

INTERNATIONAL TELECOMMUNICATION UNION

ITU-T Q.2111
TELECOMMUNICATION
STANDARDIZATION SECTOR
OF ITU

Amendment 3
(10/2003)

SERIES Q: SWITCHING AND SIGNALLING
Broadband ISDN – Signalling ATM adaptation layer
(SAAL)

 B-ISDN ATM adaptation layer – Service specific
connection oriented protocol in a multilink and
connectionless environment (SSCOPMCE)
Amendment 3: API for SSCOPMCE over
Ethernet and UDP port number

ITU-T Recommendation Q.2111 (1999) – Amendment 3

ITU-T Q-SERIES RECOMMENDATIONS
SWITCHING AND SIGNALLING

SIGNALLING IN THE INTERNATIONAL MANUAL SERVICE Q.1–Q.3
INTERNATIONAL AUTOMATIC AND SEMI-AUTOMATIC WORKING Q.4–Q.59
FUNCTIONS AND INFORMATION FLOWS FOR SERVICES IN THE ISDN Q.60–Q.99
CLAUSES APPLICABLE TO ITU-T STANDARD SYSTEMS Q.100–Q.119
SPECIFICATIONS OF SIGNALLING SYSTEMS No. 4, 5, 6, R1 AND R2 Q.120–Q.499
DIGITAL EXCHANGES Q.500–Q.599
INTERWORKING OF SIGNALLING SYSTEMS Q.600–Q.699
SPECIFICATIONS OF SIGNALLING SYSTEM No. 7 Q.700–Q.799
Q3 INTERFACE Q.800–Q.849
DIGITAL SUBSCRIBER SIGNALLING SYSTEM No. 1 Q.850–Q.999
PUBLIC LAND MOBILE NETWORK Q.1000–Q.1099
INTERWORKING WITH SATELLITE MOBILE SYSTEMS Q.1100–Q.1199
INTELLIGENT NETWORK Q.1200–Q.1699
SIGNALLING REQUIREMENTS AND PROTOCOLS FOR IMT-2000 Q.1700–Q.1799
SPECIFICATIONS OF SIGNALLING RELATED TO BEARER INDEPENDENT CALL
CONTROL (BICC)

Q.1900–Q.1999

BROADBAND ISDN Q.2000–Q.2999
General aspects Q.2000–Q.2099
Signalling ATM adaptation layer (SAAL) Q.2100–Q.2199
Signalling network protocols Q.2200–Q.2299
Common aspects of B-ISDN application protocols for access signalling and network signalling
and interworking

Q.2600–Q.2699

B-ISDN application protocols for the network signalling Q.2700–Q.2899
B-ISDN application protocols for access signalling Q.2900–Q.2999

For further details, please refer to the list of ITU-T Recommendations.

 ITU-T Rec. Q.2111 (1999)/Amd.3 (10/2003) i

ITU-T Recommendation Q.2111

B-ISDN ATM adaptation layer – Service specific connection oriented protocol in
a multilink and connectionless environment (SSCOPMCE)

Amendment 3

API for SSCOPMCE over Ethernet and UDP port number

Summary
This amendment specifies an Application Programming Interface in C++ for the protocol engine
described in ITU-T Rec. Q.2111 Annex E (SSCOP in a Multi-link and Connectionless Environment
when operating over Ethernet).

It also assigns the UDP port number for use with SSCOPMCE above UDP in arrangements as
specified in Annexes C and D. This UDP port number may be used together with a port number out
of the dynamic/private range (values from 49152 through 65535).

Source
Amendment 3 to ITU-T Recommendation Q.2111 (1999) was approved by ITU-T Study Group 11
(2001-2004) under the ITU-T Recommendation A.8 procedure on 14 October 2003.

ii ITU-T Rec. Q.2111 (1999)/Amd.3 (10/2003)

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of
telecommunications. The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of
ITU. ITU-T is responsible for studying technical, operating and tariff questions and issuing
Recommendations on them with a view to standardizing telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years,
establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on
these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are
prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a
telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain
mandatory provisions (to ensure e.g. interoperability or applicability) and compliance with the
Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some
other obligatory language such as "must" and the negative equivalents are used to express requirements. The
use of such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may
involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence,
validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others
outside of the Recommendation development process.

