

TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU

J.84 (03/2001)

SERIES J: CABLE NETWORKS AND TRANSMISSION OF TELEVISION, SOUND PROGRAMME AND OTHER MULTIMEDIA SIGNALS

Digital transmission of television signals

Distribution of digital multi-programme signals for television, sound and data services through SMATV networks

ITU-T Recommendation J.84

(Formerly CCITT Recommendation)

ITU-T J-SERIES RECOMMENDATIONS

CABLE NETWORKS AND TRANSMISSION OF TELEVISION, SOUND PROGRAMME AND OTHER MULTIMEDIA SIGNALS

General Recommendations	J.1-J.9
General specifications for analogue sound-programme transmission	J.10-J.19
Performance characteristics of analogue sound-programme circuits	J.20-J.29
Equipment and lines used for analogue sound-programme circuits	J.30-J.39
Digital encoders for analogue sound-programme signals	J.40-J.49
Digital transmission of sound-programme signals	J.50-J.59
Circuits for analogue television transmission	J.60-J.69
Analogue television transmission over metallic lines and interconnection with radio-relay links	J.70-J.79
Digital transmission of television signals	J.80-J.89
Ancillary digital services for television transmission	J.90-J.99
Operational requirements and methods for television transmission	J.100-J.109
Interactive systems for digital television distribution	J.110-J.129
Transport of MPEG-2 signals on packetised networks	J.130-J.139
Measurement of the quality of service	J.140-J.149
Digital television distribution through local subscriber networks	J.150-J.159
IPCablecom	J.160-J.179
Miscellaneous	J.180-J.199
Application for Interactive Digital Television	J.200-J.209

For further details, please refer to the list of ITU-T Recommendations.

ITU-T Recommendation J.84

Distribution of digital multi-programme signals for television, sound and data services through SMATV networks

Summary

This Recommendation "Distribution of digital multi-programme signals for television, sound and data services through SMATV networks" covers the definition of the framing structure, channel coding and modulation for digital multi-programme signals for television, sound and data services received from a satellite system and distributed in a transparent way through Satellite Master Antenna Television (SMATV) networks.

This Recommendation defines the required network architecture for SMATV systems and is closely related to ITU-R BO.1211 (applicable to the satellite path) and to ITU-T J.83 (applicable to the cable path).

This Recommendation has four Annexes (A, B, C and D) that provide the specifications for the digital television SMATV systems submitted to the ITU-T. This reflects the fact that standardization of digital SMATV television systems is being addressed for the first time by the ITU-T and that a number of systems had been developed and provisionally implemented when this standardization effort was undertaken by the ITU.

This Recommendation recommends that those implementing new digital multi-programme services on existing and future SMATV networks should use one of the systems whose framing structure, channel coding and modulation are specified in Annexes A, B, C and D.

Source

ITU-T Recommendation J.84 was revised by ITU-T Study Group 9 (2001-2004) and approved under the WTSA Resolution 1 procedure on 9 March 2001.

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of telecommunications. The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical, operating and tariff questions and issuing Recommendations on them with a view to standardizing telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years, establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a telecommunication administration and a recognized operating agency.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence, validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others outside of the Recommendation development process.

As of the date of approval of this Recommendation, ITU had not received notice of intellectual property, protected by patents, which may be required to implement this Recommendation. However, implementors are cautioned that this may not represent the latest information and are therefore strongly urged to consult the TSB patent database.

© ITU 2001

All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from ITU.

CONTENTS

1	Scope.	
2	Referen	nces
3	Definit	ions
4	Symbo	ls and abbreviations
4.1		ls
4.2	Abbrev	riations
5	Digital	multi-programme SMATV systems
Annex	x A – Dig	ital multi-programme SMATV System A
A.1	Scope.	
A.2	Referen	nces
A.3	SMAT	V distribution system concepts
A.4	SMAT	V System A1
	A.4.1	Full implementation of SMATV System A1
	A.4.2	Simplified implementation of SMATV System A1
A.5		V System A2
	A.5.1	SMATV-IF
	A.5.2	SMATV-S
A.6		-2 transport layer
A.7	Framın	g structure
Appei		Channel model of SMATV distribution systems
	A.I.1	Channel model response
	A.I.2	Definition of adaptive equalization requirements
Appei	ndix A.II	- Examples of 64-QAM and QPSK performance with equalizers
	A.II.1	SMATV System A1 – Simulation results
	A.II.2	SMATV System A.2 – Simulation results
Appei	ndix A.III	- Bit rate consideration for SMATV distribution systems
Appei	ndix A.IV	
Annex	x B – Dig	ital multi-programme SMATV System B
Anne	x C – Dig	ital multi-programme SMATV System C
C.1	Scope.	
C.2	SMAT	V distribution system concept
C.3	SMAT	V system C(I)
C.4	SMAT	V system C(II)

		Page
C.5	SMATV system C(III)	20
C.6	MPEG-2 transport layer	21
C.7	Framing structure for channel coding	21
Annex	x D – Digital multi-programme SMATV System D	21
D.1	Introduction	21
D.2	SMATV VSB system concept	21
D.3	SMATV head-end commonalities	22
D.4	Conclusion	22

Introduction

The development of new digital technologies is now reaching the point at which it is evident that they enable digital systems to offer significant advantages, in comparison with conventional analogue techniques, in terms of vision and sound quality, spectrum and power efficiency, service flexibility, multimedia convergence and potentially lower equipment costs. Moreover, the use of SMATV distribution for the delivery of video and audio signals to individual viewers and listeners is continually growing, and has already become a significant form of distribution in some parts of the world. It is also evident that these potential benefits can best be achieved through the economies of scale resulting from the widespread adoption of digital systems designed to be easily implementable on existing infrastructure and to take advantage of the many possible synergies with related audiovisual systems.

Common features of SMATV networks are the use of consumer-type equipment and the lack of regular maintenance, and therefore the system ruggedness is a primary consideration. In particular, the SMATV head-end should be transparent to the digital TV multiplex, without any baseband interfacing, thus permitting the use of simple and cost-effective consumer-type head-end equipment.

This Recommendation has four Annexes (A, B, C and D) that provide the specifications for the digital SMATV systems submitted to the ITU-T. This reflects the fact that standardization of digital SMATV systems is being addressed for the first time by ITU-T and that a number of systems had been developed and provisionally implemented when this standardization effort was undertaken by the ITU.

Administrations and private operators planning the introduction of SMATV systems are encouraged to consider the use of one of the systems described in Annexes A, B, C and D and to seek opportunities for further convergence, rather than developing a different system based on the same technologies.

