
INTERNATIONAL TELECOMMUNICATION UNION

ITU-T Q.812
TELECOMMUNICATION
STANDARDIZATION SECTOR
OF ITU

Appendix I
(03/99)

SERIES Q: SWITCHING AND SIGNALLING

Specifications of Signalling System No. 7 – Q3 interface

Upper layer protocol profiles for the Q3 and
X interfaces

Appendix I – Guidance on using allomorphic
management

ITU-T Recommendation Q.812 – Appendix I
(Previously CCITT Recommendation)

ITU-T Q-SERIES RECOMMENDATIONS

SWITCHING AND SIGNALLING

For further details, please refer to ITU-T List of Recommendations.

SIGNALLING IN THE INTERNATIONAL MANUAL SERVICE Q.1–Q.3

INTERNATIONAL AUTOMATIC AND SEMI-AUTOMATIC WORKING Q.4–Q.59

FUNCTIONS AND INFORMATION FLOWS FOR SERVICES IN THE ISDN Q.60–Q.99

CLAUSES APPLICABLE TO ITU-T STANDARD SYSTEMS Q.100–Q.119

SPECIFICATIONS OF SIGNALLING SYSTEMS No. 4 AND No. 5 Q.120–Q.249

SPECIFICATIONS OF SIGNALLING SYSTEM No. 6 Q.250–Q.309

SPECIFICATIONS OF SIGNALLING SYSTEM R1 Q.310–Q.399

SPECIFICATIONS OF SIGNALLING SYSTEM R2 Q.400–Q.499

DIGITAL EXCHANGES Q.500–Q.599

INTERWORKING OF SIGNALLING SYSTEMS Q.600–Q.699

SPECIFICATIONS OF SIGNALLING SYSTEM No. 7 Q.700–Q.849

General Q.700

Message transfer part (MTP) Q.701–Q.709

Signalling connection control part (SCCP) Q.711–Q.719

Telephone user part (TUP) Q.720–Q.729

ISDN supplementary services Q.730–Q.739

Data user part Q.740–Q.749

Signalling System No. 7 management Q.750–Q.759

ISDN user part Q.760–Q.769

Transaction capabilities application part Q.770–Q.779

Test specification Q.780–Q.799

Q3 interface Q.800–Q.849

DIGITAL SUBSCRIBER SIGNALLING SYSTEM No. 1 Q.850–Q.999

PUBLIC LAND MOBILE NETWORK Q.1000–Q.1099

INTERWORKING WITH SATELLITE MOBILE SYSTEMS Q.1100–Q.1199

INTELLIGENT NETWORK Q.1200–Q.1999

BROADBAND ISDN Q.2000–Q.2999

Recommendation Q.812/Appendix I (03/99) i

ITU-T RECOMMENDATION Q.812

UPPER LAYER PROTOCOL PROFILES FOR THE Q3 AND X INTERFACES

APPENDIX I

Guidance on using allomorphic management

Source

Appendix I to ITU-T Recommendation Q.812, was prepared by ITU-T Study Group 4 (1997-2000)
and was approved under the WTSC Resolution No. 1 procedure on the 26th of March 1999.

Recommendation Q.812/Appendix I (03/99)ii

FOREWORD

ITU (International Telecommunication Union) is the United Nations Specialized Agency in the field of
telecommunications. The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of
the ITU. The ITU-T is responsible for studying technical, operating and tariff questions and issuing
Recommendations on them with a view to standardizing telecommunications on a worldwide basis.

The World Telecommunication Standardization Conference (WTSC), which meets every four years,
establishes the topics for study by the ITU-T Study Groups which, in their turn, produce Recommendations
on these topics.

The approval of Recommendations by the Members of the ITU-T is covered by the procedure laid down in
WTSC Resolution No. 1.

In some areas of information technology which fall within ITU-T’s purview, the necessary standards are
prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation the term recognized operating agency (ROA) includes any individual, company,
corporation or governmental organization that operates a public correspondence service. The terms
Administration, ROA and public correspondence are defined in the Constitution of the ITU (Geneva, 1992).

INTELLECTUAL PROPERTY RIGHTS

The ITU draws attention to the possibility that the practice or implementation of this Recommendation may
involve the use of a claimed Intellectual Property Right. The ITU takes no position concerning the evidence,
validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others
outside of the Recommendation development process.

As of the date of approval of this Recommendation, the ITU had not received notice of intellectual property,
protected by patents, which may be required to implement this Recommendation. However, implementors are
cautioned that this may not represent the latest information and are therefore strongly urged to consult the
TSB patent database.

 ITU 1999

All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from the ITU.

Recommendation Q.812/Appendix I (03/99) iii

CONTENTS

Page

Appendix I – Guidance on using allomorphic management.. 1

I.1 Introduction... 1

I.1.1 Overview ... 1

I.2 CMIP operations ... 2

I.2.1 Creating managed objects.. 2

I.2.2 Get operation ... 5

I.2.3 Set operation .. 7

I.2.4 Action operation .. 9

I.2.5 Delete operation... 11

I.3 CMIP notification ... 12

I.3.1 Manager role.. 12

I.3.2 Agent role .. 13

I.3.3 Summary for NOTIFICATION... 13

I.4 Implementation issues... 13

I.4.1 Protocol stack related .. 13

I.4.2 Permitted and required values ... 13

I.4.3 Initial value .. 14

I.4.4 Filtering on single object ... 14

I.4.5 Scoping only .. 15

I.4.6 Scoping and filtering ... 15

I.4.7 Naming .. 16

I.5 Examples of the use of allomorphism... 16

Recommendation Q.812/Appendix I (03/99) 1

Recommendation Q.812

UPPER LAYER PROTOCOL PROFILES FOR THE Q3 AND X INTERFACES

APPENDIX I

Guidance on using allomorphic management

(Geneva, 1999)

I.1 Introduction

This appendix seeks to provide guidance to the developers of CMIP managers and agents in the use
of allomorphism. Allomorphism is a powerful concept that is of increasing value as TMNs are
implemented. Allomorphism can be used to address the issue of how to add new capabilities to
existing TMN manager and agent implementations. As requirements evolve and models are extended
to satisfy those requirements, software in the managing system that takes advantage of allomorphism
can be written in such a way that it does not require to be rewritten until the new features in the
model are needed.

