Superseded by a more recent version

INTERNATIONAL TELECOMMUNICATION UNION

ITU-T T.125

TELECOMMUNICATION (04/94)
STANDARDIZATION SECTOR
OF ITU

TELEMATIC SERVICES

TERMINAL EQUIPMENTS AND PROTOCOLS
FOR TELEMATIC SERVICES

MULTIPOINT COMMUNICATION SERVICE
PROTOCOL SPECIFICATION

ITU-T Recommendation T.125
Superseded by a more recent version

(Previously “CCITT Recommendation”)

Superseded by a more recent version

FOREWORD

The ITU-T (Telecommunication Standardization Sector) is a permanent organ of the International Telecommunication
Union (ITU). The ITU-T is responsible for studying technical, operating and tariff questions and issuing Recommen-
dations on them with a view to standardizing telecommunications on aworldwide basis..

The World Telecommunication Standardization Conference (WTSC), which meets every four years, etablishes the topics
for study by the ITU-T Study Groups which, in their turn, produce Recommendations on these topics.

The approva of Recommendations by the Members of the ITU-T is covered by the procedure laid down in WTSC
Resolution No. 1 (Helsinki, March 1-12, 1993).

ITU-T Recommendation T.125 was prepared by ITU-T Study Group 8 (1993-1996) and was approved under the WTSC
Resolution No. 1 procedure on the 7th of April 1994.

NOTE

In this Recommendation, the expression “Administration” is used for conciseness to indicate both a telecommunication
administration and a recognized operating agency.

0 ITU 1994

All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means, electronic or
mechanical, including photocopying and microfilm, without permission in writing from the ITU.

ga b~ W N B

Superseded by a more recent version

CONTENTS

Page
oo o TS PSP PSPPSRI 1
REFEIEINCES. ... vcveeeet et b et E Rt R R e e R R E R Rt r et n e 1
[1= T oo S STS 2
F N ooV = o PSSP 3
OVverview Of the MCS PIrOLOCOIccuiiuieterieeeet ettt e e bbbt b e ebeeaesse e e e e enes 3
51 MOdEl Of thE MCSTAYET ..o et s st b e re s e e eneennens 3
52 Services provided by the MCSTaYer ..o e 4
53 Services assumed from the tranSPOrt [AYEScoeiiieiieree e 4
54 FUNCLIONS OF the MCS TAYEN ...ttt 4
55 HierarchiCal PrOCESSINGcioieuieieiee ettt e e et e s te s reste s aeereeseeneeseeeseeneenseneens 7
5.6 DOMAIN PAIrAIMELENS......c.eitieeiietereet sttt ettt b ettt b et s s b b s e b et b b et be bt ebe e eneeee 9
USE Of the tranSPOIT SEIVICE.......eiveeiite ettt bttt et b et b et bt b e et b e s nens 9
6.1 Model Of the tranSPOI SENVICEceiiieiiieere ettt 9
6.2 Use Of MUILIPIE CONMNECLIONSoueeieie ittt et e s e e e e aeseeeneenaeneens 10
6.3 TranspOort CONNECLION FEIEASEerieuiieeeeie ettt sttt s be b e bt e e et sae b neebe 11
SIUCEUTE Of MCSPDIUS.....ooiiic e e e e e s e 11
ENCOUING OF MCSPDUS.......ccutiiiieieiieisie ettt ettt st et se et s be st be s te et e s e e st beseebesbeneeebesaenesbenenseneens 21
ROULING Of IMCSPDUS........oiuiiiiiicieciteeeie st este e st e st st aesse e e e e e s e e es e saetestesaesbesseaseeseaseeseesasestesteseensenaennens 21
9.1 CONNECE MCSPDIUS......cciiiiietie ettt ettt ettt e see et ea e e e be e teenteeseesbeenteentesneesaeen saeesseensenn 21
9.2 DOMEIN IMCSPDUS ..ottt sttt ettt s b et e b et b bbb et se b e st se et et sttt e sbenenes 22
MEBNING Of MCSPDUS ...ttt e 25
0.1 CONNECE-TNITIEL ..ottt n e e n e 25
10.2 CONNECI-RESPONSE ... ettt sttt sttt sr s r e et bt sa e b e e st e st e s e e e e e e e e se e beseear e nhenneeneeanennan 26
10.3 CONNECE-AAAITIONEL........coouiieiieie ettt sttt b et ae e e e e b e sb e be e ebesaesbesaeeneas 27
104 CONMNECE-RESUILcviiiieteeree ettt bbbt b bt et b bt e b s e nn bt e n e 27
0 T = I T o PSSP 28
0 T = T o OSSR 28
O A |V O o OO TS UP RSP TRRR ST 29
FO.8 IMCCE ittt bbb R R bR b £t R R e bRt nerene s 30
0 T = o OSSR 30
025 (O |V I I o TSSO P TSRS PRSP 31
05 I | I OSSR 32
FO.12 PTIN ittt et b b e £ bR R e R bR R e R bt e Rt R Rt e bt r e 33
0I5 1 T . U ST SR 33
FO.24 RJIUM .otttk b et h b e bR R e R b e e R bt e R b et et et ne b et e b et e r s 33
05 ST U 1 o ST 34
FO.16 AUCE oot R e s e n et r e 34
05 A U 1 o TSP 35
05 S T o PSSP 35
05 T O o TSRS 36
0220 O o1 PSSP 37
02 R O N (o PO TSRS 37
01227 7 O o [ST ST TPR 38
01022 T 7 o TSRS 38
0 12 1 I o PSS 39
0025 O 5 1 TSP E O STTRTRSRR 39
02 G O (o ST SR TP R 39
02 A O N | o ISR 40

Recommendation T.125 (04/94) Superseded by a more recent version i

Superseded by a more recent version

Page

0 172 T 1 o OSSR 40

02 T 1 T SO 41

L0 O T (o SRS 41

0 i S I 1 o SRS 42

L0 U 1S (o OSSPSR 43

0 1 T U 1S ST 43

L0 7 I] o OSSR 44

0 L I o SRS 44

0 G I o TSSO ST PR PRUPTPRRIN 45

0 7 I o RSP S 45

L0 T IV o OSSR 46

L0 Lo T IV T o OSSR 46

2 T AV = SR 47

0 1 NV ot ST 48

L0 I = (o [OOSR 48

0 I = 1 SRS 48

07 I o o TP PO T PP PRUPTPRRN 49

0 I o SRS 49

0 I I o SRS 50

0 I SRS 50

11 MCS provider infOrmMation DASE...........coiiiere et s bt ane 50

0 R o 1o g o I = o) o= 1 50

112 Channel iNFOMMEBHIONeeeiirieeeeierieie ettt st et st et et e e beseesesteseebesbenees e seesensenensens 52

G S o' = T 0101 0= o o ISP S 52

12 EleMENES OF PrOCEAUIE.......c.eceiiteeete ettt bbb et b e e b bbb et st ebe e 54

121 MOCSPDU SEQUENCING .uveuveeetesieseestesseeseesesseeaessessessessessesssssessesssasesssessessessessessessessessessessessnsessessesses 54

2 1 0o 101 (o VA e 1 o SRS 55

12.3 Throughput ENFOrCEMENTciieirieieiee ettt e e se e ee e e b e besaesbesaesaeeae e e en e eneeeenean 56

124 DOMEIN CONFIQUIBLIONcueitiieiiitireetesteeet ettt sttt st sttt et se st b e se b s b e e ebe e neebesaeneeren 57

2T I To 04 T= T 0T = S 57

126 DOMEIN GISCONNECLIONueviieiiieseetesieeet ettt st e bbbt et e seesesbeseebe s b e e ebe s seebesaeneetens 59

12,7 Channel id @IOCAIONc.coirieiirieeie et sttt s et e e 60

128 TOKEN SEALUS....cueeeueete ettt st sttt b e etk s et bbbt bese s e et st st s be e b e 61

13 R = = 0@ =R 40T o= 1= 1= 1 o] OO 61

Appendix | — Alternative encodings of an MCSPDUcooiiiiiiiiiiiieecee e r e e e me e 62
1.1 Y =T To I - L= B =T (U SR 62

1.2 Basic ENcoding RUIES (BER).........ciiiiiieiiieiie e e e e e s e s s sttt e e e e e e e e e e e e e e e s s 10 62

1.3 Packed ENcoding RUIES (PER)uuuiiiiiiiiiiiieiee et a e e e e e e e s e e s s s s e 63
Appendix Il — SDL decomposition of an MCS PrOVIAENccooiiiiiiiiiiiiiiiiie e e e 64.
Appendix lll — SDL specification of the CONtrol ProCESS........cceeiiiiii i 80

Appendix IV — SDL specification of the DOMaIN PrOCESScuiiiiiiiiiiiieiiiiie et rmn s o7
Appendix V. — SDL specification of the ENAPOINt PrOCESSuuvviiiiiiiiieee it e e e e e e e e e e e s s s s eniennnnenes 142
Appendix VI — SDL specification of the AttaChmeNnt PrOCESSuvviiiiiiieei e 146..
Appendix VII — Characteristics of the reference implementationccccccveveeeiiiiiii i 156
AV |0 R Y I T o [= Yo o o'oY 1S3 1 I 156
VIL2 Service defiNitiONSooiiiiiiiiiie it e e s e a e e nnree s 157
AV Fc T = o] ¢ r=1 (3o] (o =W (o]0 T 11 o R PP 157

VILLA AlIGNMENL Of MCSPDUSot s e e e e e e ae e e e e e e e e s ae s s s s eennnennnnn 158
VIS Method Of USING SDLttt e e e e e e e e e e e s e s s e be e aaeereeeeeees 158

VII.6 Remarks on the DOMAIN PIrOCESSuuuuriuiiiiiieiiieeteeeeeessesisssstanraeteeeerereeeaeeeeasessssnss mmm— - 159

ii Recommendation T.125 (04/94) Superseded by a more recent version

Superseded by a more recent version

SUMMARY

This Recommendation defines a protocol operating through the hierarchy of a multipont communication domain.
It specifies the format of protocol messages and procedures governing their exchange over a set of transport connections.

The purpose of the protocol is to implement the Multipoint Communication Service defined by ITU-T Recommen-
dation T.122.

Recommendation T.125 (04/94) Superseded by a more recent version iii

Superseded by a more recent version

Recommendation T.125

MULTIPOINT COMMUNICATION SERVICE
PROTOCOL SPECIFICATION

(Geneva, 1994)

1 Scope

This Recommendation specifies:

a)

b)

procedures for a single protocol for the transfer of data and control information from one MCS provider
to apeer MCS provider;

the structure and encoding of the MCS protocol data units used for the transfer of data and control
information.

The procedures are defined in terms of :

a)
b)

0)

the interactions between peer MCS providers through the exchange of MCS protocol data units;
the interactions between an MCS provider and MCS users through the exchange of MCS primitives;

the interactions between an MCS provider and a transport service provider through the exchange of
transport service primitives;

These procedures are applicable to instances of multipeer communication among systems that support MCS and wish to
interconnect in an open systems environment.

2 References

The following Recommendations and other references contain provisions which, through reference in this text, constitute
provisions of this Recommendation. At the time of publication, the editions indicated were valid. All Recommendations
and other references are subject to revision: all users of this Recommendation are therefore encouraged to investigate the
possibility of applying the most recent edition of the Recommendations and other references listed below. A list of the
currently valid ITU-T Recommendationsis regularly published.

ITU-T Recommendation T.122 (19930)ultipoint Communication Service for audiographics and audio
visual conferencing service definition.

ITU-T Recommendation T.123 (1993¥otocol stacks for audiographic and audiovisual teleconference
applications.

CCITT Recommendation X.200 (198Reference model of Open Systems Interconnection for CCITT
applications.

CCITT Recommendation X.214 (1988Yansport service definition for Open Systems Interconnection
for CCITT applications.

CCITT Recommendation X.208 (1988pecification of Abstract Syntax Notation One (ASN.1).

CCITT Recommendation X.209 (1988pecification of Basic Encoding Rules for Abstract Syntax
Notation One (ASN.1).

Draft ITU-T Recommendation X.691 | ISO/IEC DIS 8825:2prmation Technology — Open Systems
Interconnection — ASN. 1 encoding rules — Specification of Packed Encoding Rules (PER).

Recommendation T.125 (04/94) Superseded by a more recent version 1

Superseded by a more recent version
3 Definitions
NOTE - These definitions make use of the abbreviations defined in clause 4.

This Recommendation is based on the concepts developed in CCITT Recommendation X.200 and makes use of the
following terms defined therein:

a) flow contral;
b) reassembling;

c) recombining;

d) segmenting;
€) sequencing;
f) splitting;

g) transfer syntax;

h) transport connection;

i) transport connection endpoint identifier;
j) transport service;

k) transport service access point;

[) transport service access point address;

m) transport service data unit.

This Recommendation is also based on the concepts developed in ITU-T Recommendation T.122 and makes use of the
following terms defined therein:

a) Control MCSAP;

b) MCS attachment;

¢) MCS channel;

d) MCS connection;

e) MCSdomain;

f) MCSdomain selector;

g) MCS private channel;

h) MCS private channel manager;
i) MCS provider;

i) MCS service access point;
k) MCSuser;

) MCSuserid;

m) Top MCS provider.

For the purposes of this Recommendation, the following definitions apply.

3.1 MCS service data unit: An amount of MCS user data whose identity is preserved during
the transfer from transmitter to receivers. Specifically, the content of one MCS-SEND-DATA request or one
MCS-UNIFORM-SEND-DATA request.

3.2 MCS interface data unit: The unit of information transferred across an MCSAP between an MCS user and
an MCS provider in a single interaction. Each MCS interface data unit contains interface control information and may
also contain al or part of an MCS service data unit.

33 MCS protocol data unit: A unit of information exchanged in the MCS protocol, consisting of control
information transferred between MCS providers to coordinate their joint operation and possibly data transferred on
behalf of MCS users to whom they are providing service.

3.4 MCS data transfer priority: One of four levels. top, high, medium, low. The value is communicated
unchanged from transmitter to receivers. Depending on an MCS domain parameter for the number of distinct data
transfer priorities implemented, two or more lowest priorities may receive the same quality of service.

2 Recommendation T.125 (04/94) Superseded by a more recent version

Superseded by a more recent version
3.5 valid MCSPDU: An MCSPDU whose structure and encoding complies with this Recommendation.

3.6 invalid MCSPDU: An MCSPDU that is not avalid MCSPDU.

3.7 protocol error: Use of an MCSPDU in a manner inconsistent with the procedures of this Recommendation.
3.8 connect MCSPDU: Any one of Connect-Initial, Connect-Response, Connect-Additional, Connect-Result.
3.9 domain MCSPDU: Any MCSPDU that is not a connect MCSPDU.

3.10 data MCSPDU: Any one of SDrq, SDin, USrq, USin.

3.11 control MCSPDU: Any domain MCSPDU that is not a data MCSPDU.

3.12 initial TC: The first transport connection of an MCS connection, used to exchange control MCSPDUs and
data MCSPDUs of top priority.

3.13 additional TC: A subsequent transport connection belonging to an MCS connection, used to exchange data
MCSPDUs of lesser priority.

3.14 subtree of an MCS provider: In the context of an MCS domain, this consists of the MCS provider itself and
its MCS attachments plus all MCS providers hierarchically subordinate to it and their MCS attachments.

3.15 height of an MCS provider: In the context of an MCS domain, this is one more than the maximum height of
all hierarchically subordinate MCS providers. An MCS provider without subordinates has height one.

4 Abbreviations

For the purposes of this Recommendation, the following abbreviations apply.
MCS Multipoint Communication Service
MCSAP M CS service access point

MCSPDU MCS protocol data unit

TC Transport connection
TS Transport service
TSAP Transport service access point
TSDU Transport service data unit
5 Overview of the MCS protocol

5.1 Model of the MCS layer

An MCS provider communicates with MCS users through an MCSAP by means of the MCS primitives defined in
ITU-T Recommendation T.122. These primitives can be the cause or result of MCSPDU exchanges between peer MCS
providers using an MCS connection, or they can be the cause or result of actions taken within a single MCS provider.
MCSPDU exchanges occur between MCS providers that host the same MCS domain.

An MCS provider can have multiple peers, each reached directly by a different MCS connection or indirectly through a
peer MCS provider. An MCS connection is composed of one or more transport connections, depending on the number of
data transfer priorities implemented in an MCS domain. Protocol exchanges are effected using the services of the
transport layer through a pair of TSAPs.

Recommendation T.125 (04/94) Superseded by a more recent version 3

Superseded by a more recent version
This model of the MCS layer isillustrated in Figure 5-1.

T0812640-93/d01

FIGURE 5-1/T.125
Model of the MCS layer

5.2 Services provided by the MCS layer

The MCS protocol supports the services defined in ITU-T Recommendation T.122. Information is transferred to and
from an MCS user using the MCS primitiveslisted in Table 5-1.

5.3 Services assumed from the transport layer

The MCS protocol assumes the use of a subset of the connection-oriented transport service defined in CCITT
Recommendation X.214. Information is transferred to and from a TS provider by the primitives listed in Table 5-2.

5.4 Functions of the MCS layer

Table 5-1 identifies the functional units of MCS and the MCSPDUs s associated with each MCS primitive. MCSPDUSs are
defined in clause 7. The relationship between primitives and MCSPDUs can be as simple as cause and effect, in either
direction. For example, MCS-ATTACH-USER request generates AUrq, and AUcf generates MCS-ATTACH-USER
confirm. Other cases may be more complicated. The completion of MCS-CONNECT-PROVIDER, for example,
requires the exchange of additional MCSPDUs as side effects of the four-phase primitive. And any one of five
MCSPDUSs can cause an MCS-DETACH-USER indication, any of four an MCS-CHANNEL-EXPEL indication.

54.1 Domain management

The MCS layer maintains the integrity of the MCS connections comprising an MCS domain. An MCS connection is
oriented, with one end hierarchically superior to the other. There isa single MCS provider at the top of each domain.

Establishing an MCS connection merges two domains into one. The MCS layer ensures that one top provider remains. It
resolves any conflicts of unique identity or exclusive ownership that may arise.

Disconnecting an MCS connection splits a domain into two portions. The portion containing the top provider survives.
The bottom portion eradicates itself.

4 Recommendation T.125 (04/94) Superseded by a more recent version

Superseded by a more recent version

The MCS layer uniquely identifies users attached to a domain. Users may become aware of each other through their
interactions via MCS primitives. The MCS layer notifies al users of a domain when one of them detaches. The MCS
layer recovers any resources of a detached user.

TABLE 5-1/T.125

MCS primitives
Functional Unit Primitives Associated MCSPDUs
Domain Management MCS-CONNECT-PROVIDER request Connect-Initial
MCS-CONNECT-PROVIDER indication Connect-Initial
MCS-CONNECT-PROVIDER response Connect-Response
MCS-CONNECT-PROVIDER confirm Connect-Response
(side effects) Connect-Additional
Connect-Result
PDin EDrq
MCrq MCcf PCin
MTrq MTecf PTin
MCS-DISCONNECT-PROVIDER request DPum
MCS-DISCONNECT-PROVIDER indication DPum RJum
MCS-ATTACH-USER reqguest AUrq
MCS-ATTACH-USER confirm AUcf
MCS-DETACH-USER request DUrq
MCS-DETACH-USER indication DUin
MCcf PCin
MTecf PTin
Channel Management MCS-CHANNEL-JOIN request Clrq
MCS-CHANNEL-JOIN confirm Clcf
MCS-CHANNEL-LEAVE request CLrq
MCS-CHANNEL-LEAVE indication MCecf PCin
MCS-CHANNEL-CONVENE request CCrq
MCS-CHANNEL-CONVENE confirm CCcf
MCS-CHANNEL-DISBAND request CDrq
MCS-CHANNEL-DISBAND indication MCecf PCin
MCS-CHANNEL-ADMIT request CArq
MCS-CHANNEL-ADMIT indication CAin
MCS-CHANNEL-EXPEL reguest CErq
MCS-CHANNEL-EXPEL indication CEin CDin
MCcf PCin
Data Transfer MCS-SEND-DATA request SDrq
MCS-SEND-DATA indication SDin
MCS-UNIFORM-SEND-DATA request USrq
MCS-UNIFORM-SEND-DATA indication USin

Recommendation T.125 (04/94) Superseded by a more recent version 5

Superseded by a more recent version

TABLE 5-1/T.125 (end)

MCS primitives
Functional Unit Primitives Associated MCSPDUs
Token Management MCS-TOKEN-GRAB request TGrq
MCS-TOKEN-GRAB confirm TGef
MCS-TOKEN-INHIBIT request TIrq
MCS-TOKEN-INHIBIT confirm Tlcf
MCS-TOKEN-GIVE request TVrq
MCS-TOKEN-GIVE indication TVin
MCS-TOKEN-GIVE response TVrs
MCS-TOKEN-GIVE confirm TVef
MCS-TOKEN-PLEASE request TPrq
MCS-TOKEN-PLEASE indication TPin
MCS-TOKEN-REL EASE request TRrq
MCS-TOKEN-RELEASE confirm TRef
MCS-TOKEN-TEST request TTrq
MCS-TOKEN-TEST confirm TTecf

54.2 Channel management

The MCS layer records which parts of an MCS domain contain one or more users joined to a given channel, so that it
can optimize the transfer of data to destinations that wish to receiveit.

The MCS layer treats user ids as single-member channels, which only the designated user is allowed to join. On request,
it can create private channels to which only admitted users are allowed access or assign public channels to which no
other users are currently joined.

5.4.3 Data transfer

The MCS layer maintains a sequenced flow of data to the users who have joined a channel. A channel becomes, in
effect, amulticast distribution list, with a range somewhere between zero destinations and a complete broadcast.

By default, the MCS layer routes data to each receiver over the shortest path of MCS connections. Optionally, it routes
specified MCS service data units through the top MCS provider, thereby guaranteeing their uniform receipt at all
receivers, which may include the transmitter too.

The MCS layer recognizes one or more priorities of data transfer and extends them preferential processing. Through
segmentation, it allows MCS service data units of unlimited size.

The MCS layer regulates the global flow of data within a domain. The inability of a receiver to accept data at the rate it
is offered eventually creates back-pressure that causes transmitters to be blocked. A user may be detached involuntarily
if it failsto maintain a minimum receiving rate.

The MCS layer guarantees error-free receipt of transmitted data, as long as the source and destination users remain

attached and the destination user remains joined to the channel. However, higher priority data takes precedence, and a
surfeit of it may indefinitely delay the delivery of lower priority data.

6 Recommendation T.125 (04/94) Superseded by a more recent version

Superseded by a more recent version
TABLE 5-2/T.125

Transport service primitives

Primitives Use Parameters Use
T-CONNECT request X Called address X
T-CONNECT indication X Calling address X

Expedited data option -
Quality of service X
TS user-data -
T-CONNECT response X Responding address -
T-CONNECT confirm X Expedited data option -
Quality of service X

TS user-data -

T-DATA request X TS user-data X
T-DATA indication X
T-EXPEDITED-DATA request - TS user-data -

T-EXPEDITED-DATA indication -

T-DISCONNECT request X TS user-data -

T-DISCONNECT indication X Reason -
TS user-data -

X The MCS protocol assumes that this feature is always available.
— The MCS protocol does not use this feature.

5.4.4 Token management

The MCS layer implements token operations at the top MCS provider, thereby ensuring consistency and exclusion.

5.5 Hierarchical processing
Hierarchical processingin an MCS domain isillustrated in Figure 5-2.

The nodes in the figure represent MCS providers, and the labelled arrows represent MCSPDUSs. This example focuses on
aperiod of time after the domain has been established through connections between MCS providers and the use of data
transfer is beginning to expand. At step 1 provider D requests on behalf of a user to join a channel over which data will
be distributed, and at step 2 the request is confirmed as successful. At step 3 a user attached to provider A sends data,
and the corresponding SDrq begins to flow upward. Assuming that only attachments at providers A, C, and D are joined
to the channel over which the data is being sent, the request MCSPDU is reflected downward at steps 6 and 7 as SDin.
Provider E, aware that no other subordinate needs to receive the data, simply forwards SDrq upward at step 4.
Provider F forwards SDrq upward at step 5 but also reflects it downward at step 6, knowing that provider C has
expressed interest in the channel.

MCS providers are not especially concerned with their height in the hierarchy, except for their role in maintaining an
overall limit on the height of the domain and in the broad sense that they are either the top provider or they are not. The
top MCS provider has no upward connection. All others have exactly one.

An MCS provider records information about channels and tokens used in its subtree of an MCS domain.

Recommendation T.125 (04/94) Superseded by a more recent version 7

Superseded by a more recent version

Top
MCS Provider

Provider F

N CJrq 1l

Nspinz

Provider E

Negef2

T0812650-93/d02

3 Squ7l

FIGURE 5-2/T.125

Hierarchical processing in an MCS domain

An MCS provider records channels that are joined by users within the subtree and, for each such channel, where the
joins originate, that is, from which attachments and from which downward MCS connections. It records user ids that are
assigned in the subtree and where they originate. It records private channels that have either a manager or an admitted
user in the subtree, and it records the associated user ids.

An MCS provider records tokens that are grabbed or inhibited by users within the subtree, and it records the associated
user ids.

An MCS provider inspects requests arising from its subtree to verify that the initiating user id is legitimately assigned to
the originating attachment or downward MCS connection. This creates rings of protection around the top MCS provider
and limits how much disruption a malicious participant can cause in an otherwise cooperative domain.

In general terms, to which there are several exceptions, the operation of the MCS layer can be described as follows.

a) An MCS primitive request invoked at an MCS attachment generates an MCSPDU at the corresponding
MCS provider and dispatches it upward towards the top MCS provider. There, where full information
about the MCS domain is held, the MCSPDU is acted on.

b) A confirm MCSPDU may be generated at the top MCS provider to return results to the requesting
attachment. MCS providers that pass it along update their records according to the impact of the operation
on their subtree. A confirm is routed to the initiating user id by consulting local records at each successive
downward hop.

¢) An indication MCSPDU may be generated instead to inform other attachments about the action taken.
Indications may be replicated and sent downward on several connections that lead to affected users. MCS
providers may aso update their records with the impact of an operation as part of processing an
indication.

8 Recommendation T.125 (04/94) Superseded by a more recent version

Superseded by a more recent version

The preceding description is an overview intended to create a conceptual framework. Full details are specified in later
clauses concerning the information recorded in an MCS provider and how specific MCSPDUs are processed.

Among exceptions are the following: Some reguests, notably CJrq and CLrq, may stop rising a alevel short of the top
provider, and some indications, notably SDin, may be generated at alevel below the top provider. One MCSPDU, TVrs,
belongs to the response category. And some MCSPDUs may be generated by an MCS provider as a continuation of
processing unlike MCSPDUS, such as CLrq following DUin.

5.6 Domain parameters

The MCS providers hosting a single MCS domain allocate resources and execute procedures according to the following
parameters. The values of these parameters are identical throughout a domain.

a) Maximum number of MCS channels that may be in use simultaneously. This includes channels that are
joined by any user, user ids that have been assigned, and private channels that have been created.

b) Maximum number of user ids that may be assigned simultaneously. This is a sublimit within the
constraint of the preceding parameter.

¢) Maximum number of token ids that may be grabbed or inhibited simultaneously.

d) Number of data transfer priorities implemented. This equals the number of TCs in an MCS connection.
An MCS user may still send and receive data with priorities outside the limit. However, such priorities
may be treated the same as the lowest priority that isimplemented.

e) Enforced throughput. Although global flow control limits data transfer within a domain to the rate of the
sowest receiver, receivers must not be allowed to run arbitrarily slowly. Otherwise, one party in a
conference may obstruct al others. This parameter instructs MCS providers to enforce a minimum
receiving rate at each MCS attachment and over each downward MCS connection. Violators run the risk
of being involuntarily detached or disconnected, respectively.

f) Maximum height. This constrains the height of all MCS providers, in particular the top provider.

g) Maximum size of domain MCSPDUSs. Global flow control is based on buffering domain MCSPDUs
within an MCS provider (but not connect MCSPDUSs). For simplicity, fixed-size buffers are assumed.
An MCS provider shall not generate larger MCSPDUSs. This constrains the amount of information that
can be packed into a single control MCSPDU and suggests where unlimited user data should be
segmented in data MCSPDUSs.

h) Protocol version. This takes one of two values defining different encodings for domain MCSPDUSs.

NOTE — A given instance of an MCS provider may operate with local resource constraints that are also parameterized.
These may include the amount of memory available for buffering MCSPDUs awaiting transport, the maximum number of MCS
attachments, and the maximum number of MCS connections to other providers. Such parameters are local matters and are not
communicated across an MCS domain.

6 Use of the transport service

6.1 Model of the transport service

This description paraphrases relevant parts of CCITT Recommendation X.214 assuming that no use is made of expedited
data

Recommendation T.125 (04/94) Superseded by a more recent version 9

Superseded by a more recent version

The transport service offers these featuresto a TS user:

a) Meansto establish a TC with another TS user for the purpose of exchanging TSDUs. More than one TC
may exist between the same pair of TS users.

b) Associated with each TC at its time of establishment, the opportunity to request, negotiate, and have
agreed by the TS provider a certain Quality of Service as specified by parameters representing
characteristics such as throughput, transit delay, residual error rate, and priority.

¢) Means of transferring TSDUs on a TC. The transfer of TSDUs, which consist of an integral number of
octets, is transparent, in that the boundaries of TSDUs and the contents of TSDUs are preserved
unchanged by the TS provider.

d) Meansby which areceiving TS user may control the rate at which the sending TS user may send data.

€) Theunconditional and therefore possibly destructive release of aTC.

The operation of a TC is modelled in an abstract way by a pair of queues linking two TSAPs. There is one queue for
each direction of information flow. Each TC is modelled by a separate pair of queues.

The queue model is used to express the flow control feature. A queue has a limited capacity, but this capacity is not
necessarily either fixed or determinable. Connect, TSDU, and disconnect objects are entered and removed from a queue
as the result of interactions at the two TSAPs. The ability of a TS user to add objects to a queue is determined by the
behaviour of the TS user removing objects from that queue and the state of the queue. The only objects that can be
placed in a queue by the TS provider are disconnect objects. Objects are added to a queue subject to control by the TS
provider. Objects are normally removed from the queue subject to control by the receiving TS user. Objects are normally
removed in the same order that they were added. The only exception to normal removal is that an object may be deleted
by the TS provider if, and only if, the following one is a disconnect object.

A TC endpoint identification mechanism must be provided locally if the TS user and the TS provider need to distinguish
between several TCsat a TSAP. All primitives must then make use of this identification mechanism to identify the TC to
which they apply. Thisimplicit identification is not shown as a parameter of the TS primitives and must not be confused
with the address parameters of T-CONNECT.

6.2 Use of multiple connections

An MCS connection consists of one or more TCs between the same pair of MCS providers. The first TC established is
caled the initial TC; those established subsequently are called additional TCs. All the TCs that belong to one MCS
connection are established by the same MCS provider, in reaction to an MCS-CONNECT-PROVIDER request. This
request contains address parameters that are the calling and called TSAP addresses. These are used unmodified in the
T-CONNECT requests that result.

The number of TCs per MCS connection is uniform throughout an MCS domain. This domain parameter equals the
number of data transfer priority levels implemented. Separate TCs are required because each is a vehicle for flow
control. Blockages in lower priority data should not result in back pressure against higher priority data. To be fully
implemented, lower and higher priority data must be carried on different TCs.

The quality of service requested for a TC may vary depending on the data priority for which it is established. These
quality of service targets need not be uniform across an MCS domain.

Aspects of quality of service that are of interest include maximum or average throughput and transit delay. High priority
data may favour low transit delay for real-time response but may not require high throughput. Low priority data, on the
other hand, may favour high throughput for bulk transfers but may not require low transit delay.

10 Recommendation T.125 (04/94) Superseded by a more recent version

Superseded by a more recent version
TC priority is another aspect of quality of service, athough it does not align precisely with the concept of MCS data
transfer priority. It specifies the relative order in which TCs are to have their quality of service degraded, if necessary.
High TC priority may be requested along with other characteristics, like low transit delay, to ensure that MCS priority
data receives the preferential treatment it deserves.

Connect MCSPDUs occur only as the first TSDU carried in either direction of a TC. Connect-Initial and
Connect-Response traverse the initial TC of an MCS connection. Connect-Additional and Connect-Result traverse
additional TCs, if any.

A calling MCS provider, issuing T-CONNECT reguests, controls through its own actions which TCs are part of the
same MCS connection and what data transfer priorities they represent.

A caled MCS provider, receiving T-CONNECT indications, must in general accept a TC and read its first TSDU before
learning its significance. Connect-Initial identifies an incoming TC as the beginning of a new MCS connection.
Connect-Additional identifies an incoming TC as part of an MCS connection in progress.

Connect-Additional contains a value assigned by the called MCS provider and conveyed to the calling MCS provider in
a Connect-Response over the initial TC that designates the additional TC as belonging to the same MCS connection.
Connect-Additional also states explicitly the data priority that the TC represents.

Connect MCSPDUs are exchanged immediately following TC establishment. Once an MCS connection has been
confirmed, it becomes part of a hierarchical MCS domain. Thereafter the MCS connection conveys domain MCSPDUSs.

With the exception of data MCSPDUs, domain MCSPDUs traverse the initid TC of an MCS connection. Data
MCSPDUs traverse the TC that corresponds to their data priority. If the priority specified is beyond the number
implemented in an MCS domain, a data MCSPDU traverses the TC of the lowest priority that isimplemented.

If only one priority is implemented in an MCS domain, its MCS connections each consist of asingle TC, no use is made
of Connect-Additional or Connect-Result, and all MCSPDUs travel in sequence between providers.

6.3 Transport connection release

A TS provider adds reliability to end-to-end connections by executing enough protocol to compensate for any weakness
in underlying network services. An MCS provider does not duplicate this functionality. It does not attempt further
automatic recovery in the event of atransport failure.

Unrecoverable errors are announced through a T-DISCONNECT indication. If any of the TCs belonging to an MCS
connection is disconnected, the others are immediately disconnected too. Unless this was requested by the user, an
MCS-DISCONNECT-PROVIDER indication is generated, and the reason is given as provider-initiated.

An MCS-DISCONNECT-PROVIDER request, on the other hand, should appear as an indication at the other side with
the reason given as user-requested. Despite assurances in X.214, the simplest class of transport protocol does not allow
passing user data in T-DISCONNECT. Hence, the disconnect reason code is transferred in an explicit MCSPDU.
ThisMCSPDU compels an MCS provider, upon receipt, to disconnect the MCS connection that conveyed it.

7 Structure of MCSPDUs

The structure of MCSPDUSs is specified using the notation ASN.1 of CCITT Recommendation X.208. The use and
significance of these MCSPDUSs is further described in clauses 9 and 10.

Recommendation T.125 (04/94) Superseded by a more recent version 11

Superseded by a more recent version
MCS-PROTOCOL DEFINITIONS :=

BEGIN

-- Part 1: Fundamental MCS types

Channelld ::= INTEGER (0..65535) -- range is 16 bits
StaticChannelld ::= Channelld (1..1000) -- those known permanently
DynamicChannelld ::= Channelld (1001..65535) -- those created and deleted

Userld ::= DynamicChannelld -- created by Attach-User
-- deleted by Detach-User

PrivateChannelld ::= DynamicChannelld -- created by Channel-Convene
-- deleted by Channel-Disband

AssignedChannelld ::= DynamicChannelld -- created by Channel-Join zero
-- deleted by last Channel-Leave

Tokenld ::= INTEGER (1..65535) -- all are known permanently

TokenStatus ::= ENUMERATED

{
notinUse (0),
selfGrabbed (1),
otherGrabbed (2),
selfnhibited (3),
otherinhibited (4),
selfRecipient (5),
selfGiving (6),
otherGiving (7)

}

DataPriority ::= ENUMERATED

{
top (0),
high (1),
medium (2),
low 3)

}

Segmentation ::= BIT STRING

{
begin (0),
end (1)

} (SIZE (2))

12 Recommendation T.125 (04/94) Superseded by a more recent version

Superseded by a more recent version
DomainParameters ::= SEQUENCE

{
maxChannellds INTEGER (0..MAX),
-- a limit on channel ids in use,
-- static + user id + private + assigned
maxUserlds INTEGER (0..MAX),
-- a sublimit on user id channels alone
maxTokenlds INTEGER (0..MAX),
-- a limit on token ids in use
-- grabbed + inhibited + giving + ungivable + given
numPriorities INTEGER (0..MAX),
-- the number of TCs in an MCS connection
minThroughput INTEGER (0..MAX),
-- the enforced number of octets per second
maxHeight INTEGER (0..MAX),
-- alimit on the height of a provider
maxMCSPDUsize INTEGER (0..MAX),
-- an octet limit on domain MCSPDUs
protocolVersion INTEGER (0..MAX)
}

-- Part 2: Connect provider

Connect-Initial ::= [APPLICATION 101] IMPLICIT SEQUENCE

{
callingDomainSelector OCTET STRING,
calledDomainSelector OCTET STRING,
upwardFlag BOOLEAN,
-- TRUE if called provider is higher
targetParameters DomainParameters,
minimumParameters DomainParameters,
maximumParameters DomainParameters,
userData OCTET STRING
}
Connect-Response ::= [APPLICATION 102] IMPLICIT SEQUENCE
{

result Result,

calledConnectid INTEGER (0..MAX),

-- assigned by the called provider

-- to identify additional TCs of

-- the same MCS connection
domainParameters DomainParameters,
userData OCTET STRING

}
Connect-Additional ::= [APPLICATION 103] IMPLICIT SEQUENCE
{
calledConnectid INTEGER (0..MAX),
dataPriority DataPriority
}
Connect-Result ::= [APPLICATION 104] IMPLICIT SEQUENCE
{
result Result
}

-- Part 3: Merge domain

PDin ::= [APPLICATION 0] IMPLICIT SEQUENCE -- plumb domain indication
{
heightLimit INTEGER (0..MAX)
-- a restriction on the MCSPDU receiver

Recommendation T.125 (04/94) Superseded by a more recent version

13

Superseded by a more recent version
EDrq ::= [APPLICATION 1] IMPLICIT SEQUENCE -- erect domain request
{

subHeight INTEGER (0..MAX),
-- height in domain of the MCSPDU transmitter
sublnterval INTEGER (0..MAX)
-~ its throughput enforcement interval in milliseconds
}
ChannelAttributes ::= CHOICE
{
static [0] IMPLICIT SEQUENCE
{
channelld StaticChannelld
-- joined is implicitly TRUE
b
userld [11 IMPLICIT SEQUENCE
{
joined BOOLEAN,
userld Userld
-- TRUE if user is joined to its user id
8
private [2] IMPLICIT SEQUENCE
{
joined BOOLEAN,
-- TRUE if channel id is joined below
channelid PrivateChannelld,
manager Userld,
admitted SET OF Userld
-- may span multiple MCrq
b
assigned [31 IMPLICIT SEQUENCE
{
channelld AssignedChannelid
-- joined is implicitly TRUE
}
}

MCrq ::= [APPLICATION 2] IMPLICIT SEQUENCE -- merge channels request
mergeChannels SET OF ChannelAttributes,
purgeChannellds SET OF Channelld

MCcf ::= [APPLICATION 3] IMPLICIT SEQUENCE -- merge channels confirm
mergeChannels SET OF ChannelAttributes,

purgeChannellds SET OF Channelld

PCin ::= [APPLICATION 4] IMPLICIT SEQUENCE -- purge channels indication

detachUserlds SET OF Userld,
-- purge user id channels
purgeChannellds SET OF Channelld

-- purge other channels

14 Recommendation T.125 (04/94) Superseded by a more recent version

Superseded by a more recent version
TokenAttributes ::= CHOICE

{
grabbed [0] IMPLICIT SEQUENCE
{
tokenid Tokenld,
grabber Userld
b
inhibited [11 IMPLICIT SEQUENCE
{
tokenid Tokenld,
inhibitors SET OF Userld
-- may span multiple MTrq
b
giving [2] IMPLICIT SEQUENCE
{
tokenld Tokenld,
grabber Userld,
recipient Userld
b
ungivable [31 IMPLICIT SEQUENCE
{
tokenld Tokenld,
grabber Userld
-- recipient has since detached
h
given [4] IMPLICIT SEQUENCE
{
tokenid Tokenld,
recipient Userld
-- grabber released or detached
}
}
MTrq ::= [APPLICATION 5] IMPLICIT SEQUENCE -- merge tokens request
{
mergeTokens SET OF TokenAttributes,
purgeTokenlds SET OF Tokenld
}
MTcf ::= [APPLICATION 6] IMPLICIT SEQUENCE -- merge tokens indication
{
mergeTokens SET OF TokenAttributes,
purgeTokenids SET OF Tokenid
}
PTin ::= [APPLICATION 7] IMPLICIT SEQUENCE -- purge tokens indication
{
purgeTokenlds SET OF Tokenld
}

-- Part 4: Disconnect provider
DPum ::= [APPLICATION 8] IMPLICIT SEQUENCE -- disconnect provider ultimatum
{

}

RJum ::= [APPLICATION 9] IMPLICIT SEQUENCE -- reject MCSPDU ultimatum
{

reason Reason

diagnostic Diagnostic,
initialOctets OCTET STRING
}

-- Part 5: Attach/Detach user

AUrq ::= [APPLICATION 10] IMPLICIT SEQUENCE -- aftach user request
{
}

Recommendation T.125 (04/94) Superseded by a more recent version

15

AUcf

Superseded by a more recent version

::= [APPLICATION 11] IMPLICIT SEQUENCE -- attach user confirm

result Result,
initiator Userld OPTIONAL

::= [APPLICATION 12] IMPLICIT SEQUENCE -- detach user request

reason Reason,
userlds SET OF Userld

::= [APPLICATION 13] IMPLICIT SEQUENCE -- detach user indication

reason Reason,
userlds SET OF Userld

-- Part 6: Channel management

CJrq
{

CJcf

CDrq

16

::= [APPLICATION 14] IMPLICIT SEQUENCE -- channel join request

initiator Userld,
channelld Channelld
-- may be zero

::= [APPLICATION 15] IMPLICIT SEQUENCE -- channel join confirm

result Result,
initiator Userld,
requested Channelld,
-- may be zero
channelld Channelld OPTIONAL

::= [APPLICATION 16] IMPLICIT SEQUENCE -- channel leave request

channellds SET OF Channelld

::= [APPLICATION 17] IMPLICIT SEQUENCE -- channel convene request

initiator Userld

::= [APPLICATION 18] IMPLICIT SEQUENCE -- channel convene confirm

result Result,
initiator Userld,
channelld PrivateChannelld OPTIONAL

::= [APPLICATION 19] IMPLICIT SEQUENCE -- channel disband request

initiator Userld,
channelld PrivateChannelld

::= [APPLICATION 20] IMPLICIT SEQUENCE -- channel disband indication

channelld PrivateChannelld

::= [APPLICATION 21] IMPLICIT SEQUENCE -- channel admit request

initiator Userld,
channelld PrivateChannelld,
userlds SET OF Userld

Recommendation T.125 (04/94) Superseded by a more recent version

Superseded by a more recent version

CAin ::= [APPLICATION 22] IMPLICIT SEQUENCE -- channel admit indication

Userld,
PrivateChannelld,
SET OF Userld

CErq ::= [APPLICATION 23] IMPLICIT SEQUENCE -- channel expel request

Userld,
PrivateChannelld,
SET OF Userld

CEin ::= [APPLICATION 24] IMPLICIT SEQUENCE -- channel expel indication

{
initiator
channelld
userlds

}

{
initiator
channelld
userlds

}

{
channelld
userlds

}

-- Part 7: Data transfer

PrivateChannelld,
SET OF Userld

SDrq ::= [APPLICATION 25] IMPLICIT SEQUENCE -- send data request

{
initiator
channelld
dataPriority
segmentation
userData

Userld,
Channelld,
DataPriority,
Segmentation,
OCTET STRING

SDin ::= [APPLICATION 26] IMPLICIT SEQUENCE -- send data indication

initiator
channelld
dataPriority
segmentation
userData

Userld,
Channelld,
DataPriority,
Segmentation,
OCTET STRING

USrq ::= [APPLICATION 27] IMPLICIT SEQUENCE -- uniform send data request

initiator
channelld
dataPriority
segmentation
userData

Userld,
Channelld,
DataPriority,
Segmentation,
OCTET STRING

USin ::= [APPLICATION 28] IMPLICIT SEQUENCE -- uniform send data indication

initiator
channelld
dataPriority
segmentation
userData

}

-- Part 8: Token management

Userld,
Channelld,
DataPriority,
Segmentation,
OCTET STRING

TGrq ::= [APPLICATION 29] IMPLICIT SEQUENCE -- foken grab request

{
initiator
tokenid

Userld,
Tokenld

Recommendation T.125 (04/94) Superseded by a more recent version

17

Superseded by a more recent version
TGcf ::= [APPLICATION 30] IMPLICIT SEQUENCE -- foken grab confirm
{

result Result,
initiator Userld,
tokenid Tokenld,
tokenStatus TokenStatus

Tirq ::= [APPLICATION 31] IMPLICIT SEQUENCE -- foken inhibit request

initiator Userld,
tokenid Tokenld

Tlcf ::= [APPLICATION 32] IMPLICIT SEQUENCE -- token inhibit confirm

result Result,
initiator Userld,
tokenid Tokenld,
tokenStatus TokenStatus

TVrq ::= [APPLICATION 33] IMPLICIT SEQUENCE -- foken give request

initiator Userld,
tokenid Tokenld,
recipient Userid

TVin ::= [APPLICATION 34] IMPLICIT SEQUENCE -- foken give indication

initiator Userld,
tokenid Tokenld,
recipient Userld

TVrs ::= [APPLICATION 35] IMPLICIT SEQUENCE -- foken give response

result Result,
recipient Userld,
tokenid Tokenld

TVcf ::= [APPLICATION 36] IMPLICIT SEQUENCE -- token give confirm

result Result,
initiator Userld,
tokenid Tokenld,
tokenStatus TokenStatus

TPrq ::= [APPLICATION 37] IMPLICIT SEQUENCE -- foken please request

initiator Userld,
tokenld Tokenld

TPin ::= [APPLICATION 38] IMPLICIT SEQUENCE -- foken please indication

initiator Userld,
tokenid Tokenld

TRrq ::= [APPLICATION 39] IMPLICIT SEQUENCE -- token release request

initiator Userld,
tokenid Tokenld

18 Recommendation T.125 (04/94) Superseded by a more recent version

Superseded by a more recent version
TRcf ::= [APPLICATION 40] IMPLICIT SEQUENCE -- token release confirm

{
result Result,
initiator Userld,
tokenid Tokenld,
tokenStatus TokenStatus
}
TTrq ::= [APPLICATION 41] IMPLICIT SEQUENCE -- token test request
{
initiator Userld,
tokenid Tokenld
}
TTcf ::= [APPLICATION 42] IMPLICIT SEQUENCE -- foken test confirm
{
initiator Userld,
tokenid Tokenld,
tokenStatus TokenStatus
}

-- Part 9: Status codes

Reason ::= ENUMERATED

{

}

Result ::= ENUMERATED

{

}

rn-domain-disconnected
rn-provider-initiated
rn-token-purged
rn-user-requested
rn-channel-purged

rt-successful
rt-domain-merging
rt-domain-not-hierarchical
rt-no-such-channel
rt-no-such-domain
rt-no-such-user
rt-not-admitted
rt-other-user-id
rt-parameters-unacceptable
rt-token-not-available
rt-token-not-possessed
rt-too-many-channels
rt-too-many-tokens
rt-too-many-users
rt-unspecified-failure
rt-user-rejected

Diagnostic ::= ENUMERATED -- in RJum

{

dc-inconsistent-merge
dc-forbidden-PDU-downward
dc-forbidden-PDU-upward
dc-invalid-BER-encoding
dc-invalid-PER-encoding
dc-misrouted-user
dc-unrequested-confirm
dc-wrong-transport-priority
dc-channel-id-conflict
dc-token-id-conflict

(0),
(1),
(2),
(3),
4

(0),
(1),
(2),
(3),
(4),
(5),
(6),
(7),
(8),
(9),
(10),
(1),
(12),
(13),
(14),
(15)

(0),
(1),
(2),
(3),
(4),
(5),
(6),
(7,
(8),
(9),

Recommendation T.125

-- in DPum, DUrq, DUin

-- in Connect, response, confirm

(04/94)

Superseded by a more recent version

19

Superseded by a more recent version

dc-not-user-id-channel (10),
dc-too-many-channels (11),
dc-too-many-tokens (12),
dc-too-many-users (13)

}
-- Part 10: MCSPDU repertoire

ConnectMCSPDU ::= CHOICE

{
connect-initial Connect-Initial,
connect-response Connect-Response,
connect-additional Connect-Additional,
connect-result Connect-Result

}

DomainMCSPDU ::= CHOICE

{
pdin PDin,
edrq EDrq,
mcrq MCrq,
mccf MCcf,
pcin PCin,
mtrq MTrq,
mtcf MTcf,
ptin PTin,
dpum DPum,
rjum RJum,
aurq AUrq,
aucf AUcf,
durq DUrq,
duin DUin,
cjrq CJrq,
cjcf CJcf,
cirq CLrq,
ccrq CCrq,
cccf CCcf,
cdrq CDrq,
cdin CDin,
carq CArq,
cain CAin,
cerq CErq,
cein CEin,
sdrq SDrq,
sdin SDin,
usrq USrq,
usin USin,
tgrq TGrq,
tgcf TGcf,
tirq Tirq,
ticf Tlcf,
tvrq TVrq,
tvin TVin,
tvrs TVrs,
tvcf TVcf,
tprq TPrq,
tpin TPin,
trrq TRrq,
trcf TRcf,
ttrq TTrq,
ttcf TTcf

}

END

20 Recommendation T.125 (04/94) Superseded by a more recent version

Superseded by a more recent version
8 Encoding of MCSPDUs

Each MCSPDU is transported as one TSDU across a TC belonging to an MCS connection. Connect MCSPDUSs are
unlimited in size. Domain MCSPDUSs are limited in size by a parameter of the MCS domain.

