

INTERNATIONAL TELECOMMUNICATION UNION

ITU-T Series Q
TELECOMMUNICATION
STANDARDIZATION SECTOR
OF ITU

Supplement 29
(12/1999)

SERIES Q: SWITCHING AND SIGNALLING

 Service modelling: Evolution to the use
of object oriented techniques

ITU-T Q-series Recommendations – Supplement 29
(Formerly CCITT Recommendations)

ITU-T Q-SERIES RECOMMENDATIONS
SWITCHING AND SIGNALLING

SIGNALLING IN THE INTERNATIONAL MANUAL SERVICE Q.1–Q.3
INTERNATIONAL AUTOMATIC AND SEMI-AUTOMATIC WORKING Q.4–Q.59
FUNCTIONS AND INFORMATION FLOWS FOR SERVICES IN THE ISDN Q.60–Q.99
CLAUSES APPLICABLE TO ITU-T STANDARD SYSTEMS Q.100–Q.119
SPECIFICATIONS OF SIGNALLING SYSTEMS No. 4 AND No. 5 Q.120–Q.249
SPECIFICATIONS OF SIGNALLING SYSTEM No. 6 Q.250–Q.309
SPECIFICATIONS OF SIGNALLING SYSTEM R1 Q.310–Q.399
SPECIFICATIONS OF SIGNALLING SYSTEM R2 Q.400–Q.499
DIGITAL EXCHANGES Q.500–Q.599
INTERWORKING OF SIGNALLING SYSTEMS Q.600–Q.699
SPECIFICATIONS OF SIGNALLING SYSTEM No. 7 Q.700–Q.849
DIGITAL SUBSCRIBER SIGNALLING SYSTEM No. 1 Q.850–Q.999
PUBLIC LAND MOBILE NETWORK Q.1000–Q.1099
INTERWORKING WITH SATELLITE MOBILE SYSTEMS Q.1100–Q.1199
INTELLIGENT NETWORK Q.1200–Q.1699
SIGNALLING REQUIREMENTS AND PROTOCOLS FOR IMT-2000 Q.1700–Q.1799
BROADBAND ISDN Q.2000–Q.2999

For further details, please refer to the list of ITU-T Recommendations.

 Q series −−−− Supplement 29 (12/1999) i

Supplement 29 to ITU-T Q-series Recommendations

Service modelling: Evolution to the use of object
oriented techniques

Summary
This Supplement compares different types of methodologies for service modelling to determine their
suitability in relation to protocol development for IN in the IN CS-4 time-frame. It also investigates
the evolution from SIB based techniques and considers different technologies such as APIs.

This Supplement supplements the information contained within Recommendation Q.65.

Rational
The purpose of this Supplement is to provide a discussion of service modelling aspects related to
IN CS-4.

Source
Supplement 29 to ITU-T Q-series Recommendations was prepared by ITU-T Study Group 11
(1997-2000) and approved under the WTSC Resolution 5 procedure on 3 December 1999.

ii Q series −−−− Supplement 29 (12/1999)

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of
telecommunications. The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of
ITU. ITU-T is responsible for studying technical, operating and tariff questions and issuing Recommendations
on them with a view to standardizing telecommunications on a worldwide basis.

The World Telecommunication Standardization Conference (WTSC), which meets every four years,
establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on these
topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSC Resolution 1.

In some areas of information technology which fall within ITU-T’s purview, the necessary standards are
prepared on a collaborative basis with ISO and IEC.

NOTE

In this publication, the expression "Administration" is used for conciseness to indicate both a
telecommunication administration and a recognized operating agency.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this publication may involve the
use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence, validity or
applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others outside of
the publication development process.

As of the date of approval of this publication, ITU had not received notice of intellectual property, protected
by patents, which may be required to implement this publication. However, implementors are cautioned that
this may not represent the latest information and are therefore strongly urged to consult the TSB patent
database.

� ITU 2001

All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from the ITU.

 Q series −−−− Supplement 29 (12/1999) iii

CONTENTS
 Page

1 Scope of service modelling for IN CS-4... 1
1.1 References... 1

2 Definitions and abbreviations ... 2
2.1 Abbreviations.. 2

2.2 Definitions .. 2

3 Requirements for IN CS-4 service modelling... 2

3.1 Service modelling ... 3

3.2 Service Logic spanning a single class... 4
3.2.1 Service Logic spanning several classes ... 6

4 Methodologies and modelling techniques .. 7
4.1 Open Distributed Processing (ODP)... 7

4.1.1 Enterprise Viewpoint ... 8
4.1.2 Information Viewpoint .. 8
4.1.3 Computational Viewpoint.. 8
4.1.4 Engineering Viewpoint .. 9
4.1.5 Technology Viewpoint .. 9

4.2 Evaluation of ODP.. 9

4.3 Unified Modelling Language .. 10
4.3.1 Evaluation of UML.. 11

5 Advantages of using Object Orientation for service modelling.................................. 11

5.1 Exploring the Use of APIs in IN CS4... 12
5.1.1 Background.. 13
5.1.2 A Framework for the use of APIs.. 13
5.1.3 API Overview .. 14
5.1.4 Example API for call processing ... 14

5.2 The SIB approach.. 15

6 A possible Evolution from SIBs to Object Oriented Service Capabilities 16
6.1 Service Class model.. 16

6.2 Service Execution View.. 17

6.3 Migration of CS-2 SIBs to Object Classes and Methods.. 18

Appendix I – Bibliography... 20

 Q series −−−− Supplement 29 (12/1999) 1

Supplement 29 to ITU-T Q-series Recommendations

Service modelling: Evolution to the use of object
oriented techniques

1 Scope of service modelling for IN CS-4
The purpose of this Supplement is:
• to identify and compare different methodologies for service modelling;
• to determine the suitability of the identified methodologies for service modelling, in

particular, with respect to:
− service management: data modelling;
− service logic purposes: dynamic service model (behaviour of service logic);
− description of the relationship between the data model and the dynamic service model.

