CCITT COMITÉ CONSULTIVO INTERNACIONAL TELEGRÁFICO Y TELEFÓNICO

Q.541

(11/1988)

SERIE Q: CONMUTACIÓN Y SEÑALIZACIÓN

Centrales digitales locales, de tránsito, combinadas e internacionales en redes digitales integradas y en redes mixtas analógico-digitales - Objetivos de diseño y mediciones

OBJETIVOS DE DISEÑO DE LAS CENTRALES DIGITALES – GENERALIDADES

Reedición de la Recomendación Q.541 del CCITT publicada en el Libro Azul, Fascículo VI.5 (1988)

NOTAS

- La Recomendación Q.541 del CCITT se publicó en el fascículo VI.5 del Libro Azul. Este fichero es un extracto del Libro Azul. Aunque la presentación y disposición del texto son ligeramente diferentes de la versión del Libro Azul, el contenido del fichero es idéntico a la citada versión y los derechos de autor siguen siendo los mismos (véase a continuación).
- 2 Por razones de concisión, el término «Administración» se utiliza en la presente Recomendación para designar a una administración de telecomunicaciones y a una empresa de explotación reconocida.

© UIT 1988, 2008

Reservados todos los derechos. Ninguna parte de esta publicación puede reproducirse por ningún procedimiento sin previa autorización escrita por parte de la UIT.

OBJETIVOS DE DISEÑO DE LAS CENTRALES DIGITALES - GENERALIDADES

1 Generalidades

Esta Recomendación se aplica a las centrales digitales locales, de tránsito, combinadas e internacionales para telefonía en redes digitales integradas (RDI) y en redes mixtas (analógicas/digitales), así como a las centrales locales, de tránsito, combinadas e internacionales de una red digital de servicios integrados (RDSI). El campo de aplicación de esta Recomendación se describe con más detalle en la Recomendación Q.500. Algunos objetivos sólo se aplican a cierto tipo (o tipos) de central. Cuando así ocurre, la aplicación se define en el texto. Cuando no se hace esta restricción, el objetivo es válido para todas las aplicaciones de central.

2 Objetivos generales de diseño

La central y/o los sistemas/centros de operación y mantenimiento asociados tendrán las capacidades necesarias para permitir que la central sea operada y administrada eficazmente al mismo tiempo que presta servicio con arreglo a los requisitos de funcionamiento de la administración.

2.1 *Modificaciones y ampliación de las centrales*

Deberá ser posible agregar soporte físico y/o lógico a la central, o introducirle modificaciones sin perturbar sensiblemente el servicio (véanse los § 4.4 y 4.10.2 – Interrupciones planeadas).

2.2 Control del servicio y registros

Se debe contar con medios eficaces para poner en servicio, probar, retirar del servicio, y llevar registros adecuados sobre:

- líneas de abonado y servicios,
- circuitos intercentrales.

2.3 Información sobre traducción y encaminamiento

Debe haber medios eficaces para establecer, verificar y modificar la información de procesamiento de las llamadas, por ejemplo, la información de traducción y de encaminamiento.

2.4 Utilización de los órganos

Debe haber medios eficaces para medir el comportamiento y los flujos de tráfico y para reorganizar los equipos en la forma necesaria para asegurar la utilización eficaz de los órganos del sistema y proporcionar el grado de servicio requerido a todos los abonados (por ejemplo, medios para una distribución equilibrada de la carga).

2.5 Objetivos de diseño físico

La central deberá tener un diseño físico adecuado que permita:

- disponer de espacio adecuado para actividades de mantenimiento;
- cumplir los requisitos impuestos por el entorno;
- la identificación uniforme del equipo (según las necesidades de las Administraciones);
- un limitado número de procedimientos uniformes de conexión/desconexión del suministro de energía a todos los componentes de la central.

3 Objetivos de diseño de la red digital integrada

3.1 Distribución de la temporización en la central

El sistema de distribución de la temporización de una central se derivará de un sistema de reloj de central de gran fiabilidad. La distribución de la temporización dentro de la central debe diseñarse de manera que la central mantenga el sincronismo de los intervalos de tiempo de canal de 64 kbit/s, en una conexión a través de la central.

