

INTERNATIONAL TELECOMMUNICATION UNION

 T.128

TELECOMMUNICATION
STANDARDIZATION SECTOR
OF ITU

(02/98)

SERIES T: TERMINALS FOR TELEMATIC SERVICES

Multipoint application sharing

ITU-T Recommendation T.128
(Previously CCITT Recommendation)

ITU-T T-SERIES RECOMMENDATIONS

TERMINALS FOR TELEMATIC SERVICES

For further details, please refer to ITU-T List of Recommendations.

ITU-T RECOMMENDATION T.128

MULTIPOINT APPLICATION SHARING

Summary

This Recommendation defines a protocol that supports multipoint application sharing.

The T.128 protocol supports multipoint computer application sharing by allowing a view onto a
computer application executing at one site to be advertised within a session to other sites. Each site
can, under specified conditions, take control of the shared computer application by sending remote
keyboard and pointing device information. This style of application sharing does not require and
does not make provision for synchronizing multiple instances of the same computer application
running at multiple sites. Instead, it enables remote viewing and control of a single application
instance to provide the illusion that the application is running locally.

This Recommendation uses services provided by Recommendations T.122 (MCS) and T.124 (GCC).

Source

ITU-T Recommendation T.128 was prepared by ITU-T Study Group 16 (1997-2000) and was
approved under the WTSC Resolution No. 1 procedure on the 6th of February 1998.

ii Recommendation T.128 (02/98)

FOREWORD

ITU (International Telecommunication Union) is the United Nations Specialized Agency in the field of
telecommunications. The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of
the ITU. The ITU-T is responsible for studying technical, operating and tariff questions and issuing
Recommendations on them with a view to standardizing telecommunications on a worldwide basis.

The World Telecommunication Standardization Conference (WTSC), which meets every four years,
establishes the topics for study by the ITU-T Study Groups which, in their turn, produce Recommendations
on these topics.

The approval of Recommendations by the Members of the ITU-T is covered by the procedure laid down in
WTSC Resolution No. 1.

In some areas of information technology which fall within ITU-T’s purview, the necessary standards are
prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a
telecommunication administration and a recognized operating agency.

INTELLECTUAL PROPERTY RIGHTS

The ITU draws attention to the possibility that the practice or implementation of this Recommendation may
involve the use of a claimed Intellectual Property Right. The ITU takes no position concerning the evidence,
validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others
outside of the Recommendation development process.

As of the date of approval of this Recommendation, the ITU had not received notice of intellectual property,
protected by patents, which may be required to implement this Recommendation. However, implementors are
cautioned that this may not represent the latest information and are therefore strongly urged to consult the
TSB patent database.

 ITU 1998

All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from the ITU.

 Recommendation T.128 (02/98) iii

CONTENTS

 Page

1 Scope... 1

2 Normative references .. 2

3 Definitions .. 3

4 Abbreviations.. 3

5 Overview... 4

5.1 Legacy and base modes... 4

5.2 AS concepts .. 4

5.2.1 Desktop and window model .. 4

5.2.2 Output .. 7

5.2.3 Control and input ... 9

5.2.4 Color .. 9

5.2.5 Coordinates and clipping ... 10

6 Use of MCS .. 10

6.1 MCS channel usage... 11

6.2 Use of MCS data services ... 12

7 Use of GCC... 13

8 Protocol specification ... 14

8.1 AS sessions ... 14

8.2 Capabilities ... 14

8.2.1 Distribution of capabilities .. 15

8.2.2 Capabilities negotiation ... 15

8.2.3 General capability set... 19

8.2.4 Bitmap capability set ... 21

8.2.5 Order capability set.. 25

8.2.6 Order levels.. 29

8.2.7 Bitmap cache capability set ... 30

8.2.8 ColorTable Cache capability set .. 32

8.2.9 Window activation capability set... 33

8.2.10 Control capability set ... 34

8.2.11 Pointer capability set.. 36

8.2.12 Share capability set .. 37

8.2.13 Non Standard capability set ... 38

8.2.14 Capability update ... 38

iv Recommendation T.128 (02/98)

 Page

8.3 ASPDU formats .. 39

8.3.1 Streams .. 40

8.3.2 General compression ... 41

8.4 ASCE activation ... 42

8.4.1 ASCE activation (Legacy mode) ... 43

8.4.2 Share identifiers (Legacy mode).. 47

8.4.3 ASCE activation and share identifiers (Base mode)...................................... 48

8.5 Flow control .. 49

8.5.1 Flow control algorithm .. 50

8.5.2 Response to back pressure ... 54

8.6 Synchronization .. 54

8.6.1 ASCE synchronization... 55

8.6.2 Hosting synchronization .. 56

8.6.3 Shadow synchronization.. 57

8.6.4 Input synchronization .. 58

8.7 Remote sharing ... 58

8.8 Fonts.. 60

8.8.1 Code Page .. 62

8.8.2 Font matching .. 68

8.8.3 Font aliasing .. 70

8.9 Application management .. 70

8.10 Window list management ... 71

8.10.1 Window list Z-order races ... 76

8.10.2 Implementation considerations.. 78

8.11 Window activation.. 78

8.11.1 Activation indications and requests ... 78

8.11.2 Activation identifiers and priorities ... 82

8.12 Control .. 82

8.12.1 Control identifiers.. 85

8.12.2 Interaction with conducted mode... 85

8.13 Mediated control ... 86

8.13.1 Taking control.. 87

8.13.2 Passing control... 87

8.13.3 Detaching... 88

8.13.4 Remote detach ... 88

 Recommendation T.128 (02/98) v

 Page

8.14 Pointers ... 89

8.14.1 System pointers.. 90

8.14.2 Monochrome pointers.. 90

8.14.3 Color pointers .. 91

8.14.4 Pointer position updates... 93

8.15 Palette updates .. 94

8.16 Order updates .. 95

8.16.1 Primary orders ... 96

8.16.2 Secondary orders.. 97

8.16.3 Order encoding .. 98

8.16.4 Destination Blt ... 102

8.16.5 Pattern Blt .. 102

8.16.6 Screen Blt .. 103

8.16.7 Cache Bitmap .. 104

8.16.8 Cache ColorTable .. 105

8.16.9 Memory Blt.. 106

8.16.10 Memory Three Way Blt ... 108

8.16.11 Text.. 110

8.16.12 Extended Text.. 112

8.16.13 Frame ... 114

8.16.14 Rectangle ... 115

8.16.15 Opaque Rectangle.. 116

8.16.16 Line .. 117

8.16.17 Desktop Save ... 118

8.16.18 Desktop Origin .. 119

8.16.19 Color Space.. 120

8.16.20 Three-Way ROPs... 121

8.16.21 Two-Way ROPs... 130

8.16.22 Brushes .. 131

8.16.23 Pens.. 133

8.16.24 Background mix .. 135

8.17 Bitmap updates ... 135

8.17.1 Uncompressed bitmap data.. 136

8.17.2 Compressed bitmap data.. 137

8.18 Input .. 141

8.18.1 Pointing device events ... 142

8.18.2 Keyboard events .. 143

8.18.3 Virtual keycodes .. 144

vi Recommendation T.128 (02/98)

 Page

8.18.4 Keyboard state ... 148

8.18.5 Quiet keys .. 148

8.18.6 Input synchronization event... 149

8.19 Conducted mode operation ... 149

9 ASPDU definitions ... 149

9.1 Legacy mode ASN.1 definition... 150

9.2 Base mode ASN.1 definition .. 177

9.3 Legacy mode encoding rules... 204

9.4 Base mode non-collapsing capabilities encoding rules... 205

Annex A – Static channel ID assignments ... 205

Annex B – Legacy application protocol key .. 205

Annex C – Object identifier assignments... 206

Appendix I – Informative values.. 206

I.1 Flow control .. 206

I.2 Bitmap Caching .. 207

I.3 ColorTable Caching.. 207

I.4 Pointer Caching... 207

I.5 Desktop Save Cache ... 207

I.6 General Compression.. 207

 Recommendation T.128 (02/98) 1

Recommendation T.128

MULTIPOINT APPLICATION SHARING

(Geneva, 1998)

1 Scope

This Recommendation defines a protocol that supports multipoint application sharing. It uses
services provided by Recommendations T.122 (MCS) and T.124 (GCC).

The details of communication with the input and output devices and the user interfaces on the host
terminal are considered out of the scope of this Recommendation and are left to the discretion of the
implementer. Therefore this Recommendation makes no assumption that these input and output
devices and user interfaces are of any specific architecture.

Figure 1 presents an overview of the scope of this Recommendation and its relationship to the other
elements of the T.120 framework within a single node.

T1602310-97

...
...

User application(s)
(Using both standard and non-standard application protocols)

Node
controller

User application(s)
(Using std. appl. protocols)

User application(s)
(Using non-std. protocols)

Rec. T.127 (MBFT)

Rec. T.126 (SI)

Rec. T.128 (AS)
Application protocol entity

ITU-T T.120
Application protocol
Recommendations

Non-standard application
protocol entity

Generic Conference Control (GCC)
Rec. T.124

Multipoint Communications Service (MCS)
Rec. T.122/T.125

Network specific transport protocols
Rec. T.123

ITU-T T.120 Infrastructure Recommendations

Figure 1/T.128 – Scope of T.128

2 Recommendation T.128 (02/98)

2 Normative references

The following ITU Recommendations and other references contain provisions which, through
reference in this text, constitute provisions of this Recommendation. At the time of publication, the
editions indicated were valid. All Recommendations and other references are subject to revision; all
users of this Recommendation are therefore encouraged to investigate the possibility of applying the
most recent edition of the Recommendations and other references listed below. A list of the currently
valid ITU Recommendations is regularly published.

– CCITT Recommendation F.710 (1991), General principles for audiographic conference
service.

– ITU-T Recommendation H.221 (1997), Frame structure for a 64 to 1920 kbit/s channel in
audiovisual teleservices.

– CCITT Recommendation T.35 (1991), Procedure for the allocation of CCITT defined codes
for non-standard facilities.

– ITU-T Recommendation T.50 (1992), International Reference Alphabet (IRA) (Formerly
International Alphabet No. 5 or IA5) – Information technology – 7-bit coded character set
for information interchange.

– ITU-T Recommendation T.120 (1996), Data protocols for multimedia conferencing.

– ITU-T Recommendation T.121 (1996), Generic application template.

– ITU-T Recommendation T.122 (1993), Multipoint communication service for audiographics
and audiovisual conferencing service definition.

– ITU-T Recommendation T.123 (1996), Network specific data protocol stacks for multimedia
conferencing.

– ITU-T Recommendation T.124 (1995), Generic conference control.

– ITU-T Recommendation T.125 (1994), Multipoint communication service protocol
specification.

– CCITT Recommendation V.42 bis (1990), Data compression procedures for Data
Circuit-terminating Equipment (DCE) using error correcting procedures.

– ITU-T Recommendation X.509 (1997) | ISO/IEC 9594-8:1997, Information technology –
Open Systems Interconnection – The Directory: Authentication framework.

– ITU-T Recommendation X.680 (1994) | ISO/IEC 8824-1:1995, Information technology –
Abstract Syntax Notation One (ASN.1) – Specification of basic notation.

– ITU-T Recommendation X.691 (1997) | ISO/IEC 8825-21, Information technology – ASN.1
encoding rules – Specification of Packed Encoding Rules (PER).

– ISO/IEC 8859-1:1998, Information technology – 8-bit single-byte coded graphic character
sets – Part 1: Latin alphabet No. 1

– ISO/IEC 10646-1:1993, Information technology – Universal Multiple-Octet Coded
Character Set (USC) – Part 1: Architecture and Basic Multilingual Plane.

1 To be published.

 Recommendation T.128 (02/98) 3

3 Definitions

This Recommendation defines the following terms.

3.1 Application Sharing (AS): A process whereby two or more terminals cooperate to share the
output of applications running on one or more terminals to the other terminals and to provide input to
the applications.

3.2 Application Sharing Conference Entity (ASCE): An Application Protocol Entity that
interacts with a user application above and with the local MCS (Multipoint Communication Service)
and local GCC (Generic Conference Control) providers below to implement application sharing.
Data are exchanged between peer ASCEs using ASPDUs (Application Sharing Protocol Data Units).

3.3 bitmap: A rectangular area described by a two-dimensional array of pixels. These pixels can
be coded using a variety of encoding methods.

3.4 ColorTable: A finite set of colors defined by at least three linearly independent color
primaries. This is a synonym for palette (see below), but is used in this Recommendation to reference
the particular cached palette associated with cached bitmap data.

3.5 desktop: The logical or physical display area for a particular terminal or window manager
advertised by the ASCE in the AS capabilities. An ASCE may choose to advertise a size
corresponding to the actual terminal display area or some other logical display area.

3.6 handle: An AS session-wide unique number used to identify an addressable item.

3.7 non-standard capability: The capability is outside the scope of this Recommendation but it
has been determined through negotiation that it is recognized among all session participants.

3.8 palette: A finite set of colors defined by at least three linearly independent color primaries.

3.9 palettized: A term used to describe protocol elements (such as bitmap data) comprised of
palettized pixels. The color of a palettized pixel is specified by the color value at the location in a
palette referenced by the pixel value.

3.10 pointer: A bitmap that is moveable over the virtual desktop that is used as an indicator of
position.

3.11 standard capability: The capability is defined within the scope of this Recommendation but
is not required for all ASCE implementations. Note that all standard capabilities must be negotiated
before use.

3.12 unicode: Multilingual text string format as defined in ISO/IEC 10646-1.

3.13 virtual desktop: A logical desktop that is the largest size of all desktops of hosting ASCEs.

3.14 window: A rectangular area on the desktop corresponding to a user interface display area
managed by the terminal window manager.

3.15 window manager: A program executing on the terminal, which is responsible for managing
a collection of user interface windows on the terminal desktop.

4 Abbreviations

This Recommendation uses the following abbreviations.

AS Application Sharing

ASCE Application Sharing Conferencing Entity

ASPDU Application Sharing Protocol Data Unit

4 Recommendation T.128 (02/98)

GCC Generic Conference Control

IEC International Electrotechnical Commission

ISO International Organization for Standardization

ITU International Telecommunication Union

MCS Multipoint Communication Service

5 Overview

The AS protocol enables multipoint computer application sharing by allowing a view onto a
computer application executing at one site to be advertised within a session to other sites. Each site
can, under specified conditions, take control of the shared computer application by sending remote
keyboard and pointing device information. This style of application sharing does not require and
does not make provision for synchronizing multiple instances of the same computer application
running at multiple sites. Instead, it enables remote viewing and control of a single application
instance to provide the illusion that the application is running locally.

An AS session consists of one or more ASCEs which cooperate via the AS protocol to share one or
more applications within the session. The AS protocol defines interactions between ASCEs. It does
not define interactions between an ASCE and the operating system or input and output devices on the
local terminal.

5.1 Legacy and base modes

The AS protocol supports two modes of operation. Legacy mode is provided for interoperability with
an existing installed base of customer terminal equipment. Base mode provides additional features
that enable future AS protocol enhancement.

All ASCEs compliant with this Recommendation shall implement both legacy and base modes. The
AS protocol usage of GCC (see clause 7) is defined such that where all ASCEs in a conference
support base mode (i.e. there are no pre-existing legacy mode only terminals in the conference), then
all ASCEs shall use base mode. It is the ITU’s intention that all future enhancements to the
AS protocol shall be by enhancements to base mode.

A significant proportion of this Recommendation is common to both modes, with the primary
differences between the two modes being in the following areas:

• The manner in which capabilities are exchanged and negotiated: see 8.2.

• The manner in which ASCEs are activated and deactivated: see 8.4.

• The definition and encoding of ASPDUs: see clause 9.

Where there are differences between the legacy and base modes of the AS protocol, they are
highlighted in the text.

5.2 AS concepts

5.2.1 Desktop and window model

This Recommendation does not assume or require any particular local terminal equipment or
terminal environment, nor does it assume or require a particular local terminal window manager or
windowing model. For example, it does not assume:

• that the terminal equipment is a PC or workstation – it may be a dedicated terminal;

 Recommendation T.128 (02/98) 5

• that AS protocol windows correspond to windows managed by a terminal window
manager – they may map onto arbitrary areas of the local terminal display;

• that AS protocol desktops correspond to local terminal displays – they may map into local
browser or viewer windows, or onto dedicated terminal display areas.

While this Recommendation does not assume or require any particular local terminal equipment or
terminal environment, the AS protocol does define a logical desktop and window model – consisting
of a collection of windows on a desktop. This requires that each active ASCE within an AS session is
capable of mapping local terminal environment concepts to and from the AS protocol desktop and
window model. The AS protocol desktop and window model supports the following key concepts:

• Desktop The AS desktop is a rectangle defined in virtual desktop coordinates.
An ASCE should provide a mapping from the AS desktop to an
appropriate local terminal concept.

• Virtual Desktop The virtual desktop is the union of the sizes of the desktops of hosting
ASCEs (i.e. ASCEs that are hosting windows – see below). The virtual
desktop origin (i.e. pixel 0,0) is defined as being at (top, left).

• Window An AS window is a rectangle defined in virtual desktop coordinates.
AS windows may be wholly within, partially within or wholly outside
the virtual desktop. An ASCE should provide a mapping from
AS windows to an appropriate local terminal window concept.

• Z-order The AS window Z-order defines a window depth ordering between
windows on the virtual desktop, such that for two windows, the
window higher in the Z-order is in front of and/or may obscure the
other.

• Top-most The top-most AS window in the Z-order is in front of and/or may
obscure all other windows in the Z-order.

• Bottom-most The bottom-most AS window in the Z-order is behind and/or may be
obscured by all other windows in the Z-order.

Further AS protocol concepts are explained below or in the appropriate protocol description clauses.

Figure 2 shows an example collection of ASCEs within an AS session – this figure is used
throughout this subclause to illustrate key AS protocol concepts.

• ASCE A is full function, viewing and hosting – that is, it both shares windows into the
AS session and displays shadow windows shared from other ASCEs. It is executing on a
general purpose PC, where the AS desktop and AS windows are mapped directly onto the
terminal window manager's desktop.

• ASCE B is viewing only – that is, it displays shadow windows shared from other ASCEs but
does not itself share windows into the AS session. It is executing on a specialized viewing
terminal where the AS desktop and AS windows are mapped into an independently sizeable
browser/viewer window, which is (currently) smaller than the AS desktop and is scrolled as
required to view the entire AS desktop.

• ASCE C is hosting only – that is, it shares windows into the AS session, but does not display
shadow windows. It is executing on a high-end unattended workstation, where the
AS desktop and AS windows are mapped directly onto the terminal window manager's
desktop.

6 Recommendation T.128 (02/98)

T1602320-97

A display

A hosted

A hosted

C shadow

C shadow

A local

A local

A desktop

ASCE A
A output to B, C

B input to C C output to A, B

ASCE B
viewing only

ASCE C
hosting only

C desktop

C hosted

C display

C hosted

C local

B desktop

A localC shadow

A shadow

B display

B localB browser/viewer

A shadow

C shadow B local

Figure 2/T.128 – Example collection of ASCEs within an AS session

Within an AS session, windows are of the following types:

• Hosted: Hosted windows are owned by an application executing on the local terminal and
are shared into the AS session. For each hosted window, there will be a corresponding
shadow window on each peer ASCE (except for the case where an ASCE is hosting only).

• Shadow: Shadow windows are drawn by the ASCE and correspond to a hosted window on a
particular peer ASCE.

• Local: Local windows are not shared – their output is only visible on the local terminal. An
ASCE is only required to track local windows where they obscure a hosted window and
where that obscuring prevents the ASCE obtaining valid drawing information for the hosted
window.

Figure 2 shows (for each ASCE) both the local windows on the actual terminal display and the AS
windows on the AS desktop that the ASCE manages via the AS protocol.

• ASCE A is managing three windows:

– a shadow window corresponding to the hosted window on ASCE C;

– a hosted window which is shared into the AS session;

 Recommendation T.128 (02/98) 7

– a local window – because it obscures the hosted window and on the local terminal that
prevents it obtaining valid drawing information for that hosted window.

 Shadow window C is drawn on the local terminal display by the ASCE – and the other two
windows are displayed by the local terminal.

• ASCE B is also managing three windows:

– a shadow window corresponding to the hosted window on ASCE A;

– a shadow window corresponding to the hosted window on ASCE C;

– the local window from ASCE A – because it obscures the hosted window on ASCE A;

– ASCE B does not track the local windows on its terminal display as it does not host
windows.

 Shadow windows A and C are drawn into the browser/viewer window on the local terminal
display by the ASCE. The local window is not drawn, but is rather used to compute and
draw an obscuring area, which partially obscures shadow window A (shown as a dark area at
the bottom right of shadow window A).

• ASCE C is managing one window:

– a hosted window which is shared into the AS session;

– ASCE C does not track the shadow window corresponding to the hosted window on
ASCE A as it does not view shadow windows;

– ASCE C does not track its local window, as, while the local window does obscure the
hosted window, the local terminal allows it to obtain valid drawing information for that
hosted window.

 The hosted window is displayed by the local terminal.

See subclause 8.10 for further information on windows and window list management.

5.2.2 Output

When an ASCE is hosting a window, it is responsible for constructing an output stream for that
window which will allow other ASCEs to faithfully draw corresponding shadow windows.

The AS output protocol stream is multicast via the AS-CHANNEL to all other active ASCEs within
the conference. If an ASCE is hosting only (as is ASCE C in Figure 2), then it can ignore some or all
of the output stream. Similarly, a receiving ASCE may decide to draw only a subset of the output
stream based on its source (e.g. only draw windows from a particular ASCE).

An ASCE determines the allowable output repertoire based on the current negotiated capabilities.
This requires that the ASCE is capable of adjusting its output strategy as ASCEs with lower or
higher capabilities join and/or leave the conference. But within the current allowable repertoire, and
the inherent constraints of the AS protocol, an ASCE has considerable freedom in constructing an
output stream.

The output stream consists of:

• state information – such as window list information (see 8.10);

• color information – such as palette and cached colortable information (see 8.15 and 8.16.8);

• orders and bitmap data (see 8.16 and 8.17).

8 Recommendation T.128 (02/98)

The AS protocol supports the following primary orders:

• Destination Blt.

• Pattern Blt.

• Screen Blt.

• Memory Blt.

• Memory Three Way Blt.

• Text.

• Extended Text.

• Frame.

• Rectangle.

• Line.

• Opaque Rectangle.

• Desktop Save.

• Desktop Origin.

In typical application sharing scenarios, orders constitute a very high proportion of ASPDU traffic.
Orders may therefore be differentially encoded to reduce the volume of orders in the output stream –
this process is referred to as order encoding.

The AS protocol supports a single bitmap data format, which may be compressed using an
AS-specific two-dimensional run-encoding bitmap compression algorithm.

Depending on local application drawing activity into hosted windows and on flow control (see 8.5), a
hosting ASCE may use a range of strategies to reduce the volume of the output stream and/or retain
responsiveness of remote drawing. Possible strategies include the following:

• Switching between sending orders and bitmap data:

 Where a local application is very actively drawing into a hosted window and the ASCE is
experiencing flow control back pressure, the ASCE may prefer to accumulate bounds
information for the drawing activity, rather than sending the orders, and then subsequently
send bitmap data for the accumulated bounds. This may reduce the frequency of updates at
remote ASCEs, but will minimize the data in flight and ensures that remote ASCEs "keep
up" with the drawing activity. The switching points between orders and bitmap data and vice
versa will depend on application drawing behaviour, flow control and the particular ASCE
implementation.

• Collapsing overlapping updates – this process is referred to as spoiling:

 Where the ASCE is experiencing flow control back pressure and the local application draws
a sequence of overlapping or occluding order or bitmap data updates, then the sequence may
(in some cases) be collapsed into a smaller sequence and/or a single update. Again, this may
reduce the frequency of updates at remote ASCEs, but will minimize the data in flight and
ensure that remote ASCEs "keep up" with the drawing activity.

A hosting ASCE is required to ensure that the final constructed output stream allows receiving
ASCEs to correctly draw the corresponding shadow windows. Similarly, where the output stream
relies on control information (such as window list or palette information) that has changed on the
hosting ASCE, it is the hosting ASCE's responsibility to ensure that the control information is sent
prior to the output. All order-dependent control and output ASPDUs are sent at low priority, so that
the sending ASCE can reliably order such output.

 Recommendation T.128 (02/98) 9

5.2.3 Control and input

Within an AS session, control is managed via a combination of conductorship, the core control
protocol and (where negotiated) the mediated control protocol – see 8.19, 8.12 and 8.13 respectively.
Conductorship has preference, in that where the conference is in conducted mode, the AS specific
control protocols are not used (other than to enforce conductorship). Where conductorship is not in
force, then control is managed via a combination of the core control protocol and (where negotiated)
the mediated control protocol.

A key common concept to these control schemes is that, at any point in time within the AS session,
one ASCE is in control and has the right to provide input to hosted and/or shadow windows2.

Where an ASCE is in control and can provide input to hosted or shadow windows (depending on
whether it or other ASCEs are detached or not), then, when a local input event occurs, the ASCE
determines, based on its local window structure and the shared window structure on its logical
desktop, whether that event is for a local, hosted or shadow window. Where the event is for a local or
hosted window, then the ASCE can defer processing of the event to the local terminal. Where the
event is for shadow window, then the ASCE determines which peer ASCE owns the corresponding
hosted window and constructs a suitable input stream for that ASCE.

The AS input stream consists of interleaved keyboard and pointing device events. Keyboard events
may be represented either as codepoints or as virtual keycodes. Pointing device events are
represented as a logical three-button pointing device. See 8.18 for further information.

Where an ASCE is experiencing flow control back pressure (see 8.5) and there is a high level of end-
user pointing device activity, the ASCE may collapse a sequence of pointing device move events into
a single move – this process is referred to as input spoiling. Input spoiling may also be applied at the
hosting ASCE, where a sequence of pointing device events is queued within the ASCE awaiting
injection into the local terminal environment. Both send and receive input spoiling may reduce the
frequency of pointing device move updates presented to hosted windows and therefore degrade the
smoothness of pointing device movement, but will minimize the data in flight and ensure that remote
ASCEs "keep up" with the pointing device activity.

5.2.4 Color

The AS protocol carries color information for the processing of orders and bitmap data.

• For orders (with the exception of the Memory Blt and Memory Three-Way Blt orders – see
below) color information is embedded in the order itself – although it may be absent on
individual orders as a result of order encoding.

• Bitmap data is always palettized and is interpreted with reference to a previously sent palette
which contains the color information.

• For the Memory Blt and Memory Three-Way Blt orders, the order contains some of the
required color information, but also refers to cached bitmap data (as the source for the
operation), where that cached bitmap data (see 8.16.7) is always palettized and is interpreted
with reference to a previously cached colortable (see 8.16.8) which contains the color
information.

2 This Recommendation does not specify control behaviour with respect to local ASCE windows.

10 Recommendation T.128 (02/98)

In the legacy mode of the AS protocol, color information is expressed solely as RGBs. In base mode,
color information is expressed as RGBs with optional color accuracy information.

ASCEs may supply color space information:

• within palettes: where the color space only applies to that palette;

• within colortables in Cache ColorTable orders: where the color space only applies to that
cached colortable;

• in Color Space orders: where the color space applies to subsequent orders.

The AS protocol does not mandate a particular color mapping between the ASCE and the local
terminal, although ASCEs should attempt to maintain color fidelity (within the constraints of the
negotiated capabilities) when constructing and interpreting color-related information in the output
stream.

5.2.5 Coordinates and clipping

All coordinates in the AS protocol are in virtual desktop coordinates. The virtual desktop is the union
of the sizes of the desktops of hosting ASCEs (i.e. ASCEs that are hosting windows) and is regarded
as the common drawing area in use by hosting ASCEs. The virtual desktop origin (i.e. pixel 0,0) is
defined as being at (top, left).

An ASCE shall clip all AS protocol coordinates and rectangles to the virtual desktop. The
AS protocol does not mandate a particular clipping strategy with respect to the local terminal display
area.

All rectangles in the AS protocol are inclusive. That is, the right-most and bottom-most pixel
coordinates represent pixels that are within the rectangle. For example, a rectangle with coordinates
(10,10,19,19) is 10 by 10 pixels in size.

6 Use of MCS

All T.128 communication shall be through MCS as specified in Recommendation T.122. This clause
details specific use of MCS services, channel allocation and data priorities. This Recommendation
complies with the mechanisms described in Recommendation T.121 regarding proper operations for
standard base sessions, non-standard base sessions and the registration session. All other session
types are optional.

An ASCE uses the MCS service primitives described in Table 6-1 to attach and detach from a
domain, join and leave the AS channel, and send and receive ASPDUs.

 Recommendation T.128 (02/98) 11

Table 6-1/T.128 – MCS primitives needed by an ASCE

MCS primitive Description

MCS-ATTACH-USER Creates an MCS attachment through an MCS SAP to a domain
hosted by the MCS provider. A result is confirmed to the
requester. If the request is accepted, a user ID is assigned.

MCS-DETACH-USER Deletes an MCS attachment that was created previously by
invocation of MCS-Attach-User. This primitive may be
requested by a user or initiated by a provider. It delivers an
indication at every other MCS attachment to the same domain. If
provider initiated, an indication is also delivered at the deleted
attachment.

MCS-CHANNEL-JOIN Used by an application client to join an appropriate channel
whose use is defined by the application. This is a prerequisite for
receiving data sent to the channel.

MCS-CHANNEL-LEAVE Used by an application client to leave a previously joined
channel and thus stop receiving data sent to that channel. The
primitive may be user initiated (request only) or provider
initiated (indication to affected user only).

MCS-SEND-DATA Used to transmit data to other members of a domain. If the
sender is a member of the destination channel, it will not receive
its own data indications. However, it will receive data
indications from other sources addressed to that channel.

MCS request primitives are directed from the ASCE to the MCS provider, while indication
primitives are directed from the MCS provider towards the ASCE. Additional detail on the
MCS primitives described above can be found in Recommendation T.122: Multipoint
Communication Service for audiographics and audiovisual conferencing, service definition.

6.1 MCS channel usage

Table 6-2 describes MCS channel usage for ASCE sessions of the types defined in Recommendation
T.121. In the case of a Standard Base Session (see Recommendation T.121) which uses the base
mode of the AS protocol, the Channel IDs shown in Table 6-2 shall be used (symbolic IDs shown).
For all other session types, the Application Registry Resource IDs shown in the table shall be used
for allocating dynamic channels. The given Resource IDs shall be encoded as three-octet T.50 text
strings using the characters shown in quotes in Table 6-2.

Table 6-2/T.128 – Description of AS channels

Mnemonic Channel IDs for
static channel

Application registry
resource IDs for

dynamic channels

Description

AS-{MCS-USER-ID}-
CHANNEL

– – Certain ASPDUs are sent directly to
individual ASCEs. To do this, the
individual MCS-USER-ID channels of
the peer ASCEs in the MCS domain
are used.

AS-CHANNEL AS-CHANNEL-0 "421" This channel bears all ASPDUs to be
broadcast to all peer ASCEs in a
domain.

12 Recommendation T.128 (02/98)

6.2 Use of MCS data services

Table 6-3 lists the use of the MCS data service MCS-SEND-DATA for each ASPDU (with mode
specific ASPDUs indicated where necessary). ASCEs do not use the MCS data service
MCS-UNIFORM-SEND-DATA. This table includes the channel over which the data are sent and the
data priority at which the data are sent.

The AS protocol uses three MCS priorities as a means of segregating ASPDUs with respect to flow
control. Flow control is applied on a per channel and per-priority basis (see 8.5), such that grouping
ASPDUs by priority allows the application of a flow control regime that is applicable to the group, as
follows:

• High priority is flow controlled and is used for activation, flow control and input ASPDUs.

• Medium priority is not flow controlled and is used for control ASPDUs.

• Low priority is flow controlled and is used for window information and output ASPDUs.

All ASPDUs specified in this Recommendation are placed in the Data parameter of the MCS-SEND-
DATA primitive. The ASPDUs are packed into the sequence of octets that form the Data parameter
such that the leading bit is placed in the most significant bit of each octet, and filled toward the least
significant bit of the octet.

Table 6-3/T.128 – Use of MCS data primitives for ASPDUs

ASPDU Channel Modes Priority

ApplicationPDU AS-CHANNEL or AS-{MCS-USER-ID}-
CHANNEL (Note 1)

Both Medium

ConfirmActivePDU AS-CHANNEL Legacy Mode All (Note 2)

ControlPDU AS-CHANNEL Both Medium

DeactivateAllPDU AS-CHANNEL Legacy Mode High

DeactivateOtherPDU AS-{MCS-USER-ID}-CHANNEL Legacy Mode High

DeactivateSelfPDU AS-CHANNEL Legacy Mode High

DemandActivePDU AS-CHANNEL Legacy Mode High

FlowResponsePDU AS-{MCS-USER-ID}-CHANNEL Both High

FlowStopPDU AS-CHANNEL Both High

FlowTestPDU AS-CHANNEL Both High, Medium or
Low (Note 3)

FontPDU AS-CHANNEL Both Medium

InputPDU AS-CHANNEL Both High

MediatedControlPDU AS-CHANNEL or AS-{MCS-USER-ID}-
CHANNEL (Note 4)

Both Medium

PointerPDU AS-CHANNEL Both Medium

RemoteSharePDU AS-{MCS-USER-ID}-CHANNEL Both Medium

RequestActivePDU AS-{MCS-USER-ID}-CHANNEL Legacy Mode High

SynchronizePDU AS-CHANNEL Both All (Note 5)

UpdateCapabilityPDU AS-{MCS-USER-ID}-CHANNEL Legacy Mode Medium

 Recommendation T.128 (02/98) 13

Table 6-3/T.128 – Use of MCS data primitives for ASPDUs (concluded)

ASPDU Channel Modes Priority

UpdatePDU AS-CHANNEL Both Low

WindowActivationPDU AS-CHANNEL or AS-{MCS-USER-ID}-
CHANNEL (Note 6)

Both Low

WindowListPDU AS-CHANNEL Both Low

NOTE 1 – The ApplicationPDU (NotifyHostedApplications) is sent on the AS-CHANNEL and the
ApplicationPDU (UnhostApplication) is sent on a particular AS-{MCS-USER-ID}-CHANNEL. See 8.9
for further information.

NOTE 2 – The ConfirmActivePDU is sent on all priorities. See 8.4.1 for further information.

NOTE 3 – The FlowTestPDU is sent on the particular priority for which flow control is being applied.
See 8.5 for further information.

NOTE 4 – The MediatedControlPDU is sent on either the AS-CHANNEL or a particular
AS-{MCS-USER-ID}-CHANNEL. See 8.13 for further information.

NOTE 5 – The SynchronizePDU is sent on one of the High, Medium, or Low priorities as required.
See 8.6 for further information.

NOTE 6 – WindowActivationPDU indications are sent on the AS-CHANNEL and
WindowActivationPDU requests are sent on a particular AS-{MCS-USER-ID}-CHANNEL. See 8.11 for
further information.

7 Use of GCC

The legacy mode of the AS protocol shall use the procedures of a Non-standard Base Session in the
manner specified in Recommendation T.121 and shall use the Application Protocol Key defined in
Annex B. The base mode of the AS protocol may use the procedures defined for a Registration
Session, a Standard Base Session, a Public Session, or a Private Session in the manner specified in
Recommendation T.121 and shall use as its Application Protocol Key the Object Identifier defined in
Annex C.

All ASCEs compliant with this Recommendation shall first enrol actively or inactively in the
Registration Session (to signal support for the base mode of the AS protocol) and then enrol actively
or inactively in the Non-standard Base Session (to signal support for the legacy mode of the
AS protocol), in both cases using the procedures defined in Recommendation T.121 and shall stay
enrolled in both sessions for as long as support for the AS protocol is to be indicated.

Pre-existing terminal equipment that only provides support for legacy mode will only enrol actively
or inactively in the Non-standard Base Session using the procedures defined in Recommendation
T.121 and will stay enrolled in that session for as long as such support is to be indicated.

An ASCE shall not enrol in the Standard Base Session of the AS protocol unless for each node in a
conference, there are an equal number of ASCEs enrolled either actively or inactively in the
Non-standard Base Session as there are enrolled in the Registration Session.

If the Non-standard Base Session is in progress (i.e. all ASCEs are active in legacy mode), upon
receiving a GCC-Conference-Roster-Report indication where the number of ASCEs enrolled in the
Registration Session is equal to the number of ASCEs enrolled in the Non-standard Base Session in
the conference (i.e. all ASCEs in the conference are compliant), all ASCEs shall become inactive in
legacy mode, shall enrol in the Standard Base Session and shall become active in base mode. See 8.4
for further information on ASCE activation.

14 Recommendation T.128 (02/98)

If the Standard Base Session is in progress (i.e. all ASCEs are active in base mode), upon receiving a
GCC-Conference-Roster-Report indication where the number of ASCEs enrolled in the Registration
Session is less than the number of ASCEs enrolled in the Non-standard Base Session in the
conference (i.e. one or more ASCEs in the conference are non-compliant pre-existing terminal
equipment), all ASCEs enrolled in the Standard Base Session shall become inactive in base mode,
shall unenroll from the Standard Base Session and shall become active in legacy mode. See 8.4 for
further information on ASCE activation.

The above rules for switching between legacy and base modes mean that legacy mode will only be in
effect where the conference contains pre-existing terminal equipment supporting the legacy mode of
the AS protocol only. Where all ASCEs in the conference comply with this Recommendation, then
base mode will be in effect. Given this, the switch from base to legacy mode occurs when the first
legacy only mode node joins a conference consisting entirely of ASCEs that are compliant with this
Recommendation. In contrast, the switch from legacy mode to base mode occurs when the last legacy
only mode node leaves a conference which then consists entirely of ASCEs that are compliant with
this Recommendation.

ASCEs supporting the base mode of the AS protocol may enrol in a Public Session or Private
Session at their discretion using the procedures defined in Recommendation T.121.

8 Protocol specification

8.1 AS sessions

An AS session consists of one or more ASCEs enrolled within a conference as described in clause 7.
ASCEs may join or leave the AS session at any time.

8.2 Capabilities

AS capabilities are collected into capability sets, where each set consists of related individual
capabilities. Capability sets are described in Tables 8-3 through 8-20. Hereafter, where this
Recommendation makes reference to an individual capability, it uses the notation
capability_set.capability. For example Bitmap.desktopWidth refers to the desktopWidth capability
in the Bitmap capability set.

The full list of capability sets is referred to as an ASCE’s combined capabilities. The combined
capabilities list contains one copy of each of the corresponding capability sets in any order.

• General Capability Set: See 8.2.3.

• Bitmap Capability Set: See 8.2.4.

• Order Capability Set: See 8.2.5.

• Bitmap Cache Capability Set: See 8.2.7.

• ColorTable Cache Capability Set: See 8.2.8.

• Window Activation Capability Set: See 8.2.9.

• Control Capability Set: See 8.2.10.

• Pointer Capability Set: See 8.2.11.

• Share Capability Set3: See 8.2.12.

3 The Share capability set is only defined for the legacy mode of the AS protocol. It does not form part of an

ASCE’s combined capabilities in the base mode of the AS protocol.

 Recommendation T.128 (02/98) 15

In the legacy mode of the AS protocol, an ASCE may define non-standard capability extensions by
adding private capability sets and/or by adding private capabilities at the end of the defined capability
sets. The interpretation of such capabilities is not covered by this Recommendation. When using the
legacy mode of the AS protocol, an ASCE should ignore unrecognized non-standard capability sets
and unrecognized capability set extensions. Similarly, an ASCE shall treat any private capabilities
that are not supplied by other ASCEs as zero (for integer values) or FALSE (for logical and bit flag
values).

In the base mode of the AS protocol, an ASCE may define non-standard capability extensions by
adding one or more non-standard capability sets (see 8.2.13) to its combined capabilities. The
interpretation of such capabilities is not covered by this Recommendation.

8.2.1 Distribution of capabilities

For the legacy mode of the AS protocol, an ASCE advertises its combined capabilities during ASCE
activation on the following ASPDUs.

• DemandActivePDU: See 8.4.1.

• RequestActivePDU: See 8.4.1.

• ConfirmActivePDU: See 8.4.1.

For the legacy mode of the AS protocol, an ASCE advertises a change in a particular capability set
using the UpdateCapabilityPDU (see 8.2.14).

For the base mode of the AS protocol, capabilities exchange shall be performed according
to Recommendation T.121, via the application enrolment mechanism. An ASCE shall use
GCC-Application-Enroll requests to enrol and advertise its current combined capabilities. Where an
ASCE's capabilities change while enrolled, it shall re-enroll by issuing a GCC-Application-Enroll
request with the Enroll/Unenroll flag set to Enroll, including the revised combined capabilities.
ASCEs receive collapsed and non-collapsed application capabilities, generated from the combined
capabilities supplied by all enrolled ASCEs, via GCC-Application-Roster-Report indications. An
ASCE may be required to process GCC-Application-Roster-Report indications multiple times during
an AS session and shall adhere to the bounds imposed by the capabilities reported in this fashion.

8.2.2 Capabilities negotiation

In the legacy mode of the AS protocol, the ASCE activation ASPDU exchanges (see 8.4.1) ensure
that an ASCE has a copy of each other active ASCE's capabilities. And, in addition, an ASCE is
responsible for performing all capabilities negotiation. That is, GCC is not involved in capabilities
distribution or negotiation.

In the base mode of the AS protocol, capabilities are distributed by GCC. There are a small number
of capabilities that must be advertised via the non-collapsing capabilities list in the roster – they are
specified as such in the description of the capability in the appropriate base mode capability set.
However, in general, a particular capability may be advertised via one of either the collapsing or non-
collapsing capabilities lists in the roster. Where an ASCE advertises a particular capability via one
list, it shall not advertise the same capability via the other list. However, an ASCE is not required to
advertise a capability – it may choose not to advertise a particular capability in either list and rely on
the defined GCC roster counting behaviour to force use of a default value (see below).

This hybrid approach to base mode capabilities distribution is provided so that ASCEs may advertise
capabilities via the collapsing capabilities, which results in a reduction in roster-related GCC traffic,
but may still advertise capabilities via the non-collapsing capabilities where that is more appropriate.
ASCEs are recommended to use collapsing capabilities wherever possible.

16 Recommendation T.128 (02/98)

In the base mode of the AS protocol, where an ASCE advertises a particular capability via the
non-collapsing capabilities list in the roster, the ASCE shall encode the capability value using the
encoding rules defined in 9.4.

ASCE capabilities negotiation for a particular capability depends on the defined capability
negotiation rule for that capability, the protocol mode (i.e. whether the ASCE is using legacy or base
mode) and whether (in base mode) the capability is advertised via collapsing or non-collapsing
capabilities.

8.2.2.1 One and info capability rules

Where the defined capability negotiation rule is one or info, then an ASCE shall process the
advertised capabilities as follows.

In base mode, where a capability is negotiated using either the one or info rules, the capability shall
be advertised using non-collapsing capabilities.

Rule Required ASCE processing

one The negotiated capability value is the value advertised by a particular peer ASCE.

Info Capabilities may also be classified as informational – they are provided solely for
informational or diagnostics purposes and are not negotiated.

8.2.2.2 Min and max capability rules

Where the defined capability negotiation rule is min or max, then an ASCE shall process the
advertised capabilities based on the number of candidate values, as follows:

• For the legacy mode of the AS protocol, candidate values correspond to the advertised
values supplied by each active ASCE during ASCE activation, but excluding the value
advertised by the negotiating ASCE. If there are N active ASCEs, then there are N−1
candidate values.

• For the base mode of the AS protocol, candidate values consist of the collapsed capability
value provided in the roster and any non-collapsing values, but excluding a non-collapsing
value advertised by the negotiating ASCE. The roster indicates how many ASCEs advertised
capability values that contributed to the collapsed value, which allows an ASCE to
determine whether all ASCEs advertised a value. So, if there are N ASCEs in the roster,
C ASCEs advertised collapsing values and NC ASCEs advertised non-collapsing values for
a particular capability, then:

– if N = C, all ASCEs advertised collapsing values for the particular capability: there is
one candidate value;

– if N = NC, all ASCEs advertised non-collapsing values for the particular capability:
there are NC−1 candidate values – where the non-collapsing value advertised by the
negotiating ASCE is excluded;

– if N = C + NC, all ASCEs advertised either a collapsing or non-collapsing value for the
particular capability: there are:

• C + NC−1 candidate values where the negotiating ASCE advertised a non-
collapsing value which is excluded;

• C + NC candidate values where the negotiating ASCE advertised a collapsing value;

– if N > C + NC, not all ASCEs advertised a value: the negotiated capability value is the
default value (see below).

 Recommendation T.128 (02/98) 17

In base mode, if an ASCE determines that all ASCEs have advertised collapsing values (i.e. case
N = C above), then the negotiated capability value is the collapsed value in the roster.

In base mode, if an ASCE determines that not all ASCEs advertised a value (i.e. case N > C + NC
above), then the negotiated capability value is the default value. For logical capabilities, the default
value is FALSE (or not established). For integer capabilities, the default value is specified in the
description of the capability in the appropriate base mode capability set.

For legacy mode, or for base mode where all ASCEs advertised values and the number of candidate
values is greater than one (i.e. some or all ASCEs advertised non-collapsing values – cases N = NC
and N = C + NC above), then the ASCE applies the defined min or max capability negotiation rule,
as follows.

Rule Required ASCE processing

min The negotiated capability value is the minimum of the candidate values.

• For integer values, the minimum is the lowest integer value.

• For logical values, the minimum is FALSE.

• For bit flags (in legacy mode only), each bit flag is negotiated independently and the
minimum is not set.

max The negotiated capability value is the maximum of the candidate values.

• For integer values, the maximum is the highest integer value.

• For logical values, the maximum is TRUE.

• For bit flags (in legacy mode only), each bit flag is negotiated independently and the
maximum is set.

8.2.2.3 Group capability rules

ASCE capabilities negotiation is generally performed on single capability values. However, there are
cases where a number of capabilities are negotiated as a group – for example, negotiation of the
Bitmap capability set bits-per-pixel related capabilities (see 8.2.4). Where this is the case, an
individual capability in the group may be negotiated either by using one of the previously described
capability negotiation rules – such as min or max – with the negotiated value being fed into the group
negotiation, or by feeding its unnegotiated value directly into the group negotiation.

Where capabilities are negotiated as a group, they are identified as such in the particular capability
set together with a reference to the specific rule used to negotiate the group.

Table 8-1 summarizes the notation used in the remainder of this subclause when describing
capabilities.

18 Recommendation T.128 (02/98)

Table 8-1/T.128 – Capability notation – Classes

Class Description

L Logical: A logical value. In legacy mode the value is either TRUE
or FALSE. In base mode, if the capability is supplied, the value is
TRUE. In base mode, the default value is FALSE.

F Bit Flags: A collection of bit values, each of which is TRUE or
FALSE. This class is only allowed in legacy mode capability sets.

N Integer: A signed or unsigned integer value. In base mode the
default value is as specified in the description of the capability set.

S String: A null-terminated T.50 text string. This class is only
allowed in legacy mode capability sets.

Table 8-2 illustrates example capability negotiations. Each row shows, for each ASCE (ASCEs 1
and 2), the capability value set (for each class) by the ASCE when advertising its capabilities, the
resultant values for the one rule with respect to the other ASCEs and the negotiated value for the min
and max rules for the cases where all ASCEs advertise using collapsing capabilities and where all
advertise using non-collapsing capabilities [which gives four combinations: min (C) is the min rule
and all advertise using collapsing capabilities, min (NC) is the min rule and all advertise using
non-collapsing capabilities and so on …]4. For example:

• ASCE 1's advertised logical value is TRUE, its bit flag value is 0x0001 and its integer value
is 100.

• ASCE 2's advertised logical value is FALSE, its bit flag value is 0x0003 and its integer
value is 300.

• When ASCE 1 applies the one rule with respect to ASCE 2, it generates ASCE 2's advertised
values – i.e. FALSE, 0x0003 and 300 respectively.

• When ASCE 1 applies the max rule for the case where both ASCEs advertised using
collapsing capabilities, it generates the maximum of all advertised values – i.e. TRUE and
300 respectively.

• When ASCE 1 applies the max rule for the case where both ASCEs advertised using
non-collapsing capabilities, it generates the maximum of all advertised values excluding its
own – i.e. FALSE, 0x0003 and 300 respectively.

• When ASCE 2 applies the one rule with respect to ASCE 1, it generates ASCE 1's advertised
values – i.e. TRUE, 0x0001 and 100 respectively.

This is not an exhaustive example. The itemized cases cover four out of the ten example cases. In
addition, there are further combinations where ASCE provide mixed collapsing and non-capabilities.

4 The bit flag class is only allowed in legacy mode, where the distribution of capabilities via the ASCE

activation ASPDUs is equivalent to advertising via non-collapsing capabilities. Therefore, the bit flag
class resultant values for min and max collapsing capability cases are not shown.

 Recommendation T.128 (02/98) 19

Table 8-2/T.128 – Example capability negotiation

 ASCE 1 ASCE 2

Class Value one ⇒ 2 min (C) min (NC) max (C) max (NC) Value 1⇐ one min (C) min (NC) max (C) max (NC)

B T F F F T F F T F T T T

F x0001 x0003 n/a x0003 n/a x0003 x0003 x0001 n/a x0001 n/a x0001

N 100 300 100 300 300 300 300 100 100 100 300 300

8.2.3 General capability set

The General capability set provides capabilities for the general characteristics of the issuing ASCE.
See Tables 8-3 and 8-4.

Table 8-3/T.128 – General capability set (Legacy mode)

Capability Description Class Rule

OSMajorType This capability indicates the operating system major type.
Allowable values as follows:

• Unspecified
• Windows
• OS/2
• Macintosh
• UNIX/X

This capability is for information and diagnostic purposes
only.

N info

OSMinorType This capability indicates the operating system minor type.
The values depend on the OSMajorType capability (see
above). Allowable values are as follows:

OSMajorType OSMinorType

Windows Unspecified
Windows 3.1x
Windows 95
Windows NT

OS/2 Unspecified
OS/2 Warp (Intel x86)
PowerPC\

Macintosh Unspecified
Macintosh
PowerPC

UNIX/X Unspecified
Native Server
Pseudo Server

Unspecified Unspecified

This capability is for information and diagnostic purposes
only.

N info

20 Recommendation T.128 (02/98)

Table 8-3/T.128 – General capability set (Legacy mode) (concluded)

Capability Description Class Rule

protocolVersion This capability specifies the protocol version level. The
allowable value is 0x0200 (indicating major and minor
versions of 2 and 0 respectively).

N info

generalCompressionTypes This capability is a set of bit flags itemizing which (if any)
non-standard general compression schemes are supported by
this ASCE. Interpretation of this field depends on the
negotiated generalCompressionLevel capability (see below)
as follows:

• If the negotiated generalCompressionLevel capability is
zero, then only the least significant bit flag of this field is
valid (i.e. bit 0).

 • If the negotiated generalCompressionLevel capability is
greater than zero, then all bit flags within this field are
valid.

See 8.3.2 for further information on non-standard general
compression.

F min

updateCapabilityFlag This capability indicates whether this ASCE can receive the
UpdateCapabilityPDU. A value of TRUE indicates that it can
receive the UpdateCapabilityPDU and a value of FALSE
indicates that it cannot. See 8.2.14 for further information.

L one

remoteUnshareFlag This capability indicates whether this ASCE can receive an
ApplicationPDU with the UnhostApplication action. A value
of TRUE indicates that it can receive an ApplicationPDU
with the UnhostApplication action and a value of FALSE
indicates that it cannot. See 8.9 for further information.

L one

generalCompressionLevel This capability indicates which level of general compression
scheme handling is supported by this ASCE. See 8.3.2 for
further information on non-standard general compression.

N min

 Recommendation T.128 (02/98) 21

Table 8-4/T.128 – General Capability Set (Base mode)

Capability
(default value)

Description ID Class Rule

remoteUnshareFlag This capability indicates whether this ASCE can
receive an ApplicationPDU with the
UnhostApplication action. See 8.9 for further
information. This capability must be advertised
using non-collapsing capabilities.

1 L one

v42bisCompressionFlag This capability indicates whether this ASCE can
receive ASPDUs general compressed using
V.42 bis compression. See 8.3.2 for further
information.

2 L min

v42bisNumberCodeWords
(default: 512)

This capability specifies the total number of
codewords to be used by the V.42 bis compression
algorithm. This is an upper bound on V.42 bis
parameter P1. Rec. V.42 bis does not impose an
upper limit on its value. See 8.3.2 for further
information.

3 N min
(Note)

v42bisMaxStringLength
(default: 6)

This capability specifies the maximum string
length input to the V.42 bis encoder. This is an
upper bound on V.42 bis parameter P2. See 8.3.2
for further information.

4 N min
(Note)

NOTE – The v42bisNumberCodeWords and v42bisMaxStringLength capabilities are dependent on the
v42bisCompressionFlag capability. If the respective numberOfEntities parameter returned by the
GCC-Application-Roster-Report indication for the v42bisNumberCodeWords or v42bisMaxStringLength
capabilities is equal to the numberOfEntities parameter for the v42bisCompressionFlag capability, then the
respective negotiated value is established; otherwise the default value of the capability is established.

8.2.4 Bitmap capability set

The Bitmap capability set provides capabilities for the bitmap oriented characteristics of the issuing
ASCE. See Tables 8-5 and 8-6.

22 Recommendation T.128 (02/98)

Table 8-5/T.128 – Bitmap capability set (Legacy mode)

Capability Description Class Rule

preferredBitsPerPixel This capability indicates this ASCE’s preferred format for
bitmap data. Allowable values are 1, 4 and 8.

N group
(Note 1)

receive1BitPerPixelFlag This capability indicates whether this ASCE can receive
1 bit-per-pixel bitmap data. An ASCE is required to be
able to receive 1 bit-per-pixel bitmap and shall set this
parameter to TRUE.

L group
(Note 1)

receive4BitsPerPixelFlag This capability indicates whether this ASCE can receive
4 bits-per-pixel bitmap data. A value of TRUE indicates
that it can receive 4 bits-per-pixel bitmap data and a value
of FALSE indicates that it cannot. Where an ASCE
specifies that it can receive 4 bits-per-pixel, then it must
also receive 1 bit-per-pixel.

L group
(Note 1)

receive8BitsPerPixelFlag This capability indicates whether this ASCE can receive
8 bits-per-pixel bitmap data. A value of TRUE indicates
that it can receive 8 bits-per-pixel bitmap data and a value
of FALSE indicates that it cannot. Where an ASCE
specifies that it can receive 8 bits-per-pixel, then it must
also receive 1 and 4 bits-per-pixel.

L group
(Note 1)

desktopWidth This capability specifies this ASCE’s current desktop
width in pixels.

N group
(Note 2)

desktopHeight This capability specifies this ASCE’s current desktop
height in pixels.

N group
(Note 2)

desktopResizeFlag This capability indicates whether this ASCE can receive
UpdateCapabilityPDUs containing a Bitmap capability set
as a result of a peer ASCE desktop resize. A value of
TRUE indicates that it can receive an
UpdateCapabilityPDU containing a Bitmap capability set
and a value of FALSE indicates that it cannot. See 8.2.14
for further information.

L one

bitmapCompressionFlag This capability indicates whether this ASCE can receive
compressed bitmap data in UpdatePDU (Bitmap) and in
Cache Bitmap orders. See 8.17 for further information on
bitmap compression.

L min

NOTE 1 – The bits-per-pixel related capabilities are negotiated as a group to determine the
sendingBitsPerPixel using the algorithm described in 8.2.4.1.

NOTE 2 – The desktop width and desktop height capabilities are negotiated as a group to determine
(among others) the size of the virtual desktop. See 8.2.4.2.

 Recommendation T.128 (02/98) 23

Table 8-6/T.128 – Bitmap capability set (Base mode)

Capability
(default value)

Description ID Class Rule

preferredBitsPerPixel
(default: 8)

This capability indicates this ASCE’s preferred
format for bitmap data. Allowable values are 1, 4
and 8. This capability must be advertised using
non-collapsing capabilities.

10 N group
(Note 1)

receive4BitsPerPixelFlag This capability indicates whether this ASCE can
receive 4 bits-per-pixel bitmap data. Where an
ASCE specifies that it can receive 4 bits-per-pixel,
then it must also be able to receive 1 bit-per-pixel.

11 L group
(Note 1)

receive8BitsPerPixelFlag This capability indicates whether this ASCE can
receive 8 bits-per-pixel bitmap data. Where an
ASCE specifies that it can receive 8 bits-per-pixel,
then it must also be able to receive 1 and
4 bits-per-pixel.

12 L group
(Note 1)

desktopWidth
(default: 640)

This capability specifies this ASCE’s current
desktop width in pixels. This capability must be
advertised using non-collapsing capabilities.

13 N group
(Note 2)

desktopHeight
(default: 480)

This capability specifies this ASCE’s current
desktop height in pixels. This capability must be
advertised using non-collapsing capabilities.

14 N group
(Note 2)

bitmapCompressionFlag This capability indicates whether this ASCE can
receive compressed bitmap data in UpdatePDU
(Bitmap) and in Cache Bitmap orders. See 8.17 for
further information on bitmap compression.

15 L min

NOTE 1 – The bits-per-pixel related capabilities are negotiated as a group to determine the
sendingBitsPerPixel using the algorithm described in 8.2.4.1.

NOTE 2 – The desktop width and desktop height capabilities are negotiated as a group to determine
(among others) the size of the virtual desktop. See 8.2.4.2.

8.2.4.1 Sending bits-per-pixel capabilities negotiation

The Bitmap capability set preferredBitsPerPixel, receive1BitPerPixelFlag (in legacy mode),
receive4BitsPerPixelFlag and receive8BitsPerPixelFlag capabilities are negotiated as a group to
determine the sendingBitsPerPixel used by each ASCE when sending bitmap data, palettes and
colortables.

