UIT-T
SECTEUR DE LA NORMALISATION
DES TÉLÉCOMMUNICATIONS

DE L'UIT

M.2101.1

(04/97)

SÉRIE M: RGT ET MAINTENANCE DES RÉSEAUX: SYSTÈMES DE TRANSMISSION, DE TÉLÉGRAPHIE, DE TÉLÉCOPIE, CIRCUITS TÉLÉPHONIQUES ET CIRCUITS LOUÉS INTERNATIONAUX

Réseau de transport international

Limites de qualité de fonctionnement pour la mise en service et la maintenance des conduits et des sections multiplex SDH internationaux

Recommandation UIT-T M.2101.1

(Antérieurement Recommandation du CCITT)

RECOMMANDATIONS UIT-T DE LA SÉRIE M

RGT ET MAINTENANCE DES RÉSEAUX: SYSTÈMES DE TRANSMISSION, DE TÉLÉGRAPHIE, DE TÉLÉCOPIE, CIRCUITS TÉLÉPHONIQUES ET CIRCUITS LOUÉS INTERNATIONAUX

Introduction et principes généraux de maintenance et organisation de la maintenance	M.10-M.299
Systèmes de transmission internationaux	M.300-M.559
Circuits téléphoniques internationaux	M.560-M.759
Systèmes de signalisation à canal sémaphore	M.760-M.799
Systèmes internationaux de télégraphie et de phototélégraphie	M.800-M.899
Liaisons internationales louées par groupes primaires et secondaires	M.900-M.999
Circuits internationaux loués	M.1000-M.1099
Systèmes et services de télécommunication mobile	M.1100-M.1199
Réseau téléphonique public international	M.1200-M.1299
Systèmes internationaux de transmission de données	M.1300-M.1399
Appellations et échange d'informations	M.1400-M.1999
Réseau de transport international	M.2000-M.2999
Réseau de gestion des télécommunications	M.3000-M.3599
Réseaux numériques à intégration des services	M.3600-M.3999
Systèmes de signalisation par canal sémaphore	M.4000-M.4999

Pour plus de détails, voir la Liste des Recommandations de l'UIT-T.

RECOMMANDATION UIT-T M.2101.1

LIMITES DE QUALITÉ DE FONCTIONNEMENT POUR LA MISE EN SERVICE ET LA MAINTENANCE DES CONDUITS ET DES SECTIONS MULTIPLEX SDH INTERNATIONAUX

\mathbf{r}	•			•
ĸ	és	11	n	ıΔ
17		u	11	ı

La présente Recommandation spécifie les limites applicables à la mise en service et la maintenance des conduits et des sections multiplex SDH internationaux. La qualité de fonctionnement en termes d'erreur, de rythme et de disponibilité y est examiné. La présente Recommandation traite également tous les niveaux de la hiérarchie PDH véhiculés dans des conteneurs SDH.

Source

La Recommandation UIT-T M.2101.1, élaborée par la Commission d'études 4 (1997-2000) de l'UIT-T, a été approuvée le 19 avril 1996 selon la procédure définie dans la Résolution n° 1 de la CMNT.

Mots clés

Limites; limite de dégradation de la qualité; limite de qualité de fonctionnement inacceptable; maintenance; mise en service; objectif de qualité alloué; objectif de qualité de fonctionnement; objectifs de qualité de fonctionnement pour la mise en service; seconde gravement erronée; secondes avec erreur

AVANT-PROPOS

L'UIT (Union internationale des télécommunications) est une institution spécialisée des Nations Unies dans le domaine des télécommunications. L'UIT-T (Secteur de la normalisation des télécommunications) est un organe permanent de l'UIT. Il est chargé de l'étude des questions techniques, d'exploitation et de tarification, et émet à ce sujet des Recommandations en vue de la normalisation des télécommunications à l'échelle mondiale.

La Conférence mondiale de normalisation des télécommunications (CMNT), qui se réunit tous les quatre ans, détermine les thèmes d'études à traiter par les Commissions d'études de l'UIT-T lesquelles élaborent en retour des Recommandations sur ces thèmes.

L'approbation des Recommandations par les Membres de l'UIT-T s'effectue selon la procédure définie dans la Résolution n° 1 de la CMNT.

Dans certains secteurs de la technologie de l'information qui correspondent à la sphère de compétence de l'UIT-T, les normes nécessaires se préparent en collaboration avec l'ISO et la CEI.

NOTE

Dans la présente Recommandation, l'expression "Administration" est utilisée pour désigner de façon abrégée aussi bien une administration de télécommunications qu'une exploitation reconnue.

DROITS DE PROPRIÉTÉ INTELLECTUELLE

L'UIT attire l'attention sur la possibilité que l'application ou la mise en œuvre de la présente Recommandation puisse donner lieu à l'utilisation d'un droit de propriété intellectuelle. L'UIT ne prend pas position en ce qui concerne l'existence, la validité ou l'applicabilité des droits de propriété intellectuelle, qu'ils soient revendiqués par un Membre de l'UIT ou par une tierce partie étrangère à la procédure d'élaboration des Recommandations.

A la date d'approbation de la présente Recommandation, l'UIT avait/n'avait pas été avisée de l'existence d'une propriété intellectuelle protégée par des brevets à acquérir pour mettre en œuvre la présente Recommandation. Toutefois, comme il ne s'agit peut-être pas de renseignements les plus récents, il est vivement recommandé aux responsables de la mise en œuvre de consulter la base de données des brevets du TSB.

© UIT 1997

Droits de reproduction réservés. Aucune partie de cette publication ne peut être reproduite ni utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie et les microfilms, sans l'accord écrit de l'UIT.

TABLE DES MATIÈRES

1	Domaine d'application
2	Références normatives
3	Définitions
3.1	Utilisation des termes "conduit" et "section multiplex" dans la présente Recommandation
3.2	Définition des objectifs de qualité de fonctionnement
3.3	Définition d'une partie internationale
3.4	Eléments de cœur de conduit
3.5	Frontière internationale et points de franchissement de frontières
3.6	Conduits internationaux en cascade
3.7	Définition des points de mesure en service
	3.7.1 Couche de section STM-N
	3.7.2 Couche de conduit d'ordre supérieur
	3.7.3 Couche de conduit d'ordre inférieur
4	Abréviations
5	Conventions
6	Modèle fictif de référence applicable à la qualité de fonctionnement relevant des couches de conduit et de section multiplex internationaux
7	Principes d'allocation applicables aux connexions de bout en bout par conteneur virtuel
7.1	Connexions par conteneur virtuel utilisant des anneaux
8	Objectifs de qualité de fonctionnement
8.1	Principes
9	Evaluation des paramètres de qualité de fonctionnement en termes d'erreur
9.1	Domaine d'application
9.2	Evaluation des paramètres ES/SES à partir des mesures en service
	9.2.1 Observations générales
	9.2.2 Anomalies en service
	9.2.3 Défaut en service
	9.2.4 Indication distante d'anomalie et de défaut
9.3	Mesures hors service
	9.3.1 Observations générales
	9.3.2 Méthodes de mesures hors service possibles
10	Limites de qualité

		Page
10.1	Observations générales	15
	10.1.1 Relation entre limites et objectifs de qualité	15
	10.1.2 Types de limites	16
	10.1.3 Calcul des limites de qualité d'un conduit	16
10.2	Limites de qualité de fonctionnement et méthodologie de mise en service	18
	10.2.1 Valeurs de limites de mise en service	19
10.3	Limites de qualité de fonctionnement pour la maintenance	20
	10.3.1 Niveaux et limites de qualité de fonctionnement	20
	10.3.2 Seuils	21
10.4	Surveillance et mesure de la qualité à long terme	21
11	Effets des dégradations du rythme sur les caractéristiques d'erreur	22
12	Disponibilité et indisponibilité	22
12.1	Critères d'entrée/sortie pour l'état d'indisponibilité	22
12.2	Blocage de la surveillance de la qualité de fonctionnement pendant les périodes d'indisponibilité	22
12.3		23
12.3	Limites d'indisponibilité	23
Annexe	e A – Exemples d'allocation de conduit (A%) établis à partir du Tableau 2A	24
Annexe	e B	25
Annexe	e C	26
Annexe	e D – Valeurs seuil par défaut de niveau de qualité inacceptable	41

Introduction

La présente Recommandation spécifie des limites pour la mise en service et d'autres pour la maintenance des conduits et des sections multiplex SDH internationaux afin d'atteindre les objectifs de qualité donnés pour un environnement multiservice. Ces objectifs recouvrent la qualité de fonctionnement en termes d'erreur (Recommandation G.826), de rythme (Recommandation G.822) et de disponibilité (Recommandation G.827). La présente Recommandation définit les paramètres et leurs objectifs associés afin de respecter les principes donnés dans les Recommandations M.20, M.32 et M.34. Le terme "international" employé dans la présente Recommandation se rapporte aux conduits et sections multiplex SDH qui franchissent des frontières internationales avec un changement de responsabilité juridique.

Les méthodes et procédures utilisées pour appliquer ces limites sont décrites dans la Recommandation M.2110 relative aux procédures de mise en service et dans la Recommandation M.2120 concernant les procédures de maintenance.

La présente Recommandation utilise certains principes de maintenance de base d'un réseau numérique:

- il est souhaitable d'effectuer des mesures en service et en continu. Dans certains cas, des mesures hors service peuvent être nécessaires;
- un seul ensemble de paramètres doit être utilisé pour la maintenance des systèmes SDH (toutefois les limites effectives dépendent du débit);
- les limites de caractéristiques d'erreur pour les conduits et sections multiplex SDH internationaux dépendent du milieu utilisé.

La présente Recommandation traite les limites de caractéristiques d'erreur et les critères d'évaluation hors service et en service de certains paramètres pour les conduits et sections multiplex SDH.

Recommandation M.2101.1

LIMITES DE QUALITÉ DE FONCTIONNEMENT POUR LA MISE EN SERVICE ET LA MAINTENANCE DES CONDUITS ET DES SECTIONS MULTIPLEX SDH INTERNATIONAUX

(Genève, 1997)

1 Domaine d'application

La présente Recommandation porte notamment sur la mise en service et la maintenance des conduits et sections multiplex SDH internationaux ainsi qu'au transport de signaux SDH sur des réseaux PDH. Dans ce dernier cas, on applique la Recommandation M.2100 à la partie PDH et la présente Recommandation à la partie SDH. D'autres détails sur les liens entre ces Recommandations sont donnés dans le corps de la présente Recommandation. Le terme "international" utilisé dans la présente Recommandation se rapporte aux conduits et sections multiplex SDH franchissant des frontières internationales avec changement de responsabilité juridique.

La présente Recommandation ne prend pas en considération les opérations de recette pour l'équipement SDH sur le réseau. Le débit le plus bas qu'elle examine est le débit SDH du conteneur VC1. Elle ne considère donc pas les circuits à 64 kbit/s ou à débit multiple de 64 kbit/s qui sont respectivement traités dans les Recommandations M.2100 et M.1340.

Le format et la structure des signaux SDH sont décrits dans la Recommandation G.707. Les objectifs de qualité en matière de caractéristique d'erreur à long terme pour les réseaux SDH sont donnés dans la Recommandation G.826.

Pour la qualité de fonctionnement en termes de disponibilité, la Recommandation G.827 donne des spécifications à long terme. La qualité requise en termes de disponibilité en perspective d'une maintenance à court terme est à l'étude.

La Recommandation G.803 décrit une méthode de modélisation des fonctions qui existent ou qui sont nécessaires pour réaliser un réseau de télécommunication. Cette méthode a été utilisée dans la présente Recommandation.

Des limites applicables à la mise en service et à la maintenance sont données pour les conteneurs virtuels (VC, *virtual containers*) et les modules de transport synchrone de niveau N (STM-N, *synchronous transport module-N*). Des limites sont également données pour le déclenchement des activités de maintenance (par exemple: réparation, localisation des dérangements, etc.).

Des méthodes permettant d'obtenir des informations de qualité de fonctionnement à partir de la parité d'entrelacement de bits d'ordre N (BIP-N, *bit interleaved parity-N*) et d'autres informations contenues dans les préfixes des conduits sont données. La surveillance de connexion en cascade n'est pas prise en considération dans la présente Recommandation, mais pourra y être introduite dans l'avenir. Les événements de rétablissement/protection automatique sont examinés. Les indications données dans la présente Recommandation en termes de limites de qualité de fonctionnement applicables à la maintenance et celles données dans les Recommandations associées M.2110 et M.2120 forment un ensemble de base cohérent à partir duquel il est possible de spécifier un système de gestion de la maintenance.

2 Références normatives

La présente Recommandation se réfère à certaines dispositions des Recommandations UIT-T et textes suivants qui de ce fait en sont partie intégrante. Les versions indiquées étaient en vigueur au moment de la publication de la présente Recommandation. Toute Recommandation ou texte étant sujet à révision, les utilisateurs de la présente Recommandation sont invités à se reporter, si possible, aux versions les plus récentes des références normatives suivantes. La liste des Recommandations de l'UIT-T en vigueur est régulièrement publiée.

- [1] Recommandation G.702 du CCITT (1988), Débits binaires de la hiérarchie numérique.
- [2] Recommandation G.703 du CCITT (1991), Caractéristiques physiques et électriques des jonctions.
- [3] Recommandation UIT-T G.707 (1996), *Interface de nœud de réseau pour la hiérarchie numérique synchrone*.
- [4] Recommandation UIT-T G.782 (1994), Types et caractéristiques générales des équipements de la hiérarchie numérique synchrone. [NOTE La Recommandation G.782 a été remplacée par la Recommandation G.783 (1997).]
- [5] Recommandation UIT-T G.783 (1997), Caractéristiques des blocs fonctionnels des équipements de la hiérarchie numérique synchrone.
- [6] Recommandation UIT-T G.803 (1997), Architecture des réseaux de transport à hiérarchie numérique synchrone.
- [7] Recommandation G.822 du CCITT (1988), Objectifs de limitation du taux de glissement commandé dans une communication numérique internationale.
- [8] Recommandation UIT-T G.825 (1993), Régulation de la gigue et du dérapage dans les réseaux numériques à hiérarchie numérique synchrone.
- [9] Recommandation UIT-T G.826 (1996), Paramètres et objectifs de performance en matière d'erreur pour les conduits numériques internationaux à débit binaire constant égal ou supérieur au débit primaire.
- [10] Recommandation UIT-T G.827 (1996), Paramètres et objectifs relatifs aux caractéristiques d'erreur pour les conduits numériques internationaux à débit constant égal ou supérieur au débit primaire.
- [11] Projet de Recommandation G.EPMRS Evénements relatifs à la qualité de fonctionnement évaluée en termes d'erreur pour les sections SDH multiplex et de régénération; [n'a pas encore de numéro précis dans la série G; texte non publié].
- [12] Recommandation M.20 du CCITT (1992), *Philosophie de maintenance pour les réseaux de télécommunication*.
- [13] Recommandation M.32 du CCITT (1988), Principes d'utilisation de l'information d'alarme pour la maintenance des systèmes et équipements de transmission internationaux.
- [14] Recommandation M.34 du CCITT (1988), Surveillance de la qualité des systèmes et équipements de transmission internationaux.
- [15] Recommandation UIT-T M.2100 (1995), Limites de performance pour la mise en service et la maintenance des conduits, des sections et des systèmes de transmission numériques internationaux à hiérarchie numérique plésiochrone.

- [16] Recommandation UIT-T M.2110 (1997), Mise en service des conduits numériques, sections et systèmes de transmission PDH internationaux et des conduits et sections multiplex SDH internationaux.
- [17] Recommandation UIT-T M.2120 (1997), Procédures de détection et de localisation des dérangements sur les conduits, sections et systèmes de transmission ainsi que sur les conduits et sections multiplex SDH.
- [18] Recommandation UIT-T M.1340 (1996), Marges et limites de qualité de fonctionnement des liaisons et systèmes internationaux de transmission de données.
- [19] Recommandation UIT-T O.150 (1996), Prescriptions générales relatives aux appareils de mesure des caractéristiques de fonctionnement des équipements de transmission numérique.
- [20] Recommandation UIT-T O.181 (1996), Appareils utilisés pour l'évaluation des caractéristiques d'erreur sur les interfaces STM-N.

3 Définitions

La présente Recommandation définit les termes suivants:

3.1 Utilisation des termes "conduit" et "section multiplex" dans la présente Recommandation

Dans la présente Recommandation, les termes "conduit" et "section multiplex" décrivent des entités de transport unidirectionnelles. Pour une section multiplex ou un conduit bidirectionnel, tous les objectifs, limites, etc. s'appliquent à un seul sens du trajet indépendamment de l'autre. Ainsi à des fins de maintenance, les événements intéressant la qualité de fonctionnement survenant dans le sens A-Z n'auront pas d'incidence sur l'évaluation de ceux survenant dans le sens Z-A et vice versa.

3.2 Définition des objectifs de qualité de fonctionnement

- **3.2.1 objectif de qualité de fonctionnement (PO,** *performance objective*): objectif de qualité de fonctionnement pour la partie internationale du conduit (voir la Figure 3/G.826) ou de la section multiplex fictive de référence.
- **3.2.2 objectif alloué de qualité de fonctionnement (APO, allocated performance objective)**: objectif de qualité pour un conduit réel calculé selon les règles d'allocation.
- **3.2.3** objectif de qualité de fonctionnement pour la mise en service (BISPO, bringing-into-service performance objective): objectif de qualité de fonctionnement applicable à la mise en service d'un conduit ou d'une section multiplex réel calculé à partir de son objectif alloué de qualité de fonctionnement.

