

INTERNATIONAL TELECOMMUNICATION UNION

ITU-T M.3120
TELECOMMUNICATION
STANDARDIZATION SECTOR
OF ITU

Amendment 1
(05/2002)

SERIES M: TMN AND NETWORK MAINTENANCE:
INTERNATIONAL TRANSMISSION SYSTEMS,
TELEPHONE CIRCUITS, TELEGRAPHY, FACSIMILE
AND LEASED CIRCUITS
Telecommunications management network

 CORBA generic network and network element level
information model
Amendment 1: Protection switching

ITU-T Recommendation M.3120 (2001) – Amendment 1

ITU-T M-SERIES RECOMMENDATIONS

TMN AND NETWORK MAINTENANCE: INTERNATIONAL TRANSMISSION SYSTEMS, TELEPHONE
CIRCUITS, TELEGRAPHY, FACSIMILE AND LEASED CIRCUITS

Introduction and general principles of maintenance and maintenance organization M.10–M.299
International transmission systems M.300–M.559
International telephone circuits M.560–M.759
Common channel signalling systems M.760–M.799
International telegraph systems and phototelegraph transmission M.800–M.899
International leased group and supergroup links M.900–M.999
International leased circuits M.1000–M.1099
Mobile telecommunication systems and services M.1100–M.1199
International public telephone network M.1200–M.1299
International data transmission systems M.1300–M.1399
Designations and information exchange M.1400–M.1999
International transport network M.2000–M.2999
Telecommunications management network M.3000–M.3599
Integrated services digital networks M.3600–M.3999
Common channel signalling systems M.4000–M.4999

For further details, please refer to the list of ITU-T Recommendations.

 ITU-T Rec. M.3120 (2001)/Amd.1 (05/2002) i

ITU-T Recommendation M.3120

CORBA generic network and network element level information model

Amendment 1
Protection switching

Summary
This amendment provides protection switching enhancements to the generic network information
model. The model describes protection switching managed object classes and their properties that
are generic and useful to describe information exchanged across all interfaces defined in M.3010
TMN architecture. These generic managed object classes are intended to be applicable across
different technologies, architectures and services. The protection switching managed object classes
in this amendment may be specialized to support the management of various telecommunications
networks.

Source
Amendment 1 to ITU-T Recommendation M.3120 (2001) was prepared by ITU-T Study Group 4
(2001-2004) and approved under the WTSA Resolution 1 procedure on 29 May 2002.

ii ITU-T Rec. M.3120 (2001)/Amd.1 (05/2002)

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of
telecommunications. The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of
ITU. ITU-T is responsible for studying technical, operating and tariff questions and issuing
Recommendations on them with a view to standardizing telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years,
establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on
these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are
prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a
telecommunication administration and a recognized operating agency.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may
involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence,
validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others
outside of the Recommendation development process.

As of the date of approval of this Recommendation, ITU had not received notice of intellectual property,
protected by patents, which may be required to implement this Recommendation. However, implementors
are cautioned that this may not represent the latest information and are therefore strongly urged to consult the
TSB patent database.

 ITU 2002

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the
prior written permission of ITU.

 ITU-T Rec. M.3120 (2001)/Amd.1 (05/2002) iii

CONTENTS
 Page

1 Scope .. 1

2 References... 1

3 Overview of the protection switching information model.. 1

4 Information Model IDL .. 3
4.1 Imports.. 4
4.2 Forward Declarations ... 4
4.3 Structures and Typedefs ... 5
4.4 Exceptions .. 11
4.4.1 Exceptions and Constants for Conditional Package....................................... 11
4.5 Interfaces – Fine-grained.. 12
4.5.1 ProtectionGroup ... 12
4.5.2 ProtectionUnit... 16
4.6 Interfaces – Façade ... 19
4.6.1 ProtectionGroup_F ... 19
4.6.2 ProtectionUnit_F .. 21
4.7 Notifications ... 21
4.8 Name Binding... 22
4.8.1 ProtectionGroup ... 22
4.8.2 ProtectionUnit... 23
4.9 ProbableCauseConst... 23

 ITU-T Rec. M.3120 (2001)/Amd.1 (05/2002) 1

ITU-T Recommendation M.3120

CORBA generic network and network element level information model

Amendment 1
Protection switching

1 Scope
This amendment provides protection switching model enhancements to the CORBA generic
network and NE level information model. The IDL model describers protection switching managed
object classes and their properties that are generic and useful to describe information exchanged
across all interfaces defined in M.3010 TMN architecture. These generic protection switching
object classes are intended to be applicable across different technologies, architectures and services.
They can be extended by various telecommunication industries for managing specific network
technologies, such as ATM, SONET/SDH and Ethernet.

2 References
The following ITU-T Recommendations and other references contain provisions which, through
reference in this text, constitute provisions of this Recommendation. At the time of publication, the
editions indicated were valid. All Recommendations and other references are subject to revision;
users of this Recommendation are therefore encouraged to investigate the possibility of applying the
most recent edition of the Recommendations and other references listed below. A list of the
currently valid ITU-T Recommendations is regularly published.

[1] ITU-T Recommendation Q.816 (2001), CORBA-based TMN services.

[2] ITU-T Recommendation Q.816.1 (2001), CORBA-based TMN services: Extensions to
support coarse-grained interfaces.

[3] ITU-T Recommendation X.780 (2001), TMN Guidelines for defining CORBA managed
objects.

[4] ITU-T Recommendation X.780.1 (2001), TMN Guidelines for defining coarse-grained
CORBA managed objects interfaces.

[5] ITU-T Recommendation M.3120 (2001), CORBA generic network and network element
level information model.

[6] ITU-T Recommendation M.3100 (1995), Generic network information model, plus
Amendment 2 (2000).

[7] ITU-T Recommendation G.774 (2001), Synchronous digital hierarchy (SDH) –
management information model for the network element view.

[8] ITU-T Recommendation G.774.3 (2001), Synchronous digital hierarchy (SDH) –
management of multiplex-section protection for the network element view.

3 Overview of the protection switching information model
Clause 4 defines a set of CORBA IDL interfaces for the protecting switching information model.
These interfaces are translated manually from a set of ITU-T Recs. M.3100 Amendment 2 and
G.774.3 GDMO managed object classes following the TMN CORBA framework and guidelines
given in ITU-T Recs. Q.816 and X.780 for fine-grained CORBA interface.

2 ITU-T Rec. M.3120 (2001)/Amd.1 (05/2002)

In addition to the fine-grained interfaces in 4.5, a companion set of Façade interfaces are defined
in 5.6. These façade interfaces are defined according to the coarse-grained framework and
guidelines given in ITU-T Recs. Q.816.1 and X.780.1 for supporting coarse-grained CORBA
interface. The name of these façade interfaces are the names of the corresponding fine-grained
interfaces appended with "_F" (an underscore followed by a capital "F").