Certain terminal types can acquire and render bitmap data in a range of color depths, but may have a
preferred color depth (which normally corresponds to the actual terminal display color depth) at
which acquisition and rendering is either more efficient or can be achieved with better color fidelity.
Therefore the Bitmap capability set provides a range of capabilities, which enables an ASCE to
express:

• its preferred color depth for the receipt of bitmap data, palettes and colortables;

• other color depths at which it can receive bitmap data, palettes and colortables.

24 Recommendation T.128 (02/98)

The capabilities negotiation algorithm for this group determines a sendingBitsPerPixel for a
particular ASCE using the advertised preferredBitsPerPixel, receive4BitsPerPixelFlag and
receive8BitsPerPixelFlag capability values, as follows:

• set combinedBitsPerPixel to the minimum of this ASCE's preferredBitsPerPixel value and
the maximum of all other ASCEs' preferredBitsPerPixel values;

• if the combinedBitsPerPixel is 1 then set sendingBitsPerPixel to 1;

• else if combinedBitsPerPixel is less than or equal to 4 and the negotiated
receive4BitsPerPixelFlag value is TRUE then sendingBitsPerPixel is 4;

• else if the negotiated receive8BitsPerPixelFlag value is TRUE then sendingBitsPerPixel is 8;

• else if the negotiated receive4BitsPerPixelFlag value is TRUE then sendingBitsPerPixel is 4;

• else sendingBitsPerPixel is 1.

In the legacy mode of the AS protocol, the Bitmap capability set contains a receive1BitPerPixelFlag
capability, but this does not play a part in the negotiation, as the requirement to support lower color
depths (i.e. an ASCE is required to support at least 1 bit-per-pixel if it supports 4 bits-per-pixel and
to support 1 and 4 bits-per-pixel if it supports 8 bits-per-pixel) means that all ASCEs must support
1 bit-per-pixel. In the base mode of the AS protocol, the Bitmap capability set does not contain a
receive1BitPerPixelFlag capability.

The requirement for an ASCE to support lower color depths means that an ASCE conforming to this
Recommendation shall not cause capabilities negotiation to fail to find a suitable value.

An ASCE may use an alternate private algorithm in certain circumstances. For example, certain
8 bits-per-pixel terminals do not reliably generate 4 bits-per-pixel bitmap data. Where this is the case
and the negotiated receive8BitsPerPixel value is TRUE, the ASCE may set sendingBitsPerPixel to 8,
even where the combinedBitsPerPixel value is 4. However, where an ASCE does use a private
algorithm, it shall still generate a sendingBitsPerPixel value which is consistent with the negotiated
values of the receive4BitsPerPixelFlag and receive8BitsPerPixelFlag capabilities.

8.2.4.2 Desktop size capabilities negotiation

The Bitmap capability set desktop width and desktop height capabilities are independently negotiated
to determine the size of the virtual desktop. See 5.2.5 for further information on the virtual desktop.

The capabilities negotiation algorithm essentially uses the max rule (see 8.2.2), but the candidate
values are the capability values advertised by all active hosting ASCEs, which may or may not
include the determining ASCE.

For example, in a conference with four active ASCEs – ASCEs A, B, C and D where:

• ASCE A advertises Bitmap.desktopWidth and Bitmap.desktopHeight as 800 and 600
respectively;

• ASCE B advertises Bitmap.desktopWidth and Bitmap.desktopHeight as 1024 and 768
respectively;

• ASCE C advertises Bitmap.desktopWidth and Bitmap.desktopHeight as 1600 and 1200
respectively;

• ASCE D advertises Bitmap.desktopWidth and Bitmap.desktopHeight as 640 and 480
respectively;

 Recommendation T.128 (02/98) 25

• then if ASCEs A and C are hosting, the negotiated virtual desktop capability values are 1600
by 1200;

• whereas if ASCEs B and D are hosting, the negotiated virtual desktop capability values are
1024 by 768.

8.2.5 Order capability set

The Order capability set provides capabilities for the order characteristics of the issuing ASCE.

See Appendix I for informative values for the Desktop Save capabilities
(i.e. desktopSaveXGranularity, desktopSaveYGranularity and desktopSaveSize). See Tables 8-7 and
8-8.

Table 8-7/T.128 – Order capability set (Legacy mode)

Capability Description Class Rule

terminalDescriptor This capability is a null-terminated character T.50 text
string which may be used to identify local terminal
characteristics for information and diagnostics purposes.

S info

desktopSaveXGranularity This capability specifies the minimum X granularity in
pixels for this ASCE when receiving Desktop Save orders.
See 8.16.17 for further information.

N max
(Note 1)

desktopSaveYGranularity This capability specifies the minimum Y granularity in
pixels for this ASCE when receiving Desktop Save orders.
See 8.16.17 for further information.

N max
(Note 1)

maximumOrderLevel This capability specifies the maximum order level
supported within the orderSupport capability (see below).
See 8.2.6 for further information on order levels.

N info

numberFonts This capability is the maximum number of matchable
fonts for this ASCE, details of which are subsequently
supplied in the FontPDU. See 8.8 for further information
on the FontPDU.

N info
(Note 2)

orderFlags This capability is a set of bit flags indicating the order
support provided by this ASCE. Defined bit flag values
are as follows.

F min
(Note 3)

 • Negotiate order support: It is mandatory to set this flag.

• Cannot Receive Orders: If this flag is set, it indicates
that this ASCE cannot receive
orders.

 An ASCE shall always set the Negotiate order support
flag. See 8.16.3 for further information on order encoding.

26 Recommendation T.128 (02/98)

Table 8-7/T.128 – Order capability set (Legacy mode) (continued)

Capability Description Class Rule

orderSupport This capability is an array of 32 order levels indexed by
order type. The allowable array indices are as follows. All
other array values shall be set to zero. See below for
further information on order levels.

N min

 Order Index

 Destination Blt Support 0 See 8.16.4.

 Pattern Blt Support 1 See 8.16.5.

 Screen Blt Support 2 See 8.16.6.

 Memory Blt Support 3 See 8.16.9.

 Memory Three Way Blt
Support

4 See 8.16.10.

 Text Support 5 See 8.16.11.

 Extended Text Support 6 See 8.16.12.

 Rectangle Support 7 See 8.16.14.

 Line Support 8 See 8.16.16.

 Frame Support 9 See 8.16.13.

 Opaque Rectangle Support 10 See 8.16.15.

 Desktop Save Support 11 See 8.16.17.

textFlags This capability is a set of bit flags indicating font
matching and text options supported by this ASCE.
Defined bit flag values are as follows:

F min

 • Check font aspect If this flag is set, it indicates that
this ASCE supports the checking of
font horizontal and vertical aspects
during font matching.

 • Check font
signatures

If this flag is set, it indicates that
this ASCE supports the checking of
font signatures during font
matching.

 • DeltaX
simulation

If this flag is set, it indicates that
this ASCE allows Delta X
approximations during font
matching.

 • Baseline Start If this flag is set, it indicates that
this ASCE can receive Text and
Extended Text orders where the text
start position is specified with
respect to the character baseline.

 See 8.8 for further information on font matching.
See 8.16.11 and 8.16.12 for further information on Text
and Extended Text orders.

 Recommendation T.128 (02/98) 27

Table 8-7/T.128 – Order capability set (Legacy mode) (concluded)

Capability Description Class Rule

desktopSaveSize This capability specifies the total size in pixels of this
ASCE’s desktop cache per hosting ASCE. See 8.16.17 for
further information.

N min
(Note 1)

NOTE 1 – As a result of capabilities negotiation, an ASCE must be able to receive Desktop Save orders
constructed using X and/or Y granularities larger than, or not exact multiples of, its advertised
desktopSaveXGranularity and desktopSaveYGranularity capabilities. Similarly, an ASCE must be able to
send Desktop Save orders where the negotiated desktopSaveSize is not an exact multiple of its advertised
desktopSaveXGranularity and desktopSaveYGranularity capabilities.

NOTE 2 – A receiving ASCE may use the numberFonts capability to determine whether it has sufficient
storage to receive this ASCE's fonts on subsequent FontPDUs. The numberFonts capability is an upper
limit and subsequent FontPDUs may contain a number of font attributes less than or equal to the
numberFonts capability. See 8.8 for further information on the FontPDU.

NOTE 3 – It is mandatory that the Negotiate order support bit flag is set. The Cannot receive orders bit
flag allows an ASCE to advertise whether it can or cannot receive orders. Where the Cannot receive
orders bit flag is not set, it indicates that the ASCE can receive orders. Where the Cannot receive orders
bit flag is set, it indicates that the ASCE cannot receive orders, which forces peer ASCEs to disable the
sending of order updates entirely and to just send bitmap updates.

Table 8-8/T.128 – Order capability set (Base mode)

Capability
(default value)

Description ID Class Rule

desktopSaveXGranularity
(default: 1)

This capability specifies the minimum X
granularity in pixels for this ASCE when receiving
Desktop Save orders. See 8.16.17 for further
information.

20 N max
(Note)

desktopSaveYGranularity
(default: 1)

This capability specifies the minimum Y
granularity in pixels for this ASCE when receiving
Desktop Save orders. See 8.16.17 for further
information.

21 N max
(Note)

desktopSaveSize
(default: 160,000)

This capability specifies the total size in pixels of
this ASCE’s desktop cache. See 8.16.17 for further
information.

22 N min
(Note)

checkFontAspectFlag This capability indicates whether this ASCE
supports the checking of font horizontal and
vertical aspects during font matching. See 8.8 for
further information on font matching.

23 L min

checkFontSignaturesFlag This capability indicates whether this ASCE
supports the checking of font signatures during
font matching. See 8.8 for further information on
font matching.

24 L min

allowDeltaXFlag This capability indicates whether this ASCE
allows Delta X approximations during font
matching. See 8.8 for further information on font
matching.

25 L min

28 Recommendation T.128 (02/98)

Table 8-8/T.128 – Order capability set (Base mode) (continued)

Capability
(default value)

Description ID Class Rule

baselineStartFlag This capability indicates whether this ASCE can
receive Text and Extended Text orders where the
text start position is specified with respect to the
character baseline. See 8.16.11 and 8.16.12 for
further information on Text and Extended Text
orders.

26 L min

receiveOrdersFlag This capability indicates whether this ASCE can
receive UpdatePDU (Orders) ASPDUs – i.e.
whether it can receive orders or not. See 8.16 for
further information on orders.

27 L min

DesktopSaveLevel
(default: 1)

This capability indicates the Desktop Save order
level supported by this ASCE. See 8.16.17 for
further information on the Desktop Save order.

30 N min

DestinationBltLevel
(default: 1)

This capability specifies the Destination Blt order
level supported by this ASCE. See 8.2.6 for further
information on order levels and 8.16.4 for further
information on the Destination Blt order.

31 N min

ExtendedTextLevel
(default: 1)

This capability specifies the Extended Text order
level supported by this ASCE. See 8.2.6 for further
information on order levels and 8.16.12 for further
information on the Extended Text order.

32 N min

FrameLevel
(default: 1)

This capability specifies the Frame order level
supported by this ASCE. See 8.2.6 for further
information on order levels and 8.16.13 for further
information on the Frame order.

33 N min

LineLevel
(default: 1)

This capability specifies the Line order level
supported by this ASCE. See 8.2.6 for further
information on order levels and 8.16.16 for further
information on the Line order.

34 N min

MemoryBltLevel
(default: 1)

This capability specifies the Memory Blt order
level supported by this ASCE. See 8.2.6 for further
information on order levels and 8.16.9 for further
information on the Memory Blt order.

35 N min

MemoryThreeWayBltLeve
l
(default: 1)

This capability specifies the Memory Three Way
Blt order level supported by this ASCE. See 8.2.6
for further information on order levels and 8.16.10
for further information on the Memory Three Way
Blt order.

36 N min

OpaqueRectangleLevel
(default: 1)

This capability specifies the Opaque Rectangle
order level supported by this ASCE. See 8.2.6 for
further information on order levels and 8.16.15 for
further information on the Opaque Rectangle
order.

37 N min

PatternBltLevel
(default: 1)

This capability specifies the Pattern Blt order level
supported by this ASCE. See 8.2.6 for further
information on order levels and 8.16.5 for further
information on the Pattern Blt order.

38 N min

 Recommendation T.128 (02/98) 29

Table 8-8/T.128 – Order capability set (Base mode) (concluded)

Capability
(default value)

Description ID Class Rule

RectangleLevel
(default: 1)

This capability specifies the Rectangle order level
supported by this ASCE. See 8.2.6 for further
information on order levels and 8.16.14 for further
information on the Rectangle order.

39 N min

ScreenBltLevel
(default: 1)

This capability specifies the Screen Blt order level
supported by this ASCE. See 8.2.6 for further
information on order levels and 8.16.6 for further
information on the Screen Blt order.

40 N min

TextLevel
(default: 1)

This capability specifies the Text order level
supported by this ASCE. See 8.2.6 for further
information on order levels and 8.16.11 for further
information on the Text order.

41 N min

DesktopOriginLevel
(default: 1)

This capability specifies the Desktop Origin order
level supported by this ASCE. See 8.2.6 for further
information on order levels and 8.16.18 for further
information on the Desktop origin order.

42 N min

CacheBitmapLevel
(default: 1)

This capability specifies the Cache Bitmap order
level supported by this ASCE. See 8.2.6 for further
information on order levels and 8.16.7 for further
information on the Cache Bitmap order.

43 N min

CacheColorTableLevel
(default: 1)

This capability specifies the Cache ColorTable
order level supported by this ASCE. See 8.2.6 for
further information on order levels and 8.16.8 for
further information on the Cache ColorTable
order.

44 N min

ColorSpaceLevel
(default: 1)

This capability specifies the Color Space order
level supported by this ASCE. See 8.2.6 for further
information on order levels and 8.16.19 for further
information on the Color Space order.

45 N min

NOTE – As a result of capabilities negotiation, an ASCE must be able to receive Desktop Save orders
constructed using X and/or Y granularities larger than, or not exact multiples of, its advertised
desktopSaveXGranularity and desktopSaveYGranularity capabilities. Similarly, an ASCE must be able to
send Desktop Save orders where the negotiated desktopSaveSize is not an exact multiple of its advertised
desktopSaveXGranularity and desktopSaveYGranularity capabilities.

8.2.6 Order levels

The AS protocol allows for future enhancement of order support using order levels. Order level
values are in the range 0..255, with the value 0 indicating that the indicated order is not supported.

The order level values in the Order.orderSupport capability (for the legacy mode of the AS protocol)
and in the per-order level capability parameters (for the base mode of the AS protocol) indicate the
maximum order level that the issuing ASCE can receive on an order-by-order basis. If an ASCE
indicates that it can receive order level N for a particular order, then it shall be able to receive order
levels in the range 1..N. It is envisaged that as additional application sharing requirements emerge
(e.g. reflecting changing order usage in target terminals), then existing AS orders may be enhanced.
Where that is the case, an ASCE may advertise support for a range of enhanced orders and, where it

30 Recommendation T.128 (02/98)

is in a conference with a group of active ASCEs that also support the enhanced orders, may use them
when constructing UpdatePDU (Orders) ASPDUs. In summary, this means that:

• where an ASCE supports an order at order level N, it shall be prepared to receive orders at
order levels 1..N;

• where an ASCE supports an order at order level N and the negotiated order level is greater
than or equal to N, then the ASCE may send the order at order levels 1..N;

• where an ASCE supports an order at order level N and the negotiated order level is less than
N, then the ASCE may send the order at order levels 1 through the negotiated value – but
may not send orders at order levels greater than the negotiated value.

For the legacy mode of the AS protocol, order level support is not defined for the Desktop Origin,
Cache Bitmap and Cache ColorTable orders (see 8.16.18, 8.16.7 and 8.16.8 respectively). In the
absence of order level support for these orders:

• if an ASCE supports the Screen Blt order at order level 1 or above, it shall also support the
Desktop Origin order;

• if an ASCE supports either of the Memory Blt and Memory Three Way Blt orders at order
level 1 or above, it shall also support the Cache Bitmap and Cache ColorTable orders and
shall ensure that it advertises valid values for the Bitmap Cache and ColorTable Cache
capability sets (see 8.2.7 and 8.2.8 for further information on the Bitmap Cache and
ColorTable Cache capability sets).

8.2.7 Bitmap cache capability set

The Bitmap Cache capability set provides capabilities for the bitmap cache characteristics of the
issuing ASCE. These capabilities are used to negotiate values used to construct Cache Bitmap orders
in UpdatePDUs. See 8.16.7 for further information on Cache Bitmap orders.

If an ASCE supports either of the Memory Blt and Memory Three Way Blt orders at order level 1 or
above, it shall support the Cache Bitmap order (in base mode at order level 1 or above) and ensure
that it advertises Bitmap Cache capability set values with:

• non-zero values for the cache1Entries, cache2 Entries and cache3Entries capabilities;

• allowable values for the cache1MaximumCellSize, cache2MaximumCellSize and
cache3MaximumCellSize capabilities (as specified in Tables 8-9 and 8-10);

• cache3MaximumCellSize > = cache2MaximumCellSize > = cache1MaximumCellSize.

Where an ASCE supports bitmap caching, these capabilities indicate the bitmap cache sizes per each
other hosting ASCE. That is, by advertising these capabilities, the ASCE is committing to provide a
set of bitmap caches of the advertised sizes for each other active ASCE in the conference that is
hosting windows.

See Appendix I for informative values for Bitmap Cache capabilities.

 Recommendation T.128 (02/98) 31

Table 8-9/T.128 – Bitmap cache capability set (Legacy mode)

Capability Description Class Rule

cache1Entries This capability is the number of cache entries in the first
cache area.

N min

cache1MaximumCellSize This capability is the maximum cell size in octets for the
first cache area. The value for this capability is in the range
256..16384.

N min

cache2Entries This capability is the number of cache entries in the second
cache area.

N min

cache2MaximumCellSize This capability is the maximum cell size in octets for the
second cache area. The value for this capability is in the
range 256..16384.

N min

cache3Entries This capability is the number of cache entries in the third
cache area.

N min

cache3MaximumCellSize This capability is the maximum cell size in octets for the
third cache area. The value for this capability is in the range
256..16384.

N min

Table 8-10/T.128 – Bitmap cache capability set (Base mode)

Capability
(default value)

Description ID Class Rule

cache1Entries
(default: 600)

This capability is the number of cache entries in the
first cache area.

80 N min

cache1MaximumCellSize
(default: 496)

This capability is the maximum cell size in octets for
the first cache area. The value for this capability is in
the range 256..16384.

81 N min

cache2Entries
(default: 300)

This capability is the number of cache entries in the
second cache area.

82 N min

cache2MaximumCellSize
(default: 2032)

This capability is the maximum cell size in octets for
the second cache area. The value for this capability is
in the range 256..16384.

83 N min

cache3Entries
(default: 150)

This capability is the number of cache entries in the
third cache area.

84 N min

cache3MaximumCellSize
(default: 4080)

This capability is the maximum cell size in octets for
the third cache area. The value for this capability is in
the range 256..16384.

85 N min

32 Recommendation T.128 (02/98)

8.2.8 ColorTable Cache capability set

The ColorTable Cache capability set provides capabilities for the colortable cache characteristics of
the issuing ASCE. These capabilities are used to negotiate values used to construct Cache
ColorTable orders in UpdatePDUs. See 8.16.8 for further information on Cache ColorTable orders
and also Tables 8-11 and 8-12.

If an ASCE supports either of the Memory Blt and Memory Three Way Blt orders at order level 1 or
above, it shall support the Cache ColorTable order (in base mode at order level 1 or above) and
ensure that it advertises a ColorTable Cache capability set containing a non-zero value for the
colorTableCacheSize capability.

Where an ASCE supports colortable caching, these capabilities indicate the colortable cache size per
each other hosting ASCE. That is, by advertising these capabilities, the ASCE is committing to
provide a colortable cache of the advertised size for each other active ASCE in the conference that is
hosting windows.

See Appendix I for informative values for ColorTable Cache capability set values.

Table 8-11/T.128 – ColorTable Cache capability set (Legacy mode)

Capability Description Class Rule

colorTableCacheSize This capability specifies the number of colortable entries in this
ASCE’s receiving colortable cache. Where an ASCE supports
colortable caching, the allowable values are in the range 1..255
(zero is not allowed). See 8.16.8 for further information on
colortable caching.

N min

Table 8-12/T.128 – ColorTable cache capability set (Base mode)

Capability
(default value)

Description ID Class Rule

colorTableCacheSize
(default: 6)

This capability specifies the number of colortable entries
in this ASCE’s receiving colortable cache. Where an
ASCE supports colortable caching, the allowable values
are in the range 1..255 (zero is not allowed). See 8.16.8 for
further information on colortable caching.

90 N min

 Recommendation T.128 (02/98) 33

8.2.9 Window activation capability set

The Window Activation capability set provides capabilities for the window activation characteristics
of the issuing ASCE, and in particular about its support for specific WindowActivationPDU
activation messages. See 8.11 for further information on WindowActivationPDUs and also
Tables 8-13 and 8-14.

Table 8-13/T.128 – Window activation capability set (Legacy mode)

Capability Description Class Rule

helpKeyFlag This capability indicates whether this ASCE can receive
WindowActivationPDUs containing the ActivationHelpKey
action. A value of TRUE indicates that it can receive
WindowActivationPDUs containing the ActivationHelpKey
action and a value of FALSE indicates that it cannot. See 8.9 for
further information.

L one

helpIndexKeyFlag This capability indicates whether this ASCE can receive
WindowActivationPDUs containing the ActivationHelpIndexKey
action. A value of TRUE indicates that it can receive
WindowActivationPDUs containing the ActivationHelpIndexKey
action and a value of FALSE indicates that it cannot. See 8.9 for
further information.

L one

helpExtendedKeyFlag This capability indicates whether this ASCE can receive
WindowActivationPDUs containing the
ActivationHelpExtendedKey action. A value of TRUE indicates
that it can receive WindowActivationPDUs containing the
ActivationHelpExtendedKey action and a value of FALSE
indicates that it cannot. See 8.9 for further information.

L one

windowManagerMenu
Flag

This capability indicates whether this ASCE can receive
WindowActivationPDUs containing the WindowManagerMenu
action. A value of TRUE indicates that it can receive
WindowActivationPDUs containing the WindowManagerMenu
action and a value of FALSE indicates that it cannot. See 8.9 for
further information.

L one

34 Recommendation T.128 (02/98)

Table 8-14/T.128 – Window activation capability set (Base mode)

Capability
(default value)

Description ID Class Rule

helpKeyFlag This capability indicates whether this ASCE can
receive WindowActivationPDUs containing the
ActivationHelpKey action. See 8.9 for further
information. This capability must be advertised
using non-collapsing capabilities.

100 L one

helpIndexKeyFlag This capability indicates whether this ASCE can
receive WindowActivationPDUs containing the
ActivationHelpIndexKey action. See 8.9 for further
information. This capability must be advertised
using non-collapsing capabilities.

101 L one

helpExtendedKeyFlag This capability indicates whether this ASCE can
receive WindowActivationPDUs containing the
ActivationHelpExtendedKey action. See 8.9 for
further information. This capability must be
advertised using non-collapsing capabilities.

102 L one

windowManagerMenuFlag This capability indicates whether this ASCE can
receive WindowActivationPDUs containing the
WindowManagerMenu action. See 8.9 for further
information. This capability must be advertised
using non-collapsing capabilities.

103 L one

8.2.10 Control capability set

The Control capability set provides capabilities for the control characteristics of the issuing ASCE.
These capabilities are used to negotiate values used in the management of control and detached status
between ASCEs. See clause 8.12 for further information on control characteristics and also Tables 8-
15 and 8-16.

 Recommendation T.128 (02/98) 35

Table 8-15/T.128 – Control capability set (Legacy mode)

Capability Description Class Rule

controlFlags This capability is a set of bit flags indicating the control options
supported by this ASCE. Defined bit flag values are as follows:

• Allow Mediated Control

 If an ASCE does not set the Allow Mediated Control bit flag
capability, the ASCE does not support the AS mediated
control protocol. Where this is the case, the
remoteDetachFlag, controlInterest and detachInterest
capabilities need not be negotiated and the
MediatedControlPDU is not valid. See 8.13 for further
information.

F min

remoteDetachFlag This capability indicates whether this ASCE allows other ASCEs
to force it into detached control mode. A value of TRUE
indicates that this ASCE allows other ASCEs to force it into
detached control mode and a value of FALSE indicates that it
does not. See 8.13 for further information.

L one

controlInterest This capability indicates this ASCE's behaviour for changes of
control. Allowable values are as follows:

N max
(Note)

 • Always This ASCE always permits changes of control.

 • Confirm This ASCE requires to confirm changes of control.

 • Never This ASCE never allows changes of control.

 See 8.13 for further information.

detachInterest This capability indicates this ASCE's behaviour for changes in
detach status. Allowable values are as follows:

N max
(Note)

 • Always This ASCE always permits changes in detach status.

 • Confirm This ASCE requires to confirm changes in detach
status.

 • Never This ASCE never allows changes in detach status.

 See 8.13 for further information.

NOTE – The controlInterest and detachInterest capabilities are negotiated using values such that Never is
greater than Confirm which is greater than Always.

36 Recommendation T.128 (02/98)

Table 8-16/T.128 – Control capability set (Base mode)

Capability
(default value)

Description ID Class Rule

mediatedControlFlag This capability indicates whether the issuing ASCE
supports the Mediated Control protocol. Where this
capability is not supported, the remoteDetachFlag,
controlInterest and detachInterest capabilities need not
be negotiated and the MediatedControlPDU is not
valid. See 8.13 for further information.

110 L min

remoteDetachFlag This capability indicates whether this ASCE allows
other ASCEs to force it into detached control mode.
See 8.13 for further information. This capability must
be advertised using non-collapsing capabilities.

111 L one

controlInterest
(default: always)

This capability indicates this ASCE’s behaviour for
changes of control. Allowable values are as follows.

112 N max
(Note)

 • Always This ASCE always permits changes of
control.

 • Confirm This ASCE requires to confirm changes
of control.

 • Never This ASCE never allows changes of
control.

 See 8.13 for further information. This capability must
be advertised using non-collapsing capabilities.

detachInterest
(default: always)

This capability indicates this ASCE's behaviour for
changes in detach status. Allowable values are as
follows:

113 N max
(Note)

 • Always This ASCE always permits changes in
detach status.

 • Confirm This ASCE requires to confirm changes
in detach status.

 • Never This ASCE never allows changes in
detach status.

 See 8.13 for further information. This capability must
be advertised using non-collapsing capabilities.

NOTE – The controlInterest and detachInterest capabilities are negotiated using values such that Never is
greater than Confirm which is greater than Always.

8.2.11 Pointer capability set

The Pointer capability set provides capabilities for the pointer characteristics of the issuing ASCE.
These capabilities are used to negotiate values used to construct PointerPDUs. See 8.14 for further
information on pointers and also Tables 8-17 and 8-18.

Where an ASCE does not support color pointers, or where it supports color pointers but does not
wish to support color pointer caching, then it should advertise its Pointer.colorPointercacheSize as
one. This shall be interpreted as indicating that the advertising ASCE can only remember the last
monochrome and/or color pointer (depending on the negotiated value of the
Pointer.colorPointerFlag) – that is, it does not support pointer caching.

 Recommendation T.128 (02/98) 37

Where an ASCE supports color pointers and color pointer caching, these capabilities indicate the
color pointer cache size per each other hosting ASCE. That is, by advertising these capabilities, the
ASCE is committing to provide a color pointer cache of the advertised size for each other active
ASCE in the conference that is hosting windows.

See Appendix I for informative values for Pointer capabilities.

Table 8-17/T.128 – Pointer capability set (Legacy mode)

Capability Description Class Rule

colorPointerFlag This capability indicates whether this ASCE supports color
pointers. A value of TRUE indicates that this ASCE supports
color pointers and a value of FALSE indicates that it does not.
See 8.14 for further information.

L min

colorPointerCacheSize This capability specifies the number of entries in this ASCE’s
receiving color pointer cache. The allowable values are in the
range 1..500. Where an ASCE does not support color pointers, it
shall set this capability to 1 (a value of zero is not allowed).
See 8.14 for further information on pointer caching.

N min

Table 8-18/T.128 – Pointer capability set (Base mode)

Capability
(default value)

Description ID Class Rule

colorPointerFlag This capability indicates whether this ASCE supports
color pointers. See 8.14 for further information.

120 L min

colorPointerCacheSize
(default: 25)

This capability specifies the number of entries in this
ASCE’s receiving color pointer cache. The allowable
values are in the range 1..500. Where an ASCE does not
support color pointers, it shall set this capability to 1 (a
value of zero is not allowed). See 8.14 for further
information on pointer caching.

121 N min

8.2.12 Share capability set

The Share capability set provides information about the node on which the ASCE executes. This
capability set is only supported in the legacy mode of the AS protocol.

The GCC Node ID may be used by receiving ASCEs to correlate issuing ASCEs with their
application records in the GCC Application Roster. See Table 8-19.

Table 8-19/T.128 – Share capability set (Legacy mode)

Capability Description Class Rule

nodeID This capability is the GCC node ID of the advertising ASCE’s
node.

N info

38 Recommendation T.128 (02/98)

8.2.13 Non Standard capability set

The Non-Standard capability set is used to negotiate non-standard functions. Any number of
non-standard capabilities may appear in the Non-Standard capability set as long as they each have a
unique Non-Standard-Identifier. Interpretation of these capabilities is not covered by this
Recommendation.

The Non-Standard capability set is only supported in the base mode of the AS protocol. There is no
mechanism in the legacy mode of the AS protocol for the negotiation of non-standard capabilities.
See Table 8-20.

Table 8-20/T.128 – Non-standard capability set (Base mode)

Capability Description ID Class Rule

nonStandardCapability This capability is used to negotiate non-standard
functions. Any number of these may appear in the
ASCE base mode capabilities as long as they each
have a unique Non-Standard-Identifier. The
interpretation of these capabilities is not covered by
this Recommendation.

Non-
Standard
Identifier

– –

8.2.14 Capability update

For the base mode of the AS protocol, where an ASCE’s capabilities change while enrolled, it shall
re-enrol by issuing a GCC-Application-Enroll request to enrol in the Standard Base Session with the
Enroll/Unenroll flag set to Enroll, including the revised combined capabilities. See clause 7 for
further information on session enrolment and 8.2.1 for further information on the distribution of
capabilities.

For the legacy mode of the AS protocol, an ASCE may advertise changes in a capability set by
sending an UpdateCapabilityPDU to other ASCEs within the conference in the manner indicated in
Table 6-3. The content of the UpdateCapabilityPDU is shown in Table 8-21.

An ASCE shall only send the UpdateCapabilityPDU where both the negotiated
General.updateCapabilityFlag and Bitmap.desktopResizeFlag capabilities are TRUE.

The only allowable capability set that can be advertised in an UpdateCapabilityPDU is the legacy
mode Bitmap capability set (see 8.2.4).

Table 8-21/T.128 – UpdateCapabilityPDU

Parameter Description

ShareData Header The ShareData Header is described in 8.3.

updateCapabilitySet This parameter shall be a bitmap capability Set. See 8.2.4 for a
description of the Bitmap capability set.

When an ASCE determines that one or more capabilities have been updated, it shall perform any
required capabilities negotiation (see 8.2.2) and shall perform hosting synchronization (if it is
hosting) and shadow synchronization (see 8.6).

 Recommendation T.128 (02/98) 39

8.3 ASPDU formats

In the legacy mode of the AS protocol, all ASPDUs, other than the following flow control ASPDUs,
contain a ShareControl Header. Table 8-22 describes the ShareControl Header for the legacy mode
of the AS protocol. In the base mode of the AS protocol, ASPDUs do not contain ShareControl
Headers.

• FlowTestPDU: See 8.5.

• FlowResponsePDU: See 8.5.

• FlowStopPDU: See 8.5.

Table 8-22/T.128 – ShareControl Header (Legacy mode)

Parameter Description

totalLength This is the total length in octets of the ASPDU within which this header is
included. This parameter is required as MCS implementations may
segment ASPDUs in transmission and are not required to reassemble on
delivery. This parameter allows receiving ASCEs to efficiently perform
reassembly where MCS segmentation is present.

protocolVersion This parameter identifies the protocol version supported by the issuing
ASCE. The allowable value is 1.

PDUSource This parameter is the MCS User ID of the ASCE sending the ASPDU
containing this ShareControl Header.

All ASPDUs, other than the following ASCE activation and flow control ASPDUs, contain a
ShareData Header and are referred to as data ASPDUs.

• DemandActivePDU: See 8.4.1.

• ConfirmActivePDU: See 8.4.1.

• RequestActivePDU: See 8.4.1.

• DeactivateOtherPDU: See 8.4.1.

• DeactivateSelfPDU: See 8.4.1.

• DeactivateAllPDU: See 8.4.1.

• FlowTestPDU: See 8.5.

• FlowResponsePDU: See 8.5.

• FlowStopPDU: See 8.5.

Tables 8-23 and 8-24 describe the ShareData Header for the legacy and base modes of the
AS protocol.

40 Recommendation T.128 (02/98)

Table 8-23/T.128 – ShareData Header (Legacy mode)

Parameter Description

ShareControl Header The ShareControl Header is described in 8.3.

shareID This parameter uniquely identifies the ASCE session within which this
ASPDU is issued. See 8.4.2 for a description of share identifiers.

streamID This parameter identifies the stream for this ASPDU. See 8.3.1 for a
description of streams.

uncompressedLength This parameter is the length of the uncompressed ASPDU data in
octets, starting from and including the generalCompressedType
parameter. This parameter may be used as a check on decompression.
See 8.3.2 for further information on non-standard general compression.

generalCompressedType This parameter indicates whether the issuing ASCE has general
compressed the ASPDU containing this ShareData Header – and if so,
indicates which general compression scheme type has been applied.
Interpretation of this field depends on the negotiated
General.generalCompressionLevel capability as follows:

• If the negotiated General.generalCompressionLevel capability is
zero, then the ASCE shall only reference the most significant bit of
this field.

• If the negotiated General.generalCompressionLevel capability is
greater than zero, then the ASCE shall reference all bits within this
field.

A value of zero indicates that no general compression has been applied.
A non-zero value specifies the particular compression type that has
been applied. See 8.3.2 for further information on general compression.

generalCompressedLength Where the generalCompressedType is non-zero, this parameter is the
length of the compressed ASPDU data in octets, starting from after the
uncompressedLength parameter. Where the generalCompressedType is
zero, indicating that no general compression has been applied, this
parameter shall be zero. See 8.3.2 for further information on general
compression.

Table 8-24/T.128 – ShareData Header (Base mode)

Parameter Description

shareID This parameter is the roster instance of the ASCE session within which
this ASPDU is issued. See 8.4.2 for a description of share identifiers.

generalCompressionSpecifier This optional parameter identifies the general compression scheme and
any associated parameters applicable to this ASPDU. See 8.3.2 for
further information.

8.3.1 Streams

In the legacy mode of the AS protocol, an ASCE is required to send data ASPDUs over a set of
logical streams. Streams are used to represent ASCE data priorities and map onto MCS priorities as
described in Table 8-25. Stream identifiers are present in all legacy mode data ASPDUs. Streams are
not supported in the base mode of the AS protocol.

 Recommendation T.128 (02/98) 41

Table 8-25/T.128 – Stream identifiers (Legacy mode)

Stream ID MCS Priority

4 High

2 Medium

1 Low

8.3.2 General compression

This Recommendation specifies compression schemes that may be applied to orders (which is
termed order encoding – see 8.16.3) and bitmap data (which is termed bitmap compression –
see 8.17) in UpdatePDUs. Both these compression schemes deliver good compression ratios on
typical AS output data for relatively low processor loads.

However, where an ASCE experiences flow control back pressure (see 8.5) – for example, when
sending over slower links such as typical PSTN lines, or when sending over congested higher speed
links – experience shows that significant performance enhancements may be achieved by the
application of a dictionary-based compression scheme to selected ASPDUs – including already
compressed data in UpdatePDU (Orders) and UpdatePDU (Bitmap) ASPDUs. This approach is
termed general compression.

8.3.2.1 Legacy mode general compression

This Recommendation does not specify a general compression mechanism for legacy mode, but
rather provides a compression scheme independent mechanism whereby ASCEs can negotiate and
use mutually agreed general compression schemes, as follows.

An ASCE shall negotiate the general compression scheme using the
General.generalCompressionLevel and General.generalCompressionTypes capabilities. See 8.2.3 for
further information on the General capability set. The GeneralCompressionLevel capability indicates
which level of general compression is supported by an ASCE while the
General.generalCompressionTypes capability is a set of bit flags, allowing an ASCE to indicate that
it supports none, one or a selection of general compression schemes.

Note that the interpretation of the General.generalCompressedTypes capability is dependent on the
negotiated General.generalCompressionLevel capability. Where the negotiated
General.generalCompressionLevel capability is zero, then only the least significant bit flag of the
General.generalCompressedTypes capability shall be considered. Where the negotiated
generalCompressionLevel capability is greater than zero, then all bit flags within the
General.generalCompressedTypes capability shall be considered.

Where an ASCE determines that other peer ASCEs can receive a particular general compression
scheme, it may apply general compression to data ASPDUs on a selective basis – that is, an ASCE
may apply general compression to none, some or all ASPDUs. The criteria by which an ASCE
determines whether general compression is appropriate for a particular data ASPDU may include
flow control status (see 8.5) and the size of the particular ASPDU. This Recommendation does not
recommend a particular approach to the application of general compression – it is entirely a local
matter for each ASCE.

Where an ASCE does not apply general compression to a data ASPDU, either because no suitable
general compression scheme is available after capabilities negotiation, or where a suitable general
compression scheme has been negotiated but the sending ASCE determines that general compression
is inappropriate, the ASCE shall set the generalCompressedType to zero to indicate that the ASPDU
is not general compressed, the uncompressedLength parameter to the ASPDU octet length and the

42 Recommendation T.128 (02/98)

generalCompressedLength parameter to zero. Where an ASCE applies general compression to a data
ASPDU, it shall set the generalCompressedType to a value corresponding to one of the negotiated
general compression schemes to indicate that the ASPDU is general compressed, the
uncompressedLength parameter to the ASPDU octet length before compression and the
generalCompressedLength parameter to the ASPDU octet length after compression. Setting both the
uncompressedLength and generalCompressedLength parameters allows a receiving ASCE to check
that the ASPDU length after decompression is consistent with its original uncompressed length.

Note that the interpretation of the generalCompressedType parameter in the ShareData Header is
dependent on the negotiated General.generalCompressionLevel capability. Where the negotiated
General.generalCompressionLevel capability is zero, then only the most significant bit of the
General.generalCompressedType parameter shall be considered. Where the negotiated
General.generalCompressionLevel capability is greater than zero, then all bits of the
General.generalCompressedType parameter shall be considered.

See Appendix I for informative values and information on legacy mode general compression.

8.3.2.2 Base mode general compression

This Recommendation specifies the optional use of Recommendation V.42 bis for general
compression in base mode.

Where an ASCE determines that other peer ASCEs can receive ASPDUs general compressed using
V.24 bis, it may apply V.42 bis general compression to data ASPDUs on a selective basis – that is,
an ASCE may apply V.42 bis general compression to none, some or all ASPDUs. The criteria by
which an ASCE determines whether V.42 bis general compression is appropriate for a particular data
ASPDU may include flow control status (see 8.5) and the size of the particular ASPDU. This
Recommendation does not recommend a particular approach to the application of V.42 bis general
compression – it is entirely a local matter for each ASCE.

Where V.42 bis general compression is applied, the encoder is initialized during the sender's hosting
synchronization and the decoder is initialized during the receivers' shadow synchronization (see 8.6.2
and 8.6.3).

Where an ASCE does apply V.42 bis general compression to a particular data ASPDU, it shall set
the generalCompressionSpecifier parameter to indicate that the ASPDU is V.42 bis general
compressed. If the ASPDU is the first V.42 bis general compressed ASPDU after a V.42 bis encoder
initialization, then the ASCE may also include the optional V.42 bis P1 and P2 parameters in the
general CompressionSpecifier to allow peer ASCEs to optimize general compression related
resources.

8.4 ASCE activation

Within an AS session, an ASCE may be in one of the following three activation states:

• An inactive ASCE is not participating in the sharing of windows (i.e. it is not hosting
windows, drawing shadow windows, or sending or receiving AS input). When an ASCE is
inactive, it need not retain local resources that are required for hosting and/or sharing.

• A pending active ASCE is in the process of becoming active and is not participating in the
sharing of windows (i.e. it is not hosting windows, drawing shadow windows, or sending or
receiving AS input).

• An active ASCE is cooperating with other active ASCEs to share windows.

The following subclauses describe ASCE activation and the handling of share identifiers for both
legacy and base modes.

 Recommendation T.128 (02/98) 43

8.4.1 ASCE activation (Legacy mode)

In the legacy mode of the AS protocol, ASCE activation and share identifier handling is largely
independent of GCC and is performed using AS specific protocol elements.

An ASCE joins the AS Non-standard Base Session (see clause 7) using a GCC-Application-Enroll
request with the Active/Inactive flag set to Active and with limited capabilities. This does not make
the ASCE active (with respect to the AS session states described above) but does ensure that the
ASCE is visible to other ASCEs within the conference.

An ASCE may remain enrolled in the Non-Standard Base Session over a period, while moving from
inactive to active state and back again a number of times. This distinction, between enrolment and
activation, enables an ASCE to defer the commitment of application sharing specific resources to
those points within the conference where application sharing is actually taking place.

An ASCE that wishes to become active shall send either a DemandActivePDU or a
RequestActivePDU to all ASCEs within the conference in the manner indicated in Table 6-3. The
content of the DemandActivePDU is shown in Table 8-26 and the content of the RequestActivePDU
is shown in Table 8-27.

It is recommended that an ASCE should initially send a RequestActivePDU to all ASCEs within the
conference to determine if there are other active ASCEs in the AS session. If no active ASCEs
respond to the RequestActivePDU, then, at some later point, when the ASCE wishes to start sharing,
it should send a DemandActivePDU to all ASCEs within the conference to initiate activation.

Sending a DemandActivePDU requires that the sending ASCE shall have generated a unique share
identifier, whereas RequestActivePDU does not. Sending DemandActivePDU may force a change in
the current agreed share identifier. See 8.4.2 for further information on share identifiers.

On receipt of a DemandActivePDU, subject to successful capabilities negotiation (see 8.2), an ASCE
may send ConfirmActivePDUs (see below) to all ASCEs within the conference. An inactive ASCE
is not required to respond to a DemandActivePDU – it may choose to remain inactive. If an inactive
ASCE responds to a DemandActivePDU, then it enters the active state.

If an ASCE is already active, then, on receipt of a RequestActivePDU and subject to successful
capabilities negotiation (see 8.2), it shall send ConfirmActivePDUs (see below) to all ASCEs within
the conference.

For both cases, the ConfirmActivePDU shall be sent to all ASCEs within the conference on all
priority channels – High, Medium and Low – in the manner indicated in Table 6-3. The content of
the ConfirmActivePDU is shown in Table 8-28. This ensures that any data on any channel is
received after the ConfirmActivePDU. The first ConfirmActivePDU received on any channel causes
the receiving pending inactive ASCE to enter the active state. Subsequent ConfirmActivePDUs shall
be discarded.

Figure 3 illustrates the use of RequestActivePDU, DemandActivePDU and ConfirmActivePDU in
the activation of three ASCEs, where initially no ASCEs are active and ASCE 1 uses
RequestActivePDU to determine the activation state of other ASCEs within the conference. ASCE 1
then starts sharing and uses DemandActivePDU to initiate the activation of the other ASCEs within
the conference.

See Figure 5 for a phase diagram summary of allowable transitions between ASCE states.

44 Recommendation T.128 (02/98)

T1602330-97

ASCE 1
(ASCE 1 is inactive)

ASCE 2
(ASCE 2 is inactive)

ASCE 3
(ASCE 3 is inactive)

(RequestActivePDU ignored) (RequestActivePDU ignored)

(ASCE 1 starts sharing)

(ASCE 2 is active) (ASCE 3 is active)

(ASCE 1 is active)

AS-CHANNEL

AS-{MCS-USER-ID}-CHANNEL

RequestActivePDU with
CombinedCapabilities

DemandActivePDU with
CombinedCapabilities

ConfirmActivePDU with
CombinedCapabilities (all priorities)

ConfirmActivePDU with
CombinedCapabilities (all priorities)

Figure 3/T.128 – Successfully activating three ASCEs (Legacy mode)

Table 8-26/T.128 – DemandActivePDU

Parameter Description

ShareControl Header The ShareControl Header is described in 8.3.

shareID This parameter is the proposed share identifier for use within the AS
session. See 8.4.2 for a description of this parameter.

sourceDescriptor This parameter is a null-terminated T.50 text string identifying this ASCE
suitable for display to an end-user. This Recommendation does not place
any interpretation upon the string contents.

combinedCapabilities This parameter is a list of this ASCE’s combined capabilities, which
contains one copy of each of the legacy mode capability sets in any order.
See 8.2 for further information on capabilities.

 Recommendation T.128 (02/98) 45

Table 8-27/T.128 – RequestActivePDU

Parameter Description

ShareControl Header The ShareControl Header is described in 8.3.

sourceDescriptor This parameter is a null-terminated T.50 text string identifying this ASCE
suitable for display to an end-user. This Recommendation does not place
any interpretation upon the string contents.

combinedCapabilities This parameter is a list of this ASCE’s combined capabilities, which
contains one copy of each of the legacy mode capability sets in any order.
See 8.2 for further information on capabilities.

Table 8-28/T.128 – ConfirmActivePDU

Parameter Description

ShareControl Header The ShareControl Header is described in 8.3.

shareID This parameter is the current share identifier in use within the AS session.
See 8.4.2 for a description of this parameter.

originatorID This parameter is the MCS User ID of the ASCE that issued the
DemandActivePDU or RequestActivePDU to which this is a response.
This enables an ASCE receiving this ConfirmActivePDU to correlate it
with a previous DemandActivePDU or RequestActivePDU.

sourceDescriptor This parameter is a null-terminated T.50 text string identifying this ASCE
suitable for display to an end-user. This Recommendation does not place
any interpretation upon the string contents.

combinedCapabilities This parameter is a list of this ASCE’s combined capabilities, which
contains one copy of each of the legacy mode capability sets in any order.
See 8.2 for further information on capabilities.

To deactivate another active ASCE, an ASCE shall send a DeactivateOtherPDU to the ASCE that is
to be deactivated in the manner indicated in Table 6-3. The content of the DeactivateOtherPDU is
shown in Table 8-29. On receipt of a DeactivateOtherPDU, an ASCE shall become inactive. It is
recommended that an ASCE should only issue DeactivateOtherPDU where it has received a
DemandActivePDU, RequestActivePDU or ConfirmActivePDU with capabilities that would
seriously affect the successful progress of application sharing within the conference. This situation
should not occur where other ASCEs provide capabilities that conform to the legacy mode of the AS
protocol.

An ASCE may deactivate all active ASCEs by sending a DeactivateAllPDU to all ASCEs within the
conference in the manner indicated in Table 6-3. The content of the DeactivateAllPDU is shown in
Table 8-31. On receipt of a DeactivateAllPDU, an ASCE shall become inactive. It is recommended
that an ASCE should only issue DeactivateAllPDU in exceptional circumstances.

When an ASCE determines that there are no other active ASCEs within the AS session, it shall
become inactive.

When an ASCE becomes inactive, it shall send a DeactivateSelfPDU to all ASCEs within the
conference in the manner indicated in Table 6-3. The content of the DeactivateSelfPDU is shown in
Table 8-30.

Figure 4 illustrates the use of DeactivateOtherPDU and DeactivateSelfPDU where ASCE 1
deactivates ASCE 3. On receipt of the DeactivateOtherPDU, ASCE 3 sends DeactivateSelfPDU to
ASCEs 1 and 2, whereby both receive notification that ASCE 3 has become inactive.

46 Recommendation T.128 (02/98)

T1602340-97

ASCE 1 ASCE 2 ASCE 3

DeactivateOtherPDU

DeactivateSelfPDU
(ASCE 3 is inactive)

AS-CHANNEL

AS-{MCS-USER-ID}-CHANNEL

Figure 4/T.128 – Deactivating another ASCE

Table 8-29/T.128 – DeactivateOtherPDU

Parameter Description

ShareControl Header The ShareControl Header is described in 8.3.

shareID This parameter is the current share identifier in use within the AS session.
See 8.4.2 for a description of this parameter.

deactivateID This parameter is the MCS User ID of the ASCE to be deactivated.

sourceDescriptor This parameter is a null-terminated T.50 text string identifying this ASCE
suitable for display to an end-user. This Recommendation does not place
any interpretation upon the string contents.

Table 8-30/T.128 – DeactivateSelfPDU

Parameter Description

ShareControl Header The ShareControl Header is described in 8.3.

ShareID This parameter is the current share identifier in use within the AS session.
See 8.4.2 for a description of this parameter.

Table 8-31/T.128 – DeactivateAllPDU

Parameter Description

ShareControl Header The ShareControl Header is described in 8.3.

ShareID This parameter is the current share identifier in use within the AS session.
See 8.4.2 for a description of this parameter.

sourceDescriptor This parameter is a null-terminated T.50 text string identifying this ASCE
suitable for display to an end-user. This Recommendation does not place
any interpretation upon the string contents.

 Recommendation T.128 (02/98) 47

8.4.2 Share identifiers (Legacy mode)

A share identifier is a unique 32-bit handle present in (almost) all ASPDUs, which ASCEs use to
detect and ignore "late" data generated with respect to previous activations and capabilities within the
AS session. In the legacy mode of the AS protocol, share identifiers are constructed locally by each
ASCE and consist of the ASCE’s MCS User ID (in the most significant 16 bits) and a monotonically
increasing 216 unsigned and wrapping counter (in the least significant 16 bits).

In the legacy mode of the AS protocol, the following ASPDUs do not contain share identifiers. All
other legacy mode ASPDUs contain share identifiers.

• RequestActivePDU: See 8.4.1.

• FlowTestPDU: See 8.5.

• FlowResponsePDU: See 8.5.

• FlowStopPDU: See 8.5.

Each ASCE in an AS session shall maintain a local share identifier, which is its view of the current
share identifier in use within the session, as follows:

• When an ASCE is inactive or has issued a RequestActivePDU, it shall set its local share
identifier to the special value invalid.

• An ASCE shall generate a new proposed share identifier (by incrementing the counter part of
the previous share identifier) when issuing a DemandActivePDU and shall set its local share
identifier to that new identifier.

• An ASCE shall check the share identifier in an incoming DemandActivePDU or
ConfirmActivePDU against its local share identifier and shall update its local share identifier
as follows:

– If its local share identifier is invalid, it shall set its local share identifier to the share
identifier in the incoming ASPDU.

– If its local share identifier is valid, it shall set its local share identifier to the higher value
of the two share identifiers. Note that, because share identifiers are formed from a
combination of MCS User ID and a local counter, the share identifier values cannot be
equal.

• On receipt of a RequestActivePDU (when active), an ASCE shall set the share identifier
value in its subsequent ConfirmActivePDU to its local share identifier.

• On issuing a DeactivateSelfPDU or DeactivateAllPDU, or on receipt of a
DeactivateOtherPDU or DeactivateAllPDU, or when there are no other active ASCEs in the
session, an ASCE shall set its local share identifier to the special value invalid.

• On receipt of all other ASPDUs containing a share identifier (see above), an ASCE shall
discard the ASPDU where the share identifier value in the ASPDU does not match its local
share identifier.

The net of the above is that ASCEs using the legacy mode of the AS protocol within an AS session
cooperate to maintain a current agreed share identifier for all active ASCEs, with the current agreed
share identifier potentially changing as new ASCEs become active.

Figure 5 presents a phase diagram summarizing the allowable transitions between ASCE states with
respect to share identifier value. This shows two substates of the pending active state, depending on
whether the ASCE has a proposed or invalid share identifier. It does not show ASPDUs and
state/share identifier combinations that do not cause state transitions, nor does it show ASCE actions
associated with state transitions.

48 Recommendation T.128 (02/98)

T1602350-97

Pending
active

(proposed
ID)

Send DemandActive

Send DemandActive

Send RequestActive

Receive DeactivateOther
Receive DeactivateAll
Send DeactivateSelf
Send DeactivateAll

Receive ConfirmActive
Receive DemandActive

Pending
active

(invalid
ID)

Receive ConfirmActive
Receive DemandActive

Receive DeactivateOther
Receive DeactivateAll
Send DeactivateSelf
Send DeactivateAll

Receive DemandActive

Receive DeactivateOther
Receive DeactivateAll
Send DeactivateSelf
Send DeactivateAll
No other Active ASCEs

Active
(agreed ID)

Inactive
(invalid ID)

Figure 5/T.128 – ASCE state transitions and share identifier management (Legacy mode)

8.4.3 ASCE activation and share identifiers (Base mode)

In the base mode of the AS protocol, ASCE activation shall be performed according to
Recommendation T.121.

A share identifier is a unique 32-bit handle present in (almost) all ASPDUs, which ASCEs use to
detect and ignore "late" AS data generated with respect to previous capabilities within the
AS session. In the base mode of the AS protocol, an ASCE shall use the last roster instance number
supplied by a GCC-Application-Roster-Report indication on the Standard Base Session that contains
both itself and other ASCEs enrolled active as its current share identifier.

In the base mode of the AS protocol, the following ASPDUs do not contain share identifiers. All
other base mode ASPDUs contain share identifiers.

• FlowTestPDU: See 8.5.

• FlowResponsePDU: See 8.5.

• FlowStopPDU: See 8.5.

While the use of share identifiers allows an ASCE to avoid the use of "late" AS data, it is possible
for an ASCE to receive "early" AS data that have been generated with respect to capabilities that

 Recommendation T.128 (02/98) 49

have not yet been seen by the receiving ASCE. This occurs because GCC distributes roster
information via the GCC top provider while AS data are sent using (non-uniform) MCS-Send-Data
primitives. This means that, for a simple example for a conference with two ASCEs (ASCEs A and
B), where each of the ASCEs enrol active at about the same time, then:

• ASCE A may receive a roster report containing the capabilities for ASCEs A and B at time
t1;

• based on those capabilities, ASCE A starts sending AS data to ASCE B at time t2;

• the AS data from ASCE A may arrive at ASCE B at time t3; at this point ASCE B has not
received a roster report containing A;

• ASCE B may receive a roster report containing the capabilities for ASCE A at time t4.

An ASCE can detect "early" AS data by the fact that the data's share identifier will be greater modulo
216 than the last roster instance number supplied by a GCC-Application-Roster-Report indication on
the Standard Base Session. For this case, an ASCE shall process in advance or buffer such data until
a GCC-Application-Roster-Report indication is received that identifies a roster instance number
which is greater modulo 216 than or equal to the one specified in the data. If an ASCE chooses to
process such data in advance of the receipt of the proper GCC-Application-Roster-Report indication,
it shall not assume that the capabilities corresponding to the data are within the bounds defined by its
own capabilities, given that the roster change prompting the new application roster may have been
triggered by the ASCE being either forcibly or voluntarily removed from the AS session.

8.5 Flow control

A key performance factor for application sharing is the ability to tailor the protocol content based on
the potential traffic presented by local hosted window activity and the instantaneous aggregate
bandwidth to other nodes to achieve maximum throughput and responsiveness. During the course of
an AS session, the aggregate bandwidth available for application sharing will vary depending on a
wide range of factors, including:

• the conference topology and link speeds;

• the activation status and behaviour of other ASCEs;

• the presence and/or behaviour of other APEs – such as T.126 and/or T.127 APEs;

• other services (such as video and/or audio) originating or terminating on nodes involved in
the conference;

• the general traffic load (on shared, non-dedicated) networks.

As the instantaneous aggregate bandwidth available for application sharing is reduced, an ASCE may
need to scale back the amount of data in flight in the network (e.g. by collapsing multiple
overlapping screen updates, increasing compression ratios etc.) such that, while the frequency of
remote screen updates is reduced, overall responsiveness is maintained – and in particular remote
users on slower links do not "fall behind" the conference. As more instantaneous aggregate
bandwidth is available for application sharing, an ASCE may be able to increase the amount of data
in flight in the network, such that the frequency of remote screen updates and actual responsiveness
is improved.

For an ASCE to effectively adjust its protocol content in this manner requires multipoint aggregate
end-to-end flow control. Unfortunately, MCS does not define a suitable flow control mechanism.
Therefore, this Recommendation defines an AS protocol specific mechanism – AS flow control –
whereby ASCEs can obtain information derived from the instantaneous aggregate bandwidth
available to application sharing, which allows them to tailor their AS protocol stream accordingly.

50 Recommendation T.128 (02/98)

AS flow control is applied on a per-channel and per-priority basis. A particular channel/priority
combination is referred to as a flow. Flow control may be applied to none, some or all flows. This
Recommendation only applies flow control to AS-CHANNEL flows and does not apply flow control
to AS-{MCS-USER-ID}-CHANNEL flows – that is, flow control is only applied to broadcast
channel/priority combinations. This means that an ASCE can support up to three controlled flows per
AS session.

For each controlled flow, an ASCE specifies a target round trip time and a target maximum amount
of data in flight. While those targets are in force, an ASCE monitors the aggregate round trip time for
that flow, via exchanges of FlowTestPDUs and corresponding FlowResponsePDUs (see below) and
monitors the amount of data in flight, while seeking to maximize the amount of data in flight (up to
the target maximum) and maintaining the target round trip time.

Where flow control is applied to a particular flow, an ASCE shall periodically send a FlowTestPDU
for that flow to other ASCEs within the conference in the manner indicated in Table 6-3. The content
of the FlowTestPDU is shown in Table 8-32. On receipt of a FlowTestPDU, an ASCE shall reply
with a FlowResponsePDU to the issuing ASCE in the manner indicated in Table 6-3. The content of
the FlowResponsePDU is shown in Table 8-33. The receipt of a FlowResponsePDU provides an
estimate of the round trip delay to the particular responding ASCE. Note that this definition of round
trip time includes all time spent in local, intermediate and final destination node queues and is
therefore an estimate of end-to-end delivery time to the remote ASCE.

An ASCE is required to issue FlowTestPDUs periodically and is required to respond to
FlowTestPDUs with FlowResponsePDUs – except where it has previously sent a FlowStopPDU (see
below).