• to determine the suitability of the identified methodologies for protocol development, in
particular, with respect to:
− the support of stepwise refinement from service and network capabilities to protocol

level both for the data model and the dynamic service model;
− the ability to incorporate the existing protocol into the model defined with the used

methodology.
• to investigate the migration aspects of service modelling, in particular, with respect to:

− the evolution from the SIB-based service modelling methodology to the methodologies
used for IN CS-4.

• to decide on the scope of service modelling for IN CS-4;
• to decide on the methodology to be applied for service modelling in IN CS-4.

1.1 References
The following ITU-T Recommendations and other references contain provisions which, through
reference in this text, constitute provisions of this Supplement. At the time of publication, the
editions indicated were valid. All Recommendations and other references are subject to revision; all
users of this Supplement are therefore encouraged to investigate the possibility of applying the most
recent edition of the Recommendations and other references listed below. A list of the currently
valid ITU-T Recommendations and supplements is regularly published.

− ITU-T Recommendations Q.122x series, IN CS-2 Recommendations.

− ITU-T Recommendation Q.1223 (1997), Global functional plane for intelligent network
capability set 2.

− ITU-T Recommendation Z.100 (1999), Specification and description language (SDL).

2 Q series −−−− Supplement 29 (12/1999)

2 Definitions and abbreviations

2.1 Abbreviations
This Supplement uses the following abbreviations:

API Application Programming Interface

GFP Global Functional Plane

INCM IN Conceptual Model

ODP Open Distributed Processing

OMT Object Modelling Technique

SDL Specification Description Language

SQL Structured Query Language

STD State Transition Diagrams

TINA Telecommunication Information Networking Architecture

2.2 Definitions
This Supplement defines the following terms:

2.2.1 API: an API is essentially a set of operations (or methods) that can be invoked on a
component, each of which causes the component to exhibit behavioural functionality. Each operation
is specified syntactically as an identifier which identifies the operation being invoked, and
parameters which affect the behaviour of the component in some way.

2.2.2 API Call: an API call is equivalent with the term "operation" and is sometimes
interchangeably used in the description of an API (above). Effectively an API is made up of a
number of individual API calls.

3 Requirements for IN CS-4 service modelling
This clause looks at the requirements that are seen to be important for modelling techniques and
methodologies used for IN service modelling, they are:
• Stepwise refinement from service (features) to protocol level should be supported.
• Support for various mechanisms of transparency. These include:

− Technology transparency: the modelling of IN services should not be dependent on the
technology used, e.g. the type of network, operation system or programming language.
An important type of transparency in the context of IN CS-4 service modelling is
network technology transparency. The objective of IN CS-4 is the integration of a
number of network technologies, including connection oriented type of networks (e.g.
PSTN, IMT-2000) and connectionless types of networks (e.g. IP-based networks, data
networks). Some of the services targeted in IN CS-4 will probably be specific to one
network technology, others will require interworking between different network
technologies, or their behaviour will depend on the technology the service is invoked
from. One could think of a service with user interaction, which can be invoked by B-
ISDN as well as mobile network users, or of a multimedia conference service over
different network technologies. IN could be an integrated architecture for the services on
multiple network technologies. It should be investigated to what extent network
technology transparency can be achieved.

 Q series −−−− Supplement 29 (12/1999) 3

− Access transparency: masking differences in data representation and invocation
mechanisms (i.e. providing multiple mappings of the information contents of IN
protocol exchanges to programming APIs).

− Failure transparency: masking, from an object, the failure and possible recovery of
objects (including itself).

− Migration transparency: masking, from an object, the ability of a system to change the
location of interfaces to that object.

− Relocation transparency: masking relocation of an object interface from other interfaces
bound to it.

− Replication transparency: masking use of a group of mutually behaviourally compatible
objects to support an interface.

• Service extensibility: it should be possible to support additions to the IN service
functionality by extending the existing service models and existing service components.

• Service scalability: it should be possible to accommodate and allow to scale the service
capabilities in terms of the number of users, the number of nodes, the number of
administrative domains, etc.

• Service version handling: service-modelling techniques should facilitate the concurrent use
of multiple versions of service models and service components.

• Service reusability: it should be possible to reuse the models of an IN service (capability)
during the specification of another IN service, rather than starting the modelling from
scratch even in case of overlapping functionality. The same applies to the software
components that implement the specification.

• Operation, administration and maintenance: the methodologies and modelling techniques
should support flexibility when it comes to functionality and data model changes during
operation, administration and maintenance. For example, functionality changes that occur
during maintenance should be easily reflected in the model of the IN service.

• Reduction of service conflict: the methodologies and modelling techniques should reduce
the risks of service interactions.

• Flexible service modification/customization: the network providers and service providers
should to be able to differentiate and customize services to meet specific market needs.

 The Users should be able to customize the services to some extent to meet their personal
needs. In the short term it will be limited to data customization and selection from a list of
predefined features. In the longer term service packaging might be provided as well.

• Support for a multi-stakeholder environment: the IN CS-4 service capability modelling
should be able to take into account the respective roles of the different stakeholders involved
in the service provisioning (retailer, operator, content provider, etc.).

3.1 Service modelling
One of the goals of OO modelling is to allow the service developer and designers to share the same
model of Service Logic. In order to achieve this goal the modelling technique should hide all
platform details from the user but at the same time allow the service developer to translate the
behaviour model into the suitable execution form. In order to meet those requirements it is proposed
that the behaviour modelling technique be represented in the notation which is programming
language, operating system and database independent. The use of data-less SDLs and State
Transition Diagrams is thus proposed to represent pure behaviour of an abstract class.

