| INTERNATIONAL TELECOMMUNICATION UNION

ITU-T Q.816

TELECOMMUNICATION (01/2001)
STANDARDIZATION SECTOR
OF ITU

SERIES Q: SWITCHING AND SIGNALLING
Q3 interface

CORBA-based TMN services

ITU-T Recommendation Q.816

(Formerly CCITT Recommendation)

ITU-T Q-SERIES RECOMMENDATIONS
SWITCHING AND SIGNALLING

SIGNALLING IN THE INTERNATIONAL MANUAL SERVICE Q.1-Q3
INTERNATIONAL AUTOMATIC AND SEMI-AUTOMATIC WORKING Q.4-Q.59
FUNCTIONS AND INFORMATION FLOWS FOR SERVICES IN THE ISDN Q.60-Q.99
CLAUSES APPLICABLE TO ITU-T STANDARD SYSTEMS Q.100-Q.119
SPECIFICATIONS OF SIGNALLING SYSTEMS No. 4 AND No. 5 Q.120-Q.249
SPECIFICATIONS OF SIGNALLING SYSTEM No. 6 Q.250-Q.309
SPECIFICATIONS OF SIGNALLING SYSTEM R1 Q.310-Q.399
SPECIFICATIONS OF SIGNALLING SYSTEM R2 Q.400-Q.499
DIGITAL EXCHANGES Q.500-Q.599
INTERWORKING OF SIGNALLING SYSTEMS Q.600-Q.699
SPECIFICATIONS OF SIGNALLING SYSTEM No. 7 Q.700-Q.799
Q3 INTERFACE Q.800-Q.849
DIGITAL SUBSCRIBER SIGNALLING SYSTEM No. 1 Q.850-Q.999
PUBLIC LAND MOBILE NETWORK Q.1000-Q.1099
INTERWORKING WITH SATELLITE MOBILE SYSTEMS Q.1100-Q.1199
INTELLIGENT NETWORK Q.1200-Q.1699
SIGNALLING REQUIREMENTS AND PROTOCOLS FOR IMT-2000 Q.1700-Q.1799
BROADBAND ISDN Q.2000-Q.2999

For further details, pleaserefer to thelist of ITU-T Recommendations.

ITU-T Recommendation Q.816

CORBA-based TM N services

Summary

This Recommendation defines a set of services that along with ITU-T X.780 composes a framework
for CORBA-based TMN interfaces. It specifies protocol requirements, CORBA Common Object
Service usage requirements, and TMN-specific support services. A CORBA IDL module defining
the interfaces to the TMN-specific support services is provided.

Source

ITU-T Recommendation Q.816 was prepared by ITU-T Study Group 4 (2001-2004) and approved
under the WTSA Resolution 1 procedure on 19 January 2001.

Keywords

Common Object Request Broker Architecture (CORBA), Interface Definition Language (I1DL),
CORBA services, Distributed Processing, TMN Interfaces, Managed Objects

ITU-T Q.816 (01/2001)

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of
telecommunications. The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of
ITU. ITU-T isresponsiblefor studying technical, operating and tariff questions and issuing Recommendations
on them with a view to standardizing telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years,
establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on these
topics.

Theapproval of ITU-T Recommendationsis covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are
prepared on a collaborative basis with 1SO and |EC.

NOTE

In this Recommendation, the expression "Administration” is used for conciseness to indicate both a
telecommuni cation administration and a recognized operating agency.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may
involve the use of a claimed Intdlectual Property Right. ITU takes no position concerning the evidence,
validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others
outside of the Recommendation devel opment process.

As of the date of approval of this Recommendation, ITU had not received notice of intellectual property,
protected by patents, which may be required to implement this Recommendation. However, implementors are
cautioned that this may not represent the latest information and are therefore strongly urged to consult the
TSB patent database.

© ITU 2001

All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from ITU.

i ITU-T Q.816 (01/2001)

11
12
13
14
15

31
3.2
3.3
34

41

4.2

4.3

4.4

5.1
5.2

6.1

6.2
6.3
6.4
6.5

Application.......

CONTENTS

Recommendation ROAOMADooviiiiieiie et

Recommendation CONVEINTIONSouuneeeeeee et e et e e ee e e e e eeeeeeeennns

COoMPITING TNE TDL ...t sane e

References........

Definitions and @DDIEVIGLIONS ... oo et eeeee e e e e e
DefiNitioNS fFroM I TU=T X.70L. .. oot e e e e e e e e
DefiNitioNS FrOM I TU=T X703, .. et e e e e e eee e e e eenans

Additional defin
Abbreviations...

T OIS et

4.1.1 Application interoperability ..o
4.1.2 Common usage of CORBA Common Object Services.........cccovveriveenieennne.
4.1.3 Information Model tranSParenCyccveiviereeriieerieesee e

Information modeling dePEndENnCIEScocuiiiiiriie i
421 ACCESS QranUIAIITY ..ouveeeiiieeiiiee ettt et ee et sneeesneeeen
4.2.2 Representation of containment and NaMING..........cooverreerreereeeneeneeeseeene
4.2.3 Object creation and deletion...........cooceeeiiii e

S oie] ol aTo =10 o I8 111 1o [P SR

4.3.1 Scoping

e B 11 1= 1o R TRPSRT

Notifications.....

Framework over
Framework over

view and protoCol reqUIrEMENES..........cocueerveeeriueeesieeeseeeeseeeeseeeas
VEBW .ttt ettt ettt et e et e e n e e e st e e e bt e e enne e e enne e e enneeeennes

Framework protoCOl reqQUIrEMENTSeeiiieeerieeesiee ettt s neeas

Framework com

MON ObjECt SErVICES FEQUIrEMENES.ccoveee et

The NaMING SEIVICE ...ttt e et e e e snae e e sneeeens

6.1.1 Translat

ing managed object NaMeSt0 SIHNGScoocvvveiiiiee i

NOLITICAIION SEIVICE.eiieeiie ettt e e enneeas
TElECOM LOQ SEIVICE. ...ccetiieitie ettt ettt ettt e st e e et e e s e e sneeesneeeens

Messaging Servi
Security Service

G

ITU-T Q.816 (01/2001)

Page

6.6 TraNSACHION SEIVICEeii ettt et e e et e e st e e ente e e enneeesnreeennes 32
7 Framework SUPPOI SENVICESeiiiieiie et 33
7.1 The FaCtory FINEr SEIVICE.ooiiieee et 33
7.2 The Channel FINAEr SEIVICE........cuuiiiiiieiiiee et 34

7.2.1 Channel Finder interface.........oocvviiiee i 34

7.2.2 Channel Finder reqUIrEMENLS..........coiueerieeieieiie e 37
7.3 The TErMINGLON SEIVICEeiiiiie ettt et e e e st e e e e snbeeesnneeeans 38
7.4 The Multiple-Object Operation SENVICEoocvieiiieiieee e 39

741 TheMOO SerViCe INEITaCecoeiiiieiiieceee e 39

7.4.2 Thedefault filter [aNQUAgEeveiiiieiiie e 45

7.4.3 MOO ServiCe reqUIrEMENES........oeiueieieerree st esiee st sie e 48
7.5 The HEADEAE SEIVICEeei i e e 49
7.6 Other SUPPOIT SEIVICESeiiitieiiee ettt 50
8 Compliance and CONFOIMEBNCE...........uiiieeiiieriee ettt nane e 50
8.1 SYSLEM CONFOIMMAINCE ...ttt sane e 51

8.1.1 CoNfOrmanCe POIMES.cccueerreerieiestie ettt ettt 51

8.1.2 Basic conformance Profile.........oueveiiiieiii e 52
8.2 Conformance statement QUIJEIINEScocueeiiiiiie i 52
ANNEX A — Framework SUpport SErviCES IDLcooiiiiiiiiieeiee e 52
[/ Data TYPES NA SITUCEUIES.coiuiieiieieiee ettt ann e 53
1 CONSEANES ...ttt ettt et e et e et e e e ast e e e anee e e asseeeanteeeanseeesnseeesnbeeeanneneeans 56
T EXCEIITIONS ...tttk ekttt e st e ke et e e e ae e e be e et e e enn e e nnreereeen 56
L = o= PSPPSRI 57
1] FCLOry FINAEN INMEEITACE eii ittt et e et e e s e e snneeeans 57
I/ Channel FINAEr INEEITACE.......coiiiie et e e sneeeens 58
I/ Heartheat ServiCe INTEITACEev i 59
I/ Terminator SErVICE INMTEITACE.ei it ree e e naeee e 60
I/ DeleteResultsIterator INTEITACeevi i 60
Il GEtRESUISITEraor INEEITACE. ee i 61
Il UpdateResultsIterator INTEITaCe.........oo i e 61
I/ BaSICMOOSEIVICE INTEITACE ...ttt e 62
Il AdvancedM 00SENVICE INTEITACEeeiiie it 63
I NOtITICAIONS INEEITACE.co e 64

iv ITU-T Q.816 (01/2001)

Page

ANNEX B —The Constraint Language BNF ... 65
B.1 The constraint language proper in terms of lexical toKens...........cccooceerveeneeiiieennne. 65
B.2 "BNF" for lexical tokens up to character SEiSSUESoovvveiiiiiieeiiecee e 66
B.3 CREraCter SEL ISSUBS........eeeiieieitee ettt ettt ettt b e san e e sanesneesene e 67
APPENDIX | —Interworking scenarios between models using I TU framework and

ADSL- /ATMF-compliant MOEIS........cccueiiiiiiieiiieiee e 67
.1 IMEFOTUCTION. ...ttt e e e e e neesnnas 67
.2 TEMINOIOGY ..ottt ettt ne e e e enee s 68
1.3 [NEEMWOTKING SCENAITOS......ceeeeeetie ittt ettt nns 68

[.3.1 Grain-Neutral Server migrating to ITU Framework Server............cccoeveneee. 68

1.3.2 Grain-neutral Client migrating to ITU Framework client...............cccevvennee. 69
APPENDIX Il —Filtering native and translated structured events............c.cccoveeeieerieennenne 69
APPENDIX 1 —Bibliography........ccccoiiiiieeeeeeie et 72

ITU-T Q.816 (01/2001) v

ITU-T Recommendation Q.816

CORBA-based TM N services

1 Scope

The TMN architecture defined in ITU-T M.3010 (2000) introduces concepts from distributed
processing and includes the use of multiple management protocols. The initial TMN interface
specifications for intra- and inter-TMN interfaces were developed using the Guidelines for the
Definition of Managed Objects (GDMO) notation from OSl Systems Management with Common
Management Information Protocol (CMIP) as the protocol. The inter-TMN interface (X) included
both CMIP and CORBA GIOP/110P as possible choices at the application layer.

CORBA, a didtributed processing technology, is being considered for use in the TMN
communication architecture primarily due to its acceptance by the Information Technology industry.
This acceptance is expected to enhance the availability of CORBA-based interfaces due to better
development tools and widespread expertise in developing CORBA-based interfaces. This
technology, developed by the Object Management Group (OMG), is also being considered by
multiple industries. Specifications using this technology provide support for standard application
programming interfaces (APIs) and language bindings to programming languages, and they also
facilitate software portability. The interoperability solutions offered by the object request broker
combined with the inter-ORB protocols address interoperability between client and server. While
CMIP and information models provide solutions for interoperability between manager and agent
systems, CORBA defines inter-object interactions where the objects may be distributed.

1.1 Purpose

Several groups are developing network management specifications that use CORBA modeling
techniques with IDL as the notation along with CORBA services. The scope of this Recommendation
Is to define protocol requirements and common services suitable for use in the specification of
interoperable CORBA-based network management interfaces. The demands placed on " X" interfaces
are different from those used "inside” a TMN, "Q" interfaces. The scope of this Recommendation
covers all interfaces in the TMN where CORBA may be used. It is expected that not all capabilities
and services defined here are required in all TMN interfaces. This implies that the framework can be
used for interfaces between management systems at all levels of abstractions (inter- and intra
administration) as well as between management systems and network elements.

This Recommendation is intended for use by various groups specifying network management
interfaces. A number of factors are considered: the version of CORBA to use, the set of CORBA
Common Object Services employed, and additional services. This Recommendation, along with the
object modeling guidelines defined in ITU-T X.780 form a framework for CORBA-based TMN
interfaces. Use of a common framework on telecommunications management interfaces has several
advantages. Some examples are:

- facilitating reuse of models that are developed to meet the generic requirements of
telecommunications;

- profiling CORBA services for use by the telecommunications industry;

- easing the definition of new services for TMN, reusing the semantics of the existing rich set
of models; and

- harmonizing the modeling approach across groups using a single source similar to
ITU-T X.720, ITU-T X.721 and ITU-T X.722 for CMIP.

Re-using a common framework and generic information model for a variety of network technologies
and network management applications will speed the introduction of new network services while
keeping network management system development costs down.

The telecommunications industry has invested a great deal of time and energy in the development of
information models for the CMIP network management protocol. A primary goal of this framework
Is the reuse of these information models by enabling their translation to CORBA Interface Definition
Language (IDL) with little change in semantics (see ITU-T X.780). As a result, initial IDL
information models are expected to be derived from CMIP models.

In addition to taking advantage of CMIP information models, another purpose of the framework is to
take advantage of CORBA. The framework leverages the functions defined in the CORBA
specifications, including a set of Common Object Services. Also, the framework tries to reuse
CORBA approaches and design patterns wherever they fit. Finally, while re-using existing models is
important, it is equally important that the framework support the development of new models. This
framework does not require a GDMO model to be developed prior to the development of an IDL
model. In fact, developing a new IDL information model for use within this framework is
straightforward and guidelines for doing so are provided.

12 Application

As CORBA is introduced in TMN, different scenarios are possible that range from the use of
gateways performing translations between systems using different network management protocols to
cases where CORBA is natively supported by the communicating systems. The application of this
framework is intended for scenarios where both the managed system and the managing system
provide CORBA interfaces.

The framework does not address other interworking scenarios requiring "gateway" systems where
protocol and information model conversions are necessary for achieving interoperability. In
particular, this framework is not specifically designed to support the construction of gateways
between CORBA and CMIP network management applications even though the semantics of the
existing models are retained by this framework. A management system, however, might have to
support multiple protocols, to interwork in different environments.

A gateway approach has already been developed and standardized by the Joint Inter-Domain
Management (JDM) group. This gateway approach provides a one-to-one mapping of all constructs
and capabilities available with CMIP and GDMO. However, many of the CORBA services and
capabilities are not reused by this approach because the problem solved is to facilitate interworking
with systems that have been deployed using CMIP. In contrast, the problem domain for applying this
framework is to support sandards-based native CORBA network management interfaces. Such an
approach takes advantage of the benefits offered by CORBA as a technology used by multiple
industries.

ITU-T X.780 [1] accompanies this Recommendation and defines object modeling guidelines,
superclasses for all managed objects and managed object factories for use with this framework, and a
standard set of notifications. Together, UIT-T X.780 and this Recommendation define a framework
for CORBA-based TMN interfaces. Also, ITU-T M.3120 provides a CORBA IDL version of the
generic network information model originally defined in ITU-T M.3100. The IDL version follows
the object modeling guidelines in ITU-T X.780 and is designed to fit with the services defined here.

8 ITU-T Q.816 (01/2001)

13 Recommendation Roadmap

This Recommentation has the following structure:

Clause 1
Clause 2
Clause 3

Clause 4
Clause 5
Clause 6
Clause 7

Clause 8
Annex A
Appendix |

Appendix 11

Introduction, Recommendation roadmap, updates, and list of issues
References

Definitions of terms and abbreviations used throughout the rest of the
Recommendation

Requirements for the TMN CORBA-based services. These are the design goals the
services must meet

CORBA ORB and Service version requirements. Also provided is an overview of the
services

Requirements on the use of CORBA Common Object Services for network
management interfaces

Definition of TMN-specific support services. IDL interfaces for the support services
are defined in Annex A

Compliance and conformance guidelines
TMN-specific support service IDL

Interworking Scenarios Between Models Using ITU Framework and ADSL/ATMF
Compliant Models

Filtering native and translated structured events

Appendix 111 Bibliography

14 Recommendation Conventions

A few conventions are followed in this Recommendation to make the reader aware of the purpose of
the text. While most of the Recommendation is normative, paragraphs succinctly stating mandatory
requirements to be met by a management system (managing and/or managed) are preceded by a
boldface "R" enclosed in parentheses, followed by a short name indicating the subject of the
requirement, and a number. For example:

(R) EXAMPLE-1 An example mandatory requirement.

Requirements that may be optionally implemented by a management system are preceded by an "O"
instead of an "R." For example:

(O) OPTION-1 An example optional requirement.

The requirement statements are used to create compliance and conformance profiles.

Many examples of CORBA IDL are included in this Recommendation, and IDL specifying the TMN
specific services, and supporting data types, included in a normative annex. The IDL is written in a
9-point courier typeface:

/| Exanple |DL
interface foo {

b

voi d operationl ();

ITU-T Q.816 (01/2001) 9

Instructions for extracting the IDL from an electronic version of this Recommendation and compiling
it are presented in the next clause.

15 Compiling the IDL

An advantage of using IDL to specify network management interfaces is that IDL can be "compiled”
into programming code by tools that accompany an ORB. This actually automates the development
of some of the code necessary to enable network management applications to interoperate. This
Recommendation has one annex that contains code that implementers will want to extract and
compile. Annex A is normative and should be used by developers implementing systems that
conform with this standard. The IDL in this Recommendation has been checked with two compilers
to ensure its correctness. A compiler supporting the CORBA version specified in 5.2 must be used.

Annex A has been formatted to make it simple to cut and paste it into a plain text file that may then
be compiled. Below are tips on how to do this.

1) Cutting and pasting seems to work better from the Microsoft® Word® version of this
Recommendation. Cutting and pasting from the Adobe® Acrobat® file format seems to
include page headers and footers, which cannot be compiled.

2) All of Annex A, beginning with the line "/* This IDL code..." through the end should be
stored in a file named "itut_g816.idl" in a directory where it will be found by the IDL
compiler.

3) The headings embedded in Annex A need not be removed. They have been encapsulated in
IDL comments and will be ignored by the compiler.

4) Comments that begin with the special sequence "/**" are recognized by compilers that
convert IDL to HTML. These comments often have special formatting instructions for these
compilers. Those that will be working with the IDL may want to generate HTML as the
resulting HTML files have links that make for quick navigation through the files.

5) Annex A has been formatted with tab spaces at 8-space intervals and hard line feeds that
should enable almost any text editor to work with the text.

2 References

The following ITU-T Recommendations and other references contain provisions which, through
reference in this text, constitute provisions of this Recommendation. At the time of publication, the
editions indicated were valid. All Recommendations and other references are subject to revision; all
users of this Recommendation are therefore encouraged to investigate the possibility of applying the
most recent edition of the Recommendations and other references listed below. A list of the currently
valid ITU-T Recommendations is regularly published.

[1] ITU-T X.780 (2001), Guidelinesfor defining CORBA managed objects.

[2] OMG Document formal/1999-10-07, The Common Object Request Broker: Architecture and
Soecification, Revision 2.3.1.

[3] OMG Document formal/2000-11-1, Interoperable Naming Service Specification.

[4] OMG Document formal/2000-06-20, Notification Service Specification, Version 1.0.
[9] OMG Document formal/00-01-04, Telecom Log Service Specification, Version 1.0.
[6] OMG Document formal/2000-06-25, Security Services Specification, Version 1.5.
[7] OMG Document formal/2000-06-28, Transaction Service Specification, Version 1.1.

10 ITU-T Q.816 (01/2001)

[8]
[9]

[10]
[11]

[12]

[13]

[14]

[15]

3

31

OMG Document formal/2000-10-58, CORBA Messaging.

OMG Document formal/2000-08-01, Interworking between CORBA and TMN Systems
Soecification.
IETF RFC 2246 (1999), The TLSProtocol Version 1.0.

IEEE/ANSI Std 1003.2-1992, Information Technology — Portable Operating System
Interface (POS X) Part 2: Shell and Utilities.

IETF RFC 2253 (1997), Lightweight Directory Access Protocol (v3): UTF-8 Siring
Representation of Distinguished Names.