An ASCE should use the round trip times provided by the series of exchanges of FlowTestPDUs and
FlowResponsePDUs to:

• maintain a dynamic estimate of the aggregate throughput for each controlled flow;

• adjust the sending of FlowTestPDUs and FlowResponsePDUs to reflect the estimate of the
aggregate throughput;

• adjust the content of the outgoing AS protocol data stream to reflect the estimate of the
aggregate throughput (see 8.5.2).

The implementation of efficient and predictable ASCE flow control is a major determinant in
application sharing performance and usability. Therefore, this Recommendation requires that ASCEs
implement a flow control algorithm either equivalent to, or superior to, the algorithm described
in 8.5.1 below.

8.5.1 Flow control algorithm

The following flow control algorithm is described in terms of a set of flow control constants and
variables, a set of specific operations on those variables and logic which describes under what
conditions those operations are performed. Appendix I provides suggested constant values, initial,
minima and maxima values for the flow control variables and suggested expressions for the
operations, based on experience with a particular ASCE implementation. However, different ASCE
implementations may find that different values and/or expressions deliver the required equivalent or
superior flow control behaviour.

• An ASCE uses the following flow control constant values per controlled flow:

– target_round_trip This is the target round trip time for the flow.

– target_in_flight This is the target maximum number of octets that can be in flight
for the flow.

 Recommendation T.128 (02/98) 51

– max_queued_recv This is the maximum number of received ASPDUs that can be
locally queued for the flow before FlowResponsePDUs responses
are deferred.

 Appendix I provides suggested values for these flow control constants based on experience
with a particular ASCE implementation.

• An ASCE maintains the following flow control variables per controlled flow:

– max_in_flight This is the current maximum number of octets that can be in
flight for the flow.

– flow_period This is the current minimum period between sending
FlowTestPDUs.

 These variable values are adjusted dynamically (see below) based on the data sent by the
ASCE and on the observed round trip delay to other ASCEs.

 Appendix I provides suggested initial values and minima and maxima for these flow control
variables based on experience with a particular ASCE implementation.

• An ASCE may perform the following operations on the flow control variables:

– Decrease max_in_flight

– Increase max_in_flight

– Decrease flow_period

– Increase flow_period

 Appendix I provides suggested expressions for these operations based on experience with a
particular ASCE implementation.

• When sending data for a controlled flow, an ASCE should check whether this data results in
the number of octets in flight exceeding max_in_flight.

– Where that is not the case, the ASCE should send the data.

– Where that is the case, the ASCE should not send the data (i.e. the flow control
algorithm is applying local back pressure within the ASCE).

 How back pressure is applied within the ASCE is a local matter.

• On receipt of a FlowTestPDU, an ASCE should check whether it is still processing more
than max_queued_recv ASPDUs on the flow.

– Where that is not the case, it should respond with a FlowResponsePDU referencing that
flow and using the flowNumber supplied in the FlowTestPDU.

– Where that is the case, it should pend the FlowResponsePDU until the local backlog has
been reduced – i.e. until the number of locally queued ASPDUs on the flow is less than
or equal to max_queued_recv.

 The check for a backlog of previously received data avoids problems where a receiving
ASCE is the slowest element in the end-to-end network, where an unconditional
FlowResponsePDU would result in an accumulation of unprocessed data at the receiver.

• On receipt of a FlowResponsePDU, an ASCE should check whether the flow control
algorithm is applying local back pressure.

– Where that is not the case, no action is necessary.

– Where that is the case and the round trip delay is worse than the target_round_trip, it
should decrease max_in_flight and increase flow_period. This will have the effect of
reducing throughput by encouraging earlier back pressure.

52 Recommendation T.128 (02/98)

– Where that is the case and the round trip delay is better than the target_round_trip, it
should increase max_in_flight. This will have the effect of lifting back pressure and
increasing throughput when data is next sent (provided a worse round trip delay does not
happen in the interim). If the new max_in_flight has reached target_in_flight, then the
ASCE should also decrease flow_period. This will have the effect of increasing the
algorithm's sensitivity to any deterioration in round trip times as a result of the increased
data in flight.

 This means that the ASCE will only adjust max_in_flight or flow_period where local back
pressure is being applied. This is because this algorithm uses the observed round trip as an
estimate of throughput, which is only a reasonable correlation where the round trip coincides
with a period of busy data traffic – i.e. when this ASCE is applying local back pressure
because there are at least max_in_flight octets in flight.

 Note that an ASCE should take care that successive estimates of round trip during local back
pressure do not result in oscillation – for example, where successive round trips within the
same flow_period are worse than the target (resulting in a decrease in max_in_flight and
increase in flow_period) and then better than the target (resulting in an increase in
max_in_flight and possible decrease in flow_period). A recommended heuristic approach is
to bias the decision such that a reduction in throughput is effected for cases where the round
trip is simply worse than the target_round_trip, whereas an increase in throughput is only
affected for cases where the round trip is less than half of the target_round_trip.

 The ASCE should apply this logic for each received FlowResponsePDU within a
flow_period – with the early responders setting initial values for the period and later
responders adjusting those values to reflect the bandwidth characteristics applicable to the
corresponding ASCEs.

The flow_period is the current minimum time between FlowTestPDUs. For example, if the
flow_period is five milliseconds, then if an ASCE sends a FlowTestPDU at the start of a flow_period
and receives FlowResponsePDUs from all responding ASCEs (see below) within four milliseconds,
then it should not send the next FlowTestPDU for a further millisecond. Conversely, if it has not
received FlowResponsePDUs for all responding ASCEs within five milliseconds, it should not send
the next FlowTestPDU until it has received FlowResponsePDUs for all responding ASCEs or some
larger upper time bound has been reached. This approach means that, for a particular flow_period,
the algorithm incrementally responds to the observed round trip for all responding ASCEs – provided
they respond within a reasonable time.

The group of responding ASCEs for which responses are expected within a flow_period may not
necessarily correspond to the group of all other active ASCEs. A sending ASCE should only include
an ASCE within its group of responding ASCEs when that ASCE has provided an initial response
and should exclude ASCEs that do not respond within the upper time bound (at least, until such
ASCEs respond again within subsequent flow_periods). This approach ensures that faulty ASCEs do
not skew the algorithm.

The net of the above is that sending ASCEs will (for a particular flow):

• apply local back pressure when the amount of data in flight reaches the current allowable
data in flight;

• increase or decrease the allowable data in flight to reflect the aggregate instantaneous
bandwidth, based on the observed round trip delay;

• increase or decrease the flow_period (and thus the proportion of bandwidth occupied by flow
ASPDUs) to reflect the aggregate instantaneous bandwidth.

 Recommendation T.128 (02/98) 53

Table 8-32/T.128 – FlowTestPDU

Parameter Description

FlowID This parameter identifies the controlled flow for the sending ASCE. The
allowable values are in the range 0..127. This parameter is allocated by the
sending ASCE and has no specific correlation with particular channels
and/or priorities.

FlowNumber This parameter identifies this particular FlowTestPDU for on this flowID
(see above). The allowable values are in the range 0..255. An ASCE should
increment this parameter for each successive FlowTestPDU, wrapping to 0
after using 255.

nonStandardparameters This parameter is only allowed in the base mode of the AS protocol. It is
an optional list of non-standard parameters allowed only if the
corresponding non-standard capabilities are present in the negotiated
capability set.

Table 8-33/T.128 – FlowResponsePDU

Parameter Description

flowID This parameter identifies the controlled flow for the sending ASCE. The
allowable values are in the range 0..127. The sending ASCE shall set this
parameter to that used in the corresponding FlowTestPDU.

flowNumber This parameter identifies this particular FlowResponsePDU on this flowID
(see above). The allowable values are in the range 0..255. The sending
ASCE shall set this parameter to that used in the corresponding
FlowTestPDU.

nonStandardParameters This parameter is only allowed in the base mode of the AS protocol. It is
an optional list of non-standard parameters allowed only if the
corresponding non-standard capabilities are present in the negotiated
capability set.

An ASCE may remove itself from other ASCEs’ flow control responding groups by sending a
FlowStopPDU for that flow to all other ASCEs within the conference in the manner indicated in
Table 6-3. The content of the FlowStopPDU is shown in Table 8-34. This mechanism is primarily of
use in the legacy mode of the AS protocol, as it allows an ASCE to remain enrolled in the
AS-CHANNEL (and therefore still receiving FlowTestPDUs) but to be inactive (in the sense of
ASCE activation – see 8.4) and ensures that its failure to respond does not skew other active ASCEs'
flow control calculations.

When the ASCE again wishes to be included in flow control calculations, it should respond to the
next FlowTestPDU with a FlowResponsePDU, which will have the effect of adding it back into
other ASCEs' flow control responding groups for that flow.

Table 8-34/T.128 – FlowStopPDU

Parameter Description

flowID This parameter identifies the controlled flow for the sending ASCE. The
allowable values are in the range 0..127. The sending ASCE shall set this
parameter to that used in the corresponding FlowTestPDU.

nonStandardParameters This parameter is only allowed in the base mode of the AS protocol. It is
an optional list of non-standard parameters allowed only if the
corresponding non-standard capabilities are present in the negotiated
capability set.

54 Recommendation T.128 (02/98)

8.5.2 Response to back pressure

When back pressure is being applied within the ASCE as a result of the flow control algorithm
described in 8.5.1, an ASCE may process pending AS data such that the volume of the data is
reduced.

Example strategies for output AS data include the following:

• Switching between sending orders and bitmap data:

 Where a local application is very actively drawing into a hosted window and the ASCE is
experiencing flow control back pressure, the ASCE may prefer to accumulate bounds
information for the drawing activity, rather than sending the orders, and then subsequently
send bitmap data for the accumulated bounds. This may reduce the frequency of updates at
remote ASCEs, but will minimize the data in flight and ensures that remote ASCEs "keep
up" with the drawing activity. The switching points between orders and bitmap data and vice
versa will depend on application drawing behaviour, flow control and the particular ASCE
implementation.

• Collapsing overlapping updates – this process is referred to as spoiling:

 Where the ASCE is experiencing flow control back pressure and the local application draws
a sequence of overlapping or occluding order or bitmap data updates, then the sequence may
(in some cases) be collapsed into a smaller sequence and/or a single update. Again, this may
reduce the frequency of updates at remote ASCEs, but will minimize the data in flight and
ensure that remote ASCEs "keep up" with the drawing activity.

Where an ASCE is experiencing flow control back pressure and there is a high level of end-user
pointing device activity, the ASCE may collapse a sequence of pointing device move events into a
single move – this process is referred to as input spoiling. Input spoiling may also be applied at the
hosting ASCE, where a sequence of pointing device events is queued within the ASCE awaiting
injection into the local terminal environment. Both send and receive input spoiling may reduce the
frequency of pointing device move updates presented to hosted windows and therefore degrade the
smoothness of pointing device movement, but will minimize the data in flight and ensure that remote
ASCEs "keep up" with the pointing device activity.

This Recommendation does not specify how an ASCE should adjust the content of either the output
or input AS protocol data streams when back pressure is in effect, but does require that the ASCE
shall ensure that the protocol stream contains sufficient information to allow peer ASCEs to correctly
display shadow windows and/or correctly control hosted applications. Similarly, where the output
stream relies on control information (such as window list or palette information) that has changed on
the hosting ASCE, it is the hosting ASCE's responsibility to ensure that the control information is
sent prior to the output. All order-dependent control and output ASPDUs are sent at low priority, so
that the sending ASCE can reliably order such output.

8.6 Synchronization

When an ASCE is active within an AS session, there are several classes of session events that may
require it to update protocol related resources and/or state, or to send ASPDUs which allow other
ASCEs to perform complementary changes. The ASCE processing associated with these session
events is referred to as synchronization.

The AS protocol defines four classes of synchronization – referred to as ASCE, hosting, shadow and
input synchronization. Each synchronization class defines a related set of ASCE synchronization
requirements associated with a particular range of session events. For example, hosting
synchronization defines a set of synchronization requirements that apply to an ASCE that is hosting
(or starting or stopping hosting) windows.

 Recommendation T.128 (02/98) 55

This subclause provides a summary of those ASCE synchronization operations required to support
the AS protocol. It does not describe each operation in detail, but rather references subclauses
elsewhere in this Recommendation that describe the relevant functional area.

Where the description references a particular local resource, such as an identifier value or a sending
cache, it does so in logical terms, which do not assume a particular local ASCE implementation – the
only requirement is that the synchronizing ASCE (subsequently) achieves the required protocol
effect. In addition, it does not address potential optimizations that may arise from collapsing a series
of repeated synchronization operations.

8.6.1 ASCE synchronization

When an ASCE becomes active, it shall perform the following synchronization operations. See 8.4
for further information on ASCE activation and deactivation.

• It shall set its window list identifier sequence number part to zero. See 8.10 for further
information.

• It shall set its window activation identifier to zero. See 8.11 for further information.

• It shall set its control identifier to zero. See 8.12 for further information.

The AS protocol does not require any specific synchronization when an ASCE becomes inactive.

When an active ASCE detects that another ASCE has become active, it shall perform the following
synchronization operations:

• It shall determine the negotiated capabilities for all (i.e. existing and new) active ASCEs
within the AS session and use these capabilities as the basis for constructing all subsequent
data ASPDUs. See 8.2 for further information on capabilities and capabilities negotiation.

• Before sending any other data ASPDUs, it shall send a SynchronizePDU on all outgoing
streams/priorities (see 8.3.1) to all ASCEs within the conference in the manner indicated in
Table 6-3 and shall mark all incoming streams/priorities for each other active ASCE as
pending synchronization. Each incoming stream/priority for each other active ASCE remains
pending synchronization until it receives a SynchronizePDU – and until that point discards
all incoming data ASPDUs on that stream/priority from the particular ASCE. This ensures
that, where the share identifier does not change as a result of the new ASCE becoming active
(see 8.4.2), any data arriving from other ASCEs relating to the previous negotiated combined
capabilities is discarded. A particular SynchronizePDU is directed on a single stream/priority
for a particular other active ASCE, but is sent on the AS-CHANNEL (and therefore to all
ASCEs). Each SynchronizePDU includes the MCS User ID of the intended target ASCE, so
that it can be discarded by ASCEs that are not the intended target. This mechanism ensures
that the SynchronizePDU arrives before any broadcast data for the target ASCE. The content
of the SynchronizePDU is shown in Table 8-35.

• It shall discard its list of matched fonts, reset its count of received FontPDUs and may send a
FontPDU to re-advertise its set of matchable fonts. See 8.8 for further information.

• It shall send either a Cooperate or Detach ControlPDU to advertise its control state. If it is
cooperating and it has the control identifier, it also shall send a Grant Control ControlPDU
referencing itself to all active ASCEs to advertise that it owns the control identifier. See 8.12
for further information.

• If the ASCE is hosting windows, it shall also perform the relevant hosting synchronization
operations (see 8.6.2 below).

• It shall perform the relevant input synchronization operations (see 8.6.4 below).

56 Recommendation T.128 (02/98)

ASCE synchronization as a result of other ASCEs becoming active may generate significant local
processing load and significant ASPDU traffic, especially where it also initiates host
synchronization. It is recommended that where an ASCE detects that a number of other ASCEs have
become active in the conference in close succession, it implements ASCE synchronization so that it
defers some or all of the required synchronization for each newly-active ASCE until a significant
proportion or all of the ASCEs are active, with the proviso that the deferment is time limited in
proportion to the number of ASCEs in the group and some arbitrary maximum and that
responsiveness to activation is maintained.

When another ASCE becomes inactive, an ASCE may be required to perform the following
synchronization operations. See 8.4 for further information on ASCE activation and deactivation.

• Where the other ASCE becoming inactive results in the local ASCE becoming inactive
(because it is the only active ASCE remaining within the AS session), then no ASCE
synchronization is required.

• Where the ASCE that became inactive owned the control identifier, then each remaining
active ASCE is required to participate in an exchange of ControlPDUs to re-establish a
single ASCE as the control identifier owner. See 8.12.1 for further information.

• Where other ASCEs remain active, the local ASCE may redetermine the negotiated
capabilities (see 8.2) for all remaining active ASCEs within the AS session and use these
capabilities as the basis for constructing all subsequent data ASPDUs. This is optional, as
the negotiated capabilities for the previously active ASCEs were negotiated inclusive of the
remaining ASCEs, and while the renegotiated capabilities may allow for the construction of
a more optimal AS protocol stream, the previously negotiated capabilities are still valid.
See 8.2 for further information.

• Where other ASCEs remain active, the local ASCE may also rematch its list of matched
fonts based on the font information received from the remaining active ASCEs. Again, this
is optional and while it may result in additional matched fonts, the previously matched fonts
are still valid. See 8.8 for further information.

Table 8-35/T.128 – SynchronizePDU

Parameter Description

ShareData Header The ShareData Header is described in 8.3.

targetUser This parameter is the MCS User ID of the ASCE to which this ASPDU is
directed. Where an ASCE receives a SynchronizePDU containing a MCS
User ID other than its own, it shall discard it.

nonStandardParameters This parameter is only allowed in the base mode of the AS protocol. It is
an optional list of non-standard parameters allowed only if the
corresponding non-standard capabilities are present in the negotiated
capability set.

8.6.2 Hosting synchronization

Hosting synchronization is the set of synchronization operations that are associated with the hosting
of windows.

 Recommendation T.128 (02/98) 57

When an ASCE first starts hosting windows, when it is hosting windows and a new ASCE becomes
active, or when it is hosting windows and a capability set is updated (see 8.2), it shall perform the
following synchronization operations:

• It shall send an UpdatePDU (Synchronization) to all ASCEs within the conference in the
manner indicated in Table 6-3. The UpdatePDU (Synchronization) shall be sent before any
other ASPDUs generated by the sending ASCE as a result of hosting synchronization and
notifies other ASCEs that this ASCE is hosting windows. On receipt of an UpdatePDU
(Synchronize), an ASCE shall perform any relevant shadow synchronization (see 8.6.3
below). The content of the UpdatePDU (Synchronization) is shown in Table 8-36.

• It shall reset its sending color pointer cache. See 8.14 for further information.

• In the base mode of the AS protocol only, it shall reset its sending color space to RGB with
no color accuracy information.

• It shall pend the sending of an UpdatePDU (Palette) with a new palette, which shall be sent
before any subsequent bitmap data.

• It shall reset its order encoding state. See 8.16.3 for further information.

• It shall reset its sending bitmap cache. See 8.16.7 for further information.

• It shall reset its sending colortable cache. See 8.16.8 for further information.

• It shall reset its sending desktop save cache. See 8.16.17 for further information.

• It shall send an ApplicationPDU with action NotifyHostedApplications indicating the
number of hosted applications on the local terminal.

• It shall send a WindowListPDU containing information on the current local window
structure, which shall be sent before any WindowActivation. See 8.10 for further
information.

• It shall send a WindowActivationPDU providing information on the local window activation
status. See 8.11 for further information.

• It shall queue a Desktop Origin order, which shall be sent in an UpdatePDU (Orders)
ASPDU before any subsequent bitmap data or orders. See 8.16.18 for further information.

• It shall construct a AS output stream, consisting of a mixture of bitmap data and/or orders,
containing sufficient information to allow other ASCEs to draw shadow windows
corresponding to its hosted windows.

When an ASCE stops hosting windows, but remains active, it shall send an ApplicationPDU with
action NotifyHostedApplications indicating that zero applications are now hosted, to allow other
ASCEs to perform any required shadow synchronization.

Table 8-36/T.128 – UpdatePDU (Synchronization)

Parameter Description

ShareData Header The ShareData Header is described in 8.3.

nonStandardParameters This parameter is only allowed in the base mode of the AS protocol. It is
an optional list of non-standard parameters allowed only if the
corresponding non-standard capabilities are present in the negotiated
capability set.

8.6.3 Shadow synchronization

Shadow synchronization is the set of synchronization operations that are associated with the drawing
of shadow windows. It is performed with respect to one other or all other hosting ASCEs.

58 Recommendation T.128 (02/98)

When an ASCE receives an UpdatePDU (Synchronization) from another ASCE (see 8.6.2), it is
required to perform shadow synchronization with respect to that hosting ASCE. Where an ASCE
determines that a capability set has been updated (in legacy mode, on receipt of an
UpdateCapabilityPDU; in base mode on receipt of a GCC-Application-Roster-Report indication with
changed capabilities), it is required to perform shadow synchronization with respect to all hosting
ASCEs. Where shadow synchronization is required, an ASCE shall perform the following
synchronization operations for each affected hosting ASCE.

• It shall reset its receiving color pointer cache for that hosting ASCE. See 8.14 for further
information.

• In the base mode of the AS protocol only, it shall reset its receiving color space for that
hosting ASCE to RGB with no color accuracy information.

• It shall reset its order decoding state for that hosting ASCE. See 8.16.3 for further
information.

• It shall reset its receiving bitmap cache for that hosting ASCE. See 8.16.7 for further
information.

• It shall reset its receiving colortable cache for that hosting ASCE. See 8.16.8 for further
information.

• It shall reset its receiving desktop save cache for that hosting ASCE. See 8.16.17 for further
information.

• It shall reset its desktop origin to (0,0) for that hosting ASCE. See 8.16.18 for further
information.

The AS protocol does not require any specific synchronization when an ASCE detects that another
ASCE is no longer hosting – for example, when a hosting ASCE becomes inactive or the ASCE
receives an ApplicationPDU with action NotifyHostedApplications indicating that zero applications
are hosted on a (previously) hosting ASCE. However, an ASCE may use the receipt of an
ApplicationPDU with action NotifyHostedApplications and zero applications to free local resources
(such as receive caches) that were allocated with respect to that ASCE.

8.6.4 Input synchronization

Input synchronization is the set of synchronization operations that are associated with the
maintenance of keyboard state between controlling and controlled ASCEs. See 8.18 for further
information.

When an ASCE detects that a new ASCE has become active, it shall reset its sending keyboard state
and queue an Input Synchronization event for the next InputPDU. On receipt of an input
synchronization event within an InputPDU, an ASCE shall reset its receiving keyboard state for the
issuing ASCE.

8.7 Remote sharing

In some application sharing scenarios (e.g. remote working and/or help desk support), it is useful for
sharing of applications and/or windows to be initiated remotely – that is, applications running on the
local terminal are shared not by a local end-user or programmatic action, but rather as a result of a
request from a peer ASCE. This is referred to as remote sharing.

When an ASCE wishes to initiate remote sharing on a peer ASCE, it shall send a RemoteSharePDU
with action Request Remote Share and an encrypted password to the peer ASCE in the manner
described in Table 6-3. The content of the RemoteSharePDU is shown in Table 8-37.

 Recommendation T.128 (02/98) 59

On receipt of a Request Remote Share RemoteSharePDU, an ASCE utilizes a purely local
mechanism (such as interacting with the local end-user) to determine whether to allow remote
sharing from the requesting ASCE and/or to validate the supplied password. If it determines to
accept the remote share request, it responds with a Confirm Remote Share RemoteSharePDU to the
requesting ASCE and shares those local applications and/or windows that are eligible for remote
sharing. The particular list of local applications and/or windows that are eligible for remote sharing is
a local matter. For example, an ASCE may offer configuration options, whereby end-users can
restrict the list of remote sharable applications and/or windows by class, by name, or by requesting
ASCE.

If the ASCE determines not to accept the remote share request, it responds with a Deny Remote
Share RemoteSharePDU to the requesting ASCE, indicating why the remote share attempt was
denied. Values are defined for the following denial cases:

• The requesting ASCE supplied an invalid password.

• The receiving ASCE does not support remote sharing or does not have remote sharing
enabled.

• The receiving ASCE has already executed a remote share. That is, its defined remote
sharable applications and/or windows are already shared.

• The receiving ASCE has requested a remote share to a third ASCE.

Table 8-37/T.128 – RemoteSharePDU

Parameter Description

ShareData Header The ShareData Header is described in 8.3.

action This parameter identifies the particular RemoteSharePDU action. The
allowable values are as follows:

 • Request Remote Share

 • Confirm Remote Share

 • Deny Remote Share

additionalData This parameter provides optional additional data for specific actions:

• For the Request Remote Share action, this parameter shall be the MCS
User ID of the sending ASCE. This allows receiving ASCEs to
implement remote share security on a per remote ASCE basis.

• For the Deny Remote Share action, this parameter provides a reason
code for the denial, as follows:

 – Incorrect Password

 – Remote Share Not Enabled/Supported

 – Remote Share In Operation (Incoming)

 – Remote Share In Operation (Outgoing)

encryptedPassword This parameter is only present for a Request Remote Share message, where
it is an X.509 protected simple authentication password without optional
timestamp or optional random number.

nonStandardParameters This parameter is only allowed in the base mode of the AS protocol. It is
an optional list of non-standard parameters allowed only if the
corresponding non-standard capabilities are present in the negotiated
capability set.

60 Recommendation T.128 (02/98)

8.8 Fonts

An ASCE sends font information to all ASCEs within the conference by sending a FontPDU in the
manner described in Table 6-3. The content of the FontPDU is shown in Table 8-38.

Font attribute information provides information on those fonts meeting the requirements of the
AS protocol for which the sending ASCE is prepared to receive Text and Extended Text orders
(see 8.16.11 and 8.16.12).

An ASCE may send a FontPDU during ASCE synchronization to allow other active ASCEs to
perform font matching, which is a prerequisite for the sending of Text and Extended Text Orders
within the AS session. See 8.6 for further information on synchronization. An ASCE need not send
FontPDUs where it does not support allowable local fonts (see 8.8.1) and/or where it does not
support Text and Extended Text orders.

Where an ASCE does not match a particular font and that font is then used locally by an application
executing on the local terminal that is shared into the conference, the ASCE cannot send a Text or
Extended Text order referencing that font. However, it can send an UpdatePDU (Bitmap) ASPDU
containing the bits from the local terminal display area corresponding to the text bounds, which
should result in an equivalent shadow window visual appearance on peer ASCEs.

For example, the current ASCE protocol only allows advertising of fonts where some or all of the
codepoints have glyphs in the full or core AS protocol code page (see 8.8.1) and the Text and
Extended Text order codepoint lists assume a single-byte code page. This precludes the advertising
of double-byte fonts or the sending of Text or Extended Text orders for such fonts. However, where
such fonts are in use for text drawing within shared applications at one or more ASCEs within a
conference, the ASCEs can use suitable UpdatePDU (Bitmap) ASPDUs to achieve the same shadow
window visual appearance on peer ASCEs.

Table 8-38/T.128 – FontPDU

Parameter Description

ShareData Header The ShareData Header is described in 8.3.

entrySize This parameter specifies the size in octets of a font attribute in the fontList
parameter (see below). This parameter is only allowable for legacy mode
FontPDUs.

fontList This parameter is a list of font attributes.

nonStandardParameters This parameter is only allowed in the base mode of the AS protocol. It is
an optional list of non-standard parameters allowed only if the
corresponding non-standard capabilities are present in the negotiated
capability set.

A receiving ASCE shall treat the position of font attributes in the FontPDU as a zero-offset numeric
identifier, referred to as the FontID, for subsequent use during font matching and when sending Text
and Extended Text orders. For example, where a FontPDU contains 6 font attributes, the receiving
ASCE shall use FontIDs 0..5 respectively to refer to the corresponding fonts at the sending ASCE.
See Table 8-39.

 Recommendation T.128 (02/98) 61

Table 8-39/T.128 – Font attributes

Parameter Description

faceName This parameter is a null-terminated T.50 text string specifying the face
name of the font.

fontFlags This parameter is a set of bit flags indicating the characteristics of the font.
Defined bit flag values are as follows.

 • Fixed Pitch If this flag is set, it indicates that the font is fixed pitch. If
it is not set, the font is proportional.

 • Fixed Size If this flag is set, it indicates that the font is fixed size. If it
is not set, the font is scalable.

averageWidth This parameter is the average character width in pixels of the font. This is
the average of the character widths for codepoints 0x61 through 0x7A plus
codepoint 0x20 (i.e. "a" through "z" plus "space" for the AS protocol code
page – see 8.8.1), where the character width is the character cell for fixed
pitch fonts and the sum of the A + B + C widths for proportional fonts.
Where the font is scalable, this value shall be calculated for a font of size
100 × 100 pixels.

height This parameter is the character cell height in pixels for this font. Where the
font is scalable, this value shall be calculated for a font of size 100 × 100
pixels.

aspectX This parameter specifies the horizontal aspect in pixels per inch of the
device for which the font was designed.

aspectY This parameter specifies the vertical aspect in pixels per inch of the device
for which the font was designed.

signature1 This parameter is the signature checksum for the first codepoint group. It is
calculated as the sum of the character widths for codepoints 0x30 through
0x5A plus 0x24 through 0x26 inclusive divided by 2 and truncated to
8 bits, where the character width is the character cell for fixed pitch fonts
and the sum of the A + B + C widths for proportional fonts. Where the font
is scalable, this value shall be calculated for a font of size 100 × 100 pixels.
See 8.8.1 for further information on codepoints and code pages.

The combination of signature1 equals zero, signature2 equals zero and
signature3 equals zero represents the special value NO_SIGNATURE.

signature2 This parameter is the signature checksum for the second codepoint group.
It is calculated as the sum of the character widths for codepoints 0x20
through 0x7E inclusive, less the sum of the character widths for the
codepoints specified for calculation for the signature1 parameter, with the
result divided by 2 and truncated to 8 bits, where the character width is the
character cell for fixed pitch fonts and the sum of the A + B + C widths for
proportional fonts. Where the font is scalable, this value shall be calculated
for a font of size 100 × 100 pixels. See 8.8.1 for further information on
codepoints and code pages.

The combination of signature1 equals zero, signature2 equals zero and
signature3 equals zero represents the special value NO_SIGNATURE.

62 Recommendation T.128 (02/98)

Table 8-39/T.128 – Font attributes (concluded)

Parameter Description

signature3 This parameter is the signature checksum for the third codepoint group. It
is calculated as the sum of the character widths for codepoints 0x00 to
0x1E plus 0x80 through 0xFF inclusive. Where the font is scalable, this
value shall be calculated for a font of size 100 × 100 pixels. See 8.8.1 for
further information on codepoints and code pages.

If the calculated values of the signature1, signature2 and signature3
parameters are all zero, then signature3 shall be set to zero.

The combination of signature1 equals zero, signature2 equals zero and
signature3 equals zero represents the special value NO_SIGNATURE.

codePage This parameter indicates which AS protocol code page codepoints are
supported by this font. Allowable values are:
• All defined codepoints

• Core codepoints only.

See 8.8.1 for further information on code points and code pages.

nonStandardFontAttributes This parameter is only allowed in the base mode of the AS protocol. It is
an optional list of non-standard font attributes allowed only if the
corresponding non-standard capabilities are present in the negotiated
capability set.

8.8.1 Code Page

The AS protocol code page consists of the ISO/IEC 8859-1 (Latin-1) code page with additional
codepoints in the ranges 0x82-0x8C, 0x91-0x9C plus 0x9F. Codepoints in the ranges 0x00 through
0x1F, 0x7F through 0x81, 0x8D through 0x90, and codepoints 0x9D and 0x9E are not in
ISO/IEC 8859-1 and are not AS extensions – and are therefore not in the AS protocol code page.

Codepoints in the range 0x20 through 0x7E are considered to be the core AS protocol code page
codepoints.

The AS protocol code page break character is codepoint 0x20.

An ASCE shall only include font attributes in a FontPDU for fonts where all codepoints have glyphs
in the AS protocol code page. Similarly, it shall only send codepoints in Text or Extended Text
orders where the corresponding glyphs are present in the AS protocol code page.

Table 8-40 summarizes the supported codepoints in the AS protocol code page, indicating whether
the codepoint is in ISO/IEC 8859-1 or is an AS extension, and itemizes the corresponding Unicode
(ISO/IEC 10646-1) code and name for each codepoint.

Table 8-40/T.128 – AS protocol code page

Codepoint ISO/IEC 8859-1 Unicode code Unicode name

0x0020 √ 0x0020 SPACE

0x0021 √ 0x0021 EXCLAMATION MARK

0x0022 √ 0x0022 QUOTATION MARK

0x0023 √ 0x0023 NUMBER SIGN

0x0024 √ 0x0024 DOLLAR SIGN

0x0025 √ 0x0025 PERCENT SIGN

0x0026 √ 0x0026 AMPERSAND

 Recommendation T.128 (02/98) 63

Table 8-40/T.128 – AS protocol code page (continued)

Codepoint ISO/IEC 8859-1 Unicode code Unicode name

0x0027 √ 0x0027 APOSTROPHE

0x0028 √ 0x0028 LEFT PARENTHESIS

0x0029 √ 0x0029 RIGHT PARENTHESIS

0x002A √ 0x002A ASTERISK

0x002B √ 0x002B PLUS SIGN

0x002C √ 0x002C COMMA

0x002D √ 0x002D HYPHEN-MINUS

0x002E √ 0x002E FULL STOP

0x002F √ 0x002F SOLIDUS

0x0030 √ 0x0030 DIGIT ZERO

0x0031 √ 0x0031 DIGIT ONE

0x0032 √ 0x0032 DIGIT TWO

0x0033 √ 0x0033 DIGIT THREE

0x0034 √ 0x0034 DIGIT FOUR

0x0035 √ 0x0035 DIGIT FIVE

0x0036 √ 0x0036 DIGIT SIX

0x0037 √ 0x0037 DIGIT SEVEN

0x0038 √ 0x0038 DIGIT EIGHT

0x0039 √ 0x0039 DIGIT NINE

0x003A √ 0x003A COLON

0x003B √ 0x003B SEMICOLON

0x003C √ 0x003C LESS-THAN SIGN

0x003D √ 0x003D EQUALS SIGN

0x003E √ 0x003E GREATER-THAN SIGN

0x003F √ 0x003F QUESTION MARK

0x0040 √ 0x0040 COMMERCIAL AT

0x0041 √ 0x0041 LATIN CAPITAL LETTER A

0x0042 √ 0x0042 LATIN CAPITAL LETTER B

0x0043 √ 0x0043 LATIN CAPITAL LETTER C

0x0044 √ 0x0044 LATIN CAPITAL LETTER D

0x0045 √ 0x0045 LATIN CAPITAL LETTER E

0x0046 √ 0x0046 LATIN CAPITAL LETTER F

0x0047 √ 0x0047 LATIN CAPITAL LETTER G

0x0048 √ 0x0048 LATIN CAPITAL LETTER H

0x0049 √ 0x0049 LATIN CAPITAL LETTER I

0x004A √ 0x004A LATIN CAPITAL LETTER J

0x004B √ 0x004B LATIN CAPITAL LETTER K

0x004C √ 0x004C LATIN CAPITAL LETTER L

0x004D √ 0x004D LATIN CAPITAL LETTER M

0x004E √ 0x004E LATIN CAPITAL LETTER N

0x004F √ 0x004F LATIN CAPITAL LETTER O

0x0050 √ 0x0050 LATIN CAPITAL LETTER P

0x0051 √ 0x0051 LATIN CAPITAL LETTER Q

64 Recommendation T.128 (02/98)

Table 8-40/T.128 – AS protocol code page (continued)

Codepoint ISO/IEC 8859-1 Unicode code Unicode name

0x0052 √ 0x0052 LATIN CAPITAL LETTER R

0x0053 √ 0x0053 LATIN CAPITAL LETTER S

0x0054 √ 0x0054 LATIN CAPITAL LETTER T

0x0055 √ 0x0055 LATIN CAPITAL LETTER U

0x0056 √ 0x0056 LATIN CAPITAL LETTER V

0x0057 √ 0x0057 LATIN CAPITAL LETTER W

0x0058 √ 0x0058 LATIN CAPITAL LETTER X

0x0059 √ 0x0059 LATIN CAPITAL LETTER Y

0x005A √ 0x005A LATIN CAPITAL LETTER Z

0x005B √ 0x005B LEFT SQUARE BRACKET

0x005C √ 0x005C REVERSE SOLIDUS

0x005D √ 0x005D RIGHT SQUARE BRACKET

0x005E √ 0x005E CIRCUMFLEX ACCENT

0x005F √ 0x005F LOW LINE

0x0060 √ 0x0060 GRAVE ACCENT

0x0061 √ 0x0061 LATIN SMALL LETTER A

0x0062 √ 0x0062 LATIN SMALL LETTER B

0x0063 √ 0x0063 LATIN SMALL LETTER C

0x0064 √ 0x0064 LATIN SMALL LETTER D

0x0065 √ 0x0065 LATIN SMALL LETTER E

0x0066 √ 0x0066 LATIN SMALL LETTER F

0x0067 √ 0x0067 LATIN SMALL LETTER G

0x0068 √ 0x0068 LATIN SMALL LETTER H

0x0069 √ 0x0069 LATIN SMALL LETTER I

0x006A √ 0x006A LATIN SMALL LETTER J

0x006B √ 0x006B LATIN SMALL LETTER K

0x006C √ 0x006C LATIN SMALL LETTER L

0x006D √ 0x006D LATIN SMALL LETTER M

0x006E √ 0x006E LATIN SMALL LETTER N

0x006F √ 0x006F LATIN SMALL LETTER O

0x0070 √ 0x0070 LATIN SMALL LETTER P

0x0071 √ 0x0071 LATIN SMALL LETTER Q

0x0072 √ 0x0072 LATIN SMALL LETTER R

0x0073 √ 0x0073 LATIN SMALL LETTER S

0x0074 √ 0x0074 LATIN SMALL LETTER T

0x0075 √ 0x0075 LATIN SMALL LETTER U

0x0076 √ 0x0076 LATIN SMALL LETTER V

0x0077 √ 0x0077 LATIN SMALL LETTER W

0x0078 √ 0x0078 LATIN SMALL LETTER X

0x0079 √ 0x0079 LATIN SMALL LETTER Y

0x007A √ 0x007A LATIN SMALL LETTER Z

0x007B √ 0x007B LEFT CURLY BRACKET

0x007C √ 0x007C VERTICAL LINE

 Recommendation T.128 (02/98) 65

Table 8-40/T.128 – AS protocol code page (continued)

Codepoint ISO/IEC 8859-1 Unicode code Unicode name

0x007D √ 0x007D RIGHT CURLY BRACKET

0x007E √ 0x007E TILDE

0x0082 Extension 0x201A SINGLE LOW-9 QUOTATION MARK

0x0083 Extension 0x0192 LATIN SMALL LETTER F WITH HOOK

0x0084 Extension 0x201E DOUBLE LOW-9 QUOTATION MARK

0x0085 Extension 0x2026 HORIZONTAL ELLIPSIS

0x0086 Extension 0x2020 DAGGER

0x0087 Extension 0x2021 DOUBLE DAGGER

0x0088 Extension 0x02C6 MODIFIER LETTER CIRCUMFLEX ACCENT

0x0089 Extension 0x2030 PER MILLE SIGN

0x008A Extension 0x0160 LATIN CAPITAL LETTER S WITH CARON

0x008B Extension 0x2039 SINGLE LEFT-POINTING ANGLE QUOTATION
MARK

0x008C Extension 0x0152 LATIN CAPITAL LIGATURE OE

0x0091 Extension 0x2018 LEFT SINGLE QUOTATION MARK

0x0092 Extension 0x2019 RIGHT SINGLE QUOTATION MARK

0x0093 Extension 0x201C LEFT DOUBLE QUOTATION MARK

0x0094 Extension 0x201D RIGHT DOUBLE QUOTATION MARK

0x0095 Extension 0x2022 BULLET

0x0096 Extension 0x2013 EN DASH

0x0097 Extension 0x2014 EM DASH

0x0098 Extension 0x02DC SMALL TILDE

0x0099 Extension 0x2122 TRADE MARK SIGN

0x009A Extension 0x0161 LATIN SMALL LETTER S WITH CARON

0x009B Extension 0x203A SINGLE RIGHT-POINTING ANGLE QUOTATION
MARK

0x009C Extension 0x0153 LATIN SMALL LIGATURE OE

0x009F Extension 0x0178 LATIN CAPITAL LETTER Y WITH DIAERESIS

0x00A0 √ 0x00A0 NO-BREAK SPACE

0x00A1 √ 0x00A1 INVERTED EXCLAMATION MARK

0x00A2 √ 0x00A2 CENT SIGN

0x00A3 √ 0x00A3 POUND SIGN

0x00A4 √ 0x00A4 CURRENCY SIGN

0x00A5 √ 0x00A5 YEN SIGN

0x00A6 √ 0x00A6 BROKEN BAR

0x00A7 √ 0x00A7 SECTION SIGN

0x00A8 √ 0x00A8 DIAERESIS

0x00A9 √ 0x00A9 COPYRIGHT SIGN

0x00AA √ 0x00AA FEMININE ORDINAL INDICATOR

0x00AB √ 0x00AB LEFT-POINTING DOUBLE ANGLE QUOTATION
MARK

0x00AC √ 0x00AC NOT SIGN

0x00AD √ 0x00AD SOFT HYPHEN

0x00AE √ 0x00AE REGISTERED SIGN

66 Recommendation T.128 (02/98)

Table 8-40/T.128 – AS protocol code page (continued)

Codepoint ISO/IEC 8859-1 Unicode code Unicode name
0x00AF √ 0x00AF MACRON
0x00B0 √ 0x00B0 DEGREE SIGN
0x00B1 √ 0x00B1 PLUS-MINUS SIGN
0x00B2 √ 0x00B2 SUPERSCRIPT TWO
0x00B3 √ 0x00B3 SUPERSCRIPT THREE
0x00B4 √ 0x00B4 ACUTE ACCENT
0x00B5 √ 0x00B5 MICRO SIGN
0x00B6 √ 0x00B6 PILCROW SIGN
0x00B7 √ 0x00B7 MIDDLE DOT
0x00B8 √ 0x00B8 CEDILLA
0x00B9 √ 0x00B9 SUPERSCRIPT ONE
0x00BA √ 0x00BA MASCULINE ORDINAL INDICATOR
0x00BB √ 0x00BB RIGHT-POINTING DOUBLE ANGLE

QUOTATION MARK
0x00BC √ 0x00BC VULGAR FRACTION ONE QUARTER
0x00BD √ 0x00BD VULGAR FRACTION ONE HALF
0x00BE √ 0x00BE VULGAR FRACTION THREE QUARTERS
0x00BF √ 0x00BF INVERTED QUESTION MARK
0x00C0 √ 0x00C0 LATIN CAPITAL LETTER A WITH GRAVE
0x00C1 √ 0x00C1 LATIN CAPITAL LETTER A WITH ACUTE
0x00C2 √ 0x00C2 LATIN CAPITAL LETTER A WITH

CIRCUMFLEX
0x00C3 √ 0x00C3 LATIN CAPITAL LETTER A WITH TILDE
0x00C4 √ 0x00C4 LATIN CAPITAL LETTER A WITH DIAERESIS
0x00C5 √ 0x00C5 LATIN CAPITAL LETTER A WITH RING ABOVE
0x00C6 √ 0x00C6 LATIN CAPITAL LETTER AE
0x00C7 √ 0x00C7 LATIN CAPITAL LETTER C WITH CEDILLA
0x00C8 √ 0x00C8 LATIN CAPITAL LETTER E WITH GRAVE
0x00C9 √ 0x00C9 LATIN CAPITAL LETTER E WITH ACUTE
0x00CA √ 0x00CA LATIN CAPITAL LETTER E WITH CIRCUMFLEX
0x00CB √ 0x00CB LATIN CAPITAL LETTER E WITH DIAERESIS
0x00CC √ 0x00CC LATIN CAPITAL LETTER I WITH GRAVE
0x00CD √ 0x00CD LATIN CAPITAL LETTER I WITH ACUTE
0x00CE √ 0x00CE LATIN CAPITAL LETTER I WITH CIRCUMFLEX
0x00CF √ 0x00CF LATIN CAPITAL LETTER I WITH DIAERESIS
0x00D0 √ 0x00D0 LATIN CAPITAL LETTER ETH
0x00D1 √ 0x00D1 LATIN CAPITAL LETTER N WITH TILDE
0x00D2 √ 0x00D2 LATIN CAPITAL LETTER O WITH GRAVE
0x00D3 √ 0x00D3 LATIN CAPITAL LETTER O WITH ACUTE
0x00D4 √ 0x00D4 LATIN CAPITAL LETTER O WITH

CIRCUMFLEX
0x00D5 √ 0x00D5 LATIN CAPITAL LETTER O WITH TILDE
0x00D6 √ 0x00D6 LATIN CAPITAL LETTER O WITH DIAERESIS
0x00D7 √ 0x00D7 MULTIPLICATION SIGN

 Recommendation T.128 (02/98) 67

Table 8-40/T.128 – AS protocol code page (concluded)

Codepoint ISO/IEC 8859-1 Unicode code Unicode name

0x00D8 √ 0x00D8 LATIN CAPITAL LETTER O WITH STROKE

0x00D9 √ 0x00D9 LATIN CAPITAL LETTER U WITH GRAVE

0x00DA √ 0x00DA LATIN CAPITAL LETTER U WITH ACUTE

0x00DB √ 0x00DB LATIN CAPITAL LETTER U WITH
CIRCUMFLEX

0x00DC √ 0x00DC LATIN CAPITAL LETTER U WITH DIAERESIS

0x00DD √ 0x00DD LATIN CAPITAL LETTER Y WITH ACUTE

0x00DE √ 0x00DE LATIN CAPITAL LETTER THORN

0x00DF √ 0x00DF LATIN SMALL LETTER SHARP S

0x00E0 √ 0x00E0 LATIN SMALL LETTER A WITH GRAVE

0x00E1 √ 0x00E1 LATIN SMALL LETTER A WITH ACUTE

0x00E2 √ 0x00E2 LATIN SMALL LETTER A WITH CIRCUMFLEX

0x00E3 √ 0x00E3 LATIN SMALL LETTER A WITH TILDE

0x00E4 √ 0x00E4 LATIN SMALL LETTER A WITH DIAERESIS

0x00E5 √ 0x00E5 LATIN SMALL LETTER A WITH RING ABOVE

0x00E6 √ 0x00E6 LATIN SMALL LETTER AE

0x00E7 √ 0x00E7 LATIN SMALL LETTER C WITH CEDILLA

0x00E8 √ 0x00E8 LATIN SMALL LETTER E WITH GRAVE

0x00E9 √ 0x00E9 LATIN SMALL LETTER E WITH ACUTE

0x00EA √ 0x00EA LATIN SMALL LETTER E WITH CIRCUMFLEX

0x00EB √ 0x00EB LATIN SMALL LETTER E WITH DIAERESIS

0x00EC √ 0x00EC LATIN SMALL LETTER I WITH GRAVE

0x00ED √ 0x00ED LATIN SMALL LETTER I WITH ACUTE

0x00EE √ 0x00EE LATIN SMALL LETTER I WITH CIRCUMFLEX

0x00EF √ 0x00EF LATIN SMALL LETTER I WITH DIAERESIS

0x00F0 √ 0x00F0 LATIN SMALL LETTER ETH

0x00F1 √ 0x00F1 LATIN SMALL LETTER N WITH TILDE

0x00F2 √ 0x00F2 LATIN SMALL LETTER O WITH GRAVE

0x00F3 √ 0x00F3 LATIN SMALL LETTER O WITH ACUTE

0x00F4 √ 0x00F4 LATIN SMALL LETTER O WITH CIRCUMFLEX

0x00F5 √ 0x00F5 LATIN SMALL LETTER O WITH TILDE

0x00F6 √ 0x00F6 LATIN SMALL LETTER O WITH DIAERESIS

0x00F7 √ 0x00F7 DIVISION SIGN

0x00F8 √ 0x00F8 LATIN SMALL LETTER O WITH STROKE

0x00F9 √ 0x00F9 LATIN SMALL LETTER U WITH GRAVE

0x00FA √ 0x00FA LATIN SMALL LETTER U WITH ACUTE

0x00FB √ 0x00FB LATIN SMALL LETTER U WITH CIRCUMFLEX

0x00FC √ 0x00FC LATIN SMALL LETTER U WITH DIAERESIS

0x00FD √ 0x00FD LATIN SMALL LETTER Y WITH ACUTE

0x00FE √ 0x00FE LATIN SMALL LETTER THORN

0x00FF √ 0x00FF LATIN SMALL LETTER Y WITH DIAERESIS

68 Recommendation T.128 (02/98)

8.8.2 Font matching

An ASCE shall use the font matching algorithm described in this subclause to determine the current
set of matched fonts for all active ASCEs (including itself).

An ASCE shall determine the current set of matched fonts by comparing its local font information
(i.e. the font attributes sent in its last FontPDU) against the font attributes provided by each other
active ASCE, using the font match criteria described in Table 8-41 below. The match criteria are
successively applied to the FontPDU parameters in a series of pairs of fonts and a font is added to the
current set of matched fonts where a match is found at all other active ASCEs. This means that:

• all active ASCEs have to match a font for it to be added to the current set of matched fonts;

• where one other active ASCE has not yet provided font attributes, there are no current
matched fonts.

The output of font matching is a mapping for each matched font between local and remote FontIDs
for each other active ASCE. See 8.8 for further information on FontIDs. The matched font mappings
are used as follows:

• When sending Text and Extended Text orders for a matched local font, the sending ASCE
shall set the order FontID parameter to correspond to that font's FontID in the last sent
FontPDU.

• When receiving Text and Extended Text orders, the receiving ASCE shall map the FontID in
the order to the local font that matched that FontID in the last received FontPDU from that
ASCE.

This mapping mechanism allows ASCEs to use a single set of FontIDs when sending Text and
Extended Text orders and places the responsibility on receiving ASCEs to map from FontID in the
order to the local font on that terminal.

Use of the same font matching algorithm ensures that each pair of ASCEs agree on an identical set of
matched fonts and therefore generate an identical set of interoperable font mappings.

Table 8-41 describes the minimum match criteria for each font parameter (corresponding to the
parameter in the relevant FontPDU) considered during font matching, described in terms of the local
font and one other remote font.

Table 8-42 provides information on the allowable match types referenced in Table 8-41. An ASCE
may or may not allow approximate matches, based on a purely local mechanism (such as local
terminal configuration options). Where an ASCE does not allow approximate matches, only exact
matches are permitted. Where an ASCE does allow approximate matches, it may do so on a per
match criteria basis (again dependent on local mechanisms), provided the corresponding negotiated
capabilities allow that match type.

A pair of fonts are defined to match where each of the font parameters requiring consideration in
Table 8-41 are either all exact matches or meet the minimum match types defined in Table 8-41
(dependent on the ASCE's local approximate match configuration). For example, a particular ASCE
may allow Delta X Position but not Code Page approximate matches and, provided the negotiated
capabilities allow for Delta X simulation, may then require that a pair of fonts are exact matches with
respect to those considered parameters defined as requiring Exact and Code Page minimum match
types, but only require an approximate match for those considered parameters defined as requiring
Delta X Position minimum match types.

 Recommendation T.128 (02/98) 69

Table 8-41/T.128 – Font match criteria

Parameter Criteria Match type

faceName The current and remote face names are identical. Exact

fontFlags Fixed Pitch Both fonts are fixed pitch OR both fonts are proportional
(not fixed pitch).

Exact

codePage Both fonts support all codepoints. Exact

 Either the local or remote font only supports core codepoints. Code Page

fontFlags Fixed Size Both fonts are fixed size OR both fonts are scalable (not
fixed size).

Exact

 The local font is fixed size and the remote font is scalable.
(Note 1)

Exact

averageWidth and
height

Both fonts are fixed size and the averageWidth and height
values are the same. (Note 2)

Exact

signature1, signature 2
and signature3

This criteria depend on the negotiated capabilities for font
signature checking (i.e. in legacy mode on the negotiated
Order.textFlags capability Check font signatures bit flag; in
base mode on the negotiated Order.checkFontSignatures
capability).

 • Font signature checking is enabled and the local and
remote signature1, signature2 and signature3 values are
the same.

Exact

 • Font signature checking is enabled and the local and
remote signature1 and signature2 values are the same.

Delta X
Position

 • Font signature checking is enabled and the local and
remote signature1, signature2 and signature3 values are
not the same or either font has the special value
NO_SIGNATURE.

Delta X
Position

 • Font signature checking is not enabled. Delta X
Position

aspectX and aspectY This criteria depend on the negotiated capabilities for font
aspect checking (i.e. in legacy mode on the negotiated
Order.textFlags capability Check font aspect bit flag; in base
mode on the negotiated Order.checkFontAspectFlag
capability).

 • Font aspect checking is enabled and the local and remote
aspectX and aspectY values are the same.

Exact

 • Font aspect checking is not enabled. Delta X
Position

NOTE 1 – This assumes that an ASCE may match local fixed size fonts with remote scalable fonts and
subsequently send Text and Extended Text orders for that font, relying on receiving ASCEs to scale the
text appropriately. It assumes that the inverse (i.e. matching scalable to fixed size and sending scalable) is
not allowed.

NOTE 2 – If either font is scalable, this criteria are not considered.

70 Recommendation T.128 (02/98)

Table 8-42/T.128 – Font match types

Match type Definition

Exact Both font parameters under consideration must match exactly.

Code Page Where one or both of the code pages for the fonts under consideration only
conforms to the core AS protocol code page, an ASCE may allow an
approximate code page match. Where it does so, it shall subsequently restrict
codepoints for that font in Text and Extended Text orders to the core AS
protocol code page. See 8.16.11 and 8.16.12 for further information on Text and
Extended Text orders.

Delta X Position Where positioning information for one or both of the fonts under consideration
does not match exactly, an ASCE may allow an approximate Delta X Position
match. An ASCE shall only allow approximate Delta X matches where the
negotiated capabilities allow for Delta X simulation (i.e. in legacy mode the
Order.textFlags Allow DeltaX bit flag is set; in base mode the
Order.allowDeltaXFlag is TRUE) and shall thereafter simulate text X
positioning information for the font using Delta X information in Extended Text
orders. See 8.16.12 for further information on the Extended Text order and
Delta X simulation.

8.8.3 Font aliasing

Font matching acts on font attributes in FontPDUs. This enables an ASCE to perform font aliasing
between fonts on the local terminal and the font attributes it sends in FontPDUs. This is a local
ASCE implementation decision, but is particularly useful in the following scenarios:

• The same (or very similar) fonts are available from a range of font suppliers for the local
terminal (but use different face names). Here, an ASCE may map the local terminal fonts to
a generic (supplier independent) face name to increase the probability of font matching.

• The same (or very similar) fonts have different face names on different terminal types. Here
an ASCE may map the local terminal fonts to a new (or additional) face name to increase the
probability of font matching.

For example, consider two ASCEs, where ASCE A supports Font_Supplier_A:Courier and
Font_Supplier_B:Courier and ASCE B supports just Courier. If ASCE A provides font attributes for
Font_Supplier_A:Courier, Font_Supplier_B:Courier and two aliased Couriers (corresponding to the
two supplier specific Couriers), then (provided other criteria match) both ASCEs are able to send
orders for some or all local Courier text.

8.9 Application management

During an AS session, an ASCE may host one or more applications, each of which consists of a
collection of hosted windows that are shared to peer active ASCEs.

An ASCE shall notify peer active ASCEs when the number of hosted applications on the ASCE's
local terminal changes, by sending an ApplicationPDU with action NotifyHostedApplications
containing the new number of hosted applications to all ASCEs in the conference, in the manner
indicated in Table 6-3. The content of the ApplicationPDU is shown in Table 8-43.

This provides ongoing information to active other ASCEs on the number of applications hosted by
this ASCE, which they may use to provide end-user information. Receiving ASCEs may use this
ASPDU to monitor when remote ASCEs stop hosting applications – which may allow them to free
up resources allocated for each other hosting ASCE. See 8.6 for further information on
synchronization.

 Recommendation T.128 (02/98) 71

An ASCE may start and stop hosting local applications at any time. This is purely a local matter and
may be driven by the local end-user, local terminal behaviour and/or by conference
initialization/termination.

However, there are situations where it is useful to unhost remote applications. For example, where an
ASCE is controlling hosted applications that were remote shared (see 8.7) or when the remote end-
user is inexperienced. An ASCE may require a peer ASCE to unhost an application hosted on the
peer ASCE’s terminal by sending an ApplicationPDU with action UnhostApplication containing a
windowID for the application to be unhosted in the manner indicated in Table 6-3. The supplied
windowID should be a hosted_window_ID belonging to the application obtained from the most
recent WindowListPDU sent by the hosting ASCE (see 8.10). An ASCE shall only send an
ApplicationPDU with action UnhostApplication where the peer ASCE’s General.remoteUnshareFlag
capability is TRUE.

On receipt of an ApplicationPDU with action UnhostApplication containing a windowID for an
application hosted on the local terminal, an ASCE shall cease hosting the application concerned.

Table 8-43/T.128 – ApplicationPDU

Parameter Description

ShareData Header The ShareData Header is described in 8.3.

action This parameter identifies the particular ApplicationPDU action. Allowable
values are NotifyHostedApplications or UnhostApplication.

numberApplications This parameter indicates the number of applications hosted by the sending
ASCE. This parameter is only valid where the action is
NotifyHostedApplications.

windowID This parameter specifies the top-most window owned by an application
hosted on the peer ASCE to be unhosted. This parameter is only valid
where the action is UnhostApplication.

nonStandardParameters This parameter is only allowed in the base mode of the AS protocol. It is
an optional list of non-standard parameters allowed only if the
corresponding non-standard capabilities are present in the negotiated
capability set.

8.10 Window list management

During an AS session, where an ASCE is hosting one or more windows that are shared to peer active
ASCEs, it is managing a collection of windows, where those windows may be:

• Hosted: Hosted windows are owned by an application hosted on the local terminal. For each
hosted window, there is a corresponding shadow window on each peer ASCE.

• Shadow: Shadow windows are drawn by the ASCE and correspond to a hosted window on a
particular peer ASCE.

• Local: Local windows are not shared – their application output is only visible on the local
terminal.

An ASCE is only required to track visible hosted windows. On certain terminals and/or terminal
window managers, end-user or programmatic action may make application windows temporarily
invisible (i.e. it is removed from the local terminal display) – for example, where a long-running
system monitor application hides itself until an alarm event occurs that requires user action,
whereupon it becomes visible again. Where a local hosted window becomes invisible, then an ASCE

72 Recommendation T.128 (02/98)

is not required to track the window and should not provide window list update information for the
window (see below).

