| INTERNATIONAL TELECOMMUNICATION UNION

ITU-T Series Q

TELECOMMUNICATION Supplement 28
STANDARDIZATION SECTOR
OF ITU (12/1999)

SERIES Q: SWITCHING AND SIGNALLING

Technical Report: Signalling and Protocol
Framework for an Evolving Environment
(SPFEE) — Specifications for service access

ITU-T Q-series Recommendations — Supplement 28

(Formerly CCITT Recommendations)

ITU-T Q-SERIES RECOMMENDATIONS
SWITCHING AND SIGNALLING

SIGNALLING IN THE INTERNATIONAL MANUAL SERVICE Q.1-Q.3
INTERNATIONAL AUTOMATIC AND SEMI-AUTOMATIC WORKING Q.4-Q.59
FUNCTIONS AND INFORMATION FLOWS FOR SERVICES IN THE ISDN Q.60-Q.99
CLAUSES APPLICABLE TO ITU-T STANDARD SYSTEMS Q.100-Q.119
SPECIFICATIONS OF SIGNALLING SYSTEMS No. 4 AND No. 5 Q.120-Q.249
SPECIFICATIONS OF SIGNALLING SYSTEM No. 6 Q.250-Q.309
SPECIFICATIONS OF SIGNALLING SYSTEM R1 Q.310-Q.399
SPECIFICATIONS OF SIGNALLING SYSTEM R2 Q.400—Q.499
DIGITAL EXCHANGES Q.500—Q.599
INTERWORKING OF SIGNALLING SYSTEMS Q.600—Q.699
SPECIFICATIONS OF SIGNALLING SYSTEM No. 7 Q.700—Q.849
DIGITAL SUBSCRIBER SIGNALLING SYSTEM No. 1 Q.850-Q.999
PUBLIC LAND MOBILE NETWORK Q.1000-Q.1099
INTERWORKING WITH SATELLITE MOBILE SYSTEMS Q.1100-Q.1199
INTELLIGENT NETWORK Q.1200-Q.1699
SIGNALLING REQUIREMENTS AND PROTOCOLS FOR IMT-2000 Q.1700-Q.1799
BROADBAND ISDN Q.2000-Q.2999

For further details, please refer to the list of ITU-T Recommendations.

Supplement 28 to ITU-T Q-series Recommendations

Technical Report: Signalling and Protocol Framework for an Evolving
Environment (SPFEE) — Specifications for service access

Summary

This Supplement specifies the (Session level) information and computational model of the
Consumer-Retailer reference point. It provides information and computational specification for
service access defined in Signalling and Protocol Framework for an Evolving Environment (SPFEE).
The information and computational specifications are described in informal and formal description
languages such as Interface Definition Language (IDL).

Source

Supplement 28 to ITU-T Q-series Recommendations was prepared by ITU-T Study Group 11
(1997-2000) and approved under the WTSC Resolution 5 procedure on 3 December 1999.

Keywords

Access, computational model, IDL, information model, ODP, reference point, session.

Q series — Supplement 28 (12/1999) i

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of
telecommunications. The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of
ITU. ITU-T is responsible for studying technical, operating and tariff questions and issuing Recommendations
on them with a view to standardizing telecommunications on a worldwide basis.

The World Telecommunication Standardization Conference (WTSC), which meets every four years,
establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on these
topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSC Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are
prepared on a collaborative basis with ISO and IEC.

NOTE

In this publication, the expression "Administration" is used for conciseness to indicate both a
telecommunication administration and a recognized operating agency.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this publication may involve the
use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence, validity or
applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others outside of
the publication development process.

As of the date of approval of this publication, ITU had not received notice of intellectual property, protected
by patents, which may be required to implement this publication. However, implementors are cautioned that
this may not represent the latest information and are therefore strongly urged to consult the TSB patent
database.

© ITU 2001

All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from the ITU.

ii Q series — Supplement 28 (12/1999)

5.1
5.2
53
5.4

5.5
5.6

5.7

6.1

6.2

6.3

CONTENTS

Information Model of the Session and Resource Level......cooovvvvvevieeeeeeeiinn..

Sessions, Services and Domains.....................
Classification of SESSIONSccoevvvveeeeeeeeeennn..
Classification of Access SesSionS.......cee.e......

ACCESS SESSIONuvieneieeiiieiieeiieiie e siee e
5.4.1 Domain Access Session (D_AS).......
54.2 Access Session (AS).....ccoceeeeveeeinneens
54.3 User Profile......cccooviveiiniiniiiies

Classification of Service Sessions

Service SESSIONeeevvvieeiiieeiieeeieeeeiee e
5.6.1 Provider Service Session (PSS).........
5.6.2 Usage Service Session (USS)............

5.6.3 Domain Usage Service Session (D _USS)ccoovvieviiiiiiiiiieeeece e,
5.6.4 Domain Usage Service Session Binding (D _USS Binding)..........cccceuee...

Resource [Communication Session (CS)]

Computational Model of the Session and Resource Levelcccoecvvevivieniieenneen,

Access Session Related Components
6.1.1 User Application..........cccceeecveeruvennnns
6.1.2 Provider Agent.......c.ccceevveeiieniiennnns
6.1.3 Initial Agent.......cccoevevivevciieeniieeieens
6.1.4 User Agent.....cccceevviviveenciieeeniiieeeens
6.1.5 Named User Agentccceeeevveennenns
6.1.6 Anonymous User Agent.....................

Service Session Related Components.............
6.2.1 User Application.........cccccveerevveerreennns
6.2.2 Service Factorycccccevevvvevcieencnneens
6.2.3 Service Session Manager...................

6.2.4 Member Usage Service Session Managerceeveerueereeerieeneeeveeneeesneenn.

6.2.5 User Service Session Manager

Resource (Communication Session) Related Componentsccocceeeeueenieeciiennenn.

6.3.1 Communication Session Manager

6.3.2 Terminal Communication Session Managerccceccveeveeruieneeenieeseeeneennns

Q series — Supplement 28 (12/1999)

ORI [NnlBIBIW] [N

—_— = — =
SO IO

[a—
[S—y

[am—
—

— == == = =
DN B W WD = =

[N T N T N e e e e e
[eRif=RiENcRIANoRIe JHile RN Nileo NiKe))

iii

6.4
6.5

7.2
7.3

8.2

8.3

8.4

8.5

Relationship to Information Model..........c.ccooiiieiiiieiiieeieceee e
EXAMIPIES....oiiiiieiiieiiee ettt et et e et e beenaeeebeenns
6.5.1 Contact @ PrOVIAETccccuviiiiiieiiieiee e
6.5.2 Login to a Provider as a Known USer..........ccceevvueiriiiiiiiieniie e
6.5.3 Starting @ NEW SETVICE SESSIONccccvireruirerrieeieieeeitieesteeesreeesreeessseeensseeennns
6.5.4 Inviting a User to Join an Existing Service Sessionccccceeveerveenieennnnne.
6.5.5 Joining an EXisting Service SESSI0MNcceeriieriierieeriieniieeieenieeeieenieeenveenens
6.5.6 Request and Establishment of a Stream Binding.............cccccceviiienieninenenne.
Overview of Ret SpecifiCation.........cccviieriieeiiie ettt eeivee e
Overall functionality and scope of the reference points..........cccceeveeverieencieeenieencneeens
7.1.1 Ret-RP business role life-Cycle..........cooieniiiiiiiniiiiiiieeiieieeceee e
IMAIN ASSUMPLIONSeevvieiiieiiieitieeiteeiie et estteeteesteeeaeesteeenbeeseeesseeseessseeseessseeseesnseenns
Definition of Ret Reference Point............ccoooiiieiiiiiiiiieece e
7.3.1 Business Roles and Session Roles..........ccccoeviieiieiiiiiiiniieieeeeeeee
7.3.2 Conformance to the Ret Reference Point Specifications..........c.ccccvvervennnee.
Ret-RP SPecifiCation........c.uieiiiiiieiiieeiie et ecee ettt e saae e e e eeenaee e
Overview of Access interfaces for Ret-RPccccoeviiiriiiiiiiiiieeee e
8.1.1 Example Scenario of Access part of Ret-RPccccoeoviiiiiiiiiiiiniiciieene
8.1.2 Always available outside an Access SeSSION.........cceeeecveeeiieeeciieenciieeeiee e,
8.1.3 Available outside an Access Session if Registeredccceeevveriiiencneeennnen.
USer-Provider INTETTACESoivvieieiieeiiecieeee ettt et e
8.2.1 USET INtEITACESeevvieiiieiieeiie ettt ettt ettt s
8.2.2 Provider INTEITACESceviiieiiieciiee ettt ettt st e e eabe e e
8.2.3 ADSIract INtEITACESeeeeevieiciiieeiee et e
Common INformation VIEWccceeciiiiiiiiiiiiiieciie et
8.3.1 Properties and Property LiStS........cccccveviieriieiieeiiienieeieeeie et
8.3.2 User INformation...........ccceeeiieiiiiiiieiieie ettt
8.3.3 User Context INformationccccuveeiiieeiiieeiiie e
8.3.4 Usage related tYPES ...vveereiieeciieeiie ettt et
8.3.5 Invitations and ANNOUNCEMENLSeeeevieerieeerreeeriiieerieeeerieeeenreeereeesseeesnnns
Access INfOrmation VIBW..........cceevuiiiiiiiiiieeiieieeeie ettt et eaeees
8.4.1 Access Session INformation..........cccuveeevieeriieeriie et
8.4.2 User INfOrMatiON.......eeeeiiieeiieeciie ettt et ettt e et e e e e e eeseeeeees
8.4.3 User Context INformationcccccuveeiiieeiiieeiiie e
8.4.4 Service and Session Informationccceevcueeriieriieciieniie e
Access Interface Definitions: Consumer Domain Interfaces.............ccocevevveniennnnnen.
8.5.1 1 Consumerlnitial INterfacecccueevvieeiiieeiiieeeeeeeeeeee e,
8.5.2 1 _ConsumerAccess INtETfacecccveiveuieieiiiieiiie e

Q series — Supplement 28 (12/1999)

8.6

8.7

9.2

93
94

8.5.3 1 Consumerlnvite Interface
8.5.4 1 ConsumerTerminal Interface...............
8.5.5 1 ConsumerAccessSessionInfo Interface

8.5.6 i_ConsumerSessionInfo Interface..........ccccoevieriieiieniieiieieeeeeeeeeeee,
Access Interface Definitions: Retailer Domain Interfaces...........cccooceevvieiienieniennen.
8.6.1 1 RetailerInitial INterface.........cceeevviiiiiiieiiecie e
8.6.2 1 RetailerAuthenticate INterface.........ccccuveeviiiivciiiriieeeeeeeeeeee e,
8.6.3 i _RetailerAccess INterfaceoceeeiieiiieniiiiiieiieceeeee e
8.6.4 i RetailerNamedAccess Interface..........ccoecuvevvieiiiiniiieiiieiiecieececeeee
8.6.5 1 _RetailerAnonAccess INterfaceccceevvveiieiiieiiieniieiecieceeee e
8.6.6 1 DiscoverServiceslterator Interfaceccceeeevveerciiinciiiiiiieceeee e,
Subscription ManagemENtc..eecuiieriieeiiieeiieeeeteeeeteeeeteeereeeseeeeeaeeeeseeessseeenens
8.7.1 Subscription Management Type Definitions...........ccccceevveecienieecienieeieenne,
8.7.2 1i_SubscriberSubscriptionMEMtcceeriieriieeiieiieeieeie et
8.7.3 1 _RetailerSubscriptionM@mLcceeeiiiiiiiieiiiieeiie e e
Complete IDL SPeCIfICAtIONSccccuvieeiiiieeiiieciieesieeestee et e eve e eeeeeaeeesveeessveeesreeenns
Common Definitions IDLScooiiiiiiiiiiiie e
9.1.1 SPFEECommonTypes.idl.........cccceiiiiiiiiiieiieeieeiecie et
9.1.2 SPFEEAccessCommonTypes.idl........cccceeviiiiriiiieniiieiiecieeeeeeeee e
User and Provider General IDLS...........coooiiiiiiiiiiiiieeeee e
9.2.1 SPFEEUserInitial.ddlcccoiiiiiiiiiiiiieieeceee e
9.2.2 SPFEEUSErACCesS.Adl.......ooouiiiiiiiiiiiieiiecie et
9.2.3 SPFEEProviderInitial.id]ccccoiiiiiiiiiieeeee e
9.2.4 SPFEEProviderAccess.idlcooioiiiiiiiiiiiiiiecee e
REE-RP IDLS...c.ieeieiieeiieieee ettt ettt sttt e sttt esbeebeeneesneenneas
Ret-RP Subscription IDL SpecifiCationscceevveriiieriieniienieeieeieesieesiee e
9.4.1 SPFEESubCommonTypes.idl........ccccceeiiiiiiiiiiiieeieeceeeeeeee e

9.4.2 SPFEERetSubscriberSubscriptionMgmt.
9.4.3 SPFEERetRetailerSubscriptionMgmt.idl

1AL

Q series — Supplement 28 (12/1999)

103
108
108
109
112
115
126
128
128
131
136

v

Supplement 28 to ITU-T Q-series Recommendations

Technical Report: Signalling and Protocol Framework for an Evolving
Environment (SPFEE) — Specifications for service access

(Geneva, 1999)

1 Scope
This Supplement provides:

— information specification; and

— computational specification
for service access defined in Signalling and Protocol Framework for an Evolving Environment
(SPFEE). These include the Consumer-Retailer Reference Point specifications. The information and

computational specifications are described in informal and formal description languages such as
Interface Definition Language (IDL).

2 References

The following Technical Reports and other references contain provisions which, through reference in
this text, constitute provisions of this Supplement. At the time of publication, the editions indicated
were valid. All Supplements and other references are subject to revision; all users of this Supplement
are therefore encouraged to investigate the possibility of applying the most recent edition of the
supplements and other references listed below. A list of the currently valid ITU-T Recommendations
and supplements is regularly published.

[1] ITU-T Recommendation X.901 (1997) | ISO/IEC 10746-1:1998, Information technology —
Open distributed processing — Reference model: Overview.

[2] ITU-T Recommendation X.902 (1995) | ISO/IEC 10746-2:1996, Information technology —
Open distributed processing — Reference Model: Foundations.

[3] ITU-T Recommendation X.903 (1995) | ISO/IEC 10746-3:1996, Information technology —
Open distributed processing — Reference Model: Architecture.

[4] ITU-T Recommendation X.920 (1997) | ISO/IEC 14750:1999, Information technology —
Open distributed processing — Interface Definition Language.

[5] ITU-T Recommendation Z.130 (1999), ITU object definition language.

[6] ITU-T Q-series Recommendations — Supplement 27 (1999), Technical Report: Overview of
Signalling and Protocol Framework for an Evolving Environment (SPFEE).

3 Definitions
This Supplement defines the following terms in addition to those in [6]:

3.1 Domain Access Session (D_AS): An abstract object which represents the generic
information required to establish and support access between two domains.

3.2 User Domain Access Session (UD_AS): An object managed by the user and representing
the collection of capabilities and configuration that the user employs to contact a provider.

Q series — Supplement 28 (12/1999) 1

33 Provider Domain Access Session (PD_AS): An object managed by the provider and
created when the user becomes a recognized, identifiable entity with specific capabilities and data
within the provider domain.

34 Provider Service Session (PSS): A central view of the service session, including all
members and any additional provider information and logic necessary to execute service requests
and maintain the session.

35 Usage Service Session (USS): A session member's (e.g. an end-user's) customized view of a
service.
3.6 Domain Usage Service Session (D_USS): An abstract object which represents generic

information required to establish and support a service between two domains for an associated
session member.

3.7 User Domain Usage Service Session (UD_USS): Functionality and information present in
an end-user domain, e.g. a consumer domain, to support the usage service session and allow the end-
user to interact with the service.

3.8 Provider Domain Usage Service Session (PD_USS): Functionality and information present
in a provider domain (e.g. retailer, third party provider) to support the usage service session in a
usage provider role.

3.9 Domain Usage Service Session Binding (D _USS Binding): Dynamic information
associated with binding two D_USSs.

4 Abbreviations

This Supplement uses the following abbreviations:

3Pty Third-party inter-domain reference point

anonUA Anonymous User Agent

as-UAP User Application (Access Session related)

AS Access Session

Bkr Broker inter-domain reference point

CO Computational Object

ConS Connectivity Service inter-domain reference point

CS Communication Session

CSLN Client-server layer inter-domain reference point

DPE Distributed Processing Environment

FCAPS Fault, Configuration, Accounting, Performance, Security
IA Initial Agent

IDL Interface Definition Language

LNFed Layer network federation inter-domain reference point
NamedUA Named User Agent

ODL Object Definition Language

ODP Open Distributed Processing

OMT Object Modelling Technique

PA Provider Agent

2 Q series — Supplement 28 (12/1999)

Ret

RP
RtR
SC

SF
SPFEE
SS
SSM
ss-UAP
Tcon
UA
UAP
USM

5

Retailer inter-domain reference point

Reference point

Retailer to Retailer inter-domain reference point
Service Component

Service Factory

Signalling and Protocol Framework for an Evolving Environment
Service Session

Service Session Manager

User Application (Service Session related)
Terminal Connection inter-domain reference point
User Agent

User APplication

User Service Session Manager

Information Model of the Session and Resource Level

The information model is described in the OMT object model notation. Typical symbols are
illustrated in Figure 5-1. The abstract classes (for which there is no object instance) are shown in
'curly bracket' style!: they have no other purpose but to simplify the object oriented modelling.

— class association

exactly one
| name of class | ternary ¥ _/i)/_ y
zero or one

inheritance

association name of association
¥ \
aggregation
/ U ;T/— one or more
zero or more 1+

%

link attribute or association class T11111590-01

Figure 5-1 — Typical symbols in an OMT diagram

I T.e.'{}"is inserted in front of the class name in the diagrams.

Q series — Supplement 28 (12/1999) 3

5.1 Sessions, Services and Domains

This subclause presents the information model as related to session related services?. As a session
related service may extend over multiple domains, which are treated as business administrative
domains, it is useful to model the service as an aggregation of one or more domain services, where
each domain service represents a part of a service confined to a single domain. A session is an
instance of a service. Just as a session may represent an instance of a service, a domain session
represents an instance of a domain service. Domain sessions may interact to establish services
extending over multiple domains.

Figure 5-2 shows the relationship between domain, service and session objects. A session related
service is an aggregation of other session related services and domain services. Each domain service
is instantiated by one domain session, which is established in and managed by its associated domain.
A domain session may be bound to another domain session via a domain session binding, which
represents the dynamic information used to link the two sessions.

Session related

Service <> Domain Service

Domain

{}Domain Session Binding C l

+ {}Domain Session

T11111600-01

Figure 5-2 — Session Information Model

5.2 Classification of Sessions

This subclause considers the classification of sessions. A number of classification schemes are
possible, but they are all based on the session-root object. This generic object defines the common
properties of a session. All derived objects, regardless of their classification, inherit these common
attributes and operations, such as: session identifier, session type, state, terminate, suspend, and
resume.

A classification is based on the service (functional) separations of access, service and
communication. Sessions have been identified to support each of these separations. Though
specialized to support the particular requirements of a functional area, each session retains the
common properties of the session-root object.

It is also helpful to use the domain session and domain session binding to help classify sessions.
Again, the session-root object is the root of the hierarchy?, and the domain session and domain

2 A service is classified into two types of services: one is 'session related services', and the other is
'non-session related services'. 'Non-session related services' are beyond the scope of this Supplement. The
session related services are defined as follows: Session related service represents an online
telecommunication service which is offered to users with telecommunication equipment and resources. For
example, all telecommunication services, from POTS to multimedia services and/or Internet related
services, are categorized as session related service.

3 The session-root object is an abstract object which means this object is not instantiable.

4 Q series — Supplement 28 (12/1999)

session binding inherit its properties. This type of classification can be combined with the previous
scheme to classify all the session objects for each separation. The following sections will use this
combined scheme and the following aspects to classify objects:

- User aspects: They represent the entities, semantics, constraints and rules governing the
availability and usage of service capabilities with respect to a specific user, and the
resources and mechanisms needed to actually support the service capabilities according to a
specific user standpoint;

— Provider aspects: They represent the entities, semantics, constraints and rules governing the
provision and usage of service capabilities to users, as well as the resources and mechanisms
needed to actually support those capabilities.

5.3 Classification of Access Sessions

Access sessions can be classified in terms of a specialization hierarchy as shown in Figure 5-3. The
classification is along the separation into user and provider aspects.

Relating this to Figure 5-2, the Domain Access Session corresponds (by subclassing) to the domain
session, and the Access Session corresponds (by subclassing) to the domain session binding.

‘ {}Session-Root ‘

‘ {}Domain Session ‘ ‘ {}Domain Session Binding ‘
‘ {}Domain Access Session ‘ ‘ Access Session ‘
[I
‘ User Domain Access Session ‘ ‘ Provider Domain Access Session ‘
T11111610-01

Figure 5-3 — Classification of the Access Session

Q series — Supplement 28 (12/1999) 5

5.4

Access Session

The access related information objects and their relationships are shown in Figure 5-4.

Each domain access session is associated with a particular access role. Two roles have been
identified: user and provider. The user role accepts invitations and makes requests on the associated
domain access session. The provider role accepts requests and sends invitations to the associated

Domain

) Contract

provider
———constraints . .
User Profile rovider Domain Access Session
p user
provider .
2 provider
requests controls controls
constraints requestor \/
® Access Session
Service Session
controls

T11111620-01

Figure 5-4 — Relationships between Access Related Information Objects

domain access session.

The access session is categorized by the roles supported by each domain access session. These roles
depend on the relation between domains. The following access session types may be required:

The information objects and their relationships for the asymmetric type access session are shown in
Figure 5-5. Figure 5-5 presents a more detailed version of Figure 5-4 for the asymmetric type access
session. An asymmetric session is supported by the User Domain Access Session and the Provider

Asymmetric type access session: One domain acts in the user role and the other domain

acts in the provider role;

Symmetric type access session: Supporting symmetry in the access session, both domains

support both roles.

Domain Access Session.

Q series — Supplement 28 (12/1999)

User role Domain J 4 Provider role Domain

l Contract l
User Domain user provider Provider Domain
Access Session Access Session

Access Session
controller
controls P controls

constrains controls requests

.

controls Service Session
requestor

T11111630-01

User Profile 1+ .
constrains.

Figure 5-5 — Information objects and their relationship
for asymmetric type access sessions

5.4.1 Domain Access Session (D_AS)

This is an abstract object which represents the generic information required to establish and support
access between two domains. Each domain access session is associated with a particular domain.
However, a domain may have many domain access sessions. A domain access session is usually
associated with one (or possibly more) contractual relations with another domain. There may be
multiple domain access sessions within the domain for each contractual relationship.

The D_AS is specialized into user domain access session and provider domain access session type
informational objects. They are all described in the following subclauses.

5.4.1.1 User Domain Access Session (UD_AS)

This object is managed by the user and represents the collection of capabilities and configuration that
the user employs to contact a provider. The UD_AS holds user defined policies that determine the
terms of the interaction with a provider, such as security policy and accounting; they form the basis
of the negotiation with a provider in the establishment of a mutually acceptable access session. The
UD_AS may comprise one to many terminals or DPE nodes. Whatever the UD_AS configuration,
both the user and provider will have a perspective on how trustworthy the UD AS is. This trust level
(e.g. confidentiality, password protection, cipher implementations) will be reflected in the
management restrictions imposed on the access session (e.g. refusal of high value services). For
example, a UD AS supported on a tamper resistant terminal supplied by the provider is more
trustworthy than a small multi-user PC LAN.

Q series — Supplement 28 (12/1999) 7

5.4.1.2 Provider Domain Access Session (PD_AS)

This object is managed by the provider and can be considered to be created when the user becomes a
recognized, identifiable entity with specific capabilities and data within the provider domain. The
session terminates when the user ceases to have any user relationship with the provider
(so the provider stops holding permanent information about the user in the User Profile). This object
knows persistent information about the user. Part of this information specifies policies that determine
the terms of interaction with the user, such as security policy and accounting. These policies form
the basis of the negotiation with the user in the establishment of a mutually acceptable access
session. Both the user and retailer will have a perspective on how trustworthy the PD_AS is. This
trust level (e.g. confidentiality, password protection, cipher implementations) will be reflected in the
management restrictions imposed on the access session.

5.4.2 Access Session (AS)

This object is managed by the user or the provider via the D_AS, and represents the collection of
dynamic information for a binding between D _ASs, such as security policy, accounting and session
description for this binding. This object terminates when the user or the provider ends the
relationship (dynamic binding between D ASs) with the provider or the user.

5.4.3 User Profile

The User Profile contains all information that is used directly by the D _AS for authorization
decisions, constraints and customization of the D _ASs, Access Sessions (within Access Session
Bindings) and Service Sessions.

5.5 Classification of Service Sessions

Figure 5-6 gives the classification hierarchy of service sessions along the separation into user and
provider aspects.

Relating this to Figure 5-2, the Provider Service Session (PSS) and the Domain Usage Service
Session (D_USS) correspond (by subclassing) to the domain session, and the domain usage service
session bindings corresponds (by subclassing) to the domain session binding.

‘ {}Session-Root ‘

A

‘ {}Domain Session ‘ ‘ {}Domain Session Binding ‘

/N AN

| ‘ Domain Usage Service Session Binding ‘

‘ Provider Service Session ‘ ‘ {}Domain Usage Service Session ‘

AN

‘ User Domain Usage Service Session ‘

|
complement of
|

‘ Provider Domain Usage Service Session ‘

T11111640-01

Figure 5-6 — Classification of the service session

8 Q series — Supplement 28 (12/1999)

5.6 Service Session

The service session related objects and their relationships are shown in Figure 5-7.

Domain
2
l1+
Service Session
<> owns/supports
® | ® ®
Provider Service Session controls .{ Usage Service Session
2 §> °
Member represents {}Domain Usage Service Session
party
2 provider
controls /
Domain Usage Service Session
Binding

T11111650-01

Figure 5-7 — Service session related objects and their relationships

The service session consists of usage and provider service sessions. Each usage service session can
extend over two domains and is composed of two complementary Domain Usage Service Sessions
(D _USSs), where a complementary D USS is one that can interact with another. Each member of a
session, i.e. an end-user, service resource, or associated session, is associated with a usage service
session.

The type of D_USS supported depends on the perceived role of that member in the service session.
Figure 5-6 shows the possible D _USSs. The following generic usage roles are supported:

— Usage Party: Resembles an "end-user" of a service, an active role which may make requests
and is sent notifications of session changes.

— Usage Provider: Provides a service or acts as a service resource to another entity. This is a
passive role in the sense that it cannot initiate actions, but responds to requests or
notifications of changes.

More roles are possible. These include service specific roles, which are outside of the scope, and
control and management roles to support relationships in composed services.

When a service session is started, or when a new member joins a service session, it acquires the
relevant user profile information from the access session or domain access session (e.g. service
description) for the member. This constrains the usage service session and potentially the provider
service session. In the case of multi-member service sessions, an individual's user profile or current
usage configuration may affect the whole service session, depending on the nature of the service and
its management policies.

Q series — Supplement 28 (12/1999) 9

A service session can be instantiated by an access session, domain access session, or another service
session. The initiator of a service session associates it with its member(s). Members may have
different responsibilities within the session (e.g. management or purely interaction with the service
content and general session control). If a service session is the responsibility of an access session, the
service session can remain active while that access session is active. When an access session is
ended, related usage service sessions must be ended, suspended, or transferred to another access
session or domain access session.

5.6.1 Provider Service Session (PSS)

It contains a central view of the service session, including all members and any additional provider
information and logic necessary to execute service requests and maintain the session. Support of this
session is the responsibility of the provider. A provider service session represents the service
capabilities common to multiple members. Generally the provider service session holds information
objects related to the management view of the service (e.g. accounting) or system related
information of the service.

5.6.2 Usage Service Session (USS)

This is the member's (e.g. an end-user's) customized view of a service. It hides service complexity
from the member and ensures that the member's preferences and environment are supported by the
service. It hides the heterogeneity of each usage configuration from the provider service session. It
will be further decomposed into domain usage parts.

5.6.3 Domain Usage Service Session (D_USS)

This object is an abstract object which represents generic information required to establish and
support a service between two domains for an associated session member. Each domain usage
service session is associated with a particular domain and a particular service session. As this object
is an abstract object, it is not instantiable. The D USS is specialized into four types of new
information objects as described in the following sections.

5.6.3.1 User Domain Usage Service Session (UD_USS)

This is the functionality and information present in an end-user domain, e.g. a consumer domain, to
support the usage service session and allow the end-user to interact with the service. In all cases, the
UD_USS is associated with the usage party role. It is the responsibility of the end-user domain to
deploy and manage this session. However, certain deployment and management responsibilities of
resources in the UD USS may be assigned to the provider domain by agreement.

5.6.3.2 Provider Domain Usage Service Session (PD_USS)

This is the functionality and information present in a provider domain (e.g. retailer, third party
provider) to support the usage service session in a usage provider role. It hides the complexity and
specifics of the other domain from the PSS and isolates party specific activity from the general
activity of the PSS, which is common to all participants in the service session. The domain in the
usage provider role is responsible for deploying and managing the provider domain usage service
session.

5.6.4 Domain Usage Service Session Binding (D_USS_Binding)

It represents the dynamic information associated with binding two D USSs. The D _USSs control
this information. The information contained here is determined by the type of D USS participating
in the binding, and the session model(s).

10 Q series — Supplement 28 (12/1999)

5.7 Resource [Communication Session (CS)]

The Resource [Communication Session (CS)] represents a general, service view of stream
connections and a network technology-independent view of the communication resources required to
establish end to end connections. A Resource (communication session) can handle multiple
connections which may be multi-point and multimedia.

A Resource (communication session) can arrange QoS, set-up, modify, and pull-down multiple
connections.

The adoption of the "session" concept for controlling communication capability has the advantage of
allowing services to instantiate dynamically, hold, resume and maintain a suitable configuration of
communication resources that satisfies their needs.

A Resource (communication session) is controlled by one service session from the PSS or PD _USS.
Only one service session may be associated with a Resource (communication session) at any one
time.

6 Computational Model of the Session and Resource Level

6.1 Access Session Related Components

The access session related components support the access related sessions*. They support both the
functionality and common session operations defined for the session concepts. A mapping between
the session concepts and the service components is given in 6.4, "Relationship to Information Model.

Access sessions can be symmetric or asymmetric. The type of access session is determined by the
reference point between the domains. This section starts by considering the components necessary to
support an asymmetric access session. The user role is supported by the Provider Agent, while the
provider role is supported by the Initial Agent and User Agent. A UAP is also considered, which
support end-user needs.

6.1.1 User Application

The User APplication (UAP) is defined to model a variety of applications and programs in the
domain. A UAP represents one or more of these applications and programs. A UAP can be used by
human users, and/or other applications in the user domain. A UAP can be either or both an access
session related and service session related component. The access session related UAP is defined
below. The service session related UAP is defined in 6.2.

As an access session related component, the UAP enables a human user, or another application, to
make use of the capabilities of a PA, through an appropriate (user) interface. An access session
related UAP supports part of the domain access session. The UAP provides capabilities for:

— request authentication information from the user, required by the PA to set-up an access
session with a UA;

— the user to request the creation of new service sessions;
— the user to request to join an existing service session;

— alerting the user to invitations, which arrive at the PA.

4 Access Session (AS), Provider Domain Access Session (PD AS), and User Domain Access Session
(UD_AYS).

Q series — Supplement 28 (12/1999) 11

An access session related UAP may also support the following optional capabilities, when they are
also supported by the PA:

— allow the user to search for a provider, and register as a user of the provider's services;

— allow the user to search for services and identify providers providing those services.

Zero or more stream interfaces can be attached to a UAP. The stream interfaces can be bound to
those in user systems and/or those in providers' domains.

A user domain contains one or more access session related UAPs. Any access session related UAP
can request a PA to establish an access session. One or more UAPs interact with a PA to use its
access session related capabilities within an access session.

A UAP instance may support only access session related capabilities or only service session related
capabilities; or it may support both. Access session related UAPs may be specialized by a domain to
interact with a specialized PA.

6.1.2 Provider Agent

The Provider Agent (PA) is a service independent component, defined as the user's end-point of an
access session. The PA is supported in a domain, acting in an access user role. The PA supports a
user accessing their UA and making use of services, through an access session. The PA supports the
user domain access session, in conjunction with access session related UAPs, and other user domain
infrastructure.

Capabilities supported by a PA:

— set-up a trusted relationship between the user and the provider (an access session), by
interacting with an Initial Agent’, and gaining a reference to a UAS;

— within an access session:
* convey requests (from a user to a UA) for creating new service sessions;
* convey requests for joining existing service session;
* receive invitations to join existing service sessions (from a UA) and alert the user’;
* anonymously make use of a provider's services;
* deploy new components into the user's domain;
* support access to terminal configuration information from a provider's domain;

» register to receive invitations sent when no access session exists.

Operations supported by a PA are service independent.

> The PA may use a location service to find an interface reference for the IA, or some other means. The PA
will provide the retailer name, and possibly other information to scope the search of the location service.
The capability of the location service to return this interface reference is an important part in enabling
access irrespective of location, which is one important feature of personal mobility. This assumes that the
location service can indeed be contacted, irrespective of location. Also, it may imply that interworking
between location services in different domains is required. How the location service gains an interface
reference of an initial agent is undefined. It is likely that the location service has to interact with an object
in the provider's domain in order to gain the reference. This interaction is not defined at present.

This capability is an important element in support of personal mobility, as it allows a user to access a
provider domain from various locations.

7 Using an access session related UAP.

12 Q series — Supplement 28 (12/1999)

For each concurrent access session a user has with a provider, there is one PA instance in the user's
domain. Each PA may be associated (through an access session) with the same UA, or separate UA
instances. A single PA is only ever associated with one UA through an access session. (When no
access sessions exist, a user domain can still support a PA. It can be used to initiate an access
session, and may receive invitations if registered.)

6.1.3 Initial Agent

An Initial Agent (IA) is a user and service independent component that is the initial access point to a
domain. An IA is supported by domains taking the provider role. An IA reference is returned to a PA
when it wishes to contact the domain. The IA supports capabilities? to:

— authenticate the requesting domain and set up a trusted relationship between the domains
(an access session) by interacting with the PA;

— establish an access session, but allowing the requesting domain to remain anonymous. The
type of UA accessed in this way is an anonymous user agent.

Operations supported by an IA are service independent.

An IA supports requests from one PA at a time. The PA requests to contact the domain and is given
a reference to an IA. When the PA has interacted with the IA to establish an access session with a
UA, the reference to the IA will become invalid’. Subsequently, the IA may be contacted by
another PA.

6.1.4 User Agent

A User Agent (UA) is a service-independent component that represents a user in the provider's
domain. It is supported by a domain acting in the access provider role. It is the provider domain's
end-point of an access session with a user. It supports the provider domain access session. It is
accessible from the user's domain, regardless of the domain's location.

A UA supports capabilities to:

- support a trusted relationship between the user and the provider (an access session) by
referencing the user's PA;

- within an access session:

* act as a user's single contact point to control and manage (create/suspend/resume) the
life cycle of service sessions and user service sessions;

* create a new service session (by requesting that a service factory creates a USM and
SSM);

* join in an existing service session by creating a new user service session (via a service
factory creating a USM);

* resolve the service execution environment of the user, allowing them to use services
from many different types of terminals. This requires resource configuration information
of the user system (which includes terminals and their access points being used by or
available for the user). Access to this information may be restricted by the user/PA;

* provide access to a user's contract information with the provider;

8 These capabilities are available irrespective of the location of the PA with which the IA interacts, and
therefore are an important part of personal mobility support, i.e. allowing the user access irrespective of
location.

9 That is, the PA should not retain a reference to an IA after it has established an access session. An
implementation may enforce that the reference to the IA is not usable once the access session has been
established.

Q series — Supplement 28 (12/1999) 13

* resolve interaction problems between service usage requests.

The UA is defined as an abstract (i.e. non-instantiable) component type. Two instantiable subtypes
are defined:

- Named User Agent (namedUA);
- Anonymous User Agent (anonUA).

{}User Agent

named User Agent anonymous User Agent

T11111660-01

Figure 6-1 — Inheritance hierarchy for User Agent

Instances of the subtypes are created to represent different types of users. The subtypes of UA
support all the capabilities which are defined for UA.

The namedUA is a UA specialized for a user that is an end-user or subscriber of the provider.

The anonUA is a UA specialized for a user that does not wish to disclose their identity to the
provider.

Definitions for these subtypes are given in the sections below.

6.1.5 Named User Agent

A Named User Agent (namedUA) is a service independent component that represents a user in the
provider's domain. The namedUA is a specialization of UA for a user that is an end-user or
subscriber of the provider. It is the provider domain's end-point of an access session with a user. It is
accessible from the user's domain, regardless of the domain's location.

The namedUA supports all of the capabilities which are defined for UA. In addition, it supports the
following capabilities:

— within an access session:

* Act as a single contact point to control and manage (create/suspend/resume) the
life-cycle of service sessions and user service sessions, taking into account restrictions
posed by subscribers and the user;

* Suspend/resume existing user service sessions and service sessions. This includes
support for session mobility;

* Manage the user's preferences (choices or constraints) on service access and service
execution (This is supported by starting a provider specific service session.);

* Resolve the service execution environment for the user, allowing them to use services
from many different types of terminals. This requires resource configuration information
of the user system, (which includes terminals and their access points being used by or
available for the user. Access to this information may be restricted by the user/PA.) This
includes support for personal mobility;

* Register user at a terminal to receive invitations. This includes support for personal
mobility;

* Allow the user to define user private/public policies. (This is supported by starting a
provider specific service session.);

14 Q series — Supplement 28 (12/1999)

* Negotiate the session models and feature sets supported by a service session, in order for
it to interact with a UAP in the user's domain.

— accept invitations from users to join a service session;

— deliver invitations to a terminal, previously registered by the user with the namedUA. No
access session would be required to allow this delivery of invitations.

The namedUA may support the following optional capabilities:

- perform actions on the users behalf, when the user is not in an access session with the
namedUA;

- initiate an access session with a PA;

- support additional authentication of the user. This may be tailored to the user, and usage
context.

Operations supported by a namedUA are service independent.

A namedUA may support one or more access sessions concurrently!?. Each access session is with a
single, distinct PA.

6.1.6 Anonymous User Agent

An Anonymous User Agent (anonUA) is a service independent component that represents a user in
the provider's domain. The anonUA is a specialization of UA for users that do not wish to disclose
their identity to the provider. It is the provider domain's end-point of an access session with the
anonymous user.

The anonUA supports all of the capabilities which are defined for UA. In addition, it supports the
following capabilities:

- Support a trusted relationship between the user and the provider (an access session) by
referencing the user's PA. The provider does not know the identity of the user. ("Trust' is not
guaranteed by identifying the user, as for the namedUA, but may be ensured by, for
example, pre-payment.);

- within an access session:

* Suspend/resume existing user service sessions and service sessions within an access
session. (Suspended sessions cannot be resumed in a different access session.!!);

* Manage the user's preferences (choices or constraints) on service access and service
execution. (These would have to be determined during the access session, and could not
be re-used in a separate access session.);

* Provide access to a user's contract information with the provider. (This contract would
be defined at the start of the access session and terminated at the end of the access
session.);

* Define user private /public policies. (This may be supported by starting a provider
specific service session. This information would only be maintained during this access
session.);

* Allow the anonymous user to register as a user of the provider (i.e. set-up a contract
with the provider for longer than a single access session);

* Negotiate the session models and feature sets supported by a service session, in order for
it to interact with a UAP in the user's domain.

