ITU-T

Q.3300

TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU

(03/2010)

SERIES Q: SWITCHING AND SIGNALLING

Signalling requirements and protocols for the NGN – Resource control protocols

Architectural framework for the Q.330x series of Recommendations

Recommendation ITU-T Q.3300

ITU-T Q-SERIES RECOMMENDATIONS

SWITCHING AND SIGNALLING

SIGNALLING IN THE INTERNATIONAL MANUAL SERVICE	Q.1-Q.3
INTERNATIONAL AUTOMATIC AND SEMI-AUTOMATIC WORKING	Q.4-Q.59
FUNCTIONS AND INFORMATION FLOWS FOR SERVICES IN THE ISDN	Q.60-Q.99
CLAUSES APPLICABLE TO ITU-T STANDARD SYSTEMS	Q.100-Q.119
SPECIFICATIONS OF SIGNALLING SYSTEMS No. 4, 5, 6, R1 AND R2	Q.120-Q.499
DIGITAL EXCHANGES	Q.500-Q.599
INTERWORKING OF SIGNALLING SYSTEMS	Q.600-Q.699
SPECIFICATIONS OF SIGNALLING SYSTEM No. 7	Q.700-Q.799
Q3 INTERFACE	Q.800-Q.849
DIGITAL SUBSCRIBER SIGNALLING SYSTEM No. 1	Q.850-Q.999
PUBLIC LAND MOBILE NETWORK	Q.1000-Q.1099
INTERWORKING WITH SATELLITE MOBILE SYSTEMS	Q.1100-Q.1199
INTELLIGENT NETWORK	Q.1200-Q.1699
SIGNALLING REQUIREMENTS AND PROTOCOLS FOR IMT-2000	Q.1700-Q.1799
SPECIFICATIONS OF SIGNALLING RELATED TO BEARER INDEPENDENT CALL CONTROL (BICC)	Q.1900–Q.1999
BROADBAND ISDN	Q.2000-Q.2999
SIGNALLING REQUIREMENTS AND PROTOCOLS FOR THE NGN	Q.3000-Q.3999
General	Q.3000-Q.3029
Network signalling and control functional architecture	Q.3030-Q.3099
Network data organization within the NGN	Q.3100-Q.3129
Bearer control signalling	Q.3130-Q.3179
Signalling and control requirements and protocols to support attachment in NGN environments	Q.3200-Q.3249
Resource control protocols	Q.3300-Q.3369
Service and session control protocols	Q.3400-Q.3499
Service and session control protocols – supplementary services	Q.3600-Q.3649
NGN applications	Q.3700-Q.3849
Testing for next generation networks	Q.3900-Q.3999

For further details, please refer to the list of ITU-T Recommendations.

Recommendation ITU-T Q.3300

Architectural framework for the Q.330x series of Recommendations

Summary

Recommendation ITU-T Q.3300 v2 provides a framework by means of which the reader may understand the relationships between the various Recommendations of the Q.330x series. It defines the entities involved in resource control signalling and the interfaces across which signalling occurs. Appendix I provides a cross-reference between the interfaces defined in the main body of this Recommendation and the Recommendations defining the protocols operating across those interfaces.

NOTE – This Recommendation was initially published as Recommendation ITU-T Q.3320, and was later renumbered and republished as ITU-T Q.3300 v2 with an updated title.

History

Edition	Recommendation	Approval	Study Group
1.0	ITU-T Q.3300	2008-01-23	11
2.0	ITU-T Q.3320	2010-03-01	11
2.0	ITU-T Q.3300 v2	2010-03-01	11

Keywords

Physical entity, RACF.

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of telecommunications, information and communication technologies (ICTs). The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical, operating and tariff questions and issuing Recommendations on them with a view to standardizing telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years, establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain mandatory provisions (to ensure, e.g., interoperability or applicability) and compliance with the Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some other obligatory language such as "must" and the negative equivalents are used to express requirements. The use of such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence, validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others outside of the Recommendation development process.

As of the date of approval of this Recommendation, ITU had not received notice of intellectual property, protected by patents, which may be required to implement this Recommendation. However, implementers are cautioned that this may not represent the latest information and are therefore strongly urged to consult the TSB patent database at http://www.itu.int/ITU-T/ipr/.

© ITU 2013

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the prior written permission of ITU.

