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Recommendation ITU-T Q.3055 

Signalling protocol for heterogeneous Internet of things gateways 

 

 

 

Summary 

A heterogeneous gateway is a hardware and software system used for the interaction of Internet of 

things (IoT) devices with each other and with remote IoT services. It comprises an IoT gateway 

infrastructure (IoT GI) and a semantic IoT gateway (SIoTG). The IoT GI is a hardware and software 

system comprising IoT device hardware, network interfaces, operating system, and simulator or 

virtualization system (virtual machine, containers, etc.). It is used to ensure compatibility of the 

different network technologies. The SIoTG is a software program and part of the heterogeneous IoT 

gateway, and is used for the mapping of different protocols, applications and IoT services among 

themselves. 

The SIoTG that forms part of the heterogeneous gateway is supposed to ensure the mapping of 

different IoT solutions (protocols, applications and services) among themselves, independently of the 

configuration of the IoT devices themselves. Use of scenarios for the mapping of IoT solutions among 

themselves without using a special signalling protocol for the SIoTG is possible only if a standard 

configuration is used for each solution (e.g., for the mapping of protocols: a standard network port 

number for the protocol being mapped; no encryption of data embedded in the message, etc.). 

Otherwise, there is no standard solution for mapping procedures, and the need then arises for 

interaction with the SIoTG for the purpose of configuring the IoT solution mapping scenario. 

Recommendation ITU-T Q.3055 describes the signalling protocol for heterogeneous IoT gateways. 
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FOREWORD 

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of 

telecommunications, information and communication technologies (ICTs). The ITU Telecommunication 

Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical, 

operating and tariff questions and issuing Recommendations on them with a view to standardizing 

telecommunications on a worldwide basis. 

The World Telecommunication Standardization Assembly (WTSA), which meets every four years, establishes 

the topics for study by the ITU-T study groups which, in turn, produce Recommendations on these topics. 

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1. 

In some areas of information technology which fall within ITU-T's purview, the necessary standards are 

prepared on a collaborative basis with ISO and IEC. 
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Recommendation ITU-T Q.3055 

Signalling protocol for heterogeneous Internet of things gateways 

1 Scope 

This Recommendation describes the signalling protocol for heterogeneous Internet of things 

gateways. In particular, it: 

• Addresses the overall network model necessary for mapping and signalling procedures; 

• Addresses the software architecture necessary for mapping and signalling procedures;  

• Describes possible scenarios for the use of signalling. 

2 References 

The following ITU-T Recommendations and other references contain provisions which, through 

reference in this text, constitute provisions of this Recommendation. At the time of publication, the 

editions indicated were valid. All Recommendations and other references are subject to revision; 

users of this Recommendation are therefore encouraged to investigate the possibility of applying the 

most recent edition of the Recommendations and other references listed below. A list of the currently 

valid ITU-T Recommendations is regularly published. The reference to a document within this 

Recommendation does not give it, as a stand-alone document, the status of a Recommendation. 

[ITU-T Q.4060] Recommendation ITU-T Q.4060 (2018), The structure of the testing of 

heterogeneous Internet of things gateways in a laboratory environment. 

[ITU-T Y.4000] Recommendation ITU-T Y.4000/Y.2060 (2012), Overview of the 

Internet of things. 

[ITU-T Y.4050] Recommendation ITU-T Y.4050/Y.2069 (2012), Terms and definitions 

for the Internet of things. 

[ITU-T Y.4100] Recommendation ITU-T Y.4100/Y.2066 (2014), Common 

requirements of the Internet of things. 

[ITU-T Y.4101] Recommendation ITU-T Y.4101/Y.2067 (2017), Common 

requirements and capabilities of a gateway for Internet of things 

applications. 

[ITU-T Y.4113] Recommendation ITU-T Y.4113 (2016), Requirements of the network 

for the Internet of things. 

[ITU-T Y.4418] Recommendation ITU-T Y.4418 (2018), Gateway functional 

architecture for Internet of things applications. 

[IETF RFC 4122] IETF RFC 4122 (2005), A Universally Unique IDentifier (UUID) URN 

Namespace. 

[IETF RFC 7574] IETF RFC 7574 (2015), Peer-to-Peer Streaming Peer Protocol 

(PPSPP). 

3 Definitions 

3.1 Terms defined elsewhere 

This Recommendation uses the following terms defined elsewhere: 
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3.1.1 device [ITU-T Y.4000]: With regard to the Internet of things, this is a piece of equipment 

with the mandatory capabilities of communication and the optional capabilities of sensing, actuation, 

data capture, data storage and data processing.  

