

f

I n t e r n a t i o n a l T e l e c o m m u n i c a t i o n U n i o n

ITU-T J.280
TELECOMMUNICATION
STANDARDIZATION SECTOR
OF ITU

(03/2013)

SERIES J: CABLE NETWORKS AND TRANSMISSION
OF TELEVISION, SOUND PROGRAMME AND OTHER
MULTIMEDIA SIGNALS

Digital transmission of television signals

 Digital program insertion: Splicing application

program interface

Recommendation ITU-T J.280

 Rec. ITU-T J.280 (03/2013) i

Recommendation ITU-T J.280

Digital program insertion: Splicing application program interface

Summary

The splicing application program interface (API) focuses on the single server, single splicer
configuration. This version of the Recommendation increases the value of Revision_Num from 1
to 2.

History

Edition Recommendation Approval Study Group Unique ID*

1.0 ITU-T J.280 2004-03-15 9 11.1002/1000/7204-en

2.0 ITU-T J.280 2005-12-14 9 11.1002/1000/8668-en

3.0 ITU-T J.280 2013-03-01 9 11.1002/1000/11829-en

* To access the Recommendation, type the URL http://handle.itu.int/ in the address field of your web

browser, followed by the Recommendation's unique ID. For example, http://handle.itu.int/11.1002/1000/11
830-en.

http://handle.itu.int/11.1002/1000/7204-en?locatt=format:pdf
http://handle.itu.int/11.1002/1000/8668-en?locatt=format:pdf
http://handle.itu.int/11.1002/1000/11829-en?locatt=format:pdf
http://handle.itu.int/11.1002/1000/11830-en
http://handle.itu.int/11.1002/1000/11830-en

ii Rec. ITU-T J.280 (03/2013)

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of
telecommunications, information and communication technologies (ICTs). The ITU Telecommunication
Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical,
operating and tariff questions and issuing Recommendations on them with a view to standardizing
telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years,
establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on
these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are
prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a
telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain
mandatory provisions (to ensure, e.g., interoperability or applicability) and compliance with the
Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some
other obligatory language such as "must" and the negative equivalents are used to express requirements. The
use of such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may
involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence,
validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others
outside of the Recommendation development process.

As of the date of approval of this Recommendation, ITU had not received notice of intellectual property,
protected by patents, which may be required to implement this Recommendation. However, implementers
are cautioned that this may not represent the latest information and are therefore strongly urged to consult the
TSB patent database at http://www.itu.int/ITU-T/ipr/.

 ITU 2014

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the
prior written permission of ITU.

http://www.itu.int/ITU-T/ipr/

 Rec. ITU-T J.280 (03/2013) iii

Table of Contents

 Page

1 Scope .. 1

2 References... 1

3 Definitions .. 1

3.1 Terms defined elsewhere .. 1

3.2 Terms defined in this Recommendation ... 1

4 Abbreviations and acronyms .. 2

5 Conventions .. 3

6 Requirements .. 3

6.1 System block diagram .. 3

6.2 Arbitration priorities ... 5

6.3 Abnormal terminations ... 6

6.4 Splicing requirements ... 7

6.5 Communication .. 7

7 API syntax .. 7

7.1 Splicing_API_Message syntax ... 7

7.2 Conventions and requirements ... 9

7.3 Initialization .. 10

7.4 Embedded cueing messages ... 11

7.5 Splice messages .. 12

7.6 Alive messages ... 16

7.7 Extended data messages ... 17

7.8 Abort messages ... 18

7.9 Abort_Request message ... 18

7.10 Abort_Response message ... 18

7.11 TearDownFeed_Request message .. 18

7.12 TearDownFeed_Response message ... 19

7.13 Requesting configuration settings .. 19

7.14 General_Response message .. 19

8 Additional structures ... 19

8.1 Version ... 19

8.2 Hardware_Config ... 20

8.3 splice_elementary_stream() ... 23

8.4 time() field definition .. 24

8.5 splice_API_descriptor() field definition .. 25

9 Time synchronization ... 32

10 System timing ... 33

10.1 DPI splice signal flow .. 33

iv Rec. ITU-T J.280 (03/2013)

 Page

10.2 DPI splice initiation timeline .. 34

Appendix I – Result codes ... 36

Appendix II – Example use of Logical_Multiplex type 0x0006 and the
port_selection_descriptor() .. 39

II.1 Informative example 1 .. 39

II.2 Informative example 2 .. 39

Appendix III – Frame rate codes.. 40

Bibliography... 41

 Rec. ITU-T J.280 (03/2013) 1

Recommendation ITU-T J.280

Digital program insertion: Splicing application program interface

1 Scope

This application program interface (API) creates a standardized method of communication between
servers and splicers for the insertion of content into any MPEG-2 output multiplex in the splicer.
This API is flexible enough to support one or more servers attached to one or more splicers. Digital
program insertion includes content such as spot advertisements of various lengths, program
substitution, public service announcements or program material created by splicing portions of the
program from a server.

2 References

The following ITU-T Recommendations and other references contain provisions which, through
reference in this text, constitute provisions of this Recommendation. At the time of publication, the
editions indicated were valid. All Recommendations and other references are subject to revision;
users of this Recommendation are therefore encouraged to investigate the possibility of applying the
most recent edition of the Recommendations and other references listed below. A list of the
currently valid ITU-T Recommendations is regularly published. The reference to a document within
this Recommendation does not give it, as a stand-alone document, the status of a Recommendation.

[ITU-T H.222.0] Recommendation ITU-T H.222.0 (2012) | ISO/IEC 13818-1:2012, Information
technology – Generic coding of moving pictures and associated audio
information: Systems.

[ITU-T H.262] Recommendation ITU-T H.262 (2012) | ISO/IEC 13818-2:2012, Information
technology – Generic coding of moving pictures and associated audio
information: Video.

[ANSI/SCTE 35] ANSI/SCTE 35 2012 (2012), Digital Program Insertion Cueing Message for
Cable.

[ANSI/SCTE 54] ANSI/SCTE 54 2009 (2009), Digital Video Service Multiplex and Transport
System Standard for Cable Television.

[ANSI/SCTE 128] ANSI/SCTE 128 2010a (2010), AVC Video Systems and Transport Constraints
for Cable Television.

3 Definitions

3.1 Terms defined elsewhere

None.

3.2 Terms defined in this Recommendation

This Recommendation defines the following terms:

3.2.1 API connection: A TCP/IP socket connection between a server and a splicer for
transferring API messages.

3.2.2 back-to-back insertion: Insertion of two or more temporally contiguous sessions without
returning to the primary channel between sessions.

3.2.3 channel: A channel is a synonym for a "Service" in DVB terminology, or a "Program" in
MPEG terminology.

2 Rec. ITU-T J.280 (03/2013)

3.2.4 insertion channel: The insertion multiplex channel(s) that replaces the primary channel in
whole or in part of the duration for a splice event.

3.2.5 insertion multiplex: This is the source of the insertion channel. A multiplex produced by a
server may under some circumstances exclude program specific information (PSI), thus it is
understood that this multiplex may be a non-compliant MPEG-2 transport stream.

3.2.6 multiplex: A multiplex is a collection of one or more channel(s) that may include the
associated service information. A multiplex is an MPEG-2 transport stream with the possible
exception of an insertion multiplex.

3.2.7 output channel: The channel that is produced at the output of the splicer.

3.2.8 output multiplex: The MPEG-2 transport stream produced by multiplexing one or more
output channels.

3.2.9 primary channel: The primary multiplex channel that is replaced in whole or in part.
A single primary channel may result in multiple output channels.

3.2.10 primary multiplex: This is the source of the primary channel(s).

3.2.11 server: The device that originates the insertion channel(s) to be spliced into the primary
channel(s). This device communicates with the splicer about when and what to splice.

3.2.12 session: A session is the insertion of content (such as spot advertisements of various
lengths, program substitution, public service announcements, or program material created by
splicing portions of the program from a server). Each session is identified by a unique SessionID.

3.2.13 splice-in: The splice at the start of the insertion. This happens at the time specified in the
Splice_Request message.

3.2.14 splice-out: The splice at the end of the insertion. The expected insertion end time is
calculated by adding the start time and the duration specified in the Splice_Request message;
however, this may occur earlier due to error conditions.

3.2.15 splicer: The device that splices the insertion channel(s) into the primary channel(s). It may
receive ANSI/SCTE 35 cue messages. This device also communicates with the server about when
and what to splice.

4 Abbreviations and acronyms

This Recommendation uses the following abbreviations and acronyms:

API Application Program Interface

DVB-ASI Digital Video Broadcast – Asynchronous Serial Interface

ID Identifier

MLD Multicast Listener Discovery

MPEG Moving Picture Experts Group

MPTS Multi-Program Transport Stream

NTP Network Time Protocol

PAT Program Association Table

PCR Program Clock Reference

PID Packet Identifier

PMT Program Map Table

PSI Program Specific Information

 Rec. ITU-T J.280 (03/2013) 3

SPTS Single Program Transport Stream

tcimsbf twos complement integer, most significant bit first

TCP/IP Transport Control Protocol/Internet Protocol

uimsbf unsigned integer, most significant bit first

UTC Coordinated Universal Time

5 Conventions

None.

6 Requirements

6.1 System block diagram

This API may be used with many different configurations of server(s) and splicer(s). This API
focuses on the single server, single splicer configuration shown in Figure 6-1. However, this can be
expanded to the multiple servers, multiple splicers configuration as shown in Figure 6-2.

J.280(13)_F6-1

Primary Multiplex
(with or without embedded

cue message)

Splicer

Primary
Channel

Insertion
Channel

TCP/IP
socket

Output
Channel

Insertion Multiplex

Output
Multiplex

Network
connection

Server

Figure 6-1 – Single server/Single splicer

4 Rec. ITU-T J.280 (03/2013)

J.280(13)_F6-2

Primary Multiplex
(with or without embedded

cue message)

Splicer (K)

Primary
Channel

Insertion
Channel

Insertion
Channel

TCP/IP
socket

Output
ChannelInsertion Multiplex

Insertion Multiplex

Output
Multiplex

Primary Multiplex
(with or without embedded

cue message)

Splicer 1

Primary
Channel

Insertion
Channel

Insertion
Channel

TCP/IP
socket

Output
ChannelInsertion Multiplex

Insertion Multiplex

Output
Multiplex

Network
connection

Server 1

Server (N)

Figure 6-2 – Multiple servers/Multiple splicers

The model referenced in this API has one or more splicers with one or more multiplex inputs. The
splicer logically separates the channel(s) in the multiplex(es) and presents these channel(s) to a
switch. This switch is capable of mapping any input to any output channel. The initial configuration
maps primary channel(s) to the output channel(s). The server may then direct the splicer to switch
from a primary channel to an insertion channel for a specified duration. It may then direct the
splicer to switch to another insertion channel following the initial switch. The splicer may then
create an MPEG-2 transport stream produced by multiplexing one or more output channels that
shall be compliant with [ANSI/SCTE 54].

