International Telecommunication Union

ITU-T T.124

TELECOMMUNICATION (01/2007)
STANDARDIZATION SECTOR
OF ITU

SERIES T: TERMINALS FOR TELEMATIC SERVICES

Generic Conference Control

ITU-T Recommendation T.124

Intarnatiorsl
Talacommunicatine

I TU-T Recommendation T.124

Generic Conference Control

Summary

ITU-T Recommendation T.124 provides a high-level framework for conference management and
control of multimedia terminals and Multipoint Control Units (MCUs). It encompasses Generic
Conference Control (GCC) functions such as conference establishment and termination, managing
the roster of terminals participating in a conference, managing the roster of applications and
application capabilities within a conference, registry services for use by applications, coordination of
conference conductorship, as well as other miscellaneous functions. It depends on companion
Recommendations T.122 and T.125 (MCS) and T.123 as part of the T.120 infrastructure.

Thisrevised version of T.124 introduces a number of clarifications to the previous version.

Source

ITU-T Recommendation T.124 was approved on 13 January 2007 by ITU-T Study Group 16
(2005-2008) under the ITU-T Recommendation A.8 procedure.

ITU-T Rec. T.124 (01/2007) [

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of
telecommunications. The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of
ITU. ITU-T isresponsible for studying technical, operating and tariff questions and issuing Recommendations
on them with a view to standardizing telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years,
establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on these
topics.

The approval of ITU-T Recommendationsis covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are
prepared on a collaborative basis with 1SO and |EC.

NOTE

In this Recommendation, the expression "Administration” is used for conciseness to indicate both a
telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain
mandatory provisions (to ensure e.g. interoperability or applicability) and compliance with the
Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some
other obligatory language such as "must" and the negative equivaents are used to express requirements. The
use of such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may
involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence,
validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others
outside of the Recommendation devel opment process.

As of the date of approval of this Recommendation, ITU had not received notice of intellectual property,
protected by patents, which may be required to implement this Recommendation. However, implementers are
cautioned that this may not represent the latest information and are therefore strongly urged to consult the
TSB patent database at http://www.itu.int/ITU-T/ipr/.

© ITU 2007

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the
prior written permission of 1TU.

i ITU-T Rec. T.124 (01/2007)

http://www.itu.int/ITU-T/ipr/

D 01~ W DN PP

CONTENTS

Page
o0 o< PR 1
S = (= 107 O 2
DEfINITIONS.... .ot et e s te e te s e e s aeeteereesreenrennnens 3
JN ol o (=Y (0] PSP 7
(©0 10177 110 =SS 7
(@Y= AV = S 8
6.1 System model for aconference NOAEccevveveeceseere e 9
6.2 Conference establishment and terminationcccceeveeieieesecce e, 10
6.3 The CONFErENCE TOSLENcoieeieeeee e e 11
6.4 The appliCatioN FOSLENcoieiice e e 11
6.5 The ApPliCatioN REJISIIYcceiiiiiieieeese e 11
6.6 Conference condUCLOrSNIP........oiveiieiecie e 11
6.7 MisCellanEoUS FUNCLIONS.........coiieieceecie e 12
6.8 Scalable CONfEIENCES........cciece e e 12
6.9 Summary of GCC aDSIraCt SEIVICEScoveeieieerieeie e 13
1O O = VLo L= 1T oL Lo o S 17
7.1 Conference establishment and terminationccccceeveeeescene e, 17
7.2 The CONfErENCE TOSLEYeeeececeecte et 54
7.3 The appliCation FOSLENccceie et 60
74 The Application REQISIIYooouiieeieeie et 74
7.5 Conference CONAUCIOrSNIP......coouervirrerieniiriieie et 84
7.6 MiSCellanEOUS FUNCLIONS.........coiieieiiesieee e 93
GCC Protocol SPeCifiCatioNcccuvieeiiciie ettt es 98
8.1 (€1 01C = W0 0 < = 1o o IR 98
8.2 Conference establishment and terminationcccooceeveeeeieeneece e 99
8.3 The conference and appliCation FOSLErS.........cccovirirerereeee e 127
8.4 The Application REJISITY ...cc.eccveeeeiece et 150
8.5 Conference condUCLOrShiP........coveiiiieieecece e 159
8.6 Miscellaneous fFUNCLIONS..........coviiiiieece e 165
8.7 GCCPDU defiNIIONS........coiiieeiieeiesiesiee et sse e e s 167
Use of the Multipoint CoOmmUNICatioN SEIVICE........c.cccuereerierieeseesiesree e e e seeseesseeees 189
9.1 IMICS SEIVICES....ccutiiuee et ete sttt sttt et e st e e e b e et e eaeeereenteeseesreeneeneesneennas 189
9.2 Channel allOCaLION...........ceiieieieeceee e 190
9.3 TOKEN @IOCALION.......ceeiiieiiiecie e snaeeree 191
94 Use of MCS data transmiSSION SENVICES.......coouereerieerieeieseesiesee e seeeseesaee e 191
9.5 Encoding of PDUSIN MCS PIHMITIVES........cccerieiieseseseseeee e 193
9.6 Format of User Data parameter of MCS-Connect-Providerccccceeveeee. 194
9.7 Interpretation of the MCS Domain SElECLOrcccevveeeereerieeie e 194

ITU-T Rec. T.124 (01/2007) i

Page

Annex A — Static channel and token 1D assignMmEeNtS.........ccooererineneneneeeeee e 196
A.l Static channel 1D aSSIgNMENLS.........ceivieeiierereese e sae e 196
A.2 Static token ID aSSIgNMENES........cccvieeiicie e 196
Annex B — Object Identifier 8SSIgNMENES........cccooiririreeeerie e 197
Annex C — Network Address Parameter — Description and USE..........ccceevvveceeieesiecieeseeseenns 198
Appendix | —Relationship of T.120 to H.243 in H.320 cONferences..........cc.ooerevnenecenernennns 199
1.1 INEFOTUCTION ...t bbb 199
1.2 Conference selection and Password protection............ccceeeeveereseeseeseesenenn 199
1.3 ARErNAIVE NOUE D ... 200

\Y% ITU-T Rec. T.124 (01/2007)

I TU-T Recommendation T.124

Generic Conference Control

1 Scope

This Recommendation provides a high-level framework for conference management and control of
audiographic and audiovisual terminals and Multipoint Control Units (MCUSs). It encompasses
Generic Conference Control (GCC) functions such as conference establishment and termination,
managing the roster of nodes participating in a conference, managing the roster of Application
Protocol Entities and Application Capabilities within a conference, registry services for use by
Application Protocol Entities, coordination of conference conductorship, as well as other
miscellaneous functions.

This Recommendation is defined within the framework of [ITU-T T.120]. Included within this
framework are companion [ITU-T T.122] and [ITU-T T.125], which define the multipoint delivery
mechanism used in this Recommendation, and [ITU-T T.123], which specifies the Audiovisual
Protocol Stacks for each of the communication networks supported.

Figure 1-1 presents an overview of the scope of this Recommendation and its relationship to the
other elements of the T.120 framework within a single node.

ITU-T Rec. T.124 (01/2007) 1

User application(s)
(using both standard and non-standard Application Protocols)
A A
User Application(s) Node User Application(s)
(using std Appl. Protocols) controller (using non-std Protocols)
(v
(T.127 (MBFT)
T.126 (SI) |
Application Protocol Entity |
T.120 Non-standard Application
Application Protocol Protocol Entity
Recommendations
Generic Conference Control (GCC)
T.124
Multipoint Communication Service (MCS)
T.122/T.125
Network-Specific Transport Protocols
T.123
T.120 infrastructure Recommendations
T.124(01-07)_F1-01
Figure 1-1 — Scope of T.124
2 References

The following ITU-T Recommendations and other references contain provisions which, through
reference in this text, constitute provisions of this Recommendation. At the time of publication, the
editions indicated were valid. All Recommendations and other references are subject to revision,
users of this Recommendation are therefore encouraged to investigate the possibility of applying the
most recent edition of the Recommendations and other references listed below. A list of the currently
valid ITU-T Recommendations is regularly published. The reference to a document within this
Recommendation does not give it, as a stand-alone document, the status of a Recommendation.

[ITU-T F.702] ITU-T Recommendation F.702 (1996), Multimedia conference services.

[ITU-T H.221] ITU-T Recommendation H.221 (2004), Frame structure for a 64 to 1920
kbit/s channel in audiovisual teleservices.

[ITU-T T.39] ITU-T Recommendation T.35 (2000), Procedure for the allocation of ITU-T
defined codes for non-standard facilities.

[ITU-T T.120] ITU-T Recommendation T.120 (2007), Data protocols for multimedia
conferencing.

2 ITU-T Rec. T.124 (01/2007)

[ITU-T T.122] ITU-T Recommendation T.122 (1998), Multipoint communication service —
Service definition.

[ITU-T T.123] ITU-T Recommendation T.123 (2007), Network-specific data protocol stacks
for multimedia conferencing.

[ITU-T T.125] ITU-T Recommendation T.125 (1998), Multipoint communication service
protocol specification.

[ITU-T T.126] ITU-T Recommendation T.126 (1997), Multipoint still image and annotation
protocol.

[ITU-T T.127] ITU-T Recommendation T.127 (1995), Multipoint binary file transfer
protocol.

[ITU-T X.680] ITU-T Recommendation X.680 (2002) | ISO/IEC 8824-1:2002, Information
technology — Abstract Syntax Notation One (ASN.1): Specification of basic
notation.

[ITU-T X.691] ITU-T Recommendation X.691 (2002) | ISO/IEC 8825-2:2002, Information
technology — ASN.1 encoding rules. Specification of Packed Encoding
Rules (PER).

[ISO/EC 10646] | SO/IEC 10646:2003, Information technology — Universal Multiple-Octet
Coded Character Set (UCS).

3 Definitions
This Recommendation defines the following terms:

31 anonymous node: This node category describes a T.120 node that can participate in a
conference while not being visible to any other nodes in the conference. The presence of
Anonymous nodes is needed to facilitate large-scale T.120 conferences.

32 application protocol: Any standard or non-standard protocol specification which is
designed to make use of T.120 services.

33 application protocol entity: The instantiation of an Application Protocol in a terminal or
MCU. Application Protocol Entities are employed by User Applications, but are not themselves User
Applications. An Application Protocol Entity communicates with GCC through the GCC Provider
present at its local terminal or MCU via a GCCSAP. Only Application Protocol Entities
communicate with GCC Providers; User Applications do not. Multiple Application Protocol Entities
based on the same Application Protocol may enroll at a single node. These may be either in the same
or separate Application Protocol Sessions. A single Application Protocol Entity is assumed to
communicate with the loca GCC Provider via a single GCCSAP, and is also assumed to have a
single MCS User ID if it has enrolled in the active state. An Application Protocol Entity which has
enrolled in the active state is part of a single Application Protocol Session as indicated by its Session
ID (or lack of a Session ID which indicates that it is part of the Default Session). An Application
Protocol Entity which has enrolled in the inactive state is not considered part of any Application
Protocol Session; however, an inactive Application Protocol Entity may make use of GCC services
and information associated with such an Application Protocol Entity isincluded in the Application
Roster.

34 application protocol key: The Application Protocol Key identifies the type of Application
Protocol for an Application Protocol Session. Multiple Application Protocol Sessions of the same
type would be identified using the same Application Protocol Key (but different Session IDs). An
Application Protocol Key is either an ASN.1 OBJECT IDENTIFIER belonging to a
Recommendation, Standard, or non-standard protocol, or, alternatively, it is a non-standard identifier
using the encoding conventions of [ITU-T H.221].

ITU-T Rec. T.124 (01/2007) 3

35 application protocol session: A set of Peer Application Protocol Entities.

3.6 application record: A set of information for a specific Application Protocol Entity at a
specific node. This set includes the Application User 1D, the Active/lnactive flag, as well as other
parameters.

3.7 application registry: A central repository located at the Top GCC Provider where an
Application Protocol Entity can register its use of tokens, channels, and other parameters. Peer
Application Protocol Entities can then access the registry to discover this registered information.

3.8 application roster: The set of all Application Records from all enrolled Application
Protocol Entities at all nodes in a conference, including the Application Capabilities List for each
Application Protocol Session.

39 application user I1D: MCS User ID assigned by MCS to an Application Protocol Entity.

310 conducted mode: Conducted Mode alows a Conductor node the ability to control
Application Protocol Entities at all nodes in a conference, and to restrict operation of Application
Protocol Entities by other nodes. Conducted mode is established when a Conductor has been
assigned to a conference. This is achieved when a node has successfully grabbed the conference
Conductor Token.

3.11 conductor: The Conductor, if present, is a node in a conference which controls certain
aspects of the conference (e.g., control of communication between Application Protocol Entities,
control over conference participants, and conference termination). There shall be either zero or one
Conductors in a conference. A node becomes conductor by grabbing the conductor token, or by
requesting or accepting conductorship from the current conductor.

3.12 conference: A number of nodes that are joined together and that are capable of exchanging
audiographic and audiovisual information across various communication networks.

3.13 conference application roster: A database maintained by each GCC Provider consisting of
a set of Application Records, one for every Application Protocol Entity at every node in the
conference, as well as other information such as the Application Capabilities List for each
Application Protocol Session.

3.14 conference mode: When a conference is created, a Conference Mode is specified, by the
Convener, that defines which Categories of nodes will be allowed to participate in the conference.
These Conference Modes include the following: conventional-only, which alows only Conventional
nodes to join the conference; counted-controlled, which allows only Counted and Conventional
nodes to join the conference; anonymous-controlled, which alows only Anonymous and
Conventional nodes to join the conference; and unrestricted-mode, which allows all three node
categories to participate in the conference. The Node Controller must use the T.124 password to
determine which nodes may join as Conventiona when the Conference Mode is either
counted-controlled or anonymous-controlled.

3.15 conference profile: A database maintained by each GCC Provider consisting of information
pertinent to a conference as a whole such as Conference Name, Password (if any), etc.

3.16 conference roster: A database maintained by each GCC Provider consisting of a list of
nodes in a conference. For each node, thislist includes the Node ID of the node, type of the node, the
name of the node, and may include a list of participants at the node, as well as other optional
information.

3.17 control GCC service access point: The communication interface between a GCC Provider
and the Node Controller within asingle node.

3.18 convener: Node that created a conference by issuing the GCC-Conference-Create request
primitive.

4 ITU-T Rec. T.124 (01/2007)

3.19 convener password: An identifying numeric string, as well as optional text string, which
may be used when a conference is created to allow the convener of the conference to leave the
conference and re-enter at a later time using the password to regain convener privileges. A Convener
Password must be included during conference creation (in one of its two possible forms) for this to
be possible. Use of the correct Convener Password allows joining of a locked conference, but it does
not avoid the need to specify the correct Password when joining a Password protected conference.

3.20 conventional node: Thisisthe most basic category of a T.120 node. The Conventional node
category defines afully capable node that isincluded in all roster exchanges.

3.21 counted node: This node category describes a node with the following properties: the node
appears in rosters of conventional nodes, the node does not affect conference capabilities, and the
node can participate in acknowledge-mode APE sessions. A counted node provides away for (which
provide the content) and a large number of counted nodes (which can acknowledge the reception of
the content being sourced).

3.22 default session: Active Application Protocol Entities with no Session ID included in their
Session Key are considered part of a separate unique session referred to as the Default Session.

3.23 entity ID: A 16-bit numeric identifier used to identify each Application Protocol Entity
enrolled at a node. The value of the Entity ID is unique among all Application Protocol Entities of
any type within a single node. It need not be unique between nodes. A particular Application
Protocol Entity in a conference may be uniquely identified by the combination of the Entity ID and
the Node ID corresponding to the node at which the Application Protocol Entity is enrolled.

3.24 GCC provider: Agent providing GCC services to local Node Controller and Application
Protocol Entities at atermina or MCU.

3.25 GCC service access point: The communication interface between a GCC Provider and an
Application Protocol Entity within asingle node.

326 handle. A 32-bit integer number allocated by the Top GCC Provider using the
GCC-Registry-Allocate-Handle request primitive. This number is guaranteed to be unique within a
conference.

3.27 local application roster: A database maintained by each GCC Provider consisting of one
Application Record as well as other information, such as the Application Capabilities List, for each
Application Protocol Entity which has locally enrolled with the GCC Provider. Thisis used to form
the information exchanged with other nodes to determine the Conference Application Roster.

328 MCS domain: A hierarchy of MCS connections between nodes. Nodes may use
MCS services to communicate within a single domain, but not between separate domains.
A GCC Conference corresponds one-to-one with a single MCS Domain.

3.29 MCSdomain selector: A locally unique identifier of an MCS Domain.

330 MCS user ID: Unique identification number assigned by MCS to an MCS User.
GCC Providers as well as Application Protocol Entities are MCS Users. An MCS User ID assigned
to a GCC Provider isreferred to asaNode ID. An MCS User ID assigned to an Application Protocol
Entity is referred to as an Application User ID. An MCS User ID is valid only within asingle MCS
Domain.

3.31 multipoint: The ability to exchange data among multiple nodes simultaneously as compared
with point-to-point, where data are exchanged between two directly connected nodes.

3.32 multipoint control unit: Commonly referred to as an MCU or bridge, a multiport device
that serves to connect terminals and other MCUs in a multipoint fashion. A GCC-capable MCU runs
GCC and MCS. An MCU is not primarily intended as an end-point for user communication.

3.33 multiport terminal: End-point audiographic or audiovisual equipment that also includes the
ability to bridge T.120 information. Like aterminal, the behaviour of a multiport terminal is typified

ITU-T Rec. T.124 (01/2007) 5

by automatic establishment of a single conference. But, like an MCU, for a given conference in a
multiport terminal, there may be more than one MCS connection.

3.34 node: A terminal, multiport terminal, or MCU. A single node comprises a single GCC
provider. A single node may consist of one or more physical devices. Similarly, one physical device
may host several logical nodes.

3.35 node category: Every T.120 node falls into one of three categories. Conventional, Counted,
or Anonymous. These node categories allow for different degrees of scalability within a T.120
conference.

3.36 nodecontroller: A functional entity for which there is one for each terminal or MCU, which
serves as the controller of that node.

3.37 nodelD: MCSUser ID assigned by MCS to the GCC Provider at anode.
3.38 non-conducted mode: The mode in which a conference has no Conductor.
3.39 participant: A person participating in aconference at a node.

340 password: A numeric string, as well as an optional text string, which may be specified when
a conference is created. If so, when attempting to join a conference, a hode must include this
Password (in one of the two possible forms) in the GCC-Conference-Join primitive in order for that
node to be accepted into the conference.

341 peer application protocol entity: Application Protocol Entities which have enrolled in the
active state using identical Session Keys, including the Session ID portion of the Session Key. Peer
Application Protocols are those which may communicate with each other during a conference.

342 resource: Something that can be used and shared by nodes in a conference. A resource
comprises both channels and tokens.

343 session ID: An optional parameter included in a Session Key used to distinguish between
multiple sets of Peer Application Protocol Entities which are based on the same base Application
Protocol. Each set of Peer Application Protocol Entities, defined by the use of a common
Application Protocol and identical Session IDs, separately communicate among themselves. Active
Application Protocol Entities with no Session ID included in their Session Key are considered part of
a separate unique session referred to as the Default Session. A set of Peer Application Protocol
Entities is referred to as an Application Protocol Session. Session IDs are in the form of MCS
Channel IDs.

344 session key: Anidentifier which is common to Peer Application Protocol Entities. A Session
Key consists of two components. One component, the Application Protocol Key identifies the type
of Application Protocol. The second component, which is an optional part of a Session Key, is the
Session ID which identifies the specific session for this Application Protocol (the lack of a Session
ID indicates the Default Session). Application Protocol Entities whose entire Session Keys are in
common, including the Application Protocol Key as well as the Session ID, if any, are considered
Peer Application Protocol Entities.

345 terminal: End-point audiographic or audiovisual equipment. A GCC-capable termina runs
GCC and MCS. A terminal islimited, within a conference, to a single MCS connection.

346 top GCC provider: The GCC Provider which is co-resident with the Top MCS Provider in
a conference. The Top GCC Provider has responsibilities not required of other GCC Providersin a
conference. The location of the Top GCC Provider remains unchanged for the duration of a
conference.

3.47 Unicode: Multilingual text string format as defined by the Basic Multilingua Plane of
[1SO/IEC 10646].

6 ITU-T Rec. T.124 (01/2007)

3.48 Unicode row 00: A subset of Unicode consisting of 256 code positions containing the Basic
Latin and Latin-1 Supplement character sets plus control characters and reserved codes.

349 user application: An entity which makes use of one or more Application Protocol Entities.
A User Application is limited in its scope to those tasks which have no effect on the interpretation of
information between Peer Application Protocol Entities such as presentation to the end-user. User
Applications therefore do not require specification, either by standard Recommendation or
otherwise, to alow interoperability between the Application Protocol Entities which they make use
of and their Peer Application Protocol Entities.

4 Abbreviations
This Recommendation uses the following abbreviations:

CSDN Circuit Switched Data Network

GCC Generic Conference Control

GCCSAP Generic Conference Control Service Access Point
ISDN Integrated Services Digital Network

MCS Multipoint Communication Service

MCU Multipoint Control Unit

PDU Protocol Data Unit

PSDN Packet Switched Data Network

PSTN Public Switched Telephone Network

The following abbreviations are used in this Recommendation and defined in [ITU-T T.122]:
MCS Multipoint Communication Service

MCSAP Multipoint Communication Service Access Point

5 Conventions

The primitive parameters of the abstract services defined in this Recommendation use the following
key:

M Parameter is mandatory
C Parameter is conditional
O Parameter is optional

Blank Parameter is absent

(=) Vaue of the parameter is identical to the value of the corresponding parameter of the
preceding primitive, where preceding is defined relative to the order: request, indication,
response, confirm.

(=RQ) Value of the parameter is identical to the value of the corresponding parameter in a
preceding primitive, where RQ = request, IN = indication, RS = response, and CF = confirm.

Primitives are categorized in up to four types: Request, Indication, Response, and Confirm. Some

primitives support all of these types, while others do not. These four types are defined as follows:

- Request primitive: Those that are sourced from a Node Controller or Application Protocol
Entity to initiate a certain action.

— Indication primitive: Those that are sourced from a GCC Provider either as a result of a
Request primitive, or as aresult of a GCC initiated action.

ITU-T Rec. T.124 (01/2007) 7

- Response primitive: Those that are sourced from a Node Controller or Application Protocol
Entity in response to an Indication primitive which is defined to require a response.

- Confirm primitive: Those that are sourced from a GCC Provider as a result of a Response
primitive.

PDUs are categorized into three types. PDU names al include the words Request, Indication, or

Response to indicate the intended use of the PDU. These are defined as follows:

- Request PDUs: Those that require a Response PDU in return. If the request is for a function
which is not supported by the receiving node (e.g., an optional or non-standard PDU), a
generic response PDU, FunctionNotSupportedResponse, shall be used to provide a response
to the requesting node (sent to the Node ID Channel of the requesting node).

- Indication PDUs: Those that do not require a response (e.g., those that are for informational
purposes).

- Response PDUs: Those which are in response to a particular Request PDU to be sent on the
Node ID Channel of the requesting node.

6 Overview

Within the context of the ITU-T Audiovisual Conferencing Service, a conference refers to a group of
geographically dispersed nodes that are joined together and that are capable of exchanging
audiographic and audiovisual information across various communication networks. Participants
taking part in a conference may have access to various types of media handling capabilities such as
audio only (telephony), audio and data (audiographics), audio and video (audiovisual), and audio,
video, and data (multimedia).

The F-, G-, H-, and T-series Recommendations provide a framework for the interworking of audio,
video, and graphics terminals on a point-to-point basis through existing telecommunication
networks. They also provide the capability for three or more terminals in the same conference to be
interconnected by means of an MCU.

This Recommendation provides a high-level framework for conference management and control of
audiographics and audiovisua terminals, and MCUs. It coexists with companion [ITU-T T.122] and
[ITU-T T.125] (MCS) and [ITU-T T.123] (AVPS) to provide a mechanism for conference
establishment and control. [ITU-T T.122], [ITU-T T.123], [ITU-T T.124], and [ITU-T T.125] form
the minimum set of Recommendations to develop afully functional terminal or MCU.

This Recommendation includes the following Generic Conference Control (GCC) functiona
components. conference establishment and termination, managing the Conference Roster, managing
the Application Roster, Application Registry services, and conference conductorship. The service
definitions for the primitives associated with these functional components are contained in clause 7.
The corresponding protocol definitions are contained in clause 8.

Figure 6-1 shows an example of how GCC components are distributed throughout an MCS domain.
The GCC components are shown in white. Each terminal or MCU contains a GCC Provider that
provides GCC services to the local Node Controller and Application Protocol Entities.

8 ITU-T Rec. T.124 (01/2007)

p
Node 1

Node
Controller

Top GCC
Provider

MCS connections

p
Node 2 Node 3 Node 4

GCC GCC GCC
Provider Provider Provider

Node
Controller

Node
Controller

Node
Controller

J
T.124(01-07)_F6-01

Figure 6-1 — Example of GCC componentsdistributed throughout an MCS domain

6.1 System model for a conference node

Each Node participating in a GCC conference consists of an MCS layer, a GCC layer, a Node
Controller and may also include one or more Application Protocol Entities. The relationship between
these components within a single node is illustrated in Figure 6-2. The Node Controller is the
controlling entity at a node, dealing with the aspects of a conference that apply to the entire node.
The Node Controller interacts with GCC, but does not interact directly with MCS. Application
Protocol Entities also interact with GCC, as well as directly with MCS. The services provided by
GCC to Application Protocol Entities are primarily to enable Peer Application Protocol Entities to
communicate directly, via MCS. Loca communication between individual Application Protocol
Entities or between Application Protocol Entities and the Node Controller may take place, but is a
local implementation matter not covered by this Recommendation. Within a node, more than one
Application Protocol Entity may be based on the same Application Protocol. In this case, they may
either be part of the same Application Protocol Session, allowing them to communicate within the
node as well as to other Peer Application Protocol Entities at other nodes, or they may be part of
separate Application Protocol Sessions, allowing them to communicate separately among their peers,
but using the same protocol.

The service primitives, as described in clause 7, apply to the GCC Service Access Point and the
Control GCC Service Access Point as indicated in Figure 6-2. The PDUs described in clause 8 are
communicated using MCS service primitives available at the Control MCS Access Point (MCSAP).

NOTE 1 — The normative intent of this Recommendation is to specify the procedures and contents of external
communication — sequences of primitive operations and data exchanges acting through the Control MCSAP
for purposes of conference control. The internal decomposition of a node suggested in Figure 6-2 serves to
motivate features of the GCC protocol but is not normative. GCC service primitives whose effect is purely
local need not exist at all nodes in the form that they are described here. Statements about what a node
controller or an application protocol entity shall do in certain circumstances should be interpreted loosely if
the same results in external communication can be achieved through different internal mechanisms.

ITU-T Rec. T.124 (01/2007) 9

NOTE 2 — The system model assumes that service requests may be issued at any time. A Node Controller or
Application Protocol Entity need not wait until it has received a confirm from the GCC Provider
corresponding to a previous request before issuing another request. A specific implementation may, however,
impose stricter requirements.

Node Controller |

K
Application
Protocol
Entities
Control 4
. GCC Service
GCC Service .
Access Point Access Points
GCC Provider
Control MCS .
Access Point MCS Access Points
A A
MCS Provider

T.124(01-07)_F6-02

Figure 6-2 — System model showing GCC Service Access Point
and relationship with MCS

6.2 Conference establishment and ter mination

GCC provides a set of services for establishment and termination of conferences. A conference can
be viewed as a meeting room in which any number of participants may meet in order to exchange
audiographic or audiovisua information. As with physical meeting rooms, services such as finding
out what conferences are in progress, joining a conference, leaving a conference, restricting access to
aconference, etc., are meaningful in audiographic and audiovisual conferences as well.

Prior to joining a conference, participants at a node may not know all of the information needed to
join. GCC provides a means for participants to view a list of Conference Names and select the one
they wish to join. This service is analogous to the conference schedule typically posted in a lobby,
allowing someone to find the meeting room in which a particular meeting is taking place.

GCC provides a means to create new conferences. This may be done either by a conference
participant, or by a conference administrator. When a new conference is created, its characteristics,
referred to as its Conference Profile, are specified by its creator. The Conference Profile includes
such things as the Conference Name, whether it has restricted access by means of a Password,
whether it is open to be freely joined (unlocked) or restricted to be joined by invitation only (locked).

Expanding an existing conference may be initiated by the joining node, or by a conference Convener
(or convener designated node). If a conference is Password protected, a joining node is required to
supply the correct Password to be alowed into the conference. If a conference is locked, joining is
only allowed at the request of the Convener, or convener-designated node. Nodes may join or be
added at any time during a conference. It is possible to be joined with more than one conference
simultaneously. GCC also provides a means of transferring participants from one conference to

10 ITU-T Rec. T.124 (01/2007)

another. This function may be used to achieve the effect of merging two conferences, or splitting a
conference into more than one conference.

At any time a node may wish to disconnect from the conference, leaving the other nodes to continue
the conference. Depending on the choice of termination method, a conference is either automatically
terminated if al nodes disconnect from it, or manually terminated by an explicit termination request.
The convener, or a convener-designated node may also forcibly terminate the entire conference at
any time, or gject a particular node fromit.

6.3 The conference roster

Once a node has joined a conference, it announces its presence to all other nodes in the conference.
A GCC primitive is provided to allow each node in a conference to announce its presence in a
conference, and another to provide each node with either updates to the conference roster or a full
conference roster. The conference roster is alist of Conventional and possible Counted nodes in the
conference. For each node the conference roster includes information such as the name of the node, a
list of participants at that node, as well as other information needed for proper communication
between nodes. A Conventional or Counted node is not considered part of a conference until it has
been included in the conference roster.

6.4 Theapplication roster

GCC provides a means of identifying which Application Protocol Entities are available at each node
and also provides necessary information for Peer Application Protocol Entities to communicate with
each other. Upon joining a conference, each Conventional or Counted node sends to all other nodes
itslocal list of Application Protocol Entities —its Local Application Roster —which it may update at
any time thereafter. From this information, the Conference Application Roster is formed and
broadcast to all interested nodes. Relevant portions of this roster are then communicated locally to
each Application Protocol Entity as well as to the Node Controller. In addition to a smple roster,
GCC aso provides a service for Application Protocol Entities at Conventional Nodes to include alist
of Application Protocol-specific capabilities in the information exchanged. GCC applies a fixed set
of rules to this information from all nodes in the conference to determine a common set of
Application Capabilities. This information is also communicated localy to each Application
Protocol Entity.

6.5 The Application Registry

The Application Registry is an active database residing at the Top GCC Provider that may be used to
manage channels, tokens, and other shared resources used in a conference. The Application Registry
can aid in establishing communication among peer Application Protocol Entities.

6.6 Conference conductor ship

GCC provides amethod for allowing a node to become a conductor for a conference. A token is used
by GCC to determine whether a conference is conducted or non-conducted. The node which grabs
the conductor token becomes the conductor of the conference. A node may also request
conductorship or accept conductorship from the current conductor. Upon request, GCC provides the
identity of the current conference conductor. On creation of a conference, it may be specified that
conducted mode is not permitted for the duration of the conference.

Conducted mode is available as a means to provide order to the course of a conference. The actual
means by which this order is provided is determined by the Application Protocols. Specifically,
Recommendations specifying Application Protocols may define alternative procedures depending on
whether the conference is conducted or non-conducted. GCC does provide a mechanism for basic
conducted operation which may be made use of by Application Protocols. A mechanism is provided
by which a node may request permission from the conducting node, and if permission is granted, all
Application Protocol Entities at that node may act accordingly as specified by the Application

ITU-T Rec. T.124 (01/2007) 11

Protocol specification. Application Protocols may, for example, specify strict limitations in the
allowed operations for nodes that do not have permission from the conductor, while removing some
or al of these limitations for nodes which have this permission. Application protocols may also, for
example, specify that once overall permission has been granted by the conductor, further permission
must be granted by the Peer Application Protocol Entity at the conducted node, if one exists, before
allowing certain operations to be performed.

6.7 Miscellaneous functions

A method is provided for coordinating timed conferences. A mechanism is provided for a node to
find out how much time is remaining in atimed conference, as well as a mechanism for announcing
to al nodes how much time is remaining (which would typically be used to announce that the time is
almost up), and a mechanism for nodes to request more time to be added, if available.

A method is also provided to request assistance from an unspecified operator. Another function is
provided to allow transmission of simple text messages.

6.8 Scalable conferences

The T.124 protocol is designed to allow for a number of different degrees of scalability, including
small "tightly coupled” conferences, medium-sized "acknowledged" conferences, and very large
"loosely coupled” conferences. This is accomplished through the use of three Node Categories, each
of which allows for a varying degree of scalability. These categories include Conventional, Counted
and Anonymous. An overview of each of these categories follows.

Conventional Nodes provide a large amount of node information to every node in a conference and
are the most heavy-weight in terms of how they affect the other members of the conference. Using
this category is appropriate for principal members of a loosely-coupled conference or for all nodes
involved in a small tightly-coupled conference. Conventional Nodes are responsible for creating all
APE sessions within a conference and also dictate the capabilities negotiated in those sessions. Each
T.124 conference must include at least one Conventional Node. Also, each APE session must
include at least one conventional node as long as the session exists. Once al Conventional nodes
have |eft an APE session, that session ceases to exist.

Counted Nodes are somewhat less heavy-weight than Conventional Nodes. Nodes of this type only
appear in rosters received by Conventional Nodes. Counted nodes cannot create APE sessions and
they do not affect session capabilities. The capabilities for each APE session are established by the
Conventional Nodes participating in the conference. Counted Nodes are typically used in situations
where there is a need to acknowledge receiving data that is sourced by a Conventional Node.
Conferences with Counted Node participants scale better than conferences with only Conventional
Nodes, but are still limited in size due to the exchange of roster information. Counted nodes may
source content for the conference, but that content can never be acknowledged.

Anonymous Nodes are the lightest-weight of the three Node Categories. Nodes in this category do
not affect conference or application rosters, cannot create APE sessions, and do not affect conference
capabilities. Their purpose is to allow for very large-scale conferences in environments where there
are a small number of presenters and a large number of observers. A typical conference scenario
could include a small number of Conventional nodes, which would be the principal contributors of
the conference and alarge number of Anonymous node observers.

Prior to the introduction of Node Categories, the number of nodes that could participate in a GCC
conference was severely limited. Node Categories make it possible to support a number of different
conference scaling models. Because legacy nodes that are not aware of Node Categories must
continue to be supported within the T.120 framework, a few restrictions are necessary to ensure
backward compatibility. Also, an additional feature of GCC that facilitates scalable conferences is
the use of Roster Delta Updates by the Top Provider when notifying conference participants that a
node has joined, left, or changed a Roster record. Again, this feature was not supported in the

12 ITU-T Rec. T.124 (01/2007)

original version of GCC. The following rules must be abided by to ensure backward compatibility
with legacy nodes:

. A node can only be considered Anonymous or Counted if it joins the conference through a
node that is Node Category-aware. Also, all nodes from the joining node to the Top Provider
(including the Top Provider) must also be Node Category aware.

. Nodes that are not Node Category-aware, or do not indicate an understanding of Node
Categories when joining a conference, are always treated as Conventional.

. The Top Provider, Convener, and al Management nodes are always categorized as
Conventional nodes.

. All T.124 nodes, except those that will only participate in a T.120 conference as Anonymous

or Counted terminal nodes must continue to support the legacy GCC-Broadcast-Channel as
well as the GCC-Conventional-Broadcast-Channel and the GCC-Counted-Broadcast-
Channel if necessary (see explanation of all broadcast channels in the Protocol definition of
this Recommendation).

. Only Conventional nodes are allowed to add, delete, or change the parameters within the
registry. To support Counted and Anonymous nodes, the registry can be read by any node
that makes a reguest to do so, including nodes that are not listed in the Conference or
Application rosters.

. There are no topology restrictions on which categories of nodes can be connected to which
categories of nodes as long as all the nodes above a node that is expecting to use the Node
Category related protocol is also Node Category-aware.

In summary, when a conference is created, a Conference Mode is specified that defines which
Categories of nodes will be allowed to participate in the conference. It is the responsibility of both
the GCC Provider and the Node Controller at the Top Provider to determine which Categories a
joining node must fall into. These Conference Modes include the following: conventional-only,
which allows only Conventional nodes to join the conference; counted-controlled, which allows only
Counted and Conventional nodes to join the conference; anonymous-controlled, which alows only
Anonymous and Conventional nodes to join the conference; and unrestricted-mode, which allows all
three node categories to participate in the conference. The Node Controller must use the T.124
password to determine which nodes may join as Conventional when the Conference Mode is either
counted-controlled or anonymous-controlled.

6.9 Summary of GCC abstract services

Table6-1isalist of all GCC primitives and their associated PDUs. The table also shows whether or
not each primitive is mandatory (M), conditionally required (C), or optional (O) for aterminal or an
MCU. For a multiport terminal, for each primitive, the requirement shall be taken to be the most
restrictive of either a terminal or MCU for that primitive. A conditionally required primitive is one
which is required if the Application Protocol specification for one or more Application Protocol
Entities located at that node mandates its use. The table also shows, for the corresponding PDUS,
whether these are mandatory (M) or conditionally required (C) for both the transmit (T) and receive
(R) directions. Again, for a multiport terminal, the requirement shall be taken to be the most
restrictive of either aterminal or MCU for that PDU. A conditionally required PDU is one which is
required only if the corresponding primitive is to be supported at that node. In the case that a
primitive is not mandatory, but its corresponding PDU is mandatory, this implies that there is some
portion of the protocol, not related to the primitive, that relies on the use of that PDU which is
required to be supported.

ITU-T Rec. T.124 (01/2007) 13

Table6-1 —GCC Primitivesand PDUs

Functional Primitives Term | MCU Associated PDUs Dir. | Term | Mcu
Conference GCC-Conference-Create request M (0] ConferenceCreateRequest T M C
?jb”Shmem GCC-Conference-Create indication M M ConferenceCreateRequest R M M
termination GCC-Conference-Create response M M ConferenceCreateResponse T M M

GCC-Conference-Create confirm M (@) ConferenceCreateResponse R M C
UserIDIndication T,R M M
GCC-Conference-Query request M M ConferenceQueryRequest T M M
GCC-Conference-Query indication M M ConferenceQueryRequest R M M
GCC-Conference-Query response M M ConferenceQueryResponse T M M
GCC-Conference-Query confirm M M ConferenceQueryResponse R M M
GCC-Conference-Join request M (@] ConferenceJoinRequest T M C
GCC-Conference-Join indication (0] M ConferenceJoinRequest R C M
GCC-Conference-Join response (0] M ConferenceJoinResponse T C M
GCC-Conference-Join confirm M O ConferenceJoinResponse R M C
UserIDIndication T,R M M
GCC-Conference-Invite request (0] M Conferencel nviteRequest T C M
GCC-Conference-Invite indication M M Conferencel nviteRequest R M M
GCC-Conference-Invite response M M Conferencel nviteResponse T M M
GCC-Conference-Invite confirm (0] M Conferencel nviteResponse R C M
UserIDIndication T,R M M
GCC-Conference-Add request (0] (@] ConferenceAddRequest T C C
GCC-Conference-Add indication (0] O ConferenceAddRequest R C C
GCC-Conference-Add response O (0] ConferenceAddResponse T C C
GCC-Conference-Add confirm (0] (@) ConferenceAddResponse R C C
GCC-Conference-Lock request (0] (@) Conferencel ockRequest T C C
GCC-Conference-Lock indication (0] (@) Conferencel ockRequest R C C
GCC-Conference-Lock response (0] (@) Conferencel ockResponse T C C
GCC-Conference-Lock confirm (0] (@) Conferencel ockResponse R C C
GCC-Conference-Unlock request (0] (@) ConferenceUnlockReguest T C C
GCC-Conference-Unlock indication (0] (0] ConferenceUnlockRequest R C C
GCC-Conference-Unlock response (0] (@) ConferenceUnlockResponse T C C
GCC-Conference-Unlock confirm (0] (0] ConferenceUnlockResponse R C C
GCC-Conference-L ock-Report (0] (@) ConferencelocklIndication T,R C C
indication ConferenceUnlockIndication T,R C C
GCC-Conference-Disconnect request M M - - -
GCC-Conference-Disconnect M M - - - -
indication
GCC-Conference-Disconnect confirm M M - - - -
GCC-Conference-Terminate request (@) (@) ConferenceTerminateReguest T C C
ConferenceTerminateRequest R M M
GCC-Conference-Terminate M M ConferenceTerminatel ndication T M M
indication
ConferenceTerminatel ndication R M M
GCC-Conference-Terminate confirm o (0] ConferenceTerminateResponse T M M
ConferenceTerminateResponse R C

14 ITU-T Rec. T.124 (01/2007)

Table6-1 —GCC Primitivesand PDUs

Functional Primitives Term | MCU Associated PDUSs Dir. | Term | Mcu
GCC-Conference-Eject-User request (0] (@) ConferenceEjectUserRequest T C
ConferenceEjectUserRequest R M M
GCC-Conference-Eject-User M M ConferenceEjectUserIndication T M M
indication
ConferenceEjectUserIndication R M M
GCC-Conference-Eject-User confirm (0] (@] ConferenceEjectUserResponse T M M
ConferenceEjectUserResponse R C C
GCC-Conference-Transfer request (@) M ConferenceTransferRequest T C M
ConferenceTransferRequest R M M
GCC-Conference-Transfer indication M M ConferenceTransferlndication T M M
ConferenceTransferlndication R M M
GCC-Conference-Transfer confirm (0] M ConferenceTransferResponse T M M
ConferenceTransferResponse R C M
Conference GCC-Conference-Announce- M M RosterUpdatel ndication T,R M M
roster Presence request
GCC-Conference-Announce- M M - —
Presence confirm
GCC-Conference-Roster-Report M M RosterUpdatel ndication T,R M M
indication
GCC-Conference-Roster-Inquire (0] (@) - - - -
request
GCC-Conference-Roster-Inquire (0] (@) - - - -
confirm
Application GCC-Application-Permission-To- M C - - - -
roster Enroll indication
GCC-Application-Enroll request M C RosterUpdatel ndication T,R M M
RosterRefreshRequest T,R C C
GCC-Application-Enroll confirm M C - -
GCC-Application-Roster-Report M C RosterUpdatel ndication T,R M M
indication
GCC-Application-Roster-Inquire (@) O - - - -
request
GCC-Application-Roster-Inquire (0] (@) - - - -
confirm
GCC-Application-Invoke request (0] (@) Applicationlnvokel ndication T C C
GCC-Application-Invoke indication (0] (@) Applicationlnvokel ndication R C C
GCC-Application-Invoke confirm (@) O - - - -
Application GCC-Registry-Register-Channel C C RegistryRegisterChannel Request T C C
registry request
RegistryRegisterChannel Request R M M
GCC-Registry-Register-Channel C C RegistryResponse T M M
confirm
RegistryResponse R C C
GCC-Registry-Assign-Token request C C RegistryAssignTokenRequest T C C
RegistryAssignTokenRequest R M M
GCC-Registry-Assign-Token confirm C C RegistryResponse T M M
RegistryResponse R C C
GCC-Registry-Set-Parameter request C C RegistrySetParameterRequest T C C
RegistrySetParameterRequest R M M
GCC-Registry-Set-Parameter confirm C C RegistryResponse T M M
RegistryResponse R C C
ITU-T Rec. T.124 (01/2007) 15

Table6-1 —GCC Primitivesand PDUs

indication

Functional Primitives Term | MCU Associated PDUs Dir. | Term | Mcu
GCC-Registry-Retrieve-Entry request C C RegistryRetrieveEntryRequest T C C
RegistryRetrieveEntryRequest R M M
GCC-Registry-Retrieve-Entry C C RegistryResponse T M M
confirm
RegistryResponse R C C
GCC-Registry-Delete-Entry request C C RegistryDeleteEntryRequest T C C
RegistryDeleteEntryRequest R M M
GCC-Registry-Delete-Entry confirm C C RegistryResponse T M M
RegistryResponse R C C
GCC-Registry-Monitor request C C RegistryMonitorEntryRequest T C C
RegistryMonitorEntryRequest R M M
GCC-Registry-Monitor indication C C RegistryMonitorEntrylIndication T M M
RegistryMonitorEntrylndication R C C
GCC-Registry-Monitor confirm C C RegistryResponse T M M
RegistryResponse R Cc C
GCC-Registry-Allocate-Handle C C RegistryAllocateHandleRequest T C C
request
RegistryAllocateHandleRequest R M M
GCC-Registry-Allocate-Handle C C RegistryAllocateHandleResponse T M M
confirm
RegistryAllocateHandleResponse R C C
Conference GCC-Conductor-Assign request (@] O - - - -
conductorship GCC-Conductor-Assign indication C C ConductorAssignindication T M M
(Note) | (Note)
ConductorAssignindication R C C
GCC-Conductor-Assign confirm (@) (@) - - - -
GCC-Conductor-Rel ease request (0] (@) ConductorReleasel ndication T C C
ConductorReleasel ndication R M M
(Note) | (Note)
GCC-Conductor-Release indication C C ConductorRel easel ndication T M M
(Note) | (Note)
ConductorReleasel ndication R C Cc
GCC-Conductor-Release confirm (0] O - - - -
GCC-Conductor-Please request (@) (@) - - - -
GCC-Conductor-Please indication (@) O - - - -
GCC-Conductor-Please confirm (@) O - - - -
GCC-Conductor-Give request (@] (@) - - - -
GCC-Conductor-Give indication (@) O - - - -
GCC-Conductor-Give response (0] (@) ConductorAssignindication T C C
GCC-Conductor-Give confirm (0] (@) - - - -
GCC-Conductor-Inquire request C C - - - -
GCC-Conductor-Inquire confirm C C - - - -
GCC-Conductor-Permission-Ask (0] (0] ConductorPermissionAskindication T C C
request
GCC-Conductor-Permission-Ask (0] (0] ConductorPermissionAskindication R C C
indication
GCC-Conductor-Permission-Ask (0] (@) - - - -
confirm
GCC-Conductor-Permission-Grant (0] (0] ConductorPermissionGrantIndication T C C
request
GCC-Conductor-Permission-Grant (0] O ConductorPermissionGrantl ndication R C C

16 ITU-T Rec. T.124 (01/2007)

Table6-1 —GCC Primitivesand PDUs

F“”ucrt]'i‘t’”aj Primitives Term | MCU Associated PDUs Dir. | Term | MCU
GCC-Conductor-Permission-Grant (0] (0] - - - -
confirm

Miscellaneous | GCC-Conference-Time-Remaining (0] (@) ConferenceTimeRemaininglndication T C Cc

functions request
GCC-Conference-Time-Remaining (0] (@) ConferenceTimeRemaininglndication R C C
indication
GCC-Conference-Time-Remaining (0] O - -
confirm
GCC-Conference-Time-Inquire (0] (@) ConferenceTimelnquirel ndication T C C
request
GCC-Conference-Time-Inquire (0] (@) ConferenceTimelnquirel ndication R C C
indication
GCC-Conference-Time-Inquire (0] (@) - -
confirm
GCC-Conference-Extend request (@) (@) ConferenceTimeExtendl ndication T C C
GCC-Conference-Extend indication (0] (@) ConferenceTimeExtendlndication R C Cc
GCC-Conference-Extend confirm (@] O - - - -
GCC-Conference-Assistance request (@] (@) ConferenceAssistancel ndication T C C
GCC-Conference-Assistance (0] (@) ConferenceAssistancel ndication R C C
indication
GCC-Conference-Assistance confirm (0] (0] - - - -
GCC-Text-Message request (0] (@) TextMessagel ndication T C C
GCC-Text-Message indication (0] (0] TextMessagel ndication R C C
GCC-Text-Message confirm (0] (0] - - - _

- - - FunctionNotSupported TR M M

NOTE — Reception of ConductorReleasel ndication PDUs is mandatory to allow the Top GCC Provider to properly handle requests which require
privileges. Privileges depend on whether the conference isin conducted or non-conducted mode. Transmission of ConductorAssignindication and
ConductorReleasel ndication PDUs by the Top GCC Provider is mandatory for handling new nodes joining a conference.

7 GCC servicedefinition

71 Conference establishment and ter mination

In this clause, primitives needed for conference establishment and conference termination are
described. All of the primitives in this clause are intended for use only by the Node Controller at a
termina or MCU.

7.1.1 Theconference profile

All conferences have the following characteristics which are defined when the conference is created
and communicated to each node as it enters the conference. These characteristics remain unchanged
for the duration of the conference. This information is collectively referred to as the Conference
Profile:

. Conference name — A numerical string and an optional Unicode Row 00 text string
identifying the conference. If both forms of Conference Name are used when a conferenceis
created, when that conference is joined, either form may be specified to indicate the
conference to be joined.

. Conference description — An optional text string to describe the conference. For a listed
conference, this string is reproduced in the Conference Descriptor List in response to a
GCC-Conference-Query request.

. Password protected vs. not password protected — Choice of whether the conference is
Password protected or not.

ITU-T Rec. T.124 (01/2007) 17

. Listed vs. unlisted — Choice of whether the conference is listed or not listed on the
conference list provided when querying the list of available conferences.

. Conductible vs. non-conductible — Choice of whether the conference is able to be placed in
conducted mode or whether the conference is always non-conducted.

. Termination method — Choice of whether conference should last until explicitly terminated
(manually terminating), or if it should last until al participants disconnect (automatically
terminating).

. Privilege lists — A set of lists indicating which privileges, normally only available to the

Convener, are also alowed to the Conductor, to any node in a conducted conference, or to
any node in a non-conducted conference.

. Conference Mode — An optional choice that specifies which categories of nodes will be
allowed to join the conference after it is created. If not specified, the conference should
default to conventional-only mode.

7.1.2 Description of abstract services

Thefollowing isalist of the primitives defined in this subclause and a brief summary of the function
of each:

. GCC-Conference-Create — Used by the Node Controller to create a new conference,
specifying the characteristics of that conference.

. GCC-Conference-Query — Used by the Node Controller to query what conferences are
currently in progress as well as the information needed to attempt to join them.

. GCC-Conference-Join — Used by the Node Controller to join an existing conference.

. GCC-Conference-Invite — Used by the Node Controller to invite a node into an existing
conference.

. GCC-Conference-Add — Allowed only by the conference convener or convener-designated

node; this is used by the Node Controller to request that a node be added to the conference
by dialling out from an MCU.

. GCC-Conference-Lock — Allowed only by the conference convener or convener-designated
node; this is used by the Node Controller to prevent new participants from joining a
conference without being explicitly added.

. GCC-Conference-Unlock — Allowed only by the conference convener or
convener-designated node; this is used by the Node Controller to allow new participants to
join a conference.

. GCC-Conference-Lock-Report — Provides an indication to the Node Controller that a
conference has changed from being locked to being unlocked or vice versa.

. GCC-Conference-Disconnect — Used by a Node Controller to disconnect the local node from
an ongoing conference.

. GCC-Conference-Terminate — Allowed only by the conference convener or

convener-designated node; this is used by the Node Controller to terminate an entire
conference, disconnecting all nodes.

. GCC-Conference-Eject-User — Allowed only by the conference convener or
convener-designated node (or by the node directly above the gected node in the connection
hierarchy); this is used by the Node Controller to disconnect a specific node from an
ongoing conference.

. GCC-Conference-Transfer — Allowed only by the conference convener or
convener-designated node; this is used by the Node Controller to transfer nodes joined with
one conference to another conference. This may be used as part of the process of merging or
splitting conferences.

18 ITU-T Rec. T.124 (01/2007)

7121 GCC-Conference-Create

The GCC-Conference-Create request primitive is used by a Node Controller to create a new
conference at a remote node to which the local node is automatically joined. This primitive may be
issued at any time. When a conference is created, the node to which the creation request is directed
(the node which receives the GCC-Conference-Create indication) is also automatically joined to the
conference and becomes the Top GCC Provider for that conference. This node remains the Top GCC
Provider for the conference as long as the conference continues to exist. In some implementations, it
may be possible to create a conference locally without the use of GCC primitives. In this case, the
node at which the conference is created becomes the Top GCC Provider. Table 7-1 shows the
parameters and types of this primitive. Figure 7-1 shows the sequence of events when using this
primitive.

Table 7-1 — GCC-Conference-Create — Types of primitives and their parameters

Parameter Request Indication | Response Confirm
Conference Name M M(=) M(=) M(=)
Conference Name Modifier C C
Conference ID M M(=) M
Convener Password O O(=)
Password o) o)
Conference Locked M M(=)
Conference Listed M M(=)
Conference Conductible M M(=)
Termination Method M M(=)
Conductor Privilege List @] O(=)
Conducted-mode Conference Privilege List @] O(=)
Non-conducted-mode Conference Privilege List @] O(=)
Conference Description @] O(=)
Caller Identifier O O(=)
Calling Address @] O(=)
Called Address O O
Domain Parameters M M M M(=)
Quality of Service M M M M(=)
Local Network Address @] 0]
Conference Priority @] O(=)
Conference Mode O O(=)
User Data 0 O(=) @) O(=)
Result M M(=)

Conference Name: Name by which the conference to be created is identified. This consists of a
numerical string along with an optional Unicode Row 00 text string, from zero to 255 characters
each. If both forms of a Conference Name are used, if a node wishes to join this conference, it may
specify either form of the name in the join request. In the join request, a numeric value will
necessarily be included in numeric variant of the Conference Name. As a result, use of a text
Conference Name including only numeric characters will never be compared against and therefore

ITU-T Rec. T.124 (01/2007) 19

should not be used — that is, the text variant of the Conference Name should include at least one
non-numeric character.

Conference Name Modifier: If the requesting or responding node is already joined to a conference
with the same Conference Name (either numerical or text portion) as that included in the request,
this parameter shall also be included in the corresponding request or response primitive. The value of
this parameter shall be unique among all conferences at the corresponding node which have this
Conference Name. This modifier, if included, shall be used as the Caled Node Conference Name
Modifier parameter in a GCC-Conference-Join request by another node attempting to join the
conference through a direct connection with the corresponding node. This modifier is aso included
in the response to a GCC-Conference-Query directed at this node. This parameter is a numerical
string up to 255 digitsin length.

Conference ID: Locally-allocated identifier of the newly-created conference. All subsequent
references to the conference are made using the Conference ID as a unique identifier. The
Conference ID shall be identical with the MCS Domain Selector used locally to identify the
MCS Domain associated with the conference.

Convener Password: This optional parameter contains a numeric string, as well as an optional
Unicode Row 00 text string, used for the convener to identify itself in later operations, allowing the
convener to disconnect and later rejoin the conference, maintaining convener privileges (only when
rejoined with a direct connection to the Top GCC Provider). Thisis the private password which will
allow the convener to perform convener-only operations (maximum 255 digits and 255 characters).
If this parameter is NULL, then it is not possible for the convener to disconnect and later rejoin
maintaining convener privileges. In the join request, a numeric value will necessarily be included in
the numeric variant of the Convener Password. As a result, use of a text Convener Password
including only numeric characters will never be compared against and therefore should not be used —
that is, the text variant of the Convener Password should include at least one non-numeric character.

Password: Thisis anumeric string, as well as an optional Unicode Row 00 text string, to serve as a
Password to enter the conference (maximum 255 digits and 255 characters). If no Password is
specified, the conference is not Password protected. In the join request, a numeric value will
necessarily be included in the numeric variant of the Password. As a result, use of a text Password
including only numeric characters will never be compared against and therefore should not be used —
that is, the text variant of the Password should include at |east one non-numeric character.

NOTE — If the conference is Password protected, the Node controller must specify a numeric Password, and
may aso specify a text Password. The numeric Password is required to alow for nodes which have no
suitable text entry mechanism. In the case that a text password is used, there is no assumption that the numeric
Password that must also be included is generated by the user. It may be more convenient and secure to use a
machine generated numeric Password.

Conference Locked: Setting this flag immediately locks a conference, preventing anyone from
joining this conference unless they are explicitly added using the GCC-Conference-Invite primitive
(or indirectly inviting via the GCC-Conference-Add primitive). To lock a conference at any time
after issuing this primitive, the primitive GCC-Conference-Lock may be used. To unlock a
conference, GCC-Conference-Unlock may be used.

Conference Listed: The TRUE setting of this flag indicates that this conference may be listed when
using the conference-query facility. The FALSE setting of this flag indicates that this conference
snall not be listed.

Conference Conductible: The TRUE setting of this flag indicates that this conference may be placed
in conducted mode using the GCC-Conductor-Assign primitive. The FALSE setting of this flag
indicates that this conference shall be non-conducted only, and attempts to assign a conductor shall
be rejected.

20 ITU-T Rec. T.124 (01/2007)

Termination Method: This parameter indicates whether the conference shall remain in existence until
explicitly terminated by the Convener or convener-designated node using the GCC-Conference-
Terminate primitive (manually terminating), or if the conference will terminate when there are no
nodesjoined to it or if explicitly terminated (automatically terminating).

Conductor Privilege List: This is a list of flags indicating which functions the convener
isdesignating as alowable to be used by the conference conductor, if any. The flags in this
list correspond to the operations. GCC-Conference-Terminate, GCC-Conference-Eject-User,
GCC-Conference-Add, GCC-Conference-Lock, GCC-Conference-Unlock and
GCC-Conference-Transfer.

Conducted-mode Conference Privilege List: This is a list of flags indicating which functions the
convener is designating as allowable to be used by any node in a conducted-mode conference. The
flagsin thislist correspond to the same operations as for the above parameter.

Non-conducted-mode Conference Privilege List: Thisisalist of flags indicating which functions the
convener is designating as allowable to be used by any node in a non-conducted-mode conference.
The flagsin thislist correspond to the same operations as for the above parameter.

Conference Description: An optional Unicode text string, up to 255 characters in length, which may
be used to describe the conference. This string is maintained by the GCC Providers in the conference
to use as part of the response to GCC-Conference-Query requests.

Caller Identifier: Optional Unicode text string (maximum 255 characters) which may be used to
identify the calling node to the node at which the conference is to be created. The use of this
information at this node is beyond the scope of this Recommendation. It may be used, for example,
to allow a user at that node to select among a limited set of participants which are allowed to create
conferences. Because this string can be set to any value, it does not necessarily add to the security of
aconference to do this, however.

Calling Address. Optional address to be included in the MCS-Connect-Provider primitive on
establishing an MCS connection. See [ITU-T T.122] for the interpretation of this parameter.

Called Address. Optional address to be included in the MCS-Connect-Provider primitive on
establishing an MCS connection. See [ITU-T T.122] for the interpretation of this parameter.

Domain Parameters. Domain parameters to be included in the MCS-Connect-Provider primitive on
establishing an MCS connection. See [ITU-T T.122] for the interpretation of this parameter.

Quality of Service: Quality of Service parameters to be included in the MCS-Connect-Provider
primitive on establishing an MCS connection. See [ITU-T T.122] for the interpretation of this
parameter.

Local Network Address: If included in either the request or response, the local GCC Provider at the
corresponding node shall use this information to include as the Network Address parameter in the
Conference Descriptor List sent as part of the response to a GCC-Conference-Query request from
another node. In the GCC protocol, this parameter is reflected by ASN.1 structures NetworkAddress
and NetworkAddressV 2. See Annex B for the description and use of these.

Conference Priority: An optiona parameter to specify the priority of a conference. This may be used
in some situations to determine whether or not the indication should be accepted. The parameter
includes two subparameters. the priority and the scheme. The priority is an integer value ranging
from zero to 65535. The scheme indicates the procedures by which the priority value is to be
interpreted. At this time, only non-standard schemes are supported. Standardized procedures for
interpretation of this parameter are for further study.

Conference Mode: An optional parameter used to specify the mode of a conference. This parameter
is used by GCC and the Node Controller at the Top GCC Provider to determine which Node
Categories a joining node must fall into before being allowed to join the conference. Conference

ITU-T Rec. T.124 (01/2007) 21

Modes include the following: conventional-only, which allows only Conventional nodes to join the
conference; counted-controlled, which allows only Counted and Conventional nodes to join the
conference; anonymous-controlled, which alows only Anonymous and Conventional nodes to join
the conference; and unrestricted-mode, which allows all three node categories to participate in the
conference. Note that Conventional nodes wishing to join either a counted-controlled or an
anonymous-controlled conference must specify a password upon joining.

User Data: Optional user data which may be used for functions outside the scope of this
Recommendation such as authentication, billing, etc.

Result: An indication of whether the request was accepted or rejected, and if rejected, the reason
why. It contains one of a list of possible results: successful, user rejected, resources not available,
rejected for symmetry-breaking, locked conference not supported, Conference Name and Conference
Name Modifier already exist, domain parameters unacceptable, domain not hierarchical, lower-layer
initiated disconnect, unspecified failure to connect. A negative result in the GCC-Conference-Create
confirm does not imply that the physical connection to the node to which the connection was being
attempted is disconnected.

Node Controller GCC Provider Top GCC Provider Node Controller
GCC-Conference-Create GCC-Conference-Create
ﬂ indication

4 ‘ GCC-Conference-Create

GCC-Conference-Create response
confirm

T.124(01-07)_F7-01

Figure 7-1 — GCC-Conference-Create — Sequence of primitives

7.1.22 GCC-Conference-Query

The GCC-Conference-Query request primitive may be used by a Node Controller to determine what
conferences are currently in existence at a particular MCU. Table 7-2 shows the parameters and
types of this primitive. Figure 7-2 shows the sequence of events when using this primitive.

22 ITU-T Rec. T.124 (01/2007)

Table 7-2 — GCC-Conference-Query — Types of primitivesand their parameters

Parameter Request Indication Response Confirm

Node Type M M(=) M M(=)
Asymmetry Indicator C C(=) C C(=
Conference Descriptor List C
Wait for Invitation Flag 0] @]
No Unlisted Conference Flag @] @]
Calling Address O O(=)
Called Address @] (0]
User Data O O(=) O O(=)
Result M M(=)

Node Controller GCC Provider GCC Provider Node Controller

GCC-Conference-Query

request GCC-Conference-Query

indication

GCC-Conference-Query
response

GCC-Conference-Query
confirm

T.124(07-07)_F7-02

Figure 7-2 — GCC-Conference-Query — Sequence of primitives

Node Type: The node typeis either terminal, MCU, or multiport terminal.