10 NamedUAs must be able to support one access session, and may optionally be able to multiple concurrent
access sessions. NamedUAs continue to exist when there is no access session.

11 1t is assumed suspended sessions are ended by the provider if the access session is ended.

Q series — Supplement 28 (12/1999) 15

The anonUA provides no support for personal or session mobility.

6.2 Service Session Related Components

The service session related components defined in this section follow the session concepts in [6].
Service sessions can be supported over multiple domains. The service related sessions!? are
supported by these components.

The interactions between the domains depend on the role the domain takes in the service session. A
domain acting in a usage provider role will support a Service Session Manager. It will also support
User Service Session Managers (USMs) for each domain acting in a usage party role. The party
domain supports a service session related UAP to interact with the USM.

A domain may be perceived as a party domain by the provider domain, while it is actually
composing this service session with its own.

Session models define how service session components in each domain can interact in a generic
manner. These session models allow components, which have been designed and implemented
separately, to interact to support the service session.

The session model allows service session components to make requests about: ending and
suspending the session, the parties involved, set up and modification of stream bindings between
parties, for example.

Service session related components may support one or more of a variety of session models. These
session models may be defined by a variety of organizations. Each session may support a number of
session models, or may only support a single model. Services may decide not to support the
proposed Session Model. This is acceptable because the access part includes the possibility to
negotiate alternative usage interfaces.

6.2.1 User Application

The User APplication (UAP) is defined to model a variety of applications and programs in the user
domain. A UAP represents one or more of these applications and programs in the computational
model. A UAP can be used by human users, and/or other applications in the user domain. A UAP
can be either or both an access session related and service session related component. The access
session related UAP is defined in 6.1.1. The service session related UAP is defined below.

As a service session related component, the UAP enables a user to make use of the capabilities of a
service session, through an appropriate user interface. It acts as an end-point of a service session, by
supporting the User Domain Usage Service Session (UD_USS). The capabilities provided by
particular UAPs are specific to the UAP, and any service session it is part of. UAPs may provide
some of the following generic capabilities to the user, such as:

. starting/ending the session;

. inviting other users to join the session;

. joining an existing service session;

. adding/removing/modifying stream bindings and the users' participation in them;

. establishment of control session relationships and other changes in the service session;
. suspending the user's participation in the session, or the whole session;

. resuming the user's participation in the session, or the whole session.

12 Service Session (SS), Provider Service Session (PSS), Usage Service Session (USS), Provider Domain
Usage Service Session (PD_USS), and User Domain Usage Service Session (UD_USS).

16 Q series — Supplement 28 (12/1999)

Zero!3 or more stream interfaces can be attached to a UAP. The stream interfaces can be bound to
those in other user systems and/or those in the provider domain.

The user's domain contains one or more service session related UAPs. One service session related
UAP can be involved in one or more service sessions. For each service session the UAP is involved
in, it interacts with a user service session manager, or a service session manager!4.

The UAP may also support a particular session model, such as the proposed Session Model. The
USM/SSM uses these interfaces to share information with the UAP on parties and service resources
in the service session.

A UAP instance may support: only access session related capabilities; only service session related
capabilities; or it may support both. Service session related UAPs will be specialized to the service
session(s) they interact with. In order to use a service session, a UAP specialized to the service type
must be present in the user's domain (or be deployed, e.g. by downloading) before the session is
used.

6.2.2 Service Factory

A Service Factory (SF) is a service-specific component that creates the service session components
for a service type.

A request to create a service session of a particular service type will result in the creation of one or
more service related component instances!>. The SF will create and initialize the instances according
to rules imposed by their implementation. The SF will return to the client one or more interface
references to these components. (The SF is used to create instances of all the service session related
components defined in this document: USM and SSM..)

Requests are typically made by UAs. Other clients may also be able to request the creation of a
service session. The client must have an interface reference to the SF and issue an appropriate
request. A SF which supports more than one service type would typically provide separate interfaces
for each service type.

A SF supports capabilities to:

- create service related components for one or more service types upon request. (This includes
choosing the session models supported by the service session, although this may be fixed by
the service type.)

SF may support optional capabilities to:

- create a service related component (typically USM) to be used in conjunction with other
service related components (typically a SSM & USMs) created by a different factory
instance;

- continue to manage the created components. It may provide a list of sessions managed by it,
and may 'clean up' some sessions if requested;

- may include mechanisms to schedule the activation of a session at a specific date and time.
(This mechanism includes resource reservation.);

- support suspension/resumption of a service session.

13 Some services don't require stream interfaces on the UAP.

Services which only support a single user in a service session can provide only an SSM (no USM), and
allow the UAP to interact directly with the SSM. These services will be restricted to only ever having a
single user in a service session, and should not be able to invite other users to join the session, as no USM
for the invited user could be made available.

15 Typically, the USM and SSM.

Q series — Supplement 28 (12/1999) 17

The SF assembles the resources necessary for the existence of a component it creates. Therefore, the
SF represents a scope of resource allocation, which is the set of resources available to the SF. A SF
may support an interface that enables clients to constrain the scope.

6.2.3 Service Session Manager

The Service Session Manager (SSM) is a component which comprises the service-specific and
generic session control segments of the Provider Service Session (PSS). An SSM supports service
capabilities that are shared among members (parties, service resources, etc.) in a service session.
Information related to a particular member of the service session are encapsulated in Member Usage
Service Session Managers (MUSMs). SSMs support (some or all of) the following capabilities:

- keep track and control the various resources shared by multiple users in a service session.
This can be done just by having references to other objects (like a CSM) which really
maintain the context of usage for a specific kind of resources;

- hold the state of the service session and support suspension/resumption of the service
session;

- support adding/inviting/removing users to/from the service session by interacting with the
corresponding UAs;

- support adding/removing/modifying stream bindings and the users' participation in them;

- support the negotiating capabilities among the users interacting with the USMs. SSM will
serve as a control center of consensus building (such as voting procedures);

- support management capabilities associated with the service session (e.g. accounting).

Zerol® or more stream interfaces can be attached to an SSM. The stream interfaces can be bound to
other stream interfaces in this or other domains.

An SSM is created by a SF, one per request for the corresponding service type. It is deleted when all
the users leave the service session, or when quit by a user or SF. The life span of an SSM is the same
as the corresponding provider service session.

6.2.4 Member Usage Service Session Manager

The Member Usage Service Session Manager (MUSM) is an abstract component, which comprises
the service-specific and generic session control segments of the Domain Usage Service Session
(D_USS) that interact with the PSS. It is specialized according to the role of session member
supported by the D_USS:

- User Service Session Manager (USM) represents the UD_USS;

A

USM

T11111670-01

Figure 6-2 — Inheritance hierarchy for
Member Usage Service Session Manager

16 Typically stream interfaces are offered by Service Support Components (SSCs) associated with an SSM.

18 Q series — Supplement 28 (12/1999)

The MUSM represents and holds the context of a member (party, service resource, or provider) in a
service session. Its main characteristics are the following:

- It contains the information and service capabilities which are local to the member. If an
operation involves activities that are purely local to the member, the MUSM controls and
manages the activities by itself. If not, the MUSM interacts with the SSM to perform the
operation. The SSM may interact with the MUSM in response to operations from other
members (or due to service logic) that affect this member. Such interactions are dependent
on the role of the member;

- It keeps track of and controls the exclusive (non-shared) resources used by the member in a
service session. This can be done just by having references to other objects
(e.g. a communications session manager) which really maintain the context of a member for
a specific kind of resource;

- It may be configured to preferences of the member. This may be done during initialization,
and dynamically during the session.

As the MUSM is an abstract service component, no instances are created. Instances of the
appropriate specialized component are created to represent specific session members.

6.2.5 User Service Session Manager

The User Service Session Manager (USM) is a component which comprises the service-specific and
generic session control segments of the Provider Domain User Service Session (PD _USS). It is a
specialization of the MUSM which represents and holds the context of a party!’, or resource in a
service session. It has the same characteristics as the MUSM (with member replaced by party or
service resource as applicable):

- It holds the state of the PD USS and supports suspension/resumption of the party's
participation in the service session;

- It supports the different roles of the party in the service. The role of a party will be service
dependent (e.g. chairman in a conference).

Zero!8 or more stream interfaces can be attached to a USM. The stream interfaces can be bound to
other stream interfaces in this or other domains.

A USM is created by the SF, one per request for the corresponding service type (per PD_USS). It is
deleted when the party leaves the service session. The life span of a USM is the same as the
corresponding PD_USS.

6.3 Resource (Communication Session) Related Components

Note that services not using stream bindings will not have Resources (communication sessions) and
will not need these components. However, as the components are service independent, it is likely
that a CSM or TCSM will be present in most domains.

17" A party can be either an end-user, or a service session acting in a usage party role.

18 Typically stream interfaces are offered by Service Support Components (SSCs) associated with a USM.

Q series — Supplement 28 (12/1999) 19

6.3.1 Communication Session Manager

The Communication Session Manager (CSM) is a service-independent component which manages
application-level, end-to-end bindings between stream interfaces (stream flow connections). A
stream flow is an abstraction of a connection. The CSM provides interfaces to allow USM/SSMs to
set-up, modify, and remove stream flows. The CSM decomposes the requested connection into two
parts, the nodal part and the transport part. It requests TCSM to take care of the nodal part and
requests other connection management objects to take care of the transport part.

The CSM provides the following capabilities:

- creation and control of stream flow connections (SFCs), end to end.

6.3.2 Terminal Communication Session Manager

The Terminal Communication Session Manager (TCSM) is a service-independent component that
manages Terminal Flow Connections (TFCs) (intra-nodal flow connections) within the user's
domain. The TCSM provides an interface to the CSM, to allow the CSM to request the TCSM to
set-up, modify, and remove connections in the user's domain.

The TCSM provides the following capabilities:

- creation and control of flow connections (TFCs) within the user domain.

6.4 Relationship to Information Model

Tables 6-1 and 6-2 provide a mapping between session concepts and objects in the information
model, and components in the computational model.

Session concepts, which are mapped to a component, means that the component supports the
functionality and state of the session, and controls the service resources which are part of the session.
If a session concept is mapped to several components, then each of the components support part of
the functionality and state, and control some of the service resources of the session.

Information objects which map to a component mean that the information in the information object
is contained within the component, and that the component may provide access to that information to
other components/objects.

Table 6-1 — Mapping between access session related components

Session Concept/Information Objects Components
Access Session (AS)
with User-Provider Roles PA and UA
User Domain Access Session PA
(UD_AS)
Provider Domain Access Session UA
(PD_AS)
User Profile UA
with User-Provider Roles
Contract
with User-Provider Roles PA and UA

20 Q series — Supplement 28 (12/1999)

6.5

Table 6-2 — Mapping between service session related components

Session Concept/Information Objects Components
. . Service session related UAP, USM,
Service Session (SS) and SSM
User Service Session (USS) Service sessm{nJ gelz\l/?ted UAP, and

User Domain Usage Service Session (UD_USS)

Service session related UAP

(PD_USS)

Provider Domain Usage Service Session

USM

(PSS)

Provider Service Session

SSM

Examples

Example scenarios are described in the following sections to illustrate how the components can
interact in the following cases:

contacting a provider;

logging in to a provider as a known user;

starting a new service session;

inviting a user to join an existing service session;

joining an existing service session;

creating a stream binding in an existing service session.

Note that the scenarios are examples and that they assume all the operations are successfully
completed (no error, no fault, and no rejection) for simplicity.

6.5.1

Contact a Provider

This example shows the user A making contact with a provider (see Figure 6-3). This scenario
supports user mobility by allowing the user to contact a specific provider from any terminal.

Y

as-UAP

1) contact provider

PA

User Domain

User A

3) return IA ref

2) get 1A ref

o

Provider Domain

T11111680-01

Figure 6-3 — Contacting a provider

Q series — Supplement 28 (12/1999) 21

Preconditions:

A PA must be present in the user's domain.

Scenario:

1) User starts an access session related UAP. He provides the retailer name he wishes to
contact. UAP requests the PA to contact the provider, giving the retailer name.

2) PA gains a reference to an interface of an initial agent of the provider!®.

3) PA returns success to UAP.

Post-conditions:

The PA has an interface reference to the IA. The user has not setup an access session between the
PA and TA. The IA does not support use of a user's services, only operations to set up an access
session as a known user (see 6.5.2) or an anonymous user.

The IA has no knowledge of any interfaces on the PA or in the user's domain.

It is possible for the provider to download a provider specific PA to the user's domain, once an
interface reference to the InitialAgent has been gained by the PA. This helps to support user
mobility. No scenario describing how this is achieved is defined at present.

6.5.2 Login to a Provider as a Known User

This example shows the user A establishing an access session with their named user agent of the
provider (see Figure 6-4). The user wishes to make use of the provider's services which the user has
previously subscribed to (see 6.5.3). This scenario supports user mobility by allowing the user to
establish an access session with a provider from any terminal.

(
m User A

as-UAP

1) request access| 5) return access

2) request access
PA : 1A
_ 3) return references

S
4) set PA context
UAA
T11111690-01
User Domain Provider Domain

Figure 6-4 — Login to a provider as a known user

19 The PA may use a location service to find an interface reference for the IA, or some other means.

22 Q series — Supplement 28 (12/1999)

Preconditions:

The user has contacted the provider (as in 6.5.1), and the PA has an interface reference to an initial
agent of the provider.

Scenario:

1) User A uses an access session related UAP to login to the provider, as a known user2?. The
user has then requests the PA to login to the provider, as a known user. The UAP supplies
the security information to the PA.

2) PA requests that an access session be set up with the namedUA of the user. PA provides the
username of the user to the IA. The PA has passed the user security information to the
security services supported by the DPE. The security services interact with the provider
domain in order to authenticate the user?!.

3) IA has already authenticated the user through the DPE security services, and an access
session has been established. It returns the interface reference of the user's UA.

4) PA sends information about the user domain to the UA. This information is termed the PA
context, which includes references to interfaces on the PA, and possibly terminal
information.

5) PA returns success to UAP.

Post-conditions:

User has setup an access session between the PA and namedUA. The namedUA is personalized to
the user, and has knowledge of interfaces of the PA.

Any interface references of the IA held by the PA will be invalid.

Note that in the sequence of events, personal mobility is allowed due to the following capabilities:

a) The capability of the naming service to be contacted irrespective of location and to return a
reference to the IA;

b) The IA to establish a trusted relationship with the user, that is independent of the physical
location of that user;

c) The IA to return a reference of the user's own named UA to the (PA acting on behalf of the)
user.

It is possible that once an access session has been established, the provider may download a provider
specific PA to the user's domain. This helps to support user mobility. No scenario describing how
this would be achieved is defined at present.

6.5.3 Starting a new Service Session

This example shows a user starting a new service session (in this example, a videoconference
service, but the interactions would be the same for all types of service). The user is assumed to be in
an access session with the provider and to have a valid subscription to the service (the service type is
videoConference234). The service session related UAP is assumed to be present on the user's
terminal. (see Figure 6-5).

20 UAP may ask the user for their username and other security related information, e.g. password.

21 If security services were not supported by the DPE, then the PA would first have to send authentication
information to the IA.

Q series — Supplement 28 (12/1999) 23

(d
m User A
7) create session
as-UAP SF

1) start service 9) return refs

4) start service 5) checks.

A
PA UA 6) get SF ref
L r—— 10) return references

8) create USM/SSM
2) start ss-UAP 11) return references

3) start service

- UAP 12) service specific, & session model 1nteract10ns+ USMA SSM

T11111700-01

User Domain Provider Domain

Figure 6-5 — Starting a new service session

Preconditions:

An access session exists between the PA (user A) and UA (in provider domain). An access session
related UAP shows the user the services which he can start.

Scenario:

1)

2)

3)

4)

S)

The access session related UAP requests a list of services from the PA, which the user has
been subscribed to. The PA makes the same request to the UA, which returns the list. The
UAP displays the list to the user. The user selects a service to start?2. The UAP requests PA
to start the service.

The PA starts the service session related UAP23, associated with this service session, and
informs it of the service type that it should start (videoConference234).

The service session related UAP requests a new service session of service type
videoConference234, from the PA. (The UAP may pass information about itself to the PA,
including session models and feature sets supported and references to its operational and
stream interfaces.)

PA requests to start a new service session of the service type (videoConference234), to
(user A's) UA. (It may also pass the information about the UAP.)

UA may perform some actions, which are not prescribed here, before continuing. For
example, the UA checks the new session request against the user's subscription profile?4, to
verify that the user has subscribed to this service and that it can be used with the terminal
configuration of the user. Other decisions may also be taken. UA raises an exception to the
PA, if the UA declines to start the service session.

22 The preceding interactions are not shown in the figure.

23 If the service session related UAP is not available in the user's domain, PA may attempt to download the

UAP and continue.

24 The user's subscription profile may define preferences and constraints on the invocation of a service. These

24

preferences/constraints may be dependent on the user's current location. This provides support for personal
mobility.

Q series — Supplement 28 (12/1999)

6) UA gets a reference to a service factory which can create service session components for the
service type (videoConference234).25

7) UA requests that a new session of the service type (videoConference234) be created by the
Service factory.

8) Service factory creates an SSM and a USM26 and initializes them.

9) Service factory returns interface references of the USM and the SSM to the UA.

10) UA returns references of the USM and SSM to the PA.
11) PA returns references of the USM and SSM to the service session related UAP.

12) The service session related UAP and USM (and SSM) can interact using service specific
interfaces or interfaces defined by session models, including the proposed session model.
Some interactions between these components may be necessary before the user can use the
service.

At this point User A is the only user involved in the service session. Some services may be single
user only services, or may be used by a single user. As this is an example of a video conference
service, user A probably wants to invite some more users to join in the session.

6.5.4 Inviting a User to Join an Existing Service Session

This example shows user A inviting another user (B) to join in the service session (see Figure 6-6).
The example ends when the invitation has been delivered to user B. The example of user B actually
joining the session is given in 6.5.5.

This example assumes that the invited user B is a named user, and is represented in the provider by a
named user agent. Anonymous users, represented by an anonymous user agent, cannot be invited to
join a service session because it is not possible to locate the specific user, as anonymous user agents
do not publish the identity of the user (and may not even know the user's identity).

This scenario supports user mobility by allowing a user to be invited to join a session, irrespective of
their location. (This does not mean that they will automatically be able to join the session.)

25 The UA may use a location service to find an appropriate service factory, or some other means. The UA
may also provide other information to scope the search for the service factory, such as terminal
configuration information. Other means include: the subscription information could potentially contain an
interface reference to the service factory to use.

26 The Service Factory creates the computational objects which comprise the service session. These may
include the USM and SSM. Other computational objects are also possible.

Q series — Supplement 28 (12/1999) 25

(d)

8) display

7) invite user
5) checks

4) invite user 6) invite user
UAB
1) invite user B A | 2)invite user B
ss-UAP USM SSM

3) get UA ref

User Domain Provider Domain User Domain

T11111710-01

Figure 6-6 — Inviting a user to join an existing service session

Preconditions:

An access session exists between the PA and UA of the user sending the invitation (user A). It is
NOT necessary for an access session to exist between a PA and the UA of the user receiving the
invitation (user B), but for this example assume that an access session does exist for user B.

User A is using a service session related UAP and has a service session established with a USM and
SSM. User A wishes to invite user B to join this service session. User A is 'active' in the service
session, 1.e. they have not suspended their participation.

Scenario:

1) User A uses UAP to invite another user (invitee) to join a session. (User A supplies the user
name of the invitee, or a user defined alias which can be resolved by the inviter's UA.) The
UAP requests the USM to invite user B to join the session.

2) USM requests the SSM to invite a user to join the session. (Both the USM and SSM may
check that User A is allowed to invite User B. These checks are not defined here.)

3) SSM gets a reference to an invitation interface of user B's UA?7.

4) SSM sends an invitation using the invitation interface of the user B's UA.

5) Invitee's UA may perform some actions, which are not prescribed here, before continuing.
For example, the UA may check the user profile within the UA for a policy on invitations.
The policy will then determine the UA actions and interactions with other objects. UA may
raise an exception to the SSM, if the UA declines to deliver the invitation.

6) In this example an access session exists between user B's UA, and the PA on User B's
terminal. The invitation is delivered to the PA, by using an invitation interface on the PA.

7) PA sends the invitation to the access session related UAP.

8) The UAP displays the invitation to user B.

27 The UA may use a location service for locating user B's UA, or some other means.

26

Q series — Supplement 28 (12/1999)

The invitation to join the service session has been delivered to user B's UA, PA, and is displayed by
the UAP. The invitation contains sufficient information for the UA to locate the service session, and
allow the user to join it (as described in 6.5.5). Only some of this information will be passed to the
PA and UAP.

In the example above an access session already existed between user B's PA and UA. If user B is
NOT currently in an access session with the UA, then there are several alternatives as to what
happens. It is not currently defined which of these alternatives must be supported as a mandatory
capability and which are optional. The alternatives are:

. UA stores the invitation until the invited user establishes an access session. When he does
establish an access session, the invitation is delivered as above;

. UA delivers the invitation to a registered terminal. (The terminal would have been selected
by the user to receive invitations when no access session was present)?3;

. UA returns the address of a registered terminal to the SSM;

. UA forwards the invitation to another UA. (This UA would have been selected by the user

to receive invitations when no access session is present. The UA may be in a different
provider's domain.);

. UA returns the address of another UA;

. UA starts a service session of a specified type. (The invitation may be sent to the service
session, as part of its configuration, or later.).

6.5.5 Joining an Existing Service Session

This example shows a user B joining an existing session, after receiving an invitation to join the
session (see Figure 6-7).

User B is assumed to be in an access session with the provider and to have a valid subscription to the
service (the service type is videoConference234). The service session related UAP is assumed to be
present on user B's terminal.

User B can join this session from any terminal, from which he has established an access session.
When the access session is established, the PA requests a list of the invitations received by the UA.
The PA can then request to join any of the sessions. However, in this example we assume the
invitations have been delivered to User B's PA and as-UAP as described in 6.5.4.

28 This case is required to support personal mobility.

Q series — Supplement 28 (12/1999) 27

o
User B | a
aS-UAP

9) return references 0i i
) 8) create USM/SSM 5) checks 1) join session
0 i ith invitati 4) join session
6) join session with invitation UAB) PA
10) return references 11) return refs

12) return refs
2) start ss-UAP

7) create USM 3) join session
13) service specific, & session model interactions
Usm?t SSM UsmP ss-UAP
T11111720-01
Provider Domain User Domain

Figure 6-7 — Joining an existing service session

Preconditions:

An access session exists between the PA (user B) and UA (in provider domain). User B's UA and PA
have received the invitation to join the service session, and an access session related UAP shows the
user the invitation which he has received.

Scenario:

1) The access session related UAP displays a list of invitations to join service sessions. The
user selects an invitation to join the service session. The UAP requests PA to join the service
session, giving the invitation id.

2) The PA starts a service session related UAP2, associated with this type of service session,
and informs it of the invitation id that it should request to join.

3) The service session related UAP requests to join the service session, giving the invitation id,
from the PA. (The UAP may pass information about itself to the PA, including session
models supported and references to its operational and stream interfaces.)

4) PA requests to join the service session, giving the invitation id, to (user B's) UA. (It may
also pass the information about the UAP.)

5) UA may perform some actions, which are not prescribed here, before continuing. For

example, the UA may check the invitation id against the user's current invitations, as well as
the user's subscription profile3? to verify that they are subscribed to this service, and that it
can be used with the current terminal configuration, etc. UA can decline the user to join the
session.

29 If the service session related UAP is not available in the user's domain, PA may attempt to download the

UAP.

30 The user's subscription profile may define preferences and constraints on the invocation of a service. These
may be dependent on the user's current location. This provides support for personal mobility.

28

Q series — Supplement 28 (12/1999)

6)

7)
8)
9)
10)
11)
12)
13)

UA gets a reference to the SSM3! and requests to join the session. (It may pass some
information in the invitation to confirm that the SSM invited this user to join the session.)

SSM requests its service factory to create a USM for user B.

Service factory creates a USM and initializes it.

Service factory returns interface references of the USM to the SSM.

SSM returns references of the USM and itself to the UA.

UA returns references of the USM and the SSM to the PA.

PA returns references of the USM and the SSM to the service session related UAP.

The service session related UAP and USM (and SSM) can interact using service specific
interfaces or interfaces defined by session models, including the proposed session model.
Some interactions between these components may be necessary before the user can use the
service.

At this point both user A and user B are involved in the service session. As this is an example of a
video conference service, either user may invite other users to join the session. There may be some
service specific policy to decide whether a particular user in the session is allowed to invite other
users to join.

6.5.6 Request and Establishment of a Stream Binding

This example shows the set-up of a stream binding between UAPs in consumer 1 and 2's domains
(see Figure 6-8). Consumer 3 requests the establishment of a stream binding in which consumer 1
and consumer 2 shall participate, but doesn't himself participate in the stream binding32.

31 The invitation may contain a reference to an interface on the SSM to use to join the session. Or the UA
may use information in the invitation along with a location service to find the SSM, or some other means.
The UA may also provide other information to the SSM, such as terminal configuration information, and
application information.

32 This example is chosen to illustrate the separation of service session and communication session. Of course
other examples are possible, e.g. one (more 'POTS-like') where consumer 1 acts as the initiator of the
service session and also as the initiator of the communication session. The separations of access and usage
and of service session and communication session still have meaning and add value (e.g. support mobility
aspects).

Q series — Supplement 28 (12/1999) 29

Domain of consumer 3

UAP,,

1),4) 13)

Domain of consumer 1 Domain of retailer {{ Domain of consumer 2

8) 8) ’7
6), 13) 6), 13)
7) 7)
] [on
T11111730-01

Figure 6-8 — Stream binding request and setup [3 parties in the service session,
Resource (communication session) involving 2 of them|

Precondition:

The 3 consumers have already been invited to the service session and are now parties in the service
session.

Post-condition:

A stream binding is established between the two participants, partyl and party2, and party3 has a
reference to the stream binding in order to control it further.

Scenario:

The scenario shows a successful setup, but at certain points it is made clear that different decisions
could have been made.

1) UAP3 requests the setup of a stream binding with partyl and party2 as the participants.
USM3 may optionally make the necessary checks to make sure consumer 3 is allowed to
setup the requested stream binding.

2) USM3 forwards the request to the service session's SSM.

Optionally, SSM may check for permission to set up this stream binding; if necessary it may
negotiate for permission with the other session members in the session. [This will then
involve the voting feature set (not shown)].

3) If permission is obtained, SSM returns a stream binding identifier, as well as a request
identifier for later confirmations to USM3.

4) USM returns a stream binding identifier, as well as a request identifier, for later
confirmations to UAP3.

(The following can be done in parallel to '1' and 2', hereafter called '1')
5) SSM requests USMi to join the stream binding.

USMi may optionally make decisions, e.g. about non-participation on behalf of consumer i.
6) USMi forwards the request to UAP1.

30 Q series — Supplement 28 (12/1999)

7) UAPi starts an application setup scenario to get the NFEP(pool)s related to the stream
interface user by consumer i in this service. This may have been done already?3, or it must
be done now in order for the consumer to participate in this stream binding.

8) UAPi accepts and returns this acceptance to USMi, together with a description of consumer
1's terms of participation in the stream binding, as well as a stream interface descriptor.

9) USMi forwards this acceptance and the associated information to SSM.

Depending on the answers from the participants (and specific logic for this service), the
SSM may choose to give up establishing the stream binding, or the stream binding request
will result in a request for communications (this is what is shown).

10) SSM requests to setup a Resource (communication session) (if not already existing), and
then requests the stream flows associated with the stream binding to be set up.

11) Final notifications back to SSM.

12) Final notifications back to USMs for consumer 1, 2 and 3 [or just some of them, depending
on their reply in step 9 (for each consumer 1)].

13) Final notifications back to consumers 1, 2 and 3 (or just some of them, depending on the
reply from UAP in step 9, and/or depending on the behaviour of USMi34.)

7 Overview of Ret Specification

This clause introduces the specification, gives the overall functionality and scope of the reference
point involved in this Supplement, and briefly defines this reference point.

Clause 8 describes how a consumer accesses a retailer to make use of services they make accessible.
It addresses the establishment, and use of a secure association between the domains, termed an
Access Session (defined and described in more detail in clause 8.). Within the access session, it
addresses the control of services, and service sessions, and the subscription management. It consists
of a set of operational interfaces, offered by the consumer and by the retailer business roles.
Interfaces are first defined informally using plain text and diagrams, then by means of semi-formal
IDL specifications; behaviour is described in plain text. An interface dedicated to subscription is
described in detail as well. Complete specifications of IDL interfaces are given in clause 8.

Clause 9 contains the complete specifications of IDL interfaces for Ret-RP including the interfaces
for the subscription part.

This Supplement consists of non-formal specifications, in terms of plain text and diagrams, and of
semi-formal specifications, using the Interface Definition Language.

The purpose of this Supplement is to provide specifications ready to be used for interoperable
multi-vendor implementation of the computational interfaces required between the domains
described in this Supplement: the Retailer Domain, and the Consumer Domain.

33 Depending on the service type and the terminal capabilities, there might be several cases: If the application
is the only one ever using streams, the nodal (terminal) part of the stream binding may be hardwired. It
might also be the case that, when receiving the invitation, consumer 1 already knows (or finds it likely) that
he will be asked to participate in a stream binding, and starts to prepare the terminal internal actions needed
to get hold of a stream interface (e.g. ask another application to release a stream interface or kill some
applications in order to increase performance). This shows specialization of behaviour of the UAP.

34 Tt is possible that the USM gets the notification, but does not forward it to the UAP; this is similar to what
is explained in step 5), where USM takes decisions (e.g. 'screens') on behalf of the user/UAP.

Q series — Supplement 28 (12/1999) 31

71 Overall functionality and scope of the reference points

The definition of a reference point in SPFEE is that it defines the interactions between stakeholders
(by means of interfaces they provide one to another). In this Supplement:

— Retailer reference point (Ret-RP): between the Consumer and the Retailer.

Note that the End-User role is generalized in this Supplement as Consumer role. The stakeholder
role of consumer models two stakeholders: the Subscriber and the End-User. The Subscriber is the
entity that has a business relationship with the Retailer, whereas the End-User is the person that
actually makes use of the capabilities provided by the Service Provider through the Retailer.

The Ret-RP supports a consumer accessing a retailer to make use of services they make available on
behalf of one or more Service Providers. It addresses the establishment, and use of a secure
association between the domains, termed an Access Session. Within the access session, it addresses
the control of the life-cycle of the usage of the Service Provider services. It corresponds to the
functionality, interfaces and objects related to the access session. It defines interfaces to support use
of the following functionality:

— initiation of dialogue between the consumer (subscriber and end-user) and retailer domains;

— identification of the domains to each other (either domain can remain anonymous dependent
on the interaction requested);

- establishment of a secure association between the domains, an access session;

— set up of the default context for the control and management of usage functionality;

— discovery of service3’ offerings;

- listings of access sessions, service sessions and subscribed services;

— initiation of usage between the End-User and Service Provider domains;

— control and management of sessions (e.g. stop, suspend, resume, join, notify changes, etc.).

The following principles are used in this Supplement:

— Personal and session mobility, providing the description of how to transfer and manage
personal environments between end-user access points inside a session;

— Management, providing the mechanisms to manage both administrative information
(e.g. subscribers) and FCAPS (e.g. fault management for a service).

A A B
Consumer U Retailer
Ret-RP

Use of the Ret-RP with respect to the TINA
business roles

T11111740-01

35 These services can be primary [e.g. Video on Demand (VoD)], ancillary to the primary (e.g. configuration
management for VoD) or administrative (e.g. subscriber management for VoD).

32 Q series — Supplement 28 (12/1999)

7.1.1 Ret-RP business role life-cycle

The Ret-RP supports the whole lifecycle of the relationship between consumer and retailer, which is
described as Subscriber and End-user life-cycle.

The Subscriber lifecycle describes the processes by which a Subscriber establishes a relationship
with a retailer, and modifies or terminates the relationship. The relationship includes subscription,
customization, and the association between Subscriber and End-user.

The End-user lifecycle describes the process by which end-users can access and use services. This
includes end-user system setup, retailer contact, and service customization.

7.2 Main assumptions

Two main assumptions in this Supplement are:
— a pervasive, interoperable, DPE is assumed, providing security services;
— the existence of a naming addressing and resolution framework are assumed.

7.3 Definition of Ret Reference Point

The Ret reference point definition is a semi-formal specification of the business relationship between
the consumer and retailer business roles. Conforming to the SPFEE Business Model and Reference
Points [6], the Ret-RP is separated into an Access part and a Usage part. For the Ret-RP, the access
part describes how a consumer business role accesses a retailer business role to make use of services
provided by service providers; the usage part is outside the scope of this Supplement. As each part is
handled independently in the SPFEE specifications, they can be used independently as well. This
Supplement further describes the access part only.

7.3.1 Business Roles and Session Roles

As stated in [6], a business role can take different session roles. Two basic session roles are defined:
User and Provider. A specialization is made when dealing with access related interactions. So, the
roles become access user and access provider. The session roles and business domains naming
conventions are reflected in the naming of the module structure for the IDL specifications (clause 9)

Although the Ret-RP specifications refer to business roles (in conformance to [6]), the applicability
of the specifications themselves can be extended to relationships where the same session roles are
involved, irrespective of the business roles involved. For example, whenever an access user and an
access provider can be defined, the access part of the Ret-RP specifications can be applied.
However, the means to extend Ret-RP specifications to contexts other than the consumer/retailer
relationship (for example for retailer to retailer federation) are outside of the scope of this
Supplement.

7.3.2 Conformance to the Ret Reference Point Specifications

This Supplement provides the necessary guidelines to identify what conformance to Ret-RP means.
Conformance does not mean support for all features, but means support for all mandatory features3¢
in conformance to the SPFEE specifications, and conformance the SPFEE specifications for optional
features if supported.

The Ret-RP is profiled in terms of mandatory and optional interfaces and operations.
Conformance to Ret-RP is claimed separately for Consumer side and Retailer side.

Therefore, for an SPFEE system, the minimum level of compliance to the Ret-RP means support at
least for the mandatory interfaces and operations of one of the two sides (consumer or retailer).

36 Here, feature means interface or operation.

Q series — Supplement 28 (12/1999) 33

In order for two SPFEE systems to interact via the Ret-RP, it is required that one system conforms to
the consumer side and the other to the retailer side.

8

Ret-RP Specification

Ret-RP offers the following capabilities:

initiation of dialogue between the consumer and retailer domains;

identification of the domains to each other (either domain can remain anonymous dependent
on the interaction requested);

establishment of a secure association between the domains, (an access session);

set up of the default context for the control and management of usage functionality
(service sessions);

discovery of service3’ offerings;
listings of access sessions, service sessions and subscribed services;
initiation of usage between the domains, (starting a service session);

control and management of service sessions (e.g. stop, suspend, resume, join, notify
changes, etc.).

It can be noted that Ret-RP addresses two types of access functionality:

functionality dedicated to the access session between the consumer and the retailer;

functionality related to accessing services, and for which the retailer must invoke one or
more service providers which support the actual services (the retailer is a pure retailer, solely
dedicated to access functionality).

It is one of the retailer's functionality to invoke possibly more than one service providers in
order to fulfill a consumer's request. This takes place in a way totally transparent to the
consumer. The retailer performs one or more invocations on one or more service providers
and returns a merged result. It is as well transparent to the service provider who must remain
unaware that the retailer is possibly performing similar invocations on other service
providers. It must be noted that the specification of the Ret-RP and the Ret-SP-RP are
sufficiently flexible and generic to ensure that the multiplexing role of the retailer can be
performed. Consequently further specification on this matter is considered outside the scope
of the specification of the Ret and Ret-SP reference points.

The functions dedicated to accessing services are:

discovery of service3® offerings;
listings of access sessions, service sessions and subscribed services;
initiation of usage between the domains, (starting a service session);

control and management of service sessions (e.g. stop, suspend, resume, join, notify
changes, etc.).

Ret-RP largely addresses the establishment, and use of a secure association between the domains,
termed an Access Session.

37 These services can be primary [e.g. Video on Demand (VoD)], ancillary to the primary (e.g. configuration

management for VoD) or administrative (e.g. subscriber management for VoD).

38 These services can be primary [e.g. Video on Demand (VoD)], ancillary to the primary (e.g. configuration

34

management for VoD) or administrative (e.g. subscriber management for VoD).

Q series — Supplement 28 (12/1999)

The Ret-RP access session is defined in the following sections. Many of the interfaces and
operations defined for Ret-RP will be applicable to the access parts of other inter-domain reference
points (such as Ret-SP, and Retailer to Retailer). In order to facilitate this re-use, a set of interfaces
have been defined which can be re-used in other reference points. These interfaces can be recognized
by the prefix i _User or i _Provider. These interface types correspond to the Access User and
Access Provider roles.

Interfaces for the Ret-RP are designated with the prefixes: i _Consuner and i _Retail er. These
correspond to the consumer and retailer business administrative domains from the SPFEE Business
Model [6]. For Ret-RP, these domains take the access user and access provider roles. All of the
i _Consuner and i _Retail er interfaces are inherited from corresponding i _User and i _Provi der
interfaces. Any specialization for the Ret-RP are defined in the i _Consuner/i _Retai | er interfaces.
However, no specializations are defined at present.

In summary, the Ret-RP interfaces are inherited from generic user-provider interfaces that can be
reused in many other reference points.

NOTE — The main body of this Supplement describes only interfaces and operations on interfaces. A
complete listing of the IDLs, and how the interfaces are grouped into modules can be found in clause 9.

The remainder of the Access Session of Ret-RP is structured as follows:

Subclause 8.1, "Overview of Access interfaces for Ret-RP" contains a description of the access
interfaces of Ret-RP, together with a short explanation of every operation. It identifies only those
interfaces which are exported over Ret-RP.

Subclause 8.2, "User-Provider Interfaces" identifies the generic user-provider interfaces that are not
exported over Ret-RP. It shows the inheritance hierarchy for the interfaces exported over Ret-RP. It
also describes the generic interfaces so that they can be re-used for other inter-domain reference
points.

Subclause 8.3, "Access Information View" gives an information view of Ret-RP. It describes the
types of information passed over the Ret-RP.

Subclause 8.5, "Access Interface Definitions: Consumer Domain Interfaces" and 8.6, "Access
Interface Definitions: Retailer Domain Interfaces" describe the operations of Ret-RP interfaces
supported by the consumer and retailer domains in detail, including parameters and dynamics.

IDL definitions of each of the interfaces can be found in clause 9.

8.1 Overview of Access interfaces for Ret-RP

The Access Part of the Ret-RP is defined by a set of interfaces which are offered over the reference
point. All of the interfaces in the Access Part are categorized by which side of the RP offers the
interface: the consumer, or the retailer.

The interfaces are also categorized by whether they are accessible during an access session; always
available outside of an access session; or may be registered to be available outside of an access
session.

Registration of interfaces can only be done by the consumer on the retailer domain during an access
session. The lifetime of registration depends on how the consumer registers his interfaces, i.e. only
as long as the access session exists or permanent.

The following diagram names all of the interfaces defined by the Access Part, and categorizes them
as above.

Q series — Supplement 28 (12/1999) 35

The interfaces: "always available outside of an access session" are supported by the retailer to allow
a consumer to request the establishment of an access session. They are the initial point of contact for
the consumer, and allow him to authenticate himself and the retailer; establish the access session;
and gain a reference to an i _Ret ai | er NamedAccess, ori _Ret ai | er AnonAccess interface.