3.1.2 Internet of things (IoT) [ITU-T Y.4000]: A global infrastructure for the information society, 

enabling advanced services by interconnecting (physical and virtual) things based on existing and 

evolving interoperable information and communication technologies. 

3.2 Terms defined in this Recommendation 

This Recommendation defines the following terms: 

3.2.1 data aggregator: Either end-point data collection device or a reliably connected device 

relaying the data to the cloud. 

3.2.2 semantic gateway: A software system that is used for conversion between various IoT 

protocols, applications and services and is included in heterogeneous gateway systems. 

3.2.3 IoT/mobile device: A data-producing device that lacks reliable communication links (IoT, 

mobile, disaster management, etc.). 

4 Abbreviations and acronyms 

This Recommendation uses the following abbreviations and acronyms: 

AMQP Advanced Message Queuing Protocol 

CBOR Concise Binary Object Representation 

CoAP Constrained Application Protocol 

CRDT Conflict-free Replicated Data Type 

GI Gateway Infrastructure 

HTTP Hypertext Transfer Protocol 

ICF Intermediary Conversion Format 

IoT  Internet of Things 

JSON JavaScript Object Notation 

MQTT Message Queuing Telemetry Transport 

RAM Random Access Memory 

RON Replicated Object Notation  

RTPS-DDS Real-Time Publish Subscribe- Data Distribution Service 

SHA Secure Hash Algorithm 

SIoTG Semantic Internet of Things Gateway 

UML Unified Modelling Language 

UUID Universally Unique Identifier 

XMPP Extensible Messaging and Presence Protocol 

5 Conventions 

None. 
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6 Network architecture for IoT heterogeneous gateway 

Figures 6-1 and 6-2 show the general network architecture of the hardware and software system for 

heterogeneous IoT gateways. 

 

Figure 6-1 – General network architecture using heterogeneous IoT gateways 

 

Figure 6-2 – Typical structure of interaction of heterogeneous IoT gateways elements 

The system comprises: 

– IoT/mobile device: a data-producing device lacking reliable communication links (IoT, 

mobile, disaster management, etc.). 

– Redundant unreliable links: a wireless network with unreliable/fluid topology. 

– IoT/mobile gateway: data relay devices, either mobile or unreliably connected: 

• data aggregator: either end-point data collection device or a reliably connected device 

relaying the data to the cloud. 

This network architecture facilitates the implementation of possible interaction scenarios for the 

heterogeneous IoT gateway and devices connected to it. 

7 Semantic gateway architecture 

Figure 6-3 shows the UML-model for semantic IoT gateway software. 
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Figure 6-3 – UML-model for semantic IoT gateway software 

This model comprises: 

Procedure control – this class is responsible for monitoring the implementation of conversion 

procedures, according to incoming signalling messages. 

Signalling interface – this class is responsible for managing the virtual network interface (socket), 

which receives and processes signalling messages. 

Conversion interface control – this class is responsible for managing the virtual network interfaces 

for IoT protocol conversion. 

Protocol conversion interface – this class is responsible for receiving, sending and verifying incoming 

messages for the IoT protocol conversion interface. 

Intermediary conversion format (ICF) IoT convert – this class is responsible for converting messages 

from/to specific IoT protocol formats to/from intermediary conversion format for IoT. 

Interaction with database – this class is responsible for interaction with the local or remote database 

containing messages for conversion, descriptions of IoT objects (protocols, applications, services) 

connected to the heterogeneous gateway, and notes on procedure implementation for the semantic 

gateway (e.g., protocol conversion). 

Layer – the interface serving as the basis for the implementation of specific protocols supported by 

the semantic IoT gateway (e.g., HTTP, CoAP, MQTT, AMQP, RTPS-DDS, XMPP, etc.). 

Intermediary conversion format for Internet of things (ICF IoT) – the structure reflecting the 

intermediary conversion format used for storing information on messages in the database and memory 

during IoT protocol conversion procedures. 

Signal message format – the structure reflecting the format of signalling messages used for storing 

information on signalling messages during IoT protocol conversion procedures. 
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8 Database interaction and data collection: Replicated object notation 

Replicated object notation (RON) is a data-centric protocol for data delivery/dissemination in an 

unreliable distributed environment. RON puts an emphasis on mitigating inconsistencies introduced 

by unreliable heterogeneous environments, such as arbitrary delivery paths, data loss, duplication and 

reordering, arbitrary delays, scattered and/or mobile sources and/or receivers among others. 

RON is data-centric event-sourced format with a simplified tabular structure. RON relies on 

universally unique identifiers (UUIDs) to resolve inconsistencies and assemble the full state of 

separately arriving pieces of partial information. The internal structure of the protocol is simple and 

uniform to ease implementation and use. 

