

INTERNATIONAL TELECOMMUNICATION UNION

ITU-T Q.834.4
TELECOMMUNICATION
STANDARDIZATION SECTOR
OF ITU

(07/2003)

SERIES Q: SWITCHING AND SIGNALLING
Q3 interface

 A CORBA interface specification for Broadband
Passive Optical Networks based on UML
interface requirements

ITU-T Recommendation Q.834.4

ITU-T Q-SERIES RECOMMENDATIONS
SWITCHING AND SIGNALLING

SIGNALLING IN THE INTERNATIONAL MANUAL SERVICE Q.1–Q.3
INTERNATIONAL AUTOMATIC AND SEMI-AUTOMATIC WORKING Q.4–Q.59
FUNCTIONS AND INFORMATION FLOWS FOR SERVICES IN THE ISDN Q.60–Q.99
CLAUSES APPLICABLE TO ITU-T STANDARD SYSTEMS Q.100–Q.119
SPECIFICATIONS OF SIGNALLING SYSTEMS No. 4, 5, 6, R1 AND R2 Q.120–Q.499
DIGITAL EXCHANGES Q.500–Q.599
INTERWORKING OF SIGNALLING SYSTEMS Q.600–Q.699
SPECIFICATIONS OF SIGNALLING SYSTEM No. 7 Q.700–Q.799
Q3 INTERFACE Q.800–Q.849
DIGITAL SUBSCRIBER SIGNALLING SYSTEM No. 1 Q.850–Q.999
PUBLIC LAND MOBILE NETWORK Q.1000–Q.1099
INTERWORKING WITH SATELLITE MOBILE SYSTEMS Q.1100–Q.1199
INTELLIGENT NETWORK Q.1200–Q.1699
SIGNALLING REQUIREMENTS AND PROTOCOLS FOR IMT-2000 Q.1700–Q.1799
SPECIFICATIONS OF SIGNALLING RELATED TO BEARER INDEPENDENT CALL
CONTROL (BICC)

Q.1900–Q.1999

BROADBAND ISDN Q.2000–Q.2999

For further details, please refer to the list of ITU-T Recommendations.

 ITU-T Rec. Q.834.4 (07/2003) i

ITU-T Recommendation Q.834.4

A CORBA interface specification for Broadband Passive Optical Networks
based on UML interface requirements

Summary
This Recommendation provides a CORBA IDL definition for the management interface between a
Supplier Management System and an Operator Management System. This work defines part of the
management aspects for network resources defined by the G.983.x series of ITU-T
Recommendations for Broadband Passive Optical Network (BPON) equipment.

Generally speaking, the Supplier Management System is an Element Management System (EMS)
and the Operator Management System (OMS) is a Network Management System (NMS). However,
the Supplier Management System is required to present a "network view" of connection management
to the Operator Management System. So it was deemed necessary for clarity's sake to use the
terminology adopted in naming the systems involved.

In addition, it should be noted that ITU-T Rec. Q.834.1 contains a set of functionality requirements
and a listing of managed entity definitions forming the basis for management information required
for a "network element view" of BPON equipment. ITU-T Rec. Q.834.2 completes the management
information definition for management of BPON equipment by providing the definitions of managed
entities for the "network view". ITU-T Rec. Q.834.3 addresses management interface behaviour
through use of UML diagrams and Use Case descriptions. The management information modelled in
ITU-T Recs Q.834.1 and Q.834.2 is referenced throughout this Recommendation and ITU-T
Rec. Q.834.3.

Source
ITU-T Recommendation Q.834.4 was approved on 7 July 2003 by ITU-T Study Group 4
(2001-2004) under the ITU-T Recommendation A.8 procedure. This edition includes the
modifications introduced by Corrigendum 1 approved on 13 January 2004.

Keywords
APON, BPON, CORBA, IDL, PON, UML.

ii ITU-T Rec. Q.834.4 (07/2003)

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of
telecommunications. The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of
ITU. ITU-T is responsible for studying technical, operating and tariff questions and issuing
Recommendations on them with a view to standardizing telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years,
establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on
these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are
prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a
telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain
mandatory provisions (to ensure e.g. interoperability or applicability) and compliance with the
Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some
other obligatory language such as "must" and the negative equivalents are used to express requirements. The
use of such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may
involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence,
validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others
outside of the Recommendation development process.

As of the date of approval of this Recommendation, ITU had not received notice of intellectual property,
protected by patents, which may be required to implement this Recommendation. However, implementors
are cautioned that this may not represent the latest information and are therefore strongly urged to consult the
TSB patent database.

 ITU 2004

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the
prior written permission of ITU.

 ITU-T Rec. Q.834.4 (07/2003) iii

CONTENTS
 Page
1 Scope .. 1

2 References... 1
2.1 Normative references.. 1
2.2 Other references.. 2

3 Terms and definitions ... 2
3.1 Terms imported from ITU-T Rec. M.3010 .. 2
3.2 Terms imported from UML.. 2
3.3 Terms imported from OMG Naming Service .. 3
3.4 Terms imported from ITU-T Rec. Q.834.1 .. 3
3.5 Terms imported from ITU-T Rec. Q.834.3 .. 3
3.6 New terms... 3

4 Abbreviations.. 3

5 Conventions .. 5
5.1 Module description conventions... 5
5.2 IDL file conventions... 5
5.3 NULL values .. 6

6 Interface architecture overview .. 6

7 Names and naming constraint... 7
7.1 Service objects and OMG naming service ... 8
7.2 Domain objects... 9

8 Organization of IDL files.. 9

9 Modules .. 10
9.1 AccessControl module.. 10
9.2 Build module .. 16
9.3 Q834Common module ... 25
9.4 ControlArchive module .. 26
9.5 SoftwareDownload module .. 30
9.6 EventPublisher module... 37
9.7 MIBTransfer module .. 40
9.8 PerformanceManager module .. 43
9.9 ProfileManager ... 52
9.10 Registrar module .. 54
9.11 ResourceAllocation module ... 59
9.12 SchedulerManagement module .. 62
9.13 ServiceProvisioning module... 66
9.14 Synchroniser module .. 70
9.15 Test module .. 73
9.16 FileTransfer module ... 79

iv ITU-T Rec. Q.834.4 (07/2003)

 Page
10 Compliance statement... 82

Annex A – Data dictionary .. 82

Annex B – Exceptions ... 104

Annex C – IDL files... 109
C.1 Q834AccessControl.idl .. 109
C.2 Q834Build.idl ... 114
C.3 Q834Common.idl ... 120
C.4 Q834ControlArchive.idl... 134
C.5 Q834SoftwareDownload.idl... 137
C.6 Q834EventPublisher.idl.. 142
C.7 Q834MIBTransfer.idl... 146
C.8 Q834PerformanceManager.idl ... 149
C.9 Q834ProfileManager.idl... 154
C.10 Q834Registrar.idl ... 165
C.11 Q834ResourceAllocation.idl .. 168
C.12 Q834SchedulerManagement.idl ... 171
C.13 Q834ServiceProvisioning.idl.. 173
C.14 Q834Synchroniser.idl... 176
C.15 Q834Test.idl ... 178
C.16 Q834Filetransfer.idl.. 183

Annex D – Example endpoint templates ... 186

 ITU-T Rec. Q.834.4 (07/2003) 1

ITU-T Recommendation Q.834.4

A CORBA interface specification for Broadband Passive Optical Networks
based on UML interface requirements

1 Scope
This Recommendation addresses the design of an interactive mechanized interface between the
Supplier Management System managing BPON network resources and an Operator Management
System (OMS). The design is based on the UML diagrams and Use Case descriptions of ITU-T
Rec. Q.834.3. The general approach adopted in ITU-T Rec. Q.834.3, and implemented here, is that
the Supplier Management System provides management services to the Operator Management
System. These services provide the OMS with a high level abstraction of the following capabilities:
• Provisioning installed network resources;
• Provisioning uninstalled network resources including capacity reservation;
• Service provisioning;
• Archive management;
• NE software management;
• NE configuration data backup and restoral;
• Performance management;
• NE event publication;
• Profile management;
• Testing;
• Activity scheduling;
• Bulk transfer management;
• NE-EMS synchronisation;
• Access control.

This Recommendation describes the CORBA IDL interfaces supporting the services listed above.

2 References

2.1 Normative references
The following ITU-T Recommendations and other references contain provisions which, through
reference in this text, constitute provisions of this Recommendation. At the time of publication, the
editions indicated were valid. All Recommendations and other references are subject to revision;
users of this Recommendation are therefore encouraged to investigate the possibility of applying the
most recent edition of the Recommendations and other references listed below. A list of the
currently valid ITU-T Recommendations is regularly published. The reference to a document within
this Recommendation does not give it, as a stand-alone document, the status of a Recommendation.

[1] ITU-T Recommendation M.3010 (2000), Principles for a telecommunications management
network.

[2] ITU-T Recommendation M.3200 (1997), TMN management services and telecom-
munications managed areas: Overview.

[3] ITU-T Recommendation M.3400 (2000), TMN Management Functions.

[4] OMG Document formal/99-06-01, Unified Modelling Language, Section 1.

2 ITU-T Rec. Q.834.4 (07/2003)

[5] ITU-T Recommendation G.983.1 (1998), Broadband optical access systems based on
Passive Optical Networks (PON), plus Amendment 1 (2001).

[6] ITU-T Recommendation Q.834.1 (2001), ATM-PON requirements and managed entities
for the network element view.

[7] ITU-T Recommendation Q.834.2 (2001), ATM-PON requirements and managed entities
for the network view.

[8] ITU-T Recommendation Q.834.3 (2001), A UML description for management interface
requirements for Broadband Passive Optical Networks.

[9] ITU-T Recommendation M.3020 (2000), TMN Interface Specification Methodology.

[10] ITU-T Recommendation G.983.2 (2002), ONT management and control interface
specification for B-PON.

[11] ITU-T Recommendation G.983.3 (2001), A broadband optical access system with
increased service capability by wavelength allocation.

[12] ITU-T Recommendation G.983.4 (2001), A broadband optical access system with
increased service capability using dynamic bandwidth assignment (DBA).

[13] ITU-T Recommendation G.983.5 (2002), A broadband optical access system with
enhanced survivability.

[14] ITU-T Recommendation G.983.6 (2002), ONT management and control interface
specifications for B-PON system with protection features.

[15] ITU-T Recommendation G.983.7 (2001), ONT Management and Control interface
specification for Dynamic Bandwidth Assignment (DBA) B-PON system.

[16] ITU-T Recommendation X.780 (2001), TMN guidelines for defining CORBA managed
objects.

[17] ITU-T Recommendation Q.816 (2001), CORBA-based TMN services.

2.2 Other references
[18] OMG Document formal/02-09-02, CORBA Services – Naming Service specification.

[19] OMG Document formal/02-08-04, CORBA Services – Notification Service specification.

3 Terms and definitions

3.1 Terms imported from ITU-T Rec. M.3010
The following term from ITU-T Rec. M.3010 is used in this Recommendation:
– User.

3.2 Terms imported from UML
The following terms from UML [4] are used in this Recommendation:
– Actor;
– Class;
– Class Diagram;
– Use Case.

 ITU-T Rec. Q.834.4 (07/2003) 3

3.3 Terms imported from OMG Naming Service
The following terms from OMG Naming Service [18] are used in this Recommendation:
– Naming graph;
– Name.

3.4 Terms imported from ITU-T Rec. Q.834.1
The following term from ITU-T Rec. Q.834.1 is used in this Recommendation:
– Managed Entity.

3.5 Terms imported from ITU-T Rec. Q.834.3
The following terms from ITU-T Rec. Q.834.3 are used in this Recommendation:
– Activate;
– Assign;
– Autodiscovery;
– BPON resource;
– Build;
– Filtering;
– Install;
– Range;
– Register;
– Reserve;
– Service Instance;
– User Label.

3.6 New terms
This Recommendation defines the following terms:

3.6.1 service object: The set of objects providing access to the management services
implemented in the Supplier Management System. Interfaces to service objects constitute the
specification for the portion of IF1 defined in this Recommendation.

3.6.2 domain object: The set of objects defining the management information for management
of BPON network resources. Domain objects are primarily provided by the Managed Entity listings
of ITU-T Recs Q.834.1 and Q.834.2.

3.6.3 internal object: The set of objects used to support Supplier Management System internal
logic. They are completely obscure from the point of view of the OMS.

4 Abbreviations
This Recommendation uses the following abbreviations:
AAL ATM Adaptation Layer
APON ATM-PON
ATM Asynchronous Transfer Mode
BICI Broadband Inter-Carrier Interface
BISSI Broadband Inter-Switching System Interface
BPON Broadband Passive Optical Network

4 ITU-T Rec. Q.834.4 (07/2003)

CAC Call Admission Control
CCITT Consultative Committee for International Telephone and Telegraph
CES Circuit Emulation Service
CNM Customer Network Management
CORBA Common Object Request Broker Architecture
CTP Connection Termination Point
CTT Customer Trouble Ticket
DCN Data Communications Network
DSx Digital Signal x
EM Element Management
EML Element Management Layer
EMS Element Management System
EOC Embedded Operations Channel
Ex European Digital Signal x
FSAN Full Services Access Network
GUI Graphical User Interface
IDL Interface Definition Language
ITU International Telecommunication Union
ME Managed Entity
MIB Management Information Base
NE Network Element
NMS Network Management System
NT Network Terminal
ODN Optical Distribution Network
OLT Optical Line Terminal
OMG Object Management Group
OMS Operator Management System
ONT Optical Network Terminal
ONU Optical Network Unit
OS Operations System
PON Passive Optical Network
PVC Permanent Virtual Circuit
QoS Quality of Service
TCA Threshold Crossing Alert
TMN Telecommunications Management Network
TP Termination Point
TTP Trail Termination Point
UML Unified Modelling Language
UNI User-Network Interface
VC Virtual Channel
VCC Virtual Channel Connection

 ITU-T Rec. Q.834.4 (07/2003) 5

VCI Virtual Channel Identifier
VP Virtual Path
VPC Virtual Path Connection
VPI Virtual Path Identifier

5 Conventions
There are two clauses in this Recommendation where specific conventions have been followed. The
first is the description of the IDL Modules in clause 8 and the second is the IDL files found in
Annex C. Finally, this Recommendation uses certain conventions involving null values.

5.1 Module description conventions
Module descriptions have the following pattern:
– Module Name – services overview, including any relevant high-level modelling, key

business data element descriptions, and scenarios as required.
• Interface Name – overview of the specific services provided by this interface.

– Operation Name1 – detailed description of the behaviour of this operation including
signature of the operation, description of each input parameter, and description of
the return value.

– …
– Operation Namen – detailed description of the behaviour of this operation including

signature of the operation, description of each input parameter, and description of
the return value.

– Exceptions – context-specific conditions that cause the named exceptions to be
raised.

5.2 IDL file conventions
Each IDL file has the following format:
• #ifndef __<MODULENAME>_DEFINED (module name is the same as the filename);
• #define __<MODULENAME>_DEFINED
• #include "<idlfilename>"1
• #pragma prefix "itu.Int"
• module q834_4 {
• module <modulename> {
• all the specific data type definitions and interface specifications needed and indicated by the

interface design initiated from examination of ITU-T Rec. Q.834.3;
• }; //module <modulename>
• }; //module q834_4
Within each module definition, data type definitions precede and are segmented from the interface
definitions. All data types defined in this Recommendation start with an initial capitalized alpha
character. If data type names are joins of several proper nouns, pronouns, or adjectives, the join will
expect a capitalized alpha character at the start of each component. Labels for parameters used in
any interface operation signature start with a lower case alpha character. Each operation name
begins with a lower case alpha character.

1 Q834Common.idl file is included with every other IDL file in this Recommendation.

6 ITU-T Rec. Q.834.4 (07/2003)

5.3 NULL values
In this Recommendation, when there is a mention of "null string", it is meant to be an empty string
and not a null object supported by languages such as JAVA. Similarly, when a "null sequence" is
mentioned, a sequence with zero elements is passed.

6 Interface architecture overview
Figure 1 illustrates the BPON network architecture and management system. This technology
provides an integrated loop access delivery mechanism for every telecommunications service
currently deployed by operators. A list of such services includes telephony and voice grade services,
circuit-emulation, Ethernet, ATM, xDSL, and video. This standardization effort is ongoing in its
consideration of layer 1 and 2 transport solutions on the ODN, although initial implementations
exist in operator networks involving APON and ATM as defined in ITU-T Rec. G.983.1.

The figure also shows the IF1 (Q) interface between the Supplier Management System and Operator
Management Systems. The IF1 interface covers all aspects of network and service provisioning
management, network performance management, traffic management, maintenance, testing, and
user security administration. Specification of IF1 would have been an overwhelming challenge if
the approach adopted had not pursued a level of abstraction above the transport delivery technology
details as well as the complexities inherent in managing so many service types. The approach
included the definition and description of interface requirements using Unified Modelling
Language, followed the methodology of ITU-T Rec. M.3020, and was documented in ITU-T
Rec. Q.834.3.

The operator systems identified in this diagram correspond directly to system actors defined in
ITU-T Rec. Q.834.3. This Recommendation specifies the interactive real-time transactions
involving the Supplier Management System and does not explicitly describe the file structures
transferred between the Supplier Management System and either the Data Warehouse or Secure File
Server. Since the interfaces to OMG Naming Service and OMG Notification Service are already
specified, the focus of this Recommendation narrows down to messaging between the Supplier
Management System and the shaded system actors.

 ITU-T Rec. Q.834.4 (07/2003) 7

Q.834.4_F01

OLT

ONT

ONU NT

UNI

BPON network elements

NNI

NNI

IF1
IF1

Real-time

Other OMSs

BICI
BISSI
BPON
NNI
NT

Broadband Inter-Carrier Interface
Broadband Inter-Switching System Interface
Broadband Passive Optical Network
Network to Network Interface
Network Terminal

ODN
OLT
ONT
ONU
UNI

Optical Distribution Network
Optical Line Terminal
Optical Network Terminal
Optical Network Unit
User-Network Interface

ODN

OMS naming
service

OMS
notification

service

Profile object
repository

Priviledged
user

Non
Real-time

Secure file
server

Data
warehouse

Supplier
management

system

BICI
BISSI

Figure 1/Q.834.4 – Interface architecture overview

7 Names and naming constraint
This clause provides guidelines for object names and managed entity identifiers referenced on IF1.

Review of all the class diagrams developed in ITU-T Rec. Q.834.3 shows that the Supplier
Management System manages three distinct types of "objects". These can be classified as follows:
• Service Objects: provide access to the management services implemented in the Supplier

Management System. The interfaces of these services are the main subject of this
Recommendation. A few examples are NERegistrar, ServiceProvisioner,
TestActionPerformer, and DownloadMgr. They are aligned with ITU-T Rec. X.780 as
derivations of Managed Object Interface in this Recommendation.

• Domain Objects: define the management information for management of BPON network
resources. Domain objects are primarily resources (managed entities) identified by ITU-T
Recs Q.834.1 and Q.834.2. These domain objects, as well as others defined in ITU-T Rec.
M.3120 and other Recommendations following the CORBA Framework of ITU-T, may be
made available for use on IF1. A mechanism for harmonizing the use of Service Objects
and Domain Objects is explained later on in this clause.

8 ITU-T Rec. Q.834.4 (07/2003)

• Internal Objects: used to support Supplier Management System internal logic. They are
completely obscure from the point of view of the OMS.

7.1 Service objects and OMG naming service
All Service objects (either instantiated by the Supplier Management System or the OMS) have their
IDL interface defined in this Recommendation and their object reference registered with the OMG
Naming Service pictured in Figure 1 using the bind() operation of Naming Service interface.
Subsequently, the location of the object instance can be found using the resolve() operation of
Naming Service, if required.

Object names can be either "well known" (meaning that the name has been documented and agreed
to prior to runtime), or communicated at run-time through another interface. In the case of this
Recommendation, all of the Service objects are "well-known". The name of a well-known object
can be documented via a naming graph. Figure 2 provides an example of a naming graph for some
of the Service Objects in this Recommendation, following the naming convention described in
ITU-T Rec. Q.816. Shown in the diagram is the Id, followed by a dot, followed by the Kind value.
Only four of the Service Objects are shown, for the sake of simplicity, in the figure. The other
Service Objects would be named in an analogous fashion.

Q.834.3_F02

root

BPON.Technology ProfileRetriever.ServiceObject

supplier1.Supplier supplier2.Supplier

ems1. SuppMS ems2.SuppMS

Object.

Object.

ServiceProvisioner
ServiceObjectNERegistrar.ServiceObject Builder.ServiceObject

Object.Object.

Figure 2/Q.834.4 – Naming graph

The complete path for the name is required for a "well known" object. At start-up of a newly
installed Supplier Management System, all instances of Service objects are automatically registered
to a single OMG Naming Service maintained by the Operator. The Name of any object registered
with OMG Naming Service has the following syntax:

 typedef string Istring;

 struct NameComponent {
 Istring id;
 Istring kind;
 };

 typedef sequence<NameComponent> Name;

One interpretation of the naming graph of Figure 2 is that the "kind" field in each of the naming
components of the service objects has the value of null string, and that each of the nodes shown

 ITU-T Rec. Q.834.4 (07/2003) 9

represents the values for the "id" field. The details of the naming graph, as well as its interpretation,
should be determined via agreement between the supplier and operator and these details lie outside
the scope of this Recommendation.

7.2 Domain objects
The Supplier Management System maintains a large number of Managed Entities (or Domain
Objects)2. These entities are managed indirectly through the management services offered by the
Supplier Management System. However, references (identifiers) to specific resources instances are
often needed for the OMS to make effective use of the management services of the Supplier
Management System. When the identifier is returned as result of a management operation (or
included in notifications) it is assumed that the identifier is "known" in subsequent management
service invocations from the OMS. In this specification, the identifier of a Managed Entity has been
provided a syntax that allows the Supplier Management System to inform the OMS of at least one
of three ways to interact with the Managed Entity in subsequent invocations. If the Managed Entity
is a Managed Object available on IF1, then the CORBA name of the object is provided as described
in ITU-T Rec. X.780. If the Managed Entity has a supporting Façade object available on IF1, then
the CORBA name of the façade object is provided as described in ITU-T Rec. X.780.1. If neither of
these capabilities is available yet, then the identifier consists of a reference unique within the
context of the management domain of the Supplier Management System. In general, details of this
reference are based on a specific containment hierarchy determined via agreement between the
supplier and operator and the details lie outside the scope of this Recommendation.

8 Organization of IDL files
The proposed interface specification found in this Recommendation consists of a parent module
called "q834_4". The parent module is partitioned into IDL files (smaller modules) corresponding
to smaller named modules. Each of these files contains one or more interface definitions
representing a specific management service supported on IF1. Table 1 provides a listing correlating
Annex C Reference number, IDL File Name, contained IDL Interfaces, and reference to the
associated Use Case Description of ITU-T Rec. Q.834.3.

Table 1/Q.834.4 – q834_4 module organization

Annex
reference IDL files IDL interface Use case title

C.1 Q834AccessControl AccessControlMgr AccessControl
C.2 Q834Build Builder Build BPON Resources
C.3 Q834Common ProbableCause

MonitoringParameter
RecordSetType
PMCategory
PhysicalLayerLoopback

C.4 Q834ControlArchive RecordSetMgr Control Archiving

2 If the Supplier Management System manages 100-200 BPON systems (desirable sizing requirement) and

fully supports the shared management knowledge base contained in ITU-T Recs Q.843.1 and Q.834.2,
then the number of managed entity instances supported by the Supplier Management System varies
between 10s of millions to billions depending on the service offerings.

10 ITU-T Rec. Q.834.4 (07/2003)

Table 1/Q.834.4 – q834_4 module organization

Annex
reference IDL files IDL interface Use case title

DownloadMgr Distribute Software C.5 Q834SoftwareDownload
 VersionRepository NE Software Version Control

C.6 Q834EventPublisher AlarmEventSupplier
SecurityEventSupplier
DiscoveryEventSupplier

Publish Events

C.7 Q834MIBTransfer MIBMover NE Restoral
ImpairmentPersistence RCAA & RCIA C.8

Q834PerformanceManager

ReportController Performance & Traffic
Monitoring Reporting Control

C.9 Q834ProfileManager ProfileConsumer
ProfileUsageMgr
ProfileRetriever

Profile Object Management

C.10 Q834Registrar NERegistrar Provision Installed BPON
Resources

C.11 Q834ResourceAllocation ResourceAllocator Reserve Resources
C.12 Q834SchedulerManagement SchedulerMgr Scheduler
C.13 Q834ServiceProvisioning ServiceProvisioner Provision Service

Provide Current Event Summary
Listings

C.14 Q834Synchroniser

Synchroniser

NE Synchronisation
C.15 Q834Test TestActionPerformer Testing
C.16 Q834FileTransfer TransferMgr Bulk Transfer

9 Modules

9.1 AccessControl module
This module describes functionality for creating, deleting, assigning, and using access control
information for operators using the GUI client application of the Supplier Management System. In
this module, users can be assigned to user groups. Permission can be granted to individual users or
to user groups. The user possesses the permission of any group to which he or she has been
assigned. Any individually defined permission (see 9.1.1.14 and 9.1.1.15) for a specific user takes
precedence over a group assignment. With group assignments the highest level of permission
prevails for any user assigned to the groups. It is assumed that the privileged user does not request
any ambiguous target activities when creating or modifying a user group, or when specifying the
permission for an individual user.

A target activity is defined as shown in Table 2, throughout the module:

 ITU-T Rec. Q.834.4 (07/2003) 11

Table 2/Q.834.4 – Target activity detail

Field name Definition Syntax Comments

activityLevel Specifies the access level of the
activity

enum monitorOnly
allowedToExecute
noAccess

activityType Specifies the type of the activity short Defined as various
constants in the
interface
AccessControlMgr

administrationDomainList The identifier provided by the OMS or
operator during registration to indicate
the administration domain to which the
NE belongs

UserLabel

9.1.1 AccessControlMgr interface

9.1.1.1 setPasswordPolicy
This operation allows the privileged users to manage the password policy.

The operation signature for setPasswordPolicy is shown below:

void setPasswordPolicy (in PasswordPolicyType passwordPolicy)
 raises (AccessDenied);

The input parameter passwordPolicy identifies the password policy which is enforced by the
Supplier Management System and it consists of UserLoginPolicy and SessionPolicy.
UserLoginPolicy dictates the following parameters regarding userId and password: minimum size
for user Id, minimum size for user password, length of time in days before a password can be
reused, maximum number of login attempts allowed before the user access is blocked for a day,
how long the password is valid (in days), whether the password must contain an alphanumeric
mixture, whether or not at least one special character is required, whether or not the password can
contain repeating characters, and whether or not the user Id can be part of the password.

SessionPolicy identifies the following parameters regarding the session: length of time that a
session is inactive before the session is discontinued, length of time an inactive user Id is disabled,
and the maximum number of active sessions per user Id is permitted.

Since only one passwordPolicy can exist in a Supplier Management System, there is no need to
have a create method, either a default policy exists in the Supplier Management System or the first
set method can act as set-by-create.

The return value is of type void.

9.1.1.2 passwordPolicyGet
This operation allows the privileged users to retrieve the policy concerning the syntax of data
exchanged and timers used when logging into the Supplier Management System.

The operation signature for passwordPolicyGet is shown below:

PasswordPolicyType passwordPolicyGet()
 raises (AccessDenied);

There is no input parameter required by this operation.

The return value is of type PasswordPolicyType providing the details governing user log on to the
Supplier Management System.

12 ITU-T Rec. Q.834.4 (07/2003)

9.1.1.3 userListGet
This operation allows the privileged users to retrieve the list of user ids having some form of access
to the Supplier Management System as well as their target activities and group memberships.

The operation signature for userListGet is shown below:

UserSeqType userListGet ()
 raises (AccessDenied);

There is no input parameter required by this operation.

The return value is of type UserSeqType providing the list of user ids having some form of access
to the Supplier Management System as well as their target activities and group memberships.

9.1.1.4 userGroupListGet
This operation allows the privileged users to retrieve the user groups having access to the Supplier
Management System with the members of the group and target activities identified.

The operation signature for userGroupListGet is shown below:

UserGroupSeqType userGroupListGet ()
 raises (AccessDenied);

There is no input parameter required by this operation.

The return value is of type UserGroupSeqType providing the user groups having access to the
Supplier Management System with the members of the group and target activities identified.

9.1.1.5 userGet
This operation allows the privileged users to retrieve the user's group membership and target
activities.

The operation signature for userGet is shown below:

UserType userGet (
 in UserIdType userId)
 raises (AccessDenied, UnknownUserIds);

The input parameter userId identifies the user of interest.

The return value is of type UserType provides the user's group membership and target activities.

9.1.1.6 userGroupGet
This operation allows the privileged users to retrieve the member users of the group and their
allowed target activities.

The operation signature for userGroupGet is shown below:

UserGroupType userGroupGet (
 in UserLabelType userGroupId)
 raises (AccessDenied, UnknownUserGroupId);

The input parameter userGroupId identifies the user group.

The return value is of type UserGroupType provides the identifier for the user group, the member
users of the group, and the allowed target activities.

9.1.1.7 createUserGroup
This operation allows the privileged users to create a new user group. User group is used to give
certain users certain accesses to certain network elements. The privileged user creates the new
group providing the list of the activities allowed to the user group.

 ITU-T Rec. Q.834.4 (07/2003) 13

The operation signature for createUserGroup is shown below:

void createUserGroup (
 in UserLabelType userGroupId,
 in TargetActivitySeqType targetAdditions)
 raises (DuplicateUserGroupId, UnknownTargets, AccessDenied);

The input parameter userGroupId identifies the group to be created. UserGroupId is not allowed to
have the empty string value. The input parameter targetAdditions identifies the TargetActivities
allowed to the users belonging to this group.

The return value is of type void.

9.1.1.8 modifyUserGroup
This operation allows the privileged users to add/delete the target activities of a user group. The
privileged user specifies the user group and the list of the target activities to be added or deleted.
The Supplier Management System processes the deletions before the additions. This allows for
example the raising of the permission level of a given activity.

The operation signature for modifyUserGroup is shown below:

TargetActivitySeqType modifyUserGroup (
 in UserLabelType userGroupId,
 in TargetActivitySeqType targetAdditions,
 in TargetActivitySeqType targetDeletions)
 raises (UnknownUserGroupId, UnknownTargets,
 AccessDenied);

The input parameter userGroupId identifies the user group to/from which an operator wants to
add/delete target activities. The input parameter targetAdditions identifies the TargetActivities
which need to be added to the group. The input parameter targetDeletions identifies the
TargetActivities which need to be deleted from the group.

The return value is of type TargetActivitySeqType that provides the updated list of
TargetActivities which are allowed to the users belonging to this user group.

9.1.1.9 deleteUserGroup
This operation allows the privileged users to delete an existing user group. The deletion can be
completed only if the user group is empty.

The operation signature for deleteUserGroup is shown below:

void deleteUserGroup (
 in UserLabelType userGroupId)
 raises (AccessDenied, UserGroupNotEmpty, UnknownUserGroupId);

The input parameter userGroupId identifies the group to be deleted.

The return value is of type void.

9.1.1.10 addUsersToGroup
This operation allows the privileged user to add new users to an existing user group.

The operation signature for addUsersToGroup is shown below:

void addUsersToGroup (
 in UserLabelType userGroupId,
 in UserIdSeqType userIdList)
 raises (AccessDenied, UnknownUserGroupId);

14 ITU-T Rec. Q.834.4 (07/2003)

The input parameter userGroupId identifies the group to which new users need to be added. The
input parameter userIdList identifies a set of userIds which need to be added to the existing user
group.

The return value is of type void.

9.1.1.11 deleteUsersFromGroup
This operation allows the privileged users to delete users from a user group.

The operation signature for deleteUsersFromGroup is shown below:

void deleteUsersFromGroup (
 in UserLabelType userGroupId,
 in UserIdSeqType userIdList)
 raises (AccessDenied, UnknownUserGroupId, UnknownUserIds);

The input parameter userGroupId identifies the group from which users need to be deleted. The
input parameter userIdList identifies a set of userIds to be deleted from the user group.

The return value is of type void.

9.1.1.12 getPermissionList
This operation allows the privileged users to obtain the list of the activities allowed to a specified
user.

The operation signature for getPermissionList is shown below:

TargetActivitySeqType getPermissionList (
 in UserIdType userId)
 raises (UnknownUserIds, AccessDenied);

The input parameter userId identifies the user whose allowed TargetActivities the privileged user
wants to obtain.

The return value is of type TargetActivitySeqType that provides the list of the TargetActivities
which are allowed to a specified user.

9.1.1.13 modifyPermissionList
This operation allows the privileged users to modify the list of the activities allowed to a user. The
privileged user specifies the userId and the list of the activities which need to be added or deleted.
The Supplier Management System processes the deletions before the additions. This allows, for
example, the raising of the permission level of a given activity.

The operation signature for modifyPermissionList is shown below:

TargetActivitySeqType modifyPermissionList (
 in UserIdType userId,
 in TargetActivitySeqType targetAdditions,
 in TargetActivitySeqType targetDeletions)
 raises (UnknownUserIds, UnknownTargets, AccessDenied);

The input parameter userId identifies the user whose allowed activities the privileged user wants to
modify. The input parameter targetAdditions identifies the allowed activities which need to be
added to a specified user. The input parameter targetDeletions identifies the allowed activities
which need to be deleted from a specified user.

If a user belongs to multiple groups that have the same activity, then the user assumes the access
level that is the highest. When both the user and the group the user belongs to are added to the same
administration domain, then the users activityLevel takes precedence over the group's activityLevel.

 ITU-T Rec. Q.834.4 (07/2003) 15

The return value of type TargetActivitySeqType provides the list of the activities which are
allowed to a specified user after the modification.

9.1.1.14 createUser
This operation allows the privileged users to create a new user. The privileged user provides a new
userId, its password, and the list of the activities allowed to the user.

The operation signature for createUser is shown below:

void createUser (
 in UserIdType userId,
 in PasswordType password,
 in TargetActivitySeqType targetAdditions)
 raises (DuplicateUserId, UnknownTargets, AccessDenied,
 UserLoginPolicyViolation);

The input parameter userId identifies the identification information to be associated to the new
user. The input parameter password identifies the password to be associated with the new user Id.
The input parameter targetAdditions identifies the TargetActivities allowed to the new user.

The return value is of type void.

9.1.1.15 deleteUser
This operation allows the privileged users to delete an existing user.

The operation signature for deleteUser is shown below:

void deleteUser (
 in UserIdType userId)
 raises (UnknownUserIds, AccessDenied);

The input parameter userId identifies the user to be deleted.

The return value is of type void.

9.1.1.16 resetPassword
This operation allows the privileged users to reset the password for a user. This operation takes
place when the old password is not available and the privileged user needs to set the new password
for the user. On first use, the Supplier Management System will prompt the user to change their
password.

The operation signature for resetPassword is shown below:

void resetPassword (
 in UserIdType userId,
 in PasswordType newPassword)
 raises (UnknownUserIds, UserLoginPolicyViolation, AccessDenied);

The input parameter userId identifies the user which needs to be deleted. The input parameter
newPassword specifies the password which needs to be associated with the userId.

The return value is of type void.

9.1.1.17 Exceptions
The exception AccessDenied is raised when the system is not granted access to the interface object.

The exception DuplicateUserId is raised when the userId specified for the new creation of a user
already exists in the Supplier Management System's database.

The exception DuplicateUserGroupId is raised when the userGroupId specified for the new
creation of a user group already exists in the Supplier Management System. In other words, the

16 ITU-T Rec. Q.834.4 (07/2003)

Supplier Management System polices the assignment of User Label for user group identifiers for all
users recognized by it.

The exception UnknownTargets is raised when the specified list of the TargetActivities cannot be
identified.

The exception UnknownUserGroupId is raised when the specified UserGroupId cannot be
identified.

The exception UnknownUserIds is raised when any userId is unrecognized.

The exception UserGroupNotEmpty is raised when there is an attempt to delete a user group but
the user group is not empty (i.e., there are registered users in the group).

The exception UserLoginPolicyViolation is raised when the password specified for a new user or
for the password change is violating the UserLoginPolicy.

9.2 Build module
The Supplier Management System builds management model groupings for planned equipment on
request of an OMS or Operator as part of preprovisioning activities. These resources include nodes
(OLT, ONT, ONU, NT) and plug-in units. If equipment is installed, modify operations are used to
complete the provisioning of the installed resources. Protection groupings are established for either
preprovisioned or installed resources.

9.2.1 Builder interface

9.2.1.1 buildNode
This operation builds a NE in the Supplier Management System. A set of managed entities is
automatically created in the management information model maintained by the Supplier
Management System as a result of this operation. Depending on the equipment implementation of
the supplier, instances of equipmentHolderF for shelves and slots, instances of NEFSAN, and
instances of physicalPathTPF for integrated ports, are examples of what can be automatically
created.

If the NE is an ONT or ONU, this activity automatically removes the bandwidth necessary to
support the embedded operations channel between the OLT and ONT or ONU from the available
system bandwidth.

The operation signature for buildNode is shown below:

ManagedEntityIdType buildNode (
 in NEKindType nEKind,
 in string supplierName,
 in string location,
 in VersionType version,
 in SerialNumType serialNum,
 in NameSeqType alarmSeverityProfiles,
 in NameSeqType thresholdDataProfiles,
 in SlotAssignmentSeqType slotAssignmentList,
 in ManagedEntityIdType port,
 in string modelCode,
 in string systemTitle,
 in VersionSeqType softwareVersions,
 in UserLabelType nEUserLabel,
 in ExternalTimeType externalTime,
 in SystemTimingType systemTiming,
 in AdministrationDomainType administrationDomain)
 raises (UnrecognisedVersion, InvalidSerialNumSyntax,
 DuplicateSerialNumber, UnknownProfiles,
 UnknownManagedEntity, DuplicateUserLabel, AccessDenied,

 ITU-T Rec. Q.834.4 (07/2003) 17

 InvalidExternalTime, UnknownSystemTimingSource,
 ProfileSuspended);

The input parameter nEKind identifies the type of NE to be built. Possible choices of NE type are:
OLT, ONT, ONU, or NT. The inputs supplierName and version identify the NE vendor and the
hardware version of the NE to be built. The input parameter location designates the physical
location of the planned NE. The input serialNum provides a unique string corresponding to the NE.
The input alarmSeverityProfiles identifies profiles to configure alarm severity for individual
alarms to be reported by the NE. The input thresholdDataProfiles identifies profiles to be used
when configuring threshold values to generate TCAs from the NE. The input slotAssignmentList
identifies acceptable plug-in unit assignments for the slots of the NE. If a slot number is not
mentioned in the list, then the assumption is made that no assignment has been made for it and,
therefore, there are no restrictions on the type of card that can be placed in the slot. The same is true
if the value of the plugIn is the empty string. The input port identifies the PON port of the OLT if
the NE under construction is either an ONT or ONU. The input port identifies the port of the ONU
serving the NT if an NT is under construction. In case of building an OLT, the value for port is
null. The input modelCode provides a unique string identifying the type of network resource. This
input parameter is primarily of interest when pre-provisioning an ONT or NT. The input
systemTitle identifies an operator-defined label to be applied to the node. The input
softwareVersions identifies the versions of software to be used by the node. The input
nEUserLabel provides a unique operator designation for the constructed NE. The input
externalTime sets current time expressed in generalized time for the NE. The input systemTiming
identifies the input clock source of the NE that will be used for timing synchronisation. Whenever
unspecified is passed for the "enum" data type systemTiming from the OMS, the NE shall use its
default timing source. The input administrationDomain identifies the domain to which the NE
belongs.
The return value of type ManagedEntityIdType provides an identifier for the new NE created by
the operation.

9.2.1.2 assignUserLabelsToNE
This operation assigns operator administrative designations to NEs. This operation is required when
the OMS first learns of the NE through autodiscovery.

The operation signature for assignUserLabelsToNE is shown below:

void assignUserLabelsToNE (
 in SerialNumType serialNum,
 in UserLabelType nEUserLabel,
 in AdministrationDomainType administrationDomain)
 raises (InvalidSerialNumSyntax, DuplicateSerialNumber,
 DuplicateUserLabel, AccessDenied);

The input serialNum identifies specific NE. The input nEUserLabel provides an operator assigned
name for the NE. The input administrationDomain identifies the domain to which the NE is
assigned.
The return value is of type void.

18 ITU-T Rec. Q.834.4 (07/2003)

9.2.1.3 modifyNode
The operation initiates reconfiguration and update of specific parameters associated with a NE.

The operation signature for modifyNode is shown below:

void modifyNode (
 in ManagedEntityIdType managedEntityId,
 in SlotAssignmentSeqType newSlotAssignmentList,
 in NameSeqType newAlarmSeverityProfiles,
 in NameSeqType newThresholdDataProfiles,
 in ManagedEntityIdType port,
 in string newModelCode,
 in UserLabelType newNEUserLabel,
 in ExternalTimeType externalTime,
 in AdministrationDomainType administrationDomain)
 raises(UnknownManagedEntity, UnknownNE, InvalidSlotAssignmentList,
 UnknownProfiles, DuplicateUserLabel, AccessDenied,
 InvalidExternalTime, ProfileSuspended);

The input managedEntityId identifies the target NE to be modified. The newSlotAssignmentList
identifies a new assignment of acceptable plug in units for the slots of the NE. If a slot number is
not mentioned in the list, then the assumption is made that there is no change for the assignment of
that slot. If the value of the plugIn is the empty string then there are no restrictions on the type of
card that can be placed in the slot and if a plug-in unit is subsequently removed from the slot no
removal alarms are raised. The input alarmSeverityProfiles identifies profiles to configure alarm
severity for individual alarms to be reported by the NE. The input thresholdDataProfiles identifies
profiles to be used when configuring threshold values to generate TCAs from the NE. The input
port identifies PON port on the OLT if there is a change in the relationship between the planned
ONT or ONU and the OLT port. The input port identifies the ONU port if there is a change in the
relationship between the planned NT and ONU port. The input newModelCode provides a unique
string identifying the type of network resource. This input parameter is primarily of interest when
modified node is an ONT or NT. The input newNEUserLabel provides a new User Label to be
applied to the NE. The input externalTime gives a new current reference time for the NE. The
input administrationDomain identifies the domain to which the NE is reassigned

The return value is of type void.

9.2.1.4 deleteNode
This operation deletes the NE from the Supplier Management System and cancels a previous
preprovisioning request. As a consequence of this operation, all managed entities automatically
created as a result of the corresponding buildNode operation are deleted as well. It will raise
RemainingContainedManagedEntities exception if there are any other contained managed
entities still present such as service connections. Any bandwidth reservations associated with this
node are also deleted.

The operation signature for deleteNode is shown below:

void deleteNode (
 in ManagedEntityIdType managedEntityId)
 raises (UnknownNE, RemainingContainedManagedEntities, AccessDenied,
 RemainingReservations, RemainingSubnetworkConnections);

The input managedEntityId identifies the NE to be deleted by this operation.

The return value is of type void.

9.2.1.5 modifyPort
The operation modifies parameters of the designated port identified by physicalPathTPId.

 ITU-T Rec. Q.834.4 (07/2003) 19

The operation signature for modifyPort is shown below:

void modifyPort (
 in ManagedEntityIdType physicalPathTPId,
 in NameSeqType newAlarmSeverityProfiles,
 in NameSeqType newThresholdDataProfiles,
 in NameSeqType newPortProfiles,
 in string newFrameFormat,
 in AdministrativeStateType administrativeState,
 in OpticalWaveLengthArraySeqType newOpticalWavelengthArray,
 in LoopbackLocationIdSeqType newLoopbackLocationIds,
 in unsigned long newInterfaceSpeed,
 in unsigned long aRCTimer)
 raises (UnknownManagedEntity, UnknownProfiles, AccessDenied,
 InterfaceSpeedNotChangeable, ProfileSuspended);

The input physicalPathTPId identifies the port to be modified. The input alarmSeverityProfiles
identifies profiles to configure alarm severity for individual alarms to be reported by the NE. The
input thresholdDataProfiles identifies profiles to be used when configuring threshold values to
generate TCAs from the NE. The input parameter newPortProfiles identifies profiles used to finish
the provisioning of the port. Examples of such profiles include but are not limited to the following:
ATMNetworkAccessProfile, UNIInfo, EthernetProfile, CESServiceProfile,
MACBridgeServiceProfile, LESServiceProfile, AAL1Profile, and AAL5Profile. The input
newFrameFormat identifies a new frame format that will be terminated and generated over the
physical port provided the frame format is configurable. The input administrativeState specifies
the modified setting for this parameter. The input newLoopbackLocationIds identifies new
location identifiers for loopback associated with the physical port. The input newInterfaceSpeed
identifies a new interface speed of the physical port provided this is configurable. The input
parameter aRCTimer provides the non-negative time (in seconds) for which the network resource
initially detects a valid signal before raising any communication alarms on the port.

The return value is of type void.

9.2.1.6 buildPlugInUnit
This operation builds a plug-in unit in the Supplier Management System as part of the
preprovisioning activities. A set of managed entities are automatically created in the management
information model maintained by the Supplier Management System as a result of this operation.
Depending on the type of plug-in unit, various termination points are automatically created. The slot
assignment of the containing node is automatically updated to include the change requested by this
operation.

The operation signature for buildPlugInUnit is shown below:

ManagedEntityIdType buildPlugInUnit (
 in ManagedEntityIdType nEId,
 in NameType alarmSeverityProfile,
 in UserLabelType plugInUnitUserLabel,
 in string modelCode,
 in AdministrativeStateType administrativeState,
 in ManagedEntityIdType equipmentHolder)
 raises (UnknownNE, DuplicateUserLabel,
 AccessDenied, UnknownManagedEntity,
 InvalidEquipmentCode, SlotAlreadyAssigned, UnknownSlot,
 InvalidSlotAssignmentList, UnknownProfiles,
 ProfileSuspended);

The input nEId provides a unique name for the NE that contains the plug-in unit to be built. The
input plugInUnitUserLabel gives an identifier for the plug-in unit to be built. The input
alarmSeverityProfile identifies the profile to configure alarm severity assignments for equipment

20 ITU-T Rec. Q.834.4 (07/2003)

failures relating to the plug-in unit. The input modelCode identifies the type of the plug-in unit. The
input administrativeState specifies the initial setting for this parameter. The input
equipmentHolder identifies the location of the slot where the built plug-in unit will occupy.
The return value of type ManagedEntityIdType provides a unique identifier for the constructed
circuit pack.

9.2.1.7 modifyPlugInUnit
The operation modifies attributes of the plug-in unit in the Supplier Management System.

The operation signature for modifyPlugInUnit is shown below:

ManagedEntityIdType modifyPlugInUnit (
 in ManagedEntityIdType plugInUnitId,
 in NameType alarmSeverityProfile newAlarmSeverityProfile,
 in string newModelCode,
 in ManagedEntityIdType newEquipmentHolder,
 in UserLabelType newPlugInUnitUserLabel,
 in AdministrativeStateType newAdministrativeState)
 raises (UnknownManagedEntity, UnknownProfiles, AccessDenied,
 InvalidEquipmentCode, SlotAlreadyAssigned, UnknownSlot,
 InvalidSlotAssignmentList, InvalidUserLabelSyntax,
 ProfileSuspended);

The input plugInUnitId identifies the managed entity to be modified by this operation. The input
newAlarmSeverityProfile changes the profile to configure alarm severity assignments for
equipment failures relating to the plug-in unit. The input newModelCode changes the type of the
plug-in unit. The input newEquipmentHolder changes the slot assignment for the plug-in unit. The
input newPlugInUserLabel gives a new User Label for the plug-in unit. The input
newAdministrativeState specifies the modified setting for this parameter.

The return value of type ManagedEntityIdType provides a unique identifier for the modified
circuit pack.

9.2.1.8 deletePlugInUnit
This operation deletes a plug-in unit from the Supplier Management System. As a consequence of
this operation, all managed entities automatically created as a result of the corresponding
buildPlugInUnit operation are deleted as well. It will raise RemainingSubnetworkConnections
exception if there are any connections still present. It is employed to remove preprovisioning
information that is no longer desired by the operator.

The operation signature for deletePlugInUnit is shown below:

void deletePlugInUnit (
 in ManagedEntityIdType plugInUnitId)
 raises (UnknownManagedEntity, RemainingSubnetworkConnections,
 AccessDenied, RemainingReservations);

The input plugInUnitId identifies the plug-in unit to be deleted.

The return value is of type void.

9.2.1.9 buildProtectionGrouping
This operation builds a protectionGrouping in the Supplier Management System. No port can
belong to more than one protection grouping and must be provisioned prior to this operation.
Outside the scope of IF1, the supplier and operator have come to a mutual understanding of the
valid protection arrangements supported by the supplier equipment. If a protected port is listed in
the protectionUnitList, there must also be at least one protecting port. All ports must have the same
physical path characteristics.

 ITU-T Rec. Q.834.4 (07/2003) 21

The operation signature for buildProtectionGrouping is shown below:

ManagedEntityIdType buildProtectionGrouping (
 in ProtectionParameterType protectionParameters,
 in ProtectionUnitSeqType protectionUnitList)
 raises (InvalidProtectionScheme, AccessDenied);

The input protectionParameters provides the characteristics for the protection scheme. The input
protectionUnitList identifies the protecting and protected ports on the network resource.
The return value of type ManagedEntityIdType provides a unique identifier for the constructed
relationship between protected and protecting ports.

9.2.1.10 modifyProtectionParameters
This operation modifies the protection schema for the identified protection grouping. If either m
(= number of protecting ports) or n (= number of protected ports) is decreased, it will be necessary
for the OMS to consider invoking modifyProtectionUnitList to avoid an invalid protection schema
exception. If either m or n is increasing, it is not necessary to invoke modifyProtectionUnitList.

