

INTERNATIONAL TELECOMMUNICATION UNION

ITU-T M.3020
TELECOMMUNICATION
STANDARDIZATION SECTOR
OF ITU

(02/2000)

SERIES M: TMN AND NETWORK MAINTENANCE:
INTERNATIONAL TRANSMISSION SYSTEMS,
TELEPHONE CIRCUITS, TELEGRAPHY, FACSIMILE
AND LEASED CIRCUITS
Telecommunications management network

 TMN interface specification methodology

ITU-T Recommendation M.3020
(Formerly CCITT Recommendation)

ITU-T M-SERIES RECOMMENDATIONS
TMN AND NETWORK MAINTENANCE: INTERNATIONAL TRANSMISSION SYSTEMS, TELEPHONE

CIRCUITS, TELEGRAPHY, FACSIMILE AND LEASED CIRCUITS

Introduction and general principles of maintenance and maintenance organization M.10–M.299
International transmission systems M.300–M.559
International telephone circuits M.560–M.759
Common channel signalling systems M.760–M.799
International telegraph systems and phototelegraph transmission M.800–M.899
International leased group and supergroup links M.900–M.999
International leased circuits M.1000–M.1099
Mobile telecommunication systems and services M.1100–M.1199
International public telephone network M.1200–M.1299
International data transmission systems M.1300–M.1399
Designations and information exchange M.1400–M.1999
International transport network M.2000–M.2999
Telecommunications management network M.3000–M.3599
Integrated services digital networks M.3600–M.3999
Common channel signalling systems M.4000–M.4999

For further details, please refer to the list of ITU-T Recommendations.

 ITU-T M.3020 (02/2000) i

ITU-T Recommendation M.3020

TMN interface specification methodology

Summary
This ITU-T Recommendation describes the TMN interface specification methodology UTRAD
(Unified TMN Requirements, Analysis and Design). It describes the process to derive interface
specifications based on user requirements, analysis and design (RAD). Guidelines are given to
describe RAD using Unified Modelling Language (UML) notation; however, other interface
specification techniques are not precluded. The guidelines for using UML are described at a high
level in this ITU-T Recommendation.

Source
ITU-T Recommendation M.3020 was prepared by ITU-T Study Group 4 (1997-2000) and approved
under the WTSC Resolution 1 procedure on 4 February 2000.

ii ITU-T M.3020 (02/2000)

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of
telecommunications. The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of
ITU. ITU-T is responsible for studying technical, operating and tariff questions and issuing Recommendations
on them with a view to standardizing telecommunications on a worldwide basis.

The World Telecommunication Standardization Conference (WTSC), which meets every four years,
establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on these
topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSC Resolution 1.

In some areas of information technology which fall within ITU-T’s purview, the necessary standards are
prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a
telecommunication administration and a recognized operating agency.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may
involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence,
validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others
outside of the Recommendation development process.

As of the date of approval of this Recommendation, ITU had not received notice of intellectual property,
protected by patents, which may be required to implement this Recommendation. However, implementors are
cautioned that this may not represent the latest information and are therefore strongly urged to consult the
TSB patent database.

� ITU 2001

All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from the ITU.

 ITU-T M.3020 (02/2000) iii

CONTENTS
 Page

1 Introduction... 1
1.1 Scope... 1

1.2 Related Recommendations ... 1

1.3 Abbreviations.. 1

1.4 Definitions .. 2
1.4.5 Terms imported from M.3010 ... 2
1.4.6 Terms imported from UML... 2

1.5 Requirements for methodology and notational support .. 3

1.6 Use of UML Notation ... 3

2 Methodology... 4
2.1 General considerations.. 4

2.2 Application and structure of the methodology.. 4

2.3 Detailed methodology... 4
2.3.1 Requirements ... 5
2.3.2 Analysis ... 5
2.3.3 Design.. 6

2.4 TMN interface specifications.. 6

2.5 Traceability in UTRAD Process ... 6

2.6 Documentation structure... 7

Annex A − Guidelines for the Definition of Management Interface (GDMI) 7

A.1 Introduction... 7

A.2 GDMI Template.. 7
A.2.1 Scope ... 7
A.2.2 Requirements ... 7

Annex B − TMN object identifier assignment rules .. 9

B.1 TMN object identifier structure .. 9

B.2 TMN object identifier structure extended for Recommendation "parts" 11

B.3 TMN assignment procedures .. 12

B.4 Object identifier allocation for a TMN application context.. 12

Annex C − Generic definitions .. 13

C.1 Generic operations .. 13
C.1.1 getAttributes .. 13
C.1.2 getAllAttributes ... 13
C.1.3 notifications ... 14

iv ITU-T M.3020 (02/2000)

 Page

Appendix I − Example use of GDMI (LCS Provision).. 15

I.1 Introduction... 15

I.2 GDMI template ... 16
I.2.1 Scope ... 16
I.2.2 Requirements ... 16
I.2.3 Design.. 25

 ITU-T M.3020 (02/2000) 1

ITU-T Recommendation M.3020

TMN interface specification methodology

1 Introduction

1.1 Scope
This ITU-T Recommendation describes the TMN interface specification methodology UTRAD
(Unified TMN Requirements, Analysis and Design). It describes the process to derive interface
specifications based on user requirements, analysis and design (RAD). Guidelines are given to
describe RAD using Unified Modelling Language (UML) notation; however, other interface
specification techniques are not precluded. The guidelines for using UML are described at a high
level in this ITU-T Recommendation. Further ITU-T Recommendations in this series will provide a
more detailed definition of the specific use of UML notation within the TMN.

An interface specification addresses management service(s) defined in ITU-T Recommendation
M.3200. Such a specification may support part of or one or more management services. The
management services comprise of management functions. These functions may reference those
defined in ITU-T Recommendation M.3400, specialize to suit a specific managed area or new
functions may be identified as appropriate.

1.2 Related Recommendations
The following ITU-T Recommendations should be referred to in connection with this ITU-T
Recommendation:

[1] ITU-T Recommendation M.3010 (2000), Principles for a telecommunications management
network.

[2] ITU-T Recommendation M.3200 (1997), TMN management services and
telecommunications managed areas: Overview.

[3] ITU-T Recommendation M.3400 (2000), TMN management functions.
[4] Unified Modelling Language, Section 1 of OMG Modelling, OMG Doc. No. Formal/

99-06-01.

[5] ITU-T Recommendation M.3208.1 (1997), TMN management services for dedicated and
reconfigurable circuits network: Leased circuit services.

[6] ITU-T Recommendation X.680 (1997) | ISO/IEC 8824-1:1998, Information technology –
Abstract syntax Notation Om (ASN.1): Specification of basic notation.

[7] ITU-T Recommendation Z.100 (1999), Specification and Description Language.

1.3 Abbreviations
This ITU-T Recommendation the uses the following abbreviations:

ASN.1 Abstract Syntax Notation One

CMIP Common Management Information Protocol

CNM Customer Network Management

CORBA Common Object Request Broker Architecture

GDMI Guidelines for the Definition of Management Interface

2 ITU-T M.3020 (02/2000)

GDMO Guidelines for the Definition of Managed Objects

GRM General relationship Model

IDL Interface Definition Language

LCS Leased Circuit Service

NE Network Element

OAM&P Operations, Administration, Maintenance and Provisioning

OMG Object Management Group

OO Object Oriented

OS Operations System

OSI Open Systems Interconnection

SC Service Customer

SDL Specification and Description Language

SLA Service level Agreement

SP Service Provider

TMN Telecommunications Management Network

UML Unified Modelling Language

UTRAD Unified TMN Requirements, Analysis and Design

1.4 Definitions
This ITU-T Recommendation defines the following definitions terms:

1.4.1 TMN management goals: High-level objectives of a user in performing management
activities.

1.4.2 TMN management roles: TMN management roles define the activities that are expected of
the staff or system that perform telecommunications management. TMN management roles are
defined independent of other components, i.e. telecommunications resources and TMN management
functions.