Any RON construct is composed of four types of "atoms": strings/buffers, integers, floats and UUIDs. 

A basic unit of exchange is an immutable "op" corresponding to an atomic event of data change. An 

op has four metadata UUIDs (data type, object id, event id and a "reference") and an arbitrary number 

of payload atoms. 

A transactional unit of transmission is a frame, which is a sequence of ops. 

A library of data recovery/reconciliation algorithms relies on the op metadata to resolve ambiguities 

and reassemble the data at a collection point. 

RON data is effectively independent in the context of any particular transmission or storage. Hence, 

RON effectively blurs the border between storage/caching and delivery/transmission. Only the 

eventual propagation of data matters. All means of storage are equally valid as means of transmission. 

Consequently, RON is especially suitable for networks with unstable topology, redundant but 

unreliable delivery paths and/or unpredictable or extreme delays. 
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Appendix I 

 

Replicated object notation 

(This appendix does not form an integral part of this Recommendation.) 

Replicated Object Notation 

Replicated Object Notation (RON) is a format for distributed live data. RON's primary mission is 

continuous data synchronization. A RON object may naturally have any number of replicas, which 

may synchronize in real-time or intermittently. 

JSON, protobuf, and many other formats implicitly assume serialization of separate state snapshots. 

RON handles state and updates all the same: state is change and change is state. RON includes 

metadata, versioning and addressing, all built in. Every object, every change, every version has a 

UUID. Pieces of data reference each other by UUIDs. Every RON data type is a conflict-free 

replicated data type (CRDT). With RON metadata, state and updates could always be pieced together. 

It always merges, it always converges. 

From another perspective, RON is like a metric system for data. The imperial system employed 

various usage-based units: foots, lines, furlongs, links, cables, etc. The metric system defines one unit 

(a meter), then derives other units from that. Similarly, data might be packed into usage-based units: 

snapshots, logs, chunks, batches, patches. RON defines an immutable op, then derives other units 

from that, in the form of data structures (arrays, maps, sets, etc.) or storage/transmission units 

(snapshots, batches/patches, logs, etc.). 

The following is a simple object serialized in RON: 

  @1fLDV+biQFvtGV :lww , 

      'id'        '20MF000CUS', 

      'type'      'laptop', 

      'cpu'       'i7-8850H', 

      'display'   '15.6" UHD IPS multi-touch, 400nits', 

      'RAM'       '16 GB DDR4 2666MHz', 

      'storage'   '512 GB SSD, PCIe-NVME M.2', 

      'graphics'  'NVIDIA GeForce GTX 1050Ti 4GB', 

  @1fLDk4+biQFvtGV 

      'wlan'      'Intel 9560 802.11AC vPro', 

     'camera'    'IR & 720p HD Camera with microphone', 

 @sha3 'SfiKqD1atGU5xxv1NLp8uZbAcHQDcX~a1HVk5rQFy_nq'; 

Key RON principles are: 

• Immutability – RON sees data as a collection of immutable timestamped ops. The example 

above depicts an object state consisting of ten ops (object creation op at line #1, the initial 

changeset #2 to #8, another changeset of two ops #9/10 and #11). An op may be referenced, 

transmitted, stored, applied or rolled back, garbage collected, etc. Every RON data structure 

(array, object, map, set, etc.) is a collection of immutable ops. Similarly, every data storage 

or transmission unit is made of ops (patch, state, chain, chunk, frame, object graph, log, 

yarn, etc.).  

• Addressability of everything. Changes, versions, objects and every piece of data is 

uniquely identified and globally referenceable. Above, the first op has an 

id 1fLDV+biQFvtGV, the second one is 1fLDV00001+biQFvtGV, the third 
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is 1fLDV00002+biQFvtGV and so on (the notation skips incremental ids). The last two ops 

(#9-10 and #11) belong to a later changeset, so their ids 

are 1fLDk4+biQFvtGV, 1fLDk40001+biQFvtGV. 

 NOTE – RON has no notational nesting (no brackets). Instead, data pieces reference each other by 

UUIDs, thus forming arbitrary graphs. 

• Causality. Each RON operation explicitly references what other op it is based on. No matter 

how and when the data is obtained, the correct order and location of data pieces can always 

be reconstructed. As described above, ops form an orderly chain, so references are skipped, 

except for the object creation op at line #1 which references its data type lww. 

