

I n t e r n a t i o n a l T e l e c o m m u n i c a t i o n U n i o n

ITU-T M.3020
TELECOMMUNICATION
STANDARDIZATION SECTOR
OF ITU

(07/2017)

SERIES M: TELECOMMUNICATION MANAGEMENT,
INCLUDING TMN AND NETWORK MAINTENANCE

Telecommunications management network

 Management interface specification
methodology

Recommendation ITU-T M.3020

ITU-T M-SERIES RECOMMENDATIONS

TELECOMMUNICATION MANAGEMENT, INCLUDING TMN AND NETWORK MAINTENANCE

Introduction and general principles of maintenance and maintenance organization M.10–M.299

International transmission systems M.300–M.559

International telephone circuits M.560–M.759

Common channel signalling systems M.760–M.799

International telegraph systems and phototelegraph transmission M.800–M.899

International leased group and supergroup links M.900–M.999

International leased circuits M.1000–M.1099

Mobile telecommunication systems and services M.1100–M.1199

International public telephone network M.1200–M.1299

International data transmission systems M.1300–M.1399

Designations and information exchange M.1400–M.1999

International transport network M.2000–M.2999

Telecommunications management network M.3000–M.3599

Integrated services digital networks M.3600–M.3999

Common channel signalling systems M.4000–M.4999

For further details, please refer to the list of ITU-T Recommendations.

 Rec. ITU-T M.3020 (07/2017) i

Recommendation ITU-T M.3020

Management interface specification methodology

Summary

Recommendation ITU-T M.3020 describes the management interface specification methodology

(MISM). It describes the process to derive interface specifications based on user requirements,

analysis and design (RAD). Guidelines are given on RAD using unified modelling language (UML)

notation; however, other interface specification techniques are not precluded. The guidelines for

using UML are described at a high level in this ITU-T Recommendation.

History

Edition Recommendation Approval Study Group Unique ID*

1.0 ITU-T M.3020 1992-10-05 11.1002/1000/1516

2.0 ITU-T M.3020 1995-07-27 4 11.1002/1000/1517

3.0 ITU-T M.3020 2000-02-04 4 11.1002/1000/4871

4.0 ITU-T M.3020 2007-07-22 4 11.1002/1000/9097

5.0 ITU-T M.3020 2008-07-29 4 11.1002/1000/9550

6.0 ITU-T M.3020 2009-05-14 2 11.1002/1000/9736

7.0 ITU-T M.3020 2010-09-06 2 11.1002/1000/10863

8.0 ITU-T M.3020 2011-07-14 2 11.1002/1000/11368

8.1 ITU-T M.3020 (2011) Amd. 1 2014-07-14 2 11.1002/1000/12202

9.0 ITU-T M.3020 2017-07-22 2 11.1002/1000/13268

Keywords

Management interface, specification methodology.

* To access the Recommendation, type the URL http://handle.itu.int/ in the address field of your web

browser, followed by the Recommendation's unique ID. For example, http://handle.itu.int/11.1002/1000/11

830-en.

http://handle.itu.int/11.1002/1000/1516
http://handle.itu.int/11.1002/1000/1517
http://handle.itu.int/11.1002/1000/4871
http://handle.itu.int/11.1002/1000/9097
http://handle.itu.int/11.1002/1000/9550
http://handle.itu.int/11.1002/1000/9736
http://handle.itu.int/11.1002/1000/10863
http://handle.itu.int/11.1002/1000/11368
http://handle.itu.int/11.1002/1000/12202
http://handle.itu.int/11.1002/1000/13268
http://handle.itu.int/11.1002/1000/11830-en
http://handle.itu.int/11.1002/1000/11830-en

ii Rec. ITU-T M.3020 (07/2017)

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of

telecommunications, information and communication technologies (ICTs). The ITU Telecommunication

Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical,

operating and tariff questions and issuing Recommendations on them with a view to standardizing

telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years,

establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on

these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are

prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a

telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain

mandatory provisions (to ensure, e.g., interoperability or applicability) and compliance with the

Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some

other obligatory language such as "must" and the negative equivalents are used to express requirements. The

use of such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may

involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence,

validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others

outside of the Recommendation development process.

As of the date of approval of this Recommendation, ITU had not received notice of intellectual property,

protected by patents, which may be required to implement this Recommendation. However, implementers

are cautioned that this may not represent the latest information and are therefore strongly urged to consult the

TSB patent database at http://www.itu.int/ITU-T/ipr/.

 ITU 2017

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the

prior written permission of ITU.

http://www.itu.int/ITU-T/ipr/

 Rec. ITU-T M.3020 (07/2017) iii

Table of Contents

 Page

1 Scope ... 1

2 References ... 1

3 Definitions .. 2

3.1 Terms defined elsewhere .. 2

3.2 Terms defined in this Recommendation ... 3

4 Abbreviations and acronyms .. 4

5 Conventions .. 5

6 Requirements for methodology and notational support .. 5

7 Methodology ... 5

7.1 General considerations ... 5

7.2 Application and structure of the methodology ... 5

7.3 Detailed methodology .. 6

8 Management interface specifications ... 8

9 Traceability in MISM process .. 8

10 Documentation structure ... 9

Annex A – Requirements ... 10

A.1 Conventions .. 10

A.2 Requirements template ... 13

A.3 Simplified requirements template ... 15

Annex B – Analysis ... 17

B.1 Conventions .. 18

B.2 Analysis template ... 20

B.3 IOC properties and inheritance ... 31

Annex C – MISM UML repertoire .. 33

C.1 Introduction .. 33

C.2 Basic model elements ... 33

C.3 Stereotypes ... 42

C.4 Others ... 48

C.5 Qualifiers .. 51

C.6 UML diagram requirements ... 51

Annex D – Design .. 53

Annex E – Information type definitions – type repertoire ... 54

E.1 Basic types .. 54

E.2 Enumerated type ... 54

E.3 Complex types .. 54

E.4 Useful types .. 54

E.5 Keywords .. 55

iv Rec. ITU-T M.3020 (07/2017)

 Page

Annex F – Guidelines on IOC properties, inheritance and entity import 56

F.1 IOC property ... 56

F.2 Inheritance .. 57

F.3 Entity (interface, IOC and attribute) import ... 57

Annex G – Attribute Properties ... 58

Annex H – Design patterns .. 59

H.1 Intervening class and association class ... 59

H.2 Use of "ExternalXyz" class .. 64

Appendix I – Comparison with Recommendation ITU-T Z.601 ... 65

Appendix II – Additional UML usage examples ... 66

Appendix III – Guidelines on requirements numbering .. 68

Appendix IV – Stereotypes for naming purposes .. 69

Bibliography... 70

 Rec. ITU-T M.3020 (07/2017) 1

Recommendation ITU-T M.3020

Management interface specification methodology

1 Scope

This Recommendation describes the management interface specification methodology (MISM). It

describes the process to derive machine-machine interface specifications based on user

requirements, analysis and design (RAD). Guidelines are given on RAD using unified modelling

language (UML) notation; however, other interface specification techniques are not precluded. The

guidelines for using UML are described in this Recommendation. An interface specification

addresses management service(s) defined in [ITU-T M.3200] and/or supporting the management

processes defined in [ITU-T M.3050.x] series. Such a specification may support part of or one or

more management services. The management services comprise of management functions. These

functions may reference those defined in [ITU-T M.3400] or the processes defined in

[ITU-T M.3050.x] series, specialized to suit a specific managed area, or new functions may be

identified as appropriate.

The methodology is applicable to both the traditional manager/agent style of management interfaces

[ITU-T M.3010] and the service oriented architecture (SOA) principles adopted for the

management architecture of next generation networks [ITU-T M.3060].

2 References

The following ITU-T Recommendations and other references contain provisions which, through

reference in this text, constitute provisions of this Recommendation. At the time of publication, the

editions indicated were valid. All Recommendations and other references are subject to revision;

users of this Recommendation are therefore encouraged to investigate the possibility of applying the

most recent edition of the Recommendations and other references listed below. A list of the

currently valid ITU-T Recommendations is regularly published. The reference to a document within

this Recommendation does not give it, as a stand-alone document, the status of a Recommendation.

[ITU-T M.3010] Recommendation ITU-T M.3010 (2000), Principles for a telecommunications

management network.

[ITU-T M.3050.0] Recommendation ITU-T M.3050.0 (2007), Enhanced Telecom Operations

Map (eTOM) – Introduction.

[ITU-T M.3050.x] ITU-T M.3050.x (2007) series of Recommendations, Enhanced Telecom

Operations Map (eTOM).

[ITU-T M.3060] Recommendation ITU-T M.3060/Y.2401 (2006), Principles for the

Management of Next Generation Networks.

[ITU-T M.3200] Recommendation ITU-T M.3200 (1997), TMN management services and

telecommunications managed areas: overview.

[ITU-T M.3400] Recommendation ITU-T M.3400 (2000), TMN management functions.

[ITU-T Q.812] Recommendation ITU-T Q.812 (2004), Upper layer protocol profiles for the Q

and X interfaces.

[ITU-T X.680] Recommendation ITU-T X.680 (2015) | ISO/IEC 8824-1:2015, Information

technology – Abstract Syntax Notation One (ASN.1): Specification of basic

notation.

2 Rec. ITU-T M.3020 (07/2017)

[ITU-T X.681] Recommendation ITU-T X.681 (2015) | ISO/IEC 8824-2:2015, Information

technology – Abstract Syntax Notation One (ASN.1): Information object

specification.

[ITU-T X.501] Recommendation ITU-T X.501 (2016) | ISO/IEC 9594-2:2016, Information

technology – Open Systems Interconnection – The Directory: Models.

[ITU-T X.722] Recommendation ITU-T X.722 (1992) | ISO/IEC 10165-4:1992, Information

technology – Open Systems Interconnection – Structure of management

information: Guidelines for the definition of managed objects.

[ITU-T Z.100] Recommendation ITU-T Z.100 (2016), Specification and Description

Language (SDL) – Overview of SDL-2010.

[OMG UML1] Object Management Group (2011), Unified Modeling Language (OMG UML),

Infrastructure, Version 2.4.1.

[OMG UML2] Object Management Group (2011), Unified Modeling Language (OMG UML),

Superstructure, Version 2.4.1.

A list of non-normative references can be found in the Bibliography.

3 Definitions

3.1 Terms defined elsewhere

This Recommendation uses the following terms defined elsewhere:

3.1.1 user [ITU-T M.3010]

3.1.2 management service [ITU-T M.3010]

3.1.3 management function set [ITU-T M.3010]

3.1.4 activity diagram [OMG UML1]

3.1.5 actor [OMG UML1]

3.1.6 association [OMG UML1]

3.1.7 class [OMG UML1]

3.1.8 class diagram [OMG UML1]

3.1.9 classifier [OMG UML1]

3.1.10 collaboration diagram [OMG UML1]

3.1.11 composition [OMG UML1]

3.1.12 modelElement [OMG UML1]

3.1.13 sequence diagram [OMG UML1]

3.1.14 state diagram [OMG UML1]

3.1.15 stereotype [OMG UML1]

3.1.16 use case [OMG UML1]

3.1.17 reference point [ITU-T M.3060]

3.1.18 distinguished name [ITU-T X.501]

 Rec. ITU-T M.3020 (07/2017) 3

3.2 Terms defined in this Recommendation

This Recommendation defines the following terms:

3.2.1 agent: Encapsulates a well-defined subset of management functionality. It interacts with

managers using a management interface. From the manager's perspective, the agent behaviour is

only visible via the management interface.

NOTE – Considered equivalent to IRPAgent [b-3GPP TS 32.150].

3.2.2 information object class: Describes the information that can be passed/used in

management interfaces and is modelled using the stereotype "Class" in the UML meta-model. For a

formal definition of information object class and its structure of specification, see Annex B.

3.2.3 information service: Describes the information related to the entities (either network

resources or support objects) to be managed and the way that the information may be managed for a

certain functional area. Information services are defined for all IRPs.

NOTE – Considered identical to the definition of information service found in [b-3GPP TS 32.150].

3.2.4 information type: Specification of the type of input parameters of operations.

3.2.5 integration reference point: An architectural concept that is described by a set of

specifications for the definition of a certain aspect of the management interface, comprising a

requirements specification, an information service specification, and one or more solution set

specifications.

NOTE – Considered identical to the definition of IRP found in [b-3GPP TS 32.150].

3.2.6 lower camel case: It is the practice of writing compound words in which the words are

joined without spaces. Initial letter of all except the first word shall be capitalized. Examples:

'managedNodeIdentity' and 'minorDetails' are the lower camel case (LCC) for "managed node

identity" and "minor details" respectively.

3.2.7 management goals: High-level objectives of a user in performing management activities.

3.2.8 management interface: The realization of management capabilities between a manager

and an agent, allowing a single manager to use multiple agents and a single agent to support

multiple managers.

NOTE – Q, C2B/B2B and Itf-N (3GPP) are examples of management interfaces.

3.2.9 management role: Defines the activities that are expected of the operational staff or

systems that perform telecommunications management. Management roles are defined independent

of other components, i.e., telecommunications resources and management functions.

3.2.10 management scenario: A management scenario is an example of management interactions

from a management service.

3.2.11 manager: Models a user of agent(s) and it interacts directly with the agent(s) using

management interfaces.

Since the manager represents an agent user, it gives a clear picture of what the agent is supposed to

do. From the agent perspective, the manager behaviour is only visible via the management

interface.

NOTE – Considered equivalent to IRPManager [b-3GPP TS 32.150].

3.2.12 matching information: Specification of the type of a parameter (possibly reference to IOC

or attribute of IOC).

3.2.13 naming attribute: It is a class attribute that holds the class instance identifier.

NOTE – See examples of naming attribute in [b-3GPP TS 32.300].

4 Rec. ITU-T M.3020 (07/2017)

3.2.14 protocol-neutral specification: Defines the management interfaces in support of

management capabilities without concern for the protocol and information representation implied or

required by, e.g., CORBA and XML.

3.2.15 protocol-specific specification: Defines the management interfaces in support of

management capabilities for one specific choice of management technology (e.g., CORBA).

NOTE – Considered equivalent to solution set [b-3GPP TS 32.150].

3.2.16 telecommunications resources: Telecommunications resources are physical or logical

entities requiring management, using management services.

3.2.17 upper camel case: It is the lower camel case except that the first letter is capitalized.

Examples: 'ManagedNodeIdentity' and 'MinorDetails' are the upper camel case (UCC) for

"managed node identity" and "minor details" respectively.

3.2.18 well known abbreviation: An abbreviation can be used as the modelled element name or

as a component of a modelled element name. The abbreviation, when used in such manner, must be

documented in the same document where the modelled element is defined.

4 Abbreviations and acronyms

This Recommendation uses the following abbreviations and acronyms:

ADM Administrative (usage: requirements category)

ASN.1 Abstract Syntax Notation One

CM Conditional-Mandatory

CO Conditional-Optional

CON Conceptual (usage: requirements category)

CORBA Common Object Request Broker Architecture

DN Distinguished Name

FUN Functional (usage: requirements category)

GDMO Guidelines for the Definition of Managed Objects

IDL Interface Definition Language

IOC Information Object Class

IRP Integration Reference Point

IS Information Service

LCC Lower Camel Case

MCC Mobile Country Code

MISM Management Interface Specification Methodology

MNC Mobile Network Code

NE Network Element

NON Non-functional (usage: requirements category)

OO Object Oriented

OSI Open Systems Interconnection

RDN Relative Distinguished Name

SDL Specification and Description Language

 Rec. ITU-T M.3020 (07/2017) 5

SOA Service Oriented Architecture

SS Solution Set

SNC Sub Network Connection

TP Termination Point

TS Technical Specification

UCC Upper Camel Case

UML Unified Modelling Language

WKA Well Known Abbreviation

XML Extensible Markup Language

5 Conventions

Clause A.1 contains conventions applicable to the requirements phase.

Clause B.1 contains conventions applicable to the analysis phase.