This amendment IDL is an integral part of ITU-T Rec. M.3120. This implies that all definitions
(object classes, type, structure, etc.) defined in ITU-T Rec. M.3120 are in the same IDL module and
can be referenced without the module identifier.

The IDL in this amendment has been compiled successfully without syntax error. The compiler
used claims CORBA 2.3 compliance, which includes value type and M4 macro capabilities.

Figures 1 and 2 show the inheritance, containment, and association relationship of the CORBA
interfaces defined in this Recommendation. Note that façade interfaces follow the same inheritance
hierarchy relationship as the corresponding fine-grained interfaces. It should also be noted that
additional interfaces, although required, are not shown in the figures. Examples are the factory
classes.

T0417290-02

<<Top>>
itut_x780::ManagedObject

<<Fine>> nameGet()
objectClassGet()
packagesGet()
creationSourceGet()
deletePolicyGet()
attributesGet()
destroy()
<<Coarse>> attributesBulkGet()

<<Protection>>
itut_m3120::ProtectionGroup

<<Protection>>
itut_m3120::ProtectionUnit

operationStateGet()
availabilityStatusGet()
supportedByObjectListGet()
groupTypeGet/Set()
revertiveGet/Set()
waitToRestoreTimeGet/Set()
lockedInConditionGet/Set()
currentProblemListGet()
invokeProtection()
releaseProtection()

protectingGet()
reliableResourceListGet()
unreliableResourceListGet()
protectionStatusGet()
priorityGet/Set()

Figure 1/M.3120 – Inheritance relationship

 ITU-T Rec. M.3120 (2001)/Amd.1 (05/2002) 3

T0417300-02

unreliableResourceList

reliableResourceList

<<contained by>>

<<contained by>>

<<NE>>
itut_m3120::ManagedElement

{superiorSubclass
subordinateSubclass
managerCreatable}

<<Protection>>
itut_m3120::ProtectionGroup

{superiorSubclass
subordinateSubclass
managerCreatable}

<<Protection>>
itut_m3120::ProtectionUnit

<<Top>>
itut_x780::ManagedObject

Figure 2/M.3120 – Containment and association relationship

4 Information Model IDL

#ifndef _itut_m3120_amd1_idl_
#define _itut_m3120_amd1_idl_

#include <itut_m3120.idl>

#pragma prefix "itu.int"

/**
This IDL code is intended to be stored in a file named "itut_m3120_amd1.idl"
located in the search path used by IDL compilers on your system. The M.3120
main module (defined in M.3120) is contained in a separate file named
"itut_m3120.idl"
*/

/**

4 ITU-T Rec. M.3120 (2001)/Amd.1 (05/2002)

This fragment is added to the module, itut_m3120, which contains IDL definition
based on objects defined in M.3100 and G.855.1.
*/
module itut_m3120
{

/**

4.1 Imports

*/

/**
Types imported from itut_x780
*/
typedef itut_x780::AdditionalTextType AdditionalTextType;
typedef itut_x780::AdditionalInformationSetType AdditionalInformationSetType;
typedef itut_x780::CorrelatedNotificationSetType CorrelatedNotificationSetType;
typedef itut_x780::NotifIDType NotifIDType;
typedef itut_x780::NullType NullType;

/**

4.2 Forward Declarations
*/

/**
Interface forward declarations
*/
 interface ProtectionGroup;
 interface ProtectionUnit;

/**
Valuetype forward declarations
*/
 valuetype ProtectionGroupValueType;
 valuetype ProtectionUnitValueType;

/**
Typedefs forward declarations
*/
 typedef MONameType ProtectionGroupNameType;
 typedef MONameType ProtectionUnitNameType;

/**

 ITU-T Rec. M.3120 (2001)/Amd.1 (05/2002) 5

4.3 Structures and Typedefs

Structures and typedefs defined in the following are arranged in alphanumeric
order.
*/

 typedef sequence<ProtectionGroupNameType> ProtectionGroupNameSetType;

 typedef sequence<ProtectionGroupNameType> ProtectionGroupNameSeqType;

 typedef sequence<ProtectionUnitNameType> ProtectionUnitNameSetType;

 typedef sequence<ProtectionUnitNameType> ProtectionUnitNameSeqType;

/**
This attribute specifies the criteria of the locked-in condition. The criteria
includes the automatic protection switching (APS) rate and the associated
setting and releasing time windows. If the number of APS of a Protection Unit
reaches the value specified in the hitsCount field within a moving time window
of specified length, the Protection Unit will enter the locked-in condition.
Each switch to protection and its subsequent release is considered as one hit.
The length of the time window for entering the locked-in condition is specified
in the settingWindowTime field. Once a Protection Unit is in the locked-in
condition, future request of APS will be denied until the locked-in condition is
released. The release criterion is no APS request within another moving time
window. The length of this time window is specified in the releasingWindowTime
field.
*/
 struct LockedInConditionType
 {
 unsigned short settingWindowTime;
 unsigned short releaseingWindowTime;
 unsigned short hitsCount;
 };

 enum ProtectionDirectionType
 {
 protectionDirectionTransmit,
 protectionDirectionReceive,
 protectionDirectionBidirectional
 };

 enum ProtectionGroupType
 {
 protectionGroupPlus, // 1+1 or hot-standby
 protectionGroupColon // M:N
 };

/**
The Protection Status attribute indicates the status of the protection switch in
an Protection Unit object. The following behaviour applies to this attribute:

– This attribute must be capable of indicating pending as well as active

switching requests relative to the protection unit. However, only one of
the values lockout, forced switch, or manual switch can be present at the
same time.

– A protection system may support only a subset of the allowable values of

this attribute. The subset of values to be supported by a system is
implementation-specific.

– The syntax of this attribute includes a sub-field "relatedUnit" which is of

union of "fromProtectionUnitNumber" and "toProtectionUnitNumber". This sub-
field is used to indicate on which unit the service is carried.

6 ITU-T Rec. M.3120 (2001)/Amd.1 (05/2002)

For a protected PU, both the fromProtectionUnit and the toProtectionUnit hold
the ID of the related protecting PU. When switching to the protecting PU (i.e.
service will be carried by the protecting PU), the toProtectionUnit choice is
used. When switching back to the protected PU (service will be carried by the
protected PU), the fromProtectionUnit choice is used.

For a protecting PU, both the fromProtectionUnit and the toProtectionUnit hold
the ID of the related protected PU. When switching to the protected PU (i.e.
service will be carried by the protected PU), the toProtectionUnit choice is
used. When switching to the protecting PU (service will be carried by the
protecting PU), the fromProtectionUnit choice is used.

If a system can support protection switching due to Resource Degrade (RD)
besides Resource Fail (RF), protection switching of RD is similar to that in the
subsequent description for RF.

The following allowable Protection Status values are associated with each
protected Protection Unit (PU).

