International Telecommunication Union

ITU-T T.127

TELECOMMUNICATION (08/2007)
STANDARDIZATION SECTOR
OF ITU

SERIES T: TERMINALS FOR TELEMATIC SERVICES
Data protocols for multimedia conferencing

Multipoint binary file transfer protocol

ITU-T Recommendation T.127

ITU-T T-SERIES RECOMMENDATIONS
TERMINALSFOR TELEMATIC SERVICES

Facsimile — Framework

Still-image compression — Test charts
Facsimile — Group 3 protocols

Colour representation

Character coding

Facsimile — Group 4 protocols

Telematic services — Framework

Still-image compression — JPEG-1, Bi-level and JBIG
Telematic services—ISDN Terminals and protocols
Videotext — Framework

Data protocols for multimedia conferencing
Telewriting

Multimedia and hypermedia framework
Cooperative document handling

Telematic services — Interworking

Open document architecture

Document transfer and manipulation
Document application profile

Communication application profile

Telematic services — Equipment characteristics
Still-image compression — JPEG 2000
Still-image compression — JPEG-1 extensions

T.0-T.19
T.20-T.29
T.30-T.39
T.40-T.49
T.50-T.59
T.60-T.69
T.70-T.79
T.80-T.89
T.90-T.99
T.100-T.109
T.120-T.149
T.150-T.159
T.170-T.189
T.190-T.199
T.300-T.399
T.400-T.429
T.430-T.449
T.500-T.509
T.510-T.559
T.560-T.649
T.800-T.849
T.850-T.899

For further details, please refer to thelist of ITU-T Recommendations.

| TU-T Recommendation T.127

Multipoint binary file transfer protocol

Summary

ITU-T Recommendation T.127 defines a protocol to support the interchange of binary file data
within an interactive conferencing or group working environment where the T.120 suite of standards
is in use. It provides mechanisms to support simultaneous distribution of multiple files, selective
distribution of files to a subset of participants and retrieval of files from remote sites. Provision is
also made for remote directory access.

Thisrevised version of T.127 introduces a number of clarifications to the previous version.

Source

ITU-T Recommendation T.127 was approved on 29 August 2007 by ITU-T Study Group 16
(2005-2008) under the ITU-T Recommendation A.8 procedure.

ITU-T Rec. T.127 (08/2007) [

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of
telecommunications. The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of
ITU. ITU-T is responsible for studying technical, operating and tariff questions and issuing
Recommendations on them with a view to standardizing telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years,
establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on
these topics.

The approval of ITU-T Recommendationsis covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are
prepared on a collaborative basis with |SO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a
telecommuni cation administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain
mandatory provisions (to ensure e.g., interoperability or applicability) and compliance with the
Recommendation is achieved when all of these mandatory provisions are met. The words "shall” or some
other obligatory language such as "must" and the negative equivalents are used to express regquirements. The
use of such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may
involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence,
validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others
outside of the Recommendation development process.

As of the date of approval of this Recommendation, ITU had not received notice of intellectual property,
protected by patents, which may be required to implement this Recommendation. However, implementers
are cautioned that this may not represent the latest information and are therefore strongly urged to consult the
TSB patent database at http://www.itu.int/I TU-T/ipr/.

© ITU 2008

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the
prior written permission of 1TU.

ii ITU-T Rec. T.127 (08/2007)

o O A W DN P

10

11

CONTENTS

SCOPE .ttt
REFEIENCES.......oeeeeei e
DEfINITIONS ..o e
ADDIeVIatioNS.......ccoveiirerisieeee e
Introduction to multipoint file transfercccccveenen.
Multipoint transfer of data— An overview
6.1 T.127 system model.........cccooeveeiiiinieeieenne
6.2 COMPIESSION.....oueiieeieeiee e
6.3 PrOMTY ..
6.4 File preshipping......ccccceceeveeeeneennsieeseeseeseens
Baseline MBFT application...........ccccoeeveeieceesiecciecene,
Description of Operationccoeverereeeeieenesese e
8.1 File transfer user applicationcccccvevvruenne
8.2 File Transfer Application Resource Manager .
8.3 File Transfer Application Service Element......
84 MBFT reSOUrCesS........cccoceeeriieeeieee e
8.5 MBFT capabilities.........cccceoeririeneneiencriee
8.6 Support of additional concurrent file transfers
8.7 Selectivefiletransfer........ocvveveieienenennne
8.8 Leaving an MBFT SeSSION......cccccoveeevieeniennnane
8.9 File exchange........ccccoooevieneniineineeieneeneee
8.10 Remote directory listingcccoceevereeneenennns
8.11 Conducted mode behaviour.............cccccvevenenne
8.12 Aborting afiletransfercccocvevvvievvciennnns
8.13 DiagnOStiCS.....ccccvevereeeriierie e seesie e
8.14 Non-standard operations............cccceeeuereerneennnns
MBFT PDU Definitions........ccccovvreeveereneneeneeee e
Use of the Multipoint Communication Service.............
10.1 Useof MCSdatatransmission services..........
10.2 Channel alocation.........ccccvceveriineeneenienne
10.3 Token allocation..........cceeeveereeierseesiesieseeen
104 MOCSSEIVICES...ccteeerreeie et see et ee e
Use of Generic Conference Controlcccoeeveeeneenne.
111 ReSOUICE IDSooiiiieiiciieeee e

ITU-T Rec. T.127 (08/2007)

Y
&
O© O© 0000 N NN ~NOPWWDN P PO

W NN NDNDNE
R A B WODNOO

EE&EERBRER

&

H b
~N O

Annex A — Static channel and token assigNMENt..........ccooveeeieerecie s e

Annex B — Object Identifier 8SSIgNMENLS.........ccouiieierireresie e

Appendix | —File Transfer Examples
Appendix I — MBFT attributes..........

iv ITU-T Rec. T.127 (08/2007)

| TU-T Recommendation T.127

Multipoint binary file transfer protocol

1 Scope

This Recommendation defines a protocol to support the interchange of binary files within an
interactive conferencing or group working environment where the T.120 suite of standardsisin use.
It provides mechanisms which facilitate distribution and retrieval of one or more files
simultaneously using the primitives provided by [ITU-T T.122] (Multipoint Communications
Service). This Recommendation is designed to offer a versatile, light weight protocol which
provides the core functionality to alow interworking between applications requiring a basic file
transfer capability and aso has the flexibility to meet the demands of more sophisticated
applications. See Figure 1.

2 References

The following ITU-T Recommendations and other references contain provisions which, through
reference in this text, constitute provisions of this Recommendation. At the time of publication, the
editions indicated were valid. All Recommendations and other references are subject to revision;
users of this Recommendation are therefore encouraged to investigate the possibility of applying the
most recent edition of the Recommendations and other references listed below. A list of the
currently valid ITU-T Recommendations is regularly published. The reference to a document within
this Recommendation does not give it, as a stand-alone document, the status of a Recommendation.

[ITU-T H.221] ITU-T Recommendation H.221 (2004), Frame structure for a 64 to 1920 kbit/s
channel in audiovisual teleservices.

[ITU-T T.39] ITU-T Recommendation T.35 (2000), Procedure for the allocation of ITU-T
defined codes for non-standard facilities.

[ITU-T T.120] ITU-T Recommendation T.120 (2007), Data Protocols for multimedia
conferencing.

[ITU-T T.122] ITU-T Recommendation T.122 (1998), Multipoint communication service —
Service definition.

[ITU-T T.123] ITU-T Recommendation T.123 (2007), Network-specific data protocol stacks
for multimedia conferencing.

[ITU-T T.124] ITU-T Recommendation T.124 (2007), Generic Conference Control.

[ITU-T T.125] ITU-T Recommendation T.125 (1998), Multipoint communication service
protocol specification.

[ITU-T T.434] ITU-T Recommendation T.434 (1999), Binary file transfer format for the
telematic services.

[ITU-T V.42 bis] ITU-T Recommendation V.42 bis (1990), Data compression procedures for
data circuit-terminating equipment (DCE) using error correction procedures.

[ITU-T X.680] ITU-T Recommendation X.680 (2002), Information technology — Abstract
Syntax Notation One (ASN.1) — Specification of basic notation.

[ITU-T X.691] ITU-T Recommendation X.691 (2002), Information technology — ASN.1
encoding rules. Specification of Packed Encoding Rules (PER).

ITU-T Rec. T.127 (08/2007) 1

[ISO/IEC 13239] ISO/IEC 13239:2002, Information technol ogy — Telecommuni cations and
Information exchange between systems — High-Level Data Link Control
(HDLC) procedures.

[1SO 8571-2] SO 8571-2:1988, Information processing systems — Open Systems
Interconnection — File Transfer, Access and Management (FTAM) — Part 2:
Virtual filestore definitions.

User application(s)
(using both standard and non-standard application protocols)

-~

User application(s) Node User application(s)
(using standard application protocols) controller (using non-standard protocols)

A y A

A4

I T.127 File Transfer (MBFT)

T.126 Still Image (SI)

A a

ITU-T Rec. T.120
application protocol
Recommendations

Non-standard application
protocol entities
A A

v A4

Generic Conference Control (GCC)
ITU-T Rec. T.124

A

y N A

Multipoint Communications Service (MCS) ’

ITU-T Recs T.122/T.125

A

A 4

Network specific transport protocols
ITU-T Rec. T.123

ITU-T Rec. T.120 infrastructure Recommendations

TA27(07)_F-01

Figure 1 — Scope of T.127

3 Definitions
This Recommendation defines the following terms:

31 acknowledged data channel: An MCS channel on which files are distributed. Participants
have the option of rejecting files offered on an acknowledged data channel. An acknowledged data
channel may be exclusive (i.e., only the channel creator may send files on it), or shared (any
participant may send fileson it).

3.2 broadcast data channel: An MCS channel on which files are distributed. Participants must
receive all files distributed on the channel, discarding the datalocally if it is not required.

3.3 control channel: An MCS channel used for the management of file transactions.
3.4 file attributes: The name and other identifiable properties of afile.

35 FILE-REQUEST: The token used to ensure that there is at most one outstanding file
request on the session control channel MBFT-CONTROL.

2 ITU-T Rec. T.127 (08/2007)

3.6 FILE-REQUEST (p): The token used to ensure that there is at most one outstanding file
reguest on the sub-session control channel MBFT-CONTROL (p).

3.7 FILE-TRANSMIT: The token used to ensure that there is at most one file transfer in
progress on the session broadcast data channel MBFT-DATA.

3.8 FILE-TRANSMIT(p): The token used to ensure that there is at most one file transfer in
progress on the sub-session broadcast data channel MBFT-DATA(p).

3.9 FILE-TRANSMIT(n): The token used to ensure that there is at most one file transfer in
progress on acknowledged data channel MBFT-DATA(n).

3.10 MBFT-CONTROL: The session control channel.

311 MBFT-CONTROL(p): A sub-session control channel, whose MCS Channel ID isp.
312 MBFT-DATA: The session broadcast data channel.

313 MBFT-DATA(p): A sub-session broadcast data channel, whose MCS Channel ID isp.
3.14 MBFT-DATA(Nn): An acknowledged data channel, whose MCS Channel ID isn.

3.15 non-standard capability: A capability that is outside the scope of this Recommendation.
Non-standard capabilities must be negotiated before use.

3.16 session: A set of peer Application Protocol Entities.

3.17 standard capability: A capability that is defined within the scope of this Recommendation,
but is not required for all MBFT implementations. Standard capabilities must be negotiated before
use.

3.18 sub-session: A sub-group of peer Application Protocol Entities within a session.

4 Abbreviations

This Recommendation uses the following abbreviations:
ARM Application Resource Manager

APE Application Protocol Entity

ASE Application Service Element

GCC Generic Conference Control

GCCSAP GCC Service Access Point
MBFT Multipoint Binary File Transfer

MCS Multipoint Communication Service
MCSAP MCS Service Access Point

PDU Protocol Data Unit

5 Introduction to multipoint file transfer

In order to support group activities such as meetings, conferences, etc. involving physically
separated participants, there is a requirement to join together two or more locations. The term
multipoint communication simply describes the interconnection of multiple terminals. Multipoint
Binary File Transfer (MBFT) enables files to be exchanged interactively between participants
within a multipoint environment through use of the underlying network independent Multipoint
Communication Service (MCS).

ITU-T Rec. T.127 (08/2007) 3

Specificaly, this Recommendation provides flexible and efficient mechanisms to support:

. Simultaneous distribution of multiple files.

. Broadcasting of filesto all participants within a conference.
. Selective distribution of filesto a subset of participants.

. Retrieval of files from remote sites.

. Partia retransmission of files following an interruption.

. Remote directory access.

6 Multipoint transfer of data— An overview

T.127 uses a control/data channel architecture to facilitate simultaneous transfer of one or more
binary files. It enables files to be broadcast to al participants within a conference, or to be directed
selectively to a subset of sites as a private file transfer. No restrictions are placed on the type of data
being transmitted.

Two types of channels are used within T.127; control channels and data channels. Control channels
are used for managing all aspects of the file transfer (offering files, requesting files), whereas data
channels are used exclusively for the transfer of file data. Only one file can be transmitted on each
data channel at a time, but additional data channels can be used to allow distribution of multiple
files ssimultaneously. The number of data channels in use at any given time depends on the number
of concurrent file transfersin progress.

A group of file transfer applications communicating with each other are said to be participating in
the same file transfer session. Each file transfer session requires a single control channel and one or
more data channels for distribution of filesto all participating applications.

T.127 supports two types of data channel: broadcast and acknowledged. If a transmitter wishes to
mandate that all nodes receive afileit is offering, then it should use the broadcast data channel. All
nodes must stay joined to the broadcast data channel for the duration of the file transfer session and
are obliged to receive al files distributed on it; if afileis not required, receivers should discard it. If
a transmitter wishes to give other nodes the option of rejecting afile, it should offer the file on an
acknowledged data channel. In this case, each node must inform the transmitter of whether it
requires the data or not, and only those which want the file join the data channel. Multiple
concurrent file transfers are supported by use of acknowledged data channels.

Acknowledged data channels should be used if a transmitter considers that one or more of the
parameters in the file header are essential to the operation of the application. For example, an
application may require a pathname to be preserved by receivers for future reference. Key
parameters are identified when offering the file for distribution; nodes which are unable to support
all such parameters must reject the file.

The creator of an acknowledged data channel may be designate it to be exclusive (i.e., only the
creator may send files on the channel) or shared (i.e., any participant may send fileson it).

File transactions on the broadcast channel do not require any handshaking between transmitter and
receivers as nodes are obliged to receive al files distributed on this channel. This minimizes latency
at the start of file transfers for transactions on the broadcast data channel. Transactions on an
acknowledged data channel incur some latency at the start of afile transfer, but may have a better
overall performance by avoiding unnecessary distribution of data to sites that do not require it,
particularly if such sites are on low bandwidth links. The choice of channel is at the transmitter's
discretion and may depend on application, file size, network configuration and number of
conference participants. See Figure 2.

4 ITU-T Rec. T.127 (08/2007)

Current transmitter Node that does not Node that requires Node that requires

sourcing files A and B require file A or file B file A files A and B
MBFT MBFT MBFT MBFT
All AA AA Aklkf
I = = = .
| A % A A 1 A %
A4) 4 "]“ A4)\ 4
MCS@ MCSAP QCSAP MCS@
A AA AA AL
| 1
\ AN| \ 4 A\ 4 vig
MCS provider Top MCS provider MCS provider MCS provider MCS provider
N 1 flklk [Y 1A A AA AL
I :Data channels, 1 i T—T T
[l ittt B B B B |
1 [S — I
Control channel 1l |

T.127(07)_F-02

Control channel
—————— Broadcast data channel for B A
— — — - Acknowledged data channel for ==

NOTE 1 — All nodes attach to the control channel and broadcast data channel.
NOTE 2 — Nodes must receive files on the broadcast data channel, whether they require the data or not.
NOTE 3 — Nodes only join an acknowledged data channel if they wish to receive the file currently being offered on it.

Figure 2 —T.127 confer ence model

Selective distribution of files to a subset of nodes within a conference can be achieved by creating a
private file transfer session, or by establishing a private file transfer sub-session within the existing
session.

A sub-session follows the same model as a session by having a single control channel and one or
more data channels. See Figure 3. However, it differs from asession in that it is not required to have
a broadcast data channel. A sub-session has the same capability set as its parent session and its
participants are selected from the participants of the parent session. Sub-sessions have no status
within GCC and do not appear in the GCC-Application-Roster. A sub-session does not have a
distinct Session ID, but instead operates with the Session ID of the main MBFT session. By
avoiding the delay incurred by the enrollment process, sub-sessions alow private interactive file
exchanges to be initiated in an expedient manner, at the same time conserving GCC and MCS
resources.

Provision is made for sites to request a file from other nodes to allow information retrieval from
databases, bulletin boards, etc. Sufficient information must be provided in the request to allow the
sourcing site to uniquely identify the file required.

ITU-T Rec. T.127 (08/2007) 5

A\ N

S

] i
= e = - -
= Node B Node C ==
o | I ==
Node A Node D
| vy !
* User B User B User C v
User A application 1 application 2 application 1 User D
application 1 4 Y A application 1
A A
A 4 A y A
I File APE || FileAPE | FileAPE File APE
A A A
>

® (Multipoint binary file transfer sub-session

Multipoint binary file transfer session

T.A27(07)_F-03

Figure 3 — Relationship between a sub-session and session

6.1 T.127 system model
An MBFT Session is characterized by the following attributes asillustrated in Figure 4.

. A single control channel.

. A single broadcast data channel.

. Zero or more acknowledged data channels.

. Zero or more private sub-sessions (to allow file exchange between a selected subset of
conference participants).

