

I n t e r n a t i o n a l T e l e c o m m u n i c a t i o n U n i o n

ITU-T J.280
TELECOMMUNICATION
STANDARDIZATION SECTOR
OF ITU

(12/2005)

SERIES J: CABLE NETWORKS AND TRANSMISSION
OF TELEVISION, SOUND PROGRAMME AND OTHER
MULTIMEDIA SIGNALS
Digital transmission of television signals

 Digital Program Insertion: Splicing application
program interface

ITU-T Recommendation J.280

 ITU-T Rec. J.280 (12/2005) i

ITU-T Recommendation J.280

Digital Program Insertion: Splicing application program interface

Summary
This Recommendation defines an Application Program Interface (API) which creates a standardized
method for communication between Servers and Splicers for the insertion of content into any
MPEG-2 Output Multiplex in the Splicer. This API is flexible enough to support one or more
Servers attached to one or more Splicers. Digital Program Insertion includes content such as spot
advertisements of various lengths, program substitution, public service announcements or program
material created by splicing into portions of the program from a Server.

Source
This text was first approved on 14 December 2005 as Amendment 1 to ITU-T Recommendation
J.280 (2004) by ITU-T Study Group 9 (2005-2008) under the ITU-T Recommendation A.8
procedure, and it was then decided to republish the full text of the Recommendation.

Keywords
API, program insertion, server, splicer, splicing.

ii ITU-T Rec. J.280 (12/2005)

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of
telecommunications. The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of
ITU. ITU-T is responsible for studying technical, operating and tariff questions and issuing
Recommendations on them with a view to standardizing telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years,
establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on
these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are
prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a
telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain
mandatory provisions (to ensure e.g. interoperability or applicability) and compliance with the
Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some
other obligatory language such as "must" and the negative equivalents are used to express requirements. The
use of such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may
involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence,
validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others
outside of the Recommendation development process.

As of the date of approval of this Recommendation, ITU had not received notice of intellectual property,
protected by patents, which may be required to implement this Recommendation. However, implementors
are cautioned that this may not represent the latest information and are therefore strongly urged to consult the
TSB patent database.

 ITU 2006

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the
prior written permission of ITU.

 ITU-T Rec. J.280 (12/2005) iii

CONTENTS

 Page
1 Scope .. 1

2 References... 1
2.1 Normative references.. 1
2.2 Informative references.. 1

3 Definitions .. 1

4 Abbreviations.. 2

5 Compliance notation... 3

6 Introduction .. 3
6.1 System block diagram .. 3
6.2 Arbitration priorities... 5
6.3 Abnormal terminations... 6
6.4 Splicing requirements... 7
6.5 Communication .. 7
6.6 Further study... 7

7 API syntax .. 8
7.1 Splicing_API_Message syntax... 8
7.2 Conventions and requirements ... 9
7.3 Initialization.. 10
7.4 Embedded cueing messages ... 11
7.5 Splice messages .. 12
7.6 Alive messages ... 15
7.7 Extended data messages ... 16
7.8 Abort messages... 17
7.9 Abort_Request message ... 17
7.10 Abort_Response message... 18
7.11 Requesting configuration settings .. 18
7.12 General_Response message.. 18

8 Additional structures... 18
8.1 Version ... 18
8.2 Hardware_Config ... 19
8.3 splice_elementary_stream()... 23
8.4 time() field definition .. 24
8.5 splice_API_descriptor() field definition.. 24

9 Time synchronization ... 28

10 System timing ... 29
10.1 DPI splice signal flow .. 29
10.2 DPI splice initiation timeline.. 30

iv ITU-T Rec. J.280 (12/2005)

 Page
Appendix I – Result Codes .. 32

Appendix II – Example use of Logical_Multiplex Type 0x0006 and the
port_selection_descriptor() .. 34
II.1 Informative Example 1 ... 34
II.2 Informative Example 2 ... 34

BIBLIOGRAPHY.. 35

 ITU-T Rec. J.280 (12/2005) 1

ITU-T Recommendation J.280

Digital Program Insertion: Splicing application program interface

1 Scope
This Application Program Interface (API) creates a standardized method for communication
between Servers and Splicers for the insertion of content into any MPEG-2 Output Multiplex in the
Splicer. This API is flexible enough to support one or more Servers attached to one or more
Splicers. Digital Program Insertion includes content such as spot advertisements of various lengths,
program substitution, public service announcements or program material created by splicing
portions of the program from a Server.

This Recommendation does not support the command and control of post-production or editing
operations (e.g., superimposed pictures or picture compression effects), nor does it define how to
perform a splice or specify the level of seamlessness achieved. Furthermore, the important issue of
synchronization of asynchronous streams to be spliced is an implementation detail left to the
splicing device [3].

2 References

2.1 Normative references
The following ITU-T Recommendations and other references contain provisions which, through
reference in this text, constitute provisions of this Recommendation. At the time of publication, the
editions indicated were valid. All Recommendations and other references are subject to revision;
users of this Recommendation are therefore encouraged to investigate the possibility of applying the
most recent edition of the Recommendations and other references listed below. A list of the
currently valid ITU-T Recommendations is regularly published. The reference to a document within
this Recommendation does not give it, as a stand-alone document, the status of a Recommendation.

[1] ITU-T Recommendation H.222.0 (2000) | ISO/IEC 13818-1:2000, Information
technology – Generic coding of moving pictures and associated audio information:
Systems.

[2] ITU-T Recommendation H.262 (2000) | ISO/IEC 13818-2:2000, Information technology –
 Generic coding of moving pictures and associated audio information: Video.

[3] ITU-T Recommendation J.181 (2004), Digital program insertion cueing message for cable
television systems.

2.2 Informative references
[4] Appendix I to ITU-T Recommendation J.181 (2004), Recommended practices and

interpretation guide.

[5] IETF RFC 3810 (2004), Multicast Listener Discovery Version 2 (MLDv2) for IPv6.

3 Definitions
This Recommendation defines the following terms:

3.1 API connection: A TCP/IP socket connection between a Server and a Splicer for
transferring API messages.

3.2 back-to-back insertion: Two or more temporally contiguous Sessions without return to the
Primary Channel between Sessions.

2 ITU-T Rec. J.280 (12/2005)

3.3 channel: A Channel is a synonym for a "Service" in DVB terminology, or a "Program" in
MPEG terminology.

3.4 insertion channel: The Insertion Multiplex Channel(s) that replace the Primary Channel in
whole or in part for the duration of a splice event.

3.5 insertion multiplex: This is the source of the Insertion Channel. A Multiplex produced by
a Server may, under certain circumstances, exclude PSI information; thus, it is understood that this
Multiplex may be a non-compliant MPEG-2 transport stream.

3.6 multiplex: A Multiplex is a collection of one or more channel(s) that may include the
associated service information. A Multiplex is an MPEG-2 Transport Stream, with the possible
exception of an Insertion Multiplex.

3.7 output channel: The Channel that is produced at the output of the Splicer.

3.8 output multiplex: The MPEG-2 Transport Stream produced by multiplexing one or more
Output Channels. The Splicer shall at all times ensure that the Output Multiplex has valid PSI.

3.9 primary channel: The Primary Multiplex Channel that is replaced in whole or in part.
A single Primary Channel may result in multiple Output Channels.

3.10 primary multiplex: This is the source of the Primary Channel(s).

3.11 server: The device that originates the Insertion Channel(s) to be spliced into the Primary
Channel(s). This device communicates with the Splicer about when and what to splice.

3.12 session: A Session is the insertion of content (such as spot advertisements of various
lengths, program substitution, public service announcements, or program material created by
splicing portions of the program from a Server). Each Session is identified by a unique SessionID.

3.13 splice-in: The splice at the start of the insertion. This happens at the time specified in the
Splice_Request message.

3.14 splice-out: The splice at the end of the insertion. The expected insertion end time is
calculated by adding the start time and the duration specified in the Splice_Request message;
however, this may occur earlier due to error conditions.

3.15 splicer: The device that splices the Insertion Channel(s) into the Primary Channel(s). It
may receive J.181 cue messages. This device also communicates with the Server about when and
what to splice.

4 Abbreviations
This Recommendation uses the following abbreviations:

API Application Program Interface

CNN Cable News Network

DVB-ASI Digital Video Broadcast – Asynchronous Serial Interface

ID Identifier

ISO International Organization for Standardization

ITU International Telecommunication Union

MLD Multicast Listener Discovery

MPEG Moving Picture Experts Group

MPTS Multi-Program Transport Stream

NCTA National Cable Television Association

 ITU-T Rec. J.280 (12/2005) 3

NTP Network Time Protocol

PAT Program Association Table

PCR Program Clock Reference

PID Packet Identifier

PMT Program Map Table

PSI Program-Specific Information

SCTE Society of Cable Telecommunications Engineers

SPTS Single Program Transport Stream

TCP/IP Transport Control Protocol/Internet Protocol

uimsbf unsigned integer, most significant bit first

UTC Coordinated Universal Time

5 Compliance notation
As used in this Recommendation, "shall" denotes a mandatory provision of the standard. "Should"
denotes a provision that is recommended but not mandatory. "May" denotes a feature whose
presence does not preclude compliance, that may or may not be present at the option of the
implementer.

6 Introduction

6.1 System block diagram
This API may be used with many different configurations of Server(s) and Splicer(s). This API
focuses on the single Server, single Splicer configuration shown in Figure 1. However, this can be
expanded to the multiple Servers, multiple Splicers configuration as shown in Figure 2.

