

I n t e r n a t i o n a l T e l e c o m m u n i c a t i o n U n i o n

ITU-T J.215
TELECOMMUNICATION
STANDARDIZATION SECTOR
OF ITU

(12/2007)

SERIES J: CABLE NETWORKS AND TRANSMISSION
OF TELEVISION, SOUND PROGRAMME AND OTHER
MULTIMEDIA SIGNALS
Interactive systems for digital television distribution

 Client digital program insertion API

Recommendation ITU-T J.215

 Rec. ITU-T J.215 (12/2007) i

Recommendation ITU-T J.215

Client digital program insertion API

Summary
The digital program insertion (DPI) Recommendations given in ITU-T J.181 and ITU-T J.280 have
enabled cable operators to provide local ad insertion on digital content at a head-end level, using
equipment available from multiple vendors. Recommendation ITU-T J.215 enables similar
functionality for DPI including addressable commercials, or other content, to be inserted at a device
level in the consumer premises equipment.

Source
Recommendation ITU-T J.215 was approved on 14 December 2007 by ITU-T Study Group 9
(2005-2008) under the ITU-T Recommendation A.8 procedures.

ii Rec. ITU-T J.215 (12/2007)

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of
telecommunications, information and communication technologies (ICTs). The ITU Telecommunication
Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical,
operating and tariff questions and issuing Recommendations on them with a view to standardizing
telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years,
establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on
these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are
prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a
telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain
mandatory provisions (to ensure e.g., interoperability or applicability) and compliance with the
Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some
other obligatory language such as "must" and the negative equivalents are used to express requirements. The
use of such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may
involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence,
validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others
outside of the Recommendation development process.

As of the date of approval of this Recommendation, ITU had not received notice of intellectual property,
protected by patents, which may be required to implement this Recommendation. However, implementers
are cautioned that this may not represent the latest information and are therefore strongly urged to consult the
TSB patent database at http://www.itu.int/ITU-T/ipr/.

© ITU 2010

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the
prior written permission of ITU.

http://www.itu.int/ITU-T/ipr/

 Rec. ITU-T J.215 (12/2007) iii

CONTENTS

 Page
1 Scope .. 1

2 References... 1

2.1 Normative References .. 1

2.2 Informative References .. 1

3 Definitions .. 1

4 Acronyms.. 2

5 Conventions .. 2

6 DPI overview.. 3

7 Requirements for digital program insertion (DPI).. 4

7.1 DPI signalling... 4

7.2 Switch engine behaviour .. 7

7.3 Switch Engine API ... 8

Annex A – OCAP 1.1 Digital Program Insertion API... 12

A.1 SwitchEngineException class... 12

A.2 SwitchEngineListener interface.. 13

A.3 SwitchEngineManager Class.. 16

A.4 SwitchInstruction Class .. 19

 Rec. ITU-T J.215 (12/2007) 1

Recommendation ITU-T J.215

Client digital program insertion API

1 Scope
This Recommendation defines requirements for digital program insertion, henceforth referred to as
DPI.

This recommendation enables digital program insertion in host devices ("client devices") within
customers' homes, enabling addressable commercials to be inserted and addressed at a household
level (or even at an individual television set level).

2 References

2.1 Normative references
The following ITU-T Recommendations and other references contain provisions which, through
reference in this text, constitute provisions of this Recommendation. At the time of publication, the
editions indicated were valid. All Recommendations and other references are subject to revision;
users of this Recommendation are therefore encouraged to investigate the possibility of applying the
most recent edition of the Recommendations and other references listed below. A list of the
currently valid ITU-T Recommendations is regularly published. The reference to a document within
this Recommendation does not give it, as a stand-alone document, the status of a Recommendation.

[ITU-T J.202] Recommendation ITU-T J.202 (2005), Harmonization of procedural content
formats for interactive TV applications.

[ITU-T J.280] Recommendation ITU-T J.280 (2005), Digital Program Insertion: Splicing
application program interface.

[DVB-SAD] ETSI TS 102 823 v1.1.1 (2005), Digital Video Broadcasting (DVB);
Specification for the carriage of synchronized auxiliary data in DVB transport
streams, ‹http://pda.etsi.org/pda/queryform.asp›.

[ANSI/SCTE 138] ANSI/SCTE 138 (2009), Stream Conditioning for Switching of Addressable
Content in Digital Television Receivers.

2.2 Informative references
[ITU-T J.181] Recommendation ITU-T J.181 (2004), Digital program insertion cueing message

for cable television systems.

[ITU-T J.201] Recommendation ITU-T J.201 (2004), Harmonization of declarative content
format for interactive television applications.

3 Definitions
This Recommendation defines the following terms:

3.1 application: An application is a functional implementation realized as software running in
one or spread over several interplaying hardware entities.

3.2 application program interface (API): An application program interface is the software
interface to system services or software libraries. An API can consist of classes, function calls,
subroutine calls, descriptive tags, etc.

2 Rec. ITU-T J.215 (12/2007)

3.3 broadcast: A broadcast is a service that is delivered to all customers. Each customer may
select a particular broadcast channel out of many.

3.4 broadcast application: A broadcast application is an application running on the set-top
converter that is loaded through in-band information, inserted either at the head-end or by a content
provider farther upstream.

3.5 client device: The CPE that is connected to the cable network in the consumer's home,
receives the television signals at the client's premises, and presents it for display on a display
device.

3.6 digital program insertion (DPI): Insertion of alternative content into digitally encoded
content in response to messaging in the stream.

3.7 packet identifier (PID): MPEG-2 assigns a PID to each data packet. Packets with the same
PID belong to the same logical channel.

3.8 program map table (PMT): This is a MPEG-2 entity that contains all of the PIDs that
make up a program.

3.9 switch engine: This term refers to the functionality that executes switching in the host
device. This switching can either be seamless, or non-seamless. Because this functionality needs to
be implemented in a real-time way, with predictable timing behaviour, the switching engine is
implemented as part of an OpenCable Applications Platform (OCAP) implementation ("below the
line"). It exposes an API to OCAP applications (targeting engines) to select which commercials are
switched to/from. A switching engine can be implemented in hardware, software, or a combination
of both.

3.10 unicast advertising: Advertising content directed at a single target or small group of
targets.

4 Abbreviations and acronyms
This Recommendation uses the following abbreviations:

API Application Program Interface

DPI Digital Program Insertion

OCAP OpenCable Applications Platform

PMT Program Map Table

5 Conventions
The following words are used throughout this Recommedation to define the significance of
particular requirements:

SHALL This word, or the adjective REQUIRED, means that the item is an absolute
requirement of this Recommedation.

SHALL NOT This phrase means that the item is an absolute prohibition of this
Recommendation.