1.4.3 telecommunications resources: Telecommunications resources are physical or logical
entities requiring management, using TMN management services.

1.4.4 TMN management scenario: A TMN management scenario is an example of management
interactions from a management service.

1.4.5 Terms imported from M.3010
The following terms from M.3010 [1] are used in this ITU-T Recommendation.
− User.
− TMN management service.
− TMN management function set.

1.4.6 Terms imported from UML
The following terms from UML [4] are used in this ITU-T Recommendation.
– Activity Diagram.
– Actor.

 ITU-T M.3020 (02/2000) 3

– Class.
– Class Diagram.
– Collaboration Diagram.
– Sequence Diagram.
– State Diagram.
– Stereotype.
– Use Case.

1.5 Requirements for methodology and notational support
In developing the methodology and choosing a notation, the following goals were used.
1) The notation and methodology shall support the capture of all the relevant requirements of

the problem space, namely telecommunications management.
2) The notation shall facilitate unambiguous generation of the specification in the target NM

paradigms specified in ITU-T Recommendation Q.812.
3) Non-optional conformance points shall be specified in all three phases. If optional features

are required to support the telecommunications problem space these will be specified. For
the Requirements and Analysis phases, the allowable optional features will be specified in
this series of ITU-T Recommendations. Allowable optional features for the design phase
will be specified in the Q.81x-series Recommendations.

4) It shall be possible to generate, from the design specification, interoperable language
specific definitions (for example UML to IDL, UML to GDMO/ASN.1).

The current chosen notation, as noted later does not meet all the above requirements. However, it is
expected that these requirements should be met as the notations are applied widely in the industry.

The optional features to be supported include features of the notation for the three phases as well as
for target NM paradigm specific capabilities (e.g. selection of CORBA facilities and optional
features within a given facility). These features are not included in the methodology but should be
found in other ITU-T Recommendations.

1.6 Use of UML Notation
Table 1 identifies the correspondence between TMN concepts and UML notation. This ITU-T
Recommendation specifies the high-level concepts and notations to be used in the different phases.
Further recommendations in this series will describe the guidelines for using specific aspects of the
notations, required extensions such as new stereotypes appropriate for use within TMN.

Stereotypes are used to extend UML notation. The approved stereotypes for use within the TMN
environment are included in this ITU-T Recommendation (see Annex C).

4 ITU-T M.3020 (02/2000)

Table 1/M.3020 – Requirements concepts

TMN concept UML notation Comment

user Actor A user is modelled as an actor.
management role Actor An actor plays a role. It is normally advisable to only

model a single role for each actor.
management function use case A management function is modelled by one or more use

cases.
management function set use case A management function set is a composite use case with

each management function (potentially) modelled as a
separate use case.

management service use case A management service is modelled as a high-level use
case.

management scenario sequence
diagram

Sequence diagrams are preferred over collaboration
diagrams.

telecommunication
resource type

Class The class diagrams depict the property details of the
telecommunications resource type, at the level of detail
appropriate to the phase of the methodology.

management goals – Management goals are captured as textual descriptions as
there is no applicable UML notation.

2 Methodology

2.1 General considerations
The purpose of this methodology is to provide a description of the processes leading towards the
definition of TMN interfaces.

2.2 Application and structure of the methodology
The Unified TMN Requirements, Analysis and Design (UTRAD) methodology specifies an iterative
three-phase process with features that allow traceability across the three phases. The three phases
apply industry-accepted techniques using object oriented analysis and design principles. The three
phases are requirements, analysis and design. The techniques should allow the use or development of
commercially available support tools. Different techniques may be used for the phases depending on
the nature of the problem.

2.3 Detailed methodology
The requirements and analysis phases produce UML specifications. The Design phase uses Network
Management Paradigm specific notation. The outputs of the 3 phases are:
• Requirements phase – Requirements.
• Analysis phase – Implementation independent specification.
• Design phase – Technology specific specification.

Initially, the design phase will be developed using a manual or customized approach. When
interoperable protocol specific definition can be generated by tools, then UML notation can be
applied to the design phase. However some protocol specific definitions, such as class hierarchy, can
be depicted using UML notation.

The subclauses below describe the three phases.

 ITU-T M.3020 (02/2000) 5

2.3.1 Requirements
The requirements for the problem being solved fall into two classes. The first class of requirements
is referenced here as business requirements. A subject matter expert on the topic shall be able to
determine that the requirements adequately represent the needs of the management problem being
solved. The second class is referred to as specification requirements. These requirements shall
provide sufficient details so that the interface definition in the analysis and design phase can be
developed. As final interface definitions must be traceable to the requirements, it may be necessary
to have an iterative process among the three phases. Any ambiguity in the requirements will have to
be resolved by this iterative process to assure that an implementable specification can be developed.

Different techniques may be used to specify the two classes of requirement. Irrespective of the
technique, the readability of the requirements is critical. The requirements themselves are not
required to be in a machine-readable notation as long as readability and traceability are possible.
Enumerating requirements is one possible approach to delineate the different requirements for
traceability.

The requirements phase include identifying aspects such as security policy, scope of the problem
domain in terms of the applications, resources, and roles assumed by the resources. An example of
the requirements is available in Appendix I. The requirements specify roles, responsibilities, and the
relationships between the constituent entities for the problem space. Different techniques including
textual representation may be used to specify the business level requirements. In order to facilitate
traceability of these requirements to the design and implementation phases, enumerating
requirements is recommended.

The problem must be bounded with a specific scope. One way to determine the scope is by using the
management services identified in ITU-T Recommendation M.3200 and function sets identified in
M.3400. Requirements are specified using the resources being managed and TMN management
functions. Augmenting ITU-T Recommendation M.3400 may be required in order to meet the
business requirements of the problem.
UML use cases and scenarios should be used to interact with subject matter experts in capturing the
business level requirements. The requirements should also identify the failure conditions visible to
the business process.

The requirements produced must be complete and detailed. The recursive nature of the UTRAD
methodology is used to achieve this completeness. The completeness of the requirements (clear and
well-documented) drives the analysis and design phases.

2.3.2 Analysis
In the analysis phase, the requirements are used to identify the interacting entities, their properties
and the relationships among them. This allows the interfaces offered by the entities to be defined. In
the UML notation, these entities become classes. The class descriptions along with the interfaces
exposed should be traceable to the requirements. The relationship among the classes, defined in the
analysis specification, and the classes in the design specification is not necessarily one to one.

This ITU-T Recommendation gives high-level guidance on the use of UML notation to support
TMN interface specification; however SDL [7], an industry accepted technique might be used to
augment the UML definitions.

The analysis phase should be independent of design constraints. For example the analysis may be
documented using OO principles even though the design may use a non-object oriented technology.
The information specified in the analysis phase includes class descriptions, data definitions, class
relationships, interaction diagrams (sequence diagrams and/or collaboration diagrams), state
transition diagrams and activity diagrams. The class definitions include specification of operations,
signal (asynchronous stimulus such as receipt of operations, events and exceptions), attributes and
behaviour captured as notes or textual description.

6 ITU-T M.3020 (02/2000)

The generic definitions (operations and stereotypes) contained in Annex C are provided for use in
the analysis phase. They define retrieving and setting multiple attributes and issuing notifications.
These can be included in the class definitions and the interaction diagrams.

2.3.3 Design
In the design phase an implementable interoperable interface specification is produced. This will
involve the selection of a target specification language. The design phase specifications are
dependent on the specific TMN network management paradigm.

The selection of specific TMN paradigm is addressed in other TMN Recommendations.