Figure 1/J.280 – Single Server/single Splicer

4 ITU-T Rec. J.280 (12/2005)

Figure 2/J.280 – Multiple Servers/Multiple Splicers

The model in this API has a Splicer that has one or more Multiplex inputs. The Splicer logically
separates the Channel(s) in the Multiplex(es) and presents these Channel(s) to a switch. This switch
is capable of mapping any input to any Output Channel. The initial configuration maps Primary
Channel(s) to the Output Channel(s). The Server may then direct the Splicer to switch from a
Primary Channel to an Insertion Channel for a specified duration. It may then direct the Splicer to
switch to another Insertion Channel following the initial switch.

Logically, a splice involves two input Channels and one output Channel. The Splicer is responsible
for joining the various elementary streams (audio, video and data) together. The optimal splice point
may occur at slightly different times for each elementary stream, so the Splicer should perform the
splice that will supply the best quality output. Splicing may not always be performed from the
Primary Channel "programming network" to the Insertion Channel "spot advertisement" and back
to the Primary Channel "programming network". The Splicer may splice content that is stored
solely on the Server and arrives over a single input Multiplex. It is possible to use this API in a
situation where a Server has one Multi-Program Transport Stream (MPTS) output that contains
program and interstitial material and uses the Splicer to create proper splices between the content.

This API supports all combinations of single and multiple Servers communicating with single and
multiple Splicers. A separate API Connection is associated with each Output Channel.

 ITU-T Rec. J.280 (12/2005) 5

In some configurations, there can be either multiple Servers or multiple channels within the
Insertion Multiplex connected to a Splicer. In these cases, the Splicer will have multiple
API Connections associated with an Output Channel. When a J.181 Cueing Message is received in
a Primary Channel, the Cue_Request message must be sent to Servers over all of the
API Connections that were made for the associated Output Channel(s). It is also possible that more
than one API Connection will transport a Splice_Request message for the same insertion at the
same time for an Output Channel.

6.2 Arbitration priorities
Different levels of access are used to ensure that the correct Insertion Channel is spliced in. There
are ten different levels of access, 0 through 9. Level 9 is the highest priority and may override any
lower priority connection. The OverridePlaying flag in the Splice_Request message specifies
whether an insertion request is honoured when the Splicer is currently queuing or performing an
insertion. If the flag is set to 1, then the higher priority insertion can interrupt the same or lower
priority currently playing insertion. If the flag is set to 0, the Splicer will not replace the currently
playing insertion even if the new request is of a higher priority.

The Splice_Request message should be sent at least three seconds before the splice time() in order
to be valid. If the three second minimum is not met, the outcome of the Splice_Request message is
not determined by this API. If multiple Servers initiate splice requests for the same time with the
same priority, the Splicer will decide which request to accept on a first-come first-served basis. All
other requests will be denied and a collision error will be sent in the Splice_Response message
(unless the OverridePlaying flag is set).

During the period of time immediately preceding the initiation of an insertion, the following is true.
If a priority 5 Splice_Request is received for the same splice time as a priority 3 Splice_Request, a
collision error is returned for the priority 3 request. If a priority 7 Splice_Request for the same time
is later received, a collision error is returned for the priority 5 request and the priority 7 request is
queued. If a second priority 7 request is received with the OverridePlaying flag set to 0, then the
second priority 7 request would receive a collision error. However, if the OverridePlaying flag is
set to 1 on the second priority 7 request, the original priority 7 request would receive a collision
error and be overridden.

6 ITU-T Rec. J.280 (12/2005)

In Figure 3, three Splicer inputs are shown. The shaded areas indicate which input source will be
directed to the Output Channel at any given moment.

t1 – Server 1 issues a Splice_Request Message and begins its stream to the Splicer. The Splicer switches this Insertion Channel
stream to the Output Channel. The Splice_Request has requested an insertion duration from time t1 through time t5. The Splicer
shall send Server 1 a SpliceComplete_Response message with the SpliceType flag set to Splice_in and a Result Code set to 100
(Successful Response).
t2 – Server 2 issues a Splice_Request, with the OverridePlaying flag set to 1 and has an equal or higher priority. At the time
specified by the Splice_Request, Insertion Channel 2's stream is switched to the Output Channel (replacing the ongoing stream from
Server 1). Server 2's Splice_Request requests a duration from time t2 through time t3. The Splicer shall send Server 1 a
SpliceComplete_Response message with the SpliceType flag set to Splice_out and a Result Code set to 125 (Channel Override).
The Splicer shall send Server 2 a SpliceComplete_Response message with the SpliceType flag set to Splice_in and a Result Code
set to 100 (Successful Response). If Server 1 determines that the Channel Override is an error, it may send an Abort_Request and
terminate its stream at this time. This behaviour is not shown in Figure 3.
t3 – The insertion duration is completed and the Splicer returns to the material from Server 1 to direct to the Output Channel. Note
that the Splicer did not return to the Primary Channel for direction to the Output Channel. The Splicer shall send Server 1 a
SpliceComplete_Response message with the SpliceType flag set to Splice_in and a Result Code set to 125 (Channel Override). The
Splicer shall send Server 2 a SpliceComplete_Response message with the SpliceType flag set to Splice_out and a Result Code set to
100 (Successful Response).
t4 – Server 2 issues another Splice_Request, with the OverridePlaying flag set to 1. At the time specified by the Splice_Request,
Insertion Channel 2's stream is switched to the Output Channel (replacing the still ongoing stream from Server 1). Server 2's
Splice_Request requests a duration from time t4 through time t6. The Splicer shall send Server 1 a SpliceComplete_Response
message with the SpliceType flag set to Splice_out and a Result Code set to 125 (Channel Override). The Splicer shall send Server 2
a SpliceComplete_Response message with the SpliceType flag set to Splice_in and a Result Code set to 100 (Successful Response).
t5 – Server 1's insertion stream ends with 2 portions of its duration having been played and 2 portions having been overridden by
Server 2's stream.
t6 – The final insertion duration is completed and the Splicer returns to the material from Primary Channel for direction to the Output
Channel. The Splicer shall send Server 2 a SpliceComplete_Response message with the SpliceType flag set to Splice_out and a
Result Code set to 100 (Successful Response).

Figure 3/J.280 – OverridePlaying flag operation

It is also possible that multiple Servers will want to split a Cue_Request message. An example
would be a 60-second duration splicing opportunity where one Server will use the first 30 seconds
and the second Server will use the last 30 seconds. Depending on the priorities and when the
Splice_Request messages are received, the Splicer shall indicate a Result Code 109
(Splice Collision) if one exists. This API does not coordinate the ability of the two Servers to be
able to perform this functionality. This can be done by mutual agreement between the Servers or by
a Server-to-Server API.

6.3 Abnormal terminations
It is possible that an insertion will be overridden at some time during playback by a higher priority
insertion. In this case, the Splicer shall return to the overridden insertion at the end of the higher
priority insertion. If the higher priority insertion is aborted by an Abort_Request message, the
Splicer shall return to the overridden insertion. If the initial Insertion Channel is no longer available,
then the Splicer shall return to the Primary Channel if possible.

 ITU-T Rec. J.280 (12/2005) 7

If the Server requests a splice on a Primary Channel that currently has no valid input, the Splicer
shall perform the splice but report a Result Code 111 (No Primary Channel Found) in the
SpliceComplete_Response to the Server. Likewise, a splice from an Insertion Channel back to a
Primary Channel that has no valid input shall complete with Result Code 111 (No Primary Channel
Found).

The Splicer may consider adding software to ensure that the Splicer always returns to the Primary
Channel. It is highly desirable to have the Splicer fail-safe to the Primary Channel on any error
condition that would cause the Output Channel to stop transmitting. The Splicer would then return a
SpliceComplete_Response with a Result Code 110 (No Insertion Channel Found).

6.4 Splicing requirements
The Splicer requires information about the Insertion Channel before it can be spliced into the
Primary Channel. Some of this information shall be sent in the API Connection and some of it may
be sent in the MPEG Multiplex. All of the information is required before the splice.

ChannelName is used for Output Channel identification. This is a unique name assigned to each
Output Channel (e.g., CNN) in the Splicer set-up and is needed by the Server to determine which
Primary Channel shall be replaced by each Insertion Channel.

The Splicer needs to know which Insertion Channel to splice into the Primary Channel. This
information includes the Insertion Multiplex location and which Channel in the Insertion Multiplex
to use. This information is available in the Splice_Request message.

6.5 Communication
The communication between the Server and the Splicer is conducted over one TCP/IP socket
connection per Output Channel. A TCP/IP socket is defined by the IP address and the TCP port
number of the Server and the Splicer. IP addresses are unique for each Server or Splicer, and
TCP port numbers are unique for each program to be spliced. Hence the Ad Server, the Splicer, and
the applicable connection for each Output Channel is uniquely identified. Once this API Connection
is established, it remains established until one of the devices terminates the API Connection, at
which time re-initialization is needed in order to splice again.

All messages exchanged between the Splicer and Server share a common general format detailed
in 7.1. Only messages adhering to this format shall be used for communication between the Splicer
and Server. The format does allow for a class of messages of "User Defined" type that can be used
as a template for private data messages between the Server and Splicer that are beyond the scope of
this Recommendation.

All request messages require a response from either the Splicer or the Server, depending on which
device is making the request. Most of the response messages only indicate a result and do not
contain any other data. They are needed to ensure that the requester knows that the message was
received and interpreted correctly. If there are errors, the message can be resent.