SHOULD This word, or the adjective RECOMMENDED, means that valid reasons may
exist in particular circumstances to ignore this item, but the full implications
should be understood and the case carefully weighed before choosing a
different course.

SHOULD NOT This phrase means that there may exist valid reasons in particular
circumstances when the listed behaviour is acceptable or even useful, but the

 Rec. ITU-T J.215 (12/2007) 3

full implications should be understood and the case carefully weighed before
implementing any behaviour described with this label.

MAY This word, or the adjective OPTIONAL, means that this item is truly optional.
One vendor may choose to include the item because a particular marketplace
requires it or because it enhances the product, for example; another vendor
may omit the same item.

6 DPI overview
The digital program insertion (DPI) standards within [ITU-T J.181] and [ITU-T J.280] have enabled
cable operators to provide local ad insertion on digital content at a head-end level, using equipment
available from multiple vendors. This Recommendation enables similar functionality for DPI
including addressable commercials, or other content, to be inserted at a device level.

To allow for programmability by a cable operator as well as meet time sensitive insertion
requirements, the DPI functionality is separated into two logical components: a 'switch engine'
implemented as part of the J.201 platform that performs real-time functions of switching between
programs and program elements, and one or more 'targeting engine' applications that control the
behaviour of the switch engine.

A switch engine performs switch operations to present inserted content. In the broadcast scenario,
which is the only scenario defined herein, inserted content MAY be within the same MPEG-2
transport stream as the original program or broadcast within a different MPEG-2 transport stream.
Other scenarios, such as those where the original or inserted content are available on a storage
device, may be defined elsewhere.

A switch engine implements two distinct types of switches; a Level 0 (L0) switch, which appears to
the viewer as a channel change, and a Level 1 (L1) switch, which is totally invisible to the viewer.
During an L0 switch, a switch engine may be required to tune to a different channel to access an
insertion stream. An L1 switch never requires tuning; in this case, all of the insertion streams are
within the same transport stream as the original program content.

Requirements on content to enable L0 and L1 switches are defined by [ANSI/SCTE 138]. The
switch engine behaviour is defined in clause 7.2. Detailed requirements on OCAP to perform L0
and L1 switches are defined in Annex A.

An illustration of the logical components of the OCAP DPI capability is provided in Annex A.

Figure 1 – OCAP DPI overview

4 Rec. ITU-T J.215 (12/2007)

Indicated as (1) in Figure 1, a targeting engine API is defined Annex A to enable applications to
provide the switch engine with instructions and to receive status information on previously
submitted instructions.

Indicated as (2) in Figure 1, DPI signalling are messages that are processed by the switch engine.
Signalling may be in the form of DPI triggers or timelines. See clause 7.1 below for detailed
requirements on processing DPI signalling.

Where instructed by a targeting engine, the switch engine performs a program insertion operation
on receipt of a DPI trigger, or based on a timeline. The DPI API provides the mechanism by which
a targeting engine application configures the switch engine to perform a switch operation. A switch
operation occurs when the switch engine is properly configured by a targeting application through
the DPI API, and the proper signalling is subsequently detected.

Indicated as (3) in Figure 1, content feeds are MPEG-2 transport streams that carry program feeds
and may contain other insertion feeds, such as advertising feeds. The program feeds (as well as the
separate insertion feeds) may contain DPI signalling that is used by the switch engine to insert
content, such as addressable commercials during addressable breaks. The program feeds and
insertion feeds may be subject to certain encoding (and other) restrictions that make it easier for the
switching engine to switch to and from insertion content, see [ANSI/SCTE 138].

The command and control element shown in Figure 1 represents a hypothetical private
communication channel between a targeting engine and an associated network component.
Advanced advertising systems are expected to incorporate logical components within the cable
network that manage both the insertion of DPI signalling and the actions of a targeting engine.

No security model has been defined to protect signalling from detection by non-authorized users.
Because of the extremely tight synchronization between signalling and video content needed to
perform seamless L1 switches, signalling must be in-band, in the same program stream as the
original content feed. Strategies for obfuscating signals may be developed, but none are described
herein.

7 Requirements for digital program insertion (DPI)

7.1 DPI signalling
This clause describes signaling used to enable a switch engine to perform its operations.

Two signalling protocols are used to support DPI: DPI triggers and DPI timelines. DPI trigger
messages embedded within a content segment indicate opportunities to perform a switch operation.
DPI timelines are messages embedded within a content segment to enable the implementation to
maintain a metadata timeline for a segment. Switch operations MAY be based on timelines.

All DPI signalling is expected to be carried on a single data PID within the original content stream.
This data stream SHALL be identified by DPI registration descriptor in a program's PMT.

Figure 2 – DPI signalling stream

 Rec. ITU-T J.215 (12/2007) 5

Figure 2 illustrates a hypothetical MPEG-2 program stream containing DPI signalling. The
DVB-SAD PID contains a series of timeline descriptors, and examples of L0 and L1 triggers. The
details of these descriptors and their placement are provided below.

7.1.1 DPI Signalling descriptor
The dpi_signaling_descriptor is defined for use in the elementary stream information loop of
the PMT. This descriptor indicates that the associated elementary stream contains a DPI signalling
stream, containing DPI triggers and timeline messages as defined below. Only one elementary
stream signalled by the PMT SHALL contain a dpi_signaling_descriptor. In the event that
more than one PMT entry contains a dpi_signaling_descriptor, the implementation SHALL
ignore all but the first instance listed in the PMT's elementary stream information loop.

A PMT entry with a dpi_signaling_descriptor MAY be associated with a stream_type of 0xC0
or 0x05.

The dpi_signaling_descriptor is defined in Table 1.

Table 1 – DPI signalling descriptor syntax

Syntax Bits Mnemonic

dpi_signaling_descriptor() {

 descriptor_tag 8 uimsbf

 descriptor_length 8 uimsbf

 For (i=0; i<n; i++) {

 private_use 8 bslbf

 }

}

descriptor_tag This 8-bit integer with value 0xA2 identifies this descriptor.

descriptor_length This 8-bit integer indicates the number of bytes following the descriptor length
field.

private_use This field MAY be used to carry private data to a receiver which interprets this
signalling stream. Its use is not defined by this Recommendation.

7.1.2 DPI triggers
The format for DPI triggers SHALL be the DVB-SAD synchronized event descriptor, see
section 5.2.5 of [DVB-SAD]. When present in a content or insertion feed, the implementation
SHALL process every instance of a DVB-SAD synchronized event descriptor.

The use of DPI triggers is different for L0 and L1 switches. To signal an L0 switch, a single DPI
trigger MAY be used to indicate the point in a stream at which the switch may occur. For L1
switches, a DPI trigger SHALL be present for each component that will be switched; typically, one
for video and one for audio. For L1 switches, a set of DPI triggers SHALL be used to signal a single
switch operation.