This second version of this Recommendation incorporates Amendment 1 and Amendment 2. These amendments brought the following changes with respect to the first edition of this Recommendation:

- a) Annex C has now full text. In the first edition it was stated that Annex C was under study.
- b) Annex D takes into account additional VSB modes which are specified in the second edition of ITU-T 1.83
- c) A new Table 1/J.84 is added to show the comparison of the digital multi-programme SMATV systems.

ITU-T Recommendation J.84

Distribution of digital multi-programme signals for television, sound and data services through SMATV networks

1 Scope

The scope of this Recommendation is the definition of the framing structure, channel coding and modulation for digital multi-programme signals distributed by SMATV networks, possibly in frequency-division multiplex with existing analogue television signals.

NOTE – It should be noted that requirements for some ancillary data capacity in the forward channel, related to the needs of interactive services, can be accommodated in the MPEG-2 transport layer, which is specified for all the systems described in the annexes to this Recommendation (a description of the provision and characteristics of the return channel is outside the scope of this Recommendation).

It should also be noted that the specified MEPG-2 transport layer allows the delivery of a number of digital sound channels, at various possible levels of quality; the content of those channels can be either related or unrelated to the video signal content.

This Recommendation is intended to ensure that the designers and installers of SMATV networks carrying digital multi-programme signals will have the information they need to be able to establish and maintain fully satisfactory networks. It also provides the information needed by the designers and manufacturers of equipment (including receivers) for digital multi-programme signals distributed by SMATV networks.

It is to be noted that this Recommendation is complementary to other Recommendations which define the transmission characteristics for digital multi-programme signals distributed by satellite and cable networks (see References).

2 References

The following ITU-T Recommendations and other references contain provisions which, through reference in this text, constitute provisions of this Recommendation. At the time of publication, the editions indicated were valid. All Recommendations and other references are subject to revision; all users of this Recommendation are therefore encouraged to investigate the possibility of applying the most recent edition of the Recommendations and other references listed below. A list of the currently valid ITU-T Recommendations is regularly published.

- [1] ITU-T J.83 (1997), Digital multi-programme systems for television, sound and data services for cable distribution.
- [2] ITU-R BO.1211 (1995), Digital multi-programme emission systems for television, sound and data services for satellites operating in the 11/12 GHz frequency range.
- [3] ITU-T H.222.0 (2000) | ISO/IEC 13818-1:2000, Information technology Generic coding of moving pictures and associated audio information: Systems.
- [4] FORNEY (G.D.): Burst-correcting codes for the classic bursty channel, *IEEE Trans. Comm. Tech.*, COM-19, pp. 772-781, October 1971.
- [5] ITU-R BO.1294 (1997), Common functional requirements for the reception of digital multi-programme television emissions by satellites operating in the 11/12 GHz frequency range.
- [6] ITU-R BO.1408 (1999), Transmission system for advanced multimedia services provided by integrated services digital broadcasting in a broadcasting-satellite channel.

3 Definitions

This Recommendation defines the following term.

3.1 satellite master antenna television (SMATV) network: A broadband network intended for the distribution of television, sound and data signals received directly from one or more satellites, possibly in frequency-division multiplex with similar terrestrial UHF or VHF signals, to households located in one or more adjacent buildings. Where intended also for the distribution of new digital multi-programme television, sound and data services, such networks are known as "Digital SMATV networks", and the digital configuration made for this purpose is known as a "Digital multi-programme SMATV system".

4 Symbols and abbreviations

4.1 Symbols

This Recommendation uses the following symbols:

α Roll-off factor

f₀ Channel centre frequency

R_s Symbol rate corresponding to the bilateral Nyquist bandwidth of the modulated signal

R_u Useful bit rate after MPEG-2 transport multiplexer

 $R_{u'}$ Bit rate after RS outer coder

T Number of bytes which can be corrected in RS error protected packet

T_s Symbol period

4.2 Abbreviations

This Recommendation uses the following abbreviations:

BB BaseBand

BER Bit Error Ratio

BPSK Binary Phase Shift Keying

BW BandWidth

DTVC Digital Television by Cable

EBU European Broadcasting Union

ETS European Telecommunication Standard

FEC Forward Error Correction
FIR Finite Impulse Response

IF Intermediate Frequency

IRD Integrated Receiver Decoder

LNB Low Noise Block

LSB Least Significant Bit

MPEG Motion Picture Experts Group

MSB Most Significant Bit

MUX Multiplex

PDH Plesiochronous Digital Hierarchy
PRBS PseudoRandom Binary Sequence

PSK Phase Shift Keying

QAM Quadrature Amplitude Modulation

QEF Quasi Error Free

QPSK Quaternary Phase Shift Keying

RF Radio Frequency
RS Reed-Solomon

SMATV Satellite Master Antenna Television

SMATV-DTM SMATV system based on Digital TransModulation

SMATV-IF SMATV system based on distribution at IF

SMATV-S SMATV system based on distribution at extended Super Band

TDL Tapped Delay Line

TDM Time Division Multiplex

TDT Transparent Digital Transmodulator

TV Television

UHFUltra High FrequencyVHFVery High FrequencyVSBVestigial SideBand

5 Digital multi-programme SMATV systems

It is recommended that those wishing to distribute new digital multi-programme services on existing and future SMATV networks should use one of the systems whose framing structure, channel coding and modulation are specified in Annexes A, B, C and D. The specifications are compared in Table 1, indicating common features.

 $Table\ 1/J.84-Comparison\ of\ digital\ multi-programme\ SMATV\ systems$

Item	Annex A	Annex C	Annex D
Satellite modulation	QPSK	BPSK QPSK 8PSK	QPSK
QPSK distribution excluding frequency conversion	Yes System A2 (SMATV-IF)	Yes System C(I)	Not considered
QPSK distribution including frequency conversion	Yes System A2 (SMATV-IF)	Yes System C(II)	Not considered
	Yes System A2 (SMATV-S) (VHF/UHF typical 230-470 MHz)		
Transmodulation at the head-end	QPSK to QAM (System A1)	BPSK, QPSK, or 8PSK to QAM [System C(III)]	QPSK, 2-VSB, 4-VSB, 8-VSB, 16-VSB, 8-VSB (trellis coded)
Simplified implementation of TDT	Yes (simplified System A1)	Yes	Not applicable
Baseband processing at the head-end	No	No	Yes (possible reconfiguration of MPEG-2 TS)
Receiver (IRD)	QPSK for S BPSK, QPSK, 8PSK fo QAM for System	2-VSB, 4-VSB, 8-VSB, 16-VSB, 8-VSB (trellis coded)	
MPEG-2 transport layer	Yes	Yes	Yes
Compatibility with cable systems (ITU-T J.83)	Annex A	Annex C	Annex D
Channel model	As indicated in Appendix A.I (Annex A)	Not provided	Not provided
Equalization requirements	Not necessary for QPSK Simple equalizer for 64-QAM	Not identified	Not identified
SMATV channel bandwidth	Not constrained	Systems C(I), C(II): not constrained: System C(III): 6 MHz	6 MHz

ANNEX A

Digital multi-programme SMATV System A

A.1 Scope

This annex describes a transmission system, known as System A for digital multi-programme television suitable for distribution in Satellite Master Antenna Television (SMATV) systems. This annex describes the SMATV network architecture, is complementary to Annex A/J.83 [1] and it is aligned with [2]. System A described in this annex is compatible with the modulation and channel coding systems used for digital multi-programme television by cable and satellite transmissions (see [1] and [2], respectively). System A is based on the MPEG-2 System Layer [3], with the addition of appropriate Forward Error Correction (FEC) technique. System A allows for further evolution as technology advances as described in [1] (see also the Bibliography in Appendix A.IV to this annex) and is capable of starting a reliable service as of now.