Initial contact: Interfaces always available outside an Access Session

i_Retailerlnitial
i _Retail erAuthenticate

Access Session: Interfaces available during an Access Session

~
i _Consuner Access) .
i “Consumer I nvite i _Retail er NanedAccess
- i _Retail er AnonAccess
i _Di scover Servi ceslterator
i _SubscriberSubscri pti onMgnt
7 Consurer Ter ni nal i _Retail erSubscriptionMnt
i _Consuner AccessSessi onl nf o
i _Consuner Sessi onl nfo)
i _Consunerlnitial -
_ J

Outside an Access Session: Interfaces available if registered with retailer

Consumer Domain Retailer Domain
Interfaces in Access Part of Ret-RP

T11111750-01

The interfaces: "available during an access session" allow the consumer and retailer to interact
during an access session. The interfaces on the retailer allow the consumer to discover services;
initiate usage of those services; control and manage those services, (e.g. stop, suspend, resume, etc.)
and register the consumer's context and interfaces with the retailer. The interfaces supported by the
consumer allow the retailer to discover interfaces and terminal configuration of the consumer; notify
changes in access and service sessions; and send invitations to join service sessions. These
capabilities are only possible during the access session.

The interfaces: "available if registered with retailer" are supported by the consumer. They must be
registered with the retailer for use outside the access session to be accessible. With the appropriate
interface registered, the retailer is able to perform all of the operations "available during an access
session", as well as request the consumer to initiate an access session with them.

The following sections will globally describe the interfaces and their operations. Detailed
information about operations, their parameter lists and dynamics can be found in 8.5 and 8.6.

The interfaces dedicated to subscription (i_SubscriberSubscriptionMgmt and
1_RetailerSubscriptionMgmt) are described in detail in 8.7, "Subscription Management".

36 Q series — Supplement 28 (12/1999)

8.1.1 Example Scenario of Access part of Ret-RP

This subclause is an example of the use of the access Ret-RP interfaces. It describes a consumer
making use of retailer interfaces to establish an access session; make use of retailer facilities, and
register to receive invitations outside of an access session.

1) A consumer domain contacts the retailer by gaining a reference to an i RetailerInitial
interface3’.
2) The consumer domain calls the r equest NanedAccess() operation on i _Retailerlnitial,

as he wishes to establish an access session with the retailer as a named user. (If the consumer
wished to remain anonymous, he could use the r equest AnonynousAccess() operation on
that interface instead.)

2a) If CORBA security services have been used, then both domain's credentials and other
authentication information will have been exchanged, and both consumer and retailer
will have been authenticated to each other. The call to r equest NanedAccess() returns a
reference to an i _Retail er NanedAccess interface. (An access session has been
established between the consumer and retailer domains.)

2b) If CORBA security services are not used, then the call to r equest NanedAccess() fails,
and an e AuthenticationError exception is raised. This exception contains a reference to
an i _Retail er Aut henti cat e interface, which the consumer can use to authenticate
himself. After this, the consumer calls r equest NanedAccess() on i _Retailerlnitial
in order to gain a reference to the i _Ret ai | er NamedAccess interface.

3) At this point, an access session has been established, and the consumer domain has a
reference to the i _Ret ai | er NamedAccess interface.

4) The consumer domain informs the retailer domain of its interfaces and terminal
configuration by calling the setUserCtxt() operation on i _Retail er NanedAccess. The
retailer gains references to the i_ConsunerAccess, i_Consunerlnvite,
i _Consuner Terni nal , and i _Consumer Sessi onl nf o interfaces for use within this access
session.

5) The consumer can now, by invoking the appropriate operations on the

i _Retai | er NanedAccess interface:
— discover services offered by the retailer (di scover Servi ces());
— subscribe to those services (by starting a subscription service);

— list the access sessions and service sessions they are currently involved with
(I'i st AccessSessi ons(), | i st Servi ceSessi ons());

— start a new service session (st art Ser vi ce());

— suspend, resume, join and end existing sessions (suspendSessi on(), r esumeSessi on(),
endSessi on());

— gain references to retailer-specific interfaces (get | nt er f aces());

— register interfaces for use outside of an access session
(regi sterlnterfaceQutsi deAccessSessi on());

— and more...

39 The mechanism by which the consumer gains this interface is not prescribed by Ret-RP.

Q series — Supplement 28 (12/1999) 37

6)

7)

8)

9)

8.1.2

The retailer can:

— gain references to retailer-specific interfaces (using i _Consuner Access interface);
— invite the consumer to join a session (using i _Consuner | nvi t e interface);

— discover the terminal configuration (using i _Consumer Ter i nal interface);

— inform the consumer of changes in their access and service sessions (using
i _User AccessSessi onl nfo, and i _User Sessi onl nf o interfaces).

The consumer registers the i _Consunerinitial interface for use outside of an access
session, (using regi sterlnterfaceQutsi deAccessSessi on() on
i _Ret ai |l er NamedAccess). Then he ends the access session (), and can no longer make
requests to the retailer.

The retailer can still invite the consumer to join a service session, using
i nvit eUser Qut si deAccessSessi on() on thei _Consumer|nitial interface.

If the consumer wished to join the session they've been invited to, then they would have to
establish another access session, (as in step 1.)

Always available outside an Access Session

Only retailer interfaces are always available outside an access session.

The following interfaces are provided by the retailer to allow the consumer and/or retailer to
authenticate themselves, and establish an access session.

8.1.2.1

i _Retailerlnitial — This interface is the consumer's initial point of contact for the
retailer. It can be used to request the establishment of an access session. The access session
provides a consumer access to use his subscribed services, etc. through an
1_RetailerNamedAccess, or i_RetailerAnonAccess interface, if the consumer is authenticated
as a named, or anonymous user respectively. If the consumer is not authenticated, it returns a
reference to the i_RetailerAuthenticate interface, to allow this authentication to occur.

i _RetailerAuthenticate — This interface is used by the consumer to authenticate
themselves and the retailer and for passing credentials that can be used to establish the
access session.

i_RetailerInitial Interface

The i_RetailerInitial interface allows the consumer to request the establishment of an access session.

38

r equest NamedAccess() allows the consumer to identify himself to the retailer, and establish
an access session. A secure context may have already been set-up between the consumer and
the retailer using CORBA security services. In this case, this operation returns a reference to
an i_RetailerNamedAccess interface. If the consumer has not already been authenticated,
then an e AuthenticationError exception will be raised. This contains a reference to an
1_RetailerAuthenticate interface, which may be used to authenticate and set-up the secure
context. Then this operation can be invoked again to retrieve the reference to the
1_RetailerNamedAccess interface.

r equest AnonynousAccess() allows the consumer to establish an access session with the
retailer without revealing his identity. The access session will provide access to some
services, although the consumer may need to negotiate with the retailer over which services
are available. (The services will obviously not be specialized to the consumer.) The
consumer interacts with the retailer through an i RetailerAnonAccess interface. This
operation is otherwise the same as requestNamedAccess().

Q series — Supplement 28 (12/1999)

8.1.2.2 i RetailerAuthenticate interface

The 1_RetailerAuthenticate interface allows the consumer and/or the retailer to be authenticated and
acquire credentials, to set-up a secure context. The interface provides a generic mechanism for
authentication which can be used to support a number of different authentication protocols.

The primary purpose of this interface is to verify for the consumer and retailer that they are indeed
talking to the domain they have been told they are talking to. It is not intended to necessarily identify
the consumer. (requestNamedAccess() is used to identify the consumer, and provide it access to its
services.)

- get Aut hent i cati onMet hods() provides a list of the authentication methods supported by
the retailer.

- aut hent i cat e() allows the consumer to select an authentication method, pass authentication
data and request specific credentials that may be used for maintaining a secure context. The
retailer then returns its authentication data (if required), challenge data for the consumer to
respond using continueAuthentication() (if required), and the requested credentials (if
possible). If further authentication protocol is required before credentials are returned then
these can be returned by continue Authentication()

- cont i nueAut henti cat i on() may be called one or more times after authenticate(). It allows
the consumer to respond to the challenge data returned from authenticate() or previous
continueAuthentication() call. At the first or subsequent calls of continueAuthentication()
credentials requested by the consumer may be returned according to the protocol
requirements.

8.1.2.3 Available during an Access Session
Both consumer and retailer interfaces are available during an access session.

The consumer supports the following interfaces for the retailer to use during the access session:

- i _Consuner Access — The retailer can find out about the interfaces in the consumer domain
using this interface. It provides the retailer with interface references to other interfaces in the
consumer domain.

— i _Consumer | nvite — This interface is used by the retailer to notify the consumer of
invitations to join service sessions. The consumer can register an i_Consumerlnitial interface
to receive invitations outside an access session.

— i _Consuner Termi nal — This interface is used by the retailer within an access session to
access terminal configuration information, e.g. applications installed, hardware
configuration, (NAPs), etc.

— i _Consuner AccessSessi onl nfo — This interface is used by the retailer to inform the
consumer of state changes to other access sessions which this consumer has with this
retailer.

- i _Consuner Sessi onl nf o — This interface is used by the retailer to inform the consumer of
state changes to service sessions which this consumer has with this retailer. Information is
sent on all service sessions, used through all access sessions with this retailer.

All of the consumer supported may be registered with the retailer for use inside or outside of an
access session, through operations on the i RetailerNamedAccess interface. Other retailer-specific
interfaces not defined by Ret-RP can also be registered. Registration of the first three mentioned here
is mandatory, using the setUserCtxt() operation on the i RetailerNamedAccess interface. The
lifetime for this particular registration is the same as the lifetime of the access session.

The retailer supports two interfaces for use during access sessions. The consumer will only be given
a reference to one of these interfaces. If they have authenticated as a named user and invoked the
requestNamedAccess() operation, they will be given a reference to i RetailerNamedAccess;

Q series — Supplement 28 (12/1999) 39

otherwise if they have authenticated as an anonymous user, and invoked
requestAnonymousAccess(), then they will be given a reference to 1_RetailerAnonAccess:

- i _Retail erNamedAccess — This interface allows a known consumer to access his
subscribed services, start and manage service sessions, etc.

- i _Retail er AnonAccess — This interface is used by the retailer to notify the consumer of
invitations to join service sessions. The consumer can register an i_Consumerlnitial interface
to receive invitations outside an access session.

During an access session, a consumer will have access to one of these interfaces, depending on
whether they have authenticated as a named or anonymous user. The current definition of Ret-RP
does not allow the change from anonymous to named user in the same access session.

The retailer also supports the following interface:

- i _DiscoverServiceslterator — A reference to this interface is returned to the consumer
after invoking the discoverServices() operation on either of the interfaces above. It is used to
retrieve the remaining service descriptions, which were not returned directly from
discoverServices().

8.1.2.4 i ConsumerAccess interface

The i_ConsumerAccess interface allows the retailer access to the consumer domain, during an access
session. It allows the retailer to request references to interfaces supported by the consumer domain.
These interfaces include those defined by Ret-RP, as well as other retailer specific interfaces.

- cancel AccessSessi on() — allows the retailer to cancel this access session. After this
operation has been invoked, neither consumer nor retailer will make use of the other
interfaces. (Interfaces registered for use outside the access session, or interfaces within
another access session can still be used.)

This interface inherits the following operations from the i_UserAccess interface, for the retailer to
gain references to other interfaces supported by the consumer:

- get I nterfaceTypes() — allows the retailer to discover all of the interface types supported
by the consumer domain.

- getlnterface() — allows the retailer to retrieve an interface reference, giving the interface
type, and properties.

- getlnterfaces() — allows the retailer to retrieve a list of all the interfaces, supported by the
consumer.

This interface is registered with the retailer using the setUserCtxt() operation, and is available for use
during the current access session.

8.1.2.5 i _Consumerlnvite interface

The i_ConsumerlInvite interface allows the retailer to send invitations to join service session, during
an access session. It is only available during an access session to receive invitations. If the consumer
wishes to receive invitations outside of an access session, then they must register the
1_Consumerlnitial interface for use outside an access session.

- i nvi t eUser () — allows the retailer to invite the consumer to join a service session. A session
description and sufficient information to join the session is available in the parameter list.
The session can only be joined using the joinSessionWithInvitation() operation on the
i_RetailerNamedAccess interface.

- cancel I nvi t eUser () — allows the retailer inform the consumer that an invitation previously
sent to the consumer has been cancelled.

40 Q series — Supplement 28 (12/1999)

This interface is registered with the retailer using the setUserCtxt() operation, and is available for use
during the current access session.

8.1.2.6 i ConsumerTerminal interface

The i ConsumerTerminal interface allows the retailer to gain information about the consumer
domain's terminal configuration, and applications.

— get Terminal I nfo() — allows the retailer to retrieve information about the consumer
domain's terminal. Information on the terminal id, type, network access points, and user
applications can be accessed.

This interface is registered with the retailer using the setUserCtxt() operation, and is available for use
during the current access session.

8.1.2.7 i_ConsumerAccessSessionInfo interface

The i_ConsumerAccessSessionInfo interface allows the retailer to inform the consumer of changes
of state in other access sessions with the consumer, (e.g. access sessions with the same consumer
which are created or deleted). The consumer is only informed about access sessions which they are
involved in.

- newAccessSessi onl nf o() — This (oneway) operation is used by the retailer to inform the
consumer about a new access session in which the consumer is involved.

- endAccessSessi onl nf o() — This (oneway) operation is used by the retailer to inform the
consumer that another access session has ended.

- cancel AccessSessi onl nf o() — This (oneway) operation is used to inform the consumer an
access session has been cancelled by the retailer.

- newSubscri bedSer vi cesl nf o() — This (oneway) operation is used by the retailer to inform
the consumer that they have been subscribed to some new services.

This interface is not registered with the retailer using the setUserCtxt() operation. Instead the
consumer domain must register this interface using the i_RetailerNamedAccess interface. It can be
registered for use both inside and outside of an access session.

8.1.2.8 i ConsumerSessionInfo Interface

The i_ConsumerSessionInfo interface allows the retailer to inform the consumer of changes of state
in service sessions which the consumer is involved in. Information operations are invoked whenever
a change to the service session affects the consumer, (i.e. the session is suspended), but not when the
change does not affect the consumer, (i.e. another party in the session leaves). This interface is
informed of changes in all service sessions involving the consumer, and not just those associated
with this access session.

The following operations inform the consumer that:

- newSessi onl nf o() — a new service session has been started;

- endSessi onl nf o() — an existing service session has ended;

- endMyPar ti ci pati onl nf o() — the consumer's participation in the session has ended;
- suspendSessi onl nf o() — an existing service session has been suspended;

- suspendM/Parti ci pati onl nf o() — the consumer's participation in the service session has
suspended;

- r esumeSessi onl nf o() — a suspended session has been resumed
- resumeMyParti ci pati onl nf o() — the consumer's participation in the session has resumed;

- j oi nSessi onl nf o() — the consumer has joined a service session.

Q series — Supplement 28 (12/1999) 41

This interface can be registered with the retailer using the setUserCtxt() operation. If so, the interface
is available during the current access session only.

It can be registered at any other time with the retailer using the register interface operations on the
1_RetailerAccess interface. It can be registered for use both inside and outside of an access session.

8.1.2.9 i RetailerNamedAccess interface

i_RetailerNamedAccess interface allows a known consumer access to his subscribed services. The
consumer uses it for all operations within an access session with the retailer. A reference to this
interface is returned when the consumer has been authenticated by the retailer and an access session
has been established. It is returned by calling requestNamedAccess() on the i1 RetailerInitial
interface.

It provides the following operations (which are inherited from i ProviderNamedAccess interface):

- setUserCtxt() — allows the consumer to inform the retailer about interfaces in the consumer
domain, and other consumer domain information. (e.g. user applications available in the
consumer domain, operating system used, etc.). It should be called immediately after
receiving the reference to this interface, or subsequent operations may raise an exception.

- listAccessSessions() — allows the consumer in this access session to find out about other
access sessions that he has with this retailer: (e.g. A consumer is at work, but has an access
session set up at home which runs an active security service session).

- endAccessSession() — allows the consumer to end a specified access session, either the
current one, or another, found using listAccessSessions(). The consumer can also specify
some actions to do if there are active service sessions.

- getUserInfo() — gets the consumer's username, and other properties.

- listSubscribedServices() — lists the services to which the consumer is subscribed. Scoping
of subscribed services can be done using property lists. The operation returns sufficient
information for the consumer to start a particular (subscribed)service.

- discoverServices() — lists all the services available from the retailer. The consumer can
scope the list by supplying some properties that the service should have, and a maximum
number to return. A reference to an i DiscoverServiceslterator interface can be used to
retrieve the remaining services.

— getServicelnfo() — returns the service information for a particular service (identified in the
invocation by its serviceld). Similar information (t ServiceProperties) can be obtained with
the listSubscribedServices or discoverServices, but the getServicelnfo is a simplified
version, targeting on a single service, and independently from the subscription status.

- listRequiredServiceComponents() — retrieves information on how to download the
application software in case of Java applets. The terminallnfo is included as an IN parameter
to avoid an explicit call of the getTerminallnfo operation. For example in case of Java applet
download, the property list will contain an entry with a name-value pair describing the URL
of the Java applet; the name will be "URL" and the value the string value of the URL.

— listServiceSessions() — lists the service sessions of the consumer. The request can be scoped
by the access session, and session properties, (e.g. active, suspended, service type, etc.).

- getSession(Models/InterfaceTypes/Interface/Interfaces)() — all retrieve information on a
particular session.

— listSessionInvitations() — lists the invitations to join a service session that have been sent to
the consumer.

- listSessionAnnouncements() — lists the service sessions with have been announced. It can
be scoped by some announcement properties.

- startService() — allows the consumer to start a service session.

42 Q series — Supplement 28 (12/1999)

endSession() — allows the consumer to end a service session.
endMyParticipation() — allows the consumer to end his participation in a service session.
suspendSession() — allows the consumer to suspend a service session.

suspendMyParticipation() — allows the consumer to suspend his participation in a service
session.

resumeSession() — allows the consumer to resume a service session.

resumeMyParticipation() — allows the consumer to resume his participation in a service
session.

joinSessionWithInvitation() — allows the consumer to join a service session, to which he
has been invited.

joinSessionWithAnnouncement() — allows the consumer to join a service session, which
has been announced.

replyTolnvitation() — allows the consumer to reply to an invitation. It can be used to inform
the service session to which they have been invited, that they will/will not be joining the
session, or to send the invitation somewhere else. (It does not allow the consumer to join the
session.)

It also supports the following operations inherited from i_ProviderAccessInterfaces interface. These
are useful for accessing retailer specific interfaces:

8.1.2.10

getInterfaceTypes() — allows the consumer to discover all of the interface types supported
by the retailer domain.

getInterface() — allows the consumer to retrieve an interface reference, giving the interface
type, and properties.

getlnterfaces() — allows the consumer to retrieve a list of all the interfaces, supported by the
retailer.

registerInterface() — allows a consumer interface to be registered for use within the current
access session. The registrations ends when the access session ends, or when the
unregisterInterface() operation is called. An interface index is returned to allow the interface
to be unregistered.

registerInterfaceOQutsideAccessSession() — allows a consumer to register an interface for
use outside an access session. (The interface registered should still be available when no
access session exists between the consumer and retailer.)

listRegisteredInterfaces() — allows the consumer to list the interfaces which have been
registered by them with the retailer. The list defines which interfaces are registered for use
inside an access session, and which for use outside.

unregisterInterface() — allows the consumer to unregister an interface, so that the retailer
will not attempt to use that interface, (either inside or outside the access session).

i_RetailerAnonAccess interface

The i_RetailerAnonAccess interface allows an anonymous consumer access to the retailer's services.
The anonymous consumer uses it for all operations within an access session with the retailer. This
interface is returned when the consumer calls requestAnonymousAccess() on the i_RetailerInitial
interface.

Currently the operations for this interface are not defined. It will support operations similar to those
of the i_RetailerNamedAccess interface.

Q series — Supplement 28 (12/1999) 43

8.1.2.11 i DiscoverServiceslterator

The 1 DiscoverServiceslterator interface is returned by calls to the discoverServices() operation.
This operation is used to retrieve a list of services supported by the retailer which match a set of
properties. The list generated by this operation may be too large to return as an out parameter. This
interface allows the list to be retrieved in digestible chunks by the consumer. Each call to
discoverServices() returns a new instance of this interface.

— maxLeft() — The consumer can find out how many unseen services are left.

- nextN() — The consumer can indicate that he wants to get information about the next n
services.

— destroy() — The consumer informs the retailer that the interface is no longer needed.

8.1.3 Available outside an Access Session if Registered

The consumer can register some his interface for use by the retailer outside of the current access
session. An interface can be registered using the registerInterfaceOutside AccessSession() operation
on the i RetailerNamedAccess interface. If registered, the retailer will retain a reference to the
interface when the consumer/retailer end the current access session. The retailer can invoke
operations on this interface without an access session being present.

The retailer will not use the interface registered until the access session in which it was registered
has ended. They will continue to use the interface until the interface is unregistered. If another access
session is established, the retailer will still invoke operations on the registered interface, in addition
to new interfaces provided as part of the new access session.

— 1_Consumerlnitial. This interface allows the retailer to initiate an access session with the
consumer. It also allows the retailer to send invitations to the consumer outside of an access
session.

— 1_ConsumerTerminal. The retailer will use this interface to access terminal configuration
information, if necessary. See previous description.

— 1_ConsumerAccessSessionInfo. The retailer will use this interface to inform the consumer of
changes to any of their access sessions. See previous description.

— i_ConsumerSessionInfo. The retailer will use this interface to inform the consumer of
changes in state to any of their service sessions. See previous description.

8.1.3.1 i_Consumerlnitial Interface

The i_Consumerlnitial interface allows the retailer to contact the consumer outside of an access
session. It can be used to request that the consumer establish an access session with the retailer; and
to invite a user to join a service session.

This interface is only available to the retailer if the consumer has registered it during an access
session, (using the registerInterfaceUntilUnregistered() operation, on the i RetailerNamedAccess
interface). It is NOT available through a broker, as the i Retailerlnitial interface is.

The following operations are available:
— request Access() — allows the retailer to request the consumer to set up an access session.

— i nviteUser Wt hout AccessSessi on() — allows the retailer to send an invitation to the
consumer while he is not involved in an access session with the retailer.

— cancel I nvi t eUser Wt hout AccessSessi on() — allows the retailer to cancel an invitation
sent to the consumer.

44 Q series — Supplement 28 (12/1999)

8.2 User-Provider Interfaces

The interfaces defined above are for use over the Ret-RP. The interface names used include the
names Consumer and Retailer in order to identify that they are for use over the Ret-RP. The
descriptions above include all of the operations that are used over Ret-RP.

Other reference points will want to use similar interfaces as those defined above, for access related
activities, (e.g. establishing an access session, starting services, etc.). In order to allow other
reference points to re-use interfaces and operations, a set of generic access interfaces are defined.
These interfaces support the access session roles as defined in 5.4 of this Supplement. The roles
supported are access user and access provider. These interfaces can be recognized by the prefix
1_User ori_Provider.

The interfaces defined for use over Ret-RP have been defined above, including all of the inherited
operations. All of the i Consumer and i_Retailer interfaces are inherited from corresponding 1 User
and 1 Provider interfaces. Any specializations for the Ret-RP are defined in the i Consumer /
1_Retailer interfaces. However, no specializations are defined at present.

The figures below define the inheritance hierarchy for both Ret-RP interfaces, and the generic User-
Provider interfaces.

8.2.1 User Interfaces

‘ i_UserAccessGetlnterfaces ‘

/\

‘ i_UserAccess ‘ ‘ i_Userlnvite ‘
‘ i_ConsumerAccess ‘ ‘ i_Consumerlnvite ‘
‘ i_UserTerminal ‘ ‘ i_UserAccessSessionInfo ‘ ‘ i UserSessionInfo ‘ ‘ i Userlnitial ‘

/\ /\ /A /A

‘ i_ConsumerTerminal ‘ ‘ i_ConsumerSessionInfo‘ ‘ i_Consumerlnitial ‘

i_ConsumerAccessSessionInfo

T11111760-01

Figure 8-1 — Consumer interfaces inherited from User interfaces

Figure 8-1 shows the consumer interfaces, and the user interfaces that they inherit from. The user
and consumer interfaces have a simple mapping, (all the consumer interfaces inherit from a
correspondingly named user interface). All of the user interfaces define the operations that are
described for the consumer interfaces in 8.1. The only exception to this is the i UserAccess interface
that inherits all of this operation from i _UserAccessGetInterfaces. This is to allow other interfaces to
re-use the operations to retrieve interfaces.

Q series — Supplement 28 (12/1999) 45

8.2.1.1 i UserAccess

This interface inherits from the abstract interface i UserAccessGetinterfaces, and defines the
following operation:

- cancelAccessSession()

8.2.1.2 i Userlnvite
This interface defines the following operations:
- inviteUser()

- cancellnviteUser()

8.2.1.3 i UserTerminal
This interface defines the following operation:

- getTerminallnfo()

8.2.1.4 i UserAccessSessionlnfo

This interface defines the following operations:
- newAccessSessionInfo()

- endAccessSessionInfo()

- cancelAccessSessionInfo()

- newSubscribedServicesInfo()

8.2.1.5 i UserSessionInfo

This interface defines the following operations:
- newSessionInfo()

- endSessionInfo()

- endMyParticipationInfo()

- suspendSessionInfo()

- suspendMyParticipationInfo()

- resumeSessionInfo()

- resumeMyParticipationInfo()

- joinSessionInfo()

8.2.1.6 i Userlnitial

This interface defines the following operations:
- requestAccess()

- inviteUserOutsideAccessSession()

- cancellnviteUserOutsideAccessSession()

46 Q series — Supplement 28 (12/1999)

8.2.2 Provider interfaces

Figure 8-2 shows the retailer interfaces, and the provider interfaces that they inherit from.

i_ProviderAccessGetlnterfaces i_ProviderAccessRegisterInterfaces

‘i_ProviderAccessInterfaces ‘

i_ProviderAccess ‘

i_ProviderNameAccess ‘ ‘ i_ProviderAnonAccess ‘
‘ i_RetailerAccess ‘ ‘ i_DiscoverServicesIterator‘
‘ i_Providerlnitial ‘ ‘ i_ProviderAuthenticate ‘
i RetailerNamedAccess ‘ ‘ i RetailerAnonAccess ‘ ‘ i_Retailerlnitial ‘ ‘ i_RetailerAuthenticate ‘
T11111770-01

Figure 8-2 — Retailer interfaces inherited from Provider interfaces

The inheritance hierarchy for the i RetailerNamedAccess and i RetailerAnonAccess interface is
complex. Both inherit from i RetailerAccess. This interface defines Ret-RP specific operations that
are common to both interfaces. (Currently no operations are defined here.)

i_RetailerNamedAccess also inherits from i ProviderNamedAccess, which defines the operations
available for the generic access provider role, where the user domain supports a known user.
i_ProviderNamedAccess defines all of the operations offered by i RetailerNamedAccess.

1_RetailerAnonAccess inherits from i_ProviderAnonAccess, which defines the operations available
for the generic access provider role, where the user domain supports an anonymous user. Currently,
1_ProviderAnonAccess only inherits operations from i_ProviderAccess.

i_ProviderAccess interface defines the generic access provider role, for reuse in other reference
points. It is inherited by both i ProviderNamedAccess and i ProviderAnonAccess. Currently, no
operations are defined for this interface. In the future, some of the operations defined for
1 _ProviderNamedAccess will be moved here, as they are common to both interfaces, being
appropriate to known and anonymous users.

Q series — Supplement 28 (12/1999) 47

8.2.2.1 i _ProviderNamedAccess

This interface defines the following operations, and inherits others from i1 _ProviderAccess:

- setUserCtxt()

- listAccessSessions()

— endAccessSession()

— getUserInfo()

— listSubscribedServices()

— discoverServices()

— getServicelnfo()

— listRequiredServiceComponents()

— listServiceSessions()

— getSession(Models/Interface Types/Interface/Interfaces)()
listSessionInvitations()

— listSessionAnnouncements()

— startService()

— endSession()

— endMyParticipation()

— suspendSession()

— suspendMyParticipation()

— resumeSession()

— resumeMyParticipation()

— joinSessionWithInvitation()

— joinSessionWithAnnouncement()

— replyTolnvitation()

8.2.2.2 i ProviderAnonAccess

This interface defines no operations. It inherits from i_ProviderAccess.

8.2.2.3 i ProviderAccess

This interface defines no operations. It inherits from i ProviderAccessInterfaces.

8.2.3 Abstract interfaces

This subclause describes the abstract interfaces which are inherited in several retailer and consumer
interfaces. They are not exported over Ret. The main purpose of these interfaces is to provide a
generic mechanism for registration and retrieval of interfaces in a certain domain.

- i _UserAccessGetInterfaces — allows the provider to retrieve all interfaces, only
interfaces that have certain properties or interface types of the current access session.

- i _ProviderAccessGetlInterfaces - allows the user to retrieve all interfaces, only
interfaces that have certain properties or interface types of the current access session.

- i _Provider AccessRegi sterinterfaces - allows the user to register interfaces for the
lifetime of an access session or permanent. It also offers an operation to unregister
interfaces.

- i _ProviderAccesslnterfaces - inherits the previous two and does not offer additional
functionality.

48 Q series — Supplement 28 (12/1999)

8.2.3.1 i_UserAccessGetlnterfaces

This interface defines the following operations:
— getlnterfaceTypes()

- getInterface()

— getlnterfaces()

8.2.3.2 i_ProviderAccessGetInterfaces
This interface defines the following operations:
— getlnterfaceTypes()

- getlnterface()

- getlnterfaces()

8.2.3.3 i_ProviderAccessRegisterInterfaces

This interface defines the following operations:

— registerlnterface()

— regi sterlnterfaces()

— regi sterlnterfaceQutsi deAccessSessi on()
— regi sterlnterfacesQutsi deAccessSessi on()
— | i st Regi steredlnterfaces()

— unregi sterlnterface()

— unregi sterlnterfaces()

8.2.3.4 i ProviderAccessInterfaces

This interface inherits from i _ProviderAccessGetlInterfaces and
i _Provi der AccessRegi st er I nterfaces with no additional operations.

8.3 Common Information View

This subclause describes common types of information, which have a high potential or re-use (in
other reference points).

t Userld F

| t_UserProperties + |

User Provider

| * t UserCtxt + |

Figure 8-3 — Relationship and Cardinality of common types between User and Provider

T11111780-01

Q series — Supplement 28 (12/1999) 49

8.3.1 Properties and Property Lists

Properties are attributes or qualities of something. In Ret-RP, properties are used to assign a quality
to something, or search for those something that have that particular quality.

The something's for Ret-RP can be users, services, sessions, interfaces, etc. Each of these will have
different properties, and each property may have a range of different values and structures. (Also for
some it is now clear what properties will be defined for them, and some properties will be
retailer-specific.)

With this in mind, the type t _Property has been chosen to represent a property. Its IDL definition is
taken from the CORBA Object Service for Trading, and copied into the SPFEECommonTypes
module.

/1 nodul e SPFEEComonTypes
typedef string t_PropertyNaneg;
typedef sequence<t PropertyNane> t_ PropertyNaneLi st;
typedef any t_PropertyVal ue;
struct t_Property {
t _PropertyNane nane;
t _PropertyVal ue val ue;
b
typedef sequence<t_ Property> t_Propertyli st;

enum t _HowManyPr ops {none, somne, all};

union t_SpecifiedProps switch (t_HowwvanyProps) {
case sone: t_PropertyNaneLi st prop_nanes;
case none;:
case all: octet dummy;

}
typedef string Istring;

As can be seen above, the t _Property is a structure consisting of a name, and a value. The name is
an international string, and the value is an any. This format allows the recipient of the property to
read the string, and match it against the properties they know about. If it is a property they know,
then they will also know the format of the value. If they do not know the property, then they should
not read the value. (The any value contains a typecode that can be looked-up in the interface
repository to find the type of the value, but this should be unnecessary most of the time.)

The t _Property, and t _PropertyLi st are used to attribute qualities to entities, when we do not
wish to define what all of those qualities are at present. (Some of these qualities may also be retailer-
specific, and so they can also use these types to extend the Ret-RP.)

For example, some characteristics about the terminal are sent to the retailer after an access session is
established. The type t_Terninal Properties is defined as a property list to allow these
characteristics to be sent to the retailer. It is not clear precisely what characteristics need to be sent to
the retailer for all types of terminal, and some may need to send different information than others.

Ret-RP defines a particular property for t _Ter ni nal Properti es, named: " TERM NAL | NFO' which
has a value of type t _Ter mi nal I nf o. t _Ter ni nal | nf o is a structure that holds some information on
terminal characteristics. When the retailer reads the t_ Terminal Properties, and finds a
t _Property with the name "TERM NAL | NFO', then it can look at the value to find the terminal
characteristics. The value will still be of type any, but is formatted with the information in the
t _Ter m nal | nf o structure.

However, t _Ter ni nal | nf o may not be complete, or relevant for all types of terminal. If it does not
contain sufficient information, then a future release of Ret-RP, or a retailer, can define another
property, e.g. named " ADDI TI ONAL TERM NAL | NFO', with an appropriate value format, to contain

50 Q series — Supplement 28 (12/1999)

the extra characteristics. The retailer will then receive both properties in the t _Ter ni nal Properti es
list.

If t_Terminallnfo contains irrelevant information, a retailer can define an entirely different
property, and the consumer should send that instead of the " TERM NAL | NFO' property.

Ret-RP defines property names and values where it is possible to do so. For some property lists, e.g.
t _InterfaceProperties, it is up to the consumer/retailer to determine properties that can be
associated with it.

/1 nodul e SPFEEComonTypes
enum t _Whi chProperties {
NoPr operti es,
SonePr operti es,
SonePr operti esNanesOnl vy,
Al'l Properties,
Al'l Properti esNamesOnly

b

struct t_MatchProperties {
t Wi chProperties whichProperti es;
t _Propertylist properties;
H
t _MatchProperti es is used to scope the return values of some operations. These operations return
lists of something. t _Mat chProperti es is used to identify which something to return, based on the
something's properties. (E.g. for the operation listSubscribedServices, the something's are a
consumer's subscribed services. The t _Mat chProperties parameter defines the properties of the
subscribed services which are to be returned in the list.)

t _Mat chProperties contains a t_PropertylList, and an enumerated type t _\Wi chProperti es.
The t _PropertylLi st contains the properties which need to be matched. The t _Whi chProperties
identifies whether some, all or none of the properties must be matched, and whether the property
name and value, or just the property name must be matched.

For example, in the operation listSubcribedServices, if t _\Wi chProperti es is:

NoProperties, then the subscribed services don't have to match any properties, and so all
subscribed services are returned.

SomeProperties, then the subscribed services must match at least one property in the
t _PropertyList, (both the property name and value must match), to be included in the returned
list.

SonePr oper ti esNamesOnl y, then the subscribed services must match at least one property name in
the t _PropertylLi st to be returned. The values of the properties in the t _PropertyLi st may not be
meaningful, and should not be used.

Al | Properti es, then the subscribed services must match all the properties in the t _PropertyLi st,
(both the property name and value must match), to be included in the returned list.

Al l PropertiesNamesOnly, then the subscribed services must match all the property names in the
t _PropertyList to be returned. The values of the properties in the t _PropertyLi st may not be
meaningful, and should not be used.

8.3.2 User Information

/1 nodul e SPFEEComonTypes

typedef Istring t_Userld,;

typedef Istring t_User Nane;

typedef t_PropertylList t_UserProperties;

Q series — Supplement 28 (12/1999) 51

t _User | d identifies the user to the retailer. It is unique to this user within the scope of this retailer. It
is used in r equest NamedAccess(), and is returned by get User I nfo(). The t _Userld does NOT
contain the name of the retailer, and so cannot be used to contact the retailer. It may be sent to a
broker/naming service when attempting to contact a retailer along with the retailer name.

t _UserProperties is a sequence of t _User Property. It contains information about the user, that
they wish to pass to the retailer. The following property names are defined for t _User Property.
Other property names are allowed, but are retailer specific.

8.3.2.1

/1 Property Nanes defined for t_UserProperties:

/1 nane: " PASSVWWORD"

/1 value: string

/'l use: user password, as a string.

/1 nane: "SecurityContext"

/1 val ue: opaque

/'l use: to carry a retailer specific security context
/1 e.g. could be used for an encoded user password.

e_UserDetailsError Exception

/1 nodul e SPFEEComonTypes
enum t_User Det ai | sError Code {
I nval i dUser Nane,

I nval i dUser Property

b

exception e_UserDetail serror {
t _UserDetail sérrorCode errorCode;
t _User Nanme nane;
t _PropertyErrorStruct propertyError;

}s

The e_User Det ai | sError exception is defined for operations which require a t_UserDetail s
parameter. (e.g. inviteUserReq() on usage part of Ret-RP). The exception is raised if the
t _User Nane, or thet User Properti es are invalid.

The following error codes can be used to define the problem encountered:

52

InvalidUserName:

The t _User Nanme parameter does not contain a valid party identifier. (This can be because
the t _User Nane is wrongly formatted, or the t _User Name given does not refer to any known
user.)

The t _User Nanme nane variable in the exception contains the value of the t_User Nane
parameter passed in the operation invocation.

InvalidUserProperty:

The t _User Properti es parameter is in error. The propert yError element of the exception
describes the type of error in the user property. If the propertyError contains
I nval i dPropertyNane, then the property name is not legal for this operation. If it contains
I nval i dPropertyVal ue, then the value is not a legal value for the property name. If the
propertyError contains UnknownPr opertyName, then the session does not recognize the
property name. Some sessions may ignore t _PropertyNane's that they do not recognize.
They should not process t _PropertyVal ue associated with the t _PropertyNane but may
process the other t _Property's in the t _User Properti es parameter. Such sessions do not
need to raise the exception with this error code.

Q series — Supplement 28 (12/1999)

8.3.3 User Context Information

/1 nodul e SPFEEComonTypes
typedef Istring t_User Ct xt Nane;

/! nodul e SPFEEProvi der Access
struct t_UserCtxt {

SPFEECommoNnTypes: : t _User Ct xt Name ct xt Name;
SPFEEAccessCommopnTypes: :t _AccessSessi onl d asld;

hj ect accessl R, /1 type: i _UserAccess
hject termnal IR /1l type: i _UserTerm nal
hject invitel R /1 type: i_Userlnvite

hj ect sessionlnfol R /1 type: i_UserSessionlnfo
SPFEEAccessConmonTypes: :t_Term nal Config term nal Confi g;

s

t _User Ct xt informs the retailer about the consumer domain, including the name of the context,
interfaces available during this access session, and terminal configuration information The
t _User Ctxt is only used within the access part of Ret-RP, but is included here to aid the read in
understanding the t _User Ct xt Name. A full description is given in 8.4.

t _User Ct xt Name is a name given to this consumer context. It is generated by the consumer domain.
It is used to distinguish between access sessions to different consumer domains/terminals. When
listing the access sessions, the t _User Ct xt Name is returned, (along with the t AccessSessionld), as
the former should be a more human readable name for the 'terminal' that the access session is
connected to.

8.3.4 Usage related types
8.3.4.1 t Sessionld

/1 nodul e SPFEECommonTypes
typedef unsigned | ong t_Sessionld;

All operations on the party domain interfaces, (incl. all Exe's and Info's) include a t _Sessi onl d
parameter.

This allows the party domain to identify the service session sending each operation request. It is long
(32 bits). The t_Sessionld is the same as the sessionld provided by the start Service(), or
j oi nSessi on() operation for this session. (i.e. the id appearing on the listSessions list in the access
part matching this t_Sessi onl d will refer to the same session.) If the party domain does not
recognize the t_Sessionld, it may raise a PD_InvalidSessionld error code in the
e_Part yDomai nError exception.

