

I n t e r n a t i o n a l T e l e c o m m u n i c a t i o n U n i o n

ITU-T Q.3055
TELECOMMUNICATION
STANDARDIZATION SECTOR
OF ITU

(12/2019)

SERIES Q: SWITCHING AND SIGNALLING, AND
ASSOCIATED MEASUREMENTS AND TESTS

Signalling requirements and protocols for the NGN –
Network signalling and control functional architecture

 Signalling protocol for heterogeneous Internet
of things gateways

Recommendation ITU-T Q.3055

ITU-T Q-SERIES RECOMMENDATIONS

SWITCHING AND SIGNALLING, AND ASSOCIATED MEASUREMENTS AND TESTS

SIGNALLING IN THE INTERNATIONAL MANUAL SERVICE Q.1–Q.3

INTERNATIONAL AUTOMATIC AND SEMI-AUTOMATIC WORKING Q.4–Q.59

FUNCTIONS AND INFORMATION FLOWS FOR SERVICES IN THE ISDN Q.60–Q.99

CLAUSES APPLICABLE TO ITU-T STANDARD SYSTEMS Q.100–Q.119

SPECIFICATIONS OF SIGNALLING SYSTEMS No. 4, 5, 6, R1 AND R2 Q.120–Q.499

DIGITAL EXCHANGES Q.500–Q.599

INTERWORKING OF SIGNALLING SYSTEMS Q.600–Q.699

SPECIFICATIONS OF SIGNALLING SYSTEM No. 7 Q.700–Q.799

Q3 INTERFACE Q.800–Q.849

DIGITAL SUBSCRIBER SIGNALLING SYSTEM No. 1 Q.850–Q.999

PUBLIC LAND MOBILE NETWORK Q.1000–Q.1099

INTERWORKING WITH SATELLITE MOBILE SYSTEMS Q.1100–Q.1199

INTELLIGENT NETWORK Q.1200–Q.1699

SIGNALLING REQUIREMENTS AND PROTOCOLS FOR IMT-2000 Q.1700–Q.1799

SPECIFICATIONS OF SIGNALLING RELATED TO BEARER INDEPENDENT CALL
CONTROL (BICC)

Q.1900–Q.1999

BROADBAND ISDN Q.2000–Q.2999

SIGNALLING REQUIREMENTS AND PROTOCOLS FOR THE NGN Q.3000–Q.3709

General Q.3000–Q.3029

Network signalling and control functional architecture Q.3030–Q.3099

Network data organization within the NGN Q.3100–Q.3129

Bearer control signalling Q.3130–Q.3179

Signalling and control requirements and protocols to support attachment in NGN environments Q.3200–Q.3249

Resource control protocols Q.3300–Q.3369

Service and session control protocols Q.3400–Q.3499

Service and session control protocols – supplementary services Q.3600–Q.3616

Service and session control protocols – supplementary services based on SIP-IMS Q.3617–Q.3639

VoLTE/ViLTE network signalling Q.3640–Q.3655

NGN applications Q.3700–Q.3709

SIGNALLING REQUIREMENTS AND PROTOCOLS FOR SDN Q.3710–Q.3899

TESTING SPECIFICATIONS Q.3900–Q.4099

SIGNALLING REQUIREMENTS AND PROTOCOLS FOR IMT-2020 Q.5000–Q.5049

COMBATING COUNTERFEITING AND STOLEN ICT DEVICES Q.5050–Q.5069

For further details, please refer to the list of ITU-T Recommendations.

 Rec. ITU-T Q.3055 (12/2019) i

Recommendation ITU-T Q.3055

Signalling protocol for heterogeneous Internet of things gateways

Summary

A heterogeneous gateway is a hardware and software system used for the interaction of Internet of

things (IoT) devices with each other and with remote IoT services. It comprises an IoT gateway

infrastructure (IoT GI) and a semantic IoT gateway (SIoTG). The IoT GI is a hardware and software

system comprising IoT device hardware, network interfaces, operating system, and simulator or

virtualization system (virtual machine, containers, etc.). It is used to ensure compatibility of the

different network technologies. The SIoTG is a software program and part of the heterogeneous IoT

gateway, and is used for the mapping of different protocols, applications and IoT services among

themselves.

The SIoTG that forms part of the heterogeneous gateway is supposed to ensure the mapping of

different IoT solutions (protocols, applications and services) among themselves, independently of the

configuration of the IoT devices themselves. Use of scenarios for the mapping of IoT solutions among

themselves without using a special signalling protocol for the SIoTG is possible only if a standard

configuration is used for each solution (e.g., for the mapping of protocols: a standard network port

number for the protocol being mapped; no encryption of data embedded in the message, etc.).

Otherwise, there is no standard solution for mapping procedures, and the need then arises for

interaction with the SIoTG for the purpose of configuring the IoT solution mapping scenario.

Recommendation ITU-T Q.3055 describes the signalling protocol for heterogeneous IoT gateways.

History

Edition Recommendation Approval Study Group Unique ID*

1.0 ITU-T Q.3055 2019-12-14 11 11.1002/1000/14141

Keywords

Gateway, heterogeneous, Internet of things, protocols, semantic.