As of the date of approval of this Recommendation, ITU had received notice of intellectual property,
protected by patents, which may be required to implement this Recommendation. However, implementors
are cautioned that this may not represent the latest information and are therefore strongly urged to consult the
TSB patent database.

 ITU 2004

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the
prior written permission of ITU.

 ITU-T Rec. Q.2111 (1999)/Amd.3 (10/2003) iii

CONTENTS
 Page
1) Clause 2.2 – Bibliography .. 1

2) Clause 5.3 – Modes of operation .. 1

3) Clause C.3.2.1 – Description of the UDP upper interface.. 1

4) Clause D.3.2.1 – Description of the UDP upper interface.. 1

5) Annex G.. 2

Annex G – C++ API for SSCOPMCE over Ethernet .. 2
G.1 Introduction .. 2
G.2 Objectives of the Ethernet Databus API... 2
G.3 Overview of the Ethernet Databus API Implementation................................ 2
G.4 Summary of C++ library definition.. 3
G.5 Description of C++ library definition... 5

 ITU-T Rec. Q.2111 (1999)/Amd.3 (10/2003) 1

ITU-T Recommendation Q.2111

B-ISDN ATM adaptation layer – Service specific connection oriented protocol in
a multilink and connectionless environment (SSCOPMCE)

Amendment 3

API for SSCOPMCE over Ethernet and UDP port number

1) Clause 2.2 – Bibliography
Add the following reference:
[24] ISO/IEC 14882:2003, Programming languages – C++.

2) Clause 5.3 – Modes of operation
Modify the last sentence at the end of the paragraph immediately following Figure 2 and add
another sentence to read:
In addition, Annex F provides an Application Programming Interface (API) for SSCOPMCE over
Ethernet, specified in Ada. Furthermore, Annex G provides an Application Programming Interface
(API) for SSCOPMCE over Ethernet, specified in C++.

3) Clause C.3.2.1 – Description of the UDP upper interface
i) Modify "Source Port" at the end and add another sentence to read:
When present, the numeric value for SSCOPMCE above UDP is either "VALUE TO BE
ASSIGNED BY IANA" or value out of the dynamic/private range (values from 49152 through
65535), according to the environment where SSCOPMCE is used.

ii) Modify "Destination Port" at the end and add another sentence to read:
The numeric value for SSCOPMCE above UDP is either "VALUE TO BE ASSIGNED BY IANA"
or value out of the dynamic/private range (values from 49152 through 65535), according to the
environment where SSCOPMCE is used.

4) Clause D.3.2.1 – Description of the UDP upper interface
i) Modify "Source Port" at the end and add another sentence to read:
When present, the numeric value for SSCOPMCE above UDP is either "VALUE TO BE
ASSIGNED BY IANA" or value out of the dynamic/private range (values from 49152 through
65535), according to the environment where SSCOPMCE is used.

ii) Modify "Destination Port" at the end and add another sentence to read:
The numeric value for SSCOPMCE above UDP is either "VALUE TO BE ASSIGNED BY IANA"
or value out of the dynamic/private range (values from 49152 through 65535), according to the
environment where SSCOPMCE is used.

2 ITU-T Rec. Q.2111 (1999)/Amd.3 (10/2003)

5) Annex G
Add new Annex G (API for SSCOPMCE over Ethernet) as follows:

Annex G

C++ API for SSCOPMCE over Ethernet

G.1 Introduction
Annex E specifies the deployment of SSCOPMCE on top of the connectionless service provided by
IEEE 802.3 Ethernet networks. The primary driver for the configuration is to realize an open-
systems databus for closed-loop systems.

Applications can utilize the following services of SSCOPMCE through the SAP offered by the
SSCF at the UNI [12]:
• Unacknowledged transfer of data;
• Assured transfer of data;
• Transparency of transferred information;
• Establishment and release of connections for assured transfer of data.

Whereas the main body of the Recommendation and Annex E contain the specifications necessary
to develop a product based on an Ethernet network interface card, this annex specifies an
application programming interface (API) to the SAP. The reason for specifying an API is to drive
development tool and/or real-time operating system vendors to offer a standard, open and familiar
interface for software developers to take advantage of the network capabilities offered by an
Ethernet-based databus.

