
)45
4 4����
TELECOMMUNICATION (08/95)
STANDARDIZATION SECTOR
OF ITU

4%2-).!,3��&/2��4%,%-!4)#��3%26)#%3

%.(!.#%$��-!.��-!#().%��).4%2&!#%
&/2��6)$%/4%8��!.$��/4(%2��2%42)%6!,
3%26)#%3���6%--)	

)45
4��2ECOMMENDATION��4����

(Previously “CCITT Recommendation”)

INTERNATIONAL TELECOMMUNICATION UNION

FOREWORD

The ITU-T (Telecommunication Standardization Sector) is a permanent organ of the International Telecommunication
Union (ITU). The ITU-T is responsible for studying technical, operating and tariff questions and issuing Recommen-
dations on them with a view to standardizing telecommunications on a worldwide basis.

The World Telecommunication Standardization Conference (WTSC), which meets every four years, establishes the
topics for study by the ITU-T Study Groups which, in their turn, produce Recommendations on these topics.

The approval of Recommendations by the Members of the ITU-T is covered by the procedure laid down in WTSC
Resolution No. 1 (Helsinki, March 1-12, 1993).

ITU-T Recommendation T.107 was prepared by ITU-T Study Group 8 (1993-1996) and was approved under the WTSC
Resolution No. 1 procedure on the 11th of August 1995.

NOTE

In this Recommendation, the expression “Administration” is used for conciseness to indicate both a telecommunication
administration and a recognized operating agency.

 ITU 1996

All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means, electronic or
mechanical, including photocopying and microfilm, without permission in writing from the ITU.

Recommendation T.107 (08/95) i

CONTENTS
Recommendation T.107 (08/95)

Page

1 Scope.. 1

2 References .. 1

3 Definitions and abbreviations... 2
3.1 Definitions .. 2
3.2 Abbreviations.. 3

4 General model .. 4
4.1 Introduction .. 4
4.2 Definition of the VEMMI elements.. 4

4.2.1 VEMMI object definition and identification... 5
4.2.2 VEMMI component definition.. 5
4.2.3 VEMMI component item definition.. 6
4.2.4 Resource definition ... 6
4.2.5 Transfer of VEMMI objects.. 6
4.2.6 Resource transfer .. 6

4.3 VEMMI plane structure model ... 7
4.3.1 The standard plane for videotex data .. 7
4.3.2 The VEMMI objects plane.. 7

4.4 Operation modes for VEMMI terminals... 7
4.4.1 The standard mode.. 7
4.4.2 The VEMMI mode.. 7
4.4.3 Switching between standard mode and VEMMI mode .. 9

4.5 VEMMI elements data content ... 9
4.5.1 Text data definition ... 9
4.5.2 Bitmaps ... 10
4.5.3 Colour ... 11
4.5.4 Videotex data .. 11
4.5.5 Sound .. 11
4.5.6 Graphical data ... 11
4.5.7 Video data ... 11

4.6 VEMMI objects positioning and dimensioning .. 11
4.6.1 Positioning .. 11
4.6.2 Dimensioning.. 12

4.7 VEMMI elements states and state parameters .. 13
4.7.1 Object.. 13
4.7.2 Component.. 16

4.8 Local action management ... 17
4.9 Memory considerations... 18
4.10 Common rules for object handling ... 18

4.10.1 Active state and focus management.. 18
4.10.2 Behaviour of the modal mode... 19
4.10.3 Size considerations and clipping... 19

4.11 Local object storage .. 19
4.12 Symbolic directory names... 20
4.13 Specific rules for dedicated terminals... 20

5 Service description ... 21
5.1 Service elements initiated by the VEMMI application and the terminal .. 23
5.2 Service elements initiated by the VEMMI application... 23

5.2.1 VEMMI_Open .. 23
5.2.2 VEMMI_Close.. 24
5.2.3 VEMMI_Resume.. 24

ii Recommendation T.107 (08/95)

Page
5.2.4 VEMMI_Suspend ... 24
5.2.5 VEMMI_Identify_Term_Cap ... 25
5.2.6 VEMMI_Set_Options ... 25
5.2.7 VEMMI_Create_Object.. 26
5.2.8 VEMMI_Open_Object ... 26
5.2.9 VEMMI_Open_Blocking_Object ... 26
5.2.10 VEMMI_Close_Object ... 27
5.2.11 VEMMI_Close_All... 27
5.2.12 VEMMI_Destroy_Object.. 27
5.2.13 VEMMI_Obj_Access_Disable ... 27
5.2.14 VEMMI_Obj_Access_Enable .. 28
5.2.15 VEMMI_Modify_Component .. 28
5.2.16 VEMMI_Obj_Location_Change .. 29
5.2.17 VEMMI_Load_Col_Table.. 29
5.2.18 VEMMI_Reset_Col_Table ... 30
5.2.19 VEMMI_Open_Application ... 31
5.2.20 VEMMI_Delete_Outdated_Objects.. 31
5.2.21 VEMMI_Store_Objects .. 32
5.2.22 VEMMI_Erase_Objects.. 32
5.2.23 VEMMI_User_Lock ... 32
5.2.24 VEMMI_User_Unlock ... 32
5.2.25 VEMMI_Resource_Transfer .. 33

5.3 Service elements initiated by the terminal .. 34
5.3.1 VEMMI_Identify_Term_Cap_Resp ... 34
5.3.2 VEMMI_Object_Retransmission.. 34
5.3.3 VEMMI_User_Data.. 35
5.3.4 VEMMI_Open_Application_Resp ... 36
5.3.5 VEMMI_Store_Objects_Resp .. 36
5.3.6 VEMMI_Error .. 36
5.3.7 VEMMI_Resource_Transfer_Abort ... 37

6 VEMMI objects introduction ... 37

6.1 The application bar ... 38
6.1.1 Composition.. 38

6.2 The button bar... 38
6.2.1 Composition.. 38

6.3 The pop-up menu.. 38
6.3.1 Composition.. 38

6.4 The dialogue box .. 39
6.4.1 Composition.. 39

6.5 Operative object.. 40

6.6 Bitmap resource object ... 41

6.7 Videotex resource object .. 41

6.8 Text resource object.. 41

6.9 Font resource object.. 41

6.10 Metacode object.. 41

6.11 The message box... 41

7 Functional description .. 41

7.1 General rules for the behaviour of elements ... 41
7.1.1 User interaction... 41
7.1.2 Local actions and reports .. 41
7.1.3 Relationship between objects and components... 42
7.1.4 Open/close of audio, video, resource and metacode objects... 43
7.1.5 Maximize operation .. 43
7.1.6 Notational Conventions .. 44
7.1.7 Mnemonic ... 44

Recommendation T.107 (08/95) iii

Page
7.2 Text formats.. 44

7.2.1 VEMMI high quality text.. 44
7.2.2 Text labels and titles ... 45

7.3 The Application Bar ... 46
7.3.1 Composition.. 48

7.4 The Button Bar ... 53
7.4.1 Composition.. 54

7.5 The Pop-Up Menu .. 55
7.5.1 Composition.. 57

7.6 The Dialogue Box... 58
7.6.1 Composition.. 61

7.7 The Message Box ... 83
7.8 Operative object.. 85
7.9 Bitmap resource object ... 87
7.10 Videotex resource object .. 88
7.11 Text resource object.. 88
7.12 Font resource object.. 89
7.13 Metacode object.. 89
7.14 VEMMI bitmap data type definition... 89
7.15 The VEMMI content encoding identification catalogue... 89

8 Complete coded representation of the VEMMI ... 91
8.1 Introduction .. 91
8.2 Notation used .. 91
8.3 Overall switching of coding environment .. 91

8.3.1 Switching into the VEMMI mode... 91
8.3.2 ISO/IEC 9281 [14] syntax structure.. 93

8.4 VEMMI Command Syntax... 95
8.5 Objects, components... 98
8.6 Local actions... 102

9 Encoding .. 103
9.1 Command structure... 103
9.2 Object, component and attribute structure .. 103
9.3 Terminal symbols encoding.. 104

9.3.1 Opcodes .. 104
9.3.2 Integers .. 104
9.3.3 Enumerated ... 105
9.3.4 Strings .. 105
9.3.5 NDC .. 106

9.4 Attributes and lower level symbols... 107
9.5 Opcodes .. 108
9.6 Syntax of the VEMMI_Modify_Component.. 111
9.7 Defaults... 113

10 Introduction of the VEMMI service into existing Videotex Recommendations.. 116
10.1 Introduction of the VEMMI to T.101 [4] ... 116
10.2 Introduction of the VEMMI to T.105 [6] ... 116

Annex A – T.51String .. 116
A.1 Scope .. 116
A.2 Graphic character sets... 116
A.3 Code extension technique ... 119
A.4 Repertoire of the Latin based character set... 119
A.5 Control functions .. 119

Annex B – Mandatory subset of ISO 8859 [13] ... 120

Annex C – Minimum datatype kernel .. 121

iv Recommendation T.107 (08/95)

SUMMARY

This Recommendation specifies the syntax to be used by videotex or other retrieval services for implementation of an
enhanced man machine interface (VEMMI).

The VEMMI is a means to improve the ergonomics and interactivity of retrieval systems using graphical dialogue
elements such as application bar, button bar, pop-up menus, dialogue box.

The standard plane continues to receive the standard data of the underlying platform. Standard Videotex Applications
can therefore run also on a VEMMI terminal. The VEMMI objects plane receives VEMMI objects. An automatic
switching mechanism between standard mode and VEMMI mode is provided.

This Recommendation defines datatypes (VEMMI-high quality text, VEMMI bitmaps) and allows the integration of
other widely used datatypes (e.g. JPEG, BMP, WAVE, MIDI, Videotex) in the VEMMI dialogue. Also operative objects
are defined to extent the capabilities of a VEMMI application during runtime.

VEMMI objects can be distributed between a host and a VEMMI terminal to improve the performance of interactive
applications. The VEMMI application can control (save, load, update) VEMMI objects on the terminal.

This Recommendation contains the service description, the service elements and their coding.

Recommendation T.107 (08/95) 1

Recommendation T.107
Recommendation T.107 (08/95)

ENHANCED MAN MACHINE INTERFACE FOR VIDEOTEX
AND OTHER RETRIEVAL SERVICES (VEMMI)

(Geneva, 1995)

1 Scope

This Recommendation specifies the data syntax to be used by Videotex and Multimedia/Hypermedia Information
retrieval services for implementation of the Videotex Enhanced Man Machine Interface (VEMMI).

In the Videotex case, this Recommendation is applicable to both the Videotex service and the attached Videotex
terminals. Those terminals may be connected to the Videotex service via the Public Switched Telephone Network
(PSTN), Integrated Services Digital Network (ISDN) or Packet Switched Public Data Network (PSPDN). Typically, the
terminals should support ISDN Syntax-Based Videotex (SBV).

This Recommendation can also be used for any kind of retrieval service (not related to Videotex) by using the relevant
underlying platform and content data types.

2 References

The following Recommendations and other references contain provisions which, through reference in this text, constitute
provisions of this Recommendation. At the time of publication, the editions indicated were valid. All Recommendations
and other references are subject to revision; all users of this Recommendation are therefore encouraged to investigate the
possibility of applying the most recent edition of the Recommendations and other references listed below. A list of the
currently valid ITU-T Recommendations is regularly published.

[1] CCITT Recommendation T.50 (1992), International Reference Alphabet (IRA) (Formerly International
Alphabet No. 5 or IA5) – Information technology – 7-bit coded character set for information interchange.

[2] CCITT Recommendation T.51 (1992), Latin based coded character sets for telematic services.

[3] ITU-T Recommendation T.52 (1993), Non-Latin coded character sets for telematic services.

[4] ITU-T Recommendation T.101 (1994), International interworking for videotex services.

[5] ITU-T Recommendation T.102 (1993), Syntax-based videotex end-to-end protocols for circuit mode ISDN.

[6] ITU-T Recommendation T.105 (1994), Syntax-based videotex application layer protocol.

[7] ITU-T Recommendation H.261 (1993), Video codec for audiovisual services at p × 64 kbit/s.

[8] ITU-T Recommendation H.320 (1993), Narrow-band visual telephone systems and terminal equipment.

[9] ITU-T Recommendation F.300 (1993), Videotex service.

[10] ISO 2022:1986, Information Processing – ISO 7-bit and 8-bit coded character sets – Code extension techniques.

[11] ISO 2375:1985, Data processing – Procedure for registration of escape sequences.

[12] ISO 8632:1992, Information technology – Computer graphics – Metafile for storage and transfer of picture
description information.

[13] ISO 8859:1987, Information Processing - 8-bit single-byte coded graphic character sets.

[14] ISO 9281:1990, Information technology – Picture coding methods.

[15] ISO 10646-1:1993, Information technology – Universal Multiple-Octet Coded Character Set (UCS) –
Part 1: Architecture and basic multilingual plane.

2 Recommendation T.107 (08/95)

[16] ISO-IS 10918-1:1994, Digital compression and coding of continuous-tone still images. Part 1: Requirements and
guidelines.

[17] ISO 11172-1:1993, Information technology – Coding of moving pictures and associated audio for digital storage
media up to about 1.5 Mbit/s - Part 1: Systems.

[18] ISO 11172-2:1993, Information technology – Coding of moving pictures and associated audio for digital storage
media at up to about 1.5 Mbit/s – Part 2. Video.

3 Definitions and abbreviations

3.1 Definitions

For the purposes of this Recommendation, the following definitions apply:

3.1.1 controls: Visual user-interface elements that allow a user to interact with data.

3.1.2 Defined Display Area (DDA): See Recommendation F.300 [9].

3.1.3 emphasis: Highlighting, colour change or other visible indication of the condition of an element or choice and
the effect of that condition on a user’s ability to interact with that element. Emphasis can also give additional information
about the state of an object. The method used to emphasize an element is terminal dependent.

3.1.4 label: Text data associated with a VEMMI component to inform the user of the purpose of a particular
component or item.

3.1.5 local manager: See VEMMI local manager.

3.1.6 mnemonic: A single, easy-to-remember alphanumeric character that activates a VEMMI Menu Choice
component and validates it. A Mnemonic character can also be used to validate an active Push Button.

3.1.7 modal mode: When a VEMMI object is “modal” it is not possible for the user to leave this VEMMI object to
the benefit of another VEMMI object of the same application with the different possible access tools. Each attempt to
access another object by the user is refused and possibly indicated by a sound signal.

3.1.8 resource transfer: Mechanism to transfer files referenced by VEMMI resource objects from a VEMMI
application to a VEMMI terminal.

3.1.9 stretched presentation: Shrinked or enlarged display of a bitmap in order to meet given space requirements.

3.1.10 tiled presentation: Repeated display of a given bitmap in horizontal and/or vertical direction in order to meet
given space requirements.

3.1.11 videotex application: Videotex application using encoded data, protocols and profiles, as defined in the
Videotex Recommendations referred to in clause 2. A Videotex application does not use a VEMMI service, data and
protocols (see Recommendation F.300 [9]).

3.1.12 videotex data: Data interchanged between a Videotex application and a Videotex terminal.

3.1.13 validation: User activation action followed by a confirmation of the choice with a keyboard or with a pointing
device.

3.1.14 VEMMI application: Application offering an enhanced man machine interface as described in this
Recommendation.

3.1.15 VEMMI data: VEMMI objects description and contents and VEMMI commands exchanged between the
VEMMI application and the VEMMI terminal.

3.1.16 VEMMI local manager: Software running in the VEMMI terminal to handle and to present the VEMMI
objects that are sent to the user by the VEMMI application.

3.1.17 VEMMI terminal: Terminal which is able to run a VEMMI local manager.

3.1.18 videotex host computer: See Recommendation F.300 [9].

3.1.19 videotex terminal: See Recommendation F.300 [9].

Recommendation T.107 (08/95) 3

3.2 Abbreviations

For the purposes of this Recommendation, the following abbreviations apply:

BIN Bitmap Identification Number

BMP Microsoft Windows Device-Independent Bitmap

CCITT The International Telegraph and Telephone Consultative Committee

CD-ROM Compact Disk-Read Only Memory

CGM Computer Graphics Metafile

CIN Component Identification Number

CMI Coding Method Identifier

CR Carriage Return

DDA Defined Display Area

DIB Device-Independent Bitmap

DRCS Dynamically Redefinable Character Set

DS I Data Syntax according to Annex B/T.101 [4]

DS II Data Syntax according to Annex C/T.101 [4]

DS III Data Syntax according to Annex D/T.101 [4]

ESC Escape

ETS European Telecommunication Standard

ETSI European Telecommunications Standards Institute

FIN Font Identification Number

G0 Primary character set of Recommendation T.51 [2]

G2 Supplementary character set of Recommendation T.51 [2]

GIF Graphics Interchange Format

GMT Greenwich Mean Time

GUI Graphical User Interface

IEC International Electrotechnical Commission

IRV International Reference Version

IS International Standard

ISDN Integrated Services Digital Network

ISO International Organization For Standardization

ITU-T International Telecommunication Union – Telecommunication Standardization

JIS Japanese Institute for Standardization

JPEG Joint Photographic Experts Groups

LF Line Feed

LI Length Indicator

MDI More Data Indicator

MIDI Musical Instrument Digital Interface

MPEG Moving Picture Experts Group

NDC Normalized Device Coordinate

4 Recommendation T.107 (08/95)

OIN Object Identification Number

PCD Picture Code Delimiter

PCE Picture Control Entity

PDE Picture Data Entity

PE Picture Element

PI Picture Identifier

PM Picture Mode

PSPDN Packet Switched Public Data Network

PSTN Packet Switched Telephone Network

RGB Red Green Blue

SBV Syntax-Based Videotex

TE Terminal Equipment

TFI Terminal Facility Identifier

TIN Text Identification Number

TLV Type Length Value

TV Television

UI User Interface

VEMMI Videotex Enhanced Man Machine Interface

VIN Videotex Identification Number

VPDE Videotex Presentation Data Element

VTX Videotex

4 General model

4.1 Introduction

Between a host and a VEMMI terminal, a VEMMI service handles:

– general VEMMI objects as described in this Recommendation;

– data contents as defined in this Recommendation;

– data contents as referred to in this Recommendation.

A VEMMI terminal may also handle a Videotex application using encoded data and protocols as described in the
Videotex Recommendations referred to in clause 2.

4.2 Definition of the VEMMI elements

The logical units which form the structure of the VEMMI shall be named and defined as follows:

– VEMMI objects or objects;

– VEMMI components or components;

– VEMMI component item or items.

VEMMI element is a generic name used in this Recommendation to designate an object, a component or an item.

Recommendation T.107 (08/95) 5

An example is given Figure 1.

T0815370-94/d01

6%--)�/BJECT

VEMMI object

VEMMI component

VEMMI component item

FIGURE 1/T.107

Example showing objects/components/items

Text label: Text input :

FIGURE 1/T.107...[D01] = 10 CM

4.2.1 VEMMI object definition and identification

The following four different types of VEMMI objects are defined in this Recommendation:

– display objects;

– operative objects;

– resource objects;

– metacode objects.

If not stated otherwise, the term object used alone always refers to a display object.

VEMMI objects are the logical units which are used by a VEMMI application to interact with the user.

VEMMI objects are composed of different components.

The objects are only defined regarding their functionality, their size and position relative to the Defined Display Area
(DDA). The representation of the objects is terminal dependent.

Every object shall be identified by an Object Identification Number (OIN) which shall be unique within a VEMMI
application at any one time.

4.2.2 VEMMI component definition

VEMMI components always belong to a VEMMI object and are only valid within this object. The object, to which a
component belongs, is named parent object.

In order to transport information, components may carry a data content (see 4.5).

The components are only defined regarding their functionality, their type of content and their size and position relative to
the object. The representation of the components is terminal dependent. The representation of data content is specified
either by this Recommendation (for the datatypes that are defined within this Recommendation) or by the corresponding
presentation standard (for datatypes that are defined outside this Recommendation).

Every component shall be identified by a Component Identification Number (CIN) which shall be unique within an
object.

6 Recommendation T.107 (08/95)

4.2.3 VEMMI component item definition

The subunit of a VEMMI component is a component item. Every item is an integral part of a component. The definition
of a component item is only valid within this component.

4.2.4 Resource definition

Resources are elements which can be referenced by components or objects. One resource can be referenced by more than
one element. The following resources are defined:

– the colour table which is unique in one application;

– files stored in the terminal (identified by filenames) can contain sound data, operative objects etc.;

– a combination of a font and a set of attributes is a resource object. It is identified via a Font Identification
Number (FIN);

– a bitmap is a resource object. It is identified via a Bitmap Identification Number (BIN);

– text can be a resource object. It is identified via a Text Identification Number (TIN);

– Videotex can be a resource object. It is identified via a Videotex Identification Number (VIN);

– objects sets stored in the terminal between two sessions (they are identified via attributes).

NOTE – FIN, BIN, VIN are Object Identification Numbers (OINs). The terms FIN, BIN and VIN are only used to clearly
indicate that the corresponding object is a resource object.

4.2.5 Transfer of VEMMI objects

VEMMI objects can be transmitted to the VEMMI terminal using a telecommunication network. If they are stored then
in the terminal, they become local objects. VEMMI objects can also be downloaded using any filetransfer. They become
local objects as well and are treated in the same way as objects transferred within the VEMMI dialogue and stored by the
corresponding service primitive. VEMMI objects may also be transferred to the VEMMI terminal by postal mail
(CD-ROM, diskettes, etc.).

4.2.6 Resource transfer

VEMMI resource objects can reference files that contain the resource display data. These files are called resource data
files.

VEMMI specifies the way the resource data files are transmitted to the terminal (VEMMI resource transfer). VEMMI
resources data files may also be transferred to the VEMMI terminal using the file transfer used in the standard service in
which the terminal operates or by postal mail (CD-ROM, diskettes, etc.).

In order to provide a satisfactory level of quality and features matching the VEMMI functionality, the resource transfer
mechanism offers the following facilities:

– the resource transfer can be performed without the user being aware of it;

– the resource transfer can be performed as a parallel task. During the resource transfer, the user may
continue to interact with the VEMMI application (although if the network speed is not sufficient, the
server response time may be adversely affected by the resource transfer operation);

– the application may open a VEMMI object (window) displaying the actual status of the transfer (e.g. a
graphics representing the percentage of the resource copied), and optionally offer a method to cancel,
hold and resume the transfer (e.g. using buttons);

– several resource transfers can be performed independently;

– possible user interaction on the resource transfer operation (abort).

The support of resources is optional for a VEMMI terminal. If the terminal supports the local storage facility, it shall
support the VEMMI resource transfer as well.

Recommendation T.107 (08/95) 7

4.3 VEMMI plane structure model

The VEMMI display model consists of two independent planes:

– the standard data memory and standard data window;

– the VEMMI data memory and VEMMI data window.

This model and a possible terminal structure is presented in Figure 2.

A VEMMI terminal shall implement the behaviour of this display model. However, no assumption is made on the real
physical plane structure of the terminal and how the terminal implements that plane structure model.

The standard plane is the output area where the retrieval service used as a platform for the VEMMI service displays its
data. If a Videotex service is used as a platform, the standard plane is the DDA that is used by a regular Videotex
application. In the following subclauses, it is assumed that Videotex is used as a platform. However, all the rules apply
as well if the underlying platform is different from Videotex (e.g. VT100, TV-Channel).

The two output planes are independent with respect to their positions and dimensions on the terminal screen.

4.3.1 The standard plane for videotex data

The standard plane receives standard Videotex data. It shall continue to support the Videotex data rules and priorities
defined in the Videotex Recommendations referred to in clause 2.

4.3.2 The VEMMI objects plane

This plane receives VEMMI objects described in this Recommendation and their encoded data contents. The VEMMI
objects plane shall be able to handle object overlapping and restoring mechanisms as referred to in 4.6 and 4.10.1.
Within this plane, and for a given data content, the data rules and priorities as defined in the corresponding standards
apply.

4.4 Operation modes for VEMMI terminals

Regardless of the current operation mode of the terminal, it shall always provide specific tools to manage the platform
specific functions (disconnect, etc.).

4.4.1 The standard mode

This is the initial mode of operation of a VEMMI terminal when powered on or reset.

In standard mode, the VEMMI terminal displays standard data in the standard plane. This standard datatype depends on
the retrieval service to which the VEMMI terminal is connected. Standard data are fully visible. User inputs are not
controlled by the VEMMI local manager.

The terminal shall ignore all VEMMI commands except VEMMI_Open or VEMMI_Resume if the VEMMI session
previously was suspended with a VEMMI_Suspend. This command shall perform a switch to the VEMMI mode
(VEMMI On/Off switches are then switched to the On position).

4.4.2 The VEMMI mode

In VEMMI mode, a VEMMI terminal can receive standard data and VEMMI objects data in two parallel paths, as shown
in Figure 2.

VEMMI object data are displayed in the VEMMI objects plane. Standard data are displayed in the standard plane. The
display order for objects and for components within objects shall correspond to the ascending order of their CINs
(component with the smallest CIN is displayed first).

In VEMMI mode, the received standard data is used to update the standard data display memory. An update of the
standard data window does not cause its activation.

User inputs are controlled by the VEMMI local manager on the VEMMI window, which is the active window in this
mode.

8
R

ecom
m

endation T
.107 (08/95)

T0824310-95/d02

VEMMI local manager

Layer 7
(Note)

Standard data

Input focus and
active window
switch

Off

On

VEMMI
decoder

Standard
data

decoder

Standard
data

display
memory

VEMMI
display
memory

VEMMI window

VEMMI _Close
VEMMI_Suspend

Standard
data window

User interactions
(keyboard, mouse ...)

Data flows

Controls

Local storage

VEMMI _Open
VEMMI_Resume

VEMMI open/close
VEMMI suspend/resume

Input focus
and active
window

Standard
data
and

VEMMI
object
data

switcher

NOTE – Standard protocols including Syntax-Based Videotex (SBV) based protocols or protocols amended for VEMMI mode as defined in clause 5.

FIGURE 2/T.107

Example of possible VEMMI terminal structure

Protocols

FIG
U

R
E

 2/T
.107...[D

02] =
 PA

G
E

 PL
E

IN
E

Recommendation T.107 (08/95) 9

4.4.3 Switching between standard mode and VEMMI mode

From the standard mode, a VEMMI terminal shall be switched to the VEMMI mode using the VEMMI_Open or
VEMMI_Resume command.

From the initial mode the terminal can be switched to the VEMMI mode using the VEMMI_Open command.

When a VEMMI_Close command is received, the VEMMI terminal shall switch in the standard operation mode.

The VEMMI_Resume and the VEMMI_Suspend command can be used to temporarily switch between the two modes.

4.5 VEMMI elements data content

The following content datatypes and attributes are defined within this Recommendation:

a) VEMMI high quality text;

b) VEMMI bitmaps;

c) colour.

The following content datatypes and attributes are defined outside this Recommendation, but used as data content for
VEMMI elements in this Recommendation:

a) Videotex data (as optional data content of the Graphic Output Area);

b) bitmaps (JPEG, GIF, BMP);

c) sound (WAVE, MIDI);

d) graphical data;

e) video data.