* To access the Recommendation, type the URL http://handle.itu.int/ in the address field of your web

browser, followed by the Recommendation's unique ID. For example, http://handle.itu.int/11.1002/1000/11

830-en.

http://handle.itu.int/11.1002/1000/14141
http://handle.itu.int/11.1002/1000/11830-en
http://handle.itu.int/11.1002/1000/11830-en

ii Rec. ITU-T Q.3055 (12/2019)

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of

telecommunications, information and communication technologies (ICTs). The ITU Telecommunication

Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical,

operating and tariff questions and issuing Recommendations on them with a view to standardizing

telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years, establishes

the topics for study by the ITU-T study groups which, in turn, produce Recommendations on these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are

prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a

telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain

mandatory provisions (to ensure, e.g., interoperability or applicability) and compliance with the

Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some other

obligatory language such as "must" and the negative equivalents are used to express requirements. The use of

such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may involve

the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence, validity or

applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others outside of

the Recommendation development process.

As of the date of approval of this Recommendation, ITU had not received notice of intellectual property,

protected by patents, which may be required to implement this Recommendation. However, implementers are

cautioned that this may not represent the latest information and are therefore strongly urged to consult the TSB

patent database at http://www.itu.int/ITU-T/ipr/.

© ITU 2020

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the prior

written permission of ITU.

http://www.itu.int/ITU-T/ipr/

 Rec. ITU-T Q.3055 (12/2019) iii

Table of Contents

 Page

1 Scope ... 1

2 References ... 1

3 Definitions .. 1

3.1 Terms defined elsewhere .. 1

3.2 Terms defined in this Recommendation ... 2

4 Abbreviations and acronyms .. 2

5 Conventions .. 2

6 Network architecture for IoT heterogeneous gateway .. 3

7 Semantic gateway architecture ... 3

8 Database interaction and data collection: Replicated object notation 5

Appendix I – Replicated object notation .. 6

Appendix II – RON use case .. 17

II.1 Data bees .. 17

II.2 RON use case: vehicle fleet telemetry .. 17

 Rec. ITU-T Q.3055 (12/2019) 1

Recommendation ITU-T Q.3055

Signalling protocol for heterogeneous Internet of things gateways

1 Scope

This Recommendation describes the signalling protocol for heterogeneous Internet of things

gateways. In particular, it:

• Addresses the overall network model necessary for mapping and signalling procedures;

• Addresses the software architecture necessary for mapping and signalling procedures;

• Describes possible scenarios for the use of signalling.

2 References

The following ITU-T Recommendations and other references contain provisions which, through

reference in this text, constitute provisions of this Recommendation. At the time of publication, the

editions indicated were valid. All Recommendations and other references are subject to revision;

users of this Recommendation are therefore encouraged to investigate the possibility of applying the

most recent edition of the Recommendations and other references listed below. A list of the currently

valid ITU-T Recommendations is regularly published. The reference to a document within this

Recommendation does not give it, as a stand-alone document, the status of a Recommendation.

[ITU-T Q.4060] Recommendation ITU-T Q.4060 (2018), The structure of the testing of

heterogeneous Internet of things gateways in a laboratory environment.

[ITU-T Y.4000] Recommendation ITU-T Y.4000/Y.2060 (2012), Overview of the

Internet of things.

[ITU-T Y.4050] Recommendation ITU-T Y.4050/Y.2069 (2012), Terms and definitions

for the Internet of things.

[ITU-T Y.4100] Recommendation ITU-T Y.4100/Y.2066 (2014), Common

requirements of the Internet of things.

[ITU-T Y.4101] Recommendation ITU-T Y.4101/Y.2067 (2017), Common

requirements and capabilities of a gateway for Internet of things

applications.

[ITU-T Y.4113] Recommendation ITU-T Y.4113 (2016), Requirements of the network

for the Internet of things.

[ITU-T Y.4418] Recommendation ITU-T Y.4418 (2018), Gateway functional

architecture for Internet of things applications.

[IETF RFC 4122] IETF RFC 4122 (2005), A Universally Unique IDentifier (UUID) URN

Namespace.

[IETF RFC 7574] IETF RFC 7574 (2015), Peer-to-Peer Streaming Peer Protocol

(PPSPP).

3 Definitions

3.1 Terms defined elsewhere

This Recommendation uses the following terms defined elsewhere:

2 Rec. ITU-T Q.3055 (12/2019)

3.1.1 device [ITU-T Y.4000]: With regard to the Internet of things, this is a piece of equipment

with the mandatory capabilities of communication and the optional capabilities of sensing, actuation,

data capture, data storage and data processing.

3.1.2 Internet of things (IoT) [ITU-T Y.4000]: A global infrastructure for the information society,

enabling advanced services by interconnecting (physical and virtual) things based on existing and

evolving interoperable information and communication technologies.

3.2 Terms defined in this Recommendation

This Recommendation defines the following terms:

3.2.1 data aggregator: Either end-point data collection device or a reliably connected device

relaying the data to the cloud.

3.2.2 semantic gateway: A software system that is used for conversion between various IoT

protocols, applications and services and is included in heterogeneous gateway systems.

3.2.3 IoT/mobile device: A data-producing device that lacks reliable communication links (IoT,

mobile, disaster management, etc.).