8.3.4.2 t_ParticipantSecretld

/1 nodul e SPFEEComonTypes
typedef sequence<octet, 16> t_Partici pant Secretl d;

All operations on the provider domain interfaces of the service session, (incl. all Requests) include a
t _ParticipantSecretld parameter. This type is also returned by requests to start, and join a
service session.

This allows a service session to identify the sender of each operation request. It is a 128-bit key. The
format of the key is not defined, other than all zeros assumes the participant does not know or does
not require a key. The session may raise an InvalidParticipantSecretld error code in the
e_UsageError exception, if a key is necessary to make a request.

The t _Partici pant Secretld is provided so that sessions can be implemented using only a single
interface for all the participants. The session can still be reasonably assured that the request comes
from the identified user, and not a different user.

Q series — Supplement 28 (12/1999) 53

It is not intended that the t _Parti ci pant Secret|d is used as the primary security mechanism.
CORBA security, or other security contexts should still be used to underlie the party
domain-provider domain interactions.

8.3.5 Invitations and Announcements

Invitations allow a session to ask a specific end-user to join a 'running' session. Invitations are
delivered to the consumer domain for the end-user, if an access session exists. If no access session
exists with the consumer domain, the invitation may be delivered to a 'pre-registered' interface, or
stored until an access session is established. They contain sufficient information for the user to:
identify the user that requested the invitation be sent; find and join the session, or refuse. (All of
these operations are defined across the access part of Ret-RP, and the retailer is always involved in
allowing the consumer to find and join the session.)

/1 nodul e SPFEEAccessComonTypes
typedef unsigned long t_Invitationld;
typedef SPFEECommonTypes::Istring t_lnvitati onReason;

struct t_InvitationOrigin {

SPFEEConmonTypes: :t_Userld user | d;
SPFEEConmonTypes: :t_Sessionld sessionl d;
}
struct t_Sessionlnvitation {
t Invitationld id;
SPFEEConmonTypes: :t_Userld i nviteeld;
t _Sessi onPur pose pur pose;
t _Servicelnfo servi cel nf o;
t _Invitati onReason reason;
t InvitationOigin origin;
SPFEEConmonTypes: :t_Propertyli st i nvProperties;
}

typedef sequence<t_Sessionlnvitation> t_InvitationList;

/1 nodul e SPFEEConmonTypes

enumt _InvitationRepl yCodes {
SUCCESS, UNSUCCESSFUL, DECLI NE, UNKNOW, ERROR,
FORBI DDEN, RI NG NG TRYING STORED, REDI RECT, NEGOTI ATE,
BUSY, TI MEQUT

b

typedef t_PropertyList t_lnvitationReplyProperties;

struct t _InvitationReply {
t _Invitati onRepl yCodes reply;
t _Invitati onRepl yProperties properties;
H
t _Sessionl nvitation describes the service session to which the consumer has been invited, and
provides a t_Invitationld to identify this invitation when joining. (It does not give interface
references to the session, nor any information which would allow the consumer to join the session
without first establishing an access session with this retailer.) It also provides at _User1d with the
id of the invited user. The consumer domain can check that the invitation is for an 'end-user' that is
known to this domain.

t _Sessi onPur pose is a string describing the purpose of the session. A session purpose may be
defined when the session is started (through t _St art Ser vi ceSSPr oper ti es), or during the session.

t _Servicelnfo is the subscribed service that the consumer can use to join the session. It is
described in 8.4.

54 Q series — Supplement 28 (12/1999)

t_lnvitationReason is a string describing the reason that this invitation was sent to the invited
user. It can be defined by the party which requested the invitation, or by the session.

t _InvitationOrigin is a structure defining where the invitation has been generated. It contains the
userld of the user that started the session, and their session id for the session.

A t_InvitationReply is returned which allows the consumer to inform the retailer of the action
they will take regarding the invitation. The following reply codes are defined:

SUCCESS — the consumer agrees to join the service session. (The consumer will need to
establish an access session before they can join the service session. (This does NOT have to
be established from the terminal that received the invitation.) They will then use
joi nSessi onWthlnvitation() on the i _Retail er NamedAccess interface to join the
session.) The consumer can use r epl yTol nvi tati on() to 'change their mind', and not join
the session, but they should really have replied with R NG NG or another reply code rather
than SUCCESS.

UNSUCCESSFUL — the consumer couldn't be contacted through this operation. (They will not
be joining the session due to this invitation. However, if the same invitation was sent to
multiple interfaces, a reply from another interface may indicate that the consumer will join
the session.)

DECLI NE — the consumer declines to join the session.

UNKNOWN — the consumer that has been sent the invitation is not known by this interface.
(The t _Sessi onl nvitation contains a t_Userld to allow the consumer domain to check
the invitation is for a user known to this domain.)

FAI LED - the consumer is unable to join the service session. (No reason is given. The
invitation may be badly formatted, or the consumer may be unable to join sessions.)

FORBI DDEN - the consumer domain is not authorized to accept the request.

RI NG NG - the consumer is known by this domain and is being contacted. The retailer should
not assume that the consumer will join the session. (If the consumer wishes to join the
session then they can do so as describe in SUCCESS above. If they wish to inform the retailer
about their status regarding this invitation, they can use repl yTol nvitation() on the
i _Retai | er NanmedAccess interface.)

TRYI NG — the consumer is known by this domain, but cannot be contacted directly. The
consumer domain is performing some action to attempt to contact the consumer. The retailer
can treat this as RI NG NG.

STORED - the consumer is known by this domain, but is not being contacted at present. The
invitation has been stored for retrieval by the consumer. (The retailer can treat this as
RI NG NG, although it may be awhile before the consumer responds.).

REDI RECT — the consumer is known by this domain, but they are not available through this
interface. The retailer should use the address given in t _I nvitati onRepl yProperties, to
contact the consumer.

NEGOTI ATE — the consumer is known by this domain, but they are not being contacted at
present. The t _I nvi t ati onRepl yProperti es contains a set of alternatives that the retailer
could try in order to contact the consumer. (These alternatives are not defined by Ret RP,
and so are retailer specific at present.)

BUSY - the consumer cannot be contacted because they are 'busy'. This code should be
treated as for UNSUCCESSFUL.

Q series — Supplement 28 (12/1999) 55

- TI MEQUT — the consumer cannot be contacted, as the consumer domain has timed out while
trying to contact them. i.e. the consumer domain has a time out value for contacting the
consumer using the method for contacting them, (e.g. pop-up window, ringing phone), and
this time has expired. This code should be treated as for UNSUCCESSFUL.

These invitation reply codes have been taken from the Internet Engineering Task Force working
group, Multimedia Multiparty Session Control (MMUSIC) draft standard 'Session Initiation
Protocol'.

Announcements allow a session to publicize itself to a 'group' of end-users. The announcements are
not directed to a specific user, nor are they 'delivered' to the end-user. Announcements are stored by
the retailer domain until the consumer domain requests for a list of announcements. Announcements
are return to the consumer, depending upon the 'groups' to which the user belongs. (These are
defined by user properties, but no specific mechanism for defining announcement groups has been
specified by Ret-RP. Announcements contain sufficient information for the user to join the session.
(This operation is defined across the access part of Ret-RP, and the retailer is always involved in
allowing the consumer to find and join the session.)

Draft definition: The structure for announcements is draft only.

/1 nodul e SPFEEComonTypes
typedef t_PropertylList t_Announcemnent Properties;

struct t_Sessi onAnnouncenent {
t _Announcenent | d announcenent | d;
t _Sessi onPur pose sessi onPur pose;
t _Servicelnfo servicelnfo;
t _Announcenent Properties properties;

H
typedef sequence<t_Sessi onAnnouncemnent > t_Announcenent Li st;

/1 nodul e SPFEEAccessComonTypes
typedef unsigned | ong t_Announcenentl d;

t _Sessi onAnnouncenent describes the session that is being announced, and the 'group' of users that
the announcement is broadcast to. It is a structure containing the announcementld, the
sessionPurpose, the servicelnfo, and a list of announcement properties. No property names or values
are defined by Ret-RP for announcements. The announcement properties allow the retailers to define
their own types for announcements, which can be passed using the announcement operations defined
by Ret-RP.

t _Announcenent | d identifies an announcement to the consumer domain. The consumer domain can
request a list of announcements which are associated with this end-user. The t _Announcenent I d is
used by the consumer domain to distinguish between the announcements it receives. The ids for each
announcement can only be used by this user. They do not uniquely identify the announcement for all
consumers of a retailer.

56 Q series — Supplement 28 (12/1999)

8.4 Access Information View

This subclause describes the types of information passed across the Ret-RP. The types are passed in
operations defined in the access interfaces.

+ t UserInfo #

Consumer Retailer

- \J .
‘ Access Session

[
+ t_AccessSessionSecretld#

* t AccessSessiontld #

t ConsumerCtxt
T11111790-01

8.4.1 Access Session Information

/1 nodul e SPFEEAccessComonTypes
typedef unsigned | ong t_AccessSessi onl d;
typedef sequence<octet, 16> t_AccessSessionSecretld;

t AccessSessionld is used to identify an access session. The t AccessSessionld for the consumer's
current access session is returned by requestNamedAccess() or requestAnonAccess(). The
t AccessSessionld for other access sessions can be found using listAccessSessions() on the
1_RetailerNamedAccess interface. (Anonymous users can only have a single access session, and so
only a single t AccessSessionld). The t AccessSessionld is scoped by the consumer, i.e. for a single
consumer (t_Userld) all t AccessSessionld's are unique.

t AccessSessionSecretld is used to identify within which access session a request on the
requestNamedAccess() is made. Each access session of a consumer has a unique
t AccessSessionSecretld. It is returned by requestNamedAccess().

All operations on requestNamedAccess() take a t AccessSessionSecretld as their first parameter.
This parameter can be checked by the retailer to determine within which access session of the
consumer the request originated. This is useful when the behaviour of the request is dependant on the
consumer context, (e.g. startService() checks the consumer context to determine if this service can be
used).

t AccessSessionSecretld is only known within the access session it is created. It is not known to
other access sessions of the same consumer, and is not available through listAccessSessions(). This
is because it is being used to determine the access session within which the request is made. If
another access session gained the t AccessSessionSecretld of this access session, then it could use it
to pretend the request came from this access session. For this reason, it should not be displayed to a
human consumer, or other applications in the consumer domain. t AccessSessionSecretld is not
itself a security mechanism, as CORBA security is still needed to set-up security contexts between
the consumer and retailer domains. However, it does allow the retailer to easily discover the sender
of a particular request.

Q series — Supplement 28 (12/1999) 57

8.4.2 User Information

Most of the user related information is described in the common types section (see 8.3).

/1 nodul e SPFEEAccessComonTypes

struct t_Userlnfo {
SPFEEConmonTypes: :t_Userld userld;
SPFEECommonTypes: : t _User Nanme nane;
SPFEEConmonTypes: :t_User Properti es userProperties;

b

t _User | nfo describes the user. It contains the t _User I d, the user's name, and t _User Properti es.
It is returned by get User I nf o() on the i _Provi der Access interface.

8.4.3 User Context Information

/1 nodul e SPFEEConmonTypes
typedef Istring t_User Ct xt Nane;

/1 nmodul e SPFEEPr ovi der Access

struct t_UserCtxt {
SPFEEConmonTypes: : t _User Ct xt Nane ct xt Nane;
SPFEEAccessCommopnTypes: :t _AccessSessi onld asl d;

bj ect access|R; /1l type: i_UserAccess40
hject term nal I R /1 type: i_UserTerm nal
hject invitel R /1 type: i _Userlnvite

hj ect sessionlnfol R /'l type: i _UserSessionlnfo

SPFEEAccessCommonTypes: :t _Term nal Confi g term nal Confi g;
}
t _User C xt informs the retailer about the user and the consumer domain, including the name of the
context, interfaces available during this access session, and terminal configuration information

t _User Ct xt Name is a name given to this consumer context. It is generated by the consumer domain.
It is used to distinguish between access sessions to different consumer domains/terminals. When
listing the access sessions, the t _User Ct xt Name is returned, (along with the t AccessSessionld), as
the former should be a more human readable name for the 'terminal' that the access session is
connected to.

accessl Ris a reference to the i _User Access interface supported by the consumer domain for use
in this access session.

term nal | Ris a reference to the i _User Ter nmi nal interface supported by the consumer domain for
use in this access session.

i nvitel R is a reference to the i _User | nvite interface supported by the consumer domain for use
in this access session.

All of the preceding three interface references should be set to valid interfaces in the consumer
domain.

sessionlnfol R is a reference to the i _User Sessi onl nf o interface supported by the consumer
domain for use in this access session. It is not necessary to supply a reference for this interface.

t _Ternminal Confi g is a structure containing the terminal id and type; the network access point id
and type; and a list of terminal properties. Two property types have been defined t _Ter ni nal I nf o,
described below, and t ApplicationInfoList, a list of the user applications on the terminal.

40 The type written in the IDL of this parameter is the base class type. The actual type will depend on the
reference point used. In this case the retailer can expect the i Consumer<> type. See also remark at
requestNamedAccess(), output namedAccessIR.

58 Q series — Supplement 28 (12/1999)

t _Terni nal I nf o gives details on the type of terminal, operating system, etc.

/1l nodul e SPFEEAccessComonTypes
struct t_Term nal Info {
t _Term nal Type term nal Type;
string operatingSystem /1 includes the version
SPFEEConmonTypes: :t_PropertyLi st networkCards;
SPFEEConmonTypes: :t_Propertyli st devices;
unsi gned short nmaxConnecti ons;
unsi gned short nenorySi ze;
unsi gned short di skCapacity;

H
Draft definition: This structure is draft only and is currently under review (new version will be
provided for the revised answer).

t _Term nal Type is an enumerated type, giving the type of the terminal.
oper at i ngSyst emprovides the operating system type and version as a string.

net wor kCar ds and devi ces are property lists of the physical devices of the terminal. The property
names and values are not defined at present, so their use is retailer specific.

maxConnect i ons is the maximum number of network connections which can be supported by the
terminal.

menor ySi ze is the amount of RAM in Megabytes.
di skCapaci ty is the amount of disk storage in Megabytes.

8.4.4 Service and Session Information

/1l nodul e SPFEEAccessComonTypes
struct t_Servicelnfo {

t _Serviceld id;

t _User Servi ceNane nane;

t _ServiceProperties properties;

}
t _Servi cel nf o is a structure which describes a subscribed service of the consumer.

t _Serviceld is the identifier for the service. t _Serviceld is unique among all the consumer's
subscribed services. (Other consumer's may be subscribed to the same service, but will have a
different t _Servi cel d.) The t Serviceld value persists for the lifetime of a subscription.

t _User Servi ceNane is the name of the service as a string. The name is chosen by the subscriber
when they subscribe to the service. It is the name of the service displayed to the user.

t _ServiceProperties is a property list, which defines the characteristics of this service. They can
be used to search for types of service with the same characteristics, e.g. using di scover Ser vi ces()
on i_RetailerNamedAccess.) Currently, no properties have been defined for
t _Servi ceProperties, and so its use is retailer specific.

/1 nodul e SPFEEAccessComonTypes

struct t_Sessionlnfo {
SPFEEConmonTypes: :t_Sessionld id;
t _Sessi onPur pose pur pose;
SPFEEConmonTypes: :t_Partici pant Secretld secretld;
SPFEEConmonTypes: :t_Partyld nyPartyld;
t _UserSessionState state;
SPFEEConmonTypes::t_InterfacelList itfs;
SPFEEConmonTypes: :t _Sessi onMbdel Li st sessi onModel s;
SPFEEConmonTypes: :t_Sessi onProperti es properties;

Q series — Supplement 28 (12/1999) 59

t _Sessionl nfo is a structure, which contains information which allows the consumer domain to
refer to a particular session, when using interfaces within an access session
(e.g.i _Retail erNamedAccess). It also contains information for the usage part of the session,
including the interface references to interact with the session.

i d is the identifier for this session. It is unique to this session, among all sessions that this consumer
interacts with through this retailer. (i.e. if the consumer interacts with multiple retailers concurrently,
then they may return t _Sessi onl d's which are identical.)

purpose is a string containing the purpose of the session. This may have been defined when the
session is created, or subsequently by service specific interactions.

secret | d is an identifier that the consumer must use when interacting with interfaces on the session
which are defined by the SPFEE Session Model. (See Usage Part of the Ret-RP for more details.)

myPartyl d is the party identifier of this consumer. If the session is using the SPFEE Session Model,
with the MultipartyFS feature set, then this identifier will be used to identify this party. The
t _Partyl d's of other parties in the session are also available through MultipartyFS interfaces.

st at e is the session state as perceived by this consumer. It can be: User UnknownSessi onSt at e,
User Acti veSessi on, User SuspendedSessi on, User SuspendedPartici pation, Userlnvited,

User Not Partici pating. But as the session has just been started, it is likely to be
User Act i veSessi on.

itfs is a list of interface types and references supported by the session. (It may include service
specific interfaces for the consumer to interact with the session.

sessi onhbdel s is a list of the session models and feature sets that are supported by the session. It
may include interface references to interfaces supported for each feature set.

properti es is a list of properties of the session. Its use is retailer specific.

8.5 Access Interface Definitions: Consumer Domain Interfaces

This subclause describes in detail all the consumer interfaces supported over Ret RP. Each interface
and all its supported operations are defined.

Many of the operations are inherited from other interfaces. However, they are described here as
though they were defined on the Ret RP specified interfaces. Only the interfaces defined here must
be supported for the Ret RP. It is not necessary to support the same inheritance hierarchy as defined
previously in 8.2.

These are the interfaces supported by the consumer domain, which are available across the Ret RP:
— 1_Consumerlnitial

— 1_ConsumerAccess

— 1_ConsumerlInvite

— 1_ConsumerTerminal

— i_ConsumerSessionInfo

— 1_ConsumerAccessSessionInfo

8.5.1 i_Consumerlnitial Interface

/1 nmodul e SPFEERet Consunerlnitial
interface i _Consunerlnitial :
SPFEEUserInitial::i_Userlnitial

{

s

60 Q series — Supplement 28 (12/1999)

This interface is provided to allow a Retailer initiate an access session with the consumer. It also
allows the consumer to receive invitations outside of an access session.

The purpose of this interface is to provide an initial contact point for the retailer wishing to contact
the consumer. (So its purpose is similar to that of i _Retailerlnitial interface.) However, this
interface is only available to a retailer if the consumer had previously registered the interface for use
outside an access session. This is achieved using regi sterl|nterfaceQutsi deAccessSession
operation on the i _Ret ai | er NamedAccess interface.

The operations described in the following sections are all inherited into this interface from the
i _Userlnitial interface, which supports the generic user-provider roles. No Ret RP specific
specializations are defined for this interface.

The following operation signatures are taken from the module SPFEEUser | nitial . All unscoped
types need to scoped by SPFEEUser | nitial :: when used by clients of the i _Consumer|niti al
interface.

8.5.1.1 requestAccess()

voi d request Access (
int_Providerld providerld,
out t_AccessReply reply

);
Draft definition: This operation is draft only.

This operation allows the retailer to request that an access session be established between the
consumer and the retailer.

This operation only allows the retailer to request that an access session be established with the
consumer. It does not allow the access session to actually be established. In order to set up an access
session the consumer must contact the retailer, using the i _Retai l erlnitial interface, and request
that an access session is established.

The retailer passes his t _Providerld to the consumer. The consumer uses this to contact the
provider, and gain a reference to ani _Retail erlniti al interface.

The t _AccessRepl y parameter allows the consumer to inform the retailer of the action they will take
in response to the request. The following reply codes are defined:

- SUCCESS — the consumer agrees to establish an access session. (The consumer will establish
the access session as described above.)

- DECLI NE — the consumer declines to initiate an access session.
- FAI LED — the consumer is unable to establish an access session.

- FORBI DDEN — the consumer domain is not authorized to accept the request.

8.5.1.2 inviteUserAccessSession()

voi d inviteUserQutsideAccessSession (
int_Providerld providerld,
i n SPFEEAccessCommonTypes: :t_Sessionlnvitation invitation,
out SPFEECommonTypes::t _Invitati onReply reply

);
Draft definition: This operation is draft only.

Specifically, the t _Sessi onl nvitation and t_I nvitationReply parameters are defined according
to the Internet Engineering Task Force working group, Multimedia Multiparty Session Control
(MMUSIC) draft standard 'Session Initiation Protocol'.

This operation allows a retailer to send an invitation to join a service session, to a consumer that is
not involved in an access session.

Q series — Supplement 28 (12/1999) 61

This operation is used if the consumer has previously registered this interface for use outside of an
access session, and the consumer is not currently in an access session. If the consumer is in an access
session with this retailer, then invitations will not be sent using this operation, but will be delivered
to the i _Consuner Access interface involved in the access session.

In order to join the service session described by the invitation, the consumer must establish an access
session with the retailer, and use joinSessionWthlnvitation() operation on the
i _Retai | er NanedAccess interface. The service session cannot be joined without an access session
with the retailer.

t _Provi der | d identifies the retailer to the consumer.

t _Sessionl nvitation describes the service session to which the consumer has been invited, and
provides a t _Invitationld to identify this invitation when joining. (It does not give interface
references to the session, nor any information which would allow the consumer to join the session
without first establishing an access session with this retailer.) It also provides at _User|d with the
id of the invited user. The consumer domain can check that the invitation is for an 'end-user' that is
known to this domain. (For more details, see section on "Invitations and Announcements".)

A t_InvitationReply is returned which allows the consumer to inform the retailer of the action
they will take regarding the invitation. (For more details, see "Invitations and Announcements".)

8.5.1.3 cancellnviteUserOutsideAccessSession()

voi d cancel I nvi teUser Qut si deAccessSessi on (

int_ Providerld providerld,

i n SPFEEAccessCommonTypes::t _Invitationld id
) raises (

SPFEEAccessCommonTypes: :e_l nvitati onError
)

Draft definition: This operation is draft only.

Specifically, the t _Sessi onl nvitation and t_I nvitationReply parameters are defined according
to the Internet Engineering Task Force working group, Multimedia Multiparty Session Control
(MMUSIC) draft standard 'Session Initiation Protocol'.

This operation allows a retailer to cancel an invitation to join a service session which has been sent
to a consumer. The operation can be used to cancel invitations which have been sent both within an
access session, (using i nviteUser() on i _Consunerlnvite), and outside of an access session,
(using i nvi t eUser Qut si deAccessSessi on oni _Consuner|nitial).

t _Provi der | d identifies the retailer to the consumer.

t _Invitationld is used in together with the t _Provi der|d in order to determine the invitation to
be cancelled. (t _I nvi t ati onl d's are unique to a retailer only. If a consumer has received invitations
from several retailers, then invitations from different retailers may have the same id.)

If the t_Invitationld list is unknown to the consumer, then the operation should raise an
e_l nvitationError exception with the I nval i dl nvi tati onl d error code.

8.5.2 i ConsumerAccess Interface

/1 nodul e SPFEERet Consurmer Access
interface i _Consumer Access : SPFEEUser Access::i _UserAccess

{
b

This interface allows the retailer access to the consumer domain, during an access session. It
provides operations for the retailer to request references to interfaces supported by the consumer

62 Q series — Supplement 28 (12/1999)

domain. These interfaces include those defined by Ret RP, as well as other retailer specific
interfaces.

It is similar in purpose to i _Ret ai | er Access, in that it is available during the access session. It is
passed to the retailer domain as part of set User Ct xt () on i _Ret ai | er NanedAccess interface.

All the operations described below are inherited into this interface from the i _User Access interface,
which supports the generic user-provider roles. No Ret RP specific specializations are defined for
this interface.

The following operation signatures are taken from the module SPFEEUser Access. All unscoped
types need to scoped by SPFEEUser Access:: when used by clients of the i _ConsunerAccess
interface.

8.5.2.1 cancelAccessSession()

voi d cancel AccessSessi on(
in t_Cancel AccessSessi onProperties options
)

Draft definition: This operation is draft only.

cancel AccessSessi on() allows the retailer to end an access session with the consumer. The retailer
can use this operation to terminate an access session without the consumer's permission.

When this operation is invoked, the secure and trusted relationship between the consumer and
retailer has ended. Neither retailer nor consumer side interfaces available during the access session
can be used to make requests. (Interfaces which have been registered for use outside an access
session can still be used.)

options is a property list describing retailer specific options or action taken by the retailer when
cancelling the access session, (i.e. the retailer may have suspended the consumer's participation in
their active service sessions). Currently no specific property names and values have been defined for
t _Cancel AccessSessi onProperti es, and so its use is retailer specific.

This operation does not affect any contractual relationship between the consumer and retailer. The
consumer can still request the establishment of an access session, and other access sessions will not
have been terminated.

8.5.2.2 getInterfaceTypes()

voi d getlnterfaceTypes (

out SPFEEComonTypes::t _InterfaceTypelList itfTypes
) raises (

SPFEEConmonTypes: e _Li stError
)

This operation returns a list of the interface types supported by the consumer domain.

i tfTypes are all the interface types supported by the consumer domain. It is a sequence of
t _InterfaceTypeNane's, which are strings representing the interface types supported by the
consumer. i t f Types should include all the interface types that can be supported by the consumer.

If the i tf Types list is unavailable, because the interface types supported by the session are not
known, then the operation should raise an e_Li st Error exception with the Li st Unavai | abl e error
code.

Q series — Supplement 28 (12/1999) 63

8.5.2.3 getInterface()

void getlinterface (
i n SPFEEConmonTypes::t_InterfaceTypeNane itf Type,
i n SPFEEConmonTypes: :t_Mat chProperties desiredProperties,
out SPFEEComonTypes::t_InterfaceStruct itf
) raises (
SPFEECommonTypes: :e_InterfacesError,
SPFEECommonTypes: : e_PropertyError

)
This operation returns an interface, of the type requested, supported by the consumer domain.

t ype identifies the interface type of the interface reference to be returned.

The desiredProperties parameter can be used to identify the interface to be returned.
t _Mat chProperti es identifies the properties which the sessions must match. It also defines whether
a session must match one, all or none of the properties. Currently, no interface property names and
values have been defined for Ret RP, and its use is retailer specific.

itf is returned by this operation. It contains the t _I nterfaceTypeNane, an interface reference
(t _I nt Ref) and the interface properties (t _I nt er f acePr oper ti es) of the interface type requested.

If the consumer does not support interfaces of type, then the operation should raise the
e_InterfacesError, with the I nval i dl nt er f aceType error code.

If an invalid property is passed, the operation should raise a e_Pr opertyError.

8.5.2.4 getInterfaces()

void getlnterfaces (

out SPFEEComonTypes::t InterfacelList itfs
) raises (

SPFEEConmonTypes: e _Li stError
)

This operation returns a list of all the interfaces supported by the consumer.

i tfs is returned by this operation. It is a sequence of t _I nterfaceStruct structures which contain
the t_InterfaceTypeName, an interface reference (t_IntRef) and the interface properties
(t_InterfaceProperties) of each interface.

If the operation cannot, or refuses to, return the interfaces, it should raise the e_ListError
exception.

8.5.3 i _Consumerlnvite Interface

/1 nmodul e SPFEERet Consuner Access
interface i _Consunerlnvite

SPFEEUser Access: ;i _Userlnvite
{

H
This interface allows the retailer to send an invitation to the consumer requesting that they join a
service session. It can only be used during an access session to receive invitations. It is passed to the
retailer domain as part of set User Ct xt () on i _Ret ai | er NanmedAccess interface. If the consumer
wishes to receive invitations outside of an access session, then they must register the
i_Consumerlnitial interface.

The operations described in the following subclauses are all inherited into this interface from the
i _Userlnvite interface, which supports the generic user-provider roles. No Ret RP specific
specialisations are defined for this interface.

64 Q series — Supplement 28 (12/1999)

The following operation signatures are taken from the module SPFEEUser Access. All unscoped
types need to scoped by SPFEEUser Access:: when used by clients of the i _Consunerlnvite
interface.

8.5.3.1 inviteUser()

void inviteUser (
in SPFEEAccessComonTypes::t_Sessionlnvitation invitation,
out SPFEEComonTypes::t _Invitati onReply reply

) raises (
SPFEEAccessCommonTypes: :e_l nvitati onError

)

Draft definition: This operation is draft only. Specifically, the t_Sessionlnvitation and
t_lnvitationReply parameters are defined according to the Internet Engineering Task Force
working group Multimedia Multiparty Session Control (MMUSIC) draft standard 'Session Initiation
Protocol'.

This operation allows a retailer to invite the consumer to join a service session. It can only be used
during an access session.

t _Sessionl nvitation describes the service session to which the consumer has been invited, and
provides an t _I nvitationld to identify this invitation when joining. (It does not give interface
references to the session, nor any information which would allow the consumer to join the session
outside of an access session with this retailer.)

Ant_InvitationReply is returned which allows the consumer to inform the retailer of the action
they will take regarding the invitation. (For more details, see "Invitations and Announcements".)

The consumer may join the service session described by the invitation, from within this access
session, or they may establish another access session with this retailer. The same t _I nvi tationld
will refer to this invitation in both access sessions. The consumer should wuse
j oi nSessi onWthinvitation() on the i _Retail er NamedAccess interface. The service session
cannot be joined without an access session with the retailer.

8.5.3.2 cancellnviteUser()

voi d cancel I nviteUser (

i n SPFEEConmonTypes::t_Userld i nviteeld,
i n SPFEEAccessCommonTypes::t _lnvitationld id
) raises (

SPFEEAccessCommonTypes: :e_l nvitati onError
);
Draft definition: This operation is draft only. Specifically, the t_Sessionlnvitation and
t_lnvitationReply parameters are defined according to the Internet Engineering Task Force
working group Multimedia Multiparty Session Control (MMUSIC) draft standard 'Session Initiation
Protocol'.

This operation allows a retailer to cancel an invitation to join a service session which has been sent
to a consumer. The operation can be used to cancel invitations which have been sent both within an
access session, (using inviteUser() on i _Consumerlnvite), and outside of an access session,
(using i nvi t eUser Qut si deAccessSessi on oni _Consuner|nitial).

t _Invitationld is used in together with the t _Provi derId in order to determine the invitation to
be cancelled. (t _I nvi t ati onl d's are unique across all access sessions with the same retailer).

If the t_Invitationld list is unknown to the consumer, then the operation should raise an
e_lnvitationError exception with the I nval i dl nvi tati onl d error code. (It is possible to receive

Q series — Supplement 28 (12/1999) 65

a cancel I nvi t eUser before a corresponding i nvi t eUser, especially if the cancel is sent just after
the access session is established. This operation should raise the exception anyway.)

8.5.4 i ConsumerTerminal Interface

/1 nmodul e SPFEERet Consuner Access
interface i _Consuner Ter m nal

SPFEEUser Access: ;i _User Ter m nal
{

H
This interface allows the retailer to gain information about the consumer domain's terminal
configuration, and applications. It is passed to the retailer domain as part of set User Ct xt () on
i _Retail er NamedAccess interface. If the consumer wishes to allow the retailer access to terminal
information outside of an access session, then they must register this interface, using
regi sterlnterfaceQutsi deAccessSessi on() oni _Retai |l er NamedAccess.

Draft definition: This interface is draft only. Specifically, we may enhance this interface to allow a
retailer to ask more specific questions about the consumer domain.

The operations described in the following sections are all inherited into this interface from the
i _User Term nal interface, which supports the generic user-provider roles. No Ret RP specific
specialisations are defined for this interface.

The following operation signatures are taken from the module SPFEEUser Access. All unscoped
types need to scoped by SPFEEUser Access:: when used by clients of the i _Consumer Ter mi nal
interface.

8.54.1 getTerminallnfo()

voi d get Term nal | nf o
out SPFEEAccessCommonTypes::t_Ternminal Info terminallnfo
)

Draft definition: This operation is draft only.

This operation allows the retailer to receive all the information about the consumer domain's
terminal configuration, that the consumer wishes the retailer to have access to.

The operation returns the t_Terminal I nfo structure, giving details on the type of terminal,
operating system, etc. See 8.3.3, on "User Context Information".

8.5.5 i_ConsumerAccessSessionInfo Interface

/1 nmodul e SPFEERet Consuner Access
interface i _Consuner AccessSessi onlnfo

SPFEEUser Access: ;i _User AccessSessi onl nfo
{

H
This interface allows the retailer to inform the consumer of changes of state in other access sessions

with the consumer, (e.g. access sessions with the same consumer which are created or deleted). The
consumer is only informed about access sessions which they are involved in.

This interface is NOT automatically passed to the retailer, as part of setUserCixt() on
i _Retail er NamedAccess interface. If the consumer wishes to be informed of changes in other
access session, then they must register this interface, using registerinterface() on
i _Retail er NanedAccess. Then the retailer will tell the consumer about access session changes,
until this interface is unregistered, or the current access session ends.

If the consumer wishes to be informed of access session changes outside of an access session, then
they must register this interface, using registerlnterfaceQutsi deAccessSession() on

66 Q series — Supplement 28 (12/1999)

i _Retail er NanedAccess. The operations do not include a t _Provi der|d, so if this interface is
registered for use outside an access session, a separate interface must be registered with each retailer.
Retailers can not share this interface, because t _AccessSessi onl d is only unique within a retailer
for this consumer.

The operations described in the following sections are all inherited into this interface from the
i _User AccessSessi onl nf o interface, which supports the generic user-provider roles. No Ret RP
specific specialisations are defined for this interface.

The following operation signatures are taken from the module SPFEEUser Access. All unscoped
types need to scoped by SPFEEUserAccess:: when wused by clients of the
i _Consuner AccessSessi onl nf o interface.

8.5.5.1 newAccessSessionInfo()

oneway voi d newAccessSessionlnfo (
i n SPFEEAccessCommonTypes: :t_AccessSessi onl nfo accessSessi on
)

This operation is used to inform the consumer that a new access session has been established.

t AccessSessionlnfo contains the t_AccessSessionld of the new access session, the
t _User Ot xt Name so the consumer can tell which consumer domain/terminal the access session has
been established, and t _AccessSessi onProperti es which are a retailer specific property list that
can be used to provide more information on the access session.

8.5.5.2 endAccessSessionInfo()

oneway voi d endAccessSessionlnfo (
i n SPFEEAccessCommpnTypes: :t_AccessSessionld asld
)

This operation is used to inform the consumer that an access session has ended.

t _AccessSessi onl d identifies which access session has ended.

8.5.5.3 cancelAccessSessionInfo()

oneway voi d cancel AccessSessi onlnfo (
i n SPFEEAccessCommpnTypes: :t_AccessSessionld asld
)

This operation is used to inform the consumer that an access session has been cancelled by the
retailer. See 8.5.2.1, "cancelAccessSession()" for details. t _AccessSessionld identifies which
access session has been cancelled.

8.5.5.4 newSubscribedServicesInfo()

oneway voi d newSubscri bedServi ceslnfo (
i n SPFEEAccessCommopnTypes: :t_Servi celLi st services
)

This operation is used to inform the consumer that they have been subscribed to some new services.
(The consumer may have subscribed to the services through a service in this, or another access
session, or a consumer may have subscribed his users to a new service.)

t _ServiceList is a list of the services that the user has subscribed to. (It is a sequence of
t _Servi cel nf o structures, see "Service and Session Information".)

Q series — Supplement 28 (12/1999) 67

8.5.6 i_ConsumerSessionlnfo Interface

/' nmodul e SPFEERet Consumer Access
interface i _Consuner Sessi onl nfo

: SPFEEUserAccess::i_UserSessionInfo

{

H
This interface allows the retailer to inform the consumer of changes of state in service sessions
which the consumer is involved in. Information operations are invoked whenever a change to the
service session affects the consumer, (i.e. the session is suspended), but not when the change does
not affect the consumer, (i.e. another party in the session leaves). This interface is informed of
changes in all service sessions involving the consumer, and not just those associated with this access
session.

This interface can be passed to the retailer, as part of set User Ct xt () on i _Ret ai | er NanedAccess
interface. If the consumer does NOT wish to be informed of changes in their service sessions, then
this interface does NOT need to be passed in set User Ct xt (). (If it is not passed, the consumer can
still register this interface, using regi sterinterface() on i _Retail er NamedAccess. Then the
retailer will tell the consumer about service session changes, until this interface is unregistered, or
the current access session ends.).

If the consumer wishes to be informed of service session changes outside of an access session, then
they must register this interface, using registerlnterfaceQutsideAccessSession() on
i _Retail er NanedAccess. The operations do not include a t _Provi der|d, so if this interface is
registered for use outside an access session, a separate interface must be registered with each retailer.
Retailers can not share this interface, because t _Sessi onl d is only unique within a retailer for this
consumer.

The operations described in the following subclauses are all inherited into this interface from the
i _User Sessi onl nfo interface, which supports the generic user-provider roles. No Ret-RP specific
specialisations are defined for this interface.

The following operations are invoked when an action concerning this consumer is performed by the
service session. These operations help update the access session knowledge of the involvement of
the consumer in service sessions. They relate to events which eventually are usage specific (service
specific), but are considered generic enough to be propagated usefully to the access session.

Only actions associated with this consumer produce info operations, i.e. consumer A receives a
endMyPar ti ci pationl nfo() invocation if they end their participation in a session, but do not
receive any info if another consumer B ends their own participation. If B were to end A's
participation, then A would receive the info.

All i _Consuner Sessi onl nf o interfaces receive info invocations when an action in a service session
occurs. Usually one of these interfaces will be registered through each access session. It does not
matter in which access session the service session is being used, all i _Consumer Sessi onl nf o
interfaces will receive an info invocation.

The following operation signatures are taken from the module SPFEEUser Access. All unscoped
types need to be scoped by SPFEEUserAccess:: when wused by clients of the
i _Consuner Sessi onl nf o interface.

oneway void newSessionlnfo (
i n SPFEEAccessCommonTypes: :t _Sessi onl nfo session
);

- The consumer has started a new service session. sessi on contains information about the
new session that has been started.

68 Q series — Supplement 28 (12/1999)

8.6

oneway voi d endSessionlnfo (
i n SPFEEConmonTypes::t_Sessionld sessionld
)
A service session has been ended. sessi onl d identifies the ended session.
oneway void endMyParticipationlnfo (

i n SPFEEConmonTypes::t_Sessionld sessionld
)

The consumer's participation in a service session has been ended. sessi onl d identifies the
session.

oneway voi d suspendSessi onlnfo (
i n SPFEEConmonTypes::t_Sessionld sessionld
)

A service session has been suspended. sessi onl d identifies the session.

oneway voi d suspendMyParti ci pationlnfo (
i n SPFEEConmonTypes::t_Sessionld sessionld
)

The consumer's participation in service session has been suspended. sessi onl d identifies
the session.

oneway void resunmeSessionlnfo (
i n SPFEEAccessCommonTypes: :t _Sessi onl nfo session
);

A suspended service session has been resumed. sessionld identifies the session.
(The consumer may or may not have re-joined the service session, depending on whether
they or another consumer resumed the session.) sessi on contains information about the
session in which has been resumed.

oneway void resumeMyParticipationlnfo (
i n SPFEEAccessCommonTypes: :t _Sessi onl nfo session
);

The consumer's participation in service session has been resumed. session contains
information about the session in which the consumer has resumed their participation.

oneway void joinSessionlnfo (
i n SPFEEAccessCommonTypes: :t_Sessi onl nfo session
)

The consumer has joined a service session. sessi on contains information about the session
that the consumer has joined.

Access Interface Definitions: Retailer Domain Interfaces

This subclause describes in detail all the retailer interfaces supported over Ret RP. Each interface
and all its supported operations are defined.

Many of the operations are inherited from other interfaces. However, they are described here as
though they were defined on the Ret RP specified interfaces. Only the interfaces defined here must
be supported for the Ret RP. It is not necessary to support the same inheritance hierarchy as defined
previously in 8.2.