. A Session ID.

Each sub-session has the following attributes:

. A single private control channel.

. Zero or one private broadcast data channels.

. Zero or more private acknowledged data channels.

. No individual Session ID (operates with the Session ID of the main MBFT session).

Each control channel has a FILE-REQUEST token associated with it (unless the channel creator
requires an exclusive right to request files from other sites).

Each data channel has a FILE-TRANSMIT token associated with it (unless the channel creator
requires an exclusive right to transmit files on that channel).

6 ITU-T Rec. T.127 (08/2007)

MBFT Session

MBFT Channel Resources
[|
\4 \ 4 I v I v
Control Broadcast Exclusive Shared
channel data channel acknowledged acknowledged
data channel data channel
Minimum configuration Additional (optional) data channels
|
| v
Sub-session

MBFT channel resources

[[
A4 r [v [v
Control Broadcast Exclusive Shared
channel data channel acknowledged acknowledged
data channel data channel
Mandatory Optional data channels (one or more) -

Optional sub-sessions

T.127(07)_F-04

Figure4—T.127 channel model

6.2 Compression

Compression may be applied to files, subject to successful negotiation; by default files are
uncompressed. Proprietary techniques may be identified using the formats specified in
[ITU-T T.124], eg., T.35 country code, nationally assigned code, manufacturer's code, non-
standard capability code. Object identifiers may be acquired instead. De facto standard compression
formats may also be identified via this mechanism. Note that compression applies only to the file
data payload and not to the file header.

6.3 Priority

T.127 can be used as a background task performing bulk data transfer as well as a foreground task
for immediate distribution of files. The mode to be used is selected by the transmitting site; medium
priority should be used for fast data transfer and low for bulk data transfer. The priority must remain
the same throughout the transmission of afile but can differ between successive transactions.

Management of file transactions on the control channel shall use high priority.

6.4 File preshipping

In order to minimize file transfer traffic during an interactive conference, files may be preshipped
by convening a conference specifically to distribute conference material in advance. This can be an
automated process and if receiving sites can identify those files which they wish to receive, file
traffic can be kept to a minimum.

7 Baseline MBFT application

Applications wishing to support the file transfer protocol must be able to join the control channel
and send or receive on the broadcast data channel. Table 1 identifies which PDUs must be
supported.

ITU-T Rec. T.127 (08/2007) 7

Table 1 - Support of MBFT PDUs

Filereceive File transmit Filetransmit &
only APE only APE receive APE
MBFT PDU
Send Receive Send Receive Send Receive
PDU PDU PDU PDU PDU PDU
File-Offer - M M M M M
File-Accept M - — M M M
File-Reject M - M M M M
File-Request O M - M @) M
File-Deny M @] M - M @]
File-Error @] — - @] @) @]
File-Abort o - O M o M
File-Start - M M - M M
File-Data - M M - M M
Directory-Request @] M @] M 0] M
Directory-Response M @] M @] M @]
MBFT-NonStandard @) 0] O O O (@)
MBFT-Privilege-Request @] @] M @] M @]
MBFT-Privilege-Assign 0] M 0] M @) M
Private-Channel-Join-Invite O M O M o M
Private-Channel-Join-Response M @] M @] M @]
M Mandatory
@] Optional
— Not Required
8 Description of operation

A file transfer user application relies on the services of a File Transfer Application Protocol Entity
(File APE) to communicate with peer applications at other nodes. The File APE has two
components as shown in Figure 5: a File Transfer Application Resource Manager (File ARM) and a
File Transfer Application Service Element (File ASE). The ARM provides generic functionality,
common to all standardized application protocols, whilst the ASE provides functionality specific to
this application protocol to enable interworking of file transfer applications. Note that this is a
conceptual model and does not impaose any constraints on the structure of actual implementations.

Each component is described in more detail below:

8.1 Filetransfer user application

This is the part of the file transfer application addressing those aspects which have no direct effect
on interworking (e.g., user interface) and which may thus be product and platform specific. The
influence of the user application isthus local to the site at which it is resident. As such it is outside
the scope of this Recommendation. A user application relies on the services of a File Transfer
Application Protocol Entity (APE) to communicate with peer applications at other nodes. It does
not communicate with MCS or GCC,; this is done by the File APE. The user application initiates a
file transfer session viaits File APE, specifying the application capabilities and session mode. Once
the session has been established, all MBFT specific transactions are performed by the File APE on
behalf of the user application.

8 ITU-T Rec. T.127 (08/2007)

8.2 File Transfer Application Resour ce M anager

The File Transfer Application Resource Manager (File ARM) is responsible for managing GCC and
MCS resources on behalf of the File ASE. It provides the following services:

. Responding to indications from GCC (e.g., permission to enroll, invoke).

. Enrolling the File APE with GCC.

. Attaching to an MCS domain to obtain an MCS User ID for the File APE.

. Joining static channels.

. Identifying and joining multicast channels using the GCC Registry and MCS.

. Convening private channels and admitting peer File APESto such channels.

. Joining any private channels to which the File APE has been admitted.

. Identifying and obtaining tokens from the GCC Registry.

. Deleting entries from the registry associated with any channel it may have created.
. Invoking peer File APEs at other nodes.

. Processing Application Roster reports to determine the negotiated Application Capability

list and identity of peer File APES.

8.3 File Transfer Application Service Element

The File Transfer Application Service Element (File ASE) provides file transfer functionality to the
user application with resources obtained by the File ARM. Its operation is independent of the type
(i.e., static or dynamic) and identity of tokens and channels passed to it. The user application
specifies whether a broadcast or acknowledged data channel is required. For private transfers to a
subset of the conference, alist of MBFT User IDsis also required.

User application

A
v

File transfer Application Protocol Entity (file APE)
Node File transfer File transfer
controller Application Resource Manager || Application Service Element
(file ARM) (file ASE)
1 f 1
v v

Generic Conference Control (GCC)
ITU-T Rec. T.124

+ A4

Multipoint Communications Service (MCS)
ITU-T Recs T.122/T.125

T.127(07)_F-05

Figure5—T.127 application model

ITU-T Rec. T.127 (08/2007) 9

The File ASE provides the following services:

. Sending and receiving MBFT PDUs.

. Grabbing and releasing tokens and determining token status using MCS.

. Responding to GCC-Conductor-Assign and Release indications.

. I ssuing GCC-Conductor-Permission-Ask requests through the Node Controller.
. Responding to GCC-Conductor-Permission-Grant indications.

8.4 MBFT resources

A binary file transfer session uses control channels for management of file transfers and data
channelsfor file distribution. Each control channel has one or more data channels associated with it;
each data channel supports one file transfer at atime.

Every MBFT session has a session control channel (assigned the mnemonic MBFT-CONTROL)
and a broadcast data channel (assigned the mnemonic MBFT-DATA), which must be joined by all
applications participating in that session. The control channel is used to manage all file transfers on
the broadcast data channel. All nodes are obliged to receive files transmitted on the broadcast data
channel and discard them if the datais not required. This can lead to an unnecessary degradation in
conference performance if any nodes which do not require the data are on low bandwidth links.

Use of acknowledged data channels (assigned the mnemonic MBFT-DATA(n), where nisthe MCS
Channel ID of the data channel) allows the simultaneous distribution of more than one file.
Management of file transfers on these channels is done via the session control channel, but in this
case nodes have the option of reecting files offered to them. This ensures that files are only
distributed to those nodes which require them, but at the expense of introducing some latency for
each file transfer.

Selective distribution of files to a subgroup of participants within an existing session may be
achieved by opening a sub-session. This consists of a private sub-session control channel (assigned
the mnemonic MBFT-CONTROL (p), where p isthe MCS Channel ID of the control channel). This
Is used to manage file transactions on zero or one private broadcast data channels (assigned the
mnemonic MBFT-DATA(p), where p isthe MCS Channel ID of the data channel) and zero or more
private acknowledged data channels (assigned the mnemonic MBFT-DATA(n), where n is the
MCS Channel ID of the data channel). A separate private control channel is required for each
private subsession.

Each control channel may have a FILE-REQUEST token which is used to ensure that there is at
most one outstanding file request on that channel at any instance. A File ASE requiring a file must
grab this token before issuing the request and hold the token until it determines whether another
node can supply the file. Dynamic control channels without a FILE-REQUEST token are permitted
but only the creator of such a channel may issue file requests on that channel. The token for the
session control channel MBFT-CONTROL is assigned the mnemonic FILE-REQUEST; the token
for a sub-session control channel MBFT-CONTROL (p) is FILE-REQUEST(p).

Each data channel may have a FILE-TRANSMIT token which is used to ensure that there is only
one file transfer in progress on that data channel at any instance. A transmitting File ASE grabs this
token before offering a file for transmission and holds it for the duration of the file transfer,
releasing the token after despatching the last block of file data. Dynamic data channels without a
FILE-TRANSMIT token are permitted but only the creator of such a channel may send files on that
channel. The token for the session broadcast data channel MBFT-DATA is assigned the mnemonic
FILE-TRANSMIT, the token for a sub-session broadcast data channel MBFT-DATA(p) is
FILE-TRANSMIT(p) whilst the token for acknowledged data channel MBFT-DATA(n) is
FILE-TRANSMIT(n).

10 ITU-T Rec. T.127 (08/2007)

Together, these channels and tokens comprise the resources available to an MBFT session; they
may be either static or dynamic. It is the responsibility of the File Transfer Application Resource
Manager (File ARM) to determine the identity of these resources. For any given file transaction, the
user application must specify the resources to be used by the File ASE. Static and dynamic
resources are treated identically by the File ASE.

8.4.1 MBFT initialization

An MBFT session may be initiated locally by a user application or remotely through use of the
GCC-Application-Invoke mechanism. In both cases, the parameters shown in Table 2 are passed to
the File ARM. The action to be taken by the File ARM to identify the initial set of resources to be
used for the session is determined by the session mode:

Satic mode is used for unrestricted broadcasting of data to the conference. It is the simplest mode
of operation as it uses predefined static channels and tokens. Applications can join and leave a static
mode session at will. Although the File ASE may be employed by other application protocols
simultaneously using different subsets of static channels and tokens, only one static mode of the
File ARM is predefined by this Recommendation.

Multicast mode can be used for broadcasting of data when the static session is already in use. It is
identical in function to static mode, but uses dynamic resources and so channel and token identities
must be assigned via the GCC registry and MCS services by the creator of the multicast session
(referred to as the multicast creator). All other participants (multicast members) may determine
channel and token ids via the GCC Registry. Applications can join and leave a multicast session at
will. Thereis no restriction on the number of multicast mode sessions in a conference.

Table 2 —File APE parameters

Par ameter Description

SessionMode | This parameter can have one of the following three values:

static: This value indicates that the File APE should enroll using a Session Key
composed of the MBFT object identifier and the sessionlD parameter. It shall use the
static predefined MBFT-CONTROL & MBFT-DATA channels and static FILE-
TRANSMIT and FILE-REQUEST tokens.

dynamic multicast: This value indicates that the File APE should enroll using a Session
Key composed of the MBFT object identifier and the sessionID parameter. All channel
and token resources are dynamic and are allocated by the creator of the multicast session
using the MCS-CHANNEL-JOIN mechanism and GCC Registry mechanism
respectively. Members of a multicast session determine token and channel ids viathe
GCC Registry.

dynamic private: This value indicates that the File APE should enroll using a Session
Key composed of the MBFT object identifier and the sessionlD parameter.

All token and channel resources are dynamic and are allocated by the Private Convenor
File ARM using the GCC Registry mechanism and MCS-CHANNEL -CONVENE
mechanism respectively. The File ARM creating the session may then admit to the
MBFT-CONTROL and MBFT-DATA channels all peer File APEs whose MCS User Ids
are present in the admitList protocol parameter.

A Private Member File ARM must wait for its File APE to be admitted by the convenor
of the private MCS channels before attempting to join them. Token identities are
conveyed in-band by the channel convenor in the first transaction.

ITU-T Rec. T.127 (08/2007) 11

Table 2 —File APE parameters

Par ameter Description

sessionlD This parameter is used to differentiate the resources used by multiple sessions of the
protocol that may bein existence simultaneously within the same MCS domain. The
MCS Channdl ID assigned to the MBFT-CONTROL channel is used as the Session 1D,
since thisis guaranteed to be unique within the conference domain.

The Sessionl D must be specified if the application wishes to participate in a static
session or in an existing multicast or private session. It isomitted if the application
wishes to create a new multicast or private session.

admitList SessionMode = private and Sessionl D omitted

List of GCC User IDs corresponding to the Nodes at which File APEs are to be
admitted to the privately convened channels.

else
Omitted

Private mode is used for selective distribution of files to a subset of participants. It is the
responsibility of the File ARM initiating the private session (referred to as the private convenor) to
obtain tokens and channels using GCC and MCS respectively, and to admit peer File APEs (private
members) to the channels. The identity of tokens is conveyed in-band, but may also be determined
via the GCC Registry. There is no restriction on the number of private mode sessions in a
conference. A private member File ARM must wait for its File APE to be admitted to the private
channels and for the convenor to assign the tokens to be used for the session. Once the convenor
leaves the private session, all remaining participants are expelled. Applications can only join a
private session at the invitation of the session convenor.

In al cases the initial set of resources allows for the transfer of one file at a time. Concurrent
transfer of multiple filesis outlined in clause 8.6.

A File APE created in any mode must first establish a GCCSAP to allow it to communicate with the
GCC provider at that node. When the node joins a conference, the GCC provider will issue a
GCC-Application-Permission-to-Enroll with the Grant/Revoke flag set to Grant. The File ARM
must then issue a GCC-Application-Enroll request regardless of whether the user application wishes
to enroll at that time. If the user application does not wish to enroll, the File ARM must set the
Enroll/Un-enroll flag in the GCC-Application-Enroll request to Un-enroll and specify the
conference ID. No other parameters are required. The application may enroll at any time
subsequently, unless permission is revoked by receipt of a GCC-A pplication-Permission-to-Enroll
indication with the Grant/Revoke flag set to Revoke.

If the user application wishes to receive GCC-A pplication-Roster-Reports on all MBFT sessions in
progress before deciding which session to participate in, the File ARM may enroll Inactive,
specifying the Session Key without a Session ID. If the user application wishes to declare support
of the MBFT protocol without consuming MCS resources, the File ARM may enroll Inactive
without an MCS User ID.

When the user application undertakes to enroll active, the File ARM shall issue an MCS-Attach-
User request to the MCS provider, using the Conference ID contained in the GCC-Application-
Permission-to-Enroll indication as the Domain Selector. On receipt of a successful MCS-Attach-
User confirm in response, the File ARM shall join the User ID channel indicated by issuing an
MCS-Channel-Join request.

12 ITU-T Rec. T.127 (08/2007)

8.4.2 Static mode

After obtaining an MCS User ID, the File ARM shall join the MBFT static control and data
channels by issuing two MCS-Channel-Join requests, specifying MBFT-CHANNEL-O and
MBFT-CHANNEL-1 as the respective channels to join. Once positive confirmation of joining these
channels has been received, the File ARM shall enroll active by issuing a GCC-Application-Enroll
request to the GCC provider, with the parameters specified in Table 3. The Active/lnactive flag
shall be set to Active, the Session ID shall be specified as part of the Session Key, the Start-Up
Channel shall be specified as Static and the full Application Capability list must be provided. See
also Figure 6.

Local Local Local Remote Remote Remote
file GCC MCS MCS GCC file
APE provider provider provider(s) provider(s) APE(s) Operation

. GCC-Application-Bermission-To-Enroll:ind.

MCS-ATTACH-USER req.

|
. .
MCS-ATTACH-USER con. [MBFT User ID = unique new] Obtain MBFT user ID

»
»

MCS-CHANNEL-JOIN req. [Channel 1D = MBFT User 1D]

>
>

 MCS-CHANNEL-JOIN con.

|
| I |
MCS-CHANNEL-JOIN req. [Channel II) = MBFT-CHANNEL-0]
1 g I
| I |
| MCS-CHANNEL-JOIN con, ! !
D I I I
MCS-CHANNEL-JOIN req. [Channel [= MBFT-CHANNEL-1]
T ! :
|
|

Join MBFT-CONTROL
and MBFT-DATA
channels

| MCS-CHANNEL-JOIN con. '
[~]

|
GCC-Application-Enroll req. [Active, Séssion D]
Ul

Enroll active

|
 GCC-Application-Enroll con.
) I
GCC-Application-léoster-Report ind.

GCC-Application:Roster-Report ind.

T.127(07)_F-06

Figure 6 — Static session protocol initiation sequence

Table 3—Parametersfor GCC-Application-Enroll Request

Parameter

Contents

Conference ID

Provided by GCC-Application-Permission-To-Enroll indication.

Session Key

{itu-t recommendation t 127 version(0) 1} and MBFT-SESSION-ID if
this File APE parameter was specified.

Application User ID

Provided by MCS-Attach-User confirm.

Active/lnactive

Active when indicating that the File ARM has joined the MBFT-
CONTROL and MBFT-DATA channels and determined any required
MBFT token IDs.

Inactive in the case of multicast or private modes when enrolling prior to
joining the MBFT-CONTROL and MBFT-DATA channels.

ITU-T Rec. T.127 (08/2007) 13

Table 3—Parametersfor GCC-Application-Enroll Request

Parameter Contents

Conducting Operation Flag Set if the File APE is capable of becoming the session MBFT Conductor
in conducted mode, i.e., if it can respond to MBFT-Privilege-Request
PDUs. Thisflag must not be set if the Active/Inactiveflag is set to
Inactive.