4 Abbreviations and acronyms

This Recommendation uses the following abbreviations and acronyms:

AMQP Advanced Message Queuing Protocol

CBOR Concise Binary Object Representation

CoAP Constrained Application Protocol

CRDT Conflict-free Replicated Data Type

GI Gateway Infrastructure

HTTP Hypertext Transfer Protocol

ICF Intermediary Conversion Format

IoT Internet of Things

JSON JavaScript Object Notation

MQTT Message Queuing Telemetry Transport

RAM Random Access Memory

RON Replicated Object Notation

RTPS-DDS Real-Time Publish Subscribe- Data Distribution Service

SHA Secure Hash Algorithm

SIoTG Semantic Internet of Things Gateway

UML Unified Modelling Language

UUID Universally Unique Identifier

XMPP Extensible Messaging and Presence Protocol

5 Conventions

None.

 Rec. ITU-T Q.3055 (12/2019) 3

6 Network architecture for IoT heterogeneous gateway

Figures 6-1 and 6-2 show the general network architecture of the hardware and software system for

heterogeneous IoT gateways.

Figure 6-1 – General network architecture using heterogeneous IoT gateways

Figure 6-2 – Typical structure of interaction of heterogeneous IoT gateways elements

The system comprises:

– IoT/mobile device: a data-producing device lacking reliable communication links (IoT,

mobile, disaster management, etc.).

– Redundant unreliable links: a wireless network with unreliable/fluid topology.

– IoT/mobile gateway: data relay devices, either mobile or unreliably connected:

• data aggregator: either end-point data collection device or a reliably connected device

relaying the data to the cloud.

This network architecture facilitates the implementation of possible interaction scenarios for the

heterogeneous IoT gateway and devices connected to it.

7 Semantic gateway architecture

Figure 6-3 shows the UML-model for semantic IoT gateway software.

4 Rec. ITU-T Q.3055 (12/2019)

Figure 6-3 – UML-model for semantic IoT gateway software

This model comprises:

Procedure control – this class is responsible for monitoring the implementation of conversion

procedures, according to incoming signalling messages.

Signalling interface – this class is responsible for managing the virtual network interface (socket),

which receives and processes signalling messages.

Conversion interface control – this class is responsible for managing the virtual network interfaces

for IoT protocol conversion.

Protocol conversion interface – this class is responsible for receiving, sending and verifying incoming

messages for the IoT protocol conversion interface.

Intermediary conversion format (ICF) IoT convert – this class is responsible for converting messages

from/to specific IoT protocol formats to/from intermediary conversion format for IoT.

Interaction with database – this class is responsible for interaction with the local or remote database

containing messages for conversion, descriptions of IoT objects (protocols, applications, services)

connected to the heterogeneous gateway, and notes on procedure implementation for the semantic

gateway (e.g., protocol conversion).

Layer – the interface serving as the basis for the implementation of specific protocols supported by

the semantic IoT gateway (e.g., HTTP, CoAP, MQTT, AMQP, RTPS-DDS, XMPP, etc.).

Intermediary conversion format for Internet of things (ICF IoT) – the structure reflecting the

intermediary conversion format used for storing information on messages in the database and memory

during IoT protocol conversion procedures.

Signal message format – the structure reflecting the format of signalling messages used for storing

information on signalling messages during IoT protocol conversion procedures.

 Rec. ITU-T Q.3055 (12/2019) 5

8 Database interaction and data collection: Replicated object notation

Replicated object notation (RON) is a data-centric protocol for data delivery/dissemination in an

unreliable distributed environment. RON puts an emphasis on mitigating inconsistencies introduced

by unreliable heterogeneous environments, such as arbitrary delivery paths, data loss, duplication and

reordering, arbitrary delays, scattered and/or mobile sources and/or receivers among others.

RON is data-centric event-sourced format with a simplified tabular structure. RON relies on

universally unique identifiers (UUIDs) to resolve inconsistencies and assemble the full state of

separately arriving pieces of partial information. The internal structure of the protocol is simple and

uniform to ease implementation and use.

Any RON construct is composed of four types of "atoms": strings/buffers, integers, floats and UUIDs.

A basic unit of exchange is an immutable "op" corresponding to an atomic event of data change. An

op has four metadata UUIDs (data type, object id, event id and a "reference") and an arbitrary number

of payload atoms.

A transactional unit of transmission is a frame, which is a sequence of ops.

A library of data recovery/reconciliation algorithms relies on the op metadata to resolve ambiguities

and reassemble the data at a collection point.

RON data is effectively independent in the context of any particular transmission or storage. Hence,

RON effectively blurs the border between storage/caching and delivery/transmission. Only the

eventual propagation of data matters. All means of storage are equally valid as means of transmission.

Consequently, RON is especially suitable for networks with unstable topology, redundant but

unreliable delivery paths and/or unpredictable or extreme delays.

6 Rec. ITU-T Q.3055 (12/2019)

Appendix I

Replicated object notation

(This appendix does not form an integral part of this Recommendation.)

Replicated Object Notation

Replicated Object Notation (RON) is a format for distributed live data. RON's primary mission is

continuous data synchronization. A RON object may naturally have any number of replicas, which

may synchronize in real-time or intermittently.

JSON, protobuf, and many other formats implicitly assume serialization of separate state snapshots.

RON handles state and updates all the same: state is change and change is state. RON includes

metadata, versioning and addressing, all built in. Every object, every change, every version has a

UUID. Pieces of data reference each other by UUIDs. Every RON data type is a conflict-free

replicated data type (CRDT). With RON metadata, state and updates could always be pieced together.

It always merges, it always converges.