A standard ASN.1 data value encoding is used to transfer MCSPDUs between peer MCS providers. Two versions of this
protocol are defined, differing only in the specification of encoding rules:

— Version 1 — Uses the Basic Encoding Rules of CCITT Recommendation X.209 for all MCSPDUs.

— Version 2 — Uses the Basic Encoding Rules for connect MCSPDUs and the Packed Encoding Rules
of ISO/IEC 8825-2 for all subsequent domain MCSPDUs. Specifically, the ALIGNED variant of
BASIC-PER shall be applied to the ASN.1 typemainMCSPDU. The bit string produced shall be
conveyed as an integral number of octets. The leading bit of this string shall coincide with the most
significant bit of the first octet.

Appendix | provides an example of a data transfer MCSPDU under the alternative encodings of Version 1 and 2.

Negotiation of the protocol version involves the exchange Gbmnect-Initial and aConnect-Response MCSPDU
over the initial TC. These two MCSPDUs are always encoded by the Basic Encoding Rules. SoGosanadty
Additional and Connect-Result MCSPDUs that follow, prior to the onset of domain MCSPDUs. Domain MCSPDUs
begin with the second TSDU transmitted over a TC.

Version 2 of this protocol shall not be used until the Packed Encoding Rules have been adopted as part of an ITU-T
Recommendation or ISO/IEC International Standard.

NOTES
1 The Packed Encoding Rules yield more compact MCSPDU headers.

2 Both BER and PER are self-delimiting, in the sense that they contain enough information to locate the end of each
encoded MCSPDU. It might be argued that this makes the use of TSDUs unnecessary and that this protocol could be implemented
over non-standard transport services that convey octet streams without preserving TSDU boundaries. However, such an approach is
more vulnerable to implementation errors. If the boundary between MCSPDUs were ever lost, recovery would be difficult.

9 Routing of MCSPDUs

9.1 Connect MCSPDUs
Figure 9-1 specifies the exchange of connect MCSPDUs.

With the receipt of L onnect-Response, the calling MCS provider learns the negotiated value for the number of data
transfer priorities implemented in the domain. For illustration, connect MCSPDUs on additional TCs are shown obeying
the strict sequence 2, 3, 4 at the called MCS provider. In reality, transport connections may not be established in the
same order that they are requested. Indeadomect-Additional may arrive in a different order than it was sent,
causing aConnect-Result to be returned out of sequence too. Or the latter, even if sent in sequence, may still be
reordered in transit. A calling MCS provider need not wait for all additional TCs to be established before sending the
first Connect-Additional. The called MCS provider need not wait for a full seCofinect-Additional MCSPDUSs to

arrive before returning the fir€fonnect-Result. Receipt of a full set of successful results at the calling MCS provider,

in whatever order, generates a successful MCS-CONNECT-PROVIDER confirm.

An unsuccessfuConnect-Response or Connect-Result or a T-DISCONNECT indication at some intermediate point
shall cause all TCs belonging to the MCS connection so far to be disconnected and shall generate an unsuccessful
MCS-CONNECT-PROVIDER confirm.

Recommendation T.125 (04/94) Superseded by a more recent version 21

Superseded by a more recent version
An MCS-CONNECT-PROVIDER request specifies which of two MCS providers is higher than the other. This
hierarchical relationship determines the subsequent routing of domain MCSPDUS, and the distinction between calling
and called MCS provider is thereafter irrelevant. For example, a next step is for the MCS layer to merge the resources of
two previously independent domains. MCrq and MTrq are generated by the lower MCS provider and are transmitted
across the new MCS connection to the higher MCS provider. The direction in which these MCSPDUSs are sent could be
either calling-to-called or called-to-calling, depending on how the upward flag was set.

Calling Called
Provider Provider
MCS-CONNECT-PROVIDER Connect-Initial MCS-CONNI_ECT_-PROVIDER
request indication
TC1
Connect-Response MCS-CONNECT-PROVIDER
response
TC1
Connect-Additional
TC2
Connect-Additional
TC3
Connect-Additional
TC4
Connect-Result
TC2
Connect-Result
TC3
MCS-CONNEC_T-PROVIDER Connect-Result
confirm
TC 4

T0812660-93/d03

NOTE — The number and relative order of additional TCs may vary

FIGURE 9-1T.125
Message flow of connect MCSPDUs

9.2 Domain MCSPDUs

Table 9-1 specifies the routing of domain MCSPDUSs.

If an MCS provider generates or forwards an MCSPDU of category request, it travels over the unique MCS connection
upward. EDrq, CJrq, and CLrq may be consumed at some intermediate MCS provider. Other requests rise to be acted
on by the top MCS provider, unless the content of a reguest is determined to be invalid, in which case its MCSPDU may
be ignored, without confirmation.

22 Recommendation T.125 (04/94) Superseded by a more recent version

Superseded by a more recent version

TABLE 9-1/T.125

Routing of domain MCSPDUs

Category MCSPDUs TC Direction
Request EDrq MCrq MTrq | Up
AUrq DUrq
Clrq CLrq CCrq
CDrq CArq CErq
TGrq Tlrq TVrq
TPrq TRrq TTrq
SDrq USrq A
Indication PDin PCin PTin | Down
DUin
CDin CAin CEin
TVin
TPin
SDin USin A
Response TVrs | Up
Confirm MCecf MTcf | Down
AUcf
Clcef CCecf
TGef Tlcf TVef
TRef TTCF
Ultimatum DPum RJum | Up or Down
| The MCSPDU traverses the initial TC.
A The MCSPDU may traverse an additional TC, depending on its data transfer priority.

Up The MCSPDU travels toward the top MCS provider.

Down The MCSPDU travels away from the top MCS provider.

If an MCS provider generates or forwards an MCSPDU of category indication, copies of it, possibly amended in

content, travel over zero or more MCS connections downward, according to the following rules:

a) PDin is sent on al MCS connections downward. The height limit it contains is decremented by one. An

b)

0

MCS provider receiving this MCSPDU with a height limit of zero shall disconnect.

PCin is sent on al MCS connections downward. The set of user ids forwarded is unchanged, so that al
detached users will be announced to those that remain. The set of other channel ids forwarded may be
restricted to those in use in a subtree. At aformer top provider that is still merging into an upper domain,
both user ids and other channel ids are restricted to those whose acceptance into the upper domain has
been confirmed.

PTin is sent on all MCS connections downward. The set of token ids forwarded may be restricted to those
in use in a subtree. At a former top provider that is still merging into an upper domain, token ids are

restricted to those whose acceptance into the upper domain has been confirmed.

Recommendation T.125

(04/94)

Superseded by a more recent version

d)

f)

Q)

h)

Superseded by a more recent version
DUin is sent on all MCS connections downward. The set of user ids forwarded is unchanged, so that all
detached users will be announced to those that remain. At a former top provider that is still merging into
an upper domain, user ids are restricted to those whose acceptance into the upper domain has been
confirmed.

CDin is sent on all MCS connections downward that contain in their subtree the manager of the private
channel or any admitted user.

CAin and CEin are sent on all MCS connections downward that contain one or more of the affected users
in their subtree. The set of user ids forwarded may be restricted to those residing in a subtree.

TVin is sent on asingle MCS connection downward that contains the designated recipient in its subtree.

TPin is sent on all MCS connections downward that contain in their subtree a user who has grabbed,
inhibited, or is being given the token.

SDin and USin are sent on all MCS connections downward by which the specified channel is joined,
except that when SDin is generated, it is not sent back on the connection by which SDrq arrived.

Indications PCin, PTin, DUin, CAin, and CEin need not be forwarded if the sets of ids they contain are empty.

If an MCS provider generates or forwards an MCSPDU of category response, it travels over the unique MCS connection
upward. It rises to be acted on by the top MCS provider, unlessits content is determined to be invalid.

If an MCS provider generates or forwards an MCSPDU of category confirm, it travels over a single MCS connection
downward, according to the following rules.

a)

b)

d)

MCecf retraces, in the opposite direction, the path of the earliest MCrq that has not yet been answered by
aconfirm. This requires each MCS provider to maintain afirst-in first-out queue of pending requests.

MTcf retraces, in the opposite direction, the path of the earliest MTrq that has not yet been answered by
aconfirm. This requires each MCS provider to maintain afirst-in first-out queue of pending requests.

AUcf retraces, in the opposite direction, the path of an earlier AUrq that has not yet been answered by a
confirm. It is not critical which AUrq, if more than one is pending, but to be fair each MCS provider
should maintain a first-in first-out queue. Upon sending AUcf, an MCS provider shall record to which
subtree the user id it contains is thereby being assigned.

Other MCSPDUSs of category confirm contain an initiator user id that was previously assigned through the
action of AUcf as just explained. These MCSPDUs are sent on the MCS connection downward that leads
to the subtree where the user id was assigned. Continuing in this way, they eventually return to the
provider that hosts the requesting MCS attachment.

Confirms are generated in the course of processing like requests. All but CJef are generated by the top MCS provider.

If an MCS provider generates an MCSPDU of category ultimatum, it travels over a single MCS connection, either
upward or downward. DPum commands the receiving MCS provider to disconnect the MCS connection that conveys it.
RJum rejects an erroneous MCSPDU with a diagnostic code and invites the MCS provider that transmitted it to
disconnect. Ultimatums are not forwarded.

24 Recommendation T.125 (04/94) Superseded by a more recent version

Superseded by a more recent version
10 Meaning of MCSPDUs

Tables 10-1 through 10-47 reiterate the contents of individual MCSPDUSs as defined in clause 8.

10.1 Connect-Initial

Connect-Initial is generated by an MCS-CONNECT-PROVIDER request. It is sent as the first TSDU over the initial
TC of anew MCS connection. At the receiver it generates an MCS-CONNECT-PROVIDER indication.

TABLE 10-1/T.125

Connect-Initial MCSPDU

Contents Source Sink
Calling Domain Selector Request Indication
Called Domain Selector Request Indication
Upward Flag Request Indication
Target Domain Parameters Request Indication
Minimum Domain Parameters Request Indication
Maximum Domain Parameters Request Indication
User Data Request Indication

Calling transport address and called transport address are additional parameters of the MCS-CONNECT-PROVIDER
request and indication. They become parameters of T-CONNECT and are not passed explicitly in any MCSPDU. The
same pair of transport addresses shall be used to request all TCs belonging to the same MCS connection.

Transport quality of service is an additional parameter of the MCS-CONNECT-PROVIDER request but not of the
indication. Quality of service can vary from one TC to another, and the quality available is only disclosed in the process
of establishing a given TC. Since the number of additional TCs needed is not known untii MCS-CONNECT-
PROVIDER has negotiated the domain parameter for number of data priorities implemented, this primitive cannot at the
same time fully negotiate their transport quality of service. A called MCS provider shall therefore accept incoming TCs
automatically at the offered quality of service, so long as this meets any minimum optionally specified by the calling
MCS provider and indicated through each individual T-CONNECT.

The interpretation of domain selector values is a local matter for each MCS provider. These are octet strings that have
the characteristics of an address. Acceptable values may be determined through the process of configuring an MCS
provider. More than one value may select the same domain. An unspecified domain selector is an octet string of length
zero. This may be resolved, through local convention, to some explicit value.

The upward flag specifies the direction of a new MCS connection: true if the called provider is to be considered higher
than the calling provider and false otherwise. An MCS provider plays arole in the hierarchy of a domain based on the
direction of MCS connections in which it participates. No provider shall allow two connections to higher providers. A
provider without a connection to a higher provider shall act astop MCS provider.

Recommendation T.125 (04/94) Superseded by a more recent version 25

Superseded by a more recent version

The target domain parameters of Connect-Initial individually shall lie between the minimum and maximum values
specified. An MCS provider shall revise the requested domain parameters to reflect limits of its implementation or to
impose values aready agreed among the existing members of a domain. It may increase the minimums and decrease the
maximums. It shall change targets only to keep them within the interval. An MCS provider should be prepared to honour
any response that falls within the range of valuesit proposes.

User datais an arbitrary octet string. It may have length zero.

An MCS provider automatically accepts each incoming TC to the limit of its capacity. User data in T-CONNECT is
unused. The first TSDU received in data transfer, being either a Connect-Initial or a Connect-Additional MCSPDU,
determines the nature of the TC. If the content is unacceptable, a called MCS provider may disconnect the TC
immediately. The preferred reaction is to return a Connect-Response or Connect-Result, as the case may be, explaining
why the MCS connection failed. The calling MCS provider shall then disconnect.

10.2 Connect-Response

Connect-Response is generated by an MCS-CONNECT-PROVIDER response. It isthe first TSDU sent in reverse over
theinitial TC of a new MCS connection. It conveys the acceptance of an MCS connection to the calling MCS provider,
which then proceeds to establish any additional TCsrequired.

TABLE 10-2/T.125

Connect-Response MCSPDU

Contents Source Sink
Result Response Confirm
Domain Parameters Response Confirm
Called Connect Id Called provider Calling provider
User Data Response Confirm

If the result is successful, this MCSPDU fixes the domain parameters in effect. Among these is the number of MCS data
transfer priorities implemented, equal to the number of TCs in an MCS connection. If this exceeds one, additional TCs
shall be created and bound to the MCS connection through the exchange of Connect-Additional and Connect-Result
MCSPDUs.

The called connect id serves as the means for associating additional incoming TCs at the called MCS provider with this
initial TC. Its value is chosen for this purpose alone. It shall uniquely identify one MCS connection in progress at the
called provider. Thisid has no lasting significance following the completion of MCS-CONNECT-PROVIDER.

Most of the parameters of MCS-CONNECT-PROVIDER confirm are conveyed in Connect-Response. If the result is
unsuccessful or no additional TCs are needed, confirm is generated immediately. Otherwise, it is deferred until the
results are known for binding additional TCsto the MCS connection.

26 Recommendation T.125 (04/94) Superseded by a more recent version

Superseded by a more recent version
10.3 Connect-Additional

Connect-Additional is generated following receipt of Connect-Response. It is sent asthefirst TSDU over an additional
TC of anew MCS connection.

Data priority takes on the values high, medium, and low in sequence, up to the number of additional TCs required.

TABLE 10-3/T.125

Connect-Additional MCSPDU

Contents Source Sink
Called Connect Id Calling provider Called provider
Data Priority Calling provider Called provider

10.4 Connect-Result

Connect-Result is generated following receipt of Connect-Additional. It is the first TSDU sent in reverse over an
additional TC of anew MCS connection.

TABLE 10-4/T.125

Connect-Result MCSPDU

Contents Source Sink

Result Called provider Confirm

If any result is unsuccessful, MCS-CONNECT-PROVIDER confirm shall be generated immediately. All TCs associated
with the MCS connection shall be disconnected and any MCSPDUs they convey shall be ignored.

Otherwise, successful results shall be awaited for each additional TC. These may return out of sequence. When all have
been collected, a successful MCS-CONNECT-PROVIDER confirm shall be generated.

After MCS-CONNECT-PROVIDER confirm, domain MCSPDUs may flow across an MCS connection. Each MCS
connection belongs to a single domain. In configurations where an MCS provider hosts more than one domain, the MCS
connection that carries MCSPDUSs determines which domain they apply to. The descriptions of domain MCSPDUSs that
occupy the remainder of this clause are set in the context of asingle domain.

Recommendation T.125 (04/94) Superseded by a more recent version 27

Superseded by a more recent version
10.5 PDin

PDin is generated following the successful completion of MCS-CONNECT-PROVIDER. It plumbs the hierarchy of
MCS providers below a new MCS connection to ensure that no cycle has been created. PDin is also generated by the top
MCS provider to enforce the maximum height of a domain.

TABLE 10-5/T.125
PDin MCSPDU

Contents Source Sink

Height Limit Former top or top Subordinates

PDin is generated at the lower end of a new MCS connection, by the provider that has ceased to be top of a domain. Its
content is initialized to the domain parameter for the maximum height of the domain. PDin is transmitted over al MCS
connections downward.

Asneeded, PDin is generated in the same way at the top MCS provider.

Wherever PDin is received, the height limit it contains is inspected. If greater than zero, the limit is decremented by one
and PDin is forwarded over all MCS connections downward. A value of zero, on the other hand, means that the receiver
lies too far from the top provider. It shall react by disconnecting the MCS connection upward. This deletes an entire
subtree and helps to repair the height of the domain.

In the presence of acycle, the height limit of PDin must decrease until it reaches zero. The provider that detects this will
break the cycle, at the expense of deleting all providersin the cycle and their subordinates from the domain.

NOTE — An MCS provider, with purely local knowledge of MCS connections, cannot prevent the creation of cycles. It can
ensure that there is at most one connection upward at all times, but it cannot ensure that the upward connection dbeskod loop
some provider below. When a cycle is created, the immediate cause is a faulty upward connection from the top MCS provider.
Controller applications, which specify the MCS connections to be created, must strive to avoid such errors.

10.6 EDrq

EDrq is generated following the successful completion of MCS-CONNECT-PROVIDER. It communicates upward
changes in the height of providers and their throughput enforcement intervals. EDrq is generated by an MCS provider
whenever its height or interval changes.

The height of an MCS provider may change when an MCS connection is added or dropped or when a subordinate
provider reports a change through EDrq. Its monitoring interval to enforce the minimum throughput specified as a
domain parameter may change by adapting to the intervals reported by subordinates or for other reasons. If either value
changes, an MCS provider shall transmit EDrq to itsimmediate superior.

TABLE 10-6/T.125

EDrq MCSPDU
Contents Source Sink
Height in Domain Subordinate Higher provider
Throughput Enforcement Interval Subordinate Higher provider

28 Recommendation T.125 (04/94) Superseded by a more recent version

Superseded by a more recent version
10.7 MCrq

MCrq is generated following the successful completion of MCS-CONNECT-PROVIDER. It communicates upward the
attributes of channels held by aformer top provider so that they may be incorporated into the merged domain.

TABLE 10-7/T.125

MCrq MCSPDU
Contents Source Sink
Merge Channels Former top Top provider
Purge Channel Ids Intermediates Top provider

MCrq may be filled with the attributes of multiple channels, up to the domain limit on MCSPDU size. As detailed in the
ASN.1 definitions of clause 7, each of the four kinds of channel in use (static, user id, private, assigned) has its relevant
set of attributes. These are held in the information base of the top MCS provider and are partialy replicated into the
subtrees where a channel is used. When two domains are merged, through the action of MCS-CONNECT-PROVIDER,
channels that are in use in the lower domain must either be incorporated into the information base of the upper domain
or be purged from the lower domain. This decision rests with the top provider of the merged domain.

Each channel shall be considered individually. If the domain limits on channels in use allow it and the channel id has not
already been put to some conflicting use, the upper domain shall expand to include it. The use of a static channel id is
never a conflict. The use of a private channel id in the lower domain is not a conflict if it is also used as a private
channel id in the upper domain and has the same user id as manager. All other combinations of simultaneous use are
disallowed, requiring the channel id to be purged from the lower domain.

If a private channel has a large set of admitted users, its attributes may not fit into a single MCrq and shall be sent
upward in multiple MCSPDUSs. However, the second and succeeding requests to merge the same private channel shall be
delayed until an MCcf has been received in reply to the first. Only then is it known if domain limits have allowed the
channel to be put into use in the upper domain. If the first request fails, it shall not be repeated with a remaining subset
of admitted users.

Each MCrq €dlicits an MCecf reply from the top MCS provider, in the same sequence. An MCef contains nothing that
explicitly identifies the preceding MCrq. Replies shall be routed solely by the order in which these MCSPDUs are
received. MCS providers above the former top shall make a record of each unanswered MCrq and whence it arrived, so
that the corresponding MCecf may be returned via the same MCS connection.

Intermediate MCS providers shall validate the user ids proclaimed in private channel attributes, to ensure that they are
legitimately assigned to the subtree where the MCrq originates. Invalid user ids shall be deleted. If the manager of a
private channel is deleted, al of the channel attributes shall be deleted from the merge request and the channel id alone
shall be included in the set to be purged. Except for this validation of user ids, intermediate MCS providers shall not
modify the contents of an MCrq.

A former top provider shall await individual confirmation that all user ids and all token ids have been incorporated into a
merged domain or purged before it begins to submit static, assigned, or private channel attributes for merger.

Recommendation T.125 (04/94) Superseded by a more recent version 29

Superseded by a more recent version
10.8 MCcf

MCecf replies to a preceding MCrq. It reflects the same set of channel ids and a subset of the attributes. Channel
attributes not incorporated into the merged domain are reported as channel ids to be purged.

Accepted channel ids are reflected with the attributes that were entered into the information base of the top MCS
provider. Intermediate providers shall update their information base to conform.

TABLE 10-8/T.125

MCcf MCSPDU
Contents Source Sink
Merge Channels Top provider Intermediates
Purge Channel Ids Top provider Former top

Channels to be purged from the lower domain are listed by id only. If the same channel ids are used in the upper domain,
they are left undisturbed. Intermediate providers shall forward purged channel ids without acting on them.

MCS providers shall route MCef to the source of the antecedent MCrq, using the knowledge that there is a one-to-one
reply. MCef returns to the former top provider that generated MCrq. There the merged channels may be ignored, as
they have remained in the information base pending areply. Purged channel ids shall be deleted asthey are for PCin.

Intermediate MCS providers shall confirm that user ids proclaimed in private channel attributes are assigned to the
subtree to which MCecf is routed. If a private channel manager has been detached and reassigned elsewhere in the time
since the antecedent MCrq was validated, an intermediate provider shall generate a CDrq making the private channel a
casualty of domain merger and shall move the channel id into the purged set. If any admitted users have been reassigned
elsewhere, it shall exclude them from the channel.

10.9 PCin

PCin is generated at a former top provider following receipt of MCcf. It is broadcast downward and purges the use of
specified channel ids from subordinate providers.

TABLE 10-9/T.125

PCin MCSPDU
Contents Source Sink
Detach User Ids Former top Subordinates
Purge channel Ids Former top Subordinates

30 Recommendation T.125 (04/94) Superseded by a more recent version

Superseded by a more recent version
Depending on the current use of a channel id, the effect of purging it is: MCS-DETACH-USER indication to all users
if a user id channel; MCS-CHANNEL-LEAVE indication to the joined users if a static or assigned channel id;
MCS-CHANNEL-DISBAND indication to the manager and MCS-CHANNEL-EXPEL indication to the admitted users
if aprivate channd id.

A former top provider, knowing the use of al channels in its lower domain, can generate the proper indications from
channel ids alone. Its subordinates, however, may have only partial knowledge. They must be told which channel ids
represent detached users, for which an indication is always generated, and which represent other kinds of channels, for
which an indication is generated only if the channel is in use at the subordinate provider. Therefore, PCin divides the
channel ids to be purged into these two categories.

The purging of a user id through PCin shall have the same consequences as deletion through DUin, except that, since
the receiver of PCin is no longer top provider, it need not generate CDin or TVef as a side effect.

NOTE — A provider may receive in PCin static and assigned channel ids to which it is not joined or private channel ids for
which its attachments are neither managers nor admitted users. Records of use maintained in the information base akowoa provid
suppress primitive indications for such channel ids.

10.10 MTrq

MTrq is generated following the successful completion of MCS-CONNECT-PROVIDER. It communicates upward the
attributes of tokens held by aformer top provider so that they may be incorporated into the merged domain.

TABLE 10-10/T.125

MTrq MCSPDU
Contents Source Sink
Merge Tokens Former top Top provider
Purge Token Ids Intermediates Top provider

MTrq may be filled with the attributes of multiple tokens, up to the domain limit on MCSPDU size. As detailed in the
ASN.1 definitions of clause 7, each state of atoken in use (grabbed, inhibited, giving, ungivable, given) has its relevant
set of attributes. These are held in the information base of the top MCS provider and are partialy replicated into the
subtrees where a token is used. When two domains are merged, through the action of MCS-CONNECT-PROVIDER,
tokens that are in use in the lower domain must either be incorporated into the information base of the upper domain or
be purged from the lower domain. This decision rests with the top provider of the merged domain.

Each token shall be considered individually. If the domain limits on tokens in use allow it and the token id has not
already been put to some conflicting use, the upper domain shall expand to include it. The inhibiting of atoken id in the
lower domain is not a conflict if it is also inhibited in the upper domain. All other combinations of simultaneous use are
disallowed, requiring the token id to be purged from the lower domain.

If atoken has alarge set of inhibiting users, its attributes may not fit into a single MTrq and shall be sent upward in
multiple MCSPDUs. However, the second and succeeding requests for the same inhibited token shall be delayed until an
MTecf has been received in reply to the first. Only then isit known if domain limits have allowed the token to be put into
use in the upper domain. If thefirst request fails, it shall not be repeated with a remaining subset of inhibitors.

Recommendation T.125 (04/94) Superseded by a more recent version 31

Superseded by a more recent version
Each MTrq €licits an MTef reply from the top MCS provider, in the same sequence. An MTef contains nothing that
explicitly identifies the preceding MTrq. Replies shall be routed solely by the order in which these MCSPDUs are
received. MCS providers above the former top shall make arecord of each unanswered MTrq and whence it arrived, so
that the corresponding MTecf may be returned via the same MCS connection.

Intermediate MCS providers shall validate the user ids proclaimed in token attributes, to ensure that they are legitimately
assigned to the subtree where the MTrq originates. Invalid user ids shall be deleted. A token being given shall remain
grabbed if either the grabber or the recipient, but not both, is deleted. If a token becomes released through this deletion
of user ids, all of its attributes shall be deleted from the merge request and the token id alone shall be included in the set
to be purged. An inhibited token shall remain inhibited in MTrq even if al inhibitors are deleted, leaving an empty set
in the attributes, because inhibitors may survive from other MCSPDUs. Except for this validation of user ids,
intermediate MCS providers shall not modify the contents of an MTrq.

A former top provider shall await individual confirmation that all user ids have been incorporated into a merged domain
or purged before it begins to submit token attributes for merger.

10.11 MTef

MTcf replies to a preceding MTrq. It reflects the same set of token ids and a subset of the attributes. Token attributes
not incorporated into the merged domain are reported as token ids to be purged.

TABLE 10-11/T.125

MTcf MCSPDU
Contents Source Sink
Merge Tokens Top provider Intermediates
Purge Token Ids Top provider Former top

Accepted token ids are reflected with the attributes that have been entered into the information base at the top MCS
provider. Intermediate providers shall update their information base to conform.

Tokens to be purged from the lower domain are listed by id only. If the same token ids are used in the upper domain,
they are left undisturbed. Intermediate providers shall forward purged token ids without acting on them.

MCS providers shall route MTecf to the source of the antecedent MTrq, using the knowledge that there is a one-to-one
reply. MTef returns to the former top provider that generated MTrq. There the merged tokens may be ignored, as they
have remained in the information base pending areply. Purged token ids shall be deleted as they are for PTin.

Intermediate MCS providers shall confirm that the user ids proclaimed in token attributes are assigned to the subtree to
which MTef is routed. If any user ids have been detached and reassigned elsewhere in the time since the antecedent
MTrq was vaidated, an intermediate provider shall generate for them a DUrq with reason code channel purged,
making them casualties of domain merger. If anon-inhibited token id becomes rel eased through this deletion of user ids,
it shall be moved into the purged set.

32 Recommendation T.125 (04/94) Superseded by a more recent version

Superseded by a more recent version
10.12 PTin

PTin is generated at a former top provider following receipt of MTef. It is broadcast downward and purges the use of
specified token ids from subordinate providers.

TABLE 10-12/T.125

PTin MCSPDU
Contents Source Sink
Purge Token lds Former top Subordinates

The effect of purging a token is severe: MCS-DETACH-USER indication to any user who has grabbed, inhibited, or is
being given one of the token ids. A provider shall implement this by generating DUrq on behalf of the affected users
with reason token purged.

NOTE - It is anticipated that Recommendation T.122 may be revised in the future to allow MCS-TOKEN-RELEASE
indication in this situation. This would allow the affected user to remain attached even though its right to use the itbkieavis w

10.13 DPum

DPum is generated by an MCS-DISCONNECT-PROVIDER request. In turn, it generates an MCS-DISCONNECT-
PROVIDER indication at the other end of an MCS connection. DPum compels the receiver to disconnect the MCS
connection that conveyed it.

DPum may aso be generated by an MCS provider when it detects an error condition like the existence of a cycle in the
domain hierarchy. In such cases, the reason is other than user-requested.

TABLE 10-13/T.125

DPum MCSPDU
Contents Source Sink
Reason Requesting provider Indication

10.14 RJum

RJum is generated when an MCS provider receives an invalid MCSPDU or detects an MCS protocol error. It invitesthe
peer provider at the other end of an MCS connection to disconnect, since recovery is uncertain from a situation that
should not occur.

RJum diagnoses the error and returns an initial portion of the offending TSDU, typically as many octets as will fit in the
maximum size MCSPDU. The receiving provider has the option to disconnect or to persevere.

Recommendation T.125 (04/94) Superseded by a more recent version 33

Superseded by a more recent version
TABLE 10-14/T.125

RJum MCSPDU
Contents Source Sink
Diagnostic Rejecting provider Rejected provider
Initial Octets Rejecting provider Rejected provider

10.15 AUrq

AUrq is generated by an MCS-ATTACH-USER request. It rises to the top MCS provider, which returns an AUcf reply.
If the domain limit on number of user ids allows, a new user id is generated.

TABLE 10-15/T.125

AUrq MCSPDU

Contents Source Sink

(None) - _

AUrq contains no information other than its MCSPDU type. The domain to which the user attaches is determined by the
MCS connection conveying the MCSPDU. The only initial characteristic of the user id generated is its uniqueness.

An MCS provider shall make arecord of each unanswered AUrq received and by which MCS connection it arrived, so
that areplying AUcf can be routed back to the same source. To distribute replies fairly, each provider should maintain a
first-in, first-out queue for this purpose.

10.16 AUcf

AUcf is generated at the top MCS provider upon receipt of AUrq. Routed back to the requesting provider, it generates
an MCS-ATTACH-USER confirm.

TABLE 10-16/T.125

AUcf MCSPDU
Contents Source Sink
Result Top provider Confirm
Initiator (optional) Top provider Confirm

34 Recommendation T.125 (04/94) Superseded by a more recent version

Superseded by a more recent version

AUcf contain auser id if and only if the result is successful. Providers that receive a successful AUcf shall enter the user
id into their information base.

MCS providers shall route AUcf to the source of an antecedent AUrq, using the knowledge that there is a one-to-one
reply. A provider that transmits AUecf shall note to which downward MCS connection the new user id is thereby
assigned, so that it may validate the user id when it arises later in other requests.

10.17 DUrq

DUrq is generated by an MCS-DETACH-USER request. If valid, it rises to the top MCS provider, which deletes the
user from itsinformation base and broadcasts DUin to advise other providers of the change.

TABLE 10-17/T.125

DUrq MCSPDU
Contents Source Sink
Reason Requesting provider Top provider
User Ids Requesting provider Top provider

An MCS-DETACH-USER request generates a DUrq containing reason user-requested and a single user id.

DUrq shall also be generated by an MCS provider when a downward MCS connection is disconnected. At that point, all
users in the affected subtree are lost and shall be reported as detached with reason domain disconnected. |If user id
assignments are pending, a later reply, either MCcef or AUcf, may then be left with no route back to its source in the
disconnected subtree. A provider confronted with this shall also generate DUrq to delete the unassignable user ids.

Providers that receive DUrq shall validate the user ids it contains to ensure that they are legitimately assigned to the
subtree of origin. Invalid user ids shall be deleted. If no user idsremain, a DUrq shall be ignored.

The user ids contained in DUrq shall not be deleted from the information base until a provider receives DUin. This
maintains consistency with the top MCS provider.

NOTE - If more than one data priority is implemented in an MCS dorbdiilp may arrive at a given provider before
data sent earlier but at a low priority by the same user. This protocol does not prevent data being delivered to an evchaftent
it was reported througBUin that the sender had detached.

10.18 DUin

DUin is generated at the top MCS provider upon receipt of DUrq. It is broadcast downward to all other providers and
generates MCS-DETACH-USER indications at all attachments.

At asurviving attachment, DUin generates one MCS-DETACH-USER indication for each user id it contains. It does not
matter whether the notified user was previously aware of the existence of a detached user.

Upon receipt of a DUin containing its own user id, an MCS attachment ceases to exist. Any channels than become
unjoined as aresult of auser detaching, except for the user id channel itself, shall be left via CLrq.

Recommendation T.125 (04/94) Superseded by a more recent version 35

Superseded by a more recent version
TABLE 10-18/T.125

DUin MCSPDU
Contents Source Sink
Reason Top provider Indication
User Ids Top provider Indication

Providers that receive DUin shall delete the specified user ids from their information base. Private channels managed by
a detached user shall be deleted if there are no other admitted users. If other users remain, deletion of the manager shall
cause the top provider to multicast a CDin towards them. Any tokens grabbed, being given to, or inhibited by a detached
user shall have their state adjusted accordingly. The deletion of an intended token recipient shall cause the top provider
to generate an unsuccessful TVef towards the donor, unless it has rel eased the token or itself detached.

10.19 CJrq

ClJrq is generated by an MCS-CHANNEL-JOIN request. If valid, it rises until it reaches an MCS provider with enough
information to generate a CJcf reply. This may be the top MCS provider.

TABLE 10-19/T.125

CJrq MCSPDU
Contents Source Sink
Initiator Requesting Provider Higher provider
Channel Id Request Higher provider

The user id of the initiating MCS attachment is supplied by the MCS provider that receives the primitive request.
Providers that receive CJrq subsequently shall validate the user id to ensure that it is legitimately assigned to the subtree
of origin. If theuser id isinvalid, the MCSPDU shall be ignored.

NOTE — This allows for the possibility th@Jrq may be racing upward against a purge of the initiating user id flowing
down. A provider that receive®Cin first might receive aCJrq soon thereafter that contains an invalid user id. This is a normal
occurrence and is not cause for rejecting the MCSPDU.

CJrq may rise to an MCS provider that has the requested channel id in its information base. Any such provider, being
consistent with the top MCS provider, will agree whether the request should succeed. If the request should fail, the
provider shall generate an unsuccessful CJef. If it should succeed and the provider is already joined to the same channel,
the provider shall generate a successful CJcf. In these two cases, MCS-CHANNEL-JOIN completes without necessarily
visiting the top MCS provider. Otherwise, if the request should succeed but the channel is not yet joined, a provider shall
forward CJrq upward.

If CJrq risesto the top MCS provider, the channel id requested may be zero, which isin no information base because it
is an invalid id. If the domain limit on the number of channels in use alows, a new assigned channel id shall be
generated and returned in a successful CJef. If the channel id requested is in the static range and the domain limit on the
number of channelsin use allows, the channel id shall be entered into the information base and shall likewise be returned
in asuccessful CJef.

36 Recommendation T.125 (04/94) Superseded by a more recent version

Superseded by a more recent version

Otherwise, the reguest will succeed only if the channel id is already in the information base of the top MCS provider. A
user id channel can only be joined by the same user. A private channel id can be joined only by users previously
admitted by its manager. An assigned channel id can be joined by any user.

10.20 ClJcf

ClJcf is generated at a higher MCS provider upon receipt of CJrq. Routed back to the requesting provider, it generates
an MCS-CHANNEL-JOIN confirm.

TABLE 10-20/T.125

CJcef MCSPDU
Contents Source Sink
Result Higher provider Confirm
Initiator Higher provider MCSPDU routing
Requested Higher provider Confirm
Channel Id (optional) Higher provider Confirm

CJecf contains ajoined channel id if and only if the result is successful.

The channel id requested is the same as in CJrq. This helps the initiating attachment relate MCS-CHANNEL-JOIN
confirm to an antecedent request. Since CJrq need not rise to the top provider, confirms may occur out of order.

If the result is successful, CJef joins the receiving MCS provider to the specified channel. Thereafter, higher providers
shall route to it any data that users send over the channel. A provider shall remain joined to a channel as long as any of
its attachments or subordinate providers does. To leave the channel, a provider shall generate CLrq.

Providers that receive a successful CJef shall enter the channel id into their information base. If not aready there, the
channel id shall be given type static or assigned, depending on its range.

CJcf shall be forwarded in the direction of the initiating user id. If the user id is unreachable because an MCS
connection no longer exists, the provider shall decide whether it has reason to remain joined to the channel. If not, it
shall generate CLrq.

10.21 CLrq

CLrq is generated by an MCS provider to remove itself from a set of channels. The motivation may be an MCS-
CHANNEL-LEAVE request from the last attachment joined to a channel. CLrq continuesto rise if higher providers, as
a consequence, also lose their reason for being joined.

Providers that receive CLrq shall stop routing to the MCS connection that conveyed it any data that users send over the
specified channels. When the last attachment or subordinate provider leaves a channel, an MCS provider shall generate a
corresponding CLrq.

Recommendation T.125 (04/94) Superseded by a more recent version 37

Superseded by a more recent version
TABLE 10-21/T.125

CLrq MCSPDU
Contents Source Sink
Channel Ids Requesting provider Higher provider
10.22 CCrq

CCrq is generated by an MCS-CHANNEL-CONVENE request. If valid, it rises to the top MCS provider, which returns
aCCcf reply. If the domain limit on number of channel ids alows, a new private channel id is generated.

CCrq contains the initiating user id, which shall be validated as explained for CJrq.

The requester becomes manager of the private channel. Initially the channel is unjoined and its manager is the only
admitted user.

TABLE 10-22/T.125

CCrq MCSPDU
Contents Source Sink
Initiator Requesting provider Higher provider

10.23 CCcf

CCcf is generated at the top MCS provider upon receipt of CCrq. Routed back to the requesting provider, it generates
an MCS-CHANNEL-CONVENE confirm.

TABLE 10-23/T.125

CCcf MCSPDU
Contents Source Sink
Result Top provider Confirm
Initiator Top provider MSCPDU routing
Channel Id (optional) Top provider Confirm

CCecf contains a private channel id if and only if the result is successful.

Providers that receive a successful CCef shall enter the channel id into their information base as a private channel with
the initiating user id asits manager.

CCcf shall be forwarded in the direction of the initiating user id. If the user id is unreachable because an MCS
connection no longer exists, no special actions need be taken, as a DUin must arrive later to report that the initiator has
detached. Since the initiator isits manager, thiswill delete the channel id from the information base.

38 Recommendation T.125 (04/94) Superseded by a more recent version

Superseded by a more recent version
10.24 CDrq

CDrq is generated by an MCS-CHANNEL-DISBAND request. If valid, it rises to the top MCS provider, which deletes
the private channel id and generates CDin.

TABLE 10-24/T.125

CDrq MCSPDU
Contents Source Sink
Initiator Requesting provider Top provider
Channdl Id Request Top provider

CDrq may also be generated by an MCS provider on its own initiative to disband a channel.

CDrq contains the initiating user id, which shall be validated to ensure that it is legitimately assigned to the subtree of
origin. If the initiator does not equal the manager of the private channel, as recorded in the information base, the
MCSPDU shall be ignored.

10.25 CDin
CDin is generated at the top MCS provider upon receipt of CDrq. It is multicast downward to providers that contain the

manager or an admitted user in their subtree. It generates MCS-CHANNEL-EXPEL indications to admitted users with
reason channel disbanded and, if provider initiated, an MCS-CHANNEL-DISBAND indication to the manager.

TABLE 10-25/T.125

CDin MCSPDU

Contents Source Sink

Channdl Id Top provider Indication

CDin shall also be generated by the top MCS provider when the manager of a private channel is detached.

Providers that receive CDin shall delete the channel from their information base.

10.26 CArq

CArq is generated by an MCS-CHANNEL-ADMIT request. If valid, it rises to the top MCS provider, which admits the
specified users to the private channel and multicasts CAin to advise providers in whose subtree they reside.

CArq containsthe initiating user id, which shall be validated as explained for CDrq.

The other user ids of CArq, representing users to be admitted, shall be validated at the top MCS provider, which alone
knows the entire user population. Those that are invalid shall be omitted from the resulting CAin.

Recommendation T.125 (04/94) Superseded by a more recent version 39

Superseded by a more recent version

TABLE 10-26/T.125

CArq MCSPDU
Contents Source Sink
Initiator Requesting provider Top provider
Channel Id Request Top provider
User Ids Request Top provider

The user ids contained in CArq shall not be admitted to the private channel until a provider receives CAin. This
maintains consistency with the top MCS provider.

10.27 CAin

CAin is generated at the top MCS provider upon receipt of CArq. It is multicast downward to providers that contain a
newly admitted user in their subtree. It generates MCS-CHANNEL-ADMIT indications at the affected attachments.

Providers that receive CAin shall ordinarily update the channel in their information base, admitting the specified users
that reside in their subtree. However, if a provider isthe former top of alower domain that is being merged as a result of
MCS-CONNECT-PROVIDER, it may refuse the admission by generating DUrq for the affected user ids with reason
channel purged.

TABLE 10-27/T.125

CAin MCSPDU
Contents Source Sink
Initiator Top provider Indication
Channel Id Top provider Indication
User Ids Top provider MCSPDU routing
10.28 CErq

CErq is generated by an MCS-CHANNEL-EXPEL request. If valid, it rises to the top MCS provider, which expels the
specified users from the private channel and multicasts CEin to advise providers in whose subtree they reside.

CErq contains the initiating user id, which shall be validated as explained for CDrq.

The other user ids of CErq, representing users to be expelled, shall be validated at the top MCS provider, which alone
knows the entire set of admitted users. Those that were not admitted shall be omitted from the resulting CEin.

The user ids contained in CErq shall not be expelled from the private channel until a provider receives CEin. This
maintains consistency with the top MCS provider.

40 Recommendation T.125 (04/94) Superseded by a more recent version

Superseded by a more recent version

TABLE 10-28/T.125

CErq MCSPDU
Contents Source Sink
Initiator Requesting provider Top provider
Channdl Id Request Top provider
User Ids Request Top provider
10.29 CEin

CEin is generated at the top MCS provider upon receipt of CErq. It is multicast downward to providers that contain an
expelled user in their subtree. It generates MCS-CHANNEL-EXPEL indications at the affected attachments with reason
user-requested.

TABLE 10-29/T.125

CEin MCSPDU
Contents Source Sink
Channel Id Top provider Indication
User Ids Top provider MCSPDU routing

Providers that receive CEin shall update the channel in their information base, deleting the specified users from the set
of users admitted to the channel. If the set of users admitted to a private channel becomes empty and the manager does
not reside in the subtree, the channel id shall be deleted from the information base. Otherwise, if the channel becomes
unjoined as aresult of expulsions, a provider shall generate a corresponding CLrq.

A provider forwarding CEin shall compute, for each destination subtree, whether it afterwards contains any attachments
admitted to the private channel. If none, a provider shall conclude that the corresponding subordinate provider is no

longer joined to the private channel and shall update its information base to this effect immediately, without waiting for
CLrq.

10.30 SDrq

SDrq is generated by an MCS-SEND-DATA request. If valid, it rises toward the top MCS provider. Along the way,
providers may generate from it an SDin with identical contents and multicast this downward.

SDrq containsthe initiating user id, which shall be validated as explained for CJrq.

If the channel id is listed in the information base of the receiving MCS provider as a private channel and the initiator of
SDrq is not an admitted user, the MCSPDU shall be ignored.

The initial or additional TC that conveys SDrq shall match its data priority, taking into account the number of priorities
implemented in the domain. MCSPDUs arriving over an MCS connection by the wrong TC shall be rejected.

