

INTERNATIONAL TELECOMMUNICATION UNION

ITU-T Q.775
TELECOMMUNICATION (03/93)
STANDARDIZATION SECTOR
OF ITU

SPECIFICATIONS OF SIGNALLING
SYSTEM No. 7

SIGNALLING SYSTEM No. 7 –
GUIDELINES FOR USING
TRANSACTION CAPABILITIES

ITU-T Recommendation Q.775

 (Previously “CCITT Recommendation”)

FOREWORD

The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of the International Telecom-
munication Union. The ITU-T is responsible for studying technical, operating and tariff questions and issuing
Recommendations on them with a view to standardizing telecommunications on a worldwide basis.

The World Telecommunication Standardization Conference (WTSC), which meets every four years, established the
topics for study by the ITU-T Study Groups which, in their turn, produce Recommendations on these topics.

ITU-T Recommendation Q.775 was revised by the ITU-T Study Group XI (1988-1993) and was approved by the WTSC
(Helsinki, March 1-12, 1993).

NOTES

1 As a consequence of a reform process within the International Telecommunication Union (ITU), the CCITT
ceased to exist as of 28 February 1993. In its place, the ITU Telecommunication Standardization Sector (ITU-T) was
created as of 1 March 1993. Similarly, in this reform process, the CCIR and the IFRB have been replaced by the
Radiocommunication Sector.

In order not to delay publication of this Recommendation, no change has been made in the text to references containing
the acronyms “CCITT, CCIR or IFRB” or their associated entities such as Plenary Assembly, Secretariat, etc. Future
editions of this Recommendation will contain the proper terminology related to the new ITU structure.

2 In this Recommendation, the expression “Administration” is used for conciseness to indicate both a
telecommunication administration and a recognized operating agency.

 ITU 1994

All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means, electronic or
mechanical, including photocopying and microfilm, without permission in writing from the ITU.

 Recommendation Q.775 (03/93) i

CONTENTS
Recommendation Q.775 (03/93)

Page

1 Introduction.. 1

1.1 General.. 1

1.2 Environment ... 1

2 Operations .. 2

2.1 Definition.. 2

2.2 Examples... 2

2.3 Component-related facilities offered to TC-users... 4

2.4 Component-related abnormal situations ... 8

3 Dialogues ... 12

3.1 Grouping of components in a message ... 13

3.2 Dialogue handling facilities .. 14

3.3 Enhanced dialogue control facilities... 21

4 Guidance for writing TC-users protocol specifications ... 24

4.1 Introduction .. 24

4.2 Decomposition of functionality .. 24

4.3 How to specify an application entity and an application context ... 24

4.4 How to specify an ASE... 25

4.5 How to specify operations and errors ... 25

4.6 Data types specifications .. 32

4.7 How to specify abstract syntaxes.. 33

4.8 Encoding rules .. 34

 Recommendation Q.775 (03/93) 1

Recommendation Q.775
Recommendation Q.775 (03/93)

SIGNALLING SYSTEM NO. 7 –
GUIDELINES FOR USING TRANSACTION CAPABILITIES

(Melbourne, 1988; modified at Helsinki, 1993)

1 Introduction

1.1 General

The purpose of this Recommendation is to provide guidelines to potential users of Transaction Capabilities (TC-users).
The examples given are illustrations only; they indicate how an application may use TCAP, not how TCAP must be used
in all cases. The technical basis of this Recommendation are Recommendations Q.771 to Q.774; in case of misalignment,
these should be considered as the primary reference.

The main purpose of TCAP is to provide support for interactive applications in a distributed environment. TCAP is
based on the Remote Operations concept defined in Recommendations X.219 and X.229 (ROSE) together with some
enhancements and additions specific to the Signalling System No. 7 environment to provide the services needed by
TC-users. Interactions between distributed application entities are modelled by Operations. An operation is invoked by
an (originating) entity: the other (destination) entity attempts to execute the operation and possibly returns the outcome
of this attempt.

The semantics of an operation (represented by its name and parameters) is not relevant to TCAP; TCAP provides
facilities which are independent of any particular operation. The TC-user, when defining an application, must:

1) select operations (this involves defining the semantics and syntax of the data exchanged during the
operation invocations and its responses);

2) select TCAP facilities to support these operations. Such facilities include the handling of individual
operations, and the ability to have a number of related operations attached to an association between
TC-users, called a dialogue;

3) define the application script (e.g. which of the two peers invokes which operations, the order of message
exchange that constitutes the dialogue between the peer TC-users, and their reactions to abnormal
situations).

This Recommendation describes the selection process of defining and using operations. The operations appearing
hereafter are fictitious, and are taken for illustration purposes only. Also described are the facilities offered by TCAP for
handling one or a sequence of operations in a dialogue. The definition of specific sequences of operations belongs to the
application protocol definition and is beyond the scope of this Recommendation; however, section 4 gives a brief
indication of what information an application specification should contain.

TCAP services are made accessible to TC-users via primitives; these primitives model the interface between TCAP and
its users, but do not constrain any implementation of this interface.

1.2 Environment

TCAP defines the end-to-end protocol between TC-users located in a Signalling System No. 7 network. At present, there
is no standard interface defined for the use of TCAP over any other underlying protocol or network (e.g. X.25) than
the SCCP of Signalling System No. 7.

TC considers users which are real-time sensitive and do not need to exchange large amounts of data. It is considered that
for these users, the standard protocols defined for OSI layers 4 to 6 in the X-Series of Recommendations would result in
excessive overheads and hence are not used.

As a result, TCAP cannot support all kinds of applications, and a number of applications will still require more elaborate
services such as specified in the X-Series of Recommendations. Beside indicating what TCAP can do, this
Recommendation indicates what it cannot do, in order to help the application designer choose how to support an
application.

2 Recommendation Q.775 (03/93)

2 Operations

2.1 Definition

An operation is invoked by an originating TC-user to request a destination TC-user to perform a given action.

Each operation belongs to a particular class. This indicates whether either a successful outcome (result), or an
unsuccessful outcome (error), or both, or none have to be reported by the destination.

The class of an operation is not signalled to the remote TC-user at the time the operation is invoked; it is assumed that
the applications at both ends have a common understanding of the class of each operation in use.

As well as the class, the definition of the operation includes a timer value indicating the maximum time in which the
operation should be completed and the result reported.

This timer value is a local matter; it is not conveyed to the remote end through any protocol. It is chosen by the TC-user
when defining the operation based on expectations of the round trip time from one TC-user to another and processing
delays.

An operation is defined by:

– its operation code and the type of any parameters associated with the operation request;

– its class;

– if the class requires report of success, the possible results corresponding to successful executions are
defined by a list of parameters;

– if the class requires report of failure, the possible results corresponding to situations where the operation
could not be executed completely by the remote TC-user. Each such situation is identified by a specific
error cause; the list of these error causes is part of the operation definition. Diagnostic information can be
added to the error cause: if present, it is part of the definition;

– the list of possible linked operations, if replies consisting of linked operations are allowed for this
operation. Linked operations have to be described separately;

– a timer value indicating the interval by which the operation has to be completed, if any, returned. This
timer value can be one of the factors that is used by an implementation to manage the invoke ID
associated with the operation invocation. (When the timer associated with an operation invocation has
expired, the invoke ID is returned to the pool of invoke IDs after a suitable, implementation-dependent
“freezing” period.)

As a general rule, the choice of the class of an operation should be based on the semantics associated with an operation
and operations should not be designed to be carried in any particular message. For instance, if the invoker of the
operation does not require any acknowledgement of whether an operation could actually be performed or not, then an
operation of class 4 may be the most appropriate. If an operation invoker does not require explicit acknowledgement that
an operation has been performed successfully, but wishes to know if it could not be performed at all, then an operation
of class 2 is suitable. For example, defining an operation such as “Play Announcement” as class 2 or 4 suggests different
intentions of the operation invoker even though the actions of the operation performer may be identical.

2.2 Examples

2.2.1 Simple operation handlings

Note – The operation invocation should fit into one message, and so should the report of a successful outcome. Reports of
success may be segmented using Return Result – Not last and Return Result – Last.

Class 1 (both success and failure reported)

Translate a freephone number into a called subscriber number; return the called number if the translation can be
performed, otherwise indicate why it cannot; time allocated: 2 seconds.

If the response is not returned for an operation invocation after the timer has expired, the TC-user is informed (operation
cancel led by TCAP); it may assume that either the invocation or the response was lost and, depending on the application
requirements, take suitable corrective actions (e.g. invoke the operation again, inform local management etc.).

 Recommendation Q.775 (03/93) 3

Class 2 (only failure reported)

Perform a routine test and send a reply only in case something went wrong; time allocated: 1 minute.

In the case of a class 2 operation, the TC-user is informed if no result has been received when the timer expires. This is
interpreted as a successful outcome, even if the invocation was lost.

This aspect should be considered when selecting class 2.

Class 3 (only success reported)

Perform a test: this corresponds to a pessimistic view, where failure is considered as the default option, not requiring any
reply.

Timer expiry is indicated to the TC-user: this should be interpreted by the TC-user as a failure of the operation (but is
considered normal by TC, which considers that the operation has terminated). This aspect should be considered when
selecting class 3.

Class 4 (neither success, nor failure reported)

Send a warning, without expecting a reply or acknowledgement of any kind.

In this case, a result never arises from the invocation of the operation. The TC-user relies upon TCAP and the network to
deliver the invocation. Notification of the timer expiry is a local matter.

Comparisons with ROSE operation classes (Recommendation X.219)

ROSE provides for five classes of operations: classes 2 to 5, called asynchronous classes, are identical to classes 1 to 4
of TCAP. ROSE’s class 1 is a synchronous class; it has no counterpart in TCAP, where full-duplex exchanges of
components are considered.

However, a TC-user can decide to operate in a synchronous manner (see 3.2.1).

2.2.2 More complex operation handling

Operations with segmented results

A successful result may be divided into several segments, each of which is indicated to the originator of the operation by
one primitive. This facility, using the TC-RESULT-NL primitive, can be used by TC-users to overcome the absence of
segmentation in the underlying layers. The last segment is indicated by the TC-RESULT-L primitive.

The report of an error cannot be segmented.

When the protocol designer can ensure that segmentation is provided by the underlying layers across the signalling
routes on which TC messages are transferred, the use of this segmenting facility is deprecated.

TC cannot identify a specific segment in the case of a segmented result.

The TC-user should ensure that each segment can be parsed (i.e. the parameter Parameter of each TC-RESULT-NL/L
request primitive should contain enough information to enable the construction of a valid value of the type (or
compatible sub-type) associated with the result of the operation.

Example E1: An operation requests the execution of a test. The result of a correct execution is segmented in three
parts P1, P2 and P3 to be returned to the originator.

A possible primitive sequence for example E1 is given in Table 1.

Linked operations

Another extension to the basic operation scheme is the ability to link an operation invocation to another operation
invocation.

Typically, this facility covers situations where the destination of the original (linked-to) operation requires additional
information in order to process this operation: this is the case where menu facilities are used (menu facilities allow a user
to make a sequence of choices, each being dependent on the previous ones).