Where a hosted window is obscured by local window(s) and the ASCE cannot obtain valid drawing
information for that hosted window, the AS protocol requires that the hosting ASCE includes the
obscuring local window(s) in the appropriate window list (see below) and that receiving ASCEs
mark such obscured areas (in a locally determined manner) to indicate that the contents are not
necessarily valid.

Note that an ASCE need only track local windows when hosting and need only track those that
obscure hosted windows and prevent it obtaining valid drawing information from those hosted
windows. For example, an ASCE may display hosted and shadow windows in a dedicated terminal
display area from which local windows are always excluded. Similarly, the particular terminal may
not support local applications (and therefore windows) at all. Or, on certain terminal equipment, an
ASCE may still be able to obtain valid drawing information from hosted windows where they are
obscured by local windows. For these cases, an ASCE is not required to track local windows.

An ASCE shall send a WindowListPDU to all ASCEs in the conference in the manner indicated in
Table 6-3, when:

• it starts or stops hosting windows;

• it is hosting windows and detects a change in the visible hosted window Z-order;

• it is hosting windows and one or more of its visible hosted window positions change;

• it is hosting windows and detects a local window Z-order or position change affecting the
obscuring of visible hosted windows.

This means that an ASCE only sends a WindowListPDU when it is hosting visible windows, or, as in
the first case, when it is making the transition to or from hosting windows. The content of the
WindowListPDU is shown in Table 8-44. The WindowListPDU contains information on two classes
of windows.

• The sending ASCE's view of all visible hosted or shadow windows within the conference.
This view is (generally – but see below) common to all active ASCEs, since it includes
hosted and shadow windows – and a window included in its list by one ASCE because it is
hosted will be included in the corresponding lists by other ASCEs because it is shadowed.

• Any of the sending ASCE's local windows that obscure at least part of at least one visible
hosted window. This information is owned and generated by a particular ASCE – since it
relates to local windows, there is no overlap with similar information generated by peer
ASCEs.

The WindowListPDU contains a single window list, containing hosted and shadow windows and
those local windows that meet the obscuring criteria, ordered such that the first window corresponds
to the top (front-most) window and the last corresponds to the bottom (back-most) window in the
local terminal Z-order.

For each window in the window list, the ASCE provides Z-order information (implicitly by position
in the list), position and size, ownership information and any appropriate qualifiers (such as whether
the window is minimized).

The AS protocol assumes that the information provided for hosted and shadow windows in the
window list should normally be identical on all active ASCEs. It does not support independent
Z-order, size/positioning or qualification (such as minimized) of shadow windows with respect to
their corresponding hosted window. That is, where a hosted window's Z-order, size/position or
qualification changes, then the AS protocol requires that an equivalent change is applied to
corresponding shadow windows on all other active ASCEs.

 Recommendation T.128 (02/98) 73

In practice, transient window list differences in hosted and shadow windows may occur, where the
WindowListPDU reflecting a window list change has not yet been received and/or processed by
other ASCEs. Much of the complexity in AS window list handling relates to the resolution of races
in window list updates. The following description ignores the possibility of window list races and
their resolution, which is covered in 8.10.1.

On receipt of a WindowListPDU, an ASCE typically performs the following operations – although
the specifics will depend on the local terminal environment.

• It processes the WindowListPDU window list to:

– remove any old shadow windows;

– create any new shadow windows;

– update the size and/or position of windows that have been changed;

– adjust each hosted or shadow window's position in the Z-order on the local terminal to
give the same relative Z-order as in the window list, taking care to maintain the correct
Z-order relationship to local applications.

• It determines the new obscured window region – which determines which areas of shadow
windows are valid for drawing – based on the sending ASCE's desktop size and any
obscuring local windows in the WindowListPDU.

An ASCE is required to apply window list changes as accurately as possible within the constraints of
the local terminal environment.

Table 8-44/T.128 – WindowListPDU

Parameter Description

ShareData Header The ShareData Header is described in 8.3.

listTime This parameter is the local ASCE time in milliseconds when this
WindowListPDU was constructed. It is used in association with the listID
parameter (see below) to resolve WindowListPDU races. See 8.10.1 below
for further information.

listID This parameter is the identifier assigned by the sending ASCE when this
WindowListPDU was constructed. It is used in association with the
listTime parameter (see above) to resolve WindowListPDU races.
See 8.10.1 below for further information.

windowAttributeList This parameter is a list of window attributes (see Table 8-45) describing
the window structure on the sending ASCE. The list is in Z-order, such that
the first window is the top (front-most) and the last is the bottom (back-
most) in the local terminal Z-order.

windowTitleList This parameter is a list of window titles. The list is in Z-order, such that the
first window is the top (front-most) and the last is the bottom (back-most)
in the local terminal Z-order. Each title is either the special value
NO_TITLE or is a T.50 text string describing the window.

nonStandardParameters This parameter is only allowed in the base mode of the AS protocol. It is
an optional list of non-standard parameters allowed only if the
corresponding non-standard capabilities are present in the negotiated
capability set.

Many terminal window managers provide local facilities (such as a task list, task bar or icon tray) to
allow end-users to activate or arrange windows. Such facilities are typically restricted to top-level
windows – so that end-users can view the collection of windows that comprise the application as a
whole. An ASCE may provide a title for a hosted window where the title would help end-users at

74 Recommendation T.128 (02/98)

peer ASCEs more readily identify the corresponding shadow window. It is recommended that an
ASCE should only supply titles for hosted windows. Where the window is shadow or local, the
ASCE should supply the special NO_TITLE title string.

The following requires that an ASCE assigns a unique local identifier for each hosted application (its
hosted_application_ID) and a unique local identifier for each hosted window (its
hosted_window_ID).

Table 8-45/T.128 – Window attributes

Parameter Description

windowID This parameter is the window identifier for this window.

• Where the window is hosted, this parameter is the
hosted_window_ID assigned by the sending ASCE.

• Where the window is a shadow window, this parameter is the
hosted_window_ID assigned by the owning ASCE (which was
supplied in the last WindowListPDU for the corresponding hosted
window).

windowExtra This parameter supplies additional information for this window.

• Where the window is hosted, this parameter is the
hosted_application_ID assigned by the sending ASCE.

• Where the window is a shadow window, this parameter is the MCS
User ID of the hosting ASCE.

windowOwner This parameter identifies the owning window for this window.

• Where the window is hosted, this parameter is the
hosted_window_ID of the owning window (i.e. the window that is
the parent of this window in the local terminal window hierarchy).
Note that where the window is hosted and the owning window is
the desktop, this parameter shall be zero.

windowFlags This parameter is a set of bit flags qualifying the window. Defined bit
flag values are as follows:

 • Minimized (hosted windows only).

 • Taggable (hosted windows only).

 • Hosted.

 • Shadow.

 • Local.

 • Always On Top (hosted windows only).

 • Window Manager Minimized (hosted windows only).

 • Window Manager Invisible (hosted windows only).

 See below for further information on the interpretation of window
flags.

windowLeft This parameter is the left X coordinate of the window on the virtual
desktop. For hosted and local windows, this parameter shall be the left
X coordinate of the window (which may be outside the local desktop).

windowTop This parameter is the top Y coordinate of the window on the virtual
desktop. For hosted and local windows, this parameter shall be the top
Y coordinate of the window (which may be outside the local desktop).

 Recommendation T.128 (02/98) 75

Table 8-45/T.128 – Window attributes (concluded)

Parameter Description

windowRight This parameter is the right X coordinate of the window on the virtual
desktop. For hosted and local windows, this parameter shall be the
right X coordinate of the window (which may be outside the local
desktop).

windowBottom This parameter is the bottom Y coordinate of the window on the
virtual desktop. For hosted and local windows, this parameter shall be
the bottom Y coordinate of the window (which may be outside the
local desktop).

nonStandardWindowAttributes This parameter is only allowed in the base mode of the AS protocol. It
is an optional list of non-standard window attributes allowed only if
the corresponding non-standard capabilities are present in the
negotiated capability set.

Taggable

End-users may have difficulty identifying which windows belong to which user in the conference.
This is an issue where the end-user selects an application feature that will take effect on the hosting
terminal (e.g. saving a file) and/or where multiple ASCEs within a conference are hosting
applications, increasing the number of windows on the local terminal desktop. The window attribute
Taggable bit flag provides a mechanism whereby ASCEs may provide additional user interface
information about hosted window location.

An ASCE constructing a window list update should use the Taggable bit flag to indicate whether
hosted window(s) are eligible for tagging. It is recommended that sending ASCEs should only flag
top-level windows as Taggable and should not tag subsidiary and transient windows such as help
hints or icon titles. The algorithm used to determine whether a window is Taggable is purely a local
matter, but it is recommended that ASCEs should mark as Taggable only those windows that a user
would perceive as constituting a distinct main application window or dialogue. An ASCE receiving a
window list containing hosted windows with the Taggable bit flag set may provide additional
per-shadow window user interface cues (such as window tags and/or augmentation of the window
title) identifying the node owning the corresponding hosted windows.

Minimized windows

Certain terminals support the concept of minimization of windows, whereby a window is reduced to
an icon or smaller window, which may then be displayed on the local terminal desktop or in a
window owned by the terminal window manager (such as a window manager task list, task bar or
icon tray). Where an application consists of multiple windows, then minimizing the application
typically results in the application’s top-level window(s) being minimized and other non-top-level
windows being made invisible.

Various styles of window minimization for hosted windows may be represented in window list
updates using several of the windows attributes windowFlags – namely the Minimized, Window
Manager Minimized and Window Manager Invisible bit flags.

• The Minimized bit flag should be set by an ASCE when a hosted window is minimized –
irrespective of the particular local minimization behaviour.

• The Window Manager Minimized bit flag should be set by an ASCE when a hosted window
is minimized to a local window manager window. This bit flag is typically applied to
top-level windows.

76 Recommendation T.128 (02/98)

• The Window Manager Invisible bit flag should be set by an ASCE when a hosted window is
made invisible as part of a local window manager minimization mechanism and where the
Window Manager Minimized bit flag is set for a parent window – i.e. where the main
top-level hosted windows of an application are minimized to a local window manager
window. It should not be set where the top-level hosted windows are minimized to the
desktop.

The use of these bit flags does not presume a particular local terminal window minimization
behaviour or a particular local terminal window manager. Hosting ASCEs should set the allowable
combination of bit flags that best expresses the characteristics of each minimized hosted window.
Similarly, an ASCE processing a window list update containing hosted windows with one or more of
these bit flags set should present the corresponding shadow windows in a manner that is appropriate
to the local terminal and/or window manager minimization behaviour. This approach allows ASCEs
to support the various minimization styles across multiple terminal types, with each ASCE
presenting minimized shadow windows in a manner that is appropriate for the local terminal.

Always on top

Certain terminal types support the concept of always on top windows, where such windows are
normally displayed on top of all other windows. For example, always on top windows are often used
for application suite tool bars. Where the local terminal supports always on top windows, there may
be multiple windows which are treated as always as top, which are typically not part of the main
terminal Z-order, but are rather managed as members of a separate always on top Z-order. Within
this separate Z-order, always on top windows may change z-order with respect to each other, but are
always on top of ordinary (i.e. not always on top) windows.

Where always on top windows are supported on a particular terminal, the Always On Top bit flag
should be set by an ASCE when a hosted window is treated locally as being always on top. This bit
flag is typically applied to top-level hosted windows. ASCEs should also ensure that hosted windows
marked as being Always On Top are higher than (i.e. in front of) windows that are not marked as
such in the WindowListPDU list of windows. An ASCE processing a window list update containing
hosted windows with the Always On Top bit flag set should attempt to make the corresponding
shadow windows behave as always on top in the local terminal environment – which may be
achieved using a similar facility in the local terminal environment or by manipulating the local
Z-order to achieve the desired effect.

8.10.1 Window list Z-order races

As discussed above, each active ASCE within a conference maintains a window list for hosted,
shadow and obscuring local windows. As multiple ASCEs may report window list updates to other
ASCEs via the WindowListPDU, there is always the possibility of a race. Creation and deletion of
windows and modifications to their size and position can only occur on the terminal hosting
application owning the window concerned. In contrast, the position of a shared window in the
Z-order can be altered on any terminal.

If WindowListPDU window lists were simply applied by recipient ASCEs, this would result in
convergence for window existence, position and size (since the update in the two colliding window
lists would be orthogonal). However, naive application of Z-order changes can result in indefinite
cross-over of window lists. Therefore, each ASCE maintains a window list identifier which it places
in each WindowListPDU for Z-order race resolution. The identifier has three parts:

• sequence number: this is the current value of the sequence number as calculated by the
sending ASCE (see below); this is held in bits 4-15 (i.e. the most significant three nibbles) of
the listID parameter;

 Recommendation T.128 (02/98) 77

• increment: this is the absolute amount by which the ASCE incremented the last seen
sequence number to generate the new sequence number (see below); this is held in bits 0-3
(i.e. the least significant nibble) of the listID parameter;

• tick: this is a tick in milliseconds, which is used to resolve races when the sequence number
is identical; this is held in the listTime parameter.

Each ASCE calculates the next identifier value by incrementing the last seen (i.e. sent or received)
sequence number by the priority of the window list change to create a new sequence number. The
new identifier is formed from the new sequence number, the increment (or priority) and the current
local time in milliseconds. The recommended increment/priority values are as follows:

• 0 ⇒ No change in Z-order but changes in window positions and/or sizes.

• 2 ⇒ Change in Z-order.

• 3 ⇒ Change in Z-order and change in window activation.

• 4 ⇒ Change in Z-order and change in window activation to special window (see 8.10.2).

• 5 ⇒ ASCE is no longer hosting.

An increment of 5 should only be used when an ASCE stops hosting applications to force a timely
removal of all corresponding shadow windows.

Window list updates with a zero increment identifier are always applied as they do not affect the
Z-order – and are therefore not subject to race resolution. However, window list identifiers with
increments 2 through 5 require that the receiving ASCE check for Z-order races, which are resolved
as follows:

• The application of a received window list may cause changes already present in the local
system (but not yet sent) to be lost. To minimize temporary inconsistencies and to minimize
"rebounds", an ASCE should simulate such collisions by testing the received identifier
against the (forecast) identifier that it would use in its next WindowListPDU. If there are
pending window changes and the forecast identifier is later than the last identifier
sent/received, then the received window list Z-order is not applied and the next window list
(containing the pending changes) is duly sent.

• If there are pending window changes and the forecast identifier is earlier than the last
identifier sent/received, then the received window list Z-order is applied in the normal way,
and the received identifier becomes the new identifier. Therefore, when the next window list
is generated, it will be sent with an identifier that does not indicate a collision.

• If there are no pending window changes, the receiving ASCE compares the received
identifier against the last identifier seen. There are two cases to consider:

– If the received identifier is later, the received window list Z-order is applied and the
ASCE should schedule the conditional sending of a WindowListPDU to resend pending
window changes.

– If the received identifier is earlier, then the received window list Z-order is discarded.

Identifiers are compared using the following rule. Identifier A is later than Identifier B if:

• A's sequence number > B's sequence number.

• A's sequence number = B's sequence number AND A's increment > B's increment.

• A's sequence number = B's sequence number AND A's increment = B's increment AND
A's tick > B's tick.

The final test for the final case (A's tick > B's tick) is used solely for race resolution – it does not
imply any particular global time ordering.

78 Recommendation T.128 (02/98)

8.10.2 Implementation considerations

On certain terminals, critical window manager error boxes (which appear to be windows) are actually
drawn directly to the desktop window. An ASCE should handle this scenario by creating a virtual
full screen shared window at the front of the Z-order. When peer ASCEs draw this virtual window, it
will appear to be transparent for the areas that do not actually contain the error box, as updates will
only be received for the actual error box area (most of the full screen window is not actually painted).
When the error box is dismissed, the virtual window is deleted and everything returns to normal.

Certain terminals support multiple screen sessions, where one or more screen sessions may be
full-screen text-based sessions which may not be accessible to the ASCE. Where such a full-screen
text session has control of the screen, the ASCE should add a virtual local full screen window at the
front of the window list in the next WindowListPDU. This will be interpreted by peer ASCEs as a
window that totally obscures all of the hosted windows, with the consequence that all shadow
windows on recipient ASCEs will be within the obscured area.

8.11 Window activation

Many terminals and/or terminal window managers support a concept of window activation, whereby
a particular local window is considered to be the active window – this is often referred to as the focus
window or the input focus window. Where such a concept is supported, then the active window
typically receives all local terminal pointing device and keyboard input.

The AS protocol provides a window activation mechanism, whereby ASCEs may indicate changes in
local window activation state and request changes in window activation state on other ASCEs. An
ASCE is required to map the local terminal model of window activation onto the AS protocol model
described in this subclause. Where the local terminal does not support window activation, then the
ASCE may perform a trivial mapping.

Certain terminals and/or terminal window managers allow an application to capture the pointing
device. Where this is the case, the capturing application window may not be the active window
(e.g. the capturing application window may minimize itself or become invisible while the capture is
in progress), but continues to receive the captured pointing device input. In the AS protocol, pointing
device capture by a hosted window is treated as a special case (see below).

AS window activation is tightly integrated with conductorship (if in effect within the conference) and
with the conference AS control state. If an ASCE does not have the right to provide input to hosted
or shadow windows, then it cannot change window activation state within the conference. See 8.19
for further information on conducted mode and 8.12 and 8.13 for further information on control
mechanisms.

When the active window changes on a terminal within the conference, the new active window may
be any one of:

• a visible, invisible or capturing hosted window;

• a visible or invisible local window;

• a visible shadow window (ASCEs do not typically maintain invisible shadows).

8.11.1 Activation indications and requests

An ASCE shall monitor for two classes of activation events – referred to as indications and requests.

• Indications: These are activation or capture state changes to a local or hosted window. These
affect a window owned by an application on the local terminal and need to be propagated to
peer ASCEs. When an ASCE detects an activation or capture state change state affecting a

 Recommendation T.128 (02/98) 79

local or hosted window, then it shall send a WindowActivationPDU with an appropriate
indication (see below) to all ASCEs in the conference in the manner indicated in Table 6-3.
The content of the WindowActivationPDU is shown in Table 8-46.

• Requests: These are activation changes to (or corresponding to) shadow windows. Some
terminal window managers provide terminal specific activation sequences, such as the
ALT-TAB keyboard sequence cycling the window focus or window manager context menus
that allow an end-user to switch focus to a specific window. Where the affected window is a
shadow, the change should not be performed locally, but should be redirected to the ASCE
that owns the corresponding hosted window. Where an ASCE recognizes such a change to a
shadow window, it shall send a WindowActivationPDU with an appropriate request (see
below) to the peer ASCE hosting the corresponding hosted window in the manner indicated
in Table 6-3.

Changes in the window activation status of hosted windows may result in window list changes. For
example, a Restore Window request will normally result in the corresponding hosted window
changing its position and/or Z-order. In contrast, a Hosted Window Active indication may or may not
result in a Z-order change, dependent on the hosting ASCE's terminal window manager focus policy.

Changes in the window activation status of hosted windows do not cause changes in control.

Table 8-46/T.128 – WindowActivationPDU

Parameter Description

ShareData Header The ShareData Header is described in 8.3.

action This parameter identifies the particular WindowActivationPDU action.
The defined range of actions are classified as either indications or requests.
The allowable actions are as follows.

 • Local Window Active (Indication)

 • Hosted Window Active (Indication)

 • Hosted Window Invisible (Indication)

 • Pointing Device Capture (Indication)

 • Activate Window (Request)

 • Close Window (Request)

 • Restore Window (Request)

 • WindowManagerMenu (Request)

 • ActivationHelpKey (Request)

 • ActivationHelpIndexKey (Request)

 • ActivationHelpExtendedKey (Request)

 • See below for further information.

activationID This parameter is an identifier assigned by the sending ASCE. This
parameter is only valid for indications where it is used in association with
the defined indication priorities to resolve WindowActivationPDU races.
The allowable range of values is 1..65534. See 8.11.2 below for further
information.

80 Recommendation T.128 (02/98)

Table 8-46/T.128 – WindowActivationPDU (concluded)

Parameter Description

activationWindow This parameter provides an optional windowID for specific message types
(see below).

activationPoint For WindowManagerMenu requests, this is an optional parameter which
may contain the position of the pointing device that caused the activation
request.

nonStandardParameters This parameter is only allowed in the base mode of the AS protocol. It is
an optional list of non-standard parameters allowed only if the
corresponding non-standard capabilities are present in the negotiated
capability set.

The following describes each WindowActivationPDU indication and request in further detail. Some
of the required actions require that an ASCE be able to change the local terminal activation to no
window having the local focus. On some terminal types, this may require that an ASCE maintain a
special (invisible) no focus window. The following requires (as in 8.10) that an ASCE assigns a
unique local identifier for each hosted window (its hosted_window_ID).

• The Local Window Active indication indicates that activation has changed to a local window
on the sending ASCE. On receipt of a Local Window Active indication, an ASCE shall
change the local activation to no focus.

• The Hosted Window Active indication indicates that activation has changed to a hosted
window on the sending ASCE. The WindowActivationPDU activationWindow parameter
contains the hosted_window_ID of the hosted window that is now active. On receipt of a
Hosted Window Active indication, an ASCE shall change the local activation to the local
shadow window that corresponds to the indicated hosted window.

• The Hosted Window Invisible indication indicates that activation has changed to an invisible
hosted window on the sending ASCE. On receipt of a Hosted Window Invisible indication,
an ASCE shall change the local activation to no focus.

• The Pointing Device Capture indication indicates that activation has changed to a hosted
window that has captured the pointing device on the sending ASCE. Where the capturing
hosted window is visible, the WindowActivationPDU activationWindow parameter contains
the hosted_window_ID of the hosted window that has captured the pointing device. Where
the capturing hosted window is not visible, the WindowActivationPDU activationWindow
parameter is zero. On receipt of a Pointing Device Capture indication with a
hosted_window_ID, an ASCE shall change the local activation to the local shadow window
that corresponds to the indicated hosted window. On receipt of a Pointing Device Capture
indication without a hosted_window_ID, an ASCE shall change the local activation to no
focus.

• The Activate Window request indicates that the sending ASCE has detected a local request
to activate a shadow window. The WindowActivationPDU activationWindow parameter
contains the hosted_window_ID of the hosted window on the peer ASCE that corresponds to
the shadow window on the sending ASCE. On receipt of an Activate Window request, an
ASCE shall activate the indicated hosted window. This should result in the receiving ASCE
sending a subsequent WindowActivationPDU Hosted Window Active indication for the
hosted window.

• The Close Window request indicates that the sending ASCE has detected a local request to
close a shadow window. The WindowActivationPDU activationWindow parameter contains
the hosted_window_ID of the hosted window on the peer ASCE that corresponds to the

 Recommendation T.128 (02/98) 81

shadow window on the sending ASCE. On receipt of a Close Window request, an ASCE
shall close the indicated hosted window. This should result in the receiving ASCE sending a
subsequent WindowActivationPDU indication for the local window that inherits activation.

• The Restore Window request indicates that the sending ASCE has detected a local request to
restore a shadow window. The WindowActivationPDU activationWindow parameter
contains the hosted_window_ID of the hosted window on the peer ASCE that corresponds to
the shadow window on the sending ASCE. On receipt of a Restore Window request, an
ASCE shall restore the indicated hosted window. This should result in the receiving ASCE
sending a subsequent WindowActivationPDU Hosted Window Active indication for the
hosted window.

• The WindowManagerMenu request indicates that the sending ASCE has detected a local
window manager menu-related operation corresponding to a minimized hosted window. The
WindowActivationPDU activationWindow parameter contains the hosted_window_ID of
the hosted window on the peer ASCE that corresponds to the shadow window on the sending
ASCE and the activationPoint parameter optionally contains the x and y virtual desktop
coordinates of the activation event (where it was initiated by the pointing device). On receipt
of a WindowManagerMenu request, an ASCE shall submit a locally equivalent menu request
for the indicated hosted window.

• The ActivationHelpKey, ActivationHelpIndexKey and ActivationHelpExtendedKey requests
indicate that the sending ASCE has detected the corresponding local window manager help
activation request for a shadow window. The WindowActivationPDU activationWindow
parameter contains the hosted_window_ID of the hosted window on the peer ASCE that
corresponds to the shadow window on the sending ASCE. On receipt of an
ActivationHelpKey, ActivationHelpIndexKey or ActivationHelpExtendedKey request, an
ASCE shall submit the locally equivalent help activation request for the indicated hosted
window.

An ASCE may only be able to detect certain activation requests on certain terminals and/or may only
be able to process certain activation requests on certain terminals. For example, while terminal
window manager activation is typically specific to the terminal and/or window manager type, the
underlying concept is still sufficiently generic that an ASCE may detect the activation locally (in a
manner specific to terminal window manager A) and a peer ASCE may process it (in a manner
specific to terminal window manager B). In contrast, help activation keys (which switch to a specific
class of help window) are less widely implemented and may only be available when both ASCEs (i.e.
the ASCE with the shadow window and the peer ASCE with the corresponding hosted window) are
executing on the same terminal type.

• An ASCE shall only send a WindowActivationPDU with a WindowManagerMenu action,
where the peer ASCE's Window Activation.windowManagerMenuFlag capability is TRUE.

• An ASCE shall only send a WindowActivationPDU with an ActivationHelpKey action,
where the peer ASCE's Window Activation.helpKeyFlag capability is TRUE.

• An ASCE shall only send a WindowActivationPDU with an ActivationHelpIndexKey
action, where the peer ASCE's Window Activation.helpExtendedKeyFlag capability is
TRUE.

• An ASCE shall only send a WindowActivationPDU with an ActivationHelpExtendedKey
action, where the peer ASCE's Window Activation.helpExtendedKeyFlag capability is
TRUE.

82 Recommendation T.128 (02/98)

8.11.2 Activation identifiers and priorities

The asynchronous nature of the AS activation protocol and the multiplicity of reasons for window
activation state changes means that WindowActivationPDU collisions can occur. To detect these
collisions, and hence maintain a consistent activation state across all active ASCEs in a conference,
an ASCE shall place an activation identifier in all WindowActivationPDU indications. Identifiers are
not required for WindowActivationPDU requests.

Each ASCE in a conference maintains the last identifier sent or received in a WindowActivationPDU
indication and increments the identifier (in the range 1..65534 with rollover) when sending each
WindowActivationPDU indication.

• If a received indication has an identifier less than the last sent or received identifier, it is
discarded.

• If a received indication has an identifier equal to the last sent or received identifier, then the
received indication's priority (see below) is compared to the priority of the last indication
sent or received. If the priority of the received indication is less than or equal to the priority
of the last sent or received indication, then the received indication is discarded. Otherwise, it
is applied.

• If a received indication has an identifier greater than the last sent or received identifier, then
it is applied.

Table 8-47 describes the defined priorities for WindowActivationPDU indications.

Identifiers are not used for WindowActivationPDU requests. This ensures that requests are applied
independently of the indication identifier and priority handling. For example, where an ASCE sends
an Activate Window request closely followed by a Restore Window request, then the second request
is still applied, even though it may postdate a Hosted Window Active indication from the receiving
ASCE.

Table 8-47/T.128 – WindowActivationPDU indication priorities

Indication Priority

Local Window Active 1

Hosted Window Active 1

Hosted Window Invisible 1

Pointing Device Capture 2

8.12 Control

The conference control policy is a major determinant of application sharing usability. Experience
shows that different control policies are applicable for different mixes of conference size and/or end-
user experience. Therefore, the AS protocol does not mandate a particular control policy, but rather
provides a set of core control mechanisms whereby ASCEs can implement a range of policies with
(potentially) different characteristics – either sequentially or concurrently within the conference. The
AS protocol also defines an additional mediated set of control mechanisms, which build upon the
core control mechanisms described in this subclause – see 8.13 for further information.

 Recommendation T.128 (02/98) 83

The core AS control protocol is based on managing the right to provide input to hosted and/or
shadow windows. In combination, these rights support the following core control modes:

• Detached: In this mode, an ASCE:

– has the right to provide input to hosted windows;

– does not have the right to provide input to shadow windows;

– denies peer ASCEs the right to provide input to shadow windows that correspond to
hosted windows on this ASCE.

 In practice, this allows an end-user to work with hosted applications without interference
from other users – other users cannot supply input, activation changes or Z-order changes.

• Cooperating: In this mode, cooperating ASCEs within the conference serially acquire the
right to provide input to hosted and shadow windows. At any point in time within the
conference:

– one of the cooperating ASCEs can provide input to hosted and shadow windows – but
only where other ASCEs are not Detached (it is "In Control");

– the other cooperating ASCEs cannot provide input to hosted and shadow windows (they
are "Viewing").

Where an ASCE does not have the right to provide input to shadow windows – it is detached or
cooperating/viewing - it may still provide information on pointing device movement to other ASCEs.
Where an ASCE is in one of these control states and still provides this information, then other
ASCEs may use the information to provide end-user feedback on the sending ASCE's pointing
device activity – which may (for certain terminal types) substantially improve the remote end-users'
perception of application sharing usability. Whether to provide the pointing device information when
in these states and how to present it on reception is an ASCE implementation decision. See 8.18 for
further information on input and pointing device events.

The core AS control protocol does not specify an ASCE's or local terminal's rights to provide input
to local windows when in either detached or cooperating modes. The particular policy adopted for
local input rights will normally be determined by the particular characteristics of the local terminal.

A conference may contain any mix of detached and cooperating ASCEs. ASCEs may freely move
between cooperating and detached modes. In contrast, an ASCE can only be in control while it owns
the control identifier. Each ASCE (whether cooperating or detached) tracks the current control
identifier value within the conference and which ASCE currently holds the identifier.

When an ASCE wishes to change the control state of the conference, it shall send a ControlPDU to
all ASCEs in the conference in the manner indicated in Table 6-3. The content of the ControlPDU is
shown in Table 8-48.

84 Recommendation T.128 (02/98)

Table 8-48/T.128 – ControlPDU

Parameter Description

ShareData Header The ShareData Header is described in 8.3.

action This parameter identifies the particular ControlPDU action. The allowable
actions are as follows.

 • Request Control

 • Grant Control

 • Detach

 • Cooperate

 See below for further information.

grantID When the action parameter (see above) is Grant Control, this parameter
specifies the MCS User ID of the ASCE being granted control – i.e. the
new control identifier holder.

controlId When the action parameter (see above) is Grant Control, this parameter is
the control identifier assigned by the sending ASCE (see below).

nonStandardParameters This parameter is only allowed in the base mode of the AS protocol. It is
an optional list of non-standard parameters allowed only if the
corresponding non-standard capabilities are present in the negotiated
capability set.

When an ASCE wishes to obtain the control identifier, it shall send a Request Control ControlPDU
to all ASCEs. This ASPDU is sent to all ASCEs (as are all ControlPDUs), so that, even though
ASCEs track the ASCE currently holding the control identifier, they may detect situations where the
control identifier is in the process of moving, or ASCEs holding the control identifier become
inactive or leave the conference.

On receipt of a Request Control ControlPDU, the ASCE holding the control identifier shall normally
(but see below) send a Grant Control ControlPDU with the current control identifier value and the
MCS User ID of the ASCE to which control is being granted to all ASCEs. This ASPDU is sent to
all ASCEs so that all active ASCEs can track the current control identifier owner. Where an ASCE
receives a Request Control ControlPDU when it is not holding the control identifier, it discards the
ASPDU.

There are some situations where unconditionally granting control may not be feasible. For example,
on some terminal types, certain window manager functions (such as window dragging and/or sizing a
local window) need to be explicitly terminated. But if the local ASCE is in cooperating mode and
loses control (and hence loses the right to provide any input), it cannot complete the window
manager operation, which leaves the operation active and the peer ASCE unable to complete it
(because it cannot provide input to a local window on this ASCE). Where such a situation applies, an
ASCE holding the control identifier may respond to a Request Control ControlPDU with a Grant
Control ControlPDU with the current control identifier value and its own MCS User ID (i.e. it grants
control to itself). As this is sent to all ASCEs, peer ASCEs, including the requester, treat it as an
ordinary exchange of control, and the local ASCE retains control until the problematic operation is
complete.

Where an ASCE moves from cooperating to detached mode, it shall send a Detach ControlPDU to
all ASCEs. Similarly, where an ASCE moves from detached to cooperating mode, it shall send a
Cooperate ControlPDU to all ASCEs. Changing from cooperating to detached and vice versa is

 Recommendation T.128 (02/98) 85

independent of ownership of the control identifier, and an ASCE holding the control identifier may
move from cooperating to detached and back to cooperating mode without granting the control
identifier if no peer ASCE requests it in the interim.

8.12.1 Control identifiers

The control identifier is a single value visible to all ASCEs within the conference, in the range
0..0x80000000.

The initial control identifier value in a conference is always zero. The initial control identifier holder
in a conference is the ASCE whose share identifier is the highest during ASCE activation (see 8.4).

Thereafter, the control identifier value changes when an ASCE fails to receive a Grant Control
response to a Request Control ControlPDU (within a reasonable time) or the control identifier holder
becomes inactive or leaves the conference. Where either is the case, each detecting ASCE generates
a new control identifier by incrementing the last known control identifier value by its MCS User ID
and sends a Grant Control ControlPDU referencing itself as the owning ASCE (i.e. it advertises itself
as the new control identifier holder). As multiple ASCEs may have detected the problem, this causes
a control identifier race, which is won by the ASCE with the highest control identifier value. This
creates a requirement that, at all times, if an ASCE receives a Grant Control ControlPDU with a
higher control identifier value than the last control identifier value known to that ASCE, it shall
recognize the higher value as the new control identifier value and the sending ASCE as the new
control identifier holder.

When an ASCE detects that a new ASCE has become active, it shall advertise its control state as
follows:

• If the ASCE is detached, it shall send a Detach ControlPDU.

• If the ASCE is cooperating, it shall send a Cooperate ControlPDU.

• If the ASCE holds the control identifier, it shall send a Grant Control ControlPDU
referencing itself as the control identifier holder.

The net of the above is that new joiners (and existing ASCEs) receive a refresh of each ASCE's
control state plus information on the holder of the control identifier. See 8.4 for further information
on ASCE activation and 8.6 for further information on synchronization.

8.12.2 Interaction with conducted mode

Conducted mode operation (see 8.19) interacts with the AS control protocol as follows.

When a conference enters conducted mode, all ASCEs shall send a Cooperate ControlPDU, the
ASCE on the conducting node shall send a Request Control ControlPDU and the ASCE holding the
control identifier shall respond with a Grant Control ControlPDU. That is, all ASCEs enter
cooperating mode and the conducting node acquires control – all other ASCEs are viewing.

When Conductorship moves from one node to another, the new conducting node shall send a
Request Control ControlPDU and the ASCE holding the control identifier (i.e. the previous
conducting node) shall respond with a Grant Control ControlPDU. That is, control follows
Conductorship.

When the conference exits conducted mode, all ASCEs remain in cooperating mode and the last
conducting node retains the control identifier, but ASCEs are once again free to request control and
to switch between cooperating and detached modes. That is, the full AS control protocol is
reinstated.

86 Recommendation T.128 (02/98)

8.13 Mediated control

The AS control protocol described in 8.12 provides a reasonable set of core control facilities. But it
does not provide facilities such as the explicit passing of control to a specific ASCE or the ability for
ASCEs to conditionally or unconditionally deny control requests.

The AS mediated control protocol builds on the core control protocol to provide additional, more
conditional, control facilities. The mediated control protocol is negotiable and is supported only
where the negotiated capabilities enable it (i.e. in legacy mode where the negotiated
Control.controlFlags capability Allow Mediated Control bit flag is set; in base mode where the
negotiated Control.mediatedControlFlag capability is TRUE). See 8.2.10 for further information on
the Control capability set.

The mediated control protocol is implemented by a set of request and response messages, which
build upon and mediate the effect of the core control protocol. Where the explanation of a mediated
control protocol facility or message exchange in this subclause requires that an ASCE initiate a core
control protocol action and/or state change, then it is shown as follows:

• Core(Request Control): The ASCE sends a Request Control ControlPDU to take control.

• Core(Detach): The ASCE sends a Detach ControlPDU to notify peer ASCEs that it has
entered detached mode.

When an ASCE wishes to send a mediated control request or response, it shall send a
MediatedControlPDU to one or all ASCEs in the conference in the manner indicated in Table 6-3.
The content of the MediatedControlPDU is shown in Table 8-49.

Table 8-49/T.128 – MediatedControlPDU

Parameter Description

ShareData Header The ShareData Header is described in 8.3.

action This parameter identifies the particular MediatedControlPDU action. The
allowable actions are as follows.

 • Take Control Request

 • Pass Control Request

 • Detach Request

 • Confirm Take Response

 • Deny Take Response

 • Confirm Detach Response

 • Deny Detach Response

 • Deny Pass Response

 • Remote Detach Request

 • Deny Remote Detach Response

 See below for further information.

passControlFlag This parameter indicates whether this MediatedControlPDU is part of a
Pass Control sequence (see below). Where this parameter is part of a Pass
Control sequence, the value is TRUE. On all other MediatedControlPDUs,
this parameter shall be FALSE.

 Recommendation T.128 (02/98) 87

Table 8-49/T.128 – MediatedControlPDU (concluded)

Parameter Description

sendingReference This parameter is a message reference used to correlate requests and
responses. Where this MediatedControlPDU is a request (see the action
parameter above), this is the reference allocated by the sending ASCE.
Where this MediatedControlPDU is a response, this is the reference from
the corresponding request.

originatorReference This parameter is a message reference used to correlate requests and
responses. Where this MediatedControlPDU is a Take Control request
arising from a Pass control request (see below), this parameter is the
reference from the originating Pass Control request. Where this
MediatedControlPDU is a response, this is the reference from the
corresponding request.

originatorID This parameter is a MCS User ID. Where this MediatedControlPDU is a
request, this is the MCS User ID of the sending ASCE. Where this
MediatedControlPDU is a response, this is the MCS User ID from the
corresponding request.

nonStandardParameters This parameter is only allowed in the base mode of the AS protocol. It is
an optional list of non-standard parameters allowed only if the
corresponding non-standard capabilities are present in the negotiated
capability set.

8.13.1 Taking control

When an ASCE wishes to take control using the mediated control protocol, its actions depend on the
negotiated Control.controlInterest capability value. Where the negotiated value is Always, the taking
of control is unmediated and the ASCE initiates the Core (Request Control) action to take control.
See 8.2.10 for further information on the Control capability set. Where the negotiated value is Never,
one or more peer ASCEs will not permit the taking of control and the ASCE cannot do so. Where the
negotiated value is Confirm, one or more peer ASCEs require that the taking of control requires
confirmation by those peer ASCEs and the ASCE sends a Take Control Request
MediatedControlPDU to all ASCEs.

On receipt of a Take Control Request MediatedControlPDU, an ASCE’s response depends on its
local Control.controlInterest capability value (which should not be Never – or the Request should not
have been issued). Where the local value is Always, the ASCE responds with a Confirm Take
Response MediatedControlPDU to the requesting ASCE. Where the local value is Confirm, the
ASCE utilizes a purely local mechanism (such as interacting with the local end-user) to determine
whether to allow the requesting ASCE to take control and then responds with either a Confirm Take
Response or Deny Take Response MediatedControlPDU to the requesting ASCE accordingly.

On receipt of Confirm Take Response MediatedControlPDUs from all peer ASCEs (i.e. unanimous
consent), the requesting ASCE initiates the Core (Request Control) action to take control. However,
if it receives one or more Deny Take Response MediatedControlPDUs, then it abandons the attempt
to take control.

8.13.2 Passing control

When an ASCE wishes to pass control to a specific peer ASCE using the mediated control protocol,
its actions depend on its local Control.controlInterest capability value. Where the local value is
Never (i.e. this ASCE never gives up control), it should not attempt to pass control. Where the local
value is Always or Confirm, it sends a Pass Control Request MediatedControlPDU to the particular
ASCE.

88 Recommendation T.128 (02/98)

On receipt of a Pass Control Request MediatedControlPDU, an ASCE utilizes a purely local
mechanism (such as interacting with the local end-user) to determine whether to accept control from
the requesting ASCE. If it determines not to accept the pass request, it responds with Deny Pass
Response MediatedControlPDU to the requesting ASCE. If it determines to accept the pass request,
it sends a Take Control Request to the requesting ASCE, which should in turn result in receipt of a
Confirm Take Response MediatedControlPDUs from the requesting ASCE, whereupon it can initiate
the Core (Request Control) action to take control.

Note that the Take Control Request MediatedControlPDU is here sent to a single peer ASCE in
response to a Pass Control Request MediatedControlPDU, whereas in 8.13.1 above, it is sent to all
peer ASCEs to conditionally take control. To distinguish between the two cases, all
MediatedControlPDUs used as part of the pass control sequence (i.e. Pass Control Request, Take
Control Request to one ASCE and Deny Pass Response) have the passControlFlag parameter set to
TRUE – it is FALSE in all other MediatedControlPDUs.

8.13.3 Detaching

When an ASCE wishes to detach using the mediated control protocol, its actions depend on the
negotiated Control.detachInterest capability value. Where the negotiated value is Always, detaching
is unmediated and the ASCE initiates the Core (Detach) action to detach. Where the negotiated value
is Never, one or more peer ASCEs will not permit ASCEs to detach and the ASCE cannot do so.
Where the negotiated value is Confirm, one or more peer ASCEs require that detaching requires
confirmation by those peer ASCEs and the ASCE sends a Detach Request MediatedControlPDU to
all ASCEs.

On receipt of a Detach Request MediatedControlPDU, an ASCE's response depends on its local
Control.detachInterest capability value (which should not be Never – or the Detach Request should
not have been issued). Where the local value is Always, the ASCE responds with a Confirm Detach
Response MediatedControlPDU to the requesting ASCE. Where the local value is Confirm, the
ASCE utilizes a purely local mechanism (such as interacting with the local end-user) to determine
whether to allow the requesting ASCE to take control and then responds with either a Confirm
Detach Response or Deny Detach Response MediatedControlPDU to the requesting ASCE
accordingly.

On receipt of Confirm Detach Response MediatedControlPDUs from all peer ASCEs (i.e.
unanimous consent), the requesting ASCE initiates the Core (Detach) action to detach. However, if it
receives one or more Deny Detach Response MediatedControlPDUs, then it abandons the attempt to
detach.

8.13.4 Remote detach

When an ASCE wishes to detach a peer ASCE, its actions depend on the Control.remoteDetachFlag
capability value for the peer ASCE. Where the value is FALSE, the peer ASCE does not allow
remote detach and the ASCE abandons the attempt. Where the value is TRUE, the ASCE sends a
Remote Detach Request MediatedControlPDU to the particular ASCE.

On receipt of a Remote Detach Request MediatedControlPDU, an ASCE attempts to start the detach
process described in 8.13.3. If it cannot initiate the detach attempt (because one or more peer ASCEs
will not permit ASCEs to detach), it responds with a Deny Remote Detach Response
MediatedControlPDU to the requesting ASCE. If it can initiate the detach attempt, then it proceeds
as in 8.13.3.

MediatedControlPDUs are either sent to all peer ASCEs or to specific peer ASCEs depending on the
message type. Table 8-50 summarizes the sending characteristics for MediatedControlPDU requests
and responses.

 Recommendation T.128 (02/98) 89

Table 8-50/T.128 – MediatedControlPDU MCS channels

Request/Response Target

Take Control Request (Note) All ASCEs

Take Control Request (Note) Peer ASCE

Pass Control Request Peer ASCE

Detach Request All ASCEs

Confirm Take Response Peer ASCE

Deny Take Response Peer ASCE

Confirm Detach Response Peer ASCE

Deny Detach Response Peer ASCE

Deny Pass Response Peer ASCE

Remote Detach Request Peer ASCE

Deny Remote Detach Response Peer ASCE

NOTE – The two Take Control Request variants are used in taking and
passing control respectively (see 8.13.1 and 8.13.2 above).

8.14 Pointers

When the local pointer shape changes, or when an application programmatically changes the local
pointer position, an ASCE shall send information about the local pointer shape and/or position to all
ASCEs within the conference by sending PointerPDUs in the manner indicated in Table 6-3.

PointerPDUs supplying a new pointer shape (as opposed to updating the pointer position or
referencing a previously cached pointer) are one of the following three types:

• A pre-defined system pointer value, which is either the null pointer or the default pointer.
The null pointer should be sent when the local pointer is not displayed. The default pointer
should be sent when the local pointer is not over a hosted window or not captured by a
hosted window.

• A monochrome pointer definition. This monochrome pointer may be used where a default
pointer is not appropriate (see above), a local pointer is visible and color pointer support has
been disabled during capabilities negotiation.

• A color pointer definition. This color pointer may be used where a default pointer is not
appropriate (see above), a local pointer is visible and color pointer support has been enabled
during capabilities negotiation.

How an ASCE displays received pointer information is dependent on the current control state and
conductorship (see 8.12, 8.13 and 8.19), the current pointer position and the display capabilities of
the local terminal. For example, a receiving ASCE might:

• display the local pointer shape when cooperating and in control;

• display the pointer corresponding to the hosting ASCE when cooperating and viewing;

• display a modified version of one or more hosting ASCE's pointers when detached and the
particular pointer(s) are over the corresponding shadow windows.

90 Recommendation T.128 (02/98)

8.14.1 System pointers

When the local pointer becomes invisible (i.e. it is not displayed on the local terminal), an ASCE
shall send a PointerPDU (System) with a systemPointerType of pointerNull to all other ASCEs
within the conference. On receipt of a PointerPDU (System) with a systemPointerType of
pointerNull, an ASCE shall set its current color pointer for that host to a special null pointer.

When the local pointer is not over a hosted window or not captured by a hosted window, an ASCE
shall send a PointerPDU (System) with a systemPointerType of pointerDefault to all other ASCEs
within the conference. On receipt of a PointerPDU (System) with a systemPointerType of default
pointerDefault, an ASCE shall set its current color pointer for that host to a special default pointer.

For both cases, while the receiving ASCE is required to track the current pointer for each other
hosting ASCE, how it displays that pointer is a local matter. See Table 8-51.

Table 8-51/T.128 – PointerPDU (System)

Parameter Description

ShareData Header The ShareData Header is described in 8.3.

systemPointerType This parameter identifies the pointer to be used. The allowable values are
pointerDefault or pointerNull.

nonStandardparameters This parameter is only allowed in the base mode of the AS protocol. It is
an optional list of non-standard parameters allowed only if the
corresponding non-standard capabilities are present in the negotiated
capability set.

8.14.2 Monochrome pointers

An ASCE is not required to support color pointers (see 8.14.3) and may represent all non-system
pointers as monochrome pointers (even where they are displayed locally in color), provided it can
implement a suitable local conversion. However, color pointers are widely used on common
terminals, and providing monochrome only pointer support may result in a significant reduction in
user acceptability.

Where the local pointer changes to a pointer that is, or may be represented as, a monochrome pointer,
an ASCE shall send a PointerPDU (Mono) containing the new pointer’s monochrome pointer
definition. A receiving ASCE is only required to remember the last monochrome pointer definition
from each other hosting ASCE which then becomes the current monochrome pointer for that host.

While a receiving ASCE is required to track the current monochrome pointer for each other hosting
ASCE, how it displays that pointer is a local matter.

Monochrome pointers are not cached. A sending ASCE is required to send a new PointerPDU
(Mono) for each monochrome pointer change and a receiving ASCE is only required to remember
the last monochrome pointer definition from each other hosting ASCE.

Monochrome pointer data represents the pointer as a pair of monochrome AND and XOR masks,
where the pointer can be drawn by ANDing the AND mask and then XORing the XOR mask to the
display, allowing for the hot spot (see below). This is a common representation, which can be readily
mapped to standard local functions on most common terminal types.

Both masks are a series of monochrome pixel rows (i.e. 1 bit-per-pixel), where row zero starts at the
highest pixel Y coordinate. That is, row 0 starts at (top, left). Within a row, pixel values are packed
into octets, starting from the left-most pixel. Each octet contains eight pixels, with the leftmost pixel
in the most significant bit. Each row of pointer data is padded to a two-octet boundary.

 Recommendation T.128 (02/98) 91

The monochrome pointer hot spot defines a point within the pointer, which corresponds to the
position on the display where the pointer should be drawn. For example, if the monochrome pointer
hot spot is at point (3,4) within the pointer and the local pointer position is at point (50,50), then the
(top, left) pixel (i.e. 0,0) of the pointer definition is drawn at (47,46) and the hot spot pixel is drawn
at (50,50). See Table 8-52.

Table 8-52/T.128 – PointerPDU (Mono)

Parameter Description

ShareData Header The ShareData Header is described in 8.3.

hotSpotX This parameter is the pointer hot spot X coordinate in pixels relative to
(top, left) of the pointer definition.

hotSpotY This parameter is the pointer hot spot Y coordinate in pixels relative to
(top, left) of the pointer definition.

width This parameter is the width of the pointer in pixels.

height This parameter is the height of the pointer in pixels.

monoPointer This is a monochrome pointer definition, consisting of a 1 bits-per-pixel
XOR mask, followed by a 1 bits-per-pixel AND mask.

nonStandardParameters This parameter is only allowed in the base mode of the AS protocol. It is
an optional list of non-standard parameters allowed only if the
corresponding non-standard capabilities are present in the negotiated
capability set.

8.14.3 Color pointers

Color pointer support is optional. An ASCE may only send PointerPDU (Color) and PointerPDU
(Cached) ASPDUs where the negotiated Pointer.colorPointerFlag capability is TRUE. Where color
pointers are not supported, an ASCE is required to send all color pointer changes as monochrome
pointers (see 8.14.2). It is recommended that ASCEs support color pointers.

Color pointers may be cached, depending on the result of Pointer capabilities negotiation. If an
ASCE supports color pointer caching, it shall set its advertised Pointer.pointerCacheSize capability
to the number of cached color pointer entries it is prepared to support for each other hosting ASCE
(see 8.2.11).

Where color pointers are supported and color pointer caching is enabled after capabilities negotiation
(i.e. the negotiated Pointer.pointerCacheSize is greater than one), a sending ASCE may allocate a
color pointer definition to a specific pointer cache entry on receiving ASCEs using a PointerPDU
(Color) and then subsequently reuse that cached entry by sending a PointerPDU (Cached) referencing
that entry. It is the sending ASCE’s responsibility to manage the color pointer cache entry space.

On receipt of a PointerPDU (Color) from a particular hosting ASCE referencing a color pointer
cache entry, an ASCE shall place the color pointer definition in the cache entry for that host and set
the supplied color pointer definition as the current color pointer for that host. On receipt of
PointerPDU (Cached) from a particular hosting ASCE referencing a color pointer cache entry, an
ASCE shall set the referenced cached color pointer definition as the current color pointer for that
host.

92 Recommendation T.128 (02/98)

Where color pointer caching is disabled, an ASCE shall not send the PointerPDU (cached) ASPDU
and may only send information on local pointer changes via a series of PointerPDUs (Color). A
receiving ASCE with color pointer caching disabled is only required to remember the last color
pointer definition from each other hosting ASCE which is always the current color pointer for that
host.

While a receiving ASCE is required to track the current color pointer for each other hosting ASCE,
how it displays that pointer is a local matter.

Color pointer data represents the pointer as a series of rows, where row zero starts at the lowest pixel
Y coordinate. That is, row 0 starts at (bottom, left). Within a row, pixel values are packed into octets,
starting from the left-most pixel. For the 1 bits-per-pixel AND mask data, each octet contains eight
pixels, with the leftmost pixel in the most significant bit. For the 24 bits-per-pixel XOR mask data,
each octet triplet contains one pixel of RGB color information.

Color pointer data represents the pointer as a pair of AND and XOR masks, where the pointer can be
drawn by ANDing the AND mask and then XORing the XOR mask to the display, allowing for the
hot spot (see below). The AND mask is monochrome and the XOR mask is color. This is a common
representation, which can be readily mapped to standard local functions on most common terminal
types.

The AND mask is a series of monochrome pixel rows (i.e. 1 bit-per-pixel), where row zero starts at
the highest pixel Y coordinate. That is, row 0 starts at (top, left). Within a row, pixel values are
packed into octets, starting from the left-most pixel. Each octet contains eight pixels, with the
left-most pixel in the most significant bit. Each row of pointer data is padded to a two-octet
boundary.

The XOR mask is 24 bits-per-pixel, where row zero starts at the highest pixel Y coordinate. That is,
row 0 starts at (top, left). Within a row, each triplet of octets contains one pixel of RGB color
information. Within an RGB triplet, the first octet is a Blue value in the range 0..255, the second
octet is a Green value in the range 0..255 and the third octet is a Red value in the range 0..255. Octets
are tightly packed – there are no pad octets between adjacent RGB values. Each row of pointer data
is padded to a four-octet boundary.

The color pointer hot spot defines a point within the pointer, which corresponds to the position on
the display where the pointer should be drawn. For example, if the color pointer hot spot is at
point (3,4) within the pointer and the local pointer position is at point (50,50), then the (top, left)
pixel (i.e. 0,0) of the pointer definition is drawn at (47,46) and the hot spot pixel is drawn at (50,50).
See Tables 8-53 and 8-54.

 Recommendation T.128 (02/98) 93

Table 8-53/T.128 – PointerPDU (Color)

Parameter Description

ShareData Header The ShareData Header is described in 8.3.

cacheIndex This parameter specifies the pointer cache entry to use for this pointer.
Allowable values are in the range zero to one less than the negotiated
Pointer.pointerCacheSize capability value. See 8.2.11 for further
information on the Pointer capability set.

hotSpotX This parameter is the pointer hot spot X coordinate in pixels relative to
(top, left) of the pointer definition.

hotSpotY This parameter is the pointer hot spot Y coordinate in pixels relative to
(top, left) of the pointer definition.

width This parameter is the width of the pointer in pixels.

height This parameter is the height of the pointer in pixels.

colorPointer This is the color pointer definition, consisting of a 24 bits-per-pixel XOR
mask, followed by a 1 bit-per-pixel AND mask.

nonStandardParameters This parameter is only allowed in the base mode of the AS protocol. It is
an optional list of non-standard parameters allowed only if the
corresponding non-standard capabilities are present in the negotiated
capability set.

Table 8-54/T.128 – PointerPDU (Cached)

Parameter Description

ShareData Header The ShareData Header is described in 8.3.

cacheIndex This parameter specifies which cached pointer to use. Allowable values are
in the range zero to one less than the negotiated Pointer.pointerCacheSize
capability value. See 8.2.11 for further information on the Pointer
capability set.

nonStandardParameters This parameter is only allowed in the base mode of the AS protocol. It is
an optional list of non-standard parameters allowed only if the
corresponding non-standard capabilities are present in the negotiated
capability set.

8.14.4 Pointer position updates

Normally, pointer position information is conveyed by input events driven by user pointing device
activity. See 8.18 for further information on pointing device movement. However, some terminals
allow applications to programmatically update the local pointer position.

On such terminals, where an application programmatically updates the local pointer position, an
ASCE shall send a PointerPDU (PointerPosition) containing the new virtual desktop pointer
position. On receipt of a PointerPDU (PointerPosition) containing a new pointer position, a receiving
ASCE updates the current pointer position for that host.

94 Recommendation T.128 (02/98)

While a receiving ASCE is required to track the current pointer position for each other hosting
ASCE, how it processes that pointer position information is a local matter. See Table 8-55.

Table 8-55/T.128 – PointerPDU (PointerPosition)

Parameter Description

ShareData Header The ShareData Header is described in 8.3.

pointerX This parameter is the X virtual desktop coordinate of the new pointer
position.

pointerY This parameter is the Y virtual desktop coordinate of the new pointer
position.

nonStandardParameters This parameter is only allowed in the base mode of the AS protocol. It is
an optional list of non-standard parameters allowed only if the
corresponding non-standard capabilities are present in the negotiated
capability set.

8.15 Palette updates

An ASCE sends palette updates to all ASCEs within the conference by sending an UpdatePDU
containing a palette in the manner indicated in Table 6-3. The content of the UpdatePDU containing
a palette is shown in Table 8-56.

For example, if a local application changes a local palette and then draws a bitmap with respect to
that palette, then the ASCE shall ensure that it sends a palette UpdatePDU before the bitmap
UpdatePDU containing that bitmap data. Whenever an ASCE sends a new palette, it shall ensure that
all hosted windows on its local terminal are redrawn, to ensure that receiving ASCEs can redraw any
already received areas of the hosted windows with reference to the new palette.

The AS protocol supports color depths of 1, 4 and 8 bits-per-pixel (see 8.2.4). An ASCE shall not
send palette updates where the sendingBitsPerPixel is 1. For this case, the AS protocol defines
palette indices 0 and 1 as color values black and white respectively.

A palette contains 16 or 256 RGB color values. The arrangement of color values in the palette is
significant and represents a sequence of palette indices from 0..15 or 0..255, depending on the
sendingBitsPerPixel. In the base mode of the AS protocol, the palette may also contain optional color
accuracy information.

On receipt of an UpdatePDU containing a palette, an ASCE shall use that palette to interpret
subsequent bitmap data pixel values. For example, in incoming bitmap data at 8 bits-per-pixel, the
receiving ASCE interprets a bitmap pixel containing the value 25 as referencing the 26th (allowing
for indexing from zero) color value in the last received palette from the sending ASCE. It shall not
use the palette to interpret cached bitmap pixel values – which should be interpreted using the
appropriate cached colortable (see 8.16.10).

 Recommendation T.128 (02/98) 95

Table 8-56/T.128 – UpdatePDU (Palette)

Parameter Description

ShareData Header The ShareData Header is described in 8.3.

palette This parameter is a list of color values constituting the palette. In the base
mode of the AS protocol, the palette may also contain optional color
accuracy information.

nonStandardParameters This parameter is only allowed in the base mode of the AS protocol. It is
an optional list of non-standard parameters allowed only if the
corresponding non-standard capabilities are present in the negotiated
capability set.

8.16 Order updates

An ASCE sends order updates to all ASCEs within the conference by sending an UpdatePDU
containing orders in the manner indicated in Table 6-3. The content of the UpdatePDU containing
order updates is shown in Table 8-57.