• No Request: No switch request is present on the unit. In this case, service

is on the protected PU, status syntax is noRequest. For non-revertive
system, the status syntax of the related protecting PU is also noRequest.

• Manual Switch to Protecting Unit Complete: The unit has completed a Manual

Switch. In this case, service is on the related protectingPU, status syntax
of the protected PU is manualSwitch (switchStatus: completed; relatedUnit:
toPU). Status syntax of the related protecting PU is manualSwitch
(switchStatus: completed; relatedUnit: fromPU).

• Release Failed: A time-out occurs while waiting for a release. In this

case, service is still on the protectingPU, status syntax is releaseFailed
plus the previous status, such as manualSwitch (switchStatus: completed;
relatedUnit: toPU). Status syntax of the related protecting PU is still the
previous status, such as manualSwitch (switchStatus: completed;
relatedUnit: fromPU).

• Automatic Switch (RF) Pending: The unit has a Fail condition present and

the protecting unit is unavailable. In this case, service is still on the
protectedPU, status syntax is autoSwitch (switchStatus: pending;
relatedUnit: toPU; reason: RF). Status syntax of the related protecting PU
is autoSwitch (switchStatus: pending; relatedUnit: fromPU; reason: RF) plus
its previous status.

• Automatic Switch (RF) Complete: The unit has completed an Automatic Switch

to the protecting unit due to an Equipment Fail condition. In this case,
service is on the related protectingPU, status syntax of the protected PU
is autoSwitch (switchStatus: completed; relatedUnit: toPU; reason: RF).
Status syntax of the related protecting PU is autoSwitch (switchStatus:
completed; relatedUnit: fromPU; reason: RF).

• Automatic Switch (RF) Present, Operate failed: An automatic switch (RF)

request is in progress and a time-out occurs while waiting for completion.
In this case, service is still on the protectedPU, status syntax is
autoSwitch (switchStatus: failed; relatedUnit: toPU; reason: RF). Status
syntax of the related protecting PU is autoSwitch (switchStatus: pending;
relatedUnit: fromPU; reason: RF) plus its previous status.

• Force Switch Complete, Automatic Switch (RF) Pending: The unit has

completed a Force Switch. Additionally, the unit has an automatic switch
(RF) pending. In this case, service is on the related protectingPU, status
syntax of the protected PU is forceSwitch (switchStatus: completed;
relatedUnit: toPU) plus autoSwitch (switchStatus: pending; relatedUnit:
toPU; reason: RF). Status syntax of the related protecting PU is

 ITU-T Rec. M.3120 (2001)/Amd.1 (05/2002) 7

forceSwitch (switchStatus: completed; relatedUnit: fromPU) plus autoSwitch
(switchStatus: pending; relatedUnit: fromPU; reason: RF).

• Automatic Switch Complete, Wait-To-Restore (revertive only): The unit has

completed an Automatic Switch to the protecting unit. In this case, service
is on the related protectingPU, status syntax of the protected PU is
autoSwitch (switchStatus: completed; relatedUnit: toPU; reason: WTR).
Status syntax of the related protecting PU is autoSwitch (switchStatus:
completed; relatedUnit: toPU; reason: WTR).

• Force Switch Complete: The unit has completed a Force Switch to the

protecting unit. In this case, service is on the related protectingPU,
status syntax of the protected PU is forceSwitch (switchStatus: completed;
relatedUnit: toPU). Status syntax of the related protecting PU is
forceSwitch (switchStatus: completed; relatedUnit: fromPU).

• Protected Unit Lockout Completed: The unit has been locked out from the

protecting unit. In this case, service is on the protectedPU, status syntax
is lockout (switchStatus: completed).

• Protected Unit Lockout, Operate failed: The unit has been locked out from

the protecting unit, and, the previously completed switch could not be
released within the expected time-out. When the switch is released, the
Operate failed status is removed. In this case, service is still on the
related protectingPU, status syntax of the protected PU is lockout
(switchStatus: completed) plus releaseFailed. Status syntax of the related
protecting PU is still the previous status, such as manualSwitch
(switchStatus: completed; relatedUnit: fromPU).

• Locked In: The unit is in the locked-in condition. This is caused by

excessive protection switching events. In this case, service is on the
protectedPU, status syntax is locked-in.

A non-revertive protected Protection Unit has the following additional status
values:

• Do Not Revert: The protected unit has been switched to the protecting unit

and the request to do so has been released. The switch to the protecting
unit is maintained. In this case, service is on the related protectingPU,
status syntax of the protected PU is doNotRevert. Status syntax of the
related protecting PU is doNotRevert.

• Manual Switch to Protected Unit Complete: The unit has completed a Manual

Switch from the protecting unit to the protected unit. In this case,
service is on the protectedPU, status syntax is manualSwitch (switchStatus:
completed; relatedUnit: fromPU). Status syntax of the related protecting PU
is manualSwitch (switchStatus: completed; relatedUnit: toPU).

• Force Switch to Protected Unit Complete: The unit has completed a Force

Switch from the protecting unit to the protected unit. In this case,
service is on the protectedPU, status syntax is forceSwitch (switchStatus:
completed; relatedUnit: fromPU). Status syntax of the related protecting PU
is forceSwitch (switchStatus: completed; relatedUnit: toPU).

• Automatic Switch (RF) to Protected Unit Complete: The protecting unit has

an Equipment Fail condition present and the protected unit is now being
utilized. In this case, service is on the protectedPU, status syntax is
autoSwitch (switchStatus: completed; relatedUnit: fromPU; reason: RF).
Status syntax of the related protecting PU is autoSwitch (switchStatus:
completed; relatedUnit: toPU; reason: RF).

8 ITU-T Rec. M.3120 (2001)/Amd.1 (05/2002)

• Force Switch from Protecting Unit Complete, Automatic Switch (RF) Pending:
The unit has completed a Force Switch from the protecting unit to the
protected unit. Additionally, the protected unit has an automatic switch
(RF) condition present. In this case, service is on the protectedPU, status
syntax is forceSwitch (switchStatus: completed; relatedUnit: fromPU) plus
autoSwitch (switchStatus: pending; relatedUnit: toPU; reason: RF). Status
syntax of the related protecting PU is forceSwitch (switchStatus:
completed; relatedUnit: toPU) plus autoSwitch (switchStatus: pending;
relatedUnit: fromPU; reason: RF).

The following allowable Protection Status values are associated with each
protecting Protection Unit:

• No Request: No switch request is present on the protecting unit. In this

case, service is not on the protecting PU, status syntax is noRequest. For
non-revertive system, the status syntax of the related protected PU is
noRequest.

• Manual Switch to Protecting Unit Complete: A protected unit has completed a

Manual Switch. In this case, service is on the protectingPU, status syntax
is manualSwitch (switchStatus: completed; relatedUnit: fromPU). Status
syntax of the related protected PU is manualSwitch (switchStatus:
completed; relatedUnit: toPU).