ETSI TS 132 106-3 (2000), Universal Mobile Telecommunications System (UMTYS),
Telecommunication Management; Configuration Management; Part 3: Notification
Integration Reference Point: CORBA solution set version 1.1 (3G TS 32 106-3 Release
1999).

ITU-T X.701 (1997), Information technology — Open Systems Interconnection — Systems
management overview.

ITU-T X.703 (1997), Information technology — Open Distributed Management Architecture.

Definitions and abbreviations

Definitionsfrom I TU-T X.701

The following terms used in this Recommendation are defined in ITU-T X.701:

3.2

managed object class;
manager;
agent.

Definitions from I TU-T X.703

The following term used in this Recommendation is defined in ITU-T X.703:

3.3

notification.

Additional definitions

3.3.1 event channel: a support object in a managed system with one or more interfaces allowing a
managing system to receive notifications from that managed system.

NOTE —There are two models for event channel delivery of notifications (see ITU-T X.703):

34

In the push model of event delivery, the managing system uses one or more event channel interface
instances to register one or more managing system interface references that may be used by the
channel to invoke event push operations.

In the pull model of event delivery, the managing System uses one or more event channel interface
references to invoke operations which return notification information.

Abbreviations

This Recommendation uses the following abbreviations:

AMI

Asynchronous Messaging Invocation

ITU-T Q.816 (01/2001) 11

API Application Programming I nterface

ASN.1 Abstract Syntax Notation One

ATM Asynchronous Transfer Mode

AVA Attribute Value Assertion

CMIP Common Management Information Protocol
CORBA Common Object Request Broker Architecture
COS Common Object Services

DN Distinguished Name

EMS Element Management System

FIFO First In, First Out

GDMO Guidelines for the Definition of Managed Objects
GIOP General Interoperability Protocol

HTML HyperText Markup Language

ID Identifier

IDL Interface Definition Language

|EEE Institute of Electrical and Electronics Engineers
IETF Internet Engineering Task Force

[1OP Internet Interoperability Protocol

IOR Interoperable Object Reference

ITU-T International Telecommunication Union — Telecommunication Standardization Sector
JDM Joint Inter-Domain Management

MO Managed Object

MOO Multiple Object Operation

NE Network Element

NMS Network Management System

OAM&P Operations, Administration, Maintenance and Provisioning
OID Object Identifier

OMG Object Management Group

ORB Object Request Broker

ON] Open Systems | nterconnection
PDU Protocol Data Unit
PM Performance M anagement

POA Portable Object Adapter
POP Point of Presence
POSIX Portable Operating System Interface

12 ITU-T Q.816 (01/2001)

QoS Quality of Service

RDN Relative Distinguished Name
SDH Synchronous Digital Hierarchy
SONET Synchronous Optical Network
SSL Secure Socket Layer

TII Time-Independent Invocation
TLS Transport Layer Security
TMN Telecommunications Management Network
TTP Trail Termination Point

uiD Universal Identifier

UML Unified Modeling Language
uTC Universal Time Code

4 CORBA-based TMN services goals and requirements

This clause describes the key goals of the services framework and the requirements that help the
CORBA-based TMN services support these goals. Subclause 4.1 introduces the goals of the CORBA
framework. Subclause 4.2 then provides terminology and requirements. The requirements in this
clause are requirements that the framework must satisfy. They are based on the telecommunications
management needs. Clauses 5, 6, 7, and 8 then describe a framework that meets these needs and
define how to achieve the requirements of this clause by using CORBA in acertain way. Therulesin
Clauses 5, 6, 7, and 8 on how to use CORBA also are referred to as requirements.

4.1 Goals

This Recommendation sets out to define a framework for defining how interfaces supported by
management systems and network elements should be modeled. Some key goals of the framework
are identified here:

. Application interoperability;
. Common usage of CORBA common object services;
. Information model transparency.

This clause elaborates on these three goals.

4.1.1 Application interoperability

A key goal of the TMN architecture, and in particular the information architecture, is to promote a
standard framework for providing interoperability and information exchange between systems from a
diverse set of network management system suppliers. Interoperability between systems involves
many aspects of development. At its lowest layer, a common communication mechanism must be in
place to support a common syntax, the establishment of connectivity and the exchange of operation
requests/replies between systems. This aspect of interoperability is inherently supported by the
CORBA specification.

For TMN, there is the need to provide application interoperability. That is, management systems
from diverse suppliers will be utilized within a single administration's TMN to support different
functions necessary to support management of its networks. To smplify integration of these various

ITU-T Q.816 (01/2001) 13

suppliers' systems, they must agree on the semantics of the information being exchanged. This is
accomplished with the specification of an information model. Guidelines for the definition of
CORBA-based information models are specified in ITU-T X.780, but the services defined here must
support those guidelines.

4.1.2 Common usage of CORBA Common Object Services

A second aspect of this framework is the definition of common usage and profiling of the distributed
processing environment of choice. This aspect of the framework should indicate the reasonable
expectations network management system suppliers may have for one another. Rather than
redefining the interface capabilities needed to support common network management functions such
as object naming and notification filtering with each information model, the modeling guidelines in
ITU-T X.780 rely upon a set of support services. These support services enable the information
models to be simpler, and also enhance interoperability.

In defining these services, special effort will be taken to make use of the CORBA common object
services. Specifically, this Recommendation will address the use of the CORBA ORB and CORBA
Common Object Services (COS) that will impact system interoperability (i.e., issues involving the
use of CORBA within a single system are outside the scope of this Recommendation). Where
network management needs cannot be met by CORBA COS, additional services will be defined.

4.1.3 Information model transparency

If CORBA is used in places within the TMN architecture where existing information models (e.g.,
GDMO) are well established, then the framework must support the reuse of those models without
any major changes.

The focus of this Recommendation is on the set of services required to alow the existing models to
be used as they were originally intended with a reasonable amount of efficiency.

4.2 Information modeling dependencies

As described in the previous clause, the explicit modeling of resources that are manageable across an
interface is central to application interoperability. The guidelines for defining CORBA-managed
objects detailed in ITU-T X.780 describe the rules for modeling manageable resources. They also
embody several decisions that must be supported by the TMN CORBA-based services framework.
This clause summarizes those points.

4.2.1 Accessgranularity

CORBA interface granularity refers to the relationship between the resources that are modeled on an
interface and the means by which they are accessed using CORBA. ITU-T X.780 uses an instance-
grain modeling approach, which means each modeled resource is accessible using a unigue CORBA
object reference, known as an interoperable object reference (IOR). The objects that represent
manageable resources are called managed objects.

4.2.2 Representation of containment and naming

Containment is a logical representation of how modeled resources contain other modeled resources.
Containment has traditionally been a very important relationship in network management
applications because it is a convenient means of identifying the large number of resources that
typically must be managed. ITU-T X.780 guidelines require that a unique name be assigned to each
managed object, based in part on the name of the object that contains it. The TMN CORBA-based
services must provide a means to store these names (and hence the containment relationships they
represent) as well as a means to find the IOR of an object based on its name.

14 ITU-T Q.816 (01/2001)

4.2.3 Object creation and deletion

The CORBA ORB does not provide clients with a means to create objects on remote systems.
Instead, typically factory objects are instantiated by remote systems, and these factory objects
provide operations that may be invoked by clients to create objects on the remote system. For a
number of information modeling purposes, ITU-T X.780 specifies that a factory IDL interface shall
be defined for each managed object IDL interface in an information model. So, object creation will
be model-dependent and is not a good candidate for a TMN CORBA service. However, a service for
managing system seeking a factory in order to request creation of an object in a managed system is
defined in this Recommendation.

Object deletion is also an area in need of support. Often, CORBA objects are deleted by simply
invoking some delete operation on the object, but this is not a good approach for network
management applications because of their reliance on containment relationships. Deleting an object
that contains other objects has impacts beyond the object being deleted. Also, as described in the
previous clause, support is required for storing the names of managed object instances, and this data
must be updated when objects are deleted. The TMN CORBA services therefore need to provide
support for deleting managed objects in an orderly fashion.

4.3 Scoping and filtering

The ability to perform complex queries (i.e., GET operations), updates (i.e., SET operations), and
delete operations on a group of Entities with a single operation request is a valuable component of
TMN. Management systems may have to manage up to 107 instances of managed objects. Due to the
size of the management information base, a managing system can not efficiently perform ad hoc
gueries on individual instances of Managed Objects (i.e., Entities). Rather, the managing system
expects alevel of intelligence to be supported by the managed system.

The intelligence in the managed system allows the managing system to select a group of managed
entities on which some operation will be performed. Managed entity selection involves two phases:
scoping and filtering. This managed entity selection process is supported by a service defined later in
this Recommendation. This service allows a managing system to select a scope of objects to act on
(scope is defined through containment relationships; see 4.2.2). Once the scope of Entities is
determined, the operation (specified by the scope and filtered request) is performed only on those
Entities which meet criteria defined by afilter.

The use of scoping and filtering in this framework supports:

- Scoped and Filtered get: Returns the values (for alist of attributes) from each of the Entities
that meet the scope and filter criteria.

- Scoped and Filtered update: Replaces an attribute value or adds/removes values to/from set-
valued attributes, in the group of Entities meeting the scope and filter criteria, to the values
specified in the scoped and filtered request. May be used to update one or multiple attributes
in asingle object or multiple objects.

- Scoped and Filtered deletion: Deletes all Entities that meet the scope and filter criteria.
43.1 Scoping

Scoping entails the identification of the Entities to which a filter is to be applied. Scoping is applied
based on the containment hierarchy as defined in 4.2.2. The scope is applied from some base
managed entity down to some depth in the containment tree.

ITU-T Q.816 (01/2001) 15

The base entity for the scope is defined as the root of the containment tree from which the search is
to commence. A scoped request must specify the base managed entity of the scope. The depth of the
scoping level can then be specified in one of four manners within the scoped request:

1) the base entity;
2) the nth level subordinates of the base entity;
3) the base entity and all of its subordinates down to and including the nth level;

4) the base entity and all of its subordinates (i.e., the whole subtree).

4.3.2 Filtering

Filters allow for the specification of criteria that Entities must meet in order to have a management
operation performed. Together with scoping, filtering allows a single operation to be performed
across multiple managed objects with a single operation request.

A filter parameter is used to determine whether or not an operation should be performed on a
managed object. A filter parameter applies a test that is either satisfied or not by a particular
managed object. The filter is expressed in terms of assertions about the presence or value of certain
attributes of the managed object, and it is satisfied if and only if it evaluatesto TRUE.

4.3.21 Attribute matching rules

The following matching rules are defined that may be used in attribute value assertions (AVAS).

Theserules are:

- Equality: Evaluates to TRUE if and only if the value supplied in the AVA is equal to the
value of the attribute.

For SET valued attributes, the AVA evaluates to TRUE if and only if the set of members
supplied inthe AV A is equal to the set of members in the attribute.

— Greater or equal: Evaluatesto TRUE if and only if the value supplied in the AVA is greater
than or equal to the value of the attribute.
For SET valued attributes, the value in the AVA shall contain exactly one member. The
AVA evaluatesto TRUE if and only if that member is greater than or equal to at least one of
the members in the attribute value.

— Less or Equal: Evaluatesto TRUE if and only if the value supplied in the AVA is less than
or equal to the value of the attribute.
For SET valued attributes, the value in the AVA shall contain exactly one member. The
AV A evaluatesto TRUE if and only if that member is less than or equal to at least one of the
members in the attribute value.

- Present: Evaluates to TRUE if and only if such an attribute is present in the managed object.

- Substrings: Evaluates to TRUE if and only if all of the substrings specified in the AVA
appear in the attribute in the given order without overlapping and separated from the ends of
the attribute value and from one another by zero or more string elements. In addition, for the
AVA to evaluate to TRUE,

* the first element in the initial substring, if present, shall match the first element in the
attribute value;

* the other substrings, if present, shall appear in the attribute value in the order that the
substrings appear inthe AVA; and

* the last element in the final substring, if present, shall match the last element in the
attribute value.

16 ITU-T Q.816 (01/2001)

For SET valued attributes, each value in the AVA shall contain exactly one member.
The AVA evaluates to TRUE if and only if there is at least one of the members of the
attribute value in which all of the substrings supplied in the AVA appear as described
above.

(The remaining three matching tests apply to SET valued attributes only)
— subset of: Evaluatesto TRUE if and only if all asserted members are present in the attribute.

- superset of: Evaluates to TRUE if and only if all members of attribute are present in the
attribute value assertion.

- non-null set intersection: Evaluates to TRUE if and only if at least one of the asserted
members is present in the attribute.

4.4 Notifications
The framework needs to support the ability to:

. deliver notifications;

. subscribe for notification types,

. forward notifications to multiple destinations;

. filter notifications;

. uniquely identify the resource that emits the notification.

The framework must also support the requirements on notification content, clearing, and correlation
algorithms found in ITU-T X.733 and ITU-T Q.821.

5 Framework overview and protocol requirements

The previous clause outlined the network management functions the framework must support. This
clause and the rest of the Recommendation provide the details on how the CORBA-based TMN
services will provide these functions. The aspects of the framework related to modeling objects are
included in ITU-T X.780. First, a brief overview of the framework is presented; then, some basic
protocol requirements are defined.

51 Framework overview

This framework for CORBA-based TMN interfaces is a collection of capabilities. A central piece of
the framework is a set of CORBA Common Object Services. This framework defines their role in
network management interfaces, and defines conventions for their use. The framework also defines
support services that have not been standardized as CORBA Common Object Services, but are
expected to be standard on network management interfaces conforming to this framework. DL
interfaces for these services are defined later in Annex A.

To support the software objects representing manageable resources, the framework requires that they
implement some common basic capabilities. Therefore, two base classes are defined in ITU-T X.780
for use in modeling network management resources. Managed object classes (or object classes) in
information models must inherit and implement a basic set of capabilities from these base classes in
order to operate within this framework. Finally, some rules and conventions are defined for
information modelers developing models for use with this framework. These consist of modeling
guidelines, rules for converting GDMO models for CMIP to CORBA IDL definitions, and IDL style
idioms. All of these are depicted graphically in Figure 1.

ITU-T Q.816 (01/2001) 17

Conven- Notification

tions Specifications
Inherit Heart_beat
Service
Connection
Factory
Channd
Finder
Managed ﬁ
Element
Factory
Finder
Application-
specific Objects
Notification Telecom Terminator Naming Multiple Object
Service Log Service Service Service Operation Service
- [
CORBA 2.3 0ORB

T0414890-00

Figure 1/Q.816 — Overview of framework

Figure 1 shows the framework in gray. In the middle are the application-specific objects that are
supported by the framework. Along the bottom is a box representing the CORBA ORB. Above that
are a number of boxes with names in them representing the services that compose the framework.
(Some also have icons depicting the databases they would have to maintain to perform their
functions.) Along the top of the figure are icons representing two superclasses, one for managed
objects and one for managed object factories. Each of the managed objects and managed object
factories supported by this framework must ultimately inherit from these superclasses, respectively.
Also shown on Figure 1l are icons of pages with up-turned corners representing standard object
modeling conventions.

The framework services, represented as boxes with sguare corners, are defined in this
Recommendation. The superclasses, notifications, and object modeling conventions are defined in
ITU-T X.780.

5.2 Framework protocol requirements

This clause defines the versions of the services that are required to support this framework. CORBA
services and protocol specifications are defined by the Object Management Group (OMG). Table 1
shows which version of the applicable OMG specification must be supported to comply with this
framework and indicates the clause in this Recommendation where detailed requirements are defined

18 ITU-T Q.816 (01/2001)

for the service. A later version of a service that includes all the required capabilities of the stated
version complies with this framework.

Table 1/Q.816 — CORBA service versons

Service Version Clause
ORB 2.3.1(2] 52
Naming Service 1.0[3] 6.1
Notification Service 1.0[4] 6.2
Teecommunications Logging 1.0[5] 6.3
Service
Asynchronous Messaging (determined by client system) 6.4
Security (if required) Either the "Secure IOP protocol”, or 6.5
"CORBA Security SSL Interoperability”,
asdefined in [6]
Transaction Service 1.1[7] 6.6

The choice of version 2.3.1 for the basic ORB capabilities is important. CORBA 2.3 includes support
for the Portable Object Adapter (POA) as well as for passing objects by value. POA is important to
the framework because it enables implementations based on this framework to scale up to millions of
Instantiated objects, a magnitude required for network management applications. The framework also
makes use of value-type inheritance (which supports polymorphism) to retain flexibility but reduce
the usage of CORBA "any" types, which can be inefficient and tedious for programmers.

The Naming, Notification, and Logging services are all the initial versions available from the OMG.

Asynchronous Messaging is really only a client-side consideration. An ORB with Asynchronous
Messaging capabilities enables a client to use synchronous CORBA interfaces (those that would
normally cause the client to block) in an asynchronous fashion. This capability is essential for clients
that are single-threaded and cannot afford to block during network management operations. The
availability of Asynchronous Messaging capabilities isimportant to this framework because it frees it
from having to define both synchronous and asynchronous interfaces. Clients need not use an ORB
with Asynchronous Messaging if they are multi-threaded and therefore can afford to block during
synchronous CORBA calls.

If security is required, this framework condones the use of ORBSs that use SSL 3.0 for security until
products supporting TLS become available, and the OMG migrates the CORBA Security. Until the
OMG CORBA Security Service specification references TLS, the choice of which is supported in a
product (if any) will have to be negotiated between individual suppliers and users. So, for now, the
use of either one (or none) is compliant with this framework.

6 Framework common object services requirements

The CORBA ORB provides basic object-to-object interaction capabilities [2]. Additional capabilities
are defined as separate "Common Object Services.” The CORBA Common Object Services are
general purpose, domain-independent services that are fundamental for developing CORBA
applications composed of distributed objects. They also provide the basic building blocks for
application interoperability. The services are defined with object interfaces and can be combined in
many different ways and put to many uses in different applications. In a specific domain, CORBA

ITU-T Q.816 (01/2001) 19

Common Object Services can be used to construct higher-level facilities and object frameworks that
can inter-operate across multiple platform environments.

Many of these CORBA Common Object Services have already been implemented and are available
as commercial, off-the-shelf software products. Also, programmers working in many industries will
likely have experience with them in the near future. Reusing these Common Object Services instead
of defining new ones dtrictly for the telecommunications industry or re-implementing the
functionality in application-specific code will result in a quicker, more cost-efficient adoption of
CORBA for network management.

The following subclauses specify requirements on the use of CORBA Common Object Services to
ensure interoperability between different network management systems and to preserve the
telecommunications context.

6.1 The Naming Service

The OMG Naming Service is CORBA's directory service, or "white pages'[3]. It allows a client to
build a name-to-object association called a name binding that other clients can then use to find the
object. (CORBA object references are binary and difficult for use by humans.) A name binding is
always defined relative to a naming context. A naming context is an object that contains a set of
name bindings in which each name is locally unique. A name binding is a data structure containing
two strings and an object reference (address). The ID string isthe identifier for the binding. A second
string, called "kind," is also part of the data structure. Together, the ID and kind uniquely identify an
object relative to a context. Different names can be bound to an object in the same or different
contexts at the same time. The naming context can also be bound to a name in another naming
context. Binding contexts in other contexts creates a naming graph — a directed graph with nodes and
labeled edges where nodes are contexts. Given a context in a naming graph, a sequence of name
components (ID-kind pairs) can reference an object. This sequence of structures, called a compound
name, defines a path in the naming graph that may be navigated to resolve the name and find the
object.

There is no requirement that CORBA name bindings represent a containment relationship between
objects, but the concept of containment is important in network management and needs to be
communicated across network management interfaces. The CORBA Naming Service is the best way
to accomplish this. The following paragraphs define a series of requirements on using the CORBA
Naming Service to represent the containment relationships among managed object instances.

(R) NAME-1 Every managed object shall have one and only one name (DN). The components of
the name may be obtained from multiple federated servers. Although the OMG Naming Service
supports multiple names per object, this framework restricts a managed object to using a single
name. Support for multiple names is outside the scope of the framework.

(R) NAME-2 Since a simple name binding cannot identify an object and also contained objects,
each managed object must actually have a corresponding Naming Context. A specially-named
binding in each such context will bind the ID value "Object" with a reference to the actual managed
object. (The kind field of this binding will be null.) Other naming contexts, representing contained
managed objects, may also be bound to names in this context.

