B 0010 1000 28 0

EQ_C 0010 1001 29 0

EQ_I 0010 1010 2A 0

EQ_R 0010 1011 2B 0

LT_C 0011 0000 30 0

LT_O 0011 0001 31 0

LT_S 0011 0010 32 0

LT_L 0011 0011 33 0

LT_W 0011 0100 34 0

LT_U 0011 0101 35 0

LT_F 0011 0110 36 0

LT_D 0011 0111 37 0

 Recommendation T.173 (07/97) 97

Table B.1/T.173 – Encoding of MHEG-SIR instructions (continued)

Instruction
mnemonics

Op-code
(binary)

Opcode
(hexa)

Op1
length

Op1 encoding Op2
length

Op2 encoding

GT_C 0011 1000 38 0

GT_O 0011 1001 39 0

GT_S 0011 1010 3A 0

GT_L 0011 1011 3B 0

GT_W 0011 1100 3C 0

GT_U 0011 1101 3D 0

GT_F 0011 1110 3E 0

GT_D 0011 1111 3F 0

ADD_O 0100 0001 41 0

ADD_S 0100 0010 42 0

ADD_L 0100 0011 43 0

ADD_W 0100 0100 44 0

ADD_U 0100 0101 45 0

ADD_F 0100 0110 46 0

ADD_D 0100 0111 47 0

SUB_O 0100 1001 49 0

SUB_S 0100 1010 4A 0

SUB_L 0100 1011 4B 0

SUB_W 0100 1100 4C 0

SUB_U 0100 1101 4D 0

SUB_F 0100 1110 4E 0

SUB_D 0100 1111 4F 0

MUL_O 0101 0001 51 0

MUL_S 0101 0010 52 0

MUL_L 0101 0011 53 0

MUL_W 0101 0100 54 0

MUL_U 0101 0101 55 0

MUL_F 0101 0110 56 0

MUL_D 0101 0111 57 0

DIV_O 0101 1001 59 0

DIV_S 0101 1010 5A 0

DIV_L 0101 1011 5B 0

DIV_W 0101 1100 5C 0

DIV_U 0101 1101 5D 0

DIV_F 0101 1110 5E 0

DIV_D 0101 1111 5F 0

NEG_S 0110 0010 62 0

NEG_L 0110 0011 63 0

NEG_F 0110 0110 66 0

NEG_D 0110 0111 67 0

98 Recommendation T.173 (07/97)

Table B.1/T.173 – Encoding of MHEG-SIR instructions (continued)

Instruction
mnemonics

Op-code
(binary)

Opcode
(hexa)

Op1
length

Op1 encoding Op2
length

Op2 encoding

REM_O 0111 1001 79 0

REM_S 0111 1010 7A 0

REM_L 0111 1011 7B 0

REM_W 0111 1100 7C 0

REM_U 0111 1101 7D 0

DUP_O 1000 0001 81 0

DUP_S 1000 0010 82 0

DUP_L 1000 0011 83 0

DUP_W 1000 0100 84 0

DUP_U 1000 0101 85 0

DUP_F 1000 0110 86 0

DUP_D 1000 0111 87 0

DUP_B 1000 1000 88 0

DUP_C 1000 1001 89 0

DUP_I 1000 1010 8A 0

DUP_R 1000 1011 8B 0

CVT_SW 1001 0100 94 0

CVT_WS 1001 0101 95 0

CVT_LU 1001 0110 96 0

CVT_UL 1001 0111 97 0

CVT_CW 1001 1010 9A 0

CVT_WC 1001 1011 9B 0

CVT_BS 1010 0000 A0 0

CVT_OS 1010 0001 A1 0

CVT_SL 1010 0010 A2 0

CVT_LF 1010 0011 A3 0

CVT_WL 1010 0100 A4 0

CVT_UF 1010 0101 A5 0

CVT_FD 1010 0110 A6 0

CVT_BO 1010 1000 A8 0

CVT_OW 1010 1001 A9 0

CVT_SU 1010 1010 AA 0

CVT_WU 1010 1100 AC 0

CVT_OB 1011 0001 B1 0

CVT_SB 1011 0010 B2 0

CVT_LB 1011 0011 B3 0

CVT_WB 1011 0100 B4 0

CVT_UB 1011 0101 B5 0

CVT_WO 1011 1001 B9 0

CVT_LS 1011 1010 BA 0

 Recommendation T.173 (07/97) 99

Table B.1/T.173 – Encoding of MHEG-SIR instructions (concluded)

Instruction
mnemonics

Op-code
(binary)

Opcode
(hexa)

Op1
length

Op1 encoding Op2
length

Op2 encoding

CVT_FL 1011 1011 BB 0

CVT_UW 1011 1100 BC 0

CVT_FU 1011 1101 BD 0

CVT_DF 1011 1110 BE 0

JT 1100 0000 C0 1 (signed) offset

JF 1100 0001 C1 1 (signed) offset

JMP 1100 0010 C2 1 (signed) offset

SHIFT_O 1100 0101 C5 1 (signed) offset

SHIFT_W 1100 0110 C6 1 (signed) offset

SHIFT_U 1100 0111 C7 1 (signed) offset

GETOR 1100 1001 C9 1 package identifier

LJT 1101 0000 D0 2 (signed) offset

LJF 1101 0001 D1 2 (signed) offset

LJMP 1101 0010 D2 2 (signed) offset

CALL 1101 0100 D4 2 function identifier

XCALL 1101 0110 D6 2 function identifier

PUSH 1110 0000 E0 2 data identifier

PUSHR 1110 0001 E1 2 data identifier

PUSHI 1110 0011 E3 2 (signed) value

POP 1110 0100 E4 2 data identifier

POPR 1110 0101 E5 2 data identifier

POPC 1110 0110 E6 2 data identifier

ALLOC 1110 1000 E8 2 type identifier

INC 1110 1100 EA 2 data identifier

DEC 1110 1101 EB 2 data identifier

GET 1111 0000 F0 2 data identifier 1 (unsigned) index

GETC 1111 0010 F2 2 data identifier 1 (unsigned) index

SET 1111 0100 F4 2 data identifier 1 (unsigned) index

SETC 1111 0110 F6 2 data identifier 1 (unsigned) index

ANNEX C

MHEG-SIR predefined elements

This Annex lists the predefined types, functions and messages of MHEG-SIR, together with their
corresponding indices.

Predefined types, functions and messages may be referenced by their identifier and used within
interchanged scripts in the same way types, functions and messages declared within the global
declarations part of interchanged scripts would.

100 Recommendation T.173 (07/97)

C.1 Predefined types

MHEG-SIR predefined types comprise:

– primitive types.

– MHEG API types.

C.1.1 Primitive types

The primitive types defined by this Recommendation shall be encoded using predefined type
identifiers as listed in Table C.1.

Table C.1/T.173 – Predefined type identifiers
for primitive types

Type name Type identifier
void 0
octet 1
short 2
long 3
unsigned short 4
unsigned long 5
float 6
double 7
boolean 8
character 9
data identifier 10
object reference 11

All types that may be expressed in MHEG-SIR (including predefined MHEG types) can be built
using the MHEG-SIR primitive types and the following constructors:

– string;

– sequence;

– array;

– structure;

– union.

By convention, the unbounded string type (the only constructed type without an element or a
parameter) shall be predefined and shall have 12 as its type identifier.

C.1.2 MHEG API types

The MHEG API types defined by the MHEG API shall be encoded using predefined type identifiers.

NOTE – MHEG API types are intended for use by interchanged scripts to express information which is
exchanged between the script interpreter and MHEG entities.

The IDL definition of these types, as provided by an MHEG API, shall be mapped to MHEG-SIR
type descriptions using the general IDL mapping rules defined in clause 14 and the specific
MHEG API mapping rules defined in E.2.

 Recommendation T.173 (07/97) 101

C.2 Predefined functions

MHEG-SIR predefined functions comprise:

– MHEG API operations;

– MHEG-3 API operations.

C.2.1 MHEG API operations

The MHEG API operations defined by the MHEG API shall be encoded using predefined function
identifiers.

Predefined message identifiers for the MHEG API operations shall start at 1100h.

The IDL definition of these operations, as provided by the MHEG-3 API, shall be mapped to
MHEG-SIR function descriptions using the general IDL mapping rules defined in clause 14 and the
specific MHEG API mapping rules defined in E.2.

C.2.2 MHEG-3 API operations

The MHEG-3 API operations defined by the MHEG-3 API, as defined in clause 15, shall be encoded
using predefined function identifiers according to Table C.2.

Table C.2/T.173 – Predefined function identifiers for
MHEG-3 API operations

Operation name Predefined function index Function identifier

prepare 0 1000h
destroy 1 1001h
new 2 1002h
delete 3 1003h
setPriority 4 1004h
getPriority 5 1005h
setData 6 1006h
getData 7 1007h
allocate 8 1008h
free 9 1009h
stop 10 100Ah
reInit 11 100Bh
getRtScriptStatus 12 100Ch
open 13 100Dh
close 14 100Eh
getRoutineId 15 100Fh
setParameter 16 1010h
getPrototype 17 1011h
run 18 1012h
reset 19 1013h
getInvocationStatus 20 1014h

The IDL definition of these operations, as defined in Annex F, shall be mapped to MHEG-SIR
function descriptions using the IDL mapping rules defined in clause 14.

