ITU-T

J. 94

TELECOMMUNICATION
Amendment 1 STANDARDIZATION SECTOR OF ITU

SERIES J: TRANSMISSION OF TELEVISION, SOUND PROGRAMME AND OTHER MULTIMEDIA SIGNALS

Ancillary digital services for television transmission

Service information for digital broadcasting in cable television systems

Amendment 1: Annex B - Service information delivered out of band in cable television

 systemsITU-T Recommendation J. 94 - Amendment 1
(Formerly CCITT Recommendation)

ITU-T J-SERIES RECOMMENDATIONS

TRANSMISSION OF TELEVISION, SOUND PROGRAMME AND OTHER MULTIMEDIA SIGNALS

General Recommendations	J.1-J. 9
General specifications for analogue sound-programme transmission	J.10-J.19
Performance characteristics of analogue sound-programme circuits	J.20-J.29
Equipment and lines used for analogue sound-programme circuits	J.30-J. 39
Digital encoders for analogue sound-programme signals	J.40-J.49
Digital transmission of sound-programme signals	J.50-J.59
Circuits for analogue television transmission	J.60-J.69
Analogue television transmission over metallic lines and interconnection with radio-relay links	J.70-J.79
Digital transmission of television signals	J.80-J.89
Ancillary digital services for television transmission	J.90-J.99
Operational requirements and methods for television transmission	J.100-J.109
Interactive systems for digital television distribution	J.110-J.129
Transport of MPEG-2 signals on packetised networks	J.130-J.139
Measurement of the quality of service	J.140-J.149
Digital television distribution through local subscriber networks	J.150-J.159

For further details, please refer to the list of ITU-T Recommendations.

ITU-T Recommendation J. 94

Service information for digital broadcasting in cable television systems

AMENDMENT 1

ANNEX B

Service information delivered out of band for digital cable television systems

Abstract

Summary This amendment provides the contents of Annex B that define a standard for Service Information (SI) on cable compatible with digital multiplex bit streams constructed in accordance with ITU-T H.222.0 | ISO/IEC 13818-1 (MPEG-2). It is designed to support "navigation devices" on cable. It defines the syntax and semantics for a standard set of tables providing the data necessary for such a device to discover and access digital and analogue services offered on cable.

This SI protocol is nominally delivered in a separate physical channel (i.e. out-of-band) outside the actual transport multiplexes containing the program content.

Source

Amendment 1 to ITU-T Recommendation J. 94 was prepared by ITU-T Study Group 9 (1997-2000) and approved by the World Telecommunication Standardization Assembly (Montreal, 27 September - 6 October, 2000).

Keywords

Cable television, service information.

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of telecommunications. The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical, operating and tariff questions and issuing Recommendations on them with a view to standardizing telecommunications on a worldwide basis.
The World Telecommunication Standardization Assembly (WTSA), which meets every four years, establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on these topics.
The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.
In some areas of information technology which fall within ITU-T's purview, the necessary standards are prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a telecommunication administration and a recognized operating agency.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence, validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others outside of the Recommendation development process.

As of the date of approval of this Recommendation, ITU had not received notice of intellectual property, protected by patents, which may be required to implement this Recommendation. However, implementors are cautioned that this may not represent the latest information and are therefore strongly urged to consult the TSB patent database.
© ITU 2001
All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from ITU.

CONTENTS

Page
Annex B - Service information delivered out of band for digital cable television systems1
B. 1 Purpose, scope and organization 1
B.1.1 Purpose 1
B.1.2 Scope 1
B.1.3 Organization 2
B. 2 References. 3
B. 3 Definitions 4
B.3.1 Compliance notation. 4
B.3.2 Definition of terms. 4
B.3.3 Section and data structure syntax notation 5
B. 4 Acronyms and abbreviations 6
B. 5 Table structure 7
B.5.1 Table ID ranges and values 7
B.5.2 Extensibility 8
B.5.3 Reserved fields 9
B.5.4 Private table section syntax 9
B. 6 Table section formats 10
B.6.1 Network Information Table 10
B.6.2 Network Text Table 15
B.6.3 Short-form Virtual Channel Table Section 17
B.6.4 System Timetable Section 24
B.6.5 Master Guide Table (MGT) 25
B.6.6 Long-form Virtual Channel Table 29
B.6.7 Rating Region Table (RRT) 34
B.6.8 Aggregate Event Information Tables (AEIT) 37
B.6.9 Aggregate Extended Text Tables (AETT) 39
B. 7 Descriptors 41
B.7.1 Descriptor usage 41
B.7.2 Stuffing descriptor 42
B.7.3 AC-3 audio descriptor 42
B.7.4 Caption service descriptor 42
B.7.5 Content advisory descriptor 44
B.7.6 Revision detection descriptor 45
B.7.7 Two-Part channel number descriptor 46
B.7.8 Channel properties descriptor 46
B.7.9 Extended channel name descriptor 48
B.7.10 Time-shifted service descriptor 48
Page
B.7.11 Component name descriptor 49
B.7.12 Daylight savings time descriptor 49
B.7.13 User private descriptors 50
B. 8 Text string coding 50
B.8.1 Multilingual Text String (MTS) Format 51
B.8.2 Multiple String Structure (MSS) 55
Annex B.A - Operational profiles for cable service information delivery 58
B.A. 1 Operational profiles 58
B.A. 2 Profile Definition Tables 58
B.A. 3 Operational considerations for the use of profiles (Informative) 60
Annex B.B - Packet rates 61
B.B. 1 Maximum cycle times 61
B.B. 2 Maximum transmission rates 61
B.B. 3 Minimum transmission rates 61
Annex B.C - Standard Huffman tables for text compression 61
B.C. 1 Character set definition. 62
B.C. 2 Standard compression Type 1 Encode/Decode Tables 64
B.C. 3 Standard compression Type 2 Huffman Encode/Decode tables 84
Appendix B.I - Implementation recommendations 102
B.I. 1 Implications for retail digital cable-ready devices 102
B.I. 2 Channel number handling 102
B.I. 3 Processing of dynamic changes to service information 102
B.I. 4 AEITs may include event information for inaccessible channels 102
B.I. 5 Splice flag processing. 102
Appendix B.II - Service Information overview and guide 103
B.II. 1 Table hierarchy 103
B.II. 2 SI_base PID 108
B.II. 3 Representation of Time 116
Appendix B.III - Daylight Savings Time control 118

ITU-T Recommendation J. 94

Service information for digital broadcasting in cable television systems

AMENDMENT 1

ANNEX B
 Service information delivered out of band for digital cable television systems

B. 1 Purpose, scope and organization

B.1.1 Purpose

This annex defines a standard for Service Information (SI) delivered out of band on cable. This annex is designed to support "navigation devices" on cable. The current specification defines the syntax and semantics for a standard set of tables providing the data necessary for such a device to discover and access digital and analogue services offered on cable.

B.1.2 Scope

This annex defines SI tables delivered via an out-of-band path to support service selection and navigation by digital cable set-top boxes and other "digital cable-ready" devices. The SI tables defined in this annex are formatted in accordance with the Program Specific Information (PSI) data structures defined in MPEG-2 Systems, ITU-T H.222.0 | ISO/IEC 13818-1.

The formal definition of "digital cable-ready" has a scope broader than that of the current standard. The formal definition includes requirements related to navigation and service selection, demodulation and decoding, video format decoding, Emergency Alert handling, and other aspects. The current specification supports, primarily, the navigation and service selection function for services delivered in the clear, as well as those subject to conditional access.
This annex does not address the Electronic Program Guide application itself or any user interface which might deal with the presentation and application of the Service Information.
A digital cable-ready device can take the form of a cable set-top box, a computer, a television, or a convergence of these. Devices such as digital video recorders may also be cable-ready. A digital cable-ready device capable of processing access controlled digital services supports an interface to a conditional access module. As used here, the term "Host" refers to the capability to support an interface to a standard Point Of Deployment (POD) security module.
SI data delivered out of band is transported in accordance with the Extended Channel interface defined in SCTE DVS $131 r 7$ (1998) and SCTE DVS 216 r 4 (2000). To have access to the Extended Channel interface, the cable-ready device must act as a Host to a POD security module. The Extended Channel interface presents the needed SI data to the Host. This data can be used by the Host for channel navigation, construction of electronic program guides and other associated functions.

Figure B. 1 is a high-level block diagram illustrating the POD module to Host interface via the Extended Channel interface. The Host is responsible for providing a standard receiver/QPSK demodulator function for the POD module. The choice of transport format of bits coming across from the receiver/QPSK demodulator to the POD module is by mutual agreement between the POD and the cable head-end equipment. The transport format of data travelling between the Host and

POD module on the Extended Channel interface conforms to standards defined in SCTE DVS 131r7 (1998) and SCTE DVS 216 r 4 (2000).

Figure B.1/J. 94 - A framework for the extended channel service information stream

The POD module may perform various transport, filtering, and error checking/correction functions on the out-of-band data stream as depicted by the box labelled "Transport Processing, Filtering, and Routing." As described in SCTE DVS 216 r 4 (2000), the Host may request from the POD module to open one or several "flows" in which to receive PSI sections taken from the cable out-of-band data stream. Each flow is associated with a PID value, in accordance with MPEG-2 Transport Stream concepts.

Data flowing to the Host from the POD module that is associated with Service_type=MPEG_section is required to be in the form of MPEG PSI data structures. However, data delivered into the POD from cable out-of-band may or may not be organized in a Transport Stream compliant with ITU-T H.222.0 | ISO/IEC 13818-1. In other words, PID values associated with MPEG-2 tables on the Extended Channel interface may or may not correspond to MPEG-2 Transport Stream packet header PID values from the cable out of band.

Independent of the fact that out-of-band data may reach the POD module via a proprietary method, the data structures delivered across the Extended Channel shall be formatted as MPEG-2 table sections. Like table sections carried in an MPEG-2 Transport Stream, each is associated with a PID value.

B.1.3 Organization

This annex is organized as follows:

- Clause B. 1 - Provides this general introduction.
- Clause B. 2 - Lists applicable references.
- Clause B. 3 - Provides a list of definitions used in this annex.
- Clause B. 4 - Provides a list of acronyms and abbreviations used in this annex.
- Clause B. 5 - Describes the basic structure of sections.
- Clause B. 6 - Describes formats of sections carried in the Base PID. ${ }^{1}$
- Clause B. 7 - Explains descriptors applicable to the tables defined in this annex.
- Clause B. 8 - Describes multilingual character string coding.
- Annex B.A - Defines profiles of choice for cable operator compliance with this annex.
- Annex B.B - Specifies packet rates for delivery of SI data.
- Annex B.C - Defines the standard Huffman tables used for text compression.
- Appendix B.I - Discusses recommendations for receiver implementations.
- Appendix B.II - Provides an overview of tables defined in this Service Information Annex B.
- Appendix B.III - Defines the daylight savings time control fields in the System Timetable.

B. 2 References

Normative references

The following ITU-T Recommendations and other references contain provisions which, through reference in this text, constitute provisions of this Recommendation. At the time of publication, the editions indicated were valid. All Recommendations and other references are subject to revision; all users of this Recommendation are therefore encouraged to investigate the possibility of applying the most recent edition of the Recommendations and other references listed below. A list of the currently valid ITU-T Recommendations is regularly published.

- ITU-T H.222.0 (2000) | ISO/IEC 13818-1:2000, Information technology - Generic coding of moving pictures and associated audio information: Systems.
- ITU-T H. 262 (2000) | ISO/IEC 13818-2: 2000, Information technology - Generic coding of moving pictures and associated audio information: Video.
- ISO 639:1988, Code for the representation of names of languages.
- ISO 639-2:1998, Codes for the representation of names of languages - Part 2: Alpha-3 code.
- ISO/IEC 8859-1 to 10, Information technology - 8-bit single-byte coded graphic character sets.
- ISO/IEC 10646-1:2000, Information technology - Universal Multiple-Octet Coded Character Set (UCS) - Part 1: Architecture and Basic Multilingual Plane.
- ISO/IEC 13818-3:1998, Information technology - Generic coding of moving pictures and associated audio - Part 3: Audio.

Informative references

- ITU-T J. 83 (1997), Digital multi-programme systems for television, sound and data services for cable distribution.
- SCTE DVS 031, Digital Video Transmission Standard for Cable Television, Rev.2, 29 May 1997.

[^0]- SCTE DVS 097 (1997), Program and System Information Protocol for Terrestrial Broadcast and Cable.
- \quad SCTE DVS $131 r 7$ (1998), Point of Deployment (POD) Module Interface.
- \quad SCTE DVS 208 r 6 (1999), Cable Emergency Alert Message (EIA-814).
- \quad SCTE DVS 216 r 4 (2000), $P O D$ Extended Channel Specification.

Bibliography

$-\quad$ ATSC Standard A/52 (1995), Digital Audio Compression (AC-3).

- ATSC Standard A/53 (1995), ATSC Digital Television Standard.
- EIA-708, Specification for Advanced Television Closed Captioning (ATVCC), Electronic Industry Association.
- EIA-752, Transport of Transmission Signal Identifier (TSID) Using Extended Data Service ($X D S$).
- EIA 766, U.S. Rating Region Table (RRT) and Content Advisory Descriptor for Transport of Content Advisory Information Using ATSC A/65 Program and System Information Protocol (PSIP).

B. 3 Definitions

B.3.1 Compliance notation

As used in this annex, "shall" denotes a mandatory provision of the recommendation. "Should" denotes a provision that is recommended but not mandatory. "May" denotes a feature whose presence does not preclude compliance, that may or may not be present as optional for the implementers.

B.3.2 Definition of terms

The following terms are used throughout this annex:
B.3.2.1 conditional access: The control and security of subscriber access to cable or broadcast services and events in the form of video, data and voice communications.
B.3.2.2 host: A device capable of supporting a POD module by implementing the interface protocol defined in SCTE DVS 131r7 (1998) and SCTE DVS 216r4 (2000). These protocols define the Extended Channel data path through which the SI tables defined in this annex are passed.
B.3.2.3 navigation: The process of selection and movement among analogue and digital services offered on the cable network. The service information tables defined in this protocol assist in the navigation process by providing physical service locations, channel names and numbers for user reference. Those tables supporting electronic program guides also assist the navigation process.
B.3.2.4 program element: A generic term for one of the elementary streams or other data streams that may be included in a program.
B.3.2.5 program: A collection of program elements. Program elements may be elementary streams. Program elements need not have any defined time base. Those that do have a common time base are intended for synchronized presentation. The term program is also used in the context of a "television program" such as a scheduled daily news broadcast. The distinction between the two usages should be understood by context.
B.3.2.6 region: As used in this annex, a region is a geographical area consisting of one or more countries.
B.3.2.7 section or table section: A data structure comprising a portion of an ITU-T H. 222.0 | ISO/IEC 13818-1-defined table, such as the Program Association Table (PAT), Conditional Access Table (CAT), or Program Map Table (PMT). The term conforms to MPEG terminology. All sections begin with the table_ID and end with the CRC_32 field. Sections are carried in Transport Stream packets in which the starting point within a packet payload is indicated by the pointer_field mechanism defined in the ITU-T H.222.0 | ISO/IEC 13818-1 Systems document. The Network Information Table, for example, defines portions of several types of tables.
B.3.2.8 service: ITU-T H.222.0 | ISO/IEC 13818-1 uses the term program to refer to a collection of program elements with no regard to time. In this Service Information annex, the term service is used in this same context to denote a collection of elementary components. Usage of the term service clarifies certain discussions that also involve the notion of the term program in its traditional meaning - for example, in the statement, "A video service carries a series of programs." In a broader sense, service is also intended for multimedia services of video, voice and data, as these services become prevalent.
B.3.2.9 stream: An ordered series of bytes. The usual context for the term stream involves specification of a particular PID (such as the "Program Map PID stream"), in which case the term indicates a series of bytes extracted from the packet multiplex from packets with the indicated PID value.

B.3.3 Section and data structure syntax notation

This annex contains symbolic references to syntactic elements. These references are typographically distinguished by the use of a different font (e.g. restricted), may contain the underscore character (e.g. sequence_end_code) and may consist of character strings that are not English words (e.g. dynrng).

The formats of sections and data structures in this annex are described using a C-like notational method employed in ITU-T H.222.0 | ISO/IEC 13818-1. Extensions to this method are described in the following clauses.

B.3.3.1 Field sizes

Each data structure is described in a table format wherein the size in bits of each variable within that section is listed in a column labelled "Bits." The column adjacent to the Bits column is labelled "Bytes" and indicates the size of the item in bytes. For convenience, several bits within a particular byte or multi-byte variable may be aggregated for the count. Table B. 1 is an example:

Table B.1/J. 94 - Field sizes example

	Bits	Bytes	Format
```foo_section(){ section_syntax_indicator if (section_syntax_indicator) { table_extension Reserved version_number current_next_indicator } ...```	1   16   2   5   1	1   (2)   (1)	uimsbf   bslbf   uimsbf   bslbf \{next, current $\}$

In the byte count column, items that are conditional (because they are within a loop or conditional statement) are in parentheses. Nested parentheses are used if the loops or conditions are nested.

## B. 4 Acronyms and abbreviations

The following acronyms and abbreviations are used within this annex:
AEIT Aggregate Event Information Table
AETT Aggregate Extended Text Table
ATSC Advanced Television Standards Committee
BMP Basic Multilingual Plane
bslbf bit serial, leftmost bit first
CAT Conditional Access Table
CC Closed Caption
CDS Carrier Definition Subtable
CRC Cyclic Redundancy Check
DCM Defined Channels Map
DTV Digital Television
ECM Entitlement Control Message
EMM Entitlement Management Message
ETSI European Telecommunications Standards Institute
GPS Global Positioning System
ICM Inverse Channel Map
ITU International Telecommunication Union
LSB Least Significant Bit
L-VCT Long-form Virtual Channel Table
MGT Master Guide Table
MMS Modulation Mode Subtable
MPAA Motion Picture Association of America
MPEG Moving Picture Experts Group
MSB Most Significant Bit
MSS Multiple String Structure
MTS Multi-lingual Text String
NTSC National Television System Committee
NVOD Near Video On Demand
OOB Out-of-band
PAT Program Association Table
PCR Program Clock Reference
PES Packetized Elementary Stream
PID Packet Identifier
PMT Program Map Table
POD Point of Deployment
PSIP Program and System Information Protocol

PTC Physical Transmission Channel
PTS Presentation Time Stamp
rpchof remainder polynomial coefficients, highest order first
RRT Rating Region Table
SCTE Society of Cable Telecommunications Engineers
SI Service Information
SNS Source Name Subtable
S-VCT Short-form Virtual Channel Table
TS Transport Stream
uimsbf unsigned integer, most significant bit first
UTC Coordinated Universal Time
VCM Virtual Channel Map

## B. 5 Table structure

This clause describes details of the structure of MPEG-2 tables defined in this annex.
Tables and table sections defined in this Service Information annex are structured in the same manner used for carrying ITU-T H.222.0 | ISO/IEC 13818-1-defined PSI tables. The MPEG-defined 32-bit CRC is required.

## B.5.1 Table ID ranges and values

Table B. 2 defines table_ID ranges and values for tables defined in MPEG and in this annex.

Table B.2/J. 94 - Table ID ranges and values for out-of-band transport

Table ID Value (hex)	Tables	PID	Reference
$\begin{aligned} & 0 \times 00 \\ & 0 \times 01 \\ & 0 \times 02 \\ & 0 \times 03-0 \times 3 F \end{aligned}$	ITU-T H.222.0 \| ISO/IEC 13818-1 Sections:   Program Association Table (PAT)   Conditional Access Table (CAT)   TS Program Map Table (PMT)   [ISO Reserved]		ITU-T H. 222.0   ITU-T H. 222.0   ITU-T H.222.0
$\begin{aligned} & 0 \times 40-0 \times 7 \mathrm{~F} \\ & 0 \times 80-0 \times B F \end{aligned}$	User Private Sections:   [User Private for other systems] [SCTE User Private]		
$0 \mathrm{xC0}-0 \mathrm{xCl}$	Other Standards:   [Used in other standards]		
$\begin{aligned} & 0 \mathrm{xC} 2 \\ & 0 \mathrm{xC3} \\ & 0 \mathrm{xC} 4 \\ & 0 \mathrm{xC5} \\ & 0 \mathrm{xC6} \\ & 0 \mathrm{xC7} \\ & \hline \end{aligned}$	Service Information Tables:   Network Information Table (NIT)   Network Text Table (NTT)   Short-form Virtual Channel Table (S-VCT)   System Timetable (STT)   [Used in other standards]   Master Guide Table (MGT)	0x1FFC   0x1FFC   0x1FFC   0x1FFC   0x1FFC	$\begin{gathered} \text { B.6.1 } \\ \text { B.6.2 } \\ \text { B.6.3 } \\ \text { B.6.4 } \\ - \\ \text { B.6.5 } \end{gathered}$

Table B.2/J. 94 - Table ID ranges and values for out-of-band transport (concluded)

$\begin{aligned} & \text { Table ID } \\ & \text { Value (hex) } \end{aligned}$	Tables	PID	Reference
0xC8	Reserved	-	-
0xC9	Long-form Virtual Channel Table (L-VCT)	0x1FFC	B.6.6
0 xCA	Rating Region Table (RRT)	0x1FFC	B.6.7
$0 \mathrm{xCB}-0 \mathrm{xD} 5$	[Used in ATSC]	-	-
0xD6	Aggregate Event Information Table (AEIT)	per MGT	B.6.8
0xD7	Aggregate Extended Text Table (AETT)	per MGT	B. 6.9
0xD8	Cable Emergency Alert Message	0x1FFC	SCTE DVS 208r6 (1999)
0xD9-0xFE	[Reserved for future use]	-	-

Table sections defined in this Service Information annex, and any created as user extensions to it are considered "private" with respect to ITU-T H.222.0 | ISO/IEC 13818-1. Table section types 0x80 through $0 \times \mathrm{BF}$ are user-defined (outside the scope of this Service Information annex).
The maximum total length of any table section defined in this annex is 1024 bytes, except for the MGT, L-VCT, AEIT and AETT, each of which has a maximum total length of 4096 bytes. This total includes table_ID, CRC, and all fields contained within the specific table section.

## B.5.2 Extensibility

This Service Information annex defines a number of tables and table sections. The Service Information annex is designed to be extensible via the following mechanisms:

1) Reserved Fields: Fields in this Service Information annex marked reserved are reserved for use either when revising this annex, or when another Recommendation is issued that builds upon this one. See B.5.4.
2) Standard Table Types: As indicated in Table B.2, table_ID values in the range 0xCE through $0 x F E$ are reserved for use either when revising this Service Information annex, or when another Recommendation is issued that builds upon this one. ${ }^{2}$
3) User Private Table Types: As indicated in Table B.2, table_ID values in the range 0x80 through $0 \times B F$ are reserved for "user private" use. The format of user private tables carried in the Network PID shall conform to the syntax described in Table B.3.
4) User Private Descriptors: Privately defined descriptors may be placed at designated locations throughout the table sections described in this Service Information annex. Ownership of one or more user private descriptors is indicated by the presence of an MPEG registration_descriptor() preceding the descriptor(s).
[^1]Table B.3/J. 94 - Network private table section format

	Bits	Bytes	Format
```Network_private_table section(){ private_table_ID section_syntax_indicator Zero Reserved section_length if (section_syntax_indicator==1) { table_extension Reserved version_number current_next_indicator section_number last_section_number } Zero protocol_version format_identifier private_message_body() CRC_32 }```	$\begin{gathered} 8 \\ 1 \\ 1 \\ 2 \\ 2 \\ 12 \\ 16 \\ 16 \\ 2 \\ 5 \\ 1 \\ 8 \\ 8 \\ \\ 3 \\ 3 \\ 5 \\ 32 \\ \mathrm{~N} * 8 \\ 32 \end{gathered}$	2   (2)   (1)   (1)   (1)   1   4   N   4	```uimsbf (0x80<= table_ID <= 0xBF) bslbf bslbf bslbf uimsbf uimsbf bslbf uimsbf bslbf {next, current} uimsbf uimsbf bslbf See B.5.4.1. uimsbf rpchof```

B.5.3 Reserved fields

reserved: Fields in this Service Information annex marked reserved shall not be assigned by the user, but shall be available for future use. Hosts are expected to disregard reserved fields for which no definition exists that is known to that unit. Fields marked reserved shall be set to "1" until such time as they are defined and supported.
zero: Indicates the bit or bit field shall be " 0 ".

B.5.4 Private table section syntax

Table B. 3 defines the syntax for user private table sections. The MPEG-defined CRC is required. Refer to ITU-T H.222.0 | ISO/IEC 13818-1 for definition of MPEG-standard fields.
private_table_ID: The value of table_ID in private table sections shall be in the range 0x80 through $0 \times B F$.

B.5.4.1 Protocol version

protocol_version: A 5-bit unsigned integer field whose function is to allow, in the future, any defined table type to carry parameters that may be structured fundamentally differently from those defined in the current protocol. At present, all defined table section types in this protocol are defined for protocol_version zero only. Nonzero values of protocol_version may only be processed by Receivers designed to accommodate the later versions as they become standardized.

B.5.4.2 Format identifier

format_identifier: A 32-bit unsigned integer value which unambiguously identifies the entity defining this network_private_table_section() syntax. Values for format_identifiers shall be obtained from SCTE.

B.5.4.3 Private Message Body

private_message_body(): A data structure defined by the private entity identified by format_identifier.

B.5.4.4 CRC

CRC_32: The 32-bit CRC value defined in ITU-T H.222.0 | ISO/IEC 13818-1 for PSI sections. The MPEG-2 CRC shall be checked in the POD, and only messages that pass the CRC check shall be forwarded to the Host. The Host shall not check the CRC.

B. 6 Table section formats

The following clauses define the formats of table sections as they are delivered across the Extended Channel interface from POD module to Host.

B.6.1 Network Information Table

Sections of the Network Information Table shall be associated on the POD-Host interface with PID value $0 x 1$ FFC, the sI_base PID. This table delivers sections of non-textual tables applicable systemwide. The table types included are the Carrier Definition Subtable (CDS) and the Modulation Mode Subtable (MMS).

Table B. 4 shows the format of the Network Information Table section.

Table B.4/J. 94 - Network Information Table section format

	Bits	Bytes	Format
```network_info_table_section(){ table_ID Zero Reserved section_length Zero protocol_version first_index number_of_records transmission_medium table_subtype for (i=0; i<number_of_records; i++) { if (table_subtype==CDS) { CDS_record() } if (table_subtype==MMS) { MMS_record() } Descriptors_count for (i=0; i<descriptors_count; i++) { descriptor() } } for (i=0; i<N; i++) { descriptor() } CRC_32 }```	$\begin{gathered} 2 \\ 2 \\ 12 \\ 3 \\ 3 \\ 5 \\ 8 \\ 8 \\ 4 \\ 4 \end{gathered}$   8   *   32	2   1   1 1 1   ((5))   ((6))   (1)   ((*))   (*)   4	uimsbf value 0 xC 2   bslbf   bslbf   uimsbf   bslbf   See B.5.4.1.   uimsbf range 1-255   uimsbf   uimsbf   uimsbf (See Table B.5.)   uimsbf range 0-255   Optional   Optional   rpchof

table_ID: The table_ID of the Network Information Table section shall be 0 xC 2 .
first_index: An 8-bit unsigned integer number in the range 1 to 255 that indicates the index of the first record to be defined in this table section. If more than one record is provided, the additional records define successive table entries following first_index. The value zero is illegal and shall not be specified.
number_of_records: An 8-bit unsigned integer number that specifies the number of records being defined in this table section. The maximum is limited by the maximum allowed length of the table section.
transmission_medium: This 4-bit field shall be set to zero ( 0 x 0 ).
table_subtype: A 4-bit value that defines the type of table delivered in the table section. One instance of a Network Information Table section can define entries within at most one type of table. The table_subtype parameter is defined in Table B.5.

Table B.5/J. 94 - Network Information Table Subtype

table_subtype	Meaning
0	invalid
1	CDS $~-~ C a r r i e r ~ D e f i n i t i o n ~ S u b t a b l e ~$
2	MMS - Modulation Mode Subtable
$3-15$	Reserved

The receiver shall discard a Network Information Table section with table_subtype indicating an unknown or unsupported table_subtype.

## B.6.1.1 Carrier Definition Subtable (CDS)

Table B. 6 defines the structure of the CDS_record(). Each CDS defines a set of carrier frequencies. A full frequency plan table shall be constructed from one or more CDS_record() structures, each defining a starting frequency, a number of carriers, and a frequency spacing for carriers in this group.
The specified carrier represents the nominal centre of the spectral band for all modulation methods, including analogue. Carrier frequencies in the table thus represent the data carrier frequency for digital transmissions modulated using QAM or PSK. ${ }^{3}$
Each CDS_record represents a definition of N carriers. The first_index parameter reflects the index in a flat space between 1 and 255, representing the first carrier in the CDS_record. Starting from the first CDS_record defining carriers $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}, \ldots, \mathrm{C}_{\mathrm{N}}$, where $\mathrm{N}=$ number_of_carriers, the carrier index for $\mathrm{C}_{\mathrm{I}}$ is equal to first_index $+\mathrm{I}-1$. If the table section includes more than one CDS_record(), the carrier index of the second CDS_record would be first_index plus the number of carriers defined in the first CDS_record(), namely, first_index + number_of_carriers. References to the Carrier Definition Subtable, such as the CDS_reference in the virtual_channel() of Table B.20, are to the carrier index (a carrier defined within a CDS_record()), between 1 and N , where N is normally much smaller than 255 . These references are not to the index of a CDS_record() itself, which is sequenced from first_index and is not reset to 1 until it exceeds 255 .

Note that the carriers, as defined by one or more CDS_record()s, may or may not end up sorted in the order of increasing carrier frequency. Certain frequency plans may be specified by overlapping two or more CDS_record()s, each of which defines equally-spaced carriers.

[^2]Note also that carriers may be defined that are currently not in use. To facilitate the compressed delivery format, defined carriers may not reflect reality. An example: carriers at $1,2,4,5,7,8 \mathrm{MHz}$ could be defined as eight carriers at 1 MHz spacing ( 3 MHz and 6 MHz do not really exist, or are not currently in use).

Table B.6/J. 94 - CDS record format

	Bits	Bytes	Format
CDS_record) $\{$			
number_of_carriers	8	1	uimsbf
spacing_unit	1	2	bslbf (See Table B.7.)
Zero	1		bslbf
Frequency_spacing	14		uimsbf range 1-16383 units of 10 or 125 kHz
Frequency_unit	1	2	bslbf (See Table B.8.)
first_carrier_frequency	15		uimsbf range 0-32 767   units of 10 or 125 kHz
\}			

number_of_carriers: An unsigned integer in the range 1 to 255 that represents the number of carriers whose frequency is being defined by this CDS_record().
spacing_unit: A 1-bit field identifying the units for the frequency_spacing field. Table B. 7 defines the coding for spacing_unit.

Table B.7/J. 94 - Spacing Unit

spacing_unit	Meaning
0	10 kHz spacing
1	125 kHz spacing

frequency_spacing: A 14-bit unsigned integer number in the range 1 to 16383 that defines the frequency spacing in units of either 10 kHz or 125 kHz , depending upon the value of the spacing_unit parameter. If spacing_unit is zero, indicating 10 kHz , then a value of 1 indicates 10 kHz spacing; 2 indicates 20 kHz , and so on. If the number_of_carriers field is one, the frequency_spacing field is ignored. The maximum frequency spacing that can be represented is $\left(2^{14}-1\right) * 125 \mathrm{kHz}=$ 2047.875 MHz. The minimum frequency spacing is 10 kHz .
frequency_unit: A 1-bit field identifying the units for the first_carrier_frequency field. Table B. 8 defines the coding for frequency_unit.

Table B.8/J. 94 - Frequency Unit

Frequency_unit	Meaning
0	10 kHz units
1	125 kHz units

first_carrier_frequency: A 15-bit unsigned integer number in the range 0 to 32767 that defines the starting carrier frequency for the carriers defined in this group, in units of either 10 kHz or 125 kHz , depending on the value of frequency_unit. If only one carrier is defined for the group, the first_carrier_frequency represents its frequency. When the frequency_unit indicates 125 kHz , the first_carrier_frequency can be interpreted as a fractional frequency ( $1 / 8 \mathrm{MHz}$ ) in the least-significant 3 bits, and an integer number of megahertz in the upper 12 bits. The range of frequencies that can be represented is 0 to $\left(2^{15}-1\right) * 125 \mathrm{kHz}=4095.875 \mathrm{MHz}$.

## B.6.1.2 Modulation Mode Subtable (MMS)

Table B. 9 defines the structure of the MMS_record().

Table B.9/J. 94 - MMS record format

	Bits	Bytes	Format
MMS_record()\{			
transmission_system	4	1	uimsbf (See Table B.10.)
inner_coding_mode	4		uimsbf (See Table B.11.)
split_bitstream_mode	1	1	bslbf \{no, yes\}
Zero	2		bslbf
modulation_format	5		uimsbf (See Table B.12.)
Zero	4	4	bslbf
symbol_rate	28		uimsbf units: symbols per second
$\}$			

transmission_system: A 4-bit field that identifies the transmission standard employed for the waveform defined by this MMS record. Table B. 10 defines the coding for transmission_system.

Table B.10/J. 94 - Transmission System

transmission_system	Meaning
0	unknown - The transmission system is not known.
1	Reserved (ETSI)
2	ITU-T J.83 Annex B - The transmission system conforms to the ITU   North American standard specified in Annex B/J.83.
3	Defined for use in other systems
4	ATSC - The transmission system conforms to the ATSC Digital   Television Standard.
$5-15$	Reserved (satellite)

inner_coding_mode: A 4-bit field that indicates the coding mode for the inner code associated with the waveform described in this MMS record. The following values are currently defined: $5 / 11,1 / 2,3 / 5$, $2 / 3,3 / 4,4 / 5,5 / 6$, and $7 / 8$. Coding of the inner_coding_mode field is shown in Table B.11.

Table B.11/J. 94 - Inner Coding Mode

inner_coding_mode	
0	rate $5 / 11$ coding
1	rate $1 / 2$ coding
2	Reserved
3	rate $3 / 5$ coding
4	Reserved
5	rate $2 / 3$ coding
6	Reserved
7	rate $3 / 4$ coding
8	rate $4 / 5$ coding
9	rate $5 / 6$ coding
10	Reserved
11	rate $7 / 8$ coding
$12-14$	Reserved
15	None - indicates that the waveform does not use concatenated coding

modulation_format: A 5-bit field that defines the basic modulation format for the carrier. Table B. 12 defines the parameter.

Table B.12/J. 94 - Modulation Format

modulation_format	Meaning
0	unknown - The modulation format is unknown.
1	QPSK - The modulation format is QPSK (Quadrature Phase Shift Keying).
2	BPSK - The modulation format is BPSK (Binary Phase Shift Keying).
3	OQPSK - The modulation format is offset QPSK.
4	VSB 8 - The modulation format is 8-level VSB (Vestigial Sideband).
5	VSB 16 - The modulation format is 16-level VSB.
6	QAM 16 - Modulation format 16-level Quadrature Amplitude Modulation   (QAM).
7	QAM 32 - 32-level QAM
8	QAM 64 - 64-level QAM
9	QAM 80 - 80-level QAM
10	QAM 96 - 96-level QAM
11	QAM 112 - 112-level QAM
12	QAM 128 - 128-level QAM
13	QAM 160 - 160-level QAM
14	QAM 192 - 192-level QAM
15	QAM 224 - 224-level QAM
16	QAM 256 - 256-level QAM
17	QAM 320 - 320-level QAM
18	QAM 384 - 384-level QAM
19	QAM 448 - 448-level QAM

Table B.12/J. 94 - Modulation Format (concluded)

modulation_format	
20	QAM 512 -512 -level QAM
21	QAM 640 -640 -level QAM
22	QAM 768 -768 -level QAM
23	QAM 896 -896 -level QAM
24	QAM 1024 - 1024-level QAM
$25-31$	Reserved

symbol_rate: A 28 -bit unsigned integer field that indicates the symbol rate in symbols per second associated with the waveform described in this MMS record.

## B.6.1.3 Descriptors Count

descriptors_count: An 8-bit unsigned integer value in the range 0 to 255 representing the number of descriptor blocks to follow.
descriptor(): The table section may include at its end one or more structures of the form tag, length, data. The number of descriptors present is determined indirectly by processing the section_length field. Descriptors are defined in B.7.

## B.6.2 Network Text Table

The Network Text Table shall be associated on the POD-Host interface with PID value 0x1FFC, the SI_base PID. This table delivers sections of textual tables applicable system-wide. Each instance of Network Text Table is associated with a language, as such the textual information may be provided multi-lingually. The Network Text Table delivers the Source Name Subtable (SNS).
Table B. 13 shows the format of the Network Text Table.

Table B.13/J. 94 - Network Text Table section format

	Bits	Bytes	Format
```network_text_table_section(){ table_ID Zero Reserved section_length Zero protocol_version ISO_639_language_code transmission_medium table_subtype if (table_subtype==SNS) { source_name_subtable() } for (i=0; i<N; i++) { descriptor() } CRC_32 }```	$\begin{gathered} 8 \\ 2 \\ 2 \\ 12 \\ 3 \\ 5 \\ 24 \\ 4 \\ 4 \\ * \\ * \\ * \\ 32 \end{gathered}$	1 2   1   3   1   (*)   (*)   4	uimsbf value 0 xC 3   bslbf   bslbf   uimsbf   See B.5.4.1.   Per ISO 639-2/B   uimsbf   uimsbf (See Table B.14.)   Optional   rpchof

The Network Text Table carries Multilingual Text Strings, formatted as defined in B.8.2. Text Strings included in the Network Text Table shall not include format effectors (defined in B.8.1.2). If format effectors are present in a text block, the Host is expected to disregard them.
table_ID: The table_ID of the Network Text Table section shall be $0 \times \mathrm{xC} 3$.
ISO_639_language_code: A 3-byte language code per ISO 639-2/B defining the language associated with the text carried in this Network Text Table. The ISO_639_language_code field contains a three-character code as specified by ISO $639-2 / \mathrm{B}$. Each character is coded into 8 bits according to ISO 8859-1 (ISO Latin-1) and inserted, in order, into the 24-bit field. The value 0xFFFFFF shall be used in case the text is available in one language only. The value $0 x$ FFFFFF shall represent a "wild card" match when filtering by language.
transmission_medium: This 4-bit field shall be set to zero (0 x 0).
table_subtype: A 4-bit value that defines the type of table delivered in the table section. One instance of a Network Text Table section can define entries within at most one type of table. The table_subtype parameter is defined in Table B.14.

Table B.14/J. 94 - Network Text Table Subtype

table_subtype	Meaning
0	Invalid
$1-5$	Reserved
6	SNS - Source Name Subtable
$7-15$	Reserved

A Host shall discard a Network Text Table section with table_subtype indicating an unknown or unsupported value.
The SNS can provide a textual name associated with each service defined in the Short-form Virtual Channel Table, by reference to its source_ID. The format of the source_name_subtable() is given in Table B. 15 .

Table B.15/J. 94 - Source Name Subtable format

number_of_SNS_records: An unsigned 8 -bit integer number in the range 1 to 255 that specifies the number of records being defined in this table section.
application_type: A Boolean flag, when set, indicates that the name string being defined is for an application of the given application_ID. When the flag is clear, the name string being defined is for a source of the given source_ID. Support for application-type virtual channels is optional. Hosts not supporting application-type virtual channels may disregard name strings associated with these VC. Support for application-type virtual channels is beyond the scope of this annex.
application_ID: A 16-bit unsigned integer value identifying the application associated with the name string that follows. This field may be disregarded by Hosts not supporting application-type virtual channels.
source_ID: A 16-bit unsigned integer value identifying the programming source associated with the source name to follow.
name_length: An unsigned 8 -bit integer number in the range 1 to 255 that defines the number of bytes in the source_name() that follows.
source_name(): A Multilingual Text String defining the name of the source or application, formatted according to the rules defined in B.8.1.