6.6 Further study
This Recommendation specifies a three-second minimum splice scheduling delay between the
receipt of a splicing request and the actual splicing operation. The definition, parameters, and
application of an "immediate splicing request" with substantially less delay will be the subject of
further study.

8 ITU-T Rec. J.280 (12/2005)

7 API syntax

7.1 Splicing_API_Message syntax
All messages in this API contain a general message structure that wraps the data for the specific
message being sent. This is done so that when the message is received, a common parsing routine
can store the message, determine what the structure of the data is and ensure that the message is
received correctly.

Table 7-1/J.280 – Splicing_API_Message

Syntax Bytes Type

 Splicing_API_Message {
 MessageID 2 uimsbf
 MessageSize 2 uimsbf
 Result 2 uimsbf
 Result_Extension 2 uimsbf
 data() * *
 }

MessageID – An integer value that indicates what message is being sent. See Table 7-2.

MessageSize – The size of the data() field being sent, in bytes.

Result – The results to the requested message. See Appendix I for details on the Result Codes. On
request messages, this is set to 0xFFFF.

Result_Extension – This shall be set to 0xFFFF unless used to send additional result information in
a response message.

data() – Specific data structure for the message being sent. Details on each of the messages
containing data are described below. The size of this field is equal to the value of MessageSize and
is determined by the size of the data being added to the message. Not all messages utilize the data()
field.

Table 7-2/J.280 – MessageID values

MessageID Message name Sent by Description

0x0000 General_Response Splicer or
Server

Used to convey asynchronous information
between the devices. There is no data()
associated with this message.

0x0001 Init_Request Server Initial Message to the Splicer on port 5168.
0x0002 Init_Response Splicer Initial Response to the Server on the

established connection.
0x0003 ExtendedData_Request Server Request for detailed playback information

from the Splicer.
0x0004 ExtendedData_Response Splicer Vendor-unique response of extended

playback data from the requested playback
event.

0x0005 Alive_Request Server Sends an alive message to acquire current
status.

0x0006 Alive_Response Splicer Response to the alive message indicating
current status.

 ITU-T Rec. J.280 (12/2005) 9

Table 7-2/J.280 – MessageID values

MessageID Message name Sent by Description

0x0007 Splice_Request Server Request to splice at a specific time.
0x0008 Splice_Response Splicer Response to indicate that the Splice_Request

was received and that the Splicer is preparing
to splice.

0x0009 SpliceComplete_Response Splicer Response at the Splice-in and Splice-out.
0x000A GetConfig_Request Server Request to get the current splice

configuration for this API Connection.
0x000B GetConfig_Response Splicer Contains all of the splice information for the

API Connection.
0x000C Cue_Request Splicer Splicer sending the cue info section to the

Server.
0x000D Cue_Response Server Acknowledgment that the cue info section

was received.
0x000E Abort_Request Server Request to immediately return to the Primary

Channel or overridden Insertion Channel.
0x000F Abort_Response Splicer Acknowledgment that the Abort_Request

message was received. A
SpliceComplete_Response shall also be
generated if necessary.

0x0010-0x7FFF
0xFFFF

Reserved Range Reserved for future standardization.

0x8000-0xFFFE User Defined Range available for user-defined functions.

7.2 Conventions and requirements
1) Each message that contains data is outlined with its data fields and types below. Additional

structures are indicated as functions and are described in clause 8.
2) All string lengths have space reserved for a null terminator character and must use null

terminated strings. An example would be a string that is defined as 16 characters; this can
be, at most, 15 characters of data followed by a null (0x00) character immediately after the
last data character. Once a null is encountered in scanning a string, the rest of the characters
in the string are undefined. The size defined for the string is constant and will not vary
depending on the length of the string. This Recommendation uses 8-bit ASCII characters
for strings.

3) All time values are UTC.
4) This Recommendation uses all 1s for a DON'T CARE condition. For a 4-byte field, this

value would be 0xFFFFFFFF.
5) Response messages shall be sent out without unnecessary delay. The device expecting a

response should consider no response within 5 seconds to indicate a timeout. When a
Server suspects a timeout, it shall send an Alive_Request message. If the Splicer does not
answer as specified in this Recommendation, the connection for this channel shall be
dropped and re-established.

6) A Server receiving a response message indicating failure to parse a message (error
code 123) shall send an Alive_Request message. If it does not receive the appropriate
Alive_Response message, the connection for this channel shall be dropped and
re-established.

10 ITU-T Rec. J.280 (12/2005)

7) The Result field in the Splicing_API_Message is used to return a Result Code. Multiple
response codes can be returned by sending multiple General_Response messages at any
time.

8) If the Splicer or Server cannot parse the Request message, it shall return a
General_Response with Result Code 123.

7.3 Initialization
The initial communication begins with the Splicer listening on the predefined port 5168 and a
Server opening an API Connection to the Splicer. The Server sends an Init_Request message to the
Splicer. The Server then listens for the response from the Splicer on the established
API Connection. All further communication is done on this API Connection. Either the Splicer or
Server may terminate communications by closing this API Connection. Each device is responsible
for detecting and properly handling a closed API Connection. When the Splicer initializes the
TCP listener on port 5168, it should allow for at least three times the number of Insertion Channels
for API Connections to the Splicer. For example, if the Splicer controls 70 Channels of which 40
are spliceable, then it should allow 120 (40 × 3), simultaneous API Connections.

7.3.1 Init_Request message
The data() field for this message contains the Init_Request_Data structure outlined in Table 7-3.

Table 7-3/J.280 – Init_Request_Data

Syntax Bytes Type

 Init_Request_Data {
 Version()
 ChannelName 32 String
 SplicerName 32 String
 Hardware_Config()
 for (i=0; i<N; i++)
 splice_API_descriptor()
 }

Version() – See 8.1.

ChannelName – Logical name given to the Output Channel of this connection. This is also used to
verify the correct API Connection when the Splicer responds to the Server.

SplicerName – Name of the splicing device if the Server uses the API to communicate to a device
that controls multiple Splicers.

Hardware_Config() – See 8.2.

splice_API_descriptor() – A descriptor that must follow the syntax defined in 8.5. The
missing_Primary_Channel_action_descriptor() is a suitable descriptor for this request.

7.3.2 Init_Response message
After the Init_Request is sent, the Splicer sends an Init_Response message on the opened
API Connection. The Server verifies that the version sent by the Splicer is supported and that it has
an API Connection to the correct Primary Channel.

 ITU-T Rec. J.280 (12/2005) 11

The data() field for this message contains the Init_Response_Data structure outlined in Table 7-4.

Table 7-4/J.280 – Init_Response_Data

Syntax Bytes Type

 Init_Response_Data {
 Version()
 ChannelName 32 String
 }

Version() – See 8.1. The Splicer shall respond with the highest version number of the API that it is
capable of supporting.

ChannelName – Returned to the Server to indicate the correct connection was made.

7.4 Embedded cueing messages
Splicers may have the ability to receive embedded cue messages based upon ITU-T Rec. J.181.
Once these cue messages are received by the Splicer, they need to be passed to the Server. The
Cue_Request message is used to pass these cue messages to the Server from the Splicer. When a
Splicer receives a cue message, it sends the entire splice_info_section() along with the splice time
to the Server. The Server will acknowledge the message with a Cue_Response message. The
Cue_Response message consists of just the Splicing_API_Message and has no associated data()
but may have a Return Code. The Splicer will decrypt the splice_info_section() before sending it to
the Server if it is encrypted.

If the Splicer receives a cue message that it detects is corrupted, it shall send a General_Message to
the Server with a Result Code of 117 (Invalid Cue Message). The Splicer shall not send the
Cue_Request message in this case.

7.4.1 Cue_Request message
The data() field for this message contains the Cue_Request_Data structure outlined Table 7-5.

Table 7-5/J.280 – Cue_Request_Data

Syntax Bytes Type

 Cue_Request_Data {
 time()
 splice_info_section()
 }

time() – This time is derived from the splice_time() in the splice_info_section() of the
J.181 Cueing Message by the Splicer. If component splice mode is used in the J.181
splice_info_section, the time() will refer to the default splice time detailed in 7.5.2.1/J.181. In the
case where the splice_info_section() does not contain a pts_time() that requires translation as in
the splice_schedule() command, then the time structure shall be filled with all 1s to denote no time
specified. It is up to the Splicer to determine how to map the PTS time to UTC for communication
with the Server. This may vary for different Splicers in order for them to properly manage their
internal buffers. See 8.4 for the time() structure syntax.

splice_info_section() – The details of the structure can be found in ITU-T Rec. J.181.

12 ITU-T Rec. J.280 (12/2005)

7.5 Splice messages
After initializing and configuring the Splicer, the Server can issue the Splice_Request message to
initiate a Session. The two messages that are returned from the Splice_Request message are the
Splice_Response message and the SpliceComplete_Response message. The Server shall send a
Splice_Request message at least 3 seconds prior to the time() in the Splice_Request message. This
allows the Splicer to set up its configuration and prepare for the splice. The Insertion Channel
stream for the Session must start between 300 and 600 milliseconds before time() as measured at
the Splicer input. A Program Clock Reference (PCR) must be sent on or before the first video
access unit of the Insertion Channel stream. The video stream of the insertion content shall start
with a sequence header and an I-Frame. The Splicer shall allow a minimum of 10 queued
Splice_Request messages on a given API connection. If the Splicer's message queue is full, it will
respond with Result Code 114 (Splice Queue Full).