A.2 References

This annex incorporates by dated and undated reference, provisions from other publications. These normative references are cited at the appropriate places in the text and the publications are listed in clause 2 as References [1] to [4].

A.3 SMATV distribution system concepts

A Satellite Master Antenna Television (SMATV) system is defined as a system which is intended for the distribution of television and sound signals to households located in one or more adjacent buildings. These signals are received by a satellite receiving antenna and may be combined with terrestrial TV signals. SMATV distribution systems are also known as community antenna installations or domestic TV cable networks. A SMATV system represents a means for sharing the same resources among several users for satellite and terrestrial reception.

The SMATV System is designed to perform the adaptation of the satellite TV signals to the SMATV channel characteristics. The primary consideration of the SMATV System is the transparency of the SMATV head-end to the digital TV multiplex from a satellite reception without baseband interfacing, delivering that signal to the user home Integrated Receiver Decoder (IRD); thus permitting a simple and cost effective head-end as required for the consumer profile of SMATV equipment.

This annex considers two main SMATV System approaches for distribution of digital TV signals in SMATV installations, as follows:

SMATV System A1: This System approach consists of the transmodulation from satellite Quaternary Phase Shift Keying (QPSK) signals as defined in [2] to a Quadrature Amplitude Modulation (QAM) scheme (16-QAM, 32-QAM or 64-QAM) using either a full implementation of the System described in Annex A/J.83 [1] (see A.4.1 below), or a simplified transmodulation process as described in A.4.2 below. This process of transmodulation without baseband interfacing is also known as Transparent Transmodulation.

SMATV System A2: Direct distribution of QPSK satellite signals as defined in [2] using frequency conversion of the received satellite signal to a frequency band appropriate to the characteristics of the distribution network.

The use of one of the System A1 or System A2 approaches depends on the technical performance and cost trade-offs in each particular situation.

NOTE – Digital terrestrial specification is not the subject of this annex.

A.4 SMATV System A1

SMATV System A1 is based on the use of the transmodulation from satellite QPSK signals to a QAM modulation scheme (see Figure A.1). This system is also known as SMATV-DTM.

The System comprises the following elements:

- Head-end transmodulation unit: This performs the required decoding and adapts the signal modulation coding to the cable distribution network. This unit is also known as the Transparent Digital Transmodulator (TDT).
- SMATV UHF distribution network: This is a physical cable structure for distribution of the signal to several users. The reference channel response of SMATV distribution network is given in Appendix A.I.
- User IRD: This unit performs the required equalization to compensate the channel distortion as well as demodulating and decoding the QAM signal.

A.4.1 Full implementation of SMATV System A1

A full implementation of the QAM System shall be performed according to Annex A/J.83 [1] and to [2] with a transparent interface between them. To this end, the full implementation of SMATV System A1 shall make use of the MPEG-2 transport layer, the framing structure, the channel coding, the byte-to-symbol mapping and modulation consistent with Annex A/J.83 [1] and with [2]. The channel coding shall include the randomization for spectrum shaping, the Reed-Solomon (RS) coding and the convolutional interleaving according to Forney [4]. This configuration is shown in Figure A.2.

A.4.2 Simplified implementation of SMATV System A1

In the complete implementation architecture of SMATV System A1, outer error protection (i.e. Reed-Solomon and convolutional interleaving) is performed twice, i.e. independently for the satellite link and the cable link. Therefore, the cable link is fed by a Quasi Error Free (QEF) bit stream. In cases when an adequate satellite link margin is achieved, one Reed-Solomon decoder-encoder and de-interleaving-interleaving process could be eliminated from the System. In such cases, a single RS decoder at the user IRD is capable of correcting errors generated in the cable link added to the remaining bursty errors after Viterbi decoding. This configuration is shown in Figure A.2 when removing the dashed line blocks.

NOTE – This simplified configuration may imply a non-negligible saving in terms of the number of gates and thus in the total equipment cost. Due to consumer type character of SMATV head-ends, this saving is important when an economy of scale is achieved. Consequently, manufacturers could decide whether to adopt the simplified SMATV System A1 architecture.

A.5 SMATV System A2

SMATV System A2 is based on the use of QPSK modulation (see Figure A.3). The SMATV System A2 concept allows a direct reception of digital satellite signals by the user IRD connected to a SMATV distribution network. The functional elements of this system are given in [2]. Two configurations of SMATV System A2 are considered as follows:

- SMATV-IF;
- SMATV-S.

In the SMATV-IF configuration, QPSK signals are distributed directly at the Intermediate Frequency (IF) as delivered by the Low Noise Block (LNB) [see Figure A.3 a)]. In the SMATV-S configuration, QPSK signals are frequency converted to S-band [see Figure A.3 b)]. In both configurations, the satellite signal reaches the user IRD without being subject to any demodulation and transmodulation process at the head-end. Thus, the modulation characteristics of the satellite link are retained.