• Automatic Switch (RF) Pending: A protected unit has an Equipment Fail

condition present and the protecting unit is unavailable for this request.
In this case, service is still on the protectedPU. Status syntax of the
protecting PU is autoSwitch (switchStatus: pending; relatedUnit: fromPU;
reason: RF) plus its previous status, which causes its unavailability.
Status syntax of the related protected PU is autoSwitch (switchStatus:
pending; relatedUnit: toPU; reason: RF).

• Automatic Switch Complete (RF) to Protecting Unit: A protected unit has

completed an automatic switch (RF) to the protecting unit. In this case,
service is on the protectingPU, status syntax is autoSwitch (switchStatus:
completed; relatedUnit: fromPU; reason: RF). Status syntax of the related
protected PU is autoSwitch (switchStatus: completed; relatedUnit: toPU;
reason: RF).

• Automatic Switch (RF) to Protecting Complete, Wait-To-Restore (revertive

only): The unit has completed an Automatic Switch from the protected unit.
In this case, service is on the protectingPU, status syntax is autoSwitch
(switchStatus: completed; relatedUnit: fromPU; reason: WTR). Status syntax
of the related protected PU is autoSwitch (switchStatus: completed;
relatedUnit: fromPU; reason: WTR).

• Protecting Unit RF Present: The protecting unit has an Equipment Fail

condition present. Status syntax of the protecting PU is resourceFailed.

• Force Switch Complete to Protecting Unit: The unit has completed a Force

Switch from a protected unit to the protecting unit. In this case, service
is on the protectingPU, status syntax is forceSwitch (switchStatus:
completed; relatedUnit: fromPU). Status syntax of the related protected PU
is forceSwitch (switchStatus: completed; relatedUnit: toPU).

• Protecting Unit Locked Out: The protecting unit has been locked out. In

this case, service is not on the protectingPU, status syntax is lockout
(switchStatus: completed).

• Protecting Unit Release Lock Out Failed: A release of a lockout is in

progress and a time-out occurs waiting for the lockout condition to clear.
In this case, service is not on the protectingPU, status syntax is lockout
(switchStatus: failed).

 ITU-T Rec. M.3120 (2001)/Amd.1 (05/2002) 9

A non-revertive protecting Protection Unit has the following additional status
values:

• Do Not Revert: A protected unit has been switched to the protecting unit

and the request to do so has been released. The switch to the protecting
unit is maintained. In this case, service is on the protectingPU, status
syntax is doNotRevert. Status syntax of the related protected PU is
doNotRevert.

• Manual Switch to Protected Unit Complete: The unit has completed a Manual

Switch from the protecting unit to the protected unit. In this case,
service is on the protectedPU. Status syntax of the protecting PU is
manualSwitch (switchStatus: completed; relatedUnit: toPU). Status syntax of
the related protected PU is manualSwitch (switchStatus: completed;
relatedUnit: fromPU).

• Force Switch to Protected Unit Complete: The protecting unit has completed

a forced switch to the protected unit. In this case, service is on the
protectedPU. Status syntax of the protecting PU is forceSwitch
(switchStatus: completed; relatedUnit: toPU). Status syntax of the related
protected PU is forceSwitch (switchStatus: completed; relatedUnit: fromPU).

• Force Switch to Protected Unit Complete, Protecting Unit Equipment Failed:

The protecting unit has completed a forced switch to the protected unit.
Additionally, there is an Equipment Fail condition on the protecting unit.
In this case, service is on the protectedPU. Status syntax of the
protecting PU is forceSwitch (switchStatus: completed; relatedUnit: toPU)
plus equipmentFailed. Status syntax of the related protected PU is
forceSwitch (switchStatus: completed; relatedUnit: fromPU).

• Automatic Switch (RF) to Protected Unit Complete: The protecting unit has

an Equipment Fail condition present and the protected unit is now being
utilized. In this case, service is on the protectedPU. Status syntax of the
protecting PU is autoSwitch (switchStatus: completed; relatedUnit: toPU;
reason: RF). Status syntax of the related protected PU is autoSwitch
(switchStatus: completed; relatedUnit: fromPU; reason: RF).

*/
 enum PAutoSwitchReasonType
 {
 pAutoSwitchReasonWaitToRestore,
 pAutoSwitchReasonSignalDegrade,
 pAutoSwitchReasonSignalFail
 };

 enum PRelatedUnitChoiceType
 {
 pFrom,
 pTo
 };

 enum PSwitchStatusType
 {
 pSwitchStatusPending,
 pSwitchStatusCompleted,
 pSwitchStatusFailed
 };

 enum PLockoutChoiceType
 {
 pSwitchStatus,
 pReleaseFailed
 };

10 ITU-T Rec. M.3120 (2001)/Amd.1 (05/2002)

 union PRelatedUnitType switch (PRelatedUnitChoiceType)
 {
 case pFrom:
 ProtectionUnitNameType fromUnit;
 case pTo:
 ProtectionUnitNameType toUnit;
 };

 struct PManualOrForcedSwitchType
 {
 PSwitchStatusType switchStatus;
 PRelatedUnitType relatedUnit;
 };

 struct PAutoSwitchType
 {
 PSwitchStatusType switchStatus;
 PRelatedUnitType relatedUnit;
 PAutoSwitchReasonType autoSwitchReason;
 };

 union PLockoutType switch (PLockoutChoiceType)
 {
 case pSwitchStatus:
 PSwitchStatusType switchStatus;
 case pReleaseFailed:
 NullType releaseFailed;

 };

 enum ProtectionStatusChoiceType
 {
 protectionStatusNoRequest,
 protectionStatusDoNotRevert,
 protectionStatusManualSwitch,
 protectionStatusAutoSwitch,
 protectionStatusForcedSwitch,
 protectionStatusLockout,
 protectionStatusReleaseFailed,
 protectionStatusResourceFailed,
 protectionStatusLockedIn
 };

 union ProtectionStatusType switch (ProtectionStatusChoiceType)
 {
 case protectionStatusNoRequest:
 NullType noRequest;
 case protectionStatusDoNotRevert:
 NullType doNotRevert;
 case protectionStatusManualSwitch:
 PManualOrForcedSwitchType manualSwitch;
 case protectionStatusAutoSwitch:
 PAutoSwitchType autoSwitch;
 case protectionStatusForcedSwitch:
 PManualOrForcedSwitchType forcedSwitch;
 case protectionStatusLockout:
 PLockoutType lockout;
 case protectionStatusReleaseFailed:
 NullType releaseFailed;
 case protectionStatusResourceFailed:
 NullType resourceFailed;
 case protectionStatusLockedIn:
 NullType lockedIn;
 };