In the context of the TMN paradigm based on OSI Systems Management, the design specification is
the information model specification using GDMO templates for managed object classes, attributes,
behaviour, notifications, actions, naming instances of the class, and error/exception specifications.
The syntax of the information is specified using ASN.1 notation.

In GDMO, the object class hierarchy specifies the properties of the object classes that are needed for
management. Extensive use of inheritance (super and subclasses) is needed to benefit the most from
the reuse of specifications. The object classes are specified using the templates from ITU-T
Recommendation X.722, structure of management information – Guidelines for the definition of
managed objects. The templates defining the information model should be registered (according to
the rules of ITU-T Recommendation X.722) with a value for the ASN.1 object identifier. Annex B
describes the procedure for assigning the registration values. For those object classes that are already
specified in other ITU-T Recommendations and ISO standards, only a reference to the particular
Recommendation and object class is needed. Naming is not a part, nor the purpose, of the object
class hierarchy.

In the context of CORBA based TMN, the information model is defined using IDL.

As additional paradigms are added to the TMN, the notations/languages defined by these paradigms
will be used.

In the design phase, it is recommended that the UML descriptions from the requirements and
analysis phases be referenced to augment behavioral specification. For example, behaviour definition
of GDMO can reference state charts, sequence diagrams and class definition in the analysis phase. If
required additional UML diagrams describing interactions between entities, corresponding to
specific protocol paradigms, may be included.

2.4 TMN interface specifications
A TMN interface specification includes the Requirements, Analysis and Design specifications
discussed in 2.3. A structure for specifying these specifications is provided in Annex A and is called
Guidelines for the Definition of Management Interface (GDMI).

These techniques and supporting notations are also applicable when designing a system to the TMN
interface specifications, even though system design is not considered as part of TMN
Recommendations. They assist in describing how the interface specifications are applied in
managing the resources within a system such as an NE.

2.5 Traceability in UTRAD Process
In order to achieve traceability between requirements, analysis and design , it is necessary that
appropriate identification and pointers are provided by each model element. For example the
requirements can be identified by numbers or references to the functions in ITU-T Recommendation
M.3400 list of functions. Numbering other requirements (new functions not in ITU-T
Recommendation M.3400) or security policy and any performance requirements is also
recommended because a design specification may meet these requirements differently based on the

 ITU-T M.3020 (02/2000) 7

underlying protocols. Another approach used in the example in Appendix I (I.2.2.3) is to reference
the use cases and the associated textual description. The analysis phase output specifies for the
various use cases further detailed information requirements. The design phase should point to the
various diagrams and text in the analysis phase output. The pointer may be in terms of a reference to
the appropriate sections.

An iterative process may be required to trace up to the subject matter level requirements in the first
phase from the design phase. This is required because the output of the phases are defined to
different level of details.
NOTE – Not all requirements will be traceable in the design. For example requirements such as availability,
redundancy, etc. may not be reflected in particular interface design even though they are to be supported in an
implementation. There is no formal mechanism defined in this ITU-T Recommendation for traceability of
requirements between the three phases. One approach is to reference clauses and subclauses in the output of
the requirements and analysis phases during the design phase.

2.6 Documentation structure
Even though there are three phases, the documentation of the interface may combine their outputs
into one or more documents. It is recommended that the requirements and analysis be combined and
separate design documents are developed for each specific network management protocol paradigm.

ANNEX A

Guidelines for the Definition of Management Interface (GDMI)

A.1 Introduction
The following are guidelines for the Definition of Management Interface (GDMI). The GDMI
template provides a structure for specifying the outputs of the requirements, analysis and design
phases.

A.2 GDMI Template

A.2.1 Scope
Define major goals and objectives and the applicable TMN interfaces (and Reference Points) for this
specification. Use ITU-T Recommendation M.3200 [2] categorization as a source for identifying the
management service(s) supported by this interface.

This subclause should give a clear description of the TMN users benefit, i.e. the reason for
performing this management service. Background and context should be added as necessary, but the
explanatory and descriptive part should be separated. Supporting background information, where
required, should be placed in an appendix.

A.2.2 Requirements

A.2.2.1 Business level requirements
List major requirements in text, and identify use cases with actor/role and resources. The use case
should bring out high-level requirements and is distinguished from the specification requirements by
not refining to lower levels. Policies related information (e.g. security, persistence) are candidates for
inclusion at this level. Numbering the requirements is recommended for traceability.

A.2.2.1.1 Actor roles
A textual description of the actor is included here.

8 ITU-T M.3020 (02/2000)

A.2.2.1.2 Telecommunications resources
Textual description of the relevant resources required to support the use cases are presented here.

A.2.2.1.3 High-level use case
A high-level use case diagram is presented. In order to understand the use case by subject matter
experts, they should be augmented with textual description for each use case. The description should
serve two purposes: to capture the domain experts' knowledge and to validate the models in analysis
and design phases with respect to the requirements. An example of a high-level use case is given in
Appendix I.

The high-level use cases may identify the various functions sets defined in ITU-T
Recommendation M.3400 [3]. These use cases may be further refined as described in the
specification requirement subclause below by using stereotypes such as "include" and "extend".

If appropriate, sequence and state chart diagrams may be used. However, at the high-level
requirements these diagrams are not expected to be used. When the use cases at this level are further
decomposed in the next level of requirements, these diagrams may be more suitable.

The traceability of the next level of requirements from this level may be identified by how each
function set further refined with new use cases.

A.2.2.2 Specification level requirements
The high-level use cases are further refined using management functions from ITU-T
Recommendation M.3400. Since M.3400 is not exhaustive enough to address all management
services for all managed areas, it is expected that new functions will be required. The new functions
should be included in the requirements as described below.

A.2.2.2.1 Actor roles
A list of all actors and textual description of actors not already defined in high-level requirements is
included here.

A.2.2.2.2 Telecommunications resources
A list of all passive resources and textual description of resources not already defined in high-level
requirements are presented here.

A.2.2.2.3 TMN management functions
Management functions identify the interactions between the different actor roles. The requirements
may include one or more of the following – use cases, sequence and state charts diagrams for various
functions in the problem domain and textual descriptions.

A.2.2.2.4 Use cases
An example of the refinement of the high-level use case diagrams above is presented in Appendix I.
The refinement is achieved by using "extend" and "include" stereotypes.

If appropriate sequence and state chart diagrams may be used.

A.2.2.3 Analysis
The analysis clause includes functional decomposition, information flows, class diagrams (including
relationships between classes), sequence diagrams and state charts/tables. The class diagrams may be
augmented with details of attributes and allowed operations. As with any UML diagram, textual
description is required to augment the figures. Including all the attributes along with their properties
within the class diagram may hinder the readability. As a presentation issue, it is permissible not to
show attributes in all class diagrams.

 ITU-T M.3020 (02/2000) 9

Detailed descriptions of the Management Functions and interactions between the functions shall be
provided.

The information flow associated with each function should generally be captured using simple tables
defining the flow. The tables should specify whether the information is mandatory, optional or
present subject to a condition. The condition should be defined. The analysis may include state
models as a result of information flow. The state transitions may be described using tables or
diagrams identifying events and the resulting state. Another area to consider when documenting
analysis of the requirements is the exception/error cases.

The scenarios describing the information flow amongst the entities may be described using the
sequence diagrams as illustrated in Appendix I.

The sequence diagram is a message flow diagram with time going vertical and messages running
horizontal. It models the manager interacting with the managed system via the management
information model. Inside the diagram are the object instances, which collaborate via message
passing to perform the given functional task.

Pre- and post-conditions may be used to describe the information flows in the interaction diagrams.

Reference numbers shall be assigned to the analysis sections and can be used for traceability from
the model or referencing from the model where appropriate.

Traceability is to be provided for the various diagrams and text to the requirements phase by
appropriate references to the use cases.

A.2.2.4 Design
Protocol paradigm specific information models are presented in this section (e.g. GDMO/ASN.1,
IDL).