4 Recommendation Q.775 (03/93)

TABLE 1/Q.775

Example E2: The operation is the execution of a test with several options; before the test is executed, these options are
offered for selection to the test originator (TC-user A). Two operations are nested: operation 1 is the test; operation 2 is
the option selection. TC-user A first responds to operation 2 before TC-user B can perform the test with the indicated
option(s).

A possible primitive sequence for example E2 is given in Table 2.

There is no limit to the number of operation invocations which may be linked to a given operation invocation.

Note that when an operation B is linked to another operation A, they do not have to be nested. The only condition is that
the invocation of B should take place before the outcome of A is reported; however, operation B does not have to
terminate before operation A.

2.3 Component-related facilities offered to TC-users

2.3.1 Invocation

So far, operations have been considered from the static point of view. Invocation introduces a dynamic aspect: a specific
invocation of an operation has to be differentiated from other possible concurrent invocations of the same or of another
operation.

Each particular activation of an operation is identified by an invoke ID. This invoke ID must be unambiguous. It is
selected by the TC-user which originates the operation invocation, and passed to the destination TC-user, which will
reflect it in its reply (or each segment of a reply) or in a linked invocation: therefore it correlates the reply to an
invocation (or each segment of a reply) or a linked invocation, and the invocation itself.

The TC-user is free to assign any value to the invoke ID (index, address, . . .) provided that its value can be mapped to is
an integer which can be encoded in one octet according to the encoding rules specified in Recommendation Q.773. Note
that such an integer takes values between –128 and 127.

The invoke ID associated with an invocation becomes reusable when the last or only segment of a result is received, or
when certain abnormal situations are indicated by TCAP; however, the value should not be reallocated immediately for
another operation activation, as immediate reallocation would prevent the correct handling of some situations (see
below).

The period during which an invoke ID is released, but cannot be reallocated, is called the freezing period. This period is
implementation-dependent.

TC-user A TC-user B

TC-INVOKE req
(Test, Class = 1)

TC-INVOKE ind
(Test)
TC-RESULT-NL req
(P1)

TC-RESULT-NL ind
(P1)

TC-RESULT-NL req
(P2)

TC-RESULT-NL ind
(P2)

TC-RESULT-L req
(P3)

TC-RESULT-L ind
(P3)

Time

NOTE – The timeout value is specified by the originating TC-user at invocation time.
A non-final result does not restart it.

 Recommendation Q.775 (03/93) 5

TABLE 2/Q.775

As invoke IDs receive their value dynamically at the time the operation is invoked, their value cannot appear in the
specification of the application protocols; rather, a “logical” value, to which a real value is substituted at execution time,
should be indicated in order to identify an operation in a single flow.

Taking invoke IDs into consideration, the sequence of primitives for example E2 above becomes as shown in Table 3:

TABLE 3/Q.775

where the first parameter of a primitive indicates an invoke ID. When both parameters have to be present, the second one
is the linked ID. This is a pure notational convention.

2.3.2 Cancel (by the TC-user)

The TC-user requesting invocation of an operation may stop the activity associated with the corresponding invoke ID,
for any reason it finds appropriate. However, cancel should in principle be reserved for abnormal situations: the normal
method for terminating an operation is to receive a result or to terminate on timer expiry.

TC-user A TC-user B

TC-INVOKE req
(Test, Class = 1)

TC-INVOKE ind
(Test)
TC-INVOKE req
(Option-selection, Class = 1)

Operation 1 begin

Operation 2 begin

TC-INVOKE ind
(Option-selection)
TC-RESULT-L req
(Options)

TC-RESULT-L ind
(Options)
TC-RESULT-L req
(Test-result)

Operation 2 end

TC-RESULT-L ind
(Test-result)

 Operation 1 end

Time

TC-user A TC-user B

TC-INVOKE req
(1, Test, Class = 1)

TC-INVOKE ind
(1, Test)
TC-INVOKE req
(2, 1, Option-selection, Class = 1)

TC-INVOKE ind
(2, 1, Option-selection)
TC-RESULT-L req
(2, Options)

TC-RESULT-L ind
(2, Options)
TC-RESULT-L req
(1, Test-result)

TC-RESULT-L ind
(1, Test-result)

Time

6 Recommendation Q.775 (03/93)

Cancelling has local effect only: it does not prevent the remote TC-user from sending replies to a cancelled operation.
When received, these replies will be rejected by TCAP, as illustrated in the following, which represents a sequence of
primitives for the example E1 defined above, where TC-user A cancels the test after receiving the first segment of the
result.

In Table 4, segment P2 is not received by TC-user A: TCAP detects a reject situation (no active Invoke ID) and therefore
does not deliver it to TC-user A, and any attempt by TC-user B to send more segments of the reply is rejected at A’s
side.

TABLE 4/Q.775

2.3.3 Reject (by the TC-user)

The TC-user has the sole responsibility of deciding when to send a reject component or when to return an error (failure
to perform an operation) indication. The TC-user may reject a component for any reason it finds appropriate, providing
that there is a suitable reject problem code defined in the TCAP specifications (e.g. mandatory information element
missing in an operation, error or reply, unexpected operation, unknown operation, etc.) that it can use for the purpose.

Similarly, the TC-user decides which error code and diagnostic information (which is specified as part of the TC-user
protocol specifications and agreed to by the two peer TC-users for just this purpose) to use when sending an error
component.

The role of the TC-user is illustrated in the following example.

The TC-user at side A expects, in a given situation, to receive operation Y only as a linked operation. When receiving
from side B an Invoke component with an operation code referring to Y but no linked ID, the TC-user at side A may
elect to:

– not perform the operation and return an error with some previously-determined diagnostic parameter
specified in the TC-user application specification just for this purpose;

– reject the component as an “unrecognized operation”.

Interpretation of the returned error diagnostic or reject problem code is the responsibility of the TC-user at side B and is
not described in the TCAP Recommendations.

Reject of an operation invocation, or of a result, affects the whole operation: no more replies will be accepted by TC for
this invocation. Reject of a linked operation does not affect the linked-to operation as far as TC is concerned. The
TC-user should describe their reactions to such abnormal situations as part of their application script.

TC-user A TC-user B

TC-INVOKE req
(1, Test, Class = 1)

TC-INVOKE ind
(1, Test)
TC-RESULT-NL req
(1, P1)

LTC-RESULT-NL ind
(1, P1)
Cancel decision:
TC-CANCEL req
(1)
TC-REJECT ind
(1, Problem Code)

...

TC-RESULT-NL req
(1, P2)

...

Time

 Recommendation Q.775 (03/93) 7

This is illustrated in Table 5 where, in example E2, TC-user A did not expect the option selection process (it may be an
optional feature), and rejects the operation with the Problem Code “Unexpected Linked Operation”. TC-user B may then
decide to execute the test assuming a default option.

TABLE 5/Q.775

When an operation invocation is rejected, the TC-user may decide to reinvoke it (e.g. the invoke component was
corrupted); this would be a new invocation (new Invoke ID). It may also decide to abort the dialogue. A very simple
dialogue (a question and a response) may not define any recovery mechanisms, except when the operation is of critical
importance (e.g. a data base update).

2.3.4 Remote cancel (by the TC-user)

TC does not provide any specific service for cancelling the remote execution of an operation in progress. The cancel
service provided by the TC-U-CANCEL req primitive has only a local effect (see 2.3.2).

However, a remote cancel procedure can be defined at the TC-user level, using existing TC services. One solution for
the TC-user is to include in one of the ASEs used by the application-context, an operation whose purpose is to cancel
existing invocations.

The following ASN.1 module provides a description of such an operation type. This type (and the associated error type)
can be imported in one of the modules used by the TC-user so that it can allocate suitable operation and error codes.
Alternatively the TC-user may also design its own operation based on the same principles.

TCAP-Tools { ccitt recommendation q 775 modules(2) tools(1) version1(1) }

DEFINITIONS ::=
BEGIN
EXPORTS Cancel, CancelFailed, Cancelled;

IMPORTS OPERATION, ERROR, InvokeIdType
FROM TCAPMessages { ccitt recommendation q 773 modules(2) messages(1) version2(2) };

Cancel ::= OPERATION
ARGUMENT InvokeIdType
-- a TC user may redefine this type to include
-- an empty result so that it becomes a class 1 operation
ERRORS { CancelFailed }
-- timer = 15 s

TC-user A TC-user B

TC-INVOKE req
(1, Test, Class = 1)

TC-INVOKE ind
(1, Test)
TC-INVOKE req
(2, 1, Option-selection, Class = 1)

TC-INVOKE ind
(2, 1, Option-selection)
TC-U-REJECT req
(2, Problem Code)

 TC-U-REJECT ind
(2, Problem Code)
TC-RESULT-L req
(1, Test-result)

TC-RESULT-L ind
(1, Test-result)

Time

8 Recommendation Q.775 (03/93)

CancelFailed ::= ERROR
PARAMETER SET {
 problem [0] CancelProblem,
 invokeId [1] InvokeIdType }

CancelProblem ::= ENUMERATED
{ unknownInvocation(0),
 tooLate (1),
 notCancellable (2) }
-- a TC-User may redefine this type to include application-specific problems

Cancelled ::= ERROR
-- an error of this type should be included in the error list of cancellable operations

END

It is necessary to include a “cancelled” error in the list of errors attached to the cancellable operations. In such a case, the
TC-user which receives the cancel request will issue a TC-U-ERROR req primitive to terminate the operation. The
receipt of an error component with this error code and the corresponding TC-U-ERROR ind will then terminate the
operation at the invoking side.

The operation to be cancelled is identified by the invokeId which has been allocated to it at invocation time. The
invocation of the Cancel operation does not affect the invocation state machine of the operation to be cancelled, because
the invokeId carried in the operation argument is not visible to the component sub-layer.

If the cancellation fails, a user error is reported with three possible diagnostics:

– unknownInvocation: If the invocation has never happened, or has been forgotten;

– tooLate: If the invocation is still known but the execution is at a stage that does not permit a cancellation;

– notCancellable: The invokeId in the argument of the cancel operation corresponds to an operation which
has not been agreed by the TC-users being cancellable by the invoking side.

When the cancellation is performed with success and no return error with error code indicating “cancelled” is received
for the cancelled operation, the timer associated with the cancelled operation will expire, causing a TC-L-CANCEL ind
primitive to be issued by TC.

Alternatively the TC-user requesting the cancellation may decide to issue a TC-U-CANCEL req immediately after
having sent the cancel request so that no further local activities exist for the operation to be cancelled.

The use of the cancel mechanism makes sense if the Cancel operation is invoked before the expiration of the timer
associated with the operation to be cancelled. After this, the invoke Id may not be recognized at the performing side as
the operation execution may have completed and the response primitive issued. The ability to cancel the execution of an
operation after timer expiry is outside the scope of these guidelines because it would mean that the objective is not to
cancel the operation execution but the subsequent actions which may have been triggered at the performing end by the
invocation.

2.4 Component-related abnormal situations

2.4.1 Component loss

TCAP assumes a very low probability of message loss in the network; if this probability is too high for an application, it
should use the connection-oriented network service approach. If some protocol information needs an upgraded Quality
of Service (e.g. charging information), the application should introduce its own mechanisms to obtain higher reliability
for this information.