 ITU-T Rec. M.3120 (2001)/Amd.1 (05/2002) 11

 struct ProtectionStatusType
 {
 ProtectionStatusChoiceType choice;
 PSwitchStatusType switchStatus;
 // may be NULL
 PRelatedUnitType relatedUnit;
 // may be NULL
 PAutoSwitchReasonType autoSwitchReason;
 // may be NULL
 };

 typedef sequence<ProtectionStatusType> ProtectionStatusSetType;

 enum PSwitchActionResultType
 {
 pSwitchActionResultPreempted,
 pSwitchActionResultFailure,
 pSwitchActionResultTimeout
 };

 enum PSwitchType
 {
 pSwitchManual,
 pSwitchForced,
 pSwitchLocked
 };

/**

4.4 Exceptions
*/

/**

4.4.1 Exceptions and Constants for Conditional Package
*/

 exception NOpriorityPackage {};

 exception NOprotectionAlarmPackage {};

/**
This collection of constants represent the conditional packages defined in this
Recommendation. When a conditional package is supported in a particular managed
object instance, one of these strings will be contained in the packages
attribute
*/
 const string priorityPackage =
 "itut_m3120::priorityPackage";
 const string protectionAlarmPackage =
 "itut_m3120::protectionAlarmPackage";

/**

12 ITU-T Rec. M.3120 (2001)/Amd.1 (05/2002)

4.5 Interfaces – Fine-grained
*/

/**

4.5.1 ProtectionGroup

This object class is used for representing a protection system within a Network
Element (NE). Notifications of protection switch events and management system
control of lockouts, forced switches, and manual switches are the primary
management functions supported by this entity.

Instances of this object class may be automatically created in an agent, e.g.
immediately following the initialization of the NE resources involved in the
protection system, according to the make-up and mode of the NE. Instances of
this object class may be automatically deleted in the agent.

Multiple instances of the protectionGroupR2 object may exist in an NE (one for
each protection system supported by the NE). An instance of the ProtectionGroup
object would contain two or more instances of the ProtectionUnit object.

Either all or none of the Protection Unit instances within a Protection Group
object shall have the priorityPkg package. It is to be noted that, before the
creation of the ProtectionGroup object, the supported by object list (sbol)
attribute of a reliable resource such as termination point object may point to
an unreliable resource object such as circuit pack. But once the protection
group object is created, the sbol attribute would start pointing at the
protection group object.

This object class has the following attributes:

– Operational State: This read-only attribute identifies whether or not the

protection mechanism represented by this instance is capable of performing
its normal functions.

– Protection Group Type: This read-write attribute identifies whether the

protection scheme used is 1+1 or M:N.

– Revertive: This read-write attribute identifies whether or not the

protection scheme used is revertive. The default value for this attribute
shall indicate revertive operation, but this attribute should be able to be
set to indicate non-revertive operation by a command from the manager.

– Wait-To-Restore Time: This read-write attribute identifies the amount of

time, in seconds, that the protection system should wait after a fault
clears before switching back to the protected resource. This attribute is
only relevant for revertive system operation.

– LockedInCondition: This read-write attribute specifies the criteria of the

locked-in condition.

This interface contains the following CONDITIONAL PACKAGES.

– protectionAlarmPackage: Present if the system is capable of reporting

failure of protection mechanism or failure of the protecting resource.

– createDeleteNotificationsPackage: Present if an instance supports it.

– attributeValueChangeNotificationPackage: Present if an instance supports

it.

*/
 valuetype ProtectionGroupValueType: itut_x780::ManagedObjectValueType
 {

 ITU-T Rec. M.3120 (2001)/Amd.1 (05/2002) 13

 public OperationalStateType operationalState;
 // GET
 public AvailabilityStatusSetType availabilityStatus;
 // GET
 public MONameSetType supportedByObjectList;
 // GET-REPLACE, ADD-REMOVE
 public ProtectionGroupType groupType;
 // GET-REPLACE
 public boolean revertive;
 // GET-REPLACE-WITH-DEFAULT
 public unsigned short waitToRestoreTime;
 // GET-REPLACE
 public LockedInConditionType lockedInCondition;
 // GET-REPLACE
 public CurrentProblemSetType currentProblemList;
 // conditional
 // protectionAlarmPackage
 // GET
 }; // valuetype ProtectionGroupValueType

 interface ProtectionGroup: itut_x780::ManagedObject
 {
 const boolean revertiveDefault = TRUE;

 OperationalStateType operationalStateGet ()
 raises (itut_x780::ApplicationError);

 AvailabilityStatusSetType availabilityStatusGet ()
 raises (itut_x780::ApplicationError);

 MONameSetType supportedByObjectListGet ()
 raises (itut_x780::ApplicationError);

 void supportedByObjectListSet
 (in MONameSetType objectList)
 raises (itut_x780::ApplicationError);

 void supportedByObjectListAdd
 (in MONameSetType objectList)
 raises (itut_x780::ApplicationError);

 void supportedByObjectListRemove
 (in MONameSetType objectList)
 raises (itut_x780::ApplicationError);

 ProtectionGroupType groupTypeGet ()
 raises (itut_x780::ApplicationError);

 boolean revertiveGet ()
 raises (itut_x780::ApplicationError);

 void revertiveSet
 (in boolean revertive)
 raises (itut_x780::ApplicationError);

 unsigned short waitToRestoreTimeGet ()
 raises (itut_x780::ApplicationError);

 void waitToRestoreTimeSet

14 ITU-T Rec. M.3120 (2001)/Amd.1 (05/2002)

 (in unsigned short waitTime)
 raises (itut_x780::ApplicationError);

 LockedInConditionType lockedInConditionGet ()
 raises (itut_x780::ApplicationError);

 void lockedInConditionSet
 (in LockedInConditionType condition)
 raises (itut_x780::ApplicationError);

 CurrentProblemSetType currentProblemListGet ()
 raises (itut_x780::ApplicationError,
 NOprotectionAlarmPackage);

/**
Invoke Protection: This action is used to request a lockout, a forced switch, or
a manual switch on one or more ProtectionUnit instances contained in the
ProtectionGroup object. The following input parameters are included in the
Invoke Protection action:

– Switch Type (Manual, Forced or Lockout).

– Protection Entity (Optional): ID(s) of the protected and/or protecting.

Protection Unit entity to which the request applies. If not present, the request
is meant to apply to all such entities in the Protection Group.

If a protecting unit is identified in the protectedUnits field, or if a
protected unit is identified in the protectingUnits field, the action fails.

If the request is Forced Switch or Manual Switch, the protectedUnits field shall
identify one or more protection units. If only one unit is identified in the
protectedUnits field, and there is only one protecting unit in the protection
group, the protectingUnits field may be omitted. If the protectingUnits field is
present, it shall identify the same number of units as the protectedUnits field.

If the request is Lockout, the protection entity field may be absent, indicating
that the request applies to all contained protection units. If the protection
entity field is present, any number of protection units may be identified in the
protectedUnits and/or protectingUnits field, and either field may be absent.