4 Q series −−−− Supplement 29 (12/1999)

3.2 Service Logic spanning a single class
The OMT and other modelling techniques introduce the concept of an Active Class. An Active Class
is defined as a Class whose behaviour is modelled best using the Finite State Machine Model (FSM).
In order to achieve the language independence at the service logic level it is proposed that the model
of Finite State Machine used contains no data. Thus an Abstract Class representing a simple service
would contain an Abstract Data and an Abstract Behaviour Model strictly separated.

It is important to stress here the fact that the separation of an Abstract Data and an Abstract
Behaviour Model is suggested only at the Modelling Level. No recommendation is being made here
nor is it suggested that the separation of an Abstract Data and an Abstract Behaviour Model shall be
extended to the automatically or manually generated code.

An example of a separation of an Abstract Data and an Abstract Behaviour could be a VPN service
with a complex service model. For instance the VPN service parameter Participant_ID may be an
example of abstract data at the modelling level. The Abstract Class Model in its Abstract Data
Section should not reflect where in the behaviour model this data is used. On the other hand, the
Abstract Behaviour Model of an Abstract Class may require an event New_Participant_Arrived
without the need to mention where data for a given participant is stored in the Abstract Data Section
of the Abstract Class.

This separation within a top-level class should allow for inter-changeability of Service Model
Objects and a creation of standard service needs. See Figure 1. The arrows in this model represent
inheritance in a manner consistent with the OMG notation. In the case of C++ implementation
abstract_actions and abstract_events are often implemented as pure virtual functions.

Figure 2 shows an example of an Abstract Active Class called VPN Service Object, which may be
used for the implementation of Virtual Private Network service. The class contains examples of
abstract_events, abstract_actions and abstract_states.

 Q series −−−− Supplement 29 (12/1999) 5

T11111180-01

Active Abstract Class Name

Abstract Data

Service Database

Concrete Data

Data Extraction Methods

Abstract FSM-Behavior:
abstract_events,
abstract_states,
abstract_actions

Abstract Service
Events producer
(Client)

Concrete Service
Actions Producer
(Server)

Client Data
(concrete)

Server Data
(concrete)

Methods:
message_parsing

Methods:
 concrete_actions,
 message_builders

NOTE – It is feasible that the message_parser and the message_builder may be implemented
as separate classes for more complex services.

Figure 1 −−−− An abstract class representing: a) a simple Service Logic; b) a portion of a complex
Service Logic; c) a Service Logic Manager

6 Q series −−−− Supplement 29 (12/1999)

T11111190-01

Service Database

Concrete Data

(Active Abstract Class Name)
 VPN Service Object

(Abstract Data)
Participant_ID, Timer_Value,...

(Abstract FSM-Abstract Behavior)
(abstract_events):New_Participant_Arrived,…
(abstract_states): Active, Inactive,…
abstract_actions:Apply_Greeting_Tone,..

Data Extraction
Methods

Abstract Server
Event Producer
 (Client)

Client Data
(concrete)

Concrete Service
Actions Producer
(Server)

Server Data
(concrete)

Methods:
 message_parsing,
 extracting_methods

Methods:
concrete_actions,
message_building

Figure 2 −−−− An example of abstract class representing a VPN Service Logic

3.2.1 Service Logic spanning several classes
For the more complex services, Service Logic may be modelled as a collection of cooperating Active
Classes. An object is defined here as an instantiated class. It may be worthwhile to investigate
whether the model of cooperating classes is more appropriate for the IN Service Modelling than the
model of contained classes.

There are indications that the model of cooperating classes better enforces the encapsulation of
classes hiding the implementation details. Such a model of cooperating classes was a foundation of
Smalltalk-Object programming language. In such a case each of the active classes should be
modelled in the same way as the case of Service Logic spanning a single class. The cooperating
classes send requests to each other and receive responses. This represents a flow of control
information between the objects.

It should be noted that a term message, as used in this contribution, implies physical rather than
logical flow of information. A message may contain a data as well as a control information. Thus it
is recommended here that flow of control information between the objects be shown separately from
the flow of data between the objects. A known advantage of such a separation is a simplification of

 Q series −−−− Supplement 29 (12/1999) 7

tools validating the service automatically. The Service Creation Environment (SCE) validation tool
should generate sequence flow diagrams of inter-objects communication from FSM behaviour
models of cooperating objects. Further contributions on SCE and SMS requirements could be
provided in a later date. The model presented shall apply to a peer type inter-objects communication
as well as to the situation where one of the classes is assigned a function of the Service Logic
Manager. This corresponds to the Service Designer choice of using hierarchical or rather
decentralized form of Service modelling.

4 Methodologies and modelling techniques

4.1 Open Distributed Processing (ODP)
The reference model of ODP is a generic distributed object-oriented methodology that is suitable for
both traditional telecommunications applications (such as IN) and information processing
applications. It is based on two powerful trends in software technology:
• Object-oriented specification techniques provided at different abstraction levels allowing a

high degree of stepwise refinement and consistency checking.
• Object-based distributed processing environments (e.g. CORBA-based platforms) allowing

the provision of distributed services, and most importantly, enabling a distribution
transparency and interworking within distributed systems.

The reference model of ODP prescribes that multiple descriptions, with different abstraction levels,
should be provided for any service under study or development. Five abstraction levels – called
viewpoints in the ODP terminology – have been defined within ODP and are considered to
encompass the different areas of concerns that need to be covered in the service development
process.

Specifications have to be provided in each of these viewpoints using a corresponding viewpoint
model or an adequate viewpoint language. The five ODP viewpoints are enterprise, information,
computational, engineering and technology.

