
INTERNATIONAL TELECOMMUNICATION UNION

ITU-T Q.2630.1
TELECOMMUNICATION
STANDARDIZATION SECTOR
OF ITU

Annex B
(03/2001)

SERIES Q: SWITCHING AND SIGNALLING

Broadband ISDN – Common aspects of B-ISDN
application protocols for access signalling and network
signalling and interworking

AAL type 2 signalling protocol − Capability set 1

Annex B: SDL definition of the AAL type 2
signalling protocol CS-1

ITU-T Recommendation Q.2630.1 – Annex B
(Formerly CCITT Recommendation)

ITU-T Q-SERIES RECOMMENDATIONS

SWITCHING AND SIGNALLING

SIGNALLING IN THE INTERNATIONAL MANUAL SERVICE Q.1–Q.3
INTERNATIONAL AUTOMATIC AND SEMI-AUTOMATIC WORKING Q.4–Q.59
FUNCTIONS AND INFORMATION FLOWS FOR SERVICES IN THE ISDN Q.60–Q.99
CLAUSES APPLICABLE TO ITU-T STANDARD SYSTEMS Q.100–Q.119
SPECIFICATIONS OF SIGNALLING SYSTEMS No. 4 AND No. 5 Q.120–Q.249
SPECIFICATIONS OF SIGNALLING SYSTEM No. 6 Q.250–Q.309
SPECIFICATIONS OF SIGNALLING SYSTEM R1 Q.310–Q.399
SPECIFICATIONS OF SIGNALLING SYSTEM R2 Q.400–Q.499
DIGITAL EXCHANGES Q.500–Q.599
INTERWORKING OF SIGNALLING SYSTEMS Q.600–Q.699
SPECIFICATIONS OF SIGNALLING SYSTEM No. 7 Q.700–Q.799
Q3 INTERFACE Q.800–Q.849
DIGITAL SUBSCRIBER SIGNALLING SYSTEM No. 1 Q.850–Q.999
PUBLIC LAND MOBILE NETWORK Q.1000–Q.1099
INTERWORKING WITH SATELLITE MOBILE SYSTEMS Q.1100–Q.1199
INTELLIGENT NETWORK Q.1200–Q.1699
SIGNALLING REQUIREMENTS AND PROTOCOLS FOR IMT-2000 Q.1700–Q.1799
SPECIFICATIONS OF SIGNALLING RELATED TO BEARER INDEPENDENT CALL
CONTROL (BICC)

Q.1900–Q.1999

BROADBAND ISDN Q.2000–Q.2999
General aspects Q.2000–Q.2099
Signalling ATM adaptation layer (SAAL) Q.2100–Q.2199
Signalling network protocols Q.2200–Q.2299
Common aspects of B-ISDN application protocols for access signalling and network
signalling and interworking

Q.2600–Q.2699

B-ISDN application protocols for the network signalling Q.2700–Q.2899
B-ISDN application protocols for access signalling Q.2900–Q.2999

For further details, please refer to the list of ITU-T Recommendations.

ITU-T Q.2630.1/Annex B (03/2001) i

ITU-T Recommendation Q.2630.1

AAL type 2 signalling protocol −−−− Capability set 1

ANNEX B

SDL definition of the AAL type 2 signalling protocol CS-1

Summary

This annex contains the SDL definition of AAL Type 2 Signalling Protocol CS-1 for ITU-T
Recommendation Q.2630.1. SDL diagrams are in electronic form only.

Source

Annex B to ITU-T Recommendation Q.2630.1 was prepared by ITU-T Study Group 11 (2001-2004)
and approved under the WTSA Resolution 1 procedure on 1 March 2001.

ii ITU-T Q.2630.1/Annex B (03/2001)

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of
telecommunications. The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of
ITU. ITU-T is responsible for studying technical, operating and tariff questions and issuing Recommendations
on them with a view to standardizing telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years,
establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on these
topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are
prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a
telecommunication administration and a recognized operating agency.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may
involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence,
validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others
outside of the Recommendation development process.

As of the date of approval of this Recommendation, ITU had not received notice of intellectual property,
protected by patents, which may be required to implement this Recommendation. However, implementors are
cautioned that this may not represent the latest information and are therefore strongly urged to consult the
TSB patent database.

 ITU 2001

All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from ITU.

ITU-T Q.2630.1/Annex B (03/2001) iii

CONTENTS

Page

B.1 Introduction.. 1

B.2 The SDL system diagram ... 1

B.3 The SDL block structure diagram ... 1

B.4 SDL specification for the nodal function... 7

B.4.1 Introduction ... 7

B.4.2 SDL diagrams for the Nodal Function 1... 7

B.4.3 Procedures in the nodal function .. 14

B.4.4 Data structures of AAL type 2 signalling messages and parameters 15

B.5 SDL diagrams for the protocol entities.. 44

B.5.1 Introduction ... 44

B.5.2 SDL diagrams for the outgoing, incoming, and maintenance protocol
procedures ... 44

ITU-T Q.2630.1/Annex B (03/2001) 1

ITU-T Recommendation Q.2630.1

AAL type 2 signalling protocol −−−− Capability set 1

ANNEX B

SDL definition of the AAL type 2 signalling protocol CS-1

The SDL definitions may contain more detail than the prose definition in clause 8. Nevertheless,
should there exist any technical difference between this annex and clause 8, then the definitions in
clause 8 take precedence.

B.1 Introduction

The SDL definitions of the AAL type 2 signalling protocol described in this Recommendation
depend on the SDL system and block structure diagrams defined in this annex.

The SDL definition in this annex assumes that only a single event occurs at a given time, hence, no
racing condition within the AAL type 2 signalling entity are considered; resolution of such collisions
and racing conditions remains implementation dependent.

B.2 The SDL system diagram

The SDL system diagram is depicted in Figure B.1.

B.3 The SDL block structure diagram

The SDL block structure diagrams are depicted in Figure B.2 (parts 1 to 4 of 4).

NOTE 1 − The block USER and its process USER (not shown) are not part of the AAL type 2 signalling
entity but used to indicate different served user entities.

NOTE 2 − The procedures located in process NodalF2 and called by the process NodalF1 are not elaborated
further in this annex.

NOTE 3 − The procedure calls by the process NodalF1 to procedures located in process NodalF2 evoke an
exchange of implicit signals between the processes NodalF1 and NodalF2.

NOTE 4 − One STI entity exists per signalling transport converter. These converters are known by Nodal
Function 2 with their (SDL) ProcessID. The addition or removal of signalling relations together with the
creation or destruction of the STI and STC processes is not shown in these SDL diagrams of this annex.

2 ITU-T Q.2630.1/Annex B (03/2001)

System AAL20 aal20sy(1)

AAL20

Stimuli

LM

ERROR.indication
RESET.indication
RESET.confirm
BLOCKING.confirm
UNBLOCKING.confirm

RESET.request
STOP-RESET.request
BLOCKING.request
UNBLOCKING.request
ADD-PATH.indication
REMOVE-PATH.indication

STI

TRANSFER.request

TRANSFER.indication
IN-SERVICE.indication
OUT-OF-SERVICE.indication
CONGESTION.indication

Figure B.1/Q.2630.1 −−−− SDL system of the AAL type 2 signalling entity

ITU-T Q.2630.1/Annex B (03/2001) 3

Block AAL20 aal20b0(1)

 The block USER and its process
 USER (not shown) are not part of
 the AAL type 2 signalling entity
 but used to indicate different
 served user entities.

 signallist LM0in := (
 RESET.request,
 STOP-RESET.request,
 BLOCKING.request,
 UNBLOCKING.request,
 ADD-PATH.indication,
 REMOVE-PATH.indication)
 signallist LM0out := (
 ERROR.indication,
 RESET.indication,
 RESET.confirm,
 BLOCKING.confirm,
 UNBLOCKING.confirm)

USER

AAL2SIG

A2SU

ESTABLISH.request
RELEASE.request

ESTABLISH.indication
ESTABLISH.confirm
RELEASE.indication
RELEASE.confirm

STI

TRANSFER.request

IN-SERVICE.indication
OUT-OF-SERVICE.indication
CONGESTION.indication
TRANSFER.indication

LM0

(LMout) (LMin)

Stimuli

Figure B.2/Q.2630.1 −−−− SDL block structure of the
AAL type 2 signalling entity (part 1 of 4)

4 ITU-T Q.2630.1/Annex B (03/2001)

Block AAL2SIG aal20b1(1)

 signallist MPPdown := (
 MPP-RESET.request,
 MPP-RESET.response,
 MPP-BLOCK.request,
 MPP-BLOCK.response,
 MPP-UNBLOCK.request,
 MPP-UNBLOCK.response,
 TERMINATE.request)
 signallist MPPup := (
 MPP-RESET.indication,
 MPP-RESET.confirm,
 MPP-BLOCK.indication,
 MPP-BLOCK.confirm,
 MPP-UNBLOCK.indication,
 MPP-UNBLOCK.confirm,
 MPP-ERROR.indication)

 signallist IPPdown := (
 IPP-ESTABLISH.response,
 IPP-REJECT.request
 XPP-RELEASE.request,,
 XPP-RELEASE.response,
 XPP-CONFUSE.request,
 XPP-UNRECOGNIZED.request,
 TERMINATE.request)
 signallist IPPup := (
 IPP-ESTABLISH.indication,
 XPP-RELEASE.indication,
 XPP-RELEASE.confirm,
 XPP-TIMEOUT.indication,
 XPP-CONFUSE.indication,
 XPP-UNRECOGNIZED.indication,
 XPP-ERROR.indication)

 signallist OPPdown := (
 OPP-ESTABLISH.request,
 XPP-RELEASE.request,
 XPP-RELEASE.response,
 XPP-CONFUSE.request,
 XPP-UNRECOGNIZED.request,
 TERMINATE.request)
 signallist OPPup := (
 OPP-ESTABLISH.confirm,
 OPP-REJECT.indication,
 XPP-RELEASE.indication,
 XPP-RELEASE.confirm,
 XPP-TIMEOUT.indication,
 XPP-CONFUSE.indication,
 XPP-UNRECOGNIZED.indication,
 XPP-ERROR.indication)

NodalFunction

ProtEnt

A2SU

ESTABLISH.indication
ESTABLISH.confirm
RELEASE.indication
RELEASE.confirm

ESTABLISH.request
RELEASE.request

LM0

(LMout) (LMin)

PP

(IPPdown, Oppdown, MPPdown)

(IPPup, OPPup, MPPup)

PERF

STI-IN-SERVICE.indication
STI-OUT-OF-SERVICE.indication
STI-CONGESTION.indication
STI-UNRECOGNIZED.indication

LM

ERROR.indication

STI

TRANSFER.request

IN-SERVICE.indication
OUT-OF-SERVICE.indication
CONGESTION.indication
TRANSFER.indication

Figure B.2/Q.2630.1 −−−− SDL block structure of the
AAL type 2 signalling entity (part 2 of 4)

ITU-T Q.2630.1/Annex B (03/2001) 5

Block NodalFunction aal20b2(1)

 Note 1: The procedures located in
 process NodalF2 and called by the
 process NodalF1 are not elaborated
 further in this Annex.

 Note 2: These procedure calls evoke
 an exchange of implicit signals
 between the processes NodalF1
 and NodalF2.

NodalF2
1:1

NodalF1
1:1

LM1

ADD-PATH.indication
REMOVE-PATH.indication

PERF

STI-IN-SERVICE.indication
STI-OUT-OF-SERVICE.indication
STI-CONGESTION.indication
STI-UNRECOGNIZED.indication

LM0

(LMout) RESET.request
STOP-RESET.request
BLOCKING.request
UNBLOCKING.request

PP

(IPPdown, OPPdown, MPPdown)

(IPPup, OPPup, MPPup)

A2SU

ESTABLISH.indication
ESTABLISH.confirm
RELEASE.indication
RELEASE.confirm

ESTABLISH.request
RELEASE.request

Figure B.2/Q.2630.1 −−−− SDL block structure of the
AAL type 2 signalling entity (part 3 of 4)

6 ITU-T Q.2630.1/Annex B (03/2001)

Block ProtEnt aal20b3(1)

 signallist STIdown := (
 ERQ.request,
 ECF.request,
 REL.request,
 RLC.request,
 RES.request,
 RSC.request,
 BLO.request,
 BLC.request,
 UBL.request,
 UBC.request,
 CFN.request
 UNRECOGNIZED.request)

signallist STIup := (
 ERQ.indication,
 ECF.indication,
 REL.indication,
 RLC.indication,
 RES.indication,
 RSC.indication,
 BLO.indication,
 BLC.indication,
 UBL.indication,
 UBC.indication,
 CFN.indication,
 UNRECOGNIZED.indication)

A2MPP0
0:*

A2STI0
n:n

A2OPP0
0:*

A2IPP0
0:*

LMM

ERROR.indication

MPP

(MPPup)

(MPPdown)

MPPX

(STIdown)

(STIup)

PERF

STI-IN-SERVICE.indication
STI-OUT-OF-SERVICE.indication
STI-CONGESTION.indication
STI-UNRECOGNIZED.indication

STI

TRANSFER.request

TRANSFER.indication
IN-SERVICE.indication
OUT-OF-SERVICE.indication
CONGESTION.indication

LMO

ERROR.indication

OPP

(OPPup)

(OPPdown)

OPPX

(STIdown)

(STIup)

LMI

ERROR.indication

IPP

(IPPup)

(IPPdown)

IPPX

(STIdown)

(STIup)

Figure B.2/Q.2630.1 −−−− SDL block structure of the
AAL type 2 signalling entity (part 4 of 4)

ITU-T Q.2630.1/Annex B (03/2001) 7

B.4 SDL specification for the nodal function

B.4.1 Introduction

In Figure B.2 (part 3 of 4) it is shown that the nodal function is separated into:

a) Nodal Function 1

This entity contains all functionality that is defined in detail in 8.2 and, therefore, can be
specified precisely in SDL diagrams.

b) Nodal Function 2

This entity contains all functionality that contains implementation specific parts, only results
are defined in detail in 8.2 (but not their internal mechanisms). These parts are not defined in
detail in this Annex either; only the expected result is documented.

Therefore, this clause defines the Nodal Function 1 (see B.4.2) and the procedures of the Nodal
Function 2 (see B.4.3). The latter by their nature are not specified in SDL; nevertheless, the
functionality expected from these procedures needs to be understood to complete the definition of
the SDL diagrams for the AAL type 2 signalling entity.

The USER, i.e. the AAL type 2 served user, processes are not defined either, nor the interaction of
these processes with the environment (e.g., for simulation stimuli). It is assumed that for every AAL
type 2 connection a separate USER process exists (at both ends of the connection) and that its
(SDL process) identity is used to route the signals.

NOTE − The processes of the protocol entities are described in 8.3.

B.4.2 SDL diagrams for the Nodal Function 1

B.4.2.1 Data structures

For the SDL model, the AAL type 2 signalling entity maintains a record of type "CRec" for every
AAL type 2 connection from the instance in time where the connection is being established until it is
released. The terms "preceeding" and "succeeding" in the following discussion relate to the direction
of the connection establishment.

When such a record is looked up (with the protocol procedure entity instance’s identifier), the record
is organized such that the "incoming" part refers to the link from where a message has been received;
this is reflected in the status value as described in Table B.1.

Table B.1/Q.2630.1 −−−− Status values for CRec records

Description Status Value Incoming part describes Outgoing part describes

Establishment Pending 2 preceeding link succeeding link

3 succeeding link preceeding link

Connection established 4 preceeding link succeeding link

5 succeeding link preceeding link

Release Pending 6 preceeding link succeeding link

7 succeeding link preceeding link

8 ITU-T Q.2630.1/Annex B (03/2001)

The structure of the record of type "CRec" is defined in the ASN.1 fragment below:

CRec ::= SEQUENCE {
status CRecStatus, -- connection status
incoming HRec, -- details incoming link
outgoing HRec } -- details outgoing link

HRec ::= SEQUENCE {
peer ENUMERATED {user,remote,none},
ppus PID, -- ID of protocol entity or user
srid PID, -- signalling relation identifier

-- is ID of signalling relation
ceid CEID } -- connection element identifier

For the SDL model, the AAL type 2 signalling entity maintains a record of type "MRec" for every
outgoing maintenance action from the instance in time where the maintenance action is being started
until it is concluded. The structure of the MRec is defined in the ASN.1 fragment below:

MRec ::= SEQUENCE {
status MRecStatus, -- maintenance action status
ppus PID, -- ID of protocol entity
srid PID, -- signalling relation identifier

-- is ID of signalling transport entity
ceid CEID, -- connection element identifier
disp BOOLEAN } -- TRUE: originator is layer management

B.4.2.2 Primitives between Nodal Function 1 and the Protocol Entities

The interface to the AAL type 2 served user is defined in 5.1. The interface to layer management is
defined in 5.3. The interface between the AAL type 2 signalling entity and the AAL type 2 protocol
entities are summarized in Table B.2 and are defined after the table.