The operation signature for modifyProtectionParameters is shown below:

void modifyProtectionParameters (
 in ManagedEntityIdType protectionGroupingId,
 in ProtectionParameterType newProtectionParameters)
 raises (UnknownManagedEntity, InvalidProtectionScheme,
 AccessDenied);

The input protectionGroupingId identifies the managed entity to be modified by this operation.
The input newProtectionParameters provides a replacement for the existing protection
parameters.

The return value is of type void.

9.2.1.11 modifyProtectionUnitList
This operation either adds to or removes from the list of protected and protecting ports for the
identified protection grouping. A removal of all protecting ports can only occur if all protected ports
are also removed. An addition of protected or protecting ports cannot exceed the bounds of m or n
specified within the data structure of protectionParameters associated with the protection grouping.
No port can belong to more than one protection grouping and must be provisioned prior to this
operation. All ports must have the same physical path characteristics.

The operation signature for modifyProtectionUnitList is shown below:

void modifyProtectionUnitList (
 in ManagedEntityIdType protectionGroupingId,
 in ProtectionUnitSeqType deltaProtectionUnitList,
 in boolean addDeleteInd)
 raises (UnknownManagedEntity, InvalidProtectionScheme,
 AccessDenied);

The input protectionGroupingId identifies the managed entity to be modified by this operation.
The input deltaProtectionUnitList provides the changes to the protected and protecting ports. The
input parameter addDeleteInd shows whether or not the change is an addition or removal.

The return value is of type void.

9.2.1.12 deleteProtectionGrouping
This operation deletes a protection grouping of ports from the Supplier Management System. As a
consequence of this operation, all managed entities automatically created as a result of the
corresponding buildProtectionGrouping operation are deleted as well.

22 ITU-T Rec. Q.834.4 (07/2003)

The operation signature for deleteProtectionGrouping is shown below:

void deleteProtectionGrouping (
 in ManagedEntityIdType protectionGroupingId)
 raises (UnknownManagedEntity, AccessDenied);

The input protectionGroupingId identifies the protection grouping to be deleted.

The return value is of type void.

9.2.1.13 buildBridge
This operation builds a MAC Bridge in the Supplier Management System. All ports must be
provisioned prior to this operation. All UNI ports must be LAN ports. This operation is not required
if all UNI LAN ports on a network element automatically belong to the same bridge and the default
settings for the bridge parameters is desired by the operator.

The operation signature for buildBridge is shown below:

ManagedEntityIdType buildBridge (
 in NameType mACBridgeProfile,
 in ManagedEntityIdType uplinkPort,
 in ManagedEntityIdSeqType uNIPortList)
 raises (UnknownProfiles, AccessDenied,
 UnknownManagedEntity, ProfileSuspended);

The input mACBridgeProfile provides the characteristics for the bridge conforming to
ANSI/IEEE 802.1D. The input uplinkPort identifies the OLT physical port interfacing with the
IP layer backbone network. This parameter has the value empty string when there is no such
interfacing on the OLT. The input uNIPortList identifies the UNI physical ports associated with
the bridge.
The return value of type ManagedEntityIdType provides a unique identifier for the constructed
bridge.

9.2.1.14 modifyBridgeProfile
This operation modifies the characteristics of the bridging function by changing the MAC Bridge
Service Profile associated with the bridge.

The operation signature for modifyBridgeProfile is shown below:

void modifyBridgeProfile (
 in ManagedEntityIdType bridgeId,
 in NameType newMACBridgeProfile)
 raises (UnknownManagedEntity, UnknownProfiles, AccessDenied,
 ProfileSuspended);

The input bridgeId identifies the managed entity to be modified by this operation. The input
newMACBridgeProfile provides a replacement for the existing bridge profile.

The return value is of type void.

9.2.1.15 modifyBridgePortList
This operation either adds to or removes from the list of UNI ports belonging to the bridge
grouping. A removal of all UNI ports can occur. A UNI port cannot be removed if there exists an
active service connection associated with it. If every UNI LAN port must belong to the same bridge,
then this operation is not needed.

 ITU-T Rec. Q.834.4 (07/2003) 23

The operation signature for modifyBridgePortList is shown below:

void modifyBridgePortList (
 in ManagedEntityIdType bridgeId,
 in ManagedEntityIdSeqType deltaUNIPortList,
 in boolean addDeleteInd)
 raises (UnknownManagedEntity, RemainingSubnetworkConnections,
 AccessDenied);

The input bridgeId identifies the managed entity to be modified by this operation. The input
deltaUNIPortList provides the changes to the UNI ports desired. The input parameter
addDeleteInd shows whether or not the change is an addition or removal.

The return value is of type void.

9.2.1.16 deleteBridge
This operation deletes a bridge provisioning from the Supplier Management System. As a
consequence of this operation, all managed entities automatically created as a result of the
corresponding buildBridge operation are deleted as well. A bridge cannot be deleted if there are
outstanding active subnetwork connections associated with it.

The operation signature for deleteBridge is shown below:

void deleteBridge (
 in ManagedEntityIdType bridgeId)
 raises (UnknownManagedEntity, AccessDenied,
 RemainingSubnetworkConnections);

The input bridgeId identifies the bridge to be deleted.

The return value is of type void.

9.2.1.17 buildVPNetworkCTP
This operation builds a VP Network CTP in the Supplier Management System. The port containing
this VP Network CTP must be provisioned prior to this construction. This operation is used to
construct VP Network CTPs in order to support installation testing. Both build and delete
operations are needed.3

The operation signature for buildVPNetworkCTP is shown below:

ManagedEntityIdType buildVPNetworkCTP (
 in ManagedEntityIdType port,
 in short vPI,
 in NameType trafficDescriptorProfileName,
 in ATMOverbookingFactorType overbookingFactor,
 in UserLabelType userLabel,
 in SegmentEndpointIndType segmentEndpointInd)
 raises (UnknownProfiles, AccessDenied,
 UnknownManagedEntity, ParameterViolation,
 ProfileSuspended);

The input port identifies the ATM interface on the network resource. The input vPI gives the value
of the index. The input trafficDescriptorProfileName identifies the ATM traffic descriptor profile
associated with the CTP. The parameter overbookingFactor gives the percentage overbooking
factor that can be used in the call admission control algorithms for any PVC have the same VPI
value for the ATM interface port. The input parameter userLabel provides an operator-provided
name for the VPNetworkCTP. The input parameter segmentEndpoint identifies whether or not the
CTP is a segment endpoint.

3 Delete operation is provided in 9.2.1.18.

24 ITU-T Rec. Q.834.4 (07/2003)

The return value of type ManagedEntityIdType provides unique identifier for the constructed
CTP.

9.2.1.18 deleteVPNetworkCTP
This operation deletes a VP Network CTP provisioning from the Supplier Management System. As
a consequence of this operation, all managed entities automatically created as a result of the
corresponding buildVPNetworkCTP operation are deleted as well.

The operation signature for deleteVPNetworkCTP is shown below:

void deleteVPNetworkCTP (
 in ManagedEntityIdType vPNetworkCTP)
 raises (UnknownManagedEntity, AccessDenied);

The input vPNetworkCTP identifies the bridge to be deleted.

The return value is of type void.

9.2.1.19 createdNodesGet
This operation retrieves the list of network elements that have been constructed through invocation
of this interface.

The operation signature of createdNodesGet is provided below:

ManagedEntityIdSeqType createdNodesGet () raises (AccessDenied);

There is no input parameter.

The return value is of type ManagedEntityIdSeqType which provides the list nodes that have been
constructed through invocation of the Q834:Builder interface.

9.2.1.20 Exceptions
The exception AccessDenied is raised when the system is not granted access to the interface object.
The exception DuplicateSerialNumber is raised if there exists other equipment of the same type
with this serial number.
The exception DuplicateUserLabel is raised if the User Label provided in the request has been
used to label another NE or plug-in unit. In other words, the Supplier Management System is
responsible for policing User Labels assigned for NEs and plug-in units within its management
jurisdiction.
The exception InterfaceSpeedNotChangeable is raised if the physical port cannot support the new
interface speed or if the speed in not configurable.

The exception InvalidEquipmentCode is raised if the equipment code does not conform to syntax
agreed to by the operator and supplier.

The exception InvalidExternalTime is raised if the External Time specified is not valid.
The exception InvalidProtectionScheme is raised if the network resource does not support the
protection parameters specified in context with the port listing or if the protection units are ports of
dissimilar physical path characteristic.
The exception InvalidSerialNumSyntax is raised if the syntax of the serial number provided
violates the supplier syntax.
The exception InvalidSlotAssignmentList will be raised if the designated equipmentHolder cannot
accept the requested type of plug-in unit.

 ITU-T Rec. Q.834.4 (07/2003) 25

The exception InvalidUserLabelSyntax is raised if the User Label provided violates business rules
of syntax defined by the operator and implemented in the Supplier Management System.

The exception ParameterViolation is raised when the VPI is out of range or a duplicate.

The exception ProfileSuspended is raised when profile(s) named in the invocation has been
suspended for use within the Supplier Management System by the OMS or operator.
The exception RemainingContainedManagedEntities will be raised if there are any remaining
managed entities contained by the managed entity to be deleted.
The exception RemainingReservations will be raised if there are remaining resource reservations
associated with the managed entity to be deleted.

The exception RemainingSubnetworkConnections will be raised if the managed entity which is
being deleted contains one or more valid Subnetwork Connections.
The exception SlotAlreadyAssigned is raised if the requested slot is already provisioned.
The exception UnknownManagedEntity is raised if the identified managed entity is unknown to
the Supplier Management System.
The exception UnknownNE is raised if the identified NE is unknown to the Supplier Management
System.
The exception UnknownProfiles is raised if the profile name provided is unknown to the Supplier
Management System and cannot be retrieved from the Profile Object Repository.
The exception UnknownSlot is raised if the requested slot is unknown to the NE.
The exception UnknownSystemTimingSource is raised if the External time source is unknown to
the Supplier Management System or NE.
The exception UnrecognizedVersion is raised if the Equipment version provided does not match
known values.

9.3 Q834Common module
This module contains the definitions of data types used by more than one of the other IDL modules
in this Recommendation. It also provides three groupings of constants. Many of the data types
mentioned in Q834Common are imported from ITU-T Rec. X.780. The most important aspect of
this IDL file is the definition of ManagedEntityIdType. The definition is extracted from the IDL file
and presented below for discussion purposes.

 struct NamingComponentType {
 string type; // managed entity type
 string id;
 };

 typedef sequence<NamingComponentType> RDNType;
 typedef sequence<RDNType> RDNSeqType;
 typedef sequence<NameType> NameSeqType;

 enum IdType {
 none,
 x780_fineGrained,
 x780_coarseGrained
 };

 typedef RDNType MEIdType;

26 ITU-T Rec. Q.834.4 (07/2003)

 struct ManagedEntityIdType {
 IdType id;
 MEIdType mEId;
 };

ManagedEntityIdType is a return value for many of the operations throughout this
Recommendation. Examining the definition of this data type (reading from bottom to top) shows
that the Supplier Management System returns a value providing a reference either to a fine-grain
Managed Object, a coarse-grain Façade, or a RDN identifier for a data structure within the Supplier
Management System. In all three cases, the fundamental syntax for the mEId is a sequence of pairs
of naming components which is the syntax employed by ITU-T Rec. X.780 for Managed Objects
and the syntax employed by ITU-T Rec. X.780.1 for Façades.

9.3.1 ProbableCauseConst Module and ProbableCause interface
This module definition follows the pattern specified in ITU-T Rec. X.780 and uses the same syntax
for the values of probable cause. It provides some technology-specific values in addition to the
values defined in ITU-T Rec. X.780.

9.3.2 MonitoringParameter interface
This interface provides the names for monitored performance and traffic parameters to
be used by interfaces AlarmEventSupplier, ImpairmentPersistence and ProfileConsumer. The
MonitoringParameter values are expressed as a string of values and are part of filterable data in a
structured event.

9.3.3 RecordSetType interface
This interface provides the data value(s) to be used for recordset data type value by interfaces
ReportController and RecordSetMgr. The recordSet type values are expressed as unsigned short
values. The Values 1-99 are reserved for HistoryDataType.

9.3.4 PhysicalLayerLoopback interface
This interface provides the data value(s) to be used for loopbackTestType data type value by the
TestActionPerformer interface. The recordSet type values are expressed as unsigned short values.

9.4 ControlArchive module
The Supplier Management System provides the functionality to manage logs for specific groups of
events including the clearing of the contents of the logs. The Privileged User can create, initialize,
suspend, resume, and remove event logs. The Supplier Management System also provides the
functionality to control the short-term archiving of performance monitoring and traffic monitoring
reports, including the clearing of contents of these record sets. This function also includes the
reporting of status for current logs or statistics record sets. The majority of short-term archives
within the Supplier Management System are created automatically when the Supplier Management
System is first instantiated. The names of these archives, identified by ManagedEntityIdType
syntax, can be provided by the supplier to the operator or obtained by invocation of the operation
recordSetListGet with creationModeType value "initialList" and iterative invocations of the
operation getStatusAttributes for each record set identified in the first operation.

9.4.1 RecordSetMgr interface

9.4.1.1 createLog
CreateLog operation is used to create a RecordSet in the Supplier Management System for the
purposes of archiving event information.

 ITU-T Rec. Q.834.4 (07/2003) 27

The signature of createLog is as follows:

ManagedEntityIdType createLog (
 in UserLabelType recordSetUserLabel,
 in AdministrativeStateType administrativeState,
 in NameType filterName,
 in FullActionType fullAction,
 in MaxSizeType maxSize,
 in SizeThresholdType sizeThreshold)
 raises (RecordSetExists, DuplicateUserLabel, AccessDenied);

The input parameter recordSetUserLabel uniquely identifies the recordSet within the Supplier
Management System. The input parameter administrativeState specifies if the new log is
initialized for recording of event information. The input parameter filterName explains the entrance
criteria determining what event notifications are recorded in the log to be created. If the filterName
is unrecognized by the Supplier Management System, it looks up the IOR for the filterObject using
filterName by consulting the directory of Naming Service. Using the IOR, the system is then able
to retrieve the entrance criteria details from CosNotifyFilter interface available on Notification
Service. The input parameter fullAction specifies the behaviour of the recordset when it reaches its
maximum size. The input parameter maxSize specifies the maximum size of the recordSet. The
input parameter sizeThreshold specifies the threshold on size of the RecordSet which triggers the
Supplier Management System to generate an alarm/event.

The return value is of type ManagedEntityIdType and provides the identifier for the log archive
created with this operation.

9.4.1.2 createArchive
CreateArchive operation is used to create a recordSet for storing history data. The archiving will
halt automatically its recording when it hits the maximum size.

The signature of createArchive is as follows:

ManagedEntityIdType createArchive (
 in UserLabelType recordSetUserLabel,
 in AdministrativeStateType administrativeState,
 in RecordKindType recordKind,
 in MaxSizeType maxSize)
 raises (RecordSetExists, DuplicateUserLabel, AccessDenied);

The input parameter recordSetUserLabel uniquely identifies the record Set within the Supplier
Management System. The input parameter administrativeState specifies if the new archive is
initialized for recording of appropriate records. The input parameter recordKind identifies the type
of record to be stored in the record set. The input parameter maxSize specifies the maximum size of
the recordSet.

The return value is of type ManagedEntityIdType and provides the identifier for the archive
created with this operation.

9.4.1.3 getStatusAttributes
At any time the Operator or OMS can view the current status of a short-term archive.

The signature of getStatusAttributes is as follows:

RecordSetStatusType getStatusAttributes (
 in ManagedEntityIdType recordSetId)
 raises (AccessDenied, UnknownRecordSet);

The input parameter recordSetId uniquely identifies the recordSet within the Supplier Management
System.

28 ITU-T Rec. Q.834.4 (07/2003)

The return value is of type RecordSetStatusType which contains the current status of the
recordset.

9.4.1.4 suspendArchive
Once the short-term archive has been created and initialized for use, the OMS can suspend its use.

The signature of suspendArchive is as follows:

void suspendArchive (
 in ManagedEntityIdType recordSetId)
 raises (AccessDenied, UnknownRecordSet);

The input parameter recordSetId uniquely identifies the recordSet within the Supplier Management
System.

The return value is of type void.

9.4.1.5 resumeArchive
This operation resumes recording in an archive or initializes the recording within a recordSet that
has been constructed in a locked state.

The signature of resumeArchive is as follows:

void resumeArchive (
 in ManagedEntityIdType recordSetId)
 raises (UnknownRecordSet, AccessDenied);

The input parameter recordSetId uniquely identifies the recordSet within the Supplier Management
System.

The return value is of type void.

9.4.1.6 deleteArchive
This operation removes an archive from the Supplier Management System.

The signature of deleteArchive is as follows:

void deleteArchive (
 in ManagedEntityIdType recordSetId)
 raises (UnknownRecordSet, AccessDenied);

The input parameter recordSetId identifies the name that the Privileged User wishes to use to
identify the log to be created in subsequent interactions.

The return value is of type void.

9.4.1.7 purgeArchive
The operation removes the information contained within a specified archive. However, the archive
continues its recording.

The signature of purgeArchive is as follows:

void purgeArchive (
 in ManagedEntityIdType recordSetId)
 raises (UnknownRecordSet, AccessDenied);

The input parameter recordSetId identifies the name that the Privileged User wishes to use to
identify the log to be created in subsequent interactions.
The return value is of type void.

 ITU-T Rec. Q.834.4 (07/2003) 29

9.4.1.8 selectRecords
After the creation of an archive, the OMS may select some of the records from it.

The signature of selectRecords is:

RecordSeqType selectRecords (
 in FilterType selectionFilter,
 in ManagedEntityIdType recordSetId)
 raises (UnknownRecordSet, Timeout, NoSuchRecords,
 AccessDenied, TooManyRecords);

The input parameter recordSetId identifies the name that the Privileged User wishes to use to
identify the log to be created in subsequent interactions. The input parameter selectionFilter is
defined by specific record set as defined in the data structure.

The return value is of type RecordSeqType supplying the requested information.

9.4.1.9 recordSetListGet
This operation allows an OMS to get a complete listing of record sets managed by the Supplier
Management System.

The signature of recordSetListGet is:

ManagedEntityIdSeqType recordSetListGet (
 in CreationModeType creationMode)
 raises (AccessDenied);

The input parameter creationMode identifies the way the archive was creation, i.e., whether by an
operator or automatically as part of Supplier Management System initialization.

The return value is of type ManagedEntityIdSeqType listing the names for the short-term archives
of the Supplier Management System.

9.4.1.10 changeUserLabel
After the creation of a short-term archive, the OMS can change the User Label assigned to the
archive.

The signature of changeUserLabel is:

void changeUserLabel(
 in ManagedEntityIdType recordSetId,
 in UserLabelType newUserLabel)
 raises (UnknownRecordSet, AccessDenied, DuplicateUserLabel);

The input parameter recordSetId identifies the archive. The input parameter newUserLabel
identifies the new name for a specific archive.

The return value is of type void.

9.4.1.11 Exceptions
The exception AccessDenied is raised when the system is not granted access to the interface object.
The exception DuplicateUserLabel is raised if the User Label provided in the request has been
used to label another archive. In other words, the Supplier Management System is responsible for
policing User Labels assigned for record sets within its management jurisdiction.

The exception LockedAlready is raised if the set value of the administrativeState is "locked".

The exception NoSuchRecords is raised if no records among the designated record sets matches the
selection criteria.

30 ITU-T Rec. Q.834.4 (07/2003)

The exception RecordSetExists is raised if the archive defined by the parameters of creation
request already exists in the Supplier Management System.
The exception Timeout is raised if the process duration reached a system-defined timeout before
the process could complete.

The exception TooManyRecords is raised if the number of records selected for retrieval produces a
response to the request that exceeds a predetermined size.4

The exception UnknownRecordSet is raised if the designated record set is unknown to the Supplier
Management System.

9.5 SoftwareDownload module
The software download process consists of four phases: delivery, distribution, installation (commit),
and activation. The Supplier Management System supports these stages for the download of
software generic programs, software upgrades, and software maintenance changes (patches) to NEs
in this module. The Supplier Management System can accept requests involving one or multiple
NEs at once. All software management activities can be individually scheduled. Any request for
downloading software generics is accompanied by security credentials whereby the Supplier
Management System is allowed to communicate with the source server. Which security credentials
are being used depends on implementation: If the software load is resident on the EMS and the
EMS will push it (through file transfer) to the NE, then the credentials are for the NE. If the
software load is resident on the EMS and the NE will pull, then the credentials are for the EMS. If
the software load is resident on a separate repository, then the security credentials are for the
separate repository and the NE pulls the load from the repository.

Requests for a software management activity may generate the creation of a software management
tracking object. This lifecycle of this object must extend until all associated activities are completed
successfully or unsuccessfully. The object is only deleted after a predefined retention period and the
length of time of the retention period is agreed to outside the scope of this interface. The retention
period for the tracking object should be generous enough to include any revert activity desired. If
the tracking object has been automatically deleted by the Supplier Management System, then the
revert activity is viewed as download activity of a previous software load. The OMS can also delete
this tracking object before its automatic termination if desired.

The Supplier Management System creates a log record for every software distribution activity
including delivery, commitment, and activation, regardless of the result of the activity. The record
contains detailed results for every affected target including start/stop times and success or failure
indication.

The Supplier Management System maintains a current listing of all software activities in progress.

This module also includes support for retrieval of hardware and software version information from
installed NEs. It is also possible to verify that a software set may be downloaded to a NE or to a
specific plug-in unit.

9.5.1 DownloadMgr interface

9.5.1.1 deliverDistSWGlobal
This operation requests the Supplier Management System to download software generics from a
software source machine for the purpose of software upgrades and software maintenance changes
(patches) to NEs. The Supplier Management System can accept requests for one or multiple NEs at
once. The operation is best effort, meaning the Supplier Management System attempts to execute
the delivery and distribution to all specified targets. As appropriate, it continues to attempt to

4 This size to be agreed upon by supplier and operator in advance.

 ITU-T Rec. Q.834.4 (07/2003) 31

deliver and distribute software to all named targets, even when it encounters a failure in either
process for a specific target. The activity completion log is used to record successes and failures of
both the delivery and distribution attempts. The SoftwareDownloadTrackingObject continues to be
available for commit, activate attempts and those activities are only attempted for targets where the
delivery and distribution was successful. The SoftwareDownloadTrackingObject is retained beyond
the successful activation stage (in part to allow for revert activities if required).

Subsequently, if a new ONT is ranged, or if a broken fibre connection is repaired, or if a new
plug-in unit is installed, and in each of these cases the active software load differs from that
specified in this operation, then the Supplier Management System (or network resource) will be
responsible for upgrading the software automatically.

The signature of the operation deliverDistSWGlobal is provided below:

SoftwareDownloadTrackingObjectIdType deliverDistSWGlobal (
 in FilenameSeqType softwareSet,
 in DCNAddressType softwareSourceAddr,
 in UserIdType userId,
 in PasswordType password,
 in ManagedEntityIdSeqType deliverDistTargets)
 raises (CommFailure, UnrecognisedTarget,
 InsufficientMemory, SoftwareLoadHWMismatch,
 SourceUnreachable, UnknownSoftwareLoad, Timeout,
 AccessDenied, DeniedAccess);

The input parameter softwareSet identifies the software load and where it is located (file names and
full path) to be downloaded. The input parameter softwareSourceAddr provides the DCN address
of the server where the set of software resides. The input parameters userId and password provide
the login mechanism to the softwareSource (assuming such security credentials are needed). The
input parameter deliverDistTargets indicates the list of OLTs where the software is to be delivered.

The return value of type SoftwareDownloadTrackingObjectIdType provides a reference to be
used when attempting to commit, activate or check the status of the delivery and distribution
process. The result of software download is logged by the Supplier Management System.

9.5.1.2 deliverDistSWSpecific
This operation is the same as deliverDistSWGlobal except the scope is within a single
NE/PlugInUnit/slot as described in the input parameter distributionTarget.

The operation signature of deliverDistSWSpecific is provided below:

SoftwareDownloadTrackingObjectIdType deliverDistSWSpecific (
 in FilenameSeqType softwareSet,
 in DCNAddressType softwareSourceAddr,
 in UserIdType userId,
 in PasswordType password,
 in TargetType deliverDistTarget)
 raises (CommFailure, UnrecognisedTarget,
 InsufficientMemory, SoftwareLoadHWMismatch,
 SourceUnreachable, UnknownSoftwareLoad, Timeout,
 AccessDenied, DeniedAccess);

The input parameter softwareSet identifies the software load and where it is located (file names and
full path) to be downloaded. The input parameter softwareSourceAddr provides the DCN address
of the server where the set of software resides. The input parameters userId and password provide
the login mechanism to the softwareSource (assuming such security credentials are needed). The
input parameter deliverDistTarget indicates the specific target at the NE/PlugInUnit/slot level. The
components for the value of this parameter are described in Table 3.

32 ITU-T Rec. Q.834.4 (07/2003)

Table 3/Q.834.4 – deliverDistTarget details

Field name Description

containingSystem The system is identified by the Managed Entity Id of the headend OLT.
containingNE Identifies the destination network resource. When the value is the empty sequence,

the operation distributes the software to all NEs in the system.
plugInUnitType Identifies the plugInUnitType. When this value is the empty string, the distribution

target is all suitable plugInUnitTypes within the containingNE.
slot Identifies the slot. When this value is the empty sequence, then any suitable slot is

considered.

The return value of type SoftwareDownloadTrackingObjectIdTypeId provides a correlation key
reference to be used when attempting to commit, activate or check the status of the delivery and
distribution process. The result of software download is logged by the Supplier Management
System.

9.5.1.3 deleteSoftwareDownloadTrackingObject
This operation allows the OMS to notify the Supplier Management System that the software
tracking object specified is no longer needed.

The operation signature of deleteSoftwareDownloadTrackingObject is provided below:

void deleteSoftwareDownloadTrackingObject (
 in SoftwareDownloadTrackingObjectIdType id)
 raises (UnknownSoftwareDownloadTrackingObject, AccessDenied,
 SoftwareTrackingObjectInUse);

The input parameters id identifies the software tracking object.

The return value is of type void.

9.5.1.4 commit
This operation requests the Supplier Management System to install (commit) the downloaded
software to target locations.

The operation signature of commit is provided below:

void commit (
 in SoftwareDownloadTrackingObjectIdType id,
 in TargetType commitTarget)
 raises (InstallationFailure, UnknownSoftwareDownloadTrackingObject,
 AccessDenied, UnrecognisedTarget);

The input parameters id provides a reference to software download tracking object. The input
parameter commitTarget specifies the specific target at the NE/PlugInUnit/slot level. The
commitTarget can be a subset of the original target.

The return value is of type void.

9.5.1.5 activate
This operation activates installed software at target locations.

The operation signature of activate is provided below:

void activate (
 in SoftwareDownloadTrackingObjectIdType id,
 in TargetType activateTarget)

 ITU-T Rec. Q.834.4 (07/2003) 33

 raises (UnknownSoftwareDownloadTrackingObject,
 SoftwareNotYetInstalled, ActivationFailure, AccessDenied,
 UnrecognisedTarget);

The input parameters id provides a reference to software download tracking object. The input
parameter activateTarget specifies the specific target at the NE/PlugInUnit/slot level. The
activateTarget can be a subset of the original target.

The return value is of type void.

9.5.1.6 revert
This operation activates older installed software at target locations. The revert operation is only
meaningfully invoked after activation of a new software load. The
SoftwareDownloadTrackingObjectId refers to the most recent software download affecting the
named Target. If revert completes successfully, then the active version becomes the standby
version.

The operation signature of revert is provided below:

void revert (
 in SoftwareDownloadTrackingObjectIdType id,
 in TargetType revertTarget)
 raises (UnknownSoftwareDownloadTrackingObject,
 SoftwareNotYetInstalled, ActivationFailure, AccessDenied,
 UnrecognisedTarget, InvalidSoftwareTrackingObject);

The input parameters id provides a reference to software download tracking object. The input
parameter revertTarget specifies the specific target at the NE/PlugInUnit/slot level. The
revertTarget can be a subset of the original target.

The return value is of type void.

9.5.1.7 getStatus
This operation requests the status of software activities.

The operation signature of getStatus is provided below:

DownloadStatusSeqType getStatus (
 in SoftwareDownloadTrackingObjectIdType id)
 raises (UnknownSoftwareDownloadTrackingObject, AccessDenied);

The input parameters id provides a reference to the software download tracking object.

The return value of type DownloadStatusSeqType provides the progress status for all the
download activities tracked by the Software Download Tracking Object.

9.5.1.8 scheduleDeliverDist
This operation schedules the delivery and distribution of software to specified targets. The
distribution of the software within the specified targets is up to the supplier's implementation.

The operation signature of scheduleDeliverDist is provided below:

SoftwareDownloadTrackingObjectIdType scheduleDeliverDist (
 in FilenameSeqType softwareSet,
 in DCNAddressType softwareSourceAddr,
 in UserIdType userId,
 in PasswordType password,
 in ManagedEntityIdSeqType deliverDistTargets,
 in GeneralizedTimeType deliverDistStartTime)
 raises (SoftwareLoadHWMismatch, AccessDenied, InvalidStartTime);

34 ITU-T Rec. Q.834.4 (07/2003)

The input parameter softwareSet identifies the software load and where it is located (file names and
full path) to be downloaded. The input parameter softwareSourceAddr provides the DCN address
of the server where the set of software resides. The input parameters userId and password provide
the login mechanism to the softwareSource (assuming such security credentials are needed). The
input parameter deliverDistTargets indicates the list of OLTs where the software is to be delivered.
The input parameter deliverDistStartTime provide the scheduled time to start.

The return value of type SoftwareDownloadTrackingObjectIdType provides a reference to the
scheduled process that can be used to track the progress of the process or to cancel it.

9.5.1.9 scheduleCommit
This operation schedules the installation (commit) of software to predetermined targets.

The operation signature of scheduleCommit is provided below:

void scheduleCommit (
 in SoftwareDownloadTrackingObjectIdType
 deliverDistSoftwareDownloadTrackingObjectId,
 in GeneralizedTimeType commitStartTime)
 raises (UnknownSoftwareDownloadTrackingObject,
 SoftwareNotYetInstalled, AccessDenied, InvalidStartTime);

The input parameters deliverDistSoftwareDownloadTrackingObjectId provides a reference to
software delivery tracking object. The input parameter commitStartTime provides the time to start
this scheduled activity.

The return value of type void.

9.5.1.10 scheduleActivate
This operation schedules the activation of software to predetermined targets.

The operation signature of scheduleActivate is provided below:

void scheduleActivate (
 in SoftwareDownloadTrackingObjectIdType id,
 in GeneralizedTimeType activateStartTime)
 raises (UnknownSoftwareDownloadTrackingObject,
 SoftwareNotYetInstalled, AccessDenied, InvalidStartTime);

The input parameters id provides a reference to the software delivery tracking object. The input
parameter activateStartTime provides the time to start this activity.

The return value of type void.

9.5.1.11 cancelScheduledSoftwareActivity
This operation cancels all subsequently scheduled software download activities associated with this
tracking object.

The operation signature of cancelScheduledSoftwareActivity is provided below:

void cancelScheduledSoftwareActivity (
 in SoftwareDownloadTrackingObjectIdType id)
 raises (UnknownSoftwareDownloadTrackingObject,
 ActivityCompleted, ActivityInProgress, AccessDenied);

The input parameters id provides a reference to software activity tracking object.

The return value is of type void.

9.5.1.12 scheduledSoftwareDownloadTrackingObjectListGet
This operation retrieves the list of outstanding scheduled activities for software download.

 ITU-T Rec. Q.834.4 (07/2003) 35

The operation signature of scheduledSoftwareDownloadTrackingObjectListGet is provided
below:

SoftwareDownloadTrackingObjectIdSeqType
scheduledSoftwareDownloadTrackingObjectListGet () raises (AccessDenied);

There is no input parameter.

The return value is of type SoftwareDownloadTrackingObjectIdSeqType which provides the list
of outstanding scheduled activities.

9.5.1.13 onDemandSoftwareDownloadTrackingObjectListGet
This operation retrieves the list of outstanding non-scheduled activities for software download.

The operation signature of onDemandSoftwareDownloadTrackingObjectListGet is provided
below:

SoftwareDownloadTrackingObjectIdSeqType
onDemandSoftwareDownloadTrackingObjectListGet () raises (AccessDenied);

There is no input parameter.

The return value is of type SoftwareDownloadTrackingObjectIdSeqType which provides the list
of outstanding non-scheduled activities.

9.5.1.14 Exceptions
The exception AccessDenied is raised when the system is not granted access to the interface object.
The exception ActivityCompleted is raised when the software activity has been executed and
cannot be cancelled.
The exception ActivationFailure is raised if the software activation process failed even though the
software has been installed (i.e., commit was successful).

The exception ActivityInProgress is raised when the software activity has been initiated and
cannot be cancelled.
The exception CommFailure is raised when the DCN between Supplier Management System and
OLT or the communication between OLT and source ONT is down.
The exception DeniedAccess is raised if the access to NE is denied as a result of access control
restrictions.
The exception InstallationFailure is raised if the Software installation process failed.

The exception InsufficientMemory is raised if there is insufficient memory on the NE to load the
software.
The exception InvalidSoftwareTrackingObject is raised if the referenced software tracking object
is not the most recent associated with the installation of a software load on the NE.

The exception InvalidStartTime is raised if the start time is before the current system time.

The exception SoftwareLoadHWMismatch is raised if the designated software may not be loaded
onto the equipment hardware since the version of the hardware cannot accept the software load.
The exception SoftwareNotYetInstalled is raised when activation is requested and the software has
not been installed yet.

The exception SoftwareTrackingObjectInUse is raised when there are outstanding software
activities tracked by this object and it may not be deleted.

36 ITU-T Rec. Q.834.4 (07/2003)

The exception SourceUnreachable is raised if the server holding the software load to be
downloaded could not be reached by the OLT.

The exception Timeout is raised if the process duration reached a system-defined timeout before
the process could complete.
The exception UnknownSoftwareLoad is raised when the specified software set cannot be found.
The exception UnknownSoftwareDownloadTrackingObject is raised when the software
download process is unknown to the Supplier Management System.
The exception UnrecognizedTarget is raised when the designated software in the Secure File
Server is unknown to the Supplier Management System.

9.5.2 VersionRepository interface

9.5.2.1 retrieveVersions
This operation retrieves all version information (both software and hardware) for a network
resource.

The operation signature of retrieveVersions is provided below:

VersionsSeqType retrieveVersions (
 in ManagedEntityIdType containingManagedEntityId)
 raises (CommFailure, UnknownManagedEntity, AccessDenied);

The input parameters containingManagedEntityId identifies the network resource.

The return value is of type VersionsSeqType and provides a listing of the hardware and software
versions associated with this network resource.

9.5.2.2 validateNEVersion
This operation requests the Supplier Management System to validate if the proposed software is
compatible with the NE.

The operation signature of validateNEVersion is provided below:

boolean validateNEVersion (
 in ManagedEntityIdType managedEntityId,
 in VersionType proposedSoftware)
 raises (UnknownNE, AccessDenied);

The input parameters managedEntityId identifies the NE.

The input parameter proposedSoftware identifies the proposed software to be validated.

The return value is of type boolean.

9.5.2.3 validatePlugInVersion
This operation requests the Supplier Management System to validate if the proposed software is
compatible with the plugInUnit.

The operation signature of validatePlugInVersion is provided below:

boolean validatePlugInVersion (
 in ManagedEntityIdType plugInUnitId,
 in VersionType proposedSoftware)
 raises (UnknownManagedEntity, AccessDenied);

The input parameter plugInUnitId identifies the plugInUnit.

The input parameter proposedSoftware identifies the proposed software to be validated.

The return value is of type boolean.

 ITU-T Rec. Q.834.4 (07/2003) 37

9.5.2.4 Exceptions
The exception AccessDenied is raised when the system is not granted access to the interface object.
The exception CommFailure is raised when the DCN between Supplier Management System and
OLT or the communication between OLT and source ONT is down.

The exception UnknownManagedEntity is raised if the Identifier for plugInUnit or port is
unknown to the Supplier Management System.

9.6 EventPublisher module
On receipt of processed configuration, performance, or fault event information provided by other
use cases within the Supplier Management System and based on rules concerning publication, the
Supplier Management System queues and channels event information to all interested consumers,
including Operators and OMS(s).

9.6.1 AlarmEventSupplier interface
The purpose of the interface is to announce alarm events to the Operator Management System via
the OMG Notification Service. This interface has no operations. However, it does provide the fixed
header mapping as well as the filterable data mappings for the structured event object used to push
event information through the event channel of the OMG Notification Service. Both sets of
mappings shall follow the guidelines specified in ITU-T Rec. X.780 for the Notifications interface.

In the fixed header, the domain_type is set to "telecommunications", the type_name is set to
"Alarm", and the event_name is set to a constant string that has one of the following values:
"Communications Alarm", "Environmental Alarm", "Equipment Alarm", "Processing Error Alarm",
or "Quality of Service Alarm".

The mapping in the filterable data consists of pairs of items. The first component in the pair is a
string identifier for a data name and the second is the value for that data element. The string
identifiers are constants that are defined in this interface. Furthermore, the filterable data pairs must
occur in a specific order.

The order of the filterable items is as follows:
• AlarmEmittingMEId
• EventTime
• ProbableCause
• SpecificProblems
• PerceivedSeverity
• ServiceAffectingInd
• BackUpStatus
• BackUpManagedEntityId
• ThresholdInfo
• NotificationIdentifier
• CorrelatedNotifications
• StateChangeDefinition
• AdditionalText

The value for ProbableCause has syntax ProbableCauseType and assumes one of the specific values
defined in ITU-T Rec. X.780 or q834_4::Q834Common::ProbableCauseConst.

38 ITU-T Rec. Q.834.4 (07/2003)

The value for ThresholdInfo has syntax MonitoredParameterType and assumes one of the specific
values defined in q834_4::Q834Common::MonitoredParameter. The null string is supplied for this
value for all event_names except "QualityOfServiceAlarm".

The syntax and interpretation for all other data types and interpretation of their use is found in
ITU-T Rec. X.780.

9.6.2 SecurityEventSupplier
The purpose of the interface is to announce security events to the Operator Management System via
the OMG Notification Service. This interface has no operations. However, it does provide the fixed
header mapping as well as the filterable data mappings for the structured event object used to push
event information through the event channel of the OMG Notification Service. Both sets of
mappings shall follow the guidelines specified in ITU-T Rec. X.780 for the Notifications interface.

In the fixed header, the domain_type is set to "telecommunications", the type_name is set to
"SecurityEvent", and the event_name is set to a constant string that has one of
the following values: "IntegrityViolation", "OperationalViolation", "PhysicalViolation",
"SecurityEventViolation", or "TimeDomainViolation".

The mapping in the filterable data consists of pairs of items. The first component in the pair is a
string identifier for a data name and the second is the value for that data element. The string
identifiers are constants that are defined in this interface. Furthermore, the filterable data pairs must
occur in a specific order.

The order of the filterable items is as follows:
• EventEmittingMEId
• EventTime
• SecurityAlarmCause
• SecurityAlarmDetector
• ServiceUser
• ServiceProvider
• NotificationIdentifier
• CorrelatedNotifications
• AdditionalText

The syntax for data types and interpretation of their use is found in ITU-T Rec. X.780.

9.6.3 DiscoveryEventSupplier
The purpose of the interface is to announce changes to installed equipment to the Operator
Management System via the OMG Notification Service. This interface has no operations. However,
it does provide the fixed header mapping as well as the filterable data mappings for the structured
event object used to push event information through the event channel of the OMG Notification
Service.

In the fixed header, the domain_type is set to "telecommunications", the type_name is set to
"DiscoveryEvent", and the event_name is set to a constant string that has one of the following
values: "ManagedEntityCreation" or "ManagedEntityDeletion".

The mapping in the filterable data consists of pairs of items. The first component in the pair is a
string identifier for a data name, and the second is the value for that data element. The string
identifiers are constants that are defined in this interface. Furthermore, the filterable data pairs must
occur in a specific order.

 ITU-T Rec. Q.834.4 (07/2003) 39

The order of the filterable items for an event_name of "ManagedEntityCreation" is as follows:
• ManagedEntityType
• EventTime
• ManagedEntityAttributeValues
• NotificationIdentifier
• CorrelatedNotifications
• AdditionalText

The value for ManagedEntityType has syntax of EquipmentType that indicates the type of
inventory data discovered. The interface defines constants for various NE types as well as
plugInUnits, equipmentHolders and software.

The value for EventTime has syntax of GeneralizedTimeType and refers to the moment when the
discovery condition was detected by the network.

The value for ManagedEntityAttributeValues has syntax MEstruct. However, the data type supplied
for this value is one of a set of data structures defined in the module. The data item
ManagedEntityType identifies the type of struct that is passed in this value in the structured event
object.

The value for NotificationIdentifier has syntax NotificationIdentifierType and it provides a
reference sequence number for the event. The value for CorrelatedNotifications has syntax of
CorrelatedNotificationType and supplies a list of reference numbers for other event notifications
provided by the Supplier Management System for associated inventory conditions. If there are no
related notifications, the value of the empty set is supplied.

Finally, the value for AdditionalText has syntax string. This data item provides a location to pass
any textual miscellaneous information from the Supplier Management System concerning the
inventory change condition. If there is no additional information, the null string will be passed.

The order of the filterable items for an event_name of "ManagedEntityDeletion" is as follows:
• ManagedEntityType
• EventTime
• ManagedEntityAttributeValues
• NotificationIdentifier
• CorrelatedNotifications
• AdditionalText

The value for ManagedEntityType has syntax of EquipmentType that indicates the type of
inventory data removed. The interface defines constants for various NE types as well as plugInUnits
and equipmentHolders.

The value for EventTime has syntax of GeneralizedTimeType and refers to the moment when the
removal condition was detected by the network.

The value for ManagedEntityAttributeValues has syntax MEstruct. However, the data type supplied
for this value is one of a set of data structures defined in the module. The data item
ManagedEntityType identifies the type of struct that is passed in this value in the structured event
object.

The value for NotificationIdentifier has syntax NotificationIdentifierType and it provides a
reference sequence number for the event. The value for CorrelatedNotifications has syntax of
CorrelatedNotificationType and supplies a list of reference numbers for other event notifications

40 ITU-T Rec. Q.834.4 (07/2003)

provided by the Supplier Management System for associated inventory change conditions. If there
are no related notifications the value of the empty set is supplied.

Finally, the value for AdditionalText has syntax string. This data item provides a location to pass
any textual miscellaneous information from the Supplier Management System concerning the
inventory change condition. If there is no additional information, the null string will be passed.

Insertion or removal of a plug-in unit always creates a notification no matter what provisioning state
surrounds the plug-in unit.

9.7 MIBTransfer module
This module manages the process for collection of system configuration data to be used to restore a
system in the event that a catastrophic failure condition has occurred. The collection of the
configuration data can be done either on a real-time or on a scheduled basis. It also provides status
information for backup and restoral processes in progress. The results of backup and restore
processes are logged by the Supplier Management System. Any request to backup or restore
configuration data is accompanied by security credentials whereby the Supplier Management
System or OLT is allowed to communicate with the external server. While the backup is progress,
all provisioning requests involving the designated OLT system are rejected/blocked. Transfer
Tracking Objects are automatically deleted by the Supplier Management System once the
associated file transfer(s) have finished and results (whether successful or unsuccessful) are
recorded in the completion log.

9.7.1 MIBMover interface

9.7.1.1 startBackup
This operation initiates an immediate backup of system configuration data from a system and/or
Supplier Management System to a backup server destination.

The operation signature for startBackup is shown below:

TransferTrackingObjectIdType startBackup (
 in ManagedEntityIdType nEManagedEntityId,
 in DCNAddressType destinationServerAddr,
 in UserIdType userId,
 in PasswordType password,
 in FilenameType destinationFile,
 in boolean overwriteExistingFile)
 raises (UnknownNE, UnknownDestinationServer, CommFailure,
 EquipmentFailure, DeniedAccess, AccessDenied);

The input parameter nEManagedEntityId identifies the system to be backed up. The input
parameter destinationServerAddr identifies the data communication networking address for the
server that is the destination of the backup. The input parameter userId identifies the user login to
the destination server. The input parameter password is the password to access the destination
server. The input parameter destinationFile provides a full directory location for the backup file.
Finally, the parameter overwriteExistingFile indicates whether or not the backup should allow the
overwriting of a pre-existing file with the same destination directory location.

The return value is of type TransferTrackingObjectIdType providing a correlation key to track
the progress status of the backup process.

 ITU-T Rec. Q.834.4 (07/2003) 41

9.7.1.2 getBackupStatus
This operation provides the capability to retrieve the status of a backup process.

The operation signature for getBackupStatus is shown below:

StatusAttributeSeqType getBackupStatus (
 in TransferTrackingObjectIdType id)
 raises (UnknownBackupProcess,AccessDenied);

The input parameter id identifies the backup process.

The return value is of type StatusAttributeSeqType and gives the status of the previously
requested backup process.

9.7.1.3 scheduleBackup
This operation schedules backup processes.

The operation signature for scheduleBackup is shown below:

TransferTrackingObjectIdType scheduleBackup(
 in ManagedEntityIdType nEManagedEntityId,
 in UserIdType userId,
 in PasswordType password,
 in UserLabelType schedulerName,
 in DCNAddressType destinationServerAddr,
 in FilenameType destinationFile,
 in boolean overwriteExistingFile)
 raises (UnknownNE, UnknownScheduler, UnknownDestinationServer,
 InvalidScheduler, AccessDenied);

The input parameter nEManagedEntityId identifies the OLT to be backed up. The input parameter
schedulerName is the scheduler name to be used for backup. The input parameter userId identifies
the user login to the destination server. The input parameter password is the password to access the
destination server. The parameter destinationServerAddr indicates the DCN address for the
destination server where the data is to be backed up. The input parameter destinationFile provides
a full directory location for the backup file. Finally, the parameter overwriteExistingFile indicates
whether or not the backup should allow the overwriting of a pre-existing file with the same
destination directory location.
The return value is of type TransferTrackingObjectIdType and provides a correlation key to be
used when attempting to track the status of the non-real time at some later point.

9.7.1.4 modifyBackupSchedule
This operation cancels all subsequent backup processes for a system based on a scheduler. This
operation will not interrupt a backup process in progress.

The operation signature for modifyBackupSchedule is shown below:

void modifyBackupSchedule (
 in TransferTrackingObjectIdType id,
 in UserLabelType newSchedulerName)
 raises (UnknownBackupProcess, AccessDenied,UnknownScheduler,
 InvalidScheduler);

The input parameter id identifies the scheduled process to be modified. The input parameter
newSchedulerName identifies the new time triggers.

The return value is of type void.

42 ITU-T Rec. Q.834.4 (07/2003)

9.7.1.5 cancelScheduledBackup
This operation cancels all subsequent backup processes for a system based on a scheduler. This
operation will not interrupt a backup process in progress.

The operation signature for cancelScheduledBackup is shown below:

void cancelScheduledBackup (
 in TransferTrackingObjectIdType id)
 raises (UnknownBackupProcess, AccessDenied);

The input parameter id identifies the scheduled process to be cancelled.

The return value is of type void.

9.7.1.6 abortBackup
This operation aborts a backup process in progress whether scheduled or not. Subsequent scheduled
backup process are not affected by this operation.

The operation signature for abortBackup is shown below:

void abortBackup (
 in TransferTrackingObjectIdType id)
 raises (UnknownBackupProcess, CommFailure, EquipmentFailure,
 AccessDenied);

The input parameter id identifies the backup process to be aborted.

The return value is of type void.

9.7.1.7 startRestore
This startRestore operation provides functionality to restore a system based on a backed up copy
of configuration data.

The operation signature for startRestore is shown below. The configuration data is resident on an
external secure server.

TransferTrackingObjectIdType startRestore (
 in ManagedEntityIdType nEManagedEntityId,
 in DCNAddressType sourceServerAddr,
 in UserIdType userId,
 in PasswordType password,
 in FilenameType sourceFile)
 raises (UnknownNE, CommFailure, EquipmentFailure,
 UnknownSourceServer, DeniedAccess,
 SoftwareLoadHardwareMismatch, AccessDenied);

The input parameter nEManagedEntityId identifies the OLT to be restored. The input parameter
sourceServerAddr identifies the data communication networking address for the server that is the
destination of the backup. The input parameter userId identifies the user login to the destination
server. The input parameter password is the password to access the destination server. The
parameter sourceFile indicates the file where the data has been backed up, from which the restoral
will take place.
The return value is of type TransferTrackingObjectIdType and provides a correlation key to be
used when attempting to track the status of the requested restoration.

9.7.1.8 getRestoreStatus
This operation provides the status of a restoral process.

The operation signature for getRestoreStatus is shown below:

 ITU-T Rec. Q.834.4 (07/2003) 43

StatusAttributeSeqType getRestoreStatus (
 in TransferTrackingObjectIdType id)
 raises (UnknownRestoreProcess, AccessDenied);

The input parameter id identifies the restoration process.

The return value is of type StatusAttributeSeqType and provides the progress state of the
restoration process.

9.7.1.9 transferTrackingObjectIdListGet
This operation retrieves the list of outstanding system MIB transfers, both backup and restore.

The operation signature of transferTrackingObjectIdListGet is provided below:

TransferTrackingObjectIdSeqType transferTrackingObjectIdListGet ()
 raises (AccessDenied);

There is no input parameter.

The return value is of type TransferTrackingObjectIdSeqType which provides the list of
outstanding system MIB transfers, both backup and restore.

