

I n t e r n a t i o n a l T e l e c o m m u n i c a t i o n U n i o n

ITU-T M.3020
TELECOMMUNICATION
STANDARDIZATION SECTOR
OF ITU

(05/2009)

SERIES M: TELECOMMUNICATION MANAGEMENT,
INCLUDING TMN AND NETWORK MAINTENANCE
Telecommunications management network

 Management interface specification
methodology

Recommendation ITU-T M.3020

ITU-T M-SERIES RECOMMENDATIONS
TELECOMMUNICATION MANAGEMENT, INCLUDING TMN AND NETWORK MAINTENANCE

Introduction and general principles of maintenance and maintenance organization M.10–M.299
International transmission systems M.300–M.559
International telephone circuits M.560–M.759
Common channel signalling systems M.760–M.799
International telegraph systems and phototelegraph transmission M.800–M.899
International leased group and supergroup links M.900–M.999
International leased circuits M.1000–M.1099
Mobile telecommunication systems and services M.1100–M.1199
International public telephone network M.1200–M.1299
International data transmission systems M.1300–M.1399
Designations and information exchange M.1400–M.1999
International transport network M.2000–M.2999
Telecommunications management network M.3000–M.3599
Integrated services digital networks M.3600–M.3999
Common channel signalling systems M.4000–M.4999

For further details, please refer to the list of ITU-T Recommendations.

 Rec. ITU-T M.3020 (05/2009) i

Recommendation ITU-T M.3020

Management interface specification methodology

Summary
Recommendation ITU-T M.3020 describes the management interface specification methodology
(MISM). It describes the process to derive interface specifications based on user requirements,
analysis and design (RAD). Guidelines are given on RAD using unified modelling language (UML)
notation; however, other interface specification techniques are not precluded. The guidelines for
using UML are described at a high level in this ITU-T Recommendation.

Source
Recommendation ITU-T M.3020 was approved on 14 May 2009 by ITU-T Study Group 2
(2009-2012) under Recommendation ITU-T A.8 procedures.

ii Rec. ITU-T M.3020 (05/2009)

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of
telecommunications, information and communication technologies (ICTs). The ITU Telecommunication
Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical,
operating and tariff questions and issuing Recommendations on them with a view to standardizing
telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years,
establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on
these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are
prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a
telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain
mandatory provisions (to ensure e.g., interoperability or applicability) and compliance with the
Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some
other obligatory language such as "must" and the negative equivalents are used to express requirements. The
use of such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may
involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence,
validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others
outside of the Recommendation development process.

As of the date of approval of this Recommendation, ITU had not received notice of intellectual property,
protected by patents, which may be required to implement this Recommendation. However, implementers
are cautioned that this may not represent the latest information and are therefore strongly urged to consult the
TSB patent database at http://www.itu.int/ITU-T/ipr/.

© ITU 2010

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the
prior written permission of ITU.

http://www.itu.int/ITU-T/ipr/

 Rec. ITU-T M.3020 (05/2009) iii

CONTENTS

 Page
1 Scope .. 1

2 References... 1

3 Definitions .. 2

3.1 Terms defined elsewhere.. 2

3.2 Terms defined in this Recommendation... 2

4 Abbreviations.. 3

5 Conventions .. 4

6 Requirements for methodology and notational support.. 4

7 Methodology... 5

7.1 General considerations ... 5

7.2 Application and structure of the methodology ... 5

7.3 Detailed methodology .. 5

8 Management interface specifications ... 8

9 Traceability in MISM process .. 8

10 Documentation structure... 8

Annex A – Requirements... 9

A.1 Conventions.. 9

A.2 Requirements template ... 13

A.3 Simplified requirements template... 16

Annex B – Analysis ... 17

B.1 Conventions.. 18

B.2 Analysis template ... 20

B.3 IOC properties, inheritance and import .. 29

Annex C – MISM UML repertoire .. 32

C.1 Introduction .. 32

C.2 Basic model elements ... 32

C.3 Entity stereotypes ... 35

C.4 Association stereotypes .. 40

C.5 Void .. 42

C.6 Association classes ... 43

C.7 Abstract class.. 43

Annex D – Design.. 45

iv Rec. ITU-T M.3020 (05/2009)

 Page
Annex E – Information type definitions – type repertoire ... 46

E.1 Basic types.. 46

E.2 Enumerated type... 46

E.3 Complex types .. 46

E.4 Useful types .. 46

Appendix I – Requirements example... 48

Appendix II – Analysis example.. 51

Appendix III – Comparison with Recommendation ITU-T Z.601 .. 60

Appendix IV – Issues for further study.. 61

IV.1 SOA .. 61

IV.2 UML ... 61

IV.3 Visibility ... 61

IV.4 Type definitions.. 61

Appendix V – Additional UML usage samples ... 62

V.1 Proxy Class... 62

Bibliography... 64

 Rec. ITU-T M.3020 (05/2009) 1

Recommendation ITU-T M.3020

Management interface specification methodology

1 Scope
This Recommendation describes the management interface specification methodology (MISM). It
describes the process to derive machine-machine interface specifications based on user
requirements, analysis and design (RAD). Guidelines are given on RAD using unified modelling
language (UML) notation; however, other interface specification techniques are not precluded. The
guidelines for using UML are described in this Recommendation. An interface specification
addresses management service(s) defined in [ITU-T M.3200] and/or supporting the management
processes defined in [ITU-T M.3050.x] series. Such a specification may support part of or one or
more management services. The management services comprise of management functions. These
functions may reference those defined in [ITU-T M.3400] or the processes defined in
[ITU-T M.3050.x] series, specialized to suit a specific managed area, or new functions may be
identified as appropriate.

The methodology is applicable to both the traditional manager/agent style of management interfaces
[ITU-T M.3010] and the service oriented architecture (SOA) principles adopted for the
management architecture of next generation networks [ITU-T M.3060].

2 References
The following ITU-T Recommendations and other references contain provisions which, through
reference in this text, constitute provisions of this Recommendation. At the time of publication, the
editions indicated were valid. All Recommendations and other references are subject to revision;
users of this Recommendation are therefore encouraged to investigate the possibility of applying the
most recent edition of the Recommendations and other references listed below. A list of the
currently valid ITU-T Recommendations is regularly published. The reference to a document within
this Recommendation does not give it, as a stand-alone document, the status of a Recommendation.

[ITU-T M.3010] Recommendation ITU-T M.3010 (2000), Principles for a telecommunications
management network.

[ITU-T M.3050.x] Recommendation ITU-T M.3050.x (2007), enhanced Telecom Operations
Map (eTOM).

[ITU-T M.3060] Recommendation ITU-T M.3060/Y.2401 (2006), Principles for the
management of next generation networks.

[ITU-T M.3200] Recommendation ITU-T M.3200 (1997), TMN management services and
telecommunications managed areas: Overview.

[ITU-T M.3400] Recommendation ITU-T M.3400 (2000), TMN management functions.

[ITU-T Q.812] Recommendation ITU-T Q.812 (2004), Upper layer protocol profiles for the Q
and X interfaces.

[ITU-T X.680] Recommendation ITU-T X.680 (2008) | ISO/IEC 8824-1:2008, Information
technology – Abstract syntax Notation One (ASN.1): Specification of basic
notation.

[ITU-T X.681] Recommendation ITU-T X.681 (2008) | ISO/IEC 8824-2:2008, Information
technology – Abstract Syntax Notation One (ASN.1): Information object
specification.

2 Rec. ITU-T M.3020 (05/2009)

[ITU-T X.722] Recommendation ITU-T X.722 (1992) | ISO/IEC 10165-4:1992, Information
technology – Open Systems Interconnection – Structure of management
information: Guidelines for the definition of managed objects.

[ITU-T Z.100] Recommendation ITU-T Z.100 (2007), Specification and Description
Language.

[OMG UML] OMG: Unified Modelling Language Specification, Version 1.5.

A list of non-normative references can be found in the Bibliography.

3 Definitions

3.1 Terms defined elsewhere
This Recommendation uses the following terms from [ITU-T M.3010]:
– user;
– management service;
– management function set.

This Recommendation uses the following terms from [OMG UML]:
– activity diagram;
– actor;
– association;
– class;
– class diagram;
– classifier;
– collaboration diagram;
– composition;
– modelElement;
– sequence diagram;
– state diagram;
– stereotype;
– use case.

This Recommendation uses the following term from [ITU-T M.3060]:
– reference point.

3.2 Terms defined in this Recommendation

This Recommendation defines the following terms:

3.2.1 agent: Encapsulates a well-defined subset of management functionality. It interacts with
managers using a management interface. From the manager's perspective, the agent behaviour is
only visible via the management interface.
NOTE – Considered equivalent to IRPAgent [b-3GPP TS 32.150].

3.2.2 information object class: Describes the information that can be passed/used in
management interfaces and is modelled using the stereotype "Class" in the UML meta-model. For a
formal definition of information object class and its structure of specification, see Annex B.

3.2.3 information type: Specification of the type of input parameters of operations.

 Rec. ITU-T M.3020 (05/2009) 3

3.2.4 information service: Describes the information related to the entities (either network
resources or support objects) to be managed and the way that the information may be managed for a
certain functional area. Information services are defined for all IRPs.
NOTE – Considered identical to the definition of information service found in [b-3GPP TS 32.150].

3.2.5 integration reference point: An architectural concept that is described by a set of
specifications for the definition of a certain aspect of the management interface, comprising a
requirements specification, an information service specification, and one or more solution set
specifications.
NOTE – Considered identical to the definition of IRP found in [b-3GPP TS 32.150].

3.2.6 management goals: High-level objectives of a user in performing management activities.

3.2.7 management interface: The realization of management capabilities between a manager
and an agent, allowing a single manager to use multiple agents and a single agent to support
multiple managers.
NOTE – Q, C2B/B2B and Itf-N (3GPP) are examples of management interfaces.

3.2.8 management role: Defines the activities that are expected of the operational staff or
systems that perform telecommunications management. Management roles are defined independent
of other components, i.e., telecommunications resources and management functions.
3.2.9 management scenario: A management scenario is an example of management interactions
from a management service.
3.2.10 manager: Models a user of agent(s) and it interacts directly with the agent(s) using
management interfaces.

Since the manager represents an agent user, it gives a clear picture of what the agent is supposed to
do. From the agent perspective, the manager behaviour is only visible via the management
interface.
NOTE – Considered equivalent to IRPManager [b-3GPP TS 32.150].

3.2.11 matching information: Specification of the type of a parameter (possibly reference to IOC
or attribute of IOC).

3.2.12 protocol-neutral specification: Defines the management interfaces in support of
management capabilities without concern for the protocol and information representation implied or
required by, e.g., CORBA and XML.

3.2.13 protocol-specific specification: Defines the management interfaces in support of
management capabilities for one specific choice of management technology (e.g., CORBA).
NOTE – Considered equivalent to solution set [b-3GPP TS 32.150].

3.2.14 telecommunications resources: Telecommunications resources are physical or logical
entities requiring management, using management services.

4 Abbreviations

This Recommendation uses the following abbreviations:

3GPP 3rd Generation Partnership Project

ADM Administrative (usage: requirements category)

ASN.1 Abstract Syntax Notation One

CM Conditional-Mandatory

CO Conditional-Optional

4 Rec. ITU-T M.3020 (05/2009)

CON Conceptual (usage: requirements category)

CORBA Common Object Request Broker Architecture

FUN Functional (usage: requirements category)

GDMO Guidelines for the Definition of Managed Objects

IDL Interface Definition Language

IOC Information Object Class

IRP Integration Reference Point

IS Information Service

MISM Management Interface Specification Methodology

NA Not Applicable

NE Network Element

NON Non-functional (usage: requirements category)

OMG Object Management Group

OO Object Oriented

OSI Open Systems Interconnection

SDL Specification and Description Language

SOA Service Oriented Architecture

SS Solution Set

TS Technical Specification

UML Unified Modelling Language

XML extensible Markup Language

5 Conventions
Clause A.1 contains conventions applicable to the requirements phase.

Clause B.1 contains conventions applicable to the analysis phase.

6 Requirements for methodology and notational support
In developing the methodology and choosing a notation, the following requirements apply:
1) The methodology, including the choice of notation, shall support the capture of all the

relevant requirements of the problem space, namely telecommunications management.
2) The methodology facilitates the production of requirements, its corresponding

Analysis|Information Services and their corresponding Design Specifications|Solution Sets.
3) The notation shall facilitate unambiguous generation of the specification in the target

management protocol profile. The methodology does not address possible choices of
protocol services (e.g., CORBA Security Service).

 NOTE – Management protocols applicable for ITU-T use are specified in [ITU-T Q.812].
4) The methodology shall allow specification of mandatory and optional items in all three

phases. It also specifies the relation of mandatory|optional items between the three phases.

 Rec. ITU-T M.3020 (05/2009) 5

5) It should be possible to generate, from the protocol-neutral specification (Analysis|IS),
interoperable language specific definitions, i.e., Design|SS (for example UML to IDL,
UML to GDMO/ASN.1).

7 Methodology

7.1 General considerations
The purpose of this methodology is to provide a description of the processes leading towards the
definition of machine-machine management interfaces.

7.2 Application and structure of the methodology
The management interface specification methodology (MISM) specifies a three-phase process with
features that allow traceability across the three phases. The three phases apply industry-accepted
techniques using object oriented analysis and design principles. The three phases are requirements,
analysis and design. The techniques should allow the use or development of commercially available
support tools. Different techniques may be used for the phases depending on the nature of the
problem.

7.3 Detailed methodology

7.3.1 General
The requirements and analysis phases produce UML specifications. The design phase uses network
management paradigm specific notation. The outputs of the 3 phases are:
– Requirements phase – Requirements.
– Analysis phase – Implementation independent specification.
– Design phase – Technology specific specification.

Initially, the design phase will be developed using a manual or customized approach. When
interoperable protocol specific definition can be generated by tools, then UML notation can be
applied to the design phase.

The clauses below describe the three phases.