6 Requirements for methodology and notational support

In developing the methodology and choosing a notation, the following requirements apply:

1) The methodology, including the choice of notation, shall support the capture of all the

relevant requirements of the problem space, namely telecommunications management.

2) The methodology facilitates the production of requirements, its corresponding

Analysis|Information Services and their corresponding Design Specifications|Solution Sets.

3) The notation shall facilitate unambiguous generation of the specification in the target

management protocol profile. The methodology does not address possible choices of

protocol services (e.g., CORBA Security Service).

NOTE – Management protocols applicable for ITU-T use are specified in [ITU-T Q.812].

4) The methodology shall allow specification of mandatory and optional items in all three

phases. It also specifies the relation of mandatory|optional items between the three phases.

5) It should be possible to generate, from the protocol-neutral specification (Analysis|IS),

interoperable language specific definitions, i.e., Design|SS (for example UML to interface

definition language (IDL), UML to GDMO/ASN.1).

7 Methodology

7.1 General considerations

The purpose of this methodology is to provide a description of the processes leading towards the

definition of machine-machine management interfaces.

7.2 Application and structure of the methodology

The management interface specification methodology (MISM) specifies a three-phase process with

features that allow traceability across the three phases. The three phases apply industry-accepted

techniques using object oriented analysis and design principles. The three phases are requirements,

analysis and design. The techniques should allow the use or development of commercially available

support tools. Different techniques may be used for the phases depending on the nature of the

problem.

6 Rec. ITU-T M.3020 (07/2017)

7.3 Detailed methodology

7.3.1 General

The requirements and analysis phases produce UML specifications. The design phase uses network

management paradigm specific notation. The outputs of the 3 phases are:

– Requirements phase – Requirements.

– Analysis phase – Implementation independent specification.

– Design phase – Technology specific specification.

Initially, the design phase will be developed using a manual or customized approach. When

interoperable protocol specific definition can be generated by tools, then UML notation can be

applied to the design phase.

The clauses below describe the three phases.

7.3.2 Requirements

The requirements for the problem being solved fall into two classes. The first class of requirements

is referenced here as business requirements. A subject matter expert on the topic shall be able to

determine that the requirements adequately represent the needs of the management problem being

solved. The second class is referred to as specification requirements. These requirements shall

provide sufficient details so that the interface definition in the analysis and design phases can be

developed. As final interface definitions must be traceable to the requirements, it may be necessary

to have interaction between the three phases. Any ambiguity in the requirements will have to be

resolved by this interaction to assure that an implementable specification can be developed.

Human-computer interface data may be specified in the second class of requirements. These

requirements may have great impact on concepts and data designed in the subsequent phases. For

more details, see Appendix I.

Different techniques may be used to specify the two classes of requirement. Irrespective of the

technique, the readability of the requirements is critical. The requirements themselves are not

required to be in a machine-readable notation as long as readability and traceability are possible.

Enumerating requirements is the recommended solution to delineate the different requirements for

traceability.

The requirements phase includes identifying aspects such as security policy, scope of the problem

domain in terms of the applications, resources, and roles assumed by the resources. The

requirements specify roles, responsibilities, and the relationships between the constituent entities for

the problem space. Different techniques, including textual representation, may be used to specify

the business level requirements. In order to facilitate traceability of these requirements to the design

and implementation phases, enumerating requirements is recommended.

The problem must be bounded with a specific scope. One way to determine the scope is by using

the management services identified in [ITU-T M.3200] and function sets identified in

[ITU-T M.3400]. Requirements are specified using the resources being managed and management

functions. An alternative to the management services approach is described in [ITU-T M.3050.x]

"enhanced Telecom Operations Map (eTOM)" which provides a business process based approach.

The relationship between the [ITU-T M.3200] and [ITU-T M.3050.x] approaches is described in

[ITU-T M.3050.0].

Management functions must be grouped and supported within applications that address specific

business needs, so the linkage between the eTOM processes, the [ITU-T M.3200] management

services, the [ITU-T M.3400] management function sets and management functions is important to

assist in making this grouping clear and effective. Augmenting [ITU-T M.3400] may be required in

order to meet the business requirements of the problem.

 Rec. ITU-T M.3020 (07/2017) 7

UML use cases and scenarios should be used to interact with subject matter experts in capturing the

business level requirements. The requirements should also identify the failure conditions visible to

the business process.

NOTE – It is not required that every requirement be expressed as a use case.

The requirements produced must be complete and detailed. The recursive nature of the

methodology is used to achieve this completeness. The completeness of the requirements (clear and

well-documented) drives the analysis and design phases.

Guidelines and template for requirement structure and identification are described in clause A.1.2.

Use cases are goals that are fulfilled through a sequence of steps. Each step can be considered as a

sub-goal of the use case. As such each step represents either another use case (subordinate use case)

or an autonomous action that is at the lowest level of the case decomposition.

Guidelines and template for use cases are described in clause A.1.2.

7.3.3 Analysis

In the analysis phase, the requirements are used to identify the interacting entities, their properties

and the relationships among them. This allows the interfaces offered by the entities to be defined. In

the UML notation, these entities become classes. The class descriptions along with the interfaces

exposed should be traceable to the requirements. The relationship among the classes, defined in the

analysis specification, and the classes in the design specification is not necessarily one to one.

This phase should take into account the needs of human-computer interface data (i.e., the

information model must contain sufficient information so that designs can be developed based on

the analysis results).

This Recommendation gives high-level guidance on the use of UML notation to support

management interface specification; however, Specification and Description Language (SDL)

[ITU-T Z.100] might be used to augment the UML definitions.

The analysis phase should be independent of design constraints. For example, the analysis may be

documented using object oriented (OO) principles even though the design may use a non-object-

oriented technology. The information specified in the analysis phase includes class descriptions,

data definitions, class relationships, interaction diagrams (sequence diagrams and/or collaboration

diagrams), state transition diagrams and activity diagrams. The class definitions include

specification of operations, notifications, attributes and behaviour captured as notes or textual

description.

Protocol-neutral common management services (if available) – or other existing services – should

be reused during the analysis phase in order to support management interface harmonization.

Guidelines and template for use cases are described in Annex A.

The analysis template uses information type as one characteristic to describe information object

class (IOC) attributes and operation/notification parameters. The valid information type(s) that can

be used and their semantics are defined in Annex E.

7.3.4 Design

7.3.4.1 General

In the design phase, an implementable interoperable interface specification is produced. This will

involve the selection of a target specification language. The design phase specifications are

dependent on the specific management paradigm (e.g., IDL for CORBA interfaces).

This phase distinguishes three kinds of specifications of data: management paradigm (e.g.,

extensible markup language (XML)) dependent design of data to be communicated across multiple

interfaces (e.g., fault and performance), messages (e.g., alarm report) to be communicated over each

8 Rec. ITU-T M.3020 (07/2017)

individual interface, and encoding method of the data (e.g., compressed XML) consistent with a

particular paradigm.

The selection of a specific management paradigm is addressed in other ITU-T Recommendations.

An overview is provided in the following clauses.

In the design phase, it is recommended that the UML descriptions from the requirements and

analysis phases be referenced to augment behavioural specification. For example, the behaviour

definition of guidelines for the definition of managed objects (GDMO) can reference state charts,

sequence diagrams and class definition in the analysis phase. If required, additional UML diagrams

describing interactions between entities, corresponding to specific protocol paradigms, may be

included.

As additional paradigms are adopted for use by management, the notations/languages defined by

these paradigms will be used.

7.3.4.2 CORBA

In the context of common object request broker architecture (CORBA) based management, the

information model is defined using IDL.

7.3.4.3 GDMO

In the context of the paradigm based on open systems interconnection (OSI) systems management

[ITU-T X.722], the design specification is the information model specification using GDMO

templates for managed object classes, attributes, behaviour, notifications, actions, naming instances

of the class, and error/exception specifications. The syntax of the information is specified using

Abstract Syntax Notation One (ASN.1) notation [ITU-T X.680].

In GDMO, the object class hierarchy specifies the properties of the object classes that are needed

for management. Extensive use of inheritance (super and subclasses) is needed to benefit the most

from the reuse of specifications. The object classes are specified using the templates from

[ITU-T X.722]. The templates defining the information model should be registered (according to

the rules of [ITU-T X.722]) with a value for the ASN.1 object identifier. For those object classes

that are already specified in other ITU-T Recommendations and ISO standards, only a reference to

the particular Recommendation and object class is needed. Naming is not a part, nor the purpose, of

the object class hierarchy.

7.3.4.4 XML

For further study.

8 Management interface specifications

A management interface specification includes the requirements, analysis and design specifications

discussed in clause 7. A structure for specifying these specifications is provided in Annexes A, B

and C.

These techniques and supporting notations are also applicable when designing a system to the

management interface specifications, even though system design is not considered as part of the

ITU-T management Recommendations. They assist in describing how the interface specifications

are applied in managing the resources within a system such as a network element (NE).

9 Traceability in MISM process

In order to achieve traceability between requirements, analysis and design, it is necessary that

appropriate identification be assigned. Traceability is supported through references between entities

specified within each phase and between phases. Traceability is from design|solution set to

analysis|information services and from analysis|information services to requirements. Traceability is

 Rec. ITU-T M.3020 (07/2017) 9

further applicable between artifacts of the requirements specification and between artifacts of the

analysis|information service, e.g., between use cases and textual requirements. Requirements should

be identified as described in clause 7.3.2. The analysis phase output specifies for the various use

cases further detailed information requirements. The design phase should point to the various

diagrams and text in the analysis phase output. The pointer may be in terms of a reference to the

appropriate clauses.

Traceability from the design phase to subject matter level requirements is usually indirect. This is

required because the output of the phases is defined to different level of details.

Guidelines for traceability between the requirements phase and the analysis phase are described in

Annex B.

The following mechanism for traceability with requirements, etc., specified in other documents

(possibly not following the advocated identification schema) is recommended:

 forum/body "::" document ID "::" id

where "id" could be one of:

1) requirement ID;

2) use case ID;

3) requirement title/text;

4) use case title;

5) subclause of the document which uniquely identifies a requirement or use case.

Examples:

3GPP::32.111-1::getAlarmList

ITU-T::M.3016::1.5.1.2

10 Documentation structure

Even though there are three phases, the documentation of the interface may combine their outputs

into one or more documents. It is recommended that the requirements and analysis be combined and

separate design documents are developed for each specific network management protocol paradigm.

10 Rec. ITU-T M.3020 (07/2017)

Annex A

Requirements

(This annex forms an integral part of this Recommendation.)

 A.1 Conventions

 A.1.1 Use of UML notation for requirements

 A.1.2 Use case template

 A.1.3 Requirements categories

 A.2 Requirements template

 1 Concepts and background

 2 Business level requirements

 2.1 Requirements

 2.2 Actor roles

 2.3 Telecommunication resources

 2.4 High-level use cases

 3 Specification level requirements

 3.1 Requirements

 3.2 Actor roles

 3.3 Telecommunication resources

 3.4 Use cases

 A.3 Simplified requirements template

 1 Concepts and background

 2 Requirements

The following are guidelines for specification of requirements.

The normal (or full format) requirements template is found in clause A.2. In addition, a simplified

requirements template is defined and found in clause A.3.

A.1 Conventions

A.1.1 Use of UML notation for requirements

Table A.1 identifies the correspondence between management concepts and UML notation. This

Recommendation specifies the high-level concepts and notations to be used in the different phases.

Stereotypes are used to extend UML notation. The approved stereotypes for use within the

management environment are included in this Recommendation (see Annex C).

 Rec. ITU-T M.3020 (07/2017) 11

Table A.1 – Requirements concepts

Management concept
UML

notation
Comment

user Actor A user is modelled as an actor.

management role Actor An actor plays a role. It is normally advisable to only model a

single role for each actor.

management function use case A management function is modelled by one or more use

cases.

management function set use case A management function set is a composite use case with each

management function (potentially) modelled as a separate use

case.

management service use case A management service is modelled as a high-level use case.

management scenario sequence

diagram

Sequence diagrams are preferred over collaboration

diagrams.

telecommunication

resource type

Class The class diagrams depict the property details of the

telecommunications resource type, at the level of detail

appropriate to the phase of the methodology.

management goals – Management goals are captured as textual descriptions as

there is no applicable UML notation.

A.1.2 Use case template

When use cases are provided, the conventions and templates in Table A.2 should be followed.

Table A.2 – Use case template

Use case stage Evolution/Specification
<<Uses>>

Related use

Goal(*) This is the objective/end result the use case strives to achieve and should

be a concise statement of what the use case should achieve in a

successful scenario.

There may be a statement about priority relative to other use cases and

required performance of the use case, e.g.:

• Real Time.

• Near real time.

• Not real time.

Actors and

roles(*)

The names of actors/roles involved in the use case including role

characteristic for each actor.

Telecom

resources

The names of the telecommunication resources involved in the use case.

Assumptions A description of the environment providing a context for the use case.

Assumptions are mutually exclusive to pre-conditions.

Assumptions are concerned with static properties.

Pre-conditions A list of all system and environment conditions that must be true before

the use case can be triggered.

Pre-conditions are mutually exclusive to assumptions.

Pre-conditions are related to dynamic properties and can result in an

exception. This is never the case with assumptions.

12 Rec. ITU-T M.3020 (07/2017)

Table A.2 – Use case template

Use case stage Evolution/Specification
<<Uses>>

Related use

Begins when The name of the single event that triggers the start of the use case.

Optional and normally not used to specify triggers such as "when the

manager must retrieve information".

Step 1(*) (M|O) A use case describes a list of steps (manual and automated) that are

necessary to accomplish the goal of the use case.

Steps may invoke other use cases.

Steps are numbered for traceability.

Each step is identified as being mandatory (M) or optional (O).

Sub-steps are identified relative to the containing step, e.g.:

Step n

Step n.1

Step n.2

where n.1 and n.2 are sub-steps of step n.

Reference to

a used use

case.

Step n (M|O) Steps added as necessary and in a logical sequence.

Ends when(*) The list of event(s) that indicates the use case completion.

NOTE – In this context, "event" should be considered in the most

general sense and not limited to, e.g., notifications exchanged across a

management interface. As an example, the completion of processing can

be considered an event that indicates completion of a use case.

Exceptions A summary list of exception conditions and faults detected by the use

case during its operation.

Post-conditions A list of all system and environmental conditions that must be true when

the use case has completed. The statement of post-conditions determines

if the use case is expected to be fully successful, partially successful or

even to have failed in order to be completed.

Traceability(*) Requirements or use case exposed by the use case.

NOTE – Fields marked with "*" are mandatory for all use case specifications. Other fields are only

mandatory when relevant for the specific use case.

A.1.3 Requirements categories

It is useful to classify requirements in different categories. The following categories are considered

relevant for MISM:

– Conceptual (CON) – Identifies a concept, data type, relationship, format, or structure.

– Functional (FUN) – Identifies a functional capability, dynamic situation, a sequence, timing

parameters, or an interaction.

– Non-functional (NON) – Non-functional requirements, including abnormal conditions,

error conditions and bounds of performance.

– Administrative (ADM) – System administration and operational requirements not related to

the use cases normal operations.

Requirements should be written based on the following template:

 REQ-Label-Category-Number {Category, number} Details {Source Citation}

where "Label" is an abbreviation for the Recommendation (or part thereof). The set of labels is not

finite and not subject for standardization.

 Rec. ITU-T M.3020 (07/2017) 13

Guidelines on requirements numbering can be found in Appendix III.

A.2 Requirements template

1 Concepts and background

Define major goals and objectives and the applicable management interfaces (and reference points) for

this specification. Use [ITU-T M.3200] categorization as a source for identifying the management

service(s) supported by this interface.

This subclause should give a clear description of the users' benefit, i.e., the reason for performing this

management service. Background and context should be added as necessary, but the explanatory and

descriptive parts should be separated. Supporting background information, where required, should be

placed in an appendix.

1.a SubClauseTitle

SubClauseTitle is the name of the subclause.

"a" represents a number, starting at 1 and increasing by 1 with each new subclause.

The use of subclauses is optional.