102 Recommendation T.173 (07/97)

C.3 Predefined messages

MHEG-SIR predefined messages targeted at an rt-script result from:

– invocation of the MHEG-3 API run operation;

– the InstructionExecutionError exception;

– MHEG-3 API exceptions;

– MHEG API exceptions.

C.3.1 MHEG-3 API operations

The identifier of the message resulting from the invocation of a run operation, as defined in
subclause 15.4.5, shall be equal to the function identifier of the target routine.

Messages resulting from MHEG-3 API operations shall therefore have a message identifier value
between 0 and 0FFFh.

C.3.2 The InstructionExecutionError exception

The InstructionExecutionError exception, as defined in 9.5.2, shall have 1000h as its message
identifier.

The InstructionExecutionError exception shall have one member of type unsigned long, whose value
shall be set to the value of the ER.

The major error code shall determine the least significant byte of the member (and the ER) as defined
by Table C.3.

Table C.3/T.173 – Instruction execution error codes

Error name Error code
InvalidOperand 1
InvalidParameter 2
InvalidType 3
InvalidIdentifier 4
InvalidLevel 5
InvalidIndex 6
StackUnderflow 7
ArithmeticOverflow 8
DivisionByZero 9
HandlerNotFound 10
InvalidReturnValue 11
BadPackageStatus 12
InvalidObjectReference 13
TypeMismatch 14
JumpOutOfRange 15
AllocationFailed 16

 Recommendation T.173 (07/97) 103

C.3.3 MHEG-3 API exceptions

The MHEG-3 API exceptions, as defined in clause 15, shall have the message identifiers defined by
Table C.4.

Table C.4/T.173 – Predefined message identifiers for
the MHEG-3 API exceptions

Exception name Predefined message index Message identifier
InvalidScript 1 1001h
InvalidParameter 2 1002h
OperationFailed 3 1003h

The IDL definition of these exceptions, as defined in Annex F, shall be mapped to MHEG-SIR
message descriptions using the IDL mapping rules defined in clause 14.

C.3.4 MHEG API exceptions

The MHEG API exceptions defined by the MHEG API shall be encoded using predefined message
identifiers.

Predefined message identifiers for the MHEG API exceptions shall start at 1100h.

The IDL definition of these exceptions, as provided by the MHEG API, shall be mapped to
MHEG-SIR message descriptions using the general IDL mapping rules defined in clause 14 and the
specific MHEG API mapping rules defined in E.2.

ANNEX D

IDL Platform mapping specification form

MHEG-3 engines shall allow access to the services provided by the run-time environment of a given
platform, provided this run-time environment complies with the registered "platform mapping
specification" for this platform.

The registered "platform mapping specifications" shall be provided according to the template
specified in this Annex, with all fields being completed.

This MHEG-SIR platform-mapping specification defines the mechanisms that need to be used by
MHEG-3 engines to access the services provided by the run-time environment on the platform.

Platform description

The platform to which this specification applies is <platform_description>.

Package availability procedure

To know whether an IDL specification is available within the run-time environment and to locate it,
an MHEG-3 engine shall proceed as follows. <package_availability_procedure>

Package load procedure

To make the operations of an available IDL specification accessible, an MHEG-3 engine shall
proceed as follows. <package_load_procedure>

104 Recommendation T.173 (07/97)

Package unload procedure

To stop the operations of an available IDL specification from being accessible, an MHEG-3 engine
shall proceed as follows. <package_unload_procedure>

Operation invocation procedure

To invoke an operation of an accessible IDL specification, an MHEG-3 engine shall proceed as
follows. <operation_invocation_procedure>

Parameter passing procedure

When invoking an IDL operation, an MHEG-3 engine shall pass in parameters as follows.
<in_parameter_passing_procedure>

When invoking an IDL operation, an MHEG-3 engine shall pass out parameters as follows.
<out_parameter_passing_procedure>

When invoking an IDL operation, an MHEG-3 engine shall pass inout parameters as follows.
<inout_parameter_passing_procedure>

Output parameter retrieval procedure

To retrieve the values of out or inout parameters after invoking an IDL operation, an MHEG-3
engine shall proceed as follows. <output_parameter_retrieval_procedure>

Return value retrieval procedure

To retrieve the return value of a previously invoked IDL operation, an MHEG-3 engine shall proceed
as follows. <return_value_retrieval_procedure>

Data encoding rules

The values of data that are interchanged between the MHEG-3 engine and the run-time environment
shall be encoded as follows. <data_encoding_rules>

Exception retrieval procedure

To retrieve exceptions that are raised by the run-time environment, an MHEG-3 engine shall proceed
as follows. <exception_retrieval_procedure>

System exceptions

The system exceptions that may be raised by the run-time environment and retrieved by an MHEG-3
engine are defined as follows. <system_exception_definitions>

Resource limitations

When using the run-time environment on the platform, the following resource limitations apply.
<resource_limitations_statement>

 Recommendation T.173 (07/97) 105

ANNEX E

MHEG API definition process

As exposed in 8.3.3, this generic Recommendation does not define a specific MHEG API. It defines
instead a generic set of rules and procedures applicable to the definition of the MHEG API to be
provided by any Recommendation that describes presentation objects. This comprises:

– the rules that shall be used to produce the MHEG API definition (see E.1);

– the procedure that shall be used to define the MHEG-SIR mapping of this MHEG API
(see E.2).

E.1 Generic API definition framework

Producing an MHEG API specification from another Recommendation that describes presentation
objects (hereafter called an MHEG specification) is a process that consists in producing IDL
elements from MHEG elements.

The MHEG elements on which this process applies are described in E.1.1. The IDL elements to be
produced from these MHEG elements are described in E.1.2. The rules used to produce the IDL
elements from the MHEG elements are described in E.1.3 and the subsequent subclauses.

E.1.1 MHEG elements input to MHEG API definition process

The ITU-T Recommendations of the T.170-Series (and parts of ISO/IEC 13522) share a number of
key features. The following MHEG elements must be present in the source MHEG specification:

– MHEG data types, described using ASN.1 or Extended Backus-Naur Form (EBNF);

– MHEG entities (i.e. objects targeted by MHEG elementary actions), related to each other by
inheritance relationships;

– static and dynamic attributes of MHEG entities;

– MHEG elementary actions applying to MHEG entities;

– MHEG exceptions raised as the MHEG effect of elementary actions.

E.1.2 IDL elements output by MHEG API definition process

The API definition process should consist in mapping these elements to a set of IDL elements:

– IDL non-object types shall map MHEG data types;

– IDL object interfaces, related to each other by inheritance relationships, shall map MHEG
entities;

– IDL attributes, provided by IDL object interfaces, shall map static and dynamic attributes of
MHEG entities;

– IDL operations, provided by IDL object interfaces, shall map MHEG elementary actions;

– IDL exceptions shall map MHEG exceptions raised as the effect of elementary actions.

E.1.3 Requirements on the MHEG API definition process

According to ISO/IEC JTC 1 guidelines for API standardization, the MHEG API shall be defined as
an abstract API specification, i.e. a language-independent description of the semantics of a set of
functionality in an abstract syntax using abstract data types.

106 Recommendation T.173 (07/97)

As an enforcement of the recommendations of ETR 225 "API and script representation for MHEG -
Requirements and framework", an MHEG API definition shall meet the following requirements:

– portability (see E.1.3.1);

– genericity (see E.1.3.2);

– conformance testability (see E.1.3.3);

– implementability (see E.1.3.4).

E.1.3.1 Portability

The portability requirement states that MHEG applications need to use the MHEG object
manipulation and interchange service provided by MHEG engines (i.e. an MHEG API) in a way
independent of:

– the programming language used for the MHEG application;

– the underlying operating system.

To meet the portability requirement, an MHEG API shall be defined as an abstract API specification.

E.1.3.2 Genericity

The genericity requirement states that all the common requirements of MHEG applications need to
be supported by an MHEG API.

To meet the genericity requirement, an MHEG API shall be defined at the most primitive level,
i.e. in terms of primitives that match MHEG elementary actions and data types that match MHEG
data types. This guarantees to maximize the range of MHEG object manipulations made available to
applications.

E.1.3.3 Conformance testability

The conformance testability requirement states that it should be as easy as possible to test:

– the conformance of an MHEG engine to an MHEG API specification, i.e. the correct
provision of this API by an MHEG engine under test;

– the conformance of an MHEG application to an MHEG API specification, i.e. the correct use
of this API by an MHEG application under test.

To meet the conformance testability requirement, an MHEG API shall express formally its
requirements on conforming implementations and conforming applications and it shall use a formal
description technique for the definition of the MHEG API.

E.1.3.4 Implementability

The implementability requirement states that implementation of MHEG engines that conform to the
MHEG API specification need to be as easy as possible. For this purpose, the MHEG API definition
should take into account simplicity and clarity both in the definition and the formulation.

To meet the implementability requirement, an MHEG API shall provide or refer to guidelines to
produce language mapping specifications and message encoding rules from the abstract API
specification.

E.1.3.5 Fulfilment of technical requirements

The use of IDL contributes to the fulfilment of the portability and implementability technical
requirements:

– IDL is independent from a programming language. Moreover, there are public specifications
of IDL mappings to common programming languages such as C and C++;

 Recommendation T.173 (07/97) 107

– IDL provides a complete formal description language which allows a very concise, readable,
efficient specification of an MHEG API. Moreover, IDL is also appropriate for automatic
compilation, so that MHEG API implementations may be automatically generated for a
given language and operating system using appropriate IDL compilers.