It is mandatory for a VEMMI terminal to understand all commands related to the above mentioned data contents.

No specific content datatype is mandatory to be used in a VEMMI application. However, in order to provide a
satisfactory VEMMI service, a terminal should, as a minimum requirement, support the datatypes listed in Annex C.

4.5.1 Text data definition

Text Data are encoded in accordance with the ISO 8859-Series [13]. Depending on the terminal implementation, only a
part of 8859-Series may be supported (see Annex B for 8859 mandatory subset of ISO 8859-Series). In addition, the host
application can use the VEMMI_Identify_Term_Cap command to enquire about the character sets supported in the
terminal. A specific character set can be selected using the VEMMI_Set_Options command. This text data encoding is
considered as the basic text encoding. When several character sets are used in the same application (multilingual
application) the application can use the registered ISO appropriate designation escape sequences, as defined in ISO 2022
[10] and ISO 8859-Series [13] to switch between the different character sets.

The following text data encodings can be used optionally:

– ISO 10646-1 Unicode [15];

– Recommendation T.51 [2] as given in Annex A;

– Recommendation T.52 [3].

For displaying window titles, menu choices and labels, the terminal application can use the local system font. For the
application specific text-output, VEMMI offers enhanced capabilities. However, simple text based terminals can use the
system font to display the high quality text. These terminals may then ignore the text attributes that they are not able to
process and display text using the system font, in the available system colour, on the system background.

10 Recommendation T.107 (08/95)

Text data can be part of an object or component definition or it can be defined as a resource object. The following text
attributes are specified:

– text colour;

– text font;

– text height.

The text colour defines the colour of the characters foreground. The character background is terminal specific. The text
font is a set of characters with a particular, similar character design. In this context, an application can choose a font
family, the specific font pertaining to this family is selected by the terminal application (in this Recommendation, by
“font” a font family is meant). Table 1 presents the VEMMI font families:

TABLE 1/T.107

VEMMI font families

The fonts of these families should support variable sizes (scalable fonts).

The text height specifies the height of the font. It is the height of the character cell, including a possible internal leading.
The local manager shall insert additional space between adjacent text rows. The height is measured in points (1/72 inch).
One point corresponds to 1/400 NDC. Italicized characters can be achieved with the attribute Italic. Bold increases the
line thickness and Underline draws a line under each character.

Example

A combination of a font and a set of attributes is further named an attributed font and handled as a font resource object.
It is referenced via the FIN (Font Identification Number).

The following control characters should be used to format the text correctly:

– SP, NBSP, SHY: see ISO 8859-1 [13];

– CR, LF: see Recommendation T.50 [1].

To provide the “line feed” functionality within the text content of a component or a component item, the Carriage Return
(CR) + Line Feed (LF) control characters given in Recommendation T.50 [1] shall be used.

4.5.2 Bitmaps

A bitmap is a pixel matrix containing either colour indices which point into the colour table, or Red Green Blue (RGB)-
components. A bitmap can be referenced by an object or component and when it is instantiated by the terminals it
appears as a rectangle with a colour pattern of the corresponding matrix of pixels. The definition is almost device-
independent while the relationship between the bitmap bits and the pixels on the device is device specific.

The bitmap is handled as a resource object and referenced by objects or components via the “Bitmap Identification
Number” (BIN) which is unique in one application. Several bitmaps can be defined at a given point in time.

Font family Font characteristics Example

SWISS Proportional, without serifs Helvetica, Switzerland

ROMAN Proportional, with serifs Times roman

FIXFONT Monospaced Courier

37)33�����POINTS�AND�BOLD

FIXFONT, 12 points, white

Recommendation T.107 (08/95) 11

4.5.3 Colour

The colour table provides a method for accessing the colour capabilities of the terminal device. It is assumed that the
device can display at least 256 colours simultaneously. Because the device colour table is shared by more than one
application, the UIs provide mechanisms (e.g. logical colour palettes) to support each application with its own table. This
subclause defines the colour table for the VEMMI application.

From the 256 colours, the User Interface (UI) reserves 20 colours for a system table. Therefore, the maximum number of
colours for the VEMMI colour table is 236. In practice an application will use only a few numbers from these colours.
The host application has the possibility to define the colour table by sending the RGB components. Objects, components
or bitmaps can select these colours via indices. By default, 16 colour entries (0 to 15) are predefined. If the application
uses a colour index > 15 which was not defined, the displayed colour is terminal dependent.

Colour entries may be in use by other active applications in the terminals. This has to be managed by the local UI.

Monochrome terminals support either two colour indices (e.g. black and white or the colour table loaded with shades of
one colour).

4.5.4 Videotex data

Data encoded in accordance with Annex B/T.101, Annex C/T.101 and Annex D/T.101 [4], for exemple: text, geometric.

Data encoded in accordance with Annex E/T.101 [4], for audio data.

Data encoded in accordance with Annex F/T.101 [4], for photographic data.

The support of Videotex data is optional for a VEMMI terminal.

The host application can inquire about the support of these data types using the VEMMI_Identify_Term_Cap command.

4.5.5 Sound

An application can embed references to sound sequences in objects. The terminal stores the sound in files. Upon a user
action the sound is processed, possibly with an audio interface card.

The two sound formats are suitable for:

– wave devices (WAVE);

– Musical Instrument Digital Interface devices (MIDI).

Sound can also be provided using the Videotex Audio syntax defined as Videotex data content (see 4.5.4.).

4.5.6 Graphical data

Graphical data, such as lines, arcs, fill areas and the relevant drawing attributes are not directly supported by this
Recommendation. However, an application can use VEMMI-integrated programmes (via operative objects), in which
graphical drawing operations are performed.

4.5.7 Video data

This Recommendation does not describe video data formats. But it provides the container (object) which can be used to
embed moving video in VEMMI applications.

4.6 VEMMI objects positioning and dimensioning

4.6.1 Positioning

The standard plane shall continue to support the coordinate system used at the underlying platform.

12 Recommendation T.107 (08/95)

The VEMMI objects plane shall support a Normalized Device Coordinate (NDC) system for positioning VEMMI
objects and components within the DDA (see Figure 3). The normalized coordinates are theoretically expressed in the
range 0;0 to 1;1. The 0;0 coordinate origin reference point represents the upper left-hand corner of the DDA, the 1;1
coordinate point represents the lower right-hand corner of a virtual square DDA with a side equal to the unit. For a non-
square DDA, the unit is equal to the greatest side of the DDA.

For typical display devices, using common 4:3 aspect ratio, the horizontal positioning is in the range
0 to 1 corresponding to the whole width of the DDA, the vertical positioning is in the range 0 to 0.75 corresponding to
the whole height of the DDA.

The origin reference point to position an object within the DDA is always the upper left corner of the DDA. The origin
reference point to position a component within its parent object (container object) is also the upper left corner of a virtual
DDA attached to the upper left corner of the object; that virtual DDA has exactly the same size as the standard DDA but
with a position translation up to the object for positioning its own components.

VEMMI items are generally implicitly positioned with respect to the width or the height of the nearest item on the left or
above.

0;0

0;0,75

0;1

0;0,75 1;0,75

1;1

1;0

1;0

T0815390-94/d03

X

0;0

Y

1;0,75

DDA origin reference point
DDA (4:3)

Virtual DDA (4:3)Object origin reference point

Dialogue box

Component origin reference point

Unit square DDA

FIGURE 3/T.107

VEMMI positioning NDC space

List

FIGURE 3/T.107...[D03] = 14 CM

4.6.2 Dimensioning

The standard plane shall continue to support the coordinate system used for dimensioning at the underlying platform.

The VEMMI objects plane and VEMMI objects and components shall support a dimensioning system based NDC.

Recommendation T.107 (08/95) 13

The width and the height of a VEMMI object or of a VEMMI component, expressed in NDC, are referred with respect
to their positioning reference point (upper left-hand corner), see Figure 4.

In a VEMMI element, data content follows the rules for the coding of its relevant data syntax including a possible
picture placement or positioning using the relevant coordinate system.

0;0

0;0,75

1;0

X 0;0

y

1;0,75

Y

x

T0823550-95/d04

DDA origin reference point DDA

Object origin reference point

VTX DATA

Element display area

Virtual DDA used for element
content (the positioning inside the
virtual DDA shall follow the rules
given with the specific content)

FIGURE 4/T.107

VEMMI positioning system

Component
origin reference
point

FIGURE 4/T.107...[D04] = 10 CM

4.7 VEMMI elements states and state parameters

4.7.1 Object

An object can adopt different logical states with different state parameters. These states and state parameters may be the
result of:

– user inputs;

– local actions;

– actions taken by the VEMMI local manager;

– commands from the VEMMI application directly or via a metacode object.

4.7.1.1 Definition of object states

Figure 5 shows the commands which can be used by the VEMMI application to change the object state or its state
parameters.

14
R

ecom
m

endation T
.107 (08/95)

T0823870-95/d05

VEMMI_Obj_Access Enable
VEMMI_Obj_Access Disable

Referenced Idle

VEMMI_Erase_Object

VEMMI_Destroy_Object
Local Action Destroy
Local Destroy by the terminal because
of a limitation of memory

VEMMI_Create_Object

VEMMI_Object_Retransmission VEMMI_Create_Object

VEMMI_Close_Object
VEMMI_Close_All
Local Action Close Object

VEMMI_Create_Object "template"

ClosedOpened

VEMMI_Create_Object

Requested

VEMMI_Obj_Access Enable
VEMMI_Obj_Access Disable
VEMMI_Open_Object
Activation by the user
Deactivation by the user

VEMMI_Obj_Access Enable
VEMMI_Obj_Access Disable

VEMMI_Store_Object
VEMMI_Open "autostore object"
VEMMI_Close "autostore object"

Stored

VEMMI_Destroy_Object
Local Action Destroy

VEMMI_Open_Object
Local Action Open Object

FIGURE 5/T.107

State diagram for objects

VEMMI_Store_Object
VEMMI_Open "autostore object"
VEMMI_Close "autostore object"

VEMMI_Open_Application
VEMMI_Open_Object
Local Action Open Object

FIG
U

R
E

 5/T
.107...[D

05] =
 PA

G
E

 PL
E

IN
E

Recommendation T.107 (08/95) 15

In general, the following logical states for objects are defined with certain restrictions applying to specific objects
(see clause 7).

– Opened

An object which exists in the terminal is displayed.

Opening an object is initiated by the VEMMI application, either as initial state at the time of the object
creation, by a direct VEMMI command any time during the application or by a local action which is
associated to a component and triggered by user interaction.

– Closed

An object which exists in the terminal is not displayed.

Closing an object is initiated by the VEMMI application, either as initial state at the time of the object
creation, by a command any time during the application or by a local action which is associated to a
component and triggered by user interaction.

– Referenced

An object which does not exist on the terminal was referenced by a VEMMI_Open_Object command or
the local action “Open object”. The terminal shall request the retransmission of the specified object with
the VEMMI_Object_Retransmission command.

– Requested

After the attempt to open a non-existing object, a request for object retransmission shall be sent from the
terminal to the VEMMI application. While the terminal is waiting for the creation of the requested object,
the object is in the requested state.

– Stored

A copy of an object (including all its components), which was used in an earlier session or in the actual
opened session and has been stored permanently in the terminal (e.g. on hard disk).

A stored object shall implicitly have the state closed. Stored objects are made available for object
operations with the command Open Application. Then they behave like received closed objects.

If an object that was previously stored in the terminal is requested to be stored again by the host
application, the newer one shall replace the older one with all its parameters and states.

Stored objects can be deleted with the command VEMMI_Erase_Objects.

An object which is in the closed state may be destroyed from terminal memory by a local decision of the VEMMI local
manager (e.g. because of a limitation of memory). The VEMMI application may be informed about this local destroy
using the VEMMI error command “Object Destroy Indication”. If the terminal receives a VEMMI_Open_Object
command referring to an object that has been destroyed or if a local action “Open object” referring to a destroyed object
is executed, the terminal shall request the retransmission of the object from the application, using the
VEMMI_Object_Retransmission command. The VEMMI application shall then create the requested object again using
the VEMMI_Create_Object command applying its current state and its current state parameters within the VEMMI
application. A VEMMI_Create_Object command resulting from a VEMMI_Object_Retransmission request shall always
create the object in the open state.

4.7.1.2 Definition of object state parameters

In general, the following state parameters for objects are defined with certain restrictions applying to specific objects
(see clause 7).

– Active

An object currently has the input focus. The user inputs always refer to the active object. The active
object is on top of the DDA. If the active object is inaccessible it is not possible for the user to interact
with it.

The active state management is described in 4.10.1.

– Inactive

The opposite of active.

16 Recommendation T.107 (08/95)

– Accessible

The user can interact with the object.

Enabling the interaction with an object is initiated by the VEMMI application, either as initial state at the
time of the object creation, by a VEMMI command any time during the application or by a local action
which is associated to a component and triggered by user interaction.

– Inaccessible

The opposite of accessible.

The active/inactive state parameter applies only to components which are in the opened state. The accessible/inaccessible
state parameter is applicable to open and closed components. Any combination of the state parameters active/inactive
and accessible/inaccessible can exist for an open component.

4.7.2 Component

4.7.2.1 Definition of component states

A component can adopt different logical states with different state parameters. Theses states and state parameters may be
the result of:

– user inputs;

– local actions;

– commands from the VEMMI application.

Figure 6 shows the possible states for components. The states and state parameters of components can be changed during
the applications using the VEMMI_Modify_Component command.

T0815470-94/d06

Opened

Open

Close

Closed

Access enable
Access disable
Activation by the user
Deactivation by the user

Access enable
Access disable

FIGURE 6/T.107

State diagram for components

FIGURE 6/T.107...[D06] = 6 CM

In general, the following logical states for components are defined with certain restriction applying to specific
components (see clause 7).

– Opened

A component which exists within an object is displayed.

Opening a component is initiated by the VEMMI application, either as initial state at the time of the object
creation, by a VEMMI_Modify_Component command any time during the application or by a local action
which is associated to a component and triggered by user interaction.

– Closed

A component which exists in the terminal is not displayed.

Closing a component is initiated by the VEMMI application, either as initial state at the time of the object
creation, by a VEMMI_Modify_Component command any time during the application or by a local action
which is associated to a component and triggered by user interaction.

Recommendation T.107 (08/95) 17

4.7.2.2 Definition of component state parameters

In general, the following state parameters for components are defined with certain restrictions applying to specific
components (see Clause 7).

– Active

A component has currently the input focus. The user input always refers to the active component within
the active object. If the active component is inaccessible, it is not possible for the user to interact with it.

The active state management is described in 4.10.1.

– Inactive

The opposite of active.

– Accessible

The user can interact with the component if it is part of the current active object.

Enabling the user interaction with a component is initiated by the VEMMI application, either as initial
state at the time of the object creation, by a VEMMI_Modify_Component command any time during the
application or by a local action which is associated to a component and triggered by user interaction.

– Inaccessible

The opposite of accessible.

4.8 Local action management

VEMMI commands are generally issued by the VEMMI application to change the state or the state parameters of an
object or component. Only a very limited number of changes or object or component states or their parameters can be
initiated by the terminal.

To enable the VEMMI application to interact with the user, the terminal shall provide the capability to report the user
inputs on the access or validation of components.

The result of these interactions is that changes of object or component states, which are the result of user inputs, could be
delayed because the user inputs were sent to the VEMMI application first and then the application could react with a
VEMMI command to change the state. This procedure might cause unacceptable response times on data links with lower
data throughput. To improve the response times, a set of local actions has been defined.

Local actions are part of the component definitions and stored in the terminal at the time of the object creation. Each
local action can consist of a list of “Element specific commands”, a list of “Report commands” and a list of “General
commands” in any order. The following commands are defined:

a) Element specific commands

– open components of the parent object (parameter: list of CINs);

– close components of the parent object (parameter: list of CINs);

– open objects (parameter: list of OINs);

– close objects (parameter: list of OINs);

– change components state parameter of a component in the parent object to inaccessible (parameter:
list of CINs);

– change components state parameter of a component in the parent object to accessible (parameter: list
of CINs);

– destroy objects (parameter: list of OINs);

– open blocking object (parameter: OIN).

b) Report commands

– report OIN, CIN;

– report the current values of the component;

18 Recommendation T.107 (08/95)

– report the values of all components in the parent object;

– report all values of all components in the parent objects that have changed (also via a
VEMMI_Modify_component) since the last report or since the object creation if this is the first
report.

c) General commands

– user lock;

– restore initial values of all input components in the parent object. This command should only be
applied if the object was created with the “StoreInitialValue” attribute set true.

These commands are part of the object definition and they can appear in the local action of a component in any possible
order. The order of appearance shall be equal to the order of their execution. There are two specific trigger events which
induce the performance of local actions:

– activation of a component;

– validation of a component.

A list of “Element specific commands”, a list of “Report commands” and a list of “General commands” can be used to
specify one local action for a component. No command of a specific type is mandatory for a local action.

There are two specific trigger events which induce the performance of local actions:

– activation of a component;

– validation of a component.

A local action can be associated to each of these trigger events.

4.9 Memory considerations

VEMMI terminals are supposed to have memory capabilities correctly dimensioned to provide a satisfactory VEMMI
service in close relationship with their data type contents handling.

When there is not enough memory to execute a VEMMI command or a local action, the local manager may decide to
destroy some closed objects. This mechanism is terminal dependent.

The VEMMI terminal shall send a VEMMI_Error (Out of memory) message to the VEMMI application when it does not
have the possibility to release enough memory to process a received object description with a VEMMI_Create_Object
command, VEMMI_Modify_Component command or VEMMI_Open_Object command. In that case it may ignore
further VEMMI_Create_Object commands as long as the VEMMI application has not released a significant part of
memory using VEMMI_Close_Object or VEMMI_Destroy_Object commands. The VEMMI application may also
decide to disconnect the line if the application cannot be performed correctly due to a lack of memory in the terminal;
however, the user shall always be informed of that decision by means of a message in a Message Box.

4.10 Common rules for object handling

4.10.1 Active state and focus management

A VEMMI object can become active as the result of:

a) opening by the VEMMI application;

b) user access;

c) a local action with the element specific command “open object”;

d) closing the active object. The open object that was most recently active becomes the new active object.

The active state shall be given to the last opened VEMMI object up to a user access to a different opened VEMMI
object. When an accessible opened VEMMI object is accessed by the user, the active state shall be given to this VEMMI
object by the local manager. The active state is then handled by the local manager up to a new VEMMI object opening
or re-opening action from the VEMMI application. There should always be one single active object on the DDA. The
active object can be inaccessible.

Recommendation T.107 (08/95) 19

If objects use a common area on the DDA, the successive object activation leads to partial or full object overlapping.
The active object shall always be fully visible to the user just after its activation. The previous active object is logically
just beneath the active object. This rule shall apply to all previously active objects.

When set active, the VEMMI object and/or one of its components shall receive its focus from the local manager. The
active state of the VEMMI object and/or of the VEMMI components shall be clearly visually indicated to the user.
Within the active VEMMI object, not more than one accessible VEMMI component shall receive the active state and the
focus.

The first time an object is displayed and consequently activated, the component which gets the focus may be specified by
the VEMMI application within the object description. If there is no component specified or the component specified is
not opened, then the terminal shall give the focus to the first created opened and accessible component. The other times
the manner of giving the focus on activation of an object to one of its components is terminal dependent (same rule as
above, memorization of the last accessed component, the nearest component of the user access to the parent object).

4.10.2 Behaviour of the modal mode

For a modal active object any user interaction with another VEMMI object of the same VEMMI application is forbidden
by the terminal, any tentative attempt is indicated to the user (buzzer).

All the commands received from the host and all the local actions resulting from user interactions with the components
of the modal object are executed.

4.10.3 Size considerations and clipping

The data content of a VEMMI element shall be sent with dimensions and a possible position compatible with the size
description of its container (object or component). A VEMMI terminal shall clip non-consistent data content to the
overall dimensions of the container.

For bitmap data content specific rules apply that are given with the description of the elements.

4.11 Local object storage

A host application has the possibility to request the load of objects locally stored in the terminal. Such a set of objects is
application specific and contains typically those parts which remain unchanged for a longer time period and it is
therefore more efficient not to transmit them in each dialogue session to the terminal. The loaded objects are processed
in the same way as if they were received during the present session. Upon a host request they can be restored again in
order to keep them up to date. The objects storage does not imply a removal of the objects from the terminal application,
only a copy of the objects is stored. The dialogue may continue and is not affected by the objects storage. An object set
is identified with the application identifier.

The timestamp is received from the host at the beginning of the application. It is stored with the objects and reused in
later sessions. The timestamp value is never calculated by the terminal, it is only used in comparison to find outdated
objects. Whenever an object is stored locally in the terminal it shall have a timestamp associated. The value of this
timestamp shall be determined as follows:

– if the object was created by the host (by VEMMI_Create_Object) during the current session or if any
component of the object was modified (by VEMMI_Modify_Component) during the current session, the
object shall be stored with the timestamp value given by the VEMMI_Open_Application command for
the current application;

– in all other cases the objects timestamp shall remain unchanged. (The object was loaded without change
from the local storage during this session.)

Two attributes which are part of the object definition can be used additionally to request the object storage either
immediately after the object creation (template) or at the end of the application (autostore).

A stored set of objects contains the following:

– the application identifier;

– the objects including their components and the associated timestamp;

20 Recommendation T.107 (08/95)

– the referenced files (if a referenced file is not available in the terminal, the object is considered incomplete
and shall not be stored);

– the relevant loaded colour table.

The storage format is terminal specific because the objects are loaded and stored only by the same terminal.

The terminal implementation should provide the user with the appropriate means to manage the local storage and
typically the user may limit its maximum size.

4.12 Symbolic directory names

In order to support the host application to locate the correct files, symbolic directory names are defined. They can be
used as part of the “filename” parameter. The terminal maps them on real directory respective filenames. In the
following example, a host application uses a symbolic directory name to identify a bitmap file:

VEMMI_Create_Object (OIN = 7, ..., filename = “$CD\ARTISTS\DANCER\LISA.BMP”, pict file type = BMP).

The string “$CD” identifies the CD-ROM drive. The terminal substitutes this symbolic name with the real drive
identification. The complete file identification might be: “H:\ARTISTS\DANCER\LISA.BMP”.

The following symbolic names are defined, the application may use other symbolic names:

These symbolic names can be used in the parameter “filename” of the VEMMI commands. The symbolic name shall
appear only once in the filename parameter. For the separation of the symbolic name from additional subdirectories and
from the filename, the character “\”, code 5/12, should be used.

4.13 Specific rules for dedicated terminals

All service primitives including their parameters shall be understood also by a dedicated terminal. Regarding the
execution of the commands related to specific functionality, a dedicated terminal may apply graceful degradation
mechanisms.

The following functionality can be gracefully degraded by a dedicated terminal:

– colour definition;

– in-text attributes (fonts, colours, font attributes);

– local storage;

– NDC-positioning and dimensioning.

For dedicated VEMMI terminals only able to handle Videotex data contents on a character basis (alphamosaic, DRCS,
Photographic Profile 1), VEMMI objects and components can be physically positioned and dimensioned to the nearest
corresponding display character position. Consequently, to avoid side effects between VEMMI objects, NDC object
positions should be expressed in a direct multiple of character positions for VEMMI application using only this type of
Videotex data contents.

Name Meaning

$APL Parent directory of the applications stored in the terminal

$FTD Parent directory of downloaded files

$CD Drive directory name of a CD-ROM drive

Recommendation T.107 (08/95) 21

For dedicated VEMMI terminals only able to handle Videotex data contents on a character basis, VEMMI can be used
with 80-character mode making use of the appropriate SWITCHING SEQUENCE or the DEFINE FORMAT Videotex
Presentation Data Element (VPDE) to switch to the desired Data Syntax. Eighty-character mode is not mandatory for a
VEMMI terminal.

Dedicated VEMMI terminals shall recognize, but not necessarily process the whole or part of the VEMMI high quality
text attributes they are not able to display. These terminals may then ignore the text attributes and display text using the
system font, in the available system colour, on the system background.

Dedicated VEMMI terminals shall support the different kinds of VEMMI objects, with possible restrictions applying to
the operative objects. As a file management system is not mandatory, they can manage the files they receive in the
VEMMI_Resource_Transfer command in their own internal representation.

Dedicated terminal should support the minimum kernel datatypes defined in Annex C. However, when used in a retrieval
service where the standard mode is the Videotex mode and when the terminal does not support the Videotex
photographic syntax (to be enquired using the TFI) the support of JPEG and GIF is not mandatory. When the terminal
supports the Videotex photographic syntax the support of JPEG is mandatory; the support of GIF is recommended. In
the same service conditions, when a terminal does not support the Videotex audio syntax the support of WAVE and
MIDI is not mandatory. When the terminal supports the Videotex audio syntax the support of WAVE is mandatory; the
support of MIDI is recommended.

Dedicated terminals need not support the stretching of bitmap data to fill the element display area. If the presentation
attribute for a bitmap is set to “stretched”, the terminal may present the bitmap tilled.

5 Service description

This clause describes the service characteristics offered by the VEMMI.

The service is defined between a terminal and a remote application. No assumption is made about the way the terminal
accesses to the service (Public Switched Telephone Network (PSTN)/Packet Switched Public Data Network
(PSPDN)/Integrated Services Digital Network (ISDN)) and the way the connection is established.

All VEMMI service elements or VEMMI commands shall only be issued on an established network connection. Before
sending the first VEMMI command, the VEMMI application should issue a Terminal Facility Identifier (TFI) request to
ensure that the terminal is able to support the VEMMI standard.

All VEMMI service elements are mandatory for a VEMMI terminal. A VEMMI terminal shall understand all VEMMI
service elements including all their parameters.

The VEMMI services are divided into two groups:

– services initiated by the VEMMI application;

– services initiated by the VEMMI terminal.

A second source of commands for a VEMMI terminal is the metacode object. See Table 2.

The following services are confirmed explicitly:

– VEMMI_Identify_Term_Cap is confirmed with VEMMI_Identify_Term_Cap_Resp;

– VEMMI_Open_Application is confirmed with VEMMI_Open_Application_Resp;

– VEMMI_Store_Objects is confirmed with VEMMI_Store_Objects_Resp.

There is no explicit confirmation in any other of the service elements.

All VEMMI services, except VEMMI_Open_Object, which refer to a non-existing object shall be ignored by the
VEMMI terminal. If a VEMMI_Open_Object refers to a non-existing object, the terminal shall request its
retransmission.

NOTE – In the following subclause, all VEMMI services are described but only those parameters are listed which are
necessary to understand the service. For a complete parameter list, see clause 8.