(R) NAME-3 The ID field of a name binding for a naming context representing a managed object
will be application-dependent, and it may actually have semantic value beyond uniquely identifying
a managed object, for a particular class of objects. For example, an ID value of "7" for an equipment
holder object representing a slot in a shelf may indicate that this object represents the 7th slot in the
shelf. Special semantic value attached to IDs will be documented for each class of managed objects
as part of the managed object interface specification. Note that the ID field isa string.

20 ITU-T Q.816 (01/2001)

(R) NAME-4 The kind field of a name binding for a naming context representing a managed object
shall be determined by managed object name binding information. This is information defined as
constants in IDL modules specifically for the purpose of representing possible containment
relationships. See ITU-T X.780 for details on the representation of managed object name binding
information. In short, however, a name binding module will contain a constant string named "kind"
that will be used as the value for the kind field in CORBA name bindings. The value of this string
will usually be the unscoped class name of the managed object. This adds value by making it easier
to identify the type of an object and by reducing the likelihood of name collisions. One factor
complicating this is the release of new versions of an object, for example, an equipmentR1 that
extends an equipment object. When the new class merely extends the capabilities of an existing class
without changing its purpose (that is, it still represents the same managed resource), the kind field
will usually be the original base class name. This, however, is ultimately up to the object modeler
who defines the name binding IDL module. Using the original value will enable existing applications
to continue to use the new class as if it was the old version.

Figure 2 gives an example of name bindings according to the above requirements. In the figure,
CORBA Naming Contexts are represented as folders. The contents of the folders are name bindings.
The convention for representing a name component as a string with the format <ID>.<kind> is used.
(Some example name bindings do not have a pointer shown in the diagram to reduce the complexity
of the diagram.) The graph represents a Network object, named "CentralNet," that contains a
Managed Element object named "Element9" and a Connection named "R5698."

/
CentralNet.Network
NorthernNet.Network (Thelocal root
SouthernNet.Network Naming Context)
(The CentraNet
Network Managed
Object)
/
< Object .
MO Element9.M anagedElement (Naming Context
R5698.Connection or the CentralNet
A549 Trail Managed Object)
Bay1.Equipment Object
Version7.Software
XOb] ect
\ (The Naming Context for Element9) \ (The Naming Context for Connection R5698)
MO (The Element9 ME MO (The R5698
Managed Object) Connection Managed Object)

T0414900-00

Figure 2/Q.816 — Naming graph of Managed Objects

ITU-T Q.816 (01/2001) 21

(R) NAME-5 Each managed system shall provide at least one local root naming context. Note on
Figure 2 that the topmost naming context is referred to as a "local root" naming context. This is the
naming context in which names for the topmost managed objects on the system will be bound, as
well as names for certain support service objects.

A managed system may have multiple local root naming contexts. Since managed objects cannot
have multiple names, they may be bound under only one local root. Support service objects,
however, may have names bound under multiple root naming contexts on the same system. One
factor to consider when determining how many local root naming contexts a managed system will
have is if the possibility exists that some of the managed objects might sometime have to be moved
to another system. Moving an entire tree of managed objects, including the local root naming
context, will be simpler than moving a subtree of objects.

(R) NAME-6 A managed system shall provide a local administrative procedure for assigning a
CORBA name to each local root naming context on the system. All names exchanged across the
managed interface will include the local root context name unless otherwise noted. This includes
operation parameters and notifications.

This feature is to enable an administration to make names globally unique. Since the managed
system must ensure that all names are unique relative to the local root naming context, by assigning a
globally unique name to the local root naming context an administration can ensure that all names on
a managed system are unique. The mechanism used to choose a globally unique name for the local
root context is up to the administration. The format of the name will be the same as used by the
CORBA Naming Service, CosNaming::Name. Multiple components are allowed, but administrations
will likely want to keep local root context names short to reduce overhead.

In addition to making names unique, assigning a name to the local root naming context will make it
easier for a managing system to resolve names. This is because the managing system can bind the
local root naming contexts for all the systems it manages into its own local naming service. The
name it uses for this binding will be the same name assigned to the root naming context on the
managed system. See Figure 3 for an example.

22 ITU-T Q.816 (01/2001)

Managing System

8 A
/ 1B
TC
I
Managed System X Managed S}I/stem Y
Local Root = A / Local Root =B / Local Root =C
N\ 7 7

Element1: Element1: Element1:
ManagedEl ement M anagedEl ement M anagedEl ement

S\

7
} Object ¢ Object Object

T0414910-00

Figure 3/Q.816 — Assigning namesto root naming contexts

Figure 3 shows two element management systems on the bottom. System " X" has two objects of type
ManagedElement, and System "Y" has 1. Each ManagedElement object belongs to its own local root
naming context, which means System X has two local roots and System Y has one. There is also a
network management system, and the local root contexts of both EMSs have been bound into the
naming service on this system. This administration has chosen to assign the unique names "A" and
"B" to the local root contexts on System X, and "C" to the local root context on System Y.
References to the local root naming contexts have been bound with these names in the network
management System.

Say System Y emits a notification concerning its ManagedElement object. The full name of that
object (contained in the notification) will be "C/Element1.ManagedElement”. Now let's say the NMS
wants to retrieve more data from the object. In order to do so, it will have to resolve the name into a
CORBA object reference. The NMS can accomplish this by simply performing a resolve operation
using the full name on the local context where it bound the EMS local root contexts. Because the
NMS naming service is federated with the EMS naming services, the NMS' naming service can
automatically forward the resolve operation to the naming service on the proper EMS, and return the
object reference to the NM S application.

It isanticipated that the local root naming context name will be assigned during the initialization of a
new system. Once in operation, it will be extremely difficult if not impossible to change.

Once assigned a name, the local root context's CORBA Interoperable Object Reference (I0OR) will
have to be bound to a naming context on the managing system, since up to now it has no idea the
new system exists. This means the managed system will also have to provide a means for accessing

ITU-T Q.816 (01/2001) 23

the "stringified" IOR of the local root naming context. This value will then be transferred to the
managing system by some means other than the management interface (e-mail, ftp, etc.). The
managing system will require a way to accept this stringified IOR and bind it to a name on the
managing system. As soon as the local root context's IOR is bound to a name on the managing
system, the managing system can begin discovering the objects on the new system (using the
Multiple Object Operation Service described later) and begin to manage it.

Managing System

A
/ 1®B
TC
I
Managed System X Managed S}I/stem Y
Local Root = A / Local Root =B / Local Root =C
Y 7 7

Element1: Element1: Element1:
ManagedEl ement ManagedElement ManagedEl ement

S\

o
). Object ¢ Object Object

T0414920-00

Figure 4/Q.816 —Moving alocal root naming context and contained objects

Figure 4 shows how a local root naming context and all of the objects contained below it can be
moved to another system without changing the names of the objects. The only change that might be
required would be to change the object reference bound to the name in the network management
system(s). Also, any outstanding references to moved objects would have to be refreshed. Moving
only part of a tree contained below a local root naming context would require re-naming those
objects.

6.1.1 Translating managed object namesto strings

In this framework, managed object names are represented with data structures. There may at times,
however, be a need to represent managed object names as strings. The CORBA Interoperable
Naming Service[Ref] specification defines rules for translating CORBA Naming Service names
(which are used by this framework) to strings. Network management systems may, however, find the
need to store managed object names in Lightweight Directory Access Protocol (LDAP) servers. This
clause defines the rules for translating managed object names to strings suitable for use with LDAP.

24 ITU-T Q.816 (01/2001)

A managed object name is a data structure containing sequences of data structures with two strings
named kind and ID. Managed object names are converted to Distinguished Name strings by
concatenating the strings from each of the data structures in the sequence, along with equal signs ('=")
and commas (,) in the order defined below.

DN string = "<kind>p=<ID>,<kind>;=<ID>1,<kind>,=<ID>,..."

"<kind>q refers to the value of the kind string in the first component of the sequence,<kind>1 refers
to the value of the kind string in the second component of the sequence, etc. When placed into the
LDAP DN string form, the kind and 1D strings may have to contain escape sequences. See [12] for
details.

6.2 Notification Service

The CORBA Notification Service supports the asynchronous exchange of event messages between
clients using a subscribe-and-publish paradigm [4]. The Notification Service introduces event
channels that broker event messages, notification suppliers that supply event messages, and
notification consumers that consume event messages. The CORBA Notification Service preserves all
of the semantics specified for the CORBA Event Service, allowing for backward compatibility with
Event Service clients. The extended functionality that is important to the network management
domain is the structured event, event filtering, and QoS (Quality of Service). Figure 5 depicts the
general architecture of the Notification Service.

. QoS QoS
Supplier < > F F |« » Consumer
] QoS QoS
Supplier (< > F F |« » Consumer
Notification
Service
Event
Channel
] QoS QoS
Supplier < > F F [< » Consumer
i T0414930-00
F Filter

Figure 5/Q.816 — Architecture of the Notification Service

(R) NOTIF-1 The Notification Service shall support the push interface model. The managed object
interface to the event channel shall be a push supplier.

(R) NOTIF-2 The managed system shall instantiate the event channel object(s) that it will use. A
managed system must instantiate at least one channel and may instantiate more than one. (These
channels may either be OMG Notification event channels [4] or OMG Telecom Log event
channels[5], or an object supporting the 3GPP NotificationlRPOperation interface [13].) The
framework does not support the creation or deletion of event channels across the management
interface. Local administrative procedures may be provided for this purpose. (Event channels do,
however, support the creation and deletion of filters across the management interface.)

ITU-T Q.816 (01/2001) 25

(R) NOTIF-3 Each event channel shall be registered with the Channel Finder service. The Channel
Finder service is a support service defined by this framework in 7.2. During registration, the channel
shall be associated with one or more managed objects that each forms the base of a scope of
managed objects that send their events to the channel. Multiple channels may be associated with the
same base managed object. A likely use of this is to have different channels for different types of
events. For example, one channel might handle performance management events while another
handles alarms. When the channel is registered with the Channel Finder service, it is also tied with a
set of event types it handles and a set of managed object types that send their events to it. Every
notification from every managed object must go to at least one channel.

While this approach is quite flexible and enables complex arrangements of channels, because
channels cannot be created across the management interface, the complexity is under the control of
the implementation of the managed system. It might be as simple as a single channel monitoring all
managed objects on the system. (Please note again that while channels cannot be created across the
interface, individual channels do support the creation and deletion of filters across the management
interface. Thus, any number of clients may register for the events they wish to receive.)

(R) NOTIF-4 The Notification Service shall support structured events.

(O) NOTIF-5 The use of sequences of structured events is optional. Sequences of structured events
are defined in [4] and are used to send multiple events in one message.

(O) NOTIF-6 The use of typed eventsis optional.

NOTE — If the managed system supports typed events it still must enable managing systems to receive
structured events if the manager chooses. This may be accomplished by using a Notification Event Channel
that supports the tranglation of typed event to structured events as defined in the OMG's Notification Service
specification [4].

The message interface between suppliers and consumers shall be defined in IDL as if they were
using typed events. This is done to enable capturing the notification in IDL (which cannot be done
for structured events except with comments) as well as to support typed notifications for applications
that wish to use them.

Rules for creating structured notifications based on these typed operations are provided below.

The OMG Notification Service definition does define rules for channels to automatically convert
typed notifications to dructured notifications. If the managed objects natively create typed
notifications, but the client wishes to receive structured notifications, the OMG translation rules shall
be followed by the channel. Note, however, that this arrangement is likely less efficient than both
systems using typed events. If the managed objects natively create structured notifications, they shall
do so according to the rules below.

The structured notifications natively created by a managed system will differ slightly from the
structured notifications created by automatic conversion from typed notifications. One reason for this
Is to make it possible for a managing system to tell the difference, and accept typed notifications if
they are supported by the managed system. Another is to more efficiently use structured
notifications. Managed systems that natively create structured notifications may exclude optional
parameters from those notifications. Because a typed notification is created from a strongly-typed
method invocation, a commercial notification channel that translates this to a structured notification
will include any null values as name-value pairs in the body of the structured event rather than
exclude them. Note that allowing managed systems that natively create structured notifications to
exclude optional parameters makes it unlikely that commercial notification channels will be able to
support the automatic conversion of structured events to typed events.

26 ITU-T Q.816 (01/2001)

In summary, if the managed objects natively create structured events, they shall do so according to
the rules below. Because, for efficiency, these rules allow managed systems to exclude optional
parameters from structured notifications, support for automatic conversion of these structured
notifications to typed notifications by commercial notification channels is not expected. Thus, the
managing system must accept structured events. If the managed system natively creates typed events,
the managing system may rely on the notification channel to automatically convert them to
structured events based on the OMG Notification Service's rules. Structured notifications rely upon
the heavy use of CORBA "any" data types, however, which can be inefficient. Thus, in this case, the
managing system will likely prefer to accept typed notifications.

(R) NOTIF-7 The suppliers and consumers of structured events shall follow these rules for
constructing and receiving the structured events. (See Figure 6 which depicts the Notification
Structure and how elements from the IDL notification definition are to be mapped into it.)

. The domai n_type string in the fixed header of the structured event shall be set to
"telecommunications’.
. The type_nane string in the fixed header of the structured event shall be set to the scoped

name of the operation defining the notification in IDL, for example,
"itut _x780::Notifications::attributeVal ueChange".

. The event _nane dgring in the fixed header of the structured event is not used by this
framework.

. Optional header fields may be included to support features like Quality of Service as
appropriate.

. Each parameter in the operation shall be placed in a name-value pair in the filterable body

portion of the structured event. The f d_nare string of this pair shall be set to the name of the
parameter and the type placed in the associated f d_val ue will be the type specified for the
parameter. Using as an example the equi pment Al ar m notification from the IDL presented
later in this document, the first fd_nanme string would be set to "event Tine" and the first
f d_val ue would contain an Ext er nal Ti meType datatype. Although all notification parameters
go in the filterable body of the notification structure, depending on the data type of the
parameter it may be difficult or even impossible to create a useful filter utilizing that
parameter. Filter "matching rules' are based on the capabilities of the channel.

. Parameters that are denoted "optional” may optionally be excluded from the notification
structure. If typed notifications are used, these parameters are included, but will usually have
aspecial null value if not supported. For types for which there is no special null value (such
as integers) a special type consisting of a union between the base type (such as integer) and
the null type is usually defined. These union types may be excluded from structured
notifications when they have a null value, but if they are included, the union type must be
used. Thisisto enable the same filtersto be used for both structured and typed notifications.

. The remainder of the body of the structured event (the non-filterable part) shall be null.

. Parameters named "operation” shall be avoided in notification operations to potentially
support the use of typed notifications. (When converting typed notifications to structured
notifications, the parameters of an operation are automatically placed into a notification
structure by the event channel. Unfortunately, the rules developed for doing this state that the
name of the operation used to issue the notification goes not in the header of the event, but in
the body of the of the structure as the first name-value pair. The fd_name string is set to
"operation” and the f d_val ue IS Set to a string containing the name of the operation. Using a
parameter named "operation” would then result in a second name-value pair with the name
"operation”, and the two could be confused.)

ITU-T Q.816 (01/2001) 27

void equipmentAlarm (

in Externa TimeType
in NameType
in ObjectClassType eventTime,
) source,
sourceClass,
; o ([)
Tdecommunications > domain_type
<null> — | type name ¢ Fixed Heeder
1T event_name
<
Event Heeder /1, ohf_name; ohf_value;
Optiona header fields
may be ifncl Udedlti ohf_name, ohf_value,
support features like Vaiable H
Qudlity of Service ariable Heeder
ohf_name, ohf_valug,
One name-vaue par for } d value= {
each parameter in the fd_name;= - -
operation goesinthe b eenTine vel u_?__of
filterable body. eventTime
fd_name,= fd_value,= Filt
= 4 erable Body
source value of source Fidds
Event Body
fd_name, fd_vaue,
remainder_of_body Remaining Body
\

T0414940-00

Figure 6/Q.816 — M apping notificationsto structured events

(R) NOTIF-8 The Notification Service specification supports filter expressions that are used to
determine if the event is to be forwarded. It also supports filter expressions that "map" values in the
notification to parameters used to impact the operation of the event channel, such as the QoS used in
delivering the event. For example, a mapping filter might be used to map a "severity=major" field
from an event (which means nothing to an event channel) to a QoS parameter "priority=1" (which
does mean something to the channel). The Notification Service shall support event filtering with
filter objects that support constraints expressed in the default constraint grammar specified by the
OMG. The Notification Service shall also support mapping filters.

(R) NOTIF-9 The Notification Service reliability QoS shall support EventReliability = Persistent &
ConnectionReliability = Persistent.

Each event is guaranteed to be delivered to all consumers registered to receive it at the time the
event was delivered to the channel, within expiry limits. If the connection between the channel and a
consumer is lost for any reason, the channel will persistently store any events destined for that
consumer until each event time out due to expiry limits, or the consumer once again becomes

28 ITU-T Q.816 (01/2001)

available and the channel is subsequently able to deliver the events to all registered consumers. In
addition, upon start from a failure the notification channel will automatically re-establish
connectionsto all clients that were connected to it at the time the failure occurred [4].

(R) NOTIF-10 The Notification Service order policy QoS shall allow the events to be delivered in
the order of their arrival, i.e. FIFO. The Notification Service may also optionally support a priority-
order QoS in which events could be buffered in priority order, such that higher priority events will be
delivered before lower priority events.

(R) NOTIF-11 The Notification Service implementation deployed shall be compliant to the
conformance statements of the OMG Notification Service specification with the exception of the pull
interface model.

6.3 Telecom Log Service

The CORBA Telecom Log Service [5] is a CORBA-based Log Service that fully supports ITU-T
X.735. The log is implemented as an Event Service or Notification Service event channel. The Log
Service supports the following functionality:

. Writing to the log: Events supplied to the log are persistently stored as log records.

. Forwarding from the log: Events supplied to the log are also forwarded to other logs or to
any application that wishes to receive them.

. Log-generated events: The log itself will generate events.

Also the Log Service provides functions of log control and management, log record manipulation,
log lifecycle management. Figure 7 gives a graphic representation of the Log Service.

] QoS QoS
Supplier |« > F F | » Consumer
. QoS QoS
Supplier |« > F F | » Consumer
Notification
Service
Event
Channel
. QoS QoS
Supplier [« > F F ¢ » Consumer
Log Filter
T0414950-00
y
Non-Event 4
Writer
Log
Persistent Store
F Filter

Figure 7/Q.816 — Telecom L og Service

ITU-T Q.816 (01/2001) 29

By manipulating the Log Filter, a managing system is able to control which events are logged and
which arent, in exactly the same way it is able to control which events are forwarded and which
aren't. The only exception is the "Non-event Writer," which is an application that writes data directly
to the log.

Note that the definition of the OMG's Telecom Log pre-dates this framework. The notifications from
the Telecom Log are structurally different from the other notifications in this framework even though
some of the names of the notifications and parameters are semantically the same.

(R) LOG-1 The Log Service shall support all the Notification Service requirements. Log Event
Channels must be registered with the Channel Finder service.

(R) LOG-2 The Log Record supported by the Log Service shall be the normal struct LogRecord.
The support of struct TypedLogRecord iSoptional.

(R) LOG-3 The Log Service implementation shall be compliant with the conformance statement in
the OMG Telecom Log Service specification with the exception of the pull interface model.

6.4 M essaging Service

The CORBA Messaging Service covers three areas. Asynchronous Method Invocation (AMI), Time-
Independent Invocation (T1I), and Messaging Quality of Service (QoS) [8]. Of the three aress, the
AMI has asignificant role in the network management domain because it allows clients to make non-
blocking requests on a CORBA object.

Note that CORBA is designed to enable an application to invoke a method on an object as if the
object was local to the application, regardless of the object's actual location. Typically, when a
method is invoked on an object in a non-distributed application, control passes to that object and the
calling routine blocks until the method completes and control is passed back. These semantics are
maintained in CORBA. In a distributed application, however, network latency can lead to poor
performance. There are five possible solutions to consider:

1) Applications simply live with the delays.
2) TMN IDL interfaces are defined to be asynchronous. That is, management operations are
always defined to return no results. Thus, invocations can be made without blocking. (Thisis

supported by CORBA.) Results are returned later when the managed system performs a
"callback™ on the managing system.