SNS_descriptors_count: An unsigned 8 -bit integer number, in the range 0 to 255 , that defines the number of descriptors to follow.
descriptor(): The table section may include, at its end, one or more structures of the form tag, length, data. The number of descriptors present is determined indirectly by processing the section_length field. Descriptors are defined in B.7.

B.6.3 Short-form Virtual Channel Table Section

The Short-form Virtual Channel Table section delivers portions of the Virtual Channel Map (VCM), the Defined Channels Map (DCM) and the Inverse Channel Map (ICM). Sections of the Short-form Virtual Channel Table shall be associated on the POD-Host interface with PID value 0x1FFC, the SI_base PID.

Table B. 16 shows the syntax of the Short-form Virtual Channel Table section.

Table B.16/J. 94 - Short-form Virtual Channel Table section format

	Bits	Bytes	Format
```shortform_virtual_channel_table_section(){ table_ID Zero Reserved section_length Zero protocol_version transmission_medium table_subtype VCT_ID if (table_subtype==DCM) { DCM_structure() } if (table_subtype== VCM) { VCM_structure() }```	$\begin{gathered} 8 \\ 2 \\ 2 \\ 12 \\ 3 \\ 5 \\ 5 \\ 4 \\ 4 \\ 16 \\ * \end{gathered}$	1 2   1   1   2   (*)   (*)	```uimsbf value 0xC4 bslbf bslbf uimsbf bslbf See B.5.4.1. uimsbf uimsbf (See Table B.17.) uimsbf```

Table B.16/J. 94 - Short-form Virtual Channel Table section format (concluded)

	Bits	Bytes	Format
if (table_subtype== ICM) \{   ICM_structure()	$*$	$(*)$	
for (i=0; i<N; i++) \{			
descriptor()			
$\}$CRC_32	32	4	rpchof
$\}$			

table_ID: The table_ID of the Short-form Virtual Channel Table shall be 0xC4.
transmission_medium: This 4-bit field shall be set to zero ( $0 \times 0$ ).
table_subtype: A 4-bit field that indicates the map type being delivered in this S-VCT section. Three map types are currently defined: the Virtual Channel Map (VCM), the Defined Channels Map (DCM), and the Inverse Channel Map (ICM). Table B. 17 defines table_subtype.

Table B.17/J. 94 - S-VCT Table Subtypes

table_subtype	Meaning
0	VCM - Virtual Channel Map
1	DCM - Defined Channels Map
2	ICM - Inverse Channel Map
$3-15$	Reserved

An S-VCT section received with table_subtype indicating an unknown or unsupported map type shall be discarded.
VCT_ID: A 16 -bit unsigned integer value, in the range $0 \times 0000$ to $0 x F F F F$, indicating the VCT to which the channel definitions in this table section apply. This 16-bit field may be used by the POD module for filtering purposes. The Host is expected to ignore VCT_ID. Only one version of the S-VCT, corresponding to one value of VCT_ID, shall be delivered to the Host across the Extended Channel interface at a given time.

## B.6.3.1 Defined Channels Map

Table B. 18 shows the format of the DCM_structure().

Table B.18/J. 94 - DCM structure format

	Bits	Bytes	Format
DCM_structure()\{   Zero   first_virtual_channel   zero	4	2	bslbf
DCM_data_length   for (i=0; i<DCM_data_length; i++) \{   range_defined   channels_count   $\}$	12		uimsbf range 0-4095
$\}$	7	1	bslbf
uimsbf range 1-127			
\}	7	(1)	bslbf \{no, yes $\}$   uimsbf range 1-127

first_virtual_channel: An unsigned 12-bit integer reflecting the first virtual channel whose existence is being provided by this table section, for the map identified by the VCT_ID field. The range is 0 to 4095 .
DCM_data_length: A 7 -bit unsigned integer number, in the range 1 to 127 , that defines the number of DCM data fields to follow in the table section.
The DCM data bytes taken as a whole define which virtual channels, starting at the channel number defined by first_virtual_channel, are defined and which are not. Each DCM_data_field defines two pieces of data: a flag indicating whether this block of channels is defined or not, and the number of channels in the block. The bytes are interpreted in an accumulative way, with a pointer into the Short-form Virtual Channel Table which is initialized to first_virtual_channel. As each byte is processed, the pointer is incremented by the number of channels indicated by the channels_count field.
For example, if channels 2-90, 200-210, 400-410, 600-610, 800-810, and 999 were defined, and first_virtual_channel was zero, the DCM data sequence (in decimal) would be the following, where underlined numbers have the range_defined bit set: $2, \underline{89}, 109, \underline{11}, 127,62, \underline{11}, 127,62, \underline{11}, 127,62$, 11, 127, 61, $\underline{1}$.
range_defined: A Boolean flag that indicates, when true, that the number of channels given by channels_count is defined in the VCT, starting at the current pointer value. When the flag is clear, the number of channels equal to channels_count are currently not defined starting at the current pointer value.
channels_count: An unsigned 7-bit integer number, in the range 1 to 127 , that indicates the number of defined (or undefined) channels in a group.

## B.6.3.2 Virtual Channel Map

Table B. 19 shows the format of the VCM_structure().

Table B.19/J. 94 - VCM structure format

	Bits	Bytes	Format
VCM_structure()\{			
zero	2	1	bslbf
descriptors_included	1		bslbf \{no, yes $\}$
Zero	5		bslbf
Splice	1	1	bslbf \{no, yes\}
Zero	7		bslbf
activation_time	32	4	uimsbf
number_of_VC_records	8	1	
for (i=0; i<number_of_VC_records; i++) \{ virtual_channel()	*	(*)	
\}			
\}			

descriptors_included: A Boolean flag that indicates, when set, that one or more record-level descriptors are present in the table section. Record-level descriptors are those defined in Table B. 20 following the "if (descriptors_included)" statement. When the flag is clear, the record-level descriptor block is absent. The descriptors_included flag is not applicable to the section level descriptors shown at the bottom of Table B.16.

The activation time indicates the time at which the data delivered in the table section will be valid.
splice: A Boolean flag that indicates, when set, that the Host should arm video processing hardware to execute the application of the data delivered in the VCM_structure() at the next MPEG-2 video splice point if the virtual channel changes described in the table section apply to a currently acquired channel, and the activation_time is reached. If the activation is immediate or specified as a time that has since passed, the data should be applied immediately. When the splice flag is clear, the virtual channel change is made directly, without arming video hardware for a splice.
activation_time: A 32-bit unsigned integer field providing the absolute second the virtual channel data carried in the table section will be valid, defined as the number of seconds since 0000 Hours UTC, January 6th, 1980. If the GPS_UTC_offset delivered in the System Timetable is zero, activation_time includes the correction for leap seconds. Otherwise, activation_time can be converted to UTC by subtracting the GPS_UTC_offset. If the activation_time is in the past, the data in the table section shall be considered valid immediately. An activation_time value of zero shall be used to indicate immediate activation.

A Host may enter a virtual channel record whose activation times are in the future into a queue. Such a queue may be called a pending virtual channel queue. Hosts are not required to implement a pending virtual channel queue, and may choose to discard any data that is not currently applicable.
number_of_vc_records: An 8 -bit unsigned integer number, in the range 1 to 255, that identifies the number of virtual_channel() records to follow in the table section. The number of records included is further limited by the allowed maximum table section length.
virtual_channel(): Table B. 20 defines the virtual_channel() record structure.

Table B.20/J. 94 - Virtual channel record format

	Bits	Bytes	Format
```virtual_channel(){ Zero virtual_channel_number application_virtual_channel Zero path_select transport_type channel_type if (application_virtual_channel) { application_ID } else { source_ID } if (transport_type==MPEG_2) { CDS_reference program_number MMS_reference } else { /* non-MPEG-2 */ CDS_reference Scrambled Zero video_standard Zero } if (descriptors_included) {```	4   12   1   1   1   1   4   16   16   8   16   8   8   1   3   4   16	2   1   (2)   (2)   ((1))   ((2))   ((1))   ((1))   ((1))   ((2))	bslbf   uimsbf range 0-4095   bslbf \{no, yes\}   bslbf   bslbf (See Table B.21.)   bslbf (See Table B.22.)   uimsbf (See Table B.23.)   uimsbf range 1-255   uimsbf range 1-255   uimsbf range 0-255   bslbf \{no, yes\}   bslbf   uimsbf (See Table B.24.)   bslbf

Table B.20/J.94 - Virtual channel record format (concluded)

	Bits	Bytes	Format
	8	$\begin{aligned} & \hline(1) \\ & ((*)) \end{aligned}$	uimsbf

virtual_channel_number: An unsigned 12-bit integer, in the range 0 to 4095 , reflecting the virtual channel whose definition is being provided by this virtual channel record, for the map identified by the VCT_ID field.
application_virtual_channel: A binary flag that, when set, indicates this virtual channel defines an access point represented by the application_ID. When the flag is clear, the channel is not an application access point, and this virtual channel defines an access point represented by the source_ID. Support for application-type virtual channels is optional. Hosts not supporting application-type virtual channels may disregard all data associated with them. Support for application-type virtual channels is beyond the scope of this annex.
path_select: A 1-bit field that associates the virtual channel with a transmission path. For the cable transmission medium, path_select identifies which physical cable carries the Transport Stream associated with this virtual channel. Table B. 21 defines path_select.

Table B. $21 / \mathrm{J} .94$ - Path Select

path_select	meaning
0	path 1
1	path 2

transport_type: A 1-bit field identifying the type of transport carried on this carrier as either being an MPEG-2 transport (value zero), or not (value one). Table B. 22 defines the coding.

Table B.22/J. 94 - Transport Type

transport_type	Meaning
0	MPEG-2 transport
1	non-MPEG-2 transport

channel_type: A 4-bit field defining the channel type. Table B. 23 defines channel_type.

Table B.23/J. 94 - Channel Type

channel_type	Meaning
0	normal - Indicates that the record is a regular virtual channel record. For non-MPEG- 2 channels, the waveform_type shall be defined as "normal."
1	hidden - Indicates that the record identifies a virtual channel that may not be accessed by the user by direct entry of the channel number (hidden). Hidden channels are skipped when the user is channel surfing, and appear as if undefined if accessed by direct channeel entry. Programs constructed for use by specific applications (such as NVOD theaters) tuilize hidden virtual channels. If a channel_properties_descriptor) is present and the hide_guide bit is 0, the channel may be considered to be inactive. Inactive channels may appear in EPG displays.
$2-15$	reserved - Hosts are expected to treat virtual channel records of unknown channel_type the same as non-existent (undefined) channels.

application_ID: A 16 -bit unsigned integer number, in the range 0×0001 to $0 x F F F F$, that identifies the application associated with the virtual channel, on a system-wide basis. One particular program guide application, for example, may look for a program carrying data in its native transmission format by searching through the Short-form Virtual Channel Table for a match on its assigned application_ID. In some cases, one application may be able to process streams associated with more than one application ID. The application ID may be used to distinguish content as well as format, for the benefit of processing within the application. The value zero for application_ID shall not be assigned; if specified in a Virtual Channel record, the value zero indicates "unknown" or "inapplicable" for the application_ID/source_ID field.

Support for application-type virtual channels is optional. Hosts not supporting application-type virtual channels may disregard all data associated with them. Support for application-type virtual channels is beyond the scope of this annex.
source_ID: A 16-bit unsigned integer number, in the range 0×0000 to $0 x F F F F$, that identifies the programming source associated with the virtual channel, on a system-wide basis. In this context, a source is one specific source of video, text, data, or audio programming. For the purposes of referencing virtual channels to the program guide database, each such program source is associated with a unique value of source_ID. The source_ID itself may appear in an EPG database, where it tags entries to specific services. The value zero for source_ID, if used, shall indicate the channel is not associated with a source ID.
program_number: A 16-bit unsigned integer number that associates the virtual channel number being defined with services defined in the Program Association and TS Program Map Table sections. Access to elementary streams defined in each virtual channel record involves first acquiring the Transport Stream on the carrier associated with the virtual channel, then referencing the Program Association section in PID 0 to find the PID associated with the TS Program Map Table section for this program_number. PIDs for each elementary stream are then found by acquisition of the TS Program Map Table section.
A program_number with value $0 x 0000$ (invalid as a regular program number) is reserved to indicate that the Host is expected to discard the corresponding virtual channel record from the queue of pending virtual channel changes. Records are identified in the pending queue by their activation_time, VCT_ID, and virtual_channel_number. If no pending virtual channel change is found in the Host's queue, no action should be taken for this virtual channel (i.e. the record is expected to be discarded).

For inactive channels (those not currently present in the Transport Stream), program_number shall be set to zero. This number shall not be interpreted as pointing to a Program Map Table entry.
descriptors_count: An 8-bit unsigned integer value, in the range 0 to 255, that defines the number of descriptors to follow.

CDS_reference: An unsigned 8-bit integer number, in the range 0 to 255 , that identifies the frequency associated with this virtual channel. Values 1 to 255 of CDS_reference are used as indices into the Carrier Definition Subtable to find a frequency to tune to acquire the virtual channel. The value zero is reserved to indicate that the referenced service is carried on all digital multiplexes in this VCM. The CDS_reference field shall be disregarded for inactive channels.

MMS_reference: An 8-bit unsigned integer value, in the range 0 to 255 , that references an entry in the Modulation Mode Subtable (MMS). The value zero is illegal and shall not be specified. For digital waveforms, the MMS_reference associates the carrier with a digital modulation mode. For Host implementations that support only one set of modulation parameters, in systems in which one modulation method is used for all carriers, storage and processing of the MMs_reference is unnecessary. The MMS_reference field shall be disregarded for inactive channels.
video_standard: A 4-bit field that indicates the video standard associated with this non-Standard virtual channel. Table B. 24 defines video_standard.

Table B.24/J. 94 - Video Standard

video_standard	Meaning
0	NTSC - The video standard is NTSC.
1	PAL 625 - The video standard is 625-line PAL.
2	PAL 525 - The video standard is 525-line PAL.
3	SECAM - The video standard is SECAM.
4	MAC - The video standard is MAC.
$5-15$	Reserved

descriptor(): The table section may include, at its end, one or more structures of the form tag, length, data. The number of descriptors present is determined indirectly by processing the section_length field. Descriptors are defined in B.7.

B.6.3.3 Inverse Channel Map

The Inverse Channel Map, once reconstructed in the Host from a sequence of Virtual Channel records that belong to the ICM, consists of a list of source_ID/virtual_channel_number pairs, ordered by source_ID. The Host may use this table to quickly find the virtual channel carrying the program given by a particular value of source_ID (by binary search), if such a virtual channel exists. One Inverse Channel Map can be defined per Virtual Channel Map. The ICM may be constructed from the VCM, or linear searches may be done to resolve source_ID references. Transmission of the ICM is therefore optional.

Virtual channels that provide access points for applications (i.e. with the application_virtual_channel flag set to "yes") are not included in the ICM.
Table B. 25 describes the format of the ICM_structure().

Table B.25/J. 94 - ICM structure format

	Bits	Bytes	Format
ICM_structure()\{			
Zero	4	2	bslbf
first_map_index	12		uimsbf range 0-4095
zero	1	1	bslbf
record_count	7		uimsbf range 1-127
for (i=0; i<record_count; i++) \{			
source_ID	16	(2)	uimsbf
zero	4	(2)	bslbf
virtual_channel_number	12		uimsbf range 0-4095
\}			
\}			

first_map_index: A 12-bit unsigned integer, in the range 0 to 4095 , that represents the index into the Inverse Channel Map where data carried in this ICM_structure() should be stored.
record_count: A 7-bit unsigned integer value, in the range 1 to 127, that represents the total number of source_ID/virtual_channel pairs defined in this table section.
source_ID: A 16-bit unsigned integer number, in the range 0×0000 to $0 x F F F F$, that identifies the source associated with the virtual channel, on a system-wide basis. In this context, a "source" is one specific source of video, text, data, or audio programming. For the purposes of referencing virtual channels to the program guide database, each such source is associated with a unique value of source_ID.
virtual_channel_number: A 12-bit unsigned integer value, in the range 0 to 4095 , that represents the virtual channel, in the Short-form Virtual Channel Table section (see Table B.16) given by vct_ID, associated with the given source_ID through the virtual_channel() record (see Table B.20). A virtual_channel_number of zero indicates that the program given by source_ID is currently not carried in this Short-form Virtual Channel Table. Such placeholders are useful in the case where the existence of a certain program within a VCM may come and go.

B.6.4 System Timetable Section

The System Timetable is used to synchronize Hosts with accurate calendar time. The System Timetable shall be associated on the POD-Host interface with PID value 0x1FFC, the sı_base PID. Rate of transmission is typically once per minute, at second 00 of each minute.
The processing of the System Timetable in the Host is time-critical. Delays between reception and processing of the table section increase the inaccuracy of timed events. Processing delays should be kept below 200 milliseconds.
Table B. 26 shows the format of the System Timetable section.

Table B.26/J. 94 - System Timetable section format

	Bits	Bytes	Format
```system_time_table_section(){ table_ID Zero Reserved section_length Zero protocol_version Zero system_time GPS_UTC_offset for (i=0; i<N; i++) { descriptor() } CRC_32 }```	$\begin{gathered} 8 \\ 2 \\ 2 \\ 12 \\ 3 \\ 5 \\ 8 \\ 32 \\ 8 \\ * \\ 32 \end{gathered}$	1 2   1   1   4   1   (*)   4	uimsbf value 0 xC 5   bslbf   bslbf   uimsbf   See B.5.4.1.   bslbf   uimsbf   uimsbf seconds   Optional   rpchof

table_ID: The table_ID of the System Timetable shall be 0xC5.
system_time: A 32-bit unsigned integer quantity representing the current system time, as the number of GPS seconds since 0000 Hours UTC, January 6th, 1980. The system_time value may or may not include the correction factor for leap seconds, depending upon the value of GPS_UTC_offset, as described below.

GPS_UTC_offset: An 8-bit value that serves dual roles. When set to zero, the field indicates that the system_time field carries UTC time directly. When GPS_UTC_offset is not equal to zero, it is interpreted as an 8-bit unsigned integer that defines the current offset in whole seconds between GPS and UTC time standards. To convert GPS time to UTC, the GPS_UTC_offset is subtracted from GPS time. Whenever the International Bureau of Weights and Measures decides that the current offset is too far in error, an additional leap second may be added (or subtracted), and the GPS_UTC_offset will reflect the change.
descriptor(): The table section may include at its end one or more structures of the form tag, length, data. The number of descriptors present is determined indirectly by processing the section_length field. Descriptors are defined in B.7.

## B.6.5 Master Guide Table (MGT)

The Master Guide Table is used to indicate the location, size, and version of tables it references. The MGT shall be associated on the POD-Host interface with PID value 0x1FFC, the sI_base PID. The MGT syntax is shown in Table B.27. Syntax and semantics are identical to SCTE DVS 097, ATSC Standard A/65 (1997), except that additional table types are added to refer to all tables defined in this protocol.

Table B.27/J. 94 - Master Guide Table section format

table_ID: The table_ID of the Master Guide Table section shall be 0xC7.
section_syntax_indicator: This 1-bit field shall be set to ' 1 '. It denotes that the section follows the generic section syntax beyond the section length field.
private_indicator: This 1-bit field shall be set to ' 1 '.
section_length: 12 -bit field specifying the number of remaining bytes in this section immediately following the section_length field up to the end of the section. The value of the section_length shall be no larger than 4093.
map_ID: This 16 -bit field may be used by the POD module for filtering purposes. The Host is expected to ignore map_ID. Only one version of the MGT, corresponding to one value of map_ID shall be delivered to the Host across the Extended Channel interface at a given time. Consequently, the Host can disregard map_ID and may process the MGT version_number field as an indication that the MGT version has changed.

NOTE - The map_ID may be considered to be an identifier for this instance of the Master Guide Table. In some applications, the POD module may receive multiple Master Guide Table sections corresponding to distinct channel maps. In this case, the POD module is responsible for accepting one MGT and discard the others. It may use the map_ID to filter them, using information provided outside the scope of this annex.

In every case, the Host will receive just one MGT across the POD to Host interface, and the map_ID parameter may be ignored.
version_number: This 5-bit field is the version number of MGT. The version number shall be incremented by 1 modulo 32 when any field in the table_types defined in the loop below or the MGT itself changes.
current_next_indicator: This 1-bit indicator is always set to ' 1 ' for the MGT section; the MGT sent is always currently applicable.
section_number: The value of this 8 -bit field shall always be 0 x 00 (this table is only one section long). last_section_number: The value of this 8 -bit field shall always be $0 x 00$.
protocol_version: An 8-bit unsigned integer field whose function shall be to allow, in the future, this table type to carry parameters that may be structured differently than those defined in the current protocol. At present, the only valid value for protocol_version is zero. Non-zero values of protocol_version may only be processed by Hosts designed to accommodate the later versions as they become standardized.
tables_defined: This 16-bit unsigned integer in the range 0 to 65535 represents the number of tables in the following loop.
table_type: This 16-bit unsigned integer specifies the type of table, based on Table B.28.

Table B.28/J. 94 - MGT Table Types

table_type	
0x0000-0x0001	[Assigned by ATSC]
$0 x 0002$	Long-form Virtual Channel Table with current_next_indicator=1
0x0003	Long-form Virtual Channel Table with current_next_indicator=0
0x0004	[Assigned by ATSC]
0x0005-0x000F	[Reserved]
0x0010	Short-form Virtual Channel Table-VCM Subtype
0x0011	Short-form Virtual Channel Table-DCM Subtype
0x0012	Short-form Virtual Channel Table-ICM Subtype
0x0013-0x01F	[Reserved]
0x0020	Network Information Table-CDS Table Subtype
0x0021	Network Information Table-MMS Table Subtype
0x0021-0x02F	[Reserved]
0x0030	Network Text Table-SNS Subtype
0x0031-0x00FF	[Reserved]
0x0100-0x017F	[Assigned by ATSC]
0x0180-0x01FF	[Reserved]
0x0200-0x027F	[Assigned by ATSC]
0x028F-0x0300	[Reserved]
0x0301-0x03FF	Rating Region Table with rating_region 1-255
0x0400-0x0FFF	[User private]
0x1000-0x10FF	Aggregate Event Information Table with MGT_tag 0 to 255
0x1100-0x11FF	Aggregate Extended Text Table with MGT_tag 0 to 255
0x1200-0xFFFF	[Reserved]

For table types formatted with the MPEG short-form syntax, the revision_detection_descriptor() shall be used to indicate the section number and version. For example, table_type 0x0020 indicates the Network Information Table, CDS table subtype. One MGT reference to CDS would cover all sections of the delivered CDS.

MGT table types 0x1000 through 0x10FF reference AEIT instances with MGT_tag values 0x00 through $0 x F F$, respectively. Table types $0 x 1100$ through 0x11FF reference AETT instances with MGT_tag values $0 x 00$ through $0 x F F$, respectively. A table_type value of $0 x 1023$ in the MGT, for example, refers to the instance of the AEIT with MGT_tag value $0 \times 23$.

Note that the choice of value of the MGT_tag is independent of the timeslot number. For example, the MGT_tag value used to deliver AEIT-0 may be zero or any other value up to 255 .
table_type_PID: This 13-bit field specifies the PID for the table_type described in the loop.
table_type_version_number: This 5-bit field reflects the version number of the table_type described in the loop. The value of this field shall be the same as the version_number entered in the corresponding fields of tables and table instances. The version number for the next L-VCT (current_next_indicator $=0$ ) shall be one unit more (modulo 32 ) than the version number for the current L-VCT (current_next_indicator $=1$ ).
number_bytes: This 32 -bit unsigned integer field indicates the total number of bytes used for the table_type described in the loop. There may be more than one instance of the indicated table_type.
table_type_descriptors_length: Total length of the descriptors for the table_type described in the loop (in bytes).
descriptors_length: Total length of the MGT descriptor list that follows (in bytes).
descriptor(): The table section may include, at its end, one or more structures of the form tag, length, data. Descriptors are defined in B.7.

CRC_32: This is a 32-bit field that contains the CRC value to ensure a zero output from the registers in the decoder defined in Annex A of ITU-T H.222.0 | ISO/IEC 13818-1 "MPEG-2 Systems" after processing the entire Master Guide Table section.

## B.6.5.1 Restrictions on PID values

Certain restrictions apply to the PID values specified in the MGT. These restrictions are necessary to ensure the Host can collect EPG data using a minimum number of concurrent flows on the Extended Channel.

- All AEIT and AETT table sections with common MGT_tag values shall share a common PID.
- AEIT-0, AETT-0, AEIT-1 and AETT-1 instances shall share a common PID value. ${ }^{4}$
- AEIT-2, AETT-2, AEIT-3 and AETT-3 instances shall be associated with a second separate PID value.
- EPG data describing events farther into the future may be associated with one or more PID values; the second PID value may be used for all or some of the AEIT/AETT-4 through AEIT/AETT-N instances ( $\mathrm{N}<256$ ).


## B.6.5.2 Restrictions on order of occurrence of table references

For all table references except AEIT and AETT, the order of appearance in the MGT of various table references is not specified or restricted. For AEIT and AETT references, the following restriction applies:

[^3]- The order of appearance of AEIT/AETT references in the MGT shall correspond to increasing time slot assignments.

NOTE - This rule allows a Host to know, before processing the AEIT/AETT data, which table instances correspond to near-term data and which correspond to data farther into the future. This information is useful if the Host has insufficient RAM to hold all data transmitted.

## B.6.6 Long-form Virtual Channel Table

The Long-form Virtual Channel Table is carried in MPEG-2 table sections with table ID 0xC9, and conforms to the syntax and semantics of the MPEG-2 Private Section as described in 2.4.4.10 and 2.4.4.11 of ITU-T H.222.0 | ISO/IEC 13818-1. The Long-form Virtual Channel Table shall be associated on the POD-Host interface with PID value $0 \times 1$ FFC, the SI_base PID.

The bit stream syntax for the Long-form Virtual Channel Table is shown in Table B.29.

Table B.29/J. 94 - Long-form Virtual Channel Table section format

Syntax	Bits	Bytes	Format
```longform_virtual_channel_table_section () { table_id section_syntax_indicator private_indicator Reserved section_length map_ID Reserved version_number current_next_indicator section_number last_section_number protocol_version num_channels_in_section For(i=0; i<num_channels_in_section;i++) { short_name reserved major_channel_number minor_channel_number modulation mode carrier_frequency channel_TSID program_number reserved access_controlled hidden path_select out_of_band hide_guide reserved service_type source_id reserved descriptors_length for (i=0;i<N;i++) { descriptors() }```	8 8 1 1 2 12 16 2 5 1 8 8 8 8 $7 * 16$ 4 10 10 8 32 16 16 2 1 1 1 1 1 3 6 16 6 10	1 2   2 1   1   1   1   1   (14)   (3)   (1)   (4)   (2)   (2)   (2)   (2)   (2)	0xC9 '1' '1' '11' uimsbf uimsbf '11' uimsbf bslbf uimsbf uimsbf uimsbf uimsbf unicode ${ }^{\text {TMBMP }}$ '1111' uimsbf uimsbf uimsbf uimsbf uimsbf uimsbf '11' bslbf bslbf bslbf bslbf bslbf '111' uimsbf uimsbf '111111' uimsbf
\}			

Table B.29/J. 94 - Long-form Virtual Channel Table section format (concluded)

table_id: An 8-bit unsigned integer number that indicates the type of table section being defined here. For the longform_virtual_channel_table_section, the table_ID shall be 0xC9.
section_syntax_indicator: The section_syntax_indicator is a one-bit field which shall be set to ' 1 ' for the longform_virtual_channel_table_section().
private_indicator: This 1-bit field shall be set to ' 1 '.
section_length: This is a twelve-bit field that specifies the number of bytes of the section, starting immediately following the section_length field, and including the CRC. The value in this field shall not exceed 4093.
map_ID: A 16-bit identifier for this Long-form Virtual Channel Table. In some applications, the POD module may receive multiple Long-form Virtual Channel Table sections corresponding to distinct channel maps. In this case, the POD may use the map_ID to distinguish them, using information provided outside the scope of this annex. In every case, the Host will receive just one L-VCT across the POD to Host interface, and the map_ID parameter may be ignored.
version_number: This 5-bit field is the version number of the Long-form Virtual Channel Table. For the current L-VCT (current_next_indicator $=1$), the version number shall be incremented by 1 whenever the value of the current $\mathrm{L}-\mathrm{VCT}$ changes. Upon reaching the value 31, it wraps around to 0 . For the next L-VCT (current_next_indicator $=0$), the version number shall be one unit more than that of the current L-VCT (also in modulo 32 arithmetic). In any case, the value of the version_number shall be identical to that of the corresponding entries in the MGT.
current_next_indicator: A 1-bit indicator, which when set to '1' indicates that the Long-form Virtual Channel Table sent is currently applicable. When the bit is set to ' 0 ', it indicates that the table sent is not yet applicable and shall be the next table to become valid.
section_number: This 8-bit field gives the number of this section. The section_number of the first section in the Long-form Virtual Channel Table shall be $0 x 00$. It shall be incremented by one with each additional section in the Long-form Virtual Channel Table.
last_section_number: This 8-bit field specifies the number of the last section (that is, the section with the highest section_number) of the complete Long-form Virtual Channel Table.
protocol_version: An 8-bit unsigned integer field whose function is to allow, in the future, this table type to carry parameters that may be structured differently than those defined in the current protocol. At present, the only valid value for protocol_version is zero. Non-zero values of protocol_version may only be processed by Hosts designed to accommodate the later versions as they become standardized.
num_channels_in_section: This 8 -bit field specifies the number of virtual channels in the L-VCT section. The number is limited by the section length.
short_name: The name of the virtual channel, represented as a sequence of one to seven 16-bit character codes coded in accordance with the Basic Multilingual Plane (BMP) of Unicode ${ }^{\text {TM }}$, as specified in ISO/IEC 10646-1. If the name of the virtual channel is shorter than seven Unicode ${ }^{\mathrm{TM}}$
characters, one or more instances of the null character value 0×0000 shall be used to pad the string to its fixed 14-byte length.
major_channel_number, minor_channel_number: These two 10-bit fields represent either a two-part or a one-part virtual channel number associated with the virtual channel being defined in this iteration of the "for" loop. One-part numbers range from 0 to 16 383. Two-part numbers consist of a major and a minor number part; the range of each is 0 to 999 . The one- or two-part number acts as the user's reference number for the virtual channel. Some channels may be represented with a one-part number while others in the VCT are represented with two-part numbers.

The six MSBs of the major_channel_number field, when all 1, indicate that a one-part number is being specified. The value of the one-part number is given, in C syntax, by:
one_part_number $=($ major_channel_number $\& 0 x 00 F) \ll 10+$ minor_channel_number
When the six MSBs of the major_channel_number field are not all 1, and the 10-bit major_channel_number field is less than 1000, two fields specify a two-part channel number. The value of the two-part number is given by major_channel_number and minor_channel_number.
Table B. 30 summarizes the coding of the major_channel_number and minor_channel_number fields.

Table B.30/J. 94 - Major and minor channel number field coding

	20-bit major/minor field (10-bit major + 10-bit minor)		User channel number
Two-part channel numbers	Major Number (10 bits)	Minor Number (10 bits)	Two-part user channel number
	000d	000d	0-0
	000d	001d	0-1
(1000 major	\ldots
numbers, each	000d	999d	0-999
numbers)	001d	000d	1-0
	..	\ldots	\ldots
	999d	999d	999-999
[Res	000d to 999d	1000d-1023d	N/A
[Reserved]	1000-1007d	All values	N/A
One-part channel numbers	$\begin{aligned} & \text { 6-bit flag } \\ & \text { (set = 111111b) } \end{aligned}$	One-Part Number (14 bits)	One-part user channel number
	Set	0d	0
(16 383 linear	Set	1d	1
space numbers)	Set
	Set	16383d	16383

modulation_mode: An 8-bit unsigned integer number that indicates the modulation mode for the transmitted carrier associated with this virtual channel. Values of modulation_mode are defined by this annex in Table B.31. For digital signals, the standard values for modulation mode (values below $0 x 80$) indicate transport framing structure, channel coding, interleaving, channel modulation, forward error correction, symbol rate, and other transmission-related parameters, by means of a reference to an appropriate standard. Values of modulation_mode 0×80 and above are outside the scope of SCTE. These may be used to specify non-standard modulation modes in private systems. A value of 0×80 for modulation_mode indicates that modulation parameters are specified in a private descriptor. The modulation_mode field shall be disregarded for inactive channels.

Table B.31/J. 94 - Modulation modes

Modulation_mode	Meaning
0x00	[Reserved]
0x01	analogue - The virtual channel is modulated using standard analogue methods for analogue television.
0x02	SCTE_mode_1 - The virtual channel has a symbol rate of 5.057 Msymb/s, transmitted in accordance with Digital Transmission Standard for Cable Television, Ref. SCTE DVS 031 (Mode 1). Typically, mode 1 will be used for 64-QAM.
0x03	SCTE_mode_2 - The virtual channel has a symbol rate of 5.361 Msymb/s, transmitted in accordance with Digital Transmission Standard for Cable Television, Ref. SCTE DVS 031 (Mode 2). Typically, mode 2 will be used for 256-QAM.
0x04	ATSC (8 VSB) - The virtual channel uses the 8-VSB modulation method conforming to the ATSC Digital Television Standard, ATSC Standard A/53 (1995).
0x05	ATSC (16 VSB) - The virtual channel uses the 16- USB modulation method conforming to the ATSC
Digital Television Standard, ATSC Standard A/53 (1995).	
[Reserved for future use]	
0x06-0x7F	Modulation parameters are defined by a private descriptor
0x81-0xFF	[User Private]

carrier_frequency: A 32-bit unsigned integer that represents the carrier frequency associated with the analogue or digital transmission associated with this virtual channel, in Hz. For QAM-modulated signals, the given carrier_frequency represents the location of the digitally modulated carrier; for VSB-modulated signals, the given carrier_frequency represents the location of the pilot tone; for analogue signals, it represents the frequency of the picture carrier. The carrier_frequency field shall be disregarded for inactive channels.
channel_TSID: A 16-bit unsigned integer field, in the range $0 x 0000$ to $0 x F F F F$, that represents the MPEG-2 Transport Stream ID associated with the Transport Stream carrying the MPEG-2 program referenced by this virtual channel. For inactive channels, channel_TSID represents the ID of the Transport Stream that will carry the service when it becomes active. The Host may use the channel_TSID to verify that a TS acquired at the referenced carrier frequency is actually the desired multiplex. Analogue signals may have a TSID provided that it is different from any DTV Transport Stream identifier; that is, it shall be truly unique if present. ${ }^{5}$ A value of 0xFFFF for channel_TSID shall be specified for analogue channels that do not have a valid TSID.
program_number: A 16-bit unsigned integer number that associates the virtual channel being defined here with the MPEG-2 Program Association and TS Program Map tables. For virtual channels representing analogue services, a value of 0xFFFF shall be specified for program_number. For inactive channels (those not currently present in the Transport Stream), program_number shall be set to zero. This number shall not be interpreted as pointing to a Program Map Table entry.

[^4]access_controlled: A 1-bit Boolean flag, when set, indicates that events associated with this virtual channel may be access controlled. When the flag is set to 0 , event access is not restricted.
hidden: A 1-bit Boolean flag that indicates, when set, that the virtual channel is not accessed by the user by direct entry of the virtual channel number. Hidden virtual channels are skipped when the user is channel surfing, and appear as if undefined, if accessed by direct channel entry. Typical applications for hidden channels are test signals and NVOD services. Whether a hidden channel and its event may appear in EPG displays depends on the state of the hide_guide bit.
path_select: A 1-bit field that associates the virtual channel with a transmission path. Two paths are available as defined in Table B.32. For the cable transmission medium, path_select identifies which of two physical input cables carries the Transport Stream associated with this virtual channel.

Table B. $32 / \mathrm{J} .94$ - Path Select

path_select	Meaning
0	path 1
1	path 2

out_of_band: A Boolean flag that indicates, when set, that the virtual channel defined in this iteration of the "for" loop is carried on the cable on the Extended Channel interface carrying the tables defined in this protocol. When clear, the virtual channel is carried within a standard tuned multiplex at that frequency.

NOTE - A virtual channel carried on the out-of-band channel may be acquired by opening a flow between Host and POD to capture the PAT on PID 0. Processing the PAT will determine the PID associated with that service's PMT. Then, a flow can be opened to capture and process the PMT to determine the PIDs associated with elementary stream components of the service. Finally, a flow associated with the service's PID can be opened to capture service-related data.
hide_guide: A Boolean flag that indicates, when set to 0 for a hidden channel, that the virtual channel and its events may appear in EPG displays. This bit shall be ignored for channels which do not have the hidden bit set, so that non-hidden channels and their events may always be included in EPG displays regardless of the state of the hide_guide bit. Typical applications for hidden channels with the hide_guide bit set to 1 are test signals and services accessible through application-level pointers.

An inactive channel is defined as a channel that has program guide data available, but the channel is not currently on the air. Inactive channels are represented as hidden channels with the hide_guide bit set to 0 . The Transport Stream shall not carry a Program Map Table representing an inactive channel.
service_type: A 6-bit enumerated type field that identifies the type of service carried in this virtual channel, based on Table B. 33 .

Table B.33/J. 94 - Service Types

service_type	
0×00	[Reserved]
0×01	analogue_television - The virtual channel carries analogue television programming
0×02	ATSC_digital_television - The virtual channel carries television programming (audio, video and data) conforming to the ATSC Digital Television Standard
0×03	ATSC_audio_only - The virtual channel conforms to the ATSC Digital Television Standard, and has one or more standard audio and data components but no video.
0×04	ATSC_data_broadcast_service - Conforming to the ATSC data broadcast standard under development by T3/S13.
$0 \times 05-0 \times 3 \mathrm{~F}$	[Reserved for future ATSC use]

source_id: A 16-bit unsigned integer number that identifies the programming source associated with the virtual channel. In this context, a source is one specific source of video, text, data, or audio programming. Source ID value zero is reserved to indicate that the programming source is not identified. Source ID values in the range 0x0001 to 0x0FFF shall be unique within the Transport Stream that carries the VCT, while values 0×1000 to $0 x F F F F$ shall be unique at the regional level. Values for source_IDs 0x1000 and above shall be issued and administered by a Registration Authority designated by the ATSC.
descriptors_length: Total length (in bytes) of the descriptors for this virtual channel that follows.
additional_descriptors_length: Total length (in bytes) of the VCT descriptor list that follows.
CRC_32: This is a 32 -bit field that contains the CRC value that ensures a zero output from the registers in the decoder defined in Annex A of ITU-T H.222.0| ISO/IEC 13818-1 "MPEG-2 Systems" after processing the entire Long-form Virtual Channel Table section.
For inactive channels, the short_name, major_channel_number, and minor_channel_number fields reflect the name and channel number of the inactive channel, and may be used in construction of the program guide. The source_ID for inactive channels is used, as it is for active channels, to link the virtual channel to the program guide data. The service_type field and attribute flags reflect the characteristics of the channel that will be valid when it is active.

