
3UPERSEDED�BY�A�MORE�RECENT�VERSION

INTERNATIONAL TELECOMMUNICATION UNION

)45
4 4����
TELECOMMUNICATION (08/95)
STANDARDIZATION
OF ITU

4%2-).!,3��&/2��4%,%-!4)#��3%26)#%3

'%.%2)#��#/.&%2%.#%��#/.42/,

)45
4��Recommendation��4����
Superseded by a more recent version

(Previously “CCITT Recommendation”)

3UPERSEDED�BY�A�MORE�RECENT�VERSION

&/2%7/2$

The ITU-T (Telecommunication Standardization Sector) is a permanent organ of the International Telecommunication
Union (ITU). The ITU-T is responsible for studying technical, operating and tariff questions and issuing Recommen-
dations on them with a view to standardizing telecommunications on a worldwide basis.

The World Telecommunication Standardization Conference (WTSC), which meets every four years, establishes the
topics for study by the ITU-T Study Groups which, in their turn, produce Recommendations on these topics.

The approval of Recommendations by the Members of the ITU-T is covered by the procedure laid down in WTSC
Resolution No. 1 (Helsinki, March 1-12, 1993).

ITU-T Recommendation T.124 was prepared by ITU-T Study Group 8 (1993-1996) and was approved under the WTSC
Resolution No. 1 procedure on the 11th of August 1995.

NOTE

In this Recommendation, the expression “Administration” is used for conciseness to indicate both a telecommunication
administration and a recognized operating agency.

 ITU 1996

All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means, electronic or
mechanical, including photocopying and microfilm, without permission in writing from the ITU.

3UPERSEDED�BY�A�MORE�RECENT�VERSION

2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION i

#/.4%.43

0AGE

1 Scope.. 1

2 Normative References .. 1

3 Definitions.. 2

4 Abbreviations ... 5

5 Conventions.. 6

6 Overview.. 6

6.1 System model for a conference node .. 7

6.2 Conference establishment and termination ... 8

6.3 The conference roster ... 9

6.4 The application roster ... 9

6.5 The application registry .. 9

6.6 Conference conductorship .. 9

6.7 Miscellaneous functions ... 10

6.8 Summary of GCC abstract services .. 10

7 GCC service definition... 13

7.1 Conference establishment and termination... 13
7.1.1 The conference profile .. 13
7.1.2 Description of abstract services .. 14

7.1.2.1 GCC-Conference-Create... 14
7.1.2.2 GCC-Conference-Query ... 18
7.1.2.3 GCC-Conference-Join... 20
7.1.2.4 GCC-Conference-Invite .. 23
7.1.2.5 GCC-Conference-Add .. 26
7.1.2.6 GCC-Conference-Lock ... 29
7.1.2.7 GCC-Conference-Unlock ... 30
7.1.2.8 GCC-Conference-Lock-Report ... 31
7.1.2.9 GCC-Conference-Disconnect ... 31
7.1.2.10 GCC-Conference-Terminate ... 32
7.1.2.11 GCC-Conference-Eject-User .. 34
7.1.2.12 GCC-Conference-Transfer.. 35

7.1.3 Conference establishment requirements.. 37
7.1.4 Examples of conference establishment procedures... 37

7.1.4.1 Meet-me conference establishment... 37
7.1.4.2 Call-out conference establishment .. 38
7.1.4.3 Call-through conference establishment... 39
7.1.4.4 Point-to-point conference establishment... 39
7.1.4.5 Conference establishment among multiport terminals.................................... 39

7.2 The conference roster ... 40
7.2.1 Description of abstract services .. 40

7.2.1.1 GCC-Conference-Announce-Presence ... 41
7.2.1.2 GCC-Conference-Roster-Report... 42
7.2.1.3 GCC-Conference-Roster-Inquire .. 44

7.3 The application roster ... 45
7.3.1 Contents of the application roster ... 45
7.3.2 Description of the application roster exchange process .. 48
7.3.3 Description of abstract services .. 49

3UPERSEDED�BY�A�MORE�RECENT�VERSION

ii 2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION

0AGE

7.3.3.1 GCC-Application-Permission-To-Enroll .. 49
7.3.3.2 GCC-Application-Enroll ... 50
7.3.3.3 GCC-Application-Roster-Report .. 52
7.3.3.4 GCC-Application-Roster-Inquire.. 55
7.3.3.5 GCC-Application-Invoke.. 56

7.4 The Application Registry.. 58
7.4.1 Registry keys... 58
7.4.2 Ownership and persistence ... 58
7.4.3 Dynamic allocation ... 58
7.4.4 Description of abstract services .. 59

7.4.4.1 GCC-Registry-Register-Channel .. 59
7.4.4.2 GCC-Registry-Assign-Token.. 61
7.4.4.3 GCC-Registry-Set-Parameter.. 61
7.4.4.4 GCC-Registry-Retrieve-Entry... 63
7.4.4.5 GCC-Registry-Delete-Entry.. 64
7.4.4.6 GCC-Registry-Monitor ... 65
7.4.4.7 GCC-Registry-Allocate-Handle.. 67

7.5 Conference conductorship .. 68
7.5.1 Description of abstract services .. 68

7.5.1.1 GCC-Conductor-Assign.. 69
7.5.1.2 GCC-Conductor-Release .. 70
7.5.1.3 GCC-Conductor-Please... 71
7.5.1.4 GCC-Conductor-Give ... 71
7.5.1.5 GCC-Conductor-Inquire ... 72
7.5.1.6 GCC-Conductor-Permission-Ask ... 74
7.5.1.7 GCC-Conductor-Permission-Grant... 75

7.6 Miscellaneous functions ... 76
7.6.1 Description of abstract services .. 76

7.6.1.1 GCC-Conference-Time-Remaining .. 77
7.6.1.2 GCC-Conference-Time-Inquire .. 78
7.6.1.3 GCC-Conference-Extend .. 79
7.6.1.4 GCC-Conference-Assistance .. 80
7.6.1.5 GCC-Text-Message .. 80

8 GCC Protocol Specification ... 81
8.1 General operation.. 81
8.2 Conference establishment and termination... 82

8.2.1 Conference creation .. 82
8.2.2 Querying conferences ... 87
8.2.3 Joining a conference ... 89
8.2.4 Inviting a node to a conference ... 93
8.2.5 Requesting to add a node to a conference ... 98
8.2.6 Locking a Conference ... 100
8.2.7 Unlocking a conference .. 102
8.2.8 Disconnecting from a conference ... 103
8.2.9 Terminating a conference.. 104
8.2.10 Ejecting a node from a conference.. 105
8.2.11 Transferring nodes between conferences .. 107

8.3 The conference and application rosters .. 109
8.3.1 Overview... 109
8.3.2 Nodes entering a conference ... 109
8.3.3 Enrolling Application Protocol Entities .. 111
8.3.4 Updating a conference roster entry ... 112
8.3.5 Propagation of roster updates to the Top GCC Provider .. 112
8.3.6 Distribution of the conference and application rosters ... 113
8.3.7 Nodes leaving a conference .. 114
8.3.8 Collapsing application capabilities lists .. 114
8.3.9 Application and conference roster inquiry .. 115

3UPERSEDED�BY�A�MORE�RECENT�VERSION

2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION iii

0AGE

8.3.10 An Example of a roster update.. 115
8.3.11 Remotely invoking an Application Protocol Entity .. 116

8.4 The Application Registry.. 116
8.4.1 Registering a channel .. 117
8.4.2 Assigning a token.. 118
8.4.3 Setting a parameter.. 119
8.4.4 Retrieving an entry.. 120
8.4.5 Deleting an entry... 121
8.4.6 Monitoring an entry .. 121
8.4.7 Allocation of unique handles .. 123
8.4.8 Changes in ownership and registry cleanup.. 124

8.5 Conference Conductorship ... 124
8.5.1 Grabbing conductorship.. 124
8.5.2 Releasing conductorship ... 125
8.5.3 Conductor assignment and release indications ... 125
8.5.4 Asking to be given conductorship... 126
8.5.5 Giving conductorship.. 126
8.5.6 Getting conductorship status ... 127
8.5.7 Conductorship announcement when new nodes enter a conference 127
8.5.8 Unexpected disconnection of the conductor ... 127
8.5.9 Asking to be given conducted-mode permission .. 128
8.5.10 Granting conducted-mode permission .. 128

8.6 Miscellaneous functions ... 129
8.6.1 Timed conferences .. 129
8.6.2 Requesting conference assistance ... 130
8.6.3 Broadcasting a text message ... 131

8.7 GCCPDU definitions .. 131

9 Use of the Multipoint Communication Service.. 148

9.1 MCS services .. 148

9.2 Channel allocation .. 149

9.3 Token allocation ... 149

9.4 Use of MCS data transmission services.. 150

9.5 Encoding of PDUs in MCS primitives ... 152

9.6 Format of User Data parameter of MCS-Connect-Provider ... 152

9.7 Interpretation of the MCS Domain Selector ... 152

Annex A – Static channel and token ID assignments.. 153

A.1. Static channel ID assignments .. 153

A.2. Static token ID assignments.. 153

Annex B – Object Identifier assignments.. 154

3UPERSEDED�BY�A�MORE�RECENT�VERSION

iv 2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION

35--!29

This Recommendation provides a high-level framework for conference management and control of multimedia terminals
and Multipoint Control Units (MCUs). It encompasses Generic Conference Control (GCC) functions such as conference
establishment and termination, managing the roster of terminals participating in a conference, managing the roster of
applications and application capabilities within a conference, registry services for use by applications, coordination of
conference conductorship, as well as other miscellaneous functions. It depends on companion Recommendations T.122
and T.125 (MCS) and T.123 as part of the T.120 infrastructure.

3UPERSEDED�BY�A�MORE�RECENT�VERSION

2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION 1

2ECOMMENDATION�4����
Recommendation T.124 (08/95) Superseded by a more recent version

'%.%2)#��#/.&%2%.#%��#/.42/,

�'ENEVA������	

� 3COPE

This Recommendation provides a high-level framework for conference management and control of audiographic and
audiovisual terminals and Multipoint Control Units (MCUs). It encompasses Generic Conference Control (GCC)
functions such as conference establishment and termination, managing the roster of nodes participating in a conference,
managing the roster of Application Protocol Entities and Application Capabilities within a conference, registry services
for use by Application Protocol Entities, coordination of conference conductorship, as well as other miscellaneous
functions.

This Recommendation is defined within the framework of Recommendation T.120. Included within this framework are
companion Recommendations T.122 and T.125, which define the multipoint delivery mechanism used in this
Recommendation, and Recommendation T.123, which specifies the Audiovisual Protocol Stacks for each of the
communication networks supported.

Figure 1-1 presents an overview of the scope of this Recommendation and its relationship to the other elements of
the T.120 framework within a single node.

� .ORMATIVE�2EFERENCES

The following Recommendations and International Standards contain provisions which, through reference in this text,
constitute provisions of this Recommendation. At the time of publication, the editions indicated were valid. All
Recommendations and Standards are subject to revision, and parties to agreements based on this Recommendation are
encouraged to investigate the possibility of applying the most recent edition of the Recommendations and Standards
listed below. Members of IEC and ISO maintain registers of currently valid International Standards. The ITU-T
Secretariat maintains a list of the currently valid ITU-T Recommendations.

– CCITT Recommendation F.710 (1991), 'ENERAL�PRINCIPLES�FOR�AUDIOGRAPHIC�CONFERENCE�SERVICE.

– ITU-T Recommendation H.221 (1993), &RAME�STRUCTURE�FOR�A����TO������KBITS�S�CHANNEL�IN�AUDIOVISUAL
TELESERVICES.

– CCITT Recommendation T.35 (1991), 0ROCEDURE� FOR� THE� ALLOCATION� OF� ##)44� DEFINED� CODES� FOR
NON
STANDARD�FACILITIES.

– ITU-T Recommendation T.1201), /VERVIEW�OF�THE�4����
3ERIES�2ECOMMENDATIONS.

– ITU-T Recommendation T.122 (1993), -ULTIPOINT� #OMMUNICATION� 3ERVICE� FOR� !UDIOGRAPHICS� AND
!UDIOVISUAL�#ONFERENCING�3ERVICE�$EFINITION.

– ITU-T Recommendation T.123 (1994), 0ROTOCOL�STACKS�FOR�AUDIOGRAPHIC�AND�AUDIOVISUAL�TELECONFERENCE
APPLICATIONS.

– ITU-T Recommendation T.125 (1994), -ULTIPOINT�#OMMUNICATION�3ERVICE�0ROTOCOL�3PECIFICATION.

– ITU-T Recommendation T.126 (1995), -ULTIPOINT�3TILL�)MAGE�AND�!NNOTATION�0ROTOCOL.

– ITU-T Recommendation T.127 (1995), -ULTIPOINT�BINARY�FILE�TRANSFER�PROTOCOL.

– ITU-T Recommendation X.680 (1994),)NFORMATION�TECHNOLOGY� �!BSTRACT�3YNTAX�.OTATION�/NE��!3.��	�
3PECIFICATION�OF�BASIC�NOTATION.

– ITU-T Recommendation X.691 (1995),)NFORMATION�TECHNOLOGY� �!3.���ENCODING�RULES��3PECIFICATION�OF
0ACKED�%NCODING�2ULES��0%2	.

– ISO/IEC 10646-1:1993, Information technology – 5NIVERSAL�-ULTIPLE
/CTET�#ODED�#HARACTER�3ET��5#3	
�!RCHITECTURE�AND�"ASIC�-ULTILINGUAL�0LANE.

1) Presently at the stage of draft.

3UPERSEDED�BY�A�MORE�RECENT�VERSION

2 2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION

...

...

T0819400-94/d01

...

Rec. T.120 infrastructure Recommendations

Rec. T.127 (MBFT)

User application(s)
(Using both standard and non-standard Application Protocols)

User Application(s)
(Using std. Appl. Protocols)

Node
controller

User Application(s)
(Using non-std Protocols)

Rec. T.126 (SI)
Application Protocol Entity

Rec. T.120
Application Protocol
Recommendations

Non-standard Application
Protocol Entity

Generic Conference Control (GCC)
Rec. T.124

Multipoint Communications Service (MCS)
Rec. T.122/T.125

Network Specific Transport Protocols
Rec. T.123

FIGURE 1-1/T.124

3COPE�OF�4����

FIGURE 1-1/T.124...[D01] = 16.5 CM

� $EFINITIONS

For the purposes of this Recommendation, the following definitions apply.

��� APPLICATION� PROTOCOL: Any standard or non-standard protocol specification which is designed to make use
of T.120 services.

��� APPLICATION�PROTOCOL�ENTITY: The instantiation of an Application Protocol in a terminal or MCU. Application
Protocol Entities are employed by User Applications, but are not themselves User Applications. An Application Protocol
Entity communicates with GCC through the GCC Provider present at its local terminal or MCU via a GCCSAP. Only
Application Protocol Entities communicate with GCC Providers; User Applications do not. Multiple Application
Protocol Entities based on the same Application Protocol may enroll at a single node. These may be either in the same or
separate Application Protocol Sessions. A single Application Protocol Entity is assumed to communicate with the local
GCC Provider via a single GCCSAP, and is also assumed to have a single MCS User ID if it has enrolled in the active
state. An Application Protocol Entity which has enrolled in the active state is part of a single Application Protocol
Session as indicated by its Session ID (or lack of a Session ID which indicates that it is part of the Default Session). An

3UPERSEDED�BY�A�MORE�RECENT�VERSION

2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION 3

Application Protocol Entity which has enrolled in the inactive state is not considered part of any Application Protocol
Session, however an inactive Application Protocol Entity may make use of GCC services and information associated
with such an Application Protocol Entity is included in the Application Roster.

��� APPLICATION�PROTOCOL� KEY: The Application Protocol Key identifies the type of Application Protocol for an
Application Protocol Session. Multiple Application Protocol Sessions of the same type would be identified using the
same Application Protocol Key (but different Session IDs). An Application Protocol Key is either an ASN.1 OBJECT
IDENTIFIER belonging to a Recommendation, Standard, or non-standard protocol, or, alternatively, it is a non-standard
identifier using the encoding conventions of Recommendation H.221.

��� APPLICATION�PROTOCOL�SESSION: A set of Peer Application Protocol Entities.

��� APPLICATION�RECORD: A set of information for a specific Application Protocol Entity at a specific node. This set
includes the Application User ID, the Active/Inactive flag, as well as other parameters.

��� APPLICATION�REGISTRY: A central repository located at the Top GCC Provider where an Application Protocol
Entity can register its use of tokens, channels, and other parameters. Peer Application Protocol Entities can then access
the registry to discover this registered information.

��� APPLICATION�ROSTER: The set of all Application Records from all enrolled Application Protocol Entities at all
nodes in a conference, including the Application Capabilities List for each Application Protocol Session.

��� APPLICATION�USER�)$: MCS User ID assigned by MCS to an Application Protocol Entity.

��� CONDUCTED� MODE: Conducted Mode allows a Conductor node the ability to control Application Protocol
Entities at all nodes in a conference, and to restrict operation of Application Protocol Entities by other nodes. Conducted
mode is established when a Conductor has been assigned to a conference. This is achieved when a node has successfully
grabbed the conference Conductor Token.

���� CONDUCTOR: The Conductor, if present, is a node in a conference which controls certain aspects of the
conference (e.g. control of communication between Application Protocol Entities, control over conference participants,
and conference termination). There shall be either zero or one Conductors in a conference. A node becomes conductor
by grabbing the conductor token, or by requesting or accepting conductorship from the current conductor.

���� CONFERENCE:�A number of nodes that are joined together and that are capable of exchanging audiographic and
audiovisual information across various communication networks.

���� CONFERENCE� APPLICATION� ROSTER: A data-base maintained by each GCC Provider consisting of a set of
Application Records, one for every Application Protocol Entity at every node in the conference, as well as other
information such as the Application Capabilities List for each Application Protocol Session.

���� CONFERENCE�PROFILE: A data-base maintained by each GCC Provider consisting of information pertinent to a
conference as a whole such as Conference Name, Password (if any), etc.

���� CONFERENCE� ROSTER: A data-base maintained by each GCC Provider consisting of a list of nodes in a
conference. For each node, this list includes the Node ID of the node, type of the node, the name of the node, and may
include a list of participants at the node, as well as other optional information.

���� CONTROL�'##� SERVICE� ACCESS� POINT: The communication interface between a GCC Provider and the Node
Controller within a single node.

���� CONVENER: Node that created a conference by issuing the GCC-Conference-Create request primitive.

���� CONVENER�PASSWORD: An identifying numeric string, as well as optional text string, which may be used when a
conference is created to allow the convener of the conference to leave the conference and re-enter at a later time using
the password to regain convener privileges. A Convener Password must be included during conference creation (in one
of its two possible forms) for this to be possible. Use of the correct Convener Password allows joining of a locked
conference, but it does not avoid the need to specify the correct Password when joining a Password protected
conference.

3UPERSEDED�BY�A�MORE�RECENT�VERSION

4 2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION

���� DEFAULT� SESSION: Active Application Protocol Entities with no Session ID included in their Session Key are
considered part of a separate unique session referred to as the Default Session.

���� ENTITY�)$: A 16-bit numeric identifier used to identify each Application Protocol Entity enrolled at a node. The
value of the Entity ID is unique among all Application Protocol Entities of any type within a single node. It need not be
unique between nodes. A particular Application Protocol Entity in a conference may be uniquely identified by the
combination of the Entity ID and the Node ID corresponding to the node at which the Application Protocol Entity is
enrolled.

���� '##�PROVIDER: Agent providing GCC services to local Node Controller and Application Protocol Entities at a
terminal or MCU.

���� '##� SERVICE� ACCESS� POINT: The communication interface between a GCC Provider and an Application
Protocol Entity within a single node.

���� HANDLE: A 32-bit integer number allocated by the Top GCC Provider using the GCC-Registry-Allocate-Handle
request primitive. This number is guaranteed to be unique within a conference.

���� LOCAL�APPLICATION�ROSTER:�A data-base maintained by each GCC Provider consisting of one Application Record
as well as other information, such as the Application Capabilities List, for each Application Protocol Entity which has
locally enrolled with the GCC Provider. This is used to form the information exchanged with other nodes to determine
the Conference Application Roster.

���� -#3� DOMAIN:� A hierarchy of MCS connections between nodes. Nodes may use MCS services to
communicate within a single domain, but not between separate domains. A GCC Conference corresponds one-to-one
with a single MCS Domain.

���� -#3�DOMAIN�SELECTOR:�A locally unique identifier of an MCS Domain.

���� -#3�USER�)$: Unique identification number assigned by MCS to an MCS User. GCC Providers as well as
Application Protocol Entities are MCS Users. An MCS User ID assigned to a GCC Provider is referred to as a Node ID.
An MCS User ID assigned to an Application Protocol Entity is referred to as an Application User ID. An MCS User ID
is valid only within a single MCS Domain.

���� MULTIPOINT: The ability to exchange data among multiple nodes simultaneously as compared with point-to-
point, where data is exchanged between two directly connected nodes.

���� MULTIPOINT� CONTROL� UNIT:� Commonly referred to as an MCU or bridge, a multiport device that serves to
connect terminals and other MCUs in a multipoint fashion. A GCC-capable MCU runs GCC and MCS. An MCU is not
primarily intended as an end-point for user communication.

���� MULTIPORT�TERMINAL: End-point audiographic or audiovisual equipment that also includes the ability to bridge
T.120 information. Like a terminal, the behavior of a multiport terminal is typified by automatic establishment of a
single conference. But, like an MCU, for a given conference in a multiport terminal, there may be more than one MCS
connection.

���� NODE: A terminal, multiport terminal, or MCU. A single node comprises a single GCC provider. A single node
may consist of one or more physical devices. Similarly, one physical device may host several logical nodes.

���� NODE�CONTROLLER: A functional entity for which there is one for each terminal or MCU, which serves as the
controller of that node.

���� NODE�)$: MCS User ID assigned by MCS to the GCC Provider at a node.

���� NON
CONDUCTED�MODE: The mode in which a conference has no Conductor.

���� PARTICIPANT: A person participating in a conference at a node.

���� PASSWORD: A numeric string, as well as an optional text string, which may be specified when a conference is
created. If so, when attempting to join a conference, a node must include this Password (in one of the two possible
forms) in the GCC-Conference-Join primitive in order for that node to be accepted into the conference.

3UPERSEDED�BY�A�MORE�RECENT�VERSION

2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION 5

���� PEER�APPLICATION�PROTOCOL�ENTITY: Application Protocol Entities which have enrolled in the active state using
identical Session Keys, including the Session ID portion of the Session Key. Peer Application Protocols are those which
may communicate with each other during a conference.

���� RESOURCE: Something that can be used and shared by nodes in a conference. A resource comprises both
channels and tokens.

���� SESSION�)$: An optional parameter included in a Session Key used to distinguish between multiple sets of Peer
Application Protocol Entities which are based on the same base Application Protocol. Each set of Peer Application
Protocol Entities, defined by the use of a common Application Protocol and identical Session IDs, separately
communicate among themselves. Active Application Protocol Entities with no Session ID included in their Session Key
are considered part of a separate unique session referred to as the Default Session. A set of Peer Application Protocol
Entities is referred to as an Application Protocol Session. Session IDs are in the form of MCS Channel IDs.

���� SESSION�+EY: An identifier which is common to Peer Application Protocol Entities. A Session Key consists of
two components. One component, the Application Protocol Key identifies the type of Application Protocol. The second
component, which is an optional part of a Session Key, is the Session ID which identifies the specific session for this
Application Protocol (the lack of a Session ID indicates the Default Session). Application Protocol Entities whose entire
Session Keys are in common, including the Application Protocol Key as well as the Session ID, if any, are considered
Peer Application Protocol Entities.

���� TERMINAL: End-point audiographic or audiovisual equipment. A GCC-capable terminal runs GCC and MCS. A
terminal is limited, within a conference, to a single MCS connection.

���� TOP�'##�0ROVIDER:�The GCC Provider which is co-resident with the Top MCS Provider in a conference. The
Top GCC Provider has responsibilities not required of other GCC Providers in a conference. The location of the Top
GCC Provider remains unchanged for the duration of a conference.

���� UNICODE: Multilingual text string format as defined by the Basic Multilingual Plane of ISO/IEC
Specification 10646-1.

���� UNICODE�2OW���: A subset of Unicode consisting of 256 code positions containing the Basic Latin and Latin-1
Supplement character sets plus control characters and reserved codes.

���� USER� APPLICATION: An entity which makes use of one or more Application Protocol Entities. A User
Application is limited in its scope to those tasks which have no effect on the interpretation of information between Peer
Application Protocol Entities such as presentation to the end-user. User Applications therefore do not require
specification, either by standard Recommendation or otherwise, to allow interoperability between the Application
Protocol Entities which they make use of and their Peer Application Protocol Entities.

� !BBREVIATIONS

For the purposes of this Recommendation, the following abbreviations are used:

CSDN Circuit Switched Data Network

GCC Generic Conference Control

GCCSAP Generic Conference Control Service Access Point

ISDN Integrated Services Digital Network

MCS Multipoint Communication Service

MCU Multipoint Control Unit

PDU Protocol Data Unit

PSDN Packet Switched Data Network

PSTN Public Switched Telephone Network

3UPERSEDED�BY�A�MORE�RECENT�VERSION

6 2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION

The following abbreviations are used in this Recommendation, and defined in Recommendation T.122:

MCS Multipoint Communication Service

MCSAP Multipoint Communication Service Access Point

� #ONVENTIONS

The primitive parameters of the abstract services defined in this Recommendation use the following key:

M: parameter is mandatory

C: parameter is conditional

O: parameter is optional

Blank parameter is absent

(=): value of the parameter is identical to the value of the corresponding parameter of the preceding
primitive, where preceding is defined relative to the order: request, indication, response, confirm.

(=RQ): value of the parameter is identical to the value of the corresponding parameter in a preceding
primitive, where RQ = request, IN = indication, RS = response, and CF = confirm.

Primitives are categorized in up to four types: Request, Indication, Response, and Confirm. Some primitives support all
of these types, while others do not. These four types are defined as follows:

Request primitive: Those that are sourced from a Node Controller or Application Protocol Entity to initiate
a certain action.

Indication primitive: Those that are sourced from a GCC Provider either as a result of a Request primitive, or
as a result of a GCC initiated action.

Response primitive: Those that are sourced from a Node Controller or Application Protocol Entity in
response to an Indication primitive which is defined to require a response.

Confirm primitive: Those that are sourced from a GCC Provider as a result of a Response primitive.

PDUs are categorized into three types. PDU names all include the words Request, Indication, or Response to indicate the
intended use of the PDU. These are defined as follows:

Request PDUs: Those that require a Response PDU in return. If the request is for a function which is not
supported by the receiving node (e.g. an optional or non-standard PDU), a generic
response PDU, FunctionNotSupportedResponse, shall be used to provide a response to
the requesting node (sent to the Node ID Channel of the requesting node).

Indication PDUs: Those that do not require a response (e.g. those that are for informational purposes).

Response PDUs: Those which are in response to a particular Request PDU to be sent on the Node ID
Channel of the requesting node.

� /VERVIEW

Within the context of the ITU-T Audiovisual Conferencing Service, a conference refers to a group of geographically
dispersed nodes that are joined together and that are capable of exchanging audiographic and audiovisual information
across various communication networks. Participants taking part in a conference may have access to various types of
media handling capabilities such as audio only (telephony), audio and data (audiographics), audio and video
(audiovisual), and audio, video, and data (multimedia).

The F-, G-, H-, and T-Series Recommendations provide a framework for the interworking of audio, video, and graphics
terminals on a point-to-point basis through existing telecommunication networks. They also provide the capability for
three or more terminals in the same conference to be interconnected by means of an MCU.

3UPERSEDED�BY�A�MORE�RECENT�VERSION

2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION 7

This Recommendation provides a high-level framework for conference management and control of audiographics and
audiovisual terminals, and MCUs. It coexists with companion Recommendations T.122 and T.125 (MCS) and T.123
(AVPS) to provide a mechanism for conference establishment and control. Recommendations T.122, T.123, T.124,
and T.125 form the minimum set of Recommendations to develop a fully functional terminal or MCU.

This Recommendation includes the following Generic Conference Control (GCC) functional components: conference
establishment and termination, managing the Conference Roster, managing the Application Roster, Application Registry
services, and conference conductorship. The service definitions for the primitives associated with these functional
components are contained in clause 7. The corresponding protocol definitions are contained in clause 8.

Figure 6-1 shows an example of how GCC components are distributed throughout an MCS domain. The GCC
components are shown in white. Each terminal or MCU contains a GCC Provider that provides GCC services to the
local Node Controller and Application Protocol Entities.

T0819410-94/d02

Node 2 Node 3 Node 4

Node 1

MCS connections

Node
controller

Top GCC
Provider

Application
Protocol

Entity

Application
Protocol

Entity

GCC
Provider

GCC
Provider

GCC
Provider

Node
Controller

Node
Controller

Node
Controller

FIGURE 6-1/T.124

%XAMPLE�OF�'##�COMPONENTS�DISTRIBUTED�THROUGHOUT�AN�-#3�DOMAIN

FIGURE 6-1/T.124...[D02] = 11 CM

��� 3YSTEM�MODEL�FOR�A�CONFERENCE�NODE

Each Node participating in a GCC conference consists of an MCS layer, a GCC layer, a Node Controller and may also
include one or more Application Protocol Entities. The relationship between these components within a single node is
illustrated in Figure 6-2. The Node Controller is the controlling entity at a node, dealing with the aspects of a conference
that apply to the entire node. The Node Controller interacts with GCC, but does not interact directly with MCS.
Application Protocol Entities also interact with GCC, as well as directly with MCS. The services provided by GCC to
Application Protocol Entities are primarily to enable Peer Application Protocol Entities to communicate directly, via
MCS. Local communication between individual Application Protocol Entities or between Application Protocol Entities
and the Node Controller may take place, but is a local implementation matter not covered by this Recommendation.
Within a node, more than one Application Protocol Entity may be based on the same Application Protocol. In this case,
they may either be part of the same Application Protocol Session, allowing them to communicate within the node as well
as to other Peer Application Protocol Entities at other nodes, or they may be part of separate Application Protocol
Sessions, allowing them to communicate separately among their peers, but using the same protocol.

3UPERSEDED�BY�A�MORE�RECENT�VERSION

8 2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION

The service primitives as described in clause 7 apply to the GCC Service Access Point and the Control GCC Service
Access Point as indicated in 6-2. The PDUs described in clause 8 are communicated using MCS service primitives
available at the Control MCS Access Point (MCSAP).

NOTES

1 The normative intent of this Recommendation is to specify the procedures and contents of external communication —
sequences of primitive operations and data exchanges acting through the Control MCSAP for purposes of conference control. The
internal decomposition of a node suggested in Figure 6-2 serves to motivate features of the GCC protocol but is not normative. GCC
service primitives whose effect is purely local need not exist at all nodes in the form that they are described here. Statements about
what a node controller or an application protocol entity shall do in certain circumstances should be interpreted loosely if the same
results in external communication can be achieved through different internal mechanisms.

2 The system model assumes that service requests may be issued at any time. A Node Controller or Application
Protocol Entity need not wait until it has received a confirm from the GCC Provider corresponding to a previous request before
issuing another request. A specific implementation may, however, impose stricter requirements.

T0819420-94/d03

MCS Provider

GCC Provider

Node Controller

MCS Access Points

Application
Protocol
Entities

Control
GCC Service
Access Point

GCC Service
Access Points

Control MCS
Access Point

FIGURE 6-2/T.124

3YSTEM�MODEL�SHOWING�'##�3ERVICE�!CCESS�0OINT�AND�RELATIONSHIP�WITH�-#3�

FIGURE 6-2/T.124...[D03] = 12 CM

��� #ONFERENCE�ESTABLISHMENT�AND�TERMINATION

GCC provides a set of services for establishment and termination of conferences. A conference can be viewed as a
meeting room in which any number of participants may meet in order to exchange audiographic or audiovisual
information. As with physical meeting rooms, services such as finding out what conferences are in progress, joining a
conference, leaving a conference, restricting access to a conference, etc., are meaningful in audiographic and audiovisual
conferences as well.

Prior to joining a conference, participants at a node may not know all of the information needed to join. GCC provides a
means for participants to view a list of Conference Names and select the one they wish to join. This service is analogous
to the conference schedule typically posted in a lobby, allowing someone to find the meeting room in which a particular
meeting is taking place.

3UPERSEDED�BY�A�MORE�RECENT�VERSION

2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION 9

GCC provides a means to create new conferences. This may be done either by a conference participant, or by a
conference administrator. When a new conference is created, its characteristics, referred to as its Conference Profile, are
specified by its creator. The Conference Profile includes such things as the Conference Name, whether it has restricted
access by means of a Password, whether it is open to be freely joined (unlocked) or restricted to be joined by invitation
only (locked).

Expanding an existing conference may be initiated by the joining node, or by a conference Convener (or convener
designated node). If a conference is Password protected, a joining node is required to supply the correct Password to be
allowed into the conference. If a conference is locked, joining is only allowed at the request of the Convener, or
convener designated node. Nodes may join or be added at any time during a conference. It is possible to be joined with
more than one conference simultaneously. GCC also provides a means of transferring participants from one conference
to another. This function may be used to achieve the effect of merging two conferences, or splitting a conference into
more than one conference.

At any time a node may wish to disconnect from the conference, leaving the other nodes to continue the conference.
Depending on the choice of termination method, a conference is either automatically terminated if all nodes disconnect
from it, or manually terminated by an explicit termination request. The convener, or a convener-designated node may
also forcibly terminate the entire conference at any time, or eject a particular node from it.

��� 4HE�CONFERENCE�ROSTER

Once a node has joined a conference, it announces its presence to all other nodes in the conference. A GCC primitive is
provided to allow each node in a conference to announce its presence in a conference, and another to provide each node
with the full Conference Roster. The Conference Roster is a list of all nodes in the conference. For each node it includes
information such as the name of the node, a list of participants at that node, as well as other information needed for
proper communication between nodes. A node is not considered part of a conference until it has been included in the
Conference Roster.

��� 4HE�APPLICATION�ROSTER

GCC provides a means of identifying which Application Protocol Entities are available at each node and to provide
necessary information for Peer Application Protocol Entities to communicate with each other. Upon joining a
conference, each node sends to all other nodes its local list of Application Protocol Entities – its Local Application
Roster – which it may update at any time thereafter. From this information, the Conference Application Roster is formed
and broadcast to all nodes. Relevant portions of this roster are then communicated locally to each Application Protocol
Entity as well as to the Node Controller. In addition to a simple roster, GCC also provides a service for Application
Protocol Entities to include a list of Application Protocol–specific capabilities in the information exchanged. GCC
applies a fixed set of rules to this information from all nodes in the conference to determine a common set of Application
Capabilities. This information is also communicated locally to each Application Protocol Entity.

��� 4HE�APPLICATION�REGISTRY

The Application Registry is an active data-base residing at the Top GCC Provider that may be used to manage channels,
tokens, and other shared resources used in a conference. The Application Registry can aid in establishing communication
among peer Application Protocol Entities.

��� #ONFERENCE�CONDUCTORSHIP

GCC provides a method for allowing a node to become a conductor for a conference. A token is used by GCC to
determine whether a conference is conducted or non-conducted. The node which grabs the conductor token becomes the
conductor of the conference. A node may also request conductorship or accept conductorship from the current
conductor. Upon request, GCC provides the identity of the current conference conductor. On creation of a conference, it
may be specified that conducted mode is not permitted for the duration of the conference.

Conducted mode is available as a means to provide order to the course of a conference. The actual means by which this
order is provided is determined by the Application Protocols. Specifically, Recommendations specifying Application
Protocols may define alternative procedures depending on whether the conference is conducted or non-conducted. GCC
does provide a mechanism for basic conducted operation which may be made use of by Application Protocols. A

3UPERSEDED�BY�A�MORE�RECENT�VERSION

10 2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION

mechanism is provided by which a node may request permission from the conducting node, and if permission is granted,
all Application Protocol Entities at that node may act accordingly as specified by the Application Protocol specification.
Application Protocols may, for example, specify strict limitations in the allowed operations for nodes that do not have
permission from the conductor, while removing some or all of these limitations for nodes which have this permission.
Application protocols may also, for example, specify that once overall permission has been granted by the conductor,
further permission must be granted by the Peer Application Protocol Entity at the conducted node, if one exists, before
allowing certain operations to be performed.

��� -ISCELLANEOUS�FUNCTIONS

A method is provided for coordinating timed conferences. A mechanism is provided for a node to find out how much
time is remaining in a timed conference, as well as a mechanism for announcing to all nodes how much time is
remaining (which would typically be used to announce that the time is almost up), and a mechanism for nodes to request
more time to be added, if available.

A method is also provided to request assistance from an unspecified operator. Another function is provided to allow
transmission of simple text messages.

��� 3UMMARY�OF�'##�ABSTRACT�SERVICES

Table 6-1 is a list of all GCC primitives and their associated PDUs. The table also shows whether or not each primitive is
mandatory (M), conditionally required (C), or optional (O) for a terminal or an MCU. For a multiport terminal, for each
primitive, the requirement shall be taken to be the most restrictive of either a terminal or MCU for that primitive. A
conditionally required primitive is one which is required if the Application Protocol specification for one or more
Application Protocol Entities located at that node mandates its use. The table also shows, for the corresponding PDUs,
whether these are mandatory (M) or conditionally required (C) for both the transmit (T) and receive (R) directions.
Again, for a multiport terminal, the requirement shall be taken to be the most restrictive of either a terminal or MCU for
that PDU. A conditionally required PDU is one which is required only if the corresponding primitive is to be supported
at that node. In the case that a primitive is not mandatory, but its corresponding PDU is mandatory, this implies that
there is some portion of the protocol, not related to the primitive, that relies on the use of that PDU which is required to
be supported.

TABLE 6-1/T.124

'##�0RIMITIVES�AND�0$5S

Functional
unit Primitives Term MCU Associated PDUs Dir. Term MCU

Conference GCC-Conference-Create request M O ConferenceCreateRequest T M C
establishment GCC-Conference-Create indication M M ConferenceCreateRequest R M M
and GCC-Conference-Create response M M ConferenceCreateResponse T M M
termination GCC-Conference-Create confirm M O ConferenceCreateResponse R M C

UserIDIndication T, R M M

GCC-Conference-Query request M M ConferenceQueryRequest T M M
GCC-Conference-Query indication M M ConferenceQueryRequest R M M
GCC-Conference-Query response M M ConferenceQueryResponse T M M
GCC-Conference-Query confirm M M ConferenceQueryResponse R M M

GCC-Conference-Join request M O ConferenceJoinRequest T M C
GCC-Conference-Join indication O M ConferenceJoinRequest R C M
GCC-Conference-Join response O M ConferenceJoinResponse T C M
GCC-Conference-Join confirm M O ConferenceJoinResponse R M C

UserIDIndication T, R M M

3UPERSEDED�BY�A�MORE�RECENT�VERSION

2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION 11

TABLE 6-1/T.124 �CONTINUED	

'##�0RIMITIVES�AND�0$5S

Functional
unit Primitives Term MCU Associated PDUs Dir. Term MCU

GCC-Conference-Invite request O M ConferenceInviteRequest T C M
GCC-Conference-Invite indication M M ConferenceInviteRequest R M M
GCC-Conference-Invite response M M ConferenceInviteResponse T M M
GCC-Conference-Invite confirm O M ConferenceInviteResponse R C M

UserIDIndication T, R M M

GCC-Conference-Add request O O ConferenceAddRequest T C C
GCC-Conference-Add indication O O ConferenceAddRequest R C C
GCC-Conference-Add response O O ConferenceAddResponse T C C
GCC-Conference-Add confirm O O ConferenceAddResponse R C C

GCC-Conference-Lock request O O ConferenceLockRequest T C C
GCC-Conference-Lock indication O O ConferenceLockRequest R C C
GCC-Conference-Lock response O O ConferenceLockResponse T C C
GCC-Conference-Lock confirm O O ConferenceLockResponse R C C

GCC-Conference-Unlock request O O ConferenceUnlockRequest T C C
GCC-Conference-Unlock indication O O ConferenceUnlockRequest R C C
GCC-Conference-Unlock response O O ConferenceUnlockResponse T C C
GCC-Conference-Unlock confirm O O ConferenceUnlockResponse R C C

GCC-Conference-Lock-Report indication O O ConferenceLockIndication T, R C C
ConferenceUnlockIndication T, R C C

GCC-Conference-Disconnect request M M – – – –
GCC-Conference-Disconnect indication M M – – – –
GCC-Conference-Disconnect confirm M M – – – –

GCC-Conference-Terminate request O O ConferenceTerminateRequest T C C
ConferenceTerminateRequest R M M

GCC-Conference-Terminate indication M M ConferenceTerminateIndication T M M
ConferenceTerminateIndication R M M

GCC-Conference-Terminate confirm O O ConferenceTerminateResponse T M M
ConferenceTerminateResponse R C C

GCC-Conference-Eject-User request O O ConferenceEjectUserRequest T C C
ConferenceEjectUserRequest R M M

GCC-Conference-Eject-User indication M M ConferenceEjectUserIndication T M M
ConferenceEjectUserIndication R M M

GCC-Conference-Eject-User confirm O O ConferenceEjectUserResponse T M M
ConferenceEjectUserResponse R C C

GCC-Conference-Transfer request O M ConferenceTransferRequest T C M
ConferenceTransferRequest R M M

GCC-Conference-Transfer indication M M ConferenceTransferIndication T M M
ConferenceTransferIndication R M M

GCC-Conference-Transfer confirm O M ConferenceTransferResponse T M M
ConferenceTransferResponse R C M

Conference GCC-Conference-Announce-Presence request M M RosterUpdateIndication T, R M M
roster GCC-Conference-Announce-Presence confirm M M – –

GCC-Conference-Roster-Report indication M M RosterUpdateIndication T, R M M

GCC-Conference-Roster-Inquire request O O – – – –
GCC-Conference-Roster-Inquire confirm O O – – – –

Application
roster

GCC-Application-Permission-To-Enroll indication M C – – – –

GCC-Application-Enroll request M C RosterUpdateIndication T, R M M
GCC-Application-Enroll confirm M C – –

GCC-Application-Roster-Report indication M C RosterUpdateIndication T, R M M

GCC-Application-Roster-Inquire request O O – – – –
GCC-Application-Roster-Inquire confirm O O – – – –

3UPERSEDED�BY�A�MORE�RECENT�VERSION

12 2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION

TABLE 6-1/T.124 �CONTINUED	

'##�0RIMITIVES�AND�0$5S

Functional
unit Primitives Term MCU Associated PDUs Dir. Term MCU

GCC-Application-Invoke request O O ApplicationInvokeIndication T C C
GCC-Application-Invoke indication O O ApplicationInvokeIndication R C C
GCC-Application-Invoke confirm O O – – – –

Application GCC-Registry-Register-Channel request C C RegistryRegisterChannelRequest T C C
registry RegistryRegisterChannelRequest R M M

GCC-Registry-Register-Channel confirm C C RegistryResponse T M M
RegistryResponse R C C

GCC-Registry-Assign-Token request C C RegistryAssignTokenRequest T C C
RegistryAssignTokenRequest R M M

GCC-Registry-Assign-Token confirm C C RegistryResponse T M M
RegistryResponse R C C

GCC-Registry-Set-Parameter request C C RegistrySetParameterRequest T C C
RegistrySetParameterRequest R M M

GCC-Registry-Set-Parameter confirm C C RegistryResponse T M M
RegistryResponse R C C

GCC-Registry-Retrieve-Entry request C C RegistryRetrieveEntryRequest T C C
RegistryRetrieveEntryRequest R M M

GCC-Registry-Retrieve-Entry confirm C C RegistryResponse T M M
RegistryResponse R C C

GCC-Registry-Delete-Entry request C C RegistryDeleteEntryRequest T C C
RegistryDeleteEntryRequest R M M

GCC-Registry-Delete-Entry confirm C C RegistryResponse T M M
RegistryResponse R C C

GCC-Registry-Monitor request C C RegistryMonitorEntryRequest T C C
RegistryMonitorEntryRequest R M M

GCC-Registry-Monitor indication C C RegistryMonitorEntryIndication T M M
RegistryMonitorEntryIndication R C C

GCC-Registry-Monitor confirm C C RegistryResponse T M M
RegistryResponse R C C

GCC-Registry-Allocate-Handle request C C RegistryAllocateHandleRequest T C C
RegistryAllocateHandleRequest R M M

GCC-Registry-Allocate-Handle confirm C C RegistryAllocateHandleResponse T M M
RegistryAllocateHandleResponse R C C

Conference GCC-Conductor-Assign request O O – – – –
conductorship GCC-Conductor-Assign indication C C ConductorAssignIndication T M1) M1)

ConductorAssignIndication R C C
GCC-Conductor-Assign confirm O O – – – –

GCC-Conductor-Release request O O ConductorReleaseIndication T C C
ConductorReleaseIndication R M1) M1)

GCC-Conductor-Release indication C C ConductorReleaseIndication T M1) M1)

ConductorReleaseIndication R C C
GCC-Conductor-Release confirm O O – – – –

GCC-Conductor-Please request O O – – – –
GCC-Conductor-Please indication O O – – – –
GCC-Conductor-Please response O O – – – –
GCC-Conductor-Please confirm O O – – – –

GCC-Conductor-Give request O O – – – –
GCC-Conductor-Give indication O O – – – –
GCC-Conductor-Give response O O ConductorAssignIndication T C C
GCC-Conductor-Give confirm O O – – – –

GCC-Conductor-Inquire request C C – – – –
GCC-Conductor-Inquire confirm C C – – – –

3UPERSEDED�BY�A�MORE�RECENT�VERSION

2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION 13

TABLE 6-1/T.124 �END	

'##�0RIMITIVES�AND�0$5S

� '##�SERVICE�DEFINITION

��� #ONFERENCE�ESTABLISHMENT�AND�TERMINATION

In this clause, primitives needed for conference establishment and conference termination are described. All of the
primitives in this clause are intended for use only by the Node Controller at a terminal or MCU.

����� 4HE�CONFERENCE�PROFILE

All conferences have the following characteristics which are defined when the conference is created and communicated
to each node as it enters the conference. These characteristics remain unchanged for the duration of the conference. This
information is collectively referred to as the Conference Profile:

#ONFERENCE� NAME – A numerical string and an optional Unicode Row 00 text string identifying the
conference. If both forms of Conference Name are used when a conference is created, when that
conference is joined, either form may be specified to indicate the conference to be joined.

#ONFERENCE�DESCRIPTION – An optional text string to describe the conference. For a listed conference, this
string is reproduced in the Conference Descriptor List in response to a GCC-Conference-Query request.

Functional
unit Primitives Term MCU Associated PDUs Dir. Term MCU

GCC-Conductor-Permission-Ask request O O ConductorPermissionAskIndication T C C
GCC-Conductor-Permission-Ask indication O O ConductorPermissionAskIndication R C C
GCC-Conductor-Permission-Ask confirm O O – – – –

GCC-Conductor-Permission-Grant request O O ConductorPermissionGrantIndication T C C
GCC-Conductor-Permission-Grant indication O O ConductorPermissionGrantIndication R C C
GCC-Conductor-Permission-Grant confirm O O – – – –

Miscellaneous GCC-Conference-Time-Remaining request O O ConferenceTimeRemainingIndication T C C
functions GCC-Conference-Time-Remaining indication O O ConferenceTimeRemainingIndication R C C

GCC-Conference-Time-Remaining confirm O O – –

GCC-Conference-Time-Inquire request O O ConferenceTimeInquireIndication T C C
GCC-Conference-Time-Inquire indication O O ConferenceTimeInquireIndication R C C
GCC-Conference-Time-Inquire confirm O O – –

GCC-Conference-Extend request O O ConferenceTimeExtendIndication T C C
GCC-Conference-Extend indication O O ConferenceTimeExtendIndication R C C
GCC-Conference-Extend confirm O O – – – –

GCC-Conference-Assistance request O O ConferenceAssistanceIndication T C C
GCC-Conference-Assistance indication O O ConferenceAssistanceIndication R C C
GCC-Conference-Assistance confirm O O – – – –

GCC-Text-Message request O O TextMessageIndication T C C
GCC-Text-Message indication O O TextMessageIndication R C C
GCC-Text-Message confirm O O – – – –

– – – FunctionNotSupported T, R M M

1) Reception of ConductorReleaseIndication PDUs is mandatory to allow the Top GCC Provider to properly handle requests which require
privileges. Privileges depend on whether the conference is in conducted or non-conducted mode. Transmission of ConductorAssignIndication
and ConductorReleaseIndication PDUs by the Top GCC Provider is mandatory for handling new nodes joining a conference.

3UPERSEDED�BY�A�MORE�RECENT�VERSION

14 2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION

0ASSWORD�PROTECTED�VS��NOT�PASSWORD�PROTECTED – Choice of whether the conference is Password protected
or not.

,ISTED� VS�� UNLISTED – Choice of whether the conference is listed or not listed on the conference list
provided when querying the list of available conferences.

#ONDUCTIBLE�VS��NON
CONDUCTIBLE – Choice of whether the conference is able to be placed in conducted
mode or whether the conference is always non-conducted.

4ERMINATION�METHOD – Choice of whether conference should last until explicitly terminated (manually
terminating), or if it should last until all participants disconnect (automatically terminating).

0RIVILEGE� LISTS – A set of lists indicating which privileges, normally only available to the Convener, are
also allowed to the Conductor, to any node in a conducted conference, or to any node in a non-conducted
conference.

����� $ESCRIPTION�OF�ABSTRACT�SERVICES

The following is a list of the primitives defined in this subclause and a brief summary of the function of each:

GCC-Conference-Create – Used by the Node Controller to create a new conference, specifying the
characteristics of that conference.

GCC-Conference-Query – Used by the Node Controller to query what conferences are currently in
progress as well as the information needed to attempt to join them.

GCC-Conference-Join – Used by the Node Controller to join an existing conference.

GCC-Conference-Invite – Used by the Node Controller to invite a node into an existing conference.

GCC-Conference-Add – Allowed only by the conference convener or convener-designated node, this is
used by the Node Controller to request that a node be added to the conference by dialing out from an
MCU.

GCC-Conference-Lock – Allowed only by the conference convener or convener-designated node, this is
used by the Node Controller to prevent new participants from joining a conference without being
explicitly added.

GCC-Conference-Unlock – Allowed only by the conference convener or convener-designated node, this
is used by the Node Controller to allow new participants to join a conference.

GCC-Conference-Lock-Report – Provides an indication to the Node Controller that a conference has
changed from being locked to being unlocked or vice versa.

GCC-Conference-Disconnect – Used by a Node Controller to disconnect the local node from an ongoing
conference.

GCC-Conference-Terminate – Allowed only by the conference convener or convener-designated node,
this is used by the Node Controller to terminate an entire conference, disconnecting all nodes.

GCC-Conference-Eject-User – Allowed only by the conference convener or convener-designated node
(or by the node directly above the ejected node in the connection hierarchy), this is used by the Node
Controller to disconnect a specific node from an ongoing conference.

GCC-Conference-Transfer – Allowed only by the conference convener or convener-designated node, this
is used by the Node Controller to transfer nodes joined with one conference to another conference. This
may be used as part of the process of merging or splitting conferences.

������� '##
#ONFERENCE
#REATE

The GCC-Conference-Create request primitive is used by a Node Controller to create a new conference at a remote node
to which the local node is automatically joined. This primitive may be issued at any time. When a conference is created,
the node to which the creation request is directed (the node which receives the GCC-Conference-Create indication) is
also automatically joined to the conference and becomes the Top GCC Provider for that conference. This node remains
the Top GCC Provider for the conference as long as the conference continues to exist. In some implementations, it may

3UPERSEDED�BY�A�MORE�RECENT�VERSION

2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION 15

be possible to create a conference locally without the use of GCC primitives. In this case, the node at which the
conference is created becomes the Top GCC Provider. Table 7-1 shows the parameters and types of this primitive.
Figure 7-1 shows the sequence of events when using this primitive.

TABLE 7-1/T.124

'##
#ONFERENCE
#REATE� �4YPES�OF�PRIMITIVES�AND�THEIR�PARAMETERS

#ONFERENCE�.AME� Name by which the conference to be created is identified. This consists of a numerical string along
with an optional Unicode Row 00 text string, from zero to 255 characters each. If both forms of a Conference Name are
used, if a node wishes to join this conference, it may specify either form of the name in the join request.

#ONFERENCE� .AME� -ODIFIER� If the requesting or responding node is already joined to a conference with the same
Conference Name (either numerical or text portion) as that included in the request, this parameter shall also be included
in the corresponding request or response primitive. The value of this parameter shall be unique among all conferences at
the corresponding node which have this Conference Name. This modifier, if included, shall be used as the Called Node
Conference Name Modifier parameter in a GCC-Conference-Join request by another node attempting to join the
conference through a direct connection with the corresponding node. This modifier is also included in the response to a
GCC-Conference-Query directed at this node. This parameter is a numerical string up to 255 digits in length.

#ONFERENCE�)$� Locally allocated identifier of the newly created conference. All subsequent references to the conference
are made using the Conference ID as a unique identifier. The Conference ID shall be identical with the MCS Domain
Selector used locally to identify the MCS Domain associated with the conference.

Parameter Request Indication Response Confirm

Conference Name M M(=) M(=) M(=)

Conference Name Modifier C C

Conference ID M M(=) M

Convener Password O O(=)

Password O O(=)

Conference Locked M M(=)

Conference Listed M M(=)

Conference Conductible M M(=)

Termination Method M M(=)

Conductor Privilege List O O(=)

Conducted-mode Conference Privilege List O O(=)

Non-conducted-mode Conference Privilege List O O(=)

Conference Description O O(=)

Caller Identifier O O(=)

Calling Address O O(=)

Called Address O O

Domain Parameters M M M M(=)

Quality of Service M M M M(=)

Local Network Address O O

User Data O O(=) O O(=)

Result M M(=)

3UPERSEDED�BY�A�MORE�RECENT�VERSION

16 2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION

#ONVENER�0ASSWORD� This optional parameter contains a numeric string, as well as an optional Unicode Row 00 text
string, used for the convener to identify itself in later operations, allowing the convener to disconnect and later rejoin the
conference, maintaining convener privileges (only when rejoined with a direct connection to the Top GCC Provider).
This is the private password which will allow the convener to perform convener-only operations (maximum 255 digits
and 255 characters). If this parameter is NULL, then it is not possible for the convener to disconnect and later rejoin
maintaining convener privileges.

0ASSWORD� This is a numeric string, as well as an optional Unicode Row 00 text string, to serve as a Password to enter
the conference (maximum 255 digits and 255 characters). If no Password is specified, the conference is not Password
protected.

NOTE – If the conference is Password protected, the Node controller must specify a numeric Password, and may also
specify a text Password. The numeric Password is required to allow for nodes which have no suitable text entry mechanism. In the
case that a text password is used, there is no assumption that the numeric Password that must also be included is generated by the user.
It may be more convenient and secure to use a machine generated numeric Password.

#ONFERENCE�,OCKED��Setting this flag immediately locks a conference, preventing anyone from joining this conference
unless they are explicitly added using the GCC-Conference-Add primitive. To lock a conference at any time after issuing
this primitive, the primitive GCC-Conference-Lock may be used. To unlock a conference, GCC-Conference-Unlock
may be used. Since support of the GCC-Conference-Add and GCC-Conference-Unlock primitives are optional, a locked
conference created at an MCU (which is not also a terminal) which did not support either of these primitives would be of
little use. Such an MCU may reject the conference creation stating locked-conference-not-supported as the reason. If
either GCC-Conference-Add indication/response (along with GCC-Conference-Invite request/confirm) or GCC-
Conference-Unlock indication/response primitives are supported, an MCU shall allow creation of a locked conference
and shall not make use of this reason for rejection.