T11111200-01

Enterprise Viewpoint
Managers
what to do

Information Viewpoint
Service Specifiers
which information

Computational Viewpoint
Programmers
how to do itTechnology Viewpoint

Solutions Suppliers
which technology

Engineering Viewpoint
System Engineers
which mecanisms

ODP system

Figure 3 −−−− Different abstraction levels (viewpoints) in ODP

8 Q series −−−− Supplement 29 (12/1999)

4.1.1 Enterprise Viewpoint
An enterprise specification of an IN service describes the service from the perspective of the
organizations and people that will use or operate that service. The concepts used for enterprise
specifications include:
• the requirements that state the desired capabilities of the service at a strategic level (why it is

being considered);
• the stake-holders (and other participating institutions);
• the roles (who will be involved and in what role);
• the legal environment (obligations of the stakeholders);
• the set of rules and regulations that govern the exploitation of the service (the rules that must

be obeyed when the service will operate).

Usually an enterprise specification is written in a textual format or using a high-level graphical
notation.

4.1.2 Information Viewpoint
An information specification provides a highly abstract model of real world entities and their
relationships along with the constraints that govern their behaviour. An information specification
typically covers:
• the specification of the information structure of the service (objects);
• the specification of the dependencies between the information objects (associations);
• the specification of the operations and constraints that govern the possible dynamic

evolution of the service considered as collection of objects.

The information viewpoint could be developed using e.g. UML, especially using the capabilities for
data modelling (static model).

Guidelines for mapping Enterprise viewpoint to Information viewpoint:
• Mapping rules can be established to translate the enterprise specification into information

terms. It should be noted that these are only guidelines.

4.1.3 Computational Viewpoint
A computational specification represents an abstract implementation of the service under
consideration in terms of interacting objects whereby location, access, distribution and failure are
transparent. Put simply, at this abstraction level, a service is represented as a dynamic configuration
of interaction objects.

An important feature of computational specification is the ability to capture the real-time and
probabilistic aspects. Binding objects, for instance, describe the behaviour of communication which
complies with certain QOS constraints. These non-functional requirements are particularly relevant
when it comes to the support of multimedia interactions in a distributed environment.

The specification of the computational viewpoint would typically contain the well-known functional
entities such as SCF, SSF, SRF, etc. as computational objects, perhaps further decomposed
depending on the distribution needs. The interactions between the computational objects would be in
terms of "operations" (i.e. INAP operations) and "flows" (i.e. voice, video and data).

The computational viewpoint could be developed using e.g. UML for specification of the
computational objects and e.g. IDL for the specification of interfaces between objects.

Though ODP does not recommend any mapping solution between information and computational
object types, the following simple guideline is a starting point: there is a one-to-one mapping. A
computational object type specification is obtained by taking an information object type

 Q series −−−− Supplement 29 (12/1999) 9

specification and adding the description of the operations for which it can have a server role.
However, considerations regarding the potential for distribution will modify this mapping.

4.1.4 Engineering Viewpoint
An engineering specification determines how computational, distribution-free descriptions can be
realized in terms of generic system components and communication protocols (such as SS7). It
therefore focuses on how interaction between objects is achieved and which resources are needed to
do so. From an engineering viewpoint, an ODP system is considered as a collection of computer
systems. The details of the underlying communication networks, operating systems and hardware are
hidden by a uniform and basic distributed environment.

In ODP terminology the SSF-FSMs and the BCSMs could be considered as stubs or protocol
objects. The signatures of the operations would correspond to the ASN.1 definitions of the INAP
operations.

The Engineering specification would be very similar to the protocol specification.

It could be developed using SDL and ASN.1. SDL is used to describe the objects and their
behaviour, and ASN.1 to describe the signatures of the operations visible at external interfaces
(hence corresponding to protocol messages). The reason for using ASN.1 and not IDL is that a large
number of protocols with which IN needs to inter-work are already specified using ASN.1.

The consistency between the Computational and the Engineering specifications can be maintained
by using tool support. For example, the computational objects, specified using UML/OMT, can be
"pasted" in the SDL specification as SDL objects (types). The tool will maintain such links between
UML/OMT and SDL objects, and consistency checks can be done between the two models. Also,
SDL process diagrams can be automatically generated from UML/OMT state chart descriptions.

4.1.5 Technology Viewpoint
The technology viewpoint describes the implementation of the system in terms of the hardware and
software components. It may need to consider cost and availability constraints. Selections influence
the performance and quality of service of the system. Because it is directly concerned with
implementation, the technology viewpoint is outside the scope of standardization.

4.2 Evaluation of ODP
The benefits of ODP for IN service modelling include:
• Stepwise refinement of specifications: shows some possible scenarios of specification

refinement in ODP (see Figure 4). Note that specification refinement and transformations
can be made in an iterative manner.

10 Q series −−−− Supplement 29 (12/1999)

T11111210-01

enterprise
specification

information
specification

ingineering
specification

computational
specification

technology
specification

Figure 4 −−−− Possible scenarios of specification refinement in ODP

• Transparency mechanisms: ODP provides various mechanisms of transparency at different
levels of abstraction. These transparency mechanisms include: access transparency, location
transparency, failure transparency, migration, transparency and transaction transparency.

• Service portability and Reusability of service components: these two requirements can be
easily supported in an object-oriented DPE, such as a CORBA-based platform.

• Feature Interaction: ODP strongly advocates use of Formal Description Techniques (FDT)
in different viewpoints. Use of FDTs enhances the description of service behaviour and
considerably reduces the risks of service interactions.

• Naming and Trading Functions: these are parts of the functions defined by ODP. The trader
function provides the means for advertising service offers and the means to discover service
offers through service requests.

ODP does not provide any method on how to develop each viewpoint or which language should be
used to describe it. Therefore ODP should be applied in conjunction with the appropriate modelling
techniques for each of the viewpoints.