This appendix attempts to clarify how to cope with allomorphic behaviour in implementations of
both manager and agent systems. It clarifies the description of allomorphism found in
Recommendation X.720. In particular, managers must be aware of allomorphism to benefit from it.
Even if a manager does not plan to use allomorphism, it should have a minimum ability to interface
with agents that do implement allomorphism. For example, the manager must support the allomorphs
attribute and have the ability to construct filters using allomorphs versus the actual class in the
objectClass attribute.

This appendix discusses the issues related to allomorphism for each CMIP operation from both the
manager and agent perspective. It then discusses the issues related to CMIP Notifications, again
from both the manager and agent perspective. It then provides some protocol stack and
implementation considerations. It concludes by answering some frequently asked questions about
allomorphism.

In the following discussion, the phrase "if agent supports allomorphism" is used. This should be
equated to "if agent supports allomorphism for a specific instance" because it is possible that an
agent may support revisions for some object classes and not others. Strictly speaking, even two
instances of a class may be different in the support for allomorphism, however, this is considered as
an extreme and rare implementation for this discussion. The same is also true for manager side
where a specific release of a manager system may recognize multiple definitions for some basic
classes and not for others. The decisions to include the different versions are dictated by business
objectives (which are out the scope of this appendix).

I.1.1 Overview

Allomorphism is the ability of a managed object that is an instance of a given managed object class
to be managed as a member of one or more other managed object classes. Allomorphism allows
instances of one managed object class – referred to as the extended class to represent instances of
another managed object class – the allomorphic class.

When an extended class is instantiated, the actual class (see Recommendation X.720) of the object
stored in the objectClass attribute is the extended class. It is extended with regard to another
managed object class, its compatible managed object class. The actual class is that class of which a
managed object is an instance. An allomorphic class of a managed object is a managed object class

Recommendation Q.812/Appendix I (03/99)2

other than the managed object’s actual class; however it can be managed as an instance of that class.
A managed object may be allomorphic to one or more of the compatible classes (i.e. instances of the
extended class can be managed as instances of compatible managed object class). In other words the
terms "allomorphic class" and "compatible managed object class" can be used as synonyms. When
an agent creates a managed object that supports allomorphism, the allomorphicPackage (defined as a
Conditional Package in the top class in Recommendation X.721) is included. The package contains
the allomorphs attribute. This GET-Only attribute is set-valued and contains the object identifiers of
the classes that this object can represent (is allomorphic with). The objectClass attribute has a value
of the actual class used in creating this instance.

The basic idea behind allomorphism is that the extended class supports all the capabilities of the
classes it is allomorphic with. It may also support additional capabilities. The extended class may be
a subclass of the classes it is allomorphic with but this is not required. In all respects the extended
class behaves as the class it actually is. This may mean that the manager could receive information
that is not in the allomorphic class. For example, if the extended class has new attributes, a Get all
operation from the manager will return values for these. Dealing with this type of issue requires the
manager to be aware that allomorphic management is being used. Recommendation X.726 defined
Managed Object Conformance tables for use by both agent and manager implementations. Use of
these tables to identify the list of allomorphs if supported is recommended to determine the levels of
interoperability.

The various interactions between manager and agents using allomorphic management are discussed
in the following clauses. Recommendation X.720 also discusses limited interoperability when
compatible rules are not completely satisfied. This appendix addresses only the scenarios where
compatible rules defined according to Recommendation X.720 to support allomorphism are met
(See 5.2.3.2/X.720).

I.2 CMIP operations

This clause discusses allomorphism in relation to the CMIP Operations, m-Create, m-Get, m-Set,
m-Action, and m-Delete. No impact of allomorphism on the m-Cancel-Get operation has been
identified.

I.2.1 Creating managed objects

A managed object is created either by the manager issuing an explicit create request on the interface
or by automatic create within the agent system. Each case is discussed below. Careful selection of
the naming attribute and structure is required. The naming issues are discussed below in a separate
subclause.

I.2.1.1 Explicit creation – Manager role

Case 1: The manager issues a CMIP create request providing in the managed object class a value
and a set of attribute values appropriate for that class. The manager supplies the actual name of the
new object. The resulting action in the agent is one of those defined in I.2.1.2 Explicit creation –
 Agent role, cases a, b, c. If the response is as defined in case c, the manager must be able to ignore
unknown attributes included as a result of creating an extended class.

Case 2: The manager issues a CMIP create request providing in the managed object class a value
and a set of attribute values appropriate for that class. The manager supplies the name binding
attribute value. The resulting action in the agent is one of those defined in I.2.1.2 Explicit creation –
 Agent role, cases a, b, d. If the response is as defined in case d, the manager must be able to ignore
unknown attributes included as a result of creating an extended class.

Recommendation Q.812/Appendix I (03/99) 3

Case 3: The manager specifies the class without a specific name in the instance field or a value for
the name binding attribute. The resulting action in the agent is one of those defined in I.2.1.2
Explicit creation – Agent role, cases a, b, e. If the response is as defined in case e, the manager must
be able to ignore unknown attributes included as a result of creating an extended class.

Case 4: The manager specifies a class and requests it to be a copy of another object, i.e. with
reference object. Depending on the value of the class, any of the above three cases are possible.

I.2.1.2 Explicit creation – Agent role

Case a: Agent recognizes the managed object class in the request and supports it as actual class. In
this case the requested managed object class is created and allomorphism is not involved. The create
succeeds or fails depending on the conditions associated with the behaviour and the attribute values
supplied by the manager. The agent uses either the name supplied in case 1 above or assigns a name
(using either the name binding rule in case 2 or internally generated based on the schema definition).

Case b: Agent does not support the requested class either as an actual class supported or as an
allomorph. The managed object class provided in the request is not recognized. The create request is
rejected with the error "no such object class". This is a normal failure to create an unknown class.

Case c: Agent supports allomorphism and it creates a class that is an extended class with the name
supplied by the manager. This assumes the name provided by the manager follows the structure rules
(name binding) for the extended class [same or extended superior class, same Relative Distinguished
Name (RDN)]. If this condition is not met, then the create will fail. If the create succeeds, the agent
responds with the value for the actual class in the managed object class field and all the attributes
appropriate for the actual class. The object is created according to the behaviour of the extended
class. If the agent system is providing the interoperability (see 5.2.3.1/X.720), the agent includes the
attribute allomorphs with the value of the class provided in the create request. If manager system is
providing the interoperability (see 5.2.3.2/X.720), the manager may query allomorphs attribute and
determine that requested object class is allomorphic to the actual class.

