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Recommendation ITU-T P.565 

Framework for creation and performance testing of machine learning  

based models for the assessment of transmission network impact  

on speech quality for mobile packet-switched voice services 

Summary 

Recommendation ITU-T P.565 provides the output of the framework which is a machine learning based 

speech quality prediction model that predicts the impact on speech quality from Internet protocol (IP) 

transport and underlying transport, as well as a standardized or pre-defined jitter buffer in the end client; thus, 

providing a network centric view on the speech quality service delivered on mobile packet switched networks. 

This is expressed in terms of a mean opinion score-listening quality objective (MOS-LQO) under the 

assumption of an otherwise clean transmission, without background noise, non-standard-conformant encoding 

on sending device, automatic gain control, voice enhancement devices, transcoding, bridging, frequency 

response, non-standard-conformant jitter-buffer (for IP multimedia systems (IMS) mobile calls) or decoding, 

clock drift or any other impairment not caused by the IP transport and underlying transport. The models 

according to this framework can use information on the temporal structure of the reference signal to identify 

the importance of individual sections of the bitstream with regard to speech quality. These models do not 

perform any perceptual analysis of the recorded speech signal. 

The framework specifies three modules required for the development of these kinds of metrics: the databases 

generator module, the machine learning module, and the validation module for the trained model. In addition, 

the database content and the features used by the machine learning algorithm are described. The framework 

also provides a large set of test vectors, in the form of error (jitter and packet loss) patterns files for learning 

and validation. This Recommendation specifies the minimum required performance, as well as conditions and 

requirements for an independent additional validation for models developed based on the framework. This 

Recommendation also specifies implementation requirements. 

The models developed based on the framework enable the assessment of transmission network impact on 

speech quality for mobile packet-switched voice services, and therefore benefit operators and regulators alike 

with a fast and easy speech quality trend monitoring/benchmarking and troubleshooting. In addition, if 

predictors according to this framework are used together with perceptual speech quality metrics such as ITU-

T P.863, it is possible to identify if the source of problems resides inside or outside the transport network 

observed by the predictor according to this framework. Consequently, a more detailed analysis of the situation 

can be achieved and troubleshooting of less obvious degradations such as the ones occurring outside of the 

transport network (e.g., emerged from automatic gain control, voice enhancement devices, transcoding or 

analogue processing) is enabled. 

This Recommendation includes electronic attachments containing detailed descriptions of generic jitter files 

and a reference speech sample (see Annex D). 
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FOREWORD 

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of 

telecommunications, information and communication technologies (ICTs). The ITU Telecommunication 

Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical, 

operating and tariff questions and issuing Recommendations on them with a view to standardizing 

telecommunications on a worldwide basis. 

The World Telecommunication Standardization Assembly (WTSA), which meets every four years, 

establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on 

these topics. 

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1. 

In some areas of information technology which fall within ITU-T's purview, the necessary standards are 

prepared on a collaborative basis with ISO and IEC. 

 

 

 

NOTE 
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Recommendation ITU-T P.565 

Framework for creation and performance testing of machine learning  

based models for the assessment of transmission network impact  

on speech quality for mobile packet-switched voice services 

1 Scope 

This Recommendation1 specifies a framework in the form of constraints, performance criteria and 

methods for the development of intrusive parametric, machine learning (ML) based models for the 

assessment of transmission network impact on speech quality for mobile packet-switched voice 

services. 

Models developed according to this Recommendation estimate the speech quality based on 

IP-bit-stream and a temporal distribution of speech energy as expected for the speech sample, where 

the quality prediction is applied. The models use the adaptiveness of the jitter buffer in the end 

client as well as Internet protocol (IP) transport and underlying transport behaviour of typical voice 

services such as high definition voice over Internet protocol (HD VoIP) and IP multimedia systems 

(IMS) mobile calls such as voice over LTE (VoLTE), voice over new radio (VoNR) using narrow 

band (NB), wide band (WB), super wideband (SWB) and full band (FB) voice, and over the top 

(OTT) (e.g., WhatsApp, Skype, Viber, WeChat, among others). 

This Recommendation specifies techniques using machine learning to predict speech quality based 

on what it has learnt in the controlled and verified environment of the framework. Continuous 

learning based on real time adaptation of the ML algorithm's coefficients is not used. In addition, 

the Recommendation explains how the framework should be used and what are the requirements to 

be met in order for a ML based predictor to conform to this Recommendation. Test datasets are 

provided and required to be used in order to prove that models developed based on the framework 

meet the minimum required performance as defined by the framework. This Recommendation also 

specifies conditions and requirements for an independent additional validation of models developed 

based on the framework. 

2 References 

The following ITU-T Recommendations and other references contain provisions which, through 

reference in this text, constitute provisions of this Recommendation. At the time of publication, the 

editions indicated were valid. All Recommendations and other references are subject to revision; 

users of this Recommendation are therefore encouraged to investigate the possibility of applying the 

most recent edition of the Recommendations and other references listed below. A list of the 

currently valid ITU-T Recommendations is regularly published. The reference to a document within 

this Recommendation does not give it, as a stand-alone document, the status of a Recommendation. 

[ITU-T G.1050] Recommendation ITU-T G.1050 (2016), Network model for evaluating 

multimedia transmission performance over Internet Protocol. 

[ITU-T J.247] Recommendation ITU-T J.247 (2008), Objective perceptual multimedia video 

quality measurement in the presence of a full reference. 

[ITU-T J.343] Recommendations ITU-T J.343 (2014), Hybrid perceptual bitstream models 

for objective video quality measurements. 

 

1 This Recommendation includes electronic attachments containing detailed descriptions of generic jitter 

files and a reference speech sample (see Annex F). 
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[ITU-T P.120x] Recommendations ITU-T P.1203 (2017) and ITU-T P.1203.1 to ITU-T 

P.1203.3 series, Parametric bitstream-based quality assessment of progressive 

download and adaptive audiovisual streaming services over reliable transport. 

[ITU-T P.564] Recommendation ITU-T P.564 (2007), Conformance testing for voice over IP 

transmission quality assessment models. 

[ITU-T P.800] Recommendation ITU-T P.800 (1996), Methods for subjective determination of 

transmission quality. 

[ITU-T P.800.1] Recommendation ITU-T P.800.1 (2016), Mean opinion score (MOS) 

terminology. 

[ITU-T P.800.2] Recommendation ITU-T P.800.2 (2016), Mean opinion score interpretation 

and reporting. 

[ITU-T P.863] Recommendation ITU-T P.863 (2018), Perceptual objective listening quality 

prediction. 

[ITU-T P.863.1] Recommendation ITU-T P.863.1 (2019), Application guide for 

Recommendation ITU-T P.863. 

[ITU-T P.1401] Recommendation ITU-T P.1401 (2020), Methods, metrics and procedures for 

statistical evaluation, qualification and comparison of objective quality 

prediction models. 

[ETSI TR 102 506] ETSI TR 102 506, V1.4.1 (2011), Speech and Multimedia Transmission 

Quality (STQ); Estimating Speech Quality per Call. 

[ETSI TS 126 448] ETSI TS 126 448, V15.0.0 (2018), Universal Mobile Telecommunications 

System (UMTS); LTE; Codec for Enhanced Voice Services (EVS); Jitter Buffer 

Management. 

3 Definitions 

None. 

4 Abbreviations and acronyms 

This Recommendation uses the following abbreviations and acronyms: 

AMR Adaptive Multi Rate 

DCT Discrete Cosine Transform 

DRX Discontinuous Reception 

DTX Discontinuous Transmission 

EVS Enhanced Voice Services 

FB Full Band 

FE Frame Erasure 

FER Frame Erasure Rate 

HD High Definition 

IMS IP Multimedia Systems  

IP Internet Protocol 

LTE Long Term Evolution 
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MAE Management Application Entity 

ML Machine Learning 

MOS-LQO Mean Opinion Score-Listening Quality Objective 

MSE Mean Squared Error 

MTSI Multimedia Telephony Service for IP Multimedia Subsystem 

NB Narrow Band 

OTT Over The Top 

PLC Packet Loss Concealment 

QoE Quality of Experience 

RLC Radio Link Control 

RMS Root Mean Square 

RTP Real-time Transport Protocol 

RMSE Root Mean Square Error 

SID Silence Interruption Duration 

SWB Super Wideband 

VBR  Variable Bit Rate  

VoIP Voice over Internet Protocol 

VoLTE Voice over LTE 

VoNR Voice over New Radio 

WB Wide Band 

5 Conventions 

Machine leaning 

Within the context of this Recommendation, the term "machine learning" (ML) is used for a set of 

mathematical and statistical algorithms which use computational methods to "learn" information 

directly from data without relying on a predetermined equation as a model [b-Jiménez]. 

Machine learning features 

Within the context of this Recommendation the term "machine learning features" (ML features) is 

used with its scientific meaning of inputs to the ML algorithm. 

MOS scoring 

[ITU-T P.800.2] stipulates that "detailed context description" of the source of the MOS values 

reported should be specified (cf. clause 14). 

In order to limit complicated repetition throughout the present document and as such for the 

convenience of the reader of this Recommendation the following conventions are introduced: 

(1) MOS(ml) denotes the predicted MOS-LQO value(s) generated by models compliant with 

the framework based on machine learning (ml). 

(2) MOS-LQO (a.k.a MOS) denotes listening quality predicted by objective models, 

e.g., [ITU-T P.863]. 

NOTE 1 – The accuracy of MOS(ml) models is evaluated against MOS-LQO as predicted by [ITU-T P.863]. 



 

4 Rec. ITU-T P.565 (11/2021) 

NOTE 2 – These conventions are void outside the context of this Recommendation – context in this case 

covers any related Recommendations specifying models which have proven compliance with the framework 

specified in this Recommendation, e.g., Recommendations ITU-T P.565.n {with n= 1, 2, 3, etc.}. 

6 Applications for models developed based on the framework  

The models developed according to this framework predict network centric speech quality without 

consideration of effects caused by background noise, automatic gain control, voice enhancement 

devices, frequency response, clock drift, transcoding, bridging or any other impairments not caused 

by the packet transport. 