3) TMN IDL interfaces always have two sets of operations, one that is asynchronous, and the
other synchronous.

4) TMN IDL interfaces are defined to be synchronous, and manager applications improve
performance by being multi-threaded and capable of blocking on multiple outstanding
reguests while continuing to process other work.

5) TMN IDL interfaces are defined to be synchronous, and manager applications improve
performance by using the Asynchronous Method Invocation service, and an ORB that
supportsit.

This framework chooses a combination of solutions 4 and 5. TMN IDL interfaces are defined to be
synchronous. Manager applications that are multi-threaded can use these interfaces directly and
experience good performance. Manager applications that cannot be multi-threaded shall use the AMI
service to improve performance. Since multi-threaded managers do not need the AMI service, its use
Is optional.

The AMI is treated as a client side language mapping issue only. In most cases, server side
implementations are not required to change. In certain situations, such as with a transactional server,

30 ITU-T Q.816 (01/2001)

the asynchrony of a client does matter and requires server side changes if it is expected to handle
transactional asynchronous requests. Transactional asynchronous requests, however, will not be
addressed in this Recommendation. Figure 8 depicts the basic concept of the OMG AMI model.

Sync Client Async Client
Implied-IDL —
IDL — Stub (%/nc) I - Stub (async)
Async-aware ORB

——+— IDL — Skeleton (sync)

Servant

T0414960-00

Figure 8/Q.816 — Asynchronous-aware ORB

The AMI specification provides two models of asynchronous requests: callback and polling. In the
callback model, the client passes an object reference for aRrepl yHand! er object as a parameter when it
invokes a two-way asynchronous operation on a server. When the server responds, the client ORB
receives the response and dispatches it to the appropriate method on the Repl yHandl er Servant so the
client can handle the reply. In other words, the ORB turns the response into a request on the client's
Repl yHand! er . The Repl yHand! er iSa normal CORBA object that is implemented by the programmer
as with any object implementation. In the polling model, the client makes the request passing in all
the parameters needed for the invocation, and is returned a pol | er object which can be queried to
obtain the results of the invocation. This Pol | er is an instance of a val ueType, Which isa new IDL
type introduced by the new Objects-by-Value specification. A val ueType has both data members and
methods, which when invoked are just local function calls and not distributed CORBA operation
Invocations.

The value of the Asynchronous Method Invocation capability in network management applicationsis
that it enables managing systems that wish to use asynchronous method calls to inter-operate with
managed systems using the same interface definitions as those used by synchronous clients. No
changes are required in the interface definition or the implementation of the managed system. The
following requirements are proposed for implementations that optionally wish to support
asynchronous method invocations (but not transactions with "ACID" capabilities).

(O) AMI-1 The AMI-aware CORBA implementation shall at least support the callback
programming model.

(O) AMI-2 For each operation in an IDL interface, the AMI-aware CORBA implementation shall
generate corresponding asynchronous callback method signatures. These signatures are described in
implied-IDL which is used to generate language-specific operation signatures.

(O) AMI-3 The AMI-aware CORBA ORB shall pass a type-specific Exceptiontol der value
instance that contains the marshaled exceptions as its state to the Repl yHandl er When exception

ITU-T Q.816 (01/2001) 31

replies are returned from the CORBA object. The AMI-aware IDL compiler would generate a type-
specific Except i onHol der for each IDL interface.

(O) AMI-4 The AMI-aware IDL compiler shall generate a type-specific reply handler for each IDL
interface. The client will implement and register a reply handler with each asynchronous request and
receive a callback when the reply is returned for that request. This reply handler is derived from the
generic Messagi ng: : Repl yHandl er .

6.5 Security Service

The CORBA Security Service comprises the security functionality of authentication of principals
(human users and objects), authorization of access to objects by principals, security auditing,
communication security, non-repudiation, and administration [6]. All of this may be overkill for
many applications, though. Instead, applications might require only the communication security and
system-level authentication functionality based on Transport Layer Security (TLS) technology (and
its precursor, SSL) for availability and simplicity reasons. Finally, some applications might require
no security. The optional requirements below, therefore, reflect three possible choices:

1) NoO security.

2) ORBs use SSL to provide communications security and system-level authentication, which

Is essentially "session” security.
3) ORBs use the CORBA Security Service to provide communications security, authentication,

non-repudiation, access control lists for groups or individuals accessing individual objects
and operations, etc.

The actual level of service to be provided on an interface is left as a matter to be negotiated between
the parties supplying the managed and managing systems.

(O) SEC-1 The CORBA interface may optionally support either the "Secure IOP protocol,” or
"CORBA Security SSL Interoperability,” as defined in the CORBA Security Service
Specification [6].

(O) SEC-2 The CORBA Security Service may be used to support its wide range of capabilities.

(O) SEC-3 Support for the exchange of authentication certificates shall be an option left up to the
administration.

6.6 Transaction Service

In a distributed computing environment such as CORBA, it is possible that updates from some
clients could be overwritten by concurrent (or near concurrent) updates from other clients unless
suitable safeguards are provided. Even though the Notification Service and Telecom Log Service
provide a basis for making a client aware that its update has been overwritten, they do not provide a
locking mechanism to prevent the occurrence of such overwrites. The OMG Transaction Service [7]
provides a comprehensive locking mechanism for preventing the overwriting of one client's update
by a concurrent update from a different client. This solution is designed for high reliability.
However, the OMG Transaction Service may not be required in all applications and the additional
overhead incurred may not be justified. If consistency of data after concurrent updates must be
supported, the transaction service from the OMG should be considered.

(O) TRANS-1 The CORBA interface may optionally support the OMG Transaction Service to
guarantee data consistency.

32 ITU-T Q.816 (01/2001)

7 Framework support services

This clause defines common support services included in the framework that are not sandard OMG
CORBA Common Object Services. Many network management applications perform functions that
are not commonly required by general-purpose business applications, so it is not reasonable to expect
the standard CORBA framework to supply all the necessary services for network management. This
clause defines services that will be broadly used by network management applications but are not as
likely to be used by many other types of applications and are therefore unlikely to become CORBA
Common Object Services. These services also provide functionality required to enable the reuse of
existing information models without significant changes in semantics.

The advantages of placing this functionality in common support services is that it unburdens the
managed object implementations from providing these services and allows the services to evolve to
provide greater functionality without changing the managed object interfaces or implementations.
The IDL describing the interfaces to these services can be found in Annex A.

7.1 The Factory Finder Service

The Factory Finder Service enables clients to find factories. A client finds a factory by querying this
service with the class name of a factory. The service responds with a reference to a factory of that
type. Note that the class name supplied by the client is the factory's class, not the class of the object
to be created.

The Factory Finder Service is found by looking it up in the Naming Service.

Before factories can be found in the service, the service must know about them. Therefore, the
Factory Finder Service also provides a means for factories to register and unregister themselves with
the service. While it is not necessary to expose this capability across the management interface, these
operations are defined to enable the implementation of the Factory Finder Service as a component,
separate from the objects comprising a specific information model. Thus, once implemented, the
Factory Finder Service implementation will not have to be changed when new information models
with new factories are defined. The Factory Finder Service could even be acquired from a third

party.

The operations used to register and unregister channels are in a separate interface that is subclassed
from the Factory Finder interface. Only the Factory Finder interface needs to be implemented to
conform with this framework. The subclassed interface is provided for implementations that wish to
use it to construct the Factory Finder service as a separate component.

Thisisthe IDL that defines the interface to the Factory Finder Service (without comments):
i nterface FactoryFinder {
i tut_x780:: Managed(hj ect Factory find (
in CbjectC assType factoryd ass)
rai ses (FactoryNot Found, itut_x780:: ApplicationError);

Fact oryl nf oSet Type list()
raises (itut_x780::ApplicationError);

}; /1 end of FactoryFinder interface

i nterface FactoryFi nder Component : FactoryFi nder {
void register (in Objectd assType factoryd ass,

in itut_x780:: ManagedObj ect Factory factoryRef)
rai ses (itut_x780::ApplicationError);

ITU-T Q.816 (01/2001) 33

void unregister (in bjectd assType factoryd ass,
in itut_x780:: ManagedObj ect Factory factoryRef)
rai ses (FactoryNot Found, itut_x780:: ApplicationError);

}; /1 end of FactoryFi nder Conponent interface

The find operation on the FactoryFinder interface is used by a client to find a factory of a particular
type. The list operation returns a list of all the factories registered with the Factory Finder. The
register operation on the FactoryFinder Component interface is used by a factory to register itself
with the service, and the unregister operation is used by a factory to delete its registration. These last
two operations should not be used by managing systems.

(R) FACTORY_FINDER-1 A managed system shall instantiate at least one Factory Finder Service
object. Also, each local root naming context on a system shall have at least one name binding for a
Factory Finder Server Object. The value of the ID string in this binding shall simply identify the
server, perhaps with a value similar to "FactoryFinderl". The kind string in the binding shall identify
the class of the object ("itut_qg816::FactoryFinder").

(R) FACTORY_FINDER-2 The Factory Finder server object(s) shall support the Factory Finder
interface described above and defined in the CORBA IDL in Annex A. The Factory Finder server
object(s) may support the Factory Finder Component interfaces defined above. The functionality
described above shall be supported.

7.2 The Channd Finder Service

It is anticipated that a large network management system might have multiple event channels. These
channels might handle different types of events, or they might handle events from different sets of
objects. To ensure that a client does not miss any of the events in which it is interested, a means of
identifying the channels present on a managed system, and the events they are handling, is needed.
The Channel Finder Service performs this function. A client can invoke an operation on this service
to list al of the event channels present on a managed system, along with the events they are
handling. Once the client knows about the channels, it can interact with them to arrange to receive
notifications.

A client finds a Channel Finder object by looking it up in the Naming Service.

Before channels can be listed by the service, the service must know about them. Therefore, the
Channel Finder Service also provides a means for channels to be registered and unregistered with the
service. While it is not necessary to expose this capability across the management interface, these
operations are defined to enable the implementation of the Channel Finder Service as a component,
separate from the objects comprising a specific information model. Thus, once implemented, the
Channel Finder Service implementation will not have to be changed when new information models
are defined. The Channel Finder Service could even be acquired from athird party.

The operations used to register and unregister channels are in a separate interface that is subclassed
from the Channel Finder interface. Only the Channel Finder interface needs to be implemented to
conform with this framework. The subclassed interface is provided for implementations that wish to
use it to construct the channel finder service as a separate component.

7.2.1 Channd Finder interface
Thisisthe IDL that defines the interface to the Channel Finder Service (without comments):

i nterface Channel Fi nder {

Channel | nf oSet Type |ist()
rai ses (itut_x780::ApplicationError);

34 ITU-T Q.816 (01/2001)

}; /1 end of Channel Fi nder interface

i nterface Channel Fi nder Conponent : Channel Fi nder {
voi d register (in ChannellDType channel | D,
in Obj ectd assType channel d ass,
i n BaseAndScopeSet Type baseAndScopes,
i n Event Set Type event Types,
i n Event Set Type excl udedEvent Types,
i n ScopedNanmeSet Type sourced asses,
i n ScopedNaneSet Type excl udedSourceCl asses,
i n Event Channel channel)
rai ses (Channel Al r eadyRegi st er ed,
i tut_x780:: ApplicationError);

voi d unregister (in Channell DIype channel | D
rai ses (Channel Not Found, itut_x780:: ApplicationError);

}; I/ end of Channel Fi nder Conponent interface

The list operation on the ChannelFinder interface can be used by a managing system to discover all
the channels present on a managed system. The information returned is the same information
included when a channel is registered, which is discussed below. The two operations on the
Channel Finder Component interface are used by the managed system to register and unregister its
channels with the service. These operations are not intended for use by a managing system.

7.2.1.1 Channd Finder data

When a channel is registered, seven pieces of data are associated with the reference to the channel.
First, a string identifier for the channel is specified. Second, the type of channel is identified (this
framework has two types of channels: Notification channels and Log channels).

After that, the set of objects covered by the channel is specified by a set of managed object names
and "scopes' of objects contained below them. See 7.4.1.1 for more on scopes. There is a scope for
each base managed object in the set. These base objects and the objects within their associated
scopes are the sets of objects that send events to this channel. If multiple channels have scopes that
overlap, the channel with the base object that is the closest ancestor to the source object handles the
events from that object, pursuant to some restrictions discussed below. If multiple channels have the
same base object and it is the closest ancestor to a source object, al of those channels process the
events from that source object. An empty set has the special meaning that al managed objects
directly bound to the local root naming context that aso contains this channel finder are base objects
and the scope of objects sending events to the channel are the whole subtrees contained by those
objects.

Next, the types of events sent to this channel are identified. This is done with two sets of strings. The
eventTypes set explicitly includes the name of each type of event sent to this channel. An example
event type is "itut_x780::Notifications::equipmentAlarm™. An empty set has the special meaning that
all types of events are sent to this channel. The excludedEventTypes set lists the types of events that
are not sent to this channel. If the eventTypes string set is null, then all events except those listed in
the excludedEventTypes set are sent to the channel. If the eventTypes string set is not null, the
excludedEventTypes parameter should be empty and is ignored.

Finally, the types of objects sending events to this channel are identified. This is also done with two
sets of strings. The sourceClasses set explicitly includes the name of each managed object class that
sends events to this channel. An example object class name is "itut_m3120::Equipment”. An empty
set has the special meaning that all types of managed objects send events to this channel. The
excludedSourceClasses set lists the names of managed object classes that do not send events to this

ITU-T Q.816 (01/2001) 35

channel. If the sourceClasses string set is null, then all managed object classes except those listed in
the excludedSourceClasses set send events to the channel. If the sourceClasses string set is not null,
the excludedSour ceClasses parameter should be empty and is ignored.

7.2.1.2 Channel coverage

The combination of the base objects, list of event types, and source classes identifies the events
handled by a channel. This can lead to some confusing combinations. While not all of these are
expected to be implemented in systems, they are explained below just in case.

1) A channel may be registered with multiple base objects and scopes.

2) Multiple channels may be registered with the same base object. If the event lists and source
object types associated with these channels also overlap, the events from objects in the
overlapping scopes must be made available at all channels listing the matching event and
source object types.

3) An attempt to re-register a channel will result in an update to that channel registration. The
new information will be associated with the channel and the old information will be
discarded. A notification reporting the change will be sent.

4) A managed object always sends an event to the channel with the associated base object that:
» hasabase object and scope that includes the object;

* has the base object that is the managed object's closest superior (if other channels also
have base objects and scopes that include the object);

* handles that type of event; and
* handlesthat class of object.
If multiple channels tie, the managed object sends the event to all channels that tie.

Figure 9 also graphically depicts some examples for further clarification.

Channel 2
Channel 1 Event types =
Event types = all equipmentAlarm
Source classes = all Source classes =

circuitPack

Channel
Finder
Association

Managed Object

Containment
Relationship

O

Equipment alarms from circuit packsin
this subtree go to Channel 2. All other
notifications go to Channel 1.

T0414970-00

Figure 9/Q.816 — Channel Example Event

36 ITU-T Q.816 (01/2001)

7.2.1.3 Channel Finder notification

A special notification has been defined that must be sent whenever a channel registration is added,
removed, or modified. This notification must be sent on all channels registered immediately before
the change occurred. Since this notification is emitted by the channel finder instead of a managed
object, and since it is sent to al channels, the channel finder shall not list the channel change
notification along with the other notifications handled by a channel. The IDL describing this
notification is:

voi d channel Change (
i n Channel Modi fi cati onType channel Modi fi cati on,
i n Channel I nfoType channel I nfo

The channel modification parameter indicates if a channel has been added, deleted, or modified (in
terms of the event types it handles). The channel information parameter provides a string describing
the type of channel, a reference to the channel, the base object(s) with which it is associated, and the
source object classes and event types it handles.

It should be noted that while this approach to supporting multiple event channels is quite flexible and
therefore complicated, the degree of complication is under the control of the managed system
implementation. The creation and registration of event channels across the management interface is
not supported. A complex managed system might support a local administrative procedure for
adding, modifying, or removing channels to tune performance, or it might just update channels
through software releases. A simple system will likely have one or perhaps two channels (one for
high-priority events like equipment alarms and the other for everything else) associated with the root
managed object. Also, please note that precluding a managing system from creating event channels
does not preclude it from creating filters and "proxy suppliers' on existing channels. This gives the
client capabilities equal to creating event forwarding discriminators in OS| network management
systems.

7.2.2 Channe Finder requirements

(R) CHANNEL_FINDER-1 A managed system shall instantiate at least one Channel Finder
Service object. Also, each local root naming context on a system shall have at least one name binding
for a Channel Finder Service object. The value of the ID string in this binding shall simply identify
the server, perhaps with a value similar to "ChannelFinder1". The kind string in the binding shall
identify the class of the object ("itut_qg816::Channel Finder").

(R) CHANNEL_FINDER-2 The Channel Finder server object(s) shall support the Channel Finder
interface described above and defined in the CORBA IDL in Annex A. The Channel Finder server
object(s) may support the Channel Finder Component interfaces defined above. The functionality
described above shall be supported.

(R) CHANNEL_FINDER-3 Whenever a change to the channel registrations is made, the Channel
Finder shall send a channel change notification on all channels registered immediately before the
change.

(R) CHANNEL_FINDER-4 The network of event channels reported by a managed system shall
handle all alarms from all managed objects on the system. A system that lists a set of channels that
does not cover all events from all managed objects on the system does not comply with this
framework.

ITU-T Q.816 (01/2001) 37

7.3 The Terminator Service

The purpose of the Terminator Service isto provide a place in the framework to implement common
functionality that would otherwise have to be implemented in the managed objects. The Terminator
Service is used by managing systems to delete managed objects. It does so according to the delete
policy of the managed object. (ITU-T X.780 requires that every managed object have a deletePolicy
attribute with one of three values. notDeletable, deleteOnlylfNoContainedObjects, and
deleteContainedObjects.) If the delete policy of the managed object is notDeletable, the Terminator
Service does not delete the object, and instead raises an exception. If the delete policy is
deleteOnlyl fNoContainedObjects, and the object does not contain any objects, then the Terminator
Service deletes the object. Otherwise, it raises an exception. Finally, if the delete policy of the object
Is deleteContainedObjects, then the Terminator Service will delete the object as well as all of its
contained objects, pursuant to some rules defined below.

ITU-T X.780 aso defines a destroy operation to be supported by all managed objects that is intended
for use by the Terminator Service for actually deleting the managed object and releasing its
resources. In addition to following the delete policies and actually deleting the managed objects,
though, the Terminator Service is also a good place to implement code to maintain the integrity of
the naming tree by removing name bindings for managed objects that are being deleted.
Implementations may choose to implement this function elsewhere, but a goal of the framework isto
enable implementations of managed objects that focus on representing network resources. It is
believed that a service like thiswill help to make the implementation of managed objects simpler.

The IDL describing the Terminator Service provides two methods for deleting a managed object.
One identifies the managed object by name, the other by reference. This is the IDL that defines the
delete service interface:

interface Termi nator Service {

voi d del eteByName (i n NaneType nane)
rai ses (itut_x780::ApplicationError,
itut_x780::Del eteError);

voi d del et eByRef (in itut_x780:: ManagedObj ect nm)
rai ses (itut_x780::ApplicationError,
itut_x780::Del eteError);

}; I/ end of Term natorService interface

(R) TERM-1 A managed system shall instantiate at least one Terminator Service object. Also, each
local root naming context on a system shall have at least one name binding for a Terminator Service
object. The value of the ID string in this binding shall simply identify the server, perhaps with a
value similar to "Terminatorl". The kind string in the binding shall identify the class of the object
("itut_g816::TerminatorService").

(R) TERM-2 The interface supported by the Terminator Server object(s) shall be the Terminator
interface described above and defined in the CORBA IDL in Annex A. The functionality described
above must be supported.

(R) TERM-3 The Terminator Service shall delete objects according to the objects' delete policy
attribute, which is set a creation and cannot be changed. Note that the Terminator Service is not a
scoped service. The Terminator Service may actually delete multiple objects in response to a single
request, but its focus is on the single object requested to be deleted. The Terminator Service shall
implement the following rules when deleting an object:

38 ITU-T Q.816 (01/2001)

1) No object shall ever be "orphaned.” That is, no object may be deleted without deleting its
subordinates.