#ONFERENCE� ,ISTED� The TRUE setting of this flag indicates that this conference may be listed when using the
conference-query facility. The FALSE setting of this flag indicates that this conference shall not be listed.

#ONFERENCE�#ONDUCTIBLE� The TRUE setting of this flag indicates that this conference may be placed in conducted mode
using the GCC-Conductor-Assign primitive. The FALSE setting of this flag indicates that this conference shall be non-
conducted only, and attempts to assign a conductor shall be rejected.

4ERMINATION� -ETHOD� This parameter indicates whether the conference shall remain in existence until explicitly
terminated by the Convener or convener-designated node using the GCC-Conference-Terminate primitive (manually
terminating), or if the conference will terminate when there are no nodes joined to it or if explicitly terminated
(automatically terminating).

#ONDUCTOR�0RIVILEGE�,IST� This is a list of flags indicating which functions the convener is designating as allowable to be
used by the conference conductor, if any. The flags in this list correspond to the operations: GCC-Conference-
Terminate, GCC-Conference-Eject-User, GCC-Conference-Add, GCC-Conference-Lock, GCC-Conference-Unlock and
GCC-Conference-Transfer.

#ONDUCTED
MODE�#ONFERENCE�0RIVILEGE�,IST� This is a list of flags indicating which functions the convener is designating
as allowable to be used by any node in a conducted-mode conference. The flags in this list correspond to the same
operations as for the above parameter.

.ON
CONDUCTED
MODE� #ONFERENCE� 0RIVILEGE� ,IST� This is a list of flags indicating which functions the convener is
designating as allowable to be used by any node in a non-conducted-mode conference. The flags in this list correspond
to the same operations as for the above parameter.

#ONFERENCE�$ESCRIPTION��An optional Unicode text string, up to 255 characters in length, which may be used to describe
the conference. This string is maintained by the GCC Providers in the conference to use as part of the response to GCC-
Conference-Query requests.

#ALLER�)DENTIFIER� Optional Unicode text string (maximum 255 characters) which may be used to identify the calling node
to the node at which the conference is to be created. The use of this information at this node is beyond the scope of this
Recommendation. It may be used, for example, to allow a user at that node to select among a limited set of

3UPERSEDED�BY�A�MORE�RECENT�VERSION

2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION 17

participants which are allowed to create conferences. Because this string can be set to any value, it does not necessarily
add to the security of a conference to do this, however.

#ALLING� !DDRESS� Optional address to be included in the MCS-Connect-Provider primitive on establishing an MCS
connection. See Recommendation T.122 for the interpretation of this parameter.

#ALLED� !DDRESS� Optional address to be included in the MCS-Connect-Provider primitive on establishing an MCS
connection. See Recommendation T.122 for the interpretation of this parameter.

$OMAIN� 0ARAMETERS� Domain parameters to be included in the MCS-Connect-Provider primitive on establishing an
MCS connection. See Recommendation T.122 for the interpretation of this parameter.

1UALITY�OF�3ERVICE� Quality of Service parameters to be included in the MCS-Connect-Provider primitive on establishing
an MCS connection. See Recommendation T.122 for the interpretation of this parameter.

,OCAL�.ETWORK�!DDRESS� If included in either the request or response, the local GCC Provider at the corresponding node
shall use this information to include as the Network Address parameter in the Conference Descriptor List sent as part of
the response to a GCC-Conference-Query request from another node.

5SER�$ATA� Optional user data which may be used for functions outside the scope of this Recommendation such as
authentication, billing, etc.

2ESULT� An indication of whether the request was accepted or rejected, and if rejected, the reason why. It contains one of
a list of possible results: successful, user rejected, resources not available, rejected for symmetry-breaking, locked
conference not supported, Conference Name and Conference Name Modifier already exist, domain parameters
unacceptable, domain not hierarchical, lower-layer initiated disconnect, unspecified failure to connect. A negative result
in the GCC-Conference-Create confirm does not imply that the physical connection to the node to which the connection
was being attempted is disconnected.

T0819430-94/d04

GCC ProviderNode Controller Node ControllerTop GCC Provider

GCC-Conference-Create
request

GCC-Conference-Create
indication

GCC-Conference-Create
confirm

GCC-Conference-Create
response

FIGURE 7-1/T.124

'##
#ONFERENCE
#REATE� �3EQUENCE�OF�PRIMITIVES

FIGURE 7-1/T.124...[D04] = 8.5 CM

3UPERSEDED�BY�A�MORE�RECENT�VERSION

18 2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION

������� '##
#ONFERENCE
1UERY

The GCC-Conference-Query request primitive may be used by a Node Controller to determine what conferences are
currently in existence at a particular MCU. Table 7-2 shows the parameters and types of this primitive. Figure 7-2 shows
the sequence of events when using this primitive.

TABLE 7-2/T.124

'##
#ONFERENCE
1UERY� �4YPES�OF�PRIMITIVES�AND�THEIR�PARAMETERS

.ODE�4YPE� The node type is either terminal, MCU, or multiport terminal.

!SYMMETRY�)NDICATOR� This is a field which is needed for certain conference establishment procedures which require
knowledge of which node across a single connection was the calling node (the initiator of the physical connection), and
which is the called node. This parameter is required in the case of a physical connection between the two nodes (that is,
an underlying connection between the two nodes using the PSTN, ISDN, or CSDN cases of Recommendation T.123).
Otherwise, this parameter is optional. If a node is aware of its status as the calling or called node, it shall set this
indicator to the proper value. In some cases a node may not be certain whether it is the calling or called node. In this
case, this parameter shall include a 32-bit random number. If both nodes indicate that they are not certain of their status,
the random numbers are used to determine which node should be considered the calling node and which the called node
for the purposes of the conference establishment procedure (note that this may not correctly reflect the true calling or
called node). The node which transmitted the largest of the two random numbers shall be considered the calling node for
the purpose of the conference establishment procedure. If both random numbers are identical, this decision shall be
considered unsatisfied and the requester shall re-issue the GCC-Conference-Query request using a different random
number (a different random number shall also be used in the resulting response). If both nodes respond with actual
values for this parameter (indicating knowledge of whether they are the called or calling node), but the resulting
exchange indicates a disagreement (i.e. both think they are the calling node or both think they are the called node), this
decision shall also be considered unsatisfied and the requester shall re-issue the GCC-Conference-Query request using a
random number (the response shall also use a random number). During the period where a query request remains
unconfirmed on one side of a given connection, the value for this parameter in all query requests and query responses
issued by this node over the same physical connection shall remain unchanged. The random numbers should be
generated to be uniformly distributed over the entire numerical range.

#ONFERENCE� $ESCRIPTOR� ,IST� A variable length list of conference descriptors each indicating an active conference
available to be joined. This list does not include conferences which had been designated unlisted at their time of
creation. If there are no available conferences, the list contains zero entries. Each conference descriptor includes the
parameters shown in Table 7-3.

#ALLING� !DDRESS� Optional address to be included in the MCS-Connect-Provider primitive on establishing an MCS
connection.

#ALLED� !DDRESS� Optional address to be included in the MCS-Connect-Provider primitive on establishing an MCS
connection.

5SER�$ATA� Optional user data which may be used for functions outside the scope of this Recommendation such as
authentication, billing, etc.

2ESULT� An indication of whether the request was accepted or rejected, and if rejected, the reason why. It contains one of
a list of possible results: successful, user-rejected, domain parameters unacceptable, domain not hierarchical, lower-layer
initiated disconnect, unspecified failure to connect.

Parameter Request Indication Response Confirm

Node Type M M(=) M M(=)

Asymmetry Indicator C C(=) C C(=)

Conference Descriptor List C

Calling Address O O(=)

Called Address O O

User Data O O(=) O O(=)

Result M M(=)

3UPERSEDED�BY�A�MORE�RECENT�VERSION

2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION 19

TABLE 7-3/T.124

#ONTENTS�OF�A�#ONFERENCE�$ESCRIPTOR

T0819440-94/d05

GCC ProviderNode Controller Node ControllerGCC Provider

GCC-Conference-Query
request

GCC-Conference-Query
indication

GCC-Conference-Query
confirm

GCC-Conference-Query
response

FIGURE 7-2/T.124

'##
#ONFERENCE
1UERY� �3EQUENCE�OF�PRIMITIVES

FIGURE 7-2/T.124...[D05] = 9 CM

Parameter Description

Conference Name Conference Name of the conference. If the requesting node wishes to join this conference,
this parameter is the value that shall be used in the Conference Name parameter of the
GCC-Conference-Join request. This parameter is a numerical string along with an optional
Unicode Row 00 text string, maximum 255 characters each. If both forms of the name are
given, either form may be specified in the join request.

Conference Name Modifier
(conditional)

If at the node returning the response, the conference is known by a name which includes a
Conference Name Modifier, this parameter is included. If the requesting node wishes to
join this conference, this is the Conference Name Modifier that shall be used in the Called
Node Conference Name Modifier parameter of the GCC-Conference-Join request. This
parameter is a numerical string up to 255 digits in length.

Conference Description (conditional) An optional Unicode text string, up to 255 characters in length, used to describe the
conference. This parameter may be particularly useful in cases where more than one
conference in the Conference Descriptor List has the same Conference Name as a means of
distinguishing between these conferences.

Locked/Unlocked Flag indicating whether the conference is currently locked or unlocked.

Password In The Clear Required Indicates that the conference is password protected with a password that may be used
without encryption in a GCC-Conference-Join request without first being challenged for
the password.

Network Address (conditional) Address information provided to the requesting node. This is provided only if the optional
Network Address parameter had been included in the connection establishment primitive at
that node (either GCC-Conference-Create, GCC-Conference-Join, or GCC-Conference-
Invite).

3UPERSEDED�BY�A�MORE�RECENT�VERSION

20 2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION

������� '##
#ONFERENCE
*OIN

The GCC-Conference-Join request primitive may be used by the Node Controller to cause the local node to join an
existing conference. This primitive may be issued at any time. A node may be joined to more than one conference
simultaneously. If the conference is Password protected, the Password parameter must contain the correct information
for the conference join to be successful. Table 7-4 shows the parameters and types of this primitive. Figure 7-3 shows
the sequence of events when using this primitive.

NOTE – It is up to the Node Controller, not the Top GCC Provider to determine if the Password is correct. It is possible
that its definition of correct may be less stringent than a strict character-by-character match. For example, in the case of the text form
of a Password, the Node Controller may choose to use a case-insensitive matching criterion.

TABLE 7-4/T.124

'##
#ONFERENCE
*OIN� �4YPES�OF�PRIMITIVES�AND�THEIR�PARAMETERS

#ONFERENCE�.AME� Name of the conference being joined. In the request, this parameter is either a numeric string or a
Unicode Row 00 text string, maximum 255 characters. If both the numeric and text parts of the Conference Name were
used at the time the conference was created, either part may be included in this request. In the confirm, this parameter
includes the full Conference Name including both numerical and text forms, if both were used at the time the conference
was created.

Parameter Request Indication Response Confirm

Conference Name M M

Called Node Conference Name Modifier C C(=RQ)

Calling Node Conference Name Modifier C C(=RQ)

Conference ID M M(=) M

Convener Password O O(=)

Password C C(=) C C(=)

Caller Identifier O O(=)

Calling Address O O(=)

Called Address O O

Domain Parameters M M

Quality of Service M M

Password In The Clear Required M

Conference Locked M

Conference Listed M

Conference Conductible M

Termination Method M

Conductor Privilege List C

Conducted-mode Conference Privilege List C

Non-conducted-mode Conference Privilege List C

Conference Description C

Local Network Address O

User Data O O(=) O O(=)

Result M M(=)

3UPERSEDED�BY�A�MORE�RECENT�VERSION

2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION 21

#ALLED� .ODE� #ONFERENCE� .AME� -ODIFIER�� If the node directly connected to the joining node (the node to which a
connection is attempting to be established) has included a Conference Name Modifier as part of the name by which this
conference is known, this parameter shall be included in the request primitive and shall indicate the Conference Name
Modifier as it is known to the node directly connected to the joining node. This parameter is a numeric string up to 255
digits in length.

#ALLING�.ODE�#ONFERENCE�.AME�-ODIFIER� If a conference already exists at the node issuing the join request with a name
identical with the Conference Name of the conference to be joined, this parameter shall be included in the GCC-
Conference-Join request and shall indicate the Conference Name Modifier by which the conference shall be known at
the local node. This parameter, if included, shall be different from any Conference Name Modifier already in use for any
other conference the local node is currently joined to with the same Conference Name. If used, this parameter becomes
the Called Node Conference Name Modifier by which another node attempting to join this conference through a
connection to the local node refers to this conference. This modifier is also included as the Conference Name Modifier
parameter in any GCC-Conference-Query response from this node (if the conference is listed). This parameter is a
numeric string up to 255 digits in length.

#ONFERENCE�)$� At the Top GCC Provider (the indication/response primitives) this parameter is the Conference ID of the
conference to which the requesting node wishes to join. In the confirm primitive, this parameter is returned by GCC
indicating the locally allocated ID by which all subsequent references to the conference are indicated. The Conference
ID shall be identical with the MCS Domain Selector used locally to identify the MCS Domain associated with the
conference.

#ONVENER�0ASSWORD: This is an optional parameter which is either a numeric string or a Unicode Row 00 text string
which may be used by a conference convener rejoining a conference after disconnecting (maximum 255 digits or
characters). If this identifier matches the corresponding identifier used when the conference was created, the joining
node is given the privileges of the convener, but only if joining with a direct connection to the Top GCC Provider (rather
than via an intermediate MCU). The convener, with the correct Convener Password, is allowed to join even conferences
which are locked. If the conference is Password protected, the correct Password must be given in addition to the
Convener Password to successfully join the conference. If the Convener Password is present but does not match, the
request to join shall be rejected. The criterion used to determine if the Convener Password matches the originally
specified value is determined by the Node Controller.

0ASSWORD� The password parameter is used to gain access to a password protected conference. In the request form of this
primitive, this parameter shall only contain a password if a result of Challenge Response Required has been received in a
previous GCC-Conference-Join confirm for this conference or if the Password In The Clear Required parameter is set in
the Conference Descriptor for this conference in a previous GCC-Conference-Query confirm. In the case of a password
in the clear this is either a numeric string or a Unicode Row 00 text string (maximum 255 digits or characters). A text
string may only be used if a text password was defined at the time of conference creation in addition to the numeric
password. In the case of an encrypted password this parameter contains the password encoded using one of the
algorithms specified in the previously received challenge. In the case of a password sent in response to a challenge
(either in the clear or encrypted), this parameter shall also include a tag which shall be identical to the tag received in the
challenge. In the case of a password initiated in response to the Password In The Clear Required flag in the GCC-
Conference-Query indication, no tag is required. In the request form of this primitive, this parameter may also include a
challenge to the receiving node. There are no restrictions on when a challenge may be included in this parameter.

In the response form of this primitive, this parameter may contain a challenge to the requester indicating that a password
is required for joining this conference. For this case, this parameter includes information specifying which forms of the
password will be accepted (either in the clear, and/or encrypted via a list of non-standard encryption algorithms), an
integer tag used to identify this challenge, and any additional information required for encryption. Should this parameter
contain challenge, the result parameter of this primitive shall be set to Challenge Response Required. In this case, no
connection is established by this exchange. This parameter in the response form of this primitive may also include a
Password (either in the clear or encrypted) in response to a challenge by the requesting node.

If this parameter in the indication is not in a format satisfactory to the receiving node, that node should issue a response
with Invalid Challenge Response as the result. If this parameter in the indication is of the correct format, but does not
contain the correct password, the response should include Invalid Password as the result.

3UPERSEDED�BY�A�MORE�RECENT�VERSION

22 2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION

#ALLER�)DENTIFIER� Optional Unicode text string (maximum 255 characters) which may be used to identify the calling node
to the node at which the Top GCC Provider resides. The use of this information at this node is beyond the scope of this
Recommendation. It may be used, for example, to allow a user at that node to select among a limited set of participants
to allow into the conference. Because this string can be set to any value, it does not necessarily add to the security of a
conference to do this, however.

#ALLING� !DDRESS� Optional address to be included in the MCS-Connect-Provider primitive on establishing an MCS
connection. See Recommendation T.122 for the interpretation of this parameter.

#ALLED� !DDRESS� Optional address to be included in the MCS-Connect-Provider primitive on establishing an MCS
connection. See Recommendation T.122 for the interpretation of this parameter.

$OMAIN� 0ARAMETERS� Domain parameters to be included in the MCS-Connect-Provider primitive on establishing an
MCS connection. See Recommendation T.122 for the interpretation of this parameter.

1UALITY�OF�3ERVICE� Quality of Service parameters to be included in the MCS-Connect-Provider primitive on establishing
an MCS connection. See Recommendation T.122 for the interpretation of this parameter.

0ASSWORD�)N�4HE�#LEAR�2EQUIRED� This is a Boolean parameter that indicates that the conference is password protected
with a password that may be used without encryption in a GCC-Conference-Join request without first being challenged
for the password. If the joining node is an MCU, this information is used by the GCC Provider in generating the
response to a GCC-Conference-Query indication. This information shall be used by the Node Controller in determining
whether or not the Password parameter may be included in a GCC-Conference-Transfer request.

#ONFERENCE�,OCKED��This flag indicates whether or not the joined conference is locked or unlocked. If the joining node is
an MCU, this information shall be used in generating the response to a GCC-Conference-Query indication.

#ONFERENCE�,ISTED� This flag indicates whether or not the joined conference is listed or unlisted. If the joining node is
an MCU, this information shall be used in generating the response to a GCC-Conference-Query indication. In particular,
conferences which are indicated as being unlisted shall not be listed in the conference list provided with the GCC-
Conference-Query response.

#ONFERENCE�#ONDUCTIBLE� The TRUE setting of this flag indicates that this conference may be placed in conducted mode
using the GCC-Conductor-Assign primitive. The FALSE setting of this flag indicates that this conference shall be non-
conducted only, and attempts to assign a conductor shall be rejected.

4ERMINATION�-ETHOD� This flag indicates the termination rule for the joined conference. The conference may be either
manually or automatically terminating.

#ONDUCTOR�0RIVILEGE�,IST� This is a list of flags indicating which functions the convener has designated as allowable to
be used by the conference conductor, if any. The flags in this list correspond to the operations: GCC-Conference-
Terminate, GCC-Conference-Eject-User, GCC-Conference-Add, GCC-Conference-Lock, GCC-Conference-Unlock and
GCC-Conference-Transfer.

#ONDUCTED
MODE�#ONFERENCE�0RIVILEGE�,IST� This is a list of flags indicating which functions the convener has designated
as allowable to be used by any node in a conducted-mode conference. The flags in this list correspond to the same
operations as for the above parameter.

.ON
CONDUCTED
MODE� #ONFERENCE� 0RIVILEGE� ,IST� This is a list of flags indicating which functions the convener has
designated as allowable to be used by any node in a non-conducted-mode conference. The flags in this list correspond to
the same operations as for the above parameter.

#ONFERENCE� $ESCRIPTION�� This parameter is a Unicode text string, up to 255 characters in length, describing the
conference being joined. It is present in the confirm primitive only if included at the time of conference creation.

,OCAL�.ETWORK�!DDRESS� If included in the request, the local GCC Provider at the corresponding node shall use this
information to include as the Network Address parameter in the Conference Descriptor List sent as part of the response
to a GCC-Conference-Query request from another node.

5SER�$ATA� Optional user data which may be used for functions outside the scope of this Recommendation such as
authentication, billing, etc.

3UPERSEDED�BY�A�MORE�RECENT�VERSION

2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION 23

2ESULT� An indication of whether the request was accepted or rejected, and if rejected, the reason why. It contains one of
a list of possible results: successful, user-rejected, invalid conference, invalid Password, Challenge Response required,
invalid Challenge Response, invalid Convener Password, domain parameters unacceptable, domain not hierarchical,
lower-layer initiated disconnect, unspecified failure to connect. A negative result in the GCC-Conference-Join confirm
does not imply that the physical connection to the node to which the connection was being attempted is disconnected.

T0819450-94/d06

GCC ProviderNode Controller Node ControllerTop GCC Provider

GCC-Conference-Join
request

GCC-Conference-Join
indication

GCC-Conference-Join
confirm

GCC-Conference-Join
response

FIGURE 7-3/T.124

'##
#ONFERENCE
*OIN� �3EQUENCE�OF�PRIMITIVES

FIGURE 7-3/T.124...[D06] = 9 CM

������� '##
#ONFERENCE
)NVITE

The GCC-Conference-Invite request primitive may be used by a Node Controller to invite a node to join a conference.
This primitive may be used as a result of GCC-Conference-Add indication, or may be issued directly by the inviting
node. If the add is successful, the adding MCU invites the added node to join the conference by issuing the GCC-
Conference-Invite request primitive. Note that even if the conference is Password protected, no Password is needed by
the invited node in order to accept the invitation to join the conference. Table 7-5 shows the parameters and types of this
primitive. Figure 7-4 shows the sequence of events when using this primitive.

#ONFERENCE�)$� Identifier of the conference to which the primitive refers.

#ONFERENCE�.AME� The name of the conference as specified in the Conference Profile. If the Conference Name includes
both numerical and text forms, both forms shall be included in this parameter.

#ONFERENCE�.AME�-ODIFIER� If a conference already exists at the node issuing the invite response with a name identical
with the Conference Name of the conference to be joined, this parameter shall be included in the GCC-Conference-
Invite response and shall indicate the Conference Name Modifier by which the conference shall be known at the local
node. This parameter if included shall be different from any Conference Name Modifier already in use for any other
conference the local node is currently joined to with the same Conference Name. If used, this parameter becomes the
Calling Node Conference Name Modifier by which another node attempting to join this conference through a connection
to the local node refers to this conference. This name is also included as the Conference Name Modifier parameter in any
GCC-Conference-Query response from this node (if the conference is listed). This is a numerical string up to 255 digits
in length.

#ALLER�)DENTIFIER� Optional Unicode text string (maximum 255 characters) which may be used to identify the calling node
to the node at which the conference is to be created. The use of this information at this node is beyond the scope of this
Recommendation. It may be used, for example, to allow a user at that node to select among a limited set of participants
which are allowed to invite this node into a conference. Because this string can be set to any value, it does not
necessarily add to the security of a conference to do this, however.

3UPERSEDED�BY�A�MORE�RECENT�VERSION

24 2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION

TABLE 7-5/T.124

##
#ONFERENCE
)NVITE� �4YPES�OF�PRIMITIVES�AND�THEIR�PARAMETERS

#ALLING� !DDRESS� Optional address to be included in the MCS-Connect-Provider primitive on establishing an MCS
connection. See Recommendation T.122 for the interpretation of this parameter.

#ALLED� !DDRESS� Optional address to be included in the MCS-Connect-Provider primitive on establishing an MCS
connection. See Recommendation T.122 for the interpretation of this parameter.

$OMAIN� 0ARAMETERS� Domain parameters to be included in the MCS-Connect-Provider primitive on establishing an
MCS connection. See Recommendation T.122 for the interpretation of this parameter.

1UALITY�OF�3ERVICE� Quality of Service parameters to be included in the MCS-Connect-Provider primitive on establishing
an MCS connection. See Recommendation T.122 for the interpretation of this parameter.

0ASSWORD�)N�4HE�#LEAR�2EQUIRED� This is a Boolean parameter that indicates that the conference is password protected
with a password that may be used without encryption in a GCC-Conference-Join request without first being challenged
for the password. If the joining node is an MCU, this information is used by the GCC Provider in generating the
response to a GCC-Conference-Query indication. This information shall be used by the Node Controller in determining
whether or not the Password parameter may be included in a GCC-Conference-Transfer request.

#ONFERENCE�,OCKED��This flag indicates whether or not the joined conference is locked or unlocked. If the joining node is
an MCU, this information shall be used in generating the response to a GCC-Conference-Query indication.

Parameter Request Indication Response Confirm

Conference ID M M M(=IN) M(=RQ)

Conference Name M

 Conference Name Modifier C

Caller Identifier O O(=)

Calling Address O O(=)

Called Address O O

Domain Parameters M M

Quality of Service M M

Password In The Clear Required M

Conference Locked M

Conference Listed M

Conference Conductible M

Termination Method M

Conductor Privilege List C

Conducted-mode Conference Privilege List C

Non-conducted-mode Conference Privilege List C

Conference Description C

Local Network Address O

User Data O O(=) O O(=)

Result M M(=)

3UPERSEDED�BY�A�MORE�RECENT�VERSION

2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION 25

#ONFERENCE�,ISTED� This flag indicates whether or not the joined conference is listed or unlisted. If the joining node is an
MCU, this information shall be used in generating the response to a GCC-Conference-Query indication. In particular,
conferences which are indicated as being unlisted shall not be listed in the conference list provided with the GCC-
Conference-Query response.

#ONFERENCE�#ONDUCTIBLE� The TRUE setting of this flag indicates that this conference may be placed in conducted mode
using the GCC-Conductor-Assign primitive. The FALSE setting of this flag indicates that this conference shall be non-
conducted only, and attempts to assign a conductor shall be rejected.

4ERMINATION�-ETHOD� This flag indicates the termination rule for the joined conference. The conference may be either
manually or automatically terminating.

#ONDUCTOR�0RIVILEGE�,IST� This is a list of flags indicating which functions the convener has designated as allowable to
be used by the conference conductor, if any. The flags in this list correspond to the operations: GCC-Conference-
Terminate, GCC-Conference-Eject-User, GCC-Conference-Add, GCC-Conference-Lock, GCC-Conference-Unlock and
GCC-Conference-Transfer.

#ONDUCTED
MODE�#ONFERENCE�0RIVILEGE�,IST� This is a list of flags indicating which functions the convener has designated
as allowable to be used by any node in a conducted-mode conference. The flags in this list correspond to the same
operations as for the above parameter.

.ON
CONDUCTED
MODE� #ONFERENCE� 0RIVILEGE� ,IST� This is a list of flags indicating which functions the convener has
designated as allowable to be used by any node in a non-conducted-mode conference. The flags in this list correspond to
the same operations as for the above parameter.

#ONFERENCE� $ESCRIPTION�� This parameter is a Unicode text string, up to 255 characters in length, describing the
conference. It is present in the confirm primitive only if included at the time of conference creation.

,OCAL�.ETWORK�!DDRESS� If included in the response, the local GCC Provider at the corresponding node shall use this
information to include as the Network Address parameter in the Conference Descriptor List sent as part of the response
to a GCC-Conference-Query request from another node.

5SER�$ATA� Optional user data which may be used for functions outside the scope of this Recommendation such as
authentication, billing, etc.

2ESULT� An indication of whether the request was accepted or rejected, and if rejected, the reason why. It contains one of
a list of possible results: successful, user-rejected, invalid conference, domain parameters unacceptable, domain not
hierarchical, lower-layer initiated disconnect, unspecified failure to connect. A negative result in the GCC-Conference-
Invite confirm does not imply that the physical connection to the node to which the connection was being attempted is
disconnected.

T0819460-94/d07

GCC Provider
Inviting MCU
Node Controller

Invited Node
Node ControllerGCC Provider

GCC-Conference-Invite
request

GCC-Conference-Invite
indication

GCC-Conference-Invite
confirm

GCC-Conference-Invite
response

FIGURE 7-4/T.124

'##
#ONFERENCE
)NVITE� �3EQUENCE�OF�PRIMITIVES
FIGURE 7-4/T.124...[D07] = 9 CM

3UPERSEDED�BY�A�MORE�RECENT�VERSION

26 2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION

������� '##
#ONFERENCE
!DD

The GCC-Conference-Add request primitive may be used by a Node Controller to add a single additional node to an
existing conference by requesting that an MCU dial-out the specified node. This primitive is only valid if issued by the
Convener or a convener-designated node. If the Adding MCU is specified, the sequence of primitives is direct between
the requester and the adding MCU. If the Adding MCU is not specified, the indication is issued from the Top GCC
Provider. In this case, if a port capable of performing the add is available at this node, the exchange is also direct. If the
Node Controller at the Top GCC Provider maintains or has access to a central data-base of port information for all
MCUs in the conference, it may perform the add indirectly by issuing another GCC-Conference-Add request, specifying
an Adding MCU (even if the top MCU is not a convener-designated privileged node for this operation).

Once provision has been made to set-up the physical connection to the Added Node (if needed), the GCC-Conference-
Invite request primitive shall be issued by the Adding MCU to invite the Added Node into the conference. If the Adding
MCU already has a physical connection to the Added Node, the Adding MCU may issue the GCC-Conference-Invite
request directly to the Added Node without establishing a new physical connection. If this connection had been
established without knowledge of the Network Address of the Added Node (e.g. the Added Node had dialed into the
Adding MCU to connect to a separate conference), the Network Address parameters in the Conference Roster may be
used to provide the information needed to match the Network Address of an already connected node with that of a node
to be added. Table 7-6 shows the parameters and types of this primitive. Figures 7-5 and 7-6 show the sequence of
events when using this primitive in the direct and indirect cases, respectively.

TABLE 7-6/T.124

'##
#ONFERENCE
!DD� �4YPES�OF�PRIMITIVES�AND�THEIR�PARAMETERS

#ONFERENCE�)$� Identifier of the conference to which the primitive refers.

.ETWORK�!DDRESS� This parameter specifies the address of the node to be added for use by the Adding MCU in making
the network connection to the node to be added. This parameter consists of a list of one or more independent addresses,
each specifying a portion of the total logical connection over which data as well as other information (such as audio or
video) may be carried. A single address in this list may be specified either as a dialing string for a switched connection
(aggregated channel), a transport connection, or an address with a non-standard format assumed to be understood by the
Adding MCU. In the case of a switched connection (aggregated channel), the address is specified to include the
parameters listed in Table 7-7. In the case of a transport connection, the address is specified to include the parameters
listed in Table 7-8.

The NSAP part of a transport address may encapsulate within itself certain patterns that by convention suggest the
choice of a switched connection or a connectionless network protocol. In such cases, the listed element stands alone as
an independent alternative to any aggregated channel or non-standard addresses that may also be present. On the other
hand, a transport address may instead be incomplete and may depend implicitly on the shared use of a data channel
opened within a multimedia multiplex of aggregated channels, as specified in Recommendation T.123 or in some non-
standard way. In these cases, a locally specified NSAP address and/or transport selector may be needed to steer new
connections in the data channel to the correct termination point. NSAP addresses are conveyed, according to
Recommendation T.123, as Calling or Called Party Sub-address information elements in SETUP, and transport selectors
as TSAP identifiers in an X.224 connection request.

Parameter Request Indication Response Confirm

Conference ID M M M(=IN) M(=RQ)

Network Address M M(=) M(=) M(=)

Adding MCU Node ID O

Requesting Node ID M M(=)

User Data O O(=) O O(=)

Result M M(=)

3UPERSEDED�BY�A�MORE�RECENT�VERSION

2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION 27

TABLE 7-7/T.124

.ETWORK�ADDRESS�PARAMETERS�FOR�A�SWITCHED�CONNECTION��AGGREGATED�CHANNEL	

TABLE 7-8/T.124

.ETWORK�ADDRESS�PARAMETERS�FOR�A�TRANSPORT�CONNECTION

!DDING�-#5�.ODE�)$� This is an optional parameter which may be used to specify the particular MCU node from
which the called node is to be added. If this parameter is not specified, the called node may be added from any available
MCU in the conference. In this case, the indication occurs from the Top GCC Provider. The node controller at that MCU
may either service it locally, or issue another request to a specific MCU.

Parameter Description

Transfer Mode This is a choice of either a PSTN speech connection, a PSTN voice-band data connection,
a CSDN digital connection at 56 kbit/s, an ISDN digital connection at 64, 128, 192, 256,
320, 384, 512, 768, 1152, 1472, 1536, or 1920 kbit/s, an ISDN frame-mode connection, a
PSDN packet mode connection, or an ATM connection. One or more of these choices must
be selected. If more than one choice is indicated, this is to be interpreted as a choice left to
the discretion of the Adding MCU.

NOTE – ISDN rates exceeding 64 kbit/s relate to the corresponding code points in
Recommendation H.221. They represent single multirate connections, e.g. H0, H11, H12,
rather than multiple B or H0 calls. The latter require multiple address elements (at 64
and/or 384 kbit/s) only if different numbers should be called for initial and additional
channels. Otherwise, the number of channels can be resolved through the exchange of
capability and command BAS codes. If an MCU operates by video switching, new nodes
will generally be assigned the same number of channels as existing nodes in the conference
or they will be given secondary status.

International Number This is a string of digits, up to 16 digits in length, which represents the full international
number of the node to be added.

Sub-Address (optional) This is an optional parameter, valid only in the case of ISDN transfer modes, which
represents the ISDN sub-address of the node to be added. This is a string of digits, up to 40
digits in length.

Extra Dialing String (optional) This is an optional parameter which indicates that additional information is needed to reach
the node to be added once the physical connection has been established. In the case of a
speech or voiceband data connection, for example, this may represent DTMF tones to be
transmitted over the voice channel once it has been established. Alternatively, the extra
dialing may represent a virtual private network number. This is a string up to 255
characters which may be either the digits 1 through 9, the “#” character, the “*” character,
or the “,” (comma) character. The comma character is meant to represent a one second
delay the Adding MCU is to insert prior to the characters which follow.

High Layer Compatibility
Information (optional)

This is an optional parameter, valid only in the case of ISDN transfer modes, which
indicates the mode of operation this portion of the connection is to use. This information is
required for connections made in some countries. The modes of operation are one or more
of telephony at 3 kHz bandwidth, telephony at 7 kHz bandwidth, videotelephony,
videoconferencing, audiographics, audiovisual, or multimedia. If more than one of these is
selected, this indicates that the Adding MCU may use one of the indicated modes at its
discretion. The definitions of these choices may depend on the country of operation of the
Adding MCU.

Parameter Description

NSAP Address This is an Octet String of up to 20 octets in length which is the preferred binary encoding
(per A.8.3.1/X.213) of the Network Service Access Point address of the node to be added.

Transport Selector (optional) This is an optional parameter which may be used to select the Transport Service Access
Point at the node to be added.

3UPERSEDED�BY�A�MORE�RECENT�VERSION

28 2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION

2EQUESTING�.ODE�)$� Node ID of the requesting node.

5SER�$ATA� Optional user data which may be used for functions outside the scope of this Recommendation such as
authentication, billing, etc.

2ESULT� An indication of whether the request was accepted or rejected, and if rejected, the reason why. It contains one of
a list of possible results: successful, invalid conference, invalid adding MCU, not convener or convener-designated node,
invalid network type, invalid network address, added node busy, network busy, connection unsuccessful, no ports
available.

T0819470-94/d08

GCC-
Conference-

Invite request
GCC-
Conference-
Invite indication

GCC
Provider

GCC
Provider

Top GCC
Provider

Requesting
Node Node
Controller

Adding MCU
Node Controller

GCC
Provider

GCC
Provider

Added
Node Node
Controller

GCC-
Conference-Add

request

GCC-
Conference-Add

confirm

GCC-
Conference-Add
indication

GCC-
Conference-Add
response

GCC-
Conference-

Invite confirm

GCC-
Conference-
Invite response

FIGURE 7-5/T.124

'##
#ONFERENCE
!DD��DIRECT�CASE	� �3EQUENCE�OF�PRIMITIVES

FIGURE 7-5/T.124...[D08] = 7cm

%RROR��"OOKMARK�NOT�DEFINED�

T0819480-94/d09

Top GCC
Provider

GCC
Provider

Top GCC
Provider

Requesting
Node Node
Controller

Top MCU
Node Controller

Added
Node Node
Controller

GCC
Provider

Adding MCU
Node Controller

GCC
Provider

GCC
Provider

GCC-
Conference-

Add
request

GCC-
Conference-

Add
confirm

GCC-
Conference-
Add
indication

GCC-
Conference-
Add
response

GCC-
Conference-

Add
request

GCC-
Conference-

Add
confirm

GCC-
Conference-
Add
indication

GCC-
Conference-
Add
response

GCC-
Conference-

Invite
request

GCC-
Conference-

Invite
confirm

GCC-
Conference-
Invite
indication

GCC-
Conference-
Invite
response

FIGURE 7-6/T.124

'##
#ONFERENCE
!DD��INDIRECT�CASE	� �3EQUENCE�OF�PRIMITIVES

FIGURE 7-6/T.124....[D09] = 8cm

3UPERSEDED�BY�A�MORE�RECENT�VERSION

2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION 29

������� '##
#ONFERENCE
,OCK

The GCC-Conference-Lock request primitive may be used by a Node Controller to lock a conference, preventing other
nodes from dialing into the conference at all. This primitive is valid only if issued by the Convener or a convener-
designated node. While locked, participants may be added to a conference only by using the GCC-Conference-Add
primitive. The order of GCC-Conference-Lock and GCC-Conference-Unlock primitives exchanged between a node and
the Top GCC Provider is preserved. Table 7-9 shows the parameters and types of this primitive. Figure 7-7 shows the
sequence of events when using this primitive.

TABLE 7-9/T124

'##
#ONFERENCE
,OCK� �4YPES�OF�PRIMITIVES�AND�THEIR�PARAMETERS

#ONFERENCE�)$� Identifier of the conference to which the primitive refers.

3OURCE�.ODE�)$� Node ID of the requesting node.

2ESULT� An indication of whether the request was accepted or rejected, and if rejected, the reason why. It contains one of
a list of possible results: successful, invalid conference, function not available, already locked, not convener or
convener-designated node.

T0819490-94/d10

GCC ProviderNode Controller Node Controller

GCC Provider

Top GCC Provider

GCC-Conference-
Lock request

GCC-Conference-
Lock indication

GCC-Conference-
Lock confirm

GCC-Conference-
Lock response

GCC-Conference-
Lock-Report
indication

All Nodes
Node Controller

FIGURE 7-7/T.124

'##
#ONFERENCE
,OCK� �3EQUENCE�OF�PRIMITIVES

FIGURE 7-7/T.124...[D10] = 12cm

Parameter Request Indication Response Confirm

Conference ID M M M(=IN) M(=RQ)

Source Node ID M M(=)

Result M M(=)

3UPERSEDED�BY�A�MORE�RECENT�VERSION

30 2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION

������� '##
#ONFERENCE
5NLOCK

The GCC-Conference-Unlock request primitive may be used by a Node Controller to unlock a previously locked
conference. Unlocking a conference allows other nodes to join the conference by dialing into it in a meet-me style. If the
conference was created specifying the use of Password protection, the Password is still required for any participant
attempting to join the unlocked conference. This primitive is valid only if issued by the Convener or a convener-
designated node. The order of GCC-Conference-Lock and GCC-Conference-Unlock primitives exchanged between a
node and the Top GCC Provider is preserved. Table 7-10 shows the parameters and types of this primitive. Figure 7-8
shows the sequence of events when using this primitive.

TABLE 7-10/T.124

'##
#ONFERENCE
5NLOCK� �4YPES�OF�PRIMITIVES�AND�THEIR�PARAMETERS

#ONFERENCE�)$� Identifier of the conference to which the primitive refers.

3OURCE�.ODE�)$� Node ID of the requesting node.

2ESULT� An indication of whether the request was accepted or rejected, and if rejected, the reason why. It contains one of
a list of possible results: successful, invalid conference, function not available, already unlocked, not convener or
convener-designated node.

T0819500-94/d11

GCC ProviderNode Controller Node Controller

GCC Provider

Top GCC Provider

GCC-Conference-
Unlock request GCC-Conference-

Unlock indication

GCC-Conference-
Unlock confirm

GCC-Conference-
Unlock response

GCC-Conference-
Lock-Report
indication

All Nodes
Node Controller

FIGURE 7-8/T.124

'##
#ONFERENCE
5NLOCK� �3EQUENCE�OF�PRIMITIVES

FIGURE 7-8/T.124...[D11] = 12 cm

Parameter Request Indication Response Confirm

Conference ID M M M(=IN) M(=RQ)

Source Node ID M M(=)

Result M M(=)

3UPERSEDED�BY�A�MORE�RECENT�VERSION

2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION 31

������� '##
#ONFERENCE
,OCK
2EPORT

The GCC-Conference-Lock-Report indication primitive is issued to the Node Controller at all nodes in a conference as a
result of a successful GCC-Conference-Lock request or a successful GCC-Conference-Unlock request. Figures 7-7
and 7-8 show the sequence of events leading to the use of this primitive. See also Table 7-11.

TABLE 7-11/T.124

'##
#ONFERENCE
,OCK
2EPORT� �4YPES�OF�PRIMITIVES�AND�THEIR�PARAMETERS

#ONFERENCE�)$� Identifier of the MCS Domain corresponding to the locked conference.

,OCKED�5NLOCKED� Flag indicating if the conference has switched into locked or unlocked mode.

������� '##
#ONFERENCE
$ISCONNECT

The GCC-Conference-Disconnect request primitive is used by a Node Controller to disconnect itself from a conference.
Disconnecting from a conference does not imply disconnecting the corresponding physical connection. Once
disconnected from the conference, a terminal may then join another conference. If GCC detects that a node has
abnormally disconnected from a conference (e.g. the physical call has been disconnected), it shall send a GCC-
Conference-Disconnect indication to all remaining nodes in the conference. Table 7-12 shows the parameters and types
of this primitive. Figures 7-9 and 7-13 show the sequence of events when using this primitive for client initiated
disconnects. Figure 7-11 shows the case of a GCC initiated abnormal disconnect.

TABLE 7-12/T.124

'##
#ONFERENCE
$ISCONNECT� �4YPES�OF�PRIMITIVES�AND�THEIR�PARAMETERS

#ONFERENCE�)$� Identifier of the conference to which the primitive refers.

2EASON� FOR� DISCONNECT� Indication of the reason for disconnecting from the conference. Either user-initiated, ejected
node, or unknown.

$ISCONNECTING�.ODE�)$� Node ID corresponding to the disconnected node.

2ESULT� An indication of whether the request was accepted or rejected, and if rejected, the reason why. It contains one of
a list of possible results: successful, invalid conference.

NOTE – if it is necessary to allow a Node Controller to disconnect from a conference prior to completion of the connection
establishment (e.g. prior to reception of a GCC-Conference-Join confirm), it would be necessary to provide a local means of
association of the conference to be disconnected with the conference being established. This is because the Conference ID is not
known by the Node Controller until after creating or joining a conference. The mechanism for doing so is a local matter, beyond the
scope of this Recommendation.

Parameter Indication

Conference ID M

Locked/Unlocked M

Parameter Request Indication Confirm

Conference ID M M M(=RQ)

Reason for disconnect M

Disconnecting Node ID M

Result M

3UPERSEDED�BY�A�MORE�RECENT�VERSION

32 2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION

T0819510-94/d12

GCC ProviderNode Controller GCC Provider

GCC-Conference-
Disconnect request GCC-Conference-

Disconnect indication

GCC-Conference-
Disconnect confirm

All Nodes
Node Controller

FIGURE 7-9/T.124

'##
#ONFERENCE
$ISCONNECT��CLIENT�INITIATED	� �3EQUENCE�OF�PRIMITIVES

FIGURE 7-9/T.124...[D12] = 8 CM

�������� '##
#ONFERENCE
4ERMINATE

The GCC-Conference-Terminate request primitive is used by a Node Controller to terminate an entire conference. This
primitive shall only be issued by the conference Convener or a convener-designated node. Terminating a conference
does not imply termination of the corresponding physical connection. Table 7-13 shows the parameters and types of this
primitive. Figures 7-10, 7-11 and 7-12 show the sequence of events when using this primitive for client initiated and
GCC initiated cases. The GCC initiated case can result either from abnormal termination at the lower layers of the
protocol, or at the Top GCC Provider, if the conference had been created as an automatically terminating conference and
all other nodes have disconnected from the conference.

NOTE – In most cases, reception of the GCC-Conference-Terminate indication implies that the entire conference has been
terminated – i.e. all members have been disconnected. In the case that error termination is given as the reason code, this primitive
implies that the local node has been unexpectedly removed from the conference, but does not necessarily imply that the entire
conference has been terminated.

TABLE 7-13/T.124

'##
#ONFERENCE
4ERMINATE� �4YPES�OF�PRIMITIVES�AND�THEIR�PARAMETERS

#ONFERENCE�)$� Identifier of the conference to which the primitive refers.

2EQUESTING�.ODE�)$� Node ID of the node which initiated the termination. This parameter is present except in the case of
GCC initiated termination.

2EASON�FOR�TERMINATION� Indication of the reason for termination of the conference. This contains one of a list of possible
reasons: requested normal termination, requested timed conference termination, no more participants in automatically
terminating conference, error termination.

2ESULT� An indication of whether the request was accepted or rejected, and if rejected, the reason why. It contains one of
a list of possible results: successful, invalid conference, not convener or convener-designated node.

Parameter Request Indication Confirm

Conference ID M M M(=RQ)

Requesting Node ID C

Reason for termination O O(=)

Result M

3UPERSEDED�BY�A�MORE�RECENT�VERSION

2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION 33

T0819530-94/d13

GCC-Conference-
Terminate confirm

GCC ProviderNode Controller GCC ProviderTop GCC Provider
All Nodes
Node Controller

GCC-Conference-
Terminate request GCC-Conference-

Terminate indication

GCC-Conference-
Terminate indication

FIGURE 7-10/T.124

'##
#ONFERENCE
4ERMINATE��CLIENT�INITIATED	� �3EQUENCE�OF�PRIMITIVES

FIGURE 7-10/T.124...[D13] = 10 CM

T0824440-95/d14

GCC Provider

GCC-Conference-
Terminate indication GCC-Conference-

Disconnect indication

All Remainig Nodes
Node Controller

FIGURE 7-11/T.124

'##
#ONFERENCE
4ERMINATE��ERROR�TERMINATION	� �3EQUENCE�OF�PRIMITIVES

GCC Provider
Removed Node
Node Controller

FIGURE 7-11/T.124...[D14] = 8 CM

3UPERSEDED�BY�A�MORE�RECENT�VERSION

34 2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION

T0819540-94/d15

GCC Provider

GCC-Conference-
Terminate indication

Remaining Node
Node Controller

FIGURE 7-12/T.124

'##
#ONFERENCE
4ERMINATE��AUTOMATIC�
TERMINATION	� �3EQUENCE�OF�PRIMITIVES

FIGURE 7-12/T.124...[D15] = 9 CM

�������� '##
#ONFERENCE
%JECT
5SER

The GCC-Conference-Eject-User request primitive is used by a Node Controller to force a particular node to be
disconnected from a conference. This primitive shall only be issued by the conference Convener or a convener-
designated node or by a node directly above the ejected node in the connection hierarchy. Being ejected from a
conference does not imply termination of the corresponding physical connection. When a node is ejected, a GCC-
Conference-Disconnect indication is issued to the Node Controller at all nodes remaining in the conference indicating
that the ejected node has disconnected due to being ejected. Table 7-14 shows the parameters and types of this primitive.
Figure 7-13 shows the sequence of events when using this primitive.

TABLE 7-14/T.124

'##
#ONFERENCE
%JECT
5SER� �4YPES�OF�PRIMITIVES�AND�THEIR�PARAMETERS

#ONFERENCE�)$� Identifier of the conference to which the primitive refers.

%JECTED�.ODE�)$� The node to be ejected.

2EASON� FOR� EJECTION� Indication of the reason for ejection: user-initiated, higher node disconnected, or higher node
ejected.

2ESULT� An indication of whether the request was accepted or rejected, and if rejected, the reason why. It contains one of
a list of possible results: successful, invalid conference, invalid user to eject, not convener or convener-designated node.

Parameter Request Indication Confirm

Conference ID M M M(=RQ)

Ejected Node ID M M(=) M(=)

Reason for ejection O O(=)

Result M

3UPERSEDED�BY�A�MORE�RECENT�VERSION

2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION 35

T0819550-94/d16

GCC
Provider

Node
Controller

GCC
Provider

GCC
Provider

Top GCC
Provider

GCC-Conference-
Eject-User request

GCC-Conference-
Eject-User confirm

Ejected Node
Node Controller

GCC-Conference-
Eject-User
indication

GCC-Conference-
Disconnect
indication

All Remaining
Nodes
Node Controller

FIGURE 7-13/T.124

'##
#ONFERENCE
%JECT
5SER��CLIENT�INITIATED	� �3EQUENCE�OF�PRIMITIVES

FIGURE 7-13/T.124...[D16] = 7.5 CM

�������� '##
#ONFERENCE
4RANSFER

The GCC-Conference-Transfer request primitive is used by a Node Controller to cause selected nodes in a conference to
disconnect from that conference and join another conference. This primitive shall only be issued by the conference
Convener or a convener-designated node. Some MCUs in a conference may be already joined to both the originating and
destination conferences prior to the transfer taking place. If so, these MCUs shall not be included in the list of
Destination Nodes in this request. If an MCU is not joined with both conferences but will be connected to nodes which,
after the transfer, will be joined to both conferences (if not all nodes are transferred), then that MCU shall be joined to
the destination conference prior to issuing the GCC-Conference-Transfer request. Any MCU which is included in the list
of Destination Nodes (those which are intended to transfer) shall complete the transfer operation (disconnecting from the
originating conference and joining the destination conference) prior to processing any new GCC-Conference-Join
indications. This allows the join request from the nodes below that MCU in the connection hierarchy to be successfully
completed. Nodes which are in the process of transferring and receiving a GCC-Conference-Terminate indication for the
originating conference may proceed directly to joining the destination conference without disconnecting if they have not
already done so. This situation could arise if the MCU to which the node is connected was also instructed to transfer.
Table 7-15 shows the parameters and types of this primitive. Figure 7-14 shows the sequence of events when using this
primitive.

TABLE 7-15/T.124

'##
#ONFERENCE
4RANSFER� �4YPES�OF�PRIMITIVES�AND�THEIR�PARAMETERS

Parameter Request Indication Confirm

Conference ID M M M(=RQ)

Destination Conference Name M M(=) M(=)

Destination Conference Name Modifier O O(=) O(=)

Destination Network Address O O(=)

Transferring Nodes (List of Node IDs or null) O O(=)

Password C C(=)

Result M

3UPERSEDED�BY�A�MORE�RECENT�VERSION

36 2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION

#ONFERENCE�)$� Identifier of the MCS Domain corresponding to the conference to which the designated nodes are joined
prior to the transfer operation.

$ESTINATION�#ONFERENCE�.AME� Name of the conference to which the designated nodes are instructed to join. This is the
name by which the conference is known at the MCU or MCUs to which the destination nodes are connected. If the
conference had been created using both the numerical and text forms of the Conference Name, either form may be used
in this primitive.

$ESTINATION� #ONFERENCE� .AME� -ODIFIER�� If an MCU in the destination conference had chosen to use the optional
Conference Name Modifier (as a result of local naming uniqueness problem), nodes to be transferred which are
connected to this MCU must be transferred separately, with a separate exchange of the GCC-Conference-Transfer
primitive from those nodes which are connected to MCUs using the unmodified (or differently modified) base
Conference Name. The manner by which the requesting node becomes aware of Conference Name Modifiers at various
MCUs is considered a matter outside the scope of this Recommendation.

$ESTINATION�.ETWORK�!DDRESS� Optional Called Address parameter to be included in the GCC-Conference-Join request to
be issued by the transferring nodes.

4RANSFERRING� NODES� �,IST� OF�.ODE�)$S� OR� NULL	� List of Node IDs identifying GCC Providers to which the indication
should go, or omitted, to indicate it should go to all nodes in the conference designated by the Conference ID.

0ASSWORD� This parameter indicates the password that the transferring nodes shall use in the GCC-Conference-Join
request to join the new conference. This is a numeric string or a Unicode Row 00 text string (maximum 255 digits or
characters). This parameter shall only be used if the Password In The Clear Required flag is set for this conference.

2ESULT� An indication of whether the request was accepted or rejected, and if rejected, the reason why. It contains one of
a list of possible results: successful, invalid conference, not convener or convener-designated node.

T0819560-94/d17

Requesting
Node Node
Controller

GCC-Conference-
Disconnect

confirm

GCC
Provider

Top GCC
Provider

Transferring
Node Node
Controller

All Nodes – Original
Conference Node
Controller

GCC-
Conference-

Transfer request GCC-Conference-
Disconnect

request

GCC-
Conference-
Transfer
indication

GCC-
Conference-
Disconnect
indication

GCC-Conference-
Join request

GCC-Conference-
Join confirm

GCC-Conference-
Join response

GCC-Conference-
Join indication

Top MCU – Destination
Conference
Node Controller

GCC
Provider

GCC
Provider

GCC
Provider

GCC-
Conference-

Transfer confirm

Top GCC
Provider

FIGURE 7-14/T.124

'##
#ONFERENCE
4RANSFER� �3EQUENCE�OF�PRIMITIVES

FIGURE 7-14/T.124...[D17] = 11.5 CM

3UPERSEDED�BY�A�MORE�RECENT�VERSION

2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION 37

����� #ONFERENCE�ESTABLISHMENT�REQUIREMENTS

In order to avoid the possibility of a deadlock situation in which both sides of a physical connection fail to initiate the
GCC conference establishment procedure, waiting for the other to do so, the following requirements are defined for the
conference establishment procedure when a physical connection is established (that is, an underlying connection
between the two nodes using the PSTN, ISDN, or CSDN cases of Recommendation T.123). These requirements may be
superseded by bilateral agreement between the nodes involved, either via A�PRIORI arrangement, or via an exchange of
information defined outside of the scope of this Recommendation.

• It must first be known by both ends of the physical connection which end is the calling node and which
end is the called node. It must also be known what type of node each of the two nodes are (terminal,
multiport terminal, or MCU). This information may be obtained either using the GCC-Conference-Query
primitive, or it may be known A�PRIORI. For determining the calling vs. called node, if neither node is
aware of which it is, the symmetry breaking procedure defined for the GCC-Conference-Query primitive
is used to arbitrarily choose one node to be the caller for purposes of the conference establishment
procedure.

• The calling node shall be responsible for initiating the initial conference establishment procedure (either
requesting creation of a new conference, joining a conference at the called node, or inviting the called
node into a conference). Note that this, in general, does not preclude the called node from taking actions
to establish a conference over the same physical connection as well, although care must be taken in this
case to ensure that this action does not interfere with the action of the calling node.

• When establishing calls among the various node types (terminals, multiport terminals, and MCUs),
Table 7-16 constraints are placed on the actions of the calling node in initiating the initial connection. The
definition of the actions shown in the table, numbered 1, 2, 3, and 4 are as follows:

1) Calling node requests creation of a new conference at the Called node.

2) Calling node attempts to join existing conference at the Called node.

3) Calling node creates a conference locally and invites the Called node.

4) Calling node invites the Called node into an existing conference.

TABLE 7-16/T.124

!CTIONS�OF�THE�CALLING�NODE�FOR�CONFERENCE�ESTABLISHMENT

����� %XAMPLES�OF�CONFERENCE�ESTABLISHMENT�PROCEDURES

Conference establishment may be done in a variety of ways and under a variety of conditions. The simplest conference is
of the point-to-point variety where there is no MCU involved in the call. In the cases where the conference is established
through one or more MCUs, a call would typically be done in either the meet-me style (all participants call into an
MCU), in the call-out style (the MCUs set up the call by calling out to all participants), or in the call-through style (one
participant calls into an MCU, then adds other participants which are called by the MCU).

������� -EET
ME�CONFERENCE�ESTABLISHMENT

In a meet-me conference, a conference is established at an MCU and terminal nodes (as well as other MCUs if
necessary) call into the MCU and join the conference. If other MCUs have joined the conference, terminal nodes may
call into any of these MCUs to join the conference.