From another perspective, RON is like a metric system for data. The imperial system employed

various usage-based units: foots, lines, furlongs, links, cables, etc. The metric system defines one unit

(a meter), then derives other units from that. Similarly, data might be packed into usage-based units:

snapshots, logs, chunks, batches, patches. RON defines an immutable op, then derives other units

from that, in the form of data structures (arrays, maps, sets, etc.) or storage/transmission units

(snapshots, batches/patches, logs, etc.).

The following is a simple object serialized in RON:

 @1fLDV+biQFvtGV :lww ,

 'id' '20MF000CUS',

 'type' 'laptop',

 'cpu' 'i7-8850H',

 'display' '15.6" UHD IPS multi-touch, 400nits',

 'RAM' '16 GB DDR4 2666MHz',

 'storage' '512 GB SSD, PCIe-NVME M.2',

 'graphics' 'NVIDIA GeForce GTX 1050Ti 4GB',

 @1fLDk4+biQFvtGV

 'wlan' 'Intel 9560 802.11AC vPro',

 'camera' 'IR & 720p HD Camera with microphone',

 @sha3 'SfiKqD1atGU5xxv1NLp8uZbAcHQDcX~a1HVk5rQFy_nq';

Key RON principles are:

• Immutability – RON sees data as a collection of immutable timestamped ops. The example

above depicts an object state consisting of ten ops (object creation op at line #1, the initial

changeset #2 to #8, another changeset of two ops #9/10 and #11). An op may be referenced,

transmitted, stored, applied or rolled back, garbage collected, etc. Every RON data structure

(array, object, map, set, etc.) is a collection of immutable ops. Similarly, every data storage

or transmission unit is made of ops (patch, state, chain, chunk, frame, object graph, log,

yarn, etc.).

• Addressability of everything. Changes, versions, objects and every piece of data is

uniquely identified and globally referenceable. Above, the first op has an

id 1fLDV+biQFvtGV, the second one is 1fLDV00001+biQFvtGV, the third

 Rec. ITU-T Q.3055 (12/2019) 7

is 1fLDV00002+biQFvtGV and so on (the notation skips incremental ids). The last two ops

(#9-10 and #11) belong to a later changeset, so their ids

are 1fLDk4+biQFvtGV, 1fLDk40001+biQFvtGV.

 NOTE – RON has no notational nesting (no brackets). Instead, data pieces reference each other by

UUIDs, thus forming arbitrary graphs.

• Causality. Each RON operation explicitly references what other op it is based on. No matter

how and when the data is obtained, the correct order and location of data pieces can always

be reconstructed. As described above, ops form an orderly chain, so references are skipped,

except for the object creation op at line #1 which references its data type lww.

• Efficiency. RON data is optimized to make metadata overhead bearable. An op is a very fine-

grained unit of change. Thus, RON has to optimize per-op metadata overhead in numerous

ways. Op ids get skipped if they go incrementally. References are skipped if they point to the

previous op (an op chain is a convenient default). For example, the op at line #2 mentions

neither its own id (the first plus 1) nor its reference (the first op). The binary variant of RON

employs more sophisticated metadata compression techniques. With no abbreviations, the

object would look like a tabular log of ops, two metadata UUIDs per op:

 @1fLDV00000+biQFvtGV :lww !

 @1fLDV00001+biQFvtGV :1fLDV00000+biQFvtGV 'id' '20MF000CUS',

 @1fLDV00002+biQFvtGV :1fLDV00001+biQFvtGV 'type' 'laptop',

 ...

• Integrity, as ops form a Merkle structure. If necessary, the data is integrity-checked to the

last bit, like in git, BitTorrent, BitCoin and other such systems. In the example above, ten ops

form a Merkle chain, so the hash of the last op (line #12) covers them all.

RON's vision is swarms of mobile devices communicating over unreliable wireless networks in an

untrusted environment.

UUIDs

RON relies heavily on UUIDs to globally and unambiguously address everything it operates with:

operations, patches, versions, objects, hashes, etc.

RON employs its own UUID flavours and custom efficient serialization. Unlike RFC 4122, RON

UUIDs:

• can be sorted lexicographically,

• can be efficiently compressed,

• can function as lamport clocks,

• can represent human-friendly string constants.

RON UUIDs are serialized as a pair of 64-bit integers encoded with custom base64 encoding:

A/LED0000000+XU5eRJ0000

aaaavvvv vvvvvvvv vvvvvvvv vvvvvvvv vvvvvvvv vvvvvvvv vvvvvvvv vvvvvvvv

00eeoooo oooooooo oooooooo oooooooo oooooooo oooooooo oooooooo oooooooo

The bit layout is backwards-compatible with RFC 4122 (hijacking the 0 variant, NCS backward

compatibility). Third and fourth bits of 9th byte are used to encode version (blue), four most

significant bits of 1st byte are used to encode variety (orange). The bulk of the bits are taken by value

(green) and origin (violet).

https://tools.ietf.org/html/rfc4122

8 Rec. ITU-T Q.3055 (12/2019)

Versions

Two version bits are encoded using $, %, + or – as separator:

• $ for 00: human readable names,

• % for 01: numbers and hashes,

• + for 10: events (Lamport timestamp, and origin),

• – for 11: derived events (same as event).

Varieties

Four variety bits are encoded using single hex digit 0..F followed by a slash /.

Variety flavour is defined by version.

Variety of zero 0 can be omitted.