9.7.1.10 Exceptions
The exception AccessDenied is raised when the system is not granted access to the interface object.
The exception CommFailure is raised when the DCN between Supplier Management System and
OLT or the communication between OLT and source ONT is down.

The exception DeniedAccess is raised if the access to NE is denied.

The exception EquipmentFailure is raised when the equipment where the data is backed up from
is in failure condition.

The exception InvalidScheduler is raised when the given scheduler is inappropriate for use in this
operation or out-of-date.

The exception SoftwareLoadHardwareMismatch is raised when the source software does not
match with the destination hardware.

The exception UnknownBackupProcess is raised when the given TransferTrackingObjectId
related backup process is not found.

The exception UnknownDestinationServer is raised when the IP address of destination server is
not found.

The exception UnknownNE is raised when the OLT is unknown to the Supplier Management
System.

The exception UnknownRestoreProcess is raised when the given TransferTrackingObjectId
related restoral process is unknown.

The exception UnknownScheduler is raised when the given scheduler name is not found.

The exception UnknownSourceServer is raised when the source server is unknown to the Supplier
Management System.

9.8 PerformanceManager module
The Supplier Management System shall provide for the activation and deactivation of performance
data or traffic measurements reporting on individual termination points contained in the NEs as
required by the operator or OMS for OLTs that have been installed. Requirements for the Supplier
Management System found in this Recommendation also include provision for the setting of
threshold values and describe automatic reporting of performance measurements to the Supplier

44 ITU-T Rec. Q.834.4 (07/2003)

Management System when thresholds have been crossed. When there is an occurrence of a set of
Threshold Crossing Alerts associated with a single performance degradation condition, the Supplier
Management System shall analyse and correlate the alert events within its domain to the best of its
ability, determine the underlying root cause of the problem, and store this information in a log. If
several occurrences of the same root cause impairment are detected within a period of time, the
Supplier Management System shall prepare a QoS alarm record for publication any interested
consumer (Operator or OMS). If the Supplier Management System can collect all the history data
records for all the monitoring points5 for all the network elements in its management domain, there
is no need for reporting control. In this case, it is assumed that reporting is constantly available.

9.8.1 ImpairmentPersistence interface
Throughout this Recommendation, it is assumed and required that profile objects that are of
threshold data type6 are groupings of threshold values can be associated with one, and only one,
type of monitoring point.

9.8.1.1 setSlidingWindowParameters
This operation sets the sliding window parameters for one, some or all monitored parameters in an
NE. This setting is applied for all points monitoring the parameters. Subsequently, the Supplier
Management System generates a QoS alarm if a monitoring point detects a TCA
persistenceMinimum times within totConsecutiveIntvls consecutive monitoring intervals. This
operation is best effort.

The exception CommFailure is raised if the Supplier Management System is unable to
communicate with the NE identified in the operation, and if the sliding window parameter values
are set directly on network resources.

This operation is used to establish system-wide default settings if the indicator sysScopeInd has the
value TRUE and the nEManagedEntityId is the identifier for an OLT. This means that the sliding
window parameter values are to be applied to all monitoring points of any equipment components
currently or potentially belonging to the system with the named OLT headend. If the OLT has lost
communications with any subtending network resource prior to or during invocation of this
operation, it is up to supplier implementation to guarantee that the settings are applied once
communication is established. If the indicator sysScopeInd has the value TRUE and the
nEManagedEntityId is the identifier for an ONU, then the settings are viewed to apply to the ONU
and all NTs subtending from it. As equipment components are added to the system with headend of
OLT or ONU, the Supplier Management System automatically sets these parameter values.

If sysScopeInd has the value FALSE, then the sliding window parameter settings are to be applied
only to the indicated resource. The settings are still applied to both existing and potential equipment
components of the node.

The operation signature for setSlidingWindowParameters is shown below:

void setSlidingWindowParameters (
 in ManagedEntityIdType nEManagedEntityId,
 in MonitoredParameterSeqType monitoredParameterList,
 in short totConsecutiveIntvls,
 in short persistenceMinimum,
 in boolean sysScopeInd)
 raises (UnknownNE, UnknownParameters, IntervalCountTooLarge,
 AccessDenied, CommFailure);

5 History data records and monitoring points are defined in ITU-T Rec. Q.834.1.
6 Of type 21 as specified in the ProfileManager module.

 ITU-T Rec. Q.834.4 (07/2003) 45

The input parameter nEManagedEntityId identifies the network element. The input parameter
monitoredParameterList identifies the parameters to be monitored. Values for the parameters are
provided in q834_4::Q834Common::MonitoredParameter. The input parameter
totConsecutiveIntvls identifies the value of total consecutive monitored intervals. The input
parameter persistenceMinimum identifies the minimum number of occurrences of the TCA for the
monitoredParameter. The input sysScopeInd indicates whether or not the sliding window settings
should be applied to all network elements subtending from the initial one designated in the
operation.

The return value is of type void.

9.8.1.2 setSpecificSlidingWindowParameters
This operation is similar to the operation setSlidingWindowParameters except the scope of
assignment of settings is limited to a specific monitoring point identified in the operation.

The operation signature for setSpecificSlidingWindowParameters is shown below:

void setSpecificSlidingWindowParameters (
 in ManagedEntityIdType nEManagedEntityId,
 in ManagedEntityIdType monitoringPoint,
 in MonitoredParameterSeqType monitoredParameterList,
 in short totConsecutiveIntvls,
 in short persistenceMinimum,
 in boolean allowGlobalOverwrite)
 raises (UnknownNE, UnknownParameters, IntervalCountTooLarge,
 AccessDenied, UnknownManagedEntity, CommFailure, EquipmentFailure);

The input parameter nEManagedEntityId identifies the network element managed by the Supplier
Management System. The input parameter monitoringPoint identifies the specific monitoring point
for setting the sliding window parameters for a monitored parameter. The input parameter
monitoredParameterList identifies the parameters to be monitored values for which are defined in
Q834Common::MonitoredParameter. The input parameter totConsecutiveIntvls identifies the
value of total consecutive monitored intervals. The input parameter persistenceMinimum identifies
the minimum number of occurrences of the TCA for the monitoredParameter. The parameter
allowGlobalOverwrite indicates if the specific sliding window parameters can be overwritten in a
subsequent invocation of setSlidingWindowParameters operation.

The return value is of type void.

9.8.1.3 getSpecificSlidingWindowParameters
This operation provides a listing of monitoring points and their sliding window settings for a
specified parameter.

The operation signature for getSpecificSlidingWindowParameters is shown below:

SWPValueSeqType getSpecificSlidingWindowParameters (
 in ManagedEntityIdType nEManagedEntityId,
 in MonitoredParameterType monitoredParameter)
 raises (UnknownNE, UnknownParameters, CommFailure);

The input parameter nEManagedEntityId uniquely identifies the network element managed by the
Supplier Management System. The input parameter monitoredParameter identifies the parameter
to be monitored and is defined in q834_4::Q834Common::MonitoredParameter.

The return value is of type SWPValueSeqType providing the sliding window assignments for a
specific monitoring point.

46 ITU-T Rec. Q.834.4 (07/2003)

9.8.1.4 setThreshold
This operation sets the threshold value identified by a profile to a monitoring point in a network
element.

The operation signature for setThreshold is shown below:

void setThreshold (
 in ManagedEntityIdType nEManagedEntityId,
 in ManagedEntityIdType monitoringPoint,
 in NameType thresholdDataProfileName)
 raises (UnknownNE, AccessDenied,UnknownManagedEntity,
 UnknownProfiles, InvalidAssociation, CommFailure, ProfileSuspended);

The input parameter nEManagedEntityId uniquely identifies the network element managed by the
Supplier Management System. The input parameter monitoringPoint identifies the specific
monitoring point for setting the sliding window parameters for a monitored parameter. The input
parameter thresholdDataProfileName provides listing of profile names for threshold values.

The return value is of type void.

9.8.1.5 setThresholds
This operation allows the setting of a collection of threshold value, monitoringPointType pairs on a
particular NE. The exception CommFailure is raised if the Supplier Management System is unable
to communicate with the NE identified in the operation, and if threshold values are set directly on
network resources.

This operation is used to establish system-wide default settings if the indicator sysScopeInd has the
value TRUE and the nEManagedEntityId is the identifier for an OLT. This means that the threshold
values are to be applied to all monitoring points of any equipment components currently or
potentially belonging to the system with the named OLT headend. If the OLT has lost
communications with any subtending network resource prior to or during invocation of this
operation, it is up to supplier implementation to guarantee that the settings are applied once
communication is established. If the indicator sysScopeInd has the value TRUE and the
nEManagedEntityId is the identifier for an ONU, then the settings are viewed to apply to the ONU
and all NTs subtending from it. As equipment components are added to the system with headend of
OLT or ONU, the Supplier Management System automatically sets these threshold values.

If sysScopeInd has the value FALSE, then the threshold settings are to be applied only to the
indicated resource. The settings are still applied to both existing and potential equipment
components of the node.

The operation signature for setThresholds is shown below:

void setThresholds (
 in ManagedEntityIdType nEManagedEntityId,
 in boolean sysScopeInd,
 in ThresholdsSeqType thresholdsList)
 raises (UnknownNE, UnknownProfiles, AccessDenied,
 UnknownMonitoringPointTypes, InvalidAssociation,
 CommFailure, ProfileSuspended);

The input parameter nEManagedEntityId uniquely identifies the network element managed by the
Supplier Management System. The input parameter thresholdList identifies a list of pairs
consisting of Threshold Data name and monitoringPointType. The input sysScopeInd indicates
whether or not the sliding window settings should be applied to all network elements subtending
from the initial one designated in the operation.

The return value is of type void.

 ITU-T Rec. Q.834.4 (07/2003) 47

9.8.1.6 getThresholdValues
This operation provides a listing of monitoring points and their threshold data setting names for a
specified monitoring point type.

The operation signature for getThresholdValues is shown below:

MonitoringPointThresholdsSeqType getThresholdValues (
 in ManagedEntityIdType nEManagedEntityId,
 in MonitoringKindType monitoringPointType)
 raises (UnknownNE, UnknownMonitoringPointTypes, CommFailure);

The input parameter nEManagedEntityId uniquely identifies the network element managed by the
Supplier Management System. The input parameter monitoringPointType identifies the
monitoring point on which the retrieval is based.

The return value is of type MonitoringPointThresholdsSeqType and provides the setting values
for threshold crossings.

9.8.1.7 getSystemThresholdsSetting
This operation retrieves the system default values for Threshold Data.

The operation signature of getSystemThresholdsSetting is provided below:

ThresholdsSeqType getSystemThresholdsSetting (
 in ManagedEntityIdType nEManagedEntityId)
 raises (AccessDenied, UnknownManagedEntity);

The input parameter nEManagedEntityId uniquely identifies the system for which default settings
are requested.

The return value is of type ThresholdsSeqType which provides the list of system defaults.

9.8.1.8 getSystemSWSettings
This operation retrieves the system default sliding window settings.

The operation signature of getSystemSWSettings is provided below:

ParameterSettingSeqType getSystemSWSettings (
 in ManagedEntityIdType nEManagedEntityId)
 raises (AccessDenied, UnknownManagedEntity);

The input parameter nEManagedEntityId uniquely identifies the system for which default sliding
window settings are requested.

The return value is of type ParameterSettingSeqType which provides the list of system defaults.

9.8.1.9 Exceptions
The exception AccessDenied is raised when the operator management system is not granted access
to this interface object.

The exception CommFailure is raised when there was a DCN link failure between the NE and the
Supplier Management System fails.

The exception EquipmentFailure is raised when the equipment is in failure condition and the
settings cannot be applied.
The exception InvalidAssociation is raised when the given profile cannot be applied to a
monitoring point.

48 ITU-T Rec. Q.834.4 (07/2003)

The exception IntervalCountTooLarge is raised when the requested intervals exceed the
maximum supported by the Supplier Management System. The exception indicates the maximum
allowed monitoring intervals supported by the Supplier Management System.

The exception ProfileSuspended is raised when profile(s) named in the invocation has been
suspended for use within the Supplier Management System by the OMS or operator.

The exception UnknownNE is raised when the NE mentioned in the request is unknown to the
Supplier Management System.

The exception UnknownManagedEntity is raised when the monitoring point is unknown to the
Supplier Management System.

The exception UnknownMonitoringPointTypes is raised when the monitoring point is unknown
to the Supplier Management System.

The exception UnknownParameters is raised when the given monitored parameter is unknown in
the Supplier Management System.

The exception UnknownProfiles is raised if the profile name provided is unknown to the Supplier
Management System and cannot be retrieved from the profile object repository.

9.8.2 ReportController interface

9.8.2.1 addCustomerMonitoringReporting
This operation adds a historydatatype to be monitored to a specific monitoring point in response to a
customer complaint identified by the supplied serviceInstanceId or in order to support
CNM services.

The operation signature for addCustomerMonitoringReporting is shown below:

void addCustomerMonitoringReporting (
 in ManagedEntityIdType nEManagedEntityId,
 in ServiceInstanceIdType serviceInstanceId,
 in ManagedEntityIdType monitoringPoint,
 in GeneralizedTimeType stopTime,
 in HistoryDataType historyData,
 in short granularityPeriod)
 raises (UnknownServiceInstance, AccessDenied, UnknownNE,
 UnknownManagedEntity, CollectionPeriodPast, CollectionLimitation,
 InvalidAssociation, UnknownHistoryDataType, CommFailure);

The input parameter nEManagedEntityId uniquely identifies the network element managed by the
Supplier Management System. The input parameter serviceInstanceId identifies the customer
service instance associated with the monitoring point. The input parameter monitoringPoint
identifies the specific monitoring point for collecting history data. The input parameter stopTime
identifies the time at which the collection of history data will cease. If the reporting is to be
ongoing, then stopTime is given as "0". Reporting also terminates automatically when the service is
deleted. The inputParameter historyData identifies the type of history data to be collected, the
values of which are defined in q834_4::Q834Common::RecordSetType. The input parameter
granularityPeriod identifies the collection interval period in minutes. When the stopTime falls
within the granularity period, the history data is collected for the whole granularity period.

The return value is of type void.

9.8.2.2 removeCustomerMonitoringReporting
This operation removes all historydatatype collection on behalf of a supplied service instance.

The operation signature for removeCustomerMonitoringReporting is shown below:

void removeCustomerMonitoringReporting (

 ITU-T Rec. Q.834.4 (07/2003) 49

 in ServiceInstanceIdType serviceInstanceId)
 raises (UnknownServiceInstance, AccessDenied,
 CollectionPeriodPast, CommFailure);

The input parameter serviceInstanceId identifies the customer service instance associated with the
monitoring point.

The return value is of type void.

9.8.2.3 selectByServiceInstance
This operation gets all the records available in the Supplier Management System associated with the
given serviceInstanceId. The returned list has no redundant records. The Supplier Management
System scans all relevant recordsets.

The operation signature for selectByServiceInstance is shown below:

RecordsSeqType selectByServiceInstance (
 in ServiceInstanceIdType serviceInstanceId,
 in GeneralizedTimeType intervalStartTime,
 in GeneralizedTimeType intervalEndTime)
 raises (UnknownServiceInstance, AccessDenied);

The input parameter serviceInstanceId identifies the customer service instance. The input
parameter intervalStartTime filters out selection of history data records with periodEndTime
before this value. The input parameter intervalEndTime filters out selection of history data records
with periodEndTime after this value.

The return value is of type RecordsSeqType that provides a list of history data records associated
with performance monitoring reported for this service instance.

9.8.2.4 displayActiveReporting
This operation gets all the monitoring points for which history data is currently being collected for a
given serviceInstanceId.

The operation signature for displayActiveReporting is shown below:

MonitoringPointSeqType displayActiveReporting (
 in ServiceInstanceIdType serviceInstanceId)
 raises (UnknownServiceInstance, AccessDenied);

The input parameter serviceInstanceId identifies the customer service instance.

The return value is of type MonitoringPointSeqType and provides the listing of all actively
reporting monitoring points.

9.8.2.5 addNewMonitoringReporting
This operation adds a history data type to be monitored on a specific monitoring point.

The operation signature for addNewMonitoringReporting is shown below:

void addNewMonitoringReporting (
 in ManagedEntityIdType nEManagedEntityId,
 in ManagedEntityIdType monitoringPoint,
 in GeneralizedTimeType stopTime,
 in HistoryDataType historyData,
 in short granularityPeriod)
 raises (AccessDenied, UnknownNE, UnknownManagedEntity,
 CollectionPeriodPast, CollectionLimitation, InvalidAssociation,
 UnknownHistoryDataType, CommFailure);

The input parameter nEManagedEntityId uniquely identifies the network element managed by the
Supplier Management System. The input parameter monitoringPoint identifies the specific

50 ITU-T Rec. Q.834.4 (07/2003)

monitoring point for collecting history data. The input parameter stopTime identifies the time at
which the collection of history data will cease. If the reporting is to be ongoing, then stopTime is
given as "0". Reporting also terminates automatically when the managedEntity (monitoring point)
deleted. The inputParameter historyData identifies the type of history data to be collected, the
values of which are defined in q834_4::Q834Common::RecordSetType. The input parameter
granularityPeriod identifies the collection interval period in minutes. When the stopTime falls
within the granularity period, the history data is collected for the whole granularity period.

The return value is of type void.

9.8.2.6 selectByMonitoringPoint
This operation gets all the records available in the Supplier Management System associated with the
given monitoring point. The returned list has no redundant records.

The operation signature for selectByMonitoringPoint is shown below:

RecordsSeqType selectByMonitoringPoint (
 in ManagedEntityIdType monitoringPoint,
 in GeneralizedTimeType intervalStartTime,
 in GeneralizedTimeType intervalEndTime)
 raises (UnknownManagedEntity, AccessDenied);

The input parameter monitoringPoint identifies the specific monitoring for which records should
be retrieved. The input parameter intervalStartTime filters out selection of history data records
with periodEndTime before this value. The input parameter intervalEndTime filters out selection
of history data records with periodEndTime after this value.

The return value is of type RecordsSeqType and provides all the history data records stored within
the Supplier Management System reported by the monitoring point within the time period specified.

9.8.2.7 createReportingSchedule
This operation adds a scheduled collection of history data to be monitored on a specific monitoring
point. The Supplier Management System will collect a historyData record for the monitoring point
based on the schedule. The schedule identifies the periodEndTime(s) for the records to be collected.

The operation signature for createReportingSchedule is shown below:

void createReportingSchedule (
 in ManagedEntityIdType nEManagedEntityId,
 in ManagedEntityIdType monitoringPoint,
 in HistoryDataType historyData,
 in ServiceInstanceIdType serviceInstance,
 in short granularityPeriod,
 in UserLabelType schedulerName)
 raises (AccessDenied, UnknownNE, UnknownManagedEntity,
 CollectionLimitation, UnknownScheduler, InvalidAssociation,
 UnknownHistoryDataType, InvalidScheduler);

The input parameter nEManagedEntityId uniquely identifies the network element managed by the
Supplier Management System. The input parameter monitoringPoint identifies the specific
monitoring point for collecting history data. The inputParameter historyData identifies
the type of history data to be collected, the values of which are defined in
q834_4::Q834Common::RecordSetType. The input parameter serviceInstance provides an optional
reference to a service instance. Empty string value is used if no reference is desired. The input
parameter granularityPeriod identifies the collection interval period in minutes. The input
parameter schedulerName identifies the name for a schedule that was created earlier.

The return value is of type void.

 ITU-T Rec. Q.834.4 (07/2003) 51

9.8.2.8 modifyReportingSchedule
This operation modifies the scheduled collection of history data to be monitored on a specific
monitoring point. If successful, the change to scheduled collection of history data will occur with
the next iteration.

The operation signature for modifyReportingSchedule is shown below:

void modifyReportingSchedule (
 in ManagedEntityIdType nEManagedEntityId,
 in ManagedEntityIdType monitoringPoint,
 in HistoryDataType historyData,
 in UserLabelType newSchedulerName)
 raises (AccessDenied, UnknownNE, UnknownManagedEntity,
 CollectionLimitation, UnknownScheduler, InvalidAssociation,
 UnknownHistoryDataType, InvalidScheduler);

The input parameter nEManagedEntityId uniquely identifies the network element managed by the
Supplier Management System. The input parameter monitoringPoint identifies the specific
monitoring point for collecting history data. The inputParameter historyData identifies
the type of history data to be collected, the values of which are defined in
q834_4::Q834Common::RecordSetType. The input parameter newSchedulerName identifies the
name of the new schedule to be applied.

The return value is of type void.

9.8.2.9 cancelReportingSchedule
This operation cancels subsequent scheduled reporting of history data where the reporting was
requested by the operator previously. It does not interrupt history data reporting in progress or
reporting that is supported as default behaviour between the Supplier Management System and the
network resources.

The operation signature for cancelReportingSchedule is shown below:

void cancelReportingSchedule (
 in ManagedEntityIdType nEManagedEntityId,
 in ManagedEntityIdType monitoringPoint,
 in HistoryDataType historyData,
 in UserLabelType schedulerName)
 raises (AccessDenied, UnknownNE, UnknownManagedEntity,
 UnknownScheduler, InvalidAssociation, UnknownHistoryDataType);

The input parameter nEManagedEntityId uniquely identifies the network element managed by the
Supplier Management System. The input parameter monitoringPoint identifies the specific
monitoring point for collecting history data. The inputParameter historyData identifies
the type of history data to be collected, the values of which are defined in
q834_4::Q834Common::RecordSetType. The input parameter schedulerName identifies the
schedule to be cancelled.

The return value is of type void.

9.8.2.10 Exceptions
The exception AccessDenied is raised when the operator management system is not granted access
to this interface object.

The exception CommFailure is returned when there was a DCN link failure between the NE and
the Supplier Management System.

The exception CollectionLimitation is raised when the Supplier Management System cannot
collect data for the given time duration and granularity period due to implementation restrictions.

52 ITU-T Rec. Q.834.4 (07/2003)

The exception CollectionPeriodPast is raised when period end time is lesser than equal to the
current time.

The exception InvalidAssociation is raised when the given profile cannot be applied to a
monitoringPoint.

The exception InvalidScheduler is raised when the given scheduler is inappropriate for use in this
operation or out-of-date.

The exception UnknownNE is raised when the NE mentioned in the request is unknown to the
Supplier Management System.

The exception UnknownHistoryDataType is raised when history data type is unknown in the
Supplier Management System.

The exception UnknownManagedEntity is raised when the monitoring point is unknown to the
Supplier Management System.

The exception UnknownScheduler is raised when the named scheduler is unknown to the Supplier
Management System.

The exception UnknownServiceInstance is raised when the Service Instance is unknown to the
Supplier Management System.

9.9 ProfileManager
This module consists of three interfaces: ProfileConsumer, ProfileUsageMgr, and ProfileRetriever.
ProfileConsumer specifies the contents of event notification for profile creations within the Profile
Object Repository. ProfileUsageMgr supports operations to manage profile settings cached within
the Supplier Management System. ProfileRetriever allows Supplier Management System to obtain
the values for profile settings.

9.9.1 ProfileConsumer Interface
The purpose of the interface is to announce the existence of new profile settings and to convey
those settings to the Supplier Management System. This interface has no operations. However, it
does provide the fixed header mapping as well as the filterable data mappings for the structured
event object used to push event information through the event channel of the OMG Notification
Service.

In the fixed header, the domain_type is set to "telecommunications", the type_name is set to
"ProfileEvent", and the event_name is set to a constant string that has the value "ProfileCreation"
as defined in the interface.

The mapping in the filterable data follows a strategy using a constant string identifier for the
filterable data component followed by the value for that data element. Also, the filterable data items
are listed in a specific order.

The order of the filterable items is ProfileName, ProfileType, EventTime, ProfileAttributeValues,
and NotificationIdentifier. ProfileName value has the syntax of NameType. ProfileType value has
the syntax "unsigned short", and it allows the consumer (Supplier Management System) to identify
the type of profile created and to unmarshall the attribute values found later in profileStruct. The
syntax of ProfileAttributeValues is profileStruct. EventTime has the syntax of
GeneralizedTimeType, and it is the time that the profile was created. NotificationIdentifier has the
syntax of NotificationIdentifierType. This identifier uniquely labels the profile creation event and is
incremented with each profile creation.

 ITU-T Rec. Q.834.4 (07/2003) 53

9.9.2 ProfileUsageMgr interface

9.9.2.1 reName
This operation provides the capability to rename a profile.

The operation signature for reName is shown below:

void reName (
 in NameType oldProfileName,
 in NameType newProfileName)
 raises (UnknownProfiles, AccessDenied, DuplicateProfileName);

The input parameter oldProfileName is the old profile name to be renamed. The input parameter
newProfileName is the new name for the profile.

The return value is of type void.

9.9.2.2 inUse
This operation returns a boolean value to tell if the profile is in use.

The operation signature for inUse is shown below:

boolean inUse (
 in NameType profileName)
 raises (UnknownProfiles, AccessDenied);

The input parameter profileName provides the profile name which is to be checked if it is used by
the other party.

The return value is of type boolean.

9.9.2.3 suspendUse
This operation suspends the use of a profile.

The operation signature for suspendUse is shown below:

void suspendUse (
 in NameType profileName)
 raises (UnknownProfiles, AccessDenied);

The input parameter profileName is a profile name which is to be suspended.

The return value is of type void.

9.9.2.4 resumeUse
This operation resumes the use of a named profile.

The operation signature for resumeUse is shown below:

void resumeUse (
 in NameType profileName)
 raises (UnknownProfiles, AccessDenied);

The input parameter profileName names the profile whose values are to be again made available
for use by the Supplier Management System.

The return value is of type void.

9.9.2.5 deleteProfile
This operation deleteProfile provides the capability to remove a profile which is not in use.

54 ITU-T Rec. Q.834.4 (07/2003)

The operation signature for deleteProfile is shown below:

void deleteProfile (in NameType profileName) raises (UnknownProfiles,
AccessDenied, ProfileInUse);

The input parameter profileName is the name of the profile to be deleted.

The return value is of type void.

9.9.2.6 Exceptions
The exception AccessDenied is raised when the OMS is not granted access to the requested
operation.

The exception DuplicateProfileName is raised when duplicate profile name is found.

The exception ProfileInUse is raised when deleting a profile, and found when the profile is in use
by the other party.

The exception UnknownProfiles is raised if the profile name provided is unknown to the Supplier
Management System and cannot be retrieved from the profile object repository.

9.9.3 ProfileRetriever interface

9.9.3.1 retrieve
This operation provides the capability to retrieve a profile. This operation is used by the Supplier
Management System to retrieve a profile from the Operator management system.

The operation signature for retrieve is shown below:

ProfileInfoType retrieve (
 in NameType profileName)
 raises (UnknownProfiles);

The input parameter profileName is the name of the profile to be retrieved.

The return value is of type ProfileInfoType and provides the attribute values for the named profile.

9.9.3.2 Exceptions
The exception UnknownProfiles is raised if the profile name provided is unknown to the Supplier
Management System and cannot be retrieved from the profile object repository.

9.10 Registrar module
This module supports the process of bringing a new NE into the management jurisdiction of the
Supplier Management System. It supports both initial installations and equipment replacements
motivated by maintenance or service upgrades. It explicitly supports the ranging function that is
used to measure the round trip delay between the OLT and each ONU or ONT and establish
security mechanisms (churning key algorithm) and communication timing including automatic
setup of the embedded operations channel.

A set of managed entities is automatically created in the management information model
maintained by the Supplier Management System as a result of registration. Depending on the
equipment type, instances of OLT, ONT, ONU, APONLink, APONTTP, APONTrail,
APONNetworkCTP, APONNetworkTTP, APONLinkConnection, tcAdapterF, vpLinkConnectionF,
vpTopologicalLinkF, and physicalPathTPF are automatically created. Depending on supplier
implementation as well as what is physically installed, other managed entities are also automatically
created.

 ITU-T Rec. Q.834.4 (07/2003) 55

9.10.1 NERegistrar interface

9.10.1.1 registerNE
This operation registers an NE with a particular instance of Supplier Management System. The NE
should be installed at this point. The Managed Entity Id of the NE is returned in order to indicate
that the Supplier Management System can perform at least one rudimentary management function.

The operation signature for registerNE is shown below:

ManagedEntityIdType registerNE (
 in DCNAddressType nEDCNAddress,
 in UserLabelType nEUserLabel,
 in AdministrationDomainType administrationDomain)
 raises (AccessDenied, DCNTimeout, AddressLabelMismatch,
 DuplicateUserLabel, TooManyNEs, InvalidDCNAddress,
 DeniedAccess, InvalidUserLabelSyntax);

The input parameter nEDCNAddress identifies a DCN address to be used to access this NE. The
NE should already have been configured with this address. The input parameter nEUserLabel
provides an operator defined label for the NE. The NE should already have been provisioned with
the User Label. The input parameter administrationDomain identifies the management domain to
which this NE is assigned.

The return value of type ManagedEntityIdType identifies the newly registered NE if this
operation completes successfully.

9.10.1.2 modifyNEDCNAddress
This operation changes the DCN address of a registered NE. Communications may be temporarily
lost between Supplier Management System and NE during this operation. The new DCN address
should take effect immediately.

The operation signature for modifyNEDCNAddress is shown below:

void modifyNEDCNAddress (
 in ManagedEntityIdType nEManagedEntityId,
 in DCNAddressType newNEDCNAddress)
 raises(AccessDenied, DeniedAccess, AddressLabelMismatch,
 DCNTimeout, CommFailure, UnknownNE, InvalidDCNAddress, BackupInProgress);

The input parameter nEManagedEntityId identifies the NE to which this operation applies. The
input parameter newDCNAddress identifies the new DCN address for the NE.

The return value is of type void.

9.10.1.3 rangeONTorONU
This operation ranges an ONT or ONU using the serial number of the PON interface of the NE. If
the NE being ranged has not been built, then buildNode will be called before ranging occurs. After
the ranging has completed successfully a NE synch is initiated. This will update the Supplier
Management System with the configuration data from the newly ranged NE.

The operation signature for rangeONTorONU is shown below:

ManagedEntityIdType rangeONTorONU(
 in ManagedEntityIdType oLTManagedEntityId,
 in UserLabelType nEUserLabel,
 in SerialNumType serialNum,
 in ManagedEntityIdType port)
 raises(AccessDenied, CommFailure, EquipmentFailure, UnknownNE,

56 ITU-T Rec. Q.834.4 (07/2003)

 UnknownPort, MaxSubtendingNodesExceeded, InsufficientPONBW,
 InvalidSerialNumSyntax, APONLayerFailure, DuplicateUserLabel,
 InvalidUserLabelSyntax, BackupInProgress, SynchInProgress);

The input parameter oLTManagedEntityId identifies the OLT to which this operation applies. The
input parameter nEUserLabel is a label given to the NE to be ranged. The input parameter
serialNum identifies the NE serial number. The input parameter port identifies the specific
PON port on the OLT where the NE is to be ranged.

The return value of type ManagedEntityIdType is the managed entity id of the ranged NE.

9.10.1.4 rangeReplacementNE
This operation ranges a replacement ONT or ONU using the serial number of the replacement
equipment. All existing service connection information is automatically assigned to the replacement
NE. Replacement scenarios occur due to maintenance activities for existing customers and services.
The old and new NE User Label can be the same. Outside the scope of IF1 the supplier and the
operator have come to an understanding of what type of hardware may replace any existing
hardware.

The operation signature for rangeReplacementNE is shown below:

ManagedEntityIdType rangeReplacementNE(
 in ManagedEntityIdType oldNEManagedEntityId,
 in UserLabelType newNEUserLabel,
 in SerialNumType replacementSerialNum)
 raises (AccessDenied, CommFailure, UnknownNE,
 InvalidSerialNumSyntax, APONLayerFailure, EquipmentFailure,
 InvalidUserLabelSyntax, HWServicesMismatch, DuplicateUserLabel,
 BackupInProgress, SynchInProgress);

The input parameter oldNEManagedEntityId identifies the NE to be replaced. The input
parameter newNEUserLabel identifies a label for the new ONT or ONU to be ranged. The input
parameter replacementSerialNum identifies the NE serial number.

The return value of type ManagedEntityIdType is the managed entity id of the newly ranged NE.

9.10.1.5 rangeUpgradeNE
This operation ranges a replacement NE for the purposes of upgrading the hardware. All existing
service connection information is automatically assigned to the replacement NE. Additionally, it is
assumed that the replacement NE has been preprovisioned (using buildNode operation) and any
new service connections have been provisioned or bandwidth has been reserved. The new NE User
Label can be the same as the old. Outside the scope of IF1 the supplier and the operator have come
to an understanding of what type of hardware may replace any existing hardware.

The operation signature for rangeUpgradeNE is shown below:

ManagedEntityIdType rangeUpgradeNE(
 in ManagedEntityIdType oldNEManagedEntityId,
 in ManagedEntityIdType newNEManagedEntityId,
 in UserLabelType newNEUserLabel,
 in SerialNumType newNESerialNum)
 raises (AccessDenied, CommFailure, APONLayerFailure,
 EquipmentFailure, InvalidUserLabelSyntax, DuplicateUserLabel,
 UnknownNE, HWServicesMismatch, InsufficientPONBW,
 BackupInProgress, SynchInProgress);

The input parameter oldNEManagedEntityId identifies the NE being replaced. In this case, the
type of NE being replaced is either an ONT or an ONU. The input parameter
newNEManagedEntityId identifies the preprovisioned replacement. All new service connection or
bandwidth reservation information is accessible to the Supplier Management System through this

 ITU-T Rec. Q.834.4 (07/2003) 57

identifier. The input parameter newNEUserLabel provides a label for the new NE to be ranged.
The old and new ONU or ONT User Label can be the same. The input parameter
newNESerialNum provides the serial number to be used for ranging the replacement.

The return value of type ManagedEntityIdType is the managed entity id of the newly ranged NE.

9.10.1.6 moveONTorONU
This operation is used to move an ONT or ONU from one PON to another and also to move all of
the associated services.

The operation signature for moveONTorONU is shown below:

ManagedEntityIdType moveONTorONU(
 in ManagedEntityIdType oldNEManagedEntityId,
 in ManagedEntityIdType newPONPort)
 raises(AccessDenied, CommFailure, UnknownNE, UnknownPort,
 APONLayerFailure,EquipmentFailure, InsufficientPONBW,
 BackupInProgress, SynchInProgress);

The input parameter oldNEManagedEntityId identifies the NE to be replaced. The input
parameter newPONPort identifies the new PON to which these services are being moved.

The return value of type ManagedEntityIdType is the managed entity id of the newly ranged NE.

9.10.1.7 getSubtendingNEList
This operation returns all subtending NEs of a particular NE.

The operation signature for getSubtendingNEList is shown below:

ManagedEntityIdSeqType getSubtendingNEList(
 in ManagedEntityIdType nEManagedEntityId)
 raises (UnknownNE, AccessDenied);

The input parameter nEManagedEntityId identifies the specific NE for which the list should be
returned.

The return value of type ManagedEntityIdSeqType provides a list of subtending network
elements.

9.10.1.8 nEListGet
This operation retrieves the network elements under the management jurisdiction of the Supplier
Management System.

The operation signature of nEListGet is provided below:

ManagedEntityIdSeqType nEListGet () raises (AccessDenied);

There are no input parameters.

The return value is of type ManagedEntityIdSeqType which provides the list of network elements
managed by the Supplier Management System.

9.10.1.9 deRegisterNE
This operation removes the network element from the management jurisdiction of the Supplier
Management System.

The operation signature of deRegisterNE is provided below:

void deRegisterNE (
 in ManagedEntityIdType nE)
 raises (AccessDenied);

58 ITU-T Rec. Q.834.4 (07/2003)

The input parameter nE identifies the network element to remove from the management jurisdiction
of the Supplier Management System.

The return value is of type void.

9.10.1.10 associateNE
This operation associates preprovisioning information with a network element that has been
installed and autodiscovered. The activities of preprovisioning and installation both produce a
managed entity within the Supplier Management System that is made available to the OMS. This
operation unifies the two managed entities into one.

The operation signature of associateNE is provided below:

ManagedEntityIdType associateNE (
 in ManagedEntityIdType preProvisionedNE,
 in ManagedEntityIdType discoveredNE)
 raises (AccessDenied, UnknownManagedEntity);

The input parameter preProvisionedNE identifies the information associated with the
preprovisioned network element. The input parameter discoveredNE identifies the information
associated with the installed network element.

The return value of type ManagedEntityIdType provides the identification of the merged
information.

9.10.1.11 Exceptions
The exception AccessDenied is raised when the system is not granted access to the interface object.
The exception AddressLabelMismatch is raised when the identified NE does not have the current
DCN Address provided in the request.
The exception APONLayerFailure is raised when there was an APON protocol ranging failure
between the OLT and the designed subtending node.

The exception BackupInProgress is raised when the cancellation request is issued while the
backup is in progress.

The exception CommFailure is raised when the DCN between Supplier Management System and
OLT or the communication between OLT and source ONT is down.

The exception DCNTimeout is raised when the DCN communications link between at least one of
the NEs and the Supplier Management System is so congested that current state or status
information cannot be transferred within a system defined synch time.
The exception DeniedAccess is raised if the access to NE is denied as a result of access control
restrictions.
The exception DuplicateUserLabel is raised if the User Label provided in the request has been
used to label another NE or plugInUnit. In other words, the Supplier Management System is
responsible for policing User Labels assigned for NEs and plug-in units within its management
jurisdiction.
The exception EquipmentFailure is raised when the equipment where the data is backed up from
is in failure condition.
The exception HWServicesMismatch is raised when the replacement NE cannot perform the
provisioned services.
The exception InsufficientPONBW is raised when the ONT or ONU cannot be ranged due to
insufficient bandwidth on the APONLink.
The exception InvalidDCNAddress is raised when the specified DCN address is not valid.

 ITU-T Rec. Q.834.4 (07/2003) 59

The exception InvalidSerialNumSyntax is raised when the Syntax of the serial number provided
does not match definition rules.
The exception InvalidUserLabelSyntax is raised when the User Label provided for the ONU or
ONT violates business rules of syntax defined by the operator and implemented in the Supplier
Management System.
The exception MaxSubtendingNodesExceeded is raised when the maximum engineered number
of subtending nodes for the identified PON interface has been exceeded with this request for service
provisioning.
The exception SynchInProgress will be raised when any operation is requested while the Supplier
Management System is in the process of synchronising with the NE.

The exception TooManyNEs is raised when the Supplier Management System cannot manage one
more OLT.
The exception UnknownManagedEntity is raised when the equipment is unknown to the Supplier
Management System.
The exception UnknownNE is raised when the OLT is unknown to the Supplier Management
System.
The exception UnknownPort is raised when the identified port is unknown to the Supplier
Management System.

9.11 ResourceAllocation module
This service allows the OMS to reserve bandwidth on a system resources for an anticipated service
connection. The reserved bandwidth can be deleted or retrieved. The ResourceAllocator interface
provides the means for creating, deleting, or displaying a resource reservation. This operation is
used prior to dispatch of personnel for the installation of a network element. Once resource capacity
is reserved, the reserved resource can be used only for the service specified in the reservation.

9.11.1 ResourceAllocator Interface

9.11.1.1 reserveForService
This operation reserves bandwidth for a network resource such as ONT, ONU, or NT whose
installation is pending. This operation is used when the ONT, ONU, or NT that serves the
bandwidth associated with the designated OLT is first provisioned. When the operation is
completed, the return value, ReservationBandwidthType, provides an accounting of the reserved
bandwidth to the OMS.

The operation signature for the reserveForService is shown below:

ReservationBandwidthType reserveForService(
 in EndPointType endPointA,
 in EndPointType endPointZ,
 in NameSeqType networkCharacteristicsProfiles,
 in ServiceInstanceIdType serviceInstanceId)
 raises(UnknownNE, UnknownPort, UnknownProfiles,
 InsufficientBW, MaxSubtendingNodesExceeded,

ConnectionCountExceeded, CommFailure, AccessDenied,
ProfileSuspended);

The input parameters endPointA and endPointZ identify the two endpoints of the service
connection that will determine the resources necessary to support an anticipated service connection.
The input parameter networkCharacteristicsProfiles is a list consisting of the following;
abTrafficDescripterProfile, and baTrafficDescripterProfile (in this order). The input parameter
serviceInstanceId identifies the associated service instance for this reserved bandwidth.

60 ITU-T Rec. Q.834.4 (07/2003)

The return value is of type ReservationBandwidthType and includes a Reservation Id and the
amount of network resource bandwidth that has been reserved by the Supplier Management System.
The Reservation Id can be used by the OMS during service provisioning or to cancel this
reservation.

9.11.1.2 cancelReservation
This operation is used to delete the reservation and release the resources from the reserved system
capacity.

The operation signature for the cancelReservation is shown below:

AvailableSysBandwidthSeqType cancelReservation (
 in ReservationIdType reservationId)
 raises (UnknownReservationId, CommFailure, AccessDenied);

The input parameter reservationId identifies the existing reservation associated with the bandwidth
that was allocated.

The return value of type AvailableSysBandwidthSeqType indicates the current available
bandwidth of the OLT after the deletion of the reserved bandwidth.

9.11.1.3 getReservationId
This operation is used to display the reservation Id associated with the service instance id that is
assigned for the reserved bandwidth.

The operation signature for the getReservationId is shown below:

ReservationIdType getReservationId (
 in ServiceInstanceIdType serviceInstanceId)
 raises(UnknownServiceInstance, AccessDenied);

The input parameter serviceInstanceId is used to identify the existing service instances assigned
during the time the resource is reserved.

The return value of type ReservationIdType is associated with the given service instance id.

9.11.1.4 reportReservedResources
This operation is used by the OMS to display the current reserved bandwidth in the specific
headend NE (in this case the OLT).

The operation signature for the reportReservedResources is shown below:

ReservedBandwidthSeqType reportReservedResources (
 in ManagedEntityIdType nEManagedEntityId)
 raises (UnknownNE, AccessDenied);

The input parameter nEManagedEntityId is used to identify the network element for which
current bandwidth reservations are requested.

The return value of type ReservedBandwidthSeqType has the all current reserved bandwidth
information for the network element.

9.11.1.5 getReservations
This operation is used by OMS to retrieve all the reservations associated with the given NE.

The operation signature for the getReservations is shown below:

ReservationIdSeqType getReservations(
 in ManagedEntityIdType nEManagedEntityId)
 raises (UnknownNE, AccessDenied);

 ITU-T Rec. Q.834.4 (07/2003) 61

The input parameter nEManagedEntityId is used to identify the NE for retrieval of the current
reserved bandwidth.

The return value of type ReservationIdSeqType provides all the reservation id(s) currently
allocated to the OLT.

9.11.1.6 cancelAllRemainingReservations
This operation is used to delete all the remaining reservations against capacity associated with a
given network element. The network element can have bandwidth that is either assigned, reserved,
or available for service connections. This operation only changes reserved resources to available
resources.

The operation signature for the cancelAllRemainingReservations is shown below:

AvailableSysBandwidthSeqType cancelAllRemainingReservations(
 in ManagedEntityIdType nEManagedEntityId)
 raises (UnknownNE, CommFailure, AccessDenied);

The input parameter nEManagedEntityId is used to identify the network element.

The return value of type AvailableSysBandwidthSeqType indicates the current available
bandwidth of the network element after the deletion of the reserved bandwidth.

9.11.1.7 getReservation
This operation is used to investigate the origins of a reservation of capacity within an NE.

The operation signature for the getReservation is shown below:

ReservationInfoType getReservation (
 in ReservationIdType reservationId)
 raises (UnknownReservationId, AccessDenied);

The input parameter reservationId is used to specify the reservation.

The return value of type ReservationIdInfoType indicates the service connection information
provided as part of the reservation request with the provided reservationId.

9.11.1.8 getAvailableSysBandwidth
This operation is used to determine the amount of capacity remaining for service connection
reservation or assignment for a network element.

The operation signature for the getAvailableSysBandwidth is shown below:

AvailableSysBandwidthSeqType getAvailableSysBandwidth (
 in ManagedEntityIdType nEManagedEntityId)
 raises (UnknownNE, CommFailure, AccessDenied);

The input parameter nEManagedEntityId is used to identify the network element.

The return value of type AvailableSysBandwidthSeqType indicates the current available
bandwidth of the network element. It provides the available bandwidth for each provisioned port on
the network element as characterized by the supplier implementation.

9.11.1.9 Exceptions
The exception AccessDenied is raised when the system is not granted access to the interface object.
The exception CommFailure is raised when the DCN between Supplier Management System and
OLT or the communication between OLT and ONT or ONU is down.
The exception ConnectionCountExceeded is raised when the maximum number of connections for
the OLT or PON port has been exceeded with this request for service provisioning.

62 ITU-T Rec. Q.834.4 (07/2003)

The exception InsufficientBW is raised when the bandwidth is insufficient to the requested service.

The exception MaxSubtendingNodesExceeded is raised when the maximum engineered number
of subtending nodes for the identified PON interface has been exceeded with this request for service
provisioning.

The exception ProfileSuspended is raised when a profile(s) named in the invocation has been
suspended for use within the Supplier Management System by the OMS or operator.
The exception UnknownNE is raised when the OLT is unknown to the Supplier Management
System.
The exception UnknownPort is raised when the identified port is unknown to the Supplier
Management System.
The exception UnknownProfiles is raised if the profile name provided is unknown to the Supplier
Management System and cannot be retrieved from the profile object repository.

The exception UnknownReservationId is raised when the Supplier Management System does not
recognize this Reservation Id.
The exception UnknownServiceInstance is raised when the service instance is unknown to the
Supplier Management System.

9.12 SchedulerManagement module
This service is used to provide OMS interfaces for managing schedulers to be used for invoking
various activities. Once the scheduler is created, the OMS can initiate requests to schedule an
activity such as NE MIB uploading, bulk transfer, testing, or software downloading by referencing
the scheduler. Schedulers are determined by needs of the operations environment. It is assumed that
there will be no schedulers named or established automatically upon instantiation of the Supplier
Management System. References to a specific scheduler will always be made via User Label. A
trigger matrix is used to describe the schedule. The values in the matrix are interpreted based on the
value of HourlyDailyWeeklyMonthlyInd.

9.12.1 SchedulerMgr interface

9.12.1.1 makeScheduler
This operation creates a new scheduler object. The OMS can then associate activities with the
scheduler object by referencing the User Label name of the scheduler.

The operation signature for the makeScheduler is shown below:

void makeScheduler (
 in UserLabelType schedulerName,
 in GeneralizedTimeType startTime,
 in GeneralizedTimeType stopTime,
 in HourlyDailyWeeklyMonthlyIndType hourlyDailyWeeklyMonthlyInd,
 in TriggerTimeMatrixSeqType matrix)
 raises (InvalidStartTime, InvalidStopTime, DuplicateUserLabel,
 MatrixSchedulerTypeMismatch, AccessDenied, InvalidTrigger);

The input parameter schedulerName identifies the scheduler which can be referenced by different
activities. The input parameters startTime and stopTime identify the time range in which the
scheduled activiti[es] is[are] applicable. The input parameter hourlyDailyWeeklyMonthlyInd
indicates the frequency (hourly, daily, weekly or monthly) with which the schedule should be
triggered. The input parameter matrix provides specific schedule invocation information and is
affected by the hourlyDailyWeeklyMonthlyInd parameter value.

 ITU-T Rec. Q.834.4 (07/2003) 63

Table 4 below provides a table showing the dependency of hourlyDailyWeeklyMonthlyInd and
matrix:

Table 4/Q.834.4 – Matrix details

hourlyDailyWeeklyMonthlyInd value matrix value

Hourly time – Any value between 0 and 36007
dayOfWeek – must be 'unspecified'
dayOfMonth – must be 0

Daily time – Any value between 0 and 864008
dayOfWeek – must be 'unspecified'
dayOfMonth – must be 0

Weekly Time – Any value between 0 and 86400
dayOfWeek – different from 'unspecified'
dayOfMonth – must be 0

Monthly Time – Any value between 0 and 86400
dayOfWeek – must be 'unspecified'
dayOfMonth – different from 0

The return value is of type void.

9.12.1.2 suspendScheduler
This operation is used to suspend a schedule. It essentially sets the schedule's administrativeState
from 'unlocked' to 'locked'. This will be applicable starting from the next schedule iteration. This
operation causes any associated scheduled activity to be suspended.

The operation signature for the suspendScheduler is shown below:

void suspendScheduler (
 in UserLabelType schedulerName)
 raises (UnknownScheduler, AccessDenied);

The input parameter schedulerName is used to identify the schedule to be suspended.

The return value is of type void.

9.12.1.3 resumeScheduler
This operation is used to resume a suspended schedule. It essentially sets the schedule's
administrativeState from 'locked' to 'unlocked'. This will be applicable starting with the next
schedule iteration. This operation causes any associated scheduled activity to be resumed.

The operation signature for the resumeScheduler is shown below:

void resumeScheduler (
 in UserLabelType schedulerName)
 raises (UnknownScheduler, AccessDenied);

The input parameter schedulerName is used to identify the schedule to be resumed.

The return value is of type void.

7 Represents the number of seconds from the beginning of the hour for the trigger time.
8 Represents the number of seconds from the beginning of the day for the trigger time where the day begins

after midnight.

64 ITU-T Rec. Q.834.4 (07/2003)

9.12.1.4 modifyTime
This operation is used in order to change the startTime and stopTime of a schedule. It is used by
the OMS to extend or to shorten the time range in which the schedule is applicable.