Table 8-57/T.128 – UpdatePDU (Orders)

Parameter Description

ShareData Header The ShareData Header is described in 8.3.

orderList This parameter is a list of orders.

nonStandardParameters This parameter is only allowed in the base mode of the AS protocol. It is
an optional list of non-standard parameters allowed only if the
corresponding non-standard capabilities are present in the negotiated
capability set.

UpdatePDU orders may be of the following two types:

• Primary orders (see Table 8-58): Primary orders are drawing orders that may result in output
on remote ASCEs, subject to ASCE clipping, window order and/or presentation.

• Secondary orders (see Table 8-59): Secondary orders provide ancillary information for
subsequent use by primary orders. For example, secondary orders are used to populate
remote ASCE bitmap and colortable caches prior to cache references by subsequent primary
orders.

A single UpdatePDU containing orders may contain any mix of primary and secondary orders.

96 Recommendation T.128 (02/98)

Table 8-58/T.128 – Primary orders

Order Reference

Destination Blt See Table 8-65

Pattern Blt See Table 8-66

Screen Blt See Table 8-67

Memory Blt See Table 8-70

Memory Three Way Blt See Table 8-71

Text See Table 8-72

Extended Text See Table 8-73

Frame See Table 8-74

Rectangle See Table 8-75

Opaque Rectangle See Table 8-76

Line See Table 8-77

Desktop Save See Table 8-78

Desktop Origin See Table 8-79

Table 8-59/T.128 – Secondary orders

Order Reference

Cache Bitmap (Compressed) See Table 8.68

Cache Bitmap (Uncompressed) See Table 8-68

Cache ColorTable See Table 8-69

Color Space See Table 8-80

8.16.1 Primary orders

Primary orders shall contain the Primary Order Header. The legacy mode Primary Order Header
(see Table 8-60) contains explicit order encoding information, whereas the base mode Primary Order
Header (see Table 8-61) does not. See 8.16.3 for further information on order encoding.

An ASCE shall only send an UpdatePDU containing primary orders where the negotiated capabilities
indicate that all other ASCEs can receive orders (i.e. in legacy mode the negotiated Order.orderFlags
capability does not have the Cannot receive orders bit flag set; in base mode the negotiated
Order.receiveOrdersFlag capability is TRUE) and where the corresponding order is supported (i.e. in
legacy mode the corresponding negotiated Order.ordersupport capability entry is non-zero; in base
mode the order’s corresponding negotiated order level capability is non-zero). There may also be
further order-specific restrictions, which are documented, where applicable, in the description of the
particular primary order.

An ASCE may supply bounds coordinates on primary orders. Bounds coordinates define a clipping
rectangle for the order on which they are present. Where bounds coordinates are supplied on an order
(after any required order decoding), the receiving ASCE shall draw the order clipped to the bounds
and the virtual desktop. If bounds coordinates are not supplied on an order (after any required order
decoding), the receiving ASCE shall not clip the order, other than to the virtual desktop. Where
bounds coordinates are supplied (prior to order encoding) in the legacy mode of the AS protocol, the
ASCE should set the Bounds control flag in the order header control flags.

 Recommendation T.128 (02/98) 97

Table 8-60/T.128 – Primary order header (Legacy mode)

Parameter Description

controlFlags This parameter indicates the order encoding options applicable to the
order that follows. See Table 8-63 for further information on order header
control flags.

orderType (Optional) This parameter is present where the controlFlags parameter has the Type
Change flag set. Where present, it specifies the type of order that follows.
See Table 8-58 for a summary of allowable values.

encodingFlags This parameter is 1..3 octets that indicate the number of encodable
parameters that are present in the order. See Table 8-64 for further
information on the number of encodable parameters that are allowable per
primary order.

boundsFlags (Optional) This parameter is present where the controlFlags parameter has the
Bounds flag set. Where present, it is a set of bit flags indicating which
bounds coordinates are present in the bounds parameter (see below) and
in which format, subject to bounds coordinates encoding. Defined bit flag
values are as follows:

 • Absolute left bounds coordinate present

 • Absolute top bounds coordinate present

 • Absolute right bounds coordinate present

 • Absolute bottom bounds coordinate present

 • Delta left bounds coordinate present

 • Delta top bounds coordinate present

 • Delta right bounds coordinate present

 • Delta bottom bounds coordinate present

 See 8.16.3.2 for further information on bounds coordinates encoding.

bounds (Optional) This parameter is a set of zero to four absolute or delta bounds
coordinates, depending on the bit flags set in the boundsFlags parameter
(see above).

Table 8-61/T.128 – Primary order header (Base mode)

Parameter Description

bounds (Optional) This parameter is a set of zero to four absolute or delta bounds
coordinates.

8.16.2 Secondary orders

In the legacy mode of the AS protocol, secondary orders shall contain the Secondary Order Header
described in Table 8-62. In the base mode of the AS protocol, secondary orders do not contain an
explicit header.

An ASCE shall only send an UpdatePDU containing secondary orders where the negotiated
capabilities indicate that all other ASCEs can receive orders (i.e. in legacy mode the negotiated
Order.orderFlags capability does not have the Cannot receive orders bit flag set; in base mode the

98 Recommendation T.128 (02/98)

negotiated Order.receiveOrdersFlag capability is TRUE) and, in base mode, where the corresponding
order is supported (i.e. the order’s corresponding negotiated order level capability is non-zero). There
may also be further order-specific restrictions, which are documented, where applicable in the
description of the particular secondary order.

Table 8-62/T.128 – Secondary order header (Legacy Mode)

Parameter Description

controlFlags This parameter indicates the order encoding options applicable to the
order that follows. See Table 8-63 for further information on order header
control flags.

extraFlags This parameter is a set of bit flags indicating whether the order that
follows is primary or secondary. The only defined bit flag value is
Secondary which shall be set.

8.16.3 Order encoding

The AS protocol uses order encoding to minimize the number of parameters within an order based on
difference comparisons with previous orders. There are a number of defined order encoding methods,
which, where applicable and where applied, shall be serially applied in the following order:

1) Type encoding: See 8.16.3.1.

2) Bounds coordinates encoding: See 8.16.3.2.

3) Parameter Encoding: See 8.16.3.3.

4) Coordinate encoding: See 8.16.3.4.

Order encoding may only be applied to primary orders (i.e. secondary orders are not encoded). In the
legacy mode of the AS protocol, order encoding information is conveyed via the controlFlags,
encodingFlags and boundsFlags in the Primary Order Header (see Table 8-60). In the base mode of
the AS protocol, order encoding information is implicitly conveyed by the presence or absence of
optional order parameters.

Both modes require that sending and receiving ASCEs monitor the order stream sent in UpdatePDU
(Orders) ASPDUs to maintain an encoding state and potentially multiple decoding states (when
receiving orders form multiple hosting ASCEs), such that sending ASCEs may omit unchanged, or
may supply deltas for small changes, in order parameters, while receiving ASCEs can correctly
reconstruct the original unencoded order stream.

In the legacy mode of the AS protocol, all orders contain an initial set of control flags, which
indicates how the rest of the order should be interpreted. See Table 8-63 for further information on
the allowable control flags. For legacy mode primary orders, an ASCE shall always set the Standard
Encoding control flag, shall not set the Secondary control flag and may set any of the other allowable
control flags as required by order encoding. For legacy mode secondary orders, an ASCE shall
always set the Standard Encoding and Secondary control flags and shall not set any of the other
allowable control flags.

 Recommendation T.128 (02/98) 99

Table 8-63/T.128 – Order header control flags (Legacy mode)

Control Flag Description

Standard Encoding This flag indicates that the order that follows conforms to the standard
encoding for this Recommendation. This flag shall be set in all orders.

Secondary This flag (if set) indicates that the order that follows is a secondary order.
This flag shall only be set on secondary orders.

Bounds This flag (if set) indicates that the order that follows includes bounds.
This flag shall only be set on primary orders. See 8.16.3.2 for further
information on bounds coordinates encoding.

Type Change This flag (if set) indicates that the order that follows is of a different type
to the previous order. This flag shall only be set in primary orders.
See 8.16.3.1 for further information on type encoding.

Delta Coordinates This flag (if set) indicates that the order that follows uses delta
coordinates (rather than absolute coordinates). This flag shall only be set
in primary orders. See 8.16.3.4 for further information on coordinate
encoding.

8.16.3.1 Type encoding

In the legacy mode of the AS protocol, where an order is the same type as the previous order, then an
ASCE may clear the Type Change bit flag in the controlFlags parameter and omit the orderType
parameter in the encoded order. Where a primary order is not of the same type as the previous order,
an ASCE shall set the Type Change bit flag in the controlFlags parameter and supply the orderType
parameter.

Type encoding is applied for the continuous order stream and spans UpdatePDU (Orders) ASPDUs.

Type encoding is not supported in the base mode of the AS protocol.

8.16.3.2 Bounds coordinates encoding

Where one or more of the bounds coordinates of an order are the same as the corresponding bounds
coordinate in the previous order (which need not be of the same type), an ASCE may omit the
unchanged bounds coordinates. Bounds order encoding is applied to individual bounds coordinates
with respect to the same bounds coordinate in the previous order. For example, where both orderi and
orderi+1 have a left bounds coordinate value of 100, then the left bound may be omitted in the
encoded orderi+1. Conversely, where orderi’s (left, top) bounds are (110, 100) and order i+1’s (left, top)
bounds are (100, 110), neither the left nor top bounds coordinate may be omitted.

Bounds coordinate encoding is applied for the continuous order stream and spans UpdatePDU
(Orders) ASPDUs.

Where a bounds coordinate is changed from the previous order, it is then subject to coordinate
encoding (see 8.16.3.4). This means that a particular order may omit some bounds coordinates, and
may contain a mix of delta and absolute bounds coordinates for the remaining bounds coordinates.

In the base mode of the AS protocol, the presence or absence of bounds coordinates, and, where
present, whether they are represented by absolute or delta coordinate bits is conveyed by the ASN.1
encoding (see clause 9).

100 Recommendation T.128 (02/98)

In the legacy mode of the AS protocol:

• where some or all bounds coordinates are omitted, an ASCE shall clear both the
corresponding absolute and delta bounds bit flags in the boundsFlag parameter in the
Primary Order Header (see Table 8-60);

• where one or more bounds coordinates are changed from the previous order and the change
is in the range –128..+127 pixels, an ASCE may supply single octet delta coordinates for
those bounds coordinates and set the corresponding delta coordinate bits in the boundsFlag
parameter;

• where one or more bounds coordinates are changed from the previous order and the change
is not in the range –128.. +127 pixels, an ASCE shall supply two-octet absolute coordinates
for those bounds coordinates and set the corresponding absolute coordinate bits in the
boundsFlag parameter.

8.16.3.3 Parameter encoding

Where a parameter is the same as the corresponding parameter in the previous order of the same
type, an ASCE may omit the unchanged parameter. For example, where both orderi and orderi+n
(where n may be greater than one) are consecutive Pattern Blt orders and both have a ROP3
parameter of 0xCC, then the ROP3 parameter may omitted in the encoded orderi+n. See 8.16.5 for
further information on Pattern Blt orders and 8.16.20 for further information on three-way ROPs.

Parameter encoding is applied with respect to the same parameter in orders of the same type across
the continuous order stream and spans UpdatePDU (Orders) ASPDUs.

In the base mode of the AS protocol, the presence or absence of parameters is conveyed by the
ASN.1 encoding (see clause 9).

In the legacy mode of the AS protocol, the presence or absence of a particular parameter is indicated
by the corresponding bit flag in the encodingFlags parameter in the Primary Order Header (see
Table 8-60). For each order:

• the first parameter is parameter zero;

• the number of octets required for the encodingFlags parameter is (number of encodable
parameters +7) div 8;

• the bit flag for parameter N is represented by encodingFlags octet (N div 8), bit flag
(N mod 8), where the first encodingFlags octet is octet zero and the first bit within an octet is
the least significant bit.

Common parameters such as brushes and pens are encoded according to their constituent parameters.
For example, the brush parameter in the Pattern Blt order (see Table 8-66), which is documented as a
single parameter (for the purposes of clarity), contributes five encodable parameters to the total of
twelve encodable parameters for the Pattern Blt order. Such grouped parameters are marked as
(Group) in the respective order descriptions.

For example, in the parameter encoding for the Pattern Blt order (see 8.16.5)

• the foregroundColor parameter is parameter 6 and is represented by octet 0, bit 6;

• the brush hatch parameter is parameter 10 and is represented by octet 1, bit 2.

Table 8-64 summarizes the number of encodable parameters per order.

 Recommendation T.128 (02/98) 101

Table 8-64/T.128 – Primary orders: Encodable parameters

Order Number of
encodable

parameters

Number of
encodingFlags

octets

Reference

Destination Blt 5 1 See Table 8-65

Pattern Blt 12 2 See Table 8-66

Screen Blt 7 1 See Table 8-67

Memory Blt 9 2 See Table 8-70

Memory Three Way Blt 17 3 See Table 8-71

Text 14 2 See Table 8-72

Extended Text 20 3 See Table 8-73

Frame 14 2 See Table 8-74

Rectangle 17 3 See Table 8-75

Opaque Rectangle 5 1 See Table 8-76

Line 10 2 See Table 8-77

Desktop Save 6 1 See Table 8-78

Desktop Origin 2 1 See Table 8-79

8.16.3.4 Coordinate encoding

After the application of any parameter encoding (see 8.16.3.3), an ASCE may apply coordinate
encoding to any remaining coordinate parameters.

Where the change in coordinate parameters with respect to the same coordinate parameters in the
previous order of the same type, is in the range –128..+127 pixels, an ASCE may supply single octet
delta coordinates for coordinate parameters.

In the legacy mode of the AS protocol, coordinate encoding requires that all not previously encoded
coordinates in an order can be represented as delta coordinates. Therefore, where the change in one
or more not previously encoded coordinates is outside the range –128..+127 pixels, an ASCE shall
use two-octet absolute coordinates for all coordinate parameters. In the base mode of the
AS protocol, there is no such restriction, and an ASCE may supply a mix of delta and absolute
coordinates, depending solely on the change in a particular not previously encoded coordinate
parameter with respect to the same parameter in the previous order of the same type.

In the legacy mode of the AS protocol, an ASCE shall set or clear the Delta Coordinates bit flag in
the controlFlags parameter, to indicate whether all coordinates are conveyed as delta or absolute
coordinates. In the base mode of the AS protocol, the presence or absence of coordinates, and
whether they are delta or absolute, is conveyed by the ASN.1 encoding (see clause 9).

Coordinate encoding is applied with respect to (not previously encoded) coordinate parameters in an
order with respect to the same coordinate parameters in the previous order of the same type across
the continuous order stream and spans UpdatePDU (Orders) ASPDUs.

Coordinate parameters that are eligible for coordinate encoding are marked as (Coordinate) in the
order parameter descriptions and the grouped parameter definitions.

102 Recommendation T.128 (02/98)

8.16.4 Destination Blt

An ASCE shall only send a Destination Blt order where the negotiated capabilities indicate that all
other ASCEs can receive orders (i.e. in legacy mode the negotiated Order.orderFlags capability does
not have the Cannot receive orders bit flag set; in base mode the negotiated Order.receiveOrdersFlag
capability is TRUE) and where the Destination Blt order is supported (i.e. in legacy mode the
corresponding negotiated Order.orderSupport capability entry is non-zero; in base mode the
negotiated Order.DestinationBltLevel capability is non-zero).

An ASCE receiving the Destination Blt order performs the ROP3 parameter raster operation on the
destination rectangle on the virtual desktop, subject to any bounds clipping. See Table 8-65.

Table 8-65/T.128 – Destination Blt order

Parameter Description

Primary Order Header The Primary Order Header is described in 8.16.1.

destLeft (Coordinate) This parameter is the left X virtual desktop coordinate of the destination
rectangle for this Destination Blt.

destTop (Coordinate) This parameter is the top Y virtual desktop coordinate of the destination
rectangle for this Destination Blt.

destWidth (Coordinate) This parameter is the width in pixels of the destination rectangle for this
Destination Blt.

destHeight (Coordinate) This parameter is the height in pixels of the destination rectangle for this
Destination Blt.

ROP3 This parameter is the three-way ROP to use for this Destination Blt. For
Destination Blt orders, the three-way ROP shall reference a destination and
shall not reference a source or pattern. See 8.16.20 for further information
on three-way ROPs.

nonStandardParameters This parameter is only allowed in the base mode of the AS protocol. It is
an optional list of non-standard parameters allowed only if the
corresponding non-standard capabilities are present in the negotiated
capability set.

8.16.5 Pattern Blt

An ASCE shall only send a Pattern Blt order where the negotiated capabilities indicate that all other
ASCEs can receive orders (i.e. in legacy mode the negotiated Order.orderFlags capability does not
have the Cannot receive orders bit flag set; in base mode the negotiated Order.receiveOrdersFlag
capability is TRUE) and where the Pattern Blt order is supported (i.e. in legacy mode the negotiated
corresponding Order.orderSupport capability entry is non-zero; in base mode the negotiated
Order.PatternBltLevel capability is non-zero).

An ASCE receiving the Pattern Blt order performs the ROP3 parameter raster operation on the brush
and the destination rectangle on the virtual desktop, subject to any bounds clipping. See Table 8-66.

 Recommendation T.128 (02/98) 103

Table 8-66/T.128 – Pattern Blt order

Parameter Description

Primary Order Header The Primary Order Header is described in 8.16.1.

destLeft (Coordinate) This parameter is the left X virtual desktop coordinate of the destination
rectangle for this Pattern Blt.

destTop (Coordinate) This parameter is the top Y virtual desktop coordinate of the destination
rectangle for this Pattern Blt.

destWidth (Coordinate) This parameter is the width in pixels of the destination rectangle for this
Pattern Blt.

destHeight (Coordinate) This parameter is the height in pixels of the destination rectangle for this
Pattern Blt.

ROP3 This parameter is the three-way ROP to use for this Pattern Blt. For Pattern
Blt orders, the three-way ROP shall reference a pattern and shall not
reference a source. See 8.16.20 for further information on three-way ROPs.

backgroundColor This parameter is the background color to use for this Pattern Blt.

foregroundColor This parameter is the foreground color to use for this Pattern Blt.

brush (Group) This parameter is the brush to use for this Pattern Blt. See 8.16.22 for
further information on brushes.

nonStandardParameters This parameter is only allowed in the base mode of the AS protocol. It is
an optional list of non-standard parameters allowed only if the
corresponding non-standard capabilities are present in the negotiated
capability set.

8.16.6 Screen Blt

An ASCE shall only send a Screen Blt order where the negotiated capabilities indicate that all other
ASCEs can receive orders (i.e. in legacy mode the negotiated Order.orderFlags capability does not
have the Cannot receive orders bit flag set; in base mode the negotiated Order.receiveOrdersFlag
capability is TRUE) and where the Screen Blt order is supported (i.e. in legacy mode the
corresponding negotiated Order.orderSupport capability entry is non-zero; in base mode the
negotiated Order.ScreenBltLevel capability is non-zero).

An ASCE receiving the Screen Blt order performs the ROP3 parameter raster operation on the source
and destination rectangles on the virtual desktop, subject to any bounds clipping.

• The source rectangle is defined by the sourceX, sourceY parameters and the destWidth,
destHeight parameters.

• The destination rectangle is defined by the destLeft, destTop parameters and the destWidth,
destHeight parameters.

• The destWidth and destHeight parameters define the width and height of both the source and
destination rectangles. This precludes any stretching.

• The source may overlap the destination.

See Table 8-67.

104 Recommendation T.128 (02/98)

Table 8-67/T.128 – Screen Blt order

Parameter Description

Primary Order Header The Primary Order Header is described in 8.16.1.

destLeft (Coordinate) This parameter is the left X virtual desktop coordinate of the destination
rectangle for this Screen Blt.

destTop (Coordinate) This parameter is the top Y virtual desktop coordinate of the destination
rectangle for this Screen Blt.

destWidth (Coordinate) This parameter is the width in pixels of the destination rectangle for this
Screen Blt.

destHeight (Coordinate) This parameter is the height in pixels of the destination rectangle for this
Screen Blt.

ROP3 This parameter is the three-way ROP to use for this Screen Blt. For
Screen Blt orders, the three-way ROP shall reference a source and shall not
reference a pattern. See 8.16.20 for further information on three-way
ROPs.

sourceX (Coordinate) This parameter is the source X virtual desktop coordinate for this
ScreenBlt.

sourceY (Coordinate) This parameter is the source Y virtual desktop coordinate for this
Screen Blt.

nonStandardParameters This parameter is only allowed in the base mode of the AS protocol. It is
an optional list of non-standard parameters allowed only if the
corresponding non-standard capabilities are present in the negotiated
capability set.

8.16.7 Cache Bitmap

An ASCE shall only send a Cache Bitmap order where the negotiated capabilities indicate that all
other ASCEs can receive orders (i.e. in legacy mode the negotiated Order.orderFlags capability does
not have the Cannot receive orders bit flag set; in base mode the negotiated Order.receiveOrdersFlag
capability is TRUE) and either of the Memory Blt or Memory Three Way Blt orders are supported
(i.e. in legacy mode the corresponding negotiated Order.orderSupport capability entries are non-zero;
in base mode either of the negotiated Order.MemoryBltLevel or Order.MemoryThreeWayBltLevel
capabilities are non-zero). In addition, in base mode the negotiated Order.CacheBitmapLevel
capability shall be non-zero.

The sending ASCE shall further ensure that the Cache Bitmap order parameters reflect the outcome
of Bitmap and Bitmap Cache capabilities negotiation (see 8.2.4 and 8.2.7), namely that:

• it shall only send a Cache Bitmap (Compressed) order where the negotiated Bitmap
capability set values indicate that bitmap compression is supported;

• the bitmapBitsPerPixel parameter is equal to the negotiated sendingBitsPerPixel value;

• the cacheID value references a bitmap cache area where the negotiated value indicates at
least one entry;

• the cacheIndex value within that bitmap cache area is less than the negotiated number of
entries;

• the bitmap size (after any compression) fits into the negotiated maximum cell size for that
bitmap cache area.

The sending ASCE is responsible for allocating the cacheID and cacheIndex parameters and,
therefore, for populating and updating the receiving ASCE's bitmap cache. This requires that hosting
ASCEs track bitmap cache usage based on previously sent Cache Bitmap orders.

 Recommendation T.128 (02/98) 105

An ASCE receiving a Cache Bitmap order from a particular hosting ASCE places the supplied
bitmap into the cacheID bitmap cache area for that hosting ASCE at entry cacheIndex. The supplied
bitmap replaces any existing cached bitmap in that slot. This requires that all active ASCEs maintain
a separate bitmap cache for each other hosting ASCE. See Table 8-68.

Table 8-68/T.128 – Cache Bitmap order

Parameter Description

Secondary Order Header The Secondary Order Header is described in 8.16.2.

cacheID This parameter indicates which bitmap cache should be used for this
bitmap. Allowable values, depending on Bitmap Cache negotiation, are in
the range 0..2. See 8.2.7 for further information on Bitmap Cache
negotiation.

bitmapWidth This parameter is the width in pixels of the bitmap.

bitmapHeight This parameter is the height in pixels of the bitmap.

bitmapBitsPerPixel This parameter is the bits-per-pixel of the bitmap data. This parameter shall
be the same as the negotiated Bitmap.sendingBitsPerPixel capability value.
See 8.2.4 for further information.

cacheIndex This parameter indicates which cache entry to use within the particular
cache indicated by the cacheID parameter (see above). Allowable values
depend on the outcome of Bitmap Cache capabilities negotiation of cache
cell sizes for each cache. See 8.2.7 for further information on Bitmap
Cache negotiation.

bitmapData This parameter is the bitmap data to cache. The bitmap may be
uncompressed (see 8.17.1) or compressed (see 8.17.2).

nonStandardParameters This parameter is only allowed in the base mode of the AS protocol. It is
an optional list of non-standard parameters allowed only if the
corresponding non-standard capabilities are present in the negotiated
capability set.

8.16.8 Cache ColorTable

An ASCE shall only send a Cache ColorTable order where the negotiated capabilities indicate that
all other ASCEs can receive orders (i.e. in legacy mode the negotiated Order.orderFlags capability
does not have the Cannot receive orders bit flag set; in base mode the negotiated
Order.receiveOrdersFlag capability is TRUE) and either of the Memory Blt or Memory Three Way
Blt orders are supported (i.e. in legacy mode the corresponding negotiated Order.orderSupport
capability entries are non-zero; in base mode either the negotiated Order.MemoryBltLevel or
Order.MemoryThreeWayBltLevel capabilities are non-zero). In addition, in base mode the negotiated
Order.CacheColorTableLevel capability shall be non-zero.

The sending ASCE shall further ensure that the Cache ColorTable order parameters reflect the
outcome of Bitmap and ColorTable Cache capabilities negotiation (see 8.2.4 and 8.2.8), namely that:

• The number of entries in the colortable is based on the negotiated sendingBitsPerPixel value
as follows:
number of colortable entries = 2 to power of sendingBitsPerPixel
(This gives an allowable number of colortable entries of 16 or 256).

• The cacheIndex value within the colortable cache is less than the negotiated number of
entries.

106 Recommendation T.128 (02/98)

An ASCE shall not send the Cache ColorTable order where the Bitmap.sendingBitsPerPixel is 1. For
this case, the AS protocol defines colortable indices 0 and 1 as color values black and white
respectively. See 8.2.4 for further information on the Bitmap capability set.

The sending ASCE is responsible for allocating the cacheIndex parameter and, therefore, for
populating and updating the receiving ASCE’s colortable cache. This requires that hosting ASCEs
track colortable cache usage at all other active ASCEs, based on previously sent Cache ColorTable
orders.

An ASCE receiving the Cache ColorTable order places the supplied colortable into its colortable
cache area at entry cacheIndex. The supplied colortable replaces any existing cached colortable in
that slot. This requires that all active ASCEs maintain a separate colortable cache for each other
hosting ASCE.

A colortable contains 16 or 256 RGB color values. The arrangement of color values in the colortable
is significant and represents a sequence of colortable indices from 0..15 or 0..255, depending on the
sendingBitsPerPixel. In the base mode of the AS protocol, the colortable may also contain optional
color accuracy information. See Table 8-69.

Table 8-69/T.128 – Cache ColorTable order

Parameter Description

Secondary Order Header The Secondary Order Header is described in 8.16.2.

cacheIndex This parameter indicates which cache entry to use within the colortable
cache. Allowable values depend on the outcome of ColorTable cache
Capabilities negotiation of cache size. See 8.2.8 for further information on
the ColorTable Cache capability set.

colorTable This parameter is a list of color values comprising the colortable to be
cached. In the base mode of the AS protocol, the colortable may also
contain optional color accuracy information.

nonStandardParameters This parameter is only allowed in the base mode of the AS protocol. It is
an optional list of non-standard parameters allowed only if the
corresponding non-standard capabilities are present in the negotiated
capability set.

8.16.9 Memory Blt

An ASCE shall only send a Memory Blt order where the negotiated capabilities indicate that all other
ASCEs can receive orders (i.e. in legacy mode the negotiated Order.orderFlags capability does not
have the Cannot receive orders bit flag set; in base mode the negotiated Order.receiveOrdersFlag
capability is TRUE) and where the Memory Blt order is supported (i.e. in legacy mode the
corresponding negotiated Order.orderSupport capability entry is non-zero; in base mode the
negotiated Order.MemoryBltLevel capability is non-zero).

The sending ASCE shall ensure that the bitmapCacheID, bitmapCacheIndex and
colorTableCacheIndex parameters refer to a bitmap and colortable previously cached using the
Cache Bitmap and Cache ColorTable orders.

An ASCE receiving a Memory Blt order performs the ROP3 parameter raster operation using the
source rectangle in the cached bitmap and the destination rectangle on the virtual desktop, subject to
any bounds clipping.

• The source rectangle is defined by the sourceX, sourceY parameters and the destWidth,
destHeight parameters.

 Recommendation T.128 (02/98) 107

• The destination rectangle is defined by the destLeft, destTop parameters and the destWidth,
destHeight parameters.

• The destWidth and destHeight parameters define the width and height of both the source and
destination rectangles. This precludes any stretching.

• The source rectangle is completely within the cached bitmap dimensions. The receiving
ASCE does not need to perform clipping of the source rectangle against the cached bitmap
dimensions.

• The cached bitmap bits shall be interpreted using the referenced cached colortable.

See Table 8-70.

Table 8-70/T.128 – Memory Blt order

Parameter Description

Primary Order Header The Primary Order Header is described in 8.16.1.

colorTableCacheIndex This parameter specifies the cached colortable to use for this Memory Blt.
See 8.16.8 for further information on ColorTable caching.

For legacy mode Memory Blt orders, this parameter and the
bitmapCacheID parameter (see below) are both present where the
appropriate bit flag is set in the encodingFlags parameter in the Primary
Order Header (Note).

bitmapCacheID This parameter, when used in conjunction with the bitmapCacheIndex
parameter (see below), specifies the cached bitmap to use for this Memory
Blt. See 8.16.7 for further information on bitmap caching.

For legacy mode Memory Blt orders, this parameter and the
colorTableCacheIndex parameter (see above) are both present where the
appropriate bit flag is set in the encodingFlags parameter in the Primary
Order Header (Note).

destLeft (Coordinate) This parameter is the left X virtual desktop coordinate of the destination
rectangle for this Memory Blt.

destTop (Coordinate) This parameter is the top Y virtual desktop coordinate of the destination
rectangle for this Memory Blt.

destWidth (Coordinate) This parameter is the width in pixels of the destination rectangle for this
Memory Blt.

destHeight (Coordinate) This parameter is the height in pixels of the destination rectangle for this
Memory Blt.

ROP3 This parameter is the three-way ROP to use for this Memory Blt. For
Memory Blt orders, the three-way ROP shall reference a source and shall
not reference a pattern. See 8.16.20 for further information on three-way
ROPs.

sourceX (Coordinate) This parameter is the source X coordinate in the referenced cached bitmap
for this Memory Blt.

108 Recommendation T.128 (02/98)

Table 8-70/T.128 – Memory Blt order (concluded)

Parameter Description

sourceY (Coordinate) This parameter is the source Y coordinate in the referenced cached bitmap
for this Memory Blt.

bitmapCacheIndex This parameter, when used in conjunction with the bitmapCacheID
parameter (see above), specifies the cached bitmap to use for this
Memory Blt. See 8.16.7 for further information on bitmap caching.

nonStandardParameters This parameter is only allowed in the base mode of the AS protocol. It is
an optional list of non-standard parameters allowed only if the
corresponding non-standard capabilities are present in the negotiated
capability set.

NOTE – For legacy mode Memory Blt orders, the colorTableCacheIndex and bitmapCacheID parameters
are counted as one parameter in the Primary Order Header encodingFlags. See 8.16.3.3 for further
information.

8.16.10 Memory Three Way Blt

An ASCE shall only send a Memory Three Way Blt order where the negotiated capabilities indicate
that all other ASCEs can receive orders (i.e. in legacy mode the negotiated Order.orderFlags
capability does not have the Cannot receive orders bit flag set; in base mode the negotiated
Order.receiveOrdersFlag capability is TRUE) and where the Memory Three Way Blt order is
supported (i.e. in legacy mode the corresponding negotiated Order.orderSupport capability entry is
non-zero; in base mode the negotiated Order.MemoryThreeWayBltLevel capability is non-zero).

The sending ASCE shall ensure that the bitmapCacheID, bitmapCacheIndex and
colorTableCacheIndex parameters refer to a bitmap and colortable previously cached using the
Cache Bitmap and Cache ColorTable orders.

An ASCE receiving a Memory Three Way Blt order performs the ROP3 parameter raster operation
using the brush, the source rectangle in the cached bitmap and the destination rectangle on the virtual
desktop, subject to any bounds clipping.

• The source rectangle is defined by the sourceX, sourceY parameters and the destWidth,
destHeight parameters.

• The destination rectangle is defined by the destLeft, destTop parameters and the destWidth,
destHeight parameters.

• The destWidth and destHeight parameters define the width and height of both the source and
destination rectangles. This precludes any stretching.

• The source rectangle is completely within the cached bitmap dimensions. The receiving
ASCE does not need to perform clipping of the source rectangle against the cached bitmap
dimensions.

• The cached bitmap bits shall be interpreted using the referenced cached colortable.

See Table 8-71.

 Recommendation T.128 (02/98) 109

Table 8-71/T.128 – Memory Three Way Blt order

Parameter Description

Primary Order Header The Primary Order Header is described in 8.16.1.

colorTableCacheIndex This parameter specifies the cached ColorTable to use for this Memory
Three Way Blt. See 8.16.8 for further information on ColorTable caching.

For legacy mode Memory Three Way Blt orders, this parameter and the
bitmapCacheID parameter (see below) are both present where the
appropriate bit flag is set in the encodingFlags parameter in the Primary
Order Header (Note).

bitmapCacheID This parameter, when used in conjunction with the bitmapCacheIndex
parameter (see below), specifies the cached bitmap to use for this Memory
Three Way Blt. See 8.16.7 for further information on bitmap caching.

For legacy mode Memory Three Way Blt orders, this parameter and the
colorTableCacheIndex parameter (see above) are both present where the
appropriate bit flag is set in the encodingFlags parameter in the Primary
Order Header (Note).

destLeft (Coordinate) This parameter is the left X virtual desktop coordinate of the destination
rectangle for this Memory Three Way Blt.

destTop (Coordinate) This parameter is the top Y virtual desktop coordinate of the destination
rectangle for this Memory Three Way Blt.

destWidth (Coordinate) This parameter is the width in pixels of the destination rectangle for this
Memory Three Way Blt.

destHeight (Coordinate) This parameter is the height in pixels of the destination rectangle for this
Memory Three Way Blt.

ROP3 This parameter is the three-way ROP to use for this Memory Three Way
Blt. For Memory Blt orders, the three-way ROP shall reference a
destination, source and pattern See 8.16.20 for further information on
three-way ROPs.

sourceX (Coordinate) This parameter is the source X coordinate in the referenced cached bitmap
for this Memory Three Way Blt.

sourceY (Coordinate) This parameter is the source Y coordinate in the referenced cached bitmap
for this Memory Three Way Blt.

backgroundColor This parameter is the background color to use for this Memory Three Way
Blt.

foregroundColor This parameter is the foreground color to use for this Memory Three Way
Blt.

brush (Group) This parameter is the brush to use for this Memory Three Way Blt.
See 8.16.22 for further information on brushes.

bitmapCacheIndex This parameter, when used in conjunction with the bitmapCacheID
parameter (see above), specifies the cached bitmap to use for this Memory
Three Way Blt. See 8.16.7 for further information on bitmap caching.

nonStandardParameters This parameter is only allowed in the base mode of the AS protocol. It is
an optional list of non-standard parameters allowed only if the
corresponding non-standard capabilities are present in the negotiated
capability set.

NOTE – For legacy mode Memory Three Way Blt orders, the colorTableCacheIndex and bitmapCacheID
parameters are counted as one parameter in the Primary Order Header encodingFlags. See 8.16.3.3 for
further information.

110 Recommendation T.128 (02/98)

8.16.11 Text

An ASCE shall only send a Text order where the negotiated capabilities indicate that all other
ASCEs can receive orders (i.e. in legacy mode the negotiated Order.orderFlags capability does not
have the Cannot receive orders bit flag set; in base mode the negotiated Order.receiveOrdersFlag
capability is TRUE), where the Text order is supported (i.e. in legacy mode the corresponding
negotiated Order.orderSupport capability entry is non-zero; in base mode the negotiated
Order.TextLevel capability is non-zero), the particular font has been matched and the codepoints fall
within the font’s specified codepoint range.

The Text order allows an ASCE to specify the text start Y position in terms of either the first
character’s baseline or the first character cell’s top. It is recommended that ASCEs use baseline
positioning wherever the capabilities allow, as it may be difficult on certain terminal types to
accurately position scalable font text based solely on the first character cell (left, top) position.

An ASCE shall only send Text orders using baseline positioning where the negotiated capabilities
indicate that baseline text start positioning is allowed (i.e. in legacy mode the negotiated
Order.textFlags capability Baseline Start bit flag is set; in base mode the negotiated
Order.baselineStartFlag capability is TRUE). Where that is the case it shall set the order textFlags
parameter Baseline Start bit flag, and set the order startX and startY as the position of the first
character cell’s (left, baseline) pixel. Otherwise, where the negotiated capabilities indicate that
baseline text start positioning is not allowed, it shall clear the order textFlags parameter Baseline
Start bit flag and set startX and startY as the position of the first character cell’s (left, top) pixel.

Certain terminal types allow applications to dynamically specify text attributes to fonts at drawing
time, in addition to those attributes that are inherent to the font. For example, if a local terminal
supports a Courier Bold font, then it may allow its applications to draw using that font in association
with an italic attribute to achieve an emulated "Courier Bold Italic" (which may be different in
appearance to the actual Courier Bold Italic font that corresponds to the available Courier Bold font).
Where the local terminal supports dynamic text attributes in this manner, a sending ASCE may use
the textFlags parameter Italic, Underline and StrikeOut bit flags and the fontWeight parameter (alone
or in combination) to indicate that receiving ASCEs should apply the corresponding attributes to the
drawn text.

An ASCE receiving a Text order draws the character codepoints on the virtual desktop, subject to
any bounds clipping, as follows:

• The characters are drawn in the foregroundColor. If the backMixMode is Opaque, the
character cell backgrounds are drawn in the backgroundColor.

• Where the order's textFlags parameter Baseline Start bit flag is set, startX and startY are the
position of the first character cell's (left, baseline) pixel. Otherwise, startX and startY are the
position of the first character cell's (left, top) pixel.

• The characters are positioned with any extraSpacing applied to all characters and any break
spacing (equal to totalBreakSpacing divided by breakCount) applied to the break character.

• The characters are drawn in the local font that corresponds to the sending ASCE's FontID,
subject to any additional attributes indicated by the textFlags and/or fontWeight parameters.
See 8.8.2 for further information on fonts.

• If the local font is scalable, the characters are drawn at the supplied fontWidth and
fontHeight. Otherwise they are drawn at the width and height inherent in the font.

• The characters are drawn using the supplied fontWeight and as per the Italic, Underline and
StrikeOut bit flags supplied in the textFlags parameter.

See Table 8-72.

 Recommendation T.128 (02/98) 111

Table 8-72/T.128 – Text order

Parameter Description

Primary Order Header The Primary Order Header is described in 8.16.1.

backMixMode This parameter is the background mix mode to use for this Text order.
See 8.16.24 for further information on background mix modes.

startX (Coordinate) This parameter is the start X virtual desktop coordinate for this Text order.

startY (Coordinate) This parameter is the start Y virtual desktop coordinate for this Text order.
Where the Baseline Start bit flag is set in the textFlags parameter, this
corresponds to the baseline pixel of the first character cell. Where the
Baseline Start bit flag is not set in the textFlags parameter, this corresponds
to the top pixel of the first character cell.

backgroundColor This parameter is the background color to use for this Text order.

foregroundColor This parameter is the foreground color to use for this Text order.

extraSpacing This parameter specifies the additional spacing in pixels to be applied to
individual characters for this Text order. A value of zero indicates that no
additional spacing is to be applied.

totalBreakSpacing This parameter specifies the total of additional spacing in pixels to be
applied to break characters for this Text order. A value of zero indicates
that no break spacing is to be applied.

breakCount This parameter specifies the number of break characters in this Text order.
A value of zero indicates either that no break spacing is to be applied or
there are no break characters in this order.

fontHeight For scalable fonts, this parameter is the height in pixels of the font to use
for this Text order. See clause 8.8 for further information.

fontWidth For scalable fonts, this parameter is the average character width in pixels
of the font to use for this Text order. See 8.8 for further information.

fontWeight This parameter indicates the weight of the font to use for this Text order.
The allowable values are 0..1000, which are interpreted as: light ≤ 400<
normal ≤ 700< bold. See 8.8 for further information.

textFlags This parameter is a set of bit flags indicating additional text characteristics
for this Text order. Defined bit flag values are as follows:

• Italic

• Underline

• StrikeOut

• Baseline Start

fontID This parameter is the sending ASCE's FontID, determined through font
negotiation, to use for this Text order. See 8.8 for further information on
font negotiation and font mapping.

codePointList This parameter is a list of codepoints to use for this Text order. The
codepoints shall be in the AS protocol code page. See 8.8.1 for further
information on codepoints and code pages.

nonStandardParameters This parameter is only allowed in the base mode of the AS protocol. It is
an optional list of non-standard parameters allowed only if the
corresponding non-standard capabilities are present in the negotiated
capability set.

112 Recommendation T.128 (02/98)

8.16.12 Extended Text

An ASCE shall only send an Extended Text order where the negotiated capabilities indicate that all
other ASCEs can receive orders (i.e. in legacy mode the negotiated Order.orderFlags capability does
not have the Cannot receive orders bit flag set; in base mode the negotiated Order.receiveOrdersFlag
capability is TRUE), where the Extended Text order is supported (i.e. in legacy mode the
corresponding negotiated Order.orderSupport capability entry is non-zero; in base mode the
negotiated Order.ExtendedTextLevel capability is non-zero), the particular font has been matched
and the codepoints fall within the font’s specified codepoint range.

• An ASCE shall not send an Extended Text order without codepoints to draw opaque
rectangles alone. It should instead use the Opaque Rectangle order (see 8.16.15).

• An ASCE may send an Extended Text order with DeltaX positioning adjustments for fonts
that approximately match with respect to X positioning.

The Extended Text order allows an ASCE to specify the text startY position in terms of either the
first character's baseline or the first character cell's top. It is recommended that ASCEs use baseline
positioning wherever the capabilities and the local terminal characteristics allow, as it may be
difficult on certain terminal types to accurately position scalable font text based solely on the first
character cell (left, top) position.

An ASCE shall only send Extended Text orders using baseline position where the negotiated
capabilities indicate that baseline text start positioning is allowed (i.e. in legacy mode the negotiated
Order.textFlags capability Baseline Start bit flag is set; in base mode the negotiated
Order.baselineStartFlag capability is TRUE). Where that is the case it shall set the order textFlags1
parameter Baseline Start bit flag, and set the order startX and startY as the position of the first
character cell's (left, baseline) pixel. Otherwise, where the negotiated capabilities indicate that
baseline text start positioning is not allowed, it shall clear the order textFlags1 parameter Baseline
Start bit flag and set startX and startY as the position of the first character cell's (left, top) pixel.

Certain terminal types allow applications to dynamically specify text attributes to fonts at drawing
time, in addition to those attributes that are inherent to the font. For example, if a local terminal
supports a Courier Bold font, then it may allow its applications to draw using that font in association
with an italic attribute to achieve an emulated "Courier Bold Italic" (which may be different in
appearance to the actual Courier Bold Italic corresponding to the available Courier Bold font). Where
the local terminal supports dynamic text attributes in this manner, a sending ASCE may use the
textFlags1 parameter Italic, Underline and StrikeOut bit flags and the fontWeight parameter (alone or
in combination) to indicate that receiving ASCEs should apply the corresponding attributes to the
drawn text.

An ASCE receiving an Extended Text order draws the text string codepoints on the virtual desktop,
subject to any bounds clipping, as follows:

• The characters are drawn in the foregroundColor. If the order's textFlags2 Opaque Rectangle
bit flag is set, the order clip rectangle is drawn in the backgroundColor. If the order's
textFlags2 Opaque Rectangle bit flag is not set, and the backMixMode is Opaque, the
character cell backgrounds are drawn in the backgroundColor.

• Where the order's textFlags1 parameter Baseline Start bit flag is set, startX and startY are the
position of the first character cell's (left, baseline) pixel. Otherwise, startX and startY are the
position of the first character cell's (left, top) pixel.

• If the order's textFlag2 parameter DeltaXPresent bit flag is set, the characters are positioned
using the delta X values provided in the deltaXList parameter. If not, the characters are
positioned with any extraSpacing applied to all characters and any break spacing (equal to
breakTotalSpacing divided by breakCount) applied to the break character.

 Recommendation T.128 (02/98) 113

• The characters are drawn in the local font that corresponds to the sending ASCE's FontID,
subject to any additional attributes indicated by the textFlags1 and/or fontWeight parameters.
See 8.8.2 for further information on fonts.

• If the local font is scalable, the characters are drawn at the supplied fontWidth and
fontHeight. Otherwise they are drawn at the width and height inherent in the font.

• The characters are drawn using the supplied fontWeight and as per the Italic, Underline and
StrikeOut bit flags supplied in the order's textFlags1 parameter.

• If the order's textFlag2 Clip to Rectangle bit flag is set, the characters are clipped to the order
clip rectangle.

See Table 8-73.

Table 8-73/T.128 – Extended Text order

Parameter Description

Primary Order Header The Primary Order Header is described in 8.16.1.

backMixMode This parameter is the background mix mode to use for this Extended Text
order. See 8.16.24 for further information on background mix modes.

startX (Coordinate) This parameter is the start X virtual desktop coordinate for this Extended
Text order.

startY (Coordinate) This parameter is the start Y virtual desktop coordinate for this Extended
Text order. Where the Baseline Start bit flag is set in the textFlags1
parameter, this corresponds to the baseline pixel of the first character cell.
Where the Baseline Start bit flag is not set in the textFlags1 parameter, this
corresponds to the top pixel of the first character cell.

backgroundColor This parameter is the background color to use for this Extended Text order.

foregroundColor This parameter is the foreground color to use for this Extended Text order.

extraSpacing This parameter specifies the additional spacing in pixels to be applied to
individual characters for this Extended Text order. A value of zero
indicates that no additional spacing is to be applied.

totalBreakSpacing This parameter specifies the total of additional spacing in pixels to be
applied to break characters for this Extended Text order. A value of zero
indicates that no break spacing is to be applied.

breakCount This parameter specifies the number of break characters in this Extended
Text order. A value of zero indicates either that no break spacing is to be
applied or there are no break characters in this order.

fontHeight For scalable fonts, this parameter is the height in pixels of the font to use
for this Extended Text order. See clause 8.8 for further information.

fontWidth For scalable fonts, this parameter is the average character width in pixels
of the font to use for this Extended Text order. See 8.8 for further
information.

fontWeight This parameter indicates the weight of the font to use for this Extended
Text order. The allowable values are 0..1000, which are interpreted as:
light ≤ 400< normal ≤ 700< bold. See 8.8 for further information.

114 Recommendation T.128 (02/98)

Table 8-73/T.128 – Extended Text order (concluded)

Parameter Description

textFlags1 This parameter is a set of bit flags indicating the characteristics of the font
to use for this Extended Text order. Defined bit flag values are as follows.

• Italic

• Underline

• StrikeOut

• Baseline Start

fontID This parameter is the sending ASCE's FontID, determined through font
negotiation, to use for this Extended Text order. See 8.8 for further
information on font negotiation and font mapping.

textFlags2 This parameter is a set of bit flags specifying additional options for this
Extended Text order. Defined bit flag values are as follows.

• Opaque Rectangle

• Clip to Rectangle

• DeltaXPresent

clipLeft (Coordinate) This parameter is the left X virtual desktop coordinate of the clip rectangle
for this Extended Text order. Where either of the textFlags2 Opaque
Rectangle or Clip to Rectangle bit flags are not set, this parameter shall be
zero.

clipTop (Coordinate) This parameter is the top Y virtual desktop coordinate of the clip rectangle
for this Extended Text order. Where either of the textFlags2 Opaque
Rectangle or Clip to Rectangle bit flags are not set, this parameter shall be
zero.

clipRight (Coordinate) This parameter is the right X virtual desktop coordinate of the clip
rectangle for this Extended Text order. Where either of the textFlags2
Opaque Rectangle or Clip to Rectangle bit flags are not set, this parameter
shall be zero.

clipBottom (Coordinate) This parameter is the bottom Y virtual desktop coordinate of the clip
rectangle for this Extended Text order. Where either of the textFlags2
Opaque Rectangle or Clip to Rectangle bit flags are not set, this parameter
shall be zero.

codePointList This parameter is a list of codepoints to use for this Extended Text order.
The codepoints shall be in the AS protocol code page. See 8.8.1 for further
information on codepoints and code pages.

deltaXList (Coordinate) This parameter is a list of delta X virtual desktop coordinates to use for this
Extended text order. This parameter is only present where the
DeltaXPresent bit flag is set in the textFlags2 parameter.

nonStandardParameters This parameter is only allowed in the base mode of the AS protocol. It is
an optional list of non-standard parameters allowed only if the
corresponding non-standard capabilities are present in the negotiated
capability set.

8.16.13 Frame

An ASCE shall only send the Frame order where the negotiated capabilities indicate that all other
ASCEs can receive orders (i.e. in legacy mode the negotiated Order.orderFlags capability does not
have the Cannot receive orders bit flag set; in base mode the negotiated Order.receiveOrdersFlag

 Recommendation T.128 (02/98) 115

capability is TRUE) and the Frame order is supported (i.e. in legacy mode the corresponding
negotiated Order.orderSupport capability entry is non-zero; in base mode the negotiated
Order.FrameLevel capability is non-zero).

An ASCE receiving a Frame order performs the ROP3 parameter raster operation on the brush and
the frame border on the virtual desktop, subject to any bounds clipping.

• The outer frame rectangle is defined by the destLeft, destTop, destRight and destBottom
parameters.

• The inner frame rectangle is obtained by adding or subtracting the destWidth and destHeight
parameters to/from the horizontal and vertical edges respectively of the outer frame
rectangle.

See Table 8-74.

Table 8-74/T.128 – Frame order

Parameter Description

Primary Order Header The Primary Order Header is described in 8.16.1.

destLeft (Coordinate) This parameter is the left X virtual desktop coordinate of the destination
rectangle for this Frame order.

destTop (Coordinate) This parameter is the top Y virtual desktop coordinate of the destination
rectangle for this Frame order.

destRight (Coordinate) This parameter is the right X virtual desktop coordinate of the destination
rectangle for this Frame order.

destBottom (Coordinate) This parameter is the bottom Y virtual desktop coordinate of the
destination rectangle for this Frame order.

destWidth (Coordinate) This parameter is the width in pixels of the rectangle vertical borders for
this Frame order.

destHeight (Coordinate) This parameter is the height in pixels of the horizontal rectangle borders
for this Frame order.

ROP3 This parameter is the three-way ROP to use for this Frame order. For
Frame orders, the three-way ROP shall not reference a source. See 8.16.20
for further information on three-way ROPs.

backgroundColor This parameter is the background color to use for this Frame order.

foregroundColor This parameter is the foreground color to use for this Frame order.

brush (Group) This parameter is the brush to use for this Frame order. See 8.16.22 for
further information on brushes.

nonStandardParameters This parameter is only allowed in the base mode of the AS protocol. It is
an optional list of non-standard parameters allowed only if the
corresponding non-standard capabilities are present in the negotiated
capability set.

8.16.14 Rectangle

An ASCE shall only send the Rectangle order where the negotiated capabilities indicate that all other
ASCEs can receive orders (i.e. in legacy mode the negotiated Order.orderFlags capability does not
have the Cannot receive orders bit flag set; in base mode the negotiated Order.receiveOrdersFlag
capability is TRUE) and the Rectangle order is supported (i.e. in legacy mode the corresponding
negotiated Order.orderSupport capability entry is non-zero; in base mode the negotiated
Order.RectangleLevel capability is non-zero).

116 Recommendation T.128 (02/98)

An ASCE receiving a Rectangle order performs two associated operations. It uses the ROP2
parameter raster operation, the brush and (depending on the brush type) the background mix mode to
draw the interior of the rectangle on the virtual desktop, subject to any bounds clipping. It also uses
the ROP2 parameter raster operation, the pen and the background mix mode to draw a bounding line
around the rectangle on the virtual desktop, subject to any bounds clipping.

• The interior of the rectangle is defined by destLeft + 1, destTop + 1, destRight −1 and
destBottom −1.

• The line is defined by the point sequence (destLeft, destTop), (destRight, destTop),
(destRight, destBottom), (destLeft, destBottom), (destLeft, destTop).

See Table 8-75.

Table 8-75/T.128 – Rectangle order

Parameter Description

Primary Order Header The Primary Order Header is described in 8.16.1.

backMixMode This parameter is the background mix mode to use for this Rectangle order.
See 8.16.24 for further information on background mix modes.

destLeft (Coordinate) This parameter is the left X virtual desktop coordinate of the destination
rectangle for this Rectangle order.

destTop (Coordinate) This parameter is the top Y virtual desktop coordinate of the destination
rectangle for this Rectangle order.

destRight (Coordinate) This parameter is the right X virtual desktop coordinate of the destination
rectangle for this Rectangle order.

destBottom (Coordinate) This parameter is the bottom Y virtual desktop coordinate of the
destination rectangle for this Rectangle order.

backGroundColor This parameter is the background color to use for this Rectangle order.

foregroundColor This parameter is the foreground color to use for this Rectangle order.

brush (Group) This parameter is the brush to use for this Rectangle order. See 8.16.22 for
further information on brushes.

ROP2 This parameter is the two-way ROP to use for this Rectangle order.
See 8.16.21 for further information on two-way ROPs.

pen (Group) This parameter is the pen to use for this Rectangle order. See 8.16.23 for
further information on pens.

nonStandard Parameters This parameter is only allowed in the base mode of the AS protocol. It is
an optional list of non-standard parameters allowed only if the
corresponding non-standard capabilities are present in the negotiated
capability set.

8.16.15 Opaque Rectangle

An ASCE shall only send the Opaque Rectangle order where the negotiated capabilities indicate that
all other ASCEs can receive orders (i.e. in legacy mode the negotiated Order.orderFlags capability
does not have the Cannot receive orders bit flag set; in base mode the negotiated
Order.receiveOrdersFlag capability is TRUE) and the Opaque Rectangle order is supported (i.e. in
legacy mode the corresponding negotiated Order.orderSupport capability entry is non-zero; in base
mode the negotiated Order.OpaqueRectangleLevel capability is non-zero).

An ASCE receiving an Opaque Rectangle order fills the destination rectangle on the virtual desktop
with the supplied color, subject to any bounds clipping. See Table 8-76.

 Recommendation T.128 (02/98) 117

Table 8-76/T.128 – Opaque Rectangle order

Parameter Description

Primary Order Header The Primary Order Header is described in 8.16.1.

destLeft (Coordinate) This parameter is the left X virtual desktop coordinate of the destination
rectangle for this Opaque Rectangle order.

destTop (Coordinate) This parameter is the top Y virtual desktop coordinate of the destination
rectangle for this Opaque Rectangle order.

destWidth (Coordinate) This parameter is the width in pixels of the rectangle for this Opaque
Rectangle order.

destHeight (Coordinate) This parameter is the height in pixels of the rectangle for this Opaque
Rectangle order.

color This parameter is the color to use for this Opaque Rectangle order.

nonStandardParameters This parameter is only allowed in the base mode of the AS protocol. It is
an optional list of non-standard parameters allowed only if the
corresponding non-standard capabilities are present in the negotiated
capability set.

8.16.16 Line

An ASCE shall only send the Line order where the negotiated capabilities indicate that all other
ASCEs can receive orders (i.e. in legacy mode the negotiated Order.orderFlags capability does not
have the Cannot receive orders bit flag set; in base mode the negotiated receiveOrdersFlag capability
is TRUE) and the Line order is supported (i.e. in legacy mode the corresponding negotiated
Order.orderSupport entry is non-zero; in base mode the negotiated Order.LineLevel capability is non-
zero).

An ASCE receiving a Line order uses the ROP2 parameter raster operation, the pen and the
background mix mode to draw a line from startX, startY to endX, endY on the virtual desktop,
subject to any bounds clipping. Note that the line foreground color is specified in the pen. See
Table 8-77.

Table 8-77/T.128 – Line order

Parameter Description

Primary Order Header The Primary Order Header is described in 8.16.1.

backMixMode This parameter is the background mix mode to use for this Line order.
See 8.16.24 for further information on background mix modes.

startX (Coordinate) This parameter is the start X virtual desktop coordinate for this Line order.

startY (Coordinate) This parameter is the start Y virtual desktop coordinate for this Line order.

endX (Coordinate) This parameter is the end X virtual desktop coordinate for this Line order.

endY (Coordinate) This parameter is the end Y virtual desktop coordinate for this Line order.

backgroundColor This parameter is the background color to use for this Line order.

ROP2 This parameter is the two-way ROP to use for this Line order. See 8.16.21
for further information on two-way ROPs.

pen (Group) This parameter is the pen to use for this Line order. See 8.16.23 for further
information on pens.

nonStandardParameters This parameter is only allowed in the base mode of the AS protocol. It is
an optional list of non-standard parameters allowed only if the
corresponding non-standard capabilities are present in the negotiated
capability set.

118 Recommendation T.128 (02/98)

8.16.17 Desktop Save

A terminal window manager (if present) may provide local operations to save and restore local
desktop areas, either automatically or under local application control, to enhance performance for
typical application scenarios. This feature is referred to as "save/restore" or as "save-under". For
example:

• a user drops down a menu that obscures a portion of the application's own window (area A);

• the user then selects a menu item that opens a dialogue (and dismisses the menu) that
obscures a different portion of the application window (area B);

• the user then selects a dialogue button that opens a further overlapping dialogue that
obscures some of the first dialogue and/or a different portion of the application window
(area C);

• the user then dismisses both dialogues.

Where the window manager provides a save/restore mechanism, area A is saved when the menu
drops down and restored when it is dismissed. Similarly, area B is saved when the first dialogue
window is created, area C is saved when the second dialogue window is created, and then areas C
and B are restored as their respective dialogue windows are destroyed. Note that multiple areas may
be saved concurrently, but that the sequencing of saves and restores is such that they behave as a
last-in, first-out stack.

Using save/restores is often significantly faster than forcing a window manager and/or application
repaint of the obscured areas. The Desktop Save order allows an ASCE to propagate local
save/restores to other ASCEs and often provides significant AS protocol performance benefits.

The desktop save mechanism requires that each supporting ASCE allocates a desktop cache for each
other hosting ASCE to contain saved areas. Where a save occurs that affects hosted application(s) on
a particular ASCE, that ASCE sends a Desktop Save order to all other ASCEs, specifying the area to
be saved, whereupon receiving ASCEs save the corresponding area from the virtual desktop to the
desktop cache. When the corresponding restore occurs, the ASCE sends a Desktop Save order to all
other ASCEs, specifying the area to be restored, whereupon the receiving ASCEs restore the
corresponding area from the desktop cache to the virtual desktop.