22 Recommendation T.107 (08/95)

TABLE 2/T.107

VEMMI services

Recommendation T.107 (08/95)

VEMMI Services
Initiated

Application/Terminal Function

VEMMI_Set_Translation_Mode Application/Terminal Sets the translation mode for VEMMI data

VEMMI_Open Application Switch to VEMMI mode and reset

VEMMI_Close Application Switch to standard mode and reset

VEMMI_Suspend Application Switch to standard mode

VEMMI_Resume Application Switch to VEMMI mode

VEMMI_Identify_Term_Cap Application Request for terminal capabilities

VEMMI_Identify_Term_Cap_Resp Terminal Response to the “identify terminal capability” request

VEMMI_Set_Options Application Set options in the terminal

VEMMI_Create_Object Application Object definition

VEMMI_Open_Object Application Display object

VEMMI_Open_Blocking_Object Application Open object

VEMMI_Close_Object Application Clear an object from the screen

VEMMI_Close_All Application Clear all the objects from the screen

VEMMI_Destroy_Object Application Clear object in the terminal memory

VEMMI_Obj_Access_Disable Application User access is not permitted

VEMMI_Obj_Access_Enable Application User access is permitted

VEMMI_Modify_Component Application Modify components characteristics

VEMMI_Obj_Location_Change Application Defines a new object position

VEMMI_Load_Col_Table Application Loads a colour table

VEMMI_Reset_Col_Table Application Resets a colour table

VEMMI_Open_Application Application Opens an application

VEMMI_Open_Application_Resp Terminal Response to “open application” request

VEMMI_Delete_Outdated_Objects Application Deletes outdated objects

VEMMI_Store_Objects Application Stores a set of objects

VEMMI_Store_Objects_Resp Terminal Response to a “store object” request

VEMMI_Erase_Objects Application Delete objects from the local storage

VEMMI_User_Lock Application User inputs are not permitted

VEMMI_User_Unlock Application User inputs are permitted

VEMMI_Object_Retransmission Terminal Request for object retransmission

VEMMI_User_Data Terminal User data in VEMMI mode

VEMMI_Error Terminal Error condition or situation

VEMMI_Resource_Transfer Application Resource transfer

VEMMI_Resource_Transfer_Abort Terminal Resource transfer abort

Recommendation T.107 (08/95) 23

5.1 Service elements initiated by the VEMMI application and the terminal

If issued by the VEMMI application, this service element shall be used to indicate that the VEMMI data sent from the
application to the terminal are transcoded using a specified translation mode.

If issued by the VEMMI terminal, this service element shall be used to indicate that the VEMMI data sent from the
terminal to the application are transcoded using a specified translation mode.

Since a VEMMI terminal usually begins operation, by default, in either a 7-or 8-bit environment it shall not be
mandatory for a VEMMI application to be sent as a first VEMMI command in a VEMMI session a
VEMMI_Set_Translation_Mode to switch the terminal to a desired translation mode. If the application cannot be sure
that all terminals that are connecting operate in a specific environment, it should send a VEMMI_Set_Translation_Mode
to ensure that the terminal will interpret the VEMMI commands correctly. See Table 3.

Typically the VEMMI_Set_Translation_Mode is the first VEMMI command of a VEMMI session but it can be used at
any time during a VEMMI session.

NOTE – The translation mode can be different in both directions.

TABLE 3/T.107

Parameters

The TranslationMode parameter can have the following values:

• 2/0: no translation (transparent);

• 2/1: 3 in 4 encoding (see Recommendation T.101 [4]);

• 2/2: 7-shift encoding (see Recommendation T.101 [4]).

5.2 Service elements initiated by the VEMMI application

5.2.1 VEMMI_Open

This service element shall be used to switch the VEMMI terminal to the VEMMI operation mode. The switching
mechanism is defined in 4.4.3. In VEMMI operation mode, the mechanism described in 4.4.2 shall apply.

In addition to the switch to VEMMI operation mode, the service element shall perform the following resets:

– close an open application;

– destroy all objects from the set of objects that are in the “opened” or “closed” state;

– all opened objects are cleared from the display;

– release all identification numbers for resource objects;

– set the colour table to the predefined values.

Objects stored in a local storage are not affected.

Parameters Description

TranslationMode One byte specifying the desired translation mode

24 Recommendation T.107 (08/95)

If this command is received in the VEMMI mode, no switch is necessary but only the resets are performed. See Table 4.

TABLE 4/T.107

Parameters

5.2.2 VEMMI_Close

This service element shall be used to switch the VEMMI terminal to the standard mode. The switching mechanism is
defined in 4.4.3. In standard operation mode, the mechanism described in 4.4.1 shall apply.

In addition to the switch to standard mode, the service element shall perform the resets defined in 5.2.1. See Table 5.

TABLE 5/T.107

Parameters

5.2.3 VEMMI_Resume

This service element shall be used to switch the VEMMI terminal to the VEMMI operation mode. The parameters of this
service element are the same as for the VEMMI_Open (see 5.2.1). With this service element no reset shall be performed.
See Table 6.

TABLE 6/T.107

Parameters

5.2.4 VEMMI_Suspend

This service element shall be used to switch the VEMMI terminal to the standard mode. No reset shall be performed. See
Table 7.

Parameters Description

Version Identifier of the VEMMI version

PrivateMode Private parameter which can be used in some “page-based” Videotex
services. This mode is not described in this Recommendation

Parameters Description

None

Parameters Description

Version Identifier of the VEMMI version

PrivateMode Private parameter which can be used in some “page-based” Videotex
services. This mode is not described in this Recommendation

Recommendation T.107 (08/95) 25

TABLE 7/T.107

Parameters

5.2.5 VEMMI_Identify_Term_Cap

This service element shall be used to request identification of the capabilities of the terminal. See Table 8.

The following information can be obtained:

– VEMMI version identification;

– local storage support (supported/not supported);

– list of preferred user languages (string);

– system type (e.g. IBM compatible, Macintosh, ...), operating system (e.g. MS-DOS, OS2, Microsoft
Windows, ...), operating system version (e.g. 3.1, ...) (string);

– a list of supported datatypes (reference to the VEMMI content encoding identification catalogue).

If the DesiredInformation parameter is not present, the terminal shall respond giving a complete list that identifies all its
capabilities.

TABLE 8/T.107

Parameters

5.2.6 VEMMI_Set_Options

This service element shall be used to set options in the terminal. See Table 9.

The following options can be set:

– if the terminal supports different kinds of text encoding, the desired encoding standard can be selected.

TABLE 9/T.107

Parameters

Parameters Description

None

Parameters Description

DesiredInformation The type of information that is requested from the terminal

Parameters Description

TextStandard Reference to a text encoding standard in the VEMMI content encoding
identification catalogue which shall be used at the beginning of the
encoding of datatypes string and character

26 Recommendation T.107 (08/95)

5.2.7 VEMMI_Create_Object

This service element shall be used to define a VEMMI object and its components in the VEMMI terminal. The VEMMI
terminal shall create the object and shall apply the object state and state parameters given in its definition.

OINs shall be unique at one time in an application. The creation of an object with an already existing OIN shall cause the
distribution of the previously defined object.

CINs shall be unique within an object. The definition of a component with an already existing CIN shall cause the
destruction of the previously defined component. See Table 10.

TABLE 10/T.107

Parameters

5.2.8 VEMMI_Open_Object

This service element shall be used to set an object to the opened state in the VEMMI terminal. The terminal shall display
the specified object immediately. If the object is not present in the terminal, it shall request the object by sending a
VEMMI_Object_Retransmission request to the VEMMI application with the specified OIN, in this case “Rule A” as
described in 5.3.2. shall be used. The application shall then create the object again, applying its current state and state
parameters.

A VEMMI_Open_Object command referring to an already opened object causes the activation of the object.

If a VEMMI_Open_Object is applied to a resource object, the terminal shall verify whether the object is available. If not,
it shall be requested. No further action shall be performed.

If a VEMMI_Open_Object is applied to a metacode object, the terminal executes the object content. If not present it
shall be requested.

If a VEMMI_Open_Object is applied to an operative object, the terminal executes the program. If not present it shall be
requested. See Table 11.

TABLE 11/T.107

Parameters

5.2.9 VEMMI_Open_Blocking_Object

This service element performs the same as VEMMI_Open_Object except that the retransmission case “Rule B” as
described in 5.3.2. shall be used.

Parameters Description

Object Identification Number

Template If an application is open the object shall be stored immediately after creation

Autostore If an application is open the object shall be stored at the reception of a
VEMMI_Open, a VEMMI_Close or a VEMMI_Open_Application

Parameters Description

Object Identification Number

Recommendation T.107 (08/95) 27

5.2.10 VEMMI_Close_Object

This service element shall be used to close a VEMMI object in the VEMMI terminal. The VEMMI terminal shall clear
the indicated object from the screen but keep it in its memory. The current state parameters and values of the components
shall not be changed.

When receiving a VEMMI_Close_Object indication referring to an active object, the new active object in the VEMMI
terminal shall be the opened object that was most recently active in the terminal.

For objects that are not displayable or are already in a closed state, the VEMMI_Close_Object has no effect. See
Table 12.

TABLE 12/T.107

Parameters

5.2.11 VEMMI_Close_All

This service element shall be used to close all the VEMMI objects in the VEMMI terminal. A VEMMI_Close_All
service element shall not change the current operation mode of the terminal. See Table 13.

TABLE 13/T.107

Parameters

5.2.12 VEMMI_Destroy_Object

This service element shall be used to remove a VEMMI object from a set of objects that are in the state “opened” or
“closed”. The terminal shall remove all data belonging to this object from its memory. If the VEMMI_Destroy_Object is
applied on an opened object, it shall be closed by the local manager and then destroyed. If the object was active, the new
active object in the VEMMI terminal shall be the opened object that was most recently active in the terminal. See
Table 14.

TABLE 14/T.107

Parameters

5.2.13 VEMMI_Obj_Access_Disable

This service element shall be used to restrict the user access to an object in the VEMMI terminal. The access shall be
restricted until a VEMMI_Obj_Access_Enable service element referring to the same object is received by the VEMMI
terminal.

Parameters Description

Object Identification Number

Parameters Description

None

Parameters Description

Object Identification Number

28 Recommendation T.107 (08/95)

If the object was active, the new active object shall be the open object that was most recently active in the terminal. A
VEMMI_Obj_Access_Disable Indication referring to an active object shall interrupt the user interaction with this object.
See Table 15.

TABLE 15/T.107

Parameters

5.2.14 VEMMI_Obj_Access_Enable

This service element shall be used to permit user access to an object in the VEMMI terminal. The access shall be
permitted until a VEMMI_Obj_Access_Disable service element referring to the same object is received by the VEMMI
terminal.

A VEMMI_Obj_Access_Enable Indication received in the VEMMI terminal and referring to an inactive object shall not
change this state parameter. See Table 16.

TABLE 16/T.107

Parameters

5.2.15 VEMMI_Modify_Component

This service element shall be used to modify one or several VEMMI components belonging to a VEMMI object created
into the VEMMI terminal. The possible modifications in VEMMI components are defined in the component definition
tables of 9.6.

If a VEMMI_Modify_Component command is applied to an opened object, it shall have an immediate visual effect in
the VEMMI terminal if the modified part is visible.

A VEMMI_Modify_Component command shall not change the active/inactive state parameter of the object in the
VEMMI terminal. See Table 17.

TABLE 17/T.107

Parameters

Parameters Description

Object Identification Number

Parameters Description

Object Identification Number

Parameters Description

Object Identification Number

Modification description

Recommendation T.107 (08/95) 29

5.2.16 VEMMI_Obj_Location_Change

This service element shall be used only to change the position of a VEMMI object (not component) in the VEMMI,
terminal screen. If a VEMMI_Obj_Location_Change command is referring to a VEMMI closed object no visible effects
shall be encountered. This service element shall not change the active/inactive state parameter of an object.

A VEMMI_Obj_Location_Change service element shall never be applied to an Application Bar. See Table 18.

TABLE 18/T.107

Parameters

5.2.17 VEMMI_Load_Col_Table

This service element shall be used by the host to define colours in the colour table.

The colours are defined consecutively, started with the index “ColEntry”. The terminal shall send an error message to the
host if the requested colours cannot be defined, e.g. because the device supports less colours than the host requested. See
Table 19.

TABLE 19/T.107

Parameters

NOTE – If this service is not supported by the terminal, this shall be reported to the using application using the
VEMMI_Error “Service not supported”.

Parameters Description

Object Identification Number

XPos New horizontal position

YPos New vertical position

Parameters Description

ColEntry Colour index from which the colours are defined in ascending order

ColRGBList The list consists of triplets which give the red, green and blue component of
a colour. Each component value is in the range 0 .. 63. The value 0 means no
intensity for the component, the value 63 means maximum intensity

30 Recommendation T.107 (08/95)

5.2.18 VEMMI_Reset_Col_Table

This service element shall be used by the host to reset all previously defined colours. This command has no parameters.
Only the default colours (indices 0 .. 15) remain defined. If the default colours have been redefined with
VEMMI_Load_Col_Table, this command sets the default colours to their predefined values. See Table 20.

TABLE 20/T.107

Parameters

The default colours are given in Table 21.

TABLE 21/T.107

Parameters

NOTE – If this service is not supported by the terminal, this shall be reported to the using application using the
VEMMI_Error “Service not supported”.

Parameters Description

None

Colour index Red Green Blue Colour

0 0 0 0 Black

1 0 0 42 Blue

2 0 42 0 Green

3 0 42 42 Cyan

4 42 0 0 Red

5 42 0 42 Magenta

6 42 21 0 Brown

7 42 42 42 White

8 21 21 21 Grey

9 21 21 63 Light blue

10 21 63 21 Light green

11 21 63 63 Light cyan

12 63 21 21 Light red

13 63 21 63 Light magenta

14 63 63 21 Yellow

15 63 63 63 Bright white

Recommendation T.107 (08/95) 31

5.2.19 VEMMI_Open_Application

This service element shall be used by the host to load a set of objects and to define the name and attributes of the current
application. Additional support can be provided using symbolic directory names as described in 4.12. Locally stored
object sets are identified by the application identifier. A timestamp is used to associate version information with the
objects of this application. See Table 22.

TABLE 22/T.107

Parameters

The parameter ApplId shall contain the application name. Additional information, like name of the company or the
organization to which the application belongs or the author of the application can be given with the parameter
ApplAddData, which is not mandatory. The terminal does not need to analyze the content of ApplId, it is only used to
identify the requested application.

Application providers should take care to choose unique application identifiers, in order to avoid overwriting of other
applications.

5.2.20 VEMMI_Delete_Outdated_Objects

This service element shall be used by the host to request the deletion of outdated local objects of the current application
from the terminal storage. See Table 23.

If the host issues a VEMMI_Delete_Outdated_Objects with the timestamp requirements for specific objects, the terminal
shall react as follows:

– if an object is referenced with a timestamp value higher than the timestamp value of the locally stored
object, this object shall be deleted from the local storage. The host application can thus be certain that
outdated objects are no longer used.

TABLE 23/T.107

Parameters

In order to update an application partially, this command is typically sent following a VEMMI_Open_Application.

Parameters Description

ApplId String with the application name

ApplAddData Additional application identification data

Timestamp Time in seconds since 1.01.1970, Greenwich Mean Time (GMT)

Parameters Description

UpdateList This parameter contains groups, each of two elements, a timestamp and
a set of objects

32 Recommendation T.107 (08/95)

5.2.21 VEMMI_Store_Objects

This service element shall be used by the host to request the terminal to store the current loaded objects or a part of them.
The timestamp of the current open application, supplied with the VEMMI_Open_Application command, is associated to
each object. See Table 24.

TABLE 24/T.107

Parameters

If the parameter is absent, all currently loaded objects are stored.

5.2.22 VEMMI_Erase_Objects

This service element shall be used by the host to request the deletion of objects of the current application from the local
storage of a terminal. To increase security implementation, the VEMMI terminal could ask the user before executing the
deletion. (e.g. one time at the beginning of the application or with every deletion). If no application is open, the
command has no effect. See Table 25.

TABLE 25/T.107

Parameters

5.2.23 VEMMI_User_Lock

This service element shall be used to restrict any user input in the terminal until a VEMMI_User_Unlock is sent. See
Table 26.

TABLE 26/T.107

Parameters

5.2.24 VEMMI_User_Unlock

This service element shall be used to permit user inputs in the terminal. See Table 27.

Parameters Description

Object Identification Number

Parameters Description

Object Identification Number

Parameters Description

None

Recommendation T.107 (08/95) 33

TABLE 27/T.107

Parameters

5.2.25 VEMMI_Resource_Transfer

This service element shall be used to transfer files referenced by VEMMI resource objects from a VEMMI application to
a VEMMI terminal. See Table 28.

A file can be downloaded using one or more VEMMI_Resource_Transfer commands. A parameter of the
VEMMI_Resource_Transfer command (TransferID) associates the command to a given resource transfer. This allows
several resource transfers to be performed simultaneously with commands pertaining to different resource transfers
interleaving each other without interference.

The VEMMI_Resource_Transfer commands pertaining to the same resource transfer are numbered consecutively using
the parameter BlockNumber.

The first block of a given resource transfer shall always contain the following header information of the file:

– filename;

– filesize;

– number of VEMMI_Resource_Transfer commands used to transmit the file;

– date of creation.

The TransferType parameter of the VEMMI_Resource_Transfer command indicates if the VEMMI_Resource_Transfer
command of a given resource transfer is:

– the first command;

– an intermediate command; or

– if the resource transfer is aborted by the VEMMI application.

TABLE 28/T.107

Parameters

Parameters Description

None

Parameters Description

TransferType First command, intermediate command, abort

TransferID Transfer identifier

BlockNumber Number of the command within a given resource transfer

FileInformation Header information about the file

TotalBlocks Number of VEMMI_Resource_Transfer commands used to transmit
a given file

34 Recommendation T.107 (08/95)

5.3 Service elements initiated by the terminal

5.3.1 VEMMI_Identify_Term_Cap_Resp

This service element shall be used to respond to a VEMMI_Identify_Term_Cap request. See Table 29.

The following information can be given:

– VEMMI version identification;

– local storage support (supported/not supported);

– list of preferred user languages (string);

– system type (e.g. IBM compatible, Macintosh, ...), operating system (e.g. MS-DOS, OS2, Microsoft
Windows, ...), operating system version (e.g. 3.1, ...) (string);

– a list of supported datatypes (reference to the VEMMI content encoding identification catalogue).

TABLE 29/T.107

Parameters

5.3.2 VEMMI_Object_Retransmission

This service element shall be used to request the VEMMI application to retransmit a VEMMI object. It shall be used
only after:

– the reception of a VEMMI_Open_Object command;

– a VEMMI_Open_Blocking_Object command;

– a local action “Open object”;

referring to an object that does not exist on the terminal.

Parameters Description

SupportedVEMMIVersions This parameter contains the VEMMI version identification

ContentList The list gives references of the supported datatypes in the VEMMI
content encoding identification catalogue

LocalStorage Identifies the support of the local storage facility

PreferredUserLanguages Languages preferred by the user (for multilingual applications)

The first language in the list is the most preferred. The list may contain
only one language

SystemInfo Information to support the correct use of operative objects (e.g. System
Type, Operating System, Operating System Version)

Recommendation T.107 (08/95) 35

For the further processing of VEMMI commands until the requested object is received, the terminal shall apply one of
the following rules.

Rule A

– inform the user about possible delay due to a retransmission (terminal dependent);

– send a VEMMI_Object_Retransmission request;

– execute all VEMMI commands and local actions which do not refer to the requested object;

– memorize all VEMMI commands and local actions which refer to the requested object.

After the recreation and the opening of the requested object, the terminal shall:

– resume the execution of the possibly suspended local action;

– resume the execution of the possibly memorized VEMMI commands received in the order of their
reception.

Rule B

– lock the user;

– inform the user about possible delay due to a retransmission (terminal dependent);

– send a VEMMI_Object_Retransmission request;

– suspend and memorize any execution of VEMMI commands or local actions.

After the recreation and the opening of the requested object, the terminal shall:

– resume the execution of the possibly suspended local action;

– resume the execution of the possibly memorized VEMMI commands received in the order of their
reception;

– unlock the user.

See Table 30.

TABLE 30/T.107

Parameters

5.3.3 VEMMI_User_Data

This service element shall be used to send user data corresponding to one object to the VEMMI application. See
Table 31.

TABLE 31/T.107

Parameters

Parameters Description

Object Identification Number

Parameters Description

Object Identification Number

CompData User inputs

36 Recommendation T.107 (08/95)

5.3.4 VEMMI_Open_Application_Resp

This service element shall be used by the terminal to respond to a VEMMI_Open_Application command. See Table 32.

TABLE 32/T.107

Parameters

5.3.5 VEMMI_Store_Objects_Resp

This service element shall be used by the terminal to respond to a VEMMI_Store_Objects. See Table 33.

TABLE 33/T.107

Parameters

5.3.6 VEMMI_Error

This service element shall be used only by the VEMMI terminal to report different error situations to the VEMMI
application.

A VEMMI_Error command with the parameter Type of Error = “Out of memory” is only referring to the specified
object. Other objects created after this one may be stored in the terminal. See Table 34.

TABLE 34/T.107

Parameters

Parameters Description

OpenAppIResult True: the application has been identified and the objects have been loaded

False: the application has not been identified, no objects have been loaded.
The parameters that where used with the VEMMI_Open_Application
command are used to describe a new application environment

Parameters Description

StoreResult True: the objects have been stored

False: the objects have not been stored

Parameters Description

Object Identification Number

ErrorType

Component Identification Number

ErrorComCode Identification of the command that caused the error

Recommendation T.107 (08/95) 37

The following types of errors are defined:

– General error:

A general error has occurred.

– Unknown VEMMI command:

The VEMMI command code does not exist.

– Erroneous VEMMI command:

The VEMMI command received does not have the mandatory parameters or they have erroneous values.

– Object syntax error:

The description of a VEMMI element is not correct in an object creation or component modification.

– Unexpected VEMMI command:

The VEMMI command received is correct but it occurs at the wrong point in time.

– Out of memory:

The terminal does not have enough memory to store the data corresponding to an object creation or
component modification.

– Service not supported:

The service requested is not supported.

– Object not supported.

– Data content type not supported.

– Invalid colour index.

– File not found.

– Conversion to bitmap failed.

– Object destroy indication (a closed object was destroyed by the terminal).

– Out of local permanent storage space.

5.3.7 VEMMI_Resource_Transfer_Abort

This service element shall be used by the VEMMI terminal to abort a resource. See Table 35.

TABLE 35/T.107

Parameters

6 VEMMI objects introduction

VEMMI objects offer a basic choice of dialogue elements needed by VEMMI applications.

The following VEMMI objects are defined in this Recommendation:

– application bar;

– button bar;

– pop-up menu;

– dialogue box;

Parameters Description

TransferID Transfer identifier

38 Recommendation T.107 (08/95)

– message box.

– operative object;

– bitmap resource object;

– videotex resource object;

– text resource object;

– font resource object;

– metacode object.

A VEMMI application can be designed using any of the defined objects. No particular VEMMI object or component is
mandatory within a VEMMI application. All VEMMI objects may be multiple within a VEMMI application, except the
Application Bar. Within an object, all components may be multiple except certain restrictions applying to specific
components (see clause 7).

6.1 The application bar

The Application Bar allows the user to make a choice between the different VEMMI application parts and sub-
application parts offered by the selected VEMMI application. When used, the Application Bar is unique and located
either on the top (horizontal Bar) or the left side (vertical Bar) of the DDA.

6.1.1 Composition

The Application Bar is subdivided into three different logical groups of Menu Choice components. These groups differ
in their behaviour and functionality. The three different groups are named:

– bar;

– pull-down menu;

– cascading menu.

The Bar is a horizontal or vertical list of Menu Choice components which represents the different parts of the VEMMI
application.

The Pull-Down Menus are vertical lists of Menu Choice components which are associated to the same Menu Choice
component of the Bar. The Pull-Down Menus represent the different sub-application parts of the VEMMI application.

The Cascading Menus are vertical lists of Menu Choice components which are associated to the same Menu Choice
component of the Pull-Down Menu. The Cascading Menus represent the different sub-application parts of the VEMMI
application.

6.2 The button bar

The Button Bar permits a choice among a set of alternatives, at a given time, during the execution of the VEMMI
application. Each choice is represented by a Button. The Button Bar may be located anywhere in the DDA. The Button
Bar can be horizontal or vertical.

6.2.1 Composition

The Button Bar is composed of a series of components, named Buttons.

6.3 The pop-up menu

The Pop-Up Menu offers appropriate choices and sub-choices for a given VEMMI element in its current context. The
Pop-Up Menu may be located anywhere in the DDA.

6.3.1 Composition

The Pop-Up Menu is subdivided into two different logical groups of Menu Choice components. These groups differ in
their behaviour and functionality. The two different groups are named:

– primary pop-up menu;

– cascading menu.

Recommendation T.107 (08/95) 39

The Primary Pop-Up Menu is a vertical list of Menu Choice components which offers appropriate choices for a given
VEMMI element in its current context.

The Cascading Menu is a vertical list of Menu Choice components associated to the same Menu Choice component of
the Primary Pop-Up Menu. The Cascading Menu offers appropriate sub-choices for a given VEMMI element in its
current context.

6.4 The dialogue box

The Dialogue Box is the object where the main interaction between the user and the VEMMI application takes place. To
enable this interaction, a set of components is defined. These components can be classified as presentation or dialogue
components.

Presentation components are inaccessible; their purpose is only to present the different dialogue components coherently
and attractively.

Dialogue components permit the interaction between the user and the VEMMI application.

Five presentation components are defined:

– the Separator;

– the Frame;

– the Text Presentation Area;

– the Text component;

– the Graphic Output Area.

Nine dialogue components are defined:

– the Push Button;

– the Text Input Field;

– the Check Box;

– the Radio Button;

– the List Box;

– the Combination Box;

– the Slider;

– the Sensitive Area;

– the Sensitive Text.

6.4.1 Composition

6.4.1.1 The Separator component

A Separator is a horizontal or vertical solid line. Its goal is to visually separate different dialogue components within the
Dialogue Box.

6.4.1.2 The Frame component

A Frame is a presentation element to visually separate a particular area of the Dialogue Box and its different
components.

6.4.1.3 The Text Presentation Area component

The Text Presentation Area is a rectangular area in which text data is displayed. The goals of this component are:

– to present text information;

– to title or to label dialogue components;

– to present results from the VEMMI application execution.

40 Recommendation T.107 (08/95)

6.4.1.4 The Text component

The purpose of this component is to split large text data in units (text components) and to define the necessary structural
information (concatenation of the text components) in order to be displayed in a text area.

6.4.1.5 The Graphic Output Area component

The purpose of this component is to present graphical data to the user. Several graphical data encoding formats are
supported.

6.4.1.6 The Sensitive Text component

The purpose of this component is to define the activation and validation operations for sensitive text strings.

6.4.1.7 The Push Button component

The purpose of the Push Button is to trigger a local action to be immediately performed.

6.4.1.8 The Text Input Field component

The purpose of the Text Input Field is to collect text data, entered by the user. It is a rectangular area composed of a text
label associated to an input area.