3.2 Sincronización de la red

Dentro de una RDI/RDSI sincronizada pueden utilizarse diferentes métodos para transmitir la temporización entre las centrales. Una central debe poder ser sincronizada:

- por una señal digital entrante en un interfaz A (o B, si existe) según se define en la Recomendación Q.511; esto se aplica solamente a las señales derivadas de una fuente de referencia primaria definida en la Recomendación G.811:
- b) directamente por una fuente de referencia primaria, que utiliza un interfaz conforme a la Recomendación G.811;
- c) facultativamente, por una señal analógica a una de las frecuencias enumeradas en la Recomendación G.811.

Deberá ser posible también el funcionamiento plesiócrono.

El reloj de la central local o de tránsito, combinada será responsable del mantenimiento de la sincronización en la parte de la red asociada a ella.

La temporización de los relojes en las centrales locales, de tránsito o combinadas debe ajustarse a la Recomendación G.811. La temporización de los relojes en las instalaciones de abonado, en las centrales privadas automáticas digitales, en concentradores digitales, en multiplexores-demultiplexores, etc., requiere ulterior estudio.

Las redes nacionales sincronizadas pueden dotarse de relojes de central que no tengan la exactitud de frecuencia necesaria para el interfuncionamiento internacional. Sin embargo, cuando estas redes sincronizadas situadas dentro de fronteras nacionales deban interfuncionar internacionalmente como parte de la RDI/RDSI internacional, será necesario proveer medios de ajustar esas redes nacionales al valor de exactitud de frecuencia internacionalmente recomendado en la Recomendación G.811.

3.3 Deslizamientos

La tasa de deslizamientos controlados fijada como objetivo de diseño dentro de una región sincronizada (véase la nota) controlada por la central será nula a condición de que la fluctuación de fase y la fluctuación lenta de fase a la entrada se mantengan dentro de los límites indicados en las Recomendaciones G.823 y G.824.

La tasa de deslizamientos controlados fijada como objetivo de diseño en una central digital en operación plesiócrona (o cuando funciona con otra región sincronizada), no será superior a un deslizamiento en 70 días en cualquier canal a 64 kbit/s, a condición de que la fluctuación de fase y la fluctuación lenta de fase a la entrada se mantengan dentro de los límites indicados en las Recomendaciones G.823 y G.824.

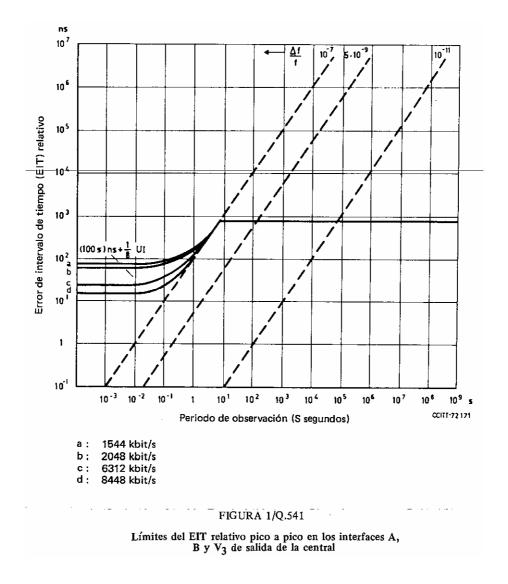
Los requisitos de funcionamiento operacional para la tasa de deslizamientos de octetos en una conexión internacional o en el canal portador correspondiente se tratan en la Recomendación G.822.

La ocurrencia de un deslizamiento controlado no debe causar pérdida de la alineación de trama.

Nota – Una región sincronizada se define como una entidad geográfica normalmente sincronizada a una fuente única y que opera plesiócronamente con otras regiones sincronizadas. Puede ser un continente, un país, una parte de un país, o varios países.

3.4 Error de intervalo de tiempo (EIT) relativo a la salida de la central

El error de intervalo de tiempo (EIT) relativo a la salida de la central se define como la diferencia en el tiempo de transmisión de una señal de temporización dada, cuando se compara con una señal de temporización de referencia, para un determinado periodo de medición (véase la Recomendación G.811.)


3.4.1 Interfaz V_1

El error de intervalo de tiempo (EIT) relativo a la salida de la central en el interfaz con la sección digital de acceso básico requiere ulterior estudio.