The desktop cache is logically organized as a set of tiles, the size of which are a specific X and Y
granularity. The preferred granularity for a particular ASCE depends on the relative efficiency of
save and restores for different size tiles between the virtual desktop and the desktop cache and the
degree of memory wastage as the tile size increases. However, while a particular ASCE may
advertise its preferred granularities, those values are negotiated, and the ASCE has to be prepared to
receive Desktop Save orders constructed with respect to larger (and possibly less efficient) values.
See Appendix I for details of informative values for desktop cache sizing and granularity.

A Desktop Save order specifies an action (which is either save or restore), the area to save/restore (as
a rectangle) and a pixel offset into the desktop cache. The sending ASCE calculates the pixel offset
based on the previous usage of the other ASCEs' desktop cache and the negotiated X and Y
granularity as follows:

 for each Desktop save order: at initialization, set the accumulated pixel offset to zero;

calculate the pixels required for this save/restore as follows: the pixel offset for the order is
the accumulated pixel offset

 area width in pixels = ((area width in pixels + (negotiated X granularity-1)) div
 negotiated X granularity) * negotiated X granularity;

 Recommendation T.128 (02/98) 119

 area height in pixels = ((area height in pixels + (negotiated Y granularity-1)) div
 negotiated Y granularity) * negotiated Y granularity;

 pixels required for this area = area width in pixels * area height in pixels;

 if this is a save operation, add the pixels required for this area to the accumulated pixel
offset;

 if this is a restore operation, subtract the pixels required for this area to the accumulated
pixel offset.

An ASCE shall only send the Desktop Save order where the negotiated capabilities indicate that all
other ASCEs can receive orders (i.e. in legacy mode the negotiated Order.orderFlags capability does
not have the Cannot receive orders bit flag set; in base mode the negotiated Order.receiveOrdersFlag
capability is TRUE) and the Desktop Save order is supported (i.e. in legacy mode the corresponding
negotiated Order.orderSupport capability entry is non-zero; in base mode the negotiated
Order.DesktopSaveLevel capability is non-zero).

Where the sending ASCE detects that another ASCE’s desktop cache is full, then it shall not send
further Desktop Save orders until it can restore areas already in the desktop cache. This may require
that it takes locally dependent action on its terminal to emulate the save operation and/or force a local
repaint on the restore. See Table 8-78.

Table 8-78/T.128 – Desktop Save order

Parameter Description

Primary Order Header The Primary Order Header is described in 8.16.1.

saveOffset This parameter is the pixel offset within the receiving ASCE’s desktop
cache to use for this Desktop Save order action.

desktopLeft (Coordinate) This parameter is the left X virtual desktop coordinate of the desktop
rectangle for this Desktop Save order action.

desktopTop (Coordinate) This parameter is the top Y virtual desktop coordinate of the desktop
rectangle for this Desktop Save order action.

desktopRight (Coordinate) This parameter is the right X virtual desktop coordinate of the desktop
rectangle for this Desktop Save order action.

desktopBottom (Coordinate) This parameter is the bottom Y virtual desktop coordinate of the
destination rectangle for this Desktop Save order action.

action This parameter identifies this Desktop Save order action. The allowable
values are DesktopSave and DesktopRestore.

nonStandardParameters This parameter is only allowed in the base mode of the AS protocol. It is
an optional list of non-standard parameters allowed only if the
corresponding non-standard capabilities are present in the negotiated
capability set.

8.16.18 Desktop Origin

Where an ASCE’s local desktop is smaller than the virtual desktop, then an ASCE may provide
locally-defined mechanisms to scroll the local desktop over the virtual desktop, so that an end user
can view and control shadow windows hosted on ASCEs with larger desktops. This mechanism is
referred to as desktop scrolling.

Where an ASCE implements desktop scrolling, the local desktop behaves as a viewport onto the
virtual desktop and the local desktop origin may be offset from the virtual desktop origin.

120 Recommendation T.128 (02/98)

Where an ASCE is hosting windows and its local desktop origin is not coincident with the virtual
desktop origin, it shall send a Desktop Origin order to inform other active ASCEs of its desktop
origin in virtual desktop coordinates – that is, with respect to the virtual desktop origin. This
mechanism ensures that an ASCE always knows the desktop origin that applies for each incoming
ASPDU and for each order within an UpdatePDU (Orders) from each ASCE.

An ASCE shall ensure that it sends a Desktop Origin order before sending any ASPDUs containing
virtual desktop coordinates that are calculated with respect to that desktop origin.

An ASCE shall ensure that where it sends a Desktop Origin order, then any virtual desktop
coordinates sent preceding that Desktop Origin order are calculated with reference to the old desktop
origin and any virtual desktop coordinates sent following that Desktop Origin order are calculated
with reference to the new desktop origin. This condition may require that an ASCE flush orders
and/or other ASPDUs before or after sending a Desktop Origin order.

An ASCE may use Desktop Origin orders from a particular ASCE to implement a desktop scrolling
mechanism for shadow windows hosted by that ASCE, by subtracting the sending ASCE's desktop
origin from virtual desktop coordinates in incoming ASPDUs.

In the legacy mode of the AS protocol, an ASCE shall only send the Desktop Origin order where the
negotiated Order.orderSupport capability entry for the Screen Blt order is non-zero. In the base mode
of the AS protocol, an ASCE shall only send the Desktop Origin order where the negotiated
capabilities indicate that all other ASCEs can receive orders (i.e. the negotiated
Order.receiveOrdersFlag capability is TRUE) and the Desktop Origin order is supported (i.e. the
negotiated Order.DesktopOriginLevel capability is non-zero). See Table 8-79.

Table 8-79/T.128 – Desktop Origin order

Parameter Description

Primary Order Header The Primary Order Header is described in 8.16.1.

desktopOriginX (Coordinate) This parameter is the X virtual desktop coordinate of the sending
ASCE’s local desktop origin.

desktopOriginY (Coordinate) This parameter is the Y virtual desktop coordinate of the sending
ASCE’s local desktop origin.

nonStandardParameters This parameter is only allowed in the base mode of the AS protocol. It
is an optional list of non-standard parameters allowed only if the
corresponding non-standard capabilities are present in the negotiated
capability set.

8.16.19 Color Space

In the base mode of the AS protocol, an ASCE may use the Color Space order to specify the color
space that is in effect for subsequent orders and provide optional color accuracy information. An
ASCE may also use the Color Space order to restore the default color space – RGB with no color
accuracy information. The Color Space order is not supported in the legacy mode of the AS protocol.

An ASCE shall only send the Color Space order in the base mode of the AS protocol, where the
negotiated capabilities indicate that all other ASCEs can receive orders (i.e. the negotiated
Order.receiveOrdersFlag capability is TRUE) and the Color Space order is supported (i.e. the
negotiated Order.ColorSpaceLevel capability is non-zero).

An ASCE receiving a Color Space order should make best efforts to interpret subsequent order color
information with respect to the color space specified in the Color Space order. See Table 8-80.

 Recommendation T.128 (02/98) 121

Table 8-80/T.128 – Color Space order

Parameter Description

colorSpace This parameter is the color space and optional color accuracy information
to use when interpreting subsequent orders.

nonStandardParameters This parameter is an optional list of non-standard parameters allowed only
if the corresponding non-standard capabilities are present in the negotiated
capability set.

8.16.20 Three-Way ROPs

Three-way ROPs are ternary raster-operation codes used by the following orders.

• Destination Blt: See 8.16.4.

• Pattern Blt: See 8.16.5.

• Screen Blt See 8.16.6.

• Memory Blt: See 8.16.9.

• Memory Three Way Blt: See 8.16.10.

• Frame: See 8.16.13.

Ternary raster operation codes define the combination of the bits in a source bitmap and a brush (also
known as a pattern) with the bits in a destination bitmap. They are bit-wise operations acting on
individual bits without color interpretation, where the bits may be part of palette indices or direct
color values.

The following are the three operands used in these operations.

• D Destination bitmap

• P Selected brush (also called a pattern or stipple)

• S Source bitmap.

The following are the boolean operators used in these operations.

• a Bit-wise AND

• n Bit-wise NOT (inverse)

• o Bit-wise OR

• x Bit-wise exclusive OR (XOR).

All combinations of boolean operations can be presented in Reverse Polish notation. For example,
the following operation replaces the bits in the destination bitmap with a bit-wise OR of the bits in
the source and brush:

 PSo

Again, the following operation bit-wise ORs the bits in the source and brush with the bits in the
destination bitmap:

 DPSoo

Each raster operation code is a single octet value that represents the result of the boolean operation
on predefined brush, source, and destination values. For example, the raster operation codes for the
PSo and DPSoo operations are shown in the following list:

122 Recommendation T.128 (02/98)

Source values Generated values

P S D PSo DPSoo

0 0 0 0 0

0 0 1 0 1

0 1 0 1 1

0 1 1 1 1

1 0 0 1 1

1 0 1 1 1

1 1 0 1 1

1 1 1 1 1

 ⇒ 0xFC ⇒ 0xFE

In this case, PSo has the raster operation code 0xFC (reading the generated bit values as an octet with
the least significant bit at the top); DPSoo has the raster operation code 0xFE.

The raster operation codes can be interpreted directly to determine if the ternary raster operation
references a source, pattern or destination operand, as follows:

• ternary raster operation does not reference a pattern: bits 0..3 = bits 4..7;

• ternary raster operation does not reference a source: bits 0, 1, 4, 5 = bits 2, 3, 6, 7;

• ternary raster operation does not reference a destination: bits 0, 2, 4, 6 = bits 1, 3, 5, 7.

The full list of 256 ternary raster operation codes is shown in Table 8-81, with the Reverse Polish
definition for each code5.

Note that, because raster operations act directly on bit values, without color interpretation, the results
of raster operations may not deliver predictable color effects when applied on different ASCEs. This
may be particularly noticeable for raster operations that reference a destination operand, such as
destination invert (i.e. Dn or ROP code 0x55 – see below) which is often used to implement "rubber-
band" effects). If a hosted application uses a raster operation of this type, where the hosting ASCE is
running on a terminal using a different local color depth and/or color model and where the local
operation is sent as an order, then the resultant color(s) may be very different between the hosting
ASCE and other ASCEs.

Consider two ASCEs participating in application sharing within a conference, where ASCE A is
hosting applications. ASCE A's local terminal uses a 8 bits-per-pixel palettized RGB color model
whereas ASCE B's local terminal uses a 4 bits-per-pixel palettized RGB color model. While the
difference in color depths will affect the negotiated Bitmap.sendingBitsPerPixel and therefore the
color depth of palette and colortable information sent from ASCE A to ASCE B, at some point
ASCE B has to map the protocol color information, orders and bitmap data onto its local terminal
display, which is 4 bits-per-pixel. The following example omits intermediate mapping stages
(e.g. from the protocol information to any receiving cache to the local terminal display) and
concentrates on the net color mapping as it affects destination raster operations.

5 There are alternative Reverse Polish spellings of the same raster operation code, so although a particular

spelling may not be in the table, an equivalent form is present. For example, DSa is equivalent to SDa.

 Recommendation T.128 (02/98) 123

• A color-aware application running on ASCE A's local terminal adds colors to a portion of
the local terminal palette, such that its 8 bits-per-pixel palette contains (among others) the
following entries:

– palette index 0x63 ⇒ RGB <204,0,102> ("violet red");

– palette index 0x9C ⇒ RGB <204,204,204> ("light grey").

• ASCE's B local terminal does not permit application palette management. Its 4 bits-per-pixel
palette contains (among others) the following entries:

– palette index 0x1 ⇒ RGB <128,0,0> ("dark red");

– palette index 0xE ⇒ RGB <0,255,255> ("cyan").

• An application on ASCE's local terminal fills an area of a hosted window to RGB
<204,0,102> using a local graphics operation. The local terminal graphics system generates
an area of screen pixels containing palette index 0x63 ("violet red").

• ASCE A sends a Pattern Blt order for that area, using the raster operation 0xCC (S) and
foreground color RGB <204,0,102>. This assumes a one-to-one mapping between local
color information and the protocol (which is not necessarily always the case).

• ASCE B draws the Pattern Blt order to the local terminal display, generating an area of
screen pixels containing palette index 0x1 ("dark red"). The color mapping may be an
explicit mapping by ASCE B or may rely on a local color mapping provided by the local
terminal.

• The application on ASCE A's local terminal then inverts the filled area using a local graphics
operation. This results in the area of screen pixels being inverted to 0x9C ("light grey").

• ASCE A sends a Destination Blt order for the area, using the raster operation 0x55 (Dn).

• ASCE B draws the Destination Blt order to the local terminal display. This results in the area
of screen pixels being inverted to 0xE ("cyan").

This (admittedly somewhat artificial) example illustrates that, while the initial color mapping from
"violet red" to "dark red" is reasonable, within the constraints of the local terminal's color models,
"cyan" is not a good mapping for "light grey" – the effect of the destination raster operation is to
arbitrarily move color values (by changing the color indices directly) without reference to color
mappings. In practice, the extent of destination raster operation artefacts depends on the particular
local terminal palettes in use – where both local terminals are using linear palettes (of the kind that
are typically used as default local terminal palettes) artefacts are relatively benign, but where one or
more local terminals or their local applications are using non-linear palettes or explicitly
manipulating the local terminal palette contents, destination raster operation artefacts may be
significant.

While the above discussion indicates that application sharing introduces additional color fidelity
issues through the use of orders containing raster operations referencing a destination operand, the
extent of those issues is terminal- and application-dependent. However, sending such operations as
orders rather than bitmap data typically delivers significantly better performance. Therefore, ASCEs
are recommended to provide local terminal mechanisms whereby users can enable or disable the
sending of orders containing raster operations referencing a destination operand, so that users can
choose between color fidelity and/or performance on a per-terminal and/or application basis. See
Table 8-81.

124 Recommendation T.128 (02/98)

Table 8-81/T.128 – Three-Way ROPs definition

ROP Code
(Hexadecimal)

Reverse polish

00 0
01 DPSoon
02 DPSona
03 PSon
04 SDPona
05 DPon
06 PDSxnon
07 PDSaon
08 SDPnaa
09 PDSxon
0A DPna
0B PSDnaon
0C SPna
0D PDSnaon
0E PDSonon
0F Pn
10 PDSona
11 DSon
12 SDPxnon
13 SDPaon
14 DPSxnon
15 DPSaon
16 PSDPSanaxx
17 SSPxDSxaxn
18 SPxPDxa
19 SDPSanaxn
1A PDSPaox
1B SDPSxaxn
1C PSDPaox
1D DSPDxaxn
1E PDSox
1F PDSoan
20 DPSnaa
21 SDPxon
22 DSna
23 SPDnaon
24 SPxDSxa
25 PDSPanaxn
26 SDPSaox
27 SDPSxnox
28 DPSxa
29 PSDPSaoxxn

 Recommendation T.128 (02/98) 125

Table 8-81/T.128 – Three-Way ROPs definition (continued)

ROP Code
(Hexadecimal)

Reverse polish

2A DPSana
2B SSPxPDxaxn
2C SPDSoax
2D PSDnox
2E PSDPxox
2F PSDnoan
30 PSna
31 SDPnaon
32 SDPSoox
33 Sn
34 SPDSaox
35 SPDSxnox
36 SDPox
37 SDPoan
38 PSDPoax
39 SPDnox
3A SPDSxox
3B SPDnoan
3C PSx
3D SPDSonox
3E SPDSnaox
3F PSan
40 PSDnaa
41 DPSxon
42 SDxPDxa
43 SPDSanaxn
44 SDna
45 DPSnaon
46 DSPDaox
47 PSDPxaxn
48 SDPxa
49 PDSPDaoxxn
4A DPSDoax
4B PDSnox
4C SDPana
4D SSPxDSxoxn
4E PDSPxox
4F PDSnoan
50 PDna
51 DSPnaon
52 DPSDaox
53 SPDSxaxn
54 DPSonon

126 Recommendation T.128 (02/98)

Table 8-81/T.128 – Three-Way ROPs definition (continued)

ROP Code
(Hexadecimal)

Reverse polish

55 Dn
56 DPSox
57 DPSoan
58 PDSPoax
59 DPSnox
5A DPx
5B DPSDonox
5C DPSDxox
5D DPSnoan
5E DPSDnaox
5F DPan
60 PDSxa
61 DSPDSaoxxn
62 DSPDoax
63 SDPnox
64 SDPSoax
65 DSPnox
66 DSx
67 SDPSonox
68 DSPDSonoxxn
69 PDSxxn
6A DPSax
6B PSDPSoaxxn
6C SDPax
6D PDSPDoaxxn
6E SDPSnoax
6F PDSxnan
70 PDSana
71 SSDxPDxaxn
72 SDPSxox
73 SDPnoan
74 DSPDxox
75 DSPnoan
76 SDPSnaox
77 DSan
78 PDSax
79 DSPDSoaxxn
7A DPSDnoax
7B SDPxnan
7C SPDSnoax
7D DPSxnan
7E SPxDSxo
7F DPSaan

 Recommendation T.128 (02/98) 127

Table 8-81/T.128 – Three-Way ROPs definition (continued)

ROP Code
(Hexadecimal)

Reverse polish

80 DPSaa
81 SPxDSxon
82 DPSxna
83 SPDSnoaxn
84 SDPxna
85 PDSPnoaxn
86 DSPDSoaxx
87 PDSaxn
88 DSa
89 SDPSnaoxn
8A DSPnoa
8B DSPDxoxn
8C SDPnoa
8D SDPSxoxn
8E SSDxPDxax
8F PDSanan
90 PDSxna
91 SDPSnoaxn
92 DPSDPoaxx
93 SPDaxn
94 PSDPSoaxx
95 DPSaxn
96 DPSxx
97 PSDPSonoxx
98 SDPSonoxn
99 DSxn
9A DPSnax
9B SDPSoaxn
9C SPDnax
9D DSPDoaxn
9E DSPDSaoxx
9F PDSxan
A0 DPa
A1 PDSPnaoxn
A2 DPSnoa
A3 DPSDxoxn
A4 PDSPonoxn
A5 PDxn
A6 DSPnax
A7 PDSPoaxn
A8 DPSoa
A9 DPSoxn

128 Recommendation T.128 (02/98)

Table 8-81/T.128 – Three-Way ROPs definition (continued)

ROP Code
(Hexadecimal)

Reverse polish

AA D
AB DPSono
AC SPDSxax
AD DPSDaoxn
AE DSPnao
AF DPno
B0 PDSnoa
B1 PDSPxoxn
B2 SSPxDSxox
B3 SDPanan
B4 PSDnax
B5 DPSDoaxn
B6 DPSDPaoxx
B7 SDPxan
B8 PSDPxax
B9 DSPDaoxn
BA DPSnao
BB DSno
BC SPDSanax
BD SDxPDxan
BE DPSxo
BF DPSano
C0 PSa
C1 SPDSnaoxn
C2 SPDSonoxn
C3 PSxn
C4 SPDnoa
C5 SPDSxoxn
C6 SDPnax
C7 PSDPoaxn
C8 SDPoa
C9 SPDoxn
CA DPSDxax
CB SPDSaoxn
CC S
CD SDPono
CE SDPnao
CF SPno
D0 PSDnoa
D1 PSDPxoxn
D2 PDSnax
D3 SPDSoaxn
D4 SSPxPDxax

 Recommendation T.128 (02/98) 129

Table 8-81/T.128 – Three-Way ROPs definition (concluded)

ROP Code
(Hexadecimal)

Reverse polish

D5 DPSanan
D6 PSDPSaoxx
D7 DPSxan
D8 PDSPxax
D9 SDPSaoxn
DA DPSDanax
DB SPxDSxan
DC SPDnao
DD SDno
DE SDPxo
DF SDPano
E0 PDSoa
E1 PDSoxn
E2 DSPDxax
E3 PSDPaoxn
E4 SDPSxax
E5 PDSPaoxn
E6 SDPSanax
E7 SPxPDxan
E8 SSPxDSxax
E9 DSPDSanaxxn
EA DPSao
EB DPSxno
EC SDPao
ED SDPxno
EE DSo
EF SDPnoo
F0 P
F1 PDSono
F2 PDSnao
F3 PSno
F4 PSDnao
F5 PDno
F6 PDSxo
F7 PDSano
F8 PDSao
F9 PDSxno
FA Dpo
FB DPSnoo
FC Pso
FD PSDnoo
FE DPSoo
FF 1

130 Recommendation T.128 (02/98)

8.16.21 Two-Way ROPs

Two-way ROPs are binary raster-operation codes used by the following orders:

• Rectangle See 8.16.14.

• Line See 8.16.16.

Binary raster operation codes define the combination of the bits in a pen or brush with the bits in a
destination bitmap. They are bit-wise operations acting on individual bits without color
interpretation, where the bits may be part of palette indices or direct color values.

The following are the two operands used in these operations.

• D Destination bitmap

• P Pen (or brush).

The following are the boolean operators used in these operations.

• a Bit-wise AND

• n Bit-wise NOT (inverse)

• o Bit-wise OR

• x Bit-wise exclusive OR (XOR).

All combinations of boolean operations can be presented in Reverse Polish notation. For example,
the following operation replaces bits in the destination bitmap with a bit-wise OR of bits in the
destination bitmap and the pen/brush.

 DPo

Each binary raster operation code is a single octet value consisting of the result of the boolean
operation on predefined pen/brush and destination values, which is then incremented by one. For
example, the raster operation codes for the DPo and DPan operations are shown in the following list:

Source Values Generated Values

P D DPo DPan

0 0 0 1

1 1 1 1

1 0 1 1

1 1 1 0

 ⇒ 0x0E + 1 ⇒ 0x07 + 1

In this case, DPo has the raster operation code 0x0F (reading the generated bit values as an octet with
the least significant bit at the top – and then incrementing); DPan has the raster operation code 0x08.

Note that, because raster operations act directly on bit values, without color interpretation, the results
of raster operations may not deliver predictable color effects when applied on different ASCEs. This
may be particularly noticeable for raster operations that reference a destination operand, such as
destination invert (i.e. Dn or ROP code 0x6 – see below) which is often used to implement "rubber-
band" effects). If a hosted application uses a raster operation of this type, where the hosting ASCE is
running on a terminal using a different local color depth and/or color model and where the local
operation is sent as an order, then the resultant color(s) may be very different between the hosting
ASCE and other ASCEs. See 8.16.20 for further discussion.

 Recommendation T.128 (02/98) 131

The full list of 16 binary raster operation codes is shown in Table 8-82, with the Reverse Polish
definition for each code6.

Table 8-82/T.128 – Two-Way ROPs Definition

ROP code
(Hexadecimal)

Reverse polish

01 0
02 DPon
03 DPna
04 Pn
05 PDna
06 Dn
07 DPx
08 DPan
09 DPa
0A DPxn
0B D
0C DPno
0D P
0E PDno
0F DPo
10 1

8.16.22 Brushes

Brushes (also known as patterns) are used to paint interior areas. They are used by the following
orders:

• Pattern Blt: See 8.16.5.

• Memory Three Way Blt: See 8.16.10.

• Frame: See 8.16.13.

• Rectangle: See 8.16.14.

The brush parameters are subject to order parameter encoding. See 8.16.3.3 for further information.
See Table 8-83.

6 There are alternative Reverse Polish spellings of the same raster operation code, so although a particular

spelling may not be in the table, an equivalent form is present. For example, DPx is equivalent to PDx.

132 Recommendation T.128 (02/98)

Table 8-83/T.128 – Brush definition

Parameter Description

originX This parameter is ignored where the brush type is solid or null. Where
the brush type is hatch or pattern, this parameter is the X coordinate of
the brush origin.

originY This parameter is ignored where the brush type is solid or null. Where
the brush type is hatch or pattern, this parameter is the Y coordinate of
the brush origin.

style This parameter indicates the style to use for this brush. Allowable
values are as follows:

• Solid brush The interior area is painted using the order
foreground color and the ROP2 or ROP3 in the
order.

• Null brush The brush does not contribute to the painting of the
interior area.

• Hatched brush The interior area is painted using the brush hatch
style in the order foreground and background colors,
with respect to the brush origin and using the ROP2
or ROP3 in the order.

• Pattern brush The interior area is painted using the brush pattern in
the order foreground and background colors, with
respect to the brush origin and using the ROP2 or
ROP3 in the order.

hatch Where the style parameter indicates a hatched brush, this parameter
indicates the hatch style to use for this brush. Allowable values are as
follows:

 • Horizontal hatch

 • Vertical hatch

 • Forward Diagonal hatch

 • Backward Diagonal hatch

 • Cross hatch

 • Diagonal Cross hatch

 Where the style parameter indicates a pattern brush, this parameter is
the first octet of the pattern.

pattern Where the style parameter indicates a pattern brush, this parameter
contains octets two through eight of the pattern.

nonStandardBrushParameters This parameter is only allowed in the base mode of the AS protocol. It
is an optional list of non-standard brush parameters allowed only if the
corresponding non-standard capabilities are present in the negotiated
capability set.

Table 8-84 shows how the various brush hatch styles appear when used to paint the interior of a
rectangle.

 Recommendation T.128 (02/98) 133

Table 8-84/T.128 – Brush hatch styles

T1605260-98

Backward diagonal Forward diagonal

Cross Horizontal

Diagonal cross Vertical

8.16.22.1 Brush patterns

A brush pattern consists of a bicolor 8 pixel by 8 pixel bitmap, where one bits are drawn in the
background color and zero bits are drawn in the foreground color.

The pattern bits are sent as 8 octets of uncompressed bitmap data, arranged so that pixel x, y is in
octet y + 1, bit position (x mod 8). The first octet is sent in the hatch parameter and octets two
through eight are sent in the pattern parameter.

8.16.22.2 Brush origin

When a hatch or pattern brush is used to paint an interior area, the brush is replicated to fill the area,
with respect to the brush origin. The brush origin defines the position of the brush (top, left) pixel on
the virtual desktop from which replication should start. The brush replication process can be
summarized as follows:

• position the brush (top, left) pixel at the brush origin on the virtual desktop;

• copy the brush horizontally and vertically throughout the virtual desktop, clipping to the
interior area.

8.16.23 Pens

Pens are used to paint lines. They are used by the following orders:

• Rectangle: See 8.16.14.

• Line: See 8.16.16.

The AS protocol supports the following pen types:

• Solid.

• Dashed.

• Dotted.

• Dash-Dot.

• Dash-Dot-Dot.

• Null.

The pen parameters are subject to order parameter encoding. See 8.16.3.3 for further information.
See Table 8-85.

134 Recommendation T.128 (02/98)

Table 8-85/T.128 – Pen definition

Parameter Description

style This parameter indicates the style to use for this pen. Allowable values are
as follows:

 • Solid pen

 • Dashed pen

 • Dotted pen

 • Dash-Dot pen

 • Dash-Dot-Dot pen

 • Null pen

width This parameter indicates the width to use for the pen. The allowable value
is 1.

color This parameter is the color to use for the pen.

nonStandardPenParameters This parameter is only allowed in the base mode of the AS protocol. It is
an optional list of non-standard pen parameters allowed only if the
corresponding non-standard capabilities are present in the negotiated
capability set.

For a solid pen, all pixels along the path of the line are drawn using the designated pen color and the
ROP2 in the order.

For dashed, dotted, dash-dot or dash-dot-dot pens, the line is drawn using a foreground/background
pixel sequence determined by the pen style, where:

• foreground pixels are drawn using the pen foreground color and the ROP2 in the order;

• background pixels are not drawn if the background mix is Transparent (see 8.16.24);

• background pixels are drawn using the order background color and ROP2 if the background
mix is Opaque (see 8.16.24).

For a null pen, no line pixels are drawn.

Table 8-86 shows how the various pen styles appear when used to draw a rectangle border.

Table 8-86/T.128 – Pen styles

T1605270-98

 Recommendation T.128 (02/98) 135

8.16.24 Background mix

A background mix is used in the following orders:

• Text: See 8.16.11.

• Extended Text: See 8.16.12.

• Rectangle: See 8.16.14.

• Line: See 8.16.16.

For the Text and Extended Text orders, the background mix determines whether background pixels
are drawn or not for the text character cells. Where the background mix is Transparent, character cell
background pixels are not drawn. Where the background mix is Opaque (and for the Extended Text
order, an Opaque Rectangle is not required), the character cell background pixels are drawn in the
order's background color.

For the Rectangle and Line orders, the background mix determines whether pen off pixels are drawn
for dashed, dotted, dash-dot and dash-dot-dot pen styles. Where the background mix is Transparent,
pen off pixels are not drawn. Where the background mix is Opaque, the pen off pixels are drawn
using the order's background color and the ROP2 parameter. See 8.16.23 for further information on
pens and 8.16.21 for further information on binary raster operation codes.

For the Rectangle order, the background mix also determines whether interior background pixels are
drawn when a hatched brush is used. For this case, where the background mix is Transparent,
background pixels are not drawn, but, where the background mix is Opaque, background pixels are
drawn using the order's background color and the ROP2 parameter. The background mix does not
affect interior background pixels for other brush styles – for solid brushes, background pixels are not
applicable; for pattern brushes, background pixels are always drawn.

The AS protocol supports the following background mix types. See Table 8-87.

Table 8-87/T.128 – Background mix types

Background mix type Definition

Opaque Background pixels are drawn.

Transparent Background pixels are not drawn.

8.17 Bitmap updates

An ASCE sends bitmap updates to all ASCEs within the conference by sending an UpdatePDU
containing bitmap data in the manner indicated in Table 6-3. The content of the UpdatePDU
containing bitmap data is shown in Table 8-88.

An ASCE shall only send uncompressed bitmap data where the negotiated
Bitmap.sendingBitsPerPixel capability value is one, four or eight. An ASCE shall only send
compressed bitmap data where the negotiated Bitmap.sendingBitsPerPixel capability is four or eight,
and the negotiated Bitmap.bitmapCompressionFlag capability is TRUE. Compressed bitmap data
shall not be sent where the negotiated Bitmap.sendingBitsPerPixel capability is one.

On receipt of an UpdatePDU containing bitmap data, the receiving ASCE (after any required
decompression) performs a copy from (top, left) of the bitmap to (top, left) of the destination
rectangle on the virtual desktop for the destination width and height. Where the bitmap width and/or
height are larger than the destination width and/or height, the receiving ASCE shall clip the bitmap
to the destination rectangle. The ASCE shall interpret bitmap pixel values using the last received
UpdatePDU (Palette) ASPDU. See 8.15 for further information on palettes.

136 Recommendation T.128 (02/98)

Table 8-88/T.128 – UpdatePDU (Bitmap)

Parameter Description

ShareData Header The ShareData Header is described in 8.3.

destLeft This parameter is the left X virtual desktop coordinate of the destination
rectangle for the bitmap data.

destTop This parameter is the top Y virtual desktop coordinate of the destination
rectangle for the bitmap data.

destRight This parameter is the right X virtual desktop coordinate of the destination
rectangle for the bitmap data.

destBottom This parameter is the bottom Y virtual desktop coordinate of the
destination rectangle for the bitmap data.

width This parameter is the width in pixels of the bitmap data. The bitmap width
shall be larger than or equal to the width of the destination rectangle (see
above).

height This parameter is the height in pixels of the bitmap data. The bitmap height
shall be larger than or equal to the height of the destination rectangle (see
above).

bitsPerPixel This parameter is the bits-per-pixel. This parameter shall be the same as the
negotiated Bitmap.sendingBitsPerPixel value. See 8.2.4 for further
information.

compressedFlag This parameter indicates whether the bitmap data (see below) is
compressed or not. A value of TRUE indicates that the bitmap data is
compressed and a value of FALSE that it is not.

bitmapData This parameter is the bitmap data. The bitmap may be uncompressed
(see 8.17.1) or compressed (see 8.17.2).

nonStandardParameters This parameter is only allowed in the base mode of the AS protocol. It is
an optional list of non-standard parameters allowed only if the
corresponding non-standard capabilities are present in the negotiated
capability set.

8.17.1 Uncompressed bitmap data

Uncompressed bitmap data represents the bitmap as a series of rows, where row zero starts at the
highest pixel Y coordinate. That is, row 0 starts at (bottom, left).

Within a row, pixel values are packed into octets, starting from the left-most pixel.

• For 1 bits-per-pixel bitmap data, each octet contains eight pixels, with the left-most pixel in
the most significant bit.

• For 4 bits-per-pixel bitmap data, each octet contains two pixels, with the left-most pixel in
the most significant four bits.

• For 8 bits-per-pixel bitmap data, each octet contains one pixel value.

Each row of bitmap data is padded to a four-octet boundary. This means that the size of a row is:

 ((((bitmap-width-in-pixels * bit-per-pixel) + 31) div 32) * 4) octets.

The total size of the bitmap data is:

 (height-of-bitmap * octets-per-row) octets.

The following diagram illustrates the layout of pixels in uncompressed bitmap data for row 0 of a
15 × 8 bitmap, at 1, 4 and 8 bits-per-pixel respectively.

 Recommendation T.128 (02/98) 137

1 2 3 4 5 6 7 8 9 A B C D E

1 2 3 4 5 6 7 8 9 A B C D E0

0

0

0

1

1

2 3 C D E

E
T1602360-97

Pixel 0, 0
Width = 15

Pixel 14, 0

Row 7

Pixel 0, 7

Row 0

Pixel 14, 7

Height = 8

Row 0: 1 bpp

Row 0: 4 bpp

Row 0: 8 bpp

= 4 octets

= 8 octets

= 16 octets

PAD

PAD

PAD

8.17.2 Compressed bitmap data

For compressed bitmap data, the actual compressed bitmap information is preceded by the
compressed bitmap header described in Table 8-89.

Table 8-89/T.128 – Compressed bitmap header

Parameter Description

mainBodySize This parameter is the length in octets of the compressed bitmap data (after
compression).

rowSize This parameter is the length in octets of a single row of the uncompressed
bitmap data.

uncompressedSize This parameter is the length in octets of the uncompressed bitmap data.

compressedBitmapData This parameter is the compressed bitmap data.

AS protocol bitmap compression is oriented to the compression of window manager data, where runs
may occur in both X and Y. The AS protocol represents a compressed bitmap a sequence of
compression codes, where a particular bitmap may be represented by different valid code sequences.

Compression codes are of two types:

• Difference codes are two-dimensional runs where a series of pixel values are determined by
the compression code and the corresponding pixel values in previous rows. The Fill, Mix,
FillOrMix, SetMix_Mix, SetMix_FillOrMix, FillOrMix_1, and FillOrMix_2 compression
codes (see Table 8-90) are difference codes, which are defined in terms of one or more Fill
and/or Mix operations.

– The Fill operation sets the current pixel in the current row to the corresponding pixel in
the previous row. This is a straightforward copy operation.

– The Mix operation sets the current pixel in the current row to the exclusive OR (XOR)
of the current Mix value and the corresponding pixel in the previous row. The Mix value
defaults to 0xFF (which is set at the start of a compression/decompression pass for each
new bitmap) and may be updated by the SetMix_Mix and SetMix_FillOrMix codes.

138 Recommendation T.128 (02/98)

 Because different codes reference the previous bitmap row, they have defined special case
operations for processing the first row (see the individual code operation definitions in
Table 8-90).

• Color codes are linear runs where a series of pixel values are determined by reference to the
compression code alone. The Color, Copy, CopyPacked, Bicolor, Black and White
compression codes (see Table 8-90) are color codes.

A compression code consists of a code identifier, followed by an optional length field, followed by
optional associated data dependent on the code. A particular compression code may have multiple
encodings, dependent on the size of the length field. See Table 8-90 for further information on
encodings with respect to length.

The length field may be further encoded dependent on the code. See Table 8-91 for further
information on length encodings. Where present, the length (after any required decoding) may
specify the number of octets of associated data and the required repeat.

A receiving ASCE interprets a sequence of bitmap compression codes contained within a
UpdatePDU (Bitmap) to generate a decompressed bitmap (in the format described in 8.17.1), as
follows:

1) Set the initial pixel position to (bottom, left); set the initial Mix value to 0xFF.

2) Decode the next code and calculate its length value (n).

3) Perform the defined code operation for the defined repeat (wrapping to the next row as
necessary).

4) Update the pixel position (wrapping to the next row as necessary).

5) Repeat steps 2 through 4 until all codes processed.

For example, if the current pixel position is pixel 60 in row 6 and the next code is Fill, with encoding
3b<0×0>,5b<len = 8>, the receiving ASCE sets the values of pixel 60..67 to the values in pixels
60..67 in row 5 and updates the pixel position to 68.

Where the original bitmap (prior to compression) contains padding (see 8.17.1), the sending ASCE
shall treat the padding as pixel data for compression purposes. This allows the receiving ASCE to
treat the compression code sequence as referring to a linear series of pixels (independent of padding
considerations).

• Table 8-90 summarizes the encodings, type of length encoding, operation and repeat for each
defined code.

• Table 8-91 summarizes the encoding for each length type.

• Table 8-92 summarizes the notation used in Tables 8-90 and 8-91.

The compressed bitmap data is packed into the compressedBitmapData parameter by filling in
successive bits into each octet beginning with the most significant bit of each field and filling
towards the least significant bit. Where fields are less than an octet, successive fields are filled into
the next free most significant bit. Where a single field occupies two octets, octets are filled in
increasing significance, with the highest-order, or most significant, octet placed in the second octet7.

7 While two octet fields have octets filled in increasing significance, the constituent bits within each octet

continue to be filled beginning with the most significant bit of each field and filling towards the least
significant bit.

 Recommendation T.128 (02/98) 139

Table 8-90/T.128 – Bitmap compression codes

Code Encoding Length
type

Operation Repeat

Fill 9 (Note 1) 3b<0x0>,5b<len>
8b<0x00>,8b<len>
8b<0xF0>,16b<len>

A row 1: pixeli ⇐ 0
row 2..H: pixeli ⇐ pixeli,r−1

i = 0..n−1

Mix 3b<0x1>,5b<len>
8b<0x20>,8b<len>
8b<0xF1>,16b<len>

A row 1: pixeli ⇐ mix
row 2..H: pixeli ⇐ pixeli,r−1∧ mix

i = 0..n−1

FillOrMix 3b<0x2>,5b<len>,(n+7)/8<mask>
8b<0x40>,8b<len>,(n+7)/8<mask>
8b<0xF2>,16b<len>,(n+7)/8<mask>

A8 row 1: pixeli ⇐ 0 or
 pixeli ⇐ mix
row 2..H: pixeli ⇐ pixeli,r−1 or
 pixeli ⇐ pixeli,r−1∧ mix

i = 0..n−1
for (n+7)/8
masks

Color 3b<0x3>,5b<len>,<color>
8b<0x60>,8b<len>,<color>
8b<0xF3>,16b<len>,<color>

A pixeli ⇐ color i = 0..n−1

Copy 3b<0x4>,5b<len>,n<color>
8b<0x80>,8b<len>,n<color>
8b<0xF4>,16b<len>,n<color>

A pixeli ⇐ colori i = 0..n−1

CopyPacked
(Note 2)

3b<0x5>,5b<len>,n/2<packed_color>
8b<0xA0>,8b<len>,n/2<packed_color>
8b<0xF5>,16b<len>,n/2<packed_color>

A pixeli*2 ⇐ packed_colori(high),
pixel(i*2)+1 ⇐ packed_colori(low)

i = 0..(n/2)−1

SetMix_Mix 4b<0xC>,4b<len>,<color>
8b<0xC0>,8b<len>,<color>
8b<0xF6>,16b<len>,<color>

B mix ⇐ color,
row 1: pixeli ⇐ mix
row 2..H: pixeli ⇐ pixeli,r–1∧ mix

i = 0..n−1

SetMix_FillOrMix 4b<0xD>,4b<len>,<color>,(n+7)/8<mask>
8b<0xD0>,8b<len>,<color>,(n+7)/8<mask>
8b<0xF7>,16b<len>,<color>,(n+7)/8<mask>

B8 mix ⇐ color,
row 1: pixeli ⇐ 0 or
 pixeli ⇐ mix
row 2..H: pixeli ⇐ pixeli,r−1 or
 pixeli ⇐ pixeli,r−1∧ mix

i = 0..n−1
for (n+7)/8
masks

Bicolor 4b<0xE>,4b<len>,<color1>,<color2>
8b<0xE0>,8b<len>,<color1>,<color2>
8b<0xF8>,16b<len>,<color1>,<color2>

B pixeli*2 ⇐ color1,
pixel(i*2)+1 ⇐ color2

i = 0..n−1

FillOrMix_1 8b<0xF9>{,<mask=0x03>} C row 1: pixeli ⇐ 0 or
 pixeli ⇐ mix
row 2..H: pixeli ⇐ pixeli,r−1 or
 pixeli ⇐ pixeli,r−1∧ mix

i = 0..7 for
1 mask

FillOrMix_2 8b<0xFA>{,<mask=0x05>} C row 1: pixeli ⇐ 0 or
 pixeli ⇐ mix
row 2..H: pixeli ⇐ pixeli,r−1 or
 pixeli ⇐ pixeli,r−1∧ mix

i = 0..7 for
1 mask

White 8b<0xFD> C pixel ⇐ 0xF (4bpp)/0xFF (8bpp) 1

Black 8b<0xFE> C pixel ⇐ 0 1

NOTE 1 – Where this Fill immediately follows another Fill (i.e. there are consecutive adjoining Fill codes), the receiving ASCE
shall insert a single Mix code of encoding 3b<0x1>,5b<len=1>.

NOTE 2 – An ASCE shall only send compressed bitmap data containing the CopyPacked code where the negotiated
Bitmap.sendingBitsPerPixel capability value is four and it is sending four bits-per-pixel compressed bitmap data. See 8.2.4 for
further information.

140 Recommendation T.128 (02/98)

Table 8-91/T.128 – Bitmap compression codes: Length encoding

Length type Range Calculation

A 5b: 1..31 n = len

 8b: 0..255 n = len + 32

 16b: 288..65535 n = len

B 4b: 1..15 n = len

 8b: 0..255 n = len + 16

 16b: 272..65535 n = len

A8 5b: 1..31 n = len * 8

 8b: 0..254 n = len + 1

 16b: 256..65535 n = len

B8 4b: 1..31 n = len * 8

 8b: 0..254 n = len + 1

 16b: 256..65535 n = len

C n/a n = 1

Table 8-92/T.128 – Bitmap compression codes: Legend

Notation Description

nb<f> The field f is n bits in size. For example, Mix may be encoded with an initial 3-bit
field of value 0x1.

<len> The field contains a length of the type specified in the Length column. The extracted
length value (calculated depending on encoding as per Table 8-91) is referred to as n
in the remainder of the encoding and is typically used to specify the number of
following octets of mask, color or packed_color fields and to generate the repeat.

n<f> There are n occurrences of field type f.

<mask> The field contains a mask. A mask is an octet encoding 8 pixels as bits. A one-bit
value indicates the Mix value should be used (see below) and a zero bit value
indicates the Fill value should be used. The pixel to bit encoding is as follows:

 pixels (highest pixel address = 7) ⇒ bits (most significant bit = 7)

 0 1 2 3 4 5 6 7
a b c d e f g h

 7 6 5 4 3 2 1 0
h f d b g e c a

 For example, a mask of 0xAA (i.e. bits 10101010) expands to a series of pixels of
Fill, Fill, Mix, Mix, Fill, Fill, Mix, Mix.

<color> The field contains an octet of color information. For four bits-per-pixel bitmap data,
the most significant four bits should be ignored. The bitmap compression encoding
does not place any interpretation on color values.

<packed_color> The field contains a packed octet of color value. The packed color value is only
allowable for four bits-per-pixel bitmap data, where it consists of two four bit color
values, where the first color is in the most significant four bits and the second color
is in the least significant four bits. The bitmap compression encoding does not place
any interpretation on color values.

<f1>,<f2> Field f1 precedes field f2. For example, Fill may be encoded by a 3-bit field of 0x0,
followed by a 5-bit field giving the length.

 Recommendation T.128 (02/98) 141

Table 8-92/T.128 – Bitmap compression codes: Legend (concluded)

Notation Description

{,<f=value>} Field f with value is implied and is not included by the sending ASCE. For example,
code FillOrMix_1 has an initial octet of 0xF9 which implies mask value 0x03.

p ⇐ e Pixel p is assigned the expression e. For example, the operation for Black is pixel ⇐
black, which replaces the current pixel with the black color value (see below).

p ⇐ e1∧ e2 Pixel p is assigned the bit-wise exclusive OR (XOR) of the two expressions.

op1, op2 Perform operation op1 then operation op2.

op1 or op2 Perform operation op1 for corresponding zero mask bits and operation op2 for
corresponding one mask bits, using the mask pixel to bit encoding (see above).

row 1: op1 or
row 2..H: op2

Perform operation op1 for pixels in the first row of the destination bitmap and
operation op2 for pixels in all other rows.

Pixeli The current pixel in the current row of the destination bitmap. Where the code has a
repeat, i takes the values indicated by the repeat column.

Pixeli,r−1 The corresponding pixel in the previous row of the destination bitmap. Where the
code defines a repeat, i takes the values indicated by the repeat column. For example,
if the current pixel is pixel 35 in row 6, pixeli,r−1 is pixel 35 in row 5.

Mix The current mix value. The mix value is reset to 0xFF at the start of decompression
of a new UpdatePDU (Bitmap) or Cache Bitmap order (see 8.16.7) and is thereafter
set by the SetMix_Mix and/or SetMix_FillOrMix codes.

8.18 Input

Input handling is tightly integrated with conducted mode (if in effect within the conference) and with
the conference control policy. Depending on conductorship and/or control state, the ASCE may or
may not have the right to provide input to hosted or shadow windows within the conference.
See 8.19 for further information on conducted mode and 8.12 and 8.13 for further information on
control mechanisms.

An ASCE may provide input to peer ASCEs within the conference by sending an InputPDU
containing input events in the manner indicated in Table 6-3. The content of the InputPDU is shown
in Table 8-93. Input events may be of one of the following three types:

• Pointing device event: See 8.18.1.

• Keyboard event: See 8.18.2.

• Input Synchronization event: See 8.18.6.

Table 8-93/T.128 – InputPDU

Parameter Description

ShareData Header The ShareData Header is described in 8.3.

eventList This parameter is a list of input events (see below).

nonStandardParameters This parameter is only allowed in the base mode of the AS protocol. It is
an optional list of non-standard parameters allowed only if the
corresponding non-standard capabilities are present in the negotiated
capability set.

142 Recommendation T.128 (02/98)

8.18.1 Pointing device events

Depending on conductorship and control state, an ASCE may queue a pointing device event within
an InputPDU when a local pointing device event occurs. A receiving ASCE shall process pointing
device events with respect to the current local control state and policy. The pointing device event is
described in Table 8-94.

Pointing device events model a three-button pointing device, where:

• Button 1 is the logical left button (commonly used for selection).

• Button 2 is the logical right button.

• Button 3 is the logical middle button.

Certain terminals allow for re-assignment of the local logical to physical pointing device button
mapping, under end-user or programmatic control, such that (for example) the logical left (or
selection) button is swapped to the physical right button. Where such a facility is provided, the
ASCE shall ensure that pointing device events are sent in terms of the logical button assignments.

Pointing device events contain the virtual desktop coordinate of the point where the event occurred.
The sending ASCE is responsible for constraining the event to the virtual desktop. Receiving ASCEs
are responsible for constraining any local pointing device events generated from received pointing
device events to the local desktop.

Table 8-94/T.128 – Pointing device event

Parameter Description

eventTime This parameter is the local ASCE time in milliseconds when this event
occurred.

pointingDeviceFlags This parameter is a set of bit flags identifying and qualifying the pointing
device event. Defined bit flag values are as follows:

 • Move

 • Button 1

 • Button 2

 • Button 3

 • Down

 See below for further information on the interpretation of pointing device
event flags.

pointingDeviceX This parameter is the X virtual desktop coordinate of the pointing device
event.

pointingDeviceY This parameter is the Y virtual desktop coordinate of the pointing device
event.

nonStandardParameters This parameter is only allowed in the base mode of the AS protocol. It is
an optional list of non-standard parameters allowed only if the
corresponding non-standard capabilities are present in the negotiated
capability set.

Table 8-95 describes the usage of the pointing device flags for a three-button pointing device. The
sending ASCE is responsible for setting the pointing device flags in pointing device events.
Receiving ASCEs are responsible for interpreting the pointing device flags with respect to the local
terminal characteristics.

 Recommendation T.128 (02/98) 143

The AS protocol does not support pointing device double click events. Where a double click occurs
on the local terminal, an ASCE shall send the corresponding pointing device event sequence button
down, button up, button down, button up (e.g. for a Button 1 double click, the ASCE shall send
Button 1 down, Button 1 up, Button 1 down, Button 1 up), with the relevant local event times. A
receiving ASCE is responsible for processing that pointing device event sequence such that, where
the event times fall within the local terminal double click interval, it is interpreted as a double click.
This means that in a multipoint conference, where an ASCE is displaying shadow windows
corresponding to hosted windows on multiple hosting ASCEs and the local ASCE is cooperating and
in control, then the double click time will depend on which local and/or shadow window has the
input focus.

Table 8-95/T.128 – Three Button Pointing Device Event Flags

Pointing device event Valid combinations of pointingDeviceFlags

Move Move

Left Button Down Button 1 + Down

Left Button Up Button 1

Right Button Down Button 2 + Down

Right Button Up Button 2

Middle Button Down Button 3 + Down

Middle Button Up Button 3

8.18.2 Keyboard events

Depending on Conductorship and control state, an ASCE may queue a keyboard event within an
InputPDU when a local keyboard event occurs. A receiving ASCE shall process keyboard events
with respect to the current local control state and policy.

Keyboard events can be represented in the AS protocol as either code points or virtual keys (see
below). The keyboard event is described in Table 8-96.

Table 8-96/T.128 – Keyboard event

Parameter Description

eventTime This parameter is the local ASCE time in milliseconds when this event
occurred.

keyboardflags This parameter is a set of bit flags identifying and qualifying the keyboard
event. Defined bit flag values are as follows:

 • Right

 • Quiet

 • Down

 • Release

 The Right and Quiet bit flags are only valid for virtual key keyboard
events. The Down and Release bit flags are valid for both codepoint and
virtual key keyboard events. See below for further information on the
interpretation of keyboard event flags.

144 Recommendation T.128 (02/98)

Table 8-96/T.128 – Keyboard event (concluded)

Parameter Description

keyCode For codepoint keyboard events, this parameter is an AS protocol code page
codepoint (see 8.8.1). For virtual key keyboard events, this parameter is a
virtual keycode (see 8.18.3 below).

nonStandardParameters This parameter is only allowed in the base mode of the AS protocol. It is
an optional list of non-standard parameters allowed only if the
corresponding non-standard capabilities are present in the negotiated
capability set.

A sending ASCE uses combinations of the Down and Release bit flags in the keyboardFlags
parameter to indicate the following keyboard actions.

• Key release: Down and Release bit flags are set.

• Key press: Neither Down nor Release bit flags are set.

• Key repeat: Down bit flag is set.

A receiving ASCE:

• processes received virtual key keyboard events with respect to the previously established
keyboard modifier and toggle state, but does not interpret nor translate the virtual keycode
value;

• processes received code point keyboard events by generating the appropriate series of local
actions required to produce the codepoint on the local terminal.

Where a sending ASCE can use either a codepoint or a virtual key for a particular key (e.g.
AS protocol codepoint 0x41 and virtual keycode 0x41 are both uppercase A), it should send the
codepoint rather than the virtual keycode. This is preferred, as AS protocol code page codepoints are
independent of keyboard modifier and/or toggle state, whereas virtual keycodes are not. For example,
on US PC 101 and Mac keyboards the @ (Unicode 0x26, AMPERSAND) character is shift-2
whereas on UK PC 101 keyboards it is shift-‘ (shift-quote) – and shift-2 is " (Unicode 0x22,
QUOTATION MARK). Therefore, if an ASCE executing on a US PC was in a conference where
peer ASCEs had a mix of UK and US keyboards and sent virtual keycodes, then typing shift-2
locally – which would produce the sequence of virtual keycode keyboard events VK_SHIFT-down,
VK_2-down, VK_2-up, VK_SHIFT-up – might variously produce @ and/or " on other terminals. In
contrast, if the ASCE sent codepoints – which would produce the sequence of codepoint keyboard
events 0x0026-down, 0x0026-up, each peer ASCE could take appropriate local action to produce
the @.

8.18.3 Virtual keycodes

Virtual keycodes provide a hardware- and language-independent method of identifying keyboard
keys. Each virtual keycode represents a unique keyboard key and also identifies the purpose of that
key. Table 8-97 defines the virtual keycodes supported by the AS protocol. ASCEs shall only send
InputVirtualKey keyboard events in InputPDUs using defined virtual keycodes.

On certain terminals, keys may be duplicated (for example, shift is typically duplicated to the left and
right), but are only allocated one virtual keycode (VK_SHIFT = 0x10). Some applications are
sensitive to whether end-users have pressed the left or right variant of such keys. Therefore, where an
ASCE can locally distinguish between the left and right variants it should:

• set or clear the Right bit flag in the keyboardFlags parameter when sending such virtual
keycode events;

 Recommendation T.128 (02/98) 145

• check the Right bit flag in the keyboardFlags parameter when receiving virtual keycode
events and take the appropriate local action to generate the corresponding local indication.

Where an ASCE cannot distinguish between left and right variants, then it should:

• never set the Right bit flag in the keyboardFlags parameter when sending virtual keycode
events;

• never check the Right bit flag in the keyboardFlags parameter when receiving virtual
keycode events – and therefore handle events that have the Right bit flag set as if the event
referenced the left variant.

Table 8-97/T.128 – Virtual keycodes

Name Value Comment

VK_CANCEL 0x03 Break

VK_BACK 0x08

VK_TAB 0x09

VK_CLEAR 0x0C

VK_RETURN 0x0D

VK_SHIFT 0x10

VK_CONTROL 0x11

VK_ALT 0x12 Also known as Menu

VK_PAUSE 0x13

VK_CAPITAL 0x14

VK_ESCAPE 0x1B

VK_SPACE 0x20

VK_PRIOR 0x21 Page Up

VK_NEXT 0x22 Page Down

VK_END 0x23

VK_HOME 0x24

VK_LEFT 0x25

VK_UP 0x26

VK_RIGHT 0x27

VK_DOWN 0x28

VK_SELECT 0x29

VK_SNAPSHOT 0x2C Print Screen

VK_INSERT 0x2D

VK_DELETE 0x2E

VK_HELP 0x2F

VK_0 0x30 Numerals…

VK_1 0x31

VK_2 0x32

VK_3 0x33

VK_4 0x34

VK_5 0x35

VK_6 0x36

VK_7 0x37

146 Recommendation T.128 (02/98)

Table 8-97/T.128 – Virtual keycodes (continued)

Name Value Comment

VK_8 0x38

VK_9 0x39

VK_A 0x41 Alphabetics…

VK_B 0x42

VK_C 0x43

VK_D 0x44

VK_E 0x45

VK_F 0x46

VK_G 0x47

VK_H 0x48

VK_I 0x49

VK_J 0x4A

VK_K 0x4B

VK_L 0x4C

VK_M 0x4D

VK_N 0x4E

VK_O 0x4F

VK_P 0x50

VK_Q 0x51

VK_R 0x52

VK_S 0x53

VK_T 0x54

VK_U 0x55

VK_V 0x56

VK_W 0x57

VK_X 0x58

VK_Y 0x59

VK_Z 0x5A

VK_LEFT_MENU 0x5B Left Menu Key

VK_RIGHT_MENU 0x5C Right Menu Key

VK_CONTEXT 0x5D Context Menu Key

VK_NUMPAD0 0x60 Numeric Pad Keys…

VK_NUMPAD1 0x61

VK_NUMPAD2 0x62

VK_NUMPAD3 0x63

VK_NUMPAD4 0x64

VK_NUMPAD5 0x65

VK_NUMPAD6 0x66

VK_NUMPAD7 0x67

VK_NUMPAD8 0x68

VK_NUMPAD9 0x69

VK_MULTIPLY 0x6A

 Recommendation T.128 (02/98) 147

Table 8-97/T.128 – Virtual keycodes (concluded)

Name Value Comment

VK_ADD 0x6B

VK_SUBTRACT 0x6D

VK_DECIMAL 0x6E

VK_DIVIDE 0x6F

VK_F1 0x70 Function Keys…

VK_F2 0x71

VK_F3 0x72

VK_F4 0x73

VK_F5 0x74

VK_F6 0x75

VK_F7 0x76

VK_F8 0x77

VK_F9 0x78

VK_F10 0x79

VK_F11 0x7A

VK_F12 0x7B

VK_F13 0x7C

VK_F14 0x7D

VK_F15 0x7E

VK_F16 0x7F

VK_F17 0x80

VK_F18 0x81

VK_F19 0x82

VK_F20 0x83

VK_F21 0x84

VK_F22 0x85

VK_F23 0x86

VK_F24 0x87

VK_NUMLOCK 0x90 Num Lock

VK_SCROLL 0x91 Scroll Lock

VK_PLUS 0xBB

VK_COMMA 0xBC

VK_MINUS 0xBD

VK_PERIOD 0xBE

VK_BAR 0xE2 Solid Bar (non-US)

VK_ATTN 0xF6

VK_CRSEL 0xF7

VK_EXSEL 0xF8

VK_EREOF 0xF9

VK_PLAY 0xFA

VK_ZOOM 0xFB

VK_PA1 0xFD

148 Recommendation T.128 (02/98)

8.18.4 Keyboard state

During an AS session, an ASCE need only send keyboard events when providing input to a remotely
hosted application. It need not send keyboard events for keys typed before it became active, or when
the conference is in conducted mode and it does not have conductorship privileges, or it is not in
control, or it is detached.