E.1.4 General structure of the MHEG API

The MHEG API shall be defined using IDL as defined in ISO/IEC 14750-1 [8]. The use of IDL does
not imply a Common Object Request Broker Architecture (CORBA) environment. Therefore, beside
its use of IDL, the MHEG API shall be defined in a way independent of the CORBA architecture.

The IDL interface definition shall consist of two modules providing different API functionality. The
first module shall provide MHEG interpretation services. It shall be named module MHEG_<part>
where <part> is a number designating the Recommendation targeted by the API. The second module
shall provide accessor and modifier services for encoded MHEG entities. It shall be named module
MHEG_<part>_Access where <part> is a number designating the Recommendation targeted by the API.

The API shall provide an interface enabling the creation of an interface object instance. This
interface shall be named MHEGEntityManager. Operations enabling the deletion of an IDL instance
shall be provided by the interfaces that map MHEG entities.

Each interface mapping a MHEG entity that provides a common reference scheme for its subclasses
shall also provide the following operations:

– attach;

– detach;

– getIdentifier.

The attach operation binds an interface object instance with an MHEG entity and returns the
identifier of the bound object. The detach operation cancels the binding. The getIdentifier operation
retrieves the identifier of the MHEG entity bound with the interface object instance.

The IDL concepts used to design the interface shall map MHEG concepts according to the rules
described in the following subclauses. IDL identifiers shall map MHEG ASN.1 identifiers according
to the rules defined in the following subclauses.

The following operations shall be synchronous: create, bind, unbind, accessors and modifiers, GET
operations. Other elementary actions shall be mapped to asynchronous operations.

The API definition shall not use nested scoping levels.

E.1.5 IDL non-object datatype definition

IDL non-object types shall map MHEG datatypes expressed using ASN.1.

E.1.5.1 Name mapping

E.1.5.1.1 Data types

ASN.1 data type names shall be mapped to IDL type names as follows:

– if the ASN.1 type name consists of more than one word, no separators shall be used in the
IDL name;

– each word shall start with a capital letter, all other letters shall be in lower case.

Example: The ASN.1 type-name shall be mapped to the IDL TypeName.

108 Recommendation T.173 (07/97)

E.1.5.1.2 Components

ASN.1 component names shall be mapped to IDL field names as follows:

– if the ASN.1 name consists of more than one word, the underscore character ("_") shall be
used as a separator;

– all letters shall be in lower case;

– as IDL is not case-sensitive, type names and field names may collide when single-word
names are used. In such a case, the field name shall be prefixed by "the_". The same rule
shall be used when a single-word component name collides with an IDL keyword.

Example:

// regular field name
TypeName field_name

// collision between field name and type name
Alias the_alias

// collision between field name and IDL keyword ("string")
Type the_string

E.1.5.1.3 Values

ASN.1 value names shall be mapped to IDL value names as follows:

a) if the name consists of more than one word, the underscore character ("_") shall be used as a
separator;

b) all letters shall be in upper case;

c) as an IDL enumeration does not create a new scope, values used within enumerations may
collide. In such a case, for one of the colliding enumerations all value names (not only the
one which collides) shall be prefixed by the name of the enumerated type. This type name
shall be built using rules a) and b) (and not the regular rules for type names).

Example:

// regular value name
FIRST_VALUE

// value name in case of a collision
FIRST_ENUMERATION_FIRST_VALUE

E.1.5.2 Type mapping

E.1.5.2.1 INTEGER

An ASN.1 INTEGER type shall be mapped to an IDL long type.

Example:

-- ASN.1
Type ::= INTEGER

// IDL
typedef long Type;

E.1.5.2.2 BOOLEAN

An ASN.1 BOOLEAN type shall be mapped to an IDL boolean type.

 Recommendation T.173 (07/97) 109

Example:

-- ASN.1
Type ::= BOOLEAN

// IDL
typedef boolean Type;

E.1.5.2.3 OCTET STRING

An ASN.1 OCTET STRING type shall be mapped to an IDL sequence <octet> type.

Example:

-- ASN.1
Type ::= OCTET STRING

// IDL
typedef sequence <octet> Type;

E.1.5.2.4 ENUMERATED

An ASN.1 ENUMERATED type shall be mapped to an IDL enum type.

Example:

-- ASN.1
Type ::= ENUMERATED {value_1 (1), value_2 (2)}

// IDL
enum Type (VALUE_1, VALUE_2);

E.1.5.2.5 SEQUENCE OF

An ASN.1 SEQUENCE OF type shall be mapped to an IDL sequence type.

Example:

-- ASN.1
Type ::= SEQUENCE OF OtherType

// IDL
typedef sequence <OtherType> Type;

E.1.5.2.6 CHOICE

An ASN.1 CHOICE type shall be mapped to an IDL discriminated union by combining enum and
union. The enum type name shall be derived from the name of the CHOICE type suffixed by "Tag" in
order not to collide with the union type name. The enum value names shall be derived from the names
of the CHOICE type fields suffixed by "_TAG" in order not to collide with field names within the
switch. Within a CHOICE a NULL component shall be mapped on an empty case.

Example:

-- ASN.1
Type ::= CHOICE
{
 a A,
 b B,
 c NULL
}

110 Recommendation T.173 (07/97)

// IDL
enum TypeTag { A_TAG, B_TAG, C_TAG };
union Type
switch TypeTag {
 case A_TAG:
 A the_a;
 case B_TAG:
 B the_b;
 // no’case’ for C_TAG
};

E.1.5.2.7 SEQUENCE

An ASN.1 SEQUENCE type shall be mapped to an IDL struct type. OPTIONAL ASN.1 components
with or without DEFAULT values shall be mapped to an IDL sequence of at most one element of that
type.

Example:

-- ASN.1
Type ::= SEQUENCE
{
 a A OPTIONAL,
 b B,
 c INTEGER DEFAULT 0
}

// IDL
struct Type {
 sequence <A,1> the_a;
 B the_b;
 sequence <long,1> c;
};

E.1.5.3 Order of declarations

The order of type declarations may be different between ASN.1 and IDL because IDL does not allow
the use of a type before its declaration (and does not provide a forward declaration functionality).
IDL type declarations shall be reordered to deal with this constraint.

To enable reordering, cross-references from the ASN.1 syntax shall be suppressed.

The following examples show cross-references commonly used in ASN.1 and how they should be
removed.

Example 1:

-- ASN.1 definition using a cross-reference
-- Production rules used :
-- T = A B
-- B = T C
-- Allowed values :
-- a c*

-- T refers to B
T ::= CHOICE
{
 a A,
 b B
}
-- B refers to T

 Recommendation T.173 (07/97) 111

B ::= SEQUENCE
{
 t T,
 c C
}

-- Equivalent ASN.1 definition without cross-reference
-- The information described remains the same, the structure has changed
-- Production rules used :
-- T = A C*

T ::= SEQUENCE
{
 a A,
 s_o_c SEQUENCE OF C OPTIONAL
}

Example 2:

-- ASN.1 definition using a cross-reference
-- Production rules used :
-- T = A B
-- B = C T
-- Allowed values :
-- c*a

-- T refers to B
T ::= CHOICE
{
 a A,
 b B
}
-- B refers to T
B ::= SEQUENCE
{
 c C,
 t T
}

-- Equivalent ASN.1 definition without cross-reference
-- The information described remains the same, the structure has changed
-- Production rules used :
-- T = C* A

T ::= SEQUENCE
{
 s_o_c SEQUENCE OF C OPTIONAL,
 a A
}

However, in most cases cross-referencing should be removed by the creation of nested types, as
shown in Example 3.

Example 3:

-- ASN.1 definition using a cross-reference

-- T refers to A

112 Recommendation T.173 (07/97)

T ::= CHOICE
{
 a A,
 b B
}

A ::= -- A definition that refers to T (either directly or indirectly)

-- Equivalent ASN.1 definition without cross-reference

T ::= CHOICE
{
 a -- A definition
 b B
}

The disadvantage of the method shown in Example 3 is that very complex datatypes may be created.
Moreover part of the datatypes so created might duplicate types already defined in the syntax.

Another option is to translate the "A" ASN.1 datatype into an "A" IDL interface embedding the
corresponding "A" IDL datatype. This allows to use a forward declaration of the "A" IDL interface as
illustrated in Example 4.

Example 4:

interface A; // forward declaration

enum TTag { A_TAG, B_TAG };
union T
switch TTag {
 case A_TAG:
 A the_a;
 case B_TAG:
 B the_b;
};

interface A {

// this interface embeds the definition of type A which refers to type T

};

E.1.6 IDL interface definition

MHEG entities shall be mapped on IDL interfaces according to the following rules:

– every element that may be designated as a target of an MHEG elementary action shall be
considered as an entity. Not all entities are explicitly defined by the MHEG standard.
Moreover not all of them exist in the MHEG object model. Therefore the MHEG object
model shall be refined to integrate all the entities used;

– if an elementary action may target different types of entities, a new entity shall be created
aggregating these entities;

– the name of the new created entity shall be the concatenation of the names of the entities it
aggregates using "Or" as a separator;

– the obtained object model is the API object model. There shall be a one-to-one
correspondence between entities and interfaces;

– the IDL inheritance hierarchy shall correspond to the hierarchy of the API object model;

– interface names shall be derived from entity names using the same rules as for datatypes.