2 Business level requirements

2.1 Requirements

2.1.a SubSetTitle

SubSetTitle is the name of a sub-set of the business level requirements.

"a" represents a number, starting at 1 and increasing by 1 with each new sub-set.

The use of sub-sets is optional and all business level requirements can be stated in subclause 2.1

(requirements).

List major requirements in text, and identify use cases with actor/role and resources. The high-level use

cases (subclause 2.4 below) should bring out the business level requirements and are distinguished from

the specification requirements by not refining to lower levels. Clause 2.4 contains many examples of what

makes up the high-level use cases. Policy-related information (e.g., security, persistence) are candidates

for inclusion at this level. Numbering the requirements is required for traceability.

Requirements should be specified as described in clause A.1.3. Within a requirements specification, it is

suggested that requirements be written in the sequence of clause A.1.3 (either for the entire specification

or for each sub-set).

Use of requirements categories is optional, and – when used – a subset of the categories can be applied.

As an example, conceptual requirement number 23 in Recommendation tagged 'SM' would be specified as

follows:

Identifier Definition

REQ-SM-CON-23 A Service Order consists of a name, address, phone number, service

description and an optional FAX number for contacts {T1M1.5

Document 246 11/96}

One or more tables can be used with supportive text between tables as necessary.

2.2 Actor roles

A textual description of the actor (see clause 3) is included here.

14 Rec. ITU-T M.3020 (07/2017)

2.3 Telecommunication resources

Textual description of the relevant resources (see clause 3) required to support the use cases are

presented here.

2.4 High-level use cases

A high-level use case diagram may be presented. In order to understand the use case by subject matter

experts, they should be augmented with a textual description for each use case. The description should

serve two purposes: to capture the domain experts' knowledge and to validate the models in analysis and

design phases with respect to the requirements. An example of a high-level use case diagram is given in

Appendix I.

2.4.a UseCaseName

UseCaseName is the name of the use-case.

"a" represents a number, starting at 1 and increasing by 1 with each new definition of a use case.

This subclause is repeated for each high-level use case defined for the interface specification

requirements.

The high-level use cases may identify the various function sets defined in [ITU-T M.3400] or the

management processes defined in [ITU-T M.3050.x]. These use cases may be further refined as described

in the specification level requirement subclause below by using stereotypes such as "include" and

"extend".

If appropriate, sequence diagrams may be used. However, at the high-level requirements these diagrams

are not expected to be used. When the use cases at this level are further decomposed in the next level of

requirements, these diagrams may be more suitable.

The traceability of the next level of requirements from this level may be identified by how each function set

is further refined with new use cases.

A set of use case tables, using the template defined in Table A.2, may be used to represent the significant

capabilities studied at a level of abstraction appropriate to the problem being analysed.

The level of detail, and extent of coverage provided in the use cases is dependent upon the authoring

team's familiarity with the subject matter and is therefore subjective. The lower levels of details are most

likely an indication of analysis rather than requirements capture.

It is permitted to develop successively more detailed analysis of each step of a higher abstraction level use

case by referring to the more detailed use case in the table cell reserved for this purpose. It is emphasized

this does not have to be done, and is subjective depending upon the need of the author/group.

The following list is provided to aid the initial identification of suitable use cases:

– What is the main purpose of the system?

– What types of people/system need to interact with the system?

– How can these people/systems be grouped or abstracted to roles?

– What are the start up, normal running, failure and recovery aspects of the system?

– What types of reports or data may be needed from the system?

– Which special activities are required (e.g., based on times of day and network loads)?

It is useful to document use cases in a common manner. The following structure is suggested:

– <use case table> (see Table A.2)

– <optional sequence diagram(s)>

– <optional state chart(s)>

3 Specification level requirements

3.1 Requirements

The business level requirements are further refined here using management functions from

[ITU-T M.3400]. Since [ITU-T M.3400] is not exhaustive enough to address all management services for

all managed areas, it is expected that new functions will be required. The new functions should be

included in the requirements as described below.

3.1.a SubSetTitle

SubSetTitle represents the name of a subset of specification level requirements.

"a" represents a number, starting at 1 and increasing by 1 with each new sub-set.

 Rec. ITU-T M.3020 (07/2017) 15

The use of sub-sets is optional and all specification level requirements can be stated in subclause 3.1

(requirements).

List major detailed and concrete requirements in text, and identify use cases with actor/role and

resources. The use cases in subclause 3.4 should bring out specification level requirements with lower

level details and be more implementation-oriented compared to the business level use case requirements.

Numbering the requirements is required for traceability.

Requirements should be specified as described in clause A.1.3. Within a requirements specification, it is

suggested that requirements be written in the sequence of clause A.1.3 (either for the entire specification

or for each sub-set).

Use of requirements categories is optional, and – when used – a subset of the categories can be applied.

As an example, functional requirement number 33 in a Recommendation tagged 'OM' would be specified

as follows:

Identifier Definition

REQ-OM-FUN-33 A pending operation can be cancelled by the initiator.

One or more tables can be used with supportive text between tables as necessary.

Specification level requirements should follow the conventions and templates defined in clause A.1.

3.2 Actor roles

A list of all actors and textual description of actors not already defined in the business level requirements

is included here.

3.3 Telecommunication resources

A list of all passive resources and textual description of resources not already defined in the business level

requirements is presented here.

3.4 Use cases

The high-level use cases are further refined here using several specification level use cases, each of which

will be further explained in detail in a subclause as described below.

3.4.a UseCaseName

UseCaseName is the name of the use-case.

"a" represents a number, starting at 1 and increasing by 1 with each new definition of a use case.

If appropriate, sequence and state chart diagrams may be used.

NOTE – Guidelines and criteria for use of sequence diagrams and state chart diagrams are for further

study.

Use case specifications should follow the conventions and templates defined in clause A.1.

A.3 Simplified requirements template

The simplified requirements template is an alternative template for use in cases when only the

textual requirements are required. A separate template is defined to avoid ambiguity that would

result by adding options in the full-form template described in clause A.2.

16 Rec. ITU-T M.3020 (07/2017)

1 Concepts and background

Define major goals and objectives and the applicable management interfaces (and reference points) for this

specification. Use [ITU-T M.3200] categorization as a source for identifying the management service(s)

supported by this interface.

This clause should give a clear description of the users' benefit, i.e., the reason for performing this

management service. Background and context should be added as necessary, but the explanatory and

descriptive parts should be separated. Supporting background information, where required, should be

placed in an appendix.

1.a SubClauseTitle

SubClauseTitle is the name of the subclause.

"a" represents a number, starting at 1 and increasing by 1 with each new subclause.

The use of subclauses is optional.

2 Requirements

2.a SubSetTitle

SubSetTitle is the name of a sub-set of the business level requirements.

"a" represents a number, starting at 1 and increasing by 1 with each new sub-set.

The use of sub-sets is optional and all business level requirements can be stated in clause 2 (requirements).

List major requirements in text, and identify use cases with actor/role and resources. The use cases should

bring out high-level requirements and are distinguished from the specification requirements by not refining

to lower levels. Policy-related information (e.g., security, persistence) are candidates for inclusion at this

level. Numbering the requirements is required for traceability.

Requirements should be specified as described in clause A.1.3. Within a requirements specification, it is

suggested that requirements are written in the sequence of clause A.1.3 (either for the entire specification or

for each sub-set).

Use of requirements categories is optional, and – when used – a subset of the categories can be applied.

As an example, conceptual requirement number 23 in a Recommendation tagged 'SM' would be specified as

follows:

Identifier Definition

REQ-SM-CON-23 A Service Order consists of a name, address, phone number, service

description and an optional FAX number for contacts {T1M1.5

Document 246 11/96}

One or more tables can be used with supportive text between tables as necessary.

 Rec. ITU-T M.3020 (07/2017) 17

Annex B

Analysis

(This annex forms an integral part of this Recommendation.)

 B.1 Conventions

 B.1.1 Mandatory, optional and conditional qualifiers

 B.2 Analysis template

 1 Concepts and background

 1.a SubClauseTitle

 2 Model

 2.1 Imported and associated information entities

 2.1.1 Imported information entities and local labels

 2.1.2 Associated information entities and local labels

 2.2 Class diagram

 2.2.1 Relationships

 2.2.2 Inheritance

 2.3 Class definitions

 2.3.a InformationObjectClassName

 2.3.a.1 Definition

 2.3.a.2 Attributes

 2.3.a.3 Attribute constraints

 2.3.a.4 Notifications

 2.3.a.5 State diagram

 2.4 Attribute definitions

 2.4.1 Attribute properties

 2.4.2 Constraints

 2.5 Common notifications

 2.5.1 Alarm notifications

 2.5.2 Configuration notifications

 2.6 System state model

 3 Interface definition

 3.1 Class diagram representing interfaces

 3.2 Generic rules

 3.b Interface InterfaceName (supportQualifier)

 3.b.a Operation OperationName (supportQualifier)

 3.b.a.1 Definition

 3.b.a.2 Input parameters

 3.b.a.3 Output parameters

 3.b.a.4 Pre-condition

18 Rec. ITU-T M.3020 (07/2017)

 3.b.a.5 Post-condition

 3.b.a.6 Exceptions

 3.b.a.6.c exceptionName

 3.b.a.7 Constraints

 3.b.b Notification NotificationName (supportQualifier)

 3.b.b.1 Definition

 3.b.b.2 Input parameters

 3.b.b.3 Triggering event

 3.b.b.3.1 From state

 3.b.b.3.2 To state

 3.b.b.4 Constraints

 3.c Scenario

 B.3 IOC properties, inheritance and import

 B.3.1 Property

 B.3.2 Inheritance

 B.3.3 Import

The following are guidelines for specification of the results of the analysis phase.

The analysis template is based on the 3rd Generation Partnership Project (3GPP) information

service [b-3GPP TS 32.157] and augmented to meet additional requirements on the methodology

(e.g., traceability).

For a management interface specification, both subclauses 2.2 and 2.3 of "Analysis" template

indicated in clause B.2 shall be used. For an information model (e.g., a network resource model),

only subclause 2.2 shall be used.

The analysis template uses Information Type as one characteristic to describe IOC attributes and

operation/notification parameters. The valid Information Type(s) that can be used and their

semantics are defined in Annex E.

An example of the use of this template can be found in Appendix II.

The constructs "Analysis|Information Service" and "Design|Solution" sets are used to denote the

equivalent, but differently named, specifications developed by ITU-T and 3GPP.

B.1 Conventions

B.1.1 Mandatory, optional and conditional qualifiers

This clause defines a number of terms used to qualify the relationship between the

Analysis|Information service, the Design|Solution sets and their impact on the interface

implementations. The qualifiers defined in this clause are used to qualify agent behaviour only. This

is considered sufficient for the specification of the management interfaces.

Analysis specification|IS specifications define IOC attributes, interfaces, operations, notifications,

operation parameters and notification parameters. They can have the following support/read/write

qualifiers: M, O, CM, CO, C.

Definition of qualifier M (Mandatory):

• Used for items that shall be supported.

Definition of qualifier O (Optional):

• Used for items which may or may not be supported.

 Rec. ITU-T M.3020 (07/2017) 19

Definition of qualifier CM (Conditional-Mandatory):

• Used for items that are mandatory under certain conditions, specifically:

– All items having the support qualifier CM shall have a corresponding constraint

defined in the Recommendation|IS specification. If the specified constraint is met, then

the items shall be supported.

Definition of qualifier CO (Conditional-Optional):

• Used for items that are optional under certain conditions, specifically:

– All items having the support qualifier CO shall have a corresponding constraint defined

in the Recommendation|IS specification. If the specified constraint is met, then the

items may be supported.

Definition of qualifier C (SS-Conditional):

• Used for items that are only applicable for certain but not all Designs|Solutions sets (SSs).

Design|SS specifications define the SS-equivalents of the IOC attributes, operations, notifications,

operation parameters and notification parameters. These SS-equivalents can have the following

support/read/write qualifiers: M, O, CM and CO.

The mapping of the qualifiers of Analysis|IS-defined constructs to the qualifiers of the

corresponding SS-constructs is defined as follows:

• For qualifier M, O, CM and CO, each IS-defined item (operation and notification, input and

output parameter of operations, input parameter of notifications, information relationship

and information attribute) shall be mapped to its equivalent(s) in all SSs. Mapped

equivalent(s) shall have the same qualifier as the IS-defined qualifier.

• For qualifier C, each IS-defined item shall be mapped to its equivalent(s) in at least one SS.

Mapped equivalent(s) can have support qualifier M or O.

Table B.1 defines the semantics of qualifiers of the equivalents, in terms of support from the agent

perspective.

Table B.1 – Semantics for qualifiers used in Design|Solution sets

Mapped SS

equivalent
Mandatory Optional

Conditional-

Mandatory

(CM)

Conditional-

Optional (CO)

Mapped

notification

equivalent

The agent

shall

generate the

notification.

The agent may or may not

generate it.

The agent shall

generate this

notification if

the constraint

for this item is

satisfied.

The agent may

choose whether or

not to generate it. If

the agent chooses

to generate it, the

constraint for this

notification must

be satisfied.

Mapped

operation

equivalent

The agent

shall support

it.

The agent may or may not

support this operation. If the

agent does not support this

operation, the agent shall

reject the operation invocation

with a reason indicating that

the agent does not support this

operation. The rejection,

The agent shall

support this

operation if the

constraint for

this item is

satisfied.

The agent may

support this

operation if the

constraint for this

item is satisfied.

20 Rec. ITU-T M.3020 (07/2017)

Table B.1 – Semantics for qualifiers used in Design|Solution sets

Mapped SS

equivalent
Mandatory Optional

Conditional-

Mandatory

(CM)

Conditional-

Optional (CO)

together with a reason, shall

be returned to the manager.

Input parameter

of the mapped

operation

equivalent

The agent

shall accept

and behave

according to

its value.

The agent may or may not

support this input parameter.

If the agent does not support

this input parameter and if it

carries meaning (i.e., it does

not carry no-information

semantics), the agent shall

reject the invocation with a

reason (that it does not

support the parameter). The

rejection, together with the

reason, shall be returned to

the manager.

The agent shall

accept and

behave

according to its

value if the

constraint for

this item is

satisfied.

The agent may

accept and behave

according to its

value if the

constraint for this

item is satisfied.

Input parameter

of mapped

notification

equivalent

AND

output parameter

of mapped

operation

equivalent

The agent

shall supply

this

parameter.

The agent may supply this

parameter.

The agent shall

supply this

parameter if the

constraint for

this item is

satisfied.

The agent may

supply this

parameter if the

constraint for this

item is satisfied.

Mapped IOC

attribute

equivalent

The agent

shall support

it.

The agent may support it. The agent shall

support this

attribute if the

constraint for

this item is

satisfied.

The agent may

support this

attribute if the

constraint for this

item is satisfied.

B.2 Analysis template

1 Concepts and background

This clause should provide an introduction to the management interface specification analysis.

1.a SubClauseTitle

SubClauseTitle is the name of a subclause.

"a" represents a number, starting at 1 and increasing by 1 with each new subclause.

The use of subclauses is optional.

2 Model

This clause shall be used for all specifications (both management interface specifications and information

model only specifications).

2.1 Imported and associated information entities

2.1.1 Imported information entities and local labels

This subclause identifies a list of information entities (e.g., information object class, interface, attribute) that

have been defined in other specifications and that are imported in the present (target) specification. All

 Rec. ITU-T M.3020 (07/2017) 21

imported entities shall be treated as defined locally in the target specification. One usage for import is for

inheritance purpose.

Each element of this list is a pair (label reference, local label). The local label contains the name of the

information entity that appears in the target specification, and the entity name in the local label shall be kept

identical to the name defined in the original specification. The local label of imported information entities

can then be used throughout the specification instead of the label reference.

This information is provided in a table as shown below.

Label reference Local label

Guidelines on entity import as well as IOC properties and inheritance can be found in Annex F.