The following semantics are defined for the DVB-SAD synchronized event descriptor (section 5.2.5
of [DVB-SAD]):

synchronized_event_context: This field SHALL be encoded according to Table 2. If this field
contains a value not defined below, the implementation SHALL ignore this descriptor.

6 Rec. ITU-T J.215 (12/2007)

Table 2 – synchronized_event_context

Value Description

10 L1 video
11 L1 audio
12 L0

synchronized_event_id: This field identifies a switch operation. The implementation SHALL use
this value to associate a switch instruction with this trigger, if such an instruction has been received
from an application.

synchronized_event_data_byte: This field SHALL be encoded according to Table 3. If this field is
not conformant to Table 3, the implementation SHALL ignore this descriptor.

Table 3 – synchronized_event_data_byte

Syntax No. of bits Identifier

set_size 8 uimsbf
position_in _set 8 uimsbf

set_size: This field indicates the number of triggers signalling a switch. For an L0 switch, this value
is 1, for an L1 switch, this value is at least 1 and is typically 2; one for video, one for audio.

position_in_set: This field indicates the position of this trigger within a set of triggers, zero based.

DPI triggers for L0 switches SHALL be present in a stream at a point TBD.

DPI triggers for L1 switches SHALL be present in a stream at a point TBD. For more details on the
structure of an L1 conditioned stream, see [DVB-SAD].

7.1.3 DPI timelines
A content segment MAY contain timeline messages that allow the implementation to maintain a
timeline synchronized to the video and audio content. Timeline messages SHALL be in the
DVB-SAD broadcast timeline descriptor format, see [DVB-SAD] clause 5.2.2 for a description of
the broadcast timeline descriptor. When present within a content feed, the implementation SHALL
process every instance of a DVB-SAD broadcast timeline descriptor to maintain an interpolated
metadata timeline. [DVB-SAD] contains descriptions and references to definitions of timelines
within several clauses. The reader should be familiar with [DVB-SAD] in its entirety.

L0 switch operations MAY be performed when a point on a timeline is reached. In order to enable
time-based switch scenarios in which a viewer may tune away, then tune back into a service during
a switch opportunity, streams MAY contain a series of DPI timeline messages throughout the
original program.

Within a content feed that signals a timeline and supports L0 switches, a DPI timeline SHALL be
continuous throughout the relevant segment. The associated insertion feeds SHALL signal a
timeline that is proceeding at the same rate with the same values as the original feed.

Within a content feed that signals a timeline and supporting L1 switches, the DPI signalling stream
SHALL contain a continuously advancing timeline.

The following semantics are defined for the DVB-SAD synchronized event descriptor:

Where broadcast_timeline_type equals 0:

tick_format: This field SHALL have the value 0x11. See Table 6 of [DVB-SAD].

 Rec. ITU-T J.215 (12/2007) 7

7.2 Switch engine behaviour
Switches may be trigger-based or time-based. A switch instruction MAY identify a set of triggers,
and or identify a segment of time during which a switch may occur. A switch is either from an
original program feed to an insertion feed, from an insertion feed to another insertion feed, or from
an insertion feed back to the original feed. The switch engine SHALL maintain context such that
the original feed may be presented in error cases or as default behaviour when the final insertion
within a group is completed.

On receipt of a DPI trigger, the implementation SHALL determine whether there is a switch
instruction matching the trigger. To match a switch instruction with a trigger, the implementation
SHALL determine whether there is a SwitchInstruction with the switchID attribute equal to the
value in the synchronized_event_id field of the trigger.

Insertions are often made in groups, as is the case when several ad spots make up an ad break. A
switch instruction MAY indicate that if a previous insertion within a group is not made, then
subsequent insertions should not take place, as might be the case if a service is selected after the
first spot in an ad break. An instruction indicates that the entire group must be inserted when the
insertionIndivisible attribute is non-zero, and indicates its position within a group via the groupSize
and positionInGroup attributes. Where a matched instruction's insertionIndivisible attribute is non-
zero, and all previous instructions within its group have not caused a switch, the implementation
SHALL not perform a switch. Requirements defined below for performing switches assume this
behaviour and do not repeat these statements.

Where an instruction matches a trigger:
• Where the value in the synchronized_event_context field of the trigger indicates an L0

trigger, the implementation SHALL perform an L0 switch.
• Where the value in the synchronized_event_context field of the trigger indicates an L1

operation, the implementation SHALL perform an L1 switch.

For time-based switches, the implementation will process DPI timeline messages if present and
maintain a metadata timeline for the current service. See clause 7.1.3 for details. When the point on
the metadata timeline is reached that is equal to or greater than the value of the switchStartTime
(if non-zero) of any switch instruction for the service, and the triggerSwitch flag of the switch
instruction is zero, the implementation SHALL perform an L0 switch.

7.2.1 Requirements to perform an L0 switch
The implementation SHALL present the program specified by the switch instruction destination
field or by the default rules defined for the end of an insertion. Note that an L0 DPI switch is not a
service selection, that is, an L0 switch does not affect the lifecycle of any applications associated
with the selected service of the original channel, while it may cause the loading and launching of
applications associated with the newly presenting program.

7.2.2 Requirements to perform an L1 switch
L1 switches are signalled by a set of DPI triggers, one for each component that will be replaced,
i.e., one for video, one for audio, etc. L1 triggers are identified as such by the
synchronized_event_context field of the trigger, see clause 7.1.2.

When an L1 video trigger matching a switch instruction is received, the implementation SHALL
discontinue processing the video component of the currently presenting program and begin
processing the video component of the program indicated by the destination field of the instruction.

When an L1 audio trigger matching a switch instruction is received, the implementation SHALL
discontinue processing the audio component of the currently presenting program and begin
processing the first audio component indicated in the PMT of the program indicated by the

8 Rec. ITU-T J.215 (12/2007)

destination field of the instruction, or the audio component indicated by the instructions
audioChannel attribute if non-zero.

The latency between discontinuation of processing an original component and processing a
destination component SHALL NOT be less than one millisecond and SHALL NOT exceed
30 milliseconds.

When a set of video and audio triggers has been processed, the implementation SHALL process all
data streams associated with the destination program. This is for the purpose of launching
applications that may be associated with the destination program. Note that the destination program
may be the original program in the case where the switch is from an insertion feed back to the
original feed.

7.2.3 Selecting a DPI enabled program
The following requirements for maintaining timelines and performing time-based switches when a
service is selected are to accommodate scenarios in which a viewer tunes away from a program and
tunes back during an insertion opportunity.