Asymmetry Indicator: Thisisafield which isneeded for certain conference establishment procedures
which require knowledge of which node across a single connection was the calling node (the initiator
of the physical connection), and which is the called node. This parameter is required in the case of a
physical connection between the two nodes (that is, an underlying connection between the two nodes
using the PSTN, ISDN, or CSDN cases of [ITU-T T.123]). Otherwise, this parameter is optional. If a
node is aware of its status as the calling or called node, it shall set this indicator to the proper value.
In some cases a node may not be certain whether it is the calling or called node. In this case, this
parameter shall include a 32-bit random number. If both nodes indicate that they are not certain of
their status, the random numbers are used to determine which node should be considered the calling
node and which the called node for the purposes of the conference establishment procedure (note
that this may not correctly reflect the true calling or called node). The node which transmitted the
largest of the two random numbers shall be considered the calling node for the purpose of the
conference establishment procedure. If both random numbers are identical, this decision shall be
considered unsatisfied and the requester shall re-issue the GCC-Conference-Query request using a
different random number (a different random number shall also be used in the resulting response). If
both nodes respond with actual values for this parameter (indicating knowledge of whether they are
the called or calling node), but the resulting exchange indicates a disagreement (i.e., both think they
are the calling node or both think they are the called node), this decision shall also be considered

ITU-T Rec. T.124 (01/2007) 23

unsatisfied and the requester shall re-issue the GCC-Conference-Query request using a random
number (the response shall aso use a random number). During the period where a query request
remains unconfirmed on one side of a given connection, the value for this parameter in all query
requests and query responses issued by this node over the same physical connection shall remain
unchanged. The random numbers should be generated to be uniformly distributed over the entire
numerical range.

Conference Descriptor List: A variable length list of conference descriptors each indicating an active
conference available to be joined. This list does not include conferences which had been designated
unlisted at their time of creation. If there are no available conferences, the list contains zero entries.
Each conference descriptor includes the parameters shown in Table 7-3.

Calling Address. Optional address to be included in the MCS-Connect-Provider primitive on
establishing an MCS connection.

Called Address. Optional address to be included in the MCS-Connect-Provider primitive on
establishing an MCS connection.

User Data: Optional user data which may be used for functions outside the scope of this
Recommendation such as authentication, billing, etc.

Result: An indication of whether the request was accepted or rejected, and if rejected, the reason
why. It contains one of a list of possible results: successful, user-rejected, domain parameters
unacceptable, domain not hierarchical, lower-layer initiated disconnect, unspecified failure to
connect.

Table 7-3 — Contents of a Conference Descriptor

Parameter Description

Conference Name Conference Name of the conference. If the requesting node wishesto join
this conference, this parameter is the value that shall be used in the
Conference Name parameter of the GCC-Conference-Join request. This
parameter is anumerical string along with an optional Unicode Row 00 text
string, maximum 255 characters each. If both forms of the name are given,
either form may be specified in the join request.

Conference Name Modifier | If at the node returning the response, the conference is known by a name
(conditional) which includes a Conference Name Modifier, this parameter isincluded. If
the requesting node wishes to join this conference, thisis the Conference
Name Modifier that shall be used in the Called Node Conference Name
Modifier parameter of the GCC-Conference-Join request. This parameter is
anumerical string up to 255 digitsin length.

Conference Description An optional Unicode text string, up to 255 charactersin length, used to
(conditional) describe the conference. This parameter may be particularly useful in cases
where more than one conference in the Conference Descriptor List has the
same Conference Name as a means of distinguishing between these

conferences.
Locked/Unlocked Flag indicating whether the conference is currently locked or unlocked.
Password In The Clear Indicates that the conference is password protected with a password that
Required may be used without encryption in a GCC-Conference-Join request without

first being challenged for the password.

24 ITU-T Rec. T.124 (01/2007)

Table 7-3 — Contents of a Conference Descriptor

Parameter Description
Network Address Address information provided to the requesting node. Thisis provided only
(conditional) if the optional Local Network Address parameter had been included in the

connection establishment primitive at that node (either GCC-Conference-
Create, GCC-Conference-Join, or GCC-Conference-Invite). In the GCC
protocol, this parameter is reflected by ASN.1 structures NetworkAddress
and NetworkAddressV2. See Annex B for the description and use of these.

Default Conference Flag An optional flag indicating whether a particular conference should be
considered the default conference to join. In a meet-me conference where
the user is expected to manually choose a conference to join from alist, this
parameter should be FALSE for all conferences. In a meet-me conference
where a priori information alows an MCU to determine which conference
should be joined (and security reasons, for example, preclude the use of
GCC-Conference-Invite), this flag may be set to TRUE for one and only one
conference. If thisflag is TRUE for more than one conference, or is TRUE
for a Locked conference, it should be ignored by the receiver.

Conference Mode An optional parameter used to specify the mode of a conference. This
parameter can be used to determine the appropriate Node Category to
specify when joining the conference.

Wait for Invitation Flag: Optional flag that may be set by an MCU. When TRUE this flag indicates
that the receiving Node should wait to receive an invitation to a conference and need not attempt to
join or create a conference. The absence of this flag, or a FALSE value, does not imply whether or
not attempts to join or create a conference should be made. This flag shall not be set to TRUE by a
terminal or multiport terminal. No time-limit is implied by a TRUE value for this flag. A node
wishing to determine whether the MCU continues to intend it to wait for the invitation may re-issue
a GCC-Conference-Query reguest in order to receive the current setting of this flag in the confirm.

No Unlisted Conference Flag: Optional flag that when TRUE indicates that there are no unlisted
conferences available to be joined. Absence of this flag, or a FALSE value, does not imply any
information as to whether or not unlisted conferences are available.

7123 GCC-Conference-Join

The GCC-Conference-Join request primitive may be used by the Node Controller to cause the local
node to join an existing conference. This primitive may be issued at any time. A node may be joined
to more than one conference simultaneously. If the conference is Password protected, the Password
parameter must contain the correct information for the conference join to be successful. Table 7-4
shows the parameters and types of this primitive. Figure 7-3 shows the sequence of events when
using this primitive.

NOTE — It is up to the Node Controller, not the Top GCC Provider, to determine if the Password is correct. It
is possible that its definition of correct may be less stringent than a strict character-by-character match. For

example, in the case of the text form of a Password, the Node Controller may choose to use a case-insensitive
matching criterion.

ITU-T Rec. T.124 (01/2007) 25

Table 7-4 — GCC-Conference-Join — Types of primitives and their parameters

Parameter

Request

Indication

Response

Confirm

Conference Name

M

M

Called Node Conference Name Modifier

C

C(=RQ)

Calling Node Conference Name Modifier

C

C(=RQ)

Conference ID

M(=)

M

Convener Password

OF=)

Password

CE)

CE)

Cadller Identifier

OF=)

Calling Address

CE)

Called Address

Domain Parameters

Quality of Service

5|00 0|10O|0O

Password In The Clear Required

Conference Locked

Conference Listed

Conference Conductible

Termination Method

Conductor Privilege List

Conducted-mode Conference Privilege List

Non-conducted-mode Conference Privilege List

Conference Description

ol IR ool K4 K4 Ed E4 K4 K4 Y

Local Network Address

O

Node Category

o=

()

Conference Mode

O(=)

User Data

O(=)

O|O|O

OF=)

Result M M(=)

Conference Name: Name of the conference being joined. In the request, this parameter is either a
numeric string or a Unicode Row 00 text string, maximum 255 characters. If both the numeric and
text parts of the Conference Name were used at the time the conference was created, the Node
Controller shall determine whether to send the Conference Name as a text string or numeric string
based on its value. A vaue consisting only of numeric digits shall be specified as a numeric string,
while a value including at least one non-numeric character shall be specified as a text string. In the
confirm, this parameter includes the full Conference Name including both numerical and text forms,
if both were used at the time the conference was created.

Called Node Conference Name Modifier: If the node directly connected to the joining node (the node
to which a connection is attempting to be established) has included a Conference Name Modifier as
part of the name by which this conference is known, this parameter shall be included in the request
primitive and shall indicate the Conference Name Modifier as it is known to the node directly
connected to the joining node. This parameter isanumeric string up to 255 digitsin length.

Calling Node Conference Name Modifier: If a conference already exists at the node issuing the join
request with a name identical with the Conference Name of the conference to be joined, this

26 ITU-T Rec. T.124 (01/2007)

parameter shall be included in the GCC-Conference-Join request and shall indicate the Conference
Name Modifier by which the conference shall be known at the local node. This parameter, if
included, shall be different from any Conference Name Modifier already in use for any other
conference the local node is currently joined to with the same Conference Name. If used, this
parameter becomes the Called Node Conference Name Modifier by which another node attempting
to join this conference through a connection to the local node refers to this conference. This modifier
is aso included as the Conference Name Modifier parameter in any GCC-Conference-Query
response from this node (if the conference is listed). This parameter is a numeric string up to
255 digitsin length.

Conference ID: At the Top GCC Provider (the indication/response primitives), this parameter is the
Conference ID of the conference to which the requesting node wishes to join. In the confirm
primitive, this parameter is returned by GCC indicating the locally alocated ID by which all
subsequent references to the conference are indicated. The Conference ID shall be identical with the
MCS Domain Selector used locally to identify the MCS Domain associated with the conference.

Convener Password: This is an optional parameter which is either a numeric string or a Unicode
Row 00 text string which may be used by a conference convener rejoining a conference after
disconnecting (maximum 255 digits or characters). If this identifier matches the corresponding
identifier used when the conference was created, the joining node is given the privileges of the
convener, but only if joining with a direct connection to the Top GCC Provider (rather than via an
intermediate MCU). The convener, with the correct Convener Password, is alowed to join even
conferences which are locked. If the conference is Password protected, the correct Password must be
given in addition to the Convener Password to successfully join the conference. If the Convener
Password is present but does not match, the request to join shall be rgjected. The criterion used to
determine if the Convener Password matches the originally specified value is determined by the
Node Controller. The Node Controller shall determine whether to send the Convener Password as a
text string or numeric string based on its value. A value consisting only of numeric digits shall be
specified as a numeric string, while a value including at least one non-numeric character shall be
specified as atext string.

Password: The password parameter is used to gain access to a password protected conference. In the
request form of this primitive, this parameter shall only contain a password if a result of Challenge
Response Required has been received in a previous GCC-Conference-Join confirm for this
conference or if the Password In The Clear Required parameter is set in the Conference Descriptor
for this conference in a previous GCC-Conference-Query confirm. In the case of a Password In The
Clear, this is either a numeric string or a Unicode Row 00 text string (maximum 255 digits or
characters). A text string may only be used if atext password was defined at the time of conference
creation in addition to the numeric password. The Node Controller shall determine whether to send
the Password as atext string or numeric string based on its value. A value consisting only of numeric
digits shall be specified as a numeric string, while a value including at least one non-numeric
character shall be specified as a text string. In the case of an encrypted password, this parameter
contains the password encoded using one of the algorithms specified in the previously received
challenge. In the case of a password sent in response to a challenge (either in the clear or encrypted),
this parameter shall also include atag which shall be identical to the tag received in the challenge. In
the case of a password initiated in response to the Password In The Clear Required flag in the
GCC-Conference-Query indication, no tag is required. In the request form of this primitive, this
parameter may aso include a chalenge to the receiving node. There are no restrictions on when a
challenge may beincluded in this parameter.

In the response form of this primitive, this parameter may contain a challenge to the requester
indicating that a password is required for joining this conference. For this case, this parameter
includes information specifying which forms of the password will be accepted (either in the clear,
and/or encrypted viaalist of non-standard encryption algorithms), an integer tag used to identify this
challenge, and any additional information required for encryption. Should this parameter contain

ITU-T Rec. T.124 (01/2007) 27

challenge, the result parameter of this primitive shall be set to Challenge Response Required. In this
case, no connection is established by this exchange. This parameter in the response form of this
primitive may also include a Password (either in the clear or encrypted) in response to a challenge by
the requesting node.

If this parameter in the indication is not in a format satisfactory to the receiving node, that node
should issue a response with Invalid Challenge Response as the result. If this parameter in the
indication is of the correct format, but does not contain the correct password, the response should
include Invalid Password as the result.

Caller Identifier: Optional Unicode text string (maximum 255 characters) which may be used to
identify the calling node to the node at which the Top GCC Provider resides. The use of this
information at this node is beyond the scope of this Recommendation. It may be used, for example,
to allow a user at that node to select among a limited set of participants to alow into the conference.
Because this string can be set to any value, it does not necessarily add to the security of a conference
to do this, however.

Calling Address. Optional address to be included in the MCS-Connect-Provider primitive on
establishing an MCS connection. See [ITU-T T.122] for the interpretation of this parameter. The
presence of this parameter in the indication is conditional. It is present only when the Node initiating
the GCC-Conference-Join request is attempting to establish a direct connection to the Node
containing the Top GCC Provider for the conference being joined.

Called Address: Optional address to be included in the MCS-Connect-Provider primitive on
establishing an MCS connection. See [ITU-T T.122] for the interpretation of this parameter. The
presence of this parameter in the indication is conditional. It is present only when the Node initiating
the GCC-Conference-Join request is attempting to establish a direct connection to the Node
containing the Top GCC Provider for the conference being joined.

Domain Parameters. Domain parameters to be included in the MCS-Connect-Provider primitive on
establishing an MCS connection. See [ITU-T T.122] for the interpretation of this parameter.

Quality of Service: Quality of Service parameters to be included in the MCS-Connect-Provider
primitive on establishing an MCS connection. See [ITU-T T.122] for the interpretation of this
parameter.

Password In The Clear Required: This is a Boolean parameter that indicates that the conference is
password protected with a password that may be used without encryption in a GCC-Conference-Join
request without first being challenged for the password. If the joining node is an MCU, this
information is used by the GCC Provider in generating the response to a GCC-Conference-Query
indication. This information shall be used by the Node Controller in determining whether or not the
Password parameter may be included in a GCC-Conference-Transfer request.

Conference Locked: This flag indicates whether or not the joined conference is locked or unlocked.
If the joining node is an MCU, this information shall be used in generating the response to a
GCC-Conference-Query indication.

Conference Listed: This flag indicates whether or not the joined conference is listed or unlisted. If
the joining node is an MCU, this information shall be used in generating the response to a
GCC-Conference-Query indication. In particular, conferences which are indicated as being unlisted
shall not be listed in the conference list provided with the GCC-Conference-Query response.

Conference Conductible: The TRUE setting of this flag indicates that this conference may be placed
in conducted mode using the GCC-Conductor-Assign primitive. The FALSE setting of this flag
indicates that this conference shall be non-conducted only, and attempts to assign a conductor shall
be rejected.

Termination Method: This flag indicates the termination rule for the joined conference. The
conference may be either manually or automatically terminating.

28 ITU-T Rec. T.124 (01/2007)

Conductor Privilege List: This is a list of flags indicating which functions the convener has
designated as allowable to be used by the conference conductor, if any. The flags in this list
correspond to the operations. GCC-Conference-Terminate, GCC-Conference-Eject-User,
GCC-Conference-Add, GCC-Conference-Lock, GCC-Conference-Unlock and GCC-Conference-
Transfer.

Conducted-mode Conference Privilege List: This is a list of flags indicating which functions the
convener has designated as allowable to be used by any node in a conducted-mode conference. The
flagsin thislist correspond to the same operations as for the above parameter.

Non-conducted-mode Conference Privilege List: Thisisalist of flags indicating which functions the
convener has designated as alowable to be used by any node in a non-conducted-mode conference.
The flagsin thislist correspond to the same operations as for the above parameter.

Conference Description: This parameter is a Unicode text string, up to 255 characters in length,
describing the conference being joined. It is present in the confirm primitive only if included at the
time of conference creation.

Local Network Address: If included in the request, the local GCC Provider at the corresponding node
shall use this information to include as the Network Address parameter in the Conference Descriptor
List sent as part of the response to a GCC-Conference-Query request from another node. In the GCC
protocol, this parameter is reflected by ASN.1 structures NetworkAddress and NetworkAddressv 2.
See Annex B for the description and use of these.

Node Category: If included in the request, the local GCC Provider at the node being joined can use
this to determine the joining node's preferred node category. This may be overridden in the join
response if the suggested category is not acceptable by the node being joined. If not specified, the
default requested category is Conventional.

Conference Mode: An optional parameter used to specify the mode of a conference. This parameter
informs the joining node which Node Categories are allowed to participate in the conference.
Conference Modes include: conventional-only, which alows only Conventional nodes to join the
conference; counted-controlled, which allows only Counted and Conventional nodes to join the
conference; anonymous-controlled, which alows only Anonymous and Conventional nodes to join
the conference; and unrestricted-mode, which allows all three node categories to participate in the
conference. Note that Conventional nodes wishing to join either a counted-controlled or an
anonymous-controlled conference must specify a password upon joining.

User Data: Optional user data which may be used for functions outside the scope of this
Recommendation such as authentication, billing, etc.

Result: An indication of whether the request was accepted or rejected, and if rejected, the reason
why. It contains one of alist of possible results: successful, user-rejected, invalid conference, invalid
Password, Challenge Response required, invalid Challenge Response, invalid Convener Password,
domain parameters unacceptable, domain not hierarchical, lower-layer initiated disconnect,
unspecified failure to connect. A negative result in the GCC-Conference-Join confirm does not
imply that the physical connection to the node to which the connection was being attempted is
disconnected.

ITU-T Rec. T.124 (01/2007) 29

Node Controller GCC Provider

GCC-Conference-Join
request

Top GCC Provider

GCC-Conference-Join
confirm

Node Controller

GCC-Conference-Join

indication

GCC-Conference-Join

response

T.124(01-07)_F7-03

Figure 7-3 — GCC-Conference-Join — Sequence of primitives

7124 GCC-Conference-Invite

The GCC-Conference-Invite request primitive may be used by a Node Controller to invite a node to

join aconference. This primitive may be used as a result of GCC-Conference-Add indication, or may

be issued directly by the inviting node. If the add is successful, the adding MCU invites the added
node to join the conference by issuing the GCC-Conference-Invite request primitive. Note that even

if the conference is Password protected, no Password is needed by the invited node in order to accept
the invitation to join the conference. Table 7-5 shows the parameters and types of this primitive.
Figure 7-4 shows the sequence of events when using this primitive.

Table 7-5 - CC-Conference-Invite— Types of primitives and their parameters

Parameter

Request

Indication

Response

Confirm

Conference ID

M

M

M(=IN)

M(=RQ)

Conference Name

M

Conference Name Modifier

C

Caller Identifier

O

O(=)

Cdlling Address

O

O(=)

Called Address

o

Domain Parameters

<

Quality of Service

Password In The Clear Required

Conference Locked

Conference Listed

Conference Conductible

Termination Method

Conductor Privilege List

Conducted-mode Conference Privilege List

Non-conducted-mode Conference Privilege List

Conference Description

O0I0(0|ZZ|Z|Z[(Z5|IZX(L

Local Network Address

30 ITU-T Rec. T.124 (01/2007)

Table 7-5 - CC-Conference-Invite— Types of primitives and their parameters

Parameter Request Indication | Response | Confirm
Conference Priority O O(=)
Node Category O O(=)
Conference Mode O O(=)
User Data O O(=) O O(=)
Result M M(=)

Conference ID: Identifier of the conference to which the primitive refers.

Conference Name: The name of the conference as specified in the Conference Profile. If the
Conference Name includes both numerical and text forms, both forms shall be included in this
parameter.

Conference Name Modifier: If a conference already exists at the node issuing the invite response
with a name identical with the Conference Name of the conference to be joined, this parameter shall
be included in the GCC-Conference-Invite response and shall indicate the Conference Name
Modifier by which the conference shall be known at the local node. This parameter, if included, shall
be different from any Conference Name Modifier already in use for any other conference the local
node is currently joined to with the same Conference Name. If used, this parameter becomes the
Calling Node Conference Name Modifier by which another node attempting to join this conference
through a connection to the local node refers to this conference. This name is also included as the
Conference Name Modifier parameter in any GCC-Conference-Query response from this node (if
the conference islisted). Thisisanumerical string up to 255 digitsin length.

Caller Identifier: Optional Unicode text string (maximum 255 characters) which may be used to
identify the calling node to the node at which the conference is to be created. The use of this
information at this node is beyond the scope of this Recommendation. It may be used, for example,
to allow a user at that node to select among a limited set of participants which are allowed to invite
this node into a conference. Because this string can be set to any value, it does not necessarily add to
the security of a conference to do this, however.

Calling Address. Optional address to be included in the MCS-Connect-Provider primitive on
establishing an MCS connection. See[ITU-T T.122] for the interpretation of this parameter.

Called Address: Optional address to be included in the MCS-Connect-Provider primitive on
establishing an MCS connection. See [ITU-T T.122] for the interpretation of this parameter.

Domain Parameters: Domain parameters to be included in the MCS-Connect-Provider primitive on
establishing an MCS connection. See [ITU-T T.122] for the interpretation of this parameter.

Quality of Service: Quality of Service parameters to be included in the MCS-Connect-Provider
primitive on establishing an MCS connection. See [ITU-T T.122] for the interpretation of this
parameter.

Password In The Clear Required: This is a Boolean parameter that indicates that the conference is
password protected with a password that may be used without encryption in a GCC-Conference-Join
request without first being challenged for the password. If the joining node is an MCU, this
information is used by the GCC Provider in generating the response to a GCC-Conference-Query
indication. This information shall be used by the Node Controller in determining whether or not the
Password parameter may be included in a GCC-Conference-Transfer request.

ITU-T Rec. T.124 (01/2007) 31

Conference Locked: This flag indicates whether or not the joined conference is locked or unlocked.
If the joining node is an MCU, this information shall be used in generating the response to a
GCC-Conference-Query indication.

Conference Listed: This flag indicates whether or not the joined conference is listed or unlisted. If
the joining node is an MCU, this information shall be used in generating the response to a
GCC-Conference-Query indication. In particular, conferences which are indicated as being unlisted
shall not be listed in the conference list provided with the GCC-Conference-Query response.

Conference Conductible: The TRUE setting of this flag indicates that this conference may be placed
in conducted mode using the GCC-Conductor-Assign primitive. The FALSE setting of this flag
indicates that this conference shall be non-conducted only, and attempts to assign a conductor shall
be rejected.

Termination Method: This flag indicates the termination rule for the joined conference. The
conference may be either manually or automatically terminating.

Conductor Privilege List: This is a list of flags indicating which functions the convener has
designated as allowable to be used by the conference conductor, if any. The flags in this list
correspond to the operations. GCC-Conference-Terminate, GCC-Conference-Eject-User,
GCC-Conference-Add, GCC-Conference-Lock, GCC-Conference-Unlock and GCC-Conference-
Transfer.

Conducted-mode Conference Privilege List: This is a list of flags indicating which functions the
convener has designated as allowable to be used by any node in a conducted-mode conference. The
flagsin thislist correspond to the same operations as for the above parameter.

Non-conducted-mode Conference Privilege List: Thisisalist of flags indicating which functions the
convener has designated as alowable to be used by any node in a non-conducted-mode conference.
Theflagsin thislist correspond to the same operations as for the above parameter.

Conference Description: This parameter is a Unicode text string, up to 255 characters in length,
describing the conference. It is present in the confirm primitive only if included at the time of
conference creation.

Local Network Address: If included in the response, the local GCC Provider at the corresponding
node shall use this information to include as the Network Address parameter in the Conference
Descriptor List sent as part of the response to a GCC-Conference-Query request from another node.
In the GCC protocol, this parameter is reflected by ASN.1 structures NetworkAddress and
NetworkAddressV 2. See Annex B for the description and use of these.

Conference Priority: An optiona parameter to specify the priority of a conference. This may be used
in some situations to determine whether or not the indication should be accepted. The parameter
includes two subparameters. the priority and the scheme. The priority is an integer value ranging
from zero to 65535. The scheme indicates the procedures by which the priority value is to be
interpreted. At this time, only non-standard schemes are supported. Standardized procedures for
interpretation of this parameter are for further study.

Node Category: This informs the node that is being invited of the node category into which it falls.
The invited node has no say in this selection. The invite should fail when an older protocol node that
does not understand Node Categories is invited. When this occurs, the result should state that the
node category parameter was unacceptable.

Conference Mode: An optional parameter used to specify the mode of a conference. This parameter
informs the invited node which Node Categories are allowed to participate in the conference.
Conference Modes include: conventional-only, which allows only Conventional nodes to join the
conference; counted-controlled, which allows only Counted and Conventional nodes to join the
conference; anonymous-controlled, which alows only Anonymous and Conventional nodes to join
the conference; and unrestricted-mode, which allows all three node categories to participate in the

32 ITU-T Rec. T.124 (01/2007)

conference. Note that Conventional nodes wishing to join either a counted-controlled or an
anonymous-controlled conference must specify a password upon joining.

User Data: Optional user data which may be used for functions outside the scope of this
Recommendation such as authentication, billing, etc.

Result: An indication of whether the request was accepted or rejected, and if rejected, the reason
why. It contains one of alist of possible results: successful, user rejected, invalid conference, domain
parameters unacceptable, domain not hierarchical, lower-layer initiated disconnect, unspecified
failure to connect and, node category unacceptable. A negative result in the GCC-Conference-Invite
confirm does not imply that the physical connection to the node to which the connection was being
attempted is disconnected.

Inviting MCU L . Invited Node
Node Controller GCC Provider GCC Provider Node Controller

GCC-Conference-Invite

GCC-Conference-Invite
request

indication

GCC-Conference-Invite

GCC-Conference-Invite response
confirm

T.124(01-07)_F7-04

Figure 7-4 — GCC-Conference-I nvite — Sequence of primitives

7125 GCC-Conference-Add

The GCC-Conference-Add request primitive may be used by a Node Controller to add a single
additional node to an existing conference by requesting that an MCU dia out the specified node.
This primitive is only valid if issued by the Convener or a convener-designated node. If the Adding
MCU is specified, the sequence of primitivesis direct between the requester and the adding MCU. If
the Adding MCU is not specified, the indication is issued from the Top GCC Provider. In this case,
if a port capable of performing the add is available at this node, the exchange is also direct. If the
Node Controller at the Top GCC Provider maintains or has access to a central database of port
information for all MCUs in the conference, it may perform the add indirectly by issuing another
GCC-Conference-Add request, specifying an Adding MCU (even if the top MCU is not a
convener-designated privileged node for this operation).

Once provision has been made to set up the physical connection to the Added Node (if needed), the
GCC-Conference-Invite request primitive shall be issued by the Adding MCU to invite the Added
Node into the conference. If the Adding MCU already has a physical connection to the Added Node,
the Adding MCU may issue the GCC-Conference-Invite request directly to the Added Node without
establishing a new physical connection. If this connection had been established without knowledge
of the Network Address of the Added Node (e.g., the Added Node had dialled into the Adding MCU
to connect to a separate conference), the Network Address parameters in the Conference Roster may
be used to provide the information needed to match the Network Address of an already connected
node with that of a node to be added. Table 7-6 shows the parameters and types of this primitive.
Figures 7-5 and 7-6 show the sequence of events when using this primitive in the direct and indirect
cases, respectively.

ITU-T Rec. T.124 (01/2007) 33

Table 7-6 — GCC-Conference-Add — Types of primitives and their parameters

Parameter Request Indication Response Confirm
Conference ID M M M(=IN) M(=RQ)
Network Address M M(=) M(=) M(=)
Adding MCU Node ID @]
Requesting Node ID M M(=)
Node Category O o(=)
User Data O O(=) O O(=)
Result M M(=)

Conference ID: Identifier of the conference to which the primitive refers.

Network Address: This parameter consists of a list of one or more connection descriptions, each
representing a portion of the total logical connection toward the added node. A particular connection
description provides information on the network connection to be established toward the added node
(type of network, type of circuit, network address), and optionally the possible ways to aggregate
digital circuits when relevant, the multimedia profiles that the adding MCU may operate over the
connection, and the media (i.e., audio, video, data) concerned with the connection. Parameters
composing each element of the network address are presented in 7.1.2.5.1. In the GCC protocol, this
parameter is reflected by ASN.1 structures NetworkAddress and NetworkAddressV2. See Annex B
for the description and use of these.

The NSAP part of a transport address may encapsulate within itself certain patterns that by
convention suggest the choice of a switched connection or a connectionless network protocol. In
such cases, the listed element stands alone as an independent alternative to any aggregated channel
or non-standard addresses that may also be present. On the other hand, a transport address may
instead be incomplete and may depend implicitly on the shared use of a data channel opened within a
multimedia multiplex of aggregated channels, as specified in [ITU-T T.123] or in some non-standard
way. In these cases, a locally-specified NSAP address and/or transport selector may be needed to
steer new connections in the data channel to the correct termination point. NSAP addresses are
conveyed, according to [ITU-T T.123], as Calling or Called Party Subaddress information elements
in SETUP, and transport selectors as TSAP identifiersin an X.224 connection request.

Adding MCU Node ID: This is an optiona parameter which may be used to specify the particular
MCU node from which the called node is to be added. If this parameter is not specified, the called
node may be added from any available MCU in the conference. In this case, the indication occurs
from the Top GCC Provider. The node controller at that MCU may either service it localy, or issue
another request to a specific MCU.

Requesting Node ID: Node ID of the requesting node.

Node Category: This informs the node that is being invited of the node category into which it falls.
The invited node has no say in this selection. The invite should fail when an older protocol node that
does not understand Node Categories is invited. When this occurs, the result should state that the
node category parameter was unacceptable.

User Data: Optional user data which may be used for functions outside the scope of this
Recommendation such as authentication, billing, etc.

Result: An indication of whether the request was accepted or rejected, and if rejected, the reason
why. It contains one of alist of possible results: successful, invalid conference, invalid adding MCU,
not convener or convener-designated node, invalid network type, invalid network address, added
node busy, network busy, connection unsuccessful, no ports available.

34 ITU-T Rec. T.124 (01/2007)

Requesting Node GCC Top GCC GCC Adding MCU GCC GCC Added Node
Node Controller Provider Provider Provider Node Controller Provider Provider Node Controller

GCC-Conference-
Invite request

GCC-Conference-

GCC-Conference- Invite indication

Add request GCC-Conference-
Add indication

GCC-Conference-

GCC-Conference- Add response

Add confirm

GCC-Conference-
GCC-Conference- Invite response
Invite confirm

T.124(01-07)_F7-05

Figure 7-5 - GCC-Conference-Add (direct case) — Sequence of primitives

Requesting Node GCC Top GCC Top MCU Top GCC GCC Adding MCU GCC GCC Added Node
Node Controller Provider Provider Node Controller Provider Provider Node Controller Provider Provider Node Controller

GCCf:—
Gee oo Rag uec aec-
Conference: gccf- . indication lr? Qggflm:; l(r,l(c;ttgrcncc-
onference- i I vi ues Invite
Add request Add Con fer%l(l:c(é— > indication
indication Add request
GCC-
GCC- Conference- «—— <
GCC- Conference- Add confirm e GCC- GCC-
Conference- Add response —— See Conference- Conference-
Add confirm , ¢ - Invite confirm Invite
«—— < onference- response
Add responsc

T.124(01-07)_F7-06

Figure 7-6 — GCC-Conference-Add (indirect case) — Sequence of primitives

7.1.25.1 Network Address Element
The structure of a Network Address element is presented by Table 7-7.

Table 7-7 — Structure of a Networ k Address element

Parameter Description

Network Connection This parameter consists in either of a single connection description or the
description of a connection formed by aggregation of ISDN or CSDN digital
circuits. This parameter is described in details through points 1) and 2) hereafter.

Profiles This parameter is alist of one or more profiles that may be operated over the
connection. Each profile may describe a basic transfer mode such as simple
telephony or a more complex suites of protocols such as H.320/T.120. Possible
values are " Speech”, "3 kHz telephony”, "7 kHz telephony”, "Voice-band",
"Frame Relay", "T.123 basic profile for PSTN/GSTN", "T.123 basic profile for
PSDN", "T.123 basic profile for B-ISDN", "H.310", "H.320", "H.321", "H.322",
"H.323", "H.324", "H.324m", "ASVD", "DSVD", "DSM-CC Download Profile"
and "Non Sandard". For multimedia profiles (H.32x, ASVD and DSVD), a
Boolean flag is associated to indicate whether the T.120 suites of protocols shall
be operated for the data portion of the multiplex. The exact structures of
non-standard profiles are user-defined.

Media Concerned Thisisalist of three Boolean flags that gives the list of media (i.e., audio, video
and data) that are concerned by the connection.

ITU-T Rec. T.124 (01/2007) 35

1) Sngle connections

When Network Connection consistsin a single connection, it may take different forms, depending on

whether or not the connection is accurately described, and, when it is the case, on the type of

network to which the added node is connected. Networks considered by this version of T.124 are

GSTN, ISDN, CSDN, PSDN and ATM networks.
1a) GSTN connections:

For GSTN networks, Network Connection simply consists in an Extended E.164
Network Address, where optional parameter Sub-Address is not applicable. The structure

of an extended E.164 network address is presented by Table 7-8-1 below:

Table 7-8-1 (see Note) — Structure of an extended E.164 network address

Parameter

Description

International Number

Thisisastring of digits, up to 16 digitsin length, which represents the full
international number of the node to be added.

Sub-Address
(optional)

Thisisan optional parameter, valid only in the case of ISDN transfer modes,
which represents the ISDN sub-address of the node to be added. Thisisastring
of digits, up to 40 digitsin length.

ExtraDialing String
(optional)

Thisis an optional parameter which indicates that additional information is
needed to reach the node to be added once the physical connection has been
established. In the case of a speech or voice-band data connection, for example,
this may represent DTMF tones to be transmitted over the voice channel once it
has been established. Alternatively, the extra dialling may represent a virtual
private network number. Thisisastring up to 255 characters which may be
either the digits 1 through 9, the "#" character, the "*" character, or the","
(comma) character. The comma character is meant to represent a one-second
delay the Adding MCU isto insert prior to the characters which follow.

NOTE — Tables 7-7-2 to 7-7-6 of T.124 (1998) were renumbered in the 2007 edition to Tables 7-8-1 to 7-8-5,

respectively.

1b) ISDN connections:

For ISDN networks, Network Connection consists in a structure of two elements, the
first being a list of circuit types that the added node and its access network are capable
of operating, the second being an extended E.164 network address that shall be dialled
to reach the added node. Table 7-8-2 shows the structure of a single ISDN connection
descriptor:

Table 7-8-2 (see Note) — Structure of a single connection — I SDN networ ks case

Parameter

Description

Circuit Types

Thisisalist of one or more types of circuits that may be switched to reach the
added node. Possible types correspond to the codepoints of octet 4 of |E Bearer
Capability of ITU-T Rec. Q.931. These are "digital 64k channel” (B-Channel),
"2 x digital 64k channel”, "digital 384k channel” (HO channel), "digital 1536k
channel" (H11 channel), "digital 1920k channel" (H12 channel) and "multirate
based 64k channels'. For the latest option, an integer valueisindicated, the
multiplier, that gives the effective rate. When more than one typesis passed, the
choiceis|eft to the discretion of the adding MCU.

Extended E.164
Network Address

This parameter has the format described by Table 7-8-1.

36 ITU-T Rec. T.124 (01/2007)

Table 7-8-2 (see Note) — Structure of a single connection — 1 SDN networks case

Parameter Description

High Layer
Compatibility of the connection isto use. Thisinformation is required for connections made in
Information (optional) | some countries. The modes of operation are one or more of telephony at 3 kHz

Thisis an optional parameter which indicates the mode of operation this portion

bandwidth, telephony at 7 kHz bandwidth, videotel ephony, videoconferencing,
audiographics, audiovisual, or multimedia. If more than one of these is selected,
thisindicates that the Adding MCU may use one of the indicated modes at its
discretion. The definitions of these choices may depend on the country of
operation of the Adding MCU. The codepoints defined for this parameter match
those defined for Information Element Higher Layer Compatibility of the ISDN
signalling protocol (ITU-T Rec. Q.931).

1c)

CSDN connections:

For CSDN networks, Network Connection consists in a structure of two elements, the
first being a list of circuit types that the added node and its access network are capable
of operating, the second being an extended E.164 network address that shall be dialled
to reach the added node. Table 7-8-3 shows the structure of a single CSDN connection
descriptor:

Table 7-8-3 (see Note) — Structure of a single connection — CSDN networ ks case

Parameter Description

Circuit Types Thisisalist of one or two types of circuits that may be switched to reach the

added node. Possible types are "digital 56k channel" and "digital 64k channel".
When both types are passed, the choice is |eft to the discretion of the adding
MCU.

Extended E.164 This parameter has the format described by Table 7-8-1.
Network Address

1d) ATM connections:

le)

For ATM networks, Network Connection consists in a structure of two elements, the
first being either of an extended E.164 network address, a NSAP address, or a
non-standard address format assumed to be understood by the adding MCU, and the
second being an optional integer value giving the maximum possible transfer rate
toward the added node, expressed in ATM cells per seconds.

NOTE — Certain private ATM networks use the E.164 standard address format coupled with an
NSAP to reach endpoaints. In that case, optional parameter Extra Dialling String may be used to
convey the NSAP.

PSDN connections:

For PSDN networks, Network Connection simply consists in either of the extended
E.164 network address described by Table 7-8-1, a Transport Address Descriptor, or a
non standard address format assumed to be understood by the adding MCU. Table 7-8-4
gives the structure of atransport address descriptor:

ITU-T Rec. T.124 (01/2007) 37

Table 7-8-4 (see Note) — Structure of transport addr ess descriptor

Parameter Description
NSAP Address Thisisan Octet String of up to 20 octets in length which is the preferred binary
encoding (per A.8.3.1/X.213) of the Network Service Access Point address of
the node to be added.
Transport Selector Thisis an optional parameter which may be used to select the Transport Service
(optional) Access Point at the node to be added.

1f) Undescribed connections:

In this case, Network Connection consists in either of the extended E.164 network
address described by Table 7-8-1, a Transport Address Descriptor, or a non-standard
address format assumed to be understood by the adding MCU.

2) ISDN or CSDN digital circuits aggregation
When parameter Network Connection of Table 7-7 is used for aggregated CSDN or ISDN channels,
it has a structure of two elements, the first being a list of digital circuits that shall be aggregated

together, the second being an optional list of channel aggregation algorithms usable for aggregating
the circuits. Table 7-8-5 details this structure:

Table 7-8-5 (see Note) — Structure of an aggr egated channels connection

Parameter Description
Aggregated Thisisalist of one ore more elements, each having either of the structures
Connections described in Tables 7-8-2 and 7-8-3. When one or more elements of thelist gives
multiple circuit types, the choiceisleft to the adding MCU for the final
combination.
Aggregation Methods | Thisisalist of one or more standard or non-standard channel aggregation
(optional) algorithms that may be used to aggregate digital circuits together. Possible

standard algorithms are "H.221", "H.244" and "I1SO/IEC 13871". Non-standard
algorithms are supposed to be understood by the adding MCU. This parameter is
optional. If not supplied, the choiceis left to the adding MCU.

NOTE — The actual algorithm isimplicit for certain profiles that may be listed
by parameter Profiles of Table 7-7 (ex. ITU-T Rec. H.320).

7.1.26 GCC-Conference-Lock

The GCC-Conference-Lock request primitive may be used by a Node Controller to lock a
conference, preventing other nodes from dialling into the conference at al. This primitive is valid
only if issued by the Convener or a convener-designated node. While locked, participants may be
added to a conference only by using the GCC-Conference-Invite primitive (or indirectly inviting via
the GCC-Conference-Add primitive). The order of GCC-Conference-Lock and GCC-Conference-
Unlock primitives exchanged between a node and the Top GCC Provider is preserved. Table 7-9
shows the parameters and types of this primitive. Figure 7-7 shows the sequence of events when
using this primitive.

Table 7-9 — GCC-Conference-Lock — Types of primitivesand their parameters

Par ameter Request Indication Response Confirm
Conference ID M M M(=IN) M(=RQ)
Source Node ID M M(=)
Result M M(=)

38 ITU-T Rec. T.124 (01/2007)

Conference ID: Identifier of the conference to which the primitive refers.
Source Node ID: Node ID of the requesting node.

Result: An indication of whether the request was accepted or rejected, and if rejected, the reason
why. It contains one of a list of possible results: successful, invalid conference, function not
available, already locked, not convener or convener-designated node.

Node Controller

GCC Provider Top GCC Provider

GCC-Conference-Lock

request

indication

GCC-Conference-Lock

confirm

response

GCC-Conference-Lock

E}CC—Con ference-Lock

Node Controller

All Nodes

GCC Provider Node Controller

GCC-Conference-
Lock-Report indication

T.124(01-07)_F7-07

Figure 7-7 — GCC-Conference-L ock — Sequence of primitives

7.1.2.7

GCC-Conference-Unlock

The GCC-Conference-Unlock request primitive may be used by a Node Controller to unlock a

previously locked conference. Unlocking a conference allows other nodes to join the conference by
dialling into it in a meet-me style. If the conference was created specifying the use of Password
protection, the Password is still required for any participant attempting to join the unlocked
conference. This primitive is valid only if issued by the Convener or a convener-designated node.

The order of GCC-Conference-Lock and GCC-Conference-Unlock primitives exchanged between a
node and the Top GCC Provider is preserved. Table 7-10 shows the parameters and types of this
primitive. Figure 7-8 shows the sequence of events when using this primitive.

Table 7-10 - GCC-Conference-Unlock — Types of primitivesand their parameters

Parameter Request Indication Response Confirm
Conference ID M M M(=IN) M(=RQ)
Source Node ID M M(=)

Result M M(=)

Conference ID: Identifier of the conference to which the primitive refers.
Source Node ID: Node ID of the requesting node.

ITU-T Rec. T.124 (01/2007)

39

Result: An indication of whether the request was accepted or rejected, and if rejected, the reason
why. It contains one of a list of possible results: successful, invalid conference, function not
available, already unlocked, not convener or convener-designated node.

Node Controller GCC Provider Top GCC Provider Node Controller

GCC-Conference-
Unlock request GCC-Conference-

Unlock indication

GCC-Conference-

GCC-Conference- Unlock response

Unlock confirm

S All Nodes
GCC Provider Node Controller

GCC-Conference-

Lock-Report

indication

T.124(01-07)_F7-08

Figure 7-8 — GCC-Conference-Unlock — Sequence of primitives

7.1.2.8 GCC-Conference-L ock-Report

The GCC-Conference-Lock-Report indication primitive is issued to the Node Controller at al nodes
in a conference as a result of a successful GCC-Conference-Lock request or a successful
GCC-Conference-Unlock request. Figures 7-7 and 7-8 show the sequence of events leading to the
use of this primitive. See also Table 7-11.

Table 7-11 — GCC-Conference-L ock-Report —
Types of primitivesand their parameters

Parameter Indication
Conference ID M
Locked/Unlocked M

Conference ID: Identifier of the MCS Domain corresponding to the locked conference.
Locked/Unlocked: Flag indicating if the conference has switched into locked or unlocked mode.

7129 GCC-Conference-Disconnect

The GCC-Conference-Disconnect request primitive is used by a Node Controller to disconnect itself
from a conference. Disconnecting from a conference does not imply disconnecting the corresponding
physical connection. Once disconnected from the conference, a terminal may then join another
conference. If GCC detects that a node has abnormally disconnected from a conference (e.g., the
physical call has been disconnected), it shal send a GCC-Conference-Disconnect indication to all
remaining nodes in the conference. Table 7-12 shows the parameters and types of this primitive.

40 ITU-T Rec. T.124 (01/2007)

Figures 7-9 and 7-13 show the sequence of events when using this primitive for client-initiated
disconnects. Figure 7-11 shows the case of a GCC-initiated abnormal disconnect.

Table 7-12 — GCC-Conference-Disconnect — Types of primitives and their parameters

Parameter Request Indication Confirm
Conference ID M M M(=RQ)
Reason for disconnect M
Disconnecting Node ID M
Result M

Conference ID: Identifier of the conference to which the primitive refers.

Reason for disconnect: Indication of the reason for disconnecting from the conference. Either
user-initiated, gjected node, or unknown.

Disconnecting Node ID: Node ID corresponding to the disconnected node.

Result: An indication of whether the request was accepted or rejected, and if rgected, the reason
why. It contains one of alist of possible results. successful, invalid conference.

NOTE — If it is necessary to allow a Node Controller to disconnect from a conference prior to completion of
the connection establishment (e.g., prior to reception of a GCC-Conference-Join confirm), it would be
necessary to provide a local means of association of the conference to be disconnected with the conference
being established. This is because the Conference ID is not known by the Node Controller until after creating
or joining a conference. The mechanism for doing so is a loca matter and is beyond the scope of this
Recommendation.

All Nodes

Node Controller GCC Provider GCC Provider Node Controller

GCC-Conference-Disconnect

GCC-Conference-Disconncect
request

indication

GCC-Conference-Disconnect
confirm

T.124(01-07)_F7-09

Figure 7-9 — GCC-Conference-Disconnect (client-initiated) — Sequence of primitives

7.1.2.10 GCC-Conference-Terminate

The GCC-Conference-Terminate request primitive is used by a Node Controller to terminate an
entire conference. This primitive shall only be issued by the conference Convener or a
convener-designated node. Terminating a conference does not imply termination of the
corresponding physical connection. Table 7-13 shows the parameters and types of this primitive.
Figures 7-10, 7-11 and 7-12 show the sequence of events when using this primitive for
client-initiated and GCC-initiated cases. The GCC-initiated case can result either from abnormal
termination at the lower layers of the protocol, or at the Top GCC Provider, if the conference had
been created as an automatically terminating conference and all other nodes have disconnected from
the conference.

ITU-T Rec. T.124 (01/2007) 41

NOTE — In most cases, reception of the GCC-Conference-Terminate indication implies that the entire
conference has been terminated — i.e., all members have been disconnected. In the case that error termination
is given as the reason code, this primitive implies that the local node has been unexpectedly removed from the
conference, but does not necessarily imply that the entire conference has been terminated.

Table 7-13 - GCC-Conference-Terminate — Types of primitives and their parameters

Parameter Request Indication Confirm
Conference ID M M M(=RQ)
Reason for termination O O(=)
Result M

Conference ID: Identifier of the conference to which the primitive refers.

Reason for termination: Indication of the reason for termination of the conference. This contains one
of alist of possible reasons: requested normal termination, requested timed conference termination,
no more participants in automatically terminating conference, error termination.

Result: An indication of whether the request was accepted or rejected, and if rejected, the reason
why. It contains one of a list of possible results: successful, invalid conference, not convener or
convener-designated node.

Node Controller GCC Provider Top GCC Provider GCC Provider All Nodes
Node Controller
GCC-Conference-Terminate GOC-Conforence.Terminate
request P
ey] mdwdtwn*

GCC-Conference-Terminate
confirm

GCC-Conference-Terminate
indication

T.124(01-07)_F7-10

Figure 7-10 — GCC-Conference-Terminate (client-initiated) — Sequence of primitives

42 ITU-T Rec. T.124 (01/2007)

GCC Provider Removed Node GCC Provider All Remaining Nodes

Node Controller Node Controller
GCC-Conference'_I’er_mi nate GCC-Conference-Disconnect
indication indication

T.124(01-07)_F7-11

Figure 7-11 — GCC-Conference-Terminate (error termination) — Sequence of primitives

Remaining Node

GCC Provider Node Controller

GCC-Conference-Terminate
indication

T.124(01-07)_F7-12

Figure 7-12 — GCC-Conference-Terminate (automatic termination) —
Sequence of primitives

7.1.2.11 GCC-Conference-Eject-User

The GCC-Conference-Eject-User request primitive is used by a Node Controller to force a particular
node to be disconnected from a conference. This primitive shall only be issued by the conference
Convener or a convener-designated node or by a node directly above the gected node in the
connection hierarchy. Being eected from a conference does not imply termination of the
corresponding physical connection. When a node is gected, a GCC-Conference-Disconnect
indication is issued to the Node Controller at all nodes remaining in the conference indicating that
the gected node has disconnected due to being gected. Table 7-14 shows the parameters and types
of this primitive. Figure 7-13 shows the sequence of events when using this primitive.

Table 7-14 — GCC-Conference-Eject-User — Types of primitivesand their parameters

Par ameter Request Indication Confirm
Conference ID M M M(=RQ)
Ejected Node ID M M(=) M(=)
Reason for gjection @) O(=)
Result M

ITU-T Rec. T.124 (01/2007) 43

Conference ID: Identifier of the conference to which the primitive refers.
Ejected Node ID: The node to be gected.

Reason for gjection: Indication of the reason for gjection: user-initiated, higher node disconnected, or
higher node gjected.

Result: An indication of whether the request was accepted or rejected, and if rejected, the reason
why. It contains one of alist of possible results: successful, invalid conference, invalid user to gect,
not convener or convener-designated node.

Node GCC Top GCC GCC Ejected Node GCC All Remaining Nodes
Controller Provider Provider Provider Node Controller Provider Node Controller

GCC-Conference- . X
Eject-User request GCC-Conference- GCC-Conference-
Eject-User indication Disconnect indication

GCC-Conference-
Eject-User confirm

T.124(01-07)_F7-13

Figure 7-13 — GCC-Conference-Eject-User (client-initiated) — Sequence of primitives

7.1.2.12 GCC-Conference-Transfer

The GCC-Conference-Transfer request primitive is used by a Node Controller to cause selected
nodes in a conference to disconnect from that conference and join another conference. This primitive
shall only be issued by the conference Convener or a convener-designated node. Some MCUs in a
conference may be already joined to both the originating and destination conferences prior to the
transfer taking place. If so, these MCUs shall not be included in the list of Transferring Nodesin this
request. If an MCU is not joined with both conferences but will be connected to nodes which, after
the transfer, will be joined to both conferences (if not all nodes are transferred), then that MCU shall
be joined to the destination conference prior to issuing the GCC-Conference-Transfer request. Any
MCU which isincluded in the list of Transferring Nodes (those which are intended to transfer) shall
complete the transfer operation (disconnecting from the originating conference and joining the
destination conference) prior to processing any new GCC-Conference-Join indications. This allows
the join request from the nodes below that MCU in the connection hierarchy to be successfully
completed. Nodes which are in the process of transferring and receiving a GCC-Conference-
Terminate indication for the originating conference may proceed directly to joining the destination
conference without disconnecting if they have not aready done so. This situation could arise if the
MCU to which the node is connected was also instructed to transfer. Table 7-15 shows the
parameters and types of this primitive. Figure 7-14 shows the sequence of events when using this
primitive.

44 ITU-T Rec. T.124 (01/2007)

Table 7-15 - GCC-Conference-Transfer — Typesof primitives and their parameters

Parameter Request Indication Confirm
Conference ID M M M(=RQ)
Destination Conference Name M M (=) M(=)
Destination Conference Name Modifier @] o= o(=)
Destination Network Address @] o(=)
Transferring Nodes (List of Node IDs or null) @] o(=)
Password C C(=)
Result M

Conference ID: Identifier of the MCS Domain corresponding to the conference to which the
designated nodes are joined prior to the transfer operation.

Destination Conference Name: Name of the conference to which the designated nodes are instructed
to join. This is the name by which the conference is known at the MCU or MCUs to which the
transferring nodes are connected. If the conference had been created using both the numerical and
text forms of the Conference Name, either form may be used in this primitive.

Destination Conference Name Modifier: If an MCU in the destination conference had chosen to use
the optional Conference Name Modifier (as a result of local naming unigqueness problem), nodes to
be transferred which are connected to this MCU must be transferred separately, with a separate
exchange of the GCC-Conference-Transfer primitive from those nodes which are connected to
MCUs using the unmodified (or differently modified) base Conference Name. The manner by which
the requesting node becomes aware of Conference Name Modifiers at various MCUs is considered a
matter outside the scope of this Recommendation.

Destination Network Address. This parameter optionally describes a nominal logical connection that
each transferred node shall use to join the destination conference, if it is not directly connected to an
MCU already joined (or hosting) the destination conference. Each portion of the logical connection
is described in terms of network type, network address, transfer rate when relevant, and optionally a
multimedia profile that shall be operated, a digital circuits aggregation algorithm when applicable,
and the list of media (e.g., audio, video, data) that are concerned by this portion. The relevant parts
(i.e, network address elements) are to be passed as parameter Called Address in the
GCC-Conference-Join-request to be issued by a transferring node. In the GCC protocol, this
parameter is reflected by ASN.1 structures NetworkAddress and NetworkAddressV2. See Annex B
for the description and use of these.

NOTE — The model assumes that a nominal logical connection is available for all transferring nodes, which
may not be valid assumption in all cases. For instance, in the case of an ISDN 2 B-Channels/H.320 based
conference, this assumes that the same E.164 number (or pair of E.164 numbers) may be used by all nodes
transferring to the destination conference. In the case where the ISDN network does not supply the Calling
Party Number at the called side, the connected MCU has no mean to associate individual B-Channels into
pairs. Providing a destination network address on a per transferring node basis is left for further study.

Transferring nodes (List of Node IDs or null): List of Node IDs identifying GCC Providers to which
the indication should go, or omitted, to indicate it should go to all nodes in the conference designated
by the Conference ID.

Password: This parameter indicates the password that the transferring nodes shall use in the
GCC-Conference-Join request to join the new conference. This is a numeric string or a Unicode
Row 00 text string (maximum 255 digits or characters). The Node Controller shall determine
whether to send the Password as atext string or numeric string based on its value. A value consisting
only of numeric digits shall be specified as a numeric string, while a value including at least one

ITU-T Rec. T.124 (01/2007) 45

non-numeric character shall be specified as a text string. This parameter shall only be used if the
Password In The Clear Required flag is set for this conference.

Requesting Node GCC Top GCC GCC Transferring Node GCC GCC All Nodes — Original
Node Controller Provider Provider Provider Node Controller Provider Provider Conference Node Controller
GCC-Conference- .
Transfer request GCC'COI.lfCI,“nC.V N >
Transfer indication GCC-Conference- e
Disconnect request GCC-Conference-
Disconnect
indication
GCC-Conference-
Transfer confirm GOC-Conference-
«— Disconnect confirm
Top GCC Top MCU - Destination
Provider Conference Node Controller
GCC-Conference-
Join indication
GCC-Conference-
Join request
o GCC-Conference-
(1(,(/7(/<.mlerence— Join response
Join confirm

T.124(01-07)_F7-14

Figure 7-14 — GCC-Conference-Transfer — Sequence of primitives

7.1.3 Conference establishment requirements

In order to avoid the possibility of a deadlock situation in which both sides of a physical connection
fail to initiate the GCC conference establishment procedure, waiting for the other to do so, the
following requirements are defined for the conference establishment procedure when a physical
connection is established (that is, an underlying connection between the two nodes using the PSTN,
ISDN, or CSDN cases of T.123). These requirements may be superseded by bilateral agreement
between the nodes involved, either via a priori arrangement, or via an exchange of information
defined outside of the scope of this Recommendation.

. It must first be known by both ends of the physical connection which end is the calling node
and which end is the called node. It must also be known what type of node each of the two
nodes are (terminal, multiport terminal, or MCU). This information may be obtained either
using the GCC-Conference-Query primitive, or it may be known a priori. For determining
the calling vs. called node, if neither node is aware of which it is, the symmetry breaking
procedure defined for the GCC-Conference-Query primitive is used to arbitrarily choose one
node to be the caller for purposes of the conference establishment procedure.

. The calling node shall be responsible for initiating the initial conference establishment
procedure (either requesting creation of a new conference, joining a conference at the called
node, or inviting the called node into a conference). Note that this, in general, does not
preclude the called node from taking actions to establish a conference over the same
physical connection as well, although care must be taken in this case to ensure that this
action does not interfere with the action of the calling node. A called MCU may set the Wait
for Invite Flag in the GCC-Conference-Query response and in doing so relieve the calling
node of the responsibility of initiating a connection.

46 ITU-T Rec. T.124 (01/2007)

. When establishing calls among the various node types (terminals, multiport terminals, and
MCUs), constraints are placed on the actions of the calling node in initiating the initial
connection. Table 7-16 shows these constraints for each permutation of calling and called
node type. The definition of the actions shown in the table, numbered 1, 2, 3, and 4 are as
follows:

1) Calling node requests creation of a new conference at the Called node.
2) Cadling node attempts to join existing conference at the Called node.
3) Calling node creates a conference locally and invites the Called node.
4) Cadling node invites the Called node into an existing conference.

Table 7-16 — Actions of the Calling Node for Conference Establishment

Called Node
Calling Node
Terminal Multiport Terminal MCU
Terminal Either 1 or 3 Either 1 or 2 Either 1 or 2
Multiport Terminal Either 3or 4 Either 1,2, 3,0r 4 Either 1 or 2
MCU Either 3or 4 Either 3or 4 Either 1,2, 3,0r 4

In some cases, the calling node may need to make use of information from the called node contained
in the GCC-Conference-Query confirm to help choose among the allowed procedures defined in
Table 7-16. For example, when a Terminal or Multiport Terminal calls a Multiport Terminal, it may
make use of the presence or absence of unlocked conferences in the Conference Descriptor List to
determine whether it is most appropriate to create a conference automatically (actions 1, 3, or 4), or
to allow the user to attempt to join an existing conference at the called node (action 2). Therefore,
when creating any conference, making it listed and unlocked indicates that it is to be available to be
joined by a calling node. If the intent is not to allow a conference to be joined by a caler, the
conference shall be created as locked, unlisted, or both.

Table 7-17 defines the set of rules for determining the default action of the calling node (as well as
the called node) as a function of the node types and the parameter settings contained in the
GCC-Conference-Query confirm.

ITU-T Rec. T.124 (01/2007) 47

Table7-17 — Rulesfor deter mining the default action of the called and calling nodes

Calling Called ngllgrcgneges Default Conference | Wait for Invite No Unlisted Default Action of Calling | Default Action of
Node Type | Node Type in List Flag Flag Conference Flag Node Called Node
Terminal Terminal * * * * Caller invites Wait for caller
Multiport Terminal * * * * Cdler invites Wait for caller

Terminal
MCU Terminal * * * * Caller invites Wait for caller
Terminal Multiport FALSE * * * Caller creates remotely Wait for caller
Terminal
Terminal Multiport TRUE NOT PRESENT or * NOT PRESENT | Caller chooses conference | Wait for caller
Terminal FALSE for all or FALSE tojoin
conferences
Terminal Multiport TRUE NOT PRESENT or * TRUE Caller chooses listed Wait for caller
Terminal FALSE for all conference to join
conferences
Terminal Multiport TRUE TRUE for one * * Caller joins default Wait for caller
Terminal conference conference
Multiport Multiport FALSE * * * Caller invites Wait for caller
Terminal Terminal
Multiport Multiport TRUE NOT PRESENT or * NOT PRESENT | Caller chooses conference | Wait for caller
Terminal Terminal FALSE for all or FALSE tojoin
conferences
Multiport Multiport TRUE NOT PRESENT or * TRUE Caller chooses listed Wait for caller
Terminal Terminal FALSE for all conference to join
conferences

48 ITU-T Rec. T.124 (01/2007)

Table7-17 — Rulesfor deter mining the default action of the called and calling nodes

Calling Called ngllgrcgneges Default Conference | Wait for Invite No Unlisted Default Action of Calling | Default Action of
Node Type | Node Type in List Flag Flag Conference Flag Node Called Node
Multiport Multiport TRUE TRUE for one * * Caller joins default Wait for caller
Terminal Terminal conference conference
MCU Multiport * * * * Caller invites Wait for caller
Terminal
Terminal MCU FALSE * NOT NOT PRESENT | Caller chooses unlisted Wait for caller
PRESENT or or FALSE conference to join
FALSE OR Caller repeats query
Terminal MCU FALSE * NOT TRUE Caller repeats query Wait for caller
PRESENT or
FALSE
Terminal MCU TRUE NOT PRESENT or NOT NOT PRESENT | Caller chooses conference | Wait for caller
FALSE for all PRESENT or or FALSE tojoin
conferences FALSE
Terminal MCU TRUE NOT PRESENT or NOT TRUE Caller chooses listed Wait for caller
FALSE for all PRESENT or conferencetojoin
conferences FALSE
Terminal MCU TRUE TRUE for one NOT * Caller joins default Wait for caller
conference PRESENT or conference
FALSE
Terminal MCU * * TRUE * Caller waitsfor invitefrom | Called node invites
called node
Multiport MCU FALSE * NOT NOT PRESENT | Caller chooses unlisted Wait for caller
Terminal PRESENT or or FALSE conferenceto join
FALSE OR Caller repeats query

49 ITU-T Rec. T.124 (01/2007)

Table7-17 — Rulesfor deter mining the default action of the called and calling nodes

Calling Called ngllgrcgneges Default Conference | Wait for Invite No Unlisted Default Action of Calling | Default Action of
Node Type | Node Type in List Flag Flag Conference Flag Node Called Node
Multiport MCU FALSE * NOT TRUE Caller repeats query Wait for caller
Terminal PRESENT or
FALSE
Multiport MCU TRUE NOT PRESENT or NOT NOT PRESENT | Caller chooses conference | Wait for caller
Terminal FALSE for all PRESENT or or FALSE tojoin
conferences FALSE
Multiport MCU TRUE NOT PRESENT or NOT TRUE Caller chooses listed Wait for caller
Terminal FALSE for all PRESENT or conferencetojoin
conferences FALSE
Multiport MCU TRUE TRUE for one NOT * Caller joins default Wait for caller
Terminal conference PRESENT or conference
FALSE
Multiport MCU * * TRUE * Caller waitsfor invite from | Caled node invites
Terminal called node
MCU MCU * * * * FOR FURTHER STUDY FOR FURTHER
STUDY

50 ITU-T Rec. T.124 (01/2007)

7.1.4 Examples of conference establishment procedures

Conference establishment may be done in a variety of ways and under a variety of conditions. The
simplest conference is of the point-to-point variety where there is no MCU involved in the call. In
the cases where the conference is established through one or more MCUSs, a call would typically be
done in either the meet-me style (all participants call into an MCU), in the call-out style (the MCUs
set up the call by calling out to all participants), or in the call-through style (one participant calls
into an MCU, then adds other participants which are called by the MCU).