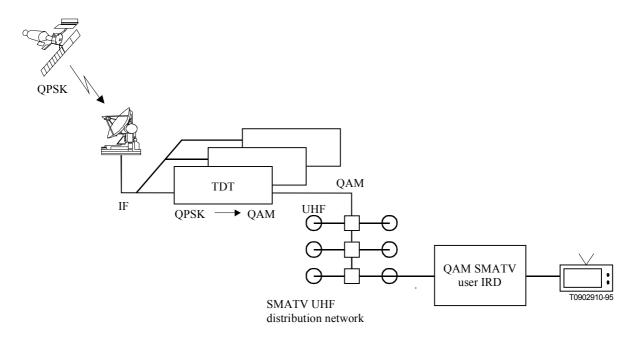


Figure A.1/J.84 – SMATV System A1 configuration

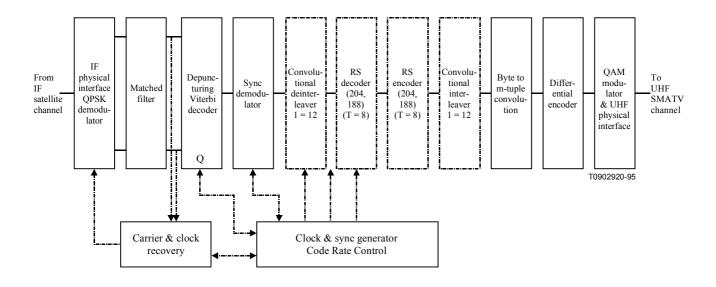


Figure A.2/J.84 - Functional diagram of a SMATV System A1

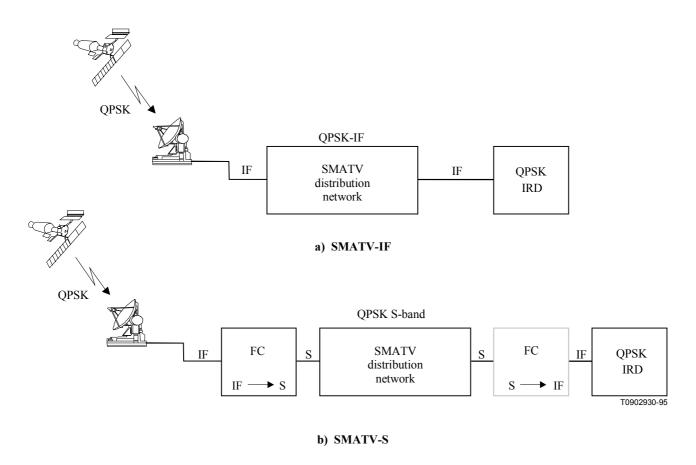


Figure A.3/J.84 – SMATV System A2 configuration, SMATV-IF and SMATV-S

A.5.1 SMATV-IF

This configuration allows the direct distribution of the QPSK signal received from the satellite to the SMATV-IF distribution network in the extended IF band (above 950 MHz).

The user IRD should be able to tune all the channels in the extended IF band to demodulate and to decode the signal.

The functional elements of SMATV-IF are given in [2].

A.5.2 SMATV-S

This configuration requires the frequency conversion of the satellite signals from extended IF band (above 950 MHz) to a part of the VHF/UHF band [for example: extended S-band (230 MHz to 470 MHz)].

NOTE – An inverse frequency conversion process (e.g. from extended S-band to IF) may be required at user IRD equipped with IF tuner.

The user IRD performs similar functions as for the satellite reception (see [2]). In order to compensate for the channel linear distortions, the matched filter may include equalization capabilities.

The S-band channel model is similar to that of the UHF band; it is given in Appendix A.I.

A.6 MPEG-2 transport layer

The SMATV System shall use the MPEG-2 transport layer which is defined in [3]. The Transport Layer for MPEG-2 data is comprised of packets having 188 bytes, with one byte for synchronization purposes, three bytes of header containing service identification, scrambling and control information, followed by 184 bytes of MPEG-2 or auxiliary data.

A.7 Framing structure

The framing organization of the SMATV System shall be based on the MPEG-2 transport packet structure (see [1], [2] and [3]).

APPENDIX A.I

Channel model of SMATV distribution systems

(to Annex A of Recommendation J.84)

A.I.1 Channel model response

In order to test SMATV Systems and to evaluate the need for equalization, an RF channel model response has been obtained for SMATV distribution network. The model is based on measurements and computer simulations. The model is significantly simplified in order to take into account only the relevant aspects for the equalization definition. It applies to UHF band as well as S-band SMATV networks.

The RF channel model is split into four models; they are presented in Figures A.I.1 to A.I.4:

- model A: for microreflections between devices in consecutive floors (Figure A.I.1);
- model B: for microreflections between head-end and first device (Figure A.I.2);
- model C: for microreflections between tap-off and user outlet (Figure A.I.3);
- model D: combined microreflections model (Figure A.I.4).

Real SMATV networks usually combine features from all models depending on the concrete structure, and mainly the cable length and mismatching degree in each connection. It has been concluded that:

- microreflections delay depends on cable lengths;
- microreflections attenuation depends on the level of mismatching among components (return losses).

These models are based on assumptions derived from a survey on the most extended SMATV structures, see [5] in Appendix A.IV. The following configuration has been considered as a reference:

- a range of 3 m to 3.5 m cable length between cascade user outlets;
- a range of 6 m to 12 m cable length between tap-off and user outlet for parallel structures;
- a range of 10 m to 20 m cable length between head-end amplifiers and first passive elements;
- approximately a 10-storey building, in order to include representative echoes generated in several floors.

In Figures A.I.1 to A.I.4 microreflection distribution can be observed for the 4 models. The X-axis in the diagrams represents the microreflection delay in nanoseconds. The Y-axis gives microreflection attenuation in dB. Taking the above considerations into account, the echo delay ranges can be noted.

The reference channel model for most practical installations is given in Figures A.I.1 to A.I.4 marked with "3 sigma" and is represented in dark colour. The upper level refers to the worst case.

A.I.2 Definition of adaptive equalization requirements

QAM demodulator at the user IRD should include an adaptive equalizer to compensate the channel distortion introduced by SMATV in the UHF band. An equalizer may also be included at the user IRD for QPSK demodulation in the S-band. Equalization should be blind, since the baseline systems do not include any training sequence. Referring to the reference RF channel model of Figures A.I.1 to A.I.4 for the 3 sigma case, state of the art implementations of equalizers can provide less than 1 dB implementation margin at a BER of 2×10^{-4} , and less than 100 ms acquisition time.

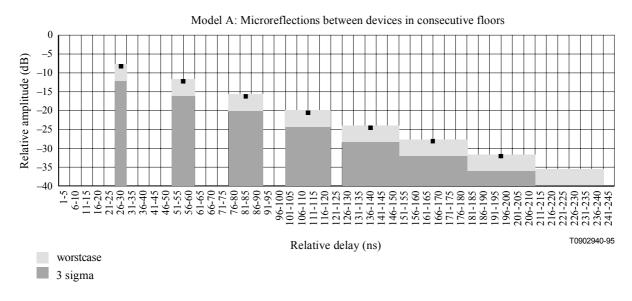


Figure A.I.1/J.84 – RF channel model A response of UHF and S-bands SMATV distribution network

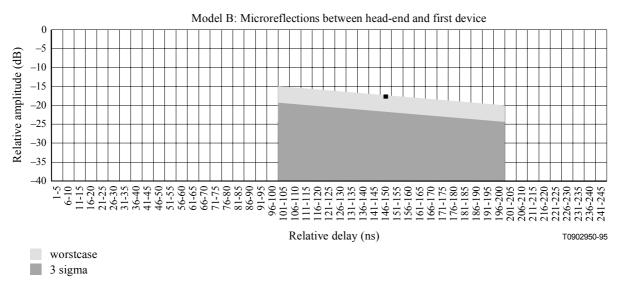


Figure A.I.2/J.84 – RF channel model B response of UHF and S-bands SMATV distribution network