 Recommendation T.173 (07/97) 113

E.1.7 IDL attribute definition

The following categories of MHEG attributes are identified:

– interchanged attributes;

– internal attributes.

E.1.7.1 MHEG interchanged attributes

MHEG interchanged attributes shall be mapped to IDL attributes in the module MHEG-<part>-access
according to the following rules:

a) every ASN.1 type whose name ends with "Class" shall be mapped to an interface;

b) within the type [see a)], the ASN.1 COMPONENTS OF ASN.1 shall be mapped to the IDL
inheritance functionality;

c) within the type [see a)], every component shall be mapped to an attribute;

d) the naming and typing of attributes shall follow the rules defined in E.1.5.

Example:

-- ASN.1

B-Class ::= SEQUENCE
{
 COMPONENTS OF A-Class,
 i INTEGER,
 j C-Type
}

// IDL

interface BClass : AClass {
 attribute long i;
 attribute CType j;
};

E.1.7.2 MHEG internal attributes

MHEG internal attributes shall not be mapped to IDL attributes. MHEG internal attributes are
accessed and modified through the use of MHEG elementary actions which shall be mapped to IDL
operations.

E.1.8 IDL operation definition

The MHEG API interfaces shall provide the following categories of operations:

– operations that map MHEG elementary actions targeting the MHEG entity to which the
interface corresponds;

– operations used to delete an interface instance (see Note);

– operations used to attach and detach an interface instance to a MHEG entity.

NOTE – The creation of an interface instance is provided by the factory interface.

E.1.8.1 Operations mapping MHEG elementary actions

MHEG elementary actions shall be mapped to IDL operations according to the following rules:

a) there shall be a one-to-one correspondence between elementary actions and operations;

114 Recommendation T.173 (07/97)

b) the interface that provides an operation shall correspond to the target entity of the elementary
action;

c) the name of the operation shall be derived from the name of the elementary action using the
following rules:

1) if an operation name consists of more than one word, no separators shall be used;

2) the operation name shall start with a lower-case letter;

3) each word (except the first) shall start with a capital letter.

d) a "Set" elementary action shall be mapped to an operation according to the following rules:

1) the return value of the operation shall be of type void;

2) there shall be only input parameters;

3) the datatypes and names of the parameters shall be derived from the ASN.1 elementary
action definition using the rules defined in E.1.5;

4) the first parameter of the ASN.1 elementary action definition shall not be mapped
(it represents the target of the elementary action);

5) if the macro functionality is used for the definition of a parameter, the embedded
datatype shall be used;

6) if the embedded datatype referenced in d 5) is not explicitly defined, it shall be created
as outlined in Example 1 in E.1.5.3.

e) a "Get" elementary action shall be mapped to an operation according to the following rules:

1) the return value of the operation shall be the value evaluated by the elementary action;

2) the datatype of the return value does not exist as such in the MHEG ASN.1 syntax
because elementary actions are evaluating generic value. It shall therefore be one of the
following:

i) a simple datatype;

ii) a complex datatype that is used in the corresponding "Set" elementary action;

iii) if a complex datatype is returned and no corresponding "Set" elementary action
exists, the datatype shall be created.

3) there shall be no output parameters, all results shall be passed using the return value;

4) for input parameters, the rules defined in d 3), d 4), d 5), d 6) shall apply.

Example:

Elementary-Action-N ::= SEQUENCE
{
 target Target, -- to be skipped
 param1-param Param1-Parameter, -- replace
 param2-param Param2-Parameter -- replace
}

Param1-Parameter ::= CHOICE
{
 param1 Param1,
 param1-macro Param1-Macro
}

 Recommendation T.173 (07/97) 115

Param1-Macro ::= SEQUENCE
{
 -- ...
 -- ...
}
Param1 ::= -- ...

-- In "Elementary-Action-N" the "param1-parameter" parameter shall be replaced with the
-- "param1" parameter

Param2-Parameter ::= CHOICE
{
 a-param A-Parameter,
 b-param B-Parameter
}

A-Parameter ::= CHOICE
{
 a A,
 a-macro A-Macro
}

A-Macro ::= SEQUENCE
{
 -- ...
 -- ...
}

A ::= -- ...

B-Parameter ::= SEQUENCE
{
 -- ...
 -- ...
}

B-Macro ::= SEQUENCE
{
 -- ...
 -- ...
}

B ::= -- ...

-- In "Elementary-Action-N" the "param2-parameter" parameter cannot be replaced with the
-- "param2" parameter because it does not exist. Consequently an IDL datatype that
-- corresponds to the following ASN.1 datatype shall be created:

Param2 ::= CHOICE
{
 a A,
 b B
}

E.1.8.2 Operations enabling the deletion of an interface instance

Each interface shall provide an operation enabling the deletion of an interface instance. This
operation shall have the following prototype:

 void kill();

116 Recommendation T.173 (07/97)

E.1.8.3 Operations to attach and detach an interface instance to a MHEG entity

Each interface shall provide operations enabling to attach and detach an interface instance to a
MHEG entity. These operations shall be named attach and detach respectively. The attach operation
shall accept an MHEG entity reference as parameter, resolve this reference and return an MHEG
entity identifier. The detach operation shall accept no parameter.

Each interface shall provide an operation to retrieve the identifier of the MHEG entity attached to an
interface instance. This operation shall be named getIdentifier. It shall accept no parameter and return
an MHEG entity identifier.

E.1.9 IDL exception definition

IDL exceptions shall map MHEG error conditions associated with elementary actions. Error
conditions should be classified according to their nature so as to get a limited set of IDL exceptions.

The following set of exceptions is recommended:

– InvalidTarget;

– InvalidParameter;

– NotBound;

– AlreadyBound.

The InvalidTarget exception is raised when the targeted MHEG entity is not available. The period
member returns the current state (life cycle period) of the target.

The InvalidParameter exception is raised when the value of one of the parameters prohibits the normal
execution of the action. The completion_status member indicates whether the action has been
completed (with a default value assigned to the inadequate parameter) or not. The parameter_number
member identifies the rank of the invalid parameter.

The NotBound exception is raised when the interface object instance is not bound with an MHEG
entity.

The AlreadyBound exception is raised when the interface object instance is already bound with an
MHEG entity. The entity_identifier member identifies the bound entity.

The IDL definition of these exceptions is as follows:

exception InvalidTarget {
 unsigned short period;
};

enum CompletionStatus { YES, NO };

exception InvalidParameter {
 CompletionStatus completion_status;
 unsigned short parameter_number;
};

typedef long EntityIdentifier;

exception AlreadyBound {
 EntityIdentifier entity_identifier;
};

exception NotBound {};

The above-mentioned exceptions shall be defined within the global scope.

 Recommendation T.173 (07/97) 117

If an error condition cannot be handled by the above-mentioned exceptions, a specific exception shall
be created at the appropriate interface scoping level.

The IDL exception names for specific exceptions shall be derived from the name of the MHEG error
condition using the same rules as for datatypes:

– no separators shall be used;

– the exception name shall start with a capital letter;

– if an exception name consists of more than one word, no separators between words shall be
used and each word shall start with a capital letter.

E.2 MHEG API mapping to MHEG-SIR

Producing the MHEG API mapping to MHEG-SIR is a process that consists in assigning predefined
type identifiers, predefined function identifiers and predefined message identifiers to map
MHEG API types, operations and exceptions.

This mapping process shall consist of three consecutive steps:

a) extract intermediate types until all type definitions have only one level (see Example 1 in
E.1.5.3);

b) change IDL enum types to unsigned long (MHEG-SIR provides no enumerated datatype).
Compute for each type definition its "level" number, i.e. its highest possible distance from
the leaf. Unify equivalent types, starting with those with the lowest "level" number;

c) scan the resulting IDL specification to allocate predefined IDs. Assign predefined TIDs and
MIDs as soon as new types or exceptions are encountered. For each object, assign predefined
FIDs for each explicitly defined operation, for each inherited operation that is not overridden
by an explicitly defined one, for each attribute accessor and for each attribute modifier.

Example:

struct A {
 int a;
 struct {
 int b;
 struct {
 int c;
 int d;
 } b
 } c
};

// after extraction of intermediate types (a))

struct A {
 int a;
 B b;
};
struct B {
 int b;
 C c;
};
struct C {
 int c;
 int d;
};

118 Recommendation T.173 (07/97)

ANNEX F

IDL specification of the MHEG-3 API

To express direct manipulation of other scripts, interchanged scripts shall use the MHEG-3 mapping
(as defined in Annex B) of the MHEG-3 API.