Loss of an operation invocation

Table 6 illustrates the case, in example E1, where no response to the test is received before the time limit expires.

 Recommendation Q.775 (03/93) 9

TABLE 6/Q.775

When a class 1 operation is lost, the TC-user is informed when the timer associated with the operation expires. When a
class 1 operation with a single result (in a single segment) is lost, TCAP cannot indicate whether either the operation
invocation, or the reply, was lost. If the application needs to discriminate between these two cases, it should do it in the
application protocol (e.g. using the time-stamping or acknowledging the operation invocation before replying to it).

For a class 2 operation, loss will be considered as a success (whether the invocation, or the failure report, was lost). This,
considering the probability of loss, may be acceptable for non critical operations (e.g. statistical measurements).

For a class 3 operation, loss is treated in the same way as operation failure, whether the invocation, or the success report,
has been lost.

For a class 4 operation, loss will not be visible to TCAP.

Loss of a result

– Loss of a non final result is never detected by TCAP.

– Loss of a final result will eventually be indicated to the TC-user when the time limit is reached, but cannot
always be unambiguously interpreted as the loss of a reply; if no non-final result has been received, it may
be that the invocation was lost.

Loss of a linked operation

The loss of a linked operation has the same effect as the loss of a non-linked operation. It has no effect on the linked-to
operation.

Loss of a reject component

This case should be extremely infrequent, and no application should try to recover from such a situation. If the lost reject
concerns an operation invocation, then when the operation times out, the TC-user who invoked the operation will
consider that the invocation (or the reply) was lost, and react accordingly; if it concerns a reply, the originator of the
reply will not be aware that it was incorrect: it will be up to the originator of the operation to detect the loss.

2.4.2 Component duplication

As message duplication is very infrequent in the Signalling System No. 7 network, scripts for No. 7 applications need
not define sophisticated scenarios in anticipation of such situations. However, any application in which duplication
would be unacceptable should either define its own duplication detection mechanism or use a connection-oriented
service.

Duplicate operation invocation

When an operation invocation is duplicated (by the service provider), the destination TC-user (B) may, or may not,
detect the duplication:

– TC-user B detects the duplication: the duplicate may be rejected using the problem code “duplicated
invoke ID”. In the case of such a rejection, this can be interpreted by the remote TC-user as rejection of
the original invocation;

– TC-user B does not detect the duplication: this may happen when there is a master-slave relationship
between A and B, and B executes the operation with no knowledge of the context.

TC-user A TC-user B

TC-INVOKE req
(1, Test, Class = 1)

Time limit:
TC-L-CANCEL ind
(1)

Time

10 Recommendation Q.775 (03/93)

Assuming the second case in example E1, a possible sequence could be as given in Table 7.

TABLE 7/Q.775

In this sequence, TC-user B considers two independent test invocations, and responds to each of them. The first result P1
is accepted; TC-user A detects that P1 is received a second time, and rejects it; this terminates the operation, and causes
result P2 to be rejected when received (reject by TCAP). Therefore, both activities at B’s side will terminate on receipt
of rejects.

Duplicate non-final result

If a non-final result is duplicated, TCAP cannot detect it, and will deliver it twice to the TC-user. Detection of this
situation is left to the application.

Duplicate final result

If a final result (RR-L) is duplicated, TCAP can detect the situation: the second final result is considered as abnormal
(the operation has been terminated by the first “final” result), and TCAP rejects it.

Table 8 shows a sequence for example E1 where the third segment of the result is duplicated (by the network).

Comment: Discarding of duplicates in all cases by TCAP would probably appear to be an helpful feature. However, it
should be noted that:

1) it would require another degree of complexity in TCAP, which contradicts the basic characteristics of
TCAP in the connectionless approach;

2) it corresponds to a situation which is extremely infrequent, at least in the No. 7 network.

To cover these situations when required by an application, it would be better to use a connection-oriented network
service approach, since duplication could then be detected and handled at the lower layers.

TC-user A TC-user B

TC-INVOKE req
(1, Test, Class = 1)

TC-INVOKE ind
(1, Test)
TC-INVOKE ind
(1, Test)
TC-RESULT-NL req
(1, P1)
TC-RESULT-NL req
(1, P1)

Undetected duplication of
invocation

TC-RESULT-NL ind
(1, P1)
TC-RESULT-NL ind
(1, P1)
A detects an abnormal situation and rejects:
TC-U-REJECT req
(1, Problem Code)
TC detects an abnormal situation and
rejects P2:
TC-L-REJECT ind
(1, Problem Code)

TC-RESULT-NL req
(1, P2)
TC-U-REJECT ind
(1, Problem Code)

 TC-R-REJECT ind
(1, Problem Code)

Time

 Recommendation Q.775 (03/93) 11

TABLE 8/Q.775

2.4.3 Component missequencing

For TCAP, the order of segmented results is not relevant: if the order is important to the TC-user, appropriate
mechanisms should be defined in the application protocol (e.g. by introducing a numbering scheme to identify
intermediate replies in a parameter of these replies, or by using a connection-oriented service).

Due to missequencing, a non-final result may arrive after a final result: when this occurs the non-final result is rejected
by TCAP. This is because the final result causes TCAP to close the invocation state machine associated with this
operation; so when the delayed non final result is received it cannot be associated with any active invocation state
machine.

The sequence in Table 9 illustrates what happens in example E1 when the last part of the result is received before the
second one: both TC-users are informed.

If a linked operation invocation is received after the final result of the linked-to operation (as a result of a
missequencing), the linked operation is rejected.

TCAP assumes a very low probability of missequencing; if the supporting network is not satisfactory in this respect, the
connection-oriented network service approach should be considered.

2.4.4 Reject of a component by TCAP

A general principle when TCAP receives a component (operation invocation or reply) which is either not formatted
correctly, or received out of context (e.g. a reply without a prior operation invocation), is to reject it, which means that:

1) TCAP forms a Reject component to inform the originator of the faulty component and informs the local
TC-user of the Reject component waiting to be sent to the remote end; TCAP provides whatever
information is available on the nature of the component being rejected (if the dialogue has not already
been terminated by the remote TC-user).

2) In reaction to this, the local TC-user may decide to abort, continue, or end the dialogue. In the last two
cases, when the TC-user notifies TCAP of its decision, the peer TC-user is informed of the reject.

TC-user A TC-user B

TC-INVOKE req
(1, Test, Class = 1)

TC-RESULT-NL ind
(1, P1)
TC-RESULT-NL ind
(1, P2)

TC-INVOKE ind
(1, Test)
TC-RESULT-NL req
(1, P1)
TC-RESULT-NL req
(1, P2)
TC-RESULT-L req
(1, P3)

TC-RESULT-L ind
(1, P3)
TC receives
RR-L (1, P3)
Duplication of P3:
TC-L-REJECT ind
(1, Problem Code)

 TC-R-REJECT ind
(1, Problem Code)

Time

12 Recommendation Q.775 (03/93)

TABLE 9/Q.775

Possible cases of reject by TCAP have been encountered in the previous sections. Whenever the invoke ID is
recognized, rejection by TCAP causes the termination of the operation: a possible recovery by the TC-user is a new
invocation of the terminated operation. When the rejected component is not identifiable, the local TC-user is informed of
the received malformed component, and a NULL invoke ID value is included in the Reject component waiting to be
sent. However, as this Reject component cannot be associated with any known invocation, abort of the dialogue may be
the appropriate reaction.

2.4.5 Operation timer expiry

When TCAP informs the TC-user of timer expiry (TC-L-CANCEL indication), it indicates that no more information
related to the operation invocation (in particular, no reject) can be received. If the peer entity still sends information in
relation to this invocation, this information will be discarded when received, provided that the invoke ID of the cancelled
operation has not been reallocated. Premature reallocation of invoke ID values is normally avoided by correctly setting
timer values and choosing the time an invoke ID is “frozen” after it has been released. In order to compensate for
uncertainties in the amount of time required to send information from TC-user to another without accounting for the
absolute worst case (which is also in general the most unlikely), an implementation-dependent mechanism avoiding
premature reallocation of invoke IDs is required.

Timer expiry indication corresponds to an abnormal situation only in the case of a class 1 operation. The TC-user is then
aware that either the invocation, or the reply, was lost. If no undesirable side effects arise, another invocation of the same
operation can take place after timer expiry. This is illustrated by the sequence in Table 10 for example E1.

Timer expiry for a class 2 operation indicates that no failure was received nor will be accepted for this invocation: it is a
definite indication of success (for class 2) if it is assumed that there is no possibility of message loss in the network. A
parallel situation applies to class 3 in case of failure. The indication of timer expiry for a class 4 operation is a local
decision.

3 Dialogues

Whenever one of the operation handling primitives considered in 2 is issued, a request is passed to TCAP, but nothing is
sent to the remote TC-user until a primitive requesting transmission is issued. These primitives, and their relation with
operation handling primitives, are considered now.

TC-user A TC-user B

TC-INVOKE req
(1, Test, Class = 1)

TC-INVOKE ind
(1, Test)
TC-RESULT-NL req
(1, P1)

TC-RESULT-NL ind
(1, P1)

TC-RESULT-L ind
(1, P3)
RR-NL (1, P2) PDU arrives
Missequenced resuslt:
reject (no active state machine)
TC-L-REJECT ind
(1, Problem Code)

TC-RESULT-NL req
(1, P2)
TC-RESULT-L req
(1, P3)

 TC-R-REJECT ind
(1, Problem Code)

Time

 Recommendation Q.775 (03/93) 13

TABLE 10/Q.775

3.1 Grouping of components in a message

The effect of TC-user issuing a component handling primitive (unless this primitive has local effect only), is to build a
component to be included in a message. The message is not transmitted until the TC-user requests it.

Note that a component may also be generated as a consequence of a TCAP reject procedure: in this case this component
is put in the next message for the dialogue unless this dialogue is aborted.

Provided that the maximum size of a message is not exceeded, several components can be grouped and sent to the
remote end as a single message, thereby saving transmission overhead. This is done under control of the TC-user, who
explicitly specifies when it wants (all) the component(s) awaiting transmission to be sent. The components awaiting
transmission are those for which the TC-user has previously issued a component-handling primitive with the same
dialogue ID.

Until such time when the SS No. 7 SCCP layer provides a segmenting and reassemble capability, the TC-user has to
ensure that the maximum size of an SS No. 7 message will not be exceeded.

Example E3, as given in Table 11, shows the beginning of a dialogue with a network service centre where a switch
requests instructions (operation 1) and receives a request to connect the call to a given destination address, and a request
to send information (e.g. announcement or message to be displayed) to the calling party. Both components are contained
in a single message.

TC-BEGIN and TC-CONTINUE are transmission primitives described in 3.2.

There may be one transmission primitive for each component (thus there is only one component maximum in each
message), or fewer transmission primitives than components which allows the grouping of components within a
message. In addition, the information contained in the parameters of the transmission primitives (e.g. addressing
information) applies to all the components included in the message.