Start-Up Channel This parameter is dependent on the File APE parameters specified in
Table 2:

Static if SessonMode = Static

Dynamic Multicast if SessionMode = Dynamic Multicast and sessionlD
omitted

Dynamic Private if SessionMode = Dynamic Private and sessionlD
omitted

Omitted otherwise

Non-Collapsing Capabilities No non-collapsing capabilities are specified by this protocol. Thisfield
List may include non-standard non-collapsing capabilities specified by the
user application.

Application Capability List See Table 7; Omitted if Active/lnactive flagis set to Inactive.
Enroll/Unenroll ENROLL

8.4.3 Multicast mode

After obtaining an MCS User ID, the File ARM shall examine the File APE sessionlD parameter to
determine whether it is to participate in an existing multicast session (as a multicast member) or to
create anew one (as a multicast creator).

If the sessionIlD parameter is present, the File ARM shall attempt to join the session indicated by
issuing a GCC-Application-Enroll request with the Active/lnactive flag set to Inactive and
specifying the Session Key with the requisite Session ID. It shall then issue an MCS-Channel-Join
request, specifying the Session ID of the chosen session as the Channel ID parameter. This channel
Is used as the MBFT-CONTROL channel. The File ARM must then identify and join the MBFT-
DATA channel by issuing a GCC-Registry-Retrieve-Entry request, using the parameters given in
Table4. On receipt of the resulting GCC-Registry-Retrieve-Entry confirm, the File ARM shall
examine the Registry Item parameter. The Channel 1D contained in this parameter shall be used as
the MBFT-DATA channel and the File ARM shall join it by issuing an MCS-Channel-Join request.

If it wishes to initiate a file transaction, the File ARM may then identify the FILE-TRANSMIT
token to be used for the broadcast data channel by issuing a GCC-Registry-Retrieve-Entry request,
using the parameters specified in Table 4. If the result parameter in the GCC-Registry-Retrieve-
Entry confirm is 'entry not found’, only the session creator is permitted to offer files on the
broadcast data channel. The File ARM may also identify the FILE-REQUEST token to be used for
the control channel by issuing a GCC-Registry-Retrieve-Entry request. If the result parameter in the
GCC-Registry-Retrieve-Entry confirm is 'entry not found', only the session creator is permitted to
reguest files on the control channel.

Table 4 — Parametersfor GCC-Registry-Retrieve-Entry Request

Par ameter Contents
Conference ID Provided by GCC-Application-Permission-To-Enroll indication
Registry Key Registry Key formed as described in clause 8.4.5.

14 ITU-T Rec. T.127 (08/2007)

If the File ARM does not wish to initiate a file transaction, it does not need to identify the
FILE-TRANSMIT token and FILE-REQUEST token during the enrollment process. Instead, it may
determine the I1Ds of these tokens later from File-Offer or File-RequestPDUs issued by peer File
ARMs on the MBFT-CONTROL channel.

Once all resources required for the session have been determined and channels joined, the File
ARM shall issue a GCC-Application-Enroll request with the Active/lnactive flag set to Active,
specifying the Session ID as part of the Session Key and providing the full Application Protocol
Capability List. See Figures 7 and 8.

Local Local Local Remote Remote Remote
file GCC MCS MCS GCC file
APE provider provider provider(s) provider(s) APE(s) Operation

|
| GCC-Application-Permission-To-Enroll ind.
X I
MCS-ATTACH-USER req,

>
»

| Obtain MBFT user ID
| MCS-ATTACH-USER con. [MBFT User ID = unique new]
[~ |
|
I MCS-CHANNEL-JOIN req. [Channel IID = MBFT User ID] |]]
: | ! | : |
1 MCS-CHANNEL-JOIN con. [: I :
I i i | i I
i GCC-Application-Eanoll req. [Inactive, \:Nith Session 1D] i i i
| | 1 | | 1 . .
| _GCC-Application-Enroll con. Enroll inactive

 GCC-Application-Roster-Report ind. GCC-Application:Roster-Report ind. -

MCS-CHANNEL-JOIN req. [MBFT-CONTROL Channel ID = Chosen Session 1D

Join MBFT-CONTROL
| _MCS-CHANNEL-JOIN con. channel of chosen
- ! multicast session
GCC-Registry-Retrieve-Entry req. [MBI“iT-DATA]
i [
 GCC-Registry-Retrieve-Entry con. [MBFT-DATA] Identify MBFT-DATA
A ! channel using

[. .
MCS-CHANNEL-JOIN req. [Channel ID = MBFT-DATA] the GCC registry

:MCS-CHANNEL-JOIN con. Join MBFT-DATA

channel

GCC-Registry-Retrieve-Entry req. [FILE-TRANSMIT]
v 1

|
| GCC-Registry-Retrieve-Entry con. [FILIIE—TRANSMIT]
< ! .
1 -
GCC-Registry-Retrieve req. [FILE-REQUEST] Ide:ig};}:{TéFREz%];z]}/”T
tokens
(optional)

GCC-Registry-Retrieve con. [FILE-REQUEST]
N |
|
GCC-Application-Enroll req. [Active, with Session D]
"
AGCC-Application-énroll con.
l 1

! o . Enroll active
| GCC-Application-Roster-Report ind. GCC-Application;Roster-Report ind.
< i >

1 1 1 I 1 1 T.127(07)_F-07

Figure 7 —Multicast session protocol initiation sequence (member)

ITU-T Rec. T.127 (08/2007) 15

Local Local Local Remote Remote Remote
file GCC MCS MCS GCC file

APE provider provider provider(s) provider(s) APE(s) Operation
GCC-Application‘Permission-To-Enrdll ind.
MCS-ATTACH-USER req. R

e Obtain MBFT user ID
MCS-ATTACH-USER con. [MBFT Wser ID = unique neWw|
MCS-CHANNELLJOIN req. [Channs ID = MBFT User ID]
MCS-CHANNEL:JOIN con.
Assign and join

MCS-CHANNEL;JOIN req. [Channel ID = 0] MBFT-CONTROL

channel
MCS-CHANNELZJOIN con. [MBFT-CONTROL Channel ID = unique new]

Assign and join
MBFT-DATA
channel

MCS-CHANNEL:JOIN req. [Channel ID = 0]

unique new|

 MCS-CHANNEL{JOIN con. [MBFT-DATA Channel ID =

GCC-Application:Enroll req. [Inactive, with Session ID]

Enroll con. Enroll inactive

. GCC-Application

. GCC-ApplicationiRoster-Report ind. GCC-Application-Roster-Report ind. -

D 1 I
I GCC—Registry—Rg!gister—Channel req. [MBFT-DATA]
| > I
I I

Register
MBFT-DATA
channel

1
| GCC-Registry-Register-Channel con.

GCC-Registry-Assign-Token req.

GCC-Registry-Assign-Token con. [FILE-TRANSMIT = unique new]

Assign FILE-TRANSMIT
and FILE-REQUEST
tokens
(optional)

GCC-Registry-Assign-Token req.

GCC-Registry-Assign-Token con. [FILE-TRANSMIT = unique new]

GCC-Application:Enroll req. [Active,lwith Session ID]

GCC-Application;Enroll con.

Enroll active

GCC-ApplicationRoster-Report ind. GCC-Application-Roster-Report ind. -

1 T.127(07)_F-08

Figure 8 — Multicast session protocol initiation sequence (creator)

If the File APE sessionID parameter is omitted, the File ARM shall attempt to create a new session.
It shall first issue an MCS-Channel-Join request primitive with Channel ID = 0. The returned
MCS-Channel-Join confirm, if successful, contains the assigned Channel ID which is to be used as
the MBFT-CONTROL channel. This process is then repeated to assign and join the MBFT-DATA
channel. The ARM shall then enroll inactive in this session by issuing a GCC-Application-Enrall
request with the Active/lnactive flag set to Inactive, specifying the Session Key with the Session
ID, but omitting the Application Capabilities List. Once the File ARM has received a
GCC-Application-Roster Report containing an entry corresponding to the new session, the File
ARM register the MBFT-DATA channel by issuing a GCC-Registry-Register-Channel request with
the parameters given in Table 5.

16 ITU-T Rec. T.127 (08/2007)

Table5— Parametersfor GCC-Registry-Register-Channel Request

Parameter Contents
Conference ID Provided by GCC-Application-Permission-To-Enroll indication.
Registry Key Registry Key formed as described in clause 8.4.5.
Channel ID Channel ID returned in MCS-Channel-Join confirm.

The File ARM may then assign FILE-TRANSMIT and FILE-REQUEST tokens by issuing two
GCC-Registry-Assign-Token requests using the parameters given in Table 6. If the File ARM
requires exclusive access to the broadcast data channel, it need not assign a FILE-TRANSMIT
token. If it requires an exclusive right to request files, the File ARM need not assign a
FILE-REQUEST token.

Table 6 — Parametersfor GCC-Registry-Assign-Token Request

Parameter Contents
Conference ID Provided by GCC-Application-Permission-To-Enroll indication.
Registry Key Registry Key formed as described in clause 8.4.5.

Once all resources have been successfully determined, the File ARM shall enroll actively by issuing
a GCC-Application-Enroll request with the Active/lnactive flag set to Active, the Start-Up Channel
specified as Dynamic Multicast and providing the full Application Protocol Capability List. The
MBFT-CONTROL Channel ID is used as the Session ID in the Session Key.

8.4.4 Private mode

After obtaining an MCS User ID, the File ARM shall examine the File APE sessionlD parameter to
determine whether it is to participate in an existing private session (as a private member) or to
create anew one (as a private convenor).

If the sessionID parameter is omitted, the File ARM shall attempt to create a new private session.
The File ARM shall first issue an MCS-Channel-Convene request in order to obtain a private
MBFT-CONTROL channel. If successful, the returned MCS-Channel-Convene confirm contains
the ID of the channel alocated. The File ARM must then join this channel by issuing an MCS-
Channel-Join request, specifying the channel id returned in the MCS-Channel-Convene confirm.
This process must be repeated to assign and join a separate MBFT-DATA channel. The ARM shall
then enroll inactive in the new session by issuing a GCC-Application-Enroll request with the
Active/lnactive flag set to Inactive, specifying the Session Key with the MBFT-CONTROL channel
ID as Session ID and omitting the Application Capabilities List.

The File ARM may then assign FILE-TRANSMIT and FILE-REQUEST tokens by issuing two
GCC-Registry-Assign-Token requests using the parameters given in Table 6. If the File ARM
requires exclusive access to the broadcast data channel, it need not assign a FILE-TRANSMIT
token. If it requires an exclusive right to request files, the File ARM need not assign a
FILE-REQUEST token.

The File ARM shall then enroll actively by issuing a GCC-Application-Enroll request with the
Active/lnactive flag set to Active, the Start-Up Channel specified as Dynamic Private and providing
the full Application Protocol Capability List. The MBFT-CONTROL Channel ID is used as the
Session ID in the Session Key.

If there is no active peer File APE at one or more of the nodes that are to be invited to the private
session, the File ARM shall issue a GCC-Application-Invoke request, specifying alist of GCC User
IDs to be invited or NULL (indicating that all nodes in the conference are to be invited) as the

ITU-T Rec. T.127 (08/2007) 17

Destination Nodes parameter. It shall aso specify Dynamic Private as the Start-Up Channel in the
Application Protocol entry.

The convening File ARM must then wait until it has received a GCC-Application-Roster-Report
indication containing the MCS User IDs of the File APEs to be invited to the private session (a
timeout is recommended in case no MBFT application is initiated at one or more of the invited
nodes). The File ARM shall then issue an MCS-Channel-Admit request for both the control and
data channels, specifying the MCS User IDs of the File APEs to be invited as the list of MCS User
IDs.

If the File APE sessionID parameter is present, the File ARM shall attempt to join the session
indicated by issuing a GCC-Application-Enroll request with the Active/lnactive flag set to Inactive
and specifying the Key with the requisite Session ID. It shall then wait until it has received an
MCS-Channel-Admit indication from the File ARM at the node convening the private MBFT
session. It then attempts to join the channel indicated in this primitive by issuing an MCS-Channel-
Join request. A further MCS-Channel-Admit indication will be received from the private session
convenor; the private member File ARM must also join the channel indicated in this primitive by
issuing an MCS-Channel-Join request. To determine which of the two channels is to be used as the
MBFT-CONTROL channel, the File ARM compares both Channel IDs with the Session ID. The
Channel 1D which matches the Session ID is the MBFT-CONTROL channel. The Channel ID that
does not match the Session ID, but has the same channel manager User ID is the corresponding
MBFT-DATA channel. When a private member File ARM is remotely invoked, the Session ID
(and thus MBFT-CONTROL Channel ID) is obtained from the GCC-Application-Invoke
indication.

Following receipt of a GCC-Application-Roster-Report indication containing the User ID of its File
APE, the File ARM shall re-enroll with the Active/lnactive flag set to Active, including the Session
ID as part of the Session Key and providing the full Application Protocol Capability List.

The identities of tokens to be used for the private session are conveyed by the convening File ASE
when it initiates the first transaction on the control channel (i.e., in the File-OfferPDU or
File-RequestPDU). Private members may individually access the GCC-Registry to determine token
identities, but it must be emphasized that this approach is much less efficient. To identify the
FILE-TRANSMIT token used with the broadcast data channel, the File ARM shall issue a GCC-
Registry-Retrieve-Entry request, using the parameters specified in Table 4. If the result parameter in
the GCC-Registry-Retrieve-Entry confirm is ‘entry not found', only the session convenor is
permitted to offer files on the broadcast data channel. The File ARM may aso identify the
FILE-REQUEST token to be used for the control channel by issuing a GCC-Registry-Retrieve-
Entry request. If the result parameter in the GCC-Registry-Retrieve-Entry confirm is 'entry not
found', only the session convenor is permitted to request files on the control channel. See Figure 9.

18 ITU-T Rec. T.127 (08/2007)

Convenor Local Local
file GCC MCS
APE provider provider

| GCC-Application-Pe:
i MC S-ATTACH-USE

rmission-To-Enroll ind

R req.

 MCS-ATTACH-USE

R con. [MBFT User ID

= unique new]|

MCS-CHANNEL- JO

IN req. [Channel ID

=MBFT User ID]

MCS CHANNEL- JOIN con.

MCS-CHANNEL-C(

NVENE req.

MC S-CHANNEL-CQ

>
>

NVENE con. [MBFT-

MCS CHANNEL- JOIN req. [MBFT- CONT

ROL]

MCS CHANNEL-, JOIN con.

MCS-CHANNEL-C(

NVENE req.

>

MC S-CHANNEL-CQ

NVENE con. [MBFT-

MCS CHANNEL-JOIN req. [MBFT- DATA

MCS CHANNEL-JOIN con.

GCC-AppllC&thn-EIJ
GCC-Appl ication-En

roll req. [Inactive, with

roll con.

 GCC-Application-Roster-Report ind.

GCC-Application-En
AGCC-AppI ication-En

GCC -Application- Iny;

‘GCC-Registly-Assigr__

-Token req.

>l

‘GCC-Registly-Assigl:l-Token con. [FILE-TR

‘GCC-Registry-Assigl:l-Token req.
1

‘GCC-Registry-Assigﬂ-Token con. [FILE-REQUEST = unique new:

oll req. [Active, with

oll con.

GCC-Application-Roster-Report ind.

oke req. [GCC User 1D

GCC-Appllcanon-Im

: GCC-Application-Ro

I MCS CHANNEL-ADMIT req. [MBFT-C ONTROL MCS User ID

ster-Report ind.

Session ID]

Session ID]

s, Session 1D]

MCS-CHANNEL-AT

g

MIT req. [MBF T-DAI

>,

GCC -Application- Roster Report ind.

Remote Remote Member
MCS GCC file
provider(s) provider(s) APE(s) Operation

CONTROL Channel I = unique new]

DATA Channel ID =u

ANSMIT = unique ne

_____ GCE=Applicat

MCS-ATTACH
MCS-CHANNE

GCC-Applic

GCC-Application-Permission-To-Enroll ind. |

ique new|

GCC-Applicati

P

n-Roster-Report ind.

(NOTE)'

MCS

<

—jATTACH—USER req.

t
-USER con. [MBFT User ID = unique new]

]:—JOIN req. [Channel i

1D = MBFT Uscr 1D]

MCS-CHANNEL-JOIN con.

ation-Enroll req. [Inact'i‘ve, with Session TD]

GCC-Application-Enroll con.