The operation signature for the modifyTime is shown below:

void modifyTime (
 in UserLabelType schedulerName,
 in GeneralizedTimeType newStartTime,
 in GeneralizedTimeType newStopTime)
 raises (InvalidStartTime, InvalidStopTime, UnknownScheduler,
 AccessDenied);

The input parameter schedulerName is used to identify the schedule. The input parameter
newStartTime provides the time at which this scheduler starts and the input parameter
newStopTime provides the time at which the scheduler stops. If the value of newStartType is
earlier than the current system time, the exception InvalidStartTime will be raised. A value of 0 for
either newStartTime or newStopTime indicates that the previous value should not be changed.

The return value is of type void.

9.12.1.5 changeSchedulerName
This operation is used to change the name of the scheduler object. Upon success of this operation,
the new scheduler name will immediately be applicable. Any reference to this schedule will have to
be made using the newly assigned name.

Many activities can be associated with the same scheduler name. Changing the scheduler name will
not affect the activities associated with the scheduler. All activities associated with the changed
scheduler will maintain their association.

The operation signature for changeSchedulerName is shown below:

void changeSchedulerName (
 in UserLabelType oldSchedulerName,
 in UserLabelType newSchedulerName)
 raises (UnknownScheduler, DuplicateUserLabel, AccessDenied);

The input parameter oldSchedulerName is used to identify the existing schedule. The input
parameter newSchedulerName is used to indicate the new name to assign for this scheduler.

The return value is of type void.

9.12.1.6 modifyTriggerTimes
This operation is used by the OMS to specify new trigger times and iteration for a scheduler9. If this
operation is successful, then any associated scheduled activity will occur at the new schedule times
starting from the next schedule iteration.

The operation signature for the modifyTriggerTimes is shown below:

void modifyTriggerTimes (
 in UserLabelType schedulerName,
 in HourlyDailyWeeklyMonthlyIndType newHourlyDailyWeeklyMonthlyInd,
 in TriggerTimeMatrixSeqType newMatrix)
 raises (UnknownScheduler, MatrixSchedulerTypeMismatch,
 InvalidTrigger, AccessDenied);

The input parameter schedulerName is used to identify the schedule to be modified. The input
parameter newHourlyDailyWeeklyMonthlyInd indicates the new frequency with which the

9 Please refer to makeScheduler operation for details on the dependency of used variables.

 ITU-T Rec. Q.834.4 (07/2003) 65

schedule should be triggered. The input parameter newMatrix is used to provide the new specific
schedule invocation information. Please refer to Table 4 for dependency of the variables. Both
newDailyWeeklyMonthlyInd and newMatrix must be explicitly specified.

The return value is of type void.

9.12.1.7 removeScheduler
This operation is used to delete a scheduler. This operation will be allowed only if there are no
activities associated with this scheduler.

The operation signature for the removeScheduler is shown below:

void removeScheduler (
 in UserLabelType schedulerName)
 raises (UnknownScheduler, AccessDenied, ScheduleInUse);

The input parameter schedulerName is used to identify the schedule to be deleted.

The return value is of type void.

9.12.1.8 retrieveScheduler
This operation is used to retrieve information on the schedule. The schedule object will be returned
upon successful invocation of this operation.

The operation signature for the retrieveScheduler is shown below:

SchedulerType retrieveScheduler (
 in UserLabelType schedulerName)
 raises (UnknownScheduler, AccessDenied);

The input parameter schedulerName is used to identify the schedule to be displayed.

The return value of type Scheduler provides the following information: schedulerName; startTime;
stopTime; hourlyDailyWeeklyMonthlyInd; matrix; operationalState and administrativeState.

9.12.1.9 schedulerListGet
This operation is used to retrieve the names of all existing schedulers defined for the Supplier
Management System.

The operation signature for the schedulerListGet is shown below:

SchedulerSeqType schedulerListGet ()
 raises (AccessDenied);

There are no input parameters.

The return value is of type SchedulerSeqType and provides the listing desired.

9.12.1.10 Exceptions
The exception AccessDenied is raised when the system is not granted access to the interface object.

The exception DuplicateUserLabel is raised if the User Label provided in the request has been
used to label another Scheduler. In other words, the Supplier Management System is responsible for
policing User Labels assigned for schedulers within its management jurisdiction.
The exception InvalidStartTime is raised when the specified start time is inconsistent with the
current trigger time matrix or the stop time.
The exception InvalidStopTime is raised when the specified stop time is inconsistent with the
current trigger time matrix or the start time.

66 ITU-T Rec. Q.834.4 (07/2003)

The exception InvalidTrigger is raised when the specified Trigger has values that cannot be
interpreted by the Scheduler.
The exception MatrixSchedulerTypeMismatch is raised when the syntax for the Trigger Time
Matrix is mismatched with the type of scheduler named.
The exception ScheduleInUse will be returned from removeScheduler operation in case there are
operations associated with the schedule.
The exception UnknownScheduler is raised when the given scheduler name is not found.

9.13 ServiceProvisioning module
In this module, the Supplier Management System selects ports, facilities and bandwidth in order to
be able to complete the design, selection and assignment process associated with a service.

9.13.1 ServiceProvisioner interface

9.13.1.1 provisionConnection
This operation provisions a connection between any two endpoints of a BPON fibre access system.
A connection may be established between an NNI and a UNI, between two UNIs, or between two
NNIs. Figure 1 illustrates these endpoints.

The operation signature for provisionConnection is shown below:

ManagedEntityIdType provisionConnection(
 in EndpointType endPointA,
 in EndpointType endPointZ,
 in NameSeqType networkCharacteristicsProfiles,
 in ServiceInstanceIdType serviceInstanceId,
 in AdministrativeStateType administrativeState)
 raises (UnknownNE, UnknownProfiles, UnknownPort, InsufficientBW,
 ConnectionCountExceeded, CommFailure, EquipmentFailure,
 ParameterViolation,AccessDenied, InsufficientPONBW,
 ProfileSuspended, ConnectionAlreadyExists);

 ITU-T Rec. Q.834.4 (07/2003) 67

The input parameters endPointA and endPointZ identify the two endpoints of the connection
request. An endpoint is defined by the data structure provided in Table 5.

Table 5/Q.834.4 – Endpoint details

Field name Definition Syntax Comments

portId Specifies the physical
port containing one end
point of the connection.

ManagedEntityIdType The assumption is that
this is the
physicalPathTP
Managed Entity for
the port.

endPointParameters Identifies service
instance specific
parameters assisting in
the joining together of
network connection
components.

any Structures to be
provided as part of
implementation. An
ATM connection, for
example, would have
the VPI, VCI
parameters.

serviceCharacteristicsProfile Lists references to
profiles characterizing
the service at the
endpoint.

NameSeqType Examples are
AAL1Profile,
AAL5Profile,
ATMNetworkAccess
Profile, UNIProfile,
CESServiceProfile,
DS1Profile,
DS3Profile,
EthernetProfile,
AAL2Profile,
LESProfile,
SSCSParameter
Profile1,
SSCSParameter
Profile2,
VoiceService
ProfileAAL2,
BridgedLAN
ServiceProfile,
MACBridgeService
Profile. (Note)

NOTE – Specific choices depend on service and equipment characteristics. Profiles are listed by the names
provided in the module Q834ProfileManager. See Annex D for example relationships.

The input parameter networkCharacteristicsProfiles provides the list of transport related profiles
to be used for service provisioning including azTrafficDescriptorProfile and
zaTrafficDescriptorProfile. The az Traffic Descriptor Profiles are listed before the za in the listing.
The parameter serviceInstanceId indicates the service instance identifier to be used as the key
when referring to network resources associated with the service. The input parameter
administrativeState specifies whether or not the subnetwork connection is able to carry subscriber
traffic once this operation is executed.

The return value of type ManagedEntityIdType is a managed entity identifier to identify the
subnetworkConnection created as the result of this request.

68 ITU-T Rec. Q.834.4 (07/2003)

9.13.1.2 provisionReservation
This operation provisions service between the NNI of an OLT and the UNI of an ONT or between
two UNIs based on an outstanding reservation. Once the service connection is provisioned, the
reserved bandwidth and associated reservation Id is removed from the Supplier Management
System because the reserved resources are assigned.

The operation signature for provisionReservation is shown below:

ManagedEntityIdType provisionReservation(
 in ReservationIdType reservationId,
 in AdministrativeStateType administrativeState)
 raises (UnknownReservationId, AccessDenied);

The input parameter reservationId specifies the reservation Id. It points to all the other information
(such as service instance Id and endpoints) to associate with the provisioned connection. The input
parameter administrativeState specifies whether or not the subnetwork connection is able to carry
subscriber traffic once this operation is executed.

The return value of type ManagedEntityIdType is a managed entity identifier to identify the
subnetworkConnection created as the result of this request.

9.13.1.3 deleteConnection
The operation tears down the existing service and connections.

The operation signature for deleteConnection is shown below:

void deleteConnection(
 in ManagedEntityIdType subnetworkConnectionId)
 raises (UnknownConnection, CommFailure, EquipmentFailure,
 AccessDenied);

The input parameter subnetworkConnectionId is the subnetwork that was created previously via
service provisioning request.

The return value is of type void.

9.13.1.4 modifyConnection
This operation provides the capability to modify the existing service.

The operation signature for modifyConnection is shown below:

ManagedEntityIdType modifyConnection (
 in ManagedEntityIdType subnetworkConnectionId,
 in ManagedEntityIdType portB,
 in NameSeqType newNetworkCharacteristicsProfiles,
 in NameSeqType newServiceCharacteristicsProfiles)

raises (UnknownConnection, UnknownProfiles, InsufficientBW,
UnknownPort, AccessDenied, ProfileSuspended);

The input parameter subnetworkConnectionId is the subnetwork that was created previously via
service provisioning request. The input parameter portB helps to clarify the directionality of the
traffic descriptor profiles named in the next input parameter as well as to specify where the service
profiles are meant to be applied. This port is either the A or Z port of the original connection
request. The input parameter newNetworkCharacteristicsProfiles provides the modified list of
network related profiles to be used for service provisioning where "b-to-opposite endpoint" traffic
descriptor profiles are listed before "the opposite endpoint-to-b" traffic descriptor profiles. The
input parameter newServiceCharacteristicsProfiles provides the new list of service related
profiles.

 ITU-T Rec. Q.834.4 (07/2003) 69

The return value of type ManagedEntityIdType is a managed entity identifier to identify the
subnetworkConnection created as the result of this request.

9.13.1.5 suspendService
This operation disables the flow of user traffic through the service subnetwork connection. In effect,
suspension of service is equivalent to locking the administrative state of the subnetwork connection.

The operation signature for suspendService is shown below:

void suspendService (
 in ServiceInstanceIdType serviceInstanceId,
 in GeneralizedTimeType startTime,
 in GeneralizedTimeType stopTime)
 raises (UnknownServiceInstance, AccessDenied, InvalidStartTime,
 InvalidStopTime);

The input parameter serviceInstanceId identifies the service connection to be suspended. The input
parameter startTime provides the time point at which the service is to be suspended. The input
parameter stopTime provides the time point at which the service is to be resumed.

The return value is of type void.

9.13.1.6 resumeService
This operation enables the flow of user traffic through the service subnetwork connection. This
operation can be invoked either after service has been suspended (see operation above) or if the
original service connection is configured in an inactive state. The service is to be resumed
immediately.

The operation signature for resumeService is shown below:

void resumeService (
 in ServiceInstanceIdType serviceInstanceId)
 raises (UnknownServiceInstance, AccessDenied);

The input parameter serviceInstanceId identifies the service connection to be resume.

The return value is of type void.

9.13.1.7 Exceptions
The exception AccessDenied is raised when the NE access is denied due to a security reason.

The exception CommFailure is raised when communication between the Supplier Management
System and NEs failed.

The exception ConnectionAlreadyExists is raised when there already exists a subnetwork
connection with the same endpoints.

The exception ConnectionCountExceeded is raised when the connection count exceeds the
allowable connection count.

The exception EquipmentFailure is raised when the connection requested cannot be applied to an
installed network resource because of the failure condition of the NE.

The exception InsufficientBW is raised when the bandwidth is insufficient to the requested service.

The exception InsufficientPONBW is raised when the available PON bandwidth is not sufficient to
support the requested service provisioning.

The exception InvalidStartTime is raised when the specified start time is inconsistent with the
current time or the stop time.

70 ITU-T Rec. Q.834.4 (07/2003)

The exception InvalidStopTime is raised when the specified stop time is inconsistent with the
current time or the start time.

The exception ParameterViolation is raised when the endpoint parameters do not match the
protocol characteristics of the port, or if the value(s) are out of range or invalid duplicates.

The exception ProfileSuspended is raised when a profile(s) named in the invocation has been
suspended for use within the Supplier Management System by the OMS or operator.

The exception UnknownConnection is raised when the connection to be deleted is not found.

The exception UnknownNE is raised when the OLT name is not known to the Supplier
Management System.

The exception UnknownPort is raised when the input port id is not known to the Supplier
Management System.

The exception UnknownProfiles is raised if the profile name provided is unknown to the Supplier
Management System and cannot be retrieved from the profile object repository.

The exception UnknownReservationId is raised when the reservation identifier is not known to the
Supplier Management System.

The exception UnknownServiceInstance is raised when the service identifier is not known to the
Supplier Management System.

9.14 Synchroniser module
This module manages the synchronisation process between the Supplier Management System and a
specific NE. The requested synchronisation process can be narrowed to a specific set of current
event listings. The details on how inconsistencies are detected and what data is retrieved is up to the
suppliers implementation. However, this process results in the removal of any inconsistencies
between the management information found with the NE and the information model maintained in
the Supplier Management System.

The operations in this module can only be invoked by a privileged user. The synchronisation
process is "best effort" in the sense that any inconsistencies detected and corrected prior to a system
defined timeout period10 are preserved. The synchronisation process may impact the performance of
the Supplier Management System in a negative way prior to its completion.

When the network element chosen is an OLT, then the synchronisation process is system-wide.

9.14.1 NESynchroniser interface

9.14.1.1 synchNE
This operation initiates a synchronisation process between the Supplier Management System and a
specific NE. This operation is blocking only as long as it takes for the Supplier Management
System to validate that the process can be initiated, and performs the synchronisation operation in
the background.

The operation signature for synchNE is shown below:

void synchNE(in ManagedEntityIdType nEManagedEntityId)
 raises (AccessDenied, CommFailure, UnknownNE, EquipmentFailure,
 BackupInProgress, SynchInProgress);

The input nEManagedEntityId identifies NE to synchronise with the Supplier Management
System.

10 This timeout period is a matter of agreement between the Operator and the Supplier.

 ITU-T Rec. Q.834.4 (07/2003) 71

The return value is of type void.

9.14.1.2 abortSynchNE
This operation aborts a synchronisation process in progress between the Supplier Management
System and a specific NE. Any inconsistencies between the Supplier Management System and the
NE that have been resolved before the abort are retained.

The operation can only be invoked by a privileged user.

The operation signature for abortSynchNE is shown below:

void abortSynchNE(
 in ManagedEntityIdType nEManagedEntityId)
 raises (AccessDenied, CommFailure, UnknownNE, EquipmentFailure,
 NoSynchInProgress);

The input nEManagedEntityId identifies the NE whose synchronisation with the Supplier
Management System is to be aborted.

The return value is of type void.

9.14.1.3 scheduleSynchNE
This operation schedules a synchronisation process between the Supplier Management System and
a specific NE. The scheduled synchronisation process is triggered by the scheduler which is
predefined by the operator. At most, one scheduler can be associated with this activity for a specific
NE.

The operation signature for scheduleSynchNE is shown below:

void scheduleSynchNE(
 in ManagedEntityIdType nEManagedEntityId,
 in UserLabelType schedulerName)
 raises (AccessDenied, UnknownNE, UnknownScheduler, InvalidScheduler);

The input nEManagedEntityId identifies the NE to synchronise with the Supplier Management
System. The input schedulerName identifies scheduler to be used to invoke scheduled
synchronisation operation of Supplier Management System.

The return value is of type void.

9.14.1.4 modifyNESynchSchedule
This operation modifies the schedule for NE synchronisation. This operation will not interrupt a
synchronisation process in progress. If successful, the new schedule is applied with the next
iteration.

The operation signature for modifyNESynch is shown below:

void modifyNESynchSchedule(
 in ManagedEntityIdType nEManagedEntityId,
 in UserLabelType newSchedulerName)
 raises (AccessDenied, UnknownNE, UnknownScheduler,
 InvalidScheduler);

The input nEManagedEntityId identifies the NE where the scheduled NE synchronisation is
activated. The input newSchedulerName identifies the schedule to be applied.

The return value is of type void.

9.14.1.5 cancelScheduledSynchNE
This operation cancels all subsequent scheduled synchronisation processes for this NE. This
operation will not interrupt a synchronisation process in progress.

72 ITU-T Rec. Q.834.4 (07/2003)

The operation signature for cancelScheduledSynchNE is shown below:

void cancelScheduledSynchNE(
 in ManagedEntityIdType nEManagedEntityId)
 raises (AccessDenied, UnknownNE);

The input nEManagedEntityId identifies the NE where the scheduled NE synchronisation is
activated.

The return value is of type void.

9.14.1.6 synchCurrentEventListings
The operation initiates synchronisation between the Supplier Management System and specified NE
for items in particular current event listings. The Supplier Management System normally retrieves
current values of state, status, or management attributes and tracks these via current summary event
listings for the system. If any automatic system retrieval process shows that the listing is not
up-to-date with the current conditions of the system, then the listing is modified (through deletion of
an entry or insertion of a new entry) in order to correct the listing. This operation is a manual
version driven by OMS request. While this operation is in effect, the exception SynchInProgress for
any other operation may not be invoked.

The operation signature for synchCurrentEventListings is shown below:

void synchCurrentEventListings(
 in ManagedEntityIdType nEManagedEntityId,
 in CurrentListingSeqType currentListingTypeList)
 raises (AccessDenied, CommFailure, DCNTimeout, UnknownNE,
 EquipmentFailure, Timeout);

The input nEManagedEntityId identifies the NE for synchronisation. The input
currentListingTypeList identifies the list of current event that are to be synchronised between the
Supplier Management System and the specified NE. The Supplier Management System retrieves
the specified current event listing values from NE.

The return value is of type void.

9.14.1.7 scheduledSynchNEListGet
This operation is used to retrieve the names of all NEs with synchronisation schedules.

The operation signature for the scheduledSynchNEListGet is shown below:

ScheduledSynchNESeqType scheduledSynchNEListGet ()
 raises (AccessDenied);

There are no input parameters.

The return value is of type ScheduledSynchNESeqType and provides the listing of NEs desired.

9.14.1.8 Exceptions
The exception AccessDenied is raised when the system is not granted access to the interface object.
The exception BackupInProgress is raised when the synchronisation request is issued while the
backup is in progress.
The exception CommFailure is raised when the DCN between the Supplier Management System
and OLT or the communication between OLT and subtending ONT or ONU is down.

The exception DCNTimeout is raised when the DCN communications link between at least one of
the NEs and the Supplier Management System is so congested that current state or status
information cannot be transferred within a system defined time period.

 ITU-T Rec. Q.834.4 (07/2003) 73

The exception EquipmentFailure is raised when the equipment where the data is backed up from
is in failure condition.

The exception InvalidScheduler is raised when the given scheduler is inappropriate for use in this
operation, or out-of-date.
The exception SynchInProgress will be raised when a new synchNe is requested while either
synchNe or scheduledSynchNe is in progress.

The exception SynchNotScheduled is raised if no planned synchronisation exists for the NE at the
specified time.

The exception UnknownNE is raised when the NE mentioned in the request is unknown to the
Supplier Management System.
The exception UnknownScheduler is raised when the given scheduler name is not found.

The exception Timeout is raised when the specified process has exceeded a system-defined default
timeout period.

The exception NoSynchInProgress is raised if there is no synchronisation process in progress.

9.15 Test module
This service is used to provide interfaces for the operator or OMS to perform directed or scheduled
testing procedures. Tests such as ATM OAM cell loopback testing, interface loopback set-up on
subscriber cards or OLT network interface cards, and ATM continuity checks are specified using
this service. Tests can be either scheduled or manually invoked following an identified fault or
subscriber service complaint. The TestActionPerformer interface provides the operations to execute
tests applicable on network resources.

9.15.1 TestActionPerformer interface

9.15.1.1 aTMLoopback
This operation is used to invoke an ATM OAM Loopback test. ATM Loopback test is
unidirectional.

The operation signature for the aTMLoopback is shown below:

AggregateATMLoopbackResultSeqType aTMLoopback (
 in UserIdType testRequestorId,
 in ManagedEntityIdType ctp,
 in ATMLoopbackInfoType aTMLoopbackInfo,
 in TestIterationNumType testIterationNum,
 in ServiceInstanceIdType serviceInstanceId)
 raises (AccessDenied, CommFailure, UnknownManagedEntity,
 NotAvailableForTest, InvalidLocationId, InvalidDirection);

The input parameter testRequestorId is used to identify the initiator of the ATM Loopback test.
The input parameter ctp is used to uniquely identify the CTP for the loopback cell injection point.
The input parameter aTMLoopbackInfo is used to provide specific ATM test information; the
LoopbackLocationId is part of aTMLoopbackInfo. The input parameter testIterationNum
identifies the iteration number for the ATM loopback test. The input parameter serviceInstanceId
identifies the possible service instance associated with the loopback test request.

When specifying aTMLoopbackInfo, the only applicable values for directionality are 'egress' or
'ingress' only. The directionality is specified as part of the aTMLoopbackInfo.

The LoopbackLocationId identifies the point(s) along a virtual connection where the loopback is to
occur. The default value of all ones is used by the transmitter to indicate the end point. When
segmentCellInd is set to 'false', the LoopbackLocationId must be set to the default. If no

74 ITU-T Rec. Q.834.4 (07/2003)

LoopbackLocationId is provided, it is assumed that there is a designated segment endpoint for the
flow associated with the injection ctp.

For ctp, all zeros indicate a loopback request directed at all connection points having a
LoopbackLocationId. All ones indicate a loopback request directed at the endpoint (segment or
connection endpoint). 'x6A'H indicates no designated CP for loopback, and therefore no loopback
should be performed. All other values for LoopbackLocationId indicate a loopback request directed
at a specific LoopbackLocationId location.

The return value is of type AggregateATMLoopbackResultSeqType which provides information
on the test, specifically the loopbackingLLID, responseTime in microseconds, and success/failure
for each iteration.

9.15.1.2 initializeContinuityCheck
This operation is used to prepare for an ATM continuity check. The creation of a continuity test
environment does not necessarily initiate the test, but rather schedules a test to be initiated. Upon
successful creation of a continuity check, the system will return a unique identifier that is used to
identify the test.

This operation deals with the test setup only. Once the test is executed, an alarm will be raised in
case of a failure.

The operation signature for the initializeContinuityCheck is shown below:

CCSetUpIdType initializeContinuityCheck(
 in UserIdType testRequestorId,
 in ManagedEntityIdType sourceCtp,
 in ATMContinuityCheckInfoType aTMContinuityCheckInfo,
 in GeneralizedTimeType stopTime,
 in ServiceInstanceIdType serviceInstanceId)
 raises (AccessDenied, CommFailure, UnknownManagedEntity,
 NotAvailableForTest, InvalidStartTime, InvalidStopTime,
 InvalidDirection);

The input parameter testRequestorId is used to identify the initiator of the test. The input
parameter sourceCtp and sinkCtp is used to identify the A point for the continuity test. The input
parameter aTMContinuityCheckInfo is used to provide specific continuity test information. The
directionality must be set to 'BothDirections' and segmentCellInd is set to 'true' for segment
continuity test, and 'false' for end-to-end. The input parameter stopTime provides information on
how long the test should be executed. The input parameter serviceInstanceId identifies the possible
service instance associated with the loopback test request.

The return value is of type CCSetUpIdType which uniquely identifies the test that was set up. The
CCSetUpId for the setup test exists until the stopTime is reached, or until it is explicitly cancelled
using the terminateContinuityCheck operation.

9.15.1.3 terminateContinuityCheck
This operation is used to take down the ATM continuity test environment. If the continuity test has
already been initiated (i.e., its startTime is reached), the continuity test will stop executing and will
then be removed.

The operation signature for terminateContinuityCheck is shown below:

void terminateContinuityCheck(
 in CCSetUpIdType cCSetUpId)
 raises (AccessDenied, CommFailure, UnknownTest);

The input parameter CCSetUpId is used to identify the test to terminate.

The return value is of type void.

 ITU-T Rec. Q.834.4 (07/2003) 75

9.15.1.4 scheduleResourceSelfTest
This operation is used to schedule a resource self test. This operation is used by the OMS to set up
self tests on resources to be executed at a regular basis. Having a scheduler object setup is a
prerequisite for initiating this operation.

The operation signature for the scheduleResourceSelfTest is shown below:

TestTrackingObjectIdType scheduleResourceSelfTest(
 in UserIdType testRequestorId,
 in ManagedEntityIdType targetNE,
 in unsigned long timeOutPeriod, //In seconds.
 in ResourceSelfTestInfoSeqType specificTestInfo,
 in UserLabelType schedulerName)
 raises (AccessDenied, UnknownNE, UnknownScheduler,
 InvalidScheduler, InvalidTimeoutPeriod, InvalidTestOperations);

The input parameter testRequestorId is used to identify the initiator of the test. The input
parameter targetNE identifies the network element to perform self test. The input parameter
timeOutPeriod identifies the maximum time period that the system will allow the test to run on the
resource. The input parameter specificTestInfo is used to provide supplier-specific self test
information regarding each diagnostic test type to be run; this information is provided to the
operator via system documentation. The input parameter schedulerName is used to reference the
applicable scheduler for this test.

The return value of type TestTrackingObjectIdType uniquely identifies the scheduled testing. The
Test Tracking Object exists until it is explicitly cancelled using the
terminateScheduledResourceSelfTest operation or if the scheduler end time is reached.

The self test results are logged. The ResourceSelfTestResultSeqType data type defines part of the
information that is logged.

9.15.1.5 modifyResourceSelfTestSchedule
This operation is used to modify the schedule for a regularly conducted resource self test. If
successful, the resource self test initiation is changed with the next iteration.

The operation signature for modifyResourceSelfTestSchedule is shown below:

void modifyResourceSelfTestSchedule (
 in TestTrackingObjectIdType testTrackingObjectId,
 in UserLabelType newSchedulerName)
 raises (UnknownTest, UnknownScheduler, InvalidScheduler,
 AccessDenied);

The input parameter testTrackingObjectId is used to identify the scheduled test. The input
parameter testTrackingObjectId is used to identify the new schedule.

The return value is of type void.

9.15.1.6 cancelScheduledResourceSelfTest
This operation is used to cancel a regularly scheduled resource self test. If successful, this operation
cancels the test prior to its initiation with the next trigger time.

The operation signature for cancelScheduledResourceSelfTest is shown below:

void cancelScheduledResourceSelfTest (
 in TestTrackingObjectIdType testTrackingObjectId)
 raises (UnknownTest, UncontrolledTestInProgress, AccessDenied);

The input parameter testTrackingObjectId is used to identify the scheduled test to terminate.

The return value is of type void.

76 ITU-T Rec. Q.834.4 (07/2003)

9.15.1.7 conductResourceSelfTest
This operation is used to initiate a resource self test following the identification of a system fault or
a subscriber service complaint. The test results are logged in the Supplier Management System.

The operation signature for the conductResourceSelfTest is shown below:

TestTrackingObjectIdType conductResourceSelfTest (
 in UserIdType testRequestorId,
 in ManagedEntityIdType targetNE,
 in unsigned long timeOutPeriod, //In seconds.
 in ResourceSelfTestInfoSeqType specificTestInfo)
 raises (AccessDenied, CommFailure, UnknownNE,
 InvalidTimeoutPeriod, InvalidTestOperations);

The input parameter testRequestorId is used to identify the initiator of the test. The input
parameter targetNE identifies the network element to perform self test. The input parameter
timeOutPeriod identifies the time period that the system will try to initiate the test. The input
parameter specificTestInfo is used to provide specific self test information providing details on
each diagnostic test type to run.

The return value is of type TestTrackingObjectId and provides a mechanism to allow the operator
to terminate a controlled resource self test. If the resource self test is uncontrolled, the Supplier
Management System returns the value 0.

9.15.1.8 terminateResourceSelfTest
This operation terminates a resource self test in progress.

The operation signature for terminateResourceSelfTest is shown below:

ResourceSelfTestResultSeqType terminateResourceSelfTest (
 in TestTrackingObjectIdType testTrackingObjectId)
 raises (UnknownTest, UncontrolledTestInProgress, AccessDenied);

The input parameter testTrackingObjectId is used to identify the test to terminate.

The return value of type ResourceSelfTestResultSeqType provides whatever interim test results
are available.

9.15.1.9 initiateLoopback
This operation is used to initiate a loopback for a service. For example, a DS1
NearEndLineLoopback [could we support far end] or a SONET FacilityLoop will be performed.

The operation signature for the initiateLoopback is shown below:

LoopbackTrackingObjectIdType initiateLoopback (
 in UserIdType testRequestorId,
 in ManagedEntityIdType loopingCtp,
 in long duration, //In minutes.
 in DirectionalityType directionality,
 in LoopbackTestType loopbackTest
 in ServiceInstanceIdType serviceInstanceId)
 raises (AccessDenied, CommFailure, UnknownManagedEntity,
 NotAvailableForTest);

The input parameter testRequestorId is used to identify the initiator of the test. The input
parameter loopingCtp is used to identify the CTP to perform the loopback on. The input parameter
duration defined the amount of time in seconds that the loopback should be active. The input
parameter directionality indicates if the loopback should be performed for ingress traffic, egress
traffic or for traffic in both directions. The input parameter loopbackTest is used to identify the

 ITU-T Rec. Q.834.4 (07/2003) 77

specific loopback test type. The input parameter serviceInstanceId is used to specify the service
associated with this loopback operation.

The return value of type LoopbackTrackingObjectIdType uniquely identifies the loopback test
that is initiated. Once a loopback completes its running cycle (i.e., the test duration elapses), the
object will not longer be available.

9.15.1.10 terminateLoopback
This operation is used to cancel a running loopback.

The operation signature for the terminateLoopback is shown below:

void terminateLoopback (
 in LoopbackTrackingObjectId loopbackTrackingObjectId)
 raises (UnknownTest, AccessDenied);

The input parameter loopbackTrackingObjectId is used to identify the loopback to terminate.

The return value is of type void.

9.15.1.11 getLoopbackInfo
This operation is used to retrieve the loopback information of a particular connection termination
point.

The operation signature for the getLoopbackInfo is shown below:

LoopbackInfoType getLoopbackInfo (
 in ManagedEntityIdType cTP)
 raises (UnknownManagedEntity, AccessDenied);

The input parameter cTP is used to identify the possible loopback location.

The return value is of type LoopbackInfoType and it specifies the loopback type and
directionality.

9.15.1.12 getLoopbackInfoByNE
This operation is used to retrieve the location and details of every connection point in an NE that are
in loopback mode.

The operation signature for the getLoopbackInfoByNE is shown below:

LoopbackInfoSeqType getLoopbackInfoByNE (
 in ManagedEntityIdType nEId)
 raises (UnknownManagedEntity, AccessDenied);

The input parameter nEId is used to identify the network resource.

The return value is of type LoopbackInfoSeqType providing a listing of loopback locations,
loopback types and directionality.

9.15.1.13 getTestStatus
This operation is used to retrieve the status of a loopback in progress.

The operation signature for the getTestStatus is shown below:

StatusValueType getTestStatus (
 in LoopbackTrackingObjectIdType id)
 raises (AccessDenied, UnknownTest);

The input parameter id specifies the test setup of interest.

78 ITU-T Rec. Q.834.4 (07/2003)

The return value is of type StatusValueType and indicates the status of the loopback action.

9.15.1.14 scheduledTestNEListGet
This operation is used to retrieve the list of all scheduled NE testing.

The operation signature for the scheduledTestNEListGet is shown below:

ScheduledTestNESeqType scheduledTestNEListGet ()
 raises (AccessDenied);

There are no input parameters.

The return value is of type ScheduledTestNESeqType and provides the listing desired.

9.15.1.15 testHistoryByManagedEntity
This operation is used to retrieve the test history associated with a managed entity. This history
should be retained as long as required by the operator.

The operation signature for the testHistoryByManagedEntity is shown below:

TestHistorySeqType testHistoryByManagedEntity (
 in ManagedEntityIdType managedEntityId)
 raises (AccessDenied, UnknownManagedEntity);

The input parameter managedEntityId specifies the reference managed entity.

The return value is of type TestHistorySeqType and provides the listing desired.

9.15.1.16 testHistoryByServiceInstance
This operation is used to retrieve the test history associated with a service instance. This history
should be retained as long as required by the operator.

The operation signature for the testHistoryByServiceInstance is shown below:

TestHistorySeqType testHistoryByServiceInstance (
 in ServiceInstanceIdType serviceInstanceId)
 raises (AccessDenied, UnknownServiceInstance);

The input parameter serviceInstanceId specifies the reference service instance.

The return value is of type TestHistorySeqType and provides the listing desired.

9.15.1.17 Exceptions
The exception AccessDenied is raised when the system is not granted access to the interface object.
The exception CommFailure is raised when the DCN between Supplier Management System and
OLT or the communication between OLT and source ONT is down.
The exception InvalidDirection is raised when the specified test directionality is invalid for the
given test.

The exception InvalidLocationId is raised when the LLID specified is not valid.
The exception InvalidScheduler is raised when the given scheduler is inappropriate for use in this
operation, or out-of-date.
The exception InvalidStartTime is raised when the specified start time is inconsistent with the
current trigger time matrix or the stop time.

The exception InvalidStopTime is raised when the specified stop time is inconsistent with the
current trigger time matrix or the start time.

The exception InvalidTestOperations is raised when the requested self test operation is not valid.

 ITU-T Rec. Q.834.4 (07/2003) 79

The exception InvalidTimeOutPeriod is raised when the designated timeout period violates
definition of valid values.
The exception NotAvailableForTest is raised when the sourceCTP is unable to establish a
continuity check test setup with the sinkCTP.
The exception UncontrolledTestInProgress is raised when the self test cannot be cancelled
because of an uncontrolled test.
The exception UnknownNE is raised when the NE mentioned in the request is unknown to the
Supplier Management System.

The exception UnknownManagedEntity is raised when the specified ManagedEntity is unknown
to the Supplier Management System.

The exception UnknownServiceInstance is raised when the specified Service Instance is unknown
to the Supplier Management System.
The exception UnknownScheduler is raised when the given scheduler name is not found.
The exception UnknownTest is raised when the test specified by the trackingId is not known in the
Supplier Management system.

9.16 FileTransfer module
This module deals with the management of non-real time transfer records stored in any short-term
archive in the Supplier Management System. It supports the subsequent tracking and monitoring of
the file transfer process through the use of TransferTrackingObjectId. The Supplier Management
System logs the successful or unsuccessful results of the file transfer. Any request for file transfer is
accompanied by security credentials whereby the Supplier Management System is allowed to
communicate with the destination server. The file transfer can be scheduled in advance. Transfer
Tracking Objects are automatically deleted by the Supplier Management System once the
associated file transfer has finished and results (whether successful or unsuccessful) are recorded in
the completion log.

9.16.1 TransferMgr interface

9.16.1.1 fileTransfer
The file transfer is initiated immediately by this operation.

The operation signature for fileTransfer is shown below:

TransferTrackingObjectIdType fileTransfer(
 in ManagedEntityIdType recordSetId,
 in DCNAddressType destinationServerAddr,
 in UserIdType userId,
 in PasswordType password,
 in FilenameType destinationFile,
 in boolean overwriteExistingFile)
 raises (AccessDenied, CommFailure, UnknownRecordSet,
 UnknownDestinationServer);

The input parameter recordSetId identifies the short-term archive from which the data is to be
extracted for file transfer. The input parameter destinationServerAddr identifies the data
communication networking address for the server that is the destination of the file transfer. The
input parameters userId and password provide the login mechanism to the destination server
(assuming such security credentials are needed). The input parameter destinationFile provides a
full directory location for the transferred file. Finally, the parameter overwriteExistingFile
indicates whether or not the file transfer should allow the overwriting of a pre-existing file with the
same destination directory location.

80 ITU-T Rec. Q.834.4 (07/2003)

The return value of type TransferTrackingObjectIdType provides a correlation key to be used
when attempting to track the status of the non-real time transfer of data from the short-term archive
at some later point.

9.16.1.2 scheduleFileTransfer
The file transfer is scheduled for future initiation by this operation. All the contents of the identified
short-term archive are extracted for file transfer. No assumption is made concerning the purging of
the archive based on successful file transfer of data. Instead, the archive is purged, based on
agreements between the supplier and operator concerning retention policy of archived information.

The operation signature for scheduleFileTransfer is shown below:

TransferTrackingObjectIdType scheduleFileTransfer (
 in ManagedEntityIdType recordSetId,
 in DCNAddressType destinationServerAddr,
 in UserIdType userId,
 in PasswordType password,
 in FilenameType destinationFile,
 in boolean overwriteExistingFile,
 in UserLabelType schedulerName)
 raises (AccessDenied,UnknownRecordSet,
 UnknownDestinationServer, UnknownScheduler, InvalidScheduler);

The input parameter recordSetId identifies the short-term archive from which the data is to be
extracted for file transfer. The input parameter destinationServerAddr identifies the data
communication networking address for the server that is the destination of the file transfer. The
input parameters userId and password provide the login mechanism to the destination server
(assuming such security credentials are needed). The input parameter destinationFile provides a
full directory location for the transferred file. The parameter overwriteExistingFile indicates
whether or not the file transfer should allow the overwriting of a pre-existing file with the same
destination directory location. Finally, the input parameter schedulerName is the schedule
information associated with the file transfer, based on which the file transfer takes place.

The return value of type TransferTrackingObjectIdType provides a correlation key to be used
when attempting to track the status of the non-real time transfer of data from the short-term archive
at some later point.

9.16.1.3 modifyFileTransferSchedule
The file transfer schedule is modified by this operation. If successful, the new schedule is applied
with the next iteration.

The operation signature for modifyFileTransferSchedule is shown below:

void modifyFileTransferSchedule (
 in TransferTrackingObjectIdType transferTrackingObjectId,
 in UserLabelType newSchedulerName)
 raises (AccessDenied, UnknownTransferProcess,
 UnknownScheduler, InvalidScheduler);

The input parameter transferTrackingObjectId identifies the scheduled file transfer activity. The
input parameter newSchedulerName is the new schedule information to be associated with the file
transfer.

The return value is of type void.

9.16.1.4 cancelScheduledFileTransfer
The file transfer schedule is cancelled by this operation. If successful, the activity is cancelled with
the next iteration.

 ITU-T Rec. Q.834.4 (07/2003) 81

The operation signature for cancelScheduledFileTransfer is shown below:

void cancelScheduledFileTransfer (
 in TransferTrackingObjectIdType transferTrackingObjectId)
 raises (AccessDenied, UnknownTransferProcess);

The input parameter transferTrackingObjectId identifies the scheduled file transfer activity.

The return value is of type void.

9.16.1.5 getStatus
This operation allows the client to check the status of a transfer before its completion using a key.

The operation signature for getStatus is shown below:

StatusValueType getStatus (
 in TransferTrackingObjectIdType transferTrackingObjectId)
 raises (UnknownTransferProcess, AccessDenied);

The input parameter transferTrackingObjectId identifies the key of a particular file transfer
process. The operator specifies this information and finds the status information of that file transfer
process.

The return value is of type StatusValueType and provides the status of the file transfer process.

9.16.1.6 fileTransferHistoryListGet
This operation is used to retrieve the list of all completed file transfers for the Supplier Management
System. This list is maintained in the Supplier Management System as a wraparound log.

The operation signature for the fileTransferHistoryListGet is shown below:

FileTransferHistorySeqType fileTransferHistoryListGet ()
 raises (AccessDenied);

There are no input parameters.

The return value is of type FileTransferHistorySeqType and provides the listing desired.

9.16.1.7 scheduledFileTransferListGet
This operation is used to retrieve the names of all existing scheduled file transfers defined for the
Supplier Management System.

The operation signature for the scheduledFileTransferListGet is shown below:

ScheduledFileTransferSeqType scheduledFileTransferListGet ()
 raises (AccessDenied);

There are no input parameters.

The return value is of type ScheduledFileTransferSeqType and provides the listing desired.

9.16.1.8 Exceptions
The exception AccessDenied is raised when the client is not granted access to this interface object.

The exception CommFailure is raised when there is a communication failure between the
destination server and the Supplier Management System.

The exception UnknownDestinationServer is raised when the specified destination server cannot
be accessed by the transfer agent.

The exception UnknownRecordSet is raised when the target file cannot be found.

82 ITU-T Rec. Q.834.4 (07/2003)

The exception UnknownScheduler is raised when the specified scheduler cannot be accessed by
the transfer agent.

The exception UnknownTransferProcess is raised when the specified
TransferTrackingObjectId cannot be identified.

10 Compliance statement
An implementation claiming conformance to any of the interfaces defined in this Recommendation
shall implement the complete behaviour associated with all the operations of the interface, as well
as behaviour of referenced definitions in the module q834_4::Q834Common.

Annex A

Data dictionary

Table A.1 provides a listing of all data elements (data types) used in the interface specification
found within this Recommendation. The listing includes management information interpretation,
syntax, and any qualifying comments for each. Data elements are listed in alphabetical order. If a
data type and a second data type constructed as a sequence of the first are both present in the
interface specification, then only the first data element is defined. The interpretation of the second is
obvious. In these cases, the name of the sequence is the name of the original data element with the
characters "Seq" inserted before the ending of "Type".

Table A.1/Q.834.4 – Data elements and definitions

Data element name Definition Syntax Comments
AAL1PMHistoryDataType This data element provides the

items in this record type.
struct

AAL1ProfileType This data element provides the
values for a profile of kind AAL1.

struct

AAL2PMHistoryDataType This data element provides the
items in this record type.

struct

AAL2ProfileType This data element provides the
values for a profile of kind AAL2.

struct

AAL2PVCProfileType This data element provides the
values for a profile of kind
AAL2PVC.

struct

AAL5PMHistoryDataType This data element provides the
items in this record type.

struct

AAL5ProfileType This data element provides the
values for a profile of kind AAL5.

struct

AALModeType This data element indicates which
mode the AAL for the supporting
VCC is employed.

enum

ActivityLevelType Specifies the permission level of
access afforded to a user for an
activity.

enum monitorOnly,
allowedToExecute,
noAccess

 ITU-T Rec. Q.834.4 (07/2003) 83

Table A.1/Q.834.4 – Data elements and definitions

Data element name Definition Syntax Comments
ActivityType Specifies the type or category of

user activity.
short Defined as constants

within the interface
q834_4::
AccessControl::
AccessControlMgr

AdministrationDomain
Type

The identifier provided by the
OMS or operator during
registration to indicate the
administration domain to which the
NE belongs.

UserLabel
Type

AdministrativeState
Type

Is used to activate (unlock), de-
activate (lock), or shutdown
(shuttingdown) the functions of the
associated managed entity.

enum Defined in
ITU-T Rec. X.780.

AggregateATMLoopback
ResultType

Specifies the results of an ATM
loopback test.

struct

AlarmLogRecordType This data element provides the
items in this record type.

struct

AlarmStatusSeqType This data element provides all
relevant values for the status
variable alarm status.

enum Valid enum values
are AS_Under
Repair,
AS_Critical,
AS_Major,
AS_Minor,
AS_AlarmOut
standing

AnnouncementType This data element provides the
announcement to the customer
going off-hook when no call has
been attempted.

enum

APONPMHistoryDataType This data element provides the
items in this record type.

struct

AppIdType This data element specifies the
protocol combinations used
between the Inter-Working
Functions found in the Voice
Gateway function and the ONT or
NT.

enum

ATMContinuityCheckInfo
Type

Specifies the input for ATM
continuity check.

struct

ATMLoopbackInfoType Specifies the ATM loopback test
info.

struct

ATMNetworkAccess
ProfileType

Profiles an instance of profile kind
ATMNetworkAccess

struct

ATMOverbookingFactor
Type

This data element provides the
value for ATM Overbooking.

struct

84 ITU-T Rec. Q.834.4 (07/2003)

Table A.1/Q.834.4 – Data elements and definitions

Data element name Definition Syntax Comments
AudioServIndType This boolean data element

indicates whether or not audio
service is transported, where the
value TRUE implies the presence
of this service.

boolean

AutoDetectionIndType This boolean data element
identifies whether or not data rate
auto-detection is enabled.

boolean

AvailableSysBandwidth
SeqType

This is a listing of available system
bandwidth by port.

sequence of
PortBand
widthType

AvailabilityStatusSet
Type

This data element provides all
relevant values for the status
variable availability status.

sequence of
availability
status values

Defined in
ITU-T Rec. X.780.

BackedUpStatusType This data element indicates
whether or not the alarm emitting
managed entity has an operational
backup unit.

boolean Defined in
ITU-T Rec. X.780.

BridgedLANService
ProfileType

This data element provides the
values for a profile of kind Bridged
LAN Service.

struct

BridgePriorityType This boolean data element
indicates whether or not the
learning functions of the bridge are
enabled. The value TRUE means
enabled.

short

BRISignallingType This data element selects which
signalling format should be used
for Basic Rate ISDN.

enum

BufferedCDVTolerance
Type

This data element represents the
duration of user data that must be
buffered by the CES interworking
entity to offset cell delay variation.
This timing will be in 10
microsecond increments.

long long

CableLengthType This data element provides the
length of twisted pair cable from
the physicalPathTP of type "DS1"
interface to the DSX1 cross-
connect point (if applicable).

long long

CASType This data element selects which
AAL1 format should be used. It
applies to structured interfaces
only. For unstructured interfaces
this value, if present, must be set to
the default of basic.

enum

 ITU-T Rec. Q.834.4 (07/2003) 85

Table A.1/Q.834.4 – Data elements and definitions

Data element name Definition Syntax Comments
CASIndType This boolean data element

indicates whether or not Channel
Associated Signaling is enabled on
the connection, where the value
TRUE implies it is enabled.

boolean

CBRRateType This data element represents the
rate of the CBR service supported
by the AAL.

enum

CCSetUpIdType Specifies a unique Id for CC test
set up.

long long

CDVTPCREgressType Cell Delay Variation Tolerance –
this parameter is required for all
service categories. It is applied to
CLP = 0 flow for ABR and apply
to CLP = 0 + 1 flows otherwise.

long long

CDVTPCRIngressType Cell Delay Variation Tolerance –
this parameter is required for all
service categories. It is apply to
CLP = 0 flow for ABR and apply
to CLP = 0 + 1 flows otherwise.

long long

CellLossIntegration
PeriodType

This data element represents the
time in milliseconds for the cell
loss integration period. If cells are
lost for this period of time, the
associated interworking vcCTPF
entity will generate a cell
starvation alarm.

long long

CESServiceProfileType This data element provides the
values for a profile of kind CES
Service.

struct

ClockRecoveryType This data element indicates
whether the clock recovery type is
derived from the physical interface.

enum

CMDataIndType This boolean data element
indicates whether or not Circuit
Mode Data is carried on this
connection, where the value TRUE
implies its presence.

boolean

CMMultiplierNumType This data element provides the N
value in N × 64 kbit/s circuit mode
data.

short

ConformanceDefType Indicates the type of conformance
as defined in ATM-Forum TM 4.0.

enum

ControlStatusSetType This data element provides all
relevant values for the status
variable control status.

Sequence of
enum

Defined in
ITU-T Rec. X.780.

86 ITU-T Rec. Q.834.4 (07/2003)

Table A.1/Q.834.4 – Data elements and definitions

Data element name Definition Syntax Comments
CorrelatedNotification
Type

This data element lists the
reference numbers for other event
notifications that have a
relationship to this event
notification.

Sequence of
Notification
IdentifierType

CreationModeType This data element indicates how
the record set was created.

enum Choice between
operator-defined or
instantiated as part
of Supplier
Management
System application
installation.

CurrentListingType Specifies a current event listing
type that can be synchronized
between the Supplier Management
System and the NE.

short Values specified as
constants.

CurrentSizeType This data element describes the
current size of a record set.

unsigned long
long

In the same units as
MaxSizeType.

DataRateType This data element provides the data
rate for the Ethernet connection.
The valid values are 10 Mbit/s or
100 Mbit/s.

enum

DayOfMonthType Specifies the day of the month. short 0 is interpreted to
mean unspecified.

DayOfWeekType Specifies the day of the week in the
schedule.

enum Sunday,
Monday,
Tuesday,
Wednesday,
Thursday,
Friday,
Saturday,
Unspecified

DCNAddressType Provides the address for the NE or
system server on the Data
Communications Network of the
Operator. Used for routing of
messages.

string Normally IP
Address.
Examples include
items labelled as
softwareSource
Addr,
destinationServer
Addr,
sourceServerAddr,

nEDCNAddress, and
newNEDCNAddress.

DefaultSSCSParameter
Profile1PtrType

This data element identifies the
default values for the service
specific convergence service
profile associated with channels
carrying control and management
plane traffic.

Name

 ITU-T Rec. Q.834.4 (07/2003) 87

Table A.1/Q.834.4 – Data elements and definitions

Data element name Definition Syntax Comments
DefaultSSCSParameter
Profile2PtrType

This data element identifies the
default values for the service
specific convergence service
profile associated with channels
carrying media streams (e.g.,
POTS or ISDN B-channels).

Name

DiagnosticType Specifies the diagnostic test type. short Supplier specific
DirectionalityType Specifies the directionality of the

test.
enum Values are Egress,

Ingress,
BothDirections

DirectionType Specifies the direction of the
optical wavelength associated with
a port.

enum Values are
unidirection or
bidirection.