MHEG-3 engines shall provide the MHEG-3 API as specified by the IDL MHEG_3 module.

module MHEG_3 {

 enum RtScriptStatus {RUNNING, READY, ERRONEOUS};
 enum InvocationStatus {NOT_STARTED, PROCESSING, TERMINATED, ABORTED};
 enum PassingMode {BY_VALUE, BY_REFERENCE};
 enum Entity {TYPE, DATA, FUNCTION, MESSAGE, PACKAGE, HANDLER};

 typedef unsigned short FID;
 typedef unsigned short DID;
 typedef unsigned short TID;

 struct ContentReference {
 string public_id;
 string system_id;
 };
 struct ParameterDescription {
 PassingMode passing_mode;
 TID parameter_type_id;
 };
 struct Prototype {
 TID return_value_type_id;
 sequence<ParameterDescription> signature;
 };

 exception InvalidParameter {
 unsigned short rank;
 };
 exception InvalidScript {
 Entity the_entity;
 unsigned short identifier;
 };
 exception OperationFailed {};

 interface MhScript;
 interface RtScript;
 interface RoutineInvocation;

 interface ScriptInterpreter {
 MhScript prepare (in ContentReference content_reference)
 raises (InvalidScript, InvalidParameter, OperationFailed);
 void kill ();
 };

 interface MhScript {
 RtScript new ()
 raises (OperationFailed);
 void destroy ();
 };
 interface RtScript {
 RoutineInvocation open (in FID routine_id)
 raises (InvalidParameter);

 Recommendation T.173 (07/97) 119

 RtScriptStatus getRtScriptStatus();

 void setPriority (in unsigned short priority);
 unsigned short getPriority ();

 DID allocate (in TID variable_type_id)
 raises (InvalidParameter, OperationFailed);
 void free (in DID variable_id)
 raises (InvalidParameter);

 void setData (in DID variable_id, in any variable_value)
 raises (InvalidParameter, OperationFailed);
 any getData (in DID data_id)
 raises (InvalidParameter, OperationFailed);

 void stop ()
 raises (OperationFailed);
 void reInit ()
 raises (OperationFailed);
 void delete ();
 };

 interface RoutineInvocation {

 readonly attribute FID routine_id;

 void setParameter (in unsigned short rank, in TID parameter_type_id,
 in any parameter_value)
 raises(InvalidParameter);

 Prototype getPrototype ();
 InvocationStatus getInvocationStatus ();

 void run ()
 raises (OperationFailed);

 void reset ();
 void close ();
 };
};

ANNEX G

Relationships with other ITU-T Recommendations of the T.170-Series
(and parts of ISO/IEC 13522)

G.1 Relationships with ITU-T Rec. T.171 (and ISO/IEC 13522-1)

This subclause specifies the requirements that apply when this Recommendation is used to extend
the provisions of ITU-T Rec. T.171 (and ISO/IEC 13522-1) [5].

The statement "other ITU-T Recommendations of the T.170-Series" ("one of the parts of
ISO/IEC 13522") used in this Recommendation shall be interpreted to be "ITU-T Rec. T.171"
("ISO/IEC 13522-1").

The MHEG-SIR defined by this Recommendation shall apply to the encoding of the script-data
component of ITU-T Rec. T. 171 (ISO/IEC 13522-1) conforming objects of the script class, whose
script-classification component is registered within the registered-script-classification catalogue to indicate

120 Recommendation T.173 (07/97)

"script" and whose catalogued-script-encoding component is registered within the registered-script-
classification to indicate "MHEG-SIR", according to the values maintained by the MHEG registration
authority.

NOTE – These values are registered according to the provisions of ISO/IEC 13522-4 [6].

In this framework, the script-data component shall be encoded according to the following restrictions
on the ISOMHEG-sc module defined in ITU-T Rec. T.171 (ISO/IEC 13522-1) [5]:

– if the script-inclusion choice is selected for the script-data component, then the
interchangedscript choice shall be selected for the script-inclusion component;

– if the data-reference choice is selected for the script-data component, then the referenced data
shall be encoded as an InterchangedScript as specified by the ISO-MHEG-sir module.

Hence MHEG-3 script objects shall conform to the syntax defined by the SIR-Script-Class subtype
hereafter.

-- ISOMHEG-sir {joint-iso-itu-t(2) mheg (19) version (1) script-interchanged-representation (11)}

IMPORTS
 MHEG-Identifier, Catalogued-Script-Classification
 FROM ISOMHEG-ud { joint-iso-itu(2) mheg(19) version(1) useful-definitions (9) }
 Registered-Script-Encoding, Registered-Script-Classification
 FROM ISOMHEG-cat { joint-iso-itu(2) mheg(19) version(1) catalogues (12) }
 Script-Class
 FROM ISOMHEG-sc { joint-iso-itu(2) mheg(19) version(1) script-class(3) }
;

SIR-Script-Class ::= Script-Class (WITH COMPONENTS
{ ...,
 script-classification (WITH COMPONENTS
 { registered-script-classification (’script’) }) PRESENT,
 -- registered value as provided by ISOMHEG-cat

 script-hook (WITH COMPONENTS
 { ...,
 catalogued-script-encoding (WITH COMPONENTS
 { registered-script-encoding (’MHEG-SIR’) }) PRESENT,
 -- registered value as provided by ISOMHEG-cat
 }) PRESENT,

 script-data (WITH COMPONENTS
 { ...,
 script-inclusion (WITH COMPONENTS { interchangedscript }),
 data-reference (WITH COMPONENTS { null-data ABSENT })
 }) PRESENT
})

G.2 Relationships with ITU-T Rec. T.172 (and ISO/IEC 13522-5)

This subclause specifies the requirements that apply when this Recommendation is used to extend
the provisions of ITU-T Rec. T.172 (and ISO/IEC 13522-5) [7].

The statement "other ITU-T Recommendations of the T.170-Series" ("one of the parts of
ISO/IEC 13522") used in this Recommendation shall be interpreted to be "ITU-T Rec. T.172"
("ISO/IEC 13522-5").

The MHEG-SIR defined by this Recommendation shall apply to the encoding of the original-content
attribute of ITU-T Rec. T.172 (and ISO/IEC 13522-5) conforming InterchangedProgram objects

 Recommendation T.173 (07/97) 121

whose content-hook component indicates "MHEG-SIR", according to the application domain
definition.

Within a value of the InterchangedProgramClass type, the following restrictions shall apply to the
ISOMHEG-MHEG-5 module defined in ITU-T Rec. T.172 (and ISO/IEC 13522-5) [7]:

– if the included-content is selected for the original-content component, then the OCTET STRING
value of the included-content component shall be replaced by a value of the InterchangedScript
type as specified by the ISO-MHEG-sir module;

– if the referenced-content is selected for the original-content component, then the referenced data
shall be a value of the InterchangedScript type as specified by the ISO-MHEG-sir module.

Hence, MHEG-3 script objects shall conform to the syntax defined by the SIR-Script-Class subtype
thereafter.

ISOMHEG-sir { joint-iso-itu-t(2) mheg (19) version (1) script-interchanged-representation (11) }

IMPORTS
 InterchangedProgramClass
 FROM ISOMHEG-MHEG-5 { joint-iso-itu(2) mheg(19) version(1) MHEG-5 (17) }
;

SIR-Script-Class ::= InterchangedProgramClass (WITH COMPONENTS
{ ...,
 content-hook (’MHEG-SIR’) PRESENT,

 original-content PRESENT,
 -- data encoded as InterchangedScript
})

ITU-T Rec. T.172 (and ISO/IEC 13522-5) [7] make no distinction between mh-objects and rt-
objects; both are called "MHEG-5 objects". Therefore, there shall be only one rt-script for each mh-
script. As a consequence:

– mh-script initialization and rt-script initialization shall be performed in a single operation
(corresponding to the invocation of the prepare and new operations);

– invoking several new operations on the same mh-script shall raise an exception;

– rt-script destruction and mh-script destruction shall be performed in a single operation
(corresponding to the invocation of the delete and destroy operations).

APPENDIX I

MHEG-SIR syntax (EBNF notation)

This appendix describes the syntax of MHEG-SIR interchanged scripts. This syntax is equivalent to
the ASN.1 specification in Annex A.

// Structure
InterchangedScript ::= TypeDeclaration*
 ConstantDeclaration*
 VariableDeclaration*
 PackageDeclaration*
 HandlerDeclaration*
 RoutineDeclaration*

// Type declarations

122 Recommendation T.173 (07/97)

TypeDeclaration ::= TypeIdentifier?
 TypeDescription

TypeDescription ::= SequenceDescription
 | StringDescription
 | ArrayDescription
 | StructureDescription
 | UnionDescription

SequenceDescription ::= INTEGER? // Sequence bound
 TypeIdentifier

StringDescription ::= INTEGER? // String bound

ArrayDescription ::= INTEGER // Array size
 TypeIdentifier

UnionDescription ::= TypeIdentifier+

StructureDescription ::= TypeIdentifier+

// Data declarations
ConstantDeclaration ::= DataIdentifier?
 TypeIdentifier
 ConstantValue

ConstantValue ::= BOOLEAN
 | OCTET
 | INTEGER // all numeric types
 | REAL // float or double
 | STRING // character or string
 | DataIdentifier
 | ConstantValue* // sequence, array or structure
 | UnionValue

UnionValue ::= INTEGER // Tag index
 ConstantValue

VariableDeclaration ::= DataIdentifier?
 TypeIdentifier
 ConstantReference? // Initial value

ConstantReference ::= DataIdentifier
 | ConstantValue

// Package declarations
PackageDeclaration ::= PackageIdentifier?
 VisibleString // Package name
 ServiceDescription*
 ExceptionDescription*

ServiceDescription ::= FunctionIdentifier?
 VisibleString? // IDL global name
 CallingMode?
 TypeIdentifier? // return value
 ParameterDescription*

ServiceParameterDescription ::= ServicePassingMode?
 TypeIdentifier

CallingMode ::= ’SYNCHRONOUS’ | ’ASYNCHRONOUS’

 Recommendation T.173 (07/97) 123

ServicePassingMode ::= ’IN’ | ’OUT’ | ’INOUT’

ExceptionDescription ::= MessageIdentifier?
 VisibleString? //IDL exception global name
 TypeIdentifier* //Parameter types

// Handler declarations
HandlerDeclaration ::= MessageIdentifier
 FunctionIdentifier

// Routine declarations
RoutineDeclaration ::= FunctionIdentifier?
 TypeIdentifier? // for return value
 RoutineParameterDescription*
 VariableDeclaration*
 OCTET STRING // program code

RoutineParameterDescription ::= RoutinePassingMode?
 TypeIdentifier

RoutinePassingMode ::= ’VALUE’ | ’REFERENCE’

// Useful definitions
TypeIdentifier ::= INTEGER
DataIdentifier ::= INTEGER
FunctionIdentifier ::= INTEGER
MessageIdentifier ::= INTEGER
PackageIdentifier ::= INTEGER

APPENDIX II

Textual notation for MHEG-SIR scripts

This appendix describes a human-readable, text notation for the expression of MHEG-SIR scripts. It
may be useful to express MHEG-SIR examples. It is given using EBNF notation.