7.3.2 Requirements
The requirements for the problem being solved fall into two classes. The first class of requirements
is referenced here as business requirements. A subject matter expert on the topic shall be able to
determine that the requirements adequately represent the needs of the management problem being
solved. The second class is referred to as specification requirements. These requirements shall
provide sufficient details so that the interface definition in the analysis and design phases can be
developed. As final interface definitions must be traceable to the requirements, it may be necessary
to have interaction between the three phases. Any ambiguity in the requirements will have to be
resolved by this interaction to assure that an implementable specification can be developed.

Human-computer interface data may be specified in the second class of requirements. These
requirements may have great impact on concepts and data designed in the subsequent phases. For
more detail, see Appendix III, and see the ITU-T M.1400-series Recommendations on data design
for human-computer interfaces.

Different techniques may be used to specify the two classes of requirement. Irrespective of the
technique, the readability of the requirements is critical. The requirements themselves are not
required to be in a machine-readable notation as long as readability and traceability are possible.
Enumerating requirements is the recommended solution to delineate the different requirements for
traceability.

6 Rec. ITU-T M.3020 (05/2009)

The requirements phase includes identifying aspects such as security policy, scope of the problem
domain in terms of the applications, resources, and roles assumed by the resources. The
requirements specify roles, responsibilities, and the relationships between the constituent entities for
the problem space. Different techniques, including textual representation, may be used to specify
the business level requirements. In order to facilitate traceability of these requirements to the design
and implementation phases, enumerating requirements is recommended.

The problem must be bounded with a specific scope. One way to determine the scope is by using
the management services identified in [ITU-T M.3200] and function sets identified in
[ITU-T M.3400]. Requirements are specified using the resources being managed and management
functions. An alternative to the management services approach is described in [ITU-T M.3050.x]
"enhanced Telecom Operations Map (eTOM)" which provides a business process based approach.

The relationship between the M.3200 and M.3050 approaches is described in [ITU-T M.3050.x].

Management functions must be grouped and supported within applications that address specific
business needs, so the linkage between the eTOM processes, the M.3200 management services, the
M.3400 management function sets and management functions is important to assist in making this
grouping clear and effective. Augmenting [ITU-T M.3400] may be required in order to meet the
business requirements of the problem.

UML use cases and scenarios should be used to interact with subject matter experts in capturing the
business level requirements. The requirements should also identify the failure conditions visible to
the business process.
NOTE – It is not required that every requirement be expressed as a use case.

The requirements produced must be complete and detailed. The recursive nature of the
methodology is used to achieve this completeness. The completeness of the requirements (clear and
well-documented) drives the analysis and design phases.

Guidelines and template for requirement structure and identification are described in clause A.1.2.

Use cases are goals that are fulfilled through a sequence of steps. Each step can be considered as a
sub-goal of the use case. As such each step represents either another use case (subordinate use case)
or an autonomous action that is at the lowest level of the case decomposition.

Guidelines and template for use cases are described in clause A.1.2.

An example requirements definition is available in Appendix I.

7.3.3 Analysis
In the analysis phase, the requirements are used to identify the interacting entities, their properties
and the relationships among them. This allows the interfaces offered by the entities to be defined. In
the UML notation, these entities become classes. The class descriptions along with the interfaces
exposed should be traceable to the requirements. The relationship among the classes, defined in the
analysis specification, and the classes in the design specification is not necessarily one to one.

This phase should take into account the needs of human-computer interface data (i.e., the
information model must contain sufficient information so that designs can be developed based on
the analysis results).

This Recommendation gives high-level guidance on the use of UML notation to support
management interface specification; however SDL [ITU-T Z.100] might be used to augment the
UML definitions.

The analysis phase should be independent of design constraints. For example, the analysis may be
documented using OO principles even though the design may use a non object-oriented technology.
The information specified in the analysis phase includes class descriptions, data definitions, class
relationships, interaction diagrams (sequence diagrams and/or collaboration diagrams), state

 Rec. ITU-T M.3020 (05/2009) 7

transition diagrams and activity diagrams. The class definitions include specification of operations,
notifications, attributes and behaviour captured as notes or textual description.

Protocol-neutral common management services (if available) – or other existing services – should
be reused during the analysis phase in order to support management interface harmonization.

Guidelines and template for use cases are described in Annex B.

The analysis template uses information type as one characteristic to describe IOC attributes and
operation/notification parameters. The valid information type(s) that can be used and their
semantics are defined in Annex E.

7.3.4 Design

7.3.4.1 General
In the design phase, an implementable interoperable interface specification is produced. This will
involve the selection of a target specification language. The design phase specifications are
dependent on the specific management paradigm (e.g., IDL for CORBA interfaces).

This phase distinguishes three kinds of specifications of data: management paradigm (e.g., XML)
dependent design of data to be communicated across multiple interfaces (e.g., fault and
performance), messages (e.g., alarm report) to be communicated over each individual interface, and
encoding method of the data (e.g., compressed XML) consistent with a particular paradigm.

The selection of a specific management paradigm is addressed in other ITU-T Recommendations.
An overview is provided in the following clauses.

In the design phase, it is recommended that the UML descriptions from the requirements and
analysis phases be referenced to augment behavioural specification. For example, behaviour
definition of GDMO can reference state charts, sequence diagrams and class definition in the
analysis phase. If required, additional UML diagrams describing interactions between entities,
corresponding to specific protocol paradigms, may be included.

As additional paradigms are adopted for use by management, the notations/languages defined by
these paradigms will be used.

7.3.4.2 CORBA
In the context of CORBA based management, the information model is defined using IDL.

7.3.4.3 GDMO
In the context of the paradigm based on OSI systems management [ITU-T X.722], the design
specification is the information model specification using GDMO templates for managed object
classes, attributes, behaviour, notifications, actions, naming instances of the class, and
error/exception specifications. The syntax of the information is specified using ASN.1
notation [ITU-T X.680].

In GDMO, the object class hierarchy specifies the properties of the object classes that are needed
for management. Extensive use of inheritance (super and subclasses) is needed to benefit the most
from the reuse of specifications. The object classes are specified using the templates from
[ITU-T X.722]. The templates defining the information model should be registered (according to
the rules of [ITU-T X.722]) with a value for the ASN.1 object identifier. For those object classes
that are already specified in other ITU-T Recommendations and ISO standards, only a reference to
the particular Recommendation and object class is needed. Naming is not a part, nor the purpose, of
the object class hierarchy.

7.3.4.4 XML
For further study.

8 Rec. ITU-T M.3020 (05/2009)

8 Management interface specifications
A management interface specification includes the requirements, analysis and design specifications
discussed in clause 7. A structure for specifying these specifications is provided in Annexes A, B
and C.

These techniques and supporting notations are also applicable when designing a system to the
management interface specifications, even though system design is not considered as part of the
ITU-T management Recommendations. They assist in describing how the interface specifications
are applied in managing the resources within a system such as an NE.

9 Traceability in MISM process
In order to achieve traceability between requirements, analysis and design, it is necessary that
appropriate identification be assigned. Traceability is supported through references between entities
specified within each phase and between phases. Traceability is from design|solution set to
analysis|information services and from analysis|information services to requirements. Traceability is
further applicable between artifacts of the requirements specification and between artifacts of the
analysis|information service, e.g., between use cases and textual requirements. Requirements should
be identified as described in clause 7.3.2. The analysis phase output specifies for the various use
cases further detailed information requirements. The design phase should point to the various
diagrams and text in the analysis phase output. The pointer may be in terms of a reference to the
appropriate sections.

Traceability from the design phase to subject matter level requirements is usually indirect. This is
required because the output of the phases is defined to different level of details.

Guidelines for traceability between the requirements phase and the analysis phase are described in
Annex B.

The following mechanism for traceability with requirements, etc. specified in other documents
(possibly not following the advocated identification schema) is recommended:
 forum/body "::" document ID "::" id

where "id" could be one of:
1) requirement ID;
2) use case ID;
3) requirement title/text;
4) use case title;
5) subsection of the document which uniquely identifies a requirement or use case.

Examples:
3GPP::32.111-1::getAlarmList
ITU-T::M.3016::1.5.1.2

10 Documentation structure
Even though there are three phases, the documentation of the interface may combine their outputs
into one or more documents. It is recommended that the requirements and analysis be combined and
separate design documents are developed for each specific network management protocol paradigm.

 Rec. ITU-T M.3020 (05/2009) 9

Annex A

Requirements
(This annex forms an integral part of this Recommendation)

A.1 Conventions
A.1.1 Use of UML notation for requirements
A.1.2 Use case template
A.1.3 Requirements categories
A.2 Requirements template
 1 Concepts and background
 2 Business level requirements
 2.1 Requirements
 2.2 Actor roles
 2.3 Telecommunication resources
 2.4 High-level use cases
 3 Specification level requirements
 3.1 Requirements
 3.2 Actor roles
 3.3 Telecommunication resources
 3.4 Use cases
A.3 Simplified requirements template
 1 Concepts and background
 2 Requirements

The following are guidelines for specification of requirements. An example of the use of this
template can be found in Appendix I.

The normal (or full format) requirements template is found in clause A.2. In addition, a simplified
requirements template is defined and found in clause A.3.

A.1 Conventions

A.1.1 Use of UML notation for requirements
Table A.1 identifies the correspondence between management concepts and UML notation. This
Recommendation specifies the high-level concepts and notations to be used in the different phases.
Stereotypes are used to extend UML notation. The approved stereotypes for use within the
management environment are included in this Recommendation (see Annex C).

10 Rec. ITU-T M.3020 (05/2009)

Table A.1 – Requirements concepts

Management concept UML
notation Comment

user. Actor A user is modelled as an actor.
management role. Actor An actor plays a role. It is normally advisable to only model a

single role for each actor.
management function. use case A management function is modelled by one or more use

cases.
management function set. use case A management function set is a composite use case with each

management function (potentially) modelled as a separate use
case.

management service. use case A management service is modelled as a high-level use case.
management scenario. sequence

diagram
Sequence diagrams are preferred over collaboration
diagrams.

telecommunication
resource type.

Class The class diagrams depict the property details of the
telecommunications resource type, at the level of detail
appropriate to the phase of the methodology.

management goals. – Management goals are captured as textual descriptions as
there is no applicable UML notation.

A.1.2 Use case template
When use cases are provided, the following conventions and templates should be followed.

Table A.2 – Use case template

Use case stage Evolution/Specification <<Uses>>
Related use

Goal (*) This is the objective/end result the use case strives to achieve and should
be a concise statement of what the use case should achieve in a
successful scenario.
There may be a statement about priority relative to other use cases and
required performance of the use case, e.g.,
• Real Time.
• Near real time.
• Not real time.

Actors and
roles (*)

The names of actors/roles involved in the use case including role
characteristic for each actor.

Telecom
resources

The names of the telecommunication resources involved in the use case.

Assumptions A description of the environment providing a context for the use case.
Assumptions are mutually exclusive to pre-conditions.
Assumptions are concerned with static properties.

Pre-conditions A list of all system and environment conditions that must be true before
the use case can be triggered.
Pre-conditions are mutually exclusive to assumptions.
Pre-conditions are related to dynamic properties and can result in an
exception. This is never the case with assumptions.

 Rec. ITU-T M.3020 (05/2009) 11

Table A.2 – Use case template

Use case stage Evolution/Specification <<Uses>>
Related use

Begins when The name of the single event that triggers the start of the use case.
Optional and normally not used to specify triggers such as "when the
manager must retrieve information".

Step 1 (*)
(M|O)

A use case describes a list of steps (manual and automated) that are
necessary to accomplish the goal of the use case.
Steps may invoke other use cases.
Steps are numbered for traceability.
Each step is identified as being mandatory (M) or optional (O).
Sub-steps are identified relative to the containing step, e.g.,
Step n
Step n.1
Step n.2
where n.1 and n.2 are sub-steps of step n.

Reference to
a used use
case.

Step n (M|O) Steps added as necessary and in a logical sequence.
Ends when (*) The list of event(s) that indicates the use case completion.

NOTE – In this context, "event" should be considered in the most
general sense and not limited to, e.g., notifications exchanged across a
management interface. As an example, the completion of processing can
be considered an event that indicates completion of a use case.

Exceptions A summary list of exception conditions and faults detected by the use
case during its operation.

Post-conditions A list of all system and environmental conditions that must be true when
the use case has completed. The statement of post-conditions determines
if the use case is expected to be fully successful, partially successful or
even to have failed in order to be completed.

Traceability (*) Requirements or use case exposed by the use case.
NOTE – Fields marked with "*" are mandatory for all use case specifications. Other fields are only
mandatory when relevant for the specific use case.

A.1.3 Requirements categories
It is useful to classify requirements in different categories. The following categories are considered
relevant for MISM:
– Conceptual (CON) – Identifies a concept, data type, relationship, format, or structure.
– Functional (FUN) – Identifies a functional capability, dynamic situation, a sequence, timing

parameters, or an interaction.
– Non-functional (NON) – Non-functional requirements, including abnormal conditions,

error conditions and bounds of performance.
– Administrative (ADM) – System administration and operational requirements not related to

the use cases normal operations.

12 Rec. ITU-T M.3020 (05/2009)

Requirements should be written based on the following template:
 REQ-Label-Category-Number {Category, number} Details {Source Citation}

where "Label" is an abbreviation for the Recommendation (or part thereof). The set of labels is not
finite and not subject for standardization.

 Rec. ITU-T M.3020 (05/2009) 13

A.2 Requirements template

1 Concepts and background

Define major goals and objectives and the applicable management interfaces (and reference points)
for this specification. Use [ITU-T M.3200] categorization as a source for identifying the management
service(s) supported by this interface.

This subclause should give a clear description of the users' benefit, i.e., the reason for performing this
management service. Background and context should be added as necessary, but the explanatory and
descriptive parts should be separated. Supporting background information, where required, should be
placed in an appendix.

1.a SubSectionTitle

SubSectionTitle is the name of a subclause.

"a" represents a number, starting at 1 and increasing by 1 with each new subclause.

The use of subclauses is optional.

2 Business level requirements

2.1 Requirements

2.1.a SubSetTitle

SubSetTitle is the name of a sub-set of the business level requirements.