6.4.1.9 The Check Box component

The purpose of the Check Box is to enter and to display an independent user choice. A Check Box keeps the value
marked or unmarked independently of any other Check Boxes.

6.4.1.10 The Radio Button component

The purpose of the Radio Button is to enter and to display a user choice. The Radio Button permits a single choice
among several possibilities offered in a Radio Button group. The marking of one Radio Button leads to the unmarking of
the other Radio Buttons belonging to the same Radio Button group.

6.4.1.11 The List Box component

The purpose of the List Box is to offer a single or multiple choice among a list of text items. The list is, generally, not
entirely visible to the user, so different controls are offered to scroll the list up and down.

6.4.1.12 The Combination Box component

The purpose of the Combination Box is to combine the functionality of a single choice List Box with the functionality of
a Text Input Field. It contains a list of text items the user can scroll through to complete the Text Input Field. A
parameter of the Combination Box specifies whether the Text Input Field content can be edited or not. If the Text Input
Field content can be edited, the user can type text directly into the Text Input Field.

A variation of the Combination Box is a Drop Down Combination Box. It is composed of a Combination Box and a
Push Button. Only the Text Input Field and the Push Button are displayed until the user selects the associated Push
Button. The validation of the Push Button causes the display of the associated List Box.

6.4.1.13 The Slider component

The slider offers the selection of an analogue value by moving an adjustable marker on a slide bar between a minimum-
and a maximum Value. The Intervals are set by the application.

6.4.1.14 The Sensitive Area component

The purpose of the Sensitive Area in the Dialogue Box is to offer a selection area associated to an Output Area.

6.5 Operative object

With this object an application references a program which will be linked to the VEMMI application. This object type
provides a method to extend the capabilities of an application during runtime.

Recommendation T.107 (08/95) 41

6.6 Bitmap resource object

A bitmap object contains either the bitmap definition itself or only a reference to a file with the bitmap definition.

6.7 Videotex resource object

A Videotex object contains either the Videotex content itself or only a reference to a file with the Videotex content.

6.8 Text resource object

This object defines text content as a resource which can be referenced via the “Text Identification Number” (TIN). It
contains either the text content itself or a reference to a file with the text content.

6.9 Font resource object

This object combines a set of text attributes in a font resource which can be referenced via the FIN.

6.10 Metacode object

The metacode object contains VEMMI commands. This object provides an easy way to avoid unnecessary dialogue
steps with the host application.

6.11 The message box

The purpose of the Message Box is to display information, not requested by a user but sent by the VEMMI application in
response to an unexpected event, or when something undesirable might occur.

7 Functional description

7.1 General rules for the behaviour of elements

7.1.1 User interaction

The user shall have the possibility to access and activate the different VEMMI elements. The terminal shall also enable
the user to change the values of the VEMMI elements and to validate these inputs.

7.1.2 Local actions and reports

The report of user inputs from the terminal to the server shall be induced by a report command defined in a local action
by the VEMMI application. On executing a report command, the terminal shall send a VEMMI_User_Data command to
the VEMMI application. The trigger events which induce the performance of local actions are:

– activation of a component;

– validation of a component.

The available report commands are:

– report OIN + CIN;

– report the current values of the component;

– report the values of all components in this object;

– report all values of all components in the parent objects that have changed (also via a
VEMMI_Modify_component) since the last report or since the object creation if this is the first report.

42 Recommendation T.107 (08/95)

Tables 36 and 37 show the possible trigger events and the possible reports for each component.

The overall structure of local actions is defined in 4.8.

TABLE 36/T.107

Trigger events

7.1.3 Relationship between objects and components

The closed state of an object overrules the opened state of a component. If an object is closed, the entire object including
all its components is removed from the screen, regardless if its components are in the opened state or not. The opened
state of an object does not overrule the closed state of a component. If an object gets opened, the components which are
in the closed state are not displayed.

The inaccessible state parameter of an object overrules the accessible state parameter of a component. If an object is set
inaccessible, the entire object including all its components becomes inaccessible, regardless if the components are
accessible or not. The accessible state parameter of an object does not overrule the inaccessible state parameter of a
component. If an object is set accessible, the user can only interact with those components that are accessible.

Component Activation Validation

Menu choice bar ä ä

Menu choice pull-down ä ä

Menu choice cascading ä ä

Menu choice pop-up ä ä

Menu choice separator

Button ä ä

Separator

Frame

Text presentation area

Text component

Push button ä ä

Text input field ä ä

Check box ä ä

Radio button ä ä

List box ä ä

Combination box ä ä

Slider ä ä

Sensitive area ä ä

Sensitive text

Graphic output area

Recommendation T.107 (08/95) 43

TABLE 37/T.107

Reports

7.1.4 Open/close of audio, video, resource and metacode objects

If a sound object is opened, the sound shall be performed. At the end of the sound output, the object shall be considered
closed.

The same rule applies to video objects. If the object is opened, the video display process starts and at its end the object is
closed.

The open operation of a resource only checks if it is present at the terminal.

A metacode object is processed by the open operation. At the end of processing, it is considered closed.

7.1.5 Maximize operation

NOTE – The operation described in the following subclause is not mandatory for a VEMMI terminal. If a terminal does not
implement this operation, it shall ignore the corresponding attributes and operations.

An object can be defined as maximizable. In this case it is displayed with a maximize button in its title row and upon the
validation of this button it is displayed enlarged. The enlarged object is completed with a restore button and upon a
validation of the restore button, the object is re-displayed in its initial size. These operations are terminal and
UI dependent, especially the enlarged size. The host application only can mark an object as maximizable.

Component CIN Value of all
Components

Value (Note)

Menu choice bar ä

Menu choice pull-down ä

Menu choice cascading ä

Menu choice pop-up ä

Menu choice separator

Button ä

Menu choice ä

Separator

Frame

Text presentation area

Text component

Push button ä ä

Text input field ä ä String

Check box ä ä Boolean

Radio button ä ä Boolean

List box ä ä String list

Combination box ä ä String

Slider ä ä Integer, boolean

Sensitive area ä ä

Sensitive text

Graphic output area

NOTE – The entries in this column specify the data type of the values that are reported.

44 Recommendation T.107 (08/95)

All object elements and components, except the Text Presentation Area, are enlarged on a terminal specific basis. The
Text Presentation Area component of a Dialogue Box has a specific behaviour, in order to allow an enlarged object to
add locally more text content in its display area. If the Text Presentation Area contains in its initial size the whole text,
the maximize operation is terminal dependent. If the text is only partly displayed in its initial position, the terminal shall
add additional text in the maximized object. The enlarged object can display the text in a new formatted form. This can
be set by the host.

If the object is closed in its enlarged size and later reopened it is displayed in its initial (not enlarged) size. If a
maximized object is deactivated it keeps its size.

Additional local operations on objects, which are not definable by the host can be offered to the user on a terminal
specific basis. These can be: minimize, moving, iconize, unidirectional increase and decrease, etc.

7.1.6 Notational Conventions

For the next subclauses the following notational conventions apply:

1) In the following subclauses of this clause each object and component description contains an attribute list.
These lists contain those attributes that are needed to describe the properties of the elements. The precise
syntax of the element encoding is defined in clause 9.

2) The identification numbers for resource objects, BIN (Bitmap Identification Number), FIN (Font
Identification Number), TIN (Text Identification Number), VIN (Videotex Identification Number) are
special cases of OINs and used on the same level, e.g. as parameters of VEMMI commands. Different
from them the CIN always denotes a component.

The naming conventions for the boolean attributes in the VEMMI element description follows the following rule:

– If the attribute is present in the encoding, its boolean value corresponds to the value expressed by its
name.

Example

The default value of the state “Opened” is true. If the “closed” attribute is present in the encoding of a VEMMI element,
the element shall be in the “Closed” state. If the “closed” attribute is not present in the encoding of a VEMMI element,
the element shall be in its default state, the “Opened” state.

7.1.7 Mnemonic

When text data is used in a component, the text can contain the character “&” which marks the next character as a
mnemonic key. The mnemonic key can be used to validate or activate the component. To present the “&” character in a
text it shall be doubled (e.g.: text content = “&Cats && Dogs”; text presented to the user “Cats & Dogs”).

7.2 Text formats

7.2.1 VEMMI high quality text

The implementation of text attributes (change of text font, text size, etc. inside a text string) and the definition of
sensitive areas for text (sensitive text or “hot-spot”) is realized with “In-text attributes”. These are applicable for the
following elements:

– Text Presentation Area components of a Dialogue box.

– Labels.

1) Text attributes

The attributed font can be changed inside a text output operation. The font is referenced via the FIN.
A selected new font applies to all subsequent text up to the next in-text attribute which changes the
font or to the end of the component. The initial attributed font applied to the first text of the
component is defined as an additional attribute in the component.

Recommendation T.107 (08/95) 45

The following example shows the use of in-text attributes. The brackets <...> denote attributes of the
components with their parameter.

Example:

.....

<text1> = “Customer service note:(CR,LF,CR,LF)”

<use FIN 5>

<text2> = “110 size negatives”

<use FIN 6>

<text3> = “must not be cut but must be returned in strip form for reprinting.”

<use FIN 5>

<text4> = “If they are cut we are unable to make prints from them.”

<use FIN 7>

<text5> = “(CR,LF,CR,LF)Issued by the A.P.L.”

.....

FIN 5 is defined as ROMAN, height 12.

FIN 6 is defined as ROMAN, height 12, bold, underlined.

FIN 7 is defined as SWISS, height 8.

The above text sequence with in-text attributes might look as follows:

2) In-text attributes for the definition of sensitive text

Each text string defined as sensitive has the reference to a Sensitive Text component. This
component contains two attributes which define the activation and validation operations to be
performed upon the user interaction with the Sensitive Text.

The two groups of attributes can be mixed in one text component, so that the application can apply text attributes, e.g.
colour, to sensitive strings. Such a string may appear green and possibly in addition highlighted, in order to be easily
distinguished from the plain text, which might be black on white. With these attributes, the application can offer to the
user “hypertext”-like output with VEMMI.

7.2.2 Text labels and titles

The text contents of labels and titles are clipped at the borders of their containers. This shall be applied to the following
attributes:

– all title attributes;

– all label attributes;

– text content attribute of Menu Choice components;

– list text attribute of List Box and Combination Box components.

Customer service note:

110 size negatives must not be cut but must be returned in strip form for reprinting. If they
are cut we are unable to make prints from them.

Issued by the A.P.L.

46 Recommendation T.107 (08/95)

7.3 The Application Bar

The Application Bar is subdivided into three different logical groups of Menu Choice components. These groups differ
in their behaviour and functionality. The three different groups are named:

– Bar;

– Pull-Down Menu;

– Cascading Menu.
NOTE 1 – The vertical representation of the Application Bar is an optional feature for a VEMMI terminal. If the vertical

attribute is present and set true in the encoding of an Application Bar, the terminal may ignore it and present the Application Bar
horizontally. However, no error message shall be sent to the host.

NOTE 2 – All positioning and dimensioning attributes for an Application Bar and for all of its Menu Choice components
are optional. If positioning or dimensioning attributes are defined in the encoding of an Application Bar, the terminal may ignore them
and present the Application Bar starting on the top left corner of the DDA and dimension it according to the space requirements of the
text content. However, no error message shall be sent to the host.

The Bar is a horizontal or vertical list of Menu Choice components. The Pull-Down Menus are vertical lists of Menu
Choice components which are associated to the same Menu Choice component of the Bar. The Cascading Menus are
vertical lists of Menu Choice, components which are associated to the same Menu Choice component of the Pull-Down
Menu.

All Menu Choice components of the Application Bar shall only have text content.

A Menu Choice Separator component can be used to visually separate menu choice components in a logical group. It is
defined by setting the attribute “Separator” with the definition of a regular Menu Choice.

The structure of the Application Bar Object is given, by the canonical descending order of its components (path left to
right with priority to the depth).

In the following Application Bar example, the canonical descending order of the components is:

(AB(FG(IJK)H)CDE(L))

NOTE 3– The use of parenthesis in the above example is only to show the different levels of encapsulation of the different
object groups for the path of description.

The description of the structure of the object is then:

– Object: Application Bar.

– Component: Menu Choice Bar A.

– Component: Menu Choice Bar B.

– Component: Menu Choice Pull-Down F.

– Component: Menu Choice Pull-Down G.

– Component: Menu Choice Cascading I.

– Component: Menu Choice Cascading J.

– Component: Menu Choice Cascading K.

– Component: Menu Choice Pull-Down H.

– Component: Menu Choice Bar C.

– Component: Menu Choice Bar D.

– Component: Menu Choice Bar E.

– Component: Menu Choice Pull-Down L.

A B C D E

F L

G I

H J

K

Recommendation T.107 (08/95) 47

General Visual Aspect (see Figures 7 and 8)

T0823880-95/d07

Choice 3.1

Choice 3.2

Choice 3.3

Choice 3.4

Choice 3.5

Choice 3.6

Choice 3.7

Choice 3.8

Choice 3.9

Choice 3.7.1

Choice 3.7.2

Choice 3.7.5

Choice 3.7.3

Choice 3.7.4

Choice 1 Choice 2 Choice 3 Choice 3 Choice 3

XPos

Height

FIGURE 7/T.107
FIGURE 7/T.107...[D07] = 10 CM

T0823890-95/d08

1

2

3

4

5

6

7

8

9

Choice 8.1

Choice 8.2

Choice 8.3

Choice 8.4

Choice 8.5

Choice 8.6

Choice 8.7

Choice 8.7.1

Choice 8.7.2

Choice 8.7.3

Choice 8.7.4

Width

YPos

FIGURE 8/T.107
FIGURE 8/T.107...[D08] = 10 CM

Attributes

• Vertical: The Application Bar shall be presented vertical (see Note 1).

• XPos: This attribute carries the horizontal position of the element in NDC. It is only
applicable to horizontal Application Bars (see Note 2).

• YPos: This attribute carries the vertical position of the element in NDC. It is only applicable
to vertical Application Bars (see Note 2).

• Height: This attribute carries the height of the Bar. It is only applicable to horizontal
Application Bars (see Note 2).

• Width: This attribute carries the width of the Bar. It is only applicable to vertical Application
Bars (see Note 2).

48 Recommendation T.107 (08/95)

• FirstActive: This attribute carries the CIN of the Menu Choice which is active by default, the first
time the object is opened.

• Closed: The element shall be in the closed state.

• NotAccessible: The object is not accessible.

7.3.1 Composition

7.3.1.1 Menu Choice components of the Bar

Description

The Bar is a consecutive list of Menu Choices positioned side by side horizontally, or vertically.

Horizontal representation:

– the Application Bar shall be presented at the top of the DDA;

– the number of rows allocated for each Menu Choice shall be the same.

Vertical representation:

– the Application Bar shall be presented at the leftmost part of the DDA;

– the number of columns allocated for each Menu Choice shall be the same.

Behaviour

When the Application Bar is active, the terminal shall emphasize one Menu Choice, and offer shifting and validation
facilities to the user. A mnemonic key can be used to validate the Menu Choice (see 7.1.7).

If a Menu Choice of the Bar is validated the associated local action shall be performed and then the associated Pull-
Down Menu shall be opened (the Menu Choice remains emphasized).

Interactive functionality

– shifting;

– validation.

Visual aspect (see Figures 9 and 10)

T0815510-94/d09

Width Width Width Width

Choice 1 Choice 2 Choice 3 Choice 4

FIGURE 9/T.107

Horizontal menu bar
FIGURE 9/T.107...[D09] = 11 CM

Recommendation T.107 (08/95) 49

T0815520-94/d10

Choice 1

Choice 2

Choice 3

Choice 5

Choice 6

Choice 7

Choice 8

Choice 9

Choice 4
Two row

Mnemonic

Height

Height

Height

Height

Height

Height

Height

Height

Height

FIGURE 10/T.107

Vertical menu bar

FIGURE 10/T.107...[D10] = 10 CM

Attributes

• CIN: This attribute carries the Component Identification Number.

• Height: This attribute carries the height of the component. It is only applicable to vertical
Bars (see , 7.3, Note 2).

• Width: This attribute carries the width of the component. It is only applicable to horizontal
Bars (see 7.3, Note 2).

• NotAccessible: The element shall not be accessible.

• Text: This attribute carries the text content of the component.

• LocActAct: This attribute carries the code for the local action which is associated to the
component and triggered by its activation.

• LocActVal: This attribute carries the code for the local action which is associated to the
component and triggered by its validation.

7.3.1.2 Menu Choice components of the Pull-Down Menu

Description

The Pull-Down Menu is a consecutive list of Menu Choices components associated to the same Menu Choice of the Bar
and presented vertically on several rows.

The number of columns allocated for each Menu Choice shall be the same.

The Pull-Down Menu shall be positioned next to the associated Menu Choice of the Bar.

A Separator can be used in an Pull-Down Menu to visually separate different Menu Choices.

Behaviour

When the Pull-Down Menu is active, the terminal shall emphasize one Menu Choice, and offer to the user shifting and
validation facilities. A mnemonic key can be used to validate the Menu Choice (see 7.1.7).

If a Menu Choice is validated the associated local action shall be performed and then the associated Cascading Menu
shall be opened (the Menu Choice remains emphasized). If no Cascading Menu is associated to the Menu Choice after a
user validation, the associated local action shall be performed and then the Pull-Down Menu shall be closed.

50 Recommendation T.107 (08/95)

Interactive functionality

– shifting;

– validation.

Visual aspect (see Figures 11 and 12)

T0824320-95/d11

Choice 1 Choice 2 Choice 3 Choice 4 Choice 5

Choice 2.1

Choice 2.2

Choice 2.4

Choice 2.5

Height

Height

Height

Height

Height

Width

Two row
Choice 2.3

FIGURE 11/T.107

Pull-down menu

FIGURE 11/T.107...[D11] = 10 CM

T0824330-95/d12

Choice 2.1

Choice 2.2

Choice 2.3

Choice 2.4

Choice 1

Choice 2

Choice 4

Choice 6

Choice 3

Choice 7

Choice 8

Choice 9

Two row
Choice 2.5

Two row
Choice 5

FIGURE 12/T.107

Pull-down menu

Width

Height

Height

Height

Height

Height

FIGURE 12/T.107...[D12] = 10 CM

Recommendation T.107 (08/95) 51

Attributes

• CIN: This attribute carries the Component Identification Number.

• Height: This attribute carries the height of the component (see 7.3, Note 2).

• Width: This attribute carries the width of the component. It shall be equal to all Menu
Choices of the Pull Down Menu (see 7.3, Note 2).

• NotAccessible: The element shall not be accessible.

• Text: This attribute carries the text content of the component.

• Separated: A Separator shall be drawn between the elements.

• LocActAct: This attribute carries the code for the local action which is associated to the
component and triggered by its activation.

• LocActVal: This attribute carries the code for the local action which is associated to the
component and triggered by its validation.

7.3.1.3 Menu Choice components of the Cascading Menu

Menu Choice components of Cascading Menu are common to the Pull-Down Menu and the Pop-Up Menu.

Description

The Cascading Menu is a consecutive list of Menu Choices associated to the same Menu Choice of the Pull-Down Menu
or Pop-Up Menu and presented vertically on several rows.

The number of columns allocated for each Menu Choice shall be the same.

The Cascading Menu shall be positioned next to the associated Pull-Down Menu or Pop-Up Menu.

A Separator can be used in a Cascading Menu to visually separate different Menu Choices.

Figure 13 shows the recommended presentation for a Cascading Menu. If the terminal is not able to present a Cascading
Menu like shown in Figure 13 it can, as a fallback solution, present the Menu Choices of the Cascading Menu in the
Pull-Down Menu but it should visually associate the Menu Choices of the Cascading Menu to the corresponding Menu
Choice of the Pull-Down Menu. The terminal should set the Menu Choice in the Pull-Down Menu, to which the
Cascading Menu is associated, inaccessible and present it as a title for the Menu Choices of the Cascading Menu
(see Figure 14).

Behaviour

When the Cascading Menu is active, the terminal shall emphasize one Menu Choice, and offer to the user shifting and
validation facilities. A mnemonic key can be used to validate the Menu Choice (see subclause 7.1.7).

After the validation of a Menu Choice, the associated local action shall be performed and then the Cascading Menu and
the Pull-Down Menu (Pop-Up Menu) shall be closed.

Interactive functionality

– shifting;

– validation.

52 Recommendation T.107 (08/95)

Visual aspect (see Figure 13 and 14)

T0823920-95/d13

Choice 2

Choice 2.1

Choice 2.2

Choice 2.3

Choice 2.4

Choice 1 Choice 3 Choice 4 Choice 5

Choice 2.3.2

Height

Width

Height

Two row
Choice 2.3.1

FIGURE 13/T.107

Cascading menu (recommended presentation)

FIGURE 13/T.107...[D13] = 10 CM

T0823930-95/d14

Choice 2.1

Two row

Choice 2.2

Choice 2.3

Choice 1 Choice 3 Choice 4 Choice 5

Choice 2.3.1

Choice 2.3.2

Choice 2.4

Choice 2

FIGURE 14/T.107

Cascading menu (fallback presentation)

FIGURE 14/T.107...[D14] = 10 CM

Attributes

• CIN: This attribute carries the Component Identification Number.

• Height: This attribute carries the height of the component (see 7.3, Note 2).

• Width: This attribute carries the width of the component. It shall be equal to all Menu
Choices of the Cascading Menu (see 7.3, Note 2).

• NotAccessible: The element shall not be accessible.

Recommendation T.107 (08/95) 53

• Text: This attribute carries the text content of the component.

• Separated: A Separator shall be drawn between the elements.

• LocActAct: This attribute carries the code for the local action which is associated to the
component and triggered by its activation.

• LocActVal: This attribute carries the code for the local action which is associated to the
component and triggered by its validation.

7.4 The Button Bar

Description

The Button Bar is a consecutive list of Buttons positioned side by side horizontally, or vertically.

Horizontal representation:

– the number of rows allocated for each Button shall be the same.

Vertical representation:

– the number of columns allocated for each Button shall be the same.

NOTE – If the “Height” and the “Width” attribute are present in the definition of a Bar all Buttons in the Bar shall have the
same dimensions. The dimensioning attributes for the components of the Button Bar shall then not be present. If only the “Height”
attribute is present in the definition of a horizontal Button Bar, it denotes the height for the entire object. The width for the
components is then given with each component. If only the “Width” attribute is present in the definition of a vertical Button Bar it
denotes the width for the entire object. The height for the components is then given with each component.

Behaviour

When the Button Bar is active, the terminal shall emphasize one Button, and offer to the user shifting and validation
facilities.

Interactive functionality

– shifting;

– validation.

Visual aspect (see Figure 15)

T0815560-94/d15

Horizontal Bar

Vertical Bar

Width

Height

YPos

YPos

XPos XPos

DDA

FIGURE 15/T.107

Button bar
FIGURE 15/T.107...[D15] = 10 CM

54 Recommendation T.107 (08/95)

Attributes

• XPos: This attribute carries the horizontal position of the element in Normalized Device
Coordinate (NDC).

• YPos: This attribute carries the vertical position of the element in NDC.

• Vertical: Boolean switch between the alternatives.

• Height: This attribute carries the height of the Button Bar. It is only applicable to horizontal
Button Bars (see Note).

• Width: This attribute carries the width of the Button Bar. It is only applicable to vertical
Button Bars (see Note).

• FirstActive: This attribute carries the CIN of the Button which is active by default, the first time
the object is opened.

• Modal: The element shall be modal.

• Closed: The element shall be in the closed state.

• NotAccessible: The element shall not be accessible.

7.4.1 Composition

7.4.1.1 The Button component

Description

The Button is a rectangular area in the DDA.

If formed with text data it should be represented by a text label, possibly associated with a graphic to draw the shape of
the button. The button graphic shape shall be included in the space allocated by the VEMMI application for the whole
Button component. If the graphic shape does not cover the entire space allocated for the button, the terminal can resize
the content. The terminal may centre the text data in the element display area reserved by the VEMMI application for the
component.

The drawing of the Button and the possible visual trigger effect are terminal dependent.

Behaviour

When a Button is active, the terminal shall emphasize it. A mnemonic key can be used to validate the Button (see 7.1.7).

When a trigger effect is implemented, the Button shall go back to the initial display state after user validation.

Interactive functionality

– activation;

– validation.

Visual aspect (see Figure 16)

T0815570-94/d16

FIGURE 16/T.107

Button

Width

Mnemonic

HeightOK

FIGURE 16/T.107...[D16] = 5 CM

Recommendation T.107 (08/95) 55

Attributes

• CIN: This attribute carries the Component Identification Number.

• Height: This attribute carries the height of the component. It is only applicable to Buttons of
vertical Button Bars (see 7.4, Note).

• Width: This attribute carries the width of the component. It is only applicable to Buttons of
horizontal Button Bars (see 7.4, Note).

• Closed: The element shall be in the closed state.

• NotAccessible: The element shall not be accessible.

• BIN: The BIN of the component.

• Text: The text content of the component.

• LocActAct: This attribute carries the code for the local action which is associated to the
component and triggered by its activation.

• LocActVal: This attribute carries the code for the local action which is associated to the
component and triggered by its validation.

7.5 The Pop-Up Menu

The Pop-Up Menu is subdivided into two different logical groups of Menu Choice components. These groups differ in
their behaviour and functionality. The two different groups are named:

– Primary Pop-Up Menu;

– Cascading Menu.

The Primary Pop-Up Menu is a vertical list of Menu Choice components. The Cascading Menu is a vertical list of Menu
Choice components associated to the same Menu Choice component of the Primary Pop-Up Menu.

A Menu Choice Separator can be used to visually separate menu choice components in a logical group. It is defined by
setting the attribute “Separator” with the definition of a regular Menu Choice.

The structure of the Pop-Up Menu Object is given, with the following conventions, by the canonical descending order of
its components (path top down).

In the following Pop-Up Menu example, the canonical descending order of the components is:

(BFG(IJK)H)

NOTE 1 – The parenthesis in the above example are only for showing the different levels of encapsulation of the different
object groups for the path of description.

The description of the structure of the object is then:

– Object: Pop-Up Menu.

– Component: Menu Choice Pop-Up B.

– Component: Menu Choice Pop-Up F.

– Component: Menu Choice Pop-Up G.

– Component: Menu Choice Cascading I.

B

F

G I

H J

K

56 Recommendation T.107 (08/95)

– Component: Menu Choice Cascading J.

– Component: Menu Choice Cascading K.

– Component: Menu Choice Pop-Up H.

Interactive functionalities

– shifting;

– validation.

General visual aspect (see Figure 17)

1

2

3

4

5

6

7

T0823940-95/d17

Choice 5.1

Choice 5.2

Choice 5.3

DDA

WidthYPos

XPos

FIGURE 17/T.107

FIGURE 17/T.107...[D17] = 10 CM (118%)

A text title may be given to the Pop-Up Menu which shall be displayed in its first row of the Primary Pop-Up Menu.

NOTE 2 – All dimensioning attributes for the Menu Choice components of the Pop-Up Menu are optional. If dimensioning
attributes are defined in the encoding of a Pop-Up Menu, the terminal may ignore them and dimension it according to the space
requirements of the text content. However, no error message shall be sent to the host.