The following are the interfaces defined for the retailer domain of the Ret RP.

Q series — Supplement 28 (12/1999) 69

8.6.1 i_RetailerInitial Interface

/1 nmodul e SPFEERet Retailerlnitial

interface i _Retailerlnitial:
SPFEEProviderlnitial::i_Providerlnitial

{

H
The i_RetailerInitial interface is a consumer's initial contact point with the retailer. It allows the
consumer to request an access session is established between himself and the retailer.

/1 Inherited operations shown in follow ng subsecti ons.

This interface is returned when the consumer contacts the retailer. Ret-RP does not specify how the
consumer contacts the retailer. Some examples could be: through the DPE naming service; through
another type of directory service, such as a trader; through the SPFEE Broker business domain and
Bkr reference point; or through a URL and retailer home page. An interface of this type is returned
to the consumer as part of this contact the retailer scenario.

This interface inherits from i Providerlnitial interface. It defines all of the operations which are
generic to access user-provider roles, and can be re-used in other inter-domain reference points.

This interface has a role in security, and may use DPE security for message encryption, and domain
authentication. That is message passing through the DPE is protected through encryption to varying,
agreed levels and that both domain's credentials are exchanged for authentication. However, it does
not mandate that authentication and credential acquisition occurs through the DPE, and so provides
the i_RetailerAuthenticate interface to allow authentication of the user, outside of DPE security. A
reference to the i RetailerAuthenticate interface is passed to the consumer domain by the
requestNamedAccess() and requestAnonymousAccess() operations if the user is not authenicated by
DPE security.

The following operation signatures are taken from the module SPFEEProviderinitial. All
unscoped types need to be scoped by SPFEEProviderlnitial:: when used by clients of the
i _Retailerlnitial interface.

8.6.1.1 requestNamedAccess()

voi d request NanedAccess (
i n SPFEEConmonTypes::t_Userld userld,
i n SPFEECommonTypes: :t_UserProperti es userProperties,
out Object nanedAccesslR, /'l type:
i _Provi der NamedAccess
out SPFEEAccessConmonTypes::t_AccessSessi onSecretld asSecretld,
out SPFEEAccessConmonTypes::t_AccessSessionld asld
) raises (
e_AccessNot Possi bl e,
e _Aut henticationError,
SPFEEAccessComonTypes: : e_User Properti eskError

)
The requestNamedAccess() allows the consumer to identify himself and request the establishment of
an access session with the retailer. The access session provides access to use his subscribed services,
etc., through ai_RetailerNamedAccess interface.

If CORBA security services are being used by both the consumer and retailer domains' DPEs, then
both domain's credentials and other authentication information will be exchanged through the DPE
before this operation is invoked on the retailer. This means a secure context for messages may have
already been set-up between the domains, and the identity of the consumer will have been
authenticated. In this case, an access session is established, and a reference to the
1_RetailerNamedAccess interface will be returned. Along with this, an t AccessSessionSecretld is
returned, to be used in all requests on the new interface.

70 Q series — Supplement 28 (12/1999)

If CORBA security services are not being used, then no secure context for messages will have been
set-up, and DPE messages could potentially be intercepted and read by third-parties.

If the consumer has not already been authenticated, and the DPE is unable to perform the
authentication and establish an access session when this operation is invoked, then the operation will
fail. An e AuthenticationError exception will be raised, which contains a reference to a
1_RetailerAuthenticate interface. This interface may be used to authenticate and set-up the secure
context. Then this operation can be invoked again to establish the access session.

user | d identifies the consumer to the retailer. For details on the structure of the user1d, see "User
Information".

user Properties are a sequence of user properties associated with this consumer. In general the
consumer would not send sensitive information to the retailer until an access session has been
established. However, this parameter can be used to pass the consumer's password to the retailer, if
both domains use DPE security to encrypt the messages. Security context, and other information
which is understood by the specific retailer, can also be sent. For more details, see "User
Information".

If the request is successful, and the consumer has been authenticated, then the following out
parameters are returned:

namedAccessl R is the reference to the i RetailerNamedAccess interface, which the consumer
domain uses during the access session.

NOTE - Although the IDL specifies the type (in text) as i _Pr ovi der NanedAccess, it is only to state the
base reference type. An abstract interface (reference) is never exported over a reference point. The
request NamedAccess() operation is defined inside the i _Pr ovi der NanedAccess interface which
is later inherited into i _Ret ail er NanedAccess and thus uses interface (references) of type
i _Retailer<...>. The reason for stating the base reference type in the IDL is to allow re-use in other
reference point definitions. For that matter, the nanedAccessl R could just as well be of
i_3ptyNamedAccess type.

asSecretld is an t _AccessSessi onSecret|d used whenever the consumer domain invokes an
operation on the nanmedAccessl R within this access session. The asSecret|d identifies the
consumer domain from which invocations on nanmedAccessl| R are made. This parameter should be
used during this access session only, and only by the consumer domain to which it was returned.
See 8.4.

asld is an t _AccessSessi onl d used to identify this access session. It is available to all the access
sessions for this consumer. It can be used identity this access session when making requests on any
1 RetailerNamedAccess interface between this consumer and retailer, e.g. using
listServiceSessions(), an t _AccessSessi onl d can be used to scope the list to those started from a
specific access session.

If the request is unsuccessful, either the consumer has not been authenticated, or the authentication
has failed.

An e_AccessNot Possi bl e exception is raised if the retailer is unable, or refuses to allow the
consumer domain to establish an access session with them.

An e_Aut henti cati onError exception is raised if the retailer has not authenticated the consumer.
This contains a list of authentication methods that can be used with the i RetailerAuthenticate
interface. The interface is returned as either an interface reference, or a stringified object reference,
depending on the retailer. This reference is used to authenticate the consumer with the retailer. Once
the consumer has been successfully authenticated, (using one of the authentication methods
indicated), then the consumer can call this operation again to request the establishment of an access
session, and get a reference to the i_RetailerNamedAccess interface.

Q series — Supplement 28 (12/1999) 71

If an e_UserPropertiesError exception is raised, then there is a problem with the
user Properties. The err or Code provides the reason for the error.

8.6.1.2 requestAnonymousAccess()

voi d request AnonynousAccess (
i n SPFEECommonTypes: :t_User Properties userProperties,
out Obj ect anonAccessl R /1 type: i_Provider AnonAccess
out SPFEEAccessConmonTypes::t_ AccessSessi onSecretld asSecretld,
out SPFEEAccessConmonTypes::t_ AccessSessionld asld

) raises (
e_AccessNot Possi bl e,
e _Aut henticationError
SPFEEAccessCommonTypes: : e_User Properti esError

);
The requestAnonymousAccess() allows the consumer to request the establishment of an access
session with the retailer. It is used when the consumer does not have a user identity with the retailer.
This may be because they have not previously contacted this retailer, or they wish to remain
anonymous to this retailer.

This operation returns a reference to a i_RetailerAnonAccess interface, through which the consumer
can access services, and register as a named user with the retailer, if they wish to do so.

If CORBA security services are being used by both the consumer and retailer domains' DPEs, then
both domain's may exchange credentials through the DPE before this operation is invoked on the
retailer. This means a secure context for messages may have already been set-up between the
domains, but the credentials will not contain any information about the identity of the specific
consumer.

If CORBA security services are not being used, then no secure context for messages will have been
set-up, and DPE messages could potentially be intercepted and read by third-parties.

user Properti es are a sequence of user properties associated with this consumer. They may contain
security context and other information which is understood by the specific retailer. For more details,
see "User Information".

If the request is successful, an access session has been established with the consumer. The following
out parameters are returned:

anonAccessl R is the reference to the i RetailerAnonAccess interface, which the consumer domain
uses during the access session.

asSecretld is an t_AccessSessi onSecret|d used whenever the consumer domain invokes an
operation on the namedAccessl R within this access session. The asSecret|d identifies the
consumer domain from which invocations on namedAccessl R are made. This parameter should be
used during this access session only, and only by the consumer domain to which it was returned.
See 8.4.

asld is ant _AccessSessi onl d used to identify this access session. It is available to all the access
sessions for this consumer. It can be used identity this access session when making requests on any
i RetailerNamedAccess interface in an access session between this consumer and retailer.
(In general, anonymous users can only have one access session with the retailer, as each access
session with each anonymous user must be treated separately. Since the consumers are anonymous to
the retailer, each consumer appears to be a separate individual, even if they are, in fact, the same
person.)

If the request is unsuccessful, either the consumer has not been authenticated, or the authentication
has failed.

72 Q series — Supplement 28 (12/1999)

An e_AccessNot Possi bl e exception is raised if the retailer is unable, or refuses to allow the
consumer domain to establish an access session with them.

An e_Aut henti cati onError exception is raised if the retailer requires that the consumer domain is
authenticated. This contains a list of authentication methods that can be used with the
i_RetailerAuthenticate interface. (Authentication methods may authenticate the domains only, and
not the specific consumer.) The interface is returned as either an interface reference, or a stringified
object reference, depending on the retailer. This reference is used to authenticate the consumer
domain with the retailer. Once the consumer domain has been successfully authenticated, (using one
of the authentication methods indicated), then the consumer can call this operation again to request
the establishment of an access session, and get a reference to the i RetailerAnonAccess interface.

If an e_UserPropertiesError exception is raised, then there is a problem with the
user Properties. The error Code provides the reason for the error.
8.6.2 i RetailerAuthenticate Interface

/1 nodul e SPFEERet Retail erlniti al
interface i _Retail er Authenticate:

SPFEEProvi derlnitial::i_ProviderAuthenticate
{

b
The i_RetailerAuthenticate interface allows the consumer and the retailer to be authenticated. It

provides a generic mechanism for authentication which can be used to support a number of different
authentication protocols.

/1 Inherited operations shown in foll ow ng subsecti ons.

The purpose of this interface is to verify to the consumer and retailer that each domain is interacting
with the domain they have been told they are talking to. This means mutual authentication of both
domains. Other authentication schemes which authenticate only one of the domains is also possible
using this interface. The interface provides a set of generic operations, that can be used in
authentication. However, the operations only provide a mechanism for 'transporting' authentication
information. Both domains must know and use a common authentication protocol, and perform this
protocol using these operations in order to authenticate the domains. Ret-RP does not specify any
particular authentication protocol. The getAuthenticationMethods() operation on this interface can be
used to determine the authentication protocols supported by the retailer, and a protocol chosen for
authentication. The authentication protocol may, or may not identify the individual consumer. It may
only identy and authenticate the consumer's domain.

The following operation signatures are taken from the module SPFEEProviderinitial. All
unscoped types need to be scoped by SPFEEProviderlnitial:: when used by clients of the
i _Retailerlnitial interface.

8.6.2.1 getAuthenticationMethods()

voi d get Aut henti cati onMet hods {
in t_AuthMethodSearchProperties desiredProperties,
out t_Aut hMet hodDescLi st aut hivet hods
) raises (
e_Aut hMet hodPr operti esError,
SPFEECommonTypes: : e ListError

)
The getAuthenticationMethods() allows the consumer to ask the retailer for a list of the

authentication methods supported. A particular authentication method can then be chosen by the
consumer to use in authenticate().

desiredProperties is a list containing the properties that the consumer wishes the authentication
method to support. (See t _Mat chProperties in "Properties and Property Lists"). For example, the

Q series — Supplement 28 (12/1999) 73

consumer can request that the authentication methods returned support mutual authentication, or
retailer authentication only. Currently no specific property names and values have been defined for
t _Aut hMet hodSear chProperti es, and so its use is retailer specific.

aut hMet hods is a list of authentication methods which match the desi r edProperti es, and which
the retailer supports. The t _Aut hMet hodDesc structure contains the authentication method identifier,
and a list of properties of the method. It is assumed that both the consumer and retailer both know
the protocol to follow in order to use the authentication method defined.

The aut hMet hods list may be empty. This may occur if the retailer does not support any methods
matching the properties requested, or if the retailer does not wish to allow the consumer to
authenticate using a method with the desired properties. e.g. if the consumer requests a method for
retailer only authentication, and the retailer wishes to have mutual authentication.

If the desi redProperti es parameter is wrongly formatted, or provides an invalid property name or
value, the e_PropertyError exception should be raised. (Property names which are not recognised
can be ignored, if desiredProperties requires that only some, or none of the properties are
matched.)

If the authMethods list is unavailable, then raise an e_ListError exception with the
Li st Unavai | abl e error code.

8.6.2.2 authenticate()

voi d aut henti cat e(
in t_Aut hMet hod aut hMet hod,
in string securityNane,
in t_opaque aut henDat a,
in t_opaque privAttribReq,
out t_opaque privAttrib,
out t_opaque continuationDat a,
out t_opaque aut hSpecificData,
out t_AuthenticationStatus authStatus
) raises (
e_Aut hiet hodNot Support ed
)

aut hent i cat e() allows the consumer to select an authentication method, pass authentication data to
the retailer.

Once the consumer domain has determined an authentication method with the retailer, this operation
is used to transport authentication data, and other credentials to the retailer. This data is used to
perform the type of authentication appropriate to the authentication method, (this may be mutual
authentication, or authentication of the consumer/retailer domain only, etc.).

The retailer then returns its authentication data (if required), challenge data for the consumer to
respond using continueAuthentication() (if required), and the requested credentials (if possible). If
further authentication protocol is required before credentials are returned then these can be returned
by continueAuthentication().

The following parameters are sent by the consumer to the retailer:

aut hMet hod is used to identify the authentication method proposed by the consumer. It affects the
composition and generation method of the other opaque data parameters. Currently no specific
authentication methods values have been defined for t_ Aut hMet hod, and so its use is retailer
specific.

securityName is the name assumed by consumer for authentication. It may be an empty string
according to the authentication method used.

74 Q series — Supplement 28 (12/1999)

aut henDat a is opaque data containing consumer attributes to be authenticated. Its format depends
upon the authentication method used.

pri vAttri bReq is opaque data which is used to specify the rights and privileges which the consumer
domain requests from the retailer domain. This data may correspond to levels of security to access
different areas of the retailer domain. Its format depends upon the authentication method used.

The following parameters are returned by the retailer to the consumer:

privAttrib is opaque data which defines the privilege attributes granted to the consumer, based
upon the pri vAttri bReq, and their authentication data. Its format depends upon the authentication
method used.

conti nuati onDat a is opaque data which is used to challenge the consumer. The consumer has not
yet been authenticated, and must process this data and return the result to the retailer using the
conti nueAut henti cation() operation. Its format depends upon the authentication method used.
This parameter may be ignored if the value of aut hSt at us is not SecAut hCont i nue.

aut hSpeci fi cDat a is opaque data which is specific to the authentication method used.

aut hSt at us identifies the status of the authentication process. It is an enumerated type with the
following values:

- SecAuthSuccess:

Authentication has completed successfully. No (more) calls to cont i nueAut henti cati on()
are necessary. The consumer can call requestNamedAccess() on i_Retailerlnitial interface to
gain a reference to the i RetailerNamedAccess interface. (Or if they wish to be an
anonymous user, call requestAnonymousAccess() for ai_RetailerAnonAccessinterface.).

- SecAuthFailure:

Authentication has completed unsuccessfully. The consumer has not been authenticated, and
will not be able to establish an access session. Calls to requestNamedAccess() will continue
to raise an e_AccessNot Possi bl e, or e_Aut henti cati onError exception.

- SecAuthContinue:

Authentication is continuing, and the consumer must reply to this result by calling
cont i nueAut henti cation().

— SecAuthExpired:

Authentication has timed out. The consumer did not make this invocation of
continueAuthentication() quickly enough, after the reply from authenticate(), or the previous
call to continueAuthentication(). Authentication must be started again from the beginning by
calling authenticate(). This enumeration should not be returned by authenticate().

8.6.2.3 continueAuthentication()

voi d conti nueAut henti cati on{
in t_opaque responseData,
out t_opaque privAttrib,
out t_opaque continuationDat a,
out t_opaque aut hSpecificDat a,
out t_AuthenticationStatus authStatus

)
conti nueAut henti cati on() allows the consumer to continue an authentication protocol, started
using aut hent i cat e(), and pass authentication data to the retailer.

This operation should be invoked by the consumer if the authStatus returned from
aut henti cate(), or a previous call to continueAut henti cation(), is SecAut hConti nue. The
aut hSt at us is used by both operations to indicate if the consumer needs to make another call to this

Q series — Supplement 28 (12/1999) 75

operation. Parameters returned by this operation must be processed by the consumer according to the
authentication method, and the results provided as in parameters to the subsequent call to this
operation.

responseDat a is opaque data from the consumer. This data has been generated by the consumer
according to the authentication method, based on the conti nuati onDat a returned by the previous
call to aut henti cat e() or conti nueAut henti cati on(). Precisely how this data is generated, and
formatted is specific to the authentication method used.

conti nuati onDat a is opaque data which is used to challenge the consumer. The consumer has not
yet been authenticated, and must process this data and return the result to the retailer using the
conti nueAut henti cation() operation. Its format depends upon the authentication method used.
This parameter may be ignored if the value of aut hSt at us is not SecAut hCont i nue.

aut hSpeci fi cDat a is opaque data which is specific to the authentication method used.

aut hSt at us identifies the status of the authentication process. It has the same values as for
aut henti cat e().

8.6.3 i_RetailerAccess Interface

/1 nodul e SPFEEPr ovi der Access
interface i _Retail er Access

{

b
i_RetailerAccess interface is an abstract interface, used to inherit common operations in to the
1_RetailerNamedAccess, and i_RetailerAnonAccess interfaces.

The purpose of this interface is for inheritance, as described above. It should not be available over
the Ret-RP. No instances of this interface type should be created.

Currently no operations are defined for this interface. It will be contain operations which are shared
between the i RetailerNamedAccess, and i_RetailerAnonAccess interfaces. Currently all operations
are defined on the i RetailerNamedAccess interface, and no operations have been identified for the
1_RetailerAnonAccess interface.

8.6.4 i RetailerNamedAccess Interface

/1 nmodul e SPFEEPr ovi der Access
interface i _Retail er NanedAccess

i _ProviderNanedAccess, i _Retail er Access
{

H
i_RetailerNamedAccess interface allows a known consumer access to his subscribed services. The
consumer uses it for all operations within an access session with the retailer.

/1 Inherited operations shown in follow ng subsections.

This interface is returned when the consumer has been authenticated by the retailer and an access
session has been established. It is returned by calling requestNamedAccess() on the i_RetailerInitial
interface.

This interface inherits from 1 ProviderNamedAccess and 1 RetailerAccess interfaces.
i ProviderNamedAccess defines all of the operations which are generic to access user-provider
roles, and can be re-used in other inter-domain reference points. All the operations on this interface
are inherited from there. The i_RetailerAccess interface is currently blank. It will contain operations
which are shared between the i RetailerAnonAccess interface, and this interface, that are specific to
the Ret RP.

76 Q series — Supplement 28 (12/1999)

The following operation signatures are taken from the module SPFEEPr ovi der Access. All unscoped
types need to scoped by SPFEEPr ovi der Access: : when used by clients of the i _Ret ai | er Access
interface.

8.6.4.1 setUserCtxt()

voi d set UserCt xt (
i n SPFEEAccessCommopnTypes: :t_AccessSessi onSecretld asSecretld,
int UserCxt userCtxt

) raises (
SPFEEAccessCommonTypes: : e_AccessError,

e_User Ct xt Error
);
The setUserCtxt() allows the consumer to inform the retailer about interfaces in the consumer
domain, and other consumer domain information, (e.g. user applications available in the consumer
domain, operating system used, etc).

user Ct xt is a structure containing consumer domain configuration information and interfaces.

This operation should be called immediately after receiving the reference to this interface. If this
operation has not been called successfully, subsequent operations may raise an e_AccessError
exception with a User Ct xt Not Set error code.

If there is a problem with user Ct xt, then e_User Ct xt Err or should be raised with the appropriate
error code.

8.6.4.2 getUserCtxt()

voi d getUserCt xt (
i n SPFEEAccessCommpnTypes: :t _AccessSessi onSecretld asSecretld,
i n SPFEECommonTypes: :t_User Ct xt Nane ct xt Nane,
out t_UserCtxt userC xt
) raises (
SPFEEAccessCommonTypes: : e_AccessError,
e _User Ct xt Error

);
This operation allows the consumer to retrieve information about user contexts that have been
registered with the retailer.

ct xt Name is the name of the context that the consumer wishes to retrieve user context information
about. (ct xt Name is set by the consumer when registering a user context, and is the consumer term
for the context, e.g. "Home", "Work", "Mum's House", etc.

user Ct xt is a structure containing consumer domain configuration information and interfaces.

8.6.4.3 getUserCtxts()

void getUserCtxts (
i n SPFEEAccessCommopnTypes: :t_AccessSessi onSecretld asSecretld,
int_SpecifiedUserCxt ctxt,
out t UserCtxtList userCtxts
) raises (
SPFEEAccessCommonTypes: : e_AccessError,
e _UserCtxtError,
SPFEECommonTypes: : e ListError

Q series — Supplement 28 (12/1999) 77

8.6.4.4 listAccessSessions()

voi d |istAccessSessions (
i n SPFEEAccessCommpnTypes: :t _AccessSessi onSecretld asSecretld,
out SPFEEAccessConmonTypes::t_AccessSessionLi st asLi st
) raises (
SPFEEAccessCommonTypes: : e_AccessError,
SPFEECommonTypes: : e ListError

)
The listAccessSessions() returns a list of access sessions. The list contains all the access sessions the
consumer currently established with this retailer. It is a sequence of t_AccessSessionlnfo
structures, which consist of the t_AccessSessionld, t _User Ot xt Nane, and
t _AccessSessionProperties. The last of these is a t_PropertyList. Currently no specific
property names and values have been defined for t _AccessSessi onProperties, and so its use is
retailer specific.

The information returned by this operation can be used by the consumer to find out which other
access sessions are currently established; end some of those access sessions
(see endAccessSession()); list the service sessions of those access sessions
(seelistServiceSessions()); and be informed of changes to those access sessions and service
sessions (see i _Consuner AccessSessi onl nfo and i _Consuner Sessi onl nf o interfaces).

If the aslLi st list is unavailable, because the consumer's access sessions are not available, then the
operation should raise an e_Li st Error exception with the Li st Unavai | abl e error code.

8.6.4.5 endAccessSessions()

voi d endAccessSessi on(
i n SPFEEAccessCommpnTypes: :t _AccessSessi onSecretld asSecretld,
i n SPFEEAccessCommonTypes: :t _Speci fi edAccessSessi on as,
in t_EndAccessSessi onQption option

) raises (
SPFEEAccessCommonTypes: : e_AccessError,
SPFEEAccessComonTypes: : e_Speci fi edAccessSessi onError,
e_EndAccessSessi onError

)
The endAccessSessi on() allows the consumer to end an access session.

The operation can end the current access session; a specified access session; or all access sessions
(including the current one), through the use of the t _Speci fi edAccessSessi on parameter.

t EndAccessSessi onOpti ons allows the consumer to choose the actions the retailer should take, if
there are active or suspended service sessions, when the access session ends. The actions are only
used as part of this invocation. The retailer does not remember the action chosen. (Retailers may
define a default policy for service sessions when a consumer ends the access session in which they
were created, or allow the consumer to define the policy. Currently, Ret-RP does not support the
definition of such a policy by the consumer.)

If as 1is wrongly formatted, or provides an invalid access session id, then the
e_Speci fi edAccessSessi onEr ror exception should be raised.

e_EndAccessSessi onError is raised if option is invalid, or service sessions remain active, or
suspended, which are not allowed by the retailer. (A consumer may end an access session, leaving
active or suspended sessions if this is allowed as a policy of the retailer for this consumer.)

78 Q series — Supplement 28 (12/1999)

8.6.4.6 getUserlInfo()

voi d get User | nf o
i n SPFEEAccessCommpnTypes: :t _AccessSessi onSecretld asSecretl d,
out SPFEEAccessConmonTypes::t_Userlnfo userinfo

) raises (
SPFEEAccessCommonTypes: : e_AccessError

)

The get User I nf o() allows the consumer to request information about himself.

This operation returns a t _User | nf o structure as an out parameter. This contains the consumer's
t _User | d, their name, and a list of user properties. Currently no specific property names and values
have been defined fort _User Properti es, and so its use is retailer specific.

8.6.4.7 listSubscribedServices()

voi d |istSubscribedServices (
i n SPFEEAccessCommopnTypes: :t_AccessSessi onSecretld asSecretld,
in t_SubscribedServiceProperties desiredProperties,

out SPFEEAccessConmonTypes::t_Serviceli st services
) raises (

SPFEEAccessCommonTypes: : e_AccessError,

SPFEEConmonTypes: : e_PropertyError,

SPFEECommonTypes: : e Li stError

)
The | i st Subscri bedServi ces() returns a list of the services to which the consumer has previously
been subscribed.

The desiredProperties parameter can be used to scope the list of subscribed services.
t _Subscri bedServi ceProperties identifies the properties which the suscribed services must
match. It also defines whether a subscribed service must match one, all or none of the properties.
(See t _MatchProperties in "Properties and Property Lists".) Currently no specific property names
and values have been defined for t _Subscri bedServi ceProperties, and so its use is retailer
specific.

The list of services subscribed to by the consumer, and matching the desiredProperties, is
returned in the t _Servi ceLi st. This is a sequence of t _Ser vi cel nf o structures, which contain the
t_Serviceld, t_UserServi ceName (consumers name for the service), and a sequence of service
properties, t _Servi ceProperties. Currently no specific property names and values have been
defined for t _Servi ceProperti es, and so its use is retailer specific.

If the desi r edProperti es parameter is wrongly formatted, or provides an invalid property name or
value, the e_PropertyError exception should be raised. (Property names which are not recognised
can be ignored, if desiredProperties requires that only some, or none of the properties are
matched.)

If the ser vi ces list is unavailable, because the retailer's services are not available, then the operation
should raise an e_Li st Err or exception with the Li st Unavai | abl e error code.

8.6.4.8 discoverServices()

voi d di scover Servi ces(

i n SPFEEAccessCommopnTypes: :t_AccessSessi onSecretld asSecretld,

in t_DiscoverServiceProperties desiredProperties,

in unsigned | ong howvany,

out SPFEEAccessConmonTypes::t_Serviceli st services,

out Object iteratorlR /1 type: i_DiscoverServiceslterator
) raises (

SPFEEAccessCommonTypes: : e_AccessError,

SPFEECommonTypes: : e_PropertyError,

SPFEEConmonTypes: e _Li stError

Q series — Supplement 28 (12/1999) 79

The di scover Servi ces() returns a list of the services available from this retailer.

This operation is used to discover the services provided by the retailer, for use by the consumer. It
can be used to retrieve information on all of the services provided, or be scoped by the
desi r edPr operti es parameter. (See t _Mat chProperti es in "Properties and Property Lists".)

The list of retailer services matching the desiredProperties is returned in services. This is a
sequence of t_Servicel nfo structures, which contain the t_Serviceld, t_User Servi ceNane
(consumers name for the service), and a sequence of service properties, t _Servi ceProperti es.
Currently no specific property names and values have been defined for t _Ser vi ceProperti es, and
so its use is retailer specific.

The howvany parameter defines the number of t _Ser vi cel nf o structures to return in the servi ces
parameter. The length of servi ces will not exceed this number. Any remaining services which
match the desiredProperties, but which aren't included in services are accessible through
iteratorl R the i _Di scover Serviceslterator interface. If there are no remaining services, then
i teratorl Rshould be null.

If the desi redProperti es parameter is wrongly formatted, or provides an invalid property name or
value, the e_PropertyError exception should be raised. (Property names which are not recognised
can be ignored, if desiredProperties requires that only some, or none of the properties are
matched.)

If the ser vi ces list is unavailable, because the retailer's services are not available, then the operation
should raise an e_Li st Err or exception with the Li st Unavai | abl e error code.

8.6.4.9 getServicelnfo()

voi d get Servicelnfo (

i n SPFEEAccessConmmonTypes: :t_AccessSessi onSecretld asSecretld,

i n SPFEEAccessConmmonTypes::t_Serviceld serviceld,

i n SPFEEPr ovi der Access: :t_Subscri bedServi ceProperties

desiredProperties,

out SPFEEAccessConmonTypes::t_Servi ceProperties servi ceProperties
) raises (

SPFEEAccessCommonTypes: : e_AccessError

SPFEEPr ovi der Access: : e_Servi ceError

)
The getServicelnfo() returns information on a specific service, identified by the serviceld. The
desiredProperties list can scope the information which is requested to be returned.

8.6.4.10 listRequiredServiceComponents()

voi d |istRequiredServi ceConponents (
i n SPFEEAccessCommpnTypes: :t_AccessSessi onSecretld asSecretld,
i n SPFEEAccessCommopnTypes: :t_Serviceld serviceld,
i n SPFEEAccessCommonTypes: :t_Term nal Confi g term nal Confi g,
i n SPFEEAccessCommonTypes::t_TerminalInfo term nal I nfo
/1 Exanpl e of usage for Java appl et downl oad:
/1 name-val ue pair describing the url of a Java appl et
/'l name = "URL"
/[l type = "string"
out SPFEECommonTypes::t_Propertylist |ocations
) raises (
SPFEEAccessCommonTypes: : e_AccessError
SPFEEPr ovi der Access: : e_Servi ceError

)
This operation retrieves information on how to download the ssUAP in case of Java applets. The

terminallnfo is included as an IN parameter to avoid an explicit call of the getTerminallnfo
operation.

80 Q series — Supplement 28 (12/1999)

8.6.4.11 listServiceSessions()

voi d |istServiceSessions (
i n SPFEEAccessCommpnTypes: :t _AccessSessi onSecretld asSecretld,
i n SPFEEAccessCommonTypes: :t _Speci fi edAccessSessi on as,
in t_SessionSearchProperties desiredProperties,
out SPFEEAccessConmonTypes::t_SessionLi st sessions

) raises (
SPFEEAccessCommonTypes: : e_AccessError,
SPFEEAccessComronTypes: : e_Speci fi edAccessSessi onError,
SPFEECommonTypes: : e_PropertyError,
SPFEECommonTypes: e ListError

)
The I'i st Servi ceSessi ons() returns a list of the service sessions, which the consumer is involved
in. This includes active and suspended sessions.

The as parameter scopes the list of sessions by the access session in which they are used. It can
identify the current access session; a list of access sessions; or all access sessions. (A session is
associated with an access session if it is being used within that access session, or it has been
suspended (or participation suspended), and was being used within that access session when it was
suspended.)

The desiredProperties parameter can be wused to scope the list of sessions.
t _Sessi onSearchProperties identifies the properties which the sessions must match. It also
defines whether a session must match one, all or none of the properties. (See t _Mat chProperties in
"Properties and Property Lists"). The following property names and values have been defined for
t _Sessi onSear chProperties:
- name: " Sessi onSt at e”

value:t _SessionState

If a property in t_Sessi onSearchProperties has the name " Sessi onState", then the
session must have the same t _Sessi onSt at e as given in the propery value.

- name: " User Sessi onSt at e
value: t _User Sessi onSt at e

If a property int _Sessi onSear chProperti es has the name " User Sessi onSt at e, then the
session must have the same t _User Sessi onSt at e as given in the propery value.

Other retailer specific properties can also be defined in desi r edPr operti es.

The list of sessions matching the desiredProperties and the accessSessi on are returned in
sessions. This is a sequence of t_Sessionl nfo structures, which define the t_ Sessionld,
t _ParticipantSecretld, t _Partyld, t _User SessionState, t Interfacelist,
t _Sessi onMbdel Li st,andt _Sessi onProperti es of the session.

If as is wrongly formatted, or provides an invalid access session id, then the
e_Speci fi edAccessSessi onEr ror exception should be raised.

If the desi redProper ti es parameter is wrongly formatted, or provides an invalid property name or
value, the e_PropertyError exception should be raised. (Property names which are not recognised
can be ignored, if desiredProperties requires that only some, or none of the properties are
matched.)

If the sessions list is unavailable, because the consumer's sessions are not known, then the
operation should raise an e_Li st Er r or exception with the Li st Unavai | abl e error code.

Q series — Supplement 28 (12/1999) 81

8.6.4.12 getSessionModels()

voi d get Sessi onModel s (
i n SPFEEAccessCommpnTypes: :t _AccessSessi onSecretld asSecretld,
i n SPFEEConmonTypes: :t_Sessionld sessionld,
out SPFEECommonTypes: :t_Sessi onMbdel Li st sessi onMbdel s
) raises (
SPFEEAccessCommonTypes: : e_AccessError,
e_Sessi onError,
SPFEEConmonTypes: e _Li stError

)
The get Sessi onvbdel s() returns a list of the session models supported by a service session. It can
be used on active and suspended sessions.

sessi onl d identifies the session whose session models are retrieved.

sessi onMbdel s are the session models supported by the session. It is a sequence of
t _Sessi onModel structures, which contain the name of the session model, and a list of properties for
that session model. A model has been defined in SPFEE which is called the SPFEE Session Model.
Further information on this sophisticated object oriented generic session model is available [6], but
outside the scope of this Supplement.

e_Sessi onError is raised if the sessi onl d is invalid; or the session state precludes access to the
session models (e.g. the session is suspended); or the session refuses to return sessi onhbdel s.

If the sessi onMbdel s list is unavailable, because the session models supported by the session are
not known, then the operation should raise an e_Li st Error exception with the Li st Unavai | abl e
error code.

8.6.4.13 getSessionInterfaceTypes()

voi d get Sessi onl nterfaceTypes (
i n SPFEEAccessCommonTypes: :t_AccessSessi onSecretld asSecretld,
i n SPFEEConmonTypes: :t_Sessionld sessionld,
out SPFEEComonTypes::t_InterfaceTypelList itfTypes
) raises (
SPFEEAccessCommonTypes: : e_AccessError,
e_SessionError,
SPFEEConmonTypes: e _Li stError

)
The get Sessi onl nterfaceTypes() returns a list of the interface types supported by a service
session. It can be used on active and suspended sessions.
sessi onl d identifies the session whose interface types are retrieved.

itfTypes are all the interface types supported by the session. It is a sequence of
t _InterfaceTypeNane's, which are strings representing the interface types supported by the session.
i t f Types should include all the interface types that can be supported by the session.

e_Sessi onError is raised if the sessi onl d is invalid; or the session state precludes access to the
session models (e.g. the session is suspended); or the session refuses to returni t f Types.

If the i tf Types list is unavailable, because the interface types supported by the session are not
known, then the operation should raise an e_Li st Error exception with the Li st Unavai | abl e error
code.

82 Q series — Supplement 28 (12/1999)

8.6.4.14 getSessionInterface()

voi d get Sessionlnterface (
i n SPFEEAccessCommpnTypes: :t _AccessSessi onSecretld asSecretld,
i n SPFEEConmonTypes: :t_Sessionld sessionld,
i n SPFEEConmonTypes::t_InterfaceTypeNane itf Type,
out SPFEEComonTypes::t InterfaceStruct itf
) raises (
SPFEEAccessCommonTypes: : e_AccessError,
e_Sessi onError,
SPFEEConmonTypes: e I nterfacesError

)
The get Sessi onl nterface() returns an interface, of the type requested, supported by a service
session. It can be used on active sessions.

sessi onl d identifies the session whose interface are retrieved.
i t f Type identifies the interface type of the interface reference to be returned.

itf is returned by this operation. It contains the t _I nterfaceTypeNane, an interface reference
(t _I nt Ref) and the interface properties (t _I nt er f acePr oper ti es) of the interface type requested.

e_Sessi onError is raised if the sessi onl d is invalid; or the session state precludes access to the
session models (e.g. the session is suspended); or the session refuses to return i t f Types.

If the session does not support interfaces of itfType, then the operation should raise the
e_Sessi onl nterfacesError, with the | nval i dSessi onl nt er f aceType error code.

8.6.4.15 getSessionInterfaces()

voi d get Sessi onl nterfaces (
i n SPFEEAccessCommonTypes: :t _AccessSessi onSecretld asSecretl d,
i n SPFEEConmonTypes: :t_Sessionld sessionld,
out SPFEEComonTypes::t InterfacelList itfs
) raises (
SPFEEAccessCommonTypes: : e_AccessError,
e_Sessi onError,
SPFEEConmonTypes: e _Li stError

);
The get Sessi onl nterfaces() returns a list of all the interfaces supported by a service session. It
can be used on active sessions only.

sessi onl d identifies the session whose interface types are retrieved.

i tfs is returned by this operation. It is a sequence of t _I nterfaceStruct structures which contain
the t_InterfaceTypeNane, an interface reference (t_IntRef) and the interface properties
(t_InterfaceProperties) of each interface.

e_Sessi onError is raised if the sessi onl d is invalid; or the session state precludes access to the
session models (e.g. the session is suspended); or the session refuses to returni t f Types.

If the i t f s list is unavailable, because the interface supported by the session are not known, then the
operation should raise an e_Li st Error exception with the Li st Unavai | abl e error code.

8.6.4.16 listSessionInvitations()

void listSessionlnvitations (
i n SPFEEAccessCommopnTypes: :t_AccessSessi onSecretld asSecretld,
out SPFEEAccessConmonTypes::t _InvitationList invitations
) raises (
SPFEEAccessCommonTypes: : e_AccessError,
SPFEECommonTypes: : e ListError

)

Q series — Supplement 28 (12/1999) 83

The 1i st Sessionlnvitations() returns a list of the invitations to join a service session, which
have been sent to the consumer through this retailer.

i nvi tations is returned by this operation. It is a sequence of't _Sessi onl nvi t ati on structures:

struct t_Sessionlnvitation {
t Invitationld id;
t _Userld inviteeld;
t _Sessi onPur pose pur pose;
t _Invitati onReason reason;
t _InvitationOrigin origin;
1
i d identifies the particular invitation. It uniquely identifies this invitation from others for this
consumer at this retailer. (Other consumers with this retailer may have invitations with the same id).

This id is used in j oi nSessi onW t hl nvi t at i on() to join the session refered to by this invitation.

i nviteeld is the user id of this consumer. (It is not necessary here, as the user id is known through
the access session. It is included in this structure to allow invitations to be deliverable outside of an
access session, and allow the receiptant to check that the invitation was for them.)

pur pose is a string containing the purpose of the session.
reason is a string containing the reason this consumer has been invited to join this session.

origin is a structure containing the userld of the consumer that requested that the invitation was
sent to this consumer, and their sessionld for the session that this consumer has been invited to join.
(The sessionld is provided so that if the invited consumer contacts the inviting consumer, he is able
to tell which session the invited consumer is refering to.)

If the invitation list is not available, then the operation should raise the e_Li st Error, with the
Li st Unavai | abl e error code.

8.6.4.17 listSessionAnnouncements()

voi d |istSessi onAnnouncenents (
i n SPFEEAccessCommonTypes: :t _AccessSessi onSecretld asSecretl d,
in t_Announcement Sear chProperties desiredProperties,
out SPFEEComonTypes: :t_Announcenent Li st announcenents
) raises (
SPFEEAccessCommonTypes: : e_AccessError,
SPFEECommonTypes: : e_PropertyError,
SPFEEConmonTypes: e _Li stError

)
The | i st Sessi onAnnouncenent s() returns a list of the session announcements, which have been
announced through this retailer.

Sessions can be announced due to requests from session participants (see Multiparty Feature Set), or
due to properties of the session intialisation, service factory or policies of the user starting the
service. The process by which sessions are announced is not defined by Ret-RP. However, this
operation is provided in order to allow a consumer to request a list of sessions which have been
announced. (Announcements may be scoped in order to restrict the distribution of the announcement
to particular groups.) This operation returns a list of announcements which match the
desi redProperti es, as specified by the consumer.