GCC-Application-Roster-Report ind.k

Convenor obtains
MBFT user ID

Convenor convenes
MBFT-CONTROL channel

Convenor joins
MBFT-CONTROL channel

Convenor convenes
and joins
MBFT-DATA channel

Convenor
enrolls inactive

Convenor
assigns FILE-TRANSMIT
and FILE-REQUEST
tokens
(optional)

Convenor enrolls
active

Convenor invokes
members

Members obtain MBFT
user ID (not required if
node controller re-activates
existing inactive file APE)

Members enroll
inactive

s)]

~~~~~~§§N MCS-CHANNEL-ADN

P

Convenor admits
mcmbers to

MCS-
‘A, MCS User ID(s)]

-
~———
_—
_—
-

GCC-Appl

cation-Enroll req. [Actwe with Session ID]

GCC-A

pl]catlon Enroll con.

GCC-Applicati

P

NOTE — GCC-Application-Invoke ind is sent to the Node Controller.

Figure 9 —Private session protocol initiation sequence

ITU-T Rec. T.127 (08/2007)

n-Roster-Report ind.

11T ind. [Channel ID]k MBFT-CONTROL channel
CHANNEL-JOIN req.{[MBFT-CONTROL] Members join
MBFT-CONTROL channel
MCS-CHANNEL-JOIN con. |
Convenor admits
/ICS—CHANNEL—ADMIT ind. [Channel ID]k members to
t P>
I\/ICS—CHANNEL-JOIN req. [MBFT-DATA] | MBELDATA channel
Members join
MCS- CHANNEL JOIN con. | MBFT-DATA.
channel

Mecmbers cnroll
active

T.127(07)_F-09

19



8.4.5 Forming Registry Keys

To determine the identity of a dynamic token or channel via the GCC Registry, a File ARM must
form aregistry key which consists of the Session Key for the current MBFT session and an MBFT
Resource ID. Resource IDs are defined in Tables 29 and 30 for channels and tokens respectively.

8.5 MBFT capabilities

Capabilities negotiation for file transfer applications is done via the application enrollment
mechanism. When a File ARM issues a GCC-Application-Enroll request with the Active/lnactive
flag set to Active, it shall indicate the capabilities of its user application in the Application
Capabilities List parameter of the request.

A File APE is notified of the capabilities available within its session by the receipt of a GCC-
Application-Roster-Report indication which contains the Application Roster for that session. The
Application Roster includes a list of nodes for which a peer File APE has enrolled. For each node,
the list contains the GCC User ID of that node and the MCS User ID(s) of the peer File APE(S) at
that node. The Application Roster has an instance number and contains flags to indicate whether
File APEs have joined or |eft the session since the previous Application-Roster-Report was issued.
It also contains a flag indicating whether the Application Capabilities List has been updated since
the last roster and, if so, the new Capabilities List. If a File APE has newly enrolled, the
Applications Capabilities List is updated, as this File APE does not have access to previous
instances of the list.

The Application Capabilities List received in the GCC-Application-Roster-Report indication
corresponds to the collapsed Application Capabilities Lists of all enrolled peer File APEsS, i.e., it
includes an entry for each capability which has been declared by any peer File APE. For each entry
it includes the Capability 1D, the number of peer File APEs (including the local one) which had
advertised this capability and, for capabilities in the Unsigned Minimum class, the minimum value
of the parameter among al peer File APES which declared this capability. Table 7 defines the
capability list elements for MBFT and the rules for collapsing each element. Note that certain
capabilities are specified as being dependent on other capabilities. This means that the capability
must not be included in the Application Protocol Capability List unless the capability on which it
dependsis aso included.

Table 7 —Application capability list elements

Capability name default value APE 1 capability | Depen-
. ID Class Count
and description valuerange dency
Rule
Maximum file size (default: unlimited) 1 Unsigned >0 (65536..MAX) -
Each File APE must specify the minimum
maximum file data payload in octets
that it is capable of receiving.
Maximum data payload 2 Unsigned | =ALL | (8193..65536) -
(default: 8 192) minimum
This is the maximum number of octets
allowed in the data field of File-Start
and File-Data PDUs.

20 ITU-T Rec. T.127 (08/2007)



Table 7 — Application capability list elements

Capability name default value
and description

Class

APE
Count
Rule

Capability
valuerange

Depen-
dency

V.42 bis-Compression (default:
uncompressed)

This capability is used to negotiate use
of V.42 bis compression for file data.
File APEs should assert this capability
if they are able to receive V.42 bis
compressed data.

Logical

=ALL

V.42 bis-Number-of-Codewords
(default: 512)

Specifies the total number of
codewords to be used by the V.42 bis
compression algorithm. Thisisan

upper bound on V.42 bis parameter P1.

V.42 bis does not impose an upper
limit onits value.

Unsigned
minimum

(513..65535)

V.42 bis-
Compres-
sion

V.42 bis-Max-String-Length
(default: 6)

Specifies the maximum string length
input to the V.42 bis encoder. Thisis
an upper bound on V.42 bis parameter
P2.

Unsigned
minimum

(7..250)

V.42 bis-
Compres-
sion

Non-standard capability (default:
unspecified)

Thisis used to negotiate non-standard
functions, including non-standard
compression techniques. Any number
of these can appear in the Application
Capability List, provided each has a
unique Non-Standard Identifier. The
interpretation of these capabilitiesis
not defined in this Recommendation.

Non-
Standard
|dentifier

APE Count Rule:

> 0 — If the numberOfEntities parameter returned by the GCC-A pplication-Roster-Report indication for
this capability is greater than zero, then the result of the unsigned minimum operation is established,

otherwise the default value of the capability is established.

= ALL — The numberOfEntities parameter returned by the GCC-A pplication-Roster-Report indication for
this capability must equal the number of active File APEs enrolled in the current session, otherwise the

default value of the capability is established.

= D — If the numberOfEntities parameter returned by the GCC-A pplication-Roster-Report indication for
this capability is equal to the numberOfEntities parameter for the capability on which it depends, then the
result of the unsigned minimum operation is established, otherwise the default value of the capability is

established.

ITU-T Rec. T.127 (08/2007) 21



At any time while a File APE is enrolled in a conference, it may receive additiona
GCC-Application-Roster-Report indication, notifying it of a change in the roster contents. This may
be due to new peer File APEs enralling in the conference, peer File APES leaving the conference, or
peer File APEs having modified their enrollment information.

A File APE may change its Application Capabilities List at any time by re-enrolling. To do this, the
File ARM issues a GCC-Application-Enroll request with the Enroll/Unenroll flag set to Enrall,
including the revised Application Capabilities List, and providing al other parameters as included
in the initial active enrollment. This may result in a change to the collapsed capability set, in which
case all File APEsin the session will receive a GCC-A pplication-Roster-Report indication.

Any change in the collapsed capability set of an MBFT session shall not affect transactions already
in progress. Changes shall take effect when the next transaction isinitiated.

8.6 Support of additional concurrent filetransfers

Two mechanisms are available to support simultaneous transmission of more than one file in a
conference:

1) Create an additional MBFT session using the procedures defined above.
2) Create acknowledged data channels within the existing MBFT session.

For static and multicast modes, multicast or private channels may be used; for private mode, only
private channels should be used. Particular care should be exercised in the use of multicast channels
as such channels cease to exist when all joined users leave. It is thus recommended that File APES
only attempt to use a multicast channel if they have not left the channel since it was created or since
the last transaction on the channel.

Each acknowledged data channel MBFT-DATA(n) requires its own FILE-TRANSMIT(n) token in
order to manage file transactions on the channel, unless use is restricted to the channel creator.

8.6.1 Multicast channels

A File ARM wishing to use an acknowledged multicast data channel must first issue an
MCS-Channel-Join request with Channel ID = 0. The returned MCS-Channel-Join confirm, if
successful, contains the assigned Channel ID. If the data channel is to be a shared acknowledged
data channel, the File ARM must then issue a GCC-Registry-Assign-Token request in order to
obtain a FILE-TRANSMIT(n) token. The registry key is formed using the process described
inclause 8.4.5. The Channel and Token IDs are conveyed to peer File APES on the MBFT-
CONTROL channel when the creator issues a File-Offer PDU (to transmit a file) or a File-Request
PDU (to receive afile) for afile transaction on the new data channel.

8.6.2 Privatechannels

A File ARM wishing to use a shared acknowledged private data channel must first issue an
MCS-Channel-Convene request. If successful, it shall join the channel assigned in the
MCS-Channel-Convene confirm by issuing an MCS-Channel-Join request. The File ARM must
then issue a GCC-Registry-Assign-Token request in order to obtain a FILE-TRANSMIT(n) token.
Theregistry key isformed using the process described in clause 8.4.5.

A File ARM wishing to use an exclusive private data channel must first issue an MCS-Channel-
Convene request. It does not need to join this channel (since it will never receive data on the
channel), nor does it need to assign atoken.

Once the resources have been successfully assigned, the File ARM shall issue an MCS-Channel-
Admit request, specifying the MCS User IDs of the File APEs to be admitted to the channel as the
list of MCS User IDs.

22 ITU-T Rec. T.127 (08/2007)



File APEs being admitted to the private data channel will receive an MCS-Channel-Admit
indication, and must then attempt to join the channel indicated by issuing an MCS-Channel-Join
request.

The FILE-TRANSMIT(n) Token ID (if applicable) is conveyed to peer File APEs on the
MBFT-CONTROL channel when the creator issues a File-Offer PDU (to transmit afile) or a File-
Request PDU (to receive afile) for afile transaction on the new data channel.

8.7 Sdlective file transfer

Two mechanisms are available to allow distribution of files to a subgroup of participants:
1) Convene anew private session.
2) Establish a private sub-session within the existing MBFT session.

The latter approach is outlined below. Once the communication path has been established, the
mechanism used for file exchange is identical to that used for the initial communication path.

A File ARM wishing to initiate a private file transfer within an existing MBFT session must assign
a private control channel and private data channel using MCS services. The File ARM first issues
an MCS-Channel-Convene request for the control channel. If this is successful, it issues an
MCS-Channel-Join request, specifying the Channel ID returned in the MCS-Channel-Convene
confirm. This process is then repeated for the private data channel. The convening File ARM must
then issue a Private-Channel-Join-InvitePDU to the MCS User ID of each File APE to be invited to
the private channels, specifying the identity of the control and data channels as shown in Table 8.
This PDU also indicates whether the data channel mode is broadcast or acknowledged.

Table 8 — Private-Channel-Join-InvitePDU

Parameter Description
Control Channel ID This identifies the private control channel to be joined
Data Channel ID Thisidentifies the private data channel to be joined
Mode Thisflag is set to TRUE for broadcast mode, FAL SE for acknowledged mode

The File ARM then invites other File APES to join the control channel by issuing an MCS-Channel-
Admit request, specifying the channel returned in the MCS-Channel-Convene confirm as Channel
ID and including the list of File APE MCS User IDs to be invited to the private channel. This
process is then repeated for the private data channel.

A File ARM which receives a Private-Channel-Join-InvitePDU with the Mode flag set to TRUE
must attempt to join both the control and data channels indicated in the PDU when it receives the
corresponding MCS-Channel Admit indications from the sub-session convenor. It shall then
indicate whether both channels were successfully joined by sending a Private-Channel-Join-
ResponsePDU to the channel convenor, with the Result parameter set accordingly.

A File ARM which receives a Private-Channel-Join-InvitePDU with the Mode flag set to FALSE
must attempt to join the control channel indicated in the PDU when it receives the corresponding
MCS-Channel Admit indication from the sub-session convenor. It may optionaly join the
acknowledged data channel at this time. The File ARM shall then indicate whether the control
channels was successfully joined by sending a Private-Channel-Join-ResponsePDU to the channel
convenor, with the Result parameter set accordingly.

Once the sub-session convenor has received a Private-Channel-Join-ResponsePDU from each of the
File APEs invited to the sub-session, it may begin itsfile transactions. A timeout is recommended in
case one or more of the File APEsfail to respond. See Table 9.

ITU-T Rec. T.127 (08/2007) 23



Table 9 — Private-Channel-Join-ResponsePDU

Parameter Description
Channel ID This identifies the private control channel which the File APE has been
invited to join.
Result If the Mode flag in the corresponding Private-Channel-Join-Invite PDU

was set to TRUE, this parameter indicates whether or not the attempt to
join the private control and broadcast data channel was successful.

If the Mode flag in the corresponding Private-Channel-Join-Invite PDU
was set to FAL SE, this parameter indicates whether or not the attempt to
join the private control channel was successful.

Once the convening File ARM has received Private-Channel-Join-ResponsePDU from all invited
File APEs, it may alow its File ASE to use the channel. The File ARM should monitor the
Application Roster in case any of the invited File APEs leave the session prematurely, and should
have atimeout in case any of the File APEs fail to issue a Private-Channel-Join-ResponsePDU.

The convening File ARM may obtain a FILE-TRANSMIT(n) token and FILE-REQUEST (n) token
at any time before the File ASE needs to use the private channels. This is done by issuing two
GCC-Registry-Assign-Token requests in succession forming the registry key as described in
clause 8.4.5.

Note that the first transaction must be initiated by the channel manager as the identity of any tokens
to be used with the private channel is conveyed in-band in the first File-Offer or File-Request PDU.
NOTE — The convening file ARM should exercise caution when expelling members from or disbanding a

private data channel, since MCS may expel receiving File APE's from the channel before all File-Data PDUs
have been delivered.

8.8 Leaving an MBFT session

If an application wishes to leave an MBFT session, its File ARM shall issue a GCC-Application-
Enroll request with the Enroll/Unenroll flag set to Unenroll. No other parameters are required.

If, a any time, the File ARM receives a GCC-Application-Roster-Report indication in which it is
no longer included (i.e., its MBFT User ID is absent), the File ARM shall issue an MCS-Detach-
User request immediately to detach from the specified conference. The application is no longer
considered to be enrolled in the conference at this time but may attempt to re-enroll in the
conference by issuing a GCC-Application-Enroll request.

If, at any time, the File ARM receives a GCC-A pplication-Permission-To-Enroll indication with the
Grant/Revoke flag set to Revoke, it shall issue an MCS-Detach-User request immediately to detach
from the specified conference. The application is no longer considered to be enrolled in the
conference at thistime and shall not attempt to re-enroll.

8.9 File exchange

This subclause considers MBFT transactions initiated by either a sending site or a receiving site.
File transactions are performed by the File Transfer Application Service Element (File ASE).

8.9.1 Transmitter invoked operation

A File ASE wishing to transmit a file must first grab the FILE-TRANSMIT token associated with
the data channel to prevent other File ASEs from attempting to send data to the channel at the same
time. If there is no token associated with the data channel, then only the channel creator may
attempt to send files on it. If the token is held by another File ASE (indicating that afile transfer is
in progress), then the File ASE wishing to transmit may either wait until it is released, or attempt to
use another data channel. Alternatively, the File ASE may request the token from the current

24 ITU-T Rec. T.127 (08/2007)



transmitter by issuing an MCS-Token-Please request primitive, specifying the Token ID of the
FILE-TRANSMIT token as Token ID. A File ASE receiving an MCS-Token-Please indication
primitive whilst it is transmitting a file may choose to ignore it, or may offer the FILE-TRANSMIT
token to the requesting File ASE at the end of the file transfer by issuing an MCS-Token-Give
request, specifying the MCS User ID of the requesting File ASE as User id to receive token and the
FILE-TRANSMIT Token ID as Token id. On receipt of an MCS-Token-Give indication, the
requesting File ASE shall issue an MCS-Token-Give response primitive with result parameter
'rt-successful’ or 'rt-user-rejected’, depending on whether the File ASE still requires the token or not.
If the result is 'rt-successful’, the File ASE may assume that it has possession of the token.

Once the File ASE isin possession of the FILE-TRANSMIT token (or is the creator of an exclusive
acknowledged data channel), it offers the file to all intended recipients on the control channel by
issuing a File-OfferPDU. The contents of the File-OfferPDU are defined in Table 10. For file
transfers on the broadcast data channel, the Ack flag must be set to FALSE to indicate that no