Logically, a splice involves two input channels and one output channel. The splicer is responsible
for joining the various elementary streams (audio, video and data) together. The optimal splice point
may occur at slightly different times for each elementary stream, so the splicer should perform the
splice that will supply the best quality output. Splicing may not always be performed from the
primary channel, i.e., programming network, to the insertion channel, i.e., spot advertisement, and
back to the primary channel. The splicer may splice content that is stored solely on the server and
arrives over a single input multiplex. It is possible to use this API in a situation where a server has
one multi-program transport stream (MPTS) output that contains program and interstitial material
and uses the splicer to create proper splices between the content.

 Rec. ITU-T J.280 (03/2013) 5

This API supports all combinations of single and multiple servers communicating with single and
multiple splicers. A separate API connection is associated with each output channel.

In some configurations, there can be either multiple servers or multiple channels within the
insertion multiplex connected to a splicer. In these cases, the splicer will have multiple API
connections associated with an output channel. When an ANSI/SCTE 35 cueing message is
received in a primary channel, the Cue_Request message must be sent to servers over all of the
API connections that were made for the associated output channel(s). It is also possible that more
than one API connection will transport a Splice_Request message for the same insertion at the
same time for an output channel.

6.2 Arbitration priorities

Different levels of access are used to ensure that the correct insertion channel is utilized. There are
ten different levels of access, 0 to 9, with 9 being the highest priority which may override any lower
priority connection. The OverridePlaying flag in the Splice_Request message specifies whether an
insertion request is honoured when the splicer is currently queueing or performing an insertion. If
the flag is set to 1, then the higher priority insertion can interrupt the same or lower priority
currently playing insertion. If the flag is set to 0, the splicer will not replace the insertion currently
playing, even if the new request is of a higher priority.

The Splice_Request message should be sent at least three seconds before the splice time() in order
to be valid. If the three-second minimum is not met, the outcome of the Splice_Request message is
not determined by this API. If multiple servers initiate splice requests for the same time with the
same priority, the splicer will prioritize the requests on a first-come, first-served basis. All other
requests will be denied and a collision error will be sent in the Splice_Response message (unless
the OverridePlaying flag is set).

For example, during the period of time immediately preceding the initiation of an insertion, the
following is true: if a priority 5 Splice_Request is received for the same splice time as a priority 3
Splice_Request, a collision error is returned for the priority 3 request. If a priority 7
Splice_Request is later received for the same time, a collision error is returned for the priority 5
request and the priority 7 request is queued. If a second priority 7 request is received with the
OverridePlaying flag set to 0, then the second priority 7 request would receive a collision error.
However, if the OverridePlaying flag is set to 1 on the second priority 7 request, the original
priority 7 request would receive a collision error and be overridden.

In Figure 6-3, three splicer inputs are shown. The shaded areas indicate which input source will be
directed to the output channel at any given moment.

time

t6

t5

t4t3t2

t1

Insertion Channel 2,
(From Server 2)

Insertion Channel 1,
(From Server 1)

Primary
Channel

t1

Figure 6-3 – OverridePlaying flag operation

6 Rec. ITU-T J.280 (03/2013)

t1 – Server 1 issues a Splice_Request message and begins its stream to the splicer. The splicer
switches this insertion channel stream to the output channel. The Splice_Request has requested an
insertion duration from time t1 to time t5. The splicer shall send Server 1 a
SpliceComplete_Response message with the SpliceType flag set to Splice_in and a result code set
to 100, "Successful Response".

t2 – Server 2 issues a Splice_Request, with the OverridePlaying flag set to 1 and has an equal or
higher priority. At the time specified by the Splice_Request, Insertion Channel 2's stream is
switched to the output channel (replacing the ongoing stream from Server 1). Server 2's
Splice_Request requests a duration from time t2 to time t3. The splicer shall send Server 1 a
SpliceComplete_Response message with the SpliceType flag set to Splice_out and a result code
set to 125, "Channel Override". The splicer shall send Server 2 a SpliceComplete_Response
message with the SpliceType flag set to Splice_in and a result code set to 100, "Successful
Response". If Server 1 determines that the channel override is an error, it may send an
Abort_Request and terminate its stream at this time. This behaviour is not shown in Figure 6-3.

t3 – The insertion duration is completed and the splicer returns to the material from Server 1 to
direct to the output channel. Note that the splicer did not return to the primary channel for direction
to the output channel. The splicer shall send Server 1 a SpliceComplete_Response message with
the SpliceType flag set to Splice_in and a result code set to 125, "Channel Override". The splicer
shall send Server 2 a SpliceComplete_Response message with the SpliceType flag set to
Splice_out and a result code set to 100, "Successful Response".

t4 – Server 2 issues another Splice_Request, with the OverridePlaying flag set to 1. At the time
specified by the Splice_Request, Insertion Channel 2's stream is switched to the output channel
(replacing the still ongoing stream from Server 1). Server 2's Splice_Request requests a duration
from time t4 to time t6. The splicer shall send Server 1 a SpliceComplete_Response message with
the SpliceType flag set to Splice_out and a result code set to 125, "Channel Override". The splicer
shall send Server 2 a SpliceComplete_Response message with the SpliceType flag set to Splice_in
and a result code set to 100, "Successful Response".

t5 – Server 1's insertion stream ends with two portions of its duration having been played and two
portions having been overridden by Server 2's stream.

t6 – The final insertion duration is completed and the splicer returns to the material from the
primary channel for direction to the output channel. The splicer shall send Server 2 a
SpliceComplete_Response message with the SpliceType flag set to Splice_out and a result code
set to 100, "Successful Response".

It is also possible that multiple servers will need to split a Cue_Request message; a 60-second
duration splicing opportunity where one server will use the first 30 seconds and the second server
will use the last 30 seconds, for example. Depending on the priorities and when the Splice_Request
messages are received, the splicer shall indicate a result code 109 (Splice Collision) if one exists.
This API does not coordinate the ability of the two servers to be able to perform this functionality.
This can be done by mutual agreement between the servers or by a server-to-server API.

6.3 Abnormal terminations

It is possible that an insertion will be overridden at some time during playback by a higher priority
insertion. In this case, the splicer shall return to the overridden insertion at the end of the higher
priority insertion. If the higher priority insertion is aborted by an Abort_Request message, the
splicer shall return to the overridden insertion. If the initial insertion channel is no longer available,
then the splicer shall return to the primary channel if possible.

 Rec. ITU-T J.280 (03/2013) 7

If the server requests a splice on a primary channel that currently has no valid input, the splicer shall
perform the splice and report a result code 111 (No Primary Channel Found) in the
SpliceComplete_Response to the server. Likewise, a splice from an insertion channel back to a
primary channel that has no valid input shall complete with the result code 111 (No Primary
Channel Found).

The splicer vendor may consider adding software to ensure that the splicer always returns to the
primary channel. It is highly desirable to have the splicer fail-safe to the primary channel on any
error condition that would cause the output channel to stop transmitting.

6.4 Splicing requirements

The splicer requires information about the insertion channel before it can be spliced into the
primary channel. Some of this information shall be sent in the API connection and some of it may
be sent in the MPEG multiplex. All of the information is required before the splice.

ChannelName is used for output channel identification. This is a unique name assigned to each
output channel (e.g., CNN, Cable News Network) in the splicer set-up and is needed by the server
to determine which primary channel shall be replaced by each insertion channel.

The splicer needs to know which insertion channel to splice into the primary channel. This includes
the insertion multiplex location and which channel in the insertion multiplex to use. This
information is available in the Splice_Request message.

6.5 Communication

The communication between the server and the splicer is conducted over one TCP/IP socket
connection per output channel. Once this API connection is established it remains established until
one of the devices terminates it, at which time re-initialization is required to splice again.

All messages exchanged between the splicer and server share a common general format detailed in
clause 7.1. Only messages adhering to this format shall be used for communication between the
splicer and server. The format allows for a class of "User Defined" type messages that can be used
as a template for private data messages between the server and splicer, but is beyond the scope of
this Recommendation.

All request messages require a response from either the splicer or the server, depending on which
device is making the request. Most of the response messages only indicate a result and do not
contain any other data, but are needed to ensure that the message was received and interpreted
correctly by the requester. If there are errors, the message can be resent.

7 API syntax

7.1 Splicing_API_Message syntax

Messages in this API all contain a general message structure that wraps the data for the specific
message being sent. This is done so that when the message is received a common parsing routine
can store the message, determine what the structure of the data is and ensure that the message is
received correctly.

8 Rec. ITU-T J.280 (03/2013)

Table 7-1 – Splicing_API_Message

Syntax Bytes Type

 Splicing_API_Message {

 MessageID 2 uimsbf

 MessageSize 2 uimsbf

 Result 2 uimsbf

 Result_Extension 2 uimsbf

 data() * *

 }

MessageID – An integer value that indicates what message is being sent. See Table 7-2.

MessageSize – The size of the data() field being sent in bytes.

Result – The results to the requested message. See Appendix I for details on the result codes. On
request messages, this is set to 0xFFFF.

Result_Extension – This shall be set to 0xFFFF unless used to send additional result information in
a response message.

data() – Specific data structure for the message being sent. Details on each of the messages
containing data are described below. The size of this field is equal to the MessageSize and is
determined by the size of the data being added to the message. Not all messages utilize the data()
field.

Table 7-2 – MessageID values

MessageID Message name Sent by Description

0x0000 General_Response Splicer
or
Server

Used to convey asynchronous information
between the devices. There is no data()
associated with this message.

0x0001 Init_Request Server Initial message to the splicer on port 5168.

0x0002 Init_Response Splicer Initial response to the server on the established
connection.

0x0003 ExtendedData_Request Server Request for detailed playback information
from the splicer.

0x0004 ExtendedData_Response Splicer Vendor unique response of extended playback
data from the requested playback event.

0x0005 Alive_Request Server Sends an alive message to acquire current
status.

0x0006 Alive_Response Splicer Response to the alive message indicating
current status.

0x0007 Splice_Request Server Request to splice at a specific time.

0x0008 Splice_Response Splicer Response to indicate that the Splice_Request
was received and that the splicer is preparing
to splice.

0x0009 SpliceComplete_
Response

Splicer Response at the splice in and splice out.

0x000A GetConfig_Request Server Request to get the current splice configuration
for this API connection.

 Rec. ITU-T J.280 (03/2013) 9

Table 7-2 – MessageID values

MessageID Message name Sent by Description

0x000B GetConfig_Response Splicer Contains all of the splice information for the
API connection.

0x000C Cue_Request Splicer Splicer sending the cue info section to the
server.

0x000D Cue_Response Server Acknowledgment that the cue info section was
received.