Attributes

• XPos: This attribute carries the horizontal position of the element in NDC.

• YPos: This attribute carries the vertical position of the element in NDC.

• Width: This attribute carries the width of the Pop-Up Menu (see Note 2).

• Title: This attribute carries the title of the object. The title shall be displayed in the first row
of the object.

• TitleFont: This attribute carries the FIN of the title.

• FirstActive: This attribute carries the CIN of the component which is active by default, the first
time the object is opened.

• Modal: The element shall be modal.

• Closed: The element shall be in the closed state.

• NotAccessible: The element shall not be accessible.

Recommendation T.107 (08/95) 57

7.5.1 Composition

7.5.1.1 Menu choice components of the primary pop-up menu
Recommendation T.107 (08/95)

Description

The Primary Pop-Up Menu is a consecutive list of Menu Choices and presented vertically on several rows.

The number of columns allocated for each Menu Choice shall be the same.

A Separator can be used in a Primary Pop-Up Menu to visually separate different Menu Choices.

Behaviour

When the Primary Pop-Up Menu is active, the terminal shall emphasize one Menu Choice, and offer to the user shifting
and validation facilities. A mnemonic key can be used to validate the Menu Choice (see 7.1.7).

If a Pop-Up Menu component is validated the associated local action shall be performed and then the associated
Cascading Menu shall be opened (the Pop-Up Menu component remains emphasized). If no Cascading Menu is
associated to the Menu Choice after a user validation, the associated local action shall be performed and then the Pop-Up
Menu shall be closed.

Interactive functionality

– shifting;

– validation.

Visual aspect (see Figure 18)

T0823950-95/d18

Choice 1

Choice 2

Choice 4

Choice 5

Two row
Choice 3

Height

Height

Height

Height

Height

FIGURE 18/T.107

Pop-up menu

FIGURE 18/T.107...[D18] = 9.5 CM

Attributes

• CIN: This attribute carries the Component Identification Number.

• Height: This attribute carries the height of the component (see 7.5, Note 2).

• Closed: The element shall be in the closed state.

58 Recommendation T.107 (08/95)

• NotAccessible: The element shall not be accessible.

• Text: This attribute carries the text content of the component.

• Separated: The elements shall be separated.

• LocActAct: This attribute carries the code for the local action which is associated to the component
and triggered by its activation.

• LocActVal: This attribute carries the code for the local action which is associated to the component
and triggered by its validation.

7.5.1.2 Menu choice components of the cascading menu

Description, behaviour, interactive functionality, attributes

See 7.3.1.3.

Visual aspect (see Figure 19)

T0823960-95/d19

Height

Height

Height

Height

Height

Width

Choice 1

Choice 2

Choice 3

Choice 4

Choice 5

Choice 6

Choice 7

Choice 3.1

Choice 3.2

Choice 3.3

Choice 3.4

Three row
Choice 3.5

FIGURE 19/T.107

Recommended presentation of a pop-up menu
with associated cascading menu

FIGURE 19/T.107...[D19] = 9.5 CM

7.6 The Dialogue Box

Description

The Dialogue Box is a rectangular area in the DDA which contains VEMMI components in order to establish user
interaction.

Recommendation T.107 (08/95) 59

The components themselves contain (or have references to) other components or resource objects. Figure 20 shows the
relationship. Each arrow indicates a possible reference to a component or a resource object. These references can be
multiple as well as the dialogue box can contain several components of the same type.

T0823970-95/d20

BIN

BIN

BIN

BIN

VIN

FIN

FIN

FIN

FIN

FIN

FIN

Dialogue box

Separator

Frame

Text area

Text input field

Push button

Check box

Radio button

Combo box

Slider

Sensitive area

List box

Text component

Sensitive text

TIN

BIN

FIGURE 20/T.107

Element relationships within the dialogue box

Graphic output area

FIGURE 20/T.107...[D20] = 15 CM
Element relationships within the dialogue box

A text title may be given to the Dialogue Box which shall be displayed in its first row. The title height equals 1/32 NDC.

The Dialogue Box can be provided with a border area which should be equal to one character position. When present,
this border shall be included in the dimensions defined by the VEMMI application. When a border is requested, a frame
shall be drawn by the terminal. This frame drawing is terminal dependent (it should not be wider than 1/160 NDC).

The object origin of the Dialogue Box is the top left corner of the box rectangle, independent whether the box has a title
or not. The components are positioned relatively to this point for Dialogue Boxes that do not have a text title. In the case
of boxes with a text title, this point is moved downwards by a distance corresponding to the titles height and the borders
width and horizontally by the distance equal to the border width.

60 Recommendation T.107 (08/95)

The background area of the Dialogue Box is the rectangle defined by the box dimensions, except the title bar and the
border. The background can be coloured uniform or with a data content.

Behaviour

The user can activate any component with a pointing device or with the keyboard. If the user activates the components
with the keyboard keys providing the functionality “Previous” and “Next”, the order of activation should correspond to
the reception order of the components of the Dialogue Box.

Interactive functionality

– Moving.

Visual aspect (see Figure 21)

T0815610-94/d21

OK

177

XPos

YPos

Frame Height

Width

Drop down list box item 7

Check box 1

Check box 2

Check box 3

Check box 4

Check box 5

Check box 6

Radio button 1

Radio button group

Radio button 2

Radio button 3

Presentation area

Monitor

Cancel

DDA

FIGURE 21/T.107

Dialogue box

FIGURE 21/T.107...[D21] = 12.5 CM

Attributes

• XPos: This attribute carries the horizontal position of the element in NDC.

• YPos: This attribute carries the vertical position of the element in NDC.

• Width: This attribute carries the width of the object.

• Height: This attribute carries the height of the object.

• NoBorder: No border shall be drawn.

• Title: This attribute carries the title of the object. The title shall be displayed in the first
row of the object.

Recommendation T.107 (08/95) 61

• FirstActive: This attribute carries the CIN of the component which is active by default, the first
time the object is opened.

• Modal: The element shall be modal.

• Closed: The element shall be in the closed state.

• NotAccessible: The element shall not be accessible.

• StoreInitialValues: The terminal shall store the initial values of the component at the time of the object
creation. If a local action “restore initial values” is applied, these stored values shall
be restored.

• Maximizable: The object is maximizable.

• Colour: Colour index of the background.

• BIN: Bitmap identification number to fill the Dialogue Box Background.

• DispType: Specifies the display mode of the background bitmap: centred, stretched (default)
or tiled.

7.6.1 Composition

7.6.1.1 The Separator component

Description

The Separator is either a horizontal or a vertical solid line used to separate different areas within a Dialogue Box.

Behaviour

The Separator shall be inaccessible.

Interactive functionality

– None.

Visual aspect (see Figure 22)

Attributes

• CIN: This attribute carries the Component Identification Number.

• XPos: This attribute carries the horizontal position of the element in NDC.

• YPos: This attribute carries the vertical position of the element in NDC.

• Vertical: The element shall be drawn vertically.

• Height: This attribute carries the height of the component. It is only applicable to vertical Separators.

• Width: This attribute carries the width of the component. It is only applicable to horizontal
Separators.

• Closed: The element shall be in the closed state.

• Colour: Colour index.

7.6.1.2 The Frame component

Description

A Frame consists of four solid lines which visually separate a rectangular area of the Dialogue Box.

Behaviour

The Frame shall be inaccessible.

Interactive functionality

– None.

62 Recommendation T.107 (08/95)

T0824340-95/d22

Dialogue box

XPos

YPos

YPos

XPos

Height

Check box

Check box

Check box
Separator horizontal

Width
Radio button 1

Radio button 2

Radio button 3

Separator vertical

Radio button 1

Radio button 2

Radio button 3

Check box

Check box

Check box

FIGURE 22/T.107

Separator

FIGURE 22/T.107...[D22] = 10.5 CM

Visual aspect (see Figure 23)

T0815630-94/d23

 Monitor

Width

Presentation area

Frame

Height

YPos

XPos

FIGURE 23/T.107

Frame titled with a text presentation area

FIGURE 23/T.107...[D23] = 10.5 CM

Recommendation T.107 (08/95) 63

Attributes

• CIN: This attribute carries the Component Identification Number.

• XPos: This attribute carries the horizontal position of the element in NDC.

• YPos: This attribute carries the vertical position of the element in NDC.

• Width: This attribute carries the width of the component.

• Height: This attribute carries the height of the component.

• Closed: The element shall be in the closed state.

• Colour: Colour index.

7.6.1.3 The Text Presentation Area component

Description

The Text Presentation Area is an area intended to present text data to the user. Basically, this element is used to present
text that fits in one window (the space defined by one text area component) or to present large text data where the user
has to use scrolling tools in order to navigate through the text.

The Text Presentation Area has its starting location in the top left corner of the rectangle defined by the component and
the text is displayed row by row from the left to the right. The text content can contain “In-Text” attributes to switch
between different attribute fonts and to define “sensitive text strings”. The “In-Text” attributes can appear multiple, in
any order, and they are evaluated during the display operation sequentially and on the basis of structural information
contained in text components (“previous, next” attributes).

Scrolling, Border, Title

If the space needed for the presentation of the data is bigger than the space allocated for the component, vertical scrolling
tolls shall be provided by the terminal application. The terminal may present:

– scrolling tools next to the right side of the area;

– reduced scrolling tools as buttons overlapping the area;

– cursor keys that provide the scrolling functionality.

The space needed for the scrolling tools is included in the overall dimensions of the component.

The component can be provided with a border area. When present, the border shall be included in the overall dimensions
of the component. When a border is requested a frame shall be drawn by the terminal. The frame drawing is terminal
dependent. It should not be wider than 1/160 NDC. If scrolling tools are provided next to the right side of the
component, the border shall be extended to include them visually in the box.

Maximize operation

The size of the Dialogue Box can be changed by the user with the scrolling tools provided by the local Graphical User
Interface (GUI) and via a defined maximize button. The recommended strategy is described in 7.1.5. These are default
recommendations. If the attribute “NoFormat” is selected for the component, the following applies:

– a vertical increase should not change the text form, no additional text should be added;

– a vertical decrease should clip the text on the new border;

– a horizontal increase should add new text lines;

– a horizontal decrease should clip the text.

64 Recommendation T.107 (08/95)

Interactive functionality

– Activation and validation of sensitive text, defined via in-text attributes.

NOTE – To transfer a large amount of text data, it is recommended not to use the direct text definition but to use the Text
Resource object and transmit the data using the VEMMI resource transfer.

Visual aspect (see Figure 24)

T0824350-95/d24

XPos

YPos

The enclosed CONDITIONS are an essential part
of the contract. To apply for participation in the
.EVER�#OMEBACK�#ONFERENCE�� please transfer the
participation fee as soon as possible. More
information in the detailed #ONDITIONS�OF�0ARTICIPATION�

Width

Height

FIGURE 24/T.107

Text presentation area

FIGURE 24/T.107...[D24] = 10.5 CM

Attribute

• CIN: This attribute carries the Component Identification Number.

• XPos: This attribute carries the horizontal position of the element in NDC.

• YPos: This attribute carries the vertical position of the element in NDC.

• Width: This attribute carries the width of the component.

• Height: This attribute carries the height of the component.

• NoScrollingTools: No scrolling tools shall be drawn by the terminal.

• Format: A maximization of the dialogue box shall use the limited formatting rules described
above.

• NoBorder: No Border shall be drawn to frame the element.

• InitialFnt: FIN of the attribute font to be applied on the first text.

Recommendation T.107 (08/95) 65

• Autoscroll: A modification of a component referenced by the text area leads to an immediate
display of this modified component.

• InText: Text content possibly including in-text attributes, and references to font objects.

• TextCompRef: Reference to a text component.

• Closed: The element shall be in the closed state.

7.6.1.4 The Text component

Description

This component is used to split large text data in units (text components) and to define the necessary structural
information (concatenation of the text components) in order to be displayed in a text area. This structural information are
references to the previous and next text components, defined with the attributes “NextText” and “PreviousText”.

Display Concept

The components are not necessarily of the same length. During the display of concatenated text components, the user
should have the impression of a continuous text. The continuity should not be interrupted by a switch from one
component to the other. Vertical scrolling capabilities, on a row-by-row and page-by-page basis, shall be offered within
consecutive components. This display continuity is interrupted in two cases:

– A component contains no further concatenation, no “NextText” during a forward scrolling or no
“PreviousText” during a backward scrolling. The display does not continue because the just displayed
text pertains to a topic which has reached its logical end. Figure 29 shows two sequences of concatenated
components: CINs 7,8,9 and CIN 17.

– “Jumps” due to the validation of sensitive text as part of the displayed components or other interactive
components of the dialogue box. Sensitive text attribute can contain as a local action an element specific
command, e.g. “open component of parent object”. The referenced parent component is a text component
which will be displayed in the starting position and not consecutively to the last displayed component.
This effect is shown in Figures 27 and 28.

The text to be displayed is contained in the component definition, in another referenced text component or in a
referenced text resource object. If such a resource object is not available in the terminal, it can be requested from the host
application with the command VEMMI_Object_Retransmission and the Rule B shall be applied (see 5.3.2). Such a
request might be initiated due to a forward scroll to data which is not yet in the terminal, but in general there is no direct
relation between the scrolling action and the object retransmission request, because the terminal keeps the already
received objects.

NOTE – To transfer a large amount of text data, it is recommended not to use the direct text definition but to use the Text
Resource object and transmit the data using the VEMMI resource transfer.

Visual aspect (see Figures 25 to 28)

66 Recommendation T.107 (08/95)

T0823990-95/d25

Text area

 General notes on operation

Basic settings

“LS 1” “LS 2”

“speaker”

On switching on after a longer period without mains power,
all selectable functions are disabled and all controls set to

middle or zero. The loudspeaker outputs remain connected

to the power amplifiers. Displays: e.g. 87. V40 .
To operate use to select loudness compensated

volume (display: loudn.) and disable unoccupied loudspeaker

outputs using “LS 1” or “LS 2” on the R4.
Using the remote control unit, press (display: e.g. SP1/2)

and the press “1” or “2” to enable or disable the corresponding

loudspeaker output.

FIGURE 25/T.107

A text area with text component(s), scroll bars
and sensitive texts (Attribute “NoFormat” is not set).

Now, the user becomes active and scrolls downward ...

>loudn.<

FIGURE 25/T.107...[D25] = 10 CM

T0823560-95/d26

On the unit, use the buttons to select FM or
AM wavebands. Display: e.g. 94.40 MHz, | (center
tuning), |||||| (field strength display), stereo, if a stereo
station is being received with adequate quality.
Using the remote control unit, press “fm” to select FM.

e.g. 87. V40 . To operate use to
select loudness compensated volume (display: loudn.)
and disable unoccupied loudspeaker outputs using
“LS 1” or “LS 2” on the R4.
Using the remote control unit, press (display:
e.g. SP1/2) and the press “1” or “2” to enable or disable
the corresponding loudspeaker output.

Tuning

“speaker”

“LS 1” “LS 2”

“fm” or “am”

FIGURE 26/T.107

... in addition he/she enlarges the window on both directions, ...

>loudn.<

FIGURE 26/T.107...[D26] = 9 CM

Recommendation T.107 (08/95) 67

T0823570-95/d27

Tuning

Station search

“LS 1” “LS 2” >loudn.<

“speaker”

“fm” or “am”

e.g. 87. V40 . To operate use to select loudness
compensated volume (display: loudn.) and disable unoccupied loudspeaker
outputs using “LS 1” or “LS 2” on the R4.
Using the remote control unit, press (display: e.g. SP1/2) and the
press “1” or “2” to enable or disable the corresponding loudspeaker output.

On the unit, use the buttons to select FM or AM wavebands.
Display: e.g. 94.40 MHz, | (center tuning), |||||| (field strength display), stereo,
if a stereo station is being received with adequate quality.
Using the remote control unit, press “fm” to select FM reception (repeating
toggles between FM and AM).

To tune to a particular station, activate search on the unit by pressing
“autotune+” or “autotune-”.
Using the remote control unit, press “>>” or “<<”.

FIGURE 27/T.107

... and finally, clicks on the hot spot “speaker”

FIGURE 27/T.107...[D27] = 11 CM

T0823580-95/d28

“speaker”

“LS 1” and “LS 2”
Activates buttons “1” and “2” (for 3 seconds) to switch the loudspeaker pairs

connected with terminals to amplifier output. Display
SP1/- and SP-/- with the corresponding loudspeaker symbols.

Attention ! Care must be taken to ensure that the phases are correctly

connected for the left and right speakers in a pair and for the two pairs of

loudspeakers (if they are to be operated in the same room). The black
terminals are grounded.

FIGURE 28/T.107

The “speaker” text is displayed

FIGURE 28/T.107...[D28] = 10.5 CM

68 Recommendation T.107 (08/95)

A possible component architecture for the display sequence shown in Figures 25 to 29 can be the following (the in-text
attributes are not listed):

The local interactivity can be implemented by the correct cooperation of the local actions
(LocActVal parameter) which are part of the sensitive text and other interactive elements of the dialogue box. In the
example case, the user can skip from the text of Figure 27 to Figure 25 with the Sensitive Text “Speaker” if the Sensitive
Text contains the local action “open component 7”.

Attributes

• CIN: Component Identification Number.

• PreviousText: CIN of the backward concatenated text component.

• CurrentText: Text definition, including references to font resource objects, text resource objects and
sensitive text components.

• NextText: CIN of the forward concatenated text component.

General notes on operation

Basic settings

On switching on after a longer period without mains power, all selectable functions are disabled and
all controls set to middle or zero. The loudspeaker outputs remain connected to the power
amplifiers. Displays: e.g. 87. V40 “LS 1” “LS 2”. To operate use >loudn.< to select loudness
compensated volume (display: loudn.) and disable unoccupied loudspeaker outputs using “LS 1”
or “LS 2” on the R4.

Using the remote control unit, press “speaker” (display: e.g. SP1/2) and the press “1” or “2” to
enable or disable the corresponding loudspeaker output.

Text component

CIN: 7

Next text: 8

Tuning

On the unit, use the “fm” or “am” buttons to select FM or AM wavebands. Display: e.g. 94.40 MHz, |
(centre tuning), |||||| (field strength display), stereo, if a stereo station is being received with
adequate quality.

Using the remote control unit, press “fm” to select FM reception (repeating toggles between FM
and AM).

Text component

CIN: 8

Previous text: 7

Next text: 9

Station search

To tune to a particular station, activate search on the unit by pressing “autotune+” or “autotune–”.

Using the remote control unit, press “>>” or “<<”.

The search, with automatic muting, continues in the selected direction until the next station with
adequate reception quality and centre tuning position is located.

Text component

CIN: 9

Previous text: 8

“speaker”

Activates buttons “1” and “2” (for 3 seconds) to switch the loudspeaker pairs connected with
terminals “LS 1” and “LS 2” to amplifier output. Display SP1/- and SP-/- with the corresponding
loudspeaker symbols.

Attention! Care must be taken to ensure that the phases are correctly connected for the left and
right speakers in a pair and for the two pairs of loudspeakers (if they are to be operated in the
same room). The black terminals are grounded.

Text component

CIN: 17

FIGURE 29/T.107

Text component architecture

Recommendation T.107 (08/95) 69

7.6.1.5 The Sensitive Text Component

These components define the activation and validation operations for sensitive text strings. These are part of text
components.

Visual aspect

See 7.6.1.4.

Attributes

• CIN: Component Identification Number.

• NotAccessible: The element shall not be accessible.

• LocActAct: Specifies the local actions which are associated to the component and triggered by its
activation.

• LocActVal: Specifies the local actions which are associated to the component and triggered by its
validation.

7.6.1.6 The Graphic Output Area component

Description

The Graphic Output Area is a rectangle to display graphical data (bitmaps, videotex data, etc.). A bitmap is referenced
via a BIN. Three different display modes exist: the bitmap can be centred in the Graphic Output Area, it can be stretched
to cover the whole area or it can be tiled. In any case the bitmap shall not exceed the space reserved with this component.
If the referenced bitmap does not exist while the component is opened, it has no visual effect.

Videotex data are referenced via a VIN. In any case the Videotex data shall not exceed the space reserved with this
component. If the referenced Videotex data content does not exist while the component is opened, it has no visual
effect.

Behaviour

It is inaccessible.

Interactive functionalities

– None.

Visual aspect (see Figure 30)

Attributes

• CIN: Component Identification Number.

• XPos: Horizontal position of the top left corner of the bitmap rectangle.

• YPos: Vertical position of the top left corner of the bitmap rectangle.

• Width: Width of the bitmap rectangle.

• Height: Height of the bitmap rectangle.

• Closed: The element shall be in the closed state.

• DispType: Specifies the display mode of the bitmap: centred, stretched (default) or tiled.

• BIN: Bitmap Identification Number.

• VIN: Videotex Identification Number.

7.6.1.7 The Push Button component

Description, behaviour, interactive functionality

See 7.4.1.1.

70 Recommendation T.107 (08/95)

XPos

YPos

T0824360-95/d29

Dialogue box

Frame

Width

Height

FIGURE 30/T.107

Frame and a bitmap

FIGURE 30/T.107...[D29] = 10.5 CM

Visual aspect (see Figure 31)

T0824370-95/d30

OK

XPos

YPos

Width

Mnemonic

Height

 Dialogue Box

FIGURE 31/T.107

Push button

FIGURE 31/T.107...[D30] = 10.5 CM

Recommendation T.107 (08/95) 71

Attributes

• CIN: This attribute carries the Component Identification Number.

• XPos: This attribute carries the horizontal position of the element in NDC.

• YPos: This attribute carries the vertical position of the element in NDC.

• Width: This attribute carries the width of the component.

• Height: This attribute carries the height of the component.

• Closed: The element shall be in the closed state.

• NotAccessible: The element shall not be accessible.

• BIN: The BIN of the component.

• Text: The text content of the component.

• LocActAct: This attribute carries the code for the local action which is associated to the component
and triggered by its activation.

• LocActVal: This attribute carries the code for the local action which is associated to the component
and triggered by its validation.

7.6.1.8 The Text Input Field component

Description

The Text Input Field is composed of two items:

– the text label;

– the input area.

An attribute font can be associated to the text label. The input area has its starting location immediately after the text
label. The type of the input data can be specified by the application. The following predefined types are available:

– any text character;

– alphabetic (A..Z, a..z, diacritical characters);

– numeric (0..9, +, –, comma, dot, space);

– alphanumeric (alphabetic, numeric).

An attribute of the Text Input Field specifies whether the user inputs are echoed or not. The VEMMI application can
define one character to echo all user inputs.

A mnemonic key can be used to activate the Text Input Field (see 7.1.7).

Behaviour

If the space allocated for the input area in a one line Text Input Field is not sufficient to display all characters entered by
the user, the input area shall offer horizontal scrolling facilities. If the space, allocated for the input area in a Text Input
Field with more than one line, is not sufficient to display all characters entered by the user, the input area shall offer
vertical scrolling facilities. In order to display all possible characters, it is recommended to give enough space for user
inputs. If the maximum number of the input characters is reached this should be indicated to the user.

Constraints

The maximum length of the text label is limited to the first line of the Text Input Field component width. For one line
input fields the label is placed in front of the input area and left aligned, while the input area is aligned to the right side.
For multiline Text Input Fields it is placed in the top row and shall be left aligned. There is no space reserved for the text
label if the attribute TextLabel is not present.

Interactive functionality

– activation;

– scrolling;

– local editing functionality of the input area (terminal dependent).

72 Recommendation T.107 (08/95)

Visual aspect (see Figure 32)

T0824380-95/d31

XPos

YPos

YPos

Height Text label: Text input I

Width

Height

Width

Text label:
Text input in a text
Input field that covers several
rows I

FIGURE 32/T.107

Text input field

FIGURE 32/T.107...[D31] = 11 CM

Attributes

• CIN: This attribute carries the Component Identification Number.

• XPos: This attribute carries the horizontal position of the element in NDC.

• YPos: This attribute carries the vertical position of the element in NDC.

• Width: This attribute carries the width of the component.

• Height: This attribute carries the height of the component.

• Closed: The element shall be in the closed state.

• NotAccessible: The element shall not be accessible.

• MaximTxt: Local maximization can maximize the text of the component proportionally.

• DefValue: This attribute carries the default value for the component.

• TextLabel: This attribute carries the text label of the component.

• LabelFont: Specifies the FIN for the text label.

• InputType: This attribute specifies which type of user inputs shall be accepted by the
component.

• Echo: This attribute specifies which type of echo shall be made on user inputs.

• EchoChar: This attribute carries the character that shall be displayed to echo user inputs.

Recommendation T.107 (08/95) 73

• MaxChar: This attribute carries the maximum number of characters the user can enter in one
line.

• MaxLine: This attribute carries the maximum number of lines the user can enter in a
multiline input field.

• Multiline: Indicates a multiline input field.

• InputTransformation: The attribute specifies if the terminal shall convert the characters entered by the
user to upper case characters, to lower case characters or if no conversion shall be
done.

• LocActAct: This attribute carries the code for the local action which is associated to the
component and triggered by its activation.

• LocActVal: This attribute carries the code for the local action which is associated to the
component and triggered by its validation.

7.6.1.9 The Check Box component

Description

The Check Box component is composed of two items:

– the text label item;

– the check item.

A mnemonic key can be used to activate the component (see 7.1.7).

The check item shall support two different choices, visually identifiable, representing the two possible values marked or
unmarked. The space allocated for the component shall include, in its dimensions, the space needed to represent this
check item.

Behaviour

A Check Box acts like a switch. When switched by the user, its value changes from unmarked to marked or from marked
to unmarked. The value of Check Boxes is independent of the value of any other components.

Interactive functionality

– activation;

– switch between the values marked and unmarked;

– validation.

Visual aspect (see Figure 33)

Attributes

• CIN: This attribute carries the Component Identification Number.

• XPos: This attribute carries the horizontal position of the element in NDC.

• YPos: This attribute carries the vertical position of the element in NDC.

• Width: This attribute carries the width of the component.

• Height: This attribute carries the height of the component.

• Closed: The element shall be in the closed state.

• NotAccessible: The element shall not be accessible.

• TextLabel: This attribute carries the text label of the component.

• LabelFont: FIN of the label.

• DefMarked: The default value of the element shall be marked.

• LocActAct: This attribute carries the code for the local action which is associated to the component
and triggered by its activation.

• LocActVal: This attribute carries the code for the local action which is associated to the component
and triggered by its validation.

74 Recommendation T.107 (08/95)

T0815680-94/d32

XPos

YPos

Height

Width

Check box 1

Check box 2

Check box 3

Dialogue box

FIGURE 33/T.107

Check box

FIGURE 33/T.107...[D32] = 10.5 CM

7.6.1.10 The Radio Button component

Description

The Radio Button component is composed of two items:

– the text label item;

– the check item.

A mnemonic key can be used to activate the component (see 7.1.7).