acknowledgement is required. For file transfers on acknowledged data channels, the Ack flag must
be set to TRUE to indicate that receiving File ASEs must signal whether or not they wish to accept
the data. Sufficient information must be conveyed in the File Header parameter to uniquely identify
the file and enable receivers to determine whether it isrequired. 1t is up to the transmitting File ASE
to decide whether to transmit all or a subset of the T.434 parameters available for the file. It is
recommended that any parameters deemed to be important to the application by the transmitter are
included in the File-OfferPDU. If a transmitter wishes to verify whether receivers are able to
support such parameters, it should use an acknowledged data channel for the transaction. The
method of determining whether afile is needed is alocal implementation issue; the application may
determine automatically whether a file is aready present, or may require interaction with an
operator.

File ASEs receiving a File-Offer with the Ack flag set to TRUE and wishing to receive the offered
file must join the data channel indicated before sending back a confirmation (File-Accept —
Table 11) to the transmitter. File ASEs not wishing to receive the file reply with a negative
acknowledgement (File-Reject — Table 12) do not join the data channel. Similarly, File ASEs which
are unable to support one or more of the parameters included in the File Header should reject the
offer. If a File ASE which does not require afile is joined to the data channel when it receives the
File-Offer, it must leave the channel by issuing an MCS-Channel-Leave request. If a File ASE is
unable to support further concurrent file transfers, it should either delay its response until the file
transfer is complete or issue a File-Rgect. Only File ASEs included in the Application Roster
instance specified in the File-OfferPDU may respond, so that the transmitting File ASE knows how
many acknowledgements to accept. File ASEs not included in the specified Application Roster
instance must ignore the File-Offer.

File ASEs receiving a File-Offer with the Ack flag set to FALSE must be prepared to receive data
on the broadcast data channel immediately. If the file is not required, the File ASE must either
discard incoming data or |eave the session.

ITU-T Rec. T.127 (08/2007) 25



Table 10 — File-Offer PDU

Parameter Description
File Header This parameter uses the T.434 file header structure and should include
sufficient information to allow intending recipients to determine whether
thefileis required. File name and size are suggested as a minimum set.
Data Channel ID This identifies the channel on which the file will be transmitted.
File Handle Thisis aunique handle used to reference the file throughout the file

transfer operation. It need only be locally unigue at the transmitting File
APE.

Roster Instance

Application Roster Instance Number as returned in the most recently
received GCC-Application-Roster-Report indication. Only File APEs
which are enrolled active in the identified roster may respond to this
PDU. Thisfield isonly included if the Ack flag is set to TRUE. File
APEs may need to wait to receive the corresponding roster report
indication before they can generate areply.

FILE-TRANSMIT Token ID

This identifies the token used to regulate file transmission on the channel
specified by the Data Channel ID parameter. If the token is omitted, then
only the creator of the data channel is permitted to send files on that
channel. If aFILE-TRANSMIT token has been assigned to the data
channel it must be included.

FILE-REQUEST Token ID

This identifies the token used to regulate file requests. If the token is
omitted, then only the creator of the control channel is permitted to issue
File-RequestPDUs. If aFILE-REQUEST token has been assigned to the
control channel it must be included.

File Request Handle

Thisisalocally unique handle used to reference afile request. It shall
be set to the same value as the handle in the corresponding File-Request
PDU if the File-Offer is being generated in response to a File-Request,
otherwise the handle is omitted.

MBFT User ID

This parameter is omitted unless the File-Offer is generated in response
to aFile-Reguest, in which case it is used to identify the File APE that
issued the File-Request PDU.

Compression Specifier

This optional field specifies the compression technique (if any) applied
to the data payload of File-Start and File-DataPDUs.

Compressed Filesize

This optional parameter isthe number of octets in the data payload after
compression has been applied.

Ack Flag

Thisflag isset to TRUE if thefileisto be sent on an acknowledged data
channel, requiring the File-OfferPDU to be acknowledged by al
receiving File APEs. If theflag is set to FALSE, the file will be
transmitted on the broadcast data channel and no acknowledgement is
required.

Table 11 — File-AcceptPDU

Parameter

Description

File Handle

Thisis aunique handle used to reference the file throughout the file
transfer operation. Its value is obtained from the File-Offer PDU.

26 ITU-T Rec. T.127 (08/2007)




Table 12 — File-Rg ectPDU

Parameter Description
File Handle Thisis aunique handle used to reference the file throughout the file
transfer operation. Its value is obtained from the File-Offer PDU.
Reason This parameter is used to inform the transmitter why the intended
recipient is unable or does not wish to receive the file offered.

If the file is to be distributed on the broadcast data channel, the transmitting File ASE may start to
send the file on this channel immediately after despatching the File-OfferPDU, otherwise it must
wait until it has received an acknowledgement from all File ASEs joined to the control channel. In
the latter case, the transmitter should monitor the application roster to determine which sites are
currently connected, since File APEs may have left the control channel after the File-OfferPDU was
issued. It is recommended that a timeout should be used to prevent File ASEs which fail to respond
from locking the application. No timeout values are specified in this protocol specification; they
should be sufficiently large to allow for network latencies and user response times.

Files are transported in a File-StartPDU followed by zero or more File-DataPDUs (see Tables 13
and 14). Note that the File-StartPDU contains a T.434 header. This is included to ensure that the
entire file structure (header plus data) is transported as a single entity and also because the
information provided in the File-OfferPDU may only be a subset of the header. The EOFflag is
used to indicate the end of file.

Table 13 - File-StartPDU

Parameter Description

File Header This parameter uses the T.434 file header structure and should include
all fields defined in the source file, irrespective of whether they were
included in the preceding File-OfferPDU.

File Handle Thisis aunique handle used to reference the file throughout the file
transfer operation. It shall be set to the same value as the handle in the
File-OfferPDU corresponding to this transfer.

EOF Flag Thisflag is set to TRUE to indicate end of file.

CRC Hag Thisindicates whether the last File-DataPDU (or File-StartPDU if the
EOF flag is set to TRUE) contains a cyclic redundancy check.

Compression Specifier This optional field specifies the compression technique (if any) applied
to the data payload of File-Start and File-DataPDUs.

Compressed Filesize Number of octets in the compressed file, excluding the header.

Data Offset This parameter specifies the starting offset in octets from the beginning
of the file data (so zero denotes the origin).

Data The maximum number of octets of binary file data which can be
included in thisfield is negotiated via the capability exchange
mechanism.

CRC Check A 32-bit cyclic redundancy check isincluded in the File-Start PDU if the

CRC flag is set to TRUE and either a cumulative CRC is being used or
the EOF flag is set to TRUE.

ITU-T Rec. T.127 (08/2007) 27



Table 14 — File-DataPDU

Parameter Description

File Handle Thisis aunique handle used to reference the file throughout the file
transfer operation. It shall be set to the same value as the handle in the
File-OfferPDU corresponding to this transfer.

EOF Flag Thisflagisset to TRUE inthelast File-DataPDU to indicate end of file.

Abort Flag The abort flag is set to TRUE if the file transfer is terminated
abnormally, either as aresult of conductor intervention or at the
transmitter’ s volition. No further File-DataPDUs will be sent in the
current transmission after a File-DataPDU with the Abort flag set to

TRUE.

Data The maximum number of octets of binary file data which can be
included in thisfield is negotiated via the capability exchange
mechanism.

CRC Check A 32-bit cyclic redundancy check isincluded in the File-Data PDU if the

CRC flag was set to TRUE in the corresponding File-Start and either a
cumulative CRC is being used or the EOF flag is set to TRUE.

Although the T.120-series provides reliable data transfer, some user applications may have an
additional requirement to validate the data by using a Cyclic Redundancy Check (CRC). T.127
allows the possibility for transmitters to optionally include a CRC with the file data. This may either
be asingle CRC included in the last File-DataPDU (or File-Start PDU if the data can be transported
in a single PDU), or a cumulative CRC included in the File-StartPDU and all subsequent
File-DataPDUs. The presence of a CRC is indicated by setting the CRC flag in the File-StartPDU.
Receivers may ignore CRCs if they are not required by the user application. The method of
calculating the CRC is illustrated in Figure 10. Octets of data are input to the CRC calculation
sequentially, low order bit first.

The CRC is reset at the start of each file transfer and is calculated from the file data payload of
File-Start and File-Data PDUs using the 32-bit frame checking sequence defined in
[ISO/NEC 13239]. If the file datais compressed, the CRC applies to the compressed data and not the
source data.

If V.42 bis compression is applied to the file data payload, the encoder isinitialized at the beginning
of the file and processes data payload octets continuously until the end of the file. The encoder is
not reset at the end of each PDU.

On completion of the transfer of each file, File ASEs must remain joined to both control and data
channels to avoid the need to leave and re-join for subsequent operations. However, if aFile ASE is
joined to an acknowledged data channel and is subsequently offered a file which it does not require,
it must leave the data channel before sending back a File-Reject.

When the transmitting node has despatched the last File-DataPDU, it should release the
FILE-TRANSMIT token (if present) by issuing an MCS-Token-Release request to allow other sites
to initiate file transmissions on the data channel. If the transmitter had previously received an
MCS-Token-Please during the transfer, it may instead offer the token to the requesting File ASE by
issuing an MCS-Token-Give request. If MCS-Token-Please indications have been received from
more than one File ASE, it isalocal matter to decide which to respond to.

28 ITU-T Rec. T.127 (08/2007)



File- |pata 1 File- [pata 2 File- Data 3 File- IData 4 File- Data5|CRC|
PDU start - data - data - data - data - y'y

v v v v v
CRC Calculate CRC —

a) Single CRC sent at end of file transfer

ppu| File- |Data 1||CRC| File- |Data 2||CRC| File- |Data 3||CRC| File- |Data 4||CRC| File- |Data 5||CRC|
start x data 'y data 'y data = data =
y

A
Calculate | | A4
CRCl1 CRC » Calculate A 4
CRC2 CRC [ | Calculate A 4
CRC3 | crc [ Calculate | | v
CRC4 | crc | Calculate [ |
CRC5 |_CRC

b) Cumulative CRC
T.127(07)_F-10

Figure 10 — Calculation of CRC

8.9.2 Receiver invoked operation

An optional MBFT feature is the ability to request transmission of a specific file (for file retrieval
applications) or partia retransmission of a file (to allow recovery in the event of a site being
disconnected during a file transfer). Partia file retransmission is particularly useful if a bulk file
transfer is interrupted. As the protocol does not require each File-DataPDU to be acknowledged, it
is the responsibility of the File ASE issuing the request to indicate how much of the file was
successfully received.

To initiate a file request, a File ASE must first grab the FILE-REQUEST token before issuing a
File-Request PDU. This ensures that there is at most one outstanding request on the control channel.
If thereis no FILE-REQUEST token, then only the channel creator may issue a File-Request. If the
token is held by another File ASE, then the File ASE wishing to initiate a file request may ask for
the token by issuing an MCS-Token-Please request, specifying the Token ID of the FILE-
REQUEST token as Token id. The holder of the token may choose to give the FILE-REQUEST
token to the requesting File ASE once it has determined whether its own file request can be
satisfied. To do this, the token holder must issue an MCS-Token-Give request, specifying the MCS
User ID of the requesting File ASE as User id to receive token and the FILE-REQUEST Token ID
as Token id. On receipt of an MCS-Token-Give indication, the requesting File ASE shall issue an
MCS-Token-Give response primitive with result parameter 'rt-successful' or 'rt-user-rejected,
depending on whether the File ASE still requires the token or not. If the result is 'rt-successful’, the
File ASE may assume that it has possession of the token.

The contents of the File-RequestPDU are defined in Table 15. Sufficient information should be
included in the request to enable recipients of the PDU to determine whether they are able to supply
the file. For partial retransmission of a file, the File ASE must specify the number of octets
successfully received prior to the file transfer interruption. A handle is included in the PDU so that
responses can be correlated with the request. A FILE-TRANSMIT token must be included in the
PDU to ensure that only one File ASE attempts to fulfil the request.

ITU-T Rec. T.127 (08/2007) 29



Table 15 - File-RequestPDU

Parameter Description

File Header This parameter uses the T.434 file header structure and should include
sufficient information to allow transmitters to determine whether they
are ableto fulfil the file request. File name and size are suggested as a
minimum set.

Data Channel ID This identifies the channel on which the file must be transmitted. It may
be either the broadcast data channel, an acknowledged data channel, or
the MBFT User ID of the requesting File APE.

Request Handle Thisis aunique handle used to reference the file request. It need only be

locally unique at the requesting File APE.

Roster | nstance

Application Roster Instance Number as returned in the most recently
received GCC-Application-Roster-Report indication. Only File APES
which are enrolled active in the identified roster need to respond to this
PDU. File APEs may need to wait to receive this roster report indication
before they can generate areply.

FILE-TRANSMIT Token ID

This identifies the token used to ensure that no more than one File APE
can attempt to fulfil the file request. Itsinclusion is mandatory.

FILE-REQUEST Token ID

This identifies the token used to regulate the issuing of file requests, so
avoiding the need for other File ASEs to consult the registry. If the token
is omitted, only the creator of the control channel is permitted to issue
File-Request PDUs. If a FILE-REQUEST token has been assigned to the
control channel it must be included.

Data Offset

This parameter specifies the starting offset in octets from the beginning
of the file data (so zero denotes the origin).

The File-RequestPDU includes the identity of the data channel to be used so that the requesting File

ASE can specify that:

. thefileisto be sent exclusively to the requester on its File APE MCS User channel; or

. the file is to be broadcast to all File ASEs in the session on the broadcast data channel. In
this case, all File ASEs are obliged to receive the data and discard it if it is not required; or

. thefileisto be offered to al File ASEsin the session on an acknowledged data channel. In

this case, File ASEs may choose whether they wish to receive the data.

So that the File ASE which issued the File-Request knows how many acknowledgements to accept,
al File ASEs included in the Application Roster instance specified in the File-RequestPDU must
respond, using the File-DenyPDU (see Table 16) if they are unable to supply the file. File ASEs not
included in the specified Application Roster instance must ignore the File-Request.

Table 16 — File-DenyPDU

Par ameter

Description

Reguest Handle

Thisisaunique handle used to reference the file request. It shall be set
to the same value as the handle in the corresponding File-RequestPDU.

Reason

This parameter indicates to the requesting File APE why thefile could
not be provided.

A File ASE which is capable of providing the file must first grab the FILE-TRANSMIT token
identified in the File-RequestPDU before offering the file for transmission on the data channel
shown in the request, using File-Offer asif it had initiated the transaction. If the FILE-TRANSMIT
token is not free, the File ASE shall respond with a File-Deny, specifying no Channel as the reason

30 ITU-T Rec. T.127 (08/2007)




for refusal. The requesting File ASE may then make a further attempt, specifying a different data
channel.

If all File ASEs respond with a File-Deny, then the requesting File ASE must relinquish the
FILE-REQUEST token, otherwise the token is given up on receipt of the File-OfferPDU
corresponding to the required file. Once a File ASE has fulfilled the request by sending a File-Offer,
any sites which have not yet responded shall send a File-Deny, even if they are capable of sourcing
the file. Further requests may be made by any File ASE on the control channel after the FILE-
REQUEST token has been released.

The requesting File ASE should monitor the application roster to determine which File ASES to