• Efficiency. RON data is optimized to make metadata overhead bearable. An op is a very fine-

grained unit of change. Thus, RON has to optimize per-op metadata overhead in numerous 

ways. Op ids get skipped if they go incrementally. References are skipped if they point to the 

previous op (an op chain is a convenient default). For example, the op at line #2 mentions 

neither its own id (the first plus 1) nor its reference (the first op). The binary variant of RON 

employs more sophisticated metadata compression techniques. With no abbreviations, the 

object would look like a tabular log of ops, two metadata UUIDs per op: 

  @1fLDV00000+biQFvtGV  :lww ! 

  @1fLDV00001+biQFvtGV  :1fLDV00000+biQFvtGV 'id'        '20MF000CUS', 

  @1fLDV00002+biQFvtGV  :1fLDV00001+biQFvtGV 'type'      'laptop', 

  ... 

• Integrity, as ops form a Merkle structure. If necessary, the data is integrity-checked to the 

last bit, like in git, BitTorrent, BitCoin and other such systems. In the example above, ten ops 

form a Merkle chain, so the hash of the last op (line #12) covers them all. 

RON's vision is swarms of mobile devices communicating over unreliable wireless networks in an 

untrusted environment. 

UUIDs 

RON relies heavily on UUIDs to globally and unambiguously address everything it operates with: 

operations, patches, versions, objects, hashes, etc. 

RON employs its own UUID flavours and custom efficient serialization. Unlike RFC 4122, RON 

UUIDs: 

• can be sorted lexicographically, 

• can be efficiently compressed, 

• can function as lamport clocks, 

• can represent human-friendly string constants. 

RON UUIDs are serialized as a pair of 64-bit integers encoded with custom base64 encoding: 

A/LED0000000+XU5eRJ0000 

aaaavvvv vvvvvvvv vvvvvvvv vvvvvvvv vvvvvvvv vvvvvvvv vvvvvvvv vvvvvvvv 

00eeoooo oooooooo oooooooo oooooooo oooooooo oooooooo oooooooo oooooooo 

The bit layout is backwards-compatible with RFC 4122 (hijacking the 0 variant, NCS backward 

compatibility). Third and fourth bits of 9th byte are used to encode version (blue), four most 

significant bits of 1st byte are used to encode variety (orange). The bulk of the bits are taken by value 

(green) and origin (violet).  

https://tools.ietf.org/html/rfc4122


 

8 Rec. ITU-T Q.3055 (12/2019) 

Versions 

Two version bits are encoded using $, %, + or – as separator: 

• $ for 00: human readable names, 

• % for 01: numbers and hashes, 

• + for 10: events (Lamport timestamp, and origin), 

• – for 11: derived events (same as event). 

Varieties 

Four variety bits are encoded using single hex digit 0..F followed by a slash /. 

Variety flavour is defined by version. 

Variety of zero 0 can be omitted. 

Varieties for version $ (names): 

• 0000: transcendental/hardcoded name (lww, rga) or a scoped name (myvar$gritzko), 

• 0001: ISBN (1/978$1400075997, 

• 0011: EAN-13 bar code (3/4006381$333931, 

• 0100: SI units (4/m, 4/kg, 

• 0101: zip codes (5/2628CD$NL, 5/620078$RU, 

• 1010: IATA airport code (A/LED, 

• 1011: ticker name (B/GOOG$NASDAQ, 

• 1100: ISO 4217 currency code (C/USD, C/GBP, 

• 1101: short DNS name (D/google$com, 

• 1110: E.164 intl phone num (E/7999$5631415, 

• 1111: ISO 3166 country code (F/RU, F/FRA...). 

Varieties for version % (numbers and hashes): 

• 0000..0011: Decimal index (up to 9999999999%, also 2D indices 4%5), 

• 0100: SHA-2, plain chunk hash, first 120 bits, 

• 0101: SHA-3, plain chunk hash, 

• 0110: SHA-2 based RFC 7574 Merkle hash, 

• 0111: SHA-3 based RFC 7574 Merkle hash, 

• 1000..1011: Random number (A/k3R9w_2F8w%Le~6dDScsw), 

• 1100..1111: Crypto id, public key fingerprint. 

Varieties for versions + and – (events) 

Timestamp type: 

• 00__: Base64 calendar (MMDHmSsnn), 

• 01__: Logical (40000000001), 

• 10__: Epoch (RFC 4122 epoch, 100ns since 1582), 

bitwise and with replica id assignment rule: 

• __00: trie-forked, 

• __01: crypto-forked, 

• __10: record-forked, 
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• __11: application-specific. 

UUID compression 

Most of RON UUIDs can be efficiently compressed by only encoding highest significant bits. 