Table B.2/Q.2630.1 −−−− Primitives and parameters exchanged between the
Nodal Function 1 entity and the Protocol Entities

Primitive Type

Generic Name Request Indication Response Confirm

IPP-ESTABLISH Not defined ERQmsg, sri ECFmsg Not defined
IPP-REJECT RLCmsg Not defined Not defined Not defined
OPP-ESTABLISH ERQmsg Not defined Not defined ECFmsg

OPP-REJECT Not defined RLCmsg Not defined Not defined
XPP-RELEASE RELmsg RELmsg RLCmsg RLCmsg
XPP-TIMEOUT Not defined − Not defined Not defined

XPP-CONFUSE CNFmsg CNFmsg Not defined Not defined
XPP-
UNRECOGNIZED

msg msg Not defined Not defined

MPP-BLOCK BLOmsg, sqc BLOmsg, sri BLCmsg BLCmsg
MPP-UNBLOCK UBLmsg UBLmsg, sri UBCmsg UBCmsg
MPP-RESET RESmsg RESmsg, sri RSCmsg, sqc RSCmsg
MPP-ERROR Not defined cause Not defined Not defined
TERMINATE − Not defined Not defined Not defined

− This primitive has no parameters

ITU-T Q.2630.1/Annex B (03/2001) 9

a) IPP-ESTABLISH

A newly created incoming protocol entity indicates the establish request (ERQ) message to
Nodal Function 1 (with the indication primitive) together with the nodal signalling
association identifier "sri". If the establishment terminates with a served user at this node or
if the AAL type 2 nodes beyond the succeeding link acknowledged the establishment, the
establish confirm (ECF) message is conveyed to the incoming protocol entity (with the
response primitive) for transmission on the preceeding link.

b) IPP-REJECT

If the establishment can not be completed at this AAL type 2 node or at any AAL type 2
node beyond the succeeding link, the establishment is rejected with a release confirm (RLC)
message that is conveyed to the incoming protocol entity (with the request primitive) for
transmission on the preceeding link.

c) OPP-ESTABLISH

If an establishment is to be continued on a succeeding link the establish request (ERQ)
message is conveyed to the newly created outgoing protocol entity (with the request
primitive). If the establish confirm (ECF) message is received by this outgoing protocol
entity, it is communicated to Nodal Function 1 (with the confirm primitive).

d) OPP-REJECT

If the AAL type 2 nodes beyond the succeeding link cannot accept the establishment, the
outgoing protocol entity receives a release confirm (RLC) message which is communicated
to the Nodal Function 1 (with the indication primitive).

e) XPP-RELEASE

An incoming or outgoing protocol entity is instructed to start release procedures with a
release request (REL) message, this message is conveyed to the protocol entity (with the
request primitive). If an incoming or outgoing protocol entity receives such a release request
(REL) message, this message is conveyed to Nodal Function 1 (with the indication
primitive). After receipt of the release request (REL) message, the nodal function releases
resources and confirms the release with a release confirm (RLC) message; this message is
conveyed to the protocol entity (with the response primitive). If an incoming or outgoing
protocol entity receives a release confirm (RLC) message, this message is conveyed to
Nodal Function 1 (with the confirm primitive).

f) XPP-TIMEOUT

At several stages, an incoming or outgoing protocol entity keeps a timer running. If such a
timer expires, this event is communicated to Nodal Function 1 (with the indication
primitive); no parameters need to be conveyed.

10 ITU-T Q.2630.1/Annex B (03/2001)

g) XPP-CONFUSE

If AAL type 2 nodes on a different functional level communicate with each other, not all
information transmitted by one node may be understood by the other node. In such cases, the
compatibility mechanism may require the transmission of a confuse (CNF) message; this
message is conveyed to the incoming or outgoing protocol entity (with the request primitive)
for transmission. Upon receipt of a confuse (CNF) message by an incoming or outgoing
protocol entity, this message is conveyed to Nodal Function 1 (with the indication
primitive).

h) XPP-UNRECOGNIZED

If AAL type 2 nodes on a different functional level communicate with each other, not all
information transmitted by one node may be understood by the other node. In such cases, an
unrecognized message might be received by an incoming or outgoing protocol entity; this
message is conveyed to Nodal Function 1 (with the indication primitive). The compatibility
mechanism may require the relaying of this message on a further link; the unrecognized
message is transmitted to the incoming or outgoing protocol entity (with the request
primitive) for transmission.

i) MPP-BLOCK

A newly created maintenance protocol entity is requested to transmit a block request (BLO)
message (with the request primitive). Upon receipt of such a block request (BLO) message,
a newly created maintenance protocol entity conveys this message to Nodal Function 1
(with the indication primitive). The block confirm (BLC) message to be returned is
conveyed to the maintenance protocol entity (with the response primitive) for transmission.
If a maintenance protocol entity receives a block confirm (BLC) message, this message is
conveyed to Nodal Function 1 (with the confirm primitive).

j) MPP-UNBLOCK

A newly created maintenance protocol entity is requested to transmit an unblock request
(UBL) message (with the request primitive). Upon receipt of such a unblock request (UBL)
message, a newly created maintenance protocol entity conveys this message to Nodal
Function 1 (with the indication primitive). The unblock confirm (UBC) message to be
returned is conveyed to the maintenance protocol entity (with the response primitive) for
transmission. If a maintenance protocol entity receives an unblock confirm (UBC) message,
this message is conveyed to Nodal Function 1 (with the confirm primitive).

k) MPP-RESET

A newly created maintenance protocol entity is requested to transmit a reset request (RES)
message (with the request primitive). Upon receipt of such a reset request (RES) message, a
newly created maintenance protocol entity conveys this message to Nodal Function 1
(with the indication primitive). The reset confirm (RSC) message to be returned is conveyed
to the maintenance protocol entity (with the response primitive) for transmission. If a
maintenance protocol entity receives a reset confirm (RSC) message, this message is
conveyed to Nodal Function 1 (with the confirm primitive).

l) MPP-ERROR

Errors detected by a maintenance protocol entity are brought to the attention of Nodal
Function 1 (with the indication primitive); such errors include timeouts.

m) TERMINATE

At any time, Nodal Function 1 can terminate a maintenance protocol entity (with the request
primitive); no parameters need to be conveyed

ITU-T Q.2630.1/Annex B (03/2001) 11

Besides the AAL type 2 signalling messages, the following parameters are conveyed:

aa) sri

The parameter "sri" is of type PId (SDL Process ID) is used in indication primitives and
indicates the nodal signalling relation.

ab) sqc

The parameter "sqc" is used in MPP-BLOCK.request and MPP-RESET.response primitives
to assure the sequence integrity for Block Requests (BLO) and the Reset Confirm (RCF)
messages.

ac) cause

The parameter "cause" is used to indicate the type of error a maintenance protocol entity is
indicating.

ad) msg

The parameter "msg" contains a complete unrecognized AAL type 2 signalling message.

The reaction to input signal events is described in parts 1 to 15 (of 25) in Figure B.3.

B.4.2.3 Procedures

The procedures are described in parts 16 to 21 (of 25) in Figure B.3.

The functions "Compatibility" (in parts 19 and 20 of Figure B.3) and "MsgCompatibility"
(in part 21 of Figure B.3) perform the compatibility check for parameters (in recognized messages)
and determine the compatibility action for unrecognized messages; they return a value that is defined
by the following ASN.1 structure:

Compat ::= SEQUENCE { -- return value of procedure
Compatibility

course ENUMERATED {pass,passcnf,dcrd,dcrdcnf,release},

cause CAUSE } -- cause if not "pass"

The course takes the following values:

pass: Parameters are all recognized or may be passed on; unrecognized parameters that must
be discarded are removed from the message within this function.

passcnf: The message contained unrecognized parameters which have been removed from the
message within this function; a notification was requested.

dcrd: The message contained unrecognized parameters; non-recognition of (at least one of) the
parameter required the discarding of the entire message.

dcrdcnf: Same as "dcrd" with notification requested in addition.

release: The message contained unrecognized parameters; non-recognition of (at least one of) the
parameter required the release of the connection.

NOTE − The value "passcnf" is not returned by "MsgCompatibility".

The function "LookupCRec" (in part 16 of Figure B.3) searches all records of type "CRec" to find
the one that matches either the crec.incoming.ppus or the crec.outgoing.ppus with the input
parameter; in addition, the crec...peer part must show the value "remote". Exactly one such record is
found.

12 ITU-T Q.2630.1/Annex B (03/2001)

If the input parameter matches the crec.outgoing.ppus, the incoming and outgoing parts of the record
are exchanged. If such an exchange took place, the status part of the record is also modified as
follows:

if even(crec.status) then

increment crec.status by 1

else

decrement crec.status by 1

endif

The value returned can be understood to be a pointer to the record itself.

The function "LookupMRec" (in part 16 of Figure B.3) searches all records of type "MRec" to find
the one that matches the mrec.ppus parameter. Exactly one such record is found. The value returned
can be understood to be a pointer to the record itself.

The function "FindNextCRec" (in part 16 of Figure B.3) searches all records of type "CRec" to find
the next one that matches the "ceid" and "sri" parameters. The value returned can be understood to
be a pointer to the record itself, unless no further records are found (in which case the value "null" is
returned). Before the pointer is returned, the contents of the record are adjusted as defined above for
the procedure "LookupCRec".

The function "FindNextPath" (in part 16 of Figure B.3) searches for all assigned paths of the
signalling relationship indicated with the "sri" parameter. The value returned is the value of an AAL
type 2 path identifier, unless no further paths are found (in which case the value "null" is returned).

The function "GetNextParam" (in part 16 of Figure B.3) parses the message and isolates the next
parameter. The value returned is (a reference to) the parameter, unless no further parameters are
found (in which case the value "null" is returned).

The function "GetNextField" (in part 16 of Figure B.3) parses the parameter and isolates the next
field. The value returned is (a reference to) the field, unless no further fields exist (in which case the
value "null" is returned).

The function "allocate" and the procedure "release" (in part 16 of Figure B.3) act as placeholders for
a memory management system that allocates and releases records of type "CRec" and "MRec".

The procedure "StartReset" (in part 17 of Figure B.3) calls the procedure "ResetConn" to release
AAL type 2 connections affected by the reset. If more than a single channel is reset, the procedure
"ResetUnblock" is called to set all affected AAL type 2 paths to "remotely unblocked". A Reset
(RES) message is constructed and submitted to a newly created management protocol entity. Before
returning, a new record of type "MRec" is allocated and filled.

The procedure "StartBlocking" (in part 17 of Figure B.3) calls on the procedure "BLOCKING" to
record the requested blocking before constructing a Blocking (BLO) message and submitting the
message to a newly created management protocol entity. Before returning, a new record of type
"MRec" is allocated and filled.

The procedure "StartUnblocking" (in part 17 of Figure B.3) tests (by calling the procedure
"Blocked") whether the indicated path(s) are already locally unblocked; if they are, the
UNBLOCK.confirm primitive is issued terminating the unblocking. Otherwise, an Unblocking
(UBL) message is constructed and submitted to a newly created management protocol entity. Before
returning, a new record of type "MRec" is allocated and filled.

The procedure "ResetConn" (in part 18 of Figure B.3) calls the function "FindNextCRec" to find the
AAL type 2 links affected by the reset operation. For each such link the associated protocol entity is
terminated. In an AAL type 2 service endpoint, a RELEASE.confirm primitive is sent to the served
user. In an AAL type 2 switch, release procedures are initiated towards the remote served user. It is

ITU-T Q.2630.1/Annex B (03/2001) 13

assured that resources allocated to such links are released; resources in the AAL type 2 path(s) that
are reset are freed by the reset procedure itself.

The procedure "ResetBlock" (in part 18 of Figure B.3) assures that far all "locally blocked" AAL
type 2 paths affected by a reset operation (initiated by another node) a blocking procedure is initiated
(before the reset is confirmed).

The procedure "ResetUnblock" (in part 18 of Figure B.3) sets all "remotely blocked" AAL type 2
paths affected by the reset operation to "remotely unblocked".

B.4.2.4 Macros

The macros are described in parts 22 to 25 (of 25) of Figure B.3.

The macro "Construct ERQmsg" (in part 22 of Figure B.3) provides the necessary details for the
construction of the ERQ message. In particular, parameters are added to the message dependent on
the parameters in the ESTABLISH.request primitive from the served user.

The macro "ReturnConfuse" (in part 23 of Figure B.3) returns a confuse (CNF) message to the
sender of the last message that caused the confusion.

The macro "ReturnReject" (in part 23 of Figure B.3) constructs a release confirm (RLC) message
with a cause (CAU) parameter and returns it to the sender of the establish request (ERQ) message;
the macro "SendReject" constructs a release confirm (RLC) message with a cause (CAU) parameter
and sends it towards the sender of the establish request (ERQ) message (after the ERQ message has
been processed, e.g. if the succeeding link has been reset.

The macro "ReturnRelease" (in part 23 of Figure B.3) constructs a release (REL) message and
returns it to the sender of the last message; this may happen as a response to an unrecognized
message or a message that caused confusion. The macro "SendRelease" constructs a release (REL)
message and sends it on either the preceeding or succeeding link; this may happen as a response to
an unrecognized message, or in conjunction with a reset operation.

The macro "Extract ERQparameters" (in part 24 of Figure B.3) extracts the information in an
establish request (ERQ) message and prepares the parameters of the ESTABLISH.indication
primitive.

The macro "ValidREL" (in part 24 of Figure B.3) assures that a cause (CAU) parameter is in the
release (REL) message; if the parameter is absent, it is added within this macro ("Normal,
unspecified", no diagnostics). The macro "ValidRLC" checks whether a cause (CAU) parameter is
in the release complete (RLC) message when none is expected; if the parameter is present the cause
(resulting from a confusion) is conveyed to layer management. The macro "ValidRLCR" assures
that a cause (CAU) parameter is in the release complete (RLC) message when expected; if the
parameter is absent, it is added within this macro ("Temporary failure", no diagnostics). The macro
"ValidCNF" checks whether a cause (CAU) parameter is in the confusion (CNF) message; no
parameter is added in this case.

The macros "Construct ECFmsg", "Construct RLCmsg", "Construct RSCmsg", "Construct
BLCmsg", and "Construct UBCmsg" (in part 25 of Figure B.3) indicate that the respective
messages are constructed without any parameters.

The macros "Construct RESmsg", "Construct BLOmsg", and "Construct UBLmsg" (in part 25 of
Figure B.3) indicate that the respective messages are constructed containing a connection element
identifier (CEID) parameter.

The macros "Construct RELmsg", "Construct RLCmsgR", "Construct RSCmsgC", "Construct
BLCmsgC", "Construct UBCmsgC", and "Construct RELmsg" , and "Construct CNFmsg"
(in part 25 of Figure B.3) indicate that the respective messages are constructed containing a cause
(CAU) parameter.

14 ITU-T Q.2630.1/Annex B (03/2001)

NOTE − The release (REL) and confuse (CNF) message always contain a cause parameter. The release
confirm (RLC) message contains a cause parameter in response to an establish request (ERQ) message
(rejection of the establishment), or in response to a release message in conjunction with compatibility
notifications. The reset confirm (RSC), block confirm (BLC), and unblock confirm (UBC) messages contain a
cause parameter in conjunction with compatibility notifications.

B.4.3 Procedures in the nodal function

The function "PathRes" performs a connection admission control followed by the resource
reservation on an incoming link (the preceeding link) during connection establishment; it returns a
value that is defined by the following ASN.1 structure:

PathRes ::= SEQUENCE { -- return value of procedure
PathResource

course ENUMERATED {success,fail},
cause CAUSE } -- cause if "course = fail"

NOTE − Connection admission control and resource reservations are not specified in detail in this
Recommendation.

The function "SelectRoute" performs a routing decision followed by the resource reservation on the
outgoing link (the succeeding link) during connection establishment.

The nodal function determines the availability of a route with enough AAL type 2 path resources to
the succeeding AAL type 2 node. This may include a function to select a route which has available
resources to the succeeding AAL type 2 node. It then selects an AAL type 2 path from within that
route which is able to accommodate the new connection.

Routing typically is based on:

• Addressing information (in the switched case);

• The Test Connection Indicator;

• Link information (link characteristics), and

• Other information (including SSCS Information).

This function returns a value that is defined by the following ASN.1 structure:

Route ::= SEQUENCE { -- return value of procedure SelectRoute
course ENUMERATED {remote,local,fail},
ceid CEID, -- connection element identifier
sri PID, -- nodal signalling association

identifier
cause CAUSE } -- cause if "fail"

The function "SwitchRoute" (in the nodal function) performs a routing decision followed by the
resource reservation inside an AAL type 2 node.