Table of Contents

			Page
1	Scope		1
2	Reference	ces	1
3	Definition	ons	1
	3.1	Terms defined elsewhere	1
	3.2	Terms defined in this Recommendation	2
4	Abbrevi	ations and acronyms	2
5	Convent	ions	2
6	Architec	etural specification	3
	6.1	ITU-T Y.2111 functional architecture	3
	6.2	Principles of mapping	3
	6.3	Implementations of functional entities	4
	6.4	Interfaces and protocols	4
Appen	dix I – T	abulation of resource control protocol Recommendations	5
Appen	dix II – I	Example of physical realization of the RACF architecture	6
Biblio	graphy		7

Recommendation ITU-T Q.3300

Architectural framework for the Q.330x series of Recommendations

1 Scope

This Recommendation specifies a concrete realization of the functional architecture defined in [ITU-T Y.2111], including: the specification of the physical entities involved in resource control signalling; the interfaces across which signalling takes place; and the mapping between these entities and interfaces and the corresponding functional entities and reference points in [ITU-T Y.2111]. Appendix I provides a table illustrating the mapping between these interfaces and the protocol specifications which realize those interfaces.

NOTE – [ITU-T Y.2111] (11/2008) is a Revision 1 of ITU-T Y.2111 (09/2006), which was the base for [b-ITU-T Q.3300].

2 References

The following ITU-T Recommendations and other references contain provisions which, through reference in this text, constitute provisions of this Recommendation. At the time of publication, the editions indicated were valid. All Recommendations and other references are subject to revision; users of this Recommendation are therefore encouraged to investigate the possibility of applying the most recent edition of the Recommendations and other references listed below. A list of the currently valid ITU-T Recommendations is regularly published. The reference to a document within this Recommendation does not give it, as a stand-alone document, the status of a Recommendation.

[ITU-T Y.2111] Recommendation ITU-T Y.2111 (2008), Resource and admission control functions in next generation networks.

3 Definitions

3.1 Terms defined elsewhere

This Recommendation uses the following terms defined elsewhere:

3.1.1 network attachment control entity (NACE) [b-ITU-T Q.3300]: A general term used to refer to a device exercising one of the network attachment control functions (NACF) as defined in clause 7.2.2 of [ITU-T Y.2111].

NOTE – These functions may be distributed over multiple devices, but identification of specific devices is unnecessary so long as the necessary information flows are supported over the Ru interface.

- **3.1.2 policy decision physical entity (PD-PE)** [b-ITU-T Q.3300]: A device that implements the policy decision functional entity (PD-FE) as defined in clause 7.2.3.2 of [ITU-T Y.2111].
- **3.1.3 policy enforcement physical entity (PE-PE)** [b-ITU-T Q.3300]: A device that implements the policy enforcement functional entity (PE-FE) as defined in clause 7.2.4.1 of [ITU-T Y.2111].
- NOTE One example of such a device is a border router.
- **3.1.4 transport physical entity** (**T-PE**) [b-ITU-T Q.3300]: A term used to refer to any device implementing the transport functions in the limited sense provided in clause 7.2.4 of [ITU-T Y.2111] (i.e., those with which the RACF interacts).
- **3.1.5** transport resource control physical entity (TRC-PE) [b-ITU-T Q.3300]: A device that implements the transport resource control functional entity (TRC-FE) as defined in clause 7.2.3.3 of [ITU-T Y.2111].

3.1.6 transport resource enforcement physical entity (TRE-PE) [b-ITU-T Q.3300]: A device that implements the transport resource enforcement functional entity (TRC-FE) as defined in clause 7.2.4.2 of [ITU-T Y.2111].

3.2 Terms defined in this Recommendation

This Recommendation defines the following term:

3.2.1 CPN gateway policy enforcement physical entity (CGPE-PE): A device that implements the CPN gateway policy enforcement functional entity (CGPE-FE) as defined in clause 7.2.4.2 of [ITU-T Y.2111].

4 Abbreviations and acronyms

This Recommendation uses the following abbreviations and acronyms:

CGPE CPN Gateway Policy Enforcement

CPN Customer Premises Network

FE Functional Entity

NACE Network Attachment Control Entity

NACF Network Attachment Control Functions

PD-FE Policy Decision Functional Entity

PD-PE Policy Decision Physical Entity

PE Physical Entity

RACF Resource Admission and Control Function

SCE Service Control Entity (e.g., implementation of a P-CSCF)

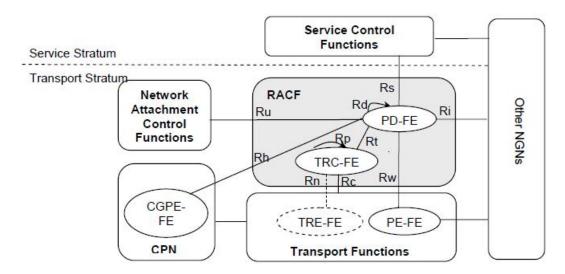
SCF Service Control Functions (as used in [ITU-T Y.2111])

TF Transport Functions (as used in [ITU-T Y.2111])

T-PE Transport Physical Entity (e.g., a router)

TRC-FE Transport Resource Control Functional Entity

TRC-PE Transport Resource Control Physical Entity


5 Conventions

None.