Base 64×64 tailing zeroes can be omitted: 

A/LED0000000+0000000000 = A/LED+0 

A/LED0000000$123 = A/LED$123 

If version is $ and second component is zero, it can be fully omitted: 

A/LED0000000$0000000000 = A/LED$0 = A/LED 

If variety is 0, it can be omitted as well: 

0/lww0000000$0000000000 = lww0000000$0000000000 = lww$0 = lww 

RON term glossary 

 

• RON UUID – a 128-bit globally unique identifier, one of four versions: 

o time-based (a logical/hybrid timestamp, 60 bits of timestamp, 60 bits of event origin id) 

o name (a human readable name of some predefined concept, e.g., a data type or an error 

type) 

o numeric (either an arbitrary number or a hash) 

• Atom – an immutable value of one of four types: 

o RON UUID 

o Integer (64-bit signed) 

o String (UTF-8) 

o Floating-point number (IEEE 754-2008, 64 bit) 

• Op – an immutable unit of change, consists of: 

o specifier (metadata) 

▪ own RON UUID (id, identifies the op) 

▪ reference RON UUID (ref, identifies the op's location in the data graph) 
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o value (payload data) 

▪ any number (zero or more) of value atoms (UUIDs, ints, strings, floats) 

If RON atoms are compared to real (chemistry) atoms, then RON ops are "molecules", composed of 

"atoms". Then, an op log is our "DNA" – it contains all the replicated data. Other higher-value 

constructs are like polypeptides, proteins and suchlike – they are composed of ops. Fundamentally, 

they are either subsets or projections of the op log (the "DNA"). A replicated op log is the foundation 

of all this machinery. 

Op-collection construct 

• Chain – a sequence of ops from the same origin, where each next op references the previous 

one. 

• Span – (chain span) – a chain where each op's id is exactly an increment of the previous id 

(1gABC+origin, 1gABC00001+origin, 1gABC00002+origin...). 

• Yarn – a linear log of all ops from the same origin (corresponds to a Lamport process). 

• Tree – a causally ordered group of ops forming a tree (each next op references some 

preceding op from the tree, except for the root op). 

• Object – largely synonymous to a tree, although op ordering depends on the data type (RDT). 

• Header – the object creation op (its id becomes the object's id; the header op is the root of the 

object's op tree). 

• Patch – a group of ops modifying the same tree/object (causally consistent, i.e., referencing 

the existing ops of the tree or previous ops of the patch). 

• Frame – largely synonymous to a "write batch"; a group of ops to be applied atomically, in a 

single transaction. 

• Chunk – a group of object's ops, preceded by the object's header, e.g., object state or a patch. 

• Log – a causally ordered sequence of ops, like a database op log. While yarns are linearly 

ordered, a log only has partial (causal) order; different replicas of a log may go in slightly 

different orders. 

• Graph – a group of objects referencing each other. 

• Graph patch – a group of object patches and full object states, a causally consistent change 

of an object graph. 

• Segments – a log segment, a yarn segment, a chain segment, etc. – a subset of the construct 

retaining its key features. 

Other terms 

• Annotation – a pseudo-op that is not itself a data change, but some derived/secondary 

information, related to some op (e.g., its hash or other metadata). 

• Vector timestamp – an array of time-based UUIDs, one per origin; a timestamp produced by 

vector clocks. 

Nominal format 

Nominal RON is a simple memory layout that stores uncompressed RON ops. It serves three 

purposes: 

• exchange RON ops within the same address space, 

• define the canonical representation, e.g., content hashing, 

• serve as an intermediary format in any conversions, mappings, filters and transformations. 
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Normally, a serialized RON frame is read by an iterator/parser/cursor which creates a nominal-RON 

representation of each next op. A builder/serializer/writer converts a nominal-RON op into the 

resulting format. 

The nominal format per se is not intended as a frame serialization format, as it would be too 

inefficient. 

The nominal RON may be highly beneficial in mixed environments, e.g., when a C++ implementation 

is used from a node.js program through the bindings. If the js part may consume/produce nominal-

RON data, it needs no own parsers and no own builders. Instead, it may consume parsed data from a 

scratchpad buffer. The same applies to bizzare situations, e.g., C++ engine/parsers/builders running 

in a browser under wasm, used by a Java program running under GWT. 

Overall layout 

The nominal format is made of 128-bit atoms, consisting of two 64-bit words each. Words use the 

4+60 bit layout. Nominally, the byte layout is big-endian (e.g., a hash function expects big-endian 

words). Although, an implementation may use little-endian words if requested. All pictures assume 

big-endian words. 

An op is a concatenation of its atoms, starting with its id and ref UUIDs. 