0x000E Abort_Request Server Request to immediately return to the primary
channel or overridden insertion channel.

0x000F Abort_Response Splicer Acknowledgment that the Abort_Request
message was received. A
SpliceComplete_Response shall also be
generated if necessary.

0x0010 TearDownFeed_Request Server Request to delete an output channel created
using the create_feed_descriptor().

0x0011 TearDownFeed_Response Splicer Response to indicate that the output channel
has been deleted.

0x0012-0x7FFF
0xFFFF

Reserved Range reserved for future standardization.

0x8000-0xFFFE User defined Range available for user-defined functions.

7.2 Conventions and requirements

1. Each message that contains data is outlined with its data fields and types below. Additional
structures are indicated as functions and are described in clause 8.

2. All string lengths have space reserved for a null terminator character and must use null
terminated strings. For example, a string that is defined as 16 characters can be at most
15 characters of data followed by a null (0x00) character immediately after the last data
character. Once a null is encountered in scanning a string, the rest of the characters in the
string are undefined. The size defined for the string is constant and will not vary depending
on the length of the string. This specification uses 8-bit ASCII characters for strings.

3. All time values are UTC.

4. This specification uses all 1s for a DON'T CARE condition. For a 4-byte field, this value
would be 0xFFFFFFFF.

5. Response messages shall be sent out without unnecessary delay. The device expecting a
response should consider no response within 5 seconds to indicate a timeout. When a server
suspects a timeout, it shall send an Alive_Request message. If the splicer does not answer
as specified in this Recommendation, the connection for this channel shall be dropped and
re-established.

6. A server receiving a response message indicating a failure to parse a message (error
code 123) shall send an Alive_Request message. If it does not receive the appropriate
Alive_Response message, the connection for this channel shall be dropped and
re-established.

7. The Result field in the Splicing_API_Message is used to return a result code. Multiple
response codes can be returned by sending multiple General_Response messages at any
time.

10 Rec. ITU-T J.280 (03/2013)

8. If the splicer or server cannot parse the Request message, it shall return a
General_Response with the result code 123.

7.3 Initialization

The initial communication begins with the splicer listening on the predefined port 5168 and a server
opening an API connection to the splicer. The server sends an Init_Request message to the splicer.
The server then listens for the response from the splicer on the established API connection. All
further communication is done on this API connection. Either the splicer or server may terminate
communications by closing this API connection. Each device is responsible for detecting and
properly handling a closed API connection. When the splicer initializes the TCP listener on port
5168, it should allow for at least three times the number of insertion channels for API connections
to the splicer. For example, if the splicer controls 70 channels of which 40 are "spliceable", then it
should allow 120, (40 × 3), simultaneous API connections.

7.3.1 Init_Request message

The data() field for this message contains the Init_Request_Data structure outlined below.

Table 7-3 – Init_Request_Data

Syntax Bytes Type

 Init_Request_Data {

 Version()

 ChannelName 32 String

 SplicerName 32 String

 Hardware_Config()

 for (i=0; i<N; i++)

 splice_API_descriptor()

 }

Version() – See clause 8.1.

ChannelName – Logical name given to the output channel of this connection. This is also used to
verify the correct API connection when the splicer responds to the server.

SplicerName – Name of the splicing device if the server uses the API to communicate to a device
that controls multiple splicers.

Hardware_Config() – See clause 8.2.

splice_API_descriptor() – A descriptor that must follow the syntax defined in clause 8.5. The
missing_Primary_Channel_action_descriptor() is a suitable descriptor for this request.

7.3.2 Init_Response message

After the Init_Request is sent, the splicer sends an Init_Response message on the opened API
connection. The server verifies that the version sent by the splicer is supported and that it has an
API connection to the correct primary channel.

The data() field for this message contains the Init_Response_Data structure outlined below.

 Rec. ITU-T J.280 (03/2013) 11

Table 7-4 – Init_Response_Data

Syntax Bytes Type

 Init_Response_Data {

 Version()

 ChannelName 32 String

 }

Version() – See clause 8.1. The splicer shall respond with the highest version number of the API
that it is capable of supporting.

ChannelName – Returned to the server to indicate the correct connection was made.

7.4 Embedded cueing messages

Splicers may have the ability to receive embedded cue messages based upon [ANSI/SCTE 35].
Once these cue messages are received by the splicer, they need to be passed to the server. The
Cue_Request message is used to pass these cue messages to the server from the splicer. When a
splicer receives a cue message it sends the entire splice_info_section() along with the splice time to
the server. The server will acknowledge the message with a Cue_Response message. The
Cue_Response message consists of just the Splicing_API_Message and has no associated data()
but it may have a return code. The splicer will decrypt the splice_info_section() before sending it to
the server if it is encrypted.

If the splicer receives a cue message that has an invalid cyclic redundancy check (CRC), it shall
send a General_Message to the server with a result code of 117 (Invalid Cue Message). The splicer
shall not send the Cue_Request message in this case.

It is suggested that the splicer be configurable as to which ANSI/SCTE 35 messages generate a
Cue_Request message. Configurations can include the:

• ability to pass messages from newer versions of [ANSI/SCTE 35] that the splicer
revision does not understand;

• ability to not pass bandwidth reservation messages; this should be the default setting;

• ability to not pass Splice_Null messages unless they have descriptors attached;

• ability to not pass messages that cannot be decrypted.

7.4.1 Cue_Request message

The data() field for this message contains the Cue_Request_Data structure outlined below.

Table 7-5 – Cue_Request_Data

Syntax Bytes Type

 Cue_Request_Data {

 time()

 splice_info_section()

 }

time() – This time is derived from the splice_time() in the splice_info_section() of the
ANSI/SCTE 35 cueing message by the splicer. If component splice mode is used in the
ANSI/SCTE 35 splice_info_section, the time() will refer to the default splice time detailed in
Section 7.5.2.1 of [ANSI/SCTE 35]. In the case where the splice_info_section() does not contain a
pts_time() that requires translation as in the splice_schedule() command, then the time structure
shall be filled with all 1 s to denote no time specified. It is up to the splicer to determine how to map

12 Rec. ITU-T J.280 (03/2013)

the PTS time to UTC for communication with the server. This may vary for different splicers in
order for them to properly manage their internal buffers. See clause 8.4 for the time() structure
syntax.

splice_info_section() – The details of the structure can be found in [ANSI/SCTE 35].

7.5 Splice messages

After initializing and configuring the splicer, the server can issue the Splice_Request message to
initiate a session. The two messages that are returned from the Splice_Request message are the
Splice_Response message and the SpliceComplete_Response message. The server shall send a
Splice_Request message at least 3 seconds prior to the time() in the Splice_Request message. This
allows the splicer to set up its configuration and prepare for the splice. The insertion channel stream
for the session must start between 300 and 600 milliseconds before time() as measured at the
splicer input. A program clock reference (PCR) must be sent on or before the first video access unit
of the insertion channel stream. The video stream of the insertion content shall start with a sequence
header and an I-Frame. The splicer shall allow a minimum of 10 queued Splice_Request messages
on a given API connection. If the splicer's message queue is full it will respond with the result code
114 (Splice Queue Full).

The details of the physical connection are supplied in the Init_Request message. There are two
ways to indicate which channel in the insertion multiplex and which PIDs to use:

• If the ServiceID is not 0xFFFF in the Splice_Request message, the ServiceID field
specifies the program number in the PAT which points to an associated PMT. The PAT and
PMT must be stable in the insertion channel at least 200 ms before the Splice_Request
message is sent and must remain stable for the duration of the session. These must be legal
MPEG tables with revision increments as appropriate.

• If the ServiceID is 0xFFFF, use the splice_elementary_stream() structure (PCR, video,
audio and data PIDs) in the Splice_Request message.

NOTE – If this method is used then the ServiceID shall be set to 0xFFFF. The splicer shall supply an
MPEG-2 compliant transport stream to the output multiplex although the insertion multiplex need not
include program specific information (PSI).

The order in which splice messages are sent is important. The first message sent for a given
sequence of back-to-back insertions shall utilize time(), while all of the other Splice_Request
messages may utilize PriorSession. The PriorSession number must reference an existing session
that has not yet completed. In all other cases, an error code 123 is returned pointing to the
PriorSession or time() field.

The server chooses the PIDs of the elementary streams within an insertion multiplex. The PIDs may
not be common between adjacent sessions from the same server via the same insertion multiplex.
This is because the streams of adjacent sessions will occasionally overlap slightly in time, due to
requirements in this API.

7.5.1 Splice_Request message

The data() field for this message contains the Splice_Request_Data structure outlined below.

 Rec. ITU-T J.280 (03/2013) 13

Table 7-6 – Splice_Request_Data

Syntax Bytes Type

 Splice_Request_Data {

 SessionID 4 uimsbf

 PriorSession 4 uimsbf

 time()

 ServiceID 2 uimsbf

 if (ServiceID = 0xFFFF)

 {

 PcrPID 2 uimsbf

 PIDCount 4 uimsbf

 for (j=0; j<PidCount; j++)

 splice_elementary_stream()

 }

 Duration 4 uimsbf

 SpliceEventID 4 uimsbf

 PostBlack 4 uimsbf

 AccessType 1 uimsbf

 OverridePlaying 1 uimsbf

 ReturnToPriorChannel 1 uimsbf

 for (i=0; i<N; i++)

 splice_API_descriptor()

 }

SessionID – Identifier for the session. Used to distinguish this request from other requests that have
been or are going to be issued. Multiple concurrent Splice_Request messages with the same
SessionID are not permitted. If the ExtendedData_Request is used, an ExtendedData_Response
must be received for that SessionID before that SessionID is reused. This field shall not have the
value of 0xFFFFFFFF. Early versions of this standard (with Revision_Num = 0 or 1) allow the
value 0xFFFFFFFF.

PriorSession – This field allows a simplified method of performing back-to-back insertions. The
value of this field contains the SessionID of the session that immediately precedes it. When the
value of this field is 0xFFFFFFFF, it indicates that this session uses time() to initiate its insertion,
rather than the SessionID of the preceding session. This field shall have a valid SessionID only
when the immediately preceding session originated from the same server. The time() field- rather
than the PriorSession field- must be used when creating back-to-back insertions from multiple
servers.

time() – The splice time for the event. This field will typically be the time() field from the
Cue_Request message being echoed back to the splicer. If the event was not triggered by a
Cue_Request, then this is the time that the server forces a splice event. This field is ignored if the
PriorSession is not equal to 0xFFFFFFFF. If this value is not related to an ANSI/SCTE 35 cue
message, there may be variation between splicers, depending on the buffer and splicing models of
each, as to when the actual splice occurs. See clause 8.4 for the time() structure syntax.