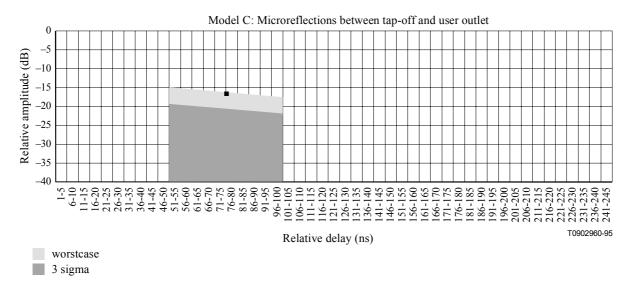


Figure A.I.3/J.84 – RF channel model C response of UHF and S-bands SMATV distribution network

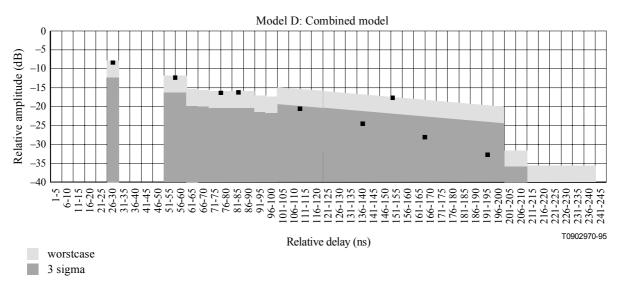


Figure A.I.4/J.84 – RF channel model D response of UHF and S-bands SMATV distribution network

APPENDIX A.II

Examples of 64-QAM and QPSK performance with equalizers

(to Annex A of Recommendation J.84)

In the following, performance of two possible examples of SMATV systems are investigated by computer simulations:

SMATV System A1: Transmodulation from QPSK to 64-QAM, symbol rate $R_s = 6.9$ MBaud in 8 MHz channels, useful bit rate of 38 Mbit/s at the MPEG multiplex output.

SMATV System A2: QPSK modulation with rate 3/4 convolutional coding, symbol rate $R_s = 25.8$ MBaud and useful bit rate of 35.6 Mbit/s at the MPEG multiplex output.

To overcome the linear distortions introduced by the SMATV network, an adaptive "blind" equalizer (see [4] in Appendix A.IV), composed by a symbol-spaced complex transversal filter Finite Impulse Response (FIR), has been introduced in the receiver. The second tap of the equalizer was set to "1", since the presence of anticipated echoes can generally be excluded in SMATV installations. The results assume steady state of the equalizer, after the end of the blind lock-in phase.

Some critical examples of SMATV channels have been considered in the simulations, as measured on a hardware-simulated SMATV network for a 5-floor building (see [3] in Appendix A.IV). The channel amplitude and group delay characteristics are reported in Figures A.II.1 to A.II.6. The first case (Response 1) refers to a 40 MHz channel, suitable for System A2, while the others (i.e. Response 2, to, Response 6) refer to 8 MHz channels, suitable for System A1.

A.II.1 SMATV System A1 – Simulation results

With System A1 the signal is regenerated at the SMATV network input, therefore the noise generator in the simulations was put at the 64-QAM demodulator input, after the SMATV network. Very high degradation levels have been obtained without equalization. In the presence of adaptive equalization with 6 symbol-spaced taps, the signal-to-noise ratio degradation for BER equal to 2×10^{-4} (before Reed-Solomon correction) was lower than 1.5 dB in all the five analyzed network responses [2] in Appendix A.IV. These results refer to the value of 23.8 dB in a bandwidth of 7 MHz in an ideal linear Gaussian channel; they do not however include possible additional impairments due to amplifier non-linearity in the cable head-end.

It is therefore possible to conclude that with SMATV System A1 (in the 64-QAM configuration), the use of adaptive equalizers is mandatory to overcome typical SMATV network degradations. However, in the case of old cable installations with very poor performance (e.g. echo levels of about 8 dB to 12 dB, as given in Figures A.I.1 to A.I.4), the use of the equalizer might be insufficient to guarantee 100% service availability when 64-QAM modulation is adopted. Nevertheless, in the case of new installations complying with [8] in Appendix A.IV, the service availability with 64-QAM can be guaranteed by a suitable equalizer.

Hardware tests with a 16-QAM modem including blind equalization have demonstrated good performance on the above described SMATV network, see [3] in Appendix A.IV.

As regards the required number of equalization (symbol-spaced) taps N, the echo delay spread T_e to be considered on typical SMATV networks is of the order of 220 ns, as indicated in Figures A.I.1 to A.I.4 (64-QAM requires C/I levels of the order of 35 dB). Assuming that the second tap of the equalizer is set to "1", to achieve good performance with 64-QAM and high echo levels, N should be larger than $2 + 2 T_e/T_s$. Therefore, for a symbol duration $T_s = 143$ ns, the minimum equalizer length should be of about 6 taps, while 8 to 10 taps could offer an additional margin to cope with longer echoes.

A.II.2 SMATV System A.2 – Simulation results

Since in a well-designed SMATV network adopting SMATV System A2 the main noise source should be in the satellite downlink path, the noise source in the simulations has been put before the SMATV network. The SMATV network transfer function, which has been used in the simulations, is "Response 1" of Figure A.II.1.

For BER equal to 10^{-4} before Reed-Solomon correction, the SMATV network introduced a degradation on the required C/N (calculated in a bandwidth of 26.8 MHz) for the satellite of about 1.4 dB on the system without equalizer, while the degradation was reduced to 0.4 dB with the equalizer [2] in Appendix A.IV. These results refer to the value of 6.1 dB in an ideal linear Gaussian channel; no implementation margin is included. Therefore also for SMATV System A2, based on the

rugged QPSK modulation, the use of an adaptive equalizer in the receiver seems important, allowing to utilize current SMATV installations with very low additional C/N degradation with respect to direct satellite reception.

Hardware tests with a QPSK modulator including rate 3/4 convolutional coding, without equalizer, confirmed the simulation results on the above SMATV network.

As regards the number of equalizer (symbol-spaced) taps N, assuming that the second tap of the equalizer is set to "1", good QPSK performance can be achieved for $N > 2 + (T_e/T_s)$, where T_e is the echo delay spread to be considered. For $T_e = 220$ ns, as indicated in Figure A.I.1, and a symbol duration of $T_s = 30$ ns, the minimum equalizer length should be of about 10 taps.