The desiredProperties parameter can be used to scope the list of announcements.
t _Announcenent Sear chProperti es identifies the properties which the announcements must match.
(See t _MmatchProperties in "Properties and Property Lists"). Currently no specific property names
and values have been defined for t _Announcenent Sear chProperties, and so its use is retailer
specific.

84 Q series — Supplement 28 (12/1999)

announcenents is a list of announcements available to the consumer, and matching the
desi redProperties. This is a sequence of t _Sessi onAnnouncenent structures, which contain the
properties od the announcement, t_Announcenent Properties. Currently no specific property
names and values have been defined for t _Announcenent Properties, and so its use is retailer
specific.

If the desi redProperti es parameter is wrongly formatted, or provides an invalid property name or
value, the e_PropertyError exception should be raised. (Property names which are not recognised
can be ignored, if desiredProperties requires that only some, or none of the properties are
matched.)

If an announcement list is not available, then the operation should raise the e_Li st Error, with the
Li st Unavai | abl e error code.

8.6.4.18 startService()

void start Service (
i n SPFEEAccessCommonTypes: :t _AccessSessi onSecretld asSecretl d,
i n SPFEEAccessCommonTypes: :t_Serviceld serviceld,
int_Applicationlnfo app,
i n SPFEEConmonTypes: :t_Sessi onMbdel Req sessi onMbdel Req,
int_StartServiceUAProperties uaProperti es,
int_StartServiceSSProperties ssProperties,
out SPFEEAccessConmonTypes::t_Sessionl nfo sessionlnfo

) raises (
SPFEEAccessCommonTypes: : e_AccessError,
e_ServiceError,
e_Applicationl nfoError,
SPFEECommonTypes: : e_Sessi onModel Error,
e_Start Servi ceUAPr opertyError,
e_Start Servi ceSSPropertyError

)
The st art Servi ce() starts a service session for the consumer.

servi cel d is the service type identifier, which indicates the service type of the session which the
consumer wishes to start.

app is a structure containing information on the application, which will be used to interact with the
service session. It includes: application name, version, serial number, property list, etc. It also
includes: a list of interfaces supported by the application, which can optionally include references to
some of those interfaces if they are available; a list of session models, and feature sets, again
including interface references if appropriate; and a stream interface description list.

sessi onModel Req defines the session models and feature sets that the consumer domain wishes the
session to have. It allows the consumer to request that some, all or none of the session models are
supported by the session.

uaProperties is a property list that will be interpreted by the retailer domain before the service
session is started. No property names or values are defined, so it use it retailer-specific. Its purpose is
to allow the consumer to define some preferences or other constraints that they wish to be applied to
this service session only, and that the retailer needs to know before the session is started. (These
properties may affect the choice of service factory for the session.)

ssProperties is a property list that will be interpreted by the service session, as soon as it has
started. (i.e. before the references to the session are returned to the consumer domain). No property
names or values are defined. Its use is entirely service specific, and only the service session is
intended to interpret the properties given. (This parameter allows the consumer domain/application
to pass service specific information to the service session, which is not intended for the retailer
domain to interpret.)

Q series — Supplement 28 (12/1999) 85

sessi onl nf o is a structure, which contains information which allows the consumer domain to refer
to this session using other operations on this interface. It also contains infomation for the usage part
of the session, including the interface references to interact with the session. (See "Service and
Session Information".)

The following are exceptions which are raised by this operation:

e_Servi ceError is raised if the servi cel d is invalid/unknown by the retailer, or if a service session
cannot be created.

e_Applicationl nfoError is raised if there are unknown or invalid values for t _Appl i cati onl nf o,
or if the application is incompatable with the type of service being started.

e_Sessi onModel Error is raised if invalid session models and/or feature sets are required for the
service session.

e_Start Servi ceUAProper t yError is raised if there is an error in the properties for uaPr operti es.
It has the same properties error codes as e_Propert yError. (See "Properties and Property Lists" for
more details.)

e_Start Servi ceSSPropertyError is raised if there is an error in the properties of ssProperti es.
It has the same properties error codes as e_PropertyError.

8.6.4.19 endSession()

voi d endSessi on (
i n SPFEEAccessCommpnTypes: :t _AccessSessi onSecretld asSecretld,
i n SPFEEConmonTypes: :t_Sessionld sessionld
) raises (
SPFEEAccessCommonTypes: : e_AccessError,
e_Sessi onError

)
The endSessi on() ends a service session for the consumer. It can be used to end sessions which the

consumer is currently active in, and sessions which have been suspended, or the consumer has
suspended his participation.

sessi onl d is the identifier of the session to be ended.

The exception e_Sessi onError is raised if sessionld is invalid; or the session refuses to end
because of the user's session state; or the user does not have permission.

8.6.4.20 endMyParticipation()

voi d endMyParticipation (
i n SPFEEAccessCommopnTypes: :t_AccessSessi onSecretld asSecretld,
i n SPFEEConmonTypes::t_Sessionld sessionld
) raises (
SPFEEAccessCommonTypes: : e_AccessError,
e_Sessi onError

)

The endWParti ci pation() ends the consumer's participation in a service session. It can be used
on a session which the consumer is currently active in, or which has been suspended, or the
consumer has suspended his participation.

sessi onl d is the identifier of the session to end this user's participation.

The exception e_Sessi onError is raised if sessi onl d is invalid; or the session refuses to end this
user's participation because of their session state; or the user does not have permission.

86 Q series — Supplement 28 (12/1999)

8.6.4.21 suspendSession()
voi d suspendSessi on (
i n SPFEEAccessCommonTypes: :t _AccessSessi onSecretld asSecretl d,
i n SPFEEConmonTypes::t_Sessionld sessionld
) raises (
SPFEEAccessCommonTypes: : e_AccessError,
e_Sessi onError

)
The suspendSessi on() suspends a service session for the consumer. It can be used to suspend
sessions which the consumer is currently active in, and sessions which the consumer has already
suspended his participation.

sessi onl d is the identifier of the session to suspend.

The exception e_Sessi onError is raised if sessi onl d is invalid; or the session refuses to suspend
because of this user's session state; or the user does not have permission.

8.6.4.22 suspendMyParticipation()

voi d suspendMyParti ci pation (
i n SPFEEAccessCommpnTypes: :t_AccessSessi onSecretld asSecretld,
i n SPFEEConmonTypes::t_Sessionld sessionld
) raises (
SPFEEAccessCommonTypes: : e_AccessError,
e_Sessi onError

)
The suspendMyParti ci pation() suspends the consumer's participation in a service session. It can
be used on a session which the consumer is currently active in.

sessi onl d is the identifier of the session to suspend this user's participation.

The exception e_Sessi onError is raised if sessi onl d is invalid; or the session refuses to suspend
this user's participation because of their session state; or the user does not have permission.

8.6.4.23 resumeSession()

voi d resuneSessi on (
i n SPFEEAccessCommopnTypes: :t_AccessSessi onSecretld asSecretld,
i n SPFEEConmonTypes::t_Sessionld sessionld,
in t_Applicationlnfo app,
out SPFEEAccessConmonTypes::t_Sessionl nfo sessionlnfo
) raises (
SPFEEAccessCommonTypes: : e_AccessError,
e_SessionError,
e_Applicationl nfoError

)
The r esuneSessi on() resumes a service session. It is used on a session which is suspended.
sessi onl d is the identifier of the session to resume.

app is a structure containing information on the application, which will be used to interact with the
service session. This application may be different to the user's original application that they were
using when the session was suspended.

sessi onl nf o is a structure, which contains information which allows the consumer domain to refer
to this session using other operations on this interface. It also contains infomation for the usage part
of the session, including the interface references to interact with the session. (See "Service and
Session Information".)

The exception e_Sessi onError is raised if sessi onl d is invalid; or the session refuses to resume
because of the user's session state; or the user does not have permission.

Q series — Supplement 28 (12/1999) 87

The exception e_ApplicationlnfoError is raised if there are unknown or invalid values for
t _Appl i cati onl nf o, or if the application is incompatable with the type of service being resumed.

8.6.4.24 resumeMyParticipation()

voi d resuneMyParti ci pation (
i n SPFEEAccessCommpnTypes: :t _AccessSessi onSecretld asSecretl d,
i n SPFEEConmonTypes: :t_Sessionld sessionld,
int_Applicationlnfo app,
out SPFEEAccessConmonTypes::t_Sessionl nfo sessionlnfo
) raises (
SPFEEAccessCommonTypes: : e_AccessError,
e_Sessi onError,
e_Applicationl nfoError

)
The resumeMyPar ti ci pation() resumes the consumer's participation in a service session. It can be
used on a session which the consumer has previously suspended his participation from.

sessi onl d is the identifier of the session to resume the user's participation.

app is a structure containing information on the application, which will be used to interact with the
service session. This application may be different to the user's original application that they were
using when they suspended their participation.

sessi onl nf o is a structure, which contains information which allows the consumer domain to refer
to this session using other operations on this interface. It also contains infomation for the usage part
of the session, including the interface references to interact with the session. (See "Service and
Session Information".)

The exception e_Sessi onError is raised if sessi onl d is invalid; or the session refuses to resume
the user's participation because of their session state; or they do not have permission.

The exception e_ApplicationlnfoError is raised if there are unknown or invalid values for
t _Appl i cati onl nf o, or if the application is incompatable with the type of service being resumed.

8.6.4.25 joinSessionWithInvitation()

voi d joi nSessionWthlnvitation (
i n SPFEEAccessCommpnTypes: :t _AccessSessi onSecretld asSecretl d,
i n SPFEEAccessCommopnTypes::t _lnvitationld invitationld,
int_Applicationlnfo app,
i n SPFEECommonTypes::t_PropertylList joinProperties,
out SPFEEAccessConmonTypes::t_Sessionl nfo sessionlnfo

) raises (
SPFEEAccessCommonTypes: : e_AccessError,
e_Sessi onError,
SPFEEAccessCommonTypes: :e_lnvitationError,
e_Applicationl nfoError

)

The j oi nSessi onWt hl nvitation() allows the consumer to join an existing service session, to
which the consumer has received an invitation.

invitationld is the identifier of the invitation. The invitation, kept by the retailer, contains
sufficient information for retailer to contact the service session, and request that the consumer be
allowed to join the session.

app is a structure containing information on the application, which will be used to interact with the
service session.

sessi onl nf o is a structure, which contains information which allows the consumer domain to refer
to this session using other operations on this interface. It also contains infomation for the usage part

88 Q series — Supplement 28 (12/1999)

of the session, including the interface references to interact with the session. (See "Service and
Session Information".)

The exception e_Sessi onError is raised if the session refuses to allow the consumer to join it.
The exception e_I nvi t ati onError is raised if the i nvi tati onl d is invalid.

The exception e_ApplicationlnfoError is raised if there are unknown or invalid values for
t _Appl i cati onl nf o, or if the application is incompatable with the type of service being joined.

8.6.4.26 joinSessionWithAnnouncement()

voi d j oi nSessi onW t hAnnouncenent (
i n SPFEEAccessCommopnTypes: :t_AccessSessi onSecretld asSecretld,
i n SPFEEAccessCommonTypes: :t_Announcenent | d announcenent| d,
int_Applicationlnfo app,

i n SPFEECommonTypes: :t_Propertylist joinProperties,

out SPFEEAccessConmonTypes::t_Sessionl nfo sessionlnfo
) raises (

SPFEEAccessCommonTypes: : e_AccessError,

e_Sessi onError,

e_Announcenent Error,

e_Applicationl nfoError

);
The j oi nSessi onW t hAnnouncenent () allows the consumer to join an existing service session, to
which the consumer has discovered an announcement. Session announcements may be gained in a
number of ways (not described in Ret-RP), including through a specialized service session.

announcenent I d is the identifier of the announcement. The announcement, kept by the retailer,
contains sufficient information for retailer to contact the service session, and request that the
consumer be allowed to join the session.

app is a structure containing information on the application, which will be used to interact with the
service session.

sessi onl nf o is a structure, which contains information which allows the consumer domain to refer
to this session using other operations on this interface. It also contains infomation for the usage part
of the session, including the interface references to interact with the session. (See "Service and
Session Information".)

The exception e_Sessi onErr or is raised if the session refuses to allow the consumer to join it.
The exception e_Announcenent Error is raised if the announcenent I d is invalid.

The exception e_ApplicationlnfoError is raised if there are unknown or invalid values for
t _Appl i cati onl nf o, or if the application is incompatable with the type of service being joined.

8.6.4.27 replyTolnvitation()

void replyTolnvitation (
i n SPFEEAccessCommonTypes: :t _AccessSessi onSecretld asSecretl d,
i n SPFEEAccessCommopnTypes::t _lnvitationld invitationld,
i n SPFEEConmonTypes::t _InvitationReply reply
) raises (
SPFEEAccessCommonTypes: : e_AccessError,
SPFEEAccessComronTypes: i e_l nvitati onError,
SPFEECommonTypes: :e_Invitati onRepl yError

Q series — Supplement 28 (12/1999) 89

The repl yTol nvitation() allows the consumer to reply to an invitation, which the consumer has
received. It allows the consumer to inform the retailer of his intention to join, or not, the session, or
of a different location to look for the consumer. (Joining the session cannot be accomplished through
this operation.)

i nvi t ationl d is the identifier of the invitation.

reply is a structure which contains the information about the consumer's reply. (For details, see
"Invitations and Announcements".)

The exception e_I nvi tati onError israised if the i nvi t ati onl d is invalid.

The exception e_I nvi t ati onRepl yErr or is raised if there is an error in r epl y.

8.6.5 i_RetailerAnonAccess Interface

interface i _Retail er AnonAccess
i _Retail erAccess
{

H
i_RetailerAnonAccess interface allows an anonymous consumer access to services. The consumer
uses it for all operations within an access session with the retailer.

/1 No operations defined at present

This interface is returned when the consumer has established an anonymous access session with the
retailer. It is returned by calling requestAnonAccess() on the i RetailerInitial interface.

This interface inherits from i RetailerAccess interface. The i RetailerAccess interface is currently
blank. It will contain operations which are shared between the i_RetailerNamedAccess interface, and
this interface. This means that the operations offered by this interface will change in the future.

8.6.6 i DiscoverServiceslterator Interface

interface i _Di scover Serviceslterator

/1 Operations defined in the foll owi ng subsections
H
This interface is returned by the di scover Servi ces() operation on the i RetailerNamedAccess
interface. It is wused to access remaining services, which were not returned by the
di scover Ser vi ces() operation.

The di scover Services() operation returns a list of services which matched some properties
defined by the consumer. This interface allows the consumer to access the remaining services which
were not returned by the call to di scover Servi ces() . This is necessary because the list of services
matching the properties could be very large, and include large amounts of information, potentially
too much for the consumer's application to handle.

Using the di scover Servi ces() operation, following by possibly multiple calls on the next N()
operation on this interface, allows the consumer to access all of the services matching the properties,
without having to receive all of them at once.

8.6.6.1 maxLeft()

voi d maxLeft (

out unsigned long n
) raises (

e_UnknownDi scover Servi cesMaxLeft
)

The maxLeft () returns the maximum number of services which will be returned through this
interface. These services can be accessed through multiple calls on the next N() operation.

90 Q series — Supplement 28 (12/1999)

maxLeft () raises the excepti on e_UnknownDi scover Servi cesMaxLeft if it is not possible for the
retailer to determine the number of maximum number of services which could be returned.

8.6.6.2 nextN()

voi d nextN (
in unsigned | ong n,
out SPFEEAccessConmonTypes::t_Servi celi st services,
out bool ean noreleft
) raises (
SPFEEConmonTypes: e _Li stError
)

The next N() allows the consumer to access the remaing services which were not returned by the
di scover Servi ces() operation, or by previous calls to this operation. These services can be
accessed through multiple calls on the next N() operation.

The n parameter determines the maximum number of services to be returned. The length of the
servi ces list will not exceed n.

The remaining services are returned as the t_ServiceLi st services. This is a sequence of
t _Servi cel nf o structures, which contain the t _Ser vi cel d, t _User Ser vi ceNanme (consumer's name
for the service), and a sequence of service properties, t _Ser vi ceProperti es.

The noreLeft parameter is a bool ean to inform the consumer if there are any remaining services,
after this call to next N() .

8.6.6.3 destroy()
voi d destroy ();

The destroy() operation is used to inform the retailer that the consumer has finished with the
i _Di scover Servi ceslterator interface. It may be called at any time by the consumer, (i.e. the
consumer does not has to have retrieved all the services before destroying the interface). After it has
returned, the consumer will not be able to use their reference to the i _Di scover Servi cesl terat or
interface again.

8.7 Subscription Management

This subclause is dedicated to the description of the interfaces offered by the retailer to the
consumer, for supporting subscription related functionality. There exist two types of interfaces,
corresponding to two types of consumers: the one accessed by the anonymous user, enabling him to
become a subscriber, and the ones accessed by the subscriber, and enabling him to manage all its
subscription related information. The subscription related interactions take place in a generic
(service independent) fashion. Note that ancillary services can implement an OnLine Subscription
facility. This being service-specific, it is considered outside the scope of this Supplement. The
retailer's subscription interfaces are accessed in the context of the access session, to retrieve the list
of services the consumer/subscriber/user is associated to and the corresponding service profiles, and
modify the subscription data.

The main functionality offered to an anonymous user is:
- retrieval of the list of services (i.e. the ones available through this retailer);

- creation of a new subscriber.

Q series — Supplement 28 (12/1999) 91

The main functionality offered to a subscriber is:

- retrieval of the list of services, either the ones available through this retailer, or the

subscribed ones;

- creation, modification, deletion and query of subscriber related information (associated end

users, end user groups, etc.);

- creation, modification, deletion and query of service contracts (definition of subscribed

service profiles);

- retrieval of the service profile (SAGServiceProfile) for a specific user (or terminal or NAP).

8.7.1 Subscription Management Type Definitions

In this subclause, the IDL definition of the information required to handle subscriptions, subscribers
and end-users in a provider domain is included. This will allow to understand more clearly the

interface descriptions.

Figure 8-4 represents mainly the relationship between a service and a subscriber, described in terms

of a number of service profiles (service template, subscription profile and SAG service profile).

Subscriber

contracts

;

1+

assigned

SAG
SubscriptionAssignmentGroup

\J

ServiceContract

1+

=

Service

restricts

restricts

describes

-

7

SAGServiceProfile Fﬁ

SubscriptionProfile Fﬁ

ServiceTemplate

SAE
SubscriptionAssignmentEntity

A

| .

l

Usage

NetworkAccess

User Point

Terminal

Figure 8-4 — Subscription management information model

92 Q series — Supplement 28 (12/1999)

T11111800-01

A Subscriber contracts a number of Services (at least one to be considered as such). The information
associated with a subscriber is:

struct t_Subscriber {

t _Account Nunber account Nunber ;
SPFEEConmonTypes: :t_Userld subscri ber Naneg;

t _Person i dentificationlnfo;
t _Person bi I i ngCont act Poi nt ;
string Rat ePl an;

any paynent Recor d;

any credit;

H

The account Number is generated by the retailer and is unique in its domain. It is used inside the
retailer domain to identify the subscriber and, probably, in the bills as well. The subscri ber Nane is
the name the subscriber wants to be named by*!. It will be usually more user-friendly than the
account Nunber. There will be a one-to-one mapping between these two identifiers. The field
identificationlnfo stores information like subscriber name, address, etc. The
bi I I'i ngCont act Poi nt keeps the information required to send the invoices for billing. The
payment Recor d contains information about last paid bills to check the billing status. The credi t
field stores information about deposits, credits granted to the subscriber, etc.

The agreed Service Contract defines the conditions of the service provision for each of the service
subscriptions. It is defined as:

struct t_ServiceContract ({

SPFEEAccessCommonTypes: :t _Serviceld servicel d;

t _Account Nunber account Nunber ;

short maxNunf Ser vi ceProfil es;
t DateTi ne actual Start;

t _DateTine requestedStart;

t _Person requester;

t _Person t echni cal Cont act Poi nt ;

t AuthLimt authorityLimt;

t _SubscriptionProfile subscriptionProfile;

t _SagServiceProfil eLi st sagServi ceProfil elList;

b

The servi cel d and the account Nunber, together, identify uniquely a service contract. The profiles
are the main part of the service contract. Other fields provide additional information about the
contract (starting date, requested starting date, requester, technical contact point, etc.).

A Service Template describes the characteristics of the Service accessible through the retailer.

struct t_ServiceTenpl ate {

SPFEEAccessComonTypes: :t _Serviceld servi cel nstancel d;
SPFEEAccessCommonTypes: : t _User Servi ceNane servi cel nst anceNaneg;
t _Servicel dLi st requi redServi ces;

t _ServiceDescription servi ceDescription;

H
The Service Description contains the characteristics of a generic service type. It is reused in the
service template to describe the characteristics of a specific service instance (particular

implementation of a service type) and in the service profiles to represent the characteristics of the
service contracted by a subscriber (for the whole set of associated users or for a group of them).

41 Tt might be used to generate user identifiers. For instance, user X subscribed with retailer A could be given
an identifier like X@A.

Q series — Supplement 28 (12/1999) 93

struct t_ServiceDescription {

SPFEEAccessCommonTypes: :t _Serviceld servi ceTypel d;
SPFEEAccessComonTypes: : t _User Ser vi ceNane servi ceTypeNane;

t _Paranet er Li st servi ceCommonPar ans;

t _Par anet erLi st servi ceSpeci fi cPar ans;

b

The Parameter List consists of a sequence of triples composed of parameter name, parameter
configurability and parameter value.

typedef string t_ParaneterNaneg;
enum t_ParaneterConfigurability { FIXED BY_ PROVI DER,
CONFI GURABLE_BY_SUBSCRI BER, CUSTOM ZABLE_BY_USER };

typedef any t _Par anet er Val ue;

struct t_Paraneter {
t _Par anet er Nane name;
t _ParaneterConfigurability configurability;
t _Par anet er Val ue val ue;

s
typedef sequence<t Paraneter> t_ ParaneterlList;

The retailer may give the subscriber the option to select specific service parameters to apply to all its
associated entities*> — Subscription Profile — or to a group of them — SAG Service Profile —,
reducing the alternatives (restricts association in Figure 8-4) given in the service template. These
profiles are the main part of the service contract.

typedef string t_ServiceProfileld;
struct t_ServiceProfile {
t _ServiceProfileld spl d;
t _ServiceDescription servi ceDescri ption;
}
typedef t_ServiceProfile t_SagServiceProfile;
typedef t_ServiceProfile t_SubscriptionProfile;

A set of entities, Users, Terminals or NAPs, can be associated to a subscriber. Let's call them
Subscription Assignment Entities (SAEs).

enumt_entityType {user, term nal, nap};

[* Entity Id identifies uniquely a SAE inside the provider domain. */
union t_entityld switch (t_entityType) {

case user: SPFEEConmoNnTypes: :t_Userld user | d;
case termnal: SPFEEAccessComonTypes: :t_Terminal | d term nal | d;
case nap: SPFEEAccessCommonTypes: :t _NAPI d napl d;

s
typedef sequence<t _entityld> t_entityldList;

/* A SAE is characterized by an identifier, a name and a set of properties. */
struct t_Sae {

t _entityld entityld;
string entityNane;
SPFEEConmonTypes: :t_Propertyli st properties;

b

The subscriber may not want to grant all of them with the same service characteristics

(or privileges). For this reason, the subscriber can group them in a set of Subscription Assignment
Groups (SAG):

42 Users, terminals or network access points.

94 Q series — Supplement 28 (12/1999)

typedef short t _Sagl d;

/* A SAGis characterized by its identifier, a textual description of the
* group and the list of entities conposing it. */
struct t_Sag {

t _Sagld sagl d;
string sagDescri pti on;
t _entityldList entitylList;

b
The subscriber can then assign particular service profiles (SAG Service Profile) to each group. The
main reason for using this grouping is to ease the subscription process (assignment of profiles to
users) in subscriber domains where end-users are naturally classified in categories, organizational or
geographical areas, etc., requiring the same service usage privileges. The only restriction to apply is
that every SAE must be assigned to one and only one SAG Service Profile for every service.

For every subscriber a default SAG is created with SAGId (0). Every SAE is always assigned to this
SAG even if it is assigned to other particular SAG. If a user is removed from any SAG, it will still be
associated to this SAG by default. The SAG by default can not be associated to service profiles and
users can not be assigned to this SAG explicitly (they are implicitly assigned to it on creation).

It is also possible to assign and remove individual SAEs to/from service profiles. This is specially
interesting in small subscriber organizations (like residential customers), where the definition of user
groups is not strictly needed and does not help the subscriber in the subscription management.
Additionally, this provides a lot of flexibility in the service profile assignment, as some users in a
group can be discriminated for the access to a specific service, without the need of removing them
from the group or defining a new group.

A structure like t UsagePermit may help in the definition of these restrictions:

enumt_UsagePerm t Fl ag { USAGE ALLOWNED, USACE DI SALLOWED} ;
struct t_UsagePermt {

t_entityld entityld;
t _ServiceProfileld serviceProfileld;
t _UsagePerm tFl ag flag;

H
The following sections describe the interfaces offered by the retailer to the consumer for supporting
the subscription functionality. These are a set of service specific interfaces offered through Ret
reference point for the online management of service subscriptions. There are different interfaces for
every user type (subscribers or retailer operators).

8.7.2 i_SubscriberSubscriptionMgmt

/1 nodul e SPFEERet Subscri ber Subscri pti onMgnt
interface i_Subscri ber Subscri pti onMgnt

{

H
This interface is dedicated to subscribers. It provides operations for subscribing with the retailer,
contracting services and defining subscriber and service contract information. It allows the
subscription and service contract cancellation and modification and the query of all the subscriber
related information.

Q series — Supplement 28 (12/1999) 95

Operations for applying for service contracts, subscriptions and cancellations:

l'i st Servi ces() — It returns the list of services provided by the retailer.

subscribe() — It allows to create a subscription contract with the retailer. As input
parameters it has the subscriber information and a list of services the subscriber is willing to
subscribe to. It returns a subscriber identifier and a list of service contract identifiers. These
will be used in the following for making reference to specific service contracts.

unsubscri be() — It allows to delete a (list of) service contract(s) or the whole relationship
with the retailer.

contract Servi ce() — It subscribes a subscriber to a service and returns an interface
reference where he can define the service contract (i _Ser vi ceCont r act | nf oMgnt).

l'i st Subscri bedServi ces() — It returns the list of contracted services (just the identifiers)
and related service contract identifiers. If a user is specified, it returns the list of services
granted to that specific user by the subscriber. The subscriber identifier (account number) is
indicated as an input parameter.

Operations for handling subscriber information:

l'i st SAEs() — It returns the list of entities associated to the subscriber. If a (list of) SAG
identifier(s) is specified, it returns only the users assigned to that(those) SAG(s).

l'i st SAGs() — It returns the list of SAGs (ids) for that subscriber.
get Subscr i ber | nf o() — It returns the information about the subscriber.

creat eSAEs() — it creates the entities specified as a parameter returning an identifier for
each of them.

del et eSAEs() — it deletes the entities specified as a parameter. It removes any existing
assignment to SAGs these entities could have.

creat eSAGs() — it creates a (number of) SAG(s). A list of entities for every SAG can be
specified. A SAG identifier is returned to ease further management.

assi gnSAEs() — It assigns a list of entities to a SAG.
r emoveSAEs() — It removes a list of entities from a SAG.

set Subscri ber I nf o() — It modifies the information about the subscriber.

Operations for defining, modifying and querying service contracts:

96

get Servi ceTenpl ate() — It returns the template for service profile definition for the
specified service.

defi neServi ceContract () — It allows to define the service contract for a specific service.
This contract includes, amongst other contractual information, the set of service profiles
composing the service contract, namely the subscription profile (applicable to all users) and
the set of SAG service profiles (each one applicable to a SAG and consistent with the
subscription profile). It returns a list of SAG profile identifiers to ease their future reference.
It is used to define and redefine (modify) service contracts.

defineServiceProfiles() — It allows to define a set of service profiles for a service
contract, namely the subscription profile and the set of SAG service profiles. It returns a list
of SAG profile identifiers to ease their future reference. It is used to define and redefine
(modify) service profiles.

del et eSer vi ceProf i | es() — It deletes a service profile.

get Servi ceContractInfo() — It returns the information related to the service contract
which identifier is passed as parameter. If a list of SAG profile identifiers is specified, the
set of associated SAG service profiles is returned.

Q series — Supplement 28 (12/1999)

Operations for authorization and activation of service profiles:

8.7.3

assignServiceProfile() - It associates a list of SAEs and SAGs with a
SAGServiceProfile. If the service profile is active, the SAEs (the explicitly stated and the
ones included in the SAGs) will be able to use the service. These SAEs' access components
will be notified and the SAG service profile will be make available for them. From this
profile, the SAE will be able to customize its own user service profile using the service
profile management service.

renoveServiceProfile() - It disassociates a list of SAEs and SAGs from a
SAGServiceProfile. The specified SAEs (individually specified or inside a SAG) will no
longer be able to use the service, unless associated with another active service profile.

activateServiceProfiles() — It activates a list of SAG service profiles making them
available for use. Only SAEs and SAGs assigned to an active Service Profile can make use
of the service.

deacti vat eServi ceProfil es() — It deactivates a list of SAG service profiles. Users (or
SAEs) assigned to these service profiles will not be able to use the service.

i_RetailerSubscriptionMgmt

/1 nodul e SPFEERet Ret ai | er Subscri pti onMgnt
interface i _Retail erSubscripti onMgnt

{

}

This interface provides full capabilities for subscribing customers, add, modify, cancel and query
service contracts and adding, removing, modifying and querying subscriber information. In general,
it provides access to the whole subscription database. It is thus a superset of the previous interface,
dedicated to a consumer of the type retailer operator.

Additional operations are:

9.1
9.1.1

l'istSubscribers() — It returns the list of subscribers (identifiers). If a service Id is
specified, it returns the list of subscribers for that service.

l'i st ServiceContracts() — It returns the list of service contracts (identifiers). If a service
Id is specified, it returns the list of service contracts for that service. If a subscriber is
specified, it acts as the | i st Subscri bedSer vi ces in the i _Subscri ber I nf oMgnt interface
for that particular subscriber.

l'i st User s() — It returns the list of users (identifiers) for a specified service.

Complete IDL specifications

Common Definitions IDLs

SPFEECommonTypes.idl

/1 File SPFEECommonTypes. i dl
#i f ndef spfeecomontypes i dl
#def i ne spfeecomont ypes i dl
modul e SPFEEComonTypes {

/1 Elementlds (rmainly used in usage part)

Q series — Supplement 28 (12/1999) 97

/1 El enment types
enumt_El Types {
SpfeeParty, /!l see also t_Partyld
Spf eeResour ce, SpfeeMenber,
Spf eeGroup, SpfeeMenber G oup, SpfeePartyG oup, SpfeeResourceG oup,
Spf eeRel ati on, SpfeeRel ati onGroup, SpfeeControl Rel ati on,
Spf eeStreanBi ndi ng, SpfeeStreantl ow, SpfeeStrean nterface, SpfeeSFEP

b

/1 Elenent Identifier (elements in a service session)
typedef unsigned long t_ElId;

/1 Elenment Type ldentifiers
typedef t_El Types t_El Typel d;

!/l Overall elenent ldentifier
struct t_Elenentld

t_Elldid;
t _El Typeld el Type;
H

typedef sequence <t_Elenmentld> t_El ement | dLi st;

/1 t_PropertylLi st

/1 list of properties, (nane val ue pairs).

/1 Used in nany operations to allow a list of as yet undefined
/1 properties, and values, to be sent.

I

typedef string t_PropertyNaneg;
typedef sequence<t PropertyNane> t_ PropertyNaneLi st;
typedef any t_PropertyVal ue;

struct t_Property {
t _PropertyNane nane;
t _PropertyVal ue val ue;

H
typedef sequence<t_ Property> t_Propertyli st;

enum t _HowManyProps {none, sone, all};

uni on t_SpecifiedProps switch (t_HowMvanyProps) {
case sone: t_PropertyNameLi st prop_nanes;
case none: octet dunmyl;
case all: octet dummy2;

H
typedef string Istring;

/1 enumt ReferenceSort {

/1 Obj ect Ref,
/1 StringifiedReference
I},

/1 union t_Reference switch(t_ReferenceSort) {
/1l case (bjectRef: Object I|Ref;
/1 case StringifiedReference: SPFEEConmonTypes::Istring | ORef;

I},

enum t_Whi chProperties {
NoPr operti es, /1 don't can ignore all the properties
SonePr operti es, /1 match at |east one property (nane & val ue)

SonmePr operti esNamesOnly, // check name only (ignore val ue)

98 Q series — Supplement 28 (12/1999)

Al'l Properti es, /1 match all properties (name & val ue)
Al'l Properti esNanmesOnly /1 check nane only (ignore val ue)

}s

struct t_MatchProperties {
t Wi chProperties whichProperties;
t _PropertylList properties;

}

typedef /*CORBA::*/(Object t_Interface;

typedef string t_InterfaceTypeNane;
typedef sequence<t_|nterfaceTypeName> t_InterfaceTypeLi st;
typedef t_PropertylList t_InterfaceProperties;

struct t_InterfaceStruct {

t _InterfaceTypeNane itfType;

oj ect ref;
/1 if NULL: use getlnterface(type)
/1l to get the reference

t InterfaceProperties properties;
/1 interface type specific properties
/] interpreted by the session.

}
typedef sequence<t InterfaceStruct> t_Interfacelist;

typedef unsigned | ong t_Interfacel ndex;
typedef sequence<t_|nterfacel ndex> t_Interfacel ndexLi st;

/1 when registering nultiple interfaces need to match index vs itfType &
props:
struct t_RegisterinterfaceStruct {

t _InterfaceTypeName itfType; // set before call to registerlnterfaces

oj ect ref;
t InterfaceProperties properties; // as above
t _Interfacel ndex index; /1 set on return

H
typedef sequence<t_Regi sterlnterfaceStruct> t_Registerlnterfacelist;
/'l Session Mdels

/1 t_Sessi onModel Nanme nane:
/1 defined nanes

/1 " SPFEESer vi ceSessi onModel " SPFEE Servi ce Session Mdel

/1 " SPFEECommSessi onhbdel SPFEE Conmuni cati on Sessi on Model
/1 No other names defined at present

/1

/1l (previous versions of Ret-RP used "SPFEESessionMdel" and "SPFEE
/1 Session Mdel" for the SPFEE Service Session Mdel (previously naned
/1 SPFEE Sessi on Mbdel)

typedef string t_Sessi onMbdel Nare;

t ypedef sequence<t_Sessi onMbdel Nane> t _Sessi onModel NaneLi st ;

/1 t_Sessi onModel Properties properties:

11

/1 t_Sessi onModel Nane nane: " SPFEEServi ceSessi onModel "
/1 defined Property nanes:

/1 nane: "FEATURE SETS'

/1 val ue: t FeatureSetlLi st

/1 No other names defined at present

Q series — Supplement 28 (12/1999) 99

100

/1 t_Sessi onModel Nanme nane: " SPFEECommSessi onModel "
/1 defined Property nanes:

/1 nane: "FEATURE SETS'
/1 val ue: t FeatureSetLi st
I

/1l No feature sets are defined for the TlI ACormSessi onMbdel at present.
11
/1 No other names defined at present

typedef t_PropertylList t_Sessi onMbdel Properti es;

struct t_Sessi onMbdel ({
t _Sessi onMbdel Nane nane; /'l reserved nanes defined bel ow
t _Sessi onModel Properties properties; /1 properties defined above

s
typedef sequence<t Sessi onMbdel > t_Sessi onMbdel Li st ;

enum t _Whi chSessi onMbdel s {

NoSessi onModel s, /1 can ignore all the SessionMdels

SoneSessi onMbdel s, // match at | east one SessionMdel (name & val ue)
SonmeSessi onMbdel sNanesOnl y, /1 check nane only (ignore val ue)

Al | Sessi onMbdel s, /1 match all SessionhMdels (nanme & val ue)

Al | Sessi onMbdel sNanesOnl y /1 check nane only (ignore val ue)

b

struct t_Sessi onMbdel Req {
t Wi chSessi onMbdel s whi ch;
t _Sessi onModel Li st sessi onModel s;

s
typedef string t_Feat ureSet Nane;

struct t_FeatureSet {
t _Feat ureSet Nane nane;
t InterfaceList itfs;
/1 can return ref or NULL

}
typedef sequence<t FeatureSet> t_ FeatureSetlList;

/'l User Info

typedef Istring t_Userld,;

typedef Istring t_User Nane;

typedef t _Property t_UserProperty;

typedef t _PropertylList t_UserProperties;

/1 Property Nanmes defined for t_UserProperties
/1 name: "PASSWORD'

/1 value: string

/'l use: user password, as a string.

/1 name: "SecurityContext"

/1 val ue: opaque

/'l use: to carry a retailer specific security context

/1 e.g. could be used for an encoded user password.

struct t_UserDetails {
t Userld id;
t _UserProperties properties;

b

typedef Istring t_ User Ct xt Nane;
typedef sequence<t_User Ct xt Nane> t _User Ct xt NaneLi st ;

Q series — Supplement 28 (12/1999)

typedef sequence<octet, 16>t _Partici pant Secretl d;

typedef t Elld t_Partyld; /1 corresponds to SpfeeParty enumt El Types

typedef sequence<t_Partyld> t_Partyl dList;

/1 Sessionld

/1 A Sessionld is generated by a UA when a new session is started.