The details of the physical connection are supplied in the Init_Request message. There are two
ways to indicate which channel in the insertion multiplex, and which PIDs, to use:
• If the ServiceID is not 0xFFFF in the Splice_Request message, the ServiceID field

specifies the program number in the PAT which points to an associated PMT. The PAT and
PMT must be stable in the insertion channel at least 200 ms before the Splice_Request
message is sent and must remain stable for the duration of the Session. These must be legal
MPEG tables with revision increments as appropriate.

• If the ServiceID is 0xFFFF, use the splice_elementary_stream() structure (PCR, video,
audio and data PIDs) in the Splice_Request message.

NOTE – If this method is used, then the ServiceID shall be set to 0xFFFF. The Splicer shall supply an
MPEG-2 compliant transport stream to the Output Multiplex although the Insertion Multiplex need not
include PSI.

The order in which splice messages are sent is important. The first message sent for a given
sequence of Back-To-Back Insertions shall utilize time(), while all of the other Splice_Request
messages may utilize PriorSession. The PriorSession number must reference an existing Session
that has not yet completed. In all other cases, an error code 123 is returned pointing to the
PriorSession or time() field.

The Server chooses the PIDs of the elementary streams within an Insertion Multiplex. The PIDs
may not be common between adjacent Sessions from the same Server via the same Insertion
Multiplex. This is because the streams of adjacent Sessions will occasionally slightly overlap in
time due to requirements in this API.

 ITU-T Rec. J.280 (12/2005) 13

7.5.1 Splice_Request message
The data() field for this message contains the Splice_Request_Data structure outlined in Table 7-6.

Table 7-6/J.280 – Splice_Request_Data

Syntax Bytes Type

 Splice_Request_Data {
 SessionID 4 uimsbf
 PriorSession 4 uimsbf
 time()
 ServiceID 2 uimsbf
 If (ServiceID = 0xFFFF)
 {
 PcrPID 2 uimsbf
 PIDCount 4 uimsbf
 for (j=0; j<PidCount; j++)
 splice_elementary_stream()
 }
 Duration 4 uimsbf
 SpliceEventID 4 uimsbf
 PostBlack 4 uimsbf
 AccessType 1 uimsbf
 OverridePlaying 1 uimsbf
 ReturnToPriorChannel 1 uimsbf
 for (i=0; i<N; i++)
 splice_API_descriptor()
 }

SessionID – Identifier for the Session. Used to distinguish this request from other requests that have
been or are going to be issued. Multiple concurrent Splice_Request messages with the same
SessionID are not permitted. If the ExtendedData_Request is used, an ExtendedData_Response
must be received for that SessionID before that SessionID is reused.

PriorSession – This field allows a simplified method of performing Back-To-Back Insertions. The
value of this field will contain the SessionID of the Session that immediately precedes it. When the
value of this field is 0xFFFFFFFF, it indicates that this Session uses time() to initiate its insertion,
rather than the SessionID of the preceding Session. This field shall have a valid SessionID only
when the immediately preceding Session originated from the same Server. The time() field rather
than the PriorSession field must be used when creating Back-To-Back Insertions from multiple
Servers.

time() – The splice time for the event. This field will typically be the time() field from the
Cue_Request message being echoed back to the Splicer. If the event was not triggered by a
Cue_Request, then this will be the time that the Server intends to force a splice event. This field is
ignored if the PriorSession is not equal to 0xFFFFFFFF. If this value is not related to a J.181 cue
message, then there may be variation between Splicers depending on their buffer and splicing
models as to when the actual splice occurs. See 8.4 for the time() structure syntax.

14 ITU-T Rec. J.280 (12/2005)

ServiceID – The program number of the Channel in the Insertion Multiplex which will be spliced in
place of the Primary Channel. If this is set to 0xFFFF, the splice_elementary_stream() and
PIDCount are required.

PCR – Indicates the PCR PID.

PIDCount – The number of PIDs in the insertion channel. (Not including the PCR PID.)

Duration – The number of 90 kHz clock ticks the Server is requesting the Splicer to insert. This
field may override the J.181 duration value. This can be set to 0 to indicate that the Splicer shall
switch to the Insertion Channel until a new Splice_Request arrives.

SpliceEventID – This is used to relate this insertion event back to the J.181 cue message that may
have caused this splice to happen. This shall be equivalent to the splice_event_id from the
splice_insert command of the associated J.181 cue message. This should be the same for all
Splice_Request messages pertaining to the same J.181 cue message. For an event that was not
initiated by a J.181 cue message, this field will be set to 0xFFFFFFFF.

PostBlack – Number of 90 kHz clock ticks of black video and muted audio to be played at the end
of the insertion content playback. The PostBlack interval follows and is not included in the length
of time specified by the Duration. If no PostBlack is requested, then this field will be set to 0.
PostBlack shall not be considered part of the currently playing insertion for the purposes of the
OverridePlaying flag.

AccessType – Indicates the type of access this connection has. This is an integer from 0 to 9 with 0
being low priority and 9 being the highest priority.

OverridePlaying – When this flag is equal to 0, this Splice_Request cannot override a currently
playing insertion. If this flag is set to 1, then this Splice_Request shall override any equal or lower
priority currently playing insertion. A currently playing insertion occurs between the Splice-in and
the Splice-out points.

ReturnToPriorChannel – When this flag is equal to 0, the Splicer shall not return to the Primary
Channel or the overridden Insertion Channel at the completion of this Splice_Request. It is
expected that a new Splice_Request will be issued before this insertion completes. If a new
Splice_Request is not received, then the Splicer shall stop transmitting on this Output Channel.
When this flag is equal to 1, it shall return to the prior Channel unless a subsequent Splice_Request
is received to indicate otherwise.

splice_API_descriptor() – A descriptor that must follow the syntax defined in 8.5. The
playback_descriptor() and muxpriority_descriptor() are appropriate descriptors for this clause.

7.5.2 Splice_Response message
The Splice_Response message contains no data and indicates that the Splice_Request message was
received. This message can contain an error code if appropriate.

7.5.3 SpliceComplete_Response message
The SpliceComplete_Response message is sent when the insertion starts and finishes. This is also
true for Back-To-Back Insertions as well. For example, if two pieces of content play, four
SpliceComplete_Response messages are returned, one at the start of the first piece of content, one
upon completion of the first piece of content, one upon the start of the second piece of content and
one upon completion of the second piece of content. The Result Code in the header shall properly
indicate the failure reason if the splice failed so that the Server can take appropriate action. The
Splice-in and Splice-out are separate events and shall be treated as such. If a splice between two
pieces of content fails, the Splice-out should indicate good status if the current piece of content
played in its entirety. The SpliceComplete_Response message shall be sent immediately upon
failure of any splice event and shall not wait until the expected duration of the inserted content.

 ITU-T Rec. J.280 (12/2005) 15

The data() field for this message contains the SpliceComplete_Response_Data structure outlined in
Table 7-7.

Table 7-7/J.280 – SpliceComplete_Response_Data

Syntax Bytes Type

 SpliceComplete_Response_Data {
 SessionID 4 uimsbf
 SpliceTypeFlag 1 uimsbf
 Bitrate 4 uimsbf
 PlayedDuration 4 uimsbf
 }

SessionID – The SessionID that the Splice_Request message used.

SpliceTypeFlag – This field shall be a 0 to indicate a Splice-in (start) and a 1 to indicate a
Splice-out (end).

Bitrate – For a Splice-out, this is the average bit rate for the Session. This field is in bits-per-second
(bit/s) including transport packet overhead for this Channel.

PlayedDuration – For a Splice-out, this is the number of 90 kHz clock ticks actually played.

7.6 Alive messages
Once the initialization is complete, the Server can send Alive_Request messages to ensure that the
Splicer is still up and running. Each Alive_Response message contains a status from the Splicer to
the Server. This status indicates the state of the device. If there has been no activity on the
TCP/IP connection in the preceding 60 seconds, then an Alive_Request message shall be sent.

7.6.1 Alive_Request message
The data() field for the Alive_Request message contains the Alive_Request_Data structure
outlined in Table 7-8.

Table 7-8/J.280 – Alive_Request_Data

Syntax Bytes Type

 Alive_Request_Data {
 time()
 }

time() – The current UTC time clock of the sending device checked as close as possible to the
sending of the message. This is designed to be used by the Splicer and the Server to check on how
well the two systems are time synchronized. It is not expected that this will allow the systems to
synchronize well enough to allow reliable splicing to occur, but the implementers may use this as
they wish. See 8.4 for the time() structure syntax.

16 ITU-T Rec. J.280 (12/2005)

7.6.2 Alive_Response message
The data() field for the Alive_Response message contains the Alive_Response_Data structure
outlined in Table 7-9.

Table 7-9/J.280 – Alive_Response_Data

Syntax Bytes Type

 Alive_Response_Data {
 State 4 uimsbf
 SessionID 4 uimsbf
 time()
 }

State – This describes the state of the Output Channel.

Table 7-10/J.280 – Alive_Response message states

State Description

0x00 No output
0x01 On Primary Channel
0x02 On Insertion Channel

SessionID – The SessionID of the currently playing insertion. Valid only for State = 0x02.

time() – The current UTC time clock of the sending device checked as close as possible to the
sending of the message. This is designed to be used by the Splicer and the Server to check on how
well the two systems are time synchronized. It is not expected that this will allow the systems to
synchronize well enough to allow reliable splicing to occur, but the implementers may use this as
they wish. See 8.4 for the time() structure syntax.