Models developed according to this Recommendation shall meet the following: 

– Require active testing, meaning the transmission of a dedicated speech sample; therefore, 

the models are intrusive. 

– Provide a network centric view and do not predict end to end speech quality. 

– Focus on the network impact on the voice service's speech listening quality in case of 

transcoding-free transmission. 

– Run-in-field-testing tools (e.g., drive test tools, device-based measurements) for the 

following applications: 

• Monitoring trends of network impact on speech quality. 

• Network troubleshooting. 

• Speech quality benchmarking of transport network impact on speech quality. 

• Network monitoring for regression testing. 

• Call quality based on aggregation of individual scores during the call as described in 

[ETSI TR 102 506]. 

Table 1 describes applications, conditions and test scenarios for which the framework is applicable. 

Table 1 – Applications, conditions and test scenarios for models developed  

according to this framework 

Category Application 

Service type IMS mobile calls (e.g., VoLTE, VoNR), OTT 

VoIP-OTT VoIP calls 

Codecs EVS, AMRWB, Opus 

Jitter Buffer management EVS JBM ([ETSI TS 126 448]), PJSIP 

Audio channel bandwidths NB, WB, SWB, FB 

Conditions Packet based transmissions, encoding/decoding in 

the terminals. 

Test scenarios Network centric including the error concealment 

and EVS standardized jitter buffer behaviour or 

emulated OTT jitter buffer behaviour. 

Test scope/application Monitoring trends of transport network impact on 

speech quality, network benchmarking of transport 

network impact on speech quality. 

Network monitoring for regression testing. 

Apply an aggregation for call quality scoring as 

described in [ETSI TR 102 506]. 
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Table 2 describes applications, conditions and test scenarios for which the framework is not 

applicable. 

Table 2 – Applications, conditions and test scenarios not applicable for models developed 

according to this framework 

Category Application 

Service type CS, CSFB, 2G/3G-IMS mobile voice (e.g., VoLTE, 

VoNR) IRAT calls 

Codecs  Proprietary OTT 

Clients Proprietary OTT 

Conditions Speech signal processing in the terminals such as: 

background noise, automatic gain control, voice 

enhancement devices, frequency response, clock 

drift, transcoding. 

Test scenarios End to end which include the device's speech path 

processing (e.g., frequency characteristic). 

Bridged networks. 

Proprietary error concealment and jitter buffer 

handling. 

Test scope/application  Codec performance evaluation 

7 High level overview of the framework 

The framework is aimed at developing intrusive parametric speech quality predictors, which use 

both IP stream, codec, and client parameters as well as the reference speech sample(s). An intrusive 

parametric approach shall be considered due to the need for a sufficiently good enough accuracy 

against ground truth for speech quality. 

[ITU-T P.863] is used as mean opinion score-listening quality objective (MOS-LQO) reference for 

the speech quality ground truth since the development of a machine learning based solution requires 

a large amount of data for learning and validation, something not feasible to achieve through 

subjective tests. An alternative for creating the ground truth is presented in [b-Mathwork]. 

The framework is based on machine learning algorithms which are used for developing an instance 

of the MOS-LQO predictor of the network impact. Therefore, its implementation in field testing 

tools is not designed to learn and adapt in real time, but only to predict based on what it has learnt in 

the controlled and verified environment of the framework. 

The framework according to this Recommendation specifies the model realization using as an 

example, the IMS mobile telephony service with enhanced voice services (EVS) codec (use case 

'IMS mobile EVS' for e.g., VoLTE-VoLTE or VoNR-VoNR calls as service type and EVS as 

codec). 

7.1 Framework architecture 

The framework is based on a three-module structure: learning and validation database generator, 

machine learning based model, and statistical validation module. 

Figure 1 presents an example implementation of a three-module structure according to this 

framework. In this example, the learning and validation databases generator comprise of a simulator 

that uses the reference speech file, network error patterns (jitter and packet loss) called "generic 

jitter files", and codec/client specific information to create the learning and validation databases. 

The simulator uses codec/client specific information, and therefore it is use case specific. Similarly, 
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the machine learning module can use ML features as inputs which depend on the used codec/client 

and therefore it is use case specific. The statistical evaluation module is use case transparent since it 

evaluates the performance of the ML based predictor's model. 

 

Figure 1 – Framework structure 

7.2 Generic jitter files 

The network error pattern files contain a combination of packet loss and jitter and are described by 

a "generic jitter file" in a column format suitable for machine learning input format. Therefore, the 

generic jitter file contains two columns with comma separated packet number and arrival time in 

milliseconds. The network error patterns (jitter and packet loss) are simulated based on the analysis 

and learning of error patterns from live networks in order to cover a large range and as real as 

possible network conditions. 

Two mandatory generic jitter files sets are provided in Annex D of this Recommendation. 

1) Generic jitter files for learning and validation (simulations) 

(GenericJitterFiles_TrainingAndValidation.7z) which cover a broad range of conditions as 

follows: 

– "Live (drive test) data modulated with simulations" to broaden the conditions' range 

(e.g., randomizing the live degradation position and amplitude). 

– "Gilbert burst packet loss and burst jitter up to 30%". This mimic error cases seen in 

live drive test data, for example during handover, where packets are buffered and 

suddenly released. 

– "Gilbert severe burst jitter to 70%". This database improves the learning and testing of 

large jitter which is the hardest case to predict. In addition, these conditions are typical 

to OTT voice services. 

– "Random packet loss and random jitter". This database handles reordering of packets. 

– "Manually designed packet loss". This database simulates a mobile device going in and 

out of coverage resulting in long and short consecutive packet losses. 

2) Generic jitter files to be used for final validation (live recordings) 

(GenericJitterFiles_ValidationLiveData.7z). It is mandatory for this data set to be used only 

after the learning and validation phase is finalized, and a stable algorithm is in place; in this 

way this data set is "unknown" to the algorithm under test. 

– Four final validation generic jitter file sets based on live recorded data (drive tests). 

Procedures and details on how the generic files have been created are presented in Appendix II. 
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7.3 Reference speech file 

Models to be developed in accordance with this framework shall use a reference speech file which 

meets [ITU-T P.863.1] requirements and should be defined or referenced by the individual model 

descriptions. 

8 Learning and validation database generator for IMS mobile EVS use case 

This clause presents an example implementation of a simulator that can be used to build a database 

composed of codec specific jitter files and target MOS values for the IMS mobile enhanced voice 

services (EVS) case. 

The learning and validation database generator consists of a simulator that uses as inputs: the 

reference speech sample(s) (clause 7.3), EVS codec parameters and the generic jitter files 

(clause 7.2) describing network error (jitter/loss) patterns. The error patterns are selected to cover 

the entire MOS range and this is to be verified for each use case (see Appendix III with MOS 

distributions). The output is the learning and validation database which contains a large set of 

"codec specific jitter files" (clause 8.4) with their corresponding target [ITU-T P.863] MOS values. 

The simulator is shown in Figure 2 and all the simulator blocks are described in detail in clauses 8.1 

to 8.4. 

 

Figure 2 – Simulator for learning and validation databases generation 

8.1 Simulate network block 

The network simulation changes the arrival time of the EVS coded frames and removes coded 

frames when there is packet loss, both based on the codec specific jitter file (see clause 8.4). 

8.2 EVS coding and decoding blocks: EVS codec and codec parameters 

The simulator uses the standardized MTSI VoIP client implementing the EVS jitter buffer 

[ETSI TS 126 448] and the EVS codec and decoder. The standardized EVS VoIP client removes the 

variances which different VoIP client implementations can generate. 

The reference speech file used as input to the simulator is coded with different settings for 

bandwidth, codec rate and channel aware mode (EVS coding). The coded packets are submitted to 

jitter and packet loss, by the simulate network block, as defined in the codec specific jitter file (see 

clause 8.4). Finally, the EVS decoding block combines jitter buffer, decoding and time scaling in 

order to produce a degraded speech file. 

8.3 MOS grading block 

The degraded speech file is the input to [ITU-T P.863] algorithm and the output is a MOS score. 
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8.4 EVS process jitter file block: processing of the jitter file 

In order to keep the generic jitter files independent of codec and reference speech sample and to 

simplify the machine learning feature creation, it is required to perform two processing steps on the 

generic jitter files: discontinuous transmission (DTX) cleaning and adding codec information. The 

output of the processing steps is a codec specific jitter file which besides the sequence number and 

arrival time contains new columns with codec speech payload size and channel aware mode. The 

two processing steps are described in detail in clauses 8.4.1 and 8.4.2. The output of this processing 

is a new jitter file called "codec specific jitter file". 

8.4.1 DTX cleaning 

DTX cleaning pre-processing takes care of the fact that distortions during DTX periods (occurring 

during silence) do not impact the perceived speech quality. Consequently, the pre-processing 

operation creates a new jitter file with no packet loss and no jitter during DTX periods, which 

greatly simplifies the feature creation. 

In the case of the EVS codec, there is a DTX packet during silence every 8*20 ms which is a 

network dependent parameter. The payload of a DTX packet is less than an ordinary speech packet. 

The DTX-cleaning pre-process generates packets every 20 ms and the arrival time continues from 

the moment the DTX period started. Any reference speech sample starts with silence, consequently 

a DTX period. This is a special case which requires a different way to calculate the arrival time. It 

uses as reference point, the first speech packet in the reference speech sample and recalculates the 

arrival time backwards from this packet. The result from the DTX-cleaning pre-process is a new 

jitter file called "codec specific jitter file" and a new coded speech file with no added degradations 

during DTX. 

8.4.2 Add–on codec information 

During the second pre-processing step the codec information is added to the codec specific jitter 

file, and it consists of speech payload size and channel aware mode indication. Packet payload size 

indirectly gives information on both codec rates if DTX was used. This information is given for 

every packet since they can change on packet level. 