expect responses from. It is recommended that a timeout be used to prevent the application being
locked by sites which fail to respond. Any responses received after the timeout expires can be
identified by the request handle.

8.10 Remotedirectory listing

This is an optional feature which allows a File ASE to obtain a directory listing of a remote site. It
may be used in conjunction with the file request mechanism to provide a file retrieval service. A
File ASE requiring a directory list issues a Directory-RequestPDU to the MBFT User Channel of
the chosen remote site, using the parameters specified in Table 17.

Table 17 — Directory-RequestPDU

Parameter Description

Pathname Thisisthe relative pathname of the directory for which alisting is
required. If omitted or null, it is assumed that alisting of the default
directory is requested.

A File ASE receiving a Directory-RequestPDU must respond by issuing a Directory-ResponsePDU
to the originator's MBFT User Channel, using the parameters defined in Table 18. If the File ASE is
able to fulfil the request, it includes a list of files and sub-directories contained in the directory
identified in the Directory-RequestPDU. If it is unable or unwilling to provide alist, the File ASE
should indicate the reason for refusal in the response. It should be noted that there is no requirement
for the directory structure presented to remote sites to be the same as that presented locally.

Table 18 — Directory-ResponsePDU

Par ameter Description
Result This indicates whether the File ASE is able to fulfil the request and, if
not, gives the reason for refusal.
Pathname Thisisthe relative pathname of the directory being listed. If omitted or
null, the listing is of the default directory.
Directory List This parameter contains alist of files and sub-directories.

8.11 Conducted mode behaviour

MBFT is a conductor-aware application protocol, i.e., it has two modes of operation, one for non-
conducted mode and one for conducted mode, as described in this subclause. The effect of
conducted mode operation on file transactions is determined by the peer File ASE (i.e., aFile ASE
participating in the same MBFT session) at the node possessing the GCC-Conductor-Token if this
ASE is capable of supporting the role of conductor. Each MBFT session has its own conductor,
namely the File ASE at the conducting node participating in that session. If there is more than one
File APE at the conducting node participating in a given MBFT session, then it is alocal matter for

ITU-T Rec. T.127 (08/2007) 31



GCC at the conducting node to decide which File ASE adopts the role of conductor. When the
conducting node does not have a peer File APE which supports the conductor role, the Node
Controller at the conducting node proxies as the MBFT conductor. Support of MBFT conducted
mode is mandatory. Note that whilst applications must be capable of operating in conducted mode,
they do not have to support the MBFT conductor role.

Applications become aware of a GCC-Conference Conductor being assigned through receipt of a
GCC-Conductor-Assign indication from the GCC provider. This includes the GCC User ID of the
conducting node. Applications determine the identity of the conducting File ASE from the GCC
Application Roster. No new file transactions (File-Offer or File-Request) are allowed after entering
conducted mode until permission has been granted by the MBFT conductor. File transactions in
progress when conducted mode is entered may continue to completion unless specifically aborted
by use of the File-AbortPDU (see clause 8.12).

File ASEs at the conducting node may initiate transactions without taking any further action. Peer
File ASEs at other sites must request permission to act from the MBFT conductor as detailed below.
Note that File ASEs not wishing to initiate any file transactions (i.e., those which only wish to
receive files offered to them) do not need to request permission from the MBFT conductor.

8.11.1 Peer File APE present at conducting node

Peer File ASEs at non-conducting nodes must request permission to initiate file transactions by
sending an MBFT-Privilege-RequestPDU (Table 19) to the conducting node, specifying the
privileges required. The following privileges are available:

. Privilege to source file transfers.

. Privilege to request file transfers.

. Privilege to create private channels.

. Privilege to use medium priority for file transfers.
. Privilege to issue File-AbortPDUs.

. Privilege to use non-standard extensions.

Table 19 - MBFT-Privilege-RequestPDU

Par ameter Description

File Transfer Privilege This flag indicates whether the requesting File ASE wants permission to
source file transfers.

File Request Privilege Thisflag indicates whether the requesting File ASE wants permission to
request files or retransmissions.

Private Channdl Privilege This flag indicates whether the requesting File ASE wants permission to
create private channels.

Priority Privilege This flag indicates whether the requesting File ASE wants permission to
send medium priority File-DataPDUs.

Abort Privilege This flag indicates whether the requesting File ASE wants permission to
issue File-AbortPDUs.

Non-Standard Privilege This flag indicates whether the requesting File ASE wants permission to

use any negotiated non-standard extensions to the MBFT protocol.

On receipt of an MBFT-Privilege-RequestPDU, the MBFT conductor may respond by broadcasting
an MBFT-Privilege-AssignPDU on the control channel. The PDU contains a list of privileges
granted and the User ID of the requesting File ASE and enables File ASES to determine which
privileges have been assigned to their peers. The MBFT conductor does not need to send an MBFT-
Privilege-AssignPDU if it does not wish to change the privileges of the requesting application. Note

32 ITU-T Rec. T.127 (08/2007)



that the MBFT conductor may at any time revoke some or al of the privileges granted by issuing an
MBFT-Privilege-AssignPDU with a revised privilege list for the designated node(s). Any
transactions in progress may complete unless specifically aborted.

If the MBFT conductor receives a GCC-Application-Roster-Report indicating that new nodes have
been added to the list of active File ASEs, it shall broadcast an MBFT-Privilege-AssignPDU on the
control channel, specifying alist of File ASEs and their associated privileges (see Table 20). Entries
in thislist need only be made for those nodes which have one or more privileges assigned.

Table 20— MBFT-Privilege-AssignPDU

Parameter Description

Privilege List This contains alist of one or more MBFT User IDs and the privileges
assigned to them. These privileges are identified below.

File Transfer Privilege This flag indicates whether the requesting File ASE has been granted
permission to source file transfers.

File Request Privilege This flag indicates whether the requesting File ASE has been granted
permission to request files or retransmissions.

Private Channel Privilege This flag indicates whether the requesting File ASE has been granted

permission to create private channels.

Priority Privilege This flag indicates whether the requesting File ASE has been granted
permission to send medium priority File-DataPDUs. If thisflagisset to
FALSE, then only low priority can be used for file transfers.

Abort Privilege This flag indicates whether the requesting File ASE has been granted
permission to send File-AbortPDUs.

Non-Standard Privilege This flag indicates whether the requesting File ASE has been granted
permission to use any negotiated non-standard extensions to the MBFT
protocaol.

If there is a change in conductor without leaving conducted mode, all privileges are automatically
revoked and File ASEs must apply to the new MBFT conductor to reacquire them. File ASEs shall
consult the Application Roster to determine if there is a new MBFT Conductor for the session. If
there is no MBFT conductor present at the new conducting node for that session, File ASEs must
cease all transactions immediately. If there is an MBFT conductor present, any transactions in
progress at the time of the change may continue unless specifically aborted by the new conductor.

If a File ASE receives a GCC-Conductor-Permission-Grant indication with the Permission flag set
to TRUE it shall have all MBFT privileges granted. If the File ASE subsequently receives a
GCC-Conductor-Permission-Grant indication with the Permission flag set to FALSE it shall revert
to the privileges assigned to it by the MBFT Conductor.

If the File ASE receives a GCC-Application-Roster-Report indication in which the MBFT
conductor is no longer present, all privileges are revoked and the File ASE shall cease al
transactions immediately.

8.11.2 Peer File APE absent at conducting node

If there is no peer File APE at the conducting node capable of supporting the conductor role, aFile
ASE must direct requests to act, via its loca Node Controller, to the Node Controller at the
conducting node by issuing a GCC-Conductor-Permission-Ask request primitive. If permission is
granted, then the File ASE will receive a GCC-Conductor-Permission-Grant indication with the
permission flag set to TRUE. This enables the File ASE to act in an unrestricted manner (as in
non-conducted mode) until further notice.

ITU-T Rec. T.127 (08/2007) 33



Permission to act may be revoked by the conducting node at any time. If the File ASE receives a
GCC-Conductor-Permission-Grant indication with the permission flag set to FALSE, then it must
cease al transactions with immediate effect. If the File ASE is transmitting a file it shall issue a
final File-DataPDU containing no data and with the abort flag set to TRUE and relinquish the
FILE-TRANSMIT token.

Note that a File ASE may receive an unsolicited successful GCC-Conductor-Permission-Grant
indication in response to a GCC-Conductor-Permission-Grant request by its own Node Controller or
another application protocol entity at that node or because the conductor decides to grant permission
without having received a request.

8.12 Aborting afiletransfer

If anindividual File ASE isunableto receive afile or determines that the datais no longer required,
it shall either disconnect from the data channel or continue to receive the incoming data and discard
it.

In conducted mode, File ASEs may be granted permission by the MBFT conductor to issue File-
AbortPDUs which can be used to order a transmitting File ASE to terminate a file transfer. After
receiving a File-Abort PDU, the transmitter is obliged to set the abort flag to TRUE in the current
File-DataPDU and then to cease transmission and relinquish the FILE-TRANSMIT token.

This mechanism can be used by the MBFT conductor to terminate any file transfers in progress on
entering conducted mode.

The transmitter may cease transmission of its own volition by simply setting the abort flag in a File-
DataPDU.

The File-AbortPDU includes a reason code to inform the transmitter why the abort request was
generated. The transmission to be terminated can be selected by channel, MBFT User ID or file
handle plus MBFT User ID. If no parameters are included, then transmissions on all channels
(either static, multicast or private) by any File ASE must cease. If only the MBFT User ID entry is
present, then the identified File ASE must cease transmission on all channels. If the MBFT User ID
and file handle are present, then the specified file transaction must terminate. See Table 21.

Table21 - File-AbortPDU

Par ameter Description

File Handle Thisis aunique handle used to reference the file throughout the file
transfer operation. Its value is obtained from the File-Offer PDU.

Data Channel ID This identifies the channel on which file transfers must cease.

Transmitter User Channel 1D This identifies the File ASE being requested to cease file transmission.

Reason Thisis used to inform the transmitter why it must terminate its current
operation.

8.13 Diagnostics

Support is provided for exchange of diagnostics messages between sending and receiving sites by
way of the File-ErrorPDU. The PDU contains three error parameters. an error type (indicating
permanent error, transient error or informative message), an error identifier and an optional text
message. The action to be taken on receipt of a File-ErrorPDU is not defined by this protocol. See
Table 22.

34 ITU-T Rec. T.127 (08/2007)



Table 22 — File-ErrorPDU

Parameter Description

File Handle Thisis aunique handle used to reference the file throughout the file
transfer operation and identifies the file affected. Its value is obtained
from the File-OfferPDU.

Error type Thisfield provides an indication of the severity of the fault condition.
Faults may be either permanent (causing all transactionsto fail),
transient (causing failure of the current transmission) or informative
(current transaction completed successfully).

Error ID This parameter is afault code to identify the nature of the problem.

Error Text This optional field allows File ASEs to convey atextual description of
the fault condition to the transmitting File ASE.

8.14 Non-standard operations

This PDU dlows any non-standard information to be transmitted, enabling applications to
implement non-standard operations. Use of non-standard operations may be subject to negotiation
of associated non-standard capabilities. MBFT-NonStandardPDUs may be sent at any time, but in
conducted mode may only be sent by File APEs which have been granted the Non-Standard
Privilege. See Table 23.

Table 23 - MBFT-NonStandardPDU

Par ameter Description

Data Non-standard parameter. Use of this PDU is not defined in this
Recommendation.

9 MBFT PDU Definitions

The structure of MBFT PDUs is specified as follows using the notation ASN.1 of [ITU-T X.680].
All MBFT PDUs shall be encoded for transmission by applying the Packed Encoding Rules of
[ITU-T X.691] using the Basic Aligned variant. MBFT PDUs are encoded and placed in the data
field of either MCS-Send-Data or MCS-Uniform-Send-Data primitives. The bit string generated by
the ASN.1 encoding is placed in the OCTET STRING used by MCS in the order such that for each
octet, the leading bit is placed in the most significant bit position and the trailing bit is placed in the
least significant bit position.

MBFT-PROTOCOL {itu-t(0) recommendation(0) t(20) t127(127) version(0) 2
asnlModules (2) mBFT-PROTOCOL(l)} DEFINITIONS AUTOMATIC TAGS ::=
BEGIN
IMPORTS ChannelID,
StaticChannellID,
DynamicChannellID,
UserID,
TokenID,
StaticTokenlID,
DynamicTokenID,
Key,
H221NonStandardIdentifier,
NonStandardParameter,
TextString
FROM GCC-PROTOCOL;
-- Export all symbols
-- Part 1: Message Components
Handle ::= INTEGER (0..65535) -- 16-bit value

ITU-T Rec. T.127 (08/2007) 35



Contents-Type-Attribute ::= CHOICE
-- See Annex B/ISO 8571-2 for more information
document-type [0] SEQUENCE

document-type-name [1l] Document-Type-Name,

parameter [0] ISO-8571-2-Parameters OPTIONAL

-- The actual types to be used for values of the parameter
-- field are defined in the document-type-name.

-- Currently, only UNSTRUCTURED TEXT and UNSTRUCTURED BINARY
-- are supported.

}

Document-Type-Name ::= OBJECT IDENTIFIER

ISO0-8571-2-Parameters ::= SEQUENCE

{
universal-class-number [0] INTEGER OPTIONAL,
maximum-string-length [1] INTEGER OPTIONAL,
string-significance [2] INTEGER
{variable (0), fixed (1), not-significant (2)} OPTIONAL

}

Entity-Reference ::= INTEGER

{
no-categorisation-possible (0),
initiating-file-service-user (1),
initiating-file-protocol-machine (2),
service-supporting-the-file-protocol-machine (3),
responding-file-protocol-machine (4),
responding-file-service-user (5)

}
Filename-Attribute ::= SEQUENCE OF GraphicString
Access-Control-Attribute ::= CHOICE

{

simple-password [0] OCTET STRING,
-- A simplified form of the access control syntax. Specifies
-- one password for all types of access to the files and its

-- attributes
actual-values [1] SET OF Access-Control-Element
-- The semantics of this attribute are described in ISO 8571-2
}
Access-Control-Element ::= SEQUENCE
{
action-list [0] Access-Request,
concurrency-access [1] Concurrency-Access OPTIONAL,
identity [2] User-Identity OPTIONAL,
passwords [3] Access-Passwords OPTIONAL,
}
Access-Request ::= BIT STRING
{
read (o),
insert (1),
replace (2),
extend (3),
erase (4),
read-attribute (5),
change-attribute (6),
delete-file (7)
}
Concurrency-Access ::= SEQUENCE
{
read [0] Concurrency-Key,
insert [1] Concurrency-Key,

36 ITU-T Rec. T.127 (08/2007)



replace [2]
extend [3]
erase [4]
read-attribute [5]
change-attribute [6]

Concurrency-Key,
Concurrency-Key,
Concurrency-Key,
Concurrency-Key,
Concurrency-Key,

delete-file [7] Concurrency-Key
Access-Passwords ::= SEQUENCE
read-password [0] Password,
insert-password [1l] Password,
replace-password [2] Password,
extend-password [3] Password,
erase-password [4] Password,

}

read-attribute-password [5] Password,
change-attribute-password [6] Password,

delete-password [7]

Password

Password ::= CHOICE

graphic-string GraphicString,

octet-string OCTET STRING
Concurrency-Key ::= BIT STRING

not-required (0),

shared (1),

exclusive (2),

no-access (3)
Permitted-Actions-Attribute ::= BIT STRING

{

}

Private-Use-Attribute

{
}

Protocol-Version ::= BIT STRING {version-1 (0)}
User-Identity ::= GraphicString
FileHeader ::= SEQUENCE

{

-- Actions available

read (0),
insert (1),
replace (2),
extend (3),
erase (4)

manufacturer-values

protocol-version [28] Protocol-Version DEFAULT {version-1},-- T.434
filename [0] Filename-Attribute OPTIONAL,

permitted-actions [1l] Permitted-Actions-Attribute OPTIONAL,

[2] Contents-Type-Attribute OPTIONAL,

contents-type

: := SEQUENCE

[0] EXTERNAL OPTIONAL

-- DEFAULT {UNSTRUCTURED BINARY}

-- not specifying this attribute implies that the data content of

-- the file is unstructured binary

storage-account

date-and-time-of-creation
date-and-time-of-last-modification
date-and-time-of-last-read-access
-- 7 isreserved for date-and-time-of-last-attribute-modification

[8] GraphicString OPTIONAL,
identity-of-last-modifier [9] GraphicString OPTIONAL,
identity-of-last-reader [10] GraphicString OPTIONAL,

-- 11 is reserved for identity-of-last-attribute-modifier