7.7 Extended data messages
This is a Splicer-defined structure to send detailed data about the playback to the Server. After the
SpliceComplete_Response has been received, then the extended data can be retrieved using the
ExtendedData_Request. The SessionID used in this message is the same as the SessionID used in
setting up this Session and in the SpliceComplete_Response.

7.7.1 ExtendedData_Request message

The data() field for this message contains the ExtendedData_Request_Data structure outlined in
Table 7-11.

Table 7-11/J.280 – ExtendedData_Request_Data

Syntax Bytes Type

 ExtendedData_Request_Data {
 SessionID 4 uimsbf
 ExtendedDataType 4 uimsbf
 }

SessionID – The SessionID of the completed Session.

 ITU-T Rec. J.280 (12/2005) 17

ExtendedDataType – The requested response data type from the Splicer to the
ExtendedData_Response message. This value may be set to 0xFFFFFFFF to indicate that the
default data type is to be returned. This Recommendation reserves 0x00000000 to 0x7FFFFFFF for
future standardization. The range 0x80000000 to 0xFFFFFFFE is for vendor-unique usage.

7.7.2 ExtendedData_Response message
The Server shall use the MessageSize field to determine the amount of data it is required to read via
the ExtendedData_Response message.

The data() field for this message contains the ExtendedData_Response_Data structure outlined in
Table 7-12.

Table 7-12/J.280 – ExtendedData_Response_Data

Syntax Bytes Type

 ExtendedData_Response_Data {
 SessionID 4 uimsbf
 for (i=0;i<n;i++)
 splice_API_descriptor()
 }

SessionID – The SessionID that this data is valid for.

splice_API_descriptor() – A descriptor of the format defined in 8.5 that is Splicer-defined.

7.8 Abort messages
The Server can send an Abort_Request at any time which will cause the Splicer to immediately
revert to the overridden Insertion Channel or Primary Channel. The Splicer shall send an
Abort_Response message to acknowledge the receipt of the Abort_Request. A
SpliceComplete_Response with a Result Code 116 (Insertion Aborted) is sent if the
Abort_Request caused a Splice-out of the insertion. If no Splice-out was needed, then no
SpliceComplete_Response message shall be reported.

All pending Back-To-Back Insertions linked via the PriorSession field of the Splice_Request
message to the SessionID of an Abort_Request message shall also be aborted. An error message
shall be returned for each aborted SessionID. Consider the following example: three insertions are
cued to run sequentially within a block of time – the first event is time-based; the second event is
linked to the first SessionID using the PriorSession; the third event is linked to the second
SessionID using that PriorSession. In this example, if the first insertion event is aborted, the two
subsequently cued insertion events will also be aborted. The abort message does not abort any
insertions that use a different API connection from a Server to a Splicer. The next splice that occurs
for the Primary Channel requires the PriorSession in the splice message to be 0xFFFFFFFF.

7.9 Abort_Request message
The data() field for this message contains the Abort_Request_Data structure outlined in Table 7-13.

Table 7-13/J.280 – Abort_Request_Data

Syntax Bytes Type

 Abort_Request_Data {
 SessionID 4 uimsbf
 }

18 ITU-T Rec. J.280 (12/2005)

SessionID – The SessionID and all subsequent Sessions linked through the PriorSession field that
are to be aborted.

7.10 Abort_Response message
The Abort_Response message contains no data and indicates that the Abort_Request message was
received. This message may contain a Result Code if appropriate.

7.11 Requesting configuration settings
The current configuration settings for the API connection can be returned. This includes some of the
information in the Init_Request. The GetConfig_Request contains no additional data.

7.11.1 GetConfig_Request message
The GetConfig_Request message contains no data.

7.11.2 GetConfig_Response message
The data() field for this message contains the GetConfig_Response_Data structure outlined in
Table 7-14.

Table 7-14/J.280 – GetConfig_Response_Data

Syntax Bytes Type

 GetConfig_Response_Data {
 ChannelName 32 String
 Hardware_Config()
 TS_program_map_section()
 }

ChannelName – Logical name given to the Output Channel of this connection.

Hardware_Config() – See 8.2 for the syntax of the Hardware_Config() structure.

TS_program_map_section() – This is the entire PMT section for the Output Channel as defined in
ITU-T Rec. H.222.0 | ISO/IEC 13818-1. If the Splicer changes the PMT, it should signal this
change to the Server with a Result Code 128 in the General_Response message.

7.12 General_Response message
The General_Response message is used to convey asynchronous information between the Server
and the Splicer. There is no data() associated with this message. Any Result Code may be sent in
this message. This message will typically be used to indicate Output Channel PMT changes or
invalid Request messages.

8 Additional structures

8.1 Version
The Version structure is used to maintain the proper versioning within the API. It is expected that
this API will evolve over time and, to allow for this expansion, the version is specified in the
Init_Request and Init_Response messages to ensure that the Splicer supports the same version as
the Server.

 ITU-T Rec. J.280 (12/2005) 19

Table 8-1/J.280 – Version()

Syntax Bytes Type

 Version {
 Revision_Num 2 uimsbf
 }

Revision_Num – This field is one in this version.

The Server and Splicer should set and check this field to insure that both components are capable of
operating at the appropriate revision.

8.2 Hardware_Config
This structure describes the hardware interface between the Server and the Splicer. It is important
for the Splicer to know exactly where the Server is connected so that the Splicer knows what
Multiplex is being referenced. An example of this link would be a DVB-ASI connection from the
Server to the Splicer.

Table 8-2/J.280 – Hardware_Config()

Syntax Bytes Type

 Hardware_Config {
 Length 2 uimsbf
 Chassis 2 uimsbf
 Card 2 uimsbf
 Port 2 uimsbf
 Logical_Multiplex_Type 2 uimsbf
 Logical_Multiplex uimsbf
 }

Length – This gives the length, in bytes, of this structure following this field.

Chassis – An integer indicating which Splicer chassis the Server's Insertion Multiplex is connected.
In cases where the card is labelled alphabetically, the translation is made to an integer value,
(i.e., A – 1; B – 2, etc.).

Card – An integer indicating the Splicer card to which the Server's insertion multiplex is
connected. In cases where the card is labelled alphabetically, the translation is made to an integer
value (i.e., A – 1; B – 2; etc.).

Port – The hardware port number where the Server's insertion multiplex is connected.

20 ITU-T Rec. J.280 (12/2005)

Logical_Multiplex_Type – A value from Table 8-3.

Table 8-3/J.280 – Logical multiplex type

Type Length Name Description

0x0000 0 Not Used The Logical_Multiplex field is not needed to identify the
multiplex.

0x0001 variable User Defined The usage of the Logical_Multiplex field is not defined
by this Recommendation and must be agreed upon
between the Splicer and the Server.

0x0002 6 MAC Address The Logical_Multiplex field contains the IEEE Media
Access Control address of the multiplex as a 6-byte
address.

0x0003 6 IPv4 Address The most significant 4 bytes of the Logical_Multiplex
field contain the Internet Protocol (IP) address of the
multiplex, and the remaining 2 bytes contain the IP port
number where the multiplex can be found.

0x0004 18 IPv6 Address The most significant 16 bytes of the Logical_Multiplex
field contain the Internet Protocol (IPv6) address of the
multiplex, and the remaining 2 bytes contain the IP port
number where the multiplex can be found.

0x0005 5 ATM Address The Logical_Multiplex field contains the coordinates of
the Asynchronous Transfer Mode (ATM) circuit over
which the multiplex is carried. The most significant 2
bytes of the Logical_Multiplex field contain the Virtual
Path Identifier (VPI). The next 2 bytes contain the Virtual
Channel Identifier (VCI) of the circuit. The least
significant byte contains the ATM Adaptation Layer
(AAL) number.

0x0006 variable IPv4 Address
with SPTS

Support

See description following this table.

0x0007 variable IPv6 Address
with SPTS

Support

See description following this table.

0x0008-0xFFFF variable Reserved Reserved for future standardization.

Logical_Multiplex – If the Port carries multiple Insertion Multiplexes on a single input, then this
field allows the Splicer to determine which to use when splicing from this Server. The meaning and
format of this field are defined by the Logical_Multiplex_Type field. In the event that a
non-standard definition for the Logical_Multiplex is required, the Logical_Multiplex_Type
should be set to 1 for User Defined.

 ITU-T Rec. J.280 (12/2005) 21

Type 0x0006 – IPv4 address with single program transport stream (SPTS) support

Type 0x0006 is utilized by VoD and Ad Servers where remapping of PIDs is impractical or
undesirable. In these cases it is desirable to use a SPTS per UDP Port.

Table 8-4/J.280 – Type 0x0006 structure

Syntax Bytes Type

 Type 0x0006 structure {
 number_of_destination_ips 1 uimsbf
 for (j=0; j< number_of_destination_ips; j++) {
 dest_ip_address 4 uimsbf
 }
 number_of_source_ips 1 uimsbf
 for (j=0; j< number_of_source_ips; j++) {
 source_ip_address 4 uimsbf
 }
 base_port 2 uimsbf
 number_of_ports 1 uimsbf
 }

number_of_destination_ips – Specifies how many dest_ip_address(s) follow. The valid range is
1 to 32.

dest_ip_address – The IPv4 address that the Splicer shall use for the content associated with the
splice.

number_of_source_ips – Specifies how many source_ip_address(s) follow. The valid range is 0
to 32.

source_ip_address – The source IPv4 address(s) that the Splicer may use in an IGMP V3 join for
the associated multicast dest_ip_address(s).

base_port – The initial UDP port that the Splicer shall use for the content associated with a
Splice_Request with time() specified. The base UDP port range shall be assigned by IANA.

number_of_ports – This byte contains the number of contiguous ports to reserve. The
number_of_ports value may range from 1 to 4 and includes the base port. Allowed port numbers are
determined, in order, by the base port, followed by base Port+1, followed by base Port+2, followed
by base Port+3.