To summarize, the pre-processing handles codec specific operations like DTX, codec rate, and 

channel aware mode, and consequently keeps the generic jitter files, both codec and reference 

speech sample independent. Therefore, these files can be used in a generic manner in the 

framework. 

8.5 Learning and validation databases 

The learning and the validation databases are the output of the simulator (Figure 2) and contain: 

– The codec specific jitter files. 

– The wave files corresponding to the codec specific jitter files. 

– [ITU-T P.863]/MOS scores of the wave files. 

These databases are used as inputs to the machine learning module. 

9 Machine learning module for IMS mobile EVS use case 

The ML module, as shown in Figure 3, uses the learning and validation databases as inputs for 

selecting the features used as inputs to the ML algorithm, as well as for predicting [ITU-T P.863]. 

The outputs of the machine learning module are: 

– The ML based speech predictor according to this framework. 

– The ML algorithm. 
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– The features used as inputs to the ML algorithm. 

Within the context of this framework the ML algorithm uses a 50/50 split for learning and 

validation in order to ensure a controlled and structured data content, and a good and even coverage 

of all distortions cases covering the entire quality range, from poor to very good quality. 

NOTE – Other splits, such as 80/20 split randomly selects the data for learning, and there is a risk that a 

special case can end up only in the validation set and excluded from the learning process, or conversely a 

special case to be only in the learning set and therefore never validated. 

9.1 ML algorithm 

This Recommendation does not specify an ML algorithm, nor values for its parameters, in order to 

enable the inherited adaptability nature of the ML algorithms and to exploit it towards the best 

solution. Regardless of the algorithm, the parameters' selection must be performed to avoid 

overfitting/underfitting towards a specific database. The proof of potential under- or overfitting is 

obligatory, an appropriate example of how to perform the ML algorithm's parameters selection is 

presented in Annex A. 

NOTE – ML decision trees category (e.g., Tree Bagger) with the two main parameters Number of trees = 

100 and Leaf size = 5 show to best fit within the context of the framework, in terms of correlation 

performance and algorithm processing time length. Other algorithms such as support vector regressor and 

neural networks prove to work similarly. 

 

Figure 3 – Machine learning based model architecture  

9.2 ML features 

The content of this clause is considered as an example of realization of a model for the IMS mobile 

EVS use case. Other individual model realizations may use different feature sets but should also 

follow the principles of this clause. 

9.2.1 ML features creation 

The features' creation process is based on two main sources: 

– The information from the real-time transport protocol (RTP) stream generated by a 

simulated jitter buffer implementation. 

– Statistical metrics built from the RTP stream. 

In order to improve the correlation towards [ITU-T P.863] MOS scores, reference speech-based 

features are introduced. These features shall use weightings based on the location of the feature in 

the reference speech sample. The position is described either by a feature giving the position of a 

packet loss dip or by weighting the number of frame erasures. The root mean square (RMS) of each 

20 ms speech frame in the reference speech sample is used as weighting function. It should be noted 

that information on the reference speech is used, and not on the received degraded speech. 

Regardless of the technique, the weighting does not involve any explicit perceptual modelling. 

The process refers to EVS case, but other codecs can require other and/or additional weightings 

techniques (e.g., bit rate). Details on the ML features' creation are presented in Appendix I. 
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Figure 4 shows the ML features along with their significance/importance for EVS use case. 

 

Figure 4 – Machine learning features and their significance for EVS use case 

9.2.2 ML features selection 

There are a number of ways to check the importance of the features and select the most meaningful 

ones. One possibility is to add and remove features in a structured manner, finding out which 

features improve correlation towards [ITU-T P.863]. However, this procedure is not only tedious, 

but it is also to a large extent hard to control due to the complex inter-dependencies between the 

features. Therefore, machine learning algorithms shall be used for features selection. 

10 Statistical evaluation module 

The statistical evaluation module is transparent to the use case and executes two tasks: 

– It performs the statistical evaluation of the ML based predictor according to this framework 

using [ITU-T P.863] generated scores as target reference values. 

– It verifies that the ML technique does not show overfitting and/or underfitting on the used 

databases. 

Models developed based on the framework are in conformance with the requirements of this 

Recommendation only if the performance is evaluated as described in this clause. In addition, it is 

mandatory to use the provided "unknown" data set only for the final validation of the model. 

The following evaluation steps shall be applied: 

(i) Calculation of the correlation coefficient and prediction error (e.g., RMSE) statistics as 

main performance metrics, see [ITU-T P.1401]; required to show that models developed 

based on the framework meet ITU standards' requirements. 

 The results should be presented for validation simulated databases, and the unknown live 

database (Annex D). Unknown data set must be used only for the final validation. 
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(ii) Analysis of the absolute error (MAE) distribution; it is a required proof of meeting ITU 

standards requirements. 

 The results should be presented for validation simulated databases, and the unknown live 

database (Annex D). Unknown data set must be used only for the final validation. 

(iii) Calculation of the difference between the scores of the ML based predictor according to 

this framework and the scores of the [ITU-T P.863] for the best encoding quality (no errors) 

as well as for poor network quality (high FER values). The evaluation is required since it is 

crucial for speech quality prediction solutions implemented in field testing tools to 

accurately evaluate both the best and the worst quality. 

(iv) Run the overfitting/underfitting test, as described by the procedure presented in Annex A. 

The test is required in order to ensure that the ML technique has been applied properly and 

the results are not biased towards a specific dataset (overfitting) and the algorithm's 

parameters have been optimized towards the best performance (or minimal error or 

underfitting free). 

 The overfitting/underfitting independency is also indicated by the performance results on 

the unknown live data set, as follows. In case the distortions are similar in the validation 

simulated and live datasets, it is inferred that no overfitting/underfitting is present if the 

models (developed based on the framework) show performance results on the validation 

live data statistically similar with the results obtained on the validation simulated datasets. 

The performance results of the models developed based on the framework need to meet the 

minimum performance requirements described in clause 13.2 within statistical significance bounds. 

Note that the performance results are determined based on the comparison with [ITU-T P.863] 

generated scores, thus errors of [ITU-T P.863] and the trained model will accumulate when 

performing a comparison of results from subjective listening tests. 

Annex III presents performance results as described in this clause for the IMS mobile (VoLTE) 

EVS case. 

11 Framework's inputs and outputs 

The following are the inputs to the framework, as depicted in Figure 1: 

– Reference speech sample, which is a sentence pair with a male and a female talker and with 

characteristics that meet [ITU-T P.863.1]. 

– Generic jitter files (jitter and packet loss patterns). 

– Codec and client information (e.g., EVS). 

The outputs of the framework are: 

– The model of the ML based predictor according to the framework. 

– The performance results of the model. 

The inputs of the model developed based on the framework are: 

– The selected ML features are calculated based on the IP bit stream, codec and client 

information. The list of features can vary depending on the targeted use case; each codec 

involves a specific error concealment scheme that it is expected to require and/or benefit 

from additional features. See Annexes A and B for other use cases. 

– The temporal structure of the reference speech sample, which is a sentence pair with a male 

and a female talker and with characteristics that meet [ITU-T P.863.1] requirements. 

NOTE – Using the ML features as inputs that cover information based on both the IP stream as well as the 

reference speech sample brings the parametric concept to another level of complexity and performance, 

respectively "intrusive parametric". 
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The output of the model developed based on the framework is: 

– The ML based speech quality predictor with values on the 1-5 MOS scale, where three 

decimals are used for statistical performance evaluation, and representing scores per 

individual speech sample. The ML based predictor's scores should adhere to the accuracy of 

the minimum performance requirements described in clause 13.2. The evaluated accuracy is 

related to predicting [ITU-T P.863] MOS scores and not to the prediction of subjective test 

results. 

12 Aspects related to the run-time of models developed based on the framework 

The framework's scope is to create a speech quality predictor which runs in field testing tools. 

Therefore, this clause specifies aspects related to its run-time in order to ensure the best 

performance of the predictor. 

12.1 Operation mode 

The speech quality predictor developed based on the framework operates with knowledge of the end 

point or embedded in the device (user equipment). In addition, it requires active testing using 

female-male sentence pair as reference speech sample. 

12.2 Reference speech samples 

The machine learning based predictor according to this framework is trained using a reference file. 

As described, the algorithm uses ML features based on the reference speech sample. Therefore, 

during run time, when the algorithm is deployed, the same reference file must be injected to the 

network under test. The measurement methodology and reference file requirements follow the 

[ITU-T P.863]/[ITU-T P.863.1] specifications. 

12.3 Pre-processing at run time 

The pre-processing phase shall be performed in the same way as during simulations. Codec 

information is retrieved through deep packet inspection. In addition, during run time the 

pre-processing needs to synchronize the reference speech and the IP/RTP stream to ensure that the 

position-based features reflect the reference speech. This shall be performed by correlating the 

pattern of silence interruption duration (SID) and speech frames with the reference speech 

sample(s). In the case of variable bit rate codecs (e.g., OTT) which are not using SID frames, the 

payload size shall be correlated with the reference speech samples. 

Regardless of the use case, no recorded speech is needed. 

 

Figure 5 – Run time view of the model developed based on the framework  

(ML based predictor) 

Figure 5 shows the implementation scheme of models developed based on the framework. 

12.4 The measurement procedure 

Models developed based on the framework use the same measurement set-up as for [ITU-T P.863], 

but, as mentioned above, without the need for recording the degraded speech sample. 
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In addition, comparing results achieved with both types of models, [ITU-T P.863] and ML based, 

enables the possibility for troubleshooting less obvious degradations such as the ones occurring 

outside of the transport network, e.g., emerged from automatic gain control, voice enhancement 

devices, transcoding, bridging or analogue speech processing. 

13 Requirements for models developed based on the framework 

13.1 Mandatory conditions and procedures 

This Recommendation offers the user a framework based on which a ML based speech quality 

predictor is developed. The ML predictor refers to a network centric view and shall not be used 

when the evaluation of the end to end quality including the device's speech path processing (e.g., 

frequency response) is required. 

The following steps are mandatory for developing an ML based speech quality predictor using the 

framework in this Recommendation. 