4.3 Unified Modelling Language

Introduction to UML
The Unified Modelling Language (UML) is a modelling language that incorporates the object-
oriented community's consensus on core modelling concepts. It allows deviations to be expressed in
terms of its extension mechanisms. The developers of UML had the following objectives in mind
during its development:
• Provide sufficient semantics and notation to address a wide variety of contemporary

modelling issues in a direct and economical fashion.
• Provide sufficient semantics to address certain expected future modelling issues, specifically

related to component technology, distributed computing, frameworks, and executability.
• Provide extensibility mechanisms so individual projects can extend the metamodel for their

application at low cost. Users should not be forced to adjust the UML metamodel itself.
• Provide extensibility mechanisms so that future modelling approaches could be grown on

top of the UML.
• Provide sufficient semantics to facilitate model interchange among a variety of tools.
• Provide sufficient semantics to specify the interface to repositories for the sharing and

storage of model artefacts.

 Q series −−−− Supplement 29 (12/1999) 11

4.3.1 Evaluation of UML
UML is particularly used in the information and computational viewpoints of ODP. Although UML
could also be applied to other ODP viewpoints, there is currently limited application to these. Since a
large number of protocols with which IN needs to inter-work are already specified in ASN.1 and
SDL, it might be considered for backwards compatibility purposes to use ASN.1 and SDL rather
than UML in the engineering viewpoint.

5 Advantages of using Object Orientation for service modelling
Object oriented modelling is based on the principle of "objects". Objects are components that are
self-contained, i.e. their properties can be described independent from the outside world. The
definition of an object comprises attributes and methods. Attributes describe the data in the object;
methods the operations that can be imposed on that data. Objects can invoke methods in other
objects. Other very important concepts of object oriented modelling include inheritance and
encapsulation.

Given the wide scope and the complexity of services envisioned for IN CS-4 (resulting from the
integration of mobile, broadband and IP based network services) the advantages of using the object-
oriented paradigm within the standardization of IN CS-4 are threefold:
• Object orientation methods seem suitable for specification of IN services throughout the

whole design. However, it should be investigated whether IN service modelling really is an
application area where OO methods can be successfully applied as well.

• Object oriented methods are already widely applied in software engineering.
• An object oriented Distributed Processing Environment (DPE) can be used as a uniform

computational model providing transparent distribution for the network intelligence (service
logic, service creation and management). A migration scenario could be the interworking
between a CORBA-based DPE (for the network intelligence) and the existing IN equipment
(SSPs) through a gateway (SS7-IDL) interface as illustrated in Figure 5:

T11111220-01

network intelligence
(DPE)

SSF

IN transport layer

CORBA
SS7

Figure 5 −−−− A possible evolution scenario for IN

The advantages of using an object-oriented DPE (e.g. a CORBA-based platform) for the network
intelligence include: enhancement of service reuse and generality (for composition and
decomposition), ease of development, deployment and integration, dynamic binding and
reconfiguration of service components.

12 Q series −−−− Supplement 29 (12/1999)

Common Object Request Broker Architecture (CORBA) allows for invocation of object methods in
a distributed environment. This means that CORBA will hide the location of the object that is
addressed. The interfaces between objects specified with CORBA IDL provide technology
transparency because the interface will hide how objects have been implemented. It is however
worth noting that, currently, one of the major drawbacks for use of such environments in the context
of IN is the real-time requirements!

The definition of interactions between objects across a logical interface is usually referred to as an
API. Figure 6 illustrates the use of APIs within an IN context.

T11111230-01

SCF

SSF

API 1

API 2

Obj4

Obj3

Obj1 Obj2

Figure 6 −−−− An example of the use of APIs in an IN context

In Figure 6, Object 1 and Object 2 reside in the SSF. Object 1 could for example, be a Call Model
Object and Object 2 the Trigger Status Table. When the SCF arms a particular Event Detection Point
(EDP), Object 1 would invoke a method (API call) to Object 2 changing the status of a particular
trigger. The API call could therefore be "arm edp2".

When Object 3 in the SSF invokes a method on Object 4 (API 2 call) residing in the SCF, the
method crosses an external interface and as a result it can be mapped onto a protocol operation. The
properties of the API call, i.e. its contents, will need to populate the physical protocol operation.
Therefore a one-to-one mapping exists between the contents of the API call and the attributes of, for
example, an INAP operation. For example, imagine Object 3 represents a "service access" object and
Object 4 an IN service logic. Upon receipt of information from the user, Object 3 might invoke a
method in Object 4 like ''receipt of user dialled digits". This method could be realized as the INAP
operation "AnalysedInformation".

5.1 Exploring the Use of APIs in IN CS4
In the evolving world of Telecommunications the need to keep up with new technologies and
network concepts, particularly in the Information Technology area is as important than ever.

A common need across all of these architectures is the reuse of service scripts and the ability to send
and receive information packaged in a recognisable form. Standardized and proprietary protocols
work along side each other and often a need arises to map between one protocol and another at
gateways or interworking mediums.

It has become much clearer of late of the need to describe services using a common format. Services
in the IT domain are utilizing techniques associated with Application Programming Interfaces
(APIs). International Standards particularly those associated with the Intelligent Network may
benefit from this work.

 Q series −−−− Supplement 29 (12/1999) 13

5.1.1 Background
For any new service proposition, two questions must be asked, namely:
1) How will the service be supported on other transport technologies (service-network

interworking).
2) How will this service inter-work with other services (service-service interworking).
Generally, the answers to these questions are not easy to find, but the exercise of asking them can
result in much more generic, flexible and evolvable service definitions. For example, the definition
of a voice mail service for the PSTN should be capable of running on the IP based networks and
GSM networks, and should be capable of interworking with services such as personal mobility,
e-mail, and video-telephony.

A component-based approach, using well-defined APIs, should be investigated for specifying and
building services, such that improved service-network and service-service interworking is achieved.