This route is established between the requesting AAL type 2 served user or the incoming
(preceeding) link on the one hand and the destination AAL type 2 served user or the outgoing link
(succeeding) link on the other hand during connection establishment. It returns a value that is
defined by the following ASN.1 structure:

Switch ::= SEQUENCE { -- return value of procedure
SwitchRoute

course ENUMERATED {success,fail},
cause CAUSE } -- cause if "fail"

ITU-T Q.2630.1/Annex B (03/2001) 15

The procedure "PathRel" releases resources associated with an AAL type 2 path; those are
designated either by "CRec.incoming" or "CRec.outgoing".

The procedure "SwitchRel" releases resources associated with an AAL type 2 connection inside an
AAL type 2 node.

The procedure "ResetRel" releases AAL type 2 connection resourcess associated with (one of) the
channel(s) that is subject to a reset maintenance procedure.

The procedure "AddCompatibility" completes a message with the appropriate compatibility
information in the message compatibility field as well as all the parameter compatibility fields.

The function "PassOnPossible" returns the value "TRUE" if pass on of the unrecognized message or
of an unrecognized parameter within a recognized message is possible; otherwise, "FALSE" is
returned.

The function "ParamKnown" returns the value "TRUE" if the parameter is recognized; otherwise,
"FALSE" is returned.

The function "FieldRecognized" returns the value "TRUE" if the value of the field is recognized;
otherwise, "FALSE" is returned.

The function "PassConfuse" returns the value "TRUE" if a received CNF message must be passed
on; otherwise, "FALSE" is returned.

The function "Valid" returns the value "TRUE" if the CEID within a given signalling relation is
valid; otherwise, "FALSE" is returned.

The function "ValidateLink" determines whether the CEID information in the ERQmsg designates a
valid link in the nodal signalling association "sri". It returns the value "TRUE" if the information is
valid ("FALSE" otherwise).

The procedure "BLOCKING" sets the state of a path (within a signalling relation) to locally blocked
or unblocked and remotely blocked or unblocked.

The function "Blocked" returns the value "TRUE" if the AAL type 2 path indicated is locally or
remotely blocked (as indicated with the 2nd parameter); otherwise, "FALSE" is returned.

B.4.4 Data structures of AAL type 2 signalling messages and parameters

The SDL diagrams make use of the following ASN.1 structure and definition of the AAL type 2
signalling messages and parameters:

B.4.4.1 General message and parameter structure

Message ::= SEQUENCE { -- general definition of the AAL type 2 signalling
messages

dsaid SAID, -- destination
signalling
association ID

msgID MessageID, -- message identifier
msgcompat BIT STRING (SIZE (8)), -- message compatibility
parameters SET OF Parameter } -- message parameters

Parameter ::= SEQUENCE { -- general definition of the AAL type 2 signalling
parameters

paramid BIT STRING (SIZE (8)), -- parameter identifier
paramcompat BIT STRING (SIZE (8)), -- parameter

compatibility
paramlength INTEGER (0 .. 255), -- parameter length
fields SEQUENCE OF Fields } -- parameter fields

16 ITU-T Q.2630.1/Annex B (03/2001)

Fields ::= CHOICE { -- general definition of the AAL type 2
signalling parameters

fldtyp1 FixedSizeField,
fldtyp2 VariableSizeField }

FixedSizeField ::= fixedfield OCTET STRING (SIZE (1 .. 255))
VariableSizeField ::= SEQUENCE {

fieldlength INTEGER (0 .. 254), -- field
length

variablefield OCTET STRING (SIZE (0 .. 254)) }

MessageID BIT STRING (SIZE (8)) -- message
identifier

erq MessageID ::= ‘00000101’H -- Establish
request

ecf MessageID ::= ‘00000100’H -- Establish
confirm

rel MessageID ::= ‘00000111’H -- Release
request

rlc MessageID ::= ‘00000110’H -- Release
confirm

res MessageID ::= ‘00001001’H -- Reset
request

rsc MessageID ::= ‘00001000’H -- Reset
confirm

blo MessageID ::= ‘00000010’H -- Block
request

blc MessageID ::= ‘00000001’H -- Block
confirm

ubl MessageID ::= ‘00001011’H -- Unblock
request

ubc MessageID ::= ‘00001010’H -- Unblock
confirm

cnf MessageID ::= ‘00000011’H -- Confusion

B.4.4.2 Detailed parameter structure

CAU ::= SEQUENCE { -- definition of the essentials of the cause
(CAU) parameter

org BIT STRING (SIZE (2)) (‘00’B), -- origin
ITU-T

value INTEGER (1 .. 127), -- cause
value

diagnostics OCTET STRING (SIZE (0 .. 252)) }

CEID ::= SEQUENCE { -- definition of the essentials of the
CEID parameter

path AAL2Path, -- AAL type
2 path

cid CID } -- CID

OSAID ::= SAID -- definition of the OSAID
parameter

SAID ::= OCTET STRING (SIZE (4)) -- definition of
the SAID

unknown SAID ::= ‘00000000’H -- definition of
the 'unknown'
value

ITU-T Q.2630.1/Annex B (03/2001) 17

TCI ::= OCTET STRING (SIZE (0)) -- definition of the essentials of the TCI
parameter

-- The following parameters are handled but never interpreted in the
SDL definition, hence, no details are needed

ESEA ::= OCTET STRING (SIZE (3 .. 17)) -- definition of the essentials of
the ESEA parameter

NSEA ::= OCTET STRING (SIZE (20)) -- definition of the essentials of
the NSEA parameter

ALC ::= OCTET STRING (SIZE (12)) -- definition of the essentials of
the ALC parameter

SUGR ::= OCTET STRING (SIZE (4)) -- definition of the essentials of
the SUT parameter
SUT ::= OCTET STRING (SIZE (1 .. 255)) -- definition of the essentials of

the SUGR parameter
SSIA ::= OCTET STRING (SIZE (8)) -- definition of the essentials of

the SSIA parameter
SSIM ::= OCTET STRING (SIZE (3)) -- definition of the essentials of

the SSIM parameter
SSISA ::= OCTET STRING (SIZE (14)) -- definition of the essentials of

the SSISA parameter
SSISU ::= OCTET STRING (SIZE (7)) -- definition of the essentials of

the SSISU parameter

NOTE – The parameters not interpreted by Nodal Function 1 are represented only summarily; these
parameters with the exception of "SUGR" and "SUT" are interpreted by Nodal Function 2, though.

B.4.4.3 Detailed parameter list structure for the messages

ERQmsg ::= SEQUENCE { -- definition of the essentials of the ERQ message
ceid CEID, -- connection element identifier
a2ea CHOICE { -- AAL type 2 endpoint address
esea ESEA, -- destination E.164 endpoint

address
nsea NSEA }, -- destination NSAP endpoint

address
alc ALC OPTIONAL, -- link characteristics
osaid OSAID, -- originating signalling

association ID
sugr SUGR OPTIONAL, -- served user generated reference
sut SUT OPTIONAL, -- serverd user transport
ssis CHOICE { -- SSCS information
ssia SSIA, -- service specific information

(audio)
ssim SSIA, -- service specific info.

(multirate)
ssisa SSIA, -- service specific info.

(SAR-assured)
ssisu SSIA } OPTIONAL, -- service specific info.

(SAR-unassured)
tci TCI OPTIONAL } -- test connection indicator

ECFmsg ::= SEQUENCE { -- definition of the essentials of the ECF message
osaid OSAID } -- originating signalling

association ID

RELmsg ::= SEQUENCE { -- definition of the essentials of the REL message
cause CAU } -- cause

18 ITU-T Q.2630.1/Annex B (03/2001)

RLCmsg ::= SEQUENCE { -- definition of the essentials of the RLC message
cause CAU OPTIONAL } -- cause

RESmsg ::= SEQUENCE { -- definition of the essentials of the RES message
ceid CEID, -- connection element identifier
osaid OSAID } -- originating signalling

association ID

RSCmsg ::= SEQUENCE { -- definition of the essentials of the RSC message
cause CAU OPTIONAL } -- cause

BLOmsg ::= SEQUENCE { -- definition of the essentials of the BLO message
ceid CEID, -- connection element identifier
osaid OSAID } -- originating signalling

association ID

BLCmsg ::= SEQUENCE { -- definition of the essentials of the BLC message
cause CAU OPTIONAL } -- cause

UBLmsg ::= SEQUENCE { -- definition of the essentials of the UBL message
ceid CEID, -- connection element identifier
osaid OSAID } -- originating signalling

association ID

UBCmsg ::= SEQUENCE { -- definition of the essentials of the UBC message
cause CAU OPTIONAL } -- cause

CNFmsg ::= SEQUENCE { -- definition of the essentials of the CNF message
cause CAU } -- cause

ITU-T Q.2630.1/Annex B (03/2001) 19

Process NodalF1 AAL2000(25)

 dcl
 eRQmsg ERQmsg, /* Establish request */
 eCFmsg ECFmsg, /* Establish confirm */
 rELmsg RELmsg, /* Release request */
 rLCmsg RLCmsg, /* Release confirm */
 rESmsg RESmsg, /* Reset request */
 rSCmsg RSCmsg, /* Reset confirm */
 bLOmsg BLOmsg, /* Block request */
 bLCmsg BLCmsg, /* Block confirm */
 uBLmsg UBLmsg, /* Unblock request */
 uBCmsg UBCmsg, /* Unblock confirm */
 cNFmsg CNFmsg; /* Confusion */

 NOTE

 At start-up, it is assumed that the STI
 (Signalling Transport Interfaces) to each
 existing STC (Signalling Transport Converter,
 there exists one per nodal signalling relation)
 are created. The addition or removal of nodal
 signalling relations together with the creation
 or destruction of the STI and STC processes is
 not shown in the SDL diagrams of this Annex.

IDLE

Figure B.3/Q.2630.1 −−−− SDL diagram of the Nodal Function 1 (part 1 of 25)

20 ITU-T Q.2630.1/Annex B (03/2001)

Process NodalF1 AAL2001(25)

 NOTES

 1. The ERQ message includes the required
 parameters but without compatibility infor-
 mation filled in.

 2. The procedure "ValidateLink" determines
 whether the CEID information in the ERQmsg
 designates a valid link in the nodal signalling
 association "sri"; it is located with the
 procedures in NodalF2 and not further
 specified.

 3. The procedures and functions "Blocked"
 and "BLOCKING", are located in NodalF2.
 "StartBlocking" is located in NodalF1.

IDLE

 ESTABLISH.
 request (A2EA,
 SUGR, SUT,
 TCI, SSCS, ALC)

Construct
ERQmsg

crec :=
allocate(CRec)

A1

 crec.incoming.peer
 := user
 crec.incoming.ppus
 := sender
 crec.incoming.srid
 := null
 crec.incoming.ceid
 := null

 The Macro con-
 structs an ERQ
 message (Note 1)

IDLE

 IPP-ESTABLISH.
 indication
 (eRQmsg, sri)

ValidateLink
(eRQmsg.CEID,

sri)

 TRUE is returned
 if eRQmsg.CEID
 designates a valid
 link in "sri" (Note 2)

TCI parameter
in eRQmsg

A00

StartBlocking
(eRQmsg.CEID.path,

sri, FALSE,
random())

 TERMINATE.
 request ()
 to sender

IDLE

 Blocked
 (eRQmsg.CEID.path,
 sri,
 "locally blocked")

 BLOCKING
 (eRQmsg.CEID.path,
 sri,
 "remotely unblocked")

 Blocked (
 eRQmsg.CEID.path,
 sri,
 "remotely blocked")

TRUE

TRUE

FALSE

FALSE

FALSE

TRUE

TRUE

FALSE

Figure B.3/Q.2630.1 −−−− SDL diagram of the Nodal Function 1 (part 2 of 25)

ITU-T Q.2630.1/Annex B (03/2001) 21

Process NodalF1 AAL2002(25)

 NOTES

 1. The procedure "PathRes" uses the content
 of the parameters ALC, SSCS, CEID, and sri to
 perform a connection admission on the incom-
 ing AAL type 2 link; it is located with the
 procedures in NodalF2 and not further
 specified.

 2. The procedure "Compatibility" performs
 the compatibility check and returns a course
 of action with a cause; this function is
 located in NodalF1 (part 19). At this stage,
 the validity of the values needed for routing
 need to be established, a decision whether
 "pass-on" is possible cannot be performed
 yet.

 3. The procedure "PathRel" releases resour-
 ces associated with an AAL type 2 path; those
 are designated either by "CRec.incoming" or
 "CRec.outgoing"; it is located with the proc-
 edures in NodalF2 and not further specified.

A00

 pathres := PathRes
 (eRQmsg.ALC,
 eRQmsg.SSCS,
 eRQmsg.CEID,
 sri)

pathres.course

ReturnReject
(pathres.cause)

IDLE

crec :=
allocate (CRec)

compat :=
Compatibility
(eRQmsg,null)

 The procedure performs
 the compatibility check
 (Note 2)

compat.course

compat.course

remove
CEID parameter

from eRQmsg

A1

PathRel
(crec.incoming)

 The procedures releases
 resources associated
 with the incoming AAL
 type 2 link (Note 3)

 TERMINATE.
 request ()
 to sender

release (crec)

IDLE

PathRel
(crec.incoming)

 The procedures releases
 resources associated
 with the incoming AAL
 type 2 link (Note 3)

ReturnReject
(compat.cause)

ReturnConfuse
(compat.cause)

 crec.incoming.peer
 := remote
 crec.incoming.ppus
 := sender
 crec.incoming.srid
 := sri
 crec.incoming.ceid
 := eRQmsg.CEID

 The procedure
 "PathRes" performs a
 connection admission
 on the incoming link
 (Note 1)

fail

success

else

pass, passcnf

dcrd, dcrdcnf

release

passcnf,
dcrdcnf

Figure B.3/Q.2630.1 −−−− SDL diagram of the Nodal Function 1 (part 3 of 25)

22 ITU-T Q.2630.1/Annex B (03/2001)

Process NodalF1 AAL2003(25)

 NOTES

 1. The procedure "SelectRoute" uses the con-
 tent of the parameters A2EA, ALC, and SSCS to
 select a route and reserve outgoing resour-
 ces; it is located with the procedures in
 NodalF2 and not further specified.

 2. The procedure "PathRel" releases resour-
 ces associated with an AAL type 2 path; those
 are designated either by "CRec.incoming" or
 "CRec.outgoing"; it is located with the proc-
 edures in NodalF2 and not further specified.

 3. The procedure "SwitchRoute" establishes
 and allocates resources to a path from, on
 the one hand, between the requesting AAL type
 2 served user or the incoming (preceeding)
 link and, on the other hand, the destination
 AAL type 2 served user or the outgoing
 (succeeding) link; it is located with the
 procedures in NodalF2 and not further
 specified.

 4. Not all implementations need to allocate
 resources on an internal path. In this case,
 the procedure "SwitchRoute" is a null func-
 tion that always immediately returns "success".

A1

route := SelectRoute
(eRQmsg.A2EA,
eRQmsg.ALC,

eRQmsg.SSCS)

route.course

switch :=
SwitchRoute

(crec)

 The procedure Switch-
 Route establishes a
 path through the
 AAL type 2 node
 (Note 3, 4)

switch.course

A10
crec.

outgoing.
peer

crec.
incoming.

peer

PathRel
(crec.incoming)

 The procedures releases
 resources associated
 with the incoming AAL
 type 2 link (Note 2)

ReturnReject
(switch.cause)

release (crec)

IDLE

 RELEASE.
 confirm
 (switch.cause)
 to sender

PathRel
(crec.outgoing)

 The procedures releases
 resources associated
 with the outgoing AAL
 type 2 link (Note 2)

 TERMINATE.
 request () to
 crec.outgoing.
 ppus

 crec.outgoing.peer
 := user
 crec.outgoing.ppus
 := null
 crec.outgoing.srid
 := null
 crec.outgoing.ceid
 := null

crec.incoming.
peer

PathRel
(crec.incoming)

 The procedures releases
 resources associated
 with the incoming AAL
 type 2 link (Note 2)

ReturnReject
(route.cause)

release
(crec)

IDLE

 RELEASE.
 confirm
 (Cause :=
 route.cause)

release
(crec)

IDLE

A2OPP
(route.sri)

 Create Outgoing
 Protocol Procedure
 entity

 crec.outgoing.peer
 := remote
 crec.outgoing.ppus
 := offspring
 crec.outgoing.sri
 := route.sri
 crec.outgoing.ceid
 := route.ceid

 The procedure "Select-
 Route" selects a route
 and reserves outgoing
 resources (Note 1)

local

success

fail

user

remote

user

remote

fail

remoteuser

remote

Figure B.3/Q.2630.1 −−−− SDL diagram of the Nodal Function 1 (part 4 of 25)

ITU-T Q.2630.1/Annex B (03/2001) 23

Process NodalF1 AAL2004(25)

 NOTES

 1. The procedure "Compatibility" performs the
 compatibility check and returns a course of
 action with a cause; this function is located
 in NodalF1 (part 19). At this stage, full
 compatibility checking can be performed in-
 cluding the decision whether "pass-on" is
 possible.