2) If the object has a delete policy of notDeletable, the object shall not be deleted, nor are any
of its subordinates if it has any. The DeleteError exception shall be raised with the error
identifier set to the value notDeletable.

3) If the object has a delete policy of deleteOnlylfNoContainedObjects, and it does not have
any subordinates, the object shall be deleted. If the object has subordinates, regardless of
their delete policies, it shall not be deleted nor shall any of its subordinates. The DeleteError
exception shall be raised with the error identifier set to the value containsObjects.

4) If the object has a delete policy of deleteContainedObjects, and it does not have any
subordinates, the object shall be deleted. If the object has subordinates, the Terminator
Service shall check the delete policies of all the subordinates. If any are notDeletable, no
objects are deleted. If any are deleteOnlylfNoContained and they contain subordinates, no
objects are deleted. Otherwise, the object and its subordinates are deleted.

5) The Terminator Service shall delete contained objects from the bottom up. If any contained
object raises an exception during deletion, the Terminator Service shall not remove that
object's name and shall not delete any of its superiors. The Terminator Service shall,
however, continue trying to delete other contained objects. When all objects that can be
deleted are deleted, the Terminator Service shall raise a DeleteError exception with the error
identifier set to the value undel etableContainedObject. This best-effort approach to deleting
contained objects is required to make the results deterministic. The client can identify the
undeletable objects because they will be at the leaves of the tree remaining benesath the target
object.

6) If the base object raises a DeleteError exception, the Terminator Service shall return the
same exception (and included data). The object is not deleted and the object's name is not
removed from the naming tree.

7.4 The Multiple-Object Operation Service

With potentially millions of entities to manage, there is a need for the framework to support
operations on multiple objects with a single method invocation or perhaps a small number of
invocations. The Multiple-Object Operation (MOO) Service provides this capability.

It is expected that each network management platform supporting a CORBA interface will provide at
least one instance of the MOO Service. (For performance reasons, it is recommended that the MOO
Service, Naming Service, and the managed objects be located on the same computing platform.)
Managers will interact with the service using a limited number of interactions requiring relatively
low bandwidth. The service will in turn interact with managed objects using either their published
CORBA interfaces or some proprietary means. This high number of interactions is expected to
require higher bandwidth, thus the need to co-locate the service with the managed objects.

Note that the MOO service is an example of application-specific access granularity discussed in
clause 4.
74.1 TheMOO Serviceinterface

The MOO Service's interface, defined in Annex A, is weakly-typed. It provides a set of generic
capabilities that may be invoked on sets of any kinds of managed objects, even objects of different
types. The operations supported are:

. Scoped get: Returns the values from each of the objects for alist of attributes.

ITU-T Q.816 (01/2001) 39

Scoped update: Used to replace an attribute value or to add or remove values to/from set-
valued attributes. May be used to update one or multiple attributes in a single object or
multiple objects.

Scoped delete: Deletes multiple objects.

The scoped get operation is defined on the BasicMooService interface. The scoped update and delete
operations are defined on the AdvancedMooService interface, which inherits the scoped get operation
from the basic service interface. Thiswas done to allow for some flexibility in the implementation of
multiple-object operation services. A basic service need only implement the scoped get operation.

7411

Common parametersin MOO Service operations

Each of the scoped operations requires four parameters to define the set of objects on which the
operation will be performed:

Base object name: The name of the object at the root of a tree of objects on which the
operation will potentially be performed.

Scope: A discriminated union identifying the objects contained under the base object on
which the operation potentially will be performed. The union has four cases. Two of the
cases include an integer specifying a level of objects contained below the base object. The
four choices are:

— Base Object Only. If the scope is baseObjectOnly, then only the named target (base)
object isincluded in the scope.

— Whole Subtree. If the scope is wholeSubtree, the scope is all of the objects contained
below the base object, along with the base object.

— Individual Level. If the scope is individualLevel, the scope will also include an integer-
valued level. All of the objects contained at a level below the base object equal to this
value are in the scope. The objects directly contained by the base object are level one. If
level equals zero, the scope is the base object.

— Baseto Level. If the scope is baseToLevel, the scope will aso include an integer-valued
level. The scope will be all of the objects down to the given level, including the base
object and the object at the given level. If level equals zero, the scope is the base object
only.

Note that because this framework uses some unique naming conventions, the service has to
do a little work to determine the actual depth for containment-based scopes. The goal is to
make it as simple as possible for the client. First, the base object name will be the entire
compound name including the final component with an ID value of "Object". The service
will have to "back up" to the naming context that contains this binding and start counting
from there. Also, the service shall automatically follow the "Object" bindings in the managed
object naming contexts within the scope. This last hop will not count towards the depth.

Filter: An expression written in a constraint language that is used to evaluate the attributes of
an object. The operation is applied to those objects within the scope for which the filter
expression evaluates to true.

Language: A string indicating the language in which the filter expression is written.

The object names are the same as the Name type defined by the CORBA Naming Service. The scope
isaunion with values as described above. Finally, the filter and language parameters are strings.

40

ITU-T Q.816 (01/2001)

Each of the operations may raise one of these exceptions:

. an InvalidParameter exception if one of the parameters has an invalid value. The name of
the invalid parameter is returned. Here are some conditions under which this exception
would be raised:

* The base object name is not valid.
* Anunrecognized filter language value is supplied.

. an InvalidFilter exception if the syntax of the filter is incorrect. This exception returns the
text near the syntax error for trouble-shooting purposes.

. a FilterComplexityLimit exception if the syntax of the filter is correct, but the filter is too
complex to be processed by the managed system.

. an ApplicationError exception to relate other problems on the server (such as a lack of

resources) that make it impossible to carry out the requested operation.

Note that if an expression cannot be evaluated for a particular object because the types of its
attributes do not match the expression, the filter is not invalid. That object may simply fail to passthe
filter.

The other parameters for the operations as well as the return types are specific to the operation. For
example, the scoped get operation takes a list of attribute names and returns a sequence of results,
one from each object, with the name of the object associated with the results from that object.

7412 MOOQO Service lterators

Because each of the operations could potentially return large amounts of data, the iterator design
pattern is used for returning the results. An iterator is an object that is created to contain the results of
an operation so that they may be returned to the client at a rate determined by the client. The client
receives a reference to the iterator as part of the information returned by the method. The client may
then invoke operations on the iterator to receive batches of results in sizes determined by the client.
The iterator keepstrack of how far through the results the client has progressed.

Each time a client invokes a get operation on an iterator, it supplies the maximum number of
responses it wishes to receives. The iterator shall return no more than the batch size requested, in a
sequence data structure. The iterator also returns a Boolean indication if there are more results to be
retrieved. The iterator may return less than the requested batch size, balancing the efficiency of
returning results in a large batch with the possible need to block until more results are available. The
iterator shall not return an empty sequence unless there are no more results to return, as doing so
would force the client to poll the iterator.

The managed system controls the life-cycle of the iterator. A destroy operation, however, is provided
If the manager wants to stop retrieving results before reaching the last iteration. Upon returning the
last result, the iterator shall destroy itself. The iterator may also be destroyed by the managed system
If it isunused for an unreasonably long period of time.

Note that the iterators are used to pace the return of information from the operations only, and should
not control when the operations are actually invoked on individual objects. A scoped operation
should be invoked on the objects and the results queued as soon as possible. Delaying the invocation
of the operation on the individual managed objects until the results are requested through the iterator
may be more efficient, but could lead to incorrect results or race conditions.

The following clauses give additional details on each of the scoped operations.

ITU-T Q.816 (01/2001) 41

7.4.1.3 Scoped Get
The IDL signature for the scoped get operation on the basic MOO Serviceis:

Get Resul t sSet Type scopedCet (

i n NaneType baseNarne,

i n ScopeType scope,

in FilterType filter,

i n LanguageType | anguage,

in StringSet Type attri butes,

i n unsigned short howvany,

out CGetResultslterator resultslterator)

rai ses (InvalidParaneter,
InvalidFilter,
FilterConplexityLimt,
I'tut_x780:: ApplicationError);

As described above, the first four parameters are used to select a set of object on which to perform
the get operation. For each of these the service will try to return a value for each of the attributes
named in the "attributes’ parameter, which is just a list of strings. A submitted null attribute list,

however, has the special meaning that all attribute values for the objects that pass the filter should be
returned. The types involved in the return value are:

struct AttributeVal ueType { [l fromitut_x780 framework
string attributeNane;
any val ue; /1 type will depend on the attribute

b
typedef sequence <AttributeVal ueType> AttributeSet Type; // framework

struct Get Resul tsType {

NanmeType nane;

bool ean not Fi |l t erabl e;
Attribut eSet Type attributes;
StringSet Type fail edAttributes;

tlypedef sequence <Get Resul tsType> Get Resul t sSet Type;

The first two types form a name-value pair list. The return type is a sequence of structures, one for
each object that passed the filter. In that structure is an object's name, a flag that will be true if the
object could not be evaluated to seeif it passed the filter, the list of attribute values from that object,
and the names of any attributes that could not be retrieved from that object. Objects that could not be
filtered are flagged as a special case because they may be objects in which the client was not even
interested. If the object could not be filtered, the client will know the MOO server could not retrieve
any attributes for that object, so the other two data members shall be empty. If an object passes the
filter but an attribute value could not be retrieved either because the object did not have a matching
attribute or some exception was raised on access, that attribute's name should be put on the failed
attribute list for that object.

The howMany parameter indicates to the service how many objects results should be included in the
first batch of responses. (Zero is allowed, forcing all results to be returned through the iterator.) The
resultsiterator output parameter is a reference to an iterator object that may be used to retrieve
additional results in batches. If all the results were returned by the scopedGet operation, this
reference will be null. The client must destroy this object when it is finished with it, and may do so
before all the results are retrieved. The functionality of the CMIP Cancel Get operation is provided in
this framework by destroying the results iterator.

42 ITU-T Q.816 (01/2001)

7.4.1.4 Scoped Update
The IDL signature for the scoped update operation on the advanced MOO Service is:

Updat eResul t sSet Type scopedUpdat e (

i n NaneType baseNarne,

i n ScopeType scope,

in FilterType filter,

i n LanguageType | anguage,

in MdificationSeqType nodifications,

in boolean failuresOnly,

i n unsigned short howvany,

out UpdateResultslterator resultslterator)

rai ses (InvalidParaneter,
InvalidFilter,
filterConplexityLimt,
i tut_x780:: ApplicationError);

Again, the first four parameters are used to select the set of objects on which the update is performed.
The modifications list is a list of structures, each with the name of an attribute, a value for that
attribute, and an enumerated value indicating if the value should replace the attribute's current value,
be added to the attribute's current value, or removed from it. The add and remove options are valid
only if the attribute's type is a CORBA sequence and if the interface has add and remove operations
for the attribute. The values in the modification list structures are passed across as CORBA any
types. If the attribute's type is a CORBA sequence, a sequence of the proper type should be put in the
any field, even if it contains only a single value. The IDL describing the modification list is:

enum Modi ficati onOpType {set, add, renove};

struct ModificationType {

string attribute;
Modi fi cati onOpType op;
any val ue;

H
typedef sequence <Modi fi cati onType> Modi fi cati onSeqType;

The failuresOnly flag is used to indicate if the client wants the service to return results for all objects
meeting the scope and filter, or just those objects for which at least one of the modifications could
not be performed even though the scope and filter are satisfied.

The return value is a list of structures, each containing an object's name along with a Boolean value
indicating if the object could not be evaluated to see if it passed the filter and a list of any attributes
that could not be modified. If the service cannot interact with the object to determine if it passes the
filter, the results for that object will have the notFilterable set to true and the failedAttributes data
member will be empty. (This is flagged as a special case because the object may be one in which the
client was not even interested.) The service will try to perform all the modifications in the list, in
order, continuing to try the rest even if one modification fails. If any operation fails on an attribute,
that atribute's name is added to the list of failures. If the notFilterable flag is false, and the
failedAttributes data member is empty, the client will know all updates were performed on that
object. The new types involved in the return value are:

struct Updat eResul t sType {
NanmeType narne;
bool ean not Fil terabl e;
StringSet Type failedAttributes;

b

t ypedef sequence <UpdateResul t sType> Updat eResul t sSet Type;

ITU-T Q.816 (01/2001) 43

The howMany parameter indicates to the service how many objects results should be included in the
first batch of responses. (Zero is allowed, forcing all results to be returned through the iterator.) The
resultslterator output parameter is a reference to an iterator object that may be used to retrieve
additional results in batches. If all the results were returned by the scopedUpdate operation, this
reference will be null. The client must destroy this object when it is finished with it, and may do so
before all the results are retrieved.

7.4.15 Scoped Delete
The IDL signature for the scoped delete operation on the advanced MOO Service is:

Del et eResul t sSet Type scopedDel et e (

i n NaneType baseNarne,

i n ScopeType scope,

in FilterType filter,

i n LanguageType | anguage,

in boolean failuresOnly,

i n unsigned short howvany,

out DeleteResultslterator resultslterator)

rai ses (InvalidParaneter,
InvalidFilter,
FilterConplexityLinmt,
I'tut_x780:: ApplicationError);

Rather than accessing attribute values, this operation simply attempts to delete each object in the
scope that passes the filter.

The failuresOnly flag is used to indicate if the client wants the service to return results for all objects
meeting the scope and filter, or just those objects that could not be deleted. Because object deletion
notification are typically sent, clients may often want to choose to receive results for only those
objects that could not be deleted.

The return value lists the name of each object along with two flags that might indicate that the object
could not be deleted. The notFilterable flag shall be true if the MOO service could interact with the
object to even determine if it passed the filter. The notDeletable flag shall be true if the object passed
the filter, but could not be deleted, either due to its delete policy, or because it raised an exception.
An object that cannot be evaluated against the filter is flagged as a special case to let the client know
it may be an object that it did not even intend for deletion.

struct Del et eResul t sType {

NanmeType narme;
bool ean not Fil terabl e;
bool ean not Del et abl e;

b

t ypedef sequence <Del et eResul t sType> Del et eResul t sSet Type;

The howMany parameter indicates to the service how many objects results should be included in the
first batch of responses. (Zero is allowed, forcing all results to be returned through the iterator.) The
resultsiterator output parameter is a reference to an iterator object that may be used to retrieve
additional results in batches. If all the results were returned by the scopedDelete operation, this
reference will be null. The client must destroy this object when it is finished with it, and may do so
before all the results are retrieved.

44 ITU-T Q.816 (01/2001)

Because many objects cannot be deleted if they contain other objects, for scopes based on
containment relationships the service must begin deleting the "leaf" objects that are within scope and
work toward the "root" object. When deleting objects, the MOO service must follow the rules for
deleting an object based on the object's delete policy as described in 7.3. Because the rules are being
applied to each of the objects in the scope, starting from the bottom up, however, the effect will be
different than simply trying to delete the object at the root of a subtree. Also, the MOO service is
best-effort. Therefore, it is possible for some of the objects in a scoped subtree to be deleted while
others aren't. These are the rules that must be applied to scoped delete operations:

1) No objects may be "orphaned.” That is, an object may not be deleted without deleting all of
its contained (child) objects.

2) Performing a scoped delete on an entire subtree results in all of the objects in that subtree
being deleted unless an object has a delete policy of notDeletable, the object raised an
exception on the destroy operation, or an object has a subordinate that is not deletable.

3) Performing a scoped delete on part of a subtree requires evaluating each of the objects at the
lowest scoped layer using the delete rulesin 7.3. If an object at the lowest layer of the scope
may be deleted according to these rules, it and any subordinates are deleted. If a lowest layer
object cannot be deleted, it is not deleted nor are any of its superior objects. Other objectsin
the scope may be deleted, however, if the delete rules allow it. The service then moves up to
the next layer, and so on.

7.4.2 Thedefault filter language

This clause describes the default filtering constraint language that must be supported by all
conformant implementations of the MOO Service. Conformant implementations may support other
constraint grammars in addition to the grammar described here. An operation is provided on the
Basic MOO Service interface to enable a client to retrieve the languages supported by a service. The
grammar used in a request is indicated by a string-valued parameter named "language" on each
scoped operation. A value of "MOO 1.0" (one space between "MOQO" and "1.0") shall indicate the
grammar described here. (A constant named defaultLanguage with this value is provided in the IDL
module.)

The default grammar supported by each conformant implementation shall be the default constraint
grammar defined for version 1.0 of the Notification Service [4] with changes as described in the
following subclauses. Note that by taking this approach, the framework fixes the support for
comparison rules (or "matching rules") with the filter grammar. New rules (e.g., a case-insensitive
string match) cannot be added with the addition of a new data type or attribute type. Instead, the
grammar will have to be updated if new capabilities are required.

7.4.2.1 Applyingthe constraint language to object attributes

The default Notification Service constraint grammar introduced the special token ‘$' to denote the
current event and run-time variables. For multiple-object operations, the ‘$' token shall denote the
"current” object as well asrun-time variables. That is, one can think of the MOO Service as selecting
a set of objects based on the supplied base name and scope parameter, then applying the filter
expression individually to each of the objects in that set. The "current” object is the object against
which the expression is being evaluated. The following examplesillustrate the use of the ‘$' token:

$.adminigtrativeState The administrative state attribute of the current object.
$curtime A "built-in" variable named "curtime".

The identifiers that come after the "$." (dollar-sign period) are names of the attributes of the current
object as found in the value object defined to return the attributes of an object. (See ITU-T X.780 for

ITU-T Q.816 (01/2001) 45

details on managed object attributes.) That is, "$.administrativeState” refers to the member named
"administrativeState" in the value type returned by a call to the getAttributes() operation on the
current object. (It is assumed that many implementations of the MOO Service will use the
getAttributes() operation to retrieve the attributes from an object before evaluating the filter.)

The Notification Service constraint language, on which the MOO Service constraint language is
built, has a "dot" operator (".") that can be used to access the individual members within a data
structure, and data structures can be nested. Thus, an identifier like this one may be used to access a
value within an attribute that has a data structure value:

$.systemTimingSource.primary TimingSource

A comparison with an attribute name that is not present in an object always evaluates to false. To
illustrate, in the expression "(A == 0) || (A !'= 0)" if there is no attribute named "A" present in the
object both comparisons will evaluate to false and the expression will actually evaluate to false. The
default Notification Service language does support an "exists' operation that can be used to test the
existence of an attribute before including it in a comparison. Also, a comparison always evaluates to
false if the types of the operands do not match. In the example above, if "A" is a string, the
expression will be false.

Notice that the default Notification Service constraint grammar defines a set of run-time variables
(which may be better thought of as "built-in" or "pre-defined” variables) but does not allow user-
defined variables in filter expressions. In fact, there is no assignment operator that would support the
use of user-defined variables. There are currently no built-in variables defined for the Scoping and
Filtering Service and user-defined variables are not supported.

NOTE — Since the Natification Service evaluates objects based on the names of their attributes, care must be
taken when defining attribute names (the names of the members of the attribute value object defined for an
interface). An attribute of type AdministrativeStateType named "adminState” with a value of "unlocked" will
fail afilter of "administrativeState == unlocked" because the name does not match.

7.4.2.2 Support for regular expressions

The default Notification Service constraint language defines a substring operator to work like this:
"A ~B" istrueif A is asubstring of B. The default MOO Service constraint language extends the
language by defining a regular expression matching operator. The '# character is designated for this
operator. Using this, "A # B" evaluates to true if the regular expression pattern defined in A is
matched in B. For this framework, regular expressions are "modern" regular expressions as defined
in 2.8 of POSIX 1003.2 [11].

A regular expression is a pattern that describes a set of strings. The inclusion of special characters
known as "meta-characters' enables one string to describe a set of strings. The manual page for the
"grep” command on most POSIX-compliant systems gives a complete description of regular
expressions and their use.

Regular expression matching is added to the constraint language to satisfy the requirement to match
sub-strings at the beginning, middle, or end of a string. POSIX regular expressions support this
capability by using meta-characters that represent the beginning or end of a string(""" and "$").
Matching in the middle of a string is done by excluding these characters from the regular expression.
Certainly, this requirement could have been met by only adding a couple of meta-characters to the
string matching function. It was felt, however, that since regular expression matching is supported as
a utility on POSIX-compliant systems, it made sense to go ahead and use this capability, which adds
rich pattern matching to the language, rather than to require developers to implement a special
capability offering far less functionality.