Subclauses 5.1.2 to 5.1.4 outline a possible framework for the way in which a component-based
approach to building telecommunications services could be used for the specification of Intelligent
Network and protocols.

5.1.2 A Framework for the use of APIs
The framework is based upon the computing model of Client/Server. The client represents the entity
requesting a function to be performed, the server represents the entity that performs the function and
(optionally) returns the result. The client and server can be represented as components (collections of
software objects or SIBs). The interface between the client and server is defined by the API
presented to the client by the server, and is enabled by underlying middleware (e.g. transport
protocols).

This approach is complementary to those methodologies already adopted for the Intelligent Network
standards, and enhances them by taking a more software-orientated view particularly of the
Distributed Functional Plane (DFP). The functional entities identified in the DFP make good
candidates for the initial components to which the APIs are defined. For example, the information
flows to and from the SSF/CCF provide a good basis for defining an API.

As more functional entities are defined (for example, bearer connection control for B-ISDN, voice
messaging, service brokering), the interfaces to many of these capabilities will need to be
standardized. The component-based approach allows these capabilities to be defined by their APIs in
a way that they can be easily integrated from a software perspective. The APIs can then be used as
the basis for developing protocols.

For complex components, these could be broken down further into objects and the protocol defined
from these. For simple components, the protocol can be derived directly. By defining the API in
detail, the API-protocol mapping is simplified and is more future proof. For example, it will be
easier to evolve the current IN standards to align with distributed computing technologies.

Figure 7 shows how services and components are related. Each component is defined by its API −
the API reflects the complete functionality of the component (including usage, management, etc.).

14 Q series −−−− Supplement 29 (12/1999)

T11111240-01

Service X

component A

component E

component C

component C

component B

component H

component D

component D

Service Y

APIs

Figure 7 −−−− Services/Components/APIs

5.1.3 API Overview
The API is the key to defining the client/server components. The API is the definition of the
functionality of a component. It is essentially a set of operations (or methods) that can be invoked on
the component, each of which causes the component to exhibit behavioural functionality. Each
operation is specified syntactically as an identifier which identifies the operation being invoked, and
parameters which affect the behaviour of the component in some way.

For example, the following API operation (add_transaction) on a billing component would cause the
transaction identified by the transaction_id parameter to be added to the bill of the customer
identified by the customer_id parameter:
 add_transaction (transaction_id, customer_id)

The API is abstract from the technology used to realize the component and is specified using an
abstract interface definition language. In addition to the syntax, the API specifies the semantics of
how functionality is invoked and the behaviour of the component, in terms of the way that public
and private attributes are used and modified, and the results and errors returned. The API defines the
complete set of functionality that a component can perform.

A particular presentation of an API represents the way in which the component is realized, and the
concrete syntax and semantics for invoking a capability. The presentation may restrict the
functionality that is accessible to an invoking component. A component may have a number of
presentations, but only has one API. For example, the usage presentation of an SSF/CCF API would
only include the call handling operations, and could be realized using INAP and/or ISUP protocols;
the management presentation would support capabilities such as call gapping, and could be realized
using INAP or CMIP protocols.

5.1.4 Example API for call processing
The call-processing component (SSF/CCF) has a number of potential clients: end users (referred to
here as End Parties), service providers (referred to here as Third Parties), management, etc. In this
example, only the End Parties and Third Parties are considered. The End Party differs from the Third
Party in that it is the End Parties that request the calls and bearer connections to be established,

 Q series −−−− Supplement 29 (12/1999) 15

maintained and released between each other. The Third Party can act on behalf of an End Party, or
modifies the way that the call processing operates, with or without the knowledge of the End Parties.

Each 'API Call' (Operation) describes an operation made either by an End Party, or a Third Party.
The API Call will be consistent between points A and B, although the underlying protocol and
Network transport mechanisms may change at various points between the two. The following
example (Figure 8) may clarify the point.

T11111250-01

End Party A
service

Third Party
service

End Party B
service

e.g. establish_call e.g. establish_call

Application Programming Interface (API)

Call Processing component

Figure 8 −−−− Call Processing API example

Let us assume that an event (such as a telephone Off Hook) is detected by an End Party as an ISDN
service (running in the terminal). The ISDN terminal is unlikely to have any relationship with the
Network until the User dials a number. Once the End Party A service has collected enough digits
from the user, it would then invoke the "Establish Call" API operation on the Call Processing
component.

This would result in the necessary signalling being sent through the network between the various call
processing component objects, for example using DSS1 and ISUP protocols. Once the call reaches
the far end, the Call processing component will invoke an API call on a service component in the
End Party B service, and this could be called "Establish Call", for symmetry.

If a more complicated scenario were envisaged, then the third party may register with the Call
Processing for event notification when specific criteria are met. If the criteria are met, the Call
Processing will invoke an operation on the Third Party service component which requested the
notification.

It is quite easy to see how the Call Processing API to a Third Party could map onto existing IN
standards (e.g. INAP protocol). It is less easy to map the End Party API, since this has not yet been
addressed in the IN standards.

5.2 The SIB approach
This subclause seeks to highlight the shortcomings of using the IN SIB approach.
The breakdown of services into smaller reusable parts has served the IN reasonably well in the past,
and is being used by many manufacturers as part of their Service Logic Execution Environments
(SLEE).

16 Q series −−−− Supplement 29 (12/1999)

The whole idea behind this methodology is to make as many blocks of data reusable and able to be
executed across many service applications. The concept of service reusability is important and
efficient and in reality may be implemented irrespective of how one models a service. However,
when one compares the "SIB" methodology to Object Oriented methodologies, the shortcomings of
SIBs are very apparent. The following is a list of those shortcomings:
• First of all it is a difficult process to refine (SIBs) at the (GFP) to the Distributed Functional

Plane (DFP) level.
• The refinement from the Service Plane to SIBs on the GFP uses only one intermediate step,

namely that of High Level SIBs. As a result, the refinement of the Service Plane to the GFP
is not very precise. In order to achieve a more stepwise refinement, the concept of High
Level SIB is not sufficient, but a more iterative refinement is required.