6 Architectural specification

6.1 ITU-T Y.2111 functional architecture

Figure 6-1 illustrates the RACF functional architecture defined in [ITU-T Y.2111].

Taken from Figure 5 of [ITU-T Y.2111].

Figure 6-1 – Generic resource and admission control functional architecture in NGN

The relevant functional entities are:

- SCF (service control functions)
- PD-FE (policy decision functional entity)
- TRC-FE (transport resource control functional entity)
- TRE-FE (transport resource enforcement functional entity)
- PE-FE (policy enforcement functional entity)
- CGPE-FE (CPN gateway policy enforcement functional entity)
- NACF (network attachment control functions)

6.2 Principles of mapping

The realization presented in this Recommendation accepts the considerations of scalability and domain independence that motivated the development of the functional architecture. As a result, it maps each functional entity of the functional architecture to a separate type of physical entity. Furthermore, each reference point is assumed to map to a separate interface. At a particular interface one protocol, from a set of recommended protocols, may be used. Because the mapping between reference points and interfaces is one-to-one, each interface is named after the reference point to which it corresponds (e.g., Rs interface corresponding to the Rs reference point).

Depending on the technology involved, some of the physical entities identified in this Recommendation could be combined. In such a case, each combined entity will support the combined set of external interfaces of its component elements. Note that interfaces that would lie between the component elements if they were separate are absorbed into the interior of the combined entity.

6.3 Implementations of functional entities

Table 6-1 indicates the mapping from the functional entities to the physical entities implementing them.

Table 6-1 – Mapping from functional to physical entities concerned with resource admission and control

Functional entity	Abbrev.	Physical entity	Abbrev.
Service Control Functions	SCF	Service Control Entity (e.g., implementation of P-CSCF)	SCE
Network Attachment Control Functions	NACF	Network Attachment Control Entity	NACE
Policy Decision Functional Entity	PD-FE	Policy Decision Physical Entity	PD-PE
Transport Resource Control Functional Entity	TRC-FE	Transport Resource Control Physical Entity	TRC-PE
Transport Resource Enforcement Functional Entity	TRE-FE	Transport Resource Enforcement Physical Entity	TRE-PE
Transport Functions in general	TF	Transport Physical Entity (of various types, possibly limited by context)	T-PE
Policy Enforcement Functional Entity	PE-FE	Policy Enforcement Physical Entity	PE-PE
CPN Gateway Policy Enforcement Functional Entity	CGPE-FE	CPN Gateway Policy Enforcement Physical Entity	CGPE-PE

Clause 7.1 of [ITU-T Y.2111] implies a number of relationships between the physical entities named in Table 6-1. These relationships are listed here and illustrated in Figure II.1 below:

- One PD-PE may serve SCE belonging to multiple service stratum service providers (where each SCE is individually owned by a particular service provider).
- Multiple PD-PEs within the same domain may be interconnected via the Rd interface.
- One PD-PE can communicate directly with one or several TRC-PEs belonging to the same network operator's domain, and a TRC-PE may communicate directly with multiple PD-PEs.
- A mode of operation is possible, whereby for a specific request for the allocation of QoS resources, the PD-PE contacts a single TRC-PE. The TRC-PE then communicates to other TRC-PEs via the Rp interface as required to fulfil the request.

Appendix II contains an example of configuration of the physical entities identified in Table 6-1 and the interfaces between them.

6.4 Interfaces and protocols

A cross-reference between the interfaces defined in this Recommendation, the protocols used at those interfaces, and the Recommendations within which those protocols are documented, is provided in Appendix I.

Appendix I

Tabulation of resource control protocol Recommendations

(This appendix does not form an integral part of this Recommendation.)

Table I.1 lists Recommendations which define protocols applicable to each resource control interface specified in the body of this Recommendation.