2.1.2 Associated information entities and local labels

This clause identifies a list of information entities (e.g., information object class, interface, attribute) that

have been defined in other specifications and that are associated with the information entities defined in the

present (target) specification. For the associated information entity, only its properties, attribute of an

instance of the associated information entity) used as associated information needs to be supported locally in

the target specification.

Each element of this list is a pair (label reference, local label). The label reference contains the name of the

original specification where the information entity is defined, the information entity type and its name. The

local label contains the name of the information entity that appears in the target specification. The local

label can then be used throughout the target specification instead of that which appears in the label

reference.

This information is provided in a table as shown below.

Label reference Local label

2.2 Class diagram

2.2.1 Relationships

This first set of diagrams represents all classes defined in this specification with all their relationships and

all their attributes, including relationships with imported and associated information entities (if any). These

diagrams shall contain information object class cardinalities (for associations as well as containment

relationships) and may also contain role names. These shall be UML compliant class diagrams (see also

Annex C).

Characteristics (relationships) of imported and associated information object classes need not be repeated in

the diagram.

Allowable classes are specified in Annex C.

Use this as the first paragraph: "This clause depicts the set of classes (e.g., IOCs) that encapsulates the

information relevant for this management specification. This clause provides an overview of the

relationships between relevant classes in UML. Subsequent clauses provide more detailed specification of

various aspects of these classes."

2.2.2 Inheritance

This second set of diagrams represents the inheritance hierarchy of all information object classes defined in

this specification. These diagrams do not need to contain the complete inheritance hierarchy but shall at

least contain the parent classes of all classes defined in the present document. By default, a class inherits

from the class "top".

Characteristics (attributes, relationships) of imported classes need not be repeated in the diagram.

NOTE 1 – Some inheritance relationships presented in subclause 2.2.2 can be repeated in subclause 2.2.1 to

enhance readability.

Use "This subclause depicts the inheritance relationships." as the first paragraph.

22 Rec. ITU-T M.3020 (07/2017)

2.3 Class definitions

Each class is defined using the following structure.

Inherited items (attributes, etc.) shall not be shown, as they are defined in the parent classes(es) and thus

valid for the subclass.

2.3.a InformationObjectClassName

InformationObjectClassName is the name of the information object class.

"a" represents a number, starting at 1 and increasing by 1 with each new definition of a class.

2.3.a.1 Definition

This subclause is written in natural language. This subclause refers to the class itself.

Optionally, information on traceability back to one or more requirements supported by this class

can be defined here, in the following form:

Referenced specification Requirement label Comment

2.3.a.2 Attributes

This clause presents the list of attributes, which are the manageable properties of the class.

Each attribute is characterised by some of the attribute properties (see Table C.1), i.e., supportQualifier,

isReadable, isWritable, isInvariant and isNotifyable.

The legal values and their semantics for attribute properties are defined in Annex C.

This information is provided in a table as shown below.

Attribute name
Support

qualifier
isReadable isWriteable

isInvariant
isNotifyable

The attributeName indicates the name of the attribute. An attributeName with an "*" sign indicates that this

attribute is a naming attribute that will be used in the DN/RDN naming tree. The value of the naming

attribute in each object instance shall be unique under its parent object instance.

In case there is one or more attributes related to role (see clause 2.10 of Annex C), the attributes related to

role shall be specified at the bottom of the table with a divider "Attribute related to role", as shown in the

following example:

Attribute name
Support

qualifier
isReadable isWriteable

isInvariant
isNotifyable

…

…

Attribute related to role

…

…

2.3.a.3 Attribute constraints

This clause presents constraints for the attributes, and one usage is to present the predicates for conditional

qualifiers (CM/CO).

This information is provided in a table as shown below.

Name Definition

This subclause shall state "None." when there is no attribute constraint to define.

 Rec. ITU-T M.3020 (07/2017) 23

2.3.a.4 Notifications

The <Notifications> subclause, for this class, presents one of the following options:

a) The class defines (and independent from those inherited) the support of a set of notifications that is identical to that

defined in clause 2.5. In such case, use "The common notifications defined in clause 2. 5 are valid for this class,

without exceptions or additions." as the lone sentence of this clause.

b) The class defines (and independent from those inherited) the support of a set of notifications that is a superset of

that defined in clause 2.5. In such case, use "The common notifications defined in clause 2.5 are valid for this class.

In addition, the following set of notification is also valid." as the lone paragraph of this clause. Then, define the

'additional' notifications in a table. See clause 2.5 for the notification table format.

c) The class defines (and independent from those inherited) the support of a set of notifications that is not identical to,

nor a superset of, that defined in clause 2.5. In such case, use "The common notifications defined in clause 2. 5 are

not valid for this class. The set of notifications defined in the following table is valid." as the lone paragraph of this

clause. Specify the set of notifications in a table. See clause 2.5 for the notification table format.

d) The class does not define (and independent from those inherited) the support of any notification. In such case, use

"There is no notification defined." as the lone sentence of this clause.

The notifications identified (options a-c above) in this subclause are notifications that can be emitted across

the management interface, where the "object class" and "object instance" parameters of the notification

header (see Note 2) of these notifications identify an instance of the IOC defined by the encapsulating

subclause (i.e., subclause 2.3.a).

The notifications identified (options a-c above) in this subclause may originate from implementation

object(s) whose identifier is mapped in the implementation, to the object instance identifier used over the

management interface may or may not be the same as that carried in the notification parameters "object

class" and "object instance". Hence, the identification of notifications in this subclause does not imply nor

identify those notifications as being originated from an instance of the class (or its direct or indirect derived

class) defined by the encapsulating subclause (i.e., subclause 2.3.a).

NOTE 1 – This clause shall state "This class does not support any notification." (see option-c) when there is

no notification defined for this class. (Note that if its parent class has defined some notifications, the

implementation of this class is capable of emitting those inherited defined notifications.)

NOTE 2 – The notification header is defined in the notification integration reference point (IRP) information

service [b-3GPP TS 32.302].

NOTE 3 – The qualifier of a notification, specified in Notification Table, indicates if an implementation can

generate a notification carrying the DN of the subject class. The qualifier of a notification, specified in a

management specification, indicates if an implementation of the management specification can generate

such notification in general.

A Manager can receive notification-XYZ that carries DN (the "object class" and "object instance") of class-

ABC instance if and only if:

1) The class-ABC Notification Table defines the notification-XYZ and

2) The class-ABC instance implementation supports this notification-XYZ and

3) A management interface defines the notification-XYZ and

4) The management interface implementation supports this notification-XYZ.

2.3.a.5 State diagram

This subclause contains state diagrams. A state diagram of an information object class defines permitted

states of this information object class and the transitions between those states. A state is expressed in terms

of individual attribute values or a combination of attribute values or involvement in relationships of the

information object class being defined. This shall be a UML compliant state diagram.

This subclause shall state "None." when there is no State diagram defined.

2.4 Attribute definitions

2.4.1 Attribute properties

It has a lone paragraph "The following table defines the properties of attributes that are specified in the

present document.".

24 Rec. ITU-T M.3020 (07/2017)

Each information attribute is defined using the following structure.

Inherited attributes shall not be shown, as they are defined in the parent class(es) and thus valid for this

class.

An attribute has properties (Table C.1). Some properties of an attribute are defined in 2.3.a.2 (e.g., Support

Qualifier). The remaining properties of an attribute (e.g., documentation, default value) are defined here.

The information is provided in a table. In case a) attributes of the same name are specified in more than one

class and b) the attributes have different properties, then the attribute names (first column) should be

prefixed with the class name followed by a period.

An example is given below:

Attribute Name Documentation and Allowed Values Properties

xyzId It identifies …

allowedValues …

type: Integer
multiplicity: …
isOrdered: …
isUnique: …
defaultValue: …

isNullable: False

In case there is one or more attributes related to role (see clause 2.10 of Annex C), the attributes related to

role shall be specified at the bottom of the table with a divider "Attribute related to role". See example

below.

Attribute Name Documentation and Allowed Values Properties

abc It identifies …

allowedValues …

type: Integer
multiplicity: …
isOrdered: …
isUnique: …
defaultValue: …

isNullable: False

Attribute Related to Role

aEnd It identifies …

allowedValues …

type: DN
multiplicity: …
isOrdered: …
isUnique: …
defaultValue: …
isNullable: False

This clause shall state "None." if there is no attribute to define.

2.4.2 Constraints

This clause indicates whether there are any constraints affecting attributes. Each constraint is defined by a

tuple (propertyName, affected attributes, propertyDefinition). PropertyDefinitions are expressed in natural

language.

This information is provided in a table as shown below.

Name Affected attribute(s) Definition

This subclause shall state "None." if there is no constraint.

 Rec. ITU-T M.3020 (07/2017) 25

2.5 Common notifications

This clause presents a list of notifications that can be referred to by any class defined in the specification.

This information is provided in a table as shown below.

Name Qualifier Notes

This subclause shall state "None." if there are no common notifications.

2.5.1 Alarm notifications

The following quoted text shall be copied as the only paragraph of this clause.

"This clause presents a list of notifications, defined in [x], that a manager can receive. The notification

header attribute objectClass/objectInstance, defined in [y], shall capture the DN of an instance of a class

defined in this specification."

The information is provided in a table as shown below.

Name Qualifier Notes

2.5.2 Configuration notifications

The following quoted text shall be copied as the only paragraph of this clause.

"This clause presents a list of notifications, defined in [x], that IRPManager can receive. The notification

header attribute objectClass/objectInstance, defined in [z], shall capture the DN of an instance of a class

defined in this specification."

The information is provided in a table as shown below.

Name Qualifier Notes

2.6 System state model

Some configurations of information are special or complex enough to justify the usage of a state diagram to

clarify them. A state diagram in this subclause defines permitted states of the system and the transitions

between those states. A state is expressed in terms of a combination of attribute values constraints or

involvement in relationships of one or more information object classes.

3 Interface definition

This clause shall be used for all management interface specifications and optional for information model

only specifications.

26 Rec. ITU-T M.3020 (07/2017)

3.1 Class diagram representing interfaces

Each interface is defined in one or more UML-compliant class diagrams (see also Annex C).

3.2 Generic rules

The following rules are relevant to all specifications. They shall simply be copied as part of the specification.

Rule 1: Each operation with at least one input parameter supports a pre-condition valid_input_parameter

which indicates that all input parameters shall be valid with regard to their information type. Additionally,

each such operation supports an exception operation_failed_invalid_input_parameter which is raised when

pre-condition valid_input_parameter is false. The exception has the same entry and exit state.

Rule 2: Each operation with at least one optional input parameter supports a set of pre-conditions

supported_optional_input_parameter_xxx where "xxx" is the name of the optional input parameter and the

pre-condition indicates that the operation supports the named optional input parameter. Additionally, each

such operation supports an exception operation_failed_unsupported_optional_input_parameter_xxx which

is raised when (a) the pre-condition supported_optional_input_parameter_xxx is false and (b) the named

optional input parameter is carrying information. The exception has the same entry and exit state.

Rule 3: Each operation shall support a generic exception operation_failed_internal_problem which is raised

when an internal problem occurs and that the operation cannot be completed. The exception has the same

entry and exit state.

NOTE – Security considerations and resulting generic rules are for further study.

3.b Interface InterfaceName (supportQualifier)

InterfaceName is the name of the interface followed by a qualifier indicating whether the interface is

Mandatory (M), Optional (O), Conditional-Mandatory (CM), Conditional-Optional (CO), or SS-Conditional

(C) (see also clause B.1).

"b" represents a number, starting at 3 and increasing by 1 with each new definition of an interface.

Each interface is defined by its name and by a sequence of operations or notifications.

If the interface is related to operation(s), the following subclause 3.b.a "Operation OperationName

(supportQualifier)" shall be applied.

If the interface is related to notification(s), subclause 3.b.b "Notification NotificationName

(supportQualifier)" below shall be applied.

3.b.a Operation OperationName (supportQualifier)

OperationName is the name of the operation followed by a qualifier indicating whether the operation is

Mandatory (M), Optional (O), Conditional-Mandatory (CM), Conditional-Optional (CO), or SS-Conditional

(C) (see clause B.1).

"a" represents a number, starting at 1 and increasing by 1 with each new definition of an operation.

3.b.a.1 Definition

This subclause is written in natural language.

Information on traceability back to one or more requirements supported by this operation should also be

defined here, in the following form:

 Rec. ITU-T M.3020 (07/2017) 27

Reference Requirements label Comment

3.b.a.2 Input parameters

List of input parameters of the operation. Each element is a tuple (Parameter Name, Support Qualifier,

Information Type (see Annex E and Note in clause E.2) and an optional list of Legal Values supported by the

parameter, Comment). Legal values for the Support Qualifier are: Legal Values for the Support Qualifier

are: Mandatory (M), Optional (O), Conditional-Mandatory (CM), Conditional-Optional (CO), or SS-

Conditional (C) (see also in clause B.1).

This information is provided in a table as shown below.

Parameter Name
Support

Qualifier

Information Type/

Legal Values
Comment

NOTE – Information Type qualifies the parameter of Parameter Name. In the case where the Legal Values

can be enumerated, each element is a pair (Legal Value Name, Legal Value Semantics), unless a Legal

Value Semantics applies to several values in which case the definition is provided only once. When the Legal

Values cannot be enumerated, the list of Legal Values is defined by a single definition.

3.b.a.3 Output parameters

List of output parameters of the operation. Each element is a tuple (Parameter Name, Support Qualifier,

Matching Information / Information Type (see Annex E and Note in clause E.2) and an optional list of Legal

Values supported by the parameter, Comment). Legal values for the Support Qualifier are: Mandatory (M),

Optional (O), Conditional-Mandatory (CM), Conditional-Optional (CO), or SS-Conditional (C) (see also

clause B.1).

This information is provided in a table as shown below.

Parameter name
Support

qualifier

Matching information/

Information type/

Legal values

Comment

NOTE – Information Type qualifies the parameter of Parameter Name. In the case where the Legal Values

can be enumerated, each element is a pair (Legal Value Name, Legal Value Semantics), unless a Legal

Value Semantics applies to several values, in which case the definition is provided only once. When the

Legal Values cannot be enumerated, the list of Legal Values is defined by a single definition.

This table shall also include a special 'parameter status' to indicate the completion status of the operation

(success, partial success, failure reason, etc.).

3.b.a.4 Pre-condition

A pre-condition is a collection of assertions joined by AND, OR, and NOT logical operators. The pre-

condition must be held to be true before the operation is invoked. An example is given here below:
notificationCategoriesNotAllSubscribed OR

28 Rec. ITU-T M.3020 (07/2017)

notificationCategoriesParameterAbsentAndNotAllSubscribed

Each assertion is defined by a pair (name, definition). All assertions constituting the pre-condition are

provided in a table as shown below.

Assertion name Definition

notificationCate

goriesNotAllSubs

cribed

At least one notificationCategory identified in the

notificationCategories input parameter is supported by

IRPAgent and is not a member of the

ntfNotificationCategorySet attribute of an

NtfSubscription which is involved in a subscription relationship

with the NtfSubscriber identified by the managerReference

input parameter.

notificationCate

goriesParameterA

bsentAndNotAllSu

bscribed

The notificationCategories input parameter is absent and at

least one notificationCategory supported by IRPAgent is not

a member of the ntfNotificationCategorySet attribute of an

ntfSsubscription which is involved in a subscription relationship

with the NtfSubscriber identified by the managerReference

input parameter.

3.b.a.5 Post-condition

A post-condition is a collection of assertions joined by AND, OR, and NOT logical operators. The

post-condition must be held to be true after the completion of the operation. When nothing is said in a post-

condition regarding an information entity, the assumption is that this information entity has not changed

compared to what is stated in the pre-condition. An example is given here below:

subscriptionDeleted OR allSubscriptionDeleted

Each assertion is defined by a pair (name, definition). All assertions constituting the post-condition are

provided in a table as shown below.