Recommendation T.125 (04/94) Superseded by a more recent version 41

TABLE 10-30/T.125

Superseded by a more recent version

SDrq MCSPDU
Contents Source Sink
Initiator Requesting provider Higher provider
Channel Id Request Higher provider
Data Priority Request Higher provider
Segmentation Requesting provider Higher provider
User Data Request Higher provider

The segmentation flags begin and end shall be set by a provider to show the relationship of user data in the SDrq to the
boundaries of an MCS service data unit. Providers have freedom to fragment and reassemble MCSPDUSs that are part of
the same M CS service data unit, so long as this does not disturb the integrity of user data. However, there should be little
advantage in such manipulation, as the maximum size of an MCSPDU is constant throughout a domain.

A provider shall generate from SDrq an SDin with the same content and shall transmit it to al providers that are joined

to the specified channel, excepting the subordinate provider that transmitted SDrq upward. Unless the channel is listed
in the provider’'s information base as a user id residing in its subtree, it shall also fSBygrdpward.

10.31 SDin

SDin is generated at a higher MCS provider upon receifDof;. It is multicast downward and generates MCS-SEND-
DATA indications at all attachments that are joined to the channel.

TABLE 10-31/T.125

SDin MCSPDU
Contents Source Sink
Initiator Higher provider Indication
Channel 1d Higher provider Indication
Data Priority Higher provider Indication
Segmentation Higher provider Indicating provider
User Data Higher provider Indication

The initial or additional TC that conveg®in shall match its data priority, taking into account the number of priorities
implemented in a domain. MCSPDUSs arriving over an MCS connection by the wrong TC shall be rejected.

The segmentation flagezgin andend permit user data to be reassembled into a complete MCS service data unit. These
flags shall be interpreted in the contexS®&fin MCSPDUSs arriving from the same user over the same channel and at the
same priority. A stream of fragments to be reassembled may be interleaved with other MCSPDUs and data from other
users over other channels at other priorities.

42 Recommendation T.125 (04/94) Superseded by a more recent version

Superseded by a more recent version

It is a matter of local implementation how service data units are indicated to attached MCS users. One possibility is to
deliver each MCSPDU as a separate interface data unit, with segmentation flags included. Alternative approaches that
may seek to reassemble within the receiving provider should make some provision for large service data units and
should reflect to the user the relative order in which service data units begin to arrive.

Providers that receive SDin shall forward it to all subordinates that are joined to the channel.

1032 USrq

USrq is generated by an MCS-UNIFORM-SEND-DATA request. If valid, it rises to the top MCS provider, which
generates from it a USin with identical contents and multicasts this downward.

TABLE 10-32/T.125

USrq MCSPDU
Contents Source Sink
Initiator Requesting provider Top provider
Channdl Id Request Top provider
Data Priority Request Top provider
Segmentation Requesting provider Top provider
User Data Request Top provider

USrq contains the initiating user id, which shall be validated as explained for CJrq.

If the channel id is listed in the information base of the receiving MCS provider as a private channel and the initiator of
USrq is not an admitted user, the MCSPDU shall be ignored.

The initial or additional TC that conveys USrq shall match its data priority, taking into account the number of priorities
implemented in the domain. MCSPDUs arriving over an MCS connection by the wrong TC shall be rejected.

The segmentation flags begin and end shall be set by a provider to show the relationship of user data in the USrq to the
boundaries of an MCS service data unit. Providers have freedom to fragment and reassemble MCSPDUSs that are part of
the same M CS service data unit, so long as this does not disturb the integrity of user data. However, there should be little
advantage in such manipulation, as the maximum size of an MCSPDU is constant throughout a domain.

The top MCS provider shall generate from USrq a USin with the same content.

10.33 USin

USin is generated at the top MCS provider upon receipt of USrq. It is multicast downward and generates MCS-
UNIFORM-SEND-DATA indications at all attachments that are joined to the channel.

Recommendation T.125 (04/94) Superseded by a more recent version 43

Superseded by a more recent version
TABLE 10-33/T.125

USin MCSPDU
Contents Source Sink
Initiator Top provider Indication
Channel Id Top provider Indication
Data Priority Top provider Indication
Segmentation Top provider Indicating provider
User Data Top provider Indication

The initial or additional TC that conveys USin shall match its data priority, taking into account the number of priorities
implemented in the domain. MCSPDUs arriving over an MCS connection by the wrong TC shall be rejected.

The segmentation flags begin and end permit user data to be reassembled into a complete MCS service data unit. These
flags shall be interpreted in the context of USin MCSPDUs arriving from the same user over the same channel and at the
same priority. A stream of fragments to be reassembled may be interleaved with other MCSPDUSs and data from other
users over other channels at other priorities.

It is amatter of local implementation how service data units are indicated to attached MCS users.

Providers that receive USin shall forward it to all subordinates that are joined to the channel.

10.34 TGrq

TGrq is generated by an MCS-TOKEN-GRAB request. If valid, it risesto the top MCS provider, which returns a TGef
reply.

TABLE 10-34/T.125

TGrq MCSPDU
Contents Source Sink
Initiator Requesting provider Top provider
Token Id Request Top provider

TGrq contains the initiating user id, which shall be validated as explained for CJrq.

If the token is free and the domain limit on the number of tokensin use allows, it shall become grabbed. If the token is
inhibited by the requesting user only, it shall become grabbed. Otherwise, the state of the token shall not change.

10.35 TGef

TGef is generated at the top MCS provider upon receipt of TGrq. Routed back to the requesting provider, it generates
an MCS-TOKEN-GRAB confirm.

44 Recommendation T.125 (04/94) Superseded by a more recent version

Superseded by a more recent version
TABLE 10-35/T.125

TGef MCSPDU
Contents Source Sink
Result Top provider Confirm
Initiator Top provider MCSPDU routing
Token Id Top provider Confirm
Token Status Top provider Confirm

The result shall be successful if the token was previously free or if the token was converted from inhibited to grabbed by
the same user. Other results are too many tokens and token not available. The latter applies to atoken already grabbed by
the requester; this may be discerned by examining the token status.

Providers that receive TGef shall update the token state in their information base to agree with the status returned.

TGef shall be forwarded in the direction of the initiating user id. If the user id is unreachable because an MCS

connection no longer exists, no special actions need be taken, as a DUin must arrive later to report that the initiator has
detached. Thiswill release its hold on the token id in the information base.

10.36 TIrq

TIrq is generated by an MCS-TOKEN-INHIBIT request. If valid, it rises to the top MCS provider, which returns a TIcf
reply.

TABLE 10-36/T.125

TIrq MCSPDU
Contents Source Sink
Initiator Requesting provider Top provider
Token Id Request Top provider

TIrq contains the initiating user id, which shall be validated as explained for CJrq.
If the token is free and the domain limit on the number of tokens in use allows, it shall become inhibited. If the token is

grabbed by the requesting user, it shall be become inhibited. If the token is already inhibited, the requester shall be added
to the set of inhibitors. Otherwise, the state of the token shall not change.

10.37 TIcf

TIcf is generated at the top MCS provider upon receipt of TIrq. Routed back to the requesting provider, it generates an
MCS-TOKEN-INHIBIT confirm.

The result shall be successful if the token was previously free or inhibited or if the token was converted from grabbed to
inhibited by the same user. Other results are too many tokens and token not available.

Recommendation T.125 (04/94) Superseded by a more recent version 45

Superseded by a more recent version
TABLE 10-37/T.125

TIef MCSPDU
Contents Source Sink
Result Top provider Confirm
Initiator Top provider MCSPDU routing
Token Id Top provider Confirm
Token Status Top provider Confirm

Providers that receive Tlcf shall update the token state in their information base to agree with the status returned.

ThisMCSPDU isrouted in the same way as TGef.

1038 TVrq

TVrq is generated by an MCS-TOKEN-GIVE request. If valid, it rises to the top MCS provider, which generates either
TVin or an unsuccessful TVef.

TABLE 10-38/T.125

TVrq MCSPDU
Contents Source Sink
Initiator Requesting provider Top provider
Token Id Request Top provider
Recipient Request Top provider

TVrq contains theinitiating user id, which shall be validated as explained for CJrq.
If the token is grabbed by the requester and the intended recipient exists, TVin shall be transmitted toward the recipient.

Otherwise, the request shall fail, the state of the token shall be unchanged, and TVef shall be transmitted toward the
requester with the result foken not possessed or no such user.

10.39 TVin

TVin is generated at the top MCS provider upon receipt of TVrq. Routed to the intended recipient, it generates an MCS-
TOKEN-GIVE indication.

Providers that receive TVin shall ordinarily update the token id in their information base to the state of being given from
initiator to recipient. However, if aprovider isthe former top of alower domain that is being merged as aresult of MCS-
CONNECT-PROVIDER, it may refuse the offered token by generating TVrs with reason domain merging.

46 Recommendation T.125 (04/94) Superseded by a more recent version

Superseded by a more recent version
TABLE 10-39/T.125

TVin MCSPDU
Contents Source Sink
Initiator Top provider Indication
Token Id Top provider Indication
Recipient Top provider MCSPDU routing

TVin shall be forwarded in the direction of the recipient user id. If the user id is unreachable because an MCS
connection no longer exists, no special actions need be taken, as a DUin must arrive later to report that the recipient has
detached. Thiswill release its hold on the token id in the information base.

1040 TVrs

TVrs is generated by an MCS-TOKEN-GIVE response. If valid, it rises to the top MCS provider, which generates TVef
to inform the token’s donor of the outcome.

TABLE 10-40/T.125

TVrs MCSPDU
Contents Source Sink
Result Response Top provider
Recipien Responding provider Top provider
Token Id Responding provider Top provider

A successful result shall signify the recipient’s acceptance of the offered token.

The user id of the responding MCS attachment is supplied by the MCS provider that receives the primitive response.
Providers that receivEVrs subsequently shall validate the user id to ensure that it is legitimately assigned to the subtree
of origin. If the user id is invalid, the MCSPDU shall be ignored.

If the token id is not listed in the provider’s information base as being given to the recipient, the MCSPDU shall be
ignored. If the token id is still grabbed by the donor, its state shall be updated to grabbed by the recipient if the result is
successful; otherwise it shall revert to grabbed by the donor or shall be deleted from the information base, depending on
whether the donor resides in the subtree of the provider. If the token id has since been released by the donor and the
result is not successful, the token shall be deleted from the provider’s information base.

If the MCSPDU is not invalid and ignored, it shall be forwarded upward. The top MCS provider shallT&¢tsoas
specified above. In addition, if the donor has not already released the token, the top provider shall H€o£rate
containing the same result'BYrs.

Recommendation T.125 (04/94) Superseded by a more recent version 47

Superseded by a more recent version
1041 TVcf

TVcf is generated at the top MCS provider upon receipt of TVrs. Routed back to the requesting provider, it generates a
MCS-TOKEN-GIVE confirm.

TABLE 10-41/T.125

TVef MCSPDU
Contents Source Sink
Result Top provider Confirm
Initiator Top provider MCSPDU routing
Token Id Top provider Confirm
Token Status Top provider Confirm

TVcf shall also be generated by the top MCS provider upon receipt of TVrq if atoken cannot be offered to the intended
recipient. This takes the place of generating TVin. TVcf shall also be generated with result no such user if the recipient
is detached before TVrs is received.

Providers that receive TVef shall update the token state in their information base to agree with the status returned.

This MCSPDU isrouted in the same way as TGef.

10.42 TPrq

TPrq is generated by an MCS-TOKEN-PLEASE request. If valid, it rises to the top MCS provider, which multicasts
TPin to aert current users of the token.

TPrq contains the initiating user id, which shall be validated as explained for CJrq.

TABLE 10-42/T.125

TPrq MCSPDU
Contents Source Sink
Initiator Requesting provider Top provider
Token Id Request Top provider

10.43 TPin

TPin is generated at the top MCS provider upon receipt of TPrq. It is multicast downward and generates MCS-
TOKEN-PLEASE indications.

Providers that receive TPin shall forward it to all subordinates that contain in their subtree a user who has grabbed,
inhibited, or is being given the specified token.

48 Recommendation T.125 (04/94) Superseded by a more recent version

Superseded by a more recent version
TABLE 10-43/T.125

TPin MCSPDU
Contents Source Sink
Initiator Top provider Indication
Token Id Top provider Indication

10.44 TRrq

TRrq is generated by an MCS-TOKEN-RELEASE request. If valid, it rises to the top MCS provider, which returns a
TRef reply.

TABLE 10-44/T.125

TRrq MCSPDU
Contents Source Sink
Initiator Requesting provider Top provider
Token Id Request Top provider

TRrq contains theinitiating user id, which shall be validated as explained for CJrq.

If the token is grabbed by the requester, it shall become free. If it isinhibited, the requester shall be removed from the set
of inhibitors; if this set becomes empty, the token shall become free. If the token is in the process of being given away
by the requester, it shall enter a distinct intermediate state of given to the intended recipient, pending receipt of TVrs.
Otherwise the state of the token shall not change.

10.45 TRcf

TRef is generated at the top MCS provider upon receipt of TRrq. Routed back to the requesting provider, it generates
an MCS-TOKEN-REL EASE confirm.

TABLE 10-45/T.125

TRcef MCSPDU
Contents Source Sink
Result Top provider Confirm
Initiator Top provider MCSPDU routing
Token Id Top provider Confirm
Token Status Top provider Confirm

Recommendation T.125 (04/94) Superseded by a more recent version 49

Superseded by a more recent version
The result shall be successful if the token was grabbed or inhibited by the requester or if the requester was in the process
of giving it away. The other possible result is token not possessed.

Providers that receive TRef shall update the token state in their information base to agree with the status returned.

ThisMCSPDU isrouted in the same way as TGef.

1046 TTrq

TTrq is generated by an MCS-TOKEN-TEST request. If valid, it rises to the top MCS provider, which returns a TTcf
reply.

TTrq contains the initiating user id, which shall be validated as explained for CJrq.

TABLE 10-46/T.125

TTrq MCSPDU
Contents Source Sink
Initiator Requesting provider Top provider
Token Id Request Top provider

1047 TTcf

TTecf is generated at the top MCS provider upon receipt of TTrq. Routed back to the requesting provider, it generates an
MCS-TOKEN-TEST confirm.

Providers that receive TTcf should find that the token state in their information base agrees with the status returned.

ThisMCSPDU isrouted in the same way as TGef.

TABLE 10-47/T.125

TTcef MCSPDU
Contents Source Sink
Initiator Top provider MCSPDU
Token Id Top provider Confirm
Token Status Top provider Confirm

11 MCS provider information base

11.1 Hierarchical replication

Although an MCS provider may host multiple domains, it serves each one independently. It maintains logically separate
information bases for each to record the state of channel and token resources in use. The description that followsis set in
the context of asingle domain.

50 Recommendation T.125 (04/94) Superseded by a more recent version

Superseded by a more recent version

The MCS resources that need to be managed in a domain are channel ids and token ids. User ids are a subset of channel
ids. Domain parameters limit how many ids of each category can be in use simultaneously. This alows a provider to
compute how much memory is needed for the information base in the worst case of afully utilized domain.

In the hierarchy of a domain, the ids in use at any given MCS provider stabilize to a subset of those in use at its
immediate superior. Information about an id is recorded where it can be used to support MCS services involving that id.
Recording information more widely would entail extra costs in MCSPDU traffic to keep the information up to date.
Since the information recorded at a provider is consistent with that recorded at superior providers, within the limit of
MCSPDU propagation delay, it may be said that the provider information base is partialy replicated through the domain
hierarchy.

Domain parameters become fixed and unchangeable with the establishment of the first MCS connection of a domain. A
provider that lacks capacity for the maximum number of ids specified in each category may negotiate to join a domain
on false pretense. It may speculate that at its low position in a hierarchy it will not be called upon to retain more than a
fraction of the total information base. Such a provider may not support attachments and subordinates with the full range
of MCS services they expect. Nonetheless, until its capacity is actually exceeded, such a provider may appear to be an
equal member of the domain. This strategy may appeal to terminal nodes with limited aspirations.

Ids are placed into use first at the top MCS provider. They are placed into use at subordinate providers by a selective
downward flow of MCSPDUs. Most are deleted from use in the same top-down manner. There are necessarily intervals
during which a subordinate provider records as in use an id that its superiors do not, because the MCSPDU that deletes
theid remainsin transit. Thisis not, however, a situation that endures. Control MCSPDUSs are received and processed in
the order of their transmission. The consequences of processing an MCSPDU, including its creation or deletion of
channel and token ids, take effect before attention shifts to the next input event.

An exception to the preceding paragraph is the deletion of static and assigned channel ids. Although placed into use by a

downward flow of CJcf, these channel ids are deleted in the opposite order — from the bottom up. Specifically, they are
deleted when an accumulation of MCS-CHANNEL-LEAVE requests from attachment€largd MCSPDUs from
subordinate providers combine to leave a channel unjoined. Such transitions motivate the transn@dstqrfuwther

upward. Thus, for these two cases, the channel ids recorded as in use are a strict subset of those in use at the superic
provider. This is an accidental corollary of optimizations designed to speed channel management as a prelude to data
transfer.

Channels ids are put into use MiCcf, AUcf, CJcf, CCcf, andCAin; they are deleted byICcf, PCin, DUin, CLrq,

CDin, andCEin. Token ids are put into use BTcf, TGef, Tlcf, andTVin; they are deleted byITef, PTin, TRcf,

TVrs andTVef. When an id is put into use at a given provider, the MCSPDU that is the cause may be forwarded to
zero, one, several, or all subordinate providers. The use of an id may grow or contract gradually as, for example,
individual users are admitted to and expelled from a private channel. When an id is deleted from a given provider, the
MCSPDU that effects this is forwarded to all subordinates who may still be recording the id as in use.

The use of an id is ultimately tied to actions on a channel or token by a user attached to the domain (although there may
be some delay, as explained, in communicating changes through the transmission of MCSPDUSs). The ids recorded
stably as in use at a given MCS provider are those that are actively employed by some user in the subtree of the provider.
It follows that they are a subset of those recorded stably at any superior provider.

Deleting a user id has the corollary effect of deleting channel ids and token ids of which it is the sole user in a subtree.

Criteria for considering channel ids and token ids to be in use are specified in the following subclauses.

Recommendation T.125 (04/94) Superseded by a more recent version 51

Superseded by a more recent version

11.2 Channel information

The four kinds of channel have corresponding criteria to determine whether a given attachment is considered to be using
the channel id, hence whether it is to be represented in a provider’s information base:

a) A static channel id (range 1..1000) is in use if the user has joined the channel with a successful MCS-
CHANNEL-JOIN confirm and not left by MCS-CHANNEL-LEAVE request or indication.

b) A userid channel is in use if it was assigned to the user by a successful MCS-ATTACH-USER confirm
and the user has not detached by MCS-DETACH-USER request or indication.

c) A private channel id is in use if the user has created the channel with a successful MCS-CHANNEL-
CONVENE confirm or been admitted to it with MCS-CHANNEL-ADMIT indication and not expelled by
MCS-CHANNEL-EXPEL indication and the channel has not been disbanded by MCS-CHANNEL-
DISBAND request or indication.

d) An assigned channel id is in use if the user has joined the channel with a successful MCS-CHANNEL-
JOIN confirm and not left by MCS-CHANNEL-LEAVE request or indication.

This information shall be recorded for a channel id in use:
a) The kind of channel it represents (static, user id, private, or assigned).
b) By which MCS attachments and which MCS connections to subordinate providers the channel is joined.

c) If a user id channel, the direction to it, that is, either the local MCS attachment to which the user id is
assigned or the downward MCS connection to a subordinate provider in whose subtree the user resides.

d) If a private channel id, the user id of the manager who convened it (whether or not the manager itself is in
the subtree of the provider) and the set of all user ids in the subtree of the provider who have been
admitted to the channel.

The information recorded for channel ids is employed as explained in clause 10 to validate request MCSPDUs and to
route indication and confirm MCSPDUs.

11.3 Token information
The state transitions of a token id are shown in Figure 11-1.

An individual token id can bgrabbed by a single user awhibited by one or more. The action @Vin converts the

state togiving along the branch of a domain hierarchy leading from the top MCS provider toward the intended recipient.
This state decays tangivable if the recipient detaches before its provider responds ¥ths. It resolves tqiven if

instead the donor releases the token explicitly or detaches. During the giving of a token, the branch of a domain
hierarchy leading from the donor intersects the branch leading toward the recipient at least at the top MCS provider. The
token state changes fragnabbed to giving, and possibly thereafter tmgivable or given, only along this intersection.

52 Recommendation T.125 (04/94) Superseded by a more recent version

Superseded by a more recent version

- / TVrs
Gl DUin
TRcf
DUin .
% Ungivable
N> Tvrs
DUin

DUin TRcf
DUin

/\
Tlcf
TGcf
TRcf TRcf
Y/ buin DUin
TGcf ; TVin ; TVrs
E Grabbed E
Tlcf TVrs

T0812670-93/d04

FIGURE 11-1/T.125
State transitions of a token id

The user of atoken stands in relationship to it as grabber, inhibitor, recipient, or both grabber and recipient (when giving
atoken to itself):

a)

b)

0)

The user is a grabber if it has seized a token with a successful MCS-TOKEN-GRAB confirm and not
released it by MCS-TOKEN-RELEASE request or successful MCS-TOKEN-GIVE confirm nor
converted it with a successful MCS-TOKEN-INHIBIT confirm or if it has accepted an offered token with
asuccessful MCS-TOKEN-GIVE response.

The user is an inhibitor if it has seized a token with a successful MCS-TOKEN-INHIBIT confirm and not
released it with MCS-TOKEN-RELEASE request nor converted it with a successful MCS-TOKEN-
GRAB confirm.

The user isarecipient if it has been offered atoken by MCS-TOKEN-GIVE indication and not released it
with an unsuccessful MCS-TOKEN-GIVE response.

This information shall be recorded for atoken id in use;

a)
b)
<)
d)

€

The state of the token id at the MCS provider (not necessarily identical to that at the top provider).
If grabbed or ungivable, the user id of the grabber in the subtree of the provider.

If giving, the user id of the grabber (whether or not the grabber isin the subtree of the provider).
If giving or given, the user id of the recipient in the subtree of the provider.

If inhibited, the set of all user ids in the subtree of the provider who have inhibited the token.

The information recorded for token ids in use is employed as explained in clause 10 to validate response MCSPDUs and
to route indication MCSPDUSs.

The state of atoken id at a subordinate provider need not be identical to that at the top MCS provider. Thisis due to the
fact that a token donor does not in genera process TVin or TVrs and that a recipient does not in genera process a
donor'sTRcf. Figure 11-2 shows states that may arise in a complex token interaction.

Recommendation T.125 (04/94) Superseded by a more recent version 53

Superseded by a more recent version
H

Ungivable: A
TVcf (Selfgrabbed A)

Ungivable: A

PCin
(purge B)

Tvrs /]
(B accepts)

T0812680-93/d05

Grabbed: A

FIGURE 11-2/T.125

States of a token that may arise in a complex interaction

The figures focuses on one token id in the information base of providers A through H. A plausible history is that the
token was given by user A, attached to provider A, to user B, attached to provider B. Before user B could respond,
however, provider G connected the domain to a new top provider H and began a merger. The new domain, unable to
accept user B because of a conflict in channel ids, initiated its purge through PCin. This MCSPDU is shown having
completed part of its journey through providers G and D. Provider G, as aresult, has adjusted its token state from giving

to ungivable and merged the token, with this state, into the new domain. The new top provider H, presented with a token

in such a state, has queued for transmission an unsuccessful TVef to return the token to user A. At the time shown, the
token has aso finally been accepted by user B, and a TVrs is making its way up the recipient’s branch of the domain
hierarchy, changing the token state at each provider $iomg to grabbed by B. Two MCSPDUs now converge on
provider F, and whichever arrives first determines its subsequent state there: either retymgdetd by A or
transientlygrabbed by B and themot in use again after user B is detached. In either case, the state of the token will
stabilize tograbbed by A when the new top provider transmits ¥cf it has pending.

12 Elements of procedure

12.1 MCSPDU sequencing

Control MCSPDUs remain in sequence between any pair of MCS providers because they travel over a single TC, the
initial TC of an MCS connection. MCS providers shall process received MCSPDUs and shall transmit any resulting
output MCSPDUs in the same order. This applies to MCSPDUs that are simply forwarded up or down the domain

54 Recommendation T.125 (04/94) Superseded by a more recent version

Superseded by a more recent version

hierarchy as well as to MCSPDUSs that are transformed, such as requests or responses into indications or confirms. The
sequencing of MCSPDUSs shall be maintained within an MCS provider if it is necessary to queue outputs for later
transmission due to the back-pressure of flow control along a TC.

Data MCSPDUSs of different priorities need not remain in sequence. On the contrary, the benefit of relative prioritiesis
only achieved when higher priority data is advanced ahead of lower priority data. This means that it should be
transmitted over separate TCs and queued separately within each MCS provider. If the number of data priorities
implemented in a domain is less than the maximum, fewer TCs are available, but providers that elect to do so may till
maintain separate queues internally. This realizes some but not all the benefits of relative priority.

An MCS provider shall maintain the sequence of data MCSPDUs transmitted at a given priority. This is a tighter
restriction than that imposed by ITU-T Recommendation T.122, which guarantees only the sequencing of service data
units transmitted at a given priority over the same destination channel.

Control MCSPDUs and data MCSPDUSs of top priority are transmitted over the same initial TC and shall receive equal
attention by an MCS provider. Data of lower priorities may lag behind. Control indications advancing ahead may arrive
before lower priority data that was actually transmitted first.

12.2 Input flow control

An MCS provider has goals that sometimes conflict: to keep data moving briskly through a domain despite transient
blockages towards some receivers, to give transmitters fair access to the available bandwidth, and to prevent any party
from lagging far behind peers who are receiving the same multicast data. MCS is a reliable service that preserves the
integrity of user data. Since a provider has limited capacity to store MCSPDUs when they cannot be transmitted
immediately, it must have a defense of sometimes refusing further inputs. While details of the interface to transport
services are a local matter, the abstract effect must be that incoming TSDUs are held in TC pipelines, intact and in
sequence, to be received at some future time when flow contral is lifted. As TC pipelines fill, remote MCS providers
may find that they are blocked by back-pressure from transmitting further MCSPDUSs and may need to invoke a similar
defense.

Flow control is not signalled explicitly in the MCS protocol. Thisis afunction of lower layers that would be wasteful to
duplicate. As aresult, it is difficult to sense, through the medium of an intervening TC, whether a remote provider is
resisting further inputs. To meet conflicting goals as well as possible, the policies described next may be recommended.

An MCS provider may grant each incoming TC a fixed quota of buffers that it may fill with MCSPDUSs before back
pressure is applied. Each buffer is processed as specified in this protocol, then assigned for output to zero or more
outgoing TCs. Output may occur immediately or may be delayed because a transport pipelineis full. Until it is output to
the last TC, a buffer is charged against the input quota of the TC by which it arrived. After it is output to al requisite
TCs, it is recycled as an increment to that quota. When a quota is exhausted, further inputs over the corresponding TC
are halted. Input quotas may be set taking into account whether a TC is part of an upward or downward MCS connection
and what data priority it represents.

Buffering can mitigate a disparity of rates between transmitters and receivers. A quota on inputs can prevent any one TC
from monopolizing resources. It can also bound how far out of step two receivers of the same multicast data can get. The
recommended scheme is not clever enough, however, to anticipate all patterns of use and may sometimes slow the rate
of data transfer through a domain when there are acceptable aternatives. The invention of better flow control policies
(implemented locally and requiring no additional communication of MCSPDUS) may be a means of product
differentiation.

Recommendation T.125 (04/94) Superseded by a more recent version 55

Superseded by a more recent version
12.3 Throughput enforcement

In contrast to input flow control, some support for throughput enforcement is explicit in the MCS protocol. Firstly, the
rate that is enforced is a domain parameter negotiated through MCS-CONNECT-PROVIDER. Secondly, the time
interval over which throughput is monitored before taking adverse action is communicated by each MCS provider to its
superior through EDrq. To describe the throughput enforcement interval requires that providers share some common
principles of behaviour. Still, enforcement remains a heuristic technique with room for invention.

Enforcing a minimum input rate at each receiver is an option available to controller applications, which establish the
MCS connections of a domain. This option is selected through the domain parameter for enforced throughput, which is
stated in octets per second. While it seems intuitive that a party should not be alowed to run arbitrarily slowly and
thereby obstruct data transfer among others, there is danger in seeking to enforce throughput too strictly.

Complex patterns of multiple transmitters are a problem. The kinds of back-pressure to which an enforcement policy
reacts may not result from a single abnormally slow receiver. In the first place, MCSPDUs heading downward must
compete for attention with MCSPDUSs that rise from below but are reflected back, notably SDin. The downward flow
experienced through a peer provider may therefore attain only a fraction of the nomina bandwidth and may vary
dynamically with the number of other connections and attachments to the peer. Secondly, only top priority MCSPDUs
can be expected to flow continuously over an MCS connection. Lesser priorities can properly be blocked by a peer
provider for long periods of time due to the intensity of traffic received from other sources at higher priorities. Finally,
there can be great variation in instantaneous throughput if it is measured by how long a blocked MCSPDU must wait
before being accepted onto an MCS connection. Among other things, this can depend on how many and in what order
MCSPDUs from other sources are queued inside the peer provider.

Nonetheless, throughput enforcement is a valuable option in practical situations where patterns of data transfer are
known to be more uniform. It shall be interpreted as requiring a minimal output of MCSPDUSs to each direct MCS
attachment and to each MCS connection downward over atime interval to be specified by the enforcing MCS provider.
Each MCSPDU output, both control and data, shall count towards throughput as though it were the maximum size
allowed by domain parameters. The output of an MCSPDU to an MCS attachment shall mean delivery of the associated
primitive indication or confirm. Output to a downward MCS connection shall mean the absence of back-pressure at the
transport service interface and acceptance into the corresponding TC pipeline.

Output shall be monitored as long as one or more MCSPDUSs are queued, regardless of data priority, towards a given
attachment or downward connection. Whenever the queues empty, monitoring shall cease, with no enforcement action
taken. At the same time, no credit for good behaviour shall be recorded to offset future slowdowns. Monitoring shall
resume as soon as back-pressure prevents any MCSPDU from being output and requires it to be queued instead. While
one or more MCSPDUs remain queued, the number actually output shall be counted over a set interval of time.

A throughput enforcement interval shall be chosen by each MCS provider. The interval shall be long enough to allow at
least one MCSPDU of maximum size to be output at the minimum throughput. An MCS provider shall advise its
superior of the interval chosen and of any subsequent changes to it by transmitting EDrq upward. A provider shall act
against the offending MCS attachment or downward MCS connection at the end of any interval during which the
monitored throughput fails to meet expectations. It shall detach the user or disconnect the connection.

Superior providers may set their throughput enforcement interval to be longer than that of any subordinate plus some
margin of reaction time. The aim is to encourage enforcement action first at the lowest provider in a position to detect a
problem. When a violator is removed at the end of some lower interval, superior providers should have enough time to
sense the restoration of throughput to adequate levels. If they act too quickly, they may penalize a larger subtree than
necessary and disrupt innocents in the domain.

The controller applications that set domain parameters should be conservative in their demands, expecting that
throughput may occasionally dip during periods of intense application stimuli. If their concern is simply to defend

56 Recommendation T.125 (04/94) Superseded by a more recent version

Superseded by a more recent version

against receivers that stop accepting anything at al, they may set the minimum throughput very low. Knowing the
maximum MCSPDU size and enforced throughput rate, controllers can calculate the minimum interval that must elapse
before any blockage is detected and overcome.

124 Domain configuration

ITU-T Recommendation T.122 provides no mechanism for configuring the set of domains supported by an MCS
provider. This must be considered a loca matter whose standardization may be the subject of further study. This
protocol assumes that an MCS provider will recognize some domain selectors as valid and others as invalid. It provides
for domain selectors to be communicated as part of establishing an MCS connection.

An MCS provider participates implicitly in the negotiation of domain parameters. Whether the calling or the called side,
it constrains the range of allowed parameter values according to limits for which it is configured. An MCS provider shall
freeze the negotiability of domain parameters once any user has attached to a domain or once the first MCS connection
has been established.

12.5 Domain merger

Domains are merged as a consequence of MCS-CONNECT-PROVIDER. If it is convenient to arrange that one domain
or the other be empty at this point, there is little complication in a merger. In the most general case, however, provision
must be made for updating the information base at the remaining top provider to contain the information base of the
former top provider and for resolving any conflicts that become apparent. The details of this are explained in clause 10.

To aid understanding, an example of domain merger is illustrated in the sequence of Figures 12-1 through 12-4. Here
provider E represents a former top that has joined a new domain by the highlighted MCS connection to an intermediate
provider F. It isirrelevant whether provider E or provider F initiated the M CS connection.

Top
MCS Provider

Provider F

Provider E

1 PDinK

T0812690-93/d06

FIGURE 12-1/T.125

Domain merger step one — Establish hierarchy

Recommendation T.125 (04/94) Superseded by a more recent version 57

Superseded by a more recent version
Provider E, finding itself at the lower end of a connection upward, assumes responsibility for executing the merger.
Since it is unsafe to transact other activity while the information base is in flux, provider E stops accepting inputs from
its subtree. Any MCSPDUSs already in transit from providers A and B or new ones generated before the merger is
completed will be safeguarded and processed later. The downward flow of MCSPDUs, however, is not impeded,
whether generated by provider E or forwarded from further above.

Until the merger completes, the only confirm MCSPDUs provider E will receive are MCef and MTcf, since user
requests are not allowed upward. These will confirm or purge channel and token ids already in use. Indication
MCSPDUs PCin, PTin, DUin, and CDin of the upper domain may also arrive, deleting channel and token ids from the
lower domain whose merger has been individualy confirmed. Unconfirmed ids of the lower domain are protected
against deletion, because as yet they mean something different from the same id of the upper domain. PDin must be
obeyed to enforce the domain height limit. Remaining indications need not be applied by provider E while merger isin
progress. Data transfers, in particular, need not flow between the formerly separate domains until merger is completed;
they cannot flow until at least the channels conveying them have been sorted out. Two indications that can place new ids
into use may be inconvenient to apply. To keep the information base consistent, if provider E refuses CAin or TVin, it
will react as specified in clause 10.

The first actions of provider E are to send PDin downward, to ensure that the latest MCS connection has not created a
cycle that would invalidate the principle that each domain hierarchy have exactly one top provider, and to send EDrq
upward to report its existing height and throughput enforcement interval. Provider F, advancing thereby from height 2 to
3, passes EDrq along to the top provider, which then attains height 4.

In the second stage of domain merger, provider E sends upward as many instances of MCrq as it takes to contain the
user idsinitsinformation base. User ids that do not conflict with the upper domain are confirmed and the rest are purged
in equally many instances of MCecf. Provider E generates PCin from MCef to report any purges throughout its subtree.
This stage ends when all user ids have either been explicitly confirmed or purged.

Top
MCS Provider

Provider F

Provider E

5 pcinK

T0812700-93/d07

FIGURE 12-2/T.125

Domain merger step two — Merge user id chanels

58 Recommendation T.125 (04/94) Superseded by a more recent version

Superseded by a more recent version

Stage three resembles stage two, but concerns token ids rather than user id channels, using aparallel set of MCSPDUSs. If
user ids had not been merged first, portions of alater MTrq could be refused as invalid and the affected token ids would
be unnecessarily purged. In the case of an inhibited token, the entire set of inhibiting users may not fit into a single
MCSPDU. Provider E waits for confirmation of the first subset it sends upward before sending the inhibited token again
with the remaining user ids. This protects against the first set being refused due to too many token ids in use but the
remainder later being accepted, which would corrupt the information base. This stage ends when all token ids have either
been explicitly confirmed or purged.

Top
MCS Provider

Provider F

Provider E

5 PTin I

Nl PTin 6

T0812710-93/d08

FIGURE 12-3/T.125

Domain merger step three — Merge token ids

Stage four involves the same MCSPDUs as stage two, but they contain different channel ids. User id channels having
been taken care of, what remains are static, private, and assigned channel ids. If user ids had not been merged first,
portions of alater MCrq could be refused as invalid and the affected channel ids would be unnecessarily purged. In the
case of a private channel, the entire set of users admitted by the channel manager may not fit into a single MCSPDU.
Provider E waits for confirmation of the first subset it sends upward before sending the private channel again with the
remaining user ids. This protects against the first set being refused due to too many channel ids in use but the remainder
later being accepted, which would corrupt the information base. This stage ends and domain merger completes when all
remaining channel ids have either been explicitly confirmed or purged.

NOTE — Merging token ids first makes their exclusive possession more effective in suppressing data flow conflicts.
Otherwise, data may leak between domains, as channel ids are confirmed, before the conflict is revealed through a token purge.

12.6 Domain disconnection

When an upward MCS connection is disconnected, an MCS provider shall eradicate its subtree of the domain by
detaching all its direct MCS attachments and disconnecting al its other MCS connections. The affected provider cannot
in general establish aresidual domain in its own subtree, because it has no record of request MCSPDUSs that were sent
upward for which it will never receive a matching confirm MCSPDU.

Recommendation T.125 (04/94) Superseded by a more recent version 59

Superseded by a more recent version

When a downward MCS connection is disconnected, an MCS provider shall generate DUrq MCSPDUSs for al users
residing in that portion of its subtree, giving as reason domain disconnected.

Top
MCS Provider

Provider F

Provider E

5 pcinX

T0812720-93/d09

FIGURE 12-4/T.125

Domain merger step four — Merge remaining channel ids

12.7 Channel id allocation

Channel ids in the range of 1001 and above are allocated dynamically at the top MCS provider during the processing of
primitive requests MCS-ATTACH-USER, MCS-CHANNEL-JOIN zero, and MCS-CHANNEL-CONVENE. There is
no requirement that the values alocated fit any particular pattern. Rather, it is desirable that the values be randomly
dispersed over the alowed range. This makes it more likely that two domains that operate independently for a substantial
period of time may later be merged without conflicts in their respective allocation of channel ids. It also defends against
recycling ids too quickly within a single domain as they are released from one use and then reallocated for a different
use. Applications using MCS should have time to adjust to the disappearance of a channel or user id before it returnsin a
new incarnation.

In situations where the seamless merging of active domains is required, conflicts may be avoided by selecting channel
ids from a subrange unique to each provider. Subranges may be created by dividing the dynamically allocated channel
ids 1001..65535 into severa bands. Furthermore, within a subrange, ids may be allocated sequentially in one direction,
from top or bottom. Providers that employ subrange alocation shall till obey al aspects of this protocol, including the
procedure for domain merger. They shall thereby accommodate peer providers that may lack unique subranges.

NOTE - It is a matter of local implementation how a provider chooses a subrange from which to allocate. Pre-arranged
conferences may be banded by a network management system.

Token ids, unlike channel ids, are not allocated, and the dividing line of value 1001 has no significance for them. A free
token id with agiven value is statically available to be grabbed or inhibited at any time, subject only to adomain limit on
the total number in use at once.

60 Recommendation T.125 (04/94) Superseded by a more recent version

Superseded by a more recent version
12.8 Token status

Token status is defined formally in clause 7. It is returned as a component of token confirm MCSPDUSs and is used to
update the record for atoken id in the information base of subordinate providers. Token status is not necessarily reported
directly through a confirm primitive to the initiating user but may be reported indirectly through aresult value.

When more that one token status value describes the relationship of a given user to a specified token id, the order of
preference shall be as follows. Self-recipient shall be reported first, if it fits, to remind the user that they must respond to
an MCS-TOKEN-GIVE indication. Next preferred is self-giving, to remind the user that they are engaged in an
uncompleted operation, followed by self-grabbed or self-inhibited. Last in order are the remaining status values,
reflecting the token’s current state as a result of its sole use by other parties.

An MCS provider relies on the specified preference for token status values in order to update the token state correctly in
its information base.

13 Reference implementation

Appendices Il through VII contain an implementation of an MCS provider expressed in SDL. They demonstrate that the
protocol specified can be realized with reasonable effort. The provision of this example should save implementors the
work of reinventing equivalent logic and should speed the introduction of compatible systems.

SDL is a formal description technique more powerful than conventional state tables and better suited to the complexity
of MCS. It admits two equivalent representations, textual and graphical. The reference implementation is cast in the
former, which is more concise and easier to translate to a conventional programming language. It makes extensive use of
abstract data types like the powerset generator. Those unfamiliar with SDL may wish to consult these references:

— CCITT Recommendation Z.100 (1988pecification and Description Language (SDL).

— Belina, Hogrefe, and Sarm&DL with Applications from Protocol Specification, (Prentice Hall,
1991), ISBN 0-13-785890-6.

— Belina and Hogrefelhe CCITT Specification and Description Language SDL, Computer Networks
and ISDN Systems, 16 (1988/89), pages 311-341.

Appendix Il begins with a figure that summarizes relationships codified in the system and block definitions that follow.
Processes appearing in the figure — control, domain, endpoint, and attachment — are defined individually in subsequent
Appendices Il through VI. Appendix VII explains assumptions of the model and illustrates key signal flows.

The appendices have been reviewed by technical experts and are believed to constitute a correct implementation of the
MCS protocol defined in this specification, but they are not normative. In case of any discrepancy, descriptions
contained in the body of this specification take precedence.

The MCS protocol may also be realized by other designs, which need not be based on the reference implementation.

The reference implementation of Appendices Il through VIl is parameterized to expand to a fully general MCS provider.
Alternative implementations that are limited to a special case may be more compact and efficient. Of particular interest is
the case of an MCS provider limited to one MCS connection, a condition appropriate for a terminal node. This might be
further specialized to simplify mergers by voluntarily purging any ids employed in a lower domain. The selection of
important special cases and their implementation in SDL remains a topic for further study.

Recommendation T.125 (04/94) Superseded by a more recent version 61

Superseded by a more recent version
Appendix I
Alternative encodings of an MCSPDU

(This appendix does not form an integral part of this Recommendation.)

L1 Send Data Request

The relevant definitions, extracted from clause 7, are:

DomainMCSPDU ;1= CHOICE

{
sdrq SDrq,

}

SDrq ::= [APPLICATION 25] IMPLICIT SEQUENCE

{
initiator Userld,
channelld Channelid,
dataPriority DataPriority,
segmentation Segmentation,
userData OCTET STRING

}

Userld := DynamicChannelld

DynamicChannelld ::= Channelld (1001..65535)

Channelld := INTEGER (0..65535)
DataPriority := ENUMERATED
{
top (0),
high (1,
medium (2),
low (3)
}
Segmentation := BIT STRING
{
begin (0),
end (1)
} (SIZE (2))
A sample value of thistypeis:
sdrq
{
initiator 1701,
channelld 5,
dataPriority high,
segmentation {begin},
userData '4D4353'H
}

1.2 Basic Encoding Rules (BER)
BER applies a scheme of identifier-length-contents recursively to component types:

SDrq Length Contents

79 13
INTEGER Length Contents
02 02 06 A5
INTEGER Length Contents
02 01 05

62 Recommendation T.125 (04/94) Superseded by a more recent version

Superseded by a more recent version

ENUMERATED Length Contents
0A 01 01

BIT STRING Length Contents
03 02 06 80
OCTET STRING Length Contents
04 03 4D 43 53

Header octets exclusive of user data: 18-24, depending on MCSPDU tag, channel id, and user data length.

L3 Packed Encoding Rules (PER)

PER can be decoded only if it is known in advance what ASN.1 type is contained in the encoding, since tags are not
conveyed. This is one reason for defining a combined type of domain MCSPDUs. The application tags of domain
MCSPDUSs advance sequentially beginning from zero. This is convenient, because PER encodes values as offsets from
the base of their range. With this arrangement, the value 25 identifies SDxq under both BER and PER:

CHOICE
64

INTEGER (1001..65535)
02 BC

INTEGER (0..65535)
00 05

ENUMERATED + BIT STRING (SIZE (2))
60

CTET STRING
03 4D 43 53

-- 6 bits + pad

-- offset 1001

-- offset 0

2 bits + 2 bits + pad

length + contents

Header octets exclusive of user data: 7-8, depending on user data length.

PER encodes an unconstrained octet string length up to 127 in one octet and up to 16 384 in two octets.

Recommendation T.125

(04/94) Superseded by a more recent version

63

Superseded by a more recent version

Appendix IT
SDL decomposition of an MCS provider

(This appendix does not form an integral part of this Recommendation.)

SYSTEM

Control. MCSAP MCSAPs
MCS

BLOCK
Control.to.Controll
MCS.provider [(Control.to.Controllen)] [MCS.Attach.

User.confirm]

Control. MCSAP.CO MCSAPs.CO MCSAPs.AT

[(Attachment.to.Users)]

Controller.
[t(o_COerD] [MCS.Attach.User.request] [(Users.to.Attachment)]

[Quit] [Quit,Exit]. (
CONTROL COAT ATTACHMENT

(1,1) ©,)
[Drop.portal,

Report.portal, [PDU.ready,(PDU.indication),
\ \ Shut.portal] (PDU.confirm)]

[T.Connect.
indication]
\ co.DM DM.AT

[Open.portal,
\ \ Drop.portal,
Shut.portal] [PDU.ready,(PDU.request),
[(Connect. \ (PDU.response)]
PDU

1

RJum,Quit] \ DOMAIN

\ 0,)
[PDU.ready,(PDU.merge),(PDU.request),
CO.EP \ (PDU.indication),(PDU.response),
(PDU.confirm),(PDU.ultimatum)]

\ DM.EP
[PDU.ready,(PDU.merge),(PDU.request),

[(Conne_ct.PI.DU), (PDU.indication),(PDU.response),
Quit, Exit] (PDU.confirm),(PDU.ultimatum)]

ENDPOINT

©.)