InterchangedScript ::= "SCRIPT "
 TypeDeclaration*
 ConstantDeclaration*
 VariableDeclaration*
 PackageDeclaration*
 HandlerDeclaration*
 RoutineDeclaration*
 "ENDSCRIPT "

// Type declarations
TypeDeclaration ::= "TYPE "
 Identification?
 TypeDescription
 "ENDTYPE "

TypeDescription ::= "SEQUENCE " SequenceDescription "ENDSEQUENCE "
 | "STRING " StringDescription "ENDSTRING "
 | "ARRAY " ArrayDescription "ENDARRAY "
 | "STRUCT " StructureDescription "ENDSTRUCT "
 | "UNION " UnionDescription "ENDUNION "

SequenceDescription ::= INTEGER // Sequence bound
 Reference // Type identifier

124 Recommendation T.173 (07/97)

StringDescription ::= INTEGER? // String bound

ArrayDescription ::= INTEGER // Array size
 Reference // Type identifier

UnionDescription ::= Reference+ // Type identifiers

StructureDescription ::= Reference+ // Type identifiers

// Data declarations
ConstantDeclaration ::= "CONSTANT "
 Identification?
 Reference // Type identifier
 ConstantValue
 "ENDCONSTANT "

ConstantValue ::= "BOOLEAN " BOOLEAN
 | "OCTET " OCTET
 | "SHORT " INTEGER
 | "LONG " INTEGER
 | "WORD " INTEGER
 | "UNSIGNED " INTEGER
 | "FLOAT " REAL
 | "DOUBLE " REAL | "CHAR " STRING
 | "STRING " STRING
 | "IDENTIFIER " Reference // Data identifier
 | "SEQUENCE " ConstantValue*
 | "STRUCT " ConstantValue*
 | "ARRAY " ConstantValue*
 | "UNION " UnionValue

UnionValue ::= INTEGER // Tag index
 ConstantValue

VariableDeclaration ::= "VARIABLE "
 Identification?
 Reference // Type identifier
 ConstantReference? // Initial value (constant)
 "ENDVARIABLE "

ConstantReference ::= Reference // Data identifier
 | ConstantValue

// Package declarations
PackageDeclaration ::= "PACKAGE "
 IntegerIdentification?
 STRING? // Package name
 ServiceDescription*
 ExceptionDescription*
 "ENDPACKAGE "

ServiceDescription ::= "SERVICE "
 IntegerIdentification?
 STRING? // IDL operation global name
 CallingMode?
 Reference? // Return type identifier
 ServiceParameterDescription*
 "ENDSERVICE "

ServiceParameterDescription ::= "PARAM "

 Recommendation T.173 (07/97) 125

 ServicePassingMode
 Reference // Type identifier

CallingMode ::= "SYNC " | "ASYNC "
ServicePassingMode ::= "IN " | "OUT " | "INOUT "

ExceptionDescription ::= "EXCEPTION "
 IntegerIdentification?
 STRING? //IDL exception global name
 Reference* // Parameter type identifiers
 "ENDEXCEPTION "

// Handler declarations
HandlerDeclaration ::= "HANDLER "
 Reference // Message identifier
 Reference // Function identifier
 "ENDHANDLER "

// Routine declarations
RoutineDeclaration ::= "ROUTINE "
 Identification?
 Reference? // Return type identifier
 RoutineParameterDescription*
 VariableDeclaration*
 Instruction+
 "ENDROUTINE "

RoutineParameterDescription ::= "PARAM "
 RoutinePassingMode?
 Reference // Type identifier

RoutinePassingMode ::= "VAL " | "VAR "

// Useful definitions
Identification ::= "ID " Reference
IntegerIdentification ::= "ID " INTEGER

INTEGER ::= DecimalInteger | HexaInteger
DecimalInteger ::= Sign? Digit+ " "
Sign ::= "+" | "-"
Digit ::= "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"
HexaInteger ::= "h" Hex+
Hex ::= Digit | "A" | "B" | "C" | "D" | "E" | "F"
BOOLEAN ::= "TRUE " | "FALSE "
OCTET ::= Hex Hex " "
STRING ::= """ Character* """
Character ::= ... // visible character
REAL ::= Sign? Digit+ "." Digit* "e" Sign? Digit+ " "

// Program code
Instruction ::= SimpleInstruction " "
 | LogicalOperator LogicalTypeCode " "
 | "EQ_" TypeCode " "
 | ComparisonOperator ComparisonTypeCode " "
 | ArithmeticOperator NumericTypeCode " "
 | "NEG_" SignedTypeCode " "
 | "REM_" IntegerTypeCode "´"
 | "DUP_" TypeCode " "
 | "CVT_" ConvertibleTypes " "
 | "SHIFT_" UnsignedTypeCode "´" INTEGER
 | JumpInstruction " " Destination

126 Recommendation T.173 (07/97)

 | UnaryInstruction " " Reference
 | "PUSHI " INTEGER
 | BinaryInstruction " " Reference INTEGER
 | "LABEL " STRING // Label in routine code

IntegerTypeCode ::= SignedIntegerTypeCode | UnsignedTypeCode
SignedIntegerTypeCode ::= "S" | "L"
SignedTypeCode ::= SignedIntegerTypeCode | "F" | "D"
UnsignedTypeCode ::= "O" | "W" | "U"
LogicalTypeCode ::= "B" | UnsignedTypeCode
NumericTypeCode ::= SignedTypeCode | UnsignedTypeCode
ComparisonTypeCode ::= NumericTypeCode | "C"
ConvertibleTypes ::= "SW" | "WS" | "LU" | "UL" | "CW" | "WC" | "BS" | "OS"
 | "SL" | "LF" | "WL" | "UF" | "FD" | "BO" | "OW" | "SU"
 | "WU" | "OB" | "SB" | "LB" | "WB" | "UB" | "WO" | "LS"
 | "FL" | "UW" | "FU" | "DF"
TypeCode ::= ComparisonTypeCode | "B" | "I" | "R"

Reference ::= INTEGER // Identifier
 | STRING // Logical name or IDL name
Destination ::= INTEGER // Offset
 | STRING // Label

SimpleInstruction ::= "EQR" | "YIELD" | "RET" | "NOP" | "FREE"

ComparisonOperator ::= "GT_" | "LT_"

LogicalOperator ::= "AND_" | "OR_" | "XOR_" | "NOT_"

ArithmeticOperator ::= "ADD_" | "SUB_" | "MUL_" | "DIV_"

JumpInstruction ::= "JMP" | "LJMP" | "JT" | "JF" | "LJT" | "LJF"

UnaryInstruction ::= "INC" | "DEC" | "PUSHR" | "PUSH" | "POPR" | "POP" |"POPC"
 | "GETOR" | "ALLOC" | "CALL" | "XCALL"

BinaryInstruction ::= "SET" | "SETC" | "GET" | "GETC"

APPENDIX III

MHEG entities

MHEG entities include MHEG objects, mh-objects, rt-objects, interchanged MHEG objects, sockets,
channels.

III.1 MHEG objects

According to ITU-T Rec. T.172 (and ISO/IEC 13522-1) [5], an MHEG object is defined as a coded
representation. Therefore, MHEG objects are bitstrings. The identity of an MHEG object is its
bitstring. MHEG objects are "form 1" objects as described in ISO/IEC 13522-1 [5], subclause 6.2.4.
MHEG object A and MHEG object B are identical if and only if they are the same sequence of bits.

An MHEG object is not a physical object, but an abstraction (a specified sequence of bits) which
may have many representations (i.e. different objects) of different types: interchanged MHEG
objects, stored MHEG objects, mh-objects, etc. Such representations are handled by different
software services.

 Recommendation T.173 (07/97) 127

An MHEG object may be identified by an MHEG identifier. MHEG identifiers are the only way to
identify MHEG objects. The structure and coded representation of MHEG identifiers is defined by
ITU-T Rec. T.172 (and ISO/IEC 13522-1) [5]. The MHEG identifier of an MHEG object must be
encoded inside the MHEG object. Since the attribute is optional, some MHEG objects do not have an
MHEG identifier. Such MHEG objects cannot be identified. ITU-T Rec. T.172 (and ISO/IEC
13522-1) [5] imposes a constraint on the design of MHEG applications which is that MHEG
object A and MHEG object B shall not have the same MHEG identifier unless they are identical.