Case d: Agent supports allomorphism and it creates a class that is an extended class with the name
binding supplied by the manager. This assumes that the name binding supplied is valid for the
extended class. This is often true if the extended class is a subclass and the GDMO includes for
name binding "WITH SUBCLASSES" clause. The response when create succeeds is the same as for
case c. If the name binding is not valid for the extended class (for example, additional behaviour
may be included in a different name binding for the extended class even if the naming attribute and
structure are the same) the create will fail. Note that if the manager receives invalid value error for
the name binding attribute without further information, this will not help in resolving the problem.
From the manager’s perspective the request is for a class and the name binding is valid. Because the
extended class requires a different behaviour, the agent cannot use that name binding. This is why
the recommendation is not to supply the name binding attribute in the create request.

Case e: The agent supports allomorphism and creates a class with an appropriate name selected by
the agent (for case 3 of I.2.1.1: Explicit creation – Manager role). The assigned name may or may
not be understood by the manager depending on chosen name binding definition. Other information
in the response is the same as in case c.

For all the above cases, when the manager does not supply a value for an attribute and a default
exists, the value chosen for that attribute is according to the created object class. In cases c, d, and e
this can result in the manager receiving values for attributes that exist only in the extended class. The
manager may not understand these types and should be able to ignore these types without disrupting
the association. Note that the manager may wish to take additional management action to record that
it is encountering allomorphic agents (e.g. log information not understood).

Recommendation Q.812/Appendix I (03/99)4

In addition to default values of attributes, constraints imposed on initial value, permitted and
required values may have differences between the allomorphic class and the extended class. See I.4
for further discussions.

I.2.1.3 Summary

The table below summarizes the various cases for explicit creation discussed from manager role and
agent role depending on whether allomorphism is supported or not.

Manager role Agent role with allomorphism

Supported Not supported

Case 1 Cases a, b, c Cases a, b

Case 2 Cases a, b, d Cases a, b

Case 3 Cases a, b, e Cases a, b

Case 4 Cases a, b, c, d, e Cases a, b

I.2.1.4 Automatic creation – Agent role

The agent may create a managed object internally and inform the managers of the creation by the
object creation notification.

Case 1: Assume that the agent has implemented the extended class and allomorphic behaviour. In
addition to all the attributes appropriate for the created class, the allomorphs attribute containing all
the allomorphic (compatible) object classes is included in the created managed object. The agent
sends a create notification for the new object.

In this case, the agent then sends a notification to all the managers using the object creation
notification containing the actual class. It includes all the attributes of the class referenced in the
managed object class field of the create notification. This includes the allomorphs attribute.

Note that the default values used are consistent with the created class.

Case 2: The agent only implements the extended class and does not exhibit allomorphism for the
compatible classes. In this case the object creation notification contains only the information
pertaining to the extended class and the allomorphs attribute is not present. For such an environment,
it is recommended that the managing system provide for interoperability independent of whether the
additional features are required or not. Rejecting the notification will not be useful for a practical
TMN environment.

I.2.1.5 Automatic creation – Manager role

The manager receives the object creation notification with the allomorphs attribute and an extended
class in the managed object class field. Depending on whether the manager supports allomorphism
or not, the cases described in a to d are applicable for case 1 above.

Case a: The manager knows about the extended class and the allomorphs attribute is not needed
because the manager does not have to perform allomorphic management. All the characteristics
associated with recognizing or not of the attribute identifiers and values are the same when no
allomorphism is used.

Case b: The manager does not recognize the managed class value in the notification. If the manager
understands the allomorphs attribute identifier, then the manager, before ignoring the notification as
unrecognized information, should examine the allomorphs attribute value to determine if it can
manage using one of the values in this attribute. This implies that at least one object class value in

Recommendation Q.812/Appendix I (03/99) 5

the allomorph attribute is recognized by the manager. The manager must ignore all the attributes not
recognized as belonging to the allomorphic class.

Case c: The manager does not recognize the managed object class value and it has not implemented
the ability to recognize the allomorphs attribute identifier. In this case the manager cannot manage
this auto created object. If the creation is sent with a confirmation, an error response may be
provided by the manager to say unknown object.

Case d: The manager does not recognize the managed object class value in the notification. The
manager understands the allomorphs attribute; however it does not recognize any of the classes in
the allomorphs attribute. In this case the result is the same as case c. Managing the auto-created
object by that manager is not possible.

The agent sends a notification using the actual class without the allomorphs attribute (agent does not
allomorphism). This corresponds to case a above.

Case e: The manager understands the extended class and the behaviour is as in case a above. The
absence of allomorphs attribute is not relevant and the manager can manage the auto created object.

Case f: The manager does not recognize the extended class. The manager will not be able to manage
this object, given that the allomorphs attribute is not supported by the agent. This is true irrespective
of whether the manager supports allomorphism or not.

I.2.1.6 Summary for AutoCreation

The table below summarizes the relationship of the manager and agent cases.

Agent case Manager case

1 a, b, c, d

2 e, f

I.2.2 Get operation

The Get operation may be issued with an explicit set of attribute identifiers, an empty list or a
missing list. The two cases (empty list and missing list are treated the same) are further separated in
terms of whether the managed object class in the request is the actual class or allomorphic class for
the agent. Note that there is a special object identifier (42) that the manager may use in the request to
refer to the actual class of the managed object without having to specify the actual class.

I.2.2.1 Manager role

Case 1: Manager issues a get request with a class that is not the actual class of the object but one of
the allomorphs supported by the agent. The list of attribute identifiers included are appropriate for
this allomorphic class. The response received is according to one of cases a, b, c below. If
interoperability is supported by the manager, then receiving a successful response in case b with a
different class will be recognized as a valid response. Otherwise, the manager will reject the
response (a ROSE reject and not from CMIP).

Case 2: Manager issues a get request with a class which is either the actual class or the special
object identifier which implies the actual class. The list of attributes requested may or may not be
appropriate for that class. This is because of either conditionally or by using the special object
identifier, the manager may include attributes that are not available for the implemented class. The
response received is according to case d below.