3.3 Définition d'une partie internationale

Un conduit numérique international peut être subdivisé en deux parties nationales et une partie internationale. La frontière entre ces portions est définie comme étant une passerelle internationale (IG, *international gateway*).

passerelle internationale: équipement puits/source à conteneur VC-*n* international [ou conteneur VC-4 dans le cas de réseaux interconnectés basés sur différentes unités administratives (AU, *administrative units*)].

La partie internationale d'un conduit de bout en bout commence dans un pays terminal et finit dans le second pays terminal. Une partie internationale comporte, nécessairement, deux pays terminaux.

La partie nationale sort du cadre de la présente Recommandation.

3.4 Eléments de cœur de conduit

Pour l'allocation des objectifs de qualité (PO, performance objective) de fonctionnement, on a découpé géographiquement en parties le conduit numérique international. Ces parties sont appelées éléments de cœur de conduit (PCE, path core elements).

Deux types d'éléments de cœur de conduit international ont été utilisés:

- l'élément de cœur de conduit international (IPCE, international path core element): situé entre une passerelle internationale et une station frontière (FS, frontier station) dans un pays terminal, ou entre des stations frontières d'un pays de transit (voir la définition de la passerelle internationale au 3.3);
- l'élément de cœur de conduit transfrontière (ICPCE, inter-country path core element): installé entre deux stations frontières adjacentes des deux pays concernés. Cet élément correspond au conduit numérique d'ordre le plus élevé véhiculé sur un système de transmission numérique reliant les deux pays. Un tel élément peut utiliser un système de transmission terrestre, par satellite ou par câble sous-marin.

Il existe deux cas où un pays peut ne pas avoir d'élément IPCE:

- en raison de la situation géographique et de la configuration du réseau, la passerelle internationale peut coïncider avec la station frontière dans le pays terminal;
- le conduit n'utilise qu'une seule station frontière située dans un pays de transit.

3.5 Frontière internationale et points de franchissement de frontières

Dans la frontière internationale, le point où la commande est transférée d'un opérateur international vers le suivant se trouve normalement dans l'élément ICPCE. Il est généralement situé à mi-chemin le long d'un câble sous-marin ou sur une frontière terrestre traversant l'élément. Le point de franchissement de frontière peut coïncider avec un point de la frontière internationale (par exemple pour un élément ICPCE franchissant une frontière terrestre); ou dans le cas d'un câble sous-marin il y aura par exemple deux franchissements de frontière, au niveau des côtes des pays considérés qui ne correspondent pas aux frontières internationales.

3.6 Conduits internationaux en cascade

Les conduits internationaux peuvent être disposés en cascade lorsque la topologie du réseau requiert l'établissement de liaisons entre certains pays terminaux. La restriction porte alors sur l'allocation des objectifs, celle-ci ne devant pas dépasser les 63% alloués par la Recommandation G.826 à la partie internationale d'un conduit.

3.7 Définition des points de mesure en service

Les définitions complètes des sections et des conduits sont données dans la Recommandation G.803. Les définitions ci-dessous sont utilisées dans la présente Recommandation, et uniquement données à titre indicatif (voir également les Figures 1 et 3-10/G.803).

Couche de section STM-N 3.7.1

Cette couche se compose des éléments suivants:

4

3.7.1.1 Connexion de réseaux par section STM-N

Cette connexion relie les points de terminaison de la connexion des réseaux par section STM-N. Exemples: câbles sous-marins point à point et passages de frontière. Cette connexion est la partie à débit le plus élevé du réseau de transmission SDH. En principe, il n'est pas possible d'y effectuer des mesures.

3.7.1.2 Trajet de section STM-N

Ce trajet se compose de la connexion de réseaux par section STM-N et de ses points de terminaison. Comme les points de terminaison sont inclus dans ce trajet, il est possible d'y effectuer des mesures.

La présente Recommandation ne donne des limites de qualité de fonctionnement pour les trajets avec sections STM-N que lorsque ces trajets correspondent directement aux éléments de cœur de conduit. En général, ce ne sera le cas que pour certains câbles sous-marins, certaines liaisons par satellite ou certains franchissements de frontière terrestre. Lorsque les trajets de section STM-N sont disposés en cascade sur un territoire d'un opérateur, il appartient à celui-ci, pour former son élément de cœur de conduit, de s'assurer que la qualité de fonctionnement des trajets de section en cascade remplit les conditions applicables à son élément de cœur de conduit spécifiées dans la présente Recommandation.

3.7.1.3 Point de terminaison STM-N

Ce point termine la connexion de réseaux par section STM-N et assure l'interface avec la fonction d'adaptation. Le préfixe de section STM-N y est supprimé.

3.7.1.4 Fonction d'adaptation STM-N

Cette fonction assure le multiplexage véhiculé entre la couche de conduit d'ordre supérieur et la couche de section STM-N, et assure l'interface entre d'une part le point de terminaison STM-N et d'autre part le point de terminaison de trajet de conduit d'ordre supérieur ou une connexion de sous-réseau de conduit d'ordre supérieur.

3.7.2 Couche de conduit d'ordre supérieur

Cette couche se compose des éléments suivants:

3.7.2.1 Connexion de sous-réseau à conduit d'ordre supérieur

Cet élément interconnecte les fonctions d'adaptation HOPL/STM-N en permettant aux conteneurs VC d'ordre supérieur (VC-3¹, VC-4) d'être connectés entre les trajets de section STM-N. Ce type de connexion est normalement fourni par les multiplex ou les brasseurs d'insertion/extraction.

3.7.2.2 Trajet de conduit d'ordre supérieur

Ce trajet relie non seulement les points de terminaison de conduit d'ordre supérieur entre eux mais les inclut. Puisqu'il comporte les terminaisons, il est possible d'y effectuer des mesures. Formé d'un trajet de section STM-N ou de plusieurs trajets en cascade, il peut également ne comporter aucune connexion de sous-réseau de conduit d'ordre supérieur ou bien en contenir plusieurs.

Les limites de qualité de fonctionnement des trajets de conduit d'ordre supérieur (VC-3 et VC-4) ne seront données par la présente Recommandation que lorsque le conduit VC-3 ou VC-4 est le seul conduit de bout en bout considéré, ou lorsque le trajet de conduit d'ordre supérieur correspond directement à un élément de cœur de conduit. Dans le cas où un élément de cœur de conduit d'un opérateur est formé d'un certain nombre de trajets de conduit d'ordre supérieur disposés en cascade, il

¹ Il est à noter que le conteneur virtuel 3 (VC-3) peut être considéré comme un conteneur VC d'ordre inférieur ou supérieur.

appartient à cet opérateur de s'assurer que la qualité de ces trajets en cascade respecte la limite de qualité de fonctionnement applicable à l'élément de cœur de conduit de l'opérateur.

3.7.2.3 Fonction d'adaptation d'ordre supérieur

Cette fonction assure le multiplexage entre la couche de conduit d'ordre supérieur (trajet de conduit d'ordre supérieur donné) et la couche de conduit d'ordre inférieur, assurant l'interface entre d'une part les points de terminaison de trajet d'ordre supérieur et d'autre part le point de terminaison de trajet d'ordre inférieur ou une connexion de sous-réseau de conduit d'ordre inférieur.

3.7.3 Couche de conduit d'ordre inférieur

Cette couche se compose des éléments suivants:

3.7.3.1 Connexion de sous-réseau à conduit d'ordre inférieur

Cet élément interconnecte les fonctions d'adaptation de couche de conduit d'ordre supérieur et leurs homologues d'ordre inférieur. Cet élément se trouve normalement à l'intérieur d'un multiplexeur ou d'un brasseur d'insertion/extraction. Il permet de disposer des trajets de conduit d'ordre supérieur en cascade afin de former un trajet de conduit d'ordre inférieur.

3.7.3.2 Trajet de conduit d'ordre inférieur

Ce trajet relie non seulement les points de terminaison de trajet de conduit d'ordre inférieur entre eux mais les inclut. Il existe lorsque le préfixe de conteneur VC-1, 2 ou 3 est supprimé. Il est donc possible d'effectuer des mesures de cet objet. Des limites de qualité de fonctionnement applicables à ces trajets sont données dans la présente Recommandation.

4 Abréviations

La présente Recommandation utilise les abréviations suivantes:

AIS signal d'indication d'alarme (alarm indication signal)

APO objectif de qualité alloué (*allocated performance objective*)

AU unité administrative (administrative unit)

BBE bloc erroné résiduel (background block error)

BER taux d'erreur sur les bits (bit error ratio)

BIP parité avec entrelacement de bits (bit interleaved parity)

BIS mise en service (bringing-into-service)

BISPO objectif de qualité de mise en service (BIS performance objective)

DPL limite de qualité dégradée (degraded performance limit)

DXC brasseur numérique (digital cross connect)

ES seconde avec erreur (errored second)

FAS signal d'alignement de trame (frame alignment signal)

FS station frontière (frontier station)

HOPL couche de conduit d'ordre supérieur (higher-order path layer)

IB frontière internationale (*international border*)

ICPCE élément de cœur de conduit transfrontière (inter-country path core element)

IDTC centre de transmission numérique international (international digital transmission center)

IG passerelle internationale (international gateway)

IPCE élément de cœur de conduit international (international path core element)

LOF perte de trame (*loss of frame*)

LOP perte de pointeur (*loss of pointer*)

LOPL couche de conduit d'ordre inférieur (lower-order path layer)

LOS perte de signal (loss of signal)

MS section multiplex (multiplex section)

PCE élément de cœur de conduit (path core element)

PDH hiérarchie numérique plésiochrone (plesiochronous digital hierarchy)

PEP point d'extrémité de conduit (path end point)

PO objectif de qualité de fonctionnement (performance objective)

PRBS séquence binaire pseudo-aléatoire (pseud-random binary sequence)

rf facteur de routage (routing factor)

RS section de régénération (regenerator section)

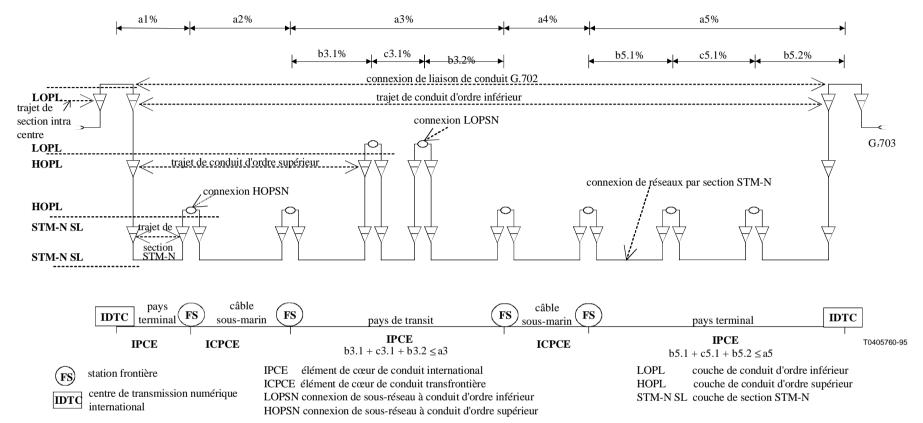
SDH hiérarchie numérique synchrone (synchronous digital hierarchy)

SES seconde gravement erronée (severely errored second)

STM module de transport synchrone (synchronous transport module)

TSS séquence de signal test (test signal sequence)

UPL limite de qualité inacceptable (unacceptable performance limit)


VC conteneur virtuel (virtual container)

5 Conventions

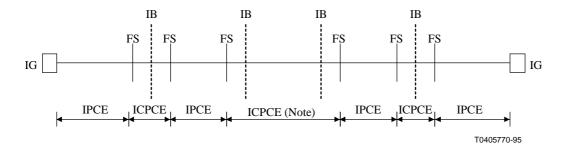
L'abréviation PO utilisée pour objectif de qualité se rapporte aux secondes ES et SES sauf indication contraire.

Modèle fictif de référence applicable à la qualité de fonctionnement relevant des couches de conduit et de section multiplex internationaux

La relation matérielle qui existe entre les couches de conduit d'ordre inférieur, de conduit d'ordre supérieur et de section STM-N internationaux est illustrée sur la Figure 1.

NOTE 1 - Conformément à la Recommandation G.826, l'objectif de qualité de fonctionnement alloué de la portion internationale ne doit pas dépasser 63% de l'objectif de qualité.

NOTE 2 – La portion internationale la plus simple se compose de deux pays terminaux appelés éléments de cœur de conduit international, et d'un câble sous-marin, d'un système par satellite ou d'un franchissement de frontière terrestre appelé élément de cœur de conduit transfrontière. Chaque point d'extrémité physique de la portion internationale se trouve dans un centre de transmission numérique international; un tel centre correspondant à l'une des passerelles internationales conformément à la Recommandation G.826.


NOTE 3 – Des structures de conduit plus complexes peuvent comporter des pays de transit, qui se trouvent entre les deux pays terminaux connectés par un élément de cœur de conduit international (franchissement de frontière terrestre, câbles sous-marins ou liaisons par satellite). Il est possible d'accepter des éléments de cœur de conduit transfrontière disposés en cascade (câbles sous-marins disposés en cascade, par exemple).

NOTE 4 – Cette allocation du conduit international montre la relation qui existe entre les éléments de cœur de conduit et la modélisation de réseau donnée dans la Recommandation G.803. Un modèle de réseau précis est décrit à la Figure 4-1/G.803.

Figure 1/M.2101.1 – Exemple de segmentation d'un conduit international

7 Principes d'allocation applicables aux connexions de bout en bout par conteneur virtuel

Le présent paragraphe spécifie l'allocation des objectifs en matière de caractéristiques d'erreur pour la partie internationale de conduits numériques internationaux, en fonction d'éléments de cœur de conduit comme le montre la Figure 2.

IG passerelle internationale

FS station frontière

IB frontière internationale

IPCE élément de cœur de conduit international ICPCE élément de cœur de conduit transfrontière

NOTE – Cet élément de cœur de conduit transfrontière franchit deux frontières internationales et est caractéristique d'un système de transmission par satellite ou câble sous-marin.

Figure 2/M.2101.1 – Exemple de composantes d'un conduit permettant de montrer des éléments de cœur de conduit

Il appartient à chaque pays de faire en sorte que son réseau soit compatible avec l'allocation de ses éléments de cœur de conduit pour le conduit international. L'allocation de chaque portion de conduit international peut être déterminée à partir des valeurs données dans le Tableau 2A; celle des sections multiplex figure dans le Tableau 2B. Ces allocations sont égales à un pourcentage de l'objectif de qualité de fonctionnement de bout en bout. Les distances indiquées dans les Tableaux 2A et 2B sont des distances réelles ou les distances selon un grand cercle multipliées par le facteur de routage (rf) en retenant la distance la plus courte des deux.

Tableau 1/M.2101.1 – Longueur d'arc de grand cercle de l'élément de cœur de conduit en fonction du facteur de routage

Longueur d'arc de grand cercle de l'élément de cœur de conduit	Facteur de routage (rf)
d ≤ 1000 km	1,5
d > 1000 km	1,25

Conformément à la Figure 1, il est possible que l'accès au flux binaire d'un conduit donné ne coïncide pas avec la fin d'un élément de cœur de conduit. Dans ce cas, ou si un pays de transit dispose d'autres points d'accès sur le réseau, il peut être nécessaire de faire une sous-allocation à des fins de maintenance, par exemple en ce qui concerne la localisation des dérangements comme cela est décrit dans la

Recommandation M.2120. De telles sous-allocations relèveront de la responsabilité de ou des opérateurs du réseau national du pays concerné, mais il faudra que:

- leur somme n'excède pas la valeur donnée dans le Tableau 2A pour l'élément de cœur de conduit en question;
- leurs valeurs soient communiquées à tous les centres de maintenance concernés avant la mise en service du conduit et après toute modification avec changement de ces valeurs.

Tableau 2A/M.2101.1 – Allocation maximale d'objectif de qualité aux éléments de cœur de conduit

Classification des éléments de cœur de conduit (PCE)	Allocation (% d'objectif de qualité de bout en bout)
PCE international	
réseau national terminal/de transit:	
d ≤ 500 km	2
500 km < d ≤ 1000 km	3
1000 km < d ≤ 2500 km	4
2500 km < d ≤ 5000 km	6
5000 km < d ≤ 7500 km	8
d > 7500 km	10
PCE transfrontière (Note)	
câble optique sous-marin:	
d ≤ 500 km	1
d > 500 km	2,5
satellite:	
fonctionnement normal	à étudier
mode de rétablissement des câbles à large bande	à étudier
systèmes de Terre:	
d < 300 km	0,3

NOTE – L'allocation PCE transfrontière doit être respectée indépendemment du nombre de sections multiplex composant le conduit PCE.