B.6.7 Rating Region Table (RRT)

The Rating Region Table carries rating information for multiple geographical regions. The RRT shall be associated on the POD-Host interface with PID value 0x1FFC, the SI_base PID.
Transmission of the RRT is required whenever any Transport Stream carries a service that includes a content_advisory_descriptor() in one of its Program Map Tables, or if a content_advisory_descriptor() appears in any transmitted AEIT. An instance of the RRT for each region referenced in any content_advisory_descriptor() shall be transmitted.
Each RRT instance, identified by rating_region (the eight least significant bits of table_id_extension), conveys the rating system information for one specific region. The size of each RRT instance shall not be more than 1024 bytes (including section header and trailer), and it shall be carried by only one MPEG-2 private section.

Table B. 34 describes the Rating Region Table.

Table B.34/J. 94 - Rating Region Table section format

	Bits	Bytes	Format
```rating_region_table_section () { table_ID section_syntax_indicator private_indicator Reserved section_length table_ID_extension{ Reserved rating_region } Reserved version_number current_next_indicator section_number last_section_number```	$\begin{gathered} 8 \\ 1 \\ 1 \\ 2 \\ 12 \\ \hline 8 \\ 8 \\ 8 \\ 2 \\ 5 \\ 5 \\ 1 \\ 8 \\ 8 \end{gathered}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 0 \mathrm{xCA} \\ & \text { '1' } \\ & \text { '1' } \\ & \text { '11' } \\ & \text { uimsbf } \end{aligned}$   0 xFF   uimsbf   '11'   uimsbf   '1'   uimsbf   uimsbf

Table B.34/J. 94 - Rating Region Table section format (concluded)

	Bits	Bytes	Format
protocol_version	8	1	uimsbf
rating_region_name_length	8	1	uimsbf
rating_region_name_text()	var		
dimensions_defined	8	1	uimsbf
for(i=0; i<dimensions_defined; $\mathrm{i}++$ ) \{ dimension_name_length	8	1	uimsbf
dimension_name_text()	var		
Reserved	3	1	'111'
graduated_scale	1		bslbf
values_defined	4		uimsbf
for ( $\mathrm{j}=0$; j <values_defined; $\mathrm{j}++$ ) \{			
abbrev_rating_value_length	8	1	uimsbf
abbrev_rating_value_text()	var		
rating_value_length	8	1	uimsbf
rating_value_text()	var		
\}			
\}			
Reserved	6	2	'111111'
descriptors_length	10		uimsbf
for (i=0;i<N;i++) \{			
descriptors()	var		
\}			
CRC_32	32	4	rpchof
\}			

table_ID: The table_ID of the Rating Region Table (RRT) shall be 0xCA.
section_syntax_indicator: This 1 -bit field shall be set to ' 1 '. It denotes that the section follows the generic section syntax beyond the section length field.
private_indicator: This 1-bit field shall be set to ' 1 '.
section_length: 12-bit field specifying the number of remaining bytes in this section immediately following the section_length field up to the end of the section. The value of the section_length shall be no larger than 1021.
rating_region: An 8-bit unsigned integer number that defines the rating region to be associated with the text in this rating_region_table_section(). The value of this field is the identifier of this rating region, and thus this field may be used by the other tables (e.g. MGT) for referring to a specific rating region table. Values of rating_region are defined in Table B.35.

Table B.35/J. 94 - Rating Regions

rating_region	Rating Region Name
$0 x 00$	Forbidden
$0 \times 01$	US (50 states + possessions)
$0 \times 02-0 \times F F$	[Reserved]

version_number: This 5-bit field is the version number of the Rating Region Table identified by combination of the fields table_ID and table_ID_extension. The version number shall be incremented by 1 modulo 32 when any field in this instance of the Rating Region Table changes. The value of this field shall be the same as that of the corresponding entry in MGT.
current_next_indicator: This 1-bit indicator is always set to ' 1 '.
section_number: The value of this 8 -bit field shall always be $0 \times 00$.
last_section_number: The value of this 8 -bit field shall always be $0 x 00$.
protocol_version: The value of this 8 -bit field shall always be $0 x 00$.
rating_region_name_length: An 8-bit unsigned integer number that defines the total length (in bytes) of the rating_region_name_text() field to follow.
rating_region_name_text(): A data structure containing a Multiple String Structure which represents the rating region name, e.g. "U.S. ( 50 states + possessions)", associated with the value given by rating_region. The rating_region_name_text() shall be formatted according to the Multiple String Structure (see B.8.2). The display string for the rating region name shall be limited to 32 characters or less.
dimensions_defined: This 8 -bit field (1-255) specifies the number of dimensions defined in this rating_region_table_section().
dimension_name_length: An 8-bit unsigned integer number that defines the total length in bytes of the dimension_name_text() field to follow.
dimension_name_text(): A data structure containing a Multiple String Structure which represents the dimension name being described in the loop. One dimension in the U.S. rating region, for example, is used to describe the MPAA list. The dimension name for such a case may be defined as "MPAA". The dimension_name_text() shall be formatted according to the Multiple String Structure (see B.8.2). The dimension name display string shall be limited to 20 characters or less.
graduated_scale: This 1-bit flag indicates whether or not the rating values in this dimension represent a graduated scale, i.e. higher rating values represent increasing levels of rated content within the dimension. Value 1 means yes, while value 0 means no.
values_defined: This 4-bit field (1-15) specifies the number of values defined for this particular dimension.
abbrev_rating_value_length: An 8-bit unsigned integer number that defines the total length (in bytes) of the abbrev_rating_value_text() field to follow.
abbrev_rating_value_text(): A data structure containing a Multiple String Structure which represents the abbreviated name for one particular rating value. The abbreviated name for rating value 0 shall be set to a null string, i.e. "". The abbrev_rating_value_text() shall be formatted according to the Multiple String Structure (see B.8.2). The abbreviated value display string shall be limited to 8 characters or less.
rating_value_length: An 8 -bit unsigned integer number that defines the total length (in bytes) of the rating_value_text() field to follow.
rating_value_text(): A data structure containing a Multiple String Structure which represents the full name for one particular rating value. The full name for rating value 0 shall be set to a null string, i.e. "". The rating_value_text() shall be formatted according to the Multiple String Structure (see B.8.2). The rating value display string shall be limited to 150 characters or less.
descriptors_length: Length (in bytes) of all of the descriptors that follow this field.
CRC_32: This is a 32 -bit field that contains the CRC value that ensures a zero output from the registers in the decoder defined in Annex A of ITU-T H.222.0 | ISO/IEC 13818-1 "MPEG-2 Systems" after processing the entire Rating Region Table section.

## B.6.8 Aggregate Event Information Tables (AEIT)

The Aggregate Event Information Table delivers event title and schedule information that may be used to support an Electronic Program Guide application. The transmission format allows instances of table sections for different time periods to be associated with common PID values. For use on the Extended Channel (out-of-band), reduction of the total number of PID values in use for SI data is important, because the POD module can typically support only a small number of concurrent data flows (each associated with one PID value).

Each AEIT instance describes event data for one three-hour time period. The start time for any AEIT is constrained to be one of the following eight UTC times: 00:00 (midnight), 03:00, 06:00, 09:00, 12:00 (noon), 15:00, 18:00, and 21:00.

The notation AEIT- $n$ refers to the AEIT corresponding to timeslot $n$. Value 0 for $n$ indicates the current timeslot, value 1 the next timeslot, etc. The same notational methods apply to AETT.
Except for AEIT-0, each AEIT instance shall include event data only for those events actually starting within the covered time period. ${ }^{6}$ AEIT- 0 shall also include event data for all events starting in a prior timeslot but continuing into the current timeslot. In addition, if the VCT entry for a particular source ID includes a time_shifted_service_descriptor(), AEIT-0 shall describe event data for active events on any channels referenced through the time_shifted_service_descriptor().
ETMs for events described in AEIT-0 shall be provided in AETT-0 on the PID associated with AEIT-0 until they are no longer referenced by AEIT-0.

Table B. 36 defines the syntax of the Aggregate Event Information Table.

Table B.36/J. 94 - Aggregate Event Information Table format

Syntax	Bits	Bytes	Format
```aggregate_event_information_table_section () { table_ID section_syntax_indicator private_indicator Reserved section_length AEIT_subtype MGT_tag Reserved version_number current_next_indicator section_number last_section_number if (AEIT_subtype == 0) { num_sources_in_section for (j = 0; j< num_sources_in_section;j++) { source_ID Num_events for (j = 0; j< num_events;j++) { reserved event_ID start_time```	8 1 1 2 12 8 8 2 5 1 8 8 8 16 8 2 2	1 2   1   1   1   1   1   (2)   (1)   ((2))   ((4))	$\begin{aligned} & 0 x D 6 \\ & \text { '1' } \\ & \text { '1' } \\ & \text { '11' } \\ & \text { uimsbf } \\ & \text { uimsbf } \\ & \text { uimsbf } \\ & \text { '11' } \\ & \text { uimsbf } \\ & \text { '1' } \\ & \text { uimsbf } \\ & \text { '11' } \\ & \text { uimsbf } \\ & \text { uimsbf } \end{aligned}$

[^5]Table B.36/J. 94 - Aggregate Event Information Table format (concluded)

table_ID: The table_ID of the Aggregate Event Information Table shall be 0xD6.
section_syntax_indicator: This 1-bit field shall be set to ' 1 '. It denotes that the section follows the generic section syntax beyond the section length field.
private_indicator: This 1-bit field shall be set to ' 1 '.
section_length: 12-bit field specifying the number of remaining bytes in this section immediately following the section_length field up to the end of the section, including the CRC_32 field. The value of this field shall not exceed 4093.
AEIT_subtype: This 8 -bit field identifies the subtype of the AEIT. In the current protocol, only table subtype value 0×00 is defined. Host devices shall discard instances of the aggregate_event_information_table_section() in which an unknown AEIT_subtype is specified (currently, any value other than zero).
MGT_tag: An 8-bit field that ties this AEIT instance to the corresponding table_type in the MGT and to an AETT instance with the same value. The MGT_tag value for an AEIT instance for a given timeslot shall be one higher (modulo 256) than the instance for the preceding time period.
version_number: This 5-bit field is the version number of the AEIT instance. An instance is identified by the MGT_tag. The version number shall be incremented by 1 modulo 32 when any field in the AEIT instance changes. The value of this field shall be identical to that of the corresponding entry in the MGT.
current_next_indicator: This 1-bit indicator is always set to '1' for AEIT sections; the AEIT sent is always currently applicable.
section_number: This 8 -bit field gives the number of this section.
last_section_number: This 8 -bit field specifies the number of the last section.
num_sources_in_section: This 8-bit field gives the number of iterations of the "for" loop describing program schedule data.
source_ID: This 16-bit field specifies the source_ID of the virtual channel carrying the events described in this section.
num_events: Indicates the number of events to follow associated with the program source identified by source_ID. Value 0 indicates no events are defined for this source for the time period covered by the AEIT instance.
event_ID: This 14 -bit field specifies the identification number of the event described. This number serves as a part of the event ETM_ID (identifier for event Extended Text Message). An assigned event_ID shall be unique at least within the scope of the instance of the AEIT in which it appears. Accordingly, as an example, the event associated with event_ID 0x0123 in AEIT-m shall be considered to be an event distinct from event_ID 0x0123 in AEIT-n, when m is not equal to n.
start_time: A 32-bit unsigned integer quantity representing the start time of this event as the number of seconds since 0000 Hours UTC, January 6th, 1980. If the GPS_UTC_offset delivered in the System Timetable is zero, start_time includes the correction for leap seconds. Otherwise, start_time can be converted to UTC by subtracting the GPS_UTC_offset.
ETM_present: This 2-bit field indicates the existence of an Extended Text Message (ETM) based on Table B. 37 .

Table B.37/J. 94 - ETM_present

ETM_present	Meaning
$0 x 00$	No ETM
$0 x 01$	ETM present on this out-of-band Extended Channel
$0 x 02-0 \times 03$	[Reserved for future use]

duration: Duration of this event in seconds.
title_length: This field specifies the length (in bytes) of the title_text(). Value 0 means that no title exists for this event.
title_text(): The event title in the format of a Multiple String Structure. title_text() shall be formatted according to the Multiple String Structure (see B.8.2).
descriptors_length: Total length (in bytes) of the event descriptor list that follows.
CRC_32: This is a 32 -bit field that contains the CRC value that ensures a zero output from the registers in the decoder defined in Annex A of ITU-T H.222.0 | ISO/IEC 13818-1 "MPEG-2 Systems" after processing the entire Aggregate Event Information Table section.

B.6.9 Aggregate Extended Text Tables (AETT)

The Aggregate Extended Text Table contains Extended Text Messages (ETM), which are used to provide detailed descriptions of events. An ETM is a multiple string data structure. Thus, it may represent a description in several different languages (each string corresponding to one language). If necessary, the description may be truncated to fit the allocated display space.
The transmission format of the AETT and its affiliated AEIT allows instances of AEIT/AETT table sections for different time slots to be associated with common PID values.
AETT- n shall be associated with the same PID value as AEIT- n for a given value of n.
The Aggregate Extended Text Table is carried in an MPEG-2 private section with table_ID 0xD7. An instance of the AETT includes one or more ETMs. Each description is distinguished by its unique 32 -bit ETM_ID.
Table B. 38 defines the syntax of the Aggregate Extended Text Table.

Table B.38/J. 94 - Aggregate Extended Text Table format

Syntax	Bits	Bytes	Format
```aggregate_extended_text_table_section () { table_ID section_syntax_indicator private_indicator Reserved section_length AETT_subtype MGT_tag Reserved version_number current_next_indicator section_number last_section_number if (AETT_subtype == 0) { num_blocks_in_section for (j = 0; j< num_blocks_in_section;j++) { ETM_ID reserved extended_text_length extended_text_message() } } Else reserved CRC_32 }```	$\begin{gathered} 8 \\ 1 \\ 1 \\ 2 \\ 12 \\ 8 \\ 8 \\ 2 \\ 5 \\ 5 \\ 1 \\ 8 \\ 8 \\ 8 \\ 8 \\ 32 \\ 4 \\ 4 \\ 12 \\ \text { var } \\ \\ \hline \end{gathered}$	1 2   1   1   1   1   1   1   (4)   (2)   n   4	$\begin{aligned} & 0 \times \mathrm{xD} 7 \\ & \text { '1' } \\ & \text { '1' } \\ & \text { '11' } \\ & \text { uimsbf } \\ & \text { uimsbf } \\ & \text { uimsbf } \\ & \text { '11' } \\ & \text { uimsbf } \\ & \text { '1' } \\ & \text { uimsbf } \\ & \text { '1111' } \\ & \text { uimsbf } \\ & \text { rpchof } \end{aligned}$

table_ID: The table_ID of the Aggregate Extended Text Table shall be 0xD7.
section_syntax_indicator: This 1-bit field shall be set to ' 1 '. It denotes that the section follows the generic section syntax beyond the section length field.
private_indicator: This 1-bit field shall be set to ' 1 '.
section_length: 12-bit field specifying the number of remaining bytes in the section immediately following the section_length field up to the end of the section. The value of the section_length shall be no larger than 4093.
AETT_subtype: This 8-bit field identifies the subtype of the AETT. In the current protocol, only table subtype value $0 \times 00$ is defined. Host devices shall discard instances of the aggregate_extended_text_table_section() in which an unknown AETT_subtype is specified (currently, any value other than zero).

MGT_tag: An 8-bit field that ties this AETT instance to the corresponding table_type in the MGT and to an AEIT instance with the same value. The MGT_tag value for an AETT instance for a given time period shall be one higher (modulo 256) than the instance for the preceding time period.
version_number: This 5-bit field is the version number of the AETT instance. An instance is uniquely identified by its MGT_tag. The version number shall be incremented by 1 modulo 32 when any field in the AETT instance changes. The value of this field shall be identical to that of the corresponding entry in the MGT.
current_next_indicator: This 1-bit indicator is always set to ' 1 ' for AETT sections; the AETT sent is always currently applicable.
section_number: This 8 -bit field gives the number of this section.
last_section_number: This 8 -bit field specifies the number of the last section.
num_blocks_in_section: This 8-bit field gives the number of iterations of the "for" loop describing ETM data.
ETM_ID: Unique 32-bit identifier of this Extended Text Message. This identifier is assigned by the rule shown in Table B. 39.

Table B.39/J. 94 - ETM ID

	MSB		LSB
Bit	$\mathbf{3 1 1 6}$	$\mathbf{1 5 2}$	$\mathbf{1} \mathbf{0}$
event ETM_ID	source_ID	event_ID	$1 \quad 0$

extended_text_length: A 12-bit unsigned integer number that represents the length, in bytes, of the extended_text_message() field directly following.
extended_text_message(): The extended text message in the format of a Multiple String Structure (see B.8.2).
CRC_32: This is a 32 -bit field that contains the CRC value that ensures a zero output from the registers in the decoder defined in Annex A of ITU-T H.222.0 | ISO/IEC 13818-1 "MPEG-2 Systems" after processing the entire Transport Stream AETT section.

## B. 7 Descriptors

This clause defines descriptors applicable for use with various table sections defined in this annex.

## B.7.1 Descriptor usage

Table B. 40 lists all descriptors, their tag numbers and associated table sections applicable to out-of-band SI transport. Asterisks mark the tables where the descriptors may appear. The range of descriptor tags defined or reserved by MPEG-2 includes those with tag values $0 \times 3 \mathrm{~F}$ or below, plus 0 xFF .

Table B.40/J. 94 - Descriptor usage

Descriptor name	Tag	Table section								
		PMT	NIT	NTT	S-VCT	STT	MGT	L-VCT	RRT	AEIT
Stuffing descriptor	0x80	*	*	*	*	*	*	*	*	*
AC-3 audio descriptor	0x81	*								*
Caption service descriptor	0x86	*								*
Content advisory descriptor	0x87	*								*
Revision detection descriptor	0x93		*	*	*					
Two part channel no. descriptor	0x94				*					
Channel properties descriptor	0x95				*					

Table B.40/J. 94 - Descriptor usage (concluded)

Descriptor name	Tag	Table section								
		PMT	NIT	NTT	S-VCT	STT	MGT	L-VCT	RRT	AEIT
Daylight savings time descriptor	0x96					*				
Extended channel name descriptor	0xA0							*		
Time shifted service descriptor	0xA2							*		
Component name descriptor	0xA3	*								
User private descriptors	$\begin{gathered} \hline 0 \mathrm{xC0}- \\ 0 \mathrm{xFF} \end{gathered}$		*	*	*	*	*	*	*	*

## B.7.2 Stuffing descriptor

For certain applications it is necessary to define a block of N bytes as a placeholder. The N bytes themselves are not to be processed or interpreted. The stuffing_descriptor() is specified for this purpose. The stuffing_descriptor() is simply a descriptor type for which the contents, as indicated by the descriptor_length field, are to be disregarded. The tag type for the stuffing descriptor is $0 x 80$. The stuffing_descriptor() may appear where descriptors are allowed in any table defined in this annex.

## B.7.3 AC-3 audio descriptor

The AC-3 audio descriptor, as defined in ATSC Standard A/52 (1995), and constrained in Annex B of ATSC Standard A/53 (1995), may be used in the PMT and/or in AEITs.

## B.7.4 Caption service descriptor

The caption service descriptor provides closed captioning information, such as closed captioning type and language code for events with closed captioning service. This descriptor shall not appear on events with no closed captioning service.

The bit stream syntax for the Caption Service Descriptor is shown in Table B.41.

Table B.41/J. 94 - Caption Service Descriptor format

Syntax	Bits	Bytes	Format
caption_service_descriptor() \{	8		
descriptor_tag	8	1	$0 \times 86$
descriptor_length	3	1	uimsbf
Reserved	5		uimsbf
number_of_services			
for (i=0;i<number_of_services;i++) \{	1	$(1)$	bslbf
Language	1		'1'
cc_type	5		'11111'
Reserved   if (cc_type==line21) \{   reserved   line21_field	1		bslbf
\}			

Table B.41/J. 94 - Caption Service Descriptor format (concluded)

Syntax	Bits	Bytes	Format
```Else caption_service_number easy_reader wide_aspect_ratio Reserved } }```	$\begin{gathered} 6 \\ 1 \\ 1 \\ 14 \end{gathered}$	(2)	$\begin{aligned} & \text { uimsbf } \\ & \text { bslbf } \\ & \text { bslbf } \\ & \text { '111111111111111' } \end{aligned}$

descriptor_tag: An 8-bit field that identifies the type of descriptor. For the caption_service_descriptor() the value is 0×86.
descriptor_length: An 8-bit count of the number of bytes following the descriptor_length itself.
number_of_services: An unsigned 5-bit integer in the range 1 to 16 that indicates the number of closed caption services present in the associated video service. Note that if the video service does not carry television closed captioning, the caption_service_descriptor() shall not be present either in the Program Map Table or in the Aggregate Event Information Table.

Each iteration of the "for" loop defines one closed caption service present as a sub-stream within the 9600 bit/s closed captioning stream. Each iteration provides the sub-stream's language, attributes, and (for advanced captions) the associated Service Number reference. Refer to EIA-708 Specification for Advanced Television Closed Captioning (ATVCC), for a description of the use of the Service Number field within the syntax of the closed caption stream.
language: A 3-byte language code per ISO 639-2/B defining the language associated with one closed caption service. The Iso_639_language_code field contains a three-character code as specified by ISO 639-2/B. Each character is coded into 8 bits according to ISO 8859-1 (ISO Latin-1) and inserted in order into the 24-bit field.
cc_type: A flag that indicates, when set, that an advanced television closed caption service is present in accordance with EIA-708 Specification for Advanced Television Closed Captioning (ATVCC). When the flag is clear, a line-21 closed caption service is present. For line 21 closed captions, the line21_field indicates whether the service is carried in the even or odd field.
line21_field: A flag that indicates, when set, that the line 21 closed caption service is associated with the field 2 of the NTSC waveform. When the flag is clear, the line- 21 closed caption service is associated with field 1 of the NTSC waveform. The line21_field flag is defined only if the cc_type flag indicates line-21 closed caption service.
caption_service_number: A 6-bit unsigned integer value in the range zero to 63 that identifies the Service Number within the closed captioning stream that is associated with the language and attributes defined in this iteration of the "for" loop. See EIA-708 Specification for Advanced Television Closed Captioning (ATVCC) for a description of the use of the Service Number. The caption_service_number field is defined only if the cc_type flag indicates closed captioning in accordance with EIA-708 Specification for Advanced Television Closed Captioning (ATVCC).
easy_reader: A Boolean flag which indicates, when set, that the closed caption service contains text tailored to the needs of beginning readers. Refer to EIA-708 Specification for Advanced Television Closed Captioning (ATVCC), for a description of "easy reader" television closed captioning services. When the flag is clear, the closed caption service is not so tailored.
wide_aspect_ratio: A Boolean flag which indicates, when set, that the closed caption service is formatted for displays with 16:9 aspect ratio. When the flag is clear, the closed caption service is formatted for 4:3 display, but may be optionally displayed centered within a 16:9 display.

B.7.5 Content advisory descriptor

The content_advisory_descriptor() is used to indicate, for a given event, ratings for any or all of the rating dimensions defined in the RRT (Rating Region Table). Ratings may be given for any or all of the defined regions, up to a maximum of 8 regions per event. An event without a content_advisory_descriptor() indicates that the rating value for any rating dimension defined in any rating region is zero. The absence of ratings for a specific dimension is completely equivalent to having a zero-valued rating for such a dimension. The absence of ratings for a specific region implies the absence of ratings for all of the dimensions in the region. The absence of a content_advisory_descriptor() for a specific event implies the absence of ratings for all of the regions for the event. The bit stream syntax for the content_advisory_descriptor() is shown in Table B. 42 .

Table B.42/J. 94 - Content Advisory Descriptor format

descriptor_tag: This 8 -bit unsigned integer shall have the value 0×87, identifying this descriptor as content_advisory_descriptor.
descriptor_length: This 8 -bit unsigned integer specifies the length (in bytes) immediately following this field up to the end of this descriptor.
rating_region_count: A 6-bit unsigned integer value in the range 1 to 8 that indicates the number of rating region specifications to follow.
rating_region: An unsigned 8 -bit integer that specifies the rating region for which the data in the bytes to follow is defined. The rating_region associates ratings data given here with data defined in a Ratings Region Table tagged with the corresponding rating region.
rated_dimensions: An 8-bit unsigned integer field that specifies the number of rating dimensions for which content advisories are specified for this event. The value of this field shall not be greater than the value specified by the field dimensions_defined in the corresponding RRT section.
rating_dimension_j: An 8-bit unsigned integer field specifies the dimension index into the RRT instance for the region specified by the field rating_region. These dimension indices shall be listed in numerical order, i.e. the value of rating_dimension_ $j+1$ shall be greater than that of rating_dimension_j.
rating_value: A 4-bit field represents the rating value of the dimension specified by the field rating_dimension jor the region given by rating_region.
rating_description_length: An 8-bit unsigned integer value in the range 0 to 80 that represents the length of the rating_description_text() field to follow.
rating_description_text(): The rating description in the format of a Multiple String Structure (see B.8.2). The rating_description display string shall be limited to 16 characters or less. The rating description text shall represent the program's rating in an abbreviated form suitable for on-screen display. The rating description text collects multidimensional text information into a single small text string. If "xxx" and "yyy" are abbreviated forms for rating values in two dimensions, then "xxx-yyy" and "xxx (yyy)" are examples of possible strings represented in rating_description_text().

The program source provider shall be the responsible party for insertion of correct content_advisory_descriptors in the Program Map Table (PMT). Also, the content_advisory_descriptors may be included in Aggregate Event Information Tables. If content_ advisory_descriptors are available both in AEIT and PMT, the PMT should be used first, then the AEITs.

B.7.6 Revision detection descriptor

The revision_detection_descriptor() is used to indicate whether new information is contained in the table section in which it appears.

Table B. 43 describes the revision_detection_descriptor. This descriptor should be the first descriptor in the list to limit processing overhead.

Table B.43/J. 94 - Revision Detection Descriptor format

	Bits	Bytes	Format
revision_detection_descriptor()\{			uimsbf value 0x93
descriptor_tag	8	1	uin
descriptor_length	8	1	uimsbf
reserved	3	1	bslbf
table_version_number	5		uimsbf range 0-31
section_number	8	1	uimsbf range 0-255
last_section_number	8	1	uimsbf range 0-255
$\}$			

descriptor_tag: An 8-bit unsigned integer number that identifies the descriptor as a revision_detection_descriptor(). The tag shall have the value $0 x 93$.
descriptor_length: An 8-bit unsigned integer number that indicates the number of bytes to follow in the descriptor. At present, just three bytes are defined, but the length field shall be processed to allow new data to be added to the descriptor in the future.
table_version_number: This 5-bit unsigned integer in the range 0 to 31 identifies the version of the current table. This integer applies only to the table (or the section of it) currently transmitted. Other types of tables may have different version numbers. To indicate a change in a specific table, this integer is incremented by 1 modulo 32 .
section_number: An 8 -bit unsigned integer in the range 0 to 255 that identifies the current table section. Version numbers for all sections of a table must be the same. Note that section_number $=0$ indicates the first section of a table.
last_section_number: An 8-bit unsigned integer in the range 0 to 255 that identifies the number of sections in a table. Note that if the last_section_number $=0$, then there is only one section in this table.

B.7.7 Two-Part channel number descriptor

Table B. 44 describes the two_part_channel_number_descriptor(). This descriptor may appear in the virtual_channel() record, contained in the VCM_structure; within the Short-form Virtual Channel Table section. The descriptor may be used by compatible Hosts to associate a two-part user channel number with any virtual channel. Some channels may have a two_part_channel_number_descriptor() while others do not.

NOTE - For the L-VCT, the 10-bit major/minor number fields can be coded to represent a one-part channel number. The one-part representation is not needed for the major/minor number fields in the two_part_channel_number_descriptor() in the S-VCT, because there is already a 12 -bit one-part number on each channel in S-VCT. It would cause confusion to allow a second one-part number to be associated with a channel defined in S-VCT.

Table B.44/J. 94 - Two-part Channel Number Descriptor format

	Bits	Bytes	Format
two_part_channel_number_descriptor()\{			
descriptor_tag	8	1	uimsbf value 0x94
descriptor_length	8	1	uimsbf
Reserved	6	2	bslbf
major_channel_number	10		uimsbf range 0-999
Reserved	6	2	bslbf
minor_channel_number	10		uimsbf range 0-999
$\}$			

descriptor_tag: An 8-bit unsigned integer number that identifies the descriptor as a two_part_channel_number_descriptor(). The tag shall have the value 0x94.
descriptor_length: An 8-bit unsigned integer number that indicates the number of bytes to follow in the descriptor. At present, just four bytes are defined, but the length field shall be processed to allow new data to be added to the descriptor in the future.
major_channel_number: A 10-bit unsigned integer in the range 0 to 999 that identifies the "major" channel number to be associated with the virtual channel.
minor_channel_number: A 10 -bit unsigned integer in the range 0 to 999 that identifies the "minor" channel number to be associated with the virtual channel.

Hosts that support two-part channel numbering must support this descriptor. It is only mandatory for this descriptor to be sent in the instance where system support of two-part channel numbering is required. This means for virtual_channel() records where the Host does not receive the two-part channel number descriptor, that the Host is expected to use the virtual_channel_number described in the virtual_channel() record in B.6.3.2.

B.7.8 Channel properties descriptor

The channel_properties_descriptor() is defined to allow both forms of VCTs (S-VCT and L-VCT) carrying the same properties. Table B. 45 describes the syntax for this descriptor. The descriptor may appear within a virtual_channel() record in the Short-form Virtual Channel Table.

Table B.45/J. 94 - Channel Properties Descriptor format

	Bits	Bytes	Format
channel_properties_descriptor()\{			
\quaddescriptor_tag \quad descriptor_length channel_TSID reserved	8	1	uimsbf value 0×95
out_of_band_channel	16	1	uimsbf
access_controlled	6	1	uimsbf
hide_guide	1		uimsbf
reserved	1		uimbsf
service_type	1	1	bslbf
$\}$	1		'1'

descriptor_tag: An 8-bit unsigned integer number that identifies the descriptor as a channel_properties_descriptor(). The tag shall have the value 0×95.
descriptor_length: An 8-bit unsigned integer number that indicates the number of bytes to follow in the descriptor. At present, just four bytes are defined, but the length field shall be processed to allow new data to be added to the descriptor in the future.
channel_TSID: A 16-bit unsigned integer field in the range $0 x 0000$ to $0 x F F F F$ that represents the MPEG-2 Transport Stream ID associated with the Transport Stream carrying the MPEG-2 program referenced by this virtual channel. For inactive channels, channel_TSID represents the ID of the Transport Stream that will carry the service when it becomes active. The Host may use the channel_TSID to verify that a TS acquired at the referenced carrier frequency is actually the desired multiplex. Analogue signals may have a TSID that is different from any MPEG-2 Transport Stream identifier, that is, it shall be truly unique if present. A value of 0xFFFF for channel_TSID shall be specified for situations where a valid TSID is not known (reserved as a wildcard capability).
out_of_band: A Boolean flag that indicates, when set, that the virtual channel associated with this descriptor is carried on the cable on the Extended Channel interface carrying the tables defined in this protocol. When clear, the virtual channel is carried within a standard tuned multiplex at that frequency.
access_controlled: A Boolean flag that indicates, when set, that events associated with this virtual channel may be access controlled. When the flag is zero, event access is not restricted.
hide_guide: A Boolean flag that indicates, when set to 0 for a channel of channel_type hidden, that the virtual channel and its events may appear in EPG displays. This bit shall be ignored for channels which are not the hidden type, so that non-hidden channels and their events may always be included in EPG displays regardless of the state of the hide_guide bit. Typical applications for hidden channels with the hide_guide bit set to 1 are test signals and services accessible through application-level pointers.
service_type: A 6-bit enumerated type field that identifies the type of service carried in this virtual channel. Service type is coded according to Table B. 33 .
Hosts may use this descriptor to become aware of aspects of the channel. In the case where this descriptor is not received, the Host must tune the channel and self-discover these aspects of the channel. For example, if this descriptor is not sent, and the channel is access controlled, the Host must determine when it can obtain access permission (the same as if that bit in the descriptor were set). Similar rules can be applied for service type and channel_TSID.

B.7.9 Extended channel name descriptor

The extended channel name descriptor provides the long channel name for the virtual channel containing this descriptor.
The bit stream syntax for the extended channel name descriptor is shown in Table B.46.

Table B.46/J. 94 - Extended Channel Name Descriptor format

Syntax	Bits	Bytes	Format
extended_channel_name_descriptor() \{ descriptor_tag descriptor_length long_channel_name_text()	8	1	0xA0
$\}$	8	1	uimsbf

descriptor_tag: This 8 -bit unsigned integer shall have the value $0 x A 0$, identifying this descriptor as extended_channel_name_descriptor().
descriptor_length: This 8 -bit unsigned integer specifies the length (in bytes) immediately following this field up to the end of this descriptor.
long_channel_name_text(): The long channel name in the format of a Multiple String Structure (see B.8.2).

B.7.10 Time-shifted service descriptor

This descriptor links one virtual channel with one or more virtual channels that carry the same programming on a time-shifted basis. The typical application is for Near Video On Demand (NVOD) services.

NOTE - For the L-VCT, the 10-bit major/minor number fields can be coded to represent a one-part channel number. The one-part representation is not applicable for the major/minor number fields in the time_shifted_services_descriptor() because this descriptor is not applicable to S-VCT (see Table B.A.2). The major/minor number fields in the time_shifted_services_descriptor() are only used to match against fields in the L-VCT.

The bit stream syntax for the time_shifted_service_descriptor() is shown in Table B.47.

Table B.47/J. 94 - Time-Shifted Service Descriptor format

descriptor_tag: This 8 -bit unsigned integer shall have the value $0 \times \mathrm{xA} 2$, identifying this descriptor as time_shifted_service_descriptor().
descriptor_length: This 8-bit unsigned integer specifies the length (in bytes) immediately following this field up to the end of this descriptor.
number_of_services: A 5-bit number in the range 1 to 20 that indicates the number of time-shifted services being defined here.
time_shift: A 10 -bit number in the range 1 to 720 that represents the number of minutes the timeshifted service indicated by major_channel_number and minor_channel_number is time-shifted from the virtual channel associated with this descriptor.
major_channel_number: A 10-bit number in the range 1 to 999 that represents the "major" channel number associated with a time-shifted service.
minor_channel_number: A 10-bit number in the range 0 to 999 that, when non-zero, represents the "minor" or "sub-" channel number of the virtual channel that carries a time-shifted service.

B.7.11 Component name descriptor

Table B. 48 defines the component_name_descriptor(), which serves to define an optional textual name tag for any component of the service.

Table B.48/J. 94 - Component Name Descriptor format

Syntax	Bits	Bytes	Format
component_name_descriptor() \{			
descriptor_tag descripto_length component_name_string()	8	1	$0 \mathrm{xA3}$
$\}$	8	1	uimsbf

descriptor_tag: This 8 -bit unsigned integer shall have the value $0 x A 3$, identifying this descriptor as component_name_descriptor.
descriptor_length: This 8-bit unsigned integer specifies the length (in bytes) immediately following this field up to the end of this descriptor.
component_name_string(): The name string in the format of a Multiple String Structure (see B.8.2).

B.7.12 Daylight savings time descriptor

This descriptor is defined for optional carriage in the System Timetable section (and in no other type of table). Hosts may use the data in the descriptor if present. If not present, no indication is being provided as to whether daylight savings time is in effect or not. In other words, the Host shall not infer that the lack of a descriptor means that daylight savings time is not currently in effect.
A description of the use of the daylight_savings_time_descriptor() is provided in Appendix B.III. The syntax is shown in Table B.49.

Table B.49/J. 94 - Daylight Savings Time Descriptor format

Syntax	Bits	Bytes	Format
daylight_savings_time_descriptor() \{ descriptor_tag descripto_length	8		
DS_status	8	1	uimsbf value 0x96
reserved	1	1	uimsbf
DS_day_of_month	1	1	bslbf
DS_hour	2		'11'
$\}$	5		uimsbf
DS	8	uimsbf	

descriptor_tag: This 8 -bit unsigned integer shall have the value 0×96, identifying this descriptor as daylight_savings_time_descriptor.
descriptor_length: This 8-bit unsigned integer specifies the length (in bytes) immediately following this field up to the end of this descriptor.
DS_status: This bit indicates the status of daylight savings.
DS_status = ' 0 ': Not in daylight savings time.
DS_status = '1': In daylight savings time.
DS_day_of_month: This 5-bit unsigned integer field indicates the local day of the month on which the transition into or out of daylight savings time is to occur (1-31).
DS_hour: This 8-bit unsigned integer field indicates the local hour at which the transition into or out of daylight savings time is to occur ($0-18$). This usually occurs at 2 a.m. in the United States.

B.7.13 User private descriptors

Privately defined descriptors are those with descriptor_tag in the range 0 xC 0 through 0 xFF . They may be placed at any location where descriptors may be included within the table sections described in this Service Information annex. Ownership of one or more user private descriptors is indicated by the presence of an MPEG registration_descriptor() preceding the descriptor(s).

B. 8 Text string coding

This clause describes the format of text strings in this Service Information annex. Two different formats are used in this annex. Text strings in the Network Text Table uses a format called Multilingual Text String (MTS), consisting of one or more mode-length-segment blocks. The MTS format is described in B.8.1. All other tables and descriptors use a data structure called Multiple String Structure, described in B.8.2. Tables B. 50 and B. 51 summarize these rules.

Table B.50/J. 94 - Text String Coding Format in Tables

Table ID Value (hex)	Table	Coding	Reference
0xC3	Network Text Table (NTT)	MTS	B.8.1
0xCA	Rating Region Table (RRT)	MSS	B.8.2
0xD6	Aggregate Event Information Table (AEIT)	MSS	B.8.2
0xD7	Aggregate Extended Text Table (AETT)	MSS	B.8.2

Table B.51/J.94 - Text String Coding Format in Descriptors

Descriptor tag value (hex)	Descriptor	Coding	Reference
0×87	Content advisory descriptor	MSS	B.8.2
$0 \times A 0$	Extended channel name descriptor	MSS	B.8.2
$0 x A 3$	Component name descriptor	MSS	B.8.2

B.8.1 Multilingual Text String (MTS) Format

The format of Multilingual Text Strings adheres to the following structure. Items in square brackets may be repeated one or more times:
<mode><length><segment> [<mode><length><segment>]
A string_length field always precedes the one or more instances of mode, length, segment. This field is described in each instance where multilingual text is used, and may be either 8- or 16-bits in length, as appropriate. The value of string_length represents the sum total of all mode, length, segment blocks comprising the multilingual text string to follow, and serves to indicate the end of the text string structure.

The multilingual text data structure is designed to accommodate the need to represent a text string composed of characters from a variety of alphabets, as well as ideographic characters. Whereas characters could be represented using 16- or 32 -bit character codes (as does Unicode [ISO/IEC 10646-1]), that form is inefficient and wasteful of transmission bandwidth for strings composed primarily of alphabetic rather than ideographic characters. To accommodate the need to handle Chinese, Japanese, and Korean, modes are defined that allow 16-bit (double byte) character representations in standard formats.
References below to ISO/IEC 10646-1 (Unicode) shall be to the Basic Multilingual Plane (BMP) within that standard.
mode: An 8-bit value representing the text mode to be used to interpret characters in the segment to follow. See Table B. 52 for definition. Mode bytes in the range zero through 0x3E select Unicode character code pages. Mode byte value 0×3 F selects 16 -bit Unicode character coding. Mode bytes in the range 0×40 through $0 \times \mathrm{xFF}$ represent selection of a format effector function such as underline $O N$ or new line. If mode is in the range 0 x 40 to 0 x 9 F , then the length/segment portion is omitted. Format effector codes in the range 0×40 through $0 \times 9 \mathrm{~F}$ involve no associated parametric data; hence the omission of the length/segment portion. Format effector codes in the range $0 x A 0$ through $0 x F F$ include one or more parameters specific to the particular format effector function.