Varieties for version $ (names):

• 0000: transcendental/hardcoded name (lww, rga) or a scoped name (myvar$gritzko),

• 0001: ISBN (1/978$1400075997,

• 0011: EAN-13 bar code (3/4006381$333931,

• 0100: SI units (4/m, 4/kg,

• 0101: zip codes (5/2628CD$NL, 5/620078$RU,

• 1010: IATA airport code (A/LED,

• 1011: ticker name (B/GOOG$NASDAQ,

• 1100: ISO 4217 currency code (C/USD, C/GBP,

• 1101: short DNS name (D/google$com,

• 1110: E.164 intl phone num (E/7999$5631415,

• 1111: ISO 3166 country code (F/RU, F/FRA...).

Varieties for version % (numbers and hashes):

• 0000..0011: Decimal index (up to 9999999999%, also 2D indices 4%5),

• 0100: SHA-2, plain chunk hash, first 120 bits,

• 0101: SHA-3, plain chunk hash,

• 0110: SHA-2 based RFC 7574 Merkle hash,

• 0111: SHA-3 based RFC 7574 Merkle hash,

• 1000..1011: Random number (A/k3R9w_2F8w%Le~6dDScsw),

• 1100..1111: Crypto id, public key fingerprint.

Varieties for versions + and – (events)

Timestamp type:

• 00__: Base64 calendar (MMDHmSsnn),

• 01__: Logical (40000000001),

• 10__: Epoch (RFC 4122 epoch, 100ns since 1582),

bitwise and with replica id assignment rule:

• __00: trie-forked,

• __01: crypto-forked,

• __10: record-forked,

 Rec. ITU-T Q.3055 (12/2019) 9

• __11: application-specific.

UUID compression

Most of RON UUIDs can be efficiently compressed by only encoding highest significant bits.

Base 64×64 tailing zeroes can be omitted:

A/LED0000000+0000000000 = A/LED+0

A/LED0000000$123 = A/LED$123

If version is $ and second component is zero, it can be fully omitted:

A/LED0000000$0000000000 = A/LED$0 = A/LED

If variety is 0, it can be omitted as well:

0/lww0000000$0000000000 = lww0000000$0000000000 = lww$0 = lww

RON term glossary

• RON UUID – a 128-bit globally unique identifier, one of four versions:

o time-based (a logical/hybrid timestamp, 60 bits of timestamp, 60 bits of event origin id)

o name (a human readable name of some predefined concept, e.g., a data type or an error

type)

o numeric (either an arbitrary number or a hash)

• Atom – an immutable value of one of four types:

o RON UUID

o Integer (64-bit signed)

o String (UTF-8)

o Floating-point number (IEEE 754-2008, 64 bit)

• Op – an immutable unit of change, consists of:

o specifier (metadata)

▪ own RON UUID (id, identifies the op)

▪ reference RON UUID (ref, identifies the op's location in the data graph)

10 Rec. ITU-T Q.3055 (12/2019)

o value (payload data)

▪ any number (zero or more) of value atoms (UUIDs, ints, strings, floats)

If RON atoms are compared to real (chemistry) atoms, then RON ops are "molecules", composed of

"atoms". Then, an op log is our "DNA" – it contains all the replicated data. Other higher-value

constructs are like polypeptides, proteins and suchlike – they are composed of ops. Fundamentally,

they are either subsets or projections of the op log (the "DNA"). A replicated op log is the foundation

of all this machinery.

Op-collection construct

• Chain – a sequence of ops from the same origin, where each next op references the previous

one.

• Span – (chain span) – a chain where each op's id is exactly an increment of the previous id

(1gABC+origin, 1gABC00001+origin, 1gABC00002+origin...).

• Yarn – a linear log of all ops from the same origin (corresponds to a Lamport process).

• Tree – a causally ordered group of ops forming a tree (each next op references some

preceding op from the tree, except for the root op).

• Object – largely synonymous to a tree, although op ordering depends on the data type (RDT).

• Header – the object creation op (its id becomes the object's id; the header op is the root of the

object's op tree).

• Patch – a group of ops modifying the same tree/object (causally consistent, i.e., referencing

the existing ops of the tree or previous ops of the patch).

• Frame – largely synonymous to a "write batch"; a group of ops to be applied atomically, in a

single transaction.

• Chunk – a group of object's ops, preceded by the object's header, e.g., object state or a patch.

• Log – a causally ordered sequence of ops, like a database op log. While yarns are linearly

ordered, a log only has partial (causal) order; different replicas of a log may go in slightly

different orders.

• Graph – a group of objects referencing each other.

• Graph patch – a group of object patches and full object states, a causally consistent change

of an object graph.

• Segments – a log segment, a yarn segment, a chain segment, etc. – a subset of the construct

retaining its key features.

Other terms

• Annotation – a pseudo-op that is not itself a data change, but some derived/secondary

information, related to some op (e.g., its hash or other metadata).

• Vector timestamp – an array of time-based UUIDs, one per origin; a timestamp produced by

vector clocks.

Nominal format

Nominal RON is a simple memory layout that stores uncompressed RON ops. It serves three

purposes:

• exchange RON ops within the same address space,

• define the canonical representation, e.g., content hashing,

• serve as an intermediary format in any conversions, mappings, filters and transformations.

 Rec. ITU-T Q.3055 (12/2019) 11

Normally, a serialized RON frame is read by an iterator/parser/cursor which creates a nominal-RON

representation of each next op. A builder/serializer/writer converts a nominal-RON op into the

resulting format.