Tableau 2B/M.2101.1 – Allocation maximale d'objectif de qualité de fonctionnement aux sections multiplex internationales

Type d'installation	Allocation (% d'objectif de qualité de bout en bout)
systèmes de Terre	0,2
satellite	à étudier
câble optique sous-marin	
d ≤ 500 km	0,2
d > 500 km	0,5

7.1 Connexions par conteneur virtuel utilisant des anneaux

Pour le calcul des limites de qualité de fonctionnement en termes d'erreur sur les conduits véhiculés par des anneaux SDH, il est nécessaire d'abord d'identifier les points d'extrémité de conduit, puis d'allouer la qualité de façon normale, en utilisant la longueur d'arc sur le grand cercle de la route aérienne multipliée par le facteur de routage. Ce calcul donne un seul ensemble de limites de qualité de fonctionnement en termes d'erreur indépendamment du sens de circulation sur l'anneau (sens trigonométrique ou sens trigonométrique inverse).

8 Objectifs de qualité de fonctionnement

Les valeurs indiquées pour les conduits dans le Tableau 3 sont égales à 50% de celles figurant dans la Recommandation G.826 afin de disposer d'une certaine marge pour la maintenance.

Tableau 3/M.2101.1 – Objectifs de qualité pour les trajets de bout en bout internationaux

	Objectifs de qualité (PO)				
Débit (Mbit/s)	Seconde avec erreur (% de temps)	Seconde gravement erronée (% de temps)			
1,5 < débit ≤ 5 5 < débit ≤ 15 15 < débit ≤ 55 55 < débit ≤ 160	2 2,5 3,75 8	0,1 0,1 0,1 0,1			
160 < débit ≤ 3500	NA (Note)	0,1			
débit > 3500	NA (Note)	0,1			

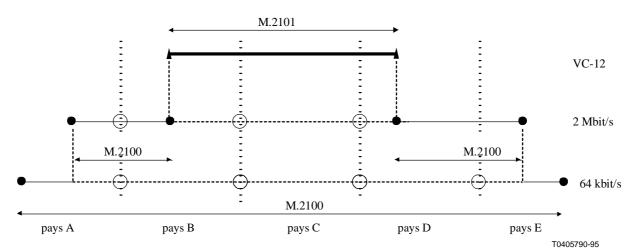
NA non applicable.

 ${
m NOTE}-{
m L'erreur}$ "bloc erroné résiduel" peut être utilisée pour la maintenance. Ce point nécessite un complément d'étude.

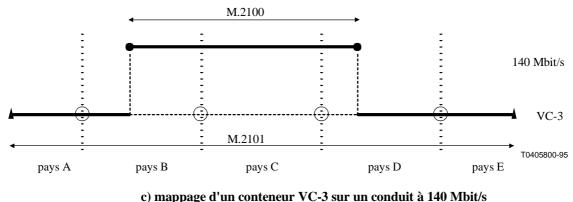
Dans la présente Recommandation, les signaux SDH sont estimés de bout en bout de façon que les évaluations concernant les secondes ES et SES soient conformes aux spécifications de la Recommandation G.826 pour ce qui est des conduits. En chaque point de terminaison de conteneur virtuel, on calculera les nombres de secondes ES et SES pour le conteneur virtuel de bout en bout. Pour les sections multiplex, l'évaluation des secondes ES et SES sera conforme à la Recommandation G.EPMRS.

La qualité de fonctionnement de bout en bout sur un trajet ou sur une connexion quelconque ne peut être calculée qu'à partir d'un signal quelconque (conteneur virtuel ou module STM) dont les points source et puits coïncident avec les extrémités choisies pour la mesure. Un regroupement des mesures de qualité des trajets en cascade ne doit être utilisé que lorsqu'il n'est pas possible d'effectuer des mesures de la source vers le puits du conteneur virtuel ou du module STM. Cette situation peut par exemple se produire lorsque des conteneurs VC-1 en cascade ont été utilisés pour former la totalité du conduit de bout en bout transportant des signaux PDH au débit de N fois 64 kbit/s ou au débit primaire. Dans ce cas, les résultats évalués du préfixe de conduit PDH donneront une meilleure indication sur la qualité de fonctionnement du conduit de bout en bout en termes d'erreur.

Un signal PDH transporté par un conteneur SDH est évalué de bout en bout conformément à la Recommandation M.2100. La partie transport SDH est évaluée conformément à la présente Recommandation.


Dans le cas où les conteneurs SDH sont mappés sur des trames PDH, il faut utiliser la présente Recommandation. Il est à noter que dans ce cas, il est possible que des sous-réseaux PDH ne soient pas en mesure de satisfaire les conditions plus strictes susceptibles d'être imposées par les limites de qualité spécifiées dans la présente Recommandation applicables aux conduits SDH. Une tolérance adéquate doit être prévue si on continue à transporter des conteneurs SDH à l'aide de sous-réseaux PDH (voir la Figure 3 qui donne de plus amples renseignements).

8.1 Principes


- 1) pour un conduit situé entre deux points d'extrémité de conduit SDH: appliquer la présente Recommandation;
- 2) pour un conduit situé entre deux points d'extrémité de conduit PDH: appliquer la Recommandation M.2100;
- 3) les spécifications de la présente Recommandation doivent être plus strictes que celles de la Recommandation M.2100.

a) mappage asynchrone d'un conduit à 2 Mbit/s sur un conteneur VC-12

b) mappage synchrone de conduits à 64 kbit/s sur un conteneur VC-12

c) mappage a un conteneur ve-5 sur un conduit à 140 Monds

■ point d'extrémité de conduit PDH ↓ point d'extrémité de conduit SDH ← frontière internationale

Figure 3/M.2101.1 – Application des Recommandations M.2100 et M.2101.1 aux transmissions mixtes SDH et PDH

9 Evaluation des paramètres de qualité de fonctionnement en termes d'erreur

9.1 Domaine d'application

Le présent sous-paragraphe porte sur l'évaluation des paramètres de qualité de fonctionnement en termes d'erreur (Recommandation G.826) en utilisant les anomalies et défauts (voir la définition de la Recommandation M.20).

L'évaluation en service est examinée au 9.2 et l'évaluation hors service au 9.3.

Le traitement des nombres de secondes ES et SES durant l'état d'indisponibilité est expliqué au paragraphe 12.

9.2 Evaluation des paramètres ES/SES à partir des mesures en service

9.2.1 Observations générales

Les paramètres ES et SES sont évalués à partir des anomalies (voir 9.2.2) et défauts (voir 9.2.3) en service associés à l'équipement de terminaison de conduit au niveau du réseau considéré avec une période d'intégration d'une seconde.

9.2.2 Anomalies en service

Une "anomalie en service" apparaît sur un conduit lorsqu'il y a une modification au niveau d'un élément de la valeur normale du préfixe de conduit sans modification de l'état normal du signal de conduit total: c'est-à-dire, sans qu'il y ait de défaut en service.

L'Annexe C/G.826 contient la liste des caractéristiques relatives aux anomalies en service.

9.2.3 Défaut en service

Un "défaut en service" apparaît dans un conduit lorsqu'un signal entre à une extrémité du conduit et en ressort à l'autre extrémité dans un autre état. Un défaut en service est évalué en fonction de sa persistance (période d'intégration); des précisions (y compris les éventuelles actions conséquentes associées) sont données dans les Recommandations traitant de la fonction de terminaison de conduit pour le défaut en service considéré.

L'Annexe C/G.826 contient la liste des défauts en service relevant de la qualité de fonctionnement.

9.2.4 Indication distante d'anomalie et de défaut

Les anomalies et défauts détectés par l'équipement de terminaison de section et de conduit sont signalés à l'équipement de terminaison situé à l'extrémité distante; chaque trame (125 µs) dispose d'un octet réservé à cet usage dans le préfixe de section et de conduit. Par conséquent, les anomalies et défauts en service respectivement décrits aux 9.2.2 et 9.2.3 sont signalés au niveau de l'équipement de terminaison aussi bien en transmission qu'en réception.

9.2.4.1 Caractéristiques ES et SES déduites des informations sur les anomalies et défauts en service signalés au niveau de l'équipement de terminaison de conduit

Le présent paragraphe montre la manière d'utiliser les indicateurs d'événements anomalie et défaut pour le calcul des caractéristiques ES et SES. Les Tableaux se rapportent aux couches conduit d'ordre supérieur et d'ordre inférieur et la couche de section multiplex.

Chaque tableau contient des indications sur les critères d'évaluation des secondes ES et SES, à savoir:

- Tableau B.1: couche conduit d'ordre inférieur;
- Tableau B.2: couche conduit d'ordre supérieur;
- Tableau B.3: couche section multiplex.

L'information sur les anomalies ou défauts de retour en service provenant d'un équipement de terminaison de conduit distant a été incluse dans les tableaux. Il est ainsi possible de disposer d'une fonction de surveillance bidirectionnelle et unilatérale.

9.3 Mesures hors service

9.3.1 Observations générales

Les mesures hors service sont plus précises que les mesures en service.

Il peut être nécessaire de produire un signal de charge utile représentatif (par exemple en l'absence de trafic).

Il peut être nécessaire de faire des tests sous forte charge en utilisant des signaux hors service sur un ensemble défini de variables (par exemple: densité d'impulsion, gigue, etc.).

9.3.2 Méthodes de mesures hors service possibles

Equipement de test externe conforme à la Recommandation O.181 connecté à l'interface de nœud de réseau SDH. Il pourra s'agir d'un émetteur, d'un récepteur ou d'un émetteur/récepteur selon les conditions de tests.

Equipement de test² externe conforme à la série O.150 connecté à l'interface G.703 PDH.

Générateur ou récepteur interne de séquence binaire pseudo-aléatoire conforme à la série O.150 connecté à la fonction d'adaptation PDH, ou séquence de signal test interne (TSS, *test signal sequence*) conforme à la Recommandation O.181 insérée dans un conteneur G.707.

Etude utilisant l'information PDH et/ou SDH en service pour évaluer les paramètres ES et SES mais sans charge particulière.

Chacune des méthodes précédentes peut être utilisée sur sens donné ou avec un bouclage distant.

10 Limites de qualité

Le Tableau 4 indique les limites de qualité de fonctionnement relatives aux objectifs alloués de qualité dans une perspective à long terme.

10.1 Observations générales

10.1.1 Relation entre limites et objectifs de qualité

Les limites mentionnées dans la présente Recommandation doivent être utilisées pour indiquer la nécessité de mener des actions durant la maintenance et la mise en service. Un réseau respectant ces limites doit atteindre les objectifs de qualité de fonctionnement spécifiés dans les Recommandations G.826 et G.EPMRS.

Les paramètres donnés mesurés, la durée de mesure et les limites utilisées pour la procédure ne doivent pas nécessairement être identiques à ceux servant à spécifier les objectifs de qualité de fonctionnement tant qu'ils donnent lieu à une qualité de fonctionnement conforme à ces objectifs. Les objectifs de qualité de fonctionnement en termes d'erreur se rapportent à de longues périodes, comme par exemple un mois. Toutefois pour des raisons pratiques, les limites propres à la maintenance et la mise en service sont définies sur des périodes de mesure plus courtes.

Les fluctuations statistiques associées à l'apparition d'anomalies et de défauts montrent qu'on ne peut pas être certain d'atteindre les objectifs à long terme. Les limites sur le nombre d'événements et la durée des mesures ont pour objet de garantir la détection de toutes les situations dans lesquelles la qualité de fonctionnement sur les sections multiplex ou les conduits est inacceptable ou dégradée. Mais le seul moyen permettant de s'assurer qu'une section multiplex ou qu'un conduit respecte les objectifs de qualité de fonctionnement du réseau consiste à effectuer des mesures continues sur une longue période (c'est-à-dire, des mois).

² Lorsqu'on effectue des tests conformes à la série O.150, les critères d'évaluation des secondes ES et SES à partir des anomalies et défauts sont donnés dans la Recommandation M.2100.

10.1.2 Types de limites

Des limites sont nécessaires à plusieurs fonctions de maintenance conformément aux définitions de la Recommandation M.20. La présente Recommandation spécifie des limites à trois de ces fonctions, à savoir:

- la mise en service:
- le maintien du réseau en état de fonctionnement (maintenance);
- le rétablissement du système,

pour ce qui est des conduits et des sections multiplex.

Les limites applicables aux opérations de recette (installation et recette) concernant les sections multiplex ne figurent pas dans les Recommandations de l'UIT-T.

10.1.2.1 Tests et limites de mise en service

Lorsqu'un conduit ou une section est mis en service, la collecte des anomalies et défauts concernant les tests de mise en service sera faite aux points de terminaison réels de ce conduit ou cette section. La Recommandation M.2110 donne de plus amples détails. En ce qui concerne les conduits nouvellement équipés, des tests à long terme de mise en service doivent être utilisés. Pour les nouveaux conduits situés sur des trajets existants, des tests de mise en service plus courts peuvent suffire.

10.1.2.2 Limites pour la maintenance

Dès que les entités sont mises en service, il faut pour assurer la supervision du réseau disposer d'autres limites comme indiqué dans la Recommandation M.20. Cette supervision consiste à assurer une surveillance en service. Le processus de supervision fait intervenir l'analyse des anomalies et des défauts détectés par les entités de maintenance afin de déterminer si le niveau de qualité de fonctionnement est normal, dégradé ou inacceptable. Il faut donc spécifier les limites à partir desquelles la qualité de fonctionnement devient dégradée ou inacceptable. Il faut également spécifier la limite de qualité de fonctionnement après intervention (réparation) qui peut être différente de celle utilisée pour la mise en service.

10.1.3 Calcul des limites de qualité d'un conduit

Pour obtenir les limites de qualité de fonctionnement d'un conduit il faudra dans l'ordre:

- 1) identifier le débit du conduit;
- 2) lire l'objectif de qualité du débit approprié dans le Tableau 3 pour les paramètres ES et SES:

$$PO_{es} = x \%$$

 $PO_{ses} = y\%$

- 3) identifier tous les éléments de cœur de conduit de l'ensemble du conduit, et choisir N = nombre total d'éléments de cœur de conduit;
- 4) étiqueter les éléments de cœur de conduit de PCE₁ à PCE_N comme indiqué à la Figure 1;
- identifier la longueur d de chaque élément PCE_n [n = 1 à N]. Cette longueur est la longueur effective du conduit ou peut être estimée à la longueur d'arc du grand cercle situé entre ses extrémités multipliée par le facteur de routage approprié trouvé dans le Tableau 1;
- 6) lire dans le Tableau 2A l'allocation a_n % (comme un pourcentage de l'objectif de qualité de bout en bout) de l'élément PCE_n [n = 1 à N]. Il est à noter que les allocations figurant dans le

Tableau 2A sont des valeurs maximales; des valeurs encore plus rigoureuses pourront être utilisées sur la base d'un accord bilatéral ou multilatéral.

7) calculer l'allocation de conduit A%, d'après:

$$A\% = \sum_{n=1}^{N} a_n\%$$
; c'est-à-dire = $a_1\% + a_2\% + \dots + a_N\%$

A cette étape, il est possible de lire les valeurs d'objectifs de qualité de fonctionnement pour la mise en service (BISPO), s1, s2, et de limite de qualité inacceptable (UPL, *unacceptable performance limit*) dans les tableaux des Annexes C et D. Si cela n'est pas possible, pour calculer ces valeurs, on pourra dans l'ordre:

- 8) déterminer la période de test requise (TP, *test period*): 15 min., 2 h, 24 h ou 7 jours. L'exprimer en secondes, par exemple: TP = 900 s pour un test de 15 min.
- 9) calculer l'objectif de qualité alloué (APO, *allocated performance objectives*) requis à partir de l'information déjà obtenue:

$$APO_{es} = A\% \times PO_{es} \times TP$$

 $APO_{ses} = A\% \times PO_{ses} \times TP$

10) calculer les objectifs de qualité de mise en service (BISPO) du conduit:

$$BISPO_{es} = \frac{APO_{es}}{2}$$

$$BISPO_{ses} = \frac{APO_{ses}}{2}$$

11) pour les périodes TP < 7 jours, calculer les valeurs s1 et s2:

$$D_{es} + 2\sqrt{BISPO_{es}}$$

$$s1_{es} = BISPO_{es} - D_{es}$$

$$s2_{es} = BISPO_{es} + D_{es}$$

$$D_{ses} = 2\sqrt{BISPO_{ses}}$$

$$s1_{ses} = BISPO_{ses} - D_{ses}$$

$$s2_{ses} = BISPO_{ses} + D_{ses}$$

les arrondir à celles des entiers les plus proches.

12) calculer les seuils applicables aux limites de qualité dégradée pour le conduit:

$$DPL_{es} = 0.75 \times APO_{es} [TP = 86 \ 400]$$

$$DPL_{ses} = 0.75 \times APO_{ses} [TP = 86 \ 400]$$

lire les seuils applicables aux limites de qualité de fonctionnement inacceptable dans l'Annexe D pour le débit du conduit. Il s'agit là de valeurs réalistes.

Lorsqu'un élément de cœur de conduit situé dans un conduit est modifié, le calcul doit être répété, car les valeurs s1 et s2 ne sont pas linéaires.