7141 Meet-me conference establishment

In a meet-me conference, a conference is established at an MCU and termina nodes (as well as
other MCUs if necessary) call into the MCU and join the conference. If other MCUs have joined the
conference, terminal nodes may call into any of these MCUs to join the conference.

Initial creation of a meet-me conference may be done out-of-band (e.g., locally initiated at the
MCU), or the conference may be created by the first node to call into the MCU. In the former case,
GCC is not involved. In the latter, the conference is created at the MCU by issuing a
GCC-Conference-Create request over the connection from the convening node to the MCU. In
either case, the node a which the conference was created becomes the Top-GCC-Provider. The
convening node (the MCU itself in the former case, and the requesting node in the latter) is granted
specia status as the Conference Convener.

When a conference is created remotely (using a GCC-Conference-Create request), a Conference
Name is specified in the request primitive. If that name is already in use a the MCU, a Conference
Name Modifier is assigned by the Node Controller at the MCU to make the name locally unique at
that MCU. When other nodes attempt to join the conference at that MCU, this name modifier must
be specified as part of the join request.

When a conference is created remotely it may also include an optional Convener Password. This
password is needed only if the Convener intends to disconnect from the conference and rejoin at a
later time expecting Convener privilegesto continue.

A meet-me conference would typically be specified as non-locked so that other nodes may join. A
meet-me conference may optionally be created to require Password protection to prevent unwanted
nodes from joining the conference.

A node joining a meet-me conference would issue a GCC-Conference-Join request over the
connection from the node to any MCU joined to the conference. Typically, a node does not know
a priori the name of the conference to be joined. In this case, prior to joining the conference, a node
may query the MCU for alist of conferences that are available to be joined. Thisis done by issuing
a GCC-Conference-Query request. The response is a GCC-Conference-Query confirm which
indicates the type of node to which the terminal is connected (i.e., an MCU in this case), and a list
of all listed conferences to which that MCU is currently joined. This list includes the Conference
Name of each conference, a Conference Name Modifier if one is needed, as well as other
characteristics of the conference such as whether or not the conference is Password protected,
which may be used to request a Password from the user prior to attempting to join the conference.
Once the name of the conference is selected, the conference may be joined by issuing a
GCC-Conference-Join request specifying the Conference Name of the desired conference, and if
needed, the Conference Name Modifier. If the conference requires a Password, it is included in the
join request.

ITU-T Rec. T.124 (01/2007) 51

Note that it is typical that the case of a meet-me conference with no a priori knowledge of the
conference to join is identical to the case of a point-to-point conference. That is, the sequence of
events used in starting up the conference cannot be different from that of a point-to-point
conference since the a priori knowledge in each case is the same. It is only the identification in the
GCC-Conference-Query confirm that the directly connected node is an MCU and that there are
ongoing conferences to be joined that allow a distinction to be made.

In the case that the Conference Name is distributed to joining nodes out-of-band, a node may
directly join the conference without first querying the available conferences by specifying the
Conference Name in the GCC-Conference-Join request. If there are multiple independent MCUs to
which nodes may connect to join a conference, it is possible that, due to naming conflicts, a
Conference Name Modifier is needed on some MCUSs. In this case, a node joining a conference
when connected to one of these MCUs must specify the Conference Name Modifier for that MCU.
As it may be difficult to determine this modifier without the use of the GCC-Conference-Query
primitive, it is recommended that if there is any possibility of a naming conflict, GCC-Conference-
Query should be used prior to attempting to join a meet-me conference. It is aso recommended that
a Conference Description be used when a meet-me conference is first created. In this case, it is
more likely that multiple conferences with the same Conference Name may be distinguished by
having different Conference Descriptions. In general, however, when creating a meet-me
conference, it is better to choose a Conference Name which will be unique at all MCUs without the
need of a Conference Name Modifier.

7.1.4.2 Call-out conference establishment

In call-out conference establishment, a conference is created locally at the MCU and the conference
participants are called and invited to the conference by that MCU. The conference would typically
be created specifying that it is alocked conference and may also be specified as unlisted.

The convening MCU would then make physical connections to each of the terminals to participate
in the conference followed by inviting each node in turn to the conference. Thisis done by issuing a
GCC-Conference-Invite request to the node to be invited. Since the conference was created at the
MCU, that MCU isthe Top-GCC-Provider of acall-out conference.

7.1.4.3 Call-through conference establishment

A call-through conference is very similar to call-out case with the exception that the conference is
initially created remotely by an initiating terminal. In this case, the terminal connects to the MCU
and creates a conference using a GCC-Conference-Create request. As in the call-out case, it would
typically be locked and unlisted. A call-through conference would typically be created as an
automatically terminating conference indicating that the conference will be terminated when all
nodes disconnect. Typically, a NULL Conference Name would be specified for a call-through
conference since there is no need for nodes to explicitly join the conference. If there is already a
conference at the convening node with a NULL conference name, the Node Controller would
simply choose an arbitrary unique name to use as the Conference Name. In either case, the name
need not be human readable since it will never be used for joining.

7.1.4.4 Point-to-point conference establishment

A point-to-point conference is distinct from the other varieties in that it involves only two termina
nodes with no MCU present. In the case where it is known which terminal is the calling terminal
(theinitiator of the physical connection) and which is the called terminal, a point-to-point
conference may be established by the calling terminal first querying the called terminal by issuing a
GCC-Conference-Query request. This alows the terminal to determine if the other node is a
terminal, MCU, or multiport terminal without requiring a priori knowledge to that effect. The
GCC-Conference-Query confirm generated in response to this request indicates, in the case of a
point-to-point call, that the directly connected node is a user-terminal. Once it is known that the

52 ITU-T Rec. T.124 (01/2007)

directly connected node is a terminal, the conference is established by the calling terminal by
issuing a GCC-Conference-Create request to create a new conference or by creating a conference
locally, and inviting the other terminal by issuing a GCC-Conference-Invite request. Typicaly, the
conference would be specified with an arbitrary Conference Name such as "0", and would be
locked, unlisted, and automatically terminating.

In the case that it is not known by a node which terminal is the calling or called terminal, that
terminal should issue GCC-Conference-Query request to determine whether the other node is the
called or calling node (unless it has already received a GCC-Conference-Query indication which
has this information). In the request, the Asymmetry Indicator parameter indicates that it is
unknown whether the local node is the called or caling node. If the other node does have this
knowledge about itself, it will so indicate in the resulting GCC-Conference-Query confirm. If so, it
is now known which is the calling node and the appropriate actions are taken as described above. If
neither node knows its caled/calling status, the confirm (or the contents of a received
GCC-Conference-Query indication) will specify the unknown setting. The unknown settings of this
parameter include a 32-bit random number. In this case, the random number is used to break the
resulting symmetry. The node which had generated the smaller of the two random numbers should
be considered the called node and should not attempt to establish the conference. The node which
generated the larger number should be considered the calling node and should attempt to establish
the conference.

If aterminal does have a priori knowledge that the call is point-to-point between two terminals (and
in the case that it is known whether that terminal is the called or calling terminal), that terminal
need not issue a GCC-Conference-Query request. Instead, if the terminal is the calling terminal, it
may issue the GCC-Conference-Create request or the GCC-Conference-Invite request immediately.
If it isthe called terminal with thisa priori knowledge, it may also skip the GCC-Conference-Query
request and simply wait to receive a GCC-Conference-Create indication or GCC-Conference-Invite
indication. If the far-end terminal does not have a priori knowledge of the connection type, it is
possible that the local terminal will receive a GCC-Conference-Query indication from the far-end
terminal to which it isrequired to respond.

7.1.45 Conference establishment among multiport terminals

A multiport terminal is a device which is, in general, to be treated as a terminal, but has the ability
to establish connections to multiple nodes simultaneously as an MCU does. When a terminal or
multiport terminal calls a node which it finds to be a multiport terminal (either through a priori
knowledge or via the GCC-Conference-Query exchange), the action taken depends on whether or
not there are conferences available on that multiport terminal and on the characteristics of those
conferences.

In general, it is typically desirable that a connection of this kind be made automatically, like a
point-to-point call rather than like a meet-me conference. Specifically, if neither the called nor
calling nodes are already part of conferences connecting them to other nodes, the call should be
treated exactly as a point-to-point call. If the calling node already has an ongoing conference, it is
typical that this node would simply invite the new node into the existing conference.

If instead the called node has an ongoing conference, the action depends on whether that conference
Is locked or unlocked, listed or unlisted. If the conference is unlisted, without a priori information,
the calling node would not be aware of its presence and would treat the cal as if there were no
conference present at that node (if it did have a priori information that an unlisted conference was
present, it could join that conference). If the conference is locked, the calling node has no way to
join that conference and again would treat the call asif that conference were not present. In either of
these cases, once a new conference is established, the called node may choose to transfer the nodes
connected to the previous conference into the new conference. If there are one or more listed
conferences at the called node which are not locked, the calling node should assume that the called

ITU-T Rec. T.124 (01/2007) 53

node is hosting a meet-me conference and would typically require a user to decide which one to join
—inthis case, the procedure would not be entirely automatic.

If there are conferences present at both nodes, the calling node would normally either invite the
called node into its conference, or would attempt to join the called node's conference. In either case,
the multiport terminal with the existing conference that was not enlarged to include the other
multiport terminal should transfer all subordinate nodes to the conference that it has newly become
joined (or invited) to.

Transferring nodes to the new conference in these cases may be done in one of two ways. The
GCC-Conference-Transfer primitive may be used to command each of the nodes to disconnect from
the current conference and join the new conference. This, of course, can only be done if the new
conference is not locked, and if the requesting node had Transfer privilege for the previous
conference (or was the convener of the previous conference). Alternatively, the GCC-Conference-
Invite primitive could be used to invite the directly connected nodes to the new conference.
Typically this would be done after disconnecting these nodes from the previous conference. If there
were more nodes originally present than the directly connected nodes, it is the responsibility of the
directly connected nodes, recursively, to invite the nodes directly connected to them into the new
conference. That is, the invitations would propagate through the hierarchy of physically connected
nodes. Nodes would typically do this; however, there is no assurance that this action would be
taken. For this reason, the use of GCC-Conference-Transfer is a safer mechanism in the cases where
it can be performed.

7.2 The conference roster

The Conference Roster allows a node participating in a conference to learn what other nodes are
participating in the same conference, and provides information about each node. Immediately after
joining a conference (by means of either creating, joining, or being invited to the conference), the
Node Controller at that node shall announce its presence to the conference by issuing a
GCC-Conference-Announce-Presence request. The results of this request depend on the joining
node's Node Category.

For Conventional nodes (where all nodes that existed prior to the introduction of Node Categories
are considered Conventional), the GCC Providers of the nodes in the conference exchange
information needed to update the Conference Roster to include the newly-joined node. The updated
Conference Roster or a delta update of the Conference roster is distributed to all nodes in the
conference, generating a GCC-Conference-Roster-Report indication. A Conventional node joining a
conference is not considered an active member of the conference until it has received a Conference
Roster in which it isincluded.

For Counted Nodes, the GCC Providers of the affected nodes in the conference exchange
information needed to update the Conference Roster to include the newly-joined node. The updated
Conference Roster or a delta update of the Conference roster is distributed to all Conventional
nodes in the conference and to the Counted node joining the conference, generating a
GCC-Conference-Roster-Report indication. A Counted node joining a conference is not considered
an active member of the conference until it has received a Conference Roster in which it is
included.

Anonymous Nodes do not affect the Conference Roster. Regardless, their local Node Controllers
are still required to announce their presence to the local GCC Provider.

The information in the Conference Roster may be changed at any time during a conference by the
Node Controller at any Conventiona and Counted node. This is done by re-issuing a
GCC-Conference-Announce-Presence request. This results in an updated roster being distributed to
al nodes, generating another GCC-Conference-Roster-Report indication.

54 ITU-T Rec. T.124 (01/2007)

As Conventional and Counted nodes leave a conference for any reason, a new Conference Roster is
distributed by GCC, again generating a GCC-Conference-Roster-Report indication.

7.2.1 Description of abstract services

The following is a list of the primitives defined in this subclause and a brief summary of the
function of each:

. GCC-Conference-Announce-Presence — Used by the Node Controller to announce the
presence of a node into a conference. Use of this primitive is required immediately after
joining or being joined to any conference.

. GCC-Conference-Roster-Report — Generated by GCC in response to any change to the
Conference Roster due to nodes either entering or leaving a conference.
. GCC-Conference-Roster-Inquire — Used by either the Node Controller or by Application

Protocol Entities to retrieve the current Conference Roster at any time during a conference.

7211 GCC-Conference-Announce-Presence

Immediately after a node has joined any conference, it shall announce its presence to the conference
using the primitive GCC-Conference-Announce-Presence request. The Node Controller is
responsible for issuing this primitive. This primitive may be re-issued at any time during a
conference if the included information has changed. Table 7-18 shows the parameters and types of
this primitive. Figure 7-15 shows the sequence of events when using this primitive.

NOTE — The Conference Roster includes the list of all terminals, and MCUs currently joined to a
conference. A user display of the roster, as well as user indications of nodes entering and leaving the
conference are likely to only include terminals and multiport terminals. The Node Type parameter of this
primitive may be used to distinguish among these node types, excluding uninteresting node types from user
displays. In addition, the Node Properties parameter also adds information as to the use of the device,
specifying whether a node is a management device, and whether a node is a peripheral, subordinate to
another node. Both of these characteristics may also be used by a system to determine whether or not to
include a particular node in its display of conference participants. Typically, neither management devices,
nor peripherals would be included in such alist.

Table 7-18 — GCC-Conference-Announce-Presence —
Typesof primitivesand their parameters

Parameter Request Confirm

Conference ID M M(=RQ)
Node Type

Node Properties

Node Name
Participant Name(s)
Site Information
Network Address
Alternative Node ID
User Data

Result M

o|o|o|jo|o|o|Z|Z

Conference ID: Identifier of the conference to which the primitive refers.
Node Type: The node typeis either aterminal, MCU, or multiport terminal.

ITU-T Rec. T.124 (01/2007) 55

Node Properties. Made up of two independent flags. One indicating whether or not the node is a
management device (e.g., a reservation system), and the other indicating whether or not the node is
a peripheral, subordinate to another node.

Node Name: Unicode text string containing the name of this node (e.g., "London™). Maximum 255
characters.

Participant Name (s): A list of Unicode text strings each containing the name of a meeting
participant. Maximum 255 characters for each string.

Ste Information: A Unicode text string containing other information about the node. It may be
used, for example, to indicate such things as the voice-phone or FAX numbers at the site.

Network Address: Optional parameter to indicate the network address of this node. This parameter
includes sub-fields which specify network type information followed by the actual network address
or addresses. This parameter should be used if it is possible that the announcing node may later be
attempted to be added to another conference via the GCC-Conference-Add primitive. This gives an
MCU knowledge of the Network Address which may be compared to the Network Address of a
node to be added to determine if a physical connection aready exists. If this parameter is not
included, it may not be possible to later add this node to another conference over the same physical
connection. This parameter should also be used if it is possible that an initial point-to-point
conference may be automatically re-routed through an MCU to add additional nodes. This
parameter allows one of the origina two nodes to re-connect with the other by use of a
GCC-Conference-Add primitive through the MCU.

Alternative Node ID: This field may be used to associate the announcing node (and its
corresponding Node ID) with an alternative node ID which has been defined for some other
purpose. This alternative node ID is not intended to represent 1Ds in the same numbering space as
Node IDs, but rather a separate numbering scheme not specified by this Recommendation. For
example, in the case of ISDN, for nodes supporting ITU-T Rec. H.243, the aternative node ID
could be the H.243 site ID which istwo octetsin length.

User Data: Optional user data which may be used for functions outside the scope of this
Recommendation. Note that this data is stored within the Top GCC Provider as part of Conference
Roster. Therefore, this parameter is not intended to contain large amounts of information. Doing so
could risk being involuntarily gected from the conference.

Result: An indication of whether the request was accepted or rejected, and if rejected, the reason
why. It contains one of alist of possible results: successful, invalid conference.

All Nodes

Node Controller GCC Provider Top GCC Provider GCC Provider .
Node Controller

GCC-Conference-
Announce-Presence request GCC-Conference-
Roster-Report indication

GCC-Conference-

Announce-Presence confirm

T.124(01-07)_F7-15

Figure 7-15 — GCC-Confer ence-Announce-Pr esence — Sequence of primitives

56 ITU-T Rec. T.124 (01/2007)

7.2.1.2 GCC-Conference-Roster-Report

Whenever the Conference Roster has changed for any reason (a new node entering the conference, a
node leaving the conference, or updated information in a roster entry), the roster is distributed by
GCC to dl nodes by issuing a GCC-Conference-Roster-Report primitive to the Node Controller at
each node. Table 7-19 shows the parameters and types of this primitive. Figure 7-16 shows the
sequence of events when using this primitive.

Table 7-19 — GCC-Conference-Roster-Report —
Typesof primitivesand their parameters

Parameter Indication
Conference ID M
Conference Roster M

Conference ID: Identifier of the conference to which the primitive refers.

Conference Roster: A list of each node joined to the specified conference. The format of the
Conference Roster is shown in Table 7-20.

Table 7-20 — Contents of the Conference Roster parameter

Parameter

Description

List of Conference Nodes

A list of the Nodes joined to the conference along with information about
each node. The contents of each entry in thislist is shown in Table 7-22.

I nstance Number The instance number for the Conference Roster. Thisis a 16-bit number
which isincremented modulo 2*° each time the contents of the
Conference Roster changes.

Nodes Added Flag A flag indicating whether one or more Nodes have been added to the

Conference Roster since the last instance. Thisflag is not mutually
exclusive of the Nodes Removed Flag.

Nodes Removed Flag

A flag indicating whether one ore more Nodes have been removed from
the Conference Roster since the last instance. Thisflag is not mutually
exclusive of the Nodes Added Flag.

. All Nodes
GCC Provider Node Controller

GCC-Conference-
Roster-Report indication

T.124(01-07)_F7-16

Figure 7-16 — GCC-Conference-Roster-Report — Sequence of primitives

ITU-T Rec. T.124 (01/2007) 57

7.2.1.3 GCC-Conference-Roster-Inquire

The GCC-Conference-Roster-Inquire request primitive returns the complete Conference Roster for
the specified conference. This primitive is available to Application Protocol Entities as well as the
Node Controller, allowing them to independently obtain a Conference Roster from their local GCC
Provider. Table 7-21 shows the parameters and types of this primitive. Figure 7-17 shows the
sequence of events when using this primitive.

Table 7-21 — GCC-Conference-Roster-Inquire —
Typesof primitivesand their parameters

Parameter Request Confirm
Conference ID M M(=)
Conference Name M
Conference Description C
Conference Roster M
Result M

Conference Name: The Conference Name as contained within the Conference Profile.

Conference Description: The Conference Description as contained within the Conference Profile.
This parameter is present, only if a Conference Description had been defined at the time of
conference creation.

Conference ID: Identifier of the conference to which the primitive refers.

Conference Roster: A list of each node joined to the specified conference. The format of the
Conference Roster is shown in Table 7-23.

Result: An indication of whether the request was accepted or rejected, and if rejected, the reason
why. It contains one of alist of possible results: successful, invalid conference.

Table 7-22 — Contents of each entry in the List of Conference Nodes

Parameter Description
Node ID MCS User ID of the GCC Provider at this node.
Node ID of Superior Node MCS User ID of the GCC Provider at the node directly above this node
(conditional) in the connection hierarchy, if any (not present for the Top GCC
Provider).
Node Type The node typeis either aterminal, MCU, or multiport terminal.
Node Properties Made up of two independent flags. One indicating whether or not the

node is a management device (e.g., areservation system), and the other
indicating whether or not the node is a peripheral, subordinate to
another node.

Node Name (conditional) Unicode text string containing the name of this node (e.g., "London").
Maximum 255 characters.

Participants Names (conditional) | A list of Unicode text strings each containing the name of a meeting
participant. Maximum 255 characters for each string.

Site Information (conditional) A Unicode text string containing other information about the node. It
may be used, for example, to indicate such things as the voice-phone or
FAX numbers at the site.

Network Address (conditional) | This parameter describes the logical connection used by the node to
join the conference. Each portion of the logical connection is described

58 ITU-T Rec. T.124 (01/2007)

Table 7-22 — Contents of each entry in the List of Conference Nodes

Parameter

Description

in terms of network type, network address, transfer rate when relevant,
and optionally a multimedia profile that shall be operated, a digital
circuits aggregation al gorithm when applicable, and the list of media
(e.g., audio, video, data) that are concerned by this portion. In the GCC
protocol, this parameter is reflected by ASN.1 structures
NetworkAddress and NetworkAddressV 2. See Annex B for the
description and use of these.

Alternative Node ID
(conditional)

Thisfield is used to associate the announcing node (and its
corresponding Node ID) with an alternative node ID which has been
defined for some other purpose. This aternative node ID is not
intended to represent 1Ds in the same numbering space as Node IDs,
but rather a separate numbering scheme not specified by this
Recommendation. For example, in the case of ISDN, for nodes
supporting H.243, the alternative node ID could be the H.243 site ID
which istwo octetsin length.

Node Category (conditional)

This field indicates the Node Category for the node. Conventional and
Counted nodes are the only valid categories for this field because
Anonymous nodes do not appear in a Conference Roster.

User Data (conditional)

Optional user data which may be used for functions outside the scope
of this Recommendation.

Table 7-23 — Contents of the Conference Roster parameter

Parameter

Description

List of Conference Nodes

A list of the Nodes joined to the conference along with information
about each node. The contents of each entry in thislist is shownin
Table 7-22.

| nstance Number

The instance number for the Conference Roster. Thisis a 16-bit
number which isincremented modulo 216 each time the contents of the
Conference Roster changes.

Application Protocol Entity

Node Controller or GCC Provider

GCC-Conference-
Roster-Inquire request

o

CC-Conference-
Roster-Inquire confirm

T.124(01-07)_F7-17

Figure 7-17 — GCC-Confer ence-Roster -l nquir e — Sequence of primitives

ITU-T Rec. T.124 (01/2007) 59

7.3 The application roster

The Application Roster allows a node participating in a conference to learn what Application
Protocol Entities are available at nodes in the conference, and provides sufficient information about
these Application Protocol Entities to alow direct communication between Peer Application
Protocol Entities to begin. The roster may include Application Protocol Entities that are based on
standard Application Protocols as well as those based on non-standard Application Protocols.

7.3.1 Contents of the application roster

For each conference, a GCC Provider compiles a list of information associated with each
Application Protocol Entity. These lists form the Local Application Roster which can be exchanged
with other nodes as part of the Application Roster exchange procedure. This exchange will result in
a list of information associated with all Application Protocol Entities in the entire conference
collectively known as the Conference Application Roster.

The Local Application Roster is held by each GCC Provider and stored in its local database. At an
appropriate point in the set-up of a conference, a node can exchange its Local Application Roster
with al other conference nodes and the GCC Provider will receive the Conference Application
Roster which it will report to all Application Protocol Entities as well as the Node Controller. This
exchange occurs within GCC and is apparent to Application Protocol Entities only through
primitives that may be generated. Whether or not a GCC Provider exchanges its local Application
Roster depends on the Node Category into which a node falls. For Conventional and Counted
nodes, the Local Application Roster is exchanged. For Anonymous nodes, the Local Application
Roster is not exchanged.

The Local and Conference Application Rosters consist of the following components:

. Local Application Roster — For each Application Protocol Entity which has enrolled with
the local GCC Provider, the Local Application Roster includes a Session Key, an
Application Record, and an Application Capabilities List.

. Conference Application Roster — For each Application Protocol Session, the Conference
Application Roster includes the Session Key for that Session, an Application Capabilities
List containing the negotiated capability set for the session, and the list of Application
Protocol Entities enrolled in the session which includes, for each, the Node ID of the node
at which that Application Protocol Entity had enrolled, an identifier which identifies the
particular Application Protocol Entity within itslocal node, and an Application Record.

Each set of Peer Application Protocol Entities — those within a single Application Protocol
Session — are characterized by having enrolled using the same value of the Session Key. A Session
Key is defined as follows:

. The Session Key — An identifier used to uniquely identify an Application Protocol Session.
A Session Key consists of two components. One component identifies the Application
Protocol. The second component, which is optional, identifies a particular session of that
Application Protocol.

The first component of a Session Key, the Application Protocol Key, identifies either a
standard or non-standard Application Protocol specification. Keys are structured so that any
Application Protocol, whether standard or non-standard, may be defined to have a unique
key with no possibility of conflict. Keys may be specified in one of two forms. A key may
be specified as an ASN.1 type Object Identifier. This form of Key may be used to specify
standard Application Protocols. The assignment of Object Identifier components for
Standards and Recommendations is described in Annex B of [ITU-T X.680] and Annex C
of [ITU-T X.680], respectively. Object Identifiers may also be used to specify non-standard
Application Protocols in the case of national or private administrative authorities which
have been directly or indirectly authorized by 1SO or ITU.

60 ITU-T Rec. T.124 (01/2007)

A key may also be specified as an ASN.1 type OCTET STRING interpreted in a manner
similar to the pattern adopted in [ITU-T H.221] to designate non-standard commands and
capabilities. In this case, the first two octets of the OCTET STRING define a country code,
the second two octets define a manufacturer code. The first octet of the country code is
assigned according to [ITU-T T.35]; the second octet and the manufacturer code are
assigned nationally. Octets beyond this shal be freely chosen by the responsible
manufacturer or national body.

The second component of a Session Key is an optional Session ID. The Session ID is an
MCS Channel ID which is used as the unique identifier of an Application Protocol Session
and may be used as a communication channel by the Application Protocol Entities taking
part in that session (as determined by the Application Protocol specification). To ensure
uniqueness, this Channel 1D shall remain allocated for the duration of the session. The lack
of a Session ID in a Session Key of an active Application Protocol Entity identifies a
distinct session — the Default Session.

In the case of an inactive Application Protocol Session, the Session ID is not required. Its
absence in this case may be interpreted as an indication of support for the indicated
Application Protocol and the ability to invoke one or more Application Protocol Entities as
part of any session, default or otherwise.

Each Application Record contains the following parameters, some of which are optional:

Active/lnactive Flag — An Application Protocol Entity may enroll but not yet be ready to
receive data (e.g., it has not yet joined the appropriate channels). To indicate this to other
nodes, an Application Protocol Entity may enroll with this flag set to Inactive. This may be
done to alow the Application Protocol Entity to make use of GCC services (such as the
registry) in preparation for becoming active, or it may simply be to allow other nodes to
become aware of the presence of this Application Protocol Entity without becoming active
until it is known that there are like Application Protocol Entities at other nodes. When an
inactive Application Protocol Entity becomes active, it may re-enroll setting the flag to
Active. This flag may be changed by the Application Protocol Entity at any time by
re-enrolling.

Application User ID — The MCS User ID associated with the Session Key. The Application
User ID is the only means by which a node can include another node as a participant when
convening a private channel for that Application Protocol Session to use. This parameter is
optional for Application Protocol Entities enrolled as inactive, but mandatory for active
Application Protocol Entities. If it is not included because the Application Protocol Entity
has not yet attached to the MCS Domain, it may later be added, once the Application
Protocol Entity has attached, by re-enrolling.

Conducting Operation Capable — This is a flag which indicates whether the Application
Protocol Entity is capable of operating as a conducting Application Protocol Entity if the
corresponding Application Protocol specification defines the procedures for such an
Application Protocol Entity to follow. The GCC Provider within each node chooses no
more than one Peer Application Protocol Entity per Application Protocol Session to include
with this flag set in the exchanged Application Roster. If a node becomes the conference
conductor, the designated Application Protocol Entity, if any, for each Application Protocol
Session becomes the designated conducting Application Protocol Entity. This flag only
applies to Active Application Protocol Entities. If the Active/lnactive flag is set to Inactive
when enrolling, the Conducting Operation Capable flag is ignored and assumed by the
GCC Provider to be FALSE.

Non-Collapsing Capabilities List — This is an optional parameter which allows Application
Protocol Entities to list capabilities (either standard or non-standard) which are to be
maintained in the roster as part of the Application Record of each Application Protocol

ITU-T Rec. T.124 (01/2007) 61

Entity rather than being collapsed by a set of rules as the capabilities listed in the
Application Capabilities List would be.

The Application Capabilities List is defined as follows:

. Application Capabilities List: This is an optional parameter list which may be used to
specifically list the capabilities of the Application Protocol Entity. While the capabilities
themselves are Application Protocol—specific, they are listed along with information which
allows GCC to determine the common capability set for the Application Protocol Session
and inform the Peer Application Protocol Entities of this set. This avoids the need for a
complete exchange of a full capability list between al nodes. Each capability in the
capability list is tagged with a class specifier. The class specifier determines the rule that is
applied to determine the common capability set. Table 7-24 lists all capability classes. Note
that neither Counted or Anonymous nodes can affect the Conference Application Roster

capabilities.
Table 7-24 — Capability combination rules
Class Description
Logical If any Peer Application Protocol Entity in a conference indicates the use of this

capability, the final capability list indicates the number of Peer Application
Protocol Entities that have indicated this capability.

Unsigned-Minimum The parameter octets are treated as a single unsigned integer. The final
capability list indicates the minimum value among all Peer Application
Protocol Entities which indicated this capability aswell as the number of Peer
Application Protocol Entities which have indicated this capability.

Unsigned-Maximum The parameter octets are treated as a single unsigned integer. The final
capability list indicates the maximum value among all Peer Application
Protocol Entities which indicated this capability aswell as the number of Peer
Application Protocol Entities which have indicated this capability.

In addition to the basic classifications, it is also possible to nest capabilities. Nesting is not done
explicitly, but rather is done by appropriate interpretation of the three capability classes. For
example, an Application Protocol may define a particular capability, Y, to be conditional on a
Logical capability, X. If the rule is applied within the Application Protocol specification that
capability Y may only be issued if capability X had been issued, then the value of Y in the final
capability set may be interpreted as, in the case of a Logical capability Y, the number of Peer
Application Protocol Entities, among those which have capability X, which also have capability Y,
and in the case of a numerical capability Y, the minimum or maximum value of Y among those
Peer Application Protocol Entities which have capability X. Note that in the case of a numerical
capability Y, if the number of Peer Application Protocol Entities which indicate the capability Y is
less than the number of Peer Application Protocol Entities indicating the capability X, thisindicates
that some Peer Application Protocol Entities do not support avalue of Y beyond its default value. In
this case, the negotiated value of Y should be ignored. The negotiated value of Y is valid in this
case only if the number of Peer Application Protocol Entities with both the X and Y capabilities are

equal.
7.3.2 Description of the application roster exchange process

Each Application Protocol Entity makes its loca GCC Provider aware of its presence through a
GCCSAP over which it communicates with the GCC Provider. Creation and management of the
GCCSAP isaloca matter not covered by this Recommendation.

Application Protocol Entities are made aware of the existence of a conference to which the node is
joined by the GCC-Application-Permission-To-Enroll indication. Once an Application Protocol

62 ITU-T Rec. T.124 (01/2007)

Entity has been made aware of an existing conference, it shall issue a GCC-Application-Enroll
request to the GCC Provider. This enroll request may indicate that the Application Protocol Entity
is enrolling itself in the conference (the enroll/un-enroll flag set to enroll), or it may indicate that it
is not enrolling itself into the conference (the enroll/un-enroll flag set to un-enroll). In the latter
case, the Application Record parameters need not be included in the primitive. Any time thereafter,
until permission to enroll is revoked (upon receiving a GCC-Application-Permission-To-Enroll
primitive with the grant/revoke flag set to revoke), an Application Protocol Entity which did not
choose to initialy enroll itself into the conference may enroll by issuing a GCC-Application-Enroll
request.

There are several parameters in the GCC-Application-Enroll request which, if used, require steps to
be taken prior to issuing the GCC-Application-Enroll request. First is the Application User ID
which is mandatory in the request if enrolling with the Active/lnactive flag is set to Active. To get
an Application User ID, the Application Protocol Entity must first attach to the MCS Domain
indicated in the GCC-Application-Permission-To-Enroll indication. This is done by issuing the
MCS primitive MCS-Attach-User request. On reception of the MCS-Attach-User confirm, the
Application Protocol Entity will have been allocated an Application User ID. This ID may be
included in the GCC-Application-Enroll request. If the attachment to the domain should fail due to
the connection to the domain being lost during the intervening time, the Application Protocol Entity
shall assume that the node is no longer part of the conference and shall wait until receiving another
GCC-Application-Permission-To-Enroll indication before proceeding further. When the node
disconnects from the conference, the Application Protocol Entity will be notified directly by MCS
that the attachment is no longer valid. The Application Protocol Entity shall assume that the node is
no longer part of the conference and shall wait until receiving another GCC-Application-
Permission-To-Enroll indication before proceeding further. If permission to enroll is revoked by a
GCC-Application-Permission-To-Enroll primitive, the Application Protocol Entity shall not attempt
to attach to the corresponding domain.

The second such parameter is the optional Session ID which is part of the Session Key. The Session
ID shall be formed from an MCS Channel ID (which is not a User ID). When enrolling into a
session being invoked, the Session ID is obtained from the GCC-Application-Invoke indication. If
joining a session already in progress, the Session ID may be obtained from the most recently
received Application Roster. If creating a new session, then a new Channel 1D may be allocated
using an MCS-Channel-Join primitive or MCS-Channel-Convene primitive.

As a consequence of a GCC-Application-Enroll request primitive, the GCC Provider creates a new
entry in its Local Application Roster. If an entry already exists for an Application Protocol Entity,
the contents of the Local Application Roster entry are modified to contain the new information, or
in the case of the un-enroll flag being set, the entry is removed from the roster.

At the start of a conference, the GCC Provider, after issuing the GCC-A pplication-Permission-To-
Enroll primitive, waits for all Application Protocol Entities which are connected to the GCC
Provider through a GCCSAP to issue a GCC-Application-Enroll primitive either enrolling, or
indicating their explicit desire not to enroll. For Conventional and Counted nodes, once all
Application Protocol Entities have responded, the GCC Provider exchanges the Local Application
Roster with the other nodes in the conference. During a conference in progress, any changes to the
Local Application Roster are immediately exchanged with other nodes. Note that only Conventional
nodes can create new Application Protocol Sessions (by being the first node to exchange a Local
Application Roster associated with a non-existent session). GCC Providers at Counted nodes must
therefore wait until a session associated with a particular Application Protocol Entity exists before it
can exchange its associated Local Application Roster information.

For Anonymous nodes, the Local GCC Provider will never exchange its Local Application Roster.
Instead, the GCC Provider uses the enrolment information to determine which Application Protocol
Sessions the local Application Protocol Entities are interested in. When a Conference Application

ITU-T Rec. T.124 (01/2007) 63

Roster associated with one of these APES is received by the local GCC Provider, that Conference
Application Roster isimmediately delivered to the interested APE.

In any of the cases above, whenever a new exchange takes place, initiated by any node, a new
Conference Application Roster is generated and distributed to all interested nodes. The
GCC Provider issues the entire roster to the Node Controller, and issues portions of this roster to
enrolled Application Protocol Entities using the GCC-Application-Roster-Report indication
primitive. To an Application Protocol Entity, the roster report includes the portion of the
Conference Application Roster which specifically applies to that Application Protocol Session (and
may include other portions as well). For each session, thisisin the form of alist. Each entry in the
list includes the Node ID and Application Protocol Entity ID which, together, identify the
Application Protocol Entity, and the Application Record for that Application Protocol Entity. It may
also include the Application Capabilities List for the Application Protocol Session. Thisis alist of
the common capabilities for this Application Protocol Session based on application of the capability
class rules to the capabilities announced by all Peer Conventional node Application Protocol
Entities. In the case of the node controller, the GCC-A pplication-Roster-Report indication includes
the entire Conference Application Roster. That is, for each entry in the list, it includes the node
identifier, and the Application Records for all Application Protocols enrolled at that node. It also
may include, for each Application Protocol, an Application Capabilities List.

An Application Protocol Entity is not considered part of a conference until it has received a
GCC-Application-Roster-Report indication in which it is included in the Application Roster. If, at
any time, an Application Protocol Entity which had previousy been enrolled receives a
GCC-Application-Roster-Report indication in which it is no longer included, that Application
Protocol Entity shall be considered no longer enrolled. The Application Protocol Entity may attempt
to re-enroll by issuing a GCC-Application-Enroll request. At Counted and Anonymous nodes, it is
the responsibility of the local GCC Provider to insert an Application Record (associated with alocal
Application Protocol Entity that is trying to enroll with a session), into the roster before delivering
the associated GCC-A pplication-Roster-Report indication.

At any time an Application Protocol Entity may remove itself from the Application Roster by
issuing a GCC-Application-Enroll request primitive with the enroll/un-enroll flag set to un-enroll.
This removes the Application Record for that Application Protocol Entity from the Loca
Application Roster as well as from the Conference Application Roster at all nodes in the
conference.

At any time during a conference, an Application Protocol Entity or the Node Controller may request
a portion of the Conference Application Roster. For each node in the conference, all Application
Records which match the Session Key given in the GCC-Application-Roster-Inquire request are
returned. Using a null key will result in the complete Conference Application Roster.

An Application Protocol Entity or Node Controller may attempt to remotely invoke an Application
Protocol Entity at another node. This is done by issuing a GCC-Application-Invoke request. This
request may optionally include a specified list of destination nodes. The corresponding
GCC-Application-Invoke indication is received by the Node Controller at the specified destination
nodes (or al nodes if no destination is specified). The node controller may optionaly respond to
this indication by invoking a Peer Application Protocol Entity which may then enroll itself in the
conference.

64 ITU-T Rec. T.124 (01/2007)

7.3.3 Description of abstract services

The following is a list of the primitives defined in this subclause and a brief summary of the
function of each:

. GCC-Application-Permission-To-Enroll — Generated by GCC and issued to al Application
Protocol Entities which have made the GCC Provider aware of their presence whenever the
local node has been joined to a conference. This indicates that the Application Protocol
Entity may enroll. With the Revoke flag set, this revokes the ability to enroll when the node
isno longer joined to the conference.

. GCC-Application-Enroll — Used by Application Protocol Entities to establish (or terminate)
communications with other Peer Application Protocol Entities in a conference. Use of this
primitive generates (or modifies, or removes) an entry in the Application Roster exchanged
with other nodes.

. GCC-Application-Roster-Report — Generated by GCC in response to any change in the
Application Roster due to Application Protocol Entities enrolling or un-enrolling or nodes
entering or leaving a conference.

. GCC-Application-Roster-Inquire — Used by either the Node Controller or by Application
Protocol Entities to retrieve all or a portion of the current Application Roster at any time
during a conference.

. GCC-Application-Invoke — Used to signal a set of other nodes in a conference to invoke an
Application Protocol Entity for a particular session of an Application Protocol.

7.3.3.1 GCC-Application-Permission-To-Enroll

The primitive GCC-Application-Permission-To-Enroll indication tells a local Application Protocol
Entity that the local node is now joined to the specified conference and that the Application
Protocol Entity may enroll itself with that conference. This primitive is also used to revoke such
permission if the local node is no longer joined to a conference. While an MCS-attached
Application Protocol Entity will receive notification from MCS when the conference terminates at
that node, an Application Protocol Entity which has chosen not to attach (or to enroll) will not
necessarily receive such notification. This primitive indicates to such an Application Protocol Entity
that it may no longer enroll with that conference or attach to the corresponding MCS Domain. The
GCC-Application-Permission-To-Enroll indication is issued by a GCC Provider to al Application
Protocol Entities which have made the GCC Provider aware of their presence only after the node
has been successfully joined to a conference. Table 7-25 shows the parameters and types of this
primitive. Figure 7-18 shows the sequence of events when using this primitive.

Table 7-25 — GCC-Application-Per mission-To-Enroll —
Typesof primitivesand their parameters

Parameter Indication
Conference ID M
Grant/Revoke Flag M
Node Category C

Conference ID: Identifier of the Conference to which the Application Protocol Entity may enroll.
This parameter is equal to the MCS Domain to which the Application Protocol Entity may attach.

Grant/Revoke Flag: This flag indicates whether the Application Protocol Entity is being given
permission to enroll, or if that permission is being revoked.

Node Category: This field informs the APE which Node Category was established for this node,
within this conference, when the node joined.

ITU-T Rec. T.124 (01/2007) 65

; Application
GCC Provider Protocol Entity

GCC-Application-
Permission-to-Enroll
indication

T.124(01-07)_F7-18

Figure 7-18 — GCC-Application-Per mission-to-Enroll — Sequence of primitives

7.3.3.2 GCC-Application-Enroll

The GCC-Application-Enroll request primitive is issued by an Application Protocol Entity to
establish itself as part of the specified conference. This primitive shall be issued in response to a
GCC-Permission-To-Enroll indication, athough the Application Protocol Entity may set the
Enroll/Un-enroll flag to Un-enroll, indicating that it does not wish to enroll at thistime. At any time
until permission to enroll is revoked, the Application Protocol Entity may enroll, re-enroll
(to change entries in its Application Record), or un-enroll. If an Application Protocol Entity which
Is already un-enrolled attempts to un-enroll, the request is accepted with a successful result, but no
change is made to the status of that Application Protocol Entity. When an Application Protocol
Entity is enrolled, the associated parameters form the Application Record which is broadcast to the
conference during the Application Roster exchange. Application Protocol Entities that are not
enrolled will not be available to any local or remote participants and will not receive
GCC-Application-Roster-Report indications. Table 7-26 shows the parameters and types of this
primitive. Figure 7-19 shows the sequence of events when using this primitive.

Table 7-26 — GCC-Application-Enroll — Typesof primitives and their parameters

Parameter Request Confirm

Conference ID M M(=)
Session Key M M(=)
Active or Inactive M

Application User ID C

Conducting Operation Capable @]

Start-up Channel @]

Non-Collapsing Capabilities List O

Application Capabilities List @]

Enroll or Un-enroll M

Application Protocol Entity 1D C
Node ID C
Result M

Conference ID: Identifier of the conference to which the primitive refers.

66 ITU-T Rec. T.124 (01/2007)

Session Key: Unique identifier of a particular Application Protocol Session. This corresponds to the
identifier of the Application Protocol, optionally concatenated with a Session ID.

Active or Inactive: Thisflag is used to indicate whether the enrolling Application Protocol Entity is
fully active (indicating that it can perform tasks required by the specification of the corresponding
Application Protocol), or inactive. An Application Protocol Entity might indicate itself to be
inactive in the case that it must enroll to make use of certain GCC services, but is not yet fully
operational (e.g., it has not yet joined dynamic channels, but must first check the registry to
determine which channels to join). Alternatively, it might enroll inactively to indicate support for
the corresponding Application Protocol without the need to become active until it is known that
there are like Application Protocol Entities at other nodes. The specific meaning of this flag shall be
defined in the specification of each Application Protocol.

Application User ID: MCS User ID given to this Application Protocol Entity. This parameter is
optional in the case of inactive Application Protocol Entities, but is mandatory for active
Application Protocol Entities. It is an error for an Application Protocol Entity that is enrolled with
an MCS User ID to re-enroll with a different MCS User ID. This parameter is not needed in the
case of un-enrolling.

Conducting Operation Capable: This is a flag which indicates whether the Application Protocol
Entity is capable of operating as a conducting Application Protocol Entity if the corresponding
Application Protocol specification defines the procedures for such an Application Protocol Entity to
follow. The GCC Provider within each node chooses no more than one Peer Application Protocol
Entity per Application Protocol Session to include with this flag set in the exchanged Application
Roster. If a node becomes the conference conductor, the designated Application Protocol Entity, if
any, for each Application Protocol Session becomes the designated conducting Application Protocol
Entity. The enrolling Application Protocol Entity shall not assume itself to be in the designated
conducting role unless it determines that its corresponding entry in the received Application Roster
has this flag set. This flag only applies to Active Application Protocol Entities. If the
Active/lnactive flag is set to Inactive when enrolling, the Conducting Operation Capable flag is
ignored and assumed by the GCC Provider to be FALSE.

Sart-up Channel: This is an optional parameter which may take on the values Static, Dynamic
Multicast, Dynamic Private, or Dynamic Userld. This parameter specifies the type of MCS Channel
the Application Protocol Entity will use for start-up sequencing. The exact interpretation of this
parameter as well as any requirements for the use of this parameter are Application Protocol-
specific. In some cases, certain of these channel types may not be valid for particular Application
Protocols.

Non-Collapsing Capabilities List: Thisis an optional parameter which allows Application Protocol
Entities to list capabilities (either standard or non-standard) which are to be maintained in the roster
as part of the Application Record of each Application Protocol Entity rather than being collapsed by
a set of rules as the capabilities listed in the Application Capabilities List would be. Each entry in
this list includes a capability ID which may be either standard or non-standard, as well as a data
field for Application Protocol-specific data.

Application Capabilities List: Thisis an optional list of Application Protocol—specific capabilities.
Each capability is tagged with a class identifier indicating the rule to be applied by GCC in
determining the common capability set for this Application Protocol Session. The class identifiers
are one of the choiceslisted in Table 7-24.

Enroll or Un-enroll: Thisis aflag used to indicate whether the Application Protocol Entity wishes
to add, or change its Application Record (enroll), or to remove its Application Record (un-enroll).
When an Application Protocol Entity has received a GCC-Permission-To-Enroll indication, it shall
respond with a GCC-Enroll-Request. If that Application Protocol Entity wishes not to enroll, it shall
set thisflag to Un-enroll.

ITU-T Rec. T.124 (01/2007) 67

Application Protocol Entity ID: Present only in the case of a successful new enroll (not in the case
when already enrolled, in the case of an unsuccessful enroll, or in the case of an un-enroll). An
identifier which uniquely identifies the Application Protocol Entity within the local node. This
corresponds to the same parameter in each entry of the Application Roster. This alows an
Application Protocol Entity to determine if it isincluded in subsequent updates of the Application
Roster.

Node ID: Present only in the case of a successful enroll (not in an unsuccessful enroll or an
un-enroll). This provides the enrolling Application Protocol Entity the Node ID of its local node.
This helps to alow the Application Protocol Entity to find its corresponding entry in received
Application Rosters to determine when it actualy becomes enrolled into the conference. The
combination of the Node ID and the Application Protocol Entity ID uniquely determine the
Application Protocol Entity.

Result: An indication of whether the request was accepted or rejected, and if rejected, the reason
why. It contains one of a list of possible results: successful, invalid conference, not permitted to
change MCS User ID.

All Nodes

Application i i i icati
Protocol Entity GCC Provider Top GCC Provider GCC Provider E’regtr O%g Iléﬁattll(ég

GCC-Application-Enroll GCC-Applicati
-Application-
request Roster-Report indication

GCC-Application-Enroll
confirm

T124(01-07) F7-19

Figure 7-19 — GCC-Application-Enroll — Sequence of primitives

7.3.3.3 GCC-Application-Roster-Report

This primitive is used by a GCC Provider to send to each enrolled Application Protocol Entity as
well as to the Node Controller some or al of the Conference Application Roster. A
GCC-Application-Roster-Report indication may be generated automatically by a GCC Provider
whenever the GCC Provider finds out that a change in any portion of the roster has occurred. This
may happen, for example, as a result of a GCC-Application-Enroll request, or on detection of an
Application Protocol Entity detaching from the conference, or a node leaving the conference
altogether. When any portion of the roster has changed for any Application Protocol Entity, the
GCC-Application-Roster-Report indication shall be issued to the Node Controller. The
GCC Provider shall issue a GCC-Application-Roster-Report indication to an active Application
Protocol Entity when any portion of the roster has changed for any Peer Application Protocol
Entity. In this case it is required to include only the portion of the roster which applies to the
corresponding Application Protocol Session. The GCC Provider may also issue a GCC-Application-
Roster-Report indication to an Application Protocol Entity at other times (such as when entries
other than for Peer Application Protocol Entities have changed) and may include in the indication
primitive portions of the roster beyond those corresponding to Peer Application Protocol Entities.
For inactive Application Protocol Entities, if the Application Protocol Entity has enrolled with a
specific Session ID, the same rules apply as for an active Application Protocol Entity. For an
Inactive Application Protocol Entity which has enrolled with no Session ID, the GCC Provider shall

68 ITU-T Rec. T.124 (01/2007)

issue a GCC-Application-Roster-Report when the contents of the roster have changed for all
Application Protocol Sessions which are based on the same Application Protocol as the enrolled
Application Protocol Entity. Table 7-27 shows the parameters and types of this primitive. When
issued to the Node Controller, each of the Application Protocol-specific parameters (all except the
Conference ID) is repeated separately for each Application Protocol Session. Figure 7-20 shows the
sequence of events when using this primitive.

Table 7-27 — GCC-Application-Roster-Report — Types of primitives and their parameters

Par ameter Indication
Conference ID M
Updated Application Roster M

Conference ID: Identifier of the MCS Domain corresponding to the indicated conference.

Updated Application Roster: The updated Application Roster includes the information shown in
Table 7-28 for each Application Protocol Session being indicated by the indication.

Table 7-28 — Contents of the updated Application Roster for each

Application Protocol Session

Parameter

Description

Session Key

The Session Key (including the Session ID, if any) designating the
particular Application Protocol Session.

Application Protocol Entity List
Updated Flag

A flag indicating whether the Application Protocol Entity List for
this Session Key has been updated in this report. If so, the
Application Protocol Entity List isincluded as the following
parameter.

Application Protocol Entity List
(conditional)

A list of the Application Protocol Entities enrolled in the
conference as part of this Application Protocol Session including an
Application Record for each. The contents of each entry in this list
isshown in Table 7-29.

Instance Number

The instance number for the Application Roster for this Session
Key. Thisisa16-bit number which isincremented modulo 2'® each
time the contents of the Application Roster changes for this Session
Key. Thisallows Application Protocol Entities to perform
operations with respect to a particular capability set which may be
in the pracess of changing avoiding any race conditions.

Peer Entities Added Flag

A flag indicating whether one or more Peer Application Protocol
Entities have been added to the Application Roster at any node
since the last instance. Thisflag is not mutually exclusive of the
Peer Entities Removed Flag.

Peer Entities Removed Flag

A flag indicating whether one ore more Peer Application Protocol
Entities have been removed from the Application Roster at any
node since the last instance. Thisflag is not mutually exclusive of
the Peer Entities Added Flag.

Application Capabilities List
Updated Flag

A flag indicating whether the Application Capahilities List for this
Session Key has been updated in this report. If so, the Application
Capabilities List isincluded as the following parameter.

Application Capabilities List
(conditional)

The fully collapsed Application Capabilities List for this Session
Key.

ITU-T Rec. T.124 (01/2007) 69

Table 7-29 — Contents of each entry of the Application Protocol Entity List

Parameter

Description

Node ID

Node ID identifying the node at which the Application Protocol
Entity has enrolled.

Application Protocol Entity ID

An identifier which uniquely identifies the Application Protocol
Entity within the node specified by the Node ID.

Active/lnactive Flag

A flag indicating whether the enrolled Application Protocol Entity is
inactive or active.

Application User ID (conditional)

The MCS User ID associated with the enrolled Application Protocol
Entity.

Conducting Operation Capable

Thisisaflag which indicates whether the Application Protocol
Entity is capable of operating as a conducting Application Protocol
Entity if the corresponding Application Protocol specification
defines the procedures for such an Application Protocol Entity to
follow. Thereis no more than one Peer Application Protocol Entity
per node with this flag set. If a node becomes the conference
conductor, the designated Application Protocol Entity at that node,
if any, for this Application Protocol Session becomes the designated
conducting Application Protocol Entity.

Start-up Channel (conditional)

This parameter, if present, may take on the values Static, Dynamic
Multicast, Dynamic Private, or Dynamic Userld. This parameter
indicates the type of MCS Channel the Application Protocol Entity
will use for start-up sequencing. The exact interpretation of this
parameter is Application Protocol-specific. In some cases, certain of
these channel types may not be valid for particular Application
Protocols.

Non-Collapsing Capabilities List
(conditional)

Thisisalist of Application Protocol-specific capabilities (either
standard or non-standard) which are maintained in the roster as part
of the Application Record of each Application Protocol Entity.

GCC Provider

Node Controller and
Application Protocol Entities

GCC-Application-
Roster-Report indication

T.124(01-07)_F7-20

Figure 7-20 — GCC-Application-Roster-Report — Sequence of primitives

70 ITU-T Rec. T.124 (01/2007)

7.3.34 GCC-Application-Roster-Inquire

An Application Protocol Entity may request a portion of the Conference Application Roster
corresponding to a single Application Protocol Session, a group of these, or all Application Protocol
Entities, using the GCC-A pplication-Roster-Inquire request primitive. This information is returned
by GCC in the GCC-Application-Roster-Inquire confirm primitive. Table 7-30 shows the
parameters and types of this primitive. Figure 7-21 shows the sequence of events when using this
primitive.

Table 7-30 — GCC-Application-Roster -Inquire — Types of primitives and their parameters

Parameter Request Confirm
Conference ID M M(=)
Session Key M M(=)
Application Roster M
Result M

Conference ID: Identifier of the conference to which the primitive refers.

Session Key: Unique identifier of an Application Protocol Session. This may be a partial Session
Key or anull key, indicating that the Application Information for all Application Protocol Entitiesis
desired.

Application Roster: The Application Roster includes a list of roster entries for each Application
Protocol Session specified by a Session Key whose octets match the Session Key in the request up
to the length of the Session Key in the request, and if a Session ID is specified as part of the Session
Key, those with the identical Session ID. For each matched entry, the information returned is shown
in Table 7-31.

Table 7-31 — Contents of the Application Roster for each Application Protocol Session

Par ameter Description

Session Key The Session Key (including the Session ID, if any) designating the
particular Application Protocol Session.

Application Protocol Entity A list of the Application Protocol Entities enrolled in the conference as

List part of this Application Protocol Session including an Application Record
for each. The contents of each entry in thislist is shown in Table 7-28.
Instance Number The instance number for the Application Roster for this Session Key. This

is a 16-bit number which isincremented modulo 2*° each time the
contents of the Application Roster changes. This allows Application
Protocol Entities to perform operations with respect to a particular
capability set which may be in the process of changing avoiding any race
conditions.

Application CapabilitiesList | Thefully collapsed Application Capabilities List for this Session Key.

Result: An indication of whether the request was accepted or rejected, and if rejected, the reason
why. It contains one of alist of possible results: successful, invalid conference.

ITU-T Rec. T.124 (01/2007) 71

Node Controller or

Application Protocol Entity GCC Provider

GCC-Application-
Roster-Inquire request

GCC-Application-
Roster-Inquire confirm

T124(01-07) F7-21

Figure 7-21 — GCC-Application-Roster -l nquir e — Sequence of primitives

7.3.35

At the specified nodes, the indication form of this primitive is issued to the Node Controller which
may invoke the specified Application Protocol Entities. For each listed Application Protocol Entity,
this indication indicates the desire to create a new Application Protocol Entity with the Session Key
as specified in the request which would then enroll actively into the conference, becoming part of
the corresponding Application Protocol Session. Alternatively, if an inactive Application Protocol
Entity already exists at a destination node with the identical Session Key, receipt of this indication
indicates the desire to make that Application Protocol Entity re-enroll in the active state. If an
Application Protocol Entity exists at a destination node with the identical Session Key which is
aready in the active state, this indication may be ignored. Table 7-32 shows the parameters and
types of this primitive. Figure 7-22 shows the sequence of events when using this primitive. Note
that Application Protocol Entities can only be invoked at Conventional and Counted nodes. Also, a
GCC-Application-Invoke can only be initiated from a Conventional node. A Conventional node
should have already created the session passed in the Invoke request before a Counted node is
invoked.

GCC-Application-Invoke

Table 7-32 — GCC-Application-Invoke — Types of primitives and their parameters

Parameter Request Indication Confirm
Conference ID M M M(=)
Application Protocol Entity Invoke List M M(=) M(=)
Destination Nodes (List of Node IDs or NULL) @]
Invoking Node ID M
Result M

Conference ID: Identifier of the conference to which the primitive refers.

Application Protocol Entity Invoke List: Thisis alist of one or more Application Protocol Entities

to beinvoked. The contents of each entry in thislist are shown in Table 7-33.

72 ITU-T Rec. T.124 (01/2007)

Table 7-33 — Contents of each entry in the Application Protocol Entity Invoke List

Par ameter

Description

Session Key

The Session Key (including the Session ID, if any) designating the
particular Application Protocol Session to invoke.

Expected Capability Set

Thisisan optional list of application capabilities (in the same form as the
Application Capabilities List) which indicates the expected set of
capabilities that the Application Protocol Entity to be invoked must have.
If the Application Protocol Entity at a particular node cannot satisfy this, it
shall not be invoked at that node. If this parameter is not included, no
constraints are placed on the invoked Application Protocol Entity. Note
that the capabilities class definitions are used to determine the
interpretation of this expected capability set, but are not interpreted by
GCC asthey arein the case of the Application Capabilities List. For a
capability of the Unsigned-MAX class, the invoked Application Protocol
Entity must have a capability less-than-or-equal-to the specified
capability, while for an Unsigned-MIN class, the invoked Application
Protocol Entity must have a capability greater-than-or-equal-to the
specified capability. For a capability in the Logical class, the invoked
Application Protocol Entity simply must have the identical capability.

Start-up Channel
(conditional)

Either Static, Dynamic Multicast, Dynamic Private, or Dynamic Userld.
This parameter specifies the type of MCS Channel the Application
Protocol Entity should assume for use when invoking. In some cases,
certain of these channel types may not be valid for particular Application
Protocols. If aninvalid setting is used, the Application Protocol Entity
shall not be invoked.

Mandatory/Optional Flag

This flag indicates whether this Application Protocol Entity must be
invoked in order to invoke the other Application Protocol Entitiesin this
list. Thisflag is used by the invoking node to indicate that the destination
nodes should only invoke the Application Protocol Entitiesin thislist if all
of the Application Protocol Entities marked as Mandatory can
successfully be invoked.

Destination Nodes (List of Node IDs or NULL): List of Node IDs identifying GCC Providers to
which the request should go, or null, to indicate it should go to all nodes in the conference
designated by the Conference ID.

Invoking Node ID: The Node ID of the node which initiated the corresponding GCC-Application-

Invoke request.

Result: An indication of whether the request was accepted or rejected, and if rejected, the reason
why. It contains one of alist of possible results: successful, invalid conference.

ITU-T Rec. T.124 (01/2007) 73

Node Controller or . . Destination Nodes
Application Protocol Entity GCC Provider GCC Provider Node Controller

GCC-Application-Invoke
request GCC-Application-Invoke

indication

.

GCC-Application-Invoke
confirm

T.124(01-07)_F7-22
Figure 7-22 — GCC-Application-I nvoke — Sequence of primitives

7.4 The Application Registry

The Application Registry is a functional component of GCC. The registry offers a set of functions
to Application Protocol Entities which operate on a central database located at the Top
GCC Provider. The contents of the registry are unique to a single conference. The significance of
information stored in the registry database is defined by Application Protocols. The central
repository can assist in establishing communication among Application Protocol Entities. It can
help peers to discover a common Channel 1D on which to communicate, a common Token ID to
regulate exclusive access, or a common parameter setting (a parameter is a registry entry with an
Application Protocol-specific use). It offers an aternative to the static reservation of Channel I1Ds,
Token IDs, and other parameter values. By supporting dynamic discovery, the Application Registry
can facilitate the introduction of new features, standardized or non-standardized, that enhance
audiographic and audiovisual conferencing. The registry also includes a general purpose service for
allocation of numeric handles which are globally unique within a conference.

741 Registry keys

The indexes used to store and retrieve entries in the registry database are Application
Protocol-specified keys. Both standard and non-standard keys are alowed. Standard keys are
allocated by Recommendations like this. Non-standard keys may be proprietary. Both are structured
to avoid conflictsin the choice of key values.

Registry keys consist of a Session Key as defined in 7.3.1 in combination with a Resource ID. The
Session Key used for any registry operation requiring a Registry Key shall be identical to the
Session Key of an Application Protocol Session present in the Application Roster (with either active
or inactive members). The Resource ID is of ASN.1 type OCTET STRING. The Resource ID
allows a single Application Protocol Entity to make use of multiple Registry Keys. The value of the
Resource IDs are defined by the specifications of the Application Protocols which make use of
them.

7.4.2 Ownership and persistence

The registry yields ownership of a Registry Key to the first Application Protocol Entity that
requests to store an item there via either the GCC-Registry-Register-Channel, GCC-Registry-
Assign-Token, or GCC-Registry-Set-Parameter request primitives. A Conventional node is the only
Node Category allowed to have ownership of aregistry entry.

In the case of a Parameter registry item, when the parameter is created, its owner may specify the
scope of Application Protocol Entities allowed to modify the value of that entry. The owner may
specify either owner, session, or public modification rights — the parameter may be modifiable by

74 ITU-T Rec. T.124 (01/2007)

the owner only (as in the case of Channels and Tokens), by all Peer Application Protocol Entities
(those within the same Application Protocol Session), or by any Application Protocol Entity in the
conference, respectively. Modification of the contents of a parameter by an Application Protocol
Entity other than the owner does not alter the identity of the owner of that entry. The owner of a
parameter may at any time re-define the scope of modification rights. If another node attempts to
modify the modification rights as part of issuing a GCC-Registry-Set-Parameter request, the rights
will not be modified, although the parameter will be set to the requested value if the requester had
modification rights.

For al registry item types (Channel, Token, or Parameter), ownership is required to delete the entry.
An entry, once deleted, has no owner and may be taken over by a different Application Protocol
Entity.

Registry entries are not deleted automatically when the owner un-enrolls from the conference. Their
content persists unchanged indefinitely. However, ownership of an entry is removed when the
owner un-enrolls. This allows a surviving Application Protocol Entity to modify (for a Parameter
entry only) or delete an orphaned entry if its usefulness has expired. The first Application Protocol
Entity that requests to store an item in an orphaned Parameter entry becomes its new owner.

When all Application Protocol Entities in the session that corresponds to the Session Key used to
form the Registry Key for a registry entry become un-enrolled, that registry entry is automatically
deleted.