In all atoms except UUIDs, the origin word specifies a byte range in the original RON buffer (text 

RON, binary, JSON, CBOR). The maximum allowed frame size is 1 GB, so the byte range is given 

as two 30-bit unsigned ints for the offset and the length. The raw buffer is supposed to be available. 

Caveats: 

• String values only reside in the raw buffer. 

• UUID atoms are fully parsed, so no range provided. 

Frame header 

(rarely used) 

Bytes 0-3 (mmmm) contain magic bytes, RON2 for closed RON, ROP2 for open. 

Bytes 4-7 (cccc) is the number of ops in the frame, as a big-endian integer. 

Bits 4-7 in byte 8 are set to 1100. 

Bytes 8-15 contain the byte range within the raw unparsed buffer. 

mmmmmmmm mmmmmmmm mmmmmmmm mmmmmmmm cccccccc cccccccc cccccccc cccccccc 

1100oooo oooooooo oooooooo oooooooo oollllll llllllll llllllll llllllll 

Again, frame header is supposed to be rarely used, as entire frames are rarely uncompressed at once. 

Op header 

(less rarely used) 

Bytes 0-3 (mmmm) contain magic bytes, ron2 for closed RON, rop2 for open. 

Bytes 4-7 (cccc) contain the number of atoms in the op, as a big-endian integer. 

Bits 4-7 in byte 8 (11__) indicate the op type: 

• 1100 raw, 

• 1101 reduced, 

• 1110 header, 

• 1111 query. 
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Bytes 8-15 contain location of raw buffer location with unparsed op content. 

mmmmmmmm mmmmmmmm mmmmmmmm mmmmmmmm cccccccc cccccccc cccccccc cccccccc 

11__oooo oooooooo oooooooo oooooooo oollllll llllllll llllllll llllllll 

UUID atom 

A 128-bit RON UUID: 

vvvv···· ········ ········ ········ ········ ········ ········ ······· 

00ss···· ········ ········ ········ ········ ········ ········ ······· 

Bits 4-7 in byte 0 (vvvv) represent UUID variety. 

Bits 6-7 in byte 8 are set to 00, indicating that this atom is a UUID. 

Bits 4-5 in byte 8 (ss) represent UUID version. 

(That is the usual RON UUID in-memory layout, except implementations that are likely to use 

platform endiannes internally.) 

Integer atom 

Bytes 0-7 (iiii) a 4-bit signed integer. 

Bytes 8-15 contain location of raw buffer location with unparsed integer representation. 

Bits 4-7 in byte 8 are set to 0101, indicating that this atom is integer atom. 

60 value bits of the origin word (ooo, lll) contain the raw buffer range for the original unparsed 

value. ooo is the offset, lll is the length, both are 30-bit unsigned integers. 

iiiiiiii iiiiiiii iiiiiiii iiiiiiii iiiiiiii iiiiiiii iiiiiiii iiiiiiii 

0101oooo oooooooo oooooooo oooooooo oollllll llllllll llllllll llllllll 

Float atom 

Bytes 0-7 (ffff) contain a 64-bit float (should be IEEE 754). 

Bits 4-7 in byte 8 are set to 0111, indicating that this atom is a float. 

Bytes 8-15 contain a raw buffer range for the unparsed float representation, same as integer. 

ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff 

0111oooo oooooooo oooooooo oooooooo oollllll llllllll llllllll llllllll 

String atom 

The value word contains string metrics: byte length bbb and codepoint length ccc. These metrics are 

relative to a pure UTF-8 string, all escapes etc., replaced. 

Bits 4-7 in byte 8 are set to 0110, indicating that this atom is a string. 

Bytes 8-15 contain a raw buffer range (note the raw byte length may not match the UTF-8 byte 

length). 

0000bbbb bbbbbbbb bbbbbbbb bbbbbbbb bbcccccc cccccccc cccccccc cccccccc 

0110oooo oooooooo oooooooo oooooooo oollllll llllllll llllllll llllllll 

Text format (Grammar) 

Text-based RON is a regular language, mostly used for its human readability. 