– Select the use cases the model is aimed for, as e.g., use case as in clause 8 (IMS mobile 

EVS use case) to set-up the framework. 

– Use Appendix I as an example for guidance for ML algorithm's features creation and 

selection. 

– Use an ML algorithm known not to be easily prone to overfitting, such as from "decision 

tree" category (e.g., Tree Bagger). The Recommendation is not limited to a specific ML in 

order to maximize the benefit of the inherited nature of adaptiveness characteristic of ML 

techniques. See clause 9 and Annex A for details. 

– Use the generic jitter files (clause 7.2) to run the framework's simulator. 

– Learning and validation of the model: 

• Use the generic jitter files of the Recommendation for learning (see clause 7.2, 

"Generic jitter files") with a 50/50 split and/or learning datasets outside the 

Recommendation; use Appendix II for guidance on how these are created. 

• Use the generic jitter files of the Recommendation for validation (see clause 7.2, 

"Generic jitter files") with a 50/50 split; use Appendix II for guidance on how these are 

created. 

• Use the generic jitter files of the Recommendation for validation (unknown live dataset, 

see clause 7.2, "Generic jitter files"). 

13.2 Minimum performance requirements 

A model shall prove that it has been developed based on the framework described herein as follows: 

– It shall be proven that all the steps in clause 13.1 have been followed. 

– It shall be proven that the performance evaluation meets clause 10 requirements (statistical 

evaluation module) and the results are presented individually for the following datasets: 

• Learning and validation simulated data (see clause 7.2 "Generic jitter files"). 

• Unknown validation live data (see clause 7.2 "Generic jitter files"). These results must 

be provided only as the final validation; the unknown validation live dataset shall not 

be part of the training process of the model. 

– It shall be proven that the average performance results across all data sets are within the 

range of the minimum required values as defined in Annex B. 

These values are specified based on long time ITU-T experience with requirements for 

various types of quality of experience (QoE) models. In addition, Appendix III provides 
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justification of these minimum required performance values based on the results that an ML 

predictor in accordance with this framework can achieve for IMS mobile EVS use case. 

A model is accepted as being in conformance with this Recommendation if the requirements' check 

list in Annex B are met. Annex C specifies the mandatory conditions and requirements of an 

additional independent validation, within the statistical significance bounds. In both cases, the 

objectives should be met for all modes and bit rates as well as for the most relevant modes in a 

certain use case, typically the codec and bitrate combinations actually used in the real-field (e.g., 

EVS 24.4, EVS 13.2, AMR-WB 23.85, AMR-WB 12.65 for the VoLTE use case). The relevant 

bitrates and modes are considered equally in the aggregated statistical analysis. The selected modes 

for validation must be reported for the individual model realizations. For information, the individual 

performance for all other modes and bitrates should be reported too if applicable. 
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Annex A 

 

Example method for ML overfitting/underfitting test 

(This annex forms an integral part of this Recommendation.) 

One of the challenges of machine learning (ML) resides with their sensitivity to overfitting or 

underfitting to the training/learning dataset which can generate misleading results of the applied ML 

algorithm. 

It shall be noted that overfitting/underfitting to the learning (or training) data sets is a problem that 

can occur even for non-ML speech quality predictors. ML based predictors such as decision trees 

used in the context of this Recommendation have the benefit of offering mathematical methods to 

verify overfitting/underfitting. Therefore, once the ML is selected based on its performance against 

the minimum required performance of the predictor, the overfitting and underfitting test shall be 

performed. 

The ML overfitting/underfitting test is described in this annex. 

The optimization process used for machine learning models' development is the minimization of the 

learning and validation errors. The learning error is defined as the average loss over the learning 

points [b-Huang, et al]: 

 
1

𝑁
∑ 𝐿(𝑦𝑖 −  𝑓𝑤

𝑁
𝑖=1 (𝑥𝑖))2 (A-1) 

Where N is the total number of observations in the learning set, L is the "loss function" (e.g., mean 

squared error (MSE)) over each one of the learning observations, 𝑓
𝑤

 is the "fit function" (estimated 

values) using the learning data. The validation error is defined as the average loss over an 

independent test sample. 

The trend of learning and validation error's curves provide insights on two major metrics, bias (a.k.a 

overfitting) and variance (a.k.a underfitting or accuracy) [b-Friedman, et al], which indicate how 

well the machine learning model is performing under evaluation. The bias and variance metrics are 

typically validated by observing the trend of learning and validation errors while tuning each of the 

model's parameters ("hyperparameters") and repeatedly testing them against the loss function 

(MSE). Generally, a large difference between the learning and validation error indicate high 

variance, while a high learning error indicates high bias. 

The trade-off between the two metrics, bias and variance, provides an indication of a reoccurring 

machine learning problem – overfitting and underfitting [b-Friedman, et al]. 

Scenario for the use cases presented in this Recommendation 

In this annex, learning curves [b-van Rijn et al] are used as technique for testing ML model's 

under/over-fitting. 

The underfitting phenomenon is avoided by the fact that the hyper-parameters of the selected 

decision tree algorithm have been optimized towards the minimum required performance for the 

task at hand, respectively speech quality prediction. This is proved with the performance results as 

described in clause 10 and Appendix III. 

The overfitting phenomenon is evaluated by determining the learning curves using multiple learning 

data set sizes and test each of them against a fixed validation data set size, while observing the 

changes of the errors, for both the learning and the validation datasets. 

The total size of the datasets used for the presented case is of 128661 samples. For the purpose of 

the learning curves test, the learning data set sizes are selected as: 

 Train_size = 128661 * s (A-2) 
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where s = ([0.00001, 0.01, 0.10, 0.33, 0.55, 0.78, 1.]). For each of the learning size a five-fold cross 

validation is performed; random samples for each of the learning size are taken five times, 

prediction is determined, and the results are averaged. Figure A.1 shows the results. In the first run, 

with a train set size of 1, the model perfectly fits the learning data, thus a learning error of 0. 

However, a model with only one learning set performs poorly on unknown validation sets, thus a 

high validation error which shows an overfitted model. Further, as the learning set size increases, 

the validation error gradually decreases, reaching arguably acceptable MSE value of just below 0.4. 

At the same time the learning error is kept at minimum, which indicates low bias (overfitting) and 

discards the underfit problem [b-Friedman, et al], as expected. In addition, the variance between the 

MSEs for learning and validation data sets is low, indicating that overfitting is not likely. 

The trend of the validation error suggests that overall accuracy can be improved by increasing the 

number of samples, but only very slightly. 

 

Figure A.1 – Learning curves 

General scenario 

In a more general case, with N as the size of the training-validation dataset, the learning curve test 

can have two outcomes, overfitting and/or underfitting, as shown in Figure A.2 a, b. 

In the case of the Tree Bagger algorithm, the MSE is calculated for different sizes of the learning 

set and for the validation set. Figure A.2 a, b shows the two possible outcomes. 

In the first case (Figure A.2 a), the error on the learning databases (blue curve) is high, regardless of 

the learning size, which means that the model is too complex and cannot learn and adapt/tune. At 

the same time the validation dataset (green curve) shows the same high error respectively, similar to 

the one for the test set. This means that the algorithm is underfitted. New learning points will not 

help, since this kind of results indicate that the algorithm itself has not been properly selected for 

the use case in discussion. The underfitting scenario can be avoided selecting the suitable ML 

algorithm to the task at hand as well as to optimize each of its hyper-parameters towards the 

minimum required performance defined by the speech quality prediction. 

In the second case (Figure A.2 b), the error for the learning set is low, while the error for the 

validation set remains far apart from it, regardless of the learning set. This means that the algorithm 

is overfitted. New learning points can help to improve this outcome and consequently ensure to 

avoid overfitting. 
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Figure A.2 

The results of the under/overfitting test for the IMS EVS use case presented in this 

Recommendation are presented in Appendix III. 
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Annex B 

 

Check list of requirements for a model developed based on the framework 

(This annex forms an integral part of this Recommendation.) 

A model developed based on the framework described in this Recommendation must follow the 

requirements presented in Table B.1. The results should be provided and presented in a contribution 

to an ITU meeting. After reviewing the presented results, the model should be accepted as being in 

accordance with the Recommendation unless an additional independent validation is required by a 

participant during the meeting. See Annex C for the procedure in this case. 

The acceptance of a model will be recorded in the meeting notes. The model developing party shall 

be allowed to draft a new Recommendation to the series which specifies the validated model. 

The objectives have to be proven for 

Set A: All available bit rates (aggregated) declared by the model developing party for each of the 

defined use cases, as well as for 

Set B: The most relevant bitrates and modes (aggregated) of the defined uses cases (real-field), 

where this is a subset of all rates as above. 

These most relevant bitrates in Set B are for the example of 'IMS mobile VoLTE EVS' the codec 

settings EVS 24.4 kbit/s SWB and EVS 13.2 kbit/s SWB, for 'IMS mobile VoLTE AMR-WB' the 

codec settings AMR-WB 23.85 kbit/s and AMR-WB 12.65 kbit/s. 

For acceptance of the model, the objective criteria must be met for the aggregated evaluation of all 

bitrates (Set A) for the defined use cases and for the defined relevant bitrates and modes (Set B) in 

each use case. 

The performance for all possible bitrates and modes should be reported per bitrate for information 

purposes only. 

For IMS mobile use cases other than VoLTE (e.g., VoNR), there might be other relevant bitrates 

and modes and they must be declared by the model developer and justified by real-field 

measurements and agreed by the experts in ITU SG12 before the validation process starts. 

Table B.1 

Steps Description/requirements 

Develop simulator As described in the text of the Recommendation 

(clause 8.1). 

Create the speech sample database Run the jitter files (Annex D) through the simulator 

and create wav files for each jitter file. 

ML features selection An example can be found in Appendix I. 

ML algorithm selection The decision should be made based on its 

performance towards meeting the requirements 

from this Recommendation. 

Validate ML based predictor Use provided validation simulated dataset 

(Annex D). It is mandatory to use for validation  

only the validation simulated dataset. 