3.4.2 Interfaces A, B, V_2 , V_3 y V_4

El EIT relativo a la salida de los interfaces digitales normalizados A, B, V₂, V₃, y V₄ en un periodo de S segundos, no deberá exceder de los límites siguientes:

- 1) (100 S) ns + 1/8 IU para S < 10,
- 2) 1000 ns para S ≥ 10 (véase la figura 1/Q.541).

En el caso de funcionamiento síncrono, los límites se especifican en el supuesto de una señal de sincronización ideal (sin fluctuación de fase, sin fluctuación lenta de fase y sin desviación de frecuencia) en la línea que transmite la información de temporización. En el caso de funcionamiento asíncrono, los límites se especifican suponiendo que no hay desviación de frecuencia del reloj de la central (esto equivale a considerar a la salida del reloj de la central, como la señal de temporización de referencia, para las medidas del EIT relativo).

Se considera que el método consistente en emplear el EIT relativo para especificar la calidad de funcionamiento de una central en el caso de funcionamiento síncrono requiere estudio adicional en ciertas realizaciones (por ejemplo, cuando se utilizan métodos de sincronización mutua).

Ninguna operación o reordenación internas a las unidades de sincronización y temporización ni cualquier otra causa podrán provocar en la señal digital saliente de la central una discontinuidad de fase superior a 1/8 de intervalo unitario (IU).

Los límites dados en la figura 1/Q.541 pueden ser rebasados en los casos, poco frecuentes, de pruebas internas o de operaciones de reordenación internas de la central. En tales casos deben satisfacerse las siguientes condiciones:

El error de intervalo de tiempo (EIT) relativo en cualquier periodo de hasta 2¹¹ IU no debe exceder de 1/8 de un IU. Para los periodos superiores a 2¹¹ IU, la variación de fase para cada intervalo de 2¹¹ IU no debe exceder de 1/8 de IU hasta el EIT relativo máximo total estipulado en la Recomendación G.811 para periodos prolongados de tiempo.

3.5 Requisitos de sincronización en caso de interfuncionamiento con un sistema digital de satélite

Debe aplicarse provisionalmente lo siguiente:

La transferencia desde la temporización de la red digital terrestre a la temporización del sistema de satélite, si es necesaria (operación plesiócrona), no la realizará la central digital. La estación terrena estará equipada con memorias intermedias para compensar las variaciones del tiempo de propagación debidas a desplazamientos del satélite con respecto a su posición ideal (y a otros fenómenos con efectos similares) y cumplir los requisitos de la característica de deslizamientos establecidos en la Recomendación G.822.

4 Objetivos de diseño de disponibilidad

4.1 Generalidades

La disponibilidad es un aspecto de la calidad de servicio global de una central.

Los objetivos de disponibilidad son factores importantes que deben considerarse en el diseño de un sistema de conmutación, y pueden también ser utilizados por las Administraciones para juzgar el comportamiento de un diseño de sistema y compararlo con el de otros diseños.

La disponibilidad puede determinarse reuniendo y evaluando los datos de las centrales en funcionamiento, de acuerdo con el proyecto de Recomendación E.450. La recolección de datos puede facilitarse recurriendo a la red de gestión de telecomunicaciones (RGT).

La disponibilidad puede expresarse por la relación entre el tiempo acumulado durante el cual la central (o parte de la misma) puede funcionar debidamente y un periodo de tiempo de duración estadísticamente significativa, denominado tiempo de observación.

Disponibilidad (D) =
$$\frac{\text{tiempo de disponibilidad acumulado}}{\text{tiempo de observación}} = \frac{\text{tiempo de disponibilidad acumulado}}{\text{tiempo de disponibilidad } + \text{tiempo de indisponibilidad acumulados}}$$

Algunas veces es más conveniente utilizar el término indisponibilidad (en lugar de disponibilidad), que se define como sigue:

Indisponibilidad
$$(U) = 1 - D$$

Los términos utilizados en esta sección, cuando ya existen, concuerdan con los de la Recomendación G.106.

4.2 Causas de indisponibilidad

Esta Recomendación trata la disponibilidad según es observada desde el punto de vista de la terminación de la central. Deben considerarse tanto las interrupciones planeadas como las no planeadas, y debe intentarse que las interrupciones de ambas clases sean mínimas. Las interrupciones no planeadas se reflejan en la fiabilidad inherente de la central, por lo que en esta Recomendación se consideran separadamente de las interrupciones planeadas.