Assertion name Definition

subscriptionDele

ted
The ntfSubscription identified by subscriptionId input

parameter is no more involved in a subscription relationship with the

ntfSubscriber identified by the managerReference input

parameter and has been deleted. If this ntfSubscriber has no more

ntfSubscription, it is deleted as well.

allSubscriptionD

eleted

In the case subscriptionId input parameter was absent, the

ntfSubscriber identified by the managerReference input

parameter is no longer involved in any subscription relationship and is

deleted, the corresponding ntfSubscription have been deleted as

well.

3.b.a.6 Exceptions

List of exceptions that can be raised by the operation. Each element is a tuple (exceptionName, condition,

ReturnedInformation, exitState).

3.b.a.6.c exceptionName

ExceptionName is the name of an exception.

"c" represents a number, starting at 1 and increasing by 1 with each new definition of an exception.

 Rec. ITU-T M.3020 (07/2017) 29

This information is provided in a table as shown below.

Exception name Definition

 Condition

Return info

Exit state

 Condition

Return info

Exit state

3.b.a.7 Constraints

This subclause presents constraints for the operation or its parameters.

NOTE – This subclause does not need to be present when there are no constraints to be defined.

3.b.b Notification NotificationName (supportQualifier)

NotificationName is the name of the notification followed by a qualifier indicating whether the notification is

Mandatory (M), Optional (O), Conditional-Mandatory (CM), Conditional-Optional (CO) or SS-Conditional

(C) (see clause B.1).

"b" represents a number, starting at 1 and increasing by 1 with each new definition of a notification.

3.b.b.1 Definition

This subclause is written in natural language.

Information on traceability back to one or more requirements supported by this notification should also be

defined here, in the following form:

Reference Requirement label Comment

3.b.b.2 Input parameters

List of input parameters of the notification. Each element is a tuple (Parameter Name, Qualifiers, Matching

Information/Information Type (see Annex E and Note in clause E.2) and an optional list of Legal Values

supported by the parameter, Comment).

The column "Qualifiers" contains the two qualifiers, Support Qualifier (see clause B.1) and Filtering

Qualifier, separated by a comma. The Filtering Qualifier indicates whether the parameter of the notification

can be filtered or not. Values are Yes (Y) or No (N).

This information is provided in a table as shown below.

30 Rec. ITU-T M.3020 (07/2017)

Parameter name Qualifiers

Matching information/

Information type/

Legal values

Comment

alarmType M,Y AlarmInformation.eventType /

ENUMERATED /

"Communications Alarm": a

communication error alarm.

"Processing Error Alarm": a

processing error alarm.

"Environmental Alarm": an

environmental violation

alarm.

"Quality Of Service Alarm": a

quality of service violation

alarm.

"Equipment Alarm": an

alarm related to

equipment malfunction.

NOTE – Information Type qualifies the parameter of Parameter Name. In the case where the Legal Values

can be enumerated, each element is a pair (Legal Value Name, Legal Value Semantics), unless a Legal

Value Semantics applies to several values, in which case the definition is provided only once. When the

Legal Values cannot be enumerated, the list of Legal Values is defined by a single definition.

3.b.b.3 Triggering event

The triggering event for the notification to be sent is the transition from the information state defined by the

"from state" subclause to the information state defined by the "to state" subclause.

3.b.b.3.1 From state

This subclause is a collection of assertions joined by AND, OR, and NOT logical operators. An example is

given here below:
alarmMatched AND alarmInformationNotCleared

Each assertion is defined by a pair (name, definition). All assertions constituting the state "from state" are

provided in a table as shown below.

Assertion name Definition

3.b.b.3.2 To state

This subclause is a collection of assertions joined by AND, OR and NOT logical operators. When nothing is

said in a to-state regarding an information entity, the assumption is that this information entity has not

changed compared to what is stated in the from state.

Each assertion is defined by a pair (name, definition). All assertions constituting the state "to state" are

provided in a table as shown below.

Assertion name Definition

3.b.b.4 Constraints

This subclause presents constraints for the notification or its parameters.

NOTE – This subclause does not need to be present when there are no constraints to be defined.

 Rec. ITU-T M.3020 (07/2017) 31

3.c Scenario

This subclause contains one or more sequence diagrams, each describing a possible scenario. These shall be

UML-compliant sequence diagrams. This is an optional subclause.

B.3 IOC properties and inheritance

B.3.1 Property

The following guidelines are based on Annex G of [b-3GPP TS 32.150].

The properties of an IOC (excluding Support IOC) are specified in terms of the following:

a) An IOC attribute(s) including its semantics and syntax, its legal value ranges and support

qualifications. The IOC attributes are not restricted to Configuration Management but also

include those related to, for example, 1) Performance Management (i.e., measurement

types), 2) Trace Management and 3) Accounting Management.

b) The non-attribute-specific behaviour associated with an IOC (see Note 1).

NOTE 1 – As an example, the Link between A and B is optional. It is mandatory if the A instance

belongs to one ManagedElement instance while the B instance belongs to another ManagedElement

instance. This Link behaviour is a non-attribute-specific behaviour. It is expected that this

behaviour, like others, will be inherited.

c) An IOC relationship(s) with another IOC(s).

d) An IOC notification type(s) and their qualifications.

e) An IOC's relation with its parents (see Note 2). There are three mutually exclusive cases:

1) The IOC is abstract and no parents have yet been designated.

2) The IOC is abstract and all of the possible parent(s) have been designated and whether

subclass IOCs can be designated as a root IOC.

3) The IOC is not abstract and all of the possible parent(s) have been designated and

whether the IOC can be designated as a root IOC.

An IOC instance is either a root IOC or it has one and only one parent.

NOTE 2 – The parent and child relation in this subclause is the parent name-containing the child

relation.

f) An IOC's relation with its children. There are three mutually exclusive cases:

1) An IOC shall not have any children (name-containment relation) IOCs.

2) An IOC can have children IOC(s). The maximum number of instances per children

IOC can be specified. An IOC may designate that vendor-specific objects are not

allowed as children IOCs.

3) An IOC can only have the specific children IOC(s) (or their subclasses). The maximum

number of instances per children IOC can be specified. An IOC may designate that

vendor-specific objects are not allowed as children IOCs.

g) Whether An IOC can be instantiated or not (i.e., whether an IOC is an abstract IOC).

h) An attribute for naming purpose.

B.3.2 Inheritance

The following guidelines are based on Annex G of [b-3GPP TS 32.150].

An IOC (the subclass) inherits from another IOC (the superclass) in that the subclass shall have all

the properties of the superclass.

32 Rec. ITU-T M.3020 (07/2017)

The subclass can change the inherited support-qualification(s) from optional to mandatory but not

vice versa. The subclass can change the inherited support-qualification from conditional-optional to

conditional-mandatory but not vice versa.

An IOC can be a superclass of many IOC(s). A subclass cannot have more than one superclass.

The subclass can:

a) Add (compared to those of its superclass) unique attributes including their behaviour, legal

value ranges and support-qualifications. Each additional attribute shall have its own unique

attribute name (among all added and inherited attributes).

b) Add non-attribute behaviour on an IOC basis. This behaviour may not contradict inherited

superclass behaviour.

c) Add relationship(s) with IOC(s). Each additional relationship shall have its own unique

name (among all added and inherited relations).

d) Add additional notification types and their qualifications.

e) Designate all of the possible parent(s) (and their subclasses) if the superclass has

Property-e-1 such that an IOC will have Property-e-2 or Property-e-3. Restrict possible

parent(s) (and their subclasses) and/or remove the capability of the subclass from being a

root IOC, if the superclass has Property-e-2 or Property-e-3.

f) Add children IOC(s) if the superclass has Property-f-2 such that an IOC will have

Property-f-3. Restrict the allowed children IOC(s) (or their subclasses) if the superclass has

Property-f-3.

g) Specify whether an IOC can be instantiated or not (i.e., the IOC is an abstract IOC).

h) Restrict the legal value range of a superclass attribute that has a legal value range.

B.3.3 Import

The following guidelines are based on Annex I of [b-3GPP TS 32.150].

To facilitate re-use of entity definitions among IRP specifications, an import mechanism is used.

When an IRP specification (the subject IRP specification) imports an entity defined in another IRP

specification, the subject IRP specification is considered to have defined the imported entity in its

specification. Furthermore, the subject IRP specification cannot change the properties of this

imported entity. If it requires an entity that is not identical but similar to the imported entity,

it should define a new entity that inherits the imported entity and introduce changes in the new

entity definition.

 Rec. ITU-T M.3020 (07/2017) 33

Annex C

MISM UML repertoire

(This annex forms an integral part of this Recommendation.)

The following are guidelines for specification of the results of the analysis phase as based on 3GPP

unified modelling language (UML) repertoire [b-3GPP TS 32.156].

C.1 Introduction

UML provides a rich set of concepts, notations and model elements to model distributed systems.

Usage of all UML notations and model elements is not necessary for the purpose of analysis

specifications. This annex documents the necessary and sufficient set of UML notations and model

elements, including the ones built by the UML extension mechanism <<stereotype>>, for use by

development of protocol-neutral specifications. Collectively, this set of notations and model

elements is called the UML modelling repertoire.

Recommendations following the methodology shall employ the UML notation and model elements

of this repertoire and may also employ other UML notation and model elements considered

necessary.

C.2 Basic model elements

C.2.1 General

UML has defined a number of basic model elements. This clause lists the selected subset for use in

specifications based on the repertoire. The semantics of these selected basic model elements are

defined in [OMG UML1].

For each basic model element listed, there are three parts. The first part contains its description. The

second part contains its graphical notation examples and the third part contains the rule, if any,

recommended for labelling or naming it.

The graphical notation has the following characteristics:

a) Subclause 7.2.7 of [OMG UML2] specifies "A class is often shown with three

compartments. The middle compartment holds a list of attributes while the bottom

compartment holds a list of operations" and "Additional compartments may be supplied to

show other details". This repertoire only allows the use of the name (top) compartment and

attribute (middle) compartment. The operation (bottom) compartment may be present but is

always empty, as shown in the figure below.

b) Classes may or may not have attributes. The graphical notation of a class may show an

empty attribute (middle) compartment even if the class has attributes, as shown in figure

below.

34 Rec. ITU-T M.3020 (07/2017)

c) The visibility symbol shall not appear along with the class attribute, as shown below.

d) The use of the decoration, i.e., the symbol in the name (top) compartment, is optional.

C.2.2 Attribute

C.2.2.1 Description

It is a typed element representing a property of a class. See 10.2.5 Property of [OMG-UML1].

An element that is typed implies that the element can only refer to a constrained set of values.

See 10.1.4 Type of [OMS-UML1] for more information on type.

See clauses C.3.5 and C.4.3 for predefined data types and user-defined data types that can apply

type information to an element.

Table C.1 captures the properties of this modelled element.

Table C.1 – Attribute properties

Property name Description Legal values

documentation Contains a textual description of the attribute.

Should refer (to enable traceability) to the specific

requirement.

Any

isOrdered For a multi-valued multiplicity; this specifies if the values of

this attribute instance are sequentially ordered. See section

7.3.44 and its Table 7.1 of [OMG-UML2].

True, False (default)

isUnique For a multi-valued multiplicity, this specifies if the values of

this attribute instance are unique (i.e., no duplicate attribute

values). See section 7.3.44 and its Table 7.1 of [OMG-

UML2].

True (default), False

isReadable Specifies that this attribute can be read by the manager. True (default), False

isWritable Specifies that this attribute can be written by the manager

under the conditions specified in Annex G.

True, False (default)

type Refers to a predefined (see clause C.4.3) or user defined data

type (see clause C.3.5. See also section 7.3.44 of

[OMG-UML2]; inherited from StructuralFeature.

NA

isInvariant Attribute value is set at object creation time and cannot be

changed under the conditions specified in Annex G.

True, False (default)

allowedValues Identifies the values the attribute can have. Dependent on type

isNotifyable Identifies if a notification shall be sent in case of a value

change.1,2

True (default), False

defaultValue Identifies a value at specification time that is used at object

creation time under conditions defined in Annex G.

No value (default) or

a value that is

dependent on

allowedValues

 Rec. ITU-T M.3020 (07/2017) 35

Table C.1 – Attribute properties

Property name Description Legal values

multiplicity Defines the number of values the attribute can simultaneously

have. See section 7.3.44 of [OMG-UML2]; inherited from

StructuralFeature.

See clause C.2.9

Default is 1

isNullable Identifies if an attribute can carry no information. The

implied meaning of carrying "no information" is context

sensitive and is not defined in this Model Repertoire.

True, False (default)

supportQualifier Identifies the required support of the attribute. See also

section 7.

M, O (default), CM,

CO, C

NOTE 1 – Whether a client/manager can receive the notification depends on a) if the client/manager has

subscribed or registered for reception of such notification and b) if a notification mechanism is supported.

NOTE 2 – If the attribute is a role-attribute and its property passedById is 'False', then changes in the

navigable association target end instance alone shall not trigger a notification.

C.2.2.2 Example

This example shows three attributes, i.e., a, b and c, listed in the attribute (the second)

compartment of the class Xyz.

Figure C.1 – Attribute notation

C.2.2.3 Name style

An attribute name shall use the LCC style.

Well known abbreviation (WKA) is treated as a word if used in a name. However, WKA shall be

used as is (its letter case cannot be changed) except when it is the first word of a name; and if so, its

first letter must be in lower case.

C.2.3 Association relationship

C.2.3.1 Description

It shows a relationship between two classes and describes the reasons for the relationship and the

rules that might govern that relationship.

It has ends. Its end, the association end(s), specifies the role that the object at one end of a

relationship performs. Each end of a relationship has properties that specify the role (see

clause C.2.10), multiplicity (see clause C.2.9), visibility and navigability (see the arrow symbol

used in Figure C.3 – Unidirectional association relationship notation) and may have constraints.

Note that visibility shall not be used in models based on this Repertoire (see paragraph 3 of

clause C.2.1).

See 7.3.3 Association of [OMG-UML2].

The three examples given in Figures C.2 to C.4 show a binary association between two model

elements. The association can include the possibility of relating a model element to itself.

The first example (Figure C.2) shows a bidirectional navigable association in that each model

element has a pointer to the other. The second example (Figure C.3) shows a unidirectional

36 Rec. ITU-T M.3020 (07/2017)

association (shown with an open arrow at the target model element end) in that only the source

model element has a pointer to the target model element and not vice-versa. The third example

(Figure C.4) shows a bidirectional non-navigable association in that each model element does not

have a pointer to the other; i.e., such associations are just for illustration purposes.

C.2.3.2 Example

An association shall have an indication of cardinality (see clause C.2.9).

It shall, except the case of non-navigable association, have an indication of the role name (see

clause C.2.10). The model element involved in an association is said to be "playing a role" in that

association. The role has a name such as +class3 in the first example below. Note that the "+"

character in front of the role name, indicating the visibility, is ignored.

Figure C.2 – Bidirectional association relationship notation

Figure C.3 – Unidirectional association relationship notation

Figure C.4 – Non-navigable association relationship notation

Note that some tools do not use arrows in the UML graphical representation for bidirectional

associations. Therefore, absence of arrows is not, but absence of role names is, an indication of a

non-navigable association.

C.2.3.3 Name style

An Association can have a name. The use of Association name is optional. Its name style is UCC

style.

A role name shall use the LCC style.

C.2.4 Aggregation association relationship

C.2.4.1 Description

It shows a class as a part of or subordinate to another class.

An aggregation is a special type of association in which objects are assembled or configured

together to create a more complex object. Aggregation protects the integrity of an assembly of

objects by defining a single point of control called aggregate, in the object that represents the

assembly.

 Rec. ITU-T M.3020 (07/2017) 37

See 7.3.2 AggregationKind (from Kernel) of [OMG-UML2].

C.2.4.2 Example

Figure C.5 shows that a hollow diamond attached to the end of a relationship is used to indicate an

aggregation. The diamond is attached to the class that is the aggregate. The aggregation association

shall have an indication of cardinality at each end of the relationship (see clause C.2.9).

Figure C.5 – Aggregation association relationship notation

C.2.4.3 Name style

An Association can have a name. Use of Association name is optional. Its name style is UCC.