7.4.3 Dynamic allocation

MCS distinguishes between static and dynamic Channel IDs. The latter comprise User IDs, private
Channél 1Ds, and assigned Channel 1Ds. Dynamic Channel 1Ds are created and deleted directly by
Application Protocol Entities, separately from their use of registry services. The Application
Registry stores dynamic Channel IDs in a central repository for retrieval by other Application
Protocol Entities. It does not test or operate on these Channel 1Ds with MCS primitives.

MCS makes no distinction between static and dynamic Token IDs. To maintain similar semantics,
an artificial division is imposed by GCC. Token IDs 1 to 16 383 are designated static and are
reserved for assignment by other specifications. Token IDs 16 384 to 65535 are designated
dynamic and are allocated by the Top GCC Provider upon request, as part of creating an entry in the
registry database. When the associated entry is deleted, the Token ID it held is made available for
reassignment. The registry does not invoke MCS primitives, like grab and release, on the Token IDs
it assigns. It merely chooses specific ID values and disseminates them. Application Protocol
Entities are free to operate on assigned Token IDs according to their own logic.

7.4.4 Description of abstract services

The following is a list of the primitives defined in this subclause and a brief summary of the
function of each:

. GCC-Registry-Register-Channel — Used by Application Protocol Entities to register the
Channel ID of an MCS dynamic channel. Application Protocol Entities may examine the
entry using GCC-Registry-Retrieve-Entry to determine if a node has already registered the
Channdl ID, and if so, retrieve the value of the Channel ID. Only Conventional nodes are
allowed to register channels.

. GCC-Registry-Assign-Token — Used by Application Protocol Entities to allocate a dynamic
token and register the assigned Token ID. Application Protocol Entities may examine the
entry using GCC-Registry-Retrieve-Entry to determine if a node has already registered the
Token ID, and if so, retrieve the value of the Token ID. Only Conventional nodes are
allowed to assign atoken.

ITU-T Rec. T.124 (01/2007) 75

. GCC-Registry-Set-Parameter — Used by Application Protocol Entities to set a value in the
registry database which may be examined or modified from any node in a conference. Only
Conventional nodes are allowed to set aregistry parameter.

. GCC-Registry-Retrieve-Entry — Used by Application Protocol Entities to extract the current
contents of any registry entry.

. GCC-Registry-Delete-Entry — Used by Application Protocol Entities to remove an entry in
the registry database. Only Conventional nodes are alowed to delete aregistry entry.

. GCC-Registry-Monitor — Used by Application Protocol Entities to enable (or disable)

monitoring of a registry entry. Once enabled, the indication form of this primitive notifies
the requesting Application Protocol Entities of any changes to the content of the entry
(including deletion). Any Node Category can monitor the registry.

. GCC-Registry-Allocate-Handle — Used to generate a 32-bit Handle which is unique within
the scope of a single conference. Any Node Category can allocate a handle.

For a particular requester, the order of registry request primitives, the resulting action at the Top
GCC Provider (if successful), and their associated confirm primitivesis preserved.

7441 GCC-Registry-Register-Channel

The GCC-Registry-Register-Channel request primitive may be issued by an Application Protocol
Entity at a Conventional node to inform Application Protocol Entities at other nodes that a
particular MCS channel has been designated for use by the Application Protocol Entity in the
manner indicated by the Registry Key. Once any Application Protocol Entity registers using a
particular Registry Key, Application Protocol Entities at other nodes may find out if a channel has
been registered for this key (and if so, the value of the channel ID) by issuing the GCC-Registry-
Retrieve-Entry request primitive specifying the Registry Key in question. Once a channel is
registered, if any Application Protocol Entity attempts to register using the same Registry Key
(including the owner), their attempt will be rejected with an indication that this Registry Key has
already been used. Table 7-34 shows the parameters and types of this primitive. Figure 7-23 shows
the sequence of events when using this primitive.

Table 7-34 — GCC-Registry-Register-Channel — Types of primitives and their parameters

Parameter Request Confirm
Conference ID M M(=)
Registry Key M M(=)
Channel ID M
Registry Item C
Owner C
Result M

Conference ID: Identifier of the conference to which the primitive refers.
Registry Key: The database index at which theitemisto be stored.

Channel ID: A dynamic channel ID (user ID, private, or assigned) specified by the Application
Protocol Entity.

Registry Item: The value of the entry after the request has taken effect. If the request is successful,
thisis the value of the parameter, if not successful due to inconsistent type or index already owned,
thisis the value prior to the request. It is either a Channel 1D, Token ID, Parameter Value, or None
if the entry is vacant (both the type and the value, if any, are indicated by this parameter). This
parameter is not present if the confirm is alocally-generated error condition.

76 ITU-T Rec. T.124 (01/2007)

Owner: This parameter indicates the current owner of this registry entry. If owned, this parameter
includes the Node ID of the node at which the owner resides and the Entity ID of the owning
Application Protocol Entity. This parameter also indicates if the entry is not owned. This parameter
isnot present if the confirm isalocally generated error condition.

Result: An indication of whether the request was accepted or rejected, and if rejected, the reason
why. It contains one of alist of possible results. successful, invalid conference, registry full, index
already exists, inconsistent type, invalid requester.

Application GCC Provider Top GCC Provider GCC Provider Monit(ﬁilr|1 N,&)delsi cation
Protocol Entity P g /20D

Protocol Entities

) GCC-Registry-
Register-Channel request GCC-Registry-Monitor
indication

I

GCC-Registry-
Register-Channel confirm

T.124(01-07)_F7-23

Figure 7-23 — GCC-Registry-Register-Channel — Sequence of primitives

7442 GCC-Registry-Assign-Token

The GCC-Registry-Assign-Token request primitive may be issued by an Application Protocol
Entity at a Conventional node to assign a token to be associated with a particular Registry Key. If
the request is successful, the token ID is returned as a parameter in the confirm primitive. Once any
Application Protocol Entity gets a token assigned using a particular Registry Key, Application
Protocol Entities at other nodes may find out if atoken has been assigned for thiskey (and if so, the
value of the Token ID) by issuing the GCC-Registry-Retrieve-Entry request primitive specifying
the Registry Key in question. Once the token is assigned, if any Application Protocol Entity
attempts to get a token assigned using the same Registry Key (including the owner), their attempt
will be rejected with an indication that this Registry Key has already been used. Table 7-35 shows
the parameters and types of this primitive. Figure 7-24 shows the sequence of events when using
this primitive.

Table 7-35 - GCC-Registry-Assign-Token — Types of primitives and their parameters

Par ameter Request Confirm
Conference ID M M(=)
Registry Key M M(=)
Token ID C
Registry Item C
Owner C
Result M

Conference ID: Identifier of the conference to which the primitive refers.
Registry Key: The database index at which the item is to be stored.

ITU-T Rec. T.124 (01/2007) 77

Token ID: A dynamic token ID (16 384 or greater) assigned by the Top GCC Provider. This
parameter is not present if the confirm is alocally-generated error condition.

Registry Item: The value of the entry after the request has taken effect. If the request is successful,
thisis the value of the parameter, if not successful due to inconsistent type or index already owned,
thisis the value prior to the request. It is either a Channel 1D, Token ID, Parameter Value, or None
if the entry is vacant (both the type and the value, if any, are indicated by this parameter). This
parameter is not present if the confirm is alocally-generated error condition.

Owner: This parameter indicates the current owner of this registry entry. If owned, this parameter
includes the Node ID of the node at which the owner resides and the Entity ID of the owning
Application Protocol Entity. This parameter also indicates if the entry is not owned. This parameter
isnot present if the confirm is alocally-generated error condition.

Result: An indication of whether the request was accepted or rejected, and if rgjected, the reason
why. It contains one of alist of possible results: successful, invalid conference, registry full, index
already exists, inconsistent type, invalid requester.

Application
Protocol Entity

All Nodes Monitoring

GCC Provider Top GCC Provider GCC Provider Application Protocol Entities

GCC-Registry-Assign-Token
request

GCC-Registry-Monitor
indication

GCC-Registry-Assign-Token
confirm

T.124(01-07)_F7-24

Figure 7-24 — GCC-Registry-Assign-Token — Sequence of primitives

7443 GCC-Registry-Set-Parameter

The GCC-Registry-Set-Parameter request primitive may be issued by an Application Protocol
Entity at a Conventional node to set or modify the value of aregistry parameter. If the registry entry
had been designated to be monitored using the GCC-Registry-Monitor request primitive, each
successful GCC-Registry-Set-Parameter request results in a GCC-Monitor-Indication to Application
Protocol Entities at all nodes in the conference which have enabled monitoring for this entry. If a
registry entry exists for a particular key, a request to set a parameter shall only be accepted if the
entry is already a parameter. Table 7-36 shows the parameters and types of this primitive.
Figure 7-25 shows the sequence of events when using this primitive.

78 ITU-T Rec. T.124 (01/2007)

Table 7-36 — GCC-Registry-Set-Parameter — Types of primitives and their parameters

Parameter Request Confirm

Conference ID M M(=)
Registry Key M M(=)
Parameter Value M

Registry Item C
Owner C
Modification Rights @] C
Result M

Conference ID: Identifier of the conference to which the primitive refers.
Registry Key: The database index at which theitemisto be stored.
Parameter Value: An octet string specified by the Application Protocol Entity.

Registry Item: The value of the entry after the request has taken effect. If the request is successful,
thisis the value of the parameter; if not successful due to inconsistent type, thisis the value prior to
the request. It is either a Channel 1D, Token ID, Parameter Value, or None if the entry is vacant
(both the type and the value, if any, are indicated by this parameter). This parameter is not present if
the confirm is alocally-generated error condition.

Owner: This parameter indicates the current owner of this registry entry. If owned, this parameter
includes the Node ID of the node at which the owner resides and the Entity ID of the owning
Application Protocol Entity. This parameter also indicates if the entry is not owned. If successful
completion of this primitive results in the requester becoming the owner of this entry, the requester
isindicated as the new owner in the confirm primitive. This parameter is not present if the confirm
isalocally-generated error condition.

Modification Rights: This optional parameter specifies the scope of Application Protocol Entities
allowed to make modifications to the value of this registry entry. The value of this parameter may
be either Owner, Session, or Public. The Owner setting specifies that only the owner (as long as the
entry is owned) may modify this entry. The Session setting specifies that any Application Protocol
Entity which is part of the same Application Protocol Session as the owner may modify this entry.
The Public setting specifies that any Application Protocol Entity enrolled in the conference may
modify this entry. If this parameter is not present when the entry isfirst created, avalue of Public is
assumed. If not present at other times, its value is left unchanged. Only the owner of this registry
entry (as long as the entry is owned) can change the modification rights. If a non-owner attempts to
change the modification rights, this change will not take place; however, any modification to the
parameter entry itself will occur as long as the requester has modification rights. In the confirm
primitive, this parameter is present independent of whether it was in the request primitive and
indicates the actual modification rights. This parameter is not present if the confirm is a
locally-generated error condition.

Result: An indication of whether the request was accepted or rejected, and if rejected, the reason
why. It contains one of a list of possible results: successful, invalid conference, registry full,
inconsistent type, invalid requester.

ITU-T Rec. T.124 (01/2007) 79

All Nodes Monitoring

Application S . y
GCC Provider Top GCC Provider GCC Provider Application Protocol Entities

Protocol Entity

GCC-Registry-
Set-Parameter request GCC-Registry-Monitor

indication

GCC-Registry-

Set-Parameter confirm

T.124(01-07)_F7-25

Figure 7-25 — GCC-Registry-Set-Parameter — Sequence of primitives

7444 GCC-Registry-Retrieve-Entry

The GCC-Registry-Retrieve-Entry request primitive may be issued by an Application Protocol
Entity to determine the contents of a single registry entry. This primitive may be issued at any time
and will indicate the contents of the entry as well as whether the entry isachannel ID, atoken ID, a
parameter, or if the entry is empty. Table 7-37 shows the parameters and types of this primitive.
Figure 7-26 shows the sequence of events when using this primitive.

Table 7-37 — GCC-Registry-Retrieve-Entry — Types of primitives and their parameters

Parameter Request Confirm
Conference ID M M(=)
Registry Key M M(=)
Registry Item C
Owner C
Modification Rights C
Result M

Conference ID: Identifier of the conference to which the primitive refers.
Registry Key: The database index of the entry to be retrieved.

Registry Item: A Channel ID, Token ID, Parameter Value, or None if the entry is vacant (both the
type and the value, if any, are indicated by this parameter). This parameter is not present if the
confirm is alocally-generated error condition.

Owner: This parameter indicates the current owner of this registry entry. If owned, this parameter
includes the Node ID of the node at which the owner resides and the Entity ID of the owning
Application Protocol Entity. This parameter also indicates if the entry is not owned. This parameter
isnot present if the confirm is alocally-generated error condition.

Modification Rights. This parameter, included only in the case of Parameter entries, indicates the
scope of Application Protocol Entities allowed to make modifications to the value of this registry
entry. The value of this parameter may be either Owner, Session, or Public. The Owner setting
specifies that only the owner (as long as the entry is owned) may modify this entry. The Session
setting specifies that any Application Protocol Entity which is part of the same Application Protocol
Session as the owner may modify this entry. The Public setting specifies that any Application
Protocol Entity enrolled in the conference may modify this entry. If this parameter is not present

80 ITU-T Rec. T.124 (01/2007)

when the entry is first created, a value of Public is assumed. This parameter is not present if the
confirm is alocally-generated error condition.

Result: An indication of whether the request was accepted or rejected, and if rejected, the reason
why. It contains one of alist of possible results: successful, entry not found, invalid conference.

Application . Top GCC
Protocol Entity GCC Provider Provider

GCC-Registry-Retrieve-Entry
request

GCC-Registry-Retrieve-Entry
confirm

T.124(01-07)_F7-26

Figure 7-26 — GCC-Registry-Retrieve-Entry — Sequence of primitives

7445 GCC-Registry-Delete-Entry

The GCC-Registry-Delete-Entry request primitive may be issued by an Application Protocol Entity
to remove aregistry entry. Removal of aregistry entry is only alowed by the Application Protocol
Entity which owns that entry (unless the last owner disconnected from the conference and no new
owner has been assigned) and must be issued from a Conventional node. If the registry entry had
been designated to be monitored using the GCC-Registry-Monitor request primitive, a successful
GCC-Reqistry-Delete-Entry request results in a GCC-Monitor-Indication to Application Protocol
Entity at all nodes in the conference which have enabled monitoring for this entry with a NULL
Registry Item parameter to indicate that the entry has been deleted. Table 7-38 shows the
parameters and types of this primitive. Figure 7-27 shows the sequence of events when using this
primitive.

Table 7-38 — GCC-Registry-Delete-Entry — Types of primitives and their parameters

Parameter Request Confirm
Conference ID M M(=)
Registry Key M M (=)
Result M

Conference ID: Identifier of the conference to which the primitive refers.
Registry Key: The database index of the entry to be vacated, removing any item previously stored.

Result: An indication of whether the request was accepted or rejected, and if rejected, the reason
why. It contains one of a list of possible results: successful, invalid conference, index aready
owned by another GCC Provider.

ITU-T Rec. T.124 (01/2007) 81

Application T r r All Nodes Monitoring
Protocol Entity GCC Provider Top GCC Provider GCC Provider Application Protocol Entities
GCC-Registry-Delete-Entry GCC-Registry-Monitor

request indication

GCC-Registry-Delete-Entry
confirm

T.124(01-07)_F7-27

Figure 7-27 — GCC-Registry-Delete-Entry — Sequence of primitives

7446 GCC-Registry-Monitor

GCC provides a mechanism for continuously monitoring particular registry entries of any type to
determine if they have been changed (either altered, deleted, changed owners, or in the case of a
parameter entry, changed modification rights) without the need for continuous polling. The
GCC-Registry-Monitor request primitive may be used by an Application Protocol Entity to enable
(or disable) monitoring of a particular registry entry. While enabled, the requesting Application
Protocol Entity is notified of al changes to this entry via the GCC-Registry-Monitor indication
primitive. An indication will be generated as a result of any modification of the contents of the
registry entry or deletion of the entry. Only registry entries which exist may be monitored. Once an
entry has been deleted, if it is recreated, the monitor request must be re-issued to begin monitoring
again. Table 7-39 shows the parameters and types of this primitive. Figure 7-28 shows the sequence
of events when using the request form of this primitive.

NOTE - Particular GCC Provider implementations may choose not to keep track of which Application
Protocol Entities have enabled or disabled monitoring for each entry. In that case, Application Protocol

Entities may receive GCC-Registry-Monitor indications for entries that they have not reguested to be
monitored, or for entries for which they specifically disabled monitoring.

Table 7-39 — GCC-Registry-Monitor — Types of primitives and their parameters

Par ameter Request Indication Confirm
Conference ID M M M(=RQ)
Enable/Disable M M(=)
Registry Key M M M(=RQ)
Registry Item M
Owner M
Modification Rights C
Result M

Conference ID: Identifier of the conference to which the primitive refers.
Enable/Disable: TRUE to deliver indications of registry contents; FAL SE to suppress indications.

Registry Key: The database index of an entry to be monitored (in the request/confirm), or that has
changed (in the indication).

82 ITU-T Rec. T.124 (01/2007)

Registry Item: A Channel ID, Token ID, Parameter Value, or None indicating that the entry has
been deleted (both the type and the value, if any, are indicated by this parameter).

Owner: This parameter indicates the current owner of this registry entry. If owned, this parameter
includes the Node ID of the node at which the owner resides and the Entity ID of the owning
Application Protocol Entity. This parameter also indicates if the entry is not owned. This parameter
isnot present if the confirm is alocally-generated error condition.

Modification Rights: This parameter, included only in the case of Parameter entries, indicates the
scope of Application Protocol Entities allowed to make modifications to the value of this registry
entry. The value of this parameter may be either Owner, Session, or Public. The Owner setting
specifies that only the owner (as long as the entry is owned) may modify this entry. The Session
setting specifies that any Application Protocol Entity which is part of the same Application Protocol
Session as the owner may modify this entry. The Public setting specifies that any Application
Protocol Entity enrolled in the conference may modify this entry. If this parameter is not present
when the entry is first created, a value of Public is assumed. This parameter is not present if the
confirm is alocally-generated error condition.

Result: An indication of whether the request was accepted or rejected, and if rejected, the reason
why. It contains one of alist of possible results: successful, invalid conference, registry entry does
not exist.

Top GCC
Provider

Application

Protocol Entity GCC Provider

GCC-Registry-Monitor

GCC-Registry-Monitor
confirm

T.124(01-07)_F7-28
Figure 7-28 — GCC-Registry-M onitor — Sequence of primitives

7447 GCC-Registry-Allocate-Handle

The GCC-Registry-Allocate-Handle request primitive may be issued by an Application Protocol
Entity at a Conventional node to request that a numerical value (or list of values) be allocated to that
Application Protocol Entity which is globaly unique within the scope of a single conference.
Handles are alocated by the Top GCC Provider in increasing numerical order in the order that
requests are received. Blocks of handles are also allocated in increasing numerical order. As a
result, only the first handle in a block is returned if the number of handles is more than one.
Table 7-40 shows the parameters and types of this primitive. Figure 7-29 shows the sequence of
events when using this primitive.

ITU-T Rec. T.124 (01/2007) 83

Table 7-40 — GCC-Registry-Allocate-Handle — Types of primitives and their parameters

Parameter Request Confirm
Conference ID M M(=)
Number of Handles M M(=)
First Handle M
Result M

Conference ID: Identifier of the conference to which the primitive refers.

Number of Handles: The number of handles requested to be allocated and returned in the confirm
primitive. This may range from 1 to 1024.

First Handle: 32-bit unsigned integer value. If the number of requested handles is equal to one, this
Is the value of the allocated handle. If the number of handles is greater than one, the set of allocated
handles are those contiguous values (modulo 2%%) that range from the value of First Handle, through
the value (First Handle + Number of Handles) mod 2%,

Result: An indication of whether the request was accepted or rejected, and if rejected, the reason
why. It contains one of a list of possible results: successful, invalid conference, no handles
available, too many handles requested.

Application
Protocol Entity

Top GCC

GCC Provider Provider

GCC-Registry-Allocate-Handle

GCC-Registry-Allocate-Handle
confirm

T.124(01-07)_F7-29
Figure 7-29 — GCC-Registry-Allocated-Handle — Sequence of primitives

75 Conference conductor ship

GCC provides a method for allowing a Conventional node to become a conductor for a conference.
A token is used by GCC to determine whether a conference is conducted or non-conducted. The
Node Controller at a node may acquire the Conductor token by issuing a GCC-Conductor-Assign
request primitive. When any node successfully acquires the Conductor token, the conference is
placed in Conducted Mode. The Node Controller as well as all Application Protocol Entities at all
nodes in the conference are made aware when a conference switches into Conducted Mode by
means of a GCC-Conductor-Assign indication. This indication also indicates which node has
become the conductor.

Whether a particular conference may operate in conducted mode or not is determined when the
conference is created. If the Conference Conductible flag had been set, the conference may be
placed in conducted mode. If not, any attempt to place the conference in conducted mode will be
rejected.

84 ITU-T Rec. T.124 (01/2007)

A node may release conductorship and return the conference into Non-conducted Mode by issuing a
GCC-Conductor-Release request primitive. The Node Controller as well as all Application Protocol
Entities at al nodes in the conference are made aware when a conference switches into
Non-conducted Mode by means of a GCC-Conductor-Release indication.

A node which is currently the conductor of a conference may pass conductorship directly to another
node without placing the conference in Non-Conducted mode during the transition by issuing a
GCC-Conductor-Give request specifying the desired recipient node. If the recipient accepts
conductorship, the Node Controller as well as al Application Protocol Entities at all nodes in the
conference are made aware of this transition by means of a GCC-Conductor-Assign indication
which indicates which node is the new conductor. A node may explicitly request from the conductor
that conductorship be given to it by issuing a GCC-Conductor-Please request primitive. The current
conductor may choose to give the requesting node conductorship, or may ignore the request.

The Node Controller as well as Application Protocol Entities at any node may also inquire as to
which node, if any, currently holds the Conductor token by using the GCC-Conductor-Inquire
request primitive.

When an Application Protocol Entity is made aware that the conference to which it is joined isin
Conducted Mode, it shall immediately begin operating according to its Conducted Mode behaviour
as prescribed by the specification of the corresponding Application Protocol. When an Application
Protocol Entity is made aware that the conference to which it isjoined isin Non-conducted mode, it
shall immediately begin operating according to its Non-conducted Mode behaviour as prescribed by
the specification of the corresponding Application Protocol. A typical Application Protocol
specification may, for example, state that the Application Protocol Entity at any node when in
Conducted Mode must request permission from the Peer Application Protocol Entity at the
conductor before taking any action, while in Non-conducted Mode, no such permission is required.
However, the behaviour defined by Application Protocol specifications while in Conducted or
Non-conducted Mode is a matter outside of the scope of this Recommendation.

7.5.1 Description of abstract services

The following is a list of the primitives defined in this subclause and a brief summary of the
function of each:

. GCC-Conductor-Assign — Used by a Node Controller at a Conventional node to request
conductorship of a conference. When a new node becomes conductor, the indication form
of this primitive is used to announce this to all Node Controllers in the conference as well
asto all Application Protocol Entities at all nodes in the conference.

. GCC-Conductor-Release — Used by a Node Controller at a Conventional node to release
conductorship of a conference. When any node releases conductorship, the indication form
of this primitive is used to announce this to al Node Controllers in the conference as well
asto all Application Protocol Entities at all nodes in the conference.

. GCC-Conductor-Please — Used by a Node Controller at a Conventional node to request that
conductorship be given to it from the current conductor.

. GCC-Conductor-Give — Used by a Node Controller at a Conventional node to pass
conductorship to specified node.

. GCC-Conductor-Inquire — Used by a Node Controller or an Application Protocol Entity to

determine whether the conference is currently conducted nor non-conducted, and if
conducted, the Node ID of the current conductor.

. GCC-Conductor-Permission-Ask — Used by a Node Controller to request permission for
Application Protocol Entities at that node to take actions which, in conducted-mode, require
permission from the conductor.

ITU-T Rec. T.124 (01/2007) 85

. GCC-Conductor-Permission-Grant — Used by the Node Controller at the conducting node
to indicate which subset of nodes in a conference have been granted conducted-mode
permission.

7511 GCC-Conductor-Assign

During non-conducted mode the Node Controller at any Conventional node has the possibility to
Issue a request to become conductor, by issuing a GCC-Conductor-Assign request primitive. The
receipt of a GCC-Conductor-Assign confirm primitive indicates whether the requester has become
the conductor or not, depending on the result parameter within the primitive. A successful
GCC-Conductor-Assign request shall be accompanied by GCC-Conductor-Assign indications to all
Node Controllers in the conference as well as to al enrolled Application Protocol Entities at all
nodes in the conference signaling that the conference has become conducted, and giving
information about the identity of the conductor. The indication form of this primitive may also be
issued to an Application Protocol Entity upon enrolling into a conference to inform it that the
conference is in conducted mode. The order of GCC-Conductor-Assign and GCC-Conductor-
Release indications represents the actual order of conductorship transitions. Table 7-41 shows the
parameters and types of this primitive. Figure 7-30 shows the sequence of events when using this
primitive.

NOTE — If the conductor disconnects from the conference for any reason, the conference reverts to
non-conducted mode until another node issues a request to become conductor.

Table 7-41 — GCC-Conductor-Assign — Types of primitives and their parameters

Par ameter Request Indication Confirm
Conference ID M M M(=RQ)
Requesting Node ID M
Result M

Conference ID: Identifier of the conference to which the primitive refers.
Requesting Node ID: The Node ID of the requesting node.

Result: An indication of whether the request was accepted or rejected, and if rejected, the reason
why. It contains one of a list of possible results: successful, invalid conference, non-conductible
conference, token already owned.

All Nodes
Node Controller
and All Application
Protocol Entities

Node Controller GCC Provider GCC Provider

GCC-Conductor-Assign

GCC-Conductor-Assign
request

indication

: I

GCC-Conductor-Assign
confirm

T.124(01-07)_F7-30

Figure 7-30 — GCC-Conductor-Assign — Sequence of primitives

86 ITU-T Rec. T.124 (01/2007)

7512 GCC-Conductor-Release

In order to change its status from conductor to normal participant, the Node Controller at the
conductor node issues the GCC-Conductor-Release request primitive. As soon as the conductor has
requested the release of conductorship, all Node Controllers in the conference as well as all enrolled
Application Protocol Entities at all nodes in the conference are informed of the change in
operational mode by means of the GCC-Conductor-Release indication. The order of
GCC-Conductor-Assign and GCC-Conductor-Release indications represents the actual order of
conductorship transitions. Any participant issuing a GCC-Conductor-Release, but not being the
current conductor, shall be answered by GCC with a GCC-Conductor-Release confirmation
containing a negative result and reason description. In this situation, no indications shall be sent to
the other participants. Apart from this user-initiated transition to non-conducted mode, the release
of conductorship can also be initiated by GCC itself, for instance because the conductor
disconnected from the conference. The indication form of this primitive may also be issued to an
Application Protocol Entity upon enrolling into a conference to inform it that the conference isin
non-conducted mode. Table 7-42 shows the parameters and types of this primitive. The sequences
of primitives belonging to both situations are depicted in Figures 7-31 and 7-32, respectively.

Table 7-42 — GCC-Conductor-Release — Types of primitivesand their parameters

Parameter Request Indication Confirm
Conference ID M M M(=RQ)
Result M

Conference ID: Identifier of the conference to which the primitive refers.

Accept/Reject: This flag indicates whether the GCC-Conductor-Release request was accepted or
rejected.

Result: An indication of whether the request was accepted or rejected, and if rejected, the reason
why. It contains one of alist of possible results: successful, invalid conference, did not own token.

All Nodes
Node Controller
and All Application
Protocol Entities

Node Controller GCC Provider GCC Provider

GCC-Conductor-Release GCC-Conductor-Release
request

indication

I

GCC-Conductor-Release
confirm

T.124(01-07)_F7-31

Figure 7-31 — GCC-Conductor -Release (user -initiated) — Sequence of primitives

ITU-T Rec. T.124 (01/2007) 87

All Nodes
Node Controller
and All Application
Protocol Entities

GCC Provider

GCC-Conductor-Release
indication

D

T.124(01-07)_F7-32

Figure 7-32 — GCC-Conductor -Release (GCC-initiated) — Sequence of primitives

75.1.3 GCC-Conductor-Please

The primitive GCC-Conductor-Please request may be issued by a Node Controller a a
Conventiona node to ask the current conductor to give conductorship to the requesting node. The
GCC-Conductor-Please indication is forwarded to the current conducting node. The current
conductor may then choose to give conductorship to the requester by using the GCC-Conductor-
Give primitive. The confirm portion of this primitive is only local confirmation that the request was
accepted by the local GCC Provider. No confirmation from the conductor is given directly.
Table 7-43 shows the parameters and types of this primitive. Figure 7-33 shows the sequence of
events when using this primitive.

Table 7-43 — GCC-Conductor -Please — Types of primitivesand their parameters

Par ameter Request Indication Confirm
Conference ID M M M(=RQ)
Requesting Node ID M
Result M

Conference ID: Identifier of the conference to which the primitive refers.
Requesting Node ID: The Node ID of the requesting node.

Result: An indication of whether the request was accepted or rejected, and if rejected, the reason
why. It contains one of a list of possible results: successful, invalid conference, not in conducted
mode.

88 ITU-T Rec. T.124 (01/2007)

Conducting Node

Node Controller GCC Provider GCC Provider Node Controller

GCC-Conductor-Please

request GCC-Conductor-

Pleasc indication

GCC-Conductor-Please
confirm

T.124(01-07)_F7-33

Figure 7-33 — GCC-Conductor -Please — Sequence of primitives

NOTE — It is possible to use this primitive (in conjunction with others) to ensure that a particular node
becomes the conference conductor with no opportunity for another node to acquire conductorship. The
procedure would be for the conference convener first to create a conference which is locked and to then
acquire conductorship using the GCC-Conductor-Assign primitive. Once the convener has become the
conference conductor, it may then allow other nodes into the conference either by unlocking it using
GCC-Conference-Unlock and/or by adding the other nodes directly. Once the intended conducting node has
joined the conference, conductorship may be passed directly to that node by use of the GCC-Conductor-Give
primitive.

75.14 GCC-Conductor-Give

The primitive GCC-Conductor-Give request may be issued by a Node Controller to transfer
conductorship to a specific node. If the conductorship is not accepted by the intended recipient,
conference conductorship continues to be held by the original conductor. Table 7-44 shows the

parameters and types of this primitive. Figure 7-34 shows the sequence of events when using this
primitive.

Table 7-44 — GCC-Conductor-Give — Types of primitives and their parameters

Parameter Request Indication Response Confirm
Conference ID M M M(=IN) M(=RQ)
Recipient Node ID M M(=)
Result M M(=)

Conference ID: Identifier of the conference to which the primitive refers.
Recipient Node ID: The Node ID of the node to which conductorship is being transferred.

Result: An indication of whether the request was accepted or rejected, and if rejected, the reason
why. It contains one of alist of possible results: successful, invalid conference, not conductor, give
not accepted.

ITU-T Rec. T.124 (01/2007) 89

Conducting Node : : Recipient Node
Node Controller GCC Provider GCC Provider Node Controller

GCC-Conductor-Give

GCC-Conductor-Give
request

indication

“GCC-Conductor-Give
GCC-Conductor-Give response

confirm

All Nodes
Node Controller
and All Application

GCC Provider Protocol Entities

GCC-Conductor-Assign
indication

_______________ e

T.124(01-07)_F7-34

Figure 7-34 — GCC-Conductor -Give — Sequence of primitives

7515 GCC-Conductor-Inquire

The primitive GCC-Conductor-Inquire request may be issued at any time by either a Node
Controller or Application Protocol Entity in order to find out whether the conference is conducted
or not, and if so, which node is the conductor, and if the requesting node has been granted
conducted-mode permission. Table 7-45 shows the parameters and types of this primitive.
Figure 7-35 shows the sequence of events when using this primitive.

Table 7-45 - GCC-Conductor-Inquire— Types of primitivesand their parameters

Par ameter Request Confirm
Conference ID M M(=)
Conducted vs. Non-Conducted Flag M
Conductor Node ID C
Permission flag C
Result M

Conference ID: Identifier of the conference to which the primitive refers.

Conducted vs. Non-Conducted Flag: A flag indicating whether the indicated conference is currently
in conducted mode or non-conducted mode.

Conductor Node ID: The Node ID of the node that is currently conductor. Not present if currently in
non-conducted mode.

Permission Flag: If in conducted mode, this flag indicates whether or not the local node has been
granted conducted-mode permission.

Result: An indication of whether the request was accepted or rejected, and if rejected, the reason
why. It contains one of alist of possible results: successful, invalid conference.

90 ITU-T Rec. T.124 (01/2007)

Node Controller or

Application Protocol Entity GCC Provider

GCC-Conductor-Inquire
request

GCC-Conductor-Inquire
confirm

T.124(01-07)_F7-35

Figure 7-35 — GCC-Conductor-Inquire — Sequence of primitives

7516 GCC-Conductor-Per mission-Ask

The primitive GCC-Conductor-Permission-Ask request may be issued by a Node Controller to ask
the current conductor to grant (or release) permission to alow Application Protocol Entities at the
reguesting node to perform any actions for which permission from the conductor is required. The
definition of which specific actions require this permission is a matter for the individual Application
Protocol specifications to define. The GCC-Conductor-Permission-Ask indication is forwarded to
the current conducting node. The order of GCC-Conductor-Permission-Ask indications from a
single node represents the actual order of the requests from that node. The current conductor may
then choose to grant (or release) conducted-mode permission to the requester by using the
GCC-Conductor-Permission-Grant primitive, or to ignore the request. The confirm portion of this
primitive is only local confirmation that the request was accepted by the local GCC Provider. No
confirmation from the conductor is given directly. Table 7-46 shows the parameters and types of
this primitive. Figure 7-36 shows the sequence of events when using this primitive.

Table 7-46 — GCC-Conductor-Permission-Ask — Types of primitives and their parameters

Parameter Request Indication Confirm
Conference ID M M M(=RQ)
Grant/Release Flag M M(=) M(=)
Requesting Node ID M
Result M

Conference ID: Identifier of the conference to which the primitive refers.

Give/Release Flag: This flag indicates whether the requester desires to be granted conducted-mode
permission, or if the requester desires to release conducted-mode permission.

Requesting Node ID: The Node ID of the requesting node.

Result: An indication of whether the request was accepted or rejected, and if rejected, the reason
why. It contains one of a list of possible results: successful, invalid conference, not in conducted
mode.

ITU-T Rec. T.124 (01/2007) 91

; ; Conducting Node
Node Controller GCC Provider GCC Provider Node Controller

GCC-Conductor-
Permission-Ask request GCC-Conductor-

Permission-Ask indication

GCC-Conductor-
Permission-Ask confirm

T.124(01-07)_F7-36

Figure 7-36 — GCC-Conductor -Per mission-Ask — Sequence of primitives

75.1.7 GCC-Conductor-Permission-Grant

The primitive GCC-Conductor-Permission-Grant request may be issued by a Node Controller of the
conducting node to grant or revoke conducted-mode permission from one or more nodes in a
conference. The corresponding GCC-Conductor-Permission-Grant indication is broadcast to every
node in the conference and indicates which nodes currently have conducted-mode permission, and
also which have requested, but are still waiting for permission. The latter list may be given in the
order that the conductor believes permission will ultimately be granted. The indication is given to
the Node Controller as well as all enrolled Application Protocol Entities at each node. The order of
multiple GCC-Conductor-Permission-Grant indications represents the actual order of the requests
from the conductor — that is, the most recently received indication applies. Conducted-mode
permission is typically given in response to a GCC-Conductor-Permission-Ask, but may also be
given unsolicited by the conductor. The conducted node, itself, is assumed to have conducted-mode
permission whether or not it is explicitly listed in the list of nodes granted permission. When a
conference first becomes conducted it is to be assumed that no nodes have permission — thisis true
even if the conference had previously been in conducted mode. If the conductorship changes hands
via a successful GCC-Conductor-Give operation, the states of permission are left as they were last
broadcast by the original conductor. When a new node joins a conference, the node shall assume
that it has no permission. In this case, the Node Controller at the conducting node may re-broadcast
the permission list by re-issuing a CC-Conductor-Permission-Grant request so that the new node is
made aware of the permission status of other nodes in the conference. The confirm portion of this
primitive is only local confirmation that the request was accepted by the local GCC Provider.
Table 7-47 shows the parameters and types of this primitive. Figure 7-37 shows the sequence of
events when using this primitive.

Table 7-47 — GCC-Conductor-Per mission-Grant — Types of primitives and their parameters

Parameter Request Indication Confirm
Conference ID M M M(=RQ)
List of Nodes Granted Permission M M(=)
List of Nodes Waiting for Permission @] o(=)
Permission Flag M
Result M

92 ITU-T Rec. T.124 (01/2007)

Conference ID: Identifier of the conference to which the primitive refers.

List of Nodes Granted Permission: A list of Node IDs, one for each node which the conductor has
granted conducted-mode permission. If this list is empty, then no nodes have conducted-mode
permission.

List of Nodes Waiting for Permission: An ordered list of Node IDs, one for each node which is
being considered by the conductor to receive conducted-mode permission, but has not yet received
it. The conductor may order the list in the order in which it is expected that permission will be
granted. If so, thefirst itemin the list is to be considered the next node likely to receive permission.

Permission Flag: This flag indicates whether or not the local node is present on the list of nodes
granted permission. Thisis primarily to allow Application Protocol Entities to easily determine their
mode of operation without requiring them to search through the returned lists.

Result: An indication of whether the request was accepted or rejected, and if rejected, the reason
why. It contains one of alist of possible results: successful, invalid conference, not conductor.

All Nodes
Conducting Node ; ; Node Controller
Node Controller GCC Provider GCC Provider and All Application

Protocol Entities

GCC-Conductor-Permission-
Grant request GCC-Conductor-Permission-

Grant indication

GCC-Conductor-Permission-
Grant confirm

T.124(01-07)_F7-37
Figure 7-37 — GCC-Conductor-Per mission-Grant — Sequence of primitives

7.6 Miscellaneous functions

7.6.1 Description of abstract services

The following is a list of the primitives defined in this subclause and a brief summary of the
function of each:

. GCC-Conference-Time-Remaining — Allows the Node Controller at the conference
convener to notify all nodes that a timed conference is scheduled to end at a particular time.

. GCC-Conference-Time-Inquire — Allows the Node Controller at any node to find out how
much time is remaining in atimed conference.

. GCC-Conference-Extend — Allows the Node Controller at any node to request that the
convener extend atimed conference beyond its allocated time duration.

. GCC-Conference-Assistance — Used to request some unspecified form of assistance from a
conference operator.

. GCC-Text-Message — Used to send an arbitrary text message to a set of other nodes for

display to the user or users at those nodes.

ITU-T Rec. T.124 (01/2007) 93

7.6.1.1 GCC-Conference-Time-Remaining

The GCC-Conference-Time-Remaining request primitive may be used by the Node Controller to
announce to al nodes that a certain amount of time is remaining in atimed conference. It may also
be issued indicating the time remaining for a specific node, rather than for all nodes. This request is
intended to be issued by the Convener, but may be issued by other nodes as well. Typicaly, this
primitive would be issued once, near the end of atimed conference, to indicate that the conference
is almost over. Table 7-48 shows the parameters and types of this primitive. Figure 7-38 shows the
sequence of events when using this primitive.

Table 7-48 — GCC-Conference-Time-Remaining — Types of primitives and their parameters

Parameter Request Indication Confirm
Conference ID M M M(=RQ)
Time Remaining M M(=)
Node ID O O(=)
Source Node ID M
Result M

Conference ID: Identifier of the conference to which the primitive refers.
Time Remaining: Indication of time remaining in conference in one-second increments.

Node ID: Optional parameter which, if present, indicates that the indicated time-remaining only
applies to the specific node listed. If not included, the time-remaining applies to al nodes in the
conferences.

Source Node ID: Node ID of the node which issued the request.

Result: An indication of whether the request was accepted or rejected, and if rejected, the reason
why. It contains one of alist of possible results: successful, invalid conference.

Convener . . All Nodes
GCC Provid GCC Provid
Node Controller g rovider g rovider Node Controller

GCC-Conference-Time-
Remaining request GCC-Conference-Time-
Remaining indication

GCC-Conference-Time-
Remaining confirm

T.124(01-07)_F7-38

Figure 7-38 — GCC-Conference-Time-Remaining — Sequence of primitives

76.1.2 GCC-Conference-Time-Inquire

The GCC-Conference-Time-Inquire request primitive may be used by any node to find out from the
Convener how much time is remaining in the conference. Receipt of the indication form of this
primitive by the Convener (if the Convener supports this primitive) results in the time remaining to
be broadcast to all nodes in the conference using the GCC-Conference-Time-Remaining primitive.

94 ITU-T Rec. T.124 (01/2007)

Table 7-49 shows the parameters and types of this primitive. Figure 7-39 shows the sequence of
events when using this primitive.

Table 7-49 — GCC-Conference-Time-Inquire— Types of primitives and their parameters

Parameter Request Indication Confirm
Conference ID M M M(=RQ)
Conference-Wide vs. Node-Specific Time Flag M M(=)
Reguesting Node ID M
Result M

Conference ID: Identifier of the conference to which the primitive refers.

Conference-Wide vs. Node-Specific Time Flag: This flag indicates if the request is to find out the
time remaining for the entire conference, or, if different, the time remaining for the requesting node.
If the Convener only considers a single conference-wide end time, it may ignore this flag.

Requesting Node ID: Node ID of the requesting node.

Result: An indication of whether the request was accepted or rejected, and if rejected, the reason
why. It contains one of alist of possible results: successful, invalid conference.

Convener

Node Controller GCC Provider GCC Provider Node Controller

GCC-Conference-Time-

Inquire request GCC-Conference-Time-

Inquire indication

—

GCC-Conference-Time-
Inquire confirm

T.124(01-07)_F7-39

Figure 7-39 — GCC-Conference-Time-Inquire — Sequence of primitives

76.1.3 GCC-Conference-Extend

The GCC-Conference-Extend request primitive may be used by the Node Controller at a node to
request from the Convener that more time be added to a timed conference. Receipt of the indication
form of this primitive by the Convener (if the Convener supports this primitive) results in a
broadcast of the new time remaining in the conference to all nodes using the GCC-Conference-
Time-Remaining primitive (even if the time was not actually extended). There is no requirement
that the actual amount of time the convener adds to the time-remaining equal the requested time.
Table 7-50 shows the parameters and types of this primitive. Figure 7-40 shows the sequence of
events when using this primitive.

ITU-T Rec. T.124 (01/2007) 95

Table 7-50 — GCC-Conference-Extend — Types of primitives and their parameters

Parameter Request Indication Confirm
Conference ID M M M(=RQ)
Time Requested M M(=) M(=)
Conference-Wide vs. Node-Specific Time Flag M M(=)
Reguesting Node ID M
Result M

Conference ID: Identifier of the conference to which the primitive refers.

Time Requested: In the request and indication, this parameter indicates the desired amount of time
to extend the conference in one-second increments.

Conference-Wide vs. Node-Specific Time Flag: This flag indicates if the request is to extend the
time remaining for the entire conference, or the time remaining for the requesting node. If the
Convener only considers a single conference-wide end time, it may ignore this flag.

Requesting Node ID: Node ID of the requesting node.
Result: An indication of whether the request was accepted or rejected, and if rejected, the reason
why. It contains one of alist of possible results: successful, invalid conference, not conductor.

o o Convener
Node Controller GCC Provider GCC Provider Node Controller

GCC-Conference-Extend
request

GCC-Conference-Extend
indication

I—

GCC-Conference-Extend
confirm

T.124(01-07)_F7-40

Figure 7-40 — GCC-Confer ence-Extend — Sequence of primitives

76.1.4 GCC-Conference-Assistance

The GCC-Conference-Assistance primitive provides a smple means to request some form of
assistance from a conference operator. Issuing a GCC-Conference-Assistance request results in a
GCC-Conference-Assistance indication to be broadcast to the Node Controller at all nodes in the
specified conference which support this primitive. The intended response to this primitive is
unspecified and outside the scope of this Recommendation. Table 7-51 shows the parameters and
types of this primitive. Figure 7-41 shows the sequence of events when using this primitive.

96 ITU-T Rec. T.124 (01/2007)

Table 7-51 — GCC-Conference-Assistance — Types of primitives and their parameters

Parameter Request Indication Confirm
Conference ID M M M(=RQ)
User Data o O(=)
Source Node ID M
Result M

Conference ID: Identifier of the conference to which the primitive refers.

User Data: Unspecified user data.

Source Node ID: The Node ID of the source of the assistance request.

Result: An indication of whether the request was accepted or rejected, and if rejected, the reason
why. It contains one of alist of possible results: successful, invalid conference.

; ; All Nodes
Node Controller GCC Provider GCC Provider Node Controller

GCC-Conference-Assistance
request GCC-Conference-Assistance
\,_ indication

.,

GCC-Conference-Assistance
confirm

T.124(01-07) F7-41

Figure 7-41 — GCC-Conference-Assistance — Sequence of primitives

7.6.1.5 GCC-Text-Message

The GCC-Text-Message primitive provides a simple means to communicate unspecified text
messages. Issuing a GCC-Text-Message request results in a GCC-Text-Message indication to be
either broadcast to the Node Controller at all nodes in the specified conference which support this
primitive, or to be sent to a single node. The intended response to this primitive isto display the text
message to the conference participants by some means unspecified by this Recommendation.
Table 7-52 shows the parameters and types of this primitive. Figure 7-42 shows the sequence of
events when using this primitive.

Table 7-52 — GCC-Text-M essage — Types of primitivesand their parameters

Parameter Request Indication Confirm
Conference ID M M M(=RQ)
Text Message M M(=)

Destination Node ID @]
Source Node ID M
Result M

Conference ID: Identifier of the conference to which the primitive refers.

ITU-T Rec. T.124 (01/2007) 97

Text Message: Unicode text message.

Destination Node ID: The Node ID of a single node to receive the text message. If no node is
specified, the message is broadcast to all nodes in the specified conference.

Source Node ID: The Node ID of the source of the text message.

Result: An indication of whether the request was accepted or rejected, and if rejected, the reason
why. It contains one of alist of possible results: successful, invalid conference.

Node Controller GCC Provider GCC Provider D,\%gag grr]lt:\(l)ﬁgres
GCC-Text-Message
request GCC-Text-Message
indication
confirm

T.124(01-07) F7-42

Figure 7-42 — GCC-Text-M essage — Sequence of primitives

8 GCC Protocol Specification

8.1 General operation

A GCC Provider in any node is the MCS Control application, communicating with MCS via the
Control MCSAP. On initialization, the GCC Provider shall establish its communication link with
MCS through a Control MCSAP through local means.

In al cases, a Conference is established by creating an MCS Domain. A Conference has a
one-to-one correspondence with a single MCS Domain. The actual creation of an MCS domain is
done through local means. Conferences are created or joined by use of the MCS-Connect-Provider
primitives.

For all request primitives which refer to a particular conference (via the Conference ID), the local
GCC Provider to which the primitive is issued shall determine if the specified conference is one to
which the node is currently joined. If so, the GCC Provider proceeds as described below for each
primitive. If not, the request is rejected and the corresponding confirm primitive is issued specifying
invalid-conference as the reason for rgjection. Any response primitive issued which refers to an
invalid conference is ignored by the GCC Provider (or the error is handled by some unspecified
local means).

GCC Providers communicate with each other via GCC Protocol Data Units (GCCPDUSs). The
GCCPDUs are transmitted either via the two MCS data service primitives (MCS-Send-Data or
MCS-Uniform-Send-Data; see Table 9-4) or via MCS-Connect-Provider primitives for GCCPDUs
used during connection set-up.

All GCCPDUs are categorized into either request, response, or indication classes. Request PDUs
are defined to be those that require a corresponding response PDU in return. Indication PDUs are
those that do not require a response (or in some cases, where the response is provided indirectly).
For request PDUs which do not correspond to mandatory functionality, a generic response PDU is
provided (FunctionNotSupportedResponse), which allows the GCC Provider receiving a request to

98 ITU-T Rec. T.124 (01/2007)

respond to the requesting node without needing to have knowledge of the format of the specific
response PDU. To allow the requester to know what this PDU is in response to, the entire request
PDU IS included within the FunctionNotSupportedResponse PDU. The
FunctionNotSupportedResponse PDU shall be sent at the same priority level as that of the received
request PDU.

NOTE — This terminology (request, response, and indication) does not have a one-to-one correspondence to
the definition of request, indication, response, and confirm used in the definition of the primitives. The
terminology has been chosen to relate to the primary purpose of the PDU types with respect to the functions
that they will perform. For this reason, the term confirm was not needed to describe PDUs — response PDUs
are those which are sourced from a response primitive and result in a confirm primitive.

The GCC protocol includes support for non-standard extensions. On receipt of a
nonStandardRequest PDU, a GCC Provider which does not understand the request, shall issue a
FunctionNotSupportedResponse PDU in return. nonStandardResponse and nonStandardindication
PDUs may be ignored by a GCC Provider.

8.2 Conference establishment and ter mination

8.2.1 Conferencecreation

On receipt of the primitive GCC-Conference-Create request, a GCC Provider shall issue an
MCS-Connect-Provider request primitive with the parameters shown in Table 8-1. The local GCC
Provider shall alocate the Conference 1D, which shall be used as the local MCS Domain Selector
associated with the created conference. The Conference ID is included as the Calling Domain
Selector. It is also maintained by the local GCC Provider as the means identifying this conferencein
future primitives.

If the combination of the Conference Name and Conference Name Modifier parameters are
identical to those of a conference to which the local node is already joined (either the numerical or
text forms of the name), the request is instead immediately rejected by issuing a GCC-Conference-
Create response with conference-name-already-exists as the result. Otherwise, the GCC Provider
shall retain the Conference Name and Conference Name Modifier (in addition to including the
Conference Name in the ConferenceCreateRequest PDU) to be used in the procedures for
responding to a conference query, conference join, or in initiating a conference invite.

Table 8-1 - M CS-Connect-Provider request parametersfor ConferenceCreateRequest PDU

Parameter Contents

Calling Address From request primitive

Calling Domain Selector Conference ID as chosen by the GCC Provider

Called Address From request primitive

Called Domain Selector NULL

Upward/Downward Flag Up

Domain Parameters From request primitive

Quality of Service From request primitive

User Data T.124 Object Identifier
ConferenceCreateRequest PDU
(seeTable 8-2)

ITU-T Rec. T.124 (01/2007) 99

The User Data parameter of the MCS-Connect-Provider request contains a structure which includes
an Object Identifier identifying the contained PDU as adhering to this Recommendation followed
by the PDU itself. The details of this structure are defined in 9.6. The contents of this PDU are
shownin Table 8-2.

Table 8-2 — ConferenceCreateRequest GCCPDU

Content Sour ce Sink

Conference Name Request Indication and Destination GCC Provider
Convener Password (optional) Request Indication

Password (optional) Request Indication

Locked Conference Flag Request Indication and Destination GCC Provider
Listed Conference Flag Request Indication and Destination GCC Provider
Conductible Conference Flag Request Indication and Destination GCC Provider
Termination Method Request Indication and Destination GCC Provider
Conductor Privilege List (optional) Request Indication and Destination GCC Provider
Conducted-Mode Conference Request Indication and Destination GCC Provider
Privilege List (optional)

Non-Conducted-Mode Conference Request Indication and Destination GCC Provider
Privilege List (optional)

Conference Description (optional) Request Indication and Destination GCC Provider
Caller Identifier (optional) Request Indication

Conference Mode (optional) Request Indication

User Data (optional) Request Indication

On receipt of the MCS-Connect-Provider indication that includes a T.124 Object Identifier and the
ConferenceCreateRequest PDU, a GCC Provider shall generate a GCC-Conference-Create
indication primitive with the parameters as specified in the included ConferenceCreateRequest
PDU. It shall issue this primitive to the Control GCCSAP. The GCC Provider shall aso adlocate a
Conference ID, a locally unique string, which shall also be included in this primitive. If the
conference is successfully created, the GCC Provider shall use this Conference ID as the means of
identifying this conference in future primitives. If GCC does not have the resources necessary to
create a new conference, it may generate the negative response automatically without generating the
GCC-Conference-Create indication. Otherwise, on receipt of a successful GCC-Conference-Create
response from the Control GCCSAP, the GCC Provider (now the Top GCC Provider for this
conference) shall issue an MCS-Attach-User request. On receipt of the MCS-Attach-User confirm
which contains the alocated Node ID, the GCC Provider shall then join the corresponding Node 1D
Channel by issuing an MCS-Channel-Join request. The GCC Provider shall also join the appropriate
GCC Broadcast Channel(s) by issuing one or two MCS-Channel-Join requests (successive such
requests may be issued prior to receiving the previous confirm). It may be necessary, prior to
attaching, to locally indicate to the MCS Provider that a new domain has been created. Any
exchange necessary to do thisis considered alocal matter not covered by this Recommendation.

There are three different GCC Broadcast Channels, each of which broadcasts similar, but different,
sets of information. Earlier versions of GCC used a single broadcast channel known as the
GCC-Broadcast-Channel. On this channel, older Conventional nodes that existed prior to the
introduction of Node Categories receive GCC control messages and Full Roster Refreshes. To
support all possible GCC nodes that may participate in a conference, it is imperative that nodes
continue to support the original GCC-Broadcast-Channel even though no nodes may be joined to it
(an exception to this may be Terminal Nodes which are Anonymous). A second GCC Broadcast

100 ITU-T Rec. T.124 (01/2007)

Channel, known as the GCC-Conventional-Broadcast-Channel, is used by nodes that are Node
Category-aware. All GCC control PDUs and Roster delta updates that are generated when
Conventional Nodes join, leave, or change a roster record are broadcasted on this channel. All
nodes (except for older protocol nodes) must join this broadcast channel. Anonymous nodes may
ignore the roster deltas received on this channel, but they must process the control messages
received. The last GCC Broadcast Channel is known as the GCC-Counted-Broadcast-Channel. On
this channel, the Top Provider broadcasts Roster delta updates which are generated when Counted
Nodes join, leave, or change a roster record. Only Conventional Nodes join this GCC Broadcast
Channel which reduces the amount of network traffic incurred when a large number of Counted
Nodes are participating in a conference.

If the GCC-Conference-Create response includes a Conference Name Modifier parameter, the GCC
Provider (now the Top GCC Provider) shall retain this name modifier for later use in handling the
conference query, conference join, and conference invite procedures.

The GCC Provider shall generate an MCS-Connect-Provider response which includes a result
which is either success, or user-rejected depending on whether or not the Result parameter in the
GCC-Conference-Create response primitive indicated success or failure. The User Data parameter
includes the T.124 Object Identifier as well as the ConferenceCreateResponse PDU. The contents
of the connect provider primitive are shown in Table 8-3. In the case of successful conference
creation, the GCC Provider at the node receiving the MCS-Connect-Provider indication shall
become the Top GCC Provider for the conference.

Table 8-3 — M CS-Connect-Provider response parameters
for ConferenceCreateResponse PDU

Parameter Contents
Domain Parameters From response primitive
Quality of Service From response primitive
Result As specified in[ITU-T T.122]
User Data T.124 Object Identifier
ConferenceCreateResponse PDU (see Table 8-4)

The ConferenceCreateResponse PDU is shown in Table 8-4. The Node ID parameter, which is the
User ID assigned by MCS in response to the MCS-Attach-User request issued by the GCC
Provider, shall be supplied by the GCC Provider sourcing this PDU. The Tag parameter is assigned
by the source GCC Provider to be localy unique. It is used to identify the returned
UserlDIndication PDU. The Result parameter includes GCC-specific failure information sourced
directly from the Result parameter in the GCC-Conference-Create response primitive. If the Result
parameter is anything except successful, the Result parameter in the MCS-Connect-Provider
response is set to user-rejected.

Table 8-4 — ConferenceCreateResponse GCCPDU

Content Sour ce Sink
Node ID Top GCC Provider Destination GCC Provider
Tag Top GCC Provider Destination GCC Provider
Result Response Confirm
User Data (optional) Response Confirm

ITU-T Rec. T.124 (01/2007) 101

On receipt of the ConferenceCreateResponse PDU, if the PDU indicated a successful result, a GCC
Provider shall first issue an MCS-Attach-User request. On receipt of the MCS-Attach-User confirm
which contains the allocated Node ID, the GCC Provider shall then join the Node ID Channel by
issuing an MCS-Channel-Join request. The GCC Provider shall also join the GCC-Conventional-
Broadcast-Channel and the GCC-Counted-Broadcast-Channel by issuing two MCS-Channel-Join
reguests (Convener nodes are always considered to be Conventional; see explanation of Broadcast
Channels above). The GCC Provider may also join the GCC-Convener-Channel (if it supports any
of the functions which require use of this channel) by issuing an MCS-Channel-Join request. Once
the GCC Provider has received an MCS-Channel-Join confirm from each of the channel join
reguests (successive requests may be issued prior to receiving the previous confirm), it shall send a
UserIDIndication PDU to the Top GCC Provider by issuing an MCS-Send-Data request specifying
as the Channel ID the Node ID of the Top GCC Provider as contained in the received
ConferenceCreateResponse PDU, specifying Top data priority, and including the PDU in the Data
field. The content of the UserlDIndication PDU is shown in Table 8-5. The Tag parameter is filled
in with the value of the corresponding parameter received in the ConferenceCreateResponse PDU.

Table 8-5—-UserIDIndication GCCPDU

Content Source Sink
Tag Source GCC Provider Destination GCC Provider

The GCC Provider shall then generate a GCC-Conference-Create confirm primitive and issue it to
the Control GCCSAP. This primitive shall include the Conference Name from the origina request
primitive, the Modified Conference Name (if any) and Result parameters from the received PDU, as
well as the locally-alocated Conference ID. If the received PDU had indicated an unsuccessful
result, or if the GCC Provider receives an MCS-Disconnect-Provider indication for this connection
prior to having issued a successful GCC-Conference-Create confirm, the GCC-Conference-Create
confirm primitive is issued immediately, indicating an unsuccessful result, without issuing the
attach-user or channel-join requests, and without sending the UserIDIndication PDU. The Result
parameter in the PDU as well as the Result parameter reported in the MCS-Connect-Provider
confirm (or the Reason parameter of the MCS-Disconnect-Provider) is used to generate the result
reported in the GCC-Conference-Create confirm primitive. If the Result parameter of the
MCS-Connect-Provider confirm is user-rejected, the Result parameter in the PDU is used to
determine the reported result. Otherwise, the Result parameter in the MCS-Connect-Provider is
used directly.

On receipt of a UserlDIndication, the node a which the conference was created shall compare the
Tag parameter to its list of outstanding Tags. If the Tag matches one of these, it shall save the User
ID of the source node (extracted from the MCS-Send-Data indication) in its database of Node IDs
of nodes which are directly below it in the connection hierarchy. If the Tag does not match any
outstanding Tags, the PDU shall be ignored.

If the newly-created Top GCC Provider for this conference receives an M CS-Disconnect-Provider
indication for the connection being established at any time during the process of creating the
conference (this includes the time that the GCC-Conference-Create indication has been issued to the
Control GCCSAP until the time that the UserIDIndication has been received), it shall issue a
GCC-Conference-Terminate indication to the Control GCCSAP indicating the requested normal
termination as the reason if user-initiated was the reason provided in the M CS-Disconnect-Provider
indication, and error termination otherwise. It shall then stop further processing for this connection
establishment procedure. If the MCS-Disconnect-Provider indication was received prior to issuing
the GCC-Conference-Create indication to the Control GCCSAP, the GCC Provider shall stop
further processing for this connection establishment procedure and take no further action.

102 ITU-T Rec. T.124 (01/2007)

The sequence of events for successful conference creation is shown in Figure 8-1.

NOTE — If a conference is created by local initiation rather than through a request from another node, the
GCC Provider at that node shall perform the sequence of events performed by the Top GCC Provider shown
in the figure beginning from the MCS-Attach-User request. That is, it shall attach to MCS by issuing an
MCS-Attach-User request and wait for the confirm, then it shall join its Node ID channel, and the
appropriate GCC Broadcast Channels. It may optionally join the GCC-Convener-Channel since this node is
also the Convener in this case. In this case, if another node joins the conference at a later time indicating
itself to be the convener (having issued the correct Convener Password), the Top GCC Provider may choose
to accept the connection, relinquishing convener privileges to the new node. Note also that it is assumed that
in this case, MCS Domain Parameters are set at the time of creation rather than at the time the first
connection is established.

ITU-T Rec. T.124 (01/2007) 103

Node GCC MCS MCS Top GCC Node
Controller Provider Provider Provider Provider Controller

GCC-Conference-Create request
.) q

.
MCS-Connect-Provider request
A%

ConferenceCreateRequest

>

MCS-Channel-J ci

MCS-Connect-Provider indication

MCS-Attach-User Eequest
MCS-Attach-User confirm
>
in request (I\:Iode ID Channel)

<

MCS-Channel-Join confirm

MCS—C.hannel—J oin .request
(GCC-Broadcast-Channel)
<

MCS-Channel-Join confirm
>

MCS-Connect-Provider response

.
GCC-Conf:erence-Creat? indication
[] []

GCC-C onference-Crea'e response
i

»a

ConferenceCreateResponse

& —_—
€ -

MCS-Connect-Provider confirm
) []

MCS-Attach-User request
.) 1
MCS—I:\ttach—User c:onﬁrm

MCE;-Channel-J(;in request (I\:Iode ID Channel)
MCS-C:hannel-J oin E:onﬁrm

MCS-Channel-Join request (GCC-Broadcast-Channel)

MCS-dhannel-Join ::onﬁrm
. E]

: :
MCS-Channel-Join request (GCC-Convener-Channel)
H oo »

Optional) M.C S-Channel-Join confirm

MCS-Send-Data request
>

GCC-Conference-Create confirm UserIDIndication

MCS-S

end-Data indication

T.124(01-07)_F8-01

Figure 8-1 — Creating a conference

104 ITU-T Rec. T.124 (01/2007)

8.2.2 Querying conferences

On receipt of a GCC-Conference-Query request primitive, a GCC Provider shall issue an
M CS-Connect-Provider request primitive with the parameters shown in Table 8-6.