The check item shall support two different choices, visually identifiable, representing the two possible values marked
and unmarked. The space allocated for the component shall include, in its dimensions, the space needed to represent this
check item.

Radio Buttons are typically used in groups to provide a single-choice field.

Behaviour

No more than one Radio Button shall be marked in a Radio Button group at a given time. The attempt to mark a second
Radio Button shall cause the unmarking of the previously marked Radio Button, whatever its state (opened, closed,
accessible, inaccessible) within the application may be.

Interactive functionality

– activation;

– switch between the values marked and unmarked;

– validation.

Recommendation T.107 (08/95) 75

Visual aspect (see Figure 34)

T0815690-94/d33

XPos

YPos

Radio button group 1

Width

Height Radio button 1

Radio button 2

Radio button 3

Radio button 4

Radio button 5

Radio button 6

Radio button group 2

 Dialogue Box

FIGURE 34/T.107

Radio buttons with a frame and a text presentation area

FIGURE 34/T.107...[D33] = 10.5 CM

Attributes

• CIN: This attribute carries the Component Identification Number.

• XPos: This attribute carries the horizontal position of the element in NDC.

• YPos: This attribute carries the vertical position of the element in NDC.

• Width: This attribute carries the width of the component.

• Height: This attribute carries the height of the component.

• Closed: The element shall be in the closed state.

• NotAccessible: The element shall not be accessible.

• TextLabel: This attribute carries the text label of the component.

• LabelFont: FIN of the label.

• Group: This attribute carries the identifier of the Radio Button group. Only one Radio Button
in a group can be marked at one specific time.

• DefMarked: The default value of the element shall be marked.

• LocActAct: This attribute carries the code for the local action which is associated to the component
and triggered by its activation.

• LocActVal: This attribute carries the code for the local action which is associated to the component
and triggered by its validation.

76 Recommendation T.107 (08/95)

7.6.1.11 The List Box component

Description

The List Box component is a rectangular area in which a list of text items is offered to the user for choice. If the total
number of items exceeds the number of presented items, scrolling facilities shall be offered to the user through dedicated
scrolling controls. When the entire list is visible the scrolling controls may be invisible. In this case, the space allocated
for the component shall include in its dimensions the space needed to represent the scrolling facilities. The tools to
provide the scrolling functionality are terminal dependent (vertical scrollbar, buttons, etc.).

Small icons may be added to the list items in order to visually emphasize their meaning. The referenced bitmap can be
resized to fit to the local List Box representation.

The whole list is composed of list items. There shall be no CR + LF within the text content of a list item. If the attribute
sorted is selected, the list items should be sorted in their alphabetical order. If sorted is not selected, the list shall be
presented in the ascending order of the list item indices. However, the correspondence between the list items and the
indices is always maintained.

Behaviour

When the List Box is active the terminal shall offer shifting facilities to the user. A List Box contains a list of items that
the user can scroll through and select from. Single or multiple choice can be made by the user, depending on the list
attributes.

There may be local actions associated to each List Box item. Additionally, the List Box may also have local actions
associated. Upon activation and validation of a List Box item , the local actions associated to the list box item shall be
executed. If there is no local action associated to the selected item, the local action associated to the List Box itself shall
be executed. In this case, any OIN appearing in element specific commands of the List Box component is incremented
by the value of the list index of the list box item.

A List Box with multiple choice cannot be validated.

Interactive functionality

– activation;

– single or multiple choice;

– validation (single choice);

– scrolling;

– shifting.

Visual aspect (see Figure 35)

Attributes

• CIN: This attribute carries the Component Identification Number.

• XPos: This attribute carries the horizontal position of the element in NDC.

• YPos: This attribute carries the vertical position of the element in NDC.

• Width: This attribute carries the width of the component.

• Height: This attribute carries the height of the component.

• Closed: The element shall be in the closed state.

• NotAccessible: The element shall not be accessible.

• DefItem: This attribute carries the index of the list item that is selected by default when the
component is opened for the first time.

• Sorted: The list items are presented sorted in alphabetical order.

• MultipleChoice: The element allows multiple choices.

• LocActAct: This attribute carries the code for the local action which is associated to the component
and triggered by its activation.

• LocActVal: This attribute carries the code for the local action which is associated to the component
and triggered by its validation.

Recommendation T.107 (08/95) 77

T0824390-95/d34

XPos

YPos

Dialogue Box

Width

Height

List box item 6
List box item 7

List box item 8
List box item 9

List box item 10

List box item 11

List box item 12

List box item 13

List box item 14

List box item 15
List box item 16

FIGURE 35/T.107

List box

FIGURE 35/T.107...[D34] = 10.5 CM

List item attributes

• ListIndex: This attribute carries the index of the next list item in the component description. It
allows in a modify command the modification of a specific list item. The list indices
shall be defined in an ascending order. The list indices may not be consecutive in order
to allow easy updating of the list (inserting of list items). The terminal shall present a
consecutive list to the user, sorted by the ascending value of the list indices
corresponding to the list text. If in modify command a list index for a list item is used
which is already existing, then the existing list item is replaced. If in a modify
command a list index of a list item is used that is not existing in the terminal, the new
list item shall be added. If in a modify command a list index is referenced which is
already existing but in the modify command the corresponding attribute “ListText” is
missing, the referenced list item on the terminal shall be deleted.

• ListText: This attribute carries the text content of a list item.

• BIN: The BIN of the component.

• ItemActAct: This attribute carries the code for the local action which is associated to the item and
triggered by its activation.

• ItemActVal: This attribute carries the code for the local action which is associated to the item and
triggered by its validation.

7.6.1.12 The Combination Box component

Description

The Combination Box is composed of two parts:

– a single choice List Box;

– a one line text field located at the top of the list.

78 Recommendation T.107 (08/95)

If the total number of items exceeds the number of presentable items, scrolling facility shall be offered to the user
through dedicated scrolling facilities. In this case, the space allocated for the component shall include in its dimensions
the space needed to represent the scrolling facilities. The tools to provide the scrolling functionality are terminal
dependent (vertical scrollbar, buttons, etc.).

Small icons may be added to the list items in order to visually emphasize their meaning. The referenced bitmap can be
resized to fit to the local Combination Box representation.

The whole list is composed of list items. There shall be no CR + LF within the text content of a list item. If the attribute
sorted is selected, the list items should be sorted in their alphabetical order. If sorted is not selected the list shall be
presented in the ascending order of the list item indices. However, the correspondence between the list items and the
indices is always maintained.

A variation of the Combination Box is a drop down Combination Box. It is composed of a Combination Box and a Push
Button. Only the text field and the Push Button are displayed until the user validates the associated Push Button. The
validation of the Push Button causes the display of the associated List Box.

Behaviour

When the List Box is active the terminal shall offer shifting facilities to the user. A Combination Box contains a list of
items that the user can scroll through and select from to complete the text field. A parameter of the Combination Box
specifies if the text field is editable or not. If the text field is editable, the user can type text directly into the text field. A
parameter of the component specifies if the text entered by the user shall match one of the items contained in the list.

There may be local actions associated to each List Box item. Additionally, the Combination Box may also have local
actions associated. Upon activation and validation of a List Box item, the local actions associated to the list box item
shall be executed. If there is no local action associated to the selected item, the local action associated to the
Combination Box itself shall be executed. In this case, any OIN appearing in element specific commands of the List Box
component is incremented by the value of the list index of the listbox item.

If the Combination Box is designed to be a drop down Combination Box, the validation of the Push Button shall switch
between the display and the hide of the List Box.

Interactive functionality

– activation;

– single selection;

– validation;

– scrolling;

– editing.

Visual aspect (see Figure 36)

Attributes

• CIN: This attribute carries the Component Identification Number.

• XPos: This attribute carries the horizontal position of the element in NDC.

• YPos: This attribute carries the vertical position of the element in NDC.

• Width: This attribute carries the width of the component.

• Height: This attribute carries the height of the component.

• Closed: The element shall be in the closed state.

• NotAccessible: The element shall not be accessible.

Recommendation T.107 (08/95) 79

• DefItem: This attribute carries the index of the list item that is selected by default when the
component is opened for the first time.

• NoEdit: The text field of the component shall not be editable.

• NoConsistency: This attribute is applied if “NoEdit” is not set. It indicates that the text entered by the
user can be any text string, not necessarily one of the defined text items.

• MaxChar: This attribute carries the maximum number of characters the user can enter in the
component. It shall only be present if the “EditableInput” Parameter is set true.

• NoDropDown: The element shall not be dropped down.

• NotSorted: The list items are presented not sorted in alphabetical order.

• LocActAct: This attribute carries the code for the local action which is associated to the component
and triggered by its activation.

• LocActVal: This attribute carries the code for the local action which is associated to the component
and triggered by its validation.

T0824400-95/d35

XPosXPos

YPos

YPos

Dialogue box

List box item 10 I

List box item 6

List box item 7

List box item 8

List box item 9

List box item 10

List box item 11

List box item 12

List box item 13

List box item 14

List box item 15

List box item 16

List box item 8 I

List box item 8 I

List box item 4
List box item 5

List box item 6

List box item 7

List box item 8

List box item 9

List box item 10

List box item 11

Width

Height Height

Width

Drop down combination box
before the drop down push
button is validated

FIGURE 36/T.107

Combination box

FIGURE 36/T.107...[D35] = 11.5 CM

80 Recommendation T.107 (08/95)

List item attributes

• ListIndex: This attribute carries the index of the next list item in the component description. It
allows in a modify command the modification of a specific list item. The list indices
shall be defined in an ascending order. The list indices may not be consecutive in order
to allow easy updating of the list (inserting of list items). The terminal shall present a
consecutive list to the user, sorted by the ascending value of the list indices
corresponding to the list text. If in modify command a list index for a list item is used
which is already existing, then the existing list item is replaced. If in a modify
command a list index of a list item is used that is not existing in the terminal, the new
list item shall be added. If in a modify command a list index is referenced which is
already existing but in the modify command the corresponding attribute “ListText” is
missing, then the referenced list item on the terminal shall be deleted.

• ListText: This attribute carries the text content of a list item.

• BIN: The BIN of the component.

• ItemActAct: This attribute carries the code for the local action which is associated to the item and
triggered by its activation.

• ItemActVal: This attribute carries the code for the local action which is associated to the item and
triggered by its validation.

7.6.1.13 The Slider component

Description

The slider offers the selection of an analogue value by moving an adjustable marker on a slide bar between a minimum
and a maximum value. The intervals are set by the application.

The Slider component consists of the following items:

a) Slider (with the movable marker, the initial marker position shall correspond to the default value, set by
application);

b) Text Label (naming the slider);

c) MinLabel (the lowest selectable value), optional;

d) MaxLabel (the highest selectable value), optional;

e) DirectInputField (optional), an input and output field which contains:

1) the initial value when the Slider is activated;

2) the values in text form corresponding to the slider movements;

3) an Input field for user inputs of the slider position.

The Slider Component may be oriented in vertical and horizontal direction. All items shall fit in the rectangle determined
by the component dimensions.

A local action which is triggered on the validation shall be performed when the user deactivates the component.

Behaviour

When the Slider Component is active the marker can be moved by striking the cursor keys or by mouse clicks. If the
optional DirectInputField is present, the user is able to put in values directly by key strokes. The changed values shall be
displayed immediately in the DirectInputField. The marker shall be moved onto a position which is relative to this value
input. In the other case, when the marker is moved, the displayed value shall refer to this movement. The MinLabel and
the MaxLabel (If they are present) are indicating the range, within a choice is available.

Recommendation T.107 (08/95) 81

Interactive functionality

– local input functionality of the DirectInputField (application dependent);

– local positioning of the slider marker;

– validation by deactivation of the component;

– validation.

Visual aspect (see Figure 37)

T0824410-95/d36

XPos

YPos

YPos

–10 10

MaxLabelSliderMinLabelTextlabel DirectionputField

–4Slider 1

Dialogue box

Height

Width

Height Slider 2

Width

FIGURE 37/T.107

Slider component

FIGURE 37/T.107...[D36] = 10.5 CM

Attributes

• CIN: This attribute carries the Component Identification Number.

• XPos: This attribute carries the horizontal position of the element in NDC.

• YPos: This attribute carries the vertical position of the element in NDC.

• Width: This attribute carries the width of the component.

• Height: This attribute carries the height of the component.

• Closed: The element shall be in the closed state.

• NotAccessible: The element shall not be accessible.

• Label: This attribute carries an alphanumeric text string.

• LabelFont: FIN of the label.

82 Recommendation T.107 (08/95)

• MinValue: The lowest adjustable value.

• MaxValue: The highest adjustable value.

• Increment: The interval size between two adjustable values.

• InitialValue: The initial value, when the Slider Component is opened.

• Negative: This attribute can be associated with MinValue, MaxValue, InitialValue and indicates
that the values are negative.

• DirectIn: This attribute indicates that MinValue and MaxValue should be displayed and the
user’s direct input should be allowed.

• Vertical: The element shall be presented vertically.

• LocActAct: Specifies the code for the local action which is associated to the component and
triggered by its activation.

• LocActVal: Specifies the code for the local action which is associated to the component and
triggered by its validation.

7.6.1.14 The Sensitive Area component

Description

A Sensitive Area component is an area, non materialized, in which the application permits a validation operation. The
Sensitive Area component is intended to be used associated with a Graphic Output Area component of the Dialogue
Box. For the use with text components, the in-text attributes for the definition of sensitive text are more appropriate. The
sensitive area is a rectangle inside the dialogue box.

If the attribute locator is set, the terminal shall send upon validation not only its CIN to the VEMMI application, but also
the coordinates of the cursor in NDC at the time of the validation with respect to the component origin.

Behaviour

When active a visible effect (e.g. thread, dot lines) can be implemented.

Constraints

A Sensitive Area shall not be covered by other components or items which are sensitive to user interaction, in order to
avoid conflicts.

Interactive functionalities

– activation;

– validation.

Visual aspect (see Figure 38)

Attributes

• CIN: Specifies the Component Identification Number.

• XPos: Specifies the horizontal position sensitive area.

• YPos: Specifies the vertical position of the sensitive area.

• Width: Specifies the width of the sensitive area.

• Height: Specifies the height of the sensitive area.

• Closed: The element shall be in the closed state.

• NotAccessible: The element shall not be accessible.

Recommendation T.107 (08/95) 83

• Locator: The position of the cursor in NDC at the time of the validation with respect to the
component origin shall be sent with each report command.

• LocActAct: Specifies the local actions which are associated to the component and triggered by its
activation.

• LocActVal: Specifies the local actions which are associated to the component and triggered by its
validation. If the locator attribute is set, each report action shall also contain the
coordinates of the cursor in NDC at the time of the validation with respect to the
component origin.

JONAS & VINCENT

T0821430-95/d37

Bitmap with text in a sensitive area

Dialogue box

FIGURE 38/T.107

Bitmap, text and sensitive area

FIGURE 38/T.107...[D37] = 10 CM

7.7 The Message Box

Description

The Message Box is a rectangular area in the DDA which contains text information.

Four specified types of message are defined:

– general message;

– information message;

– warning message;

– action message.

This information can be used to add an icon characterizing the type of the message to the presentation of the message
box.

84 Recommendation T.107 (08/95)

An attribute of the Message Box specifies if the terminal should perform a sound at the time the Message Box is opened.

The Message Box can be provided with a border area which should be equal to one character position. When a border is
requested, a frame shall be drawn by the terminal. This frame drawing is terminal dependent.

Behaviour

An attribute of the Message Box specifies the lifetime of a Message Box. The following three values are available:

– destroy by any user interaction;

– close by any user interaction;

– destroy by the user validation of an implicitly defined button;

– close by the user validation of an implicitly defined button;

– no implicit lifetime is defined.

The destroying or closing of the Message Box shall not induce any report to the server.

If no position is defined by the VEMMI application, the terminal shall centre the Message Box in the DDA.

If no dimensions are defined by the VEMMI application, the terminal shall calculate the appropriate size of the Message
Box in order to have enough room to display the text message and the possible Push Button. The label and the size of the
possible Push Button are terminal dependent.

Interactive functionality

– moving;

– validation.

Visual aspect (see Figure 39)

T0815790-94/d38

OK

Warning
icon

Warning Text message

Message box

Implicitly defined
push button

FIGURE 39/T.107

Message box with a warning message

FIGURE 39/T.107...[D38] = 10 CM
Message box with a warning message

Recommendation T.107 (08/95) 85

Attributes

• XPos: Specifies the horizontal position of the message box.

• YPos: Specifies the vertical position of the message box.

• Width: Specifies the width of the message box.

• Height: Specifies the height of the message box.

• Closed: The element shall be in the closed state.

• MessageType: One of: general, information, warning, action.

• Modal: The element shall be modal.

• NoBorder: The element shall not have a border.

• AttributedText: Text of the message with in-text attributes.

• MaxTime: Time period in seconds.

• Lifetime: The events which lead to the destruction of the message box.

• NoSound: The terminal should not perform a sound when the message box is opened.

7.8 Operative object

With this object an application references a program which will be linked to the VEMMI application. This object type
provides a method to extend the capabilities of an application during runtime. Via the service VEMMI_Create_Object
the host application defines the operative object. The program is started with VEMMI_Open_Object. After termination
the control is given back to the application.

The program itself has been downloaded via file transfer, is part of the operating system or its presence has been
negotiated in another way. It is referenced with its filename. It is up to the host to ensure that the called program is
started faultless, by providing the correct program parameters. An often used method to extend the functions of programs
during runtime is the use of Dynamic Link Libraries, DLLs.

The program referenced with an operative object can be of the following types:

– standalone program;

– program with a filter interface.

For the purpose of operative objects, the services VEMMI_Create_Object VEMMI_Open_Object
VEMMI_Destroy_Object are used. The program name and the program parameters are defined as attributes of the
operative object.

Two parameters, program description and the source identification, can be used by the terminal to evaluate information
to be presented to the user or only to be recorded. This precaution is necessary in order to help the user to detect
programs which have been linked to the VEMMI application with a sabotage intent. Their effect on the terminal may not
be harmless. The terminal can answer the host “The user refused the start of the program!”. On which basis such an
answer is generated is application dependent, but at least the information is available on a structured basis. If the
terminal cannot find the program, the host has to be informed with a specific error message.

Requirements for standalone programs

The program has no data exchange channel with the VEMMI local manager during the execution. Program parameters
can be defined by the host application and supplied to the program when started. The operative object has no visual
effect on the terminal and cannot be activated directly by the user, but the started program may use the local UI on an
application specific basis. See Figure 40.

86 Recommendation T.107 (08/95)

T0821470-95/d39

VEMMI local manager

Communication

Start and stop
of operative object

VEMMI command
dispatcher

Operative object
(standalone program)

FIGURE 40/T.107

Standalone programs

FIGURE 40/T.107...[D39] = 10.5 CM
Standalone programs

The VEMMI command dispatcher is responsible for delivering the VEMMI commands between the VEMMI local
manager and the communication part. All these interfaces are terminal and implementation dependent. They are used in
this description to explain the integration of the two types of operative objects in the VEMMI terminal architecture.

Requirements for programs with filter interface

The program with filter interface has the possibility to access the VEMMI command dispatcher. The command
dispatcher forwards the commands to the operative object, which decides to process them or forward them to the
VEMMI local manager. This mechanism works also for the sending direction. The operative object has no visual effect
on the terminal and cannot be activated directly by the user, but the started program may use the local UI on an
application specific basis or through the VEMMI local manager. All these interfaces of such a program are terminal and
implementation dependent and are not further described in this Recommendation. If an operative object receives a
VEMMI_Close_Object with its own OIN from the host or it is terminated by the VEMMI local manager, it shall stop
and the VEMMI local manager shall continue. All data exchange channels to the VEMMI local manager are disabled.
See Figure 41.

Attributes

• Closed: The element shall be in the closed state.

• ProgName: The name of the program.

• ProgFilename: Filename of the program.

• ProgDescr: Description of the program.

• ProgAbout: Source identification of the program.

• ProgPar: List of parameters for the start of the program (optional).

• ProgType: Program type, standalone or with filter interface.

Recommendation T.107 (08/95) 87

T0821480-95/d40

Communication

VEMMI local manager

Operative object
(program with filter interface)

VEMMI command
dispatcher

Start and stop
of operative object

VEMMI command
exchange

FIGURE 41/T.107

Programs with filter interfaces

FIGURE 41/T.107...[D40] = 12.5 CM
Programs with filter interfaces

7.9 Bitmap resource object

Description

A bitmap object contains either the bitmap definition itself or only a reference to a file with the bitmap definition.

Direct Bitmap Definition

The pixel matrix contains indices into the colour table or the RGB-components for each pixel. The attribute list is
composed of two parts: the first is common to the two cases and the second is dependent from the colour definition. The
first part is as follows:

• BmWidth: Width of the bitmap in pixel.

• BmHeight: Height of the bitmap in pixel.

• BmCompr: Compression type for the colour list. This value is currently not defined and
only uncompressed colour lists can be specified (optional).

In the case of a colour index definition, the second part of the attribute list is as follows:

• BmBitsPerPixel: Number of bits per pixel. The value must be 1, 4 or 8 (optional, default
value: 1).

• BmClrEntry: The colour table index on which all other colour indices from the index list are
based (optional, default value: 0).

88 Recommendation T.107 (08/95)

• BmClrIxList: List of colour indices. This list contains BmWidth * BmHeight colour indices.
Depending on the number of bits per pixel, each colour index is in the
range 0 .. 2BmBitsPerPixel–1. The colour indices are ordered row-by-row from left
to right. The start point is the lower left corner of the bitmap. A colour index 0
means a colour table index equal to BmClrEntry. All other indices are relative
to BmClrEntry.

In the case of a colour component definition, the second part of the parameter list is as follows:

• BmBitsPerComp: Number of bits per colour component. The value must be in the range 1 to 8
(optional, default value: 8).

• BmClrCompList: List of RGB triplets. This list contains BmWidth * BmHeight triplets. The
RGB-triplets are ordered row-by-row from left to right. The start point is the
lower left corner of the bitmap.

File Bitmap Definition

Such a bitmap is defined from a picture file stored in the terminal. The file has been transmitted with a resource transfer
service or by other means. A parameter indicates the file coding. If the file could not be converted in a suitable bitmap
(upon VEMMI_Create_Object) the terminal shall send an error message to the host.

• Filename: Name of the file with the bitmap definition.

• PictFileType: Type of the picture file (one of JPEG, GIF, BMP).

The picture files conform to one of the following specifications:

– JPEG: Baseline system from ISO/IEC IS 10918 | Rec. ITU-T.81 “Digital compression and
coding of continuous-tone still images”

– GIF: Graphics Interchange Format (sm) Version 89a. Compuserve Incorporated Columbus,
Ohio, USA. Although the Version 89a is referenced a terminal has to support only the
functions contained in the Version 87.

– BMP: Microsoft Windows Device-Independent Bitmap (DIB) with RLE4, RLE8 and 1, 4, 8
or 24 bits per pixel.

7.10 Videotex resource object

Description

A Videotex object contains either the Videotex content itself or only a reference to a file with the Videotex content.

Attributes

• VTX: VTX content.

• Filename: Name of the file with the VTX content.

7.11 Text resource object

Description

This object defines text content as a resource which can be referenced via the “Text Identification Number” (TIN). It
contains either the text content itself or a reference to a file with the text content. In both cases the text content can
contain in-text attributes, with references to font resource objects.

Attributes – Direct text resource definition

• Text: Text.

• FIN: Reference to a font resource object.

Recommendation T.107 (08/95) 89

Attributes – File text resource definition

• Filename: Name of the file with the text content.

• TextFileType: One of:

– text;

– references to a font resource objects and text.

7.12 Font resource object

This object combines a set of text attributes in on font resource which can be referenced via the FIN.

Attributes

• FnFamily: The font family: SWISS, ROMAN or FIXFONT. (optional, default value: SWISS).

• FnHeight: Character height. (optional, default value: 10).

• FnBold: Character weight bold (optional).

• FnUnderline: Underlined (optional).

• FnItalic: Italic (optional).

• FnColour: Font colour: colour index. (optional, default: black).

7.13 Metacode object

The metacode object contains VEMMI commands. This object provides an easy way to avoid unnecessary dialogue
steps with the host application. The command VEMMI_Open_Object starts the processing of the metacode object and
after termination it is automatically in the closed state. The commands (the content of the metacode object) are processed
in the same way as if they were received from the host application. For the content of the metacode object the following
restrictions apply:

– the creation of a metacode object is not allowed;

– only host commands are allowed;

– a VEMMI_Open_Object command of another metacode object is not allowed
(a VEMMI_Open_Blocking_Object is allowed).

Attributes

• VEMMICommands: VEMMI commands

7.14 VEMMI bitmap data type definition

See 7.9.

7.15 The VEMMI content encoding identification catalogue

Table 38 provides an overview of content encoding identifications defined in the VEMMI catalogue:

90 Recommendation T.107 (08/95)

TABLE 38/T.107

VEMMI content encoding identification catalogue

For text data encoding:

T.51 String as defined in Annex A

Recommendation T.52 [3]

VEMMI high quality text

ISO 8859-Series [13]. (Fully-formed accented char.)

ISO 10646-1 [15] [multi-octet character set (Unicode)]

Shift JIS Code (for Japanese characters)

For still picture data encoding:

Annex F/T.101 [4] (Photovideotext)

ISO 10918-1 [16] (JPEG)

VEMMI device independent bitmap

Graphics Interchange Format (sm) Version 98a.
Compuserve Incorporated Columbus, Ohio, USA

Microsoft Windows Device-Independent Bitmap (DIB)
with RLE4, RLE8 and 1, 4, 8 or 24 bits per pixel

For graphic data encoding:

Annex B/T.101 and Annex C/T.101 [4] (Videotex)

ISO 8632 [12] (CGM)

For audio data encoding:

Annex E/T.101 [4]

WAVE format

MIDI format

For moving picture data encoding:

ISO 11172-2 [18] (MPEG Video)

Recommendation H.261 [7] (videophone)

For audiovisual data encoding:

ISO 11172-1 [17] (MPEG System)

Recommendation H.320 [8] (videophone)

Recommendation T.107 (08/95) 91

8 Complete coded representation of the VEMMI
Recommendation T.107 (08/95)

8.1 Introduction

This clause contains the syntax notation, the VEMMI header and the syntax of the commands, objects, components and
local actions.

8.2 Notation used

The notation a/b with a, b = 0..15 denotes a byte value in hexadecimal.

The bits in a byte are noted b8, b7, .., b1. The bit b8 is the high-order or most significant bit.

The syntax of the commands, objects, components and local actions is defined with a formal grammar using the
following notation:

<symbol> – nonterminal;

<SYMBOL> – terminal;

<a/b> – terminal, hexadecimal value: a, b = 0..15;

<symbol>* – 0 or more occurrences;

<symbol>+ – 1 or more occurrences;

<symbol>o – optional (0 or 1 occurrences);

<symbol-1> := <symbol-2> – symbol-1 has the syntax of symbol-2;

<symbol-1> | <symbol-2> – symbol-1 or alternatively symbol-2;

<symbol-1 : symbol-2> – symbol with the stated value;

{ comment } – explanation of a symbol or production.