La indisponibilidad no planeada tiene en cuenta todos los fallos que causan indisponibilidad. Así pues, hay que contar el fallo del soporte físico, el mal funcionamiento del soporte lógico y las interrupciones no intencionadas resultantes de la actividad del personal.

4.3 Indisponibilidad intrínseca y operacional

La indisponibilidad intrínseca es la indisponibilidad de una central (o parte de la misma) como consecuencia de un fallo de la propia central (o alguna de sus unidades), excluyendo el retardo logístico (por ejemplo, tiempo de desplazamiento de los operarios, indisponibilidad de repuestos, etc.) y las interrupciones planeadas.

La indisponibilidad operacional es la indisponibilidad de una central (o parte de la misma) como consecuencia de un fallo de la propia central (o alguna de sus unidades), incluyendo el retardo logístico (por ejemplo, el tiempo de desplazamiento de los operarios, indisponibilidad de repuestos, etc.).

4.4 Interrupciones planeadas

Son las interrupciones producidas intencionalmente para facilitar la ampliación de las centrales o las modificaciones del soporte físico y/o lógico. La repercusión de estas interrupciones en el servicio depende de su duración, de la hora del día en que se producen, y del diseño del sistema de que se trate.

4.5 *Indisponibilidad total y parcial*

La indisponibilidad de la central puede ser total o parcial. La indisponibilidad total afecta a todos los circuitos terminales y, en consecuencia, todo el tráfico ofrecido durante la interrupción es igualmente afectado. Una interrupción parcial afecta solamente a algunos circuitos terminales.

Desde el punto de vista de un terminal de central (por ejemplo, un terminal de línea de abonado), el valor numérico del tiempo medio de indisponibilidad acumulado (y por consiguiente la indisponibilidad) para un periodo de tiempo especificado no debe depender del tamaño de la central ni de su capacidad de tratamiento del tráfico. Análogamente, desde el punto de vista de un grupo de terminales de tamaño n, el tiempo medio de indisponibilidad acumulado para un periodo de tiempo especificado, *cuando los terminales están simultáneamente indisponibles*, no debe depender del tamaño de la central. Sin embargo, para dos grupos de terminales de tamaños diferentes n y m tales que n es mayor que m (n > m), el tiempo medio de indisponibilidad acumulado (y por tanto la indisponibilidad) para n será menor que el ς tiempo medio de indisponibilidad acumulado (TMIA) o la indisponibilidad para m.

Así:

TMIA(n) < TMIA(m) donde n > m

y

El límite más bajo de m es una sola terminación, y puede especificarse en términos de un valor medio de T minutos por año.

4.6 Base estadística

Toda estimación de indisponibilidad es necesariamente una magnitud estadística, porque se supone que las interrupciones se producen al azar y son de duración aleatoria. Por tanto, las medidas de la disponibilidad son significativas cuando se efectúan en un número estadísticamente significativo de centrales. En consecuencia, alguna central puede rebasar los objetivos de indisponibilidad. Además, para que sea estadísticamente significativo, el tiempo de observación debe ser adecuado, de modo que se tomen suficientes datos. La exactitud del resultado depende de la cantidad de datos tomados.

4.7 Sucesos representativos de fallos

En una central pueden producirse diferentes tipos de sucesos representativos de fallos. Para evaluar la indisponiblidad de una central (o parte de la misma) sólo deberán tenerse en cuenta los sucesos que produzcan un efecto negativo en la capacidad de la central para procesar las llamadas. Podrán despreciarse los sucesos de corta duración que sólo producen el retardo de una llamada y no su rechazo.

4.8 Independencia de la disponibilidad

Los objetivos de diseño para la indisponibilidad de un único circuito terminal o de un grupo cualquiera de terminales de tamaño n son independientes del tamaño y de la estructura interna de la central.

4.9 Tiempo de indisponibilidad intrínseca y objetivos de indisponibilidad

La medida recomendada para la determinación de la *indisponibilidad intrínseca* es el çtiempo medio de indisponibilidad intrínseca acumulado (TMIIA) para un terminal o un grupo de terminales de central, y para un tiempo de observación dado, típicamente un año.