TSAPs.CO
[(Transport.to.Endpoint)]

TSAPs.EP

[T.Disconnect.request] [(Endpoint.to.Transport)]

TSAPs

T0812730-93/d10

FIGURE I11.1/T.125
SDL decomposition of an MCS provider

Recommendation T.125 (04/94) Superseded by a more recent version

Superseded by a more recent version

SYSTEM MCS;
SYNONYM oneSecond

Duration = 1000;

I* Type definitions */

SYNTYPE Channelld
ENDSYNTYPE;

NEWTYPE Userld
OPERATORS ALL;
ADDING
OPERATORS
Userld:
Channelld:

AXIOMS
Userld(0) = 0;

Channelld
Userld

[* time is in milliseconds */

= Integer CONSTANTS 0:65535

INHERITS Channelid

—> Userld;
—> Channelld;

FOR ALL c in Channelid

(

)
ENDNEWTYPE;

SYNTYPE
ENDSYNTYPE;

NEWTYPE ChannelldSet
ENDNEWTYPE;
NEWTYPE UserldSet
ENDNEWTYPE;
NEWTYPE TokenldSet
ENDNEWTYPE;

NEWTYPE TokenStatus

LITERALS
NotinUse,
SelfGrabbed,
OtherGrabbed,
Selflnhibited,
Otherinhibited,
SelfRecipient,

Channelld(Userld(c))

Tokenlid

C;

I* type cast */
I* type cast */

= Integer CONSTANTS 1:65535

SetOf(Channelld);
SetOf(Userld);

SetOf(Tokenld);

SelfGiving,
OtherGiving;
ENDNEWTYPE;
SYNTYPE DataPriority = Integer CONSTANTS 0:3
ENDSYNTYPE;
NEWTYPE Segmentation
STRUCT
begin Boolean;
end Boolean;
ENDNEWTYPE;
NEWTYPE DomainParameters
STRUCT
maxChannellds Natural;
maxUserlds Natural;
maxTokenlds Natural;
numPriorities Natural;
minThroughput Natural;
maxHeight Natural;
maxMCSPDUsize Natural;
protocolVersion Natural;
ENDNEWTYPE;
SYNTYPE DomainSelector = OctetString
ENDSYNTYPE;
SYNTYPE TSAPAddress = OctetString
ENDSYNTYPE;

Recommendation T.125 (04/94)

Superseded by a more recent version

65

Superseded by a more recent version

NEWTYPE TransportQOS I* quality of service */
STRUCT
throughput Natural; I*octets per second */
transitDelay Duration; I* one-way */
dataPriority Natural; I* 0 is highest */
ENDNEWTYPE;
NEWTYPE TransportQOSByPri Array(DataPriority, TransportQOS);
ENDNEWTYPE;
SYNTYPE UserData = OctetString
ENDSYNTYPE;
SYNTYPE TSDU = OctetString
ENDSYNTYPE;
SYNTYPE Octet = Integer CONSTANTS 0:255
ENDSYNTYPE;
NEWTYPE OctetString String(Octet, NullString);
ENDNEWTYPE;

GENERATOR SetOf (TYPE ItemType) I* subsets with choice operator */
I*AS*/

Powerset(ltemType);
ADDING
OPERATORS

Pick: SetOf —> ltemType; I* chooses any element */
AXIOMS

Pick(Empty) == ERROR!;

FOR ALL s IN SetOf

(

)
DEFAULT

Empty;
ENDGENERATOR;

s I= Empty ==> Pick(s) in s;

NEWTYPE Reason
LITERALS
RN_domain_disconnected,
RN_provider_initiated,
RN_token_purged,
RN_user_requested,
RN_channel_purged,
RN_channel_disbanded, I* not in MCSPDUs */
RN_domain_not_hierarchical, /* notin MCSPDUs */
RN_parameters_unacceptable, /* notin MCSPDUs */
RN_unspecified; I* not in MCSPDUs */
ENDNEWTYPE;

NEWTYPE Result

LITERALS
RT_successful,
RT_domain_merging,
RT_domain_not_hierarchical,
RT_no_such_channel,
RT_no_such_domain,
RT_no_such_user,
RT_not_admitted,
RT_other_user_id,
RT_parameters_unacceptable,
RT_token_not_available,
RT_token_not_possessed,
RT_too_many_channels,
RT_too_many_tokens,
RT_too_many_users,

66 Recommendation T.125 (04/94) Superseded by a more recent version

Superseded by a more recent version

RT_unspecified_failure,

RT_user_rejected,

RT_congested,

RT_domain_disconnected;
ENDNEWTYPE;

I* not in MCSPDUs */
I* not in MCSPDUs */

I* The next three identifier types distinguish separate instances

of communication across the interface between an MCS provider and
its environment. MCSConnectionld maps to some resource within the
Control process. MCSAttachmentld, which equals the process id of
an Attachment process, could be considered implicit, since it is

the source or destination address of corresponding signals, but

the usage is clearer when it is made an explicit signal parameter.

The same model is assumed for TCEndpointid. */

SYNTYPE MCSConnectionld = Natural
ENDSYNTYPE;

SYNTYPE MCSAttachmentid = Plid
ENDSYNTYPE;

SYNTYPE TCEndpointld = Pid
ENDSYNTYPE;

I* Block decomposition */
BLOCK MCS.provider REFERENCED;

CHANNEL Control. MCSAP
FROM ENV TO MCS.provider WITH
(Controller.to.Control);
FROM MCS.provider TO ENV WITH
(Control.to.Controller);

ENDCHANNEL,;

SIGNALLIST Controller.to.Control =
MCS.Connect.Provider.request,
MCS.Connect.Provider.response,
MCS.Disconnect.Provider.request;

SIGNALLIST Control.to.Controller =
MCS.Connect.Provider.indication,
MCS.Connect.Provider.confirm,
MCS.Disconnect.Provider.indication;

SIGNAL MCS.Connect.Provider.request
(

Natural,
TSAPAddress,
DomainSelector,
TSAPAddress,
DomainSelector,
Boolean,
DomainParameters
DomainParameters,
DomainParameters,
TransportQOSByPri,
TransportQOSByPri,
UserData

);
SIGNAL MCS.Connect.Provider.indication

(
MCSConnectionid,
TSAPAddress,
DomainSelector,
TSAPAddress,
DomainSelector,

Recommendation T.125

I* requester's label */
I* calling */

I* called */

I* upward */

I* target */

/* minimum */
/¥ maximum */
I* target */

/* minimum */

I* provider-assigned */
I* calling */

I* called */

(04/94) Superseded by a more recent version

67

Superseded by a more recent version

Boolean,
DomainParameters,
DomainParameters,
DomainParameters,
UserData

);
SIGNAL MCS.Connect.Provider.response
(
MCSConnectionid,
Result,
DomainParameters,
UserData

)
SIGNAL MCS.Connect.Provider.confirm

(
Natural,
Result,
MCSConnectionid,
DomainParameters,
UserData

);
SIGNAL MCS.Disconnect.Provider.request
(
MCSConnectionid
);
SIGNAL MCS.Disconnect.Provider.indication
(
MCSConnectionid,
Reason
);
CHANNEL MCSAPs
FROM ENV TO MCS.provider WITH
MCS.Attach.User.request,
(Users.to.Attachment);
FROM MCS.provider TO ENV WITH
(Attachment.to.Users);
ENDCHANNEL;

SIGNALLIST Users.to.Attachment =
MCS.ready,
MCS.Detach.User.request,
MCS.Channel.Join.request,
MCS.Channel.Leave.request,
MCS.Channel.Convene.request,
MCS.Channel.Disband.request,
MCS.Channel.Admit.request,
MCS.Channel.Expel.request,
MCS.Send.Data.request,
MCS.Uniform.Send.Data.request,
MCS.Token.Grab.request,
MCS.Token.Inhibit.request,
MCS.Token.Give.request,
MCS.Token.Give.response,
MCS.Token.Please.request,
MCS.Token.Release.request,
MCS.Token.Test.request;

SIGNALLIST Attachment.to.Users =
MCS.ready,
MCS.Attach.User.confirm,
MCS.Detach.User.indication,
MCS.Channel.Join.confirm,
MCS.Channel.Leave.indication,
MCS.Channel.Convene.confirm,

68 Recommendation T.125 (04/94)

I* upward */

I* target */

I* minimum */
I* maximum */

I* requester's label */

I* provider-assigned */

Superseded by a more recent version

SIGNAL

SIGNAL

SIGNAL

SIGNAL

SIGNAL

SIGNAL

SIGNAL

SIGNAL

Superseded by a more recent version

MCS.Channel.Disband.indication,
MCS.Channel.Admit.indication,
MCS.Channel.Expel.indication,
MCS.Send.Data.indication,
MCS.Uniform.Send.Data.indication,
MCS.Token.Grab.confirm,
MCS.Token.Inhibit.confirm,
MCS.Token.Give.indication,
MCS.Token.Give.confirm,
MCS.Token.Please.indication,
MCS.Token.Release.confirm,
MCS.Token.Test.confirm;

MCS.ready

(
MCSAttachmentid,

DataPriority
);

MCS.Attach.User.request
(

Natural,
DomainSelector

)

MCS.Attach.User.confirm
(

I* allows one MCS.[Uniform.]Send.Data */

I* requester's label */

Natural, I* requester's label */
Result,

MCSAttachmentid, I* provider-assigned */
Userld

)

MCS.Detach.User.request
(

MCSAttachmentid
)
MCS.Detach.User.indication
(

MCSAttachmentid,

Userld,

Reason

);
MCS.Channel.Join.request
(
MCSAttachmentid,
Channelid

);
MCS.Channel.Join.confirm
(
MCSAttachmentid,
Channelld,
Result,
Channelld

I* requested */

);
MCS.Channel.Leave.request

(
MCSAttachmentid,

Channelld
);

Recommendation T.125 (04/94)

Superseded by a more recent version

69

Superseded by a more recent version
SIGNAL MCS.Channel.Leave.indication
(
MCSAttachmentid,
Channelld,
Reason

)

SIGNAL MCS.Channel.Convene.request
(
MCSAttachmentid
);
SIGNAL MCS.Channel.Convene.confirm
(
MCSAttachmentid,
Result,
Channelld

)

SIGNAL MCS.Channel.Disband.request
(
MCSAttachmentid,
Channelld

)

SIGNAL MCS.Channel.Disband.indication

(
MCSAttachmentid,
Channelld,
Reason

)

SIGNAL MCS.Channel.Admit.request

(
MCSAttachmentid,
Channelld,
UserldSet

)

SIGNAL MCS.Channel.Admit.indication

(
MCSAttachmentid,
Channelld,
Userid

)

SIGNAL MCS.Channel.Expel.request

(
MCSAttachmentid,

Channelld,
UserldSet

)

SIGNAL MCS.Channel.Expel.indication

(
MCSAttachmentid,

Channelld,
Reason

)

70 Recommendation T.125 (04/94) Superseded by a more recent version

Superseded by a more recent version

SIGNAL MCS.Send.Data.request
(
MCSAttachmentid,
Channelld,
DataPriority,
Segmentation,
UserData

)

SIGNAL MCS.Send.Data.indication
(

MCSAttachmentid,
Channelld,
DataPriority,
Userld,
Segmentation,
UserData

)

SIGNAL MCS.Uniform.Send.Data.request
(
MCSAttachmentid,
Channelld,
DataPriority,
Segmentation,
UserData

)

SIGNAL MCS.Uniform.Send.Data.indication
(
MCSAttachmentid,
Channelld,
DataPriority,
Userld,
Segmentation,
UserData

)

SIGNAL MCS.Token.Grab.request

(
MCSAttachmentid,

Tokenld
);

SIGNAL MCS.Token.Grab.confirm
(
MCSAttachmentid,
Tokenld,
Result

);
SIGNAL MCS.Token.Inhibit.request

(
MCSAttachmentid,

Tokenld
)

SIGNAL MCS.Token.Inhibit.confirm
(
MCSAttachmentid,
Tokenld,
Result

)

Recommendation T.125

Superseded by a more recent version

71

Superseded by a more recent version
SIGNAL MCS.Token.Give.request
(
MCSAttachmentid,
Tokenld,
Userld

)

SIGNAL MCS.Token.Give.indication

(
MCSAttachmentid,
Tokenld,
Userld

);
SIGNAL MCS.Token.Give.response

(
MCSAttachmentid,
Tokenld,
Result

)

SIGNAL MCS.Token.Give.confirm

(
MCSAttachmentid,
Tokenld,
Result

)

SIGNAL MCS.Token.Please.request

(
MCSAttachmentid,
Tokenld

)

SIGNAL MCS.Token.Please.indication

(
MCSAttachmentid,
Tokenld,
Userld

)

SIGNAL MCS.Token.Release.request

(
MCSAttachmentid,

Tokenld
)

SIGNAL MCS.Token.Release.confirm

(
MCSAttachmentid,

Tokenld,
Result
)

SIGNAL MCS.Token.Test.request

(
MCSAttachmentid,

Tokenld
);

72 Recommendation T.125 (04/94) Superseded by a more recent version

Superseded by a more recent version

SIGNAL MCS.Token.Test.confirm
(
MCSAttachmentid,
Tokenld,
TokenStatus

)

CHANNEL TSAPs
FROM MCS.provider TO ENV WITH
(Endpoint.to.Transport);
FROM ENV TO MCS.provider WITH
T.Connect.indication,
(Transport.to.Endpoint);
ENDCHANNEL,;

SIGNALLIST Endpoint.to.Transport
T.ready,
T.Connect.request,
T.Connect.response,
T.Data.request,
T.Disconnect.request;

SIGNALLIST Transport.to.Endpoint
T.ready,
T.Connect.confirm,
T.Data.indication,
T.Disconnect.indication;

SIGNAL T.ready

(
TCEndpointld

)

SIGNAL T.Connect.request
(
Natural,
TSAPAddress,
TSAPAddress,
TransportQOS,
TransportQOS

);
SIGNAL T.Connect.indication
(
TCEndpointld,
TSAPAddress,
TSAPAddress,

TransportQOS,
TransportQOS

)

SIGNAL T.Connect.response

(
TCEndpointid,

TransportQOS
);

SIGNAL T.Connect.confirm
(

Natural,
TCEndpointid,
TransportQOS

)

I* allows one T.Data */

I* requester's label */
I* calling */
I* called */
I* target */
I* minimum */

I* provider-assigned */
I* calling */
I* called */
I* offered */
I* minimum */

I* selected */

I* requester's label */
I* provider-assigned */
I* selected */

Recommendation T.125 (04/94) Superseded by a more recent version

73

Superseded by a more recent version
SIGNAL T.Data.request

(
TCEndpointid,

TSDU
)

SIGNAL T.Data.indication

(
TCEndpointld,

TSDU
)

SIGNAL T.Disconnect.request

(
TCEndpointld

)

SIGNAL T.Disconnect.indication
(

Natural, I* requester's label */
TCEndpointld I* provider-assigned */

);
ENDSYSTEM;
BLOCK MCS.provider;
SYNONYM maxPortallds Natural = EXTERNAL; I* an implementation limit */

I* Data type definitions */

NEWTYPE PDUKind I* domain MCSPDUs */
LITERALS
PDin, I* plumb domain indication */
EDrq, I* erect domain request */
MCrq, I* merge channels request */
MCcf, I* merge channels confirm */
PCin, I* purge channels indication */
MTrq, I* merge tokens request */
MTcf, I* merge tokens confirm */
PTin, I* purge tokens indication */
DPum, I* disconnect provider ultimatum */
RJum, I* reject MCSPDU ultimatum */
AUrq, I* attach user request */
AUcf, [* attach user confirm */
DUrq, I* detach user request */
DUin, I* detach user confirm */
CJrq, I* channel join request */
CJcf, I* channel join confirm */
CLrq, I* channel leave request */
CCrq, I* channel convene request */
CCcf, I* channel convene confirm */
CDrq, I* channel disband request */
CDin, I* channel disband confirm */
CArq, I* channel admit request */
CAin, I* channel admit confirm */
CErq, I* channel expel request */
CEin, I* channel expel confirm */
SDrq, I* send data request */
SDin, I* send data indication */
USrq, I* uniform send data request */
USin, I* uniform send data indication */
TGrq, I* token grab request */
TGcf, I* token grab confirm */
Tirq, I* token inhibit request */

74 Recommendation T.125 (04/94) Superseded by a more recent version

Superseded by a more recent version

Tlcf, I* token inhibit confirm */
TVrq, I* token give request */
TVin, I* token give indication */
TVrs, I* token give response */
TVcf, I* token give confirm */
TPrq, I* token please request */
TPin, I* token please indication */
TRrq, I* token release request */
TRcf, I* token release confirm */
TTrq, I* token test request */
TTcf; I* token test confirm */
ENDNEWTYPE;
NEWTYPE PDUStruct
STRUCT
kind PDUKind;
I* fields used depend on kind */
channelld Channelld;
channellds ChannelldSet;
dataPriority DataPriority;
detachUserlds UserldSet;
diagnostic Diagnostic;
heightLimit Natural;
initialOctets OctetString;
initiator Userld;
mergeChannels ChannelAttributesSet;
mergeTokens TokenAttributesSet;
purgeChannellds ChannelldSet;
purgeTokenlds TokenldSet;
reason Reason;
recipient Userld;
requested Channelld;
result Result;
segmentation Segmentation;
subHeight Natural;
sublinterval Duration;
tokenld Tokenlid;
tokenStatus TokenStatus;
userData UserData;
userlds UserldSet;
ENDNEWTYPE;
NEWTYPE ChannelKind
LITERALS
Static, I* range 1:1000 = static: known permanently */
Userld, I* dynamic: Attach-User / Detach-User */
Private, I* dynamic: Channel-Convene / Channel-Disband */
Assigned,; I* dynamic: Channel-Join zero / last Channel-Leave */
ENDNEWTYPE;
NEWTYPE ChannelAttributes
STRUCT
channelld Channelid; I* the channel with these attributes */

kind ChannelKind; /* (Static,Userld,Private,Assigned) */

manager Userld; I* if (Private): the channel manager */
admitted UserldSet; I* if (Private): zero or more users */
joined Boolean; I* if (Userld,Private): True if joined */
ENDNEWTYPE;
NEWTYPE ChannelAttributesSet SetOf(ChannelAttributes);
ENDNEWTYPE;

Recommendation T.125 (04/94) Superseded by a more recent version

75

Superseded by a more recent version

NEWTYPE TokenKind
LITERALS
Grabbed, I* assigned exclusively to one user */
Inhibited, I* inhibited by one or more users */
Giving, I* reassigning grabbed to a new user */
Ungivable, I* the recipient has since detached */
Given; I* donor released token or detached */
ENDNEWTYPE;
NEWTYPE TokenAttributes
STRUCT
tokenld Tokenld; I* the token with these attributes */
kind TokenKind; I* (Grabbed,Inhibited,Giving,Ungivable,Given) */
grabber Userld; I* if (Grabbed,Giving,Ungivable): user */
recipient Userld; I* if (Giving,Given): an intended user */
inhibitors UserldSet; I* if (Inhibited): one or more users */
ENDNEWTYPE;
NEWTYPE TokenAttributesSet SetOf(TokenAttributes);
ENDNEWTYPE;
SYNTYPE Portalld = Integer CONSTANTS 0:maxPortallds
ENDSYNTYPE;
NEWTYPE PortalldSet SetOf(Portalld);
ENDNEWTYPE;
NEWTYPE PortalKind
LITERALS

Attached, I* MCS Attachment through an MCSAP */
Downlink, I* MCS Connection to a provider below */

Uplink; I* MCS Connection to a provider above */
ENDNEWTYPE;
NEWTYPE PldByPri Array(DataPriority, Pld);
ENDNEWTYPE;
NEWTYPE Diagnostic
LITERALS

DC_inconsistent_merge,
DC_forbidden_PDU_downward,
DC_forbidden_PDU_upward,
DC_invalid_BER_encoding,
DC_invalid_PER_encoding,
DC_misrouted_user,
DC_unrequested_confirm,
DC_wrong_transport_priority,
DC_channel_id_conflict,
DC_token_id_conflict,
DC_not_user_id_channel,
DC_too_many_channels,
DC_too_many_tokens,
DC_too_many_users,

DC_OK, I* not in MCSPDUs */
DC_ignore, I* not in MCSPDUs */
DC_height_limit_exceeded, I* not in MCSPDUs */
DC_throughput_inadequate; I* not in MCSPDUs */
ENDNEWTYPE;
I* Process decomposition */
PROCESS Control (1,1) REFERENCED; /* CO*/
PROCESS Attachment (0,) REFERENCED; /* AT*/
PROCESS Domain (0,) REFERENCED; /* DM */
PROCESS Endpoint 0,) REFERENCED; /*EP*/

76 Recommendation T.125 (04/94) Superseded by a more recent version

Superseded by a more recent version

CONNECT Control. MCSAP AND Control.MCSAP.CO;

SIGNALROUTE Control. MCSAP.CO
FROM ENV TO Control WITH
(Controller.to.Control);
FROM Control TO ENV WITH
(Control.to.Controller);

CONNECT MCSAPs AND MCSAPs.CO, MCSAPs.AT;

SIGNALROUTE MCSAPs.CO
FROM ENV TO Control WITH
MCS.Attach.User.request;
FROM Control TO ENV WITH
MCS.Attach.User.confirm;

SIGNALROUTE MCSAPs.AT
FROM ENV TO Attachment WITH
(Users.to.Attachment);
FROM Attachment TO ENV WITH
(Attachment.to.Users);

CONNECT TSAPs AND TSAPs.CO, TSAPs.EP;

SIGNALROUTE TSAPs.CO
FROM ENV TO Control WITH
T.Connect.indication;
FROM Control TO ENV WITH
T.Disconnect.request;

SIGNALROUTE TSAPs.EP
FROM ENV TO Endpoint WITH
(Transport.to.Endpoint);
FROM Endpoint TO ENV WITH
(Endpoint.to.Transport);

SIGNALROUTE CO.AT
FROM Control TO Attachment WITH
Quit,
Exit;
FROM Attachment TO Control WITH
Quit;
SIGNALROUTE CO.DM
FROM Control TO Domain WITH
Open.portal,
Drop.portal,
Shut.portal;
FROM Domain TO Control WITH
Drop.portal,
Report.portal,
Shut.portal;

SIGNALROUTE CO.EP
FROM Control TO Endpoint WITH
(Connect.PDU),
Quit,
Exit;
FROM Endpoint TO Control WITH
(Connect.PDU),
RJum,
Quit;
SIGNALROUTE DM.AT
FROM Domain TO Attachment WITH
PDU.ready,
(PDU.indication),
(PDU.confirm);
FROM Attachment TO Domain WITH
PDU.ready,
(PDU.request),
(PDU.response);

Recommendation T.125 (04/94)

Superseded by a more recent version

77

Superseded by a more recent version

SIGNALROUTE DM.EP

FROM Domain TO Endpoint WITH
PDU.ready,
(PDU.merge),
(PDU.request),
(PDU.indication),
(PDU.response),
(PDU.confirm),
(PDU.ultimatum);

FROM Endpoint TO Domain WITH
PDU.ready,
(PDU.merge),
(PDU.request),
(PDU.indication),
(PDU.response),
(PDU.confirm),
(PDU.ultimatum);

SIGNAL Open.portal

(
Portalld,

PortalKind,
PldByPri
);
SIGNAL Report.portal

(
Portalld,

Diagnostic
);
SIGNAL Drop.portal

(
Portalld,

Reason
);

SIGNAL Shut.portal
(

);
SIGNAL Quit;
SIGNAL Exit;
SIGNALLIST Connect.PDU =
Connect.Initial,
Connect.Response,

Connect.Additional,
Connect.Result;

Portalld

SIGNAL Connect.Initial
(

DomainSelector,
DomainSelector,
Boolean,
DomainParameters,
DomainParameters,
DomainParameters,
UserData

);
SIGNAL Connect.Response
(

Result,
Natural,
DomainParameters,
UserData
);
78 Recommendation T.125 (04/94)

I* calling */

I* called */

I* upward */

I* target */

I* minimum */
I* maximum */

Superseded by a more recent version

Superseded by a more recent version

SIGNAL Connect.Additional
(

Natural,
DataPriority

)
SIGNAL Connect.Result
(

Result
)
SIGNALLIST PDU.merge =

PDin, EDrq, MCrq, MCcf, MTrq,

MTcf;

SIGNALLIST PDU.request =

AUrq, DUrq, CJrq, CLrq, CCrq,
CDrq, CArq, CErq, SDrq, USrq,
TGrq, Tirq, TVrq, TPrq, TRrq,

TTrq;

SIGNALLIST PDU.indication =

PCin, PTin, DUin, CDin, CAin,
CEin, SDin, USin, TVin, TPin;

SIGNALLIST PDU.response =
TVrs;

SIGNALLIST PDU.confirm =

AUcf, CJcf, CCcf, TGcf, Ticf,

TVcf, TRcf, TTcf;

SIGNALLIST PDU.ultimatum =
DPum, RJum;

SIGNAL PDU.ready
(

DataPriority
);

SIGNAL PDin (PDUStruct);
SIGNAL EDrq (PDUStruct);
SIGNAL MCrq (PDUStruct);
SIGNAL MCcf (PDUStruct);
SIGNAL PCin (PDUStruct);
SIGNAL MTrq (PDUStruct);
SIGNAL MTcf (PDUStruct);

SIGNAL PTin(PDUStruct);
SIGNAL DPum (PDUStruct);

SIGNAL RJum (PDUStruct);
SIGNAL AUrq (PDUStruct);
SIGNAL AUcf (PDUStruct);
SIGNAL DUrq (PDUStruct);
SIGNAL DUin (PDUStruct);
SIGNAL CJrq (PDUStruct);
SIGNAL CJcf(PDUStruct);

SIGNAL CLrq (PDUStruct);
SIGNAL CCrq (PDUStruct);
SIGNAL CCcf (PDUStruct);
SIGNAL CDrq (PDUStruct);

Recommendation T.125 (04/94)

I* allows one domain MCSPDU */

I* plumb domain indication */
I* erect domain request */

I* merge channels request */
I* merge channels confirm */
I* purge channels indication */
I* merge tokens request */

I* merge tokens confirm */

I* purge tokens indication */

I* disconnect provider ultimatum */
I* reject MCSPDU ultimatum */
I* attach user request */

I* attach user confirm */

I* detach user request */

I* detach user confirm */

I* channel join request */

I* channel join confirm */

I* channel leave request */

I* channel convene request */
I* channel convene confirm */
I* channel disband request */

Superseded by a more recent version

79

Superseded by a more recent version

SIGNAL CDin (PDUStruct); I* channel disband confirm */
SIGNAL CArq (PDUStruct); I* channel admit request */
SIGNAL CAin (PDUStruct); I* channel admit confirm */
SIGNAL CErq (PDUStruct); I* channel expel request */
SIGNAL CEin (PDUStruct); I* channel expel confirm */
SIGNAL SDrq (PDUStruct); I* send data request */
SIGNAL SDin (PDUStruct); I* send data indication */
SIGNAL USrq (PDUStruct); I* uniform send data request */
SIGNAL USin (PDUStruct); I* uniform send data indication */
SIGNAL TGrq (PDUStruct); I* token grab request */
SIGNAL TGcf (PDUStruct); I* token grab confirm */
SIGNAL Tirq (PDUStruct); I* token inhibit request */
SIGNAL Ticf (PDUStruct); I* token inhibit confirm */
SIGNAL TVrq (PDUStruct); I* token give request */
SIGNAL TVin(PDUStruct); I* token give indication */
SIGNAL TVrs (PDUStruct); I* token give response */
SIGNAL TVcf(PDUStruct); I* token give confirm */
SIGNAL TPrq (PDUStruct); I* token please request */
SIGNAL TPin(PDUStruct); I* token please indication */
SIGNAL TRrq (PDUStruct); I* token release request */
SIGNAL TRcf (PDUStruct); I* token release confirm */
SIGNAL TTrq (PDUStruct); I* token test request */
SIGNAL TTcf (PDUStruct); I* token test confirm */
ENDBLOCK;
Appendix I1I
SDL specification of the Control process
(This appendix does not form an integral part of this Recommendation)

PROCESS Control;

I* Type definitions */
NEWTYPE Proc
LITERALS

Nil,

Receiving, I* Endpoint */

Responding, I* Endpoint */

Engaged, I* Attachment Endpoint */

Quitting, I* Attachment Endpoint */

Quit; I* Attachment Endpoint */
ENDNEWTYPE;
NEWTYPE ProcByPri Array(DataPriority, Proc);
ENDNEWTYPE;
NEWTYPE CallSide
LITERALS

Calling,

Called;
ENDNEWTYPE;
80 Recommendation T.125 (04/94) Superseded by a more recent version

Superseded by a more recent version

NEWTYPE PortalStruct
STRUCT
mcld MCSConnectionid;
ccld Natural;
kind PortalKind;
pids PidByPri;
proc ProcByPri;
label Natural;
domain DomainSelector;
opened Boolean;
notify Boolean;
minParms DomainParameters;
maxParms DomainParameters;
parameters DomainParameters;
callSide CallSide;
localTSAP TSAPAddress;
remoteTSAP TSAPAddress;
targetQOSBYyPri TransportQOSBYyPri;
minQOSByPri TransportQOSBYyPri;
userData UserData;
ENDNEWTYPE;

I* equals Portalld index */

I* equals Portalld index */

I* (Attached,Downlink,Uplink) */

I* processes comprising a portal */

I* state of each created process */

I* requester's label for confirm */
I* domain selected by the portal */
I* True if portal has been opened */
I* True to notify when portal quit */
I* lower limit for negotiation */

I* upper limit for negotiation */

I* values negotiated by portal */

I* portal is calling or called */

I* local address for T.Connect */

I* remote address for T.Connect */
I* desired quality of service */

I* minimum that is acceptable */

I* of response, pending confirm */

I* Note: In a practical implementation, the user data stored from
Connect.Response, awaiting establishment of additional TCs, need be
only one transport interface data unit, not a complete TSDU. Any
excess can be left in the pipeline of the initial TC to be read out

when MCS.Connect.Provider.confirm is issued. */

I* process for the domain or Null */

I* number of portals open to domain */
I* unique connection upward or zero */
I* lower limit of configuration */

I* upper limit of configuration */

I* values established in domain */

NEWTYPE Portal Array(Portalld, PortalStruct);
ENDNEWTYPE;
NEWTYPE DomainStruct
STRUCT

pid Pid;

portals Natural;

upward portalld;

minParms DomainParameters;

maxParms DomainParameters;

parameters DomainParameters;
ENDNEWTYPE;
NEWTYPE Domain Array(DomainSelector, DomainStruct);
ENDNEWTYPE;
NEWTYPE DomainSelectorSet SetOf(DomainSelector);
ENDNEWTYPE;

I* Data declarations */

DCL domain Domain,
portal Portal;
I* Note: The fields of a domain or portal array element
are undefined if the corresponding index is not in dUsed
or pUsed respectively. */

DCL dUsed DomainSelectorSet,
pUsed PortalldSet;

DCL pFree PortalldSet;

DCL nullParms DomainParameters;

I* Procedure decomposition */

I* Initialize_resources
Identify_sender
Min_parms

Recommendation T.125 (04/94)

I* resource arrays */

I* indexes used */

I* indexes free */

I* initializer */

(p, dp)
(min, a, b)

Superseded by a more recent version

81

Superseded by a more recent version
Max_parms (max, a, b)
Test_parms (result, x, min, max)
MCS_Connect_Provider_request
T_Connect_indication
Connect_lInitial
MCS_Connect_Provider_response
Connect_Response
Connect_Additional
Connect_Result
MCS_Disconnect_Provider_request

——— — — — — —
- - -

MCS_Attach_User_request (---

Open_portal (p)

Drop_portal (p, reason)

Report_portal (p, diagnostic)

RJum (pdu)

Quit_portal (p, reason)

Quit

Shut_portal (p)

Exit_portal (p) i
r *

PROCEDURE Initialize_resources; I* Initialize_resources */
r *
DCL o] Portalld,
ds DomainSelector,
dSet DomainSelectorSet;

START

COMMENT ‘Initialize data structures during process start-up
before accepting the first input signal.
Note that each SetOf automatically defaults to Empty.
Configure one hypothetical domain as an example.
Some limits are determined by the implementation.

TASK nullParms!maxChannelids := 0,
nullParms!maxUserlds := 0,
nullParms!maxTokenlds := 0,
nullParms!numPriorities := 0,
nullParms!minThroughput := 0,
nullParms!maxHeight := 0,
nullParms!maxMCSPDUsize := 0,
nullParms!protocolVersion := 0,
p := maxPortallds;

1b: IFforp=72.1*
DECISION p > 0;
(True): TASK portal(p)!mcid := p,

portal(p)!ccld := p,
pFree := Incl(p, pFree),

p=p-1;
JOIN 1b;
ELSE:ENDDECISION;
TASK ds := Mkstring(77) /l Mkstring(67) // Mkstring(83),

dUsed := Incl(ds, dUsed),
domain(ds)!Pid := Null,
domain(ds)!portals :=0,
domain(ds)!upward := 0,

dSet := dUsed;
2b: I* for ds in dSet */
DECISION dSet = Empty;
(False): TASK ds := Pick(dSet),

dSet := Del(ds, dSet),
domain(ds)!minParms!maxChannellds := 0,
domain(ds)!minParms!maxUserids := 0,
domain(ds)!minParms!maxTokenlds := 0,
domain(ds)!minParms!numPriorities :=1,
domain(ds)!minParms!minThroughput := 0,
domain(ds)!minParms!maxHeight := 1,
domain(ds)!minParms!maxMCSPDUsize := 35,

82 Recommendation T.125 (04/94) Superseded by a more recent version

Superseded by a more recent version

domain(ds)!minParms!protocolVersion := 1,
domain(ds)!maxParms!maxChannellds := 65535,
domain(ds)!maxParms!maxUserlds := 65535,
domain(ds)!maxParms!maxTokenlds := 65535,
domain(ds)!maxParms!numPriorities := 4,
domain(ds)!maxParms!minThroughput := 1000000,
domain(ds)!maxParms!maxHeight := 1000,
domain(ds)!maxParms!maxMCSPDUsize := 32768,
domain(ds)!maxParms!protocolVersion := 2;

JOIN 2b;
ELSE:ENDDECISION;
RETURN,;
ENDPROCEDURE;
I* */
PROCEDURE Identify_sender; I* ldentify_sender */
FPAR IN/OUT o] Portalld, r* *
IN/OUT dp DataPriority;
DCL pSet PortalldSet;
START
COMMENT 'An alternative would be to carry this
information explicitly in SDL signals.
TASK pSet := pUsed;
1b: I* for p in pSet */
DECISION pSet = Empty;
(False): TASK p := Pick(pSet),
pSet := Del(p, pSet),
dp :=0;
2b: I* fordp=0..3%*
DECISION dp < 4;
(True): DECISION portal(p)!pids(dp) = SENDER;
(True): RETURN;
ELSE:ENDDECISION;
TASK dp :=dp + 1;
JOIN 2b;
ELSE:ENDDECISION;
JOIN 1b;
ELSE:ENDDECISION;
TASK p:=0,
dp :=0;
RETURN;
ENDPROCEDURE;
/* ___________________ */
PROCEDURE Min_parms; I* Min_parms */
FPAR IN/OUT min DomainParameters, R e ——— *|
a DomainParameters,
b DomainParameters;
START

COMMENT 'Return the minimum of two parameter sets.
TASK min!maxChannellds := IF almaxChannellds < b!maxChannellds
THEN a!maxChannellds ELSE b!maxChannelids Fl,
min!maxUserlds := IF almaxUserlds < b!maxUserlds
THEN a!maxUserlds ELSE b!maxUserlds Fl,
min!maxTokenlds := IF almaxTokenlds < b!lmaxTokenlds
THEN a!maxTokenlds ELSE b!maxTokenlds FlI,
min!numPriorities := IF alnumPriorities < b!numPriorities
THEN a!numPriorities ELSE b!numPriorities Fl,
min!minThroughput := IF alminThroughput < b!minThroughput
THEN a!minThroughput ELSE b!minThroughput Fl,
min!maxHeight := IF almaxHeight < b!maxHeight
THEN a!maxHeight ELSE b!maxHeight Fl,

Recommendation T.125 (04/94) Superseded by a more recent version

83

Superseded by a more recent version

min!maxMCSPDUsize := IF almaxMCSPDUsize < b!maxMCSPDUsize
THEN a!maxMCSPDUsize ELSE b!maxMCSPDUsize Fl,

min!protocolVersion := IF alprotocolVersion < b!protocolVersion
THEN a!protocolVersion ELSE b!protocolVersion Fl;

RETURN,;
ENDPROCEDURE;
I* ____________________ * /
PROCEDURE Max_parms; I* Max_parms */
FPAR IN/OUT max DomainParameters, e ———— */
a DomainParameters,
b DomainParameters;
START
COMMENT 'Return the maximum of two parameter sets.
TASK max!maxChannellds := IF almaxChannellds > b!maxChannellds
THEN a!maxChannellds ELSE b!maxChannelids Fl,
max!maxUserlds := IF almaxUserlds > b!maxUserlds
THEN a!maxUserlds ELSE b!maxUserlds Fl,
max!maxTokenlds := IF almaxTokenlds > b!maxTokenlds
THEN a!maxTokenlds ELSE b!maxTokenlds FlI,
max!numPriorities := IF alnumPriorities > blnumPriorities
THEN a!numPriorities ELSE b!numPriorities Fl,
max!minThroughput := IF alminThroughput > b!minThroughput
THEN a!minThroughput ELSE b!minThroughput Fl,
max!maxHeight := IF almaxHeight > b!maxHeight
THEN a!maxHeight ELSE b!maxHeight Fl,
max!maxMCSPDUsize := IF almaxMCSPDUsize > b!maxMCSPDUsize
THEN a!maxMCSPDUsize ELSE b!maxMCSPDUsize Fl,
max!protocolVersion := IF alprotocolVersion > b!protocolVersion
THEN a!protocolVersion ELSE b!protocolVersion Fl;
RETURN,;
ENDPROCEDURE;
I* ____________________ * I
PROCEDURE Test_parms; I* Test_parms */
FPAR IN/OUT result Result, L ——— *
z DomainParameters,
min DomainParameters,
max DomainParameters;
START
COMMENT 'Check that the parameters lie between min and max.
DECISION (z!'maxChannellds >= minlmaxChannellds)
and (z!lmaxChannellds <= max!maxChannellds)
and (z!maxUserlds >= minlmaxUserlds)
and (z!maxUserlds <= max!maxUserlds)
and (z!maxTokenlds >= minlmaxTokenlds)
and (z!maxTokenlds <= max!maxTokenlds)
and (z!numPriorities >= min!numPriorities)
and (z!numPriorities <= max!numPriorities)
and (z!minThroughput >= min!minThroughput)
and (z!minThroughput <= max!minThroughput)
and (z!maxHeight >= min!maxHeight)
and (z!maxHeight <= max!maxHeight)
and (z!maxMCSPDUsize >= min!maxMCSPDUsize)
and (z'lmaxMCSPDUsize <= max!maxMCSPDUsize)
and (z!protocolVersion >= min!protocolVersion)
and (z!protocolVersion <= max!protocolVersion);
(True): TASK result := RT_successful;
(False): TASK result := RT_parameters_unacceptable;
ENDDECISION;
RETURN,;
ENDPROCEDURE;
84 Recommendation T.125 (04/94) Superseded by a more recent version

Superseded by a more recent version

*/

*/

I*
PROCEDURE MCS_Connect_Provider_request; I* MCS_Connect_Provider_request */
FPAR label Natural, I*
localTSAP TSAPAddress,
localDomain DomainSelector,
remoteTSAP TSAPAddress,
remoteDomain DomainSelector,
upward Boolean,
targetParms DomainParameters,
minParms DomainParameters,
maxParms DomainParameters,
targetQOSBYyPri TransportQOSBYyPri,
minQOSBYyPri TransportQOSByPri,
userData UserData;
DCL result Result,
p Portalld,
dp DataPriority,
ds DomainSelector;
START
COMMENT 'Process an MCS.Connect.Provider.request input signal.

DECISION pFree = Empty;
result := RT_congested;

(True):

Begin parameter negotiation and allocate a portal.
Create an endpoint process for the initial TC and
transmit Connect.Initial through it.

TASK
JOIN 1f;

ELSE:ENDDECISION;
ds := localDomain;
DECISION ds in dUsed;

TASK

(False):

TASK
JOIN 1f;

ELSE:ENDDECISION;
DECISION upward and domain(ds)!upward /= 0;

(True):

TASK
JOIN 1f;

ELSE:ENDDECISION;
Max_parms(minParms, minParms, domain(ds)!minParms);
Min_parms(maxParms, maxParms, domain(ds)!maxParms);
DECISION domain(ds)!portals > 0;

CALL
CALL

(True): TASK
(False): CALL

CALL
ENDDECISION;
CALL

result := RT_no_such_domain;

result := RT_domain_not_hierarchical;

targetParms := domain(ds)!parameters;
Max_parms(targetParms, targetParms, minParms);
Min_parms(targetParms, targetParms, maxParms);

Test_parms(result, targetParms, minParms, maxParms);
DECISION result = RT_successful;
(False): 1f :

OUTPUT MCS.Connect.Provider.confirm
(label, result, 0, nullParms, NullString);

RETURN;

ELSE:ENDDECISION;
DECISION domain(ds)!portals > 0;

(True):

TASK

minParms := targetParms,

maxParms := targetParms;

ELSE:ENDDECISION;
Endpoint(Null, localTSAP, remoteTSAP,
targetQOSByPri(0), minQOSByPri(0),

CREATE

OUTPUT

TASK

nullParms);

Connect.Initial(localDomain, remoteDomain, upward,
targetParms, minParms, maxParms, userData)

TO OFFSPRING;

p := Pick(pFree),

pFree := Del(p, pFree),

pUsed := Incl(p, pUsed),

portal(p)!kind := IF upward THEN Uplink ELSE Downlink Fl,

Recommendation T.125

(04/94) Superseded by a more recent version

85

Superseded by a more recent version

portal(p)!label := label,

portal(p)!domain := ds,

portal(p)!opened := False,
portal(p)!notify := True,
portal(p)!minParms := minParms,
portal(p)!maxParms := maxParms,
portal(p)!parameters := nullParms,
portal(p)!callSide := Calling,
portal(p)!localTSAP := localTSAP,
portal(p)!remoteTSAP := remoteTSAP,
portal(p)!targetQOSBYyPri := targetQOSByPri,
portal(p)!minQOSByPri := minQOSByPri,
portal(p)!pids(0) := OFFSPRING,
portal(p)!proc(0) := Receiving,

dp :=1;
2b: I*fordp=1..3*
DECISION dp < 4;
(True): TASK portal(p)!pids(dp) := Null,
portal(p)!proc(dp) := Nil,
dp :=dp + 1;
JOIN 2b;
ELSE:ENDDECISION;
RETURN,;
ENDPROCEDURE;
r *
PROCEDURE T_Connect_indication; I* T_Connect_indication */
FPAR tcld TCEndpointid, I *|
remoteTSAP TSAPAddress,
localTSAP TSAPAddress,
offeredQOS TransportQOS,
minQOS TransportQOS;
DCL o] Portalid,
dp DataPriority;
START

COMMENT 'Process a T.Connect.indication input signal.
Allocate a portal, in case this is an initial TC.
Create an endpoint process to receive Connect.Initial
or Connect.Additional.
DECISION pFree = Empty
or offeredQOS!throughput < minQOS!throughput
or offeredQOS!transitDelay > minQOS!transitDelay
or offeredQOS!dataPriority > minQOS!dataPriority;
(True): OUTPUT T.Disconnect.request(tcid);
RETURN,;
ELSE:ENDDECISION;
CREATE Endpoint(tcld, localTSAP, remoteTSAP,
offeredQOS, minQOS,
nullParms);
TASK p := Pick(pFree),
pFree := Del(p, pFree),
pUsed := Incl(p, pUsed),
portal(p)!kind := Downlink,
portal(p)!opened := False,
portal(p)!notify := False,
portal(p)!parameters := nullParms,
portal(p)!callSide := Called,
portal(p)!localTSAP := localTSAP,
portal(p)!remoteTSAP := remoteTSAP,
portal(p)!pids(0) := OFFSPRING,
portal(p)!proc(0) := Receiving,
dp :=1;
1b: I*fordp=1..3*%

86 Recommendation T.125 (04/94) Superseded by a more recent version

Superseded by a more recent version
DECISION dp < 4;

(True): TASK portal(p)!pids(dp) := Null,
portal(p)!proc(dp) := Nil,
dp:=dp +1;
JOIN 1b;
ELSE:ENDDECISION;
RETURN,;
ENDPROCEDURE;
/* ________________________ * I
PROCEDURE Connect_lInitial; I* Connect_Initial */
FPAR remoteDomain DomainSelector, [*emmmmm e */
localDomain DomainSelector,
upward Boolean,
targetParms DomainParameters,
minParms DomainParameters,
maxParms DomainParameters,
userData UserData;
DCL result Result,
p Portalld,
dp DataPriority,
ds DomainSelector;
START

COMMENT 'Process a Connect.Initial input signal.
Retain the portal and begin parameter negotiation.
Indicate the connection to the controlling user.
CALL Identify_sender(p, dp);
DECISION p in pUsed and portal(p)!callSide = Called
and dp = 0 and portal(p)!proc(0) = Receiving;

(False): TASK result := RT_unspecified_failure;
JOIN 1f;

ELSE:ENDDECISION;

TASK ds := localDomain;

DECISION ds in dUsed;

(False): TASK result := RT_no_such_domain;
JOIN 1f;

ELSE:ENDDECISION;
DECISION upward or domain(ds)!upward = 0;

(False): TASK result := RT_domain_not_hierarchical;
JOIN 1f;
ELSE:ENDDECISION;
CALL Max_parms(minParms, minParms, domain(ds)!minParms);
CALL Min_parms(maxParms, maxParms, domain(ds)!maxParms);
DECISION domain(ds)!portals > 0;
(True): TASK targetParms := domain(ds)!parameters;
(False): CALL Max_parms(targetParms, targetParms, minParms);
CALL Min_parms(targetParms, targetParms, maxParms);
ENDDECISION;
CALL Test_parms(result, targetParms, minParms, maxParms);
DECISION result = RT_successful;
(False): 1f :
OUTPUT Connect.Response(result, 0, nullParms, NullString)
TO SENDER;
CALL Quit_portal(p, RN_unspecified);

RETURN;
ELSE:ENDDECISION;
DECISION domain(ds)!portals > 0;
(True): TASK minParms := targetParms,
maxParms := targetParms;
ELSE:ENDDECISION;
TASK portal(p)!kind := IF upward THEN Downlink ELSE Uplink FlI,
portal(p)!domain := ds,
portal(p)!notify := True,
portal(p)!minParms := minParms,

Recommendation T.125 (04/94) Superseded by a more recent version

87

Superseded by a more recent version

portal(p)!maxParms := maxParms,
portal(p)!proc(0) := Responding;
OUTPUT MCS.Connect.Provider.indication
(portal(p)!mcld, portal(p)!localTSAP, localDomain, portal(p)!remoteTSAP,
remoteDomain, upward, targetParms, minParms, maxParms, userData);

RETURN;
ENDPROCEDURE;
I* *
PROCEDURE MCS_Connect_Provider_response; I* MCS_Connect_Provider_response */
FPAR mcld MCSConnectionid, I* *|
result Result,
parameters DomainParameters,
userData UserData;
DCL P Portalld;
START
COMMENT 'Process an MCS.Connect.Provider.response input signal.
Check negotiated parameters and force a preference.
Transmit Connect.Response.
If there are no additional TCs, open the portal.
TASK p := mcld;
DECISION p in pUsed and portal(p)!proc(0) = Responding;
(False): RETURN,;
ELSE:ENDDECISION;
DECISION result = RT_successful;
(False): TASK result := RT_user_rejected,
portal(p)!notify := False;
JOIN 1f;
ELSE:ENDDECISION;
CALL Test_parms(result, parameters, portal(p)!minParms, portal(p)!maxParms);
DECISION result = RT_successful;
(False): 1f :
OUTPUT Connect.Response(result, 0, parameters, userData)
TO portal(p)!pids(0);
CALL Quit_portal(p, RN_parameters_unacceptable);
RETURN,;
ELSE:ENDDECISION;
CALL Max_parms(parameters, parameters, portal(p)!minParms);
OUTPUT Connect.Response(result, portal(p)!ccld, parameters, userData)
TO portal(p)!pids(0);
TASK portal(p)!parameters := parameters,
portal(p)!proc(0) := Engaged;
CALL Open_portal(p);
RETURN;
ENDPROCEDURE;
r *I
PROCEDURE Connect_Response; I* Connect_Response */
FPAR result Result, I* *|
ccld Natural,
parameters DomainParameters,
userData UserData;
DCL o] Portalld,
dp DataPriority;
START
COMMENT 'Process a Connect.Response input signal.
Check the negotiated parameters.
Create endpoint processes for additional TCs and
transmit Connect.Additional through them.
If there are no additional TCs, open the portal.
CALL Identify_sender(p, dp);
88 Recommendation T.125 (04/94) Superseded by a more recent version

Superseded by a more recent version

DECISION p in pUsed and portal(p)!callSide = Calling
and dp = 0 and portal(p)!proc(0) = Receiving;

(False): CALL Quit_portal(p, RN_unspecified);
RETURN;

ELSE:ENDDECISION;

TASK portal(p)!parameters := parameters,

portal(p)!userData := userData;
DECISION result = RT_successful;
(False): JOIN 1f;
ELSE:ENDDECISION;
CALL Test_parms(result, parameters, portal(p)!minParms, portal(p)!maxParms);
DECISION result = RT_successful;
(False): 1f :
OUTPUT MCS.Connect.Provider.confirm
(portal(p)!label, result, 0, parameters, userData);
TASK portal(p)!notify := False;
CALL Quit_portal(p, RN_unspecified);

RETURN,;
ELSE:ENDDECISION;
TASK portal(p)!proc(0) := Engaged,
dp :=1;
2b: I*fordp=1..2"*
DECISION dp < parameters!numPriorities;
(True): CREATE Endpoint(Null, portal(p)!localTSAP, portal(p)!remoteTSAP,
portal(p)!targetQOSByPri(dp), portal(p)!minQOSByPri(dp),
parameters);

OUTPUT Connect.Additional(ccld, dp)
TO OFFSPRING;

TASK portal(p)!pids(dp) := OFFSPRING,
portal(p)!proc(dp) := Receiving,

dp :=dp + 1;
JOIN 2b;
ELSE:ENDDECISION;
CALL Open_portal(p);
RETURN;
ENDPROCEDURE;
r *I
PROCEDURE Connect_Additional; I* Connect_Additional */
FPAR ccld Natural, I* *|
dp DataPriority;
DCL o] Portalld,
r Portalld,
X DataPriority;
START

COMMENT 'Process a Connect.Additional input signal.
Release the allocated portal and piggyback onto
the preceding Connect.Initial.