Run over/underfitting test and provide learning 

curves 

Learning curves should show the errors for the 

learning and validation data set converge. 
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Table B.1 

Steps Description/requirements 

Provide performance results on validation simulated 

data set: correlation, RMSE, MAE and AE 

distribution 

– For all bit rates belonging to a use case (Set A) 

– For selected bit rates corresponding to the real 

field application of each use case (Set B) 

Min. req. performance as follows: 

Correlation coefficient > 0.95 

RMSE < 0.35MOS 

MAE < 0.3MOS 

AE distribution 

• More than 65% of values with errors less than 

0.25MOS 

• More than 85% of values with errors less than 

0.5MOS 

• More than 95% of values with errors less than 

1MOS 

Final validation of the ML based predictor, 

MOS(ml) 

Use validation unknown live data set. It is 

mandatory to use the unknown data set only for the 

final validation. Unknown live data set should not 

by any means be part of the training. 

Provide performance results on validation unknown 

live data set: correlation, RMSE, MAE and AE 

distribution.  

– For all bit rates belonging to a use case (Set A)  

– For selected bit rates corresponding to the real 

field application of each use case (Set B) 

Min. req. performance as follows: 

Correlation coefficient > 0.95 

RMSE < 0.35MOS 

MAE < 0.3MOS 

AE distribution  

• More than 65% of values with errors less than 

0.25MOS 

• More than 85% of values with errors less than 

0.5MOS 

• More than 95% of values with errors less than 

1MOS 
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Annex C 

 

Conditions and requirements of an additional independent validation  

of a model developed based on the framework 

(This annex forms an integral part of this Recommendation.) 

This annex specifies an independent validation procedure of a model developed based on this 

Recommendation. This independent validation is in addition to the validation described in Annex B 

and shall take place if a request to perform an independent validation is received. 

The validation procedure can be extended by a requested pre-validation to prove the reconstruction 

and decoding process as well as the creation of the reference values to discover potential problems 

in the training process. The pre-validation should not last longer than three months. Potential 

problems discovered in the pre-validation should be resolved by the model developing party before 

the validation process can be started. 

C.1 Conditions and requirements of an independent validation 

1) An independent validation should be requested during the same ITU-T meeting when a 

model developed based on this Recommendation is presented in a contribution to the 

meeting and it is claimed and proved that it passes the check list requirements described in 

Annex B. 

 The performance requirements as defined in Annex B must be validated for an aggregation 

of all bitrates of the defined use cases (Set A) as well as for the aggregation of the most 

relevant bitrates and modes of the defined uses cases (Set B). These are for the example of 

'IMS mobile VoLTE EVS' the codec settings EVS 24.4 kbit/s SWB and EVS 13.2 kbit/s 

SWB, for IMS mobile VoLTE AMR-WB' the codec settings AMR-WB 23.85 kbit/s and 

AMR-WB 12.65 kbit/s. 

 For acceptance the model, the performance requirements as in Annex B must be met for 

both aggregations in Set A and Set B. The performance for all possible bitrates and modes 

should be reported by bitrate for information purposes only. 

 For IMS mobile EVS use cases other than VoLTE (e.g., VoNR), there might be other 

relevant bitrates and modes and they must be declared by the model developer and justified 

by real-field measurements and agreed by the experts in ITU SG12 before the validation 

process starts. 

 If no request for independent validation is made, then the model shall be accepted as being 

in accordance with this Recommendation without explicit validation on an additional 

unknown data set. 

 The acceptance of a model will be recorded in the meeting notes, and the model developing 

party shall be allowed to draft a new Recommendation to the series which specifies the 

validated model. 

2) The independent validation party shall perform the validation in good faith and submit the 

results within 6 months from the time of the independent validation request, otherwise the 

model is accepted as being in accordance with this Recommendation. During the validation 

processes the independent party and the model developing party shall have a close and in 

good faith collaboration and exchange of information and keep interested parties informed 

of the progress. 

3) The independent validation shall use a completely new unknown dataset, which has not 

been part of the model development (learning/training) and/or validation and which is 

therefore different from the unknown data set provided by this Recommendation. It is 
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required that the new unknown data set meets the Recommendation's requirements, and its 

scope. 

4) The new unknown data set shall be created by the independent validation party requesting 

the validation. The model developing party shall support, in good faith, the process of the 

data creation (see "Validation procedure" in clause C.2). 

5) Based on the results of the independent validation on new additional unknown data and 

whether the performance criteria are met within statistical significance, the model shall be 

accepted as being in accordance with this Recommendation. 

6) After the completion of the individual validation process, the independent validation party 

shall donate the unknown created database to be added to this Recommendation for further 

improving the learning process of ML based solutions for speech quality prediction. 

7) The independent validation party and the model developing party can agree to modify these 

rules and periods of time in case it is needed and in good faith to all involved parties. 

However, 

a) any change of rules or timeline that might be needed for various reasons shall be 

justified and interested parties be informed about it; 

b) a time window of up to 9 months for the entire validation process shall not be 

exceeded; 

c) any dispute that might occur between the two parties due to various reasons shall be 

made public. 

C.2 Validation procedure 

1) Within 15 days from the date of request, the model developing party should: 

a) Provide all the 'auxiliary' components required for creating jitter files, reconstructing 

wave files and others to the independent validation party, so that the validation party is 

able to process and verify all intermediate steps and build a database with samples that 

are well-distributed in the MOS range (as required in point 2). 

b) Provide the model's executable together with all 'auxiliary' components to ITU TSB for 

storage and potential clarification of differences in results between the developing and 

the validating party. 

2) Within 60 days from the date of receiving the executable, the independent party shall send 

to the model developing party the newly unknown created generic jitter files data set (use 

Appendix II as guidance) which shall meet the following: 

– cover conditions only as described in Table 1 and within the scope of this 

Recommendation; 

– contain a min. of 500 files. This count is in alignment with the size of unknown data set 

provided by this Recommendation, and therefore large enough for a fair validation 

while keeping the validation running time within reasonable limits; 

– cover real live network conditions; 

– evenly cover degradation conditions which can generate MOS scores on the entire 

MOS range. The number of jitter-files leading to perfectly reconstructed wave files 

must not exceed 10% of the total amount of conditions. 

– The selection of jitter files to construct a database with evenly distributed qualities by 

the validating party is preferably done by using the wave-file reconstruction process 

and its components provided by the model developing party. It should be ensured that 

the ML model is not available at that time to the validating party and the selection of 

the test conditions is purely made on quality predictions on the wave files. In case, the 

wave file reconstruction components are not available to the validating party, 
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alternatively quality prediction obtained on the wave files decoded by the recording 

device can be used. 

 During this process, the model developing party should support, in good faith, the 

independent validation party. If timing cannot be kept, then the reason shall be justified and 

interested parties be informed. 

3) After receiving the generic jitter files dataset, the model developing party shall run the DTX 

cleaning and the simulator chain (as described in the Recommendation) in order to create 

the wave files correspondent to the generic jitter files for set A and set B. The reference 

speech file provided by the model developing party should be used. 

 The model developing party shall test if the wave files indeed cover the whole MOS range 

by running [ITU-T P.863]. Any found anomaly should be discussed and solved in good 

faith with the independent validation party. If unacceptable files are detected and agreed on 

by the two parties, then those need to be replaced in order to keep the min 500 generic jitter 

files count. The whole process shall not exceed 30 days and interested parties be informed 

about its progress. 

4) The model developing party shall send the codec specific jitter files and correspondent 

created wave files to the independent validation party who should analyse these. 

 This can be performed on randomly selected files from the entire independent validation 

set. The findings shall show that both the resulting codec specific jitter file and the resulting 

WAV file has the same packet loss pattern as the generic jitter file. The same shall be found 

for jitter when it is large enough to trigger late loss. 

 Any found anomaly should be discussed and solved in good faith by the two parties. If 

unacceptable files are detected and agreed on by the two parties, then those need to be 

replaced in order to keep the min of 500 generic jitter file count. The whole process shall 

not exceed 60 days and interested parties be informed about its progress. 

5) In the case in which both parties feel in good faith that additional checking is required, then 

the two parties shall meet in person or via video conference and run a supervised random 

check as follows. The independent validation party selects a set of generic jitter files and 

the model developing party generates the corresponding wav file by running DTX cleaning 

and the simulator chain on the spot under the supervision of the independent party. The 

number of files to be checked should be agreed on by the two parties in good faith and shall 

be kept reasonable in terms of required processing time for the DTX cleaning and 

simulation chain. 

 Any found anomaly shall be discussed and solved in good faith by the two parties. If 

unacceptable files are detected and agreed on by the two parties, then those need to be 

replaced in order to keep the min of 500 file count. The whole process shall not exceed 

15 days and interested parties be informed about its progress. 

6) The independent validation party shall run the model on the codec specific jitter files and 

[ITU-T P.863] on the correspondent wave files, run the analysis and share the results with 

the model developing party. Any found miscalculations shall be discussed and solved in 

good faith by the two parties. The whole process should not exceed 30 days. 

The performance criteria shall be the same as in Annex D on unknown data set. 

1) The independent party shall submit the results in a contribution to an ITU-T meeting. The 

model shall be accepted as being in accordance with this Recommendation with explicit 

validation on an additional unknown data set. 

 The acceptance of a model will be recorded in the meeting notes, and the model developing 

party shall be allowed to draft a new Recommendation to the series which specifies the 

validated model. 
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2) In the case in which the timing of the independent validation process is at risk of being 

elapsed, then the independent validation party shall present the results in an interim meeting 

and the discussion results will be recorded in the interim meeting report, and in the 

subsequent ITU-T meeting to be published in the final report of the ITU-T meeting. 
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Annex D 

 

Electronic attachments 

(This annex forms an integral part of this Recommendation.) 

This annex contains the reference speech samples and the generic jitter files data bases to be used 

for the development and validation of the model. Infovista and Rohde&Schwarz kindly contributed 

to build these data bases. 