The Ragel grammar for RON UUID is: 
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    # digits (base64, hex) 

    DGT = [0-9a-zA-Z~_]; 

    HEX = [0-9A-F]; 

 

    # RON UUID variety (1st word flag bits) 

    VARIETY = HEX "/" @variety; 

 

    # RON UUID version char (2nd word flag bits) 

    VERSION = [\$\%\+\-] @version; 

 

    # 60+4 bit word (the most significant 4 bits are flags, the rest is payload) 

    WORD = DGT+; 

 

    # UUID value (the 1st word)  

    VALUE = WORD >begin_value %end_value; 

 

    # UUID origin (the 2nd word) 

    ORIGIN = WORD >begin_origin %end_origin; 

 

    # RON UUID (128 bits, two 60+4 bit words)  

    UUID = ( VARIETY? VALUE ( VERSION ORIGIN )? ) >begin_uuid %end_uuid; 

    # examples: lww, A/LED, 12345+origin, 1/0000000001+origin, some_hash%12345375868 

The Ragel grammar for the text-based RON is: 

    # int64_t  

    SGN = [\-+]; 

    DIGITS = digit+; 

    INT = (SGN? DIGITS ) >begin_int %end_int; 

     

    # 64-bit (double) float TODO ISO syntax 

    FRAC = "." DIGITS; 

    EXP = [eE] SGN? DIGITS; 

    FLOAT = ( SGN? DIGITS ( FRAC EXP? | EXP ) ) >begin_float %end_float; 

 

    # a char TODO UTF8, escapes, \u escapes 

    # UTF8 = TODO; 

 

    # JSON-ey string 

    UNIESC = "\\u" [0-9a-fA-F]{4}; 

    ESC = "\\" [nrt\\b'/"]; 

    CHAR = CODEPOINT – ['\n\r\\]; 
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    STRING = ( (UNIESC|ESC|CHAR)* ) >begin_string %end_string; 

 

    # op term (header op, raw/reduced op, query op) 

    OPTERM = [,;!?] @op_term; 

     

    # value atom (payload) – int, float, string, UUID 

    BARE_ATOM = INT | FLOAT | UUID %end_bare_uuid; 

    QUOTED_ATOM =         

            "=" space* INT  | 

            "^" space* FLOAT | 

            ['] STRING ['] | 

            ">" space* UUID %end_quoted_uuid ;     

    ATOM = QUOTED_ATOM | space BARE_ATOM ; 

 

    # op's specifier, @id :ref 

    SPEC = '@' UUID %end_id space* ( ':' UUID %end_ref )? ; 

    ATOMS = ATOM (space* ATOM)* ; 

 

    # RON op: an immutable unit of change 

    OP = (SPEC|BARE_ATOM)? space* ATOMS? space* OPTERM ; 

 

    # a frame terminator (mandatory in the streaming mode) 

    DOT = ".\n" ; 

 

    # RON frame (open text coding) 

    TEXT_FRAME = (space* OP)* space* DOT? ; 

Binary format 

The binary RON format is more efficient because of higher bit density. It is also simpler and safer to 

parse because of explicit field lengths. Obviously, it is not human-readable. 

Like the text format, the binary one is only optimized for iteration. As a result of compression, records 

are inevitably of variable length, so random access is not possible. Also, compression depends on 

iteration, as UUIDs get abbreviated relative to similar preceding UUIDs. 

A binary RON frame starts with magic bytes RON2 and frame length. The rest of the frame is a 

sequence of fields. Each field starts with a descriptor specifying the type of the field and its length. 

Frame length is serialized as a 32-bit big-endian integer. The maximum length of a frame is 230 bytes 

(a gibibyte). If the length value has its most significant bit set to 1, then the frame is chunked. A 

chunked frame is followed by a continuation frame. A continuation frame has no magic bytes, just a 

4-byte length field. The last continuation frame must have the m.s.b. of its length set to 0. 

A descriptor's first byte spends four most significant (m.s.) bits to describe the type of the field, other 

four bits describe its length. 
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128 64 32 16 8 4 2 1 

Major type Minor type Field length 

Field descriptor major/minor type bits are set as follows: 

1) 00 RON op descriptor, 

• 0000 raw op, 

• 0001 reduced op, 

• 0010 header op, 

• 0011 query header op. 

2) 01 Reserved (for binary data) 

• 0100 type (reducer) id, 

• 0101 object id, 

• 0110 event id, 

• 0111 ref/location id 

3) 10 Atoms, compressed (zipped chains) 

• 1000 UUID, backreference 

• 1001 integer list 

• 1010 char list 

• 1011 

4) 11 Atom 

• 1100 UUID, uncompressed (lengths 1..16) 

• 1101 integer (big-endian, zigzag-coded, lengths 1, 2, 4, 8) 

• 1110 string (UTF-8, length 0..231−1) 

• 1111 float (IEEE 754-2008, binary 16, 32 or 64, lengths 2, 4, 8 resp) 

A descriptor's four least significant bits encode the length of the field in question. The length value 

given by a descriptor does not include the length of the descriptor itself. 