Recommendation Q.812/Appendix I (03/99)6

Case 3: Manager requests specifying a class, name of a managed object and no attribute list. The
response received depends on the value in the class, whether allomorphism is supported by agent and
the method of interoperability. The response received is one of cases e, f, g given below. If the
response in f or g contains attributes, the manager does not understand, they are ignored by the
manager.

Case 4: Manager requests specifying either a class supported by the agent and name of a managed
object or the special object identifier discussed above and a name. It does not include the attribute
list. The response received is according to case h below. The manager should ignore attributes that
are not recognized when the class in the response is different from what the manager recognizes (as
a result of using the special object identifier).

I.2.2.2 Agent role

Case a: Agent supports allomorphism and recognizes the name of the managed object. The managed
object class in the request matches one of the values in the allomorphs attribute. The agent responds
with the values of the attributes requested and the class as in the request may or may not be included.
If the class is included, it is recommended that the value of the actual class be used in the response.
This approach provides for uniform and consistent response irrespective of single object request or
multiple object request using scoping. It is also expected that the managed object class parameter in
a CMIP response corresponds to the value of the objectClass attribute.

Case b: Agent does not support allomorphism but recognizes the name of the managed object. The
agent may either return an error ("no such object class" or "class instance conflict") or respond with
the values of the attribute (agent provided interoperability). The latter behaviour is recommended.
The class field may be left empty or populated with the actual class. If both class and name are not
recognized, an error response is generated (no such object instance or no such object class).

Case c: Agent does not support allomorphism and does not understand the value of the class or the
name in the request. An error "no such object class or no such object instance" is returned.

Case d: The agent recognizes the class and the name irrespective of whether it supports
allomorphism or not (this corresponds to case 2 where the manager requests using a class that is a
compatible class and not the extended class even though the manager knows about the extended
class or the simple case where both the manager and agent knows about only one class). Agent
responds with attribute values (includes errors if the attributes requested are not suitable for that
class or have not been implemented as a result of conditionality). The class field may be omitted or
the actual class is included.

Case e: Agent recognizes the class and name in the request (irrespective of allomorphism is
supported or not) and returns all the attribute identifiers and values for that object. Class and name
may be omitted in the response.

Case f: Agent supports allomorphism. The value of the class in the request does not match the value
of the actual class even though the name corresponds to one of the objects contained in the system.
The class corresponds to a value in the allomorphs attribute. If the agent provides interoperability,
the agent responds with only the value of the attributes appropriate for the requested class. If the
value of the class is included in the response (it is not required to include either the class or name),
then the actual class is used (see explanation above on the same topic). If the manager provides
interoperability, the agent returns all of the attributes included in the object. If the value of the class
in the request does not correspond to any of the values in the allomorphs attribute, then the agent
returns an error "no such object class" to the manager. Note that in order to provide for
interoperability, it is recommended that both agent and manager provide some capabilities: the agent
supporting allomorphism and the manager ignoring unknown information.

Recommendation Q.812/Appendix I (03/99) 7

Case g: Agent does not support allomorphism. The requested class is not recognized but an object
with that name is available. The agent may either respond with an error "no such object class" or all
the attributes relevant to that class. Even though the response is not required to include the class and
instance for single object request, it is recommended that the actual class and name be included in
this case. This provides the manager with the information that the actual class is an extended class of
the compatible class the manager understands.

Case h: Requested class corresponds to the actual class in the agent or the actual class is used
because the request contained the special object identifier value. Irrespective of whether
allomorphism is supported or not, all the attribute values corresponding to the implemented actual
class for that object are returned assuming that the agent recognizes the name. The class and name
fields may or may not be in the response. It is, however, recommended that the actual class and name
be included in this case when the special object identifier is used in the request. If the name is not
recognized, then "no such object instance" error is returned.

I.2.2.3 Summary GET operation

The table below summarizes the relationship of the manager and agent cases.

Manager case Agent case

1 a, b, c

2 d

3 e, f, g

4 h

I.2.3 Set operation

The Set operation may be issued with different operators. The replace may be specified either with a
specific value or "set to default". The default value for an attribute may depend on the actual class.
An attribute may be specified in one class with a set of permitted values and a set of required values.
The required values must be a subset or an equal set of the permitted values. The extended class
shall not increase the permitted values but may remove some as long as these are not in the required
set of values (see Figure 1 in I.4). Not supporting a permitted value is permitted either in the
extended or compatible class as long as this value is not in the required list. Thus, with allomorphic
management, when a permitted value for the allomorph is given and this is not included in the
extended class, it can be rejected without violating allomorphic behaviour (guaranteed to support all
values in the compatible class; however if the value is not in the permitted set of compatible class,
this will not be supported as the list cannot be extended).

I.2.3.1 Manager role

Case 1: Manager issues a set request with a class, name and the value(s) for the attributes
(replace/add or remove operator). The class of the object is not the actual class in the agent but a
compatible class. If a response is received (only if the request was confirmed), one of cases a, b, c
below is valid. If interoperability is supported by the manager, then receiving a successful response
in case b with a different class will be recognized as a valid response. Otherwise, the manager will
reject the response (a ROSE reject and not from CMIP).

Recommendation Q.812/Appendix I (03/99)8

Case 2: Manager issues a set request with a class which is either the actual class or the special object
identifier which implies the actual class. The value(s) for the attributes (replace/add or remove
operator) may or may not be appropriate for that instance. This is because of conditionality or by
using the special object identifier, the manager may be providing values appropriate for the
compatible class. If a response is received (only if the request was confirmed), case d below is valid.

Case 3: Manager requests specifying a class, name and a replace with default for one or more
attributes. The response (if received) depends on the value in the class, whether allomorphism is
supported by agent and the method of interoperability. It is one of e, f or g below. The response
received may indicate default values for the attributes that is different from those associated with the
requested class. The manager should recognize these values as the result of actual class in the agent
being different.

Case 4: Manager requests specifying either a class supported by the agent and name or the special
object identifier discussed above and name and a replace with default for one or more attributes. The
response, if received, is according to case h below.

I.2.3.2 Agent role

Case a: Agent supports allomorphism and recognizes the name of the managed object. The managed
object class in the request matches one of the values in the allomorphs attribute. The agent performs
the modification for those attributes (assuming the attribute exists and the value provided is valid). If
the request is confirmed, then the agent responds with either an acknowledgment or the modified
values. In the latter case, the value for the class field (if present) is the actual class (see the rationale
above for Get). If the attributes or values provided in the request are invalid, then an error or partial
success (set list error) is returned.