DownloadStatusSeqType This data element provides the
status of a software download
activity.

struct
comprised of
the Id of a
target followed
by the status
for delivery,
distribution,
commitment,
and activation

DS1EncodingType This data element identifies the
type of DS1 line encoding.

enum

DS1FramingType This data element identifies the
type of framing employed.

enum

DS1PMHistoryDataType This data element provides the
items in this record type.

struct

DS1ProfileType This data element provides the
values for a profile of kind DS1.

struct

DS3ApplicationType This data element identifies the
type of DS3 signal.

enum

DS3PMHistoryDataType This data element provides the
items in this record type.

struct

DS3ProfileType This data element provides the
values for a profile of kind DS3.

struct

DS3EncodingType This data element identifies the
DS3 line encoding.

enum

DTEDCEType This data element indicates
whether the Ethernet Interface
wiring is DTE or DCE.

boolean

DTMFIndType This boolean data element
indicates whether or not Dual Tone
Multi-Frequency dialled digits is
transported on the connection,
where the value TRUE implies its
presence.

boolean

88 ITU-T Rec. Q.834.4 (07/2003)

Table A.1/Q.834.4 – Data elements and definitions

Data element name Definition Syntax Comments
DuplexType This data element indicates

whether full duplex (=TRUE) or
half duplex mode (=FALSE) is
employed.

boolean

E1PMHistoryDataType This data element provides the
items in this record type.

struct

E3PMHistoryDataType This data element provides the
items in this record type.

struct

EchoCancellationInd
Type

This data element indicates the
presence of echo cancellation
circuitry.

boolean

ELCPIndType This boolean data element
indicates whether or not Emulated
Loop Control Protocol is in use.

boolean

EncapsulationProtocol
Type

This data element identifies the
encapsulation protocol used for
bridging LAN over ATM.

short

EncProfileIndexType This data element indicates the
specific predefined encoding
profile used.

short

EncSrcTypeType This data element indicates the
source for the encoding profile
format. Valid values include but
are not limited to "ITU-T" and
"ATM Forum".

enum

EndPointType This specifies the characteristics of
an end point of a connection

struct

EquipmentHolderAddress
Type

This data element identifies the
equipment location for a circuit
pack.

struct whose
components
include the
shelf number
(short) and the
port number
(short)

EquipmentHolderFType This data structure identifies the
equipmentHolderF item named in
the autodiscovery event.

struct listing
the attribute
values for the
equipment
HolderF
Managed
Entity

EquipmentType This data element identifies the
inventory item named in the
autodiscovery event.

short

EthernetPMHistoryData
Type

This data element provides the
items in this record type.

struct

 ITU-T Rec. Q.834.4 (07/2003) 89

Table A.1/Q.834.4 – Data elements and definitions

Data element name Definition Syntax Comments
EthernetProfileType This data element provides the

values for a profile of kind
Ethernet.

struct

ExternalTimeType This data element establishes the
local time to be associated with the
network resource.

Generalized
TimeType

FaxDemodIndType This boolean data element
indicates whether or not a FAX
demodulation is present, where the
value TRUE implies its presence.

boolean

FilenameType Identifies the full pathname of a
file. This file can contain
configuration data uploaded from
an NE, a location to transfer a file
of records, or a location for an NE
software generic or patch.

string

FileTransferHistory
Type

This data element provides a
record concerning file transfer still
logged on the Supplier
Management System.

struct

FilterType This data element is defined by
CosNotifyFilter::Filter.

FMDataIndType This boolean data element
indicates whether or not Frame
Mode Data is carried on this
connection, where the value TRUE
implies its presence.

boolean

FMMaxFrameLenType This data element the maximum
length of a frame mode data unit.

long long

ForwardDelayType This data element gives the time
(in hundredths of a second) that the
bridge on the Ethernet card in the
ONT (as a member of the
community of all bridges in the
Bridged Local Area Network)
retains a packet before forwarding
it.

short

ForwardErrorCorrection
Type

This data element indicates the
FEC method.

enum

FullActionType Specifies the behaviour of the
record set when it reaches its
maximum size.

enum Choice between
wrap and halt.

GeneralizedTimeType Provides a normalized metric of
time. Used to avoid ambiguities
involving time zones.

string Only one allowed
format
YYYYMMDDHH
MMSS.fffZ (i.e.,
Greenwich Mean
Time).

90 ITU-T Rec. Q.834.4 (07/2003)

Table A.1/Q.834.4 – Data elements and definitions

Data element name Definition Syntax Comments
HelloTimeType This data element provides the

time interval (in hundredths of a
second) between hello packets. It is
the time interval, in hundredths of
a second, that a bridge advertises
its presence while a root or
attempting to become a root.

short

HistoryDataType Identifies a record type comprised
of performance monitoring
statistics.

RecordKind
Type

HourlyDailyWeekly
MonthlyIndType

Specifies whether the schedule has
an Hourly, Daily, Weekly or
Monthly time cycle

enum Hourly,
Daily,
Weekly,
Monthly

IDLCCallProcessing
ProfileType

This data element provides the
values for a profile of kind IDLC
Call Processing.

struct

JitterBufferMaxType This data element provides the
maximum depth of the jitter buffer
associated with this service. Units
are in milliseconds.

long long

JitterTargetType This data element provides the
target value of the jitter buffer.
The system will try to maintain the
jitter buffer at the target value.
Units are in milliseconds.

long long

LANType This data element provides
information on the type of LAN
employed, e.g., ethernet, token-
ring, etc.

short

LESProfileType This data element provides the
values for a profile of kind LES.

struct

LocalMaxNumVCC
SupportedType

This data element identifies the
number of VCCs that can be
supported by the ATM NE at this
end of the interface.

long long

LocalMaxNumVCIBitsType This data element identifies the
maximum number of allocated bits
of the VCI sub-field that can be
supported by the FSAN NE at this
end of the interface.

short

LocalMaxNumVPC
SupportedType

This data element identifies the
number of VPCs that can be
supported by the OLT at this end
of the interface.

long long

 ITU-T Rec. Q.834.4 (07/2003) 91

Table A.1/Q.834.4 – Data elements and definitions

Data element name Definition Syntax Comments
LocalMaxNumVPIBitsType This data element identifies the

maximum number of allocated bits
of the VPI sub-field that can be
supported by the FSAN NE at this
end of the interface.

short

LoopbackCodeType This data element identifies the
type of in-band loopback code
supported.

enum

LoopbackInfoType The data element specifies the
loopback type, directionality, and
location.

struct

LoopbackInfoSeqType Provides information concerning
one loopback condition in the
network resource.

struct

LoopbackLocationIdSeq
Type

Specifies the unique location Id for
a ctp.

Sequence of
octets of
length 16

LoopbackLocCodeType This data element provides the
code that identifies incoming ATM
layer OAM loopback cells that are
to be looped-back at this UNI.

string

LoopbackTestType This data element identifies the
type of loopback test setup to be
used or in use.

unsigned
short

Possible values are
defined in
PhysicalLayerLoop
back interface of

Q834::Common.
LoopbackTrackingObject
IdType

This data element identifies current
loopback condition.

Tracking
ObjectIdType

MACBridgePortPMHistory
DataType

This data element provides the
items in this record type.

struct

MACBridgePMHistoryData
Type

This data element provides the
items in this record type.

struct

MACBridgeService
ProfileType

This data element provides the
values for a profile of kind
MACBridgeService.

struct

ManagedEntityIdType This data element provides a
unique name for a managed entity.
The name includes an indication if
the name represents a fine-grain
managed object name, a façade
object name, or just references a
data structure.

struct of an
enum and an
RDNType

92 ITU-T Rec. Q.834.4 (07/2003)

Table A.1/Q.834.4 – Data elements and definitions

Data element name Definition Syntax Comments
MaxAgeType This data element indicates the

maximum age (in seconds) for an
entry in the spanning tree listing. It
indicates the maximum age in
seconds of received protocol
information before it is discarded.

short

MaxBSEgressType Maximum Burst Size - This
parameter is required for real-time
and non-real-time VBR traffic and
for GFR traffic. It applies to CLP
= 0 + 1 traffic flow for VBR.1,
GFR.1, and GFR.2, and applies to
CLP = 0 traffic flow for VBR.2
and VBR.3.

long long

MaxBSIngressType Maximum Burst Size - This
parameter is required for real-time
and non-real-time VBR traffic and
for GFR traffic. It applies to CLP
= 0 + 1 traffic flow for VBR.1,
GFR.1, and GFR.2, and applies to
CLP = 0 traffic flow for VBR.2
and VBR.3.

long long

MaxCPCSSDUSizeType This multi-valued data element
represents the maximum
CPCS_SDU size that will be
transmitted over the connection in
both the incoming (forward) and
outgoing (backward) direction of
transmission.

struct

MaxCPS_SDULengthType This data element provides the
maximum allowed length of the
Common Part Sublayer Service
Data Unit (or CPS SDU) that will
be allowed over the connection in
either the upstream or downstream
direction of transmission.

long long

MaxFrameSizeType This data element denotes the
maximum allowed frame size to be
transmitted across this interface.

long long

MaximumChanIdType This data element provides the
maximum value for the Channel Id
allowed for the channel within the
connection.

short

MaxNumChannelsType This data element provides the
maximum number of channels that
can be carried by the VC Trail
associated with the interworking
vcCTP.

short

 ITU-T Rec. Q.834.4 (07/2003) 93

Table A.1/Q.834.4 – Data elements and definitions

Data element name Definition Syntax Comments
MaxNumCIDsType This data element specifies the

maximum number of channels
within the VCC that can be active.

short

MaxPacketLengthType This data element specifies the
maximum packet length.

long long

MaxSizeType Specifies the maximum size of the
Record Set.

unsigned long
long

In units to be
determined by
mutual agreement
between supplier
and operator.

MaxSSSARSDULengthType This data element provides the
maximum length allowed for an
SSSAR-SDU of the Segmentation
and Reassembly Service Specific
Convergence sublayer.

long long

MFR1IndType This boolean data element
indicates whether or not Multi-
Frequency R1 dialled digits is
transported on the connection,
where the value TRUE implies its
presence.

boolean

MFR2IndType This boolean data element
indicates whether or not Multi-
Frequency R2 dialled digits is
transported on the connection,
where the value TRUE implies its
presence.

boolean

MFSEgressType Maximum Frame Size – This
parameter is required for GFR
traffic only.

long long

MFSIngressType Maximum Frame Size – This
parameter is required for GFR
traffic only.

long long

MinimumChanIdType This data element provides the
minimum value for the Channel Id
allowed for any channel within the
connection.

short

MonitoredParameterSeq
Type

This data element identifies a
monitored parameter.

string Monitored
parameters are
defined in
Q834Common::
Monitored
Parameter

MonitoringKindType This data element identifies the
type of performance monitoring
specified.

string

94 ITU-T Rec. Q.834.4 (07/2003)

Table A.1/Q.834.4 – Data elements and definitions

Data element name Definition Syntax Comments
MonitoringPoint
ThresholdsType

This data element provides a listing
of monitoring point instances and
the associated threshold data for a
specified network resource.

sequence of
struct

NameType This data element provides a
CORBA name for a profile object.

CosNaming::
Name

NEFSANType This data structure identifies the
generic equipment inventory item
named in the autodiscovery event.

struct listing
the attribute
values for the
NEFSAN
Managed
Entity

NEKindType This data element identifies the
type of network elements that can
be constructed.

enum The choice is
between BPONOLT,
BPONONT, BPONONU,

and BPONNT
(Note).

NotificationIdentifier
Type

Uniquely identifies the
Notification.

long long

NTType This data structure identifies the
NT inventory item named in the
autodiscovery event.

struct listing
the attribute
values for the
NT Managed
Entity

OLTType This data structure identifies the
OLT inventory item named in the
autodiscovery event.

struct listing
the attribute
values for the
OLT Managed
Entity

ONTType This data structure identifies the
ONT inventory item named in the
autodiscovery event.

struct listing
the attribute
values for the
ONT Managed
Entity

ONUType This data structure identifies the
ONU inventory item named in the
autodiscovery event.

struct listing
the attribute
values for the
ONU Managed
Entity

OperationalStateType Specifes the operational state
(enabled or disabled) of the
managed entity.

enum Defined in
ITU-T Rec. X.780.

OpticalWaveLengthArray
SeqType

Specifies the wavelength (in
nanometers) and direction for a
wavelength multiplexed on this
optical port.

struct

ParameterSettingSeq
Type

This data element identifies a
monitoring parameter together with
its associated sliding window
parameters.

struct

 ITU-T Rec. Q.834.4 (07/2003) 95

Table A.1/Q.834.4 – Data elements and definitions

Data element name Definition Syntax Comments
PartiallyFilledCells
Type

This boolean data element
identifies the number of leading
octets in use.

long long

PasswordType Provides a security credential for
access to the Supplier Management
System application or servers.

string A password
supplied with a user
Id must confirm to
the passwordPolicy
enforced by the
Supplier
Management
System.

PasswordPolicyType Specifies the Password Policy
which is enforced by the Supplier
Management System. It is
composed of two components:
UserLoginPolicyType and
SessionPolicyType.

struct

PCMEncTypeType This data element indicates the
type of PCM coding. Valid values
include but are not limited to "mu-
law PCM coding" and "alpha-law
PCM coding".

short

PCREgressType Peak Cell Rate – This parameter is
required for traffic of all service
categories. It is applied to CLP = 0
flow for ABR and applied
to CLP = 0 + 1 flow otherwise.

long long

PCRIngressType Peak Cell Rate – This parameter is
required for traffic of all service
categories. It is applied to CLP = 0
flow for ABR and applied to
CLP = 0 + 1 flow otherwise.

long long

PerceivedSeverityType Defined by ITU-T Rec. X.780. enum

PIDType This data element identifies the
media type values that can be used
in ATM encapsulation (defined in
RFC 1483).

short

PlugInUnitFType This data structure identifies the
PlugInUnitF inventory item named
in the autodiscovery event.

struct listing
the attribute
values for the
PlugInUnit

Type Managed
Entity.

PlugInUnitType Implementation specific, supplier
provided name of circuit pack type.

string

96 ITU-T Rec. Q.834.4 (07/2003)

Table A.1/Q.834.4 – Data elements and definitions

Data element name Definition Syntax Comments
PortBandwidthSeqType This data element gives bandwidth

by provisioned port.
struct Listing examples

include
ReservedBandwidth

SeqType and
AvailableSys
BandwidthSeq
Type

POTSSignallingType This data element selects which
signalling format should be used
for POTS service.

enum

ProbableCauseType Data for probable cause. unsigned
short

Values are defined
in Q834Common::
ProbableCause and
ITU-T Rec. X.780

ProceduralStatusSet
Type

Provides the procedural status of a
non-terminated activity.

Sequence of
enum

Defined in
ITU-T Rec. X.780.

ProfileInfoType This data element identifies the
profile type and its attribute values.

struct

ProfileKindType This data element identifies the
type of profile named.

unsigned
short

Values provided in
Q834Common.

ProtectionParameter
Type

This data element describes the
protection switching parameters
associated with a protection
grouping of managed entities.
Parameters include protection
switching ratio, allowed protection
switching mechanisms, revertive
indicator, and wait time to revert.

struct

ProtectionUnitType This data element associates
protected and protecting network
resources.

struct

RASTimerType This data element provides the
reassembly time (in seconds) of the
Segmentation and Reassembly
Service Specific Convergence
sublayer for ITU-T Rec. I.366.1.

short

RateControlIndType This boolean data element
indicates whether or not rate
control is transported on the
connection, where the value TRUE
implies its presence.

boolean

 ITU-T Rec. Q.834.4 (07/2003) 97

Table A.1/Q.834.4 – Data elements and definitions

Data element name Definition Syntax Comments
RecordType This is an item stored in a Record

Set.
any The value is a struct

based in the
RecordKindType

defined in
Q834Common::

RecordSetType.
Only one type of
RecordKind can be
stored in a record
set.

RecordSetIdType The ManagedEntityId of the
Record Set.

ManagedEntity
IdType

RecordSetStatusType Specifies the current status of the
RecordSet.

struct of
currentSize
Type,
Operational
State
Type,MaxSize
Type, Size
Threshold
Type,
filterName,
Administra-
tiveState
Type,
RecordKind

Type,and
RecordSet
UserLabel

RecordKindType Identifies the type of the record. unsigned
short

Values defined in
Q834Common::
RecordSetType

RecordsSeqType This data element provides a set of
records grouped together by type.

sequence of
any

See above.

RemainingPassword
Validity

Specifies the password validity in
number of days.

long Value ≥ 1

ReservationIdType An identifier that correlates
bandwidth reserved on a PON or
within an OLT system with a
service instance.

string

ReservationInfoType This data element provides a
complete accounting of the
reservation information and
associated service connection
information.

struct

ReservedBandwidthSeq
Type

Quantifies the amount of
bandwidth associated with a
reservation Id for a port.

sequence of
PortBand
widthType

ResourceSelfTestInfo
Type

Provides one testing diagnostic to
be used in the resource self test.

short Values are
determined by
supplier
implementation.

98 ITU-T Rec. Q.834.4 (07/2003)

Table A.1/Q.834.4 – Data elements and definitions

Data element name Definition Syntax Comments
ResourceSelfTestResult
Type

Specifies one result for Resource
self test.

struct

ScheduledFileTransfer
Type

Identifies a pending scheduled file
transfer activity for the Supplier
Management System.

struct

ScheduledSynchNEType This data element associates an NE
with its schedule for
synchronisation.

struct

ScheduledTestNESeqType This data element associates an NE
with a scheduled test.

struct

SchedulerType Identifies an instance of Scheduler
within the Supplier Management
System.

struct

SCREgressType Sustainable Cell Rate – This
parameter applies to real-time and
non-real-time VBR. It applies to
CLP = 0 + 1 traffic flow for VBR.1
and applies to CLP = 0 traffic flow
VBR.2 and VBR.3.

long long

SCRIngressType Sustainable Cell Rate – This
parameter applies to real-time and
non-real-time VBR. It applies to
CLP = 0 + 1 traffic flow for VBR.1
and applies to CLP = 0 traffic flow
VBR.2 and VBR.3.

long long

SecurityAlarmLogRecord
Type

This data element provides the
items in this record type.

struct

SegmentEndpointIndType Indicates whether or not the
constructed vpNetworkCTP is to
be viewed as a segment or endpoint
for ATM OAM cell loopback
testing.

enum choice of segment,
endpoint, or none

SegmentLengthType This data element provides the
length of segment for the
Segmentation and Reassembly
Service Specific Convergence
sublayer. It ranges from 0 to the
maximum value provided by
MaxCPS_SDULen data element.

long long

SerialNumType Provides the unique hardware Id
used in the ranging activity defined
in ITU-T Rec. Q.983.1.

string

ServiceAffectingType This data element indicates
whether or not a failure condition
is affecting service if it can be
determined.

enum

 ITU-T Rec. Q.834.4 (07/2003) 99

Table A.1/Q.834.4 – Data elements and definitions

Data element name Definition Syntax Comments
ServiceCategoryType Indicates the service category as

defined in ATM-Forum TM 4.0.
Valid values are CBR, rt-VBR, nrt-
VBR, UBR, ABR, or GFR.

enum

ServiceCatType This data element indicates the
type of service category provided
by AAL2. Valid values include
but are not limited to "Audio" and
"Multirate".

enum

ServiceInstanceIdType Operator-provided label associated
by the Supplier Management
System with connections.

string

ServiceOutageRecord
Type

This data element provides the
items in this record type.

struct

SessionPolicyType Specifies the rules governing GUI
client sessions interconnected to
the Supplier Management System.

struct

SizeThresholdType Specifies the threshold in the
record set to raise alarms.

unsigned
short

The value is
interpreted as a
whole number
percentage
(0-100%) of
MaxSize.

SlotAssignmentType Provides an association of a slot to
a provisioning assignment.

struct

showing the
slot number
and plug-in
type

SoftwareDownload
TrackingObjectIdType

Identifies one software download
activity in progress or have failed
to complete successfully.

TrackObjectId
Type

SONETSDHLinePMHistory
Data

Provides the record structure
itemizing the performance data
collected in a 15-minute interval
for monitoring point rsTTPF.

struct

SONETSDHSection
AdaptationPM
HistoryData

Provides the record structure
itemizing the performance data
collected in a 15-minute interval
for monitoring points for au3CTPF
or au4CTPF.

struct

SONETSDHSectionPathPM
HistoryData

Provides the record structure
itemizing the performance data
collected in a 15-minute interval
for monitoring points for msTTPF,
vc3CTPF or vc4CTPF.

100 ITU-T Rec. Q.834.4 (07/2003)

Table A.1/Q.834.4 – Data elements and definitions

Data element name Definition Syntax Comments
SpanningTreeIndType This boolean data element

indicates whether or not a spanning
tree algorithm is enabled. The
value TRUE means enabled.

boolean

SpecificProblems This data element provides a listing
of code values for all specific
problems associated with a failure
condition and alarm.

sequence of
long

Values defined by
supplier.

SSADTIndType This boolean data element
indicates whether or not the
assured data transfer mechanism
has been selected, with value
TRUE indicating selection.

boolean

SSCSParameterProfile1
Type

This data element provides the
values for a profile of kind SSCS
Parameter Profile 1.

struct

SSCSParameterProfile2
Type

This data element provides the
values for a profile of kind SSCS
Parameter Profile 2.

struct

SSCSTypeType This data element identifies the
SSCS type for the AAL.

enum

SSTEDIndType This boolean data element
indicates whether or not the
transmission error detection
mechanisms have been selected,
with value TRUE indicating
selection.

boolean

StateChangeDefinition
Type

This data element provides a listing
of all state and status variable
changes triggered by a failure
condition causing an alarm.

AttributeChan
geSetType

Imported from
ITU-T Rec. X.780.

StatusAttributeType A pair showing the
StatusValueType and completion
percentage for the backup or
restore of configuration data
associated with an NE.

struct

StatusValueType Provides a choice of values
between ProceduralStatusSetType
and OtherStatus values indicating
completion aspects.

union

StructuredDataTransfer
Type

This boolean data element
indicates whether Structured Data
Transfer (SDT) has been
configured at the AAL.

boolean

SubType This data element identifies the
AAL subtype.

enum

 ITU-T Rec. Q.834.4 (07/2003) 101

Table A.1/Q.834.4 – Data elements and definitions

Data element name Definition Syntax Comments
SupplyPowerIndType This data element indicates

whether or not the associated port
provides power.

boolean

SWPValueType Shows a monitoring point and its
associated sliding window
parameters.

struct

SynchChangeIndType This boolean data element
indicates whether or not
synchronization of change in SSCS
operation is transported on the
connection, where the value TRUE
implies its presence.

boolean

SystemTimingType Specifies the primary and
secondary clock source for the NE.

struct of
struct

T303Type This data element defines the
maximum length of time in
milliseconds that the ONT will
wait for a reply to the "SETUP"
message found at Layer 3 for the
TMC or the CSC.

enum

T396Type This data element specifies the
length of time that the ONT will
wait for a reply to a "SETUP"
message following the initial
expiration of the timer T303.

enum

TargetType This data element provides a listing
of network resources.

sequence of
struct of
Managed
EntityIdType

and string

Allows selection at
system, NE, plug-in
unit type, or specific
slot level.

TargetActivityType Provides an association of
activityLevel, activityType and
administrative domain to be
associated with a user or a user
group.

struct

TCAdaptionProtocol
MonitoringPM
HistoryData

Provides the record structure
itemizing the performance data
collected in a 15-minute interval
for monitoring points for
tcAdaptorF.

TestHistoryType This data element shows archived
information on one completed
testing activity for the Supplier
Management System.

struct

TestIterationNumType This data element specifies the
number of times that a test is to be
repeated.

short

102 ITU-T Rec. Q.834.4 (07/2003)

Table A.1/Q.834.4 – Data elements and definitions

Data element name Definition Syntax Comments
TestTrackingObjectId
Type

This data element identifies a test
in progress or pending within the
Supplier Management System.

TrackingObjec
tId

ThresholdDataProfile
Type

This data element is a listing of
pairs: a thresholdDataProfile
instance and a monitoring point
type.

sequence of
struct

ThresholdDataType This data element lists names of
performance parameter with a
threshold value for each.

struct

ThresholdInfoType This data element supplies
information for a quality of service
alarm event and provides the
identity of the performance
parameter, its observed value, and
the upper and lower values that
defined its threshold value range.

struct

ThresholdsList This data element lists
relationships between monitoring
termination point types and their
associated threshold data profile.

sequence of
struct the
first component
indicating the
type of
monitoring
point and the
second giving
the reference to
a threshold
Data profile

ThresholdsType This data element provides an
association of monitoring point
types associated with its threshold
data profile name.

struct

TimerCULengthType This data element provides the
value for the "combined use" timer
Timer_CU.

long long

TimingReferenceType This data element defines how the
internal timing is derived.

enum

TotalEgressBandwidth
Type

This data element identifies the
total amount of egress bandwidth
for an ATM Interface.

long long

TotalIngressBandwidth
Type

This data element identifies the
total amount of ingress bandwidth
for an ATM Interface.

long long

 ITU-T Rec. Q.834.4 (07/2003) 103

Table A.1/Q.834.4 – Data elements and definitions

Data element name Definition Syntax Comments
TrackingObjectIdType This data element helps to identify

the status of a requested activity
whose time of completion takes
longer than a few seconds.

unsigned long Examples include
TransferTracking
ObjectIdType,
SoftwareDown
loadTracking

ObjectType, and
TestTracking

ObjectIdType.
TrafficDescriptor
ProfileType

This data element provides the
values for a profile of kind Traffic
Descriptor.

struct

TransferTrackingObject
IdType

Identifies either an outstanding file
transfer activity in the Supplier
Management System.

string

TriggerTimeMatrixType Specifies trigger times associated
with a period schedule.

struct

UNIProfileType This data element provides the
values for a profile of kind UNI.

struct

UPCNPCDisagreementPM
HistoryDataType

This data element provides the
items in this record type.

struct

UPCNPCIndicatorType This boolean data element
determines whether or not policing
is performed for all connections at
the interface.

boolean

UsageStateType This data element enumerates the
value for the usage state variable.

enum Valid enum values
are idle, active,
busy. Defined in
ITU-T Rec. X.780.

UserGroupId This is the operator-provided name
for a grouping of users to the
Supplier Management System.

UserLabel
Type

Cannot be the empty
string.

UserGroupType Provides the User Label for the
user group, lists the users who are
members of the group, and
enumerates their target activities.

struct of
UserGroupId
Type,
UserIdSeq

Type, and
Target
Activity
SeqType

UserIdType UserLabel assigned for users of the
Supplier Management System.

UserLabel

UserLabelType Provides an identifier that is
created and provided by the
Operator or OMS to associate with
a managed resource by the
Supplier Management System.

string

UserLoginPolicyType Specifies the policy governing user
login.

struct

104 ITU-T Rec. Q.834.4 (07/2003)

Table A.1/Q.834.4 – Data elements and definitions

Data element name Definition Syntax Comments
UserLoginPolicy
ViolationReasonType

Specifies one reason for rejecting
the assignment of a password to a
user.

enum

UserType Provides the user Id, the user
groups to which the user belongs,
and the users assigned target
activities.

struct of
UserIdType,
UserGroupId

SeqType, and
Target
ActivitySeq
Type

VersionType Provides one version identifier of
the hardware or software for the
system by managedEntityIdType.

struct

VoicePMHistoryDataType This data element provides the
items in this record type.

struct

VoiceServicesProfile
AAL1Type

This data element provides the
values for a profile of kind Voice
Services using AAL1.

struct

VoiceServicesProfile
AAL2ProfileType

This data element provides the
values for a profile of kind Voice
Services using AAL2.

struct

VPVCPMHistoryDataType This data element provides the
items in this record type.

struct

NOTE – If Q834Build module is considered for use in the management of other types of access
technologies, then either the enumerated values should be expanded, or the syntax could be changed to
short, with constants identifying the types of network elements to be constructed.

Annex B

Exceptions

Table B.1 provides the list of all possible exceptions and circumstances under which they may be
raised by one or more operations in this interface specification.

Table B.1/Q.834.4 – Exceptions

Exception raised Description
AccessDenied System is not granted access to this interface object.
ActivationCompleted Indicates that software activation has been executed so that

activation cannot be cancelled.
ActivationFailure Software activation process failure.
ActivityCompleted The software activity has been executed and cannot be cancelled.
ActivityInProgress This exception is raised when the software activity has been

initiated and cannot be cancelled.

 ITU-T Rec. Q.834.4 (07/2003) 105

Table B.1/Q.834.4 – Exceptions

Exception raised Description
AddressLabelMismatch The identified NE does not have the current DCN Address

provided in the request.
APONLayerFailure There was a APON protocol ranging failure between the OLT

and the designed subtending node.
BackupInProgress This exception is raised when the request is issued while the

backup is in progress.
CannotAssignManagedEntityId The Supplier Management System was unable to set the

ManagedEntityId for the OLT, thus indicating that the Supplier
Management System is unable to manage the OLT.

CannotRetrieveUserLabel The Supplier Management System was unable to read the User
Label provisioned on the OLT.

CollectionLimitation The Supplier Management System cannot collect data for the
given time duration and granularity period due to implementation
restrictions.

CollectionPeriodPast When period end time is lesser than or equal to the current time.
CommFailure There was a DCN link failure between the NE and the Supplier

Management System.
ConnectionAlreadyExists There already exists a subnetwork connection with the same

endpoints.
ConnectionCountExceeded The maximum number of connections for the OLT or PON port

has been exceeded with this request for service provisioning.
DCNTimeout The DCN communications link between at least one of the NEs

and the Supplier Management System is so congested that current
state or status information cannot be transferred within a system
defined synch time.

DeniedAccess System is not granted access to the NE.
DuplicateProfileName This exception is raised when the new profile name duplicates an

existing profile name.
DuplicateSerialNumber There exists other equipment of the same type with this serial

number.
DuplicateUserGroupId The id is already used for another User Group.
DuplicateUserId Access control profile has already been established for this

User Id.
DuplicateUserLabel The User Label provided in the request has been used to label

another managed entity of the same time.
EquipmentFailure The NE currently has a failure condition preventing the requested

transaction from being completed.
HWServicesMismatch The replacement NE cannot perform the provisioned services.
InstallationFailure Software installation process failure
InsufficientBW The CAC algorithm indicates that requested service requires too

much bandwidth for the OLT.
InsufficientMemory There is insufficient memory on the NE to load the software unit.
InsufficientPONBW The ONT or ONU cannot be ranged due to insufficient bandwidth

on the APONLink.

106 ITU-T Rec. Q.834.4 (07/2003)

Table B.1/Q.834.4 – Exceptions

Exception raised Description
InterfaceSpeedNotChangeable The physical port cannot support the new interface speed or if the

speed in not configurable.
IntervalCountTooLarge This exception is raised when the requested intervals exceed the

maximum supported by the Supplier Management System. The
exception indicates the maximum allowed monitoring intervals
supported by the Supplier Management System.

InvalidDCNAddress The specified DCN address is not valid.
InvalidEquipmentCode The equipment code does not conform to syntax.
InvalidExternalTime External Time specified is not valid.
InvalidLocationId The LLID specified is not valid.
InvalidPort The specified PON port is not valid.
InvalidProtectionScheme The network resource does not support the protection parameters

specified in context with the port listing or if the protection units
are ports of dissimilar physical path characteristic.

InvalidScheduler The Scheduler parameters values are outside defined scope.
InvalidSerialNumSyntax Syntax of the serial number provided does not match definition

rules.
InvalidSlotAssignmentList Expected slot provisioning rules are violated by slot assignment

provided.
InvalidSoftwareTracking
Object

The referenced software tracking object is not the most recent
associated with the installation of a software load on the NE.

InvalidStartTime The start time is inconsistent with the current time, the current
trigger time matrix, or the new stop time.

InvalidStopTime The new stop time is inconsistent with the current trigger time
matrix, the current time, or the new start time.

InvalidTestOperations The requested self test operation is not valid.
InvalidTimeoutPeriod Designated timeout period violates definition of valid values.
InvalidTrigger The specified Trigger has values that cannot be interpreted by the

Scheduler.
InvalidUserLabelSyntax The specified UserLabel does not follow established rules for

userLabel.
LockedAlready The administrative state of the named managed entity is locked

already and it has not been performing its normal function.
MaxSubtendingNodesExceeded The maximum engineered number of subtending nodes for the

identified PON interface has been exceeded with this request for
service provisioning or reservation.

NoResponse The ONT or ONU could not be ranged and the failure was due to
something other than a detected problem with the serial number
syntax, the APON Layer protocol, or duplicate or invalid User
Labels.

NoSuchRecords No records among the designated Record Sets match the selection
criteria.

NoSynchInProgress The exception is raised if there is no synchronisation process in
progress.

 ITU-T Rec. Q.834.4 (07/2003) 107

Table B.1/Q.834.4 – Exceptions

Exception raised Description
NotAvailableForTest The specified CTP is not available for this test.
ParameterViolation This exception is raised when the endpoint parameters do not

match the protocol characteristics of the port, or when the values
are out of range or invalid duplicates.

ProfileInUse This exception is raised when the profile may not be deleted
because it is still being used to characterize managed entities
within the management jurisdiction of the Supplier Management
System.

ProfileSuspended The named profile(s) in the invocation have been suspended for
use within the Supplier Management System by the OMS or
operator.

RecordSetExists The record set defined by the parameters of the creation request
already exists in the Supplier Management System.

RemainingContainedManaged
Entities

Contained circuit packs or equipment holders have not been
deleted yet.

RemainingReservations The node cannot be deleted as resource reservations still exist.
RemainingSubnetwork
Connections

The node of plug-in unit cannot be deleted as there are remaining
subnetwork connections.

ScheduleInUse There are still activities scheduled by the named Scheduler.
SlotAlreadyAssigned The requested slot is already provisioned.
SoftwareLoadHardwareMismatch The former NE configuration data could not be downloaded to

the NE because there were changes made to the NE hardware that
caused an incapability.

SoftwareLoadHWMismatch The designated software may not be loaded onto the equipment
hardware since the version of the hardware cannot accept the
software load.

SoftwareNotYetInstalled The software may not be activated since it has not been
installed yet.

SoftwareTrackingObjectInUse There are outstanding software activities tracked by this object
and it may not be deleted.

SourceUnreachable The server holding the software load to be downloaded could not
be reached by the OLT.

SynchNotScheduled This exception is raised when the schedule modification
references a NE for which no synchronization schedule has
previously been established.

Timeout The process duration reached a system-defined timeout before the
process could complete.

TooManyNEs The Supplier Management System cannot manage one more
OLT.

TooManyRecords The number of records selected for retrieval produces a response
to the request that exceeds a predetermined size.

UncontrolledTestInProgress The self test cannot be cancelled because of a uncontrolled test.
UnknownBackupProcess The named transfer-tracking object identifying the file transfer

process is unknown to the Supplier Management System.

108 ITU-T Rec. Q.834.4 (07/2003)

Table B.1/Q.834.4 – Exceptions

Exception raised Description
UnknownConnection The subnetwork connection is not known by the Supplier

Management System.
UnknownDestinationServer The identified destination server cannot be accessed by the

transfer agent.
UnknownHistoryDataType The history data type is unknown in the Supplier Management

System.
UnknownManagedEntity The specified Managed Entity is unknown to the Supplier

Management System.
UnknownMonitoringPointTypes The monitoringPointType is unknown to the Supplier

Management System.
UnknownNE Identified NE is unknown to the Supplier Management System.
UnknownOption The given value of the archive administrativeState is

"ShuttingDown".
UnknownParameters The given monitored parameter is unknown in the Supplier

Management System.
UnknownPort The identified port is unknown to the Supplier Management

System.
UnknownProfiles This exception is raised if the profile name provided is unknown

to the Supplier Management System and cannot be retrieved from
the profile object repository.

UnknownRecordSet Record set identified in the request is unknown to the Supplier
Management System.

UnknownReservationId The Supplier Management System does not recognize this
Reservation Id.

UnknownRestoreProcess The named transfer-tracking object identifying the file transfer
process is unknown to the Supplier Management System.

UnknownScheduler The named scheduler is unknown to the Supplier Management
System.

UnknownService The described Service is unknown to the Supplier Management
System.

UnknownServiceInstance The Service Instance is unknown to the Supplier Management
System.

UnknownSlot The requested slot is unknown in the NE.
UnknownSoftwareDownloadTrack
Object

The named Software Unit (refers to software distributed to
an NE) is unknown to the Supplier Management System.

UnknownSoftwareLoad The specified software unit cannot be found.
UnknownSourceServer The Supplier Management System and/or OLT cannot

communicate with the Source Server. The DCN address is
unknown or access is blocked.

UnknownSystemTimingSource External time source unknown to the Supplier Management
System.

UnknownTargets The list of target activities is unknown to the Supplier
Management System.

 ITU-T Rec. Q.834.4 (07/2003) 109

Table B.1/Q.834.4 – Exceptions

Exception raised Description
UnknownTest The test specified by the Test Tracking Object Id is not known in

the Supplier Management System.
UnknownTransferProcess The status of the identified transfer process could not be checked

because it is unknown to the Supplier Management System.
UnknownUserGroupId User Group is unknown to the Supplier Management System.
UnknownUserIds This exception is raised when any userId is unrecognized.
UnrecognisedVersion Equipment version provided does not match known values.
UserGroupNotEmpty Non-empty User Group cannot be deleted.
UserLoginPolicyViolation The specified assignment of a new password to a user violates the

user login policy currently enforced by the Supplier Management
System.

Annex C

IDL files

If the following files are saved as text files, then any subset of them can be compiled successfully
using any OMG IDL compiler conforming to CORBA Specification 2.1 or later provided that the
subset includes Q834Common.idl, and the standardized CosNaming.idl, CosNotifyFilter.idl,
CosNotification.idl, X780.idl, and CosNotifyComm.idl.11

C.1 Q834AccessControl.idl

#ifndef __Q834_4_ACCESSCONTROL_DEFINED
#define __Q834_4_ACCESSCONTROL_DEFINED

#include "Q834Common.idl"

#pragma prefix "itu.Int"

module q834_4 {

module AccessControl {
// Begin definitions from other idl files

// From Q834Common

 typedef Q834Common::ManagedEntityIdType ManagedEntityIdType;
 typedef Q834Common::ManagedEntityIdSeqType ManagedEntityIdSeqType;
 typedef Q834Common::AdministrationDomainSeqType
 AdministrationDomainSeqType;

11 See references [18] and [19].

110 ITU-T Rec. Q.834.4 (07/2003)

 typedef Q834Common::UserLabelType UserLabelType;
 typedef Q834Common::UserIdType UserIdType;
 typedef Q834Common::PasswordType PasswordType;

#define AccessDenied Q834Common::AccessDenied

// End definitions from other idl files

// Local data types

 struct UserLoginPolicyType {
 short minUserId; // Minimum length of userid
 short minPassword; // Minimum length of password
 short passwordReuse;
 short loginAttempts;
 long passwordValidity;
 boolean alphanumeric;//?should password contain alphanumeric mixture
 boolean specialCharacters;
 //?should password contain special characters
 boolean repeatingCharacters; //?should password contain repeating
 boolean disallowUserId; //disallow username in password
 };

 struct SessionPolicyType {
 short sessionInactiveTime;
 short inactiveUserIdDisableTime;
 short multipleActiveLogins;
 };

 struct PasswordPolicyType {
 UserLoginPolicyType userLoginPolicy;
 SessionPolicyType sessionPolicy;
 };

 typedef sequence<UserIdType> UserIdSeqType;

 enum ActivityLevelType {
 monitorOnly, // read
 allowedToExecute, // write
 noAccess
 };

 typedef short ActivityType;

 struct TargetActivityType {
 ActivityType type;
 ActivityLevelType activityLevel;
 AdministrationDomainSeqType AdministrationDomainSeq;
 };

 typedef sequence<TargetActivityType> TargetActivitySeqType;

 enum UserLoginPolicyViolationReasonType {
 minUserId,
 minPassword,
 passwordReuse,
 loginAttempts,
 passwordValidity,
 alphanumeric,
 specialCharacters,
 repeatingCharacters,

 ITU-T Rec. Q.834.4 (07/2003) 111

 disallowUserId
 };

 typedef sequence<UserLoginPolicyViolationReasonType>
UserLoginPolicyViolationReasonSeqType;
 typedef sequence<UserLabelType> UserGroupIdSeqType;

 struct UserType {
 UserIdType userId;
 UserGroupIdSeqType userGroupIdSeq;
 TargetActivitySeqType TargetActivitySeq;
 };

 struct UserGroupType {
 UserLabelType userGroupId;
 UserIdSeqType userIdSeq;
 TargetActivitySeqType TargetActivitySeq;
 };

 typedef sequence<UserType> UserSeqType;
 typedef sequence<UserGroupType> UserGroupSeqType;

 // Local exceptions

 exception UnknownUserIds {
 UserIdSeqType userIdSeq;
 };
 exception DuplicateUserId {};
 exception UnknownUserGroupId {};
 exception DuplicateUserGroupId {};
 exception UnknownTargets {
 TargetActivitySeqType unknownTargetActivities;
 };
 exception UserGroupNotEmpty {};
 exception UserLoginPolicyViolation {
 UserLoginPolicyType userLoginPolicy;
 UserLoginPolicyViolationReasonSeqType reason;
 };
 // End local definitions

 valuetype AccessControlMgrValueType: itut_x780::ManagedObjectValueType {

 public PasswordPolicyType passwordPolicy; // GET
 public UserSeqType userList; // GET
 public UserGroupSeqType userGroupList; // GET
 };

 interface AccessControlMgr : itut_x780::ManagedObject {

 // define the activities
 const short ALL_ACTIVITIES = 0;
 const short ACCESS_CONTROL_MANAGEMENT = 1;
 const short ALARM_EVENT_CONFIGURATION_MANAGEMENT = 2;
 const short SCHEDULE_ACTIVITY = 3;
 const short SOFTWARE_DOWNLOAD = 4;
 const short TEST_CONTROL = 5;
 const short SYNCHRONISE_CURRENT_EVENT_LIST = 6;
 const short SYNCHRONISE_NE = 7;
 const short RANGE_NE = 8;
 const short REGISTER_SYSTEM = 9;

112 ITU-T Rec. Q.834.4 (07/2003)

 const short RESERVE_RESOURCES = 10;
 const short PROFILE_MANAGEMENT = 11;
 const short PROVISION_NE = 12;
 const short PROVISION_TELEPHONY_SERVICE = 13;
 const short PROVISION_PACKETISED_DATA_SERVICES = 14;
 const short PROVISION_VIDEO_SERVICE = 15;
 const short PROVISION_LEASED_LINE_SERVICE = 16;
 const short BULK_TRANSFER = 17;
 const short HISTORY_DATA_COLLECTION = 18;
 const short CONTROL_ARCHIVING = 19;
 const short CONTROL_PERFORMANCE_MONITORING = 20;
 const short CONFIGURATION_BACKUP_RESTORE = 21;

 // See 9.1.1.1 for the description of the behaviour of this operation

 void setPasswordPolicy(
 in PasswordPolicyType passwordPolicy)
 raises (AccessDenied);

 // See 9.1.1.2 for the description of the behaviour of this operation

 PasswordPolicyType passwordPolicyGet()
 raises (AccessDenied);

 // See 9.1.1.3 for the description of the behaviour of this operation

 UserSeqType userListGet ()
 raises (AccessDenied);

 // See 9.1.1.4 for the description of the behaviour of this operation

 UserGroupSeqType userGroupListGet ()
 raises (AccessDenied);

 // See 9.1.1.5 for the description of the behaviour of this operation

 UserType userGet (
 in UserIdType userId)
 raises (AccessDenied,
 UnknownUserIds);

 // See 9.1.1.6 for the description of the behaviour of this operation

 UserGroupType userGroupGet (
 in UserLabelType userGroupId)
 raises (AccessDenied,
 UnknownUserGroupId);

 // See 9.1.1.7 for the description of the behaviour of this operation

 void createUserGroup (
 in UserLabelType userGroupId,
 in TargetActivitySeqType targetAdditions)
 raises (DuplicateUserGroupId,
 UnknownTargets,
 AccessDenied);

 // See 9.1.1.8 for the description of the behaviour of this operation

 TargetActivitySeqType modifyUserGroup (
 in UserLabelType userGroupId,

 ITU-T Rec. Q.834.4 (07/2003) 113

 in TargetActivitySeqType targetAdditions,
 in TargetActivitySeqType targetDeletions)
 raises (UnknownUserGroupId,
 UnknownTargets,
 AccessDenied);

 // See 9.1.1.9 for the description of the behaviour of this operation

 void deleteUserGroup (
 in UserLabelType userGroupId)
 raises (AccessDenied,
 UserGroupNotEmpty,
 UnknownUserGroupId);

 // See 9.1.1.10 for the description of the behaviour of this operation

 void addUsersToGroup (
 in UserLabelType userGroupId,
 in UserIdSeqType userIdList)
 raises (AccessDenied,
 UnknownUserGroupId); // duplicate users are ignored

 // See 9.1.1.11 for the description of the behaviour of this operation

 void deleteUsersFromGroup (
 in UserLabelType userGroupId,
 in UserIdSeqType userIdList)
 raises (AccessDenied,
 UnknownUserGroupId,
 UnknownUserIds);

 // See 9.1.1.12 for the description of the behaviour of this operation

 TargetActivitySeqType getPermissionList (
 in UserIdType userId)
 raises (UnknownUserIds,
 AccessDenied) ;

 // See 9.1.1.13 for the description of the behaviour of this operation

 TargetActivitySeqType modifyPermissionList (
 in UserIdType userId,
 in TargetActivitySeqType targetAdditions,
 in TargetActivitySeqType targetDeletions)
 raises (UnknownUserIds,
 UnknownTargets,
 AccessDenied);

 // See 9.1.1.14 for the description of the behaviour of this operation

 void createUser (
 in UserIdType userId,
 in PasswordType password,
 in TargetActivitySeqType targetAdditions)
 raises (DuplicateUserId,
 UnknownTargets,
 AccessDenied,
 UserLoginPolicyViolation);

114 ITU-T Rec. Q.834.4 (07/2003)

 // See 9.1.1.15 for the description of the behaviour of this operation

 void deleteUser (
 in UserIdType userId)
 raises (UnknownUserIds,
 AccessDenied);

 // See 9.1.1.16 for the description of the behaviour of this operation

 void resetPassword (
 in UserIdType userId,
 in PasswordType newPassword)
 raises (UnknownUserIds,
 UserLoginPolicyViolation,
 AccessDenied);

 }; // interface AccessControlMgr

}; // module AccessControl

}; // module q834_4

#endif

C.2 Q834Build.idl

#ifndef __Q834_4_BUILD_DEFINED
#define __Q834_4_BUILD_DEFINED

#include "Q834Common.idl"

#pragma prefix "itu.Int"

module q834_4 {

module Build {

// begin definitions from other idl files

// From Q834Common
 typedef Q834Common::NameType NameType;
 typedef Q834Common::ManagedEntityIdType ManagedEntityIdType;
 typedef Q834Common::ManagedEntityIdSeqType ManagedEntityIdSeqType;
 typedef Q834Common::UserLabelType UserLabelType;

 typedef Q834Common::SlotAssignmentSeqType SlotAssignmentSeqType;
 typedef Q834Common::SerialNumType SerialNumType;
 typedef Q834Common::NameSeqType NameSeqType;
 typedef Q834Common::ExternalTimeType ExternalTimeType;
 typedef Q834Common::SystemTimingType SystemTimingType;
 typedef Q834Common::ReservationIdType ReservationIdType;
 typedef Q834Common::ReservationIdSeqType ReservationIdSeqType;
 typedef Q834Common::AdministrationDomainType AdministrationDomainType;
 typedef Q834Common::VersionType VersionType;
 typedef Q834Common::LoopbackLocationIdSeqType LoopbackLocationIdSeqType;
 typedef Q834Common::AdministrativeStateType AdministrativeStateType;
 typedef Q834Common::ServiceCategoryType ServiceCategoryType;
 typedef Q834Common::ConformanceDefType ConformanceDefType;
 typedef Q834Common::ATMOverbookingFactorType ATMOverbookingFactorType;

 ITU-T Rec. Q.834.4 (07/2003) 115

#define AccessDenied Q834Common::AccessDenied
#define DuplicateUserLabel Q834Common::DuplicateUserLabel
#define InvalidSerialNumSyntax Q834Common::InvalidSerialNumSyntax
#define UnknownProfiles Q834Common::UnknownProfiles
#define InvalidUserLabelSyntax Q834Common::InvalidUserLabelSyntax
#define UnknownManagedEntity Q834Common::UnknownManagedEntity
#define ParameterViolation Q834Common::ParameterViolation
#define ProfileSuspended Q834Common::ProfileSuspended
#define UnknownNE Q834Common::UnknownNE

// End definitions from other idl files

 // Local data types

 enum NEKindType {
 BPONOLT,
 BPONONT,
 BPONONU,
 BPONNT
 };

 struct ProtectionUnit
 {
 ManagedEntityIdType portId;
 boolean protectingInd; //TRUE = Protecting, FALSE = Protected
 };

 typedef sequence<ProtectionUnit> ProtectionUnitSeqType;

 enum ProtectionRatioType
 {
 oneForOne,
 oneForN, // N > 1
 mForN // M > 1
 };
 enum AllowedProtectionSwitchingType
 {
 automatic,
 manual,
 both
 };

 struct ProtectionParameterType
 {
 ProtectionRatioType protectionRatio;
 AllowedProtectionSwitchingType protectionSwitchingMethod;
 boolean revertiveInd; // TRUE = revertive
 long waitToRestore; // number of milliseconds before // reverting
 };

 enum SegmentEndpointIndType
 {
 segment,
 endpoint,
 none
 };

116 ITU-T Rec. Q.834.4 (07/2003)

enum DirectionType
{
 unidirection,
 bidirection
};

struct OpticalWaveLengthArrayType {
 unsigned long wavelength;
 DirectionType direction;
 };
 typedef sequence <OpticalWaveLengthArrayType>
OpticalWaveLengthArraySeqType;