For a Lockout request, the specified protected units and/or protecting units are
locked out.

For requests which cannot be completed, either because the request is the
protecting unit is serving a request of higher priority, or failure occurs
(failure), or timeout occurs (timeout), the reply shall indicate why the request
could not be completed, and the request shall not be made pending.

*/
 void invokeProtection
 (in PSwitchType switchType,
 in ProtectionUnitNameSeqType protectedUnitList,
 in ProtectionUnitNameSeqType protectingUnitList,
 out PSwitchActionResultType actionResult)
 raises (itut_x780::ApplicationError);

/**
Release Protection: This action is used to release a lockout, a forced switch,
or a manual switch on one or more of the protectionUnit instances contained in
the protectionGroup object. The following input parameters are included in the
Release Protection action:

 ITU-T Rec. M.3120 (2001)/Amd.1 (05/2002) 15

– Switch Type (Manual, Forced or Lockout).

– Protection Entity (Optional): ID(s) of the protected and/or protecting.

Protection Unit entity to which the request applies. If not present, the request
is meant to apply to all such entities in the Protection Group.

If a protecting unit is identified in the protectedUnits field, or if a
protected unit is identified in the protectingUnits field, the action fails.

If the request is Forced Switch or Manual Switch, the protectedUnits field shall
identify one or more protection units, and the protectingUnits field shall be
omitted. For each identified protected unit, if it is not switched to a
protecting unit, the action fails.

If the request is Lockout, the protectionEntity field may be absent, indicating
that the request applies to all contained protection units. If the protection
entity field is present, any number of protection units may be identified in the
protectedUnits and/or protectingUnits field, and either field may be absent.

For a Lockout request, the specified protected units and/or protecting units are
no longer locked out. That is, the protected units are now under protection and
the protecting units are now capable of providing protection.

For release requests which cannot be completed, the reply shall indicate why the
request could not be completed.

*/
 void releaseProtection
 (in PSwitchType switchType,
 in ProtectionUnitNameSeqType protectedUnitList,
 in ProtectionUnitNameSeqType protectingUnitList,
 out PSwitchActionResultType actionResult)
 raises (itut_x780::ApplicationError);

 MANDATORY_NOTIFICATION(
 Notifications, protectionSwitchReporting)
 MANDATORY_NOTIFICATION(
 itut_x780::Notifications, stateChange)

 CONDITIONAL_NOTIFICATION(
 Notifications, protectionAlarm,
 protectionAlarmPackage)
 CONDITIONAL_NOTIFICATION(
 itut_x780::Notifications, objectCreation,
 createDeleteNotificationsPackage)
 CONDITIONAL_NOTIFICATION(
 itut_x780::Notifications, objectDeletion,
 createDeleteNotificationsPackage)
 CONDITIONAL_NOTIFICATION(
 itut_x780::Notifications, attributeValueChange,
 attributeValueChangeNotificationPackage)

 }; // interface ProtectionGroup

 interface ProtectionGroupFactory: itut_x780::ManagedObjectFactory
 {
 itut_x780::ManagedObject create
 (in NameBindingType nameBinding,
 in MONameType superior,
 in string reqID, // auto naming if empty string

16 ITU-T Rec. M.3120 (2001)/Amd.1 (05/2002)

 out MONameType name,
 in StringSetType packageNameList,
 in MONameSetType supportedByObjectList,
 // GET-REPLACE, ADD-REMOVE
 in ProtectionGroupType groupType,
 // GET-REPLACE
 in boolean revertive,
 // GET-REPLACE-WITH-DEFAULT
 in unsigned short waitToRestoreTime,
 // GET-REPLACE
 in LockedInConditionType lockedInCondition)
 // GET-REPLACE
 raises (itut_x780::ApplicationError,
 itut_x780::CreateError);

 }; // interface ProtectionGroupFactory

/**

4.5.2 ProtectionUnit

The ProtectionUnit managed object class is used to represent the protected (i.e.
working, regular or preferred) or protecting (i.e. backup or standby) resource
in a protection system. It relates the resources (e.g. circuit packs) involved
in the protection system and keeps track of the protection switching status of
the resources.

Instances of this object class are instantiated by the agent according to the
protection schemes adopted by the NE. A Protection Unit instance is deleted when
the resource object instance pointed to by the Unreliable Resource List
attribute is deleted, and may be created automatically when the associated
resource object is created. The agent may also create and delete instances of
this object class in order to reflect local modifications in the protection
schemes. The attributeValueChange notification is used to notify changes of the
Reliable Resource List, Protection Status, and Priority attributes.

Two or more instances of the ProtectionUnit object may exist within an instance
of the ProtectionGroup object.

An instance of the ProtectionUnit object could contain an instance of the
ProtectionCurrentData object.

A ProtectionUnit instance is related to instances of resource entities (e.g.
Circuit Pack) via the Unreliable Resource List attribute. If the function of the
resource entities (e.g. timing function, transport termination point function,
etc.) is explicitly modelled as object instances in the NE, then a
ProtectionUnit instance is also related to instances of the modelled function
entity via the Reliable Resource List attribute.

This object class has the following attributes:

– Protecting: This read-only attribute identifies whether or not the

protection unit is associated with a resource providing a protecting
("true") or protected ("false") role in the protection system.

– Unreliable Resource List: This read-only attribute identifies the

unreliable resource (e.g. circuit pack entity) associated with the
Protection Unit object (e.g. the actual protected or protecting resource).
The syntax of this attribute is set-valued and could point to multiple
instances of unreliable resources when a set of resources forms an atomic
unit in the protection system.

 ITU-T Rec. M.3120 (2001)/Amd.1 (05/2002) 17

– Reliable Resource List: This read-only attribute identifies the reliable

resource (i.e. the functional entity), if there is any, associated with the
Protection Unit. The value of this attribute of a protection unit (PU) will
change when the PU is involved in a protection switch or release. For a
protected PU, when it is not switched, this attribute is pointing to the
associated reliable resource (i.e. the functional object) and when it is
switched, this attribute points to NULL. For a protecting PU, when it is
not switched, this attribute is pointing to NULL, and when it is switched,
this attribute is pointing to the associated reliable resource (i.e. the
functional object). The syntax of this attribute is set-valued and could
point to multiple instances of reliable resource when a set of functional
objects form an atomic unit in the protection system.

– Priority: This read-write attribute specifies the priority of the service

carried on the resource associated with the protection Unit instance. Valid
values for this attribute are integers, where the value 1 indicates the
highest priority, and a larger value indicates a lower priority.

– Protection Status R1: This read-only attribute indicates the status of the

protection switch in a Protection Unit object. The following behaviour
applies to this attribute:

 • This attribute must be capable of indicating pending as well as active

switching requests relative to the protection unit. However, only one of
the values lockout, forced switch, or manual switch can be present at the
same time.

