

INTERNATIONAL TELECOMMUNICATION UNION

 T.127
TELECOMMUNICATION (08/95)
STANDARDIZATION SECTOR
OF ITU

TERMINALS FOR TELEMATIC SERVICES

MULTIPOINT BINARY FILE TRANSFER
PROTOCOL

ITU-T Recommendation T.127

 (Previously “CCITT Recommendation”)

FOREWORD

The ITU-T (Telecommunication Standardization Sector) is a permanent organ of the International Telecommunication
Union (ITU). The ITU-T is responsible for studying technical, operating and tariff questions and issuing Recommen-
dations on them with a view to standardizing telecommunications on a worldwide basis.

The World Telecommunication Standardization Conference (WTSC), which meets every four years, establishes the
topics for study by the ITU-T Study Groups which, in their turn, produce Recommendations on these topics.

The approval of Recommendations by the Members of the ITU-T is covered by the procedure laid down in WTSC
Resolution No. 1 (Helsinki, March 1-12, 1993).

ITU-T Recommendation T.127 was prepared by ITU-T Study Group 8 (1993-1996) and was approved under the WTSC
Resolution No. 1 procedure on the 11th of August 1995.

NOTE

In this Recommendation, the expression “Administration” is used for conciseness to indicate both a telecommunication
administration and a recognized operating agency.

� ITU 1996

All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means, electronic or
mechanical, including photocopying and microfilm, without permission in writing from the ITU.

 Recommendation T.127 (08/95) i

CONTENTS
Recommendation T.127 (08/95)

Page
1 Scope .. 1

2 Normative References... 1

3 Definitions .. 2

4 Abbreviations.. 3

5 Introduction to multipoint file transfer.. 3

6 Multipoint transfer of data – An overview.. 4
6.1 T.127 system model .. 6
6.2 Compression.. 7
6.3 Priority .. 7
6.4 File preshipping... 8

7 Baseline MBFT Application... 8

8 Description of operation ... 9
8.1 File transfer user application ... 9
8.2 File Transfer Application Resource Manager.. 9
8.3 File Transfer Application Service Element ... 9
8.4 MBFT resources.. 10

8.4.1 MBFT Initialization... 11
8.4.2 Static mode .. 13
8.4.3 Multicast mode .. 14
8.4.4 Private mode.. 18
8.4.5 Forming Registry Keys .. 19

8.5 MBFT capabilities... 19
8.6 Support of additional concurrent file transfers .. 21

8.6.1 Multicast channels ... 21
8.6.2 Private channels... 21

8.7 Selective file transfer... 23
8.8 Leaving an MBFT session... 24
8.9 File exchange... 25

8.9.1 Transmitter invoked operation... 25
8.9.2 Receiver invoked operation ... 29

8.10 Remote directory listing .. 30
8.11 Conducted mode behaviour... 32

8.11.1 Peer File APE present at conducting node... 32
8.11.2 Peer File APE absent at conducting node .. 34

8.12 Aborting a file transfer .. 34
8.13 Diagnostics .. 35
8.14 Non-standard operations.. 36

9 MBFT PDU Definitions.. 36

10 Use of the Multipoint Communication Service... 43
10.1 Use of MCS data transmission services... 43
10.2 Channel allocation... 44
10.3 Token allocation.. 45
10.4 MCS services... 46

ii Recommendation T.127 (08/95)

Page
11 Use of Generic Conference Control.. 46

11.1 Resource IDs ... 46

Annex A – Static channel and token assignment.. 49

Annex B – Object Identifier assignments... 50

Appendix I – File Transfer Examples .. 50

Appendix II – MBFT attributes.. 56

 Recommendation T.127 (08/95) iii

SUMMARY

This Recommendation defines a protocol to support the interchange of binary file data within an interactive conferencing
or group working environment where the T.120 suite of standards is in use. It provides mechanisms to support
simultaneous distribution of multiple files, selective distribution of files to a subset of participants and retrieval of files
from remote sites. Provision is also made for remote directory access.

 Recommendation T.127 (08/95) 1

Recommendation T.127
Recommendation T.127 (08/95)

MULTIPOINT BINARY FILE TRANSFER PROTOCOL
(Geneva, 1995)

1 Scope
This Recommendation defines a protocol to support the interchange of binary files within an interactive conferencing or
group working environment where the T.120 suite of standards is in use. It provides mechanisms which facilitate
distribution and retrieval of one or more files simultaneously using the primitives provided by Recommendation T.122
(Multipoint Communications Service). T.127 is designed to offer a versatile, light weight protocol which provides the
core functionality to allow interworking between applications requiring a basic file transfer capability and also has the
flexibility to meet the demands of more sophisticated applications. See Figure 1/T.127.

2 Normative References
The following Recommendations and other references contain provisions which, through reference in this text, constitute
provisions of this Recommendation. At the time of publication, the editions indicated were valid. All Recommendations
and other references are subject to revision: All users of this Recommendation are therefore encouraged to investigate the
possibility of applying the most recent edition of the Recommendations and other references listed below. A list of the
currently valid ITU-T Recommendations is regularly published.

 – CCITT Recommendation T.35 (1991), Procedure for the allocation of CCITT members' codes for non-
standard facilities.

 – ITU-T Recommendation T.1201), Data Protocols for Multimedia Conferencing.

 – ITU-T Recommendation T.122 (1993), Multipoint Communication Service for audiographics and
audiovisual conferencing service definition.

 – ITU-T Recommendation T.123 (1994), Protocol stacks for audiographic and audiovisual teleconference
applications.

 – ITU-T Recommendation T.124 (1995), Generic Conference Control.

 – ITU-T Recommendation T.125 (1994), Multipoint Communication Service protocol specification.

 – Recommendation T.434 (1992), Binary file transfer format for the telematic services.

 – ITU-T Recommendation H.221 (1993), Frame structure for a 64 to 1920 kbit/s channel in audiovisual
teleservices.

 – ITU Recommendation X.680 (1994), Information technology – Abstract Syntax Notation One (ASN.1) –
Specification of basic notation.

 – ITU-T Recommendation X.691 (1995), Information technology – ASN.1 encoding rules: Specification of
Packed Encoding Rules (PER).

 – Recommendation V.42 bis (1990), Data compression procedures for Data Circuit Terminating Equipment
(DCE) using error correcting procedures.

 – ISO/IEC 3309:1993, Information technology – Telecommunications and information exchange between
systems – High-Level Data Link Control (HDLC) procedures – Frame structure.

 – ISO 8571-2:1988, Information processing systems – Open Systems Interconnection – File Transfer,
Access and Management (FTAM) – Part 2: Virtual filestore definitions.

__
1) Presently at the stage of draft.

2 Recommendation T.127 (08/95)

T0820070-95/d01

...

....
...

Rec. T.120 Infrastructure Recommendations

T.127 File Transfer (MBFT)

T.126 Still Image (SI)

Non-standard Application
Protocol Entities

User Application(s)
(using std. Appl. Protocols)

Node
controller

User Application(s)
(using non-std. Protocols)

User Application(s)
(using both standard and non-standard Application Protocols)

Generic Conference Control (GCC)
Rec. T.124

Multipoint Communications Service (MCS)
Rec. T.122/T.125

Network Specific Transport Protocols
Rec. T.123

Rec. T.120
Application Protocol
Recommendations

FIGURE 1/T.127
Scope of T.127

FIGURE 1/T.127...[D01] = 3 CM (118%)

3 Definitions

For the purposes of this Recommendation, the following definitions apply:

3.1 acknowledged data channel: An MCS channel on which files are distributed. Participants have the option of
rejecting files offered on an acknowledged data channel. An acknowledged data channel may be exclusive (i.e. only the
channel creator may send files on it), or shared (any participant may send files on it).

 Recommendation T.127 (08/95) 3

3.2 broadcast data channel: An MCS channel on which files are distributed. Participants must receive all files
distributed on the channel, discarding the data locally if it is not required.

3.3 control channel: An MCS channel used for the management of file transactions.

3.4 file attributes: The name and other identifiable properties of a file.

3.5 FILE-REQUEST: The token used to ensure that there is at most one outstanding file request on the session
control channel MBFT-CONTROL.

3.6 FILE-REQUEST(p): The token used to ensure that there is at most one outstanding file request on the sub-
session control channel MBFT-CONTROL(p).

3.7 FILE-TRANSMIT: The token used to ensure that there is at most one file transfer in progress on the session
broadcast data channel MBFT-DATA.

3.8 FILE-TRANSMIT(p): The token used to ensure that there is at most one file transfer in progress on the sub-
session broadcast data channel MBFT-DATA(p).

3.9 FILE-TRANSMIT(n): The token used to ensure that there is at most one file transfer in progress on
acknowledged data channel MBFT-DATA(n).

3.10 MBFT-CONTROL: The session control channel.

3.11 MBFT-CONTROL(p): A sub-session control channel, whose MCS Channel ID is p.

3.12 MBFT-DATA: The session broadcast data channel.

3.13 MBFT-DATA(p): A sub-session broadcast data channel, whose MCS Channel ID is p.

3.14 MBFT-DATA(n): An acknowledged data channel, whose MCS Channel ID is n.

3.15 non-standard capability: A capability that is outside the scope of this Recommendation. Non-standard
capabilities must be negotiated before use.

3.16 session: A set of peer Application Protocol Entities.

3.17 standard capability: A capability that is defined within the scope of this Recommendation, but is not required
for all MBFT implementations. Standard capabilities must be negotiated before use.

3.18 sub-session: A sub-group of peer Application Protocol Entities within a session.

4 Abbreviations

For the purposes of this Recommendation, the following abbreviations are used:

ARM Application Resource Manager

APE Application Protocol Entity

ASE Application Service Element

GCC Generic Conference Control

GCCSAP GCC Service Access Point

MBFT Multipoint Binary File Transfer

MCS Multipoint Communication Service

MCSAP MCS Service Access Point

PDU Protocol Data Unit

5 Introduction to multipoint file transfer

In order to support group activities such as meetings, conferences, etc. involving physically separated participants, there
is a requirement to join together two or more locations. The term multipoint communication simply describes the
interconnection of multiple terminals. Multipoint Binary File Transfer (MBFT) enables files to be exchanged

4 Recommendation T.127 (08/95)

interactively between participants within a multipoint environment through use of the underlying network independent
Multipoint Communications Service (MCS).

Specifically, this Recommendation provides flexible and efficient mechanisms to support:

• Simultaneous distribution of multiple files.

• Broadcasting of files to all participants within a conference.

• Selective distribution of files to a subset of participants.

• Retrieval of files from remote sites.

• Partial retransmission of files following an interruption.

• Remote directory access.

6 Multipoint transfer of data – An overview

T.127 uses a control/data channel architecture to facilitate simultaneous transfer of one or more binary files. It enables
files to be broadcast to all participants within a conference, or to be directed selectively to a subset of sites as a private
file transfer. No restrictions are placed on the type of data being transmitted.

Two types of channels are used within T.127; control channels and data channels. Control channels are used for
managing all aspects of the file transfer (offering files, requesting files), whereas data channels are used exclusively for
the transfer of file data. Only one file can be transmitted on each data channel at a time, but additional data channels can
be used to allow distribution of multiple files simultaneously. The number of data channels in use at any given time
depends on the number of concurrent file transfers in progress.

A group of file transfer applications communicating with each other are said to be participating in the same file transfer
session. Each file transfer session requires a single control channel and one or more data channels for distribution of files
to all participating applications.

T.127 supports two types of data channel: broadcast and acknowledged. If a transmitter wishes to mandate that all nodes
receive a file it is offering, then it should use the broadcast data channel. All nodes must stay joined to the broadcast data
channel for the duration of the file transfer session and are obliged to receive all files distributed on it; if a file is not
required, receivers should discard it. If a transmitter wishes to give other nodes the option of rejecting a file, it should
offer the file on an acknowledged data channel. In this case, each node must inform the transmitter of whether it requires
the data or not, and only those which want the file join the data channel. Multiple concurrent file transfers are supported
by use of acknowledged data channels.

Acknowledged data channels should be used if a transmitter considers that one or more of the parameters in the file
header are essential to the operation of the application. For example, an application may require a pathname to be
preserved by receivers for future reference. Key parameters are identified when offering the file for distribution; nodes
which are unable to support all such parameters must reject the file.

The creator of an acknowledged data channel may be designate it to be exclusive (i.e. only the creator may send files on
the channel) or shared (i.e. any participant may send files on it).

File transactions on the broadcast channel do not require any handshaking between transmitter and receivers as nodes are
obliged to receive all files distributed on this channel. This minimizes latency at the start of file transfers for transactions
on the broadcast data channel. Transactions on an acknowledged data channel incur some latency at the start of a file
transfer, but may have a better overall performance by avoiding unnecessary distribution of data to sites that do not
require it, particularly if such sites are on low bandwidth links. The choice of channel is at the transmitter's discretion and
may depend on application, file size, network configuration and number of conference participants. See Figure 2.

 Recommendation T.127 (08/95) 5

A B A A BA

T0820080-95/d02

A

B

MBFT

MCSAP

Control Channel

Data channels

MBFT

MCSAP

MBFT

MCSAP

MBFT

MCSAP

Acknowledged Data channel for

Broadcast Data channel for

Control channel

Current Transmitter
sourcing files A and B

Node that does not
require file A or file B

Node that requires
 file A

Node that requires
 files A and B

MCS
Provider

Top MCS
Provider

MCS
Provider

MCS
Provider

MCS
Provider

NOTES
1 All nodes attach to the control channel and broadcast data channel.
2 Nodes must receive files on the broadcast data channel, whether they require the data or not.
3 Nodes only join an acknowledged data channel if they wish to receive the file currently being offered on it.

FIGURE 2/T.127
T.127 conference model

FIGURE 2/T.127...[D02] = 3 CM (118%)

Selective distribution of files to a subset of nodes within a conference can be achieved by creating a private file transfer
session, or by establishing a private file transfer sub-session within the existing session.

A sub-session follows the same model as a session by having a single control channel and one or more data channels. See
Figure 3. However, it differs from a session in that it is not required to have a broadcast data channel. A sub-session has
the same capability set as its parent session and its participants are selected from the participants of the parent session.
Sub-sessions have no status within GCC and do not appear in the GCC-Application-Roster. A sub-session does not have a
distinct Session ID, but instead operates with the Session ID of the main MBFT session. By avoiding the delay incurred
by the enrollment process, sub-sessions allow private interactive file exchanges to be initiated in an expedient manner, at
the same time conserving GCC and MCS resources.

Provision is made for sites to request a file from other nodes to allow information retrieval from data bases, bulletin
boards, etc. Sufficient information must be provided in the request to allow the sourcing site to uniquely identify the file
required.

6 Recommendation T.127 (08/95)

T0820090-95/d03

Multipoint Binary File Transfer session

File APE File APE

Node A Node D

Multipoint Binary File Transfer sub-session

Node B

File APE File APE

Node C

File APE

User B
Application 1

User B
Application 2

User C
Application 1

User D
Application 1

User A
Application 1

FIGURE 3/T.127
Relationship between a sub-session and session

FIGURE 3/T.127...[D03 = 3 CM (118%)

6.1 T.127 system model

An MBFT Session is characterized by the following attributes as illustrated in Figure 4.

• A single control channel.

• A single broadcast data channel.

• Zero or more acknowledged data channels.

• Zero or more private sub-sessions (to allow file exchange between a selected subset of conference
participants).

• A Session ID.

Each sub-session has the following attributes:

• A single private control channel.

• Zero or one private broadcast data channels.

• Zero or more private acknowledged data channels.

• No individual Session ID (operates with the Session ID of the main MBFT session).

Each control channel has a FILE-REQUEST token associated with it (unless the channel creator requires an exclusive
right to request files from other sites).

 Recommendation T.127 (08/95) 7

Each data channel has a FILE-TRANSMIT token associated with it (unless the channel creator requires an exclusive right
to transmit files on that channel).

T0820100-95/d04

Optional sub-sessions

MBFT Channel Resources

Minimum configuration

Sub-session

MBFT Channel Resources

Additional (optional) data channels

Exclusive
acknowledged
data channel

Control
channel

Broadcast
data channel

Shared
acknowledged
data channel

Control
channel

Broadcast
data channel

Exclusive
acknowledged
data channel

Shared
acknowledged
data channel

FIGURES
FIGURE 4/T.127FIGURE 4/T.127

T.127 channel model

Mandatory Optional data channels (one or more)

MBFT Session

FIGURE 4/T.127...[D04 = 3 CM (118%)

6.2 Compression

Compression may be applied to files, subject to successful negotiation; by default files are uncompressed. Proprietary
techniques may be identified using the formats specified in Recommendation T.124, e.g. T.35 country code, nationally
assigned code, manufacturer's code, non-standard capability code. Object identifiers may be acquired instead. De facto
standard compression formats may also be identified via this mechanism. Note that compression applies only to the file
data payload and not to the file header.