 // Local exceptions

 exception InvalidExternalTime {};
 exception UnrecognisedVersion {};
 exception DuplicateSerialNumber {};
 exception InvalidSlotAssignmentList {};
 exception RemainingContainedManagedEntities {
 ManagedEntityIdSeqType containedManagedEntities ;
 };
 exception UnknownNE {};
 exception UnknownSystemTimingSource {};
 exception RemainingReservations {
 ReservationIdSeqType remainingReservationList;
 };
 exception InvalidEquipmentCode {};
 exception SlotAlreadyAssigned {};
 exception UnknownSlot {};
 exception RemainingSubnetworkConnections {
 ManagedEntityIdSeqType containedManagedEntities ;
 };
 exception InterfaceSpeedNotChangeable {};
 exception InvalidProtectionScheme {};

 // End local definitions

 valuetype BuilderValueType: itut_x780::ManagedObjectValueType {

 public ManagedEntityIdSeqType createdNodes; // GET
 };

 interface Builder: itut_x780::ManagedObject {

 // See 9.2.1.1 for the description of the behaviour of this operation

ManagedEntityIdType buildNode (
 in NEKindType nEKind,
 in string supplierName,
 in string location,
 in VersionType hWVersion,
 in SerialNumType serialNum,
 in NameSeqType alarmSeverityProfiles,
 in NameSeqType thresholdDataProfiles,
 in SlotAssignmentSeqType slotAssignmentList,
 in ManagedEntityIdType port, // OLT PON port
 in string modelCode,

 ITU-T Rec. Q.834.4 (07/2003) 117

 in string systemTitle,
 in VersionSeqType softwareVersions,
 in UserLabelType nEUserLabel,
 in ExternalTimeType externalTime,
 in SystemTimingType systemTiming,
 in AdministrationDomainType administrationDomain)
 raises (UnrecognisedVersion,
 InvalidSerialNumSyntax,
 DuplicateSerialNumber,
 UnknownProfiles,
 UnknownManagedEntity,
 DuplicateUserLabel,
 AccessDenied,
 InvalidExternalTime,
 UnknownSystemTimingSource,
 ProfileSuspended);

 // See 9.2.1.2 for the description of the behaviour of this operation

 void assignUserLabelsToNE (
 in SerialNumType serialNum,
 in UserLabelType nEUserLabel,
 in AdministrationDomainType administrationDomain)
 raises (InvalidSerialNumSyntax,
 DuplicateSerialNumber,
 DuplicateUserLabel,
 AccessDenied);

 // See 9.2.1.3 for the description of the behaviour of this operation

void modifyNode (
 in ManagedEntityIdType managedEntityId,
 in SlotAssignmentSeqType newSlotAssignmentList,
 in NameSeqType newAlarmSeverityProfiles,
 in NameSeqType newThresholdDataProfiles,
 in ManagedEntityIdType port, // OLT PON Port
 in string newModelCode,
 in UserLabelType newNEuserLabel,
 in ExternalTimeType externalTime,
 in AdministrationDomainType administrationDomain)
 raises (UnknownManagedEntity,
 UnknownNE,
 InvalidSlotAssignmentList,
 UnknownProfiles,
 DuplicateUserLabel,
 AccessDenied,
 InvalidExternalTime,
 ProfileSuspended);

 // See 9.2.1.4 for the description of the behaviour of this operation

 void deleteNode (
 in ManagedEntityIdType managedEntityId)
 raises (UnknownNE,
 RemainingContainedManagedEntities,
 AccessDenied,
 RemainingReservations,
 RemainingSubnetworkConnections);

 // See 9.2.1.5 for the description of the behaviour of this operation

118 ITU-T Rec. Q.834.4 (07/2003)

 void modifyPort (
 in ManagedEntityIdType physicalPathTPId,
 in NameSeqType newAlarmSeverityProfiles,
 in NameSeqType newThresholdDataProfiles,
 in NameSeqType newPortProfiles,
 in string newFrameFormat,
 in AdministrativeStateType administrativeState,
 in OpticalWaveLengthArraySeqType newOpticalWavelengthArray,
 in LoopbackLocationIdSeqType newLoopbackLocationId,
 in unsigned long newInterfaceSpeed,
 in unsigned long aRCTimer)
 raises (UnknownManagedEntity,
 UnknownProfiles,
 AccessDenied,
 InterfaceSpeedNotChangeable,
 ProfileSuspended);

 // See 9.2.1.6 for the description of the behaviour of this operation

 ManagedEntityIdType buildPlugInUnit (
 in ManagedEntityIdType nEId,
 in NameType alarmSeverityProfile,
 in UserLabelType plugInUnitUserLabel,
 in string modelCode,
 in ManagedEntityIdType equipmentHolder,
 in AdministrativeStateType administrativeState)
 raises (UnknownNE,
 DuplicateUserLabel,
 AccessDenied,
 UnknownManagedEntity,
 InvalidEquipmentCode,
 SlotAlreadyAssigned,
 UnknownSlot,
 InvalidSlotAssignmentList,
 UnknownProfiles,
 ProfileSuspended);

 // See 9.2.1.7 for the description of the behaviour of this operation

 ManagedEntityIdType modifyPlugInUnit (
 in ManagedEntityIdType plugInUnitId,
 in NameType newAlarmSeverityProfile,
 in string newModelCode,
 in ManagedEntityIdType newEquipmentHolder,
 in UserLabelType newPlugInUnitUserLabel,
 in AdministrativeStateType newAdministrativeState)
 raises (UnknownManagedEntity,
 UnknownProfiles,
 AccessDenied,
 InvalidEquipmentCode,
 SlotAlreadyAssigned,
 UnknownSlot,
 InvalidSlotAssignmentList,
 InvalidUserLabelSyntax,
 ProfileSuspended);

 // See 9.2.1.8 for the description of the behaviour of this operation

 void deletePlugInUnit (
 in ManagedEntityIdType plugInUnitId)
 raises (UnknownManagedEntity,
 RemainingSubnetworkConnections,

 ITU-T Rec. Q.834.4 (07/2003) 119

 AccessDenied,
 RemainingReservations);

 // See 9.2.1.9 for the description of the behaviour of this operation

 ManagedEntityIdType buildProtectionGrouping(
 in ProtectionParameterType protectionParameters,
 in ProtectionUnitSeqType protectionUnitList)
 raises (InvalidProtectionScheme,
 AccessDenied);

 // See 9.2.1.10 for the description of the behaviour of this operation

 void modifyProtectionParameters(
 in ManagedEntityIdType protectionGroupingId,
 in ProtectionParameterType newProtectionParameters)
 raises (UnknownManagedEntity,
 InvalidProtectionScheme,
 AccessDenied);

 // See 9.2.1.11 for the description of the behaviour of this operation

 void modifyProtectionUnitList(
 in ManagedEntityIdType protectionGroupingId,
 in ProtectionUnitSeqType deltaProtectionUnitList,
 in boolean addDeleteInd) // TRUE = add
 raises (UnknownManagedEntity,
 InvalidProtectionScheme,
 AccessDenied);

 // See 9.2.1.12 for the description of the behaviour of this operation
 void deleteProtectionGrouping(
 in ManagedEntityIdType protectionGroupingId)
 raises (UnknownManagedEntity,
 AccessDenied);

 // See 9.2.1.13 for the description of the behaviour of this operation
 ManagedEntityIdType buildBridge(
 in NameType mACBridgeProfile,
 in ManagedEntityIdType uplinkPort,
 in ManagedEntityIdSeqType uNIPortList)
 raises (UnknownProfiles,
 AccessDenied,
 UnknownManagedEntity,
 ProfileSuspended);

 // See 9.2.1.14 for the description of the behaviour of this operation
 void modifyBridgeProfile(
 in ManagedEntityIdType bridgeId,
 in NameType newMACBridgeProfile)
 raises (UnknownProfiles,
 AccessDenied,
 UnknownManagedEntity,
 ProfileSuspended);

 // See 9.2.1.15 for the description of the behaviour of this operation
 void modifyBridgePortList(
 in ManagedEntityIdType bridgeId,
 in ManagedEntityIdSeqType deltaUNIPortList,
 in boolean addDeleteInd)
 raises (AccessDenied,
 RemainingSubnetworkConnections,
 UnknownManagedEntity);

120 ITU-T Rec. Q.834.4 (07/2003)

 // See 9.2.1.16 for the description of the behaviour of this operation
 void deleteBridge(
 in ManagedEntityIdType bridgeId)
 raises (AccessDenied,
 RemainingSubnetworkConnections,
 UnknownManagedEntity);

 // See 9.2.1.17 for the description of the behaviour of this operation
 ManagedEntityIdType buildVPNetworkCTP(
 in ManagedEntityIdType port,
 in short vPI,
 in NameType trafficDescriptorProfileName,
 in ATMOverbookingFactorType overbookingFactor,
 in UserLabelType userLabel,
 in SegmentEndpointIndType segmentEndpointInd)
 raises (AccessDenied,
 UnknownManagedEntity,
 UnknownProfiles,
 ParameterViolation,
 ProfileSuspended);

 // See 9.2.1.18 for the description of the behaviour of this operation
 void deleteVPNetworkCTP (
 in ManagedEntityIdType vPNetworkCTP)
 raises (AccessDenied,
 RemainingSubnetworkConnections,
 UnknownManagedEntity);

 // See 9.2.1.19 for the description of the behaviour of this operation

 ManagedEntityIdSeqType createdNodesGet ()
 raises (AccessDenied);

 }; // interface Builder

}; // module Build

}; // module q834_4

#endif

C.3 Q834Common.idl

#ifndef __Q834_4_COMMON_DEFINED
#define __Q834_4_COMMON_DEFINED

#include "CosNaming.idl"
#include "CosNotifyFilter.idl"
#include "itut_x780.idl"
#include "TimeBase.idl"

#pragma prefix "itu.Int"

module q834_4 {

module Q834Common {

// Begin definitions from other idl files

// From CosNaming
 typedef CosNaming::Name NameType;

 ITU-T Rec. Q.834.4 (07/2003) 121

// From CosNotifyFilter
 typedef CosNotifyFilter::Filter FilterType;

// From TimeBase
 typedef TimeBase::UtcT UtcT;

// From X780

 typedef itut_x780::ProbableCauseType ProbableCauseType;
 typedef itut_x780::AdministrativeStateType AdministrativeStateType;
 typedef itut_x780::OperationalStateType OperationalStateType;
 typedef itut_x780::ProceduralStatusSetType ProceduralStatusSetType;
 typedef itut_x780::PerceivedSeverityType PerceivedSeverityType;
 typedef itut_x780::AvailabilityStatusSetType AvailabilityStatusSetType;
 typedef itut_x780::UsageStateType UsageStateType;
 typedef itut_x780::ControlStatusSetType ControlStatusSetType;
 typedef itut_x780::SpecificProblemSetType SpecificProblemSetType;
 typedef itut_x780::BackedUpStatusType BackedUpStatusType;
 typedef itut_x780::AttributeChangeSetType AttributeChangeSetType;
 typedef itut_x780::SecurityAlarmCauseType SecurityAlarmCauseType;

// End definitions from other idl files

// Local data types

 struct NamingComponentType {
 string type; // managed entity type
 string id;
 };

 typedef sequence<NamingComponentType> RDNType;
 typedef sequence<RDNType> RDNSeqType;
 typedef sequence<NameType> NameSeqType;

 enum IdType {
 none,
 x780_fineGrained,
 x780_coarseGrained
 };

 typedef RDNType MEIdType;

 struct ManagedEntityIdType {
 IdType id;
 MEIdType mEId;
 };

 typedef sequence<ManagedEntityIdType> ManagedEntityIdSeqType;
 typedef string UserLabelType;
 typedef string SerialNumType;
 typedef string VersionType;
 typedef string PlugInUnitType;
 typedef sequence<UserLabelType> UserLabelSeqType;

 typedef UserLabelType AdministrationDomainType;
 typedef sequence<AdministrationDomainType> AdministrationDomainSeqType;

 typedef string DCNAddressType;

 typedef unsigned short RecordKindType;

 typedef string PlugInType;

122 ITU-T Rec. Q.834.4 (07/2003)

 // SlotAssignmentList
 struct SlotAssignmentType {
 short number;
 PlugInType plugIn; // empty string implies that the slot is not
 // provisioned for any particular type of plug-in unit
 };

 typedef sequence <SlotAssignmentType> SlotAssignmentSeqType;
 typedef string ReservationIdType;
 typedef sequence<ReservationIdType> ReservationIdSeqType;
 typedef string ServiceInstanceIdType;
 typedef sequence<ServiceInstanceIdType> ServiceInstanceIdSeqType;

 typedef UtcT GeneralizedTimeType;
 typedef GeneralizedTimeType ExternalTimeType;

 enum SystemTimingSourceType {
 internalTimingSource, // freerun
 remoteTimingSource, // external
 slaveTimingTerminationSignal
 };

 typedef ManagedEntityIdType TimingSourceIdType ;

 struct SystemTimingComponentType {
 SystemTimingSourceType type;
 TimingSourceIdType id;
 };

 struct SystemTimingType {
 SystemTimingComponentType Primary;
 SystemTimingComponentType Secondary;
 };

 typedef UserLabelType UserIdType;
 typedef string PasswordType;

 /*
 All zeros indicate a loopback request directed at all connection
 points having an LLID in the flow. All ones indicate a loopback
 request directed at the endpoint (segment or connection endpoint).
 'x6A'H indicates no designated CP for loopback, and therefore no
 loopback should be performed. All other values for LLID indicate
 a loopback request directed at a specific LLID location.
 */
 typedef sequence<octet,16> LoopbackLocationIdSeqType;

 typedef string FilenameType; // specifies the complete path

 enum StatusType {
 procedural_status,
 other
 };

 enum OtherStatusType {
 completed_success,
 completed_failure,
 activityInProgress,
 unknownstatus
 };

 ITU-T Rec. Q.834.4 (07/2003) 123

 union StatusValueType switch (StatusType) {
 case procedural_status: ProceduralStatusSetType proceduralStatusSet;
 case other: OtherStatusType otherStatus;
 };

 struct StatusAttributeType {
 StatusValueType valueOfStatus;
 ManagedEntityIdType ne;
 short percentComplete;
 };

 typedef sequence<StatusAttributeType> StatusAttributeSeqType;

 typedef unsigned long TrackingObjectIdType;

 typedef TrackingObjectIdType TransferTrackingObjectIdType;

 typedef any RecordType; // based on recordType (Values defined in
Q834Common::RecordSetType) Need definition of recordType and individual type of
records
 typedef sequence<RecordType> RecordSeqType;

 typedef unsigned long long NotificationIdentifierType; // will be replaced
 // by NotifIDType defined in X.780 when that definition
is changed from "long" to "long long"

 typedef sequence<NotificationIdentifierType> NotificationIdentifierSeqType;

 typedef string MonitoredParameterType; // Values defined in
Q834Common::MonitoringParameter
 typedef unsigned short MonitoringKindType; // values defined in
Q834Common::PMCategory interface

 struct EndPointType {
 ManagedEntityIdType portId;
 any endPointParameters;
 NameSeqType serviceCharacteristicsProfiles;
 };

 /*
 endPointParameters: service specific parameters, structures to be
 provided as part of implementation. An ATM connection for example
 would have the VPI, VCI parameters.
 */

 enum AlarmStatusComponentType {
 AS_UnderRepair,
 AS_Critical,
 AS_Major,
 AS_Minor,
 AS_AlarmOutstanding
 };

 typedef sequence<AlarmStatusComponentType> AlarmStatusSeqType;

 struct EquipmentHolderAddressType {
 short shelfNumber;
 short slotNumber;
 };

 /*

124 ITU-T Rec. Q.834.4 (07/2003)

 If the equipment holder is a shelf, the slot number is 0. If the
 equipment holder is a slot, then both the slot number and shelf numbers
 are greater than or equal to 1.
 */

 /*
 The supplier provides a customization of the DiscoveryEventSupplier
 interface by defining the const string plugInUnit names. It will be up to
 the operator to enforce consistency and non-duplication across multiple
 supplier's solutions.
 */

 typedef sequence<PlugInUnitType> PlugInUnitSeqType;

struct NEFSANType {
 ManagedEntityIdType managedEntityId;
 AdministrativeStateType administrativeState;
 OperationalStateType operationalState;
 GeneralizedTimeType externalTime;
 string locationName;
 string supplierName;
 VersionType hardwareVersion;
 VersionSeqType softwareVersions;
 string serialNumber;
 NameSeqType alarmSeverityAssignmentProfileNames;
 AlarmStatusSeqType alarmStatusValues;
 NameSeqType thresholdDataNames;
 ManagedEntityIdSeqType supportedByManagedEntityList;
 UserLabelType userLabel;
 };
 /*
 SupportedByManagedEntityList should include the instance of Software
 controlling the NE.
 */

 /*
 Next, structs are defined that form the basis for equipment
 inventory information discovered at installation or with equipment
 rearrangement actions. Any one of these structs is subsequently
 identified as Mestruct in the DiscoveryEventSupplier interface
 specification.
 */

 struct OLTType {
 NEFSANType nEFSAN;
 ManagedEntityIdSeqType subtendingNEFSANList;
 };

 struct ONTType {
 NEFSANType nEFSAN;
 ManagedEntityIdType upstreamNEFSAN;
 };

 struct ONUType {
 NEFSANType nEFSAN;
 ManagedEntityIdType upstreamNEFSAN;
 ManagedEntityIdSeqType subtendingNEFSANList;
 };

 ITU-T Rec. Q.834.4 (07/2003) 125

 struct NTType {
 NEFSANType nEFSAN;
 ManagedEntityIdType upstreamNEFSAN;
 };

 struct EquipmentHolderFType {
 ManagedEntityIdType equipmentHolderFId;
 ManagedEntityIdType containingNEId;
 EquipmentHolderAddressType equipmentHolderAddress;
 boolean slotStatus;
 PlugInUnitSeqType expectedPlugInUnits;
 string SoftwareLoad;
 NameType alarmSeverityAssignmentProfileName;
 AlarmStatusSeqType alarmStatusValues;
 OperationalStateType operationalState;
 };

 struct PlugInUnitFType {
 ManagedEntityIdType plugInUnitFId;
 ManagedEntityIdType containingNEId;
 EquipmentHolderAddressType containingSlotAddress;
 AdministrativeStateType administrativeState;
 AvailabilityStatusSetType availabilityStatus;
 OperationalStateType operationalState;
 string modelCode;
 string functionCode;
 string supplierName;
 VersionType hardwareVersion;
 string serialNumber;
 short portCount;
 NameSeqType alarmSeverityAssignmentProfileNames;
 NameSeqType thresholdDataNames;
 UserLabelType circuitPackUserLabel;
 ManagedEntityIdSeqType supportedByManagedEntityList;
 };

 enum ServiceCategoryType {
 CBR,
 UBR,
 RTVBR,
 NRTVBR,
 AdaptiveBR,
 GFR
 };

 enum ConformanceDefType {
 CBR1,
 UBR1,
 UBR2,
 VBR1,
 VBR2,
 VBR3,
 ABR,
 GFR1,
 GFR2
 };

 struct ATMOverbookingFactorType {
 ServiceCategoryType serviceCategory;
 ConformanceDefType conformanceDef;
 short overbookingFactor; // percentage: 100 = no overbooking
 };

 struct AlarmLogRecordType {

126 ITU-T Rec. Q.834.4 (07/2003)

 long long recordId;
 ManagedEntityIdType mEId;
 GeneralizedTimeType loggingTime;
 short probableCause;
 PerceivedSeverityType severity;
 GeneralizedTimeType eventTime;
 ManagedEntityIdType backupEntityId;
 boolean backedupStatus;
 boolean serviceAffectingInd;
 ServiceInstanceIdSeqType affectedServices;
 NotificationIdentifierType notificationId;
 NotificationIdentifierSeqType correlatedNotifications;
 string monitoredParameter;
 long long thresholdValue;
 long long observedValue;
 string additionalText;
 };

 struct SecurityAlarmLogRecordType {
 long long recordId;
 ManagedEntityIdType mEId;
 GeneralizedTimeType loggingTime;
 short securityAlarmCause; // values defined in X.780
 GeneralizedTimeType eventTime;
 ManagedEntityIdType securityAlarmDetector;
 ManagedEntityIdType serviceUser;
 ManagedEntityIdType serviceProvider;
 NotificationIdentifierType notificationId;
 NotificationIdentifierSeqType correlatedNotifications;
 string additionalText;
 };

 struct ServiceOutageRecordType {
 long long recordId;
 ServiceInstanceIdType affectedService;
 GeneralizedTimeType loggingTime;
 GeneralizedTimeType outageStartTime;
 GeneralizedTimeType outageEndTime;
 NotificationIdentifierSeqType correlatedNotifications;
 };

 struct AAL1PMHistoryDataType {
 long long recordId;
 ManagedEntityIdType monitoringPoint;
 GeneralizedTimeType periodEndTime;
 boolean suspectIntervalFlag;
 NameType ThresholdDataId;
 unsigned long long HeaderErrors;
 unsigned long long LostCells;
 unsigned long long CellMisinsertion;
 unsigned long long BufferUnderflows;
 unsigned long long SequenceViolations;
 unsigned long long SDTPtrReframes;
 unsigned long long SDTPtrParityCheckFailures;
 };

 struct AAL2PMHistoryDataType {
 long long recordId;
 ManagedEntityIdType monitoringPoint;
 GeneralizedTimeType periodEndTime;
 boolean suspectIntervalFlag;
 NameType ThresholdDataId; unsigned long long CPSInPkts;
 unsigned long long CPSOutPkts;
 unsigned long long BufferUnderflow;

 ITU-T Rec. Q.834.4 (07/2003) 127

 unsigned long long BufferOverflow;
 unsigned long long ParityErrors;
 unsigned long long SeqNumErrors;
 unsigned long long CPS_OSFMismatchErrors;
 unsigned long long CPS_OSFErrors;
 unsigned long long CPSHECErrors;
 unsigned long long OversizedSDUErrors;
 unsigned long long ReassemblyErrors;
 unsigned long long HECOverlapErrors;
 unsigned long long UUIErrors;
 unsigned long long CIDErrors;
 };

 struct AAL5PMHistoryDataType {
 long long recordId;
 ManagedEntityIdType monitoringPoint;
 GeneralizedTimeType periodEndTime;
 boolean suspectIntervalFlag;
 NameType ThresholdDataId;
 unsigned long long SumOfInvalidCSFieldErrors;
 unsigned long long CRCViolations;
 unsigned long long BufferOverflows;
 unsigned long long EncapProtocolErrors;
 };

 struct APONPMHistoryDataType {
 long long recordId;
 ManagedEntityIdType monitoringPoint;
 GeneralizedTimeType periodEndTime;
 boolean suspectIntervalFlag;
 NameType ThresholdDataId;
 unsigned long long ES;
 unsigned long long FEES;
 };

 struct ATMTrafficLoadHistoryDataType {
 long long recordId;
 ManagedEntityIdType monitoringPoint;
 GeneralizedTimeType periodEndTime;
 boolean suspectIntervalFlag;
 NameType ThresholdDataId;
 unsigned long long CellsReceived;
 unsigned long long CellsTransmitted;
 };

 struct DS1PMHistoryDataType {
 long long recordId;
 ManagedEntityIdType monitoringPoint;
 GeneralizedTimeType periodEndTime;
 boolean suspectIntervalFlag;
 NameType ThresholdDataId;
 unsigned long long ESP;
 unsigned long long BESP;
 unsigned long long SESP;
 unsigned long long UASP;
 unsigned long long ESPFE;
 unsigned long long BESPFE;
 unsigned long long SESPFE;
 unsigned long long UASPFE;
 };

 struct DS3PMHistoryDataType {
 long long recordId;
 ManagedEntityIdType monitoringPoint;

128 ITU-T Rec. Q.834.4 (07/2003)

 GeneralizedTimeType periodEndTime;
 boolean suspectIntervalFlag;
 NameType ThresholdDataId;
 unsigned long long ESL;
 unsigned long long SESL;
 unsigned long long CVCPorCVPP;
 unsigned long long ESCPPorESPP;
 unsigned long long SESCPPorSESPP;
 unsigned long long UASCPPorUASPP;
 };

 struct E1PMHistoryDataType {
 long long recordId;
 ManagedEntityIdType monitoringPoint;
 GeneralizedTimeType periodEndTime;
 boolean suspectIntervalFlag;
 NameType ThresholdDataId;
 unsigned long long ESP;
 unsigned long long BESP;
 unsigned long long SESP;
 unsigned long long UASP;
 unsigned long long ESPFE;
 unsigned long long BESPFE;
 unsigned long long SESPFE;
 unsigned long long UASPFE;
 };

 struct EthernetHistoryDataType {
 long long recordId;
 ManagedEntityIdType monitoringPoint;
 GeneralizedTimeType periodEndTime;
 boolean suspectIntervalFlag;
 NameType ThresholdDataId;
 unsigned long long SingleCollisionFrame;
 unsigned long long MultipleCollisionFrames;
 unsigned long long SQE;
 unsigned long long DeferredTransmission;
 unsigned long long LateCollision;
 unsigned long long ExcessiveCollision;
 unsigned long long InternalMACTransmitError;
 unsigned long long CarrierSenseError;
 unsigned long long BufferOverflows;
 unsigned long long AlignmentError;
 unsigned long long FrameTooLongs;
 unsigned long long FCSErrors;
 unsigned long long InternalMACReceiveError;
 };

 struct MACBridgePMHistoryDataType {
 long long recordId;
 ManagedEntityIdType monitoringPoint;
 GeneralizedTimeType periodEndTime;
 boolean suspectIntervalFlag;
 NameType ThresholdDataId;
 unsigned long long NumberofSuppressedIntervals;
 unsigned long long BridgeLearningEntryDiscard;
 };

 struct MACBridgePMPortHistoryDataType {
 long long recordId;
 ManagedEntityIdType monitoringPoint;
 GeneralizedTimeType periodEndTime;
 boolean suspectIntervalFlag;
 NameType ThresholdDataId;

 ITU-T Rec. Q.834.4 (07/2003) 129

 unsigned long long ForwardedFrame;
 unsigned long long DelayExceededDiscard;
 unsigned long long MTUExceededDiscard;
 unsigned long long ReceivedFrame;
 unsigned long long ReceivedAndDiscarded;
 };

 struct UpcNpcDisagreementPMHistoryDataType {
 long long recordId;
 ManagedEntityIdType monitoringPoint;
 GeneralizedTimeType periodEndTime;
 boolean suspectIntervalFlag;
 NameType ThresholdDataId;
 unsigned long long DiscardedCells;
 unsigned long long DiscardedCLP_0Cells;
 unsigned long long TaggedCLP_0Cells;
 };

 struct VoicePMHistoryDataType {
 long long recordId;
 ManagedEntityIdType monitoringPoint;
 GeneralizedTimeType periodEndTime;
 boolean suspectIntervalFlag;
 NameType ThresholdDataId;
 unsigned long long IncomingCallAttempts;
 unsigned long long OutgoingCallAttempts;
 unsigned long long VoicePortBufferOverflows;
 unsigned long long VoicePortBufferUnderflows;
 };

 struct VpVcPMHistoryDataType {
 long long recordId;
 ManagedEntityIdType monitoringPoint;
 GeneralizedTimeType periodEndTime;
 boolean suspectIntervalFlag;
 NameType ThresholdDataId;
 unsigned long long Lost0plus1UserInformationCells;
 unsigned long long Lost0UserInformationCells;
 unsigned long long MisinsertedUserInformationCells;
 unsigned long long Transmitted0plus1UserInformationCells;
 unsigned long long Transmitted0UserInformation;
 unsigned long long ImpairedBlock;
 };

 struct SONETSDHLinePMHistoryDataType {
 long long recordId;
 ManagedEntityIdType monitoringPoint;
 GeneralizedTimeType periodEndTime;
 boolean suspectIntervalFlag;
 NameType ThresholdDataId;
 unsigned long long ErroredSecondsP;
 unsigned long long SeverelyErroredSecondsP;
 unsigned long long BackgroundBlockErrorP;
 unsigned long long OutOfFrameSecondsP;
 unsigned long long UnavailableSecondsP;
 };

 struct SONETSDHSectionPathPMHistoryDataType {
 long long recordId;
 ManagedEntityIdType monitoringPoint;
 GeneralizedTimeType periodEndTime;
 boolean suspectIntervalFlag;
 NameType ThresholdDataId;
 unsigned long long ErroredSecondsP;

130 ITU-T Rec. Q.834.4 (07/2003)

 unsigned long long SeverelyErroredSecondsP;
 unsigned long long BackgroundBlockErrorP;
 unsigned long long OutOfFrameSecondsP;
 unsigned long long UnavailableSecondsP;
 unsigned long long FailureCountP;
 unsigned long long ErroredSecondsTypeAP;
 unsigned long long ErroredSecondsTypeBP;
 unsigned long long ErroredSecondsPFE;
 unsigned long long SeverelyErroredSecondsPFE;
 unsigned long long BackgroundBlockErrorPFE;
 unsigned long long OutOfFrameSecondsPFE;
 unsigned long long UnavailableSecondsPFE;
 unsigned long long FailureCountPFE;
 unsigned long long ErroredSecondsTypeAPFE;
 unsigned long long ErroredSecondsTypeBPFE;
 };

 struct SONETSDHSectionAdaptationPMHistoryDataType {
 long long recordId;
 ManagedEntityIdType monitoringPoint;
 GeneralizedTimeType periodEndTime;
 boolean suspectIntervalFlag;
 NameType ThresholdDataId;
 unsigned long long PointerJustificationHighCountP;
 unsigned long long PointerJustificationLowCountP;
 };

 struct TCAdaptationProtocolMonitoringPMHistoryDataType {
 long long recordId;
 ManagedEntityIdType monitoringPoint;
 GeneralizedTimeType periodEndTime;
 boolean suspectIntervalFlag;
 NameType ThresholdDataId;
 unsigned long long DiscardedCellsHECViolationP;
 unsigned long long ErroredCellsHECViolationP;
 };

//Common exceptions

 exception AccessDenied {};
 exception CommFailure {};
 exception ConnectionCountExceeded {};
 exception DuplicateUserLabel {};
 exception EquipmentFailure {};
 exception InsufficientBW {};
 exception InsufficientPONBW {
 ManagedEntityIdType ponPORT;
 };
 exception InvalidSerialNumSyntax {};
 exception InvalidUserLabelSyntax {};
 exception MaxSubtendingNodesExceeded {};
 exception Timeout {};
 exception UnknownManagedEntity {
 ManagedEntityIdType managedEntityId;
 };
 exception UnknownNE {
 ManagedEntityIdSeqType unknownNEs;
 };
 exception UnknownPort {};
 exception UnknownProfiles {};
 exception UnknownReservationId {};
 exception UnknownScheduler {};
 exception InvalidScheduler {};
 exception DCNTimeout {};

 ITU-T Rec. Q.834.4 (07/2003) 131

 exception UnknownDestinationServer {};
 exception UnknownServiceInstance {};
 exception DeniedAccess {};
 exception BackupInProgress {};
 exception InvalidStartTime {};
 exception InvalidStopTime {};
 exception ParameterViolation {};
 exception UnknownRecordSet {};
 exception SynchInProgress {};
 exception ProfileSuspended {
 NameSeqType profilesSuspended;
 };

 module ProbableCauseConst {

 const string moduleName = "q834_4::Q834Common::ProbableCauseConst";

 interface ProbableCause {
 /*
 For X.780 probableCause refer to itut_x780::ProbableCauseConst.
 */

 // Additional ProbableCause values needed for BPON

 const unsigned short LOSS_OF_PATH_POINTER = 1;
 const unsigned short STS_PAYLOAD_LABEL_MISMATCH = 2;
 const unsigned short STS_PATH_UNEQUIPPED = 3;
 const unsigned short ALARM_INDICATION_SIGNAL = 4;
 const unsigned short REMOTE_FAILURE_INDICATION = 5;
 const unsigned short REMOTE_ALARM_INDICATION = 6;
 const unsigned short ALARM_INDICATION_SIGNAL_PATH = 7;
 const unsigned short
ALARM_INDICATION_SIGNAL_CUSTOMER_INSTALLATION = 8;
 const unsigned short LOSS_OF_SIGNAL_TO_ALL_ONU_ONU = 9;
 const unsigned short LOSS_OF_SIGNAL_ONU_OR_ONT = 10;
 const unsigned short LOSS_OF_ACKNOWLEDGEMENT_ONU_OR_ONT = 11;
 const unsigned short PLOAMCL_ONU_OR_ONT = 12; //Physical Layer OAM
Cell Loss
 const unsigned short LOCD_ONU_OR_ONT = 13; // Loss of Cell
Delineation
 const unsigned short CPHE_ONU_OR_ONT = 14; // Cell Phase Error
 const unsigned short PEE_ONU_OR_ONT = 15;
 const unsigned short RF_ONU_OR_ONT = 16; // Ranging Failure
 const unsigned short BED_ONU_OR_ONT = 17; // Block Error Detection
 const unsigned short SD_ONU_OR_ONT = 18; // Signal Degraded
 const unsigned short REI_ONU_OR_ONT = 19; // Remote Error
Indication
 const unsigned short UM_ONU_OR_ONT = 20; // Unknown Message
 const unsigned short LM_ONU_OR_ONT = 21; // Link Mismatch
 const unsigned short REMOTE_DEFECT_INDICATION = 22; // Signal
Degraded
 const unsigned short MAJOR_POWER_FAILURE = 23;
 const unsigned short
REMOTE_ALARM_INDICATION_FAR_END_CUSTOMER_INSTALLATION = 24;
 const unsigned short LOSS_OF_ATM_CELL_DELINEATION = 25;
 const unsigned short LOW_BATTERY_THRESHOLD = 26;
 const unsigned short DIAGNOSTIC_TEST_FAILURE = 27; // See below
comment
 const unsigned short LOSS_OF_DCN_LINK = 28;
 const unsigned short CELL_STARVATION = 29;
 const unsigned short UNEXPECTED_PLUGIN = 30;
 const unsigned short IMPROPER_CARD_REMOVAL = 31;
 const unsigned short SLOT_CARD_MISMATCH = 32;

132 ITU-T Rec. Q.834.4 (07/2003)

 const unsigned short LOS_LAN = 33; // Loss of carrier on Bridge
LAN port
 const unsigned short PERSISTENT_IMPAIRMENT = 34;
 }; // interface ProbableCause
 }; // module ProbableCauseConst

 interface MonitoringParameter {
 /*
 Names for monitored performance and traffic parameters
 */

 const string allParameters = "AllParameters";
 const string aAL1HeaderErrors = "AAL1HeaderErrors";
 const string allTypesCellsDiscarded = "AllTypesCellsDiscarded";
 const string aTMProtocolErrors = "ATMProtocolErrors";
 const string bESFEP = "BESFEP";
 const string bESP = "BESP";
 const string bufferOverflows = "BufferOverflows";
 const string bufferUnderflows = "BufferUnderflows";
 const string cellDelineationAnomalies = "CellDelineationAnomalies";
 const string cellMisinsertion = "CellMisinsertion";
 const string cRCViolations = "CRCViolations";
 const string cVCP = "CVCP";
 const string cVL = "CVL";
 const string cVPP = "CVPP";
 const string cVS = "CVS";
 const string discardedAllTypeCellsduetoNPC =
"DiscardedAllTypeCellsduetoNPC";
 const string discardedAllTypeCellsduetoUPC =
"DiscardedAllTypeCellsduetoUPC";
 const string discardedPriorityCellsduetoNPC =
"DiscardedPriorityCellsduetoNPC";
 const string discardedPriorityCellsduetoUPC =
"DiscardedPriorityCellsduetoUPC";
 const string encapProtocolErrors = "EncapProtocolErrors";
 const string eSCPP = "ESCPP";
 const string eSPONT = "ESPONT";
 const string eSL = "ESL";
 const string eSP = "ESP";
 const string eSPP = "ESPP";
 const string eSS = "ESS";
 const string excessiveCollisions = "ExcessiveCollisions";
 const string fCSErrors = "FCSErrors";
 const string frameTooLongs = "FrameTooLongs";
 const string hECViolations = "HECViolations";
 const string impairedBlocks = "ImpairedBlocks";
 const string lateCollisions = "LateCollisions";
 const string lostCells = "LostCells";
 const string lostPriorityUserInformationCells =
"LostPriorityUserInformationCells";
 const string lostUserInformationCells = "LostUserInformationCells";
 const string misinsertedUserInformationCells =
"MisinsertedUserInformationCells";
 const string priorityCellsDiscarded = "PriorityCellsDiscarded";
 const string sDTPointerReframes = "SDTPointerReframes";
 const string sDTPointerParityCheckFailures =
"SDTPointerParityCheckFailures";
 const string sequenceViolations = "SequenceViolations";
 const string sESCPP = "SESCPP";
 const string sESPONT = "SESPONT";
 const string sESL = "SESL";
 const string sESP = "SESP";
 const string sESPP = "SESPP";
 const string sESS = "SESS";

 ITU-T Rec. Q.834.4 (07/2003) 133

 const string sumOfInvalidCSFieldErrors = "SumOfInvalidCSFieldErrors";
 const string uASPONT = "UASPONT";
 const string uASCPP = "UASCPP";
 const string uASP = "UASP";
 const string uASPP = "UASPP";
 const string incomingCallAttempts = "IncomingCallAttempts";
 const string outgoingCallAttempts = "OutgoingCallAttempts";
 const string voicePortBufferOverflows = "VoicePortBufferOverflows";
 const string voicePortBufferUnderflows = "VoicePortBufferUnderflows";
 const string cPSInPkts = "CPSInPkts";
 const string cPSOutPkts = "CPSOutPkts";
 const string bufferUnderflow = "BufferUnderflow";
 const string bufferOverflow = "BufferOverflow";
 const string parityErrors = "ParityErrors";
 const string seqNumErrors = "SeqNumErrors";
 const string cPS_OSFMismatchErrors = "CPS_OSFMismatchErrors";
 const string cPS_OSFErrors = "CPS_OSFErrors";
 const string cPSHECErrors = "CPSHECErrors";
 const string oversizedSDUErrors = "OversizedSDUErrors";
 const string reassemblyErrors = "ReassemblyErrors";
 const string hECOverlapErrors = "HECOverlapErrors";
 const string uUIErrors = "UUIErrors";
 const string cIDErrors = "CIDErrors";

 }; // interface MonitoringParameter

 interface PMCategory {
 const unsigned short DS1_PM = 1;
 const unsigned short DS3_PM = 2;
 const unsigned short E1_PM = 3;
 const unsigned short E3_PM = 4;
 const unsigned short VP_PM = 5;
 const unsigned short VC_PM = 6;
 const unsigned short ETHERNET_PM = 7;
 const unsigned short TC_ADAPTOR_PM = 8;
 const unsigned short VOICE_PM = 9;
 const unsigned short APON_PM = 10;
 const unsigned short MACBRIDGE_PM = 11;
 const unsigned short MACBRIDGEPORT_PM = 12;
 const unsigned short ATMTRAFFICLOAD_PM = 13;
 const unsigned short AAL1_PM = 14;
 const unsigned short AAL2_PM = 15;
 const unsigned short AAL5_PM = 16;
 const unsigned short UPCNPC_PM = 17;
 const unsigned short DBA_PM = 18;
 const unsigned short SONET_SDH_LINE_PM = 19;
 const unsigned short SONET_SDH_SECTION_PATH_PM = 20;
 const unsigned short SONET_SDH_SECTION_ADAPTATION_PM = 21;
 const unsigned short CALL_STATS_PM = 22;
 const unsigned short VIDEO_PM = 23;

 }; // interface PMCategory

 interface RecordSetType {

 // Beginning of Values for RecordKindType
 // Values 1-99 reserved for HistoryDataType

 const unsigned short DS1PMHISTORYDATA = 1;
 const unsigned short DS3PMHISTORYDATA = 2;
 const unsigned short E1PMHISTORYDATA = 3;
 const unsigned short E3PMHISTORYDATA = 4;
 const unsigned short VPVCPMHISTORYDATA = 5;
 const unsigned short AAL1PMHISTORYDATA = 6;

134 ITU-T Rec. Q.834.4 (07/2003)

 const unsigned short AAL2PMHISTORYDATA = 7;
 const unsigned short AAL5PMHISTORYDATA = 8;
 const unsigned short UPCNPCDISAGREEMENTPMHISTORYDATA = 9;
 const unsigned short ETHERNETPMHISTORYDATA = 10;
 const unsigned short VOICEPMHISTORYDATA = 11;
 const unsigned short MACBRIDGEPORTPMHISTORYDATA = 12;
 const unsigned short MACBRIDGEPMHISTORYDATA = 13;
 const unsigned short APONPMHISTORYDATA = 14;
 const unsigned short SONETSDHLINEPMHISTORYDATA = 15;
 const unsigned short SONETSDHSECTIONADAPTATIONPMHISTORYDATA = 16;
 const unsigned short SONETSDHSECTIONPATHPMHISTORYDATA = 17;
 const unsigned short TCADAPTATIONPROTOCOLMONITORINGPMHISTORYDATA = 18;
 const unsigned short ALARMLOGRECORD = 100;
 const unsigned short SECURITYALARMLOGRECORD = 101;
 const unsigned short SERVICEOUTAGERECORD = 102;

 // End of Values for RecordKindType

 }; // interface RecordSetType

interface PhysicalLayerLoopback {

 // Beginning of Values for LoopbackTestType

 const unsigned short LINELOOPBACK = 1;
 const unsigned short PAYLOADLOOPBACK = 2;
 const unsigned short INWARDLOOPBACK = 3;
 const unsigned short DUALLOOPBACK = 4;
 const unsigned short FACILITYLOOPBACK = 5;
 const unsigned short TERMINALLOOPBACK = 6;

 // End of Values for LoopbackTestType

 }; // interface PhysicalLayerLoopback

}; // module Q834Common

}; // module q834_4
#endif

C.4 Q834ControlArchive.idl

#ifndef __Q834_4_CONTROLARCHIVE_DEFINED
#define __Q834_4_CONTROLARCHIVE_DEFINED

#include "Q834Common.idl"

#pragma prefix "itu.Int"

module q834_4 {

module ControlArchive {

// begin definitions from other idl files

// From Q834Common
 typedef Q834Common::NameType NameType;
 typedef Q834Common::ManagedEntityIdType ManagedEntityIdType;
 typedef Q834Common::ManagedEntityIdSeqType ManagedEntityIdSeqType;
 typedef Q834Common::AdministrativeStateType AdministrativeStateType;
 typedef Q834Common::FilterType FilterType;
 typedef Q834Common::UserLabelType UserLabelType;
 typedef Q834Common::OperationalStateType OperationalStateType;
 typedef Q834Common::RecordType RecordType;

 ITU-T Rec. Q.834.4 (07/2003) 135

 typedef Q834Common::RecordSeqType RecordSeqType;
 typedef Q834Common::UserLabelSeqType UserLabelSeqType;
 typedef Q834Common::RecordKindType RecordKindType;

#define AccessDenied Q834Common::AccessDenied
#define DuplicateUserLabel Q834Common::DuplicateUserLabel
#define Timeout Q834Common::Timeout
#define UnknownRecordSet Q834Common::UnknownRecordSet

// End definitions from other idl files

// Local data types

 enum FullActionType {
 halt, // indicates that the log should stop writing any more records
if the log is full
 wrap // indicates that the log should delete old records if the log is
full.
 };

 typedef unsigned long long MaxSizeType;
 typedef unsigned short SizeThresholdType; // 0-100%
 typedef unsigned long long CurrentSizeType;

 struct RecordSetStatusType {
 CurrentSizeType currentSize;
 OperationalStateType operationalState;
 MaxSizeType maxSize;
 SizeThresholdType sizeThreshold;
 NameType filterName;
 FullActionType fullAction;
 AdministrativeStateType administrativeState;
 RecordKindType recordKind;
 UserLabelType recordSetUserLabel;
 };

 enum CreationModeType {
 operatorDefined,
 initialList,
 either
 };

// Local exceptions

 exception RecordSetExists {ManagedEntityIdType recordSetId;};
 exception LockedAlready {};
 exception UnknownOption {};
 exception NoSuchRecords {};
 exception TooManyRecords {};

// End local definitions

 interface RecordSetMgr : itut_x780::ManagedObject {

 // See 9.4.1.1 for the description of the behaviour of this operation

 ManagedEntityIdType createLog (
 in UserLabelType recordSetUserLabel,
 in AdministrativeStateType administrativeState,

136 ITU-T Rec. Q.834.4 (07/2003)

 in NameType filterName,
 in FullActionType fullAction,
 in MaxSizeType maxSize,
 in SizeThresholdType sizeThreshold)
 raises (RecordSetExists,
 DuplicateUserLabel,
 AccessDenied);

 // See 9.4.1.2 for the description of the behaviour of this operation

 ManagedEntityIdType createArchive (
 in UserLabelType recordSetUserLabel,
 in AdministrativeStateType administrativeState,
 in RecordKindType recordKind,
 in MaxSizeType maxSize)
 raises (RecordSetExists,
 DuplicateUserLabel,
 AccessDenied);

 // See 9.4.1.3 for the description of the behaviour of this operation

 RecordSetStatusType getStatusAttributes (
 in ManagedEntityIdType recordSetId)
 raises (AccessDenied, UnknownRecordSet);

 // See 9.4.1.4 for the description of the behaviour of this operation

 void suspendArchive (
 in ManagedEntityIdType recordSetId)
 raises (AccessDenied, UnknownRecordSet);

 // See 9.4.1.5 for the description of the behaviour of this operation

 void resumeArchive (
 in ManagedEntityIdType recordSetId)
 raises (AccessDenied, UnknownRecordSet);

 // See 9.4.1.6 for the description of the behaviour of this operation

 void deleteArchive (
 in ManagedEntityIdType recordSetId)
 raises (UnknownRecordSet,
 AccessDenied);

 // See 9.4.1.7 for the description of the behaviour of this operation

 void purgeArchive (
 in ManagedEntityIdType recordSetId)
 raises (UnknownRecordSet,
 AccessDenied);

 // See 9.4.1.8 for the description of the behaviour of this operation

 RecordSeqType selectRecords (
 in FilterType SelectionFilter,
 in ManagedEntityIdType recordSetId)
 raises (UnknownRecordSet,
 Timeout,
 NoSuchRecords,
 AccessDenied,
 TooManyRecords);

 ITU-T Rec. Q.834.4 (07/2003) 137

 // See 9.4.1.9 for the description of the behaviour of this operation

 ManagedEntityIdSeqType recordSetListGet (
 in CreationModeType creationMode)
 raises (AccessDenied);

 // See 9.4.1.10 for the description of the behaviour of this operation

 void changeUserLabel(
 in ManagedEntityIdType recordSetId,
 in UserLabelType newUserLabel)
 raises (UnknownRecordSet,
 AccessDenied,
 DuplicateUserLabel);

 }; // interface RecordSetMgr

}; // module ControlArchive

}; // module q834_4

#endif

C.5 Q834SoftwareDownload.idl

#ifndef __Q834_4_SOFTWAREDOWNLOAD_DEFINED
#define __Q834_4_SOFTWAREDOWNLOAD_DEFINED

#include "Q834Common.idl"

#pragma prefix "itu.Int"

module q834_4 {

module SoftwareDownload {

// begin definitions from other idl files

// From Q834Common
 typedef Q834Common::DCNAddressType DCNAddressType;
 typedef Q834Common::UserLabelType UserLabelType;
 typedef Q834Common::VersionType VersionType;
 typedef Q834Common::PlugInUnitType PlugInUnitType;
 typedef Q834Common::FilenameType FilenameType;
 typedef Q834Common::ProceduralStatusSetType ProceduralStatusSetType;
 typedef Q834Common::StatusAttributeSeqType StatusAttributeSeqType;
 typedef Q834Common::ManagedEntityIdType ManagedEntityIdType;
 typedef Q834Common::UserIdType UserIdType;
 typedef Q834Common::PasswordType PasswordType;
 typedef Q834Common::StatusValueType StatusValueType;
 typedef Q834Common::GeneralizedTimeType GeneralizedTimeType;
 typedef Q834Common::TrackingObjectIdType TrackingObjectIdType;
 typedef Q834Common::ManagedEntityIdSeqType ManagedEntityIdSeqType;

#define AccessDenied Q834Common::AccessDenied
#define CommFailure Q834Common::CommFailure
#define UnknownScheduler Q834Common::UnknownScheduler
#define UnknownNE Q834Common::UnknownNE
#define DeniedAccess Q834Common::DeniedAccess
#define UnknownManagedEntity Q834Common::UnknownManagedEntity
#define Timeout Q834Common::Timeout

138 ITU-T Rec. Q.834.4 (07/2003)

#define InvalidScheduler Q834Common::InvalidScheduler
#define InvalidStartTime Q834Common::InvalidStartTime

// End definitions from other idl files

// Local data types

 typedef TrackingObjectIdType SoftwareDownloadTrackingObjectIdType;

 typedef sequence<SoftwareDownloadTrackingObjectIdType>
SoftwareDownloadTrackingObjectIdSeqType;
 typedef sequence<FilenameType> FilenameSeqType;

 struct VersionsType {
 ManagedEntityIdType resourceId;
 VersionType softwarePrimary;
 VersionType softwareStandBy;
 VersionType hardware;
 };

 typedef sequence<VersionsType> VersionsSeqType;

 struct TargetType {
 ManagedEntityIdType containingSystem;
 ManagedEntityIdType containingNE; // empty sequence means everything
 string plugInUnitType; // empty string here implies to any suitable
plugInUnitType
 ManagedEntityIdType slot; // empty sequence here means any slot.
 }; //string is supplied by the supplier with Release Notes.