Table 8-6 — M CS-Connect-Provider request parameters
for ConferenceQueryRequest PDU

Parameter Contents
Calling Address From request primitive
Calling Domain Selector NULL
Called Address From request primitive
Called Domain Selector NULL
Upward/Downward Flag Up
Domain Parameters Default Domain Parameters
Quality of Service Default Quality of Service Parameters
User Data T.124 Object |dentifier
ConferenceQueryRequest PDU (see Table 8-7)

The User Data parameter of the MCS-Connect-Provider request contains a structure which includes
an Object Identifier identifying the contained PDU as adhering to this Recommendation followed
by the PDU itself. The details of this structure are defined in 9.6. The contents of this PDU are
shown in Table 8-7.

Table 8-7 — ConferenceQueryRequest GCCPDU

Content Source Sink
Node Type Request Indication
Asymmetry Indicator (conditional) Request Indication
User Data (optional) Request Indication

On receipt of the MCS-Connect-Provider indication that includes a T.124 Object Identifier and the
ConferenceQueryRequest PDU, a GCC Provider shall generate a GCC-Conference-Query
indication primitive with the parameters as specified in the ConferenceQueryRequest PDU. It shall
issue this primitive to the Control GCCSAP. On receipt of a GCC-Conference-Query response from
the Control GCCSAP, the GCC Provider shall send an MCS-Connect-Provider response which is
rejected (i.e., no conference is set up), but includes the ConferenceQueryResponse PDU in the User
Datafield. The parameters of the MCS-Connect-Provider response are shown in Table 8-8.

Table 8-8 — M CS-Connect-Provider response parameters
for ConferenceQueryResponse PDU

Parameter Contents
Domain Parameters Default Domain Parameters
Quality of Service Default Quality of Service Parameters
Result User-rejected
User Data T.124 Object Identifier
ConferenceQueryResponse PDU (see Table 8-9)

ITU-T Rec. T.124 (01/2007) 105

The ConferenceQueryResponse PDU is shown in Table 8-9. The Conference Descriptor List
contains an entry for each listed conference to which the queried node is currently joined. The
Conference Descriptor List is generated by the GCC Provider sourcing the
ConferenceQueryResponse PDU. The descriptor is filled in with the Conference Name of each
conference to which the GCC Provider is joined, the locally-maintained Conference Name Modifier
for each conference, if any, the Conference Description, if any, the Locked/Unlocked flag, the
Password In The Clear Required indicator, the Network Address field (if one is available), the
default Conference Flag, and the Conference Mode. The Network Address field, if one exists,
issourced from the Local Network Address parameter of the GCC-Conference-Create
request, the GCC-Conference-Create response, the GCC-Conference-Join request, or the
GCC-Conference-Invite response, depending on how the conference was joined at this node. The
Result parameter shall indicate success if the query request is able to be fulfilled (even if the
Conference List is empty), or user-rejected if so indicated in the response primitive.

If the GCC Provider processing the MCS-Connect-Provider indication receives an
MCS-Disconnect-Provider indication for the same connection at any time during the process, the
GCC Provider shall stop further processing for this procedure and take no further action.

Table 8-9 — ConferenceQueryResponse GCCPDU

Content Sour ce Sink
Node Type Request Confirm
Asymmetry Indicator (conditional) Response Confirm
Conference Descriptor List Source GCC Provider Confirm
Result Response Confirm
User Data (optional) Response Confirm

On receipt of an MCS-Connect-Provider response which includes the T.124 Object Identifier and a
ConferenceQueryResponse PDU, a GCC Provider shall generate a GCC-Conference-Query confirm
primitive and issue it to the Control GCCSAP. The content of the confirm primitive shall be
obtained from the parameters of the ConferenceQueryResponse PDU. The Result parameter in the
primitive, in particular, is obtained strictly from the Result parameter in the received PDU. The
Result parameter of the MCS-Connect-Provider confirm is ignored since it would be set to
user-rejected even in the case of a successful operation.

If the received PDU had indicated an unsuccessful result, or if the GCC Provider receives an
MCS-Disconnect-Provider indication for this connection prior to having issued a successful
GCC-Conference-Query confirm, the GCC-Conference-Query confirm primitive is issued
immediately, indicating an unsuccessful result. The Result parameter in the PDU as well as the
Result parameter reported in the MCS-Connect-Provider confirm (or the Reason parameter of the
MCS-Disconnect-Provider) is used to generate the result reported in the GCC-Conference-Query
confirm primitive. If the Result parameter of the MCS-Connect-Provider confirm is user-rejected,
the Result parameter in the PDU is used to determine the reported result. Otherwise, the Result
parameter in the MCS-Connect-Provider is used directly.

8.2.3 Joining a conference

On receipt of the primitive GCC-Conference-Join request, a GCC Provider shall issue an
MCS-Connect-Provider request primitive with the parameters shown in Table 8-10. The local GCC
Provider allocates the Conference 1D, which shall be used as the local MCS Domain Selector
associated with the created conference. The Conference ID is sent as part of the MCS-Connect-
Provider request as the Calling Domain Selector.

106 ITU-T Rec. T.124 (01/2007)

Table 8-10 —- MCS-Connect-Provider request parameters
for ConferenceJoinRequest PDU

Parameter Contents

Cdling Address From request primitive

Calling Domain Selector Conference ID as chosen by the GCC Provider

Called Address From request primitive

Called Domain Selector NULL

Upward/Downward Flag Up

Domain Parameters From request primitive

Quality of Service From request primitive

User Data T.124 Object Identifier
ConferenceJoinRequest PDU (see Table 8-11)

The User Data parameter of the MCS-Connect-Provider request contains a structure which includes
an Object Identifier identifying the contained PDU as adhering to this Recommendation followed
by the PDU itself. The details of this structure are defined in 9.6. The contents of this PDU are
shown in Table 8-11. From the joining node, the Tag parameter shall not be included. The
Conference Name and Conference Name Modifier are sourced from the request primitive — the
Conference Name Modifier parameter in the PDU is sourced from the Called Node Conference
Name Modifier parameter of the primitive. The Calling Node Conference Name Modifier (also
from the request primitive) is maintained at the loca GCC Provider as the identifiers of the
conference to be used in the procedures for response to a conference join request and conference
query request.

Table 8-11 — ConferenceJoinRequest GCCPDU

Content Source Sink

Conference Name (conditional) Request GCC Provider receiving MCS-
Connect-Provider indication
Conference Name Modifier Request GCC Provider receiving MCS-
(optional) Connect-Provider indication
Tag (conditional) GCC Provider receiving MCS- | Top GCC Provider
Connect-Provider indication

Password (optional) Request Indication
Convener Password (optional) Request Indication
Cdller Identifier (optional) Request Indication
Node category (optional) Request Indication
User Data (optional) Request Indication

On receipt of the MCS-Connect-Provider indication that includes a T.124 Object Identifier and the
ConferenceJoinRequest PDU, the action of the GCC Provider depends on whether or not it is the
Top GCC Provider of the conference specified by the Conference Name and Conference Name
Modifier (if any). The GCC Provider determines which conference is to be joined by comparing the
Conference Name and Conference Name Modifier to the list of conferences to which this node is
joined. The Conference Name received in the ConferenceJoinRequest PDU may contain either the
numerical or text forms of the Conference Name. The GCC Provider shall attempt to match the
indicated name with the corresponding portion of the names of existing conferences. For a
conference to be considered matched, both the Conference Name and Conference Name Modifier

ITU-T Rec. T.124 (01/2007) 107

must match those of a current conference. If no Conference Name Modifier is given in the request,
the GCC Provider shall match it only with an existing conference which also has no Conference
Name Modifier.

If the GCC Provider which received the MCS-Connect-Provider indication is not the Top GCC
Provider for the conference to which the requesting node wishes to join, and if the node is joined to
the specified conference, the GCC Provider shall forward the ConferenceJoinRequest PDU to the
Top-GCC-Provider of the specified conference by issuing an MCS-Send-Data request specifying
the Node ID Channel of the Top GCC Provider as the Channel 1D, specifying Top data priority, and
including the PDU in the Data field. In this case, it shall assign a locally unique identifier and
include it in the Tag parameter of the PDU. This number is used to identify the corresponding
response PDU when it is returned from the Top GCC Provider. It may also leave out the Conference
Name and Conference Name Modifier parameters from the received PDU as they are not needed by
the Top GCC Provider.

When the Top-GCC-Provider receives this PDU, if the conference is not locked, it shall generate a
GCC-Conference-Join indication primitive with the parameters as specified in the
ConferenceJoinRequest PDU, as well as the Conference ID for the corresponding conference. It
shall issue this primitive to the Control GCCSAP. Note that the Conference Name and Conference
Name Modifier parameters are used only by the node receiving the MCS-Connect-Provider
indication, and not by the Top GCC Provider. If the conference had been locked, the Top GCC
Provider shall instead send a ConferencelJoinResponse PDU to the originator of the
MCS-Send-Data containing the ConferenceJoinRequest PDU (not the original requester) by issuing
an MCS-Send-Data request specifying the User ID of that node as the Channel 1D, specifying Top
data priority, and including the PDU in the Datafield. The PDU shall indicate |locked-conference as
the result code. Otherwise, on receipt of the GCC-Conference-Join response, the GCC Provider
shall send a ConferenceJoinResponse PDU to the originator of the MCS-Send-Data containing the
ConferenceJoinRequest PDU (not the original requester) by issuing an MCS-Send-Data request
specifying the User ID of that node as the Channel 1D, specifying Top data priority, and including
the PDU in the Data field. The contents of the ConferenceJoinResponse PDU are shown in
Table 8-13. The Node ID is not included in this portion of the response, but the Top Node ID
parameter, the Tag, and the parameters associated with the Conference Profile are included, as well
as the Result parameter. The Tag shall have the same value as the corresponding parameter in the
received ConferenceJoinRequest PDU.

On receipt of the MCS-Send-Data indication containing this PDU, if the Tag parameter matches
that of its locally-stored list of outstanding join requests (which allows it to identify the connection
over which to send the MCS-Connect-Provider response), the GCC Provider shall generate an
MCS-Connect-Provider response which includes a result which is either success, or user-rejected
depending on whether or not the Result parameter in the received PDU indicated success or failure.
The User Data parameter includes the T.124 Object Identifier as well as the
ConferenceJoinResponse PDU. The Node ID parameter of the ConferenceJoinResponse PDU is
filled in at this time indicating the Node ID of the node directly connected to the joining node. The
contents of the connect provider primitive are shown in Table 8-12.

If the receiver of the origina MCS-Connect-Provider indication is the Top-GCC-Provider, if the
conference is not locked, it shall instead generate a GCC-Conference-Join indication primitive with
the parameters as specified in the ConferenceJoinRequest PDU, as well as the Conference ID for
the designated conference. It shall issue this primitive to the Control GCCSAP. If the conference
had been locked, the Top GCC Provider shall instead generate an MCS-Connect-Provider response
which indicates in the included ConferenceJoinResponse PDU locked-conference as the result code.
The PDU shal indicate locked-conference as the result code. Otherwise, on receipt of the
GCC-Conference-Join response, the GCC Provider generates an MCS-Connect-Provider response
which includes the ConferenceJoinResponse PDU with a result which is either success, or

108 ITU-T Rec. T.124 (01/2007)

user-rejected depending on whether or not the Result parameter in the GCC-Conference-Join
response primitive indicated success or failure.

If the receiver of the original MCS-Connect-Provider indication is not currently joined to any
conference (or if it does not support the GCC-Conference-Join indication primitive at al), it may
reject the join request by immediately issuing an MCS-Connect-Provider response containing
user-rejected as the result code, and including a ConferenceJoinResponse with invalid-conference
respectively as the reason code in the PDU.

If the receiver of the origina MCS-Connect-Provider indication is not joined to the conference
specified in the Conference Name and Conference Name Modifier parameter of the
ConferenceJoinRequest PDU, it shall regject the request by issuing an MCS-Connect-Provider
response with the reason of no-such-domain.

Table 8-12 — MCS-Connect-Provider response parametersfor ConferenceJoinResponse PDU

Parameter Contents
Domain Parameters From GCC Provider as previously saved
Quality of Service From GCC Provider as previously saved
Result As specified in [ITU-T T.122]
User Data T.124 Object Identifier
ConferenceJoinResponse PDU (see Table 8-13)

The ConferenceJoinResponse PDU is shown in Table 8-13. The Node ID parameter, which is the
User ID assigned by MCS in response to the MCS-Attach-User request issued by the GCC
Provider, shall be supplied by the GCC Provider at the node directly connected to the joining node.
The Tag parameter is filled in by the GCC Provider at the node directly connected to the joining
node with a locally unique value. It is used to identify the returned UserlDIndication PDU. The
value of this parameter may be set to the value of the same parameter received from the Top GCC
Provider since this parameter was alocated by this node originally as sent in the
ConferenceJoinRequest PDU. If thisis done, it requires that Tags used for either purpose are locally
unique. The other parametersin this PDU are filled out by the Top GCC Provider. This includes the
Top Node ID, which is the Node ID of the Top GCC Provider, as well as the parameters associated
with the Conference Profile. Also filled in by the Top GCC Provider is the Conference Name Alias.
This is conditionally included depending on whether the Conference Name included both numeric
and text forms. If so, the Conference Name Alias is whichever form of the Conference Name was
not included in the ConferenceJoinRequest PDU. The Result parameter includes GCC-specific
failure information if the Result parameter in the MCS-Connect-Provider message is set to
user-rejected. This information is from the Result parameter in the GCC-Conference-Create
response PDU.

Table 8-13 — ConferenceJoinResponse GCCPDU

Content Source Sink
Node ID (conditional) GCC Provider of node Destination GCC Provider
directly connected to
joining node
Top Node ID Top GCC Provider Destination GCC Provider
Tag Top GCC Provider Destination GCC Provider
Conference Name Alias Top GCC Provider Confirm and Destination GCC Provider
(conditional)

ITU-T Rec. T.124 (01/2007) 109

Table 8-13 — ConferenceJoinResponse GCCPDU

Content Source Sink
Password In The Clear Required | Top GCC Provider Confirm and Destination GCC Provider
Fag
Locked Conference Flag Top GCC Provider Confirm and Destination GCC Provider
Listed Conference Flag Top GCC Provider Confirm and Destination GCC Provider
Conductible Conference Flag Top GCC Provider Confirm and Destination GCC Provider
Termination Method Top GCC Provider Confirm and Destination GCC Provider
Conductor Privilege List Top GCC Provider Confirm and Destination GCC Provider
(optional)
Conducted-Made Conference Top GCC Provider Confirm and Destination GCC Provider
Privilege List (optional)
Non-Conducted-Mode Top GCC Provider Confirm and Destination GCC Provider
Conference Privilege List
(optional)
Conference Description Top GCC Provider Confirm and Destination GCC Provider
(optional)
Password (optional) Request Indication
Node Category (optional) Request Indication
Result Response Confirm
User Data (optional) Response Confirm

On receipt of the ConferenceJoinResponse PDU, if the PDU indicated a successful result, a
GCC Provider shall first issue an MCS-Attach-User request. On receipt of the MCS-Attach-User
confirm which contains the alocated Node 1D, the GCC Provider shall then join the corresponding
Node ID Channel by issuing an MCS-Channel-Join request. The GCC Provider shal aso join the
appropriate GCC Broadcast Channel(s) by issuing one or two MCS-Channel-Join requests. All
nodes are required to join the GCC-Conventiona -Broadcast-Channel. All GCC control PDUs and
Roster delta updates that are generated when Conventional Nodes join, leave, or change a roster
record are broadcasted on this channel. Anonymous nodes may ignore the roster deltas received on
this channel, but they must process the control messages received. Conventional Nodes must also
join the GCC-Counted-Broadcast-Channel. On this channel, the Top Provider broadcasts Roster
delta updates which are generated when Counted Nodes join, leave, or change a roster record.
Because only Conventional Nodes join the GCC-Counted-Broadcast-Channel, the use of this
channel reduces the amount of network traffic incurred when alarge number of Counted Nodes are
participating in a conference. Note that older protocol nodes join the GCC-Broadcast-Channel at
this point.

If the original GCC-Conference-Join request had specified the Convener Password, indicating that
the node was to regain its role as the Conference Convener, the GCC Provider may also join the
GCC-Convener-Channel (if it supports any of the functions which require use of this channel) by
issuing an MCS-Channel-Join request. Once the GCC Provider has received an MCS-Channel-Join
confirm from each of the channel join requests (successive requests may be issued prior to receiving
the previous confirm), it shall send a UserIDIndication PDU to the GCC Provider of the directly
connected node by issuing an MCS-Send-Data request specifying the Node ID of the directly
connected node as contained in the received ConferenceJoinResponse PDU, specifying Top data
priority, and including the PDU in the Data field. The content of the UserIDIndication PDU is

110 ITU-T Rec. T.124 (01/2007)

shown in Table 8-5. The Tag parameter is filled in with the value of the corresponding parameter
received in the ConferenceJoinResponse PDU.

The GCC Provider shall then generate a GCC-Conference-Join confirm primitive and issue it to the
Control GCCSAP. This primitive shall include the Result parameters from the received PDU as
well as the locally-allocated Conference ID. If the received PDU had indicated an unsuccessful
result, or if the GCC Provider receives an MCS-Disconnect-Provider indication for this connection
prior to having issued a successful GCC-Conference-Join confirm, the GCC-Conference-Join
confirm primitive is issued immediately, indicating an unsuccessful result, without issuing the
attach-user or channel-join requests, or sending the UserIDIndication PDU. The Result parameter in
the PDU as well as the Result parameter reported in the MCS-Connect-Provider confirm (or the
Reason parameter of the MCS-Disconnect-Provider) is used to generate the result reported in the
GCC-Conference-Join confirm primitive. If the Result parameter of the MCS-Connect-Provider
confirm is user-rejected, the Result parameter in the PDU is used to determine the reported result.
Otherwise, the Result parameter in the MCS-Connect-Provider is used directly.

The Conference Name Alias received in the ConferenceJoinResponse PDU, if any, is appended
with the Conference Name included in the ConferenceJoinRequest PDU to form the full Conference
Name returned in the GCC-Conference-Join confirm. This full conference name (which includes
the numerical form as well as text form of the Conference Name, if any) shall be maintained at the
local GCC Provider as the identifiers of this conference to be used in the procedures for response to
a conference join request, conference query request, and in initiation of a conference invite.

On receipt of a UserlDIndication, the node directly connected to the joining node shall compare the
Tag parameter to its list of nodes in the conference from which it is expecting this PDU. If the Tag
matches one of these, it shall save the User ID of the source node (extracted from the MCS-Send-
Dataindication) in its database of Node IDs of nodes which are directly below it in the connection
hierarchy. If the Tag does not match any outstanding Tags, the PDU shall be ignored.

If the Top GCC Provider receives a UserIDIndication as a result of a successful join operation in
which the Convener Password parameter had been included in the ConferenceJoinRequest PDU, the
Top GCC Provider shall retain the Node ID of the joining node as indicated in the UserIDIndication
as the valid conference convener. It shall use this to verify later requests which only the convener
may perform.

If the GCC Provider a the node directly connected to the joining node receives an
MCS-Disconnect-Provider indication for the connection being established at any time during the
joining process, the GCC Provider shall stop further processing for this procedure and take no
further action.

The sequence of events for successfully joining a conference from a node directly connected to the
Top GCC Provider is shown in Figure 8-2. The case that the joining node is not directly connected
to the Top GCC Provider is shown in Figure 8-3.

ITU-T Rec. T.124 (01/2007) 111

Node GCC MCS MCS Top GCC Node
Controller Provider Provider Provider Provider Controller

GCC-Conference-Join request

.
MCS-Connect-Providér request
A

ConferenceJoinRequest

MCS-Connect-Provider. indication
—

GCC-Conference-Join indication

GCC—COEerrence—Join. response

<«

.
MCS-Connect-Provider response

ConferenceloinResponse

MCS-Connect-Provider confirm

MCS-.Attach-User r:equest
MC S-/}ttach-User c:onﬁrm

MCS-Chamlel-J(')in request (I\Iode ID Channel)
— 3

MCS-Channel-Join confirm
I([]

MCS-Channel-Join request (GCC-Broadcast-Channel)
[] ; U

MCS-Channel-Join confirm

MCS;Send-Data réquest
]

[]
[]
GCC-Conference-Join confirm UserIDIndication

___________________ >
MCS-Send-Data indication

T.124(01-07)_F8-02

Figure 8-2 — Joining a conference when directly connected to Top GCC Provider

112 ITU-T Rec. T.124 (01/2007)

Node GCC MCS
Controller Provider Provider

L] .
GCC-Conference-Join request:

! .

MCS-Connect-Provider request

ConferenceJoinRequest

MCS GCC MCS
Provider Provider Provider

Dy

MCS-Connect-Provider confirm

D —
MCS-Attach-User request
 —
MCS-Aftach-Userfconﬁrm
%l

MCS-Channel-Join request (Node ID Channel)

MCS-Channel-Join confirm
<

MCS-Channel-Join 1'e’quest (GCC-Broadcast-Channel)
v h

MCS-Ch:annel-Joiri confirm
> —

MCS—S:end- Data request
o
GCC-Conference-Join confirm

%‘

ConferenceJoinResponse

UserIDIndication

MCS-Connect-Provider indication
—> H
MCS-Send-Data request

ConferenceJoinRequest
————————— >

e

ConferenceJoinResponse

MCS Top GCC Node
Provider Provider Controller

MCS-Send-Data indication
 —]
GCC-Conference-Join indication
H >

GCC-Conference-Join response
: I(
MCS-Send-Data request

H.
MCS-Connect-Provider response

MCS-Send-Data indication

MCS-SeInd-Data indication

Figure 8-3 — Joining a conference when not directly connected to Top GCC Provider

ITU-T Rec. T.124 (01/2007)

T.124(01-07)_F8-03

113

8.2.4 Inviting a node to a conference

On receipt of a GCC-Conference-Invite request primitive, a GCC Provider shall issue an
M CS-Connect-Provider request primitive with the parameters shown in Table 8-14.

Table 8-14 — MCS-Connect-Provider request parametersfor Confer encel nviteRequest PDU

Parameter Contents
Cdling Address From request primitive
Calling Domain Selector Conference ID from request primitive
Called Address From request primitive
Called Domain Selector NULL
Upward/Downward Flag Down

Domain Parameters
Quality of Service
User Data

From GCC Provider as previously saved

From GCC Provider as previously saved
T.124 Object Identifier
Conferencel nviteRequest PDU (see Table 8-15)

The User Data parameter of the MCS-Connect-Provider request contains a structure which includes
an Object Identifier identifying the contained PDU as adhering to this Recommendation followed
by the PDU itself. The details of this structure are defined in 9.6. The contents of this PDU are
shown in Table 8-15. The Conference Name is the name of the conference specified by the
Conference ID in the request primitive as stored in the local Conference Profile. The Node ID
parameter, which is the User ID assigned by MCS in response to the MCS-Attach-User request
issued by the GCC Provider, shall be supplied by the source GCC Provider. The Top Node ID isthe
Node ID of the Top GCC Provider, previously saved by the inviting GCC Provider at the inviting
node. The Tag parameter is assigned by the source GCC Provider to be locally unique. It is used to
identify the returned UserIDIndication PDU.

Table 8-15 — Conferencel nviteRequest GCCPDU

Content Source Sink
Conference Name Source GCC Provider Destination GCC Provider and Indication
Node ID Source GCC Provider Destination GCC Provider
Top Node ID Source GCC Provider Destination GCC Provider
Tag Source GCC Provider Destination GCC Provider
Password In The Clear Source GCC Provider Indication and Destination GCC Provider
Required Flag
Locked Conference Flag Source GCC Provider Indication and Destination GCC Provider
Listed Conference Flag Source GCC Provider Indication and Destination GCC Provider
Conductible Conference Flag Source GCC Provider Indication and Destination GCC Provider
Termination Method Source GCC Provider Indication and Destination GCC Provider
Conductor Privilege List Source GCC Provider Indication and Destination GCC Provider
(optional)
Conducted-Mode Conference Source GCC Provider Indication and Destination GCC Provider
Privilege List (optional)

114 ITU-T Rec. T.124 (01/2007)

Table 8-15 - Conferencel nviteRequest GCCPDU

Content Source Sink
Non-Conducted-Mode Source GCC Provider Indication and Destination GCC Provider
Conference Privilege List
(optional)

Conference Description Source GCC Provider Indication and Destination GCC Provider
(optional)

Caller Identifier (optional) Request Indication

Node Category Request Indication

User Data (optional) Request Indication

On receipt of the MCS-Connect-Provider indication that includes a T.124 Object Identifier and the
Conferencel nviteRequest PDU, a GCC Provider shall generate a GCC-Conference-Invite indication
primitive and issue it to the Control GCCSAP. The Conference ID in this primitive shall be
assigned locally by the GCC Provider and shall be used as the local MCS Domain Selector. If GCC
does not have the resources necessary to join a conference, it may generate the negative response
automatically without generating the GCC-Conference-Invite indication. Otherwise, on receipt of
the GCC-Conference-Invite response, the GCC Provider shall generate an MCS-Connect-Provider
response which includes a result which is either success, or user-rejected depending on whether or
not the Result parameter in the GCC-Conference-Invite response primitive indicated success or
faillure (and shal include the result in the ConferencelnviteResponse PDU). The User Data
parameter includes the T.124 Object Identifier as well as the ConferencelnviteResponse PDU. The
contents of the connect provider primitive are shown in Table 8-16.

If the successful response includes the Conference Name Modifier parameter, the GCC Provider
shall maintain this as well as the Conference Name parameter from the received
Conferencel nviteRequest PDU (which includes both the numerical form as well as the text form of
the Conference Name, if any) together as the local identifier of the conference to be used in the
procedure for responding to a conference join request, a conference query request, or in initiating a
conference invite request. If no Conference Name Modifier is present, only the Conference Name is
maintained for this purpose.

After sending the MCS-Connect-Provider response, if the invitation was acknowledged as
successful, the GCC Provider shall issue an MCS-Attach-User request. On receipt of the
MCS-Attach-User confirm which contains the allocated Node ID, the GCC Provider shall then join
the corresponding Node ID Channel by issuing an MCS-Channel-Join request. The GCC Provider
shall also join the appropriate GCC Broadcast Channel(s) by issuing one or two MCS-Channel-Join
requests. All nodes are required to join the GCC-Conventiona-Broadcast-Channel. All GCC
control PDUs and Roster delta updates that are generated when Conventional Nodes join, leave, or
change a roster record are broadcasted on this channel. Anonymous nodes may ignore the roster
deltas received on this channel, but they must process the control messages received. Conventional
Nodes must aso join the GCC-Counted-Broadcast-Channel. On this channel, the Top Provider
broadcasts Roster delta updates which are generated when Counted Nodes join, leave, or change a
roster record. Because only Conventional Nodes join the GCC-Counted-Broadcast-Channel, the use
of this channel reduces the amount of network traffic incurred when a large number of Counted
Nodes are participating in a conference. Note that older protocol nodes join the GCC-Broadcast-
Channel at this point.

Once the GCC Provider has received an MCS-Channel-Join confirm from each of the channel join
requests (successive requests may be issued prior to receiving the previous confirm), it shall send a
UserlDIndication PDU to the GCC Provider of the directly connected node by issuing an

ITU-T Rec. T.124 (01/2007) 115

MCS-Send-Data request specifying the Node ID of the directly connected node as contained in the
received Conferencel nviteRequest PDU, specifying Top data priority, and including the PDU in the
Data field. The content of the UserIDIndication PDU is shown in Table 8-5. The Tag parameter is
filled in with the value of the corresponding parameter received in the Conferencel nviteRequest
PDU.

If the GCC Provider at the invited node receives an MCS-Disconnect-Provider indication for the
connection being established at any time during the process of being joined to the conference
(thisincludes the time that the GCC-Conference-Invite indication has been issued to the Control
GCCSAP until the time that the UserIDIndication has been transmitted), it shall issue a
GCC-Conference-Terminate indication to the Control GCCSAP indicating the requested normal
termination as the reason if user-initiated was the reason provided in the M CS-Disconnect-Provider
indication, and error termination otherwise. It shall then stop further processing for this connection
establishment procedure. If the MCS-Disconnect-Provider indication was received prior to issuing
the GCC-Conference-Invite indication to the Control GCCSAP, the GCC Provider shall stop further
processing for this connection establishment procedure and take no further action.

Table 8-16 — M CS-Connect-Provider response parametersfor
Conferencel nviteResponse PDU

Parameter Contents
Domain Parameters From response primitive
Quality of Service From response primitive
Result Asspecified in[ITU-T T.122]
User Data T.124 Object |dentifier
Conferencel nviteResponse PDU (see Table 8-17)

The Conferencel nviteResponse PDU is shown in Table 8-17.

Table 8-17 — Conferencel nviteResponse GCCPDU

Content Sour ce Sink

Result Response Confirm
User Data (optional) Response Confirm

On receipt of the ConferencelnviteResponse PDU, if the result parameter of the
M CS-Connect-Provider was successful, a GCC Provider shall record the User Data parameter to fill
in to the GCC-Conference-Invite confirm primitive once it is generated on receipt of the pending
UserIDIndication. If the result parameter was unsuccessful, or if the GCC Provider receives an
MCS-Disconnect-Provider indication for this connection prior to having issued a successful
GCC-Conference-Invite confirm, the GCC Provider shal immediately generate a
GCC-Conference-Invite confirm primitive and issue it to the Control GCCSAP. The Result
parameter in the PDU as well as the Result parameter reported in the MCS-Connect-Provider
confirm (or the Reason parameter of the MCS-Disconnect-Provider) is used to generate the result
reported in the GCC-Conference-Invite confirm primitive. If the Result parameter of the MCS-
Connect-Provider confirm is user-rejected, the Result parameter in the PDU is used to determine the
reported result. Otherwise, the Result parameter in the MCS-Connect-Provider is used directly.

On receipt of a UserlDIndication, the node directly connected to the invited node shall compare the
Tag parameter to its list of nodes in the conference from which it is expecting this PDU. If the Tag
matches one of these, it shall save the User ID of the source node (extracted from the

116 ITU-T Rec. T.124 (01/2007)

MCS-Send-Data indication) in its database of Node IDs of nodes which are directly below it in the
connection hierarchy. If the Tag does not match any outstanding Tags, the PDU shall be ignored.

If the Tag was from an outstanding conference invite, on receipt of the UserlDIndication, the
GCC Provider shall generate a GCC-Conference-Invite confirm primitive and issue it to the Control
GCCSAP with a successful result parameter.

The sequence of events for successfully inviting a node to a conference is shown in Figure 8-4.

Node InvitingGCC MCS MCS Invited GCC Node
Controller Provider Provider Provider Provider Controller

GCC-Conference-| nviie request

MCS-Connect-Provider request
N

Conferencel nviteRequest

MCS-Connect-Provider indication
—

GCC-Conf.erenceI nvite indication

GCC-Conference-lnvite response

MCS-Connect-Provi de'r response

ConferencelnviteResponse

MCS-Connect-Provider confirm MCS-Attach-User request
'(1]

M CSAtta:h-User c.onfi rm

MCS-Channel -Jc.>in request (l\Iode ID Channel)
<

M Cséhannel -Join (.:onfi rm

MCS-Channel-Join r'equei (GCC'-Broadcaﬂ-Channel)
MCS-Channel-Join confirm
>

M CS.Smd-Data réqueet

UserIDIndication

MCS-Send-Data indication
[]

GCC-Conference-l nvit'e confirm

T.124(01-07)_F8-04

Figure 8-4 —Inviting a nodeto a conference

8.25 Requesting to add a nodeto a conference

On receipt of a GCC-Conference-Add request primitive, a GCC Provider shall send a
ConferenceAddRequest PDU to the Top GCC Provider by issuing an MCS-Send-Data request
specifying the Node ID Channel of the Top GCC Provider as the Channel ID, specifying High data
priority, and including the PDU in the Data field. The contents of the ConferenceAddRequest PDU

ITU-T Rec. T.124 (01/2007) 117

are shown in Table 8-18. The contents are filled in from the parameters passed in the GCC-
Conference-Add request primitive. The Tag parameter is assigned by the requesting GCC Provider
to be locally unique. This number is used to identify the corresponding response PDU when it is
returned.

Table 8-18 — ConferenceAddRequest GCCPDU

Content Source Sink

Network Address Request Indication

Requesting Node Requesting GCC Provider Indication

Tag Requesting GCC Provider Destination GCC Provider
Adding MCU (optional) Request Top GCC Provider

Node Category (optional) Request Indication

User Data (optional) Request Indication

Network Address V2 (see Annex B) Request Indication

On receipt of a ConferenceAddRequest PDU, the Top GCC Provider shall first check whether the
requesting node had the necessary privilege to add a node to the conference as indicated in the
Conference Profile. If not, it shall reject the request by sending a ConferenceAddResponse PDU to
the requesting node indicating invalid-requester as the result. The content of the
ConferenceAddResponse PDU is shown in Table 8-19. If the requesting node had sufficient
privilege, the Top GCC Provider shall then examine whether the Adding MCU parameter is present.
If not present, or if the Adding MCU identifier is equal to the Node ID of the Top GCC Provider,
the Top GCC Provider, if it supports the GCC-Conference-Add function, shall generate a
GCC-Conference-Add indication primitive and issue it to the Control GCCSAP. The contents of the
primitive are filled in from the contents of the received PDU. If the node does not support this
function, it may reject the request by issuing a FunctionNotSupportedResponse PDU including the
received ConferenceAddRequest in the response.

If the optional Adding MCU parameter is present and set to a value other than that of the Node ID
of the Top GCC Provider, the Top GCC Provider shall send a ConferenceAddRequest PDU to the
Adding MCU by issuing an MCS-Send-Data request specifying the Node ID of the Adding MCU as
the Channel 1D, specifying High data priority, and including the PDU in the Data field. The content
of the PDU isthe same as that of the received request PDU. On receipt of a ConferenceAddRequest
PDU, a node which is not the Top GCC Provider, if it supports the GCC-Conference-Add function,
shall first check that it has been received from the Top GCC Provider by examining the User ID
from the received MCS-Send-Dataindication. If it has been received from the Top GCC Provider, it
shall generate a GCC-Conference-Add indication primitive and issue it to the Control GCCSAP.
The contents of the primitive are filled in from the contents of the received PDU. If the User ID of
the received PDU does not match the Node ID of the Top GCC Provider, the received PDU is
ignored and no further action is taken. If the node does not support this function, it may reject the
request by sending to the Top GCC Provider a FunctionNotSupportedResponse PDU including the
received ConferenceAddRequest in the response.

On receipt of a GCC-Conference-Add response primitive, a GCC Provider shall send a
ConferenceAddResponse PDU to the requesting node by issuing an MCS-Send-Data request
specifying the Node ID of the requesting node, specifying High data priority, and including the
PDU in the Data field. In the case that the request had been routed through the Top GCC Provider
to another node, the response is issued to the origina requesting node as indicated by the
Requesting Node parameter of the request PDU. The contents of the ConferenceAddResponse PDU
are shown in Table 8-19. The contents are filled in from the parameters passed in the

118 ITU-T Rec. T.124 (01/2007)

GCC-Conference-Add response primitive. The Tag shall have the same value as the corresponding
parameter in the received ConferenceAddRequest PDU.

Table 8-19 — ConferenceAddResponse GCCPDU

Content Sour ce Sink
Tag Source GCC Provider Destination GCC Provider
Result Response Confirm
User Data (optional) Response Confirm

On receipt of a ConferenceAddResponse PDU, a GCC Provider shall generate a
GCC-Conference-Add confirm primitive and issue it to the Control GCCSAP. The contents of the
primitive are obtained from the parameters of the received PDU.

8.2.6 Lockingaconference

On receipt of a GCC-Conference-Lock request primitive, a GCC Provider shall send a
Conferencel ockRequest by issuing an MCS-Send-Data request specifying the Node ID Channel of
the Top GCC Provider as the Channel 1D, specifying High data priority, and including the PDU in
the Data field. The content of the Conferencel ockRequest PDU is shown in Table 8-20. There are
no parametersin this PDU.

Table 8-20 — Conferencel. ockRequest GCCPDU

Content Source Sink

-- No parameters --

On receipt of a Conferencel.ockRequest PDU, if the Top GCC Provider supports the conference
lock capability, it shall first determine if the requesting node has the privilege necessary to lock the
conference based on the lock-unlock-privileges defined when the conference was created. If so, the
Top GCC Provider shall generate a GCC-Conference-Lock indication primitive and issue it to the
Control GCCSAP. The Source Node specified in the primitive shall be obtained from the Sender
User ID in the MCS-Send-Data indication. On receipt of a GCC-Conference-Lock response, the
GCC Provider shall send a Conferencel. ockResponse PDU by issuing an MCS-Send-Data request
specifying the Source Node indicated in the response as the Channel 1D, specifying High data
priority, and including the PDU in the Data field. The content of the Conferencel. ockResponse
PDU is shown in Table 8-21. The Result parameter is generated from the result returned in the
GCC-Conference-Lock response.

If the requesting node did not have the proper privilege to support this operation, the request is
immediately rejected without generating a GCC-Conference-Lock indication. This is done by
generating a Conferencel. ockResponse PDU specifying invalid-requester as the Resullt.

The Top GCC Provider shall preserve the order of received Conferencel ockRequest PDUs and
ConferenceUnlockRequest PDUs and their corresponding indication primitives issued to the
Control GCCSAP, as well as between the response primitives from the Control GCCSAP and the
Conferencel ockResponse and ConferencelUnlockResponse PDUSs transmitted.

At the requesting node, order shall also be preserved between the request primitives and the
corresponding transmitted Conferencel ockRequest PDUs and ConferenceUnlockRequest PDUs as
well as between the received Conferencel. ockResponse and ConferenceUnl ockResponse PDUs and
the corresponding confirm primitives.

ITU-T Rec. T.124 (01/2007) 119

If the Top GCC Provider does not support the conference lock capability, on receipt of a
ConferenceLockRequest PDU, it shal immediately generate a FunctionNotSupportedResponse
PDU including the received Conferencel ockRequest PDU in the response.

Table 8-21 — Conferencel ockResponse GCCPDU

Content Sour ce Sink

Result Response Confirm

On receipt of a Conferencel ockResponse PDU, a GCC Provider shall generate a GCC-Conference-
Lock confirm primitive and issue it to the Control GCCSAP. The result parameter in the confirm
primitive is obtained from the Result field in the PDU.

If the Top GCC Provider sends a Conferencel ockResponse which indicates a successful result, it
shall also generate a ConferenceLockindication PDU and send it to all nodes in the conference by
issuing an MCS-Uniform-Send-Data request specifying the GCC-Broadcast-Channel as the
Channél 1D, specifying High data priority, and including the PDU in the Data field. The content of
the Conferencel. ocklndication PDU is shown in Table 8-22. This PDU contains no parameters.

Table 8-22 — Conferencel ockl ndication GCCPDU

Content Sour ce Sink

-- No parameters --

On receipt of a Conferencel ocklndication PDU, a GCC Provider which supports the optional lock
indication may generate a GCC-Conference-Lock-Report indication and issue it to the Control
GCCSAP. Before it does so, it shall examine the User ID as indicated in the received
MCS-Uniform-Send-Data indication and compare it to the Node ID of the Top GCC Provider. The
GCC-Conference-L ock-Report primitive may only be generated if the received User ID matches the
Node ID of the Top GCC Provider. Otherwise, the received PDU isignored, and no further action is
taken.

If the Top GCC Provider becomes aware of a new node entering a conference by its presence in the
Conference Roster and the conference is currently locked and if the possibility exists that the
conference may have been unlocked when the node joined (or was invited to) the conference, the
Top GCC Provider shall generate a Conferencel ocklndication PDU and send it to the new node by
issuing MCS-Send-Data request specifying the Node ID of that node as the Channel 1D, specifying
High data priority, and including the PDU in the Data field. Alternatively, it may send this PDU to
al nodes by issuing an MCS-Uniform-Send-Data request specifying the GCC-Broadcast-Channel
as the Channel ID, specifying High data priority, and including the PDU in the Datafield. Although
the flag indicating whether the conference is locked or unlocked is included in the information
provided to the newly-joined node as part of the connection establishment process, this ensures that
if the conference changed its lock state since the connection had been established, that the node is
properly notified of the change. If there is no possibility that the lock state has changed since the
node was joined (or was invited) into the conference (e.g., if the lock state has not changed since the
creation of the conference), the Top GCC Provider need not send this PDU.

8.2.7 Unlocking a conference

On receipt of a GCC-Conference-Unlock request primitive, a GCC Provider shall send a
ConferenceUnlockRequest by issuing an MCS-Send-Data request specifying the Node ID Channel
of the Top GCC Provider as the Channel 1D, specifying High data priority, and including the PDU
in the Data field. The content of the ConferencelUnlockRequest PDU is shown in Table 8-23. There
are no parametersin this PDU.

120 ITU-T Rec. T.124 (01/2007)

Table 8-23 — ConferenceUnlockRequest GCCPDU

Content Source Sink

-- No parameters --

On receipt of a ConferenceUnlockRequest PDU, if the Top GCC Provider supports the conference
unlock capability, it shall first determine if the requesting node has the privilege necessary to unlock
the conference based on the lock-unlock-privileges defined when the conference was created. If so,
the Top GCC Provider shall generate a GCC-Conference-Unlock indication primitive and issue it to
the Control GCCSAP. The Source Node specified in the primitive shall be obtained from the Sender
User ID in the MCS-Send-Data indication. On receipt of a GCC-Conference-Unlock response, the
GCC Provider shall send a ConferencelUnlockResponse PDU by issuing an MCS-Send-Data request
specifying the Source Node indicated in the response as the Channel 1D, specifying High data
priority, and including the PDU in the Data field. The content of the ConferenceUnlockResponse
PDU is shown in Table 8-24. The Result parameter is generated from the result returned in the
GCC-Conference-Unlock response.

If the requesting node did not have the proper privilege to support this operation, the request is
immediately rejected without generating a GCC-Conference-Unlock indication. This is done by
generating a ConferenceUnlockResponse PDU specifying invalid-requester as the Result.

The Top GCC Provider shall preserve the order of received Conferencel ockRequest PDUs and
ConferenceUnlockRequest PDUs and their corresponding indication primitives issued to the
Control GCCSAP, as well as between the response primitives from the Control GCCSAP and the
Conferencel ockResponse and ConferencelUnlockResponse PDUSs transmitted.

At the requesting node, order shall also be preserved between the request primitives and the
corresponding transmitted Conferencel ockRequest PDUs and ConferenceUnlockRequest PDUs as
well as between the received Conferencel. ockResponse and ConferenceUnlockResponse PDUs and
the corresponding confirm primitives.

If the Top GCC Provider does not support the conference unlock capability, on receipt of a
ConferenceUnlockRequest PDU, it shall immediately generate a FunctionNotSupportedResponse
PDU including the received ConferenceUnlockRequest PDU in the response.

Table 8-24 — ConferenceUnlockResponse GCCPDU

Content Sour ce Sink

Result Response Confirm

On receipt of a ConferenceUnlockResponse PDU, a GCC Provider shall generate a
GCC-Conference-Unlock confirm primitive and issue it to the Control GCCSAP. The result
parameter in the confirm primitive is obtained from the Result field in the PDU.

If the Top GCC Provider sends a ConferencelUnlockResponse which indicates a successful result, it
shall also generate a ConferenceUnlockindication PDU and send it to al nodes in the conference by
issuing an MCS-Uniform-Send-Data request specifying the GCC-Broadcast-Channel as the
Channel 1D, specifying High data priority, and including the PDU in the Data field. The content of
the ConferenceUnlockindication PDU is shown in Table 8-25. This PDU contains no parameters.

Table 8-25 — Confer enceUnlock | ndication GCCPDU

Content Sour ce Sink

-- No parameters --

ITU-T Rec. T.124 (01/2007) 121

On receipt of a ConferenceUnlockindication PDU, a GCC Provider which supports the optional
unlock indication may generate a GCC-Conference-Lock-Report indication and issue it to the
Control GCCSAP. Before it does s0, it shall examine the User ID as indicated in the received
MCS-Uniform-Send-Data indication and compare it to the Node ID of the Top GCC Provider. The
GCC-Conference-L ock-Report primitive may only be generated if the received User ID matches the
Node ID of the Top GCC Provider. Otherwise, the received PDU isignored, and no further action is
taken.

If the Top GCC Provider becomes aware of a new node entering a conference by its presence in the
Conference Roster and the conference is currently unlocked and if the possibility exists that the
conference may have been locked when the node joined (or was invited to) the conference, the Top
GCC Provider shall generate a ConferenceUnlockindication PDU and send it to the new node by
issuing MCS-Send-Data request specifying the Node ID of that node as the Channel 1D, specifying
High data priority, and including the PDU in the Data field. Alternatively, it may send this PDU to
al nodes by issuing an MCS-Uniform-Send-Data request specifying the GCC-Broadcast-Channel
as the Channel ID, specifying High data priority, and including the PDU in the Datafield. Although
the flag indicating whether the conference is locked or unlocked is included in the information
provided to the newly-joined node as part of the connection establishment process, this ensures that
if the conference changed its lock state since the connection had been established, that the node is
properly notified of the change. If there is no possibility that the lock state has changed since the
node was joined (or was invited) into the conference (e.g., if the lock state has not changed since the
creation of the conference), the Top GCC Provider need not send this PDU.

8.2.8 Disconnecting from a conference

On receipt of a GCC-Conference-Disconnect request, a GCC Provider shall first attempt to gect the
nodes directly below it in the connection hierarchy, if any. It shall do this by sending, for each such
node, a ConferenceEjectUserIndication PDU with the Node To Eject parameter set to the Node ID
of the particular subordinate node and specifying higher-node-disconnected as the reason. This is
done by issuing an MCS-Uniform-Send-Data request specifying both the GCC-Broadcast-Channel
(to support older protocol nodes) and the GCC-Conventional -Broadcast-Channel as the Channel 1D,
specifying High data priority, and including the PDU in the data field. The content of the
ConferenceEjectUserIndication PDU is shown in Table 8-31. The GCC Provider shall then wait
until it has received MCS-Disconnect-Provider indications from each subordinate connection.
Following this, it shall disconnect from the conference by issuing first an MCS-Detach-User request
followed by an MCS-Disconnect-Provider request directed at the upward connection (the only
remaining connection). If, for some reason, the GCC Provider has not recelved
MCS-Disconnect-Provider indications from each of the lower nodes within a reasonable period of
time (determined locally), the GCC Provider may proceed to disconnect those connections itself by
issuing MCS-Disconnect-Provider requests directed at each remaining lower connection, followed
by an MCS-Detach-User request and an MCS-Disconnect-Provider request directed at the upward
connection as in the normal case. In either case, or if there had been no subordinate nodes, the GCC
Provider shall then generate a GCC-Conference-Disconnect confirm primitive and issue it to the
Control GCCSAP. The GCC Provider shall then remove all database information associated with
this conference.

On receipt of an MCS-Detach-User indication, each GCC Provider in the conference shall examine
the User ID indicated in the indication and compare it to its list of Node IDs in its local copy of the
Conference Roster. If the User ID corresponds to a Node ID, different from its own Node ID, the
GCC Provider shall generate a GCC-Conference-Disconnect indication and issue it to the Control
GCCSAP. The Disconnecting Node parameter in the indication shall correspond to the User ID in
the received indication. If the reason code in the received indication is user-initiated, the reason
code in the GCC-Conference-Disconnect indication shall be either user-initiated or gected node,
depending on whether or not a ConferencekjectUserlndication PDU was received earlier containing

122 ITU-T Rec. T.124 (01/2007)

in its Node To Eject field the same User ID as the MCS-Detach-User indication. Otherwise, the
reason is indicated as unknown.

8.2.9 Terminating a conference

On receipt of a GCC-Conference-Terminate request, a GCC Provider shall send a
ConferenceTerminateRequest PDU to the Top GCC Provider by issuing an MCS-Send-Data request
specifying the Node ID Channel of the Top GCC Provider as the Channel 1D, specifying High data
priority, and including the PDU in the Data field. The content of the ConferenceT erminateRequest
PDU is shown in Table 8-26. The reason code is obtained from the corresponding parameter in the
request primitive.

Table 8-26 — ConferenceT erminateRequest GCCPDU

Content Source Sink
Reason Request Top GCC Provider

On receipt of a ConferenceTerminateRequest PDU, the Top GCC Provider shall first determine if
the requesting node has the privilege necessary to terminate the conference based on the
terminate-privileges defined when the conference was created. If not, the request is rejected and a
ConferenceTerminateResponse is sent back to the requester by issuing an MCS-Send-Data request
specifying the Node ID Channel of the requester as the Channel 1D, specifying High data priority,
and including the PDU in the Data field. The content of the ConferenceTerminateResponse PDU is
shown in Table 8-27. In this case, the result parameter is set to indicate invalid-requester as the
reason for rejection.

If the requester did have the proper privilege to terminate the conference, then a
ConferenceTerminateResponse shall be sent back to the requester indicating a successful result. In
addition, a ConferenceTerminatelndication is sent to al nodes in the conference by issuing an
MCS-Uniform-Send-Data request specifying both the GCC-Broadcast-Channel (to support older
protocol nodes) and the GCC-Conventional-Broadcast-Channel as the Channel 1D, specifying High
data priority, and including the PDU in the Data field. The content of the
ConferenceTerminatel ndication PDU is shown in Table 8-28. The reason code is obtained from the
reason code in the request PDU.

Table 8-27 — ConferenceT er minateResponse GCCPDU

Content Sour ce Sink
Result Top GCC Provider Confirm

Table 8-28 — ConferenceT erminatel ndication GCCPDU

Content Source Sink
Result Top GCC Provider Confirm

On receipt of a ConferenceTerminateResponse PDU, a GCC Provider shal generate a
GCC-Conference-Terminate confirm primitive and issue it to the Control GCCSAP. The result
indicated in the primitive is obtained directly from the Result parameter in the PDU.

On receipt of a ConferenceTerminatelndication PDU sent by the Top GCC Provider, a
GCC Provider shall first wait until it has received MCS-Disconnect-Provider indications from each
connection directly below it in the connection hierarchy. Following this, it shall disconnect from the
conference by issuing an MCS-Disconnect-Provider request directed at the upward connection (the
only remaining connection). If, for some reason, the GCC Provider has not received

ITU-T Rec. T.124 (01/2007) 123

MCS-Disconnect-Provider indications from each of the lower nodes within a reasonable period of
time (determined locally), the GCC Provider may proceed to disconnect those connections itself by
issuing MCS-Disconnect-Provider requests directed at each remaining lower connection, followed
by an M CS-Disconnect-Provider request directed at the upward connection as in the normal case. In
either case, the GCC Provider shall then generate a GCC-Conference-Terminate indication
primitive and issue it to the Control GCCSAP. The reason indicated in the primitive is obtained
directly from the Reason parameter in the PDU.

If a GCC Provider receives an MCS-Disconnect-Provider indication from the local MCS provider
corresponding to its upward MCS connection, this is an indication that the MCS connection has
been terminated due to an abnormal condition within MCS, the GCC Provider shall generate a
GCC-Conference-Terminate indication primitive and issue it to the Control GCCSAP. The reason
code shall indicate that thisis an error termination.

If the Top GCC Provider receives a disconnect indication (either via PDU or MCS-Detach-User
indication) which results in no nodes listed in the Conference Roster with the exception of the local
node, the provider shall check the Conference Profile to determine if the conference is manually or
automatically terminating. If it was manually terminating, no further action is taken. If it was
automatically terminating, the GCC Provider shall indicate to the local node controller that the
conference has been terminated by generating a GCC-Conference-Terminate indication and issuing
it to the Control GCCSAP. The reason code shall indicate that there are no more nodes joined to an
automatically terminating conference. The GCC Provider shall then remove al database
information associated with this conference.

8.2.10 Ejecting a node from a conference

On receipt of a GCC-Conference-Eject-User request primitive, a GCC Provider shall first compare
the Node To Eject parameter to the Node IDs of the nodes immediately below it in the connection
hierarchy, if any. If the Node To Eject is a node other than a directly subordinate node, the
GCC Provider shall send a ConferenceEjectUserRequest PDU to the Top GCC Provider by issuing
an MCS-Send-Data request specifying the Node ID Channel of the Top GCC Provider as the
Channel ID, specifying Top data priority, and including the PDU in the Data field. The content of
the ConferenceEjectUserRequest PDU is shown in Table 8-29. The contents of the PDU are
obtained from the request primitive.

If the Node To Eject is a node directly below the local node in the connection hierarchy, the GCC
Provider shall instead send a ConferenceEjectUserIndication PDU to all nodes specifying the Node
ID of the node to be gected in the PDU and the reason as indicated in the request primitive. It shall
do this by issuing an MCS-Uniform-Data request specifying both the GCC-Broadcast-Channel (for
older protocol nodes) and the GCC-Conventional-Broadcast-Channel as the Channel ID, specifying
High data priority, and including the PDU in the data field. The content of the
ConferenceEjectUserIndication is shown in Table 8-31. The GCC Provider may then wait until it
has received an MCS-Disconnect-Provider indication from the connection corresponding to the
gjected node. If, for some reason, the GCC Provider has not received MCS-Disconnect-Provider
indications from the gected node within a reasonable period of time (determined locally), the GCC
Provider may proceed to disconnect those connections itself by issuing an MCS-Disconnect-
Provider request directed at the gected node. The GCC Provider shal then generate a
GCC-Conference-Eject-User confirm PDU indicating a successful resuilt.

Table 8-29 — ConferenceEjectUser Request GCCPDU

Content Sour ce Sink
Node To Eject Request Top GCC Provider
Reason Request Top GCC Provider

124 ITU-T Rec. T.124 (01/2007)

On receipt of a ConferenceEjectUserRequest PDU, the Top GCC Provider shall first determine if
the requesting node has the privilege necessary to gect a user based on the g ect-user-privileges
defined when the conference was created. If not, the request is reected and a
ConferenceEjectUserResponse is sent back to the requester by issuing an MCS-Send-Data request
specifying the Node ID Channel of the requester as the Channel 1D, specifying High data priority,
and including the PDU in the Data field. The content of the ConferenceEjectUserResponse PDU is
shown in Table 8-30. In this case, the result parameter is set to indicate invalid-requester as the
reason for rejection.

If the requester did have the proper privilege to gect a user, then a ConferencekEjectUserIndication
primitive is broadcast to all nodes by issuing an MCS-Uniform-Send-Data request. This request
specifies both the GCC-Broadcast-Channel (for older protocol nodes) and the GCC-Conventional-
Broadcast-Channel as the Channel ID, specifying Top data priority, and including the PDU in the
Data field. The content of the ConferenceEjectUserIndication PDU is shown in Table 8-31. The
Reason parameter in this PDU is obtained from the request PDU. If the node to be gjected isvalid, a
response is sent back to the requester indicating a successful result. If it is not possible to gect the
requested node, aresponse is sent which includes a negative resullt.

Table 8-30 — Confer enceEjectUser Response GCCPDU

Content Source Sink
Node To Eject Top GCC Provider Confirm
Result Top GCC Provider Confirm

On receipt of a ConferenceEjectUserResponse PDU, a GCC Provider shall generate a
GCC-Conference-Eject-User confirm primitive and issue it to the Control GCCSAP. The contents
of the confirm primitive are obtained from the ConferenceEjectUserResponse PDU.

Table 8-31 — ConferenceEjectUser I ndication GCCPDU

Content Source Sink
Node To Eject Top GCC Provider Confirm
Reason Top GCC Provider Indication

On receipt of a ConferenceEjectUserIndication PDU, a GCC Provider shall compare the Node To
Eject parameter to its own Node ID. If they are the same, it shall then compare the User ID as
indicated in the MCS-Send-Data indication to the Node ID of the Top GCC Provider and to that of
the node directly above it in the connection hierarchy. If the source Node ID is the same as either of
these, it shall immediately disconnect from the conference by first attempting to gect the nodes
directly below it in the connection hierarchy, if any. It shall do this by sending, for each such node,
a ConferenceEjectUserIndication PDU with the Node To Eject parameter set to the Node ID of the
particular subordinate node and specifying higher-node-gjected as the reason. This is done by
issuing an MCS-Uniform-Send-Data request specifying both the GCC-Broadcast-Channel (for older
protocol nodes) and the GCC-Conventional -Broadcast-Channel as the Channel 1D, specifying High
data priority, and including the PDU in the data field. The GCC Provider shall then wait until it has
received M CS-Disconnect-Provider indications from each subordinate connection. Following this,
it shall disconnect from the conference by issuing first an MCS-Detach-User request followed by an
MCS-Disconnect-Provider request directed at the upward connection (the only remaining
connection). If, for some reason, the GCC Provider has not received MCS-Disconnect-Provider
indications from each of the lower nodes within a reasonable period of time (determined locally),
the GCC Provider may proceed to disconnect those connections itself by issuing MCS-Disconnect-
Provider requests directed at each remaining lower connection, followed by first an MCS-Detach-

ITU-T Rec. T.124 (01/2007) 125

User request followed by an MCS-Disconnect-Provider request directed at the upward connection
as in the normal case. In either case, or if there had been no subordinate nodes, the GCC Provider
shall then generate a GCC-Conference-Eject-User indication primitive and issue it to the Control
GCCSAP. If the PDU is received with a User ID not matching the Node ID of the Top GCC
Provider or the node directly above in the connection hierarchy, the PDU shall be ignored with no
further action taken.

If the receiving GCC Provider isan MCU which is directly connected above the node to be gected
in the connection hierarchy, it may optionally disconnect the node to be gected from the conference
by issuing an MCS-Disconnect-Provider request for the corresponding MCS connection. Prior to
taking such action, it shall verify that the User ID indicated in the received PDU is the same as the
Node ID of the Top GCC Provider.

On receipt of a ConferenceEjectUserlndication PDU sent either by the Top GCC Provider or by the
Node ID of the node listed in the conference roster as above the node to be gjected, all nodes except
the node to be gjected shall make a note of this event and consult it later if an MCS-Detach-User
indication should arrive for the node to be gected. At that time, as specified in 8.2.8, a node shall
generate a GCC-Conference-Disconnect indication and issue it to the Control GCCSAP. The reason
indicated shall be g ected-node.

8.2.11 Transferring nodes between conferences

On receipt of a GCC-Conference-Transfer request primitive, a GCC Provider shall send a
ConferenceTransferRequest PDU to the Top GCC Provider by issuing an MCS-Send-Data request
specifying the Node ID Channel of the Top GCC Provider as the Channel ID, specifying High data
priority, and including the PDU in the Data field. The content of the ConferenceTransferRequest
PDU is shown in Table 8-32. All of the parameters in this PDU are obtained directly from the
request primitive.

Table 8-32 — ConferenceTransfer Request GCCPDU

Content Source Sink
Conference Name Request Top GCC Provider
Conference Name Modifier (optional) Request Top GCC Provider
Network Address (optional) Request Top GCC Provider
Transferring Nodes (optional) Request Top GCC Provider
Password (optional) Request Top GCC Provider
Network Address V2 (see Annex B) Request Indication

On receipt of a ConferenceTransferRequest PDU, the Top GCC Provider shall first determineif the
requesting node has the privilege necessary to request a transfer based on the transfer-privileges
defined when the conference was created. If not, the request is reected and a
ConferenceTransferResponse is sent back to the requester by issuing an MCS-Send-Data request
specifying the Node ID Channel of the requester as the Channel 1D, specifying High data priority,
and including the PDU in the Data field. The content of the ConferenceTransferResponse PDU is
shown in Table 8-33. In this case, the result parameter is set to indicate invalid-requester as the
reason for rejection.

If the requester did have the proper privilege to request a transfer, then a the Top GCC Provider
shall send a ConferenceTransferResponse PDU back to the requester as described above, but with
the result parameter indicating success. It shall then broadcast a ConferenceTransferIndication PDU
to al nodes in the conference by issuing an MCS-Uniform-Send-Data request specifying both the
GCC-Broadcast-Channel (for older protocol nodes) and the GCC-Conventional-Broadcast-Channel
as the Channel 1D, specifying High data priority, and including the PDU in the Data field. The

126 ITU-T Rec. T.124 (01/2007)

content of the ConferenceTransferIndication PDU is shown in Table 8-34. The parameters in this
PDU are obtained from the received ConferenceTransferRequest PDU.

Table 8-33 — ConferenceT ransfer Response GCCPDU

Content Source Sink
Conference Name Top GCC Provider Confirm
Conference Name Modifier (optional) Top GCC Provider Confirm
Transferring Nodes (optional) Top GCC Provider Confirm
Result Top GCC Provider Confirm

On receipt of a ConferenceTransferResponse PDU, a GCC Provider shall generate a
GCC-Conference-Transfer confirm primitive and issue it to the Control GCCSAP. The contents of
the confirm primitive are obtained from the ConferenceTransferResponse PDU.

Table 8-34 — ConferenceTransfer Indication GCCPDU

Content Source Sink
Conference Name Top GCC Provider Indication
Conference Name Modifier (optional) Top GCC Provider Indication
Network Address (optional) Top GCC Provider Indication
Transferring Nodes (optional) Top GCC Provider Indication
Password (optional) Top GCC Provider Indication
Network Address V2 (see Annex B) Request Indication

On receipt of a ConferenceTransferIndication PDU, a GCC Provider which supports the
GCC-Conference-Transfer indication primitive shall check the list of destination nodes. If the local
Node ID is found on the list of destination nodes, or if the list of destination nodes is NULL, the
GCC Provider shal then check that the User ID indicated in the MCS-Uniform-Send-Data
indication matches the Node ID of the Top GCC Provider. If they match, it shall generate a
GCC-Conference-Transfer indication primitive and issue it to the Control GCCSAP. If the GCC
Provider does not support the GCC-Conference-Transfer indication primitive, if the local node is
not on the list of destination nodes, or if the received PDU is not from the Top GCC Provider, the
PDU isignored and no further action is taken.