6.3 Priority

T.127 can be used as a background task performing bulk data transfer as well as a foreground task for immediate
distribution of files. The mode to be used is selected by the transmitting site; medium priority should be used for fast data
transfer and low for bulk data transfer. The priority must remain the same throughout the transmission of a file but can
differ between successive transactions.

Management of file transactions on the control channel shall use high priority.

8 Recommendation T.127 (08/95)

6.4 File preshipping

In order to minimize file transfer traffic during an interactive conference, files may be preshipped by convening a
conference specifically to distribute conference material in advance. This can be an automated process and if receiving
sites can identify those files which they wish to receive, file traffic can be kept to a minimum.

7 Baseline MBFT Application

Applications wishing to support the file transfer protocol must be able to join the control channel and send or receive on
the broadcast data channel. Table 1 identifies which PDUs must be supported.

TABLE 1/T.127

Support of MBFT PDUs

 File receive
only APE

File transmit
only APE

File transmit &
receive APE

MBFTPDU Send
PDU

Receive
PDU

Send
PDU

Receive
PDU

Send
PDU

Receive
PDU

File-Offer – M M M M M

File-Accept M – – M M M

File-Reject M – M M M M

File-Request O M – M O M

File-Deny M O M – M O

File-Error O – – O O O

File-Abort O – O M O M

File-Start – M M – M M

File-Data – M M – M M

Directory-Request O M O M O M

Directory-Response M O M O M O

MBFT-NonStandard O O O O O O

MBFT-Privilege-Request O O M O M O

MBFT-Privilege-Assign O M O M O M

Private-Channel-Join-Invite O M O M O M

Private-Channel-Join-Response M O M O M O

M Mandatory
O Optional
– Not Required

 Recommendation T.127 (08/95) 9

8 Description of operation

A file transfer user application relies on the services of a File Transfer Application Protocol Entity (File APE) to
communicate with peer applications at other nodes. The File APE has two components as shown in Figure 5: a File
Transfer Application Resource Manager (File ARM) and a File Transfer Application Service Element (File ASE). The
ARM provides generic functionality, common to all standardized application protocols, whilst the ASE provides
functionality specific to this application protocol to enable interworking of file transfer applications. Note that this is a
conceptual model and does not impose any constraints on the structure of actual implementations.

Each component is described in more detail below:

8.1 File transfer user application

This is the part of the file transfer application addressing those aspects which have no direct effect on interworking (e.g.
user interface) and which may thus be product and platform specific. The influence of the user application is thus local to
the site at which it is resident. As such it is outside the scope of this Recommendation. A user application relies on the
services of a File Transfer Application Protocol Entity (APE) to communicate with peer applications at other nodes. It
does not communicate with MCS or GCC; this is done by the File APE. The user application initiates a file transfer
session via its File APE, specifying the application capabilities and session mode. Once the session has been established,
all MBFT specific transactions are performed by the File APE on behalf of the user application.

8.2 File Transfer Application Resource Manager

The File Transfer Application Resource Manager (File ARM) is responsible for managing GCC and MCS resources on
behalf of the File ASE. It provides the following services:

• Responding to indications from GCC (e.g. permission to enroll, invoke).

• Enrolling the File APE with GCC.

• Attaching to an MCS domain to obtain an MCS User ID for the File APE.

• Joining static channels.

• Identifying and joining multicast channels using the GCC Registry and MCS.

• Convening private channels and admitting peer File APEs to such channels.

• Joining any private channels to which the File APE has been admitted.

• Identifying and obtaining tokens from the GCC Registry.

• Deleting entries from the registry associated with any channel it may have created.

• Invoking peer File APEs at other nodes.

• Processing Application Roster reports to determine the negotiated Application Capability list and identity
of peer File APEs.

8.3 File Transfer Application Service Element

The File Transfer Application Service Element (File ASE) provides file transfer functionality to the user application with
resources obtained by the File ARM. Its operation is independent of the type (i.e. static or dynamic) and identity of tokens
and channels passed to it. The user application specifies whether a broadcast or acknowledged data channel is required.
For private transfers to a subset of the conference, a list of MBFT User IDs is also required.

10 Recommendation T.127 (08/95)

T0820110-95/d05

User application

Generic Conference Control (GCC)
Rec. T.124

Multipoint Communications Service (MCS)
Rec. T.122/T.125

Node
controller

File Transfer
Application

Resource Manager
(File ARM)

File Transfer
Application

Service Element
(File ASE)

File Transfer Application Protocol Entity (File APE)

FIGURE 5/T.127
T.127 application model

FIGURE 5/T.127...[D05] = 3 CM (118%)

The File ASE provides the following services:

• Sending and receiving MBFT PDUs.

• Grabbing and releasing tokens and determining token status using MCS.

• Responding to GCC-Conductor-Assign and Release indications.

• Issuing GCC-Conductor-Permission-Ask requests through the Node Controller.

• Responding to GCC-Conductor-Permission-Grant indications.

8.4 MBFT resources

A binary file transfer session uses control channels for management of file transfers and data channels for file
distribution. Each control channel has one or more data channels associated with it; each data channel supports one file
transfer at a time.

Every MBFT session has a session control channel (assigned the mnemonic MBFT-CONTROL) and a broadcast data
channel (assigned the mnemonic MBFT-DATA), which must be joined by all applications participating in that session.
The control channel is used to manage all file transfers on the broadcast data channel. All nodes are obliged to receive

 Recommendation T.127 (08/95) 11

files transmitted on the broadcast data channel and discard them if the data is not required. This can lead to an
unnecessary degradation in conference performance if any nodes which do not require the data are on low bandwidth
links.

Use of acknowledged data channels [assigned the mnemonic MBFT-DATA(n), where n is the MCS Channel ID of the
data channel] allows the simultaneous distribution of more than one file. Management of file transfers on these channels
is done via the session control channel, but in this case nodes have the option of rejecting files offered to them. This
ensures that files are only distributed to those nodes which require them, but at the expense of introducing some latency
for each file transfer.

Selective distribution of files to a subgroup of participants within an existing session may be achieved by opening a sub-
session. This consists of a private sub-session control channel [assigned the mnemonic MBFT-CONTROL(p), where p is
the MCS Channel ID of the control channel]. This is used to manage file transactions on zero or one private broadcast
data channels [assigned the mnemonic MBFT-DATA(p), where p is the MCS Channel ID of the data channel] and zero
or more private acknowledged data channels [assigned the mnemonic MBFT-DATA(n), where n is the MCS Channel ID
of the data channel]. A separate private control channel is required for each private subsession.

Each control channel may have a FILE-REQUEST token which is used to ensure that there is at most one outstanding file
request on that channel at any instance. A File ASE requiring a file must grab this token before issuing the request and
hold the token until it determines whether another node can supply the file. Dynamic control channels without a FILE-
REQUEST token are permitted but only the creator of such a channel may issue file requests on that channel. The token
for the session control channel MBFT-CONTROL is assigned the mnemonic FILE-REQUEST; the token for a sub-
session control channel MBFT-CONTROL(p) is FILE-REQUEST(p).

Each data channel may have a FILE-TRANSMIT token which is used to ensure that there is only one file transfer in
progress on that data channel at any instance. A transmitting File ASE grabs this token before offering a file for
transmission and holds it for the duration of the file transfer, releasing the token after despatching the last block of file
data. Dynamic data channels without a FILE-TRANSMIT token are permitted but only the creator of such a channel may
send files on that channel. The token for the session broadcast data channel MBFT-DATA is assigned the mnemonic
FILE-TRANSMIT, the token for a sub-session broadcast data channel MBFT-DATA(p) is FILE-TRANSMIT(p) whilst
the token for acknowledged data channel MBFT-DATA(n) is FILE-TRANSMIT(n).

Together, these channels and tokens comprise the resources available to an MBFT session; they may be either static or
dynamic. It is the responsibility of the File Transfer Application Resource Manager (File ARM) to determine the identity
of these resources. For any given file transaction, the user application must specify the resources to be used by the File
ASE. Static and dynamic resources are treated identically by the File ASE.

8.4.1 MBFT Initialization

An MBFT session may be initiated locally by a user application or remotely through use of the GCC-Application-Invoke
mechanism. In both cases, the parameters shown in Table 2 are passed to the File ARM. The action to be taken by the
File ARM to identify the initial set of resources to be used for the session is determined by the session mode:

Static mode is used for unrestricted broadcasting of data to the conference. It is the simplest mode of operation as it uses
predefined static channels and tokens. Applications can join and leave a static mode session at will. Although the File
ASE may be employed by other application protocols simultaneously using different subsets of static channels and
tokens, only one static mode of the File ARM is predefined by this Recommendation.

Multicast mode can be used for broadcasting of data when the static session is already in use. It is identical in function to
static mode, but uses dynamic resources and so channel and token identities must be assigned via the GCC registry and
MCS services by the creator of the multicast session (referred to as the multicast creator). All other participants
(multicast members) may determine channel and token ids via the GCC Registry. Applications can join and leave a
multicast session at will. There is no restriction on the number of multicast mode sessions in a conference.

12 Recommendation T.127 (08/95)

TABLE 2/T.127

File APE parameters

Private mode is used for selective distribution of files to a subset of participants. It is the responsibility of the File ARM
initiating the private session (referred to as the private convenor) to obtain tokens and channels using GCC and MCS
respectively, and to admit peer File APEs (private members) to the channels. The identity of tokens is conveyed in-band,
but may also be determined via the GCC Registry. There is no restriction on the number of private mode sessions in a
conference. A private member File ARM must wait for its File APE to be admitted to the private channels and for the
convenor to assign the tokens to be used for the session. Once the convenor leaves the private session, all remaining
participants are expelled. Applications can only join a private session at the invitation of the session convenor.

In all cases the initial set of resources allows for the transfer of one file at a time. Concurrent transfer of multiple files is
outlined in 8.6.

A File APE created in any mode must first establish a GCCSAP to allow it to communicate with the GCC provider at that
node. When the node joins a conference, the GCC provider will issue a GCC-Application-Permission-to-Enroll with the
Grant/Revoke flag set to Grant. The File ARM must then issue a GCC-Application-Enroll request regardless of whether
the user application wishes to enroll at that time. If the user application does not wish to enroll, the File ARM must set the
Enroll/Un-enroll flag in the GCC-Application-Enroll request to Un-enroll and specify the conference ID. No

Parameter Description

SessionMode This parameter can have one of the following three values:
static: This value indicates that the File APE should enroll using a Session Key composed of the MBFT
object identifier and the sessionID parameter. It shall use the static predefined MBFT-CONTROL &
MBFT-DATA channels and static FILE-TRANSMIT and FILE-REQUEST tokens.
dynamic multicast: This value indicates that the File APE should enroll using a Session Key composed of
the MBFT object identifier and the sessionID parameter. All channel and token resources are dynamic and
are allocated by the creator of the multicast session using the MCS-CHANNEL-JOIN mechanism and GCC
Registry mechanism respectively. Members of a multicast session determine token and channel ids via the
GCC Registry.
dynamic private: This value indicates that the File APE should enroll using a Session Key composed of the
MBFT object identifier and the sessionID parameter.
All token and channel resources are dynamic and are allocated by the Private Convenor File ARM using the
GCC Registry mechanism and MCS-CHANNEL-CONVENE mechanism respectively. The File ARM
creating the session may then admit to the MBFT-CONTROL and MBFT-DATA channels all peer File
APEs whose MCS User Ids are present in the admitList protocol parameter.
A Private Member File ARM must wait for its File APE to be admitted by the convenor of the private MCS
channels before attempting to join them. Token identities are conveyed in-band by the channel convenor in
the first transaction.

sessionID This parameter is used to differentiate the resources used by multiple sessions of the protocol that may be in
existence simultaneously within the same MCS domain. The MCS Channel ID assigned to the MBFT-
CONTROL channel is used as the Session ID, since this is guaranteed to be unique within the conference
domain.
The SessionID must be specified if the application wishes to participate in a static session or in an existing
multicast or private session. It is omitted if the application wishes to create a new multicast or private
session.

admitList SessionMode = private and SessionID omitted
List of GCC User IDs corresponding to the Nodes at which File APEs are to be admitted to the privately
convened channels.
else
Omitted

 Recommendation T.127 (08/95) 13

other parameters are required. The application may enroll at any time subsequently, unless permission is revoked by
receipt of a GCC-Application-Permission-to-Enroll indication with the Grant/Revoke flag set to Revoke.

If the user application wishes to receive GCC-Application-Roster-Reports on all MBFT sessions in progress before
deciding which session to participate in, the File ARM may enroll Inactive, specifying the Session Key without a Session
ID. If the user application wishes to declare support of the MBFT protocol without consuming MCS resources, the File
ARM may enroll Inactive without an MCS User ID.

When the user application undertakes to enroll active, the File ARM shall issue an MCS-Attach-User request to the MCS
provider, using the Conference ID contained in the GCC-Application-Permission-to-Enroll indication as the Domain
Selector. On receipt of a successful MCS-Attach-User confirm in response, the File ARM shall join the User ID channel
indicated by issuing an MCS-Channel-Join request.

8.4.2 Static mode

After obtaining an MCS User ID, the File ARM shall join the MBFT static control and data channels by issuing two
MCS-Channel-Join requests, specifying MBFT-CHANNEL-0 and MBFT-CHANNEL-1 as the respective channels to
join. Once positive confirmation of joining these channels has been received, the File ARM shall enroll active by issuing
a GCC-Application-Enroll request to the GCC provider, with the parameters specified in Table 3. The Active/Inactive
flag shall be set to Active, the Session ID shall be specified as part of the Session Key, the Start-Up Channel shall be
specified as Static and the full Application Capability list must be provided. See also Figure 6.

T0820120-95/d06

MCS-ATTACH-USER req.

GCC-Application-Permission-To-Enroll ind.

MCS-CHANNEL-JOIN con.

Obtain MBFT
User ID

Operation

MCS-CHANNEL-JOIN con.

MCS-CHANNEL-JOIN con.

GCC-Application-Enroll con. Enroll Active

Local
File
APE

Local
GCC

Provider

Local
MCS

Provider

Remote
MCS

Provider(s)

Remote
GCC

Provider(s)

Remote
File

APE(s)

MCS-ATTACH-USER con. [MBFT User ID = unique new]

MCS-CHANNEL-JOIN req. [Channel ID = MBFT User ID]

MCS-CHANNEL-JOIN req. [Channel ID = MBFT-CHANNEL-0]

Join MBFT-
CONTROL
and MBFT-

DATA
Channels

MCS-CHANNEL-JOIN req. [Channel ID = MBFT-CHANNEL-1]

GCC-Application-Enroll req. [Active, Session ID]

GCC-Application-Roster-Report ind.
GCC-Application-
Roster-Report. ind.

FIGURE 6/T.127
Static session protocol initiation sequence

FIGURE 6/T.127...[D06] = 3 CM (118%)

14 Recommendation T.127 (08/95)

TABLE 3/T.127

Parameters for GCC-Application-Enroll Request

8.4.3 Multicast mode

After obtaining an MCS User ID, the File ARM shall examine the File APE sessionID parameter to determine whether it
is to participate in an existing multicast session (as a multicast member) or to create a new one (as a multicast creator).

If the sessionID parameter is present, the File ARM shall attempt to join the session indicated by issuing a GCC-
Application-Enroll request with the Active/Inactive flag set to Inactive and specifying the Session Key with the requisite
Session ID. It shall then issue an MCS-Channel-Join request, specifying the Session ID of the chosen session as the
Channel ID parameter. This channel is used as the MBFT-CONTROL channel. The File ARM must then identify and join
the MBFT-DATA channel by issuing a GCC-Registry-Retrieve-Entry request, using the parameters given in Table 4. On
receipt of the resulting GCC-Registry-Retrieve-Entry confirm, the File ARM shall examine the Registry Item parameter.
The Channel ID contained in this parameter shall be used as the MBFT-DATA channel and the File ARM shall join it by
issuing an MCS-Channel-Join request.

If it wishes to initiate a file transaction, the File ARM may then identify the FILE-TRANSMIT token to be used for the
broadcast data channel by issuing a GCC-Registry-Retrieve-Entry request, using the parameters specified in Table 4. If
the result parameter in the GCC-Registry-Retrieve-Entry confirm is 'entry not found', only the session creator is

Parameter Contents

Conference ID Provided by GCC-Application-Permission-To-Enroll indication.

Session Key {itu-t recommendation t 127 version(0) 1} and MBFT-SESSION-ID if this File APE
parameter was specified.

Application User ID Provided by MCS-Attach-User confirm.

Active/Inactive Active when indicating that the File ARM has joined the MBFT-CONTROL and
MBFT-DATA channels and determined any required MBFT token IDs.
Inactive in the case of multicast or private modes when enrolling prior to joining the
MBFT-CONTROL and MBFT-DATA channels.

Conducting Operation Flag Set if the File APE is capable of becoming the session MBFT Conductor in conducted
mode, i.e. if it can respond to MBFT-Privilege-Request PDUs. This flag must not be set
if the Active/Inactive flag is set to Inactive.