Case b: Agent does not support allomorphism but recognizes the name of the managed object. The
agent may not perform the requested modification based on not recognizing the class. If the request
was unconfirmed, then the manager has no knowledge of the result unless it issues a get operation.
Consider the case where a response is required. Depending on whether the agent performed the
operation (successfully or otherwise), it may return one of the following: an error ("no such object
class" or "class instance conflict"); confirmation indicating success, error with partial success. The
class and name fields are not required to be in the response. If present, it is recommended to include
the actual class to inform the manager of the implemented class. If both class and name are not
recognized, an error response is generated (no such object instance or no such object class).

Case c: Agent does not support allomorphism and does not understand the name in the request. An
error "no such object class" or "no such object instance" is returned.

Case d: Agent recognizes the class and the name irrespective of whether it supports allomorphism or
not (this corresponds to case 2 where the manager requests using a class that is a compatible class
and not the extended class even though the manager knows about the extended class or the simple
case where both the manager and agent knows about only one class). The agent performs the
modification for those attributes (assuming the attribute exists and the value provided is valid). If the
request is confirmed, then agent responds with either an acknowledgment or the modified values. In
the latter case, the class and name fields are not required to be in the response. If present, the value
for the class field is the actual class (same rationale as in Get). If the attributes or values provided in
the request are invalid, then an error or partial success (set list error) is returned.

Case e: Agent recognizes the class and name in the request (irrespective of allomorphism is
supported or not) and performs the operation. The response, if required may be an acknowledgment,
an error because there is no default defined or the modified value (the default specified for that
class).

Recommendation Q.812/Appendix I (03/99) 9

Case f: Agent supports allomorphism. The value of the class in the request does not match the value
of the actual class even though the name corresponds to one of the objects contained in the system.
The class corresponds to a value in the allomorphs attribute. If the agent provides interoperability,
the agent either performs the modification according to the default value for the actual class or
detects an error (e.g. no default value defined for some of the attributes). It responds with either an
acknowledgment or the assigned default value or an error with partial success. It is not required to
include the class and name fields in the response. If the value of the class is included in the response,
then it is the actual class (see rationale in Get). If the value of the class in the request does not
correspond to any of the values in the allomorphs attribute, then the agent returns an error "no such
object class" to the manager.

Case g: Agent does not support allomorphism. The requested class is not recognized but an object
with that name is available. The agent may either perform the operation replacing with defaults
appropriate for the actual class or reject the request. If the request was confirmed and the agent
rejects the request, then the agent responds with either "no such object class" or "class instance
conflict" error. If it performs the operation successfully, then either an acknowledgment or a success
with the modified values are returned. The returned values are appropriate for the actual class. Even
though the response is not required to include the class and instance for single object request, it is
recommended that the actual class and name be included in this case. This provides the manager
with the information that the actual class is an extended class of the compatible class the manager
understands (manager provided interoperability). If the modification is performed with partial
success, then an error is sent. The use of the class field is the same as for the success case.

Case h: Requested class corresponds to the actual class in the agent or the actual class is used
because the request contained the special object identifier value. Irrespective of whether
allomorphism is supported or not, the agent replaces with default all the values corresponding to the
attribute identifiers in the request (assuming all the attributes in the request are supported by the
agent). If it performs the operation successfully, then either an acknowledgment or a success with
the modified values is returned. Even though the response is not required to include the class and
instance for single object request, it is recommended that the actual class and name be included in
this case when the special object identifier is used in the request. If the name is not recognized, then
"no such object instance" error is returned.

I.2.3.3 Summary SET operation

The table below summarizes the relationship of the manager and agent cases.

Manager case Agent case

1 a, b, c

2 d

3 e, f, g

4 h

I.2.4 Action operation

The action operation for any specific may include argument and responses both with mandatory and
optional parameters. If there are required parameters in the argument for the actual class that are not part
of the compatible class, then they must have defaults associated with them. Even though
Recommendation X.720 permits the addition of required parameters in the action information, it is not
possible to specify this using the template notation without creating a new action. However, the
requirement may be specified via the behaviour. This is because only the labels of the parameters can

Recommendation Q.812/Appendix I (03/99)10

be used to augment an action specification. This implies the original action has a field that is ANY
DEFINED BY (or information object class in Recommendation X.681) and is augmented with
parameter template label in another class (or by creating an information object). If the required fields
are to be added to an action, the only approach available is to define a new action, which has a
different registration. In other words, the templates do not support deriving an action from another
action by adding new fields that are mandatory in a formal ASN.1 specification.

I.2.4.1 Manager role

Case 1: Manager issues an action request with a class, name and the value(s) for the parameters of
the action argument (if present). The class of the object is not the actual class in the agent but a
compatible class. If a response is received (only if the action was defined as confirmed), one of
cases a, b, c below is valid. If interoperability is supported by the manager, then receiving a
successful response in cases a and b with a different class and additional fields in the action reply
will be recognized as a valid response. Otherwise, the manager will reject the response (a ROSE
reject and not from CMIP).

Case 2: Manager issues an action request with a class which is either the actual class or the special
object identifier which implies the use of actual class. Not all the fields included may or may not be
appropriate for that class. If a response is received (only if the request was confirmed), case d below
is valid.

I.2.4.2 Agent role

Case a: Agent supports allomorphism and recognizes the name of the managed object. The managed
object class in the request matches one of the values in the allomorphs attribute. The agent performs
the action according to its actual class using the parameters supplied in the request. Note that if there
are any additional fields required for performing the action, then default values must be available as
they will not be supplied by the manager. If the request is confirmed, the response from the agent
depends on the following: if the action was performed successfully and if agent provides for
interoperability. The response is not required to include the class and name in this case where a
single object is referenced. If the operation does not succeed, an error is returned. The agent may
include the actual class to inform the manager of the implemented class or the requested class
(allomorphic class). If the action succeeds, the agent responds with either an acknowledgment (a
confirmation that the action was performed successfully because the action definition does not
include any fields for the response) or the action response with appropriate fields. The agent may
choose one of the two following methods to respond. If the agent provides for interoperability, it
may include only the fields appropriate for the requested class and not the additions for the actual
class. In this case the value for the class field can be omitted. In the second approach, manager
provided interoperability is assumed. The response may include additional fields that were not in the
action for the class in the request (new parameter templates may have been included for the
extension field or application of extensibility rules in ASN.1). It is recommended to include in the
class field the actual class to let the manager be aware of the implemented class.