8.3 Overall switching of coding environment

ISO/IEC 9281 [14] describes a technique for identifying coding methods. The videotex VEMMI mode is one of the
coding methods identified by ISO/IEC 9281 [14]. The diagram in Figure 42 gives an overview of the relationship
between the videotex data syntaxes and ISO/IEC 9281 [14] coding environments.

From an ISO 2022 [10] environment, a videotex data syntax can be explicitly entered using an ESC 2/5 F code. This is
also the mechanism used for entering from an ISO 2022 [10] environment into an ISO/IEC 9281 [14] environment. The
F code (“final byte”) is allocated and registered, according to ISO 2022 [10] by the registration authority ISO 2375 [11].
According to Appendix B/ISO 2375 [11], the videotex data syntaxes are regarded as “coding systems different to that of
ISO 2022 [10]”. The F codes are 4/3 for CCITT data syntax I, 4/4 for CCITT data syntax II and 4/1 for CCITT data
syntax III.

Since a videotex terminal usually begins operation, by default, in one of the data syntaxes, it shall not be mandatory to
first send an ESC 2/5 F code (F is 4/1, 4/3 or 4/4). The diagram shows how these codes can be used to switch a videotex
terminal supporting more than one data syntax from one data syntax to another.

8.3.1 Switching into the VEMMI mode

A videotex terminal operating within one of the data syntaxes (i.e. a coding system other than that described by
ISO 2022 [10]) can enter the ISO/IEC 9281 [14] environment of the VEMMI mode according to their own rules. In the
case of videotex for switching into the ISO/IEC 9281 [14] environment of the VEMMI mode, the Picture Code Delimiter
(PCD) of the first Picture Element (PE) is used. The Coding Method Identifier (CMI) is used to distinguish between
picture coding methods. In the case of videotex this shall be, for example, a distinction between audio, Photographic and
VEMMI data.

NOTE – As ISO/IEC 9281 [14] was developed especially for the identification of picture coding in ISO 2022 [10]
environments, the word “picture” is often used in the definitions, even when applicable to “audio”, for example. ISO has already
accepted to make use of ISO/IEC 9281 [14] for non-pictorial information.

92 Recommendation T.107 (08/95)

ESC 7/0 CMI

ESC 7/0 CMI

ESC 7/0 CMI

ESC 7/0 CMI

ESC 7/0 CMI

ESC 7/0 CMI

ESC 7/0 CMI

ESC 7/0 CMI

ESC 7/0 CMI

p

a

v

p

a

v

p

a

v

US 2/0 ... 3/15

US 3/4 US 3/5

US 4/0 ... 7/15

p

a

v

DI
P
F
CMI
CMI
CMI

T0815800-94/d41

Other

ESC 2/5 4/0
ISO 2022 Environment, Default = ISO 646

Data Syntax I

(DI)

RankESC 2/5 4/3

Alpha photo

Photographic

Audio

VEMMI

Data Syntax II

ESC 2/5 4/4 (P1-4)

Other

Old photo

AM display

Photographic

Audio

VEMMI

T.50 based text

Data Syntax III

Alpha geo

Photographic

Audio

VEMMI

ESC 2/5 4/1

ESC 2/5 F
Any ISO/IEC 9281 registered coding method

is data syntax I specific
is a profile in data syntax II
is a final code assigned by the ISO 2022 [10] registration authority
is any CMI for videotex audio data
is any CMI for videotex photographic data
is any CMI for VEMMI data

FIGURE 42/T.107
Global switching mechanism

Rank is data syntax I specific

FIGURE 42/T.107...[D41] = 19 CM, page pleine

Recommendation T.107 (08/95) 93

8.3.2 ISO/IEC 9281 [14] syntax structure

The high-level format of the syntax is as defined in ISO/IEC 9281 [14].

In the following description of the syntax 8-bit coding is assumed, thus the word “byte” is used with bit 8 set to zero.
The coding described in ISO 9281 [14] is also valid in a 7-bit environment. In this case, the word “byte” shall be
interpreted as meaning “7-bit byte” and the most significant bit, bit 8, shall not be used.

The structure of the coding is as follows:

PE ::= PCE PDE;
PCE ::= PCD CMI LI;
PCD ::= 01/11 07/00;
CMI ::= PM PI;
PM ::= 02/05 (videotex VEMMI mode);
PI ::= 04/00;
LI1) ::= x111 1111<byte1><byte2>...<byten>;
<bytek> ::= x10D DDDD (k = n);

| x11D DDDD (1 = <k<n).
x indicates do not care.
D indicates binary number 0 or 1.

Each piece of information, in this case encoded VEMMI data, is encoded as one or more Picture Entities (PEs). A PE
(see Figure 43) consists of Picture Control Entity (PCE) which is followed by the actual data packed into a Picture Data
Entity (PDE).

FIGURE 43/T.107

Structure of a Picture Entity

1) 5.2.7/ISO 9281 [14], should be consulted for the description of the Length Indicator.

PE Picture Entity

PCE Picture Control Entity PDE

PCD

Picture

Coding

Delimiter

Coding

CMI Method

Identifier

LI

Length

Indicator

Picture

Data

Entity

PM

Picture

Mode

PI

Picture

Identifier

94 Recommendation T.107 (08/95)

NOTE 1 – In videotex VEMMI mode the size of a file containing an encoded VEMMI object can be rather large. One
object may be transmitted in several PEs. The use of several PEs could facilitate the termination of the transmission of an object by
the user.

The Picture Control Entity (PCE) consists of a Picture Coding Delimiter (PCD) and a Coding Method Identifier (CMI)
followed by a Length Indicator (LI).

The Picture Coding Delimiter (PCD) is a fixed sequence of two octets: 01/11 07/00.

NOTE 2 – 01/11 is ESC.

The Coding Method Identifier (CMI) consists of a Picture Mode (PM) octet, followed by a Picture Identifier octet (PI).
For VEMMI the PM is 02/05 as registered by ISO 9281 [14]. The PI octet has the value 04/00.

The length indicator (LI) specifies the number of bytes in the Picture Data Entity. Its encoding is described in the
following (excerpt from ISO/IEC 9281 [14]):

Bit b8 of each byte shall be ignored. Bit b7 of each byte shall be set to ONE. Bit b6 of each byte shall be the Extension
Flag. The LI value is specified in binary notation as an unsigned number using bits b5 to b1 with the weights 24, 23, 22,
21 and 20, respectively. If the value of LI is less than, or equal to, 31 it shall be represented by one byte and the
Extension Flag shall be set to ZERO. If the value of LI is larger than 31 it shall be represented by more than one byte.
The most significant part of this value shall be recorded in the first byte. The Extension Flag shall be set to ONE in all
bytes except the last where it shall be set to ZERO.

Values of LI:

• 1 byte: X111 1111

• 2 bytes: 0 ≤ LI ≤ 25 – 1

• 3 bytes: 25 ≤ LI ≤ 210 – 1

.

.

• n bytes: 25(n–1) ≤ LI ≤ 25n – 1

Examples:

b8 b7 b6 b5 b4 b3 b2 b1

X ONE ZERO
or ONE

LI = 31

X 1 0 1 1 1 1 1

LI = 33

X 1 1 0 0 0 0 1 X 1 0 0 0 0 0 1

First byte Second byte

Recommendation T.107 (08/95) 95

8.4 VEMMI Command Syntax

Host command Command syntax

VEMMI_Set_Translation_Mode <translation mode opc> <translation mode>

VEMMI_Open <open opc> <setup entity>

VEMMI_Close <close opc>

VEMMI_Resume <resume opc> <mode>

VEMMI_Suspend <suspend opc>

VEMMI_Close_All <close all opc>

VEMMI_Identify_Term_Cap <term cap request opc> <cap request>

VEMMI_Set_Options <set options opc> <text type list>o

VEMMI_Reset_Col_Table <reset col opc>

VEMMI_User_Lock <user lock opc>

VEMMI_User_Unlock <user unlock opc>

VEMMI_Open_Object <open object opc> <oin spec>

VEMMI_Close_Object <close object opc> <oin spec>

VEMMI_Destroy_Object <destroy object opc> <oin spec>

VEMMI_Obj_Access_Disable <access disable opc> <oin spec>

VEMMI_Obj_Access_Enable <access enable opc> <oin spec>

VEMMI_Create_Object <create object opc> <entity create object>

VEMMI_Delete_Outdated_Objects <delete outdated objects opc> <entity versionlist>+

VEMMI_Modify_Component
(see also 9.6)

<modify comp opc> <entity modify comp>

VEMMI_Obj_Location_Change <object loc change opc> <oin> <xloc> <yloc>

VEMMI_Load_Col_Table <load coltable opc> <entity load coltable>

VEMMI_Open_Application <open appl opc> <entity open appl>

VEMMI_Store_Objects <store objects opc> <oin spec>

VEMMI_Erase_Objects <erase objects opc> <oin spec>

VEMMI_Open_Blocking_Object <open block object opc> <oin>

VEMMI_Resource_Transfer <transfer opc> <transfer entity>

VEMMI_Store_Objects_Response <store objects resp opc> <store result>

VEMMI_Object_Retransmission <object retrans opc> <oin>

VEMMI_Identify_Term_Cap_Resp <term cap response opc> <cap response>+

VEMMI_Open_Application_Response <open appl resp opc> <entity open appl resp>

VEMMI_User_Data <user data opc> <entity user data>

VEMMI_Error <error opc> <entity errorreport>

VEMMI_Resource_Transfer_Abort <transfer opc> <transfer id>

96 Recommendation T.107 (08/95)

<translation mode>:= <2/0> | { no translation }
<2/1> | { 3 in 4 encoding }
<2/2> { 7 shift encoding }

<setup entity>:= <version> <mode>

<version>:= <INTEGER> { Version }

<mode>:= <native> | <page based>

<native>:= <INTEGER : 0> { VEMMI as described in this Recommendation }

<page based>:= <INTEGER : 1> <basic page #> <input timeout>o

<basic page #>:= <basic page # opc> <string>

<input timeout>:= <input timeout opc> <INTEGER> { in seconds }

<cap request>:= <data storage opc>o <local types opc>o <user language opc>o <system information
opc>o

<cap response>:= <version> <term cap list>

<term cap list>:= <local storage info>o <data type info>o <user language>o <system information>o

<local storage info>:= <local storage opc> <true> | <false>

<data type info>:= <data type opc> <text type> <still picture> <audio>o <grahic>o <moving
picture>o <audio visual>o

<user language>:= <user language opc>o <string> { list of alphabetical language codes encoded
according to Annex B/ISO 639 (example: Dutch language: “Nl”) }

<system information>:= <system information opc>o <string> <text type>:= <text type opc>
<text type list>+ <end of list>

<still picture>:= <still picture opc> <still picture list>+ <end of list>

<graphic>:= not yet defined.

<audio>:= <audio opc> <audio type list>+ <end of list>

<moving picture>:= <moving picture opc> <moving picture list>+ <end of list>

<audio visual>:= <audio visual opc> <audio visual list>+ <end of list>

<text type list>:= <INTEGER : 0> | { T.51String }
<INTEGER : 1> | { VEMMI high quality text }
<INTEGER : 2> | { ISO 8859-1 }
<INTEGER : 3> | { ISO 10646-1 }
<INTEGER : 4> | { Shift JIS code }
<INTEGER : 5> | { ISO 8859-2 }
<INTEGER : 6> | { ISO 8859-3 }
<INTEGER : 7> | { ISO 8859-4 }
<INTEGER : 8> | { ISO 8859-5 }
<INTEGER : 9> | { ISO 8859-6 }
<INTEGER : 10> | { ISO 8859-7 }
<INTEGER : 11> | { ISO 8859-8 }
<INTEGER : 12> | { ISO 8859-9 }
<INTEGER : 13> { ISO 8859-10 }

Recommendation T.107 (08/95) 97

<still picture list>:= <INTEGER : 0> | { Annex F/T.101 }
<INTEGER : 1> | { JPEG }
<INTEGER : 2> | { VEMMI DIB }
<INTEGER : 3> | { GIF }
<INTEGER : 4> { MS DIB }

<audio type list>:= <INTEGER : 0> | { Annex E/T.101 }
<INTEGER : 1> | { WAVE }
 <INTEGER : 2> { MIDI }

<moving picture list>:= <INTEGER : 0> | { ISO 11172-2 }
<INTEGER : 1> { Recommendation H.261 }

<audio visual list>:= <INTEGER : 0> | { ISO 11172-1 }
<INTEGER : 1> { Recommendation H.320 }

<entity create object>:= <oin> <template>o <autostore>o <object>

<object>:= <display object> | <resource object> | <metacode object>

<entity versionlist>:= <timestamp> <oin spec>

<entity modify comp>:= <oin> <display object>

<entity load coltable>:= <colour entry>o <col rgb list>

<colour entry>:= <colour entry opc> <INTEGER>

<col rgb list>:= <list spec>

<entity open appl>:= <applid> <appl add data>o <timestamp> <basic page #>o <input timeout>o

<applid>:= <applid opc> <string>

<appl add data>:= <appl add data opc> <string>

<entity open appl resp>:= <result>

<entity user data>:= <oin> <component data>+

<component data>:= <cin report> | { for menu choices, push buttons, pop-up menu, sensitive area,
<cin report> | { sensitive text }
<text report> | { for text input fields }
<list string report> | { for list box, combo box }
<boolean report> | { for check box, radio button }
<slider report> | { for slider }
<locator report> { for sensitive area with locator attribute set }

<cin report>:= <INTEGER : 0> <cin>

<text report>:= <INTEGER : 1> <cin> <string>

<list string report>:= <INTEGER : 2> <cin> <string>

<boolean report>:= <INTEGER : 3> <cin> <true> | <false>

<slider report>:= <INTEGER : 4> <cin> <slider value> <negative>o

<locator report>:= <INTEGER : 5> <cin> <xloc> <yloc>

<entity errorreport>:= <error type> <error oin>o <error cin>o <error com code>o

98 Recommendation T.107 (08/95)

<error type>:= <INTEGER : 0> | { general error }
<INTEGER : 1> | { unknown command }
<INTEGER : 2> | { erroneous command }
<INTEGER : 3> | { object syntax error }
<INTEGER : 4> | { unexpected command }
<INTEGER : 5> | { out of memory }
<INTEGER : 6> | { cannot process audio objects }
<INTEGER : 7> | { cannot process video objects }
<INTEGER : 8> | { invalid colour index }
<INTEGER : 9> | { file not found }
<INTEGER : 10> | { conversion to bitmap failed }
<INTEGER : 11> | { cannot process direct col. definition }
<INTEGER : 12> | { operative object has been rejected by the user }
<INTEGER : 13> | { out of local storage space }
<INTEGER : 14> | { a closed object has been destroyed }
<INTEGER : 15> { service not supported }

<error oin>:= <error oin opc> <INTEGER>

<error cin>:= <error cin opc> <INTEGER>

<error com code>:= <error com code opc> <a/b> { a = 2..4, b = 0..15 }

<transfer entity>:= <data transfer> | <transfer abort>

<data transfer>:= <INTEGER : 0> <transfer id> <current block number> <current block data length>
<block>

<transfer id>:= <INTEGER> { unique transfer identifier for each file }

<current block number>:= <INTEGER> { from one to the total number of blocks }

<current block data length>:= <INTEGER>

<block>:= <file&block> | <current block>

<file&block>:= <filespec> <current block>

<filespec>:= <filename> <creation date> <file length> <total number of blocks>

<creation date>:= <string> { in the format YYYYMMDDHHMMSS }

<file length>:= <INTEGER>

<total number of blocks>:= <INTEGER>

<transfer abort>:= <INTEGER : 1> <transfer id>

<current block>:= <current block opc> <current block data>

<current block data>:= <a/b>+ { a, b = 0..15 }

8.5 Objects, components

<display object>:= <application bar> | <button bar> | <pop-up menu> |
<dialogue box> | <operative object> | <sound object> |
<video object> | <message box>

Recommendation T.107 (08/95) 99

<application bar>:= <appl bar opc> <application bar body> <menu item>+

<application bar body>:= <xpos>o <ypos>o <height>o <width>o <closed>o <notaccessible>o
<defactive>o <vertical>o

<menu item>:= <bar menu choice> <pull down menu item>*

<bar menu choice>:= <bar menu choice opc> <menu choice>

<pull down menu item>:= <pull down menu choice> | <casc menu choice>

<pull down menu choice>:= <pull down menu choice opc> <menu choice> <separated>o

<casc menu choice>:= <casc menu choice opc> <menu choice> <separated>o

<menu choice>:= <cin> <height>o <width>o <notaccessible>o <text> <locactact>o <locactval>o

<button bar>:= <button bar opc> <button bar body> <push button comp>+

<button bar body>:= <xpos> <ypos> <width>o <height>o <closed>o <notaccessible>o <vertical>o
<defactive>o <modal>o

<push button comp>:= <push button comp opc> <cin> <height>o <width>o <closed>o <notaccessible>o
<button> <locactact>o <locactval>o

<pop-up menu>:= <pop-up menu opc> <pop-up menu body> <pop-up menu choice>+

<pop-up menu body>:= <xpos> <ypos> <width>o <closed>o <notaccessible>o <title>o <title
font>o <defactive>o <modal>o

<pop-up menu choice>:= <pop-up menu choice opc> <menu choice> <separated>o <casc menu
choice>*

<dialogue box>:= <dialogue box opc> <dialog box body> <separator>* <frame>* <graphic output
area>* <text area>* <text input field>* <box push button>* <check box>* <radio
button>* <list box>* <combo box>* <slider>* <sensitive area>* <text
component>* <sensitive text>*

<dialog box body>:= <xpos>o <ypos>o <width>o <height>o <closed>o <notaccessible>o <no
border>o <title>o <defactive>o <modal>o <maximizable>o <background>o <store
ini values>o

<background>:= <colour> | <bitmapped>

<bitmapped>:= <bin reference> <bitmap disptype>o <colour>o

<separator>:= <separator opc> <cin> <xpos>o <ypos>o <width>o <height>o <closed>o
<vertical>o <colour>o

<frame>:= <frame opc> <cin> <xpos>o <ypos>o <width>o <height>o <closed>o
<colour>o

<graphic output area>:= <graphic output area opc> <cin> <xpos>o <ypos>o <width>o <height>o
<closed>o <graphic type>

<graphic type>:= <bitmap> | <videotex>

<bitmap>:= <bitmap disp type>o <bin reference>

<videotex>:= <data syntax type> <direct videotex content> | <vin reference>

<data syntax type>:= <INTEGER : 0> | { Annex B/T.101 }
<INTEGER : 1> | { Annex C/T.101 }
<INTEGER : 2> { Annex D/T.101 }

<direct videotex content>:= <videotex content opc> <nr of vtx bytes> <vtx bytes>+

<nr of vtx bytes>:= <INTEGER> { number of Videotex bytes }

100 Recommendation T.107 (08/95)

<text area>:= <text area opc> <cin> <xpos>o <ypos>o <width>o <height>o <closed>o <initial
font>o <maxim text>o <no scrolling tools>o <no format>o <no border>o
<autoscroll>o <text area content>o

<text area content>:= <cin reference> | { cin of a text component }
<in-text>+

<text component>:= <text component opc> <cin> <prev text>o <current text> <next text>o

<prev text>:= <prev text opc> <cin reference> { cin of a text component }

<next text>:= <next text opc> <cin reference> { cin of a text component }

<current text>:= <current text opc> <tin reference> | { tin of text resource object }
<in-text>+

<in-text>:= <text> | <in-text string>

<in-text string>:= <fin reference> | { fin of a font resource object }
<sensitive text reference>

<sensitive text reference>:= <cin reference> <text> { cin of a sensitive text component }

<sensitive text>:= <sensitive text opc> <cin> <notaccessible>o <locactact>o <locactval>o

<text input field>:= <text input field opc> <cin> <xpos>o <ypos>o <width>o <height>o <closed>o
<notaccessible>o <maxim text>o <default text>o <label>o <label font>o <input
type>o <echo type>o <echo char>o <max char>o <max line>o <multiline>o
<input transform>o <locactact>o <locactval>o

<box push button>:= <box push button opc> <cin> <xpos>o <ypos>o <width>o <height>o <closed>o
<notaccessible>o <button> <locactact>o <locactval>o

<check box>:= <check box opc> <cin> <xpos>o <ypos>o <width>o <height>o <closed>o
<notaccessible>o <label>o <label font>o <marked>o <locactact>o <locactval>o

<radio button>:= <radio button opc> <cin> <xpos>o <ypos>o <width>o <height>o <closed>o
<notaccessible>o <label>o <label font>o <group>o <marked>o <locactact>o
<locactval>o

<list box>:= <list box opc> <cin> <xpos>o <ypos>o <width>o <height>o <closed>o
<notaccessible>o <default item>o <sorted>o <multiple choice>o <locactact>o
<locactval>o <list text unit>*

<combo box>:= <combo box opc> <cin> <xpos>o <ypos>o <width>o <height>o <closed>o
<notaccessible>o <default item>o <sorted>o <no drop>o <no consistency>o
<no edit>o <locactact>o <locactval>o <list text unit>*

<list text unit>:= <list index>o <text> <icon reference>o <item locact>o <item locval>o

<icon reference>:= <bin reference>

<slider>:= <slider opc> <cin> <xpos>o <ypos>o <height>o <width>o <closed>o
<notaccessible>o <label>o <label font>o <negative>o <min value> <negative>o
<max value> <increment>o <initial info>o <direct in>o <vertical>o <locactact>o
<locactval>o

<initial info>:= <negative>o <initial value>

<sensitive area>:= <sensitive area opc> <cin> <xpos>o <ypos>o <width>o <height>o <closed>o
<notaccessible>o <locator>o <locactact>o <locactval>o

<operative object>:= <operative object opc> <closed>o <program name> <program filename>
<program description> <program about> <program parameter>o <program type>

<sound object>:= <sound object opc> <closed>o <filename> <sound format>

<sound format>:= <INTEGER : 0> { wave format }
| <INTEGER : 1> { MIDI format }

Recommendation T.107 (08/95) 101

<video object>:= <video object opc> <closed>o <filename> <moving picture list>o

<message box>:= <message box opc> <xpos>o <ypos>o <width>o <height>o <closed>o <no
border>o <title>o <modal>o <message type>o <max time>o <lifetime>o <no
sound>o <attributed text>+

<message type>:= <message type opc> <message>

<message>:= <INTEGER : 0> | { general message }
<INTEGER : 1> | { information message }
<INTEGER : 2> | { warning message }
<INTEGER : 3> | { action message }

<lifetime>:= <lifetime opc> <destroy event>

<destroy event>:= <INTEGER : 0> | { destroy by any user action}
<INTEGER : 1> | { destroy by validation of implicit defined button }
<INTEGER : 2> | { destroy by a command from the host }
<INTEGER : 3> | { close by validation of implicit defined button }
<INTEGER : 4> | { close by any user interaction }
<INTEGER : 5> | { no implicit lifetime defined }

<max time>:= <max time opc> <INTEGER> { time period in seconds }

<bitmap object>:= <bitmap object opc> <bitmap data> | <bitmap file>

<bitmap data>:= <INTEGER : 0> <bmwidth> <bmheight> <bmcompr>o <pixel definition>

<bmwidth>:= <INTEGER>

<bmheight>:= <INTEGER>

<bmcompr>:= <bmcompr opc> <INTEGER : 0> { no compression }

<pixel definition>:= <index def> | <rgb def>

<index def>:= <index def opc> <bits per pixel>o <colour entry>o <colour list>

<bits per pixel>:= <bits per unit>

<colour entry>:= <colour entry opc> <INTEGER>

<colour list>:= <list spec> { bmwidth * bmheight integers }

<rgb def>:= <rgb def opc> <bits per component>o <component list>

<bits per component>:= <bits per unit>

<component list>:= <list spec> { 3 * bmwidth * bmheight integers }

<bits per unit>:= <bits per unit opc> <INTEGER>

<bitmap file>:= <INTEGER : 1> <filename> <pict file type>

<pict file type>:= <INTEGER : 0> | { JPEG }
<INTEGER : 1> | { GIF }
<INTEGER : 2> { BMP }

:= <fn family>o <fn height>o <fn bold>o <fn underline>o <fn
italic>o <fn colour>o

<fn family>:= <fn family opc> <family>

<resource object>:= <bitmap object> | | <text object> |
<videotex object>

102 Recommendation T.107 (08/95)

<family>:= <INTEGER : 0> | { SWISS }
<INTEGER : 1> | { ROMAN }
<INTEGER : 2> { FIXFONT }

<fn height>:= <fn height opc> <INTEGER>

<fn bold>:= <fn bold opc>

<fn underline>:= <fn underline opc>

<fn italic>:= <fn italic opc>

<fn colour>:= <fn colour opc> <INTEGER>

<text object>:= <text object opc> <in-text>+ | <text file>

<text file>:= <file name> <text file type>

<text file type>:= <INTEGER : 0> | { “in-text” format }
<INTEGER : 1> { plain text, incl. CR, LF }

<videotex object>:= <videotex object opc> <vtx file>

<videotex file>:= <filename> <data syntax type>

8.6 Local actions

<locactact>:= <locactact opc> <local action>+

<locactval>:= <locactval opc> <local action>+

<local action>:= <report command> | <general command> | <specific command>

<report command>:= <loc command opc> <report type>

<report type>:= <INTEGER : 0> | { report OIN, CIN }
<INTEGER : 1> | { report current value }
<INTEGER : 2> | { report all values }
<INTEGER : 3> { report all changed values }

<general command>:= <loc command opc> <general command type>

<general command type>:= <INTEGER : 50> | { user lock }
<INTEGER : 51> { set initial values and states in the parent object }

<specific command>:= <loc command opc> <specific command type> <oin spec> | <cin spec>

<specific command type>:= <INTEGER : 100> | { open components of the parent object }
<INTEGER : 101> | { close components of the parent object }
<INTEGER : 102> | { open objects }
<INTEGER : 103> | { close objects }
<INTEGER : 104> | { change components of the parent object to inaccessible }
<INTEGER : 105> | { change components of the parent object to accessible }
<INTEGER : 106> | { destroy objects }
<INTEGER : 107> | { open blocking object (only one) }

<metacode object>:= <metacode object opc> <command>+ <command end>

Recommendation T.107 (08/95) 103

9 Encoding

9.1 Command structure

The PDE of one Picture Entity carries one or more VEMMI commands. The last VEMMI command of one PE can be
split on more than one PE. This is indicated with the first byte of the PDE, called “more data indicator”. The syntax of
the PDE is as follows:

<PDE>:= <mdi> <command>+

<mdi>:= <2/14> | { the last command is only partly contained in this PE, it continues in
the next PE; “MORE” }
<2/15> { the last command is completely contained in the PE; “LAST” }

NOTE – Splitting commands over more than one PE is not reflected in the grammar specification.