Start-Up Channel This parameter is dependent on the File APE parameters specified in Table 2:
Static if SessionMode = Static
Dynamic Multicast if SessionMode = Dynamic Multicast and sessionID omitted
Dynamic Private if SessionMode = Dynamic Private and sessionID omitted
Omitted otherwise

Non-Collapsing Capabilities List No non-collapsing capabilities are specified by this protocol. This field may include
non-standard non-collapsing capabilities specified by the user application.

Application Capability List See Table 7; Omitted if Active/Inactive flag is set to Inactive.

Enroll/Unenroll ENROLL

 Recommendation T.127 (08/95) 15

permitted to offer files on the broadcast data channel. The File ARM may also identify the FILE-REQUEST token to be
used for the control channel by issuing a GCC-Registry-Retrieve-Entry request. If the result parameter in the GCC-
Registry-Retrieve-Entry confirm is 'entry not found', only the session creator is permitted to request files on the control
channel.

If the File ARM does not wish to initiate a file transaction, it does not need to identify the FILE-TRANSMIT token and
FILE-REQUEST token during the enrollment process. Instead, it may determine the IDs of these tokens later from File-
Offer or File-RequestPDUs issued by peer File ARMs on the MBFT-CONTROL channel.

Once all resources required for the session have been determined and channels joined, the File ARM shall issue a GCC-
Application-Enroll request with the Active/Inactive flag set to Active, specifying the Session ID as part of the Session
Key and providing the full Application Protocol Capability List. See Figures 7 and 8.

TABLE 4/T.127

Parameters for GCC-Registry-Retrieve-Entry Request

If the File APE sessionID parameter is omitted, the File ARM shall attempt to create a new session. It shall first issue an
MCS-Channel-Join request primitive with Channel ID = 0. The returned MCS-Channel-Join confirm, if successful,
contains the assigned Channel ID which is to be used as the MBFT-CONTROL channel. This process is then repeated to
assign and join the MBFT-DATA channel. The ARM shall then enroll inactive in this session by issuing a GCC-
Application-Enroll request with the Active/Inactive flag set to Inactive, specifying the Session Key with the Session ID,
but omitting the Application Capabilities List. Once the File ARM has received a GCC-Application-Roster Report
containing an entry corresponding to the new session, the File ARM register the MBFT-DATA channel by issuing a
GCC-Registry-Register-Channel request with the parameters given in Table 5.

The File ARM may then assign FILE-TRANSMIT and FILE-REQUEST tokens by issuing two GCC-Registry-Assign-
Token requests using the parameters given in Table 6. If the File ARM requires exclusive access to the broadcast data
channel, it need not assign a FILE-TRANSMIT token. If it requires an exclusive right to request files, the File ARM need
not assign a FILE-REQUEST token.

Once all resources have been successfully determined, the File ARM shall enroll actively by issuing a GCC-Application-
Enroll request with the Active/Inactive flag set to Active, the Start-Up Channel specified as Dynamic Multicast and
providing the full Application Protocol Capability List. The MBFT-CONTROL Channel ID is used as the Session ID in
the Session Key.

TABLE 5/T.127

Parameters for GCC-Registry-Register-Channel Request

Parameter Contents

Conference ID Provided by GCC-Application-Permission-To-Enroll indication

Registry Key Registry Key formed as described in 8.4.5.

Parameter Contents

Conference ID Provided by GCC-Application-Permission-To-Enroll indication.

Registry Key Registry Key formed as described in 8.4.5.

Channel ID Channel ID returned in MCS-Channel-Join confirm.

16 Recommendation T.127 (08/95)

T0820130-95/d07

MCS-CHANNEL-JOIN con.

GCC-Application-Enroll con.

GCC-Application-Permission-To-Enroll ind.

MCS-CHANNEL-JOIN con.

MCS-ATTACH-USER req.

MCS-CHANNEL-JOIN con.

Obtain MBFT
User ID

Enroll Inactive

GCC-Application-Enroll con. Enroll Active

Operation

Local
File
APE

Local
GCC

Provider

Local
MCS

Provider

Remote
MCS

Provider(s)

Remote
GCC

Provider(s)

Remote
File

APE(s)

GCC-Application-Roster-Report ind.

GCC-Application-Enroll req. [Active, with Session ID]

GCC-Registry-Retrieve-Entry con. [FILE-TRANSMIT]

GCC-Registry-Retrieve-Entry req. [FILE-TRANSMIT]

GCC-Application-
Roster-Report ind.

GCC-Application-
Roster-Report ind.

Identify FILE-
TRANSMIT
and FILE-

REQUEST
Tokens (Optional)

Join MBFT-DATA
Channel

Identify MBFT-DATA
Channel using

the GCC Registry

Join MBFT-
CONTROL

Channel of Chosen
Multicast Session

MCS-CHANNEL-JOIN req. [Channel ID = MBFT-DATA]

GCC-Registry-Retrieve-Entry con. [MBFT-DATA]

GCC-Registry-Retrieve-Entry req. [MBFT-DATA]

MCS-CHANNEL-JOIN req. [MBFT-CONTROL Channel ID = Chosen Session ID]

GCC-Application-Roster-Report ind.

GCC-Application-Enroll req. [Inactive, with Session ID]

MCS-CHANNEL-JOIN req. [Channel ID = MBFT User ID]

MCS-ATTACH-USER con. [MBFT User ID = unique new]

FIGURE 7/T.127
Multicast session protocol initiation sequence (member)

GCC-Registry-Retrieve req. [FILE-REQUEST]

GCC-Registry-Retrieve con. [FILE-REQUEST]

FIGURE 7/T.127...[D07] = 3 CM (118%)

 Recommendation T.127 (08/95) 17

T0824930-95/d08

GCC-Application-Permission-To-Enroll ind.

MCS-ATTACH-USER req.

Operation

Obtain MBFT
 User ID

Enroll Inactive

GCC-Application-Enroll con.
Enroll Active

Local
File
APE

Assign and Join
MBFT-CONTROL

Channel

Assign and Join
MBFT-DATA

Channel

Assign
FILE-TRANSMIT

and
FILE-REQUEST
Tokens (Optional)

FIGURE 8/T.127
Multicast session protocol initiation sequence (creator)

GCC-Application-
Roster-Report ind.

GCC-Registry-Assign-Token req.

MCS-ATTACH-USER con. [MBFT User ID = unique new]

MCS-CHANNEL-JOIN req. [Channel ID = MBFT User ID]

MCS-CHANNEL-JOIN req. [Channel ID = 0]

GCC-Registry-Register-Channel req. [MBFT-DATA]

GCC-Registry-Assign-Token con. [FILE-TRANSMIT = unique new]

GCC-Application-Enroll req. [Active, with Session ID]

MCS-CHANNEL-JOIN con.

[MCS-CHANNEL-JOIN con. [MBFT-CONTROL Channel ID = unique new]

MCS-CHANNEL-JOIN req. [Channel ID = 0]

MCS-CHANNEL-JOIN con. [MBFT-DATA Channel ID = unique new]

GCC-Application-Enroll req. [Inactive, with Session ID]

GCC-Registry-Assign-Token con. [FILE-TRANSMIT = unique new]

GCC-Registry-Register-Channel con.

GCC-Registry-Assign-Token req.

GCC-Application-Roster-Report ind.

Local
GCC

Provider

Local
MCS

Provider

Remote
MCS

Provider(s)

Remote
GCC

Provider(s)

Remote
File

APE(s)

GCC-Application-Enroll con.

GCC-Application-Rosten-Report ind.

Register
MBFT-DATA

Channel

GCC-Application-
Roster-Report ind.

FIGURE 8/T.127...[D08] = 3 CM (118%)

18 Recommendation T.127 (08/95)

TABLE 6/T.127

Parameters for GCC-Registry-Assign-Token Request

8.4.4 Private mode

After obtaining an MCS User ID, the File ARM shall examine the File APE sessionID parameter to determine whether it
is to participate in an existing private session (as a private member) or to create a new one (as a private convenor).

If the sessionID parameter is omitted, the File ARM shall attempt to create a new private session. The File ARM shall
first issue an MCS-Channel-Convene request in order to obtain a private MBFT-CONTROL channel. If successful, the
returned MCS-Channel-Convene confirm contains the ID of the channel allocated. The File ARM must then join this
channel by issuing an MCS-Channel-Join request, specifying the channel id returned in the MCS-Channel-Convene
confirm. This process must be repeated to assign and join a separate MBFT-DATA channel. The ARM shall then enroll
inactive in the new session by issuing a GCC-Application-Enroll request with the Active/Inactive flag set to Inactive,
specifying the Session Key with the MBFT-CONTROL channel ID as Session ID and omitting the Application
Capabilities List.

The File ARM may then assign FILE-TRANSMIT and FILE-REQUEST tokens by issuing two GCC-Registry-Assign-
Token requests using the parameters given in Table 6. If the File ARM requires exclusive access to the broadcast data
channel, it need not assign a FILE-TRANSMIT token. If it requires an exclusive right to request files, the File ARM need
not assign a FILE-REQUEST token.

The File ARM shall then enroll actively by issuing a GCC-Application-Enroll request with the Active/Inactive flag set to
Active, the Start-Up Channel specified as Dynamic Private and providing the full Application Protocol Capability List.
The MBFT-CONTROL Channel ID is used as the Session ID in the Session Key.

If there is no active peer File APE at one or more of the nodes that are to be invited to the private session, the File ARM
shall issue a GCC-Application-Invoke request, specifying a list of GCC User IDs to be invited or NULL (indicating that
all nodes in the conference are to be invited) as the Destination Nodes parameter. It shall also specify Dynamic Private as
the Start-Up Channel in the Application Protocol entry.

The convening File ARM must then wait until it has received a GCC-Application-Roster-Report indication containing the
MCS User IDs of the File APEs to be invited to the private session (a timeout is recommended in case no MBFT
application is initiated at one or more of the invited nodes). The File ARM shall then issue an MCS-Channel-Admit
request for both the control and data channels, specifying the MCS User IDs of the File APEs to be invited as the list of
MCS User IDs.

If the File APE sessionID parameter is present, the File ARM shall attempt to join the session indicated by issuing a
GCC-Application-Enroll request with the Active/Inactive flag set to Inactive and specifying the Key with the requisite
Session ID. It shall then wait until it has received an MCS-Channel-Admit indication from the File ARM at the node
convening the private MBFT session. It then attempts to join the channel indicated in this primitive by issuing an MCS-
Channel-Join request. A further MCS-Channel-Admit indication will be received from the private session convenor; the
private member File ARM must also join the channel indicated in this primitive by issuing an MCS-Channel-Join

Parameter Contents

Conference ID Provided by GCC-Application-Permission-To-Enroll indication.

Registry Key Registry Key formed as described § 8.4.5.

 Recommendation T.127 (08/95) 19

request. To determine which of the two channels is to be used as the MBFT-CONTROL channel, the File ARM compares
both Channel IDs with the Session ID. The Channel ID which matches the Session ID is the MBFT-CONTROL channel.
The Channel ID that does not match the Session ID, but has the same channel manager User ID is the corresponding
MBFT-DATA channel. When a private member File ARM is remotely invoked, the Session ID (and thus MBFT-
CONTROL Channel ID) is obtained from the GCC-Application-Invoke indication.

Following receipt of a GCC-Application-Roster-Report indication containing the User ID of its File APE, the File ARM
shall re-enroll with the Active/Inactive flag set to Active, including the Session ID as part of the Session Key and
providing the full Application Protocol Capability List.

The identities of tokens to be used for the private session are conveyed by the convening File ASE when it initiates the
first transaction on the control channel (i.e. in the File-OfferPDU or File-RequestPDU). Private members may
individually access the GCC-Registry to determine token identities, but it must be emphasized that this approach is much
less efficient. To identify the FILE-TRANSMIT token used with the broadcast data channel, the File ARM shall issue a
GCC-Registry-Retrieve-Entry request, using the parameters specified in Table 4. If the result parameter in the GCC-
Registry-Retrieve-Entry confirm is 'entry not found', only the session convenor is permitted to offer files on the broadcast
data channel. The File ARM may also identify the FILE-REQUEST token to be used for the control channel by issuing a
GCC-Registry-Retrieve-Entry request. If the result parameter in the GCC-Registry-Retrieve-Entry confirm is 'entry not
found', only the session convenor is permitted to request files on the control channel. See Figure 9.

8.4.5 Forming Registry Keys

To determine the identity of a dynamic token or channel via the GCC Registry, a File ARM must form a registry key
which consists of the Session Key for the current MBFT session and an MBFT Resource ID. Resource IDs are defined in
Tables 29 and 30 for channels and tokens respectively.

8.5 MBFT capabilities

Capabilities negotiation for file transfer applications is done via the application enrollment mechanism. When a File
ARM issues a GCC-Application-Enroll request with the Active/Inactive flag set to Active, it shall indicate the capabilities
of its user application in the Application Capabilities List parameter of the request.

A File APE is notified of the capabilities available within its session by the receipt of a GCC-Application-Roster-Report
indication which contains the Application Roster for that session. The Application Roster includes a list of nodes for
which a peer File APE has enrolled. For each node, the list contains the GCC User ID of that node and the MCS User
ID(s) of the peer File APE(s) at that node. The Application Roster has an instance number and contains flags to indicate
whether File APEs have joined or left the session since the previous Application-Roster-Report was issued. It also
contains a flag indicating whether the Application Capabilities List has been updated since the last roster and, if so, the
new Capabilities List. If a File APE has newly enrolled, the Applications Capabilities List is updated, as this File APE
does not have access to previous instances of the list.

The Application Capabilities List received in the GCC-Application-Roster-Report indication corresponds to the collapsed
Application Capabilities Lists of all enrolled peer File APEs, i.e. it includes an entry for each capability which has been
declared by any peer File APE. For each entry it includes the Capability ID, the number of peer File APEs (including the
local one) which had advertised this capability and, for capabilities in the Unsigned Minimum class, the minimum value
of the parameter among all peer File APEs which declared this capability. Table 7 defines the capability list elements for
MBFT and the rules for collapsing each element. Note that certain capabilities are specified as being dependent on other
capabilities. This means that the capability must not be included in the Application Protocol Capability List unless the
capability on which it depends is also included.

20 Recommendation T.127 (08/95)

T0824940-95/d09

GCC-Application-Enroll con.

GCC-Application-Permission-To-Enroll ind.

MCS-CHANNEL-JOIN con.

MCS-ATTACH-USER req.

Operation

GCC-Application-Enroll con.

MCS-CHANNEL-JOIN con.

MCS-CHANNEL-JOIN con.

MCS-CHANNEL-JOIN con.

MCS-ATTACH-USER req.

GCC-Application-Enroll con.

GCC-Application-Invoke con.

MCS-CHANNEL-JOIN con.

MCS-CHANNEL-CONVENE req.

MCS-CHANNEL-JOIN con.

GCC-Application-Enroll con.

GCC-Registry-Assign-Token req.

GCC-Registry-Assign-Token req.

MCS-CHANNEL-JOIN req. [Channel ID = MBFT User ID]

GCC-Application-Enroll req. [Inactive, with Session ID]

GCC-Application-Roster-Report ind.

MCS-CHANNEL-CONVENE con. [MBFT-CONTROL Channel ID = unique new]
MCS-CHANNEL-JOIN req. [MBFT-CONTROL]

MCS-CHANNEL-CONVENE con. [MBFT-DATA Channel ID = unique new]
MCS-CHANNEL-JOIN req. [MBFT-DATA]

Convenor
File APE

Local GCC
Provider

Local MCS
Provider

Remote MCS
Provider(s)

Remote GCC
Provider(s)

Member File
APE(s)

Convenor Obtains
MBFT User ID

Convenor
Enrolls Inactive

Convenor Convenes
MBFT-CONTROL

 Channel

Convenor Convenes
and Joins

MBFT-DATA Channel

Convenor Assigns
FILE-TRANSMIT

and FILE-REQUEST
Tokens (Optional)

Convenor
Enrolls Active

Convenor Invokes
Members

Members Obtain MBFT
User ID (not required if
Node Controller re-acti-
vates existing inactive

File APE

Members
Enroll Inactive

Convenor Admits
Members to MBFT-
CONTROL Channel

Members Join MBFT-
CONTROL Channel
Convenor Admits

Members to MBFT-DATA
Channel

Members Join
MBFT-DATA Channel

Members
Enroll Active

GCC-Registry-Assign-Token con. [FILE-TRANSMIT = unique new]

GCC-Registry-Assign-Token con. [FILE-REQUEST = unique new]

GCC-Application-Enroll req. [Active, with Session ID]

GCC-Application-Roster-Report ind.

GCC-Application-Invoke req. [GCC User IDs, Session ID]

GCC-Application-
Roster-Report ind.

GCC-Application-Roster-Report ind.

NOTE – GCC-Application-Invoke ind is sent to the Node Controller.

GCC-Application-
Roster-Report ind.

GCC-Application-Invoke ind. [GCC User IDs, Session ID]

MCS-ATTACH-USER con. [MBFT User ID = unique new]

MCS-CHANNEL-JOIN req. [Channel ID = MBFT User ID]

GCC-Application-Enroll req. [Inactive, with Session ID]

GCC-Application-Roster-Report ind.