"a" represents a number, starting at 1 and increasing by 1 with each new sub-set.

The use of sub-sets is optional and all business level requirements can be stated in clause 2.1
(requirements).

List major requirements in text, and identify use cases with actor/role and resources. The use cases
should bring out high-level requirements and are distinguished from the specification requirements by
not refining to lower levels. Policy-related information (e.g., security, persistence) are candidates for
inclusion at this level. Numbering the requirements is required for traceability.

Requirements should be specified as described in clause A.1.3. Within a requirements specification, it
is suggested that requirements are written in the sequence of clause A.1.3 (either for the entire
specification or for each sub-set).

Use of requirements categories is optional, and – when used – a subset of the categories can be
applied.

As an example, conceptual requirement number 23 in Recommendation tagged 'SM' would be
specified as follows:

Identifier Definition

REQ-SM-CON-23 A Service Order consists of a name, address, phone number, service
description and an optional FAX number for contacts {T1M1.5
Document 246 11/96}

One or more tables can be used with supportive text between tables as necessary.

2.2 Actor roles

A textual description of the actor (see clause 3) is included here.

2.3 Telecommunication resources

Textual description of the relevant resources (see clause 3) required to support the use cases are
presented here.

14 Rec. ITU-T M.3020 (05/2009)

2.4 High-level use cases

A high-level use case diagram may be presented. In order to understand the use case by subject matter
experts, they should be augmented with a textual description for each use case. The description should
serve two purposes: to capture the domain experts' knowledge and to validate the models in analysis
and design phases with respect to the requirements. An example of a high-level use case diagram is
given in Appendix I.

2.4.a UseCaseName

UseCaseName is the name of the use-case.

"a" represents a number, starting at 1 and increasing by 1 with each new definition of a use case.

This clause is repeated for each high-level use case defined for the interface specification
requirements.

The high-level use cases may identify the various function sets defined in [ITU-T M.3400] or the
management processes defined in [ITU-T M.3050.x]. These use cases may be further refined as
described in the specification requirement subclause below by using stereotypes such as "include" and
"extend".

If appropriate, sequence diagrams may be used. However, at the high-level requirements these
diagrams are not expected to be used. When the use cases at this level are further decomposed in the
next level of requirements, these diagrams may be more suitable.

The traceability of the next level of requirements from this level may be identified by how each
function set is further refined with new use cases.

A set of use case tables, using the template defined in Table A.2, may be used to represent the
significant capabilities studied at a level of abstraction appropriate to the problem being analysed.

The level of detail, and extent of coverage provided in the use cases is dependent upon the authoring
team's familiarity with the subject matter and is therefore subjective. The lower levels of details are
most likely an indication of analysis rather than requirements capture.

It is permitted to develop successively more detailed analysis of each step of a higher abstraction level
use case by referring to the more detailed use case in the table cell reserved for this purpose. It is
emphasized this does not have to be done, and is subjective depending upon the need of the
author/group.

The following list is provided to aid the initial identification of suitable use cases:

– What is the main purpose of the system?

– What types of people/system need to interact with the system?

– How can these people/systems be grouped or abstracted to roles?

– What are the start up, normal running, failure and recovery aspects of the system?

– What types of reports or data may be needed from the system?

– Which special activities are required (e.g., based on times of day and network loads)?

It is useful to document use cases in a common manner. The following structure is suggested:

– <use case table> (see Table A.2)

– <optional sequence diagram(s)>

– <optional state chart(s)>

 Rec. ITU-T M.3020 (05/2009) 15

3 Specification level requirements

3.1 Requirements

3.1.a SubSetTitle

The high-level use cases are further refined using management functions from [ITU-T M.3400]. Since
[ITU-T M.3400] is not exhaustive enough to address all management services for all managed areas,
it is expected that new functions will be required. The new functions should be included in the
requirements as described below.

Specification level requirements should follow the conventions and templates defined in clause A.1.

3.2 Actor roles

A list of all actors and textual description of actors not already defined in high-level requirements is
included here.

3.3 Telecommunication resources

A list of all passive resources and textual description of resources not already defined in high-level
requirements is presented here.

3.4 Use cases

3.4.a UseCaseName

UseCaseName is the name of the use-case.

"a" represents a number, starting at 1 and increasing by 1 with each new definition of a use case.

If appropriate, sequence and state chart diagrams may be used.

NOTE – Guidelines and criteria for use of sequence diagrams and state chart diagrams are for further
study.

Use case specifications should follow the conventions and templates defined in clause A.1.

16 Rec. ITU-T M.3020 (05/2009)

A.3 Simplified requirements template
The simplified requirements template is an alternative template for use in cases when only the
textual requirements are required. A separate template is defined to avoid ambiguity that would
result by adding optionality in the full-form template described in clause A.2.

1 Concepts and background

Define major goals and objectives and the applicable management interfaces (and reference points)
for this specification. Use [ITU-T M.3200] categorization as a source for identifying the management
service(s) supported by this interface.

This subclause should give a clear description of the users' benefit, i.e., the reason for performing this
management service. Background and context should be added as necessary, but the explanatory and
descriptive parts should be separated. Supporting background information, where required, should be
placed in an appendix.

1.a SubSectionTitle

SubSectionTitle is the name of a subclause.

"a" represents a number, starting at 1 and increasing by 1 with each new subclause.

The use of subclauses is optional.

2 Requirements

2.a SubSetTitle

SubSetTitle is the name of a sub-set of the business level requirements.

"a" represents a number, starting at 1 and increasing by 1 with each new sub-set.

The use of sub-sets is optional and all business level requirements can be stated in clause 2
(requirements).

List major requirements in text, and identify use cases with actor/role and resources. The use cases
should bring out high-level requirements and are distinguished from the specification requirements by
not refining to lower levels. Policy-related information (e.g., security, persistence) are candidates for
inclusion at this level. Numbering the requirements is required for traceability.

Requirements should be specified as described in clause A.1.3. Within a requirements specification, it
is suggested that requirements are written in the sequence of clause A.1.3 (either for the entire
specification or for each sub-set).

Use of requirements categories is optional, and – when used – a subset of the categories can be
applied.

As an example, conceptual requirement number 23 in Recommendation tagged 'SM' would be
specified as follows:

Identifier Definition

REQ-SM-CON-23 A Service Order consists of a name, address, phone number, service
description and an optional FAX number for contacts {T1M1.5
Document 246 11/96}

One or more tables can be used with supportive text between tables as necessary.

 Rec. ITU-T M.3020 (05/2009) 17

Annex B

Analysis
(This annex forms an integral part of this Recommendation)

B.1 Conventions
B.1.1 Mandatory, optional and conditional qualifiers
B.2 Analysis template
 1 Concepts and background
 2 Information object classes
 2.1 Imported information entities and local labels
 2.2 Class diagram
 2.2.1 Attributes and relationships
 2.2.2 Inheritance
 2.3 Information object class definitions
 2.3.a InformationObjectClassName
 2.4 Information relationship definitions
 2.4.a InformationRelationshipName (supportQualifier)
 2.5 Information attribute definitions
 2.5.1 Definition and legal values
 2.5.2 Constraints
 2.6 Common notifications
 2.7 System state model
 3 Interface definition
 3.1 Class diagram representing interfaces
 3.2 Generic rules
 3.b Interface InterfaceName (supportQualifier)
 3.b.a Operation OperationName (supportQualifier)
 3.b.b Notification NotificationName (supportQualifier)
 3.c Scenario
B.3 IOC properties, inheritance and import
B.3.1 Property
B.3.2 Inheritance
B.3.3 Import

The following are guidelines for specification of the results of the analysis phase.

The analysis template is based on the 3GPP information service [b-3GPP TS 32.151] and
augmented to meet additional requirements on the methodology (e.g., traceability).

For a management interface specification, both clauses B.2.2 and B.2.3 shall be used. For an
information model (e.g., a network resource model) only clause B.2.2 shall be used.

An example of the use of this template can be found in Appendix II.

18 Rec. ITU-T M.3020 (05/2009)

The constructs "Analysis|Information Service" and "Design|Solution" sets are used to denote the
equivalent, but differently named, specifications developed by ITU-T and 3GPP.

B.1 Conventions

B.1.1 Mandatory, optional and conditional qualifiers
This subclause defines a number of terms used to qualify the relationship between the
Analysis|Information Service, the Design|Solution Sets and their impact on the interface
implementations. The qualifiers defined in this clause are used to qualify agent behaviour only. This
is considered sufficient for the specification of the management interfaces.

Analysis specification|IS specifications define IOC attributes, interfaces, operations, notifications,
operation parameters and notification parameters. They can have the following support/read/write
qualifiers: M, O, CM, CO, C.

Definition of qualifier M (Mandatory):
• Used for items that shall be supported.

Definition of qualifier O (Optional):
• Used for items which may or may not be supported.

Definition of qualifier CM (Conditional-Mandatory):
• Used for items that are mandatory under certain conditions, specifically:

– All items having the support qualifier CM shall have a corresponding constraint
defined in the Recommendation|IS specification. If the specified constraint is met, then
the items shall be supported.

Definition of qualifier CO (Conditional-Optional):
• Used for items that are optional under certain conditions, specifically:

– All items having the support qualifier CO shall have a corresponding constraint defined
in the Recommendation|IS specification. If the specified constraint is met, then the
items may be supported.

Definition of qualifier C (SS-Conditional):
• Used for items that are only applicable for certain but not all Designs|Solutions Sets (SSs).

Design|SS specifications define the SS-equivalents of the IOC attributes, operations, notifications,
operation parameters and notification parameters. These SS-equivalents can have the following
support/read/write qualifiers: M, O, CM and CO.

The mapping of the qualifiers of Analysis|IS-defined constructs to the qualifiers of the
corresponding SS-constructs is defined as follows:
• For qualifier M, O, CM and CO, each IS-defined item (operation and notification, input and

output parameter of operations, input parameter of notifications, information relationship
and information attribute) shall be mapped to its equivalent(s) in all SSs. Mapped
equivalent(s) shall have the same qualifier as the IS-defined qualifier.

• For qualifier C, each IS-defined item shall be mapped to its equivalent(s) in at least one SS.
Mapped equivalent(s) can have support qualifier M or O.

Table B.1 defines the semantics of qualifiers of the equivalents, in terms of support from the agent
perspective.

 Rec. ITU-T M.3020 (05/2009) 19

Table B.1 – Semantics for qualifiers used in Design|Solution sets

Mapped SS
equivalent Mandatory Optional

Conditional-
Mandatory

(CM)

Conditional-
Optional (CO)

Mapped
notification
equivalent

The agent shall
generate the
notification.

The agent may or may not
generate it.

The agent shall
generate this
notification if
the constraint
for this item is
satisfied.

The agent may
choose whether or
not to generate it. If
the agent chooses
to generate it, the
constraint for this
notification must
be satisfied.

Mapped
operation
equivalent

The agent shall
support it.

The agent may or may not
support this operation. If
the agent does not support
this operation, the agent
shall reject the operation
invocation with a reason
indicating that the agent
does not support this
operation. The rejection,
together with a reason, shall
be returned to the manager.

The agent shall
support this
operation if the
constraint for
this item is
satisfied.

The agent may
support this
operation if the
constraint for this
item is satisfied.

Input parameter
of the mapped
operation
equivalent

The agent shall
accept and
behave
according to its
value.

The agent may or may not
support this input
parameter. If the agent does
not support this input
parameter and if it carries
meaning (i.e., it does not
carry no-information
semantics), the agent shall
reject the invocation with a
reason (that it does not
support the parameter). The
rejection, together with the
reason, shall be returned to
the manager.

The agent shall
accept and
behave
according to its
value if the
constraint for
this item is
satisfied.

The agent may
accept and behave
according to its
value if the
constraint for this
item is satisfied.

Input parameter
of mapped
notification
equivalent
AND
output parameter
of mapped
operation
equivalent

The agent shall
supply this
parameter.

The agent may supply this
parameter.

The agent shall
supply this
parameter if the
constraint for
this item is
satisfied.

The agent may
supply this
parameter if the
constraint for this
item is satisfied.

Mapped IOC
attribute
equivalent

The agent shall
support it.

The agent may support it. The agent shall
support this
attribute if the
constraint for
this item is
satisfied.

The agent may
support this
attribute if the
constraint for this
item is satisfied.

20 Rec. ITU-T M.3020 (05/2009)

B.2 Analysis template

1 Concepts and background

This clause should provide an introduction to the management interface specification analysis.

1.a SubSectionTitle

SubSectionTitle is the name of a subclause.

"a" represents a number, starting at 1 and increasing by 1 with each new subclause.

The use of subclauses is optional.

2 Information object classes

This clause shall be used for all specifications (both management interface specifications and
information model only specifications).

2.1 Imported information entities and local labels

This clause identifies a list of information entities (e.g., information object class, information
relationship, information attribute) that have been defined in other specifications and that are
imported in the present document. This includes information entities from other specifications
imported for inheritance purpose. Each element of this list is a pair (label reference, local label). The
label reference contains the name of the specification where it is defined, the type of the information
entity and its name. The local label of imported information entities can then be used throughout the
specification instead of the label reference.

This information is provided in a table.

Label reference Local label

Imported elements should be from protocol neutral definitions based on this methodology but may
import elements from other specifications, if necessary, in the interest of migration of protocol specific
specifications over time.

2.2 Class diagram

2.2.1 Attributes and relationships

This first set of diagrams represents all information object classes defined in this IS with all their
relationships and all their attributes, including relationships with imported IOCs (if any). These
diagrams shall contain information object class cardinalities (for associations as well as containment
relationships) and may also contain association names and role names. These shall be UML
compliant class diagrams (see also Annex C).

Characteristics (relationships) of imported information object classes need not be repeated in the
diagram. Information object classes should be defined using the stereotype
<<InformationObjectClass>>.

2.2.2 Inheritance

This second set of diagrams represents the inheritance hierarchy of all information object classes
defined in this IS. These diagrams do not need to contain the complete inheritance hierarchy but shall
at least contain the parent information object classes of all information object classes defined in the
present document. By default, an information object class inherits from the information object class
"top". These shall be UML compliant class diagrams.