Transmit Connect.Result.
If all TCs are established, open the portal.

CALL Identify_sender(r, x);
DECISION r in pUsed and portal(r)!callSide = Called
and x = 0 and portal(r)!proc(0) = Receiving;

(False): JOIN 1f;
ELSE:ENDDECISION;
TASK p :=ccld;

DECISION p in pUsed and portal(p)!callSide = Called
and dp > 0 and dp < portal(p)!parameters!numPriorities
and portal(p)!proc(0) = Engaged and portal(p)!proc(dp) = Nil;

(False): 1f :
OUTPUT Connect.Result(RT_unspecified_failure)
TO SENDER;
CALL Quit_portal(r, RN_unspecified);

RETURN;
ELSE:ENDDECISION;

Recommendation T.125 (04/94) Superseded by a more recent version

89

Superseded by a more recent version
TASK pUsed := Del(r, pUsed),

pFree := Incl(r, pFree);
OUTPUT Connect.Result(RT_successful)

TO SENDER;
TASK portal(p)!pids(dp) := SENDER,
portal(p)!proc(dp) := Engaged,;
CALL Open_portal(p);
RETURN,;
ENDPROCEDURE;
r */
PROCEDURE Connect_Result; I* Connect_Result */
FPAR result Result; I* */
DCL o] Portalid,
dp DataPriority;
START
COMMENT 'Process a Connect.Result input signal.
If all TCs are established, open the portal.
CALL Identify_sender(p, dp);
DECISION p in pUsed and portal(p)!callSide = Calling
and dp > 0 and portal(p)!proc(dp) = Receiving;
(False): CALL Quit_portal(p, RN_unspecified);
RETURN,;
ELSE:ENDDECISION;
DECISION result = RT_successful;
(False): OUTPUT MCS.Connect.Provider.confirm
(portal(p)'label, result, 0,
portal(p)!parameters, portal(p)!userData);
TASK portal(p)!notify := False;
CALL Quit_portal(p, RN_unspecified);
RETURN,;
ELSE:ENDDECISION;
TASK portal(p)!proc(dp) := Engaged,;
CALL Open_portal(p);
RETURN,;
ENDPROCEDURE;
r* */
PROCEDURE MCS_Disconnect_Provider_request; I* MCS_Disconnect_Provider_request */
FPAR mcld MCSConnectionid; I* */
DCL p Portalid,
ds DomainSelector;
START
COMMENT 'Process an MCS.Disconnect.Provider.request input signal.
If the portal is open, this can be done gracefully.
TASK p := mcld;
DECISION p in pUsed and portal(p)!notify;
(True): TASK portal(p)!notify := False,
ds := portal(p)!domain;
DECISION portal(p)!opened and domain(ds)!portals > 0;
(True): OUTPUT Drop.portal(p, RN_user_requested) TO domain(ds)!pid;
(False): CALL Quit_portal(p, RN_unspecified);
ENDDECISION;
ELSE:ENDDECISION;
RETURN,;
ENDPROCEDURE;
* *|
PROCEDURE MCS_Attach_User_request; I* MCS_Attach_User_request */
FPAR label Natural, I* */
localDomain DomainSelector;
90 Recommendation T.125 (04/94) Superseded by a more recent version

Superseded by a more recent version

DCL o] Portalld,

dp DataPriority,

ds DomainSelector;
START

COMMENT 'Process an MCS.Attach.User.request input signal.
Allocate a portal, expecting to create an attachment,
and open the portal.

DECISION pFree = Empty;

(True): TASK result := RT_congested;
JOIN 1f;

ELSE:ENDDECISION;

TASK ds := localDomain;

DECISION ds in dUsed;

(False): TASK result := RT_no_such_domain;
1f :

OUTPUT MCS.Attach.User.confirm
(label, result, Null, 0);

RETURN;
ELSE:ENDDECISION;
TASK p := Pick(pFree),

pFree := Del(p, pFree),
pUsed := Incl(p, pUsed),
portal(p)!kind := Attached,
portal(p)!label := label,
portal(p)!domain :=ds,
portal(p)!opened := False,
portal(p)!notify := False,
portal(p)!pids(0) := Null,
portal(p)!proc(0) := Engaged,

dp :=1;
2b: I fordp=1..3*
DECISION dp < 4;
(True): TASK portal(p)!pids(dp) := Null,
portal(p)!proc(dp) := Nil,
dp:=dp +1;
JOIN 2b;
ELSE:ENDDECISION;
CALL Open_portal(p);
RETURN;
ENDPROCEDURE;
T —— x|
PROCEDURE Open_portal; I* Open_portal */
FPAR o] Portalld; B *
DCL dp DataPriority,
ds DomainSelector,
numP Natural,
parameters DomainParameters;
START

COMMENT 'When all TCs have been established, or if this
is a user attachment, open the portal to a domain.
If the domain process is stopping, try again later.
Attachments must wait until domain parameters are set.

TASK ds := portal(p)!domain,
dp :=0;

DECISION portal(p)'kind = Attached;

(True): TASK parameters := domain(ds)!minParms,
numP :=1;

(False): TASK parameters := portal(p)!parameters,
numP := parameters!numPriorities;

ENDDECISION;

1b: I* fordp =0..2*/

Recommendation T.125 (04/94) Superseded by a more recent version

91

Superseded by a more recent version
DECISION dp < numP;
(True): DECISION portal(p)!proc(dp) = Engaged;
(False):RETURN;
ELSE:ENDDECISION;
TASK dp:=dp +1;
JOIN 1b;
ELSE:ENDDECISION;
DECISION domain(ds)!pid = Null;
(False): DECISION domain(ds)!portals = 0;
(True): RETURN;
ELSE:ENDDECISION;
(True): CREATE Domain(parameters);
TASK domain(ds)!pid := OFFSPRING,
domain(ds)!portals :=0,
domain(ds)!upward := 0,
domain(ds)!parameters := parameters;
ENDDECISION;
DECISION portal(p)'kind = Attached,;
(True): CREATE Attachment(portal(p)!label, domain(ds)!parameters);
TASK portal(p)!pids(0) := OFFSPRING;
(False): DECISION domain(ds)!parameters = parameters;
(False): CALL Quit_portal(p, RN_parameters_unacceptable);
RETURN;
ELSE:ENDDECISION;
DECISION portal(p)'kind = Uplink;
(True): DECISION domain(ds)!upward = 0;
(False): CALL Quit_portal(p, RN_domain_not_hierarchical);

RETURN,;
(True): TASK domain(ds)!lupward := p;
ENDDECISION;

ELSE:ENDDECISION;

DECISION portal(p)!callSide = Called;

(False): OUTPUT MCS.Connect.Provider.confirm
(portal(p)!label, RT_successful, portal(p)!mcld,

portal(p)!parameters, portal(p)!userData);
ELSE:ENDDECISION;

ENDDECISION;
OUTPUT Open.portal(p, portal(p)!kind, portal(p)!pids) TO domain(ds)!pid;
TASK domain(ds)!portals := domain(ds)!portals + 1,
portal(p)!opened := True;
RETURN;
ENDPROCEDURE;
T —— i
PROCEDURE Drop_portal; I* Drop_portal */
FPAR p Portalld, [ammmmmmmm e *
reason Reason;
START
COMMENT' Process a Drop.portal input signal.
CALL Quit_portal(p, reason);
RETURN;
ENDPROCEDURE;
N — x|
PROCEDURE Report_portal; I* Report_portal */
FPAR o] Portalld, [* e *
diagnostic Diagnostic;
DCL reason Reason;
START
COMMENT 'Process a Report.portal input signal.
For testing, local diagnostic could be logged.
TASK reason := RN_unspecified;
92 Recommendation T.125 (04/94) Superseded by a more recent version

Superseded by a more recent version
DECISION diagnostic;
(DC_throughput_inadequate):

TASK reason := RN_provider_initiated;
(DC_height_limit_exceeded):

TASK reason := RN_domain_not_hierarchical;
ELSE:ENDDECISION;

CALL Quit_portal(p, reason);
RETURN,;
ENDPROCEDURE;
/* ___________ *I
PROCEDURE RJum; * RJum */
FPAR pdu PDUStruct; [*ammmmmmnas *
DCL p Portalld,
dp DataPriority;
START
COMMENT 'Process an RJum input signal.
For testing, remote pdu!diagnostic could be logged.
CALL Identify_sender(p, dp);
CALL Quit_portal(p, RN_unspecified);
RETURN,;
ENDPROCEDURE;
T — x|
PROCEDURE Quit_portal; I* Quit_portal */
FPAR o] Portalld, R ———— */
reason Reason;
DCL result Result,
dp DataPriority;
START

COMMENT 'If necessary, notify the controlling user.
Quiesce the portal processes.

DECISION p in pUsed,;
(False): RETURN,;
ELSE:ENDDECISION;
DECISION portal(p)!notify;
(True): DECISION portal(p)!callSide = Called or portal(p)!opened;
(True): OUTPUT MCS.Disconnect.Provider.indication
(portal(p)!mcld, reason);
(False): DECISION reason;
(RN_domain_not_hierarchical):
TASK result := RT_domain_not_hierarchical;
(RN_parameters_unacceptable):
TASK result := RT_parameters_unacceptable;
ELSE:
TASK result := RT_unspecified_failure;
ENDDECISION;
OUTPUT MCS.Connect.Provider.confirm
(portal(p)!label, result, 0, nullParms, NullString);

ENDDECISION;
ELSE:ENDDECISION;
TASK portal(p)!notify := False,
dp :=0;
1b: I*fordp=0.3"*
DECISION dp < 4;
(True): DECISION portal(p)!proc(dp);

(Receiving, Responding, Engaged):
OUTPUT Quit TO portal(p)!pids(dp);
TASK portal(p)!proc(dp) := Quitting;
ELSE:ENDDECISION;
TASK dp :=dp +1;
JOIN 1b;

Recommendation T.125 (04/94) Superseded by a more recent version

93

Superseded by a more recent version
ELSE:ENDDECISION;

RETURN;
ENDPROCEDURE;
R *
PROCEDURE Quit; I Quit */
L *
DCL p Portalld,
pSet PortalldSet,
dp DataPriority,
ds DomainSelector;
START

COMMENT 'Process a Quit input signal.
When all processes are quiesced, it is safe
to shut this portal on the domain.
If an upward portal, quiesce all others too.

CALL Identify_sender(p, dp);

DECISION p in pUsed;

(False): RETURN;

ELSE:ENDDECISION;

TASK portal(p)!proc(dp) := Quit;

CALL Quit_portal(p, RN_unspecified);

TASK dp :=0;

1b: I*fordp=0.3*

DECISION dp < 4;

(True): DECISION portal(p)!proc(dp);
(Receiving, Responding, Engaged, Quitting):

RETURN;

ELSE:ENDDECISION;
TASK dp:=dp +1;
JOIN 1b;
ELSE:ENDDECISION;
DECISION portal(p)!opened,;

(False): CALL Exit_portal(p);
RETURN;

ELSE:ENDDECISION;

TASK ds := portal(p)!domain,

domain(ds)!portals := domain(ds)!portals - 1;
OUTPUT Shut.portal(p) TO domain(ds)!pid;
DECISION portal(p)!kind = Uplink;

(True): TASK domain(ds)!upward := 0,
pSet := pUsed;
2b: I* for p in pSet */
DECISION pSet = Empty;
(False): TASK p := Pick(pSet),

pSet := Del(p, pSet);
DECISION portal(p)!opened and portal(p)!domain = ds;
(True): CALL Quit_portal(p, RN_domain_disconnected);
ELSE:ENDDECISION;
JOIN 2b;
ELSE:ENDDECISION;
ELSE:ENDDECISION;

RETURN,;
ENDPROCEDURE;
) —— i
PROCEDURE Shut_portal; I* Shut_portal */
FPAR o] Portalld; [Fammmmmmmee e */
DCL ds DomainSelector,
pSet PortalldSet;
START
COMMENT 'Process a Shut.portal input signal.
It is now safe to stop the portal processes.
If this was the last portal, the domain process stops too
so that it can be recreated with different parameters.
94 Recommendation T.125 (04/94) Superseded by a more recent version

Superseded by a more recent version

TASK ds := portal(p)!domain;
CALL Exit_portal(p);
DECISION domain(ds)!portals = 0;
(True): TASK domain(ds)!pid := Null,
pSet := pUsed;
1b: I* for p in pSet */

DECISION pSet = Empty;
(False): TASK p := Pick(pSet),
pSet := Del(p, pSet);

DECISION portal(p)!'domain = ds;
(True): CALL Open_portal(p);
ELSE:ENDDECISION;
JOIN 1b;

ELSE:ENDDECISION;

ELSE:ENDDECISION;

RETURN,;
ENDPROCEDURE;
I* __________________ * /
PROCEDURE Exit_portal; I* Exit_portal */
FPAR o] Portalld; [Fmmmmmmmm e *l
DCL dp DataPriority;
START
COMMENT 'Release the portal and stop its processes.
TASK pUsed := Del(p, pUsed),
pFree := Incl(p, pFree),
dp :=0;
1b: I*fordp=0.3*
DECISION dp < 4;
(True): DECISION portal(p)!proc(dp);
(Quit):

OUTPUT Exit TO portal(p)!pids(dp);
TASK portal(p)!proc(dp) := Nil;
ELSE:ENDDECISION;
TASK dp :=dp + 1;
JOIN 1b;
ELSE:ENDDECISION;
RETURN;
ENDPROCEDURE;

I* Input transitions */

DCL p Portalld,
dp DataPriority,
pdu PDUStruct,
mcld MCSConnectionid,
ccld Natural,
tcld TCEndpointld,
reason Reason,
result Result,
diagnostic Diagnostic,
label Natural,
localTSAP TSAPAddress,
localDomain DomainSelector,
remoteTSAP TSAPAddress,
remoteDomain DomainSelector,
upward Boolean,
targetParms DomainParameters,
minParms DomainParameters,
maxParms DomainParameters,
parameters DomainParameters,
targetQOSBYyPri TransportQOSBYyPri,
minQOSBYyPri TransportQOSBYyPri,
offeredQOS TransportQOS,
minQOS TransportQOS,
userData UserData;

Recommendation T.125 (04/94) Superseded by a more recent version

95

Superseded by a more recent version

START
COMMENT 'The state machine contains a single state.
CALL Initialize_resources;
NEXTSTATE ~;
STATE ~;INPUT MCS.Connect.Provider.request(label, localTSAP, localDomain,

remoteTSAP, remoteDomain, upward, targetParms, minParms, maxParms,
targetQOSByPri, minQOSBYyPri, userData);

CALL MCS_Connect_Provider_request(label, localTSAP, localDomain,
remoteTSAP, remoteDomain, upward, targetParms, minParms, maxParms,
targetQOSByPri, minQOSByPri, userData);

NEXTSTATE -;

STATE ~;INPUT MCS.Connect.Provider.response(mcld, result, parameters, userData);
CALL MCS_Connect_Provider_response(mcld, result, parameters, userData);
NEXTSTATE -;

STATE ~;INPUT MCS.Disconnect.Provider.request(mcld);

CALL MCS_Disconnect_Provider_request(mcld);
NEXTSTATE -;

STATE ~;INPUT MCS.Attach.User.request(label, localDomain);

CALL MCS_Attach_User_request(label, localDomain);
NEXTSTATE -;

STATE ~;INPUT T.Connect.indication(tcld, remoteTSAP, localTSAP, offeredQOS, minQOS);
CALL T_Connect_indication(tcld, remoteTSAP, localTSAP, offeredQOS, minQOS);
NEXTSTATE -;

STATE ~;INPUT Connect.Initial(remoteDomain, localDomain, upward,

targetParms, minParms, maxParms, userData);
CALL Connect_lInitial(remoteDomain, localDomain, upward,
targetParms, minParms, maxParms, userData);
NEXTSTATE -;

STATE ~;INPUT Connect.Response(result, ccld, parameters, userData);
CALL Connect_Response(result, ccld, parameters, userData);
NEXTSTATE -;

STATE ~;INPUT Connect.Additional(ccld, dp);
CALL Connect_Additional(ccld, dp);
NEXTSTATE -;

STATE ~;INPUT Connect.Result(result);
CALL Connect_Result(result);
NEXTSTATE -;

STATE ~;INPUT Drop.portal(p, reason);
CALL Drop_portal(p, reason);
NEXTSTATE -;

STATE ~;INPUT Report.portal(p, diagnostic);
CALL Report_portal(p, diagnostic);
NEXTSTATE -;

STATE ~;INPUT Shut.portal(p);
CALL Shut_portal(p);
NEXTSTATE -;

STATE ~;INPUT RJum(pdu);
CALL RJum(pdu);
NEXTSTATE -;

96 Recommendation T.125 (04/94) Superseded by a more recent version

Superseded by a more recent version

STATE ~;INPUT Quit;
CALL Quit;
NEXTSTATE -;

ENDPROCESS;

Appendix 1V

SDL specification of the Domain process
(This appendix does not form an integral part of this Recommendation)

PROCESS Domain;

FPAR parameters DomainParameters; I* values established in domain */
SYNONYM maxBufferlds Natural = EXTERNAL; I* an implementation limit */
TIMER Time.portal(Portalld); I* at most one timer per portal */

I* Type definitions */

NEWTYPE ChannelStruct

STRUCT
kind ChannelKind; I* (Static,Userld,Private,Assigned) */
joined PortalldSet; I* directions where channel is joined */
portal Portalld; I* if (Userld): the direction to it */
manager Userld; I* if (Private): channel's manager */
admitted UserldSet; I* if (Private): zero or more users */
uMerge UserldSet; I* if (Private): still to be merged */

ENDNEWTYPE;

NEWTYPE Chan Array(Channelld, ChannelStruct);

ENDNEWTYPE;

NEWTYPE TokenStruct

STRUCT
kind TokenKind; I* (Grabbed,Inhibited,Giving,Ungivable,Given)

*
grabber Userld; I* if (Grabbed,Giving,Ungivable): user */
recipient Userld; I* if (Giving,Given): an intended user */
inhibitors UserldSet; I* if (Inhibited): one or more users */
uMerge UserldSet; I* if (Inhibited): still to be merged */

ENDNEWTYPE;

NEWTYPE Token Array(Tokenld, TokenStruct);

ENDNEWTYPE;

NEWTYPE BooleanByPri Array(DataPriority, Boolean);

ENDNEWTYPE;

NEWTYPE NaturalByPri Array(DataPriority, Natural);

ENDNEWTYPE;

NEWTYPE BufferldByPri Array(DataPriority, Bufferld);

ENDNEWTYPE;

NEWTYPE BufferldQueueByPri Array(DataPriority, BufferldQueue);

ENDNEWTYPE;

NEWTYPE PortalldSetByPri Array(DataPriority, PortalldSet);

ENDNEWTYPE;

Recommendation T.125 (04/94) Superseded by a more recent version 97

Superseded by a more recent version

NEWTYPE NaturalByPriByKind Array(PortalKind, NaturalByPri);

ENDNEWTYPE;

NEWTYPE PortalStruct

STRUCT
kind PortalKind; I* (Attached,Downlink,Uplink) */
pids PidByPri; I* processes constituting a portal */
inCredit NaturalByPri; I* permission to allocate inBuffer */
inBuffer BufferldByPri; I* PDU input coming from a process */
outReady BooleanByPri; I* True if process allows an output */
outQueue BufferldQueueByPri; I* PDUs awaiting output to process */
outCount Natural; I* number queued for all priorities */
outFlow Natural; I* number output since timer was set */
elapsed Duration; I* interval set for portal timer */
interval Duration; I* new interval to set for timer */
subHeight Natural; I* subordinate's height or zero */
sublnterval Duration; I* subordinate's interval or zero */

ENDNEWTYPE;

NEWTYPE Portal Array(Portalld, PortalStruct);

ENDNEWTYPE;

NEWTYPE PortalldQueue Queue(Portalld);

ENDNEWTYPE;

SYNTYPE Bufferld = Integer CONSTANTS 0:maxBufferlds

ENDSYNTYPE;

NEWTYPE BufferldSet SetOf(Bufferld);

ENDNEWTYPE;

NEWTYPE BufferStruct

STRUCT
receiver Portalld; I* source of inCredit and input PDU */
dataPriority DataPriority; I* index into inBuffer and outQueue */
portals Natural; I* number of outQueues buffer is in */
pdu PDUStruct; I* the content of one domain MCSPDU */

ENDNEWTYPE;

NEWTYPE Buffer Array(Bufferld, BufferStruct);

ENDNEWTYPE;

NEWTYPE BufferldQueue Queue(Bufferld);

ENDNEWTYPE;

GENERATOR Queue (TYPE ItemType) I* afirst-in first-out queue */

LITERALS
EmptyQueue;

OPERATORS
Push: ItemType, Queue -> Queue; I* appends next item */
Next: Queue -> ItemType; I* reveals first item */
Pull:Queue -> Queue; I* deletes first item */

AXIOMS

Next(EmptyQueue) == ERROR!;
Pull(EmptyQueue) == ERROR!;
FOR ALL q IN Queue (
FOR ALL item IN ItemType
(
Next(Push(item,q)) == IF q = EmptyQueue THEN item
ELSE Next(q) Fl;
Pull(Push(item,q)) == IF q = EmptyQueue THEN q
ELSE Push(item,Pull(q)) FI;
));
DEFAULT
EmptyQueue;

98 Recommendation T.125 (04/94) Superseded by a more recent version

Superseded by a more recent version

ENDGENERATOR;

DCL

DCL

DCL

DCL

DCL

DCL

DCL

DCL

DCL

DCL

DCL

DCL

DCL

DCL

I* Data declarations */

control

upward

merging
pdSend
edSend

uMerge
uConfirm
cMerge
cConfirm
tMerge
tConfirm

mcrqQueue
mtrqQueue
aurqQueue

pDrop
uDetach
uRevoke
cLeave
cDisband
tReject

pBufferWait
plnputWait

chan

token
portal
buffer

I* Note: The fields of a chan, token, portal, or buffer

Pld;

Portalld;

Boolean,
Boolean,
Boolean;

UserldSet,
UserldSet,
ChannelldSet,
ChannelldSet,
TokenldSet,
TokenldSet,

PortalldQueue,
PortalldQueue,
PortalldQueue;

PortalldSet,
UserldSet,
UserldSet,
ChannelldSet,
ChannelldSet,
TokenldSet;

PortalldSetByPri,
PortalldSetByPri;

Chan,

Token,
Portal,
Buffer;

I* the Control process */

I* unique MCS Connection upward or */
I* zero if this provider is the top */

I* True if domain is merging upward */
I* True if PDin to be sent downward */
I* True if EDrq to be sent upward */

I* users still to be merged */
I* users with merge confirmed */
I* channels still to be merged */

I* channels with merge confirmed */

I* tokens still to be merged */
I* tokens with merge confirmed */

I* origin of each pending MCrq */
I* origin of each pending MTrq */
I* origin of each pending AUrq */

I* dropped portals needing DPum */

I* disconnected users needing DUrq */
I* revoked token users needing DUrq */
I* unjoined channels needing CLrq */

I* unmanaged channels needing CDin */
I* ungivable tokens needing TVcf */

I* portals requiring an inBuffer */
I* inputs suspended during merge */

I* resource arrays */

array element are undefined if the corresponding index
is not in cUsed, tUsed, pUsed, or bUsed, respectively. */

cUsed
tUsed

pUsed
bUsed

cFree
tFree

pFree
bFree

uUsed

numChannellds
numUserlds
numTokenlds

height
interval
maxinterval

inCredit

ChannelldSet,
TokenldSet,
PortalldSet,
BufferldSet;

ChannelldSet,
TokenldSet,
PortalldSet,
BufferldSet;

UserldSet;

Natural,
Natural,
Natural;

Natural,
Duration,
Duration;

NaturalByPriByKind;

I* Procedure decomposition */

Recommendation T.125

I* indexes used */

I* indexes free */

I* subset of cUsed */

I* number in use */

I* current height of provider */
I* min throughput of one MCSPDU */
I* maximum of portal intervals */

I* initializer */

Superseded by a more recent version

99

Superseded by a more recent version

I* Initialize_resources
Take_user (c, diagnostic)
Take_channel (c, diagnostic)
Take_token (t, diagnostic)
New_user (u, result)
New_channel (c, result)
Open_portal (p, pKind, pids)
Time_portal (p)
Drop_portal (p, reason)
Shut_portal (p)
Clean_queue (p, queue)
Erect_domain
Identify_sender (p, dp)
PDU_ready (dp)
Input_PDU (pdu)
Allocate_buffer (b)
Cast_buffer (b, p)
Release_buffer (b)
Route_user (u, p)
Multicast_buffer (b, uSet)
Broadcast_buffer (b)
Crank_engine
Drop_portals
Merge_users
Merge_channels
Merge_tokens
Detach_users
Leave_channels
Disband_channels
Reject_tokens
Process_PDU (r, dp)
Validate_input (r, b, diagnostic)
Top_provider (r, b)
Apply_PDU (r, b, diagnostic)
Token_status (pdu)
Token_route (u, x, p)
Delete_user (u)
Delete_channel (c)
Delete_token (t)
Purge_users (uSet)
Purge_channels (cSet)
Purge_tokens (tSet)
Output_buffer (b, p) */
r *
PROCEDURE Initialize_resources; I* Initialize_resources */
r *
DCL c Channelld,
t Tokenld,
p Portalld,
b Bufferld,
n NaturalByPri;
START
COMMENT ‘Initialize data structures during process start-up
before accepting the first input signal.
Note that each SetOf automatically defaults to Empty
and each Queue to EmptyQueue.
Fixed buffer credits are an example; other values could
be computed from maxPortallds and maxBufferlds.
TASK control := PARENT,

upward := 0,
merging := False,
pdSend := False,
edSend := False,
numChannelids := 0,

100 Recommendation T.125 (04/94) Superseded by a more recent version

Superseded by a more recent version

numUserlds := 0,

numTokenlds :=0,

height := 1,

interval := IF parameters!minThroughput = 0 THEN 0 ELSE oneSecond *
(Float(parameters!maxMCSPDUsize) / Float(parameters!minThroughput)) Fl,

maxlinterval := 0,

c := 65535,

t := 65535,

p := maxPortallds,

b := maxBufferlds;

1b: I*forc=7?..1%
DECISION c > 0;
(True): TASK cFree :=Incl(c, cFree),
c:=c-1;
JOIN 1b;
ELSE:ENDDECISION;
2b: I fort=2..1%
TASK tFree := Incl(t, tFree);
DECISION t > 1;
(True): TASK t:=t-1;
JOIN 2b;
ELSE:ENDDECISION;
3b: IFforp=2.1"%
DECISION p > 0;
(True): TASK pFree := Incl(p, pFree),
p=p-1
JOIN 3b;
ELSE:ENDDECISION;
4b : IFforb=2.1%
DECISION b > 0;
(True): TASK bFree := Incl(b, bFree),
b:=b-1;
JOIN 4b;
ELSE:ENDDECISION;
TASK n(0) :=2, n(1) :=1,n(2) :=1,n(3) :=1,

inCredit(Attached) := n,

n(0) :=3, n(1) :=2, n(2) :=1, n(3) :=1,
inCredit(Downlink) := n,

n(0) := 4, n(1) := 3, n(2) :=2, n(3) :=1,
inCredit(Uplink) := n;

RETURN;
ENDPROCEDURE;
. i

PROCEDURE Take_user; I* Take_user */
FPAR c Channelid, B —— *

IN/JOUT diagnostic Diagnostic;

DCL u Userld;

START

COMMENT 'Put the free channel id to use as a user id.

DECISION numUserlds < parameters!maxUserlds;

(False): TASK diagnostic := DC_too_many_users;
RETURN,;

ELSE:ENDDECISION;

CALL Take_channel(c, diagnostic);

DECISION diagnostic = DC_OK;

(True): TASK u := Userld(c),

numUserlds := numUserlds + 1,
uUsed := Incl(u, uUsed),
chan(c)!kind := Userld;

ELSE:ENDDECISION;

RETURN;

ENDPROCEDURE;

Recommendation T.125 (04/94) Superseded by a more recent version

101

Superseded by a more recent version

|
PROCEDURE Take_channel; I* Take_channel
FPAR c Channelld, R
IN/JOUT diagnostic Diagnostic;
START
COMMENT 'Put the free channel id to unspecified use.
DECISION c in cFree;
(False): TASK diagnostic := DC_channel_id_conflict;
RETURN,;
ELSE:ENDDECISION;
DECISION numChannellds < parameters!maxChannellds;
(False): TASK diagnostic := DC_too_many_channels;
RETURN,;
ELSE:ENDDECISION;
TASK diagnostic := DC_OK,
numChannellds := numChannellds + 1,
cFree := Del(c, cFree),
cUsed :=Incl(c, cUsed),
chan(c)!joined := Empty,
chan(c)!admitted := Empty;
RETURN,;
ENDPROCEDURE;
I* ____________________ * I
PROCEDURE Take_token; I* Take_token */
FPAR t Tokenld, R e ——— *
IN/JOUT diagnostic Diagnostic;
START
COMMENT 'Put the free token id to unspecified use.
DECISION t in tFree;
(False): TASK diagnostic := DC_token_id_conflict;
RETURN,;
ELSE:ENDDECISION;
DECISION numTokenlds < parameters!maxTokenlds;
(False): TASK diagnostic := DC_too_many_tokens;
RETURN;
ELSE:ENDDECISION;
TASK diagnostic := DC_OK,
numTokenlds := numTokenids + 1,
tFree := Del(t, tFree),
tUsed := Incl(t, tUsed),
token(t)!inhibitors := Empty;
RETURN,;
ENDPROCEDURE;
/* __________________ * I
PROCEDURE New_user; I* New_user */
FPAR IN/OUT u Userld, R —— */
IN/OUT result Result;
DCL c Channelld;
START
COMMENT ‘Allocate a new user id or fail and return 0.
TASK u:=0;
DECISION numUserlds < parameters!maxUserlds;
(False): TASK result := RT_too_many_users;
RETURN;
ELSE:ENDDECISION;
CALL New_channel(c, result);
DECISION result = RT_successful;
(True): TASK u := Userld(c),
numUserlds := numUserlds + 1,
102 Recommendation T.125 (04/94) Superseded by a more recent version

Superseded by a more recent version
uUsed := Incl(u, uUsed),
chan(c)!kind := Userld;
ELSE:ENDDECISION;

RETURN;
ENDPROCEDURE;
I* ______________________ * /
PROCEDURE New_channel; I* New_channel */
FPAR IN/OUT c Channelld, L ———— *
IN/OUT result Result;
DCL diagnostic Diagnostic;
START
COMMENT 'Allocate a new channel id or fail and return 0.
TASK c:=0;
DECISION numChannellds < parameters!maxChannellds;
(False): TASK result := RT_too_many_channels;
RETURN;
ELSE:ENDDECISION;
1b: I* keep trying */
TASK c := ANY(Channelld); /* randomize */
DECISION ¢ >= 1001 and c in cFree;
(False): JOIN 1b;
ELSE:ENDDECISION;
CALL Take_channel(c, diagnostic);
TASK result := RT_successful;
RETURN,;
ENDPROCEDURE;
I* _____________________ *I
PROCEDURE Open_portal; I* Open_portal */
FPAR o] Portalld, R */
pKind PortalKind,
pids PidByPri;
DCL pid Pid,
dp DataPriority,
c Channelld,
cSet ChannelldSet,
t Tokenld,
tSet TokenldSet;
START

COMMENT 'Process an Open.portal input signal.
Accept a new MCS connection or attachment to the domain.
If this is an upward connection, prepare for merge.

DECISION pKind = Attached;

(True): TASK pid := pids(0),
pids(1) := pid,
pids(2) := pid,
pids(3) := pid;

ELSE:ENDDECISION;

TASK pFree := Del(p, pFree),
pUsed := Incl(p, pUsed),
portal(p)!kind := pKind,
portal(p)!pids := pids,
portal(p)!inCredit := inCredit(pKind),
portal(p)!outCount := 0,
portal(p)linterval := IF pKind = Uplink THEN 0 ELSE interval Fl,
portal(p)!subHeight := 0,
portal(p)!sublnterval := 0,
dp :=0;

1b: I* fordp=0..2*

Recommendation T.125 (04/94) Superseded by a more recent version

103

Superseded by a more recent version

DECISION dp < parameters!numPriorities;

(True): TASK portal(p)!inBuffer(dp) := 0,
portal(p)!outReady(dp) := False,
portal(p)!outQueue(dp) := EmptyQueue,
pBufferWait(dp) := Incl(p, pBufferWait(dp)),
dp:=dp +1;

JOIN 1b;

ELSE:ENDDECISION;

DECISION portal(p)!kind = Uplink;

(True): TASK upward := p,
merging := True,
pdSend := True,
edSend := True,
uMerge := uUsed,
uConfirm := Empty,
cMerge := cUsed,
cConfirm := Empty,
tMerge := tUsed,
tConfirm := Empty,
cLeave := Empty,
cDisband := Empty,
tReject := Empty,
cSet := cMerge;

2b: I* for c in cSet */
DECISION cSet = Empty;
(False): TASK ¢ := Pick(cSet),
cSet := Del(c, cSet),
chan(c)!luMerge := chan(c)!admitted;
JOIN 2b;
ELSE:ENDDECISION;
TASK tSet := tMerge;
3b: I* for tin tSet */
DECISION tSet = Empty;
(False): TASK t := Pick(tSet),
tSet := Del(t, tSet),
token(t)!luMerge := token(t)!inhibitors;
JOIN 3b;
ELSE:ENDDECISION;
ELSE:ENDDECISION;

CALL Erect_domain;
CALL Crank_engine;
RETURN;
ENDPROCEDURE;
I* ____________________ * /
PROCEDURE Time_portal; I* Time_portal */
FPAR o] Portalld; [ammmmmme e *
START
COMMENT 'Process a Time.portal input signal.
Ensure that minimum throughput is maintained.
Allow for the fact that outFlow takes integer steps.
DECISION portal(p)!elapsed > interval * (Float(portal(p)!outFlow) + 0.99);
(True): OUTPUT Report.portal(p, DC_throughput_inadequate) TO control;
(False): TASK portal(p)!outFlow := 0,
portal(p)!elapsed := portal(p)!interval;
SET(NOW + portal(p)'interval, Time.portal(p));
ENDDECISION;
CALL Crank_engine;
RETURN;
ENDPROCEDURE;
104 Recommendation T.125 (04/94) Superseded by a more recent version

Superseded by a more recent version

T —— x|
PROCEDURE Drop_portal; I* Drop_portal */
FPAR o] Portalld, L *
reason Reason;
START
COMMENT 'Process a Drop.portal input signal,
knowing the only reason is user-requested.
DECISION p in pUsed and portal(p)'kind /= Attached;
(True): TASK pDrop := Incl(p, pDrop);
ELSE:ENDDECISION;
CALL Crank_engine;
RETURN,;
ENDPROCEDURE;
/* ____________________ * l
PROCEDURE Shut_portal; I* Shut_portal */
FPAR o] Portalld; [Fammmmmmme e >/
DCL dp DataPriority,
b Bufferld,
bSet BufferldSet,
c Channelld,
cSet ChannelldSet,
u Userld;
START

COMMENT 'Process a Shut.portal input signal.
Remove the corresponding MCS connection or attachment.
When the last one is gone, stop the domain process.
RESET(Time.portal(p));
TASK pUsed := Del(p, pUsed),
pFree := Incl(p, pFree),
pDrop := Del(p, pDrop),

dp :=0;
1b: I* for dp =0..?2 */
DECISION dp < parameters!numPriorities;
(True): 2b: I* for b in outQueue(dp) */

DECISION portal(p)!outQueue(dp) = EmptyQueue;
(False): TASK b := Next(portal(p)!outQueue(dp)),
portal(p)!outQueue(dp) := Pull(portal(p)!outQueue(dp)),
buffer(b)!portals := buffer(b)!portals - 1;
CALL Release_buffer(b);
JOIN 2b;
ELSE:ENDDECISION;
TASK b := portal(p)!inBuffer(dp),
portal(p)!inBuffer(dp) := 0;
CALL Release_buffer(b);
TASK pBufferWait(dp) := Del(p, pBufferWait(dp)),
pIinputWait(dp) := Del(p, pinputWait(dp)),

dp:=dp +1;
JOIN 1b;
ELSE:ENDDECISION;
TASK bSet := bUsed,;
3b: I* for b in bSet */
DECISION bSet = Empty;
(False): TASK b := Pick(bSet),

bSet := Del(b, bSet);
DECISION buffer(b)!receiver = p;
(True): TASK buffer(b)!receiver := 0;
ELSE:ENDDECISION;

JOIN 3b;
ELSE:ENDDECISION;
TASK cSet := cUsed;
4b : I* for ¢ in cSet */

Recommendation T.125 (04/94) Superseded by a more recent version

105

Superseded by a more recent version

DECISION cSet = Empty;

(False): TASK ¢ := Pick(cSet),
cSet := Del(c, cSet);
DECISION p in chan(c)!joined;

(True): TASK

chan(c)ljoined := Del(p, chan(c)!joined);

DECISION chan(c)!joined = Empty;

(True):

TASK cLeave :=Incl(c, cLeave);

ELSE:ENDDECISION;
ELSE:ENDDECISION;
DECISION chan(c)!kind = Userld and chan(c)!portal = p;

(True): TASK

chan(c)!portal :=0,

u := Userld(c),
uDetach := Incl(u, uDetach),
cLeave := Del(c, cLeave);

ELSE:ENDDECISION;

JOIN 4b;
ELSE:ENDDECISION;

DECISION portal(p)'kind = Uplink;
(True): TASK upward := 0,
merging := False,
mcrqQueue := EmptyQueue,
mtrgQueue := EmptyQueue,
aurqQueue := EmptyQueue;
(False): CALL Clean_queue(p, mcrgQueue);
CALL Clean_queue(p, mtrqQueue);
CALL Clean_queue(p, aurqQueue);

ENDDECISION;
OUTPUT Shut.portal(p) TO control;
CALL Erect_domain;
CALL Crank_engine;
RETURN;
ENDPROCEDURE;
I*
PROCEDURE Clean_queue;
FPAR o] Portalld, r*
INJOUT queue PortalldQueue;
DCL X Portalld,
clean PortalldQueue;
START
COMMENT 'Remove a shut portal id from a queue.
TASK clean := EmptyQueue;
1b: I* for x in queue */
DECISION queue = EmptyQueue;
(False): TASK x := Next(queue),
queue := Pull(queue),
x :=IF x=p THEN 0 ELSE x FI,
clean := Push(x, clean);
JOIN 1b;
ELSE:ENDDECISION;
TASK queue := clean;
RETURN;
ENDPROCEDURE;
I*
PROCEDURE Erect_domain;
I*
DCL o] Portalid,
pSet PortalldSet,
h Natural,
hmax Natural,
i Duration,
imax Duration;
106 Recommendation T.125 (04/94) Superseded by a more recent version

RETURN;
ENDPROCEDURE;
r *
PROCEDURE Identify_sender; I* ldentify_sender */
FPAR IN/OUT p Portalld, r *I
INJOUT dp DataPriority;
DCL pSet PortalldSet;
START
COMMENT 'An alternative would be to carry this
information explicitly in SDL signals.
TASK pSet := pUsed;
1b: I* for p in pSet */
DECISION pSet = Empty;
(False): TASK p := Pick(pSet),
pSet := Del(p, pSet),
dp :=0;
2b: I*fordp=0.7?*
DECISION dp < parameters!numPriorities;
(True): DECISION portal(p)!pids(dp) = SENDER;
(True): RETURN;
ELSE:ENDDECISION;
TASK dp:=dp +1;
JOIN 2b;
ELSE:ENDDECISION;
JOIN 1b;
ELSE:ENDDECISION;
TASK p:=0,
dp :=0;
RETURN;
ENDPROCEDURE;
. x|
PROCEDURE PDU_ready; I* PDU_ready */
FPAR dp DataPriority; [* e *|
DCL P Portalld,
X DataPriority,
b Bufferld;

Superseded by a more recent version
START
COMMENT 'Recalculate the provider height and maxinterval.

If either changed, communicate them upward.

TASK hmax :=1,
imax :=0,
pSet := pUsed;
1b: I* for p in pSet */
DECISION pSet = Empty;
(False): TASK p := Pick(pSet),

pSet := Del(p, pSet),
h := portal(p)!subHeight + 1,
hmax := IF h > hmax THEN h ELSE hmax Fl,
i := portal(p)linterval,
imax :=IF i > imax THEN i ELSE imax FI;
JOIN 1b;
ELSE:ENDDECISION;
DECISION height = hmax and maxinterval = imax;
(False): TASK height := hmax,
maxinterval := imax,
edSend := True;
ELSE:ENDDECISION;

Recommendation T.125 (04/94) Superseded by a more recent version

107

Superseded by a more recent version
START
COMMENT 'Process a PDU.ready input signal.

If a buffer is waiting, it can be output.

CALL Identify_sender(p, x);
DECISION p in pUsed;
(False): RETURN;

ELSE:ENDDECISION;
DECISION portal(p)!outQueue(dp) = EmptyQueue;
(True): TASK portal(p)!outReady(dp) := True;
(False): TASK b := Next(portal(p)!outQueue(dp)),
portal(p)!outQueue(dp) := Pull(portal(p)!outQueue(dp)),
buffer(b)!portals := buffer(b)!portals - 1;
CALL Output_buffer(b, p);
TASK portal(p)!outReady(dp) := False;
CALL Release_buffer(b);
TASK portal(p)!outFlow := portal(p)!outFlow + 1,
portal(p)!outCount := portal(p)!outCount - 1;
DECISION portal(p)!outCount = 0;
(True): RESET(Time.portal(p));
ELSE:ENDDECISION;

ENDDECISION;
CALL Crank_engine;
RETURN;
ENDPROCEDURE;
l* __________________ * l
PROCEDURE Input_PDU; I* Input_PDU */
FPAR pdu PDUStruct; [Fammmmmmm e */
DCL p Portalld,
dp DataPriority,
b Bufferld;
START

COMMENT 'Process an MCSPDU input signal.
If merging, requests and responses must wait.

CALL Identify_sender(p, dp);
DECISION p in pUsed,;
(False): RETURN;

ELSE:ENDDECISION;
DECISION portal(p)'kind = Attached,;
(True): DECISION pdu'kind;

(SDrq, SDin, USrq, USin):

TASK dp := pdu!dataPriority,
dp :=IF dp < parameters!numPriorities THEN dp
ELSE parameters!numPriorities - 1 Fl;

ELSE:ENDDECISION;
ELSE:ENDDECISION;
TASK b := portal(p)!inBuffer(dp),

buffer(b)!pdu := pdu;
DECISION p = upward or not merging;

(True): CALL Process_PDU(p, dp);

(False): TASK pinputWait(dp) := Incl(p, plnputWait(dp));

ENDDECISION;

CALL Crank_engine;

RETURN,;

ENDPROCEDURE;

I */

PROCEDURE Allocate_buffer; I* Allocate_buffer */
FPAR IN/OUT b Bufferld; I* */

START

COMMENT 'Allocate a free buffer id or fail and return 0.