 2. The procedure "PathRel" releases resour-
 ces associated with an AAL type 2 path; those
 are designated either by "CRec.incoming" or
 "CRec.outgoing"; it is located with the proc-
 edures in NodalF2 and not further specified.

 NOTES

 3. The procedure "SwitchRel" releases resour-
 ces of the path from, on the one hand, the
 requesting AAL type 2 served user or the
 incoming (preceeding) link and, on the other
 hand, the destination AAL type 2 served user
 or the outgoing (succeeding) link; it is
 located with the procedures in NodalF2 and
 not further specified.

 4. Not all implementations need to allocate
 resources on an internal path. In this case,
 the procedure "SwitchRel" is a null pro-
 cedure that immediately returns.

A10

crec.
incoming.

peer

crec.
outgoing.

peer

A11
add

CEID parameter
to

eRQmsg

 OPP-ESTABLISH.
 request (eRQmsg)
 to crec.outgoing.
 ppus

crec.status := 2

IDLE

compat :=
Compatibility

(eRQmsg, crec)

 The procedure performs
 the compatibility check
 (Note 1)

compat.course

compat.course

crec.
outgoing.

peer

SwitchRel
(crec)

PathRel
(crec.incoming)

 The procedures re-
 leases resources
 associated with the
 incoming AAL type 2
 link (Note 2)

 TERMINATE.
 request ()
 to sender

release
(crec)

IDLE

 The procedure Switch-
 Rel releases the path
 through the AAL type
 2 node (Note 3, 4)

PathRel
(crec.outgoing)

 The procedures re-
 leases resources
 associated with the
 outgoing AAL type 2
 link (Note 2)

crec.
outgoing.

peer

SwitchRel
(crec)

 The procedure Switch-
 Rel releases the path
 through the AAL type
 2 node (Note 3, 4)

PathRel
(crec.incoming)

 The procedures re-
 leases resources
 associated with the
 incoming AAL type 2
 link (Note 2)

ReturnReject
(compat.cause)

PathRel
(crec.outgoing)

 The procedures re-
 leases resources
 associated with the
 outgoing AAL type 2
 link (Note 2)

ReturnConfuse
(compat.cause)

A11

crec.
incoming.

peer

Construct
ECFmsg

 IPP-ESTABLISH.
 response (eCFmsg)
 to crec.incoming.
 ppus

USER

crec.outgoing.ppus
:=

offspring

Extract
ERQparams

(eRQmsg)

 ESTABLISH.indi-
 cation (sugr, sut,
 tci, sscs)
 to offspring

crec.status := 4

IDLE

 ESTABLISH.
 confirm

user

user

remote

remote

else

else

dcrd,
dcrdcnf

user

remote

release

user

remote

passcnf,
dcrdcnf

remote

user

Figure B.3/Q.2630.1 −−−− SDL diagram of the Nodal Function 1 (part 5 of 25)

24 ITU-T Q.2630.1/Annex B (03/2001)

Process NodalF1 AAL2005(25)

 NOTES

 1. "crec.outgoing" designates the preceeding
 link.

 2. The procedure "Compatibility" performs the
 compatibility check and returns a course of
 action with a cause; this function is located
 in NodalF1 (part xx). Full compatibility
 checking can be performed including the
 decision whether "pass-on" is possible.

 3. The procedure "PathRel" releases resour-
 ces associated with an AAL type 2 path; those
 are designated either by "CRec.incoming" or
 "CRec.outgoing"; it is located with the proc-
 edures in NodalF2 and not further specified.
 In this case, the term "incoming" refers to the
 link on which the ECF message was received.

 4. The procedure "SwitchRel" releases resour-
 ces of the path from, on the one hand, the
 requesting AAL type 2 served user or the
 incoming (preceeding) link and, on the other
 hand, the destination AAL type 2 served user
 or the outgoing (succeeding) link; it is
 located with the procedures in NodalF2 and
 not further specified.

 5. Not all implementations need to allocate
 resources on an internal path. In this case,
 the procedure "SwitchRel" is a null pro-
 cedure that immediately returns.

IDLE

 OPP-ESTABLISH.
 confirm
 (eCFmsg)

crec :=
LookupCRec

(sender)

compat :=
Compatibility

(eCFmsg, crec)

compat.course

compat.course

crec.status := 5

crec.
outgoing.

peer

 IPP-ESTABLISH.
 response
 (eCFmsg) to
 crec.outgoing.ppus

IDLE

 ESTABLISH.
 confirm () to
 crec.outgoing.ppus

IDLE

crec.
outgoing.

peer

PathRel
(crec.outgoing)

SendReject
(compat.cause)

crec.outgoing.peer
:= none

SwitchRel
(crec)

 The procedure Switch-
 Rel releases the path
 through the AAL type
 2 node (Note 4, 5)

PathRel
(crec.incoming)

ReturnRelease
(compat.cause)

crec.status := 7

IDLE

 The procedures re-
 leases resources
 associated with the
 incoming (succeeding)
 AAL type 2 link (Note 3)

 The procedures re-
 leases resources
 associated with the
 outgoing (preceeding)
 AAL type 2 link (Note 3)

 RELEASE.
 confirm
(compat.cause) to
 crec.outgoing.ppus

ReturnConfuse
(compat.cause)

 The procedure per-
 forms the compati-
 bility check (Note 2)

 The value
 crec.status
 is equal to "3"
 (Note 1)

 The ECF message
 contains no para-
 meters that are
 interpreted

else

pass
passcnf

remote

user

else

remote

user

passcnf
dcrdcnf

Figure B.3/Q.2630.1 −−−− SDL diagram of the Nodal Function 1 (part 6 of 25)

ITU-T Q.2630.1/Annex B (03/2001) 25

Process NodalF1 AAL2006(25)

 NOTES

 1. "crec.outgoing" designates the preceeding
 link.

 2. Features that enable a further connection
 attempt, involving the selection of a different
 AAL type 2 path within the same route or of
 an alternative route, may be implemented; how-
 ever, such features are not specified.

 3. The procedure "PathRel" releases resour-
 ces associated with an AAL type 2 path; those
 are designated either by "CRec.incoming" or
 "CRec.outgoing"; it is located with the proc-
 edures in NodalF2 and not further specified.
 In this case, the term "incoming" refers to the
 link on which the ECF message was received.

 4. The procedure "SwitchRel" releases resour-
 ces of the path from, on the one hand, the
 requesting AAL type 2 served user or the
 incoming (preceeding) link and, on the other
 hand, the destination AAL type 2 served user
 or the outgoing (succeeding) link; it is
 located with the procedures in NodalF2 and
 not further specified.

 5. Not all implementations need to allocate
 resources on an internal path. In this case,
 the procedure "SwitchRel" is a null pro-
 cedure that immediately returns.

 6. This macro verifies that the mandatory CAU
 parameter is contained in the RLC message; if
 it is missing, a CAU indicating "Temporary
 failure" is added.

IDLE

 OPP-REJECT.
 indication
 (rLCmsg)

crec :=
LookupCRec

(sender)

PathRel
(crec.incoming)

SwitchRel
(crec)

ValidRLCR
(rLCmsg, crec)

(Note 2)

crec.
outgoing.

peer

PathRel
(crec.outgoing)

 IPP-REJECT.
 request
 (rLCmsg) to
 crec.outgoing.ppus

release
(crec)

IDLE

 The procedures re-
 leases resources
 associated with the
 outgoing (preceeding)
 AAL type 2 link (Note 3)

 RELEASE.
 confirm
 (rLCmsg.CAU) to
 crec.outgoing.ppus

 This macro verifies
 the RLC message
 (Note 6)

 The procedure Switch-
 Rel releases the path
 through the AAL type
 2 node (Note 4, 5)

 The procedures re-
 leases resources
 associated with the
 incoming (succeeding)
 AAL type 2 link (Note 3)

 The value
 crec.status
 is equal to "3"
 (Note 1)

remote

user

Figure B.3/Q.2630.1 −−−− SDL diagram of the Nodal Function 1 (part 7 of 25)

26 ITU-T Q.2630.1/Annex B (03/2001)

Process NodalF1 AAL2007(25)

 NOTES

 1. The RLC message includes the required para-
 meters but without compatibility information
 filled in.

 2. This macro verifies that the mandatory CAU
 parameter is contained in the REL message; if
 it is missing, a CAU indicating "Normal,
 unspecified" is added.

 3. The procedure "PathRel" releases resour-
 ces associated with an AAL type 2 path; those
 are designated either by "CRec.incoming" or
 "CRec.outgoing"; it is located with the proc-
 edures in NodalF2 and not further specified.
 In this case, the term "incoming" refers to the
 link on which the REL message was received.

 4. The procedure "Compatibility" performs the
 compatibility check and returns a course of
 action with a cause; this function is located
 in NodalF1 (part 19). Full compatibility
 checking can be performed including the
 decision whether "pass-on" is possible.

 5. The RLC message includes the required
 parameters but without compatibility infor-
 mation filled in.

IDLE

 RELEASE.
 request
 (cause)

crec :=
LookupCRec

(sender)

Construct
RELmsg
(cause)

A3

 The macro constructs
 an REL message with-
 out compatibility
 information (Note 1)

 The value
 crec.status
 is either "2",
 "4", or "5"

IDLE

 XPP-RELEASE.
 indication
 (rELmsg)

crec :=
LookupCRec

(sender)

ValidREL
(rELmsg, crec)

PathRel
(crec.incoming)

compat :=
Compatibility

(rELmsg ,crec)

 The procedure performs
 the compatibility check
 (Note 4)

compat.course

Construct
RLCmsg

 XPP-RELEASE.
 response
 (rLCmsg)
 to sender

crec.incoming.peer
:= none

crec.
outgoing.

peer

A3release
(crec)

IDLE

 The Macro con-
 structs an RLC
 message (Note5)

CAU :=
compat.cause

Construct
RLCmsgR

 The Macro con-
 structs an RLC
 message (Note 5)

 The procedures re-
 leases resources
 associated with the
 incoming AAL type 2
 link (Note 3)

 This macro verifies
 the REL message
 (Note 2)

 The value
 crec.status
 is either "4"
 or "5"

pass
dcrd

user
remote

none

release
passcnf
dcrdcnf

Figure B.3/Q.2630.1 −−−− SDL diagram of the Nodal Function 1 (part 8 of 25)

ITU-T Q.2630.1/Annex B (03/2001) 27

Process NodalF1 AAL2008(25)

 NOTES

 1. The procedure "SwitchRel" releases resour-
 ces of the path from, on the one hand, the
 requesting AAL type 2 served user or the
 incoming (preceeding) link and, on the other
 hand, the destination AAL type 2 served user
 or the outgoing (succeeding) link; it is
 located with the procedures in NodalF2 and
 not further specified.

 2. Not all implementations need to allocate
 resources on an internal path. In this case,
 the procedure "SwitchRel" is a null pro-
 cedure that immediately returns.

 3. The procedure "PathRel" releases resour-
 ces associated with an AAL type 2 path; those
 are designated either by "CRec.incoming" or
 "CRec.outgoing"; it is located with the proc-
 edures in NodalF2 and not further specified.
 In this case, the term "incoming" refers to the
 link on which the RLC message was received.

 4. This macro notifies layer management if the
 optional CAU parameter is contained in the
 RLC message.

A3

SwitchRel
(crec)

crec.
outgoing.

peer

 XPP-RELEASE.
 request
 (rELmsg) to
 crec.outgoing.ppus

crec.status

crec.status := 7

IDLE

crec.status := 6

IDLE

 RELEASE.
 indication
 (rELmsg.CAU) to
 crec.outgoing.ppus

release
(cerc)

IDLE

 The procedure Switch-
 Rel releases the
 path through the
 AAL type 2 node
 (Note 1, 2)

IDLE

 XPP-RELEASE.
 confirm
 (rLCmsg)

crec :=
LookupCRec

(sender)

ValidRLC
(rLCmsg, crec)

PathRel
(crec.incoming)

release
(crec)

IDLE

 The procedures re-
 leases resources
 associated with the
 incoming AAL type 2
 link (Note 3)

 This macro verifies
 the RLC message
 (Note 4)

 The value
 crec.status
 is either "6"
 or "7".

remote

5

4

user

Figure B.3/Q.2630.1 −−−− SDL diagram of the Nodal Function 1 (part 9 of 25)

28 ITU-T Q.2630.1/Annex B (03/2001)

Process NodalF1 AAL2009(25)

NOTES

 1. This macro returns TRUE if the mandatory
 CAU parameter is contained in the CNF message.

 2. This procedure determines whether the CNF
 message should be passed on or whether the
 local layer management is notified. The proce-
 dure performs this notification; it is located
 with the procedures in NodalF2 and not further
 specified.

 3. The procedure "PathRel" releases resour-
 ces associated with an AAL type 2 path; those
 are designated either by "CRec.incoming" or
 "CRec.outgoing"; it is located with the proc-
 edures in NodalF2 and not further specified.
 In this case, the term "incoming" refers to the
 link on which the error or timeout occurred.

 4. The procedure "SwitchRel" releases resour-
 ces of the path from, on the one hand, the
 requesting AAL type 2 served user or the
 incoming (preceeding) link and, on the other
 hand, the destination AAL type 2 served user
 or the outgoing (succeeding) link; it is
 located with the procedures in NodalF2 and
 not further specified.

 5. Not all implementations need to allocate
 resources on an internal path. In this case,
 the procedure "SwitchRel" is a null pro-
 cedure that immediately returns.

 6. This procedure initiates a reset procedure
 on the AAL type 2 channel indicated by a
 "nodal signalling association" and a "Connec-
 tion Element Identifier" that indicates both
 the path and the channel.

IDLE

 XPP-ERROR.
 indication
 (cause)

crec :=
LookupCRec

(sender)

crec.incoming
:= none

PathRel
(crec.incoming)

SwitchRel
(crec)

 The procedure
 SwitchRel relea-
 ses the path
 through the AAL
 type 2 node
 (Note 4, 5)

CAU := cause

crec.
outgoing.

peer

 RELEASE.
 confirm
 (CAU) to
 crec.outgoing.ppus

release
(crec)

IDLE

PathRel
(crec.outgoing)

 The procedures re-
 leases resources
 associated with the
 outgoing AAL type 2
 link (Note 3)

SendReject
(CAU)

 The procedures re-
 leases resources
 associated with the
 incoming AAL type 2
 link (Note 3)

 The value
 crec.status
 is "3"

 XPP-CONFUSE.
 indication
 (cNFmsg)

ValidCNF
(cNFmsg)

 ERROR.
 indication
 (sri, null,
 cNFmsg)

crec :=
LookupCRec

(sender)

PassConfuse
(cNFmsg, crec)

IDLE

crec.
outgoing.

peer

 CONFUSE.
 request
 (cNFmsg) to
 crec.outgoing.ppus

 (Note 2)

 The value
 crec.status
 is either "3",
 "4", or "5"

IDLE

 This macro verifies
 the CNF message
 (Note 1)

 XPP-TIMEOUT.
 indication

crec :=
LookupCRec

(sender)

crec.status

crec.incoming
:= none

PathRel
(crec.incoming)

SwitchRel
(crec)

CAU := {102, "1"}

 CAU :=
 {"Recovery on
 timer expiry","1"}

crec.
outgoing.

peer

PathRel
(crec.outgoing)

SendReject
(CAU)

StartReset
(crec.incoming.ceid,
crec.incoming.srid,

FALSE)

release
(crec)

IDLE

 This procedure initia-
 tes a reset procedure
 on an AAL type 2
 channel (Note 6)

 The procedures re-
 leases resources
 associated with the
 outgoing AAL type 2
 link (Note 3)

 RELEASE.
 confirm
 (CAU) to
 crec.outgoing.ppus

 The procedures re-
 leases resources
 associated with the
 incoming AAL type 2
 link (Note 3)

 The value
 crec.status
 is either "3",
 "6", or "7"

user

remote

TRUE

FALSE

TRUE

user

remote

FALSE 3

remote

user

6, 7

Figure B.3/Q.2630.1 −−−− SDL diagram of the Nodal Function 1 (part 10 of 25)

ITU-T Q.2630.1/Annex B (03/2001) 29

Process NodalF1 AAL2010(25)

 2. The procedure "SwitchRel" releases resour-
 ces of the path from, on the one hand, the
 requesting AAL type 2 served user or the
 incoming (preceeding) link and, on the other
 hand, the destination AAL type 2 served user
 or the outgoing (succeeding) link; it is
 located with the procedures in NodalF2 and
 not further specified.