The nominal format per se is not intended as a frame serialization format, as it would be too

inefficient.

The nominal RON may be highly beneficial in mixed environments, e.g., when a C++ implementation

is used from a node.js program through the bindings. If the js part may consume/produce nominal-

RON data, it needs no own parsers and no own builders. Instead, it may consume parsed data from a

scratchpad buffer. The same applies to bizzare situations, e.g., C++ engine/parsers/builders running

in a browser under wasm, used by a Java program running under GWT.

Overall layout

The nominal format is made of 128-bit atoms, consisting of two 64-bit words each. Words use the

4+60 bit layout. Nominally, the byte layout is big-endian (e.g., a hash function expects big-endian

words). Although, an implementation may use little-endian words if requested. All pictures assume

big-endian words.

An op is a concatenation of its atoms, starting with its id and ref UUIDs.

In all atoms except UUIDs, the origin word specifies a byte range in the original RON buffer (text

RON, binary, JSON, CBOR). The maximum allowed frame size is 1 GB, so the byte range is given

as two 30-bit unsigned ints for the offset and the length. The raw buffer is supposed to be available.

Caveats:

• String values only reside in the raw buffer.

• UUID atoms are fully parsed, so no range provided.

Frame header

(rarely used)

Bytes 0-3 (mmmm) contain magic bytes, RON2 for closed RON, ROP2 for open.

Bytes 4-7 (cccc) is the number of ops in the frame, as a big-endian integer.

Bits 4-7 in byte 8 are set to 1100.

Bytes 8-15 contain the byte range within the raw unparsed buffer.

mmmmmmmm mmmmmmmm mmmmmmmm mmmmmmmm cccccccc cccccccc cccccccc cccccccc

1100oooo oooooooo oooooooo oooooooo oollllll llllllll llllllll llllllll

Again, frame header is supposed to be rarely used, as entire frames are rarely uncompressed at once.

Op header

(less rarely used)

Bytes 0-3 (mmmm) contain magic bytes, ron2 for closed RON, rop2 for open.

Bytes 4-7 (cccc) contain the number of atoms in the op, as a big-endian integer.

Bits 4-7 in byte 8 (11__) indicate the op type:

• 1100 raw,

• 1101 reduced,

• 1110 header,

• 1111 query.

12 Rec. ITU-T Q.3055 (12/2019)

Bytes 8-15 contain location of raw buffer location with unparsed op content.

mmmmmmmm mmmmmmmm mmmmmmmm mmmmmmmm cccccccc cccccccc cccccccc cccccccc

11__oooo oooooooo oooooooo oooooooo oollllll llllllll llllllll llllllll

UUID atom

A 128-bit RON UUID:

vvvv···· ········ ········ ········ ········ ········ ········ ·······

00ss···· ········ ········ ········ ········ ········ ········ ·······

Bits 4-7 in byte 0 (vvvv) represent UUID variety.

Bits 6-7 in byte 8 are set to 00, indicating that this atom is a UUID.

Bits 4-5 in byte 8 (ss) represent UUID version.

(That is the usual RON UUID in-memory layout, except implementations that are likely to use

platform endiannes internally.)

Integer atom

Bytes 0-7 (iiii) a 4-bit signed integer.

Bytes 8-15 contain location of raw buffer location with unparsed integer representation.

Bits 4-7 in byte 8 are set to 0101, indicating that this atom is integer atom.

60 value bits of the origin word (ooo, lll) contain the raw buffer range for the original unparsed

value. ooo is the offset, lll is the length, both are 30-bit unsigned integers.

iiiiiiii iiiiiiii iiiiiiii iiiiiiii iiiiiiii iiiiiiii iiiiiiii iiiiiiii

0101oooo oooooooo oooooooo oooooooo oollllll llllllll llllllll llllllll

Float atom

Bytes 0-7 (ffff) contain a 64-bit float (should be IEEE 754).

Bits 4-7 in byte 8 are set to 0111, indicating that this atom is a float.

Bytes 8-15 contain a raw buffer range for the unparsed float representation, same as integer.

ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff

0111oooo oooooooo oooooooo oooooooo oollllll llllllll llllllll llllllll

String atom

The value word contains string metrics: byte length bbb and codepoint length ccc. These metrics are

relative to a pure UTF-8 string, all escapes etc., replaced.

Bits 4-7 in byte 8 are set to 0110, indicating that this atom is a string.

Bytes 8-15 contain a raw buffer range (note the raw byte length may not match the UTF-8 byte

length).

0000bbbb bbbbbbbb bbbbbbbb bbbbbbbb bbcccccc cccccccc cccccccc cccccccc

0110oooo oooooooo oooooooo oooooooo oollllll llllllll llllllll llllllll

Text format (Grammar)

Text-based RON is a regular language, mostly used for its human readability.