identity-of-creator

[3] GraphicString OPTIONAL,

[4] GeneralizedTime OPTIONAL,

[5] GeneralizedTime OPTIONAL,
[6] GeneralizedTime OPTIONAL,

-- 12 is reserved for file-availability

ITU-T Rec. T.127 (08/2007)

version

37



environment [25] SEQUENCE OF GraphicString OPTIONAL,
pathname [26] SEQUENCE OF GraphicString OPTIONAL,
user-visible-string [29] SEQUENCE OF GraphicString OPTIONAL,
}
CompressionSpecifier ::= CHOICE
v42bis-parameters V42bis-Parameter-List,
nonstandard-compression-parameters SET OF NonStandardParameter,
}
V42bis-Parameter-List ::= SEQUENCE
pl INTEGER (512..65535),
p2 INTEGER (6..250),
MBFTPrivilege ::= ENUMERATED
file-transmit-privilege (0), -- Privilege to transmit files
file-request-privilege (1), -- Privilege to request files
create-private-privilege (2), -- Privilege to create private channels
medium-priority-privilege (3), -- Privilege to use medium priority for
-- file transfers
abort-privilege (4), -- Privilege to issue File-AbortPDUs
nonstandard-privilege (5), -- Privilege to use non-standard options
-- subject to negotiation
DirectoryEntry ::= SEQUENCE
{
subdirectory-flag BOOLEAN, -- TRUE for sub-directory entries
-- FALSE for file entries
attributes FileHeader,
}
ErrorType ::= ENUMERATED
informative (0), -- No recovery required
transient-error (1), -- Current transfer failed,
-- future transfers may be OK
permanent-error (2), -- Error occurs each time file
-- transfer is performed
}
ErrorID ::= INTEGER
38 ITU-T Rec. T.127 (08/2007)

filesize [13] INTEGER OPTIONAL,

future-filesize [14] INTEGER OPTIONAL,

access-control [15] Access-Control-Attribute OPTIONAL,
-- the use of this attribute is for further study
legal-qualifications [16] GraphicString OPTIONAL,
private-use [17] Private-Use-Attribute OPTIONAL,
structure [18] OBJECT IDENTIFIER OPTIONAL,
application-reference [19] SEQUENCE OF GraphicString OPTIONAL,
machine [20] SEQUENCE OF GraphicString OPTIONAL,
operating-system [21] OBJECT IDENTIFIER OPTIONAL,
recipient [22] SEQUENCE OF GraphicString OPTIONAL,
character-set [23] OBJECT IDENTIFIER OPTIONAL,
compression [24] SEQUENCE OF GraphicString OPTIONAL,

-- indicates an optional compression applied to the content
-- octets of the file



}

-- Part 2: PDU Messages

no-reason
responder-error
system-shutdown

(o),
(1),
(2),

bft-management-problem (3),
bft-management-bad-account (4),
bft-management-security-not-passed
delay-may-be-encountered (6),

initiator-error

(7).,

subsequent-error (8),

temporal-insufficiency-of-resources

(5),

(9),

access-request-violates-VFS-security (10),

access-request-violates-local-security
conflicting-parameter-values
unsupported-parameter-values
mandatory-parameter-not-set

unsupported-parameter (1003),
duplicated-parameter (1004),
illegal-parameter-type (1005),

unsupported-parameter-types

bft-protocol-error (1007),
bft-protocol-error-procedure-error

bft-protocol-error-functional-unit-error
bft-protocol-error-corruption-error

lower-layer-failure (1011),
timeout (1013),
invalid-filestore-password (2020),
filename-not-found (3000),

initial-attributes-not-possible

non-existent-£file (3004),
file-already-exists (3005),
file-cannot-be-created (3006),
file-busy (3012),
file-not-available (3013),
filename-truncated (3017),
initial-attributes-altered (3018),
bad-account (3019),

ambiguous-file-specification

attribute-non-existent (4000),
attribute-not-supported (4003),
bad-attribute-name (4004),
bad-attribute-value (4005),
attribute-partially-supported (4006),
bad-data-element-type (5014),
operation-not-available (5015),
operation-not-supported (5016),
operation-inconsistent (5017),
bad-write (5026),

bad-read (5027),
local-failure (5028),
local-failure-£filespace-exhausted (5029),

local-failure-data-corrupted
local-failure-device-failure

future-filesize-exceeded (5032),
future-filesize-increased (5034)

File-OfferPDU ::= SEQUENCE

{

file-header
data-channel-id
file-handle
roster-instance

FileHeader,
ChannelID,

Handle,

INTEGER (0..65535)

(11),
(1000),
(1001),
(1002),
(1006),
(1008),

(1010),

(3002),

(3024),

(5030),
(5031),

OPTIONAL,

(1009),

ITU-T Rec. T.127 (08/2007)

39



file-transmit-token TokenID OPTIONAL,

file-request-token TokenID OPTIONAL,

file-request-handle Handle OPTIONAL,

mbftID UserID OPTIONAL,

compression-specifier CompressionSpecifier OPTIONAL,
compressed-filesize INTEGER OPTIONAL,

ack-flag BOOLEAN, -- True if acknowledgements required

}

File-AcceptPDU ::= SEQUENCE

{

file-handle Handle,

}

File-RejectPDU ::= SEQUENCE
{
file-handle Handle,
reason ENUMERATED
{
unspecified (0),
file-exists (1),
file-not-required(2),
insufficient-resources (3),

transfer-limit (4), -- maximum no. of concurrent
-- file transfers exceeded
compression-unsupported (5), -- algorithm identified

-- 1in FileOffer not supported
unable-to-join-channel (6),
parameter-not-supported (7), -- at least one File Header
-- parameter 1is not supported

}.

}

File-RequestPDU ::= SEQUENCE

{
file-header FileHeader,
data-channel-id ChannellID,
request-handle Handle,
roster-instance INTEGER (0..65535),

file-transmit-token TokenID,
file-request-token TokenID OPTIONAL,
data-offset INTEGER,

}
File-DenyPDU ::= SEQUENCE
{
request-handle Handle,
reason ENUMERATED
{
unspecified (o),
file-not-present (1),
insufficient-privilege (2),

file-already-offered(3), -- File already being offered

-- by another site
ambiguous (4), -- Insufficient attributes to uniquely identify file
no-channel (5), -- No data channel available to fulfil the request

40 ITU-T Rec. T.127 (08/2007)



File-AbortPDU ::= SEQUENCE

{
reason ENUMERATED
{
unspecified (0),
bandwidth-required (1),
tokens-required (2),
channels-required (3),
priority-required (4),
}
data-channel-id ChannelID OPTIONAL,
transmitter-user-id UserID OPTIONAL,
file-handle Handle OPTIONAL,
}
File-StartPDU ::= SEQUENCE
{
file-header FileHeader,
file-handle Handle,
eof-flag BOOLEAN, -- True if last packet of data
crc-flag BOOLEAN, -- True if CRC present
compression-specifier CompressionSpecifier OPTIONAL,
comp-filesize INTEGER OPTIONAL,
data-offset INTEGER,
data OCTET STRING (SIZE (0..65535)),
crc-check INTEGER (0..4294967295) OPTIONAL,
}
File-DataPDU ::= SEQUENCE
{
file-handle Handle,
eof-flag BOOLEAN, -- True if last packet of data
abort-flag BOOLEAN, -- True if file transfer is being aborted
data OCTET STRING (SIZE (0..65535)),
crc-check INTEGER (0..4294967295) OPTIONAL,
}
Directory-RequestPDU ::= SEQUENCE
{
pathname SEQUENCE OF GraphicString OPTIONAL,
}
Directory-ResponsePDU ::= SEQUENCE
{
result ENUMERATED
{
unspecified (0),
permission-denied (1),
function-not-supported (2),
successful (3),
}s
pathname SEQUENCE OF GraphicString OPTIONAL,
directory-list SEQUENCE OF DirectoryEntry,
}
MBFT-Privilege-RequestPDU ::= SEQUENCE
{
mbft-privilege SET OF MBFTPrivilege,
}

ITU-T Rec. T.127 (08/2007)

41



MBFT-Privilege-AssignPDU ::= SEQUENCE

privilege-list SET OF SEQUENCE -- One for each File APE
-- with privileges
{
mbftID UserID,
mbft-privilege SET OF MBFTPrivilege,
}
Private-Channel-Join-InvitePDU ::= SEQUENCE
control-channel-id DynamicChannellD,
data-channel-id DynamicChannellID,
mode BOOLEAN, -- True 1if broadcast
Private-Channel-Join-ResponsePDU ::= SEQUENCE
{
control-channel-id DynamicChannellID,
result ENUMERATED
unspecified (0),
unable-to-join-channel (1),
invitation-rejected (2),
successful (3),

}s

File-ErrorPDU ::= SEQUENCE
file-handle Handle OPTIONAL,
error-type ErrorType,
error-id ErrorID,
error-text TextString OPTIONAL,

}

MBFT-NonStandardPDU ::= SEQUENCE
data NonStandardParameter,

}

-- Part 3: Messages sent using MCS-Send-Data or MCS-Uniform-Send-Data
MBFTPDU ::= CHOICE
{
file-OfferPDUFile-Of£ferPDU,
file-AcceptPDU File-AcceptPDU,
file-RejectPDU File-RejectPDU,
file-RequestPDU File-RequestPDU,
file-DenyPDU File-DenyPDU,
file-ErrorPDUFile-ErrorPDU,
file-AbortPDUFile-AbortPDU,
file-StartPDUFile-StartPDU,
file-DataPDU File-DataPDU,
directory-RequestPDU Directory-RequestPDU,
directory-ResponsePDU Directory-ResponsePDU,
mbft-Privilege-RequestPDU MBFT-Privilege-RequestPDU,
mbft-Privilege-AssignPDU MBFT-Privilege-AssignPDU,
mbft-NonStandardPDU MBFT-NonStandardPDU,

42 ITU-T Rec. T.127 (08/2007)



private-Channel-Join-InvitePDU Private-Channel-Join-InvitePDU,
private-Channel-Join-ResponsePDU Private-Channel-Join-ResponsePDU,

10 Use of the Multipoint Communication Service

All MBFT communication shall be through MCS as specified in [ITU-T T.122]. This clause details
specific use of MCS services, channel allocation, token alocation and data priorities. Static tokens
and channels assigned to MBFT are assigned in [ITU-T T.120].

10.1 Useof MCSdatatransmission services

Either Send-Data or Uniform-Send-Data may be used, at the discretion of the transmitter. Receivers
must be capable of accepting both types of data. The channel and priority to be used for each PDU
is defined in Table 25.

10.2 Channd allocation

In each MBFT session, two channels are provided to allow broadcasting of one file at atime. The
control channel MBFT-CONTROL is used to manage all aspects of file transfer on the broadcast
data channel MBFT-DATA. Each File APE also joins the User-1D channel allocated to it by MCS.
Transfer of more than one file smultaneously within the same session requires acknowledged data
channels [designated MBFT-DATA(n), where n is the MCS channel ID of the data channel], one
per concurrent file transfer. The way in which channel ID values for MBFT-CONTROL and
MBFT-DATA are determined depends on a session's mode of operation (static, multicast or
private), as explained in clause 8.4.5. The method of determining channel IDs for MBFT-DATA(N)
is dependent on whether multicast or private channels are used and is described in clauses 8.6.1
and 8.6.2 respectively.

A sub-session has a control channel MBFT-CONTROL (p) (where p is the MCS channel 1D of the
control channel). It may optionally have a single broadcast data channel MBFT-DATA(p) (where p
is the MCS channel ID of the data channel) and zero or more acknowledged data channels
MBFT-DATA(n). Channel ID values for MBFT-CONTROL(p) and MBFT-DATA(p) are
determined by the process described in clause 8.7. See Table 24.

Table24 — MBFT channel description

M nemonic Description

MBFT-CONTROL Control channel for communication of file exchange management
information between all File APEs within asession. File APEs must join and
remain joined to this channel for the duration of the session.

MBFT-DATA Broadcast data channel for distribution of file datato al File APEswithin a
session. File APEs must join and remain joined to this channel for the
duration of the session.

MBFT-CONTROL(p) Private control channel whose MCS Channel ID is (p). This channel is used

[eg., MBFT- for communication of file exchange management information between al

CONTROL (1001)] File APEs within a sub-session. File APEs must join and remain joined to
this channel for the duration of the sub-session.

MBFT-DATA(p) Private broadcast data channel whose MCS Channel ID is (p). This channel

[e.g., MBFT-DATA(1002)] | is used for distribution of file datato all File APEs within a sub-session. The
presence of a broadcast data channel within a sub-session is at the discretion
of the convenor of the sub-session. If present, File APEs must join and
remain joined to this channel for the duration of the sub-session.

ITU-T Rec. T.127 (08/2007) 43



Table24 — MBFT channel description

Mnemonic

Description

MBFT-DATA(n)

Acknowledged data channel whose MCS Channel Id is (n). This channel is

[e.g., MBFT-DATA(1003)] | used for distribution of file datato File APES within a session or sub-session.

File APEs need only join the channel to receive files they require.

MBFT User ID channel

For communication from any File APE in a conference to a specific File
APE at a particular node. Each File APE isidentified by its MCS User ID.

Table25-MBFT channel usage

MBFT PDU Channé Priority
File-OfferPDU MBFT-CONTROL High
MBFT-CONTROL (p)
File-AcceptPDU MBFT User ID High
File-RegectPDU MBFT User ID High
File-RequestPDU MBFT-CONTROL High
MBFT-CONTROL (p)
File-DenyPDU MBFT User ID High
File-ErrorPDU MBFT User ID High
File-AbortPDU MBFT-CONTROL High
MBFT-CONTROL (p)
File-DataPDU MBFT-DATA Medium, Low
MBFT-DATA(p)
MBFT-DATA(N)
MBFT User ID
File-StartPDU MBFT-DATA Medium, Low
MBFT-DATA(p)
MBFT-DATA(N)
MBFT User ID
Directory-RequestPDU MBFT User ID High
Directory-ResponsePDU MBFT User ID High
MBFT-Privilege-RegquestPDU Conductor MBFT User ID High
MBFT-Privilege-AssignPDU MBFT-CONTROL High
Private-Channel-Join-InvitePDU MBFT User ID High
Private-Channel-Join-ResponsePDU Channel Manager User ID High
MBFT-NonStandardPDU Not specified Not specified

10.3 Token allocation

MBFT reserves two static tokens for its exclusive use in static mode: FILE-TRANSMIT and
FILE-REQUEST. Dynamic equivalents of these tokens may be used for multicast and private
modes.

The session broadcast data channel may have a FILE-TRANSMIT token to ensure that thereis only
one node transmitting data on the channel at atime. A File ASE intending to transmit a file must
grab this token before offering the file to other participants using the File-OfferPDU. Once it has
completed the file transmission (i.e., sent a File-StartPDU or File-DataPDU with the off Flag set to

44 ITU-T Rec. T.127 (08/2007)



TRUE), the transmitter should release the FILE-TRANSMIT token to alow other nodes to transmit
on the data channel).

The session control channel may have a FILE-REQUEST token to ensure that there is, at most, one
outstanding file request to be processed at any instance. A File ASE requesting a file must grab the
FILE-REQUEST token before issuing a File-RequestPDU. It holds the token until it can determine
whether another File ASE is able to fulfil the request, i.e., either one File ASE responds with a
File-Offer, all File ASEs respond with a File-Deny, or atimeout expires. Once the FILE-REQUEST
token is released, other File ASEs may attempt to request files by the same process.

Each acknowledged data channel may have a FILE-TRANSMIT token associated with it. The
FILE-TRANSMIT token associated with an acknowledged data channel whose MCS Channel id is
n [MBFT-DATA(n)] is assigned the mnemonic FILE-TRANSMIT(n) [eg.,
FILE-TRANSMIT(1006)]. It is functionally identical to the FILE-TRANSMIT token associated
with the broadcast data channel.

A sub-session optionally has a FILE-REQUEST (p) token associated with its MBFT-CONTROL (p)
control channel. The FILE-REQUEST (p) token is functionally identical to the FILE-REQUEST
token. If the sub-session has a broadcast data channel MBFT-DATA(p), this may optionally have a
FILE-TRANSMIT(p) token associated with it. See Table 26.

Table 26 — MBFT token description

Mnemonic Description

FILE-REQUEST Token to ensure that thereis at most one outstanding file request on the
session control channel MBFT-CONTROL.

FILE-TRANSMIT Token to ensure transmission of onefile at atime on the session
broadcast data channel MBFT-DATA.

FILE-REQUEST (p) Token to ensure that there is at most one outstanding file request on

[e.g., FILE-REQUEST(1001)] sub-session control channel MBFT-CONTROL (p).

FILE-TRANSMIT(p) Token to ensure transmission of one file at atime on sub-session

[e.g., FILE-TRANSMIT(1002)] | broadcast data channel MBFT-DATA(p).

FILE-TRANSMIT(N) Token to ensure transmission of onefile at a time on acknowledged

[e.g., FILE-TRANSMIT(1003)] | datachannel MBFT-DATA(N).

104 MCSservices

MBFT assumes the MCS services indicated in Table 27. All primitives marked with an "M" are
mandatory, those marked with an "O" are optional.

Table27 —MCS servicesused by MBFT

c
8

Primitives
MCS-Attach-User request
MCS-Attach-User confirm
MCS-Detach-User request
MCS-Detach-User indication
M CS-Channel-Join request
M CS-Channel-Join confirm
M CS-Channel-L eave request
MCS-Channel-Leave indication

G Ed k4 Ed D

ITU-T Rec. T.127 (08/2007) 45



Table27 - MCS servicesused by MBFT

C
8

Primitives
M CS-Channel-Convene request
M CS-Channel-Convene confirm
MCS-Channel-Disband request
MCS-Channel-Disband indication
MCS-Channel-Admit request
MCS-Channel-Admit indication
MCS-Channel-Expel request
MCS-Channel-Expel indication
MCS-Send-Data request
MCS-Send-Data indication
MCS-Uniform-Send-Data request
MCS-Uniform-Send-Data indication
MCS-Token-Grab request
MCS-Token-Grab confirm
MCS-Token-Give request
MCS-Token-Give indication
MCS-Token-Give response
MCS-Token-Give confirm
MCS-Token-Please request
MCS-Token-Please indication
MCS-Token-Rel ease request
MCS-Token-Release confirm
MCS-Token-Release indication
MCS-Token-Test request
MCS-Token-Test confirm

O|Oo|Z(o|oZ|o|lo(Z|IZ|o|ZIZ I |IZjoglog|1000

11 Use of Generic Conference Control

MBFT assumes the services listed in Table 28. Primitives endorsed with an "M" are mandatory,
those marked with an "QO" are optional.

46 ITU-T Rec. T.127 (08/2007)



Table 28 — GCC primitives supported by MBFT

GCC primitive

c
8

GCC-Application-Permission-To-Enroll indication

GCC-Application-Enroll request
GCC-Application-Enroll confirm

GCC-Application-Roster-Report indication
GCC-Registry-Retrieve-Entry request
GCC-Registry-Retrieve-Entry confirm
GCC-Reqistry-Register-Channel request
GCC-Registry-Register-Channel confirm

GCC-Registry-Assign-Token request
GCC-Registry-Assign-Token confirm

GCC-Conductor-Assign indication
GCC-Conductor-Release indication
GCC-Conductor-Permission-Ask request

GCC-Conductor-Permission-Grant request
GCC-Conductor-Permission-Grant indication

£0|0|Z|ZE|00|00|jo0O (XL

11.1 Resource | Ds

Tables 29 and 30 define the construction of MBFT Resource IDs required for use of the GCC
Registry. The registry is not required for the session MBFT-CONTROL channel as the MCS
Channel ID can be obtained directly from the Session ID. It is aso not required for private
sub-session MBFT-CONTROL (p) channels as the MBFT-CONTROL (p) channel ID is conveyed to
the selected participants by the private sub-session convenor. The registry may be used to identify
the session broadcast data channel using the Resource ID "DO0". Acknowledged multicast data
channels are not placed in the registry, since the presence of a Registry entry does not guarantee the