D.1 Reference speech samples (FB and SWB) 

– UsEnglish_FB_48k.wav 

– UsEnglish_SWB_48k.wav 

D.2 Generic jitter files data bases 

Generic jitter files to be used in the model development 

– for learning and validation (GenericJitterFiles_InfovistaTrainingAndValidation.7z) 

Generic jitter files to be used in the model validation  

– unknown data set for final validation (GenericJitterFiles_InfovistaValidationLiveData.7z) 

– unknown data set for independent validation 

(GenericJitterFiles_Rohde&SchwarzIndependentValidationLiveData.7z)  

D.3 Data bases description 

The description of the data bases for model's development and final and independent validation is 

presented in Appendix II. 
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Appendix I 

 

Procedure for feature extraction based on machine learning 

(This appendix does not form an integral part of this Recommendation.) 

An example on how the features can be developed is presented in this appendix. 

I.1 Create statistical features 

A list of the statistical features is presented in Table I.1. 

Table I.1 – Statistical features 

Average delay 

Standard deviation of delay 

Maximum delay 

Second largest delay 

Third largest delay 

Fourth largest delay 

Target delay changes 

These features are self-explained except "Target delay changes". Target delay mimics the statistical 

calculations performed by the EVS VoIP client. Simulations and tests are required to compare the 

target playout delay calculated by the feature and the target playout delay from the real EVS VoIP 

client. One example for very high jitter is shown in Figure I.1. The resemblance between the feature 

and EVS behaviour is very good. 

 

Figure I.1 – Calculated target playout delay feature and real EVS client target playout  

The target delay increases rapidly during parts of the speech with high distortions, see Figure I.2. 

This means the total amount of target delay change (in %) is a good feature. Correlation tests on 

data with severe jitter also indicate this, where the correlation increases from 0.84 to 0.88 by adding 

the target delay changes feature. 
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Figure I.2 – MOS and target delay during one speech reference of 5.5 s 

I.2 Create jitter buffer-based features 

A simulated jitter buffer is a good feature to handle time delay variations (jitter). An overview of 

the EVS jitter buffer management is shown in Figure I.3. 

 

Figure I.3 – Modules of the EVS jitter buffer management solution from [ETSI TS 126 448] 

Extensive tests and analysis are required to find the most important characteristics of the EVS codec 

and how it impacts speech. This is performed both by logging information from the codec and 

visualizing how different delays in the IP-stream affect the decoded speech. If a 20 ms speech frame 

cannot be played out from the jitter buffer when it should, it is called a frame erasure (FE). Frame 

erasure rate (FER) is the percentage of lost frames at the play out instance. Some important study 

cases for how the EVS handles network errors are as follows: 

1) Network jitter during silence or close to silence. The packet loss concealment (PLC) 

generates silent or close to silent frames and increases the overall delay. All speech content 

of the reference speech sample is still in the recording, but later than it should be. Adding 

silence to already silent parts has no effect on the perceptual quality and [ITU-T P.863] 

MOS score reflects this. Figure I.4 illustrates how delays at silent positions have no effect 

on the MOS score. The feature following from this is FER due to delay weighted by RMS 

of the speech at the last played packet before the buffer became empty. 
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Figure I.4 – Ilustration of delays at silent positions 

Figure I.4 shows that two long jitter delays in silent parts have no effect on MOS. Both of the 

examples shown have the same MOS of 4.5. 

2) Network jitter during the speech. The PLC generates estimated speech and increases the 

overall delay. All speech content of the reference sample is still in the recording but with 

some degraded speech inserted. The PLC is based on the last packet before the delay and 

converges to the background noise (see clause 5.3.1 of [b-3GPP TS 26.448]). The 

convergence speed depends on the speech but about 3-4 packages are usually needed to 

reach the background noise. This is verified using a couple of speech examples. The first 

correct frame after the delay will be modified to avoid discontinuities (see clause 5.3.3.3 of 

[b-3GPP TS 26.448]). Correlation tests show no improvement by using a limit of 3-4 for 

the frame erasure so the feature described in case 1 can also handle this case. 

3) Too late (out of order) or lost packets. The PLC generates estimated speech for the lost 

packets up to 3-4 packets. The degradation will become worse if more consecutive packets 

are lost, and this will be handled by the machine learning. The feature becomes: FER due to 

lost packets weighted by the RMS of the speech at the lost packet. 

4) Delay in general. The jitter buffer prefers to keep delays, introduced by jitter, instead of 

removing packets to decrease the overall delay. This behaviour has been built into the 

simulated jitter buffer and is reflected by a feature called Jitter Buffer max length. 

5) Actual play out delay differs from target playout delay. When the target delay differs from 

actual delay the jitter buffer can perform either frame-based adaption or signal based 

adaption (time scaling). To capture this, a feature called Adaption is introduced. It is the 

difference between target playout delay and estimated playout delay when larger than 

60 ms. 

6) Out of order packets. This case is handled by a feature called ReorderSum which counts the 

number of reorders in the simulated jitter buffer. 
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Table I.2 shows a list of the jitter buffer based features. 

Table I.2 – Jitter buffer based features 

Adaption rate 

FER  

FER due to delay  

FER due to lost packets  

FER dips 1..4  

FER dip positions 

Jitter buffer max length 

ReorderSum 

I.3 Codec based features (rate and channel aware) 

The DTX cleaning pre-process adds two columns in the cleaned jitter files with codec data for each 

packet: 

1) Speech payload size 

2) Channel aware mode 

Speech payload size 

The speech payload size is used as a measure of the codec rate. The feature is calculated as the 

average of the payload size, with DTX packets excluded, and thereby it can handle the variable rate 

of the EVS 5.9 Kbit/s and might also handle rate adaption which could be enabled in the future. 

To check if the ML algorithm can predict all rates in one model or if separate models for each rate 

are needed the test below is performed. On the database for severe jitter, simulations of rates 9.6, 

13.2, 16.4 and 24.4 are run with learning performed both on all rates and on each separate rate. The 

test shows almost the same correlation for both so one model for all rates can be used. 

Channel aware mode 

The channel aware mode improves the error resilience especially on channels with burst errors by 

piggybacking important speech on later packets. In this way even if a packet is lost the important 

part of its speech can be recreated from a later packet. The results (Appendix III) show that the 

machine learning based model predicts MOS/[ITU-T P.863] within minimum requirements as 

defined in clause 13.2. 

I.4 Create reference speech-based features 

Information from the speech references is used to create some of the features that are used by the 

ML algorithm. The information is speech based and it can be, but is not limited to, the location of a 

FE dip, speech energy per 20 ms frame or the encoded payload size per 20 ms frame. 

This kind of information can be weighted towards optimizing the ML based predictor for minimum 

RMSE and the highest correlation coefficient. 

I.4.1 Types of reference speech-based features 

Three types of reference speech-based features are suggested using the above-mentioned 

information. 

1) The location (packet number or time in ms since the start of the reference) of the start of a 

delay or a FE dip (explained in clause I.2). 
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2) Versions of jitter buffer features weighted with speech energy, for example weighting the 

FE dips, based on the root mean square (RMS) of 20 ms frames in the reference speech. 

The reason for the FE, delay or loss, decides which speech frames should be used for 

weighting, explained in clause I.2. 

3) Versions of jitter buffer features weighted with codec payload size, for example weighting 

the FE dips based on the payload size of the 20 ms frames from encoded reference speech. 

The reason for the FE, delay or loss, decides which speech frames should be used for 

weighting, explained in clause I.2. 

I.4.2 Features' weighting function calculation 

Different weighting functions and scaling of the weights can be used for each of the reference 

speech- based features. 

The following techniques proved to work well providing good performance of the ML based 

predictor (see results in Appendix III). 

Speech energy weighting 

For the speech energy weighting an RMS with a constant scaling of 3 and a limitation to zero for 

values below 0.3, proved to provide a good compromise between implementation effort and result. 

 𝑤𝑒𝑖𝑔ℎ𝑡𝑠𝑎𝑢𝑑𝑖𝑜𝐸𝑛𝑒𝑟𝑔𝑦(𝑖𝑛𝑑𝑒𝑥𝑓𝑟𝑎𝑚𝑒) = {
0,   0 ≤ 𝑅𝑀𝑆(𝑖𝑛𝑑𝑒𝑥𝑓𝑟𝑎𝑚𝑒) < 0.1

3 ∗ 𝑅𝑀𝑆(𝑖𝑛𝑑𝑒𝑥𝑓𝑟𝑎𝑚𝑒),   0.1 ≤ 𝑅𝑀𝑆(𝑖𝑛𝑑𝑒𝑥𝑓𝑟𝑎𝑚𝑒)
 (I.1) 

Payload weighting 

There are two scenarios: fixed and variable codec bit rates. Fixed bit rates characterize AMR WB 

and all EVS codec rates except 5.90 rate. Variable bit rates characterize EVS 5.90 rate and OTT 

variable bit rate (VBR) codec. 

Based on tests of various combinations of weights towards optimized RMSE and correlation 

coefficient the weighting functions are calculated as follows: 

1) EVS and AMR WB fixed bit rate (all rates except EVS 5.90) 

• Payload size corresponding to DTX        => 0 as weighting value 

• Payload size corresponding to Speech    => 1 as weighting value 

Equation I.2 describes the weighting technique in this case. The weights and the scaling function 

are used to decide on the payload size. 