• Modelling the GFP by means of SIBs does not provide a complete service model since the
service data is subordinate to the functions performed by an IN service. Data needs more
explicit attention, e.g. to enable better management of service data.

• The SIB approach applied in IN CS1 and CS2 GFP modelling differs from modelling
techniques applied in the IT world. However there is an increasing need to align products
originating from the IT world (e.g. billing and customer care).

• The specification techniques used in the Global Functional Plane and the Distributed
Functional Plane do not allow any mechanisms of consistency checking between
specifications and thus limit service compositions and reusability. More generally, there is
no global specification methodology advocated by IN.

6 A possible Evolution from SIBs to Object Oriented Service Capabilities
The gap between services and service features on one side and information flows and protocol on the
other side is big. This implies that the completeness of the information flows and protocol
operations/parameters is difficult to verify against the services and service features that need to be
supported. In IN CS-1 and IN CS-2 the GFP was used to achieve a "layer" between the services and
service features on one side and the information flows and protocol operations/parameters on the
other side. This is a means to support validation of protocol completeness. In order to be able to
model complex services the modelling techniques currently used on GFP need to be enhanced.
Object orientation is considered a promising technique for service modelling. As a result, it is useful
to investigate the evolution from the current modelling techniques to a more object oriented
approach.

6.1 Service Class model
The Service Class model comprises two complementary views:
• Service Execution View. This view comprises the most elementary object classes that are

available for service development.
• Service Provisioning/Customization View. This view shows the object classes that are visible

during service provisioning and customization. It hides the object classes that cannot be
managed while the service is in service.

These two views are both what is referred to as "object models" in several OO methodologies. This
means that these views both provide a static view on the service. Some object classes can be
accessed in the Service Execution View, others in the Service Provisioning/Customization View and
some even in both views. This is represented in Figure 9. The instances of the object class "Call",
e.g. contains data that changes during service execution. Instances of the object class Announcement
contain data that may be read during service execution (playing an announcement). The content of
the announcement data may be changed with the service management system. Therefore, the

 Q series −−−− Supplement 29 (12/1999) 17

Announcement object class is in the intersection of the Service Execution and Service
Provisioning/Customization View.

Figure 9 distinguishes between Service Resources and Network Resources. An example of a
Network Resource object class is the Terminal object class. The relationship between the Service
Resources and Network Resources expresses how service capabilities are mapped onto network
resources. For example, a user can make a call from different terminals such as his POTS terminal or
ISDN terminal. The object classes in the Service Execution View of which instances are created
during service execution are dynamic (e.g. Call), all the Service Resources are persistent, since their
lifetime is longer than a single service execution.

For service modelling, only the Service Resources are relevant. These object classes are the service
capabilities used to compose services.

Note that the object classes in Figures 9 and 10 are just examples.

T11111260-01

I II III

Service Execution View Service Prov./Cust.View

Call User Annc Prov.
Profile

Terminal Video
Bridge

Annc
Machine

Service
Resources

Network
Resources

Figure 9 −−−− Different Views on a service

6.2 Service Execution View
Figure 10 shows the object model of the Service Execution View at the highest level. The Service
Logic object class represents the service and may consist of zero or more (0+) Service Logic object
classes and zero or more ServiceResource object classes. This allows for modelling a service as a
composition of service features (more general, it allows for stepwise refinement). At the lowest level
of decomposition, we see the ServiceResource object classes. The ServiceResource object classes
have a service independent character and can be considered the object oriented equivalent of the
SIBs presently used. A ServiceResource object class may be reused in zero or more Service Logic
object classes (0+). An instance of the ServiceResource object class is either a DynServResource or a
PersServResource. The DynServResource object class represents all object classes of which the
object instances exist only during a single service execution (see I in Figure 9). The
PersServResource object class represents all object classes of which the object instances are
persistent, i.e. their lifecycle is longer than just a single service execution, e.g. the period of time a
customer subscribes to a service (see II in Figure 9). The ServSessionMgr invokes the service and

18 Q series −−−− Supplement 29 (12/1999)

could be imagined as the Basic Call Process in the IN CS-2 GFP. The ServSessionMgr itself can be
seen as a specialization of the DynServResource object class, but is depicted separately because of its
special role.

T11111270-01

0+ 0+

0+

1+

0+

ServSessionMgr
ProcessData

ServiceResource

ServLogic

DynServResource PersServResource

start()
resume()
stop()
meth_a(..)
meth_b(..)

processData
ControlFlowPars
InvocationPars

Figure 10 −−−− The object model of the Service Execution View

The DynServResource object class and PersServResource object class can each have zero or more
specializations. A specialization of the DynServResource object class could be the Call object class
(see Figure 11). An object instance of this class can contain, for example, call instance data such as
the A-number and B-number. Methods of this class could be Add_Party(), Remove_Party() and
Connect(). Possible specializations of the PersServResource are, for example, Announcement and
Counter. These object classes are persistent since they exist longer than a single service execution.
They are viewed in both the Service Execution view and Service Customization/Provisioning view,
since methods in object instances of these classes can be invoked in both views. For example, during
execution of the service logic the data of an Announcement object can be read; during service
customization the text of the announcement can be modified.

6.3 Migration of CS-2 SIBs to Object Classes and Methods
In order to achieve an evolution from the service modelling techniques currently used towards a
more object oriented approach, it is useful to map the SIBs onto object classes and object methods.
The mapping depicted in the table following Figure 11 shows how this could be done.