10.1.4 Calcul des limites de qualité de fonctionnement d'une section multiplex

Pour obtenir les limites de qualité de fonctionnement d'une section multiplex, il faudra dans l'ordre:

1) identifier le débit de la section multiplex;

2) lire l'objectif de qualité du débit binaire approprié dans le Tableau 3 pour les paramètres ES et SES:

$$PO_{es} = x\%$$

$$PO_{ses} = y\%$$

- 3) identifier la longueur *d*, de la section multiplex. Cette longueur est la longueur effective de la section ou peut être estimée à la longueur d'arc du grand cercle situé entre ses extrémités multipliée par le facteur de routage approprié trouvé dans le Tableau 1;
- 4) lire l'allocation A% (comme un pourcentage de l'objectif de qualité de bout en bout) dans le Tableau 2B:

A cette étape, il est possible de lire les valeurs d'objectifs de qualité de mise en service, s1, s2, et de limite de qualité inacceptable dans les tableaux des Annexes C et D. Autrement, pour calculer ces valeurs, on pourra:

- 5) déterminer la période test requise: 15 min., 2 h, 24 h ou 7 jours;
- 6) exprimer la période de test en secondes, par exemple: TP = 900 s pour un test de 15 min.
- 7) calculer les objectifs de qualité alloués (APO) requis à partir de l'information déjà obtenue:

$$APO_{es} = A\% \times PO_{es} \times TP$$

 $APO_{ses} = A\% \times PO_{ses} \times TP$

8) calculer les objectifs de qualité de mise en service (BISPO) pour la section multiplex:

$$BISPO_{es} = \frac{APO_{es}}{10}$$
$$BISPO_{ses} = \frac{APO_{ses}}{10}$$

9) pour les périodes inférieures à 7 jours, calculer les valeurs s1 et s2:

$$D_{es} = 2\sqrt{BISPO_{es}}$$

$$s1_{es} = BISPO_{es} - D_{es}$$

$$s2_{es} = BISPO_{es} + D_{es}$$

$$D_{ses} = 2\sqrt{BISPO_{ses}}$$

$$s1_{ses} = BISPO_{ses} - D_{ses}$$

$$s2_{ses} = BISPO_{ses} + D_{ses}$$

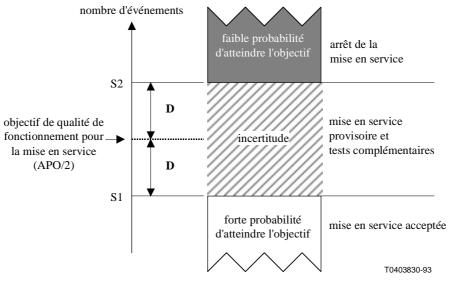
arrondir chacune de ces valeurs à l'entier le plus proche;

10) calculer les seuils applicables aux limites de qualité dégradée pour la section multiplex:

$$DPL_{es} = 0.5 \times APO_{es} [TP = 86 \ 400]$$

$$DPL_{ses} = 0.5 \times APO_{ses} [TP = 86 \ 400]$$

lire les seuils applicables aux limites de qualité inacceptable dans l'Annexe D pour le débit de la section multiplex. Ce sont des valeurs pratiques.


10.2 Limites de qualité de fonctionnement et méthodologie de mise en service

La procédure de test de mise en service, qui couvre également les périodes d'indisponibilité durant le test, est définie au 4.2/M.2110. Le présent sous-paragraphe décrit la méthodologie de calcul des limites de qualité de fonctionnement de mise en service pour les conduits internationaux. Ces limites

dépendent de l'allocation donnée et de la durée de mesure choisie et sont basées sur une approche réaliste. Ces limites, qui dépendent aussi des paramètres et des objectifs des Recommandations G.826 et G.EPMRS, sont obtenues à partir des valeurs figurant dans les Tableaux 2 et 3.

La différence entre l'objectif de qualité alloué et la limite pour la mise en service est appelée marge de vieillissement. Cette marge doit être aussi grande que possible afin de minimiser le nombre d'interventions de maintenance.

Deux limites S1 et S2 sont données pour les tests de mise en service comme indiqué à la Figure 4.

NOTE - Pour le calcul de D, voir 10.1.3.

Figure 4/M.2101.1 – Limites et conditions de mise en service

Si la qualité de fonctionnement est supérieure à la première limite S1, l'entité peut être mise en service avec une certaine confiance. Si la qualité est entre les deux limites, des tests complémentaires sont nécessaires et la mise en service de l'entité ne peut être acceptée que provisoirement. Si cette qualité est inférieure à la seconde limite S2, une action corrective est nécessaire.

La marge de vieillissement est de 0,5 fois l'objectif de qualité de fonctionnement alloué (APO) pour les conduits et de 0,1 fois cet objectif pour les sections multiplex.

Il est nécessaire d'assurer une surveillance continue en service pour avoir confiance en la qualité à long terme.

10.2.1 Valeurs de limites de mise en service

Les limites de qualité de fonctionnement pour la mise en service données dans les Tableaux de l'Annexe C (C.1 à C.6) ont été établies en utilisant la méthodologie ci-dessus, les valeurs S1 et S2 sont calculées en fonction de l'allocation et la durée des tests. Il est à noter que les limites S1 et S2 ne sont pas utilisées pour les tests qui durent sept jours. Les tests de mise en service décrits dans la Recommandation M.2110 sont les suivants:

- limites pour 24 heures: test de base décrit dans la Recommandation M.2110
- limites pour 2 heures; certains cas décrits dans la Recommandation M.2110
- limites pour 7 jours: dans certains cas, décrits dans la Recommandation M.2110, un test supplémentaire étalé sur 7 jours est nécessaire; la qualité doit atteindre l'objectif de qualité de fonctionnement de mise en service (BISPO) sur 7 jours pour chaque paramètre (ES et SES).

Les Tableaux C.i (i = 1, 2, 3, 4, 5, 6) de l'Annexe C donnent les valeurs des objectifs de mise en service (BISPO) et les limites S1 et S2.

10.3 Limites de qualité de fonctionnement pour la maintenance

Dès que les entités sont mises en service, il faut pour assurer la supervision du réseau disposer d'autres limites comme indiqué dans la Recommandation M.20. Cette supervision consiste à assurer une surveillance en service. Le processus de supervision fait intervenir l'analyse des anomalies et des défauts détectés par les entités de maintenance afin de déterminer le niveau de qualité de fonctionnement. Les procédures de maintenance sont décrites dans la Recommandation M.2120.

10.3.1 Niveaux et limites de qualité de fonctionnement

Conformément à la Recommandation M.20, une entité peut se trouver dans un état correspondant à un nombre limité de conditions prédéterminées selon sa qualité de fonctionnement. Ces conditions, appelées niveaux de qualité de fonctionnement, sont les suivantes: niveau de qualité inacceptable, niveau de qualité dégradée et niveau de qualité acceptable. Les frontières entre ces niveaux sont appelées limites de qualité de fonctionnement et dépendent de l'objectif de qualité alloué, comme suit:

- limite de qualité inacceptable ≥ $10 \times APO$;
- limite de qualité dégradée = $0.75 \times APO$ (conduit);
- limite de qualité dégradée = $0.50 \times APO$ (section multiplex).

Dans le cas où l'on teste la qualité après réparation, une limite spéciale, appelée qualité après réparation, est utilisée (voir les Recommandations M.35 et M.2110) où:

- qualité après réparation = $0.125 \times APO$ (section multiplex);
- qualité après réparation = $0.50 \times APO$ (conduit).

Cette limite n'est pas une frontière entre les niveaux de qualité de fonctionnement. La limite de mise en service a précédemment été décrite dans la présente Recommandation et n'est pas une frontière entre les différents niveaux de qualité de fonctionnement. Ces principes sont illustrés dans le Tableau 4.

Tableau 4/M.2101.1 – Limites de qualité de fonctionnement (paramètres ES et SES) relatives à l'objectif alloué de qualité (APO) correspondant à une perspective à long terme (> 1 mois)

Sections multiplex				Condu	its
Limite (relative à l'APO)		Niveau de qualité	lité Limite (relative à l'APO)		Niveau de qualité
mise en service	0,10	ACCEPTABLE	mise en service	0,50	ACCEPTABLE
qualité après réparation	0,125		qualité après réparation	0,50	
dégradation	≥ 0,50		dégradation	≥ 0,75	
objectif de qualité de référence	1,00	DÉGRADÉE	objectif de qualité de référence	1,00	DÉGRADÉE
inacceptable	≥ 10	INACCEPTABLE	inacceptable	≥ 10	INACCEPTABLE

10.3.2 Seuils

Lorsqu'une limite donne une valeur spécifique en termes de seconde ES ou SES, la valeur ES ou SES est appelée seuil. Chaque seuil est assorti d'une durée de mesure.

10.3.2.1 Utilisation des seuils

La stratégie générale d'utilisation de l'information de surveillance de qualité de fonctionnement et des seuils est décrite dans les Recommandations M.20 et M.34. Ces seuils et cette information seront signalés aux systèmes d'exploitation via le RGT en ce qui concerne les analyses en temps réel et à long terme. Lorsque des niveaux de qualité inacceptable ou dégradée sont atteints, l'action de maintenance doit être déclenchée indépendamment des mesures de qualité de fonctionnement. D'autres seuils peuvent servir à la maintenance et à l'analyse de qualité de fonctionnement à long terme. Les systèmes d'exploitation utiliseront le traitement en temps réel pour attribuer des priorités de maintenance pour ce qui est des dépassements de seuils et de cette information, en utilisant le processus de surveillance de qualité de fonctionnement décrit dans la Recommandation M.20.

10.3.2.2 Types de seuils

Il existe deux types de seuils selon la durée de surveillance (T1 ou T2).

Seuils associés à une période d'évaluation T1

La durée de surveillance T1 est fixée à 15 minutes, pendant lesquelles on compte les secondes ES et SES. La période T1 doit aider à détecter une transition vers ou depuis un niveau de qualité inacceptable de ce niveau.

Un rapport de seuil est émis lorsqu'un seuil ES ou SES est dépassé. La réinitialisation de ce rapport, qui est une caractéristique optionnelle, a lieu lorsque le nombre de secondes ES ou SES est inférieur ou égal au seuil de réinitialisation. Ces principes sont développés au 2.3/M.2120.

Seuils associés à une période d'évaluation T2

La durée de surveillance T2 est fixée à 24 heures. La période T2 doit faciliter la détection du passage à un niveau de qualité dégradée.

Un rapport de seuil est émis lorsqu'un seuil ES ou SES est dépassé pendant la période T2 comme indiqué dans la Recommandation M.2120.

10.3.2.3 Valeurs de seuils

Les seuils doivent être programmables (pour les paramètres ES et SES) afin de satisfaire les conditions de fonctionnement données. En particulier, il est admis qu'il est probablement nécessaire d'effectuer un réajustement itératif du seuil (compte tenu de l'expérience acquise en exploitation).

Les seuils de qualité inacceptable par défaut pour des périodes d'évaluation de 15 minutes sont donnés dans le Tableau D.1 pour les conteneurs VC-1, 2, 3, 4 et les modules STM-1, 4, 16, 64.

Il appartient à chaque exploitant de réseau de déterminer les seuils correspondant à une période d'évaluation de 24 heures. On suggère d'utiliser $0.75 \times APO$ pour les conduits et $0.5 \times APO$ pour les sections multiplex.

10.4 Surveillance et mesure de la qualité à long terme

Le système de gestion doit conserver les données chronologiques de surveillance de la qualité de fonctionnement pendant au moins 1 an (période suggérée).

11 Effets des dégradations du rythme sur les caractéristiques d'erreur

La gigue et le dérapage sont des dégradations du signal rythme liées aux fluctuations de ce signal. Les limites de gigue et de dérapage sont spécifiées dans la Recommandation G.825. Elles sont fixées de façon à ce qu'un équipement de réseau puisse supporter un certain niveau de gigue en entrée sans produire d'erreur ou de gigue excessive en sortie.

Par conséquent, pour la maintenance, les conditions imposées en matière de caractéristique d'erreur sont suffisantes pour traiter ces dégradations de rythme.

12 Disponibilité et indisponibilité

12.1 Critères d'entrée/sortie pour l'état d'indisponibilité

Une période d'indisponibilité commence dès la survenue de dix événements SES consécutifs. Ces 10 secondes sont considérées comme faisant partie du temps d'indisponibilité. Un nouveau laps de temps de disponibilité commence à la survenue de dix événements non-SES. Il est à noter que le critère de disponibilité n'est défini que dans un seul sens. Cette définition cadre avec la définition correspondante donnée à l'Annexe A.1/G.826. Le critère de disponibilité d'un conduit bidirectionnel, défini dans l'Annexe A.2/G.826, sert au processus de collecte et d'évaluation des données relatives à la qualité de fonctionnement pour la caractérisation à long terme de la qualité de fonctionnement du réseau. Dans la présente Recommandation, ce processus n'est employé que pour la maintenance et la mise en service et de ce fait la définition bidirectionnelle n'est pas utilisée.

Pour déterminer les critères d'entrée/sortie de l'état d'indisponibilité, la collecte des secondes SES est nécessaire. Voir la Recommandation G.784 pour l'implémentation de cette collecte.

12.2 Blocage de la surveillance de la qualité de fonctionnement pendant les périodes d'indisponibilité

Durant les périodes d'indisponibilité, le comptage des événements relatifs à la qualité de fonctionnement est bloqué. Lorsque l'indisponibilité affecte un seul sens d'un conduit bidirectionnel, le comptage des événements relatifs à la qualité de fonctionnement est bloqué dans ce sens et se poursuit dans l'autre. La Figure 5 illustre les règles qui permettent de déterminer le paramètre seconde d'indisponibilité et celles qui permettent de bloquer les autres comptages associés. Sur cette figure, la première ligne décrit les conditions d'erreur et montre les conditions momentanées et celles qui sont durables. Cette figure indique s'il existe une condition d'erreur (O) ou s'il n'en existe pas (N). Les conditions d'erreur recouvrent les anomalies et défauts comme indiqué. En procédant de la même manière, les trois dernières lignes montrent comment calculer le nombre de secondes d'indisponibilité d'un conduit et effectuer le comptage en temps réel et le comptage ajusté en temps réel.

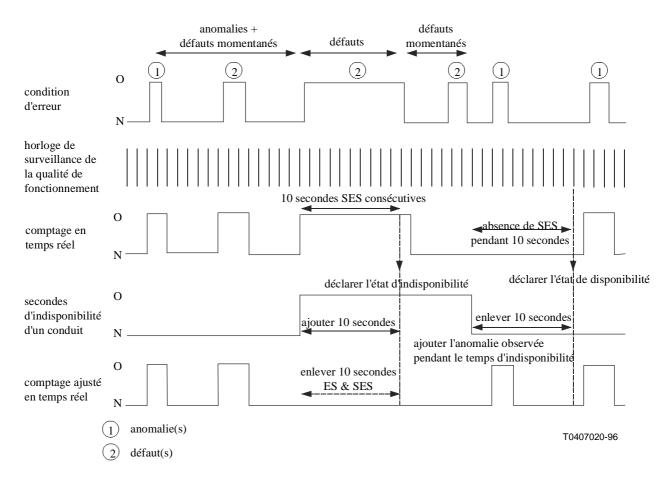


Figure 5/M.2101.1 – Illustration du blocage de la surveillance de la qualité de fonctionnement pendant les périodes d'indisponibilité

Cette figure montre la correction à appliquer au compteur de secondes d'indisponibilité et les règles de suppression et d'insertion d'incréments de temps dans ce compteur. Elle montre également le nombre d'anomalies qui se produisent durant le temps d'indisponibilité.

Il est à noter que le passage du signal d'une condition à une autre, ou l'instant de déclaration d'une condition de défaut ou d'anomalie sont indépendants des instants de battement de chaque seconde de l'horloge de surveillance de la qualité de fonctionnement.

12.3 Limites d'indisponibilité

Pour le moment, les limites d'indisponibilité peuvent être négociées. Ce point est à l'étude.

ANNEXE A

Exemples d'allocation de conduit (A%) établis à partir du Tableau 2A

La présente annexe donne un exemple montrant la méthode d'allocation de conduit (A%) décrite au paragraphe 7.