A sending ASCE shall ensure that the portions of the local input stream that are sent in keyboard
events in InputPDUs are internally consistent. For example, suppose that the local end-user had
CapsLock on before the ASCE became active in the AS session, and then takes control of a remotely
hosted application and starts typing. The ASCE must precede sent keyboard events with additional
keyboard events containing CapsLock down/up events, and rely on peer ASCEs to prepare their local
keyboard state so that the CapsLock down/up takes effect (which may be a null operation if
CapsLock was on remotely as well) to ensure that the input is capitalized on the remote system.

The general requirement is that the sending ASCE inserts keyboard events as required into the
outgoing input stream to synchronize the remote keyboard to the local keyboard state.

During an AS session, an ASCE may receive input from multiple peer ASCEs. For example, where
an ASCE is hosting an application in a multipoint conference, several peer ASCEs may provide input
in turn, as the remote end-users exchange control and provide input to the hosted application. While
an ASCE can rely on the sending ASCEs inserting any required state (see above), it is responsible for
undoing any local keyboard state established on behalf of other peer ASCEs before processing input
from a new ASCE. For example, if ASCE A is hosting the application, ASCE B is in control and has
CapsLock on and control switches to ASCE C who already has NumLock on, then when ASCE A
switches input from ASCE B to ASCE C, it can rely on ASCE C prefacing its input stream with a
NumLock-down, NumLock-up, but is itself responsible for undoing the CapsLock state established
on behalf of ASCE B. When ASCE A subsequently switches input from ASCE C back to ASCE B, it
is then responsible for re-establishing the CapsLock on state on behalf of ASCE B.

The general requirement is that a receiving ASCE is responsible for taking any local action required
to synchronize the local keyboard state to that of a new input stream.

8.18.5 Quiet keys

Many terminals use special key sequences to effect actions that should not be reflected at peer
ASCEs. For example, ALT-TAB is commonly used to cycle the focus around window manager
windows.

Such sequences should only have local effect, but a sending ASCE may only be able to detect them
after the first event(s) in the sequence have been sent. Where this is the case, the sending ASCE
should send subsequent events with the Quiet bit flag set in the keyboardFlags parameter to indicate
to peer ASCEs that they should undo the effect of the sequence.

For example, an ASCE may send ALT-TAB as: ALT-down, TAB-down-quiet, TAB-up-quiet,
ALT-up-quiet.

Where a receiving ASCE detects that the Quiet bit flag is set for a down event, that key and its
associated up event may be discarded. Where the receiving ASCE only detects that the Quiet bit flag
is set after the down event for a key, then there may be local mechanisms whereby the effect of the
key can be suppressed by inserting additional key events before or after the associated up event.

For example, an ASCE may process the sent ALT-TAB sequence above as: ALT-down, discard
TAB-down-quiet, discard TAB-up-quiet, insert terminal-dependent suppression events, ALT-up.

 Recommendation T.128 (02/98) 149

8.18.6 Input synchronization event

When an ASCE detects that a new ASCE has become active, it shall reset its sending keyboard state
and shall queue an input synchronization event for sending within the next InputPDU. Thereafter,
when sending input events, it shall insert input events to bring peer ASCEs up to the same keyboard
state as the local terminal.

On receipt of an input synchronization event within an InputPDU, an ASCE shall reset its receiving
keyboard state. Thereafter, before receiving input from a particular peer ASCE, it can expect to
receive any required keyboard state applicable to that input.

See 8.4 for further information on ASCE activation and 8.6 for further information on
synchronization. The input synchronization event is described in Table 8-98.

Table 8-98/T.128 – Input synchronization event

Parameter Description

eventTime This parameter is the local ASCE time in milliseconds when this event
occurred.

nonStandardParameters This parameter is only allowed in the base mode of the AS protocol. It is
an optional list of non-standard parameters allowed only if the
corresponding non-standard capabilities are present in the negotiated
capability set.

8.19 Conducted mode operation

When a conference is in conducted mode, the rights of an ASCE to host applications and to provide
input events may be restricted by the conducting node.

When a conference enters conducted mode or when Conductorship moves from one node to another,
each ASCE receives a GCC-Conductor-Assign indication. Upon receipt of such an indication, no
ASCE at a node other than the conducting node is permitted to host applications or provide input.

Receipt of GCC-Conductor-Permission-Grant indications while in conducted mode grants and denies
the right for ASCEs at nodes other than the conducting node to host applications and provide input.
The right is granted if the Permission Flag parameter is TRUE. The right is denied if the Permission
Flag parameter is set to FALSE.

An ASCE at the conducting node of a conducted mode conference may host applications and provide
input.

In non-conducted mode, all ASCEs may host applications and provide input, subject to the
conference control policy (see 8.12 and 8.13).

9 ASPDU definitions

The structure of ASPDUs for the legacy and base modes of the AS protocol are specified as follows
using the notation ASN.1 of Recommendation X.680.

Legacy mode ASPDUs are specified in 9.1 and shall be encoded for transmission by applying the
encoding rules defined in 9.3.

Base mode ASPDUs are specified in 9.2 and shall be encoded for transmission by applying the
BASIC ALIGNED variant of the Packed Encoding Rules of Recommendation X.691.

Both legacy and base mode ASPDUs shall be encoded and placed in the data field of MCS-Send-
Data primitives, with the bit string generated by the encoding placed in the OCTET STRING used by

150 Recommendation T.128 (02/98)

MCS in the order such that for each octet, the leading bit is placed in the most significant bit position
and the trailing bit is placed in the least significant bit position.

9.1 Legacy mode ASN.1 definition

--|||
--|||
--
-- Begin AS Definitions
--
--|||
--|||

AS-PROTOCOL DEFINITIONS ::=

BEGIN

-- NOTE – ===
-- NOTE – All abstract types defined shall be exported
-- NOTE – ===

--
-- Constants
--

maxSourceDescriptor INTEGER ::= 48
maxTerminalDescriptor INTEGER ::= 16
maxFonts INTEGER ::= 700
maxPassword INTEGER ::= 9
maxFaceName INTEGER ::= 32
maxTitleString INTEGER ::= 50
maxInputEvents INTEGER ::= 50

--
-- Base Types
--

BitString8 ::= BIT STRING (SIZE (0..7))
BitString16 ::= BIT STRING (SIZE (0..15))
BitString32 ::= BIT STRING (SIZE (0..31))
Coordinate8 ::= INTEGER (−128..127)
Coordinate16 ::= INTEGER (−32768..32767)
Integer4 ::= INTEGER (0..15)
Integer8 ::= INTEGER (0..255)
Integer12 ::= INTEGER (0..4095)
Integer16 ::= INTEGER (0..65535)
Integer32 ::= INTEGER (0..4294967295)
Boolean16 ::= Integer16 {false(0), true(1)}

UserID ::= Integer16
ShareID ::= Integer32
WindowID ::= Integer32

T50String ::= OCTET STRING (SIZE (0..255)) -- -- T.50 String
ASString ::= OCTET STRING (SIZE (0..255)) -- -- AS Protocol CodePage String

 Recommendation T.128 (02/98) 151

-- Bit Flag Types

BitmapCompressionCapabilityFlags ::= BitString16
{
 bitmapCompressionSupported (0)
}

BoundsOrderFlags ::= BitString8
{
 absoluteLeftPresent (0),
 absoluteTopPresent (1),
 absoluteRightPresent (2),
 absoluteBottomPresent (3),
 deltaLeftPresent (4),
 deltaTopPresent (5),
 deltaRightPresent (6),
 deltaBottomPresent (7)
}

ControlCapabilityFlags ::= BitString16
{
 allowMediatedControl (0)
}

ControlOrderFlags ::= BitString8
{
 standard (0), -- Mandatory this flag is set
 secondary (1),
 bounds (2),
 typeChange (3),
 deltaCoordinates (4)
}

ExtraOrderFlags ::= BitString16
{
 secondary (3)
}

ExtraTextFlags ::= BitString16
{
 opaqueRectangle (1),
 clipToRectangle (2),
 deltaXPresent (15)
}

FontAttributeFlags ::= BitString16
{
 fixedPitch (0),
 fixedSize (1)
}

KeyboardFlags ::= BitString16
{
 right (0),
 quiet (12),
 down (14),
 release (15)
}

152 Recommendation T.128 (02/98)

OrderCapabilityFlags ::= BitString16
{
 negotiateOrderSupport (1), -- Mandatory this flag is set
 cannotReceiveOrders (2)
}

PointingDeviceFlags ::= BitString16
{
 move (11),
 button1 (12),
 button2 (13),
 button3 (14),
 down (15)
}

TextAttributeFlags ::= BitString16
{
 italic (2),
 underline (3),
 strikeout (4),
 useBaselineStart (8)
}

TextCapabilityFlags ::= BitString16
{
 checkFontAspect (0),
 allowDeltaXSimulation (5),
 checkFontSignatures (7),
 useBaselineStart (9)
}

WindowAttributeFlags ::= BitString32
{
 minimized (0),
 taggable (1),
 hosted (2),
 shadow (3),
 local (4),
 topmost (5),
 windowManagerMinimized (16),
 windowManagerInvisible (17)
}

-- General Types

ApplicationAction ::= Integer16
{
 notifyHostedApplications (1),
 unhostApplication (2)
}

BackgroundMixMode ::= Integer16
{
 transparent (1),
 opaque (2)
}

 Recommendation T.128 (02/98) 153

BitmapData ::= CHOICE
{
 uncompressedBitmapData OCTET STRING,
 compressedBitmapData CompressedBitmapData
}

Brush ::= SEQUENCE
{
 originX Integer8 OPTIONAL,
 originY Integer8 OPTIONAL,
 style BrushStyle OPTIONAL,
 hatch BrushHatch OPTIONAL,
 pattern OCTET STRING (SIZE (7)) OPTIONAL
}

BrushHatch ::= CHOICE
{
 style HatchStyle,
 patternZero Integer8
}

BrushStyle ::= Integer8
{
 solid (0),
 null (1),
 hatched (2),
 pattern (3)
}

Color ::= SEQUENCE
{
 red Integer8,
 green Integer8,
 blue Integer8
}

ColorQuad ::= SEQUENCE
{
 blue Integer8,
 green Integer8,
 red Integer8,
 pad1octet Integer8,
}

ColorPointerAttribute ::= SEQUENCE
{
 cacheIndex Integer16,
 hotSpot Point16,
 width Integer16,
 height Integer16,
 lengthANDMAsk Integer16,
 -- length in octets of AND mask in colorPointerData
 lengthXORMAsk Integer16,
 -- length in octets of XOR mask in colorPointerData
 colorPointerData OCTET STRING
}

154 Recommendation T.128 (02/98)

CompressedBitmapData ::= SEQUENCE
{
 pad2octets Integer16 (0),
 mainBodySize Integer16,
 rowSize Integer16,
 uncompressedSize Integer16,
 compressedBitmap OCTET STRING
}

ControlAction ::= Integer16
{
 requestControl (1),
 detach (3),
 grantControl (2),
 cooperate (4)
}

ControlPriority ::= Integer16
{
 always (1),
 never (2),
 confirm (3)
}

Coordinate ::= CHOICE
{
 absolute Coordinate16,
 delta Coordinate8
}

DesktopSaveAction ::= Integer8
{
 desktopSave (0),
 desktopRestore (1)
}

FontAttribute ::= SEQUENCE
{
 faceName T50String (SIZE (1..maxFaceName)),
 fontFlags FontAttributeFlags,
 averageWidth Integer16,
 height Integer16,
 aspectX Integer16,
 aspectY Integer16,
 signature1 Integer8,
 signature2 Integer8,
 signature3 Integer16,
 codePage FontCodePage,
 ascent Integer16
}

FontCodePage ::= Integer16
{
 allCodePoints (0),
 coreCodePoints (255)
}

 Recommendation T.128 (02/98) 155

HatchStyle ::= Integer8
{
 horizontal (0),
 vertical (1),
 forward (2),
 backward (3),
 cross (4),
 diagonal (5)
}

InputMessageType ::= Integer16
{
 inputSynchronize (0),
 inputCodePoint (1),
 inputVirtualKey (2),
 inputPointingDevice (’8001’H)
}

MediatedControlAction ::= Integer16
{
 takeControlRequest (1),
 passControlRequest (2),
 detachRequest (3)
 confirmTakeResponse (5),
 denyTakeResponse (6),
 confirmDetachResponse (7),
 denyDetachResponse (8),
 denyPassResponse (9),
 remoteDetachRequest (10),
 denyRemoteDetachRequest (11)
}

MonoPointerAttribute ::= SEQUENCE
{
 hotSpot Point16,
 width Integer16,
 height Integer16,
 lengthPointerData Integer16,
 -- length in octets of monoPointerData
 monoPointerData OCTET STRING
}

OSMajorType ::= Integer16
{
 unspecified (0),
 windows (1),
 OS2 (2),
 macintosh (3),
 unix (4)
}

OSMinorType ::= Integer16
{
 unspecified (0),
 windows_31x (1),
 windows_95 (2),
 windows_NT (3),
 OS2_V21 (4),
 power_pc (5),
 macintosh (6),

156 Recommendation T.128 (02/98)

 native_XServer (7),
 pseudo_XServer (8)

}

PDUType ::= Integer4
{
 confirmActivePDU (3),
 dataPDU (7),
 deactivateAllPDU (6),
 deactivateOtherPDU (4),
 deactivateSelfPDU (5),
 demandActivePDU (1),
 requestActivePDU (2)
}

PDUType2 ::= Integer8
{
 application (25),
 control (20),
 font (11),
 input (28),
 mediatedControl (29),
 pointer (27),
 remoteShare (30),
 synchronize (31),
 update (2),
 updateCapability (32),
 windowActivation (23),
 windowList (24)
}

PDUTypeFlow ::= Integer8
{
 flowResponsePDU (66),
 flowStopPDU (67),
 flowTestPDU (65)
}

Pen ::= SEQUENCE
{
 style PenStyle OPTIONAL,
 width Integer8 (1) OPTIONAL,
 color Color OPTIONAL
}

PenStyle ::= ENUMERATED
{
 solid (0),
 dashed (1),
 dotted (2),
 dash-dot (3),
 dash-dot-dot (4),
 null (5)
}

Point16 ::= SEQUENCE
{
 x Coordinate16,
 y Coordinate16
}

 Recommendation T.128 (02/98) 157

PointerMessageType ::= Integer16
{
 cachedPointer (7),
 colorPointer (6),
 monoPointer (2),
 pointerPosition (3),
 systemPointer (1)
}

PrimaryOrderType ::= Integer8
{
 destinationBlt (0),
 patternBlt (1),
 screenBlt (2),
 memoryBlt (13),
 memoryThreeWayBlt (14),
 text (5),
 extendedText (6),
 frame (9),
 rectangle (7),
 line (8),
 opaqueRectangle (10),
 desktopSave (11),
 desktopOrigin (32)
}

Rectangle16 ::= SEQUENCE
{
 left Coordinate16,
 top Coordinate16,
 right Coordinate16,
 bottom Coordinate16
}

RemoteShareAction ::= Integer16
{
 requestRemoteShare (1),
 confirmRemoteShare (2),
 denyRemoteShare (3)
}

RemoteShareDenial ::= Integer16
{
 incorrectPassword (1),
 remoteShareNotEnabled (2),
 remoteShareInOperationIncoming (3),
 remoteShareInOperationOutgoing (4)
}

ROP2 ::= Integer8
{
 r2BLACK (1),
 r2DPon (2),
 r2DPna (3),
 r2Pn (4),
 r2PDna (5),
 r2Dn (6),
 r2DPx (7),
 r2DPan (8),
 r2DPa (9),
 r2DPxn (10),

158 Recommendation T.128 (02/98)

 r2D (11),
 r2DPno (12),
 r2P (13),
 r2PDno (14),
 r2DPo (15),
 r2WHITE (16)
}

ROP3 ::= Integer8
{
 r3BLACK (’00’H),
 r3DPSoon (’01’H),
 r3DPSona (’02’H),
 r3PSon (’03’H),
 r3SDPona (’04’H),
 r3DPon (’05’H),
 r3PDSxnon (’06’H),
 r3PDSaon (’07’H),
 r3SDPnaa (’08’H),
 r3PDSxon (’09’H),
 r3DPna (’0A’H),
 r3PSDnaon (’0B’H),
 r3SPna (’0C’H),
 r3PDSnaon (’0D’H),
 r3PDSonon (’0E’H),
 r3Pn (’0F’H),
 r3PDSona (’10’H),
 r3DSon (’11’H),
 r3SDPxnon (’12’H),
 r3SDPaon (’13’H),
 r3DPSxnon (’14’H),
 r3DPSaon (’15’H),
 r3PSDPSanaxx (’16’H),
 r3SSPxDSxaxn (’17’H),
 r3SPxPDxa (’18’H),
 r3SDPSanaxn (’19’H),
 r3PDSPaox (’1A’H),
 r3SDPSxaxn (’1B’H),
 r3PSDPaox (’1C’H),
 r3DSPDxaxn (’1D’H),
 r3PDSox (’1E’H),
 r3PDSoan (’1F’H),
 r3DPSnaa (’20’H),
 r3SDPxon (’21’H),
 r3DSna (’22’H),
 r3SPDnaon (’23’H),
 r3SPxDSxa (’24’H),
 r3PDSPanaxn (’25’H),
 r3SDPSaox (’26’H),
 r3SDPSxnox (’27’H),
 r3DPSxa (’28’H),
 r3PSDPSaoxxn (’29’H),
 r3DPSana (’2A’H),
 r3SSPxPDxaxn (’2B’H),
 r3SPDSoax (’2C’H),
 r3PSDnox (’2D’H),
 r3PSDPxox (’2E’H),
 r3PSDnoan (’2F’H),
 r3PSna (’30’H),
 r3SDPnaon (’31’H),
 r3SDPSoox (’32’H),

 Recommendation T.128 (02/98) 159

 r3Sn (’33’H),
 r3SPDSaox (’34’H),
 r3SPDSxnox (’35’H),
 r3SDPox (’36’H),
 r3SDPoan (’37’H),
 r3PSDPoax (’38’H),
 r3SPDnox (’39’H),
 r3SPDSxox (’3A’H),
 r3SPDnoan (’3B’H),
 r3PSx (’3C’H),
 r3SPDSonox (’3D’H),
 r3SPDSnaox (’3E’H),
 r3PSan (’3F’H),
 r3PSDnaa (’40’H),
 r3DPSxon (’41’H),
 r3SDxPDxa (’42’H),
 r3SPDSanaxn (’43’H),
 r3SDna (’44’H),
 r3DPSnaon (’45’H),
 r3DSPDaox (’46’H),
 r3PSDPxaxn (’47’H),
 r3SDPxa (’48’H),
 r3PDSPDaoxxn (’49’H),
 r3DPSDoax (’4A’H),
 r3PDSnox (’4B’H),
 r3SDPana (’4C’H),
 r3SSPxDSxoxn (’4D’H),
 r3PDSPxox (’4E’H),
 r3PDSnoan (’4F’H),
 r3PDna (’50’H),
 r3DSPnaon (’51’H),
 r3DPSDaox (’52’H),
 r3SPDSxaxn (’53’H),
 r3DPSonon (’54’H),
 r3Dn (’55’H),
 r3DPSox (’56’H),
 r3DPSoan (’57’H),
 r3PDSPoax (’58’H),
 r3DPSnox (’59’H),
 r3DPx (’5A’H),
 r3DPSDonox (’5B’H),
 r3DPSDxox (’5C’H),
 r3DPSnoan (’5D’H),
 r3DPSDnaox (’5E’H),
 r3DPan (’5F’H),
 r3PDSxa (’60’H),
 r3DSPDSaoxxn (’61’H),
 r3DSPDoax (’62’H),
 r3SDPnox (’63’H),
 r3SDPSoax (’64’H),
 r3DSPnox (’65’H),
 r3DSx (’66’H),
 r3SDPSonox (’67’H),
 r3DSPDSonoxxn (’68’H),
 r3PDSxxn (’69’H),
 r3DPSax (’6A’H),
 r3PSDPSoaxxn (’6B’H),
 r3SDPax (’6C’H),
 r3PDSPDoaxxn (’6D’H),
 r3SDPSnoax (’6E’H),
 r3PDSxnan (’6F’H),

160 Recommendation T.128 (02/98)

 r3PDSana (’70’H),
 r3SSDxPDxaxn (’71’H),
 r3SDPSxox (’72’H),
 r3SDPnoan (’73’H),
 r3DSPDxox (’74’H),
 r3DSPnoan (’75’H),
 r3SDPSnaox (’76’H),
 r3DSan (’77’H),
 r3PDSax (’78’H),
 r3DSPDSoaxxn (’79’H),
 r3DPSDnoax (’7A’H),
 r3SDPxnan (’7B’H),
 r3SPDSnoax (’7C’H),
 r3DPSxnan (’7D’H),
 r3SPxDSxo (’7E’H),
 r3DPSaan (’7F’H),
 r3DPSaa (’80’H),
 r3SPxDSxon (’81’H),
 r3DPSxna (’82’H),
 r3SPDSnoaxn (’83’H),
 r3SDPxna (’84’H),
 r3PDSPnoaxn (’85’H),
 r3DSPDSoaxx (’86’H),
 r3PDSaxn (’87’H),
 r3DSa (’88’H),
 r3SDPSnaoxn (’89’H),
 r3DSPnoa (’8A’H),
 r3DSPDxoxn (’8B’H),
 r3SDPnoa (’8C’H),
 r3SDPSxoxn (’8D’H),
 r3SSDxPDxax (’8E’H),
 r3PDSanan (’8F’H),
 r3PDSxna (’90’H),
 r3SDPSnoaxn (’91’H),
 r3DPSDPoaxx (’92’H),
 r3SPDaxn (’93’H),
 r3PSDPSoaxx (’94’H),
 r3DPSaxn (’95’H),
 r3DPSxx (’96’H),
 r3PSDPSonoxx (’97’H),
 r3SDPSonoxn (’98’H),
 r3DSxn (’99’H),
 r3DPSnax (’9A’H),
 r3SDPSoaxn (’9B’H),
 r3SPDnax (’9C’H),
 r3DSPDoaxn (’9D’H),
 r3DSPDSaoxx (’9E’H),
 r3PDSxan (’9F’H),
 r3DPa (’A0’H),
 r3PDSPnaoxn (’A1’H),
 r3DPSnoa (’A2’H),
 r3DPSDxoxn (’A3’H),
 r3PDSPonoxn (’A4’H),
 r3PDxn (’A5’H),
 r3DSPnax (’A6’H),
 r3PDSPoaxn (’A7’H),
 r3DPSoa (’A8’H),
 r3DPSoxn (’A9’H),
 r3D (’AA’H),
 r3DPSono (’AB’H),
 r3SPDSxax (’AC’H),

 Recommendation T.128 (02/98) 161

 r3DPSDaoxn (’AD’H),
 r3DSPnao (’AE’H),
 r3DPno (’AF’H),
 r3PDSnoa (’B0’H),
 r3PDSPxoxn (’B1’H),
 r3SSPxDSxox (’B2’H),
 r3SDPanan (’B3’H),
 r3PSDnax (’B4’H),
 r3DPSDoaxn (’B5’H),
 r3DPSDPaoxx (’B6’H),
 r3SDPxan (’B7’H),
 r3PSDPxax (’B8’H),
 r3DSPDaoxn (’B9’H),
 r3DPSnao (’BA’H),
 r3DSno (’BB’H),
 r3SPDSanax (’BC’H),
 r3SDxPDxan (’BD’H),
 r3DPSxo (’BE’H),
 r3DPSano (’BF’H),
 r3PSa (’C0’H),
 r3SPDSnaoxn (’C1’H),
 r3SPDSonoxn (’C2’H),
 r3PSxn (’C3’H),
 r3SPDnoa (’C4’H),
 r3SPDSxoxn (’C5’H),
 r3SDPnax (’C6’H),
 r3PSDPoaxn (’C7’H),
 r3SDPoa (’C8’H),
 r3SPDoxn (’C9’H),
 r3DPSDxax (’CA’H),
 r3SPDSaoxn (’CB’H),
 r3S (’CC’H),
 r3SDPono (’CD’H),
 r3SDPnao (’CE’H),
 r3SPno (’CF’H),
 r3PSDnoa (’D0’H),
 r3PSDPxoxn (’D1’H),
 r3PDSnax (’D2’H),
 r3SPDSoaxn (’D3’H),
 r3SSPxPDxax (’D4’H),
 r3DPSanan (’D5’H),
 r3PSDPSaoxx (’D6’H),
 r3DPSxan (’D7’H),
 r3PDSPxax (’D8’H),
 r3SDPSaoxn (’D9’H),
 r3DPSDanax (’DA’H),
 r3SPxDSxan (’DB’H),
 r3SPDnao (’DC’H),
 r3SDno (’DD’H),
 r3SDPxo (’DE’H),
 r3SDPano (’DF’H),
 r3PDSoa (’E0’H),
 r3PDSoxn (’E1’H),
 r3DSPDxax (’E2’H),
 r3PSDPaoxn (’E3’H),
 r3SDPSxax (’E4’H),
 r3PDSPaoxn (’E5’H),
 r3SDPSanax (’E6’H),
 r3SPxPDxan (’E7’H),
 r3SSPxDSxax (’E8’H),
 r3DSPDSanaxxn (’E9’H),

162 Recommendation T.128 (02/98)

 r3DPSao (’EA’H),
 r3DPSxno (’EB’H),
 r3SDPao (’EC’H),
 r3SDPxno (’ED’H),
 r3DSo (’EE’H),
 r3SDPnoo (’EF’H),
 r3P (’F0’H),
 r3PDSono (’F1’H),
 r3PDSnao (’F2’H),
 r3PSno (’F3’H),
 r3PSDnao (’F4’H),
 r3PDno (’F5’H),
 r3PDSxo (’F6’H),
 r3PDSano (’F7’H),
 r3PDSao (’F8’H),
 r3PDSxno (’F9’H),
 r3DPo (’FA’H),
 r3DPSnoo (’FB’H),
 r3PSo (’FC’H),
 r3PSDnoo (’FD’H),
 r3DPSoo (’FE’H),
 r3WHITE (’FF’H)
}

SecondaryOrderType ::= Integer8
{
 cacheBitmapUncompressed (0),
 cacheColorTable (1),
 cacheBitmapCompressed (2)
}

StreamID ::= Integer8
{
 streamLowPriority (1),
 streamMediumPriority (2),
 streamHighPriority (4)
}

SynchronizeMessageType ::= Integer16
{
 synchronize (1)
}

SystemPointerType ::= Integer32
{
 nullPointer (0),
 defaultPointer (’00007F00’H)
}

UpdateType ::= Integer16
{
 orders (0),
 bitmap (1),
 palette (2),
 synchronize (3)
}

 Recommendation T.128 (02/98) 163

WindowActivationAction ::= Integer16
{
 localWindowActive (1),
 hostedWindowActive (2),
 hostedWindowInvisible (3),
 pointerDeviceCapture (4),
 activateWindow (’8001’H),
 closeWindow (’8002’H),
 restoreWindow (’8003’H),
 windowManagerMenu (’8004’H),
 activationHelpKey (’8011’H),
 activationHelpIndexKey (’8012’H),
 activationHelpExtendedKey (’8013’H)
}

WindowAttribute ::= SEQUENCE
{
 windowID WindowID,
 windowExtra Integer32,
 windowOwner WindowID,
 windowFlags WindowAttributeFlags,
 windowRectangle Rectangle16
}

WindowListMessageType ::= Integer16
{
 updateWindowList (1)
}

WindowTitle ::= CHOICE
{
 noTitle Integer8 (255),
 titleString T50String (SIZE(1..maxTitleString))
}

-- Capability Types

CapabilitySetType ::= Integer16
{
 bitmapCacheCapabilitySet (4),
 bitmapCapabilitySet (2),
 colorCacheCapabilitySet (10),
 controlCapabilityset (5),
 generalCapabilitySet (1),
 orderCapabilitySet (3),
 pointerCapabilitySet (8),
 activationCapabilitySet (7)
 shareCapabilitySet (9),
}

GeneralCapabilitySet ::= SEQUENCE
{
 capabilitySetType CapabilitySetType (generalCapabilitySet),
 lengthCapability Integer16,
 -- length of capability set in octets
 -- (including type and length parameters)
 osMajorType OSMajorType,
 osMinorType OSMinorType,

164 Recommendation T.128 (02/98)

 protocolVersion Integer16 (’0200’H)
 pad2octetsA Integer16,
 generalCompressionTypes Integer16,
 pad2octetsB Integer16,
 updatecapabilityFlag Boolean16,
 remoteUnshareFlag Boolean16,
 generalCompressionLevel Integer16,
 pad2octetsC Integer16
}

BitmapCapabilitySet ::= SEQUENCE
{
 capabilitySetType CapabilitySetType (bitmapCapabilitySet),
 lengthCapability Integer16,
 -- length of capability set in octets
 -- (including type and length parameters)
 preferredBitsPerPixel Integer16 (1..8),
 receive1BitPerPixelFlag Boolean16,
 receive4BitsPerPixelFlag Boolean16,
 receive8BitsPerPixelFlag Boolean16,
 desktopWidth Integer16,
 desktopHeight Integer16,
 pad2octetsA Integer16,
 desktopResizeFlag Boolean16,
 bitmapCompressionType BitmapCompressionCapabilityFlags,
 pad2octetsC Integer16
}

OrderCapabilitySet ::= SEQUENCE
{
 capabilitySetType CapabilitySetType (orderCapabilitySet),
 lengthCapability Integer16,
 -- length of capability set in octets
 -- (including type and length parameters)
 terminalDescriptor T50String (SIZE (1..maxTerminalDescriptor)),
 pad4octetsA Integer32 (0),
 desktopXGranularity Integer16,
 desktopYGranularity Integer16,
 pad2octetsA Integer16 (0),
 maximumOrderLevel Integer16,
 numberFonts Integer16 (1..maxFonts),
 orderFlags OrderCapabilityFlags,
 orderSupport ::= SEQUENCE (SIZE (32)) OF
 {
 destinationBltSupport Integer8,
 patternBltSupport Integer8,
 screenBltSupport Integer8,
 memoryBltSupport Integer8,
 memoryThreeWayBltSupport Integer8,
 textSupport Integer8,
 extendedTextSupport Integer8,
 rectangleSupport Integer8,
 lineSupport Integer8,
 frameSupport Integer8,
 opaqueRectangleSupport Integer8,
 desktopSaveSupport Integer8,
 undefinedOrder12 Integer8 (0),
 undefinedOrder13 Integer8 (0),
 undefinedOrder14 Integer8 (0),
 undefinedOrder15 Integer8 (0),
 undefinedOrder16 Integer8 (0),

 Recommendation T.128 (02/98) 165

 undefinedOrder17 Integer8 (0),
 undefinedOrder18 Integer8 (0),
 undefinedOrder19 Integer8 (0),
 undefinedOrder20 Integer8 (0),
 undefinedOrder21 Integer8 (0),
 undefinedOrder22 Integer8 (0),
 undefinedOrder23 Integer8 (0),
 undefinedOrder24 Integer8 (0),
 undefinedOrder25 Integer8 (0),
 undefinedOrder26 Integer8 (0),
 undefinedOrder27 Integer8 (0),
 undefinedOrder28 Integer8 (0),
 undefinedOrder29 Integer8 (0),
 undefinedOrder30 Integer8 (0),
 undefinedOrder31 Integer8 (0)
 }
 textFlags TextCapabilityFlags,
 pad2octetsB Integer16 (0),
 pad4octetsB Integer32 (0),
 desktopSaveSize Integer32,
 pad4octetsC Integer32 (0)
}

BitmapCacheCapabilitySet ::= SEQUENCE
{
 capabilitySetType CapabilitySetType (bitmapCacheCapabilitySet),
 lengthCapability Integer16,
 -- length of capability set in octets
 -- (including type and length parameters)
 pad4octetsA Integer32 (0),
 pad4octetsB Integer32 (0),
 pad4octetsC Integer32 (0),
 pad4octetsD Integer32 (0),
 pad4octetsE Integer32 (0),
 pad4octetsF Integer32 (0),
 cache1Entries Integer16,
 cache1MaximumCellSize Integer16 (256..16384),
 cache2Entries Integer16,
 cache2MaximumCellSize Integer16 (256..16384),
 cache3Entries Integer16,
 cache3MaximumCellSize Integer16 (256..16384)
}

ColorCacheCapabilitySet ::= SEQUENCE
{
 capabilitySetType CapabilitySetType (colorCacheCapabilitySet),
 lengthCapability Integer16,
 -- length of capability set in octets
 -- (including type and length parameters)
 colorTablecacheSize Integer16 (1..255),
 pad2octetsA Integer16
}

ActivationCapabilitySet ::= SEQUENCE
{
 capabilitySetType CapabilitySetType (activationCapabilitySet),
 lengthCapability Integer16,
 -- length of capability set in octets
 -- (including type and length parameters)
 helpKeyFlag Boolean16,
 helpIndexKeyFlag Boolean16,

166 Recommendation T.128 (02/98)

 helpExtendedKeyFlag Boolean16,
 windowActivateFlag Boolean16
}

ControlCapabilitySet ::= SEQUENCE
{
 capabilitySetType CapabilitySetType (controlCapabilitySet),
 lengthCapability Integer16,
 -- length of capability set in octets
 -- (including type and length parameters)
 controlFlags ControlCapabilityFlags,
 remoteDetachFlag Boolean16,
 controlInterest ControlPriority,
 detachInterest ControlPriority
}

PointerCapabilitySet ::= SEQUENCE
{
 capabilitySetType CapabilitySetType (pointerCapabilitySet),
 lengthCapability Integer16,
 -- length of capability set in octets
 -- (including type and length parameters)
 colorPointerFlag Boolean16,
 pointerCacheSize Integer16 (1..500)
}

ShareCapabilitySet ::= SEQUENCE
{
 capabilitySetType CapabilitySetType (shareCapabilitySet),
 lengthCapability Integer16,
 -- length of capability set in octets
 -- (including type and length parameters)
 nodeID Integer32
}

NonStandardCapabilitySet ::= SEQUENCE
{
 capabilitySetType Integer16,
 -- defined by ASCE
 lengthCapability Integer16,
 -- length of capability set in octets
 -- (including type and length parameters)
 nonStandardParameters OCTET STRING
}

CombinedCapabilities ::= SEQUENCE
{
 numberCapabilities Integer16,
 -- number of capabilities in combinedCapabilities set
 pad2octets Integer16 (0),
 combinedCapabilities SET
 {
 generalCapabilitySet GeneralCapabilitySet,
 bitmapCapabilitySet BitMapCapabilitySet,
 orderCapabilitySet OrderCapabilitySet,
 bitmapCacheCapabilitySet BitmapCacheCapabilitySet,
 colorCacheCapabilitySet ColorCacheCapabilitySet,
 activationCapabilitySet activationCapabilitySet,
 controlCapabilitySet ControlCapabilitySet,
 pointerCapabilitySet PointerCapabilitySet,

 Recommendation T.128 (02/98) 167

 shareCapabilitySet ShareCapabilitySet,
 nonStandardCapabilitySet NonStandardcapabilitySet OPTIONAL
 }
}

UpdateCapabilitySet ::= CHOICE
{
 bitmapCapabilitySet BitmapCapabilitySet
}

--
-- Input Types
--

InputEvent ::= CHOICE
{
 pointingDeviceEvent PointingDeviceEvent,
 keyboardEvent KeyboardEvent,
 synchronizeEvent SynchronizeEvent
}

KeyboardEvent ::= SEQUENCE
{
 eventTime Integer32,
 messageType InputMessageType (inputCodePoint |
 inputVirtualKey),
 keyboardFlags KeyboardFlags,
 keyCode Integer16
 -- AS protocol code page codepoint or virtual keycode
}

PointingDeviceEvent ::= SEQUENCE
{
 eventTime Integer32,
 messageType InputMessageType (inputPointingDevice),
 pointingDeviceFlags PointingDeviceFlags,
 pointingDeviceX Coordinate16,
 pointingDeviceY Coordinate16
}

SynchronizeEvent ::= SEQUENCE
{
 eventTime Integer32,
 messageType InputMessageType (inputSynchronize)
}

-- Common Header Types

PrimaryOrderHeader ::= SEQUENCE
{
 controlFlags ControlOrderFlags,
 orderType PrimaryOrderType OPTIONAL,
 encodingFlags SEQUENCE (SIZE (1..3)) OF BitString8,
 boundsFlags BoundsOrderFlags OPTIONAL,
 boundsLeft Coordinate OPTIONAL,
 boundsTop Coordinate OPTIONAL,
 boundsRight Coordinate OPTIONAL,
 boundsBottom Coordinate OPTIONAL
}

168 Recommendation T.128 (02/98)

SecondaryOrderHeader ::= SEQUENCE
{
 controlFlags ControlOrderFlags,
 orderLength Integer16,
 -- length in octets, from and including orderType, minus eight
 extraFlags ExtraOrderFlags,
 orderType SecondaryOrderType
}

ShareControlHeader ::= SEQUENCE
{
 totalLength Integer16 (0..32767),
 protocolVersion Integer4 (1),
 pduType PDUType,
 pad1octet Integer8 (0),
 pduSource UserID
}

ShareDataHeader ::= SEQUENCE
{
 shareControlHeader ShareControlHeader, -- PDUType = dataPDU
 shareID ShareID,
 pad1octet Integer8 (0),
 streamID StreamID,
 uncompressedLength Integer16,
 pduType2 PDUType2,
 generalCompressedType Integer8,
 generalCompressedLength Integer16
}

-- Order Types

DestinationBltOrder ::= SEQUENCE
{
 header PrimaryOrderHeader, -- PrimaryOrderType = destinationBlt
 destLeft Coordinate OPTIONAL,
 destTop Coordinate OPTIONAL,
 destWidth Coordinate OPTIONAL,
 destHeight Coordinate OPTIONAL,
 rop3 ROP3 OPTIONAL
}

PatternBltOrder ::= SEQUENCE
{
 header PrimaryOrderHeader, -- PrimaryOrderType = patternBlt
 destLeft Coordinate OPTIONAL,
 destTop Coordinate OPTIONAL,
 destWidth Coordinate OPTIONAL,
 destHeight Coordinate OPTIONAL,
 rop3 ROP3 OPTIONAL,
 backgroundColor Color OPTIONAL,
 foregroundColor Color OPTIONAL,
 brush Brush OPTIONAL
}

 Recommendation T.128 (02/98) 169

ScreenBltOrder ::= SEQUENCE
{
 header PrimaryOrderHeader, -- PrimaryOrderType = screenBlt
 destLeft Coordinate OPTIONAL,
 destTop Coordinate OPTIONAL,
 destWidth Coordinate OPTIONAL,
 destHeight Coordinate OPTIONAL,
 rop3 ROP3 OPTIONAL,
 sourceX Coordinate OPTIONAL,
 sourceY Coordinate OPTIONAL
}

CacheBitmapOrder ::= SEQUENCE
{
 header SecondaryOrderHeader, -- SecondaryOrderType =
 -- cacheBitmapUncompressed |
 -- cacheBitmapCompressed
 cacheId Integer8 (0..2),
 pad1octet Integer8 (0),
 bitmapWidth Integer8,
 bitmapHeight Integer8,
 bitmapBitsPerPel Integer8 (1|4|8),
 bitmapLength Integer16,
 -- length of bitmapData in octets (after any compression)
 cacheIndex Integer16,
 bitmapData BitmapData
}

CacheColorTableOrder ::= SEQUENCE
{
 header SecondaryOrderHeader, -- SecondaryOrderType = cacheColorTable
 cacheIndex Integer8,
 numberColors Integer16 (16|256),
 colorTable SEQUENCE (SIZE (16|256)) OF ColorQuad
}

MemoryBltOrder ::= SEQUENCE
{
 header PrimaryOrderHeader, -- PrimaryOrderType = memoryBlt
 colorTableCacheIndex Integer8 OPTIONAL,
 bitmapCacheID Integer8 OPTIONAL,
 destLeft Coordinate OPTIONAL,
 destTop Coordinate OPTIONAL,
 destWidth Coordinate OPTIONAL,
 destHeight Coordinate OPTIONAL,
 rop3 ROP3 OPTIONAL,
 sourceX Coordinate OPTIONAL,
 sourceY Coordinate OPTIONAL,
 bitmapCacheIndex Integer16 OPTIONAL
}

MemoryThreeWayBltOrder ::= SEQUENCE
{
 header PrimaryOrderHeader, -- PrimaryOrderType = memoryThreeWayBlt
 colorTableCacheIndex Integer8 OPTIONAL,
 bitmapCacheID Integer8 OPTIONAL,
 destLeft Coordinate OPTIONAL,
 destTop Coordinate OPTIONAL,
 destWidth Coordinate OPTIONAL,
 destHeight Coordinate OPTIONAL,
 rop3 ROP3 OPTIONAL,

170 Recommendation T.128 (02/98)

 sourceX Coordinate OPTIONAL,
 sourceY Coordinate OPTIONAL,
 backgroundColor Color OPTIONAL,
 foregroundColor Color OPTIONAL,
 brush Brush OPTIONAL,
 bitmapCacheIndex Integer16 OPTIONAL
}

TextOrder ::= SEQUENCE
{
 header PrimaryOrderHeader, -- PrimaryOrderType = text
 backMixMode BackgroundMixMode OPTIONAL,
 startX Coordinate OPTIONAL,
 startY Coordinate OPTIONAL,
 backgroundColor Color OPTIONAL,
 foregroundColor Color OPTIONAL,
 extraSpacing Integer16 OPTIONAL,
 totalBreakSpacing Integer16 OPTIONAL,
 breakCount Integer16 OPTIONAL,
 fontHeight Integer16 OPTIONAL,
 fontWidth Integer16 OPTIONAL,
 fontWeight Integer16 OPTIONAL,
 textFlags TextAttributeFlags OPTIONAL,
 fontID Integer16 OPTIONAL,
 numberCodePoints Integer8 (1..255) OPTIONAL,
 -- number of codepoints in codePointList
 codePointList ASString (SIZE (1..255)) OPTIONAL
}

ExtendedTextOrder ::= SEQUENCE
{
 header PrimaryOrderHeader, -- PrimaryOrderType = extendedText
 backMixMode BackgroundMixMode OPTIONAL,
 startX Coordinate OPTIONAL,
 startY Coordinate OPTIONAL,
 backgroundColor Color OPTIONAL,
 foregroundColor Color OPTIONAL,
 extraSpacing Integer16 OPTIONAL,
 totalBreakSpacing Integer16 OPTIONAL,
 breakCount Integer16 OPTIONAL,
 fontHeight Integer16 OPTIONAL,
 fontWidth Integer16 OPTIONAL,
 fontWeight Integer16 OPTIONAL,
 textFlags1 TextAttributeFlags OPTIONAL,
 fontID Integer16 OPTIONAL,
 textFlags2 ExtraTextFlags OPTIONAL,
 clipLeft Coordinate OPTIONAL,
 clipTop Coordinate OPTIONAL,
 clipRight Coordinate OPTIONAL,
 clipBottom Coordinate OPTIONAL,
 numberCodePoints Integer8 (1..255) OPTIONAL,
 -- number of codepoints in codePointList; where deltaX values
 -- are present maximum number of codepoints is 127
 codePointList ASString (SIZE (1..255)) OPTIONAL,
 numberDeltaX Integer8 (1..127) OPTIONAL,
 -- number of deltaX values in deltaXList
 deltaXList SEQUENCE (SIZE (1..127)) OF Coordinate OPTIONAL
}

 Recommendation T.128 (02/98) 171

FrameOrder ::= SEQUENCE
{
 header PrimaryOrderHeader, -- PrimaryOrderType = frame
 destLeft Coordinate OPTIONAL,
 destTop Coordinate OPTIONAL,
 destWidth Coordinate OPTIONAL,
 destHeight Coordinate OPTIONAL,
 rop3 ROP3 OPTIONAL,
 backgroundColor Color OPTIONAL,
 foregroundColor Color OPTIONAL,
 brush Brush OPTIONAL
}

RectangleOrder ::= SEQUENCE
{
 header PrimaryOrderHeader, -- PrimaryOrderType = rectangle
 backMixMode BackgroundMixMode OPTIONAL,
 destLeft Coordinate OPTIONAL,
 destTop Coordinate OPTIONAL,
 destRight Coordinate OPTIONAL,
 destBottom Coordinate OPTIONAL,
 backgroundColor Color OPTIONAL,
 foregroundColor Color OPTIONAL,
 brush Brush OPTIONAL,
 rop2 ROP2 OPTIONAL,
 pen Pen OPTIONAL
}

OpaqueRectangleOrder ::= SEQUENCE
{
 header PrimaryOrderHeader, -- PrimaryOrderType = opaqueRectangle
 destLeft Coordinate OPTIONAL,
 destTop Coordinate OPTIONAL,
 destWidth Coordinate OPTIONAL,
 destHeight Coordinate OPTIONAL,
 color Color OPTIONAL
}

LineOrder ::= SEQUENCE
{
 header PrimaryOrderHeader, -- PrimaryOrderType = line
 backMixMode BackgroundMixMode OPTIONAL,
 startX Coordinate OPTIONAL,
 startY Coordinate OPTIONAL,
 endX Coordinate OPTIONAL,
 endY Coordinate OPTIONAL,
 backgroundColor Color OPTIONAL,
 rop2 ROP2 OPTIONAL,
 pen Pen OPTIONAL
}

DesktopSaveOrder ::= SEQUENCE
{
 header PrimaryOrderHeader, -- PrimaryOrderType = desktopSave
 saveOffset Integer32 OPTIONAL,
 destLeft Coordinate OPTIONAL,
 destTop Coordinate OPTIONAL,
 destWidth Coordinate OPTIONAL,
 destHeight Coordinate OPTIONAL,
 action DesktopSaveAction OPTIONAL
}

172 Recommendation T.128 (02/98)

DesktopOriginOrder ::= SEQUENCE
{
 header PrimaryOrderHeader, -- PrimaryOrderType = desktopOrigin
 desktopLeft Coordinate OPTIONAL,
 desktopTop Coordinate OPTIONAL
}

PrimaryOrder ::= CHOICE
{
 destinationBlt DestinationBltOrder,
 patternBlt PatternBltOrder,
 screenBlt ScreenBltOrder,
 memoryBlt MemoryBltOrder,
 memoryThreeWayBlt MemoryThreeWayBltOrder,
 text TextOrder,
 extendedText ExtendedTextOrder,
 frame FrameOrder,
 rectangle RectangleOrder,
 line LineOrder,
 opaqueRectangle OpaqueRectangleOrder,
 desktopSave DesktopSaveOrder,
 desktopOrigin DesktopOriginOrder
}

SecondaryOrder ::= CHOICE
{
 cacheBitmap CacheBitmapOrder,
 cacheColorTable CacheColorTableOrder
}

UpdateOrder ::= CHOICE
{
 primaryOrder PrimaryOrder,
 secondaryOrder SecondaryOrder
}

--|||
--|||
--
-- Begin AS PDU Definitions
--
--||
--||

ApplicationPDU ::= SEQUENCE
{
 shareDataHeader ShareDataHeader, -- PDUType2 = application
 action ApplicationAction,
 numberApplications Integer16,
 windowID WindowID
}

ConfirmActivePDU ::= SEQUENCE
{
 shareControlHeader ShareControlHeader, -- PDUType = confirmActivePDU
 shareID ShareID,
 originatorID UserID,
 lengthSourceDescriptor Integer16 (1..maxSourceDescriptor),
 -- length of sourceDescriptor in octets
 -- (including null terminator)

 Recommendation T.128 (02/98) 173

 lengthCombinedCapabilities Integer16,
 -- length of combinedCapabilities in octets
 sourceDescriptor T50String (SIZE (1..maxSourceDescriptor)),
 combinedCapabilities CombinedCapabilities
}

ControlPDU ::= SEQUENCE
{
 shareDataHeader ShareDataHeader, -- PDUType2 = control
 action ControlAction,
 grantID UserID
 controlID Integer32 (0..2147483647)
}

DeactivateAllPDU ::= SEQUENCE
{
 shareControlHeader ShareControlHeader, -- PDUType = deactivateAllPDU
 shareID ShareID,
 lengthSourceDescriptor Integer16 (1..maxSourceDescriptor),
 -- length of sourceDescriptor in octets
 -- (including null terminator)
 sourceDescriptor T50String (SIZE (1..maxSourceDescriptor))
}

DeactivateOtherPDU ::= SEQUENCE
{
 shareControlHeader ShareControlHeader, -- PDUType = deactivateOtherPDU
 shareID ShareID,
 deactivateID UserID,
 lengthSourceDescriptor Integer16 (1..maxSourceDescriptor),
 -- length of sourceDescriptor in octets
 -- (including null terminator)
 sourceDescriptor T50String (SIZE (1..maxSourceDescriptor))
}

DeactivateSelfPDU ::= SEQUENCE
{
 shareControlHeader ShareControlHeader, -- PDUType = deactivateSelfPDU
 shareID ShareID
}

DemandActivePDU ::= SEQUENCE
{
 shareControlHeader ShareControlHeader, -- PDUType = demandActivePDU
 shareID ShareID,
 lengthSourceDescriptor Integer16 (1..maxSourceDescriptor),
 -- length of sourceDescriptor in octets
 -- (including null terminator)
 lengthCombinedCapabilities Integer16,
 -- length of combinedCapabilities in octets
 sourceDescriptor T50String (SIZE (1..maxSourceDescriptor)),
 combinedCapabilities CombinedCapabilities
}

FlowPDU ::= SEQUENCE
{
 flowMarker Integer16 (’8000’H),
 -- distinguishes FlowPDUs from ASPDUs
 -- containing ShareControlHeaders
 pad8bits Integer8 (0),

174 Recommendation T.128 (02/98)

 pduTypeFlow PDUTypeFlow (flowResponsePDU |
 (flowStopPDU |
 flowTestPDU),
 flowIdentifier Integer8 (0..127),
 flowNumber Integer8,
 -- shall be zero for PDUType FlowStopPDU
 pduSource UserID
 -- MCS User ID of sending ASCE
}

FontPDU ::= SEQUENCE
{
 shareDataHeader ShareDataHeader, -- PDUType2 = font
 numberFonts Integer16 (1..maxFonts),
 -- number of FontAttributes in fontList
 entrySize Integer16,
 fontList SEQUENCE (SIZE (1..maxFonts)) OF FontAttribute
}

InputPDU ::= SEQUENCE
{
 shareDataHeader ShareDataHeader, -- PDUType2 = input
 numberEvents Integer16,
 -- number of InputEvents in eventList
 pad2octets Integer16 (0),
 eventList SEQUENCE (SIZE (1..maxInputEvents)) OF InputEvent
}

MediatedControlPDU ::= SEQUENCE
{
 shareDataHeader ShareDataHeader, -- PDUType2 = mediatedControl
 action MediatedControlAction,
 passControlFlag Boolean16,
 sendingReference Integer16,
 originatorReference Integer16,
 originatorID UserID
}

PointerPDU ::= SEQUENCE
{
 shareDataHeader ShareDataHeader, -- PDUType2 = pointer
 messageType PointerMessageType,
 pad2octets Integer16 (0),
 pointerData CHOICE
 {
 systemPointerType SystemPointerType,
 monoPointerAttribute MonoPointerAttribute,
 colorPointerAttribute ColorPointerAttribute,
 cachedPointerIndex Integer16,
 pointerPosition Point16
 }
}

RemoteSharePDU ::= SEQUENCE
{
 shareDataHeader ShareDataHeader, -- PDUType2 = remoteShare
 action RemoteShareAction,
 additionalData CHOICE
 {

 Recommendation T.128 (02/98) 175

 requestingID UserID,
 pad2octets Integer16 (0),
 denialCode RemoteShareDenial
 },
 encryptedPassword OCTET STRING (SIZE (1..maxPassword))
}

RequestActivePDU ::= SEQUENCE
{
 shareControlHeader ShareControlHeader, -- PDUType = requestActivePDU
 lengthSourceDescriptor Integer16 (1..maxSourceDescriptor),
 -- length of sourceDescriptor in octets
 -- (including null terminator)
 lengthCombinedCapabilities Integer16,
 -- length of combinedCapabilities in octets
 sourceDescriptor T50String (SIZE (1..maxSourceDescriptor)),
 combinedCapabilities CombinedCapabilities
}

SynchronizePDU ::= SEQUENCE
{
 shareDataHeader ShareDataHeader, -- PDUType2 = synchronize
 messageType SynchronizeMessageType,
 targetUser UserID
}

UpdateBitmapPDU ::= SEQUENCE
{
 shareDataHeader ShareDataHeader, -- PDUType2=update
 updateType UpdateType (bitmap),
 pad2octets Integer16 (0),
 destLeft Coordinate16,
 destTop Coordinate16,
 destRight Coordinate16,
 destBottom Coordinate16,
 width Integer16,
 height Integer16,
 bitsPerPixel Integer16 (1|4|8),
 compressedFlag Boolean16,
 bitmapLength Integer16,
 -- length in octets of bitmapData (after any compression)
 bitmapData BitmapData
}

UpdateCapabilityPDU ::= SEQUENCE
{
 shareDataHeader ShareDataHeader, -- PDUType2 = updateCapability
 updateCapabilitySet UpdateCapabilitySet
}

UpdateOrdersPDU ::= SEQUENCE
{
 shareDataHeader ShareDataHeader, -- PDUType2 = update
 updateType UpdateType (orders),
 pad2octetsA Integer16 (0),
 numberOrders Integer16,
 -- number of UpdateOrders in orderList
 pad2octetsB Integer16 (0),
 orderList SEQUENCE OF UpdateOrder
}

176 Recommendation T.128 (02/98)

UpdatePalettePDU ::= SEQUENCE
{
 shareDataHeader ShareDataHeader, -- PDUType2 = update
 updateType UpdateType (palette),
 pad2octets Integer16 (0),
 numberColors Integer32 (16|256),
 palette SEQUENCE (SIZE (16|256)) OF Color
}

UpdateSynchronizePDU ::= SEQUENCE
{
 shareDataHeader ShareDataHeader, -- PDUType2 = update
 updateType UpdateType (synchronize),
 pad2octets Integer16 (0)
}

WindowActivationPDU ::= SEQUENCE
{
 shareDataHeader ShareDataHeader, -- PDUType2 = windowActivation
 action WindowActivationAction,
 activationID Integer16,
 activationWindow WindowID,
 activationPoint Point16
}

WindowListPDU ::= SEQUENCE
{
 shareDataHeader ShareDataHeader, -- PDUType2 = windowList
 messageType WindowListMessageType,
 pad2octetsA Integer16,
 numberWindows Integer16,
 -- number of WindowAttributes/Titles in lists
 listTime Integer16,
 listID Integer16,
 pad2octetsB Integer16,
 windowAttributeList SEQUENCE OF WindowAttribute,
 windowTitleList SEQUENCE OF WindowTitle
}

SharePDU ::= CHOICE
{
 applicationPDU ApplicationPDU,
 confirmActivePDU ConfirmActivePDU,
 controlPDU ControlPDU,
 deactivateAllPDU DeactivateAllPDU,
 deactivateOtherPDU DeactivateOtherPDU,
 deactivateSelfPDU DeactivateSelfPDU,
 demandActivePDU DemandActivePDU,
 flowPDU FlowPDU,
 fontPDU FontPDU,
 inputPDU InputPDU,
 mediatedControlPDU MediatedControlPDU,
 pointerPDU PointerPDU,
 remoteSharePDU RemoteSharePDU,
 requestActivePDU RequestActivePDU,
 synchronizePDU SynchronizePDU,
 updateCapabilityPDU UpdateCapabilityPDU,
 updateBitmapPDU UpdateBitmapPDU,
 updateOrdersPDU UpdateOrdersPDU,
 updateSynchronizePDU UpdateSynchronizePDU,
 updatePalettePDU UpdatePalettePDU,

 Recommendation T.128 (02/98) 177

 windowActivationPDU WindowActivationPDU,
 windowListPDU WindowListPDU
}

--|||
--|||
--
-- End AS Definitions
--
--||
--||

END

9.2 Base mode ASN.1 definition

--|||
--|||
--
-- Begin AS Definitions
--
-- The following base mode ASN.1 definitions are encoded using the BASIC
-- ALIGNED variant of the Packed Encoding Rules of Recommendation
-- X.691.
--
--|||
--|||

AS-PROTOCOL DEFINITIONS AUTOMATIC TAGS ::=

BEGIN

IMPORTS H221NonStandardIdentifier,
 Key,
 NonStandardParameter,
 UserID
FROM GCC-PROTOCOL;

-- NOTE: ===
-- NOTE: All abstract types defined shall be exported
-- NOTE: ===

--
-- Base Types
--

Coordinate8 ::= INTEGER (−128..127)
Coordinate16 ::= INTEGER (−32768..32767)
Integer8 ::= INTEGER (0..255)
Integer12 ::= INTEGER (0..4095)
Integer16 ::= INTEGER (0..65535)
Integer32 ::= INTEGER (0..4294967295)
Signed16 ::= INTEGER (−32768..32767)

ShareID ::= Integer32
WindowID ::= Integer32
T50String ::= OCTET STRING (SIZE (0..255)) -- -- T.50 String
ASString ::= OCTET STRING (SIZE (0..255)) -- -- AS Protocol CodePage String

178 Recommendation T.128 (02/98)

--
-- Bit Flag Types
--

ExtraTextFlags ::= BIT STRING
{
 opaqueRectangle (1),
 clipToRectangle (2),
 deltaXPresent (15),
 ...
}

FontAttributeFlags ::= BIT STRING
{
 fixedPitch (0),
 fixedSize (1),
 ...
}

KeyboardFlags ::= BIT STRING
{
 right (0),
 quiet (12),
 down (14),
 release (15),
 ...
}

PointingDeviceFlags ::= BIT STRING
{
 move (11),
 button1 (12),
 button2 (13),
 button3 (14),
 down (15),
 ...
}

TextAttributeFlags ::= BIT STRING
{
 italic (2),
 underline (3),
 strikeout (4),
 baselineStart (8),
 ...
}

WindowAttributeFlags ::= BIT STRING
{
 minimized (0),
 taggable (1),
 hosted (2),
 shadow (3),
 local (4),
 topmost (5),
 windowManagerMinimized (16),
 windowManagerInvisible (17),
 ...
}