Characteristics (attributes, relationships) of imported information object classes need not be repeated
in the diagram. Information object classes should be defined using the stereotype
<<InformationObjectClass>>.

 Rec. ITU-T M.3020 (05/2009) 21

NOTE 1 – Some inheritance relationships presented in clause 2.2.2 can be repeated in clause 2.2.1 to
enhance readability.
NOTE 2 – Interface inheritance is shown in clause 3.1 and not in this section.

2.3 Information object class definitions

Class name Qualifier Requirement IDs

Each information object class is defined using the following structure.

Inherited items (attributes, etc.) shall not be shown, as they are defined in the parent IOC(s) and thus
valid for all subclasses.

2.3.a InformationObjectClassName

InformationObjectClassName is the name of the information object class.

"a" represents a number, starting at 1 and increasing by 1 with each new definition of an information
object class.

2.3.a.1 Definition

The <Definition> subclause is written in natural language. The <Definition> subclause refers to the
information object class itself. The characteristics related to the relationships that the object class can
have with other object classes cannot be found in the definition. The reader has to refer to
relationships definition to find such kind of information. Information related to inheritance shall be
precised here.

2.3.a.2 Attributes

The <Attributes> subclause presents the list of attributes, which are the manageable properties of the
object class. Each element is a tuple (attributeName, supportQualifier, readQualifier, writeQualifier):

– The supportQualifier indicates whether the attribute is Mandatory (M), Optional (O),
 Conditional-Mandatory (CM), Conditional-Optional (CO), SS-Conditional (C) or Not supported
 (–). Allowed values are: Mandatory, Optional, Conditional or not supported ("M","O","C", or
 "–", respectively).

– The readQualifier indicates whether the attribute shall be readable by the manager. The
possible values are: Mandatory (M), Optional (O), Conditional-Mandatory (CM), Conditional-
Optional (CO), SS-Conditional (C) or not supported (–). Allowed values are: Mandatory (M),
Optional (O) and Not supported (–).

– The writeQualifier indicates whether the attribute shall be writeable by the manager. The
 semantics for writeQualifier is identical to supportQualifier, for "M", "O", and "–". Allowed
 values are: Mandatory (M), Optional (O) and Not supported (–).

There is a dependency relationship between the supportQualifier, readQualifier, and writeQualifier.
The supportQualifier indicates the requirements for the support of the attribute. For any given
attribute, regardless of the value of the supportQualifier, at least one of the readQualifier or
writeQualifier must be "M". The implication of the "O" supportQualifier is that the attribute is
optional, however the read and write qualifiers indicate how the optional attribute shall be supported,
should the optional attribute be supported.

Private or agent internal attributes are per definition not writable by the IRPManager. Their
writeQualifier is hence always "–".

The readQualifier and writeQualifier of a supported attribute, that is public, may not be both "–".

22 Rec. ITU-T M.3020 (05/2009)

The use of "–" in supportQualifier is reserved for documenting support of attributes defined by an
"Archetype" IOC (see clause C.3.5). Attributes with a supportQualifier of "–" are not implemented by
the IOC that is realizing a subset of the attributes defined by the "Archetype". The readQualifier and
writeQualifier are of no relevance in this case. However, a not supported attribute is neither readable
nor writable. For this reason, the readQualifier and writeQualifier shall be "–" for unsupported
attributes.

For any IOC that uses one or more attributes from an "Archetype", a separate table shall be used to
indicate the supported attributes. This table is absent if no "Archetype" attributes are supported. For
example, if a particular IOC has defined attributes (i.e., attributes not defined by an "Archetype") and
encapsulates attributes from two "Archetype"s, then the totality of the attributes of the said IOC will
be contained in three separate tables.

This information is provided in a table.

Attribute name Support
qualifier

Read
qualifier

Write
qualifier Requirement IDs

2.3.a.3 Attribute constraints

The <Attribute constraints> subclause presents constraints between attributes that are always held to
be true. Those properties are always held to be true during the lifetime of the attributes and in
particular do not need to be repeated in pre- or post-conditions of operations or notifications.

NOTE – This subclause does not need to be present when there are no attribute constraints to define.

2.3.a.4 Relationships

The <Relationship> subclause presents the list of relationships in which this class is involved. Each
element is a relationshipName.

The relationships will be listed in a table as follows:

Relationship Requirement IDs

And each relationship name should be a reference (and preferably also a hyperlink) to the appropriate
clause of clause 2 (information object classes).

NOTE – This subclause is optional and may be avoided since all relationships are represented in the
class diagram in clause 2.2.1.

2.3.a.5 State diagram

The <State diagram> subclause contains state diagrams. A state diagram of an information object
class defines permitted states of this information object class and the transitions between those states.
A state is expressed in terms of individual attribute values or a combination of attribute values or
involvement in relationships of the information object class being defined. This shall be a UML
compliant state diagram.

NOTE – This subclause does not need to be present when there is no state diagram to define.

2.3.a.6 Notifications

The <Notifications> subclause, for this IOC, presents:

a) optionally, a reference to the common notifications defined in subclause 2.6 as valid for this
IOC, and

b) optionally, a list of notifications that shall be excluded from the list of common notifications
(defined in subclause 2.6) for this IOC (note that inherited notifications from the parent IOC(s)
cannot be excluded),

 Rec. ITU-T M.3020 (05/2009) 23

and

c) optionally, a list of notifications applicable to this IOC, and which may or may not be defined in
the common notifications in subclause 2.6.

The notifications identified in this subclause are notifications that can be emitted across the
management interface, where the "object class" and "object instance" parameters of the notification
header (see Note 2) of these notifications identifies an instance of the IOC defined by the
encapsulating subclause (i.e., clause 2.3.a).

The notifications identified in this subclause, may originate from implementation object(s) whose
identifier is mapped in the implementation, to the object instance identifier used over the management
interface. Hence the presence of notifications in this clause (i.e., clause 2.3.a.6) does not imply nor
identify those notifications as being originated from an instance of the IOC defined by the
encapsulating subclause (i.e., clause 2.3.a).

The information related to option c) above is provided in a table. An example of such a table is given
below:

Name Qualifier Requirement IDs Notes

NOTE 1 – This subclause and table do not need to be present when there are no additional
notifications to those in clause 2.6.

NOTE 2 – The notification header is defined in the notification IRP Information service
[b-3GPP TS 32.302].

2.4 Information relationship definitions

This clause first lists all the relationships supported by this Recommendation | Specification in the
following table. Support qualifier is defined as for attributes in clause B.1.

Relationship Support Qualifier Requirement IDs

Each information relationship is defined using the following structure.

Inherited relationships shall not be shown, as they are defined by the parent IOC(s) and thus valid for
all subclasses.

2.4.a InformationRelationshipName (supportQualifier)

InformationRelationshipName is the name of the information relationship followed by a qualifier (see
clause B.1).

"a" represents a number, starting at 1 and increasing by 1 with each new definition of an information
relationship.

2.4.a.1 Definition

The <Definition> subclause is written in natural language.

24 Rec. ITU-T M.3020 (05/2009)

2.4.a.2 Roles

The <Roles> subclause identifies the roles played in the relationship by object classes. Each element
is a pair (roleName, roleDefinition).

This information is provided in a table.

Name Definition

2.4.a.3 Constraints
The <Constraints> subclause contains the list of properties specifying the semantic invariants that
must be preserved on the relationship. Each element is a pair (propertyName, propertyDefinition).
Those properties are always held to be true during the lifetime of the relationship and do not need to
be repeated in pre- or post-conditions of operations or notifications.

This information is provided in a table.

Name Definition

2.5 Information attribute definitions

Each information attribute is defined using the following structure.

Inherited attributes shall not be shown, as they are defined in the parent IOC(s) and thus valid for all
subclasses.

2.5.1 Definition and legal values

This subclause contains, for each attribute being defined, its Attribute Name, its Definition written in
natural language, an Information Type (see Annex E) and an optional list of Legal Values supported
by the attribute.

In the case where the Legal Values can be enumerated, each element is a pair (Legal Value Name,
Legal Value Semantics), unless a Legal Value Semantics applies to several values in which case the
Semantics is provided only once. When the Legal Values cannot be enumerated, the list of Legal
Values is defined by a single definition.

This information is provided in a table.

Attribute Name Definition Information Type/
Legal Values

2.5.2 Constraints

The <Constraints> subclause indicates whether there are any constraints affecting attributes. Each
constraint is defined by a tuple (propertyName, affected attributes, propertyDefinition).
PropertyDefinitions are expressed in natural language.

 Rec. ITU-T M.3020 (05/2009) 25

This information is provided in a table.

Name Affected attribute(s) Definition

2.6 Common notifications

This <Common Notifications> subclause presents a list of notifications that can be referred to by any
IOC defined by this management interface specification. These notifications are only applicable to
IOCs referring to this subclause in clause 2.3.a.6.

This information is provided in a table.

Name Qualifier Notes

NOTE – This subclause does not need to be present when there are no common notifications.

2.7 System state model

Some configurations of information are special or complex enough to justify the usage of a state
diagram to clarify them. A state diagram in this clause defines permitted states of the system and the
transitions between those states. A state is expressed in terms of a combination of attribute values
constraints or involvement in relationships of one or more information object classes.

3 Interface definition

This clause shall be used for all management interface specifications and optional for information
model only specifications.

3.1 Class diagram representing interfaces

Each interface is defined in the diagram. This shall be a UML compliant class diagram (see also
Annex C).

Interfaces are defined using a stereotype <<Interface>>. Each interface contains a set of either
operations or notifications which are mandatory or either a single operation or a single notification
which is optional. Stereotypes (see Annex C) are used to specify optional or mandatory interfaces. On
the class diagram, each operation and notification in an interface shall be qualified as "public" by the
addition of a symbol "+" before each operation and notification.

NOTE – Interface inheritance can be shown in this clause.

3.2 Generic rules

The following rules are relevant for all specifications. They shall simply be copied as part of the
specification.

Rule 1: Each operation with at least one input parameter supports a pre-condition
valid_input_parameter which indicates that all input parameters shall be valid with regard to their
information type. Additionally, each such operation supports an exception
operation_failed_invalid_input_parameter which is raised when pre-condition valid_input_parameter
is false. The exception has the same entry and exit state.

Rule 2: Each operation with at least one optional input parameter supports a set of pre-conditions
supported_optional_input_parameter_xxx where "xxx" is the name of the optional input parameter
and the pre-condition indicates that the operation supports the named optional input parameter.
Additionally, each such operation supports an exception
operation_failed_unsupported_optional_input_parameter_xxx which is raised when (a) the pre-
condition supported_optional_input_parameter_xxx is false and (b) the named optional input
parameter is carrying information. The exception has the same entry and exit state.

26 Rec. ITU-T M.3020 (05/2009)

Rule 3: Each operation shall support a generic exception operation_failed_internal_problem which is
raised when an internal problem occurs and that the operation cannot be completed. The exception
has the same entry and exit state.

NOTE – Security considerations and resulting generic rules are for further studies.

3.b Interface InterfaceName (supportQualifier)

InterfaceName is the name of the interface followed by a qualifier (see clause B.1).

"b" represents a number, starting at 3 and increasing by 1 with each new definition of an interface.

Each interface is defined by its name and by a sequence of operations or notifications as defined here
below.

Operation name Qualifier Requirement IDs

OperationName is the name of the operation followed by a qualifier (see clause B.1). Conditions must
be defined in the text below this table.

Each operation is defined using the following structure.

NOTE – Grouping of operations/partitioning of interface contents and naming of interfaces is for
further study.

3.b.a Operation OperationName (supportQualifier)

OperationName is the name of the operation followed by a qualifier (see clause B.1).

"a" represents a number, starting at 1 and increasing by 1 with each new definition of an operation.

3.b.a.1 Definition

The <Definition> subclause is written in natural language.

3.b.a.2 Input parameters

List of input parameters of the operation. Each element is a tuple (Parameter Name, Support
Qualifier, Information Type (see Annex E and Note) and an optional list of Legal Values supported by
the parameter, Comment). Legal values for the Support Qualifier are specified in clause B.1.

This information is provided in a table.

Parameter
Name

Support
Qualifier

Information Type/
Legal Values Comment

NOTE – Information Type qualifies the parameter of Parameter Name. In the case where the Legal
Values can be enumerated, each element is a pair (Legal Value Name, Legal Value Semantics), unless
a Legal Value Semantics applies to several values in which case the definition is provided only once.
When the Legal Values cannot be enumerated, the list of Legal Values is defined by a single definition.

3.b.a.3 Output parameters

List of output parameters of the operation. Each element is a tuple (Parameter Name, Support
Qualifier, Matching Information / Information Type (see Annex E and Note) and an optional list of
Legal Values supported by the parameter, Comment). Legal values for the Support Qualifier are
specified in clause B.1.

 Rec. ITU-T M.3020 (05/2009) 27

This information is provided in a table.

Parameter
Name

Support
Qualifier

Matching Information/
Information Type/

Legal Values
Comment

NOTE – Information Type qualifies the parameter of Parameter Name. In the case where the Legal
Values can be enumerated, each element is a pair (Legal Value Name, Legal Value Semantics), unless
a Legal Value Semantics applies to several values, in which case the definition is provided only once.
When the Legal Values cannot be enumerated, the list of Legal Values is defined by a single definition.

This table shall also include a special parameter 'status' to indicate the completion status of the
operation (success, partial success, failure reason, etc.).

3.b.a.4 Pre-condition

A pre-condition is a collection of assertions joined by AND, OR, and NOT logical operators. The pre-
condition must be held to be true before the operation is invoked.

Each assertion is defined by a pair (propertyName, propertyDefinition). All assertions constituting the
pre-condition are provided in a table.

Assertion Name Definition

3.b.a.5 Post-condition

A post-condition is a collection of assertions joined by AND, OR, and NOT logical operators. The
post-condition must be held to be true after the completion of the operation. When nothing is said in a
post-condition regarding an information entity, the assumption is that this information entity has not
changed compared to what is stated in the pre-condition.