 3. Not all implementations need to allocate
 resources on an internal path. In this case,
 the procedure "SwitchRel" is a null pro-
 cedure that immediately returns.

 NOTES

 1. The procedure "Compatibility" performs the
 compatibility check and returns a course of
 action with a cause; this function is located
 in NodalF1 (part 21). Full compatibility
 checking can be performed including the
 decision whether "pass-on" is possible.

 4. The procedure "PathRel" releases resour-
 ces associated with an AAL type 2 path; those
 are designated either by "CRec.incoming" or
 "CRec.outgoing"; it is located with the proc-
 edures in NodalF2 and not further specified.
 In this case, the term "incoming" refers to the
 link on which the unrecognized message was
 received.

IDLE

 XPP-UNRECO-
 GNIZED.
 indication
 (msg)

crec :=
LookupCRec

(sender)

compat :=
MsgCompatibility

(msg, crec)

CAU :=
compat.cause

compat.course

crec.status

SwitchRel
(crec)

A41

 The procedure Switch-
 Rel releases the
 path through the
 AAL type 2 node
 (Note 2, 3)

IDLE

crec.
outgoing.

peer

IDLE

 XPP-UNRECO-
 GNIZED.request
 (msg) to crec.
 outgoing.ppus

crec.
outgoing.

peer

ReturnConfuse
(compat.cause)

 The procedure per-
 forms the compati-
 bility check (Note 1)

 The value
 crec.status
 is either "3",
 "4", "5", "6",
 or "7"

A41

crec.status

crec.
outgoing.

peer

SendRelease
(CAU)

ReturnRelease
(CAU)

crec1 :=
allocate
(CRec)

crec1.outgoing
:=

crec.incoming

crec.incoming.peer
:= none

crec1.incoming.peer
:= none

crec.status := 6
crec1.status := 6

IDLE

 RELEASE.
 indication
 (CAU) to
 crec.outgoing.ppus

crec.status

crec.outgoing.peer
:= none

crec.status := 7

ReturnRelease
(CAU)

IDLE

crec.outgoing.peer
:= none

crec.status := 6

crec.
outgoing.

peer

PathRel
(crec.incoming)

SendReject
(CAU)

 The procedures re-
 leases resources
 associated with the
 outgoing AAL type 2
 link (Note 4)

 RELEASE.
 confirm
 (CAU) to
 crec.outgoing.ppus

IDLE

release

else

6, 7

pass

user
none

remote

dcrd dcrdcnf

user
none

remote

4, 5

remote

user

5

4

3

remote

usernone

Figure B.3/Q.2630.1 −−−− SDL diagram of the Nodal Function 1 (part 11 of 25)

30 ITU-T Q.2630.1/Annex B (03/2001)

Process NodalF11 AAL2111(25)

 NOTES

 1. The procedure "Compatibility" performs the
 compatibility check and returns a course of
 action with a cause; this function is located
 in NodalF1 (part 19). Full compatibility
 checking need not be performed as
 "pass-on" is not an issue in this situation.

 2. This procedure starts blocking procedures
 for all AAL type 2 paths that were locally
 blocked before the remote initiated reset; this
 function is located in NodalF1 (part 18).

 3. Any AAL type 2 link on the affected path(es)
 is terminated (without modifying resource reser-
 vations) and the AAL type 2 connection(s) to
 which these links belong are released; this func-
 tion is located in NodalF1 (part 18).

 4. This procedure initiates a reset procedure
 on one or all AAL type 2 pathes of a "nodal
 signalling association"; this procedure is
 located in NodalF1 (part 17).

IDLE

 MPP-RESET.
 indication
 (rESmsg, sri)

CEID para-
meter in
rESmsg

 ERROR.
 indication
 (sri, null, "RES")

 TERMINATE.
 request ()
 to sender

IDLE

Valid
(rESmsg.CEID,

sri)

compat :=
Compatibility
(rESmsg, null)

 The procedure performs
 the compatibility check
 (Note 1)

compat.course

sqc := random()

CSA :=
compat.cause

Construct
RSCmsgC

 MPP-RESET.
 response
 (rSCmsg, sqc)
 to sender

IDLE

sqc := random()

ResetConn
(rESmsg.CEID,

sri)

 This procedure termi-
 nates affected proto-
 col entities and re-
 leases affected con-
 nections (note 3)

ResetRel
(rESmsg.CEID,

sri)

 This procedure (in
 NodalF2) releases
 resources reserved
 for channels affected
 by the reset

 RESET.
 indication
 (sri, rESmsg.CEID,
 null)

rESmsg.CEID.cid

Construct
RSCmsg

ResetBlock
(rESmsg.CEID.path,

sri, sqc)

 This procedure starts
 blocking procedures
 (note 2)

 TERMINATE.
 request ()
 to sender

IDLE

 RESET.
 request
 (sri, ceid)

 This procedure initia-
 tes a reset procedure
 on one or several
 AAL type 2 path(s)
 (Note 4)

StartReset
(ceid, sri, TRUE)

IDLE

IDLE

 STOP-RESET.
 request
 (sri, ceid)

mrec :=
FindMRec
(sri, ceid)

 TERMINATE.
 request ()
 to mrec.ppus

ResetRel
(mrec.ceid,
mrec.srid)

release
(mrec)

IDLE

 MPP-RESET.
 confirm
 (rSCmsg)

mrec :=
LookupMRec

(sender)

CAU para-
meter in
rSCmsg

 ERROR.
 indication
 (mrec.sri, mrec.ceid,
 rSCmsg.CAU

ResetRel
(mrec.ceid,
mrec.srid)

mrec.disp

 RESET.indication
 (mrec.srid, mrec.
 ceid, cause)

 RESET.
 confirm
 (cause)

FALSE

TRUE

TRUE

dcrdcnf

pass
passcnf

else

0

dcrd
release

FALSE TRUE

FALSE

FALSE

TRUE

Figure B.3/Q.2630.1 −−−− SDL diagram of the Nodal Function 1 (part 12 of 25)

ITU-T Q.2630.1/Annex B (03/2001) 31

Process NodalF1 AAL2012(25)

 NOTES

 1. This procedure initiates a blocking
 procedure on one or all AAL type 2
 pathes of a "nodal signalling associa-
 tion"; this procedure is located in
 NodalF1 (part 17).

 2. The procedure "Compatibility" performs the
 compatibility check and returns a course of
 action with a cause; this function is located
 in NodalF1 (part 19). Full compatibility
 checking need not be performed as
 "pass-on" is not an issue in this situation.

IDLE

 MPP-BLOCK.
 indication
 (bLOmsg, sri)

CEID para-
meter in
bLOmsg

 ERROR.
 indication
 (sri, null, "BLO")

 TERMINATE.
 request ()
 to sender

IDLE

Valid
(bLOmsg.CEID,

sri)

compat :=
Compatibility

(bLOmsg, null)

 The procedure performs
 the compatibility check
 (Note 2)

compat.course

Construct
BLCmsgC

(compat.cause)

 MPP-BLOCK.
 response
 (bLCmsg)
 to sender

IDLE

 Blocked (bLOmsg.
 CEID.field1, sri,
 "remotely blocked")

Construct
BLCmsg

BLOCKING
(bLOmsg.CEID.

path, sri,
"remotely blocked")

IDLE

 BLOCK.
 request
 (sri, a2p)

StartBlocking
(a2p, sri, TRUE,

random())

 This procedure initia-
 tes a blocking proce-
 dure on one or several
 AAL type 2 path(s)
 (Note 1)

IDLE

IDLE

 MPP-BLOCK.
 confirm
 (bLCmsg)

mrec :=
LookupMRec

(sender)

CAU para-
meter in
bLCmsg

 BLOCK.
 confirm
 (mrec.srid, mrec.ceid,
 null)

release
(mrec)

IDLE

 BLOCK.
 confirm
 (mrec.srid, mrec.ceid,
 bLCmsg.CAU)

 ERROR.
 indication
 (mrec.srid, mrec.ceid,
 bLCmsg.CAU)

BLOCKING
(mrec.ceid.path,

mrec.sri,
"locally unblocked")

FALSE

TRUE

FALSE

TRUE

passcnf
dcrdcnf
release

dcrd pass

TRUE

FALSE

FALSE

TRUE

Figure B.3/Q.2630.1 −−−− SDL diagram of the Nodal Function 1 (part 13 of 25)

32 ITU-T Q.2630.1/Annex B (03/2001)

Process NodalF1 AAL2013(25)

 NOTES

 1. This procedure initiates an unblocking
 procedure on one or all AAL type 2
 pathes of a "nodal signalling associa-
 tion"; this procedure is located in
 NodalF1 (part 17).

 2. The procedure "Compatibility" performs the
 compatibility check and returns a course of
 action with a cause; this function is located
 in NodalF1 (part 19). Full compatibility
 checking need not be performed as
 "pass-on" is not an issue in this situation.

IDLE

 MPP-UNBLOCK.
 indication
 (uBLmsg, sri)

CEID para-
meter in
uBLmsg

 ERROR.
 indication
 (sri, null, "UBL")

 TERMINATE.
 request ()
 to sender

IDLE

Valid
(bLOmsg.CEID,

sri)

compat :=
Compatibility

(bLOmsg, null)

 The procedure performs
 the compatibility check
 (Note 2)

compat.course

Construct
UBCmsgC

(compat.cause)

 MPP-UNBLOCK.
 response
 (uBCmsg)
 to sender

IDLE

 Blocked (uBLmsg.
 CEID.path, sri,
 "remotely
 unblocked")

Construct
UBCmsg

BLOCKING
(uBLmsg.CEID.

path, sri,
"remotely unblocked")

IDLE

 UNBLOCK.
 request
 (sri, a2p)

StartUnblocking
(a2p, sri, TRUE)

 This procedure initia-
 tes an unblocking proce-
 dure on one or several
 AAL type 2 path(s)
 (Note 1)

IDLE

IDLE

 MPP-UNBLOCK.
 confirm
 (uBCmsg)

mrec :=
LookupMRec

(sender)

CAU para-
meter in
uBCmsg

 UNBLOCK.
 confirm
 (mrec.srid, mrec.ceid,
 null)

BLOCKING
(mrec.ceid.path,

mrec.sri,
"locally unblocked")

release
(mrec)

IDLE

 UNBLOCK.
 confirm
 (mrec.srid, mrec.ceid,
 uBCmsg.CAU)

 ERROR.
 indication
 (mrec.srid, mrec.ceid,
 uBCmsg.CAU)

FALSE

TRUE

FALSE

TRUE

passcnf
dcrdcnf
release

dcrd pass

TRUE

FALSE

FALSE

TRUE

Figure B.3/Q.2630.1 −−−− SDL diagram of the Nodal Function 1 (part 14 of 25)

ITU-T Q.2630.1/Annex B (03/2001) 33

Process NodalF1 AAL2014(25)

IDLE

 MPP-ERROR.
 indication
 (cause)

mrec :=
LookupMRec

(sender)

mrec.status

cause.code = 42

 cause =
 "Switching
 equipment
 congestion"

 ERROR.
 indication
 (mrec.sri, mrec.
 ceid, cause)

IDLE

 BLOCK.
 confirm
 (mrec.srid, mrec.ceid,
 bLCmsg.CAU)

BLOCKING
(mrec.ceid.path,

mrec.sri,
"locally unblocked")

release
(mrec)

IDLE

 UNBLOCK.
 confirm
 (mrec.srid, mrec.ceid,
 uBCmsg.CAU)

IDLE

 MPP-UNRECO-
 GNIZED.
 indication
 (msg)

mrec :=
LookupMRec

(sender)

 ERROR.
 indication
 (mrec.sri, mrec.
 ceid, msg)

IDLE

6

FALSE

TRUE

2

4

Figure B.3/Q.2630.1 −−−− SDL diagram of the Nodal Function 1 (part 15 of 25)

34 ITU-T Q.2630.1/Annex B (03/2001)

Process NodalF1 AAL20S0(25)

 This function searches all records of type "CRec"
 to find the one that matches either the crec.incom-
 ing.ppus or the crec.outgoing.ppus with the input
 parameter. Exactly one such record is found.

 If the input parameter matches the crec.outgoing.
 ppus, the incoming and outgoing parts of the record
 are exchanged. If such an exchange took place, the
 status part of the record is also modified as follows:
 if even(crec.status) then
 increment crec.status by 1
 else
 decrement crec.status by 1
 endif

 The value returned can be understood to be a
 pointer to the record itself.

 This function allocates a record of type "CRec" or "MRec".

 The value returned can be understood to be a pointer to
 the record itself.

 This function deallocates a record of type "CRec" or "MRec"
 referenced by the parameter "crec" or "mrec". The record
 becomes unavailable.

 This function searches all records of type "MRec"
 to find the one that matches the mrec.ppus para-
 meter. Exactly one such record is found.

 The value returned can be understood to be a
 pointer to the record itself.

 This function parses the message and isolates
 the next parameter.

 The value returned is (a reference to) the
 parameter, unless no further parameters
 are found (in which case the value "null" is
 returned).

 This function searches all records of type "MRec"
 to find the next one that matches the "ceid" and
 "sri" parameters.

 The value returned can be understood to be a poin-
 ter to the record itself, unless no further records
 are found (in which case the value "null" is
 returned).

 This function searches for all assigned paths of
 the signalling relationship indicated with the "sri"
 parameter.

 The value returned is the value of an AAL type 2
 path identifier, unless no further paths are
 found (in which case the value "null" is returned).

 This function parses theparameter and
 isolates the next field

 The value returned is (a reference to) the
 field, unless no further fields exist (in
 which case the value "null" is returned).

 crec :=
 LookupCRec
 (ppus)

 crec :=
 allocate
 (CRec)

 release
 (crec)

 mrec :=
 LookupMRec
 (ppus)

crec :=
FindNextCRec
(ceid, sri)

 a2p :=
 FindNextPath
 (sri)

 param :=
 GetNextParam
 (msg)

 field :=
 GetNextField
 (param)

Figure B.3/Q.2630.1 −−−− SDL diagram of the Nodal Function 1 (procedures) (part 16 of 25)

ITU-T Q.2630.1/Annex B (03/2001) 35

Process NodalF1 AAL20S1(25)

BLOCKING
(a2p, sri,

"locally blocked")

CEID := {a2p,0}

Construct
BLOmsg
(CEID)

A2MPP
(sri)

 MPP-BLOCK.
 request
 (bLOmsg, sqc)
 to offspring

mrec :=
allocate (MRec)

mrec.ppus := offspring
mrec.srid := sri

mrec.ceid := CEID
mrec.disp := disp

mrec.status := 2

 StartBlocking
 (a2p, sri,
disp, sqc)

CEID := {a2p,0}

Construct
UBLmsg
(CEID)

A2MPP
(sri)

 MPP-UNBLOCK.
 request
 (uBLmsg)
 to offspring

mrec :=
allocate (MRec)

mrec.ppus := offspring
mrec.srid := sri

mrec.ceid := CEID
mrec.disp := disp

mrec.status := 4

 UNBLOCK.confirm
 (a2p, sri, null)

 Blocked
 (a2p, sri,
 "locally blocked")

 StartUnblocking
 (a2p, sri, disp)

ResetConn
(CEID, sri)

CEID.cid = 0

Construct
RESmsg

(ceid)

A2MPP
(sri)

 MPP-RESET.
 request
 (rESmsg)
 to offspring

mrec :=
allocate (MRec)

mrec.ppus := offspring
mrec.srid := sri

mrec.ceid := CEID
mrec.disp := disp

mrec.status := 6

ResetUnblock
(CEID, sri)

 StartReset
 (ceid, sri, disp)

TRUE

FALSE

FALSE

TRUE

Figure B.3/Q.2630.1 −−−− SDL diagram of the Nodal Function 1 (procedures) (part 17 of 25)

36 ITU-T Q.2630.1/Annex B (03/2001)

Process NodalF11 AAL21S2(25)

S1

crec :=
FindNextCRec

(ceid, sri)

crec = null

 TERMINATE.
 request () to
 crec.incoming.ppus

crec.incoming.peer
:= none

SwitchRel
(crec)

 The procedure Switch-
 Rel releases the path
 through the AAL type
 2 node

crec.
outgoing.

peer

S1 crec.status

release
(crec)

S1

SendRelease
(CAU)

crec.status

crec.status := 7crec.status := 6

PathRel
(crec.outgoing)

 The procedures re-
 leases resources
 associated with the
 outgoing AAL type 2
 link

SendReject
(CAU)

 RELEASE.
 indication
 (CAU) to
 crec.outgoing.ppus

release
(crec)

S1

CAU :=
{"Temporary
failure", null}

 ResetConn
 (ceid, sri)

ceid.path = null

a2p :=
FindNextPath

(sri)

a2p = null

Blocked
(a2p, sri, "remotely

blocked")

BLOCKING
(a2p, sri,
"remotely

unblocked")

BLOCKING
(ceid.path, sri,

"remotely
unblocked")

 Blocked
 (ceid.path, sri,
"remotely blocked")

 ResetUnblock
 (ceid, sri)

ceid.path = null

a2p :=
FindNextPath

(sri)

a2p = null

Blocked
(a2p, sri, "locally

blocked")

StartBlocking
(ceid.path,

sri, FALSE, sqc)

StartBlocking
(ceid.path,

sri, FALSE, sqc)

 Blocked
 (ceid.path, sri,
"locally blocked")

 ResetBlock
 (ceid, sri, sqc)

FALSE

none remote

6, 7 2, 4, 5

5

2, 4

3

user

TRUE

TRUE

FALSE

FALSE

TRUE

TRUE

FALSE

FALSE

TRUE

TRUE

FALSE

FALSE

TRUE

TRUE

FALSE

FALSE

TRUE

Figure B.3/Q.2630.1 −−−− SDL diagram of the Nodal Function 1 (procedures) (part 18 of 25)

ITU-T Q.2630.1/Annex B (03/2001) 37

Process NodalF1 AAL20S3(25)

 This function checks
 the compatibility of para-
 meters in recognized mes-
 sages. It returns a
 structured value with a
 course and a cause.