14 Rec. ITU-T J.280 (03/2013)

ServiceID – The program number of the channel in the insertion multiplex which will be spliced in
place of the primary channel. If this is set to 0xFFFF the splice_elementary_stream() and
PIDCount are required.

PCR – Indicates the PCR PID.

PIDCount – The number of PIDs in the insertion channel (not including the PCR PID).

Duration – The number of 90 kHz clock ticks the server is requesting the splicer to insert. This
field may override the ANSI/SCTE 35 duration value. This can be set to 0 to indicate that the
splicer shall switch to the insertion channel until a new Splice_Request or Abort_Request arrives.

SpliceEventID – This is used to relate this insertion event back to the ANSI/SCTE 35 cue message
that may have caused this splice to happen. This shall be equivalent to the splice_event_id from the
splice_insert command of the associated ANSI/SCTE 35 cue message. This should be the same for
all Splice_Request messages pertaining to the same ANSI/SCTE 35 cue message. For an event that
was not initiated by an ANSI/SCTE 35 cue message, this field will be set to 0xFFFFFFFF.

PostBlack – Number of 90 kHz clock ticks of black video and muted audio to be played at the end
of the insertion content playback. The PostBlack interval follows and is not included in the length
of time specified by the Duration. If no PostBlack is requested then this field will be set to 0.
PostBlack shall not be considered part of the currently playing insertion for the purposes of the
OverridePlaying flag.

AccessType – Indicates the type of access this connection has. This is an integer from 0 to 9 with 0
being low priority and 9 being the highest priority.

OverridePlaying – When this flag is equal to 0, this Splice_Request cannot override a currently
playing insertion. If this flag is set to 1, then this Splice_Request shall override any equal or lower
priority currently playing insertion. A currently playing insertion occurs between the splice-in and
the splice-out points.

ReturnToPriorChannel – When this flag is equal to 0, the splicer shall not return to the primary
channel or the overridden insertion channel at the completion of this Splice_Request. It is expected
that a new Splice_Request will be issued before this insertion completes. If a new Splice_Request
is not received, then the splicer shall stop transmitting on this output channel. When this flag is
equal to 1, it shall return to the prior channel unless a subsequent Splice_Request is received to
indicate otherwise.

splice_API_descriptor() – A descriptor that must follow the syntax defined in clause 8.5. The
playback_descriptor() and muxpriority_descriptor() are appropriate descriptors for this clause.

7.5.2 Splice_Response message

The data() field for the Splice_Response message contains the Splice_Response_Data structure
outlined below. The Splice_Response_Message may contain an error code if appropriate. The
Splice_Offset is used by the splicer to inform the server of a time offset for the delivery of the
content for this message. This does not affect the point in the primary channel where the splice will
occur.

Table 7-7 – Splice_Response_Data

Syntax Bytes Type

 Splice_Response_Data {

 Splice_Offset 2 tcimsbf

 }

 Rec. ITU-T J.280 (03/2013) 15

Splice_Offset – This shall be set to zero unless used to send delay information. The offset
information is in milliseconds. A negative value is a request for the insertion channel content to be
delivered earlier; a positive value is a request for the insertion channel content to be delivered later.

The Splice_Offset field is expected to be used by splicing devices which achieve seamless
operation by altering the primary channel propagation delay through the splicer. When such a
device is commanded to splice in the absence of ANSI/SCTE 35 cue messages, the splicer does not
have the opportunity to advance or retard the ad server's ad timing via alteration of the equation in
converting pts_time to UTC time (because there are no ANSI/SCTE 35 cue messages and hence no
conversion and no cue request messages). In such a case, a splicer may utilize the new
Splice_Offset field to advance or retard the ad server to match the splicer's output service timing
following each Splice_Request message.

7.5.3 SpliceComplete_Response message

The SpliceComplete_Response message is sent when the insertion starts and finishes. This is true
for back-to-back insertions as well. For example, if two pieces of content play, four
SpliceComplete_Response messages are returned, one at the start of the first piece of content, one
upon completion of the first piece of content, one upon the start of the second piece of content and
one upon completion of the second piece of content. The result code in the header shall properly
indicate the failure reason if the splice failed so that the server can take appropriate action. The
splice-in and splice-out are separate events and shall be treated as such. If a splice between two
pieces of content fails, the splice-out should indicate good status if the current piece of content is
played in its entirety. The SpliceComplete_Response message shall be sent immediately upon
failure of any splice event and shall not wait until the expected duration of the inserted content.

The data() field for this message contains the SpliceComplete_Response_Data structure outlined
below.

Table 7-8 – SpliceComplete_Response_Data

Syntax Bytes Type

 SpliceComplete_Response_Data {

 SessionID 4 uimsbf

 SpliceTypeFlag 1 uimsbf

 if (SpliceTypeFlag = 0)

 {

 time()

 } else

 {

 Bitrate 4 uimsbf

 PlayedDuration 4 uimsbf

 }

}

SessionID – The session ID that the Splice_Request message used.

SpliceTypeFlag – This field shall be a 0 to indicate a splice-in (start) and a 1 to indicate a
splice-out (end).

time() – The time that the splicer detected the first byte of the insertion stream from the server. The
server may utilize this time() to adjust the arrival time at the splicer, of subsequent insertion
channel content when the delivery mechanism is known to have a time varying latency.

16 Rec. ITU-T J.280 (03/2013)

Bitrate – This is the average bit rate for the session. This field is in bits-per-second (bps) including
transport packet overhead for this channel.

PlayedDuration – This is the number of 90 kHz clock ticks actually played. This is exclusive of
any post-black or transition frames.

7.6 Alive messages

Once the initialization is complete, the server can send Alive_Request messages to ensure that the
splicer is still up and running. Each Alive_Response message contains a status from the splicer to
the server. This status indicates the state of the device. If there has been no activity on the TCP/IP
connection in the preceding 60 seconds, then an Alive_Request message shall be sent.

7.6.1 Alive_Request message

The data() field for the Alive_Request message contains the Alive_Request_Data structure
outlined below.

Table 7-9 – Alive_Request_Data

Syntax Bytes Type

 Alive_Request_Data{

 time()

 }

time() – The current UTC time clock of the sending device checked as close as possible to the
sending of the message. This is designed to be used by the splicer and the server to check on how
well the two systems are time synchronized. It is not expected that this will allow the systems to
synchronize well enough to allow reliable splicing to occur, but the implementers may use this as
they wish. See clause 8.4 for the time() structure syntax.

7.6.2 Alive_Response message

The data() field for the Alive_Response message contains the Alive_Response_Data structure
outlined below.

Table 7-10 – Alive_Response_Data

Syntax Bytes Type

 Alive_Response_Data{

 State 4 uimsbf

 SessionID 4 uimsbf

 time()

 }

State – This describes the state of the output channel.

Table 7-11 – Alive_Response message states

State Description

0x00 No output

0x01 On primary channel

0x02 On insertion channel

 Rec. ITU-T J.280 (03/2013) 17

SessionID – The SessionID of the currently playing insertion. Valid only for State = 0x02.

time() – The current UTC time clock of the sending device checked as close as possible to the
sending of the message. This is designed to be used by the splicer and the server to check on how
well the two systems are time synchronized. It is not expected that this will allow the systems to
synchronize well enough to allow reliable splicing to occur, but the implementers may use this as
they wish. See clause 8.4 for the time() structure syntax.

7.7 Extended data messages

This is a splicer defined structure to send detailed data about the playback to the server. After the
SpliceComplete_Response has been received, then the extended data can be retrieved using the
ExtendedData_Request. The SessionID used in this message is the same as the SessionID used in
setting up this session and in the SpliceComplete_Response.

7.7.1 ExtendedData_Request message

The data() field for this message contains the ExtendedData_Request_Data structure outlined
below.

Table 7-12 – ExtendedData_Request_Data

Syntax Bytes Type

 ExtendedData_Request_Data {

 SessionID 4 uimsbf

 ExtendedDataType 4 uimsbf

 }

SessionID – The SessionID of the completed session.

ExtendedDataType – The requested response data type from the splicer to the
ExtendedData_Response message. This value may be set to 0xFFFFFFFF to indicate that the
default data type is to be returned. This standard reserves 0x00000000 to 0x7FFFFFFF for future
standardization. The range 0x80000000 to 0xFFFFFFFE is for vendor unique usage.

7.7.2 ExtendedData_Response message

The server shall use the MessageSize field to determine the amount of data it is required to read via
the ExtendedData_Response message.

The data() field for this message contains the ExtendedData_Response_Data structure outlined
below.

Table 7-13 – ExtendedData_Response_Data

Syntax Bytes Type

 ExtendedData_Response_Data {

 SessionID 4 uimsbf

 for(i=0;i<n;i++)

 splice_API_descriptor()

 }

SessionID – The SessionID that these data are valid for.

splice_API_descriptor() – A descriptor of the format defined in clause 8.5 that is splicer defined.

18 Rec. ITU-T J.280 (03/2013)

7.8 Abort messages

The server can send an Abort_Request at any time which will cause the splicer to immediately
revert to the overridden insertion channel or primary channel. The splicer shall send an
Abort_Response message to acknowledge the receipt of the Abort_Request. A
SpliceComplete_Response with a result code 116 (Insertion Aborted) is sent if the Abort_Request
caused a splice-out of the insertion. If no splice-out was needed then no SpliceComplete_Response
message shall be reported.

All pending back-to-back insertions linked via the PriorSession field of the Splice_Request
message to the SessionID of an Abort_Request message shall also be aborted. An error message
shall be returned for each aborted SessionID. Consider the following example: three insertions are
cued to run sequentially within a block of time – the first event is time-based; the second event is
linked to the first SessionID using the PriorSession; the third event is linked to the second
SessionID using that PriorSession. In this example, if the first insertion event is aborted, the two
subsequently cued insertion events will also be aborted. The abort message does not abort any
insertions that use a different API connection from a server to a splicer. The next splice that occurs
for the primary channel requires the PriorSession in the splice message to be 0xFFFFFFFF.

7.9 Abort_Request message

The data() field for this message contains the Abort_Request_Data structure outlined below.

Table 7-14 – Abort_Request_Data

Syntax Bytes Type

 Abort_Request_Data {

 SessionID 4 uimsbf

 }

SessionID – The SessionID and all subsequent sessions linked through the PriorSession field that
are to be aborted.

7.10 Abort_Response message

The Abort_Response indicates that the Abort_Request message was received. This message may
contain a result code if appropriate.

The data() field for this message contains the Abort_Response_Data structure outlined below.

Table 7-15 – Abort_Response_Data

Syntax Bytes Type

 Abort_Response_Data {

 SessionID 4 uimsbf

 }

SessionID – The SessionID and all subsequent sessions linked through the PriorSession field that
were aborted.

7.11 TearDownFeed_Request message

The TearDownFeed_Request message contains no data and is only valid for the connection this
message is sent over. This message is used to tear down feeds created by the Init_Request message
with the create_feed_descriptor(). This message is used to tear down only those feeds.