Para un solo terminal:

TMIIA(1) ≤ 30 minutos por año

Para un grupo de terminales de central de tamaño *n*:

TMIIA(n) < TMIIA(m), donde n > m

Este parámetro refleja las consecuencias (por ejemplo, congestión de tráfico, molestias de orden social, etc.) de la interrupción simultánea de un gran número de terminales.

Esta expresión constituye una declaración de principio y significa que los tamaños de grupo mayores deberán tener un TMIIA más bajo.

4.10 Objetivos de indisponibilidad operacional

4.10.1 Tiempo de retardo logístico

Dadas las diferentes condiciones nacionales, los tiempos de retardo logístico pueden variar de un país a otro, y por tanto no pueden ser objeto de una Recomendación internacional.

Sin embargo, como guía para el diseño, se considera necesaria una indicación de los tiempos de retardo logístico de las Administraciones para establecer objetivos globales de comportamiento operacional. Se deja al criterio de cada Administración la forma en que habrá de tenerse en cuenta este factor en la determinación de la indisponibilidad operacional.

4.10.2 Interrupciones planeadas

Las interrupciones planeadas deberán reducirse al mínimo posible. Deberán programarse de forma que tengan la menor repercusión posible en el servicio.

4.11 Comportamiento inicial de disponibilidad de una central

Un sistema cumple raramente todos los objetivos de diseño a largo plazo cuando se pone en servicio por primera vez. Por lo tanto, los objetivos establecidos en esta Recomendación pueden no cumplirse durante cierto periodo de tiempo, después de la puesta en servicio de un sistema de conmutación de nuevo diseño; este periodo deberá reducirse al mínimo posible.

5 Objetivos de diseño de fiabilidad del soporte físico

Se recomienda que se fije un límite al número de fallos del soporte físico. Este límite incluye todos los tipos de fallo del soporte físico, y los fallos contados son independientes de si producen o no una degradación del servicio.

Una tasa de fallos del soporte físico aceptable para una central dependerá del tamaño de la misma y de los tipos de circuitos terminales.

Puede utilizarse la siguiente fórmula para verificar que la tasa máxima de fallos no supera los valores exigidos por las Administraciones:

$$F_{\text{max}} = C_0 + \sum_{i=1}^{n} C_i T_i$$

donde:

 $F_{\text{máx}}$ es el número máximo admisible de fallos del soporte físico por unidad de tiempo;

 T_i es el número de terminales de tipo i;

n es el número de tipos distintos de terminales;

C₀ se determinará teniendo en cuenta todos los fallos que son independientes del tamaño de la central;

 C_i es el coeficiente para terminales de tipo i, que reflejan el número de fallos relacionados con los distintos terminales de ese tipo. Diferente soporte físico utilizado con diferentes tipos de terminales puede dar lugar a diferentes valores de C_i .

SERIES DE RECOMENDACIONES DEL UIT-T Serie A Organización del trabajo del UIT-T Serie B Medios de expresión: definiciones, símbolos, clasificación Serie C Estadísticas generales de telecomunicaciones Serie D Principios generales de tarificación Serie E Explotación general de la red, servicio telefónico, explotación del servicio y factores humanos Serie F Servicios de telecomunicación no telefónicos Serie G Sistemas y medios de transmisión, sistemas y redes digitales Serie H Sistemas audiovisuales y multimedios Serie I Red digital de servicios integrados Serie J Transmisiones de señales radiofónicas, de televisión y de otras señales multimedios Serie K Protección contra las interferencias Serie L Construcción, instalación y protección de los cables y otros elementos de planta exterior Serie M RGT y mantenimiento de redes: sistemas de transmisión, circuitos telefónicos, telegrafía, facsímil y circuitos arrendados internacionales Serie N Mantenimiento: circuitos internacionales para transmisiones radiofónicas y de televisión Serie O Especificaciones de los aparatos de medida Serie P Calidad de transmisión telefónica, instalaciones telefónicas y redes locales Serie Q Conmutación y señalización Serie R Transmisión telegráfica Serie S Equipos terminales para servicios de telegrafía Serie T Terminales para servicios de telemática Serie U Conmutación telegráfica Serie V Comunicación de datos por la red telefónica Serie X Redes de datos y comunicación entre sistemas abiertos Serie Y Infraestructura mundial de la información y aspectos del protocolo Internet Serie Z Lenguajes y aspectos generales de soporte lógico para sistemas de telecomunicación