G.2 Objectives of the Ethernet Databus API
The Ethernet Databus API is relatively small and self-contained, allowing a programmer to access
SSCOPMCE services when such services operate over an Ethernet datalink layer. Two objectives
were used in designing an API:
1) The API should be based on the notion of sockets, which has been widely used in the

majority of existing network APIs for desktop and real-time operating systems. Sockets
essentially treat each network connection as a stream into which bytes can be written-to or
read-from, allowing them to be an extension of familiar file I/O concepts.

2) The API should include provisions for exception-handling in order to manage run-time
errors.

G.3 Overview of the Ethernet Databus API Implementation
The Ethernet Databus API is written in the C++ programming language. The choice of C++ is
based on its growing use in aerospace and defense systems, one of the application areas driving the
specification of Annex E. Consequently, a C++-based API will permit the migration of existing
system architectures toward an Ethernet-based databus. In addition, new system architectures may
be based on it. Such an API will also offer a standard programming interface for use with an
Ethernet-based databus.

 ITU-T Rec. Q.2111 (1999)/Amd.3 (10/2003) 3

The C++-based API defines the following types (objects):
• EtherAddress: Represents an Ethernet address.
• EtherSocket: Implements a client-side socket that utilizes the assured data transfer

capabilities of SSCOPMCE. Data is transported in one or more sequenced-data (SD) PDUs
within Ethernet frames.

• EtherTag: Contains the attributes associated with the 802.1 tag type [22].
• EtherServerSocket: Implements a server-side socket that utilizes the assured data transfer

capabilities of SSCOPMCE. Data is transported in one or more sequenced-data (SD) PDUs
within Ethernet frames.

• Datagram: Creates a datagram referring to an unnumbered user data (UD) PDU.
• DatagramSocket: Creates a socket to send or receive a datagram.
• MulticastSocket: Creates a multicast socket to send or receive a datagram. Data is

transported in one or more unnumbered user data (UD) PDUs. Multicast operation is based
on the GARP Multicast Registration Protocol (GMRP) [21].

The fact that only a few types are defined is largely due to the streamlined mapping of protocol
layers allowed in Annex E. From a definition viewpoint, these types, and the associated operations
on these types, are contained in the package Ethernet Databus. A driver associated with a network
interface card must be compliant with it. From an implementation viewpoint, these types are
designated as private, and, like the specification of associated operations, are outside the scope of
this Recommendation. This has been done to allow flexibility in the implementation and evolution
of the API.

G.4 Summary of C++ library definition
The following is a summary of the Ethernet Databus library:

Library <EthernetDatabus>

class EtherAddress {

public:
 char *addr;
 char *getOUI();
 char *getLocal();
 boolean isGroupAddress();
 char *getHostAddress();
 char **getAllHostAddresses();
 };

class EtherTag {

public:
 EtherTag(int cos);
 EtherTag(double vlan);

EtherTag(int cos, boolean cfi, double vlan);
int get_cos();
boolean get_cfi();
double get_vlan();

 };

class EtherSocket {

4 ITU-T Rec. Q.2111 (1999)/Amd.3 (10/2003)

public:
 EtherSocket(const EtherAddress &host, int port);

EtherSocket(const EtherAddress &host, const EtherTag &tag, int port);
EtherSocket(const EtherAddress &host, int port,

 const EtherAddress &interface, int localPort);
 EtherSocket(const EtherAddress &host, int port,

 const EtherTag &tag, const EtherAddress &interface,
 int localPort);

 EtherAddress getEtherAddress();
 int getPort();
 int getLocalPort();
 EtherAddress getLocalAddress();
 istream &getInputStream();
 ostream &getOutputStream();
 void close();
 };

class EtherServerSocket{

public:
 EtherServerSocket(int port);
 EtherServerSocket(int port, int queueLength);

 EtherServerSocket(int port, int queueLength, const EtherAddress
 &bindAddress);

 EtherSocket accept();
 void close();
 EtherAddress getEtherAddress();
 int getLocalPort();
 };

class Datagram {

public:

 // for receiving datagrams
 Datagram(unsigned char *buffer[], int length);
 Datagram(unsigned char *buffer[], int offset, int length);

 // for sending datagrams
 Datagram(unsigned char *data[], int length, const EtherAddress

 &destination, int port);
 Datagram(unsigned char *data[], int offset, int length,

 const EtherAddress &destination, int port);