 Rec. ITU-T J.280 (03/2013) 19

7.12 TearDownFeed_Response message

The TearDownFeed_Response message contains no data and indicates that the
TearDownFeed_Request message was received and the action occurred. This message may
contain a result code if appropriate.

7.13 Requesting configuration settings

The current configuration settings for the API connection can be returned. This includes some of the
information in the Init_Request. The GetConfig_Request contains no additional data.

7.13.1 GetConfig_Request message

The GetConfig_Request message contains no data.

7.13.2 GetConfig_Response message

The data() field for this message contains the GetConfig_Response_Data structure outlined below.

Table 7-16 – GetConfig_Response_Data

Syntax Bytes Type

 GetConfig_Response_Data {

 ChannelName 32 String

 Hardware_Config()

 TS_program_map_section()

 }

ChannelName – Logical name given to the output channel of this connection.

Hardware_Config() – See clause 8.2 for the syntax of the Hardware_Config() structure.

TS_program_map_section() – This is the entire PMT section for the output channel as defined in
[ITU-T H.222.0]. If the splicer changes the PMT, it should signal this change to the server with a
result code 128 in the General_Response message.

7.14 General_Response message

The General_Response message is used to convey asynchronous information between the server
and the splicer. There is no data() associated with this message. Any result code may be sent in this
message. This message will typically be used to indicate output channel PMT changes or invalid
request messages.

8 Additional structures

8.1 Version

The "Version" structure is used to maintain the proper versioning within the API. It is expected that
this API will evolve over time and to allow for this expansion, the version is specified in the
Init_Request and Init_Response messages to ensure that the splicer supports the same version as
the server.

20 Rec. ITU-T J.280 (03/2013)

Table 8-1 – Version()

Syntax Bytes Type

 Version {

 Revision_Num 2 uimsbf

 }

Revision_Num – This field is two (2) in this version.

The server and splicer should set and check this field to ensure that both components are capable of
operating at the appropriate revision.

8.2 Hardware_Config

This structure describes the hardware interface between the server and the splicer. It is important for
the splicer to know exactly where the server is connected so that the splicer knows what multiplex
is being referenced. An example of this link would be a DVB-ASI connection from the server to the
splicer.

Table 8-2 – Hardware_Config()

Syntax Bytes Type

 Hardware_Config{

 Length 2 uimsbf

 Chassis 2 uimsbf

 Card 2 uimsbf

 Port 2 uimsbf

 Logical_Multiplex_Type 2 uimsbf

 Logical_Multiplex() uimsbf

 }

Length – This gives the length in bytes of this structure following this field.

Chassis – An integer indicating to which splicer chassis the server's insertion multiplex is
connected. In cases where the card is labelled alphabetically the translation is made to an integer
value (i.e., A – 1; B – 2, etc.).

Card – An integer indicating the splicer card to which the server's insertion multiplex is connected.
In cases where the card is labelled alphabetically the translation is made to an integer value (i.e., A
– 1; B – 2, etc.).

Port – The hardware port number where the server's insertion multiplex is connected.

Logical_Multiplex_Type – A value from the following table:

Table 8-3 – Logical multiplex type

Type Bytes Name Description

0x0000 0 Not used The Logical_Multiplex field is not needed to identify the
multiplex.

0x0001 Variable User
defined

The usage of the Logical_Multiplex field is not defined by
this specification and must be agreed upon between the splicer
and the server.

 Rec. ITU-T J.280 (03/2013) 21

Table 8-3 – Logical multiplex type

Type Bytes Name Description

0x0002 6 MAC
address

The Logical_Multiplex field contains the IEEE Media Access
Control address of the multiplex as a 6-byte address.

0x0003 6 IPv4
address

The most significant 4 bytes of the Logical_Multiplex field
contain the Internet Protocol (IP) address of the multiplex, and
the remaining 2 bytes contain the IP port number where the
multiplex can be found.

0x0004 18 IPv6
address

The most significant 16 bytes of the Logical_Multiplex field
contain the Internet Protocol (IPv6) address of the multiplex,
and the remaining 2 bytes contain the IP port number where
the multiplex can be found.

0x0005 5 ATM
address

The Logical_Multiplex field contains the coordinates of the
asynchronous transfer mode (ATM) circuit over which the
multiplex is carried. The most significant two bytes of the
logical multiplex field contain the virtual path identifier (VPI)
and the next two bytes contain the virtual channel identifier
(VCI) of the circuit. The least significant byte contains the
ATM adaptation layer (AAL) number.

0x0006 Variable IPv4
address

with SPTS
support

See description following this table.

0x0007 Variable IPv6
address

with SPTS
support

See description following this table.

0x0008-0xFFFF Variable Reserved Reserved for future standardization.

Type 0x0006 – IPv4 address with single program transport stream (SPTS) support

Type 0x0006 is utilized by VOD and ad servers where remapping of PIDs is impractical or
undesirable. In these cases it is desirable to use an SPTS per UDP port.

Table 8-4 – Type 0x0006 structure

Syntax Bytes Type

Type 0x0006 structure {

number_of_destination_ips 1 uimsbf

for (j=0; j< number_of_destination_ips; j++) {

 dest_ip_address 4 uimsbf

 }

 number_of_source_ips 1 uimsbf

 for (j=0; j< number_of_source_ips; j++) {

 source_ip_address 4 uimsbf

 }

 base_port 2 uimsbf

 number_of_ports 1 uimsbf

}

22 Rec. ITU-T J.280 (03/2013)

number_of_destination_ips – Specifies how many dest_ip_address(es) follow. The valid range is
1 to 32.

dest_ip_address – The IPv4 address that the splicer shall use for the content associated with the
splice.

number_of_source_ips – Specifies how many source_ip_address(es) follow. The valid range is
0-32.

source_ip_address – The source IPv4 address(es) that the splicer may use in an IGMP V3 join for
the associated multicast dest_ip_address(es).

base_port – The initial UDP port that the splicer shall use for the content associated with a
Splice_Request with time() specified. The base UDP port range shall be assigned by IANA.

number_of_ports – This byte contains the number of contiguous ports to reserve. The
number_of_ports value may range from 1 to 4 and includes the base port. Allowed port numbers are
determined, in order, by the base port, followed by base Port +1, followed by base Port +2,
followed by base Port +3.

All Splice_Requests that use time() shall use the base IPv4 address:port unless the
port_selection_descriptor() is used. The first Splice_Request of an avail shall use time().
Subsequent sessions of the same avail that also use time() shall also use the base IPv4 address:port
unless the port_selection_descriptor() is used. The next and subsequent splice_requests using
PriorSession instead of time(), shall use the base IP and port+1, then port+2 and so on until the
requested number of ports is used and it shall then revert to the base port for the next splice_request.

The port_selection_descriptor() may be utilized in any Splice_Request command that has a
hardware config with Logical_Multiplex type 0x0006 to alter the default operation of the ports.

The port may be any valid unicast or multicast IPv4 address:port combination. The splicer shall
perform an IGMP join on a multicast IP.

Logical_Multiplex – If the Port carries multiple insertion multiplexes on a single input, then this
field allows the splicer to determine which to use when splicing from this server. The meaning and
format of this field is defined by the Logical_Multiplex_Type field. In the event that a non-
standard definition for the Logical_Multiplex is required, the Logical_Multiplex_Type shall be set
to 1 for user defined.

Type 0x0007 – IPv6 address with single program transport stream (SPTS) support

Type 0x0007 is utilized by VOD and ad servers where remapping of PIDs is impractical or
undesirable. In these cases it is desirable to use an SPTS per UDP port.

Table 8-5 – Type 0x0007 structure

Syntax Bytes Type

Type 0x0007 structure {

 number_of_destination_ips 1 uimsbf

 for (j=0; j< number_of_destination_ips; j++)
 {

 dest_ip_address 16 uimsbf

 }

 number_of_source_ips 1 uimsbf

 for (j=0; j< number_of_source_ips; j++) {

 Rec. ITU-T J.280 (03/2013) 23

Table 8-5 – Type 0x0007 structure

Syntax Bytes Type

 source_ip_address 16 uimsbf

 }

 base_port 2 uimsbf

 number_of_ports 1 uimsbf

}

number_of_destination_ips – Specifies how many dest_ip_address(es) follow. The valid range is
1 to 32.

dest_ip_address – The IPv6 address that the splicer shall use for the content associated with the
splice.

number_of_source_ips – Specifies how many source_ip_address(es) follow. The valid range is
0-32.

source_ip_address – The source IPv6 address(es) that the splicer may use in an MLD V2 join for
the associated multicast dest_ip_address(es).

base_port – The initial UDP port that the splicer shall use for the content associated with a
Splice_Request with time() specified. The base UDP port range shall be assigned by IANA.

number_of_ports – This byte contains the number of contiguous ports to reserve. The
number_of_ports value may range from 1 to 4 and includes the base port. Allowed port numbers are
determined, in order, by the base port, followed by base Port +1, followed by base Port +2,
followed by base Port +3.

All Splice_Requests that use time() shall use the base IPv6 address:port unless the
port_selection_descriptor() is used. The first Splice_Request of an avail shall use time().
Subsequent sessions of the same avail that also use time() shall also use the base IPv6 address:port
unless the port_selection_descriptor() is used. The next and subsequent splice_requests using
PriorSession instead of time(), shall use the base IP and port+1, then port+2 and so on until the
requested number of ports is used and it shall then revert to the base port for the next splice_request.

The port_selection_descriptor() may be utilized in any Splice_Request command that has a
hardware config with Logical_Multiplex type 0x0007 to alter the default operation of the ports.

The port may be any valid unicast or multicast IPv6 address:port combination. The splicer shall
perform an MLD join on a multicast IP.

8.3 splice_elementary_stream()

Packet identifiers (PIDs) are identifiers for parts of the transport stream, video, audio, data, etc. This
structure is used to describe one of the elements in the program in the MPTS. The Splice_Request
message may contain a splice_elementary_stream() structure for each of the transport stream
components (except for the PCR PID). The StreamTypes are based on the MPEG PMT table
definitions.

This specification has not defined how to map multiple audio/video/data PIDs to output PIDs. It has
also not defined splicer behaviour when multiple audio tracks may be either present or missing in
the insertion channel compared with the primary channel.

24 Rec. ITU-T J.280 (03/2013)

Table 8-6 – splice_elementary_stream()

Syntax Bytes Type

 splice_elementary_stream {

 Length 1 uimsbf

 PID 2 uimsbf

 StreamType 2 uimsbf

 AvgBitrate 4 uimsbf

 MaxBitrate 4 uimsbf

 MinBitrate 4 uimsbf

 HResolution 2 uimsbf

 VResolution 2 uimsbf

 for(i=0;I<N;I++)

 descriptor()

 }

The PCR PID is required.