 • A protection system may support only a subset of the allowable values of

this attribute. The subset of values to be supported by a system is
implementation-specific.

This interface contains the following CONDITIONAL PACKAGES.

– priorityPackage: Present if an instance supports it.

– attributeValueChangeNotificationPackage: Present if an instance supports

it.
*/
 valuetype ProtectionUnitValueType: itut_x780::ManagedObjectValueType
 {
 public boolean protecting;
 // GET
 public MONameSetType reliableResourceList;
 // GET
 public MONameSetType unreliableResourceList;
 // GET
 public ProtectionStatusSetType protectionStatus;
 // GET
 public unsigned short priority;
 // conditional
 // priorityPackage
 // GET-REPLACE
 }; // valuetype ProtectionUnitValueType

 interface ProtectionUnit : itut_x780::ManagedObject
 {
 boolean protectingGet ()
 raises (itut_x780::ApplicationError);

/**

18 ITU-T Rec. M.3120 (2001)/Amd.1 (05/2002)

The value of the reliableResourceList attribute points to the reliable
resource(s) (e.g. the functional objects) that is/are associated with the
Protection Unit instance.
*/
 MONameSetType reliableResourceListGet ()
 raises (itut_x780::ApplicationError);

/**
The value of the unreliableResourceList attribute points to the unreliable
resource(s) (e.g. circuit pack) that is/are associated with the Protection Unit
instance.
*/
 MONameSetType unreliableResourceListGet ()
 raises (itut_x780::ApplicationError);

/**
*/
 ProtectionStatusSetType protectionStatusGet ()
 raises (itut_x780::ApplicationError);

/**
This attribute specifies the priority of the service (e.g. traffic) carried on
the resource associated with the protected ProtectionUnit instance. Valid values
for this attribute are integers, where the value 1 indicates the highest
priority, and a larger value indicates a lower priority.

For a protecting ProtectionUnit, the value of this attribute indicates the
priority of choice of the protecting ProtectionUnit relative to other available
protecting ProtectionUnit(s) within the same ProtectionGroup. The lower the
value, the more preferred the ProtectionUnit is relative to other
ProtectionUnits.

*/
 unsigned short priorityGet ()
 raises (itut_x780::ApplicationError,
 NOpriorityPackage);

 void prioritySet
 (in unsigned short priority)
 raises (itut_x780::ApplicationError,
 NOpriorityPackage);

 CONDITIONAL_NOTIFICATION(
 itut_x780::Notifications, attributeValueChange,
 attributeValueChangeNotificationPackage)

 }; // interface ProtectionUnit

 interface ProtectionUnitFactory: itut_x780::ManagedObjectFactory
 {
 itut_x780::ManagedObject create
 (in NameBindingType nameBinding,
 in MONameType superior,
 in string reqID, // auto naming if empty string
 out MONameType name,
 in StringSetType packageNameList,
 in unsigned short priority)
 // conditional
 // priorityPackage
 // GET-REPLACE
 raises (itut_x780::ApplicationError,
 itut_x780::CreateError);

 ITU-T Rec. M.3120 (2001)/Amd.1 (05/2002) 19

 }; // interface ProtectionUnitFactory

/**

4.6 Interfaces – Façade

The behaviour of the façade interfaces are identical to the corresponding fine-
grained interfaces. Therefore, comments are not included in the façade
interfaces. Readers are referred to the fine-grained interface in 4.5 for the
behaviour of the façade interface.

This clause can be omitted from IDL if a management system only supports fine-
grained interface.
*/

/**

4.6.1 ProtectionGroup_F
*/

 interface ProtectionGroup_F: itut_x780::ManagedObject_F
 {
 const boolean revertiveDefault = TRUE;

 OperationalStateType operationalStateGet
 (in MONameType name)
 raises (itut_x780::ApplicationError);

 AvailabilityStatusSetType availabilityStatusGet
 (in MONameType name)
 raises (itut_x780::ApplicationError);

 MONameSetType supportedByObjectListGet
 (in MONameType name)
 raises (itut_x780::ApplicationError);

 void supportedByObjectListSet
 (in MONameType name,
 in MONameSetType objectList)
 raises (itut_x780::ApplicationError);

 void supportedByObjectListAdd
 (in MONameType name,
 in MONameSetType objectList)
 raises (itut_x780::ApplicationError);

 void supportedByObjectListRemove
 (in MONameType name,
 in MONameSetType objectList)
 raises (itut_x780::ApplicationError);

 ProtectionGroupType groupTypeGet
 (in MONameType name)
 raises (itut_x780::ApplicationError);

 boolean revertiveGet
 (in MONameType name)
 raises (itut_x780::ApplicationError);

20 ITU-T Rec. M.3120 (2001)/Amd.1 (05/2002)

 void revertiveSet
 (in MONameType name,
 in boolean revertive)
 raises (itut_x780::ApplicationError);

 unsigned short waitToRestoreTimeGet
 (in MONameType name)
 raises (itut_x780::ApplicationError);

 void waitToRestoreTimeSet
 (in MONameType name,
 in unsigned short waitTime)
 raises (itut_x780::ApplicationError);

 LockedInConditionType lockedInConditionGet
 (in MONameType name)
 raises (itut_x780::ApplicationError);

 void lockedInConditionSet
 (in MONameType name,
 in LockedInConditionType condition)
 raises (itut_x780::ApplicationError);

 CurrentProblemSetType currentProblemListGet
 (in MONameType name)
 raises (itut_x780::ApplicationError,
 NOprotectionAlarmPackage);

 void invokeProtection
 (in MONameType name,
 in PSwitchType switchType,
 in ProtectionUnitNameSeqType protectedUnitList,
 in ProtectionUnitNameSeqType protectingUnitList,
 out PSwitchActionResultType actionResult)
 raises (itut_x780::ApplicationError);

 void releaseProtection
 (in MONameType name,
 in PSwitchType switchType,
 in ProtectionUnitNameSeqType protectedUnitList,
 in ProtectionUnitNameSeqType protectingUnitList,
 out PSwitchActionResultType actionResult)
 raises (itut_x780::ApplicationError);

 MANDATORY_NOTIFICATION(
 Notifications, protectionSwitchReporting)
 MANDATORY_NOTIFICATION(
 itut_x780::Notifications, stateChange)

 CONDITIONAL_NOTIFICATION(
 Notifications, protectionAlarm,
 protectionAlarmPackage)
 CONDITIONAL_NOTIFICATION(
 itut_x780::Notifications, objectCreation,
 createDeleteNotificationsPackage)
 CONDITIONAL_NOTIFICATION(
 itut_x780::Notifications, objectDeletion,
 createDeleteNotificationsPackage)

 ITU-T Rec. M.3120 (2001)/Amd.1 (05/2002) 21

 CONDITIONAL_NOTIFICATION(
 itut_x780::Notifications, attributeValueChange,
 attributeValueChangeNotificationPackage)