Exemple: conduit SDH

T1	BC1	T2	SC1	T3	BC2	T4	

T	élément de cœur de conduit international terminal ou de transit		
BC	élément de cœur de conduit transfrontière		
SC	élément de cœur de conduit transfrontière de câble sous-marins		
T1, T4	élément de cœur de conduit international (terminal)	1000 km – 2500 km	$2 \times 4.0\% = 8\%$
T2	élément de cœur de conduit international (transit)	500 km – 1000 km	$1 \times 3.0\% = 3.0\%$
Т3	élément de cœur de conduit international (transit)	< 500 km	$1 \times 2,0\% = 2,0\%$
SC1	élément de cœur de conduit transfrontière (câble optique sous-marin)		$1 \times 2,5\% = 2,5\%$
BC1, BC2	élément de cœur de conduit transfrontière (système de Terre)		$2 \times 0.3\% = 0.6\%$

allocation totale de conduit SDH = 16,1%

ANNEXE B

Tableau B.1/M.2101.1 – Critères d'évaluation des paramètres ES et SES en service pour la couche de conduit d'ordre inférieur

			Critères d'évaluation des paramètres ES/SES (anomalies et défauts sur une seconde)								
Type de conteneur virtuel	Préfixe de conduit disponible pour obtenir des informations sur les anomalies ou les défauts	Anomalies et défauts sur une seconde	Interprétation dans le sens réception	Interprétation dans le sens émission	Remarques						
VC-11, VC-12, VC-2, et VC-2-5C	H4 V1, V2 V1, V2 J2 V5 V5 V5 V5	≥ 1 TU-LOM ≥ 1 TU-AIS ≥ 1 TU-LOP ≥ 1 LP-TIM ≥ 1 LP-UNEQ ≥ 1 erreurBIP-2 ≥ 600 erreurs BIP-2 ≥ 1 LP-REI ≥ 1 LP-RDI	ES + SES ES + SES ES + SES ES + SES ES + SES ES + SES	ES ES + SES	LP-TIM et LP-UNEQ sont à l'étude						
VC-3	H1, H2, H3 H1, H2, H3 J1 C2 B3 B3 G1	≥ 1 TU-AIS ≥ 1 TU-LOP ≥ 1 LP-TIM ≥ 1 LP-UNEQ ≥ 1 erreur BIP-8 ≥ 2400 erreurs BIP-8 ≥ 1 LP-REI ≥ 1 LP-RDI	ES + SES ES + SES ES + SES ES ES + SES	ES ES + SES							

Tableau B.2/M.2101.1 – Critères d'évaluation des paramètres ES et SES en service pour la couche de conduit d'ordre supérieur

			Critères d'évaluation des paramètres ES/SES (anomalies et défauts sur une seconde)								
Type de conteneur virtuel	Préfixe de conduit disponible pour obtenir des informations sur les anomalies ou les défauts	Anomalies et défauts sur une seconde	Interprétation dans le sens réception	Interprétation dans le sens émission	Remarques						
VC-3, VC-4 et VC-4-4C	H1, H2, H3 H1, H2, H3 J1 C2 B3 B3 G1	≥ 1 AU-AIS ≥ 1 AU-LOP ≥ 1 HP-TIM ≥ 1 HP-UNEQ ≥ 1 erreur BIP-8 ≥ 2400 erreurs BIP-8 ≥ 1 HP-REI ≥ 1 HP-RDI	ES + SES ES + SES ES + SES ES ES + SES	ES ES + SES	HP-TIM et HP-UNEQ sont à l'étude						

Tableau B.3/M.2101.1 – Critères d'évaluation des paramètres ES et SES en service pour la couche section

			Critères de mesure des paramètres ES/SES (anomalies et défauts sur une seconde)								
Type de section et niveau STM	Préfixe de section disponible pour obtenir des informations sur les anomalies ou les défauts	Anomalies et défauts sur une seconde	Interprétation dans le sens réception	Interprétation dans le sens émission	Remarques						
MS-STM-1, MS-STM-4 et MS-STM-16	B2 B2 K1, K2 M1 K2	≥ 1 erreur BIP-1 ≥ b erreurs BIP-1 ≥ 1 MS-AIS ≥ 1 MS-REI ≥ 1 MS-RDI	ES ES + SES ES + SES	ES ES + SES	b est à l'étude, sa valeur dépend du niveau hiérarchique						

ANNEXE C

Tableau C.1/M.2101.1 – Objectifs de qualité de fonctionnement alloués aux conteneurs VC-1

	Objectifs ES de conteneur VC-1 (objectif PO=2%)										Objectifs SES de conteneur VC-1 (Objectif (PO=0,1%									
		2 heur	es			1 jou	ır	7 jours		2 heur	res			7 jours						
Alloc. de conduit de conteneur VC-1	APO	BISO	S1	S2	APO	BISO	S1	S2	BISO	APO	BISO	S1	S2	APO	BISO	S1	S2	BISO		
0,5%	1	0	0	2	9	4	0	8	30	0	0	0	0	0	0	0	1	2		
1,0%	1	1	0	2	17	9	3	15	60	0	0	0	0	1	0	0	2	3		
1,5%	2	1	0	3	26	13	6	20	91	0	0	0	1	1	1	0	2	5		
2,0%	3	1	0	4	35	17	9	26	121	0	0	0	1	2	1	0	3	6		
2,5%	4	2	0	4	43	22	12	31	151	0	0	0	1	2	1	0	3	8		
3,0%	4	2	0	5	52	26	16	36	181	0	0	0	1	3	1	0	4	9		
3,5%	5	3	0	6	60	30	19	41	212	0	0	0	1	3	2	0	4	11		
4,0%	6	3	0	6	69	35	23	46	242	0	0	0	1	3	2	0	4	12		
4,5%	6	3	0	7	78	39	26	51	272	0	0	0	1	4	2	0	5	14		
5,0%	7	4	0	7	86	43	30	56	302	0	0	0	1	4	2	0	5	15		
5,5%	8	4	0	8	95	48	34	61	333	0	0	0	1	5	2	0	5	17		
6,0%	9	4	0	8	104	52	37	66	363	0	0	0	1	5	3	0	6	18		
6,5%	9	5	0	9	112	56	41	71	393	0	0	0	1	6	3	0	6	20		
7,0%	10	5	1	10	121	60	45	76	423	1	0	0	1	6	3	0	7	21		
7,5%	11	5	1	10	130	65	49	81	454	1	0	0	1	6	3	0	7	23		
8,0%	12	6	1	11	138	69	52	86	484	1	0	0	1	7	3	0	7	24		
8,5%	12	6	1	11	147	73	56	91	514	1	0	0	1	7	4	0	8	26		
9,0%	13	6	1	12	156	78	60	95	544	1	0	0	1	8	4	0	8	27		
9,5%	14	7	2	12	164	82	64	100	575	1	0	0	2	8	4	0	8	29		
10,0%	14	7	2	13	173	86	68	105	605	1	0	0	2	9	4	0	8	30		
10,5%	15	8	2	13	181	91	72	110	635	1	0	0	2	9	5	0	9	32		
11,0%	16	8	2	14	190	95	76	115	665	1	0	0	2	10	5	0	9	33		

Tableau C.1/M.2101.1 – Objectifs de qualité de fonctionnement alloués aux conteneurs VC-1 (suite)

Ī		Objecti	fs ES	de con	teneur V	/C-1 (ob	jectif P	O=2%)	Objectifs SES de conteneur VC-1 (Objectif (PO=0,1%)								
		2 heur	es			1 jou	ır	7 jours		2 heur	es			7 jours				
Alloc. de	APO	BISO	S1	S2	APO	BISO	S1	S2	BISO	APO	BISO	S1	S2	APO	BISO	S1	S2	BISO
conduit de conteneur VC-1																		
11,5%	17	8	3	14	199	99	79	119	696	1	0	0	2	10	5	1	9	35
12,0%	17	9	3	15	207	104	83	124	726	1	0	0	2	10	5	1	10	36
12,5%	18	9	3	15	216	108	87	129	756	1	0	0	2	11	5	1	10	38
13,0%	19	9	3	15	225	112	91	134	786	1	0	0	2	11	6	1	10	39
13,5%	19	10	3	16	233	117	95	138	816	1	0	0	2	12	6	1	11	41
14,0%	20	10	4	16	242	121	99	143	847	1	1	0	2	12	6	1	11	42
14,5%	21	10	4	17	251	125	103	148	877	1	1	0	2	13	6	1	11	44
15,0%	22	11	4	17	259	130	107	152	907	1	1	0	2	13	6	1	12	45
15,5%	22	11	4	18	268	134	111	157	937	1	1	0	2	13	7	2	12	47
16,0%	23	12	5	18	276	138	115	162	968	1	1	0	2	14	7	2	12	48
16,5%	24	12	5	19	285	143	119	166	998	1	1	0	2	14	7	2	12	50
17,0%	24	12	5	19	294	147	123	171	1028	1	1	0	2	15	7	2	13	51
17,5%	25	13	6	20	302	151	127	176	1058	1	1	0	2	15	8	2	13	53
18,0%	26	13	6	20	311	156	131	180	1089	1	1	0	2	16	8	2	13	54
18,5%	27	13	6	21	320	160	135	185	1119	1	1	0	2	16	8	2	14	56
19,0%	27	14	6	21	328	164	139	190	1149	1	1	0	2	16	8	2	14	57
19,5%	28	14	7	22	337	168	143	194	1179	1	1	0	2	17	8	3	14	59
20,0%	29	14	7	22	346	173	147	199	1210	1	1	0	2	17	9	3	15	60
20,5%	30	15	7	22	354	177	151	204	1240	1	1	0	2	18	9	3	15	62
21,0%	30	15	7	23	363	181	155	208	1270	2	1	0	2	18	9	3	15	64
21,5%	31	15	8	23	372	186	159	213	1300	2	1	0	3	19	9	3	15	65
22,0%	32	16	8	24	380	190	163	218	1331	2	1	0	3	19	10	3	16	67
22,5%	32	16	8	24	389	194	167	222	1361	2	1	0	3	19	10	3	16	68
23,0%	33	17	8	25	397	199	171	227	1391	2	1	0	3	20	10	4	16	70
23,5%	34	17	9	25	406	203	175	232	1421	2	1	0	3	20	10	4	17	71
24,0%	35	17	9	26	415	207	179	236	1452	2	1	0	3	21	10	4	17	73
24,5%	35	18	9	26	423	212	183	241	1482	2	1	0	3	21	11	4	17	74
25,0%	36	18	10	26	432	216	187	245	1512	2	1	0	3	22	11	4	17	76
25,5%	37	18	10	27	441	220	191	250	1542	2	1	0	3	22	11	4	18	77
26,0%	37	19	10	27	449	225	195	255	1572	2	1	0	3	22	11	5	18	79
26,5%	38	19	10	28	458	229	199	259	1603	2	1	0	3	23	11	5	18	80
27,0%	39	19	11	28	467	233	203	264	1633	2	1	0	3	23	12	5	18	82
27,5%	40	20	11	29	475	238	207	268	1663	2	1	0	3	24	12	5	19	83
28,0%	40	20	11	29	484	242	211	273	1693	2	1	0	3	24	12	5	19	85
28,5%	41	21	11	30	492	246	215	278	1724	2	1	0	3	25	12	5	19	86
29,0%	42	21	12	30	501	251	219	282	1754	2	1	0	3	25	13	5	20	88
29,5%	42	21	12	30	510	255	223	287	1784	2	1	0	3	25	13	6	20	89
30,0%	43	22	12	31	518	259	227	291	1814	2	1	0	3	26	13	6	20	91
30,5%	44	22	13	31	527	264	231	296	1845	2	1	0	3	26	13	6	20	92
31,0%	45	22	13	32	536	268	235	301	1875	2	1	0	3	27	13	6	21	94
31,5%	45	23	13	32	544	272	239	305	1905	2	1	0	3	27	14	6	21	95

Tableau C.1/M.2101.1 – Objectifs de qualité de fonctionnement alloués aux conteneurs VC-1 (suite)

		Objecti	teneur \	VC-1 (ob)	Objectifs SES de conteneur VC-1 (Objectif (PO=0,1%)												
		2 heur	es			1 jou	ır		7 jours		2 heur	es		1 jour				7 jours
Alloc. de conduit de	APO	BISO	S1	S2	APO	BISO	S1	S2	BISO	APO	BISO	S1	S2	APO	BISO	S1	S2	BISO
conteneur VC-1																		
32,0%	46	23	13	33	553	276	243	310	1935	2	1	0	3	28	14	6	21	97
32,5%	47	23	14	33	562	281	247	314	1966	2	1	0	3	28	14	7	22	98
33,0%	48	24	14	34	570	285	251	319	1996	2	1	0	3	29	14	7	22	100
33,5%	48	24	14	34	579	289	255	323	2026	2	1	0	3	29	14	7	22	101
34,0%	49	24	15	34	588	294	259	328	2056	2	1	0	3	29	15	7	22	103
34,5%	50	25	15	35	596	298	264	333	2087	2	1	0	3	30	15	7	23	104
35,0%	50	25	15	35	605	302	268	337	2117	3	1	0	4	30	15	7	23	106
35,5%	51	26	15	36	613	307	272	342	2147	3	1	0	4	31	15	8	23	107
36,0%	52	26	16	36	622	311	276	346	2177	3	1	0	4	31	16	8	23	109
36,5%	53	26	16	37	631	315	280	351	2208	3	1	0	4	32	16	8	24	110
37,0%	53	27	16	37	639	320	284	355	2238	3	1	0	4	32	16	8	24	112
37,5%	54	27	17	37	648	324	288	360	2268	3	1	0	4	32	16	8	24	113
38,0%	55	27	17	38	657	328	292	365	2298	3	1	0	4	33	16	8	25	115
38,5%	55	28	17	38	665	333	296	369	2328	3	1	0	4	33	17	8	25	116
39,0%	56	28	17	39	674	337	300	374	2359	3	1	0	4	34	17	9	25	118
39,5%	57	28	18	39	683	341	304	378	2389	3	1	0	4	34	17	9	25	119
40,0%	58	29	18	40	691	346	308	383	2419	3	1	0	4	35	17	9	26	121
40,5%	58	29	18	40	700	350	313	387	2449	3	1	0	4	35	17	9	26	122
41,0%	59	30	19	40	708	354	317	392	2480	3	1	0	4	35	18	9	26	124
41,5%	60	30	19	41	717	359	321	396	2510	3	1	0	4	36	18	9	26	125
42,0%	60	30	19	41	726	363	325	401	2540	3	2	0	4	36	18	10	27	127
42,5%	61	31	20	42	734	367	329	406	2570	3	2	0	4	37	18	10	27	129
43,0%	62	31	20	42	743	372	333	410	2601	3	2	0	4	37	19	10	27	130
43,5%	63	31	20	43	752	376	337	415	2631	3	2	0	4	38	19	10	27	132
44,0%	63	32	20	43	760	380	341	419	2661	3	2	0	4	38	19	10	28	133
44,5%	64	32	21	43	769	384	345	424	2691	3	2	0	4	38	19	10	28	135
45,0%	65	32	21	44	778	389	349	428	2722	3	2	0	4	39	19	11	28	136
45,5%	66	33	21	44	786	393	353	433	2752	3	2	0	4	39	20	11	29	138
46,0%	66	33	22	45	795	397	358	437	2782	3	2	0	4	40	20	11	29	139
46,5%	67	33	22	45	804	402	362	442	2812	3	2	0	4	40	20	11	29	141
47,0%	68	34	22	45	812	406	366	446	2843	3	2	0	4	41	20	11	29	142
47,5%	68	34	23	46	821	410	370	451	2873	3	2	0	4	41	21	11	30	144
48,0%	69	35	23	46	829	415	374	455	2903	3	2	0	4	41	21	12	30	145
48,5%	70	35	23	47	838	419	378	460	2933	3	2	0	4	42	21	12	30	147
49,0%	71	35	23	47	847	423	382	465	2964	4	2	0	4	42	21	12	30	148
49,5%	71	36	24	48	855	428	386	469	2994	4	2	0	4	43	21	12	31	150
50,0%	72	36	24	48	864	432	390	474	3024	4	2	0	4	43	22	12	31	151
50,5%	73	36	24	48	873	436	395	478	3054	4	2	0	5	44	22	12	31	153
51,0%	73	37	25	49	881	441	399	483	3084	4	2	0	5	44	22	13	31	154
51,5%	74	37	25	49	890	445	403	487	3115	4	2	0	5	44	22	13	32	156
52,0%	75	37	25	50	899	449	407	492	3145	4	2	0	5	45	22	13	32	157
52,070	13	ا د	23	50	0,7,7	777	707	774	3173	-7			3	7.5		1.3	24	131

Tableau C.1/M.2101.1 – Objectifs de qualité de fonctionnement alloués aux conteneurs VC-1 (fin)

		Objecti	fs ES	de con	teneur V	/C-1 (ob	jectif P	O=2%)	Ob	jectifs S	ES de	conten	eur VC	-1 (Obje	ectif (I	PO=0,	1%)
		2 heur	es			1 jo	ur		7 jours		2 heur	es			1 jou	r		7 jours
Alloc. de conduit de conteneur VC-1	APO	BISO	S1	S2	APO	BISO	S1	S2	BISO	APO	BISO	S1	S2	APO	BISO	S1	S2	BISO
52,5%	76	38	26	50	907	454	411	496	3175	4	2	0	5	45	23	13	32	159
53,0%	76	38	26	51	916	458	415	501	3205	4	2	0	5	46	23	13	32	160
53,5%	77	39	26	51	924	462	419	505	3236	4	2	0	5	46	23	13	33	162
54,0%	78	39	26	51	933	467	423	510	3266	4	2	0	5	47	23	14	33	163
54,5%	78	39	27	52	942	471	427	514	3296	4	2	0	5	47	24	14	33	165
55,0%	79	40	27	52	950	475	432	519	3326	4	2	0	5	48	24	14	34	166
55,5%	80	40	27	53	959	480	436	523	3357	4	2	0	5	48	24	14	34	168
56,0%	81	40	28	53	968	484	440	528	3387	4	2	0	5	48	24	14	34	169
56,5%	81	41	28	53	976	488	444	532	3417	4	2	0	5	49	24	15	34	171
57,0%	82	41	28	54	985	492	448	537	3447	4	2	0	5	49	25	15	35	172
57,5%	83	41	29	54	994	497	452	541	3478	4	2	0	5	50	25	15	35	174
58,0%	84	42	29	55	1002	501	456	546	3508	4	2	0	5	50	25	15	35	175
58,5%	84	42	29	55	1011	505	460	550	3538	4	2	0	5	51	25	15	35	177
59,0%	85	42	29	56	1020	510	465	555	3568	4	2	0	5	51	25	15	36	178
59,5%	86	43	30	56	1028	514	469	559	3599	4	2	0	5	51	26	16	36	180
60,0%	86	43	30	56	1037	518	473	564	3629	4	2	0	5	52	26	16	36	181
60,5%	87	44	30	57	1045	523	477	568	3659	4	2	0	5	52	26	16	36	183
61,0%	88	44	31	57	1054	527	481	573	3689	4	2	0	5	53	26	16	37	184
61,5%	89	44	31	58	1063	531	485	577	3720	4	2	0	5	53	27	16	37	186
62,0%	89	45	31	58	1071	536	489	582	3750	4	2	0	5	54	27	16	37	187
62,5%	90	45	32	58	1080	540	494	586	3780	5	2	0	5	54	27	17	37	189
63,0%	91	45	32	59	1089	544	498	591	3810	5	2	0	5	54	27	17	38	191