Table I.1 – Resource control protocol Recommendations

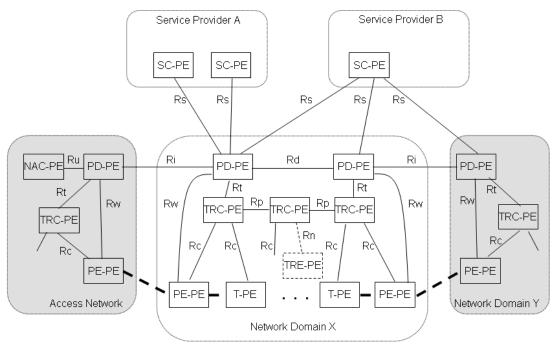
Interface	Supporting entities	Protocol base (Notes)	Rec. No.
Rs	SC-PE, PD-PE	Diameter	[b-ITU-T Q.3301.1]
Rp	Between TRC-PEs	RCIP	TBD
Rw	PD-PE, PE-PE	_	TBD
		COPS-PR	TBD
		H.248	TBD
		Diameter	TBD
Rc	TRC-PE, T-PE	COPS-PR	TBD
		SNMP	TBD
Rt	PD-PE, TRC-PE	Diameter	TBD
Rd	PD-PE to PD-PE (intra-domain)	Diameter	[b-ITU-T Q.3306.1]
Ri	PD-PE to PD-PE (inter-domain)	Diameter	[b-ITU-T Q.3307.1]
Rh	PD-PE to CGPE-PE	Interface is for further study	TBD
Rn	TRC-PE, TRE-PE	Interface is for further study	_

NOTE 1 – Diameter: [b-IETF RFC 3588].

NOTE 2 – COPS-PR: Common Open Policy Service – Policy Provisioning ([b-IETF RFC 2748],

[b-IETF RFC 3084]).

NOTE 3 – SNMP: Simple Network Management Protocol ([b-IETF RFC 3410] and others).


NOTE 4 – RCIP: Resource Connection Initiation Protocol.

Appendix II

Example of physical realization of the RACF architecture

(This appendix does not form an integral part of this Recommendation.)

Figure II.1 shows an example of the physical realization of entities identified in Table 6-1 and the interfaces between them. The actual configuration may vary according to the needs of the network operator(s) concerned.

The heavy dashed lines denote packet flows.

NOTE – The Rn interface is for further study.

Figure II.1 – Example physical realization of the RACF architecture

Bibliography

[b-ITU-T Q.3300]	Recommendation ITU-T Q.3300 (2008), <i>Architectural framework for the Q.33xx series of Recommendations</i> .
[b-ITU-T Q.3301.1]	Recommendation ITU-T Q.3301.1 v2 (2010), Resource control protocol No. 1, version 2 – Protocol at the Rs interface between service control entities and the policy decision physical entity.
[b-ITU-T Q.3306.1]	Recommendation ITU-T Q.3306.1 (2009), Resource control protocol No. 6 (rcp6) – Protocol at the interface between intra-domain policy decision physical entities (PD-PE) (Rd interface).
[b-ITU-T Q.3307.1]	Recommendation ITU-T Q.3307.1 (2009), Resource control protocol No. 7 – Protocol at the interface between inter-domain policy decision physical entities (Ri interface).
[b-IETF RFC 2748]	IETF RFC 2748 (2000), The COPS (Common Open Policy Service) Protocol.
[b-IETF RFC 3084]	IETF RFC 3084 (2001), COPS Usage for Policy Provisioning (COPS-PR).
[b-IETF RFC 3410]	IETF RFC 3410 (2002), Introduction and Applicability Statements for Internet Standard Management Framework.
[b-IETF RFC 3588]	IETF RFC 3588 (2003), Diameter Base Protocol.

SERIES OF ITU-T RECOMMENDATIONS

Series A	Organization of the work of ITU-T
Series D	General tariff principles
Series E	Overall network operation, telephone service, service operation and human factors
Series F	Non-telephone telecommunication services
Series G	Transmission systems and media, digital systems and networks
Series H	Audiovisual and multimedia systems
Series I	Integrated services digital network
Series J	Cable networks and transmission of television, sound programme and other multimedia signals
Series K	Protection against interference
Series L	Construction, installation and protection of cables and other elements of outside plant
Series M	Telecommunication management, including TMN and network maintenance
Series N	Maintenance: international sound programme and television transmission circuits
Series O	Specifications of measuring equipment
Series P	Terminals and subjective and objective assessment methods
Series Q	Switching and signalling
Series R	Telegraph transmission
Series S	Telegraph services terminal equipment
Series T	Terminals for telematic services
Series U	Telegraph switching
Series V	Data communication over the telephone network
Series X	Data networks, open system communications and security
Series Y	Global information infrastructure, Internet protocol aspects and next-generation networks
Series Z	Languages and general software aspects for telecommunication systems