C.2.5 Composite aggregation association relationship

C.2.5.1 Description

A composite aggregation association is a strong form of aggregation that requires a part instance be

included in at most one composite at a time. If a composite is deleted, all of its parts are deleted as

well.

A composite aggregation shall contain a description of its use.

See 7.3.3 Association (from Kernel) of [OMG-UML2].

C.2.5.2 Example

A filled diamond attached to the end of a relationship (see Figure C.6) is used to indicate a

composite aggregation. The diamond is attached to the class that is the composite. The composition

association shall have an indication of cardinality at each end of the relationship (see clause C.2.9).

Figure C.6 – Composite aggregation association relationship notation

C.2.5.3 Name style

An Association can have a name. The use of Association name is optional. Its name style is UCC.

C.2.6 Generalization relationship

C.2.6.1 Description

Generalization indicates a relationship in which one class (the child) inherits from another class (the

parent).

See 7.3.20 Generalization of [OMG-UML2].

C.2.6.2 Example

The example in Figure C.7 shows a generalization relationship between a more general model

element (the IRPAgent) and a more specific model element (the IRPAgentVendorA) that is

fully consistent with the first element and that adds additional information.

38 Rec. ITU-T M.3020 (07/2017)

Figure C.7 – Generalization relationship notation

C.2.6.3 Name style

Generalization has no name, so there is no name style.

C.2.7 Dependency relationship

C.2.7.1 Description

A dependency is a relationship that signifies that a single or a set of model elements requires other

model elements for their specification or implementation. This means that the complete semantics

of the depending elements is either semantically or structurally dependent on the definition of the

supplier element(s)...", an extract from 7.3.12 Dependency of [OMG-UML2].

C.2.7.2 Example

The example in Figure C.8 shows that the BClass instances have a semantic relationship with the

AClass instances. It indicates a situation in which a change to the target element (the AClass in

the example) will require a change to the source element (the BClass in the example) in the

dependency.

Figure C.8 – Dependency relationship notation

C.2.7.3 Name style

A Dependency can have a name. Use of Dependency name is optional. Its name style is UCC.

C.2.8 Comment

C.2.8.1 Description

A comment is a textual annotation that can be attached to a set of elements.

See 7.3.9 Comment (from Kernel) from [OMG-UML2].

C.2.8.2 Example

The example in Figure C.9 shows a comment as a rectangle with a "bent corner" in the upper right

corner. It contains text. It appears on a particular diagram and may be attached to zero or more

modelling elements by dashed lines.

 Rec. ITU-T M.3020 (07/2017) 39

Figure C.9 – Comment notation

C.2.8.3 Name style

Comment notations have no name so there is no name style.

C.2.9 Multiplicity (also known as cardinality in relationships)

C.2.9.1 Description

"A multiplicity is a definition of an inclusive interval of non-negative integers beginning with a

lower bound and ending with a (possibly infinite) upper bound. A multiplicity element embeds this

information to specify the allowable cardinalities for an instantiation of this element…", an extract

from 7.3.32 MultiplicityElement of [OMG-UML2].

Table C.2 – Multiplicity-string definitions

Multiplicity Explanation

1 Attribute has one attribute value

m Attribute has m attribute values

0..1 Attribute has zero or one attribute value

0..* Attribute has zero or more attribute values

* Attribute has zero or more attribute values

1..* Attribute has at least one attribute value

m..n Attribute has at least m but no more than n attribute values

The use of "0..n" and "0..*" is not recommended although it has the same meaning as "*".

The use of a standalone symbol zero (0) is not allowed.

C.2.9.2 Example

Figure C.10 shows a multiplicity attached to the end of an association path. The meaning of this

multiplicity is one to many. One Network instance is associated with zero, one or more

SubNetwork instances. Other valid examples can show the "many to many" relationship.

Figure C.10 – Cardinality notation

40 Rec. ITU-T M.3020 (07/2017)

The cardinality zero is not used to indicate the IOC's so-called "transient state" characteristic. For

example, it is not used to indicate that the instance is not yet created but it is in the process of being

created. The cardinality zero will not be used to indicate this characteristic since such characteristic

is considered inherent in all IOCs. All IOCs defined are considered to have such inherent "transient

state" characteristics.

Note that the use of "0..*", "0..n" or '*' means "zero to many". The use of "0..*" is recommended.

The following table shows some valid examples of multiplicity.

Table C.3 – Multiplicity-string examples

Multiplicity Explanation

1 Attribute has exactly one attribute value

5 Attribute has exactly 5 attribute values

0..1 Attribute has zero or one attribute value

0..* Attribute has zero or more attribute values

1..* Attribute has at least one attribute value

4..12 Attribute has at least 4 but no more than 12 attribute values

C.2.9.3 Name style

Cardinality has no name so there is no name style.

C.2.10 Role

C.2.10.1 Description

A role indicates navigation, from one class to another class, involved in an association relationship.

A role is named. The direction of navigation is to the class attached to the end of the association

relationship with (or near) the role name.

The use of role name in the graphical representation is mandatory for bidirectional and

unidirectional association relationship notations (see Figure C.2 – Bidirectional association

relationship notation and Figure C.3 – Unidirectional association relationship notation). Role name

shall not be used in non-navigable association relationship notation (see Figure C.4 – Non-

navigable association relationship notation).

A role at the navigable end of a relationship becomes (or is mapped into) an attribute (called role-

attribute) in the source class of the relationship. Therefore roles have the same behaviour (or

properties) as attributes.

 Rec. ITU-T M.3020 (07/2017) 41

The role-attribute shall have all properties defined for attributes in clause C.2.2 and in addition the

following property:

Table C.4 – passedById property

Property name Description Legal values

passedById If True, the role-attribute (navigable association source end)

contains a DN of the navigable association target end

instance.

If False, the role-attribute contains (a copy of) the whole

target end instance (e.g., X). If X has a role-attribute whose

"passedById==False", then the subject role-attribute

contains (a copy of) X's target end instance as well.

The above rule is applied repeatedly for all occurrences of

"passedById==False". This application can result in a

collection of instances where no ordering can be implied

and no instances are duplicated.

Use of "passedById==False" supports the efficient access

of target end instances from a source end instance. The

mechanism by which such access is achieved is operation

model design specific (e.g., not related to resource model

design).

True (default), False

C.2.10.2 Example

The example in Figure C.11 shows that a Person (say instance John) is associated with a

Company (say whose DN is "Company=XYZ"). We navigate the association by using the opposite

association-end such that John's Person.theCompany would hold the DN, i.e.,

"Company=XYZ".

Figure C.11 – Role notation

C.2.10.3 Name style

A role has a name. Use noun for the name. The name style follows the attribute name style; see

clause C.2.2.3.

C.2.11 Xor constraint

C.2.11.1 Description

"A Constraint represents additional semantic information attached to the constrained elements. A

constraint is an assertion that indicates a restriction that must be satisfied by a correct design of the

system. The constrained elements are those elements required to evaluate the constraint

specification…", an extract from 7.3.10 Constraint (from Kernel) of [OMG-UML2].

For a constraint that applies to two elements such as two associations, the constraint shall be shown

as a dashed line between the elements labeled by the constraint string (in braces). The constraint

string, in this case, is xor.

42 Rec. ITU-T M.3020 (07/2017)

C.2.11.2 Example

Figure C.12 shows a ServerObjectClass instance that has relation(s) to multiple instances of

a class from the choice of ClientObjectCLass_Alternative1,

ClientObjectClass_Alternative2 or ClinetObjectCLass_Alternative3.

Figure C.12 – {xor} notation

C.2.11.3 Name style

The Xor constraint has no name so there is no name style.

C.3 Stereotypes

C.3.1 General

Clause C.2 lists the UML defined basic model elements. UML defined a stereotype concept

allowing the specification of simple or complex user-defined model elements.

This clause lists all allowable stereotypes for this repertoire.

For each stereotype model element listed, there are three parts. The first part contains its

description. The second part contains its graphical notation examples and the third part contains the

rule, if any, recommended for labelling or naming it.

C.3.2 <<ProxyClass>>

C.3.2.1 Description

This represents a number of <<InformationObjectClass>>. It encapsulates attributes, links, methods

(or operations), and interactions that are present in the represented <<InformationObjectClass>>.

The semantics of a <<ProxyClass>> is that all behaviour of the <<ProxyClass>> are present in the

represented <<InformationObjectClass>>. Since this class is simply a representation of other

classes, this class cannot define its own behaviour other than those already defined by the

represented <<InformationObjectClass>>.

A particular <<InformationObjectClass>> can be represented by zero, one or more

<<ProxyClass>>. For example, the ManagedElement <<InformationObjectClass>> can have

MonitoredEntity <<ProxyClass>> and ManagedEntity <<ProxyClass>>.

The attributes of the <<ProxyClass>> are accessible by the source entity that has an association

with the <<ProxyClass>>.

 Rec. ITU-T M.3020 (07/2017) 43

C.3.2.2 Example

Figure C.13 shows a <<ProxyClass>> named MonitoredEntity. It represents (or its constraints

is that it represents) all NRM <<InformationObjectClass>> (e.g., GgsnFunction

<<InformationObjectClass>>) whose instances are being monitored for alarm conditions. It is

mandatory to use a Note to capture the constraint.

Figure C.13 – <<ProxyClass>> Notation

See Appendix II for more examples that use <<ProxyClass>>.

C.3.2.3 Name style

For <<ProxyClass>> name, use the same style as <<InformationObjectClass>> (see clause C.3.3).

C.3.3 <<InformationObjectClass>>

C.3.3.1 Description

The <<InformationObjectClass>> is identical to UML class except that it does not include/define

methods or operations.

A UML class represents a capability or concept within the system being modelled. Classes have

data structure and behaviour and relationships to other elements.

This class can inherit from zero, one or multiple classes (multiple inheritances).

See more on UML class in 10.2.1 of [OMG-UML1].

C.3.3.2 Example

The example in Figure C.14 shows an AbcFunction <<InformationObjectClass>>.

Figure C.14 – <<InformationObjectClass>> Notation

Table C.5 captures the properties of this modelled element.

MonitoredEntity

<<ProxyClass>>

It represents all

NRM IOCs that

can have alarms.

44 Rec. ITU-T M.3020 (07/2017)

Table C.5 – <<InformationObjectClass>> properties

Property name Description Legal values

documentation Contains a textual description of this modelled element.

Should refer (to enable traceability) to a specific requirement.

Any

isAbstract Indicates if the class can be instantiated or is just used for

inheritance.

True, False (default)

isNotifyable Identifies the list of the supported notifications. List of names of

notification

supportQualifier Identifies the required support of the class. See also clause 7. M, O (default), CM,

CO, C

C.3.4 <<names>>

C.3.4.1 Description

The <<names>> is modelled by a composition association where both ends are non-navigable. The

source class is the composition and the target class is the component. The target instance is uniquely

identifiable, within the namespace of the source entity, among all other targeted instances of the

same target class and among other targeted instances of other classes that have the same

<<names>> composition with the source.

The source class and target class shall each has its own naming attribute.

The composition aggregation association relationship is used as the act of name containment

providing a semantic of a whole-part relationship between the domain and the named elements that

are contained, even if only by name. From the management perspective access to the part is through

the whole. Multiplicity shall be indicated at both ends of the relationship.

A target instance cannot have multiple <<names>> with multiple sources, i.e., a target instance

cannot participate in or belong to multiple namespaces.

C.3.4.2 Example

Figure C.15 shows that all instances of Class4 are uniquely identifiable within a Class3

instance's namespace.

Figure C.15 – <<names>> notation

C.3.4.3 Name style

<<names>> has no name so there is no name style.

C.3.5 <<dataType>>

C.3.5.1 Description

<<dataType>> represents the general notion of being a data type (i.e., a type whose instances are

identified only by their values) whose definition is defined by user (e.g., specification authors).

This repertoire uses two kinds of data types: predefined data types and user-defined data types. The

former is defined in clause C.4.3. The latter is defined by the specifications authors using this

<<dataType>> model element.

 Rec. ITU-T M.3020 (07/2017) 45

The user-defined data types support the modelling of structured data types (see <<dataType>>

notations in clause C.3.5.3). When user-defined or predefined data type is used to apply type

information to a class attribute (see clause C.2.2), the data type name is shown along with the class

attribute. See user example of <<dataType>> in clause C.3.5.3

C.3.5.2 Example

The following examples are two user-defined data types. The left-most is named PlmnId that

consists of mobile country code (MCC) and mobile network code (MNC), whose types are the

predefined data types in clause C.4.3. The right-most is named Xyz that consists of two predefined

data types (i.e., String, Integer and one user-defined data type PlmnId.

Figure C.16 – <<dataType>> notations

Figure C.17 shows an example of a ZClass using two user-defined data types and two predefined

data types.

Figure C.17 – Usage example of <<dataType>>

C.3.5.3 Name style

For <<dataType>> name, use the same style as <<InformationObjectClass>> (see clause C.3.3).

For <<dataType>> attribute, use the same style as Attribute (see clause C.2.2).

C.3.6 <<enumeration>>

C.3.6.1 Description

An enumeration is a data type. It contains sets of named literals that represent the values of the

enumeration. An enumeration has a name.

See 10.3.2 Enumeration of [OMG-UML1].

46 Rec. ITU-T M.3020 (07/2017)

C.3.6.2 Example

The example in Figure C.18 shows an enumeration model element whose name is Account and it

has four enumeration literals. The upper compartment contains the keyword <<enumeration>> and

the name of the enumeration. The lower compartment contains a list of enumeration literals.

Note that the symbol to the right of <<enumeration>> Account in the figure below is a feature

specific to a particular modelling tool. It is recommended that modelling tool features should be

used when appropriate.

Figure C.18 – <<enumeration>> notation

C.3.6.3 Name style

For <<enumeration>> name, use the same style as <<InformationObjectClass>> (see clause C.3.3).

For <<enumeration>> attribute (the enumeration literal), use the following rules:

• Enumeration literal is composed of one or more words of upper case characters. Words are

separated by the underscore character.

C.3.7 <<choice>>

C.3.7.1 Description

The «choice» stereotype represents one of a set of classes (when used as an information model

element) or one of a set of data types (when used as an operations model element).

This stereotype property, e.g., one out of a set of possible alternatives, is identical to the {xor}

constraint (see clause C.2.11).

C.3.7.2 Example

Sometimes the specific kind of class cannot be determined at model specification time. In order to

support such scenario, the specification is done by listing all possible classes.

Figure C.19 lists 3 possible classes. It also shows a «choice, InformationObjectClass» named

SubstituteObjectClass. This scenario indicates that only one of the three «InformationObjectClass»

named Alternative1ObjectClass, Alternative2ObjectClass, Alternative3ObjectClass shall be

realised.

The «choice» stereotype represents one of a set of classes when used as an information model

element.

 Rec. ITU-T M.3020 (07/2017) 47

Figure C.19 – Information model element example using «choice» notation

Sometimes the specific kind of data type cannot be determined at model specification time. In order

to support such scenario, the specification is done by listing all possible data types.

Figure C.20 lists 2 possible data types. It also shows a «choice» named ProbableCause. This

scenario indicates that only one of the two «dataType» named IntegerProbableCause,

StringProbableCause shall be realised.

The «choice» stereotype represents one of a set of data types when used as an operations model

element.

Figure C.20 – Operations model element example using «choice» notation

Sometimes models distinguish between sink/source/bidirectional termination points. A generic class

which comprises these three specific classes can be modelled using the «choice» stereotype (see

Figure C.21).

48 Rec. ITU-T M.3020 (07/2017)

Figure C.21 – Sink/source/bidirectional termination points example using «choice» notation

C.7.3 Name style

For <<choice>> name, use the same style as <<InformationObjectClass>> (see clause C.3.3).

C.4 Others

C.4.1 Association class

C.4.1.1 Description

An association class is an association that also has class properties (or a class that has association

properties). Even though it is drawn as an association and a class, it is really just a single model

element.

See 7.3.4 AssociationClass of [OMG-UML2].