The Ragel grammar for RON UUID is:

 Rec. ITU-T Q.3055 (12/2019) 13

 # digits (base64, hex)

 DGT = [0-9a-zA-Z~_];

 HEX = [0-9A-F];

 # RON UUID variety (1st word flag bits)

 VARIETY = HEX "/" @variety;

 # RON UUID version char (2nd word flag bits)

 VERSION = [\$\%\+\-] @version;

 # 60+4 bit word (the most significant 4 bits are flags, the rest is payload)

 WORD = DGT+;

 # UUID value (the 1st word)

 VALUE = WORD >begin_value %end_value;

 # UUID origin (the 2nd word)

 ORIGIN = WORD >begin_origin %end_origin;

 # RON UUID (128 bits, two 60+4 bit words)

 UUID = (VARIETY? VALUE (VERSION ORIGIN)?) >begin_uuid %end_uuid;

 # examples: lww, A/LED, 12345+origin, 1/0000000001+origin, some_hash%12345375868

The Ragel grammar for the text-based RON is:

 # int64_t

 SGN = [\-+];

 DIGITS = digit+;

 INT = (SGN? DIGITS) >begin_int %end_int;

 # 64-bit (double) float TODO ISO syntax

 FRAC = "." DIGITS;

 EXP = [eE] SGN? DIGITS;

 FLOAT = (SGN? DIGITS (FRAC EXP? | EXP)) >begin_float %end_float;

 # a char TODO UTF8, escapes, \u escapes

 # UTF8 = TODO;

 # JSON-ey string

 UNIESC = "\\u" [0-9a-fA-F]{4};

 ESC = "\\" [nrt\\b'/"];

 CHAR = CODEPOINT – ['\n\r\\];

14 Rec. ITU-T Q.3055 (12/2019)

 STRING = ((UNIESC|ESC|CHAR)*) >begin_string %end_string;

 # op term (header op, raw/reduced op, query op)

 OPTERM = [,;!?] @op_term;

 # value atom (payload) – int, float, string, UUID

 BARE_ATOM = INT | FLOAT | UUID %end_bare_uuid;

 QUOTED_ATOM =

 "=" space* INT |

 "^" space* FLOAT |

 ['] STRING ['] |

 ">" space* UUID %end_quoted_uuid ;

 ATOM = QUOTED_ATOM | space BARE_ATOM ;

 # op's specifier, @id :ref

 SPEC = '@' UUID %end_id space* (':' UUID %end_ref)? ;

 ATOMS = ATOM (space* ATOM)* ;

 # RON op: an immutable unit of change

 OP = (SPEC|BARE_ATOM)? space* ATOMS? space* OPTERM ;

 # a frame terminator (mandatory in the streaming mode)

 DOT = ".\n" ;

 # RON frame (open text coding)

 TEXT_FRAME = (space* OP)* space* DOT? ;

Binary format

The binary RON format is more efficient because of higher bit density. It is also simpler and safer to

parse because of explicit field lengths. Obviously, it is not human-readable.

Like the text format, the binary one is only optimized for iteration. As a result of compression, records

are inevitably of variable length, so random access is not possible. Also, compression depends on

iteration, as UUIDs get abbreviated relative to similar preceding UUIDs.

A binary RON frame starts with magic bytes RON2 and frame length. The rest of the frame is a

sequence of fields. Each field starts with a descriptor specifying the type of the field and its length.

Frame length is serialized as a 32-bit big-endian integer. The maximum length of a frame is 230 bytes

(a gibibyte). If the length value has its most significant bit set to 1, then the frame is chunked. A

chunked frame is followed by a continuation frame. A continuation frame has no magic bytes, just a

4-byte length field. The last continuation frame must have the m.s.b. of its length set to 0.

A descriptor's first byte spends four most significant (m.s.) bits to describe the type of the field, other

four bits describe its length.

 Rec. ITU-T Q.3055 (12/2019) 15

128 64 32 16 8 4 2 1

Major type Minor type Field length

Field descriptor major/minor type bits are set as follows:

1) 00 RON op descriptor,

• 0000 raw op,

• 0001 reduced op,

• 0010 header op,

• 0011 query header op.

2) 01 Reserved (for binary data)

• 0100 type (reducer) id,

• 0101 object id,

• 0110 event id,

• 0111 ref/location id

3) 10 Atoms, compressed (zipped chains)

• 1000 UUID, backreference

• 1001 integer list

• 1010 char list

• 1011

4) 11 Atom

• 1100 UUID, uncompressed (lengths 1..16)

• 1101 integer (big-endian, zigzag-coded, lengths 1, 2, 4, 8)

• 1110 string (UTF-8, length 0..231−1)

• 1111 float (IEEE 754-2008, binary 16, 32 or 64, lengths 2, 4, 8 resp)

A descriptor's four least significant bits encode the length of the field in question. The length value

given by a descriptor does not include the length of the descriptor itself.

If a field or a frame is 1 to 16 bytes long, then it has its length coded directly in the four l.s. bits of

the descriptor. Zero stands for the length of 16 because most field types are limited to that length. Op

terms specify no length. With string atoms, zero denotes the presence of an extended length field

which is either 1 or 4 bytes long. The maximum allowed string length is 1Gb (30 bits). In case the

descriptor byte is exactly 1110 0000, the m.s. bit of the next byte denotes the length of the extended

length field (0 for one, 1 for four bytes). The rest of the next byte (and possibly other three) is a big-

endian integer denoting the byte length of the string.

Consider a time value query frame: *now?.

• 4 bytes are magic bytes (RON, 0101 0010 0100 1111 0100 1110 0011 0010)

• frame length: 4 bytes (length 5, 0000 0000 0000 0000 0000 0000 0000 0101)

• op term descriptor: 1 byte (0011 0000)

• uncompressed UUID descriptor: 1 byte (cited length 3, 0100 0011)

• now RON UUID: 3 bytes (0000 1100 1011 0011 1110 1100, the "uncompressed" coding still

trims a lot of zeroes, see below).