One or several VEMMI commands are preceded by the VEMMI-Header. This header is used to identify VEMMI data in
the data stream of the standard application. Such a sequence of VEMMI commands is called the Data Entity. The last
command of a data entity can be split across more than one data entity. This is indicated by the MDI (More Data
Indicator). Examples:

Three commands contained in one data entity:

Three commands in two data entities, one is split:

9.2 Object, component and attribute structure

Object structure

The objects have one of the following structures:

a) <object code> <object body> <component>*

b) <object code> <attribute>+

c) <object code> <command>+

Component structure

<component code> <cin> <attribute>*

VEMMI
Header

MDI
(last) Data Entity

Command 1 Command 2 Command 3

VEMMI
Header

MDI
(more) Data Entity

VEMMI
Header

MDI
(last) Data Entity

Command 1
Command 2
(first part)

Command 2
(last part) Command 3

104 Recommendation T.107 (08/95)

Attribute structure

The attributes have one of the following structures:

a) <attribute code> { the attribute is defined only by the code };

b) <attribute code, value> { the attribute is defined by the code and the value };

c) <attribute> { the attribute is defined by another attribute };

d) <attribute code, attribute> { the attribute is defined by the code and another attribute }.

9.3 Terminal symbols encoding

9.3.1 Opcodes

Opcodes are used to identify the parts of the VEMMI commands. They are used to encode:

– command codes;

– object codes;

– component codes;

– the MDI code;

– attribute codes.

The terminal symbol notation is: <a/b> with a, b = 0 .. 15 (hexadecimal notation).

9.3.2 Integers

This format is used to encode non negative values with no fractional part. An integer consists of a byte sequence of one
or more bytes.

Coding rules:

a) bit 8 set to 1 means no extension, it is the last byte of the sequence;

b) bit 8 set to 0 and bit 7 set to 1 indicates an extension, it is not the last byte;

c) the encoded value is specified:

1) for one byte integers by bits 7 to 1;

2) for multi-byte integers by bits 6 to 1 from all bytes except the last byte and bits 7 to 1 from the last
byte;

d) the most significant part of the value is coded in the first byte;

e) the least significant part of the value is coded in the last byte.

Symbols using integers:

<INTEGER>

<false>:= <INTEGER : 0>

<true>:= <INTEGER : 1>

Example: Coded representation of the number 37.

b8 b7 b6 b5 b4 b3 b2 b1

1 0 1 0 0 1 0 1

No extension Integer value bits

Recommendation T.107 (08/95) 105

Example: Coded representation of the number 1741.

9.3.3 Enumerated

This datatype denotes a value from a set of standardized values.

They are encoded as integers with the notation: <INTEGER : n> with n as a decimal value.

9.3.4 Strings

This datatype denotes a sequence of characters with the following structure:

<string>:= <latin string> | <non latin string> | <unicode string>

<latin string>:= <character>+ <end of string>

<character>:= <a/b> | <c/b> | <CR> | <LF> | <ESC> { a = 2..7, b = 0..15, c = 10,
15 characters coded according to ISO 8859 or T.51String }

<end of string>:= <9/12> { ST (string terminator) from ISO 6429 }

<CR>:= <0/13>

<LF>:= <0/10>

<non latin string>:= <shift JIS string> | <T.52 string>

<shift JIS string>:= <a/b> | <c/d> <e/f> | <CR> | <LF> { a = 2..7, 10..13; b = 0..15,
c = 8,9,14,15; d = 0..15; e = 4..15; f = 0..15 }

<end of JIS string>:= <1/11> <5/12> { ST (string terminator) from ISO 6429 }

<T.52 string>:= for further study

<unicode string>:= <uni char> <uni char> <end of unicode string> { string according to ISO 10646-1
(BMP) }

<uni char>:= <a/b> { a = 0..15, b = 0..15 }

<end of unicode>:= <ST version> | <FF version>

<ST version>:= <0/0> <9/12>

<FF version>:= <F/F> <F/F>

Byte 1 b8 b7 b6 b5 b4 b3 b2 b1

0 1 0 0 1 1 0 1

Extension Most significant bits

Byte 2 b8 b7 b6 b5 b4 b3 b2 b1

1 1 0 0 1 1 0 1

No
extension Least significant bits

106 Recommendation T.107 (08/95)

9.3.5 NDC

This datatype denotes horizontal or vertical scalar values in the NDC space. An NDC is a fixed point real number from
the range 0.0 (inclusive) to 1.0 (exclusive).

Coding rules:

a) an NDC value is coded in a sequence of one or more bytes;

b) bit 8 set to 1 means no extension, it is the last byte of the sequence;

c) bit 8 set to 0 and bit 7 set to 1 indicates an extension, it is not the last byte;

d) the encoded value is specified:

1) for one byte NDC by bits 7 to 1;

2) for multi-byte NDC by bits 6 to 1 from all bytes except the last byte and bits 7 to 1 from the last byte;

e) the binary radix point is not coded, but assumed to be:

1) for one byte NDC next left to the bit 7;

2) for multi-byte NDC next left to bit 6 in the first byte;

f) the most significant part of the value is coded in the first byte;

g) the least significant part of the value is coded in the last byte.

The terminal symbol notation is: <NDC>.

Example: Coded representation of the number 0.312510 = 0.01012

Example: Coded representation of the NDC 0.20507812510 = 0.0011010012

b8 b7 b6 b5 b4 b3 b2 b1

1 0 1 0 1 0 0 0

No extension NDC value bits

Byte 1 b8 b7 b6 b5 b4 b3 b2 b1

0 1 0 0 1 1 0 1

Extension Most significant bits

Byte 2 b8 b7 b6 b5 b4 b3 b2 b1

1 0 0 1 0 0 0 0

No
extension Least significant bits

Recommendation T.107 (08/95) 107

9.4 Attributes and lower level symbols

<autoscroll> := <6/9>
<attributed text> := <text> | <fin reference>
<autostore> := <7/8>
<bin> := <INTEGER>
<bin reference> := <11/8> <bin>
<bitmap disp type> := <11/11> <INTEGER : 0> | { stretched }

<INTEGER : 1> | { centred }
<INTEGER : 2> | { tiled }

<block index> := <12/4> <INTEGER>
<button> := <text> | <bin reference>
<cin> := <INTEGER>
<cin reference> := <12/7> <INTEGER> { reference to a component }
<cin spec> := <in spec>+
<closed> := <6/8>
<colour> := <11/10> <INTEGER> { colour index }
<command end> := <2/15>
<defactive> := <11/7> <INTEGER> { the referenced cin }
<default item> := <12/3> <INTEGER>
<default text> := <text>
<direct in> := <7/10>
<display character> := <a/b> { a = 2..15, b = 0..15 }
<echo char> := <14/6> <display character>
<echo type> := <12/0> <INTEGER : 0> | { local echo }

<INTEGER : 1> | { no echo }
<INTEGER : 2> | { echo defined character }

<end of list> := <3/15>
<filename> := <14/8> <string>
<fin> := <INTEGER>
<fin reference> := <10/13> <INTEGER> { reference to a font resource object }
<group> := <12/2> <INTEGER>
<height> := <9/2> <NDC>
<in spec> := <list spec> | <range spec> | <one in>

{ defines a list, a range or a single identification number }

<list spec> := <11/0> <INTEGER>+ <end of list>
<range spec> := <13/0> <from> <to>
<from> := <INTEGER>
<to> := <INTEGER>
<one in> := <13/5> <INTEGER>
<increment> := <12/10> <INTEGER>
<initial font> := <11/12> <INTEGER> { the referenced fin }
<initial value> := <12/11> <INTEGER>
<input type> := <11/14> <INTEGER : 0> | { any character }

<INTEGER : 1> | { alphabetic }
<INTEGER : 2> | { numeric }
<INTEGER : 3> | { alphanumeric }

<input transform> := <11/5> <INTEGER : 0> | { no transformation }

<INTEGER : 1> | { to lower }
<INTEGER : 2> | { to upper }

<item locact> := <7/13> <local action>+
<item locval> := <7/14> <local action>+
<label font> := <11/13> <INTEGER> { the referenced fin }
<label> := <14/5> <string>
<list index> := <12/4> <INTEGER>
<locator> := <6/0>
<marked> := <7/1>
<max char> := <12/1> <INTEGER>

108 Recommendation T.107 (08/95)

<max line> := <12/5> <INTEGER>
<max value> := <12/9> <INTEGER>
<maxim text> := <7/0>
<maximizable> := <6/14>
<min value> := <12/8> <INTEGER>
<modal> := <6/12>
<multiline> := <6/15>
<multiple choice> := <7/2>
<negative> := <7/9>
<no border> := <6/13>
<no consistency> := <7/15>
<no drop> := <7/3>
<no edit> := <7/4>
<no format> := <7/6>
<no scrolling tools> := <7/5>
<no sound> := <7/11>
<notaccessible> := <6/11>
<num blocks> := <10/8> <INTEGER>
<oin> := <INTEGER>
<oin spec> := <in spec>+ { defines object identifiers }
<output height> := <9/4> <NDC>
<program about> := <string>
<program description> := <string>
<program filename> := <filename>
<program name> := <string>
<program parameter> := <program parameter opc> <string>
<program type> := <13/1> <INTEGER : 0> | { standalone program }

<INTEGER : 1> { program with filter interface }

<result> := <true> | <false>
<scrolling tools> := <11/1> <INTEGER : 0> | { terminal dependent }

<INTEGER : 1> | { two column scrolling }
<INTEGER : 2> | { two row scrolling }

<slider value> := <INTEGER>
<store result> := <true> | <false>
<separated> := <6/10>
<sorted> := <7/12>
<template> := <7/7>
<text> := <14/3> <string>
<timestamp> := <12/14> <INTEGER>
<tin reference> := <10/15> <INTEGER> { reference to a text resource object }
<title font> := <11/9> <INTEGER> { the referenced fin }
<title> := <14/4> <string>
<vertical> := <6/7>
<vin reference> := <10/12> <INTEGER>
<width> := <9/3> <NDC>
<xloc> := <NDC>
<xpos> := <9/0> <NDC>
<yes/no> := <true> | <false>
<ypos> := <9/1> <NDC>
<yloc> := <NDC>
<vtx byte> := <a/a> { a = 0..15 }

9.5 Opcodes

In Tables 39 and 40, the suffix “opc” from the symbols of the command syntax specification is omitted.

The code positions that are currently not used are reserved for future extensions.

Recommendation T.107 (08/95) 109

TABLE 39/T.107

Host commands opcodes

TABLE 40/T.107

Terminal commands opcodes

2 3

10 open create object

11 close delete outdated objects

12 resume modify component (see also 9.6)

13 suspend obj location change

14 close all load coltable

15 reset col open application

16 user lock store objects

17 user unlock erase objects

18 open object open blocking object

19 close object resource transfer

10 destroy object term cap request

11 access disable

12 access enable set options

13 translation mode

14 (See Note)

15 (See Note)

NOTE – These code positions are reserved for the MDI.

2 3

10 store objects resp

11 object retrans

12 open appl resp

13 user data

14 error

15

16 term cap resp

17

18

19 resource transfer

10

11

12

13 translation mode

14

15

NOTE – Tables 41 to 43 contain symbols which have the same code. Their names are separated with a "/".

110 Recommendation T.107 (08/95)

TABLE 41/T.107

Opcodes (Part 1)

TABLE 42/T.107

Opcodes (Part 2)

Objects "End" codes Components

2 3 4 5

10 application bar bar menu choice slider

11 button bar pull-down choice text component

12 pop-up menu push button comp sensitive text

13 dialogue box pop-up choice casc menu choice

14 separator

15 operative object frame

16 sound object graphic output area

17 video object text area

18 message box text input field

19 metacode object box push button

10 bitmap object check box

11 font object radio button

12 text object list box

13 videotex object combo box

14 command end sensitive area

15 end of list

Boolean attributes Coordinates, dimensions

6 7 9

10 fn bold/locator maxim text xpos

11 fn underline/local storage marked ypos

12 fn italic multiple choice height

13 index def no drop width

14 rgb def no edit output height

15 locactact no scrolling tools

16 locactval no format

17 vertical template

18 closed autostore

19 autoscroll negative

10 separated direct in/more blocks

11 notaccessible no sound/store ini values

12 modal sorted end of string

13 no border item locact

14 maximizable item locval

15 multiline no consistency

Recommendation T.107 (08/95) 111

TABLE 43/T.107

Opcodes (Part 3)

9.6 Syntax of the VEMMI_Modify_Component

VEMMI_Modify_Component is used to modify or to add one or more components in an object. This command has the
same syntax as VEMMI_Create_Object, except that it contains only those attributes which are to be modified. All
attributes which are modifiable or their higher symbol definitions are summarized in the following:

autoscroll echo type list text unit no sound
attributed text group locactval notaccessible
bin reference increment locactact previous text
cin reference initial font max char text
closed initial info max value tin reference
colour input type marked title
current text intext message
default item label min value
default text label font negative
echo char lifetime next text

Integer attributes
String

attribute

10 11 12 13 14

10 fn family list spec echo type range spec applid/
user language

11 fn height/
data types

error oin/
scrolling tools

max char program type appl add data/
system information

12 fn colour/
text types

error cin group prev text

13 bmcompr/
still picture

error com code default item current text text

14 bits per unit local commands list index/
block index

next text title

15 colour entry/
audio

input transform max line one in label

16 moving picture echo char

17 audiovisual defactive cin reference vtx content

18 num blocks bin reference min value filename

19 message type title font max value program parameter

10 lifetime colour increment current block

11 default vtx bitmap disptype initial value

12 vin reference initial font max time basic page #

13 fin reference label font input timeout

14 input type timestamp

15 tin reference

112 Recommendation T.107 (08/95)

The modification of boolean attributes is achieved by transmitting the same attribute again. The host application can
either set or unset the value for a boolean attribute.

In order to set a boolean attribute, the host application shall transmit the attribute once (this is equivalent to the object
creation syntax). In order to unset a boolean attribute, the host application shall transmit the attribute twice immediately
following each other.

In the following example a pop-up menu offers four choices to the user, two accessible (CINs 35, 36) and two not
accessible (CINs 37, 38):

Upon reception of VEMMI_Modify_Component with:

<oin : 2>
<cin : 37> <NotAccessible> <NotAccessible>
 <cin : 39> <text : "&Double Cube"> <separated>

the menu is changed, one inaccessible component is made accessible and a new component is added.

For the optional attributes the default values are applied, if VEMMI_Modify_Component adds a new component. That is
the same rule as VEMMI_Create_Object uses. If VEMMI_Modify_Component references an already existing
component, only the transmitted attributes are applied. The missing attributes remain unchanged.

VEMMI_Modify_Component shall not be applied to the components of the application bar.

Specific requirements for the modification of list items are described in 7.6.1.11 and 7.6.1.12.

Start New Game

Beginner Level

Intermediate Level

Advanced Level

Start New Game

Beginner Level

Intermediate Level

Advanced Level

Double Cube

Recommendation T.107 (08/95) 113

9.7 Defaults

The default values of attributes are applied when an optional attribute is not contained in the element definition.
An exception makes VEMMI_Modify_Component applied on existing components, see 9.6. The default values depend
on the attribute datatype and on the object/component to which they belong.

For the default value of a Boolean attribute (these are coded with the opcode only) the logical negative meaning
compared with its definition shall be assumed. A default value of a Boolean attribute is not codeable and is never
contained in the element definition. See Tables 44 to 48.

TABLE 44/T.107

Boolean attributes defaults

Attribute Default value Attribute Default value

fn bold normal, non-bold maxim text no maximised text

fn underline not underlined marked unmarked

fn italic non-italic multiple choice single choice

vertical horizontal no drop drop

closed open no edit editable

notaccessible accessible no scrolling tools with scrolling tools

modal non-modal no format formatable

no border with border

autoscroll no autoscroll template no "template" store

separated not separated autostore no "autostore"

multiline single line no sound with sound

no consistency with consistency sorted not sorted

maximizable not maximizable negative positive

direct in no direct input

114 Recommendation T.107 (08/95)

TABLE 45/T.107

Integer attributes defaults

TABLE 46/T.107

NDC attributes defaults

Attribute Default value Attribute Default value

fn family SWISS input type 0

fn height 10 echo type 0

fn colour 0 (black) max char 1

bits per units (pixel) 1 group 1

bits per units
(component)

8 default item 1

list index 1 for the first, all others are numbered
consecutively

message type 0 max line terminal dependent

lifetime 1 sound format 0

colour entry 0 initial value min value

increment 1

defactive 1 max time 10

title font default font input timeout infinite

colour 0 (black)

bitmap disptype stretched

initial font default font

label font default font

Attribute Default value

xpos, ypos of the message box terminal dependent

xpos 0.0

ypos 0.0

Recommendation T.107 (08/95) 115

TABLE 47/T.107

Width and height defaults

TABLE 48/T.107

String attributes defaults

Element Width default value Height default value

application bar terminal dependent terminal dependent

button: button bar 0.125 0.03

pop-up menu terminal dependent

dialogue box 1.0 0.75

separator dialogue box width dialogue box height

frame dialogue box width dialogue box height

text area dialogue box width dialogue box height

graphic output area dialogue box width dialogue box height

text input field dialogue box width 0.03

push button 0.125 0.03

check box 0.125 0.03

radio button 0.125 0.03

list box dialogue box width dialogue box height

combination box dialogue box width dialogue box height

sensitive area 0.125 0.03

message box terminal dependent terminal dependent

Attribute Default value

echo char 2/13

116 Recommendation T.107 (08/95)

10 Introduction of the VEMMI service into existing Videotex Recommendations

10.1 Introduction of the VEMMI to T.101 [4]

The VEMMI Protocol Elements are mapped on the Videotex Presentation Data Elements (VPDEs).

In order to enable the data flow between Videotex terminal and VEMMI application, the logical channel shall be
transparent for VEMMI data blocks.

10.2 Introduction of the VEMMI to T.105 [6]

The VEMMI Protocol Elements are mapped on one or more SBV_VTX_Data service element.

In order to enable the data flow between Videotex terminal and VEMMI application, the logical channel shall be
transparent for VEMMI data blocks.

Annex A

T.51String

(This annex forms an integral part of this Recommendation)

A.1 Scope

This annex describes the rules to be applied when encoding names, strings, etc. using Recommendation T.51 [2]. The
T.51String defined by this annex serves as a reference model by restricting Recommendation T.51 [2] to those elements
of the code extension mechanisms, of the character sets and repertoire which are necessary to ease the implementations.

This definition is not specific to an individual telematic service, but it can be referenced by telematic application
standards.

A.2 Graphic character sets

The primary set of graphic characters (see Figure A.1) is identical with the set of graphic characters of the International
Reference Version (IRV) of the 7-bit coded character set of Recommendation T.50 [1].

Recommendation T.107 (08/95) 117

0

0

1 2 3 4

b 0

1

0

0

0

0

0

1

0

b

b

0000

1 1

B

a

b

5 6 7

0 1 1 1 1

1 0 0 1 1

0 101 1

000

0100

1100

0010

1010

0110

1110

0001

1001

0101

1101

0011

1011

0111

1111

2

3

4

5

6

7

10

11

12

8

9

13

14

15

bbb

Q

0

1

2

A

P ‘

o

p

!

"

#

$

%

’

(

)

*

+

,

-

.

/ ?

>

=

<

;

:

9

8

7

6

5

4

3 C

R b

q

D

S c

r

E

T d

s

F

U e

t

G

V f

u

H

W g

v

I Y

h

w

xX

[

J

i

z

\

K

j

{

]

L

k

|

^

M

l

}

_

N

m

~

O

n

y

Z

&

@

T0821490-95/d42

5

6

7

1234

FIGURE A.1/T.107

Primary set of graphic characters for T.51 String

FIGURE A.1/T.107...[D42] = 17 CM (118%)

Primary set of graphic characters for T.51String

118 Recommendation T.107 (08/95)

The supplementary set of graphic characters is specified in Figure A.2.

0

0

0

0

0 0 0

0

0

0

0

0

0

0 0

0

0

0

0

0

1

1

11

1

1 1

1

1

11 1

1

1

1

1

1

1

1

1

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1 1

1

1

1

0

0

0

0

0 0 0 0

0 0 0 0
0 0 0 0

1 1 1 1

1 1 1 1

1 1 1 1

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

b 1b2b3b 4

b 5

b 6

b 7

K

Æ æ

£ ^ ª

x ~

l

¶

L

°

« » º ß

T t

¿

Ω

1

3

2

¥

±

®

°

TM

–-

 IJ ij

· ·

· ·

Ø ø

'n

8

1

11

3

3

5

7

8

8

8

4

2

4 n

·

© ð

§

¬

¦ L·

¤

Þ þ

SHY

÷

NBSP

Ð

¸

T0821500-95/d43

œ



`

´¢

µ

“ ”

‘ ’

jJn

OE

i

h

o

These code positions shall not be used

FIGURE A.2/T.107

Supplementary set of graphic characters for T.51 String

¿

FIGURE A.2/T.107...[D43] = 18 CM (118%)

Supplementary set of graphic characters for T.51String

Recommendation T.107 (08/95) 119

For the T.51String the following applies:

1) The primary set is designated as the G0 set and invoked in column 2 to 7 of the code table.

2) The supplementary set is designated as a G2 set. In the 8-bit environment the set is invoked in column 10
to 15.

3) In the T.51String no designation and invocation sequences are allowed.

4) All characters in column 4 of the supplementary set are non-spacing characters (diacritical marks).

5) Unallocated code positions are reserved and shall not be used.

6) The compatibility provisions described in 2.2.4/T.51 [2] Notes 3, 4 and 6 are not applied.

A.3 Code extension technique

In the 8-bit environment no code extension sequence is allowed. In the 7-bit environment the single shift function SS2
(code 1/9) is used to invoke one character from the G2 set. All other shift functions are not allowed.

A.4 Repertoire of the Latin based character set

The T.51String repertoire is identical with the superset of the repertoire of the Latin based character set specified in
Annex A/T.51 [2]. All combinations of diacritical marks with basic letters as specified in Figure A.2/T.51 [2] are
supported.

The Notes and remarks from A.4/T.51 [2] shall not apply.

A.5 Control functions

Invocation and designation sequences for control functions are not allowed. From columns 0 and 1 of the code table in
use only the control characters CR, Carriage Return (0/13) and LF, Line Feed (0/10) can be used. They are specified in
Recommendation T.50 [1].

120 Recommendation T.107 (08/95)

Annex B

Mandatory subset of ISO 8859 [13]

(This annex does not form an integral part of this Recommendation)

FIGURE B.1/T.107

Mandatory subset of ISO 8859 [13] code table

2 3 4 5 6 7 10 11 12 13 14 15

0 SP 0 @ P ‘ p

1 ! 1 A Q a q

2 " 2 B R b r

3 # 3 C S c s

4 $ 4 D T d t

5 % 5 E U e u

6 & 6 F V f v

7 ’ 7 G W g w

8 (8 H X h x

9) 9 I Y i y

10 * : J Z j z

11 + ; K [k {

12 , < L \ l |

13 - = M] m }

14 . > N ^ n ~

15 / ? O _ o

Recommendation T.107 (08/95) 121

Annex C

Minimum datatype kernel

(This annex forms an integral part of this Recommendation)

A VEMMI terminal shall support the following minimum datatype kernel.

TABLE C.1/T.107

Supported datatypes

Class Encoding standard Remarks

For text data

VEMMI high quality text

ISO 8859 [13] (fully-formed accented characters)
from code position 2/0 to code position 7/15 as given
in Annex B

For Latin based terminal

Shift JIS Code (for Japanese characters) For Japanese terminals

For still picture

ISO 10918 [16] (JPEG)

VEMMI device independent bitmap

Graphics Interchange Format (sm) Version 89a.
Compuserve Incorporated Columbus, Ohio, USA
(only the functions of Version 87 must be supported)

Microsoft Windows Device-Independent Bitmap (DIB)
with RLE4, RLE8 and 1, 4, 8 or 24 bits per pixel

For audio data

WAVE format (See Note)

MIDI format (See Note)

NOTE – Mandatory in this case denotes that a terminal shall support all VEMMI services related to the functionality. It does not
mean that a terminal shall be equipped with the necessary device to play this data.

	ITU-T Rec. T.107 (08/95) ENHANCED MAN MACHINE INTERFACE FOR VIDEOTEX AND OTHER RETRIEVAL SERVICES (VEMMI)
	FOREWORD
	CONTENTS
	SUMMARY
	ENHANCED MAN MACHINE INTERFACE FOR VIDEOTEX AND OTHER RETRIEVAL SERVICES (VEMMI)
	1 Scope
	2 References
	3 Definitions and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 General model
	4.1 Introduction
	4.2 Definition of the VEMMI elements
	4.3 VEMMI plane structure model
	4.4 Operation modes for VEMMI terminals
	4.5 VEMMI elements data content
	4.6 VEMMI objects positioning and dimensioning
	4.7 VEMMI elements states and state parameters
	4.8 Local action management
	4.9 Memory considerations
	4.10 Common rules for object handling
	4.11 Local object storage
	4.12 Symbolic directory names
	4.13 Specific rules for dedicated terminals

	5 Service description
	5.1 Service elements initiated by the VEMMI application and the terminal
	5.2 Service elements initiated by the VEMMI application
	5.3 Service elements initiated by the terminal

	6 VEMMI objects introduction
	6.1 The application bar
	6.2 The button bar
	6.3 The pop-up menu
	6.4 The dialogue box
	6.5 Operative object
	6.6 Bitmap resource object
	6.7 Videotex resource object
	6.8 Text resource object
	6.9 Font resource object
	6.10 Metacode object
	6.11 The message box

	7 Functional description
	7.1 General rules for the behaviour of elements
	7.2 Text formats
	7.3 The Application Bar
	7.4 The Button Bar
	7.5 The Pop-Up Menu
	7.6 The Dialogue Box
	7.7 The Message Box
	7.8 Operative object
	7.9 Bitmap resource object
	7.10 Videotex resource object
	7.11 Text resource object
	7.12 Font resource object
	7.13 Metacode object
	7.14 VEMMI bitmap data type definition
	7.15 The VEMMI content encoding identification catalogue

	8 Complete coded representation of the VEMMI
	8.1 Introduction
	8.2 Notation used
	8.3 Overall switching of coding environment
	8.4 VEMMI Command Syntax
	8.5 Objects, components
	8.6 Local actions

	9 Encoding
	9.1 Command structure
	9.2 Object, component and attribute structure
	9.3 Terminal symbols encoding
	9.4 Attributes and lower level symbols
	9.5 Opcodes
	9.6 Syntax of the VEMMI_Modify_Component
	9.7 Defaults

	10 Introduction of the VEMMI service into existing Videotex Recommendations
	10.1 Introduction of the VEMMI to T.101 [4]
	10.2 Introduction of the VEMMI to T.105 [6]

	Annex A
	T.51String
	A.1 Scope
	A.2 Graphic character sets
	A.3 Code extension technique
	A.4 Repertoire of the Latin based character set
	A.5 Control functions
	Annex B
	Mandatory subset of ISO 8859
	Annex C
	Minimum datatype kernel