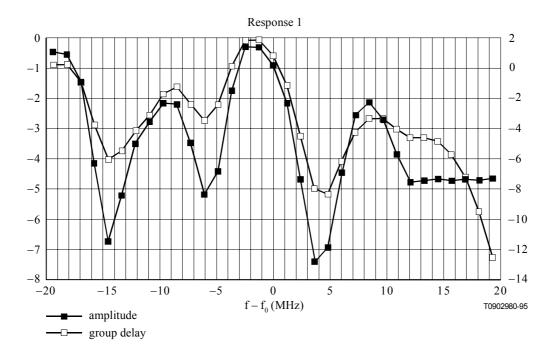


Figure A.II.1/J.84 – Significant example of the measured transfer function for the considered SMATV network

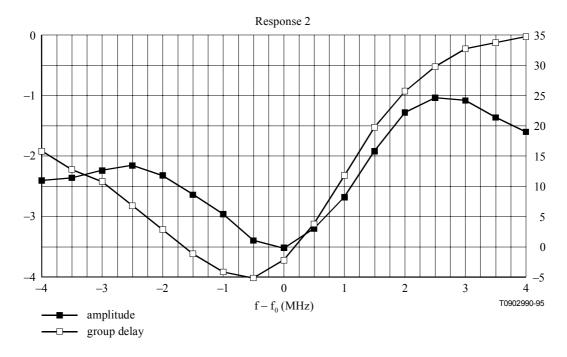


Figure A.II.2/J.84 – Significant example of the measured transfer function for the considered SMATV network

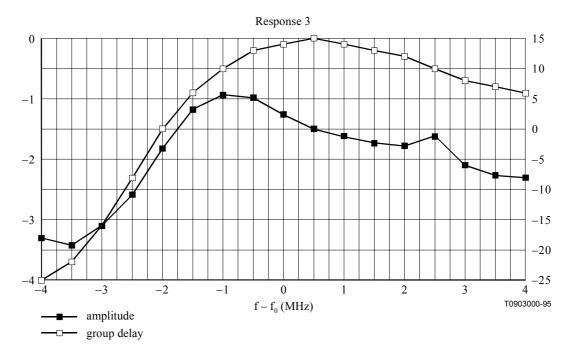


Figure A.II.3/J.84 – Significant example of the measured transfer function for the considered SMATV network

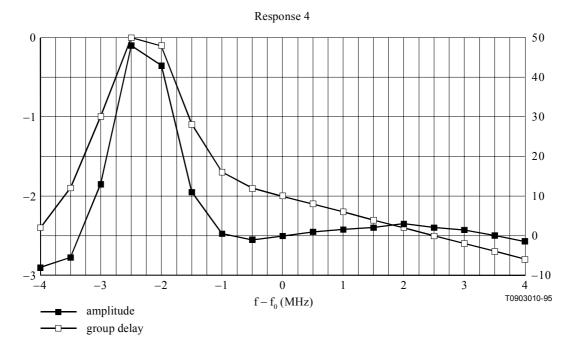


Figure A.II.4/J.84 – Significant example of the measured transfer function for the considered SMATV network

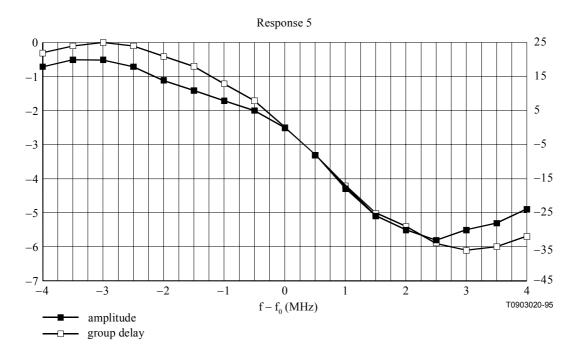


Figure A.II.5/J.84 – Significant example of the measured transfer function for the considered SMATV network

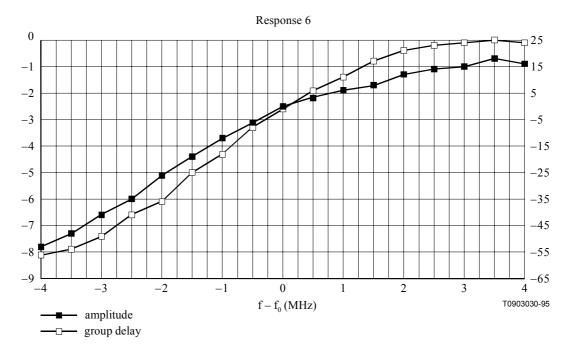


Figure A.II.6/J.84 – Significant example of the measured transfer function for the considered SMATV network

APPENDIX A.III

Bit rate consideration for SMATV distribution systems

(to Annex A of Recommendation J.84)

In order to achieve a transparent retransmission of satellite services on SMATV systems, it is necessary to take into account the limitations imposed by the SMATV System A1 in the 8 MHz cable channel bandwidth.

Table A.III.1 gives figures, showing the possible ranges of SMATV symbol rates and occupied bandwidths for different useful bit rates on the satellite. The 16-QAM, 32-QAM and 64-QAM constellations of the SMATV System A1 are considered.

For full transparency, the same useful bit rate (excluding RS coding) should be used in the satellite and the SMATV cable network.

The theoretical maximum symbol rate in an 8 MHz SMATV channel is 6.96 MBaud with a roll-off factor of 0.15. In Table A.III.1 indicative useful bit rates are provided.

Channel bandwidth constraints exist in a number of high loaded SMATV networks, which limit the useful bandwidth to 7 MHz. For such existing high loaded networks, transmission of symbol rates about 6 MBaud are feasible with acceptable signal degradation. Symbol rates given above the upper highlighted line support the simplified transparent transmodulation concept, facilitating the satellite link operation at BER ratios above threshold (before RS) for a given antenna size. However, future upgrading of current single channel amplifiers may clear such limitations.

Table A.III.2 shows the indicative SMATV capacity in case of QPSK channels distributed in the existing extended super-band or in the existing extended IF band for the symbol rates referred in [2] in Appendix A.IV. Other symbol rates and channel spacing are possible.