If a field or a frame is 1 to 16 bytes long, then it has its length coded directly in the four l.s. bits of 

the descriptor. Zero stands for the length of 16 because most field types are limited to that length. Op 

terms specify no length. With string atoms, zero denotes the presence of an extended length field 

which is either 1 or 4 bytes long. The maximum allowed string length is 1Gb (30 bits). In case the 

descriptor byte is exactly 1110 0000, the m.s. bit of the next byte denotes the length of the extended 

length field (0 for one, 1 for four bytes). The rest of the next byte (and possibly other three) is a big-

endian integer denoting the byte length of the string. 

Consider a time value query frame: *now?. 

• 4 bytes are magic bytes (RON, 0101 0010 0100 1111 0100 1110 0011 0010) 

• frame length: 4 bytes (length 5, 0000 0000 0000 0000 0000 0000 0000 0101) 

• op term descriptor: 1 byte (0011 0000) 

• uncompressed UUID descriptor: 1 byte (cited length 3, 0100 0011) 

• now RON UUID: 3 bytes (0000 1100 1011 0011 1110 1100, the "uncompressed" coding still 

trims a lot of zeroes, see below). 
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As UUID length is up to 16 bytes, UUID fields never use a separate length number. UUID descriptors 

are always 1 byte long. The length of 0 stands for 16. 

Length bits 0000 stand for: 

• zero length for op terms, 

• 16 for integer/float atoms, zipped/unzipped UUIDs, 

• for strings, that signals an extended length record (1 or 4 bytes). 

An extended length record is used for strings, as those can be up to 2 GB long. An extended length 

record is either 1 or four bytes. Four-byte record is a big-endian 32-bit int having its m.s. bit set to 1. 

Thus, strings of 127 bytes and shorter may use 1 byte long length record. 

Ops 

Op term fields may have cited length of 0000 or be skipped if they match the previous op's term. 

Nevertheless, sometimes it is necessary to introduce redundancy, CRC/checksumming, hashing, etc. 

Exactly for this purpose non-empty terms may be used. The checksumming method is specified by 

the field length (TODO). 

Atoms 

Strings are serialized as UTF-8. 

Integers are serialized using the zig-zag coding (the l.s. bit conveys the sign). 

Floats are serialized as IEEE 754 floats (4-byte and 8-byte support is required, other lengths are 

optional). 
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Appendix II 

 

RON use case 

(This appendix does not form an integral part of this Recommendation.) 

II.1 Data bees 

The use case envisions drones collect data from geographically distributed sensors, e.g., in 

agriculture. Solar-powered sensors have limited power capacity, hence only able to carry out short-

distance radio communication. There is no requirement of real-time data delivery. Still, the complete 

time series data has to be collected with a reasonable lag. No wired infrastructure is feasible in this 

case. Radio-relay networks are also difficult to maintain in the given circumstances.  

The solution is to use "data bees" – drones flying over the area and collecting the data using high-

bandwidth short-range communication. The sensor data is accumulated in the drone's memory. Once 

the drone is back from the fields, the data is uploaded to the database. Sensors may not be aware of 

their coordinates or even current date/time. Such an information may be added by the drone. Drones 

launched from a mobile platform (e.g., a car) introduce an additional leg of data transfer.  

As all the devices and all RON events have globally unique identifiers, the data is independent of its 

collection procedure or place of storage, can be freely annotated and cross-referenced, matched with 

data from other sources. The event-based nature of RON allows for incremental synchronization. 

 

Figure II.1 – Data bee 

II.2 RON use case: vehicle fleet telemetry  

The use case envisions a fleet of vehicles producing non-trivial amounts of telemetry data. The data 

cannot be transferred by air due to lack of coverage, lack of bandwidth and/or lack of urgency. 

Nevertheless, the data can be recorded locally, as a vehicle's data storage capacity is practically 

unlimited. Some parts of the data may be uploaded by the wireless connection in real-time, some by 

a wired connection during maintenance, some only inspected locally, or never inspected.  

RON relies on globally unique part identifiers (64 bit) used to produce globally unique event 

identifiers (128 bit). The latter allow to address/reference any telemetry event, globally. Independent 

of the particular route the data had to take, there is no confusion possible. Telemetry events may 

reference each other, e.g., a high-level aggregate referencing sensor data of its parts or a vehicle 

referencing the data from other vehicles.  

Uploading complete datasets might turn unfeasible. The data might as well be processed locally, with 

derived data referencing the original data. Another option for telemetry upload is simply sending the 

storage device by regular mail. Despite the intermittent connectivity of vehicular networks and all the 

various paths the data might take, RON data forms a single network, a "Web of machines". 
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