MCS-CHANNEL-JOIN req. [MBFT-CONTROL]

MCS-CHANNEL-ADMIT ind. [Channel ID]

MCS-CHANNEL-JOIN req. [MBFT-DATA]

GCC-Application-Enroll req. [Active, with Session ID]

GCC-Application-Roster-Report ind.

MCS-CHANNEL-ADMIT ind. [Channel ID]

FIGURE 9/T.127
Private session protocol initiation sequence

MCS-CHANNEL-CONVENE req.

MCS-ATTACH-USER con. [MBFT User ID = unique new]

(NOTE)

Convenor Joins
MBFT-CONTROL

Channel

MCS-CHANNEL-ADMIT req.

[MBFT-CONTROL, MCS User ID(s)]

MCS-CHANNEL-ADMIT req.

 [MBFT-DATA, MCS User ID(s)]

GCC-Application-
Permission-To-Enroll ind.

FIGURE 9/T.127...[D09] = 3 CM (118%)

 Recommendation T.127 (08/95) 21

At any time while a File APE is enrolled in a conference, it may receive additional GCC-Application-Roster-Report
indication, notifying it of a change in the roster contents. This may be due to new peer File APEs enrolling in the
conference, peer File APEs leaving the conference, or peer File APEs having modified their enrollment information.

A File APE may change its Application Capabilities List at any time by re-enrolling. To do this, the File ARM issues a
GCC-Application-Enroll request with the Enroll/Unenroll flag set to Enroll, including the revised Application
Capabilities List, and providing all other parameters as included in the initial active enrollment. This may result in a
change to the collapsed capability set, in which case all File APEs in the session will receive a GCC-Application-Roster-
Report indication.

Any change in the collapsed capability set of an MBFT session shall not affect transactions already in progress. Changes
shall take effect when the next transaction is initiated.

8.6 Support of additional concurrent file transfers

Two mechanisms are available to support simultaneous transmission of more than one file in a conference:

1) Create an additional MBFT session using the procedures defined above.

2) Create acknowledged data channels within the existing MBFT session.

For static and multicast modes, multicast or private channels may be used; for private mode, only private channels should
be used. Particular care should be exercised in the use of multicast channels as such channels cease to exist when all
joined users leave. It is thus recommended that File APEs only attempt to use a multicast channel if they have not left the
channel since it was created or since the last transaction on the channel.

Each acknowledged data channel MBFT-DATA(n) requires its own FILE-TRANSMIT(n) token in order to manage file
transactions on the channel, unless use is restricted to the channel creator.

8.6.1 Multicast channels

A File ARM wishing to use an acknowledged multicast data channel must first issue an MCS-Channel-Join request with
Channel ID = 0. The returned MCS-Channel-Join confirm, if successful, contains the assigned Channel ID. If the data
channel is to be a shared acknowledged data channel, the File ARM must then issue a GCC-Registry-Assign-Token
request in order to obtain a FILE-TRANSMIT(n) token. The registry key is formed using the process described in 8.4.5.
The Channel and Token IDs are conveyed to peer File APEs on the MBFT-CONTROL channel when the creator issues a
File-Offer PDU (to transmit a file) or a File-Request PDU (to receive a file) for a file transaction on the new data channel.

8.6.2 Private channels

A File ARM wishing to use a shared acknowledged private data channel must first issue an MCS-Channel-Convene
request. If successful, it shall join the channel assigned in the MCS-Channel-Convene confirm by issuing an MCS-
Channel-Join request. The File ARM must then issue a GCC-Registry-Assign-Token request in order to obtain a FILE-
TRANSMIT(n) token. The registry key is formed using the process described in 8.4.5.

A File ARM wishing to use an exclusive private data channel must first issue an MCS-Channel-Convene request. It does
not need to join this channel (since it will never receive data on the channel), nor does it need to assign a token.

Once the resources have been successfully assigned, the File ARM shall issue an MCS-Channel-Admit request,
specifying the MCS User IDs of the File APEs to be admitted to the channel as the list of MCS User IDs.

File APEs being admitted to the private data channel will receive an MCS-Channel-Admit indication, and must then
attempt to join the channel indicated by issuing an MCS-Channel-Join request.

22 Recommendation T.127 (08/95)

TABLE 7/T.127

Application capability list elements

Capability name default value and description ID Class APE Count
Rule

Capability
value range Dependency

Maximum file size (default: unlimited)
Each File APE must specify the maximum file
data payload in octets that it is capable of
receiving.

1 Unsigned
minimum

> 0 (65536..MAX) –

Maximum data payload (default: 8 192)
This is the maximum number of octets allowed in
the data field of File-Start and File-Data PDUs.

2 Unsigned
minimum

= ALL (8193..65536) –

V.42 bis-Compression (default: uncompressed)
This capability is used to negotiate use of
V.42 bis compression for file data. File APEs
should assert this capability if they are able to
receive V.42 bis compressed data.

3 Logical = ALL – –

V.42 bis-Number-of-Codewords (default: 512)
Specifies the total number of codewords to be
used by the V.42 bis compression algorithm. This
is an upper bound on V.42 bis parameter P1.
V.42 bis does not impose an upper limit on its
value.

4 Unsigned
minimum

= D (513..65535) V.42 bis-
Compression

V.42 bis-Max-String-Length (default: 6)
Specifies the maximum string length input to the
V.42 bis encoder. This is an upper bound on
V.42 bis parameter P2.

5 Unsigned
minimum

= D (7..250) V.42 bis-
Compression

Non-standard capability (default: unspecified)
This is used to negotiate non-standard functions,
including non-standard compression techniques.
Any number of these can appear in the Appli-
cation Capability List, provided each has a
unique Non-Standard Identifier. The interpre-
tation of these capabilities is not defined in this
Recommendation.

Non-Standard
Identifier

– – – –

APE Count Rule:
> 0 – If the numberOfEntities parameter returned by the GCC-Application-Roster-Report indication for this capability is greater
than zero, then the result of the unsigned minimum operation is established, otherwise the default value of the capability is
established.
= ALL – The numberOfEntities parameter returned by the GCC-Application-Roster-Report indication for this capability must
equal the number of active File APEs enrolled in the current session, otherwise the default value of the capability is established.
= D – If the numberOfEntities parameter returned by the GCC-Application-Roster-Report indication for this capability is equal to
the numberOfEntities parameter for the capability on which it depends, then the result of the unsigned minimum operation is
established, otherwise the default value of the capability is established.

 Recommendation T.127 (08/95) 23

The FILE-TRANSMIT(n) Token ID (if applicable) is conveyed to peer File APEs on the MBFT-CONTROL channel
when the creator issues a File-Offer PDU (to transmit a file) or a File-Request PDU (to receive a file) for a file
transaction on the new data channel.

8.7 Selective file transfer

Two mechanisms are available to allow distribution of files to a subgroup of participants:

1) Convene a new private session.

2) Establish a private sub-session within the existing MBFT session.

The latter approach is outlined below. Once the communication path has been established, the mechanism used for file
exchange is identical to that used for the initial communication path.

A File ARM wishing to initiate a private file transfer within an existing MBFT session must assign a private control
channel and private data channel using MCS services. The File ARM first issues an MCS-Channel-Convene request for
the control channel. If this is successful, it issues an MCS-Channel-Join request, specifying the Channel ID returned in the
MCS-Channel-Convene confirm. This process is then repeated for the private data channel. The convening File ARM
must then issue a Private-Channel-Join-InvitePDU to the MCS User ID of each File APE to be invited to the private
channels, specifying the identity of the control and data channels as shown in Table 8. This PDU also indicates whether
the data channel mode is broadcast or acknowledged.

The File ARM then invites other File APEs to join the control channel by issuing an MCS-Channel-Admit request,
specifying the channel returned in the MCS-Channel-Convene confirm as Channel ID and including the list of File APE
MCS User IDs to be invited to the private channel. This process is then repeated for the private data channel.

TABLE 8/T.127

Private-Channel-Join-InvitePDU

A File ARM which receives a Private-Channel-Join-InvitePDU with the Mode flag set to TRUE must attempt to join both
the control and data channels indicated in the PDU when it receives the corresponding MCS-Channel Admit indications
from the sub-session convenor. It shall then indicate whether both channels were successfully joined by sending a Private-
Channel-Join-ResponsePDU to the channel convenor, with the Result parameter set accordingly.

A File ARM which receives a Private-Channel-Join-InvitePDU with the Mode flag set to FALSE must attempt to join the
control channel indicated in the PDU when it receives the corresponding MCS-Channel Admit indication from the sub-
session convenor. It may optionally join the acknowledged data channel at this time. The File ARM shall then

Parameter Description

Control Channel ID This identifies the private control channel to be joined

Data Channel ID This identifies the private data channel to be joined

Mode This flag is set to TRUE for broadcast mode, FALSE for acknowledged mode

24 Recommendation T.127 (08/95)

indicate whether the control channels was successfully joined by sending a Private-Channel-Join-ResponsePDU to the
channel convenor, with the Result parameter set accordingly.

Once the sub-session convenor has received a Private-Channel-Join-ResponsePDU from each of the File APEs invited to
the sub-session, it may begin its file transactions. A timeout is recommended in case one or more of the File APEs fail to
respond. See Table 9.

TABLE 9/T.127

Private-Channel-Join-ResponsePDU

Once the convening File ARM has received Private-Channel-Join-ResponsePDU from all invited File APEs, it may allow
its File ASE to use the channel. The File ARM should monitor the Application Roster in case any of the invited File
APEs leave the session prematurely, and should have a timeout in case any of the File APEs fail to issue a Private-
Channel-Join-ResponsePDU.

The convening File ARM may obtain a FILE-TRANSMIT(n) token and FILE-REQUEST(n) token at any time before the
File ASE needs to use the private channels. This is done by issuing two GCC-Registry-Assign-Token requests in
succession forming the registry key as described in 8.4.5.

Note that the first transaction must be initiated by the channel manager as the identity of any tokens to be used with the
private channel is conveyed in-band in the first File-Offer or File-Request PDU.

NOTE – The convening file ARM should exercise caution when expelling members from or disbanding a private data
channel, since MCS may expel receiving File APE's from the channel before all File-Data PDUs have been delivered.

8.8 Leaving an MBFT session

If an application wishes to leave an MBFT session, its File ARM shall issue a GCC-Application-Enroll request with the
Enroll/Unenroll flag set to Unenroll. No other parameters are required.

If, at any time, the File ARM receives a GCC-Application-Roster-Report indication in which it is no longer included (i.e.
its MBFT User ID is absent), the File ARM shall issue an MCS-Detach-User request immediately to detach from the
specified conference. The application is no longer considered to be enrolled in the conference at this time but may
attempt to re-enroll in the conference by issuing a GCC-Application-Enroll request.

Parameter Description

Channel ID This identifies the private control channel which the File APE has been invited to join.

Result If the Mode flag in the corresponding Private-Channel-Join-Invite PDU was set to
TRUE, this parameter indicates whether or not the attempt to join the private control and
broadcast data channel was successful.
If the Mode flag in the corresponding Private-Channel-Join-Invite PDU was set to
FALSE, this parameter indicates whether or not the attempt to join the private control
channel was successful.

 Recommendation T.127 (08/95) 25

If, at any time, the File ARM receives a GCC-Application-Permission-To-Enroll indication with the Grant/Revoke flag
set to Revoke, it shall issue an MCS-Detach-User request immediately to detach from the specified conference. The
application is no longer considered to be enrolled in the conference at this time and shall not attempt to re-enroll.

8.9 File exchange

This subclause considers MBFT transactions initiated by either a sending site or a receiving site. File transactions are
performed by the File Transfer Application Service Element (File ASE).

8.9.1 Transmitter invoked operation

A File ASE wishing to transmit a file must first grab the FILE-TRANSMIT token associated with the data channel to
prevent other File ASEs from attempting to send data to the channel at the same time. If there is no token associated with
the data channel, then only the channel creator may attempt to send files on it. If the token is held by another File ASE
(indicating that a file transfer is in progress), then the File ASE wishing to transmit may either wait until it is released, or
attempt to use another data channel. Alternatively, the File ASE may request the token from the current transmitter by
issuing an MCS-Token-Please request primitive, specifying the Token ID of the FILE-TRANSMIT token as Token ID. A
File ASE receiving an MCS-Token-Please indication primitive whilst it is transmitting a file may choose to ignore it, or
may offer the FILE-TRANSMIT token to the requesting File ASE at the end of the file transfer by issuing an MCS-
Token-Give request, specifying the MCS User ID of the requesting File ASE as User id to receive token and the FILE-
TRANSMIT Token ID as Token id. On receipt of an MCS-Token-Give indication, the requesting File ASE shall issue an
MCS-Token-Give response primitive with result parameter 'rt-successful' or 'rt-user-rejected', depending on whether the
File ASE still requires the token or not. If the result is 'rt-successful', the File ASE may assume that it has possession of
the token.

Once the File ASE is in possession of the FILE-TRANSMIT token (or is the creator of an exclusive acknowledged data
channel), it offers the file to all intended recipients on the control channel by issuing a File-OfferPDU. The contents of
the File-OfferPDU are defined in Table 10. For file transfers on the broadcast data channel, the Ack flag must be set to
FALSE to indicate that no acknowledgement is required. For file transfers on acknowledged data channels, the Ack flag
must be set to TRUE to indicate that receiving File ASEs must signal whether or not they wish to accept the data.
Sufficient information must be conveyed in the File Header parameter to uniquely identify the file and enable receivers to
determine whether it is required. It is up to the transmitting File ASE to decide whether to transmit all or a subset of the
T.434 parameters available for the file. It is recommended that any parameters deemed to be important to the application
by the transmitter are included in the File-OfferPDU. If a transmitter wishes to verify whether receivers are able to
support such parameters, it should use an acknowledged data channel for the transaction. The method of determining
whether a file is needed is a local implementation issue; the application may determine automatically whether a file is
already present, or may require interaction with an operator.

File ASEs receiving a File-Offer with the Ack flag set to TRUE and wishing to receive the offered file must join the data
channel indicated before sending back a confirmation (File-Accept – Table 11) to the transmitter. File ASEs not wishing
to receive the file reply with a negative acknowledgement (File-Reject – Table 12) do not join the data channel. Similarly,
File ASEs which are unable to support one or more of the parameters included in the File Header should reject the offer.
If a File ASE which does not require a file is joined to the data channel when it receives the File-Offer, it must leave the
channel by issuing an MCS-Channel-Leave request. If a File ASE is unable to support further concurrent file transfers, it
should either delay its response until the file transfer is complete or issue a File-Reject. Only File ASEs included in the
Application Roster instance specified in the File-OfferPDU may respond, so that the transmitting File ASE knows how
many acknowledgements to accept. File ASEs not included in the specified Application Roster instance must ignore the
File-Offer.

26 Recommendation T.127 (08/95)

File ASEs receiving a File-Offer with the Ack flag set to FALSE must be prepared to receive data on the broadcast data
channel immediately. If the file is not required, the File ASE must either discard incoming data or leave the session.

TABLE 10/T.127

File-OfferPDU

TABLE 11/T.127

File-AcceptPDU

Parameter Description

File Header This parameter uses the T.434 file header structure and should include sufficient
information to allow intending recipients to determine whether the file is required. File
name and size are suggested as a minimum set.

Data Channel ID This identifies the channel on which the file will be transmitted.

File Handle This is a unique handle used to reference the file throughout the file transfer operation. It
need only be locally unique at the transmitting File APE.

Roster Instance Application Roster Instance Number as returned in the most recently received GCC-
Application-Roster-Report indication. Only File APEs which are enrolled active in the
identified roster may respond to this PDU. This field is only included if the Ack flag is
set to TRUE. File APEs may need to wait to receive the corresponding roster report
indication before they can generate a reply.

FILE-TRANSMIT Token ID This identifies the token used to regulate file transmission on the channel specified by
the Data Channel ID parameter. If the token is omitted, then only the creator of the data
channel is permitted to send files on that channel. If a FILE-TRANSMIT token has been
assigned to the data channel it must be included.

FILE-REQUEST Token ID This identifies the token used to regulate file requests. If the token is omitted, then only
the creator of the control channel is permitted to issue File-RequestPDUs. If a FILE-
REQUEST token has been assigned to the control channel it must be included.

Compression Specifier This optional field specifies the compression technique (if any) applied to the data
payload of File-Start and File-DataPDUs.

Compressed Filesize This optional parameter is the number of octets in the data payload after compression
has been applied.

Ack Flag This flag is set to TRUE if the file is to be sent on an acknowledged data channel,
requiring the File-OfferPDU to be acknowledged by all receiving File APEs. If the flag
is set to FALSE, the file will be transmitted on the broadcast data channel and no
acknowledgement is required.

Parameter Description

File Handle This is a unique handle used to reference the file throughout the file transfer operation.
Its value is obtained from the File-Offer PDU.