 }; // interface ProtectionGroup_F

/**

4.6.2 ProtectionUnit_F
*/

 interface ProtectionUnit_F : itut_x780::ManagedObject_F
 {
 boolean protectingGet
 (in MONameType name)
 raises (itut_x780::ApplicationError);

 MONameSetType reliableResourceListGet
 (in MONameType name)
 raises (itut_x780::ApplicationError);

 MONameSetType unreliableResourceListGet
 (in MONameType name)
 raises (itut_x780::ApplicationError);

 ProtectionStatusType protectionStatusGet
 (in MONameType name)
 raises (itut_x780::ApplicationError);

 unsigned short priorityGet
 (in MONameType name)
 raises (itut_x780::ApplicationError,
 NOpriorityPackage);

 void prioritySet
 (in MONameType name,
 in unsigned short priority)
 raises (itut_x780::ApplicationError,
 NOpriorityPackage);

 }; // interface ProtectionUnit_F

/**

4.7 Notifications
*/
/**
This interface contains the definitions of notifications emitted by managed
objects.

Notification users wishing to use typed notifications need to append the
operations below to M.3120 notification interface if there is any.

Notification publishers and subscribers wishing to use structured notifications
based on the operations defined below should follow rules for constructing and
reading the notification structure defined in ITU-T Rec. Q.816.

*/
 interface Notifications

22 ITU-T Rec. M.3120 (2001)/Amd.1 (05/2002)

 {

/**
The protectionSwitchReporting notification is emitted from the ProtectionGroup
object to report any protection switch events.

*/
 void protectionSwitchReporting
 (in ExternalTimeType eventTime,
 in MONameType source,
 // protection group
 in ObjectClassType sourceClass,
 // always ProtectionGroup
 in NotifIDType notificationIdentifier,
 in CorrelatedNotificationSetType correlatedNotifications,
 in AdditionalTextType additionalText,
 in AdditionalInformationSetType additionalInfo,
 in MONameType reportedProtectionUnit,
 in ProtectionStatusSetType oldProtectionStatus,
 in ProtectionStatusSetType newProtectionStatus,
 in ProtectionDirectionType protectionDirection);

/**
The protectionAlarm notification is emitted from the ProtectionGroup object to
report any protection mechanism failure or protecting resource failure.

*/
 void protectionAlarm
 (in ExternalTimeType eventTime,
 in MONameType source,
 // protection group
 in ObjectClassType sourceClass,
 // always ProtectionGroup
 in NotifIDType notificationIdentifier,
 in CorrelatedNotificationSetType correlatedNotifications,
 in AdditionalTextType additionalText,
 in AdditionalInformationSetType additionalInfo,
 in ProbableCauseType probableCause);

 }; // interface Notfications

/**

4.8 Name Binding
*/

/**

The following module contains name binding information.
*/
 module NameBinding
 {
/**

4.8.1 ProtectionGroup

*/
 module ProtectionGroup_ManagedElement
 {
 const string superiorClass =
 "itut_m3120::ManagedElement";
 const boolean superiorSubclassesAllowed = TRUE;
 const string subordinateClass =

 ITU-T Rec. M.3120 (2001)/Amd.1 (05/2002) 23

 "itut_m3120::ProtectionGroup";
 const boolean subordinateSubclassesAllowed = TRUE;
 const boolean managerCreatesAllowed = TRUE;
 const DeletePolicyType deletePolicy =
 itut_x780::deleteOnlyIfNoContainedObjects;
 const string kind = "ProtectionGroup";
 }; // module ProtectionGroup_ManagedElement

/**

4.8.2 ProtectionUnit
*/
 module ProtectionUnit_ProtectionGroup
 {
 const string superiorClass =
 "itut_m3120::ProtectionGroup";
 const boolean superiorSubclassesAllowed = TRUE;
 const string subordinateClass =
 "itut_m3120::ProtectionUnit";
 const boolean subordinateSubclassesAllowed = TRUE;
 const boolean managerCreatesAllowed = TRUE;
 const DeletePolicyType deletePolicy =
 itut_x780::deleteOnlyIfNoContainedObjects;
 const string kind = "ProtectionUnit";
 }; // module ProtectionUnit_ProtectionGroup

 }; // module NameBinding

/**

4.9 ProbableCauseConst

This module contains the constant values defined for the ProbableCause UID.
The values below need to append to M.3120 module ProbableCauseConst.

*/

 module ProbableCauseConst
 {

/**
Values 81-100 are reserved for equipment alarm related probable causes.
*/
 const short protectionMechanismFailure = 81;
 const short protectingResourceFailure = 82;

 }; // module ProbableCauseConst

}; // module itut_m3120

#endif // _itut_m3120_amd1_idl_

Printed in Switzerland
Geneva, 2002

SERIES OF ITU-T RECOMMENDATIONS

Series A Organization of the work of ITU-T

Series B Means of expression: definitions, symbols, classification

Series C General telecommunication statistics

Series D General tariff principles

Series E Overall network operation, telephone service, service operation and human factors

Series F Non-telephone telecommunication services

Series G Transmission systems and media, digital systems and networks

Series H Audiovisual and multimedia systems

Series I Integrated services digital network

Series J Cable networks and transmission of television, sound programme and other multimedia signals

Series K Protection against interference

Series L Construction, installation and protection of cables and other elements of outside plant

Series M TMN and network maintenance: international transmission systems, telephone circuits,
telegraphy, facsimile and leased circuits

Series N Maintenance: international sound programme and television transmission circuits

Series O Specifications of measuring equipment

Series P Telephone transmission quality, telephone installations, local line networks

Series Q Switching and signalling

Series R Telegraph transmission

Series S Telegraph services terminal equipment

Series T Terminals for telematic services

Series U Telegraph switching

Series V Data communication over the telephone network

Series X Data networks and open system communications

Series Y Global information infrastructure and Internet protocol aspects

Series Z Languages and general software aspects for telecommunication systems

 22414

	ITU-T Rec. M.3120 Amendment 1 (05/2002) CORBA generic network and network element level information model Amendment 1: ...
	Summary
	Source
	FOREWORD
	CONTENTS
	1 Scope
	2 References
	3 Overview of the protection switching information model
	4 Information Model IDL
	4.1 Imports
	4.2 Forward Declarations
	4.3 Structures and Typedefs
	4.4 Exceptions
	4.4.1 Exceptions and Constants for Conditional Package
	4.5 Interfaces - Fine-grained
	4.5.1 ProtectionGroup
	4.5.2 ProtectionUnit
	4.6 Interfaces - Façade
	4.6.1 ProtectionGroup_F
	4.6.2 ProtectionUnit_F
	4.7 Notifications
	4.8 Name Binding
	4.8.1 ProtectionGroup
	4.8.2 ProtectionUnit
	4.9 ProbableCauseConst