 𝑤𝑒𝑖𝑔ℎ𝑡𝑠𝑐𝑜𝑑𝑒𝑐(𝑖𝑛𝑑𝑒𝑥𝑓𝑟𝑎𝑚𝑒) = {
0,   0 ≤ 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑐𝑘𝑒𝑡𝑆𝑖𝑧𝑒𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝐴𝑢𝑑𝑖𝑜(𝑖𝑛𝑑𝑒𝑥𝑓𝑟𝑎𝑚𝑒) ≤ 48

1,   48 < 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑐𝑘𝑒𝑡𝑆𝑖𝑧𝑒𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝐴𝑢𝑑𝑖𝑜(𝑖𝑛𝑑𝑒𝑥𝑓𝑟𝑎𝑚𝑒) ≤ 488
 (I.2) 

2) OTT variable bit rate and EVS 5.90 rate  

In this case, the optimal weights have been determined as: 

𝑤𝑒𝑖𝑔ℎ𝑡𝑠𝑐𝑜𝑑𝑒𝑐(𝑖𝑛𝑑𝑒𝑥𝑓𝑟𝑎𝑚𝑒) = {
0,   0 ≤ 𝐶𝑜𝑑𝑒𝑐𝑃𝑎𝑐𝑘𝑒𝑡𝑆𝑖𝑧𝑒𝑅𝑎𝑡𝑖𝑜(𝑖𝑛𝑑𝑒𝑥𝑓𝑟𝑎𝑚𝑒) < 0.5692

log2 (1 + 𝐶𝑜𝑑𝑒𝑐𝑃𝑎𝑐𝑘𝑒𝑡𝑆𝑖𝑧𝑒𝑅𝑎𝑡𝑖𝑜(𝑖𝑛𝑑𝑒𝑥𝑓𝑟𝑎𝑚𝑒)) ,   0.5692 ≤ 𝐶𝑜𝑑𝑒𝑐𝑃𝑎𝑐𝑘𝑒𝑡𝑆𝑖𝑧𝑒𝑅𝑎𝑡𝑖𝑜(𝑖𝑛𝑑𝑒𝑥𝑓𝑟𝑎𝑚𝑒) ≤ 1.0
 (I.3) 

Where CodecRatio is scaling the weights based on the equation I.4: 

𝐶𝑜𝑑𝑒𝑐𝑃𝑎𝑐𝑘𝑒𝑡𝑆𝑖𝑧𝑒𝑅𝑎𝑡𝑖𝑜(𝑖𝑛𝑑𝑒𝑥𝑓𝑟𝑎𝑚𝑒) =
𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑐𝑘𝑒𝑡𝑆𝑖𝑧𝑒𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝐴𝑢𝑑𝑖𝑜(𝑖𝑛𝑑𝑒𝑥𝑓𝑟𝑎𝑚𝑒)

𝑚𝑎𝑥𝑃𝑎𝑐𝑘𝑒𝑡𝑆𝑖𝑧𝑒𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝐴𝑢𝑑𝑖𝑜
, 0 ≤ 𝑖𝑛𝑑𝑒𝑥𝑓𝑟𝑎𝑚𝑒 ≤

𝑁𝑜𝑂𝑓𝑃𝑎𝑐𝑘𝑒𝑡𝑠𝐼𝑛𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝐴𝑢𝑑𝑖𝑜  (I.4) 
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The list of the weighted features is presented in Table I.3. 

Table I.3 – Weighted features based on speech payload 

Weighted adaption rate 

Weighted FER  

Weighted FER due to delay  

Weighted FER due to lost packets  

Weighted FER dips 1..4  
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Appendix II 

 

Descriptions of generic jitter files creation 

(This appendix does not form an integral part of this Recommendation.) 

This appendix describes procedures and how the generic jitter files have been created. 

II.1 Generic jitter files for model development and final validation (source Infovista) 

II.1.1 Learning and validation generic jitter files 

The learning and validation generic jitter files cover the following simulated databases: 

– "Live (drive test) data modulated with simulations" to broaden the conditions' range (e.g., 

randomizing the live degradation position and amplitude). 

– "Gilbert burst packet loss and burst jitter up to 30%". This mimics error cases seen in live 

drive test data, for example during handover, where packets are buffered and suddenly 

released. 

– "Gilbert severe burst jitter to 70%". This database improves the learning and testing of large 

jitter which is the hardest case to predict. In addition, these are typical for OTT voice 

services.  

– "Random packet loss and random jitter". This database handles reordering of packets. 

– "Manually designed packet loss". This database simulates a mobile device going in and out 

of coverage resulting in long and short consecutive packet losses. 

II.1.1.2 Live (drive test) data modulated with simulations 

The drive route for the live test was carefully planned to give varying results. Measurements were 

performed on two of the most popular brands of smartphone devices on three of the large tier 

1 operators. All operators used DRX (discontinuous reception) which gives a "background" jitter 

with arrival times of 0 ms or 40 ms on each second packet. 

A base jitter file which can be modulated is created from the parts of the RTP stream resulting in 

decreased MOS. The cut-out parts are synchronized with the speech reference. DTX at the start, 

middle and end are replaced with normal background jitter (0 or 40 ms). This result represents one 

base jitter file. The base jitter file is run through a script to modulate the error patterns. First, the 

jitter and packet loss are shifted to 20 different positions to simulate the errors occurring at any time 

during the speech. Second, for every of the 20 positions, the positive jitter (local delay increase), is 

also amplified by 10%, 25%, 50% and 100%, see Figure II.1. Every base jitter file thus results in 

100 generic jitter files. 
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Figure II.1 – Delay amplifications for a live base Jitter file 

The positive jitter amplification is performed when the time difference is larger than 55 ms, based 

on the jitter buffer's initial size of 60 ms, to avoid amplifying the jitter background from DRX and 

other insignificant jitter delays. To avoid the absolute delay to increase beyond reasonable values, 

amplified positive jitter must be followed by amplified negative jitter (local delay decrease). The 

negative jitter is performed where a negative jitter in the original RTP stream exists. Negative jitter 

is detected when the time difference is almost zero for two packets in a row. The negative jitter is 

applied as long as there is no new local delay increase. The sum of the delay increase and decrease 

is managed by a delay budget where the aim is to get the budget to zero. This results in the 

amplified jitter keeping a similar shape to the original delay curve and implies that the scaling is a 

good simulation of real jitter, see Figure II.1. 

II.1.1.2 Gilbert burst packet loss and burst jitter 

A Markov chain according to the Gilbert model is implemented to generate burst packet loss. The 

model is extended to jitter by calculating the delay peaks from the number of consecutive losses 

generated by the Gilbert model. When a peak occurs, it will be followed by packets arriving at the 

same time until the total delay goes to zero or a new burst loss occurs, using the same method as 

described in delay amplifying of the live data. 

When there is jitter, the EVS jitter buffer (and generally most other buffer implementations) will 

prefer to increase the total delay and thereby keep the late loss down. This means the jitter buffer 

makes the probability of late loss larger in the beginning of the speech than at the end when the 

buffer has had time to increase. To make the FE due to late loss more uniformly distributed over the 

speech, the delay generated from the Gilbert simulation is extended with a probability for the start 

of the simulation. The start is rectangularly distributed between packet number 1 and 175 so that 

there are always at least 100 packets for the Gilbert produced delays to be simulated over. 

Figure II.2 shows the frame erasure due to late loss to be evenly distributed over the speech. 



 

  Rec. ITU-T P.565 (11/2021) 33 

 

Figure II.2 – Illustration of frame erasure (FE) due to late loss evenly  

distributed over the speech 

Applying the generic jitter files generated by the Gilbert burst packet loss and burst jitter model on 

the EVS simulator shows that using losses of up to 30% for both packet loss and jitter gives a good 

distribution of the MOS values. 

II.1.1.3 Gilbert severe burst jitter 

Extensive research shows that machine learning has the most difficulties with severe jitter. A 

Gilbert simulated database with jitter up to 70% is created to improve the learning and verify the 

algorithm's prediction power in these circumstances. 

Severe jitter values are common for OTT voice services, and thereby important to be represented in 

the generic jitter files databases. 

II.1.1.4 Random packet loss and random jitter 

Random jitter both positive and negative combined with random packet loss has been simulated. 

The random distribution is uniform and packet loss is simulated up to 50% and jitter is simulated up 

to delays of ±200 ms. This type of simulation will cause packets to arrive out of sequence order. 

II.1.1.5 Manually designed test cases 

An important packet loss scenario is when the device goes in and out of coverage. This will lead to 

long consecutive packet losses. Manual test cases for consecutive loss of 1, 2, 3, 4, 5, 6, 8, 16, 32, 

64 and 128 packets are designed. Also, combinations of two consecutive packet losses are designed. 

For every test case, the loss positions are shifted to 20 different positions. 

II.1.2 Unknown validation live data sets description  

The live validation generic jitter files have been created from four live data sets and their content is 

described below: 

– Drive test in suburban and rural areas using Sony device G8141 and EVS 24.4. 40 MOS 

values exist between MOS 1 and 2 so the corresponding jitter files were selected. 40 MOS 

values from the other MOS groups (2-3, 3-4, 4-4.8) were then randomly selected and their 

corresponding generic jitter file added to the database. Total 153 jitter files. 
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– Drive test in suburban and rural areas using Samsung device 935F and EVS 24.4. 11 MOS 

values exist between MOS 1 and 2 so the corresponding jitter files were selected. 11 MOS 

values from the other MOS groups (2-3, 3-4, 4-4.8) were then randomly selected and their 

corresponding generic jitter files added to the database. Total 41 jitter files. 

– Drive test in urban and suburban areas using Samsung device 950U and EVS 9.60. Drive 

test aimed to capture a large number of handovers. All MOS with handover in the speech 

was selected. Total 52 generic jitter files. 

– Damper test using Sony device XP8131 and EVS 9.60. A damper in the "radio shielded 

room" was used to get poor quality. To get the worst values without losing the call the 

damper was completely turned down one to two seconds during speech. All 270 jitter files 

were used. 

This database consists of 514 generic jitter files. 

II.2 Unknown independent validation live data set description (source Rohde&Schwarz) 

For the purpose of building the independent validation database, the RTP information of 20 000 

audio samples in IMS VoLTE (EVS, AMRWB) and OTT/WhatsApp calls has been logged in 

during drive testing scenarios. The time frame for data collection was September-October 2020, the 

data was collected in three different networks of two different countries (Switzerland and Italy) also 

ensuring different infrastructure vendors. The dedicated audio sample to be used for transmission is 

the one provided in this Recommendation (Annex D). All presented scores are based on a single 

speech file in American English as defined by this Recommendation and can show deviations to 

other speech files such as in ITU-T P.501 Annex D or average scores such as in [ITU-T P.863.1]. 