Each assertion is defined by a pair (propertyName, propertyDefinition). All assertions constituting the
post-condition are provided in a table.

Assertion Name Definition

3.b.a.6 Exceptions

List of exceptions that can be raised by the operation. Each element is a tuple (exceptionName,
condition, ReturnedInformation, exitState).

3.b.a.6.c exceptionName

ExceptionName is the name of an exception.

"c" represents a number, starting at 1 and increasing by 1 with each new definition of an exception.

28 Rec. ITU-T M.3020 (05/2009)

This information is provided in a table.

Exception Name Definition

 Condition
 Return info
 Exit state
 Condition
 Return info
 Exit state

3.b.a.7 Constraints

The <Constraints> subclause presents constraints for the operation or its parameters.

NOTE – This subclause does not need to be present when there are no constraints to define.

3.b.b Notification NotificationName (supportQualifier)

NotificationName is the name of the notification followed by a qualifier (see clause B.1).

"b" represents a number, starting at 1 and increasing by 1 with each new definition of a notification.

3.b.b.1 Definition

The <Definition> subclause is written in natural language.

3.b.b.2 Input parameters

List of input parameters of the notification. Each element is a tuple (Parameter Name, Qualifiers,
Matching Information / Information Type (see Annex E and Note) and an optional list of Legal Values
supported by the parameter, Comment).

The column "Qualifiers" contains the two qualifiers, Support Qualifier (see clause B.1) and Filtering
Qualifier, separated by a comma. The Filtering Qualifier indicates whether the parameter of the
notification can be filtered or not. Values are Yes (Y) or No (N).

This information is provided in a table.

Parameter
Name Qualifiers

Matching Information/
Information Type/

Legal Values
Comment

NOTE – Information Type qualifies the parameter of Parameter Name. In the case where the Legal
Values can be enumerated, each element is a pair (Legal Value Name, Legal Value Semantics), unless
a Legal Value Semantics applies to several values, in which case the definition is provided only once.
When the Legal Values cannot be enumerated, the list of Legal Values is defined by a single definition.

3.b.b.3 Triggering event

The triggering event for the notification to be sent is the transition from the information state defined
by the "from state" subclause to the information state defined by the "to state" subclause.

 Rec. ITU-T M.3020 (05/2009) 29

3.b.b.3.1 From state

This subclause is a collection of assertions joined by AND, OR, and NOT logical operators.

Each assertion is defined by a pair (propertyName, propertyDefinition). All assertions constituting the
state "from state" are provided in a table.

Assertion Name Definition

3.b.b.3.2 To state

This subclause is a collection of assertions joined by AND, OR and NOT logical operators. When
nothing is said in a to-state regarding an information entity, the assumption is that this information
entity has not changed compared to what is stated in the from state.

Each assertion is defined by a pair (propertyName, propertyDefinition). All assertions constituting the
state "to state" are provided in a table.

Assertion Name Definition

3.b.b.4 Constraints

The <Constraints> subclause presents constraints for the notification or its parameters.

NOTE – This subclause does not need to be present when there are no constraints to define.

3.c Scenario

This subclause contains one or more sequence diagrams, each describing a possible scenario. These
shall be UML compliant sequence diagrams. This is an optional subclause.

B.3 IOC properties, inheritance and import

B.3.1 Property
The properties of an IOC (excluding Support IOC) are specified in terms of the following:
a) An IOC attribute(s) including its semantics and syntax, its legal value ranges and support

qualifications. The IOC attributes are not restricted to Configuration Management but also
include those related to, for example, 1) Performance Management (i.e., measurement
types), 2) Trace Management and 3) Accounting Management.

b) The non-attribute-specific behaviour associated with an IOC (see Note 1).
 NOTE 1 – As an example, the Link between A and B is optional. It is mandatory if the A instance

belongs to one ManagedElement instance while the B instance belongs to another ManagedElement
instance. This Link behaviour is a non-attribute-specific behaviour. It is expected that this
behaviour, like others, will be inherited.

c) An IOC relationship(s) with another IOC(s).
d) An IOC notification type(s) and their qualifications.

30 Rec. ITU-T M.3020 (05/2009)

e) An IOC's relation with its parents (see Note 2). There are three mutually exclusive cases:
1) The IOC is abstract and no parents have yet been designated.
2) The IOC is abstract and all of the possible parent(s) have been designated and whether

subclass IOCs can be designated as a root IOC.
3) The IOC is not abstract and all of the possible parent(s) have been designated and

whether the IOC can be designated as a root IOC.
An IOC instance is either a root IOC or it has one and only one parent.

 NOTE 2 – The parent and child relation in this clause is the parent name-containing the child
relation.

f) An IOC's relation with its children. There are three mutually exclusive cases:
1) An IOC shall not have any children (name-containment relation) IOCs.
2) An IOC can have children IOC(s). The maximum number of instances per children

IOC can be specified. An IOC may designate that vendor specific objects are not
allowed as children IOCs.

3) An IOC can only have the specific children IOC(s) (or their subclasses). The maximum
number of instances per children IOC can be specified. An IOC may designate that
vendor specific objects are not allowed as children IOCs.

g) Whether An IOC can be instantiated or not (i.e., whether an IOC is an abstract IOC).
h) An attribute for naming purpose.

B.3.2 Inheritance
An IOC (the subclass) inherits from another IOC (the superclass) in that the subclass shall have all
the properties of the superclass.

The subclass can change the inherited support-qualification(s) from optional to mandatory but not
vice versa. The subclass can change the inherited support-qualification from conditional-optional to
conditional-mandatory but not vice versa.

An IOC can be a superclass of many IOC(s). A subclass cannot have more than one superclass.

The subclass can:
a) Add (compared to those of its superclass) unique attributes including their behaviour, legal

value ranges and support-qualifications. Each additional attribute shall have its own unique
attribute name (among all added and inherited attributes).

b) Add non-attribute behaviour on an IOC basis. This behaviour may not contradict inherited
superclass behaviour.

c) Add relationship(s) with IOC(s). Each additional relationship shall have its own unique
name (among all added and inherited relations).

d) Add additional notification types and their qualifications.
e) Designate all of the possible parent(s) (and their subclasses) if the superclass has

Property-e-1 such that an IOC will have Property-e-2 or Property-e-3. Restrict possible
parent(s) (and their subclasses) and/or remove the capability of the subclass from being a
root IOC, if the superclass has Property-e-2 or Property-e-3.

f) Add children IOC(s) if the superclass has Property-f-2 such that an IOC will have
Property-f-3. Restrict the allowed children IOC(s) (or their subclasses) if the superclass has
Property-f-3.

g) Specify whether an IOC can be instantiated or not (i.e., the IOC is an abstract IOC).
h) Restrict the legal value range of a superclass attribute that has a legal value range.

 Rec. ITU-T M.3020 (05/2009) 31

B.3.3 Import
To facilitate re-use of IOC definitions among IRP specifications, an import mechanism is used by
one IRP specification (called the subject IRP) specification to reuse IOC definition defined in
another IRP specification. When the subject IRP specification imports an IOC, it cannot change the
imported IOC property. If it requires changes to the imported IOC, it must use inheritance to define
its own new class.

32 Rec. ITU-T M.3020 (05/2009)

Annex C

MISM UML repertoire
(This annex forms an integral part of this Recommendation)

The following are guidelines for specification of the results of the analysis phase as based on 3GPP
unified modelling language (UML) repertoire [b-3GPP TS 32.152].

C.1 Introduction
UML provides a rich set of concepts, notations and model elements to model distributed systems.
Usage of all UML notations and model elements is not necessary for the purpose of analysis
specifications. This annex documents the necessary and sufficient set of UML notations and model
elements, including the ones built by the UML extension mechanism <<stereotype>>, for use by
development of protocol-neutral specifications. Collectively, this set of notations and model
elements is called the UML modelling repertoire.

Recommendations following the methodology shall employ the UML notation and model elements
of this repertoire and may also employ other UML notation and model elements considered
necessary.

C.2 Basic model elements

C.2.1 General
UML defined a number of basic model elements. This clause lists the selected subset for use in the
repertoire. The semantics of the selected ones are defined in [OMG UML].

C.2.2 Attribute (subclause 3.25 of [OMG UML])
This sample shows two attributes, listed as strings in the attribute compartment of the class AClass.

AClass
attributeA
attributeB

<<InformationObjectClass>>

C.2.3 Aggregation (subclause 3.43.2.5 of [OMG UML])
This sample shows a hollow diamond attached to the end of a path to indicate aggregation. The
diamond is attached to the class that is the aggregate.

MscFunction
<<InformationObjectClass>>

ManagedElement
<<InformationObjectClass>>

 Rec. ITU-T M.3020 (05/2009) 33

C.2.4 Operation (subclause 3.26 of [OMG UML])
This sample shows two operations, shown as strings in the operation compartment of class AClass,
that the instance of AClass may be requested to perform. The operation has a name,
e.g., operationA and a list of arguments (not shown).

AClass

operationA()
operationB()

<<InformationObjectClass>>

C.2.5 Association (subclause 3.41 of [OMG UML])
This sample shows a binary association between exactly two model elements. An association can
relate a model element to itself. This sample shows a bidirectional association in that one model
element is aware of the other. Association can be unidirectional (shown with an open arrow at one
association end) in that only the source model element is aware of the target model element and not
vice versa.

BClass
<<InformationObjectClass>>

AClass
<<InformationObjectClass>>

C.2.6 Realization relationship (subclause 2.5.2.1 of [OMG UML])
This sample shows the realization relationship between an AlarmIRPNotification_1 (the supplier)
and a model element, IRPManager, that implements it.

IRPManager
<<InformationObjectClass>>

AlarmIRPNotification_1
<<Interface>>

C.2.7 Generalization relationship (subclause 3.50 of [OMG UML])

This sample shows a generalization relationship between a more general element (the agent) and a
more specific element (the Agent_vendor_A) that is fully consistent with the first element and that
adds additional information.

IRPAgent
<<InformationObjectClass>>

IRPAgent_vendor_A
<<InformationObjectClass>>

34 Rec. ITU-T M.3020 (05/2009)

C.2.8 Dependency relationship (subclause 3.51 of [OMG UML])
This sample shows that BClass instances have a semantic relationship with AClass instances. It
indicates a situation in which a change to the target element will require a change to the source
element in the dependency.

AClass
<<InformationObjectClass>>

BClass
<<InformationObjectClass>>

C.2.9 Note (subclause 3.11 of [OMG UML])
This sample shows a note, as a rectangle with a "bent corner" in the upper right corner. The note
contains arbitrary text. It appears on a particular diagram and may be attached to zero or more
modelling elements by dashed lines.

SubNetwork
<<InformationObjectClass>> This is a sample of

a note.

C.2.10 Multiplicity, a.k.a. cardinality (subclause 3.44 of [OMG UML])
This sample shows a multiplicity attached to the end of an association path. The meaning of this
multiplicity is that one network instance is associated with zero, one or more subnetwork instances.

In previous versions of [b-3GPP TS 32.152], the cardinality zero can indicate that the IOC has the
so-called "transient state" characteristics. For example, it indicates that the instance is not yet
created but it is in the process of being created. From this version of the methodology, the
cardinality zero will not be used to indicate these characteristics since such characteristics are
considered inherent in all IOCs (all IOCs defined are considered to have such inherent "transient
state" characteristics).

Network
<<InformationObjectClass>>

SubNetwork
<<InformationObjectClass>>

0..*0..*

 Rec. ITU-T M.3020 (05/2009) 35

C.3 Entity stereotypes

C.3.1 General
This subclause defines all allowable entity stereotypes that are summarized in Table C.3-1. Except
<<Interface>>, <<Type>> (which are defined in [OMG UML]), all other stereotypes are extensions
specifically designed for use in recommendations based on the methodology.

Table C.3-1 – Entity stereotypes

Stereotype Base class Affected metamodel
elements

Interface Class
Type Class
ProxyClass Class
Notification Class
Archetype Classifier (subclause 2.5.2.10 of [OMG UML])
InformationObjectClass Classifier
opt (alternatively
"optional")

ModelElement Attribute, Parameter and
Operation

C.3.2 <<Interface>>
Subclause 2.5.2.25 of [OMG UML]:

"An interface is a named set of operations that characterize the behaviour of an element. In the
metamodel, an Interface contains a set of Operations that together define a service offered by a
Classifier realizing the Interface. A Classifier may offer several services, which means that it may
realize several Interfaces, and several Classifiers may realize the same Interface.

Interfaces [may or] may not have Attributes, Associations, or Methods. An Interface may
participate in an Association provided the Interface cannot see the Association; that is, a Classifier
(other than an Interface) may have an Association to an Interface that is navigable from the
Classifier but not from the Interface."

From subclause 2.5.4.6 of [OMG UML]:

"The purpose of an interface is to collect a set of operations that constitute a coherent service
offered by classifiers. Interfaces provide a way to partition and characterize groups of operations.
An interface is only a collection of operations with a name. It cannot be directly instantiated.".

From subclause 2.5.4.6 of [OMG UML]:

"Several classifiers may realize the same interface. All of them must contain at least the operations
matching those contained in the interface. The specification of an operation contains the signature
of the operation (i.e., its name, the types of the parameters and the return type). An interface does
not imply any internal structure of the realizing classifier. For example, it does not include which
algorithm to use for realizing an operation. An operation may, however, include a specification of
the effects [e.g., with pre and post-conditions] of its invocation."

36 Rec. ITU-T M.3020 (05/2009)

C.3.2.1 Sample
This sample shows an AlarmIRPOperations_1 <<Interface>> that has two operations. The input
and output parameters of the operations are hidden (i.e., not shown). The AlarmIRP has a
unidirectional mandatory realization relationship with the <<Interface>>.

AlarmIRP
<<InformationObjectClass>> AlarmIRPOperations_1

getAlarmList()
acknowledgeAlarms()

<<Interface>>

<<Interface>> Notation

C.3.3 <<Type>>

C.3.3.1 General
Clause 2.5.2.9 of [OMG UML]:

"[A Type is] a domain of objects together with the operations applicable to the objects, without
defining the physical implementation of those objects. A Type may not contain any methods,
maintain its own thread of control, or be nested. However, it may have attributes and associations.
The associations of a type are defined solely for the purpose of specifying the behaviour of the
type's operations and do not represent the implementation of state data".