All Splice_Requests that use time() shall use the base IPv4 Address:Port unless the
port_selection_descriptor() is used. The first Splice_Request of an avail shall use time().
Subsequent Sessions of the same avail that also use time() shall also use the base IPv4
Address:Port unless the port_selection_descriptor() is used. The next and subsequent
splice_requests using PriorSession instead of time(), shall use the base IP and port+1, then port+2
and so on until the requested number of ports is used and it shall then revert to the base port for the
next splice_request.

The port_selection_descriptor() may be utilized in any Splice_Request command that has a
hardware config with Logical_Multiplex type 0x0006 to alter the default operation of the ports.

The port may be any valid unicast or multicast IPv4 Address:Port combination. The Splicer shall
perform an IGMP join on a multicast IP.

22 ITU-T Rec. J.280 (12/2005)

Type 0x0007 – IPv6 address with single program transport stream (SPTS) support

Type 0x0007 is utilized by VoD and Ad Servers where remapping of PIDs is impractical or
undesirable. In these cases it is desirable to use a SPTS per UDP Port.

Table 8-5/J.280 – Type 0x0007 structure

Syntax Bytes Type

 Type 0x0007 structure {
 number_of_destination_ips 1 uimsbf
 for (j=0; j< number_of_destination_ips; j++) {
 dest_ip_address 16 uimsbf
 }
 number_of_source_ips 1 uimsbf
 for (j=0; j< number_of_source_ips; j++) {
 source_ip_address 16 uimsbf
 }
 base_port 2 uimsbf
 number_of_ports 1 uimsbf
 }

number_of_destination_ips – Specifies how many dest_ip_address(s) follow. The valid range is
1 to 32.

dest_ip_address – The IPv6 address that the Splicer shall use for the content associated with the
splice.

number_of_source_ips – Specifies how many source_ip_address(s) follow. The valid range is
0 to 32.

source_ip_address – The source IPv6 address(s) that the Splicer may use in an MLD V2 join for
the associated multicast dest_ip_address(s).

base_port – The initial UDP port that the Splicer shall use for the content associated with a
Splice_Request with time() specified. The base UDP port range shall be assigned by IANA.

number_of_ports – This byte contains the number of contiguous ports to reserve. The
number_of_ports value may range from 1 to 4 and includes the base port. Allowed port numbers are
determined, in order, by the base port, followed by base Port+1, followed by base Port+2, followed
by base Port+3.

All Splice_Requests that use time() shall use the base IPv6 Address:Port unless the
port_selection_descriptor() is used. The first Splice_Request of an avail shall use time().
Subsequent Sessions of the same avail that also use time() shall also use the base IPv6
Address:Port unless the port_selection_descriptor() is used. The next and subsequent
splice_requests using PriorSession instead of time(), shall use the base IP and port+1, then port+2
and so on until the requested number of ports is used and it shall then revert to the base port for the
next splice_request.

The port_selection_descriptor() may be utilized in any Splice_Request command that has a
hardware config with Logical_Multiplex type 0x0007 to alter the default operation of the ports.

The port may be any valid unicast or multicast IPv6 Address:Port combination. The Splicer shall
perform an MLD join on a multicast IP.

 ITU-T Rec. J.280 (12/2005) 23

8.3 splice_elementary_stream()
Packet Identifiers (PIDs) are identifiers for parts of the transport stream, video, audio, data, etc. This
structure is used to describe one of the elements in the program in the MPTS. The Splice_Request
message may contain a splice_elementary_stream() structure for each of the transport stream
components (except for the PCR PID). The StreamTypes are based on the MPEG PMT table
definitions.

This Recommendation has not defined how to map multiple audio/video/data PIDs to output PIDs.
It has also not defined Splicer behaviour when multiple audio tracks may be either present or
missing in the Insertion Channel compared with the Primary Channel.

Table 8-6/J.280 – splice_elementary_stream()

Syntax Bytes Type

 splice_elementary_stream {
 Length 1 uimsbf
 PID 2 uimsbf
 StreamType 2 uimsbf
 AvgBitrate 4 uimsbf
 MaxBitrate 4 uimsbf
 MinBitrate 4 uimsbf
 HResolution 2 uimsbf
 VResolution 2 uimsbf
 for (i=0;i<N;i++)
 descriptor()
 }

The PCR PID is required.

Length – Total length of the splice_elementary_stream() structure.

PID – The PID number that is being used. This is a 2-byte field (16 bits) and shall contain the
13-bit PID right aligned as a 16-bit integer (0x0000 to 0x1FFF).

StreamType – The type of PID (audio, video, etc.). This number corresponds with the PMT
specification found in ITU-T Rec. H.222.0 | ISO/IEC 13818-1.

AvgBitrate – The bit rate for this PID averaged over the entire piece of content (in bits-per-second,
bit/s) that the content was encoded at. This is set to 0xFFFFFFFF if the encoded bit rate is not
known.

MaxBitrate – The maximum bit rate for this PID. This is set to 0xFFFFFFFF if the bit rate is not
known.

MinBitrate – The minimum bit rate for this PID. This is set to 0xFFFFFFFF if the bit rate is not
known.

HResolution – The width in number of pixels of the video pictures using this PID. If the PID does
not contain video pictures or if the Server cannot supply this value, it shall be set to 0xFFFF.

VResolution – The height in number of pixels of the video pictures using this PID. If the PID does
not contain video pictures or if the Server cannot supply this value, it shall be set to 0xFFFF.

descriptor() – This would be any valid descriptor used in a PMT. For multiple audio PIDs, the
language descriptors as defined in ITU-T Rec. H.222.0 | ISO/IEC 13818-1 are required.

24 ITU-T Rec. J.280 (12/2005)

8.4 time() field definition
The time structure is used to define various splice times in this Recommendation.

Table 8-7/J.280 – time()

Syntax Bytes Type

 time {
 Seconds 4 uimsbf
 MicroSeconds 4 uimsbf
 }

Seconds – Elapsed seconds since 12:00 AM January 1, 1970 UTC.

MicroSeconds – Offset in microseconds of the Seconds field.

8.5 splice_API_descriptor() field definition
This is a template for adding descriptors in any message defined within this Recommendation. The
Splice_Request, ExtendedData_Response and Init_Request messages may use descriptors. The
use of descriptors in messages defined by this Recommendation is optional. Table 8-8 is the general
format for descriptors used in this Recommendation.

Table 8-8/J.280 – splice_API_descriptor()

Syntax Bytes Type

 splice_API_descriptor {
 Splice_Descriptor_Tag 1 uimsbf
 Descriptor_Length 1 uimsbf
 Splice_API_Identifier 4 uimsbf
 for (i=0;i<n;i++)
 Private_Byte 1 uimsbf
 }

Splice_Descriptor_Tag – A value from 0x00 to 0xFF to denote the specific descriptor being used.
Tag values 0x00 to 0xFF are reserved for use by this Recommendation. The vendor may use a
vendor-unique Splice_API_Identifier to allow for a larger tag range and a more robust method of
adding vendor-unique descriptors.

Descriptor_Length – This gives the length, in bytes, of the descriptor following this field.
Descriptors are limited to 256 bytes, so this value is limited to 254.

Splice_API_Identifier – An identifier of the organization that has defined this descriptor. For all
descriptors within this Recommendation, the identifier is 0x53415049 (ASCII "SAPI"). This has
been chosen to not conflict with descriptors of any other known identifier.

Private_Byte – The remainder of the descriptor is dedicated to data fields as required by the
descriptor being defined.

8.5.1 playback_descriptor() field definitions
The playback_descriptor() is an implementation of the splice_API_descriptor() which is intended
for use in the Splice_Request message.

 ITU-T Rec. J.280 (12/2005) 25

The abort criteria examine the playback rate, defined as the Output Channel's bit rate, averaged over
a one-second period. The sliding displacement of the averaging window is recommended to be one
second or less.

Table 8-9/J.280 – playback_descriptor()

Syntax Bytes Type

 playback_descriptor {
 Splice_Descriptor_Tag 1 uimsbf
 Descriptor_Length 1 uimsbf
 Splice_API_Identifier 4 uimsbf
 BitrateRule 1 uimsbf
 MinPlaybackRate 4 uimsbf
 }

Splice_Descriptor_Tag – 0x01.

Descriptor_Length – 0x09.

Splice_API_Identifier – 0x53415049, ASCII "SAPI".

BitrateRule – Flag used to indicate the rules for MinPlaybackRate.

Table 8-10/J.280 – BitrateRule values

BitrateRule Description

0x00 Ignore MinPlaybackRate.
0x01 Return Result Code 127 immediately using the General_Response message if the

playback rate falls below the MinPlaybackRate, but do not abort.
0x02 Abort if the playback rate falls below the MinPlaybackRate.
0x03 Cancel the Session prior to the Splice-in if the Splicer determines that the

MinPlaybackRate will not be met. The Splicer will send a SpliceComplete_Response or
General_Response with a Result Code 127.