 Q series −−−− Supplement 29 (12/1999) 19

T11111280-01

0+

0+

0+ 0+

1+

USERINT
announcement

PersServResource

manipulate()

Call
CID

counter

ALGORITHM()

library QUEUE

user
location

call detail rec

create()

ServLogic
ServiceResource

list

SCREEN()

numberplan
security

AUTHENTICATE()

DynServResource

ServSessionManager

SERV.FILT.

processData
ControlFlowPars
InvocationPars

END()
INIT.SERV.PROC.()
MSG.HANDLER()

JOIN()
SPLIT()
STAT.NOT.()
Log Start()
Log End()

COMPARE()
VERIFY()

add()
delete()
monitor()

TRANSLATE()
DISTRIBUTE()

Figure 11 −−−− A possible migration from SIBs to object classes and object methods

The table below describes the mapping of the IN CS-2 SIBs (Q.1223) into the Object classes used
above:

SIB Mapping

Algorithm Applies a mathematical algorithm to a value (such as incrementing or
decrementing a counter) and can therefore be seen as a method of the Counter
object class.

Authenticate Function with security purposes and therefore can be considered a method of the
Security object class.

Charge Charging can be seen as the creation of a call detail record and therefore
represented as the Create method in the Call Detail Record object class.

Compare Function used to check an identifier against a specified reference value, such as
time of day, originating location or digit value. It can be seen as a generic
mathematical operation and it is therefore represented as a method in the Library
object class (which can be considered a standard library with mathematical and
string operations as found in many programming languages).

Distribution Distribution of a call to a destination according to a particular algorithm can be
seen a method in the Numberplan object class.

End Indicates the normal termination of a service process and can be seen as a
method of the Service Logic object class.

Initiate Service Process Invocation of parallel service logic can be seen as a method of the highest level
object class, i.e. the Service Logic object class.

Join Attaching a call party or call parties from the current call group to another call
group of the same call can be seen a method of the Call object class.

20 Q series −−−− Supplement 29 (12/1999)

SIB Mapping

Log Call Information Logging of identified call instance data is seen as the methods Log Start and Log
End in the Call object class, in which call instance data are attributes.

Message Handler Communication between processes in a single service can be seen as a method
of the highest level object class, i.e. the Service Logic object class.

Queue A Queue object instance contains zero or more references to Call object
instances. Call instances can be added, deleted etc. to, from the Queue.

Screen Checking a number against a list of other numbers (e.g. for call screening) can
be seen as a method of the List object class.

Service Data
Management

Performs operations on service data, such as add, delete, modify, retrieve, etc.
These operations are collected in the PersServResource object class as the
Manipulate method.

Service Filter Filters calls according to a specified mechanism. It is considered a separate
object class with methods such as Activate and Report.

Split Detaches a call party or group of call parties from the current call and attaches
the party/parties to a new or other already existing call. This could be a method
of the Call object class.

Status notification Provides the capability of inquiring the status (changes) of network resources. It
can be seen as a method in the Call object class, allowing for status checking of
the network resources that enable the Call.

Translate Translation of a number to another number could be a method in the
Numberplan object class.

User interaction The prompt and collect mechanism to provide the user with information and to
achieve information from the user is considered as a separate object class.

Verify Can support syntax checking of all kinds of data and is therefore represented as a
method of the Library object class.

APPENDIX I

Bibliography

[TINA] TINA-C architecture specifications (e.g. Service Architecture and Information
Architecture).

[OMT] Rumbaugh et al.: Object-Oriented Modelling and Design.

Printed in Switzerland
Geneva, 2001

SERIES OF ITU-T RECOMMENDATIONS
Series A Organization of the work of ITU-T

Series B Means of expression: definitions, symbols, classification

Series C General telecommunication statistics

Series D General tariff principles

Series E Overall network operation, telephone service, service operation and human factors

Series F Non-telephone telecommunication services

Series G Transmission systems and media, digital systems and networks

Series H Audiovisual and multimedia systems

Series I Integrated services digital network

Series J Transmission of television, sound programme and other multimedia signals

Series K Protection against interference

Series L Construction, installation and protection of cables and other elements of outside plant

Series M TMN and network maintenance: international transmission systems, telephone circuits,
telegraphy, facsimile and leased circuits

Series N Maintenance: international sound programme and television transmission circuits

Series O Specifications of measuring equipment

Series P Telephone transmission quality, telephone installations, local line networks

Series Q Switching and signalling

Series R Telegraph transmission

Series S Telegraph services terminal equipment

Series T Terminals for telematic services

Series U Telegraph switching

Series V Data communication over the telephone network

Series X Data networks and open system communications

Series Y Global information infrastructure and Internet protocol aspects

Series Z Languages and general software aspects for telecommunication systems

	ITU-T Rec. Series Q Supplement 29 (12/1999) Service modelling: Evolution to the use of object oriented techniques
	Summary
	Rational
	Source
	FOREWORD
	CONTENTS
	Service modelling: Evolution to the use of object oriented techniques
	1 Scope of service modelling for IN CS-4
	1.1 References

	2 Definitions and abbreviations
	2.1 Abbreviations
	2.2 Definitions

	3 Requirements for IN CS-4 service modelling
	3.1 Service modelling
	3.2 Service Logic spanning a single class

	4 Methodologies and modelling techniques
	4.1 Open Distributed Processing (ODP)
	4.2 Evaluation of ODP
	4.3 Unified Modelling Language

	5 Advantages of using Object Orientation for service modelling
	5.1 Exploring the Use of APIs in IN CS4
	5.2 The SIB approach

	6 A possible Evolution from SIBs to Object Oriented Service Capabilities
	6.1 Service Class model
	6.2 Service Execution View
	6.3 Migration of CS-2 SIBs to Object Classes and Methods

	APPENDIX I - Bibliography