C.3.3.2 Sample
This sample shows the NotificationIRPNotification <<Type>> that specifies the five parameters
(the notification header of Notification IRP). The AlarmIRPNotification_2 <<Interface>> depends
(see the dependency relationship, a dashed open arrow line) on this <<Type>> for the construction
of the notification emitted via the operation notifyChangedAlarm().

NotificationIRPNotification

objectClass
objectInstance
notificationId
eventTime
systemDN
notificationType

<<Type>>

AlarmIRPNotification_2

notifyChangedAlarm()

<< Interface>>

<<Type>> Notation

C.3.4 <<ProxyClass>>

C.3.4.1 General
This represents a number of <<InformationObjectClass>>. It encapsulates attributes, links, methods
(or operations), and interactions that are present in the represented <<InformationObjectClass>>.

The semantics of a <<ProxyClass>> is that all behaviour of the <<ProxyClass>> are present in the
represented <<InformationObjectClass>>. Since this class is simply a representation of other
classes, this class cannot define its own behaviour other than those already defined by the
represented <<InformationObjectClass>>.

 Rec. ITU-T M.3020 (05/2009) 37

A particular <<InformationObjectClass>> can be represented by zero, one or more
<<ProxyClass>> or <<Archetype>>. For example, the ManagedElement
<<InformationObjectClass>> can have MonitoredEntity <<ProxyClass>> and ManagedEntity
<<ProxyClass>>.

The attributes of the <<ProxyClass>> are accessible by the source entity that has an association
with the <<ProxyClass>>.

C.3.4.2 Sample
This shows a <<ProxyClass>> named MonitoredEntity. It represents all NRM
<<InformationObjectClass>> (e.g., GgsnFunction <<InformationObjectClass>>) whose instances
are being monitored for alarm conditions.

Note that <<MonitoredEntity>> does not define attributeA. AttributeA is already defined by all
<<InformationObjectClass>> represented by the <<MonitoredEntity>>, i.e., ClassA and ClassB.

MonitoredEntity

attributeA

<<ProxyClass>>
ClassA

attributeA
attributeB
attributeX
attributeY

<<InformationObjectClass>>
ClassB

attributeA
attributeB
attributeC

<<InformationObjectClass>>

<<ProxyClass>> (sample 1)

See Appendix V for more samples that use <<ProxyClass>>.

C.3.5 <<Archetype>>

C.3.5.1 General
This represents a number of <<InformationObjectClass>>. It encapsulates attributes, links,
operations, and interactions that are typical of the represented <<InformationObjectClass>>.

The semantics of an <<Archetype>> is that all attributes, links operations and interactions
encapsulated by the <<Archetype>> may or may not be present in the represented
<<InformationObjectClass>>. The <<Archetype>> represents a placeholder class that is most
useful in technology neutral analysis models that will require further specification and/or mapping
within a more complete construction model.

C.3.5.2 Sample
This shows an <<Archetype>> named StateManagement. It also shows an
<<InformationObjectClass>> Agent that depends on this StateManagement. Note that the
StateManagement has defined a number of attributes, the classes that depend on this
StateManagement may or may not use all of the StateManagement attributes. In other words, at
least one of the attributes of StateManagement is present in the Agent. The precise set of
StateManagement attributes used by the Agent is specified in the Agent specification.

38 Rec. ITU-T M.3020 (05/2009)

StateManagement

administrativeState
otherStates

<<Archtetype>>

IRPAgent
<<InformationObjectClass>>

<<Archetype>>> Notation

C.3.6 <<InformationObjectClass>>

C.3.6.1 General
This represents an IOC. Each <<InformationObjectClass>> represents a set of instances with
similar structure, behaviour and relationships.

This <<InformationObjectClass>> and other information classes such as <<Interface>> are mapped
into technology specific model elements such as GDMO Managed Object Class for CMIP
technology. The mapping of the protocol-neutral modelling constructs to technology-specific
modelling constructs are captured in the corresponding protocol-specific specifications.

The name of an <<InformationObjectClass>> has scope within the Recommendation in which it is
specified and the name must be unique among all <<InformationObjectClass>> names within that
Recommendation. The Recommendation name is considered in the similar way as the UML
Package-name.

The <<InformationObjectClass>> is identical to UML class except that it does not include/define
methods or operations.

Subclause 3.22.1 of [OMG UML]: "A class represents a concept within the system being modelled.
Classes have data structure and behaviour and relationships to other elements."

C.3.6.2 Sample
This sample shows an AlarmList <<InformationObjectClass>>.

AlarmList

attribute1
otherAttributes

<<InformationObjectClass>>

<<InformationObjectClass>>> Notation

 Rec. ITU-T M.3020 (05/2009) 39

C.3.7 <<opt>>
The <<opt>> (alternatively <<optional>>) enables the indication of optionality of attributes,
parameters and operations (respectively) within the UML diagrams. The semantics of optionality is
clearly defined in Annex A.

In the absence of the stereotype, the attribute, parameter, or operation in question is mandatory.

BulkCMActive

download()
<<opt>> validate()
<<opt>> preactivate()
activate()
fallback()

<< Interface>>

Example of the use of optionality indicator for operations

C.3.8 <<Notification>>

C.3.8.1 General
<<Notification>> is a named set of notifications. In the metamodel, a <<Notification>> contains a
set of notifications that together define a service offered by a classifier realizing the
<<Notification>>.

C.3.8.2 Sample
This sample shows a <<Notification>> named "PMIRPNotifications_1" that has one notification
and a <<Notification>> named "PMIRPNotifications_2" that has three notifications.

NotificationIRP
<<InformationObjectClass>> PMIRPNotifications_1

notifyMeasurementJobStatusChanged()

<<Notification>>
<<agent-internal-usage>>

PMIRP
<<InformationObjectClass>> <<use>>

PMIRPNotifications_2

notifyThresholdMonitorStatusChanged()
notifyThresholdMonitorObjectCreation()
notifyThresholdMonitorObjectDeletion()

<<Notification>>

<<may use>>

<<agent-internal-usage>>

40 Rec. ITU-T M.3020 (05/2009)

C.4 Association stereotypes

C.4.1 General
This subclause defines all allowable association stereotypes that are summarized in Table C.4-1.
Except <<use>> (which is defined in [OMG UML]), all other stereotypes are extensions
specifically designed for use in recommendations based on the methodology.

Table C.4-1 – Association stereotypes

Stereotype Base class Affected metamodel elements

use Association
may use Association
may realize Association
emits Association

C.4.2 <<use>> and <<may use>>

C.4.2.1 General
The <<use>> and <<may use>> are unidirectional associations. The target must be an
<<Interface>>. The <<use>> states that the source class must have the capability to use the target
<<Interface>> in that it can invoke the operations defined by the <<Interface>>. Support of the
capability by the source entity is mandatory. The <<may use>> states that the source class may
have the capability to use the target <<Interface>> in that it may invoke the operations defined by
the <<Interface>>. Support of the capability by the source entity is optional.

The operations defined by the <<Interface>> are visible across the interface/reference point.

C.4.2.2 Sample
This shows that the NotificationIRPAgent shall use the notifyNewAlarm and otherNotifications of
AlarmIRPNotification_1 and may use the notifyChangedAlarm of AlarmIRPNotification_3.

AlarmIRPNotification_1

notifyNewAlarm()
otherNotifications()

<< Interface>>

NotificationIRPAgent
<<InformationObjectClass>>

AlarmIRPNotification_3

notifyChangedAlarm()

<< Interface>>

<<use>>

<<may use>>

<<use>> and <<may use>> notation

C.4.3 Relationship realize and <<may realize>>

C.4.3.1 General
The relationship realize and <<may realize>> are unidirectional associations. The target must be an
<<Interface>>. The relationship <<realize>> shows that the source entity must realize the
operations defined by the target <<Interface>>. Realization of operations by the source entity is

 Rec. ITU-T M.3020 (05/2009) 41

mandatory. The <<may realize>> shows the source entity may realize the operations defined by the
target <<Interface>>. Realization of the <<Interface>> by the source entity is optional.

The operations defined by <<Interface>> are visible across the interface/reference point.

C.4.3.2 Sample
This shows that the AlarmList shall realize (or support, implement) the two operations of
AlarmIRPOperations_1 and may realize the operation of AlarmIRPOperations_2.

AlarmIRPOperations_1

getAlarmList()
acknowledgeAlarms()

<< Interface>>
AlarmList

attribute1
otherAttributes

<<InformationObjectClass>>

AlarmIRPOperations_2

getAlarmCount()

<< Interface>>
<<may realize>>

Relationship realize and <<may realize>> notations

C.4.4 <<emits>>

C.4.4.1 General
This is a unidirectional association. The source sends information to the target.

C.4.4.2 Sample
This shows the MonitoredEntity emits notifications that are received by the NotificationIRPAgent.
The emission is not visible across the interface.

MonitoredEntity

<<ProxyClass>>
NotificationIRPAgent

<<InformationObjectClass>>
<<emits>>

<<emits>> notation

IRPManager
<<InformationObjectClass>>

AlarmIRPNotification_1
<< Interface>>

MonitoredEntity
<<ProxyClass>>

NotificationIRPAgent
<<InformationObjectClass>><<emits>>

<<use>>

<<use>>, <<emits>> and realize relationship notation

42 Rec. ITU-T M.3020 (05/2009)

C.4.5 <<names>>

C.4.5.1 General
It specifies a unidirectional relationship. The target instance is uniquely identifiable, within the
namespace of the source entity, among all other targeted instances of the same target classifier and
among other targeted instances of other classifiers that have the same <<names>> composition with
the source.

A target cannot have multiple <<names>> with multiple sources, i.e., a target cannot participate in
or belong to multiple namespaces.

By convention, the name of the attribute in the target model element to hold part of the unique
identification shall be formed by the name of the target class concatenated with "Id". There are two
presentation options for the unique identification attribute of the class being named.
1) The use of the role qualifier allows the unique identification attribute to be attached to the

target end of the <<names>> association (see the following figure).
2) The unique identification attribute may also be indicated as a normal attribute within the

class attribute compartment.
NOTE – The use of a single attribute for identification may be too restrictive. This issue is for
further study.

C.4.5.2 Sample
This shows that all instances of ManagedFunction are uniquely identifiable within the
ManagedElement namespace. Note the use of the label supports in specifications is optional.

ManagedElement ManagedFunction

managedFunctionId
0..*1

supports

0..*1

<<names>>

managedFunctionId

<<names>> notation, composition and explicit qualifier

C.4.6 <<agent-internal-usage>>

This is a unidirectional association. The source passes network management information to target.
The source and target are entities or processes running in different IRP instances such as AlarmIRP,
PMIRP. The instances may be name-contained by the same IRPAgent or different IRPAgent
instances. The precise network management information passed and the information transfer
mechanism are not standardized and are vendor-specific.

C.4.6.1 Sample
This shows that NLIRP (NotificationLog IRP) can pass some network management information to
FileIRP.

NLIRP
<<InformationObjectClass>>

FileIRP
<<InformationObjectClass>><<agent-internal-usage>>

<<agent-internal-usage>> notation

C.5 Void
This clause is intentionally empty.

 Rec. ITU-T M.3020 (05/2009) 43

C.6 Association classes
Subclause 3.46 of [OMG UML] defines an association class as:
 "An association class is an association that also has class properties (or a class that has

association properties). Even though it is drawn as an association and a class, it is really just
a single model element."

Association classes are appropriate for use when an "InformationObjectClass" needs to maintain
associations to several other "InformationObjectClass"es and there are relationships between the
members of the associations within the scope of the "containing" "InformationObjectClass". For
example, a namespace maintains a set of bindings, a binding ties a name to an object. A Binding
"IOC" can be modelled as an Association class that provides the binding semantics to the
relationship between a name and some other "InformationObjectClass". This is depicted in the
following figure (exemplary only, not taken from another Recommendation).

Namespace
<<Inform ationObjectClass>>

Binding
<<Inform ationObjectClass>>

0.. *0.. *

Name Object
<<Informat ionObjectClass>>

111 1

Example of an Association class

C.7 Abstract class

C.7.1 General
It specifies an <<InformationObjectClass>> as a base class to be inherited by subclasses. An
abstract class cannot be instantiated.

Abstract class notation is the use of italics in the class name of the corresponding
<<InformationObjectClass>> in the diagram.

44 Rec. ITU-T M.3020 (05/2009)

C.7.2 Sample
This shows that ManagedGenericIRP is an abstract <<InformationObjectClass>>.

ManagedGenericIRP
(from 32.312)

<<InformationObjectClass>>

NotificationIRP
(from 32.302)

<<InformationObjectClass>>

Abstract class notation

 Rec. ITU-T M.3020 (05/2009) 45

Annex D

Design
(This annex forms an integral part of this Recommendation)

This annex provides guidelines for specification of protocol specific designs.

For further study.

46 Rec. ITU-T M.3020 (05/2009)

Annex E

Information type definitions – type repertoire
(This annex forms an integral part of this Recommendation)

This annex defines a repertoire of types that shall be used to specify type information in the
conceptual model (analysis model / information service).

The repertoire is defined as a subset of types defined by ASN.1 [ITU-T X.680] combined with types
derived from the types defined by ASN.1 (clause E.4).

The keywords to be used for each type are summarized in Table E.1.

E.1 Basic types
Basic types are types that can be used directly to define attributes and parameters. Basic types can
also be used to construct complex types. Basic types include the following ASN.1 types:

E.1.1 integer type clause 19 of [ITU-T X.680]

E.1.2 real type clause 21 of [ITU-T X.680]

E.1.4 boolean type clause 18 of [ITU-T X.680]

E.1.5 bitstring type clause 22 of [ITU-T X.680]

E.1.6 null type clause 24 of [ITU-T X.680]

E.1.7 generalized time type clause 38 of [ITU-T X.680]

E.2 Enumerated type
Enumerated type clause 20 of [ITU-T X.680] represents enumerated values. All values that may be
used by a specific attribute or parameter shall be listed in the legal value columns. Only the listed
names style is applicable for the conceptual model, i.e., the identification of concrete values
(numbers or strings) are left for the concrete design models.
NOTE – If the number of these values is more than 50, it is recommended to define them in an appendix or
an independent document.