Length – Total length in bytes of the splice_elementary_stream() structure including this field.

PID – The PID number that is being used. This is a 2-byte field (16 bits) and shall contain the
13-bit PID right aligned as a 16-bit integer. (0x0000 to 0x1FFF)

StreamType – The type of PID (audio, video, etc.). This number corresponds with the PMT
specification found in [ITU-T H.222.0].

AvgBitrate – The bit rate for this PID averaged over the entire piece of content in bits-per-second
(bps). This is set to 0xFFFFFFFF if the bit rate is not known.

MaxBitrate – The maximum bit rate for this PID. This is set to 0xFFFFFFFF if the bit rate is not
known.

MinBitrate – The minimum bit rate for this PID. This is set to 0xFFFFFFFF if the bit rate is not
known.

HResolution – The width in number of pixels of the video pictures using this PID. If the PID does
not contain video pictures or if the server cannot supply this value, it shall be set to 0xFFFF.

VResolution – The height in number of pixels of the video pictures using this PID. If the PID does
not contain video pictures or if the server cannot supply this value, it shall be set to 0xFFFF.

descriptor() – Any valid descriptor used in a PMT. For multiple audio PIDs the language
descriptors as defined in [ITU-T H.222.0] are required.

8.4 time() field definition

The time structure is used to define various times in this specification.

Table 8-7 – time()

Syntax Bytes Type

 time {

 Seconds 4 uimsbf

 MicroSeconds 4 uimsbf

 }

 Rec. ITU-T J.280 (03/2013) 25

Seconds – Elapsed seconds since 12:00 AM January 1, 1970 UTC.

MicroSeconds – Offset in microseconds of the Seconds field.

8.5 splice_API_descriptor() field definition

This is a template for adding descriptors in any message defined within this Recommendation. The
Splice_Request, ExtendedData_Response and Init_Request messages may use descriptors. The
use of descriptors in messages defined by this standard is optional. The following table is the
general format for descriptors used in this standard.

Table 8-8 – splice_api_descriptor()

Syntax Bytes Type

 splice_API_descriptor {

 Splice_Descriptor_Tag 1 uimsbf

 Descriptor_Length 1 uimsbf

 Splice_API_Identifier 4 uimsbf

 for (i=0;i<n;i++)

 Private_Byte 1 uimsbf

 }

Splice_Descriptor_Tag – A value from 0x00 to 0xFF to denote the specific descriptor being used.
Tag values 0x00 to 0xFF are reserved for use by this standard. The vendor may use a vendor unique
Splice_API_Identifier to allow for a larger tag range and a more robust method of adding vendor
unique descriptors.

Descriptor_Length – This gives the length in bytes of the descriptor following this field.
Descriptors are limited to 256 bytes, so this value is limited to 254.

Splice_API_Identifier – An identifier of the organization that has defined this descriptor. For all
descriptors within this Recommendation, the identifier is 0x53415049 (ASCII "SAPI"). This has
been chosen to not conflict with descriptors of any other known identifier.

Private_Byte – The remainder of the descriptor is dedicated to data fields as required by the
descriptor being defined.

8.5.1 playback_descriptor() field definitions

The playback_descriptor() is an implementation of the splice_API_descriptor() which is intended
for use in the Splice_Request message.

The abort criteria examine the playback rate, defined as the output channel's bit rate averaged over a
one second period. The sliding displacement of the averaging window is recommended to be one
second or less.

26 Rec. ITU-T J.280 (03/2013)

Table 8-9 – playback_descriptor()

Syntax Bytes Type

 playback_descriptor {

 Splice_Descriptor_Tag 1 uimsbf

 Descriptor_Length 1 uimsbf

 Splice_API_Identifier 4 uimsbf

 BitrateRule 1 uimsbf

 MinPlaybackRate 4 uimsbf

 }

Splice_Descriptor_Tag – 0x01.

Descriptor_Length – 0x09.

Splice_API_Identifier – 0x53415049, ASCII "SAPI".

BitrateRule – Flag used to indicate the rules for MinPlaybackRate.

Table 8-10 – BitrateRule values

BitrateRule Description

0x00 Ignore MinPlaybackRate.

0x01 Return a result code 127 immediately using the
General_Response message if the playback rate falls
below the MinPlaybackRate but do not abort.

0x02 Abort if the playback rate falls below the
MinPlaybackRate.

0x03 Cancel the session prior to the splice-in if the splicer
determines that the MinPlaybackRate will not be met. The
splicer will send a SpliceComplete_Response or
General_Response with a result code 127.

MinPlaybackRate – The minimum aggregate bit rate of the output channel averaged over one
second for the duration of the splice that it can play at before the BitrateRule is triggered. Setting
this value to 0 indicates there is no minimum rate.

8.5.2 muxpriority_descriptor() field definitions

The muxpriority_descriptor() is an implementation of the splice_API_descriptor() which is
intended for use in the Splice_Request message.

Table 8-11 – muxpriority_descriptor()

Syntax Bytes Type

muxpriority_descriptor {

 Splice_Descriptor_Tag 1 uimsbf

 Descriptor_Length 1 uimsbf

 Splice_API_Identifier 4 uimsbf

 MuxPriorityValue 1 uimsbf

}

Splice_Descriptor_Tag – 0x02

 Rec. ITU-T J.280 (03/2013) 27

Descriptor_Length – 0x05

Splice_API_Identifier – 0x53415049, ASCII "SAPI".

MuxPriorityValue – This number ranges from 1 to 10 (1 being the lowest, 5 is the average and 10
being the highest). This number modifies the stored MuxPriorityValue of the primary channel in
the splicer. A MuxPriorityValue of 5 will not modify the output channel's priority. A
MuxPriorityValue of less than 5 will subtract from the output channel's priority level and a
MuxPriorityValue greater than 5 will add to the output channel's priority.

Using the MuxPriorityValue will not ensure that the content is played with any specific level of
quality. The actual effect of the MuxPriorityValue depends on the overall spliced multiplex
configuration and how much the splicer needs to lower the total multiplex bit rate at any given time.
This will also be dependent on how the splicer operates and as such will be a very splicer vendor
dependent field.

8.5.3 missing_Primary_Channel_action_descriptor() field definitions

The missing_Primary_Channel_action_descriptor() is an implementation of the
splice_API_descriptor() which is intended for use in the Init_Request message.

If the primary channel has terminated for any reason during an insertion, the result at the decoder
may be to display a freeze-frame of the last inserted frame at the conclusion of the insertion. This
descriptor allows the splicer to be directed to insert black video and silent audio in order to clear the
decoder's buffer, if the primary channel is no longer present when it would normally become the
output audio/video source.

Table 8-12 – missing_Primary_Channel_action_descriptor ()

Syntax Bytes Type

 missing_Primary_Channel_action_descriptor {

 Splice_Descriptor_Tag 1 uimsbf

 Descriptor_Length 1 uimsbf

 Splice_Api_Identifier 4 uimsbf

 MissingPrimaryChannelAction 1 uimsbf

 }

Splice_Descriptor_Tag – 0x03

Descriptor_Length – 0x05

Splice_API_Identifier – 0x53415049, ASCII "SAPI".

MissingPrimaryChannelAction – This parameter has three possible values, 0, 1 and 2. A value of
0 means do nothing. A value of 1 means insert one black I frame and one frame of audio silence. A
value of 2 means continue to transmit black and silence until the primary signal returns.

8.5.4 port_selection_descriptor() field definitions

The port_selection_descriptor() is an implementation of the splice_API_descriptor() which shall
only be used in the Splice_Request message when the logical multiplex type 0x0006 or 0x0007 is
used in the hardware configuration. If during a sequence of insertions the server sends a
port_selection_descriptor(), the server shall continue to send the port_selection_descriptor() until
the next Splice_Request based on time occurs.

The port_selection_descriptor() may be utilized to alter the default operation of the ports or select a
new dynamically set up IPv4 or IPv6 Address:Port combination.

28 Rec. ITU-T J.280 (03/2013)

The splicer shall dynamically set up a destination port if the ps_ip_address was not defined in the
hardware config. If the ps_ip_address is multicast, the splicer shall issue an IGMP join or an MLD
join request within 400 milliseconds after the arrival of the Splice_Request message. Latency for
setting up a multicast group shall be less than 2 seconds, which is derived as follows:

The 3 second arrival of the Splice_Request message (clause 7.5).

Less the 600 milliseconds stream start time (clause 7.5).

Less the 400 milliseconds for the splicer to issue the IGMP join or the MLD join request.

Table 8-13 – IPv4 port_selection_descriptor ()

Syntax Bytes Type

 port_selection_descriptor {

 Splice_Descriptor_Tag 1 uimsbf

 Descriptor_Length 1 uimsbf

 Splice_API_Identifier 4 uimsbf

 ps_ip_address 4 uimsbf

 ps_port 2 uimsbf

 ps_number_of_source_ip 1 uimsbf

 for (j=0; j< ps_number_of_source_ip;

 j++) {

 ps_source_ip_address 4 uimsbf

 }

 }

Splice_Descriptor_Tag – 0x04

Descriptor_Length – Variable. The length in bytes of the descriptor following this field.

Splice_API_Identifier – 0x53415049, ASCII "SAPI".

ps_ip_address – The IPv4 Internet protocol address that the splicer shall use for the content
associated with the splice. If this address:port combination is different from the address in the
Logical_Mux_Type 0x0006 table, it shall be considered a dynamic port set-up request.

ps_port – The UDP port that the splicer shall use for the content associated with the splice. This
port number shall override the automatic port selection method of the Logical_Multiplex_Type
0x0006.

ps_number_of_source_ip – Specifies how many ps_source_ip_address(es) follow. The valid
range is 0-32.

ps_source_ip_address – The source IPv4 address(es) that the splicer shall use in an IGMP V3 join
for the associated multicast ps_ip_address.

 Rec. ITU-T J.280 (03/2013) 29

Table 8-14 – IPv6 port_selection_descriptor ()

Syntax Bytes Type

 port_selection_descriptor {

 Splice_Descriptor_Tag 1 uimsbf

 Descriptor_Length 1 uimsbf

 Splice_API_Identifier 4 uimsbf

 ps_ip_address 16 uimsbf

 ps_port 2 uimsbf

 ps_number_of_source_ip 1 uimsbf

 for (j=0; j< ps_number_of_source_ip;

 j++) {

 ps_source_ip_address 16 uimsbf

 }

 }

Splice_Descriptor_Tag – 0x05

Descriptor_Length – Variable. The length in bytes of the descriptor following this field.