ANNEX B

TMN object identifier assignment rules

The following scheme is used for assigning object identifiers when CMIP/GDMO is used in
designing a TMN interface.

B.1 TMN object identifier structure
Annex C/X.6801 [6] defines the first few arcs of the object identifier structure to be used for
information items in ITU-T Recommendations. All object identifiers are structured as in Figure B.1
which is a graphical depiction of the following information:

(0) itu-t2
 (0) recommendation
 (1) a
 (2) b
 (3) c

1 Annex C/X.208 provides the equivalent definitions.
2 The name "ccitt" was used in Recommendation X.208 (ASN.1) to construct the object identifier hierarchy.

New Recommendations should use "itu-t" which is synonymous with "ccitt".

10 ITU-T M.3020 (02/2000)

 (7) g
 (774) g774

 (13) m
 (3100) m3100

 (14) n

For example, the object identifier of ITU-T Recommendation M.3100 is:

 { itu-t(0) recommendation(0) m(13) m3100(3100) }

The leaves of the above structure represent ITU-T Recommendations. The following TMN
substructure is to be used beneath each such leaf representing a Recommendation. This substructure
is derived from the rules defined in ITU-T Recommendation X.722.

(0) informationModel
 (0) standardSpecificExtension
 (2) asn1Module
 (3) managedObjectClass
 (4) package
 (5) parameter
 (6) nameBinding
 (7) attribute
 (8) attributeGroup
 (9) action
 (10) notification
 (11) -- the next two nodes are reserved for use with GRM
 (12)
(1) protocolSupport
 (0) applicationContext
(2) managementApplicationsSupport
 (0) standardSpecificExtension
 (1) functionalUnitPackage
 (2) asn1Module
(127) dot -- for parts of a Recommendation (see B.2)

It is recommended that value references be defined within an ASN.1 module for the leaves of the
above TMN substructure as follows, e.g. for managedObjectClass:

 <recommendation>ObjectClass OBJECT IDENTIFIER
 :: = { itu-t(0) recommendation(0) <recommendation series letter>(number)
 <recommendation>(number) informationModel(0)
 managedObjectClass(3) }

Example:

 m3100ObjectClass OBJECT IDENTIFIER
 :: = { itu-t(0) recommendation(0) m(13) m3100(3100) informationModel(0)
 managedObjectClass(3) }

For management information to be communicated or to be reusable in other templates, the template
defining that information must be registered. Each such management information template to be
registered is identified with an object identifier.

 ITU-T M.3020 (02/2000) 11

As an example, an object class in M.3100 called exampleObjectClass will have an object identifier
assigned as follows:

 exampleObjectClass MANAGED OBJECT CLASS
 .
 .
 .
 REGISTERED AS { m3100ObjectClass 5 };

The same approach should be followed for the other leaves of the TMN substructure.

Included in the Abbreviation clause of the Recommendation the value references and the sequences
of values of the object identifier of that value reference, for example:

 m3100ObjectClass { itu-t(0) recommendation(0) m(13) m3100(3100)
 informationModel(0) objectClass(3) }

B.2 TMN object identifier structure extended for Recommendation "parts"
The structure in B.1 should also be used for Recommendations that use part numbers as shown
below:

(0) itu-t
 (0) recommendation
 (1) a
 (2) b
 (3) c

 (7) g
 (774) g774
 (127) dot
 (1) part1

 (13) m
 (3100) m3100

 (14) n

For example, the object identifier for ITU-T Recommendation G.774.1 is:

 { itu-t(0) recommendation(0) g(7) g774(774) dot(127) part1(1) }

The substructure below this level is as defined in ITU-T Recommendation X.722 and outlined in B.1
above.

An example:

 g774dot1ObjectClass OBJECT IDENTIFIER ::=

 { itu-t(0) recommendation(0) g(7) g774(774) dot(127) part1(1) informationModel(0)
 managedObjectClass(3) }

As an example, an object class in ITU-T Recommendation G.774.1 called exampleObjectClass will
have an object identifier assigned as follows:

 exampleObjectClass MANAGED OBJECT CLASS
 .
 .
 .
 REGISTERED AS { g774dot1ObjectClass 5 };

12 ITU-T M.3020 (02/2000)

References from other should be in the following format:

 "Recommendation G.774.1: 1994"

B.3 TMN assignment procedures
The following assignment procedures are recommended:
1) An item of management information is only assigned one object identifier and is defined in

only one document. If some item of management information is required in a
Recommendation, and the item is already defined elsewhere, a reference to the existing
template shall be used. The reference to a template shall identify the Recommendation and
date published with the template-label, e.g. "Recommendation M.3100: 1992": example
Object Class. Each Recommendation should also include the following statement:

 "When referencing the definitions for the templates in this Recommendation by other
documents, the prefix, e.g. "Recommendation M.3100: 1992", should be used to identify the
source for the definitions."

2) Each Study Group is responsible (registration authority) for the registration of object
identifiers for its Recommendations within the arcs of the TMN substructure defined above.

B.4 Object identifier allocation for a TMN application context
The following object identifier for a TMN application context is defined and registered in ITU-T
Recommendation M.3100 and should be used by all TMN applications:

The object identifier value:

 { itu-t(0) recommendation(0) m(13) m3100(3100) protocolSupport(1)
 applicationContext(0) tmnApplicationContextOne(1) }

is assigned to the application context that has the same capabilities as the systems application context
in ITU-T Recommendation X.701, but also supports the integer encoding for ProbableCause as
defined in ITU-T Recommendation M.3100.

Figure B.1 depicts the "upper" part of the TMN object identifier structure.

 ITU-T M.3020 (02/2000) 13

T0412300-99

(1) (2) (7) (13)

(774)

(0)

(0)

(3100)

m 3100

(127)

(1)

t

g774

Recommendation G.774.1
at this node

part 1

dot

M-seriesG-seriesB-seriesA-series

recommendation

itu-t

Below these nodes the rules in Recommendation X.772 apply
for management information (e.g. managed object class)

Figure B.1/M.3020 – Graphical representation of the object identifier tree

ANNEX C

Generic definitions

C.1 Generic operations

C.1.1 getAttributes
The generic operation getAttributes (in attributeNamelist: AttributeNameListType, out
attributeNameValuePairList: AttributeNameValuePairListType) where the parameter
attributeNameList is used to denote that any combination of the attributes (subject to any additional
constraints) which are to be returned in the parameter attributeNameValuePairList.

C.1.2 getAllAttributes
The generic operation getAllAttributes (out attributeNameValuePairList:
AttributeNameValuePairListType) is used to retrieve values of all the attributes of a class. The
response is returned in attributeNameValuePairList.

14 ITU-T M.3020 (02/2000)

C.1.3 notifications
To specify notifications, the stereotype <<NotifyDispatch>> has been defined. This is represented
diagrammatically using the symbol used for UML classes. The signature of one or more notifications
is specified as operations in a <<NotifyDispatch>> stereotype. The semantics are that the operations
in a <<NotifyDispatch>> compartment are used by UML classes to initiate the dispatch of
notifications through some event distribution mechanism, which is more fully specified in the design
phase.

Placing more than one notification operation in a <<NotifyDispatch>> compartment implies the
ability to send all of the notification types shown.