MinPlaybackRate – The minimum aggregate bit rate of the Output Channel averaged over one
second for the duration of the splice that it can play at before the BitrateRule is triggered. Setting
this value to 0 indicates there is no minimum rate.

8.5.2 muxpriority_descriptor() field definitions
The muxpriority_descriptor() is an implementation of the splice_API_descriptor() which is
intended for use in the Splice_Request message.

Table 8-11/J.280 – muxpriority_descriptor()

Syntax Bytes Type

 muxpriority_descriptor {
 Splice_Descriptor_Tag 1 uimsbf
 Descriptor_Length 1 uimsbf
 Splice_API_Identifier 4 uimsbf
 MuxPriorityValue 1 uimsbf
 }

26 ITU-T Rec. J.280 (12/2005)

Splice_Descriptor_Tag – 0x02.

Descriptor_Length – 0x05.

Splice_API_Identifier – 0x53415049, ASCII "SAPI".

MuxPriorityValue – This number ranges from 1 to 10 (1 being the lowest, 5 is the average, and 10
being the highest). This number modifies the stored MuxPriorityValue of the Primary Channel in
the Splicer. A MuxPriorityValue of 5 will not modify the output channel's priority. A
MuxPriorityValue of less than 5 will subtract from the Output Channel's priority level and a
MuxPriorityValue greater than 5 will add to the Output Channel's priority.

Using the MuxPriorityValue will not ensure that the content is played with any specific level of
quality. The actual effect of the MuxPriorityValue depends on the overall spliced multiplex
configuration and by how much the Splicer needs to lower the total multiplex bit rate at any given
time. This will also be dependent on how the Splicer operates and as such will be a very Splicer
vendor-dependent field.

8.5.3 missing_Primary_Channel_action_descriptor() field definitions
The missing_Primary_Channel_action_descriptor() is an implementation of the
splice_API_descriptor() which is intended for use in the Init_Request message.

If the Primary Channel has terminated for any reason during an insertion, the result at the decoder
may be to display a freeze frame of the last inserted frame at the conclusion of the insertion. This
descriptor allows the Splicer to be directed to insert black video and silent audio in order to clear the
decoder's buffer, if the Primary Channel is no longer present when it would normally become the
output audio/video source.

Table 8-12/J.280 – missing_Primary_Channel_action_descriptor ()

Syntax Bytes Type

 missing_Primary_Channel_action_descriptor {
 Splice_Descriptor_Tag 1 uimsbf
 Descriptor_Length 1 uimsbf
 Splice_API_Identifier 4 uimsbf
 MissingPrimaryChannelAction 1 uimsbf
 }

Splice_Descriptor_Tag – 0x03.

Descriptor_Length – 0x05.

Splice_API_Identifier – 0x53415049, ASCII "SAPI".

MissingPrimaryChannelAction – This parameter has three possible values, 0, 1 and 2. A value of
0 means do nothing. A value of 1 means insert one black I frame and one frame of audio silence. A
value of 2 means continue to transmit black and silence until the primary signal returns.

8.5.4 port_selection_descriptor() field definitions
The port_selection_descriptor() is an implementation of the splice_API_descriptor() which shall
only be used in the Splice_Request message when Logical_Multiplex type 0x0006 or 0x0007 is
used in the hardware configuration. If, during a sequence of insertions, the Server sends a
port_selection_descriptor(), the Server shall continue to send the port_selection_decriptor() until
the next Splice_Request, based on time, occurs.

 ITU-T Rec. J.280 (12/2005) 27

The port_selection_descriptor() may be utilized to alter the default operation of the ports or select a
new dynamically set up IPv4 or IPv6 Address:Port combination.

The Splicer shall dynamically set up a destination port if the ps_ip_address was not defined in the
hardware config. If the ps_ip_address is multicast, the Splicer shall issue an IGMP join or an MLD
join request within 400 milliseconds after the arrival of the Splice_Request message. Latency for
setting up a multicast group shall be less than 2 seconds which is derived as follows:
– The 3 second arrival of the Splice_Request message (see 7.5);
– Less the 600 milliseconds stream start time (see 7.5);
– Less 400 milliseconds for the Splicer to issue the IGMP join or the MLD join request.

Table 8-13/J.280 – IPv4 port_selection_descriptor ()

Syntax Bytes Type

 port_selection_descriptor {
 Splice_Descriptor_Tag 1 uimsbf
 Descriptor_Length 1 uimsbf
 Splice_API_Identifier 4 uimsbf
 ps_ip_address 4 uimsbf
 ps_port 2 uimsbf
 ps_number_of_source_ip 1 uimsbf
 for (j=0; j< ps_number_of_source_ip; j++) {
 ps_source_ip_address 4 uimsbf
 }
 }

Splice_Descriptor_Tag – 0x04.

Descriptor_Length – Variable.

Splice_API_Identifier – 0x53415049, ASCII "SAPI".

ps_ip_address – The IPv4 Internet Protocol address that the Splicer shall use for the content
associated with the splice. If this address:port combination is different than the address in the
Logical_Mux_Type 0x0006 table, it shall be considered a dynamic port setup request.

ps_port – The UDP port that the Splicer shall use for the content associated with the splice. This
port number shall override the automatic port selection method of the Logical_Multiplex_Type
0x0006.

ps_number_of_source_ip – Specifies how many ps_source_ip_address(s) follow. The valid
range is 0 to 32.

ps_source_ip_address – The source IPv4 address(s) that the Splicer shall use in an IGMP V3 join
for the associated multicast ps_ip_address.

28 ITU-T Rec. J.280 (12/2005)

Table 8-14/J.280 – IPv6 port_selection_descriptor ()

Syntax Bytes Type

 port_selection_descriptor {
 Splice_Descriptor_Tag 1 uimsbf
 Descriptor_Length 1 uimsbf
 Splice_API_Identifier 4 uimsbf
 ps_ip_address 16 uimsbf
 ps_port 2 uimsbf
 ps_number_of_source_ip 1 uimsbf
 for (j=0; j< ps_number_of_source_ip; j++) {
 ps_source_ip_address 16 uimsbf
 }
 }

Splice_Descriptor_Tag – 0x05.

Descriptor_Length – Variable.

Splice_API_Identifier – 0x53415049, ASCII "SAPI".

ps_ip_address – The IPv6 Internet Protocol address that the Splicer shall use for the content
associated with the splice. If this address:port combination is different than the address in the
Logical_Mux_Type 0x0007 table, it shall be considered a dynamic port setup request.

ps_port – The UDP port that the Splicer shall use for the content associated with the splice. This
port number shall override the automatic port selection method of the Logical_Multiplex_Type
0x0007.

ps_number_of_source_ip – Specifies how many ps_source_ip_address(s) follow. The valid
range is 0 to 32.

ps_source_ip_address – The source IPv6 address(s) that the Splicer shall use in an IGMP V3 join
or an MLD join for the associated multicast ps_ip_address.

9 Time synchronization
Time synchronization is required due to the passing of time between the Server and the Splicer. The
delay on a TCP/IP message is somewhat unpredictable and is affected by other machines on the
network. By having the machines synchronized, time can be passed between the two machines
without concern for normal network delays keeping the splicing very accurate. One possible
non-mandatory method is to use Network Time Protocol (NTP) to keep the Server and the Splicer
in synchronization. It is likely that Servers already keep some time synchronization, and thus should
provide the NTP service, and the Splicer will be an NTP client. A network common host system
NTP Server could also be used since this will also typically exist in a cable headend that has a
network infrastructure.

The time synchronization system must be able to keep the Splicer and Server within ±15 ms of each
other. This time synchronization accuracy (i.e., within one video frame period) is assumed to be
sufficient for proper Server-Splicer operation in this Recommendation. The system may use the
Alive_Request/Alive_Response messages to detect if the two devices have proper synchronization
and to alert the operator if synchronization is lost.

The bit stream representing the Primary Channel is subject to various delays, which may include
upstream splicing, satellite links, and other transmission and conditioning processes. These delays

 ITU-T Rec. J.280 (12/2005) 29

may total from milliseconds to seconds, and a stream timing reference to compensate for such
delays may be derived from the PCR values carried in the MPEG-2 transport streams. However,
these delays do not affect the accuracy of a cue message embedded in the Primary Channel. The cue
message uses the PCR to indicate the correct time of insertion, so it retains its original accuracy
relative to the content.

The Server providing the insertion channel content knows only about clock time (UTC) and the
insertion windows with which it has been programmed are relative to clock time. However, it
depends on the Splicer to tell it the actual exact moment that it is to begin streaming that content.

When the Splicer receives the program bit stream, all delays to that stream will have already
occurred. The Splicer can take the PCR and relate it to the clock time, then send a message to the
Server that specifies the exact UTC at which it must begin streaming. The insertion channel from
the server now arrives at the Splicer exactly synchronized with the Primary Channel, and a perfect
splice can be achieved. Any additional delays that occur within the Splicer are irrelevant, since the
input bit streams were synchronized.

10 System timing

10.1 DPI splice signal flow
Figures 4 and 5 convey specific details regarding the usage and ordering of the various messages
allowed by this API. The actual usage of API messages may not be limited to these examples.

Figure 4/J.280 – Single event splice

30 ITU-T Rec. J.280 (12/2005)

Figure 5/J.280 – Multiple event splice

10.2 DPI splice initiation timeline

Figure 6 gives a timing example of the events leading up to the beginning of a program
(or advertisement) insertion. Times in a real situation may vary from the timing shown in this
figure. The interval of time shown is applicable to the discussion of priority arbitration as presented
in 6.2. Operation in conjunction with J.181 Cueing Messages is also shown.