 Recommendation T.127 (08/95) 27

TABLE 12/T.127

File-RejectPDU

If the file is to be distributed on the broadcast data channel, the transmitting File ASE may start to send the file on this
channel immediately after despatching the File-OfferPDU, otherwise it must wait until it has received an
acknowledgement from all File ASEs joined to the control channel. In the latter case, the transmitter should monitor the
application roster to determine which sites are currently connected, since File APEs may have left the control channel
after the File-OfferPDU was issued. It is recommended that a timeout should be used to prevent File ASEs which fail to
respond from locking the application. No timeout values are specified in this protocol specification; they should be
sufficiently large to allow for network latencies and user response times.

Files are transported in a File-StartPDU followed by zero or more File-DataPDUs (see Tables 13 and 14). Note that the
File-StartPDU contains a T.434 header. This is included to ensure that the entire file structure (header plus data) is
transported as a single entity and also because the information provided in the File-OfferPDU may only be a subset of the
header. The EOFflag is used to indicate the end of file.

Although the T.120-series provides reliable data transfer, some user applications may have an additional requirement to
validate the data by using a Cyclic Redundancy Check (CRC). T.127 allows the possibility for transmitters to optionally
include a CRC with the file data. This may either be a single CRC included in the last File-DataPDU (or File-Start PDU if
the data can be transported in a single PDU), or a cumulative CRC included in the File-StartPDU and all subsequent File-
DataPDUs. The presence of a CRC is indicated by setting the CRC flag in the File-StartPDU. Receivers may ignore
CRCs if they are not required by the user application. The method of calculating the CRC is illustrated in Figure 10.
Octets of data are input to the CRC calculation sequentially, low order bit first.

The CRC is reset at the start of each file transfer and is calculated from the file data payload of File-Start and File-Data
PDUs using the 32-bit frame checking sequence defined in ISO/IEC 3309. If the file data is compressed, the CRC applies
to the compressed data and not the source data.

If V.42 bis compression is applied to the file data payload, the encoder is initialized at the beginning of the file and
processes data payload octets continuously until the end of the file. The encoder is not reset at the end of each PDU.

On completion of the transfer of each file, File ASEs must remain joined to both control and data channels to avoid the
need to leave and re-join for subsequent operations. However, if a File ASE is joined to an acknowledged data channel
and is subsequently offered a file which it does not require, it must leave the data channel before sending back a File-
Reject.

When the transmitting node has despatched the last File-DataPDU, it should release the FILE-TRANSMIT token (if
present) by issuing an MCS-Token-Release request to allow other sites to initiate file transmissions on the data channel. If
the transmitter had previously received an MCS-Token-Please during the transfer, it may instead offer the token to the
requesting File ASE by issuing an MCS-Token-Give request. If MCS-Token-Please indications have been received from
more than one File ASE, it is a local matter to decide which to respond to.

Parameter Description

File Handle This is a unique handle used to reference the file throughout the file transfer operation.
Its value is obtained from the File-Offer PDU.

Reason This parameter is used to inform the transmitter why the intended recipient is unable or
does not wish to receive the file offered.

28 Recommendation T.127 (08/95)

TABLE 13/T.127

File-StartPDU

TABLE 14/T.127

File-DataPDU

Parameter Description

File Header This parameter uses the T.434 file header structure and should include all fields defined
in the source file, irrespective of whether they were included in the preceding
File-OfferPDU

File Handle This is a unique handle used to reference the file throughout the file transfer operation. It
shall be set to the same value as the handle in the File-OfferPDU corresponding to this
transfer.

EOF Flag This flag is set to TRUE to indicate end of file.

CRC Flag This indicates whether the last File-DataPDU (or File-StartPDU if the EOF flag is set to
TRUE) contains a cyclic redundancy check.

Compression Specifier This optional field specifies the compression technique (if any) applied to the data
payload of File-Start and File-DataPDUs.

Compressed Filesize Number of octets in the compressed file, excluding the header.

Data Offset This parameter specifies the starting offset in octets from the beginning of the file data
(so zero denotes the origin).

Data The maximum number of octets of binary file data which can be included in this field is
negotiated via the capability exchange mechanism.

CRC Check A 32-bit cyclic redundancy check is included in the File-Start PDU if the CRC flag is set
to TRUE and either a cumulative CRC is being used or the EOF flag is set to TRUE.

Parameter Description

File Handle This is a unique handle used to reference the file throughout the file transfer operation. It
shall be set to the same value as the handle in the File-OfferPDU corresponding to this
transfer.

EOF Flag This flag is set to TRUE in the last File-DataPDU to indicate end of file.

Abort Flag The abort flag is set to TRUE if the file transfer is terminated abnormally, either as a
result of conductor intervention or at the transmitter’s volition. No further
File-DataPDUs will be sent in the current transmission after a File-DataPDU with the
Abort flag set to TRUE.

Data The maximum number of octets of binary file data which can be included in this field is
negotiated via the capability exchange mechanism.

CRC Check A 32-bit cyclic redundancy check is included in the File-Data PDU if the CRC flag was
set to TRUE in the corresponding File-Start and either a cumulative CRC is being used
or the EOF flag is set to TRUE.

 Recommendation T.127 (08/95) 29

T0820170-95/d10

File-
Start Data 2 Data 3 Data 4

Calculate CRC

File-
Data Data 5 CRC

b) Cumulative CRC

PDU

PDU

CRC

CRC1

CRC2

CRC3

CRC4

CRC5

Calculate
CRC

a) Single CRC sent at end of file transfer

File-
Data

File-
Data

File-
Data

Calculate
CRC

Calculate
CRC

Calculate
CRC

Calculate
CRC

File-
Start

File-
Data

File-
Data

File-
Data

File-
DataData 1 Data 2 Data 3 Data 4 Data 5 CRCCRCCRCCRCCRC

Data 1

FIGURE 10
FIGURE 10/T.127
Calculation of CRC

FIGURE 10/T.127...[D10] = 3 CM (118%)

8.9.2 Receiver invoked operation

An optional MBFT feature is the ability to request transmission of a specific file (for file retrieval applications) or partial
retransmission of a file (to allow recovery in the event of a site being disconnected during a file transfer). Partial file
retransmission is particularly useful if a bulk file transfer is interrupted. As the protocol does not require each
File-DataPDU to be acknowledged, it is the responsibility of the File ASE issuing the request to indicate how much of the
file was successfully received.

To initiate a file request, a File ASE must first grab the FILE-REQUEST token before issuing a File-Request PDU. This
ensures that there is at most one outstanding request on the control channel. If there is no FILE-REQUEST token, then
only the channel creator may issue a File-Request. If the token is held by another File ASE, then the File ASE wishing to
initiate a file request may ask for the token by issuing an MCS-Token-Please request, specifying the Token ID of the
FILE-REQUEST token as Token id. The holder of the token may choose to give the FILE-REQUEST token to the
requesting File ASE once it has determined whether its own file request can be satisfied. To do this, the token holder must
issue an MCS-Token-Give request, specifying the MCS User ID of the requesting File ASE as User id to receive token
and the FILE-REQUEST Token ID as Token id. On receipt of an MCS-Token-Give indication, the requesting File ASE
shall issue an MCS-Token-Give response primitive with result parameter 'rt-successful' or 'rt-user-rejected', depending on
whether the File ASE still requires the token or not. If the result is 'rt-successful', the File ASE may assume that it has
possession of the token.

30 Recommendation T.127 (08/95)

The contents of the File-RequestPDU are defined in Table 15. Sufficient information should be included in the request to
enable recipients of the PDU to determine whether they are able to supply the file. For partial retransmission of a file, the
File ASE must specify the number of octets successfully received prior to the file transfer interruption. A handle is
included in the PDU so that responses can be correlated with the request. A FILE-TRANSMIT token must be included in
the PDU to ensure that only one File ASE attempts to fulfil the request.

The File-RequestPDU includes the identity of the data channel to be used so that the requesting File ASE can specify
that:

• the file is to be sent exclusively to the requester on its File APE MCS User channel; or

• the file is to be broadcast to all File ASEs in the session on the broadcast data channel. In this case, all File
ASEs are obliged to receive the data and discard it if it is not required; or

• the file is to be offered to all File ASEs in the session on an acknowledged data channel. In this case, File
ASEs may choose whether they wish to receive the data.

So that the File ASE which issued the File-Request knows how many acknowledgements to accept, all File ASEs
included in the Application Roster instance specified in the File-RequestPDU must respond, using the File-DenyPDU
(see Table 16) if they are unable to supply the file. File ASEs not included in the specified Application Roster instance
must ignore the File-Request.

A File ASE which is capable of providing the file must first grab the FILE-TRANSMIT token identified in the
File-RequestPDU before offering the file for transmission on the data channel shown in the request, using File-Offer as if
it had initiated the transaction. If the FILE-TRANSMIT token is not free, the File ASE shall respond with a File-Deny,
specifying no Channel as the reason for refusal. The requesting File ASE may then make a further attempt, specifying a
different data channel.

If all File ASEs respond with a File-Deny, then the requesting File ASE must relinquish the FILE-REQUEST token,
otherwise the token is given up on receipt of the File-OfferPDU corresponding to the required file. Once a File ASE has
fulfilled the request by sending a File-Offer, any sites which have not yet responded shall send a File-Deny, even if they
are capable of sourcing the file. Further requests may be made by any File ASE on the control channel after the FILE-
REQUEST token has been released.

The requesting File ASE should monitor the application roster to determine which File ASEs to expect responses from. It
is recommended that a timeout be used to prevent the application being locked by sites which fail to respond. Any
responses received after the timeout expires can be identified by the request handle.

8.10 Remote directory listing

This is an optional feature which allows a File ASE to obtain a directory listing of a remote site. It may be used in
conjunction with the file request mechanism to provide a file retrieval service. A File ASE requiring a directory list issues
a Directory-RequestPDU to the MBFT User Channel of the chosen remote site, using the parameters specified in
Table 17.

A File ASE receiving a Directory-RequestPDU must respond by issuing a Directory-ResponsePDU to the originator's
MBFT User Channel, using the parameters defined in Table 18. If the File ASE is able to fulfil the request, it includes a
list of files and sub-directories contained in the directory identified in the Directory-RequestPDU. If it is unable or
unwilling to provide a list, the File ASE should indicate the reason for refusal in the response. It should be noted that
there is no requirement for the directory structure presented to remote sites to be the same as that presented locally.

 Recommendation T.127 (08/95) 31

TABLE 15/T.127

File-RequestPDU

TABLE 16/T.127

File-DenyPDU

TABLE 17/T.127

Directory-RequestPDU

Parameter Description

File Header This parameter uses the T.434 file header structure and should include sufficient
information to allow transmitters to determine whether they are able to fulfil the file
request. File name and size are suggested as a minimum set.

Data Channel ID This identifies the channel on which the file must be transmitted. It may be either the
broadcast data channel, an acknowledged data channel, or the MBFT User ID of the
requesting File APE.

Request Handle This is a unique handle used to reference the file request. It need only be locally unique
at the requesting File APE.

Roster Instance Application Roster Instance Number as returned in the most recently received GCC-
Application-Roster-Report indication. Only File APEs which are enrolled active in the
identified roster need to respond to this PDU. File APEs may need to wait to receive this
roster report indication before they can generate a reply.

FILE-TRANSMIT Token ID This identifies the token used to ensure that no more than one File APE can attempt to
fulfil the file request. Its inclusion is mandatory.

FILE-REQUEST Token ID This identifies the token used to regulate the issuing of file requests, so avoiding the
need for other File ASEs to consult the registry. If the token is omitted, only the creator
of the control channel is permitted to issue File-Request PDUs. If a FILE-REQUEST
token has been assigned to the control channel it must be included.

Data Offset This parameter specifies the starting offset in octets from the beginning of the file data
(so zero denotes the origin).

Parameter Description

Request Handle This is a unique handle used to reference the file request. It shall be set to the same value
as the handle in the corresponding File-RequestPDU.

Reason This parameter indicates to the requesting File APE why the file could not be provided.

Parameter Description

Pathname This is the relative pathname of the directory for which a listing is required. If omitted or
null, it is assumed that a listing of the default directory is requested.

32 Recommendation T.127 (08/95)

TABLE 18/T.127

Directory-ResponsePDU

8.11 Conducted mode behaviour

MBFT is a conductor-aware application protocol, i.e. it has two modes of operation, one for non-conducted mode and
one for conducted mode, as described in this subclause. The effect of conducted mode operation on file transactions is
determined by the peer File ASE (i.e. a File ASE participating in the same MBFT session) at the node possessing the
GCC-Conductor-Token if this ASE is capable of supporting the role of conductor. Each MBFT session has its own
conductor, namely the File ASE at the conducting node participating in that session. If there is more than one File APE at
the conducting node participating in a given MBFT session, then it is a local matter for GCC at the conducting node to
decide which File ASE adopts the role of conductor. When the conducting node does not have a peer File APE which
supports the conductor role, the Node Controller at the conducting node proxies as the MBFT conductor. Support of
MBFT conducted mode is mandatory. Note that whilst applications must be capable of operating in conducted mode, they
do not have to support the MBFT conductor role.

Applications become aware of a GCC-Conference Conductor being assigned through receipt of a GCC-Conductor-Assign
indication from the GCC provider. This includes the GCC User ID of the conducting node. Applications determine the
identity of the conducting File ASE from the GCC Application Roster. No new file transactions (File-Offer or File-
Request) are allowed after entering conducted mode until permission has been granted by the MBFT conductor. File
transactions in progress when conducted mode is entered may continue to completion unless specifically aborted by use
of the File-AbortPDU (see 8.12).

File ASEs at the conducting node may initiate transactions without taking any further action. Peer File ASEs at other sites
must request permission to act from the MBFT conductor as detailed below. Note that File ASEs not wishing to initiate
any file transactions (i.e. those which only wish to receive files offered to them) do not need to request permission from
the MBFT conductor.

8.11.1 Peer File APE present at conducting node

Peer File ASEs at non-conducting nodes must request permission to initiate file transactions by sending an MBFT-
Privilege-RequestPDU (Table 19) to the conducting node, specifying the privileges required. The following privileges are
available:

• Privilege to source file transfers.

• Privilege to request file transfers.

• Privilege to create private channels.

• Privilege to use medium priority for file transfers.

• Privilege to issue File-AbortPDUs.

• Privilege to use non-standard extensions.

Parameter Description

Result This indicates whether the File ASE is able to fulfil the request and, if not, gives the
reason for refusal.

Pathname This is the relative pathname of the directory being listed. If omitted or null, the listing is
of the default directory.

Directory List This parameter contains a list of files and sub-directories.

 Recommendation T.127 (08/95) 33

TABLE 19/T.127

MBFT-Privilege-RequestPDU

On receipt of an MBFT-Privilege-RequestPDU, the MBFT conductor may respond by broadcasting an MBFT-Privilege-
AssignPDU on the control channel. The PDU contains a list of privileges granted and the User ID of the requesting File
ASE and enables File ASEs to determine which privileges have been assigned to their peers. The MBFT conductor does
not need to send an MBFT-Privilege-AssignPDU if it does not wish to change the privileges of the requesting application.
Note that the MBFT conductor may at any time revoke some or all of the privileges granted by issuing an MBFT-
Privilege-AssignPDU with a revised privilege list for the designated node(s). Any transactions in progress may complete
unless specifically aborted.

If the MBFT conductor receives a GCC-Application-Roster-Report indicating that new nodes have been added to the list
of active File ASEs, it shall broadcast an MBFT-Privilege-AssignPDU on the control channel, specifying a list of File
ASEs and their associated privileges (see Table 20). Entries in this list need only be made for those nodes which have one
or more privileges assigned.

If there is a change in conductor without leaving conducted mode, all privileges are automatically revoked and File ASEs
must apply to the new MBFT conductor to reacquire them. File ASEs shall consult the Application Roster to determine if
there is a new MBFT Conductor for the session. If there is no MBFT conductor present at the new conducting node for
that session, File ASEs must cease all transactions immediately. If there is an MBFT conductor present, any transactions
in progress at the time of the change may continue unless specifically aborted by the new conductor.

If a File ASE receives a GCC-Conductor-Permission-Grant indication with the Permission flag set to TRUE it shall have
all MBFT privileges granted. If the File ASE subsequently receives a GCC-Conductor-Permission-Grant indication with
the Permission flag set to FALSE it shall revert to the privileges assigned to it by the MBFT Conductor.

If the File ASE receives a GCC-Application-Roster-Report indication in which the MBFT conductor is no longer present,
all privileges are revoked and the File ASE shall cease all transactions immediately.

Parameter Description

File Transfer Privilege This flag indicates whether the requesting File ASE wants permission to source file
transfers.

File Request Privilege This flag indicates whether the requesting File ASE wants permission to request files or
retransmissions.

Private Channel Privilege This flag indicates whether the requesting File ASE wants permission to create private
channels.

Priority Privilege This flag indicates whether the requesting File ASE wants permission to send medium
priority File-DataPDUs.

Abort Privilege This flag indicates whether the requesting File ASE wants permission to issue
File-AbortPDUs.

Non-Standard Privilege This flag indicates whether the requesting File ASE wants permission to use any
negotiated non-standard extensions to the MBFT protocol.