 EtherAddress getAddress();
 int getPort();
 unsigned char **getData();
 int getLength();
 int getOffset();
 setData(unsigned char **data);
 setData(unsigned char **data, int offset, int length);
 void setAddress(const EtherAddress &remote);
 void setPort(int port);
 void setLength(int length);
 };

class DatagramSocket {

public:
 DatagramSocket();
 DatagramSocket(int port);
 DatagramSocket(int port, const EtherAddress &address);

 ITU-T Rec. Q.2111 (1999)/Amd.3 (10/2003) 5

 DatagramSocket(int port, const EtherAddress &address,
 const EtherTag &tag);

 void send(const Datagram &d);
 void receive(const Datagram &d);
 void close();
 void getLocalPort();
 void connect(const EtherAddress &host, int port);
 void disconnect();
 int getPort();
 EtherAddress getEtherAddress();
 };

class MulticastSocket: public DatagramSocket {

public:
 MulticastSocket();
 MulticastSocket(int port);
 void joinGroup(const EtherAddress &address);
 void leaveGroup(const EtherAddress &address);
 void send(const Datagram &d);
 void setInterface(const EtherAddress &address);
 EtherAddress getInterface();
 };

G.5 Description of C++ library definition
The following is a detailed description of each of the classes and their associated member functions.

G.5.1 class EtherAddress
This class represents an Ethernet address.

class EtherAddress {

public:
 char *addr;
 char *getOUI();
 char *getLocal();
 boolean isGroupAddress();
 char *getHostAddress();
 char **getAllHostAddresses();
 };

Variables

addr
 char *addr;
 The six bytes of an Ethernet address, highest-order first. The address is formatted as a string

describing the bytes in hex notation, e.g., "347B0046A8CE".

Methods

getOUI

char *getOUI();
 Returns the first three bytes of an Ethernet address: the Organizationally Universal Identifer.
 Returns:
 The OUI part of the address, as a string describing the bytes in hex notation, e.g., "347B00".

getLocal
 char *getLocal();

Returns the last three bytes of an Ethernet address: the locally assigned part.

6 ITU-T Rec. Q.2111 (1999)/Amd.3 (10/2003)

Returns:
The locally assigned part of the address, as a string describing the bytes in hex notation, e.g.,
"46A8CE".

 isGroupAddress
 boolean isGroupAddress();

Determines whether the Ethernet address is a group address, if the first bit of the highest order byte is
zero

 Returns:
 True if the address is a group address, false otherwise

getHostAddress
 char *getHostAddress();
 Returns the numeric Ethernet address associated with a host.
 Returns:
 A single Ethernet address, as a string describing the bytes in hex notation, e.g., "3487A8CE".
 Throws: UnknownHostException
 if no Ethernet address for the host could be found

getAllHostAddresses
 char **getAllHostAddresses();
 Returns an array of the addresses associated with a multi-homed host
 Returns:
 An array of Ethernet addresses, with a pointer to the first address
 Throws: UnknownHostException
 If no Ethernet address for the host could be found

G.5.2 class EtherTag
This class contains the attributes associated with the 802.1 tag type.

class EtherTag {

public:
 EtherTag(int cos);
 EtherTag(double vlan);

EtherTag(int cos, boolean cfi, double vlan);
int get_cos();
boolean get_cfi();
double get_vlan();

 };

Constructor

EtherTag
 EtherTag(int cos);

Sets the CoS field of the 802.1 tag. The VLAN field is set to a default of all zeroes. The CFI field is
set to a default value of zero.

 Parameters:
 cos – class of service
 Throws: IllegalArgumentException
 if one or more fields are improperly set.

EtherTag
 EtherTag(double vlan);

Sets the CoS field of the 802.1 tag. The VLAN field is set to a default of all zeroes. The CFI field is
set to a default value of zero.

 Parameters:
 vlan – vlan identifier
 Throws: IllegalArgumentException
 if one or more fields are improperly set.

 ITU-T Rec. Q.2111 (1999)/Amd.3 (10/2003) 7

EtherTag
 EtherTag(double vlan);

Sets the VLAN field of the 802.1 tag. The CoS field is set to a default of all zeroes. The CFI field is
set to a default value of zero.