Case b: Agent does not support allomorphism but recognizes the name of the managed object and
the action is valid for its actual class. The agent may not perform the requested action based on not
recognizing the class in the request (different from the actual class). If the action definition indicates
unconfirmed, then the manager has no knowledge of whether the action was successful or not.
Depending on the action type, the effect of that action may be deduced later (for example by doing a
get operation). Consider the case where the action is confirmed. Depending on whether the agent
performed the action (successfully or otherwise) it may return one of the following: an error ("no
such object class" or "class instance conflict"); confirmation indicating success, specific error (if
any) defined for that action or a generic CMIP error. The action is performed according to the actual
class.

Recommendation Q.812/Appendix I (03/99) 11

The class and name fields are not required to be in the response. If present, it is recommended to
include the actual class to inform the manager of the implemented class. If both class and name are
not recognized, an error response is generated (no such object instance).

Case c: Agent does not support allomorphism and does not recognize the name in the request. An
error "no such object class" or "no such object instance" is returned.

Case d: Agent recognizes the class and the name irrespective of whether it supports allomorphism or
not (this corresponds to case 2 where the manager requests using a class that is a compatible class
and not the extended class even though the manager knows about the extended class thus supporting
manager provided interoperability or the simple case where both the manager and agent knows about
only one class). The agent performs action according to its actual class irrespective of whether the
request contained the allomorphic class or the special object identifier. The result of the action may
be successful or an error. If the action was not defined as confirmed no response is generated. If
successful or an error occurs in performing the action, then appropriate result or error response is
issued. If the action succeeds the response is generated according to the definition for the actual
class. If the special object identifier is used, it is recommended to include the class value for the
actual class even though the class and name fields are not required for the single object case.

I.2.4.3 Summary of ACTION operation

The table below summarizes the relationship of the manager and agent cases.

Manager case Agent case

1 a, b, c

2 d

I.2.5 Delete operation

The delete operation is defined with two options: deletes contained objects and no delete allowed
unless all contained objects are deleted. The following must be noted for delete operation.
Irrespective of the class, it is the name that must be recognized because two instances of the same
class may have different names and/or behaviour (based on the name binding used to instantiate the
object).

I.2.5.1 Manager role

Case 1: Manager issues a delete request with a class and a name. The class of the object is not the
actual class in the agent but a compatible class. For response one of cases a, b, c below is valid. If
interoperability is supported by the manager, then receiving a successful response in cases a and b
with a different class will be recognized as a valid response. Otherwise, the manager will reject the
response (a ROSE reject and not from CMIP). As noted earlier, sending a reject is not useful (thus
not recommended) and the manager should provide for some level of interoperability.

Case 2: Manager issues a delete request with a class which is either the actual class or the special
object identifier which implies the use of actual class. The response shown in case d below is valid.

I.2.5.2 Agent role

Case a: Agent supports allomorphism and recognizes the name of the managed object. The managed
object class in the request matches one of the values in the allomorphs attribute. The agent deletes
the object assuming the conditions for deletion is acceptable according the name binding used for
that instance. If the deletion is not performed, an error is generated. If the deletion succeeds, the
agent responds with either an acknowledgment (a confirmation that the deletion was performed

Recommendation Q.812/Appendix I (03/99)12

successfully). The response is not required to include the class and name in this case where a single
object is referenced. It is recommended to include in the class field the actual class to let the
manager be aware of the implemented class (this may not be useful for the manager since the object
is deleted unlike the previous operations).

Case b: Agent does not support allomorphism but recognizes the name of the managed object. The
agent may not delete the object based on not recognizing the class ("no such object class" or "class
instance conflict"). If the agent performs the deletion based on the object name (assuming other
conditions for deletion are met), then an acknowledgment is returned. If deletion is not possible
(conditions are not met), then an error is returned. In either case, it is not required to include the
class and name of the object. It is recommended to include the actual class (this may not be useful
for the manager since the object is deleted unlike the previous operations).

Case c: Agent does not support allomorphism and does not recognize the name in the request. An
error "no such object class" or "no such object instance" is returned.

Case d: Agent recognizes the class and the name irrespective of whether it supports allomorphism or
not (this corresponds to case 2 where the manager requests using a class that is a compatible class
and not the extended class even though the manager knows about the extended class thus supporting
manager provided interoperability or the simple case where both the manager and agent knows about
only one class). The agent deletes the object assuming the conditions for deletion is acceptable
according the name binding used for that instance. If the deletion is not performed an error is
generated. If the deletion succeeds, the agent responds with either an acknowledgment (a
confirmation that the deletion was performed successfully). The response is not required to include
the class and name in this case where a single object is referenced. It is recommended to include in
the class field the actual class (if the special object identifier was used; otherwise the manager and
agent has the same understanding of the class value) to let the manager be aware of the implemented
class (this may not be useful for the manager since the object is deleted unlike the previous
operations).

I.2.5.3 Summary of DELETE operation

The table below summarizes the relationship of the manager and agent cases.

Manager case Agent case

1 a, b, c

2 d

I.3 CMIP notification

Notifications are much simpler than the operations mentioned in the previous clause. The
notification may be sent in the confirmed or unconfirmed mode. If unconfirmed, the manager may
ignore what it receives because any of the following is not recognized: class, name, event type and
any field of the event information. The use of RO-Reject is always possible but this is sent at ROSE
level and not recognized by CMIP. However, sending a reject does not provide for TMN
interoperability.

I.3.1 Manager role

Case a: The manager understands the class, name, notification type and some of the parameters in
event information. The manager ignores the unknown parameters.

Case b: The manager does not provide for interoperability. It does not understand the class. The
manager should ignore the notification. The manager may choose to send a reject.

Recommendation Q.812/Appendix I (03/99) 13

Case c: The manager understands the name, notification type and some of the parameters in event
information. The manager does not understand the class. The manager may ignore the notification or
determine that the class is an extended class and ignores the unknown parameters (if manager
provides for interoperability). Otherwise the manager may send a reject.