34 Recommendation T.127 (08/95)

TABLE 20/T.127

MBFT-Privilege-AssignPDU

8.11.2 Peer File APE absent at conducting node

If there is no peer File APE at the conducting node capable of supporting the conductor role, a File ASE must direct
requests to act, via its local Node Controller, to the Node Controller at the conducting node by issuing a GCC-Conductor-
Permission-Ask request primitive. If permission is granted, then the File ASE will receive a GCC-Conductor-Permission-
Grant indication with the permission flag set to TRUE. This enables the File ASE to act in an unrestricted manner (as in
non-conducted mode) until further notice.

Permission to act may be revoked by the conducting node at any time. If the File ASE receives a GCC-Conductor-
Permission-Grant indication with the permission flag set to FALSE, then it must cease all transactions with immediate
effect. If the File ASE is transmitting a file it shall issue a final File-DataPDU containing no data and with the abort flag
set to TRUE and relinquish the FILE-TRANSMIT token.

Note that a File ASE may receive an unsolicited successful GCC-Conductor-Permission-Grant indication in response to a
GCC-Conductor-Permission-Grant request by its own Node Controller or another application protocol entity at that node
or because the conductor decides to grant permission without having received a request.

8.12 Aborting a file transfer

If an individual File ASE is unable to receive a file or determines that the data is no longer required, it shall either
disconnect from the data channel or continue to receive the incoming data and discard it.

In conducted mode, File ASEs may be granted permission by the MBFT conductor to issue File-AbortPDUs which can
be used to order a transmitting File ASE to terminate a file transfer. After receiving a File-Abort PDU, the transmitter is
obliged to set the abort flag to TRUE in the current File-DataPDU and then to cease transmission and relinquish the
FILE-TRANSMIT token.

Parameter Description

Privilege List This contains a list of one or more MBFT User IDs and the privileges assigned to them.
These privileges are identified below.

File Transfer Privilege This flag indicates whether the requesting File ASE has been granted permission to
source file transfers.

File Request Privilege This flag indicates whether the requesting File ASE has been granted permission to
request files or retransmissions.

Private Channel Privilege This flag indicates whether the requesting File ASE has been granted permission to
create private channels.

Priority Privilege This flag indicates whether the requesting File ASE has been granted permission to send
medium priority File-DataPDUs. If this flag is set to FALSE, then only low priority can
be used for file transfers.

Abort Privilege This flag indicates whether the requesting File ASE has been granted permission to send
File-AbortPDUs.

Non-Standard Privilege This flag indicates whether the requesting File ASE has been granted permission to use
any negotiated non-standard extensions to the MBFT protocol.

 Recommendation T.127 (08/95) 35

This mechanism can be used by the MBFT conductor to terminate any file transfers in progress on entering conducted
mode.

The transmitter may cease transmission of its own volition by simply setting the abort flag in a File-DataPDU.

The File-AbortPDU includes a reason code to inform the transmitter why the abort request was generated. The
transmission to be terminated can be selected by channel, MBFT User ID or file handle plus MBFT User ID. If no
parameters are included, then transmissions on all channels (either static, multicast or private) by any File ASE must
cease. If only the MBFT User ID entry is present, then the identified File ASE must cease transmission on all channels. If
the MBFT User ID and file handle are present, then the specified file transaction must terminate. See Table 21.

TABLE 21/T.127

File-AbortPDU

8.13 Diagnostics

Support is provided for exchange of diagnostics messages between sending and receiving sites by way of the
File-ErrorPDU. The PDU contains three error parameters: an error type (indicating permanent error, transient error or
informative message), an error identifier and an optional text message. The action to be taken on receipt of a
File-ErrorPDU is not defined by this protocol. See Table 22.

TABLE 22/T.127

File-ErrorPDU

Parameter Description

File Handle This is a unique handle used to reference the file throughout the file transfer operation.
Its value is obtained from the File-Offer PDU.

Data Channel ID This identifies the channel on which file transfers must cease.

Transmitter User Channel ID This identifies the File ASE being requested to cease file transmission.

Reason This is used to inform the transmitter why it must terminate its current operation.

Parameter Description

File Handle This is a unique handle used to reference the file throughout the file transfer operation
and identifies the file affected. Its value is obtained from the File-OfferPDU.

Error type This field provides an indication of the severity of the fault condition. Faults may be
either permanent (causing all transactions to fail), transient (causing failure of the
current transmission) or informative (current transaction completed successfully).

Error ID This parameter is a fault code to identify the nature of the problem.

Error Text This optional field allows File ASEs to convey a textual description of the fault
condition to the transmitting File ASE.

36 Recommendation T.127 (08/95)

8.14 Non-standard operations

This PDU allows any non-standard information to be transmitted, enabling applications to implement non-standard
operations. Use of non-standard operations may be subject to negotiation of associated non-standard capabilities. MBFT-
NonStandardPDUs may be sent at any time, but in conducted mode may only be sent by File APEs which have been
granted the Non-Standard Privilege. See Table 23.

TABLE 23/T.127

MBFT-NonStandardPDU

9 MBFT PDU Definitions

The structure of MBFT PDUs is specified as follows using the notation ASN.1 of Recommendation X.680. All MBFT
PDUs shall be encoded for transmission by applying the Packed Encoding Rules of Recommendation X.691 using the
Basic Aligned variant. MBFT PDUs are encoded and placed in the data field of either MCS-Send-Data or MCS-Uniform-
Send-Data primitives. The bit string generated by the ASN.1 encoding is placed in the OCTET STRING used by MCS in
the order such that for each octet, the leading bit is placed in the most significant bit position and the trailing bit is placed
in the least significant bit position.

MBFT-PROTOCOL DEFINITIONS AUTOMATIC TAGS ::=

BEGIN

IMPORTS ChannelID,
 StaticChannelID,
 DynamicChannelID,
 UserID,
 TokenID,
 StaticTokenID,
 DynamicTokenID,
 Key,
 H221NonStandardIdentifier,
 NonStandardParameter,
 TextString
FROM GCC-PROTOCOL;

-- Export all symbols

-- Part 1: Message Components

Handle ::= INTEGER (0..65535) -- 16-bit value

Contents-Type-Attribute ::= CHOICE
{
-- See Annex B/ISO 8571-2 for more information
 document-type [0] SEQUENCE
 {
 document-type-name [1] Document-Type-Name,
 parameter [0] ISO-8571-2-Parameters OPTIONAL
 -- The actual types to be used for values of the parameter
 -- field are defined in the document-type-name.
 -- Currently, only UNSTRUCTURED TEXT and UNSTRUCTURED BINARY
 -- are supported.
 }

}

Parameter Description

Data Non-standard parameter. Use of this PDU is not defined in this Recommendation.

 Recommendation T.127 (08/95) 37

Document-Type-Name ::= OBJECT IDENTIFIER

ISO-8571-2-Parameters ::= SEQUENCE
{
 universal-class-number [0] INTEGER OPTIONAL,
 maximum-string-length [1] INTEGER OPTIONAL,
 string-significance [2] INTEGER
 {variable (0), fixed (1), not-significant (2)} OPTIONAL
}

Entity-Reference ::= INTEGER
{
 no-categorisation-possible (0),
 initiating-file-service-user (1),
 initiating-file-protocol-machine (2),
 service-supporting-the-file-protocol-machine (3),
 responding-file-protocol-machine (4),
 responding-file-service-user (5)
}

Filename-Attribute ::= SEQUENCE OF GraphicString

Access-Control-Attribute ::= CHOICE
{
 simple-password [0] OCTET STRING,
 -- A simplified form of the access control syntax. Specifies
 -- one password for all types of access to the files and its attributes
 actual-values [1] SET OF Access-Control-Element
 -- The semantics of this attribute are described in ISO 8571-2
}

Access-Control-Element ::= SEQUENCE
{
 action-list [0] Access-Request,
 concurrency-access [1] Concurrency-Access OPTIONAL,
 identity [2] User-Identity OPTIONAL,
 passwords [3] Access-Passwords OPTIONAL,
 ...
}

Access-Request ::= BIT STRING
{
 read (0),
 insert (1),
 replace (2),
 extend (3),
 erase (4),
 read-attribute (5),
 change-attribute (6),
 delete-file (7)
}

Concurrency-Access ::= SEQUENCE
{
 read [0] Concurrency-Key,
 insert [1] Concurrency-Key,
 replace [2] Concurrency-Key,
 extend [3] Concurrency-Key,
 erase [4] Concurrency-Key,
 read-attribute [5] Concurrency-Key,
 change-attribute [6] Concurrency-Key,
 delete-file [7] Concurrency-Key
}

Access-Passwords ::= SEQUENCE
{
 read-password [0] Password,
 insert-password [1] Password,
 replace-password [2] Password,
 extend-password [3] Password,

38 Recommendation T.127 (08/95)

 erase-password [4] Password,
 read-attribute-password [5] Password,
 change-attribute-password [6] Password,
 delete-password [7] Password
}

Password ::= CHOICE
{
 graphic-string GraphicString,
 octet-string OCTET STRING
}

Concurrency-Key ::= BIT STRING
{
 not-required (0),
 shared (1),
 exclusive (2),
 no-access (3)
}

Permitted-Actions-Attribute ::= BIT STRING
{
 -- Actions available
 read (0),
 insert (1),
 replace (2),
 extend (3),
 erase (4)
}

Private-Use-Attribute ::= SEQUENCE
{
 manufacturer-values [0] EXTERNAL OPTIONAL
}

Protocol-Version ::= BIT STRING {version-1 (0)}

User-Identity ::= GraphicString

FileHeader ::= SEQUENCE
{

 protocol-version [28] Protocol-Version DEFAULT {version-1}, -- T.434 Version
 filename [0] Filename-Attribute OPTIONAL,
 permitted-actions [1] Permitted-Actions-Attribute OPTIONAL,
 contents-type [2] Contents-Type-Attribute OPTIONAL,
 -- DEFAULT {UNSTRUCTURED BINARY}
 -- not specifying this attribute implies that the data content of the file is unstructured binary
 storage-account [3] GraphicString OPTIONAL,
 date-and-time-of-creation [4] GeneralizedTime OPTIONAL,
 date-and-time-of-last-modification [5] GeneralizedTime OPTIONAL,
 date-and-time-of-last-read-access [6] GeneralizedTime OPTIONAL,
 -- 7 is reserved for date-and-time-of-last-attribute-modification
 identity-of-creator [8] GraphicString OPTIONAL,
 identity-of-last-modifier [9] GraphicString OPTIONAL,
 identity-of-last-reader [10] GraphicString OPTIONAL,
 -- 11 is reserved for identity-of-last-attribute-modifier
 -- 12 is reserved for file-availability
 filesize [13] INTEGER OPTIONAL,
 future-filesize [14] INTEGER OPTIONAL,
 access-control [15] Access-Control-Attribute OPTIONAL,
 -- the use of this attribute is for further study
 legal-qualifications [16] GraphicString OPTIONAL,
 private-use [17] Private-Use-Attribute OPTIONAL,
 structure [18] OBJECT IDENTIFIER OPTIONAL,
 application-reference [19] SEQUENCE OF GraphicString OPTIONAL,
 machine [20] SEQUENCE OF GraphicString OPTIONAL,
 operating-system [21] OBJECT IDENTIFIER OPTIONAL,

 Recommendation T.127 (08/95) 39

 recipient [22] SEQUENCE OF GraphicString OPTIONAL,
 character-set [23] OBJECT IDENTIFIER OPTIONAL,
 compression [24] SEQUENCE OF GraphicString OPTIONAL,
 -- indicates an optional compression applied to the content
 -- octets of the file
 environment [25] SEQUENCE OF GraphicString OPTIONAL,
 pathname [26] SEQUENCE OF GraphicString OPTIONAL,
 user-visible-string [29] SEQUENCE OF GraphicString OPTIONAL,
 ...
}

CompressionSpecifier ::= CHOICE
{
 v42bis-parameters V42bis-Parameter-List,
 nonstandard-compression-parameters SET OF NonStandardParameter,
 ...
}

V42bis-Parameter-List ::= SEQUENCE
{
 p1 INTEGER (512..65535),
 p2 INTEGER (6..250),
 ...
}

MBFTPrivilege ::= ENUMERATED
{
 file-transmit-privilege (0), -- Privilege to transmit files
 file-request-privilege (1), -- Privilege to request files
 create-private-privilege (2), -- Privilege to create private channels
 medium-priority-privilege (3), -- Privilege to use medium priority for
 -- file transfers
 abort-privilege (4), -- Privilege to issue File-AbortPDUs
 nonstandard-privilege (5), -- Privilege to use non-standard options
 -- subject to negotiation
 ...
}

DirectoryEntry ::= SEQUENCE
{
 subdirectory-flag BOOLEAN, -- TRUE for sub-directory entries
 -- FALSE for file entries
 attributes FileHeader,
 ...
}

ErrorType ::= ENUMERATED
{
 informative (0), -- No recovery required
 transient-error (1), -- Current transfer failed, future transfers may be OK
 permanent-error (2), -- Error occurs each time file transfer is performed
 ...
}

ErrorID ::= INTEGER
{
 no-reason (0),
 responder-error (1),
 system-shutdown (2),
 bft-management-problem (3),
 bft-management-bad-account (4),
 bft-management-security-not-passed (5),
 delay-may-be-encountered (6),
 initiator-error (7),
 subsequent-error (8),
 temporal-insufficiency-of-resources (9),

40 Recommendation T.127 (08/95)

 access-request-violates-VFS-security (10),
 access-request-violates-local-security (11),
 conflicting-parameter-values (1000),
 unsupported-parameter-values (1001),
 mandatory-parameter-not-set (1002),
 unsupported-parameter (1003),
 duplicated-parameter (1004),
 illegal-parameter-type (1005),
 unsupported-parameter-types (1006),
 bft-protocol-error (1007),
 bft-protocol-error-procedure-error (1008),
 bft-protocol-error-functional-unit-error (1009),
 bft-protocol-error-corruption-error (1010),
 lower-layer-failure (1011),
 timeout (1013),
 invalid-filestore-password (2020),
 filename-not-found (3000),
 initial-attributes-not-possible (3002),
 non-existent-file (3004),
 file-already-exists (3005),
 file-cannot-be-created (3006),
 file-busy (3012),
 file-not-available (3013),
 filename-truncated (3017),
 initial-attributes-altered (3018),
 bad-account (3019),
 ambiguous-file-specification (3024),
 attribute-non-existent (4000),
 attribute-not-supported (4003),
 bad-attribute-name (4004),
 bad-attribute-value (4005),
 attribute-partially-supported (4006),
 bad-data-element-type (5014),
 operation-not-available (5015),
 operation-not-supported (5016),
 operation-inconsistent (5017),
 bad-write (5026),
 bad-read (5027),
 local-failure (5028),
 local-failure-filespace-exhausted (5029),
 local-failure-data-corrupted (5030),
 local-failure-device-failure (5031),
 future-filesize-exceeded (5032),
 future-filesize-increased (5034)

}

-- Part 2: PDU Messages

File-OfferPDU ::= SEQUENCE
{
 file-header FileHeader,
 data-channel-id ChannelID,
 file-handle Handle,
 roster-instance INTEGER (0..65535) OPTIONAL,
 file-transmit-token TokenID OPTIONAL,
 file-request-token TokenID OPTIONAL,
 compression-specifier CompressionSpecifier OPTIONAL,
 compressed-filesize INTEGER OPTIONAL,
 ack-flag BOOLEAN, -- True if acknowledgements required
 ...
}

File-AcceptPDU ::= SEQUENCE
{
 file-handle Handle,
 ...
}

 Recommendation T.127 (08/95) 41

File-RejectPDU ::= SEQUENCE

{
 file-handle Handle,
 reason ENUMERATED
 {
 unspecified (0),
 file-exists (1),
 file-not-required (2),
 insufficient-resources (3),
 transfer-limit (4), -- maximum no. of concurrent file transfers exceeded
 compression-unsupported (5), -- algorithm identified in FileOffer not supported
 unable-to-join-channel (6),
 parameter-not-supported (7), -- at least one File Header parameter is not supported
 ...
 },
 ...
}

File-RequestPDU ::= SEQUENCE

{
 file-header FileHeader,
 data-channel-id ChannelID,
 request-handle Handle,
 roster-instance INTEGER (0..65535),
 file-transmit-token TokenID,
 file-request-token TokenID OPTIONAL,
 data-offset INTEGER,
 ...
}

File-DenyPDU ::= SEQUENCE

{
 request-handle Handle,
 reason ENUMERATED
 {
 unspecified (0),
 file-not-present (1),
 insufficient-privilege (2),
 file-already-offered (3), -- File already being offered by another site
 ambiguous (4), -- Insufficient attributes to uniquely identify file
 no-channel (5), -- No data channel available to fulfil the request
 ...
 },

 ...