8.3 The conference and application rosters

8.3.1 Original Roster Protocol vs. Scalable Roster Protocol

At one time, the exchange of roster information was the single largest inhibitor of scaled
conferences within T.124. Because of the features added to GCC to support scalable conferences,
including Node Categories, the GCC-Conventional-Broadcast-Channel, and the GCC-Counted-
Broadcast-Channel, the protocol associated with the exchange of Conference and Application
Rosters underwent some dramatic changes. To ensure that backward compatibility is maintained
with older protocol nodes, it is necessary to describe both the Original Roster Protocol and the
Scalable Roster Protocol in separate sections. It is important that all T.124 nodes support both the
Original Roster Protocol and the Scalable Roster Protocol to guarantee backward compatibility.
Note that the description of the Original Roster Protocol provides all the information about the
roster protocol necessary to support legacy nodes. All the information describing the Scalable
Roster Protocol is contained in the subclause following the description of the Origina Roster
Protocol (see 8.3.3).

ITU-T Rec. T.124 (01/2007) 127

8.3.2 Original Roster Protocol

This subclause describes in detail all aspects of the Original Roster Protocol. The original protocol
IS not considered to be scalable due to the use of Full Roster Refreshes, which are propagated to all
nodes in a conference any time a node joins, leaves, or changes a roster record. Nodes attempting to
support legacy nodes must join the original GCC-Broadcast-Channel and implement the protocol
detailed below. Note that nodes that only support the Original Roster Protocol are not aware of
Node Categories and, therefore, only support Conventional nodes.

8321 Oveview

Both the Conference and Application Rosters are communicated among nodes using the same set of
PDUs. A single PDU, the RosterUpdatelndication PDU, is associated with all aspects of this
exchange. This PDU is used to send complete or partial roster information to other nodes in the
conference.

When each node (other than the top node) first announces its roster information upon joining a
conference, it is done by sending a RosterUpdatelndication to the node directly above it in the
hierarchy. Subsequent updates to any portion of either the Conference or Application Roster
information are announced by re-issuing a RosterUpdatel ndication containing the new information.

When a node updates its portion of the roster (or announces it for the first time), that information is
propagated from node-to-node up the connection hierarchy until it reaches the Top GCC Provider
which is responsible for forming the full Conference and Application rosters and distributing them
to all nodes in the conference.

As the roster information propagates up the connection hierarchy, each intermediate node (MCU) is
responsible for forming a subset of the full Conference and Application Rosters. That subset
includes that node as well as al nodes below it in the connection hierarchy. That is, the Conference
Roster includes the Node Record for all such nodes, the Application Roster entries for each
Application Protocol Session includes the Application Records for each such node with that Peer
Application Protocol Entity enrolled, and the Application Capabilities List for each Application
Protocol Session includes the collapsed capabilities information for al such nodes. On receipt of a
RosterUpdatel ndication from a node below, an intermediate node makes the appropriate changes to
its subset of the rosters, then passes this information up to the next higher node by issuing a
RosterUpdatel ndication.

If the update from a lower node included a change which caused the Application Capabilities Lists
for at least one Application Protocol Session to have to be re-computed, the new roster information
for the roster subset can only be generated if the individual Application Capabilities Lists for each
node directly below in the connection hierarchy is known (to alow the collapse rules to be
re-applied with the new updated information). The GCC Provider at each node shall maintain this
information locally.

When the roster updates have reached the Top GCC Provider, it shall then broadcast the new roster
information to all nodes in the conference. This is done by broadcasting a RosterUpdatel ndication
PDU to all nodes.

Roster information sent using the RosterUpdatel ndication PDU may be sent in one of three ways.
The roster may be sent as refresh of the full Conference and Application Rosters, replacing all
existing roster entries. Alternatively, portions of the roster may be sent whereby the Conference
Roster, and/or portions of the Application Roster associated one or more Session Keys may be
refreshed. In this case, al entries in the transmitted portion of the roster are replaced, but portions
that are not sent are left unchanged. Finally, changes to portions of the roster may be sent as updates
whereby only those particular elements of the roster (e.g., individual Application Records) which
have been added, modified, or removed are sent, and all other entries are left unchanged. When the
Top GCC Provider broadcasts new roster information, only the first two methods are used. When

128 ITU-T Rec. T.124 (01/2007)

the Top GCC Provider broadcasts new roster information which has changed due to at least one
node having joined the conference, it shall broadcast this information only as afull refresh since the
new node or nodes have no prior roster information. When propagating roster information up the
connection hierarchy, any of these three methods may be used. The method chosen depends on the
scope of the information changed, and is ideally chosen on the basis of minimizing the size of the
PDU in order to minimize transmission time.

NOTE — The described mechanism requires that all GCC Providers in a conference store the subset of the
Conference and Application Rosters for their own node as well as nodes connected directly below them in
the connection hierarchy. In addition, various functions require that the GCC Providers also store the full
Conference and Application Rosters as broadcast from the Top GCC Provider. If for some reason a
GCC Provider fails to retain some or al of this information, the only recourse is to disconnect from the
conference and, if possible, to rgjoin at alater time.

8.3.22 Nodesentering a conference

When a node is joined to a conference, either via conference creation, joining, or invitation, a GCC
Provider shall issue a GCC-Application-Permission-To-Enroll indication to the GCCSAP for all
Application Protocol Entities which have locally indicated their presence to the GCC Provider. In
the case that a GCC Provider becomes aware of an additional Application Protocol Entity whileit is
already joined to a conference, the GCC Provider shall issue a GCC-Application-Permission-To-
Enroll indication to the corresponding GCCSAP indicating the existence of this conference.

Before taking any further action, the GCC Provider shall wait until it has received a
GCC-Conference-Announce-Presence request from the Control GCCSAP as well as a
GCC-Application-Enroll request from all Application Protocol Entities which have been sent
GCC-Application-Permission-To-Enroll indications. Some of these enroll requests may indicate
that that Application Protocol Entity does not intend to enroll (the enroll/un-enroll flag is set to
un-enroll). For each received GCC-Application-Enroll request with the enroll flag set, the
information provided in the primitive for that Application Protocol Entity is added to the Local
Application Roster.

The GCC Provider shall also assign a localy-alocated Entity ID to each enrolled Application
Protocol Entity. This shall be used by the GCC Provider as an identifier of each corresponding
Application Protocol Entity in the RosterUpdatel ndication PDU. The assigned Application Protocol
Entity ID is also included in the GCC-Application-Enroll confirm primitive returned to each
enrolling Application Protocol Entity along with the Node ID of the local node. The Entity ID is
a 16-bit integer value which is to be unique among all Application Protocol Entities enrolled at a
node. If an Application Protocol Entity un-enrolls, the value of its Entity ID shall not be re-used
unless all other values not assigned to an Application Protocol Entity at the time of the un-enroll
have been assigned.

The GCC Provider shall examine the Conducting Operation Capable Flag of each enrolled
Application Protocol Entity with the Active/lnactive flag set to Active (inactive Application
Protocol Entities are assumed not to be capable of conducting operation). If there is more than one
such enrolled Application Protocol Entity with this flag set, the GCC Provider shall choose one of
them for which to set this flag in the Application Roster information which is to be sent in the
RosterUpdatel ndication PDU. The rule for which of these to choose is a local matter not specified
in this Recommendation. A typical rule may be to choose the first such Application Protocol Entity
that enrolls.

Upon receiving the GCC-Conference-Announce-Presence request from the Control GCCSAP and a
GCC-Application-Enroll request from al Application Protocol Entities, a GCC Provider which is
not the Top GCC Provider shall send a RosterUpdatel ndication to the GCC Provider directly above
it in the connection hierarchy. This is done by issuing an MCS-Send-Data request specifying the
Node ID of the destination node as the Channel 1D, specifying High data priority, and including the
PDU in the Data field. The Node ID of the node directly above in the connection hierarchy is

ITU-T Rec. T.124 (01/2007) 129

determined at the time of connection to the conference from either the ConferenceCreateResponse,
ConferenceJoinResponse, or ConferencelnviteRequest PDUs, depending on how the conference
was joined. The value of the Node ID of the above node shall aso be included in the conference
roster portion of the PDU as the Superior Node parameter. The content of the
RosterUpdatel ndication PDU is shown in Table 8-35. In this case, the roster is sent as a full refresh,
including the local Node Record as well as the Application Records for al enrolled Application
Protocol Entities and the Application Capabilities Lists for all Application Protocol Sessions
corresponding to enrolled Application Protocol Entities. If there had been more than one
Application Protocol Entity locally enrolled for a given Application Protocol Session, the GCC
Provider shall perform a collapse of the Application Capabilities List among the Peer Application
Protocol Entities to produce the Application Capabilities List which is to be included in the
RosterUpdatel ndication PDU for that Application Protocol Session. This collapse shall be done by
the procedure described in 8.3.2.8. The action taken by a node receiving a RosterUpdatel ndication
is described in 8.3.2.5.

A node which is the Top GCC Provider having just entered a conference, and received a
GCC-Conference-Announce-Presence request shall include the information contained in its
Conference Roster database, but may wait until it has received any RosterUpdatelndication PDUs
from at least one other node in the conference before transmitting any PDUs. On receiving such
indication, it shall update its Conference and Application Roster database and then broadcast the
full Conference and Application Rosters by sending a RosterUpdatelndication to all nodes in the
conference. This is done by issuing an MCS-Uniform-Send-Data request, specifying the
GCC-Broadcast-Channel as the Channel ID, specifying High data priority, and including the PDU
in the Data field. In the case of new nodes entering the conference, the RosterUpdatelndication is
sent as a full refresh, including the Node Records from all nodes joined to the conference, as well as
for each Application Protocol Session in the conference, a collapsed Application Capabilities List,
and a list of Peer Application Protocol Entities which are part of that session along with the
Application Record for each. The rules for generating the full Conference and Application Rosters,
including the collapsed Application Capabilities List are described in 8.3.2.5.

Table 8-35 — Roster Updatel ndication GCCPDU

Content Source Sink
Full Refresh Flag Source GCC Provider Destination GCC Provider
Conference Information Source GCC Provider from information | Destination GCC Provider
(optional) in Request or received PDU
Application Information Source GCC Provider from information | Destination GCC Provider
(optional) in Request or received PDU

8.3.2.3 Enrolling Application Protocol Entities

On receipt of a GCC-Application-Enroll request primitive, a GCC Provider shall first determine if
there is already an existing entry in the Local Application Roster for the specified conference
associated with the GCCSAP of the requester. If not, and if the Enroll/un-enroll flag in the request
Is set to Enroll, a new entry is created in the Local Application Roster containing the information
specified in the request primitive. In this, case the GCC Provider shall aso assign an Entity ID to
the newly-enrolled Application Protocol Entity as described in 8.3.2.2. If the Enroll/un-enroll flag
had been set to Un-enroll, the request is confirmed immediately by generating a GCC-Application-
Enroll confirm and issuing it to the GCCSAP of the requester. In this case, no further action is
taken.

If the entry in the Local Application Roster already exists and the Enroll/un-enroll flag is set to
Enroll, the contents of the existing entry are modified to reflect the new values specified. If the

130 ITU-T Rec. T.124 (01/2007)

Enroll/un-enroll flag had been set to Un-enroll, the GCC Provider shall remove the corresponding
entry from the Local Application Roster.

If the GCC Provider is not the Top GCC Provider for the specified conference, the GCC Provider
shall then send its new Local Application Roster to the node directly above it in the connection
hierarchy, using a RosterUpdatelndication PDU. It shall do this by issuing an MCS-Send-Data
request specifying the Node ID of the higher node as the Channel 1D, specifying High data priority,
and including the selected PDU in the Data field. The Node ID of the GCC Provider directly above
in the connection hierarchy is determined at the time of connection to the conference from either the
ConferenceCreateResponse, ConferenceJoinResponse, or ConferencelnviteRequest PDUS,
depending on how the conference was joined. The content of the RosterUpdatelndication PDU is
shown in Table 8-35.

If the enroll had occurred prior to the initial transmission of a RosterUpdatelndication PDU, then
the new or altered Record is included in the initial roster information, sent as a full refresh as
described in 8.3.2.2. If an Application Protocol Entity un-enrolled prior to the initial transmission,
its record entry is removed from the roster and never included in any transmitted PDU.

If the enroll occurred after the initia transmission of a RosterUpdatelndication PDU, the new,
modified, or removed Record is treated as an update to the existing roster. In this case, the GCC
Provider may either choose to re-send its portion of the Conference and Application Rosters in their
entirety, or it may send the information as an update — only sending information regarding the
record that has changed. It is preferred that the latter method be used in order to minimize the size
of the PDU, and therefore, its transmission time. If more than one change has been made (more than
one GCC-Application-Enroll request had been received) since the last update, these changes may be
concatenated into a single PDU. For a given Application Protocol Session, if only the Application
Record information has changed since the last instance of that Application Protocol Session, the
Application Capabilities List need not be included in the RosterUpdatel ndication PDU, only the
modified Application Record. For a given Application Protocol Session, the Application
Capabilities List requires updating if its contents from an already enrolled Application Protocol
Entity had been changed, or if a newly-enrolled Application Protocol Entity is part of the
Application Protocol Session for which Peer Application Protocol Entities had aready been
enrolled at the local node or at nodes below the local node in the connection hierarchy, or if a node
Is un-enrolled in the case that there are other Peer Application Protocol Entities which remain
enrolled at the local node or at nodes below the local node in the connection hierarchy. In the case
where there is more than one Peer Application Protocol Entity either after an enroll, or before an
un-enroll, the GCC Provider shall recreate the collapsed Application Capabilities List for that
Application Protocol Session prior to including it in the RosterUpdatel ndication PDU. This collapse
shall be done by the procedure described in 8.3.4.

Before sending the RosterUpdatelndication PDU, if the Active/lnactive flag for the enrolling
Application Protocol Entity is set to Active, the GCC Provider shall examine the Conducting
Operation Capable Flag. If this flag is set, the GCC Provider shall ensure that only one Peer
Application Protocol Entity from this node for each Application Protocol Session isincluded in the
Application Roster with this flag set. If no such Peer Application Protocol Entity has been chosen
indicated in the Application Roster so far, the newly enrolling Application Protocol Entity may be
included in the transmitted RosterUpdatel ndication PDU with this flag set. If there has already been
a Peer Application Protocol Entity at this node which has been included in the Application Roster
with this flag set, the GCC Provider may either include the newly enrolling Application Protocol
Entity in the RosterUpdatelndication PDU without this flag set, or it may include the newly
enrolling Application Protocol Entity with this flag set, and the previous designated
conducting-capable Application Protocol Entity with this flag now set to FALSE. The rule for
choosing which Peer Application Protocol Entity to include in the Application Roster with this flag
set is alocal matter beyond the scope of this Recommendation. If the Active/lnactive flag for the
enrolling Application Protocol Entity is set to Inactive, the Conducting Operation Capable Flag

ITU-T Rec. T.124 (01/2007) 131

indicated in the request primitive shall be ignored, and the corresponding field in the updated roster
shall be set to FALSE.

In the case the Top GCC Provider, the successful change of an entry in the Local Application
Roster results in a direct modification to the Conference Application Roster and the associated
procedure for notification of all other nodes in the conference of the new Conference Application
Roster as described in 8.3.2.5.

In all of the successful cases, the GCC Provider shall generate a GCC-Application-Enroll confirm
primitive indicating a successful result and issue it to the GCCSAP of the requester.

8.3.2.4 Updating a Conference Roster Entry

If a GCC-Conference-Announce-Presence request is received after having aready transmitted an
initial roster, the new Node Record contained in this request shall be treated as an update to the
Conference Roster. As in the case of an updated Application Record, the GCC Provider shall then
send its new Node Record to the node directly above it in the connection hierarchy, using a
RosterUpdatelndication PDU. It shall do this by issuing an MCS-Send-Data request specifying
Node ID of higher node as the Channel ID, specifying High data priority, and including the selected
PDU in the Datafield. The content of the RosterUpdatel ndication PDU is shown in Table 8-35.

As in the case of the enroll, the GCC Provider may either choose to re-send its portion of the
Conference and Application Rosters in their entirety, or it may send only the new Node Record as
an update. It is preferred that the later method be used in order to minimize the size of the PDU, and
therefore, its transmission time.

If a GCC provider receives an MCS-Detach-User indication for which the User ID is that of a
locally enrolled Application Protocol Entity, it shall update the roster to remove that Application
Protocol Entity, and it shall issue a GCC-Permission-To-Enroll indication primitive to the GCCSAP
corresponding to that Application Protocol Entity.

8.3.25 Propagation of Roster Updatesto the Top GCC Provider

On receipt of a RosterUpdatelndication PDU from a node directly below in the connection
hierarchy, a GCC Provider shall first update its subset of the Conference and Application Rosters.
Each node in the conference shall maintain that subset of the Conference and Application Rosters
which corresponds to that node as well as all nodes below it in the connection hierarchy. For each
Application Protocol Entity which has been enrolled at any of these nodes, a list of Application
Records including the Node ID of the node to which that record corresponds, and a partially
collapsed Application Capabilities List are maintained. This is the Application Capabilities List
which corresponds to the outcome of the set of rules to be applied to the Application Capabilities
Lists of the Nodes directly below this node in the connection hierarchy (which are themselves
partialy collapsed).

The procedure that the GCC Provider shall use to update its roster subset depends on the update
method used in the received RosterUpdatel ndication. If the update was indicated to be afull refresh
(as indicated by the full-refresh flag in the PDU), the following procedure is used. First, al Node
Records and Application Records corresponding to the node from which the PDU was received, or
nodes which were previously known to be below that node in the connection hierarchy are removed
from the local subset of the Conference and Application Rosters. All Conference and Application
Records listed in the PDU are then added to the roster. The entire Application Capabilities List,
corresponding to the requesting node below, which may have been stored at this node is removed.
The Application Capabilities List specified in the PDU replaces it. For al Application Protocol
Entities either currently known to be enrolled at or below the current node, as well as any new
Application Protocol Entities indicated in the newly received PDU (including ones not specified in
this PDU), a new collapsed Application Capabilities List shall be computed from each of the

132 ITU-T Rec. T.124 (01/2007)

Application Capabilities Lists from the nodes directly below. This collapse shall be done by the
procedure described in 8.3.4.

In the case that the RosterUpdatelndication did not indicate a full refresh, a dlightly different
procedure is followed. First, if the Node Record information was indicated as changed, if the
change was done as a refresh of the list of Node Records, all Node Records corresponding to the
node from which the PDU was received, or nodes which were previously known to be below that
node in the connection hierarchy are removed from the local subset of the Conference Roster. All
Node Records listed in the PDU are then added to the roster. If the change was done as a series of
updates to Node Records, any records indicated as added are added to the roster subset, any
indicated as replaced are used to replace the existing record, and any indicated for remova are
removed. An attempt to change a record which already exists, or to modify or remove a record
which does not exist is ignored. In any case, for any nodes which were previously in the roster
subset and have been removed, all Application Records corresponding to those nodes are aso
removed (regardiess of whether the corresponding update information was included in the
Application Roster portion of the PDU). If any Application Record information was indicated as
changed, for each Application Protocol Session, a similar procedure is followed. For each
Application Protocol Session, if the change was done as a refresh, all Application Records
corresponding to the node from which the PDU was received, or nodes which were previously
known to be below that node in the connection hierarchy are removed from the local subset of the
Application Roster. All Application Records listed in the PDU are then added to the roster. It is
possible that for a given Application Protocol Session, it is indicated that there are no nodes which
have that Application Protocol Entity enrolled. If the change was done as a series of updates to
Application Records, any records indicated as added are added to the roster subset, any indicated as
replaced are used to replace the existing record, and any indicated for removal are removed. An
attempt to change a record which aready exists, or to modify or remove a record which does not
exist isignored. For Application Capabilities List, the same procedure is followed as described for
the full-refresh case. In this case, however, the new Application Capabilities Lists are only
re-computed for sets of Peer Application Protocol Entities which have indicated a change.

In either of the above cases, the updated information for the Conference Roster and for each
Application Protocol Session in the Application Roster includes an instance number. If the
conference information has changed due to the received update, the instance number for the
conference information shall be incremented by one modulo 2°. Similarly, for each Application
Protocol Session for which any information was modified (either Application Records or the
Application Capabilities List), this instance number shall be incremented by one modulo 2%. If
multiple changes are made to be forwarded to other nodes as a single update, these changes may be
counted as a single increment to the instance number. The instance numbers are maintained locally
and corresponds to its local subset of the roster. That is, that node plus the nodes located below it in
the connection hierarchy. In the case of the Top GCC Provider, the instance numbers apply to the
Conference and Application Rosters which are broadcast to all nodes and reported in the
GCC-Application-Roster-Report primitive. The conference information aso includes a flag
indicating whether nodes have been added and/or removed since the last instance. Similarly, for
each Application Protocol Session, aflag indicates whether nodes have been added and/or removed
since the last instance of the information for that set of Application Protocol Entities. In this case,
nodes being added or removed may indicate that an Application Protocol Entity has been enrolled
or un-enrolled at a node, respectively, not necessarily that the entire node has been added or
removed from the conference.

Once the Conference and/or Application Roster information has been re-computed, a GCC Provider
which is not the Top GCC Provider shall generate a RosterUpdatel ndication PDU which shall then
be sent to the GCC Provider directly above it in the connection hierarchy. The format of the
information contained in this PDU may be either a full refresh, a refresh of some sets of Peer
Application Protocol Entities and/or the conference information, or as individual updates. The

ITU-T Rec. T.124 (01/2007) 133

choice of format to send the update information is left to the GCC Provider. It is preferred that a
choice which minimizes the size of the PDU, and therefore minimizes transmission time, be used.

8.3.2.6 Didtribution of the conference and application rosters

When the Top GCC Provider has received a RosterUpdatel ndication, it shall modify the Conference
and Application Roster information which it maintains (which, in this case, are the full Conference
and Application Rosters rather than a subset) in a manner identical to that described for an
intermediate MCU updating its subset of the roster. Once the complete roster has been updated, the
Top GCC Provider shal broadcast the updated roster information to all nodes by sending a
RosterUpdatelndication PDU. This is done by issuing an MCS-Uniform-Send-Data request
specifying the GCC-Broadcast-Channel as the Channel-1D, specifying High data priority, and
including the PDU in the Datafield.

If the case that the Conference Roster has been modified to include new nodes, the
RosterUpdatel ndication shall be broadcast as afull refresh. That is, the Conference and Application
Rosters shall be transmitted in full to al nodes. In the case that a modification had been made to the
roster which did not involve the addition of new nodes, the Top GCC Provider may choose to send
the update either as a full refresh, or as a refresh to the list of Node Records, and/or the list of
Application Records for some or all sets of Peer Application Protocol Entities, and/or the
Application Capabilities List for some or all Application Protocol Sessions.

On receipt of a RosterUpdatel ndication on the GCC-Broadcast-Channel, each GCC Provider shall
generate a GCC-Conference-Roster-Report indication and issue it to the Control GCCSAP if the
received PDU indicated any change to the Conference Roster. If the received PDU had indicated a
change to some or al of the Application Roster, the GCC Provider shall generate a series of
GCC-Application-Roster-Report indications and issue them to the GCCSAP associated with each
enrolled Application Protocol Entity corresponding to an Application Protocol Session for which an
Application Roster update has been received in the PDU. It may also issue GCC-Application-
Roster-Report indications to other GCCSAPs, although the need to do so is considered a local
matter beyond the scope of this Recommendation. Only that portion of the Conference Application
Roster associated with the Session Key for that Application Protocol Entity must be included in the
corresponding primitive. The GCC Provider may choose to include portions of the roster
corresponding to other Session Keys, although the need to do this is considered a local matter
beyond the scope of this Recommendation. In the case of an Application Protocol Entity enrolled
inactively with no Session ID, the GCC Provider shall issue a GCC-Application-Roster-Report
indication to the corresponding GCCSAP for portions of the roster corresponding to any
Application Protocol Session with the same base Application Protocol as the Application Protocol
Entity. The GCC Provider shall also issue a GCC-Application-Roster-Report indication to the
Control GCCSAP, including Application Roster updates for all sets of Peer Application Protocol
Entities which have been indicated as changed by the received PDU.

8.3.27 Nodesleaving a conference

On receiving an MCS-Detach-User indication, MCU nodes which have nodes below them in the
connection hierarchy shall check the User ID indicated and determine if it corresponds to the Node
ID of a node directly below it in the connection hierarchy. If so, it shal remove al entries
corresponding to this node, as well as any nodes known to be connected below that node, from its
subset of the Conference and Application Rosters. It shall then re-compute the Application
Capabilities Lists for all sets of Peer Application Protocol Entities in the manner described in 8.3.4.
Once the roster subset has been fully updated to reflect the leaving node, that GCC Provider shall
follow the procedure described in 8.3.2.5 to propagate this update to the other nodes in the
conference.

At a node which has disconnected from a conference (via either disconnection, termination of the
conference, or gection from the conference), the GCC Provider shall generate a GCC-Permission-

134 ITU-T Rec. T.124 (01/2007)

To-Enrall indication which revokes permission to enroll in the corresponding conference. It shall
issue thisto all non-Control GCCSAPs.

8.3.28 Anexampleof aroster update

Figure 8-5 shows an example of a GCC-Application-Enroll request issued during a conference
causing an update of the Conference Application Roster. In this example, the node is in the third
layer of the connection hierarchy. It issues the update indication to the next higher node which then
formats and sends an update indication to the next higher node, which in this example, is the top
node in the hierarchy. The top node assembles the full Application Roster and broadcasts the
portions associated with the updated Application Protocol Session to al nodes in the conference,
resulting in GCC-Application-Report primitives being issued at al nodes to the Node Controller,
and if present, the Peer Application Protocol Entities.

ITU-T Rec. T.124 (01/2007) 135

Updating Node Next Higher Node Top Node

Client GCC MCS MCS GCC MCS MCS Top GCC Node
Application Provider ~ Provider Provider =~ Provider Provider Provider ~ Provider Controller
GCC-Application-Enroll.request
.
MCS.-Send-Data.request
RosterUpdateIndication
——=—=D
GCC-Application-Enroll.confirm MCS-Send-Data.indication
: MCS:—Send-Data.rqquest
>
: RosterUpdateIndication
S >
E MCS-Send-Data.indication
! >
All Nodes

Node Controller GCC MCS)

and Client App. Provider ~ Provider MCS-Unlfgrm-Send-Data.request
: : RosterUpdateIndication
s <

MCS-Unif(Srm-Send-Dat:a.indication MCS-Uniform-Send-Data.indication
GCC-Application-Roster-Report.indication GCC-Application-Roster-Report.indication
< : : >

T.124(01-07)_F8-05

Figure 8-5— An example of updating the Application Roster

136 ITU-T Rec. T.124 (01/2007)

8.3.3 Scalable Roster Protocol

The Scalable Roster Protocol was introduced to support various levels of scalability within a
conference. The protocol relies on the use of Roster deltas instead of Full Roster Refreshes (which
the Original Roster Protocol relied on) to exchange the most dynamically changing roster
information. The protocol aso relies on the use of Node Categories. The protocol specifies a
markedly different behaviour depending on a node's assigned Node Category. The subclauses below
describe the Scalable Roster protocol in detail.

8.3.3.1 Overview

Both the Conference and Application Rosters are communicated among nodes using the same set of
PDUs. The RosterUpdatelndication PDU is used to send complete or partial roster information to
other nodes in the conference. In addition, the RosterRefreshRequest PDU is used to make requests
for afull refresh of a Conference and/or Application roster from a Parent node.

When each node (other than the top node) first announces its roster information upon joining a
conference, the node sends a RosterUpdatel ndication to the node directly above it in the hierarchy.
This is the case for all three Node Categories. Subsequent updates to any portion of either the
Conference or Application Roster information are announced by reissuing a RosterUpdatel ndication
containing the new information.

When a node updates its portion of the roster (or announces it for the first time), that information is
propagated from node-to-node up the connection hierarchy until it reaches the Top GCC Provider.
The Top Provider is responsible for forming the full Conference and Application rosters and then
distributing deltas of the rosters to all nodes in the conference. Whether or not anode is added to the
roster depends on the Node Category of the node joining the conference. For instance, Conventional
nodes will always be added to the roster while Anonymous nodes are never added. Counted nodes
are only added to rosters maintained by Conventional nodes.

If the roster information propagating up the connection hierarchy is associated with a Conventional
node, each intermediate node (MCU) is responsible for forming a subset of the full Conference and
Application Rosters by storing this node's roster information. The Conference Roster is a subset that
includes Node Records for the receiving node and al other Conventional nodes below it in the
connection hierarchy. The Application Roster includes a separate list of Application Records for
each Application Protocol Session in existence (at a Conventional Node) at or below the node that
receives the roster update. It also includes the Application Capabilities List for these sessions. On
receiving a RosterUpdatel ndication from a Conventional node below, an intermediate node makes
the appropriate changes to its subset of its rosters, then passes the roster update up to the next higher
node by issuing a RosterUpdatelndication. Note that regardiess of Node Category, the
RosterUpdatelndication is always forwarded. The only difference here is that Counted and
Anonymous nodes are not maintained in the roster subsets held at intermediate nodes.

The primary reason for maintaining subsets of roster information at intermediate nodes is to
maintain the collapsed set of capabilities. Since Counted and Anonymous nodes do not affect
capabilities, there is no need to maintain their records in the roster subsets. If an update from a
lower Conventional node included a change that caused the Application Capabilities Lists for at
least one Application Protocol Session to have to be recomputed, the new roster information for the
roster subset can only be generated if the individual Application Capabilities Lists for each
Conventional node directly below it in the connection hierarchy is known (to alow the collapse
rules to be reapplied with the new updated information). The GCC Provider at each node shall
maintain thisinformation locally.

When a roster update associated with a Conventional node reaches the Top GCC Provider, it shall
then broadcast the new roster information to all nodes in the conference (including Counted and
Anonymous nodes). This is done by broadcasting only the delta information in a

ITU-T Rec. T.124 (01/2007) 137

RosterUpdatelndication PDU to al nodes. If the roster update information that reaches the Top
GCC Provider is associated with a Counted node, a delta update is broadcasted to both the
Conventional nodes participating in the conference and to the joining Counted node that initiated
the original roster update. No other Counted or Anonymous nodes will receive aroster update when
this occurs. Anonymous node updates received at the Top GCC Provider do not cause an update to
be broadcasted. Instead, the local Top GCC Provider may maintain a separate list of Anonymous
nodes that are currently listening in (or have listened in) on the conference for informational or
statistical purposes (thisis up to the local implementation).

Roster information sent using the RosterUpdatel ndication PDU may be sent in one of three ways.
The roster may be sent as a refresh of the full Conference and Application Rosters, replacing all
existing roster entries. Alternatively, portions of the roster may be sent so that the Conference
Roster and/or portions of the Application Roster associated with one or more Session Keys may be
refreshed. In this case, all entries in the transmitted portion of the roster are replaced, but portions
that are not sent are left unchanged. Finally, changes to portions of the roster may be sent as updates
so that only those particular elements of the roster (e.g., individual Application Records) which
have been added, modified, or removed are sent and all other entries are left unchanged.

Since only delta RosterUpdatel ndication PDUs are ever broadcasted from the Top Provider, the
burden of assimilating a complete Conference or Application Roster is placed on the joining node
and its Parent node. To do this, the joining node forwards a RosterRefreshRequest PDU to its Parent
node requesting a Full Roster Refresh. The point at which this request is issued depends on the
joining node's Node Category. For Conventional and Counted nodes, this request is issued after it
receives a roster update from the Top Provider for itself (which ensures that its presence in the
conference is known). For Anonymous nodes, the request can be made immediately following the
reception of its Parent node's User ID.

After the RosterRefreshRequest PDU is received by the Parent node, it must either process the
request (if it has access to the requested rosters) or it must forward the request up to the next node in
the connection hierarchy. When a node is reached that contains the requested information, that node
directs a RosterUpdatelndication containing a Full Roster Refresh directly to the requesting node.
Note that the response to a RosterRefreshRequest will look different depending on the Node
Category to which the requesting node belongs. For instance, if a Conventional node initiated the
request, a full refresh which contains both Conventional and Counted nodes must be delivered.
Therefore, a Conventional Parent node must be reached before the request can be processed
(because only Conventional nodes maintain alist of Counted nodes). If the requesting node is either
Anonymous or Counted, the request can be handled by the first node that contains the Conventional
node roster.

It is necessary for joining nodes to buffer incoming RosterUpdatel ndications received from the Top
GCC Provider prior to receiving the response from their initial RosterRefreshRequest. This is
necessary to ensure that no updates get lost which guarantee the synchronization of all Rosters in
the conference. All RosterUpdatelndications include an instance number that is sequentially
incremented every time the Top Provider detects that a roster changed. This roster instance number
Is used to determine the order that RosterUpdatel ndications should be processed at a joining node.
This can be especially complicated for Conventional nodes that are participating in a conference
which can include both Conventional and Counted nodes. This is because RosterUpdatel ndications
will be received on both the GCC-Conventional-Broadcast-Channel and the GCC-Counted-
Broadcast-Channel. It is up to the Conventional node to process the RosterUpdatel ndications in the
correct order based on its prior knowledge that the roster instance numbers are incremented
sequentially.

8.3.3.2 Nodesentering a conference

When a node is joined to a conference, either via a conference creation, join, or invitation, a GCC
Provider shall issue a GCC-Application-Permission-To-Enroll indication to the GCCSAP for all

138 ITU-T Rec. T.124 (01/2007)

Application Protocol Entities (APEs) that have locally indicated their presence to the GCC
Provider. In the case that a GCC Provider becomes aware of an additional Application Protocol
Entity while it is aready joined to a conference, the GCC Provider shal issue a
GCC-Application-Permission-To-Enroll indication to the corresponding GCCSAP to indicate the
existence of this conference. The Application Protocol Entity is informed of its Node Category
through the GCC-Application-Permission-To-Enroll.

Before taking any further action, the GCC Provider shall wait until it has received a
GCC-Conference-Announce-Presence request from the Control GCCSAP as well as a
GCC-Application-Enroll request from all Application Protocol Entities which have been sent
GCC-Application-Permission-To-Enroll indications. Some of these enroll requests may indicate
that that Application Protocol Entity does not intend to enroll (the enroll/un-enroll flag is set to
un-enroll). For each received GCC-Application-Enroll request with the enroll flag set, the
information provided in the primitive for that Application Protocol Entity is added to the Local
Application Roster.

The GCC Provider shall also assign a locally allocated Entity ID to each enrolled Application
Protocol Entity. This shall be used by the GCC Provider as an identifier of each corresponding
Application Protocol Entity in the RosterUpdatel ndication PDU. The assigned Application Protocol
Entity ID is aso included in the GCC-Application-Enroll confirm primitive that is returned to each
enrolling Application Protocol Entity along with the Node ID of the local node. The Entity ID is a
16-bit integer value that is to be unique among all Application Protocol Entities enrolled at a node.
If an Application Protocol Entity un-enrolls, the value of its Entity ID shall not be re-used unless all
other values not assigned to an Application Protocol Entity at the time of the un-enroll have been
assigned.

The GCC Provider shall examine the Conducting Operation Capable Flag of each enrolled
Application Protocol Entity with the Active/lnactive flag set to Active (inactive Application
Protocol Entities are assumed not to be capable of conducting operation). If there is more than one
such enrolled Application Protocol Entity with this flag set, the GCC Provider shall select one of
them for which to set this flag in the Application Roster information. This information is to be sent
in the RosterUpdatelndication PDU. The rule for which of these to select is a local matter not
specified in this Recommendation. A typical rule may be to select the first such Application
Protocol Entity that enrolls.

Depending on a node's Node Category, the local GCC Provider must determine the proper course of
action to take after receiving the GCC-Conference-Announce-Presence request from the Control
GCCSAP and a GCC-Application-Enroll request from all Application Protocol Entities. Since only
Conventional nodes are alowed to create application sessions, GCC providers at Counted and
Anonymous nodes must hold back any RosterUpdatelndication information associated with
non-existing APE sessions until a RosterUpdatelndication PDU is received from a node above. The
above node natifies that the session being enrolled with actually exists. The local GCC Providers at
Counted and Anonymous nodes can also use the Application Protocol Keys received in the initial
enrolments to determine local interest in incoming RosterUpdatel ndications. For instance, any time
alocal GCC Provider isinformed of a new session through a RosterUpdatel ndication received from
either the Top Provider or its Parent node, it must decide which APEs are interested in the
occurrence. The local provider uses the Application Protocol Key associated with the new session
to decide which APEs to send a Roster Update Indication to. Detailed procedures are described
below for each Node Category.

A GCC Provider a a Conventional node that is not the Top GCC Provider shall send a
RosterUpdatel ndication to the GCC Provider directly above it in the connection hierarchy upon
receiving the GCC-Conference-Announce-Presence request from the Control GCCSAP and a
GCC-Application-Enroll request from all Application Protocol Entities. This is done by issuing an
MCS-Send-Data request specifying the Node ID of the destination node as the Channel ID,

ITU-T Rec. T.124 (01/2007) 139

specifying High data priority, and including the PDU in the Data field. The Node ID of the node
directly above in the connection hierarchy is determined at the time of connection to the conference
from either the ConferenceCreateResponse, ConferenceJoinResponse, or Conferencel nviteRequest
PDUs, depending on how the conference was joined. The value of the Node ID of the above node
shall also be included in the conference roster portion of the PDU as the Superior Node parameter.
The content of the RosterUpdatelndication PDU is shown in Table 8-35. In this case, the roster is
sent as a full refresh, including the local Node Record, as well as the Application Records for al
enrolled Application Protocol Entities and the Application Capabilities Lists for all Application
Protocol Sessions corresponding to enrolled Application Protocol Entities. If there had been more
than one Application Protocol Entity locally enrolled for a given Application Protocol Session, the
GCC Provider shall perform a collapse of the Application Capabilities List among the Peer
Application Protocol Entities. This would produce the Application Capabilities List that is to be
included in the RosterUpdatel ndication PDU for that Application Protocol Session. This collapse
shall be done by the procedure described in 8.3.4.

A GCC Provider at a Counted node shal send a RosterUpdatelndication to the GCC Provider
directly above it in the connection hierarchy upon receiving the GCC-Conference-Announce-
Presence request from the Control GCCSAP and a GCC-Application-Enroll request from all
Application Protocol Entities. This is done by issuing an MCS-Send-Data request specifying the
Node ID of the destination node as the Channel 1D, specifying High data priority, and including the
PDU in the Data field. The value of the Node ID of the above node shall again be included in the
conference roster portion of the PDU as the Superior Node parameter. In this case, only the local
Node Record is sent. The Application Records are held back until the local GCC Provider receives
a RosterUpdatelndication from an above node informing it that the localy enrolled sessions
actually exist.

A GCC Provider at an Anonymous node shall send a RosterUpdatel ndication to the GCC Provider
directly above it in the connection hierarchy upon receiving the GCC-Conference-Announce-
Presence request from the Control GCCSAP and a GCC-Application-Enroll request from all
Application Protocol Entities. This is done by issuing an MCS-Send-Data request specifying the
Node ID of the destination node as the Channel 1D, specifying High data priority, and including the
PDU in the Data field. The value of the Node ID of the above node shall again be included in the
conference roster portion of the PDU as the Superior Node parameter. Again, only the local Node
Record is sent. Note that this RosterUpdatelndication is used only for informational purposes and
does not affect the Conference Roster. An Anonymous node will never send a
RosterUpdatel ndication that includes roster information associated with an Application Protocol
Entity. An Anonymous node should aso never send more than a single RosterUpdatel ndication.

A node that is the Top GCC Provider and just entered a conference, and that received a
GCC-Conference-Announce-Presence request, shall include the information contained in its
Conference Roster database. But the node may wait until it has received any
RosterUpdatel ndication PDUs from at least one other node in the conference before transmitting
any PDUs. If an indication is received from a Conventional node, it shall update its Conference and
Application Roster database, then broadcast back out the roster information associated with the
update indication by sending a RosterUpdatel ndication to all nodes in the conference. This is done
by issuing an MCS-Send-Data request, specifying the GCC-Conventional-Broadcast-Channel as the
Channel 1D, specifying High data priority, and including the PDU in the Data field. Updates sent
from the Top GCC Provider to every node in the conference because of a newly joining node are
never sent as afull refresh, which holds down the network traffic incurred by adding new nodesto a
conference.

8.3.3.3 Enrolling Application Protocol Entities

On receiving a GCC-Application-Enroll request primitive, a GCC Provider shall first determine if
there is already an existing entry in the Local Application Roster for the specified conference

140 ITU-T Rec. T.124 (01/2007)

associated with the GCCSAP of the requester. If not, and if the Enroll/Un-enroll flag in the request
is set to Enroll, anew entry is created in the Local Application Roster that contains the information
specified in the request primitive. In this case, the GCC Provider shall aso assign an Entity ID to
the newly enrolled Application Protocol Entity as described in 8.3.3.2. If the Enroll/Un-enroll flag
had been set to Un-enroll, the request is confirmed immediately by generating a GCC-Application-
Enroll confirm and issuing it to the GCCSAP of the requester. In this case, no further action is
taken.

If the entry in the Local Application Roster aready exists and the Enroll/Un-enroll flag is set to
Enroll, the contents of the existing entry are modified to reflect the new values specified. If the
Enroll/Un-enroll flag had been set to Un-enroll, the GCC Provider shall remove the corresponding
entry from the Local Application Roster.

If the GCC Provider is not the Top GCC Provider for the specified conference and is a
Conventional node, the GCC Provider shall then send its new Loca Application Roster to the node
directly above it in the connection hierarchy, using a RosterUpdatelndication PDU. The GCC
Provider shall do this by issuing an MCS-Send-Data request specifying the Node ID of the higher
node as the Channel 1D, specifying High data priority, and including the selected PDU in the Data
field. The Node ID of the GCC Provider directly above it in the connection hierarchy is determined
a the time of connection to the conference from either the ConferenceCreateResponse,
ConferenceJoinResponse, or ConferencelnviteRequest PDUs, depending on how the conference
was joined. The content of the RosterUpdatel ndication PDU is shown in Table 8-35.

If the GCC Provider is a Counted node, the procedure is a bit more complicated. Before sending its
new Local Application Roster to the node directly above it in the connection hierarchy, the local
GCC Provider must determine if the sessions associated with each enroll request actually exist.
Only the enroll requests that correspond to sessions that exist will be forwarded. This is due to the
requirement that Counted nodes are not allowed to create sessions. The local GCC Provider is made
aware of new sessions in one of two ways: either through a RosterUpdatelndication PDU received
from the Top Provider or through a response to a RosterRefreshRequest received from a Parent
node. Once it has been determined which enroll requests are associated with existing sessions, the
GCC Provider will send a RosterUpdatelndication PDU containing the appropriate Application
Records to the node directly above it in the connection hierarchy. The GCC Provider shall do this
by issuing an MCS-Send-Data request specifying the Node ID of the higher node as the Channel
ID, specifying High data priority, and including the selected PDU in the Data field.
RosterUpdatel ndications sent from a Counted node should never include capability information
since a Counted node cannot affect the collapsed capability list. Each APE must make a decision on
whether or not it can support the established capabilities within a conference.

If the GCC Provider is an Anonymous node, the local GCC Provider simply stores the information
in its Local Application Roster and uses it to determine the Application Protocol Sessions that a
particular GCC Service Access Point (SAP) isinterested in. No APE information will ever be sent
from an Anonymous node inside a RosterUpdatelndication. It is important that the local GCC
Provider maintains this information base so that it can relay all information about new or changing
Application Rosters to the appropriate SAPs. This guarantees that al the APEs running on an
Anonymous node have access to all the information necessary to join and listen in on a particular
session.

In general, if the enroll had occurred prior to the initial transmission of a RosterUpdatel ndication
PDU, then the new or atered Record is included in the initial roster information, sent as a full
refresh as described in 8.3.3.2. If an Application Protocol Entity un-enrolled prior to the initial
transmission, its record entry is removed from the roster and is never included in any transmitted
PDU.

If the enroll occurred after the initial transmission of a RosterUpdatelndication PDU, the new,
modified, or removed Record is treated as an update to the existing roster. In this case, the GCC

ITU-T Rec. T.124 (01/2007) 141

Provider may either choose to resend its portion of the Conference and Application Rosters in their
entirety, or the GCC Provider may send the information as an update — only sending information
regarding the record that has changed. It is preferred that the latter method be used in order to
minimize the size of the PDU and, therefore, its transmission time. If more than one change has
been made (more than one GCC-Application-Enroll request had been received) since the last
update, these changes may be concatenated into a single PDU. For a given Application Protocol
Session, if only the Application Record information has changed since the last instance of that
Application Protocol Session, the Application Capabilities List need not be included in the
RosterUpdatelndication PDU, only the modified Application Record. For a given Application
Protocol Session at a Conventional node, the Application Capabilities List requires updating if any
of the following occur:

. Its contents from an already enrolled Application Protocol Entity had been changed.

. A newly-enrolled Application Protocol Entity is part of the Application Protocol Session
for which Peer Application Protocol Entities had already been enrolled at the local node or
at nodes below the local node in the connection hierarchy.

. A node is un-enrolled in the case that there are other Peer Application Protocol Entities that
remain enrolled at the local node or at nodes below the local node in the connection
hierarchy.

In the case where there is more than one Peer Application Protocol Entity either after an enroll or
before an un-enroll, the GCC Provider at a Conventional node shall re-create the collapsed
Application Capabilities List for that Application Protocol Session prior to including it in the
RosterUpdatel ndication PDU. This collapse shall be done by the procedure described in 8.3.4.

If the Active/lnactive flag for the enrolling Application Protocol Entity is set to Active before
sending the RosterUpdatelndication PDU, the GCC Provider shall examine the Conducting
Operation Capable Flag. If this flag is set, the GCC Provider shall ensure that only one Peer
Application Protocol Entity from this node for each Application Protocol Session is included in the
Application Roster with this flag set. If no such Peer Application Protocol Entity has been selected
in the Application Roster so far, the newly enrolling Application Protocol Entity may be included in
the transmitted RosterUpdatelndication PDU with this flag set. If there has already been a Peer
Application Protocol Entity at this node, which has been included in the Application Roster with
thisflag set, the GCC Provider may either:

. Include the newly enrolling Application Protocol Entity in the RosterUpdatel ndication
PDU without this flag set.

. Include the newly enrolling Application Protocol Entity with this flag set, and the previous
designated conducting-capable Application Protocol Entity with this flag now set to
FALSE.

The rule for selecting which Peer Application Protocol Entity to include in the Application Roster
with this flag set is alocal matter beyond the scope of this Recommendation. If the Active/lnactive
flag for the enrolling Application Protocol Entity is set to Inactive, the Conducting Operation
Capable Flag indicated in the request primitive shall be ignored, and the corresponding field in the
updated roster shall be set to FALSE. The Conducting Operation Capable Flag should aways be set
to FALSE for APEs residing on Conducted and Anonymous nodes.

In the case of the Top GCC Provider, the successful change of an entry in the Local Application
Roster results in a direct modification to the Conference Application Roster and the associated
procedure for notifying all other nodes in the conference of the new Conference Application Roster
as described in 8.3.3.6.

In all of the successful cases, the GCC Provider shall generate a GCC-Application-Enroll confirm
primitive indicating a successful result. The GCC Provider shall issue it to the GCCSAP of the
requester.

142 ITU-T Rec. T.124 (01/2007)

8.3.34 Updating a Conference Roster Entry

If a GCC-Conference-Announce-Presence request is received after having aready transmitted an
initial roster, the new Node Record contained in this request shall be treated as an update to the
Conference Roster. As in the case of an updated Application Record, the GCC Provider shall then
send its new Node Record to the node directly above it in the connection hierarchy by using a
RosterUpdatelndication PDU. The GCC Provider shall do this by issuing an MCS-Send-Data
request specifying the Node ID of the higher node as the Channel 1D, specifying High data priority,
and including the selected PDU in the Data field. The content of the RosterUpdatelndication PDU is
shown in Table 8-35. Note that a GCC-Conference-Announce-Presence request should never be
received after having already transmitted an initial roster from Anonymous nodes.

If a GCC Provider receives an MCS-Detach-User indication for which the User ID is that of a
locally-enrolled Application Protocol Entity, the GCC Provider shall update the roster to remove
that Application Protocol Entity and it shall also issue a GCC-Permission-To-Enroll indication
primitive to the GCCSAP corresponding to that Application Protocol Entity.

8.3.3.5 Propagation of Roster Updatesto the Top GCC Provider

On recelving a RosterUpdatelndication PDU from a node directly below in the connection
hierarchy, a GCC Provider shall first update its subset of the Conference and Application Rosters.
Each node in the conference shall maintain this subset of the Conference and Application Rosters
that corresponds to that node as well as all nodes below it in the connection hierarchy. This subset
should never include either Node Records or Application Records associated with Anonymous
nodes. Each Node Record contains aflag that indicates a node's Node Category.

For each Application Protocol Entity that has been enrolled at any of these nodes, a list of
Application Records, including the Node ID of the node to which that record corresponds and a
partially-collapsed Application Capabilities List, are maintained. This is the Application
Capabilities List that corresponds to the outcome of the set of rules to be applied to the Application
Capabilities Lists of the Nodes directly below this node in the connection hierarchy (which are
themselves partially collapsed).

The procedure that the GCC Provider shall use to update its roster subset depends on the update
method used in the received RosterUpdatel ndication. If the update was indicated to be afull refresh
(as indicated by the Full-Refresh flag in the PDU), the following procedure is used. First, all Node
Records and Application Records corresponding to the node from which the PDU was received, or
nodes which were previously known to be below that node in the connection hierarchy are removed
from the local subset of the Conference and Application Rosters. All Conference and Application
Records listed in the PDU are then added to the roster. The entire Application Capabilities List
corresponding to the requesting node below, which may have been stored at this node, is removed.
The Application Capabilities List specified in the PDU replaces it. For all Application Protocol
Entities, either currently known to be enrolled at or below the current node, as well as any new
Application Protocol Entities indicated in the newly-received PDU (including ones not specified in
this PDU), a new collapsed Application Capabilities List shall be computed from each of the
Application Capabilities Lists from the nodes directly below. This collapse shall be done by the
procedure described in 8.3.4.

In the case that the RosterUpdatelndication did not indicate a full refresh, a dlightly different
procedure is followed. First, if the Node Record information was indicated as changed and the
change was done as a refresh of the list of Node Records, all Node Records corresponding to the
node from which the PDU was received (or nodes which were previously known to be below that
node in the connection hierarchy) are removed from the local subset of the Conference Roster. Al
Node Records listed in the PDU are then added to the roster. If the change was done as a series of
updates to Node Records, any records indicated as added are added to the roster subset; any records
indicated as replaced are used to replace the existing records; and any records indicated for removal

ITU-T Rec. T.124 (01/2007) 143

are removed. An attempt to change a record which already exists, or to modify or remove a record
which does not exist, is ignored. In any case, for any nodes which were previoudly in the roster
subset and have been removed, all Application Records corresponding to those nodes are aso
removed (regardless of whether the corresponding update information was included in the
Application Roster portion of the PDU). If any Application Record information was indicated as
changed, for each Application Protocol Session, a similar procedure is followed. For each
Application Protocol Session, if the change was done as a refresh, all Application Records
corresponding to the node from which the PDU was received (or nodes which were previously
known to be below that node in the connection hierarchy) are removed from the local subset of the
Application Roster. All Application Records listed in the PDU are then added to the roster. It is
possible that for a given Application Protocol Session, it is indicated that there are no nodes which
have that Application Protocol Entity enrolled. If the change was done as a series of updates to
Application Records, any records indicated as added are added to the roster subset; any records
indicated as replaced are used to replace the existing record; and any records indicated for removal
are removed. An attempt to change a record that already exists, or to modify or remove a record
which does not exigt, isignored. For Application Capabilities List, the same procedure is followed
as described for the full refresh case. In this case, however, the new Application Capabilities Lists
are only recomputed for sets of Peer Application Protocol Entities that have indicated a change.

In either of the above cases, the updated information for the Conference Roster and for each
Application Protocol Session in the Application Roster includes an instance number. If the
conference information has changed due to the received update, the instance number for the
conference information shall be incremented by one modulo 2'°. Similarly, for each Application
Protocol Session for which any information was modified (either Application Records or the
Application Capabilities List), this instance number shall be incremented by one modulo 2. If
multiple changes are made to be forwarded to other nodes as a single update, these changes may be
counted as a single increment to the instance number. The instance numbers are maintained locally
and correspond to the local subset of the roster. That is, that node plus the nodes located below it in
the connection hierarchy. In the case of the Top GCC Provider, the instance numbers apply to the
Conference and Application Rosters which are broadcast to all nodes and reported in the
GCC-Application-Roster-Report primitive. The conference information aso includes a flag
indicating whether nodes have been added and/or removed since the last instance. Similarly, for
each Application Protocol Session, aflag indicates whether nodes have been added and/or removed
since the last instance of the information for that set of Application Protocol Entities. In this case,
nodes being added or removed may indicate that an Application Protocol Entity has been enrolled
or un-enrolled at a node, respectively, and not necessarily that the entire node has been added or
removed from the conference.

Once the Conference and/or Application Roster information has been recomputed, a GCC Provider,
which is not the Top GCC Provider, shall generate a RosterUpdatel ndication PDU that shall then be
sent to the GCC Provider directly above it in the connection hierarchy. The format of the
information contained in this PDU may be either a full refresh, a refresh of some sets of Peer
Application Protocol Entities and/or the conference information, or individual updates. The format
selection for sending the update information is left to the GCC Provider. It is preferred that the GCC
Provider select a format that minimizes the size of the PDU and, therefore, minimizes transmission
time used.

8.3.3.6 Distribution of the Conference and Application Rosters

When the Top GCC Provider has received a RosterUpdatelndication that includes either
Conventional or Counted node roster information, it shall modify the Conference and Application
Roster information which it maintains (which, in this case, are the full Conference and Application
Rosters rather than a subset) in a manner identical to that described for an intermediate MCU
updating its subset of the roster. Once the complete roster has been updated, the Top GCC Provider

144 ITU-T Rec. T.124 (01/2007)

shall broadcast the updated roster information back to either every node in the conference or to the
Conventional nodes participating in the conference. The choice depends on the roster information
that was affected due to the received RosterUpdatelndication. Any changes to either the list of
Conventional Node Records, the Application Roster due to an APE associated with a Conventional
node, or to a Capability list, are transmitted to every node in the conference. This is done by issuing
an MCS-Send-Data request specifying the GCC-Conventional-Broadcast-Channel as the
Channel-1D, specifying High data priority, and including the PDU in the Data field. Changes to
either the list of Counted Node Records or to an Application Roster due to an APE associated with a
Counted node are transmitted only to Conventional nodes. This is done by issuing an MCS-Send-
Data request specifying the GCC-Counted-Broadcast-Channel as the Channel-1D, specifying High
data priority, and including the PDU in the Data field.

The RosterUpdatelndication broadcasted from the Top GCC Provider includes only the specific
roster information that changed due to the original RosterUpdatelndication received. This could
include any or all of the following: one or more Node Records, one or more Application Records,
and any list of Application Capabilities that may have been altered due to processing the received
RosterUpdatel ndication. This should not contain information that has already been broadcasted to
the rest of the conference and this should not be afull refresh.

On receiving a RosterUpdatel ndication on either the GCC-Conventional-Broadcast-Channel or the
GCC-Counted-Broadcast-Channel, each GCC Provider shall generate a GCC-Conference-Roster-
Report indication and issue it to the Control GCCSAP if the received PDU indicated any change to
the Conference Roster. If the received PDU had indicated a change to some or all of the Application
Roster, the GCC Provider shall generate a series of GCC-Application-Roster-Report indications.
The GCC Provider shall then issue them to the GCCSAP associated with each enrolled Application
Protocol Entity that corresponds to an Application Protocol Session for which an Application
Roster update has been received in the PDU. The GCC Provider may also issue GCC-Application-
Roster-Report indications to other GCCSAPs, although the need to do so is considered a local
matter beyond the scope of this Recommendation. Only that portion of the Conference Application
Roster associated with the Session Key for that Application Protocol Entity must be included in the
corresponding primitive. The GCC Provider may choose to include portions of the roster
corresponding to other Session Keys, although the need to do this is considered a local matter
beyond the scope of this Recommendation. In the case of an Application Protocol Entity enrolled
inactively with no Session ID, the GCC Provider shall issue a GCC-Application-Roster-Report
indication to the corresponding GCCSAP for portions of the roster corresponding to any
Application Protocol Session with the same base Application Protocol as the Application Protocol
Entity. The GCC Provider shall also issue a GCC-Application-Roster-Report indication to the
Control GCCSAP, including Application Roster updates for all sets of Peer Application Protocol
Entities which have been indicated as changed by the received PDU.

8.3.3.7 Nodesleaving a conference

On receiving an MCS-Detach-User indication, MCU nodes that have nodes below them in the
connection hierarchy shall check the User ID indicated and determine if it corresponds to the Node
ID of a node directly below it in the connection hierarchy. If so, the MCU node shall remove all
entries corresponding to this node, as well as any nodes known to be connected below that node,
from its subset of the Conference and Application Rosters. It shall then recompute the Application
Capabilities Lists for all sets of Peer Application Protocol Entities in the manner described in 8.3.4.
Once the roster subset has been fully updated to reflect the leaving node, that GCC Provider shall
follow the procedure described in 8.3.3.6 to propagate this update to the other nodes in the
conference.

At a node which has disconnected from a conference (via either disconnection, termination of the
conference, or gection from the conference), the GCC Provider shall generate a GCC-Permission-

ITU-T Rec. T.124 (01/2007) 145

To-Enrall indication which revokes permission to enroll in the corresponding conference. The GCC
Provider shal issue thisto al non-Control GCCSAPs.

Node or Application records associated with Node IDs of Anonymous nodes should not appear in
any node's Conference or Application Roster and can therefore be ignored.

8.3.3.8 Acquiring a Full Roster Refresh from a Parent Node

At any time during a conference, a node may request a Full Roster Refresh from its Parent node by
making a RosterRefreshRequest to its Parent Node. A node does this by issuing an MCS-Send-Data
request specifying the Node ID of the Parent node as the Channel 1D, specifying High data priority,
and including the RosterRefreshRequest PDU in the Datafield.

Typically, a RosterRefreshRequest would be made under the following conditions: either the node
has just joined the conference and needs a Full Roster Refresh to synch up its Conference
Application Roster to other nodes in the conference, or a Roster Inquire was received by a GCC
Provider at an Anonymous node that is not maintaining a local copy of the Conference Application
Roster. In either case, after the RosterRefreshRequest PDU is received by the Parent node, it must
either process the request (if it has access to the requested rosters), or it must forward the request up
to the next node in the connection hierarchy using another RosterRefreshRequest.

When a node is reached that contains the requested information, that node directs a
RosterUpdatel ndication containing a Full Roster Refresh directly to the requesting node. A node
does this by issuing an MCS-Send-Data request that specifies the Node ID of the originating node
(contained in the RosterRefreshRequest) as the Channel ID, specifying High data priority, and
including the RosterUpdatel ndication PDU in the Data field.

As mentioned above, the RosterUpdatelndication PDU issued back to the node that made the
original RosterRefreshRequest will look different depending on the Node Category to which the
originating node belongs. For instance, if a Conventional node initiated the request, the roster
refresh will contain records for both Conventional and Counted nodes. Therefore, a Conventional
Parent node must be reached before the request can be processed (because only Conventional nodes
maintain a list of Counted nodes). If the requesting node is either Anonymous or Counted, the
request can be handled by the first node that contains the Conventional node roster. It is the
responsibility of the node processing the RosterRefreshRequest to separate out records that should
not be received by certain Node Categories.

The RosterRefreshRequest includes the following: a Node ID field which isfilled in with the Node
ID of the node initiating the request; a Node Category field which is filled in with Category of the
node initiating the request; a Boolean value specifying that a Full Roster refresh should be
delivered; a Boolean value specifying that the Conference Roster should be sent; a Session List that
includes alist of specific session rosters being requested; and an Application List that specifiesalist
of Application Protocols that a node wants to obtain information on. If the Full Refresh Boolean is
set to TRUE, then the sendConferenceRoster field, the sessionL.ist field and the applicationList field
are ignored. If the Full Refresh Boolean is set to FALSE, then these three fields define what
infformation should be delivered to the node that initiated the request. Therefore, a
RosterRefreshRequest can be issued that requests one or more specific Application Rosters, or for
just the Conference Roster, as well as a Full Roster Refresh. The process of handling a partial
request is identical to the process outlined above, except that only the requested information is
returned.

There are timing considerations that need to be addressed when a node attempts to join and
synchronize its Conference Application Roster with other nodes in the conference. It is possible for
a node to receive RosterUpdatel ndications before it has received its initial Full Roster refresh from
a Parent node. If these updates include a roster instance number that precedes the roster instance
number associated with the Full Roster Refresh, the update can be thrown away. If these instance
numbers are higher than the instance number associated with the Full Refresh, they need to be

146 ITU-T Rec. T.124 (01/2007)

processed. Therefore, it is necessary for a joining node to buffer any incoming
RosterUpdatel ndications received from the Top GCC Provider prior to receiving the response to its
initial RosterRefreshRequest. All RosterUpdatelndications include an instance number that is
sequentially incremented every time the Top Provider detects that a roster changed. This roster
instance number is used to determine the order that a RosterUpdatel ndication should be processed
at ajoining node. As discussed above, this can be especialy complicated for Conventional nodes
that are participating in a conference that can include both Conventional and Counted nodes. Thisis
because RosterUpdatelndications will be received on both the GCC-Conventional-Broadcast-
Channel and the GCC-Counted-Broadcast-Channel. It is the responsibility of the Conventional node
to process the RosterUpdatel ndications in the correct order based on prior knowledge that the roster
instance numbers are incremented sequentially.

8.3.39 Anexampleof aroster update

Figure 8-6 shows the roster-related protocol that occurs when a new Conventional Node joins a
conference. A single enrolling Client Application is shown running on the joining node. After the
GCC Provider receives a GCC-Announce-Presence-Request and a GCC-A pplication-Enroll request,
an update of the Conference Application Roster isissued to the Next Higher Node. In this example,
the joining node is in the third layer of the connection hierarchy. It issues the update indication to
the next higher node which then formats and sends an update indication to the next higher node,
which, in this example, is the top node in the hierarchy. The top node assembles the full Application
Roster and broadcasts the portions associated with the update to all nodes in the conference. This
results in a GCC-Conference-Report and a GCC-Application-Report primitive being issued at all
nodes in the conference, except the joining Conventional node. Instead, the joining node must
acquire the full roster from its Parent node by issuing a RosterRefreshRequest. After the response to
this request is received, a GCC-Conference-Report and a GCC-A pplication-Report primitive can be
issued at the joining node.