 Parameters:
 vlan – vlan identifier
 Throws: IllegalArgumentException
 if one or more fields are improperly set.

EtherTag
 EtherTag(int cos, boolean cfi, double vlan);
 Sets all the fields of the 802.1 tag.
 Parameters:
 cos – class of service
 cfi – canonical format identifier
 vlan – virtual LAN identifier
 Throws: IllegalArgumentException
 if one or more fields are improperly set.

Methods

get_cos

int get_cos();
Returns the value of the CoS field in the 802.1 tag.
Returns:
the class of service

get_cfi

int get_cfi();
Returns the value of the CFI field in the 802.1 tag.
Returns:
the canonical format identifier

get_cfi

int get_vlan();
Returns the value of the VLAN field in the 802.1 tag.
Returns:
the vlan identifier

G.5.3 class EtherSocket
This class creates sockets that utilize the assured data transfer capabilities of SSCOPMCE. Data is
transported in one or more sequenced-data (SD) PDUs within Ethernet frames.

class EtherSocket {

public:
 EtherSocket(const EtherAddress &host, int port);

EtherSocket(const EtherAddress &host, const EtherTag &tag, int port);
EtherSocket(const EtherAddress &host, int port,

 const EtherAddress &interface, int localPort);
 EtherSocket(const EtherAddress &host, int port,

 const EtherTag &tag, const EtherAddress &interface,
 int localPort);

 EtherAddress getEtherAddress();
 int getPort();
 int getLocalPort();
 EtherAddress getLocalAddress();
 istream &getInputStream();
 ostream &getOutputStream();

8 ITU-T Rec. Q.2111 (1999)/Amd.3 (10/2003)

 void close();
 };

Constructors

EtherSocket
 EtherSocket(const EtherAddress &host, int port);
 Creates a socket to the specified port on the specified host and tries to connect.
 Parameters:
 host – destination host address
 port – destination port
 Throws: IOException
 if an I/O error occurs while creating the socket.

EtherSocket
 EtherSocket(const EtherAddress &host, const EtherTag &tag, int port);
 Creates a socket to the specified port on the specified host and tries to connect.
 Parameters:
 host – destination host address
 tag – 802.1 tag
 port – destination port
 Throws: IOException
 if an I/O error occurs while creating the socket.

EtherSocket

EtherSocket(const EtherAddress &host, int port,
 const EtherAddress &interface, int localPort);
Creates a socket to the specified port on the specified host and tries to connect. It connects to the host
and port specified in the first two arguments, and from the local network interface and port specified
in the last two arguments.
Parameters:
host – destination host address
port – destination port
interface – local address
localPort – local port
Throws: IOException
if an I/O error occurs while creating the socket.

EtherSocket
EtherSocket(const EtherAddress &host, int port,

const EtherTag &tag, const EtherAddress &interface,
int localPort);

Creates a socket to the specified port on the specified host and tries to connect. It connects to the host
and port specified in the first two arguments, and from the local network interface and port specified
in the last two arguments.
Parameters:
host – destination host address
port – destination port
tag – 802.1 tag
interface – local address
localPort – local port
Throws: IOException
if an I/O error occurs while creating the socket.

Methods

getEtherAddress
 EtherAddress getEtherAddress();

Returns the remote host the socket is connected to or, if the connection is now closed, which host the
socket was connected to when it was connected.

 Returns:
 the remote Ethernet address to which the socket is connected

 ITU-T Rec. Q.2111 (1999)/Amd.3 (10/2003) 9

getPort
 int getPort();

Returns the port the socket is, or was or will be, connected to on the remote host.
 Returns:
 the port connected to on the remote host

getLocalPort
 int getLocalPort();
 Returns the port number for the local host.
 Returns:
 the local port number

getLocalAddress
 EtherAddress getLocalAddress();
 Gets the local address to which the socket is bound.
 Returns:
 the local address

getInputStream
 istream &getInputStream();
 Returns an input stream for this socket.
 Returns:
 a reference to an input stream for reading bytes from this socket.
 Throws: IOException
 if an I/O error occurs while creating the output stream.

getOutputStream
 ostream &getOutputStream();
 Returns an output stream for this socket.
 Returns:
 a reference to an output stream for writing bytes to this socket.
 Throws: IOException
 if an I/O error occurs while creating the output stream.

close
 void close();
 Closes the socket.
 Throws: IOException
 if an I/O error occurs while closing the socket.