Where a metadata timeline has been established for a service, see clause 7.1.3, the implementation
SHALL maintain the timeline if there is an instruction for the service with non-zero values for
switchStartTime and switchEndTime and another service is selected. If a third service is selected,
the implementation MAY discontinue maintaining the timeline for the original service. If the
original service is not re-selected within an hour, the implementation MAY discontinue maintaining
the timeline.

If a service is selected and its timeline is active, and the value of the timeline is greater than or equal
to the switchStartTime and less than or equal to the switchWindowEndTime, the implementation
SHALL perform an L0 switch; an exception to this requirement is where switchWindowEndTime is
within four seconds of the switchEndTime: the implementation SHALL not perform an L0 switch
within four seconds of the switchEndTime.

7.2.4 Switch engine events
If a trigger is encountered and there is no corresponding instruction, an UNARMED_TRIGGER
event SHALL be propagated to any listening targeting engine. If an insertion feed is currently being
presented, the switch engine SHALL revert to presenting the original feed.

Where a switch occurs, an INSERTION_START event SHALL be propagated to any listening
targeting engine.

If a viewer selects a DPI enabled service at a point between triggers within a set of L1 triggers, the
receiver will not receive all of the triggers within the set, and therefore SHALL NOT perform a
switch. Specifically, if the position_in_set field of a trigger is greater than or equal to two and a
trigger has not been received on the service with position_in_set equal to 1, all triggers within the
set SHALL be ignored. If not already presenting the original program, the implementation SHALL
switch back to the original program and a MISSED_TRIGGER event SHALL be propagated to any
listening targeting engine.

When a switch instruction expires (see Annex A), an INSTRUCTION_EXPIRED event SHALL be
propagated to any targeting engine, and the instruction SHALL be considered inactive.

7.3 Switch Engine API

This clause describes the functionality of an application programming interface to a switch engine.
This description is provided in 'C' syntax, and can be adapted and implemented in any programming
language.

 Rec. ITU-T J.215 (12/2007) 9

SwitchEngineListener Represents a listener for Switch Engine events.

Method Summary
 void

notifySwitchEngineEvent(SwitchInstruction SwitchInstruction,
int Reason)

 Method called by the Switch Engine implementation when a Switch Engine
 event occurs, if the Targeting Engine application has registered as a listener for
 the event.

SwitchEngineManager An application may use this object to control the behaviour of the
switch engine.

Method Summary

abstract void addInstruction(SwitchInstruction[]
switchInstructions)
Add SwitchInstruction(s) to the Switch Engine active list.

static SwitchEngineManager getInstance()
gets the singleton instance of the Switch Engine manager for
use by a privileged application.

abstract
 SwitchInstruction[]

getInstruction(int[] SwitchIDs, int SourceID)
The Switch Engine SHALL return the Switch Instruction(s)
matching the passed in SwitchID and SourceID.

abstract void removeInstruction(SwitchInstruction[]
switchInstructions)
The Switch Engine SHALL remove the passed in Switch
Instruction(s) from the Switch Engine active list.

abstract void removeSwitchEngineListener(SwitchEngineListener
Listener)
Removes the previously added SwitchEngineListener.

abstract void setSwitchEngineListener(SwitchEngineListener
Listener, byte[] Filter)
Adds the listener for Switch Engine events.

SwitchInstruction A SwitchInstruction encapsulates the information needed by the switch
engine to perform a switch operation.

Constructor Summary
SwitchInstruction()
 SwitchInstruction constructor.
SwitchInstruction(int SourceID, javax.tv.locator.Locator[] Locator,
int SwitchID, byte GroupSize, byte PositionInGroup, int SwitchStartTime,
int SwitchEndTime, int SwitchWindowEndTime, int ExpirationTime,
boolean TriggerSwitch, int InsertionOptions, boolean InsertionIndivisible,
boolean EndOfInsertion)
 SwitchInstruction constructor.

10 Rec. ITU-T J.215 (12/2007)

Method Summary
byte[] getEndOfInsertion()

Retrieve the attribute EndOfInsertion.
int getExpirationTime()

Retrieve the attribute ExpirationTime.
byte getGroupSize()

Retrieve the attribute GroupSize.
boolean getInsertionIndivisible()

Retrieve the attribute InsertionIndivisible.
int getInsertionOptions()

Retrieve the attribute InsertionOptions.
javax.tv.locator.Locator[] getLocator()

Retrieve the attribute Locator.
byte getPositionInGroup()

Retrieve the attribute PositionInGroup.
int getSourceID()

Retrieve the attribute SourceID.
int getSwitchEndTime()

Retrieve the attribute SwitchEndTime.
int getSwitchID()

Retrieve the attribute SwitchID.
int getSwitchStartTime()

Retrieve the attribute SwitchStartTime.
int getSwitchWindowEndTime()

Retrieve the attribute SwitchWindowEndTime.
boolean getTriggerSwitch()

Get attribute TriggerSwitch.
void setEndOfInsertion(boolean EndOfInsertion)

Set attribute EndOfInsertion to specified parameter.
void setExpirationTime(int ExpirationTime)

Set attribute ExpirationTime to specified parameter.
void setGroupSize(byte GroupSize)

Set attribute GroupSize to specified parameter.
void setInsertionIndivisible(boolean InsertionIndivisible)

Set attribute InsertionIndivisible to True or False.
void setInsertionOptions(int InsertionOptions)

Set attribute InsertionOptions to specified parameter.
void setLocator(javax.tv.locator.Locator[] Locator)

Set attribute Locator to specified parameter.
void setPositionInGroup(byte PositionInGroup)

Set attribute PositionInGroup to specified parameter.
void setSourceID(int SourceID)

Set attribute SourceID to specified parameter.
void setSwitchEndTime(int SwitchEndTime)

Set attribute SwitchEndTime to specified parameter.
void setSwitchID(int SwitchID)

Set attribute SwitchID to specified parameter.
void setSwitchStartTime(int SwitchStartTime)

Set attribute SwitchStartTime to specified parameter.
void setSwitchWindowEndTime(int SwitchWindowEndTime)

Set attribute SwitchWindowEndTime to specified parameter.
void setTriggerSwitch(boolean TriggerSwitch)

Set attribute TriggerSwitch.

 Rec. ITU-T J.215 (12/2007) 11

SwitchEngineException Allows an exception to pass back the SwitchInstruction associated
with the Exception.

Constructor Summary

SwitchEngineException()

Method Summary
 SwitchInstruction[] SwitchInstructionException()

Returns the SwitchInstruction(s) that caused the exception.

12 Rec. ITU-T J.215 (12/2007)

Annex A

OCAP 1.1 Digital Program Insertion API
(This annex forms an integral part of this Recommendation)

This annex defines a Java application programming interface (API) for application command and
control of device DPI functionality.