46 ITU-T Q.816 (01/2001)

Since both the notification filter language for strings and the regular expression language use "\" for
the escape character, "\\" must be used in a filter string (which will be changed by the filter string
parser to "\") whenever the "\" character is to be included in the regular expression. Consider this
example. The "." in a regular expression can match any single character. To make sure that the
character matched is actually a "." character, the following operation might be used in a filter:
itul\.int' # $.domain_name

7.4.23 Support for testing set-valued and sequence-valued attributes

Network management applications tend to rely heavily on the attributes of the managed objects, and
often these attributes are actually sets or sequences of values. (Sets and sequences differ. Sets should
not contain duplicates and the order of the elements is unimportant. In sequences, duplicate elements
are allowed and order is important.) To support the use of set-valued and sequence-valued attributes
in filter expressions, the default Notification Service constraint language needs to be extended. Two
groups of extensions are required to support the use of sets and sequences. The first enables sets and
sequences of literal values to be included in filter expression. The second defines operators for sets
and sequences.

74231 Setsand sequencesof literal values

Sets and sequences of literal values are included in filter expressions by enclosing a comma-
separated list of literal values in curly braces. For example:

{1, 16, 21} A set or sequence of integers
{5.2, 6.8, 7.01} A set or sequence of floating-point numbers
{"apple, 'orange’} A set or sequence of strings

{Critical, Magjor, Minor} A set or sequence of enumerated values
{} A null set or sequence.

The literal values must be of the "simple" types defined for the Notifications Service constraint
language (Boolean, short, unsigned short, long, unsigned long, float, double, char, wchar, string,
wstring), or enumerated values. All values in a set or sequence must be of the same type.

Obviously, in this constraint language, literal sets and sequences are defined in the same way.
Actually, this matches the case with CORBA interface attribute types. Unlike some other interface
syntax languages, OMG IDL has only a sequence structure, and no set type. To account for this,
different operations for sets and sequences are defined. When a sequence operator is applied to a pair
of sequences (either literal or attribute values), the sequences are treated as true sequences. That is,
order is taken into account. When two sequences are involved in a set operation, however, the
sequences are actually treated as sets. That is, the order of the values in the set does not matter. Also,
while managed objects should never return duplicates in the value of a set-valued attribute, any
duplicates should be ignored.

7.4.23.2 Set operators

In order to include set-valued attributes in filter expressions, operators that work on sets are needed.
This clause extends the Notification Service constraint language by defining how the operators
already defined for that service are to be applied to sets. One new operator, using the caret symbol
("), is defined for testing the interclause of two sets. Also, two built-in functions that take sets as
arguments are defined.

Note that the default Notification Service constraint language already defines one operator that works
on sets: the "in" operator. The expression "A in B" can only be applied if A is a simple type as

ITU-T Q.816 (01/2001) 47

defined above and B is a sequence of the same simple type. The expression evaluates to true if the
value represented by A is equal to a value in B. Also, the default Notification Service constraint
language supports the use of the "exist" operation on set-valued parameters. This behavior will also
be supported for multiple object operations.

In general, to use any of the set operators in an expression such as "A <operator> B" one or both
operands must be a sequence of one of the types listed above in the clause on sets of literal values. If
one operand is a sequence of type X, the other must either be a sequence of type X or avalue of type
X. Because one or both of the operands are actually sequences, not sets, the operations must ignore
any duplicate values within a sequence and must not depend on any order of the values in a
sequence. The operators extended to work on set-valued attributes are defined below:

A== Trueif all the values in each operand are present in the other.

Al=B Falseif al the values in each operand are present in the other.

A<B True if al the values in A are in B and B contains at least one other value not
inA.

A<=B Trueif al the valuesin A are in B. (If A isasingly-valued attribute, thisis the
sameas"AinB".)

A>B Trueif all thevaluesin B arein A and A contains at least one other value not in
B.

A>=B Trueif al the valuesin B arein A.

A"B Trueif any valuein A is present in B (the intersection is not null).

In addition to these operations, two built-in functions that take a set or sequence as an argument and
return a single value from that set or sequence are defined:

MAX(<set or sequence>) Returns the highest value in the set or sequence.
MIN(<set or sequence>) Returns the lowest value in the set or sequence.

If no maximum or minimum can be derived from the set (because the values are not numeric), the
returned value should be indeterminate and any comparison to this indeterminate value should
evaluate to false.

7.4.23.3 Sequenceoperators

To support the inclusion of sequence-valued attributes in filter expressions, operators that work on
sequences are needed. This clause extends the Notification Service constraint language by defining
operators that work on segquences.

Only a single operator is defined for sequences, since the only requirement was to do equality
matching on sequences. The operator defined to work on sequence-valued operands is:

A % B Trueif A and B have the sasme number of values and all the valuesin A match those
in B, in order.

The MAX and MIN built-in function, defined in the previous clause, can also be applied to
seguences.

7.4.3 MOO Servicerequirements

This clause summarizes the Multiple Object Operation Service requirements.

(R) MOO-1 A managed system shall instantiate at least one MOO Server object. Also, each local
root naming context on a system shall have at least one name binding for aMOOQO Service object. The
value of the ID string in this binding shall simply identify the server, perhaps with a value similar to

48 ITU-T Q.816 (01/2001)

"MOO1". The kind string in the binding shall identify the class of the object
("itut_g816::BasicMooService" or a sub-class).

(R) MOO-2 The interface supported by the MOO Server object(s) shall be the "Basic’ MOO
Service interface described above and defined in the CORBA IDL in Annex A.

(O) MOO-3 Optionally, the interface supported by the MOO Server object(s) may be the
"Advanced” MOO Service interface described above and defined in the CORBA IDL in Annex A.

(R) MOO-4 The MOO Server object(s) shall at least support the default constraint language defined
above for the specification of filters, and may support other grammars. The default constraint
language, identified as "MOO 1.0", is the default constraint language defined by the CORBA
Notification Service but extended as described above to support:

. filtering on object attribute values rather than notification structure member values;
. regular expression matching;
. filtering on attributes containing sets or sequences of values.

75 The Heartbeat Service

The Heartbeat Service is used to verify the operation of the notification channels on a managed
system, as well as the communications network between the managed system and managing system.
It periodically sends a small notification to a managing system interested in receiving it that
identifies the system that emitted the heartbeat, as well as the notification channel through which it
was emitted. After configuring this service, a managing system can then set a filter for heartbeat
notifications on any of the channels it is interested in to ensure that they are functioning. Since these
notifications flow through the same channels, software, and networks as notifications from other
resources, they periodically verify the operation of these resources.

The Heartbeat Service is found by looking it up in the Naming Service.
The following IDL (without comments) describes the Heartbeat Service interface:

i nterface Heartbeat {
attribute SystenlLabel Type systeniabel;

Hear t beat Peri odType peri odGet ()
rai ses (itut_x780::ApplicationError);

voi d periodSet (i n Heartbeat Peri odType peri od)
rai ses (itut_x780::ApplicationError);;

}; I/ end of Heartbeat interface
interface Notifications {
voi d heartbeat (
i n SystenlLabel Type syst enmlLabel ,
i n Channel | DType channel | D,

i n Heartbeat Peri odType peri od,
in GeneralizedTi nreType tineStanp

)

}; /1 end of Notifications interface

ITU-T Q.816 (01/2001) 49

As can be seen, the Heartbeat service has an attribute named systemLabel, and operations to set and
get the period between heartbeats. SystemLabel is a user-supplied identifier. The intended use is to
allow a managing system to insert alabel to identify the system providing the heartbeat.

The Heartbeat Service periodically emits a notification on each event channel that it can find in the
Channel Finder Service. The Channel Finder Service provides a listing of each channel on the
system, with a channel ID for each, as well as additional information on the use of the channel. (The
Channel Finder shall not list the heartbeat notification as one of the notifications it handles.
Heartbeat notifications are not sent by managed objects, and are sent to all channels.) At the end of
each period, the Heartbeat Service sends a notification on each of the channels listed. The
notification sent to each channel includes the channel 1D of that channel.

The period between heartbeats is controlled using the periodSet operation. The value submitted to
this operation is the period, in seconds, that the Heartbeat Service waits between emitting
notifications. Updating the period causes the service to immediately emit a notification with the new
period value, and begin a new period. Setting the period to zero causes the service to emit one final
notification with a period value of zero, then no more (until the period is reset).

Each notification includes the value of the systemLabel attribute, the ID of the channel through
which the notification was sent, the current value for the period, and a timestamp.

(R) HEARTBEAT-1 A managed system may instantiate at least one Heartbeat Service object. If
the Heartbeat Service is supported, each local root naming context on a system shall have at least one
name binding for a Heartbeat Service Object. The value of the ID string in this binding shall simply
identify the server, with a value similar to "Heartbeat1". The kind string in the binding shall identify
the class of the object ("itut_g816::Heartbeat").

(R) HEARTBEAT-2 The Heartbeat server object(s) shall support the Heartbeat interface described
above and defined in the CORBA IDL in Annex A. The functionality described above shall be
supported.

(R) HEARTBEAT-3 Updating of the period shall cause the service to deliver a notification to all
channels with the new period value and then begin a new period. Setting the period to zero shall
cause the service to emit one final notification with a period value of zero, then no more (until the
period is reset).

(R) HEARTBEAT-4 Until the period is changed, the heartbeat notifications shall be sent to al the
channels once within each period. The time between heartbeat notifications being sent to a channel
shall never be greater than twice the period.

7.6 Other support services

This framework anticipates the need for other network management support services but recognizes
it is impractical to make them all part of one framework document. Exactly where the line gets
drawn is a bit arbitrary, though. Because of its focus on TMN and the need to support existing
information models, this framework includes services that equate to those provided by the CMIP
protocol and the most basic TMN management information capabilities. Just as with CMIP, it is
expected that additional support services will be defined, most likely in separate Recommendations.

8 Compliance and conformance

This clause defines the criteria that must be met by other standards documents claiming compliance
to this framework and the functions that must be implemented by systems claiming conformance to
this Recommendation.

50 ITU-T Q.816 (01/2001)

8.1 System confor mance

8.1.1 Conformance points

This clause summarizes the individual functions described earlier in this Recommendation. These
conformance points are then combined in profiles that must be supported by systems claiming
conformance to this specification.

1) An implementation claiming conformance to the Naming Service requirements must:
» support the CORBA Naming Service version specified in 5.2.
» support all of the Naming Service requirements specified in 6.1.

2) An implementation claiming conformance to the Notification Service requirements must:
* support either:
— the CORBA Natification Service version specified in 5.2; or
— the 3GPP Notificationl RPOperations interface specified in [13].
» support al of the Notification Service requirements specified in 6.2.

NOTE — Further study is required to identify a minimum subset of Notification Service capabilities that must
be supported for compliance to the framework.

3) An implementation claiming conformance to the Telecom Logging Service requirements
must:

» support the CORBA Telecom Logging Service version specified in 5.2.
» support all of the Logging Service requirements specified in 6.3.
4) An implementation claiming conformance to the Security Service requirements must:
» support the Security Service version specified in 5.2.
» support all of the Security Service requirements specified in 6.5.
5) An implementation claiming conformance to the Transaction Service requirements must:
» support the CORBA Transaction Service version specified in 5.2.
» support the Transaction Service requirements specified in 6.6.

6) An implementation claiming conformance to the Factory Finder Service must:
» support the Factory Finder service interface described in 7.1 and defined in the CORBA
IDL in Annex A.
7) An implementation claiming conformance to the Channel Finder Service must:
» support the Channel Finder service interface described in 7.2 and defined in the CORBA
IDL in Annex A.
8) An implementation claiming conformance to the Terminator Service must:
» support the Terminator Service interface described in 7.3 and defined by the CORBA
IDL in Annex A.
9) An implementation claiming conformance to the Basic MOO Service must:

e support the mandatory MOO Service requirements described in 7.4.3.
10) An implementation claiming conformance to the Advanced MOO Service must:
e support the mandatory and optional MOO Service requirements described in 7.4.3.

ITU-T Q.816 (01/2001) 51

11) An implementation claiming conformance to the Heartbeat Service must:

» support the Heartbeat Service interface described in 7.5 and defined in the CORBA IDL
in Annex A.

8.1.2 Basic conformance profile

A system claiming conformance to the ITU-T.Q.816 Basic Profile shall support:
1) the version of CORBA specified in 5.2.

2) the Naming Service regquirements (See conformance point 1).

3) the Notification Service requirements (See conformance point 2).

4) the Factory Finder Service (See conformance point 6).

5) the Channel Finder Service (See conformance point 7).

6) the Terminator Service (See conformance point 8).

7) the Basic MOO Service (See conformance point 9).

8.2 Conformance statement guidelines

The users of this framework must be careful when writing conformance statements. Because 1DL
modules are being used as name spaces, they may, as allowed by OMG IDL rules, be split across
files. Thus, when a module is extended its name won't change. Instead, anew IDL file will simply be
added. Simply stating the name of a module in a conformance statement, therefore, will not suffice to
identify a set of IDL interfaces. The conformance statement must identify a document and year of
publication to make sure the right version of IDL isidentified.

ANNEX A

Framework Support Services|DL

/* This IDL code is intended to be stored in a file naned "itut_q816.idl"
| ocated in the search path used by I DL conpilers on your system */

#i fndef 1 TUT_Q816_I DL
#define | TUT_Q816_I DL

#i ncl ude <CosTi ne. idl>
#i nclude <itut_x780.idl>

#pragma prefix "itu.int"
nodul e itut_qg816 {

/'l Types inported from CosTi nme
typedef Ti meBase:: U cT UtcT;

/1 Types inported fromitut_x780

typedef itut_x780::AttributeSet Type AttributeSetType;
typedef itut_x780::GeneralizedTi meType GeneralizedTi neType;
typedef itut_x780:: NaneType NaneType;

typedef itut_x780:: NaneSet Type NanmeSet Type;

typedef itut_x780::Obj ect Cl assType CObj ectCl assType;
typedef itut_x780::CObj ect Cl assSet Type bj ect d assSet Type;
t ypedef itut_x780:: ScopedNaneType ScopedNaneType;

t ypedef itut_x780:: ScopedNaneSet Type ScopedNaneSet Type;
typedef itut_x780::StringSet Type StringSet Type;

typedef itut_x780:: Systenlabel Type Systenlabel Type;

52 ITU-T Q.816 (01/2001)

/1l Interfaces inported fromitut_x780 (interfaces are not typedeffed
Il for efficiency and clarity reasons)

/1 itut_x780:: ManagedObj ect

/1 itut_x780:: ManagedObj ect Fact ory

/1 Exceptions inported fromitut_x780 (exceptions can't be typedeffed)
/1 itut_x780:: ApplicationError
/'l itut_x780::Del eteError

// Data Types and Structures

[** ScopeChoi ce enumerates four possible choices for a scope. A

scope may include just the naned base object, the entire subtree

of object below and including the base object, the objects at a certain
| evel bel ow the base object (level 1 objects are directly contained by

the base object), or all of the objects down to a level, including the
base obj ect and the |evel
*/

enum ScopeChoi ceType {baseChj ect Only, whol eSubtree, i ndividual Level
baseTolLevel };

/** Scope is used to convey which objects contained under the base
object, if any, are to be included in the scope of a scoped and
filtered operation. A level does not make sense for the baseObjectOnly
and whol eSubtree choices, but does for the other two. To illustrate
the difference between the two options that include a level, a

scope choi ce of individual Level with evel = 1 would include al

of the objects directly contained by the base object. A scope choice
of baseToLevel with level = 1 would include all of the objects
directly contained by the base object, and the base object

*/

uni on ScopeType switch (ScopeChoi ceType)

{
/* The baseObj ect Only and whol eSubtree cases carry no val ue. */
case i ndividual Level : /* fall through */
case baseTolLevel : short |evel

3

[** BaseAndScopeType combi nes the nane of a base nanaged object with
a "scope" of objects contained belowit. */

struct BaseAndScopeType {

NameType base

ScopeType scope
b
/** BaseAndScopeSet Type is a set of BaseAndScopeTypes. */
t ypedef sequence <BaseAndScopeType> BaseAndScopeSet Type
/** Channel | DType is a string used to contain a channel 1D */
typedef string Channel | DType
/** EventSet Type is a list of event types. It is actually just a list
of strings. The values of the strings are the nanmes of the event types
(the strings that go in the "type_nanme" field of the structured event)
which are the same as the scoped nanes of the operation defined on the
Noti fications interfaces to send the events. For exanple
itut_x780::Notifications::objectCeation */
t ypedef sequence <ScopedNaneType> Event Set Type
/** A channel Info structure contains informati on about an event
channel

@renber channel | D A string identifier for the channel
@renber channel Cl ass t he channel's scoped cl ass nane.

ITU-T Q.816 (01/2001)

53

54

@renber baseAndScopes The objects and the scopes of managed objects
bel ow them sendi ng events to this channel.

A null list indicates that all base managed
objects on the systemare covered by this
channel .

@renber event Types The |ist of event types handled by this
channel. A null list indicates all event types

are handl ed by this channel.

@renmber excl udedEvent Types I f the event Types paraneter is null, this
can be used to exclude event types. If
event Types is not null, this should be null
and is ignored.

@renber sour ced asses The list of types of objects that send events

to this channel. Anull list indicates all
types of nanaged objects send events to this
channel .

@renber excl udedSour ced asses If the sourceC asses paraneter is null,
this can be used to exclude source cl asses.

If sourceClasses is not null, this should be
null and is ignored.
@renber channel a reference to the channel.
*/
struct Channel I nfoType {
Channel | DType channel | D
bj ect A assType channel Cl ass;
BaseAndScopeSet Type baseAndScopes;
Event Set Type event Types;
Event Set Type excl udedEvent Types;
Obj ect A assSet Type sour ced asses;
Obj ect A assSet Type excl udedSour ced asses;
bj ect channel ;

b

/** A channel info set contains a |list of channel references and the
data associated with them */

typedef sequence <Channel | nf oType> Channel | nf 0Set Type;

/** Channel Modi fication indicates the type of event channel
nmodi fi cation. */

enum Channel Modi fi cati onType {Channel Creat e, Channel Del et e,
Channel Updat e} ;

/** The Del eteResul tsType holds, for a single object, the results

of a scoped del ete operation. If both boolean flags in the result

are false, the object was del eted.

@renber nane The nane of the object to which these results
apply.

@renber notFilterable This flag will be true if the service coul d not
interact with the object to see if it even
passed the filter.

@renber not Del et abl e This flag will be true if the object could not
be del eted due to its delete policy or because
it raised an exception.

*/

struct Del et eResul t sType {
NanmeType name;
bool ean not Fil terabl e;
bool ean not Del et abl e;

}s

/** The Del eteResul tsSet Type is a set of results returned by the
scoped del ete operation. */

t ypedef sequence <Del et eResul t sType> Del et eResul t sSet Type;

ITU-T Q.816 (01/2001)

/[** A factory info structure contains information about a managed
obj ect factory.

@renber factoryd ass the factory's scoped class nane
@renmber fact or yRef a reference to the factory
*/

struct FactorylnfoType {
bj ect A assType factoryd ass;
i tut_x780:: Managed(hj ect Fact ory fact or yRef;

b

/** A factory info set contains a |list of factory references and
their class nanes. */

typedef sequence <Factoryl nf oType> Fact oryl nf oSet Type;

[** A FilterType paraneter conveys the filter expression used in a
scoped and filtered operation.

*/

typedef string FilterType;

/** CGetResults structures hold a list of attribute values per object.

@renmber name The CORBA nane of the object

@renber notFilterable This flag will be true if the service could not
interact with the object to see if it even
passed the filter. If true, the attributes and
fail edAttributes nmenbers will be enpty.

@renber attributes The list of attributes retrieved fromthe
obj ect.

@renber failedAttributes The |ist of attributes whose val ues could
not be retrieved fromthe object.