 $Table\ A.III.1/J.84-Examples\ of\ transparent\ retransmission\ of\ satellite\ TV\ on\ SMATV$ networks using the same useful bit rate R_u (excluding RS)

E 1 6 (11)	16-QAM		32-QAM		64-QAM	
Examples of satellite R_u for BW (-3 dB)/Rs = 1.27 (after MPEG-2 MUX) (Mbit/s)	Symbol rate (MBaud)	Occupied BW (MHz)	Symbol rate (MBaud)	Occupied BW (MHz)	Symbol rate (MBaud)	Occupied BW (MHz)
18.9	5.13	5.90	4.10	4.72	3.42	3.93
19.6	5.32	6.11	4.25	4.89	3.54	4.07
21.7	5.88	6.77	4.70	5.41	3.92	4.51
24.0	6.51	7.49	5.21	5.99	4.34	4.99
25.2	6.84	7.86	5.47	6.29	4.56	5.24
26.1			5.66	6.51	4.72	5.43
26.2			5.68	6.54	4.74	5.45
28.3			6.14	7.06	5.12	5.88
29.0			6.29	7.24	5.24	6.03
29.4			6.38	7.34	5.32	6.11
31.5			6.84	7.86	5.70	6.55
31.9			6.92	7.96	5.77	6.63
32.6					5.89	6.78
32.7					5.91	6.80
33.1					5.99	6.88
33.4					6.04	6.95
34.4					6.22	7.15
34.8					6.29	7.24
35.9					6.49	7.47
36.2					6.55	7.53
38.1					6.89	7.92
31.672 (PDH)			6.87	7.90	5.73	6.59

Table A.III.2/J.84 – SMATV-S and SMATV-IF capacity

		Number of channels			
RS (MBaud)	Minimum channel spacing (MHz)	Extended super-band (230-470 MHz) (Note)	Satellite first IF band (0.95-2.05 GHz) (Note)	Total	
42.2	57.0	4	19	23	
35.9	48.5	4	22	26	
31.5	42.5	5	25	30	
28.1	37.9	6	28	34	
25.8	34.8	6	31	37	
23.4	31.6	7	34	41	
21.1	28.5	8	38	46	
20.3	27.4	8	40	48	

NOTE – The frequency ranges in parenthesis are only indicative. Wider ranges may be possible in some circumstances.

APPENDIX A.IV

(to Annex A of Recommendation J.84)

Bibliography

- [1] REIMERS (U.): The European perspectives on Digital Television Broadcasting, *NAB'93*, *document GT V4/MOD 249*.
- [2] MASENTO (A.), MIGNONE (V.), MORELLO (A.): Performance of 64-QAM and QPSK in SMATV installations Simulation results, *Report No. 94/xx/E*.
- [3] GARAZZINO (G.), SARDELLA (V.): Preliminary 16-QAM transmission tests in the UHF Band on a SMATV network, *RAI Technical Report No. 94/28/I*.
- [4] BENVENISTE (A.), GOURSAT (M.): Blind equalizers, *IEEE Trans. Comm.*, Vol. COM-32, pp. 871-883, August 1984.
- [5] DVB-TM 1259: Satellite digital TV in collective antenna systems SMATV reference channel model for digital TV, *RACE DIGISMATV Project*, July 1994.
- [6] DTVB 1190/DTVC 38: Specification of modulation, channel coding and framing structure for the Baseline System for digital multi-programme television by cable, 3rd revised version, February 1994.
- [7] DTVB 1110/GT V4/MOD 252/ DTVC 18: Specification of the "Baseline modulation/channel coding system" for digital multi-programme television by satellite, 7th revised version, January 1994.
- [8] CENELEC prEN 50083-3, June 1993.

ANNEX B

Digital multi-programme SMATV System B

System B of ITU-T J.83 has no companion SMATV system.

ANNEX C

Digital multi-programme SMATV System C

C.1 Scope

This annex describes a System C transmission system that distributes digital multiple-programme television suitable for distribution in Satellite Master Antenna Television (SMATV) systems. The SMATV network architecture is described and is complementary to Annex C/J.83 [1]. System C is based on the MPEG-2 system layer [3], with the addition of an appropriate Forward Error Correction (FEC) technique.

C.2 SMATV distribution system concept

The aim of SMATV is to distribute television and sound programme signals broadcast from satellites to several households in a neighbourhood and/or within households located in one building or in several adjacent buildings. These signals are received by a satellite receiving antenna and are distributed together with other broadcast signals. SMATV subscribers share a common satellite antenna, which transmits satellite signals to Integrated Receiver Decoders (IRDs) in homes transparently and without baseband processing.

This annex describes three options for SMATV systems for distributing digital television signals:

a) SMATV system C(I)

This system receives satellite broadcast signals with a satellite receiving antenna. The signals as defined in [2], [5] and [6], are distributed at the intermediate frequency delivered by the Low Noise Block (LNB) of the receiving antenna. The signals are received with IRDs designed for receiving satellite broadcasts.

b) SMATV system C(II)

This system receives satellite broadcast BPSK, QPSK, or 8PSK signals with a satellite receiving antenna and converts the frequencies of the output signals of the LNB to a frequency band appropriate for the distribution network. The frequency re-allocated signals are received with IRDs designed for receiving satellite broadcasts.

c) SMATV system C(III)

This system receives satellite broadcast BPSK, QPSK, or 8PSK signals with a satellite receiving antenna, demodulates them to remove some of error correction bits, and then remodulates them as 64-QAM signals as defined in Annex C/J.83 [1] for distribution. This system remodulates signals transparently. The signals are received with IRDs designed for receiving cable television rather than ones for satellite broadcasts.

C.3 SMATV system C(I)

SMATV System C(I) is a distribution network using BPSK, QPSK, or 8PSK-modulated signals. The BPSK, QPSK, or 8PSK-modulated signals from a satellite are received by a satellite receiving antenna, and the LNB output signals are led directly to an SMATV distribution network, where they may be multiplexed and distributed with other signals. They are received with BPSK, QPSK, or 8PSK IRDs for satellite broadcasts.

As shown in Figure C.1, the satellite signals reach satellite-broadcast IRDs without any demodulation or remodulation.

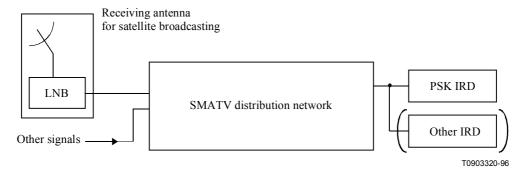


Figure C.1/J.84 – SMATV System C(I)

C.4 SMATV system C(II)

SMATV System C(II) is a distribution network using BPSK, QPSK, or 8PSK-modulated signals. The BPSK, QPSK, or 8PSK-modulated signals from satellites are received with satellite antennas. One or more outputs of the LNB are frequency-converted and frequency re-allocated, and are then fed into an SMATV distribution network, where they may be multiplexed and distributed with other signals. They are received with BPSK, QPSK, or 8PSK IRDs designed for satellite broadcasts. Frequency converters may be used with the IRDs if necessary. This system is applicable to a distribution network that cannot handle the frequency band of the LNB output.

As shown in Figure C.2, the satellite signals reach satellite-broadcast IRDs after frequency-conversion without any demodulation or remodulation.