S3

param :=
GetNextParam

(msg)

param = null

S31

severity

cause.value := 0

{severity,cnf}

 return
 ({release, cause})

 return
 ({dcrdcnf, cause})

 return
 ({passcnf, cause})

 return
 ({pass, cause})

 return
 ({dcrd, cause})

cause.value := 99

cause.value :=
"Information element/
parameter non-existent
or not implemented"

cause.value := 110

cause.value :=
"Message with unreco-
gnised parameter
discarded"

cause.diagn[2] :=
msg.header.

identifier

i := 2
severity := 0
cnf := FALSE

 Compatibility
 (msg, crec)

S31

ii

S32

crec = null

PassOnPossible
(crec)

ii

S32

ii := 3

S32

ii := instruction indicator (as numerical value)
 from bit 5 & 6
sn := send notification (as boolean value)
 from bit 7 ("1" is "TRUE")

ii := instruction indicator (as numerical value)
 from bit 1 & 2
sn := send notification (as boolean value)
 from bit 3 ("1" is "TRUE")

FALSE

TRUE

0

{3,FALSE}
{3,TRUE}

{2,TRUE}{1,TRUE}{0,FALSE}
{0,TRUE}
{1,FALSE}

{2,FALSE}

1 2, 3

else

0

TRUE

FALSE

TRUE

FALSE

else

0

Figure B.3/Q.2630.1 −−−− SDL diagram of the Nodal Function 1 (procedures) (part 19 of 25)

38 ITU-T Q.2630.1/Annex B (03/2001)

Process NodalF1 AAL20S4(25)

S4

field :=
GetNextField

(param)

j := j + 1

FieldRecognized
(parid, j, field)

 located in
 nodal function
 NodalF2

unrecfld := true

ii < severity

S4 ii > severity

cnf := (cnf OR sn)

cause.diagn[i+1] :=
parameter identifier
cause.diagn[i+2] := j

i := i + 2

S4

severity := ii
cnf := sn

i := 2

S4

(ii = 1)
AND

unrecfld

S3

remove
parameter
from msg

S32

ParamKnown
(param)

parid :=
parameter identifier

j := 0
unrecfld := FALSE

ii < severity

ii

S3

remove
parameter
from msg

ii > severity

cnf := (cnf OR sn)

cause.diagn[i+1] :=
parameter identifier
cause.diagn[i+2] :=

null

i := i + 2

severity := ii
cnf := sn

i := 2

 located in
 nodal function
 NodalF2

else

FALSE

TRUE

FALSE

FALSE

TRUE

TRUE

null

FALSE

TRUE

TRUE

FALSE

TRUE

else

1

FALSE

FALSE

TRUE

Figure B.3/Q.2630.1 −−−− SDL diagram of the Nodal Function 1 (procedures) (part 20 of 25)

ITU-T Q.2630.1/Annex B (03/2001) 39

Process NodalF1 AAL20S5(25)

 This function checks the
 compatibility of unreco-
 gnized messages. It re-
 turns a structured value
 with a course and a cause.

cause.diagn[2] :=
msg.header.

identifier

ii

ii

 cause.value := 0

{ii,sn}

 return
 ({pass, cause})

 return
 ({release, cause})

 return
 ({dcrdcnf, cause})

 return
 ({dcrd, cause})

 cause.value := 97

 cause.value :=
"Message type
non-existent or
not implemented"

ii := 2

PassOnPossible
(crec)

ii

ii := 3

ii := instruction indicator (as numerical value)
 from bit 5 & 6
sn := send notification (as boolean value)
 from bit 7 ("1" is "TRUE")

ii := instruction indicator (as numerical value)
 from bit 1 & 2
sn := send notification (as boolean value)
 from bit 3 ("1" is "TRUE")

 MsgCompatibility
 (msg, crec)

else

0

{0,FALSE}
{0,TRUE}

{3,FALSE}
{3,TRUE}

{2,TRUE}{2,FALSE}

2, 3

1

0

TRUE

FALSE

else

0

Figure B.3/Q.2630.1 −−−− SDL diagram of the Nodal Function 1 (procedures) (part 21 of 25)

40 ITU-T Q.2630.1/Annex B (03/2001)

Process NodalF1 AAL20M0(25)

Construct
ERQmsg

construct eRQmsg
of type ERQmsg

without parameters

type(A2EA)

add
ESEA parameter

to
eRQmsg

SUGR

 SUGR is null
 if it was not
 included in the
 ESATBLISH.
 request

SUT

TCI

SSCS

A2B A2A

 SSCS is null
 if it was not
 included in the
 ESATBLISH.
 request

add
TCI parameter

to
eRQmsg

 TCI is null
 if it was not
 included in the
 ESATBLISH.
 request

add
SUT parameter

to
eRQmsg

 SUT is null
 if it was not
 included in the
 ESATBLISH.
 request

add
SUGR parameter

to
eRQmsg

add
NSEA parameter

to
eRQmsg

A2A

type(SSCS)

add
SSIS parameter

to
eRQmsg

ALC

add
ALC parameter

to
eRQmsg

 ALC is null
 if it was not
 included in the
 ESATBLISH.
 request

add
SSIA parameter

to
eRQmsg

add
SSIM parameter

to
eRQmsg

A2B

E.164

null

null

null

null

else

else

else

else

NSAP
SAR

null

else

Audio Multirate

Figure B.3/Q.2630.1 −−−− SDL diagram of the Nodal Function 1 (macros) (part 22 of 25)

ITU-T Q.2630.1/Annex B (03/2001) 41

Process NodalF1 AAL20M1(25)

ReturnReject
(CAU)

Construct
RLCmsgR

(CAU)

 IPP-REJECT.
 request
 (rLCmsg)
 to sender

 The macro constructs
 an RLC message with-
 out compatibility
 information

ReturnConfuse
(CAU)

Construct
CNFmsg

(CAU)

 XPP-CONFUSE.
 request (cNFmsg)
 to sender

 The macro constructs
 a CNF message with-
 out compatibility
 information

ReturnRelease
(CAU)

Construct
RELmsg

(CAU)

 XPP-RELEASE.
 request
 (rELmsg)
 to sender

 The macro constructs
 an REL message with-
 out compatibility
 information

SendReject
(CAU)

Construct
RLCmsgR

(CAU)

 IPP-REJECT.
 request
 (rLCmsg) to
 crec.outgoing.ppus

 The macro constructs
 an RLC message with-
 out compatibility
 information

SendRelease
(CAU)

Construct
RELmsg

(CAU)

 XPP-RELEASE.
 request
 (rELmsg) to
 crec.outgoing.ppus

 The macro constructs
 an REL message with-
 out compatibility
 information

Figure B.3/Q.2630.1 −−−− SDL diagram of the Nodal Function 1 (macros) (part 23 of 25)

42 ITU-T Q.2630.1/Annex B (03/2001)

Process NodalF1 AAL20M2(25)

ValidCNF
(cNFmsg)

CAU para-
meter in
rLCmsg

FALSETRUE

ValidRLCR
(rLCmsg,

crec)

CAU para-
meter in
rLCmsg

 ERROR.indication
 (crec.incoming.sri,
 crec.incoming.,ceid,
 "RLCR")

add CAU parameter
to rLCmsg

rELmsg.CAU :=
{41, null}

 {"Temporary
 failure",
 no diagnostics}

Extract
ERQparams

(eRQmsg)

SUGR para-
meter in
eRQmsg

sugr:=null

SUT para-
meter in
eRQmsg

sut:=null

TCI para-
meter in
eRQmsg

tci:=null

SSIA para-
meter in
eRQmsg

SSIM para-
meter in
eRQmsg

SSISA para-
meter in
eRQmsg

SSISU para-
meter in
eRQmsg

sugr:=nullsscs.SSISU:=
eRQmsg.SSISUA.field1

sscs.SSISA:=
eRQmsg.SSISA.field1

sscs.SSIM:=
eRQmsg.SSIM.field1

sscs.SSIA.svc:=
eRQmsg.SSIA.field1

sscs.SSIA.oui:=
eRQmsg.SSIA.field2

tci:=TRUE

sut:=
eRQmsg.SUT.field1

sugr:=
eRQmsg.SUGR.field1

ValidREL
(rELmsg

crec)

CAU para-
meter in
rELmsg

 ERROR.indication
 (crec.incoming.sri,
 crec.incoming.,ceid,
 "REL")

add CAU parameter
to rELmsg

rELmsg.CAU :=
{31, null}

 {"Normal,
 unspecified",
 no diagnostics}

ValidRLC
(rLCmsg

crec)

CAU para-
meter in
rLCmsg

 ERROR.indication
 (crec.incoming.sri,
 crec.incoming.,ceid,
 "RLC",rLCmsg.CAU)

FALSE

TRUE

FALSE

TRUE

FALSE

FALSE

FALSE

FALSE

FALSE

FALSE

FALSE

TRUE

TRUE

TRUE

TRUE

TRUE

TRUE

TRUE FALSE

TRUE FALSE

TRUE

Figure B.3/Q.2630.1 −−−− SDL diagram of the Nodal Function 1 (macros) (part 24 of 25)

ITU-T Q.2630.1/Annex B (03/2001) 43

Process NodalF1 AAL20M3(25)

Construct
ECFmsg

construct eCFmsg
ot type ECFmsg

without parameters

Construct
RELmsg

(CAU)

construct rELmsg
ot type RELmsg

without parameters

add
CAU parameter

to
RELmsg

Construct
RLCmsg

construct rLCmsg
ot type RLCmsg

without parameters

Construct
RLCmsgR

(CAU)

construct rLCmsg
ot type RLCmsg

without parameters

add
CAU parameter

to
RLCmsg

Construct
BLOmsg
(CEID)

construct bLOmsg
ot type BLOmsg

without parameters

add
CEID parameter

to
BLOmsg

Construct
UBLmsg
(CEID)

construct uBLmsg
ot type UBLmsg

without parameters

add
CEID parameter

to
UBLmsg

Construct
RESmsg

(CEID)

construct rESmsg
ot type RESmsg

without parameters

add
CEID parameter

to
RESmsg

Construct
BLCmsg

construct bLCmsg
ot type BLCmsg

without parameters

Construct
BLCmsgC

(CAU)

construct bLCmsg
ot type BLCmsg

without parameters

add
CAU parameter

to
BLCmsg

Construct
UBCmsg

construct uBCmsg
ot type UBCmsg

without parameters

Construct
UBCmsgC

(CAU)

construct uBCmsg
ot type UBCmsg

without parameters

add
CAU parameter

to
UBCmsg

Construct
RSCmsg

construct rSCmsg
ot type RSCmsg

without parameters

Construct
RSCmsgC

(CAU)

construct rSCmsg
ot type RSCmsg

without parameters

add
CAU parameter

to
RSCmsg

Construct
CNFmsg

(CAU)

construct cNFmsg
ot type CNFmsg

without parameters

add
CAU parameter

to
UBCmsg

Figure B.3/Q.2630.1 −−−− SDL diagram of the Nodal Function 1 (macros) (part 25 of 25)

44 ITU-T Q.2630.1/Annex B (03/2001)

B.5 SDL diagrams for the protocol entities

B.5.1 Introduction

In Figure B.2 (part 3 of 3) it is shown that the protocol entity is separated into:

a) Outgoing protocol procedures

This entity contains all functionality that is defined in detail in 8.3.2 and, therefore, can be
specified precisely in SDL diagrams.

b) Incoming protocol procedures

This entity contains all functionality that is defined in detail in 8.3.3 and, therefore, can be
specified precisely in SDL diagrams.

c) Maintenance protocol procedures

This entity contains all functionality that is defined in detail in 8.3.4 and, therefore, can be
specified precisely in SDL diagrams.

d) Signalling Transport Interface

This entity is not specified explicitly in this Recommendation, nevertheless, it is required for
receiving primitives and messages from the signalling transport and dispatching them to the
appropriate protocol entity instance and the "IN-SERVICE", "OUT-OF-SERVICE", and
"CONGESTION" signals to Nodal Function 2. In some cases, such protocol entity instances
have to be created by the Signalling Transport Interface (e.g. upon receipt of an ERQ, RES,
BLO, or UBL message). This entity is also specified in SDL diagrams.

NOTE – In the transmit direction, this entity has no functionality.

Therefore, this clause defines the outgoing protocol procedures entity (see B.5.2.2), the incoming
procedures entity (see B.5.2.3), the maintenance procedures entity (see B.5.2.4), and the signalling
transport interface entity (see B.5.2.5).

B.5.2 SDL diagrams for the outgoing, incoming, and maintenance protocol procedures

B.5.2.1 Data structures

The SDL diagrams in this clause make use of the ASN.1 definitions in B.4.2.5.

B.5.2.2 SDL diagrams for the Outgoing Protocol Procedures

The SDL diagrams for the outgoing protocol procedure is described in parts 1 to 5 in Figure B.4.

B.5.2.3 SDL diagrams for the Incoming Protocol Procedures

The SDL diagrams for the incoming protocol procedure is described in parts 1 to 5 in Figure B.5.

B.5.2.4 SDL diagrams for the Maintenance Protocol Procedures

The SDL diagrams for the maintenance protocol procedure is described in parts 1 to 5 in Figure B.6.

B.5.2.5 SDL diagrams for the Signalling Transport Interface

The SDL diagrams for the signalling transport interface is described in parts 1 to 2 in Figure B.7.

ITU-T Q.2630.1/Annex B (03/2001) 45

Process A2OPP0 A2OPP00(5)

 dcl sqc INTEGER (8 .. 255) ;
 dcl newmsg Message ;
 dcl osaid SAID ;
 dcl dsaid SAID ;

 dcl
 eRQmsg ERQmsg, /* Establish request */
 eCFmsg ECFmsg, /* Establish confirm */
 rELmsg RELmsg, /* Release request */
 rLCmsg RLCmsg; /* Release confirm */
 cNFmsg CNFmsg; /* Confusion */ NOTES

 1. The procedure "AddCompat" fills in the
 compatibility fields in the message and all
 parameters; it is located with the procedures
 in NodalF2 and not further specified.

 fdcl sri PId ;

osaid := self

Idle

 OPP-ESTABLISH.
 request
 (eRQmsg)

SAID
allocation
successful

CAU := {47, null}

 XPP-ERROR.
 indication
 (CAU)

 CAU := {"Resource
 unavailable, un-
 specified",
 no diagnostics}

sqc :=
eRQmsg.CEID.cid

add
OSAID parameter

to
eRQmsg

eRQmsg.osaid
:= osaid

newmsg.parameters
:= eRQmsg

newmsg.msgID := erq

newmsg.dsaid
:= unknown

AddCompat
(newmsg)

 ERQ.request
 (sqc, newmsg)

set
(now + t1,

Timer_ERQ)

Outgoing
Establishment

Pending

 The procedure
 "AddCompat" fills
 in the compatibility
 fields (Note 1)

Outgoing
Establishment

Pending

 TERMINATE.
 request

 ECF.
 indication
 (msg)

OSAID in
msg.parameters

 ERROR.
 indication
 (sri, null,
 "ECF.OSAID")

Outgoing
Establishment

Pending

dsaid :=
msg.parameters.

osaid

eCFmsg :=
msg.parameters

 OPP-ESTABLISH.
 indication
 (eCFmsg)

reset
(Timer_ERQ)

Established

 ECF.indication (msg),
 REL.indication (msg),
 RES.indication (msg),
 RSC.indication (msg),
 BLO.indication (msg),
 BLC.indication (msg),
 UBL.indication (msg),
 UBC.indication (msg),
 UNRECOGNIZED.
 indication (msg)

 XPP-UNRECO-
 GNIZED.
 indication
 (msg)

Outgoing
Establishment

Pending

Outgoing
Establishment

Pending

 RLC.
 indication
 (msg)

rLCmsg :=
msg.parameters

 OPP-REJECT.
 indication
 (rLCmsg)

reset
(Timer_ERQ)

 XPP-RELEASE.
 request
 (rELmsg)

newmsg.parameters
:= rELmsg

newmsg.msgID := rel

Outgoing
Abort

Pending

 Timer_ERQ

 XPP-TIMEOUT.
 indication

FALSE

TRUE

FALSE

TRUE

Figure B.4/Q.2630.1 −−−− SDL diagram of the outgoing protocol procedure (part 1 of 5)

46 ITU-T Q.2630.1/Annex B (03/2001)

Process A2OPP0 A2OPP01(5)

 NOTES

 1. The procedure "AddCompat" fills in the
 compatibility fields in the message and all
 parameters; it is located with the procedures
 in NodalF2 and not further specified.