To avoid any bias on the data due to devices, five different smartphone models have been used, all 

devices with native VoLTE support. 

 

Phone model Chipset type 

Samsung Galaxy S9 Exynos  

Samsung Galaxy S10 Exynos 

Samsung Galaxy S20+ Exynos 

Samsung A90 Qualcomm 

Sony XZ2 Qualcomm 

Each phone was used as sending and receiving side when doing the test calls. There have been also 

'mixed' setups – calls between different devices – so that all combinations between chipsets were 

covered. VoLTE-VoLTE calls between a Samsung A90 (AMR-WB in VoLTE) and an 

EVS-capable phone used AMR-WB at both sides, but not EVS AMR-WB IO. 

It must be noted that the Samsung A90 was selected intentionally, as it supports VoLTE but in the 

considered version it does not support EVS. This ensured RTP capturing using AMR-WB in 

VoLTE. 

A validation database has been targeted that is balanced and covers all quality ranges equally as 

defined in this Recommendation (Annex B). From the total of around 20 000 collected samples, the 

vast majority was free of RTP loss and jitter and resulted in perfectly decoded voice samples. 

Such a big number of initially collected samples was needed because it is very hard to capture bad 

VoLTE conditions with scores in the range of 1.0-2.0 MOS, without dropping into older 

technologies as 3G or 2G. Actually, all the bad samples collected in the dedicated drive tests were 

included in the validation database. Then, according to the available number of samples in the range 

of 1.0-2.0 MOS, a similar number of samples were randomly selected in the upper quality ranges 

(2.0-3.0 MOS, 3.0-4.0 MOS and 4.0-5.0 MOS). These scores needed for the quality-balanced 
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selection were obtained 'live' on the recorded wave signals by the R&S equipment during the data 

collection. 

Finally, 532 VoLTE and 364 OTT/WhatsApp samples (RTP jitter files) have been selected, so that 

each set of samples presented a flat distribution over the MOS range as required in this 

Recommendation. Thus, a total of 836 recorded samples compose the R&S Validation Database. 

The two histograms of Figure II.3 show the distribution of the ITU-T P.863 Edt. 3 FB scores for the 

VoLTE and the OTT/WhatsApp data that compose the independent validation database. 

 

Figure II.3 – Histogram of the ITU-T P.863 Edt. 3 FB live scores on the R&S validation 

database for the VoLTE samples (left) and the OTT/WhatsApp samples (right) 

The RTP streams corresponding to the selected audio samples were then cleaned and processed by 

R&S in order to create the generic jitter files according to the process described in this 

Recommendation. 
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Appendix III 

 

Justification of the minimum requirements based  

on performance results' analysis 

(This appendix does not form an integral part of this Recommendation.) 

III.1 IMS mobile EVS use case 

Generally, poor speech quality conditions are the hardest cases to predict by machine learning based 

algorithm, and therefore requiring more learning. Thus, the learning and validation generated 

databases shall contain a significant amount of severe network conditions. This is seen in the 

distribution of MOS/[ITU-T P.863] values for all used databases (Figure III.1); a total of 128908 

jitter/MOS [ITU-T P.863] files have been simulated for each reference. 

 

Figure III.1 – Distribution of all test MOS values 

The performance results of an ML predictor developed according to the framework for the 

enhanced voice services (EVS) case are presented below. It should be noted that the performance 

results are calculated against [ITU-T P.863] scores as target reference values. 

III.2 Results on learning and validation data sets 

The total number of learning and validation data points for this example is 128908. 

(i) [ITU-T P.1401] performance statistics 

The results across all test data bases created based on the generic jitter files (clause 7.2; Annex D) 

and using reference speech – based features show a correlation coefficient of 96% and an RMSE of 

0.25 MOS as well as a mean absolute value of 0.18 MOS (Figure III.2). These values are well 

within the range of ITU-T expected performance of speech/video QoE prediction models (e.g., 

[ITU-T P.863], [ITU-T P.120x], [b-ITU-T J.343.x], [ITU-T J.247] and [b-ITU-T J.246]). 
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Figure III.2 – Performance of ITU-T P.1401 statistics results using reference speech-based 

features for validation simulated database 

(ii) AE distribution 

The AE distribution for the presented use case shows that 75.64% points satisfy an error less than 

0.25 MOS, 94.82% points less than 0.5 MOS and 99.75% points less than 1 MOS (Figure III.3). 

 

Figure III.3 – Distribution of AE for the validation simulated data set 

(iii) Results for clean coding/decoding quality 

This is tested on all databases with all rates up to 24.4 (see Table III.1) for a US English reference 

speech sample (clause 7.3, Annex D). Table III.1 shows that the differences for clean 

coding/decoding bit rates are zero at the 2nd decimal. 
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Table III.1 – Clean coding/decoding MOS and predicted MOS for EVS rates 

Codec Bit rates 
Clean MOS (ITU-T P.863) 

(EVS FB/SWB/AMR-IO) 
Clean predicted MOS Difference 

EVS FB / 

SWB/ 

AMR-IO  

(incl. CA 

mode) rates 

5.90 na / 3.835 /na 3.835 0.00 

6.60 na/ na / 3.739 3.739 0.00 

7.20 na / 3.97 / na 3.97 0.00 

8.00 na/ 4.053/ na 4.053 0.00 

8.85 na/ na / 4.191 4.191 0.00 

9.60 na / 4.428 / na 4.428 0.00 

12.65 na / na / 4.413 4.413 0.00 

13.20 na / 4.423 / na 4.423 0.00 

16.4 4.639 /4.606 /na 4.639/4.606 0.00 

23.85 na/ na / 4.467 4.467 0.00 

24.40 4.657 / 4.65 / na 4.657/4.65 0.00 

 

(iv) Results for poor network quality (high FER values). 

The trend for medium to bad frame erasure (high FER values) is tested. The results for both AMR 

IO (interoperability) and EVS rates are presented in Figure III.4. It can be seen that MOS and 

predicted MOS are very close for FER < 10% and almost the same for FER > 10%. The same 

results are achieved for the channel aware mode (Figure III.5). This shows the good discrimination 

power of the predicted MOS (MOS(ml) according to this framework) in highly degraded 

conditions. 

 

Figure III.4 – MOS/[ITU-T P.863] vs MOS from predicted MOS (MOS(ml),  

ML based predictor according to the framework) on low to high FER 
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Figure III.5 – MOS/[ITU-T P.863] vs MOS from predicted MOS (MOS(ml),  

ML based predictor according to the framework) on all CA modes 

III.3 Results on unknown validation live data 

Live datasets contain more complex conditions and it shall be expected that performance values 

show weaker values than for the simulated dataset. However, differences shall not be statistically 

significant. 

(i) [ITU-T P.1401] performance statistics  

Figure III.6 shows results of a correlation coefficient (0.977), a RMSE (0.254), and a MAE (0.164) 

that are within the same performance values as seen on the validation simulated dataset above. 

 

Figure III.6 – ITU-T P.1401 performance statistics for validation live data set 
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(ii) AE distributions 

It can be seen (Figure III.7) that the ML based predictor (MOS (ml)) shows statistically the same 

performance with [ITU-T P.863], for the validation live dataset as it achieved for the validation 

simulated data set. This is reflected in the MAE distribution, with 76.04% points below 0.25 MOS, 

93.02% below 0.5 MOS and 99.45% below 1 MOS. Although a slight spread in error (MOS bins 

between 1-1.75 MOS) is noticed, overall the compared speech quality solutions (MOS (ml) and 

ITU-T P.863 MOS) show statistically the same performance on the validation live data set, as in the 

case of the validation simulated data set above. 

Therefore, the results on the validation live data set show that ML based predictor exhibits 

consistent performance on both validation simulated and unknown live data sets. Thus, it can be 

inferred that the used ML algorithm has not been overfitted/underfitted on the test/learning 

database. 

 

Figure III.7 – Distribution of AE for validation live data set 

(iii) Results for the best quality are the same as above since the unknown live datasets uses the 

EVS codec as well. 

(iv) Results for poor network quality (high FER values) are the same as above since the 

unknown live databases uses the same EVS codec. 

III.4 ML overfitting/underfitting test 

ML based solutions are sensitive to overfitting/underfitting scenarios which can be caused by the 

possibility that the training/learning data sets did not embed the entropy well enough when 

describing various network conditions. There are two techniques to verify if the developed ML 

based solution is free of the overfitting/underfitting effect. 

First is the test on an unknown live data set as described in clause 10 (paragraph iv). The results 

presented above show that it can be inferred that the ML based speech quality predictor is 

under/overfitting free. 

Second is a robust ML based method called the overfitting/underfitting test which determines the 

learning curve. Details on this method are presented in Annex A. 

The ML overfitting/underfitting test method is applied for the EVS use case in order to ensure that 

the achieved performance values are reliable.  

A split 80/20 split (131156/32790 samples) is used in order to identify the worst case, large learning 

set and smaller validation set. In addition, the learning curve is plotted with additional five-fold 

cross-validation, meaning that the validation data has been randomly selected five times from all the 
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data points. This ensures a good entropy of the validation data set and verifies the unbiased and no 

bound to the learning set. The results are presented in Figure III.8. 

Figure III.8 shows that the used ML algorithm has a very good MSE on the learning set and at the 

same time the MSE for the validation data set converges fast to the one for the learning database, 

for a learning set size larger than about 70000 samples. Therefore, the learning curve shows that the 

error (MSE) is acceptable with the 65000 samples learning set used for the presented use case. In 

addition, the trend of the validation error does not deviate a lot and steadily decreases which proves 

that having larger data sets cannot decrease the error significantly. 

Also, comparing the results with the ones for the two scenarios, overfitting and underfitting, it can 

be concluded that the used ML algorithm for speech quality prediction has been neither overfitted 

nor underfitted. Both are also proved by the results achieved on the unknown live data set, as shown 

above in this clause. 

 

Figure III.8 – Overfitting/underfitting results (based on technique described in Annex A); 

(a) on large MSE scale; (b) zoomed in on up to 0.5MSE scale 
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