}

File-AbortPDU ::= SEQUENCE

{
 reason ENUMERATED
 {
 unspecified (0),
 bandwidth-required (1),
 tokens-required (2),
 channels-required (3),
 priority-required (4),
 ...
 },

 data-channel-id ChannelID OPTIONAL,
 transmitter-user-id UserID OPTIONAL,
 file-handle Handle OPTIONAL,
 ...
}

42 Recommendation T.127 (08/95)

File-StartPDU ::= SEQUENCE
{
 file-header FileHeader,
 file-handle Handle,
 eof-flag BOOLEAN, -- True if last packet of data
 crc-flag BOOLEAN, -- True if CRC present
 compression-specifier CompressionSpecifier OPTIONAL,
 comp-filesize INTEGER OPTIONAL,
 data-offset INTEGER,
 data OCTET STRING (SIZE (0..65535)),
 crc-check INTEGER (0..4294967295) OPTIONAL,
 ...
}

File-DataPDU ::= SEQUENCE
{
 file-handle Handle,
 eof-flag BOOLEAN, -- True if last packet of data
 abort-flag BOOLEAN, -- True if file transfer is being aborted
 data OCTET STRING (SIZE (0..65535)),
 crc-check INTEGER (0..4294967295) OPTIONAL,
 ...
}

Directory-RequestPDU ::= SEQUENCE
{
 pathname SEQUENCE OF GraphicString OPTIONAL,
 ...
}

Directory-ResponsePDU ::= SEQUENCE
{
 result ENUMERATED
 {
 unspecified (0),
 permission-denied (1),
 function-not-supported (2),
 successful (3),
 ...
 },
 pathname SEQUENCE OF GraphicString OPTIONAL,
 directory-list SEQUENCE OF DirectoryEntry,
 ...
}

MBFT-Privilege-RequestPDU ::= SEQUENCE
{
 mbft-privilege SET OF MBFTPrivilege,
 ...
}

MBFT-Privilege-AssignPDU ::= SEQUENCE
{
 privilege-list SET OF SEQUENCE -- One for each File APE with privileges
 {
 mbftID UserID,
 mbft-privilege SET OF MBFTPrivilege,
 ...
 },
 ...
}

Private-Channel-Join-InvitePDU ::= SEQUENCE
{
 control-channel-id DynamicChannelID,
 data-channel-id DynamicChannelID,
 mode BOOLEAN, -- True if broadcast
 ...
}

 Recommendation T.127 (08/95) 43

Private-Channel-Join-ResponsePDU ::= SEQUENCE
{
 control-channel-id DynamicChannelID,
 result ENUMERATED
 {
 unspecified (0),
 unable-to-join-channel (1),
 invitation-rejected (2),
 successful (3),
 ...
 },
 ...
}

File-ErrorPDU ::= SEQUENCE
{
 file-handle Handle OPTIONAL,
 error-type ErrorType,
 error-id ErrorID,
 error-text TextString OPTIONAL,
 ...
}

MBFT-NonStandardPDU ::= SEQUENCE
{
 data NonStandardParameter,
 ...
}

-- Part 3: Messages sent using MCS-Send-Data or MCS-Uniform-Send-Data

MBFTPDU ::= CHOICE
{
 file-OfferPDU File-OfferPDU,
 file-AcceptPDU File-AcceptPDU,
 file-RejectPDU File-RejectPDU,
 file-RequestPDU File-RequestPDU,
 file-DenyPDU File-DenyPDU,
 file-ErrorPDU File-ErrorPDU,
 file-AbortPDU File-AbortPDU,
 file-StartPDU File-StartPDU,
 file-DataPDU File-DataPDU,
 directory-RequestPDU Directory-RequestPDU,
 directory-ResponsePDU Directory-ResponsePDU,
 mbft-Privilege-RequestPDU MBFT-Privilege-RequestPDU,
 mbft-Privilege-AssignPDU MBFT-Privilege-AssignPDU,
 mbft-NonStandardPDU MBFT-NonStandardPDU,
 private-Channel-Join-InvitePDU Private-Channel-Join-InvitePDU,
 private-Channel-Join-ResponsePDU Private-Channel-Join-ResponsePDU,
 ...
}

END

10 Use of the Multipoint Communication Service

All MBFT communication shall be through MCS as specified in Recommendation T.122. This clause details specific use
of MCS services, channel allocation, token allocation and data priorities. Static tokens and channels assigned to MBFT
are assigned in Recommendation T.120.

10.1 Use of MCS data transmission services

Either Send-Data or Uniform-Send-Data may be used, at the discretion of the transmitter. Receivers must be capable of
accepting both types of data. The channel and priority to be used for each PDU is defined in Table 25.

44 Recommendation T.127 (08/95)

10.2 Channel allocation

In each MBFT session, two channels are provided to allow broadcasting of one file at a time. The control channel MBFT-
CONTROL is used to manage all aspects of file transfer on the broadcast data channel MBFT-DATA. Each File APE
also joins the User-ID channel allocated to it by MCS. Transfer of more than one file simultaneously within the same
session requires acknowledged data channels [designated MBFT-DATA(n), where n is the MCS channel ID of the data
channel], one per concurrent file transfer. The way in which channel ID values for MBFT-CONTROL and MBFT-DATA
are determined depends on a session's mode of operation (static, multicast or private), as explained in 8.4.5. The method
of determining channel IDs for MBFT-DATA(n) is dependent on whether multicast or private channels are used and is
described in 8.6.1 and 8.6.2 respectively.

A sub-session has a control channel MBFT-CONTROL(p) (where p is the MCS channel ID of the control channel). It
may optionally have a single broadcast data channel MBFT-DATA(p) (where p is the MCS channel ID of the data
channel) and zero or more acknowledged data channels MBFT-DATA(n). Channel ID values for MBFT-CONTROL(p)
and MBFT-DATA(p) are determined by the process described in 8.7. See Table 24.

TABLE 24/T.127

MBFT channel description

Mnemonic Description

MBFT-CONTROL Control channel for communication of file exchange management information between
all File APEs within a session. File APEs must join and remain joined to this channel for
the duration of the session.

MBFT-DATA Broadcast data channel for distribution of file data to all File APEs within a session. File
APEs must join and remain joined to this channel for the duration of the session.

MBFT-CONTROL(p)
[e.g. MBFT-CONTROL(1001)]

Private control channel whose MCS Channel ID is (p). This channel is used for
communication of file exchange management information between all File APEs within
a sub-session. File APEs must join and remain joined to this channel for the duration of
the sub-session.

MBFT-DATA(p)
[e.g. MBFT-DATA(1002)]

Private broadcast data channel whose MCS Channel ID is (p). This channel is used for
distribution of file data to all File APEs within a sub-session. The presence of a
broadcast data channel within a sub-session is at the discretion of the convenor of the
sub-session. If present, File APEs must join and remain joined to this channel for the
duration of the sub-session.

MBFT-DATA(n)
[e.g. MBFT-DATA(1003)]

Acknowledged data channel whose MCS Channel Id is (n). This channel is used for
distribution of file data to File APEs within a session or sub-session. File APEs need
only join the channel to receive files they require.

MBFT User ID channel For communication from any File APE in a conference to a specific File APE at a
particular node. Each File APE is identified by its MCS User ID.

 Recommendation T.127 (08/95) 45

TABLE 25/T.127

MBFT channel usage

10.3 Token allocation

MBFT reserves two static tokens for its exclusive use in static mode: FILE-TRANSMIT and FILE-REQUEST. Dynamic
equivalents of these tokens may be used for multicast and private modes.

The session broadcast data channel may have a FILE-TRANSMIT token to ensure that there is only one node
transmitting data on the channel at a time. A File ASE intending to transmit a file must grab this token before offering the
file to other participants using the File-OfferPDU. Once it has completed the file transmission (i.e. sent a File-StartPDU
or File-DataPDU with the off Flag set to TRUE), the transmitter should release the FILE-TRANSMIT token to allow
other nodes to transmit on the data channel).

MBFT PDU Channel Priority

File-OfferPDU MBFT-CONTROL
MBFT-CONTROL(p)

High

File-AcceptPDU MBFT User ID High

File-RejectPDU MBFT User ID High

File-RequestPDU MBFT-CONTROL
MBFT-CONTROL(p)

High

File-DenyPDU MBFT User ID High

File-ErrorPDU MBFT User ID High

File-AbortPDU MBFT-CONTROL
MBFT-CONTROL(p)

High

File-DataPDU MBFT-DATA
MBFT-DATA(p)
MBFT-DATA(n)
MBFT User ID

Medium, Low

File-StartPDU MBFT-DATA
MBFT-DATA(p)
MBFT-DATA(n)
MBFT User ID

Medium, Low

Directory-RequestPDU MBFT User ID High

Directory-ResponsePDU MBFT User ID High

MBFT-Privilege-RequestPDU Conductor MBFT User ID High

MBFT-Privilege-AssignPDU MBFT-CONTROL High

Private-Channel-Join-InvitePDU MBFT User ID High

Private-Channel-Join-ResponsePDU Channel Manager User ID High

MBFT-NonStandardPDU Not specified Not specified

46 Recommendation T.127 (08/95)

The session control channel may have a FILE-REQUEST token to ensure that there is, at most, one outstanding file
request to be processed at any instance. A File ASE requesting a file must grab the FILE-REQUEST token before issuing
a File-RequestPDU. It holds the token until it can determine whether another File ASE is able to fulfil the request, i.e.
either one File ASE responds with a File-Offer, all File ASEs respond with a File-Deny, or a timeout expires. Once the
FILE-REQUEST token is released, other File ASEs may attempt to request files by the same process.

Each acknowledged data channel may have a FILE-TRANSMIT token associated with it. The FILE-TRANSMIT token
associated with an acknowledged data channel whose MCS Channel id is n [MBFT-DATA(n)] is assigned the mnemonic
FILE-TRANSMIT(n) [e.g. FILE-TRANSMIT(1006)]. It is functionally identical to the FILE-TRANSMIT token
associated with the broadcast data channel.

A sub-session optionally has a FILE-REQUEST(p) token associated with its MBFT-CONTROL(p) control channel. The
FILE-REQUEST(p) token is functionally identical to the FILE-REQUEST token. If the sub-session has a broadcast data
channel MBFT-DATA(p), this may optionally have a FILE-TRANSMIT(p) token associated with it. See Table 26.

TABLE 26/T.127

MBFT token description

10.4 MCS services

MBFT assumes the MCS services indicated in Table 27. All primitives marked with an “M” are mandatory, those marked
with an “O” are optional.

11 Use of Generic Conference Control

MBFT assumes the services listed in Table 28. Primitives endorsed with an “M” are mandatory , those marked with an
“O” are optional.

11.1 Resource IDs

Tables 29 and 30 define the construction of MBFT Resource IDs required for use of the GCC Registry. The registry is
not required for the session MBFT-CONTROL channel as the MCS Channel ID can be obtained directly from the
Session ID. It is also not required for private sub-session MBFT-CONTROL(p) channels as the MBFT-CONTROL(p)
channel ID is conveyed to the selected participants by the private sub-session convenor. The registry may be used to
identify the session broadcast data channel using the Resource ID “D0”. Acknowledged multicast data channels are not
placed in the registry, since the presence of a Registry entry does not guarantee the existence of the channel (see 8.6.2).

Mnemonic Description

FILE-REQUEST Token to ensure that there is at most one outstanding file request on the session control
channel MBFT-CONTROL.

FILE-TRANSMIT Token to ensure transmission of one file at a time on the session broadcast data channel
MBFT-DATA.

FILE-REQUEST(p)
[e.g. FILE-REQUEST(1001)]

Token to ensure that there is at most one outstanding file request on sub-session control
channel MBFT-CONTROL(p).

FILE-TRANSMIT(p)
[e.g. FILE-TRANSMIT(1002)]

Token to ensure transmission of one file at a time on sub-session broadcast data channel
MBFT-DATA(p).

FILE-TRANSMIT(n)
[e.g. FILE-TRANSMIT(1003)]

Token to ensure transmission of one file at a time on acknowledged data channel MBFT-
DATA(n).

 Recommendation T.127 (08/95) 47

Private data channels are not placed in the Registry since File ASEs are not permitted to join such channels until they
receive an MCS-Channel-Admit from the channel convenor.

TABLE 27/T.127

MCS services used by MBFT

Primitives Use

MCS-Attach-User request M

MCS-Attach-User confirm M

MCS-Detach-User request M

MCS-Detach-User indication M

MCS-Channel-Join request M

MCS-Channel-Join confirm M

MCS-Channel-Leave request M

MCS-Channel-Leave indication M

MCS-Channel-Convene request O

MCS-Channel-Convene confirm O

MCS-Channel-Disband request O

MCS-Channel-Disband indication M

MCS-Channel-Admit request O

MCS-Channel-Admit indication M

MCS-Channel-Expel request O

MCS-Channel-Expel indication M

MCS-Send-Data request M

MCS-Send-Data indication M

MCS-Uniform-Send-Data request M

MCS-Uniform-Send-Data indication M

MCS-Token-Grab request M

MCS-Token-Grab confirm M

MCS-Token-Give request O

MCS-Token-Give indication M

MCS-Token-Give response M

MCS-Token-Give confirm O

MCS-Token-Please request O

MCS-Token-Please indication M

MCS-Token-Release request O

MCS-Token-Release confirm O

MCS-Token-Release indication M

MCS-Token-Test request O

MCS-Token-Test confirm O

48 Recommendation T.127 (08/95)

TABLE 28/T.127

GCC primitives supported by MBFT

FILE-TRANSMIT(n) and FILE-TRANSMIT(p) Token IDs are constructed by expressing the MCS Channel ID of the
associated MBFT-DATA(n) or MBFT-DATA(p) channel as a decimal numeric string without leading zeroes, prepending
the single character “T”, and encoding these characters into successive octets according to Recommendation T.50. FILE-
REQUEST(p) Token Ids are constructed by expressing the MCS Channel ID of the associated MBFT-CONTROL(p)
channel as a decimal numeric string without leading zeroes, prepending the single character “R”, and encoding these
characters into successive octets according to Recommendation T.50.

TABLE 29/T.127

Channel determination

GCC primitive Use

GCC-Application-Permission-To-Enroll indication M

GCC-Application-Enroll request
GCC-Application-Enroll confirm

M
M

GCC-Application-Roster-Report indication M

GCC-Registry-Retrieve-Entry request
GCC-Registry-Retrieve-Entry confirm

O
O

GCC-Registry-Register-Channel request
GCC-Registry-Register-Channel confirm

O
O

GCC-Registry-Assign-Token request
GCC-Registry-Assign-Token confirm

O
O

GCC-Conductor-Assign indication M

GCC-Conductor-Release indication M

GCC-Conductor-Permission-Ask request O

GCC-Conductor-Permission-Grant request
GCC-Conductor-Permission-Grant indication

O
M

Mnemonic Channel ID of static channels Application registry resource
ID for dynamic channels

MBFT-CONTROL MBFT-CHANNEL-0 –

MBFT-DATA MBFT-CHANNEL-1 D0

MBFT-CONTROL(p) – –

MBFT-DATA(p) – –

MBFT-DATA(n) – –

 Recommendation T.127 (08/95) 49

TABLE 30/T.127

Token determination

Annex A

Static channel and token assignment
(This annex forms an integral part of this Recommendation)

The assignment of static resources (channels and tokens) is to be defined in Recommendation T.120, but is included in
this Recommendation pending the completion of Recommendation T.120. See Tables A.1 and A.2.

TABLE A.1/T.127

Static channel ID assignments

TABLE A.2/T.127

Static token ID assignments

Mnemonic Token ID of Static Tokens Application registry resource ID
for dynamic tokens

FILE-REQUEST MBFT-TOKEN-0 R0

FILE-TRANSMIT MBFT-TOKEN-1 T0

FILE-REQUEST(p) – Rp
(e.g. R1001)

FILE-TRANSMIT(p) – Tp
(e.g. T1002)

FILE-TRANSMIT(n) – Tn
(e.g. T1003)

Symbolic name MCS Channel ID

MBFT-CHANNEL-0 9

MBFT-CHANNEL-1 10

Symbolic Name MCS
Token ID

MBFT-TOKEN-0 10

MBFT-TOKEN-1 11

50 Recommendation T.127 (08/95)

Annex B

Object Identifier assignments
(This annex forms an integral part of this Recommendation)

Table B.1 lists the assignment of Object Identifiers defined for use by this Recommendation.

TABLE B.1/T.127

T.127 object identifier assignment

Appendix I

File Transfer Examples
(This appendix does not form an integral part of this Recommendation)

I.1 A number of examples of file transactions are given below to illustrate use of this Recommendation in different
scenarios.

The following conventions are adopted in the figures:

Each PDU is followed by a Channel name enclosed in parentheses thus (). This indicates the channel on which the PDU
is to be sent. Where appropriate, significant PDU parameters are appended in parentheses after the Channel ID.

Primitives are optionally followed by key parameters enclosed in square brackets thus [].

Note that the figures only denote transactions between a File APE, its peers and its local MCS and GCC providers.
Transactions between the local MCS and GCC providers and the top MCS and GCC providers are omitted for clarity.