Figure C.1 shows an example of the specification of two notification dispatch stereotypes. The alarm
example has one notification type, commAlarm, which has a parameter signature which is a
simplification of the X.733 communicationAlarm syntax. The configEvents example has four
notification types, which have parameter signatures which are simplifications of the syntax defined
in ITU-T Recommendations X.730 and X.731.

alarm

com m Alarm (in nam e : Objec tNam e, in sev erity : Sev erity Ty pe, in probableC ause : ProbableCauseTy pe)

<<Not if y D ispatch>>

con f igEv ents

objec tC reat ion(in nam e : Objec tN am e, in c reateTim e : D ateAndTim e)
s tateC hange(in nam e : Objec tN am e, in oldStateVals : At trValLis t , in newStateVals : Att rValLis t)
att t ributeValueC hange(in nam e : Objec tN am e, in oldVals : At trValLis t, in newVals : At t rValLis t)
objec tD eletion(in nam e : Objec tNam e, in deleteTim e : D ateAndTim e)

<<N otif y D ispatch>>

Figure C.1/M.3020 – Specification of Generic Notification sets

Figure C.2 shows an example of how to use the stereotype <<send>> of the UML Association
standard element to specify that an instance of a Class must be able to send notifications. When a
Class has a <<send>> association with a <<NotifyDispatch>> stereotype, this implies that the Class
must be able to send all the notification types shown in the operation compartment of the associated
<<NotifyDispatch>> stereotype. For readability, abbreviations for the notification operation
signatures (i.e. empty parameter list) may be used, as shown in Figure C.2.

The role of the association end on the side of the Class can have constraints which specify conditions
under which specific notification types must be emitted by instances of that Class.

 ITU-T M.3020 (02/2000) 15

T0412310-99

commAlarm()

subnetwork

+configEvents

<<send>>

networkTP

<<send>>

+configEvents<<send>>

+alarm

If (operationalState changes or
 administrativeState changes)
 send stateChange;
If (directionality changes)
 send attributeValueChange;

<<NotifyDispatch>>
configEvents

objectCreation()
stateChange()
atttributeValueChange()
objectDeletion()

name : ObjectName
layer : CharacteristicInfo
directionality : DirectionalityType
operationalState : OperationalStateType
administrativeState : AdministrativeStateType

If (operationalState changes or
 administrativeState changes)
 send stateChange;
If (owner changes)
 send attributeValueChange;

name : ObjectName
layer : CharacteristicInfo
operationalState : OperationalStateType
administrativeState : AdministrativeStateType
owner : string

<<NotifyDispatch>>
alarm

Figure C.2/M.3020 – Specification of Notifications emitted by Classes

APPENDIX I

Example use of GDMI (LCS Provision)

I.1 Introduction
This appendix contains an example use of GDMI template. The example shows how the
requirements, analysis and design phases may be documented using a combination of text, UML
diagrams and tabular representation. This example is based on ITU-T Recommendation M.3208.1
[5] for provisioning a dedicated leased circuit service. The use of UML in all three phases and how
the design phase can reference behaviour definitions in the analysis phase is illustrated here. This
covers only a small subset of the requirements contained in ITU-T Recommendation M.3208.1.
Where appropriate, existing text from ITU-T Recommendation M.3208.1 is used.

16 ITU-T M.3020 (02/2000)

I.2 GDMI template

I.2.1 Scope
This ITU-T Recommendation describes a subset of TMN management services for Dedicated
Leased Circuits network identified in ITU-T Recommendation M.3200 as a TMN managed area. Its
main focus is on the management services of Customer Administration and Maintenance
management for the point-to-point Leased Circuit Services (LCS) that may be offered by one or
more service providers and may be controlled by the SC with different levels of visibility. The LCS
is defined between a single SC and a single SP. These management services are also applicable for
interactions between management systems of different service providers or within a service provider.

I.2.2 Requirements

I.2.2.1 Business level requirements
TMN management services in this ITU-T Recommendation specify interface requirements for
Leased Circuit Services between an operations system (OS) and an operations system (OS) to
provision and manage Leased Circuit Services. The interfaces addressed by the TMN management
services in this ITU-T Recommendation are applicable to both X interfaces across jurisdictional
boundaries and Q interfaces within a TMN. Support for the services described in this ITU-T
Recommendation are at the discretion of the Service Provider.

In general, the definition of a service should be independent of the particular network used to
transport the service. This allows multiple technologies to support the service. Therefore, network
level information should not be presented to the service layer. However, specific service features
may be defined which allow network or network element information to be presented to a service
customer. In this case, an abstraction of the information appropriate to the service feature is
transferred.

I.2.2.1.1 Actor Roles

Service customer
Service Customer: See definition of "Customer" in ITU-T Recommendation M.3320. This use of
service customer specializes the definition to the context of the TMN Management role for the
Service Level.

Service provider
A general reference to an entity that provides telecommunications services to Customers and other
users either on a tariff or contract basis. An SP may or may not operate a network. An SP may or
may not be a Customer of another SP. In this appendix, the phrase "SP's (sub) network" is used to
reference the network(s) used by the SP to provide the LCS.

I.2.2.1.2 Telecommunications resources

Dedicated leased circuit service
The dedicated leased circuit service is a point-to-point connection between two service access points
which cannot be changed after creation of the service. The Dedicated LCS uses the Service Name
and Service Class to define the value for service specific parameters and to designate which
parameters may be changed by the SC following provisioning of the service.

I.2.2.1.3 High-level Use Case
At the top level, M.3200 identifies as the managed area the "Customer Administration of Leased
Circuit Service". An actor in the role of the service customer interacts with an actor in the service
provider role to perform the various CNM activities. These activities are grouped together using

 ITU-T M.3020 (02/2000) 17

function set groups defined either in ITU-T Recommendation M.3400 or new definitions to meet the
additional capabilities. A service provider may assume the service customer role if the end-to-end
service is to be provisioned and maintained by multiple service providers.

Figure I.1 is the highest-level use case where a service customer actor interacts with the service
provider actor. The use case customer admin LCS uses the function sets indicated by the three use
cases. This ITU-T Recommendation addresses the requirements and analysis corresponding to the
service provisioning aspects. Other Recommendations in this series expand on other function set
groups.

The use cases representing function set groups are refined further into function sets and finally into
management functions. As will be seen later, the functions in one function set use case may extend
the functions in another set to accomplish the over all requirements of the management service.

T0412320-99Service Provisioning

service providerservice customer

Maintenance
Trouble Administration

Customer Admin LCS

<<include>>

<<include>><<include>>

Figure I.1/M.3020 – Customer Administration of LCS Use Case

The service customer actor interacts with the service provider actor to accomplish the requirements
for use case called "service provisioning". Service provisioning use case uses two use cases: LCS
configuration function set and Link configuration function set. The use case service provisioning
describes the requirements for the service customer actor to request the creation of either a leased
circuit service or preprovisioned link connections. The latter can be used by the service customer (as
an example) to create leased circuit services in real time by selecting specific link connections to be
connected (possibly to meet a scheduled major game event) for a period of time during certain times
of specific days. The stereotype <<include>> is used to indicate that the use case service
provisioning employs the reusable fragments for creating leased circuits and link connections.

The activities of creation of LCS configuration function set use case is extended by the
administrative function set use case. The <<extends>> stereotype is used to indicate this as follows.
The configuration function set contains activities for the service customer to provide the minimum
capabilities for creating service order (request service). When the creation of the service is not
possible in real time, the administrative functions are used by the service provider. The SP may
inform for example the progression of the request (as an example the availability date for the service
has been extended or the requested bandwidth is not what can be provided etc.). The <<extends>>
denotes the fact that the use case adds to the functions in the LCS configuration function set by
providing (for example) reporting capabilities on the status of the request to create a new service or
modify a previously issued service request or an existing service.

Figure I.2 depicts the use cases that are required to meet the service customer's needs for service
provisioning activities.

18 ITU-T M.3020 (02/2000)

T0412330-99

LCS administrative Function Set

service providerservice customer service Provisioning

<<extends>>

<<include>> <<include>>

Link administrative Function Set

Link Configuration Function SetConfigure LCS

<<extends>>

Figure I.2/M.3020 – Service Provisioning Use Case for CNM of LCS and Link Connections

I.2.2.2 Requirements Level Specification
The LCS configuration function set, as noted above, describes the scenarios for a service customer
actor to interact with the service provider actor to request provisioning an LCS (non-real time or real
time) or a link connection (non-real time). Specializing the generic provisioning function set in
ITU-T Recommendation M.3400 for LCS and Link connections refines the use case further.