ITU-T Rec. T.124 (01/2007) 147

Joining Node Next Higher Node Top Node

Node Controller GCC MCS MCS GCC MCS MCS TopGCC Node
and Client App. Provider Provider Provider Provider Provider Provider Provider Controller

. .
GCC-Announce-Preserice.request

b
GCC-Application-Enroll.request
MCS-Send-Data.request
RosterUpdatel ndication
MCS-Send-Data.indication
GCC-Application-Enroll.confirm MCS-Send-Datarequest
RosterUpdatel ndication
MCS-Send-Data.indication
%
GCC-Conference-Roster-Report.indication
GCC-Application-Roster-Report.indication
: —>
MCS-Send-Data.request
RosterUpdatel ndication

MCS-Send-Data.indication
3
MCS-Send-Data.request

RosterRefreshRequest

MCS-Send-Data.indication

MCS-Send-Data request
<

RosterUpdatel ndication

MCS-Send-Data.indication
—

GCC-Conference-Roster- R‘eport.i ndication

—)
GCC-Application-Roster-Report.indication All Nodes
H : : Node Controller GCC MCS
! ' ' and Client App. Provider Provider MCS-Send-Data request

RosterUpdatel ndication

MCSS'end—Datainaication

: i

GCC-Conference-Roster-Report.indication
— ’

GCC-Application-Roster-Report.indication
— :

T.124(01-07)_F8-06

Figure 8-6 — Another example of updating the Application Roster

8.34 Callapsing Application CapabilitiesLists

Each GCC Provider is responsible for forming, for each Application Protocol Session, the collapsed
Application Capability List corresponding to the Conventional nodes below it in the connection
hierarchy, as well as any Peer Application Protocol Entities enrolled at the local node (if it is
Conventional). Since the nodes directly below in the connection hierarchy take care of collapsing
their own capabilities, the local GCC Provider need only be aware of the collapsed Application
Capability Lists from those nodes, rather than the Application Capability Lists from all lower nodes.
Given as input, these collapsed Application Capabilities Lists as well as the Application
Capabilities Lists from Peer Application Protocol Entities at the local node from the Local
Application Roster, the GCC Provider shall produce a collapsed Application Capabilities List by the
following procedure:

. For each capability item in each list, determine the class of the capability.

148 ITU-T Rec. T.124 (01/2007)

. For any class, the value of the count parameter for the entry in the collapsed Application
Capabilities List shall be set to the sum of the counts indicated in the corresponding entry
of each of the Application Capabilities Lists in the input set.

. For the Unsigned-minimum and Unsigned-maximum classes, the new entry should also
include the minimum or maximum value, respectively, of the values given for the
corresponding entry of each of the Application Capabilities Listsin the input set.

8.3.5 Application and conferenceroster inquiry

On receipt of a GCC-Application-Roster-Inquire request primitive, a GCC Provider which supports
this primitive may respond by generating a GCC-Application-Roster-Inquire confirm primitive and
issuing it to the GCCSAP of the requester. The content of the confirm primitive is generated from
the locally-maintained Conference Application Roster database and shall include only those entries
in the roster for which the Session Key specified in the request exactly matches the Session Key of
the entry over the length of the key given in the request.

On receipt of a GCC-Conference-Roster-Inquire request primitive, a GCC Provider which supports
this primitive shall respond by generating a GCC-Conference-Roster-Inquire confirm primitive and
issuing it to the GCCSAP of the requester. The content of the confirm primitive is generated from
the local Conference Roster database accounting for al nodes known to be in the conference.

A GCC Provider at an Anonymous node that receives a roster inquiry may not be maintaining a
local Conference Application Roster database since this is not an Anonymous node requirement.
These type of nodes can respond to the roster inquiry either by sending back afailed confirm to the
requesting GCCSAP or by sending a RosterRefreshRequest up to its Parent node to get the
requested roster information. The RosterRefreshRequest will eventualy result in a
RosterReportindication that includes the requested information. At this point, the GCC Provider
responds by generating a GCC-Application-Roster-Inquire confirm primitive and issues it to the
GCCSAP of the requester. Note that Conventional and Counted nodes are required to maintain a
local Conference Application Roster database, so roster inquiries at these nodes can be processed
immediately.

8.3.6 Remotely invoking an Application Protocol Entity

On receipt of a GCC-Application-Invoke request primitive via either the Control GCCSAP or an
ordinary GCCSAP, a GCC Provider which supports this primitive shall broadcast an
Applicationinvokel ndication PDU to all nodes in the specified conference. This is done by issuing
an MCS-Send-Data request or MCS-Uniform-Send-Data request specifying both the
GCC-Broadcast-Channel (to support older protocol nodes) and the GCC-Conventional-Broadcast
Channel as the Channel ID, specifying High data priority, and including the PDU in the Data field.
Alternatively, the GCC Provider may issue one or more MCS-Send-Data request specifying the
Node ID of one of the listed destination nodes as the Channel 1D, also specifying High data priority,
and including the PDU in the Data field. In this case, it may leave the Destination Node List
parameter in the PDU empty. The content of the Applicationinvokelndication PDU is shown if
Table 8-36. The GCC Provider shall then generate a GCC-Application-Invoke confirm primitive
indicating if the requested operation was successful and issue it to the GCCSAP of the requester.

Table 8-36 — Applicationl nvokel ndication GCCPDU

Content Source Sink
Application Protocol Entity List Request Indication
Destination Node List or NULL Request Destination GCC Providers

ITU-T Rec. T.124 (01/2007) 149

On receipt of an Applicationinvokelndication PDU, a GCC Provider which supports the
GCC-Application-Invoke primitive shall first determine if local node is on the list of destination
nodes. If thelist iseither NULL, or if the local Node ID is present in the list, the GCC Provider may
generate a GCC-Application-Invoke indication primitive and issue it to the Control GCCSAP. The
Invoking Node parameter isfilled in from the Sender User ID field in the received MCS-Send-Data
indication or MCS-Uniform-Send-Data indication. If the local node is not on the list of destination
nodes (if listed explicitly), no further action is taken.

8.4 The Application Registry

The Application Registry is an active database which resides at the Top GCC Provider for a
conference. Any MCU node shall support the full set of registry services which operate on this
database, while a terminal node may choose to support only those registry services required by
Application Protocols to be supported within that terminal.

When a conference is created, the registry database, located at the Top GCC Provider, shall be
initialized to a state in which all registry entries are empty and no registry entries are designated to
be monitored. This shall be done prior to the time that the Top GCC Provider joins its Node ID
Channel.

During operation of the registry within a conference, each non-empty registry entry contains the
following information:

. The Registry Key which identifies the entry.

. The type of information contained — either a Channel 1D, a Token ID, or a Parameter.

. The monitoring state — either monitoring enabled, or monitoring disabled.

. The value of the entry — the actual Channel ID, Token ID, or Parameter.

. The owner of the entry — either none, or the Node ID and Entity ID corresponding to the
owning Application Protocol Entity.

. For Parameter type entries only, the modification rights of the entry — either Owner,

Session, or Public.

Processing by the Top GCC Provider of multiple registry requests from a single node shall be
performed strictly in the order that the requests were received. The sequence of response PDUsto a
requesting node shall preserve the order of the received requests from that node.

At the requesting node, order shall also be preserved between the request primitives and the
corresponding transmitted PDUs as well as between the received PDUs and the corresponding
confirm primitives.

Only Conventional nodes are allowed to add, delete, or change an entry in the Registry database.
The Registry isread-only for all other Node Categories. Therefore, Anonymous and Counted nodes
that do not appear to be enrolled in the conference may still access the Registry database.

150 ITU-T Rec. T.124 (01/2007)

84.1 Registering achannel

On receipt of a GCC-Registry-Register-Channel request primitive, a GCC Provider a a
Conventional node shall send a RegistryRegisterChannel Request PDU to the Top GCC Provider by
issuing an MCS-Send-Data request specifying the Node ID Channel of the Top GCC Provider as
the Channdl 1D, specifying High data priority, and including the PDU in the Data field. The content
of the RegistryRegisterChannelRequest PDU is shown in Table 8-37. A GCC-Registry-Register-
Channel request made by either a Counted or Anonymous node will be ignored by the
GCC Provider.

Table 8-37 — RegistryRegister ChannelRequest GCCPDU

Content Source Sink
Entity ID Source GCC Provider Top GCC Provider
Key Request Top GCC Provider
Channel ID Request Top GCC Provider

On receipt of the RegistryRegisterChannelRequest PDU, the Top GCC Provider shall first verify
that the Sender User ID in the received MCS-Send-Data indication and the Entity ID included in the
PDU correspond exactly to the Node ID and Entity ID of an Application Protocol Entity at a
Conventional node currently in the Application Roster. If so, it shall attempt to register the channel
by creating an appropriate registry entry. First, it checks whether the registry entry corresponding to
the specified Key already exists in the registry database. If the registry entry does not exist, the Top
GCC Provider creates an entry for this Key and includes in the database for this entry the Node ID
asindicated by the Sender User ID in the received M CS-Send-Data indication along with the Entity
ID included in the PDU as the entry owner, the entry type being a Channel 1D, and the value being
the Channel ID specified in the PDU.

The Top GCC Provider then indicates that the channel has been properly registered by sending a
RegistryResponse PDU to the requesting node by issuing an MCS-Send-Data request specifying the
Node ID of the requester as the Channel ID, specifying High data priority, and including the PDU
in the Data field. The content of the RegistryResponse PDU is shown in Table 8-38. In the case of a
successful action, the Result parameter is specified as successful. The Modification Rights field is
not filled in (thisfield is for Parameter type entries only).

If the registry entry already existed, if the requester was invalid due to not appearing in the
Application Roster, if the requesting node was not a Conventional node, or if the registry entry
could not be created due to a limitation in the available resources, the registry is not modified and a
RegistryResponse PDU is returned as above, but with a negative Result indicating the reason for the
failure. In this case, the value of the entry prior to attempting to modify it is returned as the Registry
Item in the RegistryResponse PDU.

ITU-T Rec. T.124 (01/2007) 151

Table 8-38 — RegistryResponse GCCPDU

Content Sour ce Sink
Entity ID Top GCC Provider Destination GCC Provider
Primitive type (register-channel, assign-token, | Top GCC Provider Destination GCC Provider

set-parameter, retrieve-entry, delete-entry,
monitor-entry)

Key Top GCC Provider Confirm
Registry Item Top GCC Provider Confirm
Owner Top GCC Provider Confirm
Modification Rights (optional) Top GCC Provider Confirm
Result Top GCC Provider Confirm

In the case of a successful modification of an existing registry entry, the Top GCC Provider checks
to determine if the registry entry had been set to be monitored. If not, no further action is taken by
the Top GCC Provider. If the entry had been set to be monitored, the Top GCC Provider sends a
RegistryMonitorEntrylndication PDU to all nodes in the conference by issuing an MCS-Uniform-
Send-Data request specifying the GCC-Broadcast-Channel as the Channel ID, specifying High data
priority, and including the PDU in the Data field The content of the
RegistryMonitorEntrylndication PDU is shown in Table 8-44.

On receipt of a RegistryResponse PDU of this type, a GCC Provider shall generate a
GCC-Registry-Register-Channel confirm primitive indicating whether or not the request was
successful as indicated in the Result parameter of the RegistryResponse PDU and issue it on the
GCCSAP of the Application Protocol Entity indicated by the Entity ID. If the GCC Provider knows
of no currently enrolled Application Protocol Entity with the corresponding Entity ID, the
indication isignored and no further action is taken.

84.2 Assigning a Token

On receipt of a GCC-Registry-Assign-Token request primitive, a GCC Provider at a Conventional
node shall send a RegistryAssignTokenRequest PDU to the Top GCC Provider by issuing an
MCS-Send-Data request specifying the Node ID Channel of the Top GCC Provider as the Channel
ID, specifying High data priority, and including the PDU in the Data field. The content of the
RegistryAssignTokenRequest PDU is shown in Table 8-39. A GCC-Registry-Assign-Token request
made by either a Counted or Anonymous node will be ignored by the GCC Provider.

Table 8-39 — RegistryAssignTokenRequest GCCPDU

Content Source Sink
Entity ID Source GCC Provider Top GCC Provider
Key Request Top GCC Provider

On receipt of the RegistryAssignTokenRequest PDU, the Top GCC Provider shall first verify that
the Sender User ID in the received MCS-Send-Data indication and the Entity ID included in the
PDU correspond exactly to the Node ID and Entity ID of an Application Protocol Entity at a
Conventional node currently in the Application Roster. If so, it shall attempt to assign a token by
allocating a Token 1D and creating an appropriate registry entry. First, it checks whether the registry
entry corresponding to the specified Key already exists in the registry database. If the registry entry
does not exist, the Top GCC Provider first allocates a new Token ID from the space of dynamic
Token IDs (16 384 through 65 535). The Top GCC Provider then creates an entry for this Key and
includes in the database for this entry the Node ID as indicated by the Sender User ID in the

152 ITU-T Rec. T.124 (01/2007)

received MCS-Send-Data indication along with the Entity ID included in the PDU as the entry
owner, the entry type being a Token ID, and the value being the allocated Token ID.

The Top GCC Provider then indicates that the token has been properly allocated, and returns the
value of the Token ID to the requester, by sending a RegistryResponse PDU to the requesting node
by issuing an MCS-Send-Data request specifying the Node ID of the requester as the Channel 1D,
specifying High data priority, and including the PDU in the Data field. The content of the
RegistryResponse PDU is shown in Table 8-38. In the case of a successful action, the Result
parameter is specified as successful. The Modification Rights field is not filled in (this field is for
Parameter type entries only).

If the registry entry already existed, if the requester was invalid due to not appearing in the
Application Roster, if the requesting node was not a Conventiona node, if the registry entry could
not be created due to a limitation in the available resources, or if there are were no more available
dynamic Token IDs, the registry is not modified and a RegistryResponse PDU is returned as above,
but with a negative Result indicating the reason for the failure. In this case, the value of the entry
prior to attempting to modify it isreturned as the Registry Item in the RegistryResponse PDU.

In the case of a successful modification of an existing registry entry, the Top GCC Provider checks
to determine if the registry entry had been set to be monitored. If not, no further action is taken by
the Top GCC Provider. If the entry had been set to be monitored, the Top GCC Provider sends a
RegistryMonitorEntrylndication PDU to all nodes in the conference by issuing an MCS-Uniform-
Send-Data request specifying the GCC-Broadcast-Channel as the Channel ID, specifying High data
priority, and including the PDU in the Data field. The content of the
RegistryMonitorEntrylndication PDU is shown in Table 8-44.

On receipt of a RegistryResponse PDU of this type, a GCC Provider shall generate a
GCC-Registry-Assign-Token confirm primitive indicating whether or not the request was
successful as indicated in the Result parameter of the RegistryResponse PDU, and if successful, the
value of the alocated Token ID and issue it on the GCCSAP of the Application Protocol Entity
indicated by the Entity ID. If the GCC Provider knows of no currently enrolled Application
Protocol Entity with the corresponding Entity ID, the indication is ignored and no further action is
taken.

8.4.3 Setting a Parameter

On receipt of a GCC-Registry-Set-Parameter request primitive, a GCC Provider at a Conventional
node shall send a RegistrySetParameterRequest PDU to the Top GCC Provider by issuing an
MCS-Send-Data request specifying the Node ID Channel of the Top GCC Provider as the Channel
ID, specifying High data priority, and including the PDU in the Data field. The content of the
RegistrySetParameterRequest PDU is shown in Table 8-40. A GCC-Registry-Set-Parameter request
made by either a Counted or Anonymous node will be ignored by the GCC Provider.

Table 8-40 — RegistrySetParameter Request GCCPDU

Content Source Sink
Entity ID Source GCC Provider Top GCC Provider
Key Request Top GCC Provider
Parameter Request Top GCC Provider
Madification Rights (optional) Request Top GCC Provider

On receipt of the RegistrySetParameterRequest PDU, the Top GCC Provider shall first verify that
the Sender User ID in the received MCS-Send-Data indication and the Entity ID included in the
PDU correspond exactly to the Node ID and Entity ID of an Application Protocol Entity at a
Conventional node currently in the Application Roster. If so, it shall attempt to set a parameter in an

ITU-T Rec. T.124 (01/2007) 153

existing registry entry or create a new entry with the specified parameter. First, it checks whether
the registry entry corresponding to the specified Key already exists in the registry database, and if
so, determines the type of the entry, the owner, and the current modification rights. If the registry
entry does not exist, the Top GCC Provider then creates an entry for this Key and includes in the
database for this entry the Node ID as indicated by the Sender User 1D in the received MCS-Send-
Data indication along with the Entity ID included in the PDU as the entry owner, the entry type
being a Parameter, and the value being the Parameter value specified in the PDU. If the registry
entry already existed, and if the entry was of the Parameter type, the GCC Provider shall first check
if the requester has the right to modify this entry. If the owner has modification rights, the value of
the registry entry is modified to reflect the type as a Parameter and the value as the Parameter value
specified in the PDU. If the entry was not owned prior to being set, the entry is modified to indicate
the new owner.

The determination of whether the owner has modification rights is by the following rules. If the
current Modification Rights attribute of the entry is set to Owner, the requester, as indicated by the
Entity ID and the Node ID from the Sender User ID field of the received MCS-Send-Data
indication, must be the owner or the entry must currently be un-owned for the request to succeed. If
the current Modification Rights attribute of the entry is set to Session, the requester must be part of
the same Application Protocol Session for this request to succeed. This is determined by finding the
entry in the current Application Roster for the requester and examining the Session Key. The
Session Key must be identical to that of the owner. Again, if the entry is not owned, this restriction
does not apply. If the current Modification Rights attribute of the entry is set to Public, there are no
restrictions on the requester for the request to succeed other than the node being a Conventional
node.

When a Parameter entry isfirst created, the state of Modification Rights for the entry is determined.
If the Modification Rights parameter was included in the request PDU which resulted in the
creation of the entry, the Modification Type is set to the indicated value. If not, the value Public is
assumed for Modification Rights. On requests to set the parameter, if the Modification Rights entry
is not present, the Modification Rights state is not changed. If it is present, the GCC Provider shall
change the Modification Rights state to the state indicated in the PDU only if the requester is the
current owner of the entry, or if the entry is currently un-owned. Otherwise, the Modification Rights
state is not changed. In the latter case, the set-parameter operation shall still proceed as normal, and
the result shall not be effected.

In either of the above cases, the Top GCC Provider then indicates that the parameter has been
properly set by sending a RegistryResponse PDU to the requesting node by issuing an MCS-Send-
Data request specifying the Node ID of the requester as the Channel 1D, specifying High data
priority, and including the PDU in the Data field. The content of the RegistryResponse PDU is
shown in Table 8-38. In the case of a successful action, the Result parameter is specified as
successful. The Modification Rights parameter shall be included in the response PDU.

If the registry entry could not be created due to a limitation in the available resources, if the
reguesting node was not a Conventional node, if the entry already existed but the requester did not
have modification rights, if the requester was invalid due to not appearing in the Application Roster,
or if the entry was of the Parameter type, the registry is not modified and a RegistryResponse PDU
Is returned as above, but with a negative Result indicating the reason for the failure. In this case, the
value of the entry prior to attempting to modify it is returned as the Registry Item in the
RegistryResponse PDU. In the case of insufficient modification rights, the result parameter shall be:
belongs to other.

In the case of a successful modification of an existing registry entry, the Top GCC Provider checks
to determine if the registry entry had been set to be monitored. If not, no further action is taken by
the Top GCC Provider. If the entry had been set to be monitored, the Top GCC Provider sends a
RegistryMonitorEntrylndication PDU to all nodes in the conference by issuing an MCS-Uniform-

154 ITU-T Rec. T.124 (01/2007)

Send-Data request specifying the GCC-Broadcast-Channel as the Channel 1D, specifying High data
priority, and including the PDU in the Data field The content of the
RegistryMonitorEntrylndication PDU is shown in Table 8-44.

On receipt of a RegistryResponse PDU of this type, a GCC Provider shall generate a
GCC-Registry-Set-Parameter confirm primitive indicating whether or not the request was
successful as indicated in the Result parameter of the RegistryResponse PDU and issue it on the
GCCSAP of the Application Protocol Entity indicated by the Entity ID. If the GCC Provider knows
of no currently enrolled Application Protocol Entity with the corresponding Entity ID, the
indication isignored and no further action is taken.

8.4.4 Retrieving an Entry

On receipt of a GCC-Registry-Retrieve-Entry request primitive, a GCC Provider shall send a
RegistryRetrieveEntryRequest PDU to the Top GCC Provider by issuing an MCS-Send-Data
request specifying the Node ID Channel of the Top GCC Provider as the Channel 1D, specifying
High data priority, and including the PDU in the Data field. The content of the
RegistryRetrieveEntryRequest PDU is shown in Table 8-41. A RegistryRetrieveEntryRequest can
be issued by any node regardless of Node Category.

Table 8-41 — RegistryRetrieveEntryRequest GCCPDU

Content Source Sink
Entity ID Source GCC Provider Top GCC Provider
Key Request Top GCC Provider

On receipt of the RegistryRetrieveEntryRequest PDU, the Top GCC Provider shall examine the
contents of the registry entry specified by the Key. The registry entry may be in one of four possible
states: empty, containing a Channel 1D, a Token ID, or a Parameter. For any of these cases, the Top
GCC Provider returns the state of the entry to the requester by sending a RegistryResponse PDU to
the requesting node by issuing an MCS-Send-Data request specifying the Node ID of the requester
as the Channel 1D, specifying High data priority, and including the PDU in the Data field. The
content of the RegistryResponse PDU is shown in Table 8-38. The Registry Item parameter
contains the state of the entry, and in the case of a non-empty state, the value that the entry currently
contains. The Result parameter is specified as successful if the entry is non-empty, and entry-not-
found if the entry is empty. If the entry is indicated to be of the Parameter type, the Modification
Rights parameter shall be included in the response PDU.

On receipt of a RegistryResponse PDU of this type, a GCC Provider shall generate a
GCC-Registry-Retrieve-Entry confirm primitive indicating the registry item included in the
response PDU and issue it on the GCCSAP of the Application Protocol Entity indicated by the
Entity ID. If the GCC Provider knows of no currently enrolled Application Protocol Entity with the
corresponding Entity ID, theindication isignored and no further action istaken.

845 Deletingan Entry

On receipt of a GCC-Registry-Delete-Entry request primitive, a GCC Provider at a Conventional
node shall send a RegistryDeleteEntryRequest PDU to the Top GCC Provider by issuing an
MCS-Send-Data request specifying the Node ID Channel of the Top GCC Provider as the Channel
ID, specifying High data priority, and including the PDU in the Data field. The content of the
RegistryDeleteEntryRequest PDU is shown in Table 8-42. A GCC-Registry-Delete-Entry request
made by either a Counted or Anonymous node will be ignored by the GCC Provider.

ITU-T Rec. T.124 (01/2007) 155

Table 8-42 — RegistryDeleteEntryRequest GCCPDU

Content Source Sink
Entity ID Source GCC Provider Top GCC Provider
Key Request Top GCC Provider

On receipt of the RegistryDeleteEntryRequest PDU, the Top GCC Provider shall attempt to delete
the designated registry entry. First, it checks whether the registry entry corresponding to the
specified Key exists in the registry database, and if so, determines the owner. If the registry entry
exists and is owned by the requester (both the Node ID and Entity ID of the owner and those of the
requester are identical) or if the entry is not currently owned and the requesting node is a
Conventional node, the Top GCC Provider deletes the contents of the entry setting the state to
empty and not monitored.

If the registry entry is successfully deleted, or if the entry already did not exist, the Top GCC
Provider then indicates that the entry has been properly deleted by sending a RegistryResponse
PDU to the requesting node by issuing an MCS-Send-Data request specifying the Node ID of the
requester as the Channel 1D, specifying High data priority, and including the PDU in the Data field.
The content of the RegistryResponse PDU is shown in Table 8-38. In the case of a successful
action, the Result parameter is specified as successful, and the registry item is specified to be
empty.

If the registry entry already existed but was owned by another node, or if the requesting node is not
a Conventional node, the registry is not modified and a RegistryResponse PDU is returned as
above, but with a negative Result indicating the reason for the failure. In this case, the registry item
is set to the value of the entry prior to the deletion attempt.

In the case of a successful deletion of an existing registry entry, the Top GCC Provider checks to
determine if the registry entry had been set to be monitored (prior to deletion). If not, no further
action is taken by the Top GCC Provider. If the entry had been set to be monitored, the Top GCC
Provider sends a RegistryMonitorEntrylndication PDU to all nodes in the conference by issuing an
MCS-Uniform-Send-Data request specifying the GCC-Broadcast-Channel as the Channel 1D,
specifying High data priority, and including the PDU in the Data field. The content of the
RegistryMonitorEntrylndication PDU is shown in Table 8-44.

In the case of a successful deletion of a Token type registry entry, the Top GCC Provider may
de-allocate the corresponding token. That is, the Top GCC Provider may later re-use the Token ID
which had been included in the deleted entry in response to a RegistryAssignTokenRequest.

On receipt of a RegistryResponse PDU of this type, a GCC Provider shall generate a
GCC-Registry-Delete-Entry confirm primitive indicating whether or not the request was successful
as indicated in the Result parameter of the RegistryResponse PDU and issue it on the GCCSAP of
the Application Protocol Entity indicated by the Entity ID. If the GCC Provider knows of no
currently enrolled Application Protocol Entity with the corresponding Entity 1D, the indication is
ignored and no further action is taken.

8.4.6 Monitoring an Entry

On receipt of a GCC-Registry-Monitor request primitive with the Enable/Disable flag set to Enable,
a GCC Provider at a Conventional node shall send a RegistryMonitorEntryRequest PDU to the Top
GCC Provider by issuing an MCS-Send-Data request specifying the Node ID Channel of the Top
GCC Provider as the Channel 1D, specifying High data priority, and including the PDU in the Data
field. The content of the RegistryMonitorEntryRequest PDU is shown in Table 8-43. A local record
that the requesting Application Protocol Entity had enabled monitoring this entry is made by the
GCC Provider to determine whether to generate GCC-Registry-Monitor indications on later receipt

156 ITU-T Rec. T.124 (01/2007)

of RegistryMonitorEntryindication PDU corresponding to this entry. A GCC-Registry-Monitor
request made by either a Counted or Anonymous node will be ignored by the GCC Provider.

On receipt of a GCC-Registry-Monitor request primitive with the Enable/Disable flag set to
Disable, alocal record that the requesting Application Protocol Entity had disabled monitoring this
entry is made by the GCC Provider to determine whether to generate GCC-Registry-Monitor
indications on later receipt of RegistryMonitorEntrylndication PDU corresponding to this entry.

Table 8-43 — RegistryM onitor EntryRequest GCCPDU

Content Source Sink
Entity ID Source GCC Provider Top GCC Provider
Key Request Top GCC Provider

On receipt of the RegistryMonitorEntryRequest PDU, the Top GCC Provider shall attempt to
change the monitoring state of the registry entry if the requesting node is a Conventional node.
First, it checks whether the registry entry corresponding to the specified Key already exists in the
registry database. If the registry entry exists, the monitoring state for the specified entry is set to
enabled.

NOTE 1 — Once monitoring is enabled, monitor indications will continue to be broadcast whenever changes
are made to the entry for the duration of the conference, or until the entry is deleted.

Once the appropriate action has been taken, the Top GCC Provider sends a RegistryResponse PDU
to the requesting node by issuing an MCS-Send-Data request specifying the Node ID of the
requester as the Channel 1D, specifying High data priority, and including the PDU in the Data field.
The content of the RegistryResponse PDU is shown in Table 8-38. In the case of a successful
action, the Result parameter is specified as successful. If the requested entry did not exist, the
Result parameter is specified as entry-not-found. If the entry is indicated to be of the Parameter
type, the Modification Rights parameter shall be included in the response PDU.

If the registry entry did not exist, the registry is not modified and a RegistryResponse PDU is
returned as above, but with a negative Result indicating the reason for the failure.

On receipt of a RegistryResponse PDU of this type, a GCC Provider shall generate a
GCC-Registry-Monitor confirm primitive indicating whether or not the request was successful as
indicated in the Result parameter of the RegistryResponse PDU and issue it on the GCCSAP of the
Application Protocol Entity indicated by the Entity ID. If the GCC Provider knows of no currently
enrolled Application Protocol Entity with the corresponding Entity 1D, the indication isignored and
no further action is taken.

While any registry entry is set to be monitored, any change in the content of the registry entry,
including setting a parameter, deletion of the entry, change in ownership, or change in the
Modification Rights state, cause the Top GCC Provider to send a RegistryMonitorEntrylndication
PDU to all nodes in the conference by issuing an MCS-Uniform-Send-Data request specifying both
the GCC-Broadcast-Channel (to support older protocol nodes) and the GCC-Conventional-
Broadcast-Channel as the Channel ID, specifying High data priority, and including the PDU in the
Datafield. The content of the RegistryMonitorEntrylndication PDU is shown in Table 8-44.

ITU-T Rec. T.124 (01/2007) 157

Table 8-44 — RegistryM onitor Entrylndication GCCPDU

Content Source Sink
Key Top GCC Provider Indication
Registry Item Top GCC Provider Indication
Owner Top GCC Provider Confirm
Modification Rights (optional) Top GCC Provider Confirm

On receipt of a RegistryMonitorEntrylndication PDU, a GCC Provider for a node which supports
the registry monitoring function shall generate a GCC-Registry-Monitor indication primitive and
send this primitive to any GCCSAP which had previoudly issued a GCC-Registry-Monitor request
specifying the same Key as is indicated in the indication PDU with the Enable/Disable flag set to
Enable (without having more recently received one with this flag set to Disable). If there have not
been any requesters for the particular Key at this node, the indication PDU is ignored by the GCC
Provider. It is a function of each local GCC Provider to keep a local database of requesting
GCCSAPswhich is updated whenever a GCC-Registry-Monitor request is received.

NOTE 2 — As alocal matter, a particular GCC Provider implementation may choose not to keep track of
which Application Protocol Entities have enabled or disabled monitoring for each entry and instead issue

GCC-Registry-Monitor indications to the GCCSAPs corresponding to all enrolled Application Protocol
Entities when a RegistryMonitorEntrylndication PDU is received.

8.4.7 Allocation of Unique Handles

On receipt of a GCC-Registry-Allocate-Handle request primitive, a GCC Provider shall send a
RegistryAllocateHandleRequest PDU to the Top GCC Provider by issuing an MCS-Send-Data
request specifying the Node ID Channel of the Top GCC Provider as the Channel 1D, specifying
High data priority, and including the PDU in the Data field. The content of the
RegistryAllocateHandleRequest PDU is shown in Table 8-45.

Table 8-45 — RegistryAllocateHandleRequest GCCPDU

Content Source Sink
Entity ID Source GCC Provider Top GCC Provider
Number of Handles Request Top GCC Provider

On receipt of the RegistryAllocateHandleRequest PDU, the Top GCC Provider shall generate a
unique set of handles of the number requested. This shall be done by incrementing a 32-bit state
variable after each allocation modulo 2%, using the incremented value for allocation of the next
requested handle. If the full set of possible handles has been alocated, the request is rejected
indicating that no handles are available. If a sufficient number of handles are available, the handles
are returned to the requester by specifying the first allocated handle along with the number of
alocated handles. The Top GCC Provider returns the result by sending a
RegistryAllocateHandleResponse PDU to the requester. Thisis done by issuing an MCS-Send-Data
request specifying the Node ID of the requester as the Channel 1D, specifying High data priority,
and including the PDU in the Data field. The content of the RegistryAllocateHandleResponse PDU
is shown in Table 8-46. If the result was successful, the registry item parameter contains the list of
handles.

158 ITU-T Rec. T.124 (01/2007)

Table 8-46 — RegistryAllocateHandleResponse GCCPDU

Content Sour ce Sink
Entity ID Top GCC Provider Destination GCC Provider
Number of Handles Top GCC Provider Confirm
First Handle Top GCC Provider Confirm
Result Top GCC Provider Confirm

On receipt of a RegistryAllocateHandleResponse indication, a GCC Provider shall generate a
GCC-Registry-Allocate-Handle confirm primitive and issue it to the GCCSAP of the Application
Protocol Entity indicated by the Entity ID. If the GCC Provider knows of no currently enrolled
Application Protocol Entity with the corresponding Entity 1D, the indication is ignored and no
further action is taken.

8.4.8 Changesin ownership and Registry Clean-up

Whenever the Application Roster is updated, the Top GCC Provider shal determine if any
Application Protocol Entities were removed from the roster. If so, it shall examine the entire
registry database to determine if the disconnecting Application Protocol Entities were the owner of
any registry entries. If so, these entries are modified to indicate that there is no current owner.

If the result of a change in the Application Roster indicates that all Application Protocol Entitiesin
a session have become un-enrolled, the Top GCC Provider shall examine all registry entries to
determine if the Session Key portion of the Registry Key matches the Session Key of the former
session. For entries that do correspond to the removed session, the Top GCC Provider shall delete
the registry entry. If that registry entry corresponded to a Token type entry, the Top GCC Provider
may de-allocate the Token to alow for itslater reuse.

8.5 Conference conductor ship

Conference conductorship is controlled through the use of the Conference-Conductorship-Token.
When this token is free the conference is in Non-Conducted Mode. When this token is grabbed the
conference is in Conducted Mode, and the grabber of the token is the Conference Conductor. The
token can only be grabbed by Conventional nodes. Anonymous and Counted nodes can never act as
the conductor of a conference.

Upon acquiring the Conference-Conductorship-Token, the Conference Conductor (unless it is the
Top GCC Provider itself) shall demonstrate possession of the token to the Top GCC Provider by
0f00000000000fering to give it away, invoking MCS-Token-Give request and specifying the Top
GCC Provider as recipient. The Top GCC Provider shall respond negatively to the resulting
MCS-Token-Give indication, leaving the token in possession of the Conference Conductor. If the
token is offered again later by the current Conference Conductor, the Top GCC Provider shall
interpret it as part of a GCC-Conductor-Give operation and need not refuse automatically.

8.5.1 Grabbing conductorship

On receipt of a GCC-Conductor-Assign request primitive, a GCC Provider at a Conventional node
shall first examine the Conference Profile to determine if the conference is conductible or not. If
not, it shall generate a GCC-Conductor-Assign confirm primitive with an unsuccessful result
indicating that the conference is non-conductible. If the conference is conductible, the GCC
Provider shall then examine its local database to determine if it is currently the conference
conductor. If so, it shall generate a GCC-Conductor-Assign confirm primitive with a successful
result and issue it to the Control GCCSAP. If nat, it shall attempt to grab the conductor token by
issuing the MCS primitive MCS-Token-Grab request, specifying the Conference-Conductorship-
Token as the token ID to be grabbed. A GCC-Conductor-Assign request made by either a Counted
or Anonymous node will be ignored by the GCC Provider.

ITU-T Rec. T.124 (01/2007) 159

On receipt of the MCS-Token-Grab confirm primitive, the GCC Provider shall examine the Result
parameter. If the Result is successful, the GCC Provider shall then issue the MCS primitive
MCS-Token-Give request, specifying the Conference-Conductorship-Token as the token ID to be
offered and the Node ID of the Top GCC Provider asthe User ID to receive the token. On receipt of
the MCS-Token-Give confirm primitive, the GCC Provider shall examine the Result parameter. If
the Result is unsuccessful, the GCC Provider shall locally generate the GCC-Conductor-Assign
confirm primitive indicating a successful result and issue it to the Control GCCSAP.

On receipt of an MCS-Token-Give indication specifying the Conference-Conductorship-Token as
the token ID offered, from a donor User ID that the Top GCC Provider does not recognize as the
current Conference Conductor, the Top GCC Provider shall update its records to recognize the
donor as Conference Conductor. It shall also send a ConductorAssignindication PDU to al nodesin
the conference by issuing an MCSUniform-Send-Data request specifying the
GCC-Broadcast-Channel as the Channel 1D, specifying Top data priority, and including the PDU in
the Data field. The content of the ConductorAssignindication PDU is shown in Table 8-47.

If the Result parameter of the MCS-Token-Grab confirm indicates an unsuccessful result or the
Result parameter of the MCS-Token-Give confirm indicates a successful result, the GCC Provider
shall generate a GCC-Conductor-Assign confirm primitive indicating a negative result which
reflects the unsatisfactory result and issue it to the Control GCCSAP.

Table 8-47 — Conductor Assigni ndication GCCPDU

Content Source Sink
Conducting Node Top GCC Provider Destination GCC Provider

8.5.2 Reeasing conductorship

On receipt of a GCC-Conductor-Release request primitive, a GCC Provider shall first examine its
local database to determine if it is currently the conference conductor. If not, it shall generate a
GCC-Conductor-Release confirm primitive indicating a negative result and issue it to the Control
GCCSAP. If it is currently the conductor, it shall first send a ConductorReleaselndication PDU to
al nodes in the conference by issuing an MCS-Uniform-Send-Data request specifying both the
GCC-Broadcast-Channel (to support older protocol nodes) and the GCC-Conventional-Broadcast-
Channel as the Channel 1D, specifying Top data priority, and including the PDU in the Data field.
The content of the ConductorReleaselndication PDU is shown in Table 8-48 (there are no
parameters in this PDU). It shall then release the conductor token by issuing the MCS primitive
MCS-Token-Release request, specifying the Conference-Conductorship-Token as the token ID to
be released.

On receipt of the MCS-Token-Release confirm primitive, the GCC Provider shall locally generate
the GCC-Conductor-Release confirm primitive indicating a successful result and issue it to the
Control GCCSAP.

Table 8-48 — Conductor Releasel ndication GCCPDU

Content Source Sink

-- No parameters --

8.5.3 Conductor Assignment and Release Indications

A node which supports Application Protocols that are specified to behave differently in Conducted
mode and Non-conducted mode shall respond to receipt of ConductorAssignindication and
ConductorReleasel ndication PDUs. A node which does not support such Application Protocols may
choose to ignore these indications.

160 ITU-T Rec. T.124 (01/2007)

On receipt of a ConductorAssignindication PDU as part of an MCS-Uniform-Send-Data indication,
a GCC Provider shall examine the Conference Profile to determine if the conference is conductible
or not. If not, it shall ignore this PDU. If the conference is conductible, it may generate a
GCC-Conductor-Assign indication primitive and issue it to the Control GCCSAP as well as the
GCCSAP of al enrolled Application Protocol Entities.

For Conventional nodes, the GCC Provider shall first determine if the Sender User ID field of the
MCS-Uniform-Send-Data indication indicates that the ConductorAssignindication PDU was
transmitted by the Top GCC Provider. If not, the PDU shall be ignored, and no indication primitive
shall be generated. If the PDU was transmitted by the Top GCC Provider, the Node ID parameter of
the primitive is set to the value indicated by the Conducting Node parameter in the received PDU.
For any node that supports conductorship primitives, the GCC Provider shall also store the fact that
the conference is now in conducted mode, as well as the Node ID of the conductor, in its local
database.

For Counted and Anonymous nodes, a ConductorAssignindication can be received from either the
Parent node or the Top GCC Provider. If the PDU is received from a node other than one of these, it
shall be ignored, and no indication of the primitive shall be generated. If the PDU was transmitted
by either the Parent node or the Top GCC Provider, the Node ID parameter of the primitive is set to
the vaue indicated by the Conducting Node parameter in the received PDU. A
ConductorAssignindication received from the Top GCC Provider always overrides one received
from a Parent node. Therefore, once a ConductorAssignindication is received from the Top GCC
Provider, any ConductorAssignindication received from a Parent node shall be ignored. For a node
which supports conductorship primitives and receives a valid ConductorAssignindication, the GCC
Provider shall store in its local database the fact that the conference is now in conducted mode, as
well asthe Node ID of the conductor.

On receipt of a ConductorReleaselndication PDU as part of an MCS-Uniform-Send-Data
indication, a GCC Provider may generate a GCC-Conductor-Release indication primitive and issue
it to the Control GCCSAP aswell asto the GCCSAP of all enrolled Application Protocol Entities.

For Conventional nodes, the GCC Provider shall first determine if the Sender User ID field of the
MCS-Uniform-Send-Data indication indicates that the ConductorReleaselndication PDU was
transmitted by the Top GCC Provider or by the node that it currently records as the conductor. If
not, the PDU shall be ignored, and no indication primitive shall be generated. For a node that
supports conductorship primitives, the GCC Provider shall also store in its local database the fact
that the conference is no longer in conducted mode. The GCC Provider shall aso set its
locally-stored permission flag to indicate that no conducted-mode permissions have been granted.

For Counted and Anonymous nodes, a ConductorRel easel ndication can be received from either the
Parent node, the Top GCC Provider, or the current Conductor. If the PDU is received from a node
other than one of these, it shall be ignored, and no indication of the primitive shall be generated. If a
Counted or Anonymous node receives a ConductorReleaselndication on the GCC-Conventional-
Broadcast-Channel and has yet to determine the current state of Conductorship within the
conference (because it has not received an indication from its Parent), the node must assume that
the ConductorReleaselndication came from a valid node and should store in its local database the
fact that the conference is not in conducted mode. Any ConductorRel easel ndication received on the
GCC-Conventional-Broadcast-Channel shall override any ConductorReleaselndication received
from the Parent node. For a node that supports conductorship primitives and receives a valid
ConductorReleasel ndication, the GCC Provider shall store in its local database the fact that the
conference is not in conducted mode.

A GCC Provider shall preserve the order of recelved ConductorAssignindication and
ConductorReleaselndication PDUs received on either the GCC-Broadcast-Channel or the
GCC-Conventional-Broadcast-Channel in generation of the corresponding indication primitives.

ITU-T Rec. T.124 (01/2007) 161

The GCC Provider in a node which supports the conductorship primitives shall issue a
GCC-Conductor-Assign or GCC-Conductor-Release indication to the GCCSAP associated with an
Application Protocol Entity which newly enrolls after a conference has already been established.
The current conductorship state as known by the GCC Provider determines which of these two
primitives to issue.

8.5.4 Askingto begiven conductorship

On receipt of a GCC-Conductor-Please request primitive, a GCC Provider at a Conventional node
shall first examine its local database to determine if the conference is in conducted mode. If not, it
shall generate a GCC-Conductor-Please confirm with a negative result indicating that the
conference is not in conducted mode and issue it to the Control GCCSAP. If in conducted mode, the
GCC Provider issues an MCS-Token-Please request specifying the Conference-Conductorship-
Token as the token requested. It also shall generate a GCC-Conductor-Please confirm indicating a
successful result and issue it to the Control GCCSAP.

On receipt of an MCS-Token-Please indication specifying the Conference-Conductorship-Token as
the Token ID, a GCC Provider shal generate a GCC-Conductor-Please indication primitive
indicating the Node ID of the requesting node obtained from the User ID parameter received in the
MCS-Token-Please indication and issue it to the Control GCCSAP. A GCC-Conductor-Please
request made by either a Counted or Anonymous node will be ignored by the GCC Provider.

8.5.5 Giving conductorship

On receipt of a GCC-Conductor-Give request primitive, a GCC Provider shall first examine its local
database to determine if it is the current conference conductor. If not, it shall generate a
GCC-Conductor-Give confirm with a negative result indicating that the node is not currently the
conductor and issue it to the Control GCCSAP. Otherwise, the GCC Provider shall attempt to give
conductorship to the specified node by issuing an MCS-Token-Give request specifying the
Conference-Conductorship-Token as the token ID, and the recipient node as specified in the
GCC-Conductor-Give request. The node that is being given Conductorship should always be a
Conventional node.

On receipt of the MCS-Token-Give confirm primitive, the GCC Provider shall examine the Result
parameter. If the Result is successful, the GCC Provider shall locally generate the GCC-Conductor-
Give confirm primitive indicating a successful result and issue it to the Control GCCSAP. If the
Result parameter of the MCS-Token-Give confirm indicates an unsuccessful result, the GCC
Provider shall generate a GCC-Conductor-Give confirm primitive indicating a negative result which
reflects the result indicated by the MCS-Token-Grab confirm and issue it to the Control GCCSAP.

On receipt of the MCS-Token-Give indication primitive specifying the Conference-Conductorship-
Token, a GCC Provider other than the Top GCC Provider shall generate a GCC-Conductor-Give
indication primitive and issue it to the Control GCCSAP. On receipt of the GCC-Conductor-Give
response, the GCC Provider shall examine the result parameter. If the result is successful, the GCC
Provider shall issue the MCS-Token-Give response indicating that the token was accepted.

If the GCC-Conductor-Give response indicates that the token is not to be accepted, the GCC
Provider shall issue the MCS-Token-Give response indicating that the token was user-rejected.

If a node which does not support conductorship primitives receives an MCS-Token-Give indication,
the GCC Provider shall respond with an MCS-Token-Give response indicating a result of
user-regjected. This includes Anonymous and Counted nodes.

On receipt of an MCS-Token-Give indication primitive specifying the Conference-Conductorship-
Token from a donor User ID that the Top GCC Provider does not record as the current conductor,
the Top GCC Provider shall respond as specified in 8.5.1, automatically rejecting the token. If it
already recognizes the donor as conductor, however, the Top GCC Provider shall generate a
GCC-Conductor-Give indication primitive as specified above, like any other GCC Provider.

162 ITU-T Rec. T.124 (01/2007)

8.5.6 Getting conductor ship status

On receipt of a GCC-Conductor-Inquire request, a GCC Provider shall first examine its own local
database to determine if the conference is currently in conducted mode. If not, the GCC Provider
shall generate a GCC-Conductor-Inquire confirm which indicates that the conference is not in
conducted mode and issue it to the Control GCCSAP. Otherwise, it shall generate a confirm
indicating that the conference is in conducted mode, and shall specify the Node ID of the
conducting node as stored in its local database as the current conductor. In this case, if a node has
just entered a conference and has not yet received a ConductorAssignindication PDU from the
conductor (and does not yet have the conductor's Node ID in its local database), the GCC Provider
shall wait until this PDU is received before generating the GCC-Conductor-Inquire confirm.

If the conference is in conducted mode, the GCC Provider shal determine the setting of the
Permission Flag to be included in the GCC-Conductor-Inquire confirm by determining whether the
local node is the current conductor (in which case permission is assumed to be granted), or, if not,
whether the Node ID of the local node had been listed in the Permission List of most recent
ConductorPermissionGrantlndication PDU which had been received since the last transition from
non-conducted to conducted mode. If the local node does appear in this list, this flag is set to
TRUE. If not, or if there had not been a ConductorPermissionGrantindication PDU received since
the most recent transition from non-conducted to conducted mode, then thisflag is set to FALSE.

8.5.7 Conductor ship announcement when new nodes enter a confer ence

If the Top GCC Provider receives an update to the Conference Roster with the flag set indicating
that new Conventional nodes are present in the conference and the conference is currently in
conducted mode, the Top GCC Provider shall send a ConductorAssignindication PDU to al nodes
in the conference by issuing an MCS-Uniform-Send-Data request specifying both the
GCC-Broadcast-Channel (to support older protocol nodes) and the GCC-Conventional-Broadcast-
Channel as the Channel 1D, specifying Top data priority, and including the PDU in the Data field.
The content of the ConductorAssignindication PDU is shown in Table 8-47. The Conducting Node
parameter indicates the Node ID of the current conductor.

If the Top GCC Provider receives an update to the Conference Roster with the flag set indicating
that new Conventional nodes are present in the conference and the conference is not currently in
conducted mode, the Top GCC Provider shall send a ConductorReleaselndication PDU to all nodes
by issuing an MCS-Uniform-Send-Data request specifying both the GCC-Broadcast-Channel
(to support older protocol nodes) and the GCC-Conventional-Broadcast-Channel as the Channel 1D,
specifying Top data priority, and including the PDU in the Data field. The content of the
ConductorRel easel ndication PDU is shown in Table 8-48.

If the Top GCC Provider receives a ConductorRel easel ndication from another node, which signals a
change from the current conductorship state, prior to receiving its own transmitted
ConductorAssignindication, the Top GCC Provider shall re-issue a ConductorReleasel ndication to
reflect the new state.

If the Top GCC Provider receives a RosterUpdatel ndication PDU indicating that new Counted or
Anonymous nodes are present in the conference, the Top GCC Provider does not broadcast an
initial conductorship announcement by sending either a ConductorAssignindication or a
ConductorReleaselndication. Instead, the initial conductorship announcement is left up to the
joining node's Parent node. This initial announcement is generated as follows. when a Parent node
receives the Node ID of a newly joining Anonymous or Counted node, it must send the new node
either a ConductorAssignindication or a ConductorReleaselndication to inform it of the current
state of conductorship within the conference. If the conference is currently in conducted mode, the
Parent node shall send a ConductorAssignindication PDU directly to the new Counted or
Anonymous node by issuing an MCS-Send-Data request specifying the Node ID of the new node as
the Channel ID, specifying High data priority, and including the PDU in the Data field. If the

ITU-T Rec. T.124 (01/2007) 163

conference is not currently in conducted mode, the Parent node shall send a
ConductorReleaselndication PDU directly to the new Counted or Anonymous node by issuing an
MCS-Send-Data request specifying the Node ID of the new node as the Channel 1D, specifying
High data priority, and including the PDU in the Data field.

A node which has just become joined to a conference shall delay processing of any of the conductor
related request primitives until receiving ether a ConductorAssignindication or a
ConductorReleaselndication. This is because all conductor related request primitives require that
the local node check its local database of conductorship status which is not in harmony with the
actual status of the conference until one of these PDUs s received.

8.5.8 Unexpected disconnection of the conductor

If the conductor of a conference unexpectedly disconnects from a conference, it may not have an
opportunity to send a ConductorReleaselndication PDU to all nodes indicating that the conference
is now in non-conducted mode. The GCC Provider at each node (if it supports the conductorship
primitives) shall monitor received MCS-Detach-User indications and compare the User ID in the
indication to the Node ID of the node that it currently believes to be the conductor. If they match,
the GCC Provider shall store in its local database that the conference is no longer in conducted
mode, and the GCC Provider shall generate a GCC-Conductor-Release indication and issue it to the
Control GCCSAP aswell asto the GCCSAP of all enrolled Application Protocol Entities. The GCC
Provider shall also set its locally-stored permission flag to indicate that no conducted-mode
permissions have been granted.

8.5.9 Askingto begiven conducted-mode permission

On receipt of a GCC-Conductor-Permission-Ask request primitive via the Control GCCSAP, a
GCC Provider which supports this primitive shall first determine if the specified conference isin
conducted mode. If not, it shall generate a GCC-Conductor-Permission-Ask confirm primitive and
issue it to the Control GCCSAP indicating not-in-conducted-mode as the result. If in conducted
mode, it shall send a ConductorPermissionAskindication PDU to the conductor of the specified
conference by issuing an MCS-Uniform-Send-Data request specifying the GCC-Broadcast-Channel
as the Channel ID, specifying High data priority, and including the PDU in the data field. The
content of the ConductorAskindication PDU is shown in Table 8-49. When successfully completed,
the GCC Provider shall generate a GCC-Conductor-Permission-Ask confirm primitive and issue it
to the Control GCCSAP indicating success as the resullt.

Table 8-49 — Conductor Per missionAsklndication GCCPDU

Content Sour ce Sink

Grant/Release Flag Request Indication

On receipt of a ConductorPermissionAskindication PDU, a GCC Provider shall determine if it is
currently the conference conductor. If not, it shall ignore the PDU and take no further action. If so,
if the GCC Provider supports the corresponding primitive, it shall generate a GCC-Conductor-
Permission-Ask indication primitive and issue it to the Control GCCSAP. The Node ID of the
Requester parameter shall be filled in with the Sender User ID parameter from the received
MCS-Uniform-Send-Data indication. A GCC Provider shal preserve the order of received
ConductorPermissionAskindication PDUs in generating the corresponding indication primitives.

8.5.10 Granting conducted-mode per mission

On receipt of a GCC-Conductor-Permission-Grant request via the Control GCCSAP, a GCC
Provider which supports this primitive shall first determine if it is currently the conductor of the
specified conference. If not, it shall generate a GCC-Conductor-Permission-Grant confirm
indicating not-conductor as the reason for rejection, and issue it to the Control GCCSAP. It shall

164 ITU-T Rec. T.124 (01/2007)

then take no further action. If the node is the current conference conductor, the GCC Provider shall
broadcast a ConductorPermissionGrantindication PDU to al nodes in the conference. It shall do
this by issuing an MCS-Uniform-Send-Data request specifying the GCC-Broadcast-Channel as the
Channel 1D, specifying Top data priority, and including the PDU in the data field. The content of
the ConductorPermissionGrantindication PDU is shown in Table 8-50. The permission and waiting
list parameters are filled in with the list of Node IDs provided in the corresponding parameters of
the request primitive. The order of both lists is preserved. When successfully completed, the GCC
Provider shall generate a GCC-Conductor-Permission-Grant confirm primitive and issue it to the
Control GCCSAP indicating success as the result.

Table 8-50 — Conductor Per missionGr antl ndication GCCPDU

Content Source Sink
Permission List Request Indication
Waiting List (optional) Request Indication

On receipt of a ConductorPermissionGrantindication PDU, a GCC Provider which supports the
corresponding primitive shall first determine if the conference is currently in conducted mode. If
not, it shall ignore the received PDU and take no further action. If the conference is in conducted
mode, it shall determine if this PDU was received from the node which is the current conference
conductor. If nat, it shall also ignore this PDU and take no further action. If the source is the current
conductor, it shall generate a GCC-Conductor-Permission-Grant indication primitive and issue it to
the Control GCCSAP as well as to the GCCSAPs of all enrolled Application Protocol Entities. The
Permission and Waiting Lists in the indication primitive are filled in directly from the
corresponding parameters of the PDU, preserving the order of these lists. The GCC Provider shall
examine the Permission List parameter and determine if the local node is included in thislist. If so,
it shall set the Permission Flag parameter of the indication primitive to TRUE. Otherwise, it shall
set this flag to FALSE. A GCC Provider shall preserve the order of received
ConductorPermissionGrantlndication PDUs in generating the corresponding indication primitives.

8.6 Miscellaneous functions

8.6.1 Timed conferences

On receipt of a GCC-Conference-Time-Remaining request primitive, a GCC Provider shall send a
ConferenceTimeRemaininglndication PDU to all nodes in the specified conference by issuing an
MCS-Uniform-Send-Data request specifying both the GCC-Broadcast-Channel (to support older
protocol nodes) and the GCC-Conventional -Broadcast-Channel as the Channel 1D, specifying High
data priority, and including the PDU in the Data field. The content of the
ConferenceTimeRemaininglndication PDU is shown in Table 8-51. The value of the Time
Remaining parameter is obtained from the contents of the request primitive. The GCC Provider
shall aso generate a GCC-Conference-Time-Remaining confirm primitive indicating a successful
result, and issue it to the Control GCCSAP.

Table 8-51 — ConferenceTimeRemainingl ndication GCCPDU

Content Sour ce Sink
Time Remaining Request Indication
Node Identifier (optional) Request Indication

ITU-T Rec. T.124 (01/2007) 165

On receipt of a ConferenceTimeRemainingindication PDU, a GCC Provider may optionally
generate a GCC-Conference-Time-Remaining indication primitive and issue it to the Control
GCCSAP. The Time Remaining parameter is obtained from the contents of the PDU. The Source
Node parameter is filled in from the Sender User ID in the received MCS-Uniform-Send-Data
indication.

On receipt of a GCC-Conference-Time-Inguire request primitive, a GCC Provider shall send a
ConferenceTimel nquirelndication PDU to the Conference Convener by issuing an MCS-Send-Data
request specifying the GCC-Convener-Channel as the Channel 1D, specifying High data priority,
and including the PDU in the Data field. The content of the ConferenceTimel nquirelndication PDU
is shown in Table 8-52. The GCC Provider shal then generate a GCC-Conference-Time-Inquire
confirm primitive and issue it to the Control GCCSAP.

Table 8-52 — Confer enceTimel nquir el ndication GCCPDU

Content Sour ce Sink

Node-Specific Time Flag Request Indication

On receipt of a ConferenceTimelnquirelndication PDU, the GCC Provider (of the Conference
Convener) may optionally generate a GCC-Conference-Time-Inquire indication primitive and issue
it to the Control GCCSAP. The Node ID of the requester, as indicated in the Source Node
parameter of the MCS-Send-Data indication, is used as the Node ID of the Requesting Node
parameter in the GCC-Conference-Time-Inquire indication primitive.

On receipt of a GCC-Conference-Extend request primitive, a GCC Provider shall send a
ConferenceTimeExtendindication PDU to the Conference Convener by issuing an MCS-Send-Data
request specifying the GCC-Convener-Channel as the Channel 1D, specifying High data priority,
and including the PDU in the Data field. The content of the ConferenceTimeExtendlndication PDU
is shown in Table 8-53. The GCC Provider shall then generate a GCC-Conference-Extend confirm
primitive and issue it to the Control GCCSAP.

Table 8-53 — ConferenceT imeExtendl ndication GCCPDU

Content Source Sink

Time to Extend Request Indication
Node-Specific Time Flag Request Indication

On receipt of a ConferenceTimeExtendindication PDU, the GCC Provider (of the Conference
Convener) may optionally generate a GCC-Conference-Extend indication primitive and issue it to
the Control GCCSAP. The Node ID of the requester, as indicated in the Source Node parameter of
the MCS-Send-Data indication, is used as the Node ID of the Requesting Node parameter in the
GCC-Conference-Extend indication primitive.

8.6.2 Reguesting conference assistance

On receipt of a GCC-Conference-Assistance request primitive, a GCC Provider shall send a
ConferenceAssistancelndication PDU to all the nodes in the specified conference by issuing an
MCS-Send-Data or MCS-Uniform-Send-Data request specifying both the GCC-Broadcast-Channel
(to support older protocol nodes) and the GCC-Conventional -Broadcast-Channel as the Channel 1D,
specifying High data priority, and including the PDU in the Data field. The content of the
ConferenceAssistancelndication PDU is shown in Table 8-54. The GCC Provider shall then
generate a GCC-Conference-Assistance confirm primitive indicating whether the operation was
successful.

166 ITU-T Rec. T.124 (01/2007)

Table 8-54 — ConferenceAssistancel ndication GCCPDU

Content Sour ce Sink
User Data (optional) Request Indication

On receipt of the ConferenceAssistancelndication PDU, a node which supports this function may
generate a GCC-Conference-Assistance indication primitive and issue it to the Control GCCSAP.
The Source Node parameter is obtained from the Sender User ID in the received
MCS-Uniform-Send-Data indication.

8.6.3 Broadcasting a text message

On receipt of a GCC-Text-Message request primitive, if no Destination Node parameter was
included in the request, a GCC Provider shall send a TextMessagelndication PDU to the all nodes
in the specified conference by issuing either an MCS-Send-Data request or MCS-Uniform-Send-
Data request specifying both the GCC-Broadcast-Channel (to support older protocol nodes) and the
GCC-Conventional-Broadcast-Channel as the Channel 1D, specifying High data priority, and
including the PDU in the Data field. If a Destination Node was indicated, the GCC Provider shall
send the same PDU to that node by issuing an MCU-Send-Data request specifying the Node ID of
the requested node as the Channel 1D, specifying High data priority, and including the PDU in the
Data field. The content of the TextMessagelndication PDU is shown in Table 8-55. The
GCC Provider shall then generate a GCC-Text-Message confirm primitive indicating whether the
operation was successful.

Table 8-55 — TextM essagel ndication GCCPDU

Content Sour ce Sink

Message Request Indication

On receipt of the TextMessagel ndication PDU, a node which supports this function may generate a
GCC-Text-Message indication primitive and issue it to the Control GCCSAP. The Source Node
parameter is obtained from the Sender User ID in the received MCS-Uniform-Send-Data indication.

8.7 GCCPDU definitions

The structure of GCCPDUSs is specified as follows using the notation ASN.1 of [ITU-T X.680]. All
GCCPDUs shall be encoded for transmission by applying the Packed Encoding Rules of
[ITU-T X.691] using the Basic Aligned variant.

NOTE — The use of Automatic Tags in the GCC protocol definition implies that the order of SEQUENCE
and CHOICE structures contained within this definition effects to the actual encoded values.

GCC-PROTOCOL {itu-t(0) recommendation(0) t(20) t124(124) version(0) 2
asnlModules (2) gcc-protocol (1)} DEFINITIONS AUTOMATIC TAGS ::=
BEGIN

-- Export all symbols

ChannellID = INTEGER (1..65535)
StaticChannelID = INTEGER (1..1000)

-- Those assigned by specifications
DynamicChannelID = INTEGER (1001..65535)
-- Those created and deleted by MCS

UserID ::= DynamicChannelID

ITU-T Rec. T.124 (01/2007) 167

TokenID ::= INTEGER (1..65535)
StaticTokenID ::= INTEGER (1..16383)

-- Those assigned by specifications

DynamicTokenID ::= INTEGER (16384..65535)
-- Those assigned by the registry

Time ::= INTEGER (-2147483648..2147483647)
-- Time in seconds

Handle ::= INTEGER (0..4294967295)

-- 32-bit value

H221NonStandardIdentifier ::= OCTET STRING (SIZE (4..255))
-- First four octets shall be country code and
-- Manufacturer code, assigned as specified in
-- Annex A/H.221 for NS-cap and NS-comm

Key ::= CHOICE -- Identifier of a standard or non-standard object
object OBJECT IDENTIFIER,
h221NonStandard H221NonStandardIdentifier
}
NonStandardParameter ::= SEQUENCE
key Key,
data OCTET STRING
}
TextString ::= BMPString (SIZE (0..255))

-- Basic Multilingual Plane of ISO/IEC 10646-1 (Unicode)

simpleTextFirstCharacter UniversalString ::= {0, 0, 0, 0}
simpleTextLastCharacter UniversalString ::= {0, 0, 0, 255}
SimpleTextString ::= BMPString (SIZE (0..255)) (FROM

(simpleTextFirstCharacter..simpleTextLastCharacter))

SimpleNumericString ::= NumericString (SIZE (1..255)) (FROM ("0123456789"))
DiallingString ::= NumericString (SIZE (1..16)) (FROM ("0123456789"))
SubAddressString ::= NumericString (SIZE (1..40)) (FROM ("0123456789"))
ExtraDiallingString ::= TextString (SIZE (1..255)) (FROM ("0123456789#*,"))
UserData ::= SET OF SEQUENCE
{

key Key,

value OCTET STRING OPTIONAL
}
Password ::= SEQUENCE
{

numeric SimpleNumericString,

text SimpleTextString OPTIONAL,

e e oy

unicodeText TextString OPTIONAL

PasswordSelector ::= CHOICE

{
numeric SimpleNumericString,
text SimpleTextString,

e e oy

168 ITU-T Rec. T.124 (01/2007)

unicodeText TextString

}

ChallengeResponselItem ::= CHOICE
passwordString PasswordSelector,
responseData UserData,

}

ChallengeResponseAlgorithm ::= CHOICE

{

passwordInTheClear NULL,
nonStandardAlgorithm NonStandardParameter,
}
ChallengeItem ::= SEQUENCE

{

responseAlgorithm ChallengeResponseAlgorithm,

challengeData UserData,
}
ChallengeRequest ::= SEQUENCE
{

challengeTag INTEGER,

challengeSet SET OF Challengeltem,

-- Set of algorithms offered for response

}
ChallengeResponse ::= SEQUENCE

{

challengeTag INTEGER,

responseAlgorithm ChallengeResponseAlgorithm,
-- Specific algorithm selected from the set of
-- items presented in the ChallengeRequest

responseltem ChallengeResponselItem,
}
PasswordChallengeRequestResponse ::= CHOICE
passwordInTheClear PasswordSelector,
challengeRequestResponse SEQUENCE
challengeRequest ChallengeRequest OPTIONAL,
challengeResponse ChallengeResponse OPTIONAL,
},
ConferenceName ::= SEQUENCE
{
numeric SimpleNumericString,
text SimpleTextString OPTIONAL,
unicodeText TextString OPTIONAL
}
ConferenceNameSelector ::= CHOICE

{

ITU-T Rec. T.124 (01/2007) 169

numeric SimpleNumericString,
text SimpleTextString,
unicodeText TextString
}
ConferenceNameModifier ::= SimpleNumericString
Privilege ::= ENUMERATED
{
terminate (0),
ejectUser (1),
add (2),
lockUnlock (3),
transfer (4),
TerminationMethod ::= ENUMERATED

{

automatic (0),
manual (1),

}

ConferencePriorityScheme

{

::= CHOICE

nonStandardScheme NonStandardParameter,

}

ConferencePriority ::= SEQUENCE

{

priority INTEGER (0..65535),

scheme ConferencePriorityScheme,
NodeCategory ::= CHOICE

conventional NULL,

counted NULL,

anonymous NULL,

nonStandardCategory NonStandardParameter,
ConferenceMode ::= CHOICE

conventional-only NULL,

counted-only NULL,

anonymous-only NULL,

conventional-control NULL,

unrestricted-mode NULL,

non-standard-mode NonStandardParameter,

}

NetworkAddress ::=

{

SEQUENCE (SIZE (1..64)) OF CHOICE
aggregatedChannel SEQUENCE

transferModes One or more

{

SEQUENCE --

170 ITU-T Rec. T.124 (01/2007)

-- Listed in order of use

3

speech
voice-band
digital-56k
digital-64k
digital-128k
digital-192k
digital-256k
digital-320k
digital-384k
digital-512k
digital-768k
digital-1152k
digital-1472k
digital-1536k
digital-1920k
packet-mode
frame-mode
atm

internationalNumber
subAddress
extraDialling
highLayerCompatibility

{

telephony3kHz
telephony7kHz
videotelephony
videoconference
audiographic
audiovisual
multimedia

} OPTIONAL,

BOOLEAN,
BOOLEAN,
BOOLEAN,
BOOLEAN,
BOOLEAN,
BOOLEAN,
BOOLEAN,
BOOLEAN,
BOOLEAN,
BOOLEAN,
BOOLEAN,
BOOLEAN,
BOOLEAN,
BOOLEAN,
BOOLEAN,
BOOLEAN,
BOOLEAN,
BOOLEAN,

DiallingString,
SubAddressString OPTIONAL,
ExtraDiallingString OPTIONAL,
SEQUENCE

BOOLEAN,
BOOLEAN,
BOOLEAN,
BOOLEAN,
BOOLEAN,
BOOLEAN,
BOOLEAN,

},
transportConnection SEQUENCE
nsapAddress OCTET STRING (SIZE (1..20)),
transportSelector OCTET STRING OPTIONAL
},
nonStandard NonStandardParameter,
MediaList ::= SEQUENCE {
audio BOOLEAN,
video BOOLEAN,
data BOOLEAN,
}
ChannelAggregationMethod ::= CHOICE {
h221 NULL,
h244 NULL,
iso-iec-13871 NULL,
-- The actual mode of bonding is dynamically selected according
-- to the procedures described in ISO/IEC 13871.
nonStandard NonStandardParameter,
}
Profile ::= CHOICE ({
simpleProfile CHOICE {

ITU-T Rec. T.124 (01/2007) 171

-- Basic transfer modes:

speech NULL, -- Simple telephony
telephony-3kHz NULL, -- Rec. G.711
telephony-7kHz NULL, -- Rec. G.722
voice-band NULL, -- Modems
frameRelay NULL,
-- T.120-only data profiles (Rec. T.123):
tl23-pstn-basic NULL,
tl23-psdn-basic NULL,
tl123-b-isdn-basic NULL
}
multimediaProfile SEQUENCE {
profile CHOICE {
h310 NULL,
h320 NULL,
h321 NULL,
h322 NULL,
h323 NULL,
h324 NULL,
h324m NULL,
asvd NULL,
dsvd NULL
3
tl20Data BOOLEAN
}
dsmccDownloadProfile NULL,
nonStandard NonStandardParameter,
}
ExtendedEl64NetworkAddress ::= SEQUENCE {
internationalNumber DiallingString,
subAddress SubAddressString OPTIONAL,
extraDialling ExtraDiallingString OPTIONAL,
}
TransportAddress ::= SEQUENCE {
nsapAddress OCTET STRING (SIZE (1..20)),
transportSelector OCTET STRING OPTIONAL
}
GSTNConnection ::= SEQUENCE ({
networkAddressExtendedEl64NetworkAddress,
}
ISDNConnection ::= SEQUENCE {
circuitTypes SET OF CHOICE ({
digital-64k NULL,
digital-2x64k NULL,
digital-384k NULL,
digital-1536 NULL,
digital-1920k NULL,
multirate-base-64k INTEGER (1..30) -- See Note 1
3
networkAddressExtendedEl64NetworkAddress,
highLayerCompatibility SEQUENCE {

-- Those are supported code points for IE HLC of the D
-- protocol (Rec. Q.931).

telephony3kHz BOOLEAN,
telephony7kHz BOOLEAN,
videotelephony BOOLEAN,
videoconference BOOLEAN,

172 ITU-T Rec. T.124 (01/2007)

audiographic BOOLEAN,
audiovisual BOOLEAN,
multimedia BOOLEAN,

} OPTIONAL,

-- Note 1: digital-2x64k differs from multirate-base-64k

-- with a multiplier value of 2; in the first case

-- the network is requested an 8 kHz integrity with Restricted
-- Differential Time Delay (RDTD) ;

-- in the second case the network is requested a Time Slot

-- Sequence integrity (see 4.5.5/0.931)

CSDNConnection ::= SEQUENCE ({
circuitTypes SET OF CHOICE ({
digital-56k NULL,
digital-64k NULL
Y.
networkAddressExtendedEl64NetworkAddress,

}

PSDNConnection ::= SEQUENCE ({
networkAddress CHOICE {
extendedEl64NetworkAddress ExtendedEl64NetworkAddress,
transportAddress TransportAddress,
nonStandard NonStandardParameter
}.
}
ATMConnection ::= SEQUENCE ({
networkAddress CHOICE {
extendedEl64 ExtendedEl64NetworkAddress,
nsapAddress TransportAddress,

-- this case is reserved for NSAPs only: the
-- optional transport selector shall never be used

nonStandard NonStandardParameter
}
maxTransferRate INTEGER (0..MAX) OPTIONAL,
-- 1in cells per seconds
}
NetworkConnection ::= CHOICE {
gstnConnection GSTNConnection,
isdnConnection ISDNConnection,
csdnConnection CSDNConnection,
psdnConnection PSDNConnection,
atmConnection ATMConnection,
extendedEl64NetworkAddress ExtendedEl64NetworkAddress,
-- NOTE - LAN connections and leased
transportAddress TransportAddress,
-- lines (Rec. G.703/G.704) may be covered by one of these
nonStandard NonStandardParameter,
}
NetworkAddressV2 ::= SET OF SEQUENCE {
networkConnection CHOICE {
singleConnection NetworkConnection,
aggregatedConnections SEQUENCE {

ITU-T Rec. T.124 (01/2007) 173

connectionList SET (SIZE(l..30)) OF CHOICE {

isdnConnection ISDNConnection,
csdnConnection CSDNConnection,
aggregationMethods SET OF ChannelAggregationMethod OPTIONAL,
profiles SET OF Profile OPTIONAL,
mediaConcerned MediaList OPTIONAL,
NodeType ::= ENUMERATED
terminal (o),
multiportTerminal (1),
mcu (2) ’
NodeProperties ::= SEQUENCE
managementDevice BOOLEAN,
-- Is the node a device such as a reservation system
peripheralDevice BOOLEAN,
-- Is the node a peripheral to a primary node
AsymmetryIndicator ::= CHOICE
callingNode NULL,
calledNode NULL,
unknown INTEGER (0..4294967295)
-- Uniformly distributed 32-bit random number
AlternativeNodeID ::= CHOICE
h243NodeID OCTET STRING (SIZE (2)),
ConferenceDescriptor : := SEQUENCE
conferenceName ConferenceName,
conferenceNameModifier ConferenceNameModifier OPTIONAL,
conferenceDescription TextString OPTIONAL,
lockedConference BOOLEAN,
passwordInTheClearRequired BOOLEAN,
networkAddress NetworkAddress OPTIONAL,
defaultConferenceFlag BOOLEAN,
conferenceMode ConferenceMode
NodeRecord ::= SEQUENCE
superiorNode UserID OPTIONAL,
-- Not present only for the Top GCC Provider
nodeType NodeType,
nodeProperties NodeProperties,

174 ITU-T Rec. T.124 (01/2007)

nodeName TextString OPTIONAL,
participantsList SEQUENCE OF TextString OPTIONAL,

siteInformation TextString OPTIONAL,
networkAddress NetworkAddress OPTIONAL,
alternativeNodeID AlternativeNodeID OPTIONAL,
userData UserData OPTIONAL,
nodeCategory NodeCategory OPTIONAL,
networkAddressV2 NetworkAddressV2 OPTIONAL
}
SessionKey ::= SEQUENCE
applicationProtocolKey Key,
sessionID ChannelID OPTIONAL
}
ChannelType ::= ENUMERATED
static (o),
dynamicMulticast (1),
dynamicPrivate (2),
dynamicUserId (3)
ApplicationRecord ::= SEQUENCE
applicationActive BOOLEAN,

-- Active/Inactive flag
conductingOperationCapable BOOLEAN,

-- Maximum one per node per session
startupChannel ChannelType OPTIONAL,
applicationUserID UserID OPTIONAL,

-- User ID assigned to the Application Protocol Entity
nonCollapsingCapabilities SET OF SEQUENCE
{

capabilityID CapabilityID,

applicationData OCTET STRING OPTIONAL
} OPTIONAL,

}
CapabilityID ::= CHOICE
standard INTEGER (0..65535),
-- Assigned by Application Protocol specifications
nonStandard Key
CapabilityClass ::= CHOICE
{
logical NULL,
unsignedMin INTEGER (0..MAX), -- Capability value
unsignedMax INTEGER (0..MAX), -- Capability value
}
EntityID ::= INTEGER (0..65535)
ApplicationInvokeSpecifier ::= SEQUENCE
sessionKey SessionKey,

expectedCapabilitySet SET OF SEQUENCE

ITU-T Rec. T.124 (01/2007)

175

capabilityID CapabilityID,
capabilityClass CapabilityClass,

} OPTIONAL,
startupChannel ChannelType OPTIONAL,
mandatoryFlag BOOLEAN,
-- TRUE indicates required Application Protocol Entity

RegistryKey ::= SEQUENCE
sessionKey SessionKey,
resourcelID OCTET STRING (SIZE (0..64))
RegistryItem ::= CHOICE
channelID DynamicChannellID,
tokenID DynamicTokenID,
parameter OCTET STRING (SIZE (0..64)),
vacant NULL,
RegistryEntryOwner ::= CHOICE
owned SEQUENCE
nodelD UserlID, -- Node ID of the owning node
entityID EntityID -- Entity ID of the owning
}. -- Application Protocol Entity
notOwned NULL -- There is no current owner
RegistryModificationRights ::= ENUMERATED
owner (0),
session (1),
public (2)
-- Part 2: PDU Messages
UserIDIndication ::= SEQUENCE
tag INTEGER,
ConferenceCreateRequest : := SEQUENCE
{ -- MCS-Connect-Provider request user data
conferenceName ConferenceName,
convenerPassword Password OPTIONAL,
password Password OPTIONAL,
lockedConference BOOLEAN,
listedConference BOOLEAN,
conductibleConference BOOLEAN,
terminationMethod TerminationMethod,
conductorPrivileges SET OF Privilege OPTIONAL,
conductedPrivileges SET OF Privilege OPTIONAL,

nonConductedPrivileges SET OF Privilege OPTIONAL,

176 ITU-T Rec. T.124 (01/2007)

conferenceDescription TextString OPTIONAL,

callerIdentifier TextString OPTIONAL,
userData UserData OPTIONAL,
conferencePriority ConferencePriority OPTIONAL,
conferenceMode ConferenceMode OPTIONAL
ConferenceCreateResponse ::= SEQUENCE
{ -- MCS-Connect-Provider response user data
nodelD UserID, -- Node ID of the sending node
tag INTEGER,
result ENUMERATED
success (0),
userRejected (1),
resourcesNotAvailable (2),
rejectedForSymmetryBreaking (3),
lockedConferenceNotSupported (4),
userData UserData OPTIONAL,
ConferenceQueryRequest ::= SEQUENCE
{ -- MCS-Connect-Provider request user data
nodeType NodeType,
asymmetryIndicator AsymmetryIndicator OPTIONAL,
userData UserData OPTIONAL,
ConferenceQueryResponse ::= SEQUENCE
{ -- MCS-Connect-Provider response user data
nodeType NodeType,
asymmetryIndicator AsymmetryIndicator OPTIONAL,
conferencelist SET OF ConferenceDescriptor,
result ENUMERATED
success (o),
userRejected (1),
userData UserData OPTIONAL,
waitForInvitationFlag BOOLEAN OPTIONAL,
noUnlistedConferenceFlag BOOLEAN OPTIONAL
ConferencedJoinRequest ::= SEQUENCE
{ -- MCS-Connect-Provider request user data as well as

-- MCS-Send-Data on Node ID Channel of Top GCC sent

-- by the receiver of the MCS-Connect-Provider

conferenceName ConferenceNameSelector OPTIONAL,
-- Required when part of MCS-Connect-Provider

conferenceNameModifier ConferenceNameModifier OPTIONAL,

tag INTEGER OPTIONAL,

-- Filled in when sent on Node ID Channel of Top GCC
password PasswordChallengeRequestResponse OPTIONAL,
convenerPassword PasswordSelector OPTIONAL,
callerIdentifier TextString OPTIONAL,
userData UserData OPTIONAL,

e e oy

ITU-T Rec. T.124 (01/2007) 177

nodeCategory NodeCategory OPTIONAL

}

ConferenceJoinResponse ::= SEQUENCE

{ -- MCS-Connect-Provider response user data as well as
-- MCS-Send-Data on Node ID Channel of
-- the receiver of the MCS-Connect-Provider

nodelID UserID OPTIONAL,
-- Node ID of directly connected node only
topNodeID UserID,
-- Node ID of Top GCC Provider
tag INTEGER,
conferenceNameAlias ConferenceNameSelector OPTIONAL,
passwordInTheClearRequired BOOLEAN,
lockedConference BOOLEAN,
listedConference BOOLEAN,
conductibleConference BOOLEAN,
terminationMethod TerminationMethod,
conductorPrivileges SET OF Privilege OPTIONAL,
-- No privilege shall be listed more than once
conductedPrivileges SET OF Privilege OPTIONAL,
-- No privilege shall be listed more than once
nonConductedPrivileges SET OF Privilege OPTIONAL,
-- No privilege shall be listed more than once
conferenceDescription TextString OPTIONAL,
password PasswordChallengeRequestResponse OPTIONAL,
result ENUMERATED
{
success (0),
userRejected (1),
invalidConference (2),
invalidPassword (3),
invalidConvenerPassword (4),
challengeResponseRequired (5),
invalidChallengeResponse (6),
}
userData UserData OPTIONAL,
nodeCategory NodeCategory OPTIONAL,
conferenceMode ConferenceMode OPTIONAL
}
ConferenceInviteRequest : := SEQUENCE
{ -- MCS-Connect-Provider request user data
conferenceName ConferenceName,
nodelD UserID, -- Node ID of the sending node
topNodelID UserlID, -- Node ID of Top GCC Provider
tag INTEGER,
passwordInTheClearRequired BOOLEAN,
lockedConference BOOLEAN,
listedConference BOOLEAN,
conductibleConference BOOLEAN,
terminationMethod TerminationMethod,
conductorPrivileges SET OF Privilege OPTIONAL,
-- No privilege shall be listed more than once
conductedPrivileges SET OF Privilege OPTIONAL,
-- No privilege shall be listed more than once
nonConductedPrivileges SET OF Privilege OPTIONAL,
-- No privilege shall be listed more than once
conferenceDescription TextString OPTIONAL,
callerIdentifier TextString OPTIONAL,
userData UserData OPTIONAL,

e e oy

178 ITU-T Rec. T.124 (01/2007)

conferencePriority ConferencePriority OPTIONAL,

nodeCategory NodeCategory OPTIONAL,
conferenceMode ConferenceMode OPTIONAL
ConferenceInviteResponse ::= SEQUENCE
{ -- MCS-Connect-Provider response user data
result ENUMERATED
success (o),
userRejected (1),
userData UserData OPTIONAL,
}
ConferenceAddRequest ::= SEQUENCE
{ -- MCS-Send-Data on Node ID Channel of Top GCC or
-- Node ID Channel of Adding MCU if specified
networkAddress NetworkAddress,
requestingNode UserID,
tag INTEGER,
addingMCU UserID OPTIONAL,
userData UserData OPTIONAL,
nodeCategory NodeCategory OPTIONAL,
networkAddressV2 NetworkAddressV2
ConferenceAddResponse : := SEQUENCE
{ -- MCS-Send-Data on Node ID Channel of requester
tag INTEGER,
result ENUMERATED
{
success (0),
invalidRequester (1),
invalidNetworkType (2),
invalidNetworkAddress (3),
addedNodeBusy (4),
networkBusy (5),
noPortsAvailable (6),
connectionUnsuccessful (7).,
}
userData UserData OPTIONAL,
ConferenceLockRequest ::= SEQUENCE
{ -- MCS-Send-Data on Node ID Channel of Top GCC
-- No parameters
}
ConferencelLockResponse ::= SEQUENCE
{ -- MCS-Send-Data on Node ID Channel of requester
result ENUMERATED
{
success (o),
invalidRequester (1),
alreadyLocked (2),

ITU-T Rec. T.124 (01/2007)

179

}

ConferencelLockIndication : := SEQUENCE

{ -- MCS-Uniform-Send-Data on GCC-Broadcast-Channel
-- or MCS-Send-Data on Node ID Channel
-- No parameters

}

ConferenceUnlockRequest ::= SEQUENCE
{ -- MCS-Send-Data on Node ID Channel of Top GCC
-- No parameters
}
ConferenceUnlockResponse ::= SEQUENCE
{ -- MCS-Send-Data on Node ID Channel of requester
result ENUMERATED
{
success (0),
invalidRequester (1),
alreadyUnlocked (2),
s
ConferenceUnlockIndication ::= SEQUENCE
{ -- MCS-Uniform-Send-Data on GCC-Broadcast-Channel

-- or MCS-Send-Data on Node ID Channel
-- No parameters

}

ConferenceTerminateRequest : := SEQUENCE
{ -- MCS-Send-Data on Node ID Channel of Top GCC
reason ENUMERATED
userInitiated (0),
timedConferenceTermination (1),

ConferenceTerminateResponse ::= SEQUENCE
{ -- MCS-Send-Data on Node ID Channel of requester
result ENUMERATED
success (0),
invalidRequester (1),
ConferenceTerminateIndication ::= SEQUENCE
{ -- MCS-Uniform-Send-Data on GCC-Broadcast-Channel
reason ENUMERATED
userInitiated (0),

timedConferenceTermination (1),

180 ITU-T Rec. T.124 (01/2007)

}

ConferenceEjectUserRequest ::= SEQUENCE

{ -- MCS-Send-Data on Node ID Channel of Top GCC
nodeToEject UserlID, -- Node ID of the node to eject
reason ENUMERATED

{

userInitiated (0),

ConferenceEjectUserResponse ::= SEQUENCE
{ -- MCS-Send-Data on Node ID Channel of requester
nodeToEject UserID, -- Node ID of the node to eject
result ENUMERATED
{
success (o),
invalidRequester (1),
invalidNode (2),
}s
ConferenceEjectUserIndication : := SEQUENCE
{ -- MCS-Uniform-Send-Data on GCC-Broadcast-Channel
nodeToEject UserID, -- Node ID of the node to eject
reason ENUMERATED
userInitiated (o),
higherNodeDisconnected (1),
higherNodeEjected (2),
}
ConferenceTransferRequest ::= SEQUENCE
{ -- MCS-Send-Data on Node ID Channel of Top GCC
conferenceName ConferenceNameSelector,

-- Name of conference to transfer to
conferenceNameModifier ConferenceNameModifier OPTIONAL,

networkAddress NetworkAddress OPTIONAL,
transferringNodes SET (SIZE (1..65536)) OF UserID OPTIONAL,
password PasswordSelector OPTIONAL,
networkAddressV2 NetworkAddressV2 OPTIONAL
ConferenceTransferResponse ::= SEQUENCE
{ -- MCS-Send-Data on Node ID Channel of requester
conferenceName ConferenceNameSelector,

-- Name of conference to transfer to
conferenceNameModifier ConferenceNameModifier OPTIONAL,

transferringNodes SET (SIZE (1..65536)) OF UserID OPTIONAL,
result ENUMERATED
{

success (o),

invalidRequester (1),

ITU-T Rec. T.124 (01/2007) 181

ConferenceTransferIndication ::= SEQUENCE
{ -- MCS-Uniform-Send-Data on GCC-Broadcast-Channel
conferenceName ConferenceNameSelector,

-- Name of conference to transfer to
conferenceNameModifier ConferenceNameModifier OPTIONAL,
networkAddress NetworkAddress OPTIONAL,
transferringNodes SET (SIZE (1..65536)) OF UserID OPTIONAL,

-- List of Node IDs,

-- not present if destined for all nodes

password PasswordSelector OPTIONAL,
networkAddressV2 NetworkAddressV2 OPTIONAL
RosterUpdateIndication ::= SEQUENCE
{ -- MCS-Send-Data on Node ID Channel or
-- MCS-Uniform-Send-Data on GCC-Broadcast-Channel
fullRefresh BOOLEAN,

-- Conference Roster and all
-- ApplicationProtocol Sessions refreshed
nodeInformation SEQUENCE

{

nodeRecordList CHOICE

{

noChange NULL,
refresh SET (SIZE (1..65536)) OF SEQUENCE

-- One for each node in the conference;
-- no node shall be listed more than once

nodeID UserID, -- Node ID of the node
nodeRecord NodeRecord
update SET (SIZE (1..65536)) OF SEQUENCE
-- One for each node changing its node record;
-- no node shall be listed more than once
{
nodeID UserID, -- Node ID of the node
nodeUpdate CHOICE
addRecord NodeRecord,
replaceRecord NodeRecord,
removeRecord NULL,
}s
rosterInstanceNumber INTEGER (0..65535),
nodesAdded BOOLEAN,
-- Nodes have been added since last instance
nodesRemoved BOOLEAN,

-- Nodes have been removed since last instance

b

applicationInformation SET (SIZE (0..65535)) OF SEQUENCE
-- One for each Application Protocol Session;
-- all Application Protocol Sessions if full refresh;
-- no Application Protocol Session shall be
-- listed more than once

182 ITU-T Rec. T.124 (01/2007)

sessionKey SessionKey,
applicationRecordList CHOICE

noChange NULL,

refresh SET (SIZE (0..65535)) OF SEQUENCE

-- One for each node with the
-- Application Protocol Session enrolled;
-- no node shall be listed more than once

{
nodeID UserID,
-- Node ID of node
entityID EntityID,
-- ID for this Application Protocol Entity at this node
applicationRecord ApplicationRecord
update SET (SIZE (1..65536)) OF SEQUENCE
-- One for each node modifying its Application Record;
-- no node shall be listed more than once
{
nodeID UserID,
-- Node ID of node
entityID EntityID,
-- ID for this Application Protocol Entity at this node
applicationUpdate CHOICE
{
addRecord ApplicationRecord,
replaceRecord ApplicationRecord,
removeRecord NULL,
y }
applicationCapabilitiesList CHOICE
{
noChange NULL,
refresh SET OF SEQUENCE
capabilityID CapabilityID,
capabilityClass CapabilityClass,
numberOfEntities INTEGER (1..65536),
-- Number of Application Protocol Entities
-- which issued the capability
}
rosterInstanceNumber INTEGER (0..65535),
peerEntitiesAdded BOOLEAN,
-- Peer Entities have been added since last instance
peerEntitiesRemoved BOOLEAN,
-- Peer Entities have been removed since last instance
},
}
ApplicationInvokeIndication ::= SEQUENCE
{ -- MCS-Send-Data or MCS-Uniform-Send-Data

-- on GCC-Broadcast-Channel or Node ID Channel
applicationProtocolEntiyList SET (SIZE (1..65536)) OF ApplicationInvokeSpecifier,
destinationNodes SET (SIZE (1..65536)) OF UserID OPTIONAL,

-- List of Node IDs,

ITU-T Rec. T.124 (01/2007) 183

-- not present if destined for all nodes

}

RegistryRegisterChannelRequest ::= SEQUENCE

{ -- MCS-Send-Data on Node ID Channel of Top GCC
entityID EntityID,
key RegistryKey,
channelID DynamicChannellID,

}

RegistryAssignTokenRequest ::= SEQUENCE

{ -- MCS-Send-Data on Node ID Channel of Top GCC
entityID EntityID,
key RegistryKey,

}

RegistrySetParameterRequest ::= SEQUENCE

{ -- MCS-Send-Data on Node ID Channel of Top GCC
entityID EntityID,
key RegistryKey,
parameter OCTET STRING (SIZE (0..64)),
modificationRights RegistryModificationRights OPTIONAL,

}

RegistryRetrieveEntryRequest : := SEQUENCE

{ -- MCS-Send-Data on Node ID Channel of Top GCC
entityID EntityID,
key RegistryKey,

}

RegistryDeleteEntryRequest ::= SEQUENCE

{ -- MCS-Send-Data on Node ID Channel of Top GCC
entityID EntityID,
key RegistryKey,

}

RegistryMonitorEntryRequest ::= SEQUENCE

{ -- MCS-Send-Data on Node ID Channel of Top GCC
entityID EntityID,
key RegistryKey,

}

RegistryMonitorEntryIndication ::= SEQUENCE

{ -- MCS-Uniform-Send-Data on GCC-Broadcast-Channel
key RegistryKey,
item RegistryItem,

-- Contents: channel, token, parameter, or empty
owner RegistryEntryOwner,
modificationRights RegistryModificationRights OPTIONAL,

}

RegistryAllocateHandleRequest ::= SEQUENCE
-- MCS-Send-Data on Node ID Channel of Top GCC
entityID EntityID,
numberOfHandles INTEGER (1..1024),

184 ITU-T Rec. T.124 (01/2007)

}

RegistryAllocateHandleResponse ::= SEQUENCE

{ -- MCS-Send-Data on Node ID Channel of requester
entityID EntityID,
numberOfHandles INTEGER (1..1024),
firstHandle Handle,
result ENUMERATED

{

successful (0),
noHandlesAvailable (1),

}
}
RegistryResponse ::= SEQUENCE
{ -- MCS-Send-Data on Node ID Channel of requester
entityID EntityID,

-- Entity ID of the requesting Application Protocol Entity
primitiveType ENUMERATED

{
registerChannel (0),
assignToken (1),
setParameter (2),
retrieveEntry (3),
deleteEntry (4),
monitorEntry (5),

3

key RegistryKey,

-- Database index
item RegistryItem,

-- Contents: channel, token, parameter, or vacant
owner RegistryEntryOwner,
modificationRights RegistryModificationRights OPTIONAL,
result ENUMERATED

{
successful (0),
belongsToOther (1),
tooManyEntries (2),
inconsistentType (3),
entryNotFound (4),
entryAlreadyExists (5),
invalidRequester (6),
3
}
ConductorAssignIndication ::= SEQUENCE
{ -- MCS-Uniform-Send-Data on GCC-Broadcast-Channel
conductingNode UserID,
}
ConductorReleaselIndication ::= SEQUENCE
{ -- MCS-Uniform-Send-Data on GCC-Broadcast-Channel
-- No parameters
}

ITU-T Rec. T.124 (01/2007) 185

ConductorPermissionAskIndication ::= SEQUENCE
{ -- MCS-Uniform-Send-Data on GCC-Broadcast-Channel
grantFlag BOOLEAN,
-- TRUE to request permission grant, FALSE to release

}
ConductorPermissionGrantIndication ::= SEQUENCE
{ -- MCS-Uniform-Send-Data on GCC-Broadcast-Channel
permissionList SEQUENCE (SIZE (0..65535)) OF UserlID,
-- Node ID of nodes granted permission
waitingList SEQUENCE (SIZE (1..65536)) OF UserID OPTIONAL,
-- Node ID of nodes waiting for permission
}
ConferenceTimeRemainingIndication ::= SEQUENCE
{ -- MCS-Send-Data on GCC-Broadcast-Channel
timeRemaining Time,
nodeID UserID OPTIONAL,
ConferenceTimeInquireIndication ::= SEQUENCE
{ -- MCS-Send-Data on GCC-Convener-Channel

nodeSpecificTimeFlag BOOLEAN,
-- FALSE for conference-wide, TRUE for node-specific

}

ConferenceTimeExtendIndication ::= SEQUENCE
{ -- MCS-Send-Data on GCC-Convener-Channel
timeToExtend Time,

nodeSpecificTimeFlag BOOLEAN,
-- FALSE for conference-wide, TRUE for node-specific

}

ConferenceAssistanceIndication ::= SEQUENCE
{ -- MCS-Uniform-Send-Data on GCC-Broadcast-Channel
userData UserData OPTIONAL,

}

TextMessageIndication ::= SEQUENCE
message TextString,
{ -- MCS-Send-Data or MCS-Uniform-Send-Data

-- on GCC-Broadcast-Channel or Node ID Channel

}

RosterRefreshRequest ::= SEQUENCE

{
nodelD UserlID,
nodeCategory NodeCategory,
fullRefresh BOOLEAN,
sendConferenceRoster BOOLEAN OPTIONAL,
applicationList SEQUENCE
{

applicationKeyList SET OF SEQUENCE
applicationProtocolKey Key,

nonStandardParameter NonStandardParameter OPTIONAL,

186 ITU-T Rec. T.124 (01/2007)

3

nonStandardParameter

} OPTIONAL,
sessionList

{

sessionKeyList

{

sessionKey

nonStandardParameter

3

nonStandardParameter

} OPTIONAL,
nonStandardParameter

}

SEQUENCE

NonStandardParameter OPTIONAL,

SET OF SEQUENCE

SessionKey,
NonStandardParameter OPTIONAL,

NonStandardParameter OPTIONAL,

NonStandardParameter OPTIONAL,

FunctionNotSupportedResponse SEQUENCE
request RequestPDU
NonStandardPDU ::= SEQUENCE
data NonStandardParameter,

-- Part 3: Messages sent as MCS-Connect-Provider user data

ConnectData ::= SEQUENCE

{

tl24IdentifierKey,

-- This shall be set to the value {itu-t recommendation t 124 version(0) 1}

connectPDU

}

ConnectGCCPDU ::= CHOICE

{
conferenceCreateRequest
conferenceCreateResponse
conferenceQueryRequest
conferenceQueryResponse
conferencedJoinRequest
conferenceJoinResponse
conferencelInviteRequest
conferencelnviteResponse

OCTET STRING

ConferenceCreateRequest,
ConferenceCreateResponse,
ConferenceQueryRequest,
ConferenceQueryResponse,
ConferenceJoinRequest,
ConferenceJoinResponse,
ConferenceInviteRequest,
ConferenceInviteResponse,

request RequestPDU,
response ResponsePDU,
indication IndicationPDU

ITU-T Rec. T.124 (01/2007)

187

RequestPDU

{

::= CHOICE

conferencedJoinRequest
conferenceAddRequest
conferencelLockRequest
conferenceUnlockRequest
conferenceTerminateRequest
conferenceEjectUserRequest
conferenceTransferRequest
registryRegisterChannelRequest
registryAssignTokenRequest
registrySetParameterRequest
registryRetrieveEntryRequest
registryDeleteEntryRequest
registryMonitorEntryRequest
registryAllocateHandleRequest
nonStandardRequest

ResponsePDU ::= CHOICE

{

}

IndicationPDU

{

END

188

conferenceJoinResponse
conferenceAddResponse
conferencelockResponse
conferenceUnlockResponse
conferenceTerminateResponse
conferenceEjectUserResponse
conferenceTransferResponse
registryResponse
registryAllocateHandleResponse
functionNotSupportedResponse
nonStandardResponse

::= CHOICE

userIDIndication
conferencelLockIndication
conferenceUnlockIndication
conferenceTerminateIndication
conferenceEjectUserIndication
conferenceTransferIndication
rosterUpdateIndication
applicationInvokeIndication
registryMonitorEntryIndication
conductorAssignIndication
conductorReleaseIndication
conductorPermissionAskIndication
conductorPermissionGrantIndication
ConductorPermissionGrantIndication,
conferenceTimeRemainingIndication
conferenceTimeInquireIndication
conferenceTimeExtendIndication
conferenceAssistanceIndication
textMessageIndication
nonStandardIndication

ITU-T Rec. T.124 (01/2007)

ConferenceJoinRequest,
ConferenceAddRequest,
ConferencelockRequest,
ConferenceUnlockRequest,
ConferenceTerminateRequest,
ConferenceEjectUserRequest,
ConferenceTransferRequest,
RegistryRegisterChannelRequest,
RegistryAssignTokenRequest,
RegistrySetParameterRequest,
RegistryRetrieveEntryRequest,
RegistryDeleteEntryRequest,
RegistryMonitorEntryRequest,
RegistryAllocateHandleRequest,
NonStandardPDU,

ConferenceJoinResponse,
ConferenceAddResponse,
ConferencelLockResponse,
ConferenceUnlockResponse,
ConferenceTerminateResponse,
ConferenceEjectUserResponse,
ConferenceTransferResponse,
RegistryResponse,
RegistryAllocateHandleResponse,
FunctionNotSupportedResponse,
NonStandardPDU,

UserIDIndication,
ConferencelLockIndication,
ConferenceUnlockIndication,
ConferenceTerminateIndication,
ConferenceEjectUserIndication,
ConferenceTransferIndication,
RosterUpdateIndication,
ApplicationInvokeIndication,
RegistryMonitorEntryIndication,
ConductorAssignIndication,
ConductorReleaseIndication,
ConductorPermissionAskIndication,

ConferenceTimeRemainingIndication,
ConferenceTimeInquireIndication,
ConferenceTimeExtendIndication,
ConferenceAssistanceIndication,
TextMessageIndication,
NonStandardPDU,

9 Use of the Multipoint Communication Service

All GCC communication shall be through the Multipoint Communication Service (MCS) as
specified in [ITU-T T.122]. This clause details how GCC makes use of MCS services, channel

allocation, token alocation and data priorities.

9.1 M CS services

GCC assumes the MCS services indicated in Table 9-1. All primitives and parameters marked with
an "M" are used by mandatory components of GCC. Items marked with an "O" are used only by

optional portions of GCC.

Table9-1-MCSservicesused by GCC

Primitives Use Parameters Use
MCS-Connect-Provider request M Calling Address @]
MCS-Connect-Provider indication M Calling Domain Selector M
MCS-Connect-Provider response M Called Address @]
MCS-Connect-Provider confirm M Called Domain Selector —

Upward/Downward Flag M
Domain Parameters M
Quality of Service M
Result M
User Data M
MCS-Disconnect-Provider request M Reason M
MCS-Disconnect-Provider indication M
MCS-Attach-User request M Domain Selector M
MCS-Attach-User confirm M Result M
User ID M
MCS-Detach-User request M Reason M
MCS-Detach-User indication M User ID M
MCS-Channel-Join request M Channel to Join M
MCS-Channel-Join confirm M Result M
MCS-Channel-L eave request Channel to Leave
MCS-Channel-L eave indication - Reason -
M CS-Channel-Convene request - Result -
MCS-Channel-Convene confirm - Channel -
M CS-Channel-Disband request - Channel -
MCS-Channel-Disband indication — Reason -
MCS-Channel-Admit request - Channel -
MCS-Channel-Admit indication - Manager User ID -
List of User IDs -
MCS-Channel-Expel request - Channel —
MCS-Channel-Expel indication - List of User IDs -
Reason -
ITU-T Rec. T.124 (01/2007) 189

Table9-1-MCSservicesused by GCC

Primitives Use Parameters Use

MCS-Send-Data request M Priority M
MCS-Send-Data indication M Channel ID M

Sender User ID M

Data M
MCS-Uniform-Send-Data request M Priority M
MCS-Uniform-Send-Data indication M Channel ID M

Sender User ID M

Data M
MCS-Token-Grab request @] Token ID @]
MCS-Token-Grab confirm (0] Result @]
MCS-Token-Inhibit request @] Token ID @]
MCS-Token-Inhibit confirm (@] Result 0]
MCS-Token-Give request @] User ID Giving M
MCS-Token-Giveindication M User ID to Receive @]
MCS-Token-Give response M Token ID M
MCS-Token-Give confirm @] Result M
MCS-Token-Please request @] User ID Requesting @]
MCS-Token-Please indication @] Token ID @]
MCS-Token-Rel ease request @] Token ID @]
MCS-Token-Release confirm 0] Result 0]
MCS-Token-Test request @] Token ID @]
MCS-Token-Test confirm @] Token Status @]

9.2 Channel allocation

GCC reserves two static channels for its exclusive use. One channel, GCC-CHANNEL-O0 is joined
by all GCC Providersin a conference. Another channel, GCC-CHANNEL-1, is joined only by the
Conference Convener. Each GCC Provider aso joins the Node ID Channel allocated to it by MCS.
Table 9-2 shows the channel usage by GCC.

Table 9-2 — GCC channel usage

Channd ID Type Mnemonic Description
GCC-CHANNEL-0 | Static GCC-Broadcast- For communication from any GCC
Channel Provider in aconference to all GCC
Providers.
GCC-CHANNEL-1 | Static GCC-Convener- For communication from any GCC
Channel Provider in aconference to the
Conference Convener.
GCC-CHANNEL-2 | Static GCC-Conventional- For communication from any GCC
Broadcast-Channel Provider in aconference to all GCC
Providers.

190 ITU-T Rec. T.124 (01/2007)

Table 9-2 — GCC channel usage

Channd ID Type Mnemonic Description
GCC-CHANNEL-3 | Static GCC-Counted- For communication from any
Broadcast-Channel Conventional node GCC Provider ina

conference to any other Conventional
node GCC Provider in the conference.
Used to communicate Counted node
activity among Conventional nodes.

— Dynamic Node ID Channel For communication from any GCC
Provider in a conference to the GCC
Provider at a particular node. Each node
isidentified by its Node ID.

9.3 Token allocation

GCC reserves a single token for its exclusive use. This token, GCC-TOKEN-O, is used as the
Conference Conductorship Token. GCC aso reserves tokens 16 384 through 65 535 for use as
dynamic tokens which GCC allocates for use by Application Protocol Entities. Table 9-3 shows the
token usage by GCC.

Table 9-3 - GCC token usage

Token ID M nemonic Description
GCC-TOKEN-0 Conference-Conductorship-Token | Grabbed by a GCC Provider to
become the Conference Conductor.
16 384 through 65 535 Dynamic Tokens Allocated by GCC for use by

Application Protocol Entities using
GCC-Registry-Assign-Token
primitive.

94 Use of MCS data transmission services

Table 9-4 summarizes the use of MCS data transmission services (MCS-Send-Data and
MCS-Uniform-Send-Data) for each GCCPDU. Listed for each GCCPDU are the type of MCS data
service used, the Channel 1D, and requested data priority.

Table 9-4 —Use of MCS send data for GCCPDUSs

GCCPDU Channel Send datatype | Priority
UserlDIndication Node ID Channel of directly MCS-Send-Data | Top
connected node
ConferenceCreateRequest - - _
ConferenceCreateResponse — - -
ConferenceQueryRequest - - _
ConferenceQueryResponse — - -
ConferenceJoinRequest Node ID Channel of Top GCC | MCS-Send-Data | Top
ConferenceJoinResponse Node ID Channel of requester | MCS-Send-Data | Top

Conferencel nviteRequest - - _

ITU-T Rec. T.124 (01/2007) 191

Table 9-4 — Use of MCS send data for GCCPDUSs

GCCPDU Channél Send datatype | Priority
Conferencel nviteResponse — — —
ConferenceAddReguest Node ID Channel of Top GCC | MCS-Send-Data | High
Node ID Channel of adding MCS-Send-Data | High
MCU
ConferenceAddResponse Node ID Channel of requester | MCS-Send-Data | High
Conferencel. ockRequest Node ID Channel of Top GCC | MCS-Send-Data | High
Conferencel. ockResponse Node ID Channel of requester | MCS-Send-Data | High
Conferencel ocklndication GCC-Broadcast-Channel MCS-Uniform- High
Send-Data
Node ID Channel MCS-Send-Data | High
ConferenceUnl ockRequest Node ID Channel of Top GCC | MCS-Send-Data | High
ConferenceUnlockResponse Node ID Channel of requester MCS-Send-Data | High
ConferenceUnlocklndication GCC-Broadcast-Channel MCS-Uniform- High
Send-Data
Node ID Channel MCS-Send-Data | High
ConferenceT erminateRequest Node ID Channel of Top GCC | MCS-Send-Data | High
ConferenceT erminateResponse Node ID Channel of requester MCS-Send-Data | High
ConferenceTerminatel ndication GCC-Broadcast-Channel MCS-Uniform- High
Send-Data
ConferenceEjectUserRequest Node ID Channel of Top GCC | MCS-Send-Data | Top
ConferenceEjectUserResponse Node ID Channel of requester MCS-Send-Data | High
ConferencekjectUserIndication GCC-Broadcast-Channel MCS-Uniform- | Top
Send-Data
ConferenceTransferRequest Node ID Channel of Top GCC | MCS-Send-Data | High
ConferenceTransferResponse Node ID Channel of requester MCS-Send-Data | High
ConferenceTransferIndication GCC-Broadcast-Channel MCS-Uniform- High
Send-Data
RosterUpdatel ndication Node ID Channel of recipient MCS-Send-Data | High
GCC-Broadcast-Channel MCS-Uniform- High
Send-Data
Applicationlnvokel ndication GCC-Broadcast-Channel MCS-Send-Data | High
or MCS-
Uniform-Send-
Data
Node ID Channel of recipient MCS-Send-Data | High
RegistryRegisterChannel Request Node ID Channel of Top GCC | MCS-Send-Data | High
RegistryAssignTokenRequest Node ID Channel of Top GCC | MCS-Send-Data | High
Registry SetParameterRequest Node ID Channel of Top GCC | MCS-Send-Data | High
RegistryRetrieveEntryRequest Node ID Channel of Top GCC | MCS-Send-Data | High
RegistryDeleteEntryRequest Node ID Channel of Top GCC | MCS-Send-Data | High
RegistryMonitorEntryRequest Node ID Channel of Top GCC | MCS-Send-Data | High

192 ITU-T Rec. T.124 (01/2007)

Table 9-4 — Use of MCS send data for GCCPDUSs

GCCPDU Channél Send datatype | Priority
RegistryMonitorEntryIndication GCC-Broadcast-Channel MCS-Uniform- High
Send-Data
RegistryAllocateHandleRequest Node ID Channel of Top GCC | MCS-Send-Data | High
RegistryAllocateHandleResponse Node ID Channel of requester MCS-Send-Data | High
RegistryResponse Node ID Channel of requester | MCS-Send-Data | High
ConductorAssignindication GCC-Broadcast-Channel MCS-Uniform- | Top
Send-Data
ConductorRel easel ndication GCC-Broadcast-Channel MCS-Uniform- Top
Send-Data
ConductorPermissionAskindication GCC-Broadcast-Channel MCS-Uniform- High
Send-Data
ConductorPermissionGrantindication | GCC-Broadcast-Channel MCS-Uniform- | Top
Send-Data
ConferenceTimeRemaininglndication | GCC-Broadcast-Channel MCS-Uniform- High
Send-Data
ConferenceTimelnquirelndication GCC-Convener-Channel MCS-Send-Data | High
ConferenceTimeExtendlndication GCC-Convener-Channel MCS-Send-Data | High
ConferenceAssistancel ndication GCC-Broadcast-Channel MCS-Send-Data | High
or MCS-
Uniform-Send-
Data
TextMessagel ndication GCC-Broadcast-Channel MCS-Send-Data | High
or MCS-
Uniform-Send-
Data
Node ID Channel of recipient MCS-Send-Data | High
FunctionNotSupportedResponse Node ID Channel of requester | MCS-Send-Data | Same as
request
NonStandardPDU Not defined Not defined Not
defined

9.5 Encoding of PDUsin MCS primitives

All PDUs defined in this Recommendation are encoded and placed in the data field of one of
several possible MCS primitives. These are either MCS-Connect-Provider, MCS-Send-Data, or
MCS-Uniform-Send-Data. In any of these cases, the bit string that results from the ASN.1 encoding
is placed in the OCTET STRING used by MCS in the order such that for each octet, the leading bit
Is placed in the most significant bit position, and the trailing bit is placed in the least significant bit

position.

In the case of MCS-Connect-Provider, the PDU itself is not placed in the MCS data parameter
directly, but is contained within an enclosing structure defined in 9.6 In this case, the description
above applies to the outer structure rather than the PDU itself.

ITU-T Rec. T.124 (01/2007)

193

9.6 Format of User Data parameter of M CS-Connect-Provider

The User Data parameter of the MCS-Connect-Provider and M CS-Disconnect-Provider primitives
as used by this Recommendation is of a format which provides unique identification of the MCS
Controller (as defined in [ITU-T T.122]). The MCS Controller may either be a standard type (such
as one that adheres to this Recommendation), or may be a non-standard type. To distinguish these,
the User Data consists of an ASN.1 abstract type which includes an identifier of the type of MCS
Controller followed by the PDU itself. The identifier field is of type Key which is a choice of either
an Object Identifier, or an H221NonStandardidentifier. The overall abstract type as well as its
components is defined in 8.7. The overal structure is encoded using Packed Encoding Rules
(Aligned variant) asdefined in [ITU-T X.691].

When the MCS Controller adheres to this Recommendation, this header shall be set to the Object
Identifier choice with a value {itu-t recommendation t 124 version(0) 1}.

Within this structure, the PDU is not directly encoded but rather isincluded in a data field which is
of type OCTET STRING. The PDU is separately encoded, also using Packed Encoding Rules
(Aligned variant) as with all other PDUs defined in this Recommendation. The resulting encoded
bit string is placed into the OCTET STRING in the order such that for each octet, the leading bit is
placed in the most significant bit position, and the trailing bit is placed in the least significant bit
position. The PDU and the enclosing structure are encoded separately to alow for future
Recommendations or non-standard MCS Controllers to use different encoding of the PDUs while
providing a uniquely encoded identifier of the MCS Controller type (always to be encoded using
Packed Encoding Rules).

9.7 I nterpretation of the M CS Domain Selector

In using the MCS-Connect-Provider primitive, this Recommendation makes the following
assumptionsin its use of the Domain Selector.

The Calling Domain Selector aways accurately reflects the local Domain Selector which is equal to
the Conference ID (which is aso used by Application Protocols in making an MCS attachment).

The Caled Domain Selector is never used by this Recommendation. Instead it is assumed that the
MCS provider passes MCS-Connect-Provider indications to the Control MCSAP regardless of their
contents. It is the role of the GCC Provider to determine if the connection should be established,
and if so, which domain the connection should be associated with. This is done dlightly differently
for the four T.124 primitives which generate MCS-Connect-Provider requests:

. GCC-Conference-Create: In this case, there is no domain already in existence prior to
reception of the MCS-Connect-Provider indication to which the connection could be
attached. On receipt of a valid MCS-Connect-Provider indication, a GCC Provider must
establish a new MCS domain and indicate to MCS that this is the domain which the new
connection isto be associated with. The Domain Selector is chosen at that time by the GCC
Provider as the local Conference ID. The means to perform both of these actions are local
matters not specified in [ITU-T T.122].

. GCC-Conference-Query: In this case, no connection is established since the MCS-Connect-
Provider response indicates that the request was user-rgjected. As a result, it is not
necessary to associate the request to any MCS domain.

. GCC-Conference-Join: In this case, a domain does aready exist at the receiving node. If
the Join request is accepted by the GCC Provider, the GCC Provider must indicate to the
MCS provider which domain the connection is to be associated with. The Conference
Name (and Conference Name Modifier) are used by the GCC Provider to determine which
domain to indicate. The Domain Selector isthe local Conference ID of that conference. The
means to indicate the domain to the MCS provider is a local matter not specified in
[ITU-T T.122].

194 ITU-T Rec. T.124 (01/2007)

GCC-Conference-Invite: In this case, as in the Create case, the receiving node does not
already have a domain established. The GCC Provider, if the Invite is accepted, chooses a
Conference ID which isto be used as the Domain Selector. The MCS provider must be told
of the establishment of this domain at this node, and that the particular connection is to be
associated with this domain. As in the case of the Create, the means to perform both of
these actions are local matters not specified in [ITU-T T.122].

ITU-T Rec. T.124 (01/2007) 195

Annex A

Static channel and token I D assignments
(Thisannex forms an integral part of this Recommendation)

A.1l Staticchannel ID assignments

Table A.1 lists the numerical assignment of static channel IDs for the static channels allocated for
use by this Recommendation. The numerical assignment of static channel IDs is intended to be
centralized in [ITU-T T.120], but isincluded here until [ITU-T T.120] is completed.

Table A.1 - Static Channel 1D assignments

Symbolic name Channéd ID
GCC-CHANNEL-0 1
GCC-CHANNEL-1 2
GCC-CHANNEL-2 3
GCC-CHANNEL-3 4

A.2 Statictoken ID assignments

Table A.2 lists the numerical assignment of static token IDs for the static tokens allocated for use by
this Recommendation. The numerical assignment of static token IDs is intended to be centralized in
[ITU-T T.120], but isincluded here until [ITU-T T.120] is completed.

Table A.2 — Static token I D assignments

Symbolic name Token ID
GCC-TOKEN-0 1

196 ITU-T Rec. T.124 (01/2007)

Annex B

Object Identifier assignments

(Thisannex forms an integral part of this Recommendation)

TableB.1

Object Identifier Value Description

{itu-t recommendation t 124 version(0) 1} | This Object Identifier is used to indicate the version of
this Recommendation in use as the MCS Controller. At
thistime there is a single standardized version defined.

ITU-T Rec. T.124 (01/2007) 197

Annex C

Networ k Address Parameter — Description and use
(Thisannex forms an integral part of this Recommendation)

ASN.1 structure NetworkAddressV 2 specified in 8.7 (GCCPDU Definitions) reshapes and enhances
structure NetworkAddress. By dissociating the concepts of network types, transfer rates and profiles
(or transfer modes) which are mixed together into the flat organization used by structure
NetworkAddress, it brings more flexibility in describing a network connection toward a conference
node, and solves a certain number of pre-signalling issues not addressed so far.

NetworkAddressV2 has been added beside NetworkAddress in order to meet backward
compatibility with older T.120 implementations not using it. ITU-T intends to maintain
NetworkAddressV2 as T.124 evolves, while letting the use of NetworkAddress diminish until it
may be removed from the standard. This Annex constitutes an intermediate step toward this point.

To guarantee interworking between T.120 devices using and not using NetworkAddressV2, the
following rules shall be respected by implementations:

1) Any T.120 equipment that conforms to this version of T.124, namely Recommendation
T.124 revised — 1998, SHALL make use of NetworkAddressV2 IN CONJUNCTION
WITH NetworkAddress.

2) Each individual T.124 provider using NetworkAddressV2 is responsible for supplying a
NetworkAddress structure that matches the closest as possible features contained in
NetworkAddressv 2.

3) Each individual T.124 provider using NetworkAddressV2 which, at some point, must

process and relay a GCCPDU containing network address parameters, and which receives
the network address information from a node not making use of NetworkAddressV2, is
responsible for adding in the relayed PDU a NetworkAddressV 2 that matches the closest as
possible the description passed through NetworkAddress (see Note).
NOTE — A typical example is the conference nodes transfer mechanism described in 8.2.11; when
the Top GCC provider uses NetworkAddressV2 and receives the ConferenceTransferRequest PDU
from a node that uses NetworkAddress only, it shall produce and insert a NetworkAddressv?2
structure in the corresponding ConferenceTransferlndication PDU that it will broadcast on the
GCC-Broadcast-Channel channel.

4) T.124 providers receiving GCCPDUs containing a NetworkAddressV2 structure and that
do not support it will silently ignoreit.

198 ITU-T Rec. T.124 (01/2007)

Appendix |

Relationship of T.120to H.243 in H.320 conferences
(This appendix does not form an integral part of this Recommendation)

1.1 I ntroduction

It is the intent of T.120 is to eventualy take over the responsibilities of H.243 for multipoint
conference establishment in H.320 audio/video/data conferences. In the meantime, H.243 and T.120
will continue to coexist. This Appendix provides recommendations as to how H.243 and T.120
should relate during the long transitional phase from H.243 to T.120 conference control.

NOTE — Clause 15/H.243 places normative requirements on terminals and MCUs in this regard.

1.2 Conference selection and Password protection

Both T.124 and H.243 provide means of establishing a logical connection from a termina to a
particular conference hosted at an MCU. Both Recommendations also provide a password
protection mechanism for verifying the authority of a node to join the desired conference. It is
envisioned that both T.124 and H.243 will continue to be used for some time. The following
subclauses describe means by which T.124 and H.243 should be used during the conference
establishment process.

The assumption is made that at most one H.243 conference is associated with each T.124
conference and vice versa. Thus, if aterminal joins either one, the choice of the other conferenceis
then predetermined. If this assumption is not valid, then different procedures may apply.

For the purpose of selecting a conference to join (in the case that the MCU allows such a choice)
and for the purpose of password protection, an MCU should choose to use the T.124 or the H.243
mechanisms, but not both. The choice of which mechanism to use may depend on whether the
conference is dial-in or dial-out, may be made separately for each MCU port, and may depend on
the capabilities of the connecting terminal on each port. In the case of terminals that support T.120,
it is preferred that the T.124 mechanisms be used for these purposes rather than the H.243
mechanism.

[.2.1 T.124 conference establishment

The MCU may choose to use the T.124 mechanisms for conference establishment for a given
terminal. The MCU may, for example, allow the terminal to choose among a list of conferences to
join by providing this list in the GCC-Conference-Query response and allowing selection of a
conference using the GCC-Conference-Join primitive. The MCU may instead have a predetermined
conference that it wishes the connecting terminal to join. In this case, it should set the Default
Conference Flag in the GCC-Conference-Query response's corresponding Conference Descriptor to
indicate that the connecting terminal should join the indicated conference. In either case, if the
MCU requires password protection, the T.124 password protection mechanisms (Password In The
Clear Required or Challenge Response Required) should be used to verify that the connecting
terminal is authorized to join the conference.

Alternatively, as may be the case for a prearranged dial-out, if the choice of conference is already
determined and password protection is not required, the MCU can decide to take the initiative and
to invite the terminal into a T.124 conference by issuing a GCC-Conference-Invite request. In this
case, it should set the Wait for Invitation Flag in the GCC-Conference-Query response to indicate
that the connecting terminal should not take action to join or create a T.124 conference.

Once the MCU receives a GCC-Conference-Join-Request with a conference name and the
corresponding correct password or decides to take the initiative and to invite aterminal into aT.124

ITU-T Rec. T.124 (01/2007) 199

conference, the termina may then start receiving the audio and video associated with the
corresponding H.243 conference.

In this case, the MCU should not use the H.243 mechanism to request a password from the
connecting terminal. H.243 may still be used for video control and other functions.

1.2.2 H.243 confer ence establishment

Alternatively, the MCU may choose to use the H.243 mechanism for conference establishment. In
this case, if aterminal calls into an MCU, the MCU may use the H.243 password to determine in
which conference the terminal belongs. Once a correct H.243 password is supplied, the terminal
may start receiving the audio and video associated with the conference.

Since H.243 provides a password mechanism, the additional requirement of a T.124 conference
password in this case is superfluous (assuming that only one T.124 conference is permitted in
conjunction with the H.243 conference). The MCU may decide to take the initiative and to invite
the termina into the T.124 conference associated with the H.243 conference by issuing a
GCC-Conference-Invite request. If queried by the terminal, the MCU should set the Wait for
Invitation Flag in the GCC-Conference-Query response to indicate that the terminal need not take
action to join or create a T.124 conference. Alternatively the MCU can wait for the terminal to issue
a GCC-Conference-Join request. In this case, if queried by the terminal, the MCU should return a
single Conference Descriptor in its GCC-Conference-Query response, with the Default Conference
Flag set and the Password In The Clear Required Flag reset.

Terminals that support T.120 should allow the H.243 password mechanism to be used for
conference establishment. This should be considered an interim approach used by MCUs until they
support the T.124 conference establishment procedures described in the previous subclause.

1.3 Alternative Node | D

The Alternative Node ID of T.124 was envisioned for use with the terminal numbering of H.243,
allowing nodes in an audio/video/data conference running both T.120 and H.243 to correlate T.124
conference roster information to H.243 site information.

When issuing the GCC-Conference-Announce-Presence request, nodes should include their
assigned H.243 terminal number in the Alternative Node ID field. If a node's H.243 terminal
number is reassigned during a conference, the node should re-issue a GCC-Conference-Announce-
Presence request with the new terminal number contained in the Alternative Node ID field.

NOTE — This requires that each terminal remember the content of the most recently received H.230 C&|
code TIA.

The Alternative Node ID is atwo-octet field. The first octet should contain the H.243 MCU ID (M),
and the second octet should contain the H.243 Terminal 1D (T).

200 ITU-T Rec. T.124 (01/2007)

Series A
SeriesD
SeriesE
SeriesF
Series G
SeriesH
Series|

SeriesJ
SeriesK
SeriesL
SeriesM
SeriesN
SeriesO
Series P
SeriesQ
SeriesR
Series S
SeriesT
SeriesU
SeriesV
Series X
SeriesY
SeriesZ

SERIESOF ITU-T RECOMMENDATIONS

Organization of thework of ITU-T

Generad tariff principles

Overall network operation, telephone service, service operation and human factors
Non-telephone telecommunication services

Transmission systems and media, digital systems and networks

Audiovisua and multimedia systems

Integrated services digital network

Cable networks and transmission of television, sound programme and other multimediasignals
Protection against interference

Construction, installation and protection of cables and other elements of outside plant
Telecommuni cation management, including TMN and network maintenance
Maintenance: international sound programme and television transmission circuits
Specifications of measuring equipment

Telephone transmission quality, telephone installations, local line networks
Switching and signalling

Telegraph transmission

Telegraph services terminal equipment

Terminalsfor telematic services

Telegraph switching

Data communication over the telephone network

Data networks, open system communications and security

Global information infrastructure, Internet protocol aspects and next-generation networks

Languages and general software aspects for telecommunication systems

Printed in Switzerland
Geneva, 2007

	ITU-T Rec. T.124 (01/2007) Generic Conference Control
	Summary
	Source
	FOREWORD
	CONTENTS
	1 Scope
	2 References
	3 Definitions
	4 Abbreviations
	5 Conventions
	6 Overview
	6.1 System model for a conference node
	6.2 Conference establishment and termination
	6.3 The conference roster
	6.4 The application roster
	6.5 The Application Registry
	6.6 Conference conductorship
	6.7 Miscellaneous functions
	6.8 Scalable conferences
	6.9 Summary of GCC abstract services

	7 GCC service definition
	7.1 Conference establishment and termination
	7.2 The conference roster
	7.3 The application roster
	7.4 The Application Registry
	7.5 Conference conductorship
	7.6 Miscellaneous functions

	8 GCC Protocol Specification
	8.1 General operation
	8.2 Conference establishment and termination
	8.3 The conference and application rosters
	8.4 The Application Registry
	8.5 Conference conductorship
	8.6 Miscellaneous functions
	8.7 GCCPDU definitions

	9 Use of the Multipoint Communication Service
	9.1 MCS services
	9.2 Channel allocation
	9.3 Token allocation
	9.4 Use of MCS data transmission services
	9.5 Encoding of PDUs in MCS primitives
	9.6 Format of User Data parameter of MCS-Connect-Provider
	9.7 Interpretation of the MCS Domain Selector
	Annex A – Static channel and token ID assignments
	A.1 Static channel ID assignments
	A.2 Static token ID assignments

	Annex B Object Identifier assignments
	Annex C – Network Address Parameter - Description and use
	Appendix I – Relationship of T.120 to H.243 in H.320 conferences
	I.1 Introduction
	I.2 Conference selection and Password protection
	I.3 Alternative Node ID