[l This Id is unique within a UA, and can be used to identify a

/1 session to the UA

/1 User's joining a session will have a different Sessionld generated
/1 by their UA for the session.

typedef unsigned | ong t_Sessionld;
typedef sequence<t Sessionld> t_SessionldList;
typedef t _PropertyList t_SessionProperties;

/!l Invitation and Announcenents

11
enumt_Invitati onRepl yCodes { // Based on MMUSIC replys
SUCCESS, /1 user agrees to participate
UNSUCCESSFUL, /1 couldn't contact user
DECLI NE, /1 user declines
UNKNOVWN, /1 user is unknown
ERROR, /1 for some unknown reason
FORBI DDEN, /1 authorisation failure
RI NG NG, /'l user is being contacted
TRYI NG, /1 sonme further action is being taken
STORED, /1 invitation is stored
REDI RECT, /1 try this different address
NEGOTI ATE, /1 alternatives described in properties
/1 Not MWUSIC replys, can be treated as UNSUCCESSFUL
BUSY, /1 couldn't contact because busy
TI MEQUT /1 timed out while trying to contact
}

typedef t_PropertyList t_lInvitationReplyProperties;

struct t_InvitationReply {
t _Invitati onRepl yCodes reply;
t _Invitati onRepl yProperties properties;

s
typedef t_PropertyList t_Announcenent Properti es;

struct t_Sessi onAnnouncenent {
t _Announcenent Properties properties;
b

typedef sequence<t_Sessi onAnnouncemnent > t_Announcemnent Li st;
/'l Exceptions

enum t _PropertyErrorCode {
UnknownPr opert yError
I nval i dProperty,
/1 UnknownPropertyNane: If the server receives a property nane
/1 it doesnot know, it can raise an exception, using this code.
/1l However, servers may decide to ignore a property with an
/1 unknown property name, and not raise an exception
UnknownPr opert yNane,
I nval i dPr opert yNane,
I nval i dPropertyVal ue,
NoPr oper t yEr r or /1 the Property is not in error

Q series — Supplement 28 (12/1999)

101

/1 defined so it can be used in other exceptions
struct t_PropertyErrorStruct {

t _PropertyError Code errorCode;

t _PropertyNane nane;

t _PropertyVal ue val ue;

b

exception e PropertyError {
t _PropertyError Code error Code;
t _PropertyNane nane,
t _PropertyVal ue val ue;

b

enumt _InterfacesErrorCode {
Unknownl nt er f acesError,
I nval i dl nterfaceTypeNanme, // Thats not a valid i/f type nane
I nval i dl nterfaceRef,
I nval i dl nterfaceProperty,
I nval i dl nt er f acel ndex

b

/1l must remain consistent with e InterfacesError
struct t_InterfacesErrorStruct {
t _InterfacesErrorCode errorCode;
t InterfaceTypeNane itfType;
t _PropertyErrorStruct propertyError;
/Il PropertyError, if errorCode= InvalidlnterfaceProperty

b

exception e InterfacesError {
t _InterfacesErrorCode error Code;
t _InterfaceTypeNane itfType;
t _PropertyErrorStruct propertyError;
/1 PropertyError, if errorCode= InvalidlnterfaceProperty

b

enum t _Regi st er Err or Code {
Unabl eToRegi sterl nterfaceType
b

exception e _RegisterError {
t _Regi sterErrorCode errorCode;
t InterfaceTypeNane itfType;
t InterfaceProperties properties;

b

enum t _Unregi st er Error Code {
Unabl eToUnr egi sterlnterface
b

exception e_UnregisterError {
t _Unregi st er Error Code error Code;
t _Interfacel ndexLi st indexes; /1 can unregister nultiple itfs

b

enum t _Sessi onMbdel Error Code {
UnknownSessi onMbdel Error,
I nval i dSessi onModel Nane, /1l Thats not a valid i/f type nane
Sessi onMbdel Not Support ed,
I nval i dFeat ur eSet Nane,
Feat ur eSet Not Support ed,
I nval i dFeat ureSet | nt er f aceType

102 Q series — Supplement 28 (12/1999)

9.1.2

exception e_Sessi onMbdel Error {
t _Sessi onModel Error Code error Code;
t _Sessi onMbdel Nane sessi onMbdel Nane;
t _FeatureSet Nane featureSetNane;// Only for FeatureSet errs
t _InterfaceTypeNane itfType; /1 Only for FeatureSet errs

b

enumt_UserDetail serrorCode {
I nval i dUser Nane,
I nval i dUser Property

b

exception e_UserDetail serror {
t _UserDetail serrorCode error Code;
t _User Nanme nane;
t _PropertyErrorStruct propertyError;
/1 Return the properties in error

}s

enumt_ListErrorCode {
Li st Unavai | abl e
s

exception e_ListError {
t _ListErrorCode errorCode;
b

enumt _Invitati onRepl yError Code {
I nval i dl nvi t ati onRepl yCode,
I nvitationRepl yPropertyError

b

exception e_lnvitationReplyError {
t _Invitati onRepl yError Code error Code;
t _PropertyErrorStruct propertyError;

b

}; /1 end nodul e SPFEEConmoONnTypes
#endi f
SPFEEAccessCommonTypes.idl

/'l File SPFEEAccessCommonTypes. i dl

#i f ndef spfeeaccessconmont ypes_i dl
#def i ne spfeeaccessconmont ypes_i dl

#i ncl ude " SPFEEComnmonTypes.idl"
modul e SPFEEAccessConmonTypes {
/1 User Info

/1 The follow ng Logi n-Password conbi nati on nmay be used

/1 for non-CORBA Security-conpliant systens, which still

/1 relies on a traditional, |ogin name & password conbi nati on.

/1 1t is mainly provided for conpability reasons for the | egacy

/1 systens, and is not expected to be used with the CORBA conpliant
[/l part at the same tine.

/1 | egacy authentication

typedef SPFEECommonTypes::Istring t_User Password;

Q series — Supplement 28 (12/1999)

103

struct t_Userlnfo {
SPFEEConmonTypes: :t_Userld userld;
SPFEECommonTypes: : t _User Nanme nane;
SPFEEConmonTypes: :t_User Properti es userProperties;

b
/'l Access Session

typedef sequence <octet, 16> t_AccessSessi onSecretld;
/1 128b array generated by Retail er(should be self checking)
/1 (is big enough to hold the GUI D favored by DCE & DCOM
/1 (dobally Unique IDentifier)

typedef unsigned | ong t_AccessSessi onl d;

enum t _Whi chAccessSessi on {
Current AccessSessi on
Speci fi edAccessSessi ons,
Al | AccessSessi ons

}
typedef sequence<t AccessSessionld> t_AccessSessionl dLi st;

/1 1 mplenentation Note:

/1 Orbix does not allow the creator of a union to set the
/1 discrimnator (switch tag). If true, this union requires
/1 dumy cases for the other enuns of t_ Wi chAccessSessi on

uni on t_Speci fi edAccessSessi on switch (t_WichAccessSession) {
case SpecifiedAccessSessions: t_AccessSessionldLi st asldList;
case Current AccessSession: octet dunmyl;

case All AccessSessions: octet dumy?2;
/1 dumry var's val ues should not be processed

}
typedef SPFEECommonTypes::t PropertylList t_AccessSessi onProperties;
struct t_AccessSessionlnfo {

t _AccessSessionld id;

SPFEECommonTypes: : t _User Ct xt Nanme ct xt Nane;
t _AccessSessi onProperties properties;

b

typedef sequence<t _AccessSessionlnfo> t_AccessSessi onLi st;

I/l Termnal Info

typedef string t_Terminalld;

t ypedef sequence<string> t_NAPI d;

typedef sequence<t NAPI d> t NAPI dLi st;

typedef string t_NAPType;

typedef SPFEEComrmonTypes::t PropertylList t_Term nal Properti es;

/1 t_Term nal Properties properties:

11
/1 defined Property nanes:
/'l name: "TERM NAL | NFO'

/1 value: t_Termnallnfo

104 Q series — Supplement 28 (12/1999)

/'l name: " APPLI CATI ON | NFO LI ST"
/1 value: t_ApplicationlnfolList
/1 Applications on the term nal

/1 No other names defined at present

[l t_TernType

/1 DESCRI PTI ON:

/1 List of terninal types.

/| COMMENTS:

/1 - This list can be expanded.

enum t_Term nal Type {
Per sonal Conput er, WirkStation, TVset,
Vi deot el ephone, Cel |l ul arphone, PBX, Vi deoServer,
Vi deoBri dge, Tel ephone, G4Fax

b

/[l t _Termnfo

/| DESCRI PTI ON:

/1 This structure contains infornation related to a specific term nal
/| COMMENTS:

/1l To be defined further.

struct t_Term nal Info {
t _Term nal Type term nal Type;
string operatingSystem // includes the version
SPFEEConmonTypes: :t_PropertylLi st networkCards;
SPFEEConmonTypes: :t_Propertyli st devices;
unsi gned short nmaxConnecti ons;
unsi gned short nenorySi ze;
unsi gned short di skCapacity;

b
/1 Provider Agent Context

struct t_Term nal Config {
t Terminalld termnalld;
t _Term nal Type term nal Type;
t _NAPI d napl d;
t _NAPType napType;
t _Term nal Properties properties;

b
/1 Service Types
11

typedef unsigned | ong t_Serviceld;
typedef sequence<t_Serviceld> t_Servicel dLi st;
typedef SPFEECommonTypes::Istring t_User Servi ceNane;
typedef SPFEEComrmonTypes::t_Propertylist t_ServiceProperties;
struct t_Servicelnfo {
t _Serviceld id;

t _User Servi ceNanme nane;
t _ServiceProperties properties;

b

typedef sequence<t Servicelnfo> t_Servicelist;

Q series — Supplement 28 (12/1999) 105

/] Session State
/] State of the session as seen fromthe users point of view

enum t_User Sessi onState {

User UnknownSessi onSt at e, /1 Session State is not known

User Acti veSessi on

User SuspendedSessi on, /1 Session has been suspended

User SuspendedParti ci pati on, /1 User has suspendedPartici pation

/1 but is continuing in his absence.
/1 (may have been quit subsequently)
User |l nvited, /1l User has been invited to join
User Not Parti ci pati ng /1 User is not in the session

b
/'l Session Info
typedef SPFEECommonTypes::|Istring t_Sessi onPurpose;
struct t_SessionOrigin {
SPFEEConmonTypes: :t_Userld userld; // user creating the session

SPFEEConmonTypes: :t_Sessi onld sessionl d;
/1 id (unique to originating user)

H
struct t_Sessionlnfo {
SPFEEConmonTypes: :t_Sessionld id; /1l ny session id,
/1 unique to UA. (scope by UA).
t _Sessi onPur pose purpose;
SPFEEConmonTypes: :t_Partici pant Secretld secretld;
SPFEEConmonTypes: :t_Partyld nyPartyld;
t _User SessionState state;
SPFEEConmonTypes: :t_InterfacelList itfs;
SPFEEConmonTypes: :t _Sessi onMbdel Li st sessi onModel s;
SPFEEConmonTypes: :t_Sessi onProperti es properties;
b

/1 for listing active/suspended sessions
typedef sequence<t_Sessionlnfo> t_SessionLi st;

/!l Invitations and Announcenents.

typedef unsigned long t_Invitationld;
typedef SPFEECommonTypes::Istring t_lnvitati onReason

struct t_InvitationOrigin {
SPFEEConmonTypes: :t_Userld userld; /1 user creating the invitation
SPFEEConmonTypes: :t _Sessi onl d sessionl d;
/1 so they which session they invited you from if you contact them

b

struct t_Sessionlnvitation {
t Invitationld id;

SPFEEConmonTypes: :t_Userld inviteeld,; /1 id of invited user, so you
can check
/1 the invitation was for you.
t _Sessi onPur pose pur pose;
t _Servicelnfo servicelnfo;
t _Invitati onReason reason;
t InvitationOrigin origin;
SPFEECommonTypes: :t_PropertyLi st invProperties;
}

106 Q series — Supplement 28 (12/1999)

typedef sequence<t Sessionlnvitation> t _InvitationList;

typedef unsigned | ong t_Announcenentl d;

/] Start Service Properties and Application Info.

t ypedef
t ypedef
t ypedef
t ypedef

struct t_Applicationlinfo {

SPFEEConmonTypes: :
SPFEEConmonTypes: :
SPFEEConmonTypes: :
SPFEEConmonTypes: :

t _AppNanme nane;

t _AppVersion version;
t _AppSerial Num seri al Num

t _AppLi cenceNum | i cenceNum

SPFEEConmonTypes: :t_PropertylLi st properties;
SPFEEConmonTypes: :t_InterfacelList itfs;
SPFEEConmonTypes: :t _Sessi onMbdel Li st sessi onModel s;

b

Istring t_AppNane;
Istring t_AppVersion;
Istring t_AppSerial Num
Istring t_AppLi cenceNum

/1 t _StartServiceUAProperties properties:

/] properties to be interpreted by the User Agent,

11

/1 defined Property nanes:
/1 None defined at present
typedef SPFEECommonTypes::t_ PropertylLi st

/1 t_Start ServiceSSProperties properties:
/1l properties to be interpreted by the Service Session, when starting a

service

11

/1 defined Property nanes:
/1 None defined at present
typedef SPFEECommonTypes::t_Propertyli st

/'l Exceptions

enum t _AccessError Code {
UnknownAccessError,
I nval i dAccessSessi onSecret|d,

b

exception e _AccessError {
t _AccessError Code error Code;

b

AccessDeni ed,

Securit yCont ext Not Sati sfi ed

enumt_User PropertiesError Code {
I nval i dUser Pr opert yNane,
I nval i dUser PropertyVal ue

b

exception e _UserPropertiesError {
t _UserPropertiesErrorCode error Code;
SPFEECommonTypes: :t _User Property user Property;

b

Q series — Supplement 28 (12/1999)

t _Start Servi ceUAProperti es;

t _Start Servi ceSSProperties;

when starting a service

107

9.2
9.2.1

108

enumt_Speci fi edAccessSessi onError Code {
UnknownSpeci fi edAccessSessi onError
I nval i dWhi chAccessSessi on
I nval i dAccessSessi onld

}
exception e _SpecifiedAccessSessi onError {

t _Speci fi edAccessSessi onError Code error Code;
t _AccessSessionld id; /! Invalid AccessSessionld

}
enumt _InvitationErrorCode {

Invalidlnvitationld
b

exception e InvitationError {
t _InvitationErrorCode errorCode;
}

b
#endi f

User and Provider General IDLs

SPFEEUserlInitial.idl

/1 File SPFEEUserInitial.idl
#i f ndef spfeeuserinitial _id
#def i ne spfeeuserinitial _idl

#i ncl ude " SPFEECommonTypes.idl"
#i ncl ude " SPFEEAccessCommonTypes.idl"

modul e SPFEEUser | nitial {
/1 requestAccess() types
typedef string t_Providerld;

/1 inviteUserWthout AccessSession() types

enumt_AccessRepl yCodes {

SUCCESS, /1 user agrees to initiate an access session
DECLI NE, // user declines to initiate an access session
FAI LED, [/ for sone unknown reason

FORBI DDEN // authorisation failure

H
typedef SPFEECommonTypes::t_Propertylist t_AccessRepl yProperti es;

struct t_AccessReply {
t _AccessRepl yCodes reply;
t _AccessRepl yProperties properties;

b

interface i _Userlnitial

{

/'l behavi our

/1 behavi our Text

[l "This interface is provided to allow a Provider to invite

/1l a user to a session outside of an access session; and request
/1 the establishment of an access session";

/'l usage

ey

Q series — Supplement 28 (12/1999)

9.2.2

voi d request Access (
int Providerld providerld,
out t_AccessReply reply

)

voi d inviteUserQutsideAccessSession (
int_Providerld providerld,
i n SPFEEAccessConmmonTypes: :t_Sessionlnvitation invitation
out SPFEEComoNnTypes::t _Invitati onReply reply

)

voi d cancel I nvi teUser Qut si deAccessSessi on (
int_Providerld providerld,
i n SPFEEAccessCommonTypes::t_Invitationld id

) raises (
SPFEEAccessCommonTypes: :e_ | nvitati onError

)

}; /1 i_Userlnitial
b

#endi f
SPFEEUserAccess.idl

/'l File SPFEEUser Access. i dl

#i f ndef spfeeuseraccess_idl
#def i ne spfeeuseraccess_i dl

#i ncl ude " SPFEECommonTypes.idl"
#i ncl ude " SPFEEAccessComonTypes.idl"

modul e SPFEEUser Access {

typedef SPFEECommonTypes::t PropertylList t_Cancel AccessSessi onProperti es;

interface i _UserAccessCetlInterfaces {

11
11
11
11

11
11
11

behavi our

behavi our Text

"This interface allows the provider domain to get
interfaces exported by this user domain."

usage
"This interface is not to be exported across
Ret RP. It is inherited into the exported interfaces."

void getlnterfaceTypes (

out SPFEECommonTypes::t _InterfaceTypelist itfTypes
) raises (

SPFEEConmonTypes: :e_Li stError
)

void getlinterface (
i n SPFEEConmonTypes::t_InterfaceTypeNane itf Type,
i n SPFEEConmonTypes: :t_MatchProperti es desiredProperti es,
out SPFEEComonTypes::t_InterfaceStruct itf

) raises (
SPFEEConmonTypes: :e_ I nterfacesError
SPFEEConmonTypes: : e_PropertyError

)

Q series — Supplement 28 (12/1999)

109

void getlnterfaces (

out SPFEEComonTypes::t _InterfacelList itfs
) raises (

SPFEEConmonTypes: :e_Li stError
)

}; /1 i _UserAccessCetlinterfaces

interface i _UserAccess
i _User AccessCetlnterfaces
{

/' behavi our
/1 behavi our Text
[l "This interface is provided to a UA to perform actions during an
/1 access session. It inherits fromi _ UserAccessGetlnterfaces to
/1 allowthe retailer to ask for other interfaces exported by the
/1 consuner domain. (The retailer cannot register his own // [/ [
[l interfaces!)";

/1 usage

Iy

/] DRAFT: this operation is draft only, any feedback on this operation is
/1 nmost wel cone.
voi d cancel AccessSessi on(
in t_Cancel AccessSessi onProperties options

)
}; /1 i _UserAccess

interface i _Userlnvite

{

/1 behavi our

/1 behavi our Text

[l "This interface is provided to a UA, to invite the user to:

/1 - join a service session

/1 - request an access session
Iy

/1 usage

-

[l inviteUser() types

void inviteUser (
in SPFEEAccessCommonTypes::t_Sessionlnvitation invitation
out SPFEEComoDNnTypes::t _Invitati onReply reply

rai ses (SPFEEAccessCommonTypes::e_lnvitationError)

voi d cancel I nviteUser (
i n SPFEEConmonTypes::t_Userld inviteeld,
i n SPFEEAccessComonTypes::t_lnvitationld id
) raises (
SPFEEAccessComonTypes: i e_l nvitati onError
)

}; /1 i_Userlnvite

interface i _UserTerm nal {

110 Q series — Supplement 28 (12/1999)

/| behavi our
/| behavi our Text

/1 "This interface is provided to a UA, to gain information about the

// term nal context.";
/1 usage
rry

/1 getTerm nallnfo() types
voi d get Term nal | nf o
out SPFEEAccessCommonTypes::t_TerminalInfo term nallnfo
};)/ i _UserTerm na
interface i _User AccessSessi onl nfo
5/ ...AccessSessionlnfo() types
oneway void newAccessSessionlnfo (

i n SPFEEAccessConmonTypes: :t_AccessSessi onl nfo accessSessi on
)

oneway void endAccessSessionlnfo (
i n SPFEEAccessCommonTypes: :t_AccessSessionld asld
);

oneway voi d cancel AccessSessionlnfo (
i n SPFEEAccessCommonTypes: :t_AccessSessionld asld
)

oneway voi d newSubscri bedServiceslnfo (
i n SPFEEAccessCommonTypes: :t_Servi celLi st services
)

}; /1 i _UserAccessSessionlnfo
interface i _User Sessionlnfo

{

oneway void newSessionlnfo (
i n SPFEEAccessConmonTypes: :t_Sessionl nfo session
)

oneway void endSessionlnfo (
i n SPFEEConmonTypes: :t_Sessionld sessionld
);

oneway void endMyParticipationlnfo (
i n SPFEEConmonTypes: :t_Sessionld sessionld
)

oneway voi d suspendSessionlnfo (
i n SPFEEConmonTypes: :t_Sessionld sessionld
)

oneway void suspendMyParti cipationlnfo (
i n SPFEEConmonTypes::t_Sessionld sessionld
)

oneway void resumeSessionlnfo (
i n SPFEEAccessConmonTypes: :t_Sessionl nfo session
)

Q series — Supplement 28 (12/1999)

111

oneway void resumeMyParticipationlnfo (
i n SPFEEAccessConmonTypes: :t_Sessionl nfo session
)

oneway void joinSessionlnfo (
i n SPFEEAccessConmonTypes: :t_Sessionl nfo session
)

}; I/ i _UserSessionlnfo
b
#endi f

9.2.3 SPFEEProviderInitial.idl

/1 File SPFEEProviderlnitial.idl
#i f ndef spfeeproviderinitial _idl
#def i ne spfeeproviderinitial _idl

#i ncl ude " SPFEECommonTypes.idl"
#i ncl ude " SPFEEAccessComonTypes.idl"

nmodul e SPFEEProviderlnitial ({

enumt_Aut henticationStatus {
SecAut hSuccess,
SecAut hFai | ur e,
SecAut hCont i nue,
SecAut hExpi red

b

typedef unsigned | ong t_Aut hMet hod;

typedef SPFEECommonTypes::t PropertylList t_Aut hMet hodProperti es;
typedef SPFEEComrmonTypes::t_MatchProperties t_Aut hMet hodSear chProperti es;

struct t_Aut hMet hodDesc {

t _Aut hMet hod et hod;
t _Aut hMet hodProperties properties;

}
typedef sequence<t Aut hMet hodDesc> t_Aut hMet hodDesclLi st ;
exception e_Aut hiMet hodNot Supported {
/1 removed t_Aut hMet hodDescLi st aut hMet hods;
}
exception e_AccessNot Possi bl e {
s
exception e_AuthenticationError {

SPFEEConmonTypes: :Istring slOR;
s

exception e_Aut hMet hodPropertiesError {
SPFEECommonTypes: :t _PropertyError Struct propertyError;
H

interface i _Providerlnitial {

112 Q series — Supplement 28 (12/1999)

11
11
11
11
11
11

11

11

11
11
11
11
11
11
11
11
11

11
11
11

11
11
11

11
11
11
11
11
11
11
11

behavi our

behavi our Text

" Areference to an interface of this type is returned to the PA
when it has authenticated (or requires no authentication)

to obtain specific userAgent interfaces.”

usage

"to obtain a userAgent reference according to the business

needs of the consuner";

request NanmedAccess() types

Operation 'request NanedAccess()
Used when the user is known to the provider and has al ready been
aut henticated, either by DPE security or by authenticate()
i nput :
userld: (user nane identifying requested user agent.)
user _nane="anonynous" for anonynpus access.
user_nane nay be an enpty string, if the provider is
using userProperties to identify the user.
user Properties: PropertylList which can be used to send
addi ti onal provider specific user privilege
information. This is generic, and can be used to send
any type of info to the provider
out put :
i _nameduaAccess: return: Interface reference of the UserAgent.
accessSessionld: Identifies the access session the operation is
associ ated with. Mist be supplied in all subsequent
operations with the Initial Agent and User Agent.

voi d request NanedAccess (
i n SPFEEConmonTypes::t_Userld userld,
i n SPFEEConmonTypes::t_UserProperties userProperties,
out Obj ect namedAccess| R, /1 type: i_ProviderNanedAccess
out SPFEEAccessConmonTypes::t_AccessSessi onSecretld asSecretld,
out SPFEEAccessCommonTypes::t_AccessSessionld asld
) raises (
e_AccessNot Possi bl e,
e Aut henticati onError,
SPFEEAccessComonTypes: : e_User Properti esError

)

Operation 'request AnonynousAccess()

Used when the user wants to access anonynously to the provider.

A secure session may already be established by DPE security or by
aut henticate() (the laater does not nean the user is known to the
provider if a third party authentication protocol is used.)

i nput :

userProperties: may be a null 1list

output: as request_access

voi d request AnonynobusAccess (
i n SPFEEConmonTypes::t_UserProperties userProperties,

out bject anonAccessl R, // type: i_Provider AnonAccess
out SPFEEAccessCommonTypes::t_AccessSessi onSecretld asSecretld,
out SPFEEAccessCommonTypes::t_AccessSessionld asld

) raises (
e_AccessNot Possi bl e,
e_Aut henticati onError
SPFEEAccessConmonTypes: : e_User Properti esError

)

/1 i _Providerlnitial

Q series — Supplement 28 (12/1999) 113

interface i _ProviderAuthenticate {

/'l behavi our

/1 behavi our Text

/1 " Areference to an interface of this type is returned to the PA
/'l when it wishes to choose this route to authenticate

/1 itself/mutually to the provider. ";

/1 usage

/1 "to agree authentication options supported, acquire

/1 privelege attributes for the consuner and establish

/1 an access session between the consuner and the provider"

/1 getAut henti cati onMet hods() types

typedef sequence<octet> t_opaque;

/] Operations 'getAuthenticationMethods ()

/1input:

/1 property list used to filter output

/] out put :

/1 list of available authentication configurations

voi d get Aut henti cati onMet hods (
in t_AuthMet hodSear chProperties desiredProperties,
out t_Aut hMet hodDescLi st aut hMet hods

) raises (
e_Aut hiMet hodPr operti esError
SPFEEConmonTypes: :e_Li stError

)

/1 Operation '"authenticate()'

/1 Used to authenticate a consumer attenpting to gain access to a
/1 user agent. invocation is a prerequsite to establishing client /
/1 side credentails for establishing secure bindings unless

// an alternative route is used

/1input:

/1 Method: used to identify the authentication method proposed by
/1 the client, reflects the conposition and generation

/1 nmet hod of ot her opaque data

/1 securityNanme: nane assunmed by consuner for authentication. may be
/1 nul | accroding to the authentication nethod used.

/1 authenData: opaque data containing consuner attributes to be

/1 aut henti cat ed

/1 privAttribReqg: opaque specification of the privileges requested
/1 by the consuner to create credential for subsequent

11 i nteractions.

/] out put :

[l privAttrib: privilege attributes returned in response to request.
/1 continuationData: contains challenge data for the client if the

/1 aut hentication nethod requires continuation of the

/1 pr ot ocol

/1 authSpecificData: data specific to the authentication service

/1 used.

/1 raises:

/1 e_Aut hMet hodNot Supported: when the authenticati on nechani sm used
/1 by client is not supported by i _iaAuthenticate

114 Q series — Supplement 28 (12/1999)

9.2.4

voi d aut henti cat e(
in t_AuthMethod aut hMet hod,
in string securityNane,
in t_opaque authenDat a,
in t_opaque privAttribReq,
out t_opaque priVvAttrib,
out t_opaque continuati onDat a,
out t_opaque aut hSpecifi cDat a,
out t_AuthenticationStatus authStatus
) raises (
e_Aut hivet hodNot Support ed
)

/1 Operation continue_authentication ()’

/1 To conplete an authentication protocol initiated by authenticate.

/1 used for second and subsequent continuations.

[l input:

/'l responseData: response fromthe client to the continuationData
/1 output fromthe to authenticate() or previous calls to

/1 conti nue_aut henti cate()

/1 output:

/1 continuation_data

/1 as per authenticate, if continuation is necessary.

/1 credential data:

/1 as per authenticate, initialiation values or extra

11 items.

voi d conti nueAut henti cati on(
in t_opaque responseDat a,
out t_opaque priVvAttrib,
out t_opaque continuati onDat a,
out t_opaque aut hSpecifi cDat a,
out t_AuthenticationStatus authStatus

)
}; /1 i _ProviderAuthenticate
1
#endi f

SPFEEProviderAccess.idl
/'l File SPFEEProvi der Access. i dl

#i f ndef spfeeprovi deraccess_idl
#def i ne spfeeprovi deraccess_idl

#i ncl ude " SPFEECommonTypes.idl"
#i ncl ude " SPFEEAccessComonTypes.idl"

#i ncl ude "SPFEEUser|nitial .idl"
nmodul e SPFEEPr ovi der Access {
typedef string t_DateTi meRegi st er ed; /1 DRAFT ONLY

struct t_RegisteredinterfaceStruct {
SPFEEConmonTypes: :t_Interfacel ndex index;
SPFEEConmonTypes: :t_InterfaceStruct interfaceStruct;
/1 DateTi meRegi stered DRAFT ONLY: need sone info on when
/1 interface was registered.
t _Dat eTi meRegi st ered when;
SPFEEConmonTypes: :t _User Ct xt Nane wher e;

Q series — Supplement 28 (12/1999)

115

116

typedef sequence<t RegisteredinterfaceStruct> t_ Regi steredl nterfacelist;

struct t_UserCtxt {
SPFEEConmonTypes: :t _User Ct xt Nane ct xt Nane;
SPFEEAccessCommonTypes: :t _AccessSessi onld asl d;

hj ect accessl R /1 type: i_UserAccess

hject term nal I R /1 type: i_UserTerm nal

hject invitel R /1 type: i_Userlnvite

hj ect sessionlnfol R /1l type: i _UserSessionlnfo

SPFEEAccessCommonTypes: :t _Term nal Confi g term nal Confi g;
}

typedef sequence<t UserCtxt> t_User Ct xt Li st;

enum t _Wi chUser Ct xt {
Current User Ct xt ,
Speci fi edUser Ct xt s,
Al User Ct xts

b

/1 1 mplenentation Note:

/1 Obix does not allow the creator of a union to set the
/1 discrimnator (switch tag). If true, this union requires
/1 dummy cases for the other enuns of t_WichUser Ctxt.

union t_SpecifiedUserCtxt switch (t_\WichUserCtxt) {
case SpecifiedUserCt xts: SPFEEComoDnTypes: :t_User Ct xt NanmeLi st ct xt Nanes;
case CurrentUserCtxt: octet dunmyl;
case All UserCtxts: octet dumy?2; /1 val ue should not be processed

}s

t ypedef SPFEECommonTypes::t MatchProperties t_Di scover Servi ceProperties;
t ypedef SPFEECommonTypes::t_ Mat chProperties t_Subscri bedServi ceProperti es;

typedef SPFEECommonTypes::t Mat chProperties t_Sessi onSear chProperti es;
typedef SPFEECommonTypes::t _Mat chProperties t_Announcenent Sear chProperti es;

enum t _EndAccessSessi onOption {
Def aul t EndAccessSessi onOpt i on,
SuspendAct i veSessi ons,
SuspendMyParti ci pati onActi veSessi ons,
EndAct i veSessi ons,
EndMyParti ci pati onActi veSessi ons,
EndAl | Sessi ons,
EndMyParti ci pati onAl | Sessi ons

b

typedef SPFEEAccessConmonTypes::t_AppNanme t_AppNane;

typedef SPFEEAccessCommonTypes::t_AppVersion t_AppVersion;
typedef SPFEEAccessCommonTypes::t_AppSerial Numt _AppSeri al Num
typedef SPFEEAccessConmonTypes::t_AppLi cenceNum t_AppLi cenceNum

t ypedef SPFEEAccessCommonTypes::t _Applicationinfo t_Applicationlnfo;

t ypedef SPFEEAccessCommonTypes: :t _Start Servi ceUAPr operti es
t _Start Servi ceUAProperti es;
t ypedef SPFEEAccessConmonTypes: :t _Start Servi ceSSProperties

t _Start Servi ceSSProperties;

Q series — Supplement 28 (12/1999)

/'l Exceptions

enum t _Sessi onError Code {
UnknownSessi onError,
I nval i dSessi onl d,
Sessi onDoesNot Exi st ,
I nval i dUser Sessi onSt at e,
Sessi onNot Al | owed,
Sessi onNot Accept ed,
Sessi onOpNot Support ed

b

exception e_SessionError {
t _Sessi onError Code error Code;
SPFEEAccessCommopnTypes: :t _User Sessi onState state;

b

enumt_User C xt Error Code {
I nval i dUser Ct xt Nane,
I nval i dUser Accessl R,
I nval i dUser Term nal | R,
I nval i dUserlnvitel R,
I nval i dTerm nal 1 d,
I nval i dTer mi nal Type,
I nval i dNAPI d,
I nval i dNAPType,
I nval i dTer m nal Property,
User Ct xt Not Avai | abl e

b

exception e UserCtxtError {
t _User Ct xt Error Code error Code;
SPFEECommonTypes: : t _User Ct xt Nanme ct xt Nane;
SPFEECommonTypes: :t _PropertyError Struct propertyError;
/1 PropertyError, if errorCode= InvalidTerm nal Property

b

enum t _Regi st er User Ct xt Err or Code {
Unabl eToRegi st er User Ct xt
}

exception e_RegisterUserCtxtError {
t _Regi sterUser Ct xt Error Code error Code;
H

enum t _EndAccessSessi onError Code {
EASE_UnknownEr r or,
EASE | nval i dOpti on,
EASE Acti veSessi on,
EASE_SuspendedSessi on,
EASE SuspendedParti ci pation

b

exception e _EndAccessSessi onError {
t EndAccessSessi onError Code error Code;
/1 sessions causing a problem
SPFEEConmonTypes: :t _Sessi onl dLi st sessi ons;
H
/1 ExceptionCodes t_ServiceError Code;
/1 Exanpl e of Exception codes definition
enum t _Servi ceError Code {
I nval i dServi cel d,
Servi ceUnavai | abl e,
Sessi onCr eat i onDeni ed,
Sessi onNot Possi bl eDueToUser Ct xt

s

Q series — Supplement 28 (12/1999)

117

exception e_ServiceError {
t _Servi ceErrorCode error Code;
}

/1 e _StartServiceUAPropertyError & e_Start Servi ceSSPropertyError
/1 are defined to distinguish property errors in
[l t_StartServiceUAProperties & t_Start Servi ceUAProperties respectively
exception e_Start Servi ceUAPropertyError {
/1 use the errorCodes as for e_PropertyError
SPFEEConmonTypes: :t _PropertyError Struct propertyError;

b

exception e_Start Servi ceSSPropertyError {
/1 use the errorCodes as for e_PropertyError
SPFEECommonTypes: it _PropertyError Struct propertyError;

b

enum t _Appl i cati onl nf oError Code {

UnknownAppl nf oEr r or,

I nval i dAppl i cati on, /1l Can't use this application with this
/'l servicel/session

I nval i dAppl nf o,

UnknownAppNane, /1 1 didn't recogni se your app nhamne

I nval i dAppNane, /1 1 don't understand your app nane
/1 (eg. badly formatted)

UnknownAppVer si on,

I nval i dAppVer si on,

I nval i dAppSeri al Num

I nval i dAppLi cenceNum

AppPr opertyError,

AppSessi onl nt erfacesError,

AppSessi onMbdel sError,

AppSI DescError

}
exception e _ApplicationlnfoError {

t _Applicationl nf oError Code error Code;

/1 t_PropertyErrorStruct:

/1 Contains the t_PropertyNane and t_PropertyValue in error,
[l (if t_ApplicationlnfoError.errorCode==AppPropertyError

/1 ORt_PropertyErrorStruct. errorCode==NoPropertyError),

/] if error is not due to a property

SPFEECommonTypes: it _PropertyError Struct propertyError;
/1l t_SessionlnterfacesErrorStruct
/1 Only used if:
/1 t_ApplnfoError.errorCode == Appl nt Ref | nf oError
SPFEEConmonTypes: :t_InterfacesErrorStruct itfsError;
}

enum t _Announcenent Err or Code {
I nval i dAnnouncenent | d
s

exception e_Announcenent Error {
t _Announcenent Err or Code error Code;
b

interface i _ProviderAccessGetlnterfaces {

118 Q series — Supplement 28 (12/1999)

11
11
11
11

11
11
11

behavi our

behavi our Text

"This interface allows the user domain to get
interfaces exported by this provider domain."

usage
"This interface is not to be exported across

Ret

VOi

\A¢)

RP. It is inherited into the exported interfaces."”

d getlnterfaceTypes (

i n SPFEEAccessConmonTypes: :t_AccessSessi onSecretld asSecretld,
out SPFEEComonTypes::t _InterfaceTypelist itfTypes

ai ses (

SPFEEAccessCommonTypes: : e_AccessError
SPFEEConmonTypes: : e Li stError

idgetlnterface (

i n SPFEEAccessConmonTypes: :t_AccessSessionSecretld asSecretld,
i n SPFEEConmonTypes::t_InterfaceTypeNanme itf Type,

i n SPFEEConmonTypes: :t_MatchProperti es desiredProperti es,

out SPFEEComonTypes::t _InterfaceStruct itf

ai ses (

SPFEEAccessCommonTypes: : e_AccessError
SPFEEConmonTypes: :e_I nterfacesError
SPFEECommonTypes: : e_PropertyError

d getlnterfaces (

i n SPFEEAccessCommonTypes: :t_AccessSessi onSecretld asSecretld,
i n SPFEEConmonTypes: :t_MatchProperti es desiredProperti es,

out SPFEEComonTypes::t _InterfaceList itfs

ai ses (

SPFEEAccessCommonTypes: : e_AccessError
SPFEECommonTypes: : e_PropertyError
SPFEEConmonTypes: :e_Li stError

/1 i _ProviderAccessGetlnterfaces
erface i _ProviderAccessRegi sterlnterfaces {

behavi our

behavi our Text

"This interface allows the client to register interfaces
exported by the client domain."

usage
"This interface is not to be exported across Ret RP
It is inherited into the exported interfaces."

/1 register interfaces to be used only during
/1 current access session

void registerinterface (
i n SPFEEAccessCommonTypes: :t _AccessSessi onSecretld asSecretld,
i nout SPFEECommonTypes::t_RegisterlnterfaceStruct itf

) raises (
SPFEEAccessCommonTypes: : e_AccessError,
SPFEECommonTypes: : e _InterfacesError,
SPFEECommonTypes: : e_Regi ster Error

)

void registerinterfaces (
i n SPFEEAccessCommpnTypes: :t _AccessSessi onSecretld asSecretld,

Q series — Supplement 28 (12/1999) 119

120

i nout SPFEECommonTypes::t _RegisterlnterfaceList itfs
) raises (

SPFEEAccessCommonTypes: : e_AccessError,

SPFEEConmmonTypes: :e_InterfacesError,

SPFEECommonTypes: : e_Regi sterError

/1 register interfaces which will be accessible
/1 outside the access session.

voi d regi sterlnterfaceQutsi deAccessSessi on (
i n SPFEEAccessCommopnTypes: :t_AccessSessi onSecretld asSecretld,
i nout SPFEECommonTypes::t_RegisterlnterfaceStruct itf

) raises (
SPFEEAccessCommonTypes: : e_AccessError,
SPFEECommmonTypes: : e _InterfacesError,
SPFEECommonTypes: : e_Regi sterError

)

voi d regi sterlnterfacesCQutsi deAccessSession (
i n SPFEEAccessCommpnTypes: :t _AccessSessi onSecretld asSecretl d,
i nout SPFEECommonTypes::t _RegisterlnterfaceList itfs

) raises (
SPFEEAccessCommonTypes: : e_AccessError,
SPFEEConmmonTypes: : e_InterfacesError,
SPFEECommnTypes: : e_Regi ster Error

)

void |istRegisteredlnterfaces (
i n SPFEEAccessCommpnTypes:: t_AccessSessi onSecretld asSecretld,
i n SPFEEAccessCommonTypes: :t _Speci fi edAccessSessi on as,
out t RegisteredinterfacelList itfs

) raises (
SPFEEAccessCommonTypes: : e_AccessError,
SPFEEAccessComonTypes: : e_Speci fi edAccessSessi onError,
SPFEEConmonTypes: e _ListError

)

voi d unregisterlnterface (
i n SPFEEAccessCommpnTypes: :t_AccessSessi onSecretld asSecretld,
i n SPFEEConmonTypes: :t_Interfacel ndex index

) raises (
SPFEEAccessCommonTypes: : e_AccessError,
SPFEECommonTypes: : e _InterfacesError,
SPFEECommonTypes: : e_Unregi sterError

)

voi d unregisterlnterfaces (
i n SPFEEAccessCommopnTypes: :t_AccessSessi onSecretld asSecretld,
i n SPFEEConmonTypes::t_|Interfacel ndexLi st i ndexes

) raises (
SPFEEAccessCommonTypes: : e_AccessError,
SPFEECommonTypes: : e _InterfacesError,
SPFEEConmonTypes: : e_Unregi sterError

)
}; /1 i_ProviderAccessRegisterlnterfaces
interface i _ProviderAccesslnterfaces
i _ProviderAccessGetlnterfaces,
i _ProviderAccessRegi sterlnterfaces
/' behavi our

/'l behavi our Text
/1 "This interface allows the client to get interfaces

Q series — Supplement 28 (12/1999)

/1 exported by this domain, and register interfaces exported
/1 by the client domain."

/'l usage
/1 "This interface is not to be exported across Ret RP.
/1 1t is inherited into the exported interfaces."

/1 No additional operations are defined
}; /1 i _ProviderAccesslnterfaces

interface i _ProviderAccess: i _ProviderAccesslnterfaces

{

/'l behavi our

/1 behavi our Text

/1 "This interface is the place to put operations which should be
/1 shared between i _Provi der NamedAccess and i _Provi der AnonAccess.
/1 Currently none are defined."

/1 usage
[l "This interface is not to be exported across Ret RP.
/1 1t is inherited into the exported interfaces."