Splice_API_Identifier – 0x53415049, ASCII "SAPI".

ps_ip_address – The IPv6 Internet protocol address that the splicer shall use for the content
associated with the splice. If this address:port combination is different from the address in the
Logical_Mux_Type 0x0007 table, it shall be considered a dynamic port set-up request.

ps_port – The UDP port that the splicer shall use for the content associated with the splice. This
port number shall override the automatic port selection method of the Logical_Multiplex_Type
0x0007.

ps_number_of_source_ip – Specifies how many ps_source_ip_address(es) follow. The valid
range is 0-32.

ps_source_ip_address – The source IPv6 address(es) that the splicer shall use in an IGMP V3 join
or an MLD join for the associated multicast ps_ip_address.

8.5.5 asset_id_descriptor() field definitions

The asset_id_descriptor() is an implementation of the splice_API_descriptor() which shall only be
used in the Splice_Request message. This descriptor is intended to be used when the asset playout
is being performed by the splicer, but can be used to identify the asset being played also. It is
suggested for advertising content that the spot id or other identifier be used rather than a fully
qualified name. For long form VOD type content, a full asset name will probably be required. How
the server and splicer manage the name format is not specified in this Recommendation.

30 Rec. ITU-T J.280 (03/2013)

Table 8-15 – asset_id_descriptor ()

Syntax Bytes Type

 asset_id_descriptor {

 Splice_Descriptor_Tag 1 uimsbf

 Descriptor_Length 1 uimsbf

 Splice_Api_Identifier 4 uimsbf

 Asset_Upid_Type 1 uimsbf

 Asset_Upid_Length 1 uimsbf

 Asset_Upid() uimsbf

 }

Splice_Descriptor_Tag – 0x06

Descriptor_Length – Variable. The length in bytes of the descriptor following this field.

Splice_API_Identifier – 0x53415049, ASCII "SAPI".

Asset_Upid_Type – A value from the segmentation_upid_type table (Table 8-6 of
[ANSI/SCTE 35]). When the type value from Table 8-6 of [ANSI/SCTE 35] is 0x09 (ADI), the
requirements regarding this ADI-related value in section 8.3.3.1 of [ANSI/SCTE 35] shall form a
part of this specification.

Asset_Upid_Length – Length in bytes of the Asset_Upid structure. The maximum value of this
field is 245.

Asset_Upid() – Length and identification from the segmentation_upid_type table (Table 8-6 of
[ANSI/SCTE 35]. This structure's contents and length are determined by the Asset_Upid_Type and
Asset_Upid_Length fields. An example is a type of 0x06 for V-ISAN and a length of 12 bytes. This
field would then contain the V-ISAN identifier for the content to which this descriptor refers.

8.5.6 create_feed_descriptor() field definitions

The create_feed_descriptor() is an implementation of the splice_API_descriptor() which shall only
be used in the Init_Request message. This descriptor will give the splicer enough information to
create the output SPTS.

The usage of this descriptor shall be as follows:

1. The ad server shall open a new TCP connection to the splicer of the to-be-created feed.

2. The ad server shall send an Init_Request message with this descriptor on the newly-created
TCP connection.

3. The ChannelName field in the Init_Request message shall reflect the name of the
newly-created feed.

4. The splicer shall create the feed according to the Init_Request message. The newly-created
feed shall be identical to the feed denoted by OriginalChannelName (see below). The
identity shall encompass all PID values, types, descriptors, PCR PID and program number
within the newly-created feed's PMT and PAT.

5. The splicer shall send an Init_Response message only after the new feed is created.

 Rec. ITU-T J.280 (03/2013) 31

Table 8-16 – create_feed_descriptor ()

Syntax Bytes Type

 create_feed_descriptor {

 Splice_Descriptor_Tag 1 uimsbf

 Descriptor_Length 1 uimsbf

 Splice_API_Identifier 4 uimsbf

 OriginalChannelName 32 String

 Create_Feed_Descriptor_Type 1 uimsbf

 if (Create_Feed_Descriptor_Type == 0) {

 IPV4_Dest_Address 4 uimsbf

 Destination_Port 2 uimsbf

 }

 else if (Create_Feed_Descriptor_Type == 1) {

 IPV6_Dest_Address 16 uimsbf

 Destination_Port 2 uimsbf

 }

 }

Splice_Descriptor_Tag – 0x07

Descriptor_Length – Variable. The length in bytes of the descriptor following this field.

Splice_API_Identifier – 0x53415049, ASCII "SAPI".

OriginalChannelName – The logical name of the output channel used as the template for the
newly-created feed. This is a null-terminated string.

Create_Feed_Descriptor_Type – This field shall be a 0 to indicate that an IPv4 address is used
and shall be a 1 to indicate that an IPv6 address is used.

IPV4_Dest_Address – The destination IP address for the created output service. This is in the IPv4
format.

IPV6_Dest_Address – The destination IP address for the created output service. This is in the IPv6
format.

Destination_Port – The destination UDP port for the created output service.

8.5.7 source_info_descriptor() field definitions

The source_info_descriptor() is an implementation of the splice_API_descriptor() which may be
used in the Cue_Request message. This descriptor will give the server enough information to
match an insertion feed to the same type, resolution and frame rate as the primary channel. This
descriptor shall only be used if the primary channel has one and only one video present.

32 Rec. ITU-T J.280 (03/2013)

Table 8-17 – source_info_descriptor ()

Syntax Bytes Type

 source_info_descriptor {

 Splice_Descriptor_Tag 1 uimsbf

 Descriptor_Length 1 uimsbf

 Splice_API_Identifier 4 uimsbf

 StreamType 1 uimsbf

 HResolution 2 uimsbf

 VResolution 2 uimsbf

 frame_rate_code 1 uimsbf

 progressive_sequence 1 uimsbf

 }

Splice_Descriptor_Tag – 0x08

Descriptor_Length – 0x0A

Splice_API_Identifier – 0x53415049, ASCII "SAPI".

StreamType – This number corresponds with the PMT specification found in [ITU-T H.222.0].

HResolution – The width in number of pixels of the video pictures.

VResolution – The height in number of pixels of the video pictures.

frame_rate_code – For MPEG-2 video, this parameter shall be coded as per the frame_rate_code
from Table 6-4 of [ITU-T H.262]. For AVC video, this parameter shall be coded as per the
frame_rate_code value from Table 6-4 of [ITU-T H.262] that matches the coded frame rate listed in
Table 11 of [ANSI/SCTE 128]. Frame rate codes are shown in Appendix III.

progressive_sequence – For MPEG-2 video, this parameter shall be coded as per clause 6.3.5 of
[ITU-T H.262]. For AVC video, this parameter shall be set to '1' when the letter 'P' in Table 11 of
[ANSI/SCTE 128] is listed with the corresponding frame rate; otherwise, this parameter shall be set
to '0'.

9 Time synchronization

Time synchronization is required due to the communication of time between the server and the
splicer. The delay on a TCP/IP message is somewhat unpredictable and is affected by other
machines on the network. By having the machines synchronized, time can be communicated
between the two machines without concern for normal network delays keeping the splicing very
accurate. One possible method is to use a network time protocol (NTP) to keep the server and the
splicer in synchronization. It is likely that servers already keep some time synchronization, and thus
could provide the NTP service and the splicer could be an NTP client. A network common host
system NTP server could also be used since this also typically exists in a cable headend that has a
network infrastructure.

The time synchronization system must be able to keep the splicer and server within ±15 ms of each
other. The system may use the Alive_Request/Alive_Response messages to detect if the two
devices have proper synchronization and to alert the operator if synchronization is lost.

The bit stream representing the primary channel is subject to various delays, which may include
upstream splicing, satellite links and other transmission and conditioning processes. These delays
may total from milliseconds to seconds. However, these delays do not affect the accuracy of a cue

 Rec. ITU-T J.280 (03/2013) 33

message embedded in the primary channel. The cue message uses the PCR to indicate the correct
time of insertion so that it retains its original accuracy relative to the content.

The server providing the insertion channel content knows only about clock time (UTC) and the
insertion windows with which it has been programmed are relative to clock time. However, it
depends on the splicer to tell it the exact moment that it is to begin streaming that content.

When the splicer receives the program bit stream, all delays to that stream have occurred. The
splicer can take the PCR and relate it to the clock time, then send a message to the server that
specifies the exact UTC at which it must begin streaming. The insertion channel from the server
now arrives at the splicer exactly synchronized with the primary channel, and a perfect splice can be
achieved. Any additional delays that occur within the splicer are irrelevant, since the input bit
streams were synchronized.

If all parts of a facility do not use UTC time, that is, parts use GPS-based time, then all splicing
system implementations should consider the conversion from GPS-based time of day to UTC and
consistently include or ignore the GPS to UTC offset in computing times.

10 System timing

10.1 DPI splice signal flow

Figures 10-1 and 10-2 convey specific details regarding the usage and ordering of the various
messages allowed by this API. The actual usage of API messages may not be limited to these
examples.

In
se

rt
io

n
In

 P
ro

gr
es

s

-
S

p
lic

e
In

S
p

lic
e

O
u

t
-

Figure 10-1 – Single event splice

34 Rec. ITU-T J.280 (03/2013)

Figure 10-2 – Multiple event splice

10.2 DPI splice initiation timeline

Figure 10-3 gives a timing example of the events leading up to the beginning of a program (or
advertisement) insertion. Times in a real situation may vary from the timing shown in this figure.
The interval of time shown is applicable to the discussion of priority arbitration as presented in
clause 6.2. Operation in conjunction with ANSI/SCTE 35 cueing messages is also shown.

In the figure, bold black lines indicate the flow of MPEG information on the primary channel line
and on the insertion channel line. Thin black lines indicate that MPEG information is either not
flowing at that moment or is unimportant (i.e., not selected to appear at the output channel).

 Rec. ITU-T J.280 (03/2013) 35

Splice Request
Splice Response

0.00 Sec

0.50 Sec

0.75 Sec

1.00 Sec

1.25 Sec

1.50 Sec

1.75 Sec

2.00 Sec

2.25 Sec

2.50 Sec

2.75 Sec

3.00 Sec

3.50 Sec

0.25 Sec

3.25 Sec

-0.25 Sec

-0.50 Sec

-0.75 Sec

-1.00 Sec

S
p

lic
e

 P
o

in
t

in
 S

tr
e

a
m

Cue Request
Cue Response

NTP TimeNTP Time

VB
V

D
el

ay
(v

ar
ia

bl
e)D

T
S

P
T

S

P
ri

m
ar

y
C

h
an

n
el

In
se

rt
io

n
 C

h
an

n
el

T
C

P
/IP

 A
P

I T
ra

ff
ic

3
0

0m
s

3
 S

e
c

2
0

0
m

s

3
0

0
m

s

6
0

0
m

s

PA
T

/ P
M

T
C

ha
ng

e

Splice Complete Response

DVS/253 Cue
Message

0.00 Sec

0.50 Sec

0.75 Sec

1.00 Sec

1.25 Sec

1.50 Sec

1.75 Sec

2.00 Sec

2.25 Sec

2.50 Sec

2.75 Sec

3.00 Sec

3.50 Sec

0.25 Sec

3.25 Sec

-0.25 Sec

-0.50 Sec

-0.75 Sec

-1.00 Sec

Figure 10-3 – DPI splice initiation timeline

36 Rec. ITU-T J.280 (03/2013)

Appendix I

Result codes

(This appendix does not form an integral part of this Recommendation.)