At the originating side, the primitive requesting transmission appears after the component handling primitives; this
indicates that the transmission of all the preceding components has to take place immediately; it avoids indicating
specific components to be transmitted with a given transmission primitive, and allows transmission primitives without
any associated component.

At the destination side, the primitive indicating the reception of transmitted components appears first: it contains control
information which is necessary for TCAP to deliver each of the components (if any) in the message; the last component
of the message is indicated to the TC-user by the “Last Component” parameter. The components are delivered to the
destination TC-user in the same order as they were passed to TCAP by the originating TC-user.

TC-user A TC-user B

TC-INVOKE req
(1, Test, Class = 1)

TC-INVOKE ind
(1, Test)

Timer expiry:
TC-L-CANCEL ind
(1)
TC-INVOKE req
(2, Test, Class = 1)

Time

14 Recommendation Q.775 (03/93)

TABLE 11/Q.775

3.2 Dialogue handling facilities

When two TC-users co-operate in an application, more than one operation invocation is generally required. The resulting
flow of components has to be identified so that:

1) components related to the same flow can be identified;

2) flows corresponding to several instances of the same application can be identified and allowed to run in
parallel.

Each such flow is called a dialogue by the TC-user and is identified by a corresponding Dialogue ID parameter. The
dialogue handling facility provided for this purpose is the structured dialogue.

When only a single message is required to complete a distributed application, the Unidirectional message of the
unstructured dialogue may be used. The originator does not expect a report of the outcome of the operation (i.e. may
only invoke class 4 operations), but may receive a report of a protocol error if one occurs. This report of a protocol error
will also be carried in a Unidirectional message.

3.2.1 Structured dialogue

3.2.1.1 General

The use of dialogues allows several independent flows of components to co-exist between two TC-users. The Dialogue
ID parameter is used in both operation handling and transmission (dialogue) handling primitives to determine which
component(s) pertain(s) to which dialogue.

In the following examples, the Dialogue ID parameter is represented (by convention) by the first parameter in these
primitives, starting with letter D. Each TC-user has its own reference for a given dialogue. Local references (those used
on the interface) are represented here; mapping of these local references onto protocol references (called
Transaction IDs) included in messages is done by TCAP.

Three primitives have been defined for handling dialogues under normal circumstances; they indicate dialogue begin
(TC-BEGIN), continuation (TC-CONTINUE) or end (TC-END). Each of these primitives may be used to request
transmission of 0, 1 or several components; these components may contain information relating to one or several
operations.

TC-user A TC-user B

TC-INVOKE req
(1, Provide-Instructions, Class = 1)
TC-BEGIN req
(Control parameters)

 TC-BEGIN ind
(Control parameters)
TC-INVOKE ind
(1, Provide-Instructions)
TC-INVOKE req
(2, 1, Connect-Call)
TC-RESULT-L req
(1, Send-Info)
TC-CONTINUE req
(Control parameters)

TC-CONTINUE ind
(Control parameters)
TC-INVOKE ind
(2, 1, Connect-Call)
TC-RESULT-L ind
(1, Send-Info)

Time

 Recommendation Q.775 (03/93) 15

Table 12 illustrates a possible sequence for example E2, where the test request starts the dialogue, which ends when the
test result has been sent.

TABLE 12/Q.775

Any grouping of components is allowed in the messages of a dialogue: TCAP does not check, for instance, that a
message terminating a dialogue does not include operation invocations of class 1.

Full-duplex exchange of components is assumed: if a TC-user wants to introduce some restrictions, e.g. working in a
synchronous mode as defined for ROSE users, it would have to introduce the necessary procedures itself.

3.2.1.2 Exchange of messages

Transmission of messages is accomplished with the Quality of Service of the underlying layer services: no flow control
or error recovery mechanisms are provided by TCAP.

– The first dialogue handling primitive of a dialogue must indicate dialogue begin (TC-BEGIN). Further
messages must not be sent from the side originating the dialogue until a message is received in the
backward direction, indicating dialogue continuation.

TC-user A TC-user B

TC-INVOKE req
(D1, 1, Test, Class = 1)
TC-BEGIN req
(D1, Address)

 TC-BEGIN ind
(D2, Address)
TC-INVOKE ind
(D2, 1, Test)
TC-INVOKE req
(D2, 2, 1, Option-selection, Class = 1)
TC-CONTINUE req
(D2)

TC-CONTINUE ind
(D1)
TC-INVOKE ind
(D1, 2, 1, Option-selection)
TC-RESULT-req
(D1, 2, Options)
TC-CONTINUE req
(D1)

 TC-CONTINUE ind
(D2)
TC-RESULT-L ind
(D2, 2, Options)
TC-RESULT-L req
(D2, 1, Test-result)
TC-END req
(D2)

TC-END ind
(D1, normal)
TC-RESULT-L ind
(D1, 1, Test-result)

Time

NOTE – D1 and D2 are local references for the same dialogue and map onto transaction
IDs which appear in the messages.

16 Recommendation Q.775 (03/93)

– If a TC-user tries to send a large number of messages in a short amount of time, no flow control
mechanism in TCAP will prevent it.

– SCCP class 1 in-sequence delivery can be requested as an option, indicated by the Quality of Service
parameter. Note that this option may not be available end-to-end when interworking with a network
which does not provide it.

3.2.1.3 Dialogue end

TCAP places no restriction on the ability for a TC-user to request dialogue end. It follows that messages may be lost if
no precautions are taken in the application on when the dialogue may end.

In particular, if the application protocol allows both TC-users to issue TC-END primitives at about the same time, and if
these primitives trigger transmission of components, it is likely that some (if not all) of these components will not be
delivered to their respective destination TC-users.

It is up to the application to define, if necessary, its own rules concerning the right to end a dialogue: TCAP will not
check them.

Any message received for a terminated dialogue is discarded if it requests dialogue end, and any message other than an
End or an Abort causes the dialogue to be aborted at the remote entity.

It should be noted that a TC-user cannot reject, by means of a TC-U-REJECT request primitive, any component received
in an END message. If it is important for an application to be able to reject any component received or be notified of
rejections by the remote end, then all components must be placed in either the initial BEGIN message or subsequent
CONTINUE messages.

The dialogue is terminated by either the pre-arranged method, or by sending an END message containing no
components, or REJECT components (if applicable).

The differences between the three ways of ending a dialogue are as follows.

Prearranged end

A typical application is the access to a distributed data base, where the requesting user (TC-user A) does not know where
the information it seeks is located. TC-user A broadcasts a request to each location which might have the information
required, and will eventually receive a response from the TC-user which holds this information. Prearranged end avoids
messages from the other destinations saying: “I do not have this information”. Only the responding destination may
continue the dialogue (if so wished); all other destination will, by convention, end the dialogue locally; the originator of
the requests will also end the dialogues with the non-responding destinations locally, when it receives the response to its
request. Note that the convention is between applications: TCAP does not check that it is respected, nor is it indicated in
the TCAP protocol.

Example E4 in Table 13 illustrates this situation, with two destinations B1 and B2; two dialogues (D1, D2) and (D3, D4)
are started; B1 happens to own the requested information, and decides to continue the dialogue.

Prearranged end may also be used when a TC-user wants to send information, and does not expect a reply of any kind
afterwards.

Basic end

When a TC-user issues the TC-END request primitive, it causes transmission of any pending components to the remote
end. TCAP does not check that all operation invocations have received a response when dialogue end is requested: no
notification is given to the TC-user that any pending operation invocations have not received a final result.

At the receiving end, the dialogue is considered terminated when all the components received within the message
indicating the end have been delivered to the TC-user.

Example: the dialogue ends when the test in example E1, Table 14, receives a response.

 Recommendation Q.775 (03/93) 17

TABLE 13/Q.775

TABLE 14/Q.775

TC-user A TC-user B1 TC-user B2

TC-INVOKE req
(D1, 1, Question)
TC-BEGIN req
(D1, Address)
TC-INVOKE req
(D3, 1, Question)
TC-BEGIN req
(D3, Address)

TC-BEGIN ind
(D2, Address)
TC-INVOKE ind
(D2, 1, Question)

TC-RESULT-L req
(D2, 1, Response)
TC-CONTINUE req
(D2)

......

TC-BEGIN ind
(D4, Address)
TC-INVOKE ind
(D4, 1, Question)
B2 does not have the information:
TC-END req
(D4, local)

TC-CONTINUE ind
(D1)
TC-RESULT-L ind
(D1, 1, Response)
MMD1 goes on
MMD3 ends locally
TC-END req
(D3, Local)

Time

TC-user A TC-user B

......

TC-END ind
(D1)
TC-RESULT-NL ind
(D1, 1, P1)
TC-RESULT-NL ind
(D1, 1, P2)
TC-RESULT-L ind
(D1, 1, P3)
End of dialogue for A

......

TC-RESULT-NL req
(D2, 1, P1)
TC-RESULT-NL req
(D2, 1, P2)
TC-RESULT-L req
(D2, 1, P3)
TC-END req
(D2, normal)
End of dialogue for B

Time

18 Recommendation Q.775 (03/93)

Abort by the TC-user

The abort facility allows the TC-user to stop the dialogue at any time. A typical case is when the user abandons the
service. The main differences between this and normal ending are:

– any components for which transmission is pending are not sent to the peer entity;

– peer-to-peer TC-user information can be transmitted at the time the abort is issued, and this is delivered to
the remote TC-user.

The sequence given in Table 15 shows a user abandonment in example E2.

TABLE 15/Q.775

3.2.1.4 Message-related abnormal situations

These are considered independently from the effects of such events in the Component sub-layer.

Message loss

TCAP provides no protection against message loss. Three cases are identified:

1) the message begins a new dialogue: the dialogue will exist at the originating side only, and no message
will be allowed in either direction. Eventually, an implementation-dependent mechanism at the
originating end ends the dialogue;

2) the message continues an existing dialogue: loss is not detected. TCAP will react (or not) to the loss of
included components as indicated in 2.4.1;

3) the message ends a dialogue: TCAP will eventually react (via a timer expiry as described in 2.4.1) if this
message contained a response to a class 1 operation: otherwise an implementation-dependent mechanism
ends the dialogue at the destination end.

TC-user A TC-user B

TC-INVOKE req
(D1, 1, Test, Class = 1)
TC-BEGIN req
(D1, Address)

 TC-BEGIN ind
(D2, Address)
TC-INVOKE ind
(D2, 1, Test)
TC-INVOKE req
(D2, 2, 1, Option-selection, Class = 1)
TC-CONTINUE req
(D2)

TC-CONTINUE ind
(D1)
TC-INVOKE ind
(D1, 2, 1, Option-selection)
TC-U-ABORT req
(D1, Cause)

 TC-U-ABORT ind
(D2, Cause)

Time

 Recommendation Q.775 (03/93) 19

Message duplication

Duplication of a BEGIN message causes two transactions to be opened, as indicated below: each of these transactions
has its own local ID, and the same destination ID. The TC-user eventually detects that something is wrong, and both
dialogues are aborted.

The sequence given in Table 16 illustrates a duplication of the BEGIN message in example E2.