The MHEG generic reference describes all possible ways to reference an MHEG object.

III.2 Mh-objects

An mh-object is an internal representation of an MHEG object within a process or system. An mh-
object is not an MHEG object. Within an MHEG engine, mh-objects represent "available" MHEG
objects. Mh-objects are "form 2" objects as described in ISO/IEC 13522-1 [5], subclause 6.2.4. An
mh-object represents one MHEG object, i.e. there is always a bitstring that corresponds to an mh-
object. An MHEG engine should not handle more than one mh-object to represent one MHEG
object.

As a consequence, mh-objects handled by MHEG engines may be identified using MHEG
identifiers. In addition, other mechanisms for identifying mh-objects (e.g. symbolic identification)
may be defined by the application, provided their internal representation allows for it. This is
especially useful when some of the MHEG objects represented by an MHEG engine’s mh-objects are
non-identifiable, i.e. have no MHEG identifier. This allows to guarantee that all mh-objects are
identifiable.

Mh-objects are referenced the same way MHEG objects are. References to MHEG objects for which
the MHEG engine handles an mh-object will usually be resolved by addressing this mh-object.

III.3 Rt-objects

An rt-object is a run-time "instance" (or copy) of a "model" mh-object, which is created and handled
by an MHEG engine in the purpose of presentation. An rt-object is not an MHEG object. Within an
MHEG engine, rt-objects represent "rt-available" MHEG objects. Rt-objects are "form 3" objects as
described in ISO/IEC 13522-1 [5], subclause 6.2.4. There may be none or several rt-objects which
are "presentable" copies of one mh-object. An rt-object always has exactly one mh-object as its
model.

Rt-objects may be identified using rt-object identifiers whose "model object identification"
component is an MHEG identifier. The structure and coded representation of rt-object identifiers is
defined by ITU-T Rec. T.172 (and ISO/IEC 13522-1) [5]. In addition, other mechanisms for
identifying rt-objects (e.g. symbolic identification) may be defined by the application, provided their
internal representation allows for it. This is especially useful when some of the MHEG objects
represented by an MHEG engine’s mh-objects used as models for rt-objects are non-identifiable, i.e.
have no MHEG identifier. This allows to ensure that all rt-objects are identifiable.

Rt-objects may be referenced using MHEG generic references.

III.4 Interchanged MHEG objects

Interchanged MHEG objects are representations of MHEG objects which are being communicated at
a given point in time using a network or storage medium. One given MHEG object (i.e. bitstring)
may be interchanged many times between many places, i.e. represented by many interchanged
MHEG objects. An MHEG external identifier may identify an interchanged MHEG object, and

128 Recommendation T.173 (07/97)

therefore reference an MHEG object through its location and time of interchange. However, it should
be noted that an MHEG external identifier need not actually identify an MHEG object.

Stored MHEG objects are representations of MHEG objects which are usually located in files or
database records. For instance, one given MHEG object (i.e. bitstring) may be stored in many places,
i.e. represented by many stored MHEG objects. Such locations are usually identified using file names
or database identifiers. An MHEG external identifier may identify a storage location for an MHEG
object, and therefore reference an MHEG object through its storage location.

APPENDIX IV

Main features of MHEG-SIR

This Recommendation has been developed in order to respond to a number of requirements and
constraints regarding:

– the applications that use it;

– the functionality that it provides;

– its context of use by applications;

– its performance.

MHEG-SIR is endowed with the features described in this Appendix.

IV.1 Features of using applications

MHEG-SIR fits the requirements of applications that feature:

1) manipulation of MHEG entities;

2) computations, variable handling and control structures;

3) external device control;

4) data acquisition;

5) access to external data;

6) access to arbitrary external run-time services.

IV.1.1 Manipulation of MHEG entities

Applications usually manipulate MHEG entities for the purpose of multimedia presentation.

This feature is achieved through provision of the mechanisms described in IV.2.2.

IV.1.2 Computations, variable handling and control structures

Applications need these data processing features to implement advanced dynamic behaviour.

These features are achieved through provision of the mechanisms described in IV.2.1.

IV.1.3 External device control

Devices often provide a platform-specific interface. Components of the execution platform that
implement another Recommendation and its encapsulated monomedia standards usually support a
number of devices. In addition, some applications need to control directly either these devices or
other devices not otherwise supported.

This feature is achieved through provision of the mechanisms described in IV.2.2.

 Recommendation T.173 (07/97) 129

NOTE – In this context, a device driver is one service package that needs to be provided by the run-time
environment.

IV.1.4 Data acquisition

Components of the execution platform that implement another Recommendation and its
encapsulated monomedia standards usually support a number of data acquisition mechanisms. In
addition, some applications need to control directly data acquisition (e.g. for finer tuning) from either
these mechanisms or other mechanisms not otherwise supported.

This feature is achieved through provision of the mechanisms described in IV.2.2.

NOTE – In this context, acquired data can be retrieved by an rt-script via asynchronous reaction to
notification messages sent by the driver of an external acquisition device.

IV.1.5 Access to external data

Some applications need to access non-MHEG data that have to be retrieved from local storage, from
a stream or from a remote data repository using a communication component of the run-time
environment.

This feature is achieved through provision of the mechanisms described in IV.2.2.

NOTE – In this context, external data can be retrieved through a system component that is one service
package provided by the run-time environment.

IV.1.6 Access to arbitrary external run-time services

Arbitrary run-time services refer to all services whose interface definition is not known to the
implementation before the application is interchanged.

This feature is achieved through provision of the mechanisms described in IV.2.2.

NOTE – In this context, external calculation capability may be provided by a library or process that is one
service package provided by the run-time environment.

IV.2 Functional features

MHEG-SIR is used to express:

1) data processing operations (see IV.2.1);

2) access to external data and functions (see IV.2.2).

IV.2.1 Data processing operations

To support data processing operations, MHEG-SIR provides mechanisms used by interchanged
scripts to express:

– the structure of constructed and advanced numeric data types;

– variables and values of these types;

– instructions that perform data access or variable assignment;

– instructions that affect the script execution control flow;

– instructions that perform arithmetic, logical and comparison operators.

These mechanisms are described in clauses 8, 12 and 13.

130 Recommendation T.173 (07/97)

IV.2.2 Access to external data and functions

Access to external data and functions requires co-operation among several components of the
MHEG-3 engine and the run-time environment in order to invoke functions, send and receive
messages and exchange data.

To support manipulation of MHEG entities (i.e. access to MHEG data and functions), MHEG-SIR
provides mechanisms used by interchanged scripts to:

– invoke MHEG elementary actions;

– respond to MHEG actions targeted at the rt-script;

– express variables and values of MHEG data types.

These mechanisms are described in clause 11. They are also used to express data interchange and
synchronization either between the rt-script and other rt-objects or among rt-scripts.

To support co-operation with the run-time environment (i.e. access to non-MHEG data and
functions), MHEG-SIR provides mechanisms used by interchanged scripts to:

– declare the structure of packages provided by the run-time environment;

– invoke services provided by the run-time environment;

– react to messages sent by the run-time environment;

– declare constructed and advanced numeric data types;

– express variables and values of these types.

These mechanisms are described in clause 10. They also express interchange of complex data and
synchronization between the MHEG-SIR script interpreter and processes that are part of the run-time
environment.

In addition, this Recommendation defines the mapping of MHEG-SIR package declarations to actual
run-time environment components. This is done in two steps:

– Expression and use of an abstract interface specification by MHEG-SIR: this is the IDL
mapping mechanism described in clause 14. It consists of provisions for MHEG-3
interchanged scripts.

– Mapping between an abstract interface specification and its implementation within the run-
time environment of a type of platform: this is the platform mapping specification form
described in Annex D. It consists of provisions for MHEG-3 implementations.

IV.3 Technical features

The MHEG-SIR meets the following technical requirements:

1) hardware independence;

2) final form representation;

3) compactness;

4) ease of implementation;

5) interpretation efficiency;

6) openness and extensibility;

7) non-revisability;

8) provisions for real-time interchange;

9) semantic validation for quality of service purposes;

10) syntax checkability (with regard to contamination hazards);

 Recommendation T.173 (07/97) 131

11) non-proprietary representation;

12) secure script processing.

IV.3.1 Hardware independence

Hardware independence of MHEG-SIR, and therefore portability of interchanged scripts, is achieved
through the definition of a virtual machine code to express interchanged scripts and the definition of
a virtual machine to interpret this code. Only typed data are used. There is no requirement on the way
data are represented or handled internally by MHEG-3 engines.

The coded representation is based on ASN.1 encoding rules, which are hardware-independent.

The interface declarations are based on a mapping to abstract interface specifications that can be
expressed using IDL, which is hardware-independent.

The capability for a component of the run-time environment of a given platform to interoperate with
any conforming MHEG-3 engine on this platform is guaranteed through the use of the platform
mapping specification.

The capability for an MHEG-3 engine implementation on a given platform to interoperate with any
service provider within the run-time environment is guaranteed through the use of the platform
mapping specification, provided such service providers conform to this specification.