 struct DownloadStatusType
 {
 ManagedEntityIdType targetId;
 StatusValueType deliveryStatus;
 StatusValueType commitStatus;
 StatusValueType activationStatus;
 StatusValueType revertStatus;
 };

 typedef sequence<DownloadStatusType> DownloadStatusSeqType;

// Local exceptions

 exception InvalidExternalTime {};
 exception UnrecognisedTarget {};
 exception InsufficientMemory {};
 exception SoftwareLoadHWMismatch {};
 exception SourceUnreachable {};
 exception UnknownSoftwareLoad {};
 exception InstallationFailure {};
 exception UnknownSoftwareDownloadTrackingObject {};
 exception SoftwareNotYetInstalled {};
 exception ActivationFailure {};
 exception ActivationCompleted {};
 exception ActivityCompleted {};
 exception ActivityInProgress {};
 exception InvalidSoftwareTrackingObject {};
 exception SoftwareTrackingObjectInUse {};

// End local definitions

 valuetype DownloadMgrValueType: itut_x780::ManagedObjectValueType {

 ITU-T Rec. Q.834.4 (07/2003) 139

 public SoftwareDownloadTrackingObjectIdSeqType
ScheduledSoftwareDownloadTrackingObjectList; // GET
 public SoftwareDownloadTrackingObjectIdSeqType
OnDemandSoftwareDownloadTrackingObjectList; // GET

 };

 interface DownloadMgr : itut_x780::ManagedObject {

 // See 9.5.1.1 for the description of the behaviour of this operation

 SoftwareDownloadTrackingObjectIdType deliverDistSWGlobal (
 in FilenameSeqType softwareSet,
 in DCNAddressType softwareSourceAddr,
 in UserIdType userId,
 in PasswordType password,
 in ManagedEntityIdSeqType deliverDistTargets)
 raises (CommFailure,
 UnrecognisedTarget,
 InsufficientMemory,
 SoftwareLoadHWMismatch,
 SourceUnreachable,
 UnknownSoftwareLoad,
 Timeout,
 AccessDenied,
 DeniedAccess);

 // See 9.5.1.2 for the description of the behaviour of this operation

 SoftwareDownloadTrackingObjectIdType deliverDistSWSpecific (
 in FilenameSeqType softwareSet,
 in DCNAddressType softwareSourceAddr,
 in UserIdType userId,
 in PasswordType password,
 in TargetType deliverDistTarget)
 raises (CommFailure,
 UnrecognisedTarget,
 InsufficientMemory,
 SoftwareLoadHWMismatch,
 SourceUnreachable,
 UnknownSoftwareLoad,
 Timeout,
 AccessDenied,
 DeniedAccess);

 // See 9.5.1.3 for the description of the behaviour of this operation

 void deleteSoftwareDownloadTrackingObject (
 in SoftwareDownloadTrackingObjectIdType id)
 raises (UnknownSoftwareDownloadTrackingObject, AccessDenied);

 // See 9.5.1.4 for the description of the behaviour of this operation

 void commit (
 in SoftwareDownloadTrackingObjectIdType id,
 in TargetType commitTarget)
 raises (InstallationFailure,
 UnknownSoftwareDownloadTrackingObject,
 AccessDenied,
 UnrecognisedTarget);

 // See 9.5.1.5 for the description of the behaviour of this operation

140 ITU-T Rec. Q.834.4 (07/2003)

 void activate (
 in SoftwareDownloadTrackingObjectIdType id,
 in TargetType activateTarget)
 raises (UnknownSoftwareDownloadTrackingObject,
 SoftwareNotYetInstalled,
 ActivationFailure,
 AccessDenied,
 UnrecognisedTarget);

 // See 9.5.1.6 for the description of the behaviour of this operation

 void revert (
 in SoftwareDownloadTrackingObjectIdType id,
 in TargetType revertTarget)
 raises (UnknownSoftwareDownloadTrackingObject,
 SoftwareNotYetInstalled,
 ActivationFailure,
 AccessDenied,
 UnrecognisedTarget,
 InvalidSoftwareTrackingObject);

 // See 9.5.1.7 for the description of the behaviour of this operation

 DownloadStatusSeqType getStatus (
 in SoftwareDownloadTrackingObjectIdType id)
 raises (UnknownSoftwareDownloadTrackingObject,
 AccessDenied);

 // See 9.5.1.8 for the description of the behaviour of this operation

 SoftwareDownloadTrackingObjectIdType scheduleDeliverDist (
 in FilenameSeqType softwareSet,
 in DCNAddressType softwareSourceAddr,
 in UserIdType userId,
 in PasswordType password,
 in ManagedEntityIdSeqType deliverDistTargets,
 in GeneralizedTimeType deliverDistStartTime)
 raises (SoftwareLoadHWMismatch,
 UnknownScheduler,
 AccessDenied,
 InvalidStartTime);

 // See 9.5.1.9 for the description of the behaviour of this operation

 void scheduleCommit (
 in SoftwareDownloadTrackingObjectIdType
 deliverDistSoftwareDownloadTrackingObjectId,
 in GeneralizedTimeType commitStartTime)
 raises (UnknownSoftwareDownloadTrackingObject,
 UnknownScheduler,
 SoftwareNotYetInstalled,
 AccessDenied,
 InvalidStartTime);

 // See 9.5.1.10 for the description of the behaviour of this operation

 void scheduleActivate (
 in SoftwareDownloadTrackingObjectIdType id,
 in UserLabelType activateSchedulerName,
 in GeneralizedTimeType activateStartTime)
 raises (UnknownSoftwareDownloadTrackingObject,
 InvalidStartTime,
 SoftwareNotYetInstalled,
 AccessDenied,

 ITU-T Rec. Q.834.4 (07/2003) 141

 InvalidScheduler);

 // See 9.5.1.11 for the description of the behaviour of this operation

 void cancelScheduledSoftwareActivity (
 in SoftwareDownloadTrackingObjectIdType id)
 raises (UnknownSoftwareDownloadTrackingObject,
 ActivityCompleted,
 ActivityInProgress,
 AccessDenied);

 // See 9.5.1.12 for the description of the behaviour of this operation

 SoftwareDownloadTrackingObjectIdSeqType
 scheduledSoftwareDownloadTrackingObjectList ()
 raises (AccessDenied);

 // See 9.5.1.13 for the description of the behaviour of this operation

 SoftwareDownloadTrackingObjectIdSeqType
 onDemandSoftwareDownloadTrackingObjectList ()
 raises (AccessDenied);

 }; // interface DownloadMgr

 interface VersionRepository : itut_x780::ManagedObject {

 // See 9.5.2.1 for the description of the behaviour of this operation

 VersionsSeqType retrieveVersions (
 in ManagedEntityIdType containingManagedEntityId)
 raises (CommFailure,
 UnknownManagedEntity,
 AccessDenied);

 // See 9.5.2.2 for the description of the behaviour of this operation

 boolean validateNEVersion (
 in ManagedEntityIdType managedEntityId,
 in VersionType proposedSoftware)
 raises (UnknownNE, AccessDenied);

 // See 9.5.2.3 for the description of the behaviour of this operation

 boolean validatePlugInVersion (
 in ManagedEntityIdType plugInUnitId,
 in VersionType proposedSoftware)
 raises (UnknownManagedEntity, AccessDenied);

}; // interface VersionRepository

}; // module SoftwareDownload

}; // module q834_4

#endif

142 ITU-T Rec. Q.834.4 (07/2003)

C.6 Q834EventPublisher.idl

#ifndef __Q834_4_EVENTPUBLISHING_DEFINED
#define __Q834_4_EVENTPUBLISHING_DEFINED
#include "Q834Common.idl"
#pragma prefix "itu.Int"

module q834_4
{

module EventPublisher
{

// begin definitions from other idl files - filterable data value types

// From Q834Common

 typedef Q834Common::ManagedEntityIdType ManagedEntityIdType;
 typedef Q834Common::ManagedEntityIdSeqType ManagedEntityIdSeqType;
 typedef Q834Common::GeneralizedTimeType GeneralizedTimeType;
 typedef Q834Common::NameType NameType;
 typedef Q834Common::NameSeqType NameSeqType;
 typedef Q834Common::VersionType VersionType;
 typedef Q834Common::ProceduralStatusSetType ProceduralStatusSetType;
 typedef Q834Common::PerceivedSeverityType PerceivedSeverityType;
 typedef Q834Common::OperationalStateType OperationalStateType;
 typedef Q834Common::AdministrativeStateType AdministrativeStateType;
 typedef Q834Common::ProbableCauseType ProbableCauseType; // Values defined
in Q834Common::ProbableCauseConst
 typedef Q834Common::NotificationIdentifierType NotificationIdentifierType;
 typedef Q834Common::NotificationIdentifierSeqType
NotificationIdentifierSeqType;
 typedef Q834Common::UserLabelType UserLabelType;
 typedef Q834Common::MonitoredParameterType MonitoredParameterType;
 typedef Q834Common::EquipmentHolderFType EquipmentHolderFType;
 typedef Q834Common::PlugInUnitFType PlugInUnitFType;
 typedef Q834Common::UsageStateType UsageStateType;
 typedef Q834Common::ControlStatusSetType ControlStatusSetType;
 typedef Q834Common::SpecificProblemSetType SpecificProblemSetType;
 typedef Q834Common::BackedUpStatusType BackedUpStatusType;
 typedef Q834Common::AttributeChangeSetType AttributeChangeSetType;
 typedef Q834Common::SecurityAlarmCauseType SecurityAlarmCauseType;

// End definitions from other idl files

// Local data types

 typedef NotificationIdentifierSeqType CorrelatedNotificationType;

 typedef AttributeChangeSetType StateChangeDefinitionType;

 struct ThresholdInfoType {
 MonitoredParameterType monitoredParameter;
 unsigned long long observedValue;
 unsigned long long thresholdValueLow;
 unsigned long long thresholdValueHigh;
 };

 ITU-T Rec. Q.834.4 (07/2003) 143

 /*
 Values for monitoredParameter are provided in
 Q834Common::MonitoringParameter.
 Currently only counters are supported for performance or traffic monitoring
 in BPON technology, consequently observedValue, and thresholdValueHigh are
 restricted to non-negative integer values, and thresholdValueLow is 0.
 */

 typedef unsigned short EquipmentType;

 enum ServiceAffectingType {
 serviceAffecting,
 nonServiceAffecting,
 unableToDetermine
 };

//End local data type definitions

// Local exceptions

// End local exceptions

 interface AlarmEventSupplier : itut_x780::ManagedObject {

 /* Structured event fixed header mappings:
 domain_type is set to "telecommunications",
 type_name is set to "Alarm", and
 event_name is set to one of the following constant strings provided
 below.
 */

 const string communicationAlarm = "CommunicationAlarm";
 const string equipmentAlarm = "EquipmentAlarm";
 const string environmentalAlarm = "EnvironmentalAlarm";
 const string processingErrorAlarm = "ProcessingErrorAlarm";
 const string qualityOfServiceAlarm = "QualityOfServiceAlarm";

 /*
 Filterable data names for populating the filterable event body in the
 structured event are listed in order below.
 */

 const string alarmEmittingMEId = "AlarmEmittingMEId";
 const string eventTime = "EventTime";
 const string probableCause = "ProbableCause";
 const string specificProblems = "SpecificProblems";
 const string perceivedSeverity = "PerceivedSeverity";
 const string backUpStatus = "BackUpStatus";
 const string backUpManagedEntityId = "BackUpManagedEntityId";
 const string thresholdInfo = "ThresholdInfo";
 const string notificationIdentifier = "NotificationIdentifier";
 const string correlatedNotifications = "CorrelatedNotifications";
 const string stateChangeDefinition = "StateChangeDefinition";
 const string monitoredAttributes = "MonitoredAttributes";
 const string additionalText = "AdditionalText";
 const string serviceAffectingInd = "ServiceAffectingInd";

 /*
 Remaining filterable data values.

144 ITU-T Rec. Q.834.4 (07/2003)

 /* Names for State and Status Variables for StateChangeDefinition
 */

 const string administrativeState = "AdministrativeState";
 const string operationalState = "OperationalState";
 const string usageState = "UsageState";
 const string availabilityStatus = "AvailabilityStatus";
 const string proceduralStatus = "ProceduralStatus";
 const string controlStatus = "ControlStatus";
 const string alarmStatus = "AlarmStatus";

 /*
 Mapping to filterable data within the structured event is provided
 below for communication alarm, equipment alarm, processing error
 alarm, environmental alarm, and quality of service alarm.

 {
 {"AlarmEmittingMEId", any (ManagedEntityIdType)},
 {"EventTime", any (GeneralizedTimeType)},
 {"ProbableCause", any (ProbableCauseType)},
 {"SpecificProblems", any (SpecificProblemSetType)},
 {"PerceivedSeverity", any (PerceivedSeverityType)},
 {"ServiceAffectingInd", any (ServiceAffectingType)},
 {"BackUpStatus", any (BackedUpStatusType)},
 {"BackUpManagedEntityId", any (ManagedEntityIdType)},
 {"ThresholdInfo", any (ThresholdInfoType)},
 {"NotificationIdentifier", any (NotificationIdentifierType)},
 {"CorrelatedNotifications", any (CorrelatedNotificationType)},
 {"StateChangeDefinition", any (StateChangeDefinitionType)},
 {"AdditionalText", any (string)}
 }

 */

 }; // interface AlarmEventSupplier

 interface SecurityEventSupplier : itut_x780::ManagedObject {

 /* Structured event fixed header mappings:
 domain_type is set to "telecommunications",
 type_name is set to "SecurityEvent", and
 event_name is set to one of the following constant strings
 provided below.
 */

 const string integrityViolation = "IntegrityViolation";
 const string operationalViolation = "OperationalViolation";
 const string physicalViolation = "PhysicalViolation";
 const string securityEventViolation = "SecurityEventViolation";
 const string timeDomainViolation = "TimeDomainViolation";

 const string eventEmittingMEId = "EventEmittingMEId";
 const string eventTime = "EventTime";
 const string securityAlarmCause = "SecurityAlarmCause";
 const string securityAlarmDetector = "SecurityAlarmDetector";
 const string serviceUser = "ServiceUser";
 const string serviceProvider = "ServiceProvider";
 const string securityEventNotificationIdentifier =

 ITU-T Rec. Q.834.4 (07/2003) 145

 "NotificationIdentifier";
 const string correlatedNotifications = "CorrelatedNotifications";
 const string additionalText = "AdditionalText";
 /*
 Mapping to filterable data within the structured event is provided
 below for Integrity Violations, Operational Violations, Physical
 Violations,Security Event Violations, Time Domain Violations.

 {
 {"EventEmittingMEId", any (ManagedEntityIdType)},
 {"EventTime", any (GeneralizedTimeType)},
 {"SecurityAlarmCause", any (SecurityAlarmCauseType)},
 {"SecurityAlarmDetector", any (ManagedEntityIdType)},
 {"ServiceUser", any (ManagedEntityIdType)},
 {"ServiceProvider", any (ManagedEntityIdType)},
 {"NotificationIdentifier", any (NotificationIdentifierType)},
 {"CorrelatedNotifications", any (CorrelatedNotificationType)},
 {"AdditionalText", any (string)}
 }

 */

 }; // interface SecurityEventSupplier

 interface DiscoveryEventSupplier : itut_x780::ManagedObject {

 /* Structured event fixed header mappings:
 domain_type is set to "telecommunications",
 type_name is set to "DiscoveryEvent", and
 event_name is set to one of the following constant strings
 provided below. Only installed equipment changes are declared
 through this interface.
 */

 const string managedEntityCreation = "ManagedEntityCreation";
 const string managedEntityDeletion = "ManagedEntityDeletion";

 const string managedEntityType = "ManagedEntityType";
 const string managedEntityAttributeValues =
 "ManagedEntityAttributeValues";
 const string discoveryNotificationIdentifier =
 "NotificationIdentifier";
 const string correlatedNotifications = "CorrelatedNotifications";
 const string additionalText = "AdditionalText";"

// The following items are equipment types that are discovered by the
// Supplier Management System and automatically revealed to the OMS.
// The data structure passed on the notification is defined in
// Q834Common.idl and the mapping below refers to it as MEstruct. More
// specifically, here is the list of data structures currently
// supported: OLTType, ONUType,ONTType, NTType, EquipmentHolderType,
and PlugInUnitFType.

 const unsigned short OLT_NE = 1;
 const unsigned short ONT_NE = 2;
 const unsigned short ONU_NE = 3;
 const unsigned short NT_NE = 4;

146 ITU-T Rec. Q.834.4 (07/2003)

 const unsigned short EQUIPMENT_HOLDER_F = 5;
 const unsigned short PLUG_IN_UNIT_F = 6;

 /*
 Mapping to filterable data within the structured event is provided
 below for a discovery event that involves the creation of a managed
 entity.

 {
 {"ManagedEntityType", any (EquipmentType)},
 {"EventTime", any (GeneralizedTimeType)},
 {"ManagedEntityAttributeValues", any (MEstruct)},
 {"NotificationIdentifier", any (NotificationIdentifierType)},
 {"CorrelatedNotifications", any (CorrelatedNotificationType)},
 {"AdditionalText", any (string)}
 }

 */

 }; // interface DiscoveryEventSupplier

}; // module EventPublisher

}; // module q834_4

#endif

C.7 Q834MIBTransfer.idl

#ifndef __Q834_4_MIBTRANSFER_DEFINED
#define __Q834_4_MIBTRANSFER_DEFINED

#include "Q834Common.idl"

#pragma prefix "itu.Int"

module q834_4 {

module MIBTransfer {
// Begin definitions from other idl files

// From Q834Common

 typedef Q834Common::UserLabelType UserLabelType;
 typedef Q834Common::DCNAddressType DCNAddressType;
 typedef Q834Common::FilenameType FilenameType;
 typedef Q834Common::StatusAttributeSeqType StatusAttributeSeqType;
 typedef Q834Common::TransferTrackingObjectIdType
 TransferTrackingObjectIdType;
 typedef Q834Common::UserIdType UserIdType;
 typedef Q834Common::PasswordType PasswordType;
 typedef Q834Common::ManagedEntityIdType ManagedEntityIdType;

#define AccessDenied Q834Common::AccessDenied
#define CommFailure Q834Common::CommFailure
#define EquipmentFailure Q834Common::EquipmentFailure
#define UnknownNE Q834Common::UnknownNE
#define UnknownScheduler Q834Common::UnknownScheduler
#define InvalidScheduler Q834Common::InvalidScheduler
#define UnknownDestinationServer Q834Common::UnknownDestinationServer
#define FileExists Q834Common::FileExists

 ITU-T Rec. Q.834.4 (07/2003) 147

#define CannotCreateFile Q834Common::CannotCreateFile
#define DeniedAccess Q834Common::DeniedAccess

// End definitions from other idl files

// Local data types

 typedef sequence<TransferTrackingObjectIdType>
TransferTrackingObjectIdSeqType;

// Local exceptions

 exception UnknownBackupProcess {};
 exception UnknownSourceServer {};
 exception UnknownRestoreProcess {};
 exception SoftwareLoadHardwareMismatch {};

// End local definitions

 valuetype MIBMoverValueType: itut_x780::ManagedObjectValueType {

 public TransferTrackingObjectIdSeqType transferTrackingObjectIdList;
// GET

 };

 interface MIBMover : itut_x780::ManagedObject {

 // See 9.7.1.1 for the description of the behaviour of this operation

 TransferTrackingObjectIdType startBackup (
 in ManagedEntityIdType nEManagedEntityId, // OLT
 in DCNAddressType destinationServerAddr,
 in UserIdType userId,
 in PasswordType password,
 in FilenameType destinationFile,
 in boolean overwriteExistingFile)
 raises (AccessDenied,
 UnknownNE,
 UnknownDestinationServer,
 CommFailure,
 EquipmentFailure,
 DeniedAccess);

 // See 9.7.1.2 for the description of the behaviour of this operation

 StatusAttributeSeqType getBackupStatus (
 in TransferTrackingObjectIdType id)
 raises (AccessDenied,
 UnknownBackupProcess);

 // See 9.7.1.3 for the description of the behaviour of this operation

 TransferTrackingObjectIdType scheduleBackup (
 in ManagedEntityIdType nEManagedEntityId, // OLT
 in UserIdType userId,
 in PasswordType password,
 in UserLabelType schedulerName,
 in DCNAddressType destinationServerAddr,
 in FilenameType destinationFile,

148 ITU-T Rec. Q.834.4 (07/2003)

 in boolean overwriteExistingFile)
 raises (AccessDenied,
 UnknownNE,
 UnknownScheduler,
 UnknownDestinationServer,
 InvalidScheduler);

 // See 9.7.1.4 for the description of the behaviour of this operation

 void modifyBackupSchedule(
 in TransferTrackingObjectIdType id,
 in UserLabelType newSchedulerName)
 raises (AccessDenied,
 UnknownBackupProcess,
 UnknownScheduler,
 InvalidScheduler);

 // See 9.7.1.5 for the description of the behaviour of this operation

 void cancelScheduledBackup (
 in TransferTrackingObjectIdType id)
 raises (AccessDenied,
 UnknownBackupProcess);

 // See 9.7.1.6 for the description of the behaviour of this operation

 void abortBackup (
 in TransferTrackingObjectIdType id)
 raises (AccessDenied,
 UnknownBackupProcess,
 CommFailure,
 EquipmentFailure);

 // See 9.7.1.7 for the description of the behaviour of this operation

 TransferTrackingObjectIdType startRestore (
 in ManagedEntityIdType nEManagedEntityId, // OLT
 in DCNAddressType sourceServerAddr,
 in UserIdType userId,
 in PasswordType password,
 in FilenameType sourceFile)
 raises (AccessDenied,
 UnknownNE,
 UnknownSourceServer,
 CommFailure,
 EquipmentFailure,
 DeniedAccess,
 SoftwareLoadHardwareMismatch);

 // See 9.7.1.8 for the description of the behaviour of this operation

 StatusAttributeSeqType getRestoreStatus (
 in TransferTrackingObjectIdType id)
 raises (AccessDenied,
 UnknownRestoreProcess);

 ITU-T Rec. Q.834.4 (07/2003) 149

 // See 9.7.1.9 for the description of the behaviour of this operation

 TransferTrackingObjectIdSeqType transferTrackingObjectIdListGet ()
 raises (AccessDenied);

 }; // interface MIBMover

}; // module MIBTransfer

}; // module q834_4

#endif

C.8 Q834PerformanceManager.idl

#ifndef __Q834_4_PERFORMANCEMANAGER_DEFINED
#define __Q834_4_PERFORMANCEMANAGER_DEFINED

#include "Q834Common.idl"

#pragma prefix "itu.Int"

module q834_4 {

module PerformanceManager {

 // begin definitions from other idl files

 // From Q834Common
 typedef Q834Common::NameType NameType;
 typedef Q834Common::ManagedEntityIdType ManagedEntityIdType;
 typedef Q834Common::ManagedEntityIdSeqType ManagedEntityIdSeqType;
 typedef Q834Common::UserLabelType UserLabelType;
 typedef Q834Common::GeneralizedTimeType GeneralizedTimeType;
 typedef Q834Common::RecordSeqType RecordSeqType;
 typedef Q834Common::ServiceInstanceIdType ServiceInstanceIdType;
 typedef Q834Common::MonitoredParameterType MonitoredParameterType;
 typedef Q834Common::NameSeqType NameSeqType;
 typedef Q834Common::MonitoringKindType MonitoringKindType;
 typedef Q834Common::RecordKindType RecordKindType;

 #define AccessDenied Q834Common::AccessDenied
 #define UnknownNE Q834Common::UnknownNE
 #define UnknownManagedEntity Q834Common::UnknownManagedEntity
 #define UnknownProfiles Q834Common::UnknownProfiles
 #define UnknownServiceInstance Q834Common::UnknownServiceInstance
 #define UnknownScheduler Q834Common::UnknownScheduler
 #define CommFailure Q834Common::CommFailure
 #define InvalidScheduler Q834Common::InvalidScheduler
 #define EquipmentFailure Q834Common::EquipmentFailure
 #define ProfileSuspended Q834Common::ProfileSuspended

 // End definitions from other idl files

 // Local data types

 struct MonitoringPointKindAndThresholdsType {
 MonitoringKindType monitoringType;
 NameType thresholdDataProfileName;
 };
 /*

150 ITU-T Rec. Q.834.4 (07/2003)

 NOTE – ITU-T Recs Q.834.1 and Q.834.2 describe the relationships between
ThresholdData and specific monitoring point types.

 */

 typedef sequence<MonitoringPointKindAndThresholdsType> ThresholdsSeqType;

 struct MonitoringPointAndThresholdsType {
 ManagedEntityIdType monitoringPoint;
 NameType thresholdDataProfileName;
 };

 typedef sequence<MonitoringPointAndThresholdsType>
MonitoringPointThresholdsSeqType;

 typedef sequence<MonitoredParameterType> MonitoredParameterSeqType;

 typedef sequence<RecordSeqType> RecordsSeqType; // Implicitly grouped by
record type.

 typedef RecordKindType HistoryDataType; // Values defined in
Q834Common::RecordSetType

 typedef ManagedEntityIdSeqType MonitoringPointSeqType;

 struct SWPValueType {
 ManagedEntityIdType monitoringPoint;
 short totConsecutiveIntvls;
 short persistenceMinimum;
 };

 typedef sequence< SWPValueType > SWPValueSeqType;

 struct ParameterSettingType {
 MonitoredParameterType monitoredParameter;
 short totConsecutiveIntvls;
 short persistenceMinimum;
 };

 typedef sequence<ParameterSettingType> ParameterSettingSeqType;

 // Local exceptions

 exception UnknownParameters {
 MonitoredParameterSeqType monitoredParameterList;
 };
 exception IntervalCountTooLarge {};
 exception UnknownMonitoringPointTypes {
 MonitoringPointSeqType monitoringPointKindList;
 };
 exception InvalidAssociation {};
 exception CollectionPeriodPast {};
 exception CollectionLimitation {};
 exception UnknownHistoryDataType {};

 // End local definitions

 interface ImpairmentPersistence : itut_x780::ManagedObject {

 // See 9.8.1.1 for the description of the behaviour of this operation

 void setSlidingWindowParameters (
 in ManagedEntityIdType nEManagedEntityId,

 ITU-T Rec. Q.834.4 (07/2003) 151

 in MonitoredParameterSeqType monitoredParameterList,
 in short totConsecutiveIntvls,
 in short persistenceMinimum,
 in boolean sysScopeInd)
 raises (UnknownNE,
 UnknownParameters,
 IntervalCountTooLarge,
 AccessDenied,
 CommFailure);

 // See 9.8.1.2 for the description of the behaviour of this operation

 void setSpecificSlidingWindowParameters (
 in ManagedEntityIdType nEManagedEntityId,
 in ManagedEntityIdType monitoringPoint,
 in MonitoredParameterSeqType monitoredParameterList,
 in short totConsecutiveIntvls,
 in short persistenceMinimum,
 in boolean allowGlobalOverwrite)
 raises (UnknownNE,
 UnknownParameters,
 IntervalCountTooLarge,
 AccessDenied,
 UnknownManagedEntity,
 CommFailure,
 EquipmentFailure);

 // See 9.8.1.3 for the description of the behaviour of this operation

 SWPValueSeqType getSpecificSlidingWindowParameters (
 in ManagedEntityIdType nEManagedEntityId,
 in MonitoredParameterType monitoredParameter)
 raises (UnknownNE,
 UnknownParameters,
 CommFailure);

 // See 9.8.1.4 for the description of the behaviour of this operation

 void setThreshold (
 in ManagedEntityIdType nEManagedEntityId,
 in ManagedEntityIdType monitoringPoint,
 in NameType thresholdDataProfileName)
 raises (UnknownNE,
 AccessDenied,
 UnknownManagedEntity,
 UnknownProfiles,
 InvalidAssociation,
 CommFailure,
 ProfileSuspended);

 // See 9.8.1.5 for the description of the behaviour of this operation

 void setThresholds (
 in ManagedEntityIdType nEManagedEntityId,
 in boolean sysScopeInd,
 in ThresholdsSeqType thresholdsList)
 raises (UnknownNE,
 UnknownProfiles,
 AccessDenied,
 UnknownMonitoringPointTypes,
 InvalidAssociation,
 CommFailure,
 ProfileSuspended);

152 ITU-T Rec. Q.834.4 (07/2003)

 // See 9.8.1.6 for the description of the behaviour of this operation

 MonitoringPointThresholdsSeqType getThresholdValues (
 in ManagedEntityIdType nEManagedEntityId,
 in MonitoringKindType monitoringType)
 raises (UnknownNE,
 UnknownMonitoringPointTypes,
 CommFailure);

 // See 9.8.1.7 for the description of the behaviour of this operation

 ThresholdsSeqType getSystemThresholdsSetting(
 in ManagedEntityIdType nEManagedEntityId)
 raises (AccessDenied, UnknownManagedEntity);

 // See 9.8.1.8 for the description of the behaviour of this operation

 ParameterSettingSeqType getSystemSWSettings(
 in ManagedEntityIdType nEManagedEntityId)
 raises (AccessDenied, UnknownManagedEntity);

 }; // interface ImpairmentPersistence

 interface ReportController : itut_x780::ManagedObject {

 // See 9.8.2.1 for the description of the behaviour of this operation

 void addCustomerMonitoringReporting (
 in ManagedEntityIdType nEManagedEntityId,
 in ServiceInstanceIdType serviceInstanceId,
 in ManagedEntityIdType monitoringPoint,
 in GeneralizedTimeType stopTime,
 in HistoryDataType historyData,
 in short granularityPeriod) //in minutes
 raises (UnknownServiceInstance,
 AccessDenied,
 UnknownNE,
 UnknownManagedEntity,
 CollectionPeriodPast,
 CollectionLimitation,
 InvalidAssociation,
 UnknownHistoryDataType,
 CommFailure);

 // See 9.8.2.2 for the description of the behaviour of this operation

 void removeCustomerMonitoringReporting (
 in ServiceInstanceIdType serviceInstanceId)
 raises (UnknownServiceInstance,
 AccessDenied,
 CollectionPeriodPast,
 CommFailure);

 // See 9.8.2.3 for the description of the behaviour of this operation

 RecordsSeqType selectByServiceInstance (
 in ServiceInstanceIdType serviceInstanceId,
 in GeneralizedTimeType intervalStartTime,
 in GeneralizedTimeType intervalEndTime)
 raises (UnknownServiceInstance,
 AccessDenied);

 ITU-T Rec. Q.834.4 (07/2003) 153

 // See 9.8.2.4 for the description of the behaviour of this operation

 MonitoringPointSeqType displayActiveReporting (
 in ServiceInstanceIdType serviceInstanceId)
 raises (UnknownServiceInstance,
 AccessDenied);

 // See 9.8.2.5 for the description of the behaviour of this operation

 void addNewMonitoringReporting (
 in ManagedEntityIdType nEManagedEntityId,
 in ManagedEntityIdType monitoringPoint,
 in GeneralizedTimeType stopTime,
 in HistoryDataType historyData,
 in short granularityPeriod) //in minutes
 raises (AccessDenied,
 UnknownNE,
 UnknownManagedEntity,
 CollectionPeriodPast,
 CollectionLimitation,
 InvalidAssociation,
 UnknownHistoryDataType,
 CommFailure);

 // See 9.8.2.6 for the description of the behaviour of this operation

 RecordsSeqType selectByMonitoringPoint (
 in ManagedEntityIdType monitoringPoint,
 in GeneralizedTimeType intervalStartTime,
 in GeneralizedTimeType intervalEndTime)
 raises (UnknownManagedEntity,
 AccessDenied);

 // See 9.8.2.7 for the description of the behaviour of this operation

 void createReportingSchedule (
 in ManagedEntityIdType nEManagedEntityId,
 in ManagedEntityIdType monitoringPoint,
 in HistoryDataType historyData,
 in ServiceInstanceIdType serviceInstance,
 in short granularityPeriod, //in minutes
 in UserLabelType schedulerName)
 raises (AccessDenied,
 UnknownNE,
 UnknownManagedEntity,
 CollectionLimitation,
 UnknownScheduler,
 InvalidAssociation,
 UnknownHistoryDataType,
 InvalidScheduler);

 // See 9.8.2.8 for the description of the behaviour of this operation

 void modifyReportingSchedule (
 in ManagedEntityIdType nEManagedEntityId,
 in ManagedEntityIdType monitoringPoint,
 in HistoryDataType historyData,
 in UserLabelType newSchedulerName)
 raises (AccessDenied,
 UnknownNE,
 UnknownManagedEntity,
 CollectionLimitation,
 UnknownScheduler,

154 ITU-T Rec. Q.834.4 (07/2003)

 InvalidAssociation,
 UnknownHistoryDataType,
 InvalidScheduler);

 // See 9.8.2.9 for the description of the behaviour of this operation

 void cancelReportingSchedule (
 in ManagedEntityIdType nEManagedEntityId,
 in ManagedEntityIdType monitoringPoint,
 in HistoryDataType historyData,
 in UserLabelType schedulerName)
 raises (AccessDenied,
 UnknownNE,
 UnknownManagedEntity,
 UnknownScheduler,
 InvalidAssociation,
 UnknownHistoryDataType);

 }; // interface ReportController

}; // module PerformanceManager

}; // module q834_4

#endif

C.9 Q834ProfileManager.idl

#ifndef __Q834_4_PROFILEMANAGER_DEFINED
#define __Q834_4_PROFILEMANAGER_DEFINED
#include "Q834Common.idl"
#pragma prefix "itu.Int"

module q834_4
{

module ProfileManager
{

 // begin definitions from other idl files - filterable data value types
 typedef Q834Common::NameType NameType;
 typedef Q834Common::NotificationIdentifierType NotificationIdentifierType;
 typedef Q834Common::PerceivedSeverityType PerceivedSeverityType;
 typedef Q834Common::ProbableCauseType ProbableCauseType;
 typedef Q834Common::MonitoredParameterType MonitoredParameterType;
 typedef Q834Common::ServiceCategoryType ServiceCategoryType;
 typedef Q834Common::ConformanceDefType ConformanceDefType;
 typedef Q834Common::ATMOverbookingFactorType ATMOverbookingFactorType;
 typedef Q834Common::MonitoringKindType MonitoringKindType;

#define UnknownProfiles Q834Common::UnknownProfiles
#define AccessDenied Q834Common::AccessDenied

 // End definitions from other idl files

 // Local data types

 typedef unsigned short ProfileKindType;

 ITU-T Rec. Q.834.4 (07/2003) 155

 struct ProfileInfoType {
 ProfileKindType profileKind;
 any attributeValuestruct;
 };

 /*
 Next, structs (and sequence of structs) are defined having the attribute

values for the newly created profile objects. Any one of these structs is
subsequently identified as ProfileStruct in the Profile Event Consumer
interface specification.

 */

 enum SubType {
 NULL,
 VoicebandBasedOn64kbps,
 SynchronousCircuitEmulation,
 AsynchronousCircuitEmulation,
 HighQualityAudio,
 Video
 };

 enum CBRRateType {
 br44736kbps,
 br1544kbps,
 br2048kbps,
 brE3kbps,
 br64kbps,
 br2x64kbps,
 br3x64kbps,
 br4x64kbps,
 br5x64kbps,
 br6x64kbps,
 br7x64kbps,
 br8x64kbps,
 br9x64kbps,
 br10x64kbps,
 br11x64kbps,
 br12x64kbps,
 br13x64kbps,
 br14x64kbps,
 br15x64kbps,
 br16x64kbps,
 br17x64kbps,
 br18x64kbps,
 br19x64kbps,
 br20x64kbps,
 br21x64kbps,
 br22x64kbps,
 br23x64kbps,
 br24x64kbps,
 br25x64kbps,
 br26x64kbps,
 br27x64kbps,
 br28x64kbps,
 br29x64kbps,
 br30x64kbps,
 br31x64kbps
 };

 enum ClockRecoveryType {
 PhysInterface,
 SRTS,

156 ITU-T Rec. Q.834.4 (07/2003)

 AdaptiveClock,
 LocalOsc
 };

 enum ForwardErrorCorrectionType {
 NoFEC,
 FECforLossSensitiveSigTransport,
 FECforDelaySensSigTransport
 };

 typedef boolean StructuredDataTransferType; //TRUE = STD has been chosen
 typedef long long PartiallyFilledCellsType;
 typedef long long CellLossIntegrationPeriodType;

 struct AAL1ProfileType {
 SubType aAL1subtype;
 CBRRateType cBRRate;
 ClockRecoveryType clockRecovery;
 ForwardErrorCorrectionType forwardErrorCorrection;
 StructuredDataTransferType structuredDataTransfer;
 PartiallyFilledCellsType partiallyFilledCells;
 }; // ProfileStruct for profile type = 1

 typedef string DefaultSSCSParameterProfile1PtrType;

 typedef string DefaultSSCSParameterProfile2PtrType;

 struct AAL2ProfileType {
 DefaultSSCSParameterProfile1PtrType defaultSSCSParameterProfile1Ptr;
 DefaultSSCSParameterProfile2PtrType defaultSSCSParameterProfile2Ptr;
 }; // ProfileStruct for profile type = 2

 struct MaxCPCSSDUSizeType {
 long long forwardDirectionCPCS_SDU;
 long long backwardsDirectionCPCS_SDU;
 };

 enum AALModeType {
 MessageAssured,
 MessageUnassured,
 StreamingAssured,
 StreamingUnassured
 };

 enum SSCSType {
 NoSSC,
 DataSSCSonSSCOPAssured,
 DataSSCSonSSCOPNotAssured,
 FrameRelaySSCS
 };

 struct AAL5ProfileType {
 // ManagedEntityIdType mEId; ??
 MaxCPCSSDUSizeType maxCPCSSDUSize;
 AALModeType aALMode;
 SSCSType sSCS;
 }; // ProfileStruct for profile type = 4

 enum AppIdType {
 LES_CAS_noELCP,
 LES_PSTN_noELCP,

 ITU-T Rec. Q.834.4 (07/2003) 157

 LES_PSTN_ELCP,
 LES_DSS1forBRI_noELCP,
 LES_DSS1forBRI_ELCP,
 LES_CASforPOTS_DSS1forBRI_noELCP,
 LES_PSTNforPOTS_DSS1forBRI_noELCP,
 LES_PSTNforPOTS_DSS1forBRI_ELCP,
 LES_otherCCS,
 UnspecifiedLES
 };

 typedef long long MaxNumChannelsType;
 typedef long long MinimumChanIdType;
 typedef long long MaximumChanIdType;
 typedef long long MaxCPS_SDULengthType;
 typedef long long TimerCULengthType;

 struct AAL2PVCProfileType {
 MaxNumChannelsType maxNumChannels;
 MinimumChanIdType minimumChanId;
 MaximumChanIdType maximumChanId;
 MaxCPS_SDULengthType maxCPS_SDULength;
 TimerCULengthType timerCULength;
 }; // ProfileStruct for profile type = 3

 struct AlarmSeverityAssignProfileType {
 string eventName; //As defined in AlarmEventSupplier
 ProbableCauseType probableCauseValue; //Ditto as above
 PerceivedSeverityType serviceAffectingSeverity;
 PerceivedSeverityType nonServiceAffectingSeverity;
 }; // ProfileStruct for profile type = 5

 typedef sequence<AlarmSeverityAssignProfileType>
AlarmSeverityAssignProfileSeqType;
 typedef long long LocalMaxNumVPCSupportedType;
 typedef long long LocalMaxNumVCCSupportedType;
 typedef short LocalMaxNumVPIBitsType;
 typedef short LocalMaxNumVCIBitsType;
 typedef long long TotalEgressBandwidthType;
 typedef long long TotalIngressBandwidthType;
 typedef boolean UPCNPCIndicatorType; //TRUE = policing is on

 struct ATMNetworkAccessProfileType {
 LocalMaxNumVPCSupportedType localMaxNumVPCSupported;
 LocalMaxNumVCCSupportedType localMaxNumVCCSupported;
 LocalMaxNumVPIBitsType localMaxNumVPIBits;
 LocalMaxNumVCIBitsType localMaxNumVCIBits;
 TotalEgressBandwidthType totalEgressBandwidth;
 TotalIngressBandwidthType totalIngressBandwidth;
 UPCNPCIndicatorType uPCNPCIndicator;
 }; // ProfileStruct for profile type = 6

 typedef short LANType;
 typedef short EncapsulationProtocolType;
 typedef short PIDType;

 struct BridgedLANServiceProfileValues {
 LANType lAN;
 EncapsulationProtocolType encapsulationProtocol;
 PIDType pID;
 }; // ProfileStruct for profile type = 7

 typedef long long BufferedCDVToleranceType;

158 ITU-T Rec. Q.834.4 (07/2003)

 enum CASType {
 basic,
 e1Cas,
 SfCas,
 ds1EsfCas,
 j2Cas
 };

 typedef long long CableLengthType;

 struct CESServiceProfileValues {
 BufferedCDVToleranceType bufferedCDVTolerance;
 CASType cAS;
 }; // ProfileStruct for profile type = 8

 enum DS1FramingType {
 SuperFrame,
 ExtendedSuperFrame,
 Unframed
 };

 enum DS1EncodingType {
 AMI,
 B8ZS
 };

 enum LoopbackCodeType {
 SmartJack,
 SmartJack_ONTInband,
 COInband
 };

 typedef boolean SupplyPowerIndType;

 struct DS1ProfileValues {
 DS1FramingType dS1Framing;
 DS1EncodingType dS1Encoding;
 LoopbackCodeType loopbackCode;
 SupplyPowerIndType supplyPowerInd;
 CableLengthType cableLength;
 }; // ProfileStruct for profile type = 9

 enum DS3ApplicationType {
 CBitParity,
 M23
 };

 enum DS3EncodingType {
 B3ZS,
 CCHAN
 };

 struct DS3ProfileType {
 DS3ApplicationType dS3Application;
 DS3EncodingType dS3Encoding;
 CableLengthType cableLength;
 }; // ProfileStruct for profile type = 10

 typedef boolean DuplexType; //TRUE = full, FALSE = half
 typedef boolean AutoDetectionIndType;

 ITU-T Rec. Q.834.4 (07/2003) 159

 enum DataRateType {
 TenBT,
 HundredBT,
 ThousandBT,
 otherrate
 };

 typedef long long MaxFrameSizeType; //Fixed for Ethernet

 typedef boolean DTEDCEType; // TRUE = DTE setting; FALSE = DCE setting.

 struct EthernetProfileValues {
 DuplexType duplex;
 AutoDetectionIndType autoDetectionInd;
 DataRateType dataRate;
 MaxFrameSizeType maxFrameSize;
 DTEDCEType dTEDCE;
 }; // ProfileStruct for profile type = 11

 enum T303Type {
 m700,
 m1200,
 m1700,
 m2200,
 m2700,
 m3200,
 m3700,
 m4200,
 m4700
 };

 enum T396Type {
 ms700,
 ms1700,
 ms2700,
 ms3700,
 ms4700,
 ms5700,
 ms6700,
 ms7700,
 ms8700,
 ms9700,
 ms10700,
 ms11700,
 ms12700,
 ms13700,
 ms14700
 };

 struct IDLCCallProcessingProfileType {
 T303Type t303;
 T396Type t396;
 }; // ProfileStruct for profile type = 12

 typedef boolean ELCPIndType;

 enum POTSSignallingType {
 PSTN,
 ChAS,
 CCS,
 UNKNOWN
 };

160 ITU-T Rec. Q.834.4 (07/2003)

 enum BRISignallingType {
 DSS1,
 OtherCCS
 };

 typedef long long MaxNumCIDsType;
 typedef long long MaxPacketLengthType;
 struct ChannelWithSSCSPtrType {
 long channelIndex;
 boolean ptr1orPtr2;
 };

 typedef sequence<ChannelWithSSCSPtrType> ChanAndSSCSParaPtrSeqType;

 struct LESProfileType {
 ELCPIndType eLCPInd;
 POTSSignallingType pOTSSignalling;
 BRISignallingType bRISignalling;
 MaxNumCIDsType maxNumCIDs;
 MaxPacketLengthType maxPacketLength;
 ChanAndSSCSParaPtrSeqType chanAndSSCSParaPtrSeq;
 }; // ProfileStruct for profile type = 13

 typedef boolean SpanningTreeIndType;
 typedef short BridgePriorityType;
 typedef short MaxAgeType;
 typedef short HelloTimeType;
 typedef short ForwardDelayType;

 struct MACBridgeServiceProfileType {
 SpanningTreeIndType spanningTreeInd;
 BridgePriorityType bridgePriority;
 MaxAgeType maxAge;
 HelloTimeType helloTime;
 ForwardDelayType forwardDelay;
 }; // ProfileStruct for profile type = 14

 typedef long long SegmentLengthType;
 typedef short RASTimerType;
 typedef long longMaxSSSARSDULengthType;
 typedef boolean SSTEDIndType;
 typedef boolean SSADTIndType;

 struct SSCSParameterProfile1Type {
 SegmentLengthType segmentLength;
 RASTimerType rASTimer;
 MaxSSSARSDULengthType maxSSSARSDULength;
 SSTEDIndType sSTEDInd;
 SSADTIndType sSADTInd;
 }; // ProfileStruct for profile type = 15

 enum ServiceCatType {
 Audio,
 Multirate,
 UNKNCategory
 };

 enum EncSrcType {
 ITUT,
 ATMForum,
 Proprietary
 };

 ITU-T Rec. Q.834.4 (07/2003) 161

 typedef short EncProfileIndexType;
 typedef boolean AudioServIndType;
 typedef short PCMEncType;
 typedef boolean CMDataIndType;
 typedef short CMMultiplierNumType;
 typedef boolean FMDataIndType;
 typedef long long FMMaxFrameLenType;
 typedef boolean CASIndType;
 typedef boolean DTMFIndType;
 typedef boolean MFR1IndType;
 typedef boolean MFR2IndType;
 typedef boolean RateControlIndType;
 typedef boolean SynchChangeIndType;
 typedef boolean FaxDemodIndType;

 struct SSCSParameterProfile2Type {
 ServiceCatType serviceCat;
 EncSrcType encSrc;
 EncProfileIndexType encProfileIndex;
 AudioServIndType audioServInd;
 PCMEncType pCMEnc;
 CMDataIndType cMDataInd;
 CMMultiplierNumType cMMultiplierNum;
 FMDataIndType fMDataInd;
 FMMaxFrameLenType fMMaxFrameLen;
 CASIndType cASInd;
 DTMFIndType dTMFInd;
 MFR1IndType mFR1Ind;
 MFR2IndType mFR2Ind;
 RateControlIndType rateControlInd;
 SynchChangeIndType synchChangeInd;
 FaxDemodIndType faxDemodInd;
 }; // ProfileStruct for profile type = 16

 typedef long long PCRIngressType;
 typedef long long PCREgressType;
 typedef long long CDVTPCRIngressType;
 typedef long long CDVTPCREgressType;
 typedef long long CDVTSCRIngressType;
 typedef long long CDVTSCREgressType;
 typedef long long SCRIngressType;
 typedef long long SCREgressType;
 typedef long long MaxBSIngressType;
 typedef long long MaxBSEgressType;
 typedef long long MFSIngressType;
 typedef long long MFSEgressType;

 struct TrafficDescriptorProfileType {
 ServiceCategoryType serviceCategory;
 ConformanceDefType conformanceDef;
 PCRIngressType pCRIngress;
 PCREgressType pCREgress;
 CDVTPCRIngressType cDVTPCRIngress;
 CDVTPCREgressType cDVTPCREgress;
 CDVTSCRIngressType cDVTSCRIngress;
 CDVTSCREgressType cDVTSCREgress;
 SCRIngressType sCRIngress;
 SCREgressType sCREgress;
 MaxBSIngressType maxBSIngress;
 MaxBSEgressType maxBSEgress;
 MFSIngressType mFSIngress;
 MFSEgressType mFSEgress;
 }; // ProfileStruct for profile type = 17

162 ITU-T Rec. Q.834.4 (07/2003)

 typedef string LoopbackLocCodeType;

 struct UNIProfileType {
 LocalMaxNumVPCSupportedType localMaxNumVPCSupported;
 LocalMaxNumVCCSupportedType localMaxNumVCCSupported;
 LocalMaxNumVPIBitsType localMaxNumVPIBits;
 LocalMaxNumVCIBitsType localMaxNumVCIBits;
 LoopbackLocCodeType loopbackLocCode;
 }; // ProfileStruct for profile type = 18

 enum AnnouncementType {
 Silence,
 ReorderTone,
 FastBusy,
 VoiceAnnouncement,
 OtherAnnouncementType,
 UNKNAnnouncementType
 };

 enum TimingReferenceType {
 NetworkTimingReference,
 AdaptiveVoice,
 FreeRun,
 OtherTimingReference
 };

 typedef boolean EchoCancellationIndType;

 struct VoiceServiceProfileAAL1Type {
 AnnouncementType announcement;
 TimingReferenceType timingReference;
 EchoCancellationIndType echoCancellationInd;
 }; // ProfileStruct for profile type = 19

 typedef long long JitterTargetType;
 typedef long long JitterBufferMaxType;

 struct VoiceServiceProfileAAL2Type {
 AnnouncementType announcement;
 TimingReferenceType timingReference;
 JitterTargetType jitterTarget;
 JitterBufferMaxType jitterBufferMax;
 EchoCancellationIndType echoCancellationInd;
 }; // ProfileStruct for profile type = 20

 struct ThresholdDataComponentType {
 MonitoredParameterType monitoredParameter; // Values defined in
 Q834Common::MonitoringParameter unsigned long long thresholdValue;
 };

 typedef sequence<ThresholdDataComponentType> ThresholdDataSeqType;

 struct ThresholdDataProfileType {
 MonitoringKindType monitoringType;
 ThresholdDataSeqType thresholdValues;
 }; // ProfileStruct for profile type = 21

 typedef sequence<ATMOverbookingFactorType> ATMOverbookingProfileType;
// ProfileStruct for profile type = 22

 ITU-T Rec. Q.834.4 (07/2003) 163

 // Local exceptions
 exception ProfileInUse {};
 exception DuplicateProfileName {};

 // End local definitions

 interface ProfileConsumer : itut_x780::ManagedObject {
 /*
 Structured event fixed header mappings:
 domain_type is set to "telecommunications",
 type_name is set to "ProfileEvent", and
 event_name is set to the constant string
 provided below. Only new profiles are announced
 through this interface.
 */

 const string profileCreation = "ProfileCreation";

 /*
 Identification of remaining items in filterable data of structured
 event.
 */

 const string profileName = "ProfileName";
 const string profileType = "ProfileType";
 const string profileAttributeValues = "ProfileAttributeValues";

 /*
 Values identifying the types of profiles used is provided below.
 */

 const unsigned short AAL1Profile = 1;
 const unsigned short AAL2Profile = 2;
 const unsigned short AAL2PVCProfile = 3;
 const unsigned short AAL5Profile = 4;
 const unsigned short AlarmSeverityAssignmentProfile = 5;
 const unsigned short ATMNetworkAccessProfile = 6;
 const unsigned short BridgedLANServiceProfile = 7;
 const unsigned short CESServiceProfile = 8;
 const unsigned short DS1Profile = 9;
 const unsigned short DS3Profile = 10;
 const unsigned short EthernetProfile = 11;
 const unsigned short IDLCCallProcessingProfile = 12;
 const unsigned short LESProfile = 13;
 const unsigned short MACBridgeServiceProfile = 14;
 const unsigned short SSCSParameterProfile1 = 15;
 const unsigned short SSCSParameterProfile2 = 16;
 const unsigned short TrafficDescriptorProfile = 17;
 const unsigned short UNIProfile = 18;
 const unsigned short VoiceServiceProfileAAL1 = 19;
 const unsigned short VoiceServiceProfileAAL2 = 20;
 const unsigned short ThresholdData = 21;
 const unsigned short ATMOverbookingFactorProfile = 22;

 /*
 Mapping to filterable data within the structured event is provided for
 a consumer event that involves the creation of a profile object.