TABLE 16/Q.775

At that moment, there is still one dialogue (with local ID D2) at TC-user B’s side, but no dialogue at A’s side. TC-user B
will receive an indication from TCAP when operation 2 of dialogue D2 timeouts with no reply (TC-L-CANCEL ind),
and may then decide to abort D2. Note that the situation would be more difficult to detect, had TC-user B not invoked a
class 1 operation.

Duplication of a CONTINUE message is not detected by TCAP.

When an END message is duplicated, the second message is received with an ID which does not correspond to an active
dialogue: TCAP reacts by discarding the duplicate message.

TC-user A TC-user B

TC-INVOKE req
(D1, 1, Test, Class = 1)
TC-BEGIN req
(D1, Address)

TC-CONTINUE ind
(D1)
TC-INVOKE ind
(D1, 2, 1, Option-select)

TC-BEGIN ind
(D2, Address)
TC-INVOKE ind
(D2, 1, Test)
Duplicated BEGIN:
TC-BEGIN ind
(D3, Address)
TC-INVOKE ind
(D3, 1, Test)
Response to the first Begin
TC-INVOKE req
(D2, 2, 1, Option-select, Class = 1)
TC-CONTINUE req
(D2)
Response to the second Begin
TC-INVOKE req
(D3, 2, 1, Option-select, Class = 1)
TC-CONTINUE req
(D3)

TC-CONTINUE ind
(D1)
TC-INVOKE ind
(D1, 2, 1, Option-select)
TC-user considers that this invocation is
abnormal, and may reject it, or abort one of
the dialogues:
TC-U-ABORT req
(D1, Cause)

 TC-U-ABORT ind
(D3, Cause)

Time

20 Recommendation Q.775 (03/93)

Missequencing of messages

When the missequenced messages involve neither the beginning, nor the end of a dialogue, missequencing is not
detected by TCAP, and may result in component missequencing, to which TCAP would react as indicated in 2.4.3.

When a message indicating dialogue continuation arrives after a message indicating the end of the same dialogue, it is
not delivered, and causes TCAP to abort the dialogue; the TC-user will probably detect the loss when receiving a
premature dialogue end indication. If the application needs to recover from this case, a new dialogue should be started.

Message corruption

When receiving a corrupted message, TCAP reacts as indicated in Recommendation Q.774.

Table 17 shows the sequence of primitives when TCAP decides to abort the dialogue after receiving a corrupted message
in example E2.

TABLE 17/Q.775

3.2.1.5 Relations between dialogue and component handling

The following gives some guidelines on when dialogue end can be requested; if these are not respected, TCAP will not
refuse the request for dialogue end.

The problems that may result from the collision of messages requesting dialogue end have been considered above.

Normal end should not be requested when:

– there are operation invocations pending for the dialogue;

– the application protocol anticipates that replies being transmitted with the termination request could be
rejected.

Many applications might not define recovery scenarios in response to a rejected reply. This legitimizes the transmission
of replies or of class 4 operations in a message indicating dialogue end. The other applications should either use the
connection-oriented network service approach, or end the dialogue with a message containing no component, that would
be sent only when a reject indication can no longer be received.

TC-user A TC-user B

TC-INVOKE req
(D1, 1, Test, Class = 1)
TC-BEGIN req
(D1, Address)

 TC-BEGIN ind
(D2, Address)
TC-INVOKE ind
(D2, 1, Test)
TC-INVOKE req
(D2, 2, 1, Option-select, Class = 1)
TC-CONTINUE req
(D2)

Corrupted message:
TC-P-ABORT ind
(D1, Cause)

TC-P-ABORT ind
(D2, Cause)

Time

 Recommendation Q.775 (03/93) 21

It is recommended that an operation for which a reply is expected not be sent in an END message (i.e. that the TC-user
does not issue a TC-END req primitive to trigger the associated component). It should be noted that this is not a
requirement of the TCAP protocol nor, except as a sensible guideline, of the TC-user. If a TC-user chooses to send an
invoke component for an operation of class 1, 2 or 3 in an END message, it has no pathological implications for the
peer TCAP protocol machines or the TC-users. It is a local matter on how the performing side discards any components
generated as a result of performing the operation when there is no active dialogue. Indeed, the fact that the TC-user
invoking the operation has chosen to include it in an END message means that it has decided for this instance to
over-ride the operation’s inherent semantics and does not care to be told if the operation could be performed or not.

3.2.1.6 Addressing issues

The TC-user initiating a dialogue must give the Destination Address and Originating Address to TC. The TC-user
providing the Originating Address is responsible for giving this address in such a form that the remote TC can use it,
without checking, to reach it.

TC above connectionless SCCP uses any of the addressing options provided by the SCCP. So any combination of types
of address for the destination and Origination addresses is allowed.

During the establishment of a dialogue the combination of addresses may be optimized by both the B-side TC-user
and TCAP.

The optional originating address parameter in the first TC-CONTINUE request primitive can be used to change the
address which should be used for routing the subsequent messages associated with the dialogue. The actual destination
itself should not be changed by this modification. If a new destination is to be reached, the dialogue should be terminated
and a new one started to the new destination.

Example of address changes which do not modify the actual destination are:

– Initial address was a global title, subsequent address is a PC and SSN for the same destination to allow
optimal routing (generally not crossing network boundary).

– A general global title is used to select a data base from a set of replicated data bases. The responding data
base returns its own specific Global Title.

3.2.1.7 Quality of Service

The dialogue handling request primitives allow the TC-user to request a particular Quality of Service from the network
layer. If no specific request is made by the TC-user, default options are selected by SCCP (i.e. no return option, no
sequencing).

If sequence control is requested, the TC-user is also responsible for providing information enabling the network layer to
identify a flow of related messages to be delivered in sequence.

It is recommended that sequence control be requested by TC-users when using the TC-RESULT-NL services.

3.2.2 Unstructured dialogue

A Unidirectional message will contain only class 4 operation invocations or reports of protocol errors in such
invocations. Multiple components can be transmitted in a Unidirectional message provided that the maximum message
size of a message is not exceeded.

3.3 Enhanced dialogue control facilities

3.3.1 Overview

As the number of signalling applications using TCAP grows, it will become necessary to be able to differentiate between
them during an instance of communication – particularly when a number of them reside at the same location within a
SS No. 7 node.

The ability to signal at the start of the dialogue which application protocol (among potentially many) is involved in the
subsequent exchange of messages is provided by the optional functions and protocol of the Dialogue Portion. The
optional Dialogue Portion allows the negotiation of the Application Context and, as a further option within it, the
transparent transfer of user data which are not components. The latter might be used to convey, for example,
initialization data, versions of user protocols, further refinement of the application context, passwords, etc.

22 Recommendation Q.775 (03/93)

3.3.2 Use of the Application-Context

The TC-user which begins a dialogue can propose an application-context to its peer by including an application-context-
name in the TC-BEGIN req primitive. The application-context refers to the set of ASEs and the associated coordinating
rules which may be required during the dialogue.

If the Application-context-name is acceptable, the responding TC-user can either decide to continue or terminate the
dialogue in a normal manner. Except if it requests a pre-arranged termination, it shall include the same AC-name in the
first (or unique) dialogue handling request primitive it uses.

If the AC-name is not acceptable, the TC-user may elect to:

i) Discard the received components and issue a TC-U-Abort req primitive to indicate that it refuses the
dialogue. It shall include an application-context-name in this primitive which is either the one received or
a alternative one to be used by the dialogue-initiator to make a new attempt. TC does not provide a
standard feature to enable the TC-user to propose more than one alternative AC-name. However, such a
procedure can be defined outside the scope of TC using the user-information parameter (see 3.3.3).

ii) Continue the dialogue but indicate that it makes use of an alternative AC (e.g. one which does not use the
ASE(s) it does not support), by including another application-context-name in the first TC-CONTINUE
req primitive. The received components may or may not be discarded, depending on pre-arranged
agreement between TC-users.

iii) Terminate the dialogue in a normal manner but indicate that the response(s) included in the END message
are based on an alternative AC (e.g. one which does not use the ASE(s) it does not support), by including
another application-context-name in the TC-END req primitive.

The TC-user may also provide an application-context-name when using the TC-UNI service. In such a case the
AC-Name indicates to the peer TC-user how to interpret the received components.

It is important to note that the application context information conveyed in the dialogue handling APDUs is a name of
the type OBJECT IDENTIFIER. Such a name is a reference to a specification (document) where the description of the
application context is provided. Such a document can make references to other specifications where, for instance, the
abstract syntax of some application protocol is provided. Such specifications can be provided in some formal or
semi-formal notation, or plain text.

The specification of application contexts, their semantics, the assignment of an object identifier value and the
dissemination of this information to all parties that wish to communicate is the process of registering an application
context. In the case where application contexts are registered as a part of ISDN signalling Recommendations, an
example of a typical value might be {ccitt recommendation q xxx ac-name(y)} for the yth application context described
in Recommendation q.xxx.

While in principle, it is possible for the application context description to be very detailed, and to add new application
contexts to cover every situation that may occur, it may be easier to maintain such specifications if the number of
application contexts are kept within reasonable limits. For example, let us assume that a particular application context
name refers to the combined use of ASEs A and B. In certain circumstances, it may be necessary to signal that only a
subset of the capabilities of A and/or B will be used for a particular instance of communications. Instead of registering a
new application context name to cover this case, the same information can be conveyed in some mutually acceptable
syntax in the user information field of the AARQ and AARE APDUs.

3.3.3 Use of user data

TC dialogue handling primitives allow the TC-user to request TC to transfer information not related to component
handling facilities (i.e. not based on the Remote Operation paradigm). This information is carried either in the
user-information field of dialogue control PDUs or directly in the dialogue portion, once the dialogue is established.

A typical situation where such facility is required is at dialogue establishment to send some initialization data to the peer
(refinement of the application-context, authentication data, identification of a destination sub-process within the
TC-user, ...).

In addition, this facility can be used for application context-negotiation: when the TC-user refuses a dialogue (user-abort
in dialogue pending state with abort-reason = application-context-not-supported), it can insert a list of alternative
application-context-name in the user data field of the TC-U-ABORT req primitive. These names are then carried as part

 Recommendation Q.775 (03/93) 23

of the user-data of the dialogue protocol data unit (ABRT). The TC-user which is at the origin of the dialogue
establishment request can make a new attempt with one of these contexts.

In order to use this facility the two TC-users will have to define the syntax and semantics of the information to be
conveyed, if any, in each dialogue APDU for every application context. As the ASN.1 type of this user information is
EXTERNAL, the syntax of this information can be written using ASN.1 or any other user specific notation. The manner
in which this information is encoded can also be user-specific. The EXTERNAL type allows the embedding of a data
value from one Abstract Syntax (in this case some user-specific syntax) within another (that of the dialogue APDUs).