I.2.2.2.1 Actor Roles
No new actor roles beyond those identified in the discussion of business level requirements are
needed for specification level requirements.

I.2.2.2.2 Telecommunications resources
No additional resources beyond those identified in the business level requirements are required.

I.2.2.2.3 TMN management functions
The LCS configuration function set use case has three functions: request creation of a service, delete
an existing service or modify either the parameters of a previously issued service creation request or
an existing service. The request for creating a service is also referred to service order request or a
service customer creating a service order to the service provider. Once the service order is created, a
service customer actor may cancel the requested order.
NOTE – Even though the example shows that cancellation of the request is associated with only create service
function, it can also be used to extend the other two functions – cancel the deletion request or the modification
request. The service level agreement (referred to as SLA or contract) between the service provider and service
customer defines the policies associated with such a cancellation. Examples policy decisions include if work
has already started based on the request, what is the accounting policy for the completed part, and the security
requirements associated with cancelling a request.

I.2.2.2.4 Use Cases
Figure I.3 illustrates the LCS configuration function set in terms of the following use cases: Create
LCS, Delete LCS and Modify LCS. The service provider interacts with the configuration function
set use case, which uses the three use cases. The create LCS use case defines the requirements for a
service customer to issue a service order requesting the name, class as well as the values of the
relevant parameters for the requested service.

 ITU-T M.3020 (02/2000) 19

The Cancel LCS request use case is extended by defining the scenario where the customer can
cancel a previously issued service request. If the request contains invalid parameters (for example
the requested service class and or name is not valid or not offered by the service provider), then error
condition occurs and appropriate error scenarios are generated by the extended use case "Invalid
request parameters encountered".
NOTE – New stereotypes may be needed in defining the requirements in some management services and
managed areas. This example uses only the UML defined stereotypes.

At the specification level requirements, the CNM functions are identified. The summary associated
with these functions can be included here. As an example, the following modified description taken
from ITU-T Recommendation M.3208.1 can be used:

Create LCS Use Case: This use case allows the SC to request the creation of one or more Dedicated
Leased Circuit Services. The SC shall identify the service to be provisioned, and service features (as
specified in the Information Flow), the service availability date requested, the customer contact
within the organization, and relevant information about the originating and terminating locations of
the service (see Information Flow). The SC may also specify the route of the requested service and a
user identifier for the requested leased circuit. The SP may reject the request (described in the
extended use case) if the service provider does not offer the requested service.

T0412340-99

service providerservice customer Configure LCS

<<include>> <<include>> <<include>>

Create LCS Delete LCS Modify LCS

Cancel LCS Request Invalid Parameters Encountered

<<extends>>

<<extends>>
<<extends>>

<<extends>>

Figure I.3/M.3020 – Decomposition of LCS Configuration Function Set Use Case

The requirements for the use cases are to support the overall requirements discussed in the functions
in I.2.2.2.3.

I.2.2.3 Analysis

I.2.2.3.1 Object Classes and State Charts
The classes to support the create LCS and Link Connection use cases are shown in Figure I.4. A
service customer object class may issue one or more service requests as shown by the association
with cardinality marked as 1 and *. Because there are common properties associated with requesting
LCS and Link Connections, a generic class called "service request" is identified. To improve
readability, not all attributes and any of the operations permitted on the object classes are shown

20 ITU-T M.3020 (02/2000)

here. The attribute "provider request number" is included here without showing the visibility or type
(as these are attributes that are exposed on an interface for management, they are to be considered as
public, even though they may have different visibility from software perspective). The type is not
included because it may be different based on the design paradigm. A generalization relationship
exists between the service request to create LCS or link with the generic service request as shown in
the figure.

The LCS service request class supports the requirements for the use case Create LCS. The detailed
parameters are shown in the information flow table. The interactions between the service customer
and service provider for this use case are shown in sequence, collaboration and activity diagrams.

Customer name is a mandatory attribute of the object class service customer. A customer may have
several services from a service provider and aggregation is used to describe this. The service object
LCS and Link Connection are the result of performing successfully the use cases Create LCS service
and Create Link Connection respectively. A service must belong to a customer and the cardinality
between the customer and services indicate this requirement.

When a service is created (LCS or Link connection) it is identified using the attribute "service ID".
The constraint {frozen} is used to indicate that once the service is created, the value of this attribute
may not change during the lifetime of the object. This also implies that the attribute is read-only and
cannot be changed either by the service customer or service provider. (This can be designed using set
by create capability available with CMIP-GDMO.)

Associated with the service request object is a state transition diagram shown in Figure I.5. The
definition of the states can be found in ITU-T Recommendation M.3208.1 with some slight
differences to adapt to UML notation. To avoid repetition the description of the states and the
transition events are not provided in this appendix and the readers are referred to ITU-T
Recommendation M.3208.1. In order to show that cancel can be issued when the request is any one
of the three states, a super state called "in progress" has been introduced. Without this, the diagram
would have cancel event from each of these states.

T0412360-99

service request

<< mandatory>> provider request number: Single

LCS request link service request

service ID: Single

LCS service request

<< frozen>> link connection ID: Single

service customer

customer name
0...* 1...1

0...* 0...*

Figure I.4/M.3020 – Class structure for Create LCS and Link Connection

Figure I.5 shows the states and transition between the states for the service request.

 ITU-T M.3020 (02/2000) 21

T0412370-99

service-request received

in-progress

waiting for informationstart-processing

open/active pending

cancelled closed

cancel request

completed/error encountered

pre-processing

de-activate

activate

Figure I.5/M.3020 – State Diagram for Service Request Class

The state diagram supports the requirements identified in the text following Figure I.1. The
transitions show that the availability of the requested service, if not available on real time, can result
in moving to different states. The extension provided by cancel LCS request use case is supported by
the event and state called "cancelled".

I.2.2.3.2 Sequence diagram
When a service customer sends a request for creating a service, the sequences of message flows are
shown in the sequence chart in Figure I.6.
NOTE – An exhaustive identification of all sequences possible when requesting a service is not included here.
Some illustrative cases are shown. The sequence diagram includes messages that are part of different use
cases. Some messages specify condition evaluation and depending on the result of evaluating the condition
determines if the message is exchanged.

A service customer issues a request for a new service. If the service provider determines the input
parameters are valid, then the request is accepted and a service request subclass is created. Instead of
defining a constructor or an object factory, the notes feature is used to explain the creation of service
request object if the request is accepted by the service provider. Accepting the service request does
not imply all requested values associated with creating the new service would be available with the
new service. This is clarified when the parameters included in create request are identified later in
detail (see Table I.1). The response after creating the request object includes the values of the
parameters. As illustrated in Figure I.6, the response includes values for the parameters that may be
modified relative to the original request. It is assumed that the service customer, by default, accepted
the modifications offered by the service provider. If this is not true, the customer can issue a cancel
to the service request. The policies associated with the cancellation should be available in a SLA. In
addition, based on the service level agreement, the provider may retain a history of requested
changes. If the service is created in real time, there is no need to create a service request object. This
case is treated as follows: a service request object is created and deleted immediately and the service
customer is notified of the created new service. The service customer will not be able to perform the
sequence of messages (e.g. modify service request) indicated below.

22 ITU-T M.3020 (02/2000)

Once the service request object is created, the service customer can monitor the progress of the
request, request changes to the parameters and be informed autonomously of the progress. Even
though the sequence diagram is used to represent the time domain, the report of the status is
asynchronous and can be issued by the service provider asynchronously as long as the service
request object is created.