Outgoing
Abort

Pending

 Timer_ERQ

 XPP-TIMEOUT.
 indication

 TERMINATE.
 request

reset
(Timer_ERQ)

 RLC.
 indication
 (msg)

rLCmsg :=
msg.parameters

reset
(Timer_ERQ)

 XPP-RELEASE.
 confirm
 (rLCmsg)

reset
(Timer_ERQ)

 ECF.
 indication
 (msg)

OSAID in
msg.parameters

 ERROR.
 indication
 (sri, null,
 "ECF.OSAID")

Outgoing
Abort

Pending

dsaid :=
msg.parameters.

osaid

reset
(Timer_ERQ)

newmsg.dsaid
:= dsaid

AddCompat
(newmsg)

 REL.request
 (sqc, newmsg)

set
(now + t2,

Timer_REL)

Outgoing
Release
Pending

 The procedure
 "AddCompat" fills
 in the compatibility
 fields (Note 1)

 ECF.indication (msg),
 REL.indication (msg),
 RES.indication (msg),
 RSC.indication (msg),
 BLO.indication (msg),
 BLC.indication (msg),
 UBL.indication (msg),
 UBC.indication (msg),
 UNRECOGNIZED.
 indication (msg)

 XPP-UNRECO-
 GNIZED.
 indication
 (msg)

Outgoing
Abort

Pending

FALSE

TRUE

Figure B.4/Q.2630.1 −−−− SDL diagram of the outgoing protocol procedure (part 2 of 5)

ITU-T Q.2630.1/Annex B (03/2001) 47

Process A2OPP0 A2OPP02(5)

 NOTES

 1. The procedure "AddCompat" fills in the
 compatibility fields in the message and all
 parameters; it is located with the procedures
 in NodalF2 and not further specified.

Established

 REL.
 indication
 (msg)

rELmsg :=
msg.parameters

 XPP-RELEASE.
 indication
 (rELmsg)

Incoming
Release
Pending

 ERQ.indication (msg),
 ECF.indication (msg),
 RLC.indication (msg),
 RES.indication (msg),
 RSC.indication (msg),
 BLO.indication (msg),
 BLC.indication (msg),
 UBL.indication (msg),
 UBC.indication (msg),
 UNRECOGNIZED.
 indication (msg)

 XPP-UNRECO-
 GNIZED.
 indication
 (msg)

Established

 XPP-RELEASE.
 request
 (RELmsg)

newmsg.parameters
:= rELmsg

newmsg.msgID := rel

newmsg.dsaid
:= dsaid

AddCompat
(newmsg)

 REL.request
 (sqc, newmsg)

set
(now + t2,

Timer_REL)

Outgoing
Release
Pending

 The procedure
 "AddCompat" fills
 in the compatibility
 fields (Note 1)

 TERMINATE.
 request

Incoming
Release
Pending

 XPP-RELEASE.
 response
 (rLCmsg)

newmsg.parameters
:= rLCmsg

newmsg.msgID := rlc

newmsg.dsaid
:= dsaid

AddCompat
(newmsg)

 RLC.request
 (sqc, newmsg)

 The procedure
 "AddCompat" fills
 in the compatibility
 fields (Note 1)

 ERQ.indication (msg),
 ECF.indication (msg),
 REL.indication (msg),
 RLC.indication (msg),
 RES.indication (msg),
 RSC.indication (msg),
 BLO.indication (msg),
 BLC.indication (msg),
 UBL.indication (msg),
 UBC.indication (msg),
 UNRECOGNIZED.
 indication (msg)

 XPP-UNRECO-
 GNIZED.
 indication
 (msg)

Incoming
Release
Pending

 TERMINATE.
 request

Figure B.4/Q.2630.1 −−−− SDL diagram of the outgoing protocol procedure (part 3 of 5)

48 ITU-T Q.2630.1/Annex B (03/2001)

Process A2OPP0 A2OPP03(5)

 NOTES

 1. The procedure "AddCompat" fills in the
 compatibility fields in the message and all
 parameters; it is located with the procedures
 in NodalF2 and not further specified.

Release
Collision

 Timer_REL

 XPP-TIMEOUT.
 indication

 RLC.
 indication
 (msg)

reset
(Timer_REL)

rLCmsg :=
msg.parameters

 XPP-RELEASE.
 confirm
 (rLCmsg)

 ERQ.indication (msg),
 ECF.indication (msg),
 REL.indication (msg),
 RES.indication (msg),
 RSC.indication (msg),
 BLO.indication (msg),
 BLC.indication (msg),
 UBL.indication (msg),
 UBC.indication (msg),
 UNRECOGNIZED.
 indication (msg)

 XPP-UNRECO-
 GNIZED.
 indication
 (msg)

Release
Collision

 TERMINATE.
 request

reset
(Timer_REL)

Outgoing
Release
Pending

 Timer_REL

 XPP-TIMEOUT.
 indication

 RLC.
 indication
 (msg)

reset
(Timer_REL)

rLCmsg :=
msg.parameters

 XPP-RELEASE.
 confirm
 (rLCmsg)

 REL.
 indication
 (msg)

CAU := {31, null}

construct rLCmsg
of type RLCmsg

without parameters

add
CAU parameter

to
rLCmsg

newmsg.parameters
:= rLCmsg

newmsg.msgID := rlc

newmsg.dsaid
:= dsaid

AddCompat
(newmsg)

 RLC.request
 (sqc, newmsg)

Release
Collision

 The procedure
 "AddCompat" fills
 in the compatibility
 fields (Note 1)

 CAU :=
 ("Normal,
 unspecified",
 no diagnostics}

 ERQ.indication (msg),
 ECF.indication (msg),
 RES.indication (msg),
 RSC.indication (msg),
 BLO.indication (msg),
 BLC.indication (msg),
 UBL.indication (msg),
 UBC.indication (msg),
 UNRECOGNIZED.
 indication (msg)

 XPP-UNRECO-
 GNIZED.
 indication
 (msg)

Outgoing
Release
Pending

 TERMINATE.
 request

reset
(Timer_REL)

Figure B.4/Q.2630.1 −−−− SDL diagram of the outgoing protocol procedure (part 4 of 5)

ITU-T Q.2630.1/Annex B (03/2001) 49

Process A2OPP0 A2OPP04(5)

 NOTES

 1. The procedure "AddCompat" fills in the
 compatibility fields in the message and all
 parameters; it is located with the procedures
 in NodalF2 and not further specified.

 Any state except
 "Idle", "Outgoing
 Establishment Pen-
 ding", and "Out-
 going Abort Pending

 XPP-CONFUSE.
 request
 (CFNmsg)

newmsg.parameters
:= cNFmsg

newmsg.msgID := cfn

newmsg.dsaid
:= dsaid

AddCompat
(newmsg)

 CFN.
 request
 (sqc, newmsg)

--

 The procedure
 "AddCompat" fills
 in the compatibility
 fields (Note 1)

 XPP-UNRECO-
 GNIZED.
 request
 (msg)

msg.dsaid
:= dsaid

AddCompat
(newmsg)

 UNRECOGNIZED.
 request
 (sqc, msg)

--

 The procedure
 "AddCompat" fills
 in the compatibility
 fields (Note 1)

 * (Idle, Outgoing
 Establishment Pen-
 ding, Outgoing Abort
 Pending)

*
(Idle)

 Any state except
 "Idle"

 CFN.
 indication
 (msg)

cNFmsg :=
msg.parameters

 XPP-CONFUSE.
 indication
 (cNFmsg)

--

Figure B.4/Q.2630.1 −−−− SDL diagram of the outgoing protocol procedure (part 5 of 5)

50 ITU-T Q.2630.1/Annex B (03/2001)

Process A2IPP0 A2IPP00(5)

 dcl sqc INTEGER (8 .. 255) ;
 dcl newmsg Message ;
 dcl osaid SAID ;
 dcl dsaid SAID ;

 dcl
 eRQmsg ERQmsg, /* Establish request */
 eCFmsg ECFmsg, /* Establish confirm */
 rELmsg RELmsg, /* Release request */
 rLCmsg RLCmsg; /* Release confirm */
 cNFmsg CNFmsg; /* Confusion */

 NOTES

 1. The procedure "AddCompat" fills in the
 compatibility fields in the message and all
 parameters; it is located with the procedures
 in NodalF2 and not further specified.

Idle

 ERQ.
 indication
 (msg)

OSAID in
msg.parameters

 ERROR.
 indication
 (sri, null,
 "ERQ.OSAID")

dsaid :=
msg.parameters.

osaid

SAID
allocation
successful

eRQmsg :=
msg.parameters

eRQmsg.CEID
present

sqc :=
random()

 IPP-ESTABLISH.
 indication
 (eRQmsg, sri)

Incoming
Establishment

Pending

sqc :=
ERQmsg.CEID.cid

 ERROR.
 indication
 (sri, null,
 "SAIDalloc")

CAU := {47, null}

construct rLCmsg
of type RLCmsg

without parameters

add
CAU parameter

to
rLCmsg

newmsg.parameters
:= rLCmsg

newmsg.msgID := rlc

newmsg.dsaid
:= dsaid

AddCompat
(newmsg)

 RLC.request
 (random(),
 newmsg)

 The procedure
 "AddCompat" fills
 in the compatibility
 fields (Note 1)

 CAU := {"Resource
 unavailable, un-
 specified",
 no diagnostics}

 fdcl sri PId ;

osaid := self

Idle

FALSE

TRUE

TRUE

FALSE

TRUE

FALSE

Figure B.5/Q.2630.1 −−−− SDL diagram of the incoming protocol procedure (part 1 of 5)

ITU-T Q.2630.1/Annex B (03/2001) 51

Process A2IPP0 A2IPP01(5)

 NOTES

 1. The procedure "AddCompat" fills in the
 compatibility fields in the message and all
 parameters; it is located with the procedures
 in NodalF2 and not further specified.

Incoming
Establishment

Pending

 XPP-CONFUSE.
 request
 (cNFmsg)

newmsg.parameters
:= cNFmsg

newmsg.msgID := cnf

newmsg.dsaid
:= dsaid

AddCompat
(newmsg)

 CFN.
 request
 (sqc, newmsg)

--

 The procedure
 "AddCompat" fills
 in the compatibility
 fields (Note 1)

 XPP-UNRECO-
 GNIZED.
 request
 (msg)

msg.dsaid
:= dsaid

AddCompat
(newmsg)

 UNRECOGNIZED.
 request
 (sqc, newmsg)

--

 The procedure
 "AddCompat" fills
 in the compatibility
 fields (Note 1)

 TERMINATE.
 request

 IPP-REJECT.
 request
 (rLCmsg)

newmsg.parameters
:= rLCmsg

newmsg.msgID := rcl

newmsg.dsaid
:= dsaid

AddCompat
(newmsg)

 RLC.request
 (sqc, newmsg)

 The procedure
 "AddCompat" fills
 in the compatibility
 fields (Note 1)

 IPP-ESTABLISH.
 response
 (eCFmsg)

add
OSAID parameter

to
eCFmsg

eCFmsg.osaid
:= osaid

newmsg.parameters
:= eCFmsg

newmsg.msgID := ecf

newmsg.dsaid
:= dsaid

AddCompat
(newmsg)

 ECF.request
 (sqc, newmsg)

Established

 The procedure
 "AddCompat" fills
 in the compatibility
 fields (Note 1)

Figure B.5/Q.2630.1 −−−− SDL diagram of the incoming protocol procedure (part 2 of 5)

52 ITU-T Q.2630.1/Annex B (03/2001)

Process A2IPP0 A2IPP02(5)

 NOTES

 1. The procedure "AddCompat" fills in the
 compatibility fields in the message and all
 parameters; it is located with the procedures
 in NodalF2 and not further specified.

Established

 REL.
 indication
 (msg)

rELmsg :=
msg.parameters

 XPP-RELEASE.
 indication
 (rELmsg)

Incoming
Release
Pending

 ERQ.indication (msg),
 ECF.indication (msg),
 RLC.indication (msg),
 RES.indication (msg),
 RSC.indication (msg),
 BLO.indication (msg),
 BLC.indication (msg),
 UBL.indication (msg),
 UBC.indication (msg),
 UNRECOGNIZED.
 indication (msg)

 XPP-UNRECO-
 GNIZED.
 indication
 (msg)

Established

 XPP-RELEASE.
 request
 (RELmsg)

newmsg.parameters
:= rELmsg

newmsg.msgID := rel

newmsg.dsaid
:= dsaid

AddCompat
(newmsg)

 REL.request
 (sqc, newmsg)

set
(now + t2,

Timer_REL)

Outgoing
Release
Pending

 The procedure
 "AddCompat" fills
 in the compatibility
 fields (Note 1)

 TERMINATE.
 request

Incoming
Release
Pending

 XPP-RELEASE.
 response
 (rLCmsg)

newmsg.parameters
:= rLCmsg

newmsg.msgID := rlc

newmsg.dsaid
:= dsaid

AddCompat
(newmsg)

 RLC.request
 (sqc, newmsg)

 The procedure
 "AddCompat" fills
 in the compatibility
 fields (Note 1)

 ERQ.indication (msg),
 ECF.indication (msg),
 REL.indication (msg),
 RLC.indication (msg),
 RES.indication (msg),
 RSC.indication (msg),
 BLO.indication (msg),
 BLC.indication (msg),
 UBL.indication (msg),
 UBC.indication (msg),
 UNRECOGNIZED.
 indication (msg)

 XPP-UNRECO-
 GNIZED.
 indication
 (msg)

Incoming
Release
Pending

 TERMINATE.
 request

Figure B.5/Q.2630.1 −−−− SDL diagram of the incoming protocol procedure (part 3 of 5)

ITU-T Q.2630.1/Annex B (03/2001) 53

Process A2IPP0 A2IPP03(5)

 NOTES

 1. The procedure "AddCompat" fills in the
 compatibility fields in the message and all
 parameters; it is located with the procedures
 in NodalF2 and not further specified.

Release
Collision

 Timer_REL

 XPP-TIMEOUT.
 indication

 RLC.
 indication
 (msg)

reset
(Timer_REL)

rLCmsg :=
msg.parameters

 XPP-RELEASE.
 confirm
 (rLCmsg)

 ERQ.indication (msg),
 ECF.indication (msg),
 REL.indication (msg),
 RES.indication (msg),
 RSC.indication (msg),
 BLO.indication (msg),
 BLC.indication (msg),
 UBL.indication (msg),
 UBC.indication (msg),
 UNRECOGNIZED.
 indication (msg)

 XPP-UNRECO-
 GNIZED.
 indication
 (msg)

Release
Collision

 TERMINATE.
 request

reset
(Timer_REL)

Outgoing
Release
Pending

 Timer_REL

 XPP-TIMEOUT.
 indication

 RLC.
 indication
 (msg)

reset
(Timer_REL)

rLCmsg :=
msg.parameters

 XPP-RELEASE.
 confirm
 (rLCmsg)

 REL.
 indication
 (msg)

CAU := {31, null}

construct rLCmsg
of type RLCmsg

without parameters

add
CAU parameter

to
rLCmsg

newmsg.parameters
:= rLCmsg

newmsg.msgID := rlc

newmsg.dsaid
:= dsaid

AddCompat
(newmsg)

 RLC.request
 (sqc, newmsg)

Release
Collision

 The procedure
 "AddCompat" fills
 in the compatibility
 fields (Note 1)

 CAU :=
 ("Normal,
 unspecified",
 no diagnostics}

 ERQ.indication (msg),
 ECF.indication (msg),
 RES.indication (msg),
 RSC.indication (msg),
 BLO.indication (msg),
 BLC.indication (msg),
 UBL.indication (msg),
 UBC.indication (msg),
 UNRECOGNIZED.
 indication (msg)

 XPP-UNRECO-
 GNIZED.
 indication
 (msg)

Outgoing
Release
Pending

 TERMINATE.
 request

reset
(Timer_REL)

Figure B.5/Q.2630.1 −−−− SDL diagram of the incoming protocol procedure (part 4 of 5)

54 ITU-T Q.2630.1/Annex B (03/2001)

Process A2IPP0 A2IPP04(5)

 NOTES

 1. The procedure "AddCompat" fills in the
 compatibility fields in the message and all
 parameters; it is located with the procedures
 in NodalF2 and not further specified.