G.5.4 class EtherServerSocket
This class implements server sockets.

class EtherServerSocket{

public:
 EtherServerSocket(int port);
 EtherServerSocket(int port, int queueLength);
 EtherServerSocket(int port, int queueLength, const EtherAddress

 &bindAddress);
 EtherSocket accept();
 void close();
 EtherAddress getEtherAddress();
 int getLocalPort();
 };

Constructors

EtherServerSocket
 EtherServerSocket(int port);
 Creates a server socket on the port specified by the argument.

10 ITU-T Rec. Q.2111 (1999)/Amd.3 (10/2003)

 Throws: BindException
if the socket cannot be created and bound to the requested port, or if another server socket is already
using the requested port

EtherServerSocket
 EtherServerSocket(int port, int queueLength);

Creates a server socket on the specified port with the specified queue length for incoming connection
requests.

 Throws: BindException
if the socket cannot be created and bound to the requested port, or if another server socket is already
using the requested port

EtherServerSocket
 EtherServerSocket(int port, int queueLength, const EtherAddress
 &bindAddress);

Creates a server socket on the specified port with the specified queue length to hold incoming
connection requests; the socket binds only to the specified Ethernet address.

 Throws: BindException
if the socket cannot be created and bound to the requested port, or if another server socket is already
using the requested port

Methods

accept
 EtherSocket accept();

Listens for a connection to be made to this socket and accepts it. The method blocks until a
connection is made.
Throws: IOException
if an I/O error occurs while waiting for a connection.

close
 void close();
 Closes this socket.
 Throws: IOException
 if an I/O error occurs while closing the socket.

getEtherAddress

EtherAddress getEtherAddress();
 Returns the local address of this server socket.
 Returns:
 the local address.

getLocalPort
 int getLocalPort();
 Determines the local port being listened on.
 Returns:
 the local port number

G.5.5 class Datagram

This class creates datagram referring to an unnumbered user data (UD) PDU.

class Datagram {

public:

 // for receiving datagrams
 Datagram(unsigned char *buffer[], int length);
 Datagram(unsigned char *buffer[], int offset, int length);

 // for sending datagrams
 Datagram(unsigned char *data[], int length, const EtherAddress

 ITU-T Rec. Q.2111 (1999)/Amd.3 (10/2003) 11

 &destination, int port);
 Datagram(unsigned char *data[], int offset, int length,

 const EtherAddress &destination, int port);

 EtherAddress getAddress();
 int getPort();
 unsigned char **getData();
 int getLength();
 int getOffset();
 setData(unsigned char **data);
 setData(unsigned char **data, int offset, int length);
 void setAddress(const EtherAddress &remote);
 void setPort(int port);
 void setLength(int length);
 };

Constructors

Datagram

Datagram(unsigned char *buffer[], int length);
Creates a datagram object for receiving data. The received datagram's data is stored in buffer until
the appropriate UD PDU is filled or until length bytes have been written into the buffer.
Parameters:
buffer – array of bytes
length – number of bytes
Throws: IllegalArgumentException
if the specified length overflows the buffer

Datagram
 Datagram(unsigned char *buffer[], int offset, int length);

Creates a datagram object for receiving data. The received datagram's data is stored in buffer,
beginning at buffer[offset], until the appropriate UD PDU is filled or until length bytes
have been written into the buffer.
Parameters:
buffer – array of bytes
offset – offset, in bytes
length – number of bytes
Throws: IllegalArgumentException
if the specified length overflows the buffer

Datagram

Datagram(unsigned char *data[], int length, const EtherAddress
 &destination, int port);
 Creates a datagram for sending data. The datagram is filled with length bytes of data. The

destination points to the host the datagram is to be delivered to; the port is the destination port
on that host.
Parameters:
data – array of bytes
length – number of bytes
destination – destination address
port – destination port
Throws: IllegalArgumentException
if the length is greater than the size of the data array

Datagram
Datagram(unsigned char *data[], int offset, int length, const
 EtherAddress &destination, int port);

Creates a datagram for sending data. The datagram is filled with length bytes of data starting at
offset. The destination points to the host the datagram is to be delivered to; the port is the
destination port on that host.
Parameters:
data – array of bytes
offset – offset, in bytes

12 ITU-T Rec. Q.2111 (1999)/Amd.3 (10/2003)

length – number of bytes
destination – destination address
port – destination port
Throws: IllegalArgumentException
if the length is greater than the size of the data array

Methods

getAddress

EtherAddress getAddress();
 Returns the address of the remote host from which the datagram was received.