Tableau C.2/M.2101.1 – Objectifs de qualité de fonctionnement alloués aux conteneurs VC-2

	(Objectifs	ES d	e cont	eneur V	C-2 (Obj	ectif P	O=2,5%	6)	Ol	bjectifs S	ES de	conte	neur V(C-2 (obje	ectif P	O=0,1	1%)
		2 heur	es			1 jou	ır		7 jours		2 heur	res			1 jou	r		7 jours
Alloc. de conduit de conteneur VC-2	APO	BISO	S1	S2	APO	BISO	S1	S2	BISO	APO	BISO	S1	S2	APO	BISO	S1	S2	BISO
0,5%	1	0	0	2	11	5	1	10	38	0	0	0	0	0	0	0	1	2
1,0%	2	1	0	3	22	11	4	17	76	0	0	0	0	1	0	0	2	3
1,5%	3	1	0	4	32	16	8	24	113	0	0	0	1	1	1	0	2	5
2,0%	4	2	0	4	43	22	12	31	151	0	0	0	1	2	1	0	3	6
2,5%	5	2	0	5	54	27	17	37	189	0	0	0	1	2	1	0	3	8
3,0%	5	3	0	6	65	32	21	44	227	0	0	0	1	3	1	0	4	9
3,5%	6	3	0	7	76	38	26	50	265	0	0	0	1	3	2	0	4	11
4,0%	7	4	0	7	86	43	30	56	302	0	0	0	1	3	2	0	4	12

Tableau C.2/M.2101.1 – Objectifs de qualité de fonctionnement alloués aux conteneurs VC-2 (suite)

	(Objectifs	ES de	e cont	eneur V	C-2 (Obj	ectif P	O=2,5%	6)	Ol	ojectifs S	ES de	conte	neur V(C-2 (obje	ctif P	O=0,1	.%)
		2 heur	es			1 jou	ır		7 jours		2 heur	es			1 jou	r		7 jours
Alloc. de conduit de conteneur VC-2	APO	BISO	S1	S2	APO	BISO	S1	S2	BISO	APO	BISO	S1	S2	APO	BISO	S1	S2	BISO
4,5%	8	4	0	8	97	49	35	63	340	0	0	0	1	4	2	0	5	14
5,0%	9	5	0	9	108	54	39	69	378	0	0	0	1	4	2	0	5	15
5,5%	10	5	1	9	119	59	44	75	416	0	0	0	1	5	2	0	5	17
6,0%	11	5	1	10	130	65	49	81	454	0	0	0	1	5	3	0	6	18
6,5%	12	6	1	11	140	70	53	87	491	0	0	0	1	6	3	0	6	20
7,0%	13	6	1	11	151	76	58	93	529	1	0	0	1	6	3	0	7	21
7,5%	14	7	2	12	162	81	63	99	567	1	0	0	1	6	3	0	7	23
8,0%	14	7	2	13	173	86	68	105	605	1	0	0	1	7	3	0	7	24
8,5%	15	8	2	13	184	92	73	111	643	1	0	0	1	7	4	0	8	26
9,0%	16	8	2	14	194	97	77	117	680	1	0	0	1	8	4	0	8	27
9,5%	17	9	3	14	205	103	82	123	718	1	0	0	2	8	4	0	8	29
10,0%	18	9	3	15	216	108	87	129	756	1	0	0	2	9	4	0	8	30
10,5%	19	9	3	16	227	113	92	135	794	1	0	0	2	9	5	0	9	32
11,0%	20	10	4	16	238	119	97	141	832	1	0	0	2	10	5	0	9	33
11,5%	21	10	4	17	248	124	102	146	869	1	0	0	2	10	5	1	9	35
12,0%	22	11	4	17	259	130	107	152	907	1	0	0	2	10	5	1	10	36
12,5%	23	11	5	18	270	135	112	158	945	1	0	0	2	11	5	1	10	38
13,0%	23	12	5	19	281	140	117	164	983	1	0	0	2	11	6	1	10	39
13,5%	24	12	5	19	292	146	122	170	1021	1	0	0	2	12	6	1	11	41
14,0%	25	13	6	20	302	151	127	176	1058	1	1	0	2	12	6	1	11	42
14,5%	26	13	6	20	313	157	132	182	1096	1	1	0	2	13	6	1	11	44
15,0%	27	14	6	21	324	162	137	187	1134	1	1	0	2	13	6	1	12	45
15,5%	28	14	6	21	335	167	142	193	1172	1	1	0	2	13	7	2	12	47
16,0%	29	14	7	22	346	173	147	199	1210	1	1	0	2	14	7	2	12	48
16,5%	30	15	7	23	356	178	152	205	1247	1	1	0	2	14	7	2	12	50
17,0%	31	15	7	23	367	184	157	211	1285	1	1	0	2	15	7	2	13	51
17,5%	32	16	8	24	378	189	162	216	1323	1	1	0	2	15	8	2	13	53
18,0%	32	16	8	24	389	194	167	222	1361	1	1	0	2	16	8	2	13	54
18,5%	33	17	8	25	400	200	172	228	1399	1	1	0	2	16	8	2	14	56
19,0%	34	17	9	25	410	205	177	234	1436	1	1	0	2	16	8	2	14	57
19,5%	35	18	9	26	421	211	182	240	1474	1	1	0	2	17	8	3	14	59
20,0%	36	18	10	26	432	216	187	245	1512	1	1	0	2	17	9	3	15	60
20,5%	37	18	10	27	443	221	192	251	1550	1	1	0	2	18	9	3	15	62
21,0%	38	19	10	28	454	227	197	257	1588	2	1	0	2	18	9	3	15	64
21,5%	39	19	11	28	464	232	202	263	1625	2	1	0	3	19	9	3	15	65
22,0%	40	20	11	29	475	238	207	268	1663	2	1	0	3	19	10	3	16	67
22,5%	41	20	11	29	486	243	212	274	1701	2	1	0	3	19	10	3	16	68
23,0%	41	21	12	30	497	248	217	280	1739	2	1	0	3	20	10	4	16	70
23,5%	42	21	12	30	508	254	222	286	1777	2	1	0	3	20	10	4	17	71
24,0%	43	22	12	31	518	259	227	291	1814	2	1	0	3	21	10	4	17	73
24,5%	44	22	13	31	529	265	232	297	1852	2	1	0	3	21	11	4	17	74

Tableau C.2/M.2101.1 – Objectifs de qualité de fonctionnement alloués aux conteneurs VC-2 (suite)

	(Objectifs	ES d	e cont	eneur V	C-2 (Obj	ectif P	0=2,5%	(0)	Ol	ojectifs S	ES de	conte	neur V(C-2 (obje	ctif P	O=0,1	.%)
		2 heur	es			1 jou	ır		7 jours		2 heur	es			1 jou	r		7 jours
Alloc. de conduit de conteneur VC-2	APO	BISO	S1	S2	APO	BISO	S1	S2	BISO	APO	BISO	S1	S2	APO	BISO	S1	S2	BISO
25,0%	45	23	13	32	540	270	237	303	1890	2	1	0	3	22	11	4	17	76
25,5%	46	23	13	33	551	275	242	309	1928	2	1	0	3	22	11	4	18	77
26,0%	47	23	14	33	562	281	247	314	1966	2	1	0	3	22	11	5	18	79
26,5%	48	24	14	34	572	286	252	320	2003	2	1	0	3	23	11	5	18	80
27,0%	49	24	14	34	583	292	257	326	2041	2	1	0	3	23	12	5	18	82
27,5%	50	25	15	35	594	297	263	331	2079	2	1	0	3	24	12	5	19	83
28,0%	50	25	15	35	605	302	268	337	2117	2	1	0	3	24	12	5	19	85
28,5%	51	26	16	36	616	308	273	343	2155	2	1	0	3	25	12	5	19	86
29,0%	52	26	16	36	626	313	278	349	2192	2	1	0	3	25	13	5	20	88
29,5%	53	27	16	37	637	319	283	354	2230	2	1	0	3	25	13	6	20	89
30,0%	54	27	17	37	648	324	288	360	2268	2	1	0	3	26	13	6	20	91
30,5%	55	27	17	38	659	329	293	366	2306	2	1	0	3	26	13	6	20	92
31,0%	56	28	17	38	670	335	298	371	2344	2	1	0	3	27	13	6	21	94
31,5%	57	28	18	39	680	340	303	377	2381	2	1	0	3	27	14	6	21	95
32,0%	58	29	18	40	691	346	308	383	2419	2	1	0	3	28	14	6	21	97
32,5%	59	29	18	40	702	351	314	388	2457	2	1	0	3	28	14	7	22	98
33,0%	59	30	19	41	713	356	319	394	2495	2	1	0	3	29	14	7	22	100
33,5%	60	30	19	41	724	362	324	400	2533	2	1	0	3	29	14	7	22	101
34,0%	61	31	20	42	734	367	329	406	2570	2	1	0	3	29	15	7	22	103
34,5%	62	31	20	42	745	373	334	411	2608	2	1	0	3	30	15	7	23	104
35,0%	63	32	20	43	756	378	339	417	2646	3	1	0	4	30	15	7	23	106
35,5%	64	32	21	43	767	383	344	423	2684	3	1	0	4	31	15	8	23	107
36,0%	65	32	21	44	778	389	349	428	2722	3	1	0	4	31	16	8	23	109
36,5%	66	33	21	44	788	394	354	434	2759	3	1	0	4	32	16	8	24	110
37,0%	67	33	22	45	799	400	360	440	2797	3	1	0	4	32	16	8	24	112
37,5%	68	34	22	45	810	405	365	445	2835	3	1	0	4	32	16	8	24	113
38,0%	68	34	23	46	821	410	370	451	2873	3	1	0	4	33	16	8	25	115
38,5%	69	35	23	46	832	416	375	457	2911	3	1	0	4	33	17	8	25	116
39,0%	70	35	23	47	842	421	380	462	2948	3	1	0	4	34	17	9	25	118
39,5%	71	36	24	47	853	427	385	468	2986	3	1	0	4	34	17	9	25	119
40,0%	72	36	24	48	864	432	390	474	3024	3	1	0	4	35	17	9	26	121
40,5%	73	36	24	49	875	437	396	479	3062	3	1	0	4	35	17	9	26	122
41,0%	74	37	25	49	886	443	401	485	3100	3	1	0	4	35	18	9	26	124
41,5%	75	37	25	50	896	448	406	491	3137	3	1	0	4	36	18	9	26	125
42,0%	76	38	26	50	907	454	411	496	3175	3	2	0	4	36	18	10	27	127
42,5%	77	38	26	51	918	459	416	502	3213	3	2	0	4	37	18	10	27	129
43,0%	77	39	26	51	929	464	421	507	3251	3	2	0	4	37	19	10	27	130
43,5%	78	39	27	52	940	470	426	513	3289	3	2	0	4	38	19	10	27	132
44,0%	79	40	27	52	950	475	432	519	3326	3	2	0	4	38	19	10	28	133
44,5%	80	40	27	53	961	481	437	524	3364	3	2	0	4	38	19	10	28	135
45,0%	81	41	28	53	972	486	442	530	3402	3	2	0	4	39	19	11	28	136

Tableau C.2/M.2101.1 – Objectifs de qualité de fonctionnement alloués aux conteneurs $VC-2\ (fin)$

	(Objectifs	ES de	e cont	eneur V	C-2 (Obj	jectif P	O=2,5%	(0)	Ol	bjectifs S	ES de	conte	neur V(C-2 (obje	ectif P	O=0,1	1%)
		2 heur	es			1 jo	ur		7 jours		2 heur	es			1 jou	r		7 jours
Alloc. de conduit de conteneur VC-2	APO	BISO	S1	S2	APO	BISO	S1	S2	BISO	APO	BISO	S1	S2	APO	BISO	S1	S2	BISO
45,5%	82	41	28	54	983	491	447	536	3440	3	2	0	4	39	20	11	29	138
46,0%	83	41	29	54	994	497	452	541	3478	3	2	0	4	40	20	11	29	139
46,5%	84	42	29	55	1004	502	457	547	3515	3	2	0	4	40	20	11	29	141
47,0%	85	42	29	55	1015	508	463	553	3553	3	2	0	4	41	20	11	29	142
47,5%	86	43	30	56	1026	513	468	558	3591	3	2	0	4	41	21	11	30	144
48,0%	86	43	30	56	1037	518	473	564	3629	3	2	0	4	41	21	12	30	145
48,5%	87	44	30	57	1048	524	478	570	3667	3	2	0	4	42	21	12	30	147
49,0%	88	44	31	57	1058	529	483	575	3704	4	2	0	4	42	21	12	30	148
49,5%	89	45	31	58	1069	535	488	581	3742	4	2	0	4	43	21	12	31	150
50,0%	90	45	32	58	1080	540	494	586	3780	4	2	0	4	43	22	12	31	151
50,5%	91	45	32	59	1091	545	499	592	3818	4	2	0	5	44	22	12	31	153
51,0%	92	46	32	59	1102	551	504	598	3856	4	2	0	5	44	22	13	31	154
51,5%	93	46	33	60	1112	556	509	603	3893	4	2	0	5	44	22	13	32	156
52,0%	94	47	33	60	1123	562	514	609	3931	4	2	0	5	45	22	13	32	157
52,5%	95	47	34	61	1134	567	519	615	3969	4	2	0	5	45	23	13	32	159
53,0%	95	48	34	62	1145	572	525	620	4007	4	2	0	5	46	23	13	32	160
53,5%	96	48	34	62	1156	578	530	626	4045	4	2	0	5	46	23	13	33	162
54,0%	97	49	35	63	1166	583	535	631	4082	4	2	0	5	47	23	14	33	163
54,5%	98	49	35	63	1177	589	540	637	4120	4	2	0	5	47	24	14	33	165
55,0%	99	50	35	64	1188	594	545	643	4158	4	2	0	5	48	24	14	34	166
55,5%	100	50	36	64	1199	599	550	648	4196	4	2	0	5	48	24	14	34	168
56,0%	101	50	36	65	1210	605	556	654	4234	4	2	0	5	48	24	14	34	169
56,5%	102	51	37	65	1220	610	561	660	4271	4	2	0	5	49	24	15	34	171
57,0%	103	51	37	66	1231	616	566	665	4309	4	2	0	5	49	25	15	35	172
57,5%	104	52	37	66	1242	621	571	671	4347	4	2	0	5	50	25	15	35	174
58,0%	104	52	38	67	1253	626	576	676	4385	4	2	0	5	50	25	15	35	175
58,5%	105	53	38	67	1264	632	582	682	4423	4	2	0	5	51	25	15	35	177
59,0%	106	53	39	68	1274	637	587	688	4460	4	2	0	5	51	25	15	36	178
59,5%	107	54	39	68	1285	643	592	693	4498	4	2	0	5	51	26	16	36	180
60,0%	108	54	39	69	1296	648	597	699	4536	4	2	0	5	52	26	16	36	181
60,5%	109	54	40	69	1307	653	602	705	4574	4	2	0	5	52	26	16	36	183
61,0%	110	55	40	70	1318	659	607	710	4612	4	2	0	5	53	26	16	37	184
61,5%	111	55	40	70	1328	664	613	716	4649	4	2	0	5	53	27	16	37	186
62,0%	112	56	41	71	1339	670	618	721	4687	4	2	0	5	54	27	16	37	187
62,5%	113	56	41	71	1350	675	623	727	4725	5	2	0	5	54	27	17	37	189
63,0%	113	57	42	72	1361	680	628	733	4763	5	2	0	5	54	27	17	38	191

Tableau C.3/M.2101.1 – Objectifs de qualité de fonctionnement alloués aux conteneurs VC-3