After the service request object state changes to closed (assuming successful creation), a notification
issued by the service provider indicating the creation of the service with relevant values for the
associated parameters. The reporting messages correspond to functions that are supported by the
LCS administrative function set use case (which is further refined into other use cases for reporting
state changes and attribute value changes along with monitoring function).

T0412380-99

service
(subclass)

service request
(subclass)

service request
created if input valid

: service provider: service customer

[input valid] new
service request

[input valid]: create response
(accepted/modified input
parameters)

[invalid input]: create
request reject

modify request of service request parameters

response to modify (accepted/modified/reject)

report service request state/parameter value changes

report service creation

[accept request]: create
response service request

Figure I.6/M.3020 – Sequence diagram: Successful creation of service

 ITU-T M.3020 (02/2000) 23

I.2.2.3.3 Collaboration diagrams
Corresponding to the sequence diagram depicting the flow of message with respect to time, the
collaboration diagram for successful creation of a service is shown in Figure I.7. The interaction
between the objects and the messages exchanged by them are shown using sequential order of the
messages in the sequence diagram. The actual events corresponding to the numbers in the figure are
defined inside the notes.
NOTE – In general it is enough to show sequence diagram in order to illustrate message flows. In this
example, the collaboration diagram is included to show that in some cases these diagrams may include
additional information and therefore may be necessary. For this simple case, the collaboration diagram does
not add any new information beyond the sequence diagram.

T0412390-99

3:
4:

1:

6:
7:

5:

2: 8:

service (subclass)

service
provider

service
customer

service
request

1. new service request
2. valid request, service request created
3. valid input parameters, respond with service request creation
4. invalid request parameters, respond with service request failure
5. modify service request
6. respond to modify service request (accept/modify/reject)
7. report request state/parameter changes
8. service creation report

Figure I.7/M.3020 – Collaboration diagram: Successful creation of service

I.2.2.3.4 Information flow
The diagram provides information on the message flows at a high level. If the parameters passed
with the messages are to be shown in the diagram, it will be difficult to read. In addition to listing the
parameters, often it is necessary to identify whether a parameter is always required in an exchange
(mandatory) or may be included if a condition is met or at the discretion of the user. In order to
explain the parameters and conditions for their presence or absence, a tabular approach is used.
Table I.1 is a simplified extract from ITU-T Recommendation M.3208.1. Depending on the
complexity of the application, such a table can provide details not possible to show in a diagram. The
convention for "m" etc. is defined in ITU-T Recommendation M.3208.1.

A second advantage to creating such a table is reuse of the definition in another management service
for a managed area. For example, the service called "Connection management" can be used by a
customer to create LCS in real time. In this case, most of the parameters for creating a leased circuit
are common with the non-real time case. Some restriction and augmentation of the parameters may

24 ITU-T M.3020 (02/2000)

be necessary. By using the same table and explaining the constraints facilitates reuse of the
parameter definitions.

Table I.1/M.3020 – Information Flow for create service request

Service
Customer

Request and
SP Response

Service
Customer

Service
Provider Notes

Service Name m o The type of leased circuit service offered by the SP. Service
names are not subject to standardization and are defined by
the contract between the SC and the SP.

Service Class o c The name of a profile of service characteristics (associated
with the service name) defined and supported by the SP.
Examples of the service characteristics that may be included
in the profile are directionality, channelization, signalling
options, protection, quality of service objectives, application,
etc. Service Class names not subject to standardization are
defined by the Contract.
c – If the requested service class is not equal to the class of
service provided by the SP, then the SP must supply the
value, else it is optional.

Bandwidth o c Requested bandwidth, actual bandwidth returned.
c – If the requested bandwidth cannot be provided by the SP,
the SP shall return the value together with a reason code
indicating that the bandwidth is not available. If the response
is not indicating a completion, the SP may report an error
condition with a reason code indicating that the available
service differs from the customers initial service request.

Quantity o c The number of Leased Circuit Services to be generated by the
SP. Following the processing of the LCS function, the SP
shall return unique circuit numbers for each LCS generated
by the processing of this command by the SP.

I.2.2.3.5 Activity diagrams
To explain the workflow when creating a new service, the activity diagram is used as shown in
Figure I.8. The activity diagram shows where synchronization can take place between multiple
activities. In this example the workflow being the representation of activities in a service provider,
use of notation such as swim lanes (defines concurrent activities corresponding to multiple objects)
are not required.

The service provider receives the request, validates it and then creates the service request if it is
accepted. The customer is informed of the successful creation and the synchronization bar indicates
that processing the request can start concurrently with informing the customer. Only after the
customer receives the report of the service request object creation, any modification request to the
values of the parameters can be issued. Similarly, the cancel can also be sent because as will be
noted later, to cancel the service request, the reference to the created service request object is
necessary. Even though not shown in the figure, once that synchronization bar is encountered,
changes to the progress of the request may also be reported. The activities resulting from successful
or failed request are shown along with the end of the workflow in all cases.

 ITU-T M.3020 (02/2000) 25

T0412400-99

no

yes

Receive create
Service order

Valid
request

Reject
service
order

Create
Service
request

Inform customer of
service order request

creation

Receive modify
Service order

request

Process Service
order request

Cancel
Service
order

Request
cancelled

Report service
creation failure

Report service
creation

[service
creation
failed]

[service creation
succeeded]

Figure I.8/M.3020 – Activity diagram: Workflow for creating service

NOTE – This example illustrates use of some of the visual-modelling notation from UML to describe the
behaviour and activities for the management service. The object classes shown here may have a m:n relation
with those in the design phase (for example managed object class with CMIP paradigm and interface in
CORBA/IDL). These figures may be referenced in the design to explain the behaviour of the protocol specific
entities.

I.2.3 Design
The GDMO definitions for this example are provided in ITU-T Recommendation M.3108.1. The
behaviour of the managed object classes can reference the state chart diagram shown in the analysis.

In the context GDMO, the managed object class hierarchy and naming diagrams expressed in UML
are shown below. The traceability of the various elements of the GDMO models are shown in ITU-T
Recommendation M.3108.1.

26 ITU-T M.3020 (02/2000)

I.2.3.1 UML class diagrams for inheritance of M.3208.1 object classes
In these diagrams, classes are shown as boxes with three sections, including: object class name in the
top section; the attribute names in the second section (not filled in these figures for readability); and
access operations in the bottom section.

The operation "get()" is used in the class diagrams to denote that the class attributes are readable
after an instance of that class is created.

The operation "set()" is used to denote that some (at least one) of the class attributes may be
modified after an instance of that class is created.

UML class diagrams use large open headed arrows to indicate inheritance relationships. When a
class is related to another by inheritance, the operations from the superclass (the one which has the
large arrowhead touching it) are also supported for the inherited class, but are not repeated in the
operation section of the class box. See Figures I.9-1 to I.9-3.

T0410070-98

serviceRequestHistoryRecord

get()

currentServiceRequestserviceModifyRequest

top

get()
delete()

get()
updateServiceRequest()
delete()

Figure I.9-1/M.3020 – Inheritance relationships for generic service request fragment

T0410080-98

serviceRequestHistoryRecord

get()

currentServiceRequest serviceModifyRequest

currentLcsRequest lcsRequestHistoryRecord lcsModifyRequest

get()
delete()

get()
updateServiceRequest()
delete()

Figure I.9-2/M.3020 – Inheritance relationships for LCS request fragment

 ITU-T M.3020 (02/2000) 27

T0410110-98

lcs

top

transportService

get()
set()
delete()

linkConnectionService

Figure I.9-3/M.3020 – Inheritance relationships for service fragment

I.2.3.2 UML class diagrams for modelling relationships
The possible relationships between instances are shown in UML class diagrams with associations.
Containment relationships are denoted by a diamond headed line touching the parent (UML
aggregation). Simple associations are shown with lines with roles indicated on the line ends.
Relationship cardinalities are indicated by "0 .. *" or "1 .. *" tags on the end of the line representing a
relationship. The account object represents the service customer actor shown in the analysis section.
See Figure I.9-4.