Table B.52/J. 94 - Mode Byte Encoding

Mode Byte	Meaning	Language(s) or script
0x00	Select ISO/IEC 10646-1 Page 0x00	ASCII, ISO Latin-1 (Roman)
0x01	Select ISO/IEC 10646-1 Page 0x01	European Latin (many) ${ }^{\text {a }}$
0x02	Select ISO/IEC 10646-1 Page 0x02	Standard Phonetic
0x03	Select ISO/IEC 10646-1 Page 0x03	Greek
0x04	Select ISO/IEC 10646-1 Page 0x04	Russian, Slavic
0x05	Select ISO/IEC 10646-1 Page 0x05	Armenian, Hebrew
0x06	Select ISO/IEC 10646-1 Page 0x06	$\text { Arabic }{ }^{\text {b })}$
0x07-0x08	Reserved	-
0x09	Select ISO/IEC 10646-1 Page 0x09	Devanagari ${ }^{\text {c }}$, , Bengali

Table B.52/J. 94 - Mode Byte Encoding (concluded)

Mode Byte	Meaning	Language(s) or script
0x0A 0x0B 0x0C 0x0D 0x0E 0x0F 0x10 0x11-0x1F 0x20 0×21 0×22 0×23 0×24 0x 25 0x26 0×27 $0 \times 28-0 \times 2 \mathrm{~F}$ 0x30 0x31 0x32 0x33 $0 \times 34-0 \times 3 \mathrm{E}$	Select ISO/IEC 10646-1 Page 0x0A Select ISO/IEC 10646-1 Page 0x0B Select ISO/IEC 10646-1 Page 0x0C Select ISO/IEC 10646-1 Page 0x0D Select ISO/IEC 10646-1 Page 0x0E Select ISO/IEC 10646-1 Page 0x0F Select ISO/IEC 10646-1 Page 0x10 Reserved Select ISO/IEC 10646-1 Page 0x20 Select ISO/IEC 10646-1 Page 0x21 Select ISO/IEC 10646-1 Page 0x22 Select ISO/IEC 10646-1 Page 0x23 Select ISO/IEC 10646-1 Page 0x24 Select ISO/IEC 10646-1 Page 0x25 Select ISO/IEC 10646-1 Page 0x26 Select ISO/IEC 10646-1 Page 0x27 Reserved Select ISO/IEC 10646-1 Page 0x30 Select ISO/IEC 10646-1 Page 0x31 Select ISO/IEC 10646-1 Page 0x32 Select ISO/IEC 10646-1 Page 0x33 Reserved	Punjabi, Gujarti Oriya, Tamil Telugu, Kannada Malayalam Thai, Lao Tibetan Georgian Miscellaneous ${ }^{\text {d }}$ Misc. symbols, arrows Mathematical operators Misc. technical OCR, enclosed alpha-num. Form and chart components Miscellaneous dingbats Zapf dingbats Hiragana, Katakana Bopomopho, Hangul elem. Enclosed CJK Letters, ideo. Enclosed CJK Letters, ideo.
0x3F	Select 16-bit ISO/IEC 10646-1 mode	All
a) When combined with page zero (ASCII and ISO Latin-1), covers Afrikaans, Breton, Basque, Catalan, Croatian, Czech, Danish, Dutch, Esperanto, Estonian, Faroese, Finnish, Flemish, Firsian, Greenlandic, Hungarian, Icelandic, Italian, Latin, Latvian, Lithuanian, Malay, Maltese, Norwegian, Polish, Portuguese, Provencal, GhaetoRomanic, Romanian, Romany, Slovak, Slovenian, Serbian, Spanish, Swedish, Turkish, and Welsh.		
c) Devanagari script is used for writing Sanskrit and Hindi, as well as other languages of northern India (such as Marathi) and of Nepal (Nepali). In addition, at least two dozen other Indian languages use Devanagari script.		
d) General diacritic	tuation, superscripts and subscripts	cy symbols, and other

Table B. 53 describes the format of the multilingual_text_string().

Table B.53/J. 94 - Multilingual text string format

	Bits	Bytes	Format
multilingual_text_string()			
For ($\mathrm{i}=0$; i<N; i++) \{			
Mode	8	(1)	uimsbf
if (mode < 0x3F) \{			
eightbit_string_length	8	((1))	uimsbf
for (i=0; i<eightbit_string_length; l++) \{ eightbit_char	8	$(((1)))$	uimsbf
\}			
\} else if (mode==0x3F) \{			
sixteenbit_string_length for (i=0; i<(sixteenbit_string_length)	8	((1))	uimsbf (even)
sixteenbit_char	16	(((2)))	uimsbf
\}			
\} else if (mode $>=0 \times A 0$) \{			
format_effector_param_length for ($\mathrm{i}=0$; i (format effector param length); i++) \{	8	((1))	uimsbf
format_effector_data	8	(((1)))	
\}			
\}			
\}			
$\}$			

length: An 8-bit unsigned integer number representing the number of bytes in the segment to follow in this block.
segment: An array of bytes representing a character string formatted according to the mode byte.

B.8.1.1 Mode byte definition

The mode byte is used either to select an ISO/IEC 10646-1 code page from the BMP (exact mapping, or in the case of page zero, an extended mapping as defined herein), or to indicate that the text segment is coded in one of a number of standard double-byte formats. Table B. 52 shows the encoding of the mode byte. Values in the zero to 0×33 range select ISO/IEC 10646-1 code pages.
Value $0 \times 3 \mathrm{~F}$ selects double-byte forms used with non-alphabetic script systems, where the segment consists of a sequence of 16-bit character codes according to the ISO/IEC 10646-1 standard. Byte ordering is high-order byte first (Motorola 680xx style), also known as big-endian.

B.8.1.2 Format effectors

Mode bytes in the 0×40 to 0 xFF range are defined as format effectors. Table B. 54 defines the encoding for currently defined single-byte values. Format effectors in the range 0×40 through $0 x 9 \mathrm{~F}$ are self-contained, and do not have a length or data field following them. Format effectors in the range $0 x A 0$ through $0 x F F$ include a multi-byte parameter field. No multi-byte format effectors are currently defined.

Table B.54/J. 94 - Format Effector Function Codes

Mode byte	Meaning
$0 \times 40-0 \times 7 \mathrm{~F}$	Reserved
0×80	new line, left justify
0×81	new line, right justify
0×82	new line, center
0×83	italics ON
0×84	italics OFF
0×85	underline ON
0×86	underline OFF
0×87	bold ON
0×88	bold OFF
$0 \times 89-0 x 9 F$	Reserved

Line justification

Values $0 x 80,0 x 81$, and 0×82 signify the end of a line of displayed text. Value 0×80 indicates that the text is displayed left justified within an enclosing rectangular region (defined outside the scope of the text string). Value $0 x 81$ indicates that the text is displayed right justified. Value 0x82 indicates that the text is centered on the line. The dimensions and location on the screen of the box into which text is placed is defined outside the scope of the text string itself.

Italics, underline, bold attributes

These format effectors toggle italics, underline, and bold display attributes. The italics, underline, and bold format effectors indicate the start or end of the associated formatting within a text string. Formatting extends through new lines. For example, to display three lines of bold text, only one instance of the bold $O N$ format effector is required.

Processing of unknown or unsupported format effectors

Hosts must discard format effectors that are unknown, or known not to be supported within a specific Host model. If a parameter value carries an undefined value, that format effector is expected to be discarded.

B.8.1.3 Default attributes

Upon entry to a multilingual text string, all mode toggles (bold, underline, italics) shall be assumed "OFF".

B.8.1.4 Mode Zero

ISO/IEC 10646-1 page zero ($\mathrm{U}+0000$ through $\mathrm{U}+00 \mathrm{FF}$) includes ASCII in the lower half ($\mathrm{U}+0000$ through $\mathrm{U}+007 \mathrm{~F}$), and Latin characters from ISO 8859-1, Latin-1, in U+0090 through U+00FF. This set of characters covers Danish, Dutch, Faroese, Finnish, French, German, Icelandic, Irish, Italian, Norwegian, Portuguese, Spanish and Swedish. Many other languages can be written with this set of letters, including Hawaiian, Indonesian/Malay, and Swahili.

Table B. 55 shows encodings of page zero characters in the range $0 x 80$ through $0 x 9 \mathrm{~F}$ (these are undefined within ISO/IEC 10646-1).

Table B.55/J. 94 - Encodings of columns 8 and 9 of mode zero latin character set

	$\mathbf{8}$	9
0	$<$ RESERVED $>$	$<$ RESERVED $>$
1	$<$ RESERVED $>$	$<$ RESERVED $>$
2	$<$ RESERVED $>$	$<$ RESERVED $>$
3	$<$ RESERVED $>$	$<$ RESERVED $>$
4	$<$ RESERVED $>$	$<$ RESERVED $>$
5	$<$ RESERVED $>$	$<$ RESERVED $>$
6	$<$ RESERVED $>$	$<$ RESERVED $>$
7	$<$ RESERVED $>$	$<$ RESERVED $>$
8	$<$ RESERVED $>$	U+2030 $-<$ PER MILLE $>$
9	$<$ RESERVED $>$	$<$ RESERVED $>$
A	$<$ RESERVED $>$	U+266A $-<$ MUSICAL NOTE $>$
B	$<$ RESERVED $>$	$<$ RESERVED $>$
C	$<$ RESERVED $>$	U+2190 $-<$ LEFT ARROW $>$
D	$<$ RESERVED $>$	U+2191 $-<$ UP ARROW $>$
E	$<$ RESERVED $>$	U+2192 $-<$ RIGHT ARROW $>$
F	$<$ RESERVED $>$	U+2193 $-<$ DOWN ARROW $>$

B.8.1.5 Supported characters

Support for specific characters and languages depends upon the specific model of Standard-compatible Host. Not all Hosts support all defined character sets or character codes. Use of multilingual text must be predicated on the knowledge of limitations in character rendering inherent in different Host models for which text is available.

B.8.2 Multiple String Structure (MSS)

The Multiple String Structure is a general data structure used specifically for text strings. Text strings appear as event titles, long channel names, the ETT messages, and RRT text items. The bit stream syntax for the Multiple String Structure is shown in Table B.56.

Table B.56/J. 94 - Multiple String Structure

number_strings: This 8 -bit unsigned integer field identifies the number of strings in the following data.

ISO_639_language_code: This 3-byte (24 bits) field, in conformance with ISO $639-2 / \mathrm{B}$, specifies the language used for the ith string.
number_segments: This 8 -bit unsigned integer field identifies the number of segments in the following data. A specific mode is assigned for each segment.
compression_type: This 8-bit field identifies the compression type for the jth segment. Allowed values for this field are shown in Table B. 57.

Table B.57/J. 94 - Compression types

compression_type	Compression method
0×00	No compression
0×01	Huffman coding using standard encode/decode tables defined in Table C.4 and C.5 in Annex C of SCTE DVS 097, ATSC Standard A/65 (1997).
0×02	Huffman coding using standard encode/decode tables defined in Table C.6 and C.7 in Annex C of SCTE DVS 097, ATSC Standard A/65 (1997).
0×03 to 0xAF	Reserved
$0 \times B 0$ to 0xFF	User private

mode: An 8 -bit value representing the text mode to be used to interpret characters in the segment to follow. See Table B. 58 for definition. Mode values in the range zero through 0x3E select 8 -bit Unicode ${ }^{\mathrm{TM}}$ character code pages. Mode value 0x3F selects 16 -bit Unicode ${ }^{\mathrm{TM}}$ character coding. Mode values $0 x 40$ through $0 x D F$ are reserved for future use by ATSC. Mode values $0 x E 0$ through $0 x F E$ are user private. Mode value $0 x$ FF indicates the text mode is not applicable. Hosts shall ignore string bytes associated with unknown or unsupported mode values.

Table B.58/J. 94 - Modes

Mode	Meaning	Language(s) or script
$0 x 00$	Select ISO/IEC 10646-1 Page 0x00	ASCII, ISO Latin-1 (Roman)
0×01	Select ISO/IEC 10646-1 Page 0x01	European Latin (many) ${ }^{\text {b }}$
0x02	Select ISO/IEC 10646-1 Page 0x02	Standard Phonetic
0x03	Select ISO/IEC 10646-1 Page 0x03	Greek
0×04	Select ISO/IEC 10646-1 Page 0x04	Russian, Slavic
0x05	Select ISO/IEC 10646-1 Page 0x05	Armenian, Hebrew
0x06	Select ISO/IEC 10646-1 Page 0x06	Arabic $^{\text {c }}$
0x07-0x08	Reserved	-
0x09	Select ISO/IEC 10646-1 Page 0x09	Devanagari ${ }^{\text {d) }}$, Bengali
0x0A	Select ISO/IEC 10646-1 Page 0x0A	Punjabi, Gujarati
0x0B	Select ISO/IEC 10646-1 Page 0x0B	Oriya, Tamil
0x0C	Select ISO/IEC 10646-1 Page 0x0C	Telugu, Kannada
0x0D	Select ISO/IEC 10646-1 Page 0x0D	Malayalam
0x0E	Select ISO/IEC 10646-1 Page 0x0E	Thai, Lao
0x0F	Select ISO/IEC 10646-1 Page 0x0F	Tibetan

Table B.58/J. 94 - Modes (concluded)

Mode	Meaning	Language(s) or script
0x10	Select ISO/IEC 10646-1 Page 0x10	Georgian
0x11-0x1F	Reserved	-
0x20	Select ISO/IEC 10646-1 Page 0x20	Miscellaneous
0x21	Select ISO/IEC 10646-1 Page 0x21	Misc. symbols, arrows
0x22	Select ISO/IEC 10646-1 Page 0x22	Mathematical operators
0x23	Select ISO/IEC 10646-1 Page 0x23	Misc. technical
0x24	Select ISO/IEC 10646-1 Page 0x24	OCR, enclosed alpha-num.
0x25	Select ISO/IEC 10646-1 Page 0x25	Form and chart components
0x26	Select ISO/IEC 10646-1 Page 0x26	Miscellaneous dingbats
0x27	Select ISO/IEC 10646-1 Page 0x27	Zapf dingbats
0x28-0x2F	Reserved	-
0x30	Select ISO/IEC 10646-1 Page 0x30	Hiragana, Katakana
0x31	Select ISO/IEC 10646-1 Page 0x31	Bopomopho, Hangul elem.
0x32	Select ISO/IEC 10646-1 Page 0x32	Enclosed CJK Letters, ideo.
0x33	Select ISO/IEC 10646-1 Page 0x33	Enclosed CJK Letters, ideo.
0x34-0x3E	Reserved	-
0x3F	Select 16-bit ISO/IEC 10646-1 mode	All
0x40-0xDF	Reserved	
0xE0-0xFE	User private	
0xFF	Not applicable	
a) The languages supported by ASCII plus the Latin-1 supplement include Danish,		
Dutch, English, Faroese, Finnish, Flemish, German, Icelandic, Irish, Italian,		
Norwegian, Portuguese, Spanish and Swedish. Many other languages can be written		
with this set of characters, including Hawaiian, Indonesian, and Swahili.		
b) When combined with page zero (ASCII and ISO Latin-1), covers Afrikaans, Breton,		
Basque, Catalan, Croatian, Czech, Esperanto, Estonian, French, Frisian, Greenlandic,		
Hungarian, Latin, Latvian, Lithananan, Maltese, Polish, Provencal, Rhaeto-Romanic,		
Romanian, Romany, Sami, Slovak, Slovenian, Sorbian, Turkish, Welsh, and many		
others.		
c) Also Persian, Urdu, Pashto, Sindhi, and Kurdish.		
d) Devanagari script is used for writing Sanskrit and Hindi, as well as other languages		
of northern India (such as Marathi) and of Nepal (Nepali). In addition, at least two		
dozen other Indian languages use Devanagari script.		

number_bytes: This 8 -bit unsigned integer field identifies the number of bytes that follows. compressed_string_byte[k]: The kth byte of the jth segment.

ANNEX B.A
 Operational profiles for cable service information delivery

B.A. 1 Operational profiles

This Annex B.A specifies Service Information tables that are required for delivery via an out-of-band channel on cable. Six profiles are described with required and optional data specified for out-of-band transport via cable. Adherence to these profile specifications is necessary for compliance with SCTE standard transport streams.

B.A.1.1 Profile 1 - Baseline

This Baseline Profile reflects a practice in cable where the Short-Form Virtual Channel Table, the Modulation Mode Subtable and the Carrier Definition Subtable are used for channel navigation.

B.A.1.2 Profile 2 - Revision detection

Profile 2 uses the same channel navigation mechanism as Profile 1 while adding a detection mechanism that facilitates revision handling of tables. The revision detection mechanism is applicable to the Network Information Table, Network Text Table, and S-VCT that are also used in Profile 1.

B.A.1.3 Profile 3 - Parental advisory

Profile 3 uses Profile 2 as the base and adds support for the Rating Region Table in order to be compliant with the FCC-mandated V-chip content advisory scheme. Since for the U.S. and its possessions, EIA-766 defines the contents of version 0 RRT, use of RRT is more applicable to outside of North America. The channel navigation mechanism is the same as in Profile 1.

B.A.1.4 Profile 4 - Standard electronic program guide data

Profile 4 uses Profile 3 as the base and further defines a standard format for delivery of Electronic Program Guide data by using the Aggregate Event Information Table and the Aggregate Extended Text Table. The Master Guide Table shall be supported to manage the AEITs, AETTs and other applicable tables from Profile 3. The same mechanism as in Profile 1 is used for channel navigation.

B.A.1.5 Profile 5 - Combination

Support for channel navigation based on L-VCT and MGT is added. Backward compatibility with systems operating within profiles 1 to 4 is maintained. Using Profile 5, a cable operator could have a mixture of devices requiring the S-VCT, NIT and NTT tables as well as ones requiring the long-form tables: i.e. L-VCT, MGT.
When using Profile 5 , both the S-VCT and the L-VCT shall be present, and each shall describe all available services.

B.A.1.6 Profile 6 - PSIP Only

Profile 6 is based solely on long-form tables and is an extension of the terrestrial broadcasting mechanism. Channel navigation is based on the Long-form Virtual Channel Table. The AEIT and the optional AETT streams are used to provide EPG data.

B.A. 2 Profile Definition Tables

In order to conform to this Service Information Annex B.A, a cable operator shall send a collection of tables that corresponds to one or more of the defined operational profiles defined in Table B.A. 1 and Table B.A.2.

Table B.A.1/J. 94 - Usage of Table Sections in Various Profiles

		Profile 1	$\begin{gathered} \text { Profile } \\ 2 \end{gathered}$	$\begin{gathered} \text { Profile } \\ 3 \end{gathered}$	$\begin{gathered} \text { Profile } \\ 4 \end{gathered}$	$\begin{gathered} \text { Profile } \\ 5 \end{gathered}$	$\begin{gathered} \text { Profile } \\ 6 \end{gathered}$
Table Section	$\begin{gathered} \text { Table } \\ \text { ID } \end{gathered}$	Baseline	Revision Detection	Parental Advisory	Standard EPG Data	Combination	$\begin{gathered} \text { PSIP } \\ \text { only } \\ \text { (Note 1) } \end{gathered}$
Network Information Table	0xC2						
Carrier Definition Subtable		M	M	M	M	M	-
Modulation Mode Subtable		M	M	M	M	M	-
Network Text Table	0xC3						
Source Name Subtable		O	O	O	M	M	-
Short-form Virtual Channel Table	0xC4						
Virtual Channel Map		M	M	M	M	M	-
Defined Channels Map		M	M	M	M	M	-
Inverse Channel Map		O	O	O	O	O	-
System Timetable	0xC5	M	M	M	M	M	M
Master Guide Table	0xC7	-	-	(Note 2)	M	M	M
Rating Region Table	0xCA	-	-	(Note 3)	(Note 3)	(Note 3)	(Note 3)
Long-form Virtual Channel Table	0xC9	-	-	-	-	M	M
Aggregate Event Information Table	0xD6	-	-	-	M	M	M
Aggregate Extended Text Table	0xD7	-	-	-	O	O	O
M Mandatory (shall be present) O Optional (may or may not be present) - Not applicable (shall not be present) NOTE 1 - Exception: System Timetable (table ID 0xC5 is used here instead of table ID 0xCD defined in PSIP) and other modifications. NOTE 2 - Mandatory for outside of North America to describe any transmitted RRT. For region 0x01 (US and possessions), delivery of an RRT is optional, because this table is standardized in EIA-766. NOTE 3 - Exception: delivery of the RRT corresponding to region 0x01 (US and possessions) is optional, because this table is standardized in EIA-766.							

Table B.A.2/J. 94 - Usage of Descriptors in Various Profiles

		Profile 1	$\begin{gathered} \text { Profile } \\ 2 \end{gathered}$	Profile 3	Profile 4	Profile 5	Profile 6
Descriptor (and associated table)	Tag	Baseline	Revision Detection	Parental Advisory	Standard EPG Data	Combination	$\begin{gathered} \text { PSIP } \\ \text { only } \\ (\text { Note 1) } \end{gathered}$
AC-3 audio (PMT, AEIT)	0x81	-	-	-	O	O	O
Caption service (PMT, AEIT)	0x86	-	-	-	O	O	O
Content advisory (PMT, AEIT)	0x87	-	-	(Note 2)	(Note 2)	(Note 2)	(Note 2)
Revision detection (NIT,NTT, S-VCT)	0x93	-	M	M	M	M	-
Two-part channel number (S-VCT)	0x94	-	-	-	O	O	-
Channel properties $(\mathrm{S}-\mathrm{CT})$	0x95	-	-	-	O	O	-
Daylight savings time (STT)	0x96	-	-	O	M	M	M
Extended channel name (L-VCT)	0xA0	-	-	-	-	O	O
Time-shifted service (L-CT)	0xA2	-	-	-	-	O	O
Component name (PMT)	0xA3	-	-	-	O	O	O
M Mandatory (shall be present) O Optional (may or may not be present) - Not applicable (shall not be present) NOTE 1 - Exception: System Timetable (table ID 0xC5 is used here instead of table ID 0 xCD defined in PSIP) and other modifications. NOTE 2 - The content_advisory_descriptor() shall be present in the AEIT and PMT for a given program when Content Advisory data is available for that program. It is not required for programs for which Content Advisory data is not available.							

B.A. 3 Operational considerations for the use of profiles (Informative)

1) If devices deployed in a particular cable system require the S-VCT in Profiles 1-5 for navigation, cable operator's use of P 6 will cause operational problems.
2) If devices in use require L-VCT for navigation, cable operator's use of Profiles 1-4 will cause operational problems.
3) To provide EPG data, cable-ready devices operating on a cable system conforming to Profiles 1, 2 or 3 must use alternative protocols and methods which are beyond the scope of this Annex B.A.

ANNEX B.B

Packet rates

B.B. 1 Maximum cycle times

Table B.B. 1 lists the maximum cycle time for Service Information table sections for out-of-band cable operation, when the indicated table is present.

Table B.B.1/J. 94 - Maximum cycle time for the STT, MGT, S-VCT, L-VCT and RRT

Table Section	STT	MGT	S-VCT	L-VCT	RRT
Cycle time	1 min	500 msec	2 min	2 min	1 min

B.B. 2 Maximum transmission rates

Table B.B. 2 lists the maximum transmission rate for SI packet streams.

Table B.B.2/J. 94 - Maximum rate for each packet stream

PID	SI_base PID	Any AEIT/AETT PID
Rate (bit/s)	150000	150000

B.B. 3 Minimum transmission rates

Table B.B. 3 lists the minimum transmission rate for SI packet streams. Minimum per-PID bit rates are required to ensure efficiency of recovery of EPG data covering the current time period (3 hours minimum) across the POD to Host interface, given the small number of PID values that can be used concurrently.

Table B.B.3/J.94 - Minimum rate for each packet stream

PID	AEIT-0,1/AETT-0,1 PID
Rate (bit/s)	10000

ANNEX B.C

Standard Huffman tables for text compression

This Annex B.C describes the compression method adopted for the transmission of English-language text strings in PSIP. The method distinguishes two types of text strings: titles and program descriptions. For each of these types, Huffman tables are defined based on 1st-order conditional probabilities. Clause B.C. 2 defines standard Huffman encode and decode tables optimized for English-language text such as that typically found in program titles. Clause B.C. 3 defines Huffman encode and decode tables optimized for English-language text such as that typically found in program descriptions. Hosts supporting the English language are expected to support decoding of text using either of these two standard Huffman compression tables.
The encode tables provide necessary and sufficient information to build the Huffman trees that need to be implemented for decoding. The decode tables described in Tables B.C. 5 and B.C. 7 are a particular mapping of those trees into a numerical array suitable for storage. This array can be easily implemented and used with the decoding algorithm. However, the user is free to design its own decoding tables as long as they follow the Huffman trees and rules defined in this annex.

B.C. 1 Character set definition

This compression method supports the full ISO/IEC 8859-1 (Latin-1) character set, although only characters in the ASCII range (character codes 1 to 127) can be compressed. The following characters in Table B.C. 1 have special definitions:

Table B.C.1/J. 94 - Characters with special definitions

Character	Value (Decimal)	Meaning
String Terminate (ASCII Null)	0	The Terminate character is used to terminate strings. The Terminate character is appended to the string in either compressed or uncompressed form. The first encoded character in a compressed string is encoded/decoded from the Terminate sub-tree. In other words, when encoding or decoding the first character in a compressed string, assume that the previous character was a Terminate character.
Order-1 Escape (ASCII ESC)	27	Used to escape from first-order context to uncompressed context. The character which follows the Escape character is uncompressed.

B.C.1.1 First Order Escape

The order-1 Huffman trees are partial, that is, codes are not defined for every possible character sequence. For example, the standard decode tables do not contain codes for the character sequence $q p$. When uncompressed text contains a character sequence which is not defined in the decode table, the order-1 escape character is used to escape back to the uncompressed context. Uncompressed symbols are coded as 8 -bit ASCII (Latin-1). For example, the character sequence qpa would be coded with compressed q, compressed ESC, uncompressed p, compressed a.

First-order escape rules for compressed strings:

- Any character which follows a first-order escape character is an uncompressed (8-bit) character. (Any character which follows an uncompressed escape character is compressed).
- Characters (128 ... 255) cannot be compressed.
- Any character which follows a character from the set (128 ... 255) is uncompressed.

B.C.1.2 Decode table data structures

Decode tables have two sections:

- Tree Root Offset List: Provides the table offsets, in bytes from the start of the decode table, for the roots of the 128 first-order decode trees. The list is contained in bytes $(0 \ldots 255)$ of the decode table, and is defined by the first "for" loop in Table B.C.1.
- Order-1 Decode Trees: Each and every character in the range ($0 \ldots 127$) has a corresponding first-order decode tree. For example, if the previous character was "s", then the decoder would use the "s" first-order decode tree (decode tree \#115) to decode the next character (ASCII "s" equals 115 decimal). These 128 decode trees are delimited by the second "for" loop in Table B.C.2.

Decode tables have the following format:

Table B.C.2/J. 94 - Decode Table Format

Note that even though the ISO Latin-1 character set supports up to 256 characters, only the first 128 characters may be represented in compressed form.

B.C.1.2. 1 Tree root byte offsets

byte_offset_of_character_i_tree_root: A 16-bit unsigned integer specifying the location, in bytes from the beginning of the decode table, of the root for the ith character's order-1 tree.

B.C.1.2.2 Order-1 decode trees

Order-1 decode trees are binary trees. The roots of the decode trees are located at the table offsets specified in the tree root offset list. The left and right children of a given node are specified as word offsets from the root of the tree (a word is equivalent to two bytes).
Decode trees have the format as shown in Table B.C.3:

Table B.C.3/J. 94 - Decode tree format

Syntax	Bits	Format
```character_i_order_1_tree() { for (j==0; j<N; j++) {```		
left_child_word_offset_or_char_leaf right_child_word_offset_or_char_leaf	$\begin{aligned} & 8 \\ & 8 \end{aligned}$	uimsbf   uimsbf
$\}^{\}}$		

left_child_word_offset_or_character_leaf: An 8-bit unsigned integer number with the following interpretation: If the highest bit is cleared (i.e. bit 7 is zero), the number specifies the offset, in words, of the left child from the root of the order- 1 decode tree; if the highest bit is set (bit 7 is one), the lower 7 bits give the code (e.g. in ASCII) for a leaf character.
right_child_word_offset_or_character_leaf: An 8-bit unsigned integer number with the following interpretation: If the highest bit is cleared (i.e. bit 7 is zero), the number specifies the offset, in words, of the right child from the root of the order-1 decode tree; if the highest bit is set (bit 7 is one), the lower 7 bits give the code (e.g. in ASCII) for a leaf character.
Each node (corresponding to one iteration of the for-loop) has a byte for the left child or character, and a byte for the right child or character.

Characters are leaves of the order-1 decode trees, and are differentiated from intermediate nodes by the byte's most significant bit. When the most significant bit is set, the byte is a character leaf. When the most significant bit is not set, the byte contains the tabular word offset of the child node.

## B.C. 2 Standard compression Type 1 Encode/Decode Tables

The following encode/decode tables (Tables B.C.4 and B.C.5) are optimized for English-language program title text. These tables correspond to multiple_string_structure() with compression_type value $0 \times 01$, and a mode equal to $0 x F F$.

## Table B.C.4/J. 94 - English-language Program Title Encode Table

Prior Symbol: 0 Symbol: 27 Code: 11001011
Prior Symbol: 0 Symbol: '\$' Code: 1100101011
Prior Symbol: 0 Symbol: '2' Code: 011010010
Prior Symbol: 0 Symbol: '4' Code: 1100101010
Prior Symbol: 0 Symbol: '7' Code: 011010011
Prior Symbol: 0 Symbol: 'A' Code: 0111
Prior Symbol: 0 Symbol: 'B' Code: 1001
Prior Symbol: 0 Symbol: 'C' Code: 1011
Prior Symbol: 0 Symbol: 'D' Code: 11011
Prior Symbol: 0 Symbol: 'E' Code: 10001
Prior Symbol: 0 Symbol: 'F' Code: 11000
Prior Symbol: 0 Symbol: 'G' Code: 11100
Prior Symbol: 0 Symbol: 'H' Code: 11111
Prior Symbol: 0 Symbol: 'I' Code: 10000
Prior Symbol: 0 Symbol: 'J' Code: 01100
Prior Symbol: 0 Symbol: 'K' Code: 1100110
Prior Symbol: 0 Symbol: 'L' Code: 11101
Prior Symbol: 0 Symbol: 'M' Code: 1010
Prior Symbol: 0 Symbol: 'N' Code: 0011
Prior Symbol: 0 Symbol: 'O' Code: 011011
Prior Symbol: 0 Symbol: 'P' Code: 11110
Prior Symbol: 0 Symbol: 'Q' Code: 01101000
Prior Symbol: 0 Symbol: 'R' Code: 11010
Prior Symbol: 0 Symbol: 'S' Code: 000
Prior Symbol: 0 Symbol: 'T' Code: 010
Prior Symbol: 0 Symbol: 'U' Code: 0110101
Prior Symbol: 0 Symbol: 'V' Code: 1100111
Prior Symbol: 0 Symbol: 'W' Code: 0010
Prior Symbol: 0 Symbol: 'Y' Code: 1100100
Prior Symbol: 0 Symbol: 'Z' Code: 110010100
Prior Symbol: 1 Symbol: 27 Code: 1
Prior Symbol: 2 Symbol: 27 Code: 1
Prior Symbol: 3 Symbol: 27 Code: 1
Prior Symbol: 4 Symbol: 27 Code: 1
Prior Symbol: 5 Symbol: 27 Code: 1

Prior Symbol: 6 Symbol: 27 Code: 1
Prior Symbol: 7 Symbol: 27 Code: 1
Prior Symbol: 8 Symbol: 27 Code: 1
Prior Symbol: 9 Symbol: 27 Code: 1
Prior Symbol: 10 Symbol: 27 Code: 1
Prior Symbol: 11 Symbol: 27 Code: 1
Prior Symbol: 12 Symbol: 27 Code: 1
Prior Symbol: 13 Symbol: 27 Code: 1
Prior Symbol: 14 Symbol: 27 Code: 1
Prior Symbol: 15 Symbol: 27 Code: 1
Prior Symbol: 16 Symbol: 27 Code: 1
Prior Symbol: 17 Symbol: 27 Code: 1
Prior Symbol: 18 Symbol: 27 Code: 1
Prior Symbol: 19 Symbol: 27 Code: 1
Prior Symbol: 20 Symbol: 27 Code: 1
Prior Symbol: 21 Symbol: 27 Code: 1
Prior Symbol: 22 Symbol: 27 Code: 1
Prior Symbol: 23 Symbol: 27 Code: 1
Prior Symbol: 24 Symbol: 27 Code: 1
Prior Symbol: 25 Symbol: 27 Code: 1
Prior Symbol: 26 Symbol: 27 Code: 1
Prior Symbol: 27 Symbol: 27 Code: 1
Prior Symbol: 28 Symbol: 27 Code: 1
Prior Symbol: 29 Symbol: 27 Code: 1
Prior Symbol: 30 Symbol: 27 Code: 1
Prior Symbol: 31 Symbol: 27 Code: 1
Prior Symbol: ' ' Symbol: 27 Code: 10010100
Prior Symbol: ' ' Symbol: '\&' Code: 010001
Prior Symbol: ' ' Symbol: "' Code: 010000100
Prior Symbol: ' ' Symbol: '-' Code: 00000001
Prior Symbol: ' ' Symbol: '1' Code: 010000101
Prior Symbol: ' ' Symbol: '2' Code: 00000010
Prior Symbol: ' ' Symbol: '3' Code: 01000001
Prior Symbol: ' ' Symbol: '9' Code: 000000000
Prior Symbol: ' ' Symbol: 'A' Code: 10111

Prior Symbol: ' ' Symbol: 'B' Code: 0010 Prior Symbol: ' ' Symbol: 'C' Code: 1100 Prior Symbol: ' ' Symbol: 'D' Code: 11100 Prior Symbol: ' ' Symbol: 'E' Code: 011010 Prior Symbol: ' ' Symbol: 'F' Code: 10011 Prior Symbol: ' ' Symbol: 'G' Code: 00001 Prior Symbol: ' ' Symbol: 'H' Code: 10101 Prior Symbol: ' ' Symbol: 'l' Code: 111111 Prior Symbol: ' ' Symbol: 'J' Code: 111110 Prior Symbol: ' ' Symbol: 'K' Code: 010011 Prior Symbol: ' ' Symbol: 'L' Code: 11110 Prior Symbol: ' ' Symbol: 'M' Code: 0101 Prior Symbol: ' ' Symbol: 'N' Code: 10110 Prior Symbol: ' ' Symbol: 'O' Code: 011011 Prior Symbol: ' ' Symbol: 'P' Code: 11101 Prior Symbol: ' ' Symbol: 'Q' Code: 100100011 Prior Symbol: ' ' Symbol: 'R' Code: 10100 Prior Symbol: ' ' Symbol: 'S' Code: 1101 Prior Symbol: ' ' Symbol: 'T' Code: 1000 Prior Symbol: ' ' Symbol: 'U' Code: 1001001

Prior Symbol: ' ' Symbol: 'V' Code: 1001011 Prior Symbol: ' ' Symbol: 'W' Code: 0011 Prior Symbol: ' ' Symbol: 'X' Code: 0000000010 Prior Symbol: ' ' Symbol: 'Y' Code: 000001 Prior Symbol: ' ' Symbol: 'Z' Code: 00000011 Prior Symbol: ' ' Symbol: 'a' Code: 01100 Prior Symbol: ' ' Symbol: 'b' Code: 10010101 Prior Symbol: ' ' Symbol: 'c' Code: 01000000 Prior Symbol: ' ' Symbol: 'd' Code: 01000011 Prior Symbol: ' ' Symbol: 'e' Code: 0000000011 Prior Symbol: ' ' Symbol: 'f' Code: 10010000 Prior Symbol: ' ' Symbol: 'i' Code: 010010 Prior Symbol: ' ' Symbol: 'I' Code: 100100010 Prior Symbol: ' ' Symbol: 'o' Code: 0001 Prior Symbol: ' ' Symbol: 't' Code: 0111 Prior Symbol: '!' Symbol: 0 Code: 1 Prior Symbol: '!' Symbol: 27 Code: 01 Prior Symbol: '!' Symbol: ' ' Code: 00 Prior Symbol: "'" Symbol: 27 Code: 1 Prior Symbol: '\#' Symbol: 27 Code: 1 Prior Symbol: '\$' Symbol: 27 Code: 1 Prior Symbol: '\$' Symbol: '1' Code: 0 Prior Symbol: '\%' Symbol: 27 Code: 1 Prior Symbol: '\&' Symbol: 27 Code: 0

Prior Symbol: '\&' Symbol: ' ' Code: 1
Prior Symbol: "' Symbol: 27 Code: 011
Prior Symbol: "' Symbol: ' ' Code: 010
Prior Symbol: "' Symbol: '9' Code: 0001
Prior Symbol: "' Symbol: 'd' Code: 0000
Prior Symbol: "' Symbol: 's' Code: 1
Prior Symbol: "' Symbol: 't' Code: 001
Prior Symbol: '(' Symbol: 27 Code: 1
Prior Symbol: ')' Symbol: 27 Code: 1
Prior Symbol: '*' Symbol: 27 Code: 00
Prior Symbol: '*' Symbol: 'A' Code: 01
Prior Symbol: '*' Symbol: 'H' Code: 10
Prior Symbol: '*' Symbol: 'S' Code: 11
Prior Symbol: '+' Symbol: 27 Code: 1
Prior Symbol: ',' Symbol: 27 Code: 0
Prior Symbol: ',' Symbol: ' ' Code: 1
Prior Symbol: '-' Symbol: 27 Code: 01
Prior Symbol: '-' Symbol: ' ' Code: 111
Prior Symbol: '-' Symbol: '-' Code: 1101
Prior Symbol: '-' Symbol: '1' Code: 1000
Prior Symbol: '-' Symbol: 'A' Code: 001
Prior Symbol: '-' Symbol: 'M' Code: 000
Prior Symbol: '-' Symbol: 'R' Code: 1001
Prior Symbol: '-' Symbol: 'S' Code: 1010
Prior Symbol: '-' Symbol: 'T' Code: 1011
Prior Symbol: '-' Symbol: 'U' Code: 1100
Prior Symbol: '.' Symbol: 0 Code: 111
Prior Symbol: '.' Symbol: 27 Code: 101
Prior Symbol: '.' Symbol: ' ' Code: 0
Prior Symbol: '.' Symbol: '.' Code: 110
Prior Symbol: '.' Symbol: 'I' Code: 10010
Prior Symbol: '.' Symbol: 'S' Code: 1000
Prior Symbol: '.' Symbol: 'W' Code: 10011
Prior Symbol: '/' Symbol: 27 Code: 1
Prior Symbol: '0' Symbol: 0 Code: 01
Prior Symbol: '0' Symbol: 27 Code: 001
Prior Symbol: '0' Symbol: ' ' Code: 10
Prior Symbol: '0' Symbol: '-' Code: 000
Prior Symbol: '0' Symbol: '0' Code: 11
Prior Symbol: '1' Symbol: 0 Code: 010
Prior Symbol: '1' Symbol: 27 Code: 011
Prior Symbol: '1' Symbol: ' ' Code: 110
Prior Symbol: '1' Symbol: '0' Code: 111
Prior Symbol: '1' Symbol: '1' Code: 100

Prior Symbol: '1' Symbol: '2' Code: 101
Prior Symbol: '1' Symbol: '9' Code: 00
Prior Symbol: '2' Symbol: 0 Code: 11
Prior Symbol: '2' Symbol: 27 Code: 10
Prior Symbol: '2' Symbol: '0' Code: 01
Prior Symbol: '2' Symbol: '1' Code: 000
Prior Symbol: '2' Symbol: ':' Code: 001
Prior Symbol: '3' Symbol: 0 Code: 0
Prior Symbol: '3' Symbol: 27 Code: 11
Prior Symbol: '3' Symbol: '0' Code: 10
Prior Symbol: '4' Symbol: 27 Code: 0
Prior Symbol: '4' Symbol: '8' Code: 1
Prior Symbol: '5' Symbol: 27 Code: 1
Prior Symbol: '6' Symbol: 27 Code: 1
Prior Symbol: '7' Symbol: 27 Code: 0
Prior Symbol: '7' Symbol: '0' Code: 1
Prior Symbol: '8' Symbol: 27 Code: 0
Prior Symbol: '8' Symbol: ' ' Code: 1
Prior Symbol: '9' Symbol: 27 Code: 11
Prior Symbol: '9' Symbol: '0' Code: 01
Prior Symbol: '9' Symbol: '1' Code: 100
Prior Symbol: '9' Symbol: '3' Code: 101
Prior Symbol: '9' Symbol: '9' Code: 00
Prior Symbol: ':' Symbol: 27 Code: 0
Prior Symbol: ':' Symbol: ' ' Code: 1
Prior Symbol: ';' Symbol: 27 Code: 1
Prior Symbol: '<' Symbol: 27 Code: 1
Prior Symbol: '=' Symbol: 27 Code: 1
Prior Symbol: '>' Symbol: 27 Code: 1
Prior Symbol: '?' Symbol: 0 Code: 1
Prior Symbol: '?' Symbol: 27 Code: 0
Prior Symbol: '@' Symbol: 27 Code: 1
Prior Symbol: 'A' Symbol: 27 Code: 00010
Prior Symbol: 'A' Symbol: ' ' Code: 010
Prior Symbol: 'A' Symbol: '*' Code: 1101000
Prior Symbol: 'A' Symbol: '-' Code: 1101001
Prior Symbol: 'A' Symbol: '.' Code: 1101010
Prior Symbol: 'A' Symbol: 'B' Code: 110110
Prior Symbol: 'A' Symbol: 'b' Code: 110010
Prior Symbol: 'A' Symbol: 'c' Code: 01100
Prior Symbol: 'A' Symbol: 'd' Code: 001
Prior Symbol: 'A' Symbol: 'f' Code: 01101
Prior Symbol: 'A' Symbol: 'g' Code: 011110
Prior Symbol: 'A' Symbol: 'i' Code: 110011
Prior Symbol: 'A' Symbol: 'I' Code: 100

Prior Symbol: 'A' Symbol: 'm' Code: 111
Prior Symbol: 'A' Symbol: 'n' Code: 101
Prior Symbol: 'A' Symbol: 'p' Code: 110111
Prior Symbol: 'A' Symbol: 'r' Code: 0000
Prior Symbol: 'A' Symbol: 's' Code: 00011
Prior Symbol: 'A' Symbol: 't' Code: 011111
Prior Symbol: 'A' Symbol: 'u' Code: 11000
Prior Symbol: 'A' Symbol: 'v' Code: 1101011
Prior Symbol: 'A' Symbol: 'w' Code: 01110
Prior Symbol: 'B' Symbol: 27 Code: 00010
Prior Symbol: 'B' Symbol: 'A' Code: 000110
Prior Symbol: 'B' Symbol: 'C' Code: 0000
Prior Symbol: 'B' Symbol: 'S' Code: 000111
Prior Symbol: 'B' Symbol: 'a' Code: 111
Prior Symbol: 'B' Symbol: 'e' Code: 01
Prior Symbol: 'B' Symbol: 'i' Code: 1010
Prior Symbol: 'B' Symbol: 'I' Code: 1011
Prior Symbol: 'B' Symbol: 'o' Code: 110
Prior Symbol: 'B' Symbol: 'r' Code: 001
Prior Symbol: 'B' Symbol: 'u' Code: 100
Prior Symbol: 'C' Symbol: 27 Code: 00101
Prior Symbol: 'C' Symbol: ' ' Code: 10110
Prior Symbol: 'C' Symbol: 'A' Code: 0011100
Prior Symbol: 'C' Symbol: 'B' Code: 001111
Prior Symbol: 'C' Symbol: 'O' Code: 101110
Prior Symbol: 'C' Symbol: 'a' Code: 100
Prior Symbol: 'C' Symbol: 'e' Code: 101111
Prior Symbol: 'C' Symbol: 'h' Code: 01
Prior Symbol: 'C' Symbol: 'i' Code: 00110
Prior Symbol: 'C' Symbol: 'I' Code: 000
Prior Symbol: 'C' Symbol: 'o' Code: 11
Prior Symbol: 'C' Symbol: 'r' Code: 1010
Prior Symbol: 'C' Symbol: 'u' Code: 00100
Prior Symbol: 'C' Symbol: 'y' Code: 0011101
Prior Symbol: 'D' Symbol: 27 Code: 01001
Prior Symbol: 'D' Symbol: 'a' Code: 10
Prior Symbol: 'D' Symbol: 'e' Code: 111
Prior Symbol: 'D' Symbol: 'i' Code: 110
Prior Symbol: 'D' Symbol: 'o' Code: 00
Prior Symbol: 'D' Symbol: 'r' Code: 011
Prior Symbol: 'D' Symbol: 'u' Code: 0101
Prior Symbol: 'D' Symbol: 'y' Code: 01000
Prior Symbol: 'E' Symbol: 27 Code: 011
Prior Symbol: 'E' Symbol: 'C' Code: 1010

Prior Symbol: 'E' Symbol: 'a' Code: 111 Prior Symbol: 'E' Symbol: 'd' Code: 000 Prior Symbol: 'E' Symbol: 'I' Code: 1100 Prior Symbol: 'E' Symbol: 'm' Code: 0100 Prior Symbol: 'E' Symbol: 'n' Code: 1101 Prior Symbol: 'E' Symbol: 'q' Code: 101110 Prior Symbol: 'E' Symbol: 's' Code: 10110 Prior Symbol: 'E' Symbol: 'u' Code: 101111 Prior Symbol: 'E' Symbol: 'v' Code: 100 Prior Symbol: 'E' Symbol: 'x' Code: 001 Prior Symbol: 'E' Symbol: 'y' Code: 0101 Prior Symbol: 'F' Symbol: 27 Code: 011111 Prior Symbol: 'F' Symbol: ' ' Code: 011110 Prior Symbol: 'F' Symbol: 'L' Code: 01110 Prior Symbol: 'F' Symbol: 'a' Code: 10 Prior Symbol: 'F' Symbol: 'e' Code: 0110 Prior Symbol: 'F' Symbol: 'i' Code: 110 Prior Symbol: 'F' Symbol: 'I' Code: 000 Prior Symbol: 'F' Symbol: 'o' Code: 010 Prior Symbol: 'F' Symbol: 'r' Code: 111 Prior Symbol: 'F' Symbol: 'u' Code: 001 Prior Symbol: 'G' Symbol: 27 Code: 10110 Prior Symbol: 'G' Symbol: '.' Code: 101010 Prior Symbol: 'G' Symbol: 'A' Code: 101111 Prior Symbol: 'G' Symbol: 'a' Code: 1110 Prior Symbol: 'G' Symbol: 'e' Code: 110 Prior Symbol: 'G' Symbol: 'h' Code: 10100 Prior Symbol: 'G' Symbol: 'i' Code: 100 Prior Symbol: 'G' Symbol: 'I' Code: 101011 Prior Symbol: 'G' Symbol: 'o' Code: 01 Prior Symbol: 'G' Symbol: 'r' Code: 00 Prior Symbol: 'G' Symbol: 'u' Code: 1111 Prior Symbol: 'G' Symbol: 'y' Code: 101110 Prior Symbol: 'H' Symbol: 0 Code: 111010 Prior Symbol: 'H' Symbol: 27 Code: 111011 Prior Symbol: 'H' Symbol: 'a' Code: 110 Prior Symbol: 'H' Symbol: 'e' Code: 10 Prior Symbol: 'H' Symbol: 'i' Code: 1111 Prior Symbol: 'H' Symbol: 'o' Code: 0 Prior Symbol: 'H' Symbol: 'u' Code: 11100 Prior Symbol: 'I' Symbol: 0 Code: 1000 Prior Symbol: 'I' Symbol: 27 Code: 1001 Prior Symbol: 'I' Symbol: ' ' Code: 11110 Prior Symbol: 'I' Symbol: '.' Code: 111110 Prior Symbol: 'I' Symbol: ':' Code: 101110

Prior Symbol: 'I' Symbol: 'I' Code: 1100
Prior Symbol: 'I' Symbol: 'T' Code: 101111
Prior Symbol: 'I' Symbol: 'c' Code: 10110
Prior Symbol: 'I' Symbol: 'm' Code: 1010
Prior Symbol: 'I' Symbol: 'n' Code: 0
Prior Symbol: 'I' Symbol: 'r' Code: 111111
Prior Symbol: 'I' Symbol: 's' Code: 1101
Prior Symbol: 'I' Symbol: 't' Code: 1110
Prior Symbol: 'J' Symbol: 27 Code: 000
Prior Symbol: 'J' Symbol: 'a' Code: 01
Prior Symbol: 'J' Symbol: 'e' Code: 11
Prior Symbol: 'J' Symbol: 'o' Code: 10
Prior Symbol: 'J' Symbol: 'u' Code: 001
Prior Symbol: 'K' Symbol: 27 Code: 000
Prior Symbol: 'K' Symbol: 'a' Code: 0100
Prior Symbol: 'K' Symbol: 'e' Code: 001
Prior Symbol: 'K' Symbol: 'i' Code: 1
Prior Symbol: 'K' Symbol: 'n' Code: 0111
Prior Symbol: 'K' Symbol: 'o' Code: 0101
Prior Symbol: 'K' Symbol: 'u' Code: 0110
Prior Symbol: 'L' Symbol: 27 Code: 01001
Prior Symbol: 'L' Symbol: ' ' Code: 01000
Prior Symbol: 'L' Symbol: 'a' Code: 10
Prior Symbol: 'L' Symbol: 'e' Code: 011
Prior Symbol: 'L' Symbol: 'i' Code: 11
Prior Symbol: 'L' Symbol: 'o' Code: 00
Prior Symbol: 'L' Symbol: 'u' Code: 0101
Prior Symbol: 'M' Symbol: 27 Code: 1011111
Prior Symbol: 'M' Symbol: '*' Code: 10111100
Prior Symbol: 'M' Symbol: 'T' Code: 10111101
Prior Symbol: 'M' Symbol: 'a' Code: 11
Prior Symbol: 'M' Symbol: 'c' Code: 101110
Prior Symbol: 'M' Symbol: 'e' Code: 1010
Prior Symbol: 'M' Symbol: 'i' Code: 100
Prior Symbol: 'M' Symbol: 'o' Code: 00
Prior Symbol: 'M' Symbol: 'r' Code: 10110
Prior Symbol: 'M' Symbol: 'u' Code: 010
Prior Symbol: 'M' Symbol: 'y' Code: 011
Prior Symbol: 'N' Symbol: 27 Code: 1000
Prior Symbol: 'N' Symbol: ' ' Code: 110001
Prior Symbol: 'N' Symbol: 'B' Code: 1001
Prior Symbol: 'N' Symbol: 'F' Code: 110010
Prior Symbol: 'N' Symbol: 'N' Code: 110000
Prior Symbol: 'N' Symbol: 'a' Code: 1101

Prior Symbol: 'N' Symbol: 'e' Code: 0
Prior Symbol: 'N' Symbol: 'i' Code: 111
Prior Symbol: 'N' Symbol: 'o' Code: 101
Prior Symbol: 'N' Symbol: 'u' Code: 110011
Prior Symbol: 'O' Symbol: 27 Code: 010
Prior Symbol: 'O' Symbol: ' ' Code: 001
Prior Symbol: 'O' Symbol: 'd' Code: 01110
Prior Symbol: 'O' Symbol: 'f' Code: 11010
Prior Symbol: 'O' Symbol: 'I' Code: 1100
Prior Symbol: 'O' Symbol: 'n' Code: 10
Prior Symbol: 'O' Symbol: 'p' Code: 0001
Prior Symbol: 'O' Symbol: 'r' Code: 0110
Prior Symbol: 'O' Symbol: 's' Code: 01111
Prior Symbol: 'O' Symbol: 'u' Code: 111
Prior Symbol: 'O' Symbol: 'v' Code: 11011
Prior Symbol: 'O' Symbol: 'w' Code: 0000
Prior Symbol: 'P' Symbol: 27 Code: 111111
Prior Symbol: 'P' Symbol: ' ' Code: 1111100
Prior Symbol: 'P' Symbol: '.' Code: 011001
Prior Symbol: 'P' Symbol: 'G' Code: 111101
Prior Symbol: 'P' Symbol: 'R' Code: 111100
Prior Symbol: 'P' Symbol: 'a' Code: 00
Prior Symbol: 'P' Symbol: 'e' Code: 010
Prior Symbol: 'P' Symbol: 'i' Code: 0111
Prior Symbol: 'P' Symbol: 'I' Code: 1110
Prior Symbol: 'P' Symbol: 'o' Code: 110
Prior Symbol: 'P' Symbol: 'r' Code: 10
Prior Symbol: 'P' Symbol: 's' Code: 1111101
Prior Symbol: 'P' Symbol: 'u' Code: 01101
Prior Symbol: 'P' Symbol: 'y' Code: 011000
Prior Symbol: 'Q' Symbol: 27 Code: 00
Prior Symbol: 'Q' Symbol: 'V' Code: 01
Prior Symbol: 'Q' Symbol: 'u' Code: 1
Prior Symbol: 'R' Symbol: 27 Code: 10001
Prior Symbol: 'R' Symbol: 'a' Code: 101
Prior Symbol: 'R' Symbol: 'e' Code: 11
Prior Symbol: 'R' Symbol: 'h' Code: 10000
Prior Symbol: 'R' Symbol: 'i' Code: 00
Prior Symbol: 'R' Symbol: 'o' Code: 01
Prior Symbol: 'R' Symbol: 'u' Code: 1001
Prior Symbol: 'S' Symbol: 27 Code: 101110
Prior Symbol: 'S' Symbol: ' ' Code: 1110100
Prior Symbol: 'S' Symbol: '*' Code: 1011000
Prior Symbol: 'S' Symbol: '.' Code: 1011011

Prior Symbol: 'S' Symbol: 'a' Code: 1111
Prior Symbol: 'S' Symbol: 'c' Code: 11100
Prior Symbol: 'S' Symbol: 'e' Code: 000
Prior Symbol: 'S' Symbol: 'h' Code: 100
Prior Symbol: 'S' Symbol: 'i' Code: 1100
Prior Symbol: 'S' Symbol: 'k' Code: 101111
Prior Symbol: 'S' Symbol: 'I' Code: 1011001
Prior Symbol: 'S' Symbol: 'm' Code: 1110110
Prior Symbol: 'S' Symbol: 'n' Code: 1110111
Prior Symbol: 'S' Symbol: 'o' Code: 1010
Prior Symbol: 'S' Symbol: 'p' Code: 001
Prior Symbol: 'S' Symbol: 'q' Code: 1011010
Prior Symbol: 'S' Symbol: 't' Code: 01
Prior Symbol: 'S' Symbol: 'u' Code: 1101
Prior Symbol: 'S' Symbol: 'w' Code: 1110101
Prior Symbol: 'T' Symbol: 27 Code: 1111010
Prior Symbol: 'T' Symbol: '-' Code: 11110110
Prior Symbol: 'T' Symbol: 'N' Code: 11110111
Prior Symbol: 'T' Symbol: 'V' Code: 111100
Prior Symbol: 'T' Symbol: 'a' Code: 1010
Prior Symbol: 'T' Symbol: 'e' Code: 1011
Prior Symbol: 'T' Symbol: 'h' Code: 0
Prior Symbol: 'T' Symbol: 'i' Code: 1110
Prior Symbol: 'T' Symbol: 'o' Code: 110
Prior Symbol: 'T' Symbol: 'r' Code: 100
Prior Symbol: 'T' Symbol: 'u' Code: 111110
Prior Symbol: 'T' Symbol: 'w' Code: 111111
Prior Symbol: 'U' Symbol: 27 Code: 101
Prior Symbol: 'U' Symbol: '.' Code: 1001
Prior Symbol: 'U' Symbol: 'I' Code: 1000
Prior Symbol: 'U' Symbol: 'n' Code: 0
Prior Symbol: 'U' Symbol: 'p' Code: 11
Prior Symbol: 'V' Symbol: 0 Code: 000
Prior Symbol: 'V' Symbol: 27 Code: 0011
Prior Symbol: 'V' Symbol: ' ' Code: 01010
Prior Symbol: 'V' Symbol: 'C' Code: 01011
Prior Symbol: 'V' Symbol: 'a' Code: 011
Prior Symbol: 'V' Symbol: 'e' Code: 0100
Prior Symbol: 'V' Symbol: 'i' Code: 1
Prior Symbol: 'V' Symbol: 'o' Code: 0010
Prior Symbol: 'W' Symbol: 27 Code: 00011
Prior Symbol: 'W' Symbol: 'F' Code: 000100
Prior Symbol: 'W' Symbol: 'W' Code: 000101
Prior Symbol: 'W' Symbol: 'a' Code: 111

Prior Symbol: 'W' Symbol: 'e' Code: 110
Prior Symbol: 'W' Symbol: 'h' Code: 001
Prior Symbol: 'W' Symbol: 'i' Code: 01
Prior Symbol: 'W' Symbol: 'o' Code: 10
Prior Symbol: 'W' Symbol: 'r' Code: 0000
Prior Symbol: 'X' Symbol: 27 Code: 1
Prior Symbol: 'Y' Symbol: 27 Code: 001
Prior Symbol: 'Y' Symbol: 'a' Code: 000
Prior Symbol: 'Y' Symbol: 'e' Code: 01
Prior Symbol: 'Y' Symbol: 'o' Code: 1
Prior Symbol: 'Z' Symbol: 27 Code: 00
Prior Symbol: 'Z' Symbol: 'a' Code: 01
Prior Symbol: 'Z' Symbol: 'o' Code: 1
Prior Symbol: '[' Symbol: 27 Code: 1
Prior Symbol: 'I' Symbol: 27 Code: 1
Prior Symbol: ']' Symbol: 27 Code: 1
Prior Symbol: '^' Symbol: 27 Code: 1
Prior Symbol: '_' Symbol: 27 Code: 1
Prior Symbol: "' Symbol: 27 Code: 1
Prior Symbol: 'a' Symbol: 0 Code: 00010
Prior Symbol: 'a' Symbol: 27 Code: 1111010110
Prior Symbol: 'a' Symbol: ' ' Code: 10110
Prior Symbol: 'a' Symbol: "' Code: 11110100
Prior Symbol: 'a' Symbol: ':' Code: 1111010111
Prior Symbol: 'a' Symbol: 'b' Code: 010010
Prior Symbol: 'a' Symbol: 'c' Code: 11111
Prior Symbol: 'a' Symbol: 'd' Code: 10100
Prior Symbol: 'a' Symbol: 'e' Code: 101011000
Prior Symbol: 'a' Symbol: 'f' Code: 10101101
Prior Symbol: 'a' Symbol: 'g' Code: 01000
Prior Symbol: 'a' Symbol: 'h' Code: 0100111
Prior Symbol: 'a' Symbol: 'i' Code: 10111
Prior Symbol: 'a' Symbol: 'j' Code: 101011001
Prior Symbol: 'a' Symbol: 'k' Code: 101010
Prior Symbol: 'a' Symbol: 'I' Code: 001
Prior Symbol: 'a' Symbol: 'm' Code: 0101
Prior Symbol: 'a' Symbol: 'n' Code: 110
Prior Symbol: 'a' Symbol: 'p' Code: 111100
Prior Symbol: 'a' Symbol: 'r' Code: 100
Prior Symbol: 'a' Symbol: 's' Code: 1110
Prior Symbol: 'a' Symbol: 't' Code: 011
Prior Symbol: 'a' Symbol: 'u' Code: 1111011
Prior Symbol: 'a' Symbol: 'v' Code: 00011
Prior Symbol: 'a' Symbol: 'w' Code: 1010111

Prior Symbol: 'a' Symbol: 'x' Code: 111101010
Prior Symbol: 'a' Symbol: 'y' Code: 0000
Prior Symbol: 'a' Symbol: 'z' Code: 0100110
Prior Symbol: 'b' Symbol: 0 Code: 11111
Prior Symbol: 'b' Symbol: 27 Code: 111101
Prior Symbol: 'b' Symbol: ' ' Code: 0110
Prior Symbol: 'b' Symbol: 'a' Code: 00
Prior Symbol: 'b' Symbol: 'b' Code: 01111
Prior Symbol: 'b' Symbol: 'e' Code: 1010
Prior Symbol: 'b' Symbol: 'i' Code: 1110
Prior Symbol: 'b' Symbol: 'I' Code: 010
Prior Symbol: 'b' Symbol: 'o' Code: 110
Prior Symbol: 'b' Symbol: 'r' Code: 1011
Prior Symbol: 'b' Symbol: 's' Code: 111100
Prior Symbol: 'b' Symbol: 'u' Code: 01110
Prior Symbol: 'b' Symbol: 'y' Code: 100
Prior Symbol: 'c' Symbol: 0 Code: 010110
Prior Symbol: 'c' Symbol: 27 Code: 1000011
Prior Symbol: 'c' Symbol: ' ' Code: 0100
Prior Symbol: 'c' Symbol: 'C' Code: 0010110
Prior Symbol: 'c' Symbol: 'G' Code: 1000010
Prior Symbol: 'c' Symbol: 'L' Code: 0010111
Prior Symbol: 'c' Symbol: 'a' Code: 011
Prior Symbol: 'c' Symbol: 'c' Code: 001010
Prior Symbol: 'c' Symbol: 'e' Code: 111
Prior Symbol: 'c' Symbol: 'h' Code: 101
Prior Symbol: 'c' Symbol: 'i' Code: 0011
Prior Symbol: 'c' Symbol: 'k' Code: 110
Prior Symbol: 'c' Symbol: 'I' Code: 010111
Prior Symbol: 'c' Symbol: 'o' Code: 1001
Prior Symbol: 'c' Symbol: 'r' Code: 10001
Prior Symbol: 'c' Symbol: 's' Code: 00100
Prior Symbol: 'c' Symbol: 't' Code: 000
Prior Symbol: 'c' Symbol: 'u' Code: 01010
Prior Symbol: 'c' Symbol: 'y' Code: 100000
Prior Symbol: 'd' Symbol: 0 Code: 011
Prior Symbol: 'd' Symbol: 27 Code: 101110
Prior Symbol: 'd' Symbol: ' ' Code: 11
Prior Symbol: 'd' Symbol: '.' Code: 101101110
Prior Symbol: 'd' Symbol: 'a' Code: 1010
Prior Symbol: 'd' Symbol: 'd' Code: 100000
Prior Symbol: 'd' Symbol: 'e' Code: 00
Prior Symbol: 'd' Symbol: 'g' Code: 100001
Prior Symbol: 'd' Symbol: 'i' Code: 1001

Prior Symbol: 'd' Symbol: 'I' Code: 1011010 Prior Symbol: 'd' Symbol: 'o' Code: 101111 Prior Symbol: 'd' Symbol: 'r' Code: 101100 Prior Symbol: 'd' Symbol: 's' Code: 0101 Prior Symbol: 'd' Symbol: 'u' Code: 101101111 Prior Symbol: 'd' Symbol: 'v' Code: 10001 Prior Symbol: 'd' Symbol: 'w' Code: 10110110 Prior Symbol: 'd' Symbol: 'y' Code: 0100 Prior Symbol: 'e' Symbol: 0 Code: 001 Prior Symbol: 'e' Symbol: 27 Code: 1010111100 Prior Symbol: 'e' Symbol: ' ' Code: 01 Prior Symbol: 'e' Symbol: '!' Code: 1010111101 Prior Symbol: 'e' Symbol: "' Code: 10101100 Prior Symbol: 'e' Symbol: '-' Code: 1010111110 Prior Symbol: 'e' Symbol: ':' Code: 00010010 Prior Symbol: 'e' Symbol: 'a' Code: 1000 Prior Symbol: 'e' Symbol: 'b' Code: 10101101 Prior Symbol: 'e' Symbol: 'c' Code: 100111 Prior Symbol: 'e' Symbol: 'd' Code: 00011 Prior Symbol: 'e' Symbol: 'e' Code: 10100 Prior Symbol: 'e' Symbol: 'f' Code: 1001100 Prior Symbol: 'e' Symbol: 'g' Code: 1010100 Prior Symbol: 'e' Symbol: 'h' Code: 1010111111 Prior Symbol: 'e' Symbol: 'i' Code: 10101110 Prior Symbol: 'e' Symbol: 'j' Code: 000100000 Prior Symbol: 'e' Symbol: 'k' Code: 1010101 Prior Symbol: 'e' Symbol: 'l' Code: 10010 Prior Symbol: 'e' Symbol: 'm' Code: 1001101 Prior Symbol: 'e' Symbol: 'n' Code: 1110 Prior Symbol: 'e' Symbol: 'o' Code: 000101 Prior Symbol: 'e' Symbol: 'p' Code: 000001 Prior Symbol: 'e' Symbol: 'q' Code: 000100001 Prior Symbol: 'e' Symbol: 'r' Code: 110 Prior Symbol: 'e' Symbol: 's' Code: 1111 Prior Symbol: 'e' Symbol: 't' Code: 10110 Prior Symbol: 'e' Symbol: 'u' Code: 000100010 Prior Symbol: 'e' Symbol: 'v' Code: 000000 Prior Symbol: 'e' Symbol: 'w' Code: 10111 Prior Symbol: 'e' Symbol: 'x' Code: 00010011 Prior Symbol: 'e' Symbol: 'y' Code: 00001 Prior Symbol: 'e' Symbol: 'z' Code: 000100011 Prior Symbol: 'f' Symbol: 0 Code: 11100 Prior Symbol: 'f' Symbol: 27 Code: 1111001 Prior Symbol: 'f' Symbol: ' ' Code: 0

Prior Symbol: 'f' Symbol: 'a' Code: 11101
Prior Symbol: 'f' Symbol: 'e' Code: 110
Prior Symbol: 'f' Symbol: 'f' Code: 1011
Prior Symbol: 'f' Symbol: 'i' Code: 1001
Prior Symbol: 'f' Symbol: 'I' Code: 111101
Prior Symbol: 'f' Symbol: 'o' Code: 1010
Prior Symbol: 'f' Symbol: 'r' Code: 111111
Prior Symbol: 'f' Symbol: 's' Code: 111110
Prior Symbol: 'f' Symbol: 't' Code: 1000
Prior Symbol: 'f' Symbol: 'u' Code: 1111000
Prior Symbol: 'g' Symbol: 0 Code: 110
Prior Symbol: 'g' Symbol: 27 Code: 1110000
Prior Symbol: 'g' Symbol: ' ' Code: 01
Prior Symbol: 'g' Symbol: "' Code: 1001100
Prior Symbol: 'g' Symbol: ':' Code: 11100010
Prior Symbol: 'g' Symbol: 'a' Code: 1000
Prior Symbol: 'g' Symbol: 'e' Code: 101
Prior Symbol: 'g' Symbol: 'g' Code: 1111010
Prior Symbol: 'g' Symbol: 'h' Code: 00
Prior Symbol: 'g' Symbol: 'i' Code: 11101
Prior Symbol: 'g' Symbol: 'I' Code: 1111011
Prior Symbol: 'g' Symbol: 'n' Code: 100111
Prior Symbol: 'g' Symbol: 'o' Code: 111001
Prior Symbol: 'g' Symbol: 'r' Code: 10010
Prior Symbol: 'g' Symbol: 's' Code: 11111
Prior Symbol: 'g' Symbol: 't' Code: 1001101
Prior Symbol: 'g' Symbol: 'u' Code: 111100
Prior Symbol: 'g' Symbol: 'y' Code: 11100011
Prior Symbol: 'h' Symbol: 0 Code: 11101
Prior Symbol: 'h' Symbol: 27 Code: 1110001
Prior Symbol: 'h' Symbol: ' ' Code: 1011
Prior Symbol: 'h' Symbol: 'a' Code: 1100
Prior Symbol: 'h' Symbol: 'b' Code: 11100110
Prior Symbol: 'h' Symbol: 'e' Code: 0
Prior Symbol: 'h' Symbol: 'i' Code: 100
Prior Symbol: 'h' Symbol: 'I' Code: 1110010
Prior Symbol: 'h' Symbol: ' $n$ ' Code: 101001
Prior Symbol: 'h' Symbol: 'o' Code: 1101
Prior Symbol: 'h' Symbol: 'r' Code: 10101
Prior Symbol: 'h' Symbol: 't' Code: 1111
Prior Symbol: 'h' Symbol: 'u' Code: 11100111
Prior Symbol: 'h' Symbol: 'w' Code: 1110000
Prior Symbol: 'h' Symbol: 'y' Code: 101000
Prior Symbol: 'i' Symbol: 0 Code: 00110101

Prior Symbol: 'i' Symbol: 27 Code: 00110110
Prior Symbol: 'i' Symbol: ' ' Code: 000100
Prior Symbol: 'i' Symbol: '!' Code: 001101000
Prior Symbol: 'i' Symbol: 'a' Code: 00011
Prior Symbol: 'i' Symbol: 'b' Code: 0011000
Prior Symbol: 'i' Symbol: 'c' Code: 1111
Prior Symbol: 'i' Symbol: 'd' Code: 0010 Prior Symbol: 'i' Symbol: 'e' Code: 1101

Prior Symbol: 'i' Symbol: 'f' Code: 00111
Prior Symbol: 'i' Symbol: 'g' Code: 1100
Prior Symbol: 'i' Symbol: 'i' Code: 00110010
Prior Symbol: 'i' Symbol: 'k' Code: 00110011
Prior Symbol: 'i' Symbol: 'I' Code: 0110
Prior Symbol: 'i' Symbol: 'm' Code: 11101
Prior Symbol: 'i' Symbol: 'n' Code: 10 Prior Symbol: 'i' Symbol: 'o' Code: 0100 Prior Symbol: 'i' Symbol: 'p' Code: 000101 Prior Symbol: 'i' Symbol: 'r' Code: 11100 Prior Symbol: 'i' Symbol: 's' Code: 0111 Prior Symbol: 'i' Symbol: 't' Code: 0101 Prior Symbol: 'i' Symbol: 'v' Code: 0000 Prior Symbol: 'i' Symbol: 'x' Code: 001101001 Prior Symbol: 'i' Symbol: 'z' Code: 00110111 Prior Symbol: 'j' Symbol: 27 Code: 10 Prior Symbol: 'j' Symbol: 'a' Code: 11 Prior Symbol: 'j' Symbol: 'o' Code: 0 Prior Symbol: 'k' Symbol: 0 Code: 01 Prior Symbol: 'k' Symbol: 27 Code: 00011 Prior Symbol: 'k' Symbol: ' ' Code: 111 Prior Symbol: 'k' Symbol: ':' Code: 00001 Prior Symbol: 'k' Symbol: 'T' Code: 000000 Prior Symbol: 'k' Symbol: 'a' Code: 001111 Prior Symbol: 'k' Symbol: 'e' Code: 10 Prior Symbol: 'k' Symbol: 'f' Code: 000100 Prior Symbol: 'k' Symbol: 'i' Code: 110 Prior Symbol: 'k' Symbol: 'l' Code: 000101 Prior Symbol: 'k' Symbol: 'o' Code: 000001 Prior Symbol: 'k' Symbol: 's' Code: 0010 Prior Symbol: 'k' Symbol: 'w' Code: 001110 Prior Symbol: 'k' Symbol: 'y' Code: 00110 Prior Symbol: 'I' Symbol: 0 Code: 1000 Prior Symbol: 'I' Symbol: 27 Code: 0111001 Prior Symbol: 'I' Symbol: ' ' Code: 010 Prior Symbol: 'I' Symbol: "' Code: 01100010 Prior Symbol: 'I' Symbol: '-' Code: 11110011

Prior Symbol: 'I' Symbol: ':' Code: 01100011
Prior Symbol: 'I' Symbol: 'a' Code: 1110
Prior Symbol: 'I' Symbol: 'b' Code: 0110000
Prior Symbol: 'I' Symbol: 'c' Code: 01110000
Prior Symbol: 'I' Symbol: 'd' Code: 000
Prior Symbol: 'I' Symbol: 'e' Code: 110
Prior Symbol: 'I' Symbol: 'f' Code: 1111000
Prior Symbol: 'l' Symbol: 'i' Code: 001
Prior Symbol: 'l' Symbol: 'k' Code: 011001
Prior Symbol: 'I' Symbol: 'I' Code: 101
Prior Symbol: 'I' Symbol: 'm' Code: 1111010
Prior Symbol: 'I' Symbol: 'o' Code: 11111
Prior Symbol: 'I' Symbol: 'r' Code: 11110010
Prior Symbol: 'I' Symbol: 's' Code: 01101
Prior Symbol: 'I' Symbol: 't' Code: 011101
Prior Symbol: 'I' Symbol: 'u' Code: 01111
Prior Symbol: 'I' Symbol: 'v' Code: 1111011
Prior Symbol: 'l' Symbol: 'w' Code: 01110001
Prior Symbol: 'I' Symbol: 'y' Code: 1001
Prior Symbol: 'm' Symbol: 0 Code: 0100
Prior Symbol: 'm' Symbol: 27 Code: 010101
Prior Symbol: 'm' Symbol: ' ' Code: 001
Prior Symbol: 'm' Symbol: 'a' Code: 101
Prior Symbol: 'm' Symbol: 'b' Code: 0000
Prior Symbol: 'm' Symbol: 'e' Code: 11
Prior Symbol: 'm' Symbol: 'i' Code: 011
Prior Symbol: 'm' Symbol: 'm' Code: 0001
Prior Symbol: 'm' Symbol: 'o' Code: 1001
Prior Symbol: 'm' Symbol: 'p' Code: 1000
Prior Symbol: 'm' Symbol: 's' Code: 010111
Prior Symbol: 'm' Symbol: 'u' Code: 010110
Prior Symbol: 'm' Symbol: 'y' Code: 010100
Prior Symbol: 'n' Symbol: 0 Code: 000
Prior Symbol: ' $n$ ' Symbol: 27 Code: 01110011
Prior Symbol: 'n' Symbol: ' ' Code: 110
Prior Symbol: 'n' Symbol: "' Code: 011101
Prior Symbol: 'n' Symbol: ':' Code: 1001010
Prior Symbol: 'n' Symbol: 'a' Code: 11100
Prior Symbol: 'n' Symbol: 'b' Code: 111010000
Prior Symbol: 'n' Symbol: 'c' Code: 01111
Prior Symbol: 'n' Symbol: 'd' Code: 001
Prior Symbol: 'n' Symbol: 'e' Code: 010
Prior Symbol: 'n' Symbol: 'f' Code: 1001011
Prior Symbol: 'n' Symbol: 'g' Code: 101

Prior Symbol: ' $n$ ' Symbol: 'h' Code: 111010101 Prior Symbol: 'n' Symbol: 'i' Code: 1000 Prior Symbol: 'n' Symbol: 'j' Code: 111010001 Prior Symbol: 'n' Symbol: 'k' Code: 1110110 Prior Symbol: 'n' Symbol: 'I' Code: 111010110 Prior Symbol: 'n' Symbol: 'm' Code: 111010111 Prior Symbol: 'n' Symbol: 'n' Code: 10011 Prior Symbol: 'n' Symbol: 'o' Code: 1110111 Prior Symbol: 'n' Symbol: 'r' Code: 111010100 Prior Symbol: 'n' Symbol: 's' Code: 0110 Prior Symbol: 'n' Symbol: 't' Code: 1111 Prior Symbol: 'n' Symbol: 'u' Code: 11101001 Prior Symbol: 'n' Symbol: 'v' Code: 0111000 Prior Symbol: 'n' Symbol: 'y' Code: 100100 Prior Symbol: 'n' Symbol: 'z' Code: 01110010 Prior Symbol: 'o' Symbol: 0 Code: 00101 Prior Symbol: 'o' Symbol: 27 Code: 01110001 Prior Symbol: 'o' Symbol: ' ' Code: 0101 Prior Symbol: 'o' Symbol: "' Code: 01110000 Prior Symbol: 'o' Symbol: '.' Code: 0111011010 Prior Symbol: 'o' Symbol: '?' Code: 011101100 Prior Symbol: 'o' Symbol: 'a' Code: 1100010 Prior Symbol: 'o' Symbol: 'b' Code: 001001 Prior Symbol: 'o' Symbol: 'c' Code: 110000 Prior Symbol: 'o' Symbol: 'd' Code: 01111 Prior Symbol: 'o' Symbol: 'e' Code: 0111001 Prior Symbol: 'o' Symbol: 'f' Code: 1001 Prior Symbol: 'o' Symbol: 'g' Code: 00010 Prior Symbol: 'o' Symbol: 'h' Code: 0111010 Prior Symbol: 'o' Symbol: 'i' Code: 01110111 Prior Symbol: 'o' Symbol: 'k' Code: 1100011 Prior Symbol: 'o' Symbol: 'I' Code: 0100 Prior Symbol: 'o' Symbol: 'm' Code: 1000 Prior Symbol: 'o' Symbol: 'n' Code: 111 Prior Symbol: 'o' Symbol: 'o' Code: 0011 Prior Symbol: 'o' Symbol: 'p' Code: 01101 Prior Symbol: 'o' Symbol: 'r' Code: 101 Prior Symbol: 'o' Symbol: 's' Code: 11001 Prior Symbol: 'o' Symbol: 't' Code: 00011 Prior Symbol: 'o' Symbol: 'u' Code: 1101 Prior Symbol: 'o' Symbol: 'v' Code: 01100 Prior Symbol: 'o' Symbol: 'w' Code: 0000 Prior Symbol: 'o' Symbol: 'x' Code: 0010000 Prior Symbol: 'o' Symbol: 'y' Code: 0010001 Prior Symbol: 'o' Symbol: 'z' Code: 0111011011

Prior Symbol: 'p' Symbol: 0 Code: 1101
Prior Symbol: 'p' Symbol: 27 Code: 101110
Prior Symbol: 'p' Symbol: ' ' Code: 010
Prior Symbol: 'p' Symbol: "' Code: 1100101
Prior Symbol: 'p' Symbol: 'a' Code: 1001
Prior Symbol: 'p' Symbol: 'd' Code: 101111
Prior Symbol: 'p' Symbol: 'e' Code: 111
Prior Symbol: 'p' Symbol: 'h' Code: 11000
Prior Symbol: 'p' Symbol: 'i' Code: 1010