See the table on the following pages.

Result Result Name Description Response Message

100 Successful Response All
101 Unknown Failure All
102 Invalid Version Server and splicer are using

different versions of this API.
Init_Response

103 Access Denied Possible licence problem. Init_Response
Splice_Response

104 Invalid/Unknown ChannelName Possible configuration error. Init_Response
105 Invalid Physical Connection Possible configuration error. Init_Response
106 No Configuration Found Splicer unable to determine the

configuration for this
connection.

GetConfig_Response

107 Invalid Configuration One or more of the parameters in
the configuration for this
connection is invalid.

GetConfig_Response

108 Splice Failed – Unknown Failure SpliceComplete_Response
109 Splice Collision A higher or same priority is

already set to splice.
Splice_Response
SpliceComplete_Response

110 No Insertion Channel Found This error shall be returned if the
insertion channel is missing.

SpliceComplete_Response

111 No Primary Channel Found This result shall be returned if
the primary channel is missing at
the splice-in or splice-out times.

SpliceComplete_Response

112 Splice_Request Was Too Late The Splice_Request message
was not received early enough (3
seconds) for the splicer to
initiate the splice.

Splice_Response

113 No Splice Point Was Found The splicer was unable to find a
valid point to splice in to the
Primary Channel.

SpliceComplete_Response

114 Splice Queue Full Too many outstanding
Splice_Request messages.

Splice_Response

115 Session Playback Suspect Splicer has detected video or
audio discrepancies that may
have affected playback.

SpliceComplete_Response

116 Insertion Aborted An Abort_Request message
caused a splice-out.

SpliceComplete_Response

117 Invalid Cue Message The splicer or server could not
parse the cue message.

General_Response
Cue_Response

118 Splicing Device Does Not Exist SplicerName was not found. Init_Response
119 Init_Request Refused The splicer refuses to allow the

server to connect.
Init_Response

120 Unknown MessageID Use Splicing_API_Message to
send response to requester. Echo
back the unknown MessageID.

All

121 Invalid SessionID The Splicer has no knowledge of
the specified SessionID.

Splice_Response
Abort_Response
ExtendedData_Response

122 Session Did Not Complete Splicer was not able to play the
complete duration. This includes
the case where the server did not
supply the sufficient content.

SpliceComplete_Response

123 Invalid Request Message data() Splicer or server was not able to
parse a field in the request
message successfully. The
invalid field position is returned
in the Result_Extension field of

All

 Rec. ITU-T J.280 (03/2013) 37

124 Descriptor Not Implemented The splicer does not currently
understand or implement the
requested descriptor.

Responses to all messages that
allow descriptors.

125 Channel Override This result code is used to
indicate to the currently playing
insertion that it has been
overridden with a splice-out
status or has been re-entered
with a Splice_in status.

SpliceComplete_Response

126 Insertion Channel Started Early This error may be issued if the
insertion channel started early
and the splicer was not able to
determine the correct start of the
insertion stream.

SpliceComplete_Response

127 Playback Rate Below Threshold See playback_descriptor() for
details.

SpliceComplete_Response

128 PMT changed This is used to indicate to the
server that the PMT for this
primary channel has changed.

General_Response

129 Invalid message size The message was not the correct
length as determined by this
specification.

All

130 Invalid message syntax Fields defined by this
specification are not within the
valid range.

All

131 Port Collision Error The splicer was not able to
utilize the specified IP:port
combination requested. The
combination is either in use or
not valid on this splicer.

Init_Response

132 Splice Failed – EAS active This error shall be returned if the
emergency alert system is active. SpliceComplete_Response

Splice_Response

133 Insertion Component Not Found One or more of the insertion
stream components was not
found. The result extension has
the stream type of the first
missing component.

SpliceComplete_Response

 134 Resources Not Available

Returned by a splicer which was
requested to provide a service
for which it had no resources.
i.e. the create_feed_descriptor()
in an Init_Request message
could not be honoured by the
splicer due to the splicer’s
output B/W being fully
occupied.

Init_Response

38 Rec. ITU-T J.280 (03/2013)

135 Component Mismatch This code MAY be returned by a
splicer when the Splice_Request
fails to define an insertion
channel component needed to
match a primary channel
component.

Examples:

1. The primary channel
contains an AC-3 audio
component, but the
Splice_Request defines
only an MPEG2 audio
component.

2. The primary channel
contains an AVC video
component, but the
Splice_Request defines
only an MPEG-2 video
component.

Splice_Response

Note: All result codes may be used in the General_Response message.

 Rec. ITU-T J.280 (03/2013) 39

Appendix II

Example use of Logical_Multiplex type 0x0006 and the
port_selection_descriptor()

(This appendix does not form an integral part of this Recommendation.)

II.1 Informative example 1

The following example illustrates the use of multiple Splice_Requests in sequence and the
incrementing of port numbers between the subsequent requests when port_selection_descriptors are
not present. (See clause 8.2)

All ports are statically set up on the Init_Request.

Base IP:Port = 192.168.134.9:2000

Number of ports = 4

The following events occur sequentially in time during a single avail.

1) Splice_Request with time() set, server uses port 2000

2) Splice_Request with PriorSession, server uses port 2001

3) Splice_Request with PriorSession, server uses port 2002

4) Splice_Request with PriorSession, server uses port 2003

5) Splice_Request with PriorSession, server uses port 2000

6) Splice_Request with PriorSession, port_selection_descriptor port = 2000, server uses
port 2000

7) Splice_Request with PriorSession, port_selection_descriptor port = 2003, server uses
port 2003.

Next avail

1) Splice_Request with time() set, server uses port 2000.

II.2 Informative example 2

Use of port_selection_descriptor() to dynamically set up a port. Base port is established statically in
the Init_Request message.

Base IP:Port = 192.168.134.9:3000

Number of ports = 1

The following events occur sequentially in time during a single avail.

1) Splice_Request with time() set, server uses port 3000

2) Splice_Request with PriorSession, port_selection_descriptor IP = 192.168.134.9
port = 2010, server sets up and uses 192.168.134.9:2010

3) Splice_Request with PriorSession, port_selection_descriptor IP = 239.192.0.2 port = 2010,
server sets up and uses 239.192.0.2:2010.

Next avail

1) Splice_Request with time() set, server uses port 2000.

40 Rec. ITU-T J.280 (03/2013)

Appendix III

Frame rate codes

(This appendix does not form an integral part of this Recommendation.)

Table III.1 – Frame rate codes

Frame rate (Hz) frame_rate_code AVC time_scale AVC num_units_in_tick

24/1.001 (23.976...) '0001' 48000 1001

24 '0010' 48 1

30/1.001 (29.97...) '0100' 60000 1001

30 '0101' 60 1

60/1.001 (59.94...) '0111' 120000 1001

60 '1000' 120 1

 Rec. ITU-T J.280 (03/2013) 41

Bibliography

[b-ANSI/SCTE 67] ANSI/SCTE 67 (2010), Recommended Practice for SCTE 35
Digital Program Insertion Cueing Message for Cable.
<http://www.scte.org/documents/pdf/Standards/ANSI_SCTE%2067%202010.pdf>

[b-IETF RFC 3810] IETF RFC 3810 (2004), Multicast Listener Discovery
Version 2 (MLDv2) for IPv6.
<http://tools.ietf.org/html/rfc3810>

[Cable Television Laboratories] Cable Television Laboratories (1997), Cable Advertising.
White Paper. Louisville, CO, USA.

[Kar, Narasimhan, Prodan] Kar, M. Narasimhan S., and Prodan R. (2000), Local
Commercial Insertion in the Digital Headend, In: Proceedings
of the NCTA 2000 Conference. New Orleans, USA.

http://www.scte.org/documents/pdf/Standards/ANSI_SCTE 67 2010.pdf
http://tools.ietf.org/html/rfc3810

Printed in Switzerland
Geneva, 2014

SERIES OF ITU-T RECOMMENDATIONS

Series A Organization of the work of ITU-T

Series D General tariff principles

Series E Overall network operation, telephone service, service operation and human factors

Series F Non-telephone telecommunication services

Series G Transmission systems and media, digital systems and networks

Series H Audiovisual and multimedia systems

Series I Integrated services digital network

Series J Cable networks and transmission of television, sound programme and other
multimedia signals

Series K Protection against interference

Series L Construction, installation and protection of cables and other elements of outside plant

Series M Telecommunication management, including TMN and network maintenance

Series N Maintenance: international sound programme and television transmission circuits

Series O Specifications of measuring equipment

Series P Terminals and subjective and objective assessment methods

Series Q Switching and signalling

Series R Telegraph transmission

Series S Telegraph services terminal equipment

Series T Terminals for telematic services

Series U Telegraph switching

Series V Data communication over the telephone network

Series X Data networks, open system communications and security

Series Y Global information infrastructure, Internet protocol aspects and next-generation networks

Series Z Languages and general software aspects for telecommunication systems

	ITU-T Rec. J.280 (03/2013) – Digital program insertion: Splicing application program interface
	Summary
	History
	FOREWORD
	Table of Contents
	1 Scope
	2 References
	3 Definitions
	3.1 Terms defined elsewhere
	3.2 Terms defined in this Recommendation

	4 Abbreviations and acronyms
	5 Conventions
	6 Requirements
	6.1 System block diagram
	6.2 Arbitration priorities
	6.3 Abnormal terminations
	6.4 Splicing requirements
	6.5 Communication

	7 API syntax
	7.1 Splicing_API_Message syntax
	7.2 Conventions and requirements
	7.3 Initialization
	7.4 Embedded cueing messages
	7.5 Splice messages
	7.6 Alive messages
	7.7 Extended data messages
	7.8 Abort messages
	7.9 Abort_Request message
	7.10 Abort_Response message
	7.11 TearDownFeed_Request message
	7.12 TearDownFeed_Response message
	7.13 Requesting configuration settings
	7.14 General_Response message

	8 Additional structures
	8.1 Version
	8.2 Hardware_Config
	8.3 splice_elementary_stream()
	8.4 time() field definition
	8.5 splice_API_descriptor() field definition

	9 Time synchronization
	10 System timing
	10.1 DPI splice signal flow
	10.2 DPI splice initiation timeline

	Appendix I – Result codes
	Appendix II – Example use of Logical_Multiplex type 0x0006 and the port_selection_descriptor()
	II.1 Informative example 1
	II.2 Informative example 2

	Appendix III – Frame rate codes
	Bibliography