	0	bjectifs	ES de	conte	eneur V(C-3 (Obj	ectif P(D=3,75°	%)	Ot	jectifs S	ES de	conte	neur VC	C-3 (Obje	ectif F	O=0,	1%)
		2 heur	es			1 jo	ur		7 jours		2 heur	es			1 jou	r		7 jours
Alloc. de conduit de conteneur VC-3	APO	BISO	S1	S2	APO	BISO	S1	S2	BISO	APO	BISO	S1	S2	APO	BISO	S1	S2	BISO
0,5%	1	1	0	2	16	8	2	14	57	0	0	0	0	0	0	0	1	2
1,0%	3	1	0	4	32	16	8	24	113	0	0	0	0	1	0	0	2	3
1,5%	4	2	0	5	49	24	14	34	170	0	0	0	1	1	1	0	2	5
2,0%	5	3	0	6	65	32	21	44	227	0	0	0	1	2	1	0	3	6
2,5%	7	3	0	7	81	41	28	53	284	0	0	0	1	2	1	0	3	8
3,0%	8	4	0	8	97	49	35	63	340	0	0	0	1	3	1	0	4	9
3,5%	9	5	0	9	113	57	42	72	397	0	0	0	1	3	2	0	4	11
4,0%	11	5	1	10	130	65	49	81	454	0	0	0	1	3	2	0	4	12
4,5%	12	6	1	11	146	73	56	90	510	0	0	0	1	4	2	0	5	14
5,0%	14	7	2	12	162	81	63	99	567	0	0	0	1	4	2	0	5	15
5,5%	15	7	2	13	178	89	70	108	624	0	0	0	1	5	2	0	5	17
6,0%	16	8	2	14	194	97	77	117	680	0	0	0	1	5	3	0	6	18
6,5%	18	9	3	15	211	105	85	126	737	0	0	0	1	6	3	0	6	20
7,0%	19	9	3	16	227	113	92	135	794	1	0	0	1	6	3	0	7	21
7,5%	20	10	4	16	243	122	99	144	851	1	0	0	1	6	3	0	7	23
8,0%	22	11	4	17	259	130	107	152	907	1	0	0	1	7	3	0	7	24
8,5%	23	11	5	18	275	138	114	161	964	1	0	0	1	7	4	0	8	26
9,0%	24	12	5	19	292	146	122	170	1021	1	0	0	1	8	4	0	8	27
9,5%	26	13	6	20	308	154	129	179	1077	1	0	0	2	8	4	0	8	29
10,0%	27	14	6	21	324	162	137	187	1134	1	0	0	2	9	4	0	8	30
10,5%	28	14	7	22	340	170	144	196	1191	1	0	0	2	9	5	0	9	32
11,0%	30	15	7	23	356	178	152	205	1247	1	0	0	2	10	5	0	9	33
11,5%	31	16	8	23	373	186	159	214	1304	1	0	0	2	10	5	1	9	35
12,0%	32	16	8	24	389	194	167	222	1361	1	0	0	2	10	5	1	10	36
12,5%	34	17	9	25	405	203	174	231	1418	1	0	0	2	11	5	1	10	38
13,0%	35	18	9	26	421	211	182	240	1474	1	0	0	2	11	6	1	10	39
13,5%	36	18	10	27	437	219	189	248	1531	1	0	0	2	12	6	1	11	41
14,0%	38	19	10	28	454	227	197	257	1588	1	1	0	2	12	6	1	11	42
14,5%	39	20	11	28	470	235	204	266	1644	1	1	0	2	13	6	1	11	44
15,0%	41	20	11	29	486	243	212	274	1701	1	1	0	2	13	6	1	12	45
15,5%	42	21	12	30	502	251	219	283	1758	1	1	0	2	13	7	2	12	47
16,0%	43	22	12	31	518	259	227	291	1814	1	1	0	2	14	7	2	12	48
16,5%	45	22	13	32	535	267	235	300	1871	1	1	0	2	14	7	2	12	50
17,0%	46	23	13	33	551	275	242	309	1928	1	1	0	2	15	7	2	13	51
17,5%	47	24	14	33	567	284	250	317	1985	1	1	0	2	15	8	2	13	53

Tableau C.3/M.2101.1 – Objectifs de qualité de fonctionnement alloués aux conteneurs VC-3 (suite)

	0	bjectifs	ES de	conte	eneur VO	C-3 (Obj	ectif P(D=3,75°	%)	Ob	jectifs S	ES de	conte	neur VC	C-3 (Obj	ectif P	O=0,	1%)
		2 heur	es			1 jo	ur		7 jours		2 heur	es			1 jou	r		7 jours
Alloc. de conduit de conteneur VC-3	APO	BISO	S1	S2	APO	BISO	S1	S2	BISO	APO	BISO	S1	S2	APO	BISO	S1	S2	BISO
18,0%	49	24	14	34	583	292	257	326	2041	1	1	0	2	16	8	2	13	54
18,5%	50	25	15	35	599	300	265	334	2098	1	1	0	2	16	8	2	14	56
19,0%	51	26	16	36	616	308	273	343	2155	1	1	0	2	16	8	2	14	57
19,5%	53	26	16	37	632	316	280	351	2211	1	1	0	2	17	8	3	14	59
20,0%	54	27	17	37	648	324	288	360	2268	1	1	0	2	17	9	3	15	60
20,5%	55	28	17	38	664	332	296	369	2325	1	1	0	2	18	9	3	15	62
21,0%	57	28	18	39	680	340	303	377	2381	2	1	0	2	18	9	3	15	64
21,5%	58	29	18	40	697	348	311	386	2438	2	1	0	3	19	9	3	15	65
22,0%	59	30	19	41	713	356	319	394	2495	2	1	0	3	19	10	3	16	67
22,5%	61	30	19	41	729	365	326	403	2552	2	1	0	3	19	10	3	16	68
23,0%	62	31	20	42	745	373	334	411	2608	2	1	0	3	20	10	4	16	70
23,5%	63	32	20	43	761	381	342	420	2665	2	1	0	3	20	10	4	17	71
24,0%	65	32	21	44	778	389	349	428	2722	2	1	0	3	21	10	4	17	73
24,5%	66	33	22	45	794	397	357	437	2778	2	1	0	3	21	11	4	17	74
25,0%	68	34	22	45	810	405	365	445	2835	2	1	0	3	22	11	4	17	76
25,5%	69	34	23	46	826	413	372	454	2892	2	1	0	3	22	11	4	18	77
26,0%	70	35	23	47	842	421	380	462	2948	2	1	0	3	22	11	5	18	79
26,5%	72	36	24	48	859	429	388	471	3005	2	1	0	3	23	11	5	18	80
27,0%	73	36	24	49	875	437	396	479	3062	2	1	0	3	23	12	5	18	82
27,5%	74	37	25	49	891	446	403	488	3119	2	1	0	3	24	12	5	19	83
28,0%	76	38	26	50	907	454	411	496	3175	2	1	0	3	24	12	5	19	85
28,5%	77	38	26	51	923	462	419	505	3232	2	1	0	3	25	12	5	19	86
29,0%	78	39	27	52	940	470	426	513	3289	2	1	0	3	25	13	5	20	88
29,5%	80	40	27	52	956	478	434	522	3345	2	1	0	3	25	13	6	20	89
30,0%	81	41	28	53	972	486	442	530	3402	2	1	0	3	26	13	6	20	91
30,5%	82	41	28	54	988	494	450	539	3459	2	1	0	3	26	13	6	20	92
31,0%	84	42	29	55	1004	502	457	547	3515	2	1	0	3	27	13	6	21	94
31,5%	85	43	29	56	1021	510	465	555	3572	2	1	0	3	27	14	6	21	95
32,0%	86	43	30	56	1037	518	473	564	3629	2	1	0	3	28	14	6	21	97
32,5%	88	44	31	57	1053	527	481	572	3686	2	1	0	3	28	14	7	22	98
33,0%	89	45	31	58	1069	535	488	581	3742	2	1	0	3	29	14	7	22	100
33,5%	90	45	32	59	1085	543	496	589	3799	2	1	0	3	29	14	7	22	101
34,0%	92	46	32	59	1102	551	504	598	3856	2	1	0	3	29	15	7	22	103
34,5%	93	47	33	60	1118	559	512	606	3912	2	1	0	3	30	15	7	23	104
35,0%	95	47	34	61	1134	567	519	615	3969	3	1	0	4	30	15	7	23	106
35,5%	96	48	34	62	1150	575	527	623	4026	3	1	0	4	31	15	8	23	107
36,0%	97	49	35	63	1166	583	535	631	4082	3	1	0	4	31	16	8	23	109

Tableau C.3/M.2101.1 – Objectifs de qualité de fonctionnement alloués aux conteneurs VC-3 (suite)

	О	bjectifs	ES de	conte	eneur VC	C-3 (Obj	ectif P()=3,759	%)	Oh	jectifs S	ES de	conte	neur VC	C-3 (Obj	ectif P	O=0,	1%)
		2 heur	es			1 jo	ur		7 jours		2 heur	res			1 jou	r		7 jours
Alloc. de conduit de conteneur VC-3	APO	BISO	S1	S2	APO	BISO	S1	S2	BISO	APO	BISO	S1	S2	APO	BISO	S1	S2	BISO
36,5%	99	49	35	63	1183	591	543	640	4139	3	1	0	4	32	16	8	24	110
37,0%	100	50	36	64	1199	599	550	648	4196	3	1	0	4	32	16	8	24	112
37,5%	101	51	36	65	1215	608	558	657	4253	3	1	0	4	32	16	8	24	113
38,0%	103	51	37	66	1231	616	566	665	4309	3	1	0	4	33	16	8	25	115
38,5%	104	52	38	66	1247	624	574	674	4366	3	1	0	4	33	17	8	25	116
39,0%	105	53	38	67	1264	632	582	682	4423	3	1	0	4	34	17	9	25	118
39,5%	107	53	39	68	1280	640	589	690	4479	3	1	0	4	34	17	9	25	119
40,0%	108	54	39	69	1296	648	597	699	4536	3	1	0	4	35	17	9	26	121
40,5%	109	55	40	69	1312	656	605	707	4593	3	1	0	4	35	17	9	26	122
41,0%	111	55	40	70	1328	664	613	716	4649	3	1	0	4	35	18	9	26	124
41,5%	112	56	41	71	1345	672	620	724	4706	3	1	0	4	36	18	9	26	125
42,0%	113	57	42	72	1361	680	628	733	4763	3	2	0	4	36	18	10	27	127
42,5%	115	57	42	73	1377	689	636	741	4820	3	2	0	4	37	18	10	27	129
43,0%	116	58	43	73	1393	697	644	749	4876	3	2	0	4	37	19	10	27	130
43,5%	117	59	43	74	1409	705	652	758	4933	3	2	0	4	38	19	10	27	132
44,0%	119	59	44	75	1426	713	659	766	4990	3	2	0	4	38	19	10	28	133
44,5%	120	60	45	76	1442	721	667	775	5046	3	2	0	4	38	19	10	28	135
45,0%	122	61	45	76	1458	729	675	783	5103	3	2	0	4	39	19	11	28	136
45,5%	123	61	46	77	1474	737	683	791	5160	3	2	0	4	39	20	11	29	138
46,0%	124	62	46	78	1490	745	691	800	5216	3	2	0	4	40	20	11	29	139
46,5%	126	63	47	79	1507	753	698	808	5273	3	2	0	4	40	20	11	29	141
47,0%	127	63	48	79	1523	761	706	817	5330	3	2	0	4	41	20	11	29	142
47,5%	128	64	48	80	1539	770	714	825	5387	3	2	0	4	41	21	11	30	144
48,0%	130	65	49	81	1555	778	722	833	5443	3	2	0	4	41	21	12	30	145
48,5%	131	65	49	82	1571	786	730	842	5500	3	2	0	4	42	21	12	30	147
49,0%	132	66	50	82	1588	794	737	850	5557	4	2	0	4	42	21	12	30	148
49,5%	134	67	50	83	1604	802	745	859	5613	4	2	0	4	43	21	12	31	150
50,0%	135	68	51	84	1620	810	753	867	5670	4	2	0	4	43	22	12	31	151
50,5%	136	68	52	85	1636	818	761	875	5727	4	2	0	5	44	22	12	31	153
51,0%	138	69	52	85	1652	826	769	884	5783	4	2	0	5	44	22	13	31	154
51,5%	139	70	53	86	1669	834	777	892	5840	4	2	0	5	44	22	13	32	156
52,0%	140	70	53	87	1685	842	784	900	5897	4	2	0	5	45	22	13	32	157
52,5%	142	71	54	88	1701	851	792	909	5954	4	2	0	5	45	23	13	32	159
53,0%	143	72	55	88	1717	859	800	917	6010	4	2	0	5	46	23	13	32	160
53,5%	144	72	55	89	1733	867	808	926	6067	4	2	0	5	46	23	13	33	162
54,0%	146	73	56	90	1750	875	816	934	6124	4	2	0	5	47	23	14	33	163
54,5%	147	74	56	91	1766	883	823	942	6180	4	2	0	5	47	24	14	33	165
55,0%	149	74	57	91	1782	891	831	951	6237	4	2	0	5	48	24	14	34	166
55,5%	150	75	58	92	1798	899	839	959	6294	4	2	0	5	48	24	14	34	168

Tableau C.3/M.2101.1 – Objectifs de qualité de fonctionnement alloués aux conteneurs VC-3 (fin)

	0	bjectifs	ES de	conter	neur VC	-3 (Obje	ctif PO	=3,75%	(o)	Obj	jectifs SI	ES de o	conten	eur VC	-3 (Obje	ctif P	O=0,1	%)
		2 heur	res			1 jou	ır		7 jours		2 heur	res			1 jou	r		7 jours
Alloc. de conduit de conteneur VC-3	APO	BISO	S1	S2	APO	BISO	S1	S2	BISO	APO	BISO	S1	S2	APO	BISO	S1	S2	BISO
56,0%	151	76	58	93	1814	907	847	967	6350	4	2	0	5	48	24	14	34	169
56,5%	153	76	59	94	1831	915	855	976	6407	4	2	0	5	49	24	15	34	171
57,0%	154	77	59	94	1847	923	863	984	6464	4	2	0	5	49	25	15	35	172
57,5%	155	78	60	95	1863	932	870	993	6521	4	2	0	5	50	25	15	35	174
58,0%	157	78	61	96	1879	940	878	1001	6577	4	2	0	5	50	25	15	35	175
58,5%	158	79	61	97	1895	948	886	1009	6634	4	2	0	5	51	25	15	35	177
59,0%	159	80	62	97	1912	956	894	1018	6691	4	2	0	5	51	25	15	36	178
59,5%	161	80	62	98	1928	964	902	1026	6747	4	2	0	5	51	26	16	36	180
60,0%	162	81	63	99	1944	972	910	1034	6804	4	2	0	5	52	26	16	36	181
60,5%	163	82	64	100	1960	980	917	1043	6861	4	2	0	5	52	26	16	36	183
61,0%	165	82	64	100	1976	988	925	1051	6917	4	2	0	5	53	26	16	37	184
61,5%	166	83	65	101	1993	996	933	1059	6974	4	2	0	5	53	27	16	37	186
62,0%	167	84	65	102	2009	1004	941	1068	7031	4	2	0	5	54	27	16	37	187
62,5%	169	84	66	103	2025	1013	949	1076	7088	5	2	0	5	54	27	17	37	189
63,0%	170	85	67	103	2041	1021	957	1084	7144	5	2	0	5	54	27	17	38	191

Tableau C.4/M.2101.1 – Objectifs de qualité de fonctionnement alloués aux conteneurs VC-4

		Ol	ojectif	s ES d	e conter	neur VC-	4 (PO=	8%)			Objectif	s SES	de con	teneur	VC-4 (I	PO=0,	1%)	
		2 heur	es			1 jo	ur		7 jours		2 heur	es			1 jou	r		7 jours
Alloc. de conduit de conteneur VC-4	APO	BISO	S1	S2	APO	BISO	S1	S2	BISO	APO	BISO	S1	S2	APO	BISO	S1	S2	BISO
0,5%	3	1	0	4	35	17	9	26	121	0	0	0	0	0	0	0	1	2
1,0%	6	3	0	6	69	35	23	46	242	0	0	0	0	1	0	0	2	3
1,5%	9	4	0	8	104	52	37	66	363	0	0	0	1	1	1	0	2	5
2,0%	12	6	1	11	138	69	52	86	484	0	0	0	1	2	1	0	3	6
2,5%	14	7	2	13	173	86	68	105	605	0	0	0	1	2	1	0	3	8
3,0%	17	9	3	15	207	104	83	124	726	0	0	0	1	3	1	0	4	9
3,5%	20	10	4	16	242	121	99	143	847	0	0	0	1	3	2	0	4	11
4,0%	23	12	5	18	276	138	115	162	968	0	0	0	1	3	2	0	4	12
4,5%	26	13	6	20	311	156	131	180	1089	0	0	0	1	4	2	0	5	14
5,0%	29	14	7	22	346	173	147	199	1210	0	0	0	1	4	2	0	5	15
5,5%	32	16	8	24	380	190	163	218	1331	0	0	0	1	5	2	0	5	17
6,0%	35	17	9	26	415	207	179	236	1452	0	0	0	1	5	3	0	6	18
6,5%	37	19	10	27	449	225	195	255	1572	0	0	0	1	6	3	0	6	20
7,0%	40	20	11	29	484	242	211	273	1693	1	0	0	1	6	3	0	7	21

Tableau C.4/M.2101.1 – Objectifs de qualité de fonctionnement alloués aux conteneurs VC-4 (suite)