E.3 Complex types

Complex types can be defined using the following concepts:

E.3.1 sequence type clause 25 of [ITU-T X.680]

E.3.2 choice type clause 29 of [ITU-T X.680]

E.3.3 set types clause 27 of [ITU-T X.680]

In addition, lists and sets of complex types are supported using:

E.3.4 sequence-of types clause 26 of [ITU-T X.680]

E.3.5 set-of types clause 28 of [ITU-T X.680]

E.4 Useful types

E.4.1 string type
String represents a string of characters, the character set is not restricted, i.e.,

String ::= UnrestrictedCharacterStringType clause 44 of [ITU-T X.680]

 Rec. ITU-T M.3020 (05/2009) 47

E.4.2 name type
Name represents an exclusive name of an object instance in name space. It might include object
containment tree hierarchy information, but it is implementation dependent and is out of the scope
of this Recommendation. Formally, the name type is defined as

Name ::= TYPE-IDENTIFIER Annex A of [ITU-T X.681]

Table E.1 – Keywords

Type Keyword

integer type INTEGER
real type REAL

boolean type BOOLEAN
bitstring type BIT STRING

null type NULL
generalized time type GeneralizedTime

enumerated type ENUMERATED
sequence type SEQUENCE

choice type CHOICE
set type SET

sequence-of type SEQUENCE OF
set-of type SET OF
string type String
name type Name

48 Rec. ITU-T M.3020 (05/2009)

Appendix I

Requirements example
(This appendix does not form an integral part of this Recommendation)

NOTE – The following example is based on alarm management, but is used for illustrative purposes only
and not intended to be a complete or correct set of requirements for alarm management.

1 Concepts and background
Any evaluation of the NEs' and the overall network health status requires the detection of faults in
the network and, consequently, the notification of alarms to the OS (EM and/or NM).

2 Business level requirements

2.1 Requirements
Faults that may occur in the network can be grouped into one of the following categories:
– Hardware failures, i.e., the malfunction of some physical resource within a NE.
– Software problems, e.g., software bugs, database inconsistencies.

2.1.1 Fault detection
REQ-FM-FUN-01 The majority of the faults should have well-defined conditions for the

declaration of their presence or absence, i.e., fault occurrence and fault clearing
conditions. Any such incident shall be referred to in this appendix as an ADAC
fault. The network entities should be able to recognize when a previously
detected ADAC fault is no longer present, i.e., the clearing of the fault, using
similar techniques as they use to detect the occurrence of the fault.

2.1.2 Clearing of alarms
The alarms originated in consequence of faults need to be cleared. To clear an alarm, it is generally
necessary to repair the corresponding fault.

…

REQ-FM-FUN-02 Each time an alarm is cleared, the Agent shall generate an appropriate clear
alarm event. A clear alarm is defined as an alarm.

2.1.3 Alarm forwarding and filtering
REQ-FM-FUN-03 For each detected fault, appropriate alarms (notifications of the fault) shall be

generated by the faulty network entity.

…

2.2 Actor roles

Managed system The entity performing an agent role.

Managing system The entity performing the manager role.

 Rec. ITU-T M.3020 (05/2009) 49

2.3 Telecommunication resources
The managed network equipment is viewed as relevant telecommunication resources in this
Recommendation.

2.4 High level use case diagrams

2.4.1 Report alarm
The first overview use case diagram in Figure I.1 shows the overall interaction of the alarm
interface.

The first overview use case diagram shows the interactions involved in reporting a detected failure.

M.3020(07)_F.I.1

Managing
system

Report alarm

Communicates Instantiates
<<Notify dispatch>>

Figure I.1 – Report alarm

3 Specification level requirements

3.1 Requirements
There are no specification level requirements.

3.2 Actor roles
See clause I.2.2.

3.3 Telecommunications resources
See clause I.2.3.

50 Rec. ITU-T M.3020 (05/2009)

3.4 Use cases

3.4.1 Fault notification

Use case stage Evolution/Specification <<Uses>>
Related use

Goal (*) Upon detection of a failure condition, the managed system
sends an alarm report notification, through interface Q, of the
relevant type to the managing system.

Actors and Roles (*) The managing system is a consumer of notifications from the
managed system.

Telecom resources Any managed entity.
Assumptions A fault condition is detected.
Pre-conditions There is an open communication channel between the

managing system and the managed system.

Begins when A fault condition is detected.
Step 1 (*) Upon detection of a failure condition, an appropriate alarm

report or security alarm report is created.

Ends when Alarm report or security alarm report is emitted by the agent.
Exceptions Communication or process failure could result in a failure to

deliver the alarm report to the managing system. The alarm
synchronization use case covers this situation.

Post-conditions The managing system is informed of the fault condition in the
managed system.

Traceability (*) REQ-FM-FUN-01, REQ-FM-FUN-02, …

3.4.2 Alarm clear
…

3.4.3 Acknowledge alarm
…

 Rec. ITU-T M.3020 (05/2009) 51

Appendix II

Analysis example
(This appendix does not form an integral part of this Recommendation)

NOTE – The following example is based on alarm management, but is used for illustrative purposes only
and not intended to be a complete or correct set of requirements for alarm management.

1 Concepts and background
Any evaluation of the NEs' and the overall network health status requires the detection of faults in
the network and, consequently, the notification of alarms to the OS (EM and/or NM).

…

2 Information object classes

2.1 Information entities imported and local label

Label reference Local label

3GPP TS 32.302, information object class, NotificationIRP NotificationIRP
3GPP TS 32.302, interface, notificationIRPNotification NotificationIRPNotification
3GPP TS 32.622, information object class, IRPAgent IRPAgent
3GPP TS 32.312, information object class, ManagedGenericIRP ManagedGenericIRP

2.2 Class diagram
This clause introduces the set of information object classes (IOCs) that encapsulate information
within the agent. The intent is to identify the information required for the AlarmAgent
implementation of its operations and notification emission. This clause provides the overview of all
support object classes in UML. Subsequent clauses provide more detailed specification of various
aspects of these support object classes.

52 Rec. ITU-T M.3020 (05/2009)

2.2.1 Attributes and relationships

AlarmIRP
<<InformationObjectClass>>

MonitoredEntity
<<InformationObjectClass>>

AlarmList
<<InformationObjectClass>>

1

1..n

#identifyAlarmList
1

#identifyAlarmIRP
1..n

relation-AlarmIRP-AlarmList

CorrelatedInformation

source
notificationIdSet

<<InformationObjectClass>> Comment

commentTime
commentText
commentUserId
commentSystemId

<<InformationObjectClass>>

AlarmInformation

alarmId
notificationId
alarmRaisedTime
alarmClearedTime
alarmChangedTime
eventType
probableCause
perceivedSeverity
specificProblem
backedUpStatus
trendIndication
thresholdInfo
stateChangedDefinition
monitoredAttributes
proposedRepairActions
additionalText
additionalInformation
ackTime
ackUserId
ackSystemId
ackState
clearUserId
clearSystemId
vendorSpecificAlarmType

serviceUser

serviceProvider

securityAlarmDetector

<<InformationObjectClass>>

0..n

1

#identifyAlarmInformation

0..n

#identifyAlarmObject

1 relation-AlarmedObject-Al
armInformation

0..1

#identifyBackUpObject

0..1

#theBackUpObject

relation-BackUpObject-AlarmInfor
mation

0..n

#identifyAlarmInformation

0..n

#theAlarmInformation

relation-AlarmList-AlarmInformation

0..n#identifyCorrelatedInformation 0..n

#theAlarmInformation

relation-AlarmList-CorrelatedInformation

0..n #identifyComments0..n

#theAlarmInformation

relation-AlarmList-Comment

Figure II.1 – Alarm management information object classes

 Rec. ITU-T M.3020 (05/2009) 53

2.2.2 Inheritance

ManagedGenericIRP
iRPVersions
operationNameProfiles
operationParameterProfiles
notificationNameProfiles
notificationParameterProfiles

<<InformationObjectClass>>
Imported classes

NotificationIRPNotification
<<Interface>>

AlarmIRP
<<InformationObjectClass>>

AlarmIRPNotifications_1
<<Interface>>

AlarmIRPNotification_2
<<Interface>>

AlarmIRPNotification_3
<<Interface>>

AlarmIRPNotification_4
<<Interface>>

Figure II.2 – Alarm management IOC inheritance

2.3 Information object class definitions

Class name Qualifier Requirement IDs

AlarmInformation M REQ-FM-FUN-01, REQ-FM-FUN-02, …
AlarmList M REQ-FM-FUN-n
…

2.3.1 AlarmInformation

2.3.1.1 Definition
AlarmInformation contains information about an alarm condition of an alarmed MonitoredEntity.

….

2.3.1.2 Attributes

Attribute name Support
qualifier

Read
qualifier

Write
qualifier Requirement IDs

alarmed M M M
probableCause C M C
structuredProbableCause C M C
perceivedSeverity M M M
specificProblem O O O
…
…

54 Rec. ITU-T M.3020 (05/2009)

2.3.1.3 State diagram
Alarms have states.

…

unack&unclear ack&unclear

unack&clear

This is the terminal state (acknowledged and cleared)
This AlarmInformation no longer exists in the AlarmList.

The MO alarm's matching-criteria-attributes are not identical to the
matching-criteria -attributes of any AlarmInformation in AlarmList. See appendix for
the definition of matching -criteria-attributes.

MO emits alarm / IRPAgent creates a
new AlarmInformation. ^notifyNewAlarm

acknowledgeAlarm
^notifyAckStateChanged

MO PS level changes to
cleared

^notifyClearedAlarm

unacknowledgeAlarm
^notifyAckStateChange

MO PS changes to
cleared

^notifyClearedAlarm

MO PS changes & new level is
not cleared & IRPAgent supports

notifyChangedAlarm
^notifyChangedAlarm

MO PS changes & new level is not
cleared & IRPAgent does not
support notifyChangedAlarm

^notifyClearedAlarm,
notifyNewAlarm

acknowledgeAlarm
^notifyAckStateChanged

MO emits alarm & IRPAgent
supports notifyChangedAlarm

^notifyChangedAlarm

MO emits alarm & IRPAgent
does not support

notifyChangedAlarm
^notifyClearedAlarm,

notifyNewAlarm

Figure II.3 – Alarm information state diagram

 Rec. ITU-T M.3020 (05/2009) 55

2.3.2 AlarmList

2.4 Information relationships definition

Relationship Support
qualifier Requirement IDs

relation-AlarmIRP-AlarmList M REQ-FM-FUN-x
…

2.4.1 relation-AlarmIRP-AlarmList (M)

2.4.1.1 Definition
This represents the relationship between AlarmIRP and AlarmList.

2.4.1.2 Roles

Name Definition

identifyAlarmIRP It represents the capability to obtain the identities of one or more AlarmIRP.
identifyAlarmList It represents the capability to obtain the identity of one AlarmList.

2.4.1.3 Constraint
There is no constraint for this relationship.

2.4.2 relation-AlarmList-AlarmInformation (M)
...

2.5 Information attribute definition

2.5.1 Definition and legal values

Name Definition Information type/
Legal values

alarmed It identifies one AlarmInformation in the
AlarmList. INTEGER

notificationId It identifies the notification that carries the
AlarmInformation. INTEGER

ntfSusbcriptionState It indicates the activation state of a subscription

ENUMERATED/"suspended":
the subscription is suspended.
"notSuspended": the
subscription is active.

2.5.2 Constraints

Name Affected attribute(s) Definition

inv_notificationId notificationId NotificationIds shall be chosen to be unique across
all notifications of a particular managed object
(representing the NE) throughout the time that alarm
correlation is significant. The algorithm by which
alarm correlation is accomplished is outside the scope
of this IRP.

56 Rec. ITU-T M.3020 (05/2009)

3 Interface definition

3.1 Class diagram representing interfaces

AlarmIRP
<<InformationObjectClass>>

AlarmIRPOperations_1

+ getAlarmList()
+ acknowledgeAlarms()

<<Interface>>

AlarmIRPOperation_2

+ getAlarmCount()

<<Interface>>

AlarmIRPOperatio_3

+ unacknowledgeAlarms()

<<Interface>>

AlarmIRPOperation_4

+ setComment()

<<Interface>>

AlarmIRPNotifications_1

+ notifyNewAlarm()
+ notifyAckStateChanged()
+ notifyClearedAlarm()
+ notifyAlarmListRebuilt()

<<Interface>>

AlarmIRPNotification_2

+ notifyChangedAlarm()

<<Interface>>

AlarmIRPNotification_3

+ notifyComments()

<<Interface>>

AlarmIRPNotification_4

+ notifyPotentialFaultyAlarmList()

<<Interface>>

AlarmList
<<InformationObjectClass>>

11

0..10..1

0..10..1

0..10..1

11

0..10..1

0..10..1

0..10..1

AlarmIRPOperation_5

+ clearAlarms()

<<Interface>>

0..10..1

 Rec. ITU-T M.3020 (05/2009) 57

ManagedGenericIRP
iRPVers ions
operationNameProfiles
operationParameterProfiles
notificationNameProfiles
notificationParameterProfiles

<<InformationObjectClass>>
Imported classes

NotificationIRPNotification
<<Interface>>

AlarmIRP
<<InformationObjectClas s>>

AlarmIRPNotifications_1
<<Interface>>

AlarmIRPNotification_2
<<Interface>>

AlarmIRPNotification_3
<<Interface>>

AlarmIRPNotification_4
<<Interface>>

ManagedGenericIRP
iRPVers ions
operationNameProfiles
operationParameterProfiles
notificationNameProfiles
notificationParameterProfiles

<<InformationObjectClass>>
Imported classes

NotificationIRPNotification
<<Interface>>

AlarmIRP
<<InformationObjectClas s>>

AlarmIRPNotifications_1
<<Interface>>

AlarmIRPNotification_2
<<Interface>>

AlarmIRPNotification_3
<<Interface>>

AlarmIRPNotification_4
<<Interface>>

Figure II.4 – Alarm management IRP class diagram

3.2 Generic rules
Rule 1: Each operation with at least one input parameter supports a pre-condition
valid_input_parameter which indicates that all input parameters shall be valid with regard to their
information type. Additionally, each such operation supports an exception
operation_failed_invalid_input_parameter which is raised when pre-condition
valid_input_parameter is false. The exception has the same entry and exit state.