Package org.ocap.dpi

A.1 SwitchEngineException class
A.2 SwitchEngineListener Interface
A.3 SwitchEngineManager Class
A.4 SwitchInstruction Class

Package org.ocap.dpi

Interface Summary

SwitchEngineListener This class represents a listener for Switch Engine events.

Class Summary

SwitchEngineManager An application may use this class to control the behaviour of the
switch engine.

SwitchInstruction A SwitchInstruction encapsulates the information needed by the
switch engine to perform a switch operation.

Exception Summary

SwitchEngineException Derived from Exception and allows an exception to pass back the
SwitchInstruction associated with the Exception.

A.1 SwitchEngineException class

org.ocap.dpi
Class SwitchEngineException

java.lang.Object

 java.lang.Throwable

 java.lang.Exception

 org.ocap.dpi.SwitchEngineException

All Implemented Interfaces:
java.io.Serializable

 Rec. ITU-T J.215 (12/2007) 13

public class SwitchEngineException
extends java.lang.Exception

Derived from Exception and allows an exception to pass back the SwitchInstruction associated with
the Exception.

Constructor Summary

SwitchEngineException()

Method Summary

 SwitchInstruction[] SwitchInstructionException()
Returns the SwitchInstruction(s) that caused the exception.

Methods inherited from class java.lang.Throwable
fillInStackTrace, getCause, getLocalizedMessage, getMessage, getStackTrace,
initCause, printStackTrace, printStackTrace, printStackTrace, setStackTrace,
toString

Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

Constructor Detail

SwitchEngineException

public SwitchEngineException()

Method Detail

SwitchInstructionException

public SwitchInstruction[] SwitchInstructionException()

Returns the SwitchInstruction(s) that caused the exception.

Returns:
SwitchInstruction[] SwitchInstruction(s) that caused the Exception to be thrown.

A.2 SwitchEngineListener interface

org.ocap.dpi
Interface SwitchEngineListener

All Superinterfaces:
 java.util.EventListener

14 Rec. ITU-T J.215 (12/2007)

public interface SwitchEngineListener
extends java.util.EventListener

This class represents a listener for Switch Engine events.

Field Summary
static int COMPONENT_START

For an L1 Switch a component switch has been completed.
static int INSERTION_START

Switch Instruction was successfully executed and an insertion was accomplished.
static int INSTRUCTION_EXPIRED

Switch Instruction was removed because it has passed its valid time based on its
ExpirationTime.

static int MISSED_TRIGGER
The Trigger is position_in_set = 2 or greater and the Switch Instruction's trigger
with position_in_set = 1 has not been processed for this Switch set.

static int NO_TARGET
No target for insertion was found at the Locator included in the SwitchInstruction.

static int UNARMED_TRIGGER
A Trigger was detected but no matching SwitchInstruction was found.

Method Summary
 void notifySwitchEngineEvent(SwitchInstruction SwitchInstruction,

int Reason)
Method called by the Switch Engine implementation when a Switch Engine event
occurs, if the Targeting Engine application has registered as a listener for the event.

Field Detail

UNARMED_TRIGGER

static final int UNARMED_TRIGGER

A Trigger was detected but no matching SwitchInstruction was found.

MISSED_TRIGGER

static final int MISSED_TRIGGER

The Trigger is position_in_set = 2 or greater and the Switch Instruction's trigger with
position_in_set = 1 has not been processed for this Switch set.

NO_TARGET

static final int NO_TARGET

No target for insertion was found at the Locator included in the SwitchInstruction.

 Rec. ITU-T J.215 (12/2007) 15

INSTRUCTION_EXPIRED

static final int INSTRUCTION_EXPIRED

Switch Instruction was removed because it has passed its valid time based on its
ExpirationTime. This may not be an error if it is for a different source than has been tuned
during the Insertion Group.

INSERTION_START

static final int INSERTION_START

Switch Instruction was successfully executed and an insertion was accomplished.

COMPONENT_START

static final int COMPONENT_START

For an L1 Switch a component switch has been completed.

Method Detail

notifySwitchEngineEvent

void notifySwitchEngineEvent(SwitchInstruction SwitchInstruction,
 int Reason)

Method called by the Switch Engine implementation when a Switch Engine event occurs, if
the Targeting Engine application has registered as a listener for the event.

Parameters:

SwitchInstruction – The SwitchInstruction that is associated with this Switch Engine
event.

Reason – The reason for the event notification.
 • UNARMED_TRIGGER – A Trigger was detected but no matching SwitchInstruction

was found.
 • MISSED_TRIGGER – The Trigger is position_in_set = 2 or greater and the trigger

where position_in_set = 1, has not been processed for this Switch Group.
 • NO_TARGET – No target for insertion was found at the Locator(s) included in the

SwitchInstruction.
 • INSTRUCTION_EXPIRED – Switch Instruction was removed because it has passed

its valid time based on its ExpirationTime.
 • INSERTION_START – Switch has been accomplished.
 • COMPONENT_START – For an L1 Switch, a component switch has been completed.

16 Rec. ITU-T J.215 (12/2007)

A.3 SwitchEngineManager Class

org.ocap.dpi
Class SwitchEngineManager

java.lang.Object

 org.ocap.dpi.SwitchEngineManager

public abstract class SwitchEngineManager
extends java.lang.Object

An application may use this class to control the behaviour of the switch engine.

Method Summary

abstract void addInstruction(SwitchInstruction[]
switchInstructions)

Add SwitchInstruction(s) to the Switch Engine active list.
static SwitchEngineManager getInstance()

gets the singleton instance of the Switch Engine manager for
use by a privileged application.

abstract
 SwitchInstruction[]

getInstruction(int[] SwitchIDs, int SourceID)
The Switch Engine SHALL return the Switch Instruction(s)
matching the passed in SwitchID and SourceID.

abstract void removeInstruction(SwitchInstruction[]
switchInstructions)

The Switch Engine SHALL remove the passed in Switch
Instruction(s) from the Switch Engine active list.

abstract void removeSwitchEngineListener(SwitchEngineListener
Listener)
Removes the previously added SwitchEngineListener.

abstract void setSwitchEngineListener(SwitchEngineListener
Listener, byte[] Filter)
Adds the listener for Switch Engine events.

Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

Method Detail

getInstance

public static SwitchEngineManager getInstance()

Gets the singleton instance of the Switch Engine manager for use by a privileged
application.

Throws:

java.lang.SecurityException – if the calling application does not have
MonitorAppPermission("dpi").

 Rec. ITU-T J.215 (12/2007) 17

setSwitchEngineListener

public abstract void setSwitchEngineListener(SwitchEngineListener Listener,
 byte[] Filter)

Adds the listener for Switch Engine events.

Parameters:

Listener – Is an instance of a SwitchEngineListener whose SwitchEngineListener method
SHALL be called when a Switch Engine event occurs.