/1 No additional operations are defined

}; [/l interface i _ProviderAccess

interface i _Provi der NanedAccess
i _ProviderAccess
{

voi d set UserCt xt (
i n SPFEEAccessCommonTypes: :t _AccessSessi onSecretld asSecretl d,
int UserCxt userCtxt
) raises (
SPFEEAccessCommonTypes: : e_AccessError,
e _User Ct xt Error

)

voi d getUserCt xt (
i n SPFEEAccessCommpnTypes: :t_AccessSessi onSecretld asSecretld,
i n SPFEEConmonTypes: :t_User Ct xt Nane ct xt Name,
out t_UserCtxt userCtxt
) raises (
SPFEEAccessCommonTypes: : e_AccessError,
e_User Ct xt Error

)

void getUserCtxts (
i n SPFEEAccessCommpnTypes: :t_AccessSessi onSecretld asSecretld,
int_SpecifiedUserCxt ctxt,
out t UserCtxtList userCtxts
) raises (
SPFEEAccessCommonTypes: : e_AccessError,
e _UserCtxtError,
SPFEECommonTypes: : e ListError

)

voi d get User Ct xt sAccessSessi ons (
i n SPFEEAccessCommpnTypes: :t_AccessSessi onSecretld asSecretld,
i n SPFEEAccessCommopnTypes: :t_Speci fi edAccessSessi on as,
out t UserCtxtList userCtxts

) raises (

Q series — Supplement 28 (12/1999) 121

122

SPFEEAccessCommonTypes: : e_AccessError,
SPFEEAccessCommonTypes: : e_Speci fi edAccessSessi onErr or
SPFEEConmonTypes: e _Li stError

)

voi d regi sterUser Ct xt sAccessSessi ons (
i n SPFEEAccessCommopnTypes: :t_AccessSessi onSecretld asSecretld,
i n SPFEEAccessCommonTypes: :t_Speci fi edAccessSessi on as

) raises (
SPFEEAccessCommonTypes: : e_AccessError,
SPFEEAccessCommonTypes: : e_Speci fi edAccessSessi onError
e _Regi sterUserCt xt Error

)

voi d |istAccessSessions (
i n SPFEEAccessCommopnTypes: :t_AccessSessi onSecretld asSecretld,
out SPFEEAccessConmonTypes::t_AccessSessionLi st asLi st

) raises (
SPFEEAccessCommonTypes: : e_AccessError,
SPFEECommonTypes: : e ListError

)

voi d endAccessSessi on(
i n SPFEEAccessCommpnTypes: :t _AccessSessi onSecretld asSecretld,
i n SPFEEAccessCommopnTypes: :t_Speci fi edAccessSessi on as,
in t_EndAccessSessi onQption option

) raises (
SPFEEAccessCommonTypes: : e_AccessError,
SPFEEAccessComronTypes: : e_Speci fi edAccessSessi onError,
e _EndAccessSessi onError

)

voi d get User | nf o
i n SPFEEAccessCommonTypes: :t _AccessSessi onSecretld asSecretl d,
out SPFEEAccessConmonTypes::t_Userlnfo userinfo

) raises (
SPFEEAccessCommonTypes: : e_AccessError

)

voi d |istSubscribedServices (
i n SPFEEAccessCommpnTypes: :t_AccessSessi onSecretld asSecretld,
in t_SubscribedServiceProperties desiredProperties,
out SPFEEAccessConmonTypes::t_Serviceli st services

) raises (
SPFEEAccessCommonTypes: : e_AccessError,
SPFEEConmonTypes: : e_PropertyError,
SPFEEConmonTypes: e _Li stError

)

voi d di scover Servi ces(
i n SPFEEAccessCommpnTypes: :t_AccessSessi onSecretld asSecretld,
in t_DiscoverServiceProperties desiredProperties,
i n unsigned | ong howiany,
out SPFEEAccessConmonTypes::t_Servi celi st services,

/1 type: i_DiscoverServiceslterator

out Object iteratorlR

) raises (
SPFEEAccessCommonTypes: : e_AccessError,
SPFEECommonTypes: : e_PropertyError,
SPFEEConmonTypes: e _Li stError

Q series — Supplement 28 (12/1999)

voi d get Servicelnfo (

)

)

i n SPFEEAccessConmonTypes: :t_AccessSessi onSecretld asSecretld,
i n SPFEEAccessCommonTypes: :t_Serviceld serviceld,

in SPFEEPr ovi der Access: :t _Subscri bedServi ceProperties

desiredProperties,
out SPFEEAccessConmonTypes::t_Servi ceProperties servi ceProperties

rai ses (

SPFEEAccessCommonTypes: : e_AccessError
SPFEEPr ovi der Access: : e_Servi ceError

voi d |i st RequiredServi ceConponents (

)

)

i n SPFEEAccessCommonTypes: :t_AccessSessi onSecretld asSecretld,
i n SPFEEAccessCommonTypes: :t_Serviceld serviceld,

i n SPFEEAccessCommonTypes: :t_Term nal Confi g term nal Confi g,

i n SPFEEAccessConmmonTypes::t_Terminal I nfo term nal |l nfo,

/1 Exampl e of usage for Java appl et downl oad:

/1 nane-val ue pair describing the url of a Java appl et

/1 name = "URL"

/1l type = "string"

out SPFEEComonTypes::t_ PropertyList |ocations

rai ses (

SPFEEAccessCommonTypes: : e_AccessError
SPFEEPr ovi der Access: : e_Servi ceError

voi d |istServiceSessions (
i n SPFEEAccessCommonTypes: :t_AccessSessi onSecretld asSecretld,
i n SPFEEAccessCommonTypes: :t_Speci fi edAccessSessi on as,
in t_SessionSearchProperties desiredProperties,
out SPFEEAccessCommonTypes::t_Sessi onLi st sessions

) raises (
SPFEEAccessCommonTypes: : e_AccessError
SPFEEAccessComonTypes: : e_Speci fi edAccessSessi onEr r or
SPFEECommonTypes: : e_PropertyError
SPFEEConmonTypes: : e Li stError

)

voi d get Sessi onMbdel s (
i n SPFEEAccessCommonTypes: :t_AccessSessi onSecretld asSecretld,
i n SPFEEConmonTypes::t_Sessionld sessionld,
out SPFEEComoNnTypes: :t _Sessi onModel Li st sessi onMbdel s
) raises (
SPFEEAccessCommonTypes: : e_AccessError
e_SessionError,
SPFEEConmonTypes: : e Li stError

)

voi d get SessionlnterfaceTypes (
i n SPFEEAccessCommonTypes: :t_AccessSessi onSecretld asSecretld,
i n SPFEEConmonTypes::t_Sessionld sessionld,
out SPFEEComonTypes::t _InterfaceTypelist itfTypes
) raises (
SPFEEAccessCommonTypes: : e_AccessError
e_SessionError,
SPFEEConmonTypes: : e ListError

)

voi d get Sessionlnterface (
i n SPFEEAccessCommonTypes: :t_AccessSessi onSecretld asSecretld,
i n SPFEEConmonTypes::t_Sessionld sessionld,
i n SPFEEConmonTypes::t_InterfaceTypeNane itf Type,
out SPFEEComonTypes::t_InterfaceStruct itf
) raises (

Q series — Supplement 28 (12/1999)

123

124

SPFEEAccessCommonTypes: : e_AccessError
e_Sessi onError,
SPFEEConmonTypes: :e_I nterfacesError

)

voi d get Sessi onl nterfaces (
i n SPFEEAccessCommonTypes: :t_AccessSessi onSecretld asSecretld,
i n SPFEEConmonTypes::t_Sessionld sessionld,
out SPFEECommonTypes::t _InterfacelList itfs
) raises (
SPFEEAccessCommonTypes: : e_AccessError
e_SessionError,
SPFEEConmonTypes: : e ListError

)

void listSessionlnvitations (
i n SPFEEAccessConmmonTypes: :t_AccessSessionSecretld asSecretld,
out SPFEEAccessConmonTypes::t_InvitationList invitations

) raises (
SPFEEAccessCommonTypes: : e_AccessError
SPFEEConmonTypes: : e Li stError

)

voi d |istSessi onAnnouncenents (
i n SPFEEAccessCommonTypes: :t_AccessSessi onSecretld asSecretld,
i n t_Announcenent Sear chProperti es desiredProperties,
out SPFEEComoNnTypes: :t_Announcenent Li st announcenents

) raises (
SPFEEAccessCommonTypes: : e_AccessError
SPFEECommonTypes: : e_PropertyError
SPFEEConmonTypes: :e_Li stError

)

void start Service (
SPFEEAccessConmonTypes: .t _AccessSessi onSecretld asSecretld,
SPFEEAccessConmonTypes: :t_Serviceld serviceld,
t _Applicationlnfo app,
SPFEEConmonTypes: :t _Sessi onMbdel Req sessi onMbdel Req,
t _Start Servi ceUAProperti es uaProperti es,
t _Start ServiceSSProperties ssProperti es,

out SPFEEAccessCommonTypes::t_Sessi onl nfo sessionlnfo
) raises (

SPFEEAccessCommonTypes: : e_AccessError

e _ServiceError,

e_Applicationl nfoError,

SPFEEConmonTypes: : e_Sessi onMbdel Error

e_Start Servi ceUAPr opert yError

e_Start Servi ceSSPropertyError

5 3 33335

)

voi d endSessi on (
i n SPFEEAccessConmonTypes: :t_AccessSessionSecretld asSecretld,
i n SPFEEConmonTypes::t_Sessionld sessionld
) raises (
SPFEEAccessCommonTypes: : e_AccessError
e_Sessi onError

)

voi d endMyParticipation (
i n SPFEEAccessConmmonTypes: .t _AccessSessionSecretld asSecretld,
i n SPFEEConmonTypes: :t_Sessionld sessionld
) raises (
SPFEEAccessCommonTypes: : e_AccessError
e_Sessi onError

)

Q series — Supplement 28 (12/1999)

voi d suspendSessi on (
i n SPFEEAccessCommonTypes: :t_AccessSessi onSecretld asSecretld,
i n SPFEEConmonTypes: :t_Sessionld sessionld
) raises (
SPFEEAccessCommonTypes: : e_AccessError
e_Sessi onError

)

voi d suspendMyPartici pation (
i n SPFEEAccessConmmonTypes: :t_AccessSessi onSecretld asSecretld,
i n SPFEEConmonTypes::t_Sessionld sessionld
) raises (
SPFEEAccessCommonTypes: : e_AccessError
e_Sessi onError

)

voi d resuneSessi on (
i n SPFEEAccessCommonTypes: :t_AccessSessi onSecretld asSecretld,
i n SPFEEConmonTypes: :t_Sessionld sessionld,
int_Applicationlnfo app,
out SPFEEAccessCommonTypes::t_Sessi onl nfo sessionlnfo
) raises (
SPFEEAccessCommonTypes: : e_AccessError
e_SessionError,
e_Applicationl nfoError

)

voi d resuneMyParti ci pation (
i n SPFEEAccessCommonTypes: :t_AccessSessi onSecretld asSecretld,
i n SPFEEConmonTypes::t_Sessionld sessionld,
int_Applicationlnfo app,
out SPFEEAccessConmonTypes::t_Sessi onl nfo sessionlnfo
) raises (
SPFEEAccessCommonTypes: : e_AccessError
e_Sessi onError,
e_Applicationl nfoError

)

voi d joinSessionWthlnvitation (
i n SPFEEAccessConmonTypes: :t_AccessSessionSecretld asSecretld,
i n SPFEEAccessConmonTypes::t _Invitationld invitationld,
int_Applicationlnfo app
i n SPFEEConmonTypes::t_PropertylLi st joinProperties,
out SPFEEAccessConmonTypes::t_Sessi onl nfo sessionlnfo
) raises (
SPFEEAccessCommonTypes: : e_AccessError
e_SessionError,
SPFEEAccessComonTypes: i e_l nvitati onError
e_Applicationl nf oError
)
voi d j oi nSessi onW t hAnnouncenent (
i n SPFEEAccessCommonTypes: :t_AccessSessi onSecretld asSecretld,
i n SPFEEAccessCommonTypes: :t_Announcenent | d announcenent | d,
int_Applicationlnfo app
i n SPFEEConmonTypes::t_PropertylList joinProperties,
out SPFEEAccessCommonTypes::t_Sessi onl nfo sessionlnfo
) raises (
SPFEEAccessCommonTypes: : e_AccessError
e_SessionError,
e_Announcenent Err or
e_Applicationl nfoError

)

Q series — Supplement 28 (12/1999)

125

9.3

126

void replyTolnvitation (
i n SPFEEAccessConmonTypes: :t_AccessSessi onSecretld asSecretld,
i n SPFEEAccessCommonTypes::t_lnvitationld invitationld,
i n SPFEEConmonTypes::t_InvitationReply reply

) raises (
SPFEEAccessCommonTypes: : e_AccessError
SPFEEAccessCommonTypes: :e_ | nvitati onError
SPFEEConmonTypes: :e_l nvitati onRepl yError

)
}; /1 i _ProviderNanedAccess

interface i _Provi der AnonAccess
i _ProviderAccess
{

/1 No additional operations defined.
}; /1 i_Provider AnonAccess
interface i _Di scoverServiceslterator {
exception e_UnknownDi scover Servi ceshMaxLeft {};

voi d maxLeft (

out unsigned long n
) raises (

e_UnknownDi scover Servi cesMaxLef t
)

// norelLeft: true if there are nore interfaces,
/1l (accessible thru the iterator (This interface)),
// false if there are no nore interfaces to retrieve

void nextN (
in unsigned long n
/1 n >= nunber returned in services
out SPFEEAccessCommonTypes::t_Servi celi st services,
out bool ean noreleft
) raises (
SPFEEConmonTypes: :e_Li stError
)

void destroy ();
}; /1 i _DiscoverServiceslterator

}; /1 nodul e SPFEEProvi der Access

#endi f

Ret-RP IDLs

/'l File SPFEERet Consumerlnitial.idl
#i f ndef spfeeretconsunerinitial _id
#def i ne spfeeretconsunerinitial _idl
#i ncl ude "SPFEEUserInitial.idl"

modul e SPFEERet Consunerlnitial {

interface i _Consunerlnitial: SPFEEUserlInitial::i _Userlnitial {
/1 No additional operations for Consuner.

1

3

#endi f

Q series — Supplement 28 (12/1999)

/'l File SPFEERet Consuner Access. i dl
#i f ndef spfeeretconsuneraccess_idl
#def i ne spfeeretconsuneraccess_idl
#i ncl ude " SPFEEUser Access.idl"

nmodul e SPFEERet Consuner Access {

interface i_Consuner Access: SPFEEUser Access::i_User Access {
/1 No additional operations for Consuner.
}; /1 i_ConsunerAccess

interface i _Consunerlinvite: SPFEEUser Access::i_Userlnvite {
/1 No additional operations for Consuner.
}; /1 i_Consunerlnvite

interface i_ConsunerTerm nal : SPFEEUser Access::i_UserTerm nal {
/1 No additional operations for Consuner.
}; /1 i_ConsunerTerni na

interface i _Consuner AccessSessionlnfo
SPFEEUser Access: ;i _User AccessSessi onlnfo {
/1 No additional operations for Consuner.
}; /1 i _Consuner AccessSessi oni nfo

interface i _Consuner Sessi onl nfo: SPFEEUser Access: :i _User Sessionlnfo {
/1 No additional operations for Consuner.
}; /1 i _ConsunerSessionlnfo

b
#endi f

/1l File SPFEERet Retailerlnitial.idl
#i f ndef spfeeretretailerinitial _id
#defi ne spfeeretretailerinitial _id

#i ncl ude " SPFEEProviderlnitial.idl"
modul e SPFEERet Retailerlnitial {

interface i _Retailerlnitial: SPFEEProviderlnitial::i_Providerlinitial {
/1 No Retailer specific operations defined.

}; /1 i_Retailerlnitial

interface i _Retail er Authenticate:

SPFEEProvi derlnitial::i_ProviderAuthenticate {

/1 No Retailer specific operations defined.

}; /1 i_RetailerAuthenticate

3

#endi f

/'l File SPFEERet Ret ai |l er Access. i dl
#i f ndef spfeeretretail eraccess_idl
#def i ne spfeeretretail eraccess_idl
#i ncl ude " SPFEEPr ovi der Access.idl"

modul e SPFEERet Ret ai | er Access {

interface i _Retail er Access {

/'l behavi our

/1 behavi our Text

/1 "This interface is the place to put operations which should be
/1l shared between i _Retail er NamedAccess and i _Retail er AnonAccess.

Q series — Supplement 28 (12/1999) 127

9.4
94.1

128

/1 These are specific to the Ret RP, so they don't go in i_ProviderAccess
[l Currently none are defined."

/'l usage

/1 "This interface is not to be exported across Ret RP
/1 1t is inherited into the exported interfaces."

/1 No retailer specific operations are defined

}; /1 i_Retail erAccess

interface i _Retail er NanedAccess
: SPFEEPr ovi der Access: : i _Provi der NamedAccess,
i _Retail erAccess

/1 Change the nane of the interface for Ret RP
}; /1 i_Retail er NanedAccess

interface i _Retail er AnonAccess
SPFEEPr ovi der Access: : i _Provi der AnonAccess,
i _Retail erAccess

/'l Change the nane of the interface for Ret RP
}; /1 i _Retail er AnonAccess
}; /1 nodul e SPFEERet Ret ai | er Access
#endi f

Ret-RP Subscription IDL Specifications

SPFEESubCommonTypes.idl

/1 File SPFEESubComonTypes. i dl

/1 Contents:

/1 This file include common definitions required by the subscription
/1 magenment conponent and its clients.

/] @ee SPFEECommonTypes

/1 @ee SPFEEAccessCommonTypes

11

#i f ndef SPFEESUBCOMMONTYPES_| DL
#def i ne SPFEESUBCOMMONTYPES_| DL

[l This file provides definitions that are conmmobn to the service
architecture
#i ncl ude " SPFEEAccessComonTypes.idl"

/1 Module with common types definitions for subscription managenent.
nmodul e SPFEESubConmmonTypes {

/1 List of Service ldentifiers.
typedef sequence<SPFEEAccessCommonTypes::t_Serviceld> t_Servicel dLi st;

/1 Service Types
typedef string t_ServiceType;

/1 Term nal Type: Just an exanple.

enum t_TerniType {UndefinedTernlype, Personal Conputer, WrkStation, TVset,
Vi deot el ephone, Cel | ul arphone, PBX, VideoServer, VideoBridge, Telephone,
HAFax};

/1 NAP type: used to determine the instantation of avail able QoS.
enum t _NapType {Undefi nedNapType, NapTypeFi xed, NapTypeWr el ess};

/1 List of NAPs
typedef sequence<SPFEEAccessCommonTypes::t NAPI d> t NAPI dLi st;

Q series — Supplement 28 (12/1999)

/1 Terminal presentation technology. This is just an exanple
enumt_PresentationSupport { UndefinedPresSupp, X11R6, W NDOWS95, MCGEG };

/1 The Account Nunber represents the Subscriber identifier
typedef string t_Account Nunber;
typedef sequence<t _Account Nurmber > t_Subscri ber | dLi st ;

/1 Types required for SAG nmanagenent

/1 Users, termnals and NAPs are considered (subscription) entities
enumt_entityType {user, term nal, nap};

/1 Entity Id allows to identity uniquely an entity inside the retailer
domai n.
union t_entityld switch (t_entityType) {

case user: SPFEEConmonTypes: :t_Userld userl d;
case termnal: SPFEEAccessCommonTypes::t _Terminalld term nalld;
case nap: SPFEEAccessCommonTypes: it _NAPI d napl d;

H
typedef sequence<t_entityld> t_entityldList;

/1 An entity is characterized by its identifier and name and a set of
properties.
struct t _Entity {
t_entityld entityld;
string entityNare;
SPFEECommonTypes: :t_PropertylLi st properties;
b
typedef sequence<t Entity>t_ EntitylList;

/1 The SAE is characterized by an identifier, a nane and a set of
properties
struct t_Sae {
t _entityld entityld;
string entityNare;
SPFEEConmonTypes: :t_PropertylLi st properties; // |ike password
b

/1 The SAG identifier identifies a SAG uniquely inside the retailer
domai n.

typedef short t _Sagl d;

typedef sequence<t Sagld> t_Sagl dLi st;

/1 A SAGis characterized by its identifier, a textual description of the
/1 group and the list of entities conposing it.
/1 The identifier is the same as the one for SAG Service profile
correspondi ng to that SAG
struct t_Sag {
t _Sagld sagl d;
string sagDescri pti on;
t_entityldLi st entitylList;
b
typedef sequence<t Sag> t_Sagli st;

/] Subscriber Information

/1 Time and Date.
struct t_DateTime {
string dat e;
string time;
}
/1l Textual identification of a person. For exanple, nanme, address and

posi tion.
typedef string t _Person

Q series — Supplement 28 (12/1999) 129

130

/1 Indicates the date and tinme an authorization expires on and the person
who granted it.
struct t_AuthLimt {
t _DateTi ne i mtDate;
string aut hority;
}; /1 note: Shouldn't this be per service contract?

/1 A subscriber is identified by its account nunber and characterized by
/1l name, address, nmonthly charge, paynent record, credit information

/1 date which its subscription expires on, the |list of subscribed services
/1 and the list of defined SAGs.

struct t_Subscriber {

t _Account Nunber account Nunber ;
SPFEEConmonTypes: :t_Userld subscri ber Name;

t _Person i dentificationlnfo;
t _Person bi I I'i ngCont act Poi nt ;
string Rat ePl an;

any paynment Recor d;

any credit;

b

typedef sequence<t Subscriber> t_Subscri berlLi st;

/[l This structure contains information about the wminiml required
configuration
/1l of a service. This is used to specify a configuration for a particular
servi ce session
struct t_RequiredConfiguration {

t _Ternmlype terniype

t _NapType nap_type;

t_Presentati onSupport presentation_support;

SPFEEConmonTypes: :t_PropertylList others; // to be determ ned.

b

/1 Service access rights.
enumt_AccessRight {create,join,be_ invited};

/1 List of possible service access rights.
typedef sequence<t _AccessRi ght> t_AccessRi ghtLi st;

/1 Service Paraneter name
typedef string t_ParamneterNane;

/1 Service Parameter configurability.
enumt_ParaneterConfigurability {
FI XED_BY_PROVI DER, CONFI GURABLE_BY_SUBSCRI BER, CUSTOM ZABLE_BY_USER

b
/'l Service Paraneter val ue.
typedef any t _Par anet er Val ue;

!/l Service Paraneters definition
struct t_Paraneter {

t _Par anet er Nanme nane;
t _ParaneterConfigurability configurability;
t _Par anet er Val ue val ue;

b

typedef sequence<t_ Paraneter> t_Paraneterlist;

struct t_ServiceDescription {

SPFEEAccessCommonTypes: it _Serviceld servicel d;
SPFEEAccessCommonTypes: :t _User Servi ceNane servi ceNane;

t _ParaneterlList servi ceCommonPar ans;
t _ParaneterlLi st servi ceSpeci fi cPar ans;

b

Q series — Supplement 28 (12/1999)

9.4.2

/1 t_serviceTenplate: It describes a service instance.
struct t_ServiceTenpl ate {

SPFEEAccessComonTypes: it _Serviceld servi cel nstancel d;
SPFEEAccessCommonTypes: :t _User Servi ceName servi cel nst anceNane;
t _ServiceldLi st requi redServi ces;

t _ServiceDescription servi ceDescri ption;

b

typedef sequence<t_ServiceTenpl ate> t_Servi ceTenpl at eLi st ;

/1 t _ServiceProfile: It describes a service custom zation.
typedef string t_ServiceProfileld;
typedef sequence<t ServiceProfileld> t_ServiceProfileldList;
struct t_ServiceProfile {
t _ServiceProfileld spl d;
t _ServiceDescription servi ceDescri pti on;
}

typedef sequence<t ServiceProfile> t_ServiceProfilelist;

/1 Service Profile for a SAG
typedef t_ServiceProfile t_SagServiceProfile;

/1 Service Profile by default in a Service Contract.
typedef t_ServiceProfile t_SubscriptionProfile;

/'l List of SAG Service Profiles
typedef sequence<t_SagServi ceProfil e> t_SagServiceProfileList;

/1 Service Contract: Describes the relationship of a subscriber with the

/1 provider for the provision of a service.
struct t_ServiceContract ({
SPFEEAccessCommonTypes: :t_Serviceld serviceld;

t _Account Nunber account Nunber ;

short maxNuntf Ser vi ceProfi |l es;
t _Dat eTi ne actual Start;

t _DateTi ne requestedStart;

t _Person requester,

t _Person t echni cal Cont act Poi nt ;
t_AuthLimt authorityLimt;

t _SubscriptionProfile subscriptionProfile;

t _SagServi ceProfil eLi st sagServi ceProfil eLi st;

b

/1 Notification Type, used in
enumt_subNotificationType

{ NEW_SERVI CES, PROFI LE_MODI FI ED, SERVI CES_W THDRAVW} ;

/1 Notification Type, used in "i_ServiceNotify::notify"
enumt_slcmNotificationType

{ NEW_SERVI CE, TEMPLATE_MODI FI ED, SERVI CE_W THDRAVW} ;

}1
#endif // File SPFEESubCommonTypes. i dl

i _SubscriptionNotify::notify"

SPFEERetSubscriberSubscriptionMgmt.idl

/1 File: SPFEERet Subscri ber SubscriptionMnt.idl

/1 Based on: SPFEEScsSubscri ptionService.idl

/1 Contents: Definition of the online subscription nmanagenent
/1 service specific interface.

11

#i f ndef SPFEERet Subscri ber Subscri pti onMgnt _| DL
#def i ne SPFEERet Subscri ber Subscri pti onMgnt | DL
#i ncl ude " SPFEESubCommonTypes.idl"

modul e SPFEERet Subscri ber Subscri pti onMgnt {

Q series — Supplement 28 (12/1999)

131

132

interface i _Subscriber Subscriptionvgnt {

enumt_errorType { NameToolLong, AddressToolLong, GtherErrors };
exception e_invalidSubscriberl nfof

b

t_errorType errorType;

exception e_unknownSubscri ber{

b

SPFEESubConmmonTypes: :t _Account Nurber subscri berl d;

exception e_applicationError{};
exception e_invalidEntitylnfo{};
excepti on e_unknownSAE{

b

SPFEESubConmonTypes: :t_entityld entityld;

exception e_unknownSAQG

b

SPFEESubConmonTypes: :t_Sagl d sagl d;

exception e_inval i dSAF

b

SPFEESubConmonTypes: :t_Sagl d sagl d;

exception e_invalidContractlnfo{};
exception e_invalidSubscriptionProfile{};
exception e_inval i dSAGServi ceProfil e{

b

SPFEESubCommonTypes: :t_Servi ceProfileld spld;

exception e_unknownServi ceProfil ef

b

SPFEESubCommonTypes: :t_Servi ceProfileld spld;

exception e_unknownServi cel d{

b

SPFEEAccessCommonTypes: :t_Serviceld servicel d;

exception e_invalidSearchCriteria{};
exception e_not Subscri bedServi ce{

b

SPFEEAccessCommonTypes: it _Servicel d servicel d;

/1l Operations for Subscription and Service Contract handling

/1 This operation returns the list of services available for
subscription and use.
void |istServices (

out SPFEEAccessConmonTypes::t_Servi celi st servi celLi st
) raises (e_applicationError);
/1 This operation creates a subscription for a new custoner.
// The initial list of services the subscriber wants to contract ¢
an be specified.
/1 1t returns:
/1l — a unique identifier for the subscriber.

/[l —alist of service tenplates
voi d subscribe (

i n SPFEESubCommonTypes: :t _Subscri ber subscri berl nf o,
i n SPFEESubCommonTypes: :t_Servi cel dLi st servi celi st
out SPFEESubCommonTypes: :t_Account Nunber subscri berl d,

out SPFEESubCommmonTypes::t_Servi ceTenpl at eLi st svcTenpl at eLi st
) raises (e_invalidSubscriberlnfo,
e_unknownServi cel d,
e_applicationError);

/1 This operation creates a (set of) new service contract(s) for
an exi sting custoner.

/1 Alist of services the subscriber wants to contract is
speci fi ed.

/1 1t returns a |ist of service contract nmanagenent interfaces,

Q series — Supplement 28 (12/1999)

/1 one for each of the services requested.
voi d contract Service (
i n SPFEESubCommonTypes: :t _Servi cel dLi st servi celLi st
out SPFEESubCommonTypes::t_Servi ceTenpl at eLi st svcTenpl at eLi st
) raises (e_unknownSubscri ber,
e_unknownServi cel d,
e_applicationError);

/1 This operation withdraws a subscription or a list of service
contracts.
/'l The list of services the subscriber wants to unsubscribe
/1 is an input paraneter. If this list is enpty, that neans
/1 the withdrawal of all the services, and thus the subscription
voi d unsubscribe (
i n SPFEESubCommonTypes: :t _Servi cel dLi st servi celLi st
) raises (e_unknownSubscri ber,
e_unknownServi cel d,
e_applicationError);

/1l Operations for Subscriber Informtion Managenent.
A e

/1 This operation creates a set of entities.
/1 Sub generates a unique identifier for every entity.
11
voi d creat eSAEs (
i n SPFEESubCommonTypes::t_EntityLi st entitylLi st,
out SPFEESubCommonTypes::t_entityldList entityldList
) raises (e_applicationError,
e_invalidEntitylnfo);

/1 This operation deletes a set of entities. The entity is
/1 removed from all the SAGs it could be assigned to and then
del et ed.
voi d del et eSAEs (

i n SPFEESubCommonTypes::t_EntityLi st entitylLi st,

i n SPFEESubCommonTypes::t_entityldList entityldList
) raises (e_applicationError,

e_unknownSAE)

/1 This operation creates a set of SAGs.
/1 1t returns a set of unique SAG identifiers.
voi d creat eSAGs (
i n SPFEESubCommonTypes: :t _Sagli st sagli st
out SPFEESubCommonTypes: :t_Sagl dLi st sagl dLi st
) raises (e_applicationError,
e_inval i dSAG
e_unknownSAQG) ;

/1 This operation deletes a SAG The entities belonging to that
SAG are not del et ed.
voi d del et eSAGs (
i n SPFEESubCommonTypes: :t _Sagl dLi st sagl dLi st
) raises (e_applicationError,
e_unknownSAQG ;

/1 This operation assigns a list of entities to a SAG
voi d assi gnSAEs (
i n SPFEESubCommonTypes: :t_entityldLi st entitylList,
i n SPFEESubComonTypes: :t_Sagl d sagld
) raises (e_unknownSAE,
e_unknownSAG
e_applicationError);

Q series — Supplement 28 (12/1999) 133

134

/1 This operation renoves a list of entities froma SAG
voi d renoveSAEs (
i n SPFEESubCommonTypes: :t_entityldLi st entitylList,
i n SPFEESubComonTypes: :t_Sagl d sagld
) raises (e_unknownSAE,
e_unknownSAG
e_applicationError);

/1 This operation returns the list of entities assigned to a SAG
/1 If a SAGis not specified, it returns all the entities for that
subscri ber.
void |istSAEs (

i n SPFEESubComonTypes: :t_Sagl d sagl d,

out SPFEESubCommonTypes::t_entityldLi st entitylList
) raises (e_unknownSAG

e_applicationError);

/1 This operation returns the list of SAGs for that subscriber.
void |istSAGs (

out SPFEESubConmmonTypes: :t_Sagl dLi st sagl dLi st
) raises (e_applicationError);

/[l This operation returns the information about a specific
subscri ber
voi d get Subscriberinfo (
out SPFEESubCommmonTypes::t_Subscri ber subscri berlinfo
) raises (e_applicationError,
e_unknownSubscri ber) ;

/[l This operation nodifies the information about a specific
subscri ber

/1 Only nanme and address fields are nodifiable. The rest are updated

/1 only by Sub as a result of other operations -createSAGs,...-
voi d set Subscriberinfo (
i n SPFEESubCommonTypes: :t _Subscri ber subscri berlnfo
) raises (e_unknownSubscri ber,
e_invalidSubscri berl nfo,
e_applicationError);

/1 This operation returns the list of services subscribed by
/1 a specific subscriber.
11
void |istSubscribedServices (
out SPFEEAccessConmonTypes::t_Servi celi st service_list
) raises (e_applicationError,
e_unknownSubscri ber) ;

/'l Operations for Service Contract Managenent.
A e T

/1 This operation returns the tenplate for the service.

voi d get Servi ceTenpl ate (
i n SPFEEAccessComonTypes: :t_Serviceld serviceld
out SPFEESubCommonTypes::t_ServiceTenplate tenplate

) raises (e_applicationError);

/1 This operation creates a service contract.
/1 This contract can include a set of service profiles.
voi d defineServiceContract (
i n SPFEESubCommonTypes: :t _Servi ceCont r act servi ceContract,
out SPFEESubComonTypes::t_ServiceProfileldLi st spldList
)
rai ses (e_applicationError,
e_invalidContractlnfo,

Q series — Supplement 28 (12/1999)

e_invalidSubscriptionProfile,
e_inval i dSAGServi ceProfile);

/1 This operation creates a set of service profiles.
voi d defineServiceProfiles (
i n SPFEESubCommonTypes: :t_SubscriptionProfile subscriptionProfile,
i n SPFEESubCommonTypes: :t_SagServi ceProfil eList sagServiceProfiles,
out SPFEESubConmmonTypes::t_ServiceProfileldLi st spldList
)

ras e_inval i dSubscriptionProfile,
e_inval i dSAGServi ceProfile);

/1 his operation deletes a set of service profiles and their
associ at ed SAGs.
voi d del eteServiceProfiles (
i n SPFEESubCommonTypes: :t_ServiceProfil eldLi st spldList
)

rai ses (e_applicationError,
e_unknownServi ceProfile);

/1 This operation returns the list of service profiles identifiers
void |istServiceProfiles (
i n SPFEEAccessCommonTypes: :t_Serviceld serviceld
out SPFEESubConmmonTypes::t_ServiceProfileldLi st spldList
)

rai ses (e_applicationError);

/1 This operation returns the service contract information
[l If a (list of) SAGs) is specified it returns the set of
/1l SAG service profile for that(those) SAES).

voi d get ServiceContractlnfo (

in SPFEEAccessCommonTypes::t_Serviceld serviceld
in SPFEESubCommonTypes: :t_ServiceProfil el dLi st spl dLi st
out SPFEESubConmmonTypes::t_Servi ceContract servi ceContract

)

rai ses (e_applicationError,
e_unknownServi ceProfile);

/1 This operation assigns a service profile to a list of SAGs and
SAEs.
voi d assignServiceProfile (
i n SPFEESubCommonTypes: :t_ServiceProfileld spld,
i n SPFEESubCommonTypes: :t_Sagl dLi st sagl dLi st,
i n SPFEESubCommonTypes: :t_entityldLi st saeldLi st
)
rai ses (e_applicationError,
e_unknownSAG
e_unknownSAE,
e_unknownServi ceProfile);

/1 This operation renoves a service profile assignnent to a |ist
of SAGs and SAEs.
voi d renoveServiceProfile (
i n SPFEESubCommonTypes: :t_Servi ceProfileld spld,
i n SPFEESubCommonTypes: :t_Sagl dLi st sagl dLi st,
i n SPFEESubCommonTypes: :t_entityldLi st saeldList
)
rai ses (e_applicationError,
e_unknownSAG,
e_unknownSAE,
e_unknownServi ceProfile);

/1 This operation activates a set of service profiles
void activateServiceProfiles (

Q series — Supplement 28 (12/1999) 135

9.4.3

136

i n SPFEESubCommonTypes: :t_ServiceProfileldList spldList
)

rai ses (e_applicationError,
e_unknownServi ceProfile);

/1 This operation deactivates a set of service profiles
voi d deactivateServiceProfiles (

i n SPFEESubCommonTypes: :t_Servi ceProfil el dLi st spldList
)

rai ses (e_applicationError,
e_unknownServi ceProfile);

}; /1 i _Subscriber Subscripti onMgnt
H
#endi f // SPFEERet Subscri ber Subscri pti onMgnt _| DL

SPFEERetRetailerSubscriptionMgmt.idl

#i f ndef SPFEERet Ret ai | er Subscri pti onMgnt | DL
#def i ne SPFEERet Ret ai | er Subscri pti onMgnt _| DL
#i ncl ude " SPFEERet Subscri ber Subscri ptionMgnt.idl"

modul e SPFEERet Ret ai | er Subscri pti onMgmt {

interface i _Retail erSubscripti onMgnt :
SPFEERet Subscri ber Subscri ptionMgnt::i _Subscri ber Subscri pti onMgnt

/1 This interface inherits from i _SubscriberSubscriptionMgm, and adds a
few

/1l operations for the retailer operator's access to subscription
functionality

/1 through the Ret-RP.

/] TBD.
void |istSubscribers (

)

/] TBD.
void |istServiceContracts (

)

/| TBD.
void listUsers (

)
}; /1 i _RetailerSubscripti onMgnt
s

#endi f // SPFEERet Retai | er Subscri pti onMgnt | DL

Q series — Supplement 28 (12/1999)

SERIES OF ITU-T RECOMMENDATIONS

Series A Organization of the work of ITU-T

Series B Means of expression: definitions, symbols, classification

Series C General telecommunication statistics

Series D General tariff principles

Series E Overall network operation, telephone service, service operation and human factors
Series F Non-telephone telecommunication services

Series G Transmission systems and media, digital systems and networks

Series H Audiovisual and multimedia systems

Series 1 Integrated services digital network

Series J Transmission of television, sound programme and other multimedia signals

Series K Protection against interference

Series L Construction, installation and protection of cables and other elements of outside plant

Series M TMN and network maintenance: international transmission systems, telephone circuits,
telegraphy, facsimile and leased circuits

Series N Maintenance: international sound programme and television transmission circuits
Series O Specifications of measuring equipment

Series P Telephone transmission quality, telephone installations, local line networks
Series Q Switching and signalling

Series R Telegraph transmission

Series S Telegraph services terminal equipment

Series T Terminals for telematic services

Series U Telegraph switching

Series V Data communication over the telephone network

Series X Data networks and open system communications

Series Y Global information infrastructure and Internet protocol aspects

Series Z Languages and general software aspects for telecommunication systems

Geneva, 2001

	ITU-T Rec. Series Q Supplement 28 (12/1999) Technical Report: Signalling and Protocol Framework for an Evolving...
	Summary
	Source
	Keywords
	FOREWORD
	CONTENTS
	Technical Report: Signalling and Protocol Framework for an Evolving Environment (SPFEE) - Specifications for service access
	1 Scope
	2 References
	3 Definitions
	4 Abbreviations
	5 Information Model of the Session and Resource Level
	5.1 Sessions, Services and Domains
	5.2 Classification of Sessions
	5.3 Classification of Access Sessions
	5.4 Access Session
	5.5 Classification of Service Sessions
	5.6 Service Session
	5.7 Resource [Communication Session (CS)]

	6 Computational Model of the Session and Resource Level
	6.1 Access Session Related Components
	6.2 Service Session Related Components
	6.3 Resource (Communication Session) Related Components
	6.4 Relationship to Information Model
	6.5 Examples

	7 Overview of Ret Specification
	7.1 Overall functionality and scope of the reference points
	7.2 Main assumptions
	7.3 Definition of Ret Reference Point

	8 Ret-RP Specification
	8.1 Overview of Access interfaces for Ret-RP
	8.2 User-Provider Interfaces
	8.3 Common Information View
	8.4 Access Information View
	8.5 Access Interface Definitions: Consumer Domain Interfaces
	8.6 Access Interface Definitions: Retailer Domain Interfaces
	8.7 Subscription Management

	9 Complete IDL specifications
	9.1 Common Definitions IDLs
	9.2 User and Provider General IDLs
	9.3 Ret-RP IDLs
	9.4 Ret-RP Subscription IDL Specifications