In the figure, bold black lines indicate the flow of MPEG information on the Primary Channel line
and on the Insertion Channel line. Thin black lines indicate that MPEG information is either not
flowing at that moment or is unimportant (i.e., not selected to appear at the Output Channel).

 ITU-T Rec. J.280 (12/2005) 31

Figure 6/J.280 – DPI splice initiation timeline

32 ITU-T Rec. J.280 (12/2005)

Appendix I

Result Codes

Result Result name Description Response message

100 Successful Response All
101 Unknown Failure All
102 Invalid Version Server and Splicer are using

different versions of this API.
Init_Response

103 Access Denied Possible licence problem. Init_Response
104 Invalid/Unknown

ChannelName
Possible configuration error. Init_Response

105 Invalid Physical
Connection

Possible configuration error. Init_Response

106 No Configuration Found Splicer unable to determine the
configuration for this connection.

GetConfig_Response

107 Invalid Configuration One or more of the parameters in the
configuration for this connection is
invalid.

GetConfig_Response

108 Splice Failed – Unknown
Failure

 SpliceComplete_Response

109 Splice Collision A higher or same priority is already
set to splice.

Splice_Response
SpliceComplete_Response

110 No Insertion Channel
Found

This error shall be returned if the
Insertion Channel is missing at the
start of a splice.

SpliceComplete_Response

111 No Primary Channel
Found

This error shall be returned if the
Primary Channel is missing at the
Splice-in or Splice-out times.

SpliceComplete_Response

112 Splice_Request Was Too
Late

The Splice_Request message was
not received early enough (3
seconds) for the Splicer to initiate
the splice.

Splice_Response

113 No Splice Point Was
Found

The Splicer was unable to find a
valid point to splice into the Primary
Channel.

SpliceComplete_Response

114 Splice Queue Full Too many outstanding
Splice_Request messages.

Splice_Response

115 Session Playback Suspect Splicer has detected video or audio
discrepancies that may have affected
playback.

SpliceComplete_Response

116 Insertion Aborted An Abort_Request message caused
a Splice-out.

SpliceComplete_Response

117 Invalid Cue Message The Splicer or Server could not
parse the Cue message.

General_Response
Cue_Response

118 Splicing Device Does Not
Exist

SplicerName was not found. Init_Response

 ITU-T Rec. J.280 (12/2005) 33

Result Result name Description Response message

119 Init_Request Refused The Splicer refuses to allow the
Server to connect.

Init_Response

120 Unknown MessageID Use Splicing_API_Message to send
response to requester. Echo back the
unknown MessageID.

All

121 Invalid SessionID The Splicer has no knowledge of the
specified SessionID.

Splice_Response
Abort_Response
ExtendedData_Response

122 Session Did Not Complete Splicer was not able to play the
complete duration. This includes the
case where the Server did not supply
sufficient content.

SpliceComplete_Response

123 Invalid Request Message
data()

Splicer or Server was not able to
parse a field in the request message
successfully. The invalid field
position is returned in the
Result_Extension field of the
Splicing_API_Message.

All

124 Descriptor Not
Implemented

The Splicer does not currently
understand or implement the
requested descriptor.

Responses to all messages
that allow descriptors.

125 Channel Override This Result Code is used to indicate
to the currently playing insertion
that it has been overridden with a
Splice-out status or has been
re-entered with a Splice_in status.

SpliceComplete_Response

126 Insertion Channel Started
Early

This error may be issued if the
Insertion Channel started early and
the Splicer was not able to determine
the correct start of the insertion
stream.

SpliceComplete_Response

127 Playback Rate Below
Threshold

See playback_descriptor() for
details.

SpliceComplete_Response

128 PMT changed This is used to indicate to the Server
that the PMT for this Primary
Channel has changed.

General_Response

129 Invalid message size The message was not the correct
length as determined by this
Recommendation.

All

130 Invalid message syntax Fields defined by this
Recommendation are not within the
valid range.

All

131 Port Collision Error The Splicer was not able to utilize
the specified IP:port combination
requested. The combination is either
in use or not valid on this Splicer.

Init_Response
General_Response

NOTE – All Result Codes may be used in the General_Response message.

34 ITU-T Rec. J.280 (12/2005)

Appendix II

Example use of Logical_Multiplex Type 0x0006 and the
port_selection_descriptor()

II.1 Informative Example 1
The following example illustrates the use of multiple Splice_Requests in sequence and
incrementing of port numbers between the subsequent requests when port_selection_descriptors are
not present. (See 8.2)

All ports are statically set up on the Init_Request.

Base IP:Port = 192.168.134.9:2000

Number of ports = 4

The following events occur sequentially in time during a single avail:
1) Splice_Request with time() set, Server uses port 2000;
2) Splice_Request with PriorSession, Server uses port 2001;
3) Splice_Request with PriorSession, Server uses port 2002;
4) Splice_Request with PriorSession, Server uses port 2003;
5) Splice_Request with PriorSession, Server uses port 2000;
6) Splice_Request with PriorSession, port_selection_descriptor port = 2000, Server uses

port 2000;
7) Splice_Request with PriorSession, port_selection_descriptor port = 2003, Server uses

port 2003.

Next avail:
1) Splice_Request with time() set, Server uses port 2000.

II.2 Informative Example 2
Use of port_selection_descriptor() to dynamically set up a port. Base port is established statically in
the Init_Request message.

Base IP:Port = 192.168.134.9:3000

Number of ports = 1

The following events occur sequentially in time during a single avail.
1) Splice_Request with time() set, Server uses port 3000;
2) Splice_Request with PriorSession, port_selection_descriptor IP = 192.168.134.9

port = 2010, Server sets up and uses 192.168.134.9:2010;
3) Splice_Request with PriorSession, port_selection_descriptor IP = 239.192.0.2 port = 2010,

Server sets up and uses 239.192.0.2:2010.

Next avail:
1) Splice_Request with time() set, Server uses port 2000.

Note that the same port number with Base IP is not needed, as each avail can dynamically assign a
port number as described in this example.

 ITU-T Rec. J.280 (12/2005) 35

BIBLIOGRAPHY

Bibliography document list
• KAR (M.), NARASIMHAN (S.), PRODAN (R.): Local Commercial Insertion in the

Digital Headend, Proceedings of NCTA 2000 Conference, New Orleans, USA.

• Cable Television Laboratories: Cable Advertising, white paper, Louisville, CO,
March 1997.

Bibliography acquisition
• The National Cable Television Association, 1724 Massachusetts Ave., NW, Washington,

D.C. 20036-1969; Telephone: 202-775-3669; URL: http://www.ncta.com

• CableLabs, 400 Centennial Parkway, Louisville, CO 80027; Telephone: 303-661-9100;
Facsimile: 303-661-9199; URL: http://www.cablelabs.com

http://www.ncta.com/
http://www.cablelabs.com/

Printed in Switzerland
Geneva, 2006

SERIES OF ITU-T RECOMMENDATIONS

Series A Organization of the work of ITU-T

Series D General tariff principles

Series E Overall network operation, telephone service, service operation and human factors

Series F Non-telephone telecommunication services

Series G Transmission systems and media, digital systems and networks

Series H Audiovisual and multimedia systems

Series I Integrated services digital network

Series J Cable networks and transmission of television, sound programme and other multimedia
signals

Series K Protection against interference

Series L Construction, installation and protection of cables and other elements of outside plant

Series M Telecommunication management, including TMN and network maintenance

Series N Maintenance: international sound programme and television transmission circuits

Series O Specifications of measuring equipment

Series P Telephone transmission quality, telephone installations, local line networks

Series Q Switching and signalling

Series R Telegraph transmission

Series S Telegraph services terminal equipment

Series T Terminals for telematic services

Series U Telegraph switching

Series V Data communication over the telephone network

Series X Data networks, open system communications and security

Series Y Global information infrastructure, Internet protocol aspects and next-generation networks

Series Z Languages and general software aspects for telecommunication systems

	ITU-T Rec. J.280 (12/2005) Digital Program Insertion: Splicing application program interface
	Summary
	Source
	Keywords
	FOREWORD
	CONTENTS
	1 Scope
	2 References
	2.1 Normative references
	2.2 Informative references

	3 Definitions
	4 Abbreviations
	5 Compliance notation
	6 Introduction
	6.1 System block diagram
	6.2 Arbitration priorities
	6.3 Abnormal terminations
	6.4 Splicing requirements
	6.5 Communication
	6.6 Further study

	7 API syntax
	7.1 Splicing_API_Message syntax
	7.2 Conventions and requirements
	7.3 Initialization
	7.4 Embedded cueing messages
	7.5 Splice messages
	7.6 Alive messages
	7.7 Extended data messages
	7.8 Abort messages
	7.9 Abort_Request message
	7.10 Abort_Response message
	7.11 Requesting configuration settings
	7.12 General_Response message

	8 Additional structures
	8.1 Version
	8.2 Hardware_Config
	8.3 splice_elementary_stream()
	8.4 time() field definition
	8.5 splice_API_descriptor() field definition

	9 Time synchronization
	10 System timing
	10.1 DPI splice signal flow
	10.2 DPI splice initiation timeline

	Appendix I – Result Codes
	Appendix II – Example use of Logical_Multiplex Type 0x0006 and the port_selection_descriptor()
	II.1 Informative Example 1
	II.2 Informative Example 2
	BIBLIOGRAPHY