existence of the channel (see clause 8.6.2). Private data channels are not placed in the Registry since
File ASEs are not permitted to join such channels until they receive an MCS-Channel-Admit from
the channel convenor.

FILE-TRANSMIT(n) and FILE-TRANSMIT(p) Token IDs are constructed by expressing the MCS
Channel 1D of the associated MBFT-DATA(n) or MBFT-DATA(p) channel as a decimal numeric
string without leading zeroes, prepending the single character "T", and encoding these characters
into successive octets according to ITU-T Rec. T.50. FILE-REQUEST (p) Token Ids are constructed
by expressing the MCS Channel 1D of the associated MBFT-CONTROL (p) channel as a decimal
numeric string without leading zeroes, prepending the single character "R", and encoding these
characters into successive octets according to ITU-T Rec. T.50.

Table 29 — Channel deter mination

Application registry
resourcelD for
dynamic channels

Channel 1D of static

Mnemonic
channds

MBFT-CONTROL

MBFT-CHANNEL-0

MBFT-DATA

MBFT-CHANNEL-1

DO

MBFT-CONTROL (p)

MBFT-DATA(p)

MBFT-DATA(n)

ITU-T Rec. T.127 (08/2007)

47



48

Table 30 — Token deter mination

Application registry

Mnemonic Token ID of Static Tokens resourcelD
for dynamic tokens
FILE-REQUEST MBFT-TOKEN-0 RO
FILE-TRANSMIT MBFT-TOKEN-1 TO

FILE-REQUEST (p)

Rp (e.g., R1001)

FILE-TRANSMIT(p)

Tp (e.g., T1002)

FILE-TRANSMIT(n)

Tn (e.g., T1003)

ITU-T Rec. T.127 (08/2007)




Annex A

Static channel and token assignment

(Thisannex forms an integral part of this Recommendation)

The assignment of static resources (channels and tokens) is to be defined in [ITU-T T.120], but is
included in this Recommendation pending the completion of [ITU-T T.120]. See Tables A.1
and A.2.

Table A.1 - Static channel 1D assignments

Symbolic name MCS Channel ID
MBFT-CHANNEL-0 9
MBFT-CHANNEL-1 10

Table A.2 — Static token 1D assignments

Symbolic Name MCSToken ID
MBFT-TOKEN-0 10
MBFT-TOKEN-1 11

ITU-T Rec. T.127 (08/2007) 49



Annex B
Object Identifier assignments
(Thisannex forms an integral part of this Recommendation)
Table B.1 lists the assignment of Object |dentifiers defined for use by this Recommendation.

TableB.1—-T.127 object identifier assignment

Object Identifier Value Description

{itu-t recommendation t 127 version(0) 2} | This Object Identifier is used to indicate the version of this
Recommendation. At thistime there is a single standardized
version defined.

50 ITU-T Rec. T.127 (08/2007)



Appendix |

File Transfer Examples
(This appendix does not form an integral part of this Recommendation)

1.1 A number of examples of file transactions are given below to illustrate use of this
Recommendation in different scenarios.

The following conventions are adopted in the figures:

Each PDU is followed by a Channel name enclosed in parentheses thus (). This indicates the
channel on which the PDU is to be sent. Where appropriate, significant PDU parameters are
appended in parentheses after the Channel ID.

Primitives are optionally followed by key parameters enclosed in square bracketsthus| ].

Note that the figures only denote transactions between a File APE, its peers and its local MCS and
GCC providers. Transactions between the loca MCS and GCC providers and the top MCS and
GCC providers are omitted for clarity.

.1.1  Figure 1.1 illustrates distribution of a file on the broadcast data channel. All File APEs
participating in the session are obliged to receive the data and discard it locally if it is not required.

[.1.2  Figure 1.2 illustrates the creation and use of an acknowledged multicast data channel when
at least one node wishes to receive the file being offered.

1.1.3  Figure 1.3 illustrates an attempt to distribute a file on an acknowledged channel which is
aborted because al receivers reject the file. It is assumed that the data channel and the associated
FILE-TRANSMIT(n) token already exist.

[.1.4  Figure 1.4 illustrates file distribution to a subset of the participants in the current session
using a private sub-session. Participants have the option of rejecting files offered to them, and any
site may attempt to request or offer files when the current transaction has finished.

[.1.5 Figure 1.5 illustrates file distribution to a subset of the participants in the current session
using a private sub-session. Participants have the option of reecting files offered to them, but only
the creator is permitted to transmit files. Note that the creator does not need to join the
MBFT-DATA(n) channel, since it will never receive files.

ITU-T Rec. T.127 (08/2007) 51



Local Local Local Remote Remote Remote
file GCC MCS MCS GCC file
APE provider provider provider(s) provider(s) APE(s) Operation

52

| |
| |
MCS—TOKEN-GRzi\B req. [FILE-TRANSMIT]

]
|
| MCS-TOKEN-GRAB con. [FILE-TRANSMIT]

Transmitter grabs
FILE-TRANSMIT
token

File-OfferPDU (MBF!T-CONTROL Channel) (Ack = FALSE)

| |
File-StartPDU (MBFT-DATA Channkl) (Eof = FALSE)

|
File-DataPDU (MBFT—DATA Channel) (Eof = FALSE)

| .
File-DataPDU (MBFT-DATA Channie]) (Eof = FALSE) | rensmitter sends file

File-DataPDU(MBFT-DATA Channel) (Eof = TRUE)

MCS-TOKEN-REL req. [FILE-TRANSMIT]

Transmitter releases
FILE-TRANSMIT

‘MCS-TOKEN-REL con. [FILE-TRANSMIT] token

TA27(07)_F-1.1

Figurel.l—Broadcasting of files

ITU-T Rec. T.127 (08/2007)



Local Local Local Remote Remote Remote
file GCC MCS MCS GCC file
APE provider provider provider(s) provider(s) APE(s) Operation

MCS-CHANNEL-JOIN req. [Channel [D = 0] T itter o
> ransmitter joins new

Iticast channel
_ MCS-CHANNEL-JOIN con. [MBFT-DATA(n) Channel ID = unique new] " if none exists).

Transmitter assigns
FILE-TRANSMIT(n)

ken fi
 GCC-Registry-Assign-Token con. [FILE-TRANSMIT(n)=uhique new] mtloltiil;sto;;ai\:/lel

GCC-Registry-Assign-Token req.

MCS-TOKEN-GRAB req. [FILE-TRANSMIT(n)] .
i :i Transmitter grabs
MCS-TOKEN-GRAB con. [FILE-TRANSMIT(n)] FILE-TRANSMIT(n)
le : i | | token
I |
| |

| | I

IFile-OfferPDU (MBFT-CONTROL Chaninel) (Ack = TRUE)
, >

MCS-CEHANNEL-JOIN req. [MBFT-DATA(n)]

<€

| I
MCS-CHANNEL-JOIN con! [MBFT-DATA(n)]

Transmitter offers file

Receivers join
MBFT-DATA(n) channel
File-AcceptPDU (Transmitter MBFT User ID Channel) and accept the offer

File-StartPDU (MBFT-DATA(n) Channel) (Eof = FALSE)‘

File-DataPDU (MBFT-DATA(n) Channel) (Eof = FALSE)

File-DataPDU (MBFT-DATA(n) Channel) (Eof = FALSE) .
»  Transmitter sends file

on multicast channel
MBFT-DATA(n)

File-DataPDU (MBFT-DATA(n) Channel) (Eof = TRUE)

MCS-TOKEN-REL req. [FILE-TRAI\[S_MIT(H)] Transmitter releases
g FILE-TRANSMIT(n)
- MCS-TOKEN-REL con. [FILE-TRANSMIT(n)] token
) ! ! TA27(07)_F-1.2

Figurel.2 — Successful acknowledged file transfer

ITU-T Rec. T.127 (08/2007) 53



Local Local Local Remote Remote Remote
file GCC MCS MCS GCC file
APE provider provider provider(s) provider(s) APE(s)  Operation

I 1 |
I 1 |
MCS-TOKEN-GRIAB req. [FILE-TRANSMIT(n)]

<

MCS-TOKEN-GRAB con. [FILE-TRANSMIT(n)]

|
File-OfferPDU (MBFT-CONTROL Channiel) (Ack = TRUE)
T T T d
1 | 1
MCS-CHANNEL-LE/IXYE req. [MBFT—DA:TA(n) Channel ID]
I ]
MCS-CHANNEL-LEA!VE con. [MBFT—DA:TA(n) Channel ID]

»
P

ransmitter MBFT User ID Channel)

_File-RejectPDU (T

MCS-TOKEN-RE

L req. [FILE-TRANSMIT(n)]

. MCS-TOKEN-RE

L con. [FILE-TRANSMIT(n)]

54

Figurel.3 —Rejected acknowledged filetransfer

ITU-T Rec. T.127 (08/2007)

Transmitter grabs
FILE-TRANSMIT(n)
token

Transmitter offers file

Receivers leave
MBFT-DATA(n) channel
(if joined to it)

Receivers reject
file offer

Transmitter releases
FILE-TRANSMIT(n)
token

TA27(07)_F-1.3



Remote
file
APE(s)

Local Local Local Remote Remote
file GCC MCS MCS GCC
APE provider provider provider(s) provider(s)
MCS-CHANNEL-CONVENE req. R |
| _MCS-CHANNEL-CONVENE con. [MBFT'— CONTROL(p) Channe]ll ID n = unique new]
" MCS-CHANNEL- JOIN req. [MBFT- CONT TROL(p)]
MCS CHANNEL-JOIN con.
MCS—CHANNEL—C INVENE req. R
MC S-CHANNEL- CONVENE con. [MBFT—DATA(n) Channel ID = unique new]
" MCS-CHANNEL- JOIN req. [MBFT-DATA q])]
‘MCS—CHANNEL—JO.IN con.
) Private-Ghannel-InvitePDU [Mdde = FALSE] (MBFT User ID Channels of File APEs to be invited)
MCS—CHANNEL—A]E)MIT rcq. [MBFT-CONTROL(p), MBFT User ID(s)] "
! I ! 55“-~~___ MCS CHANNEL- ADMIT ind. [Channel ID]
1 : 1 MCS-C {ANNEL JOIN req. [MBFT CONTROL(p)]
MCS-CHANNEL-ADMIT req. MCS- CHANNEL JOIN con,
T MCs- CHANNEL-ADMIT ind. [Channel ID

| _Private-Channel-Join;AckPDU (Convenor M

[MBFT-DATA(n), MBFT User ID(s)]

BFT User ID Channel

MCS CHANNEL-JOIN req [MBFT- DATA(n)

=

I MCS-C

HANNEL-JOIN (.011

‘GCC—chistry—Assigrﬁ—Tokcn req.
GCC-Registry-Assign-Token con. [FILE-TRANSMIT(n)=unique new]

GCC-Registry-Assign-Token req.

GCC-Registry-Assigh-Token con. [FILE- REQUEST(p)—umque nev
MCS-TOKEN- GRAB req. [FILE- TRANSMI[T(n)]

MCS TOKEN- GRAB con. [FILE- TRANSMIT(H)

File-OfferPDU (ME

FT-CONTROL(p) Ch:

nnel) (Ack = TRUE)

File-Ac

ceptPDU (Transmitter

BFT User Channel)'

File-StartPDU (MBFT-DATA(n) Cha

nnel) (Eof = FALSE)

File-DataPDU (MBFT-DATA(n) Cha

nel) (Eof = FALSE)

File-DataPDU

(MBFT-DATA(n) Ch4

nel) (Eof = FALSE)

File-DataPD

U (MBFT-DATA(n) Ch

annel) (Eof = TRUE)

MCS-TOKEN-REL req. [FILE-TRANSMIT:

n)]

 MCS-TOKEN-REL con. [FILE-TRANSMI'"I

(m]

MCS-CHANNEL-DISBAND req. [Channel !

D = MBFT-DATA(n)]

| MCS-CHANNEL-EXPEL ind. [Channel ID

L BFEDATA)] -

MCS-CHi

IANNEL-EXPEL irld.k

" MCS-CHANNEL-DISBAND req. [Channel!

[D = MBFT-CONTRO

| MCS-CHANNEL-EXPEL ind. [Channel ID

-~ MBFT:CONTRQL(p

L(p)]
1 MCS-CH

[Channel ID] |

ANNEL-EXPEL ind. R

" GCC-Registry-Delete-Entry req. [FILE-TRA

GCC-Registry-Delete-Entry con. [FILE-REQ
—

GCC-Registry-Delete-Entry con. [FILE-TRA
GCC-Registry-Delete-Entry req. [FILE-RE

NSMIT(n) token]
NSMIT(n) token]
UEST(p) token]
UEST(p) token]

[Channcl TD]"

Operation

Transmitter convenes
and joins a private
MBFT-CONTROL(p)
channcl

Transmitter convencs
and joins a private
MBFT-DATA(n) channcl

Transmitter invites each receiver
individually to join both channels

Receivers join private
MBFT-CONTROL(p) channel

channel

havc joined control channcl

Transmitter assigns
FILE-TRANSMIT(n)
and FILE-REQUEST(p)
tokens

Transmitter grabs
FILE-TRANSMIT(n) token

Transmitter ofters file

Reccivers accept offer

Transmitter sends file
on MBFT-DATA(n)
channel

Transmitter releases
FILE-TRANSMIT(n) token

Further file
transactions

Convenor disbands both
private channels

Convenor deletes token
entries in the
GCC registry

T.A27(07)_F-1.4

Figurel.4 —Private sub-session file transfer using acknowledged data channel

ITU-T Rec. T.127 (08/2007)

1 Transmitter admits other file APEs to the
private MBFT-CONTROL(p) channel

Transmitter admits other file APEs to
the private MBFT-DATA(n) channel

Receivers join private MBFT-DATA(n)

Receivers notify convenor that they

55



Local Local Local Remote Remote Remote
file GCC MCS MCS GCC file
APE provider provider provider(s) provider(s) APE(s) Operation

MCS-CHANNEL-CONVENE req.

al

 MCS-CHANNEL-C

ONVENE con. [MBET-CONTROL(p) Channel ID = unique new

MCS-CHANNEL-J

OIN req. [MBFT-CO}

_MCS-CHANNEL-J

OIN con.

“MCS-CHANNEL -G

ONVENE req.

ONVENE con. [MBET-DATA(n) Channel

_MCS-CHANNEL-

Private-Chann

cl-InvitePDU [Mode 5 FALSE] (MBFT Use

\'TROL(p)]

[D = unique new]
r ID Channels of File

APESs to be invited)

Transmitter convenes
and joins a private
MBFT-CONTROL(p)
channel

Transmitter convenes
a private MBFT-DATA(n) channel

MCS-CHANNEL- ADMIT req. [MBFT-CONTROL(p), MBFT

User 1D(s)]

P —

|
“~~__MCS CHANNEL- ADMIT ind. [Channel ID]

MCS-CHANNEL-JOIN req. [MBET-CONTROL(p)]

Transmitter invites each
receiver individually to
join both channels

Transmitter admits other file APEs to
the private MBFT-CONTROL(p) channel

€

MCS-CHANNEL-JOIN con.

MCS- CHANNEL-ADMIT req. [MBFT- DATA(n), MBFT User ID(s)]

Priv

1te-Channel-Join-Ack

|
P e ]
P “‘~~~_MCS CHANNEL- ADMIT ind. [Channel ID]

MCSICHANNEL-JOIN req. [MBFT-DATA(n)]

MCS-CHJANNEL-JOIN con.

Receivers join private
MBFT-CONTROL(p) channel

Transmitter admits other file APEs
to the private MBFT-DATA(n) channel

Receivers join private
MBFT-DATA(n) channel

PDU (Convenor MBFE

T User ID Channel) I

A

File-OfferPDU (MBF

[-CONTROL(p) Charnel) (Ack = TRUE)

Receivers notify convenor that
they have joined control channel

File-AcceptPDU (Transmitter MBET User ID Channel) i

A

File-StartPDU (MBFT-DATA(n) Chan

nel) (Eof = FALSE)

Transmitter offers file

File-DataPDU (MBFT-DATA(n) Chan

nel) (Eof = FALSE)

File-DataPDU (MBFT-DATA(n) Chan

nel) (Eof = FALSE)

Receivers accept offer

File-DataPDU (MBFT-DATA(n) Channels

(Eof = TRUE)

v

MCS-CHANNEL-D

ISBAND req. [Channel ID = MBFT-DATA

()]

~ MCS-CHANNEL-EXPEL ind. [Channel 1D = MBFT:DATA(n)

" MCS-CHANNEL-DISBAND req, [Channel ID = MBFT-CONT

_ MCS-CHANNEL-EXPEL ind. [Channel 1D =~ MBFF-CONIRQL(p)]

56

MCS-

CHANNEL-EXPEL

ROL(p)]
MCS-

ind. [Channel ID] "
CHANNEL-EXPEL R

ind. [Channel ID]

Transmitter sends file
on MBFT-DATA(n) channel

Further file
transactions

Convenor disbands both
private channels

T.A27(07)_F-1.5

Figurel.5—Private sub-session file transfer on acknowledged data channel

(convenor use onl

ITU-T Rec. T.127 (08/2007)

y)



Appendix [

MBFT attributes

(This appendix does not form an integral part of this Recommendation)

A large number of parameters may be used to describe a file and its properties, as identified in
Table I1.1. The File-OfferPDU should include sufficient information to allow a site to determine
whether a file is required and if it is capable of being received; filename and filesize are thus
suggested as a minimum set, but no parameters are mandated. If insufficient (or no) information is
provided and sites subsequently discover that they do not wish or are unable to continue receiving a
file, they must disconnect from the data channel or discard the incoming data.

File-Start and File-DataPDUs are used to transport the entire file structure, including header
information. Note that this may duplicate or supplement information contained in the
File-OfferPDU.

File attributes are derived from [ITU-T T.434].

Tablell.1-MBFT file attributes

Attribute Comments

Filename A sequence of name components, the first element being the
filename, and any subsequent components being concatenated
to represent the file prefix.

Date and time of last modification Expressed as GeneralizedTime

Compression Appliesonly to file data

Filesize Sizein octets of the completefile

Protocol version T.434 protocol version number

Permitted actions Read, insert, replace, extend, erase

Contents type Unstructured text, unstructured binary

Storage account Identifies the accountable authority responsible for file
storage charges

Date and time of creation Expressed as GeneralizedTime

Date and time of last read access Expressed as GeneralizedTime

| dentity of creator

Identity of last modifier
Identifier of last reader

Future filesize Maximum file size in octets

Access control For further study

Legal qualifications Reflects the legal status of the file

Private use Allows definition of proprietary attributes
Structure Indicates the format of the data being transferred

ITU-T Rec. T.127 (08/2007) 57



Tablell.1-MBFT file attributes

Attribute

Comments

Application reference

Machine

Operating system

Environment

Pathname

User visible string

Additional information describing various aspects of the
environment the binary file transfer is originating from

Recipient

The final user destination of the binary file transfer

Character set

I dentifies which international character set isto be used

58 ITU-T Rec. T.127 (08/2007)







Series A
SeriesD
SeriesE
SeriesF
Series G
SeriesH
Series|

SeriesJ
SeriesK
SeriesL
SeriesM
SeriesN
SeriesO
Series P
SeriesQ
SeriesR
Series S
SeriesT
SeriesU
SeriesV
Series X
SeriesY
SeriesZ

SERIESOF ITU-T RECOMMENDATIONS

Organization of thework of ITU-T

Generad tariff principles

Overall network operation, telephone service, service operation and human factors
Non-telephone telecommunication services

Transmission systems and media, digital systems and networks

Audiovisua and multimedia systems

Integrated services digital network

Cable networks and transmission of television, sound programme and other multimediasignals
Protection against interference

Construction, installation and protection of cables and other elements of outside plant
Telecommuni cation management, including TMN and network maintenance
Maintenance: international sound programme and television transmission circuits
Specifications of measuring equipment

Telephone transmission quality, telephone installations, local line networks
Switching and signalling

Telegraph transmission

Telegraph services terminal equipment

Terminalsfor telematic services

Telegraph switching

Data communication over the telephone network

Data networks, open system communications and security

Global information infrastructure, Internet protocol aspects and next-generation networks

Languages and general software aspects for telecommunication systems

Printed in Switzerland
Geneva, 2008




	ITU-T Rec. T.127 (08/2007) Multipoint binary file transfer protocol
	Summary
	Source
	FOREWORD
	CONTENTS
	1 Scope
	2 References
	3 Definitions
	4 Abbreviations
	5 Introduction to multipoint file transfer
	6 Multipoint transfer of data - An overview
	6.1 T.127 system model
	6.2 Compression
	6.3 Priority
	6.4 File preshipping

	7 Baseline MBFT application
	8 Description of operation
	8.1 File transfer user application
	8.2 File Transfer Application Resource Manager
	8.3 File Transfer Application Service Element
	8.4 MBFT resources
	8.5 MBFT capabilities
	8.6 Support of additional concurrent file transfers
	8.7 Selective file transfer
	8.8 Leaving an MBFT session
	8.9 File exchange
	8.10 Remote directory listing
	8.11 Conducted mode behaviour
	8.12 Aborting a file transfer
	8.13 Diagnostics
	8.14 Non-standard operations

	9 MBFT PDU Definitions
	Contents-Type-Attribute ::= CHOICE
	10 Use of the Multipoint Communication Service
	10.1 Use of MCS data transmission services
	10.2 Channel allocation
	10.3 Token allocation
	10.4 MCS services

	11 Use of Generic Conference Control
	11.1 Resource IDs

	Annex A – Static channel and token assignment
	Annex B – Object Identifier assignments
	Appendix I – File Transfer Examples
	Appendix II – MBFT attributes