108 Recommendation T.125 (04/94) Superseded by a more recent version

Superseded by a more recent version

DECISION b /= 0 and buffer(b)!portals = 0;

(True): RETURN;

ELSE:ENDDECISION;

TASK b :=0;

DECISION bFree = Empty;

(False): TASK b := Pick(bFree),
bFree := Del(b, bFree),
bUsed := Incl(b, bUsed),
buffer(b)!receiver := 0,
buffer(b)!dataPriority := 0,
buffer(b)!portals := 0;

ELSE:ENDDECISION;

RETURN;
ENDPROCEDURE;
I* ____________________ * I
PROCEDURE Cast_buffer; I* Cast_buffer */
FPAR b Bufferld, L e —— *
p Portalld;
DCL dp DataPriority;
START
COMMENT 'Send buffer containing an MCSPDU to a single output.
DECISION p = 0;
(True): RETURN;
ELSE:ENDDECISION;
TASK dp := buffer(b)!dataPriority;
DECISION portal(p)!outReady(dp);
(True): CALL Output_buffer(b, p);
TASK portal(p)!outReady(dp) := False;
(False): DECISION portal(p)!outCount = 0 and portal(p)!interval > 0;
(True): TASK portal(p)!outFlow := 0,
portal(p)!elapsed := portal(p)!interval;
SET(NOW + portal(p)!interval, Time.portal(p));
ELSE:ENDDECISION;
TASK portal(p)!outQueue(dp) := Push(b, portal(p)!outQueue(dp)),
buffer(b)!portals := buffer(b)!portals + 1,
portal(p)!outCount := portal(p)!outCount + 1;
ENDDECISION;
RETURN,;
ENDPROCEDURE;
r* *I
PROCEDURE Release_buffer; I* Release_buffer */
FPAR b Bufferld; r* *I
DCL P Portalld,
dp DataPriority;
START

COMMENT 'Release a buffer that is no longer needed.

DECISION b = 0 or buffer(b)!portals > 0;

(True): RETURN;
ELSE:ENDDECISION;
TASK bUsed := Del(b, bUsed),

bFree := Incl(b, bFree),
p := buffer(b)!receiver,
dp := buffer(b)!dataPriority;

DECISION p = 0;

(False): TASK portal(p)!inCredit(dp) := portal(p)!inCredit(dp) + 1;
DECISION portal(p)!inBuffer(dp) = 0;
(True): TASK pBufferWait(dp) := Incl(p, pBufferWait(dp));
ELSE:ENDDECISION;

ELSE:ENDDECISION;

RETURN,;

ENDPROCEDURE;

Recommendation T.125 (04/94) Superseded by a more recent version

109

Superseded by a more recent version

I* ____________________ * /
PROCEDURE Route_user; I* Route_user */
FPAR u Userld, L *
IN/OUT p Portalld;
DCL c Channelld;
START
COMMENT 'Return the portal id that leads toward a user.
TASK p:=0;
DECISION u in uUsed,;
(True): TASK ¢ := Channelld(u),
p := chan(c)!portal;
ELSE:ENDDECISION;
RETURN,;
ENDPROCEDURE;
r *|
PROCEDURE Multicast_buffer; I* Multicast_buffer */
FPAR b Bufferld, r* *|
uSet UserldSet;
DCL u Userld,
p Portalld,
pSet PortalldSet;
START
COMMENT 'Send buffer containing an MCSPDU to multiple users.
TASK pSet := Empty;
1b: [* for u in uSet */
DECISION uSet = Empty;
(False): TASK u := Pick(uSet),
uSet := Del(u, uSet);
CALL Route_user(u, p);
TASK pSet := Incl(p, pSet);
JOIN 1b;
ELSE:ENDDECISION;
2b: I* for p in pSet */
DECISION pSet = Empty;
(False): TASK p := Pick(pSet),
pSet := Del(p, pSet);
CALL Cast_buffer(b, p);
JOIN 2b;
ELSE:ENDDECISION;
RETURN,;
ENDPROCEDURE;
r* *
PROCEDURE Broadcast_buffer; I* Broadcast_buffer */
FPAR b Bufferld; * *
DCL pdu PDUStruct,
p Portalld,
pSet PortalldSet;
START

COMMENT 'Send buffer containing an MCSPDU to the whole subtree.

TASK pdu := buffer(b)!pdu;
DECISION (pdulkind = PCin and pduldetachUserlds = Empty
and pdu!purgeChannellds = Empty)
or (pdulkind = PTin and pdu!purgeTokenids = Empty)
or (pdulkind = DUin and pdu!userlds = Empty);

(True): RETURN;
ELSE:ENDDECISION;

TASK pSet := pUsed;
1b: I* for p in pSet */

110 Recommendation T.125 (04/94) Superseded by a more recent version

Superseded by a more recent version
DECISION pSet = Empty;

(False): TASK p := Pick(pSet),
pSet := Del(p, pSet);
DECISION portal(p)'kind;
(Attached):
DECISION pdu!kind = PDin;
(False):CALL Cast_buffer(b, p);
ELSE:ENDDECISION;
(Downlink):
CALL Cast_buffer(b, p);
ELSE:ENDDECISION;
JOIN 1b;
ELSE:ENDDECISION;
RETURN,;
ENDPROCEDURE;
l* _______________________ *l
PROCEDURE Crank_engine; I* Crank_engine */
l* _______________________ */
DCL b Bufferld,
p Portalld,
dp DataPriority;
START
COMMENT 'After individual processing of each input signal,
look for the most deserving work to do next.
This advances incrementally through stages of a merge;
else it cleans up users, channels, tokens left behind.
Buffers are assigned to accept new inputs, with preference
to PDUs flowing downward and to higher priorities first.
TASK b :=0;
DECISION pdSend;
(True): CALL Allocate_buffer(b);
DECISION b = 0;
(True): RETURN;

ELSE:ENDDECISION;

TASK pdSend := False,

buffer(b)!pdu!kind := PDin,

buffer(b)!pdulheightLimit := parameters!maxHeight - 1;
CALL Broadcast_buffer(b);

ELSE:ENDDECISION;
DECISION edSend;

(True): CALL Allocate_buffer(b);
DECISION b = 0;
(True): RETURN;

ELSE:ENDDECISION;

TASK edSend := False,
buffer(b)!pdu'kind := EDrq,
buffer(b)!pdu!subHeight := height,
buffer(b)!pdu!sublnterval := maxinterval;
CALL Cast_buffer(b, upward);

ELSE:ENDDECISION;

CALL Release_buffer(b);
TASK dp :=0;
1b: I* fordp=0..2*

DECISION dp < parameters!numPriorities;

(True): DECISION upward in pBufferWait(dp);
(False): TASK dp:=dp +1;
JOIN 1b;
ELSE:ENDDECISION;
TASK p := upward,
b :=0;
CALL Allocate_buffer(b);
DECISION b = 0;
(True): RETURN;

ELSE:ENDDECISION;

Recommendation T.125 (04/94) Superseded by a more recent version 111

Superseded by a more recent version

TASK pBufferWait(dp) := Del(p, pBufferWait(dp)),
buffer(b)!receiver := p,
buffer(b)!dataPriority := dp,
portal(p)!inCredit(dp) := portal(p)!inCredit(dp) - 1,
portal(p)!inBuffer(dp) := b;

OUTPUT PDU.ready(dp) TO portal(p)!pids(dp);

JOIN 1b;

ELSE:ENDDECISION;

CALL Drop_portals;

DECISION merging;

(True): CALL Merge_users;
DECISION uConfirm = uUsed;
(True): CALL Merge_tokens;

DECISION tConfirm = tUsed;
(True): CALL Merge_channels;
DECISION cConfirm = cUsed;
(True): TASK merging := False;
ELSE:ENDDECISION;
ELSE:ENDDECISION;
ELSE:ENDDECISION;
DECISION merging;
(True): RETURN;
(False): TASK dp :=0;
2b: I* fordp =0..2*/
DECISION dp < parameters!numPriorities;
(True): I* for p in plnputWait(dp) */
DECISION pinputWait(dp) = Empty;
(True): TASK dp:=dp+1;
JOIN 2b;
ELSE:ENDDECISION;
TASK p := Pick(pInputWait(dp)),
pInputWait(dp) := Del(p, plnputWait(dp));
CALL Process_PDU(p, dp);

JOIN 2b;
ELSE:ENDDECISION;
ENDDECISION;
ELSE:ENDDECISION;
CALL Detach_users;
CALL Leave_channels;
CALL Disband_channels;
CALL Reject_tokens;
TASK dp :=0;
3b: I* fordp=0..?2*/
DECISION dp < parameters!numPriorities;
(True): [I* for p in pBufferWait(dp) */

DECISION pBufferWait(dp) = Empty;

(True): TASK dp:=dp +1;
JOIN 3b;

ELSE:ENDDECISION;

TASK p := Pick(pBufferWait(dp)),

b :=0;
CALL Allocate_buffer(b);
DECISION b = 0;

(True): RETURN;

ELSE:ENDDECISION;

TASK pBufferWait(dp) := Del(p, pBufferWait(dp)),
buffer(b)!receiver := p,
buffer(b)!dataPriority := dp,
portal(p)!inCredit(dp) := portal(p)!inCredit(dp) - 1,
portal(p)!inBuffer(dp) := b;

OUTPUT PDU.ready(dp) TO portal(p)!pids(dp);

JOIN 3b;

ELSE:ENDDECISION;
RETURN;
ENDPROCEDURE;

112 Recommendation T.125 (04/94) Superseded by a more recent version

Superseded by a more recent version

I* ______________________ * /
PROCEDURE Drop_portals; I* Drop_portals */
I* ______________________ * /
DCL b Bufferld,
p Portalld,
pdu PDUStruct;
START
COMMENT 'Generate DPum MCSPDUs requested by controller.
TASK b:=0,
pdulkind := DPum,
pdulreason := RN_user_requested;
1b: I* for p in pDrop */
DECISION pDrop = Empty;
(False): CALL Allocate_buffer(b);
DECISION b = 0;
(True): RETURN;
ELSE:ENDDECISION;
TASK p := Pick(pDrop),
pDrop := Del(p, pDrop),
buffer(b)!pdu := pdu;
CALL Cast_buffer(b, p);
JOIN 1b;
ELSE:ENDDECISION;
CALL Release_buffer(b);
RETURN,;
ENDPROCEDURE;
/* ______________________ * l
PROCEDURE Merge_users; I* Merge_users */
/* ______________________ * l
DCL b Bufferld,
u Userld,
c Channelld,
pdu PDUStruct,
cAttr ChannelAttributes;
START

COMMENT 'Generate MCrq MCSPDUs to merge user ids upward.
Fill them to maximum size that encoding allows.
TASK b:=0,
pdulkind := MCrq,
pdu!mergeChannels := Empty;

1b: I* for u in uMerge */

DECISION uMerge = Empty;

(False): CALL Allocate_buffer(b);
DECISION b = 0;

(True): RETURN;
ELSE:ENDDECISION;
TASK u := Pick(uMerge),
uMerge := Del(u, uMerge),
¢ := Channelld(u),
cMerge := Del(c, cMerge),
cAttrichannelld := c,
cAttr'kind := Userld,
cAttrljoined := (chan(c)!joined /= Empty),
pdu!mergeChannels := Incl(cAttr, pdu!mergeChannels);
DECISION'encoding of pdu + 9 <= maxMCSPDUsize";
("True’): JOIN 1b;
ELSE:ENDDECISION;
ELSE:ENDDECISION;
DECISION pdu!mergeChannels = Empty;
(False): TASK buffer(b)!pdu := pdu,
pdu!mergeChannels := Empty;
CALL Cast_buffer(b, upward);
JOIN 1b;

Recommendation T.125 (04/94) Superseded by a more recent version 113

Superseded by a more recent version
ELSE:ENDDECISION;

CALL Release_buffer(b);
RETURN,;
ENDPROCEDURE;
I */
PROCEDURE Merge_channels; I* Merge_channels */
* */
DCL b Bufferld,
c Channelld,
u Userld,
pdu PDUStruct,
CAttr ChannelAttributes;
START

COMMENT 'Generate MCrq MCSPDUs to merge channel ids upward.
Fill them to maximum size that encoding allows.
TASK b:=0,
pdulkind := MCrq,
pdu!mergeChannels := Empty,
pdu!purgeChannellds := Empty;

1b: I* for ¢ in cMerge */

DECISION cMerge = Empty;

(False): CALL Allocate_buffer(b);
DECISION b = 0;

(True): RETURN;
ELSE:ENDDECISION;
TASK ¢ := Pick(cMerge),
cMerge := Del(c, cMerge),
cAttr!channelld := c,
cAttrlkind := chan(c)!kind,
cAttr'manager := chan(c)!manager,
cAttrladmitted := Empty,
cAttrljoined := (chan(c)!joined /= Empty);
DECISION (chan(c)'kind = Static or chan(c)!kind = Assigned)
and chan(c)!joined = Empty;
(True): CALL Delete_channel(c);
JOIN 1b;
ELSE:ENDDECISION;
DECISION chan(c)!kind = Private;
(True): DECISION chan(c)!manager in uUsed;
(False): TASK pdu!purgeChannellds :=
Incl(c, pdulpurgeChannellds);

JOIN 3f;
ELSE:ENDDECISION;
2b: I* for u in chan(c)!uMerge */

DECISION chan(c)!uMerge = Empty;
(False): TASK u:=Pick(chan(c)!uMerge),
chan(c)!uMerge := Del(u, chan(c)!uMerge),
cAttrladmitted := Incl(u, cAttrladmitted),
pdu!mergeChannels := I* try this many */
Incl(cAttr, pdulmergeChannels);
DECISION'encoding of pdu + 4 <= maxMCSPDUsize";
('True'): TASK pdu!mergeChannels := /* try another */
Del(cAttr, pdu!lmergeChannels);
JOIN 2b;
ELSE:ENDDECISION;
ELSE:ENDDECISION;
ELSE:ENDDECISION;
TASK pdu!mergeChannels := Incl(cAttr, pdu!mergeChannels);
3f:
DECISION'encoding of pdu + 23 <= maxMCSPDUsize';
("True’): JOIN 1b;
ELSE:ENDDECISION;
ELSE:ENDDECISION;

114 Recommendation T.125 (04/94) Superseded by a more recent version

Superseded by a more recent version
DECISION pdu!mergeChannels = Empty and pdu!purgeChannellds = Empty;
(False): TASK buffer(b)!pdu := pdu,
pdu!mergeChannels := Empty,
pdu!purgeChannellds := Empty;
CALL Cast_buffer(b, upward);

JOIN 1b;
ELSE:ENDDECISION;
CALL Release_buffer(b);
RETURN;
ENDPROCEDURE;
. x|
PROCEDURE Merge_tokens; I* Merge_tokens */
I* ________________________ * /
DCL b Bufferld,
t Tokenld,
u Userld,
pdu PDUStruct,
tAttr TokenAttributes;
START

COMMENT 'Generate MTrq MCSPDUs to merge token ids upward.
Fill them to maximum size that encoding allows.
TASK b:=0,
pdulkind := MTrq,
pdu!mergeTokens := Empty,
pdu!purgeTokenlds := Empty,

1b: I* for t in tMerge */

DECISION tMerge = Empty;

(False): CALL Allocate_buffer(b);
DECISION b = 0;

(True): RETURN;
ELSE:ENDDECISION;
TASK t := Pick(tMerge),
tMerge := Del(t, tMerge),
tAttritokenlid :=t,
tAttrlkind := token(t)!kind,
tAttrigrabber := token(t)!grabber,
tAttr!recipient := token(t)!recipient,
tAttrlinhibitors := Empty;
DECISION token(t)!kind = Inhibited;
(True): 2b: I* for u in token(t)!luMerge */
DECISION token(t)!luMerge = Empty;
(False): TASK u :=Pick(token(t)luMerge),
token(t)!uMerge := Del(u, token(t)!uMerge),
tAttrlinhibitors := Incl(u, tAttrlinhibitors),
pdu!mergeTokens := I* try this many */
Incl(tAttr, pdu!mergeTokens);
DECISION'encoding of pdu + 4 <= maxMCSPDUsize";
("True'): TASK pdu!mergeTokens := /* try another */
Del(tAttr, pdu!mergeTokens);
JOIN 2b;
ELSE:ENDDECISION;
ELSE:ENDDECISION;
ELSE:ENDDECISION;
TASK pdu!mergeTokens := Incl(tAttr, pdu!mergeTokens);
DECISION'encoding of pdu + 16 <= maxMCSPDUsize';
("True’): JOIN 1b;
ELSE:ENDDECISION;
ELSE:ENDDECISION;
DECISION pdu!mergeTokens = Empty;
(False): TASK buffer(b)!pdu := pdu,
pdu!mergeTokens := Empty;
CALL Cast_buffer(b, upward);
JOIN 1b;

Recommendation T.125 (04/94) Superseded by a more recent version 115

Superseded by a more recent version

ELSE:ENDDECISION;

CALL Release_buffer(b);
RETURN,;
ENDPROCEDURE;
I* _______________________ *I
PROCEDURE Detach_users; I* Detach_users */
I* _______________________ *I
DCL b Bufferld,
u Userld,
pdu PDUStruct,
diagnostic Diagnostic;
START
COMMENT 'Generate DUrq MCSPDUs to detach users.
Fill them to maximum size that encoding allows.
TASK b:=0,
pdulkind := DUrq,
pduluserlds := Empty;
1b: I* for u in uDetach */

116

DECISION uDetach = Empty;

(False):

CALL Allocate_buffer(b);
DECISION b = 0;
(True): RETURN;
ELSE:ENDDECISION;
TASK u := Pick(uDetach),
uDetach := Del(u, uDetach),
uRevoke := Del(u, uRevoke),
pdulreason := RN_domain_disconnected,
pduluserlds := Incl(u, pduluserlds);
DECISION'encoding of pdu + 4 <= maxMCSPDUsize";
("True’): JOIN 1b;
ELSE:ENDDECISION;

ELSE:ENDDECISION;
DECISION pduluserlds = Empty;

(False):

JOIN 3f;

ELSE:ENDDECISION;

2b:

I* for u in uRevoke */

DECISION uRevoke = Empty;

(False):

CALL Allocate_buffer(b);

DECISION b = 0;

(True): RETURN;

ELSE:ENDDECISION;

TASK u := Pick(uRevoke),
uRevoke := Del(u, uRevoke),
pdulreason := RN_channel_purged,
pduluserlds := Incl(u, pduluserlds);

DECISION'encoding of pdu + 4 <= maxMCSPDUsize";

("True’): JOIN 1b;

ELSE:ENDDECISION;

ELSE:ENDDECISION;

3f:

DECISION pduluserlds = Empty;

(False):

TASK buffer(b)!pdu := pdu,
pduluserlds := Empty;
DECISION upward = 0;
(False): CALL Cast_buffer(b, upward);
(True): TASK buffer(b)!pdulkind := DUin;
CALL Apply_PDU(0, b, diagnostic);
ENDDECISION;
JOIN 1b;

ELSE:ENDDECISION;

CALL Release_buffer(b);
RETURN;
ENDPROCEDURE;

Recommendation T.125 (04/94) Superseded by a more recent version

PROCEDURE

DCL

START
COMMENT

TASK

1b:

Superseded by a more recent version

Leave_channels;

b Bufferld,
c Channelld,
pdu PDUStruct;

I*

*/

I* Leave_channels */

I*

'Generate CLrq MCSPDUs to leave channels.
Fill them to maximum size that encoding allows.

b :=0,

pdulkind := CLrq,
pdu!channellds := Empty;
I* for c in cLeave */

DECISION cLeave = Empty;

(False):

CALL Allocate_buffer(b);
DECISION b = 0;
(True): RETURN;

ELSE:ENDDECISION;

TASK ¢ := Pick(cLeave),
cLeave := Del(c, cLeave);

DECISION chan(c)!kind;

(Static, Assigned):
CALL

ELSE:ENDDECISION;

TASK

Delete_channel(c);

pdu!channellds := Incl(c, pdulchannellds);

DECISION'encoding of pdu + 4 <= maxMCSPDUsize";

("True’): JOIN 1b;
ELSE:ENDDECISION;

ELSE:ENDDECISION;
DECISION pdu!channellds = Empty;

(False):

TASK buffer(b)!pdu := pdu,

pdulchannellds := Empty;
CALL Cast_buffer(b, upward);
JOIN 1b;

ELSE:ENDDECISION;

I*

*/

I* Disband_channels */

I*

CALL Release_buffer(b);
RETURN;
ENDPROCEDURE;
PROCEDURE Disband_channels;
DCL b Bufferld,
c Channelld,
pdu PDUStruct,
diagnostic Diagnostic;
START
COMMENT 'Generate CDrq MCSPDUs to disband channels.
TASK b:=0,
pdulkind := CDrq;
1b: I* for c in cDisband */

DECISION cDisband = Empty;

(False):

CALL Allocate_buffer(b);
DECISION b = 0;
(True): RETURN;

ELSE:ENDDECISION;

TASK ¢ := Pick(cDisband),
cDisband := Del(c, cDisband),
pdulchannelld := c,
buffer(b)!pdu := pdu;

Recommendation T.125 (04/94)

Superseded by a more recent version

117

Superseded by a more recent version
DECISION upward = 0;
(False): CALL Cast_buffer(b, upward);
(True): TASK buffer(b)!pdulkind := CDin;
CALL Apply_PDU(0, b, diagnostic);

ENDDECISION;
JOIN 1b;
ELSE:ENDDECISION;
CALL Release_buffer(b);
RETURN,;
ENDPROCEDURE;
/* ________________________ * l
PROCEDURE Reject_tokens; I* Reject_tokens */
I* ________________________ * I
DCL b Bufferld,
t Tokenld,
u Userld,
p Portalld,
pdu PDUStruct;
START
COMMENT 'Generate TVcf MCSPDUs to reject tokens.
TASK b:=0,
pdulkind := TVcf,
pdulresult := RT_no_such_user;
1b: I* for t in tReject */
DECISION tReject = Empty;
(False): CALL Allocate_buffer(b);
DECISION b = 0;
(True): RETURN;
ELSE:ENDDECISION;
TASK t := Pick(tReject),
tReject := Del(t, tReject),
token(t)!kind := Grabbed,
u := token(t)!grabber,
pdulinitiator := u,
pdultokenld :=t;
CALL Token_status(pdu);
TASK buffer(b)!pdu := pdu;
CALL Route_user(u, p);
CALL Cast_buffer(b, p);
JOIN 1b;
ELSE:ENDDECISION;
CALL Release_buffer(b);
RETURN,;
ENDPROCEDURE;
. x|
PROCEDURE Process_PDU; I* Process_PDU */
FPAR r Portalld, B *
dp DataPriority;
DCL b Bufferld,
pdu PDUStruct,
diagnostic Diagnostic;
START

COMMENT 'This is the main line of processing an MCSPDU.
If its content is invalid, ignore or reject it.
Else if this is the top provider, take the special
actions of Top_provider. Then whether or not this
is the top provider, call Apply_PDU.

TASK b := portal(r)!inBuffer(dp),
pdu := buffer(b)!pdu;

118 Recommendation T.125 (04/94) Superseded by a more recent version

Superseded by a more recent version

DECISION pdu'kind = RJum;
(True): TASK diagnostic := pduldiagnostic;
(False): CALL Validate_input(r, b, diagnostic);
DECISION diagnostic = DC_OK;
(True): DECISION buffer(b)!pdulkind;
(MCrq): TASK mcrqQueue := Push(r, mcrqQueue);
(MTrq): TASK mtrqQueue := Push(r, mtrqQueue);
(AUrq): TASK aurgQueue := Push(r, aurqQueue);
ELSE:ENDDECISION;
DECISION upward = 0;
(True): CALL Top_provider(r, b);
ELSE:ENDDECISION;
CALL Apply_PDU(r, b, diagnostic);
ELSE:ENDDECISION;
ENDDECISION;
DECISION diagnostic;
(DC_OK, DC_ignore):
I* no action */

ELSE:
OUTPUT Report.portal(r, diagnostic) TO control;
DECISION pdu'kind = RJum;
(False): TASK'pdulinitialOctets := truncate pdu’;
ELSE:ENDDECISION;
TASK pdulkind := RJum,
pduldiagnostic := diagnostic,
buffer(b)!pdu := pdu,
dp := buffer(b)!dataPriority,
buffer(b)!dataPriority := 0;
CALL Cast_buffer(b, r);
TASK buffer(b)!dataPriority := dp;
ENDDECISION;
CALL Release_buffer(b);
TASK portal(r)!inBuffer(dp) := 0;
DECISION portal(r)!inCredit(dp) > 0;
(True): TASK pBufferWait(dp) := Incl(r, pBufferWait(dp));
ELSE:ENDDECISION;
RETURN;
ENDPROCEDURE;
I* _______________________ *I
PROCEDURE Validate_input; I* Validate_input */
FPAR r Portalld, B e *
b Bufferld,
IN/JOUT diagnostic Diagnostic;
DCL pdu PDUStruct,
p Portalld,
dp DataPriority,
u Userld,
uSet UserldSet,
c Channelld,
cSet ChannelldSet,
CAttr ChannelAttributes,
cAttrSet ChannelAttributesSet,
t Tokenld,
tSet TokenldSet,
tAttr TokenAttributes,
tAttrSet TokenAttributesSet;
START

COMMENT 'Validate the direction and user ids of an MCSPDU
and perform other checks, depending on its type.
Top_provider and Apply_PDU trust this procedure
to catch important anomalies and ease their logic.

TASK pdu := buffer(b)!pdu,
diagnostic := DC_OK;

Recommendation T.125 (04/94) Superseded by a more recent version

119

Superseded by a more recent version
DECISION portal(r)'kind;

(Downlink):
DECISION pdu'kind;
(EDrq, MCrq, MTrq, DPum, RJum,
AUrq, DUrq, CJrq, CLrq, CCrq,
CDrq, CArq, CErq, SDrq, USrq,
TGrq, Tirq, TVrq, TVrs, TPrq,
TRrq, TTrq):
I* OK*/
ELSE:
TASK diagnostic := DC_forbidden_PDU_upward;
RETURN;
ENDDECISION;
(Uplink):
DECISION pdu'kind;
(PDin, MCcf, PCin, MTcf, PTin,
DPum, RJum, AUcf, DUin, CJcf,
CCcf, CDin, CAin, CEin, SDin,
USin, TGcf, Tlcf, TVin, TVcf,
TPin, TRcf, TTcf):
I* OK*/
ELSE:
TASK diagnostic := DC_forbidden_PDU_downward;
RETURN;
ENDDECISION;
ELSE:ENDDECISION;
TASK dp :=0;

DECISION pdu'kind;
(SDrq, SDin, USrq, USin):
TASK dp := pduldataPriority,
dp :=IF dp < parameters!numPriorities THEN dp

ELSE parameters!numPriorities - 1 Fl;
ELSE:ENDDECISION;

DECISION buffer(b)!dataPriority = dp;

(False): TASK diagnostic := DC_wrong_transport_priority;
RETURN;

ELSE:ENDDECISION;

DECISION pdulkind;

(MCrq): TASK cAttrSet := pdu!mergeChannels,
cSet := pdu!purgeChannellds;
1b: I* for cAttr in cAttrSet */

DECISION cAttrSet = Empty;

(False): TASK cAttr := Pick(cAttrSet),
cAttrSet := Del(cAttr, cAttrSet),
¢ := cAttr!channelid;

DECISION c in cSet;

(True): TASK diagnostic := DC_inconsistent_merge;
RETURN;

ELSE:ENDDECISION;

TASK cSet := Incl(c, cSet);

DECISION cAttr'kind = Private;

(False): JOIN 1b;

ELSE:ENDDECISION;

TASK pdu!mergeChannels := Del(cAttr, pdu!mergeChannels);
CALL Route_user(cAttrlmanager, p);
DECISIONp =r;

(False): TASK pdu!purgeChannellds :=

Incl(c, pdulpurgeChannellds);

JOIN 1b;
ELSE:ENDDECISION;
TASK uSet := cAttrladmitted;
2b: [* for u in uSet */
DECISION uSet = Empty;
(False): TASK u:=Pick(uSet),

uSet := Del(u, uSet);
CALL Route_user(u, p);

120 Recommendation T.125 (04/94) Superseded by a more recent version

Superseded by a more recent version
DECISIONp =r;
(False): TASK cAttrladmitted :=
Del(u, cAttrladmitted);
ELSE:ENDDECISION;
JOIN 2b;
ELSE:ENDDECISION;
TASK pdu!mergeChannels := Incl(cAttr, pdu!mergeChannels);
JOIN 1b;
ELSE:ENDDECISION;
(MTrq): TASK tAttrSet := pdu!mergeTokens,
tSet := pdu!purgeTokenlds;
3b: I* for tAttr in tAttrSet */
DECISION tAttrSet = Empty;
(False): TASK tAttr := Pick(tAttrSet),
tAttrSet := Del(tAttr, tAttrSet),
t := tAttr!tokenld;
DECISION t in tSet;
(True): TASK diagnostic := DC_inconsistent_merge;
RETURN;
ELSE:ENDDECISION;
TASK tSet := Incl(t, tSet),
pdu!mergeTokens := Del(tAttr, pdu!mergeTokens);
DECISION tAttr!kind;
(Grabbed, Ungivable):
CALL Route_user(tAttrlgrabber, p);
DECISION p =r;
(False): JOIN 4f;
ELSE:ENDDECISION;
(Given):
CALL Route_user(tAttr!recipient, p);
DECISIONp =r;
(False): JOIN 4f;
ELSE:ENDDECISION;
(Giving):
CALL Route_user(tAttr!recipient, p);
DECISIONp =r;
(True): CALL Route_user(tAttrigrabber, p);
DECISIONp=r;
(False): TASK tAttrlkind := Given;
ELSE:ENDDECISION;
(False): TASK tAttrlkind := Ungivable;
CALL Route_user(tAttrigrabber, p);
DECISION p =r;
(False): 4f :
TASK pdu!purgeTokenlds :=

Incl(t, pdu!purgeTokenlds);

JOIN 3b;
ELSE:ENDDECISION;
ENDDECISION;
(Inhibited):
TASK uSet := tAttrlinhibitors;
5b : I* for u in uSet */
DECISION uSet = Empty;
(False): TASK u:=Pick(uSet),
uSet := Del(u, uSet);
CALL Route_user(u, p);
DECISION p =r;
(False): TASK tAttrlinhibitors :=
Del(u, tAttrlinhibitors);
ELSE:ENDDECISION;
JOIN 5b;
ELSE:ENDDECISION;
ENDDECISION;
TASK pdu!mergeTokens := Incl(tAttr, pdu!mergeTokens);
JOIN 3b;
ELSE:ENDDECISION;

Recommendation T.125 (04/94) Superseded by a more recent version

121

Superseded by a more recent version

(DUrq): TASK uSet := pduluserlds;
6b : I* for u in uSet */
DECISION uSet = Empty;
(False): TASK u := Pick(uSet),
uSet := Del(u, uSet);
CALL Route_user(u, p);
DECISIONp =r;
(False): TASK pduluserlds := Del(u, pdu!userlds);
ELSE:ENDDECISION;
JOIN 6b;
ELSE:ENDDECISION;
DECISION pduluserlds = Empty;
(True): TASK diagnostic := DC_ignore;
RETURN;
ELSE:ENDDECISION;
(CJrq, CCrq, CDrq, CArq, CErq,
SDrq, USrq, TGrq, Tirq, TVrq,
TPrq, TRrq, TTrq):
CALL Route_user(pdulinitiator, p);
DECISION p =r;
(False): TASK diagnostic := DC_ignore;
RETURN;
ELSE:ENDDECISION;
(TVin): DECISION pdulrecipient in uUsed,;
(False): TASK diagnostic := DC_misrouted_user;
RETURN;
ELSE:ENDDECISION;
(TVrs): CALL Route_user(pdu!recipient, p);
DECISIONp =r;
(False): TASK diagnostic := DC_ignore;
RETURN;
ELSE:ENDDECISION;
(CJcf, CCcf, TGcf, Tlcf, TVcf,
TRcf, TTcf):
DECISION pdulinitiator in uUsed,;
(False): TASK diagnostic := DC_misrouted_user;
RETURN;
ELSE:ENDDECISION;
ELSE:ENDDECISION;
DECISION pdu'kind;
(CDrq, CArq, CErq):
TASK ¢ := pdu!channelid;
DECISION c in cUsed and chan(c)!kind = Private
and pdulinitiator = chan(c)!manager;
(False): TASK diagnostic := DC_ignore;
RETURN;
ELSE:ENDDECISION;
(SDrq, USrq):
TASK ¢ := pdulchannelld;
DECISION c in cUsed and chan(c)'kind = Private;
(True): DECISION pdulinitiator in chan(c)!admitted;
(False): TASK diagnostic := DC_ignore;
RETURN,;
ELSE:ENDDECISION;
ELSE:ENDDECISION;

(MCcf): DECISION not merging and mcrqQueue = EmptyQueue;
(True): TASK diagnostic := DC_unrequested_confirm;
RETURN;
ELSE:ENDDECISION;
(MTcf): DECISION not merging and mtrqQueue = EmptyQueue;
(True): TASK diagnostic := DC_unrequested_confirm;
RETURN;

ELSE:ENDDECISION;

122 Recommendation T.125 (04/94) Superseded by a more recent version

Superseded by a more recent version

(AUcf): DECISION aurqQueue = EmptyQueue;
(True): TASK diagnostic := DC_unrequested_confirm;
RETURN;

ELSE:ENDDECISION;
(CJcf, CCcf, TGcf, Ticf, TVcf,

TRcf, TTcf):
DECISION merging;
(True): TASK diagnostic := DC_unrequested_confirm;
RETURN;

ELSE:ENDDECISION;

ELSE:ENDDECISION;

TASK buffer(b)!pdu := pdu;

RETURN

COMMENT 'Additional tests might be applied to check
that MCSPDUs flowing downward are consistent
with user or channel states already recorded.
But stronger assertions could contain flaws,
and such defenses are not necessary for the
continued functioning of this MCS provider.
The value of an MCS domain involves trust in
the correct operation of superior providers.

ENDPROCEDURE;

I* ______________________ * I
PROCEDURE Top_provider; I* Top_provider */
FPAR r Portalld, i e —— */
b Bufferld;
DCL pdu PDUStruct,
new PDUStruct,
u Userld,
c Channelld,
CAttr ChannelAttributes,
t Tokenld,
tAttr TokenAttributes,
result Result,
diagnostic Diagnostic;
START

COMMENT 'The buffer containing an MCSPDU will be processed next
by Apply_PDU. Its contents may first be modified here.
Changing pdu'kind results in "turning the corner".

TASK pdu := buffer(b)!pdu;
DECISION pdu'kind;
(EDrq): DECISION pdu!subHeight < parameters!maxHeight;

(False): TASK pdSend := True;
ELSE:ENDDECISION;
(MCrq): TASK new!kind := MCcf,
new!mergeChannels := Empty,
new!purgeChannellds := pdu!purgeChannellds;

1b: I* for cAttr in mergeChannels */

DECISION pdu!mergeChannels = Empty;

(False): TASK cAttr := Pick(pdu!mergeChannels),
pdu!mergeChannels := Del(cAttr, pdu!mergeChannels),
¢ := cAttr!channelld;

DECISION c in cUsed;
(True): DECISION chan(c)!kind;
(Static):
JOIN 2f;
(Private):
DECISION cAttr!kind = Private
and cAttrlmanager = chan(c)!manager;
(True): JOIN 2f;
ELSE:ENDDECISION;
ELSE:ENDDECISION;

Recommendation T.125 (04/94) Superseded by a more recent version

123

124

Superseded by a more recent version

(False): DECISION cAttrlkind = Userld;
(True): CALL Take_user(c, diagnostic);
(False): CALL Take_channel(c, diagnostic);
ENDDECISION;
DECISION diagnostic = DC_OK;
(True): TASK chan(c)!kind := cAttr!kind;
2f:
TASK new!mergeChannels :=
Incl(cAttr, new!mergeChannels);

JOIN 1b;
ELSE:ENDDECISION;
ENDDECISION;
TASK new!purgeChannellds := Incl(c, new!purgeChannellds);
JOIN 1b;

ELSE:ENDDECISION;
TASK pdu := new;
(MTrq): TASK new!kind := MTcf,
new!mergeTokens := Empty,
new!purgeTokenlds := pdu!purgeTokenlds;

3b: I* for tAttr in mergeTokens */
DECISION pdu!mergeTokens = Empty;
(False): TASK tAttr := Pick(pdu!mergeTokens),

pdu!mergeTokens := Del(tAttr, pdu!mergeTokens),
t := tAttritokenld;
DECISION t in tUsed;
(True): DECISION token(t)!kind;
(Inhibited):
DECISION tAttrlkind = Inhibited;
(True): JOIN 4f;
ELSE:ENDDECISION;
ELSE:ENDDECISION;
(False): CALL Take_token(t, diagnostic);
DECISION diagnostic = DC_OK;
(True): 4f:
TASK new!mergeTokens :=
Incl(tAttr, new!mergeTokens);

JOIN 3b;
ELSE:ENDDECISION;
ENDDECISION;
TASK new!purgeTokenlds := Incl(t, new!purgeTokenlds);
JOIN 3b;

ELSE:ENDDECISION;
TASK pdu := new;
(AUrq): CALL New_user(u, result);
TASK pdulkind := AUcf,
pdulresult := result,
pdulinitiator := u;
(DUrq): TASK pdulkind := DUin;
(CJrq): TASK pdulkind := CJcf,
¢ := pdulchannelld,
pdulrequested := c,
result := RT_successful;
DECISION c = 0;
(True): CALL New_channel(c, result);
DECISION result = RT_successful;
(True): TASK chan(c)'kind := Assigned;
ELSE:ENDDECISION;
TASK pdu!channelld := c;
(False): DECISION c in cUsed;
(False): DECISION c < 1001;
(False): TASK result := RT_no_such_channel;
(True): CALL Take_chanel(c, diagnostic);
DECISION diagnostic = DC_OK;

(False): TASK result := RT_too_many_channels;
(True): TASK chan(c)'kind := Static;
ENDDECISION;

ENDDECISION;

Recommendation T.125 (04/94) Superseded by a more recent version

(CLrq):
(CCrq):

(CDrq):
(CArq):
(CErq):
(SDrq):
(USrq):
(TGrq):

(Tlrqg):

Superseded by a more recent version

(True): DECISION chan(c)!kind;
(Userld):
TASK u := Userld(c);
DECISION pdulinitiator = u;
(False):TASK result := RT_other_user_id;
ELSE:ENDDECISION;
(Private):
DECISION pdulinitiator in chan(c)!admitted,;
(False):TASK result := RT_not_admitted;
ELSE:ENDDECISION;
ELSE:ENDDECISION;
ENDDECISION;
DECISION result = RT_successful;
(False):TASK pdulchannelld := 0;
ELSE:ENDDECISION;
ENDDECISION;
TASK pdulresult := result;
I* no special action */
CALL New_channel(c, result);
TASK pdulkind := CCcf,
pdulresult := result,
pdulchannelld := c;

TASK pdulkind := CDin;
TASK pdulkind := CAin;
TASK pdulkind := CEin;
TASK pdulkind := SDin;
TASK pdulkind := USin;

TASK pdulkind := TGcf,
pdulresult := RT_successful,
t := pdultokenld,
u := pdulinitiator;
DECISION t in tUsed;
(False): CALL Take_token(t, diagnostic);
DECISION diagnostic = DC_OK;
(False): TASK pdulresult := RT_too_many_tokens;
(True): TASK token(t)!kind := Grabbed,
token(t)!grabber := u;
ENDDECISION;
(True): DECISION token(t)!kind = Inhibited
and token(t)!inhibitors = Incl(u, Empty);
(False):TASK pdulresult := RT_token_not_available;
(True): TASK token(t)'kind := Grabbed,
token(t)!grabber := u;
ENDDECISION;
ENDDECISION;
CALL Token_status(pdu);
TASK pdulkind := Tlcf,
pdulresult := RT_successful,
t := pdultokenid,
u := pdulinitiator;
DECISION t in tUsed;
(False): CALL Take_token(t, diagnostic);
DECISION diagnostic = DC_OK;
(False):TASK pdulresult := RT_too_many_tokens;
(True): TASK token(t)!kind := Inhibited,
token(t)!inhibitors := Incl(u, Empty);
ENDDECISION;
(True): DECISION token(t)!kind = Grabbed and token(t)!grabber = u;
(True): TASK token(t)lkind := Inhibited,
token(t)!inhibitors := Incl(u, Empty);
ELSE:ENDDECISION;
DECISION token(t)!kind = Inhibited;
(False):TASK pdulresult := RT_token_not_available;
(True): TASK token(t)!inhibitors :=
Incl(u, token(t)!inhibitors);
ENDDECISION;

Recommendation T.125 (04/94) Superseded by a more recent version

125

Superseded by a more recent version

ENDDECISION;
CALL Token_status(pdu);
(TVrgq): TASK pdulkind := TVcf,
pdulresult := RT_token_not_possessed,
t := pdultokenld,
u := pdulinitiator;
DECISION t in tUsed and token(t)'kind = Grabbed and token(t)!grabber = u;
(True): DECISION pdulrecipient in uUsed;
(False):TASK pdulresult := RT_no_such_user;
(True): TASK pdulkind := TVin,
token(t)!'kind := Giving,
token(t)!recipient := pdulrecipient;
ENDDECISION;
ELSE:ENDDECISION;
CALL Token_status(pdu);
(TPrq): TASK pdulkind := TPin;
(TRrg): TASK pdulkind := TRcf,
pdulresult := RT_token_not_possessed,
t := pdultokenld,
u := pdulinitiator;
DECISION t in tUsed;
(True): DECISION token(t)!kind;
(Grabbed, Ungivable):
DECISION token(t)!grabber = u;
(True): TASK pdulresult := RT_successful;
CALL Delete_token(t);
ELSE:ENDDECISION;
(Giving):
DECISION token(t)!grabber = u;
(True): TASK pdulresult := RT_successful,
token(t)!kind := Given;
ELSE:ENDDECISION;
(Inhibited):
DECISION u in token(t)!inhibitors;
(True): TASK pdulresult := RT_successful,
token(t)!inhibitors :=
Del(u, token(t)!inhibitors);
ELSE:ENDDECISION;
DECISION token(t)!inhibitors = Empty;
(True): CALL Delete_token(t);
ELSE:ENDDECISION;
ENDDECISION;
ELSE:ENDDECISION;
CALL Token_status(pdu);
(TTrq): TASK pdulkind := TTcf;
CALL Token_status(pdu);
(TVrs): TASK t := pdultokenld,
u := pdulrecipient;
DECISION t in tUsed and token(t)!recipient = u;
(True): DECISION token(t)!kind;
(Giving):
TASK token(t)!kind := Grabbed,
pdulkind := TVcf,
pdulinitiator := token(t)!grabber;
DECISION pdulresult = RT_successful;
(True): TASK token(t)!grabber := u;
ELSE:ENDDECISION;
CALL Token_status(pdu);
ELSE:ENDDECISION;
ELSE:ENDDECISION;
ELSE:ENDDECISION;
TASK buffer(b)!pdu := pdu;

RETURN;
ENDPROCEDURE;
L — x|
PROCEDURE Apply_PDU; I* Apply_PDU */
FPAR r Portalld, [*mmmmmmmm e *|
b Bufferld,

126 Recommendation T.125 (04/94) Superseded by a more recent version

IN/OUT

DCL

START

Superseded by a more recent version

diagnostic Diagnostic;

pdu PDUStruct,

new PDUStruct,

p Portalld,

pSet PortalldSet,

X Portalld,

u Userld,

uSet UserldSet,

c Channelld,

cSet ChannelldSet,

cAttr ChannelAttributes,
cAttrSet ChannelAttributesSet,
t Tokenld,

tSet TokenldSet,

tAttr TokenAttributes,
tAttrSet TokenAttributesSet,
result Result;

COMMENT'This is a large case selection based on MCSPDU kind.