Recommendation X.208 defines the EXTERNAL type as follows:

EXTERNAL ::= [UNIVERSAL 8] IMPLICIT SEQUENCE {
direct-reference OBJECT IDENTIFIER OPTIONAL,
indirect-reference INTEGER OPTIONAL,
data-value-descriptor ObjectDescriptor OPTIONAL,
encoding CHOICE {
 single-ASN1-type [0] ANY,
 octet-aligned [1] IMPLICIT OCTET STRING,
 arbitrary [2] IMPLICIT BIT STRING }}

Of the three forms of reference to identify the type and encoding of the data value that is contained by the EXTERNAL
construction, the TC-user must use the direct-reference. The direct-reference-name will provide the key to identifying
both the abstract syntax of the data value and the encoding rules which apply to it. The indirect-reference is used to
identify the Presentation Context, the use of which is not supported at present in SS No. 7 signalling. In addition to the
direct-reference, the TC-user may also provide an explicit description of the data value in an informal notation through
the use of the data-value-descriptor.

If the external data value is a single ASN.1 type and the Basic Encoding Rules are used to encode this value, any of the
choices for the “encoding” field can be used. If the agreed-to encoding of this data value results in an integral number of
octets, the encoding choice can use either the “octet-aligned” or “arbitrary” encoding. If the agreed-to encoding of this
external data value does not result in an integral number of octets, then the encoding choice of “arbitrary” should be
used.

As the protocol allows a SEQUENCE OF EXTERNAL to be present in the optional user information field of the
dialogue control APDUs, the two TC-users are not restricted, when defining an application context, to any particular
number in the sequence. (If the segmentation is not provided by the SCCP, TC-users will have to ensure that the
Signalling System No. 7 message size restriction is not violated.)

3.3.4 Backward compatibility issues

The new functions and protocol described in the above subsections are optional and the specification of their protocol
procedures in Recommendation Q.771 through Q.774 are easily distinguishable and can be easily removed from
procurement documents, implementation specifications and interface specifications between networks which use these
Recommendations as a basis. In such a case, one is left with the TCAP messages defined in the 1988 Recommendations.
No network is obliged to support these new features if it offers no services that require these capabilities.

A node supporting the 1988 version of TCAP will not understand the APDUs associated with the Application Context
generated by a node conforming to this (1992) Recommendation and will therefore abort the transaction using the
P-ABORT cause “incorrect transaction portion”. If the TC-user at a node which supports TCAP conforming to
this (1992) Recommendation receives an Abort message with the above-mentioned cause in response to a dialogue
initiation using Application Context information, it must interpret it, at least in the situations where a network supports a
mixture of TCAP implementations based on this (1992) Recommendation and the 1988 Recommendations, as the result
of communicating with a node that supports only the 1988 TCAP Recommendations and not as the result of a true
syntax error (which is an extremely unlikely event). The TC-user may therefore attempt a retransmission of the message
without the additional Application Context information provided, of course, that this information is not crucial to the
application.

It is likely that there will be a period of time during which a network supports both TCAP implementations conforming
to the 1988 Recommendations and to this (1992) Recommendation, as well as applications that will or will not require
the support of the Application Context mechanism. Deployment of such capabilities is outside the scope of standards,
but it should be kept in mind when deploying services if the inefficiency of transmitting the initial message twice is to be
avoided.

24 Recommendation Q.775 (03/93)

4 Guidance for writing TC-users protocol specifications

4.1 Introduction

Recommendation Q.1400 describes how Application Service Elements (ASEs), Application-Contexts (ACs) and
Application Entities (AEs) are structured and how an AE is addressed in Signalling System No. 7. This section illustrates
that architecture, considering the functional decomposition of an application, and describes how AEs, ACs, ASEs,
operations and errors should be defined.

4.2 Decomposition of functionality

A signalling application process (AP) communicates through a portion of its software devoted exclusively to
communications which is called the Application Entity (AE). An AE, therefore, contains all the functions needed to
enable the communications between distributed APs. On many occasions, it is found that the communications functions
for a variety of applications can be grouped into integrated sets of actions such that each such set can be used in more
than one AE. Such an integrated set of actions that has the potential of being used in several AEs is called an Application
Service Element (ASE). Of course, there are always some application-specific communications functions that can only
be used to fulfil the communications needs of the specific application for which it has been defined. Further discussion
of APs, AEs and ASEs may be found in Recommendation Q.1400.

By this token, TCAP may be viewed as an ASE because it provides a generic means for all signalling applications to
communicate using the remote operations paradigm over a connectionless network service. A TC-user ASE is a
collection of definitions of remote operations that collectively provide some overall communications protocol to a
signalling application. The ASE definition also specifies which peer TC-user may invoke which operation and in which
order. If either TC-user may invoke any of the operations, the ASE is said to be symmetric. The means by which
operations are defined and grouped is described in 4.5.

From the perspective of a TC-user, the mechanism for obtaining the services of a TC-user ASE is the invocation of the
latter’s operations. Each operation provides a part of the ASE’s service in an inherently asymmetric manner as it is
invoked by one TC-user and executed by another the remote peer. However, the TC-users are not always asymmetric
(i.e. one limited to always performing operations and the other to invoking them) but may each be able to invoke or
perform the same or different operations. [Indeed the service interface from the TC-user’s point of view (which is the
subject of further study) may appear quite different from that provided by TC. For example, the invocation of a class 1
operation may be seen by the TC-user as the invocation of a confirmed service while, from the perspective of the TC
service interface, it is the consequence of two unconfirmed services, viz. TC-INVOKE and TC-RESULT.]

4.3 How to specify an application entity and an application context

An AE type represent a set of ASEs. When two AEs communicate, the interactions between these two AEs as well as the
interactions between the ASEs within an AE are governed by the rules of an application-context.

One or more application-contexts may be associated with an AE type. Each of them represents the use of different
sub-sets of the set of ASEs included in the AE type and/or different coordination rules.

The application designer should provide a definition for each AE type. It should contain, at least:

– a general description of the services supported by the combination of the two peer AEs and
communicating by a dialogue;

– an overview of the AE structure;

– the list of supported ACs.

The application designer should provide a definition for each AC supported by the AE type. It should contain, at least:

– a general description refining the AE type description;

– a definition of the complete application protocol between the peer AEs by:

i) identifying each ASE used by the AC (among the ones constituting the AE type), and indicating
which of the peer AEs initiates the service;

 Recommendation Q.775 (03/93) 25

ii) any coordinating rules between these ASEs (e.g. concatenation of the PDUs from different TC-user
ASEs, any constraints on the order in which operations from different TC-user ASEs may be
invoked, ...) beside the rules which are an inherent part of the ASE specifications;

iii) the abstract syntax(es) required by the ASEs;

– any special constraints to ensure that peer AEs with different versions are compatible.

A name shall be assigned to each application-context. Such a name is a value of type OBJECT IDENTIFIER which is
carried (if required) as a value of the application-context-name information element in the dialogue portion.

Formal specification of application contexts if for further study.

Note – Primitives which provide a standard service interface for the access to an AE as a compound object are for further
study.

4.4 How to specify an ASE

A TC-user ASE specification should provide at least:

– a general description of the purpose of the ASE and its procedures;

– the list of supported operations as well as any rules on the sequence in which operations may be invoked
and which side (or both) can invoke which operation;

– the detailed description of the procedures;

– how different protocol versions interwork;

– the description of the interactions between the ASE and TC in terms of TC service primitives;

– SDL diagrams.

Formal specification of application service elements is for further study.

Note – Primitives which provide a standard service interface for the access of ASEs within AEs are for further study.

4.5 How to specify Operations and Errors

4.5.1 General considerations

The set of Operations and Errors which forms a TCAP user protocol specification can be described using one or several
ASN.1 modules. The number of ASN.1 modules to be used is left to the protocol designer and is further discussed
in 4.5.5.

The notation for defining Operations and Errors is based on the ASN.1 MACRO facility defined in Recommen-
dation X.208. The OPERATION MACRO and the ERROR MACRO are the data types respectively associated to an
Operation and to an Error.

Each operation (error) belongs to an operation type (error type) which is derived from the OPERATION MACRO
(ERROR MACRO) type.

Each operation type or error type should be given a name (an ASN.1 type reference, which starts with a capital letter).

Each operation or error should be given a name (an ASN.1 value reference which starts with a lower case letter).

Recommendation X.219 states that values for a set of operations and errors have to be unique within an abstract syntax.
For TCAP, this currently means that they have to be unique within the scope of a sub-system number, a group of related
sub-system numbers or an application-context.

26 Recommendation Q.775 (03/93)

Type definition can be combined with value allocation or performed in two steps, as illustrated in the following example.

– Type specification and value assignment are separated

 OperationTypeExample1 ::= OPERATION
 ARGUMENT ParameterType1
 RESULT ResultType1
 ERRORS { error1, error2 }

 operationExample1 OperationTypeExample1 ::= localValue 1

– Type specification and value assignment are combined

 OperationExample1 ::= OPERATION
 ARGUMENT ParameterType1
 RESULT ResultType1
 ERRORS { error1, error2 }
 ::= localValue 1

Whether it is more appropriate to combine type and by value specifications, as well as the use of global or local value is
further discussed in 4.5.6.

4.5.2 Use of the OPERATION MACRO notation

4.5.2.1 Use of the type notation

An Operation type is fully defined as an instance of the OPERATION MACRO type supplemented by an ASN.1
comment indicating the associated timer value.

The following subclauses provide guidance on the use of the various ASN.1 productions which form the OPERATION
MACRO description.

4.5.2.1.1 Specification of the operation argument

The following ASN.1 production indicates how the argument of an operation has to be specified:

Parameter ::= ArgKeyword NamedType | empty
ArgKeyword ::= "PARAMETER" | "ARGUMENT"

If information has to be provided at Operation invocation, the keyword PARAMETER or ARGUMENT has to be
inserted and followed by the NamedType which corresponds to the data structure to be provided, otherwise the keyword
shall not be present in the Operation description.

Both keywords are allowed for backward compatibility purposes with TC-user specifications based on older versions
of TC. However, the use of the “PARAMETER” keyword is deprecated for defining new applications.

4.5.2.1.2 Specification of positive outcomes

The following ASN.1 productions indicate how to specify operations which report success:

Result ::= "RESULT" ResultType | empty

ResultType ::= NamedType | empty

If information has to be returned as a result of a successful Operation execution, the keyword RESULT is to be followed
by the NamedType associated with the data structure to be sent. If no information is to be provided but the operation
class indicate that the operation report success, the RESULT keyword is to be present in the Operation description but
the empty alternative of the Result production is used. If the keyword RESULT is not included in an operation
description this indicates that it does not report success (i.e. class 2 or 4 operation).

4.5.2.1.3 Associated Errors

The following ASN.1 productions indicate how to specify operations which report failure:

Errors ::= "ERRORS" "{ " ErrorNames" }" | empty
ErrorNames ::= ErrorList | empty
ErrorList ::= Error | ErrorList "," Error
Error ::= value (ERROR) | type

 Recommendation Q.775 (03/93) 27

If the Operation reports failure, the keyword ERRORS should be included and followed by the list of associated errors,
otherwise this keyword should not be present. The errors included in the list can be referenced either using a type
reference or a value reference (i.e. an error code).