Filter – A byte array of filters enabling any or all of the following Switch Engine events.
 • UNARMED_TRIGGER
 • MISSED_TRIGGER
 • NO_TARGET
 • INSTRUCTION_EXPIRED
 • INSERTION_START
 • COMPONENT_START

Throws:

java.lang.IllegalArgumentException – Listener is null.

removeSwitchEngineListener

public abstract void removeSwitchEngineListener(SwitchEngineListener Listener)

Removes the previously added SwitchEngineListener.

Parameters:

Listener – is the Switch Engine Listener to disable. Does nothing if it was never added, has
been removed, or is null.

addInstruction

public abstract void addInstruction(SwitchInstruction[] switchInstructions)

Add SwitchInstruction(s) to the Switch Engine active list.

If TriggerSwitch is FALSE the Switch Engine SHALL perform an L0 Switch when time is at or
past the SwitchStartTime in the SwitchInstruction. For all other SwitchInstructions, the Switch
Engine SHALL store the Switch Instruction(s) in its active list. For any Switch Instruction that have
an identical SwitchID and SourceID to an already existing Switch Instruction, the Switch Engine
SHALL replace the Switch Instruction and a Duplicate Switch Instruction Exception is thrown.

Parameters:

switchInstructions –

Throws:

java.lang.SecurityException – Calling application does not have
MonitorAppPermission("dpi")

java.lang.IllegalArgumentException – If the BreakID and SourceID do not identify a
SwitchInstruction.

java.lang.IllegalArgumentException – Negative SourceID

18 Rec. ITU-T J.215 (12/2007)

java.lang.IllegalArgumentException – ExpirationTime passed

java.lang.IllegalArgumentException – Unknown InsertionOptions

java.lang.IllegalArgumentException – SwitchEndTime is before SwitchStartTime

java.lang.IllegalArgumentException – Duplicate SwitchInstruction

InvalidLocator – if Locator is invalid

InvalidLocator – Locator is null

InvalidLocator – Locator not found

removeInstruction

public abstract void removeInstruction(SwitchInstruction[] switchInstructions)

The Switch Engine SHALL remove the passed in Switch Instruction(s) from the Switch
Engine active list. If any argument is –1, then the Switch Engine SHALL treat it as a "wild
card" such that the Switch Engine shall process all Switch Instructions that match that field.
(e.g., if SourceID = –1, then remove the Switch Instructions matching the SwitchID and all
SourceIDs).

Parameters:

switchInstructions – See SwitchInstruction class.

Throws:

java.lang.IllegalArgumentException – If the BreakID and SourceID do not identify a
SwitchInstruction.

java.lang.SecurityException – Calling application does not have
MonitorAppPermission("dpi")

getInstruction

public abstract SwitchInstruction[] getInstruction(int[] SwitchIDs,
 int SourceID)

The Switch Engine SHALL return the Switch Instruction(s) matching the passed in
SwitchID and SourceID. If any argument is –1 then the Switch Engine SHALL treat it as a
"wild card" such that all Switch Instructions that match that field are processed. (e.g., if
SourceID = –1 then get the Switch Instructions matching the SwitchID and all SourceIDs).

Parameters:

SwitchIDs – One or more numbers uniquely identifying the SwitchInstructions to return.

SourceID – Source Identifier for the SwitchInstructions.

Returns:
SwitchInstruction. An object that is created by the DPI Targeting Engine and passed to the
implementation via the Switch engine API. The object SHALL be copied by the method and
cannot be changed after loaded.

Throws:

java.lang.IllegalArgumentException – If the SwitchID and SourceID do not identify a
SwitchInstruction.

 Rec. ITU-T J.215 (12/2007) 19

java.lang.SecurityException – Calling application does not have
MonitorAppPermission("dpi")

A.4 SwitchInstruction Class

org.ocap.dpi
Class SwitchInstruction

java.lang.Object

 org.ocap.dpi.SwitchInstruction

public class SwitchInstruction
extends java.lang.Object

A SwitchInstruction encapsulates the information needed by the switch engine to perform a switch
operation. A switch operation is performed according to the SwitchInstruction on receipt of a DPI
trigger or when a point on a metadata timeline is reached.

Switches may be trigger-based or time-based. A SwitchInstruction MAY identify a set of triggers,
and/or identify a segment of time during which a switch may occur.

A SwitchInstruction object MAY be instantiated by a targeting engine application and passed to the
implementation via SwitchEngineManager.addInstruction().

For the attributes of the SwitchInstruction, see the SwitchInstruction constructor parameter list.

Field Summary

static int GO_TO_BLACK
Go to black at SwitchEndTime even if insert program is not complete.

static int PLAY_TO_COMPLETION
Play inserted program to completion under all circumstances.

static int RETURN_TO_PROGRAM
Return to Program at SwitchEndTime even if inserted content is not complete.

Constructor Summary

SwitchInstruction()
 SwitchInstruction constructor.

SwitchInstruction(int SourceID, javax.tv.locator.Locator[] Locator,
int SwitchID, byte GroupSize, byte PositionInGroup, int SwitchStartTime,
int SwitchEndTime, int SwitchWindowEndTime, int ExpirationTime,
boolean TriggerSwitch, int InsertionOptions, boolean InsertionIndivisible,
boolean EndOfInsertion)
 SwitchInstruction constructor.

Method Summary

byte[] getEndOfInsertion()
Retrieve the attribute EndOfInsertion.

int getExpirationTime()
Retrieve the attribute ExpirationTime.

20 Rec. ITU-T J.215 (12/2007)

Method Summary

byte getGroupSize()
Retrieve the attribute GroupSize.

boolean getInsertionIndivisible()
Retrieve the attribute InsertionIndivisible.

int getInsertionOptions()
Retrieve the attribute InsertionOptions.

javax.tv.locator.Locator[] getLocator()
Retrieve the attribute Locator.

byte getPositionInGroup()
Retrieve the attribute PositionInGroup.

int getSourceID()
Retrieve the attribute SourceID.

int getSwitchEndTime()
Retrieve the attribute SwitchEndTime.

int getSwitchID()
Retrieve the attribute SwitchID.

int getSwitchStartTime()
Retrieve the attribute SwitchStartTime.

int getSwitchWindowEndTime()
Retrieve the attribute SwitchWindowEndTime.

boolean getTriggerSwitch()
Get attribute TriggerSwitch.

void setEndOfInsertion(boolean EndOfInsertion)
Set attribute EndOfInsertion to specified parameter.

void setExpirationTime(int ExpirationTime)
Set attribute ExpirationTime to specified parameter.

void setGroupSize(byte GroupSize)
Set attribute GroupSize to specified parameter.

void setInsertionIndivisible(boolean InsertionIndivisible)

Set attribute InsertionIndivisible to True or False.
void setInsertionOptions(int InsertionOptions)

Set attribute InsertionOptions to specified parameter.
void setLocator(javax.tv.locator.Locator[] Locator)

Set attribute Locator to specified parameter.
void setPositionInGroup(byte PositionInGroup)

Set attribute PositionInGroup to specified parameter.
void setSourceID(int SourceID)

Set attribute SourceID to specified parameter.
void setSwitchEndTime(int SwitchEndTime)

Set attribute SwitchEndTime to specified parameter.
void setSwitchID(int SwitchID)

Set attribute SwitchID to specified parameter.
void setSwitchStartTime(int SwitchStartTime)

Set attribute SwitchStartTime to specified parameter.
void setSwitchWindowEndTime(int SwitchWindowEndTime)

Set attribute SwitchWindowEndTime to specified parameter.
void setTriggerSwitch(boolean TriggerSwitch)

Set attribute TriggerSwitch.

Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

 Rec. ITU-T J.215 (12/2007) 21

Field Detail

GO_TO_BLACK
public static final int GO_TO_BLACK

Go to black at SwitchEndTime even if insert program is not complete.

RETURN_TO_PROGRAM
public static final int RETURN_TO_PROGRAM

Return to Program at SwitchEndTime even if inserted content is not complete.

PLAY_TO_COMPLETION
public static final int PLAY_TO_COMPLETION

Play inserted program to completion under all circumstances.

Constructor Detail

SwitchInstruction

public SwitchInstruction()

SwitchInstruction constructor. Can be used to Instantiate a SwitchInstruction w/o initializing the
attributes.

SwitchInstruction

public SwitchInstruction(int SourceID,
 javax.tv.locator.Locator[] Locator,
 int SwitchID,
 byte GroupSize,
 byte PositionInGroup,
 int SwitchStartTime,
 int SwitchEndTime,
 int SwitchWindowEndTime,
 int ExpirationTime,
 boolean TriggerSwitch,
 int InsertionOptions,
 boolean InsertionIndivisible,
 boolean EndOfInsertion)

SwitchInstruction constructor. Can be used to initialize all attributes in a SwitchInstruction in place
of the set methods.

Parameters:

SourceID – The source id of the service on which this instruction may cause a switch.

Locator – A Locator that identifies the component or program for insertion.

SwitchID – Switch Identifier. Matches the trigger identifier within a set of DPI triggers
(synchronized_event_id).

GroupSize – Indicates the number of switches within a related group. A group corresponds
to an advertising break, which may contain several ad spots.

22 Rec. ITU-T J.215 (12/2007)

PositionInGroup – Indicates the position of this switch within a group of insertions, zero
based.

SwitchStartTime – Point on a metadata timeline at which an L0 switch may occur.

SwitchEndTime – Point on a metadata timeline at which the insertion segment is over and
the switch engine should present the Primary Service.

SwitchWindowEndTime – Point on a metadata timeline at which an L0 switch may not
occur. In the case where the service is selected at a point past the switchTimeStart, this value
indicates the point when the switch should no longer occur.

ExpirationTime – The time at which the instruction is no longer valid and SHALL NOT
cause a switch to occur. The switch engine MAY remove the instruction at this time. The
time is num seconds from receipt by switch engine of instruction.

InsertionIndivisible – If true and the first trigger in an Insertion Group is missed then
subsequent triggers in the Group SHALL be ignored. Used in conjunction with the
GroupSize and PositionInGroup attributes.

TriggerSwitch – boolean with the following meanings:
 • If TRUE – DPI Trigger initiates each switch.
 • If FALSE – Metadata time initiates each switch.

NOTE – If TriggerSwitch = FALSE and time is past the SwitchStartTime when the SwitchInstruction is

loaded and executed immediately. This assumes that the switch engine is tuned to a service and has
established a valid metadata timeline.

InsertionOptions – Options for insertion of content.
 • GO_TO_BLACK – Go to black at SwitchEndTime even if insert program is not

complete.
 • RETURN_TO_PROGRAM – Return to Program at SwitchEndTime even if inserted

content is not complete.
 • PLAY_TO_COMPLETION – Play inserted program to completion under all

circumstances.

EndOfInsertion – Identifies if the Switch Instruction should return to the Primary Service.
Locator is a don't care.

Throws:

java.lang.IllegalArgumentException – Negative SourceID

java.lang.IllegalArgumentException – ExpirationTime passed

java.lang.IllegalArgumentException – Unknown InsertionOptions

java.lang.IllegalArgumentException – SwitchEndTime is before SwitchStartTime

java.lang.IllegalArgumentException – Duplicate SwitchID and SourceID.

InvalidLocator – Locator is invalid

InvalidLocator – Locator is null

InvalidLocator – Locator not found

 Rec. ITU-T J.215 (12/2007) 23

Method Detail

setSwitchID

public void setSwitchID(int SwitchID)

Set attribute SwitchID to specified parameter.

Parameters:

SwitchID – Switch Identifier.

Throws:

java.lang.IllegalStateException – this method is called when the SwitchInstruction is
Active (Has been added with the addInstruction).

getSwitchID

public int getSwitchID()

Retrieve the attribute SwitchID.

Returns:
SwitchID

setGroupSize

public void setGroupSize(byte GroupSize)

Set attribute GroupSize to specified parameter.

Parameters:

GroupSize – Number of Switches within a group.

Throws:

java.lang.IllegalStateException – this method is called when the SwitchInstruction is
Active (Has been added with the addInstruction).

getGroupSize

public byte getGroupSize()

Retrieve the attribute GroupSize.

Returns:
GroupSize

setPositionInGroup

public void setPositionInGroup(byte PositionInGroup)

24 Rec. ITU-T J.215 (12/2007)

Set attribute PositionInGroup to specified parameter.

Parameters:

PositionInGroup – Position of Switch within a group.

Throws:

java.lang.IllegalStateException – this method is called when the SwitchInstruction is
Active (Has been added with the addInstruction).

getPositionInGroup

public byte getPositionInGroup()

Retrieve the attribute PositionInGroup.

Returns:
PositionInGroup

setSourceID

public void setSourceID(int SourceID)

Set attribute SourceID to specified parameter.

Parameters:

SourceID – source identifier.

Throws:

java.lang.IllegalStateException – this method is called when the SwitchInstruction is
Active (Has been added with the addInstruction).

getSourceID

public int getSourceID()

Retrieve the attribute SourceID.

Returns:

SourceID

setInsertionIndivisible

public void setInsertionIndivisible(boolean InsertionIndivisible)

Set attribute InsertionIndivisible to True or False.

Parameters:

InsertionIndivisible – Indicator of whether a partial Insertion Period can be processed.