Rule 2: Each operation with at least one optional input parameter supports a set of pre-conditions
supported_optional_input_parameter_xxx where "xxx" is the name of the optional input parameter
and the pre-condition indicates that the operation supports the named optional input parameter.
Additionally, each such operation supports an exception
operation_failed_unsupported_optional_input_parameter_xxx which is raised when:
a) the pre-condition supported_optional_input_parameter_xxx is false; and
b) the named optional input parameter is carrying information.
The exception has the same entry and exit state.

Rule 3: Each operation shall support a generic exception operation_failed_internal_problem that is
raised when an internal problem occurs and that the operation cannot be completed. The exception
has the same entry and exit state.

3.3 Interface AlarmIRPOperations_1 (O)

Operation Name Qualifier Requirement IDs

acknowledgeAlarms M REQ-FM-FUN-x, REQ-FM-FUN-y
getAlarmList M …

58 Rec. ITU-T M.3020 (05/2009)

3.3.1 Operation acknowledgeAlarms (M)

3.3.1.1 Definition
The Manager invokes this operation to acknowledge one or more alarms.

3.3.1.2 Input parameters

Parameter
Name

Support
Qualifier Information Type/Legal Values Comment

…
eventIdList M SET OF INTEGER/– The list of alarms to be acknowledged.

3.3.1.3 Output parameters

Parameter Name Support
Qualifier

Matching Information/
Information Type/

Legal Values
Comment

…
Status M -- / ENUM /
 "OperationSucceeded": If

allAlarmsAcknowledged is true,
"OperationPartiallySucceeded": If
someAlarmAcknowledged is true,
"OperationFailed": If operationFailed is true.

3.3.1.4 Pre-condition
atLeastOneValidId.

Assertion Name Definition

atLeastOneValidId The AlarmInformationReferenceList contains at least one identifier that identifies
one AlarmInformation in AlarmList and that this identified AlarmInformation shall
have its ackState indicating "unacknowledged" and, if provided, an equal
perceivedSeverity.

3.3.1.5 Post-condition
someAlarmAcknowledged OR allAlarmsAcknowledged.

Assertion Name Definition

someAlarmAcknowledged …
allAlarmsAcknowledged …

 Rec. ITU-T M.3020 (05/2009) 59

3.3.1.6 Exceptions

Name Definition

operation_failed Condition: Pre-condition is false or post-condition is false.
Returned Information: The output parameter status.
Exit state: Entry state.

3.3.2 Operation getAlarmList (M)
…

60 Rec. ITU-T M.3020 (05/2009)

Appendix III

Comparison with Recommendation ITU-T Z.601
(This appendix does not form an integral part of this Recommendation)

This appendix provides information on the relationship between this Recommendation and
[b-ITU-T Z.601] that is used for the development of Recommendations in the M.1400 series of
ITU-T Recommendations.

While this Recommendation provides a methodology for specifying management interfaces
between two physical systems, [b-ITU-T Z.601] provides a framework for the development of one
system. This data architecture identifies candidate interfaces within one system as well as the
interfaces on the boundary of this system. These interfaces at the boundary will be between
systems.

The methodology specified by this Recommendation is primarily aimed at the development of a set
of management interface Recommendations rather than of individual systems. The data architecture
prescribes no requirements capture similar to the requirements phase, as it prescribes the
specification of individual systems only, not their purpose relative to an organization.

[b-ITU-T Z.601] focuses on specification of the external terminology and grammar as perceived by
the end users. This Recommendation focuses on specification of management interfaces, which may
not be perceived by the end users.

In this Recommendation, the requirements for the problem being solved fall into two classes. The
first class of requirements is referred to as business requirements; the second class is referred to as
specification requirements. The specification requirements may include requirements to support
end-user interaction at their human-computer interfaces. Some of these requirements may specify
syntactical requirements to be supported over any management interface. Syntactical requirements
correspond to external terminology schemata of the data architecture as described in
[b-ITU-T Z.601].

The output of the analysis phase will be an information model. This corresponds to a concept
schema of the data architecture as described in [b-ITU-T Z.601]. If the information models from the
analysis phase do not convey all the necessary information from the syntactical requirements, the
implementation design may need to include a mapping from the syntactical requirements.

The documentation from the implementation design phase will consist of two parts:
1) A technology-dependent data specification common for several interfaces, e.g., using

GDMO or CORBA IDL, corresponding to an internal terminology schema according to the
data architecture in [b-ITU-T Z.601].

2) A technology-dependent specification of each interface, e.g., using CMIP or CORBA IDL,
corresponding to a distribution schema according to the data architecture in
[b-ITU-T Z.601].

 Rec. ITU-T M.3020 (05/2009) 61

Appendix IV

Issues for further study
(This appendix does not form an integral part of this Recommendation)

This appendix identifies known issues that are subject for further study.

IV.1 SOA
The approval of [ITU-T M.3060] (Principles for the management of next generation networks)
signalled a change from an object-oriented to a service-oriented approach to management. The
impact of this change will need to be studied to identify any changes required in future revisions of
this Recommendation (M.3020).

IV.2 UML
This version of ITU-T M.3020 references UML version 1.5 in order to maintain alignment with
corresponding 3GPP specifications. A revised ITU-T M.3020 should reference later versions of
UML:
– The OMG MOF meta-meta model integrates UML 2.x as a meta-model which is supported

by the mainstream industry tool vendors. Prior to UML 2.0, there was no overarching meta-
meta model and UML itself was not standard. MOF supports the addition and creation of
other new meta-models defined in a precise way via OCL which is a predicate calculus
language.

– Both industry (telecoms, governments and military) and tool vendors are converging on the
OMG MOF model.

– The benefits of the MOF meta-meta model are that it supports a family of meta-models
which can be used to define object models, HCI relationships, various technology-specific
implementations and allows transformations between models to be undertaken in a standard
way. This is not achievable in UML 1.5 since UML 1.5 exists in isolation of a higher meta-
model.

IV.3 Visibility
It has been suggested that the default visibility should be private for attributes and public for
operations in order to promote data encapsulation and reduce time and effort in defining the
implementation model.

IV.4 Type definitions
When writing a new specification based on this methodology, it is necessary to specify the types of
parameters and attributes. Formal type definitions are absent from the current version of this
Recommendation, so the definition of types might be different and inconsistent for the same
meaning in different specifications, e.g., for an array of integer, it might be defined as a list of
integers, or a sequence of integers, or a set of integers.

Annex E defines the types that can be used in the conceptual model.

62 Rec. ITU-T M.3020 (05/2009)

Appendix V

Additional UML usage samples
(This appendix does not form an integral part of this Recommendation)

This appendix contains additional samples on the use of the UML described in Annex C.

V.1 Proxy Class

V.1.1 First Sample
This shows a <<ProxyClass>> named YyyFunction. It represents all IOCs listed in the Note under
the UML diagram. All the listed IOCs, in the context of this sample, inherit from ManagedFunction
IOC.

The use of <<ProxyClass>> eliminates the need to draw multiple UML
<<InformationObjectClass>> boxes, i.e., those whose names are listed in the Note, in the UML
diagram.

ManagedFunction
(from TS 32.622)

<<InformationObjectClass>>

YyyFunction
<<ProxyClass>>

NOTE – The YyyFunction <<ProxyClass>> represents AsFunction, AucFunction, BgFunction, etc.

<<ProxyClass>> Notation Sample V.1

V.1.2 Second Sample
This shows a <<ProxyClass>> named YyyFunction. It represents all IOCs listed in the Note right
under the UML diagram. All the listed IOCs, in the context of this sample, have link (internal and
external) relations.

The actual names of the IOC represented by InternalYyyFunction <<ProxyClass>> and by the
ExternalYyyFunction <<ProxyClass>> are listed under the subsection of X.Y of the associated
YyyFunction. For example, under X.Y.1 for AsFunction, two paragraphs are added to list all peer
internal entities and external entities that are linked with AsFunction. See sample in quotation
below that is using AsFunction as a sample for YyyFunction.

The actual names of the IOC represented by Link_a_z <<ProxyClass>> and by ExternalLink_a_z
<<ProxyClass>> are listed under the subsection of X.Y of the associated YyyFunction. For
example, under X.Y.1 for AsFunction, two paragraphs are added to list the names of the IOCs
represented by Link_a_z and by ExternalLink_a_z. See the quoted text below that is using
AsFunction as a sample for YyyFunction.

 Rec. ITU-T M.3020 (05/2009) 63

"

X.Y.1 AsFunction

X.Y.1.1 Definition
This IOC represents As functionality. For more information about the As, see
[b-3GPP TS 23.002].

The linked InternalYyyFunction <<ProxyClass>> represents SlsFunction, CscfFunction,
HlrFunction ...

The linked ExternalYyyFunction <<ProxyClass>> represents …

The Link_a_z <<ProxyClass>> represents Link_As_Scscf, Link_Bgcf_Scscf …

The ExternalLink_a_z <<ProxyClass>> represents …

"

ExternalYyyFuntion
<<ProxyClass>>

ExternalLink_a_z
<<ProxyClass>>

InternalYyyFunction
<<ProxyClass>>

YyyFunction
<<ProxyClass>>

Link_a_z
<<ProxyClass>>

NOTE – The 'Yyy' of YyyFunction <<ProxyClass>> represents AsFunction, AucFunction, …

<<ProxyClass>> Notation Sample V.2

64 Rec. ITU-T M.3020 (05/2009)

Bibliography

[b-ITU-T M.1401] Recommendation ITU-T M.1401 (2006), Formalization of interconnection
designations among operators' telecommunication networks.

[b-ITU-T M.1403] Recommendation ITU-T M.1403 (2007), Formalization of generic orders.

[b-ITU-T M.1404] Recommendation ITU-T M.1404 (2007), Formalization of orders for
interconnections among operators' networks.

[b-ITU-T Z.601] Recommendation ITU-T Z.601 (2007), Data architecture of one software
system.

[b-3GPP TS 23.002] 3GPP TS 23.002 (in force), Network architecture.

[b-3GPP TS 32.101] 3GPP TS 32.101 V8.1.0 (2007), Telecommunication management; Principles
and high level requirements.

[b-3GPP TS 32.150] 3GPP TS 32.150 V8.1.0 (2007), Telecommunication management;
Integration Reference Point (IRP) Concept and definition.

[b-3GPP TS 32.151] 3GPP TS 32.151 V8.0.0 (2007), Telecommunication management;
Integration Reference Point (IRP) Information Service (IS) template.

[b-3GPP TS 32.152] 3GPP TS 32.152 V8.0.0 (2007), Telecommunication management;
Integration Reference Point (IRP) Information Service (IS) Unified
Modelling Language (UML) repertoire.

[b-3GPP TS 32.302] 3GPP TS 32.302 V7.0.0 (2007), Telecommunication management;
Configuration Management (CM); Notification Integration Reference Point
(IRP): Information Service (IS).

Printed in Switzerland
Geneva, 2010

SERIES OF ITU-T RECOMMENDATIONS

Series A Organization of the work of ITU-T

Series D General tariff principles

Series E Overall network operation, telephone service, service operation and human factors

Series F Non-telephone telecommunication services

Series G Transmission systems and media, digital systems and networks

Series H Audiovisual and multimedia systems

Series I Integrated services digital network

Series J Cable networks and transmission of television, sound programme and other multimedia signals

Series K Protection against interference

Series L Construction, installation and protection of cables and other elements of outside plant

Series M Telecommunication management, including TMN and network maintenance

Series N Maintenance: international sound programme and television transmission circuits

Series O Specifications of measuring equipment

Series P Terminals and subjective and objective assessment methods

Series Q Switching and signalling

Series R Telegraph transmission

Series S Telegraph services terminal equipment

Series T Terminals for telematic services

Series U Telegraph switching

Series V Data communication over the telephone network

Series X Data networks, open system communications and security

Series Y Global information infrastructure, Internet protocol aspects and next-generation networks

Series Z Languages and general software aspects for telecommunication systems

	ITU-T Rec. M.3020 (05/2009) Management interface specification methodology
	Summary
	Source
	FOREWORD
	CONTENTS
	1 Scope
	2 References
	3 Definitions
	3.1 Terms defined elsewhere
	3.2 Terms defined in this Recommendation

	4 Abbreviations
	5 Conventions
	6 Requirements for methodology and notational support
	7 Methodology
	7.1 General considerations
	7.2 Application and structure of the methodology
	7.3 Detailed methodology

	8 Management interface specifications
	9 Traceability in MISM process
	10 Documentation structure
	Annex A – Requirements
	A.1 Conventions
	A.2 Requirements template
	A.3 Simplified requirements template
	Annex B – Analysis
	B.1 Conventions
	B.2 Analysis template
	B.3 IOC properties, inheritance and import
	Annex C – MISM UML repertoire
	C.1 Introduction
	C.2 Basic model elements
	C.3 Entity stereotypes
	C.4 Association stereotypes
	C.5 Void
	C.6 Association classes
	C.7 Abstract class
	Annex D – Design
	Annex E – Information type definitions - type repertoire
	E.1 Basic types
	E.2 Enumerated type
	E.3 Complex types
	E.4 Useful types
	Appendix I – Requirements example
	Appendix II – Analysis example
	Appendix III – Comparison with Recommendation ITU-T Z.601
	Appendix IV – Issues for further study
	IV.1 SOA
	IV.2 UML
	IV.3 Visibility
	IV.4 Type definitions
	Appendix V – Additional UML usage samples
	V.1 Proxy Class
	Bibliography