*/

struct Cet ResultsType {
NaneType nane,
bool ean not Fil terabl e;
Attribut eSet Type attributes;
StringSet Type fail edAttributes;

b

/** The CGetResultsSet is a set of results returned by a scoped get
operation. */

typedef sequence <GetResul tsType> Get Resul t sSet Type;

/ ** Heartbeat Peri odType contains the |l ength of the interval between
heartbeats emtted by the Heartbeat Service. Using an unsigned short
to contain this interval limts the |ongest possible interval to
alittle over 18 hours. */

t ypedef unsi gned short Heart beat Peri odType;

/** A LanguageType parameter conveys the filter expression |anguage
used in a scoped and filtered operation.

*/

typedef string LanguageType;

/** A LanguageSet Type paraneter contains a sequence of Languages. */

t ypedef sequence <LanguageType> LanguageSet Type;

/** ModificationOp is used to indicate the type of update to be nade to
an attribute. */

enum Modi fi cati onOpType {set, add, renove};

ITU-T Q.816 (01/2001)

55

[** Modification structures identify an attribute and a nodification to
be made to it. Miltiple updates may be nmade to a single attribute by
including nmultiple structures with the sane attri bute nane in the
nmodi fi cation Set.

@renber attrib The nanme of the attribute to update.

@renber op The operation to be performed on the attribute.

@renmber val The value to be used for the update operation.

It's type will depend on the attribute.

*/

struct ModificationType {
string attrib; // the nane of the attribute
Modi fi cati onQpType op; /1 operation to be perforned
any value; // value used to update attrib.

b

/** The Modification Sequence contains a sequence of nodifications to
be made (in order) to each object in a scoped update operation. */

typedef sequence <Modifi cati onType> Mdi fi cati onSeqType;

/** Update Results structures hold the name of an object, a bool ean
flag indicating if all nodifications to that object were successful,
and a list of the attributes that coul d not be updated on that object.
The list will be null if the success flag is true.
@renber name t he CORBA nane of the object
@renber notFilterable This flag will be true if the service could not
interact with the object to see if it even
passed the filter. If true, the client wll
know no attributes could be set, so
the failedAttributes menber will be enpty.
@renber failedAttributes the list of attributes that were not
correctly updated.

*/
struct Updat eResul tsType {
NanmeType narne;
bool ean notFil terabl e;

StringSet Type failedAttributes;
s
/** An Update Results Set is returned in response to a scoped update
operation (one that sets, adds to, or renoves fromthe value of an
attribute). */

t ypedef sequence <UpdateResul t sType> Updat eResul t sSet Type;

/I Constants

[** Default filter is to allow everything through the filter*/
const FilterType defaultFilter = "TRUE";
/** Default |anguage is the granmar described in this docunent */

const LanguageType def aul t Language = "MOO 1. 0";

I/l Exceptions

56

/** A channel already registered exception is returned when an attenpt
is made to register a channel with nultiple channel IDs. */

exception Channel Al readyRegi stered {};

/** A channel not found exception is returned when an event channel
cannot be found. */

ITU-T Q.816 (01/2001)

excepti on Channel Not Found {};

/** A Fact or yNot Found exception is rai sed when a requested factory
can't be found. */

exception Fact or yNot Found {};

[** AFilter Conplexity Limt is raised when a filter expression in a
scoped operation is valid, but too conplex to be processed. */

exception FilterConplexityLimt {};

[** An invalid filter exception is rai sed when a client includes a
filter expression that cannot be parsed. The text surrounding the
syntax error should be returned for troubl e-shooting purposes. */
exception InvalidFilter {string badText;};

[** An Invalid Paraneter exception is raised when the value of a
paraneter is not valid for the operation.

@ar am par anet er the name of the bad paraneter

*/

exception InvalidParaneter {string paraneter;};

/I Interfaces

/I Factory Finder Interface

/**

This interface defines a sinple service for |ocating a nanaged obj ect
factory.

*/

i nterface FactoryFi nder {

/** This method is used to find a nanaged object factory.
@aram factoryd ass The scoped cl ass nane of the factory,

NOT the nmanaged object to be created.
*/

i tut_x780:: Managed(hj ect Factory find (
in CbjectC assType factoryd ass)
rai ses (FactoryNot Found, itut_x780:: ApplicationError);

/** This method returns the list of factories registered
with the factory finder. */

Fact oryl nf oSet Type list()
raises (itut_x780::ApplicationError);

}; /1 end of FactoryFinder interface

/**
This interface extends the FactoryFinder interface to add net hods

to support the registration and unregistration of factories.
*/

i nterface FactoryFi nder Component : FactoryFi nder {
/** This nethod is used by factories to regi ster thensel ves.
It should not be used by mmnagi ng systens.

@aram factoryd ass The scoped cl ass nane of the factory,
NOT the nmanaged object to be created.

ITU-T Q.816 (01/2001) 57

@ar am f act or yRef A reference to the factory.
*/

void register (in (bjectd assType factoryd ass,
in itut_x780:: ManagedObj ect Factory factoryRef)
rai ses (itut_x780::ApplicationError);

[** This method is used by factories to unregi ster thenselves,
if necessary. It should not be used by managi ng systens.

@ar am factoryd ass The scoped class name of the factory,
NOT the managed object to be created.

@ar am f act or yRef A reference to the factory.

*/

void unregister (in bjectd assType factoryd ass,
in itut_x780:: ManagedObj ect Factory factoryRef)
rai ses (FactoryNot Found, itut_x780:: ApplicationError);

}; /1 end of FactoryFi nder Conponent interface

/I Channel Finder Interface

58

/**

This interface defines a sinple service for |ocating event channels.
*/

i nterface Channel Fi nder {

/** This nethod returns the |ist of channels registered
wi th the channel finder. */

Channel | nf oSet Type |ist()
raises (itut_x780::ApplicationError);

}; I/ end of Channel Fi nder interface

/**

This interface extends the Channel Finder interface to add net hods
to support the registration and unregi strati on of channels.
*/

i nterface Channel Fi nder Component : Channel Fi nder {

/** This nethod is used by channels to register thensel ves.
It should not be used by managi ng systens. Re-registering

a channel (re-using an existing channellD) results in
updating that entry. The other information previously
associated with that entry is overwitten. A

Channel Al r eadyRegi st ered excepti on may be rai sed when an
attenpt is nade to register a channel with nultiple channellDs.
This shoul d not be done. (The service cannot guarantee that
because two object references differ, they do not reference
the sane object. It is therefore required that the nanaged
system ensure that the sanme channel is not registered twice.)
A channel change notification is sent whenever calling this
nethod results in a change.

@ar am channel I D A string identifier for the channel.

@ar am channel d ass The scoped cl ass nane of the event
channel .

@ar am baseAndScopes The objects and the scopes of nanaged
obj ects bel ow them sendi ng events to
this channel. A null list indicates

that all base nanaged objects on the
system are covered by this channel.

ITU-T Q.816 (01/2001)

@ar am event Types The i st of event types handl ed by

this channel. A null list indicates one

of the follow ng:
- for event channel interfaces that do not provide an explicit query for the events types
handl ed by the channel (e.g. the OM5 Notification channel),it inplies all event types are
handl ed by this channe
- for event channel interfaces that do provide an explicit query for the event types
handl ed by the channel (e.g. 3GPP Notificationl RPOperations interface), it inplies that
the explicit query nust be used to determne the types of events handl ed

@ar am excl udedEvent Types If the event Types paraneter is null
this can be used to exclude event

types. If eventTypes is not null, this
should be null and is ignored

@ar am sour ceCl asses The list of types of objects that send
events to this channel. A null 1ist

i ndi cates all types of managed objects
send events to this channel

@ar am excl udedSour ceCl asses | f the sourceC asses paraneter is
null, this can be used to excl ude
source classes. If sourceCl asses is
not null, this should be null and is
i gnor ed.

@ar am channel A reference to the channel

*/

voi d register (in ChannellDType channel | D
i n Obj ectd assType channel d ass
i n BaseAndScopeSet Type baseAndScopes,
i n Event Set Type event Types
i n Event Set Type excl udedEvent Types
i n ScopedNanmeSet Type sourceC asses
i n ScopedNaneSet Type excl udedSourceCl asses,
in Cbj ect channel)
rai ses (Channel Al r eadyRegi st er ed,
i tut_x780:: ApplicationError);

[** This method is used by managed systens to unregister
channels, if necessary. It should not be used by managi ng
syst ens.

@ar am channel 1 D A string identifier for the channel
*/

voi d unregister (in Channell DType channel | D)
rai ses (Channel Not Found, itut_x780:: ApplicationError);

}; I/ end of Channel Fi nder Conponent interface

/| Heartbeat Service Interface

/**

This interface defines a service used to periodically test the

operation of the notification channels on a system The service

supporting this interface periodically emts a short "heartbeat"

noti ficati on on each channel on the system

*/

i nterface Heartbeat ({
/** The systenlabel attribute is sent in heartbeat
notifications. It is used to identify the heartbeat service
i nstance fromwhich the notification came. Resetting this does
not cause the service to imediately emt a notification, but
the new value will be sent with the next notification. */

attribute SystenlLabel Type syst enlabel

ITU-T Q.816 (01/2001) 59

[** The period is the interval, in seconds, at which the
heartbeat service emts the heartbeat notification. If it is
zero, the service does not emt notifications. */

Hear t beat Peri odType peri odCet ()
rai ses (itut_x780::ApplicationError);

[** Updating of the period shall cause the service to deliver a
notification to all channels with the new period val ue and then
begin a new period. Setting the period to zero shall cause the
service to emt one final notification with a period value of
zero, then no nore (until the period is reset).

I npl ementations may limt the range of val ues supported by this
operation, particularly on the | ow end as excessive heartbeats
woul d present a drain on the nanaged system An attenpt to

set the period to a value outside the range supported will
result in an ApplicationError with the error code set to

i nval i dPar anmeter. */

voi d periodSet (i n Heartbeat PeriodType peri od)
rai ses(itut_x780:: ApplicationError);

}; /1 end of Heartbeat interface

/I Terminator Service Interface

/**

This interface defines a service that supports the deletion of nanaged
objects by clients. A goal of the franework is to enabl e

i mpl enentati ons in which the managed obj ects do not have to maintain
the naming tree information. The factories are one place to inplement
the functi ons needed to create nane bindings, and this service can be
used to clean up the naming tree after object deletion. <p>

Al so, this service can inplenent the rules for deleting objects based
on the delete policy of the managed objects.
*/

interface Termi nator Service {

/** This method is used to del ete a nanaged obj ect by
specifying its name. */

voi d del et eByNane (i n NaneType nane)
rai ses (itut_x780::ApplicationError,
itut_x780::Del eteError);

/** This method is used to del ete a nanaged obj ect by
reference. */

voi d del et eByRef (in itut_x780:: ManagedObj ect nm)
rai ses (itut_x780::ApplicationError,
itut_x780::Del eteError);

}; I/ end of Term natorService interface

Il DeleteResultslterator Interface
/** The Delete Results Iterator interface is used to retrieve the
results froma scoped del ete operation using the iterator design
pattern. */

interface DeleteResultslterator {

/** This nethod is used to retrieve the next "howhany" results
inthe result set.

60 ITU-T Q.816 (01/2001)

@ar am howMany The nmaxi mrum nunber of itenms to be returned in
the results.

@aramresults The next batch of results.

@eturn True if there are nore results after those
being returned. The return val ue shoul d not
be true if the results set is enpty, as this
forces the client to poll for results.
Instead the call shoul d bl ock.

*/

bool ean get Next (i n unsi gned short howwvany,
out Del eteResul t sSet Type results)
rai ses (itut_x780::ApplicationError);

[** This method is used to destroy the iterator and rel ease its
resources. */

voi d destroy();

}; /1 end of Delete Results Iterator interface

/| GetResultslterator Interface

/** The Get Results Iterator interface is used to retrieve the results
froma scoped get operation using the iterator design pattern. */

interface GetResultslterator {

/** This nethod is used to retrieve the next "howMany" results

in the result set.

@ar am howvany The maxi mum nunber of itens to be returned in
the results.

@aramresults The next batch of results.

@eturn True if there are nore results after those
being returned. The return val ue shoul d not
be true if the results set is enpty, as this
forces the client to poll for results.
Instead the call shoul d bl ock.

*/

bool ean get Next (i n unsigned short howvany,
out CetResul tsSet Type results)
raises (itut_x780::ApplicationError);

/** This method is used to destroy the iterator and release its
resources. */

voi d destroy();

}; I/ end of Get Results lterator interface

/l UpdateResultslterator Interface

/** The Update Results Iterator interface is used to retrieve the
results froma scoped update (set, add, renove) operation using the
iterator design pattern.

*/

interface UpdateResultslterator {

/** This nethod is used to retrieve the next "howhany" results

inthe result set.

@ar am howvany The maxi mum nunber of itens to be returned in
the results.

@aramresults The next batch of results.

ITU-T Q.816 (01/2001)

61

@eturn True if there are nore results after those
being returned. The return val ue shoul d not
be true if the results set is enpty, as this
forces the client to poll for results.
Instead the call shoul d bl ock.

*/

bool ean get Next (i n unsi gned short howvany,

out Updat eResul t sSet Type results)
rai ses (itut_x780::ApplicationError);

[** This method is used to destroy the iterator and rel ease its
resources. */

voi d destroy();

end of Update Results Iterator interface

/I BasicMooService Interface

62

[** The basic scoping and filtering interface provides a comon service
performing attribute retrieval operations on nmultiple objects.

i nterface Basi cMboService {

[** This operation is used to retrieve the list of filter

| anguages supported by the service. At the |east, the

Iist nust include the value of the defaultlLanguage constant
defi ned above. */

LanguageSet Type get Fil t er Languages()
raises (itut_x780::ApplicationError);

/** This operation is used to retrieve attributes fromnultiple
objects using a small nunber of nethod invocations. The net hod
returns the first batch of results, one per object. Each

result has the nane of the object and a |list of name-value
pairs indicating the attributes that could be retrieved with

t hei r val ues.

@ar am baseNane The nanme of the object at the base of the scope
tree.

@ar am scope A val ue indicating the contained objects to
include in the scope of the operations. See
ScopeType for details.

@aramfilter A string containing an expression to be
eval uated with attribute val ues from each
object in the scope. Attribute values are
returned only for those objects for which the
expressi on eval uates to true.

@ar am | anguage A string identifying the | anguage in which the
filter expression is witten.

@aram attri butes The names of the attributes for which val ues
should be returned. If this list is null, all
attributes are to be returned.

@ar am howvany The maxi mum nunber of objects for which results
shoul d be returned in the first batch.

@aramresultsliterator A reference to an iterator that can be
used to retrieve the rest of the results. This
reference will be null if all results were
returned in the first batch.

*/

Get Resul t sSet Type scopedGet (
i n NaneType baseNane,
i n ScopeType scope,

ITU-T Q.816 (01/2001)

in FilterType filter,
i n LanguageType | anguage,
in StringSet Type attri butes,
i n unsigned short howvany,
out CGetResultslterator resultslterator)
rai ses (InvalidParaneter,
InvalidFilter,
FilterConplexityLint,
i tut_x780:: ApplicationError);

}; /1 end of BasicMoService interface

/I AdvancedMooService Interface

[** The advanced scoping and filtering interface provides a conmon
service for performng multiple-attribute updates on nultiple objects,
and for deleting multiple objects.

*/

i nterface AdvancedMboServi ce : Basi cMoService {

/** This operation is used to nodify nultiple attributes in
multiple objects using a snall nunmber of nethod invocations.
The method returns the first batch of results, a list of
objects for which one or nore nodifications failed. Each
result indicates the attribute(s) on that object that could not

be updat ed.

@ar am baseNane The nanme of the object at the base of the scope
tree.

@ar am scope A val ue indicating the contained objects to

include in the scope of the operations. See
ScopeType for details.

@aramfilter A string containing an expression to be
evaluated with attribute val ues from each
object in the scope. Updates are perforned
only on those objects for which the expression
eval uates to true.

@ar am | anguage A string identifying the | anguage in which the
filter expression is witten.

@aram nodi fications The |ist of nodifications to be made to
each obj ect.

@aramfailuresOnly If true only results for failed objects
wi || be returned.

@ar am howvany The maxi mum nunber of objects for which results
shoul d be returned in the first batch.

@aramresultsiterator A reference to an iterator that can be
used to retrieve the rest of the results. This
reference will be null if all results were
returned in the first batch.

*/

Updat eResul t sSet Type scopedUpdat e (

i n NaneType baseNane,

ScopeType scope,

FilterType filter,

LanguageType | anguage,

Modi fi cati onSeqType nodifications,

bool ean failuresOnly,

n unsi gned short howvany,

out UpdateResultslterator resultslterator)

rai ses (InvalidParaneter,
InvalidFilter,
FilterConplexityLimt,
i tut_x780:: ApplicationError);

5 5 35 35 5

ITU-T Q.816 (01/2001)

63

/** This operation is used to delete nultiple objects using a
smal | nunber of nethod invocations. The nmethod returns the
first batch of results, a list of the objects that coul d not be
del et ed.

@ar am baseNane The name of the object at the base of the scope
tree.

@ar am scope A val ue indicating the contained objects to
include in the scope of the operations. See
ScopeType for details.

@aramfilter A string containing an expression to be
evaluated with attri bute val ues from each
object in the scope. Only those objects for
which the expression evaluates to true are
del et ed.

@ar am | anguage A string identifying the | anguage in which the
filter expression is witten.

@aramfailuresOnly If true only results for fail ed objects
will be returned.

@ar am howMany The maxi mum nunber of objects for which results
should be returned in the first batch.

@aramresultsliterator A reference to an iterator that can be
used to retrieve the rest of the results. This
reference will be null if all results were
returned in the first batch.

*/

Del et eResul t sSet Type scopedDel et e (

i n NaneType baseNane,

ScopeType scope,

FilterType filter,

LanguageType | anguage,

bool ean failuresOnly,

n unsigned short howvany,

out DeleteResultslterator resultslterator)

rai ses (InvalidParaneter,
InvalidFilter,
FilterConplexityLinmt,
i tut_x780:: ApplicationError);

5 5 5 O

}; /1 end of AdvancedMboService interface

/I Notifications Interface

64

/** The notifications interface defines the notifications enmtted by
the framework services, not the managed objects thensel ves.
*/

interface Notifications {

[** The Channel Change notification is a special notification
because it is emtted by the franework (the Channel Finder) and
not a managed object. It reports the addition, deletion, or
change of a regi stered event channel.

@ar am channel Modi fi cati on i ndicates if a channel has been
added, renoved, or updated.
@ar am channel I nfo provides the infornmation about
the af fected channel .
*/
voi d channel Change (
i n Channel Modi fi cati onType channel Modi fi cati on,
i n Channel I nfoType channel I nfo

)

/** This operation signature defines the notification emtted
by the heartbeat service.

ITU-T Q.816 (01/2001)

@ar am syst enLabel the current value of the Heart beat

service systemnmlLabel attribute

@ar am channel 1 D the 1D of the channel through which the
notification was sent

@ar am peri od the current value of the Heart beat
service period attribute.

@ar am ti nmeSt anp the current tine when the notification
is emtted.

*/

voi d heartbeat (
i n SystenLabel Type
i n Channel | DType

syst enlLabel
channel I D,

i n Heartbeat Peri odType peri od,
in GeneralizedTi neType tineStanp

E

/** These constants defines the

names of the notification

decl ared above and are provided to hel p reduce errors. */

const string channel ChangeTypeNane =
"itut_qg816:: Notifi cations::channel Change"

const string heartbeat TypeNane =

"itut_qg816:: Notifications::heartbeat";

/** These constants define the names of the paranmeters used in
the notifications decl ared above and are provided to help

reduce errors. */

const string channel | DName = "channel | D'
const string channel Modificati onName = "channel Modi fi cati on”;
const string channel I nfoNane = "channel | nf 0"
const string periodName = "period"
const string systenLabel Nane = "systenlLabel "
const string tinmeStanpNanme = "ti meSt anp”
}; /1 end of Notifications interface
}; // end of nodul e itut_q816
#endif // end of #ifndef |1TUT_QB16_IDL
ANNEX B

The Constraint Language BNF

The BNF in this annex is an extension of the BNF used by the OMG's Notification Service filter
language. The extensions are shown in alarger, bold font.

