CCITT

R.9

(11/1988)

THE INTERNATIONAL TELEGRAPH AND TELEPHONE CONSULTATIVE COMMITTEE

SERIES R: TELEGRAPH TRANSMISSION

Telegraph distortion

HOW THE LAWS GOVERNING DISTRIBUTION OF DISTORTION SHOULD BE ARRIVED AT

Reedition of CCITT Recommendation R.9 published in the Blue Book, Fascicle VII.1 (1988)

NOTES

- 1 CCITT Recommendation R.9 was published in Fascicle VII.1 of the *Blue Book*. This file is an extract from the *Blue Book*. While the presentation and layout of the text might be slightly different from the *Blue Book* version, the contents of the file are identical to the *Blue Book* version and copyright conditions remain unchanged (see below).
- 2 In this Recommendation, the expression "Administration" is used for conciseness to indicate both a telecommunication administration and a recognized operating agency.

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the prior written permission of ITU.

Recommendation R.9

HOW THE LAWS GOVERNING DISTRIBUTION OF DISTORTION SHOULD BE ARRIVED AT

(Geneva, 1964)

The CCITT.

considering

- (a) that for the sake of comparative studies of degrees of distortion, it would be well if the procedures for measurement of distortion, and the layout of results, could be standardized. The distortion in question is:
 - start-stop individual;
 - isochronous individual;
 - degree of start-stop distortion,
- (b) that the degree of isochronous distortion is of no great practical interest, since it is the individual isochronous distortion that, when isochronous distortion is present, supplies all the useful information. Hence it is not proposed to include the degree of isochronous distortion in this Recommendation.

unanimously declares the following view:

1 Start-stop individual distortion

- 1.1 As regards start-stop individual distortion, the distribution curves will be plotted by means of a statistical distortion analyzer. The width of the measurement steps should make it possible to take measurements with steps of 1%, 2%, 4%, 8%. A measurement will cover about 20 000 transitions (measurement duration of about 15 minutes at 50 bauds: three transitions on the average per start-stop alphabetic signal).
- 1.2 The results will be shown on the graphs on the linear scale with distributional representation, or on the normal probability scale with cumulative representation, the ordinates being the probabilities or probability density and the abscissae the degree of distortion.
- 1.3 For individual distortion, the curves will give negative (early) and positive (late) distortion.
- 1.4 For more detailed studies, the number of transitions to be examined may be higher than 20 000, the number depending on the chosen probability that the nominal figure will be exceeded.

2 Isochronous individual distortion

- 2.1 There is the difficulty of synchronism between the transmitter and the distortion analyzer, when the measurements are made at two different points; moreover, the average propagation time of the signals is to be taken into consideration when loop measurements are made.
- 2.2 The methods of measuring and presenting the results will be the same as for the preceding case, but the transmitter and the analyzer will have to be synchronized as accurately as possible, taking into account the distortion values to be measured.

3 Start-stop distortion

- 3.1 This is a matter of the (maximum) degree noted during a measurement. It is then necessary to decide on the length of the sample to be measured; the text to be measured will be composed at random. The measurement at 50 bauds will last 30 seconds, distributed as specified in § 5 of Recommendation R.5.
- 3.2 Distribution curves of these degrees of start-stop distortion will be drawn as a function of the number of samples.

ITU-T RECOMMENDATIONS SERIES Series A Organization of the work of the ITU-T Series B Means of expression: definitions, symbols, classification Series C General telecommunication statistics Series D General tariff principles Series E Overall network operation, telephone service, service operation and human factors Series F Non-telephone telecommunication services Series G Transmission systems and media, digital systems and networks Series H Audiovisual and multimedia systems Series I Integrated services digital network Series J Transmission of television, sound programme and other multimedia signals Series K Protection against interference Series L Construction, installation and protection of cables and other elements of outside plant Series M TMN and network maintenance: international transmission systems, telephone circuits, telegraphy, facsimile and leased circuits Series N Maintenance: international sound programme and television transmission circuits Series O Specifications of measuring equipment Series P Telephone transmission quality, telephone installations, local line networks Series Q Switching and signalling Series R **Telegraph transmission** Series S Telegraph services terminal equipment Series T Terminals for telematic services Series U Telegraph switching Series V Data communication over the telephone network Series X Data networks and open system communications Series Y Global information infrastructure and Internet protocol aspects

Languages and general software aspects for telecommunication systems

Series Z