Case d: The manager does not recognize class, and the name (in this case not recognizing other
parameters of the notification may not matter). The manager should ignore the notification.

I.3.2 Agent role

Case 1: Agent supports allomorphism. If the agent provides for interoperability, the notification may
include in the class field a value from the allomorphs attribute and all the event information
(irrespective of whether the parameters are applicable to the allomorphic class or not). Normally, it
is expected that the agent will use the actual class because in general the agent has no knowledge
which of the allomorphs should be used in the event report. If the notification is confirmed, cases a,
b or c above apply.

Case 2: Agent does not support allomorphism. The agent issues the notification using the actual
class and the relevant parameters for that notification. Cases a, b, c or d above are valid.

I.3.3 Summary for NOTIFICATION

The table below summarizes the relationship of the manager and agent cases.

Manager case Agent case

a 1, 2

b 1, 2

c 1, 2

d 2

I.4 Implementation issues

I.4.1 Protocol stack related

At several places in the discussion of allomorphism it was required that the manager be able to
ignore ASN.1 syntaxes (either from attributes only in the extended class or from notifications only in
the extended class). Generally, these syntaxes are not ones that have been implemented in the
manager (since the manager is attempting to do allomorphic management). In order for the manager
to successfully ignore these syntaxes, they must be allowed to pass through the protocol stack
without disrupting the association. This is supported by the presentation layer protocols. The
presentation layer normally has a requirement to abort associations if an unknown PDU is received
(See 6.4.4.3/X.226). However, 7.5/X.711 (CMIP) states that CMIP resolves all ANY DEFINED
BY OID syntaxes. To quote 7.5/X.711:

The corresponding ASN.1 object descriptor value shall be "CMIP-PCI".

This abstract syntax is defined to include all data types resolved by the ANY DEFINED
BY X productions, in which X is of type OBJECT IDENTIFIER.

I.4.2 Permitted and required values

The relationship of the values of attributes between the allomorphic classes and extended classes is
similar to the relationship between super classes and their subclasses. The Required Values of the
allomorphic class must be a subset of the Required Values of the extended class. In turn the
Required Values of the extended class must be a subset of the Permitted Values of the allomorphic
class.

Recommendation Q.812/Appendix I (03/99)14

Finally, the Permitted Values of the extended class must be a subset of the Permitted Values of the
extended class. These relationships are illustrated in Figure I.1, below.

T0411260-99

Allomorphic class required values

Extended class required values

Extended class permitted values

Allomorphic class permitted values

Figure I.1/Q.812 – Relationship of permitted and required values

NOTE – Even though the above rules are to be adhered to in developing the model, it may be difficult in
practice. An example is the multiport circuitpack and circuitpack defined in Recommendation M.3100. The
permitted values of the availability status restricted to only one value whereas practical experience showed
other values are required. Hence this restriction was removed in multiport circuitpack. However, the new
version of circuitpack could not be subclassed from circuitpack as the permitted values cannot be extended
and therefore strictly speaking not allomorphic. Even though the instance of an extended class has a value for
an attribute outside the permitted range for the compatible class, the managing system may provide some level
of interoperability. It should be able to encode the ASN.1 syntax of the attribute.

I.4.3 Initial value

A specification of a managed object class may include initial values for zero or more attributes.
Unlike default values, with initial values, create request will fail if the value provided in the request
is different from the specified initial value. When the value is not present, then the agent supplies the
specified initial value. An extended class may specify an initial value for a given attribute different
from that for the compatible class. When the agent creates the managed object, the initial value
appropriate for the actual class will be used. Thus, similar to the attributes with default values
discussed in I.2.1.2, the manager may receive values for attributes that are different from the ones
associated with the object class in the request. It is recommended when initial values are defined for
an attribute, the manager does not supply the value in the create request. This will avoid the possible
rejection of the request because the supplied initial value is not appropriate for the actual class.

I.4.4 Filtering on single object

When a filtered request is made, assuming the agent has recognized the request (using conditions
stated above), the following cases arise:

Case 1: The filter has all the attributes it recognizes and has been implemented for the object. The
filter operation is not impacted.

Case 2: The filter has attributes that are not implemented by the agent for that object either because
these are conditional or because they are for the new version of the object. The condition being
checked for any attribute is equivalent to (attribute exists and the value meets the stated condition).
That part of the filter should evaluate to true to make the agents simple irrespective of the

Recommendation Q.812/Appendix I (03/99) 15

implemented class. If the attribute specified in the filter is objectClass and the value to be compared
is that of the compatible class, then objects with extended class will not meet the criteria. If the
manager requires objects belonging to both the extended and compatible classes be selected, then the
filter should include OR{equal{objectClass, x}, nonullIntersection {{x}, allomorphs}}.

I.4.5 Scoping only

The manager requests operations by providing a base object and scope level.

Case 1: The base object is the class implemented by the agent:

– Agent does not support allomorphism and responds with the actual class for the selected
objects (irrespective of whether it has implemented to the extended definition it understands
and implemented only to one definition). The manager may receive responses for objects
with unrecognized values for the class field (because the manager does not recognize the
new schema). The manager may provide for limited interoperability based on the name and
other characteristics it recognizes.

– Agent supports allomorphism and has implemented to extended definitions within the
selected scope. It performs the operation according to the actual classes of the objects in the
scope. The response uses the actual class in the managed object class because the agent may
not be aware of which one or more of the values in the allomorphs attribute the manager can
recognize and the details relevant to that class (attributes, action result, etc., as noted above).
Even if it supports allomorphism, it is simpler to respond in this case using the actual class
and the properties appropriate for that class. The manager may provide for interoperability if
it understands both versions of the definitions or limited interoperability (only one version is
recognized). (If the manager supports allomorphism it may be useful for the scoped GET to
request that the value of the allomorphs attribute be returned.)

Case 2: The base object is a class different from the class in the request but the name is recognized
(the class is either a newer definition than what is in the request or older definition):

– Agent does not support allomorphism and implements to an older definition. It may reject
the request because class is not recognized or it may use the name and respond with objects
in the scope. If the manager receives "no such object class" or "class instance conflict" it
may resend it with the appropriate class for the base object. This is possible only if the
manager provides for interoperability and has knowledge of the version supported by the
agent. It is possible the agent identifies the base object from the name (irrespective of the
class), selects the objects in the scope and responds to the manager using the actual class.
The manager should ignore information that it does not recognize if it provides for
interoperability.