T0410130-98

account

currentLcsRequest

get()

lcsRequestHistoryRecord

0..*

1..*

Figure I.9-4/M.3020 – Containment relationships for LCS request with history records

28 ITU-T M.3020 (02/2000)

I.2.3.3 UML class diagrams for modelling agent functionality
Some UML classes are introduced (factories and notification dispatcher) to model the actions for
creating objects and distributing notifications from objects. Instances of these agent functionality
classes appear in the sequence diagrams. When a notification operation invocation is made onto a
notification dispatch object, all destinations that have registered interest will receive a copy of that
notification. These final delivery flows are not shown in the sequence diagrams in Figure I.9-5, since
many objects may be interested in receiving them.

T0410150-98

objectFactory

notificationDispatcher

create_currentLcsServiceRequest()
create_currentLinkConnectionServiceRequest()
create_lcsModifyRequest()
create_linkConnectionServiceModifyRequest()
create_lcs()
create_linkConnectionService()
create_serviceAccessDomain()
create_serviceAccessGroup()
create_serviceAccessEquipmentView()

objectCreation()
attributeValueChange()
objectDeletion()
lcsModifyProgressProblemReport()
lcsRequestProgressProblemReport()
linkConnectionModifyProgressProblemReport()
linkConnectionRequestProgressProblemReport()

Factory with operations for customer to create service and request objects

Notification Dispatcher to receive and distribute notifications

For OSI Systems
Management these
capabilities are provided
by the Agent

For OSI Systems
Management these
capabilities are
provided by Event
Forwarding

Figure I.9-5/M.3020 – UML model for agent functions
(creating objects and disseminating notifications)

I.2.3.4 UML sequence diagrams to illustrate scenarios of object usage
Figures I.9-1, I.9-2 and I.9-3 illustrate the use of UML sequence diagrams to describe scenarios.

The message flows from the notification dispatcher to the ultimate registered destinations are not
shown in these diagrams. It would be normal for the customer (as well as other objects) to be a
registered recipient for the notifications shown in these sequence diagrams).

Figure I.9-6 illustrates the message exchanges for creating automatic termination of the LCS. The
flow in this diagram uses the object classes representing the agent functionality. Steps 1-3 can be
expanded into the steps shown in Figure I.9-6. The intermediate steps that are permitted (modifying
the parameter values of the requested service) can be noted by referencing the figure in analysis
section. The analysis section explains the criteria for successfully creating the requested service and
informing the customer. Step 3 in I.9-6 shows the name of the notification applicable for this design.
Other message name may be used with another design.

 ITU-T M.3020 (02/2000) 29

T0410160-98

1: create_lcs()

2: createResponse

3: objectCreation()

4: get()

5: getResponse

6: set()

7: setResponse

8: objectDeletion()

objectFactory lcs
notification
Dispatcher

successful
creation of LCS

customer reads
attribute values

customer sets
service
termination date

provider terminates
lcs at termination
date

customer

Figure I.9-6/M.3020 – Sequence diagram for explicit LCS create and automatic termination

Figure I.9-7 expands Figure I.9-6 in the analysis with specific managed object classes defined in the
GDMO model. The service request object in Figure I.9-6 is realized in the design using the current
and history lcs service request objects. The sequence diagram in this design case shows how the
history object is created as a result of updates to the original request. The model in the design phase
refines further the service request object in the analysis phase so that history of the requested
changes can be retained. This meets the optional requirement identified in I.2.2.3.2 as being relevant
to SLA. Figure I.9-8 illustrates the case where history of the changes is not retained. In addition, it
shows the interaction between the managed objects in the design phase when the service creation is
not successful (note the corresponding figure for unsuccessful creation is not shown in the analysis
section).

30
IT

U
-T

 M
.3020 (02/2000)

T0410180-98

1: create_currentLcsServiceRequest()

2: createResponse

4: get()

5: getResponse

9: updateServiceRequest()

10: updateResponse

11: attributeValueChange()

6: attributeValueChange()

7: get()

8: getResponse

3: objectCreation()

12: objectCreation()

13: objectCreation()

14: objectDeletion()

15: objectDeletion()

16: objectDeletion()

17: get()

18: getResponse

customer lcsnotification
Dispatcher

object
Factory

currentLcs
Request

lcsRequest
HistoryRec1 :

lcsRequest
HisotryRec2

successful
creation of LCS
request and history
record 1

customer reads
request

provider changes a
requested value

customer reads
original request

customer updates
request causing
history record 2

provider
instantiates lcs
then destroys
request and
history records

customer reads
lcs attributes

Figure 1.9-7/M.3020 – Sequence diagram for instantiation of LCS using request and history records

 ITU-T M.3020 (02/2000) 31

T0410200-98

1: create_currentLcsServiceRequest()

2: createResponse

3: get()

4: getResponse

5: lcsRequestProgressProblemReport()

6: updateServiceRequest()

7: updateResponse

8: lcsRequestProgressProblemReport()

9: delete()

10: deleteResponse

11: objectDeletion()

customer objectFactory
notification
Dispatcher

currentLcs
Request

customer creates
request

customer reads
current request

progress problem
notification

customer updates
request

progress problem
notification

customer cancels
request

Figure I.9-8/M.3020 – Sequence diagram for unsuccessful LCS instantiation
using request without history

Geneva, 2001

ITU-T RECOMMENDATIONS SERIES

Series A Organization of the work of the ITU-T

Series B Means of expression: definitions, symbols, classification

Series C General telecommunication statistics

Series D General tariff principles

Series E Overall network operation, telephone service, service operation and human factors

Series F Non-telephone telecommunication services

Series G Transmission systems and media, digital systems and networks

Series H Audiovisual and multimedia systems

Series I Integrated services digital network

Series J Transmission of television, sound programme and other multimedia signals

Series K Protection against interference

Series L Construction, installation and protection of cables and other elements of outside plant

Series M TMN and network maintenance: international transmission systems, telephone circuits,
telegraphy, facsimile and leased circuits

Series N Maintenance: international sound programme and television transmission circuits

Series O Specifications of measuring equipment

Series P Telephone transmission quality, telephone installations, local line networks

Series Q Switching and signalling

Series R Telegraph transmission

Series S Telegraph services terminal equipment

Series T Terminals for telematic services

Series U Telegraph switching

Series V Data communication over the telephone network

Series X Data networks and open system communications

Series Y Global information infrastructure and Internet protocol aspects

Series Z Languages and general software aspects for telecommunication systems

	ITU-T Rec. M.3020 (02/2000) TMN interface specification methodology
	Summary
	Source
	FOREWORD
	CONTENTS
	TMN interface specification methodology
	1 Introduction
	1.1 Scope
	1.2 Related Recommendations
	1.3 Abbreviations
	1.4 Definitions
	1.5 Requirements for methodology and notational support
	1.6 Use of UML Notation

	2 Methodology
	2.1 General considerations
	2.2 Application and structure of the methodology
	2.3 Detailed methodology
	2.4 TMN interface specifications
	2.5 Traceability in UTRAD Process
	2.6 Documentation structure

	ANNEX A - Guidelines for the Definition of Management Interface (GDMI)
	A.1 Introduction
	A.2 GDMI Template
	ANNEX B - TMN object identifier assignment rules
	B.1 TMN object identifier structure
	B.2 TMN object identifier structure extended for Recommendation "parts"
	B.3 TMN assignment procedures
	B.4 Object identifier allocation for a TMN application context
	ANNEX C - Generic definitions
	C.1 Generic operations
	APPENDIX I - Example use of GDMI (LCS Provision)
	I.1 Introduction
	I.2 GDMI template