TASK

These actions and updates to the information base
take place in both the top and subordinate providers.

pdu := buffer(b)!pdu;

DECISION pdulkind;
(MCrq, MTrq, AUrq, DUrq, CCrq,
CDrq, CArq, CErq, USrq, TGrq,

Tirq,

(PDin):

(EDrq):

(MCcf):

TVrq, TPrq, TRrq, TTrq):

CALL Cast_buffer(b, upward);

DECISION pdulheightLimit > 0;

(True):TASK buffer(b)!pdulheightLimit := pdu!heightLimit - 1;

(False):OUTPUT Report.portal(r, DC_height_limit_exceeded) TO control;

ENDDECISION;

CALL Broadcast_buffer(b);

TASK portal(r)!subHeight := pdu!subHeight,
portal(r)!subinterval := pdulsublnterval,
portal(r)!interval := IF pdu!subinterval = 0 THEN interval

ELSE oneSecond + (pdulsubinterval * 3) Fl;

CALL Erect_domain;

DECISION merging;

(False):TASK p := Next(mcrqQueue),

mcrgQueue := Pull(mcrqQueue);

ELSE:ENDDECISION;

TASK cAttrSet := pdu!lmergeChannels;

1b: I* for cAttr in cAttrSet */

DECISION cAttrSet = Empty;

(False): TASK cAttr := Pick(cAttrSet),

cAttrSet := Del(cAttr, cAttrSet),
c := cAttrichannelld;
DECISION c in cUsed and chan(c)'kind = cAttr!kind,;
(False): DECISION cAttrlkind = Userld;
(True): CALL Take_user(c, diagnostic);
(False): CALL Take_channel(c, diagnostic);
ENDDECISION;
DECISION diagnostic = DC_OK;
(False):RETURN;
ELSE:ENDDECISION;
TASK chan(c)lkind := cAttrlkind;
ELSE:ENDDECISION;
DECISION merging;
(True): DECISION chan(c)!kind = Userld;
(True): TASK u := Userld(c),
uConfirm := Incl(u, uConfirm);
ELSE:ENDDECISION;

Recommendation T.125 (04/94) Superseded by a more recent version

127

Superseded by a more recent version

DECISION chan(c)!kind = Private
and chan(c)!luMerge /= Empty;
(True): TASK cMerge := Incl(c, cMerge);
(False):TASK cConfirm := Incl(c, cConfirm);
ENDDECISION;
JOIN 1b;
ELSE:ENDDECISION;
TASK chan(c)!portal := p;
DECISION cAttr'kind = Static or cAttrlkind = Assigned
or cAttrljoined;
(True): DECISION p = 0;
(False):TASK chan(c)!joined :=
Incl(p, chan(c)!joined),
cLeave := Del(c, cLeave);
(True): DECISION chan(c)!joined = Empty;
(True): TASK clLeave := Incl(c, cLeave);
ELSE:ENDDECISION;
ENDDECISION;
ELSE:ENDDECISION;
DECISION cAttr!kind = Userld and p = 0;
(True): TASK u := Userld(c),
uDetach := Incl(u, uDetach),
cLeave := Del(c, cLeave);
ELSE:ENDDECISION;
DECISION cAttr'kind = Private;
(False):JOIN 1b;
ELSE:ENDDECISION;
CALL Route_user(cAttr'manager, x);
DECISION x = p;
(False):TASK chan(c)!manager := 0,
buffer(b)!pdu!lmergeChannels :=
Del(cAttr, buffer(b)!pdu!mergeChannels),
buffer(b)!pdulpurgeChannellds :=
Incl(c, buffer(b)!pdulpurgeChannellds),
cDisband := Incl(c, cDisband);
(True): TASK chan(c)!manager := cAttrlmanager,
uSet := cAttrladmitted and uUsed,;
2b: I* for u in uSet */
DECISION uSet = Empty;

(False):TASK u := Pick(uSet),
uSet := Del(u, uSet);

CALL Route_user(u, x);
DECISION x = p;
(True): TASK chan(c)!admitted :=
Incl(u, chan(c)!admitted);
ELSE:ENDDECISION;
JOIN 2b;
ELSE:ENDDECISION;
ENDDECISION;
JOIN 1b;
ELSE:ENDDECISION;
DECISION merging;
(False): CALL Cast_buffer(b, p);
(True): TASK new!kind := PCin,
new!detachUserlds := Empty,
new!purgeChannellds := Empty,
cSet := pdulpurgeChannellds and cUsed;
3b: [*forcincSet*/
DECISION cSet = Empty;
(False): TASK c := Pick(cSet),
cSet := Del(c, cSet);
DECISION chan(c)!kind;
(Userld):
TASK u := Userld(c),
new!detachUserlds :=
Incl(u, new!detachUserlds);

128 Recommendation T.125 (04/94) Superseded by a more recent version

(PCin):

(MTcf):

Superseded by a more recent version
(Static, Assigned, Private):
TASK new!purgeChannellds :=
Incl(c, new!purgeChannellds);
ENDDECISION;
JOIN 3b;
ELSE:ENDDECISION;
CALL Purge_users(new!detachUserlds);
CALL Purge_channels(new!purgeChannellds);
TASK buffer(b)!pdu := new;
CALL Broadcast_buffer(b);
ENDDECISION;
TASK cSet := pdulpurgeChannellds and cUsed,
buffer(b)!pdulpurgeChannellds := cSet;
DECISION merging;
(True): TASK buffer(b)!pdu!detachUserlds := pdu!detachUserlds
and uConfirm,
buffer(b)!pdu!purgeChannellds := cSet and cConfirm;
4b : I* for c in cSet */
DECISION cSet = Empty;
(False): TASK c := Pick(cSet),
cSet := Del(c, cSet);
DECISION c in cConfirm;
(False):TASK chan(c)!luMerge := chan(c)!admitted;
ELSE:ENDDECISION;
JOIN 4b;
ELSE:ENDDECISION;
ELSE:ENDDECISION;
CALL Purge_users(buffer(b)!pdul!detachUserlds);
CALL Purge_channels(buffer(b)!pdu!purgeChannellds);
CALL Broadcast_buffer(b);
DECISION merging;
(False):TASK p := Next(mtrqQueue),
mtrqQueue := Pull(mtrqQueue);
ELSE:ENDDECISION;
TASK tAttrSet := pdu!lmergeTokens;
5b: /* for tAttr in tAttrSet */
DECISION tAttrSet = Empty;
(False): TASK tAttr := Pick(tAttrSet),
tAttrSet := Del(tAttr, tAttrSet),
t := tAttrltokenld;
DECISION t in tUsed;
(False): CALL Take_token(t, diagnostic);
DECISION diagnostic = DC_OK;
(False):RETURN;
ELSE:ENDDECISION;
ELSE:ENDDECISION;
TASK token(t)'kind := tAttrlkind,
token(t)!grabber := tAttr!grabber,
token(t)!recipient := tAttrlrecipient;
DECISION merging;
(True): DECISION token(t)!kind = Inhibited
and token(t)!luMerge /= Empty;
(True): TASK tMerge := Incl(t, tMerge);
(False):TASK tConfirm := Incl(t, tConfirm);
DECISION token(t)!kind = Inhibited
and token(t)!inhibitors = Empty;
(True): CALL Delete_token(t);
ELSE:ENDDECISION;
ENDDECISION;
JOIN 5b;
ELSE:ENDDECISION;
DECISION upward = 0 and token(t)!kind = Ungivable;
(True): TASK tReject := Incl(t, tReject);
ELSE:ENDDECISION;
DECISION tAttr!kind;

Recommendation T.125 (04/94) Superseded by a more recent version

129

130

Superseded by a more recent version

(Grabbed, Ungivable):
CALL Token_route(tAttrlgrabber, x, p);
DECISION x = p;
(False):JOIN 6f;
ELSE:ENDDECISION;
(Given):
CALL Token_route(tAttr!recipient, x, p);
DECISION x = p;
(False):JOIN 6f;
ELSE:ENDDECISION;
(Giving):
CALL Token_route(tAttrlrecipient, x, p);
DECISION x = p;
(True): CALL Token_route(tAttrigrabber, x, p);
DECISION x = p;
(False):TASK token(t)!kind := Given;
ELSE:ENDDECISION;
(False):CALL Token_route(tAttrigrabber, x, p);
DECISION x = p;
(True): TASK token(t)!kind := Ungivable;
(False): 6f :
TASK buffer(b)!pdu!mergeTokens :=
Del(tAttr, buffer(b)!pdu!'mergeTokens),
buffer(b)!pdu!purgeTokenids :=
Incl(t, buffer(b)!pdu!purgeTokenlds);
CALL Delete_token(t);
ENDDECISION;
ENDDECISION;
(Inhibited):
TASK uSet := tAttrlinhibitors and uUsed;
7b : [*for uin uSet*/
DECISION uSet = Empty;
(False):TASK u := Pick(uSet),
uSet := Del(u, uSet);
CALL Token_route(u, x, p);
DECISION x = p;
(True): TASK token(t)!linhibitors :=
Incl(u, token(t)!inhibitors);
ELSE:ENDDECISION;
JOIN 7b;
ELSE:ENDDECISION;
DECISION token(t)!inhibitors = Empty;
(True): CALL Delete_token(t);
ELSE:ENDDECISION;
ENDDECISION;
JOIN 5b;
ELSE:ENDDECISION;
DECISION merging;
(False): CALL Cast_buffer(b, p);
(True): CALL Purge_tokens(pdu!purgeTokenids);
TASK buffer(b)!pdulkind := PTin;
CALL Broadcast_buffer(b);
ENDDECISION;
(PTin): TASK tSet := pdul!purgeTokenlds and tUsed,
buffer(b)!pdu!purgeTokenids := tSet;
DECISION merging;
(True): TASK buffer(b)!pdulpurgeTokenlds := tSet and tConfirm;
8b: [*fortintSet*/
DECISION tSet = Empty;
(False):TASK t := Pick(tSet),
tSet := Del(t, tSet);
DECISION t in tConfirm;
(False):TASK token(t)!luMerge := token(t)!inhibitors;
ELSE:ENDDECISION;
JOIN 8b;
ELSE:ENDDECISION;

Recommendation T.125 (04/94) Superseded by a more recent version

(CJch):

Superseded by a more recent version

ELSE:ENDDECISION;
CALL Purge_tokens(buffer(b)!pdu!purgeTokenlds);
CALL Broadcast_buffer(b);

(DPum): OUTPUT Drop.portal(r, pdulreason) TO control;

(AUcf):

(DUin):

(CJrq):

TASK p := Next(aurgQueue),

aurqQueue := Pull(aurqQueue),

¢ := Channelld(u),

u := pdulinitiator;

DECISION pdulresult = RT_successful;
(True): DECISION upward = 0;

(False):CALL Take_user(c, diagnostic);
DECISION diagnostic = DC_OK;
(False):RETURN;
ELSE:ENDDECISION;

ELSE:ENDDECISION;

TASK chan(c)!portal := p;

DECISION p = 0;

(True): TASK uDetach := Incl(u, uDetach),

cLeave := Del(c, cLeave);

ELSE:ENDDECISION;

ELSE:ENDDECISION;
CALL Cast_buffer(b, p);
DECISION merging;
(True): TASK buffer(b)!pduluserlds := pduluserlds and uConfirm,;
ELSE:ENDDECISION;
CALL Purge_users(buffer(b)!pduluserlds);
CALL Broadcast_buffer(b);
TASK c¢ := pdu!channelld,
result := RT_successful,
p := upward;
DECISION c in cUsed;
(True): DECISION chan(c)!kind;
(Userld):
TASK u := Userld(c);
DECISION pdulinitiator = u;
(False):TASK result := RT_other_user_id;
ELSE:ENDDECISION;

(Private):

DECISION pdulinitiator in chan(c)!admitted,;
(False):TASK result := RT_not_admitted;
ELSE:ENDDECISION;

ELSE:ENDDECISION;

DECISION result = RT_successful;

(False):TASK buffer(b)!pdulkind := CJcf,
buffer(b)!pdulrequested := c,
buffer(b)!pdulresult := result,
buffer(b)!pdulchannelld := 0,

P =
(True): DECISION chan(c)!joined /= Empty or c in cLeave;
(True): TASK chan(c)!joined :=
Incl(r, chan(c)!joined),
cLeave := Del(c, cLeave),
buffer(b)!pdulkind := CJcf,
buffer(b)!pdulrequested := c,
buffer(b)!pdulresult := resulit,
p =T
ELSE:ENDDECISION;
ENDDECISION;

ELSE:ENDDECISION;

CALL
TASK

CALL

Cast_buffer(b, p);
¢ := pdulchannelld,
u := pdulinitiator;
Route_user(u, p);

DECISION pdulresult = RT_successful;

(True):

DECISION c in cUsed;
(False): CALL Take_channel(c, diagnostic);

Recommendation T.125 (04/94) Superseded by a more recent version

131

Superseded by a more recent version

DECISION diagnostic = DC_OK;

(False):RETURN;

ELSE:ENDDECISION;

TASK chan(c)!kind := IF ¢ <1001 THEN Static
ELSE Assigned Fl;

ELSE:ENDDECISION;

DECISION p = 0;

(False): TASK chan(c)!joined := Incl(p, chan(c)!joined),

cLeave := Del(c, cLeave);

(True): DECISION chan(c)!joined = Empty;
(True): TASK clLeave := Incl(c, cLeave);
ELSE:ENDDECISION;

ENDDECISION;

ELSE:ENDDECISION;
CALL Cast_buffer(b, p);
(CLrq): TASK cSet := pdu!channellds and cUsed;
9b: /*forcincSet*/
DECISION cSet = Empty;
(False): TASK c := Pick(cSet),
cSet := Del(c, cSet);

DECISION r in chan(c)!joined;

(True): TASK chan(c)!joined := Del(r, chan(c)!joined);
DECISION chan(c)!joined = Empty;
(True): TASK clLeave := Incl(c, cLeave);
ELSE:ENDDECISION;

ELSE:ENDDECISION;

JOIN 9b;

ELSE:ENDDECISION;
(CCcf): TASK c := pdulchannelld,

u := pdulinitiator;

DECISION pdulresult = RT_successful;
(True): DECISION upward = 0;

(False): CALL Take_channel(c, diagnostic);
DECISION diagnostic = DC_OK;
(False):RETURN;

ELSE:ENDDECISION;

ELSE:ENDDECISION;

TASK chan(c)!kind := Private,
chan(c)!manager u,
chan(c)!ladmitted := Incl(u, Empty);

ELSE:ENDDECISION;
CALL Route_user(u, p);
CALL Cast_buffer(b, p);
(CDin): TASK c := pdulchannelid;
DECISION c in cUsed;
(False): RETURN;
(True): DECISION merging and not ¢ in cConfirm;

(True): TASK chan(c)luMerge := chan(c)ladmitted;
RETURN;

ELSE:ENDDECISION;

DECISION chan(c)!kind = Private;

(False): TASK diagnostic := DC_channel_id_conflict;
RETURN;

ELSE:ENDDECISION;

ENDDECISION;

TASK uSet := Incl(chan(c)!manager, chan(c)!admitted);

CALL Delete_channel(c);

CALL Multicast_buffer(b, uSet);

(CAin): TASK c := pdulchannelld,

uSet := pduluserlds and uUsed,
buffer(b)!pduluserlds := uSet;

DECISION merging;

(True): TASK uSet := uSet and uConfirm,

buffer(b)!pduluserlds := uSet;

10b: /*foruin uSet*/

DECISION uSet = Empty;

132 Recommendation T.125 (04/94) Superseded by a more recent version

(CEin):

Superseded by a more recent version
(False): TASK u := Pick(uSet),
uSet := Del(u, uSet),
¢ := Channelld(u),
chan(c)!portal = 0;
JOIN 10b;
ELSE:ENDDECISION;
TASK buffer(b)!pdu'kind := DUrq,
buffer(b)!pdulreason := RN_channel_purged;
CALL Cast_buffer(b, r);
RETURN;
ELSE:ENDDECISION;
DECISION uSet = Empty;
(False): DECISION c in cUsed and chan(c)!kind = Private;
(False): CALL Take_channel(c, diagnostic);
DECISION diagnostic = DC_OK;
(False):RETURN;
ELSE:ENDDECISION;
ELSE:ENDDECISION;
TASK chan(c)!kind := Private,
chan(c)!manager := pdulinitiator,
chan(c)!ladmitted := chan(c)!admitted or uSet;
CALL Multicast_buffer(b, uSet);
ELSE:ENDDECISION;
TASK c := pdulchannelld;
DECISION c in cUsed;
(False): RETURN;
(True): DECISION merging and not ¢ in cConfirm;
(True): TASK chan(c)!luMerge := chan(c)!ladmitted;
RETURN;
ELSE:ENDDECISION;
DECISION chan(c)!kind = Private;
(False): TASK diagnostic := DC_channel_id_conflict;
RETURN;
ELSE:ENDDECISION;
ENDDECISION;
TASK uSet := chan(c)!admitted,
pSet := Empty;
11b: /*for uin uSet*/
DECISION uSet = Empty;
(False): TASK u := Pick(uSet),
uSet := Del(u, uSet);
DECISION u in pdu!userlds;
(False): CALL Route_user(u, p);
TASK pSet := Incl(p, pSet);
ELSE:ENDDECISION;
JOIN 11b;
ELSE:ENDDECISION;
TASK uSet := pduluserlds and chan(c)!admitted,
buffer(b)!pduluserids := uSet;
12b: [*foruin uSet*/
DECISION uSet = Empty;
(False): TASK u := Pick(uSet),
uSet := Del(u, uSet),
chan(c)!ladmitted := Del(u, chan(c)!admitted);
CALL Route_user(u, p);
DECISION p in chan(c)!joined and not p in pSet;
(False): TASK chan(c)!joined := Del(p, chan(c)!joined);
DECISION chan(c)!joined = Empty;
(True): TASK clLeave := Incl(c, cLeave);
ELSE:ENDDECISION;
ELSE:ENDDECISION;
JOIN 12b;
ELSE:ENDDECISION;
DECISION chan(c)!admitted /= Empty or chan(c)!manager in uUsed;
(False): CALL Delete_channel(c);
ELSE:ENDDECISION;

Recommendation T.125 (04/94) Superseded by a more recent version

133

134

Superseded by a more recent version
TASK uSet := buffer(b)!pduluserlds;
CALL Multicast_buffer(b, uSet);
(SDrg): TASK buffer(b)!pdulkind := SDin,
pSet := Incl(upward, Empty);

JOIN 13f;
(SDin): TASK pSet := Empty;
JOIN 13f;
(USin): TASK pSet := Empty;
13f :

TASK c := pdulchannelld;
DECISION c in cUsed and not merging;
(True): TASK pSet := pSet or chan(c)!joined;

DECISION chan(c)!kind = Userld;

(True): TASK pSet := Del(upward, pSet);

ELSE:ENDDECISION;

ELSE:ENDDECISION;
DECISION buffer(b)!pdu!kind = SDin;
(True): TASK pSet := Del(r, pSet);
ELSE:ENDDECISION;

14b: /*for p in pSet */
DECISION pSet = Empty;
(False): TASK p := Pick(pSet),

pSet := Del(p, pSet);
CALL Cast_buffer(b, p);
JOIN 14b;
ELSE:ENDDECISION;
(TGcf, Ticf, TVcf, TRcf, TTcf):
TASK t := pdultokenid,
u := pdulinitiator;
DECISION pdultokenStatus;
(SelfGrabbed):

DECISION t in tUsed;

(False): CALL Take_token(t, diagnostic);
DECISION diagnostic = DC_OK;
(False):RETURN;
ELSE:ENDDECISION;

ELSE:ENDDECISION;

TASK token(t)!kind := Grabbed,
token(t)!grabber := u;

(Selflnhibited):

DECISION t in tUsed;

(False): CALL Take_token(t, diagnostic);
DECISION diagnostic = DC_OK;
(False):RETURN;
ELSE:ENDDECISION;

ELSE:ENDDECISION;

TASK token(t)'kind := Inhibited,
token(t)!inhibitors := Incl(u, token(t)!inhibitors);

(SelfRecipient):

TASK token(t)!recipient := u;
(SelfGiving):

TASK token(t)!grabber := u;
(NotinUse):

CALL Delete_token(t);
ELSE:

DECISION token(t)!kind;

(Grabbed, Ungivable):
DECISION token(t)!grabber = u;
(True): CALL Delete_token(t);
ELSE:ENDDECISION;

(Giving, Given):
DECISION token(t)!grabber = u;
(True): TASK token(t)!kind := Given;
ELSE:ENDDECISION;
DECISION token(t)!recipient = u;
(True): CALL Delete_token(t);

Recommendation T.125 (04/94) Superseded by a more recent version

(TVin):

(TVrs):

(TPin):

Superseded by a more recent version
ELSE:ENDDECISION;
(Inhibited):
TASK token(t)!inhibitors :=
Del(u, token(t)!inhibitors);
DECISION token(t)!inhibitors = Empty;
(True): CALL Delete_token(t);
ELSE:ENDDECISION;
ENDDECISION;
ENDDECISION;
CALL Route_user(u, p);
CALL Cast_buffer(b, p);
TASK t := pdultokenid,
u := pdulrecipient;
DECISION merging;
(True): TASK buffer(b)!pdulkind := TVrs,
buffer(b)!pdulresult := RT_domain_merging;
CALL Cast_buffer(b, r);
RETURN;
ELSE:ENDDECISION;
DECISION t in tUsed;
(False): CALL Take_token(t, diagnostic);
DECISION diagnostic = DC_OK;
(False):RETURN;
ELSE:ENDDECISION;
ELSE:ENDDECISION;
TASK token(t)!kind := Giving,
token(t)!grabber := pdulinitiator,
token(t)!recipient := u;
CALL Route_user(u, p);
CALL Cast_buffer(b, p);
TASK t := pdultokenid,
u := pdulrecipient;
DECISION t in tUsed and token(t)!recipient = u;
(True): DECISION token(t)'kind;
(Giving):
TASK token(t)lkind := Grabbed;
DECISION pdulresult = RT_successful;
(True): TASK token(t)!grabber := u;
(False):DECISION token(t)!grabber in uUsed;
(False):CALL Delete_token(t);
ELSE:ENDDECISION;
ENDDECISION;
CALL Cast_buffer(b, upward);
(Given):
TASK token(t)!kind := Grabbed,
token(t)!grabber := u;
DECISION pdulresult = RT_successful;
(False):CALL Delete_token(t);
ELSE:ENDDECISION;
CALL Cast_buffer(b, upward);
ELSE:ENDDECISION;
ELSE:ENDDECISION;
TASK t := pdultokenid;
DECISION t in tUsed and not merging;
(True): DECISION token(t)'kind;
(Grabbed, Ungivable):
CALL Route_user(token(t)!grabber, p);
CALL Cast_buffer(b, p);
(Given):
CALL Route_user(token(t)!recipient, p);
CALL Cast_buffer(b, p);
(Giving):
TASK uSet := Incl(token(t)!grabber, Empty);
TASK uSet := Incl(token(t)!recipient, uSet);
CALL Multicast_buffer(b, uSet);

Recommendation T.125 (04/94) Superseded by a more recent version

135

Superseded by a more recent version
(Inhibited):
TASK uSet := token(t)!inhibitors;
CALL Multicast_buffer(b, uSet);

ENDDECISION;
ELSE:ENDDECISION;
ENDDECISION;
RETURN;
ENDPROCEDURE;
[¥ ammmmmmm—ee————————— i
PROCEDURE Token_status; I* Token_status */
FPAR IN/OUT pdu PDUStruct; [*emmmmmmm e *|
DCL t Tokenid,
u Userld,
status TokenStatus;
START
COMMENT'Calculate for an MCSPDU the relationship between
the initiator user id and token id it contains.
TASK t := pdultokenid,
u := pdulinitiator;
DECISION t in tUsed;
(False):TASK status := NotinUse;
(True): DECISION token(t)!kind;
(Grabbed):
DECISION token(t)!grabber = u;
(True): TASK status := SelfGrabbed,;
(False):TASK status := OtherGrabbed;
ENDDECISION;
(Ungivable):
DECISION token(t)!grabber = u;
(True): TASK status := SelfGiving;
(False):TASK status := OtherGiving;
ENDDECISION;
(Given):
DECISION token(t)!recipient = u;
(True): TASK status := SelfRecipient;
(False):TASK status := OtherGiving;
ENDDECISION;
(Giving):
DECISION token(t)!recipient = u;
(True): TASK status := SelfRecipient;
(False):DECISION token(t)!grabber = u;
(True): TASK status := SelfGiving;
(False):TASK status := OtherGiving;
ENDDECISION;
ENDDECISION;
(Inhibited):
DECISION u in token(t)!inhibitors;
(True): TASK status := Selflnhibited;
(False):TASK status := Otherlnhibited;
ENDDECISION;
ENDDECISION;
ENDDECISION;
TASK pdultokenStatus := status;
RETURN;
ENDPROCEDURE;
L — o
PROCEDURE Token_route; I* Token_route */
FPAR u Userld, [Femmmmmmeme e *
INJOUT x Portalld,
p Portalld;
START
COMMENT'Revoke token user if its route x is no longer via p.
CALL Route_user(u, x);
136 Recommendation T.125 (04/94) Superseded by a more recent version

Superseded by a more recent version

DECISION x = p;

(False): DECISION u in uUsed,;
(True): TASK uRevoke := Incl(u, uRevoke);
ELSE:ENDDECISION;

ELSE:ENDDECISION;

RETURN;
ENDPROCEDURE;
/* _____________________ * l
PROCEDURE Delete_user; I* Delete_user */
FPAR u Userld; R e ———— *|
DCL p Portalld,
c Channelld,
cSet ChannelldSet,
a Userld,
aSet UserldSet,
q Portalld,
t Tokenld,
tSet TokenldSet;
START

COMMENT'Update the information base to delete a user id.
This has consequences for its channels and tokens.
Any data still in transit is left undisturbed.

DECISION u in uUsed;
(False):RETURN;
ELSE:ENDDECISION;
TASK ¢ := Channelld(u),
p := chan(c)!portal,
uUsed := Del(u, uUsed),
numUserlds := numUserlds -1,
cUsed := Del(c, cUsed),
cFree := Incl(c, cFree),
numChannellds := numChannellds - 1,
uConfirm := Del(u, uConfirm),
cConfirm := Del(c, cConfirm),
uDetach := Del(u, uDetach),
uRevoke := Del(u, uRevoke),
cLeave := Del(c, cLeave);
TASK cSet := cUsed;
1b: I* for c in cSet */
DECISION cSet = Empty;
(False): TASK c := Pick(cSet),
cSet := Del(c, cSet);
DECISION portal(p)'kind = Attached and p in chan(c)!joined;
(True): TASK chan(c)!joined := Del(p, chan(c)!joined);
DECISION chan(c)!joined = Empty;
(True): TASK cLeave := Incl(c, cLeave);
ELSE:ENDDECISION;
ELSE:ENDDECISION;
DECISION chan(c)!kind = Private;
(True): DECISION chan(c)!manager = u;
(True): TASK chan(c)!manager :
DECISION upward = 0;
(True): TASK cDisband := Incl(c, cDisband);
ELSE:ENDDECISION;
ELSE:ENDDECISION;
TASK chan(c)!ladmitted := Del(u, chan(c)!admitted),
chan(c)!luMerge := Del(u, chan(c)!uMerge);
DECISION chan(c)!admitted /= Empty or chan(c)!manager in uUsed,;
(False): DECISION not merging or c in cConfirm;
(True): CALL Delete_channel(c);
ELSE:ENDDECISION;
(True): DECISION p in chan(c)!joined;
(True): TASK aSet := chan(c)!admitted;
2b: /*forain aSet*/

0;

Recommendation T.125 (04/94) Superseded by a more recent version

137

Superseded by a more recent version

DECISION aSet = Empty;
(False):TASK a := Pick(aSet),
aSet := Del(a, aSet);
CALL Route_user(a, q);
DECISION q = p;
(False):JOIN 2b;
(True): JOIN 1b;
ENDDECISION;
ELSE:ENDDECISION;
TASK chan(c)!joined := Del(p, chan(c)!joined);
DECISION chan(c)!joined = Empty;
(True): TASK clLeave := Incl(c, cLeave);
ELSE:ENDDECISION;
ELSE:ENDDECISION;
ENDDECISION;
ELSE:ENDDECISION;
JOIN 1b;
ELSE:ENDDECISION;
TASK tSet := tUsed;
3b: I* for t in tSet */
DECISION tSet = Empty;
(False): TASK t := Pick(tSet),
tSet := Del(t, tSet);
DECISION token(t)!kind;
(Grabbed, Ungivable):
DECISION token(t)!grabber = u;
(True): JOIN 3f;
ELSE:ENDDECISION;
(Given):
DECISION token(t)!recipient = u;
(True): JOIN 3f;
ELSE:ENDDECISION;
(Giving):
DECISION token(t)!recipient = u;
(True): TASK token(t)'kind := Ungivable;
DECISION token(t)!grabber in uUsed;
(False):JOIN 3f;
(True): DECISION upward = 0;
(True): TASK tReject := Incl(t, tReject);
ELSE:ENDDECISION;
ENDDECISION;
(False): DECISION token(t)!grabber = u;
(True): TASK token(t)!kind := Given;
ELSE:ENDDECISION;
ELSE:ENDDECISION;
(Inhibited):
TASK token(t)!inhibitors := Del(u, token(t)!inhibitors),
token(t)!luMerge := Del(u, token(t)!uMerge);
DECISION token(t)!inhibitors = Empty;
(True): 3f:
DECISION not merging or t in tConfirm;
(True): CALL Delete_token(t);
(False):TASK token(t)!kind := Inhibited,
token(t)!inhibitors := Empty;

ENDDECISION;
ELSE:ENDDECISION;
ENDDECISION;
JOIN 3b;
ELSE:ENDDECISION;
RETURN;
ENDPROCEDURE;
* */
PROCEDURE Delete_channel; I* Delete_channel */
FPAR c Channelld; I* *

138 Recommendation T.125 (04/94) Superseded by a more recent version

Superseded by a more recent version

DCL u Userld;
START
COMMENT'Update the information base to delete a channel id.

DECISION c in cUsed;

(False):RETURN;

ELSE:ENDDECISION;

DECISION chan(c)!kind = Userld;

(True): TASK u := Userld(c);

CALL Delete_user(u);

(False): TASK cUsed := Del(c, cUsed),
cFree := Incl(c, cFree),
numChannellds := numChannelids -1,
cConfirm := Del(c, cConfirm),
cLeave := Del(c, cLeave),
cDisband := Del(c, cDisband);

ENDDECISION;
RETURN;
ENDPROCEDURE;
I* ______________________ *I
PROCEDURE Delete_token; I* Delete_token */
FPAR t Tokenld; [¥mmmmmmmm e *I
START
COMMENT'Update the information base to delete a token id.
DECISION t in tUsed;
(False):RETURN;
ELSE:ENDDECISION;
TASK tUsed := Del(t, tUsed),
tFree := Incl(t, tFree),
numTokenlds := numTokenlds -1,
tConfirm := Del(t, tConfirm),
tReject := Del(t, tReject);
RETURN;
ENDPROCEDURE;
I* ______________________ *I
PROCEDURE Purge_users; I* Purge_users */
FPAR uSet UserldSet; [¥mmmmmmeme e e */
DCL u Userld;
START
COMMENT'Delete a set of user ids.
1b: I* for u in uSet */
DECISION uSet = Empty;
(False): TASK u := Pick(uSet),
uSet := Del(u, uSet);
CALL Delete_user(u);
JOIN 1b;
ELSE:ENDDECISION;
RETURN;
ENDPROCEDURE;
r* *
PROCEDURE Purge_channels; I* Purge_channels */
FPAR cSet ChannelldSet; I* */
DCL c Channelid;
START

COMMENT'Delete a set of channel ids.

1b: I* for c in cSet */
DECISION cSet = Empty;
(False): TASK c := Pick(cSet),
cSet := Del(c, cSet);
CALL Delete_channel(c);

Recommendation T.125 (04/94) Superseded by a more recent version 139

JOIN 1b;
ELSE:ENDDECISION;
RETURN;
ENDPROCEDURE;

PROCEDURE Purge_tokens;

FPAR tSet TokenldSet;
DCL t Tokenld;
START
COMMENT'Delete a set of token ids.

1b: I* for t in tSet */
DECISION tSet = Empty;
(False): TASK t := Pick(tSet),
tSet := Del(t, tSet);

CALL Delete_token(t);

JOIN 1b;
ELSE:ENDDECISION;

RETURN;
ENDPROCEDURE;

PROCEDURE Output_buffer;

FPAR b Bufferld,

p Portalld;
DCL dp DataPriority,

pdu PDUStruct,
pid Pld;
START
COMMENT'Send the output signal representing an MCSPDU.
The next must wait until PDU.ready is received.
TASK dp := buffer(b)!dataPriority,
pdu := buffer(b)!pdu,

pid := portal(p)!pids(dp);
DECISION p = upward and pdu'kind = SDin;
(True): TASK pdulkind := SDrq;
ELSE:ENDDECISION;

DECISION pdul'kind;

(PDin) : OUTPUT PDin(pdu) TO pid;
(EDrq) : OUTPUT EDrq(pdu) TO pid;
(MCrqg) : OUTPUT MCrq(pdu) TO pid;
(MCcf) : OUTPUT MCcf(pdu) TO pid;
(PCin) : OUTPUT PCin(pdu) TO pid;
(MTrg) : OUTPUT MTrq(pdu) TO pid;
(MTcf) : OUTPUT MTcf(pdu) TO pid;
(PTin) : OUTPUT PTin(pdu) TO pid;
(DPum) : OUTPUT DPum(pdu)TO pid;
(RJum) : OUTPUT RJum(pdu) TO pid;
(AUrq) : OUTPUT AUrq(pdu) TO pid;
(AUcf) : OUTPUT AUcf(pdu) TO pid;
(DUrq) : OUTPUT DUrqg(pdu) TO pid;
(DUin) : OUTPUT DUin(pdu) TO pid;
(CJrq) : OUTPUT CJrq(pdu) TO pid;
(CJcf) : OUTPUT CJcf(pdu) TO pid;
(CLrg) : OUTPUT CLrqg(pdu) TO pid;
(CCrq) : OUTPUT CCrq(pdu) TO pid;
(CCcf) : OUTPUT CCcf(pdu) TO pid;
(CDrgq) : OUTPUT CDrq(pdu) TO pid;
(CDin) : OUTPUT CDin(pdu) TO pid;
(CArq) : OUTPUT CArq(pdu) TO pid;
(CAin) : OUTPUT CAin(pdu) TO pid;
(CErq) : OUTPUT CErq(pdu) TO pid;
(CEin) : OUTPUT CEin(pdu) TO pid;
(SDrq) : OUTPUT SDrq(pdu) TO pid;

140 Recommendation T.125 (04/94) Superseded by a more recent version

Superseded by a more recent version

L. x|
I* Purge_tokens */
T — x|
[¥ ammmmmmm——————————— x|
I* Output_buffer */
[¥ ammmmmmm——————————— x|

Superseded by a more recent version

(SDin) : OUTPUT SDin(pdu) TO pid;
(USrq) : OUTPUT USrq(pdu) TO pid;
(USin) : OUTPUT USin(pdu) TO pid;
(TGrq) : OUTPUT TGrq(pdu) TO pid;
(TGcf) : OUTPUT TGcf(pdu) TO pid;
(Tlrg) : OUTPUT Tirq(pdu) TO pid;
(Ticf) : OUTPUT Tlcf(pdu) TO pid;
(TVrq) : OUTPUT TVrq(pdu) TO pid;
(TVin) : OUTPUT TVin(pdu) TO pid;
(TVrs) : OUTPUT TVrs(pdu) TO pid;
(TVcf) : OUTPUT TVcf(pdu) TO pid;
(TPrq) : OUTPUT TPrq(pdu) TO pid;
(TPin) : OUTPUT TPin(pdu) TO pid;
(TRrg) : OUTPUT TRrq(pdu) TO pid;
(TRcf) : OUTPUT TRcf(pdu) TO pid;
(TTrq) : OUTPUT TTrg(pdu) TO pid;
(TTcf) : OUTPUT TTcf(pdu) TO pid;
ENDDECISION;

RETURN;

ENDPROCEDURE;

I* Input transitions */

DCL o] Portalid,
dp DataPriority,
pdu PDUStruct,
pKind PortalKind,
pids PldByPri,
reason Reason;
START
COMMENT'The state machine contains a single state.
CALL Initialize_resources;
NEXTSTATE ~;

STATE ~; INPUT Open.portal(p, pKind, pids);

CALL Open_portal(p, pKind, pids);
NEXTSTATE -;

STATE ~; INPUT Time.portal(p);

CALL Time_portal(p);
NEXTSTATE -;

STATE ~; INPUT Drop.portal(p, reason);

CALL Drop_portal(p, reason);
NEXTSTATE -;

STATE ~; INPUT Shut.portal(p);
CALL Shut_portal(p);
DECISION pUsed = Empty;
(False):NEXTSTATE -;
(True): STOP;
ENDDECISION;

STATE ~; INPUT PDU.ready(dp);
CALL PDU_ready(dp);
NEXTSTATE -;

STATE ~; INPUT
STATE ~; INPUT
STATE ~; INPUT
STATE ~; INPUT
STATE ~; INPUT
STATE ~; INPUT
STATE ~; INPUT
STATE ~; INPUT
STATE ~; INPUT
STATE ~; INPUT
STATE ~; INPUT

PDin(pdu); TASK pdulkind
EDrq(pdu); TASK pdulkind
MCrq(pdu); TASK pdu'kind
MCcf(pdu); TASK pdulkind
PCin(pdu); TASK pdulkind
MTrq(pdu); TASK pdulkind

PDin; CALL Input_PDU(pdu); NEXTSTATE —;
EDrq; CALL Input_PDU(pdu); NEXTSTATE —;
MCrq; CALL Input_PDU(pdu); NEXTSTATE —;
MCcf; CALL Input_PDU(pdu); NEXTSTATE -;
PCin; CALL Input_PDU(pdu); NEXTSTATE —;
MTrq; CALL Input_PDU(pdu); NEXTSTATE -;
MTcf(pdu); TASK pdu!kind MTcf; CALL Input_PDU(pdu); NEXTSTATE —;
PTin(pdu); TASK pdulkind PTin; CALL Input_PDU(pdu); NEXTSTATE -;
DPum(pdu); TASK pdu'kind := DPum; CALL Input_PDU(pdu);NEXTSTATE —;
RJum(pdu); TASK pdulkind := RJum; CALL Input_PDU(pdu); NEXTSTATE —;
AUrq(pdu); TASK pdu!kind AUrq; CALL Input_PDU(pdu); NEXTSTATE —;

Recommendation T.125 (04/94) Superseded by a more recent version 141

STATE ~; INPUT
STATE ~; INPUT
STATE ~; INPUT
STATE ~; INPUT
STATE ~; INPUT
STATE ~; INPUT
STATE ~; INPUT
STATE ~; INPUT
STATE ~; INPUT
STATE ~; INPUT
STATE ~; INPUT
STATE ~; INPUT
STATE ~; INPUT
STATE ~; INPUT
STATE ~; INPUT
STATE ~; INPUT
STATE ~; INPUT
STATE ~; INPUT
STATE ~; INPUT
STATE ~; INPUT
STATE ~; INPUT
STATE ~; INPUT
STATE ~; INPUT
STATE ~; INPUT
STATE ~; INPUT
STATE ~; INPUT
STATE ~; INPUT
STATE ~; INPUT
STATE ~; INPUT
STATE ~; INPUT
STATE ~; INPUT
STATE ~; INPUT

ENDPROCESS;

Superseded by a more recent version

AUcf(pdu); TASK pdulkind :
DUrq(pdu); TASK pdu'kind
DUin(pdu); TASK pdu!kind
CJrq(pdu); TASK pdulkind
CJcf(pdu); TASK pdulkind
CLrq(pdu); TASK pdu!kind
CCrq(pdu); TASK pdu!kind
CCcf(pdu); TASK pdu!kind
CDrq(pdu); TASK pdu!kind
CDin(pdu); TASK pdu!kind
CArq(pdu); TASK pdu!kind
CAin(pdu); TASK pdu!kind
CErq(pdu); TASK pdu'kind
CEin(pdu); TASK pdu!kind
SDrq(pdu); TASK pdu'kind
SDin(pdu); TASK pdulkind
USrq(pdu); TASK pdulkind
USin(pdu); TASK pdu!kind
TGrq(pdu); TASK pdulkind
TGcf(pdu); TASK pdulkind
Tirg(pdu); TASK pdu'kind
Ticf(pdu); TASK pdulkind
TVrqg(pdu); TASK pdu'kind
TVin(pdu); TASK pdulkind
TVrs(pdu); TASK pdu'kind
TVcf(pdu); TASK pdulkind
TPrq(pdu); TASK pdu'kind
TPin(pdu); TASK pdulkind
TRrq(pdu); TASK pdu'kind
TRcf(pdu); TASK pdulkind
TTrq(pdu); TASK pdu'kind
TTcf(pdu); TASK pdulkind

SDL specification of the Endpoint process

= AUcf;
DUrq;
DUin;
CJrq;
CJcf;
CLrq;
CCrq;
CCcf;
CDrq;
CDin;
CArq;
CAin;
CErq;
CEin;
SDrq;
SDin;
USrq;
USin;
TGrq;
TGcf;
Tirq;
Tlcf;
TVrq;
TVin;
TVrs;
TVcf;
TPrq;
TPin;
TRrq;
TRcf;
TTrq;
TTcf;

CALL Input_PDU(pdu);
CALL Input_PDU(pdu);
CALL Input_PDU(pdu);
CALL Input_PDU(pdu);
CALL Input_PDU(pdu);
CALL Input_PDU(pdu);
CALL Input_PDU(pdu);
CALL Input_PDU(pdu);
CALL Input_PDU(pdu);
CALL Input_PDU(pdu);
CALL Input_PDU(pdu);
CALL Input_PDU(pdu);
CALL Input_PDU(pdu);
CALL Input_PDU(pdu);
CALL Input_PDU(pdu);
CALL Input_PDU(pdu);
CALL Input_PDU(pdu);
CALL Input_PDU(pdu);
CALL Input_PDU(pdu);
CALL Input_PDU(pdu);
CALL Input_PDU(pdu);
CALL Input_PDU(pdu);
CALL Input_PDU(pdu);
CALL Input_PDU(pdu);
CALL Input_PDU(pdu);
CALL Input_PDU(pdu);
CALL Input_PDU(pdu);
CALL Input_PDU(pdu);
CALL Input_PDU(pdu);
CALL Input_PDU(pdu);
CALL Input_PDU(pdu);
CALL Input_PDU(pdu);

Appendix V

NEXTSTATE —;
NEXTSTATE —;

NEXTSTATE —;
NEXTSTATE —;
NEXTSTATE —;
NEXTSTATE —;
NEXTSTATE —;
NEXTSTATE —;
NEXTSTATE —;
NEXTSTATE —;
NEXTSTATE —;
NEXTSTATE —;
NEXTSTATE —;
NEXTSTATE —;
NEXTSTATE —;
NEXTSTATE —;

NEXTSTATE —

NEXTSTATE —;
NEXTSTATE —;
NEXTSTATE —;
NEXTSTATE —;
NEXTSTATE —;
NEXTSTATE —;
NEXTSTATE —;
NEXTSTATE —;
NEXTSTATE —;
NEXTSTATE —;
NEXTSTATE —;
NEXTSTATE —;
NEXTSTATE —;
NEXTSTATE —;
NEXTSTATE —;

(This appendix does not form an integral part of this Recommendation)

PROCESS Endpoint;

I* incoming TC if not Null */
I* own transport address */
I* other transport address */

I* target or offered QOS */

I* minimum acceptable QOS */
I* values established or null */

I* single Control process */
I* selected Domain process */

FPAR tcld TCEndpointid,
localTSAP TSAPAddress,
remoteTSAP TSAPAddress,
givenQOS TransportQOS,
minQOS TransportQOS,
parameters DomainParameters;

I* Data declarations */

DCL control Pid,
domain Pld;

I* Input transitions */

DCL localDomain DomainSelector,
remoteDomain DomainSelector,
upward Boolean,
targetParms DomainParameters,
minParms DomainParameters,
maxParms DomainParameters,
userData UserData,
result Result,
ccld Natural,
label Natural,
tsdu TSDU,
dp DataPriority,
pdu PDUStruct;

142 Recommendation T.125 (04/94)

Superseded by a more recent version

3
’
3
’
3
’
3
’
3
’
3
’
3
’
3
’
3
’
3
’
3
’
3
’
3
’
3
’
3
’
3
’

Superseded by a more recent version

START
COMMENT'State machine: NEXTSTATE
1 connecting *.2...6
2 connbusy *.23.56
3 connready .23.56
4 busy ...456
5 ready ...456
6 disconnected @ 6

TASK control := PARENT,
label := 0;
DECISION tcld = Null;
(True): OUTPUT T.Connect.request(label, localTSAP, remoteTSAP,
givenQOS, minQOS);
NEXTSTATE connecting;
(False): OUTPUT T.Connect.response(tcld, givenQOS);
OUTPUT T.ready(tcld);
NEXTSTATE connbusy;

ENDDECISION;
STATE *;
INPUT Exit;
STOP;
STATE *;

INPUT T.Disconnect.indication(label, tcid);
OUTPUT Quit TO control;
NEXTSTATE disconnected,;

STATE connecting;
INPUT T.Connect.confirm(label, tcld, givenQOS);
OUTPUT T.ready(tcld);
NEXTSTATE connbusy;

STATE connecting;
SAVE *, I* await outcome of TC */

STATE connbusy, connready, busy, ready;
INPUT *
OUTPUT T.Disconnect.request(tcld);
OUTPUT Quit TO control;
NEXTSTATE disconnected;

STATE connbusy;

INPUT T.ready(tcld);
NEXTSTATE connready;

STATE connbusy;
SAVE Connect.Initial, Connect.Response, Connect.Additional, Connect.Result;

STATE connready;
INPUT Connect.Initial(localDomain, remoteDomain, upward,
targetParms, minParms, maxParms, userData);
TASK'tsdu := encode Connect-Initial using BER’;
1b :
OUTPUT T.Data.request(tcld, tsdu);
NEXTSTATE connbusy;

STATE connready;

INPUT Connect.Response(result, ccld, parameters, userData);
TASK'tsdu := encode Connect-Response using BER";
JOIN 1b;

STATE connready;
INPUT Connect.Additional(ccld, dp);
TASK'tsdu := encode Connect-Additional using BER";
JOIN 1b;

STATE connready;
INPUT Connect.Result(result);
TASK'tsdu := encode Connect-Result using BER’;
JOIN 1b;

Recommendation T.125 (04/94) Superseded by a more recent version

143

Superseded by a more recent version

STATE connbusy, connready;

INPUT

T.Data.indication(tcld, tsdu);

TASK'connect MCSPDU := decode tsdu using BER";
DECISION'connect MCSPDU';
(‘Connect-Initial’):

OUTPUT Connect.Initial(localDomain, remoteDomain, upward,
targetParms, minParms, maxParms, userData) TO control;
NEXTSTATE -;

("Connect-Response’):

OUTPUT Connect.Response(result, ccld, parameters, userData) TO control;
NEXTSTATE -;

(‘Connect-Additional’):

OUTPUT Connect.Additional(ccld, dp) TO control;
NEXTSTATE -;

(‘Connect-Result’):

OUTPUT Connect.Result(result) TO control;

NEXTSTATE -;

ELSE:
OUTPUT T.Disconnect.request(tcid);
OUTPUT Quit TO control;
NEXTSTATE disconnected;

ENDDECISION;

STATE connbusy;
INPUT PDU.ready(dp);
TASK domain := SENDER;

OUTPUT T.ready(tcld);
NEXTSTATE ready;

STATE connready;

INPUT
TASK

PDU.ready(dp);
domain := SENDER;

OUTPUT PDU.ready(dp) TO domain;
OUTPUT T.ready(tcld);
NEXTSTATE ready;

STATE busy;

INPUT

PDU.ready(dp);

OUTPUT T.ready(tcld);
NEXTSTATE ready;

STATE busy, ready;

INPUT T.ready(tcld);
OUTPUT PDU.ready(dp) TO domain;
NEXTSTATE -;

STATE busy, ready;
INPUT PDin(pdu); TASK pdulkind := PDin; JOIN 2f;
INPUT EDrq(pdu); TASK pdulkind := EDrq; JOIN 2f;
INPUT MCrq(pdu); TASK pdulkind := MCrq; JOIN 2f;
INPUT MCcf(pdu); TASK pdu'kind := MCcf; JOIN 2f;
INPUT PCin(pdu); TASK pdulkind := PCin; JOIN 2f;
INPUT MTrqg(pdu); TASK pdu'kind := MTrq; JOIN 2f;
INPUT MTcf(pdu); TASK pdulkind := MTcf; JOIN 2f;
INPUT PTin(pdu); TASK pdulkind := PTin; JOIN 2f;
INPUT DPum(pdu);TASK pdu!kind := DPum; JOIN 2f;
INPUT RJum(pdu);TASK pdu'kind := RJum; JOIN 2f;
INPUT AUrq(pdu); TASK pdulkind := AUrq; JOIN 2f;
INPUT AUcf(pdu); TASK pdu'kind := AUcf; JOIN 2f;
INPUT DUrq(pdu); TASK pdulkind := DUrq; JOIN 2f;
INPUT DUin(pdu); TASK pdu'kind := DUin; JOIN 2f;
INPUT CJrq(pdu); TASK pdulkind := CJrq; JOIN 2f;
INPUT CJcf(pdu); TASK pdulkind := CJcf; JOIN 2f;
INPUT CLrq(pdu); TASK pdulkind := CLrq; JOIN 2f;
INPUT CCrq(pdu); TASK pdu'kind := CCrq; JOIN 2f;
INPUT CCcf(pdu); TASK pdulkind := CCcf; JOIN 2f;
INPUT CDrqg(pdu); TASK pdu'kind := CDrq; JOIN 2f;
INPUT CDin(pdu); TASK pdulkind := CDin; JOIN 2f;