B.1 Theconstraint language proper in termsof lexical tokens

<constraint>:=/* enpty */
| <bool >
<preference>: =/* <enpty> */
| mn <bool >
| max <bool >
| with <bool >
| random
| first
<bool >: = <bool _or>
<bool _or >: =<bool _or> or <bool _and>
| <bool _and>
<bool _and>: =<bool _and> and <bool _conpare>

ITU-T Q.816 (01/2001)

65

| <bool _conpare>
<bool _conpar e>: =<expr_i n> == <expr_i n>
| <expr_in> = <expr_in>
| <expr_in> < <expr_in>
| <expr_in> <= <expr_in>
| <expr_in> > <expr_in>
| <expr_in> >= <expr_in>
| <expr_in>
| <expr> ™ <expr> /* non-null set intersection test*/
| <seqg_factor> % <seq_factor> /* true if sequence
operands have identical val ues */
<expr_i n>: =<expr_twi ddl e> in <ldent>
| <expr_tw ddl e>
<expr_twiddle> in $ < Conponent >
<expr_tw ddl e>: =<expr> ~ <expr>
| <expr>
| <expr> # <expr>
<expr>:= <expr> + <ternp
| <expr> — <terne
| <terne
<termp:= <term> * <factor_not>
| <terne / <factor_not>
| <factor_not>
<factor_not>: =not <factor>
| <factor>
<factor>:= (<bool _or>)
| exist <ldent>
| <Ident>
| <Nunber>
| — <Nunber>
| <String>
| TRUE
| FALSE
| + < Nunber >
| exist $ < Conponent>
| $ < Conponent >
| default $ < Conponent>
| MAX (<seqg_factor>)
| MN (<seqg_factor>)
| <seq_literal >

<seqg_factor> := <l dent>
| <seq_literal >
<seq_literal> := { <factor_list>}

<factor_list> :=/[*enpty*/
| <factor_list>, <factor>
| <factor>

B.2 "BNF" for lexical tokensup to character set issues

= <Leader > <Fol | owSeqg>

< Leader> < Fol | owSeq>< Conponent> := /* enpty */
. < ConpDot >

<ConpArray>

<ConpAssoc>

<ldent> < ConpExt> /* run-tinme variable */
< ConpExt> := /* enpty */

. < ConpDot >

<ConpArray>

<ConpAssoc>

< ConpDot >: =<l dent > < ConpExt >

<CompPos>

<Uni onPos>

aIength

<l dent >
\

_type_id

_repos_id
ConmpArray>:=[< Digits>] < ConpExt>
ConmpAssoc>: =(< ldent>) < ConpExt>
ConpPos>: =<Di gi t s> < ConpExt >

Uni onPos>: =(< UnionVal >) < ConpExt>

ANNNANNA

66 ITU-T Q.816 (01/2001)

< UnionVal > :=/* enpty */
| <Di gi t s>
|- < Digits>
| + < Digits>
| <String>

<Fol | owSeq>: =/ * <enpty> */

| <Fol | owSeq> <Fol | ow>
<Nunber >: =<Mant i ssa>

| <Manti ssa> <Exponent >
<Manti ssa>: =<Di gi t s>

| <Digits> .

| . <Digits>

| <Digits> . <Digits>
<Exponent >: =<Exp> <Si gn> <Di gi t s>
<Sign> = +

| -<
Exp>: = E

| e
<Digits>=<Digits> <Digit>

| <Digit>
<String> =" <TextChars>"
<Text Char s>: =/* <enpty> */

| <Text Chars> <Text Char >
<Text Char >: =<Al pha>

| <Digit>

| <Q her >

| <Speci al >
<SpeciI {al > =\

B.3 Character set issues

The previous BNF has been complete up to the non-terminals <Leader>, <Follow>, <Alpha>,
<Digit>, and <Other>. For a particular character set, one must define the characters which make up
these character classes.

Each character set which the trading service is to support must define these character classes. This
annex defines these character classes for the ASCII character set.

<Leader >: =<Al pha>
<Fol | ow>: =<Al pha>
| <Digit>
<Al pha> is the set of al phabetic characters [A-Za-z]
<Digit>is the set of digits [0-9]
<Other> is the set of ASCII| characters that are not <A pha>, <Digit>, or <Special >

APPENDIX |

I nterwor king scenarios between modelsusing I TU framewor k
and ADSL-/ATMF-compliant models

(Informetive)

.1 I ntroduction

This appendix describes how systems designed using the approach in this framework may interwork
with systems designed using the approach specified in the ATM Forum and the ASDL Forum.

The following approaches have been used to define interfaces for CORBA-based managed objects:

- A fine-grained model has a one-to-one relationship between CORBA interface instances
(i.e., having their own Interoperable Object Reference, (IOR)) and managed object instances.

ITU-T Q.816 (01/2001) 67

- A class-grained model has one CORBA interface for each managed object class. Some other
mechanism (such as managed object name placed as an input parameter for every operation
in that interface) has to be supported by the CORBA class-grained interface to alow
management of each managed object instance.

A so-called grain-neutral approach uses a structure holding both the managed object name and the
IOR used to provide access to each managed objects. Note that the grain-neutral approach, while
requiring the client to pass the managed object instance as a parameter to each operation (i.e., looks
like class-grained to the client), allows the implementation in the server to be either class-grained or
fine-grained.

The framework in this Recommendation uses a fine-grained approach, along with a value-type based
attributesGet operation, for defining CORBA-based managed objects. The value type associated with
a CORBA managed object subclass uses value-type inheritance to extend the elements of the value
type associated with its superclass.

The ATM Forum and ASDL Forum specifications includes the IOR for the class and the name of the
managed object as a paired list of parameters for the operations (i.e., they are grain-neutral). The
client uses the name to reference the specific entity and does not require a separate IOR for each
entity. These specifications also use structures (i.e., they do not employ inheritance) for their
attributesGet operations.

[.2 Terminology
The following terms are introduced for the purpose of discussion:

— Grain-Neutral Server — A managed system which implements objects defined using a grain-
neutral model with CORBA 2.1.

- ITU Framework Server — A managed system which implements objects defined using the
framework in this Recommendation, thus supporting CORBA 2.3 features.

- Grain-Neutral Managing System— A client capable of managing CORBA objects defined
using grain-neutral model with CORBA 2.1.

- ITU Framework Managing System — A client capable of managing CORBA objects defined
according to the framework in this Recommendation, thus supporting CORBA 2.3 features.

1.3 Interworking scenarios

.3.1 Grain-Neutral Server migratingto ITU Framework Server

Upon migration from a grain-neutral server, an ITU Framework server may add new capabilities;
however, it must preserve the old capabilities as found in the grain-neutral version.

The new server should implement an adapter function. This function should present the grain-neutral
interfaces to existing grain-neutral managing systems. An implementation approach can employ
delegation of operations invoked on grain-neutral objects to the objects built according to the
framework. Such a delegation approach will issue the same operations on the individual objects as
would be invoked by an ITU Framework-based managing system.

The class-specific grain-neutral get all attribute operation parameters should be converted to the
value type structured as per the framework in this Recommendation.

There are functions to be performed by the interworking software beyond the differences resulting
from the use of POA and value object. The delegation software needs to be customized to address the
differences in the naming structure, including this framework's use of the kind field. For example,

68 ITU-T Q.816 (01/2001)

explain how the context object reference used in constructing the name needs to be replaced with
kind field of COS naming structure.

1.3.2 Grain-neutral Client migrating to ITU Framework client

Such an ITU Framework client needs to manage both grain-neutral servers as well as ITU
Framework servers.

ITU Framework client with CORBA 2.3 needs, in addition to using the naming tree for ITU
Framework servers, to use the naming tree for grain-neutra servers. CORBA 2.3 implementation
may require an adaptation function where the application issuing the request to an object has to be
converted to be appropriate for the grain-neutral server. If the application uses the value type it hasto
be decomposed into the object-specific get operation for the old server.

For an ITU Framework-based client to manage both ITU Framework-based servers and pre-ITU
Framework servers, the ITU client will need to support stubs for both the ITU and pre-ITU servers.
In addition, some interworking function may be needed, as discussed above and as shown in
Figurel.l.

Grain-neutral Grain-neutral
client server
Grain-Neutral
stubs, etc. Adaptation
function
ITU
Framework ITU
client
ITU stubs, Framewor k
e, server

T0414980-00

Figurel.1/Q.816 — Interworking scenarios

APPENDIX I

Filtering native and translated structured events

This Recommendation defines notifications using IDL operation signatures, with the event type as
the operation name, and with a separate in parameter of the operation for each data element of the
notification. These operation signatures may be used for directly posting notifications to a channel
via Typed proxy consumers, as defined in the OMG Noatification Service. This is shown as the arrow
labeled as (1) in Figure I1.1.

ITU-T Q.816 (01/2001) 69

T{ped 1) Typed Notification Structured Notification ©) Str;J'cture
Notification Proxy Consumer Proxy Provider Notification
Provider Consumer
Notification Channel with Typed Proxy Consumer and
Structured Proxy Provider
Structured @ Structured Notification Structured Notification | | (4) Structured

Notification
Consumer

Notification
Provider

Proxy Consumer Proxy Provider

Notification Channel with Structured Notification Proxies

T0415600-01

Figurell.1/Q.816 — Example of Typed and Structured Notification Posting,
with Structured Delivery

Since structured events are widely supported, this Recommendation also provides an algorithm for
defining a structured event report for each of the notifications defined. This defined format is used
for native structured notifications posted by providers to structured proxy consumers on channels, as
shown in the arrow labeled (2) in Figure 11.1, and for non-translated delivery, as shown in the arrow
labeled (4) in Figurell.1.

“telecom” void equipmentAlarm (
in Extemal TimeType eventTime;

in NameType source;

T
D

I

"itut_x780:: domain_type

equipmentAlarm” type_name Fixed Header

event_name N
"%TYPED" __|
Event Header

EventHeader { v off name, | Fired Header

Optional header fields

ohf_value

ohf_name, |

ohf_value "itut_x780:

may beinduded to VariableHeader Nolificators:
support features like equipmentAlam”
Quality of Service ohf_name , ohf_value,,
J

One name-val ue pair fd_name , = fd_value , = value
for eachparameter in v “eventTime" of eventTime Filter able Bodh
the operation goesin™”~ @ - 1d value. —va . Event Body Fields 4
thefilterable body fd_name, = erae Filterable Body

Event Body source of source Fields Ore name-value pair

for each parameter in

the operation goes in
the filterable body
(starting withthe
second pair)

fd_name,, fd_value,,

Varigble Header and

Remaining Body Remaining Body are
0t used

remainder_of_body

Figure X-2- Native Structured
Notification

Figure X-3 - Translated Typed to
Structured Notification

These native structured events are defined from typed notification definitions, as follows
(summarized in Figure 6):

1) The domain_type data member is set to "Telecommunications”.

2) The type_name data member is set to the full name of the operation defining the event type,
e.g., "itut_X780::Notifications.:communicationsAlarm".

3) The event_name data member is set to the empty string.

70 ITU-T Q.816 (01/2001)

4) The name elements of the filterable body field name-value pairs are set to indicate the name
of each parameter (as an example, "eventTime", "source”, "sourceClass’, etc.). The nth name
element contains the name of the nth parameter.

5) The value elements of the filterable body field name-value pairs are set to indicate the value
that is passed to the corresponding parameter.

An example of a native structured event, corresponding to the standard mapping, using the normal
X.780 rules, would look like the following:

domai n_t ype = "Tel ecomuni cati ons”

type_nane = "<full yScopedOper ati onNane>"

event _nane = ""

fd_namel = "<arg 1>" fd_val uel = <argl val ue>
fd_name2 = "<arg 2>" fd_val ue2 = <arg2 val ue>
fd_name3 = "<arg 3>" fd_val ue3 = <arg3 val ue>

The OMG Notification Service defines procedures for notification channels to automatically convert
Typed Events received from providers (see arrow labeled (1) in Figure 11.1) into Structured
notifications for delivery to consumers (see arrow labeled (2) in Figure 11.1), summarized as follows:

1) The domain_type data member is set to the empty string.
2) The type_name data member is set to the "%TY PED" string.

3) The event_name data member is set to the empty string.
4) The name element of the first filterable body field name-value pair is set to the "operation”
string.

5) The value element of the first filterable body field name-value pair is set to a string
containing the fully scoped operation name. In this case, eg,
"itu_X780::Notifications::communicationsAlarm”.

6) The remaining name elements of the filterable body field name-value pairs are set to indicate
the name of each parameter (as an example, "eventTime", "source”, "sourceClass"’, etc.). The
nth name element contains the name of the nth—-1 parameter.

The remaining value elements of the filterable body field name-value pairs are set to indicate the
value that was passed for each parameter (as an example, value of eventTime, value of source, value
of sourceClass, etc.). The nth value element contains the value of the nth—1 parameter.

Using the same example as above for native structured notification, for a trandated typed event, the
channel would distribute something like the following, (where fd_namei: and fd_valuei denote the
name and value of the ith element of the filterable data name value pair list):

domai n_type = ""
type_nanme = "%lYPED'
event _nanme = ""

fd_nanmel = "operation" fd_valuel = "<fullyScopedQperati onName>"
fd_name2 = "<arg 1>" fd_val ue2 = <argl val ue>
fd_name3d = "<arg 2>" fd_val ue3 = <arg2 val ue>
fd_name4 = "<arg 3>" fd_val ue4 = <arg3 val ue>

Note that the fully scoped operation name is inserted as the first element of the filterable data name
value pair list, and each in parameter of the typed event operation is a subsequent element.

An example sketch of afilter construct, using run time variables, which would test for the event type
i tut_x780::Notifications::attributeval uechange and which would work for both forms of the
structured event (native and channel translated typed) above is as follows:

ITU-T Q.816 (01/2001) 71

$t ypename == "9@YPED' and

$operation == "itut_x780:: Notifications::attributeVal ueChange"
or
$typename == "itut_x780::Notifications::attributeVal ueChange"
APPENDIX 111
Bibliography

The following Recommendations contain information that was used in the development of this
framework. As stated in the introduction, a primary design goal of this framework is to enable the
reuse of existing network management information models, at least without significant semantic
changes. These Recommendations provide many of the details on the ITU-T's CMIP framework, and
therefore define some of the functionality the CORBA framework must support.

72

ITU-T M.3010 (2000), Principles for a Telecommunications management network.
ITU-T M.3120 (2001), CORBA generic network and NE level information model.

ITU-T Q.821 (2000), Stage 2 and Stage 3 description for the Q3 interface—Alarm
Surveillance.

ITU-T X.703 (1997), Information technology — Open Distributed Management Architecture.

ITU-T X.710 (1997) | ISO/IEC 9595:1998, Information technology — Open Systems
Interconnection — Common Management |nformation Service.

ITU-T X.711 (1997) | ISO/IEC 9596-1:1998, Information technology — Open Systems
Interconnection — Common Management | nformation Protocol: Specification.

ITU-T X.711/Cor.2 (2000) Information technology — Open Systems Interconnection —
Common management information protocol: Specification — Technical Corrigendum 2:
Revision to include ASN.1: 1997.

ITU-T X.720 (1992) | ISO/IEC 10165-1:1993, Information technology — Open Systems
I nterconnection — Structure of management information: Management information model.

ITU-T X.720/Cor.1 (1994), Information technology — Open Systems Interconnection —
Sructure of management information: Management information model — Technical
Corrigendum 1.

ITU-T X.721 (1992) | ISO/IEC 10165-2:1992, Information technology — Open Systems
Interconnection — Structure of management information: Definition of management
information.

ITU-T X.721/Cor.1 (1994) Information technology — Open Systems Interconnection —
Sructure of management information: Definition of management information — Technical
Corrigendum 1.

ITU-T X.721/Cor.2 (1996) Information technology — Open Systems Interconnection —
Sructure of management information: Definition of management information — Technical
Corrigendum 2.

ITU-T X.722 (1992) | ISO/IEC 10165-4:1992, Information technology — Open Systems
Interconnection — Structure of management information: Guidelines for the definition of
managed objects.

ITU-T Q.816 (01/2001)

ITU-T X.722/Amd.1 (1995) Information technology — Open Systems Interconnection —
Structure of management information: Guidelines for the definition of managed objects —
Amendment 1: Set by create and component registration.

ITU-T X.722/Amd.2 (1997) Information technology — Open Systems Interconnection —
Structure of management information: Guidelines for the definition of managed objects —
Amendment 2: Addition of the NO-MODIFY syntax element and guidelines extension.

ITU-T X.722/Amd.3 (1997) Information technology — Open Systems Interconnection —
Structure of management information: Guidelines for the definition of managed objects —
Amendment 3: Guidelinesfor the use of Z in formalizing the behaviour of managed objects.

ITU-T X.722/Cor.1 (1996) Information technology — Open Systems Interconnection —
Structure of management information: Guidelines for the definition of managed objects —
Technical Corrigendum 1.

ITU-T X.722/Cor.2 (2000) Information technology — Open Systems Interconnection —
Structure of management information: Guidelines for the definition of managed objects —
Technical Corrigendum 2: Revision of GDMO to include ASN.1:1997.

ITU-T X.733 (1992) | ISO/IEC 10164-4:1992, Information technology — Open Systems
Interconnection — Systems Management: Alarm reporting function.

ITU-T Q.816 (01/2001) 73

Series A
SeriesB
SeriesC
SeriesD
SeriesE
SeriesF
Series G
SeriesH
Series|

SeriesJ
SeriesK
SeriesL
SeriesM

SeriesN
SeriesO
SeriesP
SeriesQ
SeriesR
Series S
Series T
SeriesU
Series V
Series X
Series Y
SeriesZ

SERIESOF ITU-T RECOMMENDATIONS

Organization of thework of ITU-T

Means of expression: definitions, symboals, classification

General telecommunication statistics

General tariff principles

Overall network operation, telephone service, service operation and human factors
Non-tel egphone tel ecommunication services

Transmission systems and media, digital systems and networks

Audiovisual and multimedia systems

Integrated services digital network

Cable networks and transmission of television, sound programme and other multimedia signals
Protection against interference

Construction, installation and protection of cables and other el ements of outside plant

TMN and network maintenance:; international transmission systems, tel ephone circuits,
telegraphy, facsimile and leased circuits

Maintenance: international sound programme and television transmission circuits
Specifications of measuring equipment

Tedephone transmission quality, telephone installations, local line networks
Switching and signalling

Teegraph transmission

Telegraph services terminal equipment

Terminals for telematic services

Telegraph switching

Data communication over the telephone network

Data networks and open system communications

Global information infrastructure and Internet protocol aspects

Languages and general software aspects for telecommunication systems

Geneva, 2001

	ITU-T Rec. Q.816 (01/2001) Corba-based TMN services
	Summary
	Source
	Keywords
	FOREWORD
	CONTENTS
	CORBA-based TMN services
	1 Scope
	1.1 Purpose
	1.2 Application
	1.3 Recommendation Roadmap
	1.4 Recommendation Conventions
	1.5 Compiling the IDL

	2 References
	3 Definitions and abbreviations
	3.1 Definitions from ITU-T X.701
	3.2 Definitions from ITU-T X.703
	3.3 Additional definitions
	3.4 Abbreviations

	4 CORBA-based TMN services goals and requirements
	4.1 Goals
	4.2 Information modeling dependencies
	4.3 Scoping and filtering
	4.4 Notifications

	5 Framework overview and protocol requirements
	5.1 Framework overview
	5.2 Framework protocol requirements

	6 Framework common object services requirements
	6.1 The Naming Service
	6.2 Notification Service
	6.3 Telecom Log Service
	6.4 Messaging Service
	6.5 Security Service
	6.6 Transaction Service

	7 Framework support services
	7.1 The Factory Finder Service
	7.2 The Channel Finder Service
	7.3 The Terminator Service
	7.4 The Multiple-Object Operation Service
	7.5 The Heartbeat Service
	7.6 Other support services

	8 Compliance and conformance
	8.1 System conformance
	8.2 Conformance statement guidelines

	ANNEX A - Framework Support Services IDL
	ANNEX B - The Constraint Language BNF
	B.1 The constraint language proper in terms of lexical tokens
	B.2 "BNF" for lexical tokens up to character set issues
	B.3 Character set issues
	APPENDIX I - Interworking scenarios between models using ITU framework and ADSL-/ATMF-compliant models
	I.1 Introduction
	I.2 Terminology
	I.3 Interworking scenarios
	APPENDIX II - Filtering native and translated structured events
	APPENDIX III - Bibliography