Returns:
the remote host address

getPort
 int getPort();
 Returns the remote port from which the datagram was received.
 Returns:
 the remote port number

getData
 unsigned char **getData();
 Returns a byte array containing the data from the datagram.
 Returns:
 array of bytes

getLength
 int getLength();

Returns the number of bytes in the datagram.
 Returns:
 number of bytes

getOffset
 int getOffset();

Returns the point in the array returned by getData() where the data from the datagram begins.
 Returns:
 point in array where data begins

setData
 setData(unsigned char **data);
 Changes the payload of the datagram.

setData
 setData(unsigned char **data, int offset, int length);
 Sends data in length pieces beginning at offset.

setAddress
 void setAddress(const EtherAddress &remote);
 Changes the destination address of a datagram.

setPort
 void setPort(int port);
 Changes the port a datagram is addressed to.

setLength

void setLength(int length);
Changes the number of bytes in the internal buffer so datagrams are not truncated between receptions.

 ITU-T Rec. Q.2111 (1999)/Amd.3 (10/2003) 13

G.5.6 class DatagramSocket
This class creates a socket to send or receive a datagram.

class DatagramSocket {

public:
 DatagramSocket();
 DatagramSocket(int port);
 DatagramSocket(int port, const EtherAddress &address);
 DatagramSocket(int port, const EtherAddress &address,
 const EtherTag &tag);

 void send(const Datagram &d);
 void receive(const Datagram &d);
 void close();
 void getLocalPort();
 void connect(const EtherAddress &host, int port);
 void disconnect();
 int getPort();
 EtherAddress getEtherAddress();
 };

Constructors

DatagramSocket

DatagramSocket();
Creates a socket bound to an anonymous port. The same socket may be used to receive datagrams that
a server sends back to it.
Throws: SocketException
if the socket cannot be created.

DatagramSocket
 DatagramSocket(int port);
 Creates a socket that listens for incoming datagrams on a specific port, specified by the port

argument.
Parameters:
port – listening port
Throws: SocketException
if the socket cannot be created.

DatagramSocket
 DatagramSocket(int port, const EtherAddress &address);

Creates a socket that listens for incoming datagrams on a specific port and network interface. This
constructor is especially useful for a multi-homed host.

 Parameters:
 port – listening port
 address – Ethernet address of the host

Throws: SocketException
if the socket cannot be created.

DatagramSocket
 DatagramSocket(int port, const EtherAddress &address, const EtherTag
 &tagattr);

Creates a socket that listens for incoming datagrams on a specific port and network interface. This
constructor is especially useful for a multi-homed host.

 Parameters:
 port – listening port
 address – Ethernet address of the host
 tagattr – 802.1 tag

Throws: SocketException
if the socket cannot be created.

14 ITU-T Rec. Q.2111 (1999)/Amd.3 (10/2003)

Methods

send

void send(const Datagram &d);
 Sends a single datagram dp over the network using this datagram socket.
 Parameters:
 d – datagram object
 Throws: IOException
 if datagram to be sent is larger than can be supported by the native software
receive
 void receive(const Datagram &d);
 Receives a single datagram from the network and stores it in the datagram dp.
 Parameters:
 d – datagram object
 Throws: IOException
 If there's a problem receiving the data

close
 void close();
 Frees the port occupied by the socket.

getLocalPort
 void getLocalPort();
 Returns the local port on which the socket is listening.
 Returns:
 the local port

connect
 void connect(const EtherAddress &host, int port);

Enables the capability to send datagrams to and receive datagrams from the specified remote host on
the specified remote port.

disconnect

void disconnect();
Disables the capability of the socket so that it can send datagrams to, and receive datagrams from, any
host and port.

getPort
 int getPort();
 Returns the remote port to which the socket is connected.
 Returns:
 the remote port used by the connection; otherwise, a -1 is returned if the socket is not connected.

getEtherAddress

EtherAddress getEtherAddress();
 Returns the address of the remote host to which the socket is connected.
 Returns:
 the address of the remote host; otherwise, a null is returned if the socket is not connected.