		Ol	bjectif	s ES d	le conten	eur VC-	4 (PO=	8%)			Objectif	s SES	de cor	teneur	VC-4 (I	PO=0,	1%)	
		2 heur	es			1 jo	ur		7 jours		2 heur	es			1 jou	r		7 jours
Alloc. de	APO	BISO	S1	S2	APO	BISO	S1	S2	BISO	APO	BISO	S1	S2	APO	BISO	S1	S2	BISO
conduit de conteneur VC-4																		
7,5%	43	22	12	31	518	259	227	291	1814	1	0	0	1	6	3	0	7	23
8,0%	46	23	13	33	553	276	243	310	1935	1	0	0	1	7	3	0	7	24
8,5%	49	24	15	34	588	294	259	328	2056	1	0	0	1	7	4	0	8	26
9,0%	52	26	16	36	622	311	276	346	2177	1	0	0	1	8	4	0	8	27
9,5%	55	27	17	38	657	328	292	365	2298	1	0	0	2	8	4	0	8	29
10,0%	58	29	18	40	691	346	308	383	2419	1	0	0	2	9	4	0	8	30
10,5%	60	30	19	41	726	363	325	401	2540	1	0	0	2	9	5	0	9	32
11,0%	63	32	20	43	760	380	341	419	2661	1	0	0	2	10	5	0	9	33
11,5%	66	33	22	45	795	397	358	437	2782	1	0	0	2	10	5	1	9	35
12,0%	69	35	23	46	829	415	374	455	2903	1	0	0	2	10	5	1	10	36
12,5%	72	36	24	48	864	432	390	474	3024	1	0	0	2	11	5	1	10	38
13,0%	75	37	25	50	899	449	407	492	3145	1	0	0	2	11	6	1	10	39
13,5%	78	39	26	51	933	467	423	510	3266	1	0	0	2	12	6	1	11	41
14,0%	81	40	28	53	968	484	440	528	3387	1	1	0	2	12	6	1	11	42
14,5%	84	42	29	55	1002	501	456	546	3508	1	1	0	2	13	6	1	11	44
15,0%	86	43	30	56	1037	518	473	564	3629	1	1	0	2	13	6	1	12	45
15,5%	89	45	31	58	1071	536	489	582	3750	1	1	0	2	13	7	2	12	47
16,0%	92	46	33	60	1106	553	506	600	3871	1	1	0	2	14	7	2	12	48
16,5%	95	48	34	61	1140	570	522	618	3992	1	1	0	2	14	7	2	12	50
17,0%	98	49	35	63	1175	588	539	636	4113	1	1	0	2	15	7	2	13	51
17,5%	101	50	36	65	1210	605	556	654	4234	1	1	0	2	15	8	2	13	53
18,0%	104	52	37	66	1244	622	572	672	4355	1	1	0	2	16	8	2	13	54
18,5%	107	53	39	68	1279	639	589	690	4476	1	1	0	2	16	8	2	14	56
19,0%	109	55	40	70	1313	657	605	708	4596	1	1	0	2	16	8	2	14	57
19,5%	112	56	41	71	1348	674	622	726	4717	1	1	0	2	17	8	3	14	59
20,0%	115	58	42	73	1382	691	639	744	4838	1	1	0	2	17	9	3	15	60
20,5%	118	59	44	74	1417	708	655	762	4959	1	1	0	2	18	9	3	15	62
21,0%	121	60	45	76	1452	726	672	780	5080	2	1	0	2	18	9	3	15	64
21,5%	124	62	46	78	1486	743	689	798	5201	2	1	0	3	19	9	3	15	65
22,0%	127	63	47	79	1521	760	705	815	5322	2	1	0	3	19	10	3	16	67
22,5%	130	65	49	81	1555	778	722	833	5443	2	1	0	3	19	10	3	16	68
23,0%	132	66	50	83	1590	795	738	851	5564	2	1	0	3	20	10	4	16	70
23,5%	135	68	51	84	1624	812	755	869	5685	2	1	0	3	20	10	4	17	71
24,0%	138	69	52	86	1659	829	772	887	5806	2	1	0	3	21	10	4	17	73
24,5%	141	71	54	87	1693	847	789	905	5927	2	1	0	3	21	11	4	17	74
25,0%	144	72	55	89	1728	864	805	923	6048	2	1	0	3	22	11	4	17	76
25,5%	147	73	56	91	1763	881	822	941	6169	2	1	0	3	22	11	4	18	77
26,0%	150	75	58	92	1797	899	839	959	6290	2	1	0	3	22	11	5	18	79
26,5%	153	76	59	94	1832	916	855	976	6411	2	1	0	3	23	11	5	18	80
27,0%	156	78	60	95	1866	933	872	994	6532	2	1	0	3	23	12	5	18	82

Tableau C.4/M.2101.1 – Objectifs de qualité de fonctionnement alloués aux conteneurs VC-4 (suite)

		Ol	bjectif	s ES d	le conten	eur VC-	-4 (PO=	8%)			Objectif	s SES	de cor	teneur	VC-4 (I	PO=0,	1%)	
		2 heur	res			1 jo	our		7 jours		2 heur	es			1 jou	r		7 jours
Alloc. de	APO	BISO	S1	S2	APO	BISO	S1	S2	BISO	APO	BISO	S1	S2	APO	BISO	S1	S2	BISO
conduit de conteneur VC-4																		
27,5%	158	79	61	97	1901	950	889	1012	6653	2	1	0	3	24	12	5	19	83
28,0%	161	81	63	99	1935	968	905	1030	6774	2	1	0	3	24	12	5	19	85
28,5%	164	82	64	100	1970	985	922	1048	6895	2	1	0	3	25	12	5	19	86
29,0%	167	84	65	102	2004	1002	939	1066	7016	2	1	0	3	25	13	5	20	88
29,5%	170	85	67	103	2039	1020	956	1083	7137	2	1	0	3	25	13	6	20	89
30,0%	173	86	68	105	2074	1037	972	1101	7258	2	1	0	3	26	13	6	20	91
30,5%	176	88	69	107	2108	1054	989	1119	7379	2	1	0	3	26	13	6	20	92
31,0%	179	89	70	108	2143	1071	1006	1137	7500	2	1	0	3	27	13	6	21	94
31,5%	181	91	72	110	2177	1089	1023	1155	7620	2	1	0	3	27	14	6	21	95
32,0%	184	92	73	111	2212	1106	1039	1172	7741	2	1	0	3	28	14	6	21	97
32,5%	187	94	74	113	2246	1123	1056	1190	7862	2	1	0	3	28	14	7	22	98
33,0%	190	95	76	114	2281	1141	1073	1209	7983	2	1	0	3	29	14	7	22	100
33,5%	193	97	77	117	2316	1158	1090	1226	8104	2	1	0	3	29	14	7	22	101
34,0%	196	98	78	118	2350	1175	1106	1244	8225	2	1	0	3	29	15	7	22	103
34,5%	199	100	80	120	2385	1193	1124	1262	8346	2	1	0	3	30	15	7	23	104
35,0%	202	101	81	121	2419	1210	1140	1280	8467	3	2	0	5	30	15	7	23	106
35,5%	204	102	82	122	2454	1227	1157	1297	8588	3	2	0	5	31	15	8	23	107
36,0%	207	104	84	124	2488	1244	1173	1315	8709	3	2	0	5	31	16	8	23	109
36,5%	210	105	85	125	2523	1262	1191	1333	8830	3	2	0	5	32	16	8	24	110
37,0%	213	107	86	128	2557	1279	1207	1351	8951	3	2	0	5	32	16	8	24	112
37,5%	216	108	87	129	2592	1296	1224	1368	9072	3	2	0	5	32	16	8	24	113
38,0%	219	110	89	131	2627	1314	1242	1386	9193	3	2	0	5	33	16	8	25	115
38,5%	222	111	90	132	2661	1331	1258	1404	9314	3	2	0	5	33	17	8	25	116
39,0%	225 228	113	92	134	2696 2730	1348	1275	1421	9435	3	2	0	5	34	17	9	25	118
39,5%		114	93	135		1365	1291	1439	9556	3	2	0	5		17	9	25	119
-,	230	115	94	136 139	2765 2799	1383	1309	1457	9677 9798	3	2		5	35 35	17 17		26 26	121
40,5%	236	117	96	140	2834	1400	1342	1473	9798	3	2 2	0	5	35	18	9	26	122 124
41,5%	239	120	98	142	2868	1434	1358	1510	10040	3	2	0	5	36	18	9	26	125
42,0%	242	121	99	143	2903	1452	1376	1528	10161	3	2	0	5	36	18	10	27	127
42,5%	245	123	101	145	2938	1469	1392	1546	10282	3	2	0	5	37	18	10	27	127
43,0%	248	124	102	146	2972	1486	1409	1563	10403	3	2	0	5	37	19	10	27	130
43,5%	251	126	104	148	3007	1504	1426	1582	10524	3	2	0	5	38	19	10	27	132
44,0%	253	127	104	150	3041	1521	1443	1599	10644	3	2	0	5	38	19	10	28	133
44,5%	256	128	105	151	3076	1538	1460	1616	10765	3	2	0	5	38	19	10	28	135
45,0%	259	130	107	153	3110	1555	1476	1634	10886	3	2	0	5	39	19	11	28	136
45,5%	262	131	108	154	3145	1573	1494	1652	11007	3	2	0	5	39	20	11	29	138
46,0%	265	133	110	156	3180	1590	1510	1670	11128	3	2	0	5	40	20	11	29	139
46,5%	268	134	111	157	3214	1607	1527	1687	11249	3	2	0	5	40	20	11	29	141
47,0%	271	136	113		3249	1625	1544	1706	11370	3	2	0	5	41	20	11	29	142
.,,0,0		100	-10		/	-020			11070								-/	

Tableau C.4/M.2101.1 – Objectifs de qualité de fonctionnement alloués aux conteneurs VC-4 (fin)

	Objectifs ES de conteneur VC-4 (PO=8%)								Objectifs SES de conteneur VC-4 (PO=0,1%)									
		2 heur	es		1 jour			7 jours	2 heures				1 jour				7 jours	
Alloc. de conduit de conteneur VC-4	APO	BISO	S1	S2	APO	BISO	S1	S2	BISO	APO	BISO	S1	S2	APO	BISO	S1	S2	BISO
47,5%	274	137	114	160	3283	1642	1561	1723	11491	3	2	0	5	41	21	11	30	144
48,0%	276	138	115	161	3318	1659	1578	1740	11612	3	2	0	5	41	21	12	30	145
48,5%	279	140	116	164	3352	1676	1594	1758	11733	3	2	0	5	42	21	12	30	147
49,0%	282	141	117	165	3387	1694	1612	1776	11854	4	2	0	5	42	21	12	30	148
49,5%	285	143	119	167	3421	1711	1628	1794	11975	4	2	0	5	43	21	12	31	150
50,0%	288	144	120	168	3456	1728	1645	1811	12096	4	2	0	5	43	22	12	31	151
50,5%	291	146	122	170	3491	1746	1662	1830	12217	4	2	0	5	44	22	12	31	153
51,0%	294	147	123	171	3525	1763	1679	1847	12338	4	2	0	5	44	22	13	31	154
51,5%	297	149	125	173	3560	1780	1696	1864	12459	4	2	0	5	44	22	13	32	156
52,0%	300	150	126	174	3594	1797	1712	1882	12580	4	2	0	5	45	22	13	32	157
52,5%	302	151	126	176	3629	1815	1730	1900	12701	4	2	0	5	45	23	13	32	159
53,0%	305	153	128	178	3663	1832	1746	1918	12822	4	2	0	5	46	23	13	32	160
53,5%	308	154	129	179	3698	1849	1763	1935	12943	4	2	0	5	46	23	13	33	162
54,0%	311	156	131	181	3732	1866	1780	1952	13064	4	2	0	5	47	23	14	33	163
54,5%	314	157	132	182	3767	1884	1797	1971	13185	4	2	0	5	47	24	14	33	165
55,0%	317	159	134	184	3802	1901	1814	1988	13306	4	2	0	5	48	24	14	34	166
55,5%	320	160	135	185	3836	1918	1830	2006	13427	4	2	0	5	48	24	14	34	168
56,0%	323	162	137	187	3871	1936	1848	2024	13548	4	2	0	5	48	24	14	34	169
56,5%	325	163	137	189	3905	1953	1865	2041	13668	4	2	0	5	49	24	15	34	171
57,0%	328	164	138	190	3940	1970	1881	2059	13789	4	2	0	5	49	25	15	35	172
57,5%	331	166	140	192	3974	1987	1898	2076	13910	4	2	0	5	50	25	15	35	174
58,0%	334	167	141	193	4009	2005	1915	2095	14031	4	2	0	5	50	25	15	35	175
58,5%	337	169	143	195	4044	2022	1932	2112	14152	4	2	0	5	51	25	15	35	177
59,0%	340	170	144	196	4078	2039	1949	2129	14273	4	2	0	5	51	25	15	36	178
59,5%	343	172	146	198	4113	2057	1966	2148	14394	4	2	0	5	51	26	16	36	180
60,0%	346	173	147	199	4147	2074	1983	2165	14515	4	2	0	5	52	26	16	36	181
60,5%	348	174	148	200	4182	2091	2000	2182	14636	4	2	0	5	52	26	16	36	183
61,0%	351	176	149	203	4216	2108	2016	2200	14757	4	2	0	5	53	26	16	37	184
61,5%	354	177	150	204	4251	2126	2034	2218	14878	4	2	0	5	53	27	16	37	186
62,0%	357	179	152	206	4285	2143	2050	2236	14999	4	2	0	5	54	27	16	37	187
62,5%	360	180	153	207	4320	2160	2067	2253	15120	5	3	0	6	54	27	17	37	189
63,0%	363	182	155	209	4355	2178	2085	2271	15241	5	3	0	6	54	27	17	38	191

$Tableau\ C.5/M.2101.1 - Objectifs\ de\ qualit\'e\ allou\'es\ aux\ modules\ STM-1$

	Objectifs ES de module STM-1 (Objectif PO=80%)								Objectifs SES de module STM-1 (Objectif PO-0,1%)									
Alloc. de section multiplex de module STM-1	2 heures		1 jour			7 jours	2 heures			1 jour			7 jours					
Alloc.	APO	BISO	S1	S2	APO	BISPO	S1	S2	BISPO	APO	BISPO	S1	S2	APO	BISPO	S1	S2	BISPO
0,2%	1	0	0	1	14	1	0	4	10	0	0	0	0	0	0	0	0	0
0,5%	3	0	0	1	35	3	0	7	24	0	0	0	0	0	0	0	0	0
à étudier		•													•		•	

Tableau C.6/M.2101.1 – Objectifs de qualité alloués aux modules STM-4, 16 et 64

	STM-X (X=4, 16, 64) Objectifs ES (PO=N/A)									STM-X (X=4, 16, 64) Objectifs SES (PO=0,1%)								
Alloc. de section multiplex de module STM-X	2 heures		1 jour			7 jours	2 heures			1 jour			7 jours					
Alloc.	APO	BISO	S1	S2	APO	BISPO	S1	S2	BISPO	APO	BISPO	S1	S2	APO	BISPO	S1	S2	BISPO
0,2%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0	0	0	0	0	0	0	0	0
0,5%	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0	0	0	0	0	0	0	0	0
à étudier																		

ANNEXE D

Valeurs seuil par défaut de niveau de qualité inacceptable

Tableau D.1/M.2101.1 – Valeurs seuil par défaut de niveau de qualité inacceptable pour les conduits numériques et les sections multiplex internationaux synchrones sur une période fixée à 15 minutes

Con	duits numériqu	ies – Positionn	ement des seu	ils
	Conteneur VC-1	Conteneur VC-2	Conteneur VC-3	Conteneur VC-4
Seconde ES	120	120	150	180
Seconde SES	15	15	15	15
Con	duits numériqu	ues – Réinitialis	sation des seui	ils
	Conteneur VC-1	Conteneur VC-2	Conteneur VC-3	Conteneur VC-4
Seconde ES	FFS	FFS	FFS	FFS
Seconde SES	0	0	0	0
Se	ctions multiple	x – Positionnen	nent des seuils	5
	Module STM-1	Module STM-4	Module STM-16	Module STM-64
Seconde ES	50	FFS	FFS	FFS
Seconde SES	10	10	10	10
Se	ctions multiple	x – Réinitialisa	tion des seuils	3
	Module STM-1	Module STM-4	Module STM-16	Module STM-64
Seconde ES	FFS	FFS	FFS	FFS
Seconde SES	0	0	0	0
FFS: à étudier				

	SERIES DES RECOMMANDATIONS UIT-T
Série A	Organisation du travail de l'UIT-T
Série B	Moyens d'expression: définitions, symboles, classification
Série C	Statistiques générales des télécommunications
Série D	Principes généraux de tarification
Série E	Exploitation générale du réseau, service téléphonique, exploitation des services et facteurs humains
Série F	Services de télécommunication non téléphoniques
Série G	Systèmes et supports de transmission, systèmes et réseaux numériques
Série H	Systèmes audiovisuels et multimédias
Série I	Réseau numérique à intégration de services
Série J	Transmission des signaux radiophoniques, télévisuels et autres signaux multimédias
Série K	Protection contre les perturbations
Série L	Construction, installation et protection des câbles et autres éléments des installations extérieures
Série M	RGT et maintenance des réseaux: systèmes de transmission, de télégraphie, de télécopie, circuits téléphoniques et circuits loués internationaux
Série N	Maintenance: circuits internationaux de transmission radiophonique et télévisuelle
Série O	Spécifications des appareils de mesure
Série P	Qualité de transmission téléphonique, installations téléphoniques et réseaux locaux
Série Q	Commutation et signalisation
Série R	Transmission télégraphique
Série S	Equipements terminaux de télégraphie
Série T	Terminaux des services télématiques
Série U	Commutation télégraphique
Série V	Communications de données sur le réseau téléphonique
Série X	Réseaux pour données et communication entre systèmes ouverts
Série Z	Langages de programmation