144 Recommendation T.125 (04/94) Superseded by a more recent version

INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT

2f :

Superseded by a more recent version

CArq(pdu); TASK pdu'kind :
CAin(pdu); TASK pdu'kind
CErq(pdu); TASK pdulkind
CEin(pdu); TASK pdulkind
SDrq(pdu); TASK pdu!kind
SDin(pdu); TASK pdu!kind
USrq(pdu); TASK pdu'kind
USin(pdu); TASK pdu'kind
TGrq(pdu); TASK pdu'kind
TGcf(pdu); TASK pdu!kind
Tirq(pdu); TASK pdu'kind
Ticf(pdu); TASK pdu!kind
TVrq(pdu); TASK pdu'kind
TVin(pdu); TASK pdu!kind
TVrs(pdu); TASK pdu'kind
TVcf(pdu); TASK pdu!kind
TPrq(pdu); TASK pdu'kind
TPin(pdu); TASK pdu!kind
TRrqg(pdu); TASK pdu'kind
TRcf(pdu); TASK pdu!kind
TTrg(pdu); TASK pdu'kind
TTcf(pdu); TASK pdu!kind

CArqg; JOIN 2f;
CAin; JOIN 2f;
CErq; JOIN 2f;
CEin; JOIN 2f;
SDrq; JOIN 2f;
SDin; JOIN 2f;
USrq; JOIN 2f;
USin; JOIN 2f;
TGrq; JOIN 2f;
TGcf; JOIN 2f;
Tirq; JOIN 2f;
Ticf; JOIN 2f;
TVrq; JOIN 2f;
TVin; JOIN 2f;
TVrs; JOIN 2f;
TVcf; JOIN 2f;
TPrq; JOIN 2f;
TPin; JOIN 2f;
TRrq; JOIN 2f;
TRcf; JOIN 2f;
TTrq; JOIN 2f;
TTcf;

TASK'tsdu := encode pdu using BER or PER,
depending on parameters!protocolVersion';

OUTPUT T.Data.request(tcld, tsdu);

NEXTSTATE -;

STATE ready;
INPUT

TASK'pdu :=

T.Data.indication(tcld, tsdu);

decode tsdu using BER or PER,

depending on parameters!protocolVersion';
DECISION pdu!kind;
OUTPUT RJum(pdu) TO control;

(RJum):

(PDin):
(EDrq):
(MCrq):
(MCcf):
(PCin):
(MTrq):
(MTcf):
(PTin):

(DPum):

(AUrq):
(AUcf):
(DUrq):
(DUin):
(CJrq):
(CJcf):
(CLrq):
(CCrq):
(CCcf):
(CDrq):
(CDin):
(CArq):
(CAin):
(CErq):
(CEin):
(SDrq):
(SDin):
(USrq):
(USin):
(TGrq):
(TGcf):

OUTPUT T.ready(tcld);
NEXTSTATE -;

OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT

PDin(pdu) TO domain;
EDrq(pdu) TO domain;
MCrq(pdu) TO domain;
MCcf(pdu) TO domain;
PCin(pdu) TO domain;
MTrq(pdu) TO domain;
MTcf(pdu) TO domain;
PTin(pdu) TO domain;
DPum(pdu) TO domain;
AUrq(pdu) TO domain;
AUcf(pdu) TO domain;
DUrq(pdu) TO domain;
DUin(pdu) TO domain;
CJrq(pdu) TO domain;
CJcf(pdu) TO domain;
CLrq(pdu) TO domain;
CCrq(pdu) TO domain;
CCcf(pdu) TO domain;
CDrq(pdu) TO domain;
CDin(pdu) TO domain;
CArq(pdu) TO domain;
CAin(pdu) TO domain;
CErqg(pdu) TO domain;
CEin(pdu) TO domain;
SDrqg(pdu) TO domain;
SDin(pdu) TO domain;
USrq(pdu) TO domain;
USin(pdu) TO domain;
TGrq(pdu) TO domain;
TGcf(pdu) TO domain;

Recommendation T.125

NEXTSTATE busy;
NEXTSTATE busy;
NEXTSTATE busy;
NEXTSTATE busy;
NEXTSTATE busy;
NEXTSTATE busy;
NEXTSTATE busy;
NEXTSTATE busy;
NEXTSTATE busy;
NEXTSTATE busy;
NEXTSTATE busy;
NEXTSTATE busy;
NEXTSTATE busy;
NEXTSTATE busy;
NEXTSTATE busy;
NEXTSTATE busy;
NEXTSTATE busy;
NEXTSTATE busy;
NEXTSTATE busy;
NEXTSTATE busy;
NEXTSTATE busy;
NEXTSTATE busy;
NEXTSTATE busy;
NEXTSTATE busy;
NEXTSTATE busy;
NEXTSTATE busy;
NEXTSTATE busy;
NEXTSTATE busy;
NEXTSTATE busy;
NEXTSTATE busy;

(04/94) Superseded by a more recent version

145

Superseded by a more recent version

(Tirq): OUTPUT Tirq(pdu) TO domain; NEXTSTATE busy;
(Tlcf): OUTPUT Ticf(pdu) TO domain; NEXTSTATE busy;
(TVrq): OUTPUT TVrq(pdu) TO domain; NEXTSTATE busy;
(TVin): OUTPUT TVin(pdu) TO domain; NEXTSTATE busy;
(TVrs): OUTPUT TVrs(pdu) TO domain; NEXTSTATE busy;
(TVef): OUTPUT TVcf(pdu) TO domain; NEXTSTATE busy;
(TPrq): OUTPUT TPrq(pdu) TO domain; NEXTSTATE busy;
(TPin): OUTPUT TPin(pdu) TO domain; NEXTSTATE busy;
(TRrq): OUTPUT TRrq(pdu) TO domain; NEXTSTATE busy;
(TRcf): OUTPUT TRcf(pdu) TO domain; NEXTSTATE busy;
(TTrg): OUTPUT TTrq(pdu) TO domain; NEXTSTATE busy;
(TTcf): OUTPUT TTcf(pdu) TO domain; NEXTSTATE busy;

ELSE:
TASK'pdulinitialOctets := truncate tsdu';
TASK'pduldiagnostic := DC_invalid_?ER_encoding’;
OUTPUT RJum(pdu) TO domain;
NEXTSTATE busy;

ENDDECISION;

STATE disconnected,;
INPUT Quit;
OUTPUT Quit TO control;
NEXTSTATE disconnected,;

ENDPROCESS;
Appendix VI
SDL specification of the Attachment process
(This appendix does not form an integral part of this Recommendation)
PROCESS Attachment;
FPAR label Natural, I* for MCS.Attach.User.confirm */
parameters DomainParameters; [* values established in domain */
I* Type definitions */
NEWTYPE MCSRequest
STRUCT
kind PDUKind; I* SDrq, USrq, CArq, CErq */
channelldChannelid; I* parameter of request */
segmentation Segmentation; /* parameter of request */
userData UserData; I* parameter of request */
offset Integer; I* octets sent so far */
userlds UserldSet; I* remaining to affect */
ENDNEWTYPE;
NEWTYPE PrioritySet SetOf(DataPriority);
ENDNEWTYPE;
NEWTYPE MCSRequestByPri Array(DataPriority, MCSRequest);
ENDNEWTYPE;
NEWTYPE PDUStructByPri Array(DataPriority, PDUStruct);
ENDNEWTYPE;

I* Data declarations */

DCL mald MCSAttachmentid, I* this Attachment process */
control Pid, I* single Control process */
domain Pid; I* selected Domain process */

DCL user Userld; I* unique id of attached user */

DCL cJoined ChannelldSet, I* channels the user has joined */
cConvened ChannelldSet, I* channels the user has convened */
cAdmitted ChannelldSet; I* channels user was admitted to */

DCL tPossessed TokenldSet, I* tokens grabbed or inhibited */
tRecipient TokenldSet; I* tokens given waiting response */

DCL uPending PrioritySet, I* request is pending at 0..3 */

146 Recommendation T.125 (04/94) Superseded by a more recent version

DCL

mcsreq
dReady

dPending
mcspdu
uReady

Superseded by a more recent version

MCSRequestByPri, I* content of segmented request */
PrioritySet; I* domain MCSPDU allowed 0..? */
PrioritySet, I* SDin or USin pending at 0..3 */
PDUStructByPri, I* content of the domain MCSPDU */
PrioritySet; I* data indication allowed 0..3 */

I* Procedure decomposition */

I*

PROCEDURE

FPAR

DCL

START

Segment_request (dp)
Indicate_data
Track_token (t, status) */

I* *
Segment_request; I* Segment_request */
dp DataPriority; * *I

udp DataPriority,
req MCSRequest,
pdu PDUStruct,

b Boolean,
m Integer,
n Integer,
u Userld;

COMMENT'Feed domain process the next segment of user data

or the next subset of private channel user ids,
if ready, for the specified transport priority.

DECISION dp in dReady;
(False):RETURN;
ELSE:ENDDECISION;

TASK udp := dp;
1b: I* for udp =dp..? */

DECISION udp = dp or (udp >= parameters!numPriorities and udp < 4);
(False): RETURN;
(True): DECISION udp in uPending;

(False): TASK udp := udp +1;

JOIN 1b;

ELSE:ENDDECISION;
ENDDECISION;
TASK dReady := Del(dp, dReady),

dp := udp,

req := mcsreq(dp),
pdulinitiator := user,
pdulchannelld := req!channelld;

DECISION req'kind;
(SDrq, USrq):

TASK pduldataPriority := dp,
b := req!segmentation!begin,
pdu!segmentationlbegin := IF reqloffset =0 THEN b ELSE False Fl,

m := parameters!maxMCSPDUsize,

m := IF parameters!protocolVersion =1 THEN m - 24 ELSE m - 8 Fl,
n := Length(reqluserData) - reqloffset,

n := IFn>mTHEN m ELSE n Fl,

pduluserData := Substring(reqluserData, 1 + reqloffset, n),
reqloffset := reqloffset + n,

n := Length(reqluserData) - reqloffset,

b := req!segmentation!end,

pdu!segmentationlend := IF n =0 THEN b ELSE False Fl,
mcsreq(dp)!offset := reqloffset;

(CArq, CErq):

TASK pduluserlds := Empty,
n:=0,
m := parameters!maxMCSPDUsize,
m := IF parameters!protocolVersion =1 THEN (m - 16) / 4
ELSE (m-7)/2Fl;
2b: [*whilen<m?*
DECISION reqluserlds = Empty;
(True): TASK n := 0;

Recommendation T.125 (04/94) Superseded by a more recent version

147

Superseded by a more recent version
(False): TASK u := Pick(req!userids),
reqluserlds := Del(u, req!userlds);
DECISION u >= 1001;
(True): TASK pduluserlds := Incl(u, pduluserids);
ELSE:ENDDECISION;
TASK n = n+1;
DECISION n < m;
(True): JOIN 2b;
ELSE:ENDDECISION;
ENDDECISION;
ENDDECISION;
DECISION req!kind;
(SDrq): OUTPUT SDrq(pdu) TO domain;
(USrq): OUTPUT USrq(pdu) TO domain;
(CArq): OUTPUT CArq(pdu) TO domain;
(CErq): OUTPUT CErq(pdu) TO domain;
ENDDECISION;
DECISION n = 0;
(True): TASK uPending := Del(dp, uPending);
DECISION req!kind;
(SDrq, USrq):
OUTPUT MCS.ready(mald, dp);
ELSE:ENDDECISION;
ELSE:ENDDECISION;

RETURN;
ENDPROCEDURE;
[¥ ammmmmmm—e————————— i
PROCEDURE Indicate_data; I* Indicate_data */
L *[

DCL dp DataPriority,

pdu PDUStruct;
START
COMMENT'Indicate the receipt of user data, if ready
and none pending at higher priorities.

TASK dp = 0;
1b: I*fordp=0.3"*

DECISION dp < 4 and (dp in uReady or not dp in dPending);
(False): RETURN;
(True): DECISION dp in dPending;

(False): TASK dp = dp+1;

JOIN 1b;

ELSE:ENDDECISION;
ENDDECISION;
TASK dPending := Del(dp, dPending),

pdu := mcspdu(dp);
DECISION pdul!kind;
(SDin): OUTPUT MCS.Send.Data.indication(mald, pdu!channelid,

pduldataPriority, pdulinitiator, pdu!segmentation, pdu!userData);
(USin): OUTPUT MCS.Uniform.Send.Data.indication(mald, pdu!channelid,
pduldataPriority, pdulinitiator, pdu!segmentation, pdu!userData);

ENDDECISION;
TASK uReady := Del(dp, uReady),

dp := IF dp < parameters!numPriorities THEN dp

ELSE parameters!numPriorities - 1 Fl;

OUTPUT PDU.ready(dp) TO domain;

JOIN 1b;
ENDPROCEDURE;
L — x|
PROCEDURE Track_token; I* Track_token */
t Tokenld, e ——— *

status TokenStatus;

Recommendation T.125 (04/94) Superseded by a more recent version

Superseded by a more recent version

START

COMMENT'Condense status into possessed or recipient.

TASK

tPossessed := Del(t, tPossessed),

tRecipient := Del(t, tRecipient);

DECISION status;

(SelfGrabbed, Selfinhibited, SelfGiving):

TASK tPossessed := Incl(t, tPossessed);
(SelfRecipient):

TASK tRecipient := Incl(t, tRecipient);
ELSE:ENDDECISION;
RETURN;
ENDPROCEDURE;

I* Input transitions */

DCL dp DataPriority,
pdu PDUStruct,
c Channelld,
cSet ChannelldSet,
t Tokenld,
u Userld,
uSet UserldSet,
segmentation Segmentation,
userData UserData,
result Result,
kind PDUKind,
reason Reason;
START
COMMENT'State machine: NEXTSTATE
1 initial *.2...6
2 attaching .234.6
3 busy ..3456
4 ready ..34.6
5 detaching56
6 detached 6
TASK mald := SELF,

control := PARENT,

user := 0;
NEXTSTATE initial;

STATE *;

INPUT Exit;
STOP;

STATE initial, attaching;
INPUT %

OUTPUT MCS.Attach.User.confirm(label, RT_unspecified_failure, mald, user);

OUTPUT Quit TO control;
NEXTSTATE detached,;

STATE initial, attaching;
INPUT Quit;

OUTPUT MCS.Attach.User.confirm(label, RT_domain_disconnected, mald, user);

OUTPUT Quit TO control;
NEXTSTATE detached,;

STATE initial;
INPUT PDU.ready(dp);
TASK domain := SENDER;

DECISION dp = 0;

(False): TASK dReady
NEXTSTATE -;

ELSE:ENDDECISION;

:= Incl(dp, dReady);

OUTPUT PDU.ready(0) TO domain;
OUTPUT AUrq(pdu) TO domain;
NEXTSTATE attaching;

Recommendation T.125 (04/94)

Superseded by a more recent version

149

Superseded by a more recent version
STATE attaching;

INPUT PDU.ready(dp);
TASK dReady := Incl(dp, dReady);
NEXTSTATE -;

STATE attaching;
INPUT PCin(pdu), PTin(pdu), DUin(pdu);
I* no action */
NEXTSTATE -;

STATE attaching;

INPUT AUcf(pdu);
TASK user := pdulinitiator;
OUTPUT MCS.Attach.User.confirm(label, pdu!result, mald, user);
DECISION pdulresult = RT_successful;
(False): OUTPUT Quit TO control;
NEXTSTATE detached,;
(True): TASK dp := 0;
1b: /[*fordp=0..3%
DECISION dp < 4;
(True): OUTPUT MCS.ready(mald, dp);
DECISION dp < parameters!numPriorities;
(True): OUTPUT PDU.ready(dp) TO domain;
ELSE:ENDDECISION;
TASK dp := dp +1;
JOIN 1b;
ELSE:ENDDECISION;
DECISION 0 in dReady;
(False): NEXTSTATE busy;
(True): NEXTSTATE ready;
ENDDECISION;
ENDDECISION;

STATE busy, ready;
INPUT Quit;
OUTPUT MCS.Detach.User.indication(mald, user, RN_provider_initiated);
OUTPUT Quit TO control;
NEXTSTATE detached,;

STATE busy, ready;
INPUT MCS.ready(mald, dp);
TASK uReady := Incl(dp, uReady);
CALL Indicate_data;
NEXTSTATE -;

STATE busy;
INPUT MCS.Detach.User.request(mald);

TASK reason := RN_user_requested;
NEXTSTATE detaching;

STATE busy;
SAVE *; I* defer MCS other */

STATE ready;
INPUT MCS.Detach.User.request(mald);
TASK pdulreason := RN_user_requested,
pduluserlds := Incl(user, Empty);
OUTPUT DUrq(pdu) TO domain;
NEXTSTATE detached,;

STATE ready;
INPUT MCS.Channel.Join.request(mald, c);
TASK pdulinitiator := user,
pdu!channelld := c;
OUTPUT CJrq(pdu) TO domain;
2b:
TASK dReady := Del(0, dReady);
NEXTSTATE busy;

150 Recommendation T.125 (04/94) Superseded by a more recent version

Superseded by a more recent version
STATE ready;
INPUT MCS.Channel.Leave.request(mald, c);
TASK cJoined := Del(c, cJoined),
pdu!channellds := Incl(c, Empty);
OUTPUT CLrq(pdu) TO domain;
JOIN 2b;

STATE ready;
INPUT MCS.Channel.Convene.request(mald);
TASK pdulinitiator := user;
OUTPUT CCrq(pdu) TO domain;
JOIN 2b;

STATE ready;

INPUT MCS.Channel.Disband.request(mald, c);
DECISION c in cConvened,;
(True): TASK cAdmitted := Del(c, cAdmitted),
cJoined := Del(c, cJoined);
ELSE:ENDDECISION;
TASK cConvened := Del(c, cConvened),
pdulinitiator := user,
pdu!channelld := c;
OUTPUT CDrq(pdu) TO domain;
JOIN 2b;

STATE ready;
INPUT MCS.Channel.Admit.request(mald, c, uSet);
TASK kind := CArq;
JOIN 3f;

STATE ready;

INPUT MCS.Channel.Expel.request(mald, c, uSet);
TASK kind := CErq;
3f:

TASK mcsreq(0)!kind := kind,
mcsreq(0)!channelld := c,
mcsreq(0)!userlds := uSet,
uPending := Incl(0, uPending);

CALL Segment_request(0);

DECISION 0 in dReady;

(False):NEXTSTATE busy;

(True): NEXTSTATE ready;

ENDDECISION;

STATE ready;
INPUT MCS.Send.Data.request(mald, c, dp, segmentation, userData);
TASK kind := SDrq;
JOIN 4f;

STATE ready;
INPUT MCS.Uniform.Send.Data.request(mald, ¢, dp, segmentation, userData);
TASK kind := USrq;
4f :
DECISION dp >= 4 or dp in uPending;
(True): OUTPUT MCS.Detach.User.indication(mald, user, RN_provider_initiated);
TASK pdulreason := RN_provider_initiated,

pduluserlds := Incl(user, Empty);
OUTPUT DUrq(pdu) TO domain;
NEXTSTATE detached;

(False): TASK mcsreq(dp)lkind := kind,
mcsreq(dp)!channelld := c,
mcsreq(dp)!segmentation := segmentation,
mcsreq(dp)!userData := userData,
mcsreq(dp)loffset := 0,
uPending := Incl(dp, uPending),
dp := IF dp < parameters!numPriorities THEN dp
ELSE parameters!numPriorities - 1 Fl;

CALL Segment_request(dp);

DECISION 0 in dReady;

(False): NEXTSTATE busy;

Recommendation T.125 (04/94) Superseded by a more recent version 151

Superseded by a more recent version

(True): NEXTSTATE ready;
ENDDECISION;

ENDDECISION;
STATE ready;

INPUT
TASK

OUTPUT
JOIN 2b;

STATE ready;

INPUT
TASK

OUTPUT
JOIN 2b;

STATE ready;

INPUT

MCS.Token.Grab.request(mald, t);
pdulinitiator := user,
pdu!tokenld := t;

TGrq(pdu) TO domain;

MCS.Token.Inhibit.request(mald, t);
pdulinitiator := user,

pdu!tokenld := t;

Tirg(pdu) TO domain;

MCS.Token.Give.request(mald, t, u);

DECISION u >=1001;

(False): OUTPUT MCS.Token.Give.confirm(mald, t, RT_no_such_user);
NEXTSTATE -;
(True): TASK pdulinitiator := user,
pdultokenld := t,
pdulrecipient := u;
OUTPUT TVrq(pdu) TO domain;
JOIN 2b;
ENDDECISION;

STATE ready;

INPUT

MCS.Token.Give.response(mald, t, result);

DECISION result = RT_successful;

(False):TASK

result := RT_user_rejected;

ELSE:ENDDECISION;
DECISION t in tRecipient and result = RT_successful;

(True):

TASK tPossessed := Incl(t, tPossessed);

ELSE:ENDDECISION;

TASK

OUTPUT
JOIN 2b;

STATE ready;

INPUT
TASK

OUTPUT
JOIN 2b;

STATE ready;

INPUT
TASK

OUTPUT
JOIN 2b;

STATE ready;

STATE busy, ready;

152

INPUT
TASK

OUTPUT
JOIN 2b;

INPUT
TASK
CALL

tRecipient :
pdulresult :
pdulrecipient := user,
pdu!tokenld := t;

TVrs(pdu) TO domain;

Del(t, tRecipient),
result,

MCS.Token.Please.request(mald, t);
pdulinitiator := user,

pdu!tokenld := t;

TPrq(pdu) TO domain;

MCS.Token.Release.request(mald, t);
tPossessed := Del(t, tPossessed),
pdulinitiator := user,

pdultokenid := t;

TRrq(pdu) TO domain;

MCS.Token.Test.request(mald, t);
pdulinitiator := user,
pdultokenid := t;

TTrq(pdu) TO domain;

PDU.ready(dp);
dReady := Incl(dp, dReady);
Segment_request(dp);

DECISION 0 in dReady;

(False):

NEXTSTATE busy;

Recommendation T.125 (04/94) Superseded by a more recent version

Superseded by a more recent version

(True): NEXTSTATE ready;
ENDDECISION;

STATE busy, ready;

INPUT PCin(pdu);
TASK reason := RN_channel_purged;
DECISION user in pdu!detachUserlds;
(True): OUTPUT MCS.Detach.User.indication(mald, user, reason);
OUTPUT Quit TO control;
NEXTSTATE detached,;
(False): TASK uSet := pdu!detachUserlds;
5b: [*foruinuSet?*/
DECISION uSet = Empty;
(False): TASK u := Pick(uSet),
uSet := Del(u, uSet);
OUTPUT MCS.Detach.User.indication(mald, u, reason);
JOIN 5b;
ELSE:ENDDECISION;
TASK cSet := pdu!purgeChannellds;
6b: [*forcincSet*/
DECISION cSet = Empty;
(False): TASK c := Pick(cSet),
cSet := Del(c, cSet);

DECISION c in cConvened;

(True): TASK cConvened := Del(c, cConvened),
cAdmitted := Del(c, cAdmitted),
cJoined := Del(c, cJoined);

OUTPUT MCS.Channel.Disband.indication(mald, c, reason);

ELSE:ENDDECISION;

DECISION c in cAdmitted;

(True): TASK cAdmitted := Del(c, cAdmitted),
cJoined := Del(c, cJoined);

OUTPUT MCS.Channel.Expel.indication(mald, c, reason);

ELSE:ENDDECISION;

DECISION c in cJoined,;

(True): TASK cJoined := Del(c, cJoined);

OUTPUT MCS.Channel.Leave.indication(mald, c, reason);

ELSE:ENDDECISION;

JOIN 6b;

ELSE:ENDDECISION;
OUTPUT PDU.ready(0) TO domain;
NEXTSTATE -;

ENDDECISION;

STATE busy;

INPUT PTin(pdu);
DECISION (pdulpurgeTokenlds and (tPossessed or tRecipient)) = Empty;
(False): OUTPUT MCS.Detach.User.indication(mald, user, RN_token_purged);
TASK reason := RN_token_purged;
NEXTSTATE detaching;
(True): OUTPUT PDU.ready(0) TO domain;
NEXTSTATE -;
ENDDECISION;

STATE ready;

INPUT PTin(pdu);
DECISION (pdulpurgeTokenlds and (tPossessed or tRecipient)) = Empty;
(False): OUTPUT MCS.Detach.User.indication(mald, user, RN_token_purged);
TASK pdulreason := RN_token_purged,
pduluserlds := Incl(user, Empty);
OUTPUT DUrq(pdu) TO domain;
NEXTSTATE detached,;
(True): OUTPUT PDU.ready(0) TO domain;
NEXTSTATE -;
ENDDECISION;

Recommendation T.125 (04/94) Superseded by a more recent version

153

Superseded by a more recent version
STATE busy, ready;

INPUT AUcf(pdu);

OUTPUT MCS.Detach.User.indication(mald, user, RN_unspecified);
OUTPUT Quit TO control;

NEXTSTATE detached,;

STATE busy, ready;

INPUT DUin(pdu);
DECISION user in pduluserlds;
(True): OUTPUT MCS.Detach.User.indication(mald, user, pdu!reason);
OUTPUT Quit TO control;
NEXTSTATE detached,;
(False): TASK uSet := pduluserlds;
7b: [*foruin uSet*/
DECISION uSet = Empty;
(False): TASK u := Pick(uSet),
uSet := Del(u, uSet);
OUTPUT MCS.Detach.User.indication(mald, u, pdu!reason);
JOIN 7b;
ELSE:ENDDECISION;
OUTPUT PDU.ready(0) TO domain;
NEXTSTATE -;
ENDDECISION;

STATE busy, ready;

INPUT CJcf(pdu);

TASK ¢ := pdulchannelld;

DECISION pdulresult = RT_successful;

(True): TASK cJoined := Incl(c, cJoined);

ELSE:ENDDECISION;

OUTPUT MCS.Channel.Join.confirm(mald, pdulrequested, pdu!resulit, c);
8b:

OUTPUT PDU.ready(0) TO domain;

NEXTSTATE -;

STATE busy, ready;

INPUT CCcf(pdu);

TASK ¢ := pdulchannelld;

DECISION pdulresult = RT_successful;

(True): TASK cConvened := Incl(c, cConvened),
cAdmitted := Incl(c, cAdmitted);

ELSE:ENDDECISION;

OUTPUT MCS.Channel.Convene.confirm(mald, pdulresult, c);

JOIN 8b;

STATE busy, ready;

INPUT CDin(pdu);
TASK ¢ := pdulchannelld,
reason := RN_channel_disbanded;
DECISION c in cConvened,;
(True): TASK cConvened := Del(c, cConvened),
cAdmitted := Del(c, cAdmitted),
cJoined := Del(c, cJoined);
OUTPUT MCS.Channel.Disband.indication(mald, c, reason);
ELSE:ENDDECISION;
DECISION c in cAdmitted;
(True): TASK cAdmitted := Del(c, cAdmitted),
cJoined := Del(c, cJoined);
OUTPUT MCS.Channel.Expel.indication(mald, c, reason);
ELSE:ENDDECISION;
JOIN 8b;

STATE busy, ready;
INPUT CAin(pdu);
TASK ¢ := pdulchannelld,
cAdmitted := Incl(c, cAdmitted);
OUTPUT MCS.Channel.Admit.indication(mald, c, pdulinitiator);
JOIN 8b;

154 Recommendation T.125 (04/94) Superseded by a more recent version

Superseded by a more recent version
STATE busy, ready;

INPUT CEin(pdu);
TASK ¢ := pdulchannelld,

reason := RN_user_requested;
DECISION c in cAdmitted;
(True): TASK cAdmitted := Del(c, cAdmitted),

cJoined := Del(c, cJoined);

OUTPUT MCS.Channel.Expel.indication(mald, c, reason);
ELSE:ENDDECISION;
JOIN 8b;

STATE busy, ready;
INPUT SDin(pdu);
TASK pdulkind := SDin;
JOIN 9f;

STATE busy, ready;
INPUT USin(pdu);
TASK pdulkind := USin;
of :
TASK ¢ := pdulchannelld,
dp := pduldataPriority;
DECISION c in cJoined;
(True): TASK mcspdu(dp) := pdu,
dPending := Incl(dp, dPending);
CALL Indicate_data;
(False): TASK dp := IF dp < parameters!numPriorities THEN dp
ELSE parameters!numPriorities - 1 Fl;
OUTPUT PDU.ready(dp) TO domain;
ENDDECISION;
NEXTSTATE -;

STATE busy, ready;
INPUT TGcf(pdu);
CALL Track_token(pdu!tokenld, pdultokenStatus);
OUTPUT MCS.Token.Grab.confirm(mald, pdu!tokenld, pdu!result);
JOIN 8b;

STATE busy, ready;
INPUT Ticf(pdu);
CALL Track_token(pdul!tokenld, pdu!tokenStatus);
OUTPUT MCS.Token.Inhibit.confirm(mald, pdu!tokenld, pdu!result);
JOIN 8b;

STATE busy, ready;
INPUT TVin(pdu);
TASK tRecipient := Incl(pdu!tokenld, tRecipient);
OUTPUT MCS.Token.Give.indication(mald, pdul!tokenid, pdulinitiator);
JOIN 8b;

STATE busy, ready;
INPUT TVcf(pdu);
CALL Track_token(pdu!tokenld, pdu!tokenStatus);
OUTPUT MCS.Token.Give.confirm(mald, pdu!tokenld, pdu!result);
JOIN 8b;

STATE busy, ready;
INPUT TPin(pdu);
TASK t := pdultokenid;
DECISION t in tPossessed or t in tRecipient;
(True): OUTPUT MCS.Token.Please.indication(mald, t, pdulinitiator);
ELSE:ENDDECISION;
JOIN 8b;

STATE busy, ready;
INPUT TRcf(pdu);
CALL Track_token(pdu!tokenld, pdul!tokenStatus);
OUTPUT MCS.Token.Release.confirm(mald, pdultokenld, pdu!result);
JOIN 8b;

Recommendation T.125 (04/94) Superseded by a more recent version

155

Superseded by a more recent version
STATE busy, ready;

INPUT TTcf(pdu);
OUTPUT MCS.Token.Test.confirm(mald, pdu!tokenld, pdu!tokenStatus);
JOIN 8b;

STATE detaching, detached;

INPUT %
NEXTSTATE -;

STATE detaching, detached;

INPUT Quit;
OUTPUT Quit TO control;
NEXTSTATE detached;

STATE detaching;

INPUT PDU.ready(dp);

DECISION dp = 0;

(False): NEXTSTATE -;

(True): TASK pdulreason := reason,

pduluserlds := Incl(user, Empty);
OUTPUT DUrq(pdu) TO domain;
NEXTSTATE detached,;

ENDDECISION;

STATE detaching, detached;

INPUT PCin(pdu);

DECISION user in pdu!detachUserlds;

(False): NEXTSTATE -;

(True): OUTPUT Quit TO control;
NEXTSTATE detached,;

ENDDECISION;

STATE detaching, detached;

INPUT DUin(pdu);

DECISION user in pduluserlds;

(False): NEXTSTATE -;

(True): OUTPUT Quit TO control;
NEXTSTATE detached;

ENDDECISION;

ENDPROCESS;

Appendix VII

Characteristics of the reference implementation
(This appendix does not form an integral part of this Recommendation)

VII.1 SDL decomposition

Figure 11.1 depicts an MCS provider in the context of a system, with three channels binding it to its environment:
Control. MCSAP to a single controller application, MCSAPs to zero or more attached users, and TSAPs to zero or more
transport service providers. In a decomposition of the provider, these externa channels connect with signal routes to and

from component processes.

Each octagonal element represents a process type and gives bounds (minimum, maximum) on its number of instances.
One Control process exists permanently. Dashed lines show that it creates instances of the remaining three processes.

Attachment, Domain, and Endpoint do not exist initially, but their potential number is unlimited.

Signal routes to and from component processes convey SDL signals. The set of signals transmitted in agiven directionis
shown near the corresponding arrow head. Identifiers in parentheses are lists of related signals. The expansion of these

listsisto long to include in the figure. Details appear in the text of Appendix I1.

156 Recommendation T.125 (04/94) Superseded by a more recent version

Superseded by a more recent version

VII.2 Service definitions

Signals over the external channels represent uses of MCS and the transport services defined abstractly in ITU-T
Recommendation T.122 and CCITT Recommendation X.214. Modeling thesein SDL requires further assumptions about
details of the interactions. Two aspects are worth special note: a use of endpoints identifiers to specify the context of a
service primitive and a use of flow control ready signals to invite data transfer.

The three identifiers involved are: MCSConnectionld, MCSAttachmentld, and TCEndpointld. These parameters are
implicit (not depicted) in the service definition documents. The model here assumes that they are assigned by the
responsible provider. For example, TCEndpointld appears in T.Connect.indication and T.Connect.confirm. To enable
the user of a serviceto relate a confirm to a preceding request, the user may specify an arbitrary label to be echoed back.

Flow control is modeled here by a window-of-one mechanism. A ready signal must be sent in one direction before a data
transfer signal may be sent in the opposite direction. Before the next transfer, another ready must be received. In a
practical implementation, ready might take the form of moving a pointer or incrementing a counter. Casting ready as a
signal does not imply it must be as ponderous as data transfer. There are three ready signals: T.ready, PDU.ready, and
MCS.ready. These alow the transfer of, respectively, one TSDU, one domain MCSPDU, and one MCS service data
unit. Flow control applies independently to the two directions of asignal route.

Transport quality of service on a TC is modeled here with parameters for throughput, transit delay, and data priority.
This is an amalgam of standards which are not consistent among themselves. In practice, the details will surely differ.
The specification of QOS is aburden that controller applications must bear.

VII.3 Portals onto a domain

The Domain process is central to this decomposition of an MCS provider. Different instances represent different
domains hosted by the same provider. A Domain process is created with a set of parameters that remain frozen for its
lifetime. These domain parameters are provided by the Control process. The Control process decides which domain
selectors are valid and how the corresponding Domain processes shall be configured. If there is room for parameter
negotiation during MCS.Connect.Provider, the Control process supervises the interaction.

To keep the Domain process as simple as possible, the MCS attachments and MCS connections it interfaces to are
abstracted to appear as portals with a number of common features. A portal is either a single Attachment process or a set
of Endpoint processes, one for each constituent TC of an MCS connection. The Control process assigns portal ids and
opens and shuts their associations to a Domain process. It hides details of building up and tearing down processes and
hides the exchange of connect MCSPDUSs.

To the Domain process, a portal looks like a set of signal routes, one for each data priority implemented. Each conveys
MCSPDUs subject to PDU.ready flow control. Where distinctions in processing cannot be avoided, they are invoked by
classifying a portal as one of three kinds: Attached, Uplink, or Downlink.

Figures V11.1 through V11.8 illustrate signal flows for typical operations. They assume a single user attached locally to a
domain with one MCS connection to another provider. Endpointl and Endpoint2 arise from an assumption that two data
priorities are implemented in the domain.

The signaling to shut a portal israther lengthy. It defends against the possibility that one of the processes involved might
send a signal to another that has already stopped, which would be a run-time error in SDL. Attachment and Endpoint
processes make Quit the last signal they send, and they stop on receipt of Exit. Domain sends no further signals to a
portal after replying Shut.portal to Control, and it stops after indicating thus that the last portal is shut.

Recommendation T.125 (04/94) Superseded by a more recent version 157

Superseded by a more recent version

Of remaining miscellaneous signals, Drop.portal is bidirectional and corresponds to DPum. Report.portal alerts Control
that a diagnostic was issued towards another MCS provider. An RJum that originates in Endpoint is sent through
Domain to get onto theinitial TC. An RJum received externally is dispatched directly from Endpoint to Control.

Note that MCS.Attach.User.request and T.Connect.indication are directed to Control, since they are stimuli to creste
corresponding portals. Control can decline with a negative MCS.Attach.User.confirm or T.Disconnect.request.

The present model does not limit the number of MCS attachments or MCS connections per domain, except through a
local limit (maxPortallds) on the number of portals across all domains hosted by the provider. Many aspects of domain
configuration must be managed locally until further standardization is undertaken.

VII.4 Alignment of MCSPDUs

Clarity requires that the MCSPDUSs defined in clause 7 be represented individually by SDL signals. But simplicity of the
Domain process depends on a more unified treatment. The resolution here is to define a PDUStruct data type, with
components that can be selected to match any one of the domain MCSPDUs. Connect MCSPDUSs, which are handled
outside the Domain process, continue each to have its own structure.

A key component of PDUStruct is kind, which identifies the intended domain MCSPDU. Based on kind, a subset of
other fields then become relevant: those listed in ASN.1 as components of the MCSPDU. The SDL-defined data types
match as closely as possible the ASN.1-defined data types of clause 7. The intention should be clear that a PDUStruct is
the internal, decoded representation of a domain MCSPDU.

Three MCSPDUs have optional components, AUcf, CJcf, and CCcf. In SDL their absence is indicated by coding zero
for the corresponding field. Thisisan illegal value for a static or dynamic channel id.

The signals sent between Attachment, Domain, and Endpoint processes, with the exception of PDU.ready, take a
PDUStruct as their single parameter. In a practical implementation, this kind of communication might be as simple as
moving a buffer pointer.

VILI.5 Method of using SDL

The reference implementation uses the textual representation of SDL as a programming language whose power is
enhanced by the ability to define abstract data types. In Control and Domain, the objects managed are too complex and
numerous to benefit from the kind of finite state machine that SDL supports. These processes remain in a single state
processing input signals. Attachment and Endpoint, with smaller scope, can use a handful of statesto better advantage.

Appendix |l contains a definition of the SetOf generator, whose scope is the entire provider. This takes any other defined
type, such as channel ids, and formalizes the concept of subsets of values of that type. SetOf extends the built-in
generator Powerset by adding a new operator that chooses an arbitrary element from a non-empty subset. The meaning
of this Pick operator is defined through simple axioms.

Sets are used heavily throughout the implementation. Part of the information base, for example, is to record which subset
of channel ids arein use and which subset of portal ids have joined a given channel.

In SDL, arrays are deployed over the full range of the indexing data type. Channel structures, for example, exist for each
channel id from O to 65535. A practical implementation must deal in much sparser arrays. To this end, separate id sets
are kept to record which channels and other resources are in use at a given time. A principle of the design is that array
values need not be stored in the information base for ids that are not explicitly marked asin use.

158 Recommendation T.125 (04/94) Superseded by a more recent version

Superseded by a more recent version

Many iterations follow a familiar pattern: create a candidate set of interest, then pick and delete one member of it at a
time, until no more remain. Such iterations are built out of decisions and joins. Comments show the higher-level control
structure intended. Labels are numbered sequentially within a procedure, with one letter appended to indicate whether
branches to the label are backward or forward.

A table of contents, which shows calling sequences, occurs before the first procedure definition in each process. SDL
procedures may return results through formal parameters that are declared to be in/out.

A few constants appear dispersed throughout the code, like the maximum number of data priorities (4) and the dividing
line between static and dynamic channel ids (1001). These are not parameters whose value can be redefined.

It isan important idea in MCS that user ids are a subset of channel ids. But the contexts in which each is used differ, so
two separate types are appropriate. Appendix |1 formalizes apair of operators for casting between them.

The processes of Appendices Il through VI cooperate in the framework specified by Appendix II. Signals are
constrained to the specified routes, and misbehavior across interna interfaces is not allowed. Defensive coding focuses
its attention on controller and user applications residing in the environment outside the provider and on MCSPDUSs
received externally from peer providers.

The reference implementation allows input signals to be scheduled in arbitrary sequence if more than one are pending. It
makes no assumption about the relative priority of processes. But it does rely on individual input transitions executing to
completion without preemption.

VIL.6 Remarks on the Domain process

Significant use is made of the Queue generator in addition to SetOf. Buffers are queued in user-transmitted sequence to
an output portal, and portal ids are queued in the order of unanswered MCrq, MTrq, and AUrq MCSPDUs.

To avoid copying user data, MCSPDUs are manipulated in buffers, which may be output to multiple ports. The number
of buffers available to a Domain process is modeled as a fixed external parameter. This could easily be changed to vary
by configuration from domain to domain. The implementation degrades gracefully, through global flow control, if the
number of buffers provided islow. It applies buffers, as they become free, to the highest priority data flow.

When an MCSPDU arrives as input, the Domain process needs to know the portal of origin and data priority. The
procedure Identify _sender does an exhaustive search of opened portals based on the process id reported by SDL. The
needed information could be defined to be part of the signal parameter set, except that the intuitive meaning of signals
would then be obscured. In a practical implementation this modeling is not a significant issue.

The heart of the Domain process is the procedure Process PDU, which calls in sequence Validate input, Top_provider,
and Apply_PDU. Each of these is a large case selection based on the kind of PDU at hand. The details for any given
kind are mostly straightforward. A good way to approach these procedures may be to cut across them horizontally,
following the course of especially important MCSPDUS, like SDrq, one by one.

The encoding of MCSPDUS, using either BER or PER depending on the protocol version, is a detail left mostly to the
Endpoint process. All Domain needs to know is how large it can make MCSPDUs with variable content, like DUrq with
its multiple user ids. Such considerations are expressed through decision statements with informal text, using worst-case
constants for the BER encoding. In practice, some limits on variable content may be precalculated in terms that Domain
understands, like maximum numbers of ids. Others may require more direct knowledge of the encoding.

Recommendation T.125 (04/94) Superseded by a more recent version 159

Superseded by a more recent version

Controller User Control Attachment Domain Endpoint 1 Endpoint 2 Transport

MCS.Connect.Provider.request

CREATE

T.Connect. request

i Connect.Initial :

T.Conneét.confirm

T. re:zady

T. réady

T. Data..req uest

T. réady

T.Data.ir}dication

Connect. Responsé

CREATE

START i
H T.Connect.request
. —_— =
Connect.Additional : H

T Connect.confirni
T.ready
T.ready

T.Data.request
T.ready

ET.DaIa.indicationi
=

Connect.Result

MCS.Connect.I%rovider. confirm

Open:portal

PDU.ready

PDU .:ready

PDU.ready

T. réady

PDU ready
: T.ready

T0812740-93/d11

FIGURE VII.1J/T.125
Calling MCS provider

160 Recommendation T.125 (04/94) Superseded by a more recent version

Superseded by a more recent version

Controller User Control Attachment Domain Endpoint 1 Endpoint 2 Transport

T.Connect.indication

CREATE
N ———————————————— i ——————— >_
START :
: T.Connect.response
T.ready
T.réady

T.Dataindication

Connect.Initial

MCS.Connect.P;ovider.indication

MCS.Connect.P.rovider.response

Connect.Response i

: : T.Data request

T.ready
T.Connectindication

i i CREATE : :
e ———————— Tm—————— =

H START

: T.Connect.response
H =
Tready i
Tready i
i iT Dataindication;
. H _
_/ Connect.Additional : :

Connec.t. Result

~=

: T.Data.request
Open.portal : =
: : : T.ready i
i PDU.ready : i
= :
PDU.ready
! PDU.ready i
T.ready
PDU :ready

T.ready

T0812750-93/d12

FIGURE VII1.2/T.125
Called MCS provider

Recommendation T.125 (04/94) Superseded by a more recent version 161

Superseded by a more recent version

Controller User Control Attachment Domain Endpoint 1 Endpoint 2 Transport

MCS.Attach.User. request

e
CREATE

Open-.portal
PDU.ready
PDU.ready
-

PDU.ready
.H

g

: AUrg - :
PDU.ready T.Data:request
T.réady
PDU.ready -/ :
T.Datair:1dication
AUCf :

i AUcf

MCS Attach. User.confirm ! PDU.ready i

MCS ready T.rta:ady
PDU.ready

MCS. ready :

PDU.ready

MCSzready T

MCSZ ready

T0812760-93/d13

FIGURE VII1.3/T.125
User attach

162 Recommendation T.125 (04/94) Superseded by a more recent version

Superseded by a more recent version

Controller User Control Attachment Domain Endpoint 1 Endpoint 2 Transport

MCS.Detach.-User.request

DUrq i
DUrq : :
PDU.ready T.Data.-request

T.réady

PDU.ready i
-

T.Data.indication

DUin
DUin :
Quit : : PDU.ready :
: —_— :
: : : T.read
Shut.portal & - y
Shut..portal :

Exit
STOP

T0812770-93/d14

FIGURE VII.4/T.125

User-requested detach

Recommendation T.125 (04/94) Superseded by a more recent version 163

Superseded by a more recent version

Controller User Control Attachment Domain Endpoint 1 Endpoint 2 Transport
T Data.indication
PCin :
H PCin
MCS.Detach.User.indication PDU.ready :
i . T.ready
Quit .
Shut:portal
Shut.portal
i Exit :
=
: STOP
T0812780-93/d15
FIGURE VII.5/T.125
Provider-initiated detach
164 Recommendation T.125 (04/94) Superseded by a more recent version

Superseded by a more recent version

Controller User Control Attachment Domain Endpoint 1 Endpoint 2 Transport

MCS.Disconnect..Provider.request

/' Drop?portal
i DPum i
T.Data.request
T.ready :
PDU.ready :

T .Disconnect.indication
Quit :
Quit
T .Disconnect.request
: Quit : :
i Shut.portal
Shut.portal
Exit :
H ST.OP
Exit :

STOP
T0812790-93/d16

FIGURE VII.6/T.125

Local controller-requested disconnect

Recommendation T.125 (04/94) Superseded by a more recent version 165

Superseded by a more recent version

Controller User Control Attachment Domain Endpoint 1 Endpoint 2 Transport

T.Data.indication

: DPum
Drop..portal
H . R .;\ i PDU read
MCS.Disconnect.Provider.indication y :
P : : T.ready
Quit
: T.Disconn'ect.request
Quit i
Quit
: : T.Disconnect.request
: s =
: let H :
i Shut.portal
Shut.portal
Exit :
: STOP
Exit :

STOP
T0812800-93/d17

FIGURE VII.7/T.125

Remote controller-requested disconnect

166 Recommendation T.125 (04/94) Superseded by a more recent version

Superseded by a more recent version

Controller User Control Attachment Domain Endpoint 1 Endpoint 2 Transport

: T.I.Disconnect.indication
: =
Quit
]VICS.Disconnect.EDrovider.indication} :
i : Quit i
T.Disconnect.request
Quit :
: Shut.portal
Shut.portal
Exit
: STOP
Exit :

STOP

T0812810-93/d18

FIGURE VII.8/T.125

Provider-initiated disconnect

Recommendation T.125 (04/94) Superseded by a more recent version 167