Prior Symbol: 'p' Symbol: 'l' Code: 0110
Prior Symbol: 'p' Symbol: 'm' Code: 1100100
Prior Symbol: ' p ' Symbol: 'o' Code: 00
Prior Symbol: 'p' Symbol: 'p' Code: 0111
Prior Symbol: 'p' Symbol: 'r' Code: 10001
Prior Symbol: 'p' Symbol: 's' Code: 10000
Prior Symbol: 'p' Symbol: 't' Code: 10110
Prior Symbol: 'p' Symbol: 'y' Code: 110011
Prior Symbol: 'q' Symbol: 27 Code: 0
Prior Symbol: 'q' Symbol: 'u' Code: 1
Prior Symbol: 'r' Symbol: 0 Code: 1001
Prior Symbol: 'r' Symbol: 27 Code: 01100101
Prior Symbol: 'r' Symbol: ' ' Code: 1111
Prior Symbol: 'r' Symbol: "' Code: 0110011
Prior Symbol: 'r' Symbol: ',' Code: 110011101
Prior Symbol: 'r' Symbol: '.' Code: 0111100
Prior Symbol: 'r' Symbol: ':' Code: 110011100
Prior Symbol: 'r' Symbol: 'a' Code: 000
Prior Symbol: 'r' Symbol: 'b' Code: 01111101
Prior Symbol: 'r' Symbol: 'c' Code: 0111111
Prior Symbol: 'r' Symbol: 'd' Code: 11000
Prior Symbol: 'r' Symbol: 'e' Code: 101
Prior Symbol: 'r' Symbol: 'f' Code: 11001111
Prior Symbol: 'r' Symbol: 'g' Code: 0111101
Prior Symbol: 'r' Symbol: 'i' Code: 010
Prior Symbol: 'r' Symbol: 'k' Code: 110010
Prior Symbol: 'r' Symbol: 'I' Code: 0011
Prior Symbol: 'r' Symbol: 'm' Code: 011000
Prior Symbol: 'r' Symbol: 'n' Code: 01101
Prior Symbol: 'r' Symbol: 'o' Code: 1101
Prior Symbol: 'r' Symbol: 'p' Code: 01111100
Prior Symbol: 'r' Symbol: 'r' Code: 01110
Prior Symbol: 'r' Symbol: 's' Code: 1110
Prior Symbol: 'r' Symbol: 't' Code: 1000
Prior Symbol: 'r' Symbol: 'u' Code: 1100110

Prior Symbol: 'r' Symbol: 'v' Code: 01100100
Prior Symbol: 'r' Symbol: 'y' Code: 0010
Prior Symbol: 's' Symbol: 0 Code: 11
Prior Symbol: 's' Symbol: 27 Code: 0010011
Prior Symbol: 's' Symbol: ' ' Code: 01
Prior Symbol: 's' Symbol: "' Code: 001011010
Prior Symbol: 's' Symbol: ',' Code: 001011011
Prior Symbol: 's' Symbol: '.' Code: 00100101
Prior Symbol: 's' Symbol: ':' Code: 0000001
Prior Symbol: 's' Symbol: '?' Code: 001011100
Prior Symbol: 's' Symbol: 'C' Code: 001011101
Prior Symbol: 's' Symbol: 'H' Code: 001011110
Prior Symbol: 's' Symbol: 'a' Code: 101010
Prior Symbol: 's' Symbol: 'c' Code: 101011
Prior Symbol: 's' Symbol: 'd' Code: 001011111
Prior Symbol: 's' Symbol: 'e' Code: 1011
Prior Symbol: 's' Symbol: 'f' Code: 00000000
Prior Symbol: 's' Symbol: 'h' Code: 00001
Prior Symbol: 's' Symbol: 'i' Code: 0011
Prior Symbol: 's' Symbol: 'k' Code: 000001
Prior Symbol: 's' Symbol: 'I' Code: 00101010
Prior Symbol: 's' Symbol: 'm' Code: 00000001
Prior Symbol: 's' Symbol: 'n' Code: 00101011
Prior Symbol: 's' Symbol: 'o' Code: 10100
Prior Symbol: 's' Symbol: 'p' Code: 001000
Prior Symbol: 's' Symbol: 'r' Code: 00100100
Prior Symbol: 's' Symbol: 's' Code: 0001
Prior Symbol: 's' Symbol: 't' Code: 100
Prior Symbol: 's' Symbol: 'u' Code: 0010100
Prior Symbol: 's' Symbol: 'y' Code: 00101100
Prior Symbol: 't' Symbol: 0 Code: 010
Prior Symbol: 't' Symbol: 27 Code: 11000010
Prior Symbol: 't' Symbol: ' ' Code: 101
Prior Symbol: 't' Symbol: "' Code: 11000011
Prior Symbol: 't' Symbol: ':' Code: 110110000
Prior Symbol: 't' Symbol: '?' Code: 110110001
Prior Symbol: 't' Symbol: 'a' Code: 0000
Prior Symbol: 't' Symbol: 'b' Code: 100000
Prior Symbol: 't' Symbol: 'c' Code: 1101101
Prior Symbol: 't' Symbol: 'd' Code: 11000000
Prior Symbol: 't' Symbol: 'e' Code: 011
Prior Symbol: 't' Symbol: 'h' Code: 111
Prior Symbol: 't' Symbol: 'i' Code: 001
Prior Symbol: 't' Symbol: 'I' Code: 10001

Prior Symbol: 't' Symbol: 'm' Code: 100001
Prior Symbol: 't' Symbol: 'n' Code: 11011001
Prior Symbol: 't' Symbol: 'o' Code: 1001
Prior Symbol: 't' Symbol: 'r' Code: 11010
Prior Symbol: 't' Symbol: 's' Code: 0001
Prior Symbol: 't' Symbol: 't' Code: 110111
Prior Symbol: 't' Symbol: 'u' Code: 11001
Prior Symbol: 't' Symbol: 'w' Code: 11000001
Prior Symbol: 't' Symbol: 'y' Code: 110001
Prior Symbol: 'u' Symbol: 0 Code: 0011110
Prior Symbol: 'u' Symbol: 27 Code: 000100
Prior Symbol: 'u' Symbol: ' ' Code: 001110
Prior Symbol: 'u' Symbol: 'a' Code: 00110
Prior Symbol: 'u' Symbol: 'b' Code: 10011
Prior Symbol: 'u' Symbol: 'c' Code: 11100
Prior Symbol: 'u' Symbol: 'd' Code: 10000
Prior Symbol: 'u' Symbol: 'e' Code: 0010
Prior Symbol: 'u' Symbol: 'f' Code: 0011111
Prior Symbol: 'u' Symbol: 'g' Code: 11101
Prior Symbol: 'u' Symbol: 'i' Code: 00011
Prior Symbol: 'u' Symbol: 'k' Code: 0001010
Prior Symbol: 'u' Symbol: 'I' Code: 0000
Prior Symbol: 'u' Symbol: 'm' Code: 10010
Prior Symbol: 'u' Symbol: 'n' Code: 110
Prior Symbol: 'u' Symbol: 'p' Code: 10001
Prior Symbol: 'u' Symbol: 'r' Code: 01
Prior Symbol: 'u' Symbol: 's' Code: 101
Prior Symbol: 'u' Symbol: 't' Code: 1111
Prior Symbol: 'u' Symbol: 'z' Code: 0001011
Prior Symbol: 'v' Symbol: 27 Code: 0010
Prior Symbol: 'v' Symbol: 'a' Code: 000
Prior Symbol: 'v' Symbol: 'e' Code: 1
Prior Symbol: 'v' Symbol: 'i' Code: 01
Prior Symbol: 'v' Symbol: 'o' Code: 00111
Prior Symbol: 'v' Symbol: 's' Code: 00110
Prior Symbol: 'w' Symbol: 0 Code: 001
Prior Symbol: 'w' Symbol: 27 Code: 01010
Prior Symbol: 'w' Symbol: ' ' Code: 011
Prior Symbol: 'w' Symbol: "' Code: 010010
Prior Symbol: 'w' Symbol: 'a' Code: 000
Prior Symbol: 'w' Symbol: 'b' Code: 010011
Prior Symbol: 'w' Symbol: 'c' Code: 010111
Prior Symbol: 'w' Symbol: 'e' Code: 1111
Prior Symbol: 'w' Symbol: 'i' Code: 1100

Prior Symbol: 'w' Symbol: 'I' Code: 010110 Prior Symbol: 'w' Symbol: 'n' Code: 1110 Prior Symbol: 'w' Symbol: 'o' Code: 1101 Prior Symbol: 'w' Symbol: 'r' Code: 01000 Prior Symbol: 'w' Symbol: 's' Code: 10 Prior Symbol: 'x' Symbol: 0 Code: 110 Prior Symbol: 'x' Symbol: 27 Code: 1010 Prior Symbol: 'x' Symbol: ' ' Code: 1011 Prior Symbol: 'x' Symbol: 'a' Code: 000 Prior Symbol: 'x' Symbol: 'e' Code: 001 Prior Symbol: 'x' Symbol: 'i' Code: 100 Prior Symbol: 'x' Symbol: 'p' Code: 111 Prior Symbol: 'x' Symbol: 't' Code: 01 Prior Symbol: 'y' Symbol: 0 Code: 10 Prior Symbol: 'y' Symbol: 27 Code: 111110 Prior Symbol: 'y' Symbol: ' ' Code: 0 Prior Symbol: 'y' Symbol: '!' Code: 1101101 Prior Symbol: 'y' Symbol: "' Code: 110101
Prior Symbol: 'y' Symbol: '-' Code: 11110101
Prior Symbol: 'y' Symbol: 'a' Code: 1101110
Prior Symbol: 'y' Symbol: 'b' Code: 1111011
Prior Symbol: 'y' Symbol: 'c' Code: 11110100
Prior Symbol: 'y' Symbol: 'd' Code: 1100000
Prior Symbol: 'y' Symbol: 'e' Code: 11001
Prior Symbol: 'y' Symbol: 'i' Code: 1100001
Prior Symbol: 'y' Symbol: 'I' Code: 111111
Prior Symbol: 'y' Symbol: 'm' Code: 1101111
Prior Symbol: 'y' Symbol: 'n' Code: 1100010
Prior Symbol: 'y' Symbol: 'o' Code: 1100011
Prior Symbol: 'y' Symbol: 'p' Code: 1101000
Prior Symbol: 'y' Symbol: 's' Code: 1110
Prior Symbol: 'y' Symbol: 't' Code: 1101001
Prior Symbol: 'y' Symbol: 'v' Code: 1101100
Prior Symbol: 'y' Symbol: 'w' Code: 111100
Prior Symbol: 'z' Symbol: 0 Code: 110
Prior Symbol: 'z' Symbol: 27 Code: 100
Prior Symbol: 'z' Symbol: ' ' Code: 000
Prior Symbol: 'z' Symbol: 'a' Code: 01
Prior Symbol: 'z' Symbol: 'e' Code: 1010
Prior Symbol: 'z' Symbol: 'i' Code: 111
Prior Symbol: 'z' Symbol: 'y' Code: 001
Prior Symbol: 'z' Symbol: 'z' Code: 1011
Prior Symbol: '\{' Symbol: 27 Code: 1
Prior Symbol: '|' Symbol: 27 Code: 1
Prior Symbol: '\}' Symbol: 27 Code: 1

Table B.C.5/J. 94 - English-language Program Title Decode Table

01
10
21
358
41
560
61
762
81
964
101
1166
121
1368
141
1570
161
1772
181
1974
201
2176
221
2378
241
2580
261
2782
281
2984
301
3186
321
3388
341
3590
361
3792
381
3994
401
4196

861
87240
881
89242
901
91244
922
936
942
9518
962
9720
982
9928
1002
10140
1022
10348
1042
10552
1062
10754
1082
10956
1102
11158
1122
11360
1142
11562
1162
11770
1182
11972
1202
12174
1222
12376
1242
12578
1262
12780
1282

129	82	173	230
130	2	174	3
131	84	175	244
132	2	176	4
133	126	177	4
134	2	178	4
135	146	179	6
136	2	180	4
137	172	181	12
138	2	182	4
139	186	183	16
140	2	184	4
141	210	185	18
142	2	186	4
143	228	187	20
144	2	188	4
145	250	189	22
146	3	190	4
147	6	191	24
148	3	192	4
149	30	193	26
150	3	194	4
151	38	195	28
152	3	196	4
153	50	197	82
154	3	198	4
155	62	199	106
156	3	200	4
157	82	201	142
158	3	202	4
159	100	203	174
160	3	204	4
161	122	205	238
162	3	206	5
163	148	207	6
164	3	208	5
165	152	209	40
166	3	210	5
167	164	211	68
168	3	212	5
169	200	213	114
170	3	214	5
171	222	215	118
172	3	216	5


217144	264209	31124	358155	405214
2185	2652	31225	359155	40611
219190	2663	31326	360155	407217
2205	267155	314155	361155	40812
221214	2684	315155	362155	409166
2226	269213	316155	363155	410233
22310	270217	317155	364155	411203
2246	2715	318155	365155	412197
22568	272203	319155	366155	413207
2266	273214	320155	367155	41413
227100	2746	321155	368155	41514
2286	275207	322155	369155	416202
229102	2767	323155	370155	417201
2306	2778	324155	371155	41815
231154	278202	325155	372155	419199
2326	2799	326155	373155	42016
233208	280201	327155	374155	42117
2346	281197	328155	375155	422225
235252	282198	329155	37641	42318
2367	28310	330155	37742	42419
23734	284210	331155	378216	425198
2387	285196	332155	379229	426210
23944	286199	333155	380185	427200
2407	287204	334155	3811	428206
24170	288208	335155	382167	429193
2427	289200	336155	383177	430196
24384	290215	337155	384236	431208
2447	291206	338155	385209	432204
245124	29211	339155	3862	43320
2467	293193	340155	387173	43421
247138	29412	341155	388178	435239
2487	295194	342155	389218	436194
249140	296205	343155	390227	437215
2507	297195	344155	391179	43822
251142	29813	345155	3923	439205
2527	29914	346155	393228	44023
253144	30015	347155	394230	441244
2547	30116	348155	3954	442212
255146	302211	349155	396155	44324
25627	30317	350155	397226	44425
25728	304212	351155	3985	44526
258180	30518	352155	3996	446195
259164	30619	353155	4007	447211
260178	30720	354155	4018	44827
261183	30821	355155	4029	44928
262218	30922	356155	403213	45029
2631	31023	357155	40410	45130

$\left.\begin{array}{llllllll}452 & 31 & 499 & 160 & 546 & 160 & 593 & 128 \\ 453 & 32 & 500 & 7 & 547 & 176 & 594 & 155 \\ 454 & 33 & 501 & 8 & 548 & 185 & 595 & 155 \\ 455 & 34 & 502 & 177 & 549 & 1 & 596 & 19\end{array}\right)$
$\left.\begin{array}{llllllll}687 & 155 & 734 & 233 & 781 & 1 & 828 & 225 \\ 688 & 1 & 735 & 242 & 782 & 160 & 829 & 233 \\ 689 & 245 & 736 & 4 & 783 & 2 & 830 & 8\end{array}\right)$

922232	96910	10161
923155	970173	1017155
9241	971206	1018242
925245	972155	10192
9262	9731	10203
927225	974214	1021232
928233	9752	1022229
929239	976245	1023225
9303	977247	10244
931229	9783	1025233
93216	9794	1026239
93317	980225	10275
934170	981229	1028155
935236	982233	1029155
936241	9835	10302
937174	984242	1031239
938160	9856	1032225
939247	986239	1033155
940237	9877	10341
941238	9888	1035229
9421	9899	10361
9432	990238	1037239
944155	9913	1038155
945235	992236	1039225
9463	993174	1040155
9474	9941	1041155
9485	995155	1042155
9496	9962	1043155
950227	997240	1044155
9517	9986	1045155
952239	999233	1046155
9538	1000160	1047155
954233	1001195	1048155
955245	1002239	1049155
9569	1003155	1050155
957225	1004229	1051155
958229	10051	105225
959240	1006128	105326
960232	10072	1054155
96110	10083	1055186
96211	1009225	1056229
96312	10104	1057234
96413	10115	1058248
965244	10126	10591
96614	10137	10602
96715	1014198	1061230
968232	1015215	1062167


10633	1110245
1064250	1111226
1065232	11121
10664	1113128
1067247	1114160
10685	11152
1069245	1116229
1070226	1117242
10716	1118233
1072235	11193
10737	1120236
1074240	11214
10758	1122249
1076128	11235
1077246	1124239
1078231	11256
10799	1126225
1080228	11277
108110	11288
1082160	11299
1083233	113016
108411	113117
1085227	1132195
1086249	1133204
108712	1134199
108813	1135155
1089237	1136227
109014	11371
109115	1138128
1092243	1139236
109316	1140249
109417	11412
1095236	1142243
109618	11433
1097244	1144245
1098242	11454
109919	11465
1100238	1147242
110120	11486
110221	1149233
110322	1150160
110423	11517
110524	11528
110610	1153239
110711	1154244
1108243	11559
1109155	115610

1157225
115811
1159232
1160235
1161229
116212
116313
116414
116515
116614
116715
1168174
1169245
1170247
11711
1172236
11732
1174228
1175231
1176242
11773
1178155
1179239
11804
1181246
11825
11836
1184249
1185243
11867
1187233
1188225
11898
11909
1191128
119210
119311
1194229
119512
119613
1197160
119830
119931
1200155
1201161
1202173
1203232

1204234
1205241
1206245
1207250
12081
12092
12103
12114
1212186
1213248
1214167
1215226
1216233
12175
12186
12197
1220230
1221237
1222231
1223235
12248
12259
1226246
1227240
122810
1229239
123011
1231227
123212
123313
123414
1235249
123615
1237228
1238236
123916
1240229
124117
1242244
1243247
124418
124519
1246225
124720
124821
124922
1250238

1251243
125223
1253128
125424
125525
1256242
125726
125827
1259160
126028
126129
1262160
126311
1264245
1265155
12661
1267236
1268243
1269242
1270128
1271225
12722
12733
1274244
1275233
1276239
1277230
12784
12795
12806
12817
1282229
12838
12849
128510
128615
128716
1288186
1289249
1290167
1291244
1292155
12931
1294231
1295236
12962
1297238

12983	134510
1299239	134611
1300245	134712
13014	134821
1302242	134922
13035	1350161
13046	1351248
1305233	1352233
13067	1353235
1307243	13541
1308225	1355128
13098	1356155
13109	1357250
131110	1358226
131211	13592
1313229	13603
1314128	13614
131512	1362160
1316232	1363240
1317160	13645
131813	13656
131914	13667
1320229	1367225
132113	13688
1322226	1369230
1323245	1370242
1324247	1371237
1325155	1372246
1326236	13739
13271	1374228
1328249	137510
1329238	1376239
13302	1377244
13313	1378236
13324	1379243
1333242	1380231
13345	1381229
1335128	138211
13366	1383227
1337160	138412
1338225	138513
1339239	138614
13407	138715
1341244	138816
1342233	138917
13438	139018
13449	139119

1392238
139320
1394239
13951
1396155
1397225
139811
139912
1400212
1401239
1402230
1403236
1404247
1405225
14061
1407186
14082
1409155
1410249
14113
14124
14135
1414243
14156
14167
14178
1418233
1419160
14209
1421128
1422229
142310
142421
142522
1426167
1427186
1428227
1429247
1430242
1431173
1432226
14331
14342
1435155
1436230
14373
1438237

1439246
14404
1441235
14425
1443244
14446
14457
14468
1447243
14489
1449245
145010
1451239
145211
145312
1454128
1455249
1456225
145713
1458228
1459233
1460160
146114
146215
1463236
1464229
146516
146617
146718
146819
146920
147010
147111
1472249
1473155
1474245
1475243
14761
14772
1478226
1479237
1480128
14813
1482240
1483239
14844
1485160

14865
1487233
14886
1489225
14907
14918
14929
1493229
149424
149525
1496226
1497234
1498242
1499232
1500236
1501237
1502250
1503155
15041
1505245
15062
15073
1508246
15094
1510186
1511230
15125
15136
1514235
1515239
15167
1517167
1518249
15198
15209
152110
152211
1523227
152412
1525238
1526225
152713
1528243
152914
1530233
153115
153216

1533244	1580247
1534128	158112
1535228	158213
1536229	1583239
153717	1584236
153818	1585160
1539231	158614
1540160	158715
154119	1588237
154220	1589230
154321	159016
154422	1591245
154523	159217
154627	159318
154728	159419
1548174	159520
1549250	159621
1550191	1597242
15511	159822
1552167	1599238
1553155	160023
15542	160124
1555233	160225
1556248	160326
1557249	160414
15583	160515
1559229	1606237
1560232	1607167
15614	1608155
1562225	1609228
1563235	16101
15645	1611249
1565226	1612243
15666	1613242
15677	1614244
1568227	16152
15698	1616232
1570231	16173
1571244	1618236
15729	1619240
1573128	16204
1574246	1621225
1575240	1622233
157610	16235
1577228	16246
157811	1625128
1579243	1626160

16277
16288
16299
163010
1631229
1632239
163311
163412
163513
1636155
1637245
163824
163925
1640186
1641172
1642246
1643155
1644240
1645226
16461
1647230
16482
1649167
1650174
1651231
16523
1653227
1654245
16554
1656237
16575
16586
16597
1660235
16618
16629
1663238
1664242
166510
1666228
166711
1668249
1669236
167012
167113
1672244
1673128

167414
1675239
1676243
1677160
1678225
167915
1680233
168116
168217
1683229
168418
168519
168620
168721
168822
168923
169025
169126
1692167
1693172
1694191
1695195
1696200
1697228
1698230
1699237
1700242
1701174
1702236
1703238
1704249
17051
17062
17073
17084
1709186
17105
1711155
1712245
17136
17147
17158
17169
1717235
1718240
171910
172011

172112
1722225
1723227
172413
1725232
172614
172715
1728239
172916
173017
1731243
173218
1733233
173419
1735229
173620
173721
1738244
173922
174023
1741160
174224
1743128
174420
174521
1746186
1747191
1748228
1749247
1750155
1751167
17521
1753238
17542
17553
17564
1757227
1758226
1759237
17605
1761249
17626
1763244
17647
1765236
17668
1767245

1768242
17699
1770225
1771243
177210
1773239
177411
177512
177613
1777233
1778128
1779229
178014
1781160
178215
1783232
178416
178517
178618
178719
178817
178918
1790235
1791250
1792128
1793230
1794155
17951
1796160
17972
17983
1799233
1800225
18014
1802228
1803240
1804237
1805226
1806227
1807231
1808236
18095
1810229
18116
18127
18138
18149

1815244
181610
181711
181812
1819243
1820238
182113
182214
1823242
182415
182516
18264
1827229
1828243
1829239
1830155
18311
1832225
18332
18343
1835233
183611
183712
1838167
1839226
1840236
1841227
1842242
18431
1844155
18452
18463
18474
1848233
1849239
1850238
1851229
1852225
1853128
18545
1855160
18566
18577
18588
18599
1860243
186110

18625
18636
1864155
1865160
1866225
1867229
1868233
18691
1870128
1871240
18722
1873244
18743
18754
1876160
187719
1878227
1879173
1880228
1881233
1882238
1883239
1884240
1885244
1886246
1887161
1888225
1889237
18901
1891226
18922
18933
18944
1895167
18965
18976
1898247
18997
1900155
1901236
19028
1903229
19049
190510
190611
190712
190813

190914
1910243
191115
191216
191317
1914128
191518
19165
19176
1918229
1919250
1920160
1921249
1922155
19231
1924128
1925233
19262
1927225
19283
19294
1930155
1931155
1932155
1933155
1934155
1935155
1936155
1937155
1938155
1939155

## B.C. 3 Standard compression Type 2 Huffman Encode/Decode tables

The following encode/decode tables (Tables B.C. 6 and B.C.7) are optimized for English-language program description text. These tables correspond to multiple_string_structure() with compression_type value $0 x 02$, and mode equal to $0 x F F$.

## Table B.C.6/J.94 - English-language Program Description Encode Table

Prior Symbol: 0 Symbol: 27 Code: 1110000
Prior Symbol: 0 Symbol: ""' Code: 111001
Prior Symbol: 0 Symbol: 'A' Code: 010
Prior Symbol: 0 Symbol: 'B' Code: 0011
Prior Symbol: 0 Symbol: 'C' Code: 0111
Prior Symbol: 0 Symbol: 'D' Code: 11101
Prior Symbol: 0 Symbol: 'E' Code: 10010
Prior Symbol: 0 Symbol: 'F' Code: 10110
Prior Symbol: 0 Symbol: 'G' Code: 011011
Prior Symbol: 0 Symbol: 'H' Code: 10111
Prior Symbol: 0 Symbol: 'I' Code: 011000
Prior Symbol: 0 Symbol: 'J' Code: 1100
Prior Symbol: 0 Symbol: 'K' Code: 00101
Prior Symbol: 0 Symbol: 'L' Code: 10011
Prior Symbol: 0 Symbol: 'M' Code: 1111
Prior Symbol: 0 Symbol: 'N' Code: 00100
Prior Symbol: 0 Symbol: 'O' Code: 011001
Prior Symbol: 0 Symbol: 'P' Code: 000
Prior Symbol: 0 Symbol: 'R' Code: 1000
Prior Symbol: 0 Symbol: 'S' Code: 1010
Prior Symbol: 0 Symbol: 'T' Code: 1101
Prior Symbol: 0 Symbol: 'V' Code: 1110001
Prior Symbol: 0 Symbol: 'W' Code: 011010
Prior Symbol: 1 Symbol: 27 Code: 1
Prior Symbol: 2 Symbol: 27 Code: 1
Prior Symbol: 3 Symbol: 27 Code: 1
Prior Symbol: 4 Symbol: 27 Code: 1
Prior Symbol: 5 Symbol: 27 Code: 1
Prior Symbol: 6 Symbol: 27 Code: 1
Prior Symbol: 7 Symbol: 27 Code: 1
Prior Symbol: 8 Symbol: 27 Code: 1
Prior Symbol: 9 Symbol: 27 Code: 1
Prior Symbol: 10 Symbol: 27 Code: 1
Prior Symbol: 11 Symbol: 27 Code: 1
Prior Symbol: 12 Symbol: 27 Code: 1

Prior Symbol: 13 Symbol: 27 Code: 1
Prior Symbol: 14 Symbol: 27 Code: 1
Prior Symbol: 15 Symbol: 27 Code: 1
Prior Symbol: 16 Symbol: 27 Code: 1
Prior Symbol: 17 Symbol: 27 Code: 1
Prior Symbol: 18 Symbol: 27 Code: 1
Prior Symbol: 19 Symbol: 27 Code: 1
Prior Symbol: 20 Symbol: 27 Code: 1
Prior Symbol: 21 Symbol: 27 Code: 1
Prior Symbol: 22 Symbol: 27 Code: 1
Prior Symbol: 23 Symbol: 27 Code: 1
Prior Symbol: 24 Symbol: 27 Code: 1
Prior Symbol: 25 Symbol: 27 Code: 1
Prior Symbol: 26 Symbol: 27 Code: 1
Prior Symbol: 27 Symbol: 27 Code: 1
Prior Symbol: 28 Symbol: 27 Code: 1
Prior Symbol: 29 Symbol: 27 Code: 1
Prior Symbol: 30 Symbol: 27 Code: 1
Prior Symbol: 31 Symbol: 27 Code: 1
Prior Symbol: ' ' Symbol: 27 Code: 101000001
Prior Symbol: ' ' Symbol: "' Code: 111111010
Prior Symbol: ' ' Symbol: '(' Code: 1111111100
Prior Symbol: ' ' Symbol: '-' Code: 11111111110
Prior Symbol: ' ' Symbol: '/' Code: 1111111111
Prior Symbol: ' ' Symbol: '1' Code: 0101011
Prior Symbol: ' ' Symbol: '2' Code: 0100010
Prior Symbol: ' ' Symbol: '3' Code: 1111111101
Prior Symbol: ' ' Symbol: '4' Code: 110010100
Prior Symbol: ' ' Symbol: '5' Code: 1111111110
Prior Symbol: ' ' Symbol: '7' Code: 1010000000
Prior Symbol: ' ' Symbol: 'A' Code: 10010
Prior Symbol: ' ' Symbol: 'B' Code: 010100
Prior Symbol: ' ' Symbol: 'C' Code: 111100
Prior Symbol: ' ' Symbol: 'D' Code: 1111010
Prior Symbol: ' ' Symbol: 'E' Code: 0100011

Prior Symbol: ' ' Symbol: 'F' Code: 0101010 Prior Symbol: ' ' Symbol: 'G' Code: 000010 Prior Symbol: ' ' Symbol: 'H' Code: 1111011 Prior Symbol: ' ' Symbol: 'I' Code: 11001011 Prior Symbol: ' ' Symbol: 'J' Code: 000011 Prior Symbol: ' ' Symbol: 'K' Code: 1100100 Prior Symbol: ' ' Symbol: 'L' Code: 010110 Prior Symbol: ' ' Symbol: 'M' Code: 101001 Prior Symbol: ' ' Symbol: 'N' Code: 001100 Prior Symbol: ' ' Symbol: 'O' Code: 10100001 Prior Symbol: ' ' Symbol: 'P' Code: 001101 Prior Symbol: ' ' Symbol: 'R' Code: 1111100 Prior Symbol: ' ' Symbol: 'S' Code: 01001 Prior Symbol: ' ' Symbol: 'T' Code: 1100110 Prior Symbol: ' ' Symbol: 'U' Code: 111111011 Prior Symbol: ' ' Symbol: 'V' Code: 111111100 Prior Symbol: ' ' Symbol: 'W' Code: 010000 Prior Symbol: ' ' Symbol: 'Y' Code: 111111101

Prior Symbol: ' ' Symbol: 'Z' Code: 1010000001
Prior Symbol: ' ' Symbol: 'a' Code: 011
Prior Symbol: ' ' Symbol: 'b' Code: 10111
Prior Symbol: ' ' Symbol: 'c' Code: 10011
Prior Symbol: ' ' Symbol: 'd' Code: 10000
Prior Symbol: ' ' Symbol: 'e' Code: 100010
Prior Symbol: ' ' Symbol: 'f' Code: 11101
Prior Symbol: ' ' Symbol: 'g' Code: 100011
Prior Symbol: ' ' Symbol: 'h' Code: 0001
Prior Symbol: ' ' Symbol: 'i' Code: 10101
Prior Symbol: ' ' Symbol: 'j' Code: 11001111
Prior Symbol: ' ' Symbol: 'k' Code: 11111010
Prior Symbol: ' ' Symbol: 'I' Code: 010111
Prior Symbol: ' ' Symbol: 'm' Code: 00000
Prior Symbol: ' ' Symbol: 'n' Code: 1010001
Prior Symbol: ' ' Symbol: 'o' Code: 0010
Prior Symbol: ' ' Symbol: 'p' Code: 10110
Prior Symbol: ' ' Symbol: 'q' Code: 110010101
Prior Symbol: ' ' Symbol: 'r' Code: 00111
Prior Symbol: ' ' Symbol: 's' Code: 11100
Prior Symbol: ' ' Symbol: 't' Code: 1101
Prior Symbol: ' ' Symbol: 'u' Code: 11111011
Prior Symbol: ' ' Symbol: 'v' Code: 11111100
Prior Symbol: ' ' Symbol: 'w' Code: 11000
Prior Symbol: ' ' Symbol: 'y' Code: 11001110
Prior Symbol: '!' Symbol: 27 Code: 1

Prior Symbol: "'" Symbol: 0 Code: 000
Prior Symbol: "' Symbol: 27 Code: 10
Prior Symbol: "'" Symbol: ' ' Code: 11
Prior Symbol: "'" Symbol: '.' Code: 001
Prior Symbol: "' Symbol: 'H' Code: 010
Prior Symbol: "' Symbol: 'T' Code: 011
Prior Symbol: '\#' Symbol: 27 Code: 1
Prior Symbol: '\$' Symbol: 27 Code: 1
Prior Symbol: '\%' Symbol: 27 Code: 1
Prior Symbol: '\&' Symbol: 27 Code: 1
Prior Symbol: "' Symbol: 27 Code: 00
Prior Symbol: "' Symbol: ' ' Code: 010
Prior Symbol: "' Symbol: 's' Code: 1
Prior Symbol: "' Symbol: 't' Code: 011
Prior Symbol: '(' Symbol: 27 Code: 1
Prior Symbol: ')' Symbol: 27 Code: 1
Prior Symbol: ')' Symbol: ',' Code: 0
Prior Symbol: '*' Symbol: 27 Code: 1
Prior Symbol: '+' Symbol: 27 Code: 1
Prior Symbol: ',' Symbol: 27 Code: 00
Prior Symbol: ',' Symbol: ' ' Code: 1
Prior Symbol: ',' Symbol: "' Code: 01
Prior Symbol: '-' Symbol: 27 Code: 10
Prior Symbol: '-' Symbol: ' ' Code: 1110
Prior Symbol: '-' Symbol: 'a' Code: 000
Prior Symbol: '-' Symbol: 'b' Code: 0010
Prior Symbol: '-' Symbol: 'c' Code: 110
Prior Symbol: '-' Symbol: 'd' Code: 0011
Prior Symbol: '-' Symbol: 'e' Code: 0100
Prior Symbol: '--' Symbol: 'f' Code: 0101
Prior Symbol: '-' Symbol: 'r' Code: 1111
Prior Symbol: '-' Symbol: 's' Code: 011
Prior Symbol: '.' Symbol: 0 Code: 1
Prior Symbol: '.' Symbol: 27 Code: 000
Prior Symbol: '.' Symbol: ' ' Code: 01
Prior Symbol: '.' Symbol: "'" Code: 0010
Prior Symbol: '.' Symbol: 'J' Code: 00110
Prior Symbol: '.' Symbol: 'S' Code: 00111
Prior Symbol: '/' Symbol: 27 Code: 0
Prior Symbol: '/' Symbol: ' ' Code: 1
Prior Symbol: '0' Symbol: 27 Code: 100
Prior Symbol: '0' Symbol: ' ' Code: 111
Prior Symbol: '0' Symbol: '0' Code: 00
Prior Symbol: '0' Symbol: '7' Code: 101

Prior Symbol: '0' Symbol: 's' Code: 01
Prior Symbol: '0' Symbol: 't' Code: 110
Prior Symbol: '1' Symbol: 27 Code: 111
Prior Symbol: '1' Symbol: ' ' Code: 10
Prior Symbol: '1' Symbol: '8' Code: 110
Prior Symbol: '1' Symbol: '9' Code: 0
Prior Symbol: '2' Symbol: 27 Code: 101
Prior Symbol: '2' Symbol: ' ' Code: 11
Prior Symbol: '2' Symbol: '.' Code: 0
Prior Symbol: '2' Symbol: '6' Code: 100
Prior Symbol: '3' Symbol: 27 Code: 10
Prior Symbol: '3' Symbol: ' ' Code: 0
Prior Symbol: '3' Symbol: '0' Code: 11
Prior Symbol: '4' Symbol: 27 Code: 10
Prior Symbol: '4' Symbol: ' ' Code: 11
Prior Symbol: '4' Symbol: '.' Code: 0
Prior Symbol: '5' Symbol: 27 Code: 11
Prior Symbol: '5' Symbol: ' ' Code: 10
Prior Symbol: '5' Symbol: '.' Code: 0
Prior Symbol: '6' Symbol: 27 Code: 1
Prior Symbol: '7' Symbol: 27 Code: 0
Prior Symbol: '7' Symbol: ',' Code: 10
Prior Symbol: '7' Symbol: '.' Code: 11
Prior Symbol: '8' Symbol: 27 Code: 1
Prior Symbol: '9' Symbol: 27 Code: 110
Prior Symbol: '9' Symbol: ' ' Code: 111
Prior Symbol: '9' Symbol: '5' Code: 00
Prior Symbol: '9' Symbol: '6' Code: 01
Prior Symbol: '9' Symbol: '8' Code: 10
Prior Symbol: ':' Symbol: 27 Code: 0
Prior Symbol: ':' Symbol: ' ' Code: 1
Prior Symbol: ';' Symbol: 27 Code: 0
Prior Symbol: ';' Symbol: ' ' Code: 1
Prior Symbol: '<' Symbol: 27 Code: 1
Prior Symbol: '=' Symbol: 27 Code: 1
Prior Symbol: '>' Symbol: 27 Code: 1
Prior Symbol: '?' Symbol: 27 Code: 0
Prior Symbol: '?' Symbol: ' ' Code: 1
Prior Symbol: '@' Symbol: 27 Code: 1
Prior Symbol: 'A' Symbol: 27 Code: 10010
Prior Symbol: 'A' Symbol: ' ' Code: 11
Prior Symbol: 'A' Symbol: 'd' Code: 10011
Prior Symbol: 'A' Symbol: 'f' Code: 101000
Prior Symbol: 'A' Symbol: 'I' Code: 00

Prior Symbol: 'A' Symbol: 'm' Code: 10101
Prior Symbol: 'A' Symbol: 'n' Code: 01
Prior Symbol: 'A' Symbol: 'r' Code: 1011
Prior Symbol: 'A' Symbol: 's' Code: 10000
Prior Symbol: 'A' Symbol: 't' Code: 10001
Prior Symbol: 'A' Symbol: 'u' Code: 101001
Prior Symbol: 'B' Symbol: 27 Code: 10010
Prior Symbol: 'B' Symbol: 'a' Code: 101
Prior Symbol: 'B' Symbol: 'e' Code: 111
Prior Symbol: 'B' Symbol: 'i' Code: 00
Prior Symbol: 'B' Symbol: 'I' Code: 10011
Prior Symbol: 'B' Symbol: 'o' Code: 110
Prior Symbol: 'B' Symbol: 'r' Code: 01
Prior Symbol: 'B' Symbol: 'u' Code: 1000
Prior Symbol: 'C' Symbol: 27 Code: 01110
Prior Symbol: 'C' Symbol: 'a' Code: 00
Prior Symbol: 'C' Symbol: 'h' Code: 10
Prior Symbol: 'C' Symbol: 'i' Code: 01111
Prior Symbol: 'C' Symbol: 'l' Code: 110
Prior Symbol: 'C' Symbol: 'o' Code: 111
Prior Symbol: 'C' Symbol: 'r' Code: 0101
Prior Symbol: 'C' Symbol: 'u' Code: 0110
Prior Symbol: 'C' Symbol: 'y' Code: 0100
Prior Symbol: 'D' Symbol: 27 Code: 1111
Prior Symbol: 'D' Symbol: 'a' Code: 01
Prior Symbol: 'D' Symbol: 'e' Code: 100
Prior Symbol: 'D' Symbol: 'i' Code: 00
Prior Symbol: 'D' Symbol: 'o' Code: 101
Prior Symbol: 'D' Symbol: 'r' Code: 1101
Prior Symbol: 'D' Symbol: 'u' Code: 1110
Prior Symbol: 'D' Symbol: 'y' Code: 1100
Prior Symbol: 'E' Symbol: 27 Code: 10
Prior Symbol: 'E' Symbol: 'a' Code: 0110
Prior Symbol: 'E' Symbol: 'd' Code: 000
Prior Symbol: 'E' Symbol: 'i' Code: 0111
Prior Symbol: 'E' Symbol: 'I' Code: 001
Prior Symbol: 'E' Symbol: 'n' Code: 1100
Prior Symbol: 'E' Symbol: 'r' Code: 111
Prior Symbol: 'E' Symbol: 's' Code: 010
Prior Symbol: 'E' Symbol: 'v' Code: 1101
Prior Symbol: 'F' Symbol: 27 Code: 00
Prior Symbol: 'F' Symbol: 'e' Code: 100
Prior Symbol: 'F' Symbol: 'I' Code: 101
Prior Symbol: 'F' Symbol: 'o' Code: 01

Prior Symbol: 'F' Symbol: 'r' Code: 11
Prior Symbol: 'G' Symbol: 27 Code: 000
Prior Symbol: 'G' Symbol: 'a' Code: 110
Prior Symbol: 'G' Symbol: 'e' Code: 01
Prior Symbol: 'G' Symbol: 'i' Code: 100
Prior Symbol: 'G' Symbol: 'I' Code: 001
Prior Symbol: 'G' Symbol: 'o' Code: 1011
Prior Symbol: 'G' Symbol: 'r' Code: 111
Prior Symbol: 'G' Symbol: 'u' Code: 1010
Prior Symbol: 'H' Symbol: 27 Code: 010
Prior Symbol: 'H' Symbol: 'a' Code: 00
Prior Symbol: 'H' Symbol: 'e' Code: 011
Prior Symbol: 'H' Symbol: 'i' Code: 110
Prior Symbol: 'H' Symbol: 'o' Code: 10
Prior Symbol: 'H' Symbol: 'u' Code: 111
Prior Symbol: 'I' Symbol: 27 Code: 011
Prior Symbol: 'I' Symbol: ' ' Code: 000
Prior Symbol: 'I' Symbol: '.' Code: 100
Prior Symbol: 'I' Symbol: 'I' Code: 001
Prior Symbol: 'I' Symbol: 'n' Code: 11
Prior Symbol: 'I' Symbol: 'r' Code: 101
Prior Symbol: 'I' Symbol: 's' Code: 010
Prior Symbol: 'J' Symbol: 27 Code: 1000
Prior Symbol: 'J' Symbol: '.' Code: 1001
Prior Symbol: 'J' Symbol: 'a' Code: 111
Prior Symbol: 'J' Symbol: 'e' Code: 1101
Prior Symbol: 'J' Symbol: 'i' Code: 1100
Prior Symbol: 'J' Symbol: 'o' Code: 0
Prior Symbol: 'J' Symbol: 'u' Code: 101
Prior Symbol: 'K' Symbol: 27 Code: 111
Prior Symbol: 'K' Symbol: 'a' Code: 100
Prior Symbol: 'K' Symbol: 'e' Code: 0
Prior Symbol: 'K' Symbol: 'i' Code: 101
Prior Symbol: 'K' Symbol: 'r' Code: 110
Prior Symbol: 'L' Symbol: 27 Code: 0110
Prior Symbol: 'L' Symbol: 'a' Code: 11
Prior Symbol: 'L' Symbol: 'e' Code: 00
Prior Symbol: 'L' Symbol: 'i' Code: 0111
Prior Symbol: 'L' Symbol: 'o' Code: 10
Prior Symbol: 'L' Symbol: 'u' Code: 010
Prior Symbol: 'M' Symbol: 27 Code: 11010
Prior Symbol: 'M' Symbol: 'a' Code: 0
Prior Symbol: 'M' Symbol: 'c' Code: 11011
Prior Symbol: 'M' Symbol: 'e' Code: 1111

Prior Symbol: 'M' Symbol: 'i' Code: 10
Prior Symbol: 'M' Symbol: 'o' Code: 1100
Prior Symbol: 'M' Symbol: 'u' Code: 1110
Prior Symbol: 'N' Symbol: 27 Code: 1100
Prior Symbol: 'N' Symbol: 'a' Code: 111
Prior Symbol: 'N' Symbol: 'e' Code: 0
Prior Symbol: 'N' Symbol: 'i' Code: 1101
Prior Symbol: 'N' Symbol: 'o' Code: 10
Prior Symbol: 'O' Symbol: 27 Code: 10
Prior Symbol: 'O' Symbol: "' Code: 010
Prior Symbol: 'O' Symbol: 'I' Code: 110
Prior Symbol: 'O' Symbol: 'n' Code: 011
Prior Symbol: 'O' Symbol: 'r' Code: 111
Prior Symbol: 'O' Symbol: 's' Code: 00
Prior Symbol: 'P' Symbol: 27 Code: 10010
Prior Symbol: 'P' Symbol: 'a' Code: 0
Prior Symbol: 'P' Symbol: 'e' Code: 111
Prior Symbol: 'P' Symbol: 'h' Code: 10011
Prior Symbol: 'P' Symbol: 'i' Code: 1000
Prior Symbol: 'P' Symbol: 'I' Code: 1101
Prior Symbol: 'P' Symbol: 'o' Code: 101
Prior Symbol: 'P' Symbol: 'r' Code: 1100
Prior Symbol: 'Q' Symbol: 27 Code: 1
Prior Symbol: 'R' Symbol: 27 Code: 0000
Prior Symbol: 'R' Symbol: '.' Code: 0001
Prior Symbol: 'R' Symbol: 'a' Code: 01
Prior Symbol: 'R' Symbol: 'e' Code: 10
Prior Symbol: 'R' Symbol: 'i' Code: 001
Prior Symbol: 'R' Symbol: 'o' Code: 11
Prior Symbol: 'S' Symbol: 27 Code: 1011
Prior Symbol: 'S' Symbol: '.' Code: 0001
Prior Symbol: 'S' Symbol: 'a' Code: 100
Prior Symbol: 'S' Symbol: 'c' Code: 0010
Prior Symbol: 'S' Symbol: 'e' Code: 1110
Prior Symbol: 'S' Symbol: 'h' Code: 110
Prior Symbol: 'S' Symbol: 'i' Code: 0011
Prior Symbol: 'S' Symbol: 'o' Code: 1111
Prior Symbol: 'S' Symbol: 't' Code: 01
Prior Symbol: 'S' Symbol: 'u' Code: 1010
Prior Symbol: 'S' Symbol: 'v' Code: 00000
Prior Symbol: 'S' Symbol: 'y' Code: 00001
Prior Symbol: 'T' Symbol: 27 Code: 1010
Prior Symbol: 'T' Symbol: 'V' Code: 1000
Prior Symbol: 'T' Symbol: 'a' Code: 1001

Prior Symbol: 'T' Symbol: 'e' Code: 11010
Prior Symbol: 'T' Symbol: 'h' Code: 0
Prior Symbol: 'T' Symbol: 'i' Code: 1011
Prior Symbol: 'T' Symbol: 'o' Code: 111
Prior Symbol: 'T' Symbol: 'r' Code: 1100
Prior Symbol: 'T' Symbol: 'w' Code: 11011
Prior Symbol: 'U' Symbol: 27 Code: 10
Prior Symbol: 'U' Symbol: '.' Code: 0
Prior Symbol: 'U' Symbol: 'n' Code: 11
Prior Symbol: 'V' Symbol: 27 Code: 111
Prior Symbol: 'V' Symbol: ' ' Code: 10
Prior Symbol: 'V' Symbol: 'e' Code: 110
Prior Symbol: 'V' Symbol: 'i' Code: 0
Prior Symbol: 'W' Symbol: 27 Code: 010
Prior Symbol: 'W' Symbol: 'a' Code: 111
Prior Symbol: 'W' Symbol: 'e' Code: 110
Prior Symbol: 'W' Symbol: 'h' Code: 011
Prior Symbol: 'W' Symbol: 'i' Code: 10
Prior Symbol: 'W' Symbol: 'o' Code: 00
Prior Symbol: 'X' Symbol: 27 Code: 1
Prior Symbol: 'Y' Symbol: 27 Code: 0
Prior Symbol: 'Y' Symbol: 'o' Code: 1
Prior Symbol: 'Z' Symbol: 27 Code: 1
Prior Symbol: '[' Symbol: 27 Code: 1
Prior Symbol: 'I' Symbol: 27 Code: 1
Prior Symbol: ']' Symbol: 27 Code: 1
Prior Symbol: '^' Symbol: 27 Code: 1
Prior Symbol: '_' Symbol: 27 Code: 1
Prior Symbol: "' Symbol: 27 Code: 1
Prior Symbol: 'a' Symbol: 27 Code: 111001101
Prior Symbol: 'a' Symbol: ' ' Code: 101
Prior Symbol: 'a' Symbol: "' Code: 111001110
Prior Symbol: 'a' Symbol: '.' Code: 1110010