 {
 {"ProfileName", any (NameType)},
 {"ProfileType", any (ProfileKindType)},
 {"EventTime", any (GeneralizedTimeType)},
 {"ProfileAttributeValues", any (ProfileStruct)},

164 ITU-T Rec. Q.834.4 (07/2003)

 {"NotificationIdentifier", any (NotificationIdentifierType)}
 }

 */

 }; // interface ProfileConsumer

 interface ProfileUsageMgr : itut_x780::ManagedObject {

 // See 9.9.2.1 for the description of the behaviour of this operation

 void reName (
 in NameType oldProfileName,
 in NameType newProfileName)
 raises (UnknownProfiles,
 AccessDenied,
 DuplicateProfileName
);

 // See 9.9.2.2 for the description of the behaviour of this operation

 boolean inUse (
 in NameType profileName)
 raises (UnknownProfiles,
 AccessDenied);

 // See 9.9.2.3 for the description of the behaviour of this operation

 void suspendUse (
 in NameType profileName)
 raises (UnknownProfiles,
 AccessDenied);

 // See 9.9.2.4 for the description of the behaviour of this operation

 void resumeUse (
 in NameType profileName)
 raises (UnknownProfiles, AccessDenied) ;

 // See 9.9.2.5 for the description of the behaviour of this operation

 void deleteProfile (
 in NameType profileName)
 raises (UnknownProfiles,
 AccessDenied,
 ProfileInUse);

 }; // interface ProfileUsageMgr

 /*
 This object is instantiated on the actor called Profile Object Repository.
 The Supplier Management System is the client.
 */

 interface ProfileRetriever : itut_x780::ManagedObject {

 ITU-T Rec. Q.834.4 (07/2003) 165

 // See 9.9.3.1 for the description of the behaviour of this operation

 ProfileInfoType retrieve (
 in NameType profileName)
 raises (UnknownProfiles);

 }; // interface ProfileRetriever

}; // module ProfileManager

}; // module q834_4
#endif

C.10 Q834Registrar.idl

#ifndef __Q834_4_REGISTRAR_DEFINED
#define __Q834_4_REGISTRAR_DEFINED

#include "Q834Common.idl"

#pragma prefix "itu.Int"

module q834_4
{

module Registrar
{

 // begin definitions from other idl files

 // From Q834Common
 typedef Q834Common::NameType NameType;
 typedef Q834Common::ManagedEntityIdType ManagedEntityIdType;
 typedef Q834Common::ManagedEntityIdSeqType ManagedEntityIdSeqType;
 typedef Q834Common::UserLabelType UserLabelType;
 typedef Q834Common::SerialNumType SerialNumType;
 typedef Q834Common::ReservationIdType ReservationIdType;
 typedef Q834Common::DCNAddressType DCNAddressType;
 typedef Q834Common::AdministrationDomainType AdministrationDomainType;
 typedef Q834Common::UserLabelSeqType UserLabelSeqType;

#define AccessDenied Q834Common::AccessDenied
#define CommFailure Q834Common::CommFailure
#define DuplicateUserLabel Q834Common::DuplicateUserLabel
#define EquipmentFailure Q834Common::EquipmentFailure
#define InsufficientPONBW Q834Common::InsufficientPONBW
#define InvalidSerialNumSyntax Q834Common::InvalidSerialNumSyntax
#define MaxSubtendingNodesExceeded Q834Common::MaxSubtendingNodesExceeded
#define UnknownNE Q834Common::UnknownNE
#define UnknownPort Q834Common::UnknownPort
#define DCNTimeout Q834Common::DCNTimeout
#define DeniedAccess Q834Common::DeniedAccess
#define BackupInProgress Q834Common::BackupInProgress
#define UnknownManagedEntity Q834Common::UnknownManagedEntity
#define InvalidUserLabelSyntax Q834Common::InvalidUserLabelSyntax
#define SynchInProgress Q834Common::SynchInProgress

 // End definitions from other idl files

166 ITU-T Rec. Q.834.4 (07/2003)

 // Local data types

 // Local exceptions
 exception TooManyNEs {};
 exception InvalidDCNAddress {};
 exception AddressLabelMismatch {};
 exception APONLayerFailure {};
 exception InvalidPort {};
 exception HWServicesMismatch {};

 // End local definitions

 valuetype NERegistrarValueType: itut_x780::ManagedObjectValueType {

 public ManagedEntityIdSeqType NEList; // GET
 };

 interface NERegistrar : itut_x780::ManagedObject {

 // See 9.10.1.1 for the description of the behaviour of this operation

 ManagedEntityIdType registerNE (
 in DCNAddressType nEDCNAddress,
 in UserLabelType nEUserLabel,
 in AdministrationDomainType administrationDomain)
 raises (AccessDenied,
 DCNTimeout,
 AddressLabelMismatch,
 DuplicateUserLabel,
 TooManyNEs,
 InvalidDCNAddress,
 CanNotAssignManagedEntityId,
 CanNotRetrieveUserLabel,
 DeniedAccess,
 InvalidUserLabelSyntax);

 // See 9.10.1.2 for the description of the behaviour of this operation

 void modifyNEDCNAddress (
 in ManagedEntityIdType nEManagedEntityId,
 in DCNAddressType newNEDCNAddress)
 raises(AccessDenied,
 DeniedAccess,
 AddressLabelMismatch,
 DCNTimeout,
 CommFailure,
 UnknownNE,
 InvalidDCNAddress,
 BackupInProgress);

 // See 9.10.1.3 for the description of the behaviour of this operation

 ManagedEntityIdType rangeONTorONU (
 in ManagedEntityIdType oltManagedEntityId,
 in UserLabelType nEUserLabel,
 in SerialNumType serialNum,
 in ManagedEntityIdType port) // OLT PON Port
 raises (AccessDenied,
 CommFailure,

 ITU-T Rec. Q.834.4 (07/2003) 167

 EquipmentFailure,
 UnknownNE,
 UnknownPort,
 MaxSubtendingNodesExceeded,
 InsufficientPONBW,
 InvalidSerialNumSyntax,
 APONLayerFailure,
 DuplicateUserLabel,
 InvalidUserLabelSyntax,
 BackupInProgress,
 SynchInProgress);

 // See 9.10.1.4 for the description of the behaviour of this operation

 ManagedEntityIdType rangeReplacementNE (
 in ManagedEntityIdType oldNEManagedEntityId,
 in UserLabelType newNEUserLabel,
 in SerialNumType replacementSerialNum)
 raises (AccessDenied,
 CommFailure,
 UnknownNE,
 InvalidSerialNumSyntax,
 APONLayerFailure,
 EquipmentFailure,
 InvalidUserLabelSyntax,
 DuplicateUserLabel,
 HWServicesMismatch,
 BackupInProgress,
 SynchInProgress);

 // See 9.10.1.5 for the description of the behaviour of this operation

 ManagedEntityIdType rangeUpgradeNE (
 in ManagedEntityIdType oldNEManagedEntityId,
 in ManagedEntityIdType newNEManagedEntityId,
 in UserLabelType newNEUserLabel,
 in SerialNumType newNESerialNum)
 raises (AccessDenied,
 CommFailure,
 UnknownNE,
 InvalidSerialNumSyntax,
 APONLayerFailure,
 EquipmentFailure,
 InvalidUserLabelSyntax,
 DuplicateUserLabel,
 HWServicesMismatch,
 BackupInProgress,
 SynchInProgress);

 // See 9.10.1.6 for the description of the behaviour of this operation

 ManagedEntityIdType moveONTorONU(
 in ManagedEntityIdType oldNEManagedEntityId,
 in ManagedEntityIdType newPONPort)
 raises (AccessDenied,
 CommFailure,
 UnknownPort,
 APONLayerFailure,
 EquipmentFailure,
 InsufficientPONBW,
 BackupInProgress,
 SynchInProgress,
 UnknownNE);

168 ITU-T Rec. Q.834.4 (07/2003)

 // See 9.10.1.7 for the description of the behaviour of this operation

 ManagedEntityIdSeqType getSubtendingNEList(
 in ManagedEntityIdType nEManagedEntityId)
 raises (UnknownNE, AccessDenied);

 // See 9.10.1.8 for the description of the behaviour of this operation

 ManagedEntityIdSeqType nEListGet ()
 raises (AccessDenied);

 // See 9.10.1.9 for the description of the behaviour of this operation

 void deRegisterNE(
 in ManagedEntityIdType nE)
 raises (UnknownNE,
 AccessDenied);

 // See 9.10.1.10 for the description of the behaviour of this
 operation

 ManagedEntityIdType associateNE(
in ManagedEntityIdType preProvisionedNE,
 in ManagedEntityIdType discoveredNE)
 raises (UnknownManagedEntity,
 AccessDenied);

 }; // interface NERegistrar

}; // module Registrar

}; // module q834_4

#endif

C.11 Q834ResourceAllocation.idl

#ifndef __Q834_4_RESOURCEALLOCATOR_DEFINED
#define __Q834_4_RESOURCEALLOCATOR_DEFINED

#include "Q834Common.idl"

#pragma prefix "itu.Int"

module q834_4 {

module ResourceAllocation {

 // Begin definitions from other idl files

 // From Q834Common
 typedef Q834Common::ManagedEntityIdType ManagedEntityIdType;
 typedef Q834Common::NameSeqType NameSeqType;
 typedef Q834Common::ReservationIdType ReservationIdType;
 typedef Q834Common::ReservationIdSeqType ReservationIdSeqType;
 typedef Q834Common::ServiceInstanceIdType ServiceInstanceIdType;
 typedef Q834Common::EndPointType EndPointType;

#define AccessDenied Q834Common::AccessDenied
#define CommFailure Q834Common::CommFailure

 ITU-T Rec. Q.834.4 (07/2003) 169

#define ConnectionCountExceeded Q834Common::ConnectionCountExceeded
#define InsufficientBW Q834Common::InsufficientBW
#define MaxSubtendingNodesExceeded Q834Common::MaxSubtendingNodesExceeded
#define UnknownNE Q834Common::UnknownNE
#define UnknownPort Q834Common::UnknownPort
#define UnknownProfiles Q834Common::UnknownProfiles
#define UnknownReservationId Q834Common::UnknownReservationId
#define UnknownServiceInstance Q834Common::UnknownServiceInstance
#define ProfileSuspended Q834Common::ProfileSuspended

 // End of definitions from other idl files

 // Local data types

 struct BandwidthInfoType {
 long upstreamBW;
 long downstreamBW;
 };

 struct PortBandwidthType {
 BandwidthInfoType portBandwidth;
 ManagedEntityIdType portId;
 };

 typedef sequence<PortBandwidthType> PortBandwidthSeqType;

typedef PortBandwidthSeqType AvailableSysBandwidthSeqType;
 typedef PortBandwidthSeqType ReservedBandwidthSeqType;

 struct ReservationInfoType {
 ReservationIdType reservationId;
 EndPointType endPointA;
 EndPointType endPointB;
 NameSeqType profileNameList; // servicetemplates
 ServiceInstanceIdType serviceInstanceId;
 ReservedBandwidthSeqType reservedBandwidth;
 };

 struct ReservationBandwidthType {
 ReservationIdType reservationId;
 ReservedBandwidthSeqType reservedBandwidth;
 };

 // Local exceptions

 // End local definitions

 interface ResourceAllocator : itut_x780::ManagedObject {

 // See 9.11.1.1 for the description of the behaviour of this operation

 ReservationBandwidthType reserveForService(
 in EndPointType endPointA,
 in EndPointType endPointZ,
 in NameSeqType networkCharacteristicsProfiles,
 in ServiceInstanceIdType serviceInstanceId)
 raises (UnknownNE,
 UnknownPort,
 UnknownProfiles,
 InsufficientBW,
 MaxSubtendingNodesExceeded,

170 ITU-T Rec. Q.834.4 (07/2003)

 ConnectionCountExceeded,
 CommFailure,
 AccessDenied,
 ProfileSuspended);

 // See 9.11.1.2 for the description of the behaviour of this operation

 AvailableSysBandwidthSeqType cancelReservation (
 in ReservationIdType reservationId)
 raises (UnknownReservationId,
 CommFailure,
 AccessDenied);

 // See 9.11.1.3 for the description of the behaviour of this operation

 ReservationIdType getReservationId (
 in ServiceInstanceIdType serviceInstanceId)
 raises (UnknownServiceInstance, AccessDenied);

 // See 9.11.1.4 for the description of the behaviour of this operation

 ReservedBandwidthSeqType reportReservedResources (
 in ManagedEntityIdType nEManagedEntityId)
 raises (UnknownNE, AccessDenied);

 // See 9.11.1.5 for the description of the behaviour of this operation

 ReservationIdSeqType getReservations(
 in ManagedEntityIdType nEManagedEntityId)
 raises (UnknownNE, AccessDenied);

 // See 9.11.1.6 for the description of the behaviour of this operation

 AvailableSysBandwidthSeqType cancelAllRemainingReservations(
 in ManagedEntityIdType nEManagedEntityId)
 raises (UnknownNE,
 CommFailure,
 AccessDenied);

 // See 9.11.1.7 for the description of the behaviour of this operation

 ReservationInfoType getReservation (
 in ReservationIdType reservationId)
 raises (UnknownReservationId,
 AccessDenied);

 // See 9.11.1.8 for the description of the behaviour of this operation

 AvailableSysBandwidthSeqType getAvaliableSysBandwidth(
 in ManagedEntityIdType nEManagedEntityId)
 raises (UnknownNE,
 CommFailure,
 AccessDenied);

 }; // interface ResourceAllocator

}; // module ResourceAllocation

}; // module q834_4

#endif

 ITU-T Rec. Q.834.4 (07/2003) 171

C.12 Q834SchedulerManagement.idl

#ifndef __Q834_4_SCHEDULERMGR_DEFINED
#define __Q834_4_SCHEDULERMGR_DEFINED

#include "Q834Common.idl"

#pragma prefix "itu.Int"

module q834_4 {

module SchedulerManagement {
 // Begin definitions from other idl files

 // From Q834Common

 typedef Q834Common::UserLabelType UserLabelType;
 typedef Q834Common::GeneralizedTimeType GeneralizedTimeType;
 typedef Q834Common::AdministrativeStateType AdministrativeStateType;
 typedef Q834Common::OperationalStateType OperationalStateType;

#define AccessDenied Q834Common::AccessDenied
#define DuplicateUserLabel Q834Common::DuplicateUserLabel
#define UnknownScheduler Q834Common::UnknownScheduler
#define InvalidStartTime Q834Common::InvalidStartTime
#define InvalidStopTime Q834Common::InvalidStopTime

 // End definitions from other idl files

 // Local data types

 enum HourlyDailyWeeklyMonthlyIndType {
 Hourly,
 Daily,
 Weekly,
 Monthly
 };

 enum DayofWeekType {
 Sunday,
 Monday,
 Tuesday,
 Wednesday,
 Thursday,
 Friday,
 Saturday,
 Unspecified
 };

 typedef short DayOfMonthType; // 0 is interpreted to mean unspecified.

 struct TriggerTimeType
 {
 long time; // trigger time in number of seconds
 DayofWeekType dayOfWeek;
 DayOfMonthType dayofMonth;
 };

 typedef sequence<TriggerTimeType> TriggerTimeMatrixSeqType;

 struct SchedulerType

172 ITU-T Rec. Q.834.4 (07/2003)

 {
 UserLabelType schedulerName;
 GeneralizedTimeType startTime; // schedule start time
 GeneralizedTimeType stopTime; // schedule stop time
 HourlyDailyWeeklyMonthlyIndType hourlyDailyWeeklyMonthlyInd;
 TriggerTimeMatrixSeqType matrix;
 OperationalStateType operationalState;
 AdministrativeStateType administrativeState;
 };

 typedef sequence<SchedulerType> SchedulerSeqType;

 // Local exceptions

 exception MatrixSchedulerTypeMismatch {};
 exception InvalidTrigger {};
 exception ScheduleInUse {};

 // End local definitions

 valuetype SchedulerMgrValueType: itut_x780::ManagedObjectValueType {

 public SchedulerSeqType schedulerList; // GET

 };

 interface SchedulerMgr : itut_x780::ManagedObject {

 // See 9.12.1.1 for the description of the behaviour of this operation

 void makeScheduler (
 in UserLabelType schedulerName,
 in GeneralizedTimeType startTime,
 in GeneralizedTimeType stopTime,
 in HourlyDailyWeeklyMonthlyIndType hourlyDailyWeeklyMonthlyInd,
 in TriggerTimeMatrixSeqType matrix)
 raises (InvalidStartTime,
 InvalidStopTime,
 DuplicateUserLabel,
 MatrixSchedulerTypeMismatch,
 AccessDenied,
 InvalidTrigger);

 // See 9.12.1.2 for the description of the behaviour of this operation

 void suspendScheduler (
 in UserLabelType schedulerName)
 raises (UnknownScheduler,
 AccessDenied);

 // See 9.12.1.3 for the description of the behaviour of this operation

 void resumeScheduler (in UserLabelType schedulerName) raises
(UnknownScheduler, AccessDenied);

 // See 9.12.1.4 for the description of the behaviour of this operation

 void modifyTime (
 in UserLabelType schedulerName,
 in GeneralizedTimeType newStartTime,

 ITU-T Rec. Q.834.4 (07/2003) 173

 in GeneralizedTimeType newStopTime)
 raises (InvalidStartTime,
 InvalidStopTime,
 UnknownScheduler,
 AccessDenied);

 // See 9.12.1.5 for the description of the behaviour of this operation

 void changeSchedulerName (
 in UserLabelType oldSchedulerName,
 in UserLabelType newSchedulerName)
 raises (UnknownScheduler,
 DuplicateUserLabel,
 AccessDenied);

 // See 9.12.1.6 for the description of the behaviour of this operation

 void modifyTriggerTimes (
 in UserLabelType schedulerName,
 in HourlyDailyWeeklyMonthlyIndType newHourlyDailyWeeklyMonthly,
 in TriggerTimeMatrixSeqType newMatrix)
 raises (UnknownScheduler,
 MatrixSchedulerTypeMismatch,
 AccessDenied,
 InvalidTrigger);

 // See 9.12.1.7 for the description of the behaviour of this operation

 void removeScheduler (
 in UserLabelType schedulerName)
 raises (UnknownScheduler,
 AccessDenied,
 ScheduleInUse);

 // See 9.12.1.8 for the description of the behaviour of this operation

 SchedulerType retrieveScheduler (in UserLabelType schedulerName)
 raises (UnknownScheduler,
 AccessDenied) ;

 // See 9.12.1.9 for the description of the behaviour of this operation

 SchedulerSeqType schedulerListGet () raises (AccessDenied);

 }; // interface SchedulerMgr

}; // module SchedulerManagement

}; // module q834_4

#endif

C.13 Q834ServiceProvisioning.idl

#ifndef __Q834_4_SERVICEPROVISIONING_DEFINED
#define __Q834_4_SERVICEPROVISIONING_DEFINED

#include "Q834Common.idl"
#include "Q834ProfileManager.idl"

#pragma prefix "itu.Int"

174 ITU-T Rec. Q.834.4 (07/2003)

module q834_4 {

module ServiceProvisioning {

// Begin definitions from other idl files

// From Q834Common
 typedef Q834Common::RDNType RDNType;
 typedef Q834Common::ManagedEntityIdType ManagedEntityIdType;
 typedef Q834Common::NameSeqType NameSeqType;
 typedef Q834Common::ServiceInstanceIdType ServiceInstanceIdType;
 typedef Q834Common::ReservationIdType ReservationIdType;
 typedef Q834Common::EndPointType EndPointType;
 typedef Q834Common::NameType NameType;
 typedef Q834Common::AdministrativeStateType AdministrativeStateType;
 typedef Q834Common::GeneralizedTimeType GeneralizedTimeType;

#define AccessDenied Q834Common::AccessDenied
#define CommFailure Q834Common::CommFailure
#define ConnectionCountExceeded Q834Common::ConnectionCountExceeded
#define EquipmentFailure Q834Common::EquipmentFailure
#define InsufficientBW Q834Common::InsufficientBW
#define InsufficientPONBW Q834Common::InsufficientPONBW
#define UnknownProfiles Q834Common::UnknownProfiles
#define UnknownReservationId Q834Common::UnknownReservationId
#define UnknownNE Q834Common::UnknownNE
#define UnknownServiceInstance Q834Common::UnknownServiceInstance
#define ProfileSuspended ProfileManager::ProfileSuspended
#define InvalidStartTime Q834Common::InvalidStartTime
#define InvalidStopTime Q834Common::InvalidStopTime
#define ParameterViolation Q834Common::ParameterViolation
#define UnknownPort Q834Common::UnknownPort
#define ProfileSuspended Q834Common::ProfileSuspended

// End definitions from other idl files

// Local data types

// Local exceptions
 exception UnknownConnection {};
 exception ConnectionAlreadyExists {};

// End local definitions

 interface ServiceProvisioner : itut_x780::ManagedObject {

 // See 9.13.1.1 for the description of the behaviour of this operation

 ManagedEntityIdType provisionConnection(
 in EndPointType endPointA,
 in EndPointType endPointB,
 in NameSeqType networkCharacteristicsProfiles,
 in ServiceInstanceIdType serviceInstanceId,
 in AdministrativeStateType administrativeState)
 raises (UnknownNE,
 UnknownProfiles,
 UnknownPort,
 InsufficientBW,
 ConnectionCountExceeded,
 CommFailure,
 EquipmentFailure,

 ITU-T Rec. Q.834.4 (07/2003) 175

 ParameterViolation,
 AccessDenied,
 InsufficientPONBW,
 ConnectionAlreadyExists,
 ProfileSuspended);

 // See 9.13.1.2 for the description of the behaviour of this operation

 ManagedEntityIdType provisionReservation(
 in ReservationIdType reservationId,
 in AdministrativeStateType administrativeState)
 raises (UnknownReservationId,
 AccessDenied);

 // See 9.13.1.3 for the description of the behaviour of this operation

 void deleteConnection (
 in ManagedEntityIdType subnetworkConnectionId)
 raises (UnknownConnection,
 CommFailure,
 EquipmentFailure,
 AccessDenied);

 // See 9.13.1.4 for the description of the behaviour of this operation

 ManagedEntityIdType modifyConnection (
 in ManagedEntityIdType subnetworkConnectionId,
 in ManagedEntityIdType portB,
 in NameSeqType newNetworkCharacteristicsProfiles)
 raises (UnknownConnection,
 UnknownPort,
 UnknownProfiles,
 InsufficientBW,
 AccessDenied,
 ProfileSuspended);

 // See 9.13.1.5 for the description of the behaviour of this operation

 void suspendService (
 in ServiceInstanceIdType serviceInstanceId,
 in GeneralizedTimeType startTime,
 in GeneralizedTimeType stopTime)
 raises (UnknownServiceInstance,
 InvalidStartTime,
 InvalidStopTime,
 AccessDenied);

 // See 9.13.1.6 for the description of the behaviour of this operation

 void resumeService(
 in ServiceInstanceIdType serviceInstanceId)
 raises (UnknownServiceInstance,
 AccessDenied);

 }; // interface ServiceProvisioner

}; // module ServiceProvisioning

}; // module q834_4

#endif

176 ITU-T Rec. Q.834.4 (07/2003)

C.14 Q834Synchroniser.idl

#ifndef __Q834_4_SYNCHRONISER_DEFINED
#define __Q834_4_SYNCHRONISER_DEFINED

#include "Q834Common.idl"

#pragma prefix "itu.Int"

module q834_4
{

module Synchroniser
{

// begin definitions from other idl files

// From Q834Common
 typedef Q834Common::NameType NameType;
 typedef Q834Common::UserLabelType UserLabelType;
 typedef Q834Common::ManagedEntityIdType ManagedEntityIdType;

#define AccessDenied Q834Common::AccessDenied
#define CommFailure Q834Common::CommFailure
#define DCNTimeout Q834Common::DCNTimeout
#define EquipmentFailure Q834Common::EquipmentFailure
#define UnknownNE Q834Common::UnknownNE
#define UnknownScheduler Q834Common::UnknownScheduler
#define InvalidScheduler Q834Common::InvalidScheduler
#define BackupInProgress Q834Common::BackupInProgress
#define Timeout Q834Common::Timeout
#define SynchInProgress Q834Common::SynchInProgress

// End definitions from other idl files

// Local data types

 typedef sequence<short> CurrentListingSeqType;

 struct ScheduledSynchNEType {
 ManagedEntityIdType managedEntityId;
 UserLabelType schedulerName;
 };
 typedef sequence<ScheduledSynchNEType> ScheduledSynchNESeqType;

// Local exceptions
 exception NoSynchInProgress {};

// End local definitions

 valuetype SynchroniserValueType: itut_x780::ManagedObjectValueType {

 public ScheduledSynchNESeqType scheduledSynchNEList; // GET

 };

 interface NESynchroniser : itut_x780::ManagedObject {

 // Define constants for current event listings

 ITU-T Rec. Q.834.4 (07/2003) 177

 const short CURRENT_ALARM = 1;
 const short CURRENT_OPERATIONAL_STATE_DISABLED = 2;
 const short CURRENT_ADMINSTRATIVE_STATE_LOCKED = 3;
 const short CURRENT_PROTECTION_SWITCHING_EVENT = 4;
 const short CURRENT_SERVICE_OUTAGE = 5;

 // See 9.14.1.1 for the description of the behaviour of this operation

 void synchNE(
 in ManagedEntityIdType nEManagedEntityId)
 raises (AccessDenied,
 CommFailure,
 UnknownNE,
 EquipmentFailure,
 BackupInProgress,
 SynchInProgress);

 // See 9.14.1.2 for the description of the behaviour of this operation

 void abortSynchNE(
 in ManagedEntityIdType nEManagedEntityId)
 raises (AccessDenied,
 CommFailure,
 UnknownNE,
 EquipmentFailure,
 NoSynchInProgress);

 // See 9.14.1.3 for the description of the behaviour of this operation

 void scheduleSynchNE(
 in ManagedEntityIdType nEManagedEntityId,
 in UserLabelType schedulerName)
 raises (AccessDenied,
 UnknownNE,
 UnknownScheduler,
 InvalidScheduler);

 // See 9.14.1.4 for the description of the behaviour of this operation

 void modifyNESynchSchedule(
 in ManagedEntityIdType nEManagedEntityId,
 in UserLabelType newSchedulerName)
 raises (AccessDenied,
 UnknownNE,
 UnknownScheduler,
 InvalidScheduler);

 // See 9.14.1.5 for the description of the behaviour of this operation

 void cancelScheduledSynchNE(
 in ManagedEntityIdType nEManagedEntityId)
 raises (AccessDenied,
 UnknownNE);

 // See 9.14.1.6 for the description of the behaviour of this operation

 void synchCurrentEventListings(
 in ManagedEntityIdType nEManagedEntityId,
 in CurrentListingSeqType currentListingTypeList)
 raises (AccessDenied,
 CommFailure,
 DCNTimeout,
 UnknownNE,

178 ITU-T Rec. Q.834.4 (07/2003)

 EquipmentFailure,
 Timeout);

 // See 9.14.1.7 for the description of the behaviour of this operation

 ScheduledSynchNESeqType scheduledSynchNEListGet ()
 raises (AccessDenied);

 }; // interface NESynchroniser

}; // module Synchroniser

}; // module q834_4

#endif

C.15 Q834Test.idl

#ifndef __Q834_4_TEST_DEFINED
#define __Q834_4_TEST_DEFINED

#include "Q834Common.idl"

#pragma prefix "itu.Int"

module q834_4
{

module Test
{

 // begin definitions from other idl files

 // From Q834Common

 typedef Q834Common::ManagedEntityIdType ManagedEntityIdType;
 typedef Q834Common::ManagedEntityIdSeqType ManagedEntityIdSeqType;
 typedef Q834Common::UserIdType UserIdType;
 typedef Q834Common::GeneralizedTimeType GeneralizedTimeType;
 typedef Q834Common::UserLabelType UserLabelType;
 typedef Q834Common::LoopbackLocationIdSeqType
 LoopbackLocationIdSeqType;
 typedef Q834Common::StatusValueType StatusValueType;
 typedef Q834Common::ServiceInstanceIdType ServiceInstanceIdType;
 typedef Q834Common::TrackingObjectIdType TrackingObjectIdType;

#define AccessDenied Q834Common::AccessDenied
#define CommFailure Q834Common::CommFailure
#define UnknownScheduler Q834Common::UnknownScheduler
#define InvalidScheduler Q834Common::InvalidScheduler
#define InvalidStopTime Q834Common::InvalidStopTime
#define InvalidStartTime Q834Common::InvalidStartTime
#define UnknownManagedEntity Q834Common::UnknownManagedEntity
#define UnknownNE Q834Common::UnknownNE
#define UnknownServiceInstance Q834Common::UnknownServiceInstance

 // End definitions from other idl files

 // Local data types

 ITU-T Rec. Q.834.4 (07/2003) 179

 enum DirectionalityType {
 Egress,
 Ingress,
 BothDirections
 };

 struct ATMLoopbackInfoType {
 DirectionalityType directionality;
 LoopbackLocationIdSeqType targetLLID;
 boolean segmentCellInd;
 };

 typedef unsigned short TestIterationNumType;

 struct ATMLoopbackResultType {
 LoopbackLocationIdSeqType loopbackingLLID;
 unsigned long responseTime; //in microseconds
 boolean succeeded; //true or false
 };

 typedef sequence<ATMLoopbackResultType> ATMLoopbackResultSeqType;

 struct AggregateATMLoopbackResultType {
 unsigned short iterationSeqNum;
 ATMLoopbackResultSeqType iterationTestResults;
 };

 typedef sequence<AggregateATMLoopbackResultType>
 AggregateATMLoopbackResultSeqType;

 struct ATMContinuityCheckInfoType {
 DirectionalityType directionality;
 boolean segmentCellInd;
 };

 typedef short DiagnosticType; // Supplier specific.
 typedef DiagnosticType ResourceSelfTestInfoType;
 typedef sequence<ResourceSelfTestInfoType> ResourceSelfTestInfoSeqType;

 struct ResourceSelfTestResultType {
 DiagnosticType diagnostic;
 boolean testPassed;
 };

 typedef sequence<ResourceSelfTestResultType>
 ResourceSelfTestResultSeqType;
 typedef long long CCSetUpIdType;
 typedef TrackingObjectIdType TestTrackingObjectIdType;
 typedef long long LoopbackTrackingObjectIdType;

 typedef unsigned short LoopbackTestType;

 struct LoopbackInfoType {
 LoopbackTrackingObjectIdType trackingId;
 unsigned long remainingTime; // in seconds
ManagedEntityIdType ctpId;
 LoopbackTestType loopbackTest;
 DirectionalityType directionality;
 };

 typedef sequence<LoopbackInfoType> LoopbackInfoSeqType;

180 ITU-T Rec. Q.834.4 (07/2003)

 typedef string SupportedTestType;

 typedef sequence<SupportedTestType> SupportedTestSeqType;

 struct ScheduledTestNEType {
 ManagedEntityIdType managedEntityId;
 SupportedTestType supportedTest;
 UserLabelType schedulerName;
 };
 typedef sequence<ScheduledTestNEType> ScheduledTestNESeqType;

 struct TestHistoryType {
 ManagedEntityIdType managedEntityId;
 SupportedTestType supportedTest;
 StatusValueType testStatus;
 };
 typedef sequence<TestHistoryType> TestHistorySeqType;

 // Local exceptions

 exception InvalidTimeoutPeriod {};
 exception NotAvailableForTest {};
 exception InvalidLocationId {};
 exception UnknownTest {};
 exception UncontrolledTestInProgress {};
 exception InvalidDirection {};
 exception InvalidTestOperations {};

 // End local definitions

 valuetype TestActionPerformerValueType: itut_x780::ManagedObjectValueType {

 public ScheduledTestNESeqType scheduledTestNEList; // GET

 };

 interface TestActionPerformer : itut_x780::ManagedObject {

 // See 9.15.1.1 for the description of the behaviour of this operation

 AggregateATMLoopbackResultSeqType aTMLoopback (
 in UserIdType testRequestorId,
 in ManagedEntityIdType ctp,
 in ATMLoopbackInfoType aTMLoopbackInfo,
 in TestIterationNumType testIterationNum,
 in ServiceInstanceIdType serviceInstanceId)
 raises (AccessDenied,
 CommFailure,
 UnknownManagedEntity,
 NotAvailableForTest,
 InvalidLocationId,
 InvalidDirection);

 // See 9.15.1.2 for the description of the behaviour of this operation

 CCSetUpIdType initializeContinuityCheck(
 in UserIdType testRequestorId,
 in ManagedEntityIdType sourceCtp,
 in ATMContinuityCheckInfoType aTMContinuityCheckInfo,
 in GeneralizedTimeType stopTime,
 in ServiceInstanceIdType serviceInstanceId)
 raises (AccessDenied,
 CommFailure,

 ITU-T Rec. Q.834.4 (07/2003) 181

 UnknownManagedEntity,
 NotAvailableForTest,
 InvalidStartTime,
 InvalidStopTime,
 InvalidDirection);

 // See 9.15.1.3 for the description of the behaviour of this operation

 void terminateContinuityCheck(
 in CCSetUpIdType cCSetUpId)
 raises (AccessDenied,
 CommFailure,
 UnknownTest);

 // See 9.15.1.4 for the description of the behaviour of this operation

 TestTrackingObjectIdType scheduleResourceSelfTest(
 in UserIdType testRequestorId,
 in ManagedEntityIdType targetNE,
 in unsigned long timeOutPeriod, //In seconds.
 in ResourceSelfTestInfoSeqType specificTestInfo,
 in UserLabelType schedulerName)
 raises (AccessDenied,
 UnknownNE,
 UnknownScheduler,
 InvalidScheduler,
 InvalidTimeoutPeriod,
 InvalidTestOperations);

 // See 9.15.1.5 for the description of the behaviour of this operation

 void modifyResourceSelfTestSchedule(
 in TestTrackingObjectIdType testTrackingObjectId,
 in UserLabelType newSchedulerName)
 raises (AccessDenied,
 UnknownTest,
 UnknownScheduler,
 InvalidScheduler);

 // See 9.15.1.6 for the description of the behaviour of this operation

 void cancelScheduledResourceSelfTest (
 in TestTrackingObjectIdType testTrackingObjectId)
 raises (AccessDenied,
 UnknownTest);

 // See 9.15.1.7 for the description of the behaviour of this operation

 TestTrackingObjectIdType conductResourceSelfTest (
 in UserIdType testRequestorId,
 in ManagedEntityIdType targetNE,
 in unsigned long timeOutPeriod, //In seconds.
 in ResourceSelfTestInfoSeqType specificTestInfo)
 raises (AccessDenied,
 CommFailure,
 UnknownNE,
 InvalidTimeoutPeriod,
 InvalidTestOperations);

 // See 9.15.1.8 for the description of the behaviour of this operation

 ResourceSelfTestResultSeqType terminateResourceSelfTest (
 in TestTrackingObjectIdType testTrackingObjectId)
 raises (UnknownTest,

182 ITU-T Rec. Q.834.4 (07/2003)

 UncontrolledTestInProgress,
 AccessDenied);

 // See 9.15.1.9 for the description of the behaviour of this operation

 LoopbackTrackingObjectIdType initiateLoopback (
 in UserIdType testRequestorId,
 in ManagedEntityIdType loopingCtp,
 in long duration, //In minutes.
 in DirectionalityType directionality,
 in LoopbackTestType loopbackTest,
 in ServiceInstanceIdType serviceInstanceId)
 raises (AccessDenied,
 CommFailure,
 UnknownManagedEntity,
 NotAvailableForTest);

 // See 9.15.1.10 for the description of the behaviour of this
 operation

 void terminateLoopback(
 in LoopbackTrackingObjectIdType testTrackingObjectId)
 raises (UnknownTest,
 AccessDenied);

 // See 9.15.1.11 for the description of the behaviour of this
 operation

 LoopbackInfoType getLoopbackInfo(
 in ManagedEntityIdType cTP)
 raises (UnknownManagedEntity,
 AccessDenied);

 // See 9.15.1.12 for the description of the behaviour of this
 operation

 LoopbackInfoSeqType getLoopbackInfoByNE(
 in ManagedEntityIdType nEId)
 raises (UnknownManagedEntity,
 AccessDenied);

 // See 9.15.1.13 for the description of the behaviour of this
 operation

 StatusValueType getTestStatus (
 in LoopbackTrackingObjectIdType id)
 raises (AccessDenied,
 UnknownTest);

 // See 9.15.1.14 for the description of the behaviour of this
 operation

 ScheduledTestNESeqType scheduledTestNEListGet()
 raises (AccessDenied);

 // See 9.15.1.15 for the description of the behaviour of this
 operation

 TestHistorySeqType testHistoryByManagedEntity (
 in ManagedEntityIdType managedEntityId)
 raises (UnknownManagedEntity,
 AccessDenied);

 ITU-T Rec. Q.834.4 (07/2003) 183

 // See 9.15.1.16 for the description of the behaviour of this
 operation

 TestHistorySeqType testHistoryByServiceInstance (
 in ServiceInstanceIdType serviceInstanceId)
 raises (UnknownServiceInstance,
 AccessDenied);

 }; // interface TestActionPerformer

}; // module Test

}; // module q834_4

#endif

C.16 Q834Filetransfer.idl

#ifndef __Q834_4_TRANSFERMGR_DEFINED
#define __Q834_4_TRANSFERMGR_DEFINED

#include "Q834Common.idl"

#pragma prefix "itu.Int"

module q834_4
{

module FileTransfer
{

// begin definitions from other idl files

// From Q834Common

 typedef Q834Common::ManagedEntityIdType ManagedEntityIdType;
 typedef Q834Common::UserLabelType UserLabelType;
 typedef Q834Common::StatusValueType StatusValueType;
 typedef Q834Common::DCNAddressType DCNAddressType;
 typedef Q834Common::FilenameType FilenameType;
 typedef Q834Common::TransferTrackingObjectIdType
 TransferTrackingObjectIdType;
 typedef Q834Common::UserIdType UserIdType;
 typedef Q834Common::PasswordType PasswordType;
 typedef Q834Common::GeneralizedTimeType GeneralizedTimeType;

#define AccessDenied Q834Common::AccessDenied
#define CommFailure Q834Common::CommFailure
#define UnknownScheduler Q834Common::UnknownScheduler
#define UnknownDestinationServer Q834Common::UnknownDestinationServer
#define InvalidScheduler Q834Common::InvalidScheduler
#define UnknownRecordSet Q834Common::UnknownRecordSet

// End definitions from other idl files

// Local data types

 struct FileTransferHistoryType {
 ManagedEntityIdType recordSetId;
 DCNAddressType destinationServerAddr;
 UserIdType userId;

184 ITU-T Rec. Q.834.4 (07/2003)

 FilenameType destinationFile;
 GeneralizedTimeType transferTime;
 };
 typedef sequence<FileTransferHistoryType> FileTransferHistorySeqType;

 struct ScheduledFileTransferType {
 ManagedEntityIdType recordSetId;
 UserLabelType schedulerName;
 };
 typedef sequence<ScheduledFileTransferType> ScheduledFileTransferSeqType;

// Local exceptions

 exception UnknownTransferProcess {};

// End local definitions

 valuetype TransferMgrValueType: itut_x780::ManagedObjectValueType {

 public FileTransferHistorySeqType fileTransferHistoryList; // GET
 public ScheduledFileTransferSeqType scheduledFileTransferList; // GET

 };

 interface TransferMgr : itut_x780::ManagedObject {

 // See 9.16.1.1 for the description of the behaviour of this operation

 TransferTrackingObjectIdType fileTransfer(
 in ManagedEntityIdType recordSetId,
 in DCNAddressType destinationServerAddr,
 in UserIdType userId,
 in PasswordType password,
 in FilenameType destinationFile,
 in boolean overwriteExistingFile)
 raises (AccessDenied,
 CommFailure,
 UnknownRecordSet,
 UnknownDestinationServer
);

 // See 9.16.1.2 for the description of the behaviour of this operation

 TransferTrackingObjectIdType scheduleFileTransfer(
 in ManagedEntityIdType recordSetId,
 in DCNAddressType destinationServerAddr,
 in UserIdType userId,
 in PasswordType password,
 in FilenameType destinationFile,
 in boolean overwriteExistingFile,
 in UserLabelType schedulerName)
 raises (AccessDenied,
 UnknownRecordSet,
 UnknownDestinationServer,
 UnknownScheduler,
 InvalidScheduler);

 // See 9.16.1.3 for the description of the behaviour of this operation

 void modifyFileTransferSchedule(
 in TransferTrackingObjectIdType transferTrackingObjectId,
 in UserLabelType newSchedulerName)

 ITU-T Rec. Q.834.4 (07/2003) 185

 raises (AccessDenied,
 UnknownTransferProcess,
 UnknownScheduler,
 InvalidScheduler);

 // See 9.16.1.4 for the description of the behaviour of this operation

 void cancelScheduledFileTransfer (
 in TransferTrackingObjectIdType transferTrackingObjectId)
 raises (AccessDenied,
 UnknownTransferProcess);

 // See 9.16.1.5 for the description of the behaviour of this operation

 StatusValueType getStatus(
 in TransferTrackingObjectIdType transferTrackingObjectId)
 raises (UnknownTransferProcess,
 AccessDenied);

 // See 9.16.1.6 for the description of the behaviour of this operation

 FileTransferHistorySeqType fileTransferHistoryListGet ()
 raises (AccessDenied);

 // See 9.16.1.7 for the description of the behaviour of this operation

 ScheduledFileTransferSeqType scheduledFileTransferListGet()
 raises (AccessDenied);

 }; // interface TransferMgr

}; // module FileTransfer

}; // module q834_4

#endif

186 ITU-T Rec. Q.834.4 (07/2003)

Annex D

Example endpoint templates

Tables D.1 and D.2 provide example templates of how an endpoint might be defined by service
type. Table D.1 shows examples for the case when the endpoint is part of an NNI port. Table D.2
shows examples for the case when the endpoint is part of a UNI port.

Table D.1/Q.834.4 – NNI port endpoints

Service type Port Parameter Profiles
DS1 TDM DS3 Channel # –

DS3 TDM DS3 – –

DS1 ATM DS3 VPI/VCI –

DS3 ATM DS3 VPI/VCI –

DS1 TDM OC-n STS #/VT1.5 # –

DS1 ATM OC-n VPI/VCI –

DS3 ATM OC-n VPI/VCI –

Bridged LAN ATM OC-n VPI/VCI –

Bridged LAN ATM DS3 VPI/VCI –

Bridged LAN TDM DS3 Channel # –

Bridged LAN TDM OC-n STS #/VT1.5 # –

Voice ATM DS3 VPI/VCI

CID

TrafficDescriptorProfile
(ingress)
TrafficDescriptorProfile
(egress)

Voice – Interface Group #/
Call Ref Value

–

ATM ATM VPI/VCI TrafficDescriptorProfile
(ingress)
TrafficDescriptorProfile
(egress)

 ITU-T Rec. Q.834.4 (07/2003) 187

Table D.2/Q.834.4 – UNI port endpoints

Service type Port Parameter Profiles
DS1 TDM DS3 Channel # DS1Profile

CESProfile

AAL1Profile

DS3 TDM DS3 – DS3Profile

CESProfile

AAL1Profile

DS1 ATM DS3 VPI/VCI –

DS3 ATM DS3 VPI/VCI –

DS1 TDM OC-n or

STS-n

STS #/VT1.5 # AAL1Profile

CESProfile

DS1 ATM OC-n VPI/VCI –

DS3 ATM OC-n VPI/VCI –

Bridged LAN Ethernet Logical port # BridgedLANServiceProfile

AAL5Profile or
AAL1Profile

Voice RJ-11 – VoiceServiceProfileAAL2

SSCSParameterProfile1

SSCSParameterProfile2

LESService

Voice RJ-11 – VoiceServiceProfileAAL1

ATM ATM VPI/VCI TrafficDescriptorProfile
(ingress)

TrafficDescriptorProfile
(egress)

VLAN Ethernet VLAN tag –

Printed in Switzerland
Geneva, 2004

SERIES OF ITU-T RECOMMENDATIONS

Series A Organization of the work of ITU-T

Series B Means of expression: definitions, symbols, classification

Series C General telecommunication statistics

Series D General tariff principles

Series E Overall network operation, telephone service, service operation and human factors

Series F Non-telephone telecommunication services

Series G Transmission systems and media, digital systems and networks

Series H Audiovisual and multimedia systems

Series I Integrated services digital network

Series J Cable networks and transmission of television, sound programme and other multimedia signals

Series K Protection against interference

Series L Construction, installation and protection of cables and other elements of outside plant

Series M TMN and network maintenance: international transmission systems, telephone circuits,
telegraphy, facsimile and leased circuits

Series N Maintenance: international sound programme and television transmission circuits

Series O Specifications of measuring equipment

Series P Telephone transmission quality, telephone installations, local line networks

Series Q Switching and signalling

Series R Telegraph transmission

Series S Telegraph services terminal equipment

Series T Terminals for telematic services

Series U Telegraph switching

Series V Data communication over the telephone network

Series X Data networks and open system communications

Series Y Global information infrastructure and Internet protocol aspects

Series Z Languages and general software aspects for telecommunication systems

	ITU-T Rec. Q.834.4 (07/2003) A CORBA interface specification for Broadband Passive Optical Networks based...
	Summary
	Source
	Keywords
	FOREWORD
	CONTENTS
	1 Scope
	2 References
	2.1 Normative references
	2.2 Other references

	3 Terms and definitions
	3.1 Terms imported from ITU-T Rec. M.3010
	3.2 Terms imported from UML
	3.3 Terms imported from OMG Naming Service
	3.4 Terms imported from ITU-T Rec. Q.834.1
	3.5 Terms imported from ITU-T Rec. Q.834.3
	3.6 New terms

	4 Abbreviations
	5 Conventions
	5.1 Module description conventions
	5.2 IDL file conventions
	5.3 NULL values

	6 Interface architecture overview
	7 Names and naming constraint
	7.1 Service objects and OMG naming service
	7.2 Domain objects

	8 Organization of IDL files
	9 Modules
	9.1 AccessControl module
	9.2 Build module
	9.3 Q834Common module
	9.4 ControlArchive module
	9.5 SoftwareDownload module
	9.6 EventPublisher module
	9.7 MIBTransfer module
	9.8 PerformanceManager module
	9.9 ProfileManager
	9.10 Registrar module
	9.11 ResourceAllocation module
	9.12 SchedulerManagement module
	9.13 ServiceProvisioning module
	9.14 Synchroniser module
	9.15 Test module
	9.16 FileTransfer module

	10 Compliance statement
	Annex A – Data dictionary
	Annex B – Exceptions
	Annex C – IDL files
	C.1 Q834AccessControl.idl
	C.2 Q834Build.idl
	C.3 Q834Common.idl
	C.4 Q834ControlArchive.idl
	C.5 Q834SoftwareDownload.idl
	C.6 Q834EventPublisher.idl
	C.7 Q834MIBTransfer.idl
	C.8 Q834PerformanceManager.idl
	C.9 Q834ProfileManager.idl
	C.10 Q834Registrar.idl
	C.11 Q834ResourceAllocation.idl
	C.12 Q834SchedulerManagement.idl
	C.13 Q834ServiceProvisioning.idl
	C.14 Q834Synchroniser.idl
	C.15 Q834Test.idl
	C.16 Q834Filetransfer.idl
	Annex D – Example endpoint templates