4.5.2.1.4 Specification of linked operations

The following ASN.1 productions indicate how to specify linked operations:

LinkedOperations ::= "LINKED" "{ "LinkedOperationNames "}" | empty
LinkedOperationNames ::= OperationList | empty
OperationList ::= Operation | OperationList "," Operation
Operation ::= value (OPERATION) | type

If the Operation is the parent operation of a set of linked-operations, the keyword LINKED should be included and
followed by the list of child operations. The child operations included in the list can be referenced either using a type
reference or a value reference (i.e. an operation code).

4.5.2.2 Use of the value notation

The value notation for Operation is either the notation for the value of an element of type INTEGER or the notation for
an element of type OBJECT IDENTIFIER. This depends whether the Operation is allocated a local value or a global
value.

4.5.2.3 Specification of timers

The timer value associated with an operation type has to be indicated as an ASN.1 comment against the ASN.1 MACRO
description of the operation type.

4.5.3 Use of the ERROR MACRO notation

The type notation for an error is keyword ERROR optionally followed by the keyword PARAMETER and the
NamedType associated to the information which may be sent as error’s parameter. The keyword PARAMETER should
not be present if no information is associated with the error condition.

The value notation for an error is either the notation for the value of an element of type INTEGER or the notation or an
element of type OBJECT IDENTIFIER. This depends whether the Operation is allocated a local value or a global value.

4.5.4 Examples of Operations and Errors description

This section illustrates the part of protocol specification which deals with Operations and associated Errors definitions
for a simple TC-user ASE. The purpose of Operations and Errors is briefly described in textual form. Then Operations
and Errors, as well as the associated data types, are formally described in one ASN.1 module.

The following example is based on fictitious freephone like dialogue, between a switching centre and a freephone data
base.

4.5.4.1 Operations and Errors purposes

4.5.4.1.1 Provide routing information

This operation is invoked by a switching centre to request a remote entity to provide routing information in order to
establish a call to a subscriber. The routing information provided may be a forwarded-to number and may depend on the
calling party number and/or the requested basic service. In the latest case the getCallingPartyNumber child operation is
invoked.

4.5.4.1.2 Get calling party number

This operation is invoked by a network element to request a switching centre to provide the calling party number
associated with a call set-up request.

4.5.4.1.3 Invalid called number

This error is returned by a network element to indicate that the received called number does not comply with the
supported numbering scheme.

28 Recommendation Q.775 (03/93)

4.5.4.1.4 Subscriber not reachable

This error is returned by a network element to indicate that there is currently no routing information available
corresponding to a called number.

4.5.4.1.5 Called barred

This error is returned by a network element to indicate that a call cannot be setup because the calling number conflicts
with the barring conditions attached to the called party.

4.5.4.1.6 Calling party number not available

This error is returned by a switching centre to indicate that the calling party number cannot be provided.

4.5.4.1.7 Processing failure

This error is returned by a network element to indicate a processing failure.

4.5.4.2 ASN.1 specification

The following ASN.1 module specifies the operations and associated errors and data types which correspond to the
protocol elements described above. In this example type definition of Operations and Errors is combined with value
assignment.

TCAP-Examples { ccitt recommendation q 775 modules(2) examples(1) version1(1) }
DEFINITIONS ::=
BEGIN

IMPORTS OPERATION, ERROR
FROM TCAPMessages { ccitt recommendation q 773 modules(2) messages(1) version2(2) };

provideRoutingInformation OPERATION
ARGUMENT RequestArgument

RESULT RoutingInformation

ERRORS { invalidCalledNumber,
 subscriberNotReachable,
 callBarred,
 processingFailure }

LINKED { getCallingPartyAddress }
-- timer T-pi = 10 s
::= localValue 1

getCallingPartyAddress OPERATION
RESULT CallingPartyAddress

ERRORS { callingPartyAddressNotAvailable,
 processingFailure }
-- timer T-gp = 5 s
::= localValue 2

invalidCalledNumber ERROR ::= localValue 1
subscriberNotReachable ERROR ::= localValue 2
calledBarred ERROR ::= localValue 3
callingPartyAddressNotAvailable ERROR ::= localValue 4
processingFailure ERROR ::= localValue 5
-- data types

RequestArgument ::= SEQUENCE {
calledNumber IsdnNumber,
basicService BasicServiceIndicator OPTIONAL
}

RoutingInformation ::= CHOICE {
 reroutingNumber [0] IMPLICIT IsdnNumber,
 forwardedToNumber [1] IMPLICIT IsdnNumber }

BasicServiceIndicator ::= ENUMERATED {
speech (0),
unrestrictedDigital (1) }

 Recommendation Q.775 (03/93) 29

CallingPartyAddress ::= IsdnNumber

IsdnNumber ::= SEQUENCE {

typeOfAddress TypeOfAddress,

digits TelephonyString }

TypeOfAddress ::= ENUMERATED {

national (0),

international (1),

private (2) }

TelephonyString ::= IA5String (FROM ("0"|"1"|"2"|"3"|"4"|"5"

|"6"|"7"|"8"|"9"|"*"|"#")) (SIZE (1..15))

END

4.5.5 Use of ASN.1 modules

A module is an ASN.1 construction where a protocol designer collects several types and values definitions.

Theoretically, ASN.1 imposes no constraints upon the number of modules used to define a protocol. All the definitions
may be contained in one module or many modules. However, if definitions contained in one module are required in
another (e.g. the error used by an operation is defined in another module), then the corresponding definition is made
available by EXPORTing it from the module in which it is defined and IMPORTing it into the module in which it is
used. This applies to all ASN.1 objects, whether defined by type or value.

This gives the application designer the freedom to structure the modules according to needs, or a self-imposed
convention. For example, a single module could contain all the definitions particularly in a single AE, single ASE
environment. Alternatively, there could be one module for each ASE definition, each module containing all the operation
and errors used exclusively by that ASE. At the other extreme, all the operations and errors could be defined in one
“central registry” module and exported for use in the other modules where the ASEs are defined.

4.5.6 Allocation and Management of Operation and Error Codes

4.5.6.1 General considerations

Subclauses 4.1 to 4.5.4 describe how AEs, ASEs, operations and errors may be specified. Also discussed is how ASEs
use operations and errors, and how the ASEs themselves are used in defining the application context between two
peer AEs.

AEs and ASEs are convenient modelling and specification tools used to aid in the design of application protocols. At the
end, during a dialogue between two TC-users, any TCAP-based application protocol is made up of the exchange of data
values for operations and errors types identified by, respectively, their operation or error codes. The only requirement of
Signalling System No. 7 (and ROSE) is that operation and error codes be unique within an Abstract syntax. As there is
currently no way to explicitly signal the abstract syntax to which a given operation or error code belongs, the application
designer has to ensure that these codes are unique within the scope a sub-system number or of an application-context. In
the case where the scope of operation and error codes is an application-context, the protocol designer shall also ensure
that the application-context-name is conveyed to the remote end using the protocol of the dialogue portion.

There are many possible schemes regarding the allocation and management of operation and error codes and many
factors need to be considered. Two major considerations are AE/ASE structure and the re-use of operations and errors.

4.5.6.2 Import and Export of Operations and Errors

As any other ASN.1 type, Operations and Errors can be exported and imported between ASN.1 modules. This method
can be used when there is a need to define an operation whose type corresponds to an existing operation but when the
value to be allocated to this new operation is different from the one allocated to the existing one (i.e. for uniqueness
purposes). This is illustrated by the following example, where objectIdentifer1 and objectIdentifier2 are fictitious
identifiers.

30 Recommendation Q.775 (03/93)

ExportingModule { objectIdentifer1 } DEFINITIONS ::=
BEGIN
EXPORTS operation1, OperationTypeA, error1, ErrorTypeA;

IMPORTS OPERATION, ERROR FROM TCAPMessages
{ ccitt recommendation q 773 modules(2) messages(1) version2(2) };

operation1 OPERATION
ARGUMENT ParameterType1
RESULT ResultType1
ERRORS { error1 }
::= localValue 1

OperationTypeA ::= OPERATION
ARGUMENT ParameterTypeA
RESULT ResultTypeA
ERRORS { ErrorTypeA}

operation2 OperationTypeA ::= localValue 2

error1 ERROR
PARAMETER DiagnosticType1
::= localValue 1

ErrorTypeA ::= ERROR
PARAMETER DiagnosticTypeA

error2 ErrorTypeA ::= localValue 2
-- Note that ParameterType1, ResultType1, ParameterTypeA, ResultTypeA,
-- DiagnosticType1 and DiagnosticTypeA have to be defined somewhere if they are not defined
-- within this module, they have to be imported from the module where they are defined.

END

ImportingModule { objectIdentifier2 } DEFINITIONS ::=
BEGIN
IMPORTS OPERATION, ERROR FROM TCAPMessages
{ ccitt recommendation q 773 modules(2) messages(1) version2(2) };
operation1, OperationTypeA, error1, ErrorTypeA
FROM ExportingModule { objectIdentifier1 };

operation2 OPERATION
ARGUMENT ParameterTypeX -- to be defined somewhere in the module
::= localValue 2

error2 ERROR ::= localValue 2
-- Value 2 is already in use. Thus value 3 is allocated to the imported objects
operationA OperationTypeA ::= localValue 3
errorA ErrorTypeA ::= localValue 3

END

4.5.6.3 Impact of ASE/AE structure on operation and error code administration

Regarding the AE/ASE structure the options are:

Monolithic approach – One AC, one ASE

Conceptually, this is the simplest approach. The application protocol is defined by an AE which comprises only one
ASE (in addition to TCAP). All the operations used in that ASE could be defined in one ASN.1 module, which also
contains the definition of the ASE and AC. Within the protocol, all operations and errors are identified uniquely by
being assigned a unique local (integer) value.

The advantage of this scheme is its simplicity. Its disadvantage is that it does not permit to identify independent building
blocks which can evolve separately within the AE structure.

One AE comprising more than one ASE

In defining an application protocol the designer may choose to structure an AE (thus the ACs) such that it comprises two
or more ASEs. For example, it may be decided to group those elements of protocol concerned with user authentication
into one separate ASE (which could be re-used in another protocol), and those concerned with the actual data base

 Recommendation Q.775 (03/93) 31

enquiry into another ASE. This can facilitate modular system design but, when all the constituent ASEs are combined to
form the AE, care must be taken to ensure that different operations/errors contained in different ASEs have not been
allocated the same value.

Using the same operation/error in two different ASEs within the same AE does not cause a problem. If the values
allocated to this same operation are the same in each case, then within the protocol there will be only one operation/error
associated with that value. If different values are allocated, then although it will appear in the protocol that there are two
different operations/errors, in the implementation of the application these two different values will cause the same
operation/error to be invoked/identified.

However, if within the same AE, an operation defined in one ASE is allocated the same value as a different operation in
another ASE, then this will obviously cause a problem. When an ASE is used in only one AE, a simple code allocation
scheme can avoid this problem. But when the same ASE is used in several AEs, this can become difficult to administer,
and the only “safe” approaches are those described in i) to iii) below.

i) Two or more ASE protocols share common local operation/error values

When the ASEs are defined, the values are allocated by the protocol designer(s) so that no clashes can
occur. This requires a coordination in the tasks of defining the ASE. This means that the ASEs share the
same abstract syntax.