Prior Symbol: 'a' Symbol: 'b' Code: 001011
Prior Symbol: 'a' Symbol: 'c' Code: 11001
Prior Symbol: 'a' Symbol: 'd' Code: 00111
Prior Symbol: 'a' Symbol: 'e' Code: 0011001
Prior Symbol: 'a' Symbol: 'f' Code: 001010
Prior Symbol: 'a' Symbol: 'g' Code: 00100
Prior Symbol: 'a' Symbol: 'h' Code: 001100010
Prior Symbol: 'a' Symbol: 'i' Code: 111000
Prior Symbol: 'a' Symbol: 'k' Code: 110000
Prior Symbol: 'a' Symbol: 'l' Code: 1101
Prior Symbol: 'a' Symbol: 'm' Code: 11101

Prior Symbol: 'a' Symbol: 'n' Code: 01
Prior Symbol: 'a' Symbol: 'o' Code: 001100011
Prior Symbol: 'a' Symbol: 'p' Code: 00000
Prior Symbol: 'a' Symbol: 'r' Code: 100
Prior Symbol: 'a' Symbol: 's' Code: 0001
Prior Symbol: 'a' Symbol: 't' Code: 1111
Prior Symbol: 'a' Symbol: 'u' Code: 110001
Prior Symbol: 'a' Symbol: 'v' Code: 001101
Prior Symbol: 'a' Symbol: 'w' Code: 111001111
Prior Symbol: 'a' Symbol: 'x' Code: 111001100
Prior Symbol: 'a' Symbol: 'y' Code: 00001
Prior Symbol: 'a' Symbol: 'z' Code: 00110000
Prior Symbol: 'b' Symbol: 27 Code: 101000
Prior Symbol: 'b' Symbol: ' ' Code: 0101
Prior Symbol: 'b' Symbol: '.' Code: 101001
Prior Symbol: 'b' Symbol: 'a' Code: 100
Prior Symbol: 'b' Symbol: 'b' Code: 101010
Prior Symbol: 'b' Symbol: 'd' Code: 1010110
Prior Symbol: 'b' Symbol: 'e' Code: 00
Prior Symbol: 'b' Symbol: 'i' Code: 1011
Prior Symbol: 'b' Symbol: 'I' Code: 0100
Prior Symbol: 'b' Symbol: 'o' Code: 110
Prior Symbol: 'b' Symbol: 'r' Code: 1110
Prior Symbol: 'b' Symbol: 's' Code: 1010111
Prior Symbol: 'b' Symbol: 'u' Code: 1111
Prior Symbol: 'b' Symbol: 'y' Code: 011
Prior Symbol: 'c' Symbol: 27 Code: 00010
Prior Symbol: 'c' Symbol: ' ' Code: 10000
Prior Symbol: 'c' Symbol: ',' Code: 010000
Prior Symbol: 'c' Symbol: '.' Code: 0100011
Prior Symbol: 'c' Symbol: 'D' Code: 0100110
Prior Symbol: 'c' Symbol: 'a' Code: 110
Prior Symbol: 'c' Symbol: 'c' Code: 010010
Prior Symbol: 'c' Symbol: 'e' Code: 011
Prior Symbol: 'c' Symbol: 'h' Code: 111
Prior Symbol: 'c' Symbol: 'i' Code: 0101
Prior Symbol: 'c' Symbol: 'k' Code: 1001
Prior Symbol: 'c' Symbol: 'I' Code: 10001
Prior Symbol: 'c' Symbol: 'o' Code: 101
Prior Symbol: 'c' Symbol: 'q' Code: 0100010
Prior Symbol: 'c' Symbol: 'r' Code: 00011
Prior Symbol: 'c' Symbol: 't' Code: 001
Prior Symbol: 'c' Symbol: 'u' Code: 0000
Prior Symbol: 'c' Symbol: 'y' Code: 0100111

Prior Symbol: 'd' Symbol: 27 Code: 1010001
Prior Symbol: 'd' Symbol: ' ' Code: 11
Prior Symbol: 'd' Symbol: "' Code: 01111010
Prior Symbol: 'd' Symbol: ',' Code: 101011
Prior Symbol: 'd' Symbol: '.' Code: 0100
Prior Symbol: 'd' Symbol: ';' Code: 01111011
Prior Symbol: 'd' Symbol: 'a' Code: 1000
Prior Symbol: 'd' Symbol: 'd' Code: 01010
Prior Symbol: 'd' Symbol: 'e' Code: 00
Prior Symbol: 'd' Symbol: ' $f$ ' Code: 10100000
Prior Symbol: 'd' Symbol: 'g' Code: 10101011
Prior Symbol: 'd' Symbol: 'i' Code: 1011
Prior Symbol: 'd' Symbol: 'I' Code: 011111
Prior Symbol: 'd' Symbol: 'm' Code: 10100001
Prior Symbol: 'd' Symbol: 'n' Code: 1010100
Prior Symbol: 'd' Symbol: 'o' Code: 0110
Prior Symbol: 'd' Symbol: 'r' Code: 01110
Prior Symbol: 'd' Symbol: 's' Code: 1001
Prior Symbol: 'd' Symbol: 'u' Code: 101001
Prior Symbol: 'd' Symbol: 'v' Code: 0111100
Prior Symbol: 'd' Symbol: 'w' Code: 10101010
Prior Symbol: 'd' Symbol: 'y' Code: 01011
Prior Symbol: 'e' Symbol: 27 Code: 101110011
Prior Symbol: 'e' Symbol: ' ' Code: 111
Prior Symbol: 'e' Symbol: "' Code: 10111010
Prior Symbol: 'e' Symbol: ')' Code: 100110000
Prior Symbol: 'e' Symbol: ',' Code: 000111
Prior Symbol: 'e' Symbol: '-' Code: 10011001
Prior Symbol: 'e' Symbol: '.' Code: 00110
Prior Symbol: 'e' Symbol: ';' Code: 10011010
Prior Symbol: 'e' Symbol: 'a' Code: 1000
Prior Symbol: 'e' Symbol: 'b' Code: 0001100
Prior Symbol: 'e' Symbol: 'c' Code: 10010
Prior Symbol: 'e' Symbol: 'd' Code: 0000
Prior Symbol: 'e' Symbol: 'e' Code: 10100
Prior Symbol: 'e' Symbol: 'f' Code: 10111011
Prior Symbol: 'e' Symbol: 'g' Code: 0001101
Prior Symbol: 'e' Symbol: 'h' Code: 100110001
Prior Symbol: 'e' Symbol: 'i' Code: 000100
Prior Symbol: 'e' Symbol: 'k' Code: 10011011
Prior Symbol: 'e' Symbol: 'I' Code: 0010
Prior Symbol: 'e' Symbol: 'm' Code: 100111
Prior Symbol: 'e' Symbol: 'n' Code: 010
Prior Symbol: 'e' Symbol: 'o' Code: 001110

Prior Symbol: 'e' Symbol: 'p' Code: 001111
Prior Symbol: 'e' Symbol: 'r' Code: 110
Prior Symbol: 'e' Symbol: 's' Code: 011
Prior Symbol: 'e' Symbol: 't' Code: 10101
Prior Symbol: 'e' Symbol: 'u' Code: 101110010
Prior Symbol: 'e' Symbol: 'v' Code: 101100
Prior Symbol: 'e' Symbol: 'w' Code: 101111
Prior Symbol: 'e' Symbol: 'x' Code: 000101
Prior Symbol: 'e' Symbol: 'y' Code: 101101
Prior Symbol: 'e' Symbol: 'z' Code: 10111000
Prior Symbol: 'f' Symbol: 27 Code: 1110111
Prior Symbol: 'f' Symbol: ' ' Code: 10
Prior Symbol: 'f' Symbol: '.' Code: 1110110
Prior Symbol: 'f' Symbol: 'a' Code: 1111
Prior Symbol: 'f' Symbol: 'e' Code: 000
Prior Symbol: 'f' Symbol: 'f' Code: 0101
Prior Symbol: 'f' Symbol: 'i' Code: 001
Prior Symbol: 'f' Symbol: 'I' Code: 111010
Prior Symbol: 'f' Symbol: 'o' Code: 110
Prior Symbol: 'f' Symbol: 'r' Code: 011
Prior Symbol: 'f' Symbol: 't' Code: 0100
Prior Symbol: 'f' Symbol: 'u' Code: 11100
Prior Symbol: 'g' Symbol: 27 Code: 1111010
Prior Symbol: 'g' Symbol: ' ' Code: 10
Prior Symbol: 'g' Symbol: "' Code: 1111011
Prior Symbol: 'g' Symbol: ',' Code: 111110
Prior Symbol: 'g' Symbol: '-' Code: 0101010
Prior Symbol: 'g' Symbol: '.' Code: 01011
Prior Symbol: 'g' Symbol: 'a' Code: 1110
Prior Symbol: 'g' Symbol: 'e' Code: 00
Prior Symbol: 'g' Symbol: 'g' Code: 0101011
Prior Symbol: 'g' Symbol: 'h' Code: 011
Prior Symbol: 'g' Symbol: 'i' Code: 1101
Prior Symbol: 'g' Symbol: 'l' Code: 111100
Prior Symbol: 'g' Symbol: 'o' Code: 0100
Prior Symbol: 'g' Symbol: 'r' Code: 111111
Prior Symbol: 'g' Symbol: 's' Code: 11000
Prior Symbol: 'g' Symbol: 'u' Code: 11001
Prior Symbol: 'g' Symbol: 'y' Code: 010100
Prior Symbol: 'h' Symbol: 27 Code: 1011100
Prior Symbol: 'h' Symbol: ' ' Code: 100
Prior Symbol: 'h' Symbol: "' Code: 10101000
Prior Symbol: 'h' Symbol: ',' Code: 10101001
Prior Symbol: 'h' Symbol: '-' Code: 10101011

Prior Symbol: 'h' Symbol: '.' Code: 101001
Prior Symbol: 'h' Symbol: 'a' Code: 011
Prior Symbol: 'h' Symbol: 'e' Code: 11
Prior Symbol: 'h' Symbol: 'i' Code: 00
Prior Symbol: 'h' Symbol: 'n' Code: 101011
Prior Symbol: 'h' Symbol: 'o' Code: 010
Prior Symbol: 'h' Symbol: 'r' Code: 101111
Prior Symbol: 'h' Symbol: 's' Code: 10101010
Prior Symbol: 'h' Symbol: 't' Code: 10110
Prior Symbol: 'h' Symbol: 'u' Code: 101000
Prior Symbol: 'h' Symbol: 'y' Code: 1011101
Prior Symbol: 'i' Symbol: 27 Code: 00011101
Prior Symbol: 'i' Symbol: ' ' Code: 0001111
Prior Symbol: 'i' Symbol: ',' Code: 100110100
Prior Symbol: 'i' Symbol: '.' Code: 10011000
Prior Symbol: 'i' Symbol: 'a' Code: 11010
Prior Symbol: 'i' Symbol: 'b' Code: 100110101
Prior Symbol: 'i' Symbol: 'c' Code: 1111
Prior Symbol: 'i' Symbol: 'd' Code: 10000
Prior Symbol: 'i' Symbol: 'e' Code: 1110
Prior Symbol: 'i' Symbol: 'f' Code: 100111
Prior Symbol: 'i' Symbol: 'g' Code: 10010
Prior Symbol: 'i' Symbol: 'k' Code: 10011011
Prior Symbol: 'i' Symbol: 'l' Code: 1100
Prior Symbol: 'i' Symbol: 'm' Code: 10001
Prior Symbol: 'i' Symbol: 'n' Code: 01
Prior Symbol: 'i' Symbol: 'o' Code: 11011
Prior Symbol: 'i' Symbol: 'p' Code: 000110
Prior Symbol: 'i' Symbol: 'r' Code: 0000
Prior Symbol: 'i' Symbol: 's' Code: 101
Prior Symbol: 'i' Symbol: 't' Code: 001
Prior Symbol: 'i' Symbol: 'v' Code: 00010
Prior Symbol: 'i' Symbol: 'x' Code: 00011100
Prior Symbol: 'i' Symbol: 'z' Code: 10011001
Prior Symbol: 'j' Symbol: 27 Code: 000
Prior Symbol: 'j' Symbol: 'a' Code: 001
Prior Symbol: 'j' Symbol: 'e' Code: 010
Prior Symbol: 'j' Symbol: 'o' Code: 1
Prior Symbol: 'j' Symbol: 'u' Code: 011
Prior Symbol: 'k' Symbol: 27 Code: 0000
Prior Symbol: 'k' Symbol: ' ' Code: 01
Prior Symbol: 'k' Symbol: "' Code: 10000
Prior Symbol: 'k' Symbol: ',' Code: 10011
Prior Symbol: 'k' Symbol: '.' Code: 0001

Prior Symbol: 'k' Symbol: 'e' Code: 11
Prior Symbol: 'k' Symbol: 'i' Code: 101
Prior Symbol: 'k' Symbol: 'l' Code: 100100
Prior Symbol: 'k' Symbol: 'n' Code: 10001
Prior Symbol: 'k' Symbol: 's' Code: 001
Prior Symbol: 'k' Symbol: 'y' Code: 100101
Prior Symbol: 'I' Symbol: 27 Code: 0011100
Prior Symbol: 'I' Symbol: ' ' Code: 110
Prior Symbol: 'I' Symbol: "' Code: 00111100
Prior Symbol: 'I' Symbol: ',' Code: 001101
Prior Symbol: 'I' Symbol: '-' Code: 00111101
Prior Symbol: 'I' Symbol: '.' Code: 00100
Prior Symbol: 'I' Symbol: 'a' Code: 000
Prior Symbol: 'I' Symbol: 'b' Code: 0011101
Prior Symbol: 'I' Symbol: 'c' Code: 00111111
Prior Symbol: 'I' Symbol: 'd' Code: 10111
Prior Symbol: 'I' Symbol: 'e' Code: 111
Prior Symbol: 'I' Symbol: 'f' Code: 010110
Prior Symbol: 'I' Symbol: 'i' Code: 011
Prior Symbol: 'I' Symbol: 'k' Code: 10110110
Prior Symbol: 'I' Symbol: 'I' Code: 100
Prior Symbol: 'I' Symbol: 'm' Code: 010111
Prior Symbol: 'I' Symbol: 'n' Code: 00111110
Prior Symbol: 'I' Symbol: 'o' Code: 1010
Prior Symbol: 'I' Symbol: 'p' Code: 00101
Prior Symbol: 'I' Symbol: 'r' Code: 10110111
Prior Symbol: 'I' Symbol: 's' Code: 01010
Prior Symbol: 'I' Symbol: 't' Code: 001100
Prior Symbol: 'I' Symbol: 'u' Code: 1011010
Prior Symbol: 'l' Symbol: 'v' Code: 101100
Prior Symbol: 'l' Symbol: 'y' Code: 0100
Prior Symbol: 'm' Symbol: 27 Code: 101010
Prior Symbol: 'm' Symbol: ' ' Code: 111
Prior Symbol: 'm' Symbol: "' Code: 1010110
Prior Symbol: 'm' Symbol: '.' Code: 110101
Prior Symbol: 'm' Symbol: ';' Code: 1010111
Prior Symbol: 'm' Symbol: 'a' Code: 00
Prior Symbol: 'm' Symbol: 'b' Code: 10100
Prior Symbol: 'm' Symbol: 'e' Code: 01
Prior Symbol: 'm' Symbol: 'i' Code: 1100
Prior Symbol: 'm' Symbol: 'm' Code: 10110
Prior Symbol: 'm' Symbol: 'o' Code: 1000
Prior Symbol: 'm' Symbol: 'p' Code: 1001
Prior Symbol: 'm' Symbol: 's' Code: 10111

Prior Symbol: 'm' Symbol: 'u' Code: 11011 Prior Symbol: 'm' Symbol: 'y' Code: 110100 Prior Symbol: 'n' Symbol: 27 Code: 0100000 Prior Symbol: 'n' Symbol: ' ' Code: 10 Prior Symbol: 'n' Symbol: "' Code: 0100011 Prior Symbol: 'n' Symbol: ',' Code: 111100 Prior Symbol: 'n' Symbol: '-' Code: 011011010 Prior Symbol: 'n' Symbol: '.' Code: 01100 Prior Symbol: 'n' Symbol: ';' Code: 011011011 Prior Symbol: 'n' Symbol: 'a' Code: 11111 Prior Symbol: 'n' Symbol: 'b' Code: 011011100 Prior Symbol: ' $n$ ' Symbol: 'c' Code: 01001 Prior Symbol: 'n' Symbol: 'd' Code: 110 Prior Symbol: 'n' Symbol: 'e' Code: 001 Prior Symbol: 'n' Symbol: 'f' Code: 01000101 Prior Symbol: 'n' Symbol: 'g' Code: 000 Prior Symbol: 'n' Symbol: i'i' Code: 01111 Prior Symbol: 'n' Symbol: 'j' Code: 011011101 Prior Symbol: 'n' Symbol: 'k' Code: 1111010 Prior Symbol: 'n' Symbol: 'l' Code: 01101100 Prior Symbol: 'n' Symbol: 'm' Code: 011011110 Prior Symbol: ' $n$ ' Symbol: 'n' Code: 01110 Prior Symbol: 'n' Symbol: 'o' Code: 1111011 Prior Symbol: 'n' Symbol: 'r' Code: 011011111 Prior Symbol: 'n' Symbol: 's' Code: 0101 Prior Symbol: 'n' Symbol: 't' Code: 1110 Prior Symbol: 'n' Symbol: 'u' Code: 0100001 Prior Symbol: 'n' Symbol: 'v' Code: 0110100 Prior Symbol: 'n' Symbol: 'y' Code: 0110101 Prior Symbol: 'n' Symbol: 'z' Code: 01000100 Prior Symbol: 'o' Symbol: 27 Code: 101010011 Prior Symbol: 'o' Symbol: ' ' Code: 001

Prior Symbol: 'o' Symbol: ',' Code: 01001111 Prior Symbol: 'o' Symbol: '-' Code: 01001110 Prior Symbol: 'o' Symbol: '.' Code: 0100110 Prior Symbol: 'o' Symbol: 'B' Code: 101010010 Prior Symbol: 'o' Symbol: 'a' Code: 100001 Prior Symbol: 'o' Symbol: 'b' Code: 110111 Prior Symbol: 'o' Symbol: 'c' Code: 100000 Prior Symbol: 'o' Symbol: 'd' Code: 110101 Prior Symbol: 'o' Symbol: 'e' Code: 1010101 Prior Symbol: 'o' Symbol: 'f' Code: 000 Prior Symbol: 'o' Symbol: 'g' Code: 1101000 Prior Symbol: 'o' Symbol: 'h' Code: 1101001

Prior Symbol: 'o' Symbol: 'i' Code: 1101101 Prior Symbol: 'o' Symbol: 'k' Code: 010010 Prior Symbol: 'o' Symbol: 'I' Code: 0101 Prior Symbol: 'o' Symbol: 'm' Code: 1100 Prior Symbol: 'o' Symbol: 'n' Code: 111 Prior Symbol: 'o' Symbol: 'o' Code: 10100 Prior Symbol: 'o' Symbol: 'p' Code: 01000 Prior Symbol: 'o' Symbol: 'r' Code: 011 Prior Symbol: 'o' Symbol: 's' Code: 10001 Prior Symbol: 'o' Symbol: 't' Code: 10010 Prior Symbol: 'o' Symbol: 'u' Code: 1011 Prior Symbol: 'o' Symbol: 'v' Code: 101011 Prior Symbol: 'o' Symbol: 'w' Code: 10011 Prior Symbol: 'o' Symbol: 'x' Code: 10101000 Prior Symbol: 'o' Symbol: 'y' Code: 1101100 Prior Symbol: 'p' Symbol: 27 Code: 011011 Prior Symbol: 'p' Symbol: ' ' Code: 000 Prior Symbol: 'p' Symbol: '-' Code: 1010010 Prior Symbol: 'p' Symbol: '.' Code: 101000 Prior Symbol: 'p' Symbol: 'a' Code: 001 Prior Symbol: 'p' Symbol: 'e' Code: 110 Prior Symbol: ' p ' Symbol: 'h' Code: 1111 Prior Symbol: 'p' Symbol: 'i' Code: 1011 Prior Symbol: 'p' Symbol: 'I' Code: 010 Prior Symbol: 'p' Symbol: 'm' Code: 1010011 Prior Symbol: 'p' Symbol: 'o' Code: 0111 Prior Symbol: 'p' Symbol: 'p' Code: 11101 Prior Symbol: 'p' Symbol: 'r' Code: 100 Prior Symbol: 'p' Symbol: 's' Code: 01100 Prior Symbol: 'p' Symbol: 't' Code: 11100 Prior Symbol: 'p' Symbol: 'u' Code: 10101 Prior Symbol: 'p' Symbol: 'y' Code: 011010 Prior Symbol: 'q' Symbol: 27 Code: 0 Prior Symbol: 'q' Symbol: 'u' Code: 1 Prior Symbol: 'r' Symbol: 27 Code: 10011111
Prior Symbol: 'r' Symbol: ' ' Code: 111
Prior Symbol: 'r' Symbol: "' Code: 1001110
Prior Symbol: 'r' Symbol: ')' Code: 100111100
Prior Symbol: 'r' Symbol: ',' Code: 100100
Prior Symbol: 'r' Symbol: '-' Code: 11001100
Prior Symbol: 'r' Symbol: '.' Code: 10001
Prior Symbol: 'r' Symbol: ';' Code: 100111101
Prior Symbol: 'r' Symbol: 'a' Code: 1101
Prior Symbol: 'r' Symbol: 'b' Code: 11001101

Prior Symbol: 'r' Symbol: 'c' Code: 100001 Prior Symbol: 'r' Symbol: 'd' Code: 11000 Prior Symbol: 'r' Symbol: 'e' Code: 101 Prior Symbol: 'r' Symbol: 'f' Code: 110011111 Prior Symbol: 'r' Symbol: 'g' Code: 100101 Prior Symbol: 'r' Symbol: 'i' Code: 010 Prior Symbol: 'r' Symbol: 'k' Code: 110010 Prior Symbol: 'r' Symbol: 'I' Code: 00100 Prior Symbol: 'r' Symbol: 'm' Code: 00101 Prior Symbol: 'r' Symbol: 'n' Code: 01100 Prior Symbol: 'r' Symbol: 'o' Code: 000 Prior Symbol: 'r' Symbol: 'p' Code: 11001110 Prior Symbol: 'r' Symbol: 'r' Code: 100110 Prior Symbol: 'r' Symbol: 's' Code: 0111 Prior Symbol: 'r' Symbol: 't' Code: 0011 Prior Symbol: 'r' Symbol: 'u' Code: 100000 Prior Symbol: 'r' Symbol: 'v' Code: 110011110 Prior Symbol: 'r' Symbol: 'y' Code: 01101 Prior Symbol: 's' Symbol: 27 Code: 10011100 Prior Symbol: 's' Symbol: ' ' Code: 0 Prior Symbol: 's' Symbol: "' Code: 100111100 Prior Symbol: 's' Symbol: "' Code: 100111101 Prior Symbol: 's' Symbol: ',' Code: 111011 Prior Symbol: 's' Symbol: '.' Code: 1000 Prior Symbol: 's' Symbol: ';' Code: 11101011 Prior Symbol: 's' Symbol: 'a' Code: 110011 Prior Symbol: 's' Symbol: 'b' Code: 100111110 Prior Symbol: 's' Symbol: 'c' Code: 10010 Prior Symbol: 's' Symbol: 'e' Code: 1101 Prior Symbol: 's' Symbol: 'h' Code: 11000 Prior Symbol: 's' Symbol: 'i' Code: 11100 Prior Symbol: 's' Symbol: 'k' Code: 100111111 Prior Symbol: 's' Symbol: 'I' Code: 1110100 Prior Symbol: 's' Symbol: 'm' Code: 111010100 Prior Symbol: 's' Symbol: 'n' Code: 111010101 Prior Symbol: 's' Symbol: 'o' Code: 11110 Prior Symbol: 's' Symbol: 'p' Code: 1001101 Prior Symbol: 's' Symbol: 's' Code: 11111 Prior Symbol: 's' Symbol: 't' Code: 101 Prior Symbol: 's' Symbol: 'u' Code: 110010 Prior Symbol: 's' Symbol: 'w' Code: 10011101 Prior Symbol: 's' Symbol: 'y' Code: 1001100 Prior Symbol: 't' Symbol: 27 Code: 11000011 Prior Symbol: 't' Symbol: ' ' Code: 111

Prior Symbol: 't' Symbol: "' Code: 11000100 Prior Symbol: 't' Symbol: ',' Code: 0111100 Prior Symbol: 't' Symbol: '-' Code: 01111110 Prior Symbol: 't' Symbol: '.' Code: 01101 Prior Symbol: 't' Symbol: ';' Code: 110000100 Prior Symbol: 't' Symbol: 'a' Code: 0100 Prior Symbol: 't' Symbol: 'b' Code: 110000101 Prior Symbol: 't' Symbol: 'c' Code: 11000101 Prior Symbol: 't' Symbol: 'e' Code: 101 Prior Symbol: 't' Symbol: 'h' Code: 00 Prior Symbol: 't' Symbol: 'i' Code: 1101 Prior Symbol: 't' Symbol: 'I' Code: 0111101 Prior Symbol: 't' Symbol: 'm' Code: 01111111 Prior Symbol: 't' Symbol: 'n' Code: 0111110 Prior Symbol: 't' Symbol: 'o' Code: 100 Prior Symbol: 't' Symbol: 'r' Code: 11001 Prior Symbol: 't' Symbol: 's' Code: 0101 Prior Symbol: 't' Symbol: 't' Code: 01100 Prior Symbol: 't' Symbol: 'u' Code: 01110 Prior Symbol: 't' Symbol: 'w' Code: 1100000 Prior Symbol: 't' Symbol: 'y' Code: 1100011 Prior Symbol: 'u' Symbol: 27 Code: 1001100 Prior Symbol: 'u' Symbol: ' ' Code: 100000 Prior Symbol: 'u' Symbol: 'a' Code: 100111 Prior Symbol: 'u' Symbol: 'b' Code: 100001 Prior Symbol: 'u' Symbol: 'c' Code: 10001 Prior Symbol: 'u' Symbol: 'd' Code: 11100 Prior Symbol: 'u' Symbol: 'e' Code: 11101 Prior Symbol: 'u' Symbol: 'g' Code: 11110 Prior Symbol: 'u' Symbol: 'i' Code: 10010 Prior Symbol: 'u' Symbol: 'k' Code: 1001101 Prior Symbol: 'u' Symbol: 'I' Code: 0100 Prior Symbol: 'u' Symbol: 'm' Code: 111111 Prior Symbol: 'u' Symbol: 'n' Code: 110 Prior Symbol: 'u' Symbol: 'o' Code: 11111010 Prior Symbol: 'u' Symbol: 'p' Code: 0101 Prior Symbol: 'u' Symbol: 'r' Code: 00 Prior Symbol: 'u' Symbol: 's' Code: 011 Prior Symbol: 'u' Symbol: 't' Code: 101 Prior Symbol: 'u' Symbol: 'v' Code: 11111011 Prior Symbol: 'u' Symbol: 'y' Code: 1111100 Prior Symbol: 'v' Symbol: 27 Code: 00010 Prior Symbol: 'v' Symbol: 'a' Code: 001 Prior Symbol: 'v' Symbol: 'e' Code: 1

Prior Symbol: 'v' Symbol: 'i' Code: 01
Prior Symbol: 'v' Symbol: 'o' Code: 0000
Prior Symbol: 'v' Symbol: 's' Code: 000110
Prior Symbol: 'v' Symbol: 'y' Code: 000111
Prior Symbol: 'w' Symbol: 27 Code: 011101
Prior Symbol: 'w' Symbol: ' ' Code: 001
Prior Symbol: 'w' Symbol: '.' Code: 011100
Prior Symbol: 'w' Symbol: 'a' Code: 010
Prior Symbol: 'w' Symbol: 'e' Code: 1110
Prior Symbol: 'w' Symbol: 'h' Code: 000
Prior Symbol: 'w' Symbol: 'i' Code: 10
Prior Symbol: 'w' Symbol: 'I' Code: 011110
Prior Symbol: 'w' Symbol: 'm' Code: 011111
Prior Symbol: 'w' Symbol: 'n' Code: 11111
Prior Symbol: 'w' Symbol: 'o' Code: 110
Prior Symbol: 'w' Symbol: 'r' Code: 0110
Prior Symbol: 'w' Symbol: 's' Code: 11110
Prior Symbol: 'x' Symbol: 27 Code: 10
Prior Symbol: 'x' Symbol: ' ' Code: 0110
Prior Symbol: 'x' Symbol: ',' Code: 0111
Prior Symbol: 'x' Symbol: '-' Code: 1100
Prior Symbol: 'x' Symbol: 'a' Code: 111
Prior Symbol: 'x' Symbol: 'e' Code: 00
Prior Symbol: 'x' Symbol: 'i' Code: 010
Prior Symbol: 'x' Symbol: 't' Code: 1101
Prior Symbol: 'y' Symbol: 27 Code: 01010
Prior Symbol: 'y' Symbol: ' ' Code: 1
Prior Symbol: 'y' Symbol: "' Code: 010010
Prior Symbol: 'y' Symbol: ',' Code: 0001
Prior Symbol: 'y' Symbol: '.' Code: 0111
Prior Symbol: 'y' Symbol: ';' Code: 011001
Prior Symbol: 'y' Symbol: '?' Code: 0100110
Prior Symbol: 'y' Symbol: 'a' Code: 0100111
Prior Symbol: 'y' Symbol: 'b' Code: 0110000
Prior Symbol: 'y' Symbol: 'd' Code: 000001
Prior Symbol: 'y' Symbol: 'e' Code: 0010
Prior Symbol: 'y' Symbol: 'f' Code: 0110001
Prior Symbol: 'y' Symbol: 'i' Code: 000010
Prior Symbol: 'y' Symbol: 'I' Code: 01000
Prior Symbol: 'y' Symbol: 'm' Code: 000000
Prior Symbol: 'y' Symbol: 'n' Code: 01011
Prior Symbol: 'y' Symbol: 'o' Code: 01101
Prior Symbol: 'y' Symbol: 's' Code: 0011
Prior Symbol: 'y' Symbol: 'w' Code: 000011
Prior Symbol: 'z' Symbol: 27 Code: 100

Prior Symbol: 'z' Symbol: ' ' Code: 1110
Prior Symbol: 'z' Symbol: '.' Code: 1111
Prior Symbol: 'z' Symbol: 'a' Code: 000
Prior Symbol: 'z' Symbol: 'e' Code: 001
Prior Symbol: 'z' Symbol: 'i' Code: 110
Prior Symbol: 'z' Symbol: 'I' Code: 010
Prior Symbol: 'z' Symbol: 'o' Code: 101
Prior Symbol: 'z' Symbol: 'z' Code: 011
Prior Symbol: '\{' Symbol: 27 Code: 1
Prior Symbol: '|' Symbol: 27 Code: 1
Prior Symbol: '\}' Symbol: 27 Code: 1
Prior Symbol: '~' Symbol: 27 Code: 1
Prior Symbol: 127 Symbol: 27 Code: 1

Table B.C.7/J. 94 - English-language Program Description Decode Table

0	1	42	1	84	1	126
1	0	43	84	85	252	127
2	1	44	1	86	1	128
3	44	45	86	87	254	169


2104	25721	303155	349155	395197
211172	258155	304155	350155	396198
2124	259214	305155	351155	397177
213216	260201	306155	352155	39810
2144	261207	307155	353155	399238
215224	262215	308155	354155	400203
2164	263199	309155	355155	40111
217244	2641	310155	356155	402212
2185	265162	311155	357155	40312
21936	266206	312155	358155	404196
2205	267203	313155	359155	405200
22164	2682	314155	360155	406210
2225	2693	315155	361155	40713
223118	270197	316155	36256	40814
2245	271204	317155	36357	40915
225174	272198	318155	364173	410199
2265	273200	319155	365175	411202
227206	2744	320155	366183	412206
2285	275196	321155	367218	413208
229208	2765	322155	368168	414215
2306	277194	323155	369179	41516
2316	2786	324155	370181	416194
2326	279195	325155	3711	41717
23352	280210	326155	3722	418204
2346	2817	327155	373155	419236
23596	282211	328155	374180	420229
2366	2838	329155	375241	421231
237134	284202	330155	376162	42218
2386	285212	331155	377213	423205
239146	2869	332155	378214	42419
2406	287205	333155	379217	42520
241170	288208	334155	3803	426195
2426	28910	335155	3814	42721
243184	290193	336155	3825	42822
2446	29111	337155	383207	42923
245220	29212	338155	3846	430237
2466	29313	339155	385201	43124
2472362486	29414	340155	386249	43225
249238	29515	341155	387234	433242
2506	29616	342155	388235	43426
251240	29717	343155	389245	435211
2526	29818	344155	390246	43627
253242	29919	345155	3917	43728
2546	300155	346155	3928	438228
255244	301155	347155	3939	43929
25620	302155	348155	394178	440193


441227	4872	5336	579155	6256
44230	488155	5344	580155	626236
443233	489160	535128	581155	627238
444240	490155	536202	582155	6287
445226	491155	537211	5831	629160
446247	492155	538162	584172	6305
44731	493155	5391	585174	6316
448243	494155	540155	586155	632155
449230	495155	5412	587155	633236
45032	496155	5423	5882	634245
45133	497155	543160	5893	6351
45234	4982	544155	590155	6362
453232	499243	545160	591160	637225
454239	500160	5463	592181	638239
45535	501244	5474	593182	639229
45636	502155	548155	594184	640233
45737	5031	549183	5951	641242
45838	504155	550244	596155	6423
45939	505155	551160	597160	6434
46040	506172	552176	598155	6446
46141	507155	553243	599160	6457
46242	508155	5541	600155	646155
463244	509155	5552	601155	647233
46443	510155	556185	602155	648249
46544	511155	5572	603155	649242
46645	5121	558184	604155	650245
46746	513160	559155	605155	6511
46847	514155	560160	606155	6522
469225	515162	5611	607160	6533
47048	5167	562174	608155	654236
47149	5178	5632	609155	655239
47250	518226	564182	6108	656225
47351	519228	565155	6119	6574
47452	520229	5661	612230	658232
47553	521230	567160	613245	6595
47654	522160	568160	614243	6605
47755	523242	5691	615244	6616
478155	524225	570155	616155	662249
479155	5251	571176	617228	663242
4803	5262	572174	6181	664245
4814	527243	5731	619237	665155
482128	528227	574155	6202	666229
483174	5293	575160	6213	667239
484200	5304	576174	6224	6681
485212	5315	5771	623242	6692
4861	532155	578160	6245	670233

$\left.\begin{array}{llllllll}671225 & 717 & 245 & 763 & 225 & 809 & 155 & 855 \\ 672 & 3 & 718 & 225 & 764 & 225 & 810 & 3\end{array}\right)$

901155	94723	993233	1039243	108512
902167	94811	9947	104012	1086227
903247	94912	995235	1041233	108713
904250	950228	9968	104213	1088229
9051	951243	997244	104314	1089244
9062	952155	9989	104415	109014
9073	953174	999229	104516	109115
9084	954226	100010	1046229	1092228
909229	9551	1001239	104717	109316
910174	9562	1002225	104818	1094236
9115	9573	1003232	1049160	109517
912230	958236	100411	105029	1096225
913226	959160	100512	105130	109718
9146	9604	100613	1052169	109819
915246	961233	100714	1053232	109920
916235	962242	100819	1054245	110021
917245	963245	100920	1055155	110122
918233	9645	1010167	10561	1102238
9197	965249	1011187	1057173	1103243
920240	966225	1012230	1058187	110423
921249	9676	1013237	1059235	110524
922231	968239	1014247	1060250	1106242
9238	9697	1015231	10612	1107160
9249	970229	1016246	1062167	110825
925228	9718	10171	1063230	110926
92610	9729	10182	1064226	111027
927227	97310	1019155	1065231	111128
92811	97415	1020238	10663	11129
929237	97516	10213	10674	111310
93012	976241	10224	10685	1114174
931243	977174	1023236	10696	1115155
93213	978196	10245	1070233	1116236
93314	979249	1025245	1071248	11171
93415	980172	10266	10727	1118245
935236	9811	1027172	1073172	11192
93616	982227	1028228	1074239	1120244
937244	9832	1029249	1075240	1121230
93817	984155	1030242	10768	11223
93918	985242	10317	1077237	1123225
940242	9863	10328	1078246	1124229
941160	9874	10339	1079249	1125233
94219	988160	1034174	10809	11264
94320	989236	103510	1081247	1127242
94421	990245	1036239	108210	1128239
945238	9915	103711	108311	11295
94622	9926	1038225	1084174	11306


11317	1177174	12239	126923	131521
1132160	11783	122410	1270167	131612
11338	1179238	122511	1271173	131713
113414	11804	1226236	1272238	1318167
113515	1181242	122712	1273227	1319187
1136173	11825	1228229	1274235	1320155
1137231	11836	1229227	1275242	13211
1138155	1184244	123013	1276155	1322249
1139167	11857	1231244	1277226	1323174
1140249	11868	123214	12781	1324226
11411	11879	1233243	12792	13252
1142236	1188239	123415	1280245	1326237
11432	1189225	123516	12813	1327243
1144172	1190160	123617	1282244	13283
1145242	119110	1237238	1283172	1329245
11463	1192233	123818	12844	1330239
1147174	119311	123919	12855	1331240
1148243	119412	12403	1286230	13324
1149245	1195229	1241239	1287237	13335
11504	119620	1242155	1288246	1334233
11515	119721	1243225	12896	13356
1152239	1198172	1244229	1290174	13367
11536	1199226	1245245	1291240	13378
11547	1200248	12461	12927	13389
1155233	1201155	12472	12938	1339160
1156225	1202174	12488	1294243	1340225
11578	1203250	12499	12959	1341229
11589	12041	1250236	129610	134210
1159232	1205235	1251249	1297228	134311
116010	12062	1252167	129811	134425
116111	1207160	1253238	129912	134526
1162229	12083	12541	1300249	1346173
116312	12094	1255172	130113	1347187
1164160	1210240	1256155	1302239	1348226
116513	12115	1257174	130314	1349234
116613	12126	12582	1304225	1350237
116714	1213230	12593	130515	1351242
1168167	1214246	12604	130616	1352250
1169172	12157	1261243	1307233	1353230
1170243	1216228	12625	1308236	1354236
1171173	1217237	1263233	130917	13551
11721	1218231	12646	1310160	13562
11732	12198	1265160	1311229	13573
1174155	1220225	12667	131218	1358155
1175249	1221239	1267229	131319	1359245
1176245	1222242	126822	131420	13604

$\left.\begin{array}{llllllll}1361 & 167 & 1407 & 2 & 1453 & 25 & 1499 & 2\end{array}\right)$

1637235
1638249
16391
1640160
1641226
16422
1643225
16443
1645237
16464
1647227
1648233
16495
1650228
1651229
1652231
16536
1654236
1655240
16567
16578
16589
165910
166011
1661243
166212
1663244
1664238
166513
1666242
166714
166815
166916
16705
1671229
1672243
1673249
1674155
16751
1676239
16772
16783
1679225
16804
1681233
168210

168311
1684174
1685155
1686236
1687237
16881
16892
1690243
1691238
1692242
16933
1694229
16954
1696232
1697160
1698225
16995
1700239
17016
17027
17038
1704233
17059
17065
17076
1708160
1709172
1710173
1711244
1712233
17131
17142
1715225
1716229
17173
1718155
17194
172017
1721160
1722191
1723225
1724226
1725230
1726237
1727228
1728233

1729	247		
1730	167	1775	155
1731	1	1776	155
1732	2	1777	155
1733	187	1778	155
1734	3	1779	155
1735	4	1780	155
	1781	155	

1736236
17375
1738155
1739238
17406
1741239
17427
1743172
1744229
1745243
17468
17479
174810
1749174
175011
175112
175213
175314
175415
175516
17566
17577
1758160
1759174
1760225
1761229
1762236
1763250
1764155
1765239
1766233
17671
17682
17693
17704
17715
1772155
1773155
1774155

## APPENDIX B.I

## Implementation recommendations

## B.I. 1 Implications for retail digital cable-ready devices

Given that a cable operator could choose to deliver SI tables according to any of the profiles defined in Annex B.A on any given hub, digital cable-ready devices offered for retail sale should be able to accept a Short-form Virtual Channel Table for basic navigation if the Long-form Virtual Channel is not provided. It should also accept the Long-form Virtual Channel Table if the Short-form table is not provided.

## B.I. 2 Channel number handling

Host devices are expected to support navigation based on virtual channel records associated with two-part channel numbers. If an S-VCT virtual channel record includes a two_part_channel_number_descriptor(), the Host is expected to use it, and to disregard the 12-bit virtual_channel_number field in the same virtual_channel() record.
If a two_part_channel_number_descriptor() is not present in the record-level descriptors loop of a particular S-VCT virtual channel record, the Host is expected to use the virtual_channel_number field in the virtual_channel() record, (see Table B.20) as the channel number reference.
Both numbering schemes may co-exist in a channel map, but each individual channel must be considered labelled with either a one-part or a two-part number.

## B.I. 3 Processing of dynamic changes to service information

The Host is expected to monitor SI data on a continuous basis, and react to changes dynamically. For example, an update to an S-VCT or L-VCT may indicate that the definition of the currently acquired virtual channel has changed. The change could involve, for example, association of the channel with a different MPEG-2 program_number within a Transport Stream on a different carrier frequency. In response to such a change, the Host is expected to tune to and acquire the service as redefined.

For some types of changes, the Host is not expected to respond in a visible way. For example, the name of the current event may change, but the new name would be visible as the response to a regular user action to show the event name on-screen or in a program guide display.

## B.I. 4 AEITs may include event information for inaccessible channels

In the out-of-band system, depending on the data delivery methods employed by the cable headend and POD module, there may be occasions where AEITs are broadcast for which some set-top boxes do not have corresponding virtual channel assignments. In these cases, the Host is expected to discard portions of the AEITs corresponding to source_ID values not present in the Virtual Channel Table (short- or long-form).

For example, the AEIT may include data describing the program schedule for a service identified with source_ID value $0 \times 0123$. Let's say the Virtual Channel Table does not include a channel associated with source_ID $0 \times 0123$. When constructing a program guide display, the channel name, number and physical location associated with events tied to source_ID $0 \times 0123$ will not be available. Therefore, the events described in the AEIT data for this channel are inaccessible, and the AEIT records for this source_ID should be discarded.

## B.I. 5 Splice flag processing

The S-VCT includes a flag called splice. Hosts supporting application of virtual channel changes tied to video splice point timing are expected to execute the change after two seconds following the activation_time, in the absence of a video splice point prior to that time.

Support of the splice timing function is optional in Hosts. A Host not supporting the splice timing feature is expected to apply the data delivered in the VCM_structure() at the indicated activation time (i.e. the splice flag may be simply disregarded).

## APPENDIX B.II

## Service Information overview and guide

## B.II. 1 Table hierarchy

Figures B.II. 1 through B.II. 5 describe the relationships between SI tables for Profiles 1 through 6 in a simplified form. A mandatory table is shown in solid box. An optional table is shown in dotted box. An italicized name indicates a sub-table or a map carried within the table.


$\mathrm{S}-\mathrm{VCT}$
$D C M$
$V C M$
$I C M$
T0909350-00

Figure B.II.1/J. 94 - Hierarchy of Table Sections - Profiles 1 and 2


Figure B.II.2/J. 94 - Hierarchy of Table Sections - Profile 3


Figure B.II.3/J. 94 - Hierarchy of Table Sections - Profile 4


Figure B.II.4/J. 94 - Hierarchy of Table Sections - Profile 5


Figure B.II.5/J. 94 - Hierarchy of Table Sections - Profile 6

The Short-form Virtual Channel Table section (table_ID 0xC4) or the Long-form Virtual Channel Table (table_ID $0 x C 9$ ) provide navigation data on the out-of-band path. If MGT is provided, it references all tables present in Service Information (except the System Timetable).
The Master Guide Table provides general information about all of the other tables including the S-VCT, L-VCT, RRT, AEIT, and AETT. It defines table sizes necessary for memory allocation during decoding; it defines version numbers to identify those tables that need to be updated; and it gives the packet identifier (PID) values associated with instances of AEITs and AETTs.