IV.3.2 Final form representation

Final form representation of interchanged scripts is achieved through:

– the use of ASN.1 for the encoding of interchanged scripts;

– a virtual machine encoding that is semantically close to a broad class of general purpose
computers;

– a stack machine architecture which has an efficient instruction encoding based on implied
addressing mode;

– an ordering of declarations that reduces overhead for processing of forward references;

– the appropriate sequencing of instructions within a routine.

IV.3.3 Compactness

Compactness of the coded representation of interchanged scripts is achieved through several
optimizations:

– the definition of a stack machine-based virtual machine code allows instructions to have few
or no operands, the longest MHEG-SIR instruction taking 4 bytes to encode;

– use of bytestream coding for the routines code is used to elude the overhead induced by TLV
coding;

– instructions are packed (i.e. have no padding bytes) in the encoding of the routines code;

– constants are used for the declaration of immediate values;

– predefined codes are defined for MHEG types, operations and messages;

– the declaration of a handler definition table is used to optimize the expression of the
mapping between messages targeted at the script and routines intended to handle these
messages.

132 Recommendation T.173 (07/97)

IV.3.4 Ease of implementation

Ease of implementation of MHEG-SIR script interpreters is achieved through:

– the definition of a reduced instruction set;

– the clear definition of a virtual machine;

– the limited number of concepts and identifiers that script interpreters need to handle;

– the formal definition of instruction semantics.

IV.3.5 Interpretation efficiency

Efficiency of interpretation of interchanged scripts by MHEG-SIR script interpreters is achieved
through:

– the use of a stack-based virtual machine code;

– the use of low-level instructions;

– the use of a final form representation.

IV.3.6 Openness and extensibility

Openness and extensibility of MHEG-SIR is achieved through:

– a generic definition of the interfaces that may be accessed from MHEG-SIR script code;

– the capability to access MHEG objects and to invoke routines from another rt-script;

– the possibility to add new instructions to the representation without modifying the structure
of interchanged scripts.

IV.3.7 Non-revisability

Non-revisability is achieved through the use of a final form, low-level representation. This
representation is for production via specialized computer tools and does not allow easy reversion to
the original source code as designed by humans using scripting languages and/or authoring
environments, and thus limits the risk of undue alteration of the program semantics.

IV.3.8 Provisions for real-time interchange

The MHEG-SIR fits within the framework of MHEG whose general structure has been designed to
meet real-time interchange requirements.

The syntax of interchanged scripts is defined so as to optimize the possibility of treating the
declarations it contains "on the fly".

Moreover, the use of ASN.1 encoding allows to detect errors (to some extent) while interchanging
scripts in noisy network environments.

IV.3.9 Semantic validation for quality of service purposes

Due to the requirements posed by this Recommendation on semantics, the behaviour of an
interchanged script can be tested in order to validate its performance before it is actually used in the
context of a commercial service. MHEG-SIR script interpreters can be built to serve as a reference
with regard to the way conforming MHEG-3 engines should behave when interpreting the
interchanged scripts under test.

IV.3.10 Syntax checkability (with regard to contamination hazards)

The formal definition of the MHEG-SIR syntax can be used to check its correctness and therefore
prevent the interchange of pieces of code such as viruses intended to damage the receiving system in

 Recommendation T.173 (07/97) 133

some way. Implementations may decide to perform syntactic and semantic checks at run-time and/or
at load-time.

NOTE – The design of MHEG-SIR as an interpreted, machine-independent representation reduces
contamination risk. Residual risk may come from non-certified or otherwise incorrect implementations. The
provision of encryption, authentication and other security mechanisms at the transport level is outside the
scope of this Recommendation.

IV.3.11 Non-proprietary representation

This Recommendation follows the intellectual property rights policy of international standardization
bodies. For further details, please refer to the statement on "Intellectual Property Rights" indicated at
the beginning of this Recommendation.

IV.3.12 Secure script processing

A system designer may wish to insure that faulty script execution, intentional or accidental, will have
minimal impact on the delivery system, and that all access to external services can be carefully
monitored. The MHEG-SIR virtual machine includes a number of features which support this goal:

– explicit, strongly-typed interfaces to all external services;

– a strongly-typed instruction set, so that operations and operands may be verified either by
pre-processing or by run-time checking;

– no direct addressing of memory (i.e. no pointer arithmetic), preventing the possibility of
spurious side effects;

– isolation of context for each rt-script object;

– isolation of contexts defined by each call frame;

– no direct manipulation of handles, type identifiers or data identifiers.

ITU-T RECOMMENDATIONS SERIES

Series A Organization of the work of the ITU-T

Series B Means of expression: definitions, symbols, classification

Series C General telecommunication statistics

Series D General tariff principles

Series E Overall network operation, telephone service, service operation and human factors

Series F Non-telephone telecommunication services

Series G Transmission systems and media, digital systems and networks

Series H Audiovisual and multimedia systems

Series I Integrated services digital network

Series J Transmission of television, sound programme and other multimedia signals

Series K Protection against interference

Series L Construction, installation and protection of cables and other elements of outside plant

Series M TMN and network maintenance: international transmission systems, telephone circuits,
telegraphy, facsimile and leased circuits

Series N Maintenance: international sound programme and television transmission circuits

Series O Specifications of measuring equipment

Series P Telephone transmission quality, telephone installations, local line networks

Series Q Switching and signalling

Series R Telegraph transmission

Series S Telegraph services terminal equipment

Series T Terminals for telematic services

Series U Telegraph switching

Series V Data communication over the telephone network

Series X Data networks and open system communication

Series Z Programming languages

	ITU-T Rec. T.173 (07/97) MHEG-3 SCRIPT INTERCHANGE REPRESENTATION
	Source
	FOREWORD
	CONTENTS
	MHEG-3 SCRIPT INTERCHANGE REPRESENTATION
	1 Scope
	2 Normative references
	3 Definitions
	3.1 Definitions
	3.2 Abbreviations

	4 General
	5.1 Information object conformance
	5.2 Implementation conformance
	5.3 Application conformance
	5.4 Test Methods

	6 Overview
	6.1 Description methodology
	6.2 Data processing operations
	6.3 Access to external data and functions

	7 MHEG/MHEG-3 relationship
	7.1 MHEG entities
	7.2 Functional entities
	7.3 MHEG-SIR script interpreter

	8 Elements of MHEG-SIR
	8.1 Data types
	8.2 Data
	8.3 Functions
	8.4 Messages
	8.5 Instructions
	8.6 Identifiers

	9 The MHEG-SIR virtual machine
	9.1 Structure of the MHEG-SIR virtual machine
	9.2 Structures and notations
	9.3 Memory areas
	9.4 Script statuses
	9.5 Processing units

	10 Provisions for run-time environment access
	10.1 General model
	10.2 Declaration of IDL interfaces
	10.3 Invocation of external operations in an MHEG-SIR program
	10.4 Handling of external exceptions in an MHEG-SIR program
	10.5 Invocation of external operations by an MHEG-3 engine
	10.6 Handling of external exceptions by an MHEG-3 engine
	10.7 Platform mapping specifications

	11 Provisions for MHEG object manipulation
	11.1 Invoking MHEG actions
	11.2 Receiving MHEG messages

	12 MHEG-SIR declarations
	12.1 Type declaration
	12.2 Constant declaration
	12.3 Global variable declaration
	12.4 Package declaration
	12.5 Handler declaration
	12.6 Routine declaration

	13 MHEG-SIR instructions
	13.1 Presentation methodology
	13.2 Classification of MHEG-SIR instructions
	13.3 Description of instructions
	13.4 Type conversion rules

	14 IDL mapping to MHEG-SIR
	14.1 IDL specifications
	14.2 IDL interfaces and modules
	14.3 IDL operations
	14.4 IDL attributes
	14.5 IDL inherited operations
	14.6 IDL exceptions
	14.7 IDL types
	14.8 IDL constants

	15 The MHEG-3 API
	15.1 ScriptInterpreter object
	15.2 MhScript object
	15.3 RtScript object
	15.4 RoutineInvocation object

	ANNEX A
	ASN.1 specification of interchanged scripts
	ANNEX B
	Coded representation of interchanged scripts
	B.1 Coding for interchanged scripts
	B.2 Coding for the program code
	ANNEX C
	MHEG-SIR predefined elements
	C.1 Predefined types
	C.2 Predefined functions
	C.3 Predefined messages
	ANNEX D
	IDL Platform mapping specification form
	ANNEX E
	MHEG API definition process
	E.1 Generic API definition framework
	E.2 MHEG API mapping to MHEG-SIR
	ANNEX F
	IDL specification of the MHEG-3 API
	ANNEX G
	Relationships with other ITU-T Recommendations of the T.170-Series (and parts of ISO/IEC 13522)
	G.1 Relationships with ITU-T Rec.
	G.2 Relationships with ITU-T Rec.
	APPENDIX I
	MHEG-SIR syntax (EBNF notation)
	APPENDIX II
	Textual notation for MHEG-SIR scripts
	APPENDIX III
	MHEG entities
	III.1 MHEG objects
	III.2 Mh-objects
	III.3 Rt-objects
	III.4 Interchanged MHEG objects
	APPENDIX IV
	Main features of MHEG-SIR
	IV.1 Features of using applications
	IV.2 Functional features