 Recommendation T.128 (02/98) 179

-- General Types

ActivateWindowRequest ::= SEQUENCE
{
 activationWindow WindowID,
 nonStandardParameters SEQUENCE OF NonStandardParameter OPTIONAL,
 -- Subject to capability negotiation.
 ...
}

ActivationHelpKeyRequest ::= SEQUENCE
{
 activationWindow WindowID,
 nonStandardParameters SEQUENCE OF NonStandardParameter OPTIONAL,
 -- Subject to capability negotiation.
 ...
}

ActivationHelpIndexKeyRequest ::= SEQUENCE
{
 activationWindow WindowID,
 nonStandardParameters SEQUENCE OF NonStandardParameter OPTIONAL,
 -- Subject to capability negotiation.
 ...
}

ActivationHelpExtendedKeyRequest ::= SEQUENCE
{
 activationWindow WindowID,
 nonStandardParameters SEQUENCE OF NonStandardParameter OPTIONAL,
 -- Subject to capability negotiation.
 ...
}

BackgroundMixMode ::= CHOICE
{
 transparent [1] NULL,
 opaque [2] NULL,
 nonStandardBackgroundMixMode NonStandardParameter,
 -- Subject to capability negotiation.
 ...
}

BitmapData ::= CHOICE
{
 uncompressedBitmapData [0] OCTET STRING,
 compressedBitmapData [2] CompressedBitmapData,
 nonStandardBitmapData NonStandardParameter,
 -- Subject to capability negotiation.
 ...
}

Brush ::= SEQUENCE
{
 originX Integer8 OPTIONAL,
 originY Integer8 OPTIONAL,
 style BrushStyle OPTIONAL,
 hatch BrushHatch OPTIONAL,

180 Recommendation T.128 (02/98)

 pattern OCTET STRING (SIZE (7)) OPTIONAL,
 nonStandardParameters SEQUENCE OF NonStandardParameter OPTIONAL,
 -- Subject to capability negotiation.
 ...
}

BrushHatch ::= CHOICE
{
 style HatchStyle,
 patternZero Integer8,
 nonStandardBrushHatch NonStandardParameter,
 -- Subject to capability negotiation.
 ...
}

BrushStyle ::= CHOICE
{
 solid [0] NULL,
 null [1] NULL,
 hatched [2] NULL,
 pattern [3] NULL,
 nonStandardBrushStyle NonStandardParameter,
 -- Subject to capability negotiation.
 ...
}

CloseWindowRequest ::= SEQUENCE
{
 activationWindow WindowID,
 nonStandardParameters SEQUENCE OF NonStandardParameter OPTIONAL,
 -- Subject to capability negotiation.
 ...
}

Color ::= SEQUENCE
{
 c1 Integer8,
 -- either R of RGB or subject to capability negotiation.
 c2 Integer8,
 -- either G of RGB or subject to capability negotiation.
 c3 Integer8
 -- either B of RGB or subject to capability negotiation
}

ColorAccuracyEnhancementRGB ::= CHOICE
{
 predefinedRGBSpace CHOICE
 {
 nonStandardRGBSpace NonStandardParameter,
 ...
 },
 generalRGBParameters SEQUENCE
 {
 gamma REAL (0..MAX) OPTIONAL,
 -- Gamma value of the color space
 colorTemperature INTEGER (0..MAX) OPTIONAL,
 -- Color temperature of the white point assumed by
 -- the color space (in degrees Kelvin)

 Recommendation T.128 (02/98) 181

 primaries SEQUENCE
 {
 red ColorCIExyChromaticity,
 -- CIE xy chromaticity coordinate of the red primary
 green ColorCIExyChromaticity,
 -- CIE xy chromaticity coordinate of the green primary
 blue ColorCIExyChromaticity
 -- CIE xy chromaticity coordinate of the blue primary
 } OPTIONAL,
 ...
 },
 ...
}

ColorCIExyChromaticity ::= SEQUENCE
{
 x REAL (0..1), -- CIE normalized x component
 y REAL (0..1) -- CIE normalized y component
}

ColorPalette ::= CHOICE
{
 paletteRGB SEQUENCE
 {
 palette SEQUENCE (SIZE (16|256)) OF ColorRGB,
 enhancement ColorAccuracyEnhancementRGB OPTIONAL,
 ...
 },
 nonStandardPalette NonStandardParameter,
 ...
}

ColorPointerAttribute ::= SEQUENCE
{
 cacheIndex Integer16,
 hotSpot Point16,
 width Integer16,
 height Integer16,
 colorPointerData OCTET STRING,
 nonStandardParameters SEQUENCE OF NonStandardParameter OPTIONAL,
 -- Subject to capability negotiation.
 ...
}

ColorRGB ::= SEQUENCE
{
 red Integer8,
 green Integer8,
 blue Integer8
}

ColorSpaceSpecifier ::= CHOICE
{
 colorSpaceDefault NULL,
 -- Default color space is RGB without accuracy enhancement
 colorSpaceRGB ColorAccuracyEnhancementRGB,
 nonStandardColorSpace NonStandardParameter,
 -- Subject to capability negotiation.
 ...
}

182 Recommendation T.128 (02/98)

CompressedBitmapData ::= SEQUENCE
{
 mainBodySize Integer16,
 rowSize Integer16,
 uncompressedSize Integer16,
 compressedBitmap OCTET STRING,
 nonStandardParameters SEQUENCE OF NonStandardParameter OPTIONAL,
 -- Subject to capability negotiation.
 ...
}

ConfirmDetachResponse ::= SEQUENCE
{
 passControlFlag BOOLEAN,
 sendingReference Integer16,
 originatorReference Integer16,
 originatorID UserID,
 nonStandardParameters SEQUENCE OF NonStandardParameter OPTIONAL,
 -- Subject to capability negotiation.
 ...
}

ConfirmRemoteShare ::= SEQUENCE
{
 nonStandardParameters SEQUENCE OF NonStandardParameter OPTIONAL,
 -- Subject to capability negotiation.
 ...
}

ConfirmTakeResponse ::= SEQUENCE
{
 passControlFlag BOOLEAN,
 sendingReference Integer16,
 originatorReference Integer16,
 originatorID UserID,
 nonStandardParameters SEQUENCE OF NonStandardParameter OPTIONAL,
 -- Subject to capability negotiation.
 ...
}

ControlPriority ::= CHOICE
{
 always [1] NULL,
 never [2] NULL,
 confirm [3] NULL,
 nonStandardControlPriority NonStandardParameter,
 -- Subject to capability negotiation.
 ...
}

Cooperate ::= SEQUENCE
{
 nonStandardParameters SEQUENCE OF NonStandardParameter OPTIONAL,
 -- Subject to capability negotiation.
 ...
}

Coordinate ::= CHOICE
{
 absolute Coordinate16,
 delta Coordinate8,

 Recommendation T.128 (02/98) 183

 nonStandardCoordinate NonStandardParameter,
 -- Subject to capability negotiation.
 ...
}

DesktopSaveAction ::= CHOICE
{
 desktopSave [0] NULL,
 desktopRestore [1] NULL,
 nonStandardDesktopSaveAction NonStandardParameter,
 -- Subject to capability negotiation.
 ...
}

DenyDetachResponse ::= SEQUENCE
{
 passControlFlag BOOLEAN,
 sendingReference Integer16,
 originatorReference Integer16,
 originatorID UserID,
 nonStandardParameters SEQUENCE OF NonStandardParameter OPTIONAL,
 -- Subject to capability negotiation.
 ...
}

DenyPassResponse ::= SEQUENCE
{
 passControlFlag BOOLEAN,
 sendingReference Integer16,
 originatorReference Integer16,
 originatorID UserID,
 nonStandardParameters SEQUENCE OF NonStandardParameter OPTIONAL,
 -- Subject to capability negotiation.
 ...
}

DenyTakeResponse ::= SEQUENCE
{
 passControlFlag BOOLEAN,
 sendingReference Integer16,
 originatorReference Integer16,
 originatorID UserID,
 nonStandardParameters SEQUENCE OF NonStandardParameter OPTIONAL,
 -- Subject to capability negotiation.
 ...
}

DenyRemoteDetachResponse ::= SEQUENCE
{
 passControlFlag BOOLEAN,
 sendingReference Integer16,
 originatorReference Integer16,
 originatorID UserID,
 nonStandardParameters SEQUENCE OF NonStandardParameter OPTIONAL,
 -- Subject to capability negotiation.
 ...
}

184 Recommendation T.128 (02/98)

DenyRemoteShare ::= CHOICE
{
 remoteShareDenial RemoteShareDenial,
 nonStandardDenial NonStandardParameter,
 -- Subject to capability negotiation.
 ...
}

Detach ::= SEQUENCE
{
 nonStandardParameters SEQUENCE OF NonStandardParameter OPTIONAL,
 -- Subject to capability negotiation.
 ...
}

DetachRequest ::= SEQUENCE
{
 passControlFlag BOOLEAN,
 sendingReference Integer16,
 originatorID UserID,
 nonStandardParameters SEQUENCE OF NonStandardParameter OPTIONAL,
 -- Subject to capability negotiation.
 ...
}

FontAttribute ::= SEQUENCE
{
 faceName T50String,
 fontFlags FontAttributeFlags,
 averageWidth Integer16,
 height Integer16,
 aspectX Integer16,
 aspectY Integer16,
 signature1 Integer8,
 signature2 Integer8,
 signature3 Integer16,
 codePage FontCodePage,
 ascent Integer16,
 nonStandardParameters SEQUENCE OF NonStandardParameter OPTIONAL,
 -- Subject to capability negotiation.
 ...
}

FontCodePage ::= CHOICE
{
 allCodePoints [0] NULL,
 coreCodePoints [255] NULL,
 nonStandardFontCodePage NonStandardParameter,
 -- Subject to capability negotiation.
 ...
}

GeneralCompressionSpecifier ::= CHOICE
{
 v42bisCompression V42bisCompression,
 nonStandardCompression NonStandardParameter,
 ...
}

 Recommendation T.128 (02/98) 185

GrantControl ::= SEQUENCE
{
 grantID UserID,
 controlID INTEGER (0..2147483647),
 nonStandardParameters SEQUENCE OF NonStandardParameter OPTIONAL,
 -- Subject to capability negotiation.
 ...
}

HatchStyle ::= CHOICE
{
 horizontal [0] NULL,
 vertical [1] NULL,
 forward [2] NULL,
 backward [3] NULL,
 cross [4] NULL,
 diagonal [5] NULL,
 nonStandardHatchStyle NonStandardParameter,
 -- Subject to capability negotiation.
 ...
}

HostedWindowActiveIndication ::= SEQUENCE
{
 activationID Integer16,
 activationWindow WindowID,
 nonStandardParameters SEQUENCE OF NonStandardParameter OPTIONAL,
 -- Subject to capability negotiation.
 ...
}

HostedWindowInvisibleIndication ::= SEQUENCE
{
 activationID Integer16,
 nonStandardParameters SEQUENCE OF NonStandardParameter OPTIONAL,
 -- Subject to capability negotiation.
 ...
}

LocalWindowActiveIndication ::= SEQUENCE
{
 activationID Integer16,
 nonStandardParameters SEQUENCE OF NonStandardParameter OPTIONAL,
 -- Subject to capability negotiation.
 ...
}

MonoPointerAttribute ::= SEQUENCE
{
 hotSpot Point16,
 width Integer16,
 height Integer16,
 monoPointerData OCTET STRING,
 nonStandardParameters SEQUENCE OF NonStandardParameter OPTIONAL,
 -- Subject to capability negotiation.
 ...
}

186 Recommendation T.128 (02/98)

NotifyHostedApplications ::= SEQUENCE
{
 numberApplications Integer16,
 nonStandardParameters SEQUENCE OF NonStandardParameter OPTIONAL,
 -- Subject to capability negotiation.
 ...
}

PassControlRequest ::= SEQUENCE
{
 passControlFlag BOOLEAN,
 sendingReference Integer16,
 originatorID UserID,
 nonStandardParameters SEQUENCE OF NonStandardParameter OPTIONAL,
 -- Subject to capability negotiation.
 ...
}

Pen ::= SEQUENCE
{
 style PenStyle OPTIONAL,
 width Integer8 (1) OPTIONAL,
 color Color OPTIONAL,
 nonStandardParameters SEQUENCE OF NonStandardParameter OPTIONAL,
 -- Subject to capability negotiation.
 ...
}

PenStyle ::= CHOICE
{
 solid [0] NULL,
 dashed [1] NULL,
 dotted [2] NULL,
 dash-dot [3] NULL,
 dash-dot-dot [4] NULL,
 null [5] NULL,
 nonStandardPenStyle NonStandardParameter,
 -- Subject to capability negotiation.
 ...
}

Point16 ::= SEQUENCE
{
 x Coordinate16,
 y Coordinate16
}

PointerDeviceCaptureIndication ::= SEQUENCE
{
 activationID Integer16,
 activationWindow WindowID,
 nonStandardParameters SEQUENCE OF NonStandardParameter OPTIONAL,
 -- Subject to capability negotiation.
 ...
}

Rectangle16 ::= SEQUENCE
{
 left Coordinate16,
 top Coordinate16,

 Recommendation T.128 (02/98) 187

 right Coordinate16,
 bottom Coordinate16
}

RemoteDetachRequest ::= SEQUENCE
{
 passControlFlag BOOLEAN,
 sendingReference Integer16,
 originatorID UserID,
 nonStandardParameters SEQUENCE OF NonStandardParameter OPTIONAL,
 -- Subject to capability negotiation.
 ...
}

RemoteShareDenial ::= CHOICE
{
 incorrectPassword [1] NULL,
 remoteShareNotEnabled [2] NULL,
 remoteShareInOperationIncoming [3] NULL,
 remoteShareInOperationOutgoing [4] NULL,
 nonStandardRemoteShareDenial NonStandardParameter,
 -- Subject to capability negotiation.
 ...
}

RequestControl ::= SEQUENCE
{
 nonStandardParameters SEQUENCE OF NonStandardParameter OPTIONAL,
 -- Subject to capability negotiation.
 ...
}

RequestRemoteShare ::= SEQUENCE
{
 requestingID UserID,
 encryptedPassword OCTET STRING,
 nonStandardParameters SEQUENCE OF NonStandardParameter OPTIONAL,
 -- Subject to capability negotiation.
 ...
}

RestoreWindowRequest ::= SEQUENCE
{
 activationWindow WindowID,
 nonStandardParameters SEQUENCE OF NonStandardParameter OPTIONAL,
 -- Subject to capability negotiation.
 ...
}

ROP2 ::= Integer8
{
 r2BLACK (1),
 r2DPon (2),
 r2DPna (3),
 r2Pn (4),
 r2PDna (5),
 r2Dn (6),
 r2DPx (7),
 r2DPan (8),
 r2DPa (9),
 r2DPxn (10),

188 Recommendation T.128 (02/98)

 r2D (11),
 r2DPno (12),
 r2P (13),
 r2PDno (14),
 r2DPo (15),
 r2WHITE (16),
 ...
}

ROP3 ::= Integer8
{
 r3BLACK (’00’H),
 r3DPSoon (’01’H),
 r3DPSona (’02’H),
 r3PSon (’03’H),
 r3SDPona (’04’H),
 r3DPon (’05’H),
 r3PDSxnon (’06’H),
 r3PDSaon (’07’H),
 r3SDPnaa (’08’H),
 r3PDSxon (’09’H),
 r3DPna (’0A’H),
 r3PSDnaon (’0B’H),
 r3SPna (’0C’H),
 r3PDSnaon (’0D’H),
 r3PDSonon (’0E’H),
 r3Pn (’0F’H),
 r3PDSona (’10’H),
 r3DSon (’11’H),
 r3SDPxnon (’12’H),
 r3SDPaon (’13’H),
 r3DPSxnon (’14’H),
 r3DPSaon (’15’H),
 r3PSDPSanaxx (’16’H),
 r3SSPxDSxaxn (’17’H),
 r3SPxPDxa (’18’H),
 r3SDPSanaxn (’19’H),
 r3PDSPaox (’1A’H),
 r3SDPSxaxn (’1B’H),
 r3PSDPaox (’1C’H),
 r3DSPDxaxn (’1D’H),
 r3PDSox (’1E’H),
 r3PDSoan (’1F’H),
 r3DPSnaa (’20’H),
 r3SDPxon (’21’H),
 r3DSna (’22’H),
 r3SPDnaon (’23’H),
 r3SPxDSxa (’24’H),
 r3PDSPanaxn (’25’H),
 r3SDPSaox (’26’H),
 r3SDPSxnox (’27’H),
 r3DPSxa (’28’H),
 r3PSDPSaoxxn (’29’H),
 r3DPSana (’2A’H),
 r3SSPxPDxaxn (’2B’H),
 r3SPDSoax (’2C’H),
 r3PSDnox (’2D’H),
 r3PSDPxox (’2E’H),
 r3PSDnoan (’2F’H),
 r3PSna (’30’H),
 r3SDPnaon (’31’H),

 Recommendation T.128 (02/98) 189

 r3SDPSoox (’32’H),
 r3Sn (’33’H),
 r3SPDSaox (’34’H),
 r3SPDSxnox (’35’H),
 r3SDPox (’36’H),
 r3SDPoan (’37’H),
 r3PSDPoax (’38’H),
 r3SPDnox (’39’H),
 r3SPDSxox (’3A’H),
 r3SPDnoan (’3B’H),
 r3PSx (’3C’H),
 r3SPDSonox (’3D’H),
 r3SPDSnaox (’3E’H),
 r3PSan (’3F’H),
 r3PSDnaa (’40’H),
 r3DPSxon (’41’H),
 r3SDxPDxa (’42’H),
 r3SPDSanaxn (’43’H),
 r3SDna (’44’H),
 r3DPSnaon (’45’H),
 r3DSPDaox (’46’H),
 r3PSDPxaxn (’47’H),
 r3SDPxa (’48’H),
 r3PDSPDaoxxn (’49’H),
 r3DPSDoax (’4A’H),
 r3PDSnox (’4B’H),
 r3SDPana (’4C’H),
 r3SSPxDSxoxn (’4D’H),
 r3PDSPxox (’4E’H),
 r3PDSnoan (’4F’H),
 r3PDna (’50’H),
 r3DSPnaon (’51’H),
 r3DPSDaox (’52’H),
 r3SPDSxaxn (’53’H),
 r3DPSonon (’54’H),
 r3Dn (’55’H),
 r3DPSox (’56’H),
 r3DPSoan (’57’H),
 r3PDSPoax (’58’H),
 r3DPSnox (’59’H),
 r3DPx (’5A’H),
 r3DPSDonox (’5B’H),
 r3DPSDxox (’5C’H),
 r3DPSnoan (’5D’H),
 r3DPSDnaox (’5E’H),
 r3DPan (’5F’H),
 r3PDSxa (’60’H),
 r3DSPDSaoxxn (’61’H),
 r3DSPDoax (’62’H),
 r3SDPnox (’63’H),
 r3SDPSoax (’64’H),
 r3DSPnox (’65’H),
 r3DSx (’66’H),
 r3SDPSonox (’67’H),
 r3DSPDSonoxxn (’68’H),
 r3PDSxxn (’69’H),
 r3DPSax (’6A’H),
 r3PSDPSoaxxn (’6B’H),
 r3SDPax (’6C’H),
 r3PDSPDoaxxn (’6D’H),
 r3SDPSnoax (’6E’H),

190 Recommendation T.128 (02/98)

 r3PDSxnan (’6F’H),
 r3PDSana (’70’H),
 r3SSDxPDxaxn (’71’H),
 r3SDPSxox (’72’H),
 r3SDPnoan (’73’H),
 r3DSPDxox (’74’H),
 r3DSPnoan (’75’H),
 r3SDPSnaox (’76’H),
 r3DSan (’77’H),
 r3PDSax (’78’H),
 r3DSPDSoaxxn (’79’H),
 r3DPSDnoax (’7A’H),
 r3SDPxnan (’7B’H),
 r3SPDSnoax (’7C’H),
 r3DPSxnan (’7D’H),
 r3SPxDSxo (’7E’H),
 r3DPSaan (’7F’H),
 r3DPSaa (’80’H),
 r3SPxDSxon (’81’H),
 r3DPSxna (’82’H),
 r3SPDSnoaxn (’83’H),
 r3SDPxna (’84’H),
 r3PDSPnoaxn (’85’H),
 r3DSPDSoaxx (’86’H),
 r3PDSaxn (’87’H),
 r3DSa (’88’H),
 r3SDPSnaoxn (’89’H),
 r3DSPnoa (’8A’H),
 r3DSPDxoxn (’8B’H),
 r3SDPnoa (’8C’H),
 r3SDPSxoxn (’8D’H),
 r3SSDxPDxax (’8E’H),
 r3PDSanan (’8F’H),
 r3PDSxna (’90’H),
 r3SDPSnoaxn (’91’H),
 r3DPSDPoaxx (’92’H),
 r3SPDaxn (’93’H),
 r3PSDPSoaxx (’94’H),
 r3DPSaxn (’95’H),
 r3DPSxx (’96’H),
 r3PSDPSonoxx (’97’H),
 r3SDPSonoxn (’98’H),
 r3DSxn (’99’H),
 r3DPSnax (’9A’H),
 r3SDPSoaxn (’9B’H),
 r3SPDnax (’9C’H),
 r3DSPDoaxn (’9D’H),
 r3DSPDSaoxx (’9E’H),
 r3PDSxan (’9F’H),
 r3DPa (’A0’H),
 r3PDSPnaoxn (’A1’H),
 r3DPSnoa (’A2’H),
 r3DPSDxoxn (’A3’H),
 r3PDSPonoxn (’A4’H),
 r3PDxn (’A5’H),
 r3DSPnax (’A6’H),
 r3PDSPoaxn (’A7’H),
 r3DPSoa (’A8’H),
 r3DPSoxn (’A9’H),
 r3D (’AA’H),
 r3DPSono (’AB’H),

 Recommendation T.128 (02/98) 191

 r3SPDSxax (’AC’H),
 r3DPSDaoxn (’AD’H),
 r3DSPnao (’AE’H),
 r3DPno (’AF’H),
 r3PDSnoa (’B0’H),
 r3PDSPxoxn (’B1’H),
 r3SSPxDSxox (’B2’H),
 r3SDPanan (’B3’H),
 r3PSDnax (’B4’H),
 r3DPSDoaxn (’B5’H),
 r3DPSDPaoxx (’B6’H),
 r3SDPxan (’B7’H),
 r3PSDPxax (’B8’H),
 r3DSPDaoxn (’B9’H),
 r3DPSnao (’BA’H),
 r3DSno (’BB’H),
 r3SPDSanax (’BC’H),
 r3SDxPDxan (’BD’H),
 r3DPSxo (’BE’H),
 r3DPSano (’BF’H),
 r3PSa (’C0’H),
 r3SPDSnaoxn (’C1’H),
 r3SPDSonoxn (’C2’H),
 r3PSxn (’C3’H),
 r3SPDnoa (’C4’H),
 r3SPDSxoxn (’C5’H),
 r3SDPnax (’C6’H),
 r3PSDPoaxn (’C7’H),
 r3SDPoa (’C8’H),
 r3SPDoxn (’C9’H),
 r3DPSDxax (’CA’H),
 r3SPDSaoxn (’CB’H),
 r3S (’CC’H),
 r3SDPono (’CD’H),
 r3SDPnao (’CE’H),
 r3SPno (’CF’H),
 r3PSDnoa (’D0’H),
 r3PSDPxoxn (’D1’H),
 r3PDSnax (’D2’H),
 r3SPDSoaxn (’D3’H),
 r3SSPxPDxax (’D4’H),
 r3DPSanan (’D5’H),
 r3PSDPSaoxx (’D6’H),
 r3DPSxan (’D7’H),
 r3PDSPxax (’D8’H),
 r3SDPSaoxn (’D9’H),
 r3DPSDanax (’DA’H),
 r3SPxDSxan (’DB’H),
 r3SPDnao (’DC’H),
 r3SDno (’DD’H),
 r3SDPxo (’DE’H),
 r3SDPano (’DF’H),
 r3PDSoa (’E0’H),
 r3PDSoxn (’E1’H),
 r3DSPDxax (’E2’H),
 r3PSDPaoxn (’E3’H),
 r3SDPSxax (’E4’H),
 r3PDSPaoxn (’E5’H),
 r3SDPSanax (’E6’H),
 r3SPxPDxan (’E7’H),
 r3SSPxDSxax (’E8’H),

192 Recommendation T.128 (02/98)

 r3DSPDSanaxxn (’E9’H),
 r3DPSao (’EA’H),
 r3DPSxno (’EB’H),
 r3SDPao (’EC’H),
 r3SDPxno (’ED’H),
 r3DSo (’EE’H),
 r3SDPnoo (’EF’H),
 r3P (’F0’H),
 r3PDSono (’F1’H),
 r3PDSnao (’F2’H),
 r3PSno (’F3’H),
 r3PSDnao (’F4’H),
 r3PDno (’F5’H),
 r3PDSxo (’F6’H),
 r3PDSano (’F7’H),
 r3PDSao (’F8’H),
 r3PDSxno (’F9’H),
 r3DPo (’FA’H),
 r3DPSnoo (’FB’H),
 r3PSo (’FC’H),
 r3PSDnoo (’FD’H),
 r3DPSoo (’FE’H),
 r3WHITE (’FF’H)
}

SystemPointerType ::= CHOICE
{
 null [0] NULL,
 default [32512] NULL,
 nonStandardSystemPointerValue NonStandardParameter,
 -- Subject to capability negotiation.
 ...
}

TakeControlRequest ::= SEQUENCE
{
 passControlFlag BOOLEAN,
 sendingReference Integer16,
 originatorReference Integer16,
 originatorID UserID,
 nonStandardParameters SEQUENCE OF NonStandardParameter OPTIONAL,
 -- Subject to capability negotiation.
 ...
}

UnhostApplication ::= SEQUENCE
{
 windowID WindowID,
 nonStandardParameters SEQUENCE OF NonStandardParameter OPTIONAL,
 -- Subject to capability negotiation.
 ...
}

V42bisCompression ::= SEQUENCE
{
 p1 INTEGER (512..65535) OPTIONAL,
 p2 INTEGER (6..250) OPTIONAL,
 ...
}

 Recommendation T.128 (02/98) 193

WindowAttribute ::= SEQUENCE
{
 windowID WindowID,
 windowExtra Integer32,
 windowOwner WindowID,
 windowFlags WindowAttributeFlags,
 windowRectangle Rectangle16,
 nonStandardParameters SEQUENCE OF NonStandardParameter OPTIONAL,
 -- Subject to capability negotiation.
 ...
}

WindowManagerMenuRequest ::= SEQUENCE
{
 activationWindow WindowID,
 activationPoint Point16,
 nonStandardParameters SEQUENCE OF NonStandardParameter OPTIONAL,
 -- Subject to capability negotiation.
 ...
}

WindowTitle ::= CHOICE
{
 noTitle Integer8 (255),
 titleString T50String,
 nonStandardWindowTitle NonStandardParameter,
 -- Subject to capability negotiation.
 ...
}

-- Input Types

InputEvent ::= CHOICE
{
 pointingDeviceEvent [32769] PointingDeviceEvent,
 codePointEvent [1] CodePointEvent,
 virtualKeyEvent [2] VirtualKeyEvent,
 synchronizeEvent [0] SynchronizeEvent,
 nonStandardInputEvent NonStandardParameter,
 -- Subject to capability negotiation.
 ...
}

CodePointEvent ::= SEQUENCE
{
 eventTime Integer32,
 keyboardFlags KeyboardFlags,
 codePoint Integer16,
 nonStandardParameters SEQUENCE OF NonStandardParameter OPTIONAL,
 -- Subject to capability negotiation.
 ...
}

VirtualKeyEvent ::= SEQUENCE
{
 eventTime Integer32,
 keyboardFlags KeyboardFlags,
 virtualKey Integer16,

194 Recommendation T.128 (02/98)

 nonStandardParameters SEQUENCE OF NonStandardParameter OPTIONAL,
 -- Subject to capability negotiation.
 ...
}

PointingDeviceEvent ::= SEQUENCE
{
 eventTime Integer32,
 pointingDeviceFlags PointingDeviceFlags,
 pointingDeviceX Coordinate16,
 pointingDeviceY Coordinate16,
 nonStandardParameters SEQUENCE OF NonStandardParameter OPTIONAL,
 -- Subject to capability negotiation.
 ...
}

SynchronizeEvent ::= SEQUENCE
{
 eventTime Integer32,
 nonStandardParameters SEQUENCE OF NonStandardParameter OPTIONAL,
 -- Subject to capability negotiation.
 ...
}

--
-- Common Header Types
--

PrimaryOrderHeader ::= SEQUENCE
{
 boundsLeft Coordinate OPTIONAL,
 boundsTop Coordinate OPTIONAL,
 boundsRight Coordinate OPTIONAL,
 boundsBottom Coordinate OPTIONAL,
 ...
}

ShareDataHeader ::= SEQUENCE
{
 shareID ShareID,
 generalCompressionSpecifier GeneralCompressionSpecifier OPTIONAL,
 ...
}

--
-- Order Types
--

DestinationBltOrder ::= SEQUENCE
{
 header PrimaryOrderHeader,
 destLeft Coordinate OPTIONAL,
 destTop Coordinate OPTIONAL,
 destWidth Coordinate OPTIONAL,
 destHeight Coordinate OPTIONAL,
 rop3 ROP3 OPTIONAL,
 nonStandardParameters SEQUENCE OF NonStandardParameter OPTIONAL,
 -- Subject to capability negotiation.
 ...
}

 Recommendation T.128 (02/98) 195

PatternBltOrder ::= SEQUENCE
{
 header PrimaryOrderHeader,
 destLeft Coordinate OPTIONAL,
 destTop Coordinate OPTIONAL,
 destWidth Coordinate OPTIONAL,
 destHeight Coordinate OPTIONAL,
 rop3 ROP3 OPTIONAL,
 backgroundColor Color OPTIONAL,
 foregroundColor Color OPTIONAL,
 brush Brush OPTIONAL,
 nonStandardParameters SEQUENCE OF NonStandardParameter OPTIONAL,
 -- Subject to capability negotiation.
 ...
}

ScreenBltOrder ::= SEQUENCE
{
 header PrimaryOrderHeader,
 destLeft Coordinate OPTIONAL,
 destTop Coordinate OPTIONAL,
 destWidth Coordinate OPTIONAL,
 destHeight Coordinate OPTIONAL,
 rop3 ROP3 OPTIONAL,
 sourceX Coordinate OPTIONAL,
 sourceY Coordinate OPTIONAL,
 nonStandardParameters SEQUENCE OF NonStandardParameter OPTIONAL,
 -- Subject to capability negotiation.
 ...
}

CacheBitmapOrder ::= SEQUENCE
{
 cacheId INTEGER (0..2),
 bitmapWidth Integer8,
 bitmapHeight Integer8,
 bitmapBitsPerPel INTEGER (1|4|8),
 cacheIndex Integer16,
 bitmapData BitmapData,
 nonStandardParameters SEQUENCE OF NonStandardParameter OPTIONAL,
 -- Subject to capability negotiation.
 ...
}

CacheColorTableOrder ::= SEQUENCE
{
 cacheIndex Integer8,
 colorTable ColorPalette,
 nonStandardParameters SEQUENCE OF NonStandardParameter OPTIONAL,
 -- Subject to capability negotiation.
 ...
}

MemoryBltOrder ::= SEQUENCE
{
 header PrimaryOrderHeader,
 colorTableCacheIndex Integer8 OPTIONAL,
 bitmapCacheID Integer8 OPTIONAL,
 destLeft Coordinate OPTIONAL,
 destTop Coordinate OPTIONAL,
 destWidth Coordinate OPTIONAL,

196 Recommendation T.128 (02/98)

 destHeight Coordinate OPTIONAL,
 rop3 ROP3 OPTIONAL,
 sourceX Coordinate OPTIONAL,
 sourceY Coordinate OPTIONAL,
 bitmapCacheIndex Integer16 OPTIONAL,
 nonStandardParameters SEQUENCE OF NonStandardParameter OPTIONAL,
 -- Subject to capability negotiation.
 ...
}

MemoryThreeWayBltOrder ::= SEQUENCE
{
 header PrimaryOrderHeader,
 colorTableCacheIndex Integer8 OPTIONAL,
 bitmapCacheID Integer8 OPTIONAL,
 destLeft Coordinate OPTIONAL,
 destTop Coordinate OPTIONAL,
 destWidth Coordinate OPTIONAL,
 destHeight Coordinate OPTIONAL,
 rop3 ROP3 OPTIONAL,
 sourceX Coordinate OPTIONAL,
 sourceY Coordinate OPTIONAL,
 backgroundColor Color OPTIONAL,
 foregroundColor Color OPTIONAL,
 brush Brush OPTIONAL,
 bitmapCacheIndex Integer16 OPTIONAL,
 nonStandardParameters SEQUENCE OF NonStandardParameter OPTIONAL,
 -- Subject to capability negotiation.
 ...
}

TextOrder ::= SEQUENCE
{
 header PrimaryOrderHeader,
 backMixMode BackgroundMixMode OPTIONAL,
 startX Coordinate OPTIONAL,
 startY Coordinate OPTIONAL,
 backgroundColor Color OPTIONAL,
 foregroundColor Color OPTIONAL,
 extraSpacing Integer16 OPTIONAL,
 totalBreakSpacing Integer16 OPTIONAL,
 breakCount Integer16 OPTIONAL,
 fontHeight Integer16 OPTIONAL,
 fontWidth Integer16 OPTIONAL,
 fontWeight Integer16 OPTIONAL,
 textFlags TextAttributeFlags OPTIONAL,
 fontID Integer16 OPTIONAL,
 codePointList ASString (SIZE (1..255)) OPTIONAL,
 nonStandardParameters SEQUENCE OF NonStandardParameter OPTIONAL,
 -- Subject to capability negotiation.
 ...
}

ExtendedTextOrder ::= SEQUENCE
{
 header PrimaryOrderHeader,
 backMixMode BackgroundMixMode OPTIONAL,
 startX Coordinate OPTIONAL,
 startY Coordinate OPTIONAL,
 backgroundColor Color OPTIONAL,
 foregroundColor Color OPTIONAL,

 Recommendation T.128 (02/98) 197

 extraSpacing Integer16 OPTIONAL,
 totalBreakSpacing Integer16 OPTIONAL,
 breakCount Integer16 OPTIONAL,
 fontHeight Integer16 OPTIONAL,
 fontWidth Integer16 OPTIONAL,
 fontWeight Integer16 OPTIONAL,
 textFlags1 TextAttributeFlags OPTIONAL,
 fontID Integer16 OPTIONAL,
 textFlags2 ExtraTextFlags OPTIONAL,
 clipLeft Coordinate OPTIONAL,
 clipTop Coordinate OPTIONAL,
 clipRight Coordinate OPTIONAL,
 clipBottom Coordinate OPTIONAL,
 codePointList ASString (SIZE (1..255)) OPTIONAL,
 deltaXList SEQUENCE (SIZE (1..127)) OF Coordinate OPTIONAL,
 nonStandardParameters SEQUENCE OF NonStandardParameter OPTIONAL,
 -- Subject to capability negotiation.
 ...
}

FrameOrder ::= SEQUENCE
{
 header PrimaryOrderHeader,
 destLeft Coordinate OPTIONAL,
 destTop Coordinate OPTIONAL,
 destWidth Coordinate OPTIONAL,
 destHeight Coordinate OPTIONAL,
 rop3 ROP3 OPTIONAL,
 backgroundColor Color OPTIONAL,
 foregroundColor Color OPTIONAL,
 brush Brush OPTIONAL,
 nonStandardParameters SEQUENCE OF NonStandardParameter OPTIONAL,
 -- Subject to capability negotiation.
 ...
}

RectangleOrder ::= SEQUENCE
{
 header PrimaryOrderHeader,
 backMixMode BackgroundMixMode OPTIONAL,
 destLeft Coordinate OPTIONAL,
 destTop Coordinate OPTIONAL,
 destRight Coordinate OPTIONAL,
 destBottom Coordinate OPTIONAL,
 backgroundColor Color OPTIONAL,
 foregroundColor Color OPTIONAL,
 brush Brush OPTIONAL,
 rop2 ROP2 OPTIONAL,
 pen Pen OPTIONAL,
 nonStandardParameters SEQUENCE OF NonStandardParameter OPTIONAL,
 -- Subject to capability negotiation.
 ...
}

OpaqueRectangleOrder ::= SEQUENCE
{
 header PrimaryOrderHeader,
 destLeft Coordinate OPTIONAL,
 destTop Coordinate OPTIONAL,
 destWidth Coordinate OPTIONAL,
 destHeight Coordinate OPTIONAL,

198 Recommendation T.128 (02/98)

 color Color OPTIONAL,
 nonStandardParameters SEQUENCE OF NonStandardParameter OPTIONAL,
 -- Subject to capability negotiation.
 ...
}

LineOrder ::= SEQUENCE
{
 header PrimaryOrderHeader,
 backMixMode BackgroundMixMode OPTIONAL,
 startX Coordinate OPTIONAL,
 startY Coordinate OPTIONAL,
 endX Coordinate OPTIONAL,
 endY Coordinate OPTIONAL,
 backgroundColor Color OPTIONAL,
 rop2 ROP2 OPTIONAL,
 pen Pen OPTIONAL,
 nonStandardParameters SEQUENCE OF NonStandardParameter OPTIONAL,
 -- Subject to capability negotiation.
 ...
}

DesktopSaveOrder ::= SEQUENCE
{
 header PrimaryOrderHeader,
 saveOffset Integer32 OPTIONAL,
 destLeft Coordinate OPTIONAL,
 destTop Coordinate OPTIONAL,
 destWidth Coordinate OPTIONAL,
 destHeight Coordinate OPTIONAL,
 action DesktopSaveAction OPTIONAL,
 nonStandardParameters SEQUENCE OF NonStandardParameter OPTIONAL,
 -- Subject to capability negotiation.
 ...
}

DesktopOriginOrder ::= SEQUENCE
{
 header PrimaryOrderHeader,
 desktopLeft Coordinate OPTIONAL,
 desktopTop Coordinate OPTIONAL,
 nonStandardParameters SEQUENCE OF NonStandardParameter OPTIONAL,
 -- Subject to capability negotiation.
 ...
}

ColorSpaceOrder ::= SEQUENCE
{
 colorSpace ColorSpaceSpecifier,
 nonStandardParameters SEQUENCE OF NonStandardParameter OPTIONAL,
 -- Subject to capability negotiation.
 ...
}

PrimaryOrder ::= CHOICE
{
 destinationBlt [0] DestinationBltOrder,
 patternBlt [1] PatternBltOrder,
 screenBlt [2] ScreenBltOrder,
 memoryBlt [13] MemoryBltOrder,
 memoryThreeWayBlt [14] MemoryThreeWayBltOrder,

 Recommendation T.128 (02/98) 199

 text [5] TextOrder,
 extendedText [6] ExtendedTextOrder,
 frame [9] FrameOrder,
 rectangle [7] RectangleOrder,
 line [8] LineOrder,
 opaqueRectangle [10] OpaqueRectangleOrder,
 desktopSave [11] DesktopSaveOrder,
 desktopOrigin [32] DesktopOriginOrder,
 nonStandardPrimaryOrder NonStandardParameter,
 -- Subject to capability negotiation.
 ...
}

SecondaryOrder ::= CHOICE
{
 cacheBitmap [0] CacheBitmapOrder,
 cacheColorTable [1] CacheColorTableOrder,
 colorSpaceOrder ColorSpaceOrder,
 nonStandardSecondaryOrder NonStandardParameter,
 -- Subject to capability negotiation.
 ...
}

UpdateOrder ::= CHOICE
{
 primaryOrder PrimaryOrder,
 secondaryOrder SecondaryOrder,
 nonStandardOrder NonStandardParameter,
 -- Subject to capability negotiation.
 ...
}

--||
--||
--
-- Begin AS PDU Definitions
--
--||
--||

ApplicationPDU ::= SEQUENCE
{
 shareDataHeader ShareDataHeader,
 action CHOICE
 {
 notifyHostedApplications [1] NotifyHostedApplications,
 unhostApplication [2] UnhostApplication,
 nonStandardAction NonStandardParameter,
 -- Subject to capability negotiation.
 ...
 },
 nonStandardParameters SEQUENCE OF NonStandardParameter OPTIONAL,
 -- Subject to capability negotiation.
 ...
}

ControlPDU ::= SEQUENCE
{
 shareDataHeader ShareDataHeader,
 action CHOICE

200 Recommendation T.128 (02/98)

 {
 requestControl [1] RequestControl,
 grantControl [2] GrantControl,
 detach [3] Detach,
 cooperate [4] Cooperate,
 nonStandardAction NonStandardParameter,
 -- Subject to capability negotiation.
 ...
 },
 nonStandardParameters SEQUENCE OF NonStandardParameter OPTIONAL,
 -- Subject to capability negotiation.
 ...
}

FlowResponsePDU ::= SEQUENCE
{
 flowIdentifier INTEGER (0..127),
 flowNumber Integer8,
 nonStandardParameters SEQUENCE OF NonStandardParameter OPTIONAL,
 -- Subject to capability negotiation.
 ...
}

FlowStopPDU ::= SEQUENCE
{
 flowIdentifier INTEGER (0..127),
 nonStandardParameters SEQUENCE OF NonStandardParameter OPTIONAL,
 -- Subject to capability negotiation.
 ...
}

FlowTestPDU ::= SEQUENCE
{
 flowIdentifier INTEGER (0..127),
 flowNumber Integer8,
 nonStandardParameters SEQUENCE OF NonStandardParameter OPTIONAL,
 -- Subject to capability negotiation.
 ...
}

FontPDU ::= SEQUENCE
{
 shareDataHeader ShareDataHeader,
 fontList SEQUENCE OF FontAttribute,
 nonStandardParameters SEQUENCE OF NonStandardParameter OPTIONAL,
 -- Subject to capability negotiation.
 ...
}

InputPDU ::= SEQUENCE
{
 shareDataHeader ShareDataHeader,
 eventList SEQUENCE OF InputEvent,
 nonStandardParameters SEQUENCE OF NonStandardParameter OPTIONAL,
 -- Subject to capability negotiation.
 ...
}

 Recommendation T.128 (02/98) 201

MediatedControlPDU ::= SEQUENCE
{
 shareDataHeader ShareDataHeader,
 action CHOICE
 {
 takeControlRequest [1] TakeControlRequest,
 passControlRequest [2] PassControlRequest,
 detachRequest [3] DetachRequest,
 confirmTakeResponse [5] ConfirmTakeResponse,
 denyTakeResponse [6] DenyTakeResponse,
 confirmDetachResponse [7] ConfirmDetachResponse,
 denyDetachResponse [8] DenyDetachResponse,
 denyPassResponse [9] DenyPassResponse,
 remoteDetachRequest [10] RemoteDetachRequest,
 denyRemoteDetachResponse [11] DenyRemoteDetachResponse,
 nonStandardAction NonStandardParameter,
 -- Subject to capability negotiation.
 ...
 },
 nonStandardParameters SEQUENCE OF NonStandardParameter OPTIONAL,
 -- Subject to capability negotiation.
 ...
}

PointerPDU ::= SEQUENCE
{
 shareDataHeader ShareDataHeader,
 pointerData CHOICE
 {
 systemPointerType [1] SystemPointerType,
 monoPointerAttribute [2] MonoPointerAttribute,
 colorPointerAttribute [6] ColorPointerAttribute,
 cachedPointerIndex [7] Integer16,
 pointerPosition [3] Point16,
 nonStandardPointer NonStandardParameter,
 -- Subject to capability negotiation.
 ...
 },
 nonStandardParameters SEQUENCE OF NonStandardParameter OPTIONAL,
 -- Subject to capability negotiation.
 ...
}

RemoteSharePDU ::= SEQUENCE
{
 shareDataHeader ShareDataHeader,
 action CHOICE
 {
 requestRemoteShare [1] RequestRemoteShare,
 confirmRemoteShare [2] ConfirmRemoteShare,
 denyRemoteShare [3] DenyRemoteShare,
 nonStandardAction NonStandardParameter,
 -- Subject to capability negotiation.
 ...
 },
 nonStandardParameters SEQUENCE OF NonStandardParameter OPTIONAL,
 -- Subject to capability negotiation.
 ...
}

202 Recommendation T.128 (02/98)

SynchronizePDU ::= SEQUENCE
{
 shareDataHeader ShareDataHeader,
 targetUser UserID,
 nonStandardParameters SEQUENCE OF NonStandardParameter OPTIONAL,
 -- Subject to capability negotiation.
 ...
}

UpdateBitmapPDU ::= SEQUENCE
{
 shareDataHeader ShareDataHeader,
 destLeft Coordinate16,
 destTop Coordinate16,
 destRight Coordinate16,
 destBottom Coordinate16,
 width Integer16,
 height Integer16,
 bitsPerPixel INTEGER (1|4|8),
 compressedFlag BOOLEAN,
 bitmapData BitmapData,
 nonStandardParameters SEQUENCE OF NonStandardParameter OPTIONAL,
 -- Subject to capability negotiation.
 ...
}

UpdateOrdersPDU ::= SEQUENCE
{
 shareDataHeader ShareDataHeader,
 orderList SEQUENCE OF UpdateOrder,
 nonStandardParameters SEQUENCE OF NonStandardParameter OPTIONAL,
 -- Subject to capability negotiation.
 ...
}

UpdatePalettePDU ::= SEQUENCE
{
 shareDataHeader ShareDataHeader,
 palette ColorPalette,
 nonStandardParameters SEQUENCE OF NonStandardParameter OPTIONAL,
 -- Subject to capability negotiation.
 ...
}

UpdateSynchronizePDU ::= SEQUENCE
{
 shareDataHeader ShareDataHeader,
 nonStandardParameters SEQUENCE OF NonStandardParameter OPTIONAL,
 -- Subject to capability negotiation.
 ...
}

WindowActivationPDU ::= SEQUENCE
{
 shareDataHeader ShareDataHeader,
 action CHOICE
 {
 localWindowActive [1] LocalWindowActiveIndication,
 hostedWindowActive [2] HostedWindowActiveIndication,
 hostedWindowInvisible [3] HostedWindowInvisibleIndication,
 pointerDeviceCapture [4] PointerDeviceCaptureIndication,

 Recommendation T.128 (02/98) 203

 activateWindow [32769] ActivateWindowRequest,
 closeWindow [32770] CloseWindowRequest,
 restoreWindow [32771] RestoreWindowRequest,
 windowManagerMenu [32772] WindowManagerMenuRequest,
 activationHelpKey [32785] ActivationHelpKeyRequest,
 activationHelpIndexKey [32786] ActivationHelpIndexKeyRequest,
 activationHelpExtendedKey [32787] ActivationHelpExtendedKeyRequest,
 nonStandardAction NonStandardParameter,
 -- Subject to capability negotiation.
 ...
 },
 nonStandardParameters SEQUENCE OF NonStandardParameter OPTIONAL,
 -- Subject to capability negotiation.
 ...
}

WindowListPDU ::= SEQUENCE
{
 shareDataHeader ShareDataHeader,
 listTime Integer16,
 listID Integer16,
 windowAttributeList SEQUENCE OF WindowAttribute,
 windowTitleList SEQUENCE OF WindowTitle,
 nonStandardParameters SEQUENCE OF NonStandardParameter OPTIONAL,
 -- Subject to capability negotiation.
 ...
}

ASNonStandardPDU ::= SEQUENCE
{
 nonStandardParameter NonStandardParameter,
 -- Subject to capability negotiation.
 ...
}

SharePDU ::= CHOICE
{
 applicationPDU [25] ApplicationPDU,
 controlPDU [20] ControlPDU,
 flowResponsePDU [66] FlowResponsePDU,
 flowStopPDU [67] FlowStopPDU,
 flowTestPDU [65] FlowTestPDU,
 fontPDU [11] FontPDU,
 inputPDU [28] InputPDU,
 mediatedControlPDU [29] MediatedControlPDU,
 pointerPDU [27] PointerPDU,
 remoteSharePDU [30] RemoteSharePDU,
 synchronizePDU [31] SynchronizePDU,
 updateBitmapPDU [1] UpdateBitmapPDU,
 updateOrdersPDU [0] UpdateOrdersPDU,
 updateSynchronizePDU [3] UpdateSynchronizePDU,
 updatePalettePDU [2] UpdatePalettePDU,
 windowActivationPDU [23] WindowActivationPDU,
 windowListPDU [24] WindowListPDU,
 asNonStandardPDU ASNonStandardPDU,
 ...
}

204 Recommendation T.128 (02/98)

--|||
--|||
--
-- End AS Definitions
--
--||
--||

END

9.3 Legacy mode encoding rules

The AS encoding for ASPDU data elements defined in 9.1 is as follows.

The bits of the bit combinations of an octet are identified by b7, b6, b5, b4, b3, b2, b1 and b0, where b7

is the highest-order, or most-significant, bit and b0 is the lowest-order, or least-significant, bit.

• An octet within a data element is encoded as a sequence of bits, where b7 of the octet is
encoded into the highest-order, or most-significant, bit of the corresponding encoded octet,
b6 is encoded into the next highest-order bit, and so on, filling towards the least-significant
bit.

• OCTET STRING is encoded as a sequence of octets in the order in which they appear in the
data element.

• INTEGER (0..15) is encoded to the highest-order, or most-significant, available four bits
within an octet.

• INTEGER (0..255) and INTEGER (−128..127) are encoded to an octet containing the two's
complement binary value of the data element.

• INTEGER (0..4095) is encoded to the highest-order, or most-significant, available twelve
bits within an octet.

• INTEGER (0..65535) and INTEGER (−32768..32767) are encoded to two octets containing
the two's complement binary value of the data element, where the highest-order, or
most-significant, octet is placed in the second octet.

• INTEGER (0..4294967295) is encoded to four octets containing the two's complement
binary value of the data element; octets are arranged in increasing significance, with the
highest-order, or most-significant, octet is placed in the fourth octet.

• BIT STRING (0..7) is encoded as a single octet.

• BIT STRING (0..15) is encoded as INTEGER (0..65535).

• BIT STRING (0..31) is encoded as INTEGER (0..4294967295).

• All bits are packed to bit boundaries. Pad elements are explicitly defined.

• Where a data element is a member of a CHOICE type, the specific data element encoded for
the choice depends on other data elements as described in the Protocol Specification (see
clause 8). No additional bits are encoded for such data elements.

• Where a data element is OPTIONAL, whether the data element is encoded or not depends on
other data elements as described in the Protocol Specification (see clause 8). No additional
bits are encoded for such data elements.

• Where the usage of a data element is not specified in the Protocol Specification (see
clause 8), the data element is encoded as above, but the bit values are undefined.

 Recommendation T.128 (02/98) 205

9.4 Base mode non-collapsing capabilities encoding rules

In the base mode of the AS protocol, an ASCE may advertise a particular capability via either the
collapsing or non-collapsing capabilities lists in the roster (see 8.2.2). Where an ASCE advertises a
particular capability via the non-collapsing capabilities list in the roster, then it shall encode the
capability value using the encoding rules defined in this subclause.

In the base mode of the AS protocol, capabilities may be one of the classes defined in Table 8-1.

The defined capability classes are encoded using the BASIC ALIGNED variant of the Packed
Encoding Rules of Recommendation X.691 based on the following ASN.1 definitions.

LogicalNonCollapsingCapability ::= BOOLEAN -- Class L: logical value.
IntegerNonCollapsingCapability ::= INTEGER (MIN..MAX) -- Class N: signed or unsigned integer value.

After encoding, the encoded value for a particular capability is used as the non-collapsing capability
value for subsequent encoding by GCC.

ANNEX A

Static channel ID assignments

Table A.1 lists the numerical assignment of static channel IDs for the static channels allocated for
use by this Recommendation. The numerical assignment of static channel IDs is intended to be
centralized in Recommendation T.120, but is included here until Recommendation T.120 is
completed.

Table A.1/T.128 – Static channel ID assignments

Symbolic Name Channel ID

AS-CHANNEL-0 11

ANNEX B

Legacy application protocol key

Table B.1 defines the contents of the Application Protocol Key used to identify the legacy mode of
the Application Protocol defined by this Recommendation.

Table B.1/T.128 – Legacy application protocol key

Application protocol key Description

h221NonStandard: 0xB5, 0x00,
0x53, 0x4C, 0x02

This defines the contents of the Application Protocol Key used to
identify the legacy mode of the Application Protocol defined by this
Recommendation. Note that the H.221 non-standard identifier option
is used to define this key. The numerical values shown represent the
contents of the H221NonStandardIdentifier as defined in
Recommendation T.124.

206 Recommendation T.128 (02/98)

ANNEX C

Object identifier assignments

Table C.1 lists the assignment of Object Identifiers defined for use by this Recommendation.

Table C.1/T.128

Object Identifier Value Description

{itu-t recommendation t 128 version (0) 1} This Object Identifier is used to indicate the version of this
Recommendation.

APPENDIX I

Informative values

This Appendix provides suggested values for various values described within the main body of this
Recommendation, based on experience with application sharing on a number of terminal types.
These values are not mandatory and the actual values used by a specific ASCE are left to the
discretion of the implementer.

I.1 Flow control

The following values and expressions are suggested for use in the flow control algorithm described
in 8.5. See Tables I.1, I.2 and I.3.

Table I.1/T.128 – Flow Control Constants

Item MCS high priority MCS medium priority MCS low priority

target_round_trip 2 000 Not flow controlled 7 000

target_in_flight 800 Not flow controlled 99 000

max_queued_recv 5 Not flow controlled 5

Table I.2/T.128 – Flow control variables

Item Initial value Minimum Maximum

flow_period
(milliseconds)

1 000 100 1 000

max_in_flight 8 000 500 256 000

Table I.3/T.128 – Flow control operations

Operation Expression

Decrease max_in_flight max_in_flight = max_in_flight/2 (but not below minimum value in Table I.2)

Increase max_in_flight max_in_flight = max_in_flight*2 (but not above the maximum value in Table I.2)

Decrease flow_period flow_period = flow_period/2 (but not below minimum value in Table I.2)

Increase flow_period flow_period = flow_period*2 (but not above maximum value in Table I.2)

 Recommendation T.128 (02/98) 207

I.2 Bitmap Caching

The following values are suggested for use in the Bitmap Cache capability set described in 8.2.7.

Item Suggested value

cache1Entries 600

cache1MaximumCellSize 496

cache2Entries 300

cache2MaximumCellSize 2 032

cache3Entries 150

cache3MaximumCellSize 4 080

I.3 ColorTable Caching

The following values are suggested for use in the ColorTable Cache capability set described in 8.2.7.

Item Suggested value

colorTableCacheSize 6

I.4 Pointer Caching

The following values are suggested for use in the Pointer capability set described in 8.2.11.

Item Suggested value

colorPointerFlag TRUE

pointerCacheSize 25

I.5 Desktop Save Cache

The following values are suggested for use for the desktop save cache values in the Order capability
set described in 8.2.5 and for the desktop cache algorithm described in 8.16.17.

Item Suggested value

desktopSaveSize 160,000

desktopSaveXGranularity 1

desktopSaveYGranularity 20

I.6 General Compression

The following values are suggested values for use in legacy mode for negotiation and usage of
general compression, as described in 8.3.2.

Compression Scheme generalCompressionTypes
(see Table 8-3)

generalCompressionLevel
(see Table 8-3)

generalCompressedType
(see Table 8-23)

PKWARE PKZIP bit flag 0 set 0 and 1 1

ITU-T RECOMMENDATIONS SERIES

Series A Organization of the work of the ITU-T

Series B Means of expression: definitions, symbols, classification

Series C General telecommunication statistics

Series D General tariff principles

Series E Overall network operation, telephone service, service operation and human factors

Series F Non-telephone telecommunication services

Series G Transmission systems and media, digital systems and networks

Series H Audiovisual and multimedia systems

Series I Integrated services digital network

Series J Transmission of television, sound programme and other multimedia signals

Series K Protection against interference

Series L Construction, installation and protection of cables and other elements of outside plant

Series M TMN and network maintenance: international transmission systems, telephone circuits,
telegraphy, facsimile and leased circuits

Series N Maintenance: international sound programme and television transmission circuits

Series O Specifications of measuring equipment

Series P Telephone transmission quality, telephone installations, local line networks

Series Q Switching and signalling

Series R Telegraph transmission

Series S Telegraph services terminal equipment

Series T Terminals for telematic services

Series U Telegraph switching

Series V Data communication over the telephone network

Series X Data networks and open system communications

Series Y Global information infrastructure

Series Z Programming languages

	ITU-T Rec. T.128 (02/98) MULTIPOINT APPLICATION SHARING
	Summary
	Source
	FOREWORD
	CONTENTS
	MULTIPOINT APPLICATION SHARING
	1 Scope
	2 Normative references
	3 Definitions
	4 Abbreviations
	5 Overview
	5.1 Legacy and base modes
	5.2 AS concepts

	6 Use of MCS
	6.1 MCS channel usage
	6.2 Use of MCS data services

	7 Use of GCC
	8 Protocol specification
	8.1 AS sessions
	8.2 Capabilities
	8.3 ASPDU formats
	8.4 ASCE activation
	8.5 Flow control
	8.6 Synchronization
	8.7 Remote sharing
	8.8 Fonts
	8.9 Application management
	8.10 Window list management
	8.11 Window activation
	8.12 Control
	8.13 Mediated control
	8.14 Pointers
	8.15 Palette updates
	8.16 Order updates
	Source values
	Source Values
	8.17 Bitmap updates
	8.18 Input
	8.19 Conducted mode operation

	9 ASPDU definitions
	9.1 Legacy mode ASN.1 definition
	9.2 Base mode ASN.1 definition
	9.3 Legacy mode encoding rules
	9.4 Base mode non-collapsing capabilities encoding rules

	ANNEX A
	Static channel ID assignments
	ANNEX B
	Legacy application protocol key
	ANNEX C
	Object identifier assignments
	APPENDIX I
	Informative values
	I.1 Flow control
	I.2 Bitmap Caching
	I.3 ColorTable Caching
	I.4 Pointer Caching
	I.5 Desktop Save Cache
	I.6 General Compression