 Rec. ITU-T J.215 (12/2007) 25

Throws:

java.lang.IllegalStateException – this method is called when the SwitchInstruction is
Active (Has been added with the addInstruction).

getInsertionIndivisible

public boolean getInsertionIndivisible()

Retrieve the attribute InsertionIndivisible.

Returns:
InsertionIndivisible

setTriggerSwitch

public void setTriggerSwitch(boolean TriggerSwitch)

Set attribute TriggerSwitch.

Parameters:

TriggerSwitch – boolean with the following meanings:
• TRUE – DPI Trigger initiated Break

• FALSE – Metadata time initiated Break

Throws:

java.lang.IllegalStateException – this method is called when the SwitchInstruction is
Active (Has been added with the addInstruction).

getTriggerSwitch

public boolean getTriggerSwitch()

Get attribute TriggerSwitch.

Returns:
TriggerSwitch

setSwitchStartTime

public void setSwitchStartTime(int SwitchStartTime)

Set attribute SwitchStartTime to specified parameter.

Parameters:

SwitchStartTime – Time insertion is to begin.

26 Rec. ITU-T J.215 (12/2007)

Throws:

java.lang.IllegalStateException – this method is called when the SwitchInstruction is
Active (Has been added with the addInstruction).

getSwitchStartTime

public int getSwitchStartTime()

Retrieve the attribute SwitchStartTime.

Returns:
SwitchStartTime

setSwitchEndTime

public void setSwitchEndTime(int SwitchEndTime)

Set attribute SwitchEndTime to specified parameter.

Parameters:

SwitchEndTime – End of Insertion Period

Throws:

java.lang.IllegalStateException – this method is called when the SwitchInstruction is
Active (Has been added with the addInstruction).

getSwitchEndTime

public int getSwitchEndTime()

Retrieve the attribute SwitchEndTime.

Returns:
SwitchEndTime

setExpirationTime

public void setExpirationTime(int ExpirationTime)

Set attribute ExpirationTime to specified parameter.

Parameters:

ExpirationTime – The time when the Switch Instruction is no longer valid for an Insertion
and can be removed.

Throws:

java.lang.IllegalStateException – this method is called when the SwitchInstruction is
Active (Has been added with the addInstruction).

 Rec. ITU-T J.215 (12/2007) 27

getExpirationTime

public int getExpirationTime()

Retrieve the attribute ExpirationTime.

Returns:
ExpirationTime

setSwitchWindowEndTime

public void setSwitchWindowEndTime(int SwitchWindowEndTime)

Set attribute SwitchWindowEndTime to specified parameter.

Parameters:

SwitchWindowEndTime – point on a metadata timeline at which an L0 switch may not
occur. In the case where the service is selected at a point past the switchStartTime, this value
indicates the point when the switch should no longer occur.

Throws:

java.lang.IllegalStateException – this method is called when the SwitchInstruction is
Active (Has been added with the addInstruction).

getSwitchWindowEndTime

public int getSwitchWindowEndTime()

Retrieve the attribute SwitchWindowEndTime.

Returns:
SwitchWindowEndTime

setInsertionOptions

public void setInsertionOptions(int InsertionOptions)

Set attribute InsertionOptions to specified parameter.

Parameters:

InsertionOptions – Options for insertion of content.
• GO_TO_BLACK – Go to BLACK at SwitchEndTime even if insert program is not

complete.

• RETURN_TO_PROGRAM – Return to Program at SwitchEndTime even if insert
program is not complete.

• PLAY_TO_COMPLETION – Play inserted program to completion under all
circumstances.

28 Rec. ITU-T J.215 (12/2007)

Throws:

java.lang.IllegalStateException – this method is called when the SwitchInstruction is
Active (Has been added with the addInstruction).

getInsertionOptions

public int getInsertionOptions()

Retrieve the attribute InsertionOptions.

Returns:
InsertionOptions

setLocator

public void setLocator(javax.tv.locator.Locator[] Locator)

Set attribute Locator to specified parameter.

Parameters:

Locator – Identifies the component or program for insertion. Locator pointing to media
content to switch to.

Throws:

java.lang.IllegalStateException – this method is called when the SwitchInstruction is
Active (Has been added with the addInstruction).

getLocator

public javax.tv.locator.Locator[] getLocator()

Retrieve the attribute Locator.

Returns:

javax.tv.locator.Locator[]

setEndOfInsertion

public void setEndOfInsertion(boolean EndOfInsertion)

Set attribute EndOfInsertion to specified parameter.

Parameters:

EndOfInsertion – Identifies this as an end of Insertion Swtich Instruction that returns to
the primary service.

Throws:

java.lang.IllegalStateException – this method is called when the SwitchInstruction is
Active (Has been added with the addInstruction).

 Rec. ITU-T J.215 (12/2007) 29

getEndOfInsertion

public byte[] getEndOfInsertion()

Retrieve the attribute EndOfInsertion.

Returns:
EndOfInsertion

Printed in Switzerland
Geneva, 2010

SERIES OF ITU-T RECOMMENDATIONS

Series A Organization of the work of ITU-T

Series D General tariff principles

Series E Overall network operation, telephone service, service operation and human factors

Series F Non-telephone telecommunication services

Series G Transmission systems and media, digital systems and networks

Series H Audiovisual and multimedia systems

Series I Integrated services digital network

Series J Cable networks and transmission of television, sound programme and other multimedia
signals

Series K Protection against interference

Series L Construction, installation and protection of cables and other elements of outside plant

Series M Telecommunication management, including TMN and network maintenance

Series N Maintenance: international sound programme and television transmission circuits

Series O Specifications of measuring equipment

Series P Telephone transmission quality, telephone installations, local line networks

Series Q Switching and signalling

Series R Telegraph transmission

Series S Telegraph services terminal equipment

Series T Terminals for telematic services

Series U Telegraph switching

Series V Data communication over the telephone network

Series X Data networks, open system communications and security

Series Y Global information infrastructure, Internet protocol aspects and next-generation networks

Series Z Languages and general software aspects for telecommunication systems

	ITU-T Rec. J.215 (12/2007) Client digital program insertion API
	Summary
	Source
	FOREWORD
	1 Scope
	2 References
	2.1 Normative references
	2.2 Informative references

	3 Definitions
	4 Abbreviations and acronyms
	5 Conventions
	6 DPI overview
	7 Requirements for digital program insertion (DPI)
	7.1 DPI signalling
	7.2 Switch engine behaviour
	7.3 Switch Engine API

	Annex A OCAP 1.1 Digital Program Insertion API
	A.1 SwitchEngineException class
	A.2 SwitchEngineListener interface
	A.3 SwitchEngineManager Class
	A.4 SwitchInstruction Class