G.5.7 class MulticastSocket
This class creates a multicast socket. Data is transferred using the unacknowledged data transfer
capabilities of SSCOPMCE.

class MulticastSocket: public DatagramSocket {

public:
 MulticastSocket();
 MulticastSocket(int port);
 void joinGroup(const EtherAddress &address);
 void leaveGroup(const EtherAddress &address);

 ITU-T Rec. Q.2111 (1999)/Amd.3 (10/2003) 15

 void send(const Datagram &d);
 void setInterface(const EtherAddress &address);
 EtherAddress getInterface();
 };

Constructors

MulticastSocket
 MulticastSocket();

Creates a multicast socket bound to an anonymous port. A recipient replies to the same port.
Throws: SocketException
if the socket cannot be created

MulticastSocket
 MulticastSocket(int port);

Creates a multicast socket on a specific port.
Parameters:
port – source port
Throws: SocketException
if the socket cannot be created, e.g., if the port is already in use

joinGroup

void joinGroup(const EtherAddress &address);
Once a multicast socket is created, this method allows it to join a multicast group.
Parameters:
address – Ethernet address
Throws: IOException
if the address is not a group address

leaveGroup
 void leaveGroup(const EtherAddress &address);

Once a multicast socket has joined a group, it can leave it by calling this method.
Parameters:
address – Ethernet address

 Throws: IOException
 if the address is not a group address

send
 void send(const Datagram &d);

Sends a datagram over the multicast socket by calling this method inherited from the datagram class.
Parameters:
address – Ethernet address
Throws: IOException
If the datagram is larger than can be supported by the native software

setInterface
 void setInterface(const EtherAddress &address);

Associates a particular network interface for multicast use on a multi-homed host.
Parameters:
address – Ethernet address

 Throws: SocketException
 if the address does exist on the local machine

 getInterface
 EtherAddress getInterface();
 Gets the address of the interface in use.
 Returns:
 the address in use

Geneva, 2004

SERIES OF ITU-T RECOMMENDATIONS

Series A Organization of the work of ITU-T

Series B Means of expression: definitions, symbols, classification

Series C General telecommunication statistics

Series D General tariff principles

Series E Overall network operation, telephone service, service operation and human factors

Series F Non-telephone telecommunication services

Series G Transmission systems and media, digital systems and networks

Series H Audiovisual and multimedia systems

Series I Integrated services digital network

Series J Cable networks and transmission of television, sound programme and other multimedia signals

Series K Protection against interference

Series L Construction, installation and protection of cables and other elements of outside plant

Series M TMN and network maintenance: international transmission systems, telephone circuits,
telegraphy, facsimile and leased circuits

Series N Maintenance: international sound programme and television transmission circuits

Series O Specifications of measuring equipment

Series P Telephone transmission quality, telephone installations, local line networks

Series Q Switching and signalling

Series R Telegraph transmission

Series S Telegraph services terminal equipment

Series T Terminals for telematic services

Series U Telegraph switching

Series V Data communication over the telephone network

Series X Data networks and open system communications

Series Y Global information infrastructure, Internet protocol aspects and Next Generation Networks

Series Z Languages and general software aspects for telecommunication systems

	ITU-T Rec. Q.2111 Amendment 3 (10/2003) B-ISDN ATM adaptation layer - Service specific connection oriented protocol in a ...
	Summary
	Source
	FOREWORD
	CONTENTS
	1) Clause 2.2 - Bibliography
	2) Clause 5.3 - Modes of operation
	3) Clause C.3.2.1 - Description of the UDP upper interface
	4) Clause D.3.2.1 - Description of the UDP upper interface
	5) Annex G
	Annex G - C++ API for SSCOPMCE over Ethernet
	G.1 Introduction
	G.2 Objectives of the Ethernet Databus API
	G.3 Overview of the Ethernet Databus API Implementation
	G.4 Summary of C++ library definition
	G.5 Description of C++ library definition
	G.5.1 class EtherAddress
	G.5.2 class EtherTag
	G.5.3 class EtherSocket
	G.5.4 class EtherServerSocket
	G.5.5 class Datagram
	G.5.6 class DatagramSocket
	G.5.7 class MulticastSocket