– Agent supports allomorphism and determines if the base object class is an allomorph. If this
is true then it performs the operations on the selected objects (using the actual class) and
responds using the actual class (manager provided interoperability).

In both the above cases, if the base object is not identified, an error is returned.

Case 3: Though unlikely, it is possible for the agent to provide for interoperability if it has the
knowledge of the versions supported by the manager(s). In this case, the response may be
customized to the specific manager's knowledge.

I.4.6 Scoping and filtering

When both scope and filter are in the request, anyone of the three cases discussed above is to be
considered. For each case that results in selecting the objects by applying scope, the filter
discussions in I.4.4, "Filtering on single object" are applied. No additional behaviour is required.

Recommendation Q.812/Appendix I (03/99)16

I.4.7 Naming

As noted earlier, Recommendation X.720 defines allomorphism as a property of the managed object.
In principle, it is not required for two classes (compatible and extended) to be related by inheritance
in order to exhibit allomorphic behaviour. Even though not specified in Recommendation X.720, it
is necessary that the naming structure is the same for the two classes. Even if the managed object
class parameter refers to an allomorphic class, in order for the agent to recognize the managed
object, it is necessary that the managed object field uses the same structure for the actual class and
the allomorphic class. The same structure implies that the sequence for constructing the local and
distinguished names are the same (the superior class and RDN attributes are the same for the
extended and allomorphic classes). This condition is satisfied in most cases when the two classes are
related by inheritance (the name binding can include the phrase AND SUBCLASSES).

The example of the multi-port circuit pack is one where the structure rules for naming is the same as
the circuit pack even though the former could not be derived as a subclass (because of the extension
in permitted values). Thus, from naming perspective, it is possible to consider an instance of
multi-port circuit pack to be allomorphic to circuit pack object class.

I.5 Examples of the use of allomorphism

This clause contains examples of the scenarios where the managing and managed systems implement
to different versions of an information model. As a flash cut of all systems to the same version is not
possible, using allomorphism to support interoperability between the systems will become important.

The figures assume that agent and manager systems are from multiple suppliers. Thus, the release
numbers and the relationship to implemented version of the information model are not correlated
among the suppliers.

Figure I.2 describes the simple scenario. The schema for management information model (SMK)
corresponds to exactly the same definitions (both are from the interface perspective at the same
release). Different numbering is used to convey the possibility that when different vendors supply
the systems, they may use different release numbering options.

T0411270-99

Agent System
1 Rls. 1.0

Agent System
2 Rls. 1.0

Manager
System Rls 2.0

Figure I.2/Q.812 – Scenario 1

Recommendation Q.812/Appendix I (03/99) 17

In this case, interoperability does not require the support or otherwise of allomorphism. Both agent
systems and manager system are not expected to send or receive management information different
from that defined by the schema.

Figure I.3 describes the following scenario: The schema for the management information model
(SMK) the manager implements has more capability than Agent System Rls 1.0. The management
system manages more than one agent system (different suppliers). Agent System 2 Rls 1.5 and
Manager System Rls 3.0 implements the same features (SMK is the same from interface
perspective). Agent System 2 was also managed by Manager System 2 which did not upgrade to
include the new features.

T0411280-99

Agent System 1
Rls 1.0

"sri"

Manager System 1
Rls 3.0

"sriR1"
"sri allomorph"

Agent System 2
Rls 1.5

"sriR1"
"sri allomorph"

Manager System 1
Rls 2.0

"sri"

Figure I.3/Q.812 – Scenario 2

Case 1: Manager Provided Interoperability: For simplicity let us take a single managed object class
"sri" and an extended class "sriR1. The interoperability solutions can be explained using this simple
case without loss of generality (even though a system may choose to support allomorphism for some
classes and not others). Assume that Manager System in Rls 3 can manage extensions that are not
offered by Agent System 1 but by Agent System 2.

Case 2: Support or otherwise of allomorphism by Agent System 1 is not relevant. Agent System 2
supports allomorphism and has implemented the class "sriR1". The allomorph attribute contains the
value "sri". Interactions between Manager System 1 and the two agents are the same as in case 1.
Manager 2 does not understand the additional capabilities in "sriR1" and for notifications from
Agent System 2 (using the extended class sriR1), the behaviour may not be the same as in case 1.
For notifications only defined for sriR1, Manager 2 will not know how to process them and should
therefore ignore them as far as management activity is concerned. Because Agent System 2 supports
allomorphism, when the manager requests an operation using class "sri", it will perform the
operation according to specifications for the actual class "sriR1". The agent may inform the manager
that the actual class is "sriR1" by including it in the response (this is not required if the request was
directed to a specific instance). Based on the requested operation, the information provided will
match that of the actual class. Manager 2 should be able to ignore unrecognized information without
disrupting the association. This implies that the manager should provide for some minimum level of
interoperability.

SÉRIES DES RECOMMANDATIONS UIT-T

Série A Organisation du travail de l'UIT-T

Série B Moyens d'expression: définitions, symboles, classification

Série C Statistiques générales des télécommunications

Série D Principes généraux de tarification

Série E Exploitation générale du réseau, service téléphonique, exploitation des services et facteurs
humains

Série F Services de télécommunication non téléphoniques

Série G Systèmes et supports de transmission, systèmes et réseaux numériques

Série H Systèmes audiovisuels et multimédias

Série I Réseau numérique à intégration de services

Série J Transmission des signaux radiophoniques, télévisuels et autres signaux multimédias

Série K Protection contre les perturbations

Série L Construction, installation et protection des câbles et autres éléments des installations
extérieures

Série M RGT et maintenance des réseaux: systèmes de transmission, de télégraphie, de télécopie,
circuits téléphoniques et circuits loués internationaux

Série N Maintenance: circuits internationaux de transmission radiophonique et télévisuelle

Série O Spécifications des appareils de mesure

Série P Qualité de transmission téléphonique, installations téléphoniques et réseaux locaux

Série Q Commutation et signalisation

Série R Transmission télégraphique

Série S Equipements terminaux de télégraphie

Série T Terminaux des services télématiques

Série U Commutation télégraphique

Série V Communications de données sur le réseau téléphonique

Série X Réseaux pour données et communication entre systèmes ouverts

Série Y Infrastructure mondiale de l'information

Série Z Langages de programmation