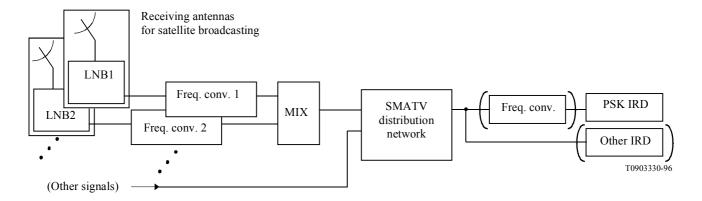


Figure C.2/J.84 – SMATV System C(II)

C.5 SMATV system C(III)

SMATV System C(III) is a distribution network using 64 QAM-modulated signals. The BPSK, QPSK, or 8PSK-modulated signals from a satellite are received with a satellite antenna and are remodulated as 64-QAM signals for distribution in an SMATV distribution network. BPSK, QPSK, or 8PSK-to 64-QAM transmodulators at the head-end convert the BPSK, QPSK, or 8PSK-demodulated bit streams into 64-QAM signals, which are described in Annex C/J.83. The channel coding shall include RS coding and interleaving but not convolutional coding. The signals are transmitted to a distribution network, where they may be multiplexed and distributed with other signals. The 64-QAM signals are received with 64 QAM IRDs conforming to Annex C/J.83.

As shown in Figure C.3, the satellite signals reach 64 QAM IRDs after demodulation and remodulation.

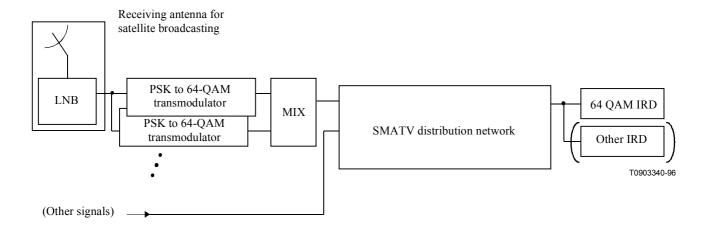


Figure C.3/J.84 – SMATV System C(III)

C.6 MPEG-2 transport layer

The SMATV System shall use the MPEG-2 transport layer, which is defined in [3]. The Transport Layer for MPEG-2 data is comprised of packets having 188 bytes, with one byte for synchronization purposes, three bytes of header containing service identification, scrambling and control information, followed by 184 bytes of MPEG-2 or auxiliary data.

C.7 Framing structure for channel coding

The framing organization of the SMATV system shall be based on the structure of MPEG-2 transport packets (see [1] and [2]).

ANNEX D

Digital multi-programme SMATV System D

D.1 Introduction

This annex describes the head-end processing and equipment configuration suitable for SMATV systems by the use of the 16-VSB cable mode of the VSB (Vestigial SideBand) digital transmission system. The architecture of the SMATV network is indicated in Figure D.1. The system is coherent with the description in Annex D/J.83.

D.2 SMATV VSB system concept

A possible configuration of head-end equipment suitable for SMATV systems (as well as cable distribution head-ends) is shown in Figure D.1. Although the signal path is pointed out for the satellite reception and insertion into an SMATV network, there are other possibilities to feed the system (such as terrestrial).

Shown at the top of Figure D.1 is a satellite received source of MPEG-2/188 byte packets provided by appropriate demodulator and interface circuitry.

The MPEG-2/188 byte packet sources are shown combined in Figure D.1 by an Interface/Buffer and fed to a 16-VSB cable head-end transmitter (described in [1]), the output of which may be combined with other RF signal sources. As shown, the payload bit rate of 16-VSB, which is a nominal 38.78 Mbit/s (for a 6 MHz channel), is partially provided by the satellite source and partly by other digital sources. In the event that the satellite source provides a data rate equal to the capability of one 16-VSB channel, an additional 16-VSB head-end transmitter can process other digital sources (terrestrial or satellite).

Other VSB modes are available as defined in D.8/J.83.

D.3 SMATV head-end commonalities

SMATV installations are typically used in private cable systems of multiple dwellings where the head-end is unattended and makes use of consumer grade equipment. The configuration shown in Figure D.1 is expected to meet that requirement, in as much as the components, such as integrated circuits, are those expected to be used in digital terrestrial receivers.

D.4 Conclusion

An SMATV head-end configuration for satellite reception has been described which presents commonalities with other digital delivered signals, and is affordable and rugged to meet requirements of typical SMATV head-ends.

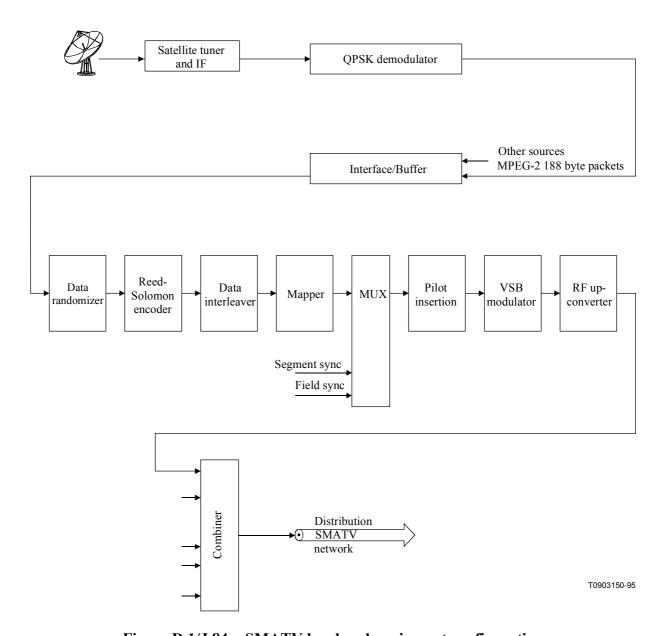


Figure D.1/J.84 – SMATV head-end equipment configuration

SERIES OF ITU-T RECOMMENDATIONS

Series A	Organization of the work of ITU-T
Series B	Means of expression: definitions, symbols, classification
Series C	General telecommunication statistics
Series D	General tariff principles
Series E	Overall network operation, telephone service, service operation and human factors
Series F	Non-telephone telecommunication services
Series G	Transmission systems and media, digital systems and networks
Series H	Audiovisual and multimedia systems
Series I	Integrated services digital network
Series J	Cable networks and transmission of television, sound programme and other multimedia signals
Series K	Protection against interference
Series L	Construction, installation and protection of cables and other elements of outside plant
Series M	TMN and network maintenance: international transmission systems, telephone circuits, telegraphy, facsimile and leased circuits
Series N	Maintenance: international sound programme and television transmission circuits
Series O	Specifications of measuring equipment
Series P	Telephone transmission quality, telephone installations, local line networks
Series Q	Switching and signalling
Series R	Telegraph transmission
Series S	Telegraph services terminal equipment
Series T	Terminals for telematic services
Series U	Telegraph switching
Series V	Data communication over the telephone network
Series X	Data networks and open system communications
Series Y	Global information infrastructure and Internet protocol aspects
Series Z	Languages and general software aspects for telecommunication systems