Calling Node Called Node

Terminal Multiport terminal MCU

Terminal Either 1 or 3 Either 1 or 2 Either 1 or 2

Multiport terminal Either 3 or 4 Either 1, 2, 3, or 4 Either 1 or 2

MCU Either 3 or 4 Either 3 or 4 Either 1, 2, 3, or 4

3UPERSEDED�BY�A�MORE�RECENT�VERSION

38 2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION

Initial creation of a meet-me conference may be done out-of-band (e.g. locally initiated at the MCU), or the conference
may be created by the first node to call into the MCU. In the former case, GCC is not involved. In the latter, the
conference is created at the MCU by issuing a GCC-Conference-Create request over the connection from the convening
node to the MCU. In either case, the node at which the conference was created becomes the Top-GCC-Provider. The
convening node (the MCU itself in the former case, and the requesting node in the latter) is granted special status as the
Conference Convener.

When a conference is created remotely (using a GCC-Conference-Create request), a Conference Name is specified in the
request primitive. If that name is already in use at the MCU, a Conference Name Modifier is assigned by the Node
Controller at the MCU to make the name locally unique at that MCU. When other nodes attempt to join the conference
at that MCU, this name modifier must be specified as part of the join request.

When a conference is created remotely it may also include an optional Convener Password. This password is needed
only if the Convener intends to disconnect from the conference and rejoin at a later time expecting Convener privileges
to continue.

A meet-me conference would typically be specified as non-locked so that other nodes may join. A meet-me conference
may optionally be created to require Password protection to prevent unwanted nodes from joining the conference.

A node joining a meet-me conference would issue a GCC-Conference-Join request over the connection from the node to
any MCU joined to the conference. Typically, a node does not know A�PRIORI the name of the conference to be joined. In
this case, prior to joining the conference, a node may query the MCU for a list of conferences that are available to be
joined. This is done by issuing a GCC-Conference-Query request. The response is a GCC-Conference-Query confirm
which indicates the type of node to which the terminal is connected (i.e. an MCU in this case), and a list of all listed
conferences to which that MCU is currently joined. This list includes the Conference Name of each conference, a
Conference Name Modifier if one is needed, as well as other characteristics of the conference such as whether or not the
conference is Password protected, which may be used to request a Password from the user prior to attempting to join the
conference. Once the name of the conference is selected, the conference may be joined by issuing a GCC-Conference-
Join request specifying the Conference Name of the desired conference, and if needed, the Conference Name Modifier.
If the conference requires a Password, it is included in the join request.

Note that it is typical that the case of a meet-me conference with no A�PRIORI knowledge of the conference to join is
identical to the case of a point-to-point conference. That is, the sequence of events used in starting up the conference
cannot be different from that of a point-to-point conference since the A�PRIORI knowledge in each case is the same. It is
only the identification in the GCC-Conference-Query confirm that the directly connected node is an MCU and that there
are ongoing conferences to be joined that allow a distinction to be made.

In the case that the Conference Name is distributed to joining nodes out-of-band, a node may directly join the conference
without first querying the available conferences by specifying the Conference Name in the GCC-Conference-Join
request. If there are multiple independent MCUs to which nodes may connect to join a conference, it is possible that, due
to naming conflicts, a Conference Name Modifier is needed on some MCUs. In this case, a node joining a conference
when connected to one of these MCUs must specify the Conference Name Modifier for that MCU. As it may be difficult
to determine this modifier without the use of the GCC-Conference-Query primitive, it is recommended that if there is
any possibility of a naming conflict, GCC-Conference-Query should be used prior to attempting to join a meet-me
conference. It is also recommended that a Conference Description be used when a meet-me conference is first created. In
this case, it is more likely that multiple conferences with the same Conference Name may be distinguished by having
different Conference Descriptions. In general, however, when creating a meet-me conference, it is better to choose a
Conference Name which will be unique at all MCUs without the need of a Conference Name Modifier.

������� #ALL
OUT�CONFERENCE�ESTABLISHMENT

In call-out conference establishment, a conference is created locally at the MCU and the conference participants are
called and invited to the conference by that MCU. The conference would typically be created specifying that it is a
locked conference and may also be specified as unlisted.

The convening MCU would then make physical connections to each of the terminals to participate in the conference
followed by inviting each node in turn to the conference. This is done by issuing a GCC-Conference-Invite request to the
node to be invited. Since the conference was created at the MCU, that MCU is the Top-GCC-Provider of a call-out
conference.

3UPERSEDED�BY�A�MORE�RECENT�VERSION

2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION 39

������� #ALL
THROUGH�CONFERENCE�ESTABLISHMENT

A call-through conference is very similar to call-out case with the exception that the conference is initially created
remotely by an initiating terminal. In this case, the terminal connects to the MCU and creates a conference using a GCC-
Conference-Create request. As in the call-out case, it would typically be locked and unlisted. A call-through conference
would typically be created as an automatically terminating conference indicating that the conference will be terminated
when all nodes disconnect. Typically, a NULL Conference Name would be specified for a call-through conference since
there is no need for nodes to explicitly join the conference. If there is already a conference at the convening node with a
NULL conference name, the Node Controller would simply choose an arbitrary unique name to use as the Conference
Name. In either case, the name need not be human readable since it will never be used for joining.

������� 0OINT
TO
POINT�CONFERENCE�ESTABLISHMENT

A point-to-point conference is distinct from the other varieties in that it involves only two terminal nodes with no MCU
present. In the case where it is known which terminal is the calling terminal (the initiator of the physical connection) and
which is the called terminal, a point-to-point conference may be established by the calling terminal first querying the
called terminal by issuing a GCC-Conference-Query request. This allows the terminal to determine if the other node is a
terminal, MCU, or multiport terminal without requiring A�PRIORI knowledge to that effect. The GCC-Conference-Query
confirm generated in response to this request indicates, in the case of a point-to-point call, that the directly connected
node is a user-terminal. Once it is known that the directly connected node is a terminal, the conference is established by
the calling terminal by issuing a GCC-Conference-Create request to create a new conference or by creating a conference
locally, and inviting the other terminal by issuing a GCC-Conference-Invite request. Typically, the conference would be
specified with an arbitrary Conference Name such as “0”, and would be unlocked, listed, and automatically terminating.

In the case that it is not known by a node which terminal is the calling or called terminal, that terminal should issue
GCC-Conference-Query request to determine whether the other node is the called or calling node (unless it has already
received a GCC-Conference-Query indication which has this information). In the request, the Asymmetry Indicator
parameter indicates that it is unknown whether the local node is the called or calling node. If the other node does have
this knowledge about itself, it will so indicate in the resulting GCC-Conference-Query confirm. If so, it is now known
which is the calling node and the appropriate actions are taken as described above. If neither node knows its
called/calling status, the confirm (or the contents of a received GCC-Conference-Query indication) will specify the
unknown setting. The unknown settings of this parameter include a 32-bit random number. In this case, the random
number is used to break the resulting symmetry. The node which had generated the smaller of the two random numbers
should be considered the called node and should not attempt to establish the conference. The node which generated the
larger number should be considered the calling node and should attempt to establish the conference.

If a terminal does have A�PRIORI knowledge that the call is point-to-point between two terminals (and in the case that it is
known whether that terminal is the called or calling terminal), that terminal need not issue a GCC-Conference-Query
request. Instead, if the terminal is the calling terminal, it may issue the GCC-Conference-Create request or the GCC-
Conference-Invite request immediately. If it is the called terminal with this A�PRIORI knowledge, it may also skip the
GCC-Conference-Query request and simply wait to receive a GCC-Conference-Create indication or GCC-Conference-
Invite indication. If the far-end terminal does not have A�PRIORI knowledge of the connection type, it is possible that the
local terminal will receive a GCC-Conference-Query indication from the far-end terminal to which it is required to
respond.

������� #ONFERENCE�ESTABLISHMENT�AMONG�MULTIPORT�TERMINALS

A multiport terminal is a device which is, in general, to be treated as a terminal, but has the ability to establish
connections to multiple nodes simultaneously as an MCU does. When a terminal or multiport terminal calls a node
which it finds to be a multiport terminal (either through A� PRIORI knowledge or via the GCC-Conference-Query
exchange), the action taken depends on whether or not there are conferences available on that multiport terminal and on
the characteristics of those conferences.

In general, it is typically desirable that a connection of this kind be made automatically, like a point-to-point call rather
than like a meet-me conference. Specifically, if neither the called nor calling nodes are already part of conferences
connecting them to other nodes, the call should be treated exactly as a point-to-point call. If the calling node already has
an ongoing conference, it is typical that this node would simply invite the new node into the existing conference.

If instead the called node has an ongoing conference, the action may depend on whether that conference is locked or
unlocked, listed or unlisted, or password protected. If the conference is unlisted, without A�PRIORI information, the calling
node would not be aware of its presence and would treat the call as if there were no conference present at that node (if it

3UPERSEDED�BY�A�MORE�RECENT�VERSION

40 2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION

did have A�PRIORI information that an unlisted conference was present, it could join that conference). If the conference is
locked, the calling node has no way to join that conference and again would treat the call as if that conference were not
present. If the conference is password protected, again, the calling node would likely treat the call as if there were no
conference present at that node, although it does have the option of prompting the user for a password and attempting to
join the conference. In either of these cases, once a new conference is established, the called node may choose to transfer
the nodes connected to the previous conference into the new conference. If there is a single conference at the called node
which is “open” (not locked, unlisted, or password protected) the calling node should simply attempt to join this
conference. If there is more than one “open” conference at the calling node, this would typically require a user to decide
explicitly which one to join – in this case, the procedure would not be entirely automatic.

If there are conferences present at both nodes (assuming an “open” conference at the called node), the calling node
would normally either invite the called node into its conference, or would attempt to join the called node’s conference.
In either case, the multiport terminal with the existing conference that was not enlarged to include the other multiport
terminal should transfer all subordinate nodes to the conference that it has newly become joined (or invited) to.

Transferring nodes to the new conference in these cases may be done in one of two ways. The GCC-Conference-
Transfer primitive may be used to command each of the nodes to disconnect from the current conference and join the
new conference. This, of course, can only be done if the new conference is not locked, and if the requesting node had
Transfer privilege for the previous conference (or was the convener of the previous conference). Alternatively, the GCC-
Conference-Invite primitive could be used to invite the directly connected nodes to the new conference. Typically this
would be done after disconnecting these nodes from the previous conference. If there were more nodes originally present
than the directly connected nodes, it is the responsibility of the directly connected nodes, recursively, to invite the nodes
directly connected to them into the new conference. That is, the invitations would propagate through the hierarchy of
physically connected nodes. Nodes would typically do this; however, there is no assurance that this action would be
taken. For this reason, the use of GCC-Conference-Transfer is a safer mechanism in the cases where it can be performed.

��� 4HE�CONFERENCE�ROSTER

The Conference Roster allows a node participating in a conference to learn what other nodes are participating in the
same conference, and provides information about each node. Immediately after joining a conference (by means of either
creating, joining, or being invited to the conference), the Node Controller at that node shall announce its presence to the
conference by issuing a GCC-Conference-Announce-Presence request. As a result of this request, the GCC Providers of
the nodes in the conference exchange information needed to update the Conference Roster to include the newly joined
node. The updated Conference Roster is distributed to all nodes in the conference, generating a GCC-Conference-
Roster-Report indication. A node joining a conference is not considered an active member of the conference until it has
received a Conference Roster in which it is included.

The information in the Conference Roster may be changed at any time during a conference by the Node Controller. This
is done by re-issuing a GCC-Conference-Announce-Presence request. This results in an updated roster being distributed
to all nodes, generating another GCC-Conference-Roster-Report indication.

As nodes leave a conference for any reason, a new Conference Roster is distributed by GCC, again generating a GCC-
Conference-Roster-Report indication.

����� $ESCRIPTION�OF�ABSTRACT�SERVICES

The following is a list of the primitives defined in this subclause and a brief summary of the function of each:

• GCC-Conference-Announce-Presence – Used by the Node Controller to announce the presence of a node
into a conference. Use of this primitive is required immediately after joining or being joined to any
conference.

• GCC-Conference-Roster-Report – Generated by GCC in response to any change to the Conference Roster
due to nodes either entering or leaving a conference.

• GCC-Conference-Roster-Inquire – Used by either the Node Controller or by Application Protocol Entities
to retrieve the current Conference Roster at any time during a conference.

3UPERSEDED�BY�A�MORE�RECENT�VERSION

2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION 41

������� '##
#ONFERENCE
!NNOUNCE
0RESENCE

Immediately after a node has joined any conference, it shall announce its presence to all other nodes in the conference
using the primitive GCC-Conference-Announce-Presence request. The Node Controller is responsible for issuing this
primitive. This primitive may be re-issued at any time during a conference if the included information has changed.
Table 7-17 shows the parameters and types of this primitive. Figure 7-15 shows the sequence of events when using this
primitive.

NOTE – The Conference Roster includes the list of all terminals, and MCUs currently joined to a conference. A user
display of the roster, as well as user indications of nodes entering and leaving the conference are likely to only include terminals and
multiport terminals. The Node Type parameter of this primitive may be used to distinguish among these node types, excluding
uninteresting node types from user displays. In addition, the Node Properties parameter also adds information as to the use of the
device, specifying whether a node is a management device, and whether a node is a peripheral, subordinate to another node. Both of
these characteristics may also be used by a system to determine whether or not to include a particular node in its display of conference
participants. Typically, neither management devices, nor peripherals would be included in such a list.

TABLE 7-17/T.124

'##
#ONFERENCE
!NNOUNCE
0RESENCE� �4YPES�OF�PRIMITIVES�AND�THEIR�PARAMETERS

#ONFERENCE�)$� Identifier of the conference to which the primitive refers.

.ODE�4YPE� The node type is either a terminal, MCU, or multiport terminal.

.ODE�0ROPERTIES� Made up of two independent flags. One indicating whether or not the node is a management device
(e.g. a reservation system), and the other indicating whether or not the node is a peripheral, subordinate to another node.

.ODE�.AME� Unicode text string containing the name of this node (e.g. “London”). Maximum 255 characters.

0ARTICIPANT�.AME�S	� A list of Unicode text strings each containing the name of a meeting participant. Maximum 255
characters for each string.

3ITE�)NFORMATION� A Unicode text string containing other information about the node. It may be used, for example, to
indicate such things as the voice-phone or FAX numbers at the site.

.ETWORK�!DDRESS� Optional parameter to indicate the network address of this node. This parameter includes sub-fields
which specify network type information followed by the actual network address or addresses. This parameter should be
used if it is possible that the announcing node may later be attempted to be added to another conference via the GCC-
Conference-Add primitive. This gives an MCU knowledge of the Network Address which may be compared to the
Network Address of a node to be added to determine if a physical connection already exists. If this parameter is not
included, it may not be possible to later add this node to another conference over the same physical connection. This
parameter should also be used if it is possible that an initial point-to-point conference may be automatically re-routed
through an MCU to add additional nodes. This parameter allows one of the original two nodes to re-connect with the
other by use of a GCC-Conference-Add primitive through the MCU.

Parameter Request Confirm

Conference ID M M(=RQ)

Node Type M

Node Properties M

Node Name O

Participant Name(s) O

Site Information O

Network Address O

Alternative Node ID O

User Data O

Result M

3UPERSEDED�BY�A�MORE�RECENT�VERSION

42 2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION

!LTERNATIVE�.ODE�)$� This field may be used to associate the announcing node (and its corresponding Node ID) with an
alternative node ID which has been defined for some other purpose. This alternative node ID is not intended to represent
IDs in the same numbering space as Node IDs, but rather a separate numbering scheme not specified by this
Recommendation. For example, in the case of ISDN, for nodes supporting Recommendation H.243, the alternative node
ID could be the Recommendation H.243 site ID which is two octets in length.

5SER�$ATA� Optional user data which may be used for functions outside the scope of this Recommendation. Note that
this data is stored within the Top GCC Provider as part of Conference Roster. Therefore, this parameter is not intended
to contain large amounts of information. Doing so could risk being involuntarily ejected from the conference.

2ESULT� An indication of whether the request was accepted or rejected, and if rejected, the reason why. It contains one of
a list of possible results: successful, invalid conference.

T0819570-94/d18

GCC ProviderNode Controller GCC ProviderTop GCC Provider

GCC-Conference-
Announce-Presence
request

GCC-Conference-
Announce-Presence
confirm

GCC-Conference-
Roster-Report
indication

All Nodes
Node Controller

FIGURE 7-15/T.124

'##
#ONFERENCE
!NNOUNCE
0RESENCE� �3EQUENCE�OF�PRIMITIVES

FIGURE 7-15/T.124...[D18] = 9 CM

������� '##
#ONFERENCE
2OSTER
2EPORT

Whenever the Conference Roster has changed for any reason (a new node entering the conference, a node leaving the
conference, or updated information in a roster entry), the roster is distributed by GCC to all nodes by issuing a GCC-
Conference-Roster-Report primitive to the Node Controller at each node. Table 7-18 shows the parameters and types of
this primitive. Figure 7-16 shows the sequence of events when using this primitive.

TABLE 7-18/T.124

'##
#ONFERENCE
2OSTER
2EPORT� �4YPES�OF�PRIMITIVES�AND�THEIR�PARAMETERS

Parameter Indication

Conference ID M

Conference Roster M

3UPERSEDED�BY�A�MORE�RECENT�VERSION

2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION 43

#ONFERENCE�)$� Identifier of the conference to which the primitive refers.

#ONFERENCE�2OSTER��A list of each node joined to the specified conference. The format of the Conference Roster is shown
in Table 7-19.

TABLE 7-19/T.124

#ONTENTS�OF�THE�#ONFERENCE�2OSTER�PARAMETER

TABLE 7-20/T.124

#ONTENTS�OF�EACH�ENTRY�IN�THE�,IST�OF�#ONFERENCE�.ODES

Parameter Description

List of Conference Nodes A list of the Nodes joined to the conference along with information about each node. The
contents of each entry in this list is shown in Table 7-20.

Instance Number The instance number for the Conference Roster. This is a 16-bit number which is
incremented modulo 216 each time the contents of the Conference Roster changes.

Nodes Added Flag A flag indicating whether one or more Nodes have been added to the Conference Roster
since the last instance. This flag is not mutually exclusive of the Nodes Removed Flag.

Nodes Removed Flag A flag indicating whether one ore more Nodes have been removed from the Conference
Roster since the last instance. This flag is not mutually exclusive of the Nodes Added Flag.

Parameter Description

Node ID MCS User ID of the GCC Provider at this node.

Node ID of Superior Node
(conditional)

MCS User ID of the GCC Provider at the node directly above this node in the connection
hierarchy, if any (not present for the Top GCC Provider).

Node Type The node type is either a terminal, MCU, or multiport terminal.

Node Properties Made up of two independent flags. One indicating whether or not the node is a
management device (e.g. a reservation system), and the other indicating whether or not
the node is a peripheral, subordinate to another node.

Node Name (conditional) Unicode text string containing the name of this node (e.g. “London”). Maximum
255 characters.

Participants Names (conditional) A list of Unicode text strings each containing the name of a meeting participant.
Maximum 255 characters for each string.

Site Information (conditional) A Unicode text string containing other information about the node. It may be used, for
example, to indicate such things as the voice-phone or FAX numbers at the site.

Network Address (conditional) The network address of this node. This parameter includes sub-fields which specify
network type information followed by the actual network address or addresses.

Alternative Node ID (conditional) This field is used to associate the announcing node (and its corresponding Node ID) with
an alternative node ID which has been defined for some other purpose. This alternative
node ID is not intended to represent IDs in the same numbering space as Node IDs, but
rather a separate numbering scheme not specified by this Recommendation. For example,
in the case of ISDN, for nodes supporting Recommendation H.243, the alternative
node ID could be the H.243 site ID which is two octets in length.

User Data (conditional) Optional user data which may be used for functions outside the scope of this
Recommendation.

3UPERSEDED�BY�A�MORE�RECENT�VERSION

44 2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION

T0819580-94/d19

GCC Provider

GCC-Conference-
Roster-Report
indication

All Nodes
Node Controller

FIGURE 7-16/T.124

'##
#ONFERENCE
2OSTER
2EPORT� �3EQUENCE�OF�PRIMITIVES

FIGURE 7-16/T.124...[D19] = 8 CM

������� '##
#ONFERENCE
2OSTER
)NQUIRE

The GCC-Conference-Roster-Inquire request primitive returns the complete Conference Roster for the specified
conference. This primitive is available to Application Protocol Entities as well as the Node Controller, allowing them to
independently obtain a Conference Roster from their local GCC Provider. Table 7-21 shows the parameters and types of
this primitive. Figure 7-17 shows the sequence of events when using this primitive.

TABLE 7-21/T.124

'##
#ONFERENCE
2OSTER
)NQUIRE� �4YPES�OF�PRIMITIVES�AND�THEIR�PARAMETERS

#ONFERENCE�.AME� The Conference Name as contained within the Conference Profile.

#ONFERENCE� $ESCRIPTION� The Conference Description as contained within the Conference Profile. This parameter is
present, only if a Conference Description had been defined at the time of conference creation.

#ONFERENCE�)$� Identifier of the conference to which the primitive refers.

#ONFERENCE�2OSTER��A list of each node joined to the specified conference. The format of the Conference Roster is shown
in Table 7-22.

2ESULT� An indication of whether the request was accepted or rejected, and if rejected, the reason why. It contains one of
a list of possible results: successful, invalid conference.

Parameter Request Confirm

Conference ID M M(=)

Conference Name M

Conference Description C

Conference Roster M

Result M

3UPERSEDED�BY�A�MORE�RECENT�VERSION

2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION 45

TABLE 7-22/T.124

#ONTENTS�OF�THE�#ONFERENCE�2OSTER�PARAMETER

T0819590-94/d20

GCC Provider
Node Controller or
Application Protocol Entity

GCC-Conference-
Roster-Inquire
request

GCC-Conference-
Roster-Inquire
confirm

FIGURE 7-17/T.124

'##
#ONFERENCE
2OSTER
)NQUIRE� �3EQUENCE�OF�PRIMITIVES

FIGURE 7-17/T.124...[D20] = 8 CM

��� 4HE�APPLICATION�ROSTER

The Application Roster allows a node participating in a conference to learn what Application Protocol Entities are
available at nodes in the conference, and provides sufficient information about these Application Protocol Entities to
allow direct communication between Peer Application Protocol Entities to begin. The roster may include Application
Protocol Entities that are based on standard Application Protocols as well as those based on non-standard Application
Protocols.

����� #ONTENTS�OF�THE�APPLICATION�ROSTER

For each conference, a GCC Provider compiles a list of information associated with each Application Protocol Entity.
These lists form the Local Application Roster which will be exchanged with other nodes as part of the Application
Roster exchange procedure. This exchange will result in a list of information associated with all Application Protocol
Entities in the entire conference collectively known as the Conference Application Roster.

The Local Application Roster is held by each GCC Provider and stored in its local data-base. At an appropriate point in
the set-up of a conference, a node will exchange its Local Application Roster with all other conference nodes and the
GCC Provider will receive the Conference Application Roster which it will report to all Application Protocol Entities as
well as the Node Controller. This exchange occurs within GCC and is apparent to Application Protocol Entities only
through primitives that may be generated.

The Local and Conference Application Rosters consist of the following components:

• ,OCAL�!PPLICATION�2OSTER�–�For each Application Protocol Entity which has enrolled with the local GCC
Provider, the Local Application Roster includes a Session Key, an Application Record, and an
Application Capabilities List.

Parameter Description

List of Conference Nodes A list of the Nodes joined to the conference along with information about each node. The
contents of each entry in this list is shown in Table 7-20.

Instance Number The instance number for the Conference Roster. This is a 16-bit number which is
incremented modulo 216 each time the contents of the Conference Roster changes.

3UPERSEDED�BY�A�MORE�RECENT�VERSION

46 2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION

• #ONFERENCE� !PPLICATION� 2OSTER� –� For each Application Protocol Session, the Conference Application
Roster includes the Session Key for that Session, an Application Capabilities List containing the
negotiated capability set for the session, and the list of Application Protocol Entities enrolled in the
session which includes, for each, the Node ID of the node at which that Application Protocol Entity had
enrolled, an identifier which identifies the particular Application Protocol Entity within its local node, and
an Application Record.

Each set of Peer Application Protocol Entities – those within a single Application Protocol Session – are characterized
by having enrolled using the same value of the Session Key. A Session Key is defined as follows:

• 4HE�3ESSION�+EY�–�An identifier used to uniquely identify an Application Protocol Session. A Session Key
consists of two components. One component identifies the Application Protocol. The second component,
which is optional, identifies a particular session of that Application Protocol.

The first component of a Session Key, the Application Protocol Key, identifies either a standard or non-
standard Application Protocol specification. Keys are structured so that any Application Protocol, whether
standard or non-standard, may be defined to have a unique key with no possibility of conflict. Keys may
be specified in one of two forms. A key may be specified as an ASN.1 type Object Identifier. This form
of Key may be used to specify standard Application Protocols. The assignment of Object Identifier
components for Standards and Recommendations is described in Annex B/X.680 and Annex C/X.680,
respectively. Object Identifiers may also be used to specify non-standard Application Protocols in the
case of national or private administrative authorities which have been directly or indirectly authorized by
ISO or ITU.

A key may also be specified as an ASN.1 type OCTET STRING interpreted in a manner similar to the
pattern adopted in Recommendation H.221 to designate non-standard commands and capabilities. In this
case, the first two octets of the OCTET STRING define a country code, the second two octets define a
manufacturer code. The first octet of the country code is assigned according to Recommendation T.35; the
second octet and the manufacturer code are assigned nationally. Octets beyond this shall be freely chosen
by the responsible manufacturer or national body.

The second component of a Session Key is an optional Session ID. The Session ID is an MCS Channel
ID which is used as the unique identifier of an Application Protocol Session and may be used as a
communication channel by the Application Protocol Entities taking part in that session (as determined by
the Application Protocol specification). To ensure uniqueness, this Channel ID shall remain allocated for
the duration of the session. The lack of a Session ID in a Session Key of an active Application Protocol
Entity identifies a distinct session – the Default Session.

In the case of an inactive Application Protocol Session, the Session ID is not required. Its absence in this
case may be interpreted as an indication of support for the indicated Application Protocol and the ability
to invoke one or more Application Protocol Entities as part of any session, default or otherwise.

Each Application Record contains the following parameters, some of which are optional:

!CTIVE�)NACTIVE�&LAG�– An Application Protocol Entity may enroll but not yet be ready to receive data (e.g.
it has not yet joined the appropriate channels). To indicate this to other nodes, an Application Protocol
Entity may enroll with this flag set to Inactive. This may be done to allow the Application Protocol Entity
to make use of GCC services (such as the registry) in preparation for becoming active, or it may simply
be to allow other nodes to become aware of the presence of this Application Protocol Entity without
becoming active until it is known that there are like Application Protocol Entities at other nodes. When an
inactive Application Protocol Entity becomes active, it may re-enroll setting the flag to Active. This flag
may be changed by the Application Protocol Entity at any time by re-enrolling.

!PPLICATION�5SER�)$�– The MCS User ID associated with the Session Key. The Application User ID is the
only means by which a node can include another node as a participant when convening a private channel
for that Application Protocol Session to use. This parameter is optional for Application Protocol Entities

3UPERSEDED�BY�A�MORE�RECENT�VERSION

2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION 47

enrolled as inactive, but mandatory for active Application Protocol Entities. If it is not included because
the Application Protocol Entity has not yet attached to the MCS Domain, it may later be added, once the
Application Protocol Entity has attached, by re-enrolling.

#ONDUCTING�/PERATION�#APABLE�– This is a flag which indicates whether the Application Protocol Entity is
capable of operating as a conducting Application Protocol Entity if the corresponding Application
Protocol specification defines the procedures for such an Application Protocol Entity to follow. The GCC
Provider within each node chooses no more than one Peer Application Protocol Entity per Application
Protocol Session to include with this flag set in the exchanged Application Roster. If a node becomes the
conference conductor, the designated Application Protocol Entity, if any, for each Application Protocol
Session becomes the designated conducting Application Protocol Entity. This flag only applies to Active
Application Protocol Entities. If the Active/Inactive flag is set to Inactive when enrolling, the Conducting
Operation Capable flag is ignored and assumed by the GCC Provider to be FALSE.

.ON
#OLLAPSING� #APABILITIES� ,IST� – This is an optional parameter which allows Application Protocol
Entities to list capabilities (either standard or non-standard) which are to be maintained in the roster as
part of the Application Record of each Application Protocol Entity rather than being collapsed by a set of
rules as the capabilities listed in the Application Capabilities List would be.

The Application Capabilities List is defined as follows:

!PPLICATION�#APABILITIES�,IST�– This is an optional parameter list which may be used to specifically list the
capabilities of the Application Protocol Entity. While the capabilities themselves are Application
Protocol-specific, they are listed along with information which allows GCC to determine the common
capability set for the Application Protocol Session and inform the Peer Application Protocol Entities of
this set. This avoids the need for a complete exchange of a full capability list between all nodes. Each
capability in the capability list is tagged with a class specifier. The class specifier determines the rule that
is applied to determine the common capability set. Table 7-23 lists all capability classes.

TABLE 7-23/T.124

#APABILITY�COMBINATION�RULES

R

In addition to the basic classifications, it is also possible to nest capabilities. Nesting is not done explicitly, but rather is
done by appropriate interpretation of the three capability classes. For example, an Application Protocol may define a
particular capability, Y, to be conditional on a Logical capability, X. If the rule is applied within the Application
Protocol specification that capability Y may only be issued if capability X had been issued, then the value of Y in the
final capability set may be interpreted as, in the case of a Logical capability Y, the number of Peer Application Protocol
Entities, among those which have capability X, which also have capability Y, and in the case of a numerical
capability Y, the minimum or maximum value of Y among those Peer Application Protocol Entities which have
capability X. Note that in the case of a numerical capability Y, if the number of Peer Application Protocol Entities which
indicate the capability Y is less than the number of Peer Application Protocol Entities indicating the capability X, this

Class Description

Logical If any Peer Application Protocol Entity in a conference indicates the use of this
capability, the final capability list indicates the number of Peer Application Protocol
Entities that have indicated this capability.

Unsigned-Minimum The parameter octets are treated as a single unsigned integer. The final capability list
indicates the minimum value among all Peer Application Protocol Entities which
indicated this capability as well as the number of Peer Application Protocol Entities
which have indicated this capability.

Unsigned-Maximum The parameter octets are treated as a single unsigned integer. The final capability list
indicates the maximum value among all Peer Application Protocol Entities which
indicated this capability as well as the number of Peer Application Protocol Entities
which have indicated this capability.

3UPERSEDED�BY�A�MORE�RECENT�VERSION

48 2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION

indicates that some Peer Application Protocol Entities do not support a value of Y beyond its default value. In this case,
the negotiated value of Y should be ignored. The negotiated value of Y is valid in this case only if the number of Peer
Application Protocol Entities with both the X and Y capabilities are equal.

����� $ESCRIPTION�OF�THE�APPLICATION�ROSTER�EXCHANGE�PROCESS

Each Application Protocol Entity makes its local GCC Provider aware of its presence through a GCCSAP over which it
communicates with the GCC Provider. Creation and management of the GCCSAP is a local matter not covered by this
Recommendation.

Application Protocol Entities are made aware of the existence of a conference to which the node is joined by the GCC-
Application-Permission-To-Enroll indication. Once an Application Protocol Entity has been made aware of an existing
conference, it shall issue a GCC-Application-Enroll request to the GCC Provider. This enroll request may indicate that
the Application Protocol Entity is enrolling itself in the conference (the enroll/un-enroll flag set to enroll), or it may
indicate that it is not enrolling itself into the conference (the enroll/un-enroll flag set to un-enroll). In the latter case, the
Application Record parameters need not be included in the primitive. Any time thereafter, until permission to enroll is
revoked (upon receiving a GCC-Application-Permission-To-Enroll primitive with the grant/revoke flag set to revoke),
an Application Protocol Entity which did not choose to initially enroll itself into the conference, may enroll by issuing a
GCC-Application-Enroll request.

There are several parameters in the GCC-Application-Enroll request which, if used, require steps to be taken prior to
issuing the GCC-Application-Enroll request. First is the Application User ID which is mandatory in the request if
enrolling with the Active/Inactive flag is set to Active. To get an Application User ID, the Application Protocol Entity
must first attach to the MCS Domain indicated in the GCC-Application-Permission-To-Enroll indication. This is done by
issuing the MCS primitive MCS-Attach-User request. On reception of the MCS-Attach-User confirm, the Application
Protocol Entity will have been allocated an Application User ID. This ID may be included in the GCC-Application-
Enroll request. If the attachment to the domain should fail due to the connection to the domain being lost during the
intervening time, the Application Protocol Entity shall assume that the node is no longer part of the conference and shall
wait until receiving another GCC-Application-Permission-To-Enroll indication before proceeding further. When the
node disconnects from the conference, the Application Protocol Entity will be notified directly by MCS that the
attachment is no longer valid. The Application Protocol Entity shall assume that the node is no longer part of the
conference and shall wait until receiving another GCC-Application-Permission-To-Enroll indication before proceeding
further. If permission to enroll is revoked by a GCC-Application-Permission-To-Enroll primitive, the Application
Protocol Entity shall not attempt to attach to the corresponding domain.

The second such parameter is the optional Session ID which is part of the Session Key. The Session ID shall be formed
from an MCS Channel ID (which is not a User ID). When enrolling into a session being invoked, the Session ID is
obtained from the GCC-Application-Invoke indication. If joining a session already in progress, the Session ID may be
obtained from the most recently received Application Roster. If creating a new session, then a new Channel ID may be
allocated using an MCS-Channel-Join primitive or MCS-Channel-Convene primitive.

As a consequence of a GCC-Application-Enroll request primitive, the GCC Provider creates a new entry in its Local
Application Roster. If an entry already exists for an Application Protocol Entity, the contents of the Local Application
Roster entry are modified to contain the new information, or in the case of the un-enroll flag being set, the entry is
removed from the roster.

At the start of a conference, the GCC Provider, after issuing the GCC-Application-Permission-To-Enroll primitive, waits
for all Application Protocol Entities which are connected to the GCC Provider through a GCCSAP to issue a GCC-
Application-Enroll primitive either enrolling, or indicating their explicit desire not to enroll. Once all Application
Protocol Entities have responded, the GCC Provider exchanges the Local Application Roster with the other nodes in the
conference. During a conference in progress, any changes to the Local Application Roster are immediately exchanged
with other nodes.

In either case, whenever a new exchange takes place, initiated by any node, a new Conference Application Roster is
generated and distributed to all nodes. The GCC Provider issues the entire roster to the Node Controller, and issues
portions of this roster to enrolled Application Protocol Entities using the GCC-Application-Roster-Report indication
primitive. To an Application Protocol Entity, the roster report includes the portion of the Conference Application Roster
which specifically applies to that Application Protocol Session (and may include other portions as well). For each
session, this is in the form of a list. Each entry in the list includes the Node ID and Application Protocol Entity ID

3UPERSEDED�BY�A�MORE�RECENT�VERSION

2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION 49

which, together, identify the Application Protocol Entity, and the Application Record for that Application Protocol
Entity. It may also include the Application Capabilities List for the Application Protocol Session. This is a list of the
common capabilities for this Application Protocol Session based on application of the capability class rules to the
capabilities announced by all Peer Application Protocol Entities. In the case of the node controller, the GCC-
Application-Roster-Report indication includes the entire Conference Application Roster. That is, for each entry in the
list, it includes the node identifier, and the Application Records for all Application Protocols enrolled at that node. It also
may include, for each Application Protocol, an Application Capabilities List.

An Application Protocol Entity is not considered part of a conference until it has received a GCC-Application-Roster-
Report indication in which it is included in the Application Roster. If, at any time, an Application Protocol Entity which
had previously been enrolled receives a GCC-Application-Roster-Report indication in which it is no longer included,
that Application Protocol Entity shall be considered no longer enrolled. The Application Protocol Entity may attempt to
re-enroll by issuing a GCC-Application-Enroll request.

At any time an Application Protocol Entity may remove itself from the Application Roster by issuing a GCC-
Application-Enroll request primitive with the enroll/un-enroll flag set to un-enroll. This removes the Application Record
for that Application Protocol Entity from the Local Application Roster as well as from the Conference Application
Roster at all nodes in the conference.

At any time during a conference, an Application Protocol Entity or the Node Controller may request a portion of the
Conference Application Roster. For each node in the conference, all Application Records which match the Session Key
given in the GCC-Application-Roster-Inquire request are returned. Using a null key will result in the complete
Conference Application Roster.

An Application Protocol Entity or Node Controller may attempt to remotely invoke an Application Protocol Entity at
another node. This is done by issuing a GCC-Application-Invoke request. This request may optionally include a
specified list of destination nodes. The corresponding GCC-Application-Invoke indication is received by the Node
Controller at the specified destination nodes (or all nodes if no destination is specified). The node controller may
optionally respond to this indication by invoking a Peer Application Protocol Entity which may then enroll itself in the
conference.

����� $ESCRIPTION�OF�ABSTRACT�SERVICES

The following is a list of the primitives defined in this subclause and a brief summary of the function of each:

• GCC-Application-Permission-To-Enroll – Generated by GCC and issued to all Application Protocol
Entities which have made the GCC Provider aware of their presence whenever the local node has been
joined to a conference. This indicates that the Application Protocol Entity may enroll. With the Revoke
flag set, this revokes the ability to enroll when the node is no longer joined to the conference.

• GCC-Application-Enroll – Used by Application Protocol Entities to establish (or terminate)
communications with other Peer Application Protocol Entities in a conference. Use of this primitive
generates (or modifies, or removes) an entry in the Application Roster exchanged with other nodes.

• GCC-Application-Roster-Report – Generated by GCC in response to any change in the Application
Roster due to Application Protocol Entities enrolling or un-enrolling or nodes entering or leaving a
conference.

• GCC-Application-Roster-Inquire – Used by either the Node Controller or by Application Protocol
Entities to retrieve all or a portion of the current Application Roster at any time during a conference.

• GCC-Application-Invoke – Used to signal a set of other nodes in a conference to invoke an Application
Protocol Entity for a particular session of an Application Protocol.

������� '##
!PPLICATION
0ERMISSION
4O
%NROLL

The primitive GCC-Application-Permission-To-Enroll indication tells a local Application Protocol Entity that the local
node is now joined to the specified conference and that the Application Protocol Entity may enroll itself with that
conference. This primitive is also used to revoke such permission if the local node is no longer joined to a conference.

3UPERSEDED�BY�A�MORE�RECENT�VERSION

50 2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION

While an MCS-attached Application Protocol Entity will receive notification from MCS when the conference terminates
at that node, an Application Protocol Entity which has chosen not to attach (or to enroll) will not necessarily receive
such notification. This primitive indicates to such an Application Protocol Entity that it may no longer enroll with that
conference or attach to the corresponding MCS Domain. The GCC-Application-Permission-To-Enroll indication is
issued by a GCC Provider to all Application Protocol Entities which have made the GCC Provider aware of their
presence only after the node has been successfully joined to a conference. Table 7-24 shows the parameters and types of
this primitive. Figure 7-18 shows the sequence of events when using this primitive.

TABLE 7-24/T.124

'##
!PPLICATION
0ERMISSION
4O
%NROLL� �4YPES�OF�PRIMITIVES�AND�THEIR�PARAMETERS

#ONFERENCE�)$�� Identifier of the Conference to which the Application Protocol Entity may enroll. This parameter is
equal to the MCS Domain to which the Application Protocol Entity may attach.

Grant/Revoke Flag: This flag indicates whether the Application Protocol Entity is being given permission to enroll, or if
that permission is being revoked.

T0819600-94/d21

GCC Provider

GCC-Application-
Permission-to-Enroll
indication

Application
Protocol Entity

FIGURE 7-18/T.124

'##
!PPLICATION
0ERMISSION
TO
%NROLL� �3EQUENCE�OF�PRIMITIVES

FIGURE 7-18/T.124...[D21] = 8 CM

������� '##
!PPLICATION
%NROLL

The GCC-Application-Enroll request primitive is issued by an Application Protocol Entity to establish itself as part of
the specified conference. This primitive shall be issued in response to a GCC-Permission-To-Enroll indication, although
the Application Protocol Entity may set the Enroll/Un-enroll flag to Un-enroll, indicating that it does not wish to enroll
at this time. At any time until permission to enroll is revoked, the Application Protocol Entity may enroll, re-enroll (to
change entries in its Application Record), or un-enroll. If an Application Protocol Entity which is already un-enrolled
attempts to un-enroll, the request is accepted with a successful result, but no change is made to the status of that
Application Protocol Entity. When an Application Protocol Entity is enrolled, the associated parameters form the
Application Record which is broadcast to the conference during the Application Roster exchange. Application Protocol
Entities that are not enrolled will not be available to any local or remote participants and will not receive GCC-
Application-Roster-Report indications. Table 7-25 shows the parameters and types of this primitive. Figure 7-19 shows
the sequence of events when using this primitive.

Parameter Indication

Conference ID M

Grant/Revoke Flag M

3UPERSEDED�BY�A�MORE�RECENT�VERSION

2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION 51

TABLE 7-25/T.124

'##
!PPLICATION
%NROLL� �4YPES�OF�PRIMITIVES�AND�THEIR�PARAMETERS

#ONFERENCE�)$� Identifier of the conference to which the primitive refers.

3ESSION�+EY��Unique identifier of a particular Application Protocol Session. This corresponds to the identifier of the
Application Protocol, optionally concatenated with a Session ID.

!CTIVE� OR�)NACTIVE� This flag is used to indicate whether the enrolling Application Protocol Entity is fully active
(indicating that it can perform tasks required by the specification of the corresponding Application Protocol), or inactive.
An Application Protocol Entity might indicate itself to be inactive in the case that it must enroll to make use of certain
GCC services, but is not yet fully operational (e.g. it has not yet joined dynamic channels, but must first check the
registry to determine which channels to join). Alternatively, it might enroll inactively to indicate support for the
corresponding Application Protocol without the need to become active until it is known that there are like Application
Protocol Entities at other nodes. The specific meaning of this flag shall be defined in the specification of each
Application Protocol.

!PPLICATION�5SER�)$��MCS User ID given to this Application Protocol Entity. This parameter is optional in the case of
inactive Application Protocol Entities, but is mandatory for active Application Protocol Entities. It is an error for an
Application Protocol Entity that is enrolled with an MCS User ID to re-enroll with a different MCS User ID. This
parameter is not needed in the case of un-enrolling.

#ONDUCTING�/PERATION�#APABLE� This is a flag which indicates whether the Application Protocol Entity is capable of
operating as a conducting Application Protocol Entity if the corresponding Application Protocol specification defines the
procedures for such an Application Protocol Entity to follow. The GCC Provider within each node chooses no more than
one Peer Application Protocol Entity per Application Protocol Session to include with this flag set in the exchanged
Application Roster. If a node becomes the conference conductor, the designated Application Protocol Entity, if any, for
each Application Protocol Session becomes the designated conducting Application Protocol Entity. The enrolling
Application Protocol Entity shall not assume itself to be in the designated conducting role unless it determines that its
corresponding entry in the received Application Roster has this flag set. This flag only applies to Active Application
Protocol Entities. If the Active/Inactive flag is set to Inactive when enrolling, the Conducting Operation Capable flag is
ignored and assumed by the GCC Provider to be FALSE.

3TART
UP�#HANNEL� This is an optional parameter which may take on the values Static, Dynamic Multicast, Dynamic
Private, or Dynamic UserId. This parameter specifies the type of MCS Channel the Application Protocol Entity will use
for start-up sequencing. The exact interpretation of this parameter as well as any requirements for the use of this
parameter are Application Protocol-specific. In some cases, certain of these channel types may not be valid for particular
Application Protocols.

Parameter Request Confirm

Conference ID M M(=)

Session Key M M(=)

Active or Inactive M

Application User ID C

Conducting Operation Capable O

Start-up Channel O

Non-Collapsing Capabilities List O

Application Capabilities List O

Enroll or Un-enroll M

Application Protocol Entity ID C

Node ID C

Result M

3UPERSEDED�BY�A�MORE�RECENT�VERSION

52 2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION

.ON
#OLLAPSING� #APABILITIES� ,IST� This is an optional parameter which allows Application Protocol Entities to list
capabilities (either standard or non-standard) which are to be maintained in the roster as part of the Application Record
of each Application Protocol Entity rather than being collapsed by a set of rules as the capabilities listed in the
Application Capabilities List would be. Each entry in this list includes a capability ID which may be either standard or
non-standard, as well as a data field for Application Protocol-specific data.

!PPLICATION�#APABILITIES�,IST� This is an optional list of Application Protocol–specific capabilities. Each capability is
tagged with a class identifier indicating the rule to be applied by GCC in determining the common capability set for this
Application Protocol Session. The class identifiers are one of the choices listed in Table 7-23.

%NROLL�OR�5N
ENROLL� This is a flag used to indicate whether the Application Protocol Entity wishes to add, or change its
Application Record (enroll), or to remove its Application Record (un-enroll). When an Application Protocol Entity has
received a GCC-Permission-To-Enroll indication, it shall respond with a GCC-Enroll-Request. If that Application
Protocol Entity wishes not to enroll, it shall set this flag to Un-enroll.

!PPLICATION� 0ROTOCOL� %NTITY�)$� Present only in the case of a successful new enroll (not in the case when already
enrolled, in the case of an unsuccessful enroll, or in the case of an un-enroll). An identifier which uniquely identifies the
Application Protocol Entity within the local node. This corresponds to the same parameter in each entry of the
Application Roster. This allows an Application Protocol Entity to determine if it is included in subsequent updates of the
Application Roster.

.ODE�)$� Present only in the case of a successful enroll (not in an unsuccessful enroll or an un-enroll). This provides the
enrolling Application Protocol Entity the Node ID of its local node. This helps to allow the Application Protocol Entity
to find its corresponding entry in received Application Rosters to determine when it actually becomes enrolled into the
conference. The combination of the Node ID and the Application Protocol Entity ID uniquely determine the Application
Protocol Entity.

2ESULT� An indication of whether the request was accepted or rejected, and if rejected, the reason why. It contains one of
a list of possible results: successful, invalid conference, not permitted to change MCS User ID.

T0819610-94/d22

GCC Provider
Application
Protocol Entity GCC ProviderTop GCC Provider

GCC-Application-
Enroll request

GCC-Application-
Roster-Report
indication

All Nodes
Peer Application
Protocol Entities

GCC-Application-
Enroll confirm

FIGURE 7-19/T.124

'##
!PPLICATION
%NROLL� �3EQUENCE�OF�PRIMITIVES

FIGURE 7-19/T.124...[D22] = 8 CM

������� '##
!PPLICATION
2OSTER
2EPORT

This primitive is used by a GCC Provider to send to each enrolled Application Protocol Entity as well as to the Node
Controller some or all of the Conference Application Roster. A GCC-Application-Roster-Report indication may be
generated automatically by a GCC Provider whenever the GCC Provider finds out that a change in any portion of the
roster has occurred. This may happen, for example, as a result of a GCC-Application-Enroll request, or on detection of
an Application Protocol Entity detaching from the conference, or a node leaving the conference altogether. When any
portion of the roster has changed for any Application Protocol Entity, the GCC-Application-Roster-Report indication
shall be issued to the Node Controller. The GCC Provider shall issue a GCC-Application-Roster-Report indication to an
active Application Protocol Entity when any portion of the roster has changed for that any Peer Application Protocol

3UPERSEDED�BY�A�MORE�RECENT�VERSION

2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION 53

Entity. In this case it is required to include only the portion of the roster which applies to the corresponding Application
Protocol Session. The GCC Provider may also issue a GCC-Application-Roster-Report indication to an Application
Protocol Entity at other times (such as when entries other than for Peer Application Protocol Entities have changed) and
may include in the indication primitive portions of the roster beyond those corresponding to Peer Application Protocol
Entities. For inactive Application Protocol Entities, if the Application Protocol Entity has enrolled with a specific
Session ID, the same rules apply as for an active Application Protocol Entity. For an inactive Application Protocol Entity
which has enrolled with no Session ID, the GCC Provider shall issue a GCC-Application-Roster-Report when the
contents of the roster have changed for all Application Protocol Sessions which are based on the same Application
Protocol as the enrolled Application Protocol Entity. Table 7-26 shows the parameters and types of this primitive. When
issued to the Node Controller, each of the Application Protocol–specific parameters (all except the Conference ID) is
repeated separately for each Application Protocol Session. Figure 7-20 shows the sequence of events when using this
primitive.

TABLE 7-26/T.124

'##
!PPLICATION
2OSTER
2EPORT� �4YPES�OF�PRIMITIVES�AND�THEIR�PARAMETERS

R

#ONFERENCE�)$� Identifier of the MCS Domain corresponding to the indicated conference.

5PDATED�!PPLICATION�2OSTER� The updated Application Roster includes the information shown in Table 7-27 for each
Application Protocol Session being indicated by the indication.

TABLE 7-27/T.124

#ONTENTS�OF�THE�5PDATED�!PPLICATION�2OSTER�FOR�EACH�!PPLICATION�0ROTOCOL�3ESSION

Parameter Indication

Conference ID M

Updated Application Roster M

Parameter Description

Session Key The Session Key (including the Session ID, if any) designating the particular Application
Protocol Session.

Application Protocol Entity List
Updated Flag

A flag indicating whether the Application Protocol Entity List for this Session Key has
been updated in this report. If so, the Application Protocol Entity List is included as the
following parameter.

Application Protocol Entity List
(conditional)

A list of the Application Protocol Entities enrolled in the conference as part of this
Application Protocol Session including an Application Record for each. The contents of
each entry in this list is shown in Table 7-28.

Instance Number The instance number for the Application Roster for this Session Key. This is a 16-bit
number which is incremented modulo 216 each time the contents of the Application
Roster changes. This allows Application Protocol Entities to perform operations with
respect to a particular capability set which may be in the process of changing avoiding
any race conditions.

Peer Entities Added Flag A flag indicating whether one or more Peer Application Protocol Entities have been
added to the Application Roster at any node since the last instance. This flag is not
mutually exclusive of the Peer Entities Removed Flag.

Peer Entities Removed Flag A flag indicating whether one ore more Peer Application Protocol Entities have been
removed from the Application Roster at any node since the last instance. This flag is not
mutually exclusive of the Peer Entities Added Flag.

Application Capabilities List
Updated Flag

A flag indicating whether the Application Capabilities List for this Session Key has been
updated in this report. If so, the Application Capabilities List is included as the following
parameter.

Application Capabilities List
(conditional)

The fully collapsed Application Capabilities List for this Session Key.

3UPERSEDED�BY�A�MORE�RECENT�VERSION

54 2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION

TABLE 7-28/T.124

#ONTENTS�OF�EACH�ENTRY�OF�THE�!PPLICATION�0ROTOCOL�%NTITY�,IST

T0819620-94/d23

GCC Provider

GCC-Application-
Roster-Report
indication

Node Controller
and Application
Protocol Entities

FIGURE 7-20/T.124

'##
!PPLICATION
2OSTER
2EPORT� �3EQUENCE�OF�PRIMITIVES

FIGURE 7-20/T.124...[D23] = 8 CM

Parameter Description

Node ID Node ID identifying the node at which the Application Protocol Entity has enrolled.

Application Protocol Entity ID An identifier which uniquely identifies the Application Protocol Entity within the node
specified by the Node ID.

Active/Inactive Flag A flag indicating whether the enrolled Application Protocol Entity is inactive or active.

Application User ID (conditional) The MCS User ID associated with the enrolled Application Protocol Entity.

Conducting Operation Capable This is a flag which indicates whether the Application Protocol Entity is capable of
operating as a conducting Application Protocol Entity if the corresponding Application
Protocol specification defines the procedures for such an Application Protocol Entity to
follow. There is no more than one Peer Application Protocol Entity per node with this
flag set. If a node becomes the conference conductor, the designated Application Protocol
Entity at that node, if any, for this Application Protocol Session becomes the designated
conducting Application Protocol Entity.

Start-up Channel (conditional) This parameter, if present, may take on the values Static, Dynamic Multicast, Dynamic
Private, or Dynamic UserId. This parameter indicates the type of MCS Channel the
Application Protocol Entity will use for start-up sequencing. The exact interpretation of
this parameter is Application Protocol-specific. In some cases, certain of these channel
types may not be valid for particular Application Protocols.

Non-Collapsing Capabilities List
(conditional)

This is a list of Application Protocol-specific capabilities (either standard or non-
standard) which are maintained in the roster as part of the Application Record of each
Application Protocol Entity.

3UPERSEDED�BY�A�MORE�RECENT�VERSION

2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION 55

������� '##
!PPLICATION
2OSTER
)NQUIRE

An Application Protocol Entity may request a portion of the Conference Application Roster corresponding to a single
Application Protocol Session, a group of these, or all Application Protocol Entities, using the GCC-Application-Roster-
Inquire request primitive. This information is returned by GCC in the GCC-Application-Roster-Inquire confirm
primitive. Table 7-29 shows the parameters and types of this primitive. Figure 7-21 shows the sequence of events when
using this primitive.

TABLE 7-29/T.124

'##
!PPLICATION
2OSTER
)NQUIRE� �4YPES�OF�PRIMITIVES�AND�THEIR�PARAMETERS

R

#ONFERENCE�)$� Identifier of the conference to which the primitive refers.

3ESSION�+EY��Unique identifier of an Application Protocol Session. This may be a partial Session Key or a null key,
indicating that the Application Information for all Application Protocol Entities is desired.

!PPLICATION� 2OSTER� The Application Roster includes a list of roster entries for each Application Protocol Session
specified by a Session Key whose octets match the Session Key in the request up to the length of the Session Key in the
request, and if a Session ID is specified as part of the Session Key, those with the identical Session ID. For each matched
entry, the information returned is shown in Table 7-30.

TABLE 7-30/T.124

#ONTENTS�OF�THE�!PPLICATION�2OSTER�FOR�EACH�!PPLICATION�0ROTOCOL�3ESSION

R

2ESULT� An indication of whether the request was accepted or rejected, and if rejected, the reason why. It contains one of
a list of possible results: successful, invalid conference.

Parameter Request Confirm

Conference ID M M(=)

Session Key M M(=)

Application Roster M

Result M

Parameter Description

Session Key The Session Key (including the Session ID, if any) designating the particular Application
Protocol Session.

Application Protocol Entity List A list of the Application Protocol Entities enrolled in the conference as part of this
Application Protocol Session including an Application Record for each. The contents of
each entry in this list is shown in Table 7-28.

Instance Number The instance number for the Application Roster for this Session Key. This is a 16-bit
number which is incremented modulo 216 each time the contents of the Application
Roster changes. This allows Application Protocol Entities to perform operations with
respect to a particular capability set which may be in the process of changing avoiding
any race conditions.

Application Capabilities List The fully collapsed Application Capabilities List for this Session Key.

3UPERSEDED�BY�A�MORE�RECENT�VERSION

56 2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION

T0819630-94/d24

GCC Provider
Node Controller or
Application Protocol Entity

GCC-Application-
Roster-Inquire
request

GCC-Application-
Roster-Inquire
confirm

FIGURE 7-21/T.124

'##
!PPLICATION
2OSTER
)NQUIRE� �3EQUENCE�OF�PRIMITIVES

FIGURE 7-21/T.124...[D24] = 8 CM

������� '##
!PPLICATION
)NVOKE

This primitive may be issued by an Application Protocol Entity or by the Node Controller to request that an Application
Protocol Entity or list of Application Protocol Entities be invoked at a specified set of nodes. At the specified nodes, the
indication form of this primitive is issued to the Node Controller which may invoke the specified Application Protocol
Entities. For each listed Application Protocol Entity this indication indicates the desire to create a new Application
Protocol Entity with the Session Key as specified in the request which would then enroll actively into the conference,
becoming part of the corresponding Application Protocol Session. Alternatively, if an inactive Application Protocol
Entity already exists at a destination node with the identical Session Key, receipt of this indication indicates the desire to
make that Application Protocol Entity re-enroll in the active state. If an Application Protocol Entity exists at a
destination node with the identical Session Key which is already in the active state, this indication may be ignored.
Table 7-31 shows the parameters and types of this primitive. Figure 7-22 shows the sequence of events when using this
primitive.

TABLE 7-31/T.124

'##
!PPLICATION
)NVOKE� �4YPES�OF�PRIMITIVES�AND�THEIR�PARAMETERS

#ONFERENCE�)$� Identifier of the conference to which the primitive refers.

!PPLICATION�0ROTOCOL�%NTITY�)NVOKE�,IST� This is a list of one or more Application Protocol Entities to be invoked. The
contents of each entry in this list are shown in Table T-32.

Parameter Request Indication Confirm

Conference ID M M M(=)

Application Protocol Entity Invoke List M M(=) M(=)

Destination Nodes (List of Node IDs or NULL) O

Invoking Node ID M

Result M

3UPERSEDED�BY�A�MORE�RECENT�VERSION

2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION 57

TABLE 7-32/T.124

#ONTENTS�OF�EACH�ENTRY�IN�THE�!PPLICATION�0ROTOCOL�%NTITY�)NVOKE�,IST

$ESTINATION�.ODES��,IST�OF�.ODE�)$S�OR�.5,,	� List of Node IDs identifying GCC Providers to which the request should
go, or null, to indicate it should go to all nodes in the conference designated by the Conference ID.

)NVOKING�.ODE�)$��The Node ID of the node which initiated the corresponding GCC-Application-Invoke request.

2ESULT� An indication of whether the request was accepted or rejected, and if rejected, the reason why. It contains one of
a list of possible results: successful, invalid conference.

T0819640-94/d25

GCC Provider

Node Controller
or Application
Protocol Entity GCC Provider

GCC-Application-
Invoke request GCC-Application-

Invoke indication

Destination Nodes
Node Controller

GCC-Application-
Invoke confirm

FIGURE 7-22/T.124

'##
!PPLICATION
)NVOKE� �3EQUENCE�OF�PRIMITIVES

FIGURE 7-22/T.124...[D25] = 8 CM

Parameter Description

Session Key The Session Key (including the Session ID, if any) designating the particular Application
Protocol Session to invoke.

Expected Capability Set This is an optional list of application capabilities (in the same form as the Application
Capabilities List) which indicates the expected set of capabilities that the Application
Protocol Entity to be invoked must have. If the Application Protocol Entity at a particular
node cannot satisfy this, it shall not be invoked at that node. If this parameter is not
included, no constraints are placed on the invoked Application Protocol Entity. Note that
the capabilities class definitions are used to determine the interpretation of this expected
capability set, but are not interpreted by GCC as they are in the case of the Application
Capabilities List. For a capability of the Unsigned-MAX class, the invoked Application
Protocol Entity must have a capability less-than-or-equal-to the specified capability,
while for an Unsigned-MIN class, the invoked Application Protocol Entity must have a
capability greater-than-or-equal-to the specified capability. For a capability in the Logical
class, the invoked Application Protocol Entity simply must have the identical capability.

Start-up Channel (conditional) Either Static, Dynamic Multicast, Dynamic Private, or Dynamic UserId. This parameter
specifies the type of MCS Channel the Application Protocol Entity should assume for use
when invoking. In some cases, certain of these channel types may not be valid for
particular Application Protocols. If an invalid setting is used, the Application Protocol
Entity shall not be invoked.

Mandatory/Optional Flag This flag indicates whether this Application Protocol Entity must be invoked in order to
invoke the other Application Protocol Entities in this list. This flag is used by the
invoking node to indicate that the destination nodes should only invoke the Application
Protocol Entities in this list if all of the Application Protocol Entities marked as
Mandatory can successfully be invoked.

3UPERSEDED�BY�A�MORE�RECENT�VERSION

58 2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION

��� 4HE�!PPLICATION�2EGISTRY

The Application Registry is a functional component of GCC. The registry offers a set of functions to Application
Protocol Entities which operate on a central data-base located at the Top GCC Provider. The contents of the registry are
unique to a single conference. The significance of information stored in the registry data-base is defined by Application
Protocols. The central repository can assist in establishing communication among Application Protocol Entities. It can
help peers to discover a common Channel ID on which to communicate, a common Token ID to regulate exclusive
access, or a common parameter setting (a parameter is a registry entry with an Application Protocol-specific use). It
offers an alternative to the static reservation of Channel IDs, Token IDs, and other parameter values. By supporting
dynamic discovery, the Application Registry can facilitate the introduction of new features, standardized or non-
standardized, that enhance audiographic and audiovisual conferencing. The registry also includes a general purpose
service for allocation of numeric handles which are globally unique within a conference.

����� 2EGISTRY�KEYS

The indexes used to store and retrieve entries in the registry data-base are Application Protocol-specified keys. Both
standard and non-standard keys are allowed. Standard keys are allocated by Recommendations like this. Non-standard
keys may be proprietary. Both are structured to avoid conflicts in the choice of key values.

Registry keys consist of a Session Key as defined in 7.3.1 in combination with a Resource ID. The Session Key used for
any registry operation requiring a Registry Key shall be identical to the Session Key of an Application Protocol Session
present in the Application Roster (with either active or inactive members). The Resource ID is of ASN.1 type OCTET
STRING. The Resource ID allows a single Application Protocol Entity to make use of multiple Registry Keys. The
value of the Resource IDs are defined by the specifications of the Application Protocols which make use of them.

����� /WNERSHIP�AND�PERSISTENCE

The registry yields ownership of a Registry Key to the first Application Protocol Entity that requests to store an item
there via either the GCC-Registery-Register-Channel, GCC-Registry-Assign-Token, or GCC-Registry-Set-Parameter
request primitives.

In the case of a Parameter registry item, when the parameter is created, its owner may specify the scope of Application
Protocol Entities allowed to modify the value of that entry. The owner may specify either owner, session, or public
modification rights – the parameter may be modifiable by the owner only (as in the case of Channels and Tokens), by all
Peer Application Protocol Entities (those within the same Application Protocol Session), or by any Application Protocol
Entity in the conference, respectively. Modification of the contents of a parameter by an Application Protocol Entity
other than the owner does not alter the identity of the owner of that entry. The owner of a parameter may at any time re-
define the scope of modification rights. If another node attempts to modify the modification rights as part of issuing a
GCC-Registry-Set-Parameter request, the rights will not be modified, although the parameter will be set to the requested
value if the requester had modification rights.

For all registry item types (Channel, Token, or Parameter), ownership is required to delete the entry. An entry, once
deleted, has no owner and may be taken over by a different Application Protocol Entity.

Registry entries are not deleted automatically when the owner detaches from the conference. Their content persists
unchanged indefinitely. However, ownership of an entry is removed when the owner detaches. This allows a surviving
Application Protocol Entity to modify (for a Parameter entry only) or delete an orphaned entry if its usefulness has
expired. The first Application Protocol Entity that requests to store an item in an orphaned Parameter entry becomes its
new owner.

When all Application Protocol Entities in the session that corresponds to the Session Key used to form the Registry Key
for a registry entry become un-enrolled, that registry entry is automatically deleted.

����� $YNAMIC�ALLOCATION

MCS distinguishes between static and dynamic Channel IDs. The latter comprise User IDs, private Channel IDs, and
assigned Channel IDs. Dynamic Channel IDs are created and deleted directly by Application Protocol Entities,
separately from their use of registry services. The Application Registry stores dynamic Channel IDs in a central

3UPERSEDED�BY�A�MORE�RECENT�VERSION

2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION 59

repository for retrieval by other Application Protocol Entities. It does not test or operate on these Channel IDs with MCS
primitives.

MCS makes no distinction between static and dynamic Token IDs. To maintain similar semantics, an artificial division is
imposed by GCC. Token IDs 1 to 16 383 are designated static and are reserved for assignment by other specifications.
Token IDs 16 384 to 65 535 are designated dynamic and are allocated by the Top GCC Provider upon request, as part of
creating an entry in the registry data-base. When the associated entry is deleted, the Token ID it held is made available
for reassignment. The registry does not invoke MCS primitives, like grab and release, on the Token IDs it assigns. It
merely chooses specific ID values and disseminates them. Application Protocol Entities are free to operate on assigned
Token IDs according to their own logic.

����� $ESCRIPTION�OF�ABSTRACT�SERVICES

The following is a list of the primitives defined in this subclause and a brief summary of the function of each:

• GCC-Registry-Register-Channel – Used by an Application Protocol Entity to register the Channel ID of
an MCS dynamic channel. Application Protocol Entities may examine the entry using GCC-Registry-
Retrieve-Entry to determine if a node has already registered the Channel ID, and if so, retrieve the value
of the Channel ID.

• GCC-Registry-Assign-Token – Used by an Application Protocol Entity to allocate a dynamic token and
register the assigned Token ID. Application Protocol Entities may examine the entry using GCC-
Registry-Retrieve-Entry to determined if a node has already registered the Token ID, and if so, retrieve
the value of the Token ID.

• GCC-Registry-Set-Parameter – Used by an Application Protocol Entity to set a value in the registry data-
base which may be examined or modified from any node in a conference.

• GCC-Registry-Retrieve-Entry – Used by an Application Protocol Entity to extract the current contents of
any registry entry.

• GCC-Registry-Delete-Entry – Used by an Application Protocol Entity to remove an entry in the registry
data-base.

• GCC-Registry-Monitor – Used by an Application Protocol Entity to enable (or disable) monitoring of a
registry entry. Once enabled, the indication form of this primitive notifies the requesting Application
Protocol Entities of any changes to the content of the entry (including deletion).

• GCC-Registry-Allocate-Handle – Used to generate a 32-bit Handle which is unique within the scope of a
single conference.

For a particular requester, the order of registry request primitives, the resulting action at the Top GCC Provider (if
successful), and their associated confirm primitives is preserved.

������� '##
2EGISTRY
2EGISTER
#HANNEL

The GCC-Registry-Register-Channel request primitive may be issued by an Application Protocol Entity to inform
Application Protocol Entities at other nodes that a particular MCS channel has been designated for use by the
Application Protocol Entity in the manner indicated by the Registry Key. Once any Application Protocol Entity registers
using a particular Registry Key, Application Protocol Entities at other nodes may find out if a channel has been
registered for this key (and if so, the value of the channel ID) by issuing the GCC-Registry-Retrieve-Entry request
primitive specifying the Registry Key in question. Once a channel is registered, if any Application Protocol Entity
attempts to register using the same Registry Key (including the owner), their attempt will be rejected with an indication
that this Registry Key has already been used. Table 7-33 shows the parameters and types of this primitive. Figure 7-23
shows the sequence of events when using this primitive.

3UPERSEDED�BY�A�MORE�RECENT�VERSION

60 2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION

TABLE 7-33/T.124

'##
2EGISTRY
2EGISTER
#HANNEL� �4YPES�OF�PRIMITIVES�AND�THEIR�PARAMETERS

#ONFERENCE�)$� Identifier of the conference to which the primitive refers.

2EGISTRY�+EY� The data-base index at which the item is to be stored.

#HANNEL�)$: A dynamic channel ID (user ID, private, or assigned) specified by the Application Protocol Entity.

2EGISTRY�)TEM: The value of the entry after the request has taken effect. If the request is successful, this is the value of the
parameter, if not successful due to inconsistent type or index already owned, this is the value prior to the request. It is
either a Channel ID, Token ID, Parameter Value, or None if the entry is vacant (both the type and the value, if any, are
indicated by this parameter). This parameter is not present if the confirm is a locally generated error condition.

/WNER� This parameter indicates the current owner of this registry entry. If owned, this parameter includes the Node ID
of the node at which the owner resides and the Entity ID of the owning Application Protocol Entity. This parameter also
indicates if the entry is not owned. This parameter is not present if the confirm is a locally generated error condition.

2ESULT� An indication of whether the request was accepted or rejected, and if rejected, the reason why. It contains one of
a list of possible results: successful, invalid conference, registry full, index already exists, inconsistent type, invalid
requester.

T0819650-94/d26

GCC Provider
Application
Protocol Entity GCC ProviderTop GCC Provider

GCC-Registry-
Register-Channel
request GCC-Registry-

Monitor indication

All Nodes
Monitoring Application
Protocol Entities

GCC-Registry-
Register-Channel
confirm

FIGURE 7-23/T.124

'##
2EGISTRY
2EGISTER
#HANNEL� �3EQUENCE�OF�PRIMITIVES

FIGURE 7-23/T.124...[D26] = 8.5 CM

Parameter Request Confirm

Conference ID M M(=)

Registry Key M M(=)

Channel ID M

Registry Item C

Owner C

Result M

3UPERSEDED�BY�A�MORE�RECENT�VERSION

2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION 61

������� '##
2EGISTRY
!SSIGN
4OKEN

The GCC-Registry-Assign-Token request primitive may be issued by an Application Protocol Entity to assign a token to
be associated with a particular Registry Key. If the request is successful, the token ID is returned as a parameter in the
confirm primitive. Once any Application Protocol Entity gets a token assigned using a particular Registry Key,
Application Protocol Entities at other nodes may find out if a token has been assigned for this key (and if so, the value of
the Token ID) by issuing the GCC-Registry-Retrieve-Entry request primitive specifying the Registry Key in question.
Once the token is assigned, if any Application Protocol Entity attempt to get a token assigned using the same Registry
Key (including the owner), their attempt will be rejected with an indication that this Registry Key has already been used.
Table 7-34 shows the parameters and types of this primitive. Figure 7-24 shows the sequence of events when using this
primitive.

TABLE 7-34/T.124

'##
2EGISTRY
!SSIGN
4OKEN� �4YPES�OF�PRIMITIVES�AND�THEIR�PARAMETERS

#ONFERENCE�)$� Identifier of the conference to which the primitive refers.

2EGISTRY�+EY� The data-base index at which the item is to be stored.

4OKEN�)$� A dynamic token ID (16 384 or greater) assigned by the Top GCC Provider. This parameter is not present if
the confirm is a locally generated error condition.

2EGISTRY�)TEM� The value of the entry after the request has taken effect. If the request is successful, this is the value of the
parameter, if not successful due to inconsistent type or index already owned, this is the value prior to the request. It is
either a Channel ID, Token ID, Parameter Value, or None if the entry is vacant (both the type and the value, if any, are
indicated by this parameter). This parameter is not present if the confirm is a locally generated error condition.

/WNER� This parameter indicates the current owner of this registry entry. If owned, this parameter includes the Node ID
of the node at which the owner resides and the Entity ID of the owning Application Protocol Entity. This parameter also
indicates if the entry is not owned. This parameter is not present if the confirm is a locally generated error condition.

2ESULT� An indication of whether the request was accepted or rejected, and if rejected, the reason why. It contains one of
a list of possible results: successful, invalid conference, registry full, index already exists, inconsistent type, invalid
requester.

������� '##
2EGISTRY
3ET
0ARAMETER

The GCC-Registry-Set-Parameter request primitive may be issued by an Application Protocol Entity to set or modify the
value of a registry parameter. If the registry entry had been designated to be monitored using the GCC-Registry-Monitor
request primitive, each successful GCC-Registry-Set-Parameter request results in a GCC-Monitor-Indication to
Application Protocol Entities at all nodes in the conference which have enabled monitoring for this entry. If a registry
entry exists for a particular key, a request to set a parameter shall only be accepted if the entry is already a parameter.
Table 7-35 shows the parameters and types of this primitive. Figure 7-25 shows the sequence of events when using this
primitive.

Parameter Request Confirm

Conference ID M M(=)

Registry Key M M(=)

Token ID C

Registry Item C

Owner C

Result M

3UPERSEDED�BY�A�MORE�RECENT�VERSION

62 2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION

T0819660-94/d27

GCC Provider
Application
Protocol Entity GCC ProviderTop GCC Provider

GCC-Registry-
Assign-Token
request GCC-Registry-

Monitor indication

All Nodes
Monitoring Application
Protocol Entities

GCC-Registry-
Assign-Token
confirm

FIGURE 7-24/T.124

'##
2EGISTRY
!SSIGN
4OKEN� �3EQUENCE�OF�PRIMITIVES

FIGURE 7-24/T.124...[D27] = 9 CM

TABLE 7-35/T.124

'##
2EGISTRY
3ET
0ARAMETER� �4YPES�OF�PRIMITIVES�AND�THEIR�PARAMETERS

#ONFERENCE�)$� Identifier of the conference to which the primitive refers.

2EGISTRY�+EY� The data-base index at which the item is to be stored.

0ARAMETER�6ALUE� An octet string specified by the Application Protocol Entity.

2EGISTRY�)TEM� The value of the entry after the request has taken effect. If the request is successful, this is the value of the
parameter, if not successful due to inconsistent type, this is the value prior to the request. It is either a Channel ID, Token
ID, Parameter Value, or None if the entry is vacant (both the type and the value, if any, are indicated by this parameter).
This parameter is not present if the confirm is a locally generated error condition.

/WNER� This parameter indicates the current owner of this registry entry. If owned, this parameter includes the Node ID
of the node at which the owner resides and the Entity ID of the owning Application Protocol Entity. This parameter also
indicates if the entry is not owned. If successful completion of this primitive results in the requester becoming the owner
of this entry, the requester is indicated as the new owner in the confirm primitive. This parameter is not present if the
confirm is a locally generated error condition.

-ODIFICATION� 2IGHTS� This optional parameter specifies the scope of Application Protocol Entities allowed to make
modifications to the value of this registry entry. The value of this parameter may be either Owner, Session, or Public.
The Owner setting specifies that only the owner (as long as the entry is owned) may modify this entry. The Session
setting specifies that any Application Protocol Entity which is part of the same Application Protocol Session as the
owner may modify this entry. The Public setting specifies that any Application Protocol Entity enrolled in the

Parameter Request Confirm

Conference ID M M(=)

Registry Key M M(=)

Parameter Value M

Registry Item C

Owner C

Modification Rights O C

Result M

3UPERSEDED�BY�A�MORE�RECENT�VERSION

2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION 63

conference may modify this entry. If this parameter is not present when the entry is first created, a value of Public is
assumed. If not present at other times, its value is left unchanged. Only the owner of this registry entry (as long as the
entry is owned) can change the modification rights. If a non-owner attempts to change the modification rights, this
change will not take place, however any modification to the parameter entry itself will occur as long as the requester has
modification rights. In the confirm primitive, this parameter is present independent of whether it was in the request
primitive and indicates the actual modification rights. This parameter is not present if the confirm is a locally generated
error condition.

2ESULT� An indication of whether the request was accepted or rejected, and if rejected, the reason why. It contains one of
a list of possible results: successful, invalid conference, registry full, inconsistent type, invalid requester.

T0819670-94/d28

GCC Provider
Application
Protocol Entity GCC ProviderTop GCC Provider

GCC-Registry-
Set-Parameter
request GCC-Registry-

Monitor indication

All Nodes
Monitoring Application
Protocol Entities

GCC-Registry-
Set-Parameter
confirm

FIGURE 7-25/T.124

'##
2EGISTRY
3ET
0ARAMETER� �3EQUENCE�OF�PRIMITIVES

FIGURE 7-25/T.124...[D28] = 8.5 CM

������� '##
2EGISTRY
2ETRIEVE
%NTRY

The GCC-Registry-Retrieve-Entry request primitive may be issued by an Application Protocol Entity to determine the
contents of a single registry entry. This primitive may be issued at any time and will indicate the contents of the entry as
well as whether the entry is a channel ID, a token ID, a parameter, or if the entry is empty. Table 7-36 shows the
parameters and types of this primitive. Figure 7-26 shows the sequence of events when using this primitive.

TABLE 7-36/T.124

'##
2EGISTRY
2ETRIEVE
%NTRY� �4YPES�OF�PRIMITIVES�AND�THEIR�PARAMETERS

#ONFERENCE�)$� Identifier of the conference to which the primitive refers.

2EGISTRY�+EY� The data-base index of the entry to be retrieved.

Parameter Request Confirm

Conference ID M M(=)

Registry Key M M(=)

Registry Item C

Owner C

Modification Rights C

Result M

3UPERSEDED�BY�A�MORE�RECENT�VERSION

64 2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION

2EGISTRY�)TEM� A Channel ID, Token ID, Parameter Value, or None if the entry is vacant (both the type and the value, if
any, are indicated by this parameter). This parameter is not present if the confirm is a locally generated error condition.

/WNER� This parameter indicates the current owner of this registry entry. If owned, this parameter includes the Node ID
of the node at which the owner resides and the Entity ID of the owning Application Protocol Entity. This parameter also
indicates if the entry is not owned. This parameter is not present if the confirm is a locally generated error condition.

-ODIFICATION�2IGHTS� This parameter, included only in the case of Parameter entries, indicates the scope of Application
Protocol Entities allowed to make modifications to the value of this registry entry. The value of this parameter may be
either Owner, Session, or Public. The Owner setting specifies that only the owner (as long as the entry is owned) may
modify this entry. The Session setting specifies that any Application Protocol Entity which is part of the same
Application Protocol Session as the owner may modify this entry. The Public setting specifies that any Application
Protocol Entity enrolled in the conference may modify this entry. If this parameter is not present when the entry is first
created, a value of Public is assumed. This parameter is not present if the confirm is a locally generated error condition.

2ESULT� An indication of whether the request was accepted or rejected, and if rejected, the reason why. It contains one of
a list of possible results: successful, entry not found, invalid conference.

T0819680-94/d29

GCC Provider
Application
Protocol Entity

Top GCC
Provider

GCC-Registry-Retrieve-
Entry request

GCC-Registry-Retrieve-
Entry confirm

FIGURE 7-26/T.124

'##
2EGISTRY
2ETRIEVE
%NTRY� �3EQUENCE�OF�PRIMITIVES

FIGURE 7-26/T.124...[D29] = 8 CM

������� '##
2EGISTRY
$ELETE
%NTRY

The GCC-Registry-Delete-Entry request primitive may be issued by an Application Protocol Entity to remove a registry
entry. Removal of a registry entry is only allowed by the Application Protocol Entity which owns that entry (unless the
last owner disconnected from the conference and no new owner has been assigned). If the registry entry had been
designated to be monitored using the GCC-Registry-Monitor request primitive, a successful GCC-Registry-Delete-Entry
request results in a GCC-Monitor-Indication to Application Protocol Entity at all nodes in the conference which have
enabled monitoring for this entry with a NULL Registry Item parameter to indicate that the entry has been deleted.
Table 7-37 shows the parameters and types of this primitive. Figure 7-27 shows the sequence of events when using this
primitive.

3UPERSEDED�BY�A�MORE�RECENT�VERSION

2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION 65

TABLE 7-37/T.124

'##
2EGISTRY
$ELETE
%NTRY� �4YPES�OF�PRIMITIVES�AND�THEIR�PARAMETERS

#ONFERENCE�)$� Identifier of the conference to which the primitive refers.

2EGISTRY�+EY� The data-base index of the entry to be vacated, removing any item previously stored.

2ESULT� An indication of whether the request was accepted or rejected, and if rejected, the reason why. It contains one of
a list of possible results: successful, invalid conference, index already owned by another GCC Provider.

T0819690-94/d30

GCC Provider
Application
Protocol Entity GCC ProviderTop GCC Provider

GCC-Registry-
Delete-Entry
request GCC-Registry-

Monitor indication

All Nodes
Monitoring Application
Protocol Entities

GCC-Registry-
Delete-Entry
confirm

FIGURE 7-27/T.124

'##
2EGISTRY
$ELETE
%NTRY� �3EQUENCE�OF�PRIMITIVES

FIGURE 7-27/T.124...[D30] = 8 CM

������� '##
2EGISTRY
-ONITOR

GCC provides a mechanism for continuously monitoring particular registry entries of any type to determine if they have
been changed (either altered, deleted, changed owners, or in the case of a parameter entry, changed modification rights)
without the need for continuous polling. The GCC-Registry-Monitor request primitive may be used by an Application
Protocol Entity to enable (or disable) monitoring of a particular registry entry. While enabled, the requesting Application
Protocol Entity is notified of all changes to this entry via the GCC-Registry-Monitor indication primitive. An indication
will be generated as a result of any modification of the contents of the registry entry or deletion of the entry. Only
registry entries which exist may be monitored. Once an entry has been deleted, if it is recreated, the monitor request must
be re-issued to begin monitoring again. Table 7-38 shows the parameters and types of this primitive. Figure 7-28 shows
the sequence of events when using the request form of this primitive.

NOTE – Particular GCC Provider implementations may choose not to keep track of which Application Protocol Entities
have enabled or disabled monitoring for each entry. In that case, Application Protocol Entities may receive GCC-Registry-Monitor
indications for entries that they have not requested to be monitored, or for entries for which they specifically disabled monitoring.

Parameter Request Confirm

Conference ID M M(=)

Registry Key M M(=)

Result M

3UPERSEDED�BY�A�MORE�RECENT�VERSION

66 2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION

TABLE 7-38/T.124

'##
2EGISTRY
-ONITOR� �4YPES�OF�PRIMITIVES�AND�THEIR�PARAMETERS

#ONFERENCE�)$� Identifier of the conference to which the primitive refers.

%NABLE�$ISABLE� TRUE to deliver indications of registry contents; FALSE to suppress indications.

2EGISTRY�+EY� The data-base index of an entry to be monitored (in the request/confirm), or that has changed (in the
indication).

2EGISTRY�)TEM� A Channel ID, Token ID, Parameter Value, or None indicating that the entry has been deleted (both the
type and the value, if any, are indicated by this parameter).

/WNER� This parameter indicates the current owner of this registry entry. If owned, this parameter includes the Node ID
of the node at which the owner resides and the Entity ID of the owning Application Protocol Entity. This parameter also
indicates if the entry is not owned. This parameter is not present if the confirm is a locally generated error condition.

-ODIFICATION�2IGHTS� This parameter, included only in the case of Parameter entries, indicates the scope of Application
Protocol Entities allowed to make modifications to the value of this registry entry. The value of this parameter may be
either Owner, Session, or Public. The Owner setting specifies that only the owner (as long as the entry is owned) may
modify this entry. The Session setting specifies that any Application Protocol Entity which is part of the same
Application Protocol Session as the owner may modify this entry. The Public setting specifies that any Application
Protocol Entity enrolled in the conference may modify this entry. If this parameter is not present when the entry is first
created, a value of Public is assumed. This parameter is not present if the confirm is a locally generated error condition.

2ESULT� An indication of whether the request was accepted or rejected, and if rejected, the reason why. It contains one of
a list of possible results: successful, invalid conference, registry entry does not exist.

T0819700-94/d31

GCC Provider
Application
Protocol Entity

Top GCC
Provider

GCC-Registry-Monitor
request

GCC-Registry-Monitor
confirm

FIGURE 7-28/T.124

'##
2EGISTRY
-ONITOR� �3EQUENCE�OF�PRIMITIVES

FIGURE 7-28/T.124...[D31] = 8 CM

Parameter Request Indication Confirm

Conference ID M M(=) M(=)

Enable/Disable M M(=)

Registry Key M M(=) M(=)

Registry Item M

Owner M

Modification Rights C

Result M

3UPERSEDED�BY�A�MORE�RECENT�VERSION

2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION 67

������� '##
2EGISTRY
!LLOCATE
(ANDLE

The GCC-Registry-Allocate-Handle request primitive may be issued by an Application Protocol Entity to request that a
numerical value (or list of values) be allocated to that Application Protocol Entity which is globally unique within the
scope of a single conference. Handles are allocated by the Top GCC Provider in increasing numerical order in the order
that requests are received. Blocks of handles are also allocated in increasing numerical order. As a result, only the first
handle in a block is returned if the number of handles is more than one. Table 7-39 shows the parameters and types of
this primitive. Figure 7-29 shows the sequence of events when using this primitive.

TABLE 7-39/T.124

'##
2EGISTRY
!LLOCATE
(ANDLE� �4YPES�OF�PRIMITIVES�AND�THEIR�PARAMETERS

#ONFERENCE�)$� Identifier of the conference to which the primitive refers.

.UMBER�OF�(ANDLES� The number of handles requested to be allocated and returned in the confirm primitive. This may
range from 1 to 1024.

&IRST�(ANDLE: 32-bit unsigned integer value. If the number of requested handles is equal to one, this is the value of the
allocated handle. If the number of handles is greater than one, the set of allocated handles are those contiguous values
(modulo 232) that range from the value of First Handle, through the value (First Handle + Number of Handles) mod 232.

2ESULT� An indication of whether the request was accepted or rejected, and if rejected, the reason why. It contains one of
a list of possible results: successful, invalid conference, no handles available, too many handles requested.

T0819710-94/d32

GCC Provider
Application
Protocol Entity

Top GCC
Provider

GCC-Registry-
Allocate-Handle request

GCC-Registry-
Allocate-Handle confirm

FIGURE 7-29/T.124

'##
2EGISTRY
!LLOCATED
(ANDLE� �3EQUENCE�OF�PRIMITIVES

FIGURE 7-29/T.124...[D32] = 8 CM

Parameter Request Confirm

Conference ID M M(=)

Number of Handles M M(=)

First Handle M

Result M

3UPERSEDED�BY�A�MORE�RECENT�VERSION

68 2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION

��� #ONFERENCE�CONDUCTORSHIP

GCC provides a method for allowing a node to become a conductor for a conference. A token is used by GCC to
determine whether a conference is conducted or non-conducted. The Node Controller at a node may acquire the
Conductor token by issuing a GCC-Conductor-Assign request primitive. When any node successfully acquires the
Conductor token, the conference is placed in Conducted Mode. The Node Controller as well as all Application Protocol
Entities at all nodes in the conference are made aware when a conference switches into Conducted Mode by means of a
GCC-Conductor-Assign indication. This indication also indicates which node has become the conductor.

Whether a particular conference may operate in conducted mode or not is determined when the conference is created. If
the Conference Conductible flag had been set, the conference may be placed in conducted mode. If not, any attempt to
place the conference in conducted mode will be rejected.

A node may release conductorship and return the conference into Non-conducted Mode by issuing a GCC-Conductor-
Release request primitive. The Node Controller as well as all Application Protocol Entities at all nodes in the conference
are made aware when a conference switches into Non-conducted Mode by means of a GCC-Conductor-Release
indication.

A node which is currently the conductor of a conference may pass conductorship directly to another node without
placing the conference in Non-Conducted mode during the transition by issuing a GCC-Conductor-Give request
specifying the desired recipient node. If the recipient accepts conductorship, the Node Controller as well as all
Application Protocol Entities at all nodes in the conference are made aware of this transition by means of a GCC-
Conductor-Assign indication which indicates which node is the new conductor. A node may explicitly request from the
conductor that conductorship be given to it by issuing a GCC-Conductor-Please request primitive. The current conductor
may choose to give the requesting node conductorship, or may ignore the request.

The Node Controller as well as Application Protocol Entities at any node may also inquire as to which node, if any,
currently holds the Conductor token by using the GCC-Conductor-Inquire request primitive.

When an Application Protocol Entity is made aware that the conference to which it is joined is in Conducted Mode, it
shall immediately begin operating according to its Conducted Mode behaviour as prescribed by the specification of the
corresponding Application Protocol. When an Application Protocol Entity is made aware that the conference to which it
is joined is in Non-conducted mode, it shall immediately begin operating according to its Non-conducted Mode
behaviour as prescribed by the specification of the corresponding Application Protocol. A typical Application Protocol
specification may, for example, state that the Application Protocol Entity at any node when in Conducted Mode must
request permission from the Peer Application Protocol Entity at the conductor before taking any action, while in Non-
conducted Mode, no such permission is required. However, the behaviour defined by Application Protocol specifications
while in Conducted or Non-conducted Mode is a matter outside of the scope of this Recommendation.

����� $ESCRIPTION�OF�ABSTRACT�SERVICES

The following is a list of the primitives defined in this subclause and a brief summary of the function of each:

• GCC-Conductor-Assign – Used by a Node Controller to request conductorship of a conference. When a
new node becomes conductor, the indication form of this primitive is used to announce this to all Node
Controllers in the conference as well as to all Application Protocol Entities at all nodes in the conference.

• GCC-Conductor-Release – Used by a Node Controller to release conductorship of a conference. When
any node releases conductorship, the indication form of this primitive is used to announce this to all Node
Controllers in the conference as well as to all Application Protocol Entities at all nodes in the conference.

• GCC-Conductor-Please – Used by a Node Controller to request that conductorship be given to it from the
current conductor.

• GCC-Conductor-Give – Used by a Node Controller to pass conductorship to a specified node.

• GCC-Conductor-Inquire – Used by a Node Controller or an Application Protocol Entity to determine
whether the conference is currently conducted nor non-conducted, and if conducted, the Node ID of the
current conductor.

3UPERSEDED�BY�A�MORE�RECENT�VERSION

2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION 69

• GCC-Conductor-Permission-Ask – Used by a Node Controller to request permission for Application
Protocol Entities at that node to take actions which, in conducted-mode, require permission from the
conductor.

• GCC-Conductor-Permission-Grant – Used by the Node Controller at the conducting node to indicate
which subset of nodes in a conference have been granted conducted-mode permission.

������� '##
#ONDUCTOR
!SSIGN

During non-conducted mode the Node Controller at any node has the possibility to issue a request to become conductor,
by issuing a GCC-Conductor-Assign request primitive. The receipt of a GCC-Conductor-Assign confirm primitive
indicates whether the requester has become the conductor or not, depending on the result parameter within the primitive.
A successful GCC-Conductor-Assign request shall be accompanied by GCC-Conductor-Assign indications to all Node
Controllers in the conference as well as to all enrolled Application Protocol Entities at all nodes in the conference
signalling that the conference has become conducted, and giving information about the identity of the conductor. The
indication form of this primitive may also be issued to an Application Protocol Entity upon enrolling into a conference to
inform it that the conference is in conducted mode. The order of GCC-Conductor-Assign and GCC-Conductor-Release
indications represents the actual order of conductorship transitions. Table 7-40 shows the parameters and types of this
primitive. Figure 7-30 shows the sequence of events when using this primitive.

NOTE – If the conductor disconnects from the conference for any reason, the conference reverts to non-conducted mode
until another node issues a request to become conductor.

TABLE 7-40/T.124

'##
#ONDUCTOR
!SSIGN� �4YPES�OF�PRIMITIVES�AND�THEIR�PARAMETERS

#ONFERENCE�)$� Identifier of the conference to which the primitive refers.

2EQUESTING�.ODE�)$��4HE�.ODE�)$�OF the requesting node.

2ESULT� An indication of whether the request was accepted or rejected, and if rejected, the reason why. It contains one of
a list of possible results: successful, invalid conference, non-conductible conference, token already owned.

T0819720-94/d33

GCC ProviderNode Controller GCC Provider

GCC-Conductor-
Assign request GCC-Conductor-

Assign indication

All Nodes
Node Controller and
All Application
Protocol Entities

GCC-Conductor-
Assign confirm

FIGURE 7-30/T.124

'##
#ONDUCTOR
!SSIGN� �3EQUENCE�OF�PRIMITIVES
FIGURE 7-30/T.124...[D33] = 8.5 CM

Parameter Request Indication Confirm

Conference ID M M M(=RQ)

Requesting Node ID M

Result M

3UPERSEDED�BY�A�MORE�RECENT�VERSION

70 2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION

������� '##
#ONDUCTOR
2ELEASE

In order to change its status from conductor to normal participant, the Node Controller at the conductor node issues the
GCC-Conductor-Release request primitive. As soon as the conductor has requested the release of conductorship, all
Node Controllers in the conference as well as all enrolled Application Protocol Entities at all nodes in the conference are
informed of the change in operational mode by means of the GCC-Conductor-Release indication. The order of GCC-
Conductor-Assign and GCC-Conductor-Release indications represents the actual order of conductorship transitions. Any
participant issuing a GCC-Conductor-Release, but not being the current conductor, shall be answered by GCC with a
GCC-Conductor-Release confirmation containing a negative result and reason description. In this situation, no
indications shall be sent to the other participants. Apart from this user initiated transition to non-conducted mode, the
release of conductorship can also be initiated by GCC itself, for instance because the conductor disconnected from the
conference. The indication form of this primitive may also be issued to an Application Protocol Entity upon enrolling
into a conference to inform it that the conference is in non-conducted mode. Table 7-41 shows the parameters and types
of this primitive. The sequences of primitives belonging to both situations are depicted in Figures 7-31 and 7-32,
respectively.

TABLE 7-41/T.124

'##
#ONDUCTOR
2ELEASE� �4YPES�OF�PRIMITIVES�AND�THEIR�PARAMETERS

#ONFERENCE�)$� Identifier of the conference to which the primitive refers.

!CCEPT�2EJECT��This flag indicates whether the GCC-Conductor-Release request was accepted or rejected.

2ESULT� An indication of whether the request was accepted or rejected, and if rejected, the reason why. It contains one of
a list of possible results: successful, invalid conference, did not own token.

T0819730-94/d34

GCC ProviderNode Controller GCC Provider

GCC-Conductor-
Release request GCC-Conductor-

Release indication

All Nodes
Node Controller and
All Application
Protocol Entities

GCC-Conductor-
Release confirm

FIGURE 7-31/T.124

'##
#ONDUCTOR
2ELEASE��USER�INITIATED	� �3EQUENCE�OF�PRIMITIVES

FIGURE 7-31/T.124...[D34] = 8.5 CM

Parameter Request Indication Confirm

Conference ID M M M(=RQ)

Result M

3UPERSEDED�BY�A�MORE�RECENT�VERSION

2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION 71

T0819740-94/d35

GCC Provider

GCC-Conductor-
Release indication

All Nodes
Node Controller and
All Application
Protocol Entities

FIGURE 7-32/T.124

'##
#ONDUCTOR
2ELEASE��'##�INITIATED	� �3EQUENCE�OF�PRIMITIVES

FIGURE 7-32/T.124...[D35] = 8.5 CM

������� '##
#ONDUCTOR
0LEASE

The primitive GCC-Conductor-Please request may be issued by a Node Controller to ask the current conductor to give
conductorship to the requesting node. The GCC-Conductor-Please indication is forwarded to the current conducting
node. The current conductor may then choose to give conductorship to the requester by using the GCC-Conductor-Give
primitive. The confirm portion of this primitive is only local confirmation that the request was accepted by the local
GCC Provider. No confirmation from the conductor is given directly. Table 7-42 shows the parameters and types of this
primitive. Figure 7-33 shows the sequence of events when using this primitive.

TABLE 7-42/T.124

'##
#ONDUCTOR
0LEASE� �4YPES�OF�PRIMITIVES�AND�THEIR�PARAMETERS

#ONFERENCE�)$� Identifier of the conference to which the primitive refers.

2EQUESTING�.ODE�)$� The Node ID of the requesting node.

2ESULT� An indication of whether the request was accepted or rejected, and if rejected, the reason why. It contains one of
a list of possible results: successful, invalid conference, not in conducted mode.

������� '##
#ONDUCTOR
'IVE

The primitive GCC-Conductor-Give request may be issued by a Node Controller to transfer conductorship to a specific
node. If the conductorship is not accepted by the intended recipient, conference conductorship continues to be held by
the original conductor. Table 7-43 shows the parameters and types of this primitive. Figure 7-34 shows the sequence of
events when using this primitive.

Parameter Request Indication Confirm

Conference ID M M M(=RQ)

Requesting Node ID M

Result M

3UPERSEDED�BY�A�MORE�RECENT�VERSION

72 2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION

T0819750-94/d36

GCC ProviderNode Controller GCC Provider

GCC-Conductor-
Please request GCC-Conductor-

Please indication

Conducting Node
Node Controller

GCC-Conductor-
Please confirm

FIGURE 7-33/T.124

'##
#ONDUCTOR
0LEASE� �3EQUENCE�OF�PRIMITIVES

FIGURE 7-33/T.124...[D36] = 8.5 CM

NOTE – It is possible to use this primitive (in conjunction with others) to ensure that a particular node becomes the
conference conductor with no opportunity for another node to acquire conductorship. The procedure would be for the conference
convener first to create a conference which is locked and to then acquire conductorship using the GCC-Conductor-Assign primitive.
Once the convener has become the conference conductor, it may then allow other nodes into the conference either by unlocking it
using GCC-Conference-Unlock and/or by adding the other nodes directly. Once the intended conducting node has joined the
conference, conductorship may be passed directly to that node by use of the GCC-Conductor-Give primitive.

TABLE 7-43/T.124

'##
#ONDUCTOR
'IVE� �4YPES�OF�PRIMITIVES�AND�THEIR�PARAMETERS

#ONFERENCE�)$� Identifier of the conference to which the primitive refers.

2ECIPIENT�.ODE�)$� The Node ID of the node to which conductorship is being transferred.

2ESULT� An indication of whether the request was accepted or rejected, and if rejected, the reason why. It contains one of
a list of possible results: successful, invalid conference, not conductor, give not accepted.

������� '##
#ONDUCTOR
)NQUIRE

The primitive GCC-Conductor-Inquire request may be issued at any time by either a Node Controller or Application
Protocol Entity in order to find out whether the conference is conducted or not, and if so, which node is the conductor,
and if the requesting node has been granted conducted-mode permission. Table 7-44 shows the parameters and types of
this primitive. Figure 7-35 shows the sequence of events when using this primitive.

Parameter Request Indication Response Confirm

Conference ID M M M(=IN) M(=RQ)

Recipient Node ID M M(=)

Result M M(=)

3UPERSEDED�BY�A�MORE�RECENT�VERSION

2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION 73

T0819760-94/d37

GCC Provider
Conducting Node
Node Controller

Recipient Node
Node Controller

GCC Provider

GCC Provider

GCC-Conductor-
Give request GCC-Conductor-

Give indication

GCC-Conductor-
Give confirm

GCC-Conductor-
Give response

GCC-Conductor-
Assign indication

All Nodes
Node Controller and
All Application
Protocol Entities

FIGURE 7-34/T.124

'##
#ONDUCTOR
'IVE� �3EQUENCE�OF�PRIMITIVES

FIGURE 7-34/T.124...[D37] = 12 CM

TABLE 7-44/T.124

'##
#ONDUCTOR
)NQUIRE� �4YPES�OF�PRIMITIVES�AND�THEIR�PARAMETERS

#ONFERENCE�)$� Identifier of the conference to which the primitive refers.

#ONDUCTED�VS��.ON
#ONDUCTED�&LAG� A flag indicating whether the indicated conference is currently in conducted mode
or non-conducted mode.

#ONDUCTOR�.ODE�)$��The Node ID of the node that is currently conductor. Not present if currently in non-conducted
mode.

0ERMISSION�&LAG� If in conducted mode, this flag indicates whether or not the local node has been granted conducted-
mode permission.

2ESULT� An indication of whether the request was accepted or rejected, and if rejected, the reason why. It contains one of
a list of possible results: successful, invalid conference.

Parameter Request Confirm

Conference ID M M(=)

Conducted vs. Non-Conducted Flag M

Conductor Node ID C

Permission flag C

Result M

3UPERSEDED�BY�A�MORE�RECENT�VERSION

74 2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION

T0819770-94/d38

FIGURE 7-35/T.124

'##
#ONDUCTOR
)NQUIRE� �3EQUENCE�OF�PRIMITIVES

GCC Provider
Node Controller or
Application Protocol Entity

GCC-Conductor-
Inquire request

GCC-Conductor-
Inquire confirm

FIGURE 7-35/T.124...[D38] = 8 CM

������� '##
#ONDUCTOR
0ERMISSION
!SK

The primitive GCC-Conductor-Permission-Ask request may be issued by a Node Controller to ask the current conductor
to grant (or release) permission to allow Application Protocol Entities at the requesting node to perform any actions for
which permission from the conductor is required. The definition of which specific actions require this permission is a
matter for the individual Application Protocol specifications to define. The GCC-Conductor-Permission-Ask indication
is forwarded to the current conducting node. The order of GCC-Conductor-Permission-Ask indications from a single
node represents the actual order of the requests from that node. The current conductor may then choose to grant (or
release) conducted-mode permission to the requester by using the GCC-Conductor-Permission-Grant primitive, or to
ignore the request. The confirm portion of this primitive is only local confirmation that the request was accepted by the
local GCC Provider. No confirmation from the conductor is given directly. Table 7-45 shows the parameters and types
of this primitive. Figure 7-36 shows the sequence of events when using this primitive.

TABLE 7-45/T.124

'##
#ONDUCTOR
0ERMISSION
!SK� �4YPES�OF�PRIMITIVES�AND�THEIR�PARAMETERS

#ONFERENCE�)$� Identifier of the conference to which the primitive refers.

'IVE�2ELEASE�&LAG��This flag indicates whether the requester desires to be granted conducted-mode permission, or if the
requester desires to release conducted-mode permission.

2EQUESTING�.ODE�)$� The Node ID of the requesting node.

2ESULT� An indication of whether the request was accepted or rejected, and if rejected, the reason why. It contains one of
a list of possible results: successful, invalid conference, not in conducted mode.

Parameter Request Indication Confirm

Conference ID M M M(=RQ)

Grant/Release Flag M M(=) M(=)

Requesting Node ID M

Result M

3UPERSEDED�BY�A�MORE�RECENT�VERSION

2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION 75

T0819780-94/d39

GCC ProviderNode Controller GCC Provider

GCC-Conductor-
Permission-Ask
request

GCC-Conductor-
Permission-Ask
indication

Conducting Node
Node Controller

GCC-Conductor-
Permission-Ask
confirm

FIGURE 7-36/T.124

'##
#ONDUCTOR
0ERMISSION
!SK� �3EQUENCE�OF�PRIMITIVES

FIGURE 7-36/T.124...[D39] = 8 CM

������� '##
#ONDUCTOR
0ERMISSION
'RANT

The primitive GCC-Conductor-Permission-Grant request may be issued by a Node Controller of the conducting node to
grant or revoke conducted-mode permission from one or more nodes in a conference. The corresponding GCC-
Conductor-Permission-Grant indication is broadcast to every node in the conference and indicates which nodes currently
have conducted-mode permission, and also which have requested, but are still waiting for permission. The latter list may
be given in the order that the conductor believes permission will ultimately be granted. The indication is given to the
Node Controller as well as all enrolled Application Protocol Entities at each node. The order of multiple GCC-
Conductor-Permission-Grant indications represents the actual order of the requests from the conductor – that is, the most
recently received indication applies. Conducted-mode permission is typically given in response to a GCC-Conductor-
Permission-Ask, but may also be given unsollicited by the conductor. The conducted node, itself, is assumed to have
conducted-mode permission whether or not it is explicitly listed in the list of nodes granted permission. When a
conference first becomes conducted it is to be assumed that no nodes have permission – this is true even if the
conference had previously been in conducted mode. If the conductorship changes hands via a successful GCC-
Conductor-Give operation, the state of permission are left as they were last broadcast by the original conductor. When a
new node joins a conference, the node shall assume that it has no permission. In this case, the Node Controller at the
conducting node may re-broadcast the permission list by re-issuing a CC-Conductor-Permission-Grant request so that
the new node is made aware of the permission status of other nodes in the conference. The confirm portion of this
primitive is only local confirmation that the request was accepted by the local GCC Provider. Table 7-46 shows the
parameters and types of this primitive. Figure 7-37 shows the sequence of events when using this primitive.

TABLE 7-46/T.124

'##
#ONDUCTOR
0ERMISSION
'RANT� �4YPES�OF�PRIMITIVES�AND�THEIR�PARAMETERS

Parameter Request Indication Confirm

Conference ID M M M(=RQ)

List of Nodes Granted Permission M M(=)

List of Nodes Waiting for Permission O O(=)

Permission Flag M

Result M

3UPERSEDED�BY�A�MORE�RECENT�VERSION

76 2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION

#ONFERENCE�)$� Identifier of the conference to which the primitive refers.

,IST�OF�.ODES�'RANTED�0ERMISSION� A list of Node IDs, one for each node which the conductor has granted conducted-
mode permission. If this list is empty, then no nodes have conducted-mode permission.

,IST�OF�.ODES�7AITING�FOR�0ERMISSION� An ordered list of Node IDs, one for each node which is being considered by the
conductor to receive conducted-mode permission, but has not yet received it. The conductor may order the list in the
order in which it is expected that permission will be granted. If so, the first item in the list is to be considered the next
node likely to receive permission.

0ERMISSION�&LAG� This flag indicates whether or not the local node is present on the list of nodes granted permission.
This is primarily to allow Application Protocol Entities to easily determine their mode of operation without requiring
them to search through the returned lists.

2ESULT� An indication of whether the request was accepted or rejected, and if rejected, the reason why. It contains one of
a list of possible results: successful, invalid conference, not conductor.

T0819790-94/d40

GCC Provider
Conducting Node
Node Controller GCC Provider

GCC-Conductor-
Permission-Grant
request

GCC-Conductor-
Permission-Grant
indication

All Nodes
Node Controller and
All Application
Protocol Entities

GCC-Conductor-
Permission-Grant
confirm

FIGURE 7-37/T.124

'##
#ONDUCTOR
0ERMISSION
'RANT� �3EQUENCE�OF�PRIMITIVES

FIGURE 7-37/T.124...[D40] = 8.5 CM

��� -ISCELLANEOUS�FUNCTIONS

����� $ESCRIPTION�OF�ABSTRACT�SERVICES

The following is a list of the primitives defined in this subclause and a brief summary of the function of each:

• GCC-Conference-Time-Remaining – Allows the Node Controller at the conference convener to notify all
nodes that a timed conference is scheduled to end at a particular time.

• GCC-Conference-Time-Inquire – Allows the Node Controller at any node to find out how much time is
remaining in a timed conference.

• GCC-Conference-Extend – Allows the Node Controller at any node to request that the convener extend a
timed conference beyond its allocated time duration.

• GCC-Conference-Assistance – Used to request some unspecified form of assistance from a conference
operator.

• GCC-Text-Message – Used to send an arbitrary text message to a set of other nodes for display to the user
or users at those nodes.

3UPERSEDED�BY�A�MORE�RECENT�VERSION

2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION 77

������� '##
#ONFERENCE
4IME
2EMAINING

The GCC-Conference-Time-Remaining request primitive may be used by the Node Controller to announce to all nodes
that a certain amount of time is remaining in a timed conference. It may also be issued indicating the time remaining for
a specific node, rather than for all nodes. This request is intended to be issued by the Convener, but may be issued by
other nodes as well. Typically, this primitive would be issued once, near the end of a timed conference, to indicate that
the conference is almost over. Table 7-47 shows the parameters and types of this primitive. Figure 7-38 shows the
sequence of events when using this primitive.
Recommendation T.124 (08/95) Superseded by a more recent version

TABLE 7-47/T.124

'##
#ONFERENCE
4IME
2EMAINING� �4YPES�OF�PRIMITIVES�AND�THEIR�PARAMETERS

#ONFERENCE�)$� Identifier of the conference to which the primitive refers.

4IME�2EMAINING� Indication of time remaining in conference in one second increments.

.ODE�)$� Optional parameter which, if present, indicates that the indicated time-remaining only applies to the specific
node listed. If not included, the time-remaining applies to all nodes in the conferences.

3OURCE�.ODE�)$� Node ID of the node which issued the request.

2ESULT� An indication of whether the request was accepted or rejected, and if rejected, the reason why. It contains one of
a list of possible results: successful, invalid conference.

T0819800-94/d41

GCC Provider
Convener
Node Controller GCC Provider

GCC-Conference-
Time-Remaining
request

GCC-Conference-
Time-Remaining
indication

All Nodes
Node Controller

GCC-Conference-
Time-Remaining
confirm

FIGURE 7-38/T.124

'##
#ONFERENCE
4IME
2EMAINING� �3EQUENCE�OF�PRIMITIVES

FIGURE 7-38/T.124...[D41] = 8 CM

Parameter Request Indication Confirm

Conference ID M M M(=RQ)

Time Remaining M M(=)

Node ID O O(=)

Source Node ID M

Result M

3UPERSEDED�BY�A�MORE�RECENT�VERSION

78 2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION

������� '##
#ONFERENCE
4IME
)NQUIRE

The GCC-Conference-Time-Inquire request primitive may be used by any node to find out from the Convener how
much time is remaining in the conference. Receipt of the indication form of this primitive by the Convener (if the
Convener supports this primitive) results in the time remaining to be broadcast to all nodes in the conference using the
GCC-Conference-Time-Remaining primitive. Table 7-48 shows the parameters and types of this primitive. Figure 7-39
shows the sequence of events when using this primitive.

TABLE 7-48/T.124

'##
#ONFERENCE
4IME
)NQUIRE� �4YPES�OF�PRIMITIVES�AND�THEIR�PARAMETERS

#ONFERENCE�)$� Identifier of the conference to which the primitive refers.

#ONFERENCE
7IDE�VS��.ODE
3PECIFIC�4IME�&LAG��This flag indicates if the request is to find out the time remaining for the
entire conference, or, if different, the time remaining for the requesting node. If the Convener only considers a single
conference-wide end time, it may ignore this flag.

2EQUESTING�.ODE�)$� Node ID of the requesting node.

2ESULT� An indication of whether the request was accepted or rejected, and if rejected, the reason why. It contains one of
a list of possible results: successful, invalid conference.

T0819810-94/d42

GCC ProviderNode Controller GCC Provider

GCC-Conference-
Time-Inquire
request

GCC-Conference-
Time-Inquire
indication

Convener
Node Controller

GCC-Conference-
Time-Inquire
confirm

FIGURE 7-39/T.124

'##
#ONFERENCE
4IME
)NQUIRE� �3EQUENCE�OF�PRIMITIVES

FIGURE 7-39/T.124...[D42] = 8 CM

Parameter Request Indication Confirm

Conference ID M M M(=RQ)

Conference-Wide vs. Node-Specific Time Flag M M(=)

Requesting Node ID M

Result M

3UPERSEDED�BY�A�MORE�RECENT�VERSION

2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION 79

������� '##
#ONFERENCE
%XTEND

The GCC-Conference-Extend request primitive may be used by the Node Controller at a node to request from the
Convener that more time be added to a timed conference. Receipt of the indication form of this primitive by the
Convener (if the Convener supports this primitive) results in a broadcast of the new time remaining in the conference to
all nodes using the GCC-Conference-Time-Remaining primitive (even if the time was not actually extended). There is no
requirement that the actual amount of time the convener adds to the time-remaining equal the requested time. Table 7-49
shows the parameters and types of this primitive. Figure 7-40 shows the sequence of events when using this primitive.

TABLE 7-49/T.124

'##
#ONFERENCE
%XTEND� �4YPES�OF�PRIMITIVES�AND�THEIR�PARAMETERS

#ONFERENCE�)$� Identifier of the conference to which the primitive refers.

4IME� 2EQUESTED� In the request and indication, this parameter indicates the desired amount of time to extend the
conference in one second increments.

#ONFERENCE
7IDE�VS��.ODE
3PECIFIC�4IME�&LAG��This flag indicates if the request is to extend the time remaining for the
entire conference, or the time remaining for the requesting node. If the Convener only considers a single conference-
wide end time, it may ignore this flag.

2EQUESTING�.ODE�)$� Node ID of the requesting node.

2ESULT� An indication of whether the request was accepted or rejected, and if rejected, the reason why. It contains one of
a list of possible results: successful, invalid conference, not conductor.

T0819820-94/d43

GCC ProviderNode Controller GCC Provider

GCC-Conference-
Extend request GCC-Conference-

Extend indication

Convener
Node Controller

GCC-Conference-
Extend confirm

FIGURE 7-40/T.124

'##
#ONFERENCE
%XTENDED� �3EQUENCE�OF�PRIMITIVES

FIGURE 7-40/T.124...[D43] = 8 CM

Parameter Request Indication Confirm

Conference ID M M M(=RQ)

Time Requested M M(=) M(=)

Conference-Wide vs. Node-Specific Time Flag M M(=)

Requesting Node ID M

Result M

3UPERSEDED�BY�A�MORE�RECENT�VERSION

80 2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION

������� '##
#ONFERENCE
!SSISTANCE

The GCC-Conference-Assistance primitive provides a simple means to request some form of assistance from a
conference operator. Issuing a GCC-Conference-Assistance request results in a GCC-Conference-Assistance indication
to be broadcast to the Node Controller at all nodes in the specified conference which support this primitive. The intended
response to this primitive is unspecified and outside the scope of this Recommendation. Table 7-50 shows the parameters
and types of this primitive. Figure 7-41 shows the sequence of events when using this primitive.

TABLE 7-50/T.124

'##
#ONFERENCE
!SSISTANCE� �4YPES�OF�PRIMITIVES�AND�THEIR�PARAMETERS

#ONFERENCE�)$� Identifier of the conference to which the primitive refers.

5SER�$ATA� Unspecified user data.

3OURCE�.ODE�)$��The Node ID of the source of the assistance request.

2ESULT� An indication of whether the request was accepted or rejected, and if rejected, the reason why. It contains one of
a list of possible results: successful, invalid conference.

T0819830-94/d44

GCC ProviderNode Controller GCC Provider

GCC-Conference-
Assistance request GCC-Conference-

Assistance indication

All Nodes
Node Controller

GCC-Conference-
Assistance confirm

FIGURE 7-41/T.124

'##
#ONFERENCE
!SSISTANCE� �3EQUENCE�OF�PRIMITIVES

FIGURE 7-41/T.124...[D44] = 8 CM

������� '##
4EXT
-ESSAGE

The GCC-Text-Message primitive provides a simple means to communicate unspecified text messages. Issuing a
GCC-Text-Message request results in a GCC-Text-Message indication to be either broadcast to the Node Controller at
all nodes in the specified conference which support this primitive, or to be sent to a single node. The intended response

Parameter Request Indication Confirm

Conference ID M M M(=RQ)

User Data O O(=)

Source Node ID M

Result M

3UPERSEDED�BY�A�MORE�RECENT�VERSION

2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION 81

to this primitive is to display the text message to the conference participants by some means unspecified by this
Recommendation. Table 7-51 shows the parameters and types of this primitive. Figure 7-42 shows the sequence of
events when using this primitive.

TABLE 7-51/T.124

'##
4EXT
-ESSAGE� �4YPES�OF�PRIMITIVES�AND�THEIR�PARAMETERS

#ONFERENCE�)$� Identifier of the conference to which the primitive refers.

4EXT�-ESSAGE� Unicode text message.

$ESTINATION�.ODE�)$� The Node ID of a single node to receive the text message. If no node is specified, the message is
broadcast to all nodes in the specified conference.

3OURCE�.ODE�)$��The Node ID of the source of the text message.

2ESULT� An indication of whether the request was accepted or rejected, and if rejected, the reason why. It contains one of
a list of possible results: successful, invalid conference.

T0819840-94/d45

GCC ProviderNode Controller GCC Provider

GCC-Text-Message
request GCC-Text-Message

indication

Destination Nodes
Node Controller

GCC-Text-Message
confirm

FIGURE 7-42/T.124

'##
4EXT
-ESSAGE� �3EQUENCE�OF�PRIMITIVES

FIGURE 7-42/T.124...[D45] = 8 CM

� '##�0ROTOCOL�3PECIFICATION

��� 'ENERAL�OPERATION

A GCC Provider in any node is the MCS Control application, communicating with MCS via the Control MCSAP. On
initialization, the GCC Provider shall establish its communication link with MCS through a Control MCSAP through
local means.

Parameter Request Indication Confirm

Conference ID M M M(=RQ)

Text Message M M(=)

Destination Node ID O

Source Node ID M

Result M

3UPERSEDED�BY�A�MORE�RECENT�VERSION

82 2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION

In all cases, a Conference is established by creating an MCS Domain. A Conference has a one-to-one correspondence
with a single MCS Domain. The actual creation of an MCS domain is done through local means. Conferences are
created or joined by use of the MCS-Connect-Provider primitives.

For all request primitives which refer to a particular conference (via the Conference ID), the local GCC Provider to
which the primitive is issued shall determine if the specified conference is one to which the node is currently joined. If
so, the GCC Provider proceeds as described below for each primitive. If not, the request is rejected and the
corresponding confirm primitive is issued specifying invalid-conference as the reason for rejection. Any response
primitive issued which refers to an invalid conference is ignored by the GCC Provider (or the error is handled by some
unspecified local means).

GCC Providers communicate with each other via GCC Protocol Data Units (GCCPDUs). The GCCPDUs are transmitted
either via the two MCS data service primitives (MCS-Send-Data or MCS-Uniform-Send-Data; see Table 9-4) or via
MCS-Connect-Provider primitives for GCCPDUs used during connection set-up.

All GCCPDUs are categorized into either request, response, or indication classes. Request PDUs are defined to be those
that require a corresponding response PDU in return. Indication PDUs are those that do not require a response (or in
some cases, where the response is provided indirectly). For request PDUs which do not correspond to mandatory
functionality, a generic response PDU is provided (FunctionNotSupportedResponse), which allows the GCC Provider
receiving a request to respond to the requesting node without needing to have knowledge of the format of the specific
response PDU. To allow the requester to know what this PDU is in response to, the entire request PDU is included
within the FunctionNotSupportedResponse PDU. The FunctionNotSupportedResponse PDU shall be sent at the same
priority level as that of the received request PDU.

NOTE – This terminology (request, response, and indication) does not have a one-to-one correspondence to the definition
of request, indication, response, and confirm used in the definition of the primitives. The terminology has been chosen to relate to the
primary purpose of the PDU types with respect to the functions that they will perform. For this reason, the term confirm was not
needed to describe PDUs — response PDUs are those which are sourced from a response primitive and result in a confirm primitive.

The GCC protocol includes support for non-standard extensions. On receipt of a nonStandardRequest PDU, a GCC
Provider which does not understand the request, shall issue a FunctionNotSupportedResponse PDU in return.
nonStandardResponse and nonStandardIndication PDUs may be ignored by a GCC Provider.

��� #ONFERENCE�ESTABLISHMENT�AND�TERMINATION

����� #ONFERENCE�CREATION

On receipt of the primitive GCC-Conference-Create request, a GCC Provider shall issue an MCS-Connect-Provider
request primitive with the parameters shown in Table 8-1. The local GCC Provider shall allocate the Conference ID,
which shall be used as the local MCS Domain Selector associated with the created conference. The Conference ID is
included as the Calling Domain Selector. It is also maintained by the local GCC Provider as the means identifying this
conference in future primitives.

If the combination of the Conference Name and Conference Name Modifier parameters are identical to those of a
conference to which the local node is already joined (either the numerical or text forms of the name), the request is
instead immediately rejected by issuing a GCC-Conference-Create response with conference-name-already-exists as the
result. Otherwise, the GCC Provider shall retain the Conference Name and Conference Name Modifier (in addition to
including the Conference Name in the ConferenceCreateRequest PDU) to be used in the procedures for responding to a
conference query, conference join, or in initiating a conference invite.

The User Data parameter of the MCS-Connect-Provider request contains a structure which includes an Object Identifier
identifying the contained PDU as adhering to this Recommendation followed by the PDU itself. The details of this
structure are defined in 9.6. The contents of this PDU are shown in Table 8-2.

3UPERSEDED�BY�A�MORE�RECENT�VERSION

2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION 83

TABLE 8-1/T.124

-#3
#ONNECT
0ROVIDER�REQUEST�PARAMETERS�FOR�#ONFERENCE#REATE2EQUEST�0$5

TABLE 8-2/T.124

#ONFERENCE#REATE2EQUEST�'##0$5

On receipt of the MCS-Connect-Provider indication that includes a T.124 Object Identifier and the
ConferenceCreateRequest PDU, a GCC Provider shall generate a GCC-Conference-Create indication primitive with the
parameters as specified in the included ConferenceCreateRequest PDU. It shall issue this primitive to the Control
GCCSAP. The GCC Provider shall also allocate a Conference ID, a locally unique string, which shall also be included in
this primitive. If the conference is successfully created, the GCC Provider shall use this Conference ID as the means of
identifying this conference in future primitives. If GCC does not have the resources necessary to create a new
conference, it may generate the negative response automatically without generating the GCC-Conference-Create

Parameter Contents

Calling Address From request primitive

Calling Domain Selector Conference ID as chosen by the GCC Provider

Called Address From request primitive

Called Domain Selector NULL

Upward/Downward Flag Up

Domain Parameters From request primitive

Quality of Service From request primitive

User Data T.124 Object Identifier

ConferenceCreateRequest PDU
(See Table 8-2)

Content Source Sink

Conference Name Request Indication and Destination GCC Provider

Convener Password (optional) Request Indication

Password (optional) Request Indication

Locked Conference Flag Request Indication and Destination GCC Provider

Listed Conference Flag Request Indication and Destination GCC Provider

Conductible Conference Flag Request Indication and Destination GCC Provider

Termination Method Request Indication and Destination GCC Provider

Conductor Privilege List (optional) Request Indication and Destination GCC Provider

Conducted-Mode Conference Privilege List
(optional)

Request Indication and Destination GCC Provider

Non-Conducted-Mode Conference Privilege
List (optional)

Request Indication and Destination GCC Provider

Conference Description (optional) Request Indication and Destination GCC Provider

Caller Identifier (optional) Request Indication

User Data (optional) Request Indication

3UPERSEDED�BY�A�MORE�RECENT�VERSION

84 2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION

indication. Otherwise, on receipt of a successful GCC-Conference-Create response from the Control GCCSAP, the GCC
Provider (now the Top GCC Provider for this conference) shall issue an MCS-Attach-User request. On receipt of the
MCS-Attach-User confirm which contains the allocated Node ID, the GCC Provider shall then join the corresponding
Node ID Channel by issuing an MCS-Channel-Join request. The GCC Provider shall also join the GCC-Broadcast-
Channel by issuing an MCS-Channel-Join request (successive such requests may be issued prior to receiving the
previous confirm). It may be necessary, prior to attaching, to locally indicate to the MCS Provider that a new domain has
been created. Any exchange necessary to do this is considered a local matter not covered by this Recommendation.

If the GCC-Conference-Create response includes a Conference Name Modifier parameter, the GCC Provider (now the
Top GCC Provider) shall retain this name modifier for later use in handling the conference query, conference join, and
conference invite procedures.

The GCC Provider shall generate an MCS-Connect-Provider response which includes a result which is either success, or
user-rejected depending on whether or not the Result parameter in the GCC-Conference-Create response primitive
indicated success or failure. The User Data parameter includes the T.124 Object Identifier as well as the
ConferenceCreateResponse PDU. The contents of the connect provider primitive are shown in Table 8-3. In the case of
successful conference creation, the GCC Provider at the node receiving the MCS-Connect-Provider indication shall
become the Top GCC Provider for the conference.

TABLE 8-3/T.124

-#3
#ONNECT
0ROVIDER�RESPONSE�PARAMETERS�FOR�#ONFERENCE#REATE2ESPONSE�0$5

The ConferenceCreateResponse PDU is shown in Table 8-4. The Node ID parameter, which is the User ID assigned by
MCS in response to the MCS-Attach-User request issued by the GCC Provider, shall be supplied by the GCC Provider
sourcing this PDU. The Tag parameter is assigned by the source GCC Provider to be locally unique. It is used to identify
the returned UserIDIndication PDU. The Result parameter includes GCC-specific failure information sourced directly
from the Result parameter in the GCC-Conference-Create response primitive. If the Result parameter is anything except
successful, the Result parameter in the MCS-Connect-Provider response is set to user-rejected.

TABLE 8-4/T.124

#ONFERENCE#REATE2ESPONSE�'##0$5

Parameter Contents

Domain Parameters From response primitive

Quality of Service From response primitive

Result As specified in Rec. T.122

User Data T.124 Object Identifier

ConferenceCreateResponse PDU
(See Table 8-4)

Content Source Sink

Node ID Top GCC Provider Destination GCC Provider

Tag Top GCC Provider Destination GCC Provider

Result Response Confirm

User Data (optional) Response Confirm

3UPERSEDED�BY�A�MORE�RECENT�VERSION

2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION 85

On receipt of the ConferenceCreateResponse PDU, if the PDU indicated a successful result, a GCC Provider shall first
issue an MCS-Attach-User request. On receipt of the MCS-Attach-User confirm which contains the allocated Node ID,
the GCC Provider shall then join the Node ID Channel by issuing an MCS-Channel-Join request. The GCC Provider
shall also join the GCC-Broadcast-Channel by issuing an MCS-Channel-Join request. The GCC Provider may also join
the GCC-Convener-Channel (if it supports any of the functions which require use of this channel) by issuing an MCS-
Channel-Join request. Once the GCC Provider has received an MCS-Channel-Join confirm from each of the channel join
requests (successive requests may be issued prior to receiving the previous confirm), it shall send a UserIDIndication
PDU to the Top GCC Provider by issuing an MCS-Send-Data request specifying as the Channel ID the Node ID of the
Top GCC Provider as contained in the received ConferenceCreateResponse PDU, specifying Top data priority, and
including the PDU in the Data field. The content of the UserIDIndication PDU is shown in Table 8-5. The Tag
parameter is filled in with the value of the corresponding parameter received in the ConferenceCreateResponse PDU.

TABLE 8-5/T.124

5SER)$)NDICATION�'##0$5

The GCC Provider shall then generate a GCC-Conference-Create confirm primitive and issue it to the Control GCCSAP.
This primitive shall include the Conference Name from the original request primitive, the Modified Conference Name (if
any) and Result parameters from the received PDU, as well as the locally allocated Conference ID. If the received PDU
had indicated an unsuccessful result, or if the GCC Provider receives an MCS-Disconnect-Provider indication for this
connection prior to having issued a successful GCC-Conference-Create confirm, the GCC-Conference-Create confirm
primitive is issued immediately, indicating an unsuccessful result, without issuing the attach-user or channel-join
requests, and without sending the UserIDIndication PDU. The Result parameter in the PDU as well as the Result
parameter reported in the MCS-Connect-Provider confirm (or the Reason parameter of the MCS-Disconnect-Provider) is
used to generate the result reported in the GCC-Conference-Create confirm primitive. If the Result parameter of the
MCS-Connect-Provider confirm is user-rejected, the Result parameter in the PDU is used to determine the reported
result. Otherwise, the Result parameter in the MCS-Connect-Provider is used directly.

On receipt of a UserIDIndication, the node at which the conference was created shall compare the Tag parameter to its
list of outstanding Tags. If the Tag matches one of these, it shall save the User ID of the source node (extracted from the
MCS-Send-Data indication) in its data-base of Node IDs of nodes which are directly below it in the connection
hierarchy. If the Tag does not match any outstanding Tags, the PDU shall be ignored.

If the newly created Top GCC Provider for this conference receives an MCS-Disconnect-Provider indication for the
connection being established at any time during the process of creating the conference (this includes the time that the
GCC-Conference-Create indication has been issued to the Control GCCSAP until the time that the UserIDIndication has
been received), it shall issue a GCC-Conference-Terminate indication to the Control GCCSAP indicating the requested
normal termination as the reason if user-initiated was the reason provided in the MCS-Disconnect-Provider indication,
and error termination otherwise. It shall then stop further processing for this connection establishment procedure. If the
MCS-Disconnect-Provider indication was received prior to issuing the GCC-Conference-Create indication to the Control
GCCSAP, the GCC Provider shall stop further processing for this connection establishment procedure and take no
further action.

The sequence of events for successful conference creation is shown in Figure 8-1.

NOTE – If a conference is created by local initiation rather than through a request from another node, the GCC Provider at
that node shall perform the sequence of events performed by the Top GCC Provider shown in Figure 8-1 beginning from the MCS-
Attach-User request. That is, it shall attach to MCS by issuing an MCS-Attach-User request and wait for the confirm, then it shall join
its Node ID channel, and the GCC-Broadcast-Channel. It may optionally join the GCC-Convener-Channel since this node is also the
Convener in this case. In this case, if another node joins the conference at a later time indicating itself to be the convener (having
issued the correct Convener Password), the Top GCC Provider may choose to accept the connection, relinquishing convener
privileges to the new node. Note also that it is assumed that in this case, MCS Domain Parameters are set at the time of creation rather
than at the time the first connection is established.

Content Source Sink

Tag Source GCC Provider Destination GCC Provider

3UPERSEDED�BY�A�MORE�RECENT�VERSION

86 2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION

T0819850-94/d46

ConferenceCreateRequest

ConferenceCreateResponse

GCC-Conference-Create request

MCS-Connect-Provider request

MCS-Connect-Provider indication

GCC-Conference-Create indication

GCC-Conference-Create response

MCS-Connect-Provider response

MCS-Connect-Provider confirm

GCC-Conference-Create confirm

MCS-Attach-User request

MCS-Attach-User confirm

MCS-Channel-Join confirm

MCS-Attach-User request

MCS-Attach-User confirm

MCS-Channel-Join confirm

MCS-Channel-Join confirm

MCS-Channel-Join confirm

MCS-Send-Data request

UserIDIndication

MCS-Send-Data indication

MCS-Channel-Join request
(GCC-Broadcast-Channel)

MCS-Channel-Join request (Node ID Channel)

MCS-Channel-Join request (GCC-Broadcast-Channel)

MCS-Channel-Join request (GCC-Convener-Channel)

(Optional) MCS-Channel-Join confirm

Node
Controller

GCC
Provider

MCS
Provider

MCS
Provider

Top GCC
Provider

Node
Controller

MCS-Channel-Join request (Node ID Channel)

FIGURE 8-1/T.124

#REATING�A�CONFERENCE

FIGURE 8-1/T.124...[D46] = PAGE PLEINE

3UPERSEDED�BY�A�MORE�RECENT�VERSION

2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION 87

����� 1UERYING�CONFERENCES

On receipt of a GCC-Conference-Query request primitive, a GCC Provider shall issue an MCS-Connect-Provider
request primitive with the parameters shown in Table 8-6.

TABLE 8-6/T.124

-#3
#ONNECT
0ROVIDER�REQUEST�PARAMETERS�FOR�#ONFERENCE1UERY2EQUEST�0$5

The User Data parameter of the MCS-Connect-Provider request contains a structure which includes an Object Identifier
identifying the contained PDU as adhering to this Recommendation followed by the PDU itself. The details of this
structure are defined in 9.6. The contents of this PDU are shown in Table 8-7.

TABLE 8-7/T.124

#ONFERENCE1UERY2EQUEST�'##0$5

On receipt of the MCS-Connect-Provider indication that includes a T.124 Object Identifier and the
ConferenceQueryRequest PDU, a GCC Provider shall generate a GCC-Conference-Query indication primitive with the
parameters as specified in the ConferenceQueryRequest PDU. It shall issue this primitive to the Control GCCSAP. On
receipt of a GCC-Conference-Query response from the Control GCCSAP, the GCC Provider shall send an MCS-
Connect-Provider response which is rejected (i.e. no conference is set up), but includes the ConferenceQueryResponse
PDU in the User Data field. The parameters of the MCS-Connect-Provider response are shown in Table 8-8.

Parameter Contents

Calling Address From request primitive

Calling Domain Selector NULL

Called Address From request primitive

Called Domain Selector NULL

Upward/Downward Flag Up

Domain Parameters Default Domain Parameters

Quality of Service Default Quality of Service Parameters

User Data T.124 Object Identifier

ConferenceQueryRequest PDU
(See Table 8-7)

Content Source Sink

Node Type Request Indication

Asymmetry Indicator (conditional) Request Indication

User Data (optional) Request Indication

3UPERSEDED�BY�A�MORE�RECENT�VERSION

88 2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION

TABLE 8-8/T.124

-#3
#ONNECT
0ROVIDER�RESPONSE�PARAMETERS�FOR�#ONFERENCE1UERY2ESPONSE�0$5

The ConferenceQueryResponse PDU is shown in Table 8-9. The Conference Descriptor List contains an entry for each
listed conference to which the queried node is currently joined. The Conference Descriptor List is generated by the GCC
Provider sourcing the ConferenceQueryResponse PDU. The descriptor is filled in with the Conference Name of each
conference to which the GCC Provider is joined, the locally maintained Conference Name Modifier for each conference,
if any, the Conference Description, if any, the Locked/Unlocked flag, the Password In The Clear Required indicator, and
the Network Address field, if one is available. The Network Address field, if one exists, is sourced from the Local
Network Address parameter of the GCC-Conference-Create request, the GCC-Conference-Create response, the
GCC-Conference-Join request, or the GCC-Conference-Invite response, depending on how the conference was joined at
this node. The Result parameter shall indicate success if the query request is able to be fulfilled (even if the Conference
List is empty), or user-rejected if so indicated in the response primitive.

If the GCC Provider processing the MCS-Connect-Provider indication receives an MCS-Disconnect-Provider indication
for the same connection at any time during the process, the GCC Provider shall stop further processing for this procedure
and take no further action.

TABLE 8-9/T.124

#ONFERENCE1UERY2ESPONSE�'##0$5

On receipt of an MCS-Connect-Provider response which includes the T.124 Object Identifier and a
ConferenceQueryResponse PDU, a GCC Provider shall generate a GCC-Conference-Query confirm primitive and issue
it to the Control GCCSAP. The content of the confirm primitive shall be obtained from the parameters of the
ConferenceQueryResponse PDU. The Result parameter in the primitive, in particular, is obtained strictly from the Result
parameter in the received PDU. The Result parameter of the MCS-Connect-Provider confirm is ignored since it would be
set to user-rejected even in the case of a successful operation.

Parameter Contents

Domain Parameters Default Domain Parameters

Quality of Service Default Quality of Service Parameters

Result User-rejected

User Data T.124 Object Identifier

ConferenceQueryResponse PDU
(See Table 8-9)

Content Source Sink

Node Type Response Confirm

Asymmetry Indicator (conditional) Response Confirm

Conference Descriptor List Source GCC Provider Confirm

Result Response Confirm

User Data (optional) Response Confirm

3UPERSEDED�BY�A�MORE�RECENT�VERSION

2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION 89

If the received PDU had indicated an unsuccessful result, or if the GCC Provider receives an MCS-Disconnect-Provider
indication for this connection prior to having issued a successful GCC-Conference-Query confirm, the GCC-
Conference-Query confirm primitive is issued immediately, indicating an unsuccessful result. The Result parameter in
the PDU as well as the Result parameter reported in the MCS-Connect-Provider confirm (or the Reason parameter of the
MCS-Disconnect-Provider) is used to generate the result reported in the GCC-Conference-Query confirm primitive. If
the Result parameter of the MCS-Connect-Provider confirm is user-rejected, the Result parameter in the PDU is used to
determine the reported result. Otherwise, the Result parameter in the MCS-Connect-Provider is used directly.

����� *OINING�A�CONFERENCE

On receipt of the primitive GCC-Conference-Join request, a GCC Provider shall issue an MCS-Connect-Provider request
primitive with the parameters shown in Table 8-10. The local GCC Provider allocates the Conference ID, which shall be
used as the local MCS Domain Selector associated with the created conference. The Conference ID is sent as part of the
MCS-Connect-Provider request as the Calling Domain Selector.

TABLE 8-10/T.124

-#3
#ONNECT
0ROVIDER�REQUEST�PARAMETERS�FOR�#ONFERENCE*OIN2EQUEST�0$5

The User Data parameter of the MCS-Connect-Provider request contains a structure which includes an Object Identifier
identifying the contained PDU as adhering to this Recommendation followed by the PDU itself. The details of this
structure are defined in 9.6. The contents of this PDU are shown in Table 8-11. From the joining node, the Tag
parameter shall not be included. The Conference Name and Conference Name Modifier are sourced from the request
primitive — the Conference Name Modifier parameter in the PDU is sourced from the Called Node Conference Name
Modifier parameter of the primitive. The Calling Node Conference Name Modifier (also from the request primitive) is
maintained at the local GCC Provider as the identifiers of the conference to be used in the procedures for response to a
conference join request and conference query request.

On receipt of the MCS-Connect-Provider indication that includes a T.124 Object Identifier and the
ConferenceJoinRequest PDU, the action of the GCC Provider depends on whether or not it is the Top GCC Provider of
the conference specified by the Conference Name and Conference Name Modifier (if any). The GCC Provider
determines which conference is to be joined by comparing the Conference Name and Conference Name Modifier to the
list of conferences to which this node is joined. The Conference Name received in the ConferenceJoinRequest PDU may
contain either the numerical or text forms of the Conference Name. The GCC Provider shall attempt to match the
indicated name with the corresponding portion of the names of existing conferences. For a conference to be considered
matched, both the Conference Name and Conference Name Modifier must match those of a current conference. If no
Conference Name Modifier is given in the request, the GCC Provider shall match it only with an existing conference
which also has no Conference Name Modifier.

Parameter Contents

Calling Address From request primitive

Calling Domain Selector Conference ID as chosen by the GCC Provider

Called Address From request primitive

Called Domain Selector NULL

Upward/Downward Flag Up

Domain Parameters From request primitive

Quality of Service From request primitive

User Data T.124 Object Identifier

ConferenceJoinRequest PDU
(See Table 8-11)

3UPERSEDED�BY�A�MORE�RECENT�VERSION

90 2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION

TABLE 8-11/T.124

#ONFERENCE*OIN2EQUEST�'##0$5

If the GCC Provider which received the MCS-Connect-Provider indication is not the Top GCC Provider for the
conference to which the requesting node wishes to join, and if the node is joined to the specified conference, the GCC
Provider shall forward the ConferenceJoinRequest PDU to the Top-GCC-Provider of the specified conference by issuing
an MCS-Send-Data request specifying the Node ID Channel of the Top GCC Provider as the Channel ID, specifying
Top data priority, and including the PDU in the Data field. In this case, it shall assign a locally unique identifier and
include it in the Tag parameter of the PDU. This number is used to identify the corresponding response PDU when it is
returned from the Top GCC Provider. It may also leave out the Conference Name and Conference Name Modifier
parameters from the received PDU as they are not needed by the Top GCC Provider.

When the Top-GCC-Provider receives this PDU, if the conference is not locked, it shall generate a GCC-Conference-
Join indication primitive with the parameters as specified in the ConferenceJoinRequest PDU, as well as the Conference
ID for the corresponding conference. It shall issue this primitive to the Control GCCSAP. Note that the Conference
Name and Conference Name Modifier parameters are used only by the node receiving the MCS-Connect-Provider
indication, and not by the Top GCC Provider. If the conference had been locked, the Top GCC Provider shall instead
send a ConferenceJoinResponse PDU to the originator of the MCS-Send-Data containing the ConferenceJoinRequest
PDU (not the original requester) by issuing an MCS-Send-Data request specifying the User ID of that node as the
Channel ID, specifying Top data priority, and including the PDU in the Data field. The PDU shall indicate locked-
conference as the result code. Otherwise, on receipt of the GCC-Conference-Join response, the GCC Provider shall send
a ConferenceJoinResponse PDU to the originator of the MCS-Send-Data containing the ConferenceJoinRequest PDU
(not the original requester) by issuing an MCS-Send-Data request specifying the User ID of that node as the Channel ID,
specifying Top data priority, and including the PDU in the Data field. The contents of the ConferenceJoinResponse PDU
are shown in Table 8-13. The Node ID is not included in this portion of the response, but the Top Node ID parameter,
the Tag, and the parameters associated with the Conference Profile are included, as well as the Result parameter. The
Tag shall have the same value as the corresponding parameter in the received ConferenceJoinRequest PDU.

On receipt of the MCS-Send-Data indication containing this PDU, if the Tag parameter matches that of its locally stored
list of outstanding join requests (which allows it to identify the connection over which to send the MCS-Connect-
Provider response), the GCC Provider shall generate an MCS-Connect-Provider response which includes a result which
is either success, or user-rejected depending on whether or not the Result parameter in the received PDU indicated
success or failure. The User Data parameter includes the T.124 Object Identifier as well as the ConferenceJoinResponse
PDU. The Node ID parameter of the ConferenceJoinResponse PDU is filled in at this time indicating the Node ID of the
node directly connected to the joining node. The contents of the connect provider primitive are shown in Table 8-12.

Content Source Sink

Conference Name (conditional) Request GCC Provider receiving MCS-Connect-
Provider indication

Conference Name Modifier
(optional)

Request GCC Provider receiving MCS-Connect-
Provider indication

Tag (conditional) GCC Provider receiving MCS-Connect-
Provider indication

Top GCC Provider

Password (optional) Request Indication

Convener Password (optional) Request Indication

Caller Identifier (optional) Request Indication

User Data (optional) Request Indication

3UPERSEDED�BY�A�MORE�RECENT�VERSION

2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION 91

If the receiver of the original MCS-Connect-Provider indication is the Top-GCC-Provider, if the conference is not
locked, it shall instead generate a GCC-Conference-Join indication primitive with the parameters as specified in the
ConferenceJoinRequest PDU, as well as the Conference ID for the designated conference. It shall issue this primitive to
the Control GCCSAP. If the conference had been locked, the Top GCC Provider shall instead generate an MCS-
Connect-Provider response which indicates in the included ConferenceJoinResponse PDU locked-conference as the
result code. The PDU shall indicate locked-conference as the result code. Otherwise, on receipt of the GCC-Conference-
Join response, the GCC Provider generates an MCS-Connect-Provider response which includes the
ConferenceJoinResponse PDU with a result which is either success, or user-rejected depending on whether or not the
Result parameter in the GCC-Conference-Join response primitive indicated success or failure.

If the receiver of the original MCS-Connect-Provider indication is not currently joined to any conference (or if it does
not support the GCC-Conference-Join indication primitive at all) it may reject the join request by immediately issuing an
MCS-Connect-Provider response containing user-rejected as the result code, and including a ConferenceJoinResponse
with invalid-conference respectively as the reason code in the PDU.

If the receiver of the original MCS-Connect-Provider indication is not joined to the conference specified in the
Conference Name and Conference Name Modifier parameter of the ConferenceJoinRequest PDU, it shall reject the
request by issuing an MCS-Connect-Provider response with the reason of no-such-domain.

TABLE 8-12/T.124

-#3
#ONNECT
0ROVIDER�RESPONSE�PARAMETERS�FOR�#ONFERENCE*OIN2ESPONSE�0$5

The ConferenceJoinResponse PDU is shown in Table 8-13. The Node ID parameter, which is the User ID assigned by
MCS in response to the MCS-Attach-User request issued by the GCC Provider, shall be supplied by the GCC Provider at
the node directly connected to the joining node. The Tag parameter is filled in by the GCC Provider at the node directly
connected to the joining node with a locally unique value. It is used to identify the returned UserIDIndication PDU. The
value of this parameter may be set to the value of the same parameter received from the Top GCC Provider since this
parameter was allocated by this node originally as sent in the ConferenceJoinRequest PDU. If this is done, it requires
that Tags used for either purpose are locally unique. The other parameters in this PDU are filled out by the Top GCC
Provider. This includes the Top Node ID, which is the Node ID of the Top GCC Provider, as well as the parameters
associated with the Conference Profile. Also filled in by the Top GCC Provider is the Conference Name Alias. This is
conditionally included depending on whether the Conference Name included both numeric and text forms. If so, the
Conference Name Alias is whichever form of the Conference Name was not included in the ConferenceJoinRequest
PDU. The Result parameter includes GCC-specific failure information if the Result parameter in the MCS-Connect-
Provider message is set to user-rejected. This information is from the Result parameter in the GCC-Conference-Create
response PDU.

Parameter Contents

Domain Parameters From GCC Provider as previously saved

Quality of Service From GCC Provider as previously saved

Result As specified in Rec. T.122

User Data T.124 Object Identifier

ConferenceJoinResponse PDU
(See Table 8-13)

3UPERSEDED�BY�A�MORE�RECENT�VERSION

92 2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION

TABLE 8-13/T.124

#ONFERENCE*OIN2ESPONSE�'##0$5

On receipt of the ConferenceJoinResponse PDU, if the PDU indicated a successful result, a GCC Provider shall first
issue an MCS-Attach-User request. On receipt of the MCS-Attach-User confirm which contains the allocated Node ID,
the GCC Provider shall then join the corresponding Node ID Channel by issuing an MCS-Channel-Join request. The
GCC Provider shall also join the GCC-Broadcast-Channel by issuing an MCS-Channel-Join request. If the original
GCC-Conference-Join request had specified the Convener Password, indicating that the node was to regain its role as the
Conference Convener, the GCC Provider may also join the GCC-Convener-Channel (if it supports any of the functions
which require use of this channel) by issuing an MCS-Channel-Join request. Once the GCC Provider has received an
MCS-Channel-Join confirm from each of the channel join requests (successive requests may be issued prior to receiving
the previous confirm), it shall send a UserIDIndication PDU to the GCC Provider of the directly connected node by
issuing an MCS-Send-Data request specifying the Node ID of the directly connected node as contained in the received
ConferenceJoinResponse PDU, specifying Top data priority, and including the PDU in the Data field. The content of the
UserIDIndication PDU is shown in Table 8-5. The Tag parameter is filled in with the value of the corresponding
parameter received in the ConferenceJoinResponse PDU.

The GCC Provider shall then generate a GCC-Conference-Join confirm primitive and issue it to the Control GCCSAP.
This primitive shall include the Result parameters from the received PDU as well as the locally allocated Conference ID.
If the received PDU had indicated an unsuccessful result, or if the GCC Provider receives an MCS-Disconnect-Provider
indication for this connection prior to having issued a successful GCC-Conference-Join confirm, the GCC-Conference-
Join confirm primitive is issued immediately, indicating an unsuccessful result, without issuing the attach-user or

Content Source Sink

Node ID (conditional) GCC Provider of node directly
connected to joining node

Destination GCC Provider

Top Node ID Top GCC Provider Destination GCC Provider

Tag Top GCC Provider Destination GCC Provider

Conference Name Alias (conditional) Top GCC Provider Confirm and Destination GCC Provider

Password In The Clear Required Flag Top GCC Provider Confirm and Destination GCC Provider

Locked Conference Flag Top GCC Provider Confirm and Destination GCC Provider

Listed Conference Flag Top GCC Provider Confirm and Destination GCC Provider

Conductible Conference Flag Top GCC Provider Confirm and Destination GCC Provider

Termination Method Top GCC Provider Confirm and Destination GCC Provider

Conductor Privilege List (optional) Top GCC Provider Confirm and Destination GCC Provider

Conducted-Mode Conference Privilege
List (optional)

Top GCC Provider Confirm and Destination GCC Provider

Non-Conducted-Mode Conference
Privilege List (optional)

Top GCC Provider Confirm and Destination GCC Provider

Conference Description (optional) Top GCC Provider Confirm and Destination GCC Provider

Password (optional) Request Indication

Result Response Confirm

User Data (optional) Response Confirm

3UPERSEDED�BY�A�MORE�RECENT�VERSION

2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION 93

channel-join requests, or sending the UserIDIndication PDU. The Result parameter in the PDU as well as the Result
parameter reported in the MCS-Connect-Provider confirm (or the Reason parameter of the MCS-Disconnect-Provider) is
used to generate the result reported in the GCC-Conference-Join confirm primitive. If the Result parameter of the MCS-
Connect-Provider confirm is user-rejected, the Result parameter in the PDU is used to determine the reported result.
Otherwise, the Result parameter in the MCS-Connect-Provider is used directly.

The Conference Name Alias received in the ConferenceJoinResponse PDU, if any, is appended with the Conference
Name included in the ConferenceJoinRequest PDU to form the full Conference Name returned in the GCC-Conference-
Join confirm. This full conference name (which includes the numerical form as well as text form of the Conference
Name, if any) shall be maintained at the local GCC Provider as the identifiers of this conference to be used in the
procedures for response to a conference join request, conference query request, and in initiation of a conference invite.

On receipt of a UserIDIndication, the node directly connected to the joining node shall compare the Tag parameter to its
list of nodes in the conference from which it is expecting this PDU. If the Tag matches one of these, it shall save the
User ID of the source node (extracted from the MCS-Send-Data indication) in its data-base of Node IDs of nodes which
are directly below it in the connection hierarchy. If the Tag does not match any outstanding Tags, the PDU shall be
ignored.

If the Top GCC Provider receives a UserIDIndication as a result of a successful join operation in which the Convener
Password parameter had been included in the ConferenceJoinRequest PDU, the Top GCC Provider shall retain the Node
ID of the joining node as indicated in the UserIDIndication as the valid conference convener. It shall use this to verify
later requests which only the convener may perform.

If the GCC Provider at the node directly connected to the joining node receives an MCS-Disconnect-Provider indication
for the connection being established at any time during the joining process, the GCC Provider shall stop further
processing for this procedure and take no further action.

The sequence of events for successfully joining a conference from a node directly connected to the Top GCC Provider is
shown in Figure 8-2. The case that the joining node is not directly connected to the Top GCC Provider is shown in
Figure 8-3.

�����)NVITING�A�NODE�TO�A�CONFERENCE

On receipt of a GCC-Conference-Invite request primitive, a GCC Provider shall issue an MCS-Connect-Provider request
primitive with the parameters shown in Table 8-14.

The User Data parameter of the MCS-Connect-Provider request contains a structure which includes an Object Identifier
identifying the contained PDU as adhering to this Recommendation followed by the PDU itself. The details of this
structure are defined in 9.6. The contents of this PDU are shown in Table 8-15. The Conference Name is the name of the
conference specified by the Conference ID in the request primitive as stored in the local Conference Profile. The Node
ID parameter, which is the User ID assigned by MCS in response to the MCS-Attach-User request issued by the GCC
Provider, shall be supplied by the source GCC Provider. The Top Node ID is the Node ID of the Top GCC Provider,
previously saved by the inviting GCC Provider at the inviting node. The Tag parameter is assigned by the source GCC
Provider to be locally unique. It is used to identify the returned UserIDIndication PDU.

On receipt of the MCS-Connect-Provider indication that includes a T.124 Object Identifier and the
ConferenceInviteRequest PDU, a GCC Provider shall generate a GCC-Conference-Invite indication primitive and issue
it to the Control GCCSAP. The Conference ID in this primitive shall be assigned locally by the GCC Provider and shall
be used as the local MCS Domain Selector. If GCC does not have the resources necessary to join a conference, it may
generate the negative response automatically without generating the GCC-Conference-Invite indication. Otherwise, on
receipt of the GCC-Conference-Invite response, the GCC Provider shall generate an MCS-Connect-Provider response
which includes a result which is either success, or user-rejected depending on whether or not the Result parameter in the
GCC-Conference-Invite response primitive indicated success or failure (and shall include the result in the
ConferenceInviteResponse PDU). The User Data parameter includes the T.124 Object Identifier as well as the
ConferenceInviteResponse PDU. The contents of the connect provider primitive are shown in Table 8-16.

3UPERSEDED�BY�A�MORE�RECENT�VERSION

94 2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION

T0819860-94/d47

FIGURE 8-2/T.124

*OINING�A�CONFERENCE�WHEN�DIRECTLY�CONNECTED�TO�4OP�'##�0ROVIDER

ConferenceJoinRequest

ConferenceJoinResponse

GCC-Conference-Join request

MCS-Connect-Provider request

MCS-Connect-Provider indication

GCC-Conference-Join indication

GCC-Conference-Join response

MCS-Connect-Provider response

MCS-Connect-Provider confirm

GCC-Conference-Join confirm

MCS-Attach-User request

MCS-Attach-User confirm

MCS-Channel-Join confirm

MCS-Channel-Join confirm

MCS-Send-Data request

UserIDIndication

MCS-Send-Data indication

Node
Controller

GCC
Provider

MCS
Provider

MCS
Provider

Top GCC
Provider

Node
Controller

MCS-Channel-Join request (Node ID Channel)

MCS-Channel-Join request (GCC-Broadcast-Channel)

FIGURE 8-2/T.124...[D47] = 20 CM

3UPERSEDED�BY�A�MORE�RECENT�VERSION

2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION 95

T0819870-94/d48

FIGURE 8-3/T.124

*OINING�A�CONFERENCE�WHEN�NOT�DIRECTLY�CONNECTED�TO�4OP�'##�0ROVIDER

ConferenceJoinRequest

ConferenceJoinResponse

GCC-Conference-Join request

MCS-Connect-Provider request

MCS-Connect-Provider indication

MCS-Send-Data request

MCS-Send-Data indication

MCS-Connect-Provider response

MCS-Connect-Provider confirm

ConferenceJoinRequest

MCS-Send-Data indication

GCC-Conference-Join indication

GCC-Conference-Join response

MCS-Send-Data request

ConferenceJoinResponse

GCC-Conference-Join confirm

MCS-Attach-User request

MCS-Attach-User confirm

MCS-Channel-Join confirm

MCS-Channel-Join confirm

MCS-Send-Data request

UserIDIndication

MCS-Send-Data indication

MCS-Channel-Join request (Node ID Channel)

MCS-Channel-Join request (GCC-Broadcast-Channel)

Node
Controller

GCC
Provider

MCS
Provider

MCS
Provider

GCC
Provider

MCS
Provider

MCS
Provider

Top GCC
Provider

Node
Controller

FIGURE 8-3/T.124...[D48] = 20 CM

3UPERSEDED�BY�A�MORE�RECENT�VERSION

96 2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION

TABLE 8-14/T.124

-#3
#ONNECT
0ROVIDER�REQUEST�PARAMETERS�FOR�#ONFERENCE)NVITE2EQUEST�0$5

TABLE 8-15/T.124

#ONFERENCE)NVITE2EQUEST�'##0$5

Parameter Contents

Calling Address From request primitive

Calling Domain Selector Conference ID from request primitive

Called Address From request primitive

Called Domain Selector NULL

Upward/Downward Flag Down

Domain Parameters From GCC Provider as previously saved

Quality of Service From GCC Provider as previously saved

User Data T.124 Object Identifier

ConferenceInviteRequest PDU
(See Table 8-15)

Content Source Sink

Conference Name Source GCC Provider Destination GCC Provider and Indication

Node ID Source GCC Provider Destination GCC Provider

Top Node ID Source GCC Provider Destination GCC Provider

Tag Source GCC Provider Destination GCC Provider

Password In The Clear Required Flag Source GCC Provider Indication and Destination GCC Provider

Locked Conference Flag Source GCC Provider Indication and Destination GCC Provider

Listed Conference Flag Source GCC Provider Indication and Destination GCC Provider

Conductible Conference Flag Source GCC Provider Indication and Destination GCC Provider

Termination Method Source GCC Provider Indication and Destination GCC Provider

Conductor Privilege List (optional) Source GCC Provider Indication and Destination GCC Provider

Conducted-Mode Conference Privilege List
(optional)

Source GCC Provider Indication and Destination GCC Provider

Non-Conducted-Mode Conference Privilege
List (optional)

Source GCC Provider Indication and Destination GCC Provider

Conference Description (optional) Source GCC Provider Indication and Destination GCC Provider

Caller Identifier (optional) Request Indication

User Data (optional) Request Indication

3UPERSEDED�BY�A�MORE�RECENT�VERSION

2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION 97

If the successful response includes the Conference Name Modifier parameter, the GCC Provider shall maintain this as
well as the Conference Name parameter from the received ConferenceInviteRequest PDU (which includes both the
numerical form as well as the text form of the Conference Name, if any) together as the local identifier of the conference
to be used in the procedure for responding to a conference join request, a conference query request, or in initiating a
conference invite request. If no Conference Name Modifier is present, only the Conference Name is maintained for this
purpose.

After sending the MCS-Connect-Provider response, if the invitation was acknowledged as successful, the GCC Provider
shall issue an MCS-Attach-User request. On receipt of the MCS-Attach-User confirm which contains the allocated Node
ID, the GCC Provider shall then join the corresponding Node ID Channel by issuing an MCS-Channel-Join request. The
GCC Provider shall also join the GCC-Broadcast-Channel by issuing MCS-Channel-Join requests. Once the GCC
Provider has received an MCS-Channel-Join confirm from each of the channel join requests (successive requests may be
issued prior to receiving the previous confirm), it shall send a UserIDIndication PDU to the GCC Provider of the directly
connected node by issuing an MCS-Send-Data request specifying the Node ID of the directly connected node as
contained in the received ConferenceInviteRequest PDU, specifying Top data priority, and including the PDU in the
Data field. The content of the UserIDIndication PDU is shown in Table 8-5. The Tag parameter is filled in with the value
of the corresponding parameter received in the ConferenceInviteRequest PDU.

If the GCC Provider at the invited node receives an MCS-Disconnect-Provider indication for the connection being
established at any time during the process of being joined to the conference (this includes the time that the GCC-
Conference-Invite indication has been issued to the Control GCCSAP until the time that the UserIDIndication has been
transmitted), it shall issue a GCC-Conference-Terminate indication to the Control GCCSAP indicating the requested
normal termination as the reason if user-initiated was the reason provided in the MCS-Disconnect-Provider indication,
and error termination otherwise. It shall then stop further processing for this connection establishment procedure. If the
MCS-Disconnect-Provider indication was received prior to issuing the GCC-Conference-Invite indication to the Control
GCCSAP, the GCC Provider shall stop further processing for this connection establishment procedure and take no
further action.

TABLE 8-16/T.124

-#3
#ONNECT
0ROVIDER�RESPONSE�PARAMETERS�FOR�#ONFERENCE)NVITE2ESPONSE�0$5

The ConferenceInviteResponse PDU is shown in Table 8-17.

TABLE 8-17/T.124

#ONFERENCE)NVITE2ESPONSE�'##0$5

Parameter Contents

Domain Parameters From response primitive

Quality of Service From response primitive

Result As specified in Rec. T.122

User Data T.124 Object Identifier

ConferenceInviteResponse PDU
(See Table 8-17)

Content Source Sink

Result Response Confirm

User Data (optional) Response Confirm

3UPERSEDED�BY�A�MORE�RECENT�VERSION

98 2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION

On receipt of the ConferenceInviteResponse PDU, if the result parameter of the MCS-Connect-Provider was successful
a GCC Provider shall record the User Data parameter to fill in to the GCC-Conference-Invite confirm primitive once it is
generated on receipt of the pending UserIDIndication. If the result parameter was unsuccessful, or if the GCC Provider
receives an MCS-Disconnect-Provider indication for this connection prior to having issued a successful
GCC-Conference-Invite confirm, the GCC Provider shall immediately generate a GCC-Conference-Invite confirm
primitive and issue it to the Control GCCSAP. The Result parameter in the PDU as well as the Result parameter reported
in the MCS-Connect-Provider confirm (or the Reason parameter of the MCS-Disconnect-Provider) is used to generate
the result reported in the GCC-Conference-Invite confirm primitive. If the Result parameter of the MCS-Connect-
Provider confirm is user-rejected, the Result parameter in the PDU is used to determine the reported result. Otherwise,
the Result parameter in the MCS-Connect-Provider is used directly.

On receipt of a UserIDIndication, the node directly connected to the invited node shall compare the Tag parameter to its
list of nodes in the conference from which it is expecting this PDU. If the Tag matches one of these, it shall save the
User ID of the source node (extracted from the MCS-Send-Data indication) in its data-base of Node IDs of nodes which
are directly below it in the connection hierarchy. If the Tag does not match any outstanding Tags, the PDU shall be
ignored.

If the Tag was from an outstanding conference invite, on receipt of the UserIDIndication, the GCC Provider shall
generate a GCC-Conference-Invite confirm primitive and issue it to the Control GCCSAP with a successful result
parameter.

The sequence of events for successfully inviting a node to a conference is shown in Figure 8-4.

����� 2EQUESTING�TO�ADD�A�NODE�TO�A�CONFERENCE

On receipt of a GCC-Conference-Add request primitive, a GCC Provider shall send a ConferenceAddRequest PDU to
the Top GCC Provider by issuing an MCS-Send-Data request specifying the Node ID Channel of the Top GCC Provider
as the Channel ID, specifying High data priority, and including the PDU in the Data field. The contents of the
ConferenceAddRequest PDU are shown in Table 8-18. The contents are filled in from the parameters passed in the
GCC-Conference-Add request primitive. The Tag parameter is assigned by the requesting GCC Provider to be locally
unique. This number is used to identify the corresponding response PDU when it is returned.

On receipt of a ConferenceAddRequest PDU, the Top GCC Provider shall first check whether the requesting node had
the necessary privilege to add a node to the conference as indicated in the Conference Profile. If not, it shall reject the
request by sending a ConferenceAddResponse PDU to the requesting node indicating invalid-requester as the result. The
content of the ConferenceAddResponse PDU is shown in Table 8-19. If the requesting node had sufficient privilege, the
Top GCC Provider shall then examine whether the Adding MCU parameter is present. If not present, or if the Adding
MCU identifier is equal to the Node ID of the Top GCC Provider, the Top GCC Provider, if it supports the
GCC-Conference-Add function, shall generate a GCC-Conference-Add indication primitive and issue it to the Control
GCCSAP. The contents of the primitive are filled in from the contents of the received PDU. If the node does not support
this function, it may reject the request by issuing a FunctionNotSupportedResponse PDU including the received
ConferenceAddRequest in the response.

If the optional Adding MCU parameter is present and set to a value other than that of the Node ID of the Top GCC
Provider, the Top GCC Provider shall send a ConferenceAddRequest PDU to the Adding MCU by issuing an MCS-
Send-Data request specifying the Node ID of the Adding MCU as the Channel ID, specifying High data priority, and
including the PDU in the Data field. The content of the PDU is the same as that of the received request PDU. On receipt
of a ConferenceAddRequest PDU, a node which is not the Top GCC Provider, if it supports the GCC-Conference-Add
function, shall first check that it has been received from the Top GCC Provider by examining the User ID from the
received MCS-Send-Data indication. If it has been received from the Top GCC Provider, it shall generate a GCC-
Conference-Add indication primitive and issue it to the Control GCCSAP. The contents of the primitive are filled in
from the contents of the received PDU. If the User ID of the received PDU does not match the Node ID of the Top GCC
Provider, the received PDU is ignored and no further action is taken. If the node does not support this function, it may
reject the request by sending to the Top GCC Provider a FunctionNotSupportedResponse PDU including the received
ConferenceAddRequest in the response.

3UPERSEDED�BY�A�MORE�RECENT�VERSION

2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION 99

T0819880-94/d49

FIGURE 8-4/T.124

)NVITING�A�NODE�TO�A�CONFERENCE

ConferenceInviteRequest

ConferenceInviteResponse

GCC-Conference-Invite request

MCS-Connect-Provider request

MCS-Connect-Provider indication

GCC-Conference-Invite indication

GCC-Conference-Invite response

MCS-Connect-Provider response

MCS-Connect-Provider confirm

GCC-Conference-Invite confirm

MCS-Attach-User request

MCS-Attach-User confirm

MCS-Channel-Join confirm

MCS-Channel-Join confirm

MCS-Send-Data request

UserIDIndication

MCS-Send-Data indication

Node
Controller

Inviting GCC
Provider

MCS
Provider

MCS
Provider

Invited GCC
Provider

Node
Controller

MCS-Channel-Join request (Node ID Channel)

MCS-Channel-Join request (GCC-Broadcast-Channel)

FIGURE 8-4/T.124...[D49] = 19 CM

On receipt of a GCC-Conference-Add response primitive, a GCC Provider shall send a ConferenceAddResponse PDU to
the requesting node by issuing an MCS-Send-Data request specifying the Node ID of the requesting node, specifying
High data priority, and including the PDU in the Data field. In the case that the request had been routed through the Top
GCC Provider to another node, the response is issued to the original requesting node as indicated by the Requesting
Node parameter of the request PDU. The contents of the ConferenceAddResponse PDU are shown in Table 8-19. The
contents are filled in from the parameters passed in the GCC-Conference-Add response primitive. The Tag shall have the
same value as the corresponding parameter in the received ConferenceAddRequest PDU.

On receipt of a ConferenceAddResponse PDU, a GCC Provider shall generate a GCC-Conference-Add confirm
primitive and issue it to the Control GCCSAP. The contents of the primitive are obtained from the parameters of the
received PDU.

3UPERSEDED�BY�A�MORE�RECENT�VERSION

100 2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION

TABLE 8-18/T.124

#ONFERENCE!DD2EQUEST�'##0$5

TABLE 8-19/T.124

#ONFERENCE!DD2ESPONSE�'##0$5

����� ,OCKING�A�#ONFERENCE

On receipt of a GCC-Conference-Lock request primitive, a GCC Provider shall send a ConferenceLockRequest by
issuing an MCS-Send-Data request specifying the Node ID Channel of the Top GCC Provider as the Channel ID,
specifying High data priority, and including the PDU in the Data field. The content of the ConferenceLockRequest PDU
is shown in Table 8-20. There are no parameters in this PDU.

TABLE 8-20/T.124

#ONFERENCE,OCK2EQUEST�'##0$5

On receipt of a ConferenceLockRequest PDU, if the Top GCC Provider supports the conference lock capability, it shall
first determine if the requesting node has the privilege necessary to lock the conference based on the lock-unlock-
privileges defined when the conference was created. If so, the Top GCC Provider shall generate a GCC-Conference-
Lock indication primitive and issue it to the Control GCCSAP. The Source Node specified in the primitive shall be
obtained from the Sender User ID in the MCS-Send-Data indication. On receipt of a GCC-Conference-Lock response,
the GCC Provider shall send a ConferenceLockResponse PDU by issuing an MCS-Send-Data request specifying the
Source Node indicated in the response as the Channel ID, specifying High data priority, and including the PDU in the
Data field. The content of the ConferenceLockResponse PDU is shown in Table 8-21. The Result parameter is generated
from the result returned in the GCC-Conference-Lock response.

If the requesting node did not have the proper privilege to support this operation, the request is immediately rejected
without generating a GCC-Conference-Lock indication. This is done by generating a ConferenceLockResponse PDU
specifying invalid-requester as the Result.

Content Source Sink

Network Address Request Indication

Requesting Node Requesting GCC Provider Indication

Tag Requesting GCC Provider Destination GCC Provider

Adding MCU (optional) Request Top GCC Provider

User Data (optional) Request Indication

Content Source Sink

Tag Source GCC Provider Destination GCC Provider

Result Response Confirm

User Data (optional) Response Confirm

Content Source Sink

-- No parameters --

3UPERSEDED�BY�A�MORE�RECENT�VERSION

2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION 101

The Top GCC Provider shall preserve the order of received ConferenceLockRequest PDUs and
ConferenceUnlockRequest PDUs and their corresponding indication primitives issued to the Control GCCSAP,
as well as between the response primitives from the Control GCCSAP and the ConferenceLockResponse and
ConferenceUnlockResponse PDUs transmitted.

At the requesting node, order shall also be preserved between the request primitives and the corresponding
transmitted ConferenceLockRequest PDUs and ConferenceUnlockRequest PDUs as well as between the received
ConferenceLockResponse and ConferenceUnlockResponse PDUs and the corresponding confirm primitives.

If the Top GCC Provider does not support the conference lock capability, on receipt of a ConferenceLockRequest PDU,
it shall immediately generate a FunctionNotSupportedResponse PDU including the received ConferenceLockRequest
PDU in the response.

TABLE 8-21/T.124

#ONFERENCE,OCK2ESPONSE�'##0$5

On receipt of a ConferenceLockResponse PDU, a GCC Provider shall generate a GCC-Conference-Lock confirm
primitive and issue it to the Control GCCSAP. The result parameter in the confirm primitive is obtained from the Result
field in the PDU.

If the Top GCC Provider sends a ConferenceLockResponse which indicates a successful result, it shall also generate a
ConferenceLockIndication PDU and send it to all nodes in the conference by issuing an MCS-Uniform-Send-Data
request specifying the GCC-Broadcast-Channel as the Channel ID, specifying High data priority, and including the PDU
in the Data field. The content of the ConferenceLockIndication PDU is shown in Table 8-22. This PDU contains no
parameters.

TABLE 8-22/T.124

#ONFERENCE,OCK)NDICATION�'##0$5

On receipt of a ConferenceLockIndication PDU, a GCC Provider which supports the optional lock indication may
generate a GCC-Conference-Lock-Report indication and issue it to the Control GCCSAP. Before it does so, it shall
examine the User ID as indicated in the received MCS-Uniform-Send-Data indication and compare it to the Node ID of
the Top GCC Provider. The GCC-Conference-Lock-Report primitive may only be generated if the received User ID
matches the Node ID of the Top GCC Provider. Otherwise, the received PDU is ignored, and no further action is taken.

If the Top GCC Provider becomes aware of a new node entering a conference by its presence in the Conference Roster
and the conference is currently locked and if the possibility exists that the conference may have been unlocked when the
node joined (or was invited to) the conference, the Top GCC Provider shall generate a ConferenceLockIndication PDU
and send it to the new node by issuing MCS-Send-Data request specifying the Node ID of that node as the Channel ID,
specifying High data priority, and including the PDU in the Data field. Alternatively, it may send this PDU to all nodes
by issuing an MCS-Uniform-Send-Data request specifying the GCC-Broadcast-Channel as the Channel ID, specifying
High data priority, and including the PDU in the Data field. Although the flag indicating whether the conference is
locked or unlocked is included in the information provided to the newly joined node as part of the connection
establishment process, this ensures that if the conference changed its lock state since the connection had been

Content Source Sink

Result Response Confirm

Content Source Sink

-- No parameters --

3UPERSEDED�BY�A�MORE�RECENT�VERSION

102 2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION

established, that the node is properly notified of the change. If there is no possibility that the lock state has changed since
the node was joined (or was invited) into the conference (e.g. if the lock state has not changed since the creation of the
conference), the Top GCC Provider need not send this PDU.

����� 5NLOCKING�A�CONFERENCE

On receipt of a GCC-Conference-Unlock request primitive, a GCC Provider shall send a ConferenceUnlockRequest by
issuing an MCS-Send-Data request specifying the Node ID Channel of the Top GCC Provider as the Channel ID,
specifying High data priority, and including the PDU in the Data field. The content of the ConferenceUnlockRequest
PDU is shown in Table 8-23. There are no parameters in this PDU.

TABLE 8-23/T.124

#ONFERENCE5NLOCK2EQUEST�'##0$5

On receipt of a ConferenceUnlockRequest PDU, if the Top GCC Provider supports the conference unlock capability, it
shall first determine if the requesting node has the privilege necessary to unlock the conference based on the lock-
unlock-privileges defined when the conference was created. If so, the Top GCC Provider shall generate a GCC-
Conference-Unlock indication primitive and issue it to the Control GCCSAP. The Source Node specified in the primitive
shall be obtained from the Sender User ID in the MCS-Send-Data indication. On receipt of a GCC-Conference-Unlock
response, the GCC Provider shall send a ConferenceUnlockResponse PDU by issuing an MCS-Send-Data request
specifying the Source Node indicated in the response as the Channel ID, specifying High data priority, and including the
PDU in the Data field. The content of the ConferenceUnlockResponse PDU is shown in Table 8-24. The Result
parameter is generated from the result returned in the GCC-Conference-Unlock response.

If the requesting node did not have the proper privilege to support this operation, the request is immediately rejected
without generating a GCC-Conference-Unlock indication. This is done by generating a ConferenceUnlockResponse
PDU specifying invalid-requester as the Result.

The Top GCC Provider shall preserve the order of received ConferenceLockRequest PDUs and
ConferenceUnlockRequest PDUs and their corresponding indication primitives issued to the Control GCCSAP, as well
as between the response primitives from the Control GCCSAP and the ConferenceLockResponse and
ConferenceUnlockResponse PDUs transmitted.

At the requesting node, order shall also be preserved between the request primitives and the corresponding
transmitted ConferenceLockRequest PDUs and ConferenceUnlockRequest PDUs as well as between the received
ConferenceLockResponse and ConferenceUnlockResponse PDUs and the corresponding confirm primitives.

If the Top GCC Provider does not support the conference unlock capability, on receipt of a ConferenceUnlockRequest
PDU, it shall immediately generate a FunctionNotSupportedResponse PDU including the received
ConferenceUnlockRequest PDU in the response.

TABLE 8-24/T.124

#ONFERENCE5NLOCK2ESPONSE�'##0$5

Content Source Sink

-- No parameters --

Content Source Sink

Result Response Confirm

3UPERSEDED�BY�A�MORE�RECENT�VERSION

2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION 103

On receipt of a ConferenceUnlockResponse PDU, a GCC Provider shall generate a GCC-Conference-Unlock confirm
primitive and issue it to the Control GCCSAP. The result parameter in the confirm primitive is obtained from the Result
field in the PDU.

If the Top GCC Provider sends a ConferenceUnlockResponse which indicates a successful result, it shall also generate a
ConferenceUnlockIndication PDU and send it to all nodes in the conference by issuing an MCS-Uniform-Send-Data
request specifying the GCC-Broadcast-Channel as the Channel ID, specifying High data priority, and including the PDU
in the Data field. The content of the ConferenceUnlockIndication PDU is shown in Table 8-25. This PDU contains no
parameters.

TABLE 8-25/T.124

#ONFERENCE5NLOCK)NDICATION�'##0$5

On receipt of a ConferenceUnlockIndication PDU, a GCC Provider which supports the optional unlock indication may
generate a GCC-Conference-Lock-Report indication and issue it to the Control GCCSAP. Before it does so, it shall
examine the User ID as indicated in the received MCS-Uniform-Send-Data indication and compare it to the Node ID of
the Top GCC Provider. The GCC-Conference-Lock-Report primitive may only be generated if the received User ID
matches the Node ID of the Top GCC Provider. Otherwise, the received PDU is ignored, and no further action is taken.

If the Top GCC Provider becomes aware of a new node entering a conference by its presence in the Conference Roster
and the conference is currently unlocked and if the possibility exists that the conference may have been locked when the
node joined (or was invited to) the conference, the Top GCC Provider shall generate a ConferenceUnlockIndication
PDU and send it to the new node by issuing MCS-Send-Data request specifying the Node ID of that node as the Channel
ID, specifying High data priority, and including the PDU in the Data field. Alternatively, it may send this PDU to all
nodes by issuing an MCS-Uniform-Send-Data request specifying the GCC-Broadcast-Channel as the Channel ID,
specifying High data priority, and including the PDU in the Data field. Although the flag indicating whether the
conference is locked or unlocked is included in the information provided to the newly joined node as part of the
connection establishment process, this ensures that if the conference changed its lock state since the connection had been
established, that the node is properly notified of the change. If there is no possibility that the lock state has changed since
the node was joined (or was invited) into the conference (e.g. if the lock state has not changed since the creation of the
conference), the Top GCC Provider need not send this PDU.

����� $ISCONNECTING�FROM�A�CONFERENCE

On receipt of a GCC-Conference-Disconnect request, a GCC Provider shall first attempt to eject the nodes directly
below it in the connection hierarchy, if any. It shall do this by sending, for each such node, a
ConferenceEjectUserIndication PDU with the Node To Eject parameter set to the Node ID of the particular subordinate
node and specifying higher-node-disconnected as the reason. This is done by issuing an MCS-Uniform-Send-Data
request specifying the GCC-Broadcast-Channel as the Channel ID, specifying High data priority, and including the PDU
in the data field. The content of the ConferenceEjectUserIndication PDU is shown in Table 8-31. The GCC Provider
shall then wait until it has received MCS-Disconnect-Provider indications from each subordinate connection. Following
this, it shall disconnect from the conference by issuing first an MCS-Detach-User request followed by an MCS-
Disconnect-Provider request directed at the upward connection (the only remaining connection). If, for some reason, the
GCC Provider has not received MCS-Disconnect-Provider indications from each of the lower nodes within a reasonable
period of time (determined locally), the GCC Provider may proceed to disconnect those connections itself by issuing
MCS-Disconnect-Provider requests directed at each remaining lower connection, followed by an MCS-Detach-User
request and an MCS-Disconnect-Provider request directed at the upward connection as in the normal case. In either case,

Content Source Sink

-- No parameters --

3UPERSEDED�BY�A�MORE�RECENT�VERSION

104 2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION

or if there had been no subordinate nodes, the GCC Provider shall then generate a GCC-Conference-Disconnect confirm
primitive and issue it to the Control GCCSAP. The GCC Provider shall then remove all data-base information associated
with this conference.

On receipt of an MCS-Detach-User indication, each GCC Provider in the conference shall examine the User ID
indicated in the indication and compare it to its list of Node IDs in its local copy of the Conference Roster. If the User ID
corresponds to a Node ID, different from its own Node ID, the GCC Provider shall generate a GCC-Conference-
Disconnect indication and issue it to the Control GCCSAP. The Disconnecting Node parameter in the indication shall
correspond to the User ID in the received indication. If the reason code in the received indication is user-initiated, the
reason code in the GCC-Conference-Disconnect indication shall be either user-initiated or ejected node, depending on
whether or not a ConferenceEjectUserIndication PDU was received earlier containing in its Node To Eject field the same
User ID as the MCS-Detach-User indication. Otherwise, the reason is indicated as unknown.

����� 4ERMINATING�A�CONFERENCE

On receipt of a GCC-Conference-Terminate request, a GCC Provider shall send a ConferenceTerminateRequest PDU to
the Top GCC Provider by issuing an MCS-Send-Data request specifying the Node ID Channel of the Top GCC Provider
as the Channel ID, specifying High data priority, and including the PDU in the Data field. The content of the
ConferenceTerminateRequest PDU is shown in Table 8-26. The reason code is obtained from the corresponding
parameter in the request primitive.

TABLE 8-26/T.124

#ONFERENCE4ERMINATE2EQUEST�'##0$5

On receipt of a ConferenceTerminateRequest PDU, the Top GCC Provider shall first determine if the requesting node
has the privilege necessary to terminate the conference based on the terminate-privileges defined when the conference
was created. If not, the request is rejected and a ConferenceTerminateResponse is sent back to the requester by issuing
an MCS-Send-Data request specifying the Node ID Channel of the requester as the Channel ID, specifying High data
priority, and including the PDU in the Data field. The content of the ConferenceTerminateResponse PDU is shown in
Table 8-27. In this case, the result parameter is set to indicate invalid-requester as the reason for rejection.

TABLE 8-27/T.124

#ONFERENCE4ERMINATE2ESPONSE�'##0$5

If the requester did have the proper privilege to terminate the conference, then a ConferenceTerminateResponse shall be
sent back to the requester indicating a successful result. In addition, a ConferenceTerminateIndication is sent to all nodes
in the conference by issuing an MCS-Uniform-Send-Data request specifying the GCC-Broadcast-Channel as the
Channel ID, specifying High data priority, and including the PDU in the Data field. The content of the
ConferenceTerminateIndication PDU is shown in Table 8-28. The reason code is obtained from the reason code in the
request PDU.

Content Source Sink

Reason Request Top GCC Provider

Content Source Sink

Result Top GCC Provider Confirm

3UPERSEDED�BY�A�MORE�RECENT�VERSION

2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION 105

TABLE 8-28/T.124

#ONFERENCE4ERMINATE)NDICATION�'##0$5

On receipt of a ConferenceTerminateResponse PDU, a GCC Provider shall generate a GCC-Conference-Terminate
confirm primitive and issue it to the Control GCCSAP. The result indicated in the primitive is obtained directly from the
Result parameter in the PDU.

On receipt of a ConferenceTerminateIndication PDU sent by the Top GCC Provider, a GCC Provider shall first wait
until it has received MCS-Disconnect-Provider indications from each connection directly below it in the connection
hierarchy. Following this, it shall disconnect from the conference by issuing an MCS-Disconnect-Provider request
directed at the upward connection (the only remaining connection). If, for some reason, the GCC Provider has not
received MCS-Disconnect-Provider indications from each of the lower nodes within a reasonable period of time
(determined locally), the GCC Provider may proceed to disconnect those connections itself by issuing MCS-Disconnect-
Provider requests directed at each remaining lower connection, followed by an MCS-Disconnect-Provider request
directed at the upward connection as in the normal case. In either case, the GCC Provider shall then generate a GCC-
Conference-Terminate indication primitive and issue it to the Control GCCSAP. The reason indicated in the primitive is
obtained directly from the Reason parameter in the PDU.

If a GCC Provider receives an MCS-Disconnect-Provider indication from the local MCS provider corresponding to its
upward MCS connection, this is an indication that the MCS connection has been terminated due to an abnormal
condition within MCS, the GCC Provider shall generate a GCC-Conference-Terminate indication primitive and issue it
to the Control GCCSAP. The reason code shall indicate that this is an error termination.

If the Top GCC Provider receives a disconnect indication (either via PDU or MCS-Detach-User indication) which
results in no nodes listed in the Conference Roster with the exception of the local node, the provider shall check the
Conference Profile to determine if the conference is manually or automatically terminating. If it was manually
terminating, no further action is taken. If it was automatically terminating, the GCC Provider shall indicate to the local
node controller that the conference has been terminated by generating a GCC-Conference-Terminate indication and
issuing it to the Control GCCSAP. The reason code shall indicate that there are no more nodes joined to an automatically
terminating conference. The GCC Provider shall then remove all data-base information associated with this conference.

������ %JECTING�A�NODE�FROM�A�CONFERENCE

On receipt of a GCC-Conference-Eject-User request primitive, a GCC Provider shall first compare the Node To Eject
parameter to the Node IDs of the nodes immediately below it in the connection hierarchy, if any. If the Node To Eject is
a node other than a directly subordinate node, the GCC Provider shall send a ConferenceEjectUserRequest PDU to the
Top GCC Provider by issuing an MCS-Send-Data request specifying the Node ID Channel of the Top GCC Provider as
the Channel ID, specifying Top data priority, and including the PDU in the Data field. The content of the
ConferenceEjectUserRequest PDU is shown in Table 8-29. The contents of the PDU are obtained from the request
primitive.

If the Node To Eject is a node directly below the local node in the connection hierarchy, the GCC Provider shall instead
send a ConferenceEjectUserIndication PDU to all nodes specifying the Node ID of the node to be ejected in the PDU
and the reason as indicated in the request primitive. It shall do this by issuing an MCS-Uniform-Data request specifying
the GCC-Broadcast-Channel as the Channel ID, specifying High data priority, and including the PDU in the data field.
The content of the ConferenceEjectUserIndication is shown in Table 8-31. The GCC Provider may then wait until it has
received an MCS-Disconnect-Provider indication from the connection corresponding to the ejected node. If, for some
reason, the GCC Provider has not received MCS-Disconnect-Provider indications from the ejected node within a
reasonable period of time (determined locally), the GCC Provider may proceed to disconnect those connections itself by
issuing an MCS-Disconnect-Provider request directed at the ejected node. The GCC Provider shall then generate a GCC-
Conference-Eject-User confirm PDU indicating a successful result.

Content Source Sink

Reason Top GCC Provider Indication

3UPERSEDED�BY�A�MORE�RECENT�VERSION

106 2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION

TABLE 8-29/T.124

#ONFERENCE%JECT5SER2EQUEST�'##0$5

On receipt of a ConferenceEjectUserRequest PDU, the Top GCC Provider shall first determine if the requesting node
has the privilege necessary to eject a user based on the eject-user-privileges defined when the conference was created. If
not, the request is rejected and a ConferenceEjectUserResponse is sent back to the requester by issuing an MCS-Send-
Data request specifying the Node ID Channel of the requester as the Channel ID, specifying High data priority, and
including the PDU in the Data field. The content of the ConferenceEjectUserResponse PDU is shown in Table 8-30. In
this case, the result parameter is set to indicate invalid-requester as the reason for rejection.

If the requester did have the proper privilege to eject a user, then a ConferenceEjectUserIndication primitive is broadcast
to all nodes by issuing an MCS-Uniform-Send-Data request specifying the GCC-Broadcast-Channel as the Channel ID,
specifying Top data priority, and including the PDU in the Data field. The content of the ConferenceEjectUserIndication
PDU is shown in Table 8-31. The Reason parameter in this PDU is obtained from the request PDU. If the node to be
ejected is valid, a response is sent back to the requester indicating a successful result. If it is not possible to eject the
requested node, a response is sent which includes a negative result.

TABLE 8-30/T.124

#ONFERENCE%JECT5SER2ESPONSE�'##0$5

On receipt of a ConferenceEjectUserResponse PDU, a GCC Provider shall generate a GCC-Conference-Eject-User
confirm primitive and issue it to the Control GCCSAP. The contents of the confirm primitive are obtained from the
ConferenceEjectUserResponse PDU.

TABLE 8-31/T.124

#ONFERENCE%JECT5SER)NDICATION�'##0$5

Content Source Sink

Node To Eject Request Top GCC Provider

Reason Request Top GCC Provider

Content Source Sink

Node To Eject Top GCC Provider Confirm

Result Top GCC Provider Confirm

Content Source Sink

Node To Eject Top GCC Provider Confirm

Reason Top GCC Provider Indication

3UPERSEDED�BY�A�MORE�RECENT�VERSION

2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION 107

On receipt of a ConferenceEjectUserIndication PDU, a GCC Provider shall compare the Node To Eject parameter to its
own Node ID. If they are the same, it shall then compare the User ID as indicated in the MCS-Send-Data indication to
the Node ID of the Top GCC Provider and to that of the node directly above it in the connection hierarchy. If the source
Node ID is the same as either of these, it shall immediately disconnect from the conference by first attempting to eject
the nodes directly below it in the connection hierarchy, if any. It shall do this by sending, for each such node, a
ConferenceEjectUserIndication PDU with the Node To Eject parameter set to the Node ID of the particular subordinate
node and specifying higher-node-ejected as the reason. This is done by issuing an MCS-Uniform-Send-Data request
specifying the GCC-Broadcast-Channel as the Channel ID, specifying High data priority, and including the PDU in the
data field. The GCC Provider shall then wait until it has received MCS-Disconnect-Provider indications from each
subordinate connection. Following this, it shall disconnect from the conference by issuing first an MCS-Detach-User
request followed by an MCS-Disconnect-Provider request directed at the upward connection (the only remaining
connection). If, for some reason, the GCC Provider has not received MCS-Disconnect-Provider indications from each of
the lower nodes within a reasonable period of time (determined locally), the GCC Provider may proceed to disconnect
those connections itself by issuing MCS-Disconnect-Provider requests directed at each remaining lower connection,
followed by first an MCS-Detach-User request followed by an MCS-Disconnect-Provider request directed at the upward
connection as in the normal case. In either case, or if there had been no subordinate nodes, the GCC Provider shall then
generate a GCC-Conference-Eject-User indication primitive and issue it to the Control GCCSAP. If the PDU is received
with a User ID not matching the Node ID of the Top GCC Provider or the node directly above in the connection
hierarchy, the PDU shall be ignored with no further action taken.

If the receiving GCC Provider is an MCU which is directly connected above the node to be ejected in the connection
hierarchy, it may optionally disconnect the node to be ejected from the conference by issuing an MCS-Disconnect-
Provider request for the corresponding MCS connection. Prior to taking such action, it shall verify that the User ID
indicated in the received PDU is the same as the Node ID of the Top GCC Provider.

On receipt of a ConferenceEjectUserIndication PDU sent either by the Top GCC Provider or by the Node ID of the node
listed in the conference roster as above the node to be ejected, all nodes except the node to be ejected shall make a note
of this event and consult it later if an MCS-Detach-User indication should arrive for the node to be ejected. At that time,
as specified in 8.2.8, a node shall generate a GCC-Conference-Disconnect indication and issue it to the Control
GCCSAP. The reason indicated shall be ejected-node.

������ 4RANSFERRING�NODES�BETWEEN�CONFERENCES

On receipt of a GCC-Conference-Transfer request primitive, a GCC Provider shall send a ConferenceTransferRequest
PDU to the Top GCC Provider by issuing an MCS-Send-Data request specifying the Node ID Channel of the Top GCC
Provider as the Channel ID, specifying High data priority, and including the PDU in the Data field. The content of the
ConferenceTransferRequest PDU is shown if Table 8-32. All of the parameters in this PDU are obtained directly from
the request primitive.

TABLE 8-32/T.124

#ONFERENCE4RANSFER2EQUEST�'##0$5

Content Source Sink

Conference Name Request Top GCC Provider

Conference Name Modifier (optional) Request Top GCC Provider

Network Address (optional) Request Top GCC Provider

Transferring Nodes�(optional) Request Top GCC Provider

Password (optional) Request Top GCC Provider

3UPERSEDED�BY�A�MORE�RECENT�VERSION

108 2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION

On receipt of a ConferenceTransferRequest PDU, the Top GCC Provider shall first determine if the requesting node has
the privilege necessary to request a transfer based on the transfer-privileges defined when the conference was created. If
not, the request is rejected and a ConferenceTransferResponse is sent back to the requester by issuing an MCS-Send-
Data request specifying the Node ID Channel of the requester as the Channel ID, specifying High data priority, and
including the PDU in the Data field. The content of the ConferenceTransferResponse PDU is shown in Table 8-33. In
this case, the result parameter is set to indicate invalid-requester as the reason for rejection.

If the requester did have the proper privilege to request a transfer, then a the Top GCC Provider shall send a
ConferenceTransferResponse PDU back to the requester as described above, but with the result parameter indicating
success. It shall then broadcast a ConferenceTransferIndication PDU to all nodes in the conference by issuing an MCS-
Uniform-Send-Data request specifying the GCC-Broadcast-Channel as the Channel ID, specifying High data priority,
and including the PDU in the Data field. The content of the ConferenceTransferIndication PDU is shown in Table 8-34.
The parameters in this PDU are obtained from the received ConferenceTransferRequest PDU.

TABLE 8-33/T.124

#ONFERENCE4RANSFER2ESPONSE�'##0$5

On receipt of a ConferenceTransferResponse PDU, a GCC Provider shall generate a GCC-Conference-Transfer confirm
primitive and issue it to the Control GCCSAP. The contents of the confirm primitive are obtained from the
ConferenceTransferResponse PDU.

TABLE 8-34/T.124

#ONFERENCE4RANSFER)NDICATION�'##0$5

On receipt of a ConferenceTransferIndication PDU, a GCC Provider which supports the GCC-Conference-Transfer
indication primitive shall check the list of destination nodes. If the local Node ID is found on the list of destination
nodes, or if the list of destination nodes is NULL, the GCC Provider shall then check that the User ID indicated in the
MCS-Uniform-Send-Data indication matches the Node ID of the Top GCC Provider. If they match, it shall generate a
GCC-Conference-Transfer indication primitive and issue it to the Control GCCSAP. If the GCC Provider does not
support the GCC-Conference-Transfer indication primitive, if the local node is not on the list of destination nodes, or if
the received PDU is not from the Top GCC Provider, the PDU is ignored and no further action is taken.

Content Source Sink

Conference Name Top GCC Provider Confirm

Conference Name Modifier (optional) Top GCC Provider Confirm

Transferring Nodes (optional) Top GCC Provider Confirm

Result Top GCC Provider Confirm

Content Source Sink

Conference Name Top GCC Provider Indication

Conference Name Modifier (optional) Top GCC Provider Indication

Network Address (optional) Top GCC Provider Indication

Transferring Nodes (optional) Top GCC Provider Indication

Password (optional) Top GCC Provider Indication

3UPERSEDED�BY�A�MORE�RECENT�VERSION

2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION 109

��� 4HE�CONFERENCE�AND�APPLICATION�ROSTERS

����� /VERVIEW

Both the Conference and Application Rosters are communicated among nodes using the same set of PDUs. A single
PDU, the RosterUpdateIndication PDU, is associated with all aspects of this exchange. This PDU is used to send
complete or partial roster information to other nodes in the conference.

When each node (other than the top node) first announces its roster information upon joining a conference, it is done by
sending a RosterUpdateIndication to the node directly above it in the hierarchy. Subsequent updates to any portion of
either the Conference or Application Roster information are announced by re-issuing a RosterUpdateIndication
containing the new information.

When a node updates its portion of the roster (or announces it for the first time), that information is propagated from
node to node up the connection hierarchy until it reaches the Top GCC Provider which is responsible for forming the full
Conference and Application rosters and distributing them to all nodes in the conference.

As the roster information propagates up the connection hierarchy, each intermediate node (MCU) is responsible for
forming a subset of the full Conference and Application Rosters. That subset includes that node as well as all nodes
below it in the connection hierarchy. That is, the Conference Roster includes the Node Record for all such nodes, the
Application Roster entries for each Application Protocol Session includes the Application Records for each such node
with that Peer Application Protocol Entity enrolled, and the Application Capabilities List for each Application Protocol
Session includes the collapsed capabilities information for all such nodes. On receipt of a RosterUpdateIndication from a
node below, an intermediate node makes the appropriate changes to its subset of the rosters, then passes this information
up to the next higher node by issuing a RosterUpdateIndication.

If the update from a lower node included a change which caused the Application Capabilities Lists for at least one
Application Protocol Session to have to be re-computed, the new roster information for the roster subset can only be
generated if the individual Application Capabilities Lists for each node directly below in the connection hierarchy is
known (to allow the collapse rules to be re-applied with the new updated information). The GCC Provider at each node
shall maintain this information locally.

When the roster updates have reached the Top GCC Provider, it shall then broadcast the new roster information to all
nodes in the conference. This is done by broadcasting a RosterUpdateIndication PDU to all nodes.

Roster information sent using the RosterUpdateIndication PDU may be sent in one of three ways. The roster may be sent
as refresh of the full Conference and Application Rosters, replacing all existing roster entries. Alternatively, portions of
the roster may be sent whereby the Conference Roster, and/or portions of the Application Roster associated one or more
Session Keys may be refreshed. In this case, all entries in the transmitted portion of the roster are replaced, but portions
that are not sent are left unchanged. Finally, changes to portions of the roster may be sent as updates whereby only those
particular elements of the roster (e.g. individual Application Records) which have been added, modified, or removed are
sent, and all other entries are left unchanged. When the Top GCC Provider broadcasts new roster information only the
first two methods are used. When the Top GCC Provider broadcasts new roster information which has changed due to at
least one node having joined the conference, it shall broadcast this information only as a full refresh since the new node
or nodes have no prior roster information. When propagating roster information up the connection hierarchy, any of
these three methods may be used. The method chosen depends on the scope of the information changed, and is ideally
chosen on the basis of minimizing the size of the PDU in order to minimize transmission time.

NOTE – The described mechanism requires that all GCC Providers in a conference store the subset of the Conference and
Application Rosters for their own node as well as nodes connected directly below them in the connection hierarchy. In addition,
various functions require that the GCC Providers also store the full Conference and Application Rosters as broadcast from the Top
GCC Provider. If for some reason a GCC Provider fails to retain some or all of this information, the only recourse is to disconnect
from the conference and, if possible, to rejoin at a later time.

����� .ODES�ENTERING�A�CONFERENCE

When a node is joined to a conference, either via conference creation, joining, or invitation, a GCC Provider shall issue a
GCC-Application-Permission-To-Enroll indication to the GCCSAP for all Application Protocol Entities which have
locally indicated their presence to the GCC Provider. In the case that a GCC Provider becomes aware of an additional

3UPERSEDED�BY�A�MORE�RECENT�VERSION

110 2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION

Application Protocol Entity while it is already joined to a conference, the GCC Provider shall issue a GCC-Application-
Permission-To-Enroll indication to the corresponding GCCSAP indicating the existence of this conference.

Before taking any further action, the GCC Provider shall wait until it has received a GCC-Conference-Announce-
Presence request from the Control GCCSAP as well as a GCC-Application-Enroll request from all Application Protocol
Entities which have been sent GCC-Application-Permission-To-Enroll indications. Some of these enroll requests may
indicate that that Application Protocol Entity does not intend to enroll (the enroll/un-enroll flag is set to un-enroll). For
each received GCC-Application-Enroll request with the enroll flag set, the information provided in the primitive for that
Application Protocol Entity is added to the Local Application Roster.

The GCC Provider shall also assign a locally allocated Entity ID to each enrolled Application Protocol Entity. This shall
be used by the GCC Provider as an identifier of each corresponding Application Protocol Entity in the
RosterUpdateIndication PDU. The assigned Application Protocol Entity ID is also included in the GCC-Application-
Enroll confirm primitive returned to each enrolling Application Protocol Entity along with the Node ID of the local
node. The Entity ID is a 16-bit integer value which is to be unique among all Application Protocol Entities enrolled at a
node. If an Application Protocol Entity un-enrolls, the value of its Entity ID shall not be re-used unless all other values
not assigned to an Application Protocol Entity at the time of the un-enroll have been assigned.

The GCC Provider shall examine the Conducting Operation Capable Flag of each enrolled Application Protocol Entity
with the Active/Inactive flag set to Active (inactive Application Protocol Entities are assumed not to be capable of
conducting operation). If there is more than one such enrolled Application Protocol Entity with this flag set, the GCC
Provider shall choose one of them for which to set this flag in the Application Roster information which is to be sent in
the RosterUpdateIndication PDU. The rule for which of these to choose is a local matter not specified in this
Recommendation. A typical rule may be to choose the first such Application Protocol Entity that enrolls.

Upon receiving the GCC-Conference-Announce-Presence request from the Control GCCSAP and a GCC-Application-
Enroll request from all Application Protocol Entities, a GCC Provider which is not the Top GCC Provider shall send a
RosterUpdateIndication to the GCC Provider directly above it in the connection hierarchy. This is done by issuing an
MCS-Send-Data request specifying the Node ID of the destination node as the Channel ID, specifying High data
priority, and including the PDU in the Data field. The Node ID of the node directly above in the connection hierarchy is
determined at the time of connection to the conference from either the ConferenceCreateResponse,
ConferenceJoinResponse, or ConferenceInviteRequest PDUs, depending on how the conference was joined. The value
of the Node ID of the above node shall also be included in the conference roster portion of the PDU as the Superior
Node parameter. The content of the RosterUpdateIndication PDU is shown in Table 8-35. In this case, the roster is sent
as a full refresh, including the local Node Record as well as the Application Records for all enrolled Application
Protocol Entities and the Application Capabilities Lists for all Application Protocol Sessions corresponding to enrolled
Application Protocol Entities. If there had been more than one Application Protocol Entity locally enrolled for a given
Application Protocol Session, the GCC Provider shall perform a collapse of the Application Capabilities List among the
Peer Application Protocol Entities to produce the Application Capabilities List which is to be included in the
RosterUpdateIndication PDU for that Application Protocol Session. This collapse shall be done by the procedure
described in 8.3.8. The action taken by a node receiving a RosterUpdateIndication is described in 8.3.5.

A node which is the Top GCC Provider having just entered a conference, and received a GCC-Conference-Announce-
Presence request shall include the information contained in its Conference Roster data-base, but may wait until it has
received any RosterUpdateIndication PDUs from at least one other node in the conference before transmitting any
PDUs. On receiving such indication, it shall update its Conference and Application Roster data-base and then broadcast
the full Conference and Application Rosters by sending a RosterUpdateIndication to all nodes in the conference. This is
done by issuing an MCS-Uniform-Send-Data request, specifying the GCC-Broadcast-Channel as the Channel ID,
specifying High data priority, and including the PDU in the Data field. In the case of new nodes entering the conference,
the RosterUpdateIndication is sent as a full refresh, including the Node Records from all nodes joined to the conference,
as well as for each Application Protocol Session in the conference, a collapsed Application Capabilities List, and a list of
Peer Application Protocol Entities which are part of that session along with the Application Record for each. The rules
for generating the full Conference and Application Rosters, including the collapsed Application Capabilities List are
described in 8.3.5

3UPERSEDED�BY�A�MORE�RECENT�VERSION

2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION 111

TABLE 8-35/T.124

2OSTER5PDATE)NDICATION�'##0$5

����� %NROLLING�!PPLICATION�0ROTOCOL�%NTITIES

On receipt of a GCC-Application-Enroll request primitive, a GCC Provider shall first determine if there is already an
existing entry in the Local Application Roster for the specified conference associated with the GCCSAP of the requester.
If not, and if the Enroll/un-enroll flag in the request is set to Enroll, a new entry is created in the Local Application
Roster containing the information specified in the request primitive. In this case the GCC Provider shall also assign an
Entity ID to the newly enrolled Application Protocol Entity as described in 8.3.2. If the Enroll/un-enroll flag had been
set to Un-enroll, the request is confirmed immediately by generating a GCC-Application-Enroll confirm and issuing it to
the GCCSAP of the requester. In this case, no further action is taken.

If the entry in the Local Application Roster already exists and the Enroll/un-enroll flag is set to Enroll, the contents of
the existing entry are modified to reflect the new values specified. If the Enroll/un-enroll flag had been set to Un-enroll,
the GCC Provider shall remove the corresponding entry from the Local Application Roster.

If the GCC Provider is not the Top GCC Provider for the specified conference, the GCC Provider shall then send its new
Local Application Roster to the node directly above it in the connection hierarchy, using a RosterUpdateIndication PDU.
It shall do this by issuing an MCS-Send-Data request specifying the Node ID of the higher node as the Channel ID,
specifying High data priority, and including the selected PDU in the Data field. The Node ID of the GCC Provider
directly above in the connection hierarchy is determined at the time of connection to the conference from either the
ConferenceCreateResponse, ConferenceJoinResponse, or ConferenceInviteRequest PDUs, depending on how the
conference was joined. The content of the RosterUpdateIndication PDU is shown in Table 8-35.

If the enroll had occurred prior to the initial transmission of a RosterUpdateIndication PDU, then the new or altered
Record is included in the initial roster information, sent as a full refresh as described in 8.3.2. If an Application Protocol
Entity un-enrolled prior to the initial transmission, its record entry is removed from the roster and never included in any
transmitted PDU.

If the enroll occurred after the initial transmission of a RosterUpdateIndication PDU, the new, modified, or removed
Record is treated as an update to the existing roster. In this case, the GCC Provider may either choose to re-send its
portion of the Conference and Application Rosters in their entirety, or it may send the information as an update – only
sending information regarding the record that has changed. It is preferred that the latter method be used in order to
minimize the size of the PDU, and therefore, its transmission time. If more than one change has been made (more than
one GCC-Application-Enroll request had been received) since the last update, these changes may be concatenated into a
single PDU. For a given Application Protocol Session, if only the Application Record information has changed since the
last instance of that Application Protocol Session, the Application Capabilities List need not be included in the
RosterUpdateIndication PDU, only the modified Application Record. For a given Application Protocol Session, the
Application Capabilities List requires updating if its contents from an already enrolled Application Protocol Entity had
been changed, or if a newly enrolled Application Protocol Entity is part of the Application Protocol Session for which
Peer Application Protocol Entities had already been enrolled at the local node or at nodes below the local node in the
connection hierarchy, or if a node is un-enrolled in the case that there are other Peer Application Protocol Entities which
remain enrolled at the local node or at nodes below the local node in the connection hierarchy. In the case where there is
more than one Peer Application Protocol Entity either after an enroll, or before an un-enroll, the GCC Provider shall
recreate the collapsed Application Capabilities List for that Application Protocol Session prior to including it in the
RosterUpdateIndication PDU. This collapse shall be done by the procedure described in 8.3.8.

Content Source Sink

Full Refresh Flag Source GCC Provider Destination GCC Provider

Conference Information (optional) Source GCC Provider from information
in Request or received PDU

Destination GCC Provider

Application Information (optional) Source GCC Provider from information
in Request or received PDU

Destination GCC Provider

3UPERSEDED�BY�A�MORE�RECENT�VERSION

112 2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION

Before sending the RosterUpdateIndication PDU, if the Active/Inactive flag for the enrolling Application Protocol Entity
is set to Active, the GCC Provider shall examine the Conducting Operation Capable Flag. If this flag is set, the GCC
Provider shall ensure that only one Peer Application Protocol Entity from this node for each Application Protocol
Session is included in the Application Roster with this flag set. If no such Peer Application Protocol Entity has been
chosen indicated in the Application Roster so far, the newly enrolling Application Protocol Entity may be included in the
transmitted RosterUpdateIndication PDU with this flag set. If there has already been a Peer Application Protocol Entity
at this node which has been included in the Application Roster with this flag set, the GCC Provider may either include
the newly enrolling Application Protocol Entity in the RosterUpdateIndication PDU without this flag set, or it may
include the newly enrolling Application Protocol Entity with this flag set, and the previous designated conducting-
capable Application Protocol Entity with this flag now set to FALSE. The rule for choosing which Peer Application
Protocol Entity to include in the Application Roster with this flag set is a local matter beyond the scope of this
Recommendation. If the Active/Inactive flag for the enrolling Application Protocol Entity is set to Inactive, the
Conducting Operation Capable Flag indicated in the request primitive shall be ignored, and the corresponding field in
the updated roster shall be set to FALSE.

In the case the Top GCC Provider, the successful change of an entry in the Local Application Roster results in a direct
modification to the Conference Application Roster and the associated procedure for notification of all other nodes in the
conference of the new Conference Application Roster as described in 8.3.5.

In all of the successful cases, the GCC Provider shall generate a GCC-Application-Enroll confirm primitive indicating a
successful result and issue it to the GCCSAP of the requester.

����� 5PDATING�A�CONFERENCE�ROSTER�ENTRY

If a GCC-Conference-Announce-Presence request is received after having already transmitted an initial roster, the new
Node Record contained in this request shall be treated as an update to the Conference Roster. As in the case of an
updated Application Record, the GCC Provider shall then send its new Node Record to the node directly above it in the
connection hierarchy, using a RosterUpdateIndication PDU. It shall do this by issuing an MCS-Send-Data request
specifying Node ID of higher node as the Channel ID, specifying High data priority, and including the selected PDU in
the Data field. The content of the RosterUpdateIndication PDU is shown in Table 8-35.

As in the case of the enroll, the GCC Provider may either choose to re-send its portion of the Conference and
Application Rosters in their entirety, or it may send only the new Node Record as an update. It is preferred that the latter
method be used in order to minimize the size of the PDU, and therefore, its transmission time.

If a GCC provider receives an MCS-Detach-User indication for which the User ID is that of a locally enrolled
Application Protocol Entity, it shall update the roster to remove that Application Protocol Entity, and it shall issue a
GCC-Permission-To-Enroll indication primitive to the GCCSAP corresponding to that Application Protocol Entity.

����� 0ROPAGATION�OF�ROSTER�UPDATES�TO�THE�4OP�'##�0ROVIDER

On receipt of a RosterUpdateIndication PDU from a node directly below in the connection hierarchy, a GCC Provider
shall first update its subset of the Conference and Application Rosters. Each node in the conference shall maintain that
subset of the Conference and Application Rosters which corresponds to that node as well as all nodes below it in the
connection hierarchy. For each Application Protocol Entity which has been enrolled at any of these nodes, a list of
Application Records including the Node ID of the node to which that record corresponds, and a partially collapsed
Application Capabilities List are maintained. This is the Application Capabilities List which corresponds to the outcome
of the set of rules to be applied to the Application Capabilities Lists of the Nodes directly below this node in the
connection hierarchy (which are themselves partially collapsed).

The procedure that the GCC Provider shall use to update its roster subset depends on the update method used in the
received RosterUpdateIndication. If the update was indicated to be a full refresh (as indicated by the full-refresh flag in
the PDU), the following procedure is used. First, all Node Records and Application Records corresponding to the node
from which the PDU was received, or nodes which were previously known to be below that node in the connection
hierarchy are removed from the local subset of the Conference and Application Rosters. All Conference and Application
Records listed in the PDU are then added to the roster. The entire Application Capabilities List, corresponding to the
requesting node below, which may have been stored at this node is removed. The Application Capabilities List specified

3UPERSEDED�BY�A�MORE�RECENT�VERSION

2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION 113

in the PDU replaces it. For all Application Protocol Entities either currently known to be enrolled at or below the current
node, as well as any new Application Protocol Entities indicated in the newly received PDU (including ones not
specified in this PDU), a new collapsed Application Capabilities List shall be computed from each of the Application
Capabilities Lists from the nodes directly below. This collapse shall be done by the procedure described in 8.3.8.

In the case that the RosterUpdateIndication did not indicate a full refresh, a slightly different procedure is followed.
First, if the Node Record information was indicated as changed, if the change was done as a refresh of the list of Node
Records, all Node Records corresponding to the node from which the PDU was received, or nodes which were
previously known to be below that node in the connection hierarchy are removed from the local subset of the Conference
Roster. All Node Records listed in the PDU are then added to the roster. If the change was done as a series of updates to
Node Records, any records indicated as added are added to the roster subset, any indicated as replaced are used to
replace the existing record, and any indicated for removal are removed. An attempt to change a record which already
exists, or to modify or remove a record which does not exist is ignored. In any case, for any nodes which were
previously in the roster subset and have been removed, all Application Records corresponding to those nodes are also
removed (regardless of whether the corresponding update information was included in the Application Roster portion of
the PDU). If any Application Record information was indicated as changed, for each Application Protocol Session, a
similar procedure is followed. For each Application Protocol Session, if the change was done as a refresh, all
Application Records corresponding to the node from which the PDU was received, or nodes which were previously
known to be below that node in the connection hierarchy are removed from the local subset of the Application Roster.
All Application Records listed in the PDU are then added to the roster. It is possible that for a given Application
Protocol Session, it is indicated that there are no nodes which have that Application Protocol Entity enrolled. If the
change was done as a series of updates to Application Records, any records indicated as added are added to the roster
subset, any indicated as replaced are used to replace the existing record, and any indicated for removal are removed. An
attempt to change a record which already exists, or to modify or remove a record which does not exist is ignored. For
Application Capabilities List, the same procedure is followed as described for the full-refresh case. In this case, however,
the new Application Capabilities Lists are only re-computed for sets of Peer Application Protocol Entities which have
indicated a change.

In either of the above cases, the updated information for the Conference Roster and for each Application Protocol
Session in the Application Roster includes an instance number. If the conference information has changed due to the
received update, the instance number for the conference information shall be incremented by one modulo 216. Similarly,
for each Application Protocol Session for which any information was modified (either Application Records or the
Application Capabilities List), this instance number shall be incremented by one modulo 216. If multiple changes are
made to be forwarded to other nodes as a single update, these changes may be counted as a single increment to the
instance number. The instance numbers are maintained locally and corresponds to its local subset of the roster. That is,
that node plus the nodes located below it in the connection hierarchy. In the case of the Top GCC Provider, the instance
numbers apply to the Conference and Application Rosters which are broadcast to all nodes and reported in the GCC-
Application-Roster-Report primitive. The conference information also includes a flag indicating whether nodes have
been added and/or removed since the last instance. Similarly, for each Application Protocol Session, a flag indicates
whether nodes have been added and/or removed since the last instance of the information for that set of Application
Protocol Entities. In this case, nodes being added or removed may indicate that an Application Protocol Entity has been
enrolled or un-enrolled at a node, respectively, not necessarily that the entire node has been added or removed from the
conference.

Once the Conference and/or Application Roster information has been re-computed, a GCC Provider which is not the Top
GCC Provider shall generate a RosterUpdateIndication PDU which shall then be sent to the GCC Provider directly
above it in the connection hierarchy. The format of the information contained in this PDU may be either a full refresh, a
refresh of some sets of Peer Application Protocol Entities and/or the conference information, or as individual updates.
The choice of format to send the update information is left to the GCC Provider. It is preferred that a choice which
minimizes the size of the PDU, and therefore minimizes transmission time, be used.

����� $ISTRIBUTION�OF�THE�CONFERENCE�AND�APPLICATION�ROSTERS

When the Top GCC Provider has received a RosterUpdateIndication, it shall modify the Conference and Application
Roster information which it maintains (which, in this case, are the full Conference and Application Rosters rather than a
subset) in a manner identical to that described for an intermediate MCU updating its subset of the roster. Once the
complete roster has been updated, the Top GCC Provider shall broadcast the updated roster information to all nodes by
sending a RosterUpdateIndication PDU. This is done by issuing an MCS-Uniform-Send-Data request specifying the
GCC-Broadcast-Channel as the Channel-ID, specifying High data priority, and including the PDU in the Data field.

3UPERSEDED�BY�A�MORE�RECENT�VERSION

114 2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION

If the case that the Conference Roster has been modified to include new nodes, the RosterUpdateIndication shall be
broadcast as a full refresh. That is, the Conference and Application Rosters shall be transmitted in full to all nodes. In the
case that a modification had been made to the roster which did not involve the addition of new nodes, the Top GCC
Provider may choose to send the update either as a full refresh, or as a refresh to the list of Node Records, and/or the list
of Application Records for some or all sets of Peer Application Protocol Entities, and/or the Application Capabilities List
for some or all Application Protocol Sessions.

On receipt of a RosterUpdateIndication on the GCC-Broadcast-Channel, each GCC Provider shall generate a GCC-
Conference-Roster-Report indication and issue it to the Control GCCSAP if the received PDU indicated any change to
the Conference Roster. If the received PDU had indicated a change to some or all of the Application Roster, the GCC
Provider shall generate a series of GCC-Application-Roster-Report indications and issue them to the GCCSAP
associated with each enrolled Application Protocol Entity corresponding to an Application Protocol Session for which an
Application Roster update has been received in the PDU. It may also issue GCC-Application-Roster-Report indications
to other GCCSAPs, although the need to do so is considered a local matter beyond the scope of this Recommendation.
Only that portion of the Conference Application Roster associated with the Session Key for that Application Protocol
Entity must be included in the corresponding primitive. The GCC Provider may choose to include portions of the roster
corresponding to other Session Keys, although the need to do this is considered a local matter beyond the scope of this
Recommendation. In the case of an Application Protocol Entity enrolled inactively with no Session ID, the GCC
Provider shall issue a GCC-Application-Roster-Report indication to the corresponding GCCSAP for portions of the
roster corresponding to any Application Protocol Session with the same base Application Protocol as the Application
Protocol Entity. The GCC Provider shall also issue a GCC-Application-Roster-Report indication to the Control
GCCSAP, including Application Roster updates for all sets of Peer Application Protocol Entities which have been
indicated as changed by the received PDU.

����� .ODES�LEAVING�A�CONFERENCE

On receiving an MCS-Detach-User indication, MCU nodes which have nodes below them in the connection hierarchy
shall check the User ID indicated and determine if it corresponds to the Node ID of a node directly below it in the
connection hierarchy. If so, it shall all remove all entries corresponding to this node, as well as any nodes known to be
connected below that node, from its subset of the Conference and Application Rosters. It shall then re-compute the
Application Capabilities Lists for all sets of Peer Application Protocol Entities in the manner described in 8.3.8. Once
the roster subset has been fully updated to reflect the leaving node, that GCC Provider shall follow the procedure
described in 8.3.5 to propagate this update to the other nodes in the conference.

At a node which has disconnected from a conference (via either disconnection, termination of the conference, or ejection
from the conference), the GCC Provider shall generate a GCC-Permission-To-Enroll indication which revokes
permission to enroll in the corresponding conference. It shall issue this to all non-Control GCCSAPs.

����� #OLLAPSING�APPLICATION�CAPABILITIES�LISTS

Each GCC Provider is responsible for forming, for each Application Protocol Session, the collapsed Application
Capability List corresponding to the nodes below it in the connection hierarchy, as well as any Peer Application Protocol
Entities enrolled at the local node. Since the nodes directly below in the connection hierarchy, the local GCC Provider
need only be aware of the collapsed Application Capability Lists from those nodes, rather than the Application
Capability Lists from all lower nodes. Given as input, these collapsed Application Capabilities Lists as well as the
Application Capabilities Lists from Peer Application Protocol Entities at the local node from the Local Application
Roster, the GCC Provider shall produce a collapsed Application Capabilities List by the following procedure:

• For each capability item in each list, determine the class of the capability.

• For any class, the value of the count parameter for the entry in the collapsed Application Capabilities List
shall be set to the sum of the counts indicated in the corresponding entry of each of the Application
Capabilities Lists in the input set.

• For the Unsigned-minimum and Unsigned-maximum classes, the new entry should also include the
minimum or maximum value, respectively, of the values given for the corresponding entry of each of the
Application Capabilities Lists in the input set.

3UPERSEDED�BY�A�MORE�RECENT�VERSION

2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION 115

����� !PPLICATION�AND�CONFERENCE�ROSTER�INQUIRY

On receipt of a GCC-Application-Roster-Inquire request primitive, a GCC Provider which supports this primitive may
respond by generating a GCC-Application-Roster-Inquire confirm primitive and issuing it to the GCCSAP of the
requester. The content of the confirm primitive is generated from the locally maintained Conference Application Roster
data-base and shall include only those entries in the roster for which the Session Key specified in the request exactly
matches the Session Key of the entry over the length of the key given in the request.

On receipt of a GCC-Conference-Roster-Inquire request primitive, a GCC Provider which supports this primitive shall
respond by generating a GCC-Conference-Roster-Inquire confirm primitive and issuing it to the GCCSAP of the
requester. The content of the confirm primitive is generated from the local Conference Roster data-base accounting for
all nodes known to be in the conference.

������ !N�%XAMPLE�OF�A�ROSTER�UPDATE

Figure 8-5 shows an example of a GCC-Application-Enroll request issued during a conference causing an update of the
Conference Application Roster. In this example, the node is in the third layer of the connection hierarchy. It issues the
update indication to the next higher node which then formats and sends an update indication to the next higher node,
which in this example, is the top node in the hierarchy. The top node assembles the full Application Roster and
broadcasts the portions associated with the updated Application Protocol Session to all nodes in the conference, resulting
in GCC-Application-Report primitives being issued at all nodes to the Node Controller, and if present, the Peer
Application Protocol Entities.

T0819890-94/d50

FIGURE 8-5/T.124

!N�EXAMPLE�OF�UPDATING�THE�APPLICATION�ROSTER

RosterUpdateIndication

GCC-Application-Enroll request

MCS-Send-Data request

MCS-Send-Data indication

MCS-Send-Data request

RosterUpdateIndication

MCS-Send-Data indication

MCS-Uniform-Send-Data request

GCC-Application-Enroll confirm

RosterUpdateIndication

MCS-Uniform-Send-Data indication

GCC-Application-Roster-Report indication

All Nodes

Updating Node Next Higher Node Top Node

GCC-Application-Roster-Report indication

Client
Application

GCC
Provider

MCS
Provider

MCS
Provider

GCC
Provider

MCS
Provider

MCS
Provider

Top GCC
Provider

Node
Controller

Node Controller
and Client App.

GCC
Provider

MCS
Provider

FIGURE 8-5/T.124...[D50] = 12 CM

3UPERSEDED�BY�A�MORE�RECENT�VERSION

116 2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION

������ 2EMOTELY�INVOKING�AN�!PPLICATION�0ROTOCOL�%NTITY

On receipt of a GCC-Application-Invoke request primitive via either the Control GCCSAP or an ordinary GCCSAP, a
GCC Provider which supports this primitive shall broadcast an ApplicationInvokeIndication PDU to all nodes in the
specified conference. This is done by issuing an MCS-Send-Data request or MCS-Uniform-Send-Data request
specifying the GCC-Broadcast-Channel as the Channel ID, specifying High data priority, and including the PDU in the
Data field. Alternatively, the GCC Provider may issue one or more MCS-Send-Data request specifying the Node ID of
one of the listed destination nodes as the Channel ID, also specifying High data priority, and including the PDU in the
Data field. In this case, it may leave the Destination Node List parameter in the PDU empty. The content of the
ApplicationInvokeIndication PDU is shown if Table 8-36. The GCC Provider shall then generate a GCC-Application-
Invoke confirm primitive indicating if the requested operation was successful and issue it to the GCCSAP of the
requester.

TABLE 8-36/T.124

!PPLICATION)NVOKE)NDICATION�'##0$5

On receipt of an ApplicationInvokeIndication PDU, a GCC Provider which supports the GCC-Application-Invoke
primitive shall first determine if the local node is on the list of destination nodes. If the list is either NULL, or if the local
Node ID is present in the list, the GCC Provider may generate a GCC-Application-Invoke indication primitive and issue
it to the Control GCCSAP. The Invoking Node parameter is filled in from the Sender User ID field in the received MCS-
Send-Data indication or MCS-Uniform-Send-Data indication. If the local node is not on the list of destination nodes (if
listed explicitly), no further action is taken.

��� 4HE�!PPLICATION�2EGISTRY

The Application Registry is an active data-base which resides at the Top GCC Provider for a conference. Any MCU
node shall support the full set of registry services which operate on this data-base, while a terminal node may choose to
support only those registry services required by Application Protocols to be supported within that terminal.

When a conference is created, the registry data-base, located at the Top GCC Provider, shall be initialized to a state in
which all registry entries are empty and no registry entries are designated to be monitored. This shall be done prior to the
time that the Top GCC Provider joins its Node ID Channel.

During operation of the registry within a conference, each non-empty registry entry contains the following information:

• The Registry Key which identifies the entry.

• The type of information contained – either a Channel ID, a Token ID, or a Parameter.

• The monitoring state – either monitoring enabled, or monitoring disabled.

• The value of the entry – the actual Channel ID, Token ID, or Parameter.

• The owner of the entry – either none, or the Node ID and Entity ID corresponding to the owning
Application Protocol Entity.

• For Parameter type entries only, the modification rights of the entry – either Owner, Session, or Public.

Processing by the Top GCC Provider of multiple registry requests from a single node shall be performed strictly in the
order that the requests were received. The sequence of response PDUs to a requesting node shall preserve the order of
the received requests from that node.

At the requesting node, order shall also be preserved between the request primitives and the corresponding transmitted
PDUs as well as between the received PDUs and the corresponding confirm primitives.

Content Source Sink

Application Protocol Entity List Request Indication

Destination Node List or NULL Request Destination GCC Providers

3UPERSEDED�BY�A�MORE�RECENT�VERSION

2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION 117

����� 2EGISTERING�A�CHANNEL

On receipt of a GCC-Registry-Register-Channel request primitive, a GCC Provider shall send a
RegistryRegisterChannelRequest PDU to the Top GCC Provider by issuing an MCS-Send-Data request specifying the
Node ID Channel of the Top GCC Provider as the Channel ID, specifying High data priority, and including the PDU in
the Data field. The content of the RegistryRegisterChannelRequest PDU is shown in Table 8-37.

TABLE 8-37/T.124

2EGISTRY2EGISTER#HANNEL2EQUEST�'##0$5

On receipt of the RegistryRegisterChannelRequest PDU, the Top GCC Provider shall first verify that the Sender User ID
in the received MCS-Send-Data indication and the Entity ID included in the PDU correspond exactly to the Node ID and
Entity ID of an Application Protocol Entity currently in the Application Roster. If so, it shall attempt to register the
channel by creating an appropriate registry entry. First, it checks whether the registry entry corresponding to the
specified Key already exists in the registry data-base. If the registry entry does not exist, the Top GCC Provider creates
an entry for this Key and includes in the data-base for this entry the Node ID as indicated by the Sender User ID in the
received MCS-Send-Data indication along with the Entity ID included in the PDU as the entry owner, the entry type
being a Channel ID, and the value being the Channel ID specified in the PDU.

The Top GCC Provider then indicates that the channel has been properly registered by sending a RegistryResponse PDU
to the requesting node by issuing an MCS-Send-Data request specifying the Node ID of the requester as the Channel ID,
specifying High data priority, and including the PDU in the Data field. The content of the RegistryResponse PDU is
shown in Table 8-38. In the case of a successful action, the Result parameter is specified as successful. The Modification
Rights field is not filled in (this field is for Parameter type entries only).

If the registry entry already existed, if the requester was invalid due to not appearing in the Application Roster, or if the
registry entry could not be created due to a limitation in the available resources, the registry is not modified and a
RegistryResponse PDU is returned as above, but with a negative Result indicating the reason for the failure. In this case,
the value of the entry prior to attempting to modify it is returned as the Registry Item in the RegistryResponse PDU.

TABLE 8-38/T.124

2EGISTRY2ESPONSE�'##0$5

Content Source Sink

Entity ID Source GCC Provider Top GCC Provider

Key Request Top GCC Provider

Channel ID Request Top GCC Provider

Content Source Sink

Entity ID Top GCC Provider Destination GCC Provider

Primitive type (register-channel, assign-token, set-
parameter, retrieve-entry, delete-entry, monitor-
entry)

Top GCC Provider Destination GCC Provider

Key Top GCC Provider Confirm

Registry Item Top GCC Provider Confirm

Owner Top GCC Provider Confirm

Modification Rights (optional) Top GCC Provider Confirm

Result Top GCC Provider Confirm

3UPERSEDED�BY�A�MORE�RECENT�VERSION

118 2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION

In the case of a successful modification of an existing registry entry, the Top GCC Provider checks to determine if the
registry entry had been set to be monitored. If not, no further action is taken by the Top GCC Provider. If the entry had
been set to be monitored, the Top GCC Provider sends a RegistryMonitorEntryIndication PDU to all nodes in the
conference by issuing an MCS-Uniform-Send-Data request specifying the GCC-Broadcast-Channel as the Channel ID,
specifying High data priority, and including the PDU in the Data field. The content of the
RegistryMonitorEntryIndication PDU is shown in Table 8-44.

On receipt of a RegistryResponse PDU of this type, a GCC Provider shall generate a GCC-Registry-Register-Channel
confirm primitive indicating whether or not the request was successful as indicated in the Result parameter of the
RegistryResponse PDU and issue it on the GCCSAP of the Application Protocol Entity indicated by the Entity ID. If the
GCC Provider knows of no currently enrolled Application Protocol Entity with the corresponding Entity ID, the
indication is ignored and no further action is taken.

����� !SSIGNING�A�TOKEN

On receipt of a GCC-Registry-Assign-Token request primitive, a GCC Provider shall send a
RegistryAssignTokenRequest PDU to the Top GCC Provider by issuing an MCS-Send-Data request specifying the Node
ID Channel of the Top GCC Provider as the Channel ID, specifying High data priority, and including the PDU in the
Data field. The content of the RegistryAssignTokenRequest PDU is shown in Table 8-39.

TABLE 8-39/T.124

2EGISTRY!SSIGN4OKEN2EQUEST�'##0$5

On receipt of the RegistryAssignTokenRequest PDU, the Top GCC Provider shall first verify that the Sender User ID in
the received MCS-Send-Data indication and the Entity ID included in the PDU correspond exactly to the Node ID and
Entity ID of an Application Protocol Entity currently in the Application Roster. If so, it shall attempt to assign a token by
allocating a Token ID and creating an appropriate registry entry. First, it checks whether the registry entry corresponding
to the specified Key already exists in the registry data-base. If the registry entry does not exist, the Top GCC Provider
first allocates a new Token ID from the space of dynamic Token IDs (16 384 through 65 535). The Top GCC Provider
then creates an entry for this Key and includes in the data-base for this entry the Node ID as indicated by the Sender
User ID in the received MCS-Send-Data indication along with the Entity ID included in the PDU as the entry owner, the
entry type being a Token ID, and the value being the allocated Token ID.

The Top GCC Provider then indicates that the token has been properly allocated, and returns the value of the Token ID
to the requester, by sending a RegistryResponse PDU to the requesting node by issuing an MCS-Send-Data request
specifying the Node ID of the requester as the Channel ID, specifying High data priority, and including the PDU in the
Data field. The content of the RegistryResponse PDU is shown in Table 8-38. In the case of a successful action, the
Result parameter is specified as successful. The Modification Rights field is not filled in (this field is for Parameter type
entries only).

If the registry entry already existed, if the requester was invalid due to not appearing in the Application Roster, if the
registry entry could not be created due to a limitation in the available resources, or if there are no more available
dynamic Token IDs, the registry is not modified and a RegistryResponse PDU is returned as above, but with a negative
Result indicating the reason for the failure. In this case, the value of the entry prior to attempting to modify it is returned
as the Registry Item in the RegistryResponse PDU.

In the case of a successful modification of an existing registry entry, the Top GCC Provider checks to determine if the
registry entry had been set to be monitored. If not, no further action is taken by the Top GCC Provider. If the entry had
been set to be monitored, the Top GCC Provider sends a RegistryMonitorEntryIndication PDU to all nodes in the
conference by issuing an MCS-Uniform-Send-Data request specifying the GCC-Broadcast-Channel as the Channel ID,
specifying High data priority, and including the PDU in the Data field. The content of the
RegistryMonitorEntryIndication PDU is shown in Table 8-44.

Content Source Sink

Entity ID Source GCC Provider Top GCC Provider

Key Request Top GCC Provider

3UPERSEDED�BY�A�MORE�RECENT�VERSION

2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION 119

On receipt of a RegistryResponse PDU of this type, a GCC Provider shall generate a GCC-Registry-Assign-Token
confirm primitive indicating whether or not the request was successful as indicated in the Result parameter of the
RegistryResponse PDU, and if successful, the value of the allocated Token ID and issue it on the GCCSAP of the
Application Protocol Entity indicated by the Entity ID. If the GCC Provider knows of no currently enrolled Application
Protocol Entity with the corresponding Entity ID, the indication is ignored and no further action is taken.

����� 3ETTING�A�PARAMETER

On receipt of a GCC-Registry-Set-Parameter request primitive, a GCC Provider shall send a
RegistrySetParameterRequest PDU to the Top GCC Provider by issuing an MCS-Send-Data request specifying the Node
ID Channel of the Top GCC Provider as the Channel ID, specifying High data priority, and including the PDU in the
Data field. The content of the RegistrySetParameterRequest PDU is shown in Table 8-40.

TABLE 8-40/T.124

2EGISTRY3ET0ARAMETER2EQUEST�'##0$5

On receipt of the RegistrySetParameterRequest PDU, the Top GCC Provider shall first verify that the Sender User ID in
the received MCS-Send-Data indication and the Entity ID included in the PDU correspond exactly to the Node ID and
Entity ID of an Application Protocol Entity currently in the Application Roster. If so, it shall attempt to set a parameter
in an existing registry entry or create a new entry with the specified parameter. First, it checks whether the registry entry
corresponding to the specified Key already exists in the registry data-base, and if so, determines the type of the entry, the
owner, and the current modification rights. If the registry entry does not exist, the Top GCC Provider then creates an
entry for this Key and includes in the data-base for this entry the Node ID as indicated by the Sender User ID in the
received MCS-Send-Data indication along with the Entity ID included in the PDU as the entry owner, the entry type
being a Parameter, and the value being the Parameter value specified in the PDU. If the registry entry already existed,
and if the entry was of the Parameter type, the GCC Provider shall first check if the requester has the right to modify this
entry. If the owner has modification rights, the value of the registry entry is modified to reflect the type as a Parameter
and the value as the Parameter value specified in the PDU. If the entry was not owned prior to being set, the entry is
modified to indicate the new owner.

The determination of whether the owner has modification rights is by the following rules. If the current Modification
Rights attribute of the entry is set to Owner, the requester, as indicated by the Entity ID and the Node ID from the Sender
User ID field of the received MCS-Send-Data indication, must be the owner or the entry must currently be un-owned for
the request to succeed. If the current Modification Rights attribute of the entry is set to Session, the requester must be
part of the same Application Protocol Session for this request to succeed. This is determined by finding the entry in the
current Application Roster for the requester and examining the Session Key. The Session Key must be identical to that
of the owner. Again, if the entry is not owned, this restriction does not apply. If the current Modification Rights attribute
of the entry is set to Public, there are no restrictions on the requester for the request to succeed.

When a Parameter entry is first created, the state of Modification Rights for the entry is determined. If the Modification
Rights parameter was included in the request PDU which resulted in the creation of the entry, the Modification Type is
set to the indicated value. If not, the value Public is assumed for Modification Rights. On requests to set the parameter, if
the Modification Rights entry is not present, the Modification Rights state is not changed. If it is present, the GCC
Provider shall change the Modification Rights state to the state indicated in the PDU only if the requester is the current
owner of the entry, or if the entry is currently un-owned. Otherwise, the Modification Rights state is not changed. In the
latter case, the set-parameter operation shall still proceed as normal, and the result shall not be effected.

Content Source Sink

Entity ID Source GCC Provider Top GCC Provider

Key Request Top GCC Provider

Parameter Request Top GCC Provider

Modification Rights (optional) Request Top GCC Provider

3UPERSEDED�BY�A�MORE�RECENT�VERSION

120 2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION

In either of the above cases, the Top GCC Provider then indicates that the parameter has been properly set by sending a
RegistryResponse PDU to the requesting node by issuing an MCS-Send-Data request specifying the Node ID of the
requester as the Channel ID, specifying High data priority, and including the PDU in the Data field. The content of the
RegistryResponse PDU is shown in Table 8-38. In the case of a successful action, the Result parameter is specified as
successful. The Modification Rights parameter shall be included in the response PDU.

If the registry entry could not be created due to a limitation in the available resources, if the entry already existed but the
requester did not have modification rights, if the requester was invalid due to not appearing in the Application Roster, or
if the entry was of the Parameter type, the registry is not modified and a RegistryResponse PDU is returned as above, but
with a negative Result indicating the reason for the failure. In this case, the value of the entry prior to attempting to
modify it is returned as the Registry Item in the RegistryResponse PDU. In the case of insufficient modification rights,
the result parameter shall be: belongs to other.

In the case of a successful modification of an existing registry entry, the Top GCC Provider checks to determine if the
registry entry had been set to be monitored. If not, no further action is taken by the Top GCC Provider. If the entry had
been set to be monitored, the Top GCC Provider sends a RegistryMonitorEntryIndication PDU to all nodes in the
conference by issuing an MCS-Uniform-Send-Data request specifying the GCC-Broadcast-Channel as the Channel ID,
specifying High data priority, and including the PDU in the Data field. The content of the
RegistryMonitorEntryIndication PDU is shown in Table 8-44.

On receipt of a RegistryResponse PDU of this type, a GCC Provider shall generate a GCC-Registry-Set-Parameter
confirm primitive indicating whether or not the request was successful as indicated in the Result parameter of the
RegistryResponse PDU and issue it on the GCCSAP of the Application Protocol Entity indicated by the Entity ID. If the
GCC Provider knows of no currently enrolled Application Protocol Entity with the corresponding Entity ID, the
indication is ignored and no further action is taken.

����� 2ETRIEVING�AN�ENTRY

On receipt of a GCC-Registry-Retrieve-Entry request primitive, a GCC Provider shall send a
RegistryRetrieveEntryRequest PDU to the Top GCC Provider by issuing an MCS-Send-Data request specifying the
Node ID Channel of the Top GCC Provider as the Channel ID, specifying High data priority, and including the PDU in
the Data field. The content of the RegistryRetrieveEntryRequest PDU is shown in Table 8-41.

TABLE 8-41/T.124

2EGISTRY2ETRIEVE%NTRY2EQUEST�'##0$5

On receipt of the RegistryRetrieveEntryRequest PDU, the Top GCC Provider shall examine the contents of the registry
entry specified by the Key. The registry entry may be in one of four possible states: empty, containing a Channel ID, a
Token ID, or a Parameter. For any of these cases, the Top GCC Provider returns the state of the entry to the requester by
sending a RegistryResponse PDU to the requesting node by issuing an MCS-Send-Data request specifying the Node ID
of the requester as the Channel ID, specifying High data priority, and including the PDU in the Data field. The content of
the RegistryResponse PDU is shown in Table 8-38. The Registry Item parameter contains the state of the entry, and in
the case of a non-empty state, the value that the entry currently contains. The Result parameter is specified as successful
if the entry is non-empty, and entry-not-found if the entry is empty. If the entry is indicated to be of the Parameter type,
the Modification Rights parameter shall be included in the response PDU.

On receipt of a RegistryResponse PDU of this type, a GCC Provider shall generate a GCC-Registry-Retrieve-Entry
confirm primitive indicating the registry item included in the response PDU and issue it on the GCCSAP of the
Application Protocol Entity indicated by the Entity ID. If the GCC Provider knows of no currently enrolled Application
Protocol Entity with the corresponding Entity ID, the indication is ignored and no further action is taken.

Content Source Sink

Entity ID Source GCC Provider Top GCC Provider

Key Request Top GCC Provider

3UPERSEDED�BY�A�MORE�RECENT�VERSION

2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION 121

����� $ELETING�AN�ENTRY

On receipt of a GCC-Registry-Delete-Entry request primitive, a GCC Provider shall send a RegistryDeleteEntryRequest
PDU to the Top GCC Provider by issuing an MCS-Send-Data request specifying the Node ID Channel of the Top GCC
Provider as the Channel ID, specifying High data priority, and including the PDU in the Data field. The content of the
RegistryDeleteEntryRequest PDU is shown in Table 8-42.

TABLE 8-42/T.124

2EGISTRY$ELETE%NTRY2EQUEST�'##0$5

On receipt of the RegistryDeleteEntryRequest PDU, the Top GCC Provider shall attempt to delete the designated
registry entry. First, it checks whether the registry entry corresponding to the specified Key exists in the registry data-
base, and if so, determines the owner. If the registry entry exists and is owned by the requester (both the Node ID and
Entity ID of the owner and those of the requester are identical) or if the entry is not currently owned, the Top GCC
Provider deletes the contents of the entry setting the state to empty and not monitored.

In the registry entry is successfully deleted, or if the entry already did not exist, the Top GCC Provider then indicates
that the entry has been properly deleted by sending a RegistryResponse PDU to the requesting node by issuing an MCS-
Send-Data request specifying the Node ID of the requester as the Channel ID, specifying High data priority, and
including the PDU in the Data field. The content of the RegistryResponse PDU is shown in Table 8-38. In the case of a
successful action, the Result parameter is specified as successful, and the registry item is specified to be empty.

If the registry entry already existed but was owned by another node, the registry is not modified and a RegistryResponse
PDU is returned as above, but with a negative Result indicating the reason for the failure. In this case, the registry item is
set to the value of the entry prior to the deletion attempt.

In the case of a successful deletion of an existing registry entry, the Top GCC Provider checks to determine if the
registry entry had been set to be monitored (prior to deletion). If not, no further action is taken by the Top GCC
Provider. If the entry had been set to be monitored, the Top GCC Provider sends a RegistryMonitorEntryIndication PDU
to all nodes in the conference by issuing an MCS-Uniform-Send-Data request specifying the GCC-Broadcast-Channel as
the Channel ID, specifying High data priority, and including the PDU in the Data field. The content of the
RegistryMonitorEntryIndication PDU is shown in Table 8-44.

In the case of a successful deletion of a Token type registry entry, the Top GCC Provider may de-allocate the
corresponding token. That is, the Top GCC Provider may later re-use the Token ID which had been included in the
deleted entry in response to a RegistryAssignTokenRequest.

On receipt of a RegistryResponse PDU of this type, a GCC Provider shall generate a GCC-Registry-Delete-Entry
confirm primitive indicating whether or not the request was successful as indicated in the Result parameter of the
RegistryResponse PDU and issue it on the GCCSAP of the Application Protocol Entity indicated by the Entity ID. If the
GCC Provider knows of no currently enrolled Application Protocol Entity with the corresponding Entity ID, the
indication is ignored and no further action is taken.

����� -ONITORING�AN�ENTRY

On receipt of a GCC-Registry-Monitor request primitive with the Enable/Disable flag set to Enable, a GCC Provider
shall send a RegistryMonitorEntryRequest PDU to the Top GCC Provider by issuing an MCS-Send-Data request
specifying the Node ID Channel of the Top GCC Provider as the Channel ID, specifying High data priority, and
including the PDU in the Data field. The content of the RegistryAssignTokenRequest PDU is shown in Table 8-43. A

Content Source Sink

Entity ID Source GCC Provider Top GCC Provider

Key Request Top GCC Provider

3UPERSEDED�BY�A�MORE�RECENT�VERSION

122 2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION

local record that the requesting Application Protocol Entity had enabled monitoring this entry is made by the GCC
Provider to determine whether to generate GCC-Registry-Monitor indications on later receipt of
RegistryMonitorEntryIndication PDU corresponding to this entry.

On receipt of a GCC-Registry-Monitor request primitive with the Enable/Disable flag set to Disable, a local record that
the requesting Application Protocol Entity had disabled monitoring this entry is made by the GCC Provider to determine
whether to generate GCC-Registry-Monitor indications on later receipt of RegistryMonitorEntryIndication PDU
corresponding to this entry.

TABLE 8-43/T.124

2EGISTRY-ONITOR%NTRY2EQUEST�'##0$5

On receipt of the RegistryMonitorEntryRequest PDU, the Top GCC Provider shall attempt to change the monitoring
state of the registry entry. First, it checks whether the registry entry corresponding to the specified Key already exists in
the registry data-base. If the registry entry exists, the monitoring state for the specified entry is set to enabled.

NOTE – Once monitoring is enabled, monitor indications will continue to be broadcast whenever changes are made to the
entry for the duration of the conference, or until the entry is deleted.

Once the appropriate action has been taken, the Top GCC Provider sends a RegistryResponse PDU to the requesting
node by issuing an MCS-Send-Data request specifying the Node ID of the requester as the Channel ID, specifying High
data priority, and including the PDU in the Data field. The content of the RegistryResponse PDU is shown in
Table 8-38. In the case of a successful action, the Result parameter is specified as successful. If the requested entry did
not exist, the Result parameter is specified as entry-not-found. If the entry is indicated to be of the Parameter type, the
Modification Rights parameter shall be included in the response PDU.

If the registry entry did not exist, the registry is not modified and a RegistryResponse PDU is returned as above, but with
a negative Result indicating the reason for the failure.

On receipt of a RegistryResponse PDU of this type, a GCC Provider shall generate a GCC-Registry-Monitor confirm
primitive indicating whether or not the request was successful as indicated in the Result parameter of the
RegistryResponse PDU and issue it on the GCCSAP of the Application Protocol Entity indicated by the Entity ID. If the
GCC Provider knows of no currently enrolled Application Protocol Entity with the corresponding Entity ID, the
indication is ignored and no further action is taken.

While any registry entry is set to be monitored, any change in the content of the registry entry, including setting a
parameter, deletion of the entry, change in ownership, or change in the Modification Rights state, causes the Top GCC
Provider to send a RegistryMonitorEntryIndication PDU to all nodes in the conference by issuing an MCS-Uniform-
Send-Data request specifying the GCC-Broadcast-Channel as the Channel ID, specifying High data priority, and
including the PDU in the Data field. The content of the RegistryMonitorEntryIndication PDU is shown in Table 8-44.

TABLE 8-44/T.124

2EGISTRY-ONITOR%NTRY)NDICATION�'##0$5

Content Source Sink

Entity ID Source GCC Provider Top GCC Provider

Key Request Top GCC Provider

Content Source Sink

Key Top GCC Provider Indication

Registry Item Top GCC Provider Indication

Owner Top GCC Provider Confirm

Modification Rights (optional) Top GCC Provider Confirm

3UPERSEDED�BY�A�MORE�RECENT�VERSION

2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION 123

On receipt of a RegistryMonitorEntryIndication PDU, a GCC Provider for a node which supports the registry monitoring
function shall generate a GCC-Registry-Monitor indication primitive and send this primitive to any GCCSAP which had
previously issued a GCC-Registry-Monitor request specifying the same Key as is indicated in the indication PDU with
the Enable/Disable flag set to Enable (without having more recently received one with this flag set to Disable). If there
have not been any requesters for the particular Key at this node, the indication PDU is ignored by the GCC Provider. It is
a function of each local GCC Provider to keep a local data-base of requesting GCCSAPs which is updated whenever a
GCC-Registry-Monitor request is received.

NOTE – As a local matter, a particular GCC Provider implementation may choose not to keep track of which Application
Protocol Entities have enabled or disabled monitoring for each entry and instead issue GCC-Registry-Monitor indications to the
GCCSAPs corresponding to all enrolled Application Protocol Entities when a RegistryMonitorEntryIndication PDU is received.

����� !LLOCATION�OF�UNIQUE�HANDLES

On receipt of a GCC-Registry-Allocate-Handle request primitive, a GCC Provider shall send a
RegistryAllocateHandleRequest PDU to the Top GCC Provider by issuing an MCS-Send-Data request specifying the
Node ID Channel of the Top GCC Provider as the Channel ID, specifying High data priority, and including the PDU in
the Data field. The content of the RegistryAllocateHandleRequest PDU is shown in Table 8-45.

TABLE 8-45/T.124

2EGISTRY!LLOCATE(ANDLE2EQUEST�'##0$5

On receipt of the RegistryAllocateHandleRequest PDU, the Top GCC Provider shall generate a unique set of handles of
the number requested. This shall be done by incrementing a 32-bit state variable after each allocation modulo 232, using
the incremented value for allocation of the next requested handle. If the full set of possible handles has been allocated,
the request is rejected indicating that no handles are available. If a sufficient number of handles are available, the handles
are returned to the requester by specifying the first allocated handle along with the number of allocated handles. The Top
GCC Provider returns the result by sending a RegistryAllocateHandleResponse PDU to the requester. This is done by
issuing an MCS-Send-Data request specifying the Node ID of the requester as the Channel ID, specifying High data
priority, and including the PDU in the Data field. The content of the RegistryAllocateHandleResponse PDU is shown in
Table 8-46. If the result was successful, the registry item parameter contains the list of handles.

TABLE 8-46/T.124

2EGISTRY!LLOCATE(ANDLE2ESPONSE�'##0$5

Content Source Sink

Entity ID Source GCC Provider Top GCC Provider

Number of Handles Request Top GCC Provider

Content Source Sink

Entity ID Top GCC Provider Destination GCC Provider

Number of Handles Top GCC Provider Confirm

First Handle Top GCC Provider Confirm

Result Top GCC Provider Confirm

3UPERSEDED�BY�A�MORE�RECENT�VERSION

124 2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION

On receipt of a RegistryAllocateHandleResponse indication, a GCC Provider shall generate a GCC-Registry-Allocate-
Handle confirm primitive and issue it to the GCCSAP of the Application Protocol Entity indicated by the Entity ID. If
the GCC Provider knows of no currently enrolled Application Protocol Entity with the corresponding Entity ID, the
indication is ignored and no further action is taken.

����� #HANGES�IN�OWNERSHIP�AND�REGISTRY�CLEANUP

Whenever the Application Roster is updated, the Top GCC Provider shall determine if any Application Protocol Entities
were removed from the roster. If so, it shall examine the entire registry data-base to determine if the disconnecting
Application Protocol Entities were the owner of any registry entries. If so, these entries are modified to indicate that
there is no current owner.

If the result of a change in the Application Roster indicates that all Application Protocol Entities in a session have
become un-enrolled, the Top GCC Provider shall examine all registry entries to determine if the Session Key portion of
the Registry Key matches the Session Key of the former session. For entries that do correspond to the removed session,
the Top GCC Provider shall delete the registry entry. If that registry entry corresponded to a Token type entry, the Top
GCC Provider may deallocate the Token to allow for its later reuse.

��� #ONFERENCE�#ONDUCTORSHIP

Conference conductorship is controlled through the use of the Conference-Conductorship-Token. When this token is free
the conference is in Non-Conducted Mode. When this token is grabbed the conference is in Conducted Mode, and the
grabber of the token is the Conference Conductor.

Upon acquiring the Conference-Conductorship-Token, the Conference Conductor (unless it is the Top GCC Provider
itself) shall demonstrate possession of the token to the Top GCC Provider by offering to give it away, invoking MCS-
Token-Give request and specifying the Top GCC Provider as recipient. The Top GCC Provider shall respond negatively
to the resulting MCS-Token-Give indication, leaving the token in possession of the Conference Conductor. If the token
is offered again later by the current Conference Conductor, the Top GCC Provider shall interpret it as part of a GCC-
Conductor-Give operation and need not refuse automatically.

����� 'RABBING�CONDUCTORSHIP

On receipt of a GCC-Conductor-Assign request primitive, a GCC Provider shall first examine the Conference Profile to
determine if the conference is conductible or not. If not, it shall generate a GCC-Conductor-Assign confirm primitive
with an unsuccessful result indicating that the conference is non-conductible. If the conference is conductible, the GCC
Provider shall then examine its local data-base to determine if it is currently the conference conductor. If so, it shall
generate a GCC-Conductor-Assign confirm primitive with a successful result and issue it to the Control GCCSAP. If
not, it shall attempt to grab the conductor token by issuing the MCS primitive MCS-Token-Grab request, specifying the
Conference-Conductorship-Token as the token ID to be grabbed.

On receipt of the MCS-Token-Grab confirm primitive, the GCC Provider shall examine the Result parameter. If the
Result is successful, the GCC Provider shall then issue the MCS primitive MCS-Token-Give request, specifying the
Conference-Conductorship-Token as the token ID to be offered and the Node ID of the Top GCC Provider as the User
ID to receive the token. On receipt of the MCS-Token-Give confirm primitive, the GCC Provider shall examine the
Result parameter. If the Result is unsuccessful, the GCC Provider shall locally generate the GCC-Conductor-Assign
confirm primitive indicating a successful result and issue it to the Control GCCSAP.

On receipt of an MCS-Token-Give indication specifying the Conference-Conductorship-Token as the token ID offered,
from a donor User ID that the Top GCC Provider does not recognize as the current Conference Conductor, the Top GCC
Provider shall update its records to recognize the donor as Conference Conductor. It shall also send a
ConductorAssignIndication PDU to all nodes in the conference by issuing an MCS-Uniform-Send-Data request
specifying the GCC-Broadcast-Channel as the Channel ID, specifying Top data priority, and including the PDU in the
Data field. The content of the ConductorAssignIndication PDU is shown in Table 8-47.

If the Result parameter of the MCS-Token-Grab confirm indicates an unsuccessful result or the Result parameter of the
MCS-Token-Give confirm indicates an successful result, the GCC Provider shall generate a GCC-Conductor-Assign
confirm primitive indicating a negative result which reflects the unsatisfactory result and issue it to the Control
GCCSAP.

3UPERSEDED�BY�A�MORE�RECENT�VERSION

2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION 125

TABLE 8-47/T.124

#ONDUCTOR!SSIGN)NDICATION�'##0$5

����� 2ELEASING�CONDUCTORSHIP

On receipt of a GCC-Conductor-Release request primitive, a GCC Provider shall first examine its local data-base to
determine if it is currently the conference conductor. If not, it shall generate a GCC-Conductor-Release confirm
primitive indicating a negative result and issue it to the Control GCCSAP. If it is currently the conductor, it shall first
send a ConductorReleaseIndication PDU to all nodes in the conference by issuing an MCS-Uniform-Send-Data request
specifying the GCC-Broadcast-Channel as the Channel ID, specifying Top data priority, and including the PDU in the
Data field. The content of the ConductorReleaseIndication PDU is shown in Table 8-48 (there are no parameters in this
PDU). It shall then release the conductor token by issuing the MCS primitive MCS-Token-Release request, specifying
the Conference-Conductorship-Token as the token ID to be released.

On receipt of the MCS-Token-Release confirm primitive, the GCC Provider shall locally generate the GCC-Conductor-
Release confirm primitive indicating a successful result and issue it to the Control GCCSAP.

TABLE 8-48/T.124

#ONDUCTOR2ELEASE)NDICATION�'##0$5

����� #ONDUCTOR�ASSIGNMENT�AND�RELEASE�INDICATIONS

A node which supports Application Protocols that are specified to behave differently in Conducted mode and Non-
conducted mode shall respond to receipt of ConductorAssignIndication and ConductorReleaseIndication PDUs. A node
which does not support such Application Protocols may choose to ignore these indications.

On receipt of a ConductorAssignIndication PDU as part of an MCS-Uniform-Send-Data indication, a GCC Provider
shall examine the Conference Profile to determine if the conference is conductible or not. If not, it shall ignore this PDU.
If the conference is conductible it may generate a GCC-Conductor-Assign indication primitive and issue it to the Control
GCCSAP as well as the GCCSAP of all enrolled Application Protocol Entities. It shall first determine if the Sender User
ID field of the MCS-Uniform-Send-Data indication indicates that the PDU was transmitted by the Top GCC Provider. If
not, the PDU shall be ignored, and no indication primitive shall be generated. If the PDU was transmitted by the Top
GCC Provider, the Node ID parameter of the primitive is set to the value indicated by the Conducting Node parameter in
the received PDU. For a node which supports conductorship primitives, the GCC Provider shall also store in its local
data-base the fact that the conference is now in conducted mode, as well as the Node ID of the conductor.

On receipt of a ConductorReleaseIndication PDU as part of an MCS-Uniform-Send-Data indication, a GCC Provider
may generate a GCC-Conductor-Release indication primitive and issue it to the Control GCCSAP as well as to the
GCCSAP of all enrolled Application Protocol Entities. It shall first determine if the Sender User ID field of the MCS-
Uniform-Send-Data indication indicates that the PDU was transmitted by the Top GCC Provider or by the node that it
currently records as the conductor. If not, the PDU shall be ignored, and no indication primitive shall be generated. For a
node which supports conductorship primitives, the GCC Provider shall also store in its local data-base the fact that the
conference is no longer in conducted mode. The GCC Provider shall also set its locally stored permission flag to indicate
that no conducted-mode permissions have been granted.

Content Source Sink

Conducting Node Top GCC Provider Destination GCC Provider

Content Source Sink

-- No parameters --

3UPERSEDED�BY�A�MORE�RECENT�VERSION

126 2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION

A GCC Provider shall preserve the order of received ConductorAssignIndication and ConductorReleaseIndication PDUs
in generation of the corresponding indication primitives.

The GCC Provider in a node which supports the conductorship primitives shall issue a GCC-Conductor-Assign or GCC-
Conductor-Release indication to the GCCSAP associated with an Application Protocol Entity which newly enrolls after
a conference has already been established. The current conductorship state as known by the GCC Provider determines
which of these two primitives to issue.

����� !SKING�TO�BE�GIVEN�CONDUCTORSHIP

On receipt of a GCC-Conductor-Please request primitive, a GCC Provider shall first examine its local data-base to
determine if the conference is in conducted mode. If not, it shall generate a GCC-Conductor-Please confirm with a
negative result indicating that the conference is not in conducted mode and issue it to the Control GCCSAP. If in
conducted mode, the GCC Provider issues an MCS-Token-Please request specifying the Conference-Conductorship-
Token as the token requested. It also shall generate a GCC-Conductor-Please confirm indicating a successful result and
issue it to the Control GCCSAP.

On receipt of an MCS-Token-Please indication specifying the Conference-Conductorship-Token as the Token ID, a
GCC Provider shall generate a GCC-Conductor-Please indication primitive indicating the Node ID of the requesting
node obtained from the User ID parameter received in the MCS-Token-Please indication and issue it to the Control
GCCSAP.

����� 'IVING�CONDUCTORSHIP

On receipt of a GCC-Conductor-Give request primitive, a GCC Provider shall first examine its local data-base to
determine if it is the current conference conductor. If not, it shall generate a GCC-Conductor-Give confirm with a
negative result indicating that the node is not currently the conductor and issue it to the Control GCCSAP. Otherwise,
the GCC Provider shall attempt to give conductorship to the specified node by issuing an MCS-Token-Give request
specifying the Conference-Conductorship-Token as the token ID, and the recipient node as specified in the GCC-
Conductor-Give request.

On receipt of the MCS-Token-Give confirm primitive, the GCC Provider shall examine the Result parameter. If the
Result is successful, the GCC Provider shall locally generate the GCC-Conductor-Give confirm primitive indicating a
successful result and issue it to the Control GCCSAP. If the Result parameter of the MCS-Token-Give confirm indicates
an unsuccessful result, the GCC Provider shall generate a GCC-Conductor-Give confirm primitive indicating a negative
result which reflects the result indicated by the MCS-Token-Grab confirm and issue it to the Control GCCSAP.

On receipt of the MCS-Token-Give indication primitive specifying the Conference-Conductorship-Token, a GCC
Provider other than the Top GCC Provider shall generate a GCC-Conductor-Give indication primitive and issue it to the
Control GCCSAP. On receipt of the GCC-Conductor-Give response, the GCC Provider shall examine the result
parameter. If the result is successful, the GCC Provider shall issue the MCS-Token-Give response indicating that the
token was accepted.

If the GCC-Conductor-Give response indicates that the token is not to be accepted, the GCC Provider shall issue the
MCS-Token-Give response indicating that the token was user-rejected.

If a node which does not support conductorship primitives receives an MCS-Token-Give indication, the GCC Provider
shall respond with an MCS-Token-Give response indicating a result of user-rejected.

On receipt of an MCS-Token-Give indication primitive specifying the Conference-Conductorship-Token from a donor
User ID that the Top GCC Provider does not record as the current conductor, the Top GCC Provider shall respond as
specified in 8.5.1, automatically rejecting the token. If it already recognizes the donor as conductor; however, the Top
GCC Provider shall generate a GCC-Conductor-Give indication primitive as specified above, like any other GCC
Provider.

3UPERSEDED�BY�A�MORE�RECENT�VERSION

2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION 127

����� 'ETTING�CONDUCTORSHIP�STATUS

On receipt of a GCC-Conductor-Inquire request, a GCC Provider shall first examine its own local data-base to determine
if the conference is currently in conducted mode. If not, the GCC Provider shall generate a GCC-Conductor-Inquire
confirm which indicates that the conference is not in conducted mode and issue it to the Control GCCSAP. Otherwise, it
shall generate a confirm indicating that the conference is in conducted mode, and shall specify the Node ID of the
conducting node as stored in its local data-base as the current conductor. In this case, if a node has just entered a
conference and has not yet received a ConductorAssignIndication PDU from the conductor (and does not yet have the
conductor’s Node ID in its local data-base), the GCC Provider shall wait until this PDU is received before generating the
GCC-Conductor-Inquire confirm.

If the conference is in conducted mode, the GCC Provider shall determine the setting of the Permission Flag to be
included in the GCC-Conductor-Inquire confirm by determining whether the local node is the current conductor (in
which case permission is assumed to be granted), or, if not, whether the Node ID of the local node had been listed in the
Permission List of most recent ConductorPermissionGrantIndication PDU which had been received since the last
transition from non-conducted to conducted mode. If the local node does appear in this list, this flag is set to TRUE. If
not, or if there had not been a ConductorPermissionGrantIndication PDU received since the most recent transition from
non-conducted to conducted mode, then this flag is set to FALSE.

����� #ONDUCTORSHIP�ANNOUNCEMENT�WHEN�NEW�NODES�ENTER�A�CONFERENCE

If the Top GCC Provider receives an update to the Conference Roster with the flag set indicating that new nodes are
present in the conference and the conference is currently in conducted mode, the Top GCC Provider shall send a
ConductorAssignIndication PDU to all nodes in the conference by issuing an MCS-Uniform-Send-Data request
specifying the GCC-Broadcast-Channel as the Channel ID, specifying Top data priority, and including the PDU in the
Data field. The content of the ConductorAssignIndication PDU is shown in Table 8-47. The Conducting Node parameter
indicates the Node ID of the current conductor.

If the Top GCC Provider receives an update to the Conference Roster with the flag set indicating that new nodes are
present in the conference and the conference is not currently in conducted mode, the Top GCC Provider shall send a
ConductorReleaseIndication PDU to all nodes by issuing an MCS-Uniform-Send-Data request specifying the GCC-
Broadcast-Channel as the Channel ID, specifying Top data priority, and including the PDU in the Data field. The content
of the ConductorReleaseIndication PDU is shown in Table 8-48.

If the Top GCC Provider receives a ConductorReleaseIndication from another node, which signals a change from the
current conductorship state, prior to receiving its own transmitted ConductorAssignIndication, the Top GCC Provider
shall re-issue a ConductorReleaseIndication to reflect the new state.

A node which has just become joined to a conference shall delay processing of any of the conductor related request
primitives until receiving either a ConductorAssignIndication or a ConductorReleaseIndication. This is because all
conductor related request primitives require that the local node check its local data-base of conductorship status which is
not in harmony with the actual status of the conference until one of these PDUs is received.

����� 5NEXPECTED�DISCONNECTION�OF�THE�CONDUCTOR

If the conductor of a conference unexpectedly disconnects from a conference, it may not have an opportunity to send a
ConductorReleaseIndication PDU to all nodes indicating that the conference is now in non-conducted mode. The GCC
Provider at each node (if it supports the conductorship primitives) shall monitor received MCS-Detach-User indications
and compare the User ID in the indication to the Node ID of the node that it currently believes to be the conductor. If
they match, the GCC Provider shall store in its local data-base that the conference is no longer in conducted mode, and
the GCC Provider shall generate a GCC-Conductor-Release indication and issue it to the Control GCCSAP as well as to
the GCCSAP of all enrolled Application Protocol Entities. The GCC Provider shall also set its locally stored permission
flag to indicate that no conducted-mode permissions have been granted.

3UPERSEDED�BY�A�MORE�RECENT�VERSION

128 2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION

����� !SKING�TO�BE�GIVEN�CONDUCTED
MODE�PERMISSION

On receipt of a GCC-Conductor-Permission-Ask request primitive via the Control GCCSAP, a GCC Provider which
supports this primitive shall first determine if the specified conference is in conducted mode. If not it shall generate a
GCC-Conductor-Permission-Ask confirm primitive and issue it to the Control GCCSAP indicating not-in-conducted-
mode as the result. If in conducted mode, it shall send a ConductorPermissionAskIndication PDU to the conductor of the
specified conference by issuing an MCS-Uniform-Send-Data request specifying the GCC-Broadcast-Channel as the
Channel ID, specifying High data priority, and including the PDU in the data field. The content of the
ConductorPermissionAskIndication PDU is shown in Table 8-49. When successfully completed, the GCC Provider shall
generate a GCC-Conductor-Permission-Ask confirm primitive and issue it to the Control GCCSAP indicating success as
the result.

TABLE 8-49/T.124

#ONDUCTOR0ERMISSION!SK)NDICATION�'##0$5

On receipt of a ConductorPermissionAskIndication PDU, a GCC Provider shall determine if it is currently the
conference conductor. If not, it shall ignore the PDU and take no further action. If so, if the GCC Provider supports the
corresponding primitive, it shall generate a GCC-Conductor-Permission-Ask indication primitive and issue it to the
Control GCCSAP. The Node ID of the Requester parameter shall be filled in with the Sender User ID parameter from
the received MCS-Uniform-Send-Data indication. A GCC Provider shall preserve the order of received
ConductorPermissionAskIndication PDUs in generating the corresponding indication primitives.

������ 'RANTING�CONDUCTED
MODE�PERMISSION

On receipt of a GCC-Conductor-Permission-Grant request via the Control GCCSAP, a GCC Provider which supports
this primitive shall first determine if it is currently the conductor of the specified conference. If not, it shall generate a
GCC-Conductor-Permission-Grant confirm indicating not-conductor as the reason for rejection, and issue it to the
Control GCCSAP. It shall then take no further action. If the node is the current conference conductor, the GCC Provider
shall broadcast a ConductorPermissionGrantIndication PDU to all nodes in the conference. See Table 8-50. It shall do
this by issuing an MCS-Uniform-Send-Data request specifying the GCC-Broadcast-Channel as the Channel ID,
specifying Top data priority, and including the PDU in the data field. The content of the ConductorAssignIndication
PDU is shown in Table 8-47. The permission and waiting list parameters are filled in with the list of Node IDs provided
in the corresponding parameters of the request primitive. The order of both lists is preserved. When successfully
completed, the GCC Provider shall generate a GCC-Conductor-Permission-Grant confirm primitive and issue it to the
Control GCCSAP indicating success as the result.

TABLE 8-50/T.124

#ONDUCTOR0ERMISSION'RANT)NDICATION�'##0$5

Content Source Sink

Grant/Release Flag Request Indication

Content Source Sink

Permission List Request Indication

Waiting List (optional) Request Indication

3UPERSEDED�BY�A�MORE�RECENT�VERSION

2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION 129

On receipt of a ConductorPermissionGrantIndication PDU, a GCC Provider which supports the corresponding primitive
shall first determine if the conference is currently in conducted mode. If not, it shall ignore the received PDU and take no
further action. If the conference is in conducted mode, it shall determine if this PDU was received from the node which
is the current conference conductor. If not, it shall also ignore this PDU and take no further action. If the source is the
current conductor, it shall generate a GCC-Conductor-Permission-Grant indication primitive and issue it to the Control
GCCSAP as well as to the GCCSAPs of all enrolled Application Protocol Entities. The Permission and Waiting Lists in
the indication primitive are filled in directly from the corresponding parameters of the PDU, preserving the order of
these lists. The GCC Provider shall examine the Permission List parameter and determine if the local node is included in
this list. If so, it shall set the Permission Flag parameter of the indication primitive to TRUE. Otherwise, it shall set this
flag to FALSE. A GCC Provider shall preserve the order of received ConductorPermissionGrantIndication PDUs in
generating the corresponding indication primitives.

��� -ISCELLANEOUS�FUNCTIONS

����� 4IMED�CONFERENCES

On receipt of a GCC-Conference-Time-Remaining request primitive, a GCC Provider shall send a
ConferenceTimeRemainingIndication PDU to all nodes in the specified conference by issuing an MCS-Uniform-Send-
Data request specifying the GCC-Broadcast-Channel as the Channel ID, specifying High data priority, and including the
PDU in the Data field. The content of the ConferenceTimeRemainingIndication PDU is shown in Table 8-51. The value
of the Time Remaining parameter is obtained from the contents of the request primitive. The GCC Provider shall also
generate a GCC-Conference-Time-Remaining confirm primitive indicating a successful result, and issue it to the Control
GCCSAP.

TABLE 8-51/T.124

#ONFERENCE4IME2EMAINING)NDICATION�'##0$5

On receipt of a ConferenceTimeRemainingIndication PDU, a GCC Provider may optionally generate a GCC-
Conference-Time-Remaining indication primitive and issue it to the Control GCCSAP. The Time Remaining parameter
is obtained from the contents of the PDU. The Source Node parameter is filled in from the Sender User ID in the
received MCS-Uniform-Send-Data indication.

On receipt of a GCC-Conference-Time-Inquire request primitive, a GCC Provider shall send a
ConferenceTimeInquireIndication PDU to the Conference Convener by issuing an MCS-Send-Data request specifying
the GCC-Convener-Channel as the Channel ID, specifying High data priority, and including the PDU in the Data field.
The content of the ConferenceTimeInquireIndication PDU is shown in Table 8-52. The GCC Provider shall then
generate a GCC-Conference-Time-Inquire confirm primitive and issue it to the Control GCCSAP.

TABLE 8-52/T.124

#ONFERENCE4IME)NQUIRE)NDICATION�'##0$5

Content Source Sink

Time Remaining Request Indication

Node Identifier (optional) Request Indication

Content Source Sink

Node-Specific Time Flag Request Indication

3UPERSEDED�BY�A�MORE�RECENT�VERSION

130 2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION

On receipt of a ConferenceTimeInquireIndication PDU, the GCC Provider (of the Conference Convener) may optionally
generate a GCC-Conference-Time-Inquire indication primitive and issue it to the Control GCCSAP. The Node ID of the
requester, as indicated in the Source Node parameter of the MCS-Send-Data indication, is used as the Node ID of the
Requesting Node parameter in the GCC-Conference-Time-Inquire indication primitive.

On receipt of a GCC-Conference-Extend request primitive, a GCC Provider shall send a
ConferenceTimeExtendIndication PDU to the Conference Convener by issuing an MCS-Send-Data request specifying
the GCC-Convener-Channel as the Channel ID, specifying High data priority, and including the PDU in the Data field.
The content of the ConferenceTimeExtendIndication PDU is shown in Table 8-53. The GCC Provider shall then
generate a GCC-Conference-Extend confirm primitive and issue it to the Control GCCSAP.

TABLE 8-53/T.124

#ONFERENCE4IME%XTEND)NDICATION�'##0$5

On receipt of a ConferenceTimeExtendIndication PDU, the GCC Provider (of the Conference Convener) may optionally
generate a GCC-Conference-Extend indication primitive and issue it to the Control GCCSAP. The Node ID of the
requester, as indicated in the Source Node parameter of the MCS-Send-Data indication, is used as the Node ID of the
Requesting Node parameter in the GCC-Conference-Extend indication primitive.

����� 2EQUESTING�CONFERENCE�ASSISTANCE

On receipt of a GCC-Conference-Assistance request primitive, a GCC Provider shall send a
ConferenceAssistanceIndication PDU to the all nodes in the specified conference by issuing an MCS-Send-Data or
MCS-Uniform-Send-Data request specifying the GCC-Broadcast-Channel as the Channel ID, specifying High data
priority, and including the PDU in the Data field. The content of the ConferenceAssistanceIndication PDU is shown in
Table 8-54. The GCC Provider shall then generate a GCC-Conference-Assistance confirm primitive indicating whether
the operation was successful.

TABLE 8-54/T.124

#ONFERENCE!SSISTANCE)NDICATION�'##0$5

On receipt of the ConferenceAssistanceIndication PDU, a node which supports this function may generate a GCC-
Conference-Assistance indication primitive and issue it to the Control GCCSAP. The Source Node parameter is obtained
from the Sender User ID in the received MCS-Uniform-Send-Data indication.

Content Source Sink

Time to Extend Request Indication

Node-Specific Time Flag Request Indication

Content Source Sink

User Data (optional) Request Indication

3UPERSEDED�BY�A�MORE�RECENT�VERSION

2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION 131

����� "ROADCASTING�A�TEXT�MESSAGE

On receipt of a GCC-Text-Message request primitive, if no Destination Node parameter was included in the request, a
GCC Provider shall send a TextMessageIndication PDU to the all nodes in the specified conference by issuing either an
MCS-Send-Data request or MCS-Uniform-Send-Data request specifying the GCC-Broadcast-Channel as the Channel
ID, specifying High data priority, and including the PDU in the Data field. If a Destination Node was indicated, the GCC
Provider shall send the same PDU to that node by issuing an MCU-Send-Data request specifying the Node ID of the
requested node as the Channel ID, specifying High data priority, and including the PDU in the Data field. The content of
the TextMessageIndication PDU is shown in Table 8-55. The GCC Provider shall then generate a GCC-Text-Message
confirm primitive indicating whether the operation was successful.

TABLE 8-55/T.124

4EXT-ESSAGE)NDICATION�'##0$5

On receipt of the TextMessageIndication PDU, a node which supports this function may generate a GCC-Text-Message
indication primitive and issue it to the Control GCCSAP. The Source Node parameter is obtained from the Sender User
ID in the received MCS-Uniform-Send-Data indication.

��� '##0$5�DEFINITIONS

The structure of GCCPDUs is specified as follows using the notation ASN.1 of Recommendation X.680. All GCCPDUs
shall be encoded for transmission by applying the Packed Encoding Rules of Recommendation X.691 using the Basic
Aligned variant.

NOTE – The use of Automatic Tags in the GCC protocol definition implies that the order of SEQUENCE and CHOICE
structures contained within this definition effects the actual encoded values.

'##
02/4/#/,�$%&).)4)/.3�!54/-!4)#�4!'3����
"%').

��%XPORT�ALL�SYMBOLS

��0ART����%LEMENTS�OF�WHICH�MESSAGES�ARE�COMPOSED

#HANNEL)$ ����).4%'%2����������	
3TATIC#HANNEL)$ ����).4%'%2���������	

��4HOSE�ASSIGNED�BY�SPECIFICATIONS
$YNAMIC#HANNEL)$ ����).4%'%2�������������	

��4HOSE�CREATED�AND�DELETED�BY�-#3
5SER)$ ����$YNAMIC#HANNEL)$

4OKEN)$ ����).4%'%2����������	
3TATIC4OKEN)$ ����).4%'%2����������	

��4HOSE�ASSIGNED�BY�SPECIFICATIONS
$YNAMIC4OKEN)$ ����).4%'%2��������������	

��4HOSE�ASSIGNED�BY�THE�REGISTRY

4IME ����).4%'%2��
����������������������	

��4IME�IN�SECONDS
(ANDLE ����).4%'%2���������������	

����
BIT�VALUE

(���.ON3TANDARD)DENTIFIER�����/#4%4�342).'��3):%��������		

��&IRST�FOUR�OCTETS�SHALL�BE�COUNTRY�CODE�AND

��-ANUFACTURER�CODE��ASSIGNED�AS�SPECIFIED�IN

��!NNEX�!�(�����FOR�.3
CAP�AND�.3
COMM

+EY�����#(/)#%

��)DENTIFIER�OF�A�STANDARD�OR�NON
STANDARD�OBJECT
[

OBJECT /"*%#4�)$%.4)&)%2�
H���.ON3TANDARD (���.ON3TANDARD)DENTIFIER

]

Content Source Sink

Message Request Indication

3UPERSEDED�BY�A�MORE�RECENT�VERSION

132 2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION

.ON3TANDARD0ARAMETER�����3%15%.#%
[

KEY +EY�
DATA /#4%4�342).'

]

4EXT3TRING�����"-03TRING��3):%��������		

��"ASIC�-ULTILINGUAL�0LANE�OF�)3/�)%#������
���5NICODE	

SIMPLE4EXT&IRST#HARACTER�5NIVERSAL3TRING�����[����������]

SIMPLE4EXT,AST#HARACTER�5NIVERSAL3TRING�����[������������]

3IMPLE4EXT3TRING�����"-03TRING��3):%��������		��&2/-��SIMPLE4EXT&IRST#HARACTER��SIMPLE4EXT,AST#HARACTER		

3IMPLE.UMERIC3TRING�����.UMERIC3TRING��3):%��������		��&2/-�� ���������� 		

$IALING3TRING�����.UMERIC3TRING��3):%�������		��&2/-�� ���������� 		

3UB!DDRESS3TRING�����.UMERIC3TRING��3):%�������		��&2/-�� ���������� 		

%XTRA$IALING3TRING�����4EXT3TRING��3):%��������		��&2/-�� �����������
� 		

5SER$ATA�����3%4�/&�3%15%.#%
[

KEY +EY�
VALUE /#4%4�342).'�/04)/.!,

]

0ASSWORD�����3%15%.#%
[

NUMERIC 3IMPLE.UMERIC3TRING�
TEXT 3IMPLE4EXT3TRING�/04)/.!,�
���

]

0ASSWORD3ELECTOR�����#(/)#%
[

NUMERIC 3IMPLE.UMERIC3TRING�
TEXT 3IMPLE4EXT3TRING�
���

]

#HALLENGE2ESPONSE)TEM�����#(/)#%
[

PASSWORD3TRING 0ASSWORD3ELECTOR�
RESPONSE$ATA 5SER$ATA�
���

]

#HALLENGE2ESPONSE!LGORITHM�����#(/)#%
[

PASSWORD)N4HE#LEAR .5,,�
NON3TANDARD!LGORITHM .ON3TANDARD0ARAMETER�
���

]

#HALLENGE)TEM�����3%15%.#%
[

RESPONSE!LGORITHM #HALLENGE2ESPONSE!LGORITHM�
CHALLENGE$ATA 5SER$ATA�
���

]

#HALLENGE2EQUEST�����3%15%.#%
[

CHALLENGE4AG).4%'%2�
CHALLENGE3ET 3%4�/&�#HALLENGE)TEM�

��3ET�OF�ALGORITHMS�OFFERED�FOR�RESPONSE
���

]

3UPERSEDED�BY�A�MORE�RECENT�VERSION

2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION 133

#HALLENGE2ESPONSE�����3%15%.#%
[

CHALLENGE4AG).4%'%2�
RESPONSE!LGORITHM #HALLENGE2ESPONSE!LGORITHM�

��3PECIFIC�ALGORITHM�SELECTED�FROM�THE�SET�OF

��ITEMS�PRESENTED�IN�THE�#HALLENGE2EQUEST

RESPONSE)TEM #HALLENGE2ESPONSE)TEM�
���

]

0ASSWORD#HALLENGE2EQUEST2ESPONSE�����#(/)#%
[

PASSWORD)N4HE#LEAR 0ASSWORD3ELECTOR�
CHALLENGE2EQUEST2ESPONSE 3%15%.#%
[

CHALLENGE2EQUEST #HALLENGE2EQUEST�/04)/.!,�
CHALLENGE2ESPONSE #HALLENGE2ESPONSE�/04)/.!,�
���

]�
���

]

#ONFERENCE.AME�����3%15%.#%
[

NUMERIC 3IMPLE.UMERIC3TRING�
TEXT 3IMPLE4EXT3TRING�/04)/.!,�
���

]

#ONFERENCE.AME3ELECTOR�����#(/)#%
[

NUMERIC 3IMPLE.UMERIC3TRING�
TEXT 3IMPLE4EXT3TRING�
���

]

#ONFERENCE.AME-ODIFIER�����3IMPLE.UMERIC3TRING

0RIVILEGE������%.5-%2!4%$
[

TERMINATE ��	�
EJECT5SER ��	�
ADD ��	�
LOCK5NLOCK ��	�
TRANSFER ��	�
���

]

4ERMINATION-ETHOD�����%.5-%2!4%$
[

AUTOMATIC ��	�
MANUAL ��	�
���

]

.ETWORK!DDRESS�����3%15%.#%��3):%�������		�/&�#(/)#%

��,ISTED�IN�ORDER�OF�USE
[

AGGREGATED#HANNEL 3%15%.#%
[

TRANSFER-ODES 3%15%.#%

��/NE�OR�MORE
[

SPEECH "//,%!.�
VOICE
BAND "//,%!.�
DIGITAL
��K "//,%!.�
DIGITAL
��K "//,%!.�
DIGITAL
���K "//,%!.�
DIGITAL
���K "//,%!.�
DIGITAL
���K "//,%!.�
DIGITAL
���K "//,%!.�

3UPERSEDED�BY�A�MORE�RECENT�VERSION

134 2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION

DIGITAL
���K "//,%!.�
DIGITAL
���K "//,%!.�
DIGITAL
���K "//,%!.�
DIGITAL
����K "//,%!.�
DIGITAL
����K "//,%!.�
DIGITAL
����K "//,%!.�
DIGITAL
����K "//,%!.�
PACKET
MODE "//,%!.�
FRAME
MODE "//,%!.�
ATM "//,%!.�
���

]�

INTERNATIONAL.UMBER $IALING3TRING�
SUB!DDRESS 3UB!DDRESS3TRING�/04)/.!,�
EXTRA$IALING %XTRA$IALING3TRING�/04)/.!,�

HIGH,AYER#OMPATIBILITY 3%15%.#%
[

TELEPHONY�K(Z "//,%!.�
TELEPHONY�K(Z "//,%!.�
VIDEOTELEPHONY "//,%!.�
VIDEOCONFERENCE "//,%!.�
AUDIOGRAPHIC "//,%!.�
AUDIOVISUAL "//,%!.�
MULTIMEDIA "//,%!.�
���

]�/04)/.!,�
���

]�

TRANSPORT#ONNECTION 3%15%.#%
[

NSAP!DDRESS /#4%4�342).'��3):%�������		�
TRANSPORT3ELECTOR /#4%4�342).'�/04)/.!,

]�

NON3TANDARD .ON3TANDARD0ARAMETER�
���

]

.ODE4YPE�����%.5-%2!4%$
[

TERMINAL ��	�
MULTIPORT4ERMINAL ��	�
MCU ��	�
���

]

.ODE0ROPERTIES�����3%15%.#%
[

MANAGEMENT$EVICE "//,%!.�

��)S�THE�NODE�A�DEVICE�SUCH�AS�A�RESERVATION�SYSTEM
PERIPHERAL$EVICE "//,%!.�

��)S�THE�NODE�A�PERIPHERAL�TO�A�PRIMARY�NODE
���

]

!SYMMETRY)NDICATOR�����#(/)#%
[

CALLING.ODE .5,,�
CALLED.ODE .5,,�
UNKNOWN).4%'%2���������������	

��5NIFORMLY�DISTRIBUTED���
BIT�RANDOM�NUMBER

]

!LTERNATIVE.ODE)$�����#(/)#%
[

H���.ODE)$ /#4%4�342).'��3):%���		�
���

]

3UPERSEDED�BY�A�MORE�RECENT�VERSION

2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION 135

#ONFERENCE$ESCRIPTOR�����3%15%.#%
[

CONFERENCE.AME #ONFERENCE.AME�
CONFERENCE.AME-ODIFIER #ONFERENCE.AME-ODIFIER�/04)/.!,�
CONFERENCE$ESCRIPTION 4EXT3TRING�/04)/.!,�
LOCKED#ONFERENCE "//,%!.�
PASSWORD)N4HE#LEAR2EQUIRED "//,%!.�
NETWORK!DDRESS .ETWORK!DDRESS�/04)/.!,�
���

]

.ODE2ECORD�����3%15%.#%
[

SUPERIOR.ODE 5SER)$�/04)/.!,�

��.OT�PRESENT�ONLY�FOR�THE�4OP�'##�0ROVIDER
NODE4YPE .ODE4YPE�
NODE0ROPERTIES .ODE0ROPERTIES�
NODE.AME 4EXT3TRING�/04)/.!,�
PARTICIPANTS,IST 3%15%.#%�/&�4EXT3TRING�/04)/.!,�
SITE)NFORMATION 4EXT3TRING�/04)/.!,�
NETWORK!DDRESS .ETWORK!DDRESS�/04)/.!,�
ALTERNATIVE.ODE)$!LTERNATIVE.ODE)$�/04)/.!,�
USER$ATA 5SER$ATA�/04)/.!,�
���

]

3ESSION+EY�����3%15%.#%
[

APPLICATION0ROTOCOL+EY +EY�
SESSION)$ #HANNEL)$�/04)/.!,

]

#HANNEL4YPE�����%.5-%2!4%$
[

STATIC ��	�
DYNAMIC-ULTICAST ��	�
DYNAMIC0RIVATE ��	�
DYNAMIC5SER)D ��	

]

!PPLICATION2ECORD�����3%15%.#%
[

APPLICATION!CTIVE "//,%!.�

��!CTIVE�)NACTIVE�FLAG
CONDUCTING/PERATION#APABLE "//,%!.�

��-AXIMUM�ONE�PER�NODE�PER�SESSION
STARTUP#HANNEL #HANNEL4YPE�/04)/.!,�
APPLICATION5SER)$ 5SER)$�/04)/.!,���

��5SER�)$�ASSIGNED�TO�THE�!PPLICATION�0ROTOCOL�%NTITY
NON#OLLAPSING#APABILITIES 3%4�/&�3%15%.#%
[

CAPABILITY)$ #APABILITY)$�
APPLICATION$ATA /#4%4�342).'�/04)/.!,

]�/04)/.!,�
���

]

#APABILITY)$�����#(/)#%
[

STANDARD).4%'%2����������	�

��!SSIGNED�BY�!PPLICATION�0ROTOCOL�SPECIFICATIONS
NON3TANDARD +EY

]

#APABILITY#LASS�����#(/)#%
[

LOGICAL .5,,�
UNSIGNED-IN).4%'%2�����-!8	�

��#APABILITY�VALUE
UNSIGNED-AX).4%'%2�����-!8	�

��#APABILITY�VALUE
���

]

3UPERSEDED�BY�A�MORE�RECENT�VERSION

136 2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION

%NTITY)$�����).4%'%2����������	

!PPLICATION)NVOKE3PECIFIER�����3%15%.#%
[
�� SESSION+EY 3ESSION+EY�

EXPECTED#APABILITY3ET 3%4�/&�3%15%.#%
[

CAPABILITY)$ #APABILITY)$�
CAPABILITY#LASS #APABILITY#LASS�
���

]�/04)/.!,�
STARTUP#HANNEL #HANNEL4YPE�/04)/.!,�
MANDATORY&LAG "//,%!.�

��425%�INDICATES�REQUIRED�!PPLICATION�0ROTOCOL�%NTITY
���

]

2EGISTRY+EY�����3%15%.#%
[

SESSION+EY 3ESSION+EY�
RESOURCE)$ /#4%4�342).'��3):%�������		

]

2EGISTRY)TEM �����#(/)#%
[

CHANNEL)$ $YNAMIC#HANNEL)$�
TOKEN)$ $YNAMIC4OKEN)$�
PARAMETER /#4%4�342).'��3):%�������		�
VACANT .5,,�
���

]

2EGISTRY%NTRY/WNER�����#(/)#%
[

OWNED 3%15%.#%
[

NODE)$ 5SER)$�

��.ODE�)$�OF�THE�OWNING�NODE
ENTITY)$ %NTITY)$

��%NTITY�)$�OF�THE�OWNING

]�

��!PPLICATION�0ROTOCOL�%NTITY
NOT/WNED .5,,

��4HERE�IS�NO�CURRENT�OWNER

]

2EGISTRY-ODIFICATION2IGHTS�����%.5-%2!4%$
[

OWNER ��	�
SESSION ��	�
PUBLIC ��	

]

��0ART����0$5�-ESSAGES

5SER)$)NDICATION�����3%15%.#%
[

TAG).4%'%2�
���

]

#ONFERENCE#REATE2EQUEST�����3%15%.#%
[

��-#3
#ONNECT
0ROVIDER�REQUEST�USER�DATA

CONFERENCE.AME #ONFERENCE.AME�
CONVENER0ASSWORD 0ASSWORD�/04)/.!,�
PASSWORD 0ASSWORD�/04)/.!,�
LOCKED#ONFERENCE "//,%!.�
LISTED#ONFERENCE "//,%!.�
CONDUCTIBLE#ONFERENCE "//,%!.�
TERMINATION-ETHOD 4ERMINATION-ETHOD�
CONDUCTOR0RIVILEGES 3%4�/&�0RIVILEGE�/04)/.!,�

3UPERSEDED�BY�A�MORE�RECENT�VERSION

2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION 137

CONDUCTED0RIVILEGES 3%4�/&�0RIVILEGE�/04)/.!,�
NON#ONDUCTED0RIVILEGES 3%4�/&�0RIVILEGE�/04)/.!,�
CONFERENCE$ESCRIPTION 4EXT3TRING�/04)/.!,�
CALLER)DENTIFIER 4EXT3TRING�/04)/.!,�
USER$ATA 5SER$ATA�/04)/.!,�
���

]

#ONFERENCE#REATE2ESPONSE�����3%15%.#%
[

��-#3
#ONNECT
0ROVIDER�RESPONSE�USER�DATA

NODE)$ 5SER)$�

��.ODE�)$�OF�THE�SENDING�NODE
TAG).4%'%2�
RESULT %.5-%2!4%$
[

SUCCESS ��	�
USER2EJECTED ��	�
RESOURCES.OT!VAILABLE ��	�
REJECTED&OR3YMMETRY"REAKING ��	�
LOCKED#ONFERENCE.OT3UPPORTED ��	�
���

]�
USER$ATA 5SER$ATA�/04)/.!,�
���

]

#ONFERENCE1UERY2EQUEST�����3%15%.#%
[

��-#3
#ONNECT
0ROVIDER�REQUEST�USER�DATA

NODE4YPE .ODE4YPE�
ASYMMETRY)NDICATOR !SYMMETRY)NDICATOR�/04)/.!,�
USER$ATA 5SER$ATA�/04)/.!,�
���

]

#ONFERENCE1UERY2ESPONSE�����3%15%.#%
[

��-#3
#ONNECT
0ROVIDER�RESPONSE�USER�DATA

NODE4YPE .ODE4YPE�
ASYMMETRY)NDICATOR !SYMMETRY)NDICATOR�/04)/.!,�
CONFERENCE,IST 3%4�/&�#ONFERENCE$ESCRIPTOR�
RESULT %.5-%2!4%$
[

SUCCESS ��	�
USER2EJECTED ��	�
���

]�
USER$ATA 5SER$ATA�/04)/.!,�
���

]

#ONFERENCE*OIN2EQUEST�����3%15%.#%

[

��-#3
#ONNECT
0ROVIDER�REQUEST�USER�DATA�AS�WELL�AS

��-#3
3END
$ATA�ON�.ODE�)$�#HANNEL�OF�4OP�'##�SENT

��BY�THE�RECEIVER�OF�THE�-#3
#ONNECT
0ROVIDER

CONFERENCE.AME #ONFERENCE.AME3ELECTOR�/04)/.!,�

��2EQUIRED�WHEN�PART�OF�-#3
#ONNECT
0ROVIDER

CONFERENCE.AME-ODIFIER #ONFERENCE.AME-ODIFIER�/04)/.!,�
TAG).4%'%2�/04)/.!,���

��&ILLED�IN�WHEN�SENT�ON�.ODE�)$�#HANNEL�OF�4OP�'##
PASSWORD 0ASSWORD#HALLENGE2EQUEST2ESPONSE�/04)/.!,�
CONVENER0ASSWORD 0ASSWORD3ELECTOR�/04)/.!,�
CALLER)DENTIFIER 4EXT3TRING�/04)/.!,�
USER$ATA 5SER$ATA�/04)/.!,�
���

]

3UPERSEDED�BY�A�MORE�RECENT�VERSION

138 2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION

#ONFERENCE*OIN2ESPONSE�����3%15%.#%
[

��-#3
#ONNECT
0ROVIDER�RESPONSE�USER�DATA�AS�WELL�AS

��-#3
3END
$ATA�ON�.ODE�)$�#HANNEL�OF

��THE�RECEIVER�OF�THE�-#3
#ONNECT
0ROVIDER

NODE)$ 5SER)$�/04)/.!,�

��.ODE�)$�OF�DIRECTLY�CONNECTED�NODE�ONLY
TOP.ODE)$ 5SER)$��

��.ODE�)$�OF�4OP�'##�0ROVIDER
TAG).4%'%2�
CONFERENCE.AME!LIAS #ONFERENCE.AME3ELECTOR�/04)/.!,�
PASSWORD)N4HE#LEAR2EQUIRED "//,%!.�
LOCKED#ONFERENCE "//,%!.�
LISTED#ONFERENCE "//,%!.�
CONDUCTIBLE#ONFERENCE "//,%!.�
TERMINATION-ETHOD 4ERMINATION-ETHOD�
CONDUCTOR0RIVILEGES 3%4�/&�0RIVILEGE�/04)/.!,� �

��.O�PRIVILEGE�SHALL�BE�LISTED�MORE�THAN�ONCE
CONDUCTED0RIVILEGES 3%4�/&�0RIVILEGE�/04)/.!,� �

��.O�PRIVILEGE�SHALL�BE�LISTED�MORE�THAN�ONCE
NON#ONDUCTED0RIVILEGES 3%4�/&�0RIVILEGE�/04)/.!,� �

��.O�PRIVILEGE�SHALL�BE�LISTED�MORE�THAN�ONCE
CONFERENCE$ESCRIPTION 4EXT3TRING�/04)/.!,�
PASSWORD 0ASSWORD#HALLENGE2EQUEST2ESPONSE�/04)/.!,�
RESULT %.5-%2!4%$
[

SUCCESS ��	�
USER2EJECTED ��	�
INVALID#ONFERENCE ��	�
INVALID0ASSWORD ��	�
INVALID#ONVENER0ASSWORD ��	�
CHALLENGE2ESPONSE2EQUIRED ��	�
INVALID#HALLENGE2ESPONSE ��	�
���

]�
USER$ATA 5SER$ATA�/04)/.!,�
���

]

#ONFERENCE)NVITE2EQUEST�����3%15%.#%
[

��-#3
#ONNECT
0ROVIDER�REQUEST�USER�DATA

CONFERENCE.AME #ONFERENCE.AME�
NODE)$ 5SER)$�

��.ODE�)$�OF�THE�SENDING�NODE
TOP.ODE)$ 5SER)$�

��.ODE�)$�OF�4OP�'##�0ROVIDER
TAG).4%'%2�
PASSWORD)N4HE#LEAR2EQUIRED "//,%!.�
LOCKED#ONFERENCE "//,%!.�
LISTED#ONFERENCE "//,%!.�
CONDUCTIBLE#ONFERENCE "//,%!.�
TERMINATION-ETHOD 4ERMINATION-ETHOD�
CONDUCTOR0RIVILEGES 3%4�/&�0RIVILEGE�/04)/.!,� �

��.O�PRIVILEGE�SHALL�BE�LISTED�MORE�THAN�ONCE
CONDUCTED0RIVILEGES 3%4�/&�0RIVILEGE�/04)/.!,� �

��.O�PRIVILEGE�SHALL�BE�LISTED�MORE�THAN�ONCE
NON#ONDUCTED0RIVILEGES 3%4�/&�0RIVILEGE�/04)/.!,� �

��.O�PRIVILEGE�SHALL�BE�LISTED�MORE�THAN�ONCE
CONFERENCE$ESCRIPTION 4EXT3TRING�/04)/.!,�
CALLER)DENTIFIER 4EXT3TRING�/04)/.!,�
USER$ATA 5SER$ATA�/04)/.!,�
���

]

#ONFERENCE)NVITE2ESPONSE�����3%15%.#%
[

��-#3
#ONNECT
0ROVIDER�RESPONSE�USER�DATA

RESULT %.5-%2!4%$
[

SUCCESS ��	�
USER2EJECTED ��	�
���

]�
USER$ATA 5SER$ATA�/04)/.!,�
���

]

3UPERSEDED�BY�A�MORE�RECENT�VERSION

2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION 139

#ONFERENCE!DD2EQUEST�����3%15%.#%

[

��-#3
3END
$ATA�ON�.ODE�)$�#HANNEL�OF�4OP�'##�OR

��.ODE�)$�#HANNEL�OF�!DDING�-#5�IF�SPECIFIED

NETWORK!DDRESS .ETWORK!DDRESS�
REQUESTING.ODE 5SER)$�
TAG).4%'%2�
ADDING-#5 5SER)$�/04)/.!,�
USER$ATA 5SER$ATA�/04)/.!,�
���

]

#ONFERENCE!DD2ESPONSE�����3%15%.#%

[

��-#3
3END
$ATA�ON�.ODE�)$�#HANNEL�OF�REQUESTER

TAG).4%'%2�
RESULT %.5-%2!4%$
[

SUCCESS ��	�
INVALID2EQUESTER ��	�
INVALID.ETWORK4YPE ��	�
INVALID.ETWORK!DDRESS ��	�
ADDED.ODE"USY ��	�
NETWORK"USY ��	�
NO0ORTS!VAILABLE ��	�
CONNECTION5NSUCCESSFUL ��	�
���

]�
USER$ATA 5SER$ATA�/04)/.!,�
���

]

#ONFERENCE,OCK2EQUEST�����3%15%.#%

[

��-#3
3END
$ATA�ON�.ODE�)$�#HANNEL�OF�4OP�'##

��.O�PARAMETERS
���

]

#ONFERENCE,OCK2ESPONSE�����3%15%.#%

[

��-#3
3END
$ATA�ON�.ODE�)$�#HANNEL�OF�REQUESTER
RESULT %.5-%2!4%$
[

SUCCESS ��	�
INVALID2EQUESTER ��	�
ALREADY,OCKED ��	�
���

]�
���

]

#ONFERENCE,OCK)NDICATION�����3%15%.#%

[

��-#3
5NIFORM
3END
$ATA�ON�'##
"ROADCAST
#HANNEL

��OR�-#3
3END
$ATA�ON�.ODE�)$�#HANNEL

��.O�PARAMETERS
���

]

#ONFERENCE5NLOCK2EQUEST�����3%15%.#%

[

��-#3
3END
$ATA�ON�.ODE�)$�#HANNEL�OF�4OP�'##

��.O�PARAMETERS
���

]

3UPERSEDED�BY�A�MORE�RECENT�VERSION

140 2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION

#ONFERENCE5NLOCK2ESPONSE�����3%15%.#%

[

��-#3
3END
$ATA�ON�.ODE�)$�#HANNEL�OF�REQUESTER
RESULT %.5-%2!4%$
[

SUCCESS ��	�
INVALID2EQUESTER ��	�
ALREADYUNLOCKED ��	�
���

]�
���

]

#ONFERENCE5NLOCK)NDICATION�����3%15%.#%

[

��-#3
5NIFORM
3END
$ATA�ON�'##
"ROADCAST
#HANNEL

��OR�-#3
3END
$ATA�ON�.ODE�)$�#HANNEL

��.O�PARAMETERS
���

]

#ONFERENCE4ERMINATE2EQUEST�����3%15%.#%

[

��-#3
3END
$ATA�ON�.ODE�)$�#HANNEL�OF�4OP�'##
REASON %.5-%2!4%$
[

USER)NITIATED ��	�
TIMED#ONFERENCE4ERMINATION ��	�
���

]�
���

]

#ONFERENCE4ERMINATE2ESPONSE�����3%15%.#%

[

��-#3
3END
$ATA�ON�.ODE�)$�#HANNEL�OF�REQUESTER
RESULT %.5-%2!4%$
[

SUCCESS ��	�
INVALID2EQUESTER ��	�
���

]�
���

]

#ONFERENCE4ERMINATE)NDICATION�����3%15%.#%

[

��-#3
5NIFORM
3END
$ATA�ON�'##
"ROADCAST
#HANNEL
REASON %.5-%2!4%$
[

USER)NITIATED ��	�
TIMED#ONFERENCE4ERMINATION ��	�
���

]�
���

]

#ONFERENCE%JECT5SER2EQUEST�����3%15%.#%
[

��-#3
3END
$ATA�ON�.ODE�)$�#HANNEL�OF�4OP�'##

NODE4O%JECT 5SER)$�

��.ODE�)$�OF�THE�NODE�TO�EJECT
REASON %.5-%2!4%$
[

USER)NITIATED ��	�
���

]�
���

]

3UPERSEDED�BY�A�MORE�RECENT�VERSION

2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION 141

#ONFERENCE%JECT5SER2ESPONSE�����3%15%.#%

[

��-#3
3END
$ATA�ON�.ODE�)$�#HANNEL�OF�REQUESTER
NODE4O%JECT 5SER)$�

��.ODE�)$�OF�THE�NODE�TO�EJECT
RESULT %.5-%2!4%$
[

SUCCESS ��	�
INVALID2EQUESTER ��	�
INVALID.ODE ��	�
���

]�
���

]

#ONFERENCE%JECT5SER)NDICATION�����3%15%.#%

[

��-#3
5NIFORM
3END
$ATA�ON�'##
"ROADCAST
#HANNEL
NODE4O%JECT 5SER)$�

��.ODE�)$�OF�THE�NODE�TO�EJECT
REASON %.5-%2!4%$
[

USER)NITIATED ��	�
HIGHER.ODE$ISCONNECTED ��	�
HIGHER.ODE%JECTED ��	�
���

]�
���

]

#ONFERENCE4RANSFER2EQUEST�����3%15%.#%

[

��-#3
3END
$ATA�ON�.ODE�)$�#HANNEL�OF�4OP�'##
CONFERENCE.AME #ONFERENCE.AME3ELECTOR� ��

��.AME�OF�CONFERENCE�TO�TRANSFER�TO
CONFERENCE.AME-ODIFIER #ONFERENCE.AME-ODIFIER�/04)/.!,�
NETWORK!DDRESS .ETWORK!DDRESS�/04)/.!,�
TRANSFERRING.ODES 3%4��3):%����������		�/&�5SER)$�/04)/.!,�
PASSWORD 0ASSWORD3ELECTOR�/04)/.!,�
���

]

#ONFERENCE4RANSFER2ESPONSE �����3%15%.#%

[

��-#3
3END
$ATA�ON�.ODE�)$�#HANNEL�OF�REQUESTER
CONFERENCE.AME #ONFERENCE.AME3ELECTOR���

��.AME�OF�CONFERENCE�TO�TRANSFER�TO
CONFERENCE.AME-ODIFIER #ONFERENCE.AME-ODIFIER�/04)/.!,�
TRANSFERRING.ODES 3%4��3):%����������		�/&�5SER)$�/04)/.!,�
RESULT %.5-%2!4%$
[

SUCCESS ��	�
INVALID2EQUESTER ��	�
���

]�
���

]

#ONFERENCE4RANSFER)NDICATION�����3%15%.#%

[

��-#3
5NIFORM
3END
$ATA�ON�'##
"ROADCAST
#HANNEL
CONFERENCE.AME #ONFERENCE.AME3ELECTOR� ��

��.AME�OF�CONFERENCE�TO�TRANSFER�TO
CONFERENCE.AME-ODIFIER #ONFERENCE.AME-ODIFIER�/04)/.!,�
NETWORK!DDRESS .ETWORK!DDRESS�/04)/.!,�
TRANSFERRING.ODES 3%4��3):%����������		�/&�5SER)$�/04)/.!,�

��,IST�OF�.ODE�)$S�

��NOT�PRESENT�IF�DESTINED�FOR�ALL�NODES

PASSWORD 0ASSWORD3ELECTOR�/04)/.!,�
���

]

3UPERSEDED�BY�A�MORE�RECENT�VERSION

142 2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION

2OSTER5PDATE)NDICATION�����3%15%.#%

[

��-#3
3END
$ATA�ON�.ODE�)$�#HANNEL�OR

��-#3
5NIFORM
3END
$ATA�ON�'##
"ROADCAST
#HANNEL

FULL2EFRESH "//,%!.�

��#ONFERENCE�2OSTER�AND�ALL

��!PPLICATION0ROTOCOL�3ESSIONS�REFRESHED

NODE)NFORMATION 3%15%.#%

[

NODE2ECORD,IST #(/)#%

[

NO#HANGE .5,,�

REFRESH 3%4��3):%����������		�/&�3%15%.#%

��/NE�FOR�EACH�NODE�IN�THE�CONFERENCE�

��NO�NODE�SHALL�BE�LISTED�MORE�THAN�ONCE

[

NODE)$ 5SER)$�

��.ODE�)$�OF�THE�NODE
NODE2ECORD .ODE2ECORD

]�

UPDATE 3%4��3):%����������		�/&�3%15%.#%

��/NE�FOR�EACH�NODE�CHANGING�ITS�NODE�RECORD�

��NO�NODE�SHALL�BE�LISTED�MORE�THAN�ONCE

[

NODE)$ 5SER)$�

��.ODE�)$�OF�THE�NODE
NODE5PDATE #(/)#%

[

ADD2ECORD .ODE2ECORD�

REPLACE2ECORD .ODE2ECORD�

REMOVE2ECORD .5,,�

���

]

]�

���

]�

ROSTER)NSTANCE.UMBER).4%'%2����������	�

NODES!DDED "//,%!.�

��.ODES�HAVE�BEEN�ADDED�SINCE�LAST�INSTANCE
NODES2EMOVED "//,%!.�

��.ODES�HAVE�BEEN�REMOVED�SINCE�LAST�INSTANCE
���

]��

APPLICATION)NFORMATION 3%4��3):%����������		�/&�3%15%.#%

��/NE�FOR�EACH�!PPLICATION�0ROTOCOL�3ESSION�

��ALL�!PPLICATION�0ROTOCOL�3ESSIONS�IF�FULL�REFRESH�

��NO�!PPLICATION�0ROTOCOL�3ESSION�SHALL�BE

��LISTED�MORE�THAN�ONCE

[

SESSION+EY 3ESSION+EY�

APPLICATION2ECORD,IST #(/)#%

[

NO#HANGE .5,,�

REFRESH 3%4��3):%����������		�/&�3%15%.#%

��/NE�FOR�EACH�NODE�WITH�THE

��!PPLICATION�0ROTOCOL�3ESSION�ENROLLED�

��NO�NODE�SHALL�BE�LISTED�MORE�THAN�ONCE

[

NODE)$ 5SER)$�

��.ODE�)$�OF�NODE
ENTITY)$ %NTITY)$�

��)$�FOR�THIS�!PPLICATION�0ROTOCOL�%NTITY�AT�THIS�NODE
APPLICATION2ECORD !PPLICATION2ECORD

]�

3UPERSEDED�BY�A�MORE�RECENT�VERSION

2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION 143

UPDATE 3%4��3):%����������		�/&�3%15%.#%

��/NE�FOR�EACH�NODE�MODIFYING�ITS�!PPLICATION�2ECORD�

��NO�NODE�SHALL�BE�LISTED�MORE�THAN�ONCE

[
NODE)$ 5SER)$�

��.ODE�)$�OF�NODE
ENTITY)$ %NTITY)$�

��)$�FOR�THIS�!PPLICATION�0ROTOCOL�%NTITY�AT�THIS�NODE
APPLICATION5PDATE #(/)#%
[

ADD2ECORD !PPLICATION2ECORD�
REPLACE2ECORD !PPLICATION2ECORD�
REMOVE2ECORD .5,,�
���

]
]�
���

]�
APPLICATION#APABILITIES,IST#(/)#%
[

NO#HANGE .5,,�
REFRESH 3%4�/&�3%15%.#%

[
CAPABILITY)$ #APABILITY)$�
CAPABILITY#LASS #APABILITY#LASS�
NUMBER/F%NTITIES).4%'%2����������	�

��.UMBER�OF�!PPLICATION�0ROTOCOL�%NTITIES

��WHICH�ISSUED�THE�CAPABILITY

���
]�

���
]�
ROSTER)NSTANCE.UMBER).4%'%2����������	�
PEER%NTITIES!DDED "//,%!.�

��0EER�%NTITIES�HAVE�BEEN�ADDED�SINCE�LAST�INSTANCE
PEER%NTITIES2EMOVED "//,%!.�

��0EER�%NTITIES�HAVE�BEEN�REMOVED�SINCE�LAST�INSTANCE
���

]�
���

]

!PPLICATION)NVOKE)NDICATION�����3%15%.#%
[

��-#3
3END
$ATA�OR�-#3
5NIFORM
3END
$ATA

��ON�'##
"ROADCAST
#HANNEL�OR�.ODE�)$�#HANNEL
APPLICATION0ROTOCOL%NTITY,IST 3%4��3):%����������		�/&�!PPLICATION)NVOKE3PECIFIER�
DESTINATION.ODES 3%4��3):%����������		�/&�5SER)$�/04)/.!,�

��,IST�OF�.ODE�)$S�

��NOT�PRESENT�IF�DESTINED�FOR�ALL�NODES

���
]

2EGISTRY2EGISTER#HANNEL2EQUEST�����3%15%.#%
[

��-#3
3END
$ATA�ON�.ODE�)$�#HANNEL�OF�4OP�'##

ENTITY)$ %NTITY)$�
KEY 2EGISTRY+EY�
CHANNEL)$ $YNAMIC#HANNEL)$�
���

]

2EGISTRY!SSIGN4OKEN2EQUEST�����3%15%.#%
[

��-#3
3END
$ATA�ON�.ODE�)$�#HANNEL�OF�4OP�'##

ENTITY)$ %NTITY)$�
KEY 2EGISTRY+EY�
���

]

3UPERSEDED�BY�A�MORE�RECENT�VERSION

144 2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION

2EGISTRY3ET0ARAMETER2EQUEST�����3%15%.#%

[

��-#3
3END
$ATA�ON�.ODE�)$�#HANNEL�OF�4OP�'##
ENTITY)$ %NTITY)$�
KEY 2EGISTRY+EY�
PARAMETER /#4%4�342).'��3):%�������		�
MODIFICATION2IGHTS 2EGISTRY-ODIFICATION2IGHTS�/04)/.!,�
���

]

2EGISTRY2ETRIEVE%NTRY2EQUEST�����3%15%.#%

[

��-#3
3END
$ATA�ON�.ODE�)$�#HANNEL�OF�4OP�'##
ENTITY)$ %NTITY)$�
KEY 2EGISTRY+EY�
���

]

2EGISTRY$ELETE%NTRY2EQUEST�����3%15%.#%

[

��-#3
3END
$ATA�ON�.ODE�)$�#HANNEL�OF�4OP�'##
ENTITY)$ %NTITY)$�
KEY 2EGISTRY+EY�
���

]

2EGISTRY-ONITOR%NTRY2EQUEST�����3%15%.#%

[

��-#3
3END
$ATA�ON�.ODE�)$�#HANNEL�OF�4OP�'##
ENTITY)$ %NTITY)$�
KEY 2EGISTRY+EY�
���

]

2EGISTRY-ONITOR%NTRY)NDICATION�����3%15%.#%

[

��-#3
5NIFORM
3END
$ATA�ON�'##
"ROADCAST
#HANNEL
KEY 2EGISTRY+EY�

ITEM 2EGISTRY)TEM�

��#ONTENTS��CHANNEL��TOKEN��PARAMETER��OR�EMPTY
OWNER 2EGISTRY%NTRY/WNER�
MODIFICATION2IGHTS 2EGISTRY-ODIFICATION2IGHTS�/04)/.!,�
���

]

2EGISTRY!LLOCATE(ANDLE2EQUEST�����3%15%.#%

[

��-#3
3END
$ATA�ON�.ODE�)$�#HANNEL�OF�4OP�'##
ENTITY)$ %NTITY)$�
NUMBER/F(ANDLES).4%'%2���������	�
���

]

2EGISTRY!LLOCATE(ANDLE2ESPONSE�����3%15%.#%

[

��-#3
3END
$ATA�ON�.ODE�)$�#HANNEL�OF�REQUESTER
ENTITY)$ %NTITY)$�
NUMBER/F(ANDLES).4%'%2���������	�
FIRST(ANDLE (ANDLE�
RESULT %.5-%2!4%$
[

SUCCESSFUL ��	�
NO(ANDLES!VAILABLE ��	�
���

]�
���

]

3UPERSEDED�BY�A�MORE�RECENT�VERSION

2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION 145

2EGISTRY2ESPONSE�����3%15%.#%

[

��-#3
3END
$ATA�ON�.ODE�)$�#HANNEL�OF�REQUESTER

ENTITY)$ %NTITY)$�

��%NTITY�)$�OF�THE�REQUESTING�!PPLICATION�0ROTOCOL�%NTITY
PRIMITIVE4YPE %.5-%2!4%$

[

REGISTER#HANNEL ��	�

ASSIGN4OKEN ��	�

SET0ARAMETER ��	�

RETRIEVE%NTRY ��	�

DELETE%NTRY ��	�

MONITOR%NTRY ��	�

���

]�

KEY 2EGISTRY+EY�

��$ATA
BASE�INDEX

ITEM 2EGISTRY)TEM�

��#ONTENTS��CHANNEL��TOKEN��PARAMETER��OR�VACANT
OWNER 2EGISTRY%NTRY/WNER�

MODIFICATION2IGHTS 2EGISTRY-ODIFICATION2IGHTS�/04)/.!,�

RESULT %.5-%2!4%$

[

SUCCESSFUL ��	�

BELONGS4O/THER ��	�

TOO-ANY%NTRIES ��	�

INCONSISTENT4YPE ��	�

ENTRY.OT&OUND ��	�

ENTRY!LREADY%XISTS ��	�

INVALID2EQUESTER ��	�

���

]�

���

]

#ONDUCTOR!SSIGN)NDICATION�����3%15%.#%

[

��-#3
5NIFORM
3END
$ATA�ON�'##
"ROADCAST
#HANNEL
CONDUCTING.ODE 5SER)$�

���

]

#ONDUCTOR2ELEASE)NDICATION�����3%15%.#%

[

��-#3
5NIFORM
3END
$ATA�ON�'##
"ROADCAST
#HANNEL

��.O�PARAMETERS
���

]

#ONDUCTOR0ERMISSION!SK)NDICATION�����3%15%.#%

[

��-#3
5NIFORM
3END
$ATA�ON�'##
"ROADCAST
#HANNEL
GRANT&LAG "//,%!.�

��425%�TO�REQUEST�PERMISSION�GRANT��&!,3%�TO�RELEASE
���

]

#ONDUCTOR0ERMISSION'RANT)NDICATION�����3%15%.#%

[

��-#3
5NIFORM
3END
$ATA�ON�'##
"ROADCAST
#HANNEL
PERMISSION,IST 3%15%.#%��3):%����������		�/&�5SER)$�

��.ODE�)$�OF�NODES�GRANTED�PERMISSION
WAITING,IST 3%15%.#%��3):%����������		�/&�5SER)$�/04)/.!,�

��.ODE�)$�OF�NODES�WAITING�FOR�PERMISSION
���

]

3UPERSEDED�BY�A�MORE�RECENT�VERSION

146 2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION

#ONFERENCE4IME2EMAINING)NDICATION�����3%15%.#%
[

��-#3
3END
$ATA�ON�'##
"ROADCAST
#HANNEL

TIME2EMAINING 4IME�
NODE)$ 5SER)$�/04)/.!,�
���

]

#ONFERENCE4IME)NQUIRE)NDICATION�����3%15%.#%
[

��-#3
3END
$ATA�ON�'##
#ONVENER
#HANNEL

NODE3PECIFIC4IME&LAG "//,%!.�

��&!,3%�FOR�CONFERENCE
WIDE��425%�FOR�NODE
SPECIFIC
���

]

#ONFERENCE4IME%XTEND)NDICATION�����3%15%.#%
[

��-#3
3END
$ATA�ON�'##
#ONVENER
#HANNEL

TIME4O%XTEND 4IME�
NODE3PECIFIC4IME&LAG "//,%!.�

��&!,3%�FOR�CONFERENCE
WIDE��425%�FOR�NODE
SPECIFIC
���

]

#ONFERENCE!SSISTANCE)NDICATION�����3%15%.#%
[

��-#3
5NIFORM
3END
$ATA�ON�'##
"ROADCAST
#HANNEL

USER$ATA 5SER$ATA�/04)/.!,�
���

]

4EXT-ESSAGE)NDICATION�����3%15%.#%
[

��-#3
3END
$ATA�OR�-#3
5NIFORM
3END
$ATA

MESSAGE 4EXT3TRING�

��ON�'##
"ROADCAST
#HANNEL�OR�.ODE�)$�#HANNEL
���

]

&UNCTION.OT3UPPORTED2ESPONSE�����3%15%.#%
[

REQUEST 2EQUEST0$5
]

.ON3TANDARD0$5�����3%15%.#%
[

DATA .ON3TANDARD0ARAMETER�
���

]

��0ART����-ESSAGES�SENT�AS�-#3
#ONNECT
0ROVIDER�USER�DATA

#ONNECT$ATA�����3%15%.#%
[

T���)DENTIFIER +EY�

��4HIS�SHALL�BE�SET�TO�THE�VALUE�[ITU�RECOMMENDATION�T�����VERSION��	��]
CONNECT0$5 /#4%4�342).'

]

#ONNECT'##0$5�����#(/)#%
[

CONFERENCE#REATE2EQUEST #ONFERENCE#REATE2EQUEST�
CONFERENCE#REATE2ESPONSE #ONFERENCE#REATE2ESPONSE�
CONFERENCE1UERY2EQUEST #ONFERENCE1UERY2EQUEST�
CONFERENCE1UERY2ESPONSE #ONFERENCE1UERY2ESPONSE�
CONFERENCE*OIN2EQUEST #ONFERENCE*OIN2EQUEST�
CONFERENCE*OIN2ESPONSE #ONFERENCE*OIN2ESPONSE�
CONFERENCE)NVITE2EQUEST #ONFERENCE)NVITE2EQUEST�
CONFERENCE)NVITE2ESPONSE #ONFERENCE)NVITE2ESPONSE�
���

]

3UPERSEDED�BY�A�MORE�RECENT�VERSION

2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION 147

��0ART����-ESSAGES�SENT�USING�-#3
3END
$ATA�OR�-#3
5NIFORM
3END
$ATA

'##0$5�����#(/)#%
[

REQUEST 2EQUEST0$5�
RESPONSE 2ESPONSE0$5�
INDICATION)NDICATION0$5

]

2EQUEST0$5�����#(/)#%
[

CONFERENCE*OIN2EQUEST #ONFERENCE*OIN2EQUEST�
CONFERENCE!DD2EQUEST #ONFERENCE!DD2EQUEST�
CONFERENCE,OCK2EQUEST #ONFERENCE,OCK2EQUEST�
CONFERENCE5NLOCK2EQUEST #ONFERENCE5NLOCK2EQUEST�
CONFERENCE4ERMINATE2EQUEST #ONFERENCE4ERMINATE2EQUEST�
CONFERENCE%JECT5SER2EQUEST #ONFERENCE%JECT5SER2EQUEST�
CONFERENCE4RANSFER2EQUEST #ONFERENCE4RANSFER2EQUEST�
REGISTRY2EGISTER#HANNEL2EQUEST 2EGISTRY2EGISTER#HANNEL2EQUEST�
REGISTRY!SSIGN4OKEN2EQUEST 2EGISTRY!SSIGN4OKEN2EQUEST�
REGISTRY3ET0ARAMETER2EQUEST 2EGISTRY3ET0ARAMETER2EQUEST�
REGISTRY2ETRIEVE%NTRY2EQUEST 2EGISTRY2ETRIEVE%NTRY2EQUEST�
REGISTRY$ELETE%NTRY2EQUEST 2EGISTRY$ELETE%NTRY2EQUEST�
REGISTRY-ONITOR%NTRY2EQUEST 2EGISTRY-ONITOR%NTRY2EQUEST�
REGISTRY!LLOCATE(ANDLE2EQUEST 2EGISTRY!LLOCATE(ANDLE2EQUEST�
NON3TANDARD2EQUEST .ON3TANDARD0$5�
���

]

2ESPONSE0$5�����#(/)#%
[

CONFERENCE*OIN2ESPONSE #ONFERENCE*OIN2ESPONSE�
CONFERENCE!DD2ESPONSE #ONFERENCE!DD2ESPONSE�
CONFERENCE,OCK2ESPONSE #ONFERENCE,OCK2ESPONSE�
CONFERENCE5NLOCK2ESPONSE #ONFERENCE5NLOCK2ESPONSE�
CONFERENCE4ERMINATE2ESPONSE #ONFERENCE4ERMINATE2ESPONSE�
CONFERENCE%JECT5SER2ESPONSE #ONFERENCE%JECT5SER2ESPONSE�
CONFERENCE4RANSFER2ESPONSE #ONFERENCE4RANSFER2ESPONSE�
REGISTRY2ESPONSE 2EGISTRY2ESPONSE�
REGISTRY!LLOCATE(ANDLE2ESPONSE 2EGISTRY!LLOCATE(ANDLE2ESPONSE�
FUNCTION.OT3UPPORTED2ESPONSE &UNCTION.OT3UPPORTED2ESPONSE�
NON3TANDARD2ESPONSE .ON3TANDARD0$5�
���

]

)NDICATION0$5�����#(/)#%
[

USER)$)NDICATION 5SER)$)NDICATION�
CONFERENCE,OCK)NDICATION #ONFERENCE,OCK)NDICATION�
CONFERENCE5NLOCK)NDICATION #ONFERENCE5NLOCK)NDICATION�
CONFERENCE4ERMINATE)NDICATION #ONFERENCE4ERMINATE)NDICATION�
CONFERENCE%JECT5SER)NDICATION #ONFERENCE%JECT5SER)NDICATION�
CONFERENCE4RANSFER)NDICATION #ONFERENCE4RANSFER)NDICATION�
ROSTER5PDATE)NDICATION 2OSTER5PDATE)NDICATION�
APPLICATION)NVOKE)NDICATION !PPLICATION)NVOKE)NDICATION�
REGISTRY-ONITOR%NTRY)NDICATION 2EGISTRY-ONITOR%NTRY)NDICATION�
CONDUCTOR!SSIGN)NDICATION #ONDUCTOR!SSIGN)NDICATION�
CONDUCTOR2ELEASE)NDICATION #ONDUCTOR2ELEASE)NDICATION�
CONDUCTOR0ERMISSION!SK)NDICATION #ONDUCTOR0ERMISSION!SK)NDICATION�
CONDUCTOR0ERMISSION'RANT)NDICATION #ONDUCTOR0ERMISSION'RANT)NDICATION�
CONFERENCE4IME2EMAINING)NDICATION #ONFERENCE4IME2EMAINING)NDICATION�
CONFERENCE4IME)NQUIRE)NDICATION #ONFERENCE4IME)NQUIRE)NDICATION�
CONFERENCE4IME%XTEND)NDICATION #ONFERENCE4IME%XTEND)NDICATION�
CONFERENCE!SSISTANCE)NDICATION #ONFERENCE!SSISTANCE)NDICATION�
TEXT-ESSAGE)NDICATION 4EXT-ESSAGE)NDICATION�
NON3TANDARD)NDICATION .ON3TANDARD0$5�
���

]

%.$

3UPERSEDED�BY�A�MORE�RECENT�VERSION

148 2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION

� 5SE�OF�THE�-ULTIPOINT�#OMMUNICATION�3ERVICE

All GCC communication shall be through the Multipoint Communication Service (MCS) as specified in
Recommendation T.122. This clause details how GCC makes use of MCS services, channel allocation, token allocation
and data priorities.

��� -#3�SERVICES

GCC assumes the MCS services indicated in Table 9-1. All primitives and parameters marked with an “M” are used by
mandatory components of GCC. Items marked with an “O” are used only by optional portions of GCC.

TABLE 9-1/T.124

-#3�SERVICES�USED�BY�'##

Primitives Use Parameters Use

MCS-Connect-Provider request
MCS-Connect-Provider indication
MCS-Connect-Provider response
MCS-Connect-Provider confirm

M
M
M
M

Calling Address
Calling Domain Selector
Called Address
Called Domain Selector
Upward/Downward Flag
Domain Parameters
Quality of Service
Result
User Data

O
M
O
–
M
M
M
M
M

MCS-Disconnect-Provider request
MCS-Disconnect-Provider indication

M
M

Reason M

MCS-Attach-User request
MCS-Attach-User confirm

M
M

Domain Selector
Result
User ID

M
M
M

MCS-Detach-User request
MCS-Detach-User indication

M
M

Reason
User ID

M
M

MCS-Channel-Join request
MCS-Channel-Join confirm

M
M

Channel to Join
Result

M
M

MCS-Channel-Leave request
MCS-Channel-Leave indication

–
M

Channel to Leave
Reason

–
–

MCS-Channel-Convene request
MCS-Channel-Convene confirm

–
–

Result
Channel

–
–

MCS-Channel-Disband request
MCS-Channel-Disband indication

–
–

Channel
Reason

–
–

MCS-Channel-Admit request
MCS-Channel-Admit indication

–
–

Channel
Manager User ID
List of User IDs

–
–
–

MCS-Channel-Expel request
MCS-Channel-Expel indication

–
–

Channel
List of User IDs
Reason

–
–
–

MCS-Send-Data request
MCS-Send-Data indication

M Priority
Channel ID
Sender User ID
Data

M
M
M
M

MCS-Uniform-Send-Data request
MCS-Uniform-Send-Data indication

M
M

Priority
Channel ID
Sender User ID
Data

M
M
M
M

MCS-Token-Grab request
MCS-Token-Grab confirm

O
O

Token ID
Result

O
O

MCS-Token-Inhibit request
MCS-Token-Inhibit confirm

O
O

Token ID
Result

O
O

3UPERSEDED�BY�A�MORE�RECENT�VERSION

2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION 149

TABLE 9-1/T.124 �END	

-#3�SERVICES�USED�BY�'##

��� #HANNEL�ALLOCATION

GCC reserves two static channels for its exclusive use. One channel, GCC-CHANNEL-0 is joined by all GCC Providers
in a conference. Another channel, GCC-CHANNEL-1, is joined only by the Conference Convener. Each GCC Provider
also joins the Node ID Channel allocated to it by MCS. Table 9-2 shows the channel usage by GCC.

TABLE 9-2/T.124

'##�CHANNEL�USAGE

��� 4OKEN�ALLOCATION

GCC reserves a single token for its exclusive use. This token, GCC-TOKEN-0, is used as the Conference Conductorship
Token. GCC also reserves tokens 16 384 through 65 535 for use as dynamic tokens which GCC allocates for use by
Application Protocol Entities. Table 9-3 shows the token usage by GCC.

TABLE 9-3/T.124

'##�TOKEN�USAGE

Primitives Use Parameters Use

MCS-Token-Give request
MCS-Token-Give indication
MCS-Token-Give response
MCS-Token-Give confirm

O
M
M
O

User ID Giving
User ID to Receive
Token ID
Result

M
O
M
M

MCS-Token-Please request
MCS-Token-Please indication

O
O

User ID Requesting
Token ID

O
O

MCS-Token-Release request
MCS-Token-Release confirm

O
O

Token ID
Result

O
O

MCS-Token-Test request
MCS-Token-Test confirm

O
O

Token ID
Token Status

O
O

Channel ID Type Mnemonic Description

GCC-CHANNEL-0 Static GCC-Broadcast-Channel For communication from any GCC Provider in a
conference to all GCC Providers.

GCC-CHANNEL-1 Static GCC-Convener-Channel For communication from any GCC Provider in a
conference to the Conference Convener.

– Dynamic Node ID Channel For communication from any GCC Provider in a
conference to the GCC Provider at a particular node.
Each node is identified by its Node ID.

Token ID Mnemonic Description

GCC-TOKEN-0 Conference-Conductorship-Token Grabbed by a GCC Provider to become the
Conference Conductor.

16 384 through 65 535 Dynamic Tokens Allocated by GCC for use by Application Protocol
Entities using GCC-Registry-Assign-Token
primitive.

3UPERSEDED�BY�A�MORE�RECENT�VERSION

150 2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION

��� 5SE�OF�-#3�DATA�TRANSMISSION�SERVICES

Table 9-4 summarizes the use of MCS data transmission services (MCS-Send-Data and MCS-Uniform-Send-Data) for
each GCCPDU. Listed for each GCCPDU are the type of MCS data service used, the Channel ID, and requested data
priority.

TABLE 9-4/T.124

5SE�OF�-#3�SEND�DATA�FOR�'##0$5S

GCCPDU Channel Send data type Priority

UserIDIndication Node ID Channel of directly
connected node

MCS-Send-Data Top

ConferenceCreateRequest – – –

ConferenceCreateResponse – – –

ConferenceQueryRequest – – –

ConferenceQueryResponse – – –

ConferenceJoinRequest Node ID Channel of Top GCC MCS-Send-Data Top

ConferenceJoinResponse Node ID Channel of requester MCS-Send-Data Top

ConferenceInviteRequest – – –

ConferenceInviteResponse – – –

ConferenceAddRequest Node ID Channel of Top GCC MCS-Send-Data High

Node ID Channel of adding MCU MCS-Send-Data High

ConferenceAddResponse Node ID Channel of requester MCS-Send-Data High

ConferenceLockRequest Node ID Channel of Top GCC MCS-Send-Data High

ConferenceLockResponse Node ID Channel of requester MCS-Send-Data High

ConferenceLockIndication GCC-Broadcast-Channel MCS-Uniform-Send-Data High

Node ID Channel MCS-Send-Data High

ConferenceUnlockRequest Node ID Channel of Top GCC MCS-Send-Data High

ConferenceUnlockResponse Node ID Channel of requester MCS-Send-Data High

ConferenceUnlockIndication GCC-Broadcast-Channel MCS-Uniform-Send-Data High

Node ID Channel MCS-Send-Data High

ConferenceTerminateRequest Node ID Channel of Top GCC MCS-Send-Data High

ConferenceTerminateResponse Node ID Channel of requester MCS-Send-Data High

ConferenceTerminateIndication GCC-Broadcast-Channel MCS-Uniform-Send-Data High

ConferenceEjectUserRequest Node ID Channel of Top GCC MCS-Send-Data Top

ConferenceEjectUserResponse Node ID Channel of requester MCS-Send-Data High

ConferenceEjectUserIndication GCC-Broadcast-Channel MCS-Uniform-Send-Data Top

ConferenceTransferRequest Node ID Channel of Top GCC MCS-Send-Data High

3UPERSEDED�BY�A�MORE�RECENT�VERSION

2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION 151

TABLE 9-4/T.124 �END	

5SE�OF�-#3�SEND�DATA�FOR�'##0$5S

GCCPDU Channel Send data type Priority

ConferenceTransferResponse Node ID Channel of requester MCS-Send-Data High

ConferenceTransferIndication GCC-Broadcast-Channel MCS-Uniform-Send-Data High

RosterUpdateIndication Node ID Channel of recipient MCS-Send-Data High

GCC-Broadcast-Channel MCS-Uniform-Send-Data High

ApplicationInvokeIndication GCC-Broadcast-Channel MCS-Send-Data or

MCS-Uniform-Send-Data

High

Node ID Channel of recipient MCS-Send-Data High

RegistryRegisterChannelRequest Node ID Channel of Top GCC MCS-Send-Data High

RegistryAssignTokenRequest Node ID Channel of Top GCC MCS-Send-Data High

RegistrySetParameterRequest Node ID Channel of Top GCC MCS-Send-Data High

RegistryRetrieveEntryRequest Node ID Channel of Top GCC MCS-Send-Data High

RegistryDeleteEntryRequest Node ID Channel of Top GCC MCS-Send-Data High

RegistryMonitorEntryRequest Node ID Channel of Top GCC MCS-Send-Data High

RegistryMonitorEntryIndication GCC-Broadcast-Channel MCS-Uniform-Send-Data High

RegistryAllocateHandleRequest Node ID Channel of Top GCC MCS-Send-Data High

RegistryAllocateHandleResponse Node ID Channel of requester MCS-Send-Data High

RegistryResponse Node ID Channel of requester MCS-Send-Data High

ConductorAssignIndication GCC-Broadcast-Channel MCS-Uniform-Send-Data Top

ConductorReleaseIndication GCC-Broadcast-Channel MCS-Uniform-Send-Data Top

ConductorPermissionAskIndication GCC-Broadcast-Channel MCS-Uniform-Send-Data High

ConductorPermissionGrantIndication GCC-Broadcast-Channel MCS-Uniform-Send-Data Top

ConferenceTimeRemainingIndication GCC-Broadcast-Channel MCS-Uniform-Send-Data High

ConferenceTimeInquireIndication GCC-Convener-Channel MCS-Send-Data High

ConferenceTimeExtendIndication GCC-Convener-Channel MCS-Send-Data High

ConferenceAssistanceIndication GCC-Broadcast-Channel MCS-Send-Data or

MCS-Uniform-Send-Data

High

TextMessageIndication GCC-Broadcast-Channel MCS-Send-Data or

MCS-Uniform-Send-Data

High

Node ID Channel of recipient MCS-Send-Data High

FunctionNotSupportedResponse Node ID Channel of requester MCS-Send-Data Same as
request

NonStandardPDU Not defined Not defined Not defined

3UPERSEDED�BY�A�MORE�RECENT�VERSION

152 2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION

��� %NCODING�OF�0$5S�IN�-#3�PRIMITIVES

All PDUs defined in this Recommendation are encoded and placed in the data field of one of several possible MCS
primitives. These are either MCS-Connect-Provider, MCS-Send-Data, or MCS-Uniform-Send-Data. In any of these
cases, the bit string that results from the ASN.1 encoding is placed in the OCTET STRING used by MCS in the order
such that for each octet, the leading bit is placed in the most significant bit position, and the trailing bit is placed in the
least significant bit position.

In the case of MCS-Connect-Provider, the PDU itself is not placed in the MCS data parameter directly, but is contained
within an enclosing structure defined in 9.6 In this case, the description above applies to the outer structure rather than
the PDU itself.

��� &ORMAT�OF�5SER�$ATA�PARAMETER�OF�-#3
#ONNECT
0ROVIDER

The User Data parameter of the MCS-Connect-Provider and MCS-Disconnect-Provider primitives as used by this
Recommendation is of a format which provides unique identification of the MCS Controller (as defined in
Recommendation T.122). The MCS Controller may either be a standard type (such as one that adheres to this
Recommendation), or may be a non-standard type. To distinguish these, the User Data consists of an ASN.1 abstract
type which includes an identifier of the type of MCS Controller followed by the PDU itself. The identifier field is of type
Key which is a choice of either an Object Identifier, or an H221NonStandardIdentifier. The overall abstract type as well
as its components is defined in 8.7. The overall structure is encoded using Packed Encoding Rules (Aligned variant) as
defined in Recommendation X.691.

When the MCS Controller adheres to this Recommendation, this header shall be set to the Object Identifier choice with a
value {itu recommendation t 124 version(0) 1}.

Within this structure, the PDU is not directly encoded but rather is included in a data field which is of type OCTET
STRING. The PDU is separately encoded, also using Packed Encoding Rules (Aligned variant) as with all other PDUs
defined in this Recommendation. The resulting encoded bit string is placed into the OCTET STRING in the order such
that for each octet, the leading bit is placed in the most significant bit position, and the trailing bit is placed in the least
significant bit position. The PDU and the enclosing structure are encoded separately to allow for future
Recommendations or non-standard MCS Controllers to use different encoding of the PDUs while providing a uniquely
encoded identifier of the MCS Controller type (always to be encoded using Packed Encoding Rules).

���)NTERPRETATION�OF�THE�-#3�$OMAIN�3ELECTOR

In using the MCS-Connect-Provider primitive, this Recommendation makes the following assumptions in its use of the
Domain Selector.

The Calling Domain Selector always accurately reflects the local Domain Selector which is equal to the Conference ID
(which is also used by Application Protocols in making an MCS attachment).

The Called Domain Selector is never used by this Recommendation. Instead it is assumed that the MCS provider passes
MCS-Connect-Provider indications to the Control MCSAP regardless of their contents. It is the role of the GCC
Provider to determine if the connection should be established, and if so, which domain the connection should be
associated with. This is done slightly differently for the four T.124 primitives which generate MCS-Connect-Provider
requests:

• GCC-Conference-Create: In this case, there is no domain already in existence prior to reception of the
MCS-Connect-Provider indication to which the connection could be attached.
On receipt of a valid MCS-Connect-Provider indication, a GCC Provider must
establish a new MCS domain and indicate to MCS that this is the domain
which the new connection is to be associated with. The Domain Selector is
chosen at that time by the GCC Provider as the local Conference ID. The
means to perform both of these actions are local matters not specified in
Recommendation T.122.

• GCC-Conference-Query: In this case, no connection is established since the MCS-Connect-Provider
response indicates that the request was user-rejected. As a result, it is not
necessary to associate the request to any MCS domain.

3UPERSEDED�BY�A�MORE�RECENT�VERSION

2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION 153

• GCC-Conference-Join: In this case, a domain does already exist at the receiving node. If the Join
request is accepted by the GCC Provider, the GCC Provider must indicate to
the MCS provider which domain the connection is to be associated with. The
Conference Name (and Conference Name Modifier) are used by the GCC
Provider to determine which domain to indicate. The Domain Selector is the
local Conference ID of that conference. The means to indicate the domain to
the MCS provider is a local matter not specified in Recommendation T.122.

• GCC-Conference-Invite: In this case, as in the Create case, the receiving node does not already have a
domain established. The GCC Provider, if the Invite is accepted, chooses a
Conference ID which is to be used as the Domain Selector. The MCS provider
must be told of the establishment of this domain at this node, and that the
particular connection is to be associated with this domain. As in the case of the
Create, the means to perform both of these actions are local matters not
specified in Recommendation T.122.

!NNEX�!

3TATIC�CHANNEL�AND�TOKEN�)$�ASSIGNMENTS
(This annex forms an integral part of this Recommendation)

!��� 3TATIC�CHANNEL�)$�ASSIGNMENTS

Table A.1 lists the numerical assignment of static channel IDs for the static channels allocated for use by this
Recommendation. The numerical assignment of static channel IDs is intended to be centralized in Recommendation
T.120, but is included here until Recommendation T.120 is completed.

TABLE A.1/T.124

3TATIC�CHANNEL�)$�ASSIGNMENTS

!��� 3TATIC�TOKEN�)$�ASSIGNMENTS

Table A.2 lists the numerical assignment of static token IDs for the static tokens allocated for use by this
Recommendation. The numerical assignment of static token IDs is intended to be centralized in Recommendation T.120,
but is included here until Recommendation T.120 is completed.

TABLE A.2/T.124

3TATIC�TOKEN�)$�ASSIGNMENTS

Symbolic name Channel ID

GCC-CHANNEL-0 1

GCC-CHANNEL-1 2

Symbolic name Token ID

GCC-TOKEN-0 1

3UPERSEDED�BY�A�MORE�RECENT�VERSION

154 2ECOMMENDATION�4���������������	������3UPERSEDED�BY�A�MORE�RECENT�VERSION

!NNEX�"

/BJECT�)DENTIFIER�ASSIGNMENTS
(This annex forms an integral part of this Recommendation)

Table B.1 lists the assignment of Object Identifiers defined for use by this Recommendation.

TABLE B.1/T.124

Object Identifier value Description

{itu recommendation t 124 version(0) 1} This Object Identifier is used to indicate the version of this Recommendation
in use as the MCS Controller. At this time there is a single standardized
version defined.