I.1.1 Figure I.1 illustrates distribution of a file on the broadcast data channel. All File APEs participating in the
session are obliged to receive the data and discard it locally if it is not required.

I.1.2 Figure I.2 illustrates the creation and use of an acknowledged multicast data channel when at least one node
wishes to receive the file being offered.

I.1.3 Figure I.3 illustrates an attempt to distribute a file on an acknowledged channel which is aborted because all
receivers reject the file. It is assumed that the data channel and the associated FILE-TRANSMIT(n) token already exist.

I.1.4 Figure I.4 illustrates file distribution to a subset of the participants in the current session using a private sub-
session. Participants have the option of rejecting files offered to them, and any site may attempt to request or offer files
when the current transaction has finished.

I.1.5 Figure I.5 illustrates file distribution to a subset of the participants in the current session using a private sub-
session. Participants have the option of rejecting files offered to them, but only the creator is permitted to transmit files.
Note that the creator does not need to join the MBFT-DATA(n) channel, since it will never receive files.

Object Identifier Value Description

{itu-t recommendation t 127 version(0) 1} This Object Identifier is used to indicate the version of this Recom-
mendation. At this time there is a single standardized version defined.

 Recommendation T.127 (08/95) 51

T0820180-95/d11

File-OfferPDU (MBFT-CONTROL Channel) (Ack = FALSE)

File-StartPDU (MBFT-DATA Channel) (Eof = FALSE)

File-DataPDU (MBFT-DATA Channel) (Eof = FALSE)

File-DataPDU (MBFT-DATA Channel) (Eof = FALSE)

File-DataPDU (MBFT-DATA Channel) (Eof = TRUE)

Operation

Transmitter
Sends File

Local
File APE

Local
GCC

Provider

Local
MCS

Provider

Remote
MCS

Provider(s)

Remote
GCC

Provider(s)

Remote
File

APE(s)

MCS-TOKEN-GRAB req. [FILE-TRANSMIT]

MCS-TOKEN-GRAB con. [FILE-TRANSMIT]

MCS-TOKEN-REL req. [FILE-TRANSMIT]

MCS-TOKEN-REL con. [FILE-TRANSMIT]

Transmitter Grabs
FILE-TRANSMIT

Token

Transmitter
Releases

FILE-TRANSMIT
Token

FIGURE I.1/T127
Broadcasting of files

FIGURE I.1/T.127...[D11] = 3 CM (118%)

52 Recommendation T.127 (08/95)

T0820190-95/d12

File-OfferPDU (MBFT-CONTROL Channel) (Ack = TRUE)

File-StartPDU (MBFT-DATA(n) Channel) (Eof = FALSE)

File-DataPDU (MBFT-DATA(n) Channel) (Eof = FALSE)

File-DataPDU (MBFT-DATA(n) Channel) (Eof = FALSE)

File-DataPDU (MBFT-DATA(n) Channel) (Eof = TRUE)

File-AcceptPDU (Transmitter MBFT User ID Channel)

Transmitter
Offers File

Operation

GCC-Registry-Assign-Token req.

Local
File
APE

Local
GCC

Provider

Local
MCS

Provider

Remote
MCS

Provider(s)

Remote
GCC

Provider(s)

Remote
File

APE(s)

MCS-CHANNEL-JOIN req. [Channel ID = 0]

MCS-TOKEN-REL con. [FILE-TRANSMIT(n)]

MCS-TOKEN-REL req. [FILE-TRANSMIT(n)]
Transmitter

Releases FILE-
TRANSMIT(n)

Token

MCS-CHANNEL-JOIN con. [MBFT-DATA(n)]

MCS-CHANNEL-JOIN req. [MBFT-DATA(n)]

Transmitter
Sends File

on Multicast
channel

MBFT-DATA(n)

Receivers Join
MBFT-DATA(n)

Channel and
Accept the Offer

Transmitter
Grabs FILE-

TRANSMIT(n)
Token

Transmitter
Assigns FILE-
TRANSMIT(n)
Token For New

Multicast Channel

Transmitter
Joins New

Multicast Channel
(if none exists)

MCS-TOKEN-GRAB con. [FILE-TRANSMIT(n)]

MCS-TOKEN-GRAB req. [FILE-TRANSMIT(n)]

GCC-Registry-Assign-Token con. [FILE-TRANSMIT(n) = unique new]

MCS-CHANNEL-JOIN con. [MBFT-DATA(n) Channel ID = unique new]

FIGURE I.2/T.127
Successful acknowledged file transfer

FIGURE I.2/T.127...[D12] = 3 CM (118%)

 Recommendation T.127 (08/95) 53

T0820200-95/d13

File-OfferPDU (MBFT-CONTROL Channel) (Ack = TRUE)

File-RejectPDU (Transmitter MBFT User ID Channel)

Operation

Transmitter
Offers File

Local
File
APE

Local
GCC

Provider

Local
MCS

Provider

Remote
MCS

Provider(s)

Remote
GCC

Provider(s)

Remote
File

APE(s)

MCS-TOKEN-GRAB req. [FILE-TRANSMIT(n)]

MCS-TOKEN-GRAB con. [FILE-TRANSMIT(n)]

MCS-CHANNEL-LEAVE req. [MBFT-DATA(n) Channel ID]

MCS-CHANNEL-LEAVE con. [MBFT-DATA(n) Channel ID]

MCS-TOKEN-REL req. [FILE-TRANSMIT(n)]

MCS-TOKEN-REL con. [FILE-TRANSMIT(n)]

Transmitter Grabs
FILE-TRANSMIT(n)

Token

Transmitter
Releases

FILE-TRANSMIT(n)
Token

Receivers Reject
File Offer

Receivers Leave
MBFT-DATA(n)

Channel
(If Joined To It)

FIGURE I.3/T.127
Rejected acknowledged file transfer

FIGURE I.3/T.127...[D13] = 3 CM (118%)

54 Recommendation T.127 (08/95)

T0820210-95/d14

MCS-CHANNEL-JOIN req. [MBFT-DATA(n)]

GCC-Registry-Assign-Token con. [FILE-REQUEST(p) = unique new]

Transmitter Offers File

Receivers Accept Offer

Transmitter Convenes
 and Joins a Private
MBFT-CONTROL(p)

Channel

Transmitter
Convenes and Joins

a Private MBFT-
DATA(n) Channel

MCS-CHANNEL-EXPEL ind.
[Channel ID]

MCS-CHANNEL-EXPEL ind.
[Channel ID]

Transmitter invites each
Receiver individually
to join both channels

Transmitter Admits other
File APEs to the Private

MBFT-CONTROL(p) Channel
Receivers Join Private

MBFT-CONTROL(p) Channel
Transmitter Admits other
File APEs to the Private

 MBFT-DATA(n) Channel

Receivers Join Private
MBFT-DATA(n) Channel

Receivers Notify Convenor
 That They Have

Joined Control Channel

Transmitter Assigns
FILE-TRANSMIT(n)

and FILE-REQUEST(p)
Tokens

Transmitter Grabs
FILE-TRANSMIT(n)

Token

Transmitter Sends File
on MBFT-DATA(n)

Channel

Transmitter Releases
FILE-TRANSMIT(n) Token

Further File
Transactions

Convenor Disbands Both
Private Channels

Convenor Deletes Token
 Entries in the
GCC Registry

File-OfferPDU (MBFT-CONTROL(p) Channel) (Ack = TRUE)

File-StartPDU (MBFT-DATA(n) Channel) (Eof = FALSE)

File-DataPDU (MBFT-DATA(n) Channel) (Eof = FALSE)

File-DataPDU (MBFT-DATA(n) Channel) (Eof = FALSE)

File-DataPDU (MBFT-DATA(n) Channel) (Eof = TRUE)

File-AcceptPDU (Transmitter MBFT User Channel)

MCS-CHANNEL-JOIN con.

MCS-CHANNEL-JOIN con.

MCS-CHANNEL-ADMIT ind. [Channel ID]

MCS-CHANNEL-JOIN req. [MBFT-CONTROL(p)]

MCS-CHANNEL-ADMIT ind. [Channel ID]

MCS-CHANNEL-JOIN req. [MBFT-DATA(n)]

Private-Channel-Join-AckPDU (Convenor MBFT User ID Channel)

Private-Channel-InvitePDU [Mode = FALSE] (MBFT User ID Channels of File APEs to be invited)

MCS-CHANNEL-CONVENE con. [MBFT-CONTROL(p) Channel ID n = unique new]

MCS-CHANNEL-JOIN con.

GCC-Registry-Assign-Token req.

GCC-Registry-Assign-Token req.

MCS-CHANNEL-JOIN con.

MCS-CHANNEL-CONVENE req.

MCS-CHANNEL-JOIN req. [MBFT-CONTROL(p)]

MCS-CHANNEL-CONVENE con. [MBFT-DATA(n) Channel ID = unique new]

GCC-Registry-Assign-Token con. [FILE-TRANSMIT(n) = unique new]

MCS-TOKEN-GRAB req. [FILE-TRANSMIT(n)]

MCS-TOKEN-GRAB con. [FILE-TRANSMIT(n)]

MCS-TOKEN-REL req. [FILE-TRANSMIT(n)]

MCS-TOKEN-REL con. [FILE-TRANSMIT(n)]

MCS-CHANNEL-DISBAND req. [Channel ID = MBFT-DATA(n)]

MCS-CHANNEL-EXPEL ind. [Channel ID = MBFT-DATA(n)]

MCS-CHANNEL-EXPEL ind. [Channel ID = MBFT-CONTROL(p)]

GCC-Registry-Delete-Entry req. [FILE-TRANSMIT(n) token]

GCC-Registry-Delete-Entry con. [FILE-TRANSMIT(n) token]

GCC-Registry-Delete-Entry req. [FILE-REQUEST(p) token]

GCC-Registry-Delete-Entry con. [FILE-REQUEST(p) token]

MCS-CHANNEL-DISBAND req. [Channel ID = MBFT-CONTROL(p)]

MCS-CHANNEL-CONVENE req.

Operation

Local
GCC

Provider

Local
MCS

Provider

Remote
MCS

Provider(s)

Remote
GCC

Provider(s)

Remote
File

APE(s)

Local
File
APE

FIGURE I.4/T.127
Private sub-session file transfer using acknowledged data channel

MCS-CHANNEL-ADMIT req.

[MBFT-CONTROL(p), MBFT User ID(s)]

MCS-CHANNEL-ADMIT req.

[MBFT-DATA(n), MBFT User ID(s)]

FIGURE I.4/T.127...[D14] = 3 CM (118%)

 Recommendation T.127 (08/95) 55

T0820220-95/d15

Private-Channel-InvitePDU [Mode = FALSE] (MBFT User ID Channels of File APEs to be invited)

MCS-CHANNEL-CONVENE con. [MBFT-DATA(n) Channel ID = unique new]

MCS-CHANNEL-JOIN req. [MBFT-CONTROL(p)]

MCS-CHANNEL-CONVENE req.

Operation

Private-Channel-Join-AckPDU (Convenor MBFT User ID Channel)

File-OfferPDU (MBFT-CONTROL(p) Channel) (Ack = TRUE)

File-StartPDU (MBFT-DATA(n) Channel) (Eof = FALSE)

File-DataPDU (MBFT-DATA(n) Channel) (Eof = FALSE)

File-DataPDU (MBFT-DATA(n) Channel) (Eof = FALSE)

File-DataPDU (MBFT-DATA(n) Channel) (Eof = TRUE)

File-AcceptPDU (Transmitter MBFT User ID Channel)
Transmitter Offers File

Receivers Accept Offer

MCS-CHANNEL-JOIN con.

MCS-CHANNEL-CONVENE req.

MCS-CHANNEL-JOIN con.

Local
File
APE

Local
GCC

Provider

Local
MCS

Provider

Remote
MCS

Provider(s)

Remote
GCC

Provider(s)

Remote
File

APE(s)

Transmitter Convenes
and Joins a Private

MBFT-CONTROL(p)
Channel

Transmitter Convenes
a Private MBFT-DATA(n)

Channel

Transmitter invites each
Receiver individually to

join both channels

Transmitter Admits other
File APEs to the Private
 MBFT-CONTROL(p)

Channel

Receivers Join Private
MBFT-CONTROL(p)

Channel

Transmitter Admits other
File APEs to the Private

 MBFT-DATA(n) Channel

Receivers Join Private
MBFT-DATA(n) Channel

Convenor Disbands Both
Private Channels

Further File
Transactions

Transmitter Sends File
on MBFT-DATA(n)

Channel

Receivers Notify Convenor
 That They Have

Joined Control Channel

MCS-CHANNEL-CONVENE con. [MBFT-CONTROL(p) Channel ID = unique new]

MCS-CHANNEL-EXPEL ind. [Channel ID = MBFT-CONTROL(p)]

MCS-CHANNEL-DISBAND req. [Channel ID = MBFT-CONTROL(p)]

MCS-CHANNEL-EXPEL ind. [Channel ID = MBFT-DATA(n)]

MCS-CHANNEL-DISBAND req. [Channel ID = MBFT-DATA(n)]

MCS-CHANNEL-EXPEL ind. [Channel ID]

MCS-CHANNEL-EXPEL ind. [Channel ID]

MCS-CHANNEL-ADMIT req. [MBFT-DATA(n), MBFT User ID(s)]

MCS-CHANNEL-ADMIT req. [MBFT-CONTROL(p), MBFT User ID(s)]

MCS-CHANNEL-JOIN con.

MCS-CHANNEL-JOIN req. [MBFT-DATA(n)]

MCS-CHANNEL-ADMIT ind. [Channel ID]

MCS-CHANNEL-JOIN req. [MBFT-CONTROL(p)]

MCS-CHANNEL-ADMIT ind. [Channel ID]

FIGURE I.5/T.127
Private sub-session file transfer on acknowledged data channel (convenor use only)

FIGURE I.5/T.127...[D15] = 3 CM (118%)

56 Recommendation T.127 (08/95)

Appendix II

MBFT attributes
(This appendix does not form an integral part of this Recommendation)

A large number of parameters may be used to describe a file and its properties, as identified in Table II.1. The File-
OfferPDU should include sufficient information to allow a site to determine whether a file is required and if it is capable
of being received; filename and filesize are thus suggested as a minimum set, but no parameters are mandated. If
insufficient (or no) information is provided and sites subsequently discover that they do not wish or are unable to continue
receiving a file, they must disconnect from the data channel or discard the incoming data.

File-Start and File-DataPDUs are used to transport the entire file structure, including header information. Note that this
may duplicate or supplement information contained in the File-OfferPDU.

File attributes are derived from Recommendation T.434.

TABLE II.1/T.127

MBFT file attributes

Attribute Comments

Filename A sequence of name components, the first element being the
filename, and any subsequent components being concatenated
to represent the file prefix.

Date and time of last modification Expressed as GeneralizedTime

Compression Applies only to file data

Filesize Size in octets of the complete file

Protocol version T.434 protocol version number

Permitted actions Read, insert, replace, extend, erase

Contents type Unstructured text, unstructured binary

Storage account Identifies the accountable authority responsible for file storage
charges

Date and time of creation Expressed as GeneralizedTime

Date and time of last read access Expressed as GeneralizedTime

Identity of creator

Identity of last modifier

Identifier of last reader

Future filesize Maximum file size in octets

Access control For further study

Legal qualifications Reflects the legal status of the file

Private use Allows definition of proprietary attributes

Structure Indicates the format of the data being transferred

Application reference

Machine

Operating system Additional information describing various aspects of the

Environment environment the binary file transfer is originating from

Pathname

User visible string

Recipient The final user destination of the binary file transfer

Character set Identifies which international character set is to be used

	ITU-T Rec. T.127 (08/95) MULTIPOINT BINARY FILE TRANSFER PROTOCOL
	FOREWORD
	CONTENTS
	SUMMARY
	MULTIPOINT BINARY FILE TRANSFER PROTOCOL
	1 Scope
	2 Normative References
	3 Definitions
	4 Abbreviations
	5 Introduction to multipoint file transfer
	6 Multipoint transfer of data - An overview
	6.1 T.127 system model
	6.2 Compression
	6.3 Priority
	6.4 File preshipping

	7 Baseline MBFT Application
	8 Description of operation
	8.1 File transfer user application
	8.2 File Transfer Application Resource Manager
	8.3 File Transfer Application Service Element
	8.4 MBFT resources
	8.5 MBFT capabilities
	8.6 Support of additional concurrent file transfers
	8.7 Selective file transfer
	8.8 Leaving an MBFT session
	8.9 File exchange
	8.10 Remote directory listing
	8.11 Conducted mode behaviour
	8.12 Aborting a file transfer
	8.13 Diagnostics
	8.14 Non-standard operations

	9 MBFT PDU Definitions
	10 Use of the Multipoint Communication Service
	10.1 Use of MCS data transmission services
	10.2 Channel allocation
	10.3 Token allocation
	10.4 MCS services

	11 Use of Generic Conference Control
	11.1 Resource IDs

	Annex A - Static channel and token assignment
	Annex B - Object Identifier assignments
	Appendix I - File Transfer Examples
	Appendix II - MBFT attributes