 Any state except
 "Idle", "Outgoing
 Establishment Pen-
 ding", and "Out-
 going Abort Pending

 XPP-CONFUSE.
 request
 (CFNmsg)

newmsg.parameters
:= cNFmsg

newmsg.msgID := cfn

newmsg.dsaid
:= dsaid

AddCompat
(newmsg)

 CFN.
 request
 (sqc, newmsg)

--

 The procedure
 "AddCompat" fills
 in the compatibility
 fields (Note 1)

 XPP-UNRECO-
 GNIZED.
 request
 (msg)

msg.dsaid
:= dsaid

AddCompat
(newmsg)

 UNRECOGNIZED.
 request
 (sqc, msg)

--

 The procedure
 "AddCompat" fills
 in the compatibility
 fields (Note 1)

 * (Idle, Outgoing
 Establishment Pen-
 ding, Outgoing Abort
 Pending)

*
(Idle)

 Any state except
 "Idle"

 CFN.
 indication
 (msg)

cNFmsg :=
msg.parameters

 XPP-CONFUSE.
 indication
 (cNFmsg)

--

Figure B.5/Q.2630.1 −−−− SDL diagram of the incoming protocol procedure (part 5 of 5)

ITU-T Q.2630.1/Annex B (03/2001) 55

Process A2MPP0 A2MPP00(5)

 dcl newmsg Message ;
 dcl osaid SAID ;
 dcl dsaid SAID ;

 dcl
 rESmsg RESmsg, /* Reset request */
 rSCmsg RSCmsg, /* Reset confirm */
 bLOmsg BLOmsg, /* Block request */
 bLCmsg BLCmsg, /* Block confirm */
 uBLmsg UBLmsg, /* Unblock request */
 uBCmsg UBCmsg, /* Unblock confirm */
 cNFmsg CNFmsg; /* Confusion */

 NOTES

 1. The procedure "AddCompat" fills in the
 compatibility fields in the message and all
 parameters; it is located with the procedures
 in NodalF2 and not further specified.

 fdcl sri PId ;

osaid := self

Idle

 MPP-UNBLOCK.
 request
 (uBLmsg)

SAID
allocation
successful

CAU := {47, null}

 MPP-ERROR.
 indication
 (CAU)

 CAU := {"Resource
 unavailable, un-
 specified",
 no diagnostics}

add
OSAID parameter

to
uBLmsg

uBLmsg.osaid
:= osaid

newmsg.parameters
:= uBLmsg

newmsg.msgID := ubl

newmsg.dsaid
:= unknown

AddCompat
(newmsg)

 UBL.request
 (random(),
 newmsg)

set
(now + t5,

Timer_UBL)

Outgoing
Unblock
Pending

 The procedure
 "AddCompat" fills
 in the compatibility
 fields (Note 1)

 MPP-BLOCK.
 request
 (bLOmsg, seqctrl)

SAID
allocation
successful

add
OSAID parameter

to
bLOmsg

bLOmsg.osaid
:= osaid

newmsg.parameters
:= bLOmsg

newmsg.msgID := blo

newmsg.dsaid
:= unknown

AddCompat
(newmsg)

 BLO.request
 (seqctrl,
 newmsg)

set
(now + t4,

Timer_BLO)

Outgoing
Block

Pending

 The procedure
 "AddCompat" fills
 in the compatibility
 fields (Note 1)

 MPP-RESET.
 request
 (rESmsg)

SAID
allocation
successful

CAU := {47, null}

 MPP-ERROR.
 indication
 (CAU)

 CAU := {"Resource
 unavailable, un-
 specified",
 no diagnostics}

add
OSAID parameter

to
rESmsg

rESmsg.osaid
:= osaid

newmsg.parameters
:= rESmsg

newmsg.msgID := res

newmsg.dsaid
:= unknown

AddCompat
(newmsg)

 RES.request
 (random(),
 newmsg)

set
(now + t3,

Timer_RES)

Outgoing
Reset

Pending

 The procedure
 "AddCompat" fills
 in the compatibility
 fields (Note 1)

FALSE

TRUE

FALSE

TRUE

FALSE

TRUE

Figure B.6/Q.2630.1 −−−− SDL diagram of the maintenance protocol procedure (part 1 of 5)

56 ITU-T Q.2630.1/Annex B (03/2001)

Process A2MPP1 A2MPP01(5)

Idle

 UBL.
 indication
 (msg)

OSAID in
msg.parameters

 ERROR.
 indication
 (sri, null,
 "UBL.OSAID")

dsaid :=
msg.parameters.

osaid

uBLmsg :=
msg.parameters

 MPP-UNBLOCK.
 indication
 (uBLmsg, sri)

Incoming
Unblock
Pending

 BLO.
 indication
 (msg)

OSAID in
msg.parameters

 ERROR.
 indication
 (sri, null,
 "BLO.OSAID")

dsaid :=
msg.parameters.

osaid

bLOmsg :=
msg.parameters

 MPP-BLOCK.
 indication
 (bLOmsg, sri)

Incoming
Block

Pending

 RES.
 indication
 (msg)

OSAID in
msg.parameters

 ERROR.
 indication
 (sri, null,
 "RES.OSAID")

dsaid :=
msg.parameters.

osaid

rESmsg :=
msg.parameters

 MPP-RESET.
 indication
 (rESmsg, sri)

Incoming
Reset

Pending

FALSE

TRUE

FALSE

TRUE

FALSE

TRUE

Figure B.6/Q.2630.1 −−−− SDL diagram of the maintenance protocol procedure (part 2 of 5)

ITU-T Q.2630.1/Annex B (03/2001) 57

Process A2MPP0 A2MPP02(5)

Incoming
Reset

Pending

 MPP-RESET.
 response
 (rSCmsg, seqctrl)

newmsg.parameters
:= rSCmsg

newmsg.msgID := rsc

newmsg.dsaid
:= dsaid

AddCompat
(newmsg)

 RSC.request
 (seqctrl,
 newmsg)

 The procedure
 "AddCompat" fills
 in the compatibility
 fields (Note 1)

 TERMINATE.
 request

Incoming
Block

Pending

 MPP-BLOCK.
 response
 (bLCmsg)

newmsg.parameters
:= bLCmsg

newmsg.msgID := blc

newmsg.dsaid
:= dsaid

AddCompat
(newmsg)

 BLC.request
 (random(),
 newmsg)

 The procedure
 "AddCompat" fills
 in the compatibility
 fields (Note 1)

 TERMINATE.
 request

Incoming
Unblock
Pending

 MPP-UNBLOCK.
 response
 (uBCmsg)

newmsg.parameters
:= uBCmsg

newmsg.msgID := ubc

newmsg.dsaid
:= dsaid

AddCompat
(newmsg)

 UBC.request
 (random(),
 newmsg)

 The procedure
 "AddCompat" fills
 in the compatibility
 fields (Note 1)

 TERMINATE.
 request

Figure B.6/Q.2630.1 −−−− SDL diagram of the maintenance protocol procedure (part 3 of 5)

58 ITU-T Q.2630.1/Annex B (03/2001)

Process A2MPP0 A2MPP03(5)

 NOTES

 1. The procedure "AddCompat" fills in the
 compatibility fields in the message and all
 parameters; it is located with the procedures
 in NodalF2 and not further specified.

Outgoing
Reset

Pending

Timer_RES

CAU := {42, null}

 MPP-ERROR.
 indication
 (CAU)

 RES.request
 (random(),
 newmsg)

set
(now + t3,

Timer_RES)

Outgoing
Reset

Continuing

 CAU := {"Switching
 equipment con-
 gestion",
 no diagnostics

 RSC.
 indication
 (msg)

rSCmsg :=
msg.parameters

 MPP-RESET.
 confirm
 (rSCmsg)

reset
(Timer_RES)

 MPP-UNRECO-
 GNIZED
 .indication
 (msg)

Outgoing
Reset

Pending

 ERQ.indication (msg),
 ECF.indication (msg),
 REL.indication (msg),
 RLC.indication (msg),
 RES.indication (msg),
 BLO.indication (msg),
 BLC.indication (msg),
 UBL.indication (msg),
 UBC.indication (msg),
 CFN.indication (msg),
 UNRECOGNIZED.
 indication (msg)

 TERMINATE.
 request

reset
(Timer_RES)

Outgoing
Reset

Continuing

Timer_RES

 RES.request
 (random(),
 newmsg)

set
(now + t3,

Timer_RES)

Outgoing
Reset

Continuing

 RSC.
 indication
 (msg)

rSCmsg :=
msg.parameters

 MPP-RESET.
 confirm
 (rSCmsg)

reset
(Timer_RES)

 MPP-UNRECO-
 GNIZED
 .indication
 (msg)

Outgoing
Reset

Continuing

 ERQ.indication (msg),
 ECF.indication (msg),
 REL.indication (msg),
 RLC.indication (msg),
 RES.indication (msg),
 BLO.indication (msg),
 BLC.indication (msg),
 UBL.indication (msg),
 UBC.indication (msg),
 CFN.indication (msg),
 UNRECOGNIZED.
 indication (msg)

 TERMINATE.
 request

reset
(Timer_RES)

Figure B.6/Q.2630.1 −−−− SDL diagram of the maintenance protocol procedure (part 4 of 5)

ITU-T Q.2630.1/Annex B (03/2001) 59

Process A2MPP0 A2MPP04(5)

Outgoing
Block

Pending

Timer_BLO

CAU := {42, null}

 MPP-ERROR.
 indication
 (CAU)

 CAU := {"Switching
 equipment con-
 gestion",
 no diagnostics

 BLC.
 indication
 (msg)

bLCmsg :=
msg.parameters

 MPP-BLOCK.
 confirm
 (bLCmsg)

reset
(Timer_BLO)

 MPP-UNRECO-
 GNIZED
 .indication
 (msg)

Outgoing
Block

Pending

 ERQ.indication (msg),
 ECF.indication (msg),
 REL.indication (msg),
 RLC.indication (msg),
 RES.indication (msg),
 RSC.indication (msg),
 BLO.indication (msg),
 UBL.indication (msg),
 UBC.indication (msg),
 CFN.indication (msg),
 UNRECOGNIZED.
 indication (msg)

 TERMINATE.
 request

reset
(Timer_BLO)

Outgoing
Unblock
Pending

Timer_UBL

CAU := {42, null}

 MPP-ERROR.
 indication
 (CAU)

 CAU := {"Switching
 equipment con-
 gestion",
 no diagnostics

 UBC.
 indication
 (msg)

uBCmsg :=
msg.parameters

 MPP-UNBLOCK.
 confirm
 (uBCmsg)

reset
(Timer_UBL)

 MPP-UNRECO-
 GNIZED
 .indication
 (msg)

Outgoing
Unblock
Pending

 ERQ.indication (msg),
 ECF.indication (msg),
 REL.indication (msg),
 RLC.indication (msg),
 RES.indication (msg),
 RSC.indication (msg),
 BLO.indication (msg),
 UBL.indication (msg),
 UBC.indication (msg),
 CFN.indication (msg),
 UNRECOGNIZED.
 indication (msg)

 TERMINATE.
 request

reset
(Timer_UBL)

Figure B.6/Q.2630.1 −−−− SDL diagram of the maintenance protocol procedure (part 5 of 5)

60 ITU-T Q.2630.1/Annex B (03/2001)

Process A2STI0 A2STI00(3)

 fdcl
 stcID

IDLE

IDLE

 CONGESTION.
 indication
 (level)

 STI-CONGESTION.
 indication
 (level)

IDLE

 OUT-OF-
 SERVICE.
 indication

 STI-OUT-OF-
 SERVICE.
 indication

IDLE

 IN-SERVICE.
 indication
 (level)

 STI-IN-SERVICE.
 indication
 (level)

IDLE

IDLE

 (ERQ.request (sqc, msg),
 ECF.request (sqc, msg),
 REL.request (sqc, msg),
 RLC.request (sqc, msg),
 RES.request (sqc, msg),
 RSC.request (sqc, msg),
 BLO.request (sqc, msg),
 BLC.request (sqc, msg),
 UBL.request (sqc, msg),
 UBC.request (sqc, msg),
 CFN.request (sqc, msg),
 UNRECOGNIZED.
 request (sqc, msg))

 TRANSFER.
 request
 (sqc, msg)
 to stcID

IDLE

Figure B.7/Q.2630.1 −−−− SDL diagram of the signalling transport interface (part 1 of 2)

ITU-T Q.2630.1/Annex B (03/2001) 61

Process A2STI0 A2STI01(3)

IDLE

 TRANSFER.
 indication
 (msg)

msg.dsaid =
unknown

msg.msgID

 STI-UNRECO-
 GNIZED.
 indication (msg)

IDLE

 to nodal
 function 2A2MPP

(self)

 UBL.
 indication
 (msg)
 to offspring

IDLE

A2MPP
(self)

 BLO.
 indication
 (msg)
 to offspring

IDLE

A2MPP
(self)

 RES.
 indication
 (msg)
 to offspring

IDLE

A2IPP
(self)

 ERQ.
 indication
 (msg)
 to offspring

IDLE

msg.dsaid
valid

msg.msgID

 UBC.
 indication
 (msg)
 to msg.dsaid

IDLE

 UBL.
 indication
 (msg)
 to msg.dsaid

IDLE

 BLC.
 indication
 (msg)
 to msg.dsaid

IDLE

 BLO.
 indication
 (msg)
 to msg.dsaid

IDLE

 RSC.
 indication
 (msg)
 to msg.dsaid

IDLE

 RES.
 indication
 (msg)
 to msg.dsaid

IDLE

 UNRECO-
 GNIZED.
 indication (msg)
 to msg.dsaid

IDLE

 CFN.
 indication
 (msg)
 to msg.dsaid

IDLE

 RLC.
 indication
 (msg)
 to msg.dsaid

IDLE

 REL.
 indication
 (msg)
 to msg.dsaid

IDLE

 ECF.
 indication
 (msg)
 to msg.dsaid

IDLE

 ERQ.
 indication
 (msg)
 to msg.dsaid

IDLE

IDLE

 Message ignored --
 assumed to belong
 to a no longer exis-
 ting signalling asso-
 ciation

TRUE

elseublbloreserq

FALSE

TRUE

ubcublblcblorscres

elsecfnrlcrelecferq

FALSE

Figure B.7/Q.2630.1 −−−− SDL diagram of the signalling transport interface (part 2 of 2)

Printed in Switzerland
Geneva, 2001

SERIES OF ITU-T RECOMMENDATIONS

Series A Organization of the work of ITU-T

Series B Means of expression: definitions, symbols, classification

Series C General telecommunication statistics

Series D General tariff principles

Series E Overall network operation, telephone service, service operation and human factors

Series F Non-telephone telecommunication services

Series G Transmission systems and media, digital systems and networks

Series H Audiovisual and multimedia systems

Series I Integrated services digital network

Series J Cable networks and transmission of television, sound programme and other multimedia signals

Series K Protection against interference

Series L Construction, installation and protection of cables and other elements of outside plant

Series M TMN and network maintenance: international transmission systems, telephone circuits,
telegraphy, facsimile and leased circuits

Series N Maintenance: international sound programme and television transmission circuits

Series O Specifications of measuring equipment

Series P Telephone transmission quality, telephone installations, local line networks

Series Q Switching and signalling

Series R Telegraph transmission

Series S Telegraph services terminal equipment

Series T Terminals for telematic services

Series U Telegraph switching

Series V Data communication over the telephone network

Series X Data networks and open system communications

Series Y Global information infrastructure and Internet protocol aspects

Series Z Languages and general software aspects for telecommunication systems

20867

	ITU-T Rec. Q.2630.1 Annex B (03/2001) AAL type 2 signalling protocol (Capability set 1 Annex B: SDL definition of the AAL...
	Summary
	Source
	FOREWORD
	CONTENTS
	AAL type 2 signalling protocol - Capability set 1
	ANNEX B - SDL definition of the AAL type 2 signalling protocol CS-1
	B.1 Introduction
	B.2 The SDL system diagram
	B.3 The SDL block structure diagram
	B.4 SDL specification for the nodal function
	B.5 SDL diagrams for the protocol entities