In Profile 3 and higher, the Rating Region Table must be included, with one exception, to describe rating regions in use. The exception is that delivery of version 0 of the RRT for region $0 \times 01$ (US and possessions), need not be sent because this table is standardized in EIA-766. Furthermore, for Profile, the MGT need not be sent if no RRT is sent.

Aggregate Event Information Tables are included in the out-of-band data in Profiles 4-6. Each AEIT instance describes the events or TV programs associated with a particular three-hour time slot. In the AEIT table structure, program schedule and title data for all virtual channels is aggregated together.
Each AEIT instance is valid for a time interval of three hours. As shown in Figure B.II.3, at minimum, AEIT-0 through AEIT-3 must be sent. Therefore, when Profiles 4-6 are used, current program information and information covering nine to twelve hours of future programming will be available to the Host.

Up to 256 AEITs may be transmitted; over 30 days of future programming may therefore be described. For the fourth timeslot and beyond (AEIT-4 through AEIT-N), the tables may be associated with the same or different PID values.

The start time for any AEIT is constrained to be one of the following UTC times: 00:00 (midnight), 03:00, 06:00, 09:00, 12:00 (noon), 15:00, 18:00, and 21:00. Imposing constraints on the start times as well as the interval duration simplifies re-multiplexing. During re-multiplexing, AEIT tables coming from several distinct Transport Streams may end up grouped together or vice versa. If no constraints were imposed, re-multiplexing equipment would have to parse AEIT by content in real time, which is a difficult task.

However, it is also possible to regenerate one or several AEIT at any time for correcting and/or updating the content (e.g. in cases where "to be assigned" events become known). Regeneration of an AEIT may be flagged by updating version fields in the MGT. A new AEIT may also be associated with a PID value not in current use. The MGT may be updated to show this new PID value association.
In Profiles 4-6, there can be several Aggregate Extended Text Tables, each of them having its associated PID defined in the MGT. As its name indicates, the purpose of an Aggregate Extended Text Table is to carry textual data. For example, for an event such as a movie listed in the AEIT, the typical data is a short paragraph that describes the movie itself. Each Aggregate Event Information Table can have one associated AETT. Each AETT instance includes all the text associated with events starting within a particular timeslot. Aggregate Extended Text Tables are optional in Profiles 4-6.

## B.II. 2 SI_base PID

Data associated with the SI_base PID defines information of system-wide applicability such as frequency plans, channel maps, and channel names. The SI_base PID value is $0 \times 1$ FFC. The types of table sections that may be included in the Network Stream include:

- Network Information Table, carrying the:
- Carrier Definition Subtable,
- Modulation Mode Subtable;
- $\quad$ Network Text Table, carrying the Source Name Subtable;
- $\quad$ Short-form Virtual Channel Table, carrying the:
- Virtual Channel Map,
- Defined Channels Map,
- Inverse Channels Map;
- Long-form Virtual Channel Table;
- Master Guide Table;
- $\quad$ Rating Region Table;
- System Timetable.


## Carrier Definition Subtable

The Carrier Definition Subtable provides a foundation for the definition of frequency plans by defining a set of carrier frequencies appropriate to a particular transmission medium. The CDS is stored in the Host as an array of as many as 255 CDS records, each consisting of:

- Carrier frequency, 15 bits, in units of 10 or 125 kHz .


## Modulation Mode Subtable

The Modulation Mode Subtable provides a foundation for quick acquisition of digitally modulated waveforms. A separate MMS shall be transmitted in Network data for each transmission medium supported by that network. An MMS is stored in the Host as an array of up to 255 MMS records, each consisting of:

- Modulation format: analogue NTSC or QAM;
- Transmission system: ITU-T (North America) or ATSC;
- Symbol rate, in units of 1 Hz ;
- Inner coding mode, expressed as either "none" or an integer ratio such as $1 / 2$ or $3 / 4$;
- For QAM modulation, the number of levels.

Each MMS contains entries for each modulation mode currently in use by any digital waveform, plus entries for any modes anticipated to be used. As with the CDS, changes to the table are rare.
Parameters defined within the MMS are not specifically manipulated by Hosts compliant with the SI protocol, but are referenced by the Host when attempting to acquire a digitally encoded and modulated waveform.

## Short-form Virtual Channel Table and Virtual Channel Record

The Short-form Virtual Channel Table is a hierarchical data structure that may carry within it the Virtual Channel Map and Virtual Channel record, for support of up to 4096 channel definition records. Each virtual channel is associated with a 16-bit reference ID number called the source_ID. Each record in the VCM consists of:

- The MPEG program number, associating the virtual channel record with a program defined in the Program Association Table and TS Program Map Table.
- For virtual channels associated with programs carried in a program guide, the source_ID, a number that may be used to link the virtual channel to entries in the Electronic Program Guide (EPG) database.
- For virtual channels used as access paths to application code or data (such as EPG), the application $I D^{7}$.


## Source ID

Source ID is a 16-bit number associated with each program source, defined in such a way that every programming source offered anywhere in the system described in this Service Information annex is uniquely identified. For example, HBO/W has a different assigned source ID than HBO/E, and both are different from HBO-2 or HBO-3. Uniqueness is necessary to maintain correct linkages between an EPG database and virtual channel tables. See below for a discussion of the relationship between source_ID, virtual channels, and an EPG database.

## Source Names and Source Name Subtable

The Source Name is a variable length multilingual text string associating a source ID with a textual name. The Source Name Subtable is delivered within the Network Text Table section.

[^6]Source name information is delivered in a table format separate from the table containing other information comprising the virtual channel table. Name information is not strictly necessary for channel acquisition, and (depending on the memory management scheme employed in the Host) may not always be available from memory at acquisition time. Source name information may be refreshed often, and can be available within several seconds of acquisition.
An EPG database may define textual reference names associated with given program sources (referenced by source ID). Such a database may be used to derive virtual channel names in some applications, though in an EPG database the name is generally abbreviated due to display considerations.

Name data is, unlike the regular VCT data, language tagged, so that multilingual source names may be defined. Transmission format for multilingual text is defined to include references to multiple phonetic and ideographic character sets.

## Defined Channels Map and Inverse Channels Map

For a given Standard-compliant channel, DCM data consist of a series of bytes that, taken as a whole, specify which channels in the map are defined, and which are not.

Each Virtual Channel Table has associated with it a table listing source_IDs and their associated virtual channel numbers. The source_ID values are sorted by value from the lowest to the highest in the table, to facilitate (using a binary search) lookup of a virtual channel given a source ID.

## Master Guide Table

Use of the MGT is optional in certain profiles. Table B.II. 1 shows a typical Master Guide Table indicating, in this case, the existence in the Transport Stream of a Long-form Virtual Channel Table, the Rating Region Table, four Aggregate Event Information Tables, and two Aggregate Extended Text Tables describing the first six hours' events.

Table B.II.1/J. 94 - Example Master Guide Table content

table_type	PID	version_number	table size (bytes)
LVCT	0x1FFC	4	5922
RRT - region 6	0x1FFC	0	1020
AEIT-0 - MGT_tag $=56$	0x1DD2	6	29250
AEIT-1 - MGT_tag $=57$	0x1DD2	4	28440
AEIT-2 - MGT_tag $=58$	0x1DD3	10	25704
AEIT-3 - MGT_tag $=59$	0x1DD3	2	27606
AETT-0 - MGT_tag $=56$	0x1DD2	2	24004
AETT-1 - MGT_tag $=57$	0x1DD2	7	25922
AETT-2 - MGT_tag $=58$	0x1DD3	8	27711
AETT-3 - MGT_tag $=59$	0x1DD3	0	19945

The first entry of the MGT describes the version number and size of the Long-form Virtual Channel Table. The second entry corresponds to an instance of the Rating Region Table for region 6. If some region's policy makers decided to use more than one instance of an RRT, the MGT would list each PID, version number, and size.
The next entries in the MGT correspond to the four AEITs that must be supplied in the Transport Stream for profiles 4-6. After the AEITs, the MGT references four Aggregate Extended Text Tables. The PID values for AEIT-0 and AEIT-1 are both 0x1DD2. MGT_tag values 56 and 57 are used for these. For AEIT-2 AEIT-3, PID 0x1DD3 is used. The last four references are to Aggregate ETTs.

Note that AETT-n shares a common PID value with AEIT-n for every value of n. AEIT-0 and AETT-0 are associated with PID 0x1DD2, as are AEIT-1 and AETT-1. AEIT-2 and AETT-2 are associated with PID 0x1DD3, etc.
Descriptors can be added for each entry as well as for the entire MGT. By using descriptors, future improvements can be incorporated without modifying the basic structure of the MGT. The MGT is like a flag table that continuously informs the Host about the status of all the other tables (except the System Time which has an independent function). The MGT is continuously monitored at the Host to prepare and anticipate changes in the channel/event structure. When tables are changed at the broadcast side and the PID association is unchanged, their version numbers are incremented and the new numbers are listed in the MGT. Another method that can be used to change tables is to associate the updated tables with different PID values, and then update the MGT to reference the new PID values. Based on the MGT version or PID updates and on the memory requirements, the Host can reload the newly defined tables for proper operation.
Table B.II. 2 is an example MGT that may be sent after the instance in Table B.II. 2 has expired due to the passage of time. In this example, three hours have passed, and the time slot covered in the old AEIT-0 is in the past. The AEIT with MGT_tag $=57$ moves now to become AEIT-0. The AEIT with MGT_tag $=58$, the new AEIT-1, moves to PID 0x1DD2. A new AEIT is added to the mix, the AEIT with MGT_tag $=60$.

Table B.II.2/J. 94 - Example Revised Master Guide Table content

table_type	PID	version_number	table size (bytes)
LVCT	0x1FFC	4	5922
RRT - region 6	0x1FFC	0	1020
AEIT-0 - MGT_tag $=57$	0x1DD2	4	28440
AEIT-1 - MGT_tag $=58$	0x1DD2	10	25704
AEIT-2 - MGT_tag $=59$	0x1DD3	2	27606
AEIT-3 - MGT_tag $=60$	0x1DD3	0	30055
AETT-0 - MGT_tag $=57$	0x1DD2	7	25922
AETT-1 - MGT_tag $=58$	0x1DD2	8	27711
AETT-2 - MGT_tag $=59$	0x1DD3	0	19945
AETT-3 - MGT_tag $=60$	0x1DD3	0	22522

## L-VCT

The L-VCT combines all the data pertinent to the description of a virtual channel into a single table. Use of the L-VCT instead of the S-VCT eliminates the need to send CDS, MMS, SNS, DCM, or ICM. The L-VCT follows the standard MPEG-2 long-form section syntax $($ section_syntax_indicator $=1)$.

## Rating Region Table

The Rating Region Table is a fixed data structure in the sense that its content remains mostly unchanged. It defines the rating standard that is applicable for each region and/or country. The concept of table instance introduced in the previous clause is also used for the RRT. Several instances of the RRT can be constructed and carried in the Transport Stream simultaneously. Each instance is identified by a different table_id_extension value (which becomes the rating_region in the RRT syntax) and corresponds to one and only one particular region. Each instance has a different version number which is also carried in the MGT. This feature allows updating each instance separately.

Figure B.II. 3 shows an example of one instance of an RRT, defined for rating region 99 and carrying an example rating system. Each event listed in any of the EITs may carry a content advisory descriptor. This descriptor is an index or pointer to one or more instances of the RRT.


Figure B.II.3/J. 94 - An instance of a Rating Region Table

## Aggregate Event Information Tables and Aggregate Extended Text Tables

The purpose of an AEIT is to list all events for those channels that appear in the VCT for a given time window. As mentioned before, AEIT-0 describes the events for the first 3 hours and AEIT-1 for the second 3 hours. AEIT-0 and AEIT-1 share a common associated PID value as defined in the MGT. In MPEG, tables can have a multitude of instances. When different instances of a table share the same table_id value and PID, they are distinguished by differences in the 16-bit table_id_extension field.

In this SI appendix for out-of-band use, each instance of AEIT-k contains a list of events for a each virtual channel. Linkage to each channel in the VCT is made via the source_ID. For the AEIT, the table_id_extension field appears as MGT_tag.

Figure B.II. 4 shows, for example, a program provider's instance for AEIT-0.


Figure B.II.4/J. 94 - Example AEIT-0

AEIT-0 is unique in that it must list all events starting within the three-hour time period it covers, as well as any events that started earlier but extend into the covered period. For all other AEITs, only those events actually starting within the three hour time period are included. The Host is expected to collect AEITs in order of their time coverage. If AEIT-4 is available to the Host but AEIT-3 is not, for example, information for events that started in the time period covered by AEIT-3 but extending into AEIT-4 will not be available for display.
Figure B.II. 4 shows an example of a small AEIT-0, including event data for two sources, a channel called "TSPN" (source_ID 22) and one called "MOOV" (source_ID 80). For the three-hour period covered by AEIT-0, 9 a.m. to noon, three events are listed for TSPN and two for MOOV. The field event_id is a number used to identify each event. The event_id is used to link events with associated text delivered in the AETT. The assignment of an event_ID value must be unique within a source ID and a 3 -hour interval defined by one AEIT instance. The event_id is followed by the start_time and then the length_in_seconds. Notice that for AEIT-0 only, events can have start times before the activation time of the table. ETMs are simply long textual descriptions. The collection of ETMs constitutes an Aggregate Extended Text Table (ETT).
An example of an ETM for the Car Racing event may be:
"Live coverage from Indianapolis. This car race has become the largest single-day sporting event in the world. Two hundred laps of full action and speed."

Several descriptors can be associated with each event. The most important is the content advisory descriptor which assigns a rating value according to one or more systems. Recall that the actual rating system definitions are tabulated within the RRT.
Figure B.II. 5 diagrams the AEIT data structure. As shown, the AEIT includes event data for all sources listed in the VCT. In the figure, the hatched box represents one or more "event data" blocks, each comprised of the data items shown in the upper left.


Figure B.II.5/J. 94 - AEIT data structure

Figure B.II. 6 diagrams the AETT data structure. The AETT aggregates text for a given timeslot into one sectioned MPEG table.


AETT structure:	
table_ID	
long form section header   (1)	
AETT_subtype	MGT_tag
long form section header   (2)	
num_blocks_in_sec	
ETM_ID(n)	
ETM_ID(n+1)	
...	
ETM_ID(m)	

Figure B.II.6/J. 94 - Structure of AETT

An AETT- $n$ instance for a given value of $n$ (timeslot) is associated with the same PID value as AEIT- $n$. This means that they can be collected using a single Extended Channel data flow between Host and POD.

## Inactive Channels

Any channels in the L-VCT which are not currently active shall have the hidden attribute set to 1 and the hide_guide attribute set to 0 . Inactive channels in the S-VCT shall have the hidden attribute in channel_type, and the hide_guide flag in the channel_properties_descriptor() set to 0 .

Table B.II. 3 shows expected DTV behavior for the various combinations of the hidden and hide_guide attributes. In the table the "x" entry indicates "don't care." A check in the "surf" column indicates the channel is available by channel surfing and via direct channel number entry. A check in the "guide" column indicates that the channel may appear in the program guide listing.

Table B.II.3/J. 94 - Receiver Behavior with hidden and hide_guide attributes

hidden	Hide_guide	Receiver Behavior		
		Surf	Guide	
0	x	$\checkmark$	$\checkmark$	Normal channel
1	1			Special access only
1	0		$\checkmark$	Inactive channel

## B.II. 3 Representation of Time

The System Timetable provides time of day information to Hosts. In this Service Information appendix, time of day is represented as the number of seconds that have elapsed since the beginning of "GPS time," 0000 Hours UTC, January 6th, 1980. GPS time is referenced to the Master Clock at the US Naval Observatory and steered to Coordinated Universal Time (UTC). UTC is the current time of day at the time zone local to Greenwich, England, and is the time source we use to set our clocks.

The cycle of the seasons, technically known as the tropical year, is approximately 365.2422 days. Using the Gregorian calendar we adjust for the fractional day by occasionally adding an extra day to the year. Every fourth year is a leap year, except that three leap years in every 400 are skipped (the centennial years not divisible by 400). With this scheme there are 97 leap years in each 400 year span, yielding an average year that is 365.2425 days long.
UTC is occasionally adjusted by one-second increments to ensure that the difference between a uniform time scale defined by atomic clocks does not differ from the Earth's rotational time by more than 0.9 seconds. The timing of occurrence of these "leap seconds" is determined by careful observations of the Earth's rotation; each is announced months in advance. On the days it is scheduled to occur, the leap second is inserted just following 12:59:59 p.m. UTC.
UTC can be directly computed from the count of GPS seconds since January 6th, 1980 by subtracting from it the count of leap seconds that have occurred since the beginning of GPS time. In the months just following January 1st, 1999, this offset was 13 seconds.

This protocol defines various time-related events and activities, including starting times for programs, text display, changes to VCTs, and others. Two methods of time distribution are used in headend systems. One method derives time in the form of GPS seconds from GPS Hosts. These Hosts also provide current GPS/UTC offset data. The second method of time distribution relies on the Internet Standard Network Time Protocol (NTP). NTP servers provide output in the form of UTC time, and do not provide GPS/UTC offset data. The Standard-compliant Host is synchronized to system time by the System Timetable, which provides time either in the form of GPS seconds since week zero of GPS time, January 6th, 1980, or directly in UTC time. The interpretation depends on the value of the GPS/UTC offset field. The special value of zero is used to indicate that the system is being driven by a UTC time source directly, and that GPS/UTC offset data is not available.

## System Time

GPS satellites typically output GPS time in a format consisting of a week count (Tw) and a seconds within the week count (Ts), where week zero is defined as starting January 6th, 1980. For purposes of building the System Timetable, the following formula may be used:

$$
\mathrm{T}=(\mathrm{Tw} * 604800)+\mathrm{Ts}
$$

There are 604800 seconds per week.
When converting between GPS seconds and current local time in hours/minutes/seconds, the following factors must be taken into account:

- GPS to UTC offset - Given a time represented as GPS seconds, the Host first subtracts the GPS/UTC offset to convert to UTC.
- 1980 - The first year of GPS time started on January 6th, yielding 361 days in the first year (1980 was also a leap year).
- Leap years - The number of leap years that occurred between the current GPS second and 1980 must be accounted for. A leap year is a year whose number is evenly divisible by four, or, in the case of century years, by 400.
NOTE - According to this rule, the year 2000 is a leap year even though it is a century year, because it is also divisible by 400 .
- Time zones - Time zones are signed integer values in the range -12 to +13 hours, where positive numbers represent zones east of the Greenwich meridian and negative numbers west of it. Pacific Standard Time (PST) is 8 hours behind standard time, and Eastern Standard Time (EST) is 5 hours behind. The system defined by this Service Information standard accommodates time zones that are not an integral number of hours offset from Greenwich by defining time zone as an 11-bit signed integer number in units of minutes. To convert to local time, the time zone is added to Greenwich time using signed integer arithmetic.
- Daylight savings time - If applicable, daylight savings time must be taken into account. On a unit by unit basis, each Host may be given a definition for when daylight savings time is entered into in Spring, and when it is exited in Fall. Entry/exit points are given as absolute times (GPS seconds), and hence are given in one second resolution.


## Transmission Format for Event Times

In this messaging protocol, the absolute time of action is specified for most events in terms of an unsigned 32-bit integer number, the count of GPS seconds since January 6th, 1980. This count does not wrap until after the year $2116^{8}$.

## Handling of Leap Second Events

In this Service Information protocol, times of future events (such as event start times in the EIT) are specified the same as time of day, as the count of seconds since January 6th, 1980. Converting an event start time to UTC and local time involves the same calculation as the conversion of system time to local time. In both cases, the leap seconds count is subtracted from the count of GPS seconds to derive UTC.

GPS time is used to represent future times because it allows the Host to compute the time interval to the future event without regard for the possible leap second that may occur in the meantime. Also, if UTC were to be used instead, it wouldn't be possible to specify an event time that occurred right at the point in time where a leap second was added. UTC is discontinuous at those points.

Around the time a leap second event occurs, program start times represented in local time (UTC adjusted by local time zone and [as needed] daylight savings time) may appear to be off by plus or minus one second. Generating equipment may use one of two methods to handle leap seconds.

In method A, generating equipment does not anticipate the future occurrence of a leap second. In this case, prior to the leap second, program start times will appear correct. An event starting at exactly 10 a.m. will be computed as starting at 10:00:00. But just following the leap second, that same event time will be computed as $9: 59: 59$. The generating equipment should re-compute the start times in all the EITs and introduce the leap second correction. Once that happens, and Hosts have updated their EIT data, the computed time will again show as 10:00:00. In this way the disruption can be limited to a matter of seconds.
In method B , generating equipment does anticipate the occurrence of a leap second, and adjusts program start times for events happening after the new leap second is added. If the leap second event is to occur at midnight tonight, an event starting at $10 \mathrm{a} . \mathrm{m}$. tomorrow will be computed by receiving equipment as starting at 10:00:01.

For certain types of events, the precision of method B is necessary. By specifying events using a time system that involves no discontinuities, difficulties involving leap seconds are avoided. Events such as program start times do not require that level of precision. Therefore, method A works well.

[^7]
## Handling of Leap Second Events

Consider the following example. Times are given relative to UTC, and would be corrected to local time zone and daylight savings time as necessary.

- Time of day (UTC): 1:00 p.m., December 30th, 1998
- Event start time (UTC): 2:00 p.m., January 2nd, 1999
- A leap second event will occur just after 12:59:59 p.m. on December 31st , 1998.
- Leap seconds count on December 30th is 12.

The data in the System Timetable is:

- GPS seconds = $599058012=0 \times 23 B 4 E 65 C$
- GPS to UTC offset = 12

Using method A (upcoming leap second event is not accounted for):

- Event start time in EIT: $599320812=0 \times 23 B 8 E 8 E C$
- Converted to UTC: 2:00:00 p.m., January 2nd, 1999
- Number of seconds to event: $262800=73$ hours, 0 minutes, 0 seconds

Using method B (upcoming leap second event is anticipated):

- Event start time in EIT: $599320813=0 \times 23 B 8 E 8 E D$
- Converted to UTC: 2:00:01 p.m., January 2nd, 1999
- Number of seconds to event: $262801=73$ hours, 0 minutes, 1 second

Note that using method B, the number of seconds to event is correct, and does not need to be recomputed when the leap seconds count moves from 12 to 13 at year-end.

## APPENDIX B.III

## Daylight Savings Time control

In order to convert GPS into local time, the Host needs to store a time offset (from GPS to local time) in local memory and an indicator as to whether daylight savings is observed. These two quantities can be obtained from the user interface (indicating time zone and daylight savings observance) or from the conditional access system, if present, and stored in non-volatile Host memory.
Since there is a common time (GPS) transmitted in SI, a mechanism to indicate when the Host should switch into (or out of) daylight savings time at the appropriate local time can be very useful. Once all the Hosts have transitioned at their local times, the entire system can be shifted into daylight savings time. This is accomplished by appropriate setting of the daylight_savings in the daylight_savings_time_descriptor() the STT. The basic use of daylight savings fields through the year is shown in Table B.III.1.

Table B.III.1/J. 94 - Basic use of daylight savings fields through the year

Conditions	$\begin{gathered} \text { DS } \\ \text { status } \end{gathered}$	$\underset{\substack{\text { DS_day } \\ \text { of_month }}}{ }$	DS_hour
At the beginning of the year (January) daylight savings is off. This is the status of the fields until:	0	0	0
When the transition into daylight savings time is within less than one month, the DS_day_of_month field takes the value day_in, and the DS_hour field takes the value hour_in. The DS_status bit is 0 indicating it is not yet daylight savings time. (The transition is to occur on the day_in day of the month at hour=hour_in; for example, if the transition were on April 15 at 2 a.m., then day_in $=15$ and hour_in=2.)	0	day_in	hour_in
After all time zone daylight transitions (within the span of the network) have occurred, the DS_status bit takes the value 1 , indicating that daylight savings time is on. The DS_day_of_month field and the DS_hour field take the value 0 . (In the U.S., this transition has to occur no later than 7 p.m. Pacific Time on the day day_in.) This is the status of the fields until:	1	0	0
When the transition out of daylight savings time is within less than one month, the DS_day_of_month field takes the value day_out, and the DS_hour field takes the value hour_out. The DS_status bit is 1 indicating it is still daylight savings time. (The transition is to occur on the day_out day of the month at hour=hour_out; for example, if the transition were on October 27 at 2 a.m., then day_out $=27$ and hour_out=2.)	1	day_out	hour_out
After all time zones (within the span of the network) have shifted out of daylight savings time, the DS_status bit takes the value 0 , indicating that daylight savings time is off. The DS_day_of_month field and the DS_hour field take the value 0 . (In the U.S., this transition has to occur no later than 7 p.m. Pacific Time on the day day_out.) This finishes the cycle.	0	0	0

## SERIES OF ITU-T RECOMMENDATIONS

Series A Organization of the work of ITU-T
Series B Means of expression: definitions, symbols, classification
Series C General telecommunication statistics
Series D General tariff principles
Series E Overall network operation, telephone service, service operation and human factors
Series F Non-telephone telecommunication services
Series G Transmission systems and media, digital systems and networks
Series H Audiovisual and multimedia systems
Series I Integrated services digital network
Series J Transmission of television, sound programme and other multimedia signals
Series K Protection against interference
Series L Construction, installation and protection of cables and other elements of outside plant
Series M TMN and network maintenance: international transmission systems, telephone circuits, telegraphy, facsimile and leased circuits

Series N Maintenance: international sound programme and television transmission circuits
Series O Specifications of measuring equipment
Series P Telephone transmission quality, telephone installations, local line networks
Series Q Switching and signalling
Series R Telegraph transmission
Series S Telegraph services terminal equipment
Series T Terminals for telematic services
Series U Telegraph switching
Series V Data communication over the telephone network
Series X Data networks and open system communications
Series Y Global information infrastructure and Internet protocol aspects
Series Z Languages and general software aspects for telecommunication systems


[^0]:    1 The Base PID is the PID associated with the "base" Service Information tables. In this protocol, the base_PID is fixed at 0x1FFC. Refer to Table B.2.

[^1]:    ${ }^{2}$ NOTE - Assignment of table_ID values in the 0 xCE to 0 xFE range requires coordination between ATSC and SCTE.

[^2]:    3 Note that transmission systems using VSB modulation transmit spectra are not symmetrical about the carrier or pilot tone. Acquisition of a VSB-modulated signal involves computation of the pilot tone (or in analogue VSB, the picture carrier) location relative to the centre of the band. For example, for the ATSC Digital Television Standard (ASTC A/53), where the channel bandwidth is 6 MHz , the pilot tone is located 310 kHz above the lower edge of the channel, or 2.690 MHz below the specified centre of the band. Similarly, for analogue NTSC, the picture carrier is 1.25 MHz above the lower edge of the channel, or 1.75 MHz below the specified centre of the band.

[^3]:    4 Please refer to B. 6.8 for definition of the AEIT- $n$ and AETT- $n$ notation convention used in this annex.

[^4]:    5 A method to include such a unique 16 -bit "Transmission Signal ID" in the NTSC VBI is specified in the EIA-752 specification.

[^5]:    6 Although AEIT is similar in structure to the EIT in ATSC A/65, its properties differ from EIT in this regard.

[^6]:    7 Source ID and application ID need never be defined in the same virtual channel record, therefore they share a common 16-bit field in the stored map. Channels are defined as for "application access" or not; if they are application access, the field defines the application ID, if not, it defines the source ID.

[^7]:    8 Prior to that time, all initial Receivers will surely be out of service, and new ones can be designed to handle the wrap condition.