Association classes are appropriate for use when an «InformationObjectClass» needs to maintain

associations to several other instances of «InformationObjectClass» and there are relationships

between the members of the associations within the scope of the "containing"

«InformationObjectClass». For example, a namespace maintains a set of bindings, a binding ties a

name to an identifier. A NameBinding «InformationObjectClass» can be modelled as an

Association Class that provides the binding semantics to the relationship between an identifier and

some other «InformationObjectClass» such as Object in the figure. This is depicted in Figure C.22.

 Rec. ITU-T M.3020 (07/2017) 49

C.4.1.2 Example

Figure C.22 – Association class notation

C.4.1.3 Name style

The name shall use the same style as in <<InformationObjectClass>> (see clause C.3.3).

C.4.2 Abstract class

C.4.2.1 Description

Abstract class specifies a special kind of <<InformationObjectClass>> as the general model

element involved in a generalization relationship (see clause C.2.6). An abstract class cannot be

instantiated.

This modelled element has the same properties as class. See clause C.3.3.

C.4.2.2 Example

Figure C.23 shows that Class5_ is an abstract class. It is the base class for

SpecialisedClass5.

Figure C.23 – Abstract class notation

C.4.2.3 Name style

For abstract class name, use the same style as <<InformationObjectClass>> (see clause C.3.3). The

name shall be in italics.

C.4.3 Predefined data types

C.4.3.1 Description

It represents the general notion of being a data type (i.e., a type whose instances are identified only

by their values) whose definition is defined by this specification and not by the user (e.g.,

specification authors).

This repertoire uses two kinds of data types: predefined data types and user-defined data types. The

latter are defined in clauses C.3.5 and C.3.6.

Table C.6 lists the UML data types selected for use as predefined data type.

50 Rec. ITU-T M.3020 (07/2017)

Table C.6 – UML defined data types

Name Description and reference

Boolean See Boolean type of [ITU-T X.680].

Integer See Integer type of [ITU-T X.680].

String See PrintableString type of [ITU-T X.680].

Table C.7 lists data types that are defined by this repertoire.

Table C.7 – Non-UML defined data types

Name Description and reference

AttributeValuePair This data type defines an attribute name and the attribute's value.

BitString This data type is defined by Bit string of clause 3 and clause G.2.5 of

[ITU-T X.680].

DateTime This data type is defined by GeneralizedTime of [ITU-T X.680].

DN This data type defines the distinguished name (DN) (see Distinguished

Name of [ITU-T X.501].of an object contains a sequence of one or more

name components. Each initial sub-sequence (note 1) of the object name

is also the name of an object. The sequence of objects so identified,

starting with the one identified by only the first name component and

ending with the object being named, is such that each is the immediate

superior (Note 2) of that which follows it in the sequence.

NOTE 1 – Suppose an object's DN is composed of a sequence of 4 name

components, i.e., 1st, 2nd, 3rd and 4th components. The "initial sub-

sequence" is composed of the 1st, 2nd and 3rd components.

NOTE 2 – Suppose object A is name-contained (see clause C.3.4) by

object B, object B is said to be the immediate superior of object A.

External This data type is defined by another organization.

OperationStatusAtomic This enumeration defines the status values of an atomic operation.

• SUCCESSFUL: The operation has been successfully completed as a

whole;

• NOT_SUCCESSFUL: The operation has not been successfully

completed as a whole; i.e., the states of the involved object instances

are the same as before the operation (roll back is necessary).

OperationStatusBestEffort This enumeration defines the status values of a best effort operation.

• SUCCESSFUL: The operation has been completed successfully as a

whole;

• PARTIALLY_SUCCESSFUL: The operation has been completed

partially successfully. Further definition what this means for a

specific operation is to be specified by the interface specification

author;

• NOT_SUCCESSFULThe operation has not been completed at all,

i.e., the state of the involved object instances is unchanged.

Real This data type is defined by Real type of [ITU-T X.680].

C.4.3.2 Example

Figure C.24 shows an example of predefined data types usage.

 Rec. ITU-T M.3020 (07/2017) 51

Figure C.24 – Predefined data types usage

NOTE – Use of this is optional. Uses of other means, to specify Predefined data types, are allowed.

C.4.3.3 Name style

It shall use the UCC style.

C.5 Qualifiers

This clause defines the qualifiers applicable for model elements specified in this document, e.g., the

IOC (see clause C.3.3), the Attribute (see clause C.2.2). The qualifications are M, O, CM, CO, C

and 'SS'. Their meanings are specified in this section. This type of qualifier is called Support

Qualifier (see supportQualifier of IOC in Table C.3 and supportQualifier of attribute in Table C.1).

This clause also defines the qualifiers applicable to various properties of a model element, e.g., see

the IOC properties excepting 'supportQualifier' in Table C.3 and attributes properties excepting

supportQualifier in Table C.1. The qualifications are M, O, CM, CO, C and '-'. Their meanings are

specified in this section. This type of qualifier is simply called Qualifier.

Definition of M (Mandatory) qualification:

• The capability (e.g., the Attribute named abc of an IOC named Xyz; the write property of

Attribute named abc of an IOC named Xyz; the IOC named Xyz) shall be supported.

Definition of O (Optional) qualification:

• The capability may or may not be supported.

Definition of CM (Conditional-Mandatory) qualification:

• The capability shall be supported under certain conditions, specifically:

– When qualified as CM, the capability shall have a corresponding constraint defined in

the specification. If the specified constraint is met then the capability shall be

supported.

Definition of CO (Conditional-Optional) qualification:

• The capability may be supported under certain conditions, specifically:

– When qualified as CO, the capability shall have a corresponding constraint defined in

the specification. If the specified constraint is met then the capability may be supported.

Definition of C (Conditional) qualification:

• Used for items that have multiple constraints. Each constraint is worded as a condition for

one kind of support such as mandatory support, optional support or "no support". All

constraints must be related to the same kind of support. Specifically:

– Each item with C qualification shall have the corresponding multiple constraints

defined in the specification. If all specified constraints are met and are related to

mandatory, then the item shall be supported. If all the specified constraints are met and

are related to optional, then the item may be supported. If all the specified constraints

are met and are related to "no support", then the item shall not be supported.

• NOTE – This qualifier should only be used when absolutely necessary, as it is more complex to

implement.

52 Rec. ITU-T M.3020 (07/2017)

Definition of SS (SS Conditional) qualification:

• The capability shall be supported by at least one but not all solutions.

Definition of '-' (no support) qualification:

• The capability shall not be supported.

C.6 UML diagram requirements

Classes and their relationships shall be presented in class diagrams.

It is recommended to create:

• An overview class diagram containing all classes related to a specific management area

(Class Diagram).

– The class name compartment should contain the location of the class definition (e.g.,

"Qualified Name")

– The class attributes should show the "Signature". (see section 7.3.45 of [OMG

UML2]for the signature definition);

• A separate inheritance class diagram in case the overview diagram would be overloaded

when showing the inheritance structure (Inheritance Class Diagram);

• A class diagram containing the user defined data types (Type Definitions Diagram);

• Additional class diagrams to show specific parts of the specification in detail;

• State diagrams for complex state attributes.

 Rec. ITU-T M.3020 (07/2017) 53

Annex D

Design

(This annex forms an integral part of this Recommendation.)

This annex provides guidelines for the specification of protocol-specific designs. It is for further

study.

54 Rec. ITU-T M.3020 (07/2017)

Annex E

Information type definitions – type repertoire

(This annex forms an integral part of this Recommendation.)

This annex defines a repertoire of types that shall be used to specify type information in the

conceptual model (analysis model/information service).

The repertoire is defined as a subset of types defined by ASN.1 [ITU-T X.680] combined with types

derived from the types defined by ASN.1 (clause E.4).

The keywords to be used for each type are summarized in Table E.1.

E.1 Basic types

Basic types are types that can be used directly to define attributes and parameters. Basic types can

also be used to construct complex types. Basic types include the following ASN.1 types:

E.1.1 integer type clause 19 of [ITU-T X.680]

E.1.2 real type clause 21 of [ITU-T X.680]

E.1.3 boolean type clause 18 of [ITU-T X.680]

E.1.4 bitstring type clause 22 of [ITU-T X.680]

E.1.5 null type clause 24 of [ITU-T X.680]

E.1.6 generalized time type clause 38 of [ITU-T X.680]

E.2 Enumerated type

Enumerated type clause 20 of [ITU-T X.680] represents enumerated values. All values that may be

used by a specific attribute or parameter shall be listed in the legal value columns. Only the listed

names style is applicable for the conceptual model, i.e., the identification of concrete values

(numbers or strings) are left for the concrete design models.

NOTE – If the number of these values is more than 50, it is recommended to define them in an appendix or

an independent document.

E.3 Complex types

Complex types can be defined using the following concepts:

E.3.1 sequence types clause 25 of [ITU-T X.680]

E.3.2 choice types clause 29 of [ITU-T X.680]

E.3.3 set types clause 27 of [ITU-T X.680]

In addition, lists and sets of complex types are supported using:

E.3.4 sequence-of types clause 26 of [ITU-T X.680]

E.3.5 set-of types clause 28 of [ITU-T X.680]

E.4 Useful types

E.4.1 String type

String represents a string of characters, the character set is not restricted, i.e.:

String ::= UnrestrictedCharacterStringType clause 44 of [ITU-T X.680]

 Rec. ITU-T M.3020 (07/2017) 55

E.4.2 Name type

Name represents an exclusive name of an object instance in name space. It might include object

containment tree hierarchy information, but it is implementation dependent and is out of the scope

of this Recommendation. Formally, the name type is defined as:

Name ::= TYPE-IDENTIFIER Annex A of [ITU-T X.681]

E.5 Keywords

Table E.1 defines the list of keywords to be used in the analysis template (see Annex B) for

definition of information type, e.g.:

Parameter

Name

Support

Qualifier
Information Type/Legal Values Comment

…

eventIdList M SET OF INTEGER/– The list of alarms to be acknowledged.

Table E.1 – Keywords

Type Keyword

integer type INTEGER

real type REAL

boolean type BOOLEAN

bitstring type BIT STRING

null type NULL

generalized time type GeneralizedTime

enumerated type ENUMERATED

sequence type SEQUENCE

choice type CHOICE

set type SET

sequence-of type SEQUENCE OF

set-of type SET OF

string type String

name type Name

56 Rec. ITU-T M.3020 (07/2017)

Annex F

Guidelines on IOC properties, inheritance and entity import

(This annex forms an integral part of this Recommendation.)

The following guidelines are based on [b-3GPP TS 32.150].

F.1 IOC property

The properties of an IOC (including Support IOC) are specified in terms of the following:

a) An IOC attribute(s) including its semantics and syntax, its legal value ranges and support

qualifications. The IOC attributes are not restricted to Configuration Management but also

include those related to, for example, 1) Performance Management (i.e., measurement

types), 2) Trace Management and 3) Accounting Management.

b) The non-attribute-specific behaviour associated with an IOC.

NOTE 1 – As an example, the Link between MscServerFunction and CsMgwFunction is optional. It

is mandatory if the MscServerFunction instance belongs to one ManagedElement instance while the

CsMgwFunction instance belongs to another ManagedElement instance. This Link behaviour is a

non-attribute-specific behaviour. It is expected that this behaviour, like others, will be inherited.

c) An IOC relationship(s) with another IOC(s).

d) An IOC notification type(s) and their qualifications.

e) An IOC's relation with its parents (see Note 2). There are three mutually exclusive cases:

1) The IOC can have any parent. In UML diagram, the class has a parent Any.

2) The IOC is abstract and all of the possible parent(s) have been designated and whether

subclass IOCs can be designated as a root IOC. In UML diagram, the class has zero or

more possible parents of specific classes (except Any).

3) The IOC is concrete and all of the possible parent(s) have been designated and whether

the IOC can be designated as a root IOC. In UML diagram, the class has one or more

possible parents of specific classes (except Any).

 An IOC instance is either a root IOC or it has one and only one parent. Only 3GPP SA5

may designate an IOC class as a potential root IOC. Currently, only SubNetwork,

ManagedElement or MeContext IOCs can be root IOCs.

NOTE 2 – The parent and child relation in this subclause is the parent name-containing the child

relation.

f) An IOC's relation with its children. There are three mutually exclusive cases:

1) An IOC shall not have any children (name-containment relation) IOCs. In UML

diagram, the class has no child.

2) An IOC can have children IOC(s). The maximum number of instances per children

IOC can be specified. An IOC may designate that vendor-specific objects are not

allowed as children IOCs. In UML diagram, the class has a child Any.

3) An IOC can only have the specific children IOC(s) (or their subclasses). The maximum

number of instances per children IOC can be specified. An IOC may designate that

vendor-specific objects are not allowed as children IOCs. In UML diagram, the class

has one or more children of specific classes (except Any).

g) Whether an IOC can be instantiated or not (i.e., whether an IOC is an abstract IOC).

h) An attribute for naming purpose.

 Rec. ITU-T M.3020 (07/2017) 57

F.2 Inheritance

An IOC (the subclass) inherits from another IOC (the superclass) in that the subclass shall have all

the properties of the superclass.

The subclass can change the inherited support-qualification(s) from optional to mandatory but not

vice versa. The subclass can change the inherited support-qualification from conditional-optional to

conditional-mandatory but not vice versa.

An IOC can be a superclass of many IOC(s). A subclass cannot have more than one superclass.

The subclass can:

a) Add (compared to those of its superclass) unique attributes including their behaviour, legal

value ranges and support-qualifications. Each additional attribute shall have its own unique

attribute name (among all added and inherited attributes).

b) Add non-attribute behaviour on an IOC basis. This behaviour may not contradict inherited

superclass behaviour.

c) Add relationship(s) with IOC(s). Each additional relationship shall have its own unique

name (among all added and inherited relations).

d) Add additional notification types and their qualifications.

e) Designate all of the possible parent(s) (and their subclasses) if the superclass has

Property-e-1 such that an IOC will have Property-e-2 or Property-e-3. Restrict possible

parent(s) (and their subclasses) and/or remove the capability of the subclass from being a

root IOC, if the superclass has Property-e-2 or Property-e-3.

f) Add children IOC(s) if the superclass has Property-f-2 such that an IOC will have

Property-f-3. Restrict the allowed children IOC(s) (or their subclasses) if the superclass has

Property-f-3.

g) Specify whether an IOC can be instantiated or not (i.e., the IOC is an abstract IOC).

h) Restrict the legal value range of a superclass attribute that has a legal value range.

F.3 Entity (interface, IOC and attribute) import

Management interface specifications define entities (e.g., IOCs, interfaces and attribute). To

facilitate the reuse of entity definitions among interface specifications, an import mechanism is

used. When a management interface specification (the subject specification) imports an entity

defined in another management interface specification, the subject specification is considered to

have defined the imported entity in its specification. Furthermore, the subject specification cannot

change the properties of this imported entity. If it requires an entity that is not identical but similar

to the imported entity, it should define a new entity that inherits the imported entity and introduce

changes in the new entity definition.

58 Rec. ITU-T M.3020 (07/2017)

Annex G

Attribute Properties

(This annex forms an integral part of this Recommendation.)

The following guidelines are based on Annex B of [b-3GPP TS 32.156].

is
In

v
a

ri
a

n
t

 w
ri

te

d
ef

a
u

lt
V

a
lu

e

m
a

n
a

g
er

 m
u

st
 p

ro
v
id

e
a

 v
a

lu
e

w
h

en
 m

a
n

a
g
er

 r
eq

u
es

ts
 o

b
je

ct

cr
ea

ti
o

n

Meaning

 Not valid.

May be set by the manager only during object creation time; if no

value is provided by the manager, the default value is used.

 Must be set by the manager during object creation time.

May be set by the manager only during object creation time; if no

value is provided by the manager, the agent must provide a value.

 Not valid.

 Valid but not useful.

 Not valid.

 Must be set by the agent during object creation time.

 Not valid.

May be set by the manager anytime; if no value is provided by the

manager at object creation time, it is set to the default value.

Must be set by the manager at object creation time and may be

changed anytime.

May be set by the manager at object creation time and may be changed

anytime.

 Not valid.

Must be set by the agent to the default value at object creation time;

may be changed by the agent anytime.

 Not valid.

May be set by the agent at object creation time and may be changed by

the agent anytime.

 Rec. ITU-T M.3020 (07/2017) 59

Annex H

Design patterns

(This annex forms an integral part of this Recommendation.)

The following guidelines are based on Annex C of [b-3GPP TS 32.156].

H.1 Intervening class and association class

H.1.1 Concept and definition

Classes may be related via simple direct associations or via associations with related association

classes.

However, in situations where the relationships between a number of classes is complex and

especially where the relationships between instances of those classes are themselves interrelated

there may be a need to encapsulate the complexity of the relationships within a class that sits

between the classes that are to be related. The term "intervening class" is used here to name the

pattern that describes this approach. The name "intervening class" is used as the additional class

"intervenes" in the relationships between other classes.

The "intervening class" differs from the association class as the intervening class does break the

association between the classes whereas the association class does not but instead sits to one side.

This can be seen in the Figure H.1. A direct association between class A and C appears the same at

A and C regardless of the presence or absence of an association class where as in the case of the

"intervening class" there are associations between A and the "intervening class" B and C and the

"intervening class" B.

60 Rec. ITU-T M.3020 (07/2017)

Figure H.1 – Various association forms

The "intervening class" is essentially no different to any other class in that it may encapsulate

attributes, complex behaviour etc.

Figure H.2 shows an instance view of both an association class form and an "intervening class"

form for a complex interrelationship.

Basic association
Note class A points a C and C at A

Association Class
Association where there is a need to represent: the
associations own features (i.e. that do not belong to
any of the connected classes):
• Some behavior and state
• Some additional data related to the association
Note that class A points a C and C at A

“Intervening” class
Where there is a complex assembly of state/data bound
to a number of associations.

Note that Class A and C point to B and potentially B
points to C and A.

 Rec. ITU-T M.3020 (07/2017) 61

Figure H.2 – Instance view of "intervening class"

The case depicted above does not show interrelationships between the relationships. A practical

case from modelling of the relationships between termination points in a fixed network does show

this relationship interrelationship challenge. In this case the complexity of relationship is between

instances of the same class, the termination point (TP). The complexity is encapsulated in a

SubNetworkConnection (SNC) class.

For an example of an SNC intervening in TP-TP relationship see Figure H.3.

Association Class
Many instances of association class, one per
association instance.

“Intervening” class
One instance of intervening class that captures
complex association and intertwining between
Classes.
Also captures behaviour interaction such as
protection switching and state (e.g where class
A and C are TPs and class B is an SNC.

62 Rec. ITU-T M.3020 (07/2017)

Figure H.3 – SNC intervening in TP-TP relationship

The SNC also encapsulates the complex behaviour of switching and path selection as depicted in

Figure H.4.

Figure H.4 – Complex relationship interrelationships

“Intervening class” instance view
One instance of intervening class that captures complex
association and intertwining between Classes.
Also captures behaviour interaction such as protection
switching and state.

Simplified SNC and TP case
An SNC can not exist without at least 2 TPs being
related.

Some simplifications: In this case the TP and SNC model
is assumed to be bidirectional only. The TPs have roles
with respect to the SNC but these are ignored here.
There are many other attributes and properties related
to protection that are ignored here.

Association Class
With protection switching rule
and state.

There is complex creation
transaction interrelationship
etc.

 Rec. ITU-T M.3020 (07/2017) 63

H.1.2 Usage in the non-transport domain

The choice of association class pattern or intervening class pattern is on a case-by-case basis.

The transport domain boundary is highlighted in the Figure H.5.

Figure H.5 – Highlighting the boundary between transport and non-transport domains

H.1.3 Usage in the transport domain

The following guidelines must be applied to the models of the "transport domain".

When considering interrelationships between classes the following guidelines should be applied:

• If considering all current and recognised potential future cases it is expected that the

relationship between two specific classes will be 0..1:0..1 then a simple association should

be used

– This may benefit from an association class to convey rules and parameters about the

association behaviour in complex cases.

• If there is recognised potential for cases currently or in future where there is a 0..*:0..*

between two specific classes then intervening classes should be used to encapsulate the

groupings etc. so as to convert it to 0..1:n..*.

– Note that the 0..1:n..* association may benefit from an association class to convey rules

and parameters about the association behaviour in complex cases but in the instance

form this can probably be ignored or folded into the intervening class

64 Rec. ITU-T M.3020 (07/2017)

• In general it seems appropriate to use an association class when the properties on the

relationship instance cannot be obviously or reasonably folded into one of the classes at

either end of the association and when there is no interdependency between association

instances between a set of instances of the classes.

An example of usage of intervening class is the case of the TP-TP (TerminationPoint) relationship

(0..*:0..*) where the SNC (SubNetworkConnection) is added as the intervening class between

multiple TPs, i.e., TP-SNC. Note that TP-SNC actually becomes 0..2:n..* due to directionality

encapsulation.

Considering the case of the adjacency relationship between PTPs it is known that although the

current common cases are 1:1 there are some current and many potential future case of 0..*:0..* and

hence a model that has an intervening class, i.e., the TopologicalLink, should be used.

For a degenerate instance cases of 0..*:0..* that happens to be 0..1:0..1 the intervening class pattern

should still be used:

• Using the 0..1:0..1 direct association in this degenerate case brings unnecessary variety to

the model and hence to the behaviour of the application (the 0..1:n..* model covers the

0..1:0..1 case with one single code form clearly)

• An instance of the 0..1:0..1 model may need to be migrated to 0..1:n..* as a result of some

change in the network forcing an unnecessary administrative action to transition the model

form where as in the 0..1:n..* form requires no essential change.

H.2 Use of "ExternalXyz" class

For further study.

 Rec. ITU-T M.3020 (07/2017) 65

Appendix I

Comparison with Recommendation ITU-T Z.601

(This appendix does not form an integral part of this Recommendation.)

This appendix provides information on the relationship between this Recommendation and

[b-ITU-T Z.601] that is used for the development of ITU-T M.1400.x series of Recommendations

(see Bibliography).

While this Recommendation provides a methodology for specifying management interfaces

between two physical systems, [b-ITU-T Z.601] provides a framework for the development of one

system. This data architecture identifies candidate interfaces within one system as well as the

interfaces on the boundary of this system. These interfaces at the boundary will be between

systems.

The methodology specified by this Recommendation is primarily aimed at the development of a set

of management interface Recommendations rather than of individual systems. The data architecture

prescribes no requirements capture similar to the requirements phase, as it prescribes the

specification of individual systems only, not their purpose relative to an organization.

[b-ITU-T Z.601] focuses on specification of the external terminology and grammar as perceived by

the end users. This Recommendation focuses on specification of management interfaces, which may

not be perceived by the end users.

In this Recommendation, the requirements for the problem being solved fall into two classes. The

first class of requirements is referred to as business requirements; the second class is referred to as

specification requirements. The specification requirements may include requirements to support

end-user interaction at their human-computer interfaces. Some of these requirements may specify

syntactical requirements to be supported over any management interface. Syntactical requirements

correspond to external terminology schemata of the data architecture as described in

[b-ITU-T Z.601].

The output of the analysis phase will be an information model. This corresponds to a concept

schema of the data architecture as described in [b-ITU-T Z.601]. If the information models from the

analysis phase do not convey all the necessary information from the syntactical requirements, the

implementation design may need to include a mapping from the syntactical requirements.

The documentation from the implementation design phase will consist of two parts:

1) A technology-dependent data specification common for several interfaces, e.g., using

GDMO or CORBA IDL, corresponding to an internal terminology schema according to the

data architecture in [b-ITU-T Z.601].

2) A technology-dependent specification of each interface, e.g., using CMIP or CORBA IDL,

corresponding to a distribution schema according to the data architecture in

[b-ITU-T Z.601].

66 Rec. ITU-T M.3020 (07/2017)

Appendix II

Additional UML usage examples

(This appendix does not form an integral part of this Recommendation.)

This appendix contains additional examples on the use of the UML described in Annex C.

II.1 Proxy class

II.1.1 First example

This shows a <<ProxyClass>> named YyyFunction. It represents all IOCs listed in the Note under

the UML diagram. All the listed IOCs, in the context of this example, inherit from

ManagedFunction IOC (see Figure II.1).

The use of <<ProxyClass>> eliminates the need to draw multiple UML

<<InformationObjectClass>> boxes, i.e., those whose names are listed in the Note, in the UML

diagram.

NOTE – The YyyFunction <<ProxyClass>> represents AsFunction, AucFunction, BgFunction, etc.

Figure II.1 – <<ProxyClass>> Notation example II.1

II.1.2 Second sample

Figure II.2 shows a <<ProxyClass>> named YyyFunction. It represents all IOCs listed in the Note

right under the UML diagram. All the listed IOCs, in the context of this sample, have link (internal

and external) relations.

The actual names of the IOC represented by InternalYyyFunction <<ProxyClass>> and by the

ExternalYyyFunction <<ProxyClass>> are listed under the subclause of X.Y of the associated

YyyFunction. For example, under X.Y.1 for AsFunction, two paragraphs are added to list all peer

internal entities and external entities that are linked with AsFunction. See sample in quotation

below that is using AsFunction as a sample for YyyFunction.

The actual names of the IOC represented by Link_a_z <<ProxyClass>> and by ExternalLink_a_z

<<ProxyClass>> are listed under the subclause of X.Y of the associated YyyFunction. For example,

under X.Y.1 for AsFunction, two paragraphs are added to list the names of the IOCs represented by

Link_a_z and by ExternalLink_a_z. See the quoted text below that is using AsFunction as a sample

for YyyFunction.

"

ManagedFunction
(from TS 32.622)

<<InformationObjectClass>>

YyyFunction

<<ProxyClass>>

 Rec. ITU-T M.3020 (07/2017) 67

X.Y.1 AsFunction

X.Y.1.1 Definition

This IOC represents As functionality. For more information about the As, see [b-3GPP TS 23.002].

The linked InternalYyyFunction <<ProxyClass>> represents SlsFunction, CscfFunction,

HlrFunction ...

The linked ExternalYyyFunction <<ProxyClass>> represents …

The Link_a_z <<ProxyClass>> represents Link_As_Scscf, Link_Bgcf_Scscf …

The ExternalLink_a_z <<ProxyClass>> represents …

"

NOTE – The 'Yyy' of YyyFunction <<ProxyClass>> represents AsFunction, AucFunction, etc.

Figure II.2 – <<ProxyClass>> Notation sample II.2

ExternalYyyFuntion

<<ProxyClass>>

ExternalLink_a_z

<<ProxyClass>>

InternalYyyFunction

<<ProxyClass>>

YyyFunction

<<ProxyClass>>

Link_a_z

<<ProxyClass>>

68 Rec. ITU-T M.3020 (07/2017)

Appendix III

Guidelines on requirements numbering

(This appendix does not form an integral part of this Recommendation.)

The format for requirements numbering is the following:

 REQ-Label-Category-Number

where "Label" is an abbreviation for the Recommendation (or part thereof). The set of labels is not

finite and not subject for standardization. The set of categories is defined in this Recommendation.

Some issues:

– How to structure the label in a large requirements specification?

– How to handle deletion and addition of requirements?

The following guidelines are found to be useful:

– Requirements should never be renumbered. The only exception to this case is the first

publication of a specification, but even in this case it may be better to avoid renumbering as

the specification may have been used also in its draft form.

– Given that requirements are not to be renumbered, it cannot be expected that the

requirements are numbered sequentially throughout the specification.

– The label can be used to divide the numbering into logical partitions. As an example, the

style of "A_B" is recommended to identify "B" as a logical partition of "A". However,

other styles can be used as long as the structure with "-" separating the fields of the

requirements number is maintained.

– Use of postfix or prefix notations, i.e., adding something in front of "Number" or following

"Number", are not recommended since the "Number" part is not intended to convey

semantic information.

– As an alternative to the "A_B" style, the authors of a specification may choose to assign a

number range to a group of requirements. This approach should be allowed.

 Rec. ITU-T M.3020 (07/2017) 69

Appendix IV

Stereotypes for naming purposes

(This appendix does not form an integral part of this Recommendation.)

Figure IV.1 illustrates the various stereotypes for naming purposes.

a) The <<names>> with solid-diamond (see clause C.3.3) identifies:

– The naming class (close to the solid diamond) and a named class;

– The naming scheme is DN;

– The container (close to the solid diamond) and the content.

b) The <<names>> with other types of associations (and excluding those labelled "Not

Allowed") identifies:

– The naming class (close to the hollow diamond or the source with regard to arrow

direction) and a named class (the target);

– The naming scheme is DN.

c) The <<namedBy>> with dependency (dotted arrowed line) identifies:

– The naming class (target with regard to arrow direction) and a named class (the

source);

– The naming scheme is DN.

Figure IV.1 – Various forms of naming stereotypes

70 Rec. ITU-T M.3020 (07/2017)

Bibliography

[b-ITU-T M.1401] Recommendation ITU-T M.1401 (2006), Formalization of interconnection

designations among operators' telecommunication networks.

[b-ITU-T M.1402] Recommendation ITU-T M.1402 (2012), Formalization of data for service

management.

[b-ITU-T M.1403] Recommendation ITU-T M.1403 (2007), Formalization of generic orders.

[b-ITU-T M.1404] Recommendation ITU-T M.1404 (2007), Formalization of orders for

interconnections among operators' networks.

[b-ITU-T M.1405] Recommendation ITU-T M.1405 (2007), Formalization of orders for service

management among operators.

[b-ITU-T Z.601] Recommendation ITU-T Z.601 (2007), Data architecture of one software

system.

[b-3GPP TS 23.002] 3GPP TS 23.002 V14.1.0 (2017), Network architecture.

[b-3GPP TS 32.101] 3GPP TS 32.101 V14.0.0 (2017), Telecommunication management;

Principles and high level requirements.

[b-3GPP TS 32.150] 3GPP TS 32.150 V14.1.1 (2017-04), Telecommunication management;

Integration ReferencePoint (IRP) Concept and definitions.

[b-3GPP TS 32.156] 3GPP TS 32.156 V14.0.1 (2017-04), Telecommunication management; Fixed

Mobile Convergence (FMC) model repertoire

[b-3GPP TS 32.157] 3GPP TS 32.157 V14.0.1 (2017-04), Telecommunication management;

Integration Reference Point (IRP) Information Service (IS) template.

[b-3GPP TS 32.302] 3GPP TS 32.302 V13.0.0 (2016), Telecommunication management;

Configuration Management (CM); Notification Integration Reference Point

(IRP); Information Service (IS).

[b-3GPP TS 32.300] 3GPP TS 32.300 V13.1.0 (2016), Telecommunication management;

Configuration Management (CM); Name convention for Managed Objects.

Printed in Switzerland
Geneva, 2017

SERIES OF ITU-T RECOMMENDATIONS

Series A Organization of the work of ITU-T

Series D Tariff and accounting principles and international telecommunication/ICT economic and policy

issues

Series E Overall network operation, telephone service, service operation and human factors

Series F Non-telephone telecommunication services

Series G Transmission systems and media, digital systems and networks

Series H Audiovisual and multimedia systems

Series I Integrated services digital network

Series J Cable networks and transmission of television, sound programme and other multimedia signals

Series K Protection against interference

Series L Environment and ICTs, climate change, e-waste, energy efficiency; construction, installation

and protection of cables and other elements of outside plant

Series M Telecommunication management, including TMN and network maintenance

Series N Maintenance: international sound programme and television transmission circuits

Series O Specifications of measuring equipment

Series P Telephone transmission quality, telephone installations, local line networks

Series Q Switching and signalling, and associated measurements and tests

Series R Telegraph transmission

Series S Telegraph services terminal equipment

Series T Terminals for telematic services

Series U Telegraph switching

Series V Data communication over the telephone network

Series X Data networks, open system communications and security

Series Y Global information infrastructure, Internet protocol aspects, next-generation networks, Internet

of Things and smart cities

Series Z Languages and general software aspects for telecommunication systems