16 Rec. ITU-T Q.3055 (12/2019)

As UUID length is up to 16 bytes, UUID fields never use a separate length number. UUID descriptors

are always 1 byte long. The length of 0 stands for 16.

Length bits 0000 stand for:

• zero length for op terms,

• 16 for integer/float atoms, zipped/unzipped UUIDs,

• for strings, that signals an extended length record (1 or 4 bytes).

An extended length record is used for strings, as those can be up to 2 GB long. An extended length

record is either 1 or four bytes. Four-byte record is a big-endian 32-bit int having its m.s. bit set to 1.

Thus, strings of 127 bytes and shorter may use 1 byte long length record.

Ops

Op term fields may have cited length of 0000 or be skipped if they match the previous op's term.

Nevertheless, sometimes it is necessary to introduce redundancy, CRC/checksumming, hashing, etc.

Exactly for this purpose non-empty terms may be used. The checksumming method is specified by

the field length (TODO).

Atoms

Strings are serialized as UTF-8.

Integers are serialized using the zig-zag coding (the l.s. bit conveys the sign).

Floats are serialized as IEEE 754 floats (4-byte and 8-byte support is required, other lengths are

optional).

 Rec. ITU-T Q.3055 (12/2019) 17

Appendix II

RON use case

(This appendix does not form an integral part of this Recommendation.)

II.1 Data bees

The use case envisions drones collect data from geographically distributed sensors, e.g., in

agriculture. Solar-powered sensors have limited power capacity, hence only able to carry out short-

distance radio communication. There is no requirement of real-time data delivery. Still, the complete

time series data has to be collected with a reasonable lag. No wired infrastructure is feasible in this

case. Radio-relay networks are also difficult to maintain in the given circumstances.

The solution is to use "data bees" – drones flying over the area and collecting the data using high-

bandwidth short-range communication. The sensor data is accumulated in the drone's memory. Once

the drone is back from the fields, the data is uploaded to the database. Sensors may not be aware of

their coordinates or even current date/time. Such an information may be added by the drone. Drones

launched from a mobile platform (e.g., a car) introduce an additional leg of data transfer.

As all the devices and all RON events have globally unique identifiers, the data is independent of its

collection procedure or place of storage, can be freely annotated and cross-referenced, matched with

data from other sources. The event-based nature of RON allows for incremental synchronization.

Figure II.1 – Data bee

II.2 RON use case: vehicle fleet telemetry

The use case envisions a fleet of vehicles producing non-trivial amounts of telemetry data. The data

cannot be transferred by air due to lack of coverage, lack of bandwidth and/or lack of urgency.

Nevertheless, the data can be recorded locally, as a vehicle's data storage capacity is practically

unlimited. Some parts of the data may be uploaded by the wireless connection in real-time, some by

a wired connection during maintenance, some only inspected locally, or never inspected.

RON relies on globally unique part identifiers (64 bit) used to produce globally unique event

identifiers (128 bit). The latter allow to address/reference any telemetry event, globally. Independent

of the particular route the data had to take, there is no confusion possible. Telemetry events may

reference each other, e.g., a high-level aggregate referencing sensor data of its parts or a vehicle

referencing the data from other vehicles.

Uploading complete datasets might turn unfeasible. The data might as well be processed locally, with

derived data referencing the original data. Another option for telemetry upload is simply sending the

storage device by regular mail. Despite the intermittent connectivity of vehicular networks and all the

various paths the data might take, RON data forms a single network, a "Web of machines".

Printed in Switzerland
Geneva, 2020

SERIES OF ITU-T RECOMMENDATIONS

Series A Organization of the work of ITU-T

Series D Tariff and accounting principles and international telecommunication/ICT economic and

policy issues

Series E Overall network operation, telephone service, service operation and human factors

Series F Non-telephone telecommunication services

Series G Transmission systems and media, digital systems and networks

Series H Audiovisual and multimedia systems

Series I Integrated services digital network

Series J Cable networks and transmission of television, sound programme and other multimedia

signals

Series K Protection against interference

Series L Environment and ICTs, climate change, e-waste, energy efficiency; construction, installation

and protection of cables and other elements of outside plant

Series M Telecommunication management, including TMN and network maintenance

Series N Maintenance: international sound programme and television transmission circuits

Series O Specifications of measuring equipment

Series P Telephone transmission quality, telephone installations, local line networks

Series Q Switching and signalling, and associated measurements and tests

Series R Telegraph transmission

Series S Telegraph services terminal equipment

Series T Terminals for telematic services

Series U Telegraph switching

Series V Data communication over the telephone network

Series X Data networks, open system communications and security

Series Y Global information infrastructure, Internet protocol aspects, next-generation networks,

Internet of Things and smart cities

Series Z Languages and general software aspects for telecommunication systems

	1 Scope
	2 References
	3 Definitions
	3.1 Terms defined elsewhere
	3.2 Terms defined in this Recommendation

	4 Abbreviations and acronyms
	5 Conventions
	6 Network architecture for IoT heterogeneous gateway
	7 Semantic gateway architecture
	8 Database interaction and data collection: Replicated object notation
	Appendix I Replicated object notation
	Appendix II RON use case
	II.1 Data bees
	II.2 RON use case: vehicle fleet telemetry