A disadvantage of this scheme is that if one of the ASEs is used in more than one context (i.e. together
with different set of ASEs) it is more or less impossible to avoid value clashes for any combination.

ii) Assign global values (object identifiers) to operations and errors

Since an object identifier is unique throughout SS No. 7, there is no danger of clashes in values when
an ASE is combined with any other one.

One of the disadvantages of this scheme is that when encoded, an object identifier is longer than a simple
integer.

iii) Sharing operations/errors by assigning types when defining operations/errors, instead of values

This approach assumes that type definition of the operations and errors have been defined independently
from value assignment.

When a protocol designer defines an application-context, it collects all the operation and error types used
by the required ASEs and allocates suitable values so that no clashes occur.

By doing this, one can consider that the protocol designer defines a new set of ASEs isomorphic to the
existing ones which differ only by the values of their operations and errors.

4.5.6.4 Re-use of operation and errors

Regardless of the number of ASEs included in a protocol, there are situations where it appears suitable to include an
existing operation or error when defining a new ASE.

The operation or error can be re-used in one of the following manners.

The operation is imported in one of the module defining one of the ASEs. This is only feasible if it is ensured that there
is no value clashes.

This can be achieved if:

i) There is a central registry of operation and errors which uses only values in a reserved range never used
by ASE specific operations. This approach imposes a constraint on TC user ASEs which may not be
satisfied in a broader environment (i.e. if Operations or Errors from DSS 1 or ISO protocols are to be
used).

ii) The operation and errors have been allocated global values. The disadvantage of this approach is that a
global value requires more octets to be encoded than a local one and requires official registration within
the Object Identifier Tree.

32 Recommendation Q.775 (03/93)

iii) The operation or error type is imported in one of the modules defining one of the ASEs, where a suitable
value is assigned. This assumes that the exporting protocol uses the two-step approach for the definition
of operation and errors or that the required operations and error types are included in a central registry.

iv) The operation or error is completely re-defined. Although part of the original definition (e.g. the type of
the argument) may be imported.

4.6 Data types specifications

4.6.1 General

As stated in the previous section, the type of the information which may accompany an operation invocation, the report
of a success or the report of a failure is specified as an ASN.1 data type. This is also valid for the information which may
be exchanged as user data of the dialogue portion.

This data type can be a simple built-in type (e.g. integer type, boolean type, null type, octet string type, ...) or structured
one (e.g. sequence type, sequence-of type, choice type, ...). It may also be derived from these types by sub-typing (e.g.
size constraint, value range) or tagging.

4.6.2 Use of tags

ASN.1 provides a tagging mechanism which allows for defining a type isomorphic to an existing one which thus differs
only by virtue of its tag.

As clearly stated in Recommendation X.208 (ASN.1) tags are intended for machine use mainly to ease the decoding
process.

Tags are not intended to be used for direct identification of information elements as they are seen from a local
application process point of view. How these information elements are locally identified is an implementation matter and
depends on the software design and on the language used to manipulate the internal data representation. In this respect,
it should be noticed that distinct tags are mainly required in one of the following situations:

– the information elements are members of a (non ordered) set (i.e. a set type) and therefore their relative
position cannot be used to discriminate between two information elements of the same type (thus with the
same tag);

– the information elements are members of an ordered set (i.e. a sequence type) but the presence or absence
of optional elements makes it impossible to discriminate between the presence of an optional element and
the presence of an immediately following information element of the same type;

– when two occurrences of the same base type appear in a choice type.

There are four classes of tags. In addition to the Universal class which is used to identify a built-in type, three classes are
defined to enable the definition of isomorphic types for decoding purposes:

– The APPLICATION-WIDE class – Tags allocated in this class can be used to identify directly the
structure of the data type to be decoded. Tags allocated in this class are significant across an application
and shall not be used when there is a risk of clash between values. The APPLICATION-WIDE class
should be used only if the application is a “closed” domain or if there is a common registry.

– The CONTEXT-SPECIFIC class – Tags allocated in this class are only significant in a defined domain.
Therefore the decoding process identifies the data structure to be decoded both from the tag value and the
context in which it appears. There is a common understanding to consider the context to be restricted to
the next higher construction.

– The PRIVATE class which has very similar property to the APPLICATION-WIDE class but is outside the
scope of standardization.

It should be noticed that the CONTEXT-SPECIFIC class is the only one (when used correctly) which ensures that there
will never be any conflict between values, when data types are imported and exported between modules or protocols.

 Recommendation Q.775 (03/93) 33

4.6.3 Instances and types

There is a need to clearly differentiate a data type from an instance of a data type (i.e. the actual information elements
carried in a message or a sub-structure). For specification and readability purposes ASN.1 provides a NamedType
notation which enable to qualify a specific instance of a data type using an ASN.1 identifier.

It should be noticed that there is no need to define one data type per information element. When two information
elements are syntactically equivalent it is obviously more convenient to represent them as two instances of the same data
type, or if required for decoding, as instances of two types derived from the same data type by CONTEXT-SPECIFIC
tagging and whose definitions will thus appear only within the higher construction definition (i.e. the tagged are only
defined in the specific context of the higher construction).

4.6.4 Exporting and importing data types

TCAP based signalling protocols may have to make use of information elements defined in other signalling protocol
specifications. Rather than defining a new information element it should be preferred to import the associated type from
the specifications where it has been defined first. Data types can be imported formally or informally depending on the
way the exporting protocol is specified.

– The exporting protocol is specified using an ASN.1 module which exports the required data types: these
data types can be formally imported in one of the modules which define the new protocol.

– The exporting protocol is not specified using ASN.1 modules: a convenient solution is to define a data
type isomorphic to the “octet string” type and to specify informally its internal structure using a reference
to the specification where it is defined (i.e. using a comment statements).

4.7 How to specify abstract syntaxes

ASE and AC specifications imply that a reference is made to one or several abstract-syntaxes. Each of them represents at
an abstract level (i.e. independently of the encoding techniques) sets of data values which may be exchanged during the
communication.

There is currently no need for explicitly assigning a name to the abstract-syntax formed by TC messages for a given
application because this abstract-syntax is implicitly identified by the sub-system number which addresses the AE.
However the structure of the user information conveyed in the dialogue portion shall be defined as part or one or several
other(s) abstract-syntax(es).

Thus a protocol designer which wants user-information which are not components to be conveyed by TC, shall first
define one or several abstract syntax(es) which encompasses all the data types whose values may be conveyed.

It shall also assign a name to each of these abstract-syntaxes. Such a name which is a value of type OBJECT
IDENTIFIER will serve as a direct-reference when the actual value will be carried as part of a constructed value of type
EXTERNAL, as specified in Recommendation Q.773.

There is currently no formal way to specify an abstract-syntax; however, when this syntax can be described using ASN.1
the simplest manner is to define a choice type built from all the data types which form the abstract syntax.

An abstract syntax can then be informally defined by the following sentence to be included in the protocol
specifications:

“The set of data values of type Module-X. Type-A form an abstract syntax which is identified by the following abstract-
syntax-name: <objectIdentifierValue>”.

Where in the preceding sentence, Type-A is the name of the choice type and Module-X is the name of the module where
it is defined.

In this context, the abstract-syntax-name also implicitly refers to the encoding rules to be applied to the abstract-syntax.
Such encoding rules, which may (but not need) be the one defined by Recommendation X.209, must be agreed a priori
between the TC-users.

The following example illustrates a module which defines InitData as a collection of three protocol data units which
form an abstract syntax used at dialogue establishment to transfer either a list of supported functional units or
authentication information will define the required ASN.1 types:

34 Recommendation Q.775 (03/93)

InitModule DEFINITIONS ::=
BEGIN

InitData ::= CHOICE {
functionalUnits [0] IMPLICIT FunctionalUnits,
authenticationInfo [1] IMPLICIT AuthenticationInfo }

FunctionalUnits ::= SEQUENCE OF FunctionalUnit
FunctionalUnit ::= ENUMERATED {
unit(1), unit2(2), unit3(3) }

AuthenticationInfo ::= SEQUENCE {
algorithm OBJECT IDENTIFIER,
signature OCTET STRING }
-- The set of data values of type InitModule.InitData form an
-- abstract syntax which is identified by the following
-- abstract-syntax-name: "<objectIdentifierValue>"

END

4.8 Encoding rules

The concrete syntax of TCAP messages (i.e. the bit stream exchanged between peer TCAP as user data of SCCP
messages) is derived by applying the Basic Encoding Rules to the Abstract Syntax Description of TCAP messages
[including TCAP user elements except those conveyed as value of an EXTERNAL type (e.g. user information field of a
dialogue control APDU)]. The Basic Encoding Rules are described in Recommendation X.209, some minor restrictions
are stated in Recommendation Q.773 for the encoding of the TCAP portion.

The user information conveyed as value of an EXTERNAL type may also (but not need to) be encoded according to the
Basic Encoding Rules. In the later case the associated abstract-syntax-name serves also as an implicit reference to the
applied encoding rules (see 3.3.3).

It should be noticed that the Basic Encoding Rules allows for several options, especially for the encoding of lengths.
This means that an implementation must be able to decode a data unit regardless of the encoding options selected by the
sending entity.

Printed in Switzerland

Geneva, 1994

	ITU-T REC. Q.775 – SIGNALLING SYSTEM No. 7 – GUIDELINES FOR USING TRANSACTION CAPABILITIES
	FOREWORD
	CONTENTS
	1 Introduction
	1.1 General
	1.2 Environment

	2 Operations
	2.1 Definition
	2.2 Examples
	2.2.1 Simple operation handlings
	2.2.2 More complex operation handling

	2.3 Component-related facilities offered to TC-users
	2.3.1 Invocation
	2.3.2 Cancel (by the TC-user)
	2.3.3 Reject (by the TC-user)
	2.3.4 Remote cancel (by the TC-user)

	2.4 Component-related abnormal situations
	2.4.1 Component loss
	2.4.2 Component duplication
	2.4.3 Component missequencing
	2.4.4 Reject of a component by TCAP
	2.4.5 Operation timer expiry

	3 Dialogues
	3.1 Grouping of components in a message
	3.2 Dialogue handling facilities
	3.2.1 Structured dialogue
	3.2.2 Unstructured dialogue

	3.3 Enhanced dialogue control facilities
	3.3.1 Overview
	3.3.2 Use of the Application-Context
	3.3.3 Use of user data
	3.3.4 Backward compatibility issues

	4 Guidance for writing TC-users protocol specifications
	4.1 Introduction
	4.2 Decomposition of functionality
	4.3 How to specify an application entity and an application context
	4.4 How to specify an ASE
	4.5 How to specify Operations and Errors
	4.5.1 General considerations
	4.5.2 Use of the OPERATION MACRO notation
	4.5.3 Use of the ERROR MACRO notation
	4.5.4 Examples of Operations and Errors description
	4.5.5 Use of ASN.1 modules
	4.5.6 Allocation and Management of Operation and Error Codes

	4.6 Data types specifications
	4.6.1 General
	4.6.2 Use of tags
	4.6.3 Instances and types
	4.6.4 Exporting and importing data types

	4.7 How to specify abstract syntaxes
	4.8 